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Abstract: Critical statistical mechanics and Conformal Field Theory (CFT) are con-
jecturally connected since the seminal work of Beliavin et al. (Nucl Phys B 241(2):333–
380, 1984). Both exhibit exactly solvable structures in two dimensions. A long-standing
question (Itoyama and Thacker in Phys Rev Lett 58:1395–1398, 1987) concerns whether
there is a direct link between these structures, that is, whether the Virasoro algebra rep-
resentations of CFT, the distinctive feature of CFT in two dimensions, can be found
within lattice models of statistical mechanics. We give a positive answer to this question
for the discrete Gaussian free field and for the Ising model, by connecting the structures
of discrete complex analysis in the lattice models with the Virasoro symmetry that is
expected to describe their scaling limits. This allows for a tight connection of a number
of objects from the lattice model world and the field theory one. In particular, our results
link the CFT local fields with lattice local fields introduced in Gheissari et al. (Commun
Math Phys 367(3):771–833, 2019) and the probabilistic formulation of the lattice model
with the continuum correlation functions. Our construction is a decisive step towards
establishing the conjectured correspondence between the correlation functions of the
CFT fields and those of the lattice local fields. In particular, together with the upcoming
(Chelkak et al. in preparation), our construction will complete the picture initiated in
Hongler and Smirnov (Acta Math 211:191–225, 2013), Hongler (Conformal invariance
of ising model correlations, 2012) and Chelkak et al. (Annals Math 181(3):1087–1138,
2015), where a number of conjectures relating specific Ising lattice fields and CFT cor-
relations were proven.
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1. Introduction

1.1. Statistical mechanics and conformal field theory. Physical arguments suggest that
2D lattice models at continuous phase transitions have conformally invariant scaling
limits that can be described by Conformal Field Theories (CFTs). The 2D CFTs are
exactly solvable in the sense that they can be studied in terms of representations of the
Virasoro algebra. This has led to exact formulae for the (conjectural) scaling limits of
correlations, partition functions, and critical exponents of such lattice models. See, e.g.,
[BPZ84a,BPZ84b,DMS97,Mus09] and the references in the latter.

Despite the success of the application of CFT to lattice models, it usually constitutes
a non-rigorous approach to statistical mechanics. Indeed, one needs to assume that the
fields of the models have conformally invariant scaling limits and that they can be
described within the framework of certain quantum field theories.

In the special case of the (discrete) Gaussian free field, the CFT approach can be
carried out rigorously and Virasoro representations can be found in the continuum in
terms of insertions [Gaw99,KaMa11]. For the Ising model, significant progress towards
connecting its correlations with the correlation of the relevant CFTs has been made
recently [CHI15,Hon10,HoSm13].

Schramm’s SLEs provide a different route towards a rigorous understanding of con-
formally invariant scaling limits [Sch00,Sch07]. These random curves describe the
scaling limits of cluster interfaces in the lattice models. Moreover, SLE processes are
amenable to calculations and SLE techniques have been successfully applied to pro-
duce interpretations and rigorous proofs of a number of the conjectures of CFT, see,
e.g., the references in [KaMa11]. Studies of more direct and systematic connections
between SLE and CFT have been carried out, leading to beautiful results. See, e.g.,
[BaBe03,DRV06,FrWe03,KaMa11,Kyt07,Dub15b,Dub15c,FlKl15].

Still, the connectionbetween latticemodels andCFT remains far fromwell-understood
and, it seems fair to say, rather mysterious from a mathematical perspective. Thus it ap-
pears of significant interest to advance the mathematical understanding of CFT applied
to lattice models. There are many fundamental difficulties, including in particular the
correspondence between discrete and continuous quantities, the proofs of conformal
invariance, the locality of the limits, and the positivity of the underlying representations,
to name a few.

1.2. Exact solvability. In two dimensions, a number of lattice models (see Sect. 1.3
below) are considered exactly solvable in a different sense than CFTs. Typically, exact
solvability in this context means that certain lattice-level relations such as the Yang-
Baxter equations are present and this often yields exact formulae for a number of inter-
esting quantities of the models. In fact, this is how most of the exact results about lattice
models were derived in the 20th century. See, e.g., [Bax89] and references therein.

Recently, discrete solvability has been formulated in termsofdiscrete holomorphicity.
This has enabled the use of discrete complex analysis techniques leading to rigorous
proofs of conformal invariance for a number of exactly solvable lattice models and to
exact formulae for their limiting correlations, matching the predictions of the relevant
CFTs. See, e.g., [Ken00,Ken01,Smi06,Smi10a,CHI15].

Once the lattice solvability has been used to establish conformal invariance, the latter
should in principle help reveal the algebraic structures of CFT. Thus it is natural to expect
lattice and CFT solvability to be (indirectly) connected via continuous conformally
invariant objects such as SLE or the GFF or by the identification of lattice precursors
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of key CFT objects, see, e.g., [BeHo17,Dub15a,Dub11b,Dub15c,CGS16] for recent
progress in this direction.

This leads to the following natural question formulated already in the late 1980s
[ItTh87]:

• Is there a direct connection between exact solvability of lattice models and of con-
formal field theories?

In this paper we resolve this longstanding problem in the positive for the discrete Gaus-
sian free field and the critical Ising model: the central algebraic structures of the CFTs
describing their scaling limits are in fact already present at the lattice level.

This question has been investigated in the physics literature in the case of the 8-vertex
model and the Ising model, see [ItTh87,KoSa94] and the references in the latter, as well
as the recent development [GJRSV13]. However, our results are the first where the
relevant lattice and continuous structures are directly and exactly connected (without
deformation). Moreover, the action of the operators takes place on a space of lattice
ancestors of the local fields, thus giving a transparent, probabilistic interpretation of the
situation, and is formulated in terms of discrete complex analysis, enabling control of
the limits.

1.3. Lattice models. A lattice model is informally a probabilistic or quantum model
which “lives” on a graph or lattice such as Z2: there are (random or quantum) degrees of
freedom associated with each vertex, edge, or face of the lattice. Of particular interest
are the large-scale features of such models, particularly when they result in randomness
at large scale suggesting the existence of scaling limits, i.e., macroscopic random objects
which describe the models as one “looks at them from far away.”

This paper focuses on two classical probabilistic latticemodels: the discrete Gaussian
free field (defined precisely in Sect. 3.2) and the Ising model (defined precisely in
Sect. 3.3), both with one degree of freedom associated with each vertex. Their scaling
limits are the most fundamental examples of CFTs.

1.3.1. DiscreteGaussian free field The discrete Gaussian free field (dGFF) on a graphG
is a randomGaussian vector (ϕx )with entries indexed by the vertices x ofG with density
proportional to exp

( − const.
∑

x∼y

(
ϕx − ϕy

)2 ) where the sum is over all pairs of
adjacent vertices; see Sect. 3.2 for the precise conventions that we will use.

By taking an appropriate scaling limit of the dGFF, one recovers the Gaussian free
field (also known as the massless free boson field) which plays a central rôle in Quantum
Field Theory. The continuumGFF is well-understoodmathematically, see, e.g., [Gaw99,
GJ87,KaMa11,She07].

1.3.2. Ising model The Ising model is perhaps the most well-studied model of equi-
librium statistical mechanics. It consists of random ±1-valued spins (σx ) living on
the vertices x of a graph G. The probability of a spin configuration is proportional to
exp

(−β H[σ ]), where the energyH[σ ] = −∑x∼y σxσy is obtained by summing over
all pairs of adjacent vertices and β > 0 is called the inverse temperature. The large-scale
behavior of the model depends strongly on β: if we consider the Ising model on a large

subset ofZ2, a long range alignment will occur if and only if β > βcr. := 1
2 ln

(√
2 + 1

)
,

while the system will look disordered at large scale for β < βcr.. The critical regime
β = βcr. has been the object of much attention in the last decades: in particular, one of
the motivations for the study of CFT is to describe the scaling limit of this model.
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1.4. Conformal field theory and virasoro algebra. In this subsection we briefly outline
a number key ideas of CFT, in particular the Virasoro algebra.

1.4.1. Statistical field theory A (physical) theory aimed at describing a random system
with infinitely many degrees of freedom is often called a statistical field theory. Of
particular interest are the (conjectural) scaling limits of lattice models, i.e., the limits of
lattice models living on δ-meshed discretizations �δ of continuous domains � ⊂ R

n ,
as δ → 0. It is expected, but unproven except in a few cases, that most latticemodels with
an infinite correlation length converge to non-trivial scaling limits that can be described
by statistical field theories.

A statistical field theory on� ⊂ R
n is usually thought of as a random process φ with

a measure P {φ} ∝ exp
(− S [φ]

)
, where S is a functional called the action. The main

objects of interest are the correlations of local fieldsO j , roughly speaking functions of φ
in an infinitesimal neighborhood of their point of insertion, for example derivatives of
φ. The correlations

〈O1(z1) · · ·On(zn)
〉
�
are thought of as functional integrals

´ O1(z1) [φ] · · ·On(zn) [φ] e−S[φ] Dφ
´
e−S[φ] Dφ

, (1.1)

over all the possible realizations of the field φ defined on �. This is natural, e.g., by
analogy with the definition of lattice models such as the dGFF and the Ising model.

Unfortunately, all of the above is difficult to make precise. Instead, a common ap-
proach is to define local fields as being objects one can take (abstract) correlations of.
One hence considers a space F of local fields, equipped with multilinear operations

Fn � (O1, . . . ,On) �→
〈O1(z1) · · ·On(zn)

〉
�
∈ C,

defined for distinct points z1, . . . , zn ∈ �. A number of axioms are then added corre-
sponding to what the abstract correlations are expected to satisfy (positivity, etc.), were
they to arise from functional integrals as in (1.1). This is one of the standard approaches
to CFT [Seg88,Seg04]. One of the eventual outcomes of this paper is an alternative route
to understanding (at least) certain field theories, which restores part of this probabilistic
picture, and brings the original spirit of functional integrals much closer.

1.4.2. Conformal field theory A Euclidean Conformal Field Theory on � ⊂ C is in-
formally a statistical field theory with conformal symmetry. Conformal symmetry is
thought of as a symmetry of the action functional S. Conformal symmetry can then be
defined by postulating the existence of a special local field T , called the holomorphic
Stress-Energy Tensor.1 Its correlations

� \ {z j
} � z �→ 〈

T (z)
∏

j

O j (z j )
〉

are holomorphic and have prescribed poles as z → z j .

1 In the functional integral picture, T is defined via the variation of the action with respect to a change of
metric; informally the insertion of T hence represents a change of measure (à la Radon-Nikodym derivatives)
corresponding to an infinitesimal change of metric.
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The poles of T (z)T (w) as z → w are in particular given by the so-called Conformal
Ward Identity2

T (z)T (w) = c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
+ reg, (1.2)

where the number c ∈ R is an important parameter, characteristic of the CFT in question,
and is called its central charge.

1.4.3. Virasoro algebra A key insight of 2D field theory is that the modes of the stress-
energy tensor T can act as operators on other local fields: for each n ∈ Z and O ∈ F ,
one defines a field3 LnO ∈ F by

LnO(z) := lim
ε→0+

˛

|ζ−z|=ε

T (ζ )O(z) (ζ − z)n+1 dζ. (1.3)

From (1.2), the operators (Ln)n∈Z can then be shown to form a representation of the
Virasoro algebra of central charge c, i.e., their commutation relations are

[
Ln,Lm

] = (n − m)Ln+m +
c

12

(
n3 − n

)
δn,−m . (1.4)

The Virasoro algebra is the cornerstone for the algebraic exact solution of CFT: the Ln
operators can be studied in terms of Virasoro representation theory; further down this
road, by their definition in terms of T , the Ln’s yield precise geometric information
about the correlations which, e.g., can be cast as linear partial differential equations for
correlation functions.

1.4.4. Vertex operator algebras andSugawara construction Thekey feature that enables
the construction of linear operators on the space of local fields is the holomorphicity
of the stress tensor (and it is the geometric importance of the latter which then allows
one to derive results about correlations). Large classes of CFTs possess a number of
holomorphic fields besides the stress energy tensor and its descendants (the Virasoro
subrepresentation generated by T ). These CFTs, whose algebraic axiomatization is Ver-
texOperator Algebras (VOAs), are the object ofmany beautiful insights ofmathematical
physics, representation theory, and string theory (see [Bor86,FLM88,Kac82]).

The CFTs of the GFF and the Ising model both possess a VOA structure, based on
the current field (for the GFF) and the fermion field (for the Ising CFT) respectively. The
modes of these holomorphic fields and their commutation relations can be studied in a
fashion that is similar to the way the modes of the stress-tensor are studied. Furthermore,
the stress tensor of these theories can be constructed in terms of the currents and fermions,
and as result, themodes of the stress tensor can be constructed in terms of themodes of the
current and fermion, through what is known as the Sugawara-Sommerfield construction
[Sug68,Som68]. The main result of this paper relies crucially on this construction.

2 Again, this should be interpreted within correlations only.
3 Since a field is merely an object one can take correlations of, this indeed defines a field. Also, since the

correlations of T (z) are holomorphic, one can just take ε small enough. (But how small ε needs to be depends
on the locations of the other inserted fields in the correlation.)
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1.5. Strategy. The approach suggested in [GHP19] and in the present paper is quite
different from the usual axiomatic approach to CFT: we look at lattice models as pre-
cursors of the field theories. The (often ill-defined) process φ : �→ R is replaced by a
random function φδ : �δ → R, where�δ is a discretization of�. The functional integral
formalism is then perfectly well defined. Indeed, the lattice analogues of local fieldsOδ

are defined as functions of values of the process φδ on finitely many neighbors of the
insertions, and correlation functions are just expected values.

The obvious drawback is that lattice models have no conformal symmetry: indeed,
such models are not invariant under scaling or (most) rotations, let alone more general
conformal mappings. Nevertheless, some lattice models, such as the dGFF and the Ising
model, possess a number of discrete holomorphic fields, i.e., fields whose correlations
satisfy lattice analogues of the Cauchy–Riemann equations. If we could find a suitable
lattice ancestor of T—a discrete holomorphic lattice local field satisfying a discrete
version of the Conformal Ward Identity (1.2)—we might hope to be able to realize the
Virasoro algebra at the lattice level.

However, the discrete holomorphic fields of the dGFF and the Ising Model are not
lattice ancestors of the stress tensor, but of (in some sense) more primitive objects; the
current and the fermion, respectively. Since discrete holomorphicity is a rather fragile
property (for instance, it is not even preserved by squaring), it is not obvious how to
construct more sophisticated discrete holomorphic fields from them.

The approach of this paper relies on revealing, at the lattice level, the extended
Vertex Operator Algebra structure that both models carry, which involves the current
and fermion modes. The Virasoro generators can then be constructed on relevant lattice
local field spaces as bilinear products of thesemodes, through the Sugawara construction.
Remarkably, the whole construction can be carried out at the lattice level, yielding the
same exact commutation relations as in the scaling limit, while acting on probabilistically
transparent objects.

Remark 1.1. In [CGS16], a discretized counterpart of the stress-energy tensor T has
been proposed on the hexagonal lattice, and its correlation in the scaling limit have been
identified. While the identification of this lattice field stems from considerations similar
to ours (finding lattice precursors of CFT objects), it does not lead to the Virasoro algebra
structure at the lattice level: the field identified there is indeed not discrete holomorphic,
there is no obvious way to define consistent lattice analogues of its modes acting on
the space of fields, and no reason to expect exact Virasoro relations to arise from it.
Nevertheless, it remains an interesting question to explore the connections between this
field and our construction.

1.6. Main result and applications. As explained in Sect. 1.4, theVirasoro algebra inCFT
acts on a space of local fields. In this paper, we consider the lattice analogue of local
fields proposed in [GHP19], and we define relevant operators on that space, allowing
for a construction of the full Virasoro symmetry on it.

1.6.1. Lattice local fields A lattice local field is a natural generalization of fields of
the form x �→ ϕx , x �→ ϕ2

x , x �→ σxσx+δ , x �→ σx+δ − σx , etc., namely a translation-
invariant functional that depends on a finite number of variables applied to the dGFF and
Ising basic fields ϕx and σx . See Definition 3.3 in Sect. 3.1 for a more precise definition.
We call a lattice local field null if its correlations against other lattice local fields (taken
at large enough distance) are zero. Note that null fields are not necessarily zero in a given
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realization, for example the discrete Laplacian of the dGFF has vanishing correlations.
The connection between lattice local fields and CFT local fields (which can serve as a
probabilistic definition of the latter, since none has been given) has been conjectured in,
e.g., [GHP19].

1.6.2. Main result Let FG denote the space of lattice local fields of the dGFF, modulo its
null fields, and let FI denote the space of lattice local fields of the critical Ising model,
modulo its null fields.

Our main theorem can then be informally phrased as follows.

Theorem. The Sugawara constructions of the Virasoro modes of the dGFF and of the
critical Ising model can be naturally and exactly realized at the lattice level on the space
FG and FI respectively, by considering discrete complex Laurent modes of the lattice
current and lattice fermion, respectively.

The precise form of the theorem, as well as its proof, is given in Sect. 4, in the form of
Theorem 4.10 (dGFF case) and Theorem 4.24 (Ising case).

By the link between the discrete and continuous structures that it establishes, our
main theorem yields an improved understanding of both:

• On the one hand, the construction demonstrates how the lattice solvability can be
directly expressed in terms of the algebraic structures of CFT. This gives a convincing
answer to the classical question of their connection [ItTh87] and opens the possibility
to understandmore structures related toVertexOperatorAlgebras in a similarmanner.
• On the other hand, by giving a natural lattice construction of the objects of CFT, it
gives the possibility of understanding CFTs in probabilistic terms. As mentioned in
Sect. 1.5, this can be achieved by finding the proper (manifestly probabilistic) discrete
analogues of the field-theoretic concepts, and (later) establishing their convergence
in the scaling limit.

These two directions, and some applications, are detailed in the next two paragraphs.

1.6.3. Application: algebraic structures The study of the CFTs in terms of their Vertex
Operator Algebra structures is a major branch of CFT [FLM88], which has ramifications
in string theory, condensed matter physics, and representation theory. Most of the math-
ematical works on such theories rely on a formal and abstract axiomatic construction of
field theories, and as such often appear daunting. It now appears that a significant part
of the relevant structures can be constructed very concretely at the lattice level, using
the techniques introduced in this paper, thus significantly facilitating the understanding
of these structures. While these developments will be studied in a subsequent paper,
we briefly outline two particular (related) constructions of CFT, which appear to be
amenable to lattice constructions such as the ones proposed in this paper: the Coulomb
gas formalism and the Affine Kac-Moody algebra CFTs. The main idea that emerges is:
many of the important algebraic structures of CFT can emerge from lattice solvability
phrased as discrete holomorphicity.

The so-called Dotsenko-Fateev Coulomb gas construction is a fundamental idea of
CFT [DoFa84,Fel89,DMS97], which informally relies on considering complex expo-
nentials of the GFF. Within this framework it is possible to vary the central charge of
the theory, and thus to construct explicitly a large number of CFTs modeled on a Gaus-
sian structure. The constructions of the Coulomb gas theory can be phrased in terms of
deformations of the Sugawara construction (see, e.g., [Fel89,KaMa11,Mic89]). Using
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a modified version of our dGFF construction (corresponding to other central charges) it
is possible to reveal them exactly at the lattice level. This will allow for constructions of
lattice precursors of a number of objects of central importance in CFT, which moreover
appear connected to other lattice models, such as dimers.

A number of important examples of CFTs are those endowed with extensions of
the Virasoro algebra symmetry called Affine Kac-Moody (AKM) algebras. These have
found applications in condensed matter physics and in string theory, and are at the heart
of coset field theories, which are among the most general classes of CFTs (in particular,
coset CFTs include all the minimal models). The most basic example of AKM CFT is
the Gaussian free field, which is endowed with its Heisenberg current algebra, which
is precisely the structure that we reveal at the discrete level. Thanks to the so-called
Wakimoto construction, AKM CFTs can be constructed by taking several independent
copies of the GFF, through a scheme similar to that of the Coulomb Gas construction.
Further down this road, a number of constructions involving several copies of the Ising
fermions, in particular the theory of the framed Vertex Operator Algebras, have recently
yielded important results in representation theory of finite groups [Miy04], and it appears
that realizing them on the lattice level would give new insights and allow for a number
of simplifications.

1.6.4. Application: probabilistic field theories The other promising line of research
emerging from this paper is the possibility to give clear and precise probabilisticmeaning
to CFT objects, thus enabling one to restore the “original” point of view of such theories
in terms of functional integrals. While discretizing quantum field theories as a way
to regularize them is an old idea, promoted in particular by Kenneth Wilson [Car13,
WiKo74] and now viewed as the best way to mathematically understand them, the
following is new: the possibility to identify transparentely the operator content of CFTs
such as the one describing the Ising model, at the lattice level. Relatedly, a dual point
of view, looking at the correlations as linear functionals on the space of fields, allows
one to bridge the classical thermodynamical point of view of statistical mechanics, in
terms of Gibbs measures, with the point of view of CFT correlations, hence allowing
one to view the Virasoro algebra as an action on space of measures. The main idea that
emerges is: the whole operator content and algebraic structure of certain CFTs can be
explicitly constructed at the lattice level, and hence given a probabilistic meaning.

The dual point of view of realizing the Virasoro algebra consists in looking at cor-
relation functionals μ defined by O �→ 〈O(0)

∏O j (z j )
〉
�
, defined for any data of a

domain �, boundary conditions, with insertions O j (z j ) at z j 
= 0, and in defining an
adjoint (contragredient) action on such functionals, by defining L†nμ (O) := μ (L−nO).
Our main result yields a lattice analogue of this, as follows. Consider a sequence of
discrete domains

(
�δk

)
k with mesh sizes δk = 1/k, together with boundary conditions

and insertions of lattice local fields Oδk
j (z j ) at points z j 
= 0. We can then form the

sequence of correlation functionals (μk)k defined by Oδ �→ E�δk

[
Oδk (0)

∏Oδk
j (z j )

]

(for each Oδ , μkOδ is defined for large enough k). The dual action gives rise to the

sequence
(
L†nμk

)

k
by L†nμk(Oδ) := μk

(
L−nOδ

)
, where L−nOδ is the Virasoro action

on the lattice local field Oδ (for each Oδ and n ∈ Z, this is defined for large enough k).
This is a natural generalization of the Gibbs measure, where instead of just looking at
the (unnormalized) limits of μk as k →∞ (which is the definition of a Gibbs measure),
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one looks at the entire sequence itself (or more precisely, its tail).4 This point of view
naturally bridges the Gibbs measure picture with the one of CFT.5

In [GHP19], a conjecture linked the local field picture of the Ising model with the
operator content of the corresponding CFT: each lattice local field is conjectured to
converge, with some proper normalization, to a CFT local field, and all CFT local
fields can be obtained as such limits. The second part of this conjecture is particularly
interesting as it allows one to give a probabilistic meaning to the operator content of the
CFTs. This seems in particular to make sense of the operator content of the massive field
theories emerging from perturbed CFTs (e.g. the one describing the critical Ising model
with an infinitesimal magnetic field), where the axiomatic formalism breaks down. Our
main result is a key step for establishing this second part: the operator content of the
Ising CFT consists of descendants of three primary fields (the identity, the spin and the
energy). Since the correlations of these fields have been established to converge to their
continuous counterparts (the identity is trivial, see [CHI15] for the spin and [Hon10] for
the energy), it remains to prove that the lattice descendants, as constructed by our main
result, indeed converge.

In a subsequent paper, this will be proven, by combining the results of the present
paper with the upcoming paper [CHI19], where it is proven that multipoint correlations
of spins, energies and fermions, taken at far apart points, converge. A deformation of
the discrete contour integrals appearing in the present paper will indeed allow one to
reduce the correlations of any lattice descendant field, to those of the spin, energy and
fermions and hence yield the result.

1.7. Organization of the paper. In Sect. 2, we introduce the discrete complex analytic
tools we need, in particular discrete holomorphic functions, discrete contours integrals,
lattice integer and half-integer monomials. The proofs of the statements of this section
are postponed to Sect. 5.

In Sect. 3, we introduce the relevant objects for the lattice models that we consider,
in particular the lattice local fields, the discrete Gaussian free field current and the
Ising fermion. The technical proofs of this section, pertaining to the Ising fermion, are
postponed to Sect. 6.

In Sect. 4, we combine the objects and results of Sects. 2 and 3 to define the Virasoro
algebra actions, and hence prove the main theorem.

2. Discrete Complex Analysis

In two dimensions, conformal symmetry is deeply linked to complex analysis. On the
lattice level, the combinatorial structures of the models we consider in this paper are
linkedwithdiscrete complex analysis and this iswhat has allowed for proofs of conformal
invariance of their scaling limits.

2.1. Lattices and discrete domains. We will work with a number of lattices associated
with the square lattice δZ2 of mesh size δ, and in particular use the following (see Fig. 1):

4 The idea is that various limits will be of interest, which might involve renormalizing by certain powers
of δk (depending onOδ in particular) as k →∞.

5 This is also the point of view which was chosen as the primary point of view in an earlier version of the
present paper.
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Fig. 1. Illustrations of the lattices

• Let (Cδ, Eδ) denote the discrete complex plane, i.e., the graph δZ2.
• Let (C∗δ , E∗δ ) be the dual of δZ2.
• Let (Cδ , Eδ ) be the diamond graph whose vertices are Cδ ∪ C

∗
δ and with an edge

connecting each pair of vertices at distance δ/
√
2.

• Let (Cm
δ , Em

δ ) be the medial lattice with respect to δZ2, with a vertex for each edge
of Eδ; two medial vertices are adjacent if the corresponding edges share an endpoint.
• Let (Cc

δ, Ec
δ ) denote the bi-medial lattice (corner lattice): each vertex of the bi-

medial lattice is called a corner. A corner lies between a vertex and a dual vertex, and
two corners are adjacent if they are at distance δ

2 from each other. An edge e ∈ Ec
δ of

the bi-medial lattice lies between a vertex of the diamond lattice and a vertex of the
medial lattice, denoted e and em.

Adjacency is denoted by ∼ on any of the above graphs: we denote v ∼ w if vertices v

and w are the two endpoints of an edge. Moreover, for two points of different lattices,
we still use the symbol ∼ to denote that the pair of points are nearest neighbors—e.g.,
for z ∈ C


δ , ζ ∈ C

m
δ we have z ∼ ζ if and only if |z − ζ | = δ

2 .
Occasionally we work simultaneously with two of the above lattices, and for this

purpose we use the shorthand notations Cm
δ := C

m
δ ∪ C


δ and C

cm
δ := C

c
δ ∪ C

m
δ .

2.2. Discrete differential operators. Below, we introduce the lattice analogues of differ-
ential operators thatweuse. The coefficients of thesefinite difference operators ∂δ, ∂̄δ,�δ

are illustrated also in Fig. 2. Throughout the paper, whenever needed, we will extend
functions f defined on subsets (subgraphs) �δ of Cδ by setting f |Cδ \�δ ≡ 0, and
similarly for functions defined on subgraphs �m

δ of Cm
δ .
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Fig. 2. Discrete differential operators

• For f : Cδ → C, we define discreteWirtinger derivatives ∂δ f, ∂̄δ f : Cm
δ → C by

∂δ f (z) = 1

2

(
f
(
z +

δ

2

)− f
(
z − δ

2

))− i

2

(
f
(
z +

iδ

2

)− f
(
z − iδ

2

))

∂̄δ f (z) = 1

2

(
f
(
z +

δ

2

)− f
(
z − δ

2

))
+
i

2

(
f
(
z +

iδ

2

)− f
(
z − iδ

2

))

and for f : Cm
δ → C, we define ∂δ f, ∂̄δ f : Cδ → C by the same formulae.

• We define the discrete Laplacian as �δ = 4 ∂δ∂̄δ = 4 ∂̄δ∂δ , so that for f : Cδ → C

we have �δ f : Cδ → C given by

�δ f (z) =
∑

x∈{±δ,±iδ}
f
(
z + x

)− 4 f
(
z
)

and similarly for f : Cm
δ → C.

• A function f from C

δ or Cm

δ to C is said to be discrete holomorphic (on a region
of Cδ) if ∂̄δ f = 0 (on that region of Cδ). If f is discrete holomorphic, then it can be
locally integrated, i.e., there exists F (at least locally defined) such that ∂δF = f .

Note that we are not scaling the right-hand sides, so the continuum differential operators
are approximated as δ → 0 by, e.g., δ−1∂δ → ∂ and δ−2�δ → �.

2.3. Discrete integration. In the lattice setting, we will need to integrate products of
two functions over discrete contours. By a discrete contour, we mean an oriented path
γ of edges on the corner lattice C

c
δ , see Fig. 3. For two functions f : Cm

δ → C and
g : Cδ → C, we then define the discrete contour integral of f times g along γ by

“

γ

f (zm)g(z) [dz]δ := 1

2

∑

�e∈γ

f (em)g(e)
�e+ − �e−
|�e+ − �e−| ,

where the sum is over all oriented edges �e = (�e−, �e+) of γ , and where em and e
denote the medial and diamond vertices separated by �e. Note that the continuum contour
integral approximation as δ → 0 again requires a scaling, δ

›
γ
f (zm)g(z) [dz]δ →¸

f (z)g(z) dz.
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Fig. 3. Discrete contour γ on the corner lattice C
c
δ . Each (oriented) edge �e ∈ γ of the contour separates a

vertex e ∈ C

δ of the diamond lattice from a vertex em ∈ C

m
δ of the medial lattice

If the discrete contour γ is closed, we denote by Int[γ ] the interior of γ , i.e., the set
of points surrounded by γ . For closed counterclockwise discrete contours γ , we have
the following discrete Stokes-like formula

“

γ

f (zm)g(z) [dz]δ = i
∑

wm∈Cm
δ ∩Int[γ ]

f (wm)∂̄δg(wm)

+i
∑

w∈Cδ∩Int[γ ]
∂̄δ f (w)g(w). (2.1)

In particular, if both f and g are discrete holomorphic in the symmetric difference
Int[γ ]⊕ Int[γ̃ ] of two closed counterclockwise contours γ, γ̃ , then we have the contour
deformation property

“

γ

f (zm)g(z) [dz]δ =
“

γ̃

f (zm)g(z) [dz]δ. (2.2)

Moreover, if f, g : Cm
δ → C are discrete holomorphic in a lattice neighborhood of a

closed integration contour γ (i.e. ∂̄δ f (e) = ∂̄δg(e) = 0 for any e ∈ γ ), it is elementary
to check (using Abel’s resummation) that we have the integration by parts formula

“

γ

(∂δ f (z))g(zm) [dz]δ = −
“

γ

f (zm) (∂δg(z)) [dz]δ. (2.3)

2.4. Discrete integer monomials. We now summarize basic facts about the discrete

analogues z �→ z[k] of the monomial functions z �→ zk (for k ∈ Z), leaving proofs for
Sect. 5.5. These functions will later be used to construct the lattice counterparts of the
holomorphic modes of discrete holomorphic fields both onCδ andCm

δ . In the following
statement, we use the notation

1w(z) =
{
1 if z = w

0 if z 
= w

for the Kronecker delta function.
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Proposition 2.1. There exists a unique family of functions (z[k])k∈Z, defined onCδ ∪Cm
δ ,

for which the following properties hold:

(1) For all k ∈ Z, the function z[k] has the same 90 degree rotational symmetry
around 0 as the continuous function z �→ zk does.

(2) We have z[0] ≡ 1 on C

δ ∪ C

m
δ .

(3) For all k ≥ 0, we have ∂̄δz[k] ≡ 0. For all k < 0, there exists R > 0 such that for
any z ∈ C


δ ∪ C

m
δ with |z| ≥ R, we have ∂̄δz[k] ≡ 0.

(4) For all k ∈ Z, we have ∂δz[k] = k z[k−1].
(5) We have ∂̄δz[−1] = 2π10 on C


δ and ∂̄δz[−1] = 2π 1

4

∑
x=± δ

2 ,± iδ
2

1x on Cm
δ .

(6) For all k ≤ −1, we have z[k] → 0 as z →∞.
(7) For any fixed z ∈ C


δ ∪ C

m
δ there exists N ≥ 0 such that z[k] = 0 for all k ≥ N.

(8) As δ → 0, we have that δk z[k] (extended, e.g., by linear interpolation) converges
to the function z �→ zk uniformly on compact sets for k ≥ 0 and uniformly away
from the origin for k < 0.

(9) For any k, � ∈ Z, we have

1

2πi

“

γ

z[k]m z[�] [dz]δ = δk+�,−1

if γ is a sufficiently large closed counterclockwise contour surrounding the origin.
(10) Setting

z{k}m := 1

4

∑

x∈{±1,±i}

(
z − δx

2

)[k]


for each k ∈ Z, we have for all k, � ∈ Z

1

2πi

“

γ

z{k}m z[�] [dz]δ = δk+�,−1

if γ is a sufficiently large closed counterclockwise contour surrounding the origin.

Proof. See Sect. 5.5. ��

2.5. Discrete half-integer monomials. In this subsection we discuss discrete analogues
z �→ z[p] to the functions z �→ z p for half-integer exponents p ∈ Z + 1

2 . As is the
case for their continuous analogues, these functions are not naturally defined on Cδ , but
rather on the double cover of Cδ , ramified at 0, denoted [Cδ, 0]. Above each vertex of
Cδ \{0}, there are now two vertices v1, v2 ∈ [Cδ, 0], each one with a well-defined square
root

√
v1 = −√v2. For a vertex of [Cδ, 0], there is a unique vertex of Cδ \ {0} called

the base point, and another vertex of [Cδ, 0] called the point on the opposite sheet. Two
vertices v,w ∈ [Cδ, 0] are adjacent if their respective base points are adjacent and they
are on the same sheet (i.e. �e (√v/

√
w
)

> 0): the graph [Cδ, 0] is hence connected.
We define analogously dual vertices, medial vertices, and diamond vertices, and denote
the relevant sets

[
C
∗
δ , 0

]
,
[
C
m
δ , 0

]
and

[
C

δ , 0

]
, respectively, and we continue to denote

adjacency by ∼. For a simple path λ ⊂ Cδ \ {0}, we say that two points a, b ∈ [Cδ, 0]
with base points a0, b0 ∈ λ are on the same sheet of λ if following the square root
branch along λ one gets from

√
a to

√
b.
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For a function f : [Cδ , 0
]→ C, we will always set f (0) := 0 and define ∂δ f, ∂̄δ f :[

C
m
δ , 0

]→ C in the natural manner (i.e. taking z± δ
2 , z±i δ

2 on the same sheet as z). We
say that such a function has monodromy −1 around 0 if its values at points on opposite
sheets are opposite (e.g. the square root function has −1 monodromy), and we say that
it is single-valued if the values are equal.

The following lemma is easily verified.

Lemma 2.2. Let f : [Cm
δ , 0

] → C and g : [Cδ , 0
] → C be two functions with mon-

odromy −1 around 0. Then the function on the bi-medial edges e �→ f (em)g(e) is
single-valued.

The existence, uniqueness and basic properties of the discrete half-integer monomials
are summarized in the following proposition.

Proposition 2.3. There exists a unique family of functions
(
z[p]

)
p∈Z+ 1

2
defined on the

double cover of Cδ ∪ C
m
δ ramified at 0 for which the following statements hold:

(1) For all p, the function z[p] has the same 90 degree rotational symmetry around 0
as the continuous function z �→ z p does.

(2) z
[− 1

2 ]
m is given by Definition 5.5.

(3) z
[ 12 ]
m is given by Definition 5.11.

(4) For all p ≥ 1
2 and z ∈ [

Cδ
m, 0

]
, we have ∂̄δz[p] = 0. For each p < 0, there

exists K > 0 such that ∂̄δz[p] = 0 for all z ∈ [Cδ
m, 0

]
with |z| ≥ K.

(5) For all p ∈ Z + 1
2 , we have ∂δz[p] = pz[p−1].

(6) For all p ≤ − 1
2 , we have z

[p] → 0 as z →∞.
(7) For any fixed z ∈ C


δ ∪ C

m
δ there exists N ≥ 0 such that z[p] = 0 for all p ≥ N.

(8) As δ → 0, we have that δ pz[p] converges to the function z �→ z p uniformly on
compact sets for p ≥ 0 and uniformly away from the origin for p < 0.

(9) For any p, q ∈ Z + 1
2 , we have

1

2πi

“

γ

z[p]m z[q] [dz]δ = δp+q,−1

if γ is a sufficiently large closed counterclockwise contour surrounding the origin.
(10) Setting

z{p}m := 1

4

∑

x∈{±1,±i}

(
z − δx

2

)[p]


,

we have for all p, q ∈ Z + 1
2

1

2πi

“

γ

z{p}m z[q] [dz]δ = δp+q,−1

if γ is a sufficiently large closed counterclockwise contour surrounding the origin.

Proof. See Sect. 5.5. ��
Remark 2.4. It is possible to prove that the properties 1, 4, 5, togetherwith z[−1/2]z[1/2] →
1 as z →∞ imply the other ones.
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3. Gaussian Free Field and Ising Model

3.1. Latticemodels and field theory. As discussed in the introduction, a latticemodelM
associates to a discretization �δ ⊂ Cδ of a domain � ⊂ C a random field φδ : �δ → C

living on the discrete domain, i.e., a collection of (complex valued) random variables
φδ(z) indexed by the vertices z of the discrete domain.We now introduce (as in [GHP19])
a lattice model analogue to the fundamental notion of local field in Conformal Field
Theory. Informally, the value of a lattice local field at a point z is the output of a translation
invariant rule applied to the values that φδ takes on a fixed finite neighborhood of z. For
this, we assume furthermore that the field φδ is extended to the complement Cδ \�δ of
the domain in some prescribed way.

Definition 3.1 (Lattice local field). Fix a lattice model M. For V ⊂ Z
2 a finite subset

and F : CV → C a polynomial function, the random fields given by

Oδ(z) = F
[(

φδ(z + xδ)
)

x∈V

]

(for all possible choices of the discrete domain �δ ⊂ Cδ and of boundary conditions)
constitute a (polynomial) lattice local field for the model M. We denote by Floc

M the
C-vector space of such lattice local fields.

Remark 3.2. The condition that F is polynomial does not entail any loss of generality
in the case of the Ising model. For the GFF, on the other hand, more general fields (e.g.
L2, such as exponentials) could be handled by density.

Examples of local fields are the field φδ itself, its square φ2
δ , its lattice derivative

φδ (· − δ) − φδ , the product φδ(·)φδ (· + δ), etc. The correlations of lattice local fields
are simply defined by taking the expectation with respect to the measure of the model.

For critical lattice models such as the Gaussian free field and the Ising model, it is
natural to:

• expect that every lattice local field converges to some CFT local field;
• expect that every CFT local field can be recovered as a limit of a suitably chosen
lattice local field.

This convergence should hold in the sense that the (suitably renormalized) correla-
tions of the lattice local fields converge to those of the CFT local fields, when taken at
far apart points: fields in QFT are defined by their correlations. As a result, fields with
the same correlations should be identified. This motivates the following:

Definition 3.3 (Null field). A lattice local field Oδ is called null (for a given modelM)
if its correlations against any other lattice local fields vanish (for that model) as soon
as the domain is large enough and the other insertions are far enough from z, i.e., there
exists R > 0 such that if z is at distance at least δR from z1, . . . , zn and from Cδ \�δ ,
then we have

E�δ [Oδ(z)φδ(z1) · · ·φδ(zn)] = 0.

Two lattice local fields are said to be (correlation-)equivalent if their difference is null.
The subspace of null fields within the space of all local fields of a model is denoted
by Fnull

M ⊂ Floc
M.

A more precise formulation of the conjectural correspondence of lattice local fields
to CFT local fields is:
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• we expect that for any local fields O1, . . . ,On of the CFT describing the scaling
limit of the latticemodel in question, there exist lattice local fieldsOδ

1, . . . ,Oδ
n ∈ Floc

M
and scaling dimensions D1, . . . , Dn ∈ [0,∞) (with each Di and Oδ

i depending on
Oi only) such that if zδj → z j as δ → 0 (with z1, . . . , zn distinct), we have

1

δ
∑n

i=1 Di
E�δ

[Oδ
1

(
zδ1
) · · ·Oδ

n

(
zδn
)] −→

δ→0

〈O1(z1) · · ·On(zn)
〉
�
.

The construction of the present paper is a decisive tool to establish this conjecture for the
discrete Gaussian free field and the Ising model. In particular, it gives an explicit way to
construct the lattice precursors of all the Ising CFT descendant fields (a fortiori, since
the algebraic structure of the descendant fields is already present at the lattice level).

3.2. Discrete gaussian free field. The discrete Gaussian free field (dGFF) on a (fi-
nite) discrete domain �δ ⊂ Cδ (with Dirichlet boundary conditions) is a random field
ϕ : Cδ → R with ϕ

∣∣
Cδ\�δ

≡ 0 and density proportional to exp
( − 1

16π E [ϕ]
)
, where

the discrete Dirichlet energy E is defined by E [ϕ] :=∑
x∼y (ϕ (x)− ϕ (y))2. Equiva-

lently, the dGFF ϕ is a centered Gaussian field with covariance given by a multiple of
the discrete Laplacian Green’s function of �δ with 0 boundary conditions:

E[ϕ(z)ϕ(w)] = 8π G�δ (z, w),

where theGreen’s function is determined by�δG�δ (·, w) = −1w(·) andG�δ (z, w) = 0
unless z, w ∈ �δ . The dGFF is a natural discretization of the continuous Gaussian free
field on� (which is a random generalized function�→ R). Like any centeredGaussian
field, the dGFF satisfies the bosonic Wick’s formula:

E[ϕ(x1) · · ·ϕ(x2n)] =
∑

{� j ,r j}

n∏

j=1
E
[
ϕ(x� j )ϕ(xr j )

]
,

where the sum is over all pairings {�1, r1} , . . . , {�n, rn} of {1, . . . , 2n}. The dGFF is a
discrete harmonic field in the following sense.

Lemma 3.4. We have

E

⎡

⎣(�δϕ)(x)
n∏

j=1
ϕ(x j )

⎤

⎦ =
n∑

i=1
(−8π 1xi (x))× E

⎡

⎣
∏

j 
=i
ϕ(x j )

⎤

⎦

and in particular E
[
(�δϕ)(x)

∏n
j=1 ϕ(x j )

]
= 0 for x ∈ �δ \ {x1, . . . , xn}.

Proof. This follows directly from Wick’s formula and the covariance being 8π times
the discrete Laplacian Green’s function. ��
In particular, it follows from Lemma 3.4 that the discrete Laplacian of the discrete
Gaussian free field is a null local field in the sense of Definition 3.3: �δϕ ∈ Fnull

G .
One of the most natural lattice local fields associated with the dGFF is the following

lattice holomorphic current J : Cm
δ → C. We first extend ϕ to C


δ by setting it to zero

outside of �δ and on the dual lattice. Then we may define the current as

J (z) = i ∂δϕ(z).
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As defined, the current is not exactly the discrete analogue of the continuous current,
as it is purely real on midpoints of vertical edges and purely imaginary on midpoints of
horizontal edges. This is however not important for our approach, as the objects we will
build out of the current J are contour integrals, which do approximate the continuous
integrals.

We have that the current J is discrete holomorphic in the sense of correlations.

Lemma 3.5. Let�δ ⊂ Cδ be a discrete domain, let V ⊂ �δ be a finite set and F : RV →
C a polynomial function. Then we have that the function G : �δ → C defined by
G(z) := E

[
F
(
ϕ
∣
∣
V

)
J (z)

]
is discrete holomorphic for z away from Cδ \�δ and from V .

Proof. This directly follows from the harmonicity of the dGFF since ∂̄δ∂δ = 1
4�δ . ��

The assumption that F is polynomial is chosen as it is general enough for our purposes,
and specific enough so that the integrals exist.

At coinciding points, the lattice current has singularities, yielding nonzero contour
integrals. The following elementary lemma will in particular be most useful:

Lemma 3.6. Let�δ ⊂ Cδ be a discrete domain, let V ⊂ �δ be a finite set and F : RV →
C be a polynomial function. Letw ∈ C

m
δ be a point away from V . Consider the dGFF on

a domain �δ that includes a neighborhood of w. Then for any closed counterclockwise
contour γ such that w ∈ Int[γ ], Int[γ ] ⊂ �δ and Int[γ ] ∩ V = ∅, and any function
f : Cδ → C that is discrete holomorphic on Int[γ ] we have

1

2πi

“

γ

E
[
J (w)J (zm)F

(
ϕ
∣∣
V

)]
f (z) [dz]δ = ∂δ f (w) E

[
F
(
ϕ
∣∣
V

)]
.

Proof. Observe first that for any x ∈ C

δ that is adjacent to w, Stokes’ formula (2.1)

combinedwithWick’s formula for the dGFF ϕ with the explicit covariance 8π G�δ yield
“

γ

E
[
ϕ(x) ∂δϕ(zm) F

(
ϕ
∣∣
V

)]
f (z) [dz]δ

= i
∑

z∈Int[γ ]
E
[
ϕ(x) ∂̄δ∂δϕ(z) F

(
ϕ
∣∣
V

)]
f (z)

= −2πi f (x)E
[
F
(
ϕ
∣
∣
V

)]
.

By taking a linear combination of the above over the four x ∈ C

δ adjacent to w, the

assertion of the lemma follows. ��

3.3. Ising model. We consider the Ising model on finite square grid domains �δ ⊂ Cδ ,
andwe allow for general boundary conditions. The boundary conditions are implemented
by a choice of a fixed configuration σ : Cδ \�δ → {−1, 0,+1} outside the domain, and
the sample space of allowed configurations of the model is then

{
σ : Cδ → {−1, 0, 1}

∣∣∣ σx ∈ {−1,+1} for x ∈ �δ , and σx = σ x for x /∈ �δ

}
.

The constant function σ ≡ +1 is known as plus boundary conditions, the constant
function σ ≡ −1 as minus boundary conditions, and the constant function σ ≡ 0 as
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free boundary conditions. Our general boundary conditions can thus be combinations
of these. The energy of a configuration σ is defined as

H[σ ] = −
∑

x∼y

σxσy,

where the sum is over nearest neighbor pairs such that at least one of the vertices x, y
belongs to the (finite) domain �δ . Given an inverse temperature parameter β > 0,
the probability measure of the model assigns probability proportional to e−βH[σ ] to
each allowed configuration σ . The critical value for β that is of interest for CFT is

βcr. = 1
2 ln

(√
2 + 1

)
.

Among the most natural local fields of the Ising model are the spin field ςδ (x) := σx

and the energy field εδ (x) := σxσx+δ −
√
2
2 . A number of results about the convergence

and conformal invariance of the correlations of δ−1/8ςδ and δ−1εδ as δ → 0 with various
boundary conditions have been established in [CHI15,Hon10,HoSm13,CHI19].

3.3.1. Disorder operators The connection between the Ising model and complex anal-
ysis is more involved than for the GFF: it involves non-local fields, i.e., objects which
have a point of insertion, which are functions of the spin configuration, and which have
correlations, but which cannot be represented as lattice local fields. The most basic
non-local fields are the disorder operators.

Definition 3.7. By a disorder line between p and q we mean a simple path � on the
dual lattice C

∗
δ with endpoints p, q ∈ C

∗
δ . We denote this � : p ↔ q. For an Ising

configuration (σx )x∈Cδ
define the disorder energy of � by E�[σ ] =∑

x∼y:〈xy〉∗∈� σxσy .
For a disorder line � between p and q we define the disorder pair (μpμq)� as the random
variable

(μpμq)� = exp
(
− 2βcr.E�[σ ]

)
. (3.1)

Note that for a fixed disorder line �, a disorder pair (μpμq)� defines a lattice local field
of the Ising model, whereas a single disorder operator “μp” could not be defined as such
(Fig. 4).

Intuitively, reweighting a correlation by a disorder pair (μpμq)�, i.e., considering
the reweighted measure

F �→ E
[
(μpμq)� F[σ ]]

E
[
(μpμq)�

] ,

corresponds to an Ising model where the spins ‘pretend’ that their neighbors across � are
equal to the opposite of their actual values. The following lemma (due to [KaCe71], see
also [Dub11a,Dub11b,CCK17]) tells us that disorder pair correlations are essentially
dependent on the endpoints of the path only (and hence they are sometimes called quasi-
local fields) (Fig. 5).

Lemma 3.8. Let �1, �2 be two collections of k disjoint disorder lines such that the sets
of 2k endpoints of both collections are the same. Let �1 ⊕ �2 denote the collection of
loops made of the symmetric difference of the sets of dual edges∪�1∈�1�1 and∪�2∈�2�2.
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Fig. 4. A disorder line � is a path between two dual vertices p, q ∈ C
∗
δ

Let V ⊂ Cδ be a finite set. Consider the Ising model on a large enough domain �δ , with
arbitrary boundary conditions. We have

E

⎡

⎣
(
∏

v∈V
σv

)
∏

�:p↔q∈�1

(μpμq)�

⎤

⎦ = (−1)N E

⎡

⎣
(
∏

v∈V
σv

)
∏

�:p↔q∈�2

(μpμq)�

⎤

⎦ , (3.2)

where the N is the number of pairs (v, �) where v ∈ V and � ∈ �1 ⊕ �2 is a loop
surrounding v.

Proof. For each loop � ∈ �1 ⊕ �2, let S� : {±1}�δ → {±1}�δ be the involution that
flips all the spins contained inside of � and leaves the other ones unchanged (see Figs. 6
and 7 in Sect. 3.3.2 for examples of similar gauge transformations). Let S denote the
gauge transform consisting of composition of all the (commuting) S� for � ∈ �1 ⊕ �2.
For a configuration σ ∈ {±1}�δ , and j = 1, 2, consider

H j [σ ] := H[σ ] + 2
∑

�∈� j

E�[σ ].

Proving (3.2) hence amounts to showing that

∑

σ∈{±1}�δ

(
∏

v∈V
σv

)

e−βH1[σ ] = (−1)N
∑

σ̃∈{±1}�δ

(
∏

v∈V
σ̃v

)

e−βH2[̃σ ],

which simply follows by observing that if σ̃ = S[σ ], then∏v∈V σv = (−1)N ∏
v∈V σ̃v

and H2 [̃σ ] = H1[σ ]. ��
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Fig. 5. Corner lattice fermions and medial lattice fermions

3.3.2. Corner lattice fermions Informally, a fermion operatorψ consists of a spin (living
on the primal latticeCδ) next to a disorder (living on the dual latticeC∗δ ); a natural location
for a fermion is hence at a corner (between a vertex and and a dual vertex). Again, due
to the non-locality of the disorder operator, we define correlations of pairs of fermions
with a defect path between them; later, we show that only the sign of correlations is
affected by the choice of the path.

Definition 3.9. Let c be a corner between x ∈ Cδ and p ∈ C
∗
δ and let d be a corner

between y ∈ Cδ and q ∈ C
∗
δ .We define a corner defect line λwith corner-ends c, d ∈ C

c
δ

as the concatenation [cp]⊕ � ⊕ [qd] of a disorder line � with endpoints p, q with the
two corner segments [cp] and [qd]. We denote λ : c ↔ d, and we call � : p ↔ q the
main part of λ. We call x, y the spin-ends and p, q the disorder-ends of λ. We denote
by W (λ : c � d) the cumulative angle of turns by λ (also known as winding) traversed
from c to d.

Remark 3.10. While the definition of W is the same as that in related works [CHI15,
ChSm12,Hon10,HoSm13], the defect line is not the same object as the path appearing
in the low-temperature expansion of the fermionic observables of these works. That
path should interpreted as a line of frustration and should be viewed as a configuration-
dependent object, unlike the defect line, which is fixed.

We now introduce the lattice fermion pair that we will work with, a complexification
of that introduced by Kadanoff and Ceva [KaCe71], see also [Dub11a,Dub11b].
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Definition 3.11. Let λ be a corner defect line with corner-ends c, d, spin-ends x, y and
disorder-ends p, q. Let

ν(c) := x − p

|x − p| ∈
{
e±

πi
4 , e±

3πi
4
}

denote the direction of the corner c. We define the fermion pair (ψcψd)λ as

(ψcψd)λ = −ν(c) e−
i
2 W(λ:c�d) (μpμq)� σxσy .

Remark 3.12. The two-point correlation function of the corner lattice fermion coincides
with the two-point observable defined in [GHP19], in the special case when + boundary
conditions are imposed and no other fields are inserted in the correlations. However, the
definition of corner lattice fermion given above makes the nature of the fermion pair
(with fixed defect line) as a local field (i.e., as a function of a finite number of spins)
transparent and explicit.

Despite the apparent difference of rôle of c and d in the definition, the fermion pair
is antisymmetric.

Lemma 3.13. Let λ be a corner disorder line with corner-ends c, d. Then we have
(ψcψd)λ + (ψdψc)λ = 0.

Proof. It is elementary to check that −ν(c) e− i
2 W(λ:c�d) = +ν(d) e− i

2 W(λ:d�c), and
the rest is unchanged. ��

Fixing the two corners c, d, we have that the dependence on λ of (ψcψd)λ is not due
to local factors.

Lemma 3.14. Let λ, λ̃ be two corner defect lines sharing the same corner-ends c, d. Let
λ⊕ λ̃ denote the collection of loops of C∗δ made of the symmetric difference of λ and λ̃.
Let V ⊂ Cδ be a finite subset. Consider the Ising model on a large enough �δ , with
arbitrary boundary conditions. We have

E

[(
∏

v∈V
σv

)

(ψcψd)λ

]

= (−1)N E

[(
∏

v∈V
σv

)

(ψcψd)λ̃

]

,

where N is the number of pairs (v, �) where v ∈ V and � ∈ λ⊕ λ̃ surrounds v.

Proof. The proof uses the same bijection as the proof of Lemma 3.8 (see Fig. 6). It is

elementary to check that the e− i
2 W(λ) term in the definition of the fermion compensates

for the change of the spins adjacent to the corners c, d. The rest behaves in the same
manner, thus yielding the result. ��

The following lemma, which allows one to exchange defect lines between four
fermions, will be instrumental in our construction:.

Lemma 3.15. Let V ⊂ Cδ be a finite set and F : {±1}V → C. Let c1, c2, c3, c4 be
distinct corners. For i < j , let λi j : ci ↔ c j be corner defect lines which are dis-
joint when the indices have no overlap, i.e., λ12 ∩ λ34 = λ13 ∩ λ24 = λ14 ∩ λ23 = ∅. If
(λ12 ⊕ λ34)⊕(λ13 ⊕ λ24) and (λ12 ⊕ λ34)⊕(λ14 ⊕ λ23) do not contain loops surround-
ing any point of V , then for any large enough �δ (with arbitrary boundary conditions)
we have
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Fig. 6. The defect line λ′ on the right is obtained from the defect line λ on the left by performing the gauge
transformation which flips the spins in the shaded area

E

[
F (σ |V )

(
ψc1ψc2

)
λ12

(
ψc3ψc4

)
λ34

]
= −E

[
F (σ |V )

(
ψc1ψc3

)
λ13

(
ψc2ψc4

)
λ24

]

= E

[
F (σ |V )

(
ψc1ψc4

)
λ14

(
ψc2ψc3

)
λ23

]
.

Proof. Let us only prove the first equality (the other one is symmetric). For each loop
� ∈ (λ12 ⊕ λ34) ⊕ (λ13 ⊕ λ24), which by assumption does not surround points of V ,
define the gauge transform S� that flips the spins inside it as before. We can assume that
� is a loop that includes edges of λ12, λ34, λ13 and λ24: otherwise the gauge transform
S� just amounts to displacing a piece of an individual defect line, without exchanging
the lines endpoints, and this case can be handled by an application of Lemma 3.14.
By composing enough gauge transforms which do not affect the left-hand and right-
hand side, we can actually assume that � is a square surrounding only one spin, with its
horizontal edges belonging to λ12 and λ34 and its vertical edges belonging to λ13 and
λ24. It is then elementary to check that S� affects the fermions in the desired way (see
Fig. 7). ��
The above lemma generalizes to the following.

Proposition 3.16. Let V ⊂ Cδ be finite. Let c1, . . . , c2k be distinct corners. Let

� = {λ1 : c1 ↔ c2, . . . , λk : c2k−1 ↔ c2k}
be a collection of k disjoint corner defect lines and let �̃ be a collection of k disjoint
corner defect lines λ̃ j : cm j ↔ cn j linking the c1, . . . , c2k pairwise, with m j < n j . Let

�⊕ �̃ the set of loops made of the symmetric difference
( ∪ λ j

)⊕ ( ∪ λ̃ j
)
, and let N

denote the number of pairs (v, �) with v ∈ V and � ∈ � ⊕ �̃ surrounding v. Let C
denote the number of crossings of the pair partition

{(
m j , n j

)}
of {1, . . . , 2k}, i.e. the
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Fig. 7. A gauge transformation involving two fermion pairs, and consisting of a flip of the spin at the center
of the shaded square

number of pairs j < k such that m j < mk < n j < nk. Consider the Ising model on a
large enough domain �δ with arbitrary boundary conditions. We have

E

[(
∏

v∈V
σv

)
(
ψc1ψc2

)
λ1
· · · (ψc2k−1ψc2k

)
λk

]

= (−1)N+C
E

[(
∏

v∈V
σv

)
(
ψcm1

ψcn1

)
λ1
· · · (ψcmk

ψcnk

)
λk

]

.

Proof. This follows from Lemmas 3.14 and 3.15, by induction on k. ��
This then yields the following important proposition, which allows one to avoid speci-
fying the defect paths:

Proposition 3.17. Let V ⊂ Cδ be a finite and connected set and let �δ ⊃ V be a large
enough domain. Consider the Isingmodel on�δ with arbitrary boundary conditions. Let
[�δ, V ] denote the double cover of�δ\V ramified around V . For c1, . . . , c2k ∈

[
�c

δ, V
]

and any F : {±1}V → C, the correlation

E
[
F
(
σ |V

)
ψ(c1) · · ·ψ(c2k)

]

:= E

[
F
(
σ |V

)(
ψc1ψc2

)
λ1
· · · (ψc2k−1ψc2k

)
λk

]

is independent of the choice of λ1 : c1 ↔ c2, . . . , λk : c2k−1 ↔ c2k , provided the
λ j ’s stay away from V and that c2 j−1, c2 j are on the same sheet of [Cδ, V ] when going
alongλ j . The resulting correlationE

[
F
(
σ |V

)
ψ(c1) · · ·ψ(c2k)

]
is totally antisymmetric
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with respect to permutations of the variables c1, . . . , c2k . It is single-valued as a function
of each c j if F is even and has −1 monodromy around V if F is odd.

Proof. By the Proposition 3.16, the only dependence on a path such as λ1 is through
its lift to the double cover (if we modify λ1 by a symmetric difference of two loops
both surrounding V , it does not change the correlations). If we modify λ1 by a loop
surrounding V , the correlation will change sign if F is odd and stay constant if F is
even. The antisymmetry follows from Lemmas 3.13 and 3.14. ��

3.3.3. Discrete holomorphic fermions We now introduce the discrete holomorphic
fermions, which live on the medial lattice: informally they are simply the averages of
the corner fermions taken at the four corners surrounding a medial vertex. At criticality,
their correlations are discrete holomorphic (Proposition 3.22).

Definition 3.18. Letw, z ∈ C
m
δ bemedial vertices.We define amedial defect line λwith

medial-ends w, z as the concatenation [wp]⊕�⊕ [qz] where p, q ∈ C
∗
δ are adjacent to

w, z and � is a simple path on the dual lattice, called themain part of λ. We say that two
(corner, medial) defect lines differ only locally, if their endpoints are either the same or
neighbors and the main parts differ by at most the dual edges containing the endpoints.

Let us now introduce the key object: the discrete holomorphic fermion, which lives
on the medial lattice (see Fig. 2b).

Definition 3.19. For z ∈ C
m
δ and x ∈ {±1± i}, let zx := z + δ

4 x denote the corner
adjacent to z in direction x ; for w ∈ C

m
δ and y ∈ {±1± i} write wy := w + δ

4 y
analogously. Fix a medial defect line λ with medial ends z, w, and let λyx denote the
corner defect lines with corner ends wy and zx such that the main parts of λyx and λ

differ at most by the edges containing w, z. We define the discrete holomorphic fermion
pair (ψ(w)ψ(z))λ by

(ψ(w)ψ(z))λ =
π

8
√
2

∑

x,y∈{±1±i}

(
ψwyψzx

)
λyx

,

where if wy = zx , we interpret −ν̄
(
wy
)
e− i

2 W(λyx) := z−w
|z−w| in Definition 3.11.

Remark 3.20. The correlations of (ψ(w)ψ(z))λ taken in a domain with + boundary con-

ditions and without any other fields correspond to the observable
∑

ζ,ξ

√
ζ√
ξ
f�δ

(
wζ , zξ

)

of [Hon10], where the sum is taken over the possible orientations of the edges e(w) and
e(z).

The antisymmetry is naturally inherited from the corner-lattice fermion.

Lemma 3.21. For a medial defect line λ with (distinct) medial-ends w, z we have that

(ψ(w)ψ(z))λ = − (ψ(z)ψ(w))λ .

Proof. Straightforward from Lemma 3.13. ��
By Lemma 3.14 the correlations of this fermion pair are independent of the choice of

the defect line λ, up to a sign.We thus omit the defect line from the notation, and consider
the correlations defined on the appropriate double cover. A fundamental property of the
correlations of (ψ(w)ψ(z)) is their discrete holomorphicity apart from singularities
when w and z coincide.
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Proposition 3.22. Let �δ ⊂ Cδ be a discrete domain and let V ⊂ �δ be a connected
set. Consider the Ising model on �δ with arbitrary boundary conditions. Let [�δ, V ]
denote the double cover of �δ \ V ramified around V . Let W ⊂ V , let w ∈ [

�m
δ , V

]

and let w∗ ∈ [�m
δ , V

]
share the same base point, on the opposite sheet. Consider the

function H : [�m
δ , V

]→ C defined by

H(z) := E

[(
∏

x∈W
σx

)

ψ(w)ψ(z)

]

.

Then for ζ ∈ [�δ , V
]
away from ∂�δ, V , we have

∂̄δH(ζ ) = 0 if ζ 
∼ w,w∗

and ∂̄δH(ζ ) = π

2
E

[
∏

x∈W
σx

]

if ζ ∼ w.

Proof. See Sect. 6.2. ��
We will mostly use the above result in the following form:

Corollary 3.23. Let W ⊂ V ⊂ Cδ , w ∈ [
�m

δ , V
]
, and H : [�m

δ , V
] → C be as

above. If γ is a contractible closed contour on the double cover
[
�c

δ, V
]
such that

Int[γ ] ⊃
{
w ± δ

2 , w ± iδ
2

}
and such that Int[γ ] ∩ V = ∅ and f : [�δ , V

] → C is

discrete holomorphic on Int[γ ], then
1

2πi

“

γ

f (z)H(zm) [dz]δ = 1

4
E

[
∏

x∈W
σx

]
∑

x∈
{
± δ

2 ,± iδ
2

}
f (wx ).

Proof. Using the discrete Stokes’ formula (2.1), the contractible contour γ can be de-
formed to the trivial contour plaquette by plaquette, and only the plaquettes with non-
zero ∂̄δH contribute to the contour integral. Proposition 3.22 states that these plaquettes
are exactly the ζ ∼ w and gives the values ∂̄δH(ζ ). ��
Remark 3.24. We can say informally that z �→ ψ(w)ψ(z) has four discrete poles of
residue 1

4 at the four diamond vertices next to w, as long as we avoid ∂�δ , V and w∗.

4. Virasoro Algebra at the Lattice Level

In this section, we implement at the lattice level the Virasoro mode operators Ln , n ∈ Z,
for the discrete Gaussian free field and the Ising model. The idea is to consider the
relevant Laurent modes of the discrete holomorphic current and fermion, respectively,
to obtain commutation relations and to construct the Virasoro modes from them. At all
stages of the construction we need to make sure that we indeed obtain lattice local fields
(modulo lattice null fields) and hence work on probabilistic objects rather than just on
an abstract notion of fields. It is quite remarkable that this is possible at all, given how
rigid the theory of discrete complex analysis is (in particular, the fact that the product of
two discrete holomorphic functions is not discrete holomorphic in general), and given
how simple our definition of lattice local field is.
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Fig. 8. The action of current modes on local fields is by contour integration

Throughout this section, discrete contour integration is performed over (closed coun-
terclockwise) discrete contours γ on the corner lattice, as in Sect. 2, and we denote by
Int[γ ] the set of points surrounded by γ . For a lattice local field O, we will denote by
DO the smallest disk D (0, ρ) centered at the origin such thatO(0) does not depend on
field values outside of D (0, ρ). For k ∈ Z∪ (Z + 1

2

)
, we will denote by Dk the smallest

disk D (0, ρ) such that z[k] is discrete holomorphic outside of D (0, ρ).

4.1. Gaussian free field. We first address the case of the discrete Gaussian free field.
Let us denote by Floc

G the space of dGFF local fields and Fnull
G the subspace of null fields,

as in Definitions 3.1 and 3.3. Our construction of the Laurent mode operators will take
place in the space

FG = Floc
G /Fnull

G
of correlation equivalence classes of local fields of dGFF.

4.1.1. Current modes Let us recall that we denote by J (z) = i ∂ϕ(z) the discrete holo-
morphic current. Below we define its discrete Laurent modes Jk , k ∈ Z, see Fig. 8 for
an illustration.

Definition 4.1. Let O ∈ Floc
G be a lattice local field and let k ∈ Z. Let γ be such that

Int[γ ] ⊃ DO ∪ Dk . To define a new local field Jγ

kO ∈ Floc
G , it is enough to specify its

value Jγ

kO(0) at the origin, since local fields are given by a translation invariant rule.
We define Jγ

kO(0) by

Jγ

kO(0) = 1

2πi

“

γ

O(0)J (zm)z[k] [dz]δ.

Lemma 4.2. The following properties hold for Jγ

kO:

(a) If O ∈ Floc
G is a local field and γ, γ̃ are two large enough closed counterclockwise

contours, then we have Jγ

kO − Jγ̃

kO ∈ Fnull
G .
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(b) If O, Õ ∈ Floc
G are two local fields such that O − Õ ∈ Fnull

G and γ is a large

enough closed counterclockwise contour, then we have Jγ

kO − Jγ

k Õ ∈ Fnull
G .

Proof. Consider two different contours γ and γ̃ . It follows from discrete holomor-
phicity of z[k] (Proposition 2.1(3)), discrete holomorphicity of correlations of J (zm)

(Lemma3.5), and the contour deformation property (2.2), that the correlations of Jγ

kO(0)

and Jγ̃

kO(0) with other insertions at large enough distance are equal. In other words,

Jγ̃

kO − Jγ

kO is null. This proves (a).
Consider then two different local fields O and Õ such that O − Õ is null. Provided

that the contour γ is sufficiently large, then for any zm on γ , the correlations of
(O(0)−

Õ(0)
)
J (zm) with other insertions sufficiently far away are vanishing. Therefore, by

linearity, the correlations of Jγ

kO(0)− Jγ

k Õ(0) with other insertions are also vanishing,
so indeed Jγ

kO − Jγ

k Õ is null. This proves (b). ��
This lemma hence allows one to define the current mode action on the space FG of

dGFF local fields modulo null fields.

Definition 4.3. For a lattice local field O ∈ Floc
G and k ∈ Z, we define JkO ∈ FG as the

correlation equivalence class

JkO := Jγ

kO + Fnull
G ,

which is independent of the choice of a large enough γ by Lemma 4.2(b). Moreover, by
Lemma 4.2(a) we have that the JkO only depends on the correlation equivalence class
of O, so this defines operators

Jk : FG → FG .

The following annihilation property for the current modes will be important to define
the Virasoro modes below.

Lemma 4.4. LetO be a lattice local field. There exists K > 0 such that for any k ≥ K,
JkO = 0 modulo Fnull

G .

Proof. With a large but fixed contour γ , by Item 7 of Proposition 2.1 we can choose K
such that for all z on the contour and k ≥ K we have z[k] = 0. It then follows directly
from the definition that Jγ

kO = 0. ��
Proposition 4.5. The operators (Jk)k∈Z form a representation of theHeisenberg algebra
on FG , i.e., for all k, l ∈ Z we have the commutation relation

[
Jk, J�

] = kδk,−� idFG .

Proof. Let O be a lattice local field and let γ, γ−, γ+ be sufficiently large closed coun-
terclockwise contours nested around each other so that Int[γ−] ⊂ Int[γ ] ⊂ Int[γ+].
The local field Jγ+

k Jγ

� O − Jγ

� J
γ−
k O is by definition a difference of two double contour

integrals. The discrete holomorphicity of the current J (Lemma 3.5) allows us to deform
these contours within correlations. More precisely, if V ⊂ Cδ is a finite set located far
enough outside the outermost contour γ+ and F(ϕ|V ) is a polynomial of the values of
the DGFF in V , then we can write

E
[(
Jγ+
k Jγ

� O(0)− Jγ

� J
γ−
k O(0)

)
F(ϕ|V )

]
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= E

[
1

(2πi)2

( “

γ+

[dz]δ
“

γ

[dw]δ J (zm)J (wm)z[k] w
[�]

−
“

γ

[dw]δ
“

γ−
[dz]δ J (wm)J (zm)z[k] w

[�]
)
O(0) F(ϕ|V )

]

= E

[
1

(2πi)2

(“

γ

( “

γw

J (zm)J (wm)z[k] w
[�] [dz]δ

)
[dw]δ

)
O(0) F(ϕ|V )

]
,

where the w-integration is kept intact while for each fixed w the difference of the z-
integrals have been combined and deformed to a “satellite integral” along a part γw

encircling w clockwise (see Fig. 9). We then apply Lemma 3.6 to evaluate the inner
satellite integral, using also properties of discrete monomials (Proposition 2.1), and we
get

E
[(
Jγ+
k Jγ

� O(0)− Jγ

� J
γ−
k O(0)

)
F(ϕ|V )

]

= E

[
1

2πi

(“

γ

kw[k−1]
m w

[�] [dw]δ
)
O(0) F(ϕ|V )

]

= kδk,−� E[O(0) F(ϕ|V )] .

This equality shows that up to null fields we have

Jγ+
k Jγ

� O(0)− Jγ

� J
γ−
k O(0) ≡ kδk,−� O(0),

which proves the asserted commutation relation of Jk and J�. ��

4.1.2. Gaussian free field Virasoro modes

Definition 4.6. We define the operator LGn : FG → FG by

LGn =
1

2

∑

k∈Z
(

k←→
Jn−kJk)

where we set

(

k←→
AB) =

{
AB if k ≥ 0
BA if k < 0.

Remark 4.7. By virtue of Lemma 4.4, the sum above is well-defined as an operator on
the space FG of lattice local fields: there are only finitely many non-null terms, when
the sum acts on (the correlation equivalence class of) any given lattice local field.

Remark 4.8. Our choice of the above definition is guided by the convenience of the
calculations below, but it can also be easily seen to agree with the common definition
LGn = 1

2

∑
k∈Z : Jn−kJk : where the normal-ordered product : J jJk : is defined as J jJk

if j ≤ k and as JkJ j otherwise.

Lemma 4.9. For any n,m, k ∈ Z, we have
[
LGn , Jm

] = −m Jn+m

[
LGn , (

k←→
Jm−kJk)

] = −k(
k←→

Jm−kJn+k)− (m − k) (

k←→
Jn+m−kJk).
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Proof. The second formula follows from the first by using the commutator identity
[A, BC] = B[A,C] + [A, B]C , so it remains to prove the first formula. Observe first
that by the commutator identity [AB,C] = A[B,C] + [A,C]B and Proposition 4.5 we
have, when k + � = n,

[J�Jk, Jm] = J�[Jk, Jm] + [J�, Jm]Jk
= J� k δk+m,0 + � δ�+m,0 Jk = −m (δk,−m + δk,n+m) Jn+m .

Using this, we calculate

[
LGn , Jm

] = 1

2

∑

k∈Z

[
(

k←→
Jn−kJk), Jm

]

= 1

2

∑

k∈Z

(
− m (δk,−m + δk,n+m) Jn+m

)
= −m Jn+m,

where by virtue of Proposition 4.4, the sums over k again have only finitely many non-
zero terms when acting on a given correlation equivalence class of local fields. ��
Theorem 4.10. The operators

(
LGn
)
n∈Z form a representation of the Virasoro algebra

with central charge c = 1, namely

[
LGn ,LGm

]
= (n − m)LGn+m +

1

12
δn+m,0

(
n3 − n

)
idFG .

Proof. Let us omit the G superscript. To compute
[
Ln,Lm

]
, write Lm = 1

2

∑
k∈Z

(

k←→
Jm−kJk), use the second formula of Lemma 4.9, and perform a change of variables

� = k + n in the first part to obtain that

[
Ln,Lm

] = 1

2

∑

k∈Z

[
Ln, (

k←→
Jm−kJk)

] = 1

2

∑

k∈Z

(
− k(

k←→
Jm−kJn+k)− (m − k)(

k←→
Jn+m−kJk)

)

= 1

2

∑

�∈Z
(n − �)(

�−n←→
Jn+m−�J�) +

1

2

∑

k∈Z
(k − m)(

k←→
Jn+m−kJk)

= (n − m)Ln+m +An,m,

where

An,m := 1

2

∑

�∈Z
(n − �)

(
(

�−n←→
Jn+m−�J�)− (

�←→
Jn+m−�J�)

)
.

Now note that by Proposition 4.5 we get

(

�−n←→
Jn+m−�J�)− (

�←→
Jn+m−�J�) =

⎧
⎪⎨

⎪⎩

� δn+m,0 if 0 ≤ � < n
−� δn+m,0 if n ≤ � < 0
0 otherwise.
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Observing furthermore that
∑n

�=0(n − �)� = 1
6 (n

3 − n) for n ≥ 0, we can therefore
simplify

An,m = 1

12
(n3 − n) δn+m,0,

and conclude the proof. ��

4.2. Ising model. The Ising model involves a number of additional difficulties. First
of all, since the fermion field is not local, its modes cannot act on local fields, and
we must hence consider modes of fermion pairs. Second, since the fermion is quasi-
local with respect to spin-antisymmetric fields, we must take half-integer power Laurent
modes of it (while taking integer modes of it when acting on spin-symmetric fields), see
Definition 4.14. Third, since the fermion pairs involve defect lines, one must be careful
while choosing them and exchanging them to get the right commutation modes.

Recall that we denote by Floc
I the space of Ising local fields, Fnull

I the subspace of null
fields, and by

FI = Floc
I /Fnull

I

the space of correlation equivalence classes of local fields of the Ising model. Note that
the space of local fields splits to a direct sum Floc

I = Floc
I;even⊕Floc

I;odd of spin-symmetric
fields (fields Oδ which are even under global spin flip σ �→ −σ , i.e., Oδ[−σ ] =
Oδ[σ ]) and spin-antisymmetric fields (fields Oδ which are odd under global spin flip,
i.e., Oδ[−σ ] = −Oδ[σ ]). All considerations below will be done separately for these
two sectors.

4.2.1. Fermion modes We now define fermion Laurent mode pairs in the even and odd
sector, separately. In the even sector we use integer powers, but half-integer indices,
and in the odd sector we use half-integer powers but integer indices—this convention of
indexing is due to half-integer scaling dimension of the fermion field. As before, since
lattice local fields are translation invariant in their definition, to define a lattice local
field, we only need to give the definition at the origin (Fig. 10).

Definition 4.11. Let O ∈ Floc
I;even be a spin-symmetric lattice local field. Let

p, q ∈ Z +
1

2
.

Set E := Dp ∪ Dq ∪DO. Let γ, α be counterclockwise closed paths such that Int[γ ] ⊃
Int[α] ⊃ E and let λ be a choice of medial defect lines that does not cross R− ∪ E for
all z, w ∈ C

m
δ \ E . We define

(
�

γ
p�α

qO
)

λ
(0) = 1

(2πi)2

“

γ

“

α

O(0) (ψ(zm)ψ(wm))λ:zm↔wm
z
[p− 1

2 ] w
[q− 1

2 ]

[dz]δ[dw]δ.
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Fig. 10. The setup for the integrand of the definition of
(
�

γ
p�α

qO
)

λ
. The set E is the shaded area. The

contours with arrows are the integration contours α (inner, green) and γ (outer, blue) respectively. The marked
medial vertices are the zm and wm that appear in the integral (respectively on the inner contour and on the
outer contour), and on which the fermionψ is defined. The marked diamond vertices are the z andw (on the
inner and outer contours) on which the monomials are defined. An example of two pairs zm, z and wm, w
is drawn here. The main part of the corresponding medial defect line is drawn in dashed orange stroke. The
defect lines are chosen not to cross the branch cut on R−, marked by the wiggly line

Definition 4.12. Let O ∈ Floc
I;odd be a spin-antisymmetric lattice local field. Let

k, � ∈ Z.

Set E := Dk ∪ D� ∪DO. Let γ, α be counterclockwise closed paths such that Int[γ ] ⊃
Int[γ ] ⊃ E and let λ be a choice of medial defect lines that does not cross R− ∪ E for
all z, w ∈ C

m
δ \ E . We define

(
�

γ
p�α

qO
)

λ
(0) = 1

(2πi)2

“

γ

“

α

O(0) (ψ(zm)ψ(wm))λ:zm↔wm
z
[k− 1

2 ] w
[�− 1

2 ]

[dz]δ[dw]δ,

where the branches of z[k− 1
2 ] and w[�− 1

2 ] are the principal branches on C \ R− (i.e. the
real part is nonnegative on the positive real axis).

The following lemma tells us that the choices of α, γ and λ are essentially irrelevant,
modulo null fields. Similarly the choice of the branch cut on R− is irrelevant as well.

Lemma 4.13. The following properties hold for
(
�

γ
p�α

qO
)

λ
:

(a) If O ∈ Floc
I;even is a spin-symmetric local field, and λ and λ̃ are two choices of the

defect lines as above, then we have for p, q ∈ Z + 1
2

(
�

γ
p�α

qO
)
λ
− (

�
γ
p�α

qO
)
λ̃
∈ Fnull

I;even.

The analogous property also holds for
(
�

γ

k �α
� O

)
λ
for any spin-antisymmetric field

O ∈ Floc
I;odd and k, � ∈ Z.
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(b) If O ∈ Floc
I;even is a spin-symmetric local field and γ, α and γ̃ , α̃ are two pairs of

large enough closed counterclockwise contours, then for any defect lines λ̃ chosen
for the contours γ̃ , α̃, we have

(
�

γ
p�α

qO
)
λ
− (

�
γ̃
p�α̃

qO
)
λ̃
∈ Fnull

I;even.

The analogous property also holds for
(
�

γ

k �α
� O

)
λ
where O ∈ Floc

I;odd is any spin-
antisymmetric field and k, � ∈ Z.

(c) If O, Õ ∈ Floc
I;even are two spin-symmetric local fields such that O − Õ ∈ Fnull

I;even
and γ, α are two large enough closed counterclockwise contours, then we have for
p, q ∈ Z + 1

2
(
�

γ
p�α

qO
)
λ
− (

�
γ
p�α

q Õ
)
λ
∈ Fnull

I;even.

The analogous property also holds for
(
�

γ

k �α
� O

)
λ
where O, Õ ∈ Floc

I;odd are any
spin-antisymmetric fields and k, � ∈ Z.

Proof. To prove statements modulo null fields, one argues within correlations as in
Lemma 4.2. The independence on the choice of defect lines follows from Lemma 3.14.
The rest of the proof is similar to that of Lemma 4.2. Part (b) relies on the discrete
holomorphicity of the correlations involving two fermion insertions (Proposition 3.22)
and and the discrete holomorphicity of the discretemonomials (Propositions 2.1 and 2.3).
For the spin-symmetric case, one furthermore needs to observe the single-valuedness
of the fermion around spin-symmetric fields Proposition 3.17, whereas for the spin-
antisymmetric case one uses Lemma 2.2, observing that both the half-integer monomial
and the fermion have monodromy −1 around the set E . ��
This lemma again allows one to define the fermionmode pair action on the spacesFI;even
and FI;odd of Ising local fields modulo null fields.

Definition 4.14. For a spin-symmetric lattice local field O ∈ Floc
I;even and p, q ∈ Z + 1

2 ,
we define �p�q O ∈ FI;even as the correlation equivalence class

�p�q O := (
�

γ
p�α

qO
)
λ
+ Fnull

I;even,

which is independent of the choice of a large enough contours γ , α and defect lines λ by
Lemma 4.13(a,b). Moreover, by Lemma 4.13(c) we have that the�p�q O only depends
on the correlation equivalence class of O, so this defines operators

�p�q : FI;even → FI;even.

Similarly, for a spin-antisymmetric lattice local field O ∈ Floc
I;odd and k, � ∈ Z, we

define the correlation equivalence class �k�� O ∈ FI;odd and obtain operators

�k�� : FI;odd → FI;odd.

The following annihilation property for the fermionmodeswill be important to define
the Virasoro modes below.

Lemma 4.15. Let O ∈ Floc
I;even (resp. O ∈ Floc

I;odd) be a spin-symmetric (resp. spin-

antisymmetric) lattice local field. Then there exists K > 0 such that for any p, q ∈ Z+ 1
2

with q ≥ K (resp. k, � ∈ Z with � ≥ K), we have �p�qO = 0 ∈ FI;even (resp.
�k��O = 0 ∈ FI;odd).
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Proof. With large but fixed contours γ , α, by Item 7 of Proposition 2.1 (respectively
Item 7 of Proposition 2.3) we can choose K such that for allw on the contour and q ≥ K
we have w

[q]
 = 0. It then follows directly from the definition that

(
�

γ
p�α

qO
)
λ
= 0. ��

Proposition 4.16. For p, q, k, l ∈ Z or p, q, k, l ∈ Z + 1
2 , we have the following anti-

commutation relations:

�p�q + �q�p = δp,−q id (4.1)
(
�k�p

) (
�q��

)
+
(
�k�q

) (
�p��

) = δp,−q �k��. (4.2)

Proof. The calculations are to be performed modulo null fields, i.e., it is sufficient to
prove equalities within correlations as in Proposition 4.5. We will indicate equalities up
to null fields by ≡.

Let O be a lattice local field. For an integer or half-integer n, set n− := n − 1
2 . Set

E := D (p) ∪ D (q) ∪ D (O). Let us first prove the first identity (4.1). For Int[γ ] ⊃
Int[α] ⊃ Int[γ̃ ] ⊃ E , we have (omitting the defect lines λ : zm ↔ wm to lighten the
notation),

(
�

γ
p�α

q + �α
q �

γ̃
p
)O(0) = 1

(2πi)2

“

γ

“

α

O(0) (ψ(zm)ψ (wm)) z[p−] w
[q−] [dz]δ[dw]δ

+
1

(2πi)2

“

α

“

γ̃

O(0) (ψ(wm)ψ(zm)) w
[q−] z[p−] [dw]δ[dz]δ.

Wecannowuse (ψ(w)ψ(z)) = − (ψ(z)ψ(w)) to rewrite the above (within correlations)
as a satellite integral as above

1

2πi

“

α

O(0)

(
1

2πi

“

γ (w)

(ψ (wm) ψ(zm)) z[p−] [dz]δ
)

w
[q−] [dw]δ,

where γ (w) is a small contour with Int[γ ] ⊃ {w ± δ,w ± iδ} and Int[γ ] ∩ E = ∅.
Now, by Corollary 3.23, we have (within correlations)

(
1

2πi

“

γ (w)

(ψ(wm)ψ(zm)) z[p−] [dz]δ
)
≡ 1

4

∑

x=±1,±i
w
[p−]
x =: w{p−}m

ByProperty 10 of Proposition 2.1 andProperty 9 of Proposition 2.3 (see alsoLemma5.17
below), we have

1

2πi

“

α

(
w
[q−] w

{p−}
m

)
[dw]δ = δp,−q ,

which yields

(
�

γ
p�α

q + �α
q �

γ̃
p
)O ≡ δp,−q O.

The proof of the second identity (4.2) is similar: we have that the integrand in the
definitions �k�p�q��O(0) and �k�q�p��O(0) is

O(0) (ψ(ζm)ψ(zm))ι:ζ↔z (ψ(wm)ψ (ξm))κ:w↔ξ ζ
[k−] z[p−] w

[q−] ξ
[�−]

where ι and κ are chosen to avoid DO and not to cross the negative real axis.
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By Lemma 3.15, we can exchange the medial defect lines
(
ψ(ζm)ψ(zm)

)
ι:ζ↔z

(
ψ(wm)ψ(ξm)

)
κ:w↔ξ

= (
ψ(ζm)ψ(ξm)

)
η:ζ↔ξ

(
ψ(zm)ψ(wm)

)
λ:z↔w

,

by choosing medial defect lines η and λ that avoid DO and do not cross the negative
real axis.

Now, �k�p�q�� +�k�q�p�� can be evaluated summing the two quadruple inte-
grals of

(ψ(ζm)ψ(ξm))η:ζ↔ξ (ψ(zm)ψ(wm))λ:z↔w ζ
[k−] z[p−] w

[q−] ξ
[�−]

with order of the variables z and w swapped. We obtain that the result of the second
and third integrals can be written as the same satellite integral as for the first identity,
yielding the same result. What is left is hence easily seen to be equal (up to null fields)
to

δp,−q �k��O(0),

thus concluding the proof. ��

4.2.2. Ising Virasoro modes For the next definition, let us introduce the notation

(±
k←→
AB) =

{
AB if k ≥ 0
−BA if k < 0.

Definition 4.17. For n ∈ Z, we define Levenn : FI;even → FI;even and Loddn : FI;odd →
FI;odd by

Levenn := 1

2

∑

k∈Z+ 1
2

k (±
k←→

�n−k�k) (4.3)

Loddn := 1

2

∑

k∈Z
k (±

k←→
�n−k�k) +

1

16
δn,0 id. (4.4)

Remark 4.18. By virtue of Lemma 4.15, the sums above are well-defined as operators on
the spaces FI;even and FI;odd of lattice local fields: there are only finitely many non-null
terms, when the sums act on (the correlation equivalence class of) any given lattice local
field.

Remark 4.19. Using Lemma 4.20 below, the above definitions can easily be checked to
equivalently give the following commonly used formulas involving normal orderings

Levenn =
{

1
2

∑
k∈Z+ 1

2

(
k + 1

2

) : �n−k�k : if n 
= 0
∑∞

k=1 k�−k�k if n = 0

Loddn =
{

1
2

∑
k∈Z

(
k + 1

2

) : �n−k�k : if n 
= 0
1
16 id +

∑∞
k=1 k�−k�k if n = 0

where : � j�k : is defined as � j�k if j ≤ k and as −�k� j otherwise.
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Lemma 4.20. For any s ∈ Z, we have

∑

k∈Z+ 1
2

(±
k←→

�s−k�k) = 0 and
∑

k∈Z
(±

k←→
�s−k�k) = 1

2
δs,0 id.

Proof. Rewriting the sum in terms of two equal pieces and changing variables to k′ =
s − k in one of the two, we get

∑

k

(±
k←→

�s−k�k) = 1

2

∑

k

(±
k←→

�s−k�k) +
1

2

∑

k′
(±

s−k′←−→
�k′�s−k′).

We conclude the asserted formulas by the following cancellations among the two pieces

(±
k←→

�s−k�k) + (±
s−k←→

�k�s−k) =
{
id if s = k = 0
0 otherwise.

The case s = k = 0 here is simply the anticommutation relation 2�0�0 = id of
Proposition 4.16. In the cases where k, s−k have the same sign, the cancellation follows
from the anticommutation relation �s−k�k + �k�s−k = 0. In the cases where k, s − k

have different signs, the cancellation follows from the definition of (±
k←→
AB). ��

Lemma 4.21. For any n ∈ Z, if j, k ∈ Z + 1
2 we have

[
Levenn , (±

k←→
� j�k)

]
= −( j + n

2

)
(±

k←→
�n+ j�k)−

(
k +

n

2

)
(±

k←→
� j�n+k).

Also, for any n, j, k ∈ Z, we have

[
Loddn , (±

k←→
� j�k)

]
= −( j + n

2

)
(±

k←→
�n+ j�k)−

(
k +

n

2

)
(±

k←→
� j�n+k).

Proof. It is sufficient to prove the statements without the reordering (±
k←→·· ), since possi-

ble reordering only amounts to interchanging j and k and changing signs. Moreover, the
proofs of both statements are completely similar, so we only detail the calculation for the
first one. Using Definition 4.17 and the anticommutation relations of Proposition 4.16,
and the identity

ABCD − CDAB = A(BC + CB)D − (AC + CA)BD + CA(BD + DB)

−C(AD + DA)B,

we get

[
Levenn , � j�k

]
= 1

2

∑

�∈Z+ 1
2

�
(
(±

�←→
�n−���)� j�k −� j�k(±

�←→
�n−���)

)

= 1

2

∑

�∈Z+ 1
2

�
(
δ�+ j,0 �n−��k − δn−�+ j,0 ���k
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+ δ�+k,0 � j�n−� − δn−�+k,0 � j��

)

= 1

2

(
(− j)�n−��k − (n + j)���k + (−k)� j�n−� − (n + k)� j��

)

= −( j + n

2

)
�n+ j�k −

(
k +

n

2

)
� j�n+k .

��
Theorem 4.22. The operators

(
Levenn

)
n∈Z form a representation of the Virasoro algebra

with central charge c = 1
2 .

Proof. Using the definition of the Virasoro mode Levenm and Lemma 4.21, we calculate

[Levenn ,Levenm ] = 1

2

∑

k∈Z+ 1
2

k
[
Levenn , (±

k←→
�m−k�k)

]

= −1
2

∑

k∈Z+ 1
2

(
k
(
m − k +

n

2

)
(±

k←→
�n+m−k�k) + k

(
k +

n

2

)
(±

k←→
�m−k�n+k)

)
.

Performing the change of variables � = k + n in the second part of the sum and then
combining the two parts, and using Lemma 4.20, we get

[Levenn ,Levenm ] = −1

2

∑

k∈Z+ 1
2

k
(
m − k +

n

2

)
(±

k←→
�n+m−k�k)

− 1

2

∑

�∈Z+ 1
2

(�− n)
(
�− n

2

)
(±

�−n←→
�n+m−���)

= −1

2

∑

k∈Z+ 1
2

(
km − kn +

n2

2

)
(±

k←→
�n+m−k�k) + Bn,m

= (n − m)
1

2

∑

k∈Z+ 1
2

k (±
k←→

�n+m−k�k) + Bn,m

= (n − m) Levenn+m + Bn,m,

where

Bn,m = −1

2

∑

�∈Z+ 1
2

(�− n)
(
�− n

2

)(
(±

�−n←→
�n+m−���)− (±

�←→
�n+m−���)

)
.

The theorem will be proven, if we show that Bn,m = n3−n
24 δn+m,0 id. Note that in the sum

over � which defines Bn,m , whenever either �, �− n ≥ 0 or �, �− n < 0 the two terms
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directly cancel. The finitely many remaining terms are simplified using Proposition 4.16
to constant multiples of the identity. For example for n > 0, we get

Bn,m = −1

2

∑

�∈Z+ 1
2

0<�<n

(�− n)
(
�− n

2

)(−�n+m−��� −�n+m−���︸ ︷︷ ︸
=−δn+m,0 id

)

= +
1

2

( ∑

�∈Z+ 1
2

0<�<n

(�− n)
(
�− n

2

))
δn+m,0 id = n3 − n

24
δn+m,0 id.

The case n < 0 is similar. ��
Theorem 4.23. The operators

(
Loddn

)
n∈Z form a representation of the Virasoro algebra

with central charge c = 1
2 .

Proof. As in the proof of Theorem 4.22, we need to show that

[
Loddn ,Loddm

]− (n − m)Loddn+m = n3 − n

24
δn,−m id.

If n,m 
= 0 and n +m 
= 0, the proof that the left hand side vanishes is exactly the same
as in Theorem 4.22 (the formulas for Loddn ,Loddm ,Loddn+m are the same, and moreover the
anticommutation result of Proposition 4.16, the commutation result of Lemma 4.21 and
the cancellation result of Lemma 4.20 apply in exactly the same way). If n = m = 0,
the result is trivial. If either n or m is zero, simply observe that the extra term 1

16 id
commutes with anything, and hence that there is no difference.

The only non-trivial case to check is hence n > 0 and m = −n. We calculate, using
now the second statement in Lemma 4.20,

[Loddn ,Lodd−n ] =
1

2

∑

k∈Z
k
[
Loddn , (±

k←→
�−n−k�k)

]

= −1
2

∑

k∈Z

(
k
(− k − n

2

)
(±

k←→
�−k�k) + k

(
k +

n

2

)
(±

k←→
�−n−k�n+k)

)

= −1

2

∑

k∈Z
k
(− k − n

2

)
(±

k←→
�−k�k)− 1

2

∑

�∈Z
(�− n)

(
�− n

2

)
(±

�−n←→
�−���)

= −1

2

∑

k∈Z

(
− 2kn +

n2

2

)
(±

k←→
�−k�k) + B′n

= 2n
1

2

∑

k∈Z
k (±

k←→
�−k�k)− n2

8
id + B′n

= 2n Lodd0 − n

8
id− n2

8
id + B′n,

where

B′n = −
1

2

∑

�∈Z
(�− n)

(
�− n

2

)(
(±

�−n←→
�−���)− (±

�←→
�−���)

)
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= −1

2

n−1∑

�=0
(�− n)

(
�− n

2

)(−���−� −�−���

)

=
(1
2

n−1∑

�=0
(�− n)

(
�− n

2

))
id = 1

24

(
n3 + 3n2 + 2n

)
id.

Now simplifying, we obtain the desired form of the commutator,

[Loddn ,Lodd−n ] = 2n Lodd0 +
n3 − n

24
id.

��
We can now construct the Virasoro representation on the Ising model local fields, by
putting together the even and odd sectors treated above.

Theorem 4.24. Setting LIn := Levenn ⊕ Loddn , we have that the operators
(
LIn
)
n∈Z form

a representation of the Virasoro algebra with central charge c = 1
2 on FI , the space of

Ising lattice local fields modulo null fields.

Proof. This is immediate from Theorems 4.22 and 4.23. ��

5. Discrete Complex Analysis Proofs

5.1. Integermonomial construction. The construction of the positive integermonomials
is quite straightforward:

Lemma 5.1. There exists a unique family of functions z[p] : Cδ ∪ C
m
δ → C for p ≥ 0

such that z[0] ≡ 1, z[1] = δ−1z, ∂δz[p] = pz[p−1], 0[p] = 0 for all p ≥ 1, and
(± δ

2

)[p] =
(
± iδ

2

)[p]
for all p ≥ 2. These functions satisfy the properties 1, 2, 3, 4, 7, 8

of Proposition 2.1.

Proof. It is not hard to check by induction on p, using discrete integration, that the
functions z[p]m and z[p] are both discrete holomorphic and satisfy the relevant symmetry
properties, and are uniquely determined by the values near 0. The convergence as δ → 0
follows by discrete integration. The set of medial points where z[p+1] vanishes is easily
shown to be the set of neighbors of the diamond points where z[p] vanishes (and vice
versa), thus showing that the set of points where z[p] vanishes grows with p. ��
The construction of the negative integer monomials is quite simple, too.

Lemma 5.2. There exists a unique family of functions z[p] : Cδ ∪ C
m
δ → C for p < 0

such that ∂δz[p] = pz[p−1], 0[p] = 0 for all p < 0 and with ∂̄δz
[−1]
m = 2π1{0} and

∂̄δz
[−1] = 2π

4

∑
x∈{±1,±i} 1{xδ/2}, such that z[−1] → 0 as z → ∞. These functions

satisfy the Properties 1, 6, and 8 of Proposition 2.1.

Proof. Recall that the discrete Cauchy kernel k : Cm
δ → C with a discrete pole at

0 is the unique function k : Cm
δ → C such that ∂̄δk = 1{0} and k decays at infin-

ity [ChSm11,Ken00]—it can be constructed as the ∂δ-derivative of the random walk
potential kernel a : Cδ → R (see [LaLi10]), extended as zero on the dual C∗δ . The
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Fig. 11. The lattice of those corners whose direction is ν(c) = �. The wiggly line denotes the branch cut �R+,
and the corner immediately on the North-West of 0 is −1+i4 δ. The shaded square is Q

function z[−1]m is then defined as 2πk on C
m
δ . Given this, the function z[−1] can be con-

structed by z[−1] = 1
4

∑
z[−1]x where the sum is over the four medial neighbors zx ∈ C

m
δ

to z ∈ C

δ ; it is easy to check that they satisfy Properties 1 (symmetry) and 6 (decay at

infinity), and Property 8 (convergence) is given by standard discrete complex analysis
techniques [ChSm11]. The uniqueness for p = −1 follows from the maximum princi-
ple. The other functions are readily determined by repeated ∂δ-differentiation, and it is
elementary to check their properties. ��

5.2. Construction of discrete square roots. In this subsection, we construct the discrete

analogues z
[− 1

2 ]
m , z

[ 12 ]
m : [Cm

δ , 0
] → C of the functions z �→ 1√

z and z �→ √
z that

we will need for our construction. For this, we rely on constructions introduced in
[CHI15,GHP19], and modifications thereof.

Let us denote by C
cm
δ := C

c
δ ∪ C

m
δ the lattice formed by the corners and midpoints

of edges of Cδ . We say that a function F : Ccm
δ → C is s-holomorphic if for any c ∈ C

c
δ

adjacent to z ∈ C
m
δ , v ∈ Cδ, f ∈ C

∗
δ we have

F(c) = 1

2

(
F(z) + ν(c)F̄(z)

)
, (5.1)

where ν(c) = (v − f ) / |v − f |. This requirement will be called a “projection relation”,
since it can be interpreted as stating that the value of the function at a corner c is the
projection of the complex value at an adjacent midedge z to the line

√
ν̄(c)R ⊂ C in

the complex plane.
We extend the notion of s-holomorphicity to functions defined on

[
C
cm
δ , 0

]
by defin-

ing adjacent as adjacent and on the same sheet (Fig. 11).

5.2.1. Discrete inverse square root In this paragraph, we introduce the discrete analogue

of the function z− 1
2 on the medial lattice.
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Lemma 5.3. Set κ := eπi/8, and � := e−πi/4. There exists a unique s-holomorphic

function Kδ :
[
Cδ

cm, 0
]→ Cwith−1monodromy around 0 such that Kδ

(−1+i
4 δ

)
= κ ,

such that Kδ(c) = 0 for all corners with ν(c) = � on �R+ and that decays at infinity.

Proof. Set �δ :=
{
c ∈ [Cc

δ, 0
] : ν(c) = �

}
and let �±δ denote the two sheets of �δ \

�R+. We construct Kδ on �±δ as ±κHδ , where Hδ(c) is the (Beurling-type) probability
that a simple randomwalk on�δ starting from c hits the “tip” −1+i4 δ before the slit �R+.
The function Kδ is clearly discrete harmonic on �δ , and also on the cut �R+; indeed,
the value on the cut is zero by definition, as is the average of the values of Hδ on the two
sheets, since they are of opposite sign, by symmetry. That it decays at infinity is standard.
The uniqueness follows from the maximum principle using the decay at infinity. Given
this, we can then use the same strategy as the proof of Lemma 2.14 (Sect. 3.2.2 and
Remark 3.1) of [CHI15], to uniquely reconstruct Kδ from values on �δ , by enforcing a
−1 mondromy around 0. 6

An important differencewith the situationof [CHI15] is that there is no s-holomporphic
singularity (failure of s-holomorphicity) of Kδ anywhere. Indeed, the point where the
discrete harmonicity of Hδ fails is −1+i4 δ, which is contained within the (dual lattice)
square Q of sidelength δ centered at 0. An s-holomorphic singularity occurs at a corner
when two conflicting values for a given corner are “suggested” by the two adjacent me-
dial vertices through the projection relation (5.1). In the case of [CHI15], the singularity
occurs at a corner which is outside the square Q, and the two values suggested by the
adjacent medial vertices are opposite (they come from two sheets); in our case, thanks to
the fact that branching is at the center of the square Q, the s-holomorphicity is preserved:
the two values that come naturally from both sheets do not conflict, since the corners
for which they “suggest” a value are actually different (i.e. on opposite sheets). Note
that this situation is exactly the same as in the proof of Theorem 2.20 in [CHI15] (see in
particular the paragraph before that proof); see also Remark 2.6 in [GHP19], where it is
explained that discrete holomorphicity may exist despite the failure of harmonicity. ��
Define the constant c∗ :=

√√
2

π
.

Lemma 5.4. We have that 1
c∗
√

δ
Kδ(z)→ iz− 1

2 as δ → 0, uniformly for z away from 0.

Proof. The convergence technology of the proof of Lemma 2.14 in [CHI15] leads to the

proof of convergence of 1
ϑ(δ)

Kδ → iz− 1
2 , for a function ϑ (δ)  √δ as δ → 0. But the

proof ofLemma5.15of [GHP19] gives the stronger estimate thatϑ (δ) ∼
√√

2δ
π
= c∗

√
δ

as δ → 0 (note that the lattice square side length in those papers is denoted by
√
2 δ

whereas lattice square side length in our paper is δ). ��

We can now define z

[
− 1

2

]

m on
[
C
m
δ , 0

]
.

Definition 5.5. We define z

[
− 1

2

]

m on
[
C
m
δ , 0

]
by symmetrizing Kδ as follows:

z

[
− 1

2

]

m := 1

8ic∗

7∑

k=0
eikπ/4 Kδ

(
ik z

)
.

6 Note that compared to our paper, the lattice is rotated by 45 degrees in [CHI15], that the the lattice square
side length is denoted there by

√
2 δ that the primal graph there corresponds to the dual graph.
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Remark 5.6. One can show that the function z

[
− 1

2

]

m is the unique function on
[
C
m
δ , 0

]

that is discrete holomorphic on
[
C
m
δ , 0

]
except at 0, that decays at infinity and shares

the same 90 degree rotation symmetries as z �→ 1/
√
z and is purely real on the positive

axis.

Lemma 5.7. We have that the values of z

[
− 1

2

]

m at e
πi
2 k δ

2 for k = 0, . . . , 7 are given by

Ce− πi
4 k for some constant C > 0.

Proof. This follows from a direct calculation and symmetry. ��
5.2.2. Discrete square root For the construction of the discrete square root, we rely on
a discrete analogue of the real part of the square root function (on the 45 degree-rotated
and factor

√
2 scaled square lattice (δ+iδ)Z2 = √2�Cδ), denoted byG[Cδ,0], defined in

[GHP19], following [CHI15]. It is constructed by essentially integrating the harmonic
measure used to define the discrete version of z−1/2. In this section, we first extend
G[Cδ,0] to an s-holomorphic function (on the medial and corner lattices of (δ + iδ)Z2,
with the same notation and conventions as in [GHP19]), and then define our function
Gδ on

[
C
m
δ , 0

]
. While there are a few differences (e.g., the choice of the lattice), our

function is otherwise very similar.
Let us start by the extension of G[Cδ,0] to the double cover [Cδ, 0] (with the notation

and 45-degree rotated lattice of [GHP19]) into an s-holomorphic function.
Define the constant c̃∗ = 1

2
√

π
.

Lemma 5.8. With the notation and conventions of [GHP19], the functionG[Cδ,0] defined
onV1

[Cδ,0]
admits a unique s-holomorphic extensionwith−1monodromy toVcm

[Cδ,0]
, which

vanishes on Vi
[Cδ,0]

∩ R+ and on V1
[Cδ,0]

∩ R−. We have that 1
c̃∗
√

δ
G[Cδ,0](z) →

√
z as

δ → 0 uniformly on the compact subsets of [Cδ, 0].

Proof. This follows from [GHP19]. See Definition 3.24 in Sect. 3.2.4 (‘Auxiliary Func-
tions’) for the construction, Remark 3.25 in Sect. 3.2.4 for the proof of s-holomorphicity,
andLemma5.16 inSect. 5.4.1 (‘Convergence of theFull-planeObservable’) for the proof
of convergence. The fact that the function vanishes on Vi

[Cδ,0]
∩R+ and on V1

[Cδ,0]
∩R−

comes directly from the construction. ��
We can now define the function Gδ appropriate for our setup, as a 45-degree rotated
version of G[Cδ,0]:

Definition 5.9. We define Gδ :
[
C
m
δ , 0

]→ C by Gδ(z) := e
πi
8 G[Cδ,0](

√
2�z).7

The most important features of Gδ are summarized in the following.

Proposition 5.10. The function Gδ is s-holomorphic on
[
C
m
δ , 0

]
, vanishes at 1−i

4 δ, and
is “discrete holomorphic at 0”, i.e.,

Gδ

( δ

2
ei0
)
− Gδ

( δ

2
eiπ

)
+ iGδ

( δ

2
eiπ/2

)
− iGδ

( δ

2
ei3π/2

)
= 0.

Moreover, we have that 1
21/4c̃∗

√
δ
Gδ(z) → √

z as z → ∞ uniformly on the compact

subsets of [C, 0].

7 The square lattice used in [GHP19] is (1 + i)δ Z2, and correspondingly the side-length of the squares is√
2δ instead of δ, and the orientation differs by 45 degrees.
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Proof. The vanishing of Gδ at 1−i4 δ is direct from its construction based on G[Cδ,0]. The
discrete holomorphicity at 0 follows from this: a failure of holomorphicity at 0 would
come from an incompatibility between the opposite values coming from the different
sheets at a given corner; here, since one of the corner values is zero here, this problem
is absent. The convergence follows from Lemma 5.8. ��

We are now in position to define z

[
1
2

]

m :

Definition 5.11. We define z

[
1
2

]

m on
[
C
m
δ , 0

]→ C by

z

[
1
2

]

:= 1

8 21/4 c̃∗

7∑

k=0
e−ikπ/4 Gδ

(
ik z

)
.

Lemma 5.12. Suppose a function f : [Cm
δ , 0

]→ C has the same 90 degree rotational
symmetry as z �→ zm/2 for m odd (and in particular −1 monodromy) and is “discrete
holomorphic at 0” (in the sense of Proposition 5.10). Then f vanishes at each of the
medial lattice points adjacent to 0, i.e., at δ

2 e
i π
2 k for k = 0, 1, . . . , 7.

Proof. The assumed symmetry implies that f
(

δ
2 e

i π
2 k
) = ei

π
4 mk f

(
δ
2

)
. The vanishing

of the discrete ∂̄-derivative at 0 then amounts to

0 = 1

2

(
f
( δ
2

)− f
( δ
2
eiπ

))
+
i

2

(
f
( δ
2
ei

π
2
)− f

( δ
2
ei

3π
2
))

= 1

2

(
1 + ei

π
4 (2m+4) + ei

π
4 (m+2) + ei

π
4 (3m+6)

)
f
( δ
2

) = 1

1− ei
π
4 (m+2)

f
( δ
2

)
.

The constant in front of f
(

δ
2

)
above is non-zero, so we conclude that f vanishes at δ

2 ,

and then also at all the points of the form δ
2 e

i π
2 k . ��

Proposition 5.13. The function z

[
1
2

]

m is discrete holomorphic on
[
C
m
δ , 0

]
, has the same

90 degree rotation symmetry as z �→ √
z, and therefore vanishes at δ

2 e
i π
2 k for k =

0, 1, . . . , 7. Moreover, we have that 1√
δ
z

[
1
2

]

m → √
z as δ → 0, uniformly on compact

subsets of [C, 0].

Proof. The symmetry is obvious by construction and the discrete holomorphicity at 0
is inherited from that of G[Cδ,0]. The vanishing at the medial lattice points adjacent to 0
then follows from Lemma 5.12. The convergence follows from Proposition 5.10. ��

5.3. Half-integer powers. In the previous subsection, we defined the functions z

[
− 1

2

]

m

and z

[
1
2

]

m . Provided these functions can be differentiated and integrated in the space of
functions with a −1 monodromy around 0, they uniquely determine the functions z[k]m

and z[k] for all k ∈ Z+ 1
2 : as usual, differentiating or integrating shifts the power by 1 and

switches the lattice between
[
C
m
δ , 0

]
and

[
C

δ , 0

]
. The relevant 90 degree symmetries

are automatically inherited from those of z

[
− 1

2

]

m , z

[
1
2

]

m .
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Lemma 5.14. There is a unique family of functions z[p] for p ∈ Z + 1
2 satisfying the

conditions 1–6 and 8 of Proposition 2.3.

Proof. As explained above, the negative powers on
[
C
m
δ , 0

]
are obtained by differen-

tiating z

[
− 1

2

]

m and z

[
1
2

]

m and interpreting 0[p] = 0 for all p. The decay at infinity of z

[
− 1

2

]


follows from Harnack type estimates on the derivatives of discrete holomorphic func-
tions [LaLi10], and for p < − 1

2 , the same argument applies. The rest of the properties
for p < 0 are straightforward to check.

The positive powers are obtained by integrating in the space of functions with −1
monodromy. The discrete holomorphicity of the z[p] for all p ≥ 1

2 follows by induction
from the next lemma. ��
Lemma 5.15. We have the following (see Fig. 12):

(1) The values of the function z

[
1
2

]

 are given by C
√√

2+1
2

√
x/δ for x living above one

of the four dual vertices
{±1±i

2 δ
}
and by C

2

√
x/δ for x living above one of the

four vertices ±δ,±iδ, where C is the value of the function z
[− 1

2 ]
m at δ

2 .

(2) The functions z

[
1
2

]

m , z

[
3
2

]

m vanish on the four medial vertices
{
± δ

2 ,± iδ
2

}
.

(3) The functions z

[
3
2

]

 , z

[
5
2

]

 vanishon theninediamondvertices
{
0, ±1±i2 δ,±δ,±iδ

}
.

(4) In general, for half-integer k ≥ 1
2 , if z

[k] vanishes on a neighborhood � of the
origin, then z[k+1]m vanishes on the set of medial vertices at distance δ

2 from �,
and conversely, if z[k]m vanishes on a neighborhood �m of the origin, then z[k+1]
vanishes on the set of diamond vertices at distance δ

2 from �m.

Proof. Item 1 follows from explicit computation and the definition of z

[
− 1

2

]

m . Then
Lemma 5.12 gives item 2, and the rest from integration together with Lemma 5.12
again (also keeping in mind that the choice of the antiderivative is made unique by the
constraint that the monodromy is −1). ��

5.4. Contour integrals.

Lemma 5.16. For any k, � ∈ Z and any large enough contour γ , we have

1

2πi

“

γ

z[k]m z[�] [dz]δ = δk+�+1.

Proof. If k + � ≤ 2, we have the following three sub-cases:

• If k + � < −1, then since z[k]m z[�] = O
(|z|k+�

) = O
(|z|−2) we can take the

integration contour to be very large, containg O (|z|) terms a show that the integral
must vanish.
• If k + � = −1, we can use that δk+�z[k]z[�] → zk+� as δ → 0 and multiply by δ to
make the discrete contour integral converge to a continuous integral, hence yielding
the result: the discrete contour integral has the ‘right scaling’ to pass to the limit
without renormalization.
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Fig. 12. The sets of vertices of
[
C
m
δ , 0

]
where discrete half-integer monomials vanish are illustrated by the

shaded area

• If k + � = 0, 1, 2, by contour deformation it suffices to consider a contour γ which
forms the boundary of a large square of the form [−R, R]2. For such contours, we
can use symmetry to show that the integral must vanish: if k + � = 0, 2, we have
z[k]z[�] = (−z)[k] (−z){�} and hence antipodal contributions will cancel each other
(due to the integration element), and if k + � = 1, we have (iz)[k] (iz)[�] = iz[k]z[�]

and hence π
4 symmetric contributions will cancel each other (due to the integration

element being multiplied by i, too).

Let us now look at the case k + � ≥ 3:

• If k, � ≥ 0, the functions are discrete holomorphic everywhere and we conclude
readily.
• If k = −1, then � ≥ 4, and we can use Stokes’ formula and the fact that z[�] vanishes
at the points where z[k] is not discrete holomorphic.
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• If k < −1, we can use integration by parts (2.3) to raise the power of z[k] while
decreasing the power of z[�], until we get back to the previous case.
• The case � ≤ −1 is symmetric to the previous two cases.

��
Lemma 5.17. If either k, � ∈ Zor k, � ∈ Z+1

2 , denoting z
{�}
m = 1

4

∑
x∈{±1,±i} (z − xδ

2 )[�],
then for any large enough contour γ , we have

1

2πi

“

γ

z[k] z{�}m [dz]δ = δk+�+1.

Proof. The proofs of the cases k + � ≤ 2 are exactly the same as the ones of the cases
k + � ≤ 2 in the proof of Lemma 5.16, even if k, � are half-integer: all that is used is the
decay at infinity and the 90 degree symmetries. Let us now look at the cases k + � ≥ 3,
and show that the integral vanishes. We cover this in three separate cases:

• If k ≥ 1 and � ≥ 0, to show that the integral vanishes, we distinguish the integer
and half-integer cases.
– For integer k, � this is straightforward: the functions z[k] and z{�}m are discrete

holomorphic everywhere, and hence the contour integral vanishes.
– For half-integer k, �, we have that

• z[k] vanishes (at least) on
{
0, ±1±i2 δ,±δ,±iδ

}
and is discrete holomorphic

everywhere (since k ≥ 3
2 )

• z{�}m is (at least) discrete holomorphic outside of the nine diamond vertices{
0, ±1±i2 δ,±δ,±iδ

}
: this is inherited from the properties of the function

z[�] , shifted by a lattice spacing.
We can hence deduce that

∑

zm∈[Cm
δ ,0]

z{�}m ∂̄δz
[k] = 0

∑

z∈[Cδ ,0]
z[k] ∂̄δz

{�}
m = 0

and conclude that the contour integral vanishes.
• If k < 1, we again distinguish the integer and half-integer cases.
– For integer k, � with k + � ≥ 3 there are three cases:
• If k, � ≥ 0, then the vanishing of the contour integral is clear by discrete

holomorphicity of z[k] and z{�}m .
• For k = −1 and k = −2 and any � ≥ 3 − k we have that z{�}m vanishes on

each of the medial vertices where ∂̄δz
[k] is non-zero, so the vanishing of the

contour integral follows from Stokes’ formula.
• For k < −2 we can integrate by parts an even number of times to reduce to

the previous case.
– For half-integer k, �, we can use two integrations by parts (on a large enough

contour, where both z[k] at z{�}m are discrete holomorphic) to raise the power of
k by 2 units while decreasing the power of � by 2 units, keeping k + � constant
and � ≥ 0 until k ≥ 1, and reduce this case to the previous one (the reason
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we use two integrations by parts is to keep the functions on the same lattices:
∂δ∂δz

[k+2] = (k + 2)(k + 1)z[k] and ∂δ∂δz
{�+2}
m = (� + 2)(� + 1)z{�}m ).

• The � < 1 case is symmetric to the previous one. ��

5.5. Proof of Propositions 2.1 and 2.3. We are now in position to conclude the proofs
of the two key propositions about integer and half-integer monomials.

Proof of Proposition 2.1. Properties 1–8 were proven in Lemmas 5.1 and 5.2. Property
9 follows from Lemma5.16 and Property 10 follows from Lemma 5.17. ��
Proof of Proposition 2.3. Properties 1–6 and 8 follow from Lemma 5.14. Property 7
follows from 5.15. Property 10 follows from Lemma 5.17 and the proof of Property 9
is similar but easier. ��

6. Lattice Fermion Proofs

In this section, we give the proofs of the key properties of the fermions stated in Sect. 3.3.

6.1. Fermions as parafermions. In this subsection, we review the low-temperature ex-
pansion of the Ising fermion, which yields to the family of parafermionic observables
(see [Smi10b] for instance). This representation is useful to reveal a number of sym-
metries (it is more canonical in some sense, as it does not depend on a choice of defect
line) and it is decisive for the boundary value problem analysis of Ising correlations (see
[CHI15,HoSm13,Hon10] for instance).

Definition 6.1. Let C�δ denote the set of even subgraphs8 of the dual graph �∗δ , i.e.,
subsets ϑ of edges of �∗δ such that every dual vertex p ∈ �∗δ is incident to an even
number of edges of ϑ . For the Ising model with + boundary conditions on �δ , spin
configurations σ ∈ {±1}�δ bijectively correspond with even subgraphs ϑ ∈ C�δ of the
dual graph �∗δ by the condition that edges of ϑ separate spins with opposite values. For
V ⊂ �δ , we denote by σ V

ϑ the value of the product
∏

x∈V σx of spins in V in the spin
configuration σ corresponding to ϑ .

Remark 6.2. The Boltzmann weight e−βH[σ ] of a spin configuration σ is proportional
to e−2β|ϑ |, where |ϑ | is the number of edges in the corresponding even subgraph ϑ . It
follows that we have

E

[
∏

x∈V
σx

]

= 1

Z
∑

ϑ∈C�δ

e−2β|ϑ |σ V
ϑ ,

where

Z :=
∑

ϑ∈C�δ

e−2β|ϑ |.

8 Informally, an even subgraph ϑ of �∗δ forms a collection of loops on the dual graph. Even subgraphs are
also called contours in the literature, but we have chosen to avoid this term because it is already used in the
context of discrete integrals.
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Let λc1,c2 be a corner defect line in �δ and, denoting the symmetric difference by⊕,
set

C�δ
c1,c2 :=

{
λc1,c2 ⊕ ϑ

∣∣∣ ϑ ∈ C�δ

}

which only depends on c1 and c2, and not on the defect line λc1,c2 . An element γ ∈ C�δ
c1,c2

will be called a (c1, c2)-subgraph: it has an even number of edges or corner ends adjacent
to every dual vertex, but has one corner end adjacent to both of the the marked corners
c1 and c2. For γ ∈ C�δ

c1,c2 , we denote (by a slight abuse of notation) by W (γ ) ∈ R/4πZ
the winding of the path in γ which goes from c1 to c2, as defined in, e.g., [HoSm13]:
if γ is a simple path, W (γ ) is defined as in Sect. 3.3.2, and if ‘ambiguities’ arise (i.e.
going from c1 to c2, one has three choices about how to continue the path, left, right or
straight) one either turns right or left, but does not go straight, and W (γ ) modulo 4π is
independent of the choice of the path in γ , as shown in Lemma 1.4 of [HoSm13]. We
use the convention that the length |γ | of γ ∈ C�δ

c1,c2 counts only the edges on the dual
lattice �∗δ and not the two corner ends connecting dual vertices to the corners c1, c2.

The following lemma connects the two-fermion correlations with the observables of
[Hon10,HoSm13,CHI15]. Recall that for a corner c ∈ C

c
δ adjacent to vertex x ∈ Cδ and

dual vertex p ∈ C
∗
δ we denote ν(c) := x−p

|x−p| .

Lemma 6.3. Consider the Ising model on a discrete domain �δ with + boundary con-
ditions. For any corners c1, c2, we have

E
[
ψc1ψc2

] = −ν(c1)
1

Z
∑

γ∈C�δ
c1,c2

e−
i
2 W(γ )e−2β|γ |.

Proof. Pick a disorder line � between the dual vertices p1 and p2 adjacent to corners
c1 and c2, respectively. Represent any Ising configuration σ ∈ {±1}�δ by the following
collection γ of dual-edges: for any edge e = xy of�δ , its dual edge e∗ belongs to γ either
if e∗ /∈ � and σx 
= σy or if e∗ ∈ � and σx = σy (see Fig. 13). 9 It is elementary to check
that the effective Boltzmann weight e−βH[σ ]−2βE�[σ ] of a spin configuration σ in the
presence of the disorder line � is proportional to e−2β|γ | (with the same proportionality
factor as in Remark 6.2). Letting x1, x2 ∈ �δ be the vertices adjacent to c1, c2, it
is again elementary to check that the value of σx1σx2 is determined by γ and equals

e− i
2 W(γ )/e− i

2 W(�). The proof follows readily. ��
The above lemma generalizes to multiple spin insertions, if this time we keep track

of the defect line.

Lemma 6.4. Consider the Ising model on a discrete domain �δ with + boundary con-
ditions. Let V ⊂ �δ . For any corners c1, c2, we have

E

[(
∏

x∈V
σx

)
(
ψc1ψc2

)
λ

]

= −ν(c1)
1

Z
∑

γ∈C�δ
c1,c2

e−
i
2 W(γ )e−2β|γ |σ V

γ⊕λ. (6.1)

9 In other words, γ represents the ‘frustrated pairs’ of adjacent spins
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Fig. 13. Spin configuration with disorder (top picture) and the associated γ configuration (bottom picture)

Proof. The proof is very similar to that of Lemma 6.3: we define the same contour γ to
describe the configuration. The only additional thing to check is that, denoting as before

x1, x2 the vertices adjacent to c1, c2, we have
(∏

v∈V σx
)
σx1σx2 = e−

i
2 W(γ )

e−
i
2 W(λ)

σ V
γ⊕λ. This

can be done by induction on the number of vertices in V . ��
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6.2. Discrete holomorphicity. In this subsection, we give the proof of Proposition 3.22,
which is central to the lattice Virasoro construction.

The proposition concerns the discrete holomorphicity and singularities of a certain
function H . We first prove intermediate results about two related functions, defined
as follows. Consider the critical Ising model on a domain �δ with arbitrary boundary
conditions. The following will be fixed throughout below:

• Let W ⊂ V ⊂ �δ be two subsets of vertices, and assume that V is connected.
• Let c1 ∈

[
�c

δ, V
]
be a corner on the double cover of �δ ramified around V , whose

base point c1 ∈ �c
δ on the original lattice is not adjacent to V . Denote the adjacent

vertex and dual vertex to the base point corner c1 by v1 ∈ �δ and p1 ∈ �∗δ . We will
also occasionally denote by c∗1 ∈

[
�c

δ, V
]
the corner with the same base point c1 but

on the opposite sheet of the double cover.

We define a function

Hc : [�c
δ, V

] \ {c1, c∗1
}→ C

on the corners of the double cover graph by the following formula: for c2 ∈
[
�c

δ, V
] \{

c1, c∗1
}
set

Hc(c2) = Hc(c1; c2) := E

[(
∏

u∈W
σu

)

ψc1ψc2

]

. (6.2)

The fact that this iswell defined on the double cover is a consequence of Proposition 3.17.
In concrete terms, if v2 ∈ �δ and p2 ∈ �∗δ are the vertex and dual vertex adjacent to the
base point c2, this definition can be unraveled to the form

Hc(c2) = − ν(c1) E

[(
∏

u∈W
σu

)

σv1σv2 (μp1μp2)�

]

e−
i
2 W(λ:c�d),

where the disorder line � is chosen so that its lift to the double cover connects c1
to c2 (when augmented by the two corner ends), and where as in Sect. 3.3.2 we denote
ν(c1) = v1−p1

|v1−p1| .
We define a related function

Hm : [�m
δ , V

]→ C

on the medial lattice by the following formula: for z ∈ [�m
δ , V

]
we set

Hm(z) = Hm(c1; z) := 1

2

∑

x∈{±1±i}
E

[(
∏

u∈W
σu

)

ψc1ψzx

]

, (6.3)

where zx := z + δ
4 x ∈

[
�c

δ, V
]
denotes a corner adjacent to the medial vertex z, in

the direction specified by x , and in the case zx = c1 (resp. zx = c∗1), we interpret
ψc1ψzx = z−w

|z−w| (resp. ψc1ψzx = − z−w
|z−w| ) where w is the other medial vertex besides

z, which is adjacent to c1 (resp. c∗1).
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Lemma 6.5. Let z be a medial vertex of the double cover
[
�m

δ , V
]
. If z is not adjacent

to the corners c1, c∗1 , i.e., zx 
= c1, c∗1 for each x ∈ {±1± i}, then we have

Hc (zx ) + Hc (z−x ) = Hc (zix ) + Hc
(
z−ix

)
. (6.4)

If zx = c1 for some x ∈ {±1± i}, and w ∈ [�m
δ , V

]
is the other medial edge adjacent

to c1, then we have

z − w

|z − w| E
[
∏

x∈V
σx

]

+ Hc (z−x ) = Hc (zix ) + Hc
(
z−ix

)
. (6.5)

in

Proof. Let us first assume that we have + boundary conditions. Let e be the dual edge
whose midpoint is z and for each x ∈ {±1± i}, let ex denote the corner end between zx
and a dual vertex adjacent to z.

Let us first assume that zx 
= c1, c∗1 for all x . Let uswrite the values of Hc (zx ) in terms
of the low-temperature expansion (Lemma 6.4), choosing defect lines λx : c1 ↔ zx
which differ only locally, and let Cx := Cc1,zx denote the relevant sets of (c1, zx )-

subgraphs. LetWx denote theweight e−
i
2 W(γx )α|γx |σ V

γx⊕λx
, whereα = e−2βcr. = √2−1.

The (c1, zx )-subgraphs γx ∈ Cx for different x can be put in bijective correspondence
(see Fig. 14): the map Cx → C−x can be defined by taking the symmetric difference
γx �→ γx⊕ex⊕e−x⊕e, for instance, and ifCx andCix , the bijection share the same dual
vertex, γx �→ γx ⊕ ex ⊕ eix . It is elementary to check that for any

(
γx , γix , γ−x , γ−ix

)

thus put in correspondence, we have

Wx +W−x = Wix +W−ix .

Summing over all contours, we obtain (6.4), as desired.
If zx = c1 for some x ∈ {±1± i}, then Hc (zx ) is not defined. However, if we would

set Hc (zx ) equal to z−w
|z−w|E

[∏
x∈V σx

]
(this choice is one of the two “conflicting values”

addressed below the proof), and represent the latter in terms of even subgraphs inCx = C
(there is no path in such even subgraphs, just loops), the bijective correspondence works
in exactly the same way as above (see Fig. 15). This hence yields (6.5).

For more general boundary conditions, simply notice that they can be implemented
by (a linear combination of) spin insertions on the boundary, and hence can be included
in V . ��
In the proof we temporarily used a certain value of the function Hc also at the special
corner c1. However, the value depended on which of the two medial edges z adjacent
to c1 was under consideration—the other adjacent medial edge would have required us
to use the opposite value. These “conflicting values” are the source of the singularity of
our discrete holomorphic function.

The following lemma, combined with the previous one (Lemma 6.5), allows one
to say that (at criticality) the values of the function Hc that appear in Equation (6.4)
are actually the projection of an extension Hm of Hc to the medial vertices (as will
Lemma 6.7 below show): indeed the values given by opposite corners around a medial
vertex live on orthogonal lines of the complex plane (see [Smi10a] for a reference about
such considerations).

As usual, we set λ := eπi/4.



Conformal Field Theory at the Lattice Level…

Fig. 14. Bijective correspondence between the contour sets corresponding to the corners around a medial
vertex, and relative weights of the configuration

Fig. 15. Source of the discrete singularity when z is near the point c1: performing the bijection as before, we
obtain two ‘conflicting’ values of W (γ ) = −π (top) and W (γ ) = π (bottom) on the last column

Lemma 6.6. For any c2 ∈
[
�c

δ, V
] \ {c1, c∗1

}
, we have that Hc (c2) ∈ � (c1, c2), where

� (c1, c2) := i
√

ν̄(c1)ν̄(c2)R (see Fig. 16).

Proof. This is elementary from thedefinitionofHc andof the corner fermionpair (ψc1ψc2).��
We are now in position to state the following discrete holomorphicity lemma for Hm.

Set λ := eπi/4 and η := eπi/8 as usual.
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Fig. 16. The directions of the lines � (c1, c2) inC on which Hc (c2) lives, for the four corners around a primal
vertex

Lemma 6.7. If ζ ∈ [�δ , V
]
is away from V , ∂�δ , and c1, c∗1 then we have ∂̄δHm(ζ ) =

0. If ζ is the vertex or thedual vertex next to c1, thenwehave ∂̄δHm(ζ ) = √2E
[∏

x∈W σx
]
.

Proof. Consider amedial vertex z and the corners zx adjacent to it, for x ∈ {±1± i}. If z
is not adjacent to c1, c∗1, then by Lemmas 6.5 and 6.6, we have that the values of Hc(zx )
at these corners are given by the projections of the value of Hm(z) on certain lines. The
line �(c1, zx ) = ξc1,zx R is specified by a complex number ξc1,zx of unit modulus as in
Fig. 16, and the projection relation explicitly reads

Hc(zx ) = pr�(c1,zx )
[
Hm(z)

] = 1

2

(
Hm(z) + ξ2c1,zx H

m(z)
)
. (6.6)

When zx = c1, then the corresponding projection relation holds with one of the two
opposite “conflicting values” for ψc1ψc1 .

Let us consider the case when ν(c1) = λ in detail; the other cases are symmetric. Set
� := E

[∏
x∈W σx

]
. We have the following four cases:

(1) If ζ is a primal vertex away from c1, c∗1, denoting by E, N ,W, S the values of Hm

at the four medial vertices next to ζ in the directions 1, i,−1,−i, the projection
relations (6.6) read:

N − iN̄ = E − iĒ

S + S̄ = E + Ē

S + iS̄ = W + iW̄

N − N̄ = W − W̄ .

By taking an appropriate linear combination of the four equations to eliminate
the complex conjugate values, one gets E − W + i (N − S) = 0, which shows
∂̄δHm(ζ ) = 0 as desired.

(2) If ζ = v1 is the primal vertex adjacent to c1, plugging in the two “conflicting”
values given by Equation (6.5) of Lemma 6.5 (and reading them as projection
relations again), and using the same notation as in the previous item, one gets

S + iS̄ = 2λ �

−2λ � = W + iW̄

S + S̄ = E + Ē

N − iN̄ = E − iĒ
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N − N̄ = W − W̄ .

By again taking an appropriate linear combination of these five equations, one
gets E −W + i (N − S) = 2

√
2� and hence ∂̄δHm(v1) =

√
2�, as desired.

(3) If ζ is a dual vertex away from c1, c∗1, and if we denote by E,N ,W,S the values
of Hm at the medial vertices around ζ directions 1, i,−1,−i, the projection
relations (6.6) read

N + N̄ =W + W̄
S − iS̄ =W − iW̄
S − S̄ = E − Ē

N + iN̄ = E + iĒ .

As in the first item, an appropriate linear combination of these yields ∂̄δHm(ζ ) =
0.

(4) Finally, if ζ = p1 is the dual vertex adjacent to c1, using the same notation as in
the previous item, one gets

2λ � = E + iĒ
N + iN̄ = −2λ �

N + N̄ =W + W̄
S − iS̄ =W − iW̄
S − S̄ = E − Ē,

and one concludes ∂̄δHm(p1) =
√
2� as in the second item.

��
The function

H : [�m
δ , V

]→ C

considered in Proposition 3.22 is straightforwardly reconstructed from Hm. For its
definition, c1 is no longer fixed, but we average over the four corners c1 next to a fixed
medial vertex w ∈ [Cm

δ , V
]
. The function H is defined as

H(z) = H(w; z) := E

[(
∏

u∈W
σu

)

ψ(w)ψ(z)

]

= π

8
√
2

∑

x,y∈{±1±i}
E

[(
∏

u∈W
σu

)

ψwyψzx

]

Up to a multiplicative constant π

4
√
2
, this is just the sum of Hm(z) = Hm(c1; z) over

the four corners c1 = wy adjacent to w. We now recall and prove Proposition 3.22
concerning the function H .
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Proposition. (Proposition3.22)For ζ ∈ [�δ , V
]
away from ∂�δ , V ,wehave ∂̄δH(ζ ) =

0 if ζ 
∼ w,w∗ and we have

∂̄δH(ζ ) = π

2
E

[
∏

x∈W
σx

]

if ζ ∼ w.

Proof of Proposition 3.22. This property of H follows directly from Lemma 6.7 about
Hm. ��
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