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Abstract
Discrete sizing and topology optimization of truss structures subject to stress and displacement constraints has been formu-
lated as a Mixed-Integer Linear Programming (MILP) problem. The computation time to solve a MILP problem to global 
optimality via a branch-and-cut solver highly depends on the problem size, the choice of design variables, and the quality 
of optimization constraint formulations. This paper presents a new formulation for discrete sizing and topology optimiza-
tion of truss structures, which is benchmarked against two well-known existing formulations. Benchmarking is carried out 
through case studies to evaluate the influence of the number of structural members, candidate cross sections, load cases, 
and design constraints (e.g., stress and displacement limits) on computational performance. Results show that one of the 
existing formulations performs significantly worse than all other formulations. In most cases, the new formulation proposed 
in this work performs best to obtain near-optimal solutions and verify global optimality in the shortest computation time.

Keywords  Structural optimization · Truss · Sizing optimization · Topology optimization · Mixed-Integer Linear 
Programming · Gurobi

1  Introduction

1.1 � Previous work

Optimization has been successfully employed to improve the 
performance of a structure subject to a given set of loads and 
boundary conditions. Computing power as well as the avail-
ability of optimization solvers have increased significantly 
over the last decades, which have enabled structural optimi-
zation to become increasingly adopted in practice. Maxi-
mization of material usage efficiency through minimization 
of the structure weight is a common objective function. In 

this context, structural optimization may also contribute to 
reducing environmental impacts (Lagaros 2018).

Optimal layouts can be obtained through optimization 
of the structural geometry, topology, and member cross-
section sizing (Rozvany et al. 1995). Typical methods to 
optimize truss systems are based on the ground structure 
approach introduced by Dorn et al. (1964). A ground struc-
ture consists of a network of members of which a subset 
will be selected for the optimal design. Typically, structural 
optimization is carried out using continuous design vari-
ables for the member cross-section areas (Gilbert and Tyas 
2003; Ohsaki 2017; Rozvany et al. 1995). The adoption of 
continuous variables typically simplifies the problem and 
allows the use of efficient numerical techniques (e.g., linear 
and non-linear programming). Digital fabrication techniques 
such as additive manufacturing enable the custom design of 
structures that are made of non-standard components (Pel-
lens et al. 2019; Smith et al. 2016). However, conventional 
building construction is typically restricted to standard sets 
of discrete cross sections (e.g., I-beams, hollow sections, 
etc.), thus, making the design variables discrete, which has 
led to the development of discrete sizing and topology opti-
mization methods (Huang and Arora 1997; Toakley 1968). 
Stolpe (2016) provides an extensive review of structural 
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optimization methods involving discrete design variables. 
Meta-heuristic and stochastic methods including evolution-
ary and genetic algorithms (Deb and Gulati 2001; Kaveh 
and Kalatjari 2002; Rajan 1995; Rajeev and Krishnamoor-
thy 1992), simulated annealing (Bennage and Dhingra 1995; 
Kripka 2004; Shea and Smith 2006), ant-colony optimiza-
tion (Camp et al. 2005), and particle swarm optimization 
(Li et al. 2009) have been applied. Typical disadvantages of 
meta-heuristic algorithms are a large number of structural 
analyses necessary to achieve convergence and that solution 
optimality cannot be guaranteed (Stolpe 2016).

A different approach is to formulate discrete sizing and 
topology optimization as a Mixed-Integer Linear Program-
ming (MILP) problem, which can be solved to global opti-
mality through combinatorial optimization techniques such 
as branch-and-bound methods (Bertsimas and Tsitsiklis 
1997; Nemhauser and Wolsey 1999; Stolpe and Svanberg 
2003). Mathematical formulations for discrete sizing and 
topology optimization of trusses based on MILP have been 
presented by Ghattas and Grossmann (1991) and Rasmus-
sen and Stolpe (2008) among others. Mela (2014) extended 
the formulation of Rasmussen and Stolpe (2008) by adding 
decision variables and logic constraints to avoid mecha-
nisms. Shahabsafa et al. (2018) presented a formulation for 
cross-section size optimization that combines MILP with 
neighborhood search to reduce computation time. MILP-
based methods guarantee solution global optimality, which 
is a significant benefit as it allows for rigorous benchmark-
ing between solutions that are subject to different bound-
ary conditions. Recent work shows that MILP formulations 
have been employed more frequently for the optimal design 
of reticular structures. This is because MILP-based truss 
optimization enables ease of integration of “real-world” con-
straints into the problem formulation. For example, member 
buckling based on code regulations (Mela 2014), constraints 
on the number of structural nodes and members (Fairclough 
and Gilbert 2020), construction-related constraints such as 
avoiding member overlapping and intersection (Fairclough 
and Gilbert 2020; Ohsaki and Katoh 2005), and joint capac-
ity constraints computed based on code regulations (Van 
Mellaert et al. 2016). Discrete sizing and topology optimiza-
tion has been extended to design truss and frame structures 
from a limited stock of reclaimed elements (Brütting et al. 
2020, 2019). In these studies, the objective is the minimiza-
tion of environmental impact quantified through Life-Cycle 
Assessment. Generally, previous work has shown that dis-
crete structural optimization based on MILP is relevant to 
research and practice, and thus, strengthens the need for new 
formulations with improved computational efficiency.

MILP problems have been successfully solved using 
branch-and-bound algorithms whose computational per-
formance is significantly influenced by the problem for-
mulation, i.e., by the chosen set of design variables and 

optimization constraints. Quoting Bertsimas and Tsitsiklis 
(1997, p. 461), “In linear programming, a good formu-
lation is one that has a small number […] of variables 
and constraints […] because the computational complex-
ity of the problem grows polynomially […]. In addition, 
given the availability of several efficient algorithms for 
linear programming, the choice of a formulation, although 
important, does not critically affect our ability to solve 
the problem. The situation in integer programming is 
drastically different. Extensive computational experience 
suggests that the choice of a formulation is crucial.” In 
MILP-based formulations, the computation time to obtain 
the global optimum does not necessarily increase with the 
increase in the number of variables and constraints (Bert-
simas and Tsitsiklis 1997).

1.2 � New contributions of this work

The computation time to solve a MILP problem to global 
optimality depends on the problem size and problem for-
mulation (Bertsimas and Tsitsiklis 1997; Nemhauser and 
Wolsey 1999), i.e., on the number of variables, the number 
of constraints, and the quality of the constraint formulations. 
Different parameters, such as the number of structural mem-
bers, number of candidate cross sections, number of load 
cases, as well as the formulation of stress and displacement 
constraints significantly influence the computation time to 
obtain globally optimal solutions. No comprehensive study 
exists in the literature that evaluates the influence of such 
parameters on the computational performance of different 
MILP formulations. New contributions offered by this work 
are

1.	 Analysis of two well-known discrete sizing and topology 
optimization formulations (MILP-based).

2.	 The introduction of a new MILP formulation for sizing 
and topology optimization of truss structures.

3.	 A comparison of the problem size for all presented 
MILP formulations.

4.	 A computational performance benchmark by applying 
the MILP formulations to case studies.

5.	 Recommendations to choose a specific formulation 
depending on design constraints.

The benchmark provides a qualitative and quantitative 
evaluation of the influence of formulation specificities on 
computational performance. Results show that one of the 
existing formulations performs significantly worse compared 
to the other formulations. In most cases, the new formulation 
proposed in this work performs best to obtain near-optimal 
solutions and verify global optimality in the shortest com-
putation time.
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1.3 � Outline

This paper is organized as follows. Section 2 starts with 
a review of existing MILP formulations for discrete truss 
sizing and topology optimization subject to ultimate and 
serviceability limit states (stress constraints, nodal dis-
placement limits). Sections 2.2 and 2.3 give the problem 
statement of two well-known formulations, (FRS) by Ras-
mussen and Stolpe (2008) and (FGG) by Ghattas and Gross-
mann (1991). Drawing from (FRS) and (FGG), a new MILP 
formulation is proposed denoted as (FBSF).

The new formulation comes into two variants depending 
on the set of employed state variables: ( FBSF1 ) uses member 
forces and elongations (Sect. 2.4.1); ( FBSF2 ) employs mem-
ber elongations only (Sect. 2.4.2). Section 2.5 compares 
the problem size, i.e., the number of design variables and 
constraints, for all MILP formulations. A brief overview of 
the branch-and-bound procedure to solve MILP problems 
to global optimality as well as of the solver adopted in this 
work are given in Sect. 2.6. In Sect. 3, the MILP formula-
tions are applied to the design of planar (2D) and spatial 
(3D) structural configurations and benchmarks related to 
computational performance are provided. Section 4 dis-
cusses results and gives recommendations for choosing a 
specific formulation depending on design constraints. Sec-
tion 5 concludes this paper.

2 � Discrete sizing and topology optimization 
formulations based on MILP

2.1 � General formulation

This section presents a basic formulation for discrete cross-
section sizing and topology optimization of truss structures to 
minimize the structure volume. It is assumed, for simplicity 
that all structural members have the same material, and thus, 
the objective function is equivalent to the minimization of the 
structure weight. The formulation considers a truss ground 
structure with a total of m members. Each truss member is 
denoted with index i. The catalog (or set) of discrete candi-
date cross sections contains n elements. Reference to a dis-
tinct cross section within the set is given by index j. Assign-
ment of a cross section j at a member position i is expressed 
through a binary assignment variable tij ∈ {0,1}:

Cross-section assignment is combined with the evalu-
ation of structural constraints following the simultaneous 

(1)

tij =

{

1 if cross-section j is assigned to member position i

0 if cross-section j is not assigned to member position i

analysis and design (SAND) approach (Arora and Wang 
2005; Haftka 1985), whereby assignment variables and state 
variables (e.g., member forces and nodal displacements) are 
treated as optimization variables. SAND is different from 
nested analysis and design (NAND) because it avoids the 
need to perform explicit structural analysis (i.e., matrix 
inversion) and design sensitivity analysis at each optimiza-
tion iteration (Arora and Wang 2005). The SAND approach 
is a key to the formulation of discrete sizing and topology 
optimization as a MILP problem and to solving it to global 
optimality (Rasmussen and Stolpe 2008). Structural con-
straints include the equilibrium of forces at nodes, geometric 
compatibility of member elongations with nodal displace-
ments as well as stress and displacement limits.

All methods given in this work are formulated with the 
assumption of linear-elastic material behavior, small strains, 
and small displacements, i.e., no second-order effects such 
as geometric and material nonlinearity are considered. Since 
the formulations by Rasmussen and Stolpe (2008) and Ghat-
tas and Grossmann (1991) do not consider member buck-
ling constraints, for ease of comparison, the formulations 
given in this work do the same. Member buckling is a linear 
constraint in MILP formulations (Mela 2014) and, hence, 
could be added to the formulations if required. Similarly, no 
constraint is added to avoid the emergence of mechanisms 
through topology optimization. For simplicity, the formula-
tions are presented for one load case. Extension to multiple 
load cases is straightforward by adding state variables and 
structural analysis constraints for each load case.

The basic problem formulation for minimum-volume dis-
crete sizing and topology optimization is denoted with (F0):

The design variables of (F0) are the binary assignment 
variables tij collated in the vector t ∈ {0,1}mn. The column 
vector t is assembled as t = [[t11, …, t1j,…, t1n], …, [ti1, ti2,…, 
tin],…, [tm1, tm2,…, tmn]]T. The continuous state variables 

(2)(F0) min
t,p,u

m
∑

i=1

li

n
∑

j=1

tijaj,

(3)s.t.
∑

j

tij ≤ 1 ∀i (Assignment),

(4)Bp = f (Equilibrium),

(5)bT
i
u
ei

li

∑

j

tijaj = pi ∀i (Compatibility),

(6)�min
i

∑

j
tijaj ≤ pi ≤ �max

i

∑

j
tijaj ∀i (Stress),

(7)umin ≤ u ≤ umax (Displacement).
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are member internal forces p ∈ ℝm and nodal displacements 
u ∈ ℝd, where d denotes the number of free degrees of free-
dom (i.e., nodal displacements). The optimization objec-
tive (Eq. (2)) is the minimization of the structure volume 
obtained from the product of member length li and assigned 
cross-section area aj. Equation (3) ensures that at most one 
cross-section j is assigned to member position i. The struc-
ture topology changes if no cross section is assigned to a 
member position. Static equilibrium of forces at nodes is 
ensured by Eq. (4), where B ∈ ℝd×m is the reduced equi-
librium matrix and f ∈ ℝd is the static external load. B 
concatenates the direction-cosine vectors bi ∈ ℝd of all m 
members. Equation (5) combines geometric compatibility 
with constitutive laws by relating nodal displacements with 
member forces through element elongations. In Eq. (5), ei 
is the Young’s modulus for member i. Stress constraints in 
Eq. (6) limit the member forces to the admissible member 
stress σi

min in compression (negative number) and σi
max in 

tension (positive number). The displacements u are bounded 
by lower and upper limits umin and umax (Eq. (7)) as, for 
example, required by serviceability limits.

In (F0), all equations, except the compatibility constraint 
(Eq. (5)), are linear functions of the optimization variables t, 
p, and u. The compatibility constraint contains a product of 
binary assignment variables tij and continuous displacement 
variables u, which is a bi-linear term and, therefore, (F0) is 
not in the standard MILP problem form. To obtain a standard 
MILP form, the bi-linear constraints must be reformulated 
into linear constraints through “big-M” techniques and the 
introduction of auxiliary variables (Glover 1984, 1975). The 
following sections present different ways to reformulate (F0) 
into an equivalent MILP in standard form. The first two are 
the well-known formulations (FRS) and (FGG) by Rasmus-
sen and Stolpe (2008) and Ghattas and Grossmann (1991), 
respectively. Although (FGG) was presented 17 years before 
(FRS), for methodological reasons, they are here discussed 
in anti-chronological order. Thereafter, the new formulation 
offered by this work is introduced.

2.2 � Formulation ( FRS ) by Rasmussen and Stolpe

To linearize (F0), Rasmussen and Stolpe (2008) extend the 
member force vector p ∈ ℝm to p' ∈ ℝmn which holds one 
continuous variable p′

ij
 for each combination of member i 

and cross section j, i.e., for each assignment variable tij as 
assembled in the vector t. The vector p' is referred to as the 
extended member force vector. Accordingly, the compatibil-
ity constraint (5) is adapted to

(8)bT
i
u
eiaj

li
tij = p�

ij
∀i, j.

Note that Eq. (8) still contains a bi-linear product of tij 
and u. As shown by Rasmussen and Stolpe (2008), the fol-
lowing condition must hold:

This condition can be formulated through the following 
inequality constraints that do not contain bi-linear products:

Equations (10) and (11) are referred to as big-M formula-
tions, where cmin

ij
 and cmax

ij
 are the big-M constants. From 

Eq. (10), it follows that p′
ij
 is set to zero when tij = 0, and that 

p′
ij
 is bounded between cmin

ij
 and cmax

ij
 when tij = 1. At the same 

time, when tij = 1, the constraint in Eq.  (11) becomes 
bT
i
u
eiaj

li
= p�

ij
 as required by Eq. (9). A sufficiently large num-

ber should be set for the big-M constants to avoid truncating 
the solution domain and excluding feasible solutions. Ras-
mussen and Stolpe (2008) show that when the displacements 
u are bounded (Eq. (7)), the constants cmin

ij
 and cmax

ij
 , which 

are forces in this context, can be computed from constitutive 
laws based on the maximum admissible nodal 
displacements:

The right-side terms in Eqs. (12) and (13) are linear 
programming problems with the nodal displacements u as 
design variables. These linear programming problems can be 
solved analytically due to the simple bounds on the admis-
sible displacement limits (umin ≤ u ≤ umax) (Rasmussen and 
Stolpe 2008):

In Eqs. (14) and (15), bir denotes the rth entry in the col-
umn vector bi of the equilibrium matrix B ∈ ℝd×m. umin

r
 and 

umax
r

 denote the respective entries in the nodal displacement 

(9)iftij =

{

1 then p�
ij
= bT

i
u
eiaj

li

0 then p�
ij
= 0

∀i, j.

(10)tij ⋅ c
min
ij

≤ p�
ij
≤ tij ⋅ c

max
ij

∀i, j,

(11)
(

1 − tij
)

⋅ cmin
ij

≤ bT
i
u
eiaj

li
− p�

ij
≤ (1 − tij) ⋅ c

max
ij

∀i, j.

(12)cmin
ij

=
eiaj

li
⋅ max
umin≤u≤umax

bT
i
u,

(13)cmax
ij

=
eiaj

li
⋅ min
umin≤u≤umax

bT
i
u.

(14)cmin
ij

=
eiaj

li
⋅

(

∑

r|bir>0

biru
min
r

+
∑

r|bir<0

biru
max
r

)

,

(15)cmax
ij

=
eiaj

li
⋅

(

∑

r|bir>0

biru
max
r

+
∑

r|bir<0

biru
min
r

)

.
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bounds umin and umax. The notation “|” expresses the condi-
tion to consider only those entries where bir is larger or 
smaller than zero, respectively. Note that Eqs. (14) and (15) 
are precomputed for each assignment tij before optimization 
(Eqs. (10) and (11)). The so-obtained big-M constants cmin

ij
 

and cmax
ij

 are then employed in the constraints of the global 
optimization problem. The MILP formulation (FRS) as given 
by Rasmussen and Stolpe (2008) is:

Since the force variables are extended from p ∈ ℝm to 
p' ∈ ℝmn, the equilibrium matrix B ∈ ℝd×m must be equiva-
lently extended to B' ∈ ℝd×mn by horizontally concatenating 
each direction-cosine vector bi for n times (Rasmussen and 
Stolpe 2008). Note that Rasmussen and Stolpe (2008) do 
not explicitly include the big-M Eq. (10) into (FRS) since 
the admissible stress constraint (Eq. (20)) serves the same 
purpose of setting pij to zero when tij = 0.

2.3 � Formulation ( FGG ) by Ghattas and Grossmann

An alternative reformulation of (F0) is given by Ghattas and 
Grossmann (1991). The compatibility constraints in Eq. (5) 
between member elongations and forces are separated 
into two equality constraints: (1) geometric compatibility 
of nodal displacements u with member elongation �i , and 
(2) constitutive relation between member elongation �i and 
internal force pi:

(16)(FRS) min
t,p�,u

m
∑

i=1

li

n
∑

j=1

tijaj,

(17)s.t.
∑

j

tij ≤ 1 ∀i (Assignment),

(18)B�p� = f (Equilibrium),

(19)
(

1 − tij
)

⋅ cmin
ij

≤ b
T
i
u

eiaj

li
− p�

ij
≤ (1 − tij) ⋅ c

max
ij

∀i, j

(Compatibility),

(20)�min
i

tijaj ≤ p�
ij
≤ �max

i
tijaj ∀i, j (Stress),

(21)umin ≤ u ≤ umax (Displacement).

(22)b
T

i
u = �

i
∀i (Geometric compatibility),

(23)
�iei

li

∑

j
tijaj = pi ∀i (Constitutive relation).

Equation (23) contains a bi-linear product between tij 
and �i . Ghattas and Grossmann (1991) replace each mem-
ber elongation �i with auxiliary continuous variables vij for 
each combination of member i and cross section j, i.e., for 
each assignment variable tij. The vector v is denoted as the 
extended member elongation vector. Accordingly, the con-
stitutive relations are stated as follows:

In addition, the following big-M condition must hold:

Equation (25) ensures that vij = 0 when tij = 0 and that vij 
is bounded by �min

ij
 and �max

ij
 when tij = 1. The bounds �min

ij
 and 

�max
ij

 are computed from Hooke’s law using the admissible 
stresses in compression �min

i
 and tension �max

i
:

The complete MILP formulation (FGG) as presented by 
Ghattas and Grossmann (1991) is:

(24)
ei

li

∑

j
vijaj = pi ∀i, j.

(25)tij ⋅ �
min
ij

≤ vij ≤ tij ⋅ �
max
ij

(26)�min
ij

=
li

ei
⋅ �min

i
,

(27)�max
ij

=
li

ei
⋅ �max

i
.

(28)
(

FGG
)

min
t,p,v,�,u

m
∑

i=1

li

n
∑

j

tijaj,

(29)s.t.
∑

j

tij = 1 ∀i (Assignment),

(30)Bp = f (Equilibrium),

(31)bT
i
u =

∑

j
vij ∀i (Compatibility),

(32)
ei

li

∑

j
ajvij = pi ∀i (Constitutive law),

(33)
ei

li

∑

j|aj≠0
vij = �i ∀i (Hooke’s law),

(34)tij ⋅ �
min
ij

≤ vij ≤ tij ⋅ �
max
ij

∀i, j (big-M),

(35)umin ≤ u ≤ umax (Displacement),

(36)�
min ≤ � ≤ �

max (Stress).
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The vector v ∈ ℝmn collates each member elongation vari-
able vij in the same order as the assignment variables are 
assembled in t (Sect. 2.2). Note that (FGG) includes member 
stresses σ ∈ ℝm as continuous design variables (one variable 
per member i) in Eq. (33) which is employed to relate the 
elongation vij and stress �i variables through Hooke’s law. 
The member stress variables σ are bounded by admissible 
stresses �min and �max in compression and tension. The vec-
tors �min and �max collate the admissible member stresses 
also employed in the big-M Eqs. (26) and (27).

Different to (FRS), in (FGG) cross-section assignment 
Eq.  (29) is an equality constraint, which ensures that 
exactly one element is assigned to member position i. 
This avoids that the elongations vij of a member i are set 
to zero through Eq. (34) when the assignment variables tij 
are zero. If this was allowed, from geometric compatibility 
(Eq. (31)), it would follow that bT

i
u = 0, which would set 

the displacements of the nodes connected to member i also 
to zero or to a displacement that does not result in member 
elongation. However, this would violate compatibility con-
ditions for other members that connect to the same nodes.

Hence, since assignment Eq. (29) is an equality con-
straint, a zero-area element with aj = 0 must be added to the 
set of candidate cross sections to enable topology optimi-
zation (Ghattas and Grossmann 1991). When a zero-area 
element is assigned to member i, which in practice means 
member i is removed, Eq. (32) automatically sets the mem-
ber force pi to zero to satisfy the equilibrium constraint. 
However, after member i is removed, the related elongation 
vij remains a design variable that must fulfill geometric com-
patibility (Eq. (31)) and the Big-M constraints (Eq. (34)). 
Therefore, for a zero-area element, the big-M constants must 
be set sufficiently large not to exclude feasible solutions. 
Although not explicitly mentioned by Ghattas and Gross-
mann (1991), the following conditions are considered in this 
work to enable topology optimization:

When aj ≠ 0, the Big-M constants �min
ij

 and �max
ij

 are com-
puted from the admissible stresses in compression ( �min

i
 ) 

and tension ( �max
i

 ), respectively. When aj = 0, i.e., the 
member is removed, the elongation variable vij should be 
unbounded and, therefore, �min

ij
 and �max

ij
 are set to − ∞ 

and + ∞, respectively. For the MILP solver employed in 
this work, a numerical value of >1030 is treated as infinity. 
That being said, even when unbounded, vij will not take an 

(37)�min
ij

=

{

li

ei
⋅ �min

i
when aj ≠ 0

−∞ when aj = 0

(38)�max
ij

=

{

li

ei
⋅ �max

i
when aj ≠ 0

+∞ when aj = 0

infinite value due to the geometric compatibility constraint 
that relates it to the nodal displacements, which them-
selves are bounded. In addition, only the elongations vij of 
members with a non-zero area (aj ≠ 0) are considered in 
Eq. (33); hence, the constraint is not active for removed 
members.

2.4 � New formulation

Drawing from the formulations described in Sects. 2.2 and 
2.3, a new MILP formulation is proposed. The new for-
mulation comes in two variants depending on the set of 
employed state variables: ( FBSF1 ) uses member forces and 
elongations (Sect. 2.4.1) and ( FBSF2 ) member elongations 
only (Sect. 2.4.2).

2.4.1 � Formulation ( FBSF1 ) with member force 
and elongation variables

This section introduces the first step of a new discrete struc-
tural optimization formulation ( FBSF1 ) that draws from (FRS) 
and (FGG) but differs in the choice of design variables and 
constraints. The new formulation ( FBSF1 ) adopts a similar 
approach for the formulation of geometric compatibility con-
straints. However, the redundant stress variables adopted in 
(FGG) are excluded in ( FBSF1 ). As mentioned by Bollapragada 
et al. (2001), to reduce (FGG) problem size, member stress 
variables can be substituted with elongations as 
�i =

ei

li

∑

j�aj≠0
vij . ( FBSF1 ) combines the big-M formulations 

from (FRS) and (FGG) by bounding the member elongation 
variables through stress constraints, as done in (FGG), as well 
as through displacement constraints adapting (FRS) formula-
tion. ( FBSF1 ) includes assignment variables t ∈ {0,1}mn as 
well as continuous state variables for member forces p ∈ ℝm, 
member elongations v ∈ ℝmn, and nodal displacements 
u ∈ ℝd.

(39)
(

FBSF1
)

min
t,p,v,u

∑m

i=1
li

∑n

j=1
tijaj,

(40)s.t.
∑

j
tij = 1 ∀i (Assignment),

(41)Bp = f (Equilibrium),

(42)bT
i
u =

∑

j
vij ∀i (Compatibility),

(43)
ei

li

∑

j
ajvij = pi ∀i (Constitutive law),

(44)tij ⋅ Δ
min
ij

≤ vij ≤ tij ⋅ Δ
max
ij

∀i, j (big-M),
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Similar to (FGG), in ( FBSF1 ) the extended member elonga-
tions vij are treated as state variables. This way, the relation 
of member elongations with forces in Eq. (5) can be sepa-
rated into geometric compatibility of nodal displacements u 
with member elongation vij in Eq. (42), and constitutive rela-
tions between member elongation vij and internal force pi in 
Eq. (43). The big-M constraints in Eq. (44) ensure that the 
member elongation vij = 0 when tij = 0, and otherwise, it is 
bounded by Δmin

ij
 and Δmax

ij
 when tij = 1. The bounds Δmin

ij
 and 

Δmax
ij

 are computed from both material ( � ) and geometric ( � ) 
conditions:

The lower bound Δmin
ij

 for elongation vij is set to the largest 
among the two values �min

ij
 and �min

ij
 . The upper bound Δmax

ij
 

is set to the smallest among of the two values �max
ij

 and �max
ij

 . 
�min
ij

 and �max
ij

 are computed from admissible strains as done 
in (FGG):

Member elongations are not only limited by the admis-
sible strain but also through nodal displacement limits umin 
and umax. The set of bounds �min

i
 and �max

i
 are computed from 

the linear programs:

Note that these bounds are exclusively based on the dis-
placement limits umin and umax, and thus, they are independ-
ent of cross-section assignment (no index j). The bounds in 
Eqs. (51) and (52) are related to member elongations rather 
than to internal forces as it is done in (FRS). The linear pro-
gramming problems in Eqs. (51) and (52) can be solved 

(45)�min

i

∑

j
tijaj ≤ pi ≤ �max

i

∑

j
tijaj ∀i (Stress),

(46)umin ≤ u ≤ umax (Displacement).

(47)Δmin
ij

= max
(

�min
ij

, �min
i

)

,

(48)Δmax
ij

= min
(

�max
ij

, �max
i

)

.

(49)�min
ij

=

{

li

ei
⋅ �min

i
when aj ≠ 0

−∞ when aj = 0

(50)�max
ij

=

{

li

ei
⋅ �max

i
when aj ≠ 0

+∞ when aj = 0

(51)𝛿min
i

= max
umin≤u≤umax

bT
i
u =

∑

r|bir>0

biru
min
r

+
∑

r|bir<0

biru
max
r

,

(52)𝛿max
i

= min
umin≤u≤umax

bT
i
u =

∑

r|bir>0

biru
max
r

+
∑

r|bir<0

biru
min
r

.

analytically before optimization, as done for Eqs. (12) and 
(13). Which of the bounds � or � is tighter, usually depends 
on material strength and displacement limits, i.e., whether 
the problem is governed by stress or stiffness.

2.4.2 � Formulation ( FBSF2 ) with member elongation 
variables

In ( FBSF2 ), the number of state variables is reduced further 
from ( FBSF1 ) by expressing member forces as resulting from 
elongations:

Since the force variables p ∈ ℝm are replaced with mem-
ber elongation variables v ∈ ℝmn, the equilibrium matrix 
B ∈ ℝd×m must be extended to BV ∈ ℝd×mn by horizontally 
concatenating each direction-cosine vector bi for n times and 
multiplying each entry with the respective member stiffness 
eiaj/li. Note that for zero-area members, the entry becomes 
zero (aj = 0), and hence, a member that is removed does not 
contribute to nodal equilibrium, as required. The complete 
formulation ( FBFS2 ), using only member elongations and 
nodal displacements as continuous state variables, is:

Geometric compatibility and big-M constraints (Eqs. (57) 
and (58)) are identical to those in formulation ( FBSF1 ). Stress 
constraints that limit the member forces are not explicitly 
added in ( FBFS2 ), but they are included via the big-M con-
straints (cf. Eqs. (47) and (48)).

2.5 � Comparison of MILP problem sizes

A MILP problem has the following standard form:

(53)pi =
ei

li

∑

j
ajvij.

(54)(FBFS2) min
t,u,v

∑m

i=1
li

∑n

j=1
tijaj,

(55)s.t.
∑

j
tij = 1 ∀i (Assignment),

(56)BVv = f (Equilibrium),

(57)bT
i
u =

∑

j
vij ∀i (Compatibility),

(58)tij ⋅ Δ
min
ij

≤ vij ≤ tij ⋅ Δ
max
ij

∀i, j (big-M),

(59)umin ≤ u ≤ umax (Displacement).
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The column vector of design variables x = [xbin, xcon]T 
concatenates the binary variables xbin ∈ {0, 1}nvar,bin (here 
representing the assignment variables t) and all continu-
ous state variables xcon ∈ ℝ

nvar,con (e.g., member forces 
p, elongations v, and displacements u). The size of x is 
nvar = nvar,bin + nvar,con. The objective function value is the 
inner product of the cost vector c ∈ ℝ

nvar and design vari-
ables x. For the weight optimization formulations considered 
in this work, all costs associated with continuous variables 
are zero. All formulation constraints are collated in the con-
straint matrix A ∈ ℝ

ncon×nvar , where ncon is the total num-
ber of constraints. The right-hand side vector is denoted as 
b ∈ ℝ

ncon . For notation simplicity, the inequality sign ‘ ≤ ’ in 
Eq. (61) represents both equality and inequality constraints.

As an example, Fig. 1 shows schematically the assembly 
of the structural optimization constraints for ( FBSF1 ) into the 
linear constraint matrix A and right-hand side vector b. The 
black lines within the gray blocks indicate the contribution 
of each constraint and, thus, the non-zero entries. The linear 
constraint matrix typically is highly sparse. Equilibrium and 
compatibility constraints are included in A, and thus, B is 
enclosed in A.

(60)min
x

cTx,

(61)Ax ≤ b.

The MILP formulations described in Sects. 2.2 to 2.4 
differ in the set of design variables and constraints. Table 1 
gives information about the optimization problem size for 
each formulation, in particular the number of binary design 
variables nvar,bin, the number of continuous design variables 
nvar,con, the number of linear constraints ncon, and the num-
ber of non-zeros nnz entries in the linear constraint matrix 
A. The number of non-zero entries in A gives an indica-
tion of the amount of data that needs to be processed by the 
MILP solver. The number of variables nvar and constraints 
ncon depends on the number of members m in the structure, 
the number of candidate cross sections n, and the number of 
free nodal displacements d. Formulation (FRS) contains m·n 
binary assignment variables in the vector t, whereas formu-
lations (FGG), ( FBSF1 ), and ( FBSF2 ) contain m·(n + 1) binary 
assignment variables. The notation (n + 1) refers to adding a 
zero-area element to the catalog of n cross sections to allow 
element removal for topology optimization.

The number of members m and candidate cross sections n 
are the two most significant parameters. Further, the number 
of constraints ncon and non-zeros nnz depend on the number 
of free nodal displacements d and the number of non-zeros 
nnz,B in the equilibrium matrix B. As shown in Fig. 1, B is 
enclosed in A and d is the number of equilibrium constraints 
since it is the number of free degrees of freedom (i.e., free 
nodal displacements). Typically, d and nnz,B depend on how 
many members are aligned with the coordinate axis (direc-
tion cosines) and how many members are connected at nodes 
(node valence). Referring to Table 1, the total number of 
variables is 2·m·n + d for all four formulations, plus an addi-
tional term 4·m, 3·m, and 2·m for (FGG), ( FBSF1 ), and ( FBSF2 ), 
respectively. This indicates that the difference in the num-
ber of variables is not significant since the dominant term 
2·m·n is identical for all formulations. Instead, the number 
of constraints increases much faster with m an n in the case 
of formulation (FRS) compared to the other formulations. 
The dominant term for the number of constraints in (FRS) is 
4·m·n, which is double compared to the other formulations. 
Formulation (FRS) has the highest number of non-zeros nnz 
since the m·n term is multiplied by the highest scalar and the 
nnz,B term scales with n while in (FGG) and ( FBSF1 ) the nnz,B 
term is constant. A visual aid of the problem size in relation 
to the number of members and candidate cross sections is 
given in Fig. 2. The plot has been obtained based on a study 
of ground structures with members connecting only neigh-
boring nodes and expressing d and nnz,B as functions of m.

2.6 � MILP solver

MILP problems can be solved to global optimality using 
combinatorial optimization such as branch-and-bound algo-
rithms (Nemhauser and Wolsey 1999; Bertsimas and Tsitsik-
lis 1997). A branch-and-bound algorithm explores a search 

Assignment

A

ncon ×  nvar

t p v u
x b

=
=
=

=

≤

≤

≤

≤

≤

1
f
0

0

0

0

0

0

t

p

v

u

Equilibrium
Compatib.

Constitutive law

big-M (lhs)

big-M (rhs)

Stress (lhs)

Stress (rhs)

B
BT

(n+1)

m
d

m
m

m
(n
+1

)
(n
+1

)

(n+1) dm

Fig. 1   Schematic matrix representation of the MILP formulation 
( FBSF1 ). Black lines within the gray blocks in A represent the non-zero 
entries in the linear constraint matrix. ‘lhs’ and ‘rhs’ refer to the left- 
and right-hand side inequality constraint, respectively (cf. Eqs.  (44) 
and (45)). 1 and 0 denote vectors of ones and zeros, respectively
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tree while solving continuous linear programming (LP) 
relaxations of the original (mixed-) integer programming 
problem (Bertsimas and Tsitsiklis 1997). Since all variables 
are treated as continuous, solving the LP relaxation gives a 
lower bound fLB of the MILP objective function value. At 
the same time, when a solution of an LP relaxation is integer 
feasible, i.e., all binary variables take a value of 0 or 1, it is 
denoted as the upper bound fUB. Once the first upper bound 
fUB is obtained, the so-called optimality- or “MIP-gap” is 
computed as follows:

The MIP-gap provides a quality measure for the integer-
feasible solutions obtained during the branching process. 
At any step of the process, the expected worst-case differ-
ence between the global optimum and the best integer-fea-
sible solution obtained (fUB) is known. The availability of 
information on solution quality is a clear advantage com-
pared to other optimization methods such as meta-heuristic 

(62)MIP-gap =
fUB − fLB

fUB
.

algorithms. When the gap is zero (fUB = fLB), the solution 
global optimality is verified. In this work, all MILP prob-
lems are solved through Gurobi (Gurobi Optimization, LLC 
2019). Gurobi combines a branch-and-bound solver with 
cutting plane methods into a so-called “branch-and-cut” 
algorithm (Bertsimas and Tsitsiklis 1997; Gurobi Optimiza-
tion, LLC 2019). Adding cutting planes, i.e., linear inequal-
ity constraints, is automatically carried out by the solver in 
order to reduce the size of the feasible domain (i.e., the size 
of the search space) of the problem. Cutting planes decrease 
the feasible domain size of the relaxed LP problem but do 
not change the feasible domain of the integer problem. This 
way, the bounds obtained from LP relaxations can be tight-
ened which, generally, reduces the size of the search tree. 
In this work, Gurobi 9.1.2 has been used with default set-
tings except for IntFeasTol (integrality) and FeasibilityTol 
(solution feasibility) which have been reduced from 10–5 to 
10–6 and from 10–6 to 10–7, respectively. This change has 
been made to ensure solution feasibility for all case stud-
ies. The optimization problems have been modeled via the 

Table 1   Comparison of the optimization problem size for all formulations

Number of design variables nvar, constraints ncon, and non-zeros nnz in relation to the number of structural members m, candidate cross-sections 
n, free nodal displacements d, and non-zeros in the equilibrium matrix nnz,B

(FRS) (FGG) (FBSF1) (FBSF2)

Number of design variables nvar

 Binary assignment variables t m·n m·(n + 1) m·(n + 1) m·(n + 1)
 Member force variables p m·n m m –
 Member elongation variables v – m·(n + 1) m·(n + 1) m·(n + 1)
 Member stress variables σ – m – –
 Displacement variables u d d d d
 Total nvar 2·m·n + d 4·m + 2·m·n + d 3·m + 2·m·n + d 2·m + 2·m·n + d

Number of constraints ncon

 Assignment m m m m
 Equilibrium d d d d
 Geometric compatibility 2·m·n m m m
 Constitutive law – m m –
 Hooke’s law – m – –
 Big-M – 2·m·(n + 1) 2·m·(n + 1) 2·m·(n + 1)
 Stress 2·m·n – 2·m –
 Total ncon m + 4·m·n + d 6·m + 2·m·n + d 7·m + 2·m·n + d 4·m + 2·m·n + d

Number of non-zeros nnz

 Assignment m·n m·(n + 1) m·(n + 1) m·(n + 1)
 Equilibrium nnz,B·n nnz,B nnz,B nnz,B·n
 Geometric compatibility 4·m·n + 4·nnz,B·n nnz,B + m·(n + 1) nnz,B + m·(n + 1) nnz,B + m·(n + 1)
 Constitutive law – m + m·n m + m·n –
 Hooke’s law – m + m·n – –
 Big-M – 4·m·(n + 1) 4·m·(n + 1) 4·m·(n + 1)
 Stress 4·m·n – 2·(m·n + m) –
 Total nnz 9·m·n + 5·n·nnz,B 8·m + 8·m·n + 2·nnz,B 9·m + 9·m·n + 2·nnz,B 6·m + 6·m·n + (n + 1)·nnz,B
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C#.NET-API of Gurobi. All computations have been carried 
out on a PC with an Intel i7-9850H 2.60 GHz (6 CPU cores 
/ 12 threads) and 16 GB RAM.

3 � Benchmark studies

The four formulations (FRS), (FGG), ( FBSF1 ) and ( FBSF2 ) pre-
sented in Sect. 2 differ in the set of variables and constraints, 
which influences the convergence speed of the branch-and-
bound solver. In this section, the computational perfor-
mance of the four formulations is benchmarked through 
case studies.

To investigate the influence of the Big-M constraints Eqs. 
(47) to (52), formulation variants are also considered. In 
particular, the elongation bounds based on displacement 
constraints (Eqs. (51) and (52)) are omitted for ( FBSF1 ) and 
( FBSF2 ) and they are added to (FGG). These three variants are 
denoted with (FGG)*, ( FBSF1)*, and ( FBSF2)*. Note that the 
displacement-based big-M constants �min

i
 and �max

i
 affect 

only zero-area elements (aj = 0). For all other cross-section 
sizes, the admissible stress/strain relation (cf. �min

ij
 and �max

ij
 ) 

governs (Eqs. (47) and (48)) as displacement bounds are set 
to a relatively larger value in the following case studies. For 
( FBSF1 )* and ( FBSF2)*, this means that the elongation varia-
bles vij are unbounded (± ∞) when aj = 0, whereas they are 
bounded by �min

i
 and �max

i
 in the original formulations ( FBSF1 ) 

and ( FBSF2 ). On the contrary, for the formulation variant 
(FGG)*, vij is bounded by �min

i
 and �max

i
 when aj = 0.

3.1 � Case study 1: L‑truss

The first case study, which is taken from Rasmussen and 
Stolpe (2008), is an L-truss ground structure consisting 
of m = 54 members. Dimensions, support locations, and 
loading are indicated in Fig. 3. The structural elements 
material is assumed to be aluminum with Young’s modu-
lus of 70,000 MPa and yield strength of 170 MPa. The set 
of candidate cross-section areas is a = {5, 10} × 10–3 m2. 
The minimum and maximum admissible displacements of 
all unsupported nodes are set to ± 2.0 m in both the X- and 
Y-direction. Two cases are investigated:

•	 Case (a): one load case, FY =  − 0.45 MN, FX = 0 MN
•	 Case (b): two independent load cases, FY =  − 0.45 MN, 

FX =  − 0.10 MN.

Sizing and topology optimization are carried out simulta-
neously. Although the optimized configurations are in equi-
librium with the applied loads, they might not be kinemati-
cally stable (Sect. 2.1).
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Figure 4 shows the optimal topology and sizing for both 
cases, (a) and (b). In Fig. 4, the cross-section area is indi-
cated by line thickness and numeric labels. Table 2 provides 
optimization metrics on problem size and branch-and-bound 
process for the four formulations. The solution produced 
by all formulations has a total volume of 0.0466 m3 in case 
(a) and 0.0572 m3 in case (b), which are identical to the 

values reported by Rasmussen and Stolpe (2008). Generally, 
including two load cases in (b) results in a larger problem 
size than in (a) (Table 2). The number of explored nodes in 
the search tree corresponds to the number of LP relaxations 
that are solved during the branch-and-bound process. The 
fewest nodes have been explored by ( FBSF1 ). In case (b), the 
number of simplex iterations that have been performed to 
solve the continuous LP relaxations is much lower for (FGG), 
( FBSF1 ), and ( FBSF2 ) and their variants (*) compared to (FRS). 
The computation time to obtain the integer-feasible solu-
tion (upper bound), which is denoted as “Optimum obtained 
after” in Table 2, is less than 1 s for all formulations in case 
(a). The remaining computation time is required to prove 
global optimality of the upper-bound solution by obtaining 
increasing lower bounds until the MIP-gap = 0%.

Figures 5 and 6 show the convergence plot for all for-
mulations in cases (a) and (b), respectively. For all formu-
lations, the objective value of the continuous root relaxa-
tion (the very first lower bound solution) is 0.02779 m3 
and 0.0287 m3 in cases (a) and (b), respectively, and it is 
obtained in less than 10 ms. Generally, the optimal solu-
tion (upper bound, continuous lines) is obtained relatively 
early in the branch-an-bound process. The lower bounds 
(dashed lines) increase from the root relaxation to the 
global optimum. Global optimality is verified when lower 
and upper bounds intersect. For (FRS), after approximately 
1/4th of the total time, the lower bounds stagnate and 
increase very slowly. (FRS) requires approximately 3 to 12 
times longer computation time to prove global optimality 
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Fig. 4   L-truss results. a Case 1: one load case; b Case 2: two load 
cases. The line thickness is proportional to the cross-section area 
indicated numerically in [m2] × 10–3

Table 2   Results L-truss; bold values indicate the shortest computation time

Binary 
variables
nvar,bin

Continuous 
variables
nvar,cont

Constraints
ncon

Non-zeros
nnz

Explored nodes Simplex 
iterations

MIP-gap Optimum 
obtained 
after

Global optimum 
verified (total 
time)

(–) (–) (–) (–)  × 103  × 106 (–) (s) (s)

Case (a)
 (FRS) 108 144 522 1842 8.7 0.49 0% 0.31 3.65
 (FGG) 162 306 576 1586 17.8 0.18 0% 0.10 1.47
 (FBSF1) 162 252 630 1748 5.6 0.11 0% 0.11 1.97
 (FBSF2) 162 198 468 1407 15.0 0.20 0% 0.11 1.38
 (FGG)* 162 306 576 1586 26.1 0.26 0% 0.10 1.82
 (FBSF1)* 162 252 630 1748 5.4 0.11 0% 0.16 1.74
 (FBSF2)* 162 198 468 1407 18.8 0.22 0% 0.11 1.58

Case (b)
 (FRS) 108 288 990 3576 130 25.4 0% 2.68 169
 (FGG) 162 612 1098 3010 316 6.0 0% 0.33 39
 (FBSF1) 162 504 666 3334 74 3.8 0% 11.39 31
 (FBSF2) 162 396 882 2652 105 3.9 0% 1.27 19

(FGG)* 162 612 1098 3010 551 10.1 0% 0.31 70
 (FBSF1)* 162 504 666 3334 114 6.0 0% 2.00 46
 (FBSF2)* 162 396 882 2652 77 2.9 0% 0.42 14
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than the fastest solution, which is obtained using ( FBSF2 ) 
for case (a) and ( FBSF2 )* for case (b). In both cases, add-
ing displacement-based elongations in (FGG)* (dark green) 
increases the computation time to prove global optimality 
compared to (FGG) (light green). Instead, in both cases, the 
upper bound is obtained in the shortest computation time 
by (FGG)*. The removal of displacement-based elongation 
bounds (big-M constants), helps improve the performance 
of ( FBSF2 )* only in case (b). Instead, removing displace-
ment-based elongation bounds increases the computation 
time to prove global optimality using ( FBSF1 )* in case (b).

3.2 � Case study 2: 3D‑cantilever

The second case study, which is taken from Rasmussen and 
Stolpe (2008), is a 3D-cantilever truss consisting of m = 40 
members. Dimensions, support locations and loading are 
given in Fig. 7. A load FYZ = [0.1, 0.1] MN is applied to the 
four free-end nodes in the YZ-plane. The structural elements 
are assumed to be made of aluminum with Young’s modulus 
of 70,000 MPa and yield strength of 90 MPa. The minimum 
and maximum admissible displacements of all unsupported 
nodes are set to ± 2.0 m in the X-, Y-, and Z-directions. Two 
cases are investigated:

•	 Case (a): the set of 4 candidate cross-section areas is 
aa = {2.5, 5, 7.5, 10} × 10–3 m2
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•	 Case (b): the set of 20 candidate cross-section areas is 
ab = {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 
8, 8.5, 9, 9.5, 10} × 10–3 m2

Sizing and topology optimization are carried out 
simultaneously.

Figure 8 shows the optimal topology and sizing for both 
cases (a) and (b). Table 3 provides optimization metrics on 
the problem size and branch-and-bound process for all four 
formulations. The solution produced by all four formulations 
has a volume of 0.656 m3 in case (a) and 0.546 m3 in case (b). 
The solution for (a) is identical to the one reported by Ras-
mussen and Stolpe (2008). Case (b) has not been investigated 
in previous work. As for Case Study 1 (Sect. 3.1), formulation 
variants (FGG)*, ( FBSF1)*, and ( FBSF2 )* are tested in addition to 
the original formulations. As before, due to the large displace-
ment bounds (± 2.0 m), the variation only affects the bounds 
for the elongation variables related to the zero-area elements.

Generally, including significantly more candidate cross 
sections in case (b) results in a larger problem size than 
in case (a), and hence, requires longer computation time 
(Table 3). Figures 9 and 10 show the convergence plots 
for all formulations and cases. In cases (a), (FRS) requires 
the longest computation time to verify global optimality. 
In case (b), (FRS) performs significantly worse compared 
to all other formulations. (FGG)* verifies global optimality 
in the shortest computation time in both cases followed 
closely by ( FBSF2)*.

3.3 � Case study 3: 10‑bar truss

The third case study is the “10-bar truss,” which has been 
frequently studied in previous work (Kripka 2004; Rajeev 
and Krishnamoorthy 1992; Sonmez 2011; Van Mellaert 
2017; Venkayya 1971; Zhang et al. 2014). Dimensions, 
support locations, and loading are indicated in Fig. 11. The 
structural elements’ material is assumed to have Young’s 

Table 3   Results 3D-cantilever truss; bold values indicate the shortest computation time

Binary 
variable
nvar,bin

Continuous 
variables
nvar,cont

Constraints
ncon

Non-zeros
nnz

Explored nodes Simplex 
iterations

MIP-gap Optimum 
obtained 
after

Global optimum 
verified (total 
time)

(–) (–) (–) (–)  × 103  × 106 (–) (s) (s)

Case (a)
 (FRS) 184 160 704 2760 8.3 0.27 0% 0.54 3.52
 (FGG) 200 304 584 1820 4.9 0.08 0% 0.86 1.21
 (FBSF1) 200 264 624 2020 3.6 0.10 0% 1.91 3.82
 (FBSF2) 200 224 504 1750 6.4 0.13 0% 0.39 1.63
 (FGG)* 200 304 584 1820 4.8 0. 08 0% 0.20 1.16
 (FBSF1)* 200 264 624 2020 5.3 0.17 0% 1.20 3.33
 (FBSF2)* 200 224 504 1750 5.4 0.11 0% 0.28 1.45

Case (b)
 (FRS) 800 824 3264 13,800 294 19.2 0% 147 333
 (FGG) 840 944 1864 6940 181 2.4 0% 24 28
 (FBSF1) 840 904 1904 7780 100 6.1 0% 54 74
 (FBSF2) 840 864 1784 7350 255 4.5 0% 41 53
 (FGG)* 840 944 1864 6940 121 1.8 0% 19 25
 (FBSF1)* 840 904 1904 7780 122 7.1 0% 64 82
 (FBSF2)* 840 864 1784 7350 156 3.4 0% 27 34
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Fig. 9   Convergence plot 3D-cantilever case (a): 4 candidate cross 
sections
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modulus of 107 psi and yield strength of 25 × 103 psi. In 
this case study, weight minimization is carried out by fac-
toring the structure volume (Eq. (2)) with a material density 
of 0.1 lb/in3. The set of 42 candidate cross-section areas is 
a = {1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 
3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 
4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 
13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5, 30, 
33.5} in2 (Rajeev and Krishnamoorthy 1992). Six cases are 
investigated:

•	 Case (a): Topology and sizing optimization. Displace-
ment limit set to ± 200 in.

•	 Case (b): Sizing optimization. Displacement limit set 
to ± 200 in.

•	 Case (c): Topology and sizing optimization. Displace-
ment limit set to ± 5 in.

•	 Case (d): Sizing optimization. Displacement limit set 
to ± 5 in.

•	 Case (e): Topology and sizing optimization. Displace-
ment limit set to ± 2 in.

•	 Case (f): Sizing optimization. Displacement limit set 
to ± 2 in.

These cases are selected to study the effect of topology 
optimization and displacement bounds on the computation 
time. As suggested by Bollapragada et al. (2001) and Van 
Mellaert (2017), discrete truss optimization problems may 
become significantly harder to solve in the presence of tight 
displacement constraints. Formulation variants (FGG)*, 
( FBSF1)*, and ( FBSF2 )* (cf. Sect. 3.1) are only considered 
for cases (a), (b), and (c) where topology optimization is 
included. In the other cases (b), (d), and (f), no zero-area ele-
ments can be assigned and due to stress limits (i.e., strains), 
the elongation variables vij are always constrained by stress-
based bounds rather than by displacement-based bounds (cf. 
Eqs. (47) and (48)).

Figure 12 shows the optimal topology and sizing for 
all cases (a)–(f). For cases (a) and (b), all formulations 
produce identical, globally optimal designs. In case (b), 
the solution has a weight of 1856.7 lb which is identical 
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Fig. 10   Convergence plot 3D-cantilever case (b): 20 candidate cross 
sections
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to that of the solution presented by Van Mellaert (2017). 
Solutions for cases (a), (c), and (d) are not available in the 
literature. As expected, including topology optimization 
produces structures with a lower weight compared to solu-
tions obtained through sizing optimization carried out with 
a fixed topology. In cases (c) and (d), the formulations 
(FGG), ( FBSF1 ), and ( FBSF2 ) and their variants are solved to 
global optimality within 3.4 – 417 s, whereas for (FRS), it 
is not possible to obtain the global optimum within the set 
time limit of 5 h (cf. Table 4). For (FRS), a MIP-gap > 0% 
remains at termination and the best upper-bound solution 
is reported. For this reason, the solution obtained by (FRS) 

is different than that obtained by the other formulations, as 
shown in Fig. 12(c) and (d).

Generally, including topology optimization only margin-
ally increases the problem size: only a zero-area element is 
added to the other 42 candidate cross sections (cf. cases (a) 
and (b), Table 4). Figure 13, 14, 15, 16, 17, and 18 show the 
convergence plots for cases (a) – (f), respectively. In cases 
(a) – (d), ( FBSF1)(*) is the fastest to verify global optimality. 
The lower bounds obtained through ( FBSF1 )* increase sig-
nificantly faster than through the other formulations, thus, 
allowing the verification of global optimality in a shorter 
computation time. The lower bounds of (FRS) practically 
stagnate in (c) and (d). For cases (e) and (f), in which the 
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Fig. 15   Convergence plot 10-bar truss case (c)
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displacement bounds are tightened, none of the formula-
tions can verify global optimality within the set time limit of 
5 h. The lower bounds increase steeply early in the branch-
and-bound process and stagnate after 5000 s. The remain-
ing MIP-gap (distance between upper and lower bounds) at 
termination is the smallest for ( FBSF1 )* and ( FBSF1 ) in cases 
(e) and (f), respectively. For cases (a) and (b) with large dis-
placement bounds, topology optimization has practically no 
effect on computation time. Allowing topology optimization 
in case (c) produces solutions faster than in case (d) in which 
the topology is fixed. The problem size does not change 
when the displacement limits umin and umax are tighter. 
Only the elongation bounds and big-M constants change. 

Hence, it is clear that the computational performance is not 
only affected by the MILP problem size but also by numeri-
cal specificities. Generally, the formulations that employ 
member elongations as design (state) variables (FGG, FBSF1 , 
and FBSF2 ) are able to obtain better feasible solutions (upper 
bounds) in less time than (FRS). This might be due to the 
direct correlation of member elongations and nodal displace-
ments through geometric compatibility. The upper-bound 
solutions of 4962.1 and 5490.7 lb that have been obtained 
within a few seconds through (FGG), ( FBSF1 ), and ( FBSF2 ) in 
cases (e) and (f) have the same quality as the best solutions 
reported in previous work in which solutions have been 
obtained through (meta-)heuristic algorithms (Camp et al. 
2005; Juang et al. 2003; Kripka 2004; Rajan 1995; Schmid 
1993; Sonmez 2011; Zhang et al. 2014). This shows that 
the MILP formulations are effective to produce high-quality 
solutions in a short computation time, even though global 
optimality might not be verified.

3.4 � Case study 4: 25‑bar tower

The fourth case study is a “25-bar tower” that has been often 
studied in previous work (Rajeev and Krishnamoorthy 1992; 
Zhang et al. 2014). Dimensions, support locations, and load-
ing are indicated in Fig. 19. The tower members are divided 
into eight groups as indicated in Table 5. The labels “S-E” 
refer to the start and end node of each member. Node num-
bering is shown in Fig. 19. The structural elements’ material 
is assumed to have Young’s modulus of 107 psi and yield 
strength of 40 × 103 psi. Weight minimization is carried out 
by factoring the structure volume (Eq. (2)) with a material 
density of 0.1 lb/in3. The set of 30 candidate cross-section 
areas comprises a = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 
2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4} in2 (Rajeev and 
Krishnamoorthy 1992). For all members within a group, the 
same cross section is assigned. Two cases are investigated:

•	 Case (a): the X- and Y-displacements of Nodes 1 and 2 
are limited to ± 1.0 in, the Z-displacements to ± 50.0 in

•	 Case (b): the X- and Y-displacements of Nodes 1 and 2 
are limited to ± 0.35 in, the Z-displacements to ± 50.0 in

For all other nodes, the X-, Y-, and Z-displacements are 
limited to ± 50.0 in. The structure topology is kept constant 
and only cross-section sizing is performed. These cases are 
considered to study the effect of reducing the displacement 
bounds on computational performance for a more complex 
configuration (3D) compared to previous cases. Formulation 
variants (FGG)*, ( FBSF1)*, and ( FBSF2 )* (cf. Sect. 3.1) are 
not considered for this case study because the topology is 
invariant and the elongation variables vij are constrained by 
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stress- and not by displacement-based bounds (cf. Eqs. (47) 
and (48)).

Table 6 gives the optimization problem size for all four 
formulations. The problem size is identical for both cases 
(a) and (b) as only the displacement bounds are changed. 
Table 7 gives optimization metrics for the branch-and-bound 
process and Table 8 indicates the optimal cross sections 
assigned to each member group.

Figures 20 and 21 show the convergence plots of the 
four formulations for cases (a) and (b), respectively. As in 
previous sections, formulations (FGG), ( FBSF1 ), and ( FBSF2 ) 
obtain faster increasing lower bounds. In case (a), (FRS) is 
significantly slower compared to the other formulations to 
verify solution global optimality. In case (b), the global 
optimum with a weight of 484.3 lb. has been obtained by 
all formulations. ( FBSF2 ) obtains the optimal solution and 
verifies global optimality in the shortest computation time. 
Remarkably, ( FBSF2 ) reaches the optimal upper bound after 
219 s whereas it takes the other formulations 1 – 5 h. In case 
(b), global optimality cannot be verified through (FRS) within 
the set time limit of 5 h (remaining MIP-gap = 58%). The 
globally optimal design in (b) is identical to the best solution 
obtained through meta-heuristics in the literature (Zhang 
et al. 2014). To the authors' knowledge, it is the first time 
that solution global optimality for this 25-bar tower truss 
design is verified through a deterministic method (MILP).

4 � Discussion

4.1 � MILP formulation performance

Different MILP formulations (FRS), (FGG), ( FBSF1 ), and 
( FBSF2 ) for discrete sizing and topology optimization of Ta
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truss structures are benchmarked in Sect. 3. The bench-
mark studies have shown that, generally, a slightly larger 
number of variables, constraints, and non-zeros entries 
in the constraint matrix may not necessarily result in a 

significantly longer computation time. This is the case 
for formulations (FGG), ( FBSF1 ), and ( FBSF2 ). Differently, 
formulation (FRS) involves a significantly larger num-
ber of variables, constraints, and non-zero entries in the 
constraint matrix (Sect. 2.5) which requires exploring 
more nodes of the search tree and thus solving more LP 
relaxations. In addition, the LP relaxations are harder to 
solve because they require more Simplex iterations due 
to the higher number of variables and constraints. For 
these reasons, (FRS) requires a significantly longer com-
putation time to reach the optimal solution (upper bound) 
and verify global optimality compared to the other three 
formulations.

It is more challenging to assess how the mathematical 
structure of a formulation affects computational perfor-
mance. In the attempt to reach a holistic understanding of 

Table 5   Member grouping 
25-bar tower truss

Group A1 A2 A3 A4 A5 A6 A7 A8

Members (start node – end node) 1–2 1–4
2–3
1–5
2–6

2–5
2–4
1–3
1–6

3–6
4–5

3–4
5–6

3–10
6–7
4–9
5–8

3–8
4–7
6–9
5–10

3–7
4–8
5–9
6–10

Table 6   Optimization problem sizes

Binary 
variables
nvar,bin

Continuous 
variables
nvar,cont

Constraints
ncon

Non-zeros
nnz

(–) (–) (–) (–)

 (FRS) 240 768 3553 15,510
 (FGG) 248 843 2128 7242
 (FBSF1) 248 818 2153 8017
 (FBSF2) 248 793 2078 8186

Table 7   5-bar tower truss results; bold values indicate the shortest computation time

*Premature termination after the computation time limit of 5 h has been exceeded

Explored nodes Simplex 
iterations

Best upper bound Lower bound MIP-gap Optimum 
obtained after

Global optimum 
verified (total 
time)

 × 103  × 106 (m3) (m3) (–) (s) (s)

Case (a)
 (FRS) 1043 66.2 167.6 167.6 0% 297 607
 (FGG) 64 2.4 167.6 167.6 0% 20.8 21.2
 (FBSF1) 63 1.6 167.6 167.6 0% 18.6 19.4
 (FBSF2) 71 1.8 167.6 167.6 0% 18.2 18.7

Case (b)
 (FRS) 14,971 1263 484.3 202.5 58% 16,851 *)
 (FGG) 17,364 775 484.3 484.3 0% 3625 7756
 (FBSF1) 22,763 695 484.3 484.3 0% 7696 8910
 (FBSF2) 18,715 471 484.3 484.3 0% 219 6314

Table 8   Member group optimal 
cross-section areas

A1 A2 A3 A4 A5 A6 A7 A8
(in2) (in2) (in2) (in2) (in2) (in2) (in2) (in2)

Case (a)
 (All F ‘s) 0.1 0.1 1.2 0.1 0.7 0.3 0.1 1.3

Case (b)
 (All F ‘s) 0.1 0.4 3.4 0.1 2.2 1.0 0.4 3.4
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the performance of the MILP formulations, a synthesis of 
the case studies discussed in (Sects. 3.1 – 3.4) is offered 
in this section by focusing on three benchmark metrics 
mk∈{1,2,3} : m1 total computation time to verify global opti-
mality, m2 the number of nodes explored in the search tree, 
and m3 the computation time required to obtain upper-
bound solutions that are global optima (although global 
optimality has not been verified).

The formulations are evaluated by ranking their perfor-
mance for all cases and through performance profiles (Dolan 
and Moré 2002). Performance profiles have been employed 
to benchmark the performance of optimization solvers for 
topology optimization problems by Rojas-Labanda and 
Stolpe (2015) among others.

In this work, performance profiles are employed to evalu-
ate the performance of different MILP formulations to solve 
volume minimization through discrete sizing and topology 
optimization. Since the problem is identical and all case 
studies are carried out using the same optimization solver, 
the focus of the assessment is on the performance of the 
mathematical formulation of the problem.
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Fig. 20   Convergence plot case (a): uxy ≤  ± 1.0 in
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Fig. 21   Convergence plot case (b): uxy ≤  ± 0.35 in

Table 9   Ranking ( m1
) with 

respect to the computation 
time required to verify global 
optimality

Ranking (m1
) 1st 2nd 3rd 4th 5th 6th 7th

 (FRS) – – – 4 – 1 5
 (FGG) – 6 3 1 – – –
 (FBSF1) 3 1 2 1 1 1 1
 (FBSF2) 3 1 2 6 1 1 –
 (FGG)* 2 4 1 1 1 1 –
 (FBSF1)* 3 2 1 1 2 1 –
 (FBSF2)* 3 – 5 – 1 1 –
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Fig. 22   Performance profile �1
f
 , computation time to verify global 

optimality
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The performance profiles are built for each metric of 
interest mk

c,f
 and for each formulation f ∈ F = {1, 2, ...7} , 

including the (F)* variants, to solve problem cases 
c ∈ C = {1, 2..nc} . The ratio of performance rk

c,f
 compares 

the performance of a formulation against the best perfor-
mance among all formulations for a specific case:

When rk
c,f

= 1 , formulation f  performs best for case study 
c with respect to metric mk , otherwise rk

c,f
 quantifies formula-

tion f  performance ratio with respect to the best performing 
formulation (Dolan and Moré 2002). The performance of a 
formulation f  with respect to metric mk is defined as the 
probability that the performance ratio rk

c,f
 is at most a factor 

τ to the best performance ratio:

In other words, �k
f
(�) is the probability that, in the worst 

case, formulation f  performance is lower by a factor τ com-
pared to the best performing formulation (Dolan and Moré 
2002). nc denotes the total number of problem cases. Table 9 
gives the formulation ranking with respect to m1 for all nc = 
10 cases where global solution optimality has been proven 
(i.e., all cases except (e) and (f) in Sect. 3.3). The figures 
indicate in how many cases a formulation f  has performed 
at a certain rank. Figure 22 gives the corresponding perfor-
mance profile. Generally, it is desirable to observe a signifi-
cant performance increase for small variations of τ. When a 
performance profile grows fast as τ increases, it indicates 
that the corresponding formulation performs close to the 
best one over the entire test set. (FGG) has 90% probability 
to perform with a ratio of at most 1.8 times the computation 
time of the fastest formulation. ( FBSF1 )* has the highest prob-
ability to perform with a ratio of 1.5 (70%) and 1.0 (30%). 
Adding the displacement-based elongation bounds (big-M 
constants) brings no significant improvement in (FGG)*. 
Removing the displacement-based elongation bounds is 

(63)rk
c,f

=
mk

c,f

min{mk
c,f

∶ f ∈ F}
.

(64)�k
f
(�) =

1

nc
size{c ∈ C ∶ rk

c,f
≤ τ}

beneficial to ( FBSF1 )* and ( FBSF2 )* as their performance 
grows faster for small values of τ ≤ 3.

Generally, formulations (FGG), ( FBSF1 ), and ( FBSF2 ) 
perform well for strength-governed problems. As men-
tioned in (Bollapragada et al. 2001; Van Mellaert 2017) 
and shown in Sects. 3.3 and 3.4, displacement bounds 
can strongly influence computational performance. For-
mulations (FGG), ( FBSF1 ), and ( FBSF2 ) require significantly 
reduced computation time compared to (FRS) when mod-
erate displacement bounds are set. However, when dis-
placement constraints are tight, resulting in low utilization 
of element capacity (i.e., stiffness-governed problems), it 
becomes difficult to verify global optimality, regardless 
of the formulation (cases (e) and (f), Sect. 3.3). In those 
cases where global optimality has not been verified within 
the time limit, employing ( FBSF1 ) has resulted in the small-
est MIP-gaps, i.e., it provides the tightest lower bounds. 
Table 10 gives the formulation ranking with respect to m2 , 
the number of explored search tree nodes. It is clear that 
( FBSF1 ) requires by far the least number of continuous LP 
relaxations to be solved. This indicates the efficiency of 

Table 10   Ranking ( m2
) with 

respect to the number of 
explored search tree nodes

Ranking ( m2
) 1st 2nd 3rd 4th 5th 6th 7th

(FRS) 1 – 1 3 2 – 3
(FGG) 1 5 1 1 1 1 –
(FBSF1) 6 1 1 1 1 – –
(FBSF2) 1 – 5 5 1 2 –
(FGG)* 2 5 1 – – – 2
(FBSF1)* 4 1 1 3 – 1 –
(FBSF2)* – 1 5 – 2 1 1
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Fig. 23   Performance profile �2
f
 , number of explored search tree nodes
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( FBSF1 ) to provide fast increasing lower bounds. In gen-
eral, solving LP relaxations of different search tree nodes 
can be carried out independently on different computing 
cores (Gendron and Crainic 1994), which might further 
improve the performance of ( FBSF1 ) when the number of 
CPU cores is increased. Figure 23 gives the corresponding 
performance profile. In this case, only the variants (FGG)* 
and ( FBSF2 )* perform slightly better than the corresponding 
original formulations.

In all cases, it has been observed that (near-)optimal 
integer-feasible solutions (upper bounds) are obtained very 
early in the branch-and-bound process and that most of the 
total computation time is spent to verify global optimal-
ity through increasing lower bounds. Table 11 gives the 
formulation ranking with respect to m3 and Fig. 24 the 
corresponding performance profile. In most cases, (FRS) 
has the worst performance. In this case, the addition of 
displacement-based elongation bounds (big-M constants) 
improves (FGG)* performance significantly, which is the 
fastest to obtain high-quality upper-bound solutions in 
60% of all cases (τ = 1). Adding the displacement-based 
elongation bounds halves the performance ratio reducing 
it to 2.0 from 4.3 for a probability of 90%. On the con-
trary, removing the displacement-based elongation bounds 
is beneficial to the performance of ( FBSF2)*.

In general, this analysis confirms that the MILP formu-
lations investigated in this work are effective to produce 
high-quality solutions in a short computation time. The 
study of the variants (F)* has shown that when the differ-
ence in the number of variables and constraints is small, 
the mathematical structure of the problem has a significant 
influence on the formulation performance.

Over the last few years, the performance of MILP solv-
ers has improved significantly due to advances in method 
implementation and increased computing power. This is 
evident when comparing the computation times reported in 
this work with those given in the literature (cf. case studies 1 
and 2 in Sects. 3.1 and 3.2 with those reported by Rasmussen 
and Stolpe (2008)). To the authors' knowledge, it is the first 

time that solution global optimality has been verified for the 
25-bar tower truss design (Sect. 3.4).

From the cases studied in this paper, it can be inferred 
that (FGG), ( FBSF1 ), and ( FBSF2 ) will perform better for 
larger-scale problems compared to (FRS). ( FBSF1 ) (and its 
variant) has the highest probability to verify global optimal-
ity in the shortest computation time. Nevertheless, solving 
MILP to global optimality with branch-and-bound methods 
is at worst-case exponentially complex, which might limit 
the application of the presented formulations to small- to 
medium-scale problems (< 200 structural members and < 50 
candidate cross-section areas).

4.2 � Limitations and future work

This work offers a benchmark of a new MILP-based formu-
lation for sizing and topology optimization of truss struc-
tures against two well-known formulations. The benchmark 

Table 11   Ranking (m3) with 
respect to the computation 
time required to reach upper-
bound solutions that are global 
optima (global optimum not yet 
verified)

Ranking (m3) 1st 2nd 3rd 4th 5th 6th 7th

(FRS) – – – 5 – 1 4
(FGG) 3 3 2 1 1 – –
(FBSF1) – 2 4 1 1 – 2
(FBSF2) 3 1 3 6 – 1 –
(FGG)* 6 2 1 – 1 – –
(FBSF1)* 1 3 2 – 1 3 –
(FBSF2)* 2 2 4 – 1 1 –
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is based on four problem cases (although with sub-cases 
to evaluate the influence of displacement constraints) of 
small and medium sizes. Future studies could deepen the 
generalization of the conclusions reached in this work by 
extending the benchmark to other problems. The purpose 
of the benchmark given in this work is to investigate the 
specificities of discrete sizing and topology optimization 
subject to stress and displacement limits and without the 
influence of additional constraints such as global stability 
(including mechanism avoidance), member overlapping, and 
buckling. In addition, such constraints are not included in the 
benchmark formulations. Other formulations that include 
constraints on global stability, member overlapping, or mem-
ber buckling have been developed (Fairclough and Gilbert 
2020; Mela 2014; Ohsaki and Katoh 2005). Future work 
could extend the formulation given in this paper by imple-
menting such constraints and investigating their influence on 
computational performance and solution quality.

Solving MILPs through branch-and-bound algorithms can 
be parallelized to multiple computing cores (Bertsimas and 
Tsitsiklis 1997; Gendron and Crainic 1994; Gurobi Optimi-
zation, LLC 2019). Although computation time might not 
reduce significantly for large-scale problems owing to the 
exponential complexity of MILP (Nemhauser and Wolsey 
1999), future work could look into evaluating the potential 
improvement margin through parallelization that depends on 
the formulation type. The examples analyzed in this work 
have shown that verifying global optimality is harder than 
obtaining optimal or near-optimal upper-bound solutions, 
especially when displacements are limited by tight bounds. 
Future work could (1) study the correlation between the 
MILP mathematical model and the effect of tight displace-
ment bounds, (2) quantify further the formulation perfor-
mances through additional studies, and (3) develop formula-
tions that enable tighter lower bounds to reduce the MIP-gap 
faster. The latter might be achieved by adding other sets of 
redundant design and state variables as well as redundant 
constraints. Another approach that might lead to improve-
ment could be that proposed by (Shahabsafa et al. 2018) 
who developed an incremental assignment formulation for 
discrete cross sections, which has shown to reduce computa-
tion time. It has been observed that certain settings of the 
Gurobi solver (Gurobi Optimization, LLC 2019) employed 
in this work may affect computational performance. In this 
work, most of the solver parameters have been kept at the 
default value. Future work could carry out parameter tun-
ing to improve computational performance and benchmark 
results with other software (e.g., CPLEX (IBM 2020)).

5 � Conclusion

This work has introduced a new MILP-based formulation 
for sizing and topology optimization of truss structures. A 
benchmark study with two well-known existing formulations 
has shown that the computation time to obtain global optima 
via a branch-and-bound solver highly depends on the cho-
sen set of variables and constraints. The benchmark given 
in this paper, which is the first of this kind, has helped to 
gain a deeper insight on how to improve MILP formulations. 
Through appropriate formulation variations, it is possible 
to significantly improve computational performance. One 
of the existing formulations (FRS) performs significantly 
worse compared to all other formulations. Instead, formu-
lations that employ member elongations as state variables 
(FGG, FBSF1 , and FBSF2 ) are able to obtain near-optimal upper 
bounds and global optima much faster. The formulation 
(FGG), previously developed by Ghattas and Grossmann 
(1991), has been improved by adding displacement-based 
elongation bounds (big-M constants), which enables obtain-
ing high-quality upper-bound solutions in a very short com-
putation time. The new formulation ( FBSF1 ) is, generally, 
faster to verify global optimality and also requires exploring 
significantly fewer nodes in the search tree.
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