=Pr-L

m Ecole
polytechnique
fédérale
de Lausanne

Thése n°9258

Streaming and Matching Problems with Submodular
Functions

Présentée le 14 octobre 2022

Faculté informatigue et communications

Laboratoire de théorie du calcul 2

Programme doctoral en informatique et communications

pour I'obtention du grade de Docteur &s Sciences

par

Paritosh GARG

Acceptée sur proposition du jury

Prof. E. Telatar, président du jury

Prof. O. N. A. Svensson, Prof. M. Kapralov, directeurs de these
Prof. D. Chakrabarty, rapporteur

Prof. R. Zenklusen, rapporteur

Prof. F. Eisenbrand, rapporteur

2022

Abstract

Submodular functions are a widely studied topic in theoretical computer
science. They have found several applications both theoretical and
practical in the fields of economics, combinatorial optimization and
machine learning. More recently, there have also been numerous works
that study combinatorial problems with submodular objective functions.
This is motivated by their natural diminishing returns property which
is useful in real-world applications. The thesis at hand is concerned
with the study of streaming and matching problems with submodular
functions.

Firstly, motivated by developing robust algorithms, we propose a new
adversarial injections model, in which the input is ordered randomly,
but an adversary may inject misleading elements at arbitrary positions.
We study the maximum matching problem and cardinality constrained
monotone submodular maximization. We show that even under this
seemingly powerful adversary, it is possible to break the barrier of 1/2
for both these problems in the streaming setting. Our main result is
a novel streaming algorithm that computes a 0.55-approximation for
cardinality constrained monotone submodular maximization.

In the second part of the thesis, we study the problem of matroid
intersection in the semi-streaming setting. Our main result is a (2 +
g£)-approximate semi-streaming algorithm for weighted matroid inter-
section improving upon the previous best guarantee of 4 + . While
our algorithm is based on the local ratio technique, its analysis differs
from the related problem of weighted maximum matching and uses the
concept of matroid kernels. We are also able to generalize our results to
work for submodular functions by adapting ideas from a recent result
by Levin and Wajc (SODA’21) on submodular maximization subject to
matching constraints.

Finally, we study the submodular Santa Claus problem in the restricted
assignment case. The submodular Santa Claus problem was introduced
in a seminal work by Goemans, Harvey, Iwata, and Mirrokni (SODA’(09)
as an application of their structural result. In the mentioned problem
n unsplittable resources have to be assigned to m players, each with
a monotone submodular utility function f;. The goal is to maximize
min; f;(S;) where Sy, ..., Sy, is a partition of the resources. The result
by Goemans et al. implies a polynomial time O(n'/%%¢)-approximation
algorithm. In the restricted assignment case, each player is given a set of
desired resources I'; and the individual valuation functions are defined
as fi(S) = f(SNT;). Our main result is a O(loglog(n))-approximation
algorithm for the problem. Our proof is inspired by the approach of
Bansal and Srividenko (STOC’06) to the Santa Claus problem. Com-
pared to the more basic linear setting, the introduction of submodularity
requires a much more involved analysis and several new ideas.

Keywords— submodular functions, streaming algorithms, matchings, ma-
troids, robust algorithms, approximation algorithms, santa claus problem,

ii

hypergraph matchings, combinatorial optimization

Résumé

Les fonctions de type sous-modulaires forment un pan important de
I'informatique théorique. Les applications pratiques et théoriques
se retrouvent en effet dans plusieurs domaines tels que 1’économie,
I'optimisation combinatoire et 'apprentissage automatique. Plusieurs
travaux récents se sont concentrés sur des probléemes combinatoires oti
I'objectif est une fonction sous-modulaire. Ceci est motivé par leur pro-
priété intrinséque de “retour diminuant” qui prend tout son sens dans
la vie de tous les jours. Cette these se penche sur le streaming ainsi que
le probléeme d’appariement dans le cadre de fonctions sous-modulaires.

Avec comme objectif le développement d’algorithmes robustes, nous
commengons par proposer un nouveau modele d’injection adversar-
iale dans lequel l'ordre du flux de données est aléatoire mais ou un
adversaire peut injecter de nouveaux éléments dans le flux a sa guise.
Nous étudions le probléme d’appariement maximal et de maximisation
de fonction sous-modulaire sous contrainte de taille. Nous montrons
que méme face a cet adversaire qui semble trés puissant, il est possible
de passer outre a la barriére de facteur d’approximation de 0.5 bien
connu pour ces deux problemes. Notre résultat principal consiste en
un nouvel algorithme capable de trouver une solution avec un facteur
d’approximation de 0.55 au probléeme de maximisation de fonction
sous-modulaire sous contrainte de taille.

La seconde partie de cette these est dévolue a I'étude du probleme de
I'intersection de deux matroids dans le modele de semi-streaming.
Notre résultat principal est un algorithme garantissant un facteur
d’approximation de 2 + ¢ au probleme de l'intersection de matroid
avec poids dans le modéle de semi-streaming; ceci améliore le précédent
algorithme possédant un facteur d’approximation de 4 + ¢. Bien que
notre algorithme soit basé sur la technique du ratio local, son analyse
differe du probléme de I’'appariement maximal avec poids et utilise le
concept de matroid a noyau. Nous arrivons a généraliser nos résultats
au modele de fonction sous-modulaire en adaptant les idées de Levin
et Wajc (SODA’21) sur la maximisation sous-modulaire avec contrainte
d’appariement.

En dernier lieu, nous étudions le probleme du Pére Noél sous-modulaire
dans le cas de I’affectation restreinte. Le probleme du Pere Noél sous-
modulaire fut introduit dans le travail pionnier de Goemans, Harvey,
Iwata et Mirrokni (SODA 09) pour exemplifier leur résultat structurel.
Ce probléme consiste en n resources devant étre partagées sans possi-
bilité de decoupe entre m joueurs. Chaque joueur posséde une fonction
utilitaire f; de type sous-modulaire; le but étant de maximiser min; f;(s;)
ou S;,...,Sy est une partition des resources. Le résultat obtenu par
Goemans et al consiste en un algorithme d’approximation qui ob-
tient en temps polynomial une approximation de facteur O(n!/2+¢).
Dans le cas de l'affectation restreinte, chaque joueur possede un en-
semble de ressources I'; et les valuations individuelles sont définies
par fi(S) = f(SNT;). Notre résultat principal est un algorithme

ii

iv

d’approximation en temps polynomial avec facteur d’approximation
O(loglog(n)). Notre preuve s’inspire de "approche de Bansal et Srivi-
denko (STOC’06) au probleme du Pere Noél. Par rapport au plus simple
cadre linéaire, l'introduction de sous-modularité requiert de nouvelles
idées et une analyse plus conséquente.

Mots-clés—- fonctions sous-modulaires, algorithmes de streaming, appariements,
matroids, algorithmes robustes, algorithmes d’approximation, probleme du
Peére Noél, appariements sur hypergraphes, optimisation combinatoire

Acknowledgements

My PhD has been a great and memorable experience, and I am grateful to
the countless people who have been instrumental in making it such.

I want to thank my advisors, Michael Kapralov and Ola Svensson. Although
the time I worked with Michael wasn’t very much, I learnt a lot from him.
I was constantly impressed by his ability to work on multiple problems. I
think of Ola as a child in a playground with many exciting problems to solve.
His never-ending energy and enthusiasm have inspired me in many ways.
I appreciate his constant support and encouragement throughout my PhD,
especially during the pandemic.

I want to thank the jury members of my private defense, Deeparnab Chakrabarty,
Friedrich Eisenbrand, Emre Telatar and Rico Zenklusen, for carefully reading
my thesis and for the insightful discussions during the defense.

I am grateful to Pauline Raffestin and Chantal Schneeberger for helping me
through all the administrative stuff, organizing many fun events in the lab
and always being warm and welcoming.

My PhD wouldn’t have been successful without my amazing co-authors, Eti-
enne Bamas, Linus Jordan, Sagar Kale, Lars Rohwedder and Ola Svensson. I
have learnt a lot from them. I thank my pre-PhD mentors, Kishore Kothapalli,
Kannan Srinathan and Srikanth Srinivasan. They played a crucial role in my
decision to pursue a PhD.

I have immensely enjoyed being a part of the Theory lab, and I would like to
thank everyone. With them, I have done several fun activities like climbing,
hiking and biking and also discussed everything from work to life. I would
also like to thank the other PhD students in EDIC for sharing many fun times,
and all my friends in Lausanne and many roommates throughout the years
for making me feel at home. I want to especially thank Gilbert for translating
the abstract of this thesis into French on short notice. I would also like to

Vi

thank Anna for her constant support and for being such a fantastic person to
hang out with. I also thank her for proofreading my thesis.

Finally, and most importantly, I would like to thank my family for their
unconditional love and support.

Contents

Contents
List of Figures
List of Tables

1 Introduction
1.1 Overveiw of our Contributions
1.2 Outlineofthe Thesis

2 Preliminaries

21 Notation
2.2 Submodular functions o 0L
23 Matroids L
2.4 Streaming Model of Computation
2.5 Online Model of Computation
2.6 Approximation Algorithms
2.7 Problems Considered
2.7.1 The maximum matching problem in the semi-streaming
model

2.7.2 Maximizing a monotone submodular function subject

to a cardinality constraint

2.7.3 The matroid Intersection problem in the semi-streaming
model

2.74 Submodular Santa Claus problem in the Restricted As-
signment Case

2.8 Probability Bounds

vii

x1

=~ N

O 0 N NI N

10
10

10

10

11

12
12

vii

CONTENTS

viii

I Adversarial Injections

3 Introduction
3.1 Motivation
3.2 The Adversarial Injections Model
3.3 Related Models
34 OurResults

4 Matching
4.1 Streaming Setting oL
4.2 Analysis of the streaming algorithm for maximum matching .
43 OnlineSetting

5 Submodular Maximization
51 Notation e
52 The Algorithm
52.1 Overview of the Analysis
522 Analysis o oo

IT Submodular Matroid Intersection

6 Introduction
6.1 Literature Review,
6.2 Overview of Results and Techniques

7 The Local Ratio Technique for Weighted Matroid Intersection
7.1 Local Ratio Technique for Weighted Matching
7.2 Adaptation to Weighted Matroid Intersection
7.3 Analysis of Algorithm2 0L
74 Making the Algorithm Memory Efficient

8 Extension to Submodular Functions
8.1 Analysis of Algorithm4

9 More than Two Matroids

ITTI Submodular Santa Claus

10 Introduction
10.1 Literature Review
10.2 Overview of Results and Techniques

11 Reduction to hypergraph matching problem
11.1 Reduction to unweighted hypergraph matching

15

17
17
18
19
21

25
25

30

31
31
31
32
34

39

41
41
42

45
45
47
50
52

57
58

63

67

69
69
70

75

Contents

12 Matchings in regular hypergraphs 81
12.1 Overview and notations 82
12.2 Properties of resourcesets 83
12.3 Selection of configurations 84
12.4 Assignment of resources to configurations 88

13 Further connections between hypergraph matching and Santa Claus 93
13.1 From Matchings to Santa Claus 94
13.2 From Santa Claus to Matchings 94

14 Conclusions 101

A Deferred Proofs from Part I 103
A.1 Removing the assumption that |[M*|is known 103
A.2 Omitted proofs for submodular function maximization 104

A.2.1 Assumption that OPT isknown 104
A.2.2 Bounding the number of increases 105
A.2.3 Analysis of recursion function 105

B Deferred Proofs from Part II 113
B.1 Extending Algorithm 3 when matroid ranks are unknown . . 113

C Deferred Proofs from Part III 115
C.1 Onmitted proofs from Chapter 11 115

C.1.1 Solving the configuration LP 115

C12 Clusters 116

C.2 Omitted proofs from Section12.2 120
C.3 Onmitted proofs from Section12.4 125
Bibliography 129

ix

List of Figures

51

52
7.1

7.2

13.1

C1

In this example, function f counts the dots covered by a set of
rectangles. On the right, the tree for stream 0 = (A, B,C, D) and
k = 2 is depicted. The labels on the edges correspond to the
increase in f. The maximal leaves are highlighted.
Values of the recurrence formula fort =0.8.

The top part shows an example execution of the local ratio tech-
nique for weighted matchings (Algorithm 1). The bottom part
shows how to adapt this (bipartite) example to the language of
weighted matroid intersection (Algorithm 2).
Consider the example on a bipartite graph where edges arrive in
the order e,, e, e.. It is easy to see that the set S formed by Algo-
rithm 3 contains only the edge e, of weight 1 whereas the optimal
matching consists of taking edges ey, e. of combined weight 2a. .

An example of the reduction to hypergraph matching for player i
witho; =1/2.o

The directed network and ans-tcut

32
37

46

55

99

List of Tables

3.1 Comparison of different models for the two studied problems.
Here, v > 0, g9 > 0 are fixed absolute constants and ¢ > 0 is any
constant. L e e e e

xi

Chapter 1

Introduction

Submodular functions are a fundamental object of study in the field of
theoretical computer science. They have several applications in the field
of combinatorial optimization, algorithmic game theory and combinatorics.
Besides being of theoretical interest, they often find use in several real-world
applications owing to their natural diminishing returns property. For exam-
ple, they are very commonly used as utility functions in economics. Naturally,
there is a large body of literature that has focussed on the optimization of
these functions in different models of computation. More recently, they
have also received much attention in the study of combinatorial problems
replacing linear objective functions with submodular objective functions.

Set functions are functions that give a value to every possible subset of a
ground set of elements. Informally, a submodular function is a set function
where the marginal gain by adding an element to a set is non-increasing
as the size of the set increases. This is technically not true, but it suffices
to provide intuition here. See Section 2.2 for a formal definition. It also
captures several well-known functions within combinatorics. For example,
cut functions in graphs, rank functions in matroids and covering and cut
functions in hypergraphs. Moreover, several objective functions arising in
tasks in fields like machine learning can be modelled as being submodular.

In this thesis, we study matching problems within combinatorial optimization.
Informally speaking, these sorts of problems involve pairing agents with
agents or pairing agents with items, where agents might be job seekers
and employers, buyers and sellers etc. Matching theory has played an
important role in theoretical computer science and has given rise to several
important concepts including the polynomial-time computability [19] and
important algorithmic techniques such as the primal dual method [46]. It has
also found numerous practical applications most notably in economics and
market design. To enumerate a few examples, it has been used for associating
goods with buyers, scheduling tasks with machines, pairing organ donors

1. INTRODUCTION

with recipients, employers with job applicants etc. Given both the theoretical
and practical importance of submodular functions and matching problems,
the thesis at hand focuses on developing better algorithms for matching
problems with submodular functions.

We first focus on the streaming setting where the algorithms have access
to limited memory. This model is motivated by the advent of big data and
the need to develop algorithms that are memory efficient. We study the
benchmark problems of cardinaltity constrained submodular maximization,
unweighted maximum matching and submodular matroid intersection prob-
lem. We note that matroid intersection generalizes the problem of maximum
matching in bipartite graphs. Later, we study the submodular variant of
the Santa Claus problem in the classical model of computation i.e, Random
Access Machine (RAM) model. The Santa Claus problem is a basic problem
in resource allocation and the special case of restricted assignment has re-
ceived a lot of attention recently. Interestingly, we reduce the submodular
Santa Claus problem to a certain matching problem in hypergraphs. Hence,
broadly speaking, our thesis can be considered to deal with the subject of
submodular functions and matchings.

1.1 Overveiw of our Contributions

We give a brief overview of our three contributions below.

Adversarial Injections In Part I of this thesis, we develop robust algorithms
for cardinality constrained monotone submodular maximization and the
unweighted maximum matching problem in the streaming setting. We
introduce a new model - adversarial injections - with the motivation of
developing robust algorithms. This is based on joint work with Sagar Kale,
Lars Rohwedder and Ola Svensson that was published in ICALP 2020.

In the streaming model, an algorithm reads the input sequentially from the
input stream while using limited memory. In particular, the algorithm is
expected to use memory that is much smaller than the input size, ideally,
linear in the size of the solution. A common assumption made in this model
to model real-world instances is to assume that the input sequence is chosen
uniformly at random. However, many algorithms for problems including
cardinality constrained monotone submodular maximization overfit to this
assumption. We propose a new model that we call adversarial injections
model, in which the input is ordered randomly, but an adversary may
inject misleading elements at arbitrary positions. We believe that studying
algorithms under this much weaker assumption can lead to new insights
and, in particular, more robust algorithms. We investigate two classical
combinatorial-optimization problems in this model: Maximum matching

1.1. Overveiw of our Contributions

and cardinality constrained monotone submodular function maximization.
Our main technical contribution is a novel streaming algorithm for the latter
that computes a 0.55-approximation. While the algorithm itself is clean and
simple, an involved analysis shows that it emulates a subdivision of the input
stream which can be used to greatly limit the power of the adversary. For
the problem of unweighted maximum matching, we can adapt the existing
techniques in literature to beat 1/2 in our model in the streaming setting.
Curiously, we observe due to a recent result by [31] that beating 1/2 is not
possible in our model for the online setting. This makes our model further
interesting to study.

Submodular Semi-Streaming Matroid Intersection In Part II of this thesis,
we develop an improved approximation algorithm for matroid intersection in
the streaming setting and then extend it to work with submodular functions.
This is based on joint work with Linus Jordan and Ola Svensson that was
published in IPCO 2021.

A matching in a graph is a subgraph in which each vertex has degree at most
one. While the basic greedy algorithm gives a semi-streaming algorithm with
an approximation guarantee of 2 for the unweighted matching problem, it was
only recently that Paz and Schwartzman ([60]) obtained an analogous result
for weighted instances. Their approach is based on the versatile local ratio
technique and also applies to generalizations such as weighted hypergraph
matchings. However, the framework for the analysis fails for the related
problem of weighted matroid intersection and as a result the approximation
guarantee for weighted instances did not match the factor 2 achieved by the
greedy algorithm for unweighted instances. Our main result closes this gap
by developing a semi-streaming algorithm with an approximation guarantee
of 2 + ¢ for weighted matroid intersection, improving upon the previous best
guarantee of 4 + . Our techniques also allow us to generalize recent results
by Levin and Wajc [49] on submodular maximization subject to matching
constraints to that of matroid-intersection constraints.

While our algorithm is an adaptation of the local ratio technique used in
previous works, the analysis deviates significantly and relies on structural
properties of matroid intersection, called kernels. Finally, we also conjecture
that our algorithm gives a (k + ¢) approximation for the intersection of k
matroids but prove that new tools are needed in the analysis as the structural
properties we use fail for k > 3.

Submodular Santa Claus problem in the Restricted Assignment Case In
Part III of this thesis, we develop an improved approximation algorithm for
the submodular Santa Claus problem in the restricted assigment case. This
is based on a joint work with Etienne Bamas and Lars Rohwedder that was
published in ICALP 2021.

1. INTRODUCTION

The submodular Santa Claus problem was introduced in a seminal work
by Goemans, Harvey, Iwata, and Mirrokni ([33]) as an application of their
structural result. In the mentioned problem n unsplittable resources have to
be assigned to m players, each with a monotone submodular utility function
fi. The goal is to maximize min; f;(S;) where Si,...,S;, is a partition of
the resources. The result by Goemans et al. implies a polynomial time
O(n'/?*+¢)-approximation algorithm.

Since then progress on this problem was limited to the linear case, that is, all
fi are linear functions. In particular, a line of research has shown that there
is a polynomial time constant approximation algorithm for linear valuation
functions in the restricted assignment case. This is the special case where
each player is given a set of desired resources I'; and the individual valuation
functions are defined as f;(S) = f(S NT;) for a global linear function f. This
can also be interpreted as maximizing min; f(S;) with additional assignment
restrictions, i.e., resources can only be assigned to certain players.

In this thesis we make comparable progress for the submodular variant.
Namely, if f is a monotone submodular function, we can in polynomial
time compute an O(loglog(n))-approximate solution. Moreover, we also
show a certain kind of “equivalence” between a matching problem in hy-
pergraphs and the Santa Claus problem. We show, via a reduction, that a
c-approximation for this matching problem would yield a O((clog*(n))?)-
approximation for the Santa Claus problem with arbitrary linear utility
functions. Infact, we reduce the submodular Santa Claus problem in the
restricted assignment case to this hypergraph matching problem albeit with
additional assumptions on the the size of hyperedges !.

1.2 Outline of the Thesis

The thesis is outlined as follows. In Chapter 2, we introduce key concepts
and formally define the problems that we consider in this thesis.

Part I is devoted to our results on the adversarial injections model. We
motivate and introduce our model - adversarial injections - for developing
robust algorithms and compare it with related models in Chapter 3. We then
show how to beat the factor of 1/2 for unweighted maximum matching in the
streaming setting in our model in Chapter 4. Further, we discuss cardinality
constrained monotone submodular maximization in Chapter 5 and present a
0.55-approximate streaming algorithm.

In Part II, we present the results on the problem of submodular semi-
streaming matroid intersection. We start with a brief overview of related

Due to the additional assumption on the size of hyperedges, this does not imply an
improved approximation algorithm for the Santa Claus problem.

1.2. Outline of the Thesis

work as well as overview of our results and techniques in Chapter 6. In
Chapter 7, we present a (2 + €)-approximate semi-streaming algorithm for
weighted matroid intersection using the local ratio techique. Further in Chap-
ter 8, we extend this algorithm to work for submodular functions. We then
discuss the case of more than two matroids in Chapter 9.

Moving on in part III, we consider the submodular Santa Claus problem in the
restricted assignment setting. We again start with a brief discussion on related
work and discuss our techniques in Chapter 10. Then, in Chapter 11, we
reduce the aforementioned problem to a matching problem in hypergraphs.
We then show how to obtain an approximation algorithm for this problem
in Chapter 12. Further, in Chapter 13 we discuss connections between
hypergraph matching and the Santa Claus problem and present reductions
in both directions.

Finally, in Chapter 14, we conclude the thesis with a short discussion and
some interesting open problems arising out of our work.

Chapter 2

Preliminaries

This chapter covers the preliminaries for the rest of the thesis. First we
introduce some notation commonly used, then define some mathematical
objects and models of computation studied. Further, we give the definitions of
the problems considered in this thesis. Finally, we end with some probability
bounds that we require in Part III of our thesis.

2.1 Notation

Let R denote the set of real numbers and R denote the set of non-negative
real numbers. We use IN to denote the set of natural numbers.

2.2 Submodular functions

A set function f : 2F — R is submodular if it satisfies that for any two sets
A,BCE, f(A)+ f(B) > f(AUB) + f(ANB). For any two sets A,B C E,
let f(A|B):=f(AUB)— f(B). Fore € E and S C E we write S + e for the
set SU{e} and f(e | S) for f(S+e) — f(S).

An equivalent and more intuitive definition for f to be submodular is that
for any two sets A C B C E,and e € E \ B, it holds that f(e | A) > f(e | B).
The function f is called monotone if for any element e € E and set A C E, it
holds that f(e | A) > 0. We say that f is normalized if (@) = 0.

2.3 Matroids

We define and give a brief overview of the basic concepts related to matroids
that we use in Part II of the thesis. For a more comprehensive treatment, we
refer the reader to [62]. A matroid is a tuple M = (E, I) consisting of a finite
ground set E and a family I C 2F of subsets of E satisfying:

2. PRELIMINARIES

e if XCY,Y €I, then X € I; and
e if Xel,YeTland |Y|> |X|, thenJe € Y\ X such that XU {e} € I.

The elements in I (that are subsets of E) are referred to as the independent sets
of the matroid and the set E is referred to as the ground set. With a matroid
M = (E,I), we associate the rank function ranky : 2 — N and the span
function span,, : 2 — 2F defined as follows for every E' C E,

rankpy(E') = max{|X| | X C E' and X € I},
span,,(E") = {e € E | ranky(E' U {e}) = ranky(E’)}.

We simply write rank(-) and span(-) when the matroid M is clear from the
context. In words, the rank function equals the size of the largest independent
set when restricted to E’ and the span function equals the elements in E’ and
all elements that cannot be added to a maximum cardinality independent set
of E’ while maintaining independence. The rank of the matroid equals rank(E),
i.e., the size of the largest independent set. In order to gain more intuition,
let us consider the example of linear matroids.

Example 2.1 A matroid M = (E, I) is a linear matroid when it is defined from a
matrix A over some field F. Let E be the index set of the columns and for X C E, let
Ax be the matrix consisting of the columns indexed by X. Define I by

[={X C E:rank(Ax) = |X|}

For linear matroids, observe that the first matroid axiom is trivially satisfied,
as if columns are linearly independent, so is a subset of them. For the second
axiom, notice that if Ax has full column rank, its columns span a space of
dimension | X| and similarly for Y, and therefore if |Y| > |X|, there must
exist a column of Ay that is not in the span of the columns of Ax; adding this
column to Ay increases the rank by 1. Furthermore for linear matroids, the
definitions ranky; and span,, correspond naturally to those in linear algebra.

2.4 Streaming Model of Computation

In the streaming model, the input is revealed in a stream ey, ey, . .., e, and at
time i the algorithm gets access to ¢; and can perform computation based
on ¢; and its current memory but without knowledge of future elements
€i+1,--.,en. In particular, the algorithm is expected to use memory that is
much smaller than the input stream size m, ideally, linear in the size of a
solution S. Specifically, in the semi-streaming setting, the algorithm has a
memory that is O(|S| polylog(|S|)). This makes sense in the graph setting,
where the input size can be as large as O(n?) and n denotes the number
of vertices. This memory usage is justified, because even storing a solution

2.5. Online Model of Computation

for example in the case of maximum matching can take Q)(nlog(n)) space
(Q(log(n)) for each edge identity). This model can also be considered in the
multi-pass setting when the algorithm is allowed to take several passes over
the stream. However, in this thesis we focus on the most basic and widely
studied setting in which the algorithm takes a single pass over the stream.

We say that the stream is random order if the input is permuted uniformly at
random before being presented to the algorithm. The stream is referred to
as worst case or adversarial if the input stream is prepared by an adversary
before being presented to the algorithm. Unless explicitly specified, we
assume that the stream is worst case.

The difficulty in designing a good streaming algorithm is that the memory
requirement is much smaller than the size of the input stream and thus the
algorithm must intuitively discard many of the elements without knowledge
of the future and without significantly deteriorating the quality of the final
solution. The quality of the algorithm is judged by its approximation ratio.
The definition that we provide differs between Part I and Part II due to the
existing literature. In Part I, we say that an algorithm is a-approximate if no
matter what the input, it produces a solution that is at least « times the value
of the optimum solution. In the worst-case model, this guarantee should
also hold for every possible stream of the input elements whereas in the
random-order model this guarantee needs to hold only in expectation over
the randomness of the input stream. In Part II, we say that an algorithm is
x-approximate if no matter what the input and the order of the stream, it
produces a solution that is at least . times the value of the optimal solution.
Notice that in both cases, we want a to be as close to one as possible.

2.5 Online Model of Computation

In the online model, an algorithm sees the input elements one at a time and it
has to decide whether to take the element in its solution or not. This decision
is irrevocable. This model of computation is used to model problems in which
the future is uncertain and one has to make decisions that are irreversible.
The quality of an algorithm is judged by its competitive ratio. We define
the competitive ratio for maximization problems. An algorithm is said to be
x-competitive if it outputs a solution at the end of the stream that is at least
« times the value of the solution that an optimal offline (knows the future
elements) algorithm would output. Notice that this means « is always less
than or equal to one. We deal with online algorithms in Part I of our thesis.

2. PRELIMINARIES

10

2.6 Approximation Algorithms

Approximation algorithms are polynomial time (efficient) algorithms that
output a solution that is close in value to an optimum solution. They are
important for several problems as developing an exact algorithm might be
infeasible due to unconditional or conditional hardness results. We present
an approximation algorithm for an NP-hard problem in resource allocation
in the Part III of our thesis.

The quality of the solution that the algorithm produces is judged by its
approximation ratio. We consider maximization problems in this thesis and
define the approximation ratio accordingly. We say that an algorithm is
a-approximate if it outputs a solution that is at least % times the value of the
optimum solution. Notice that this means that « is always greater than or
equal to one. Hence, the goal is to make « as close to one as possible.

2.7 Problems Considered

We define and briefly discuss the problems considered in the thesis below.

2.7.1 The maximum matching problem in the semi-streaming model

We first discuss the (unweighted) maximum matching problem. Given a graph
G = (V,E), a matching M is a subset of edges such that every vertex has
at most one incident edge in M. A matching of maximum cardinality is
called a maximum matching, whereas a maximal matching is one in which
no edge can be added without breaking the property of it being a matching.
The goal in the maximum matching problem is to compute a matching of
maximum cardinality. Note that a maximal matching is 1/2-approximate.
Work on maximum matching has led to several important concepts and new
techniques in theoretical computer science [56, 51, 19, 41]. Specifically, in
the semi-streaming setting we allow a streaming algorithm to have memory
O(npolylog(n)) where n is the number of vertices of G. This is usually signif-
icantly less than the input size, which can be as large as O(n?). This memory
usage is justified, because even storing a solution can take Q(nlog(n)) space
(Q(log(n)) for each edge identity).

2.7.2 Maximizing a monotone submodular function subject to a
cardinality constraint

In this problem, we are given a ground set E of n elements and a monotone
submodular set function f : 2 — R>¢. The problem we consider is to find a
set S C E with |S| < k that maximizes f(S). We assume that access to f is
via an oracle.

2.7. Problems Considered

In the offline setting, a simple greedy algorithm that iteratively picks the
element with the largest marginal contribution to f with respect to the current
solution is (1 — 1/e)-approximate [58]. This is tight: Any algorithm that
achieves an approximation ratio of better than (1 — 1/¢) must make Q(n*)
oracle calls [57], which is enough to brute-force over all k-size subsets. Even
for maximum coverage (which is a special family of monotone submodular
functions), it is NP-hard to get an approximation algorithm with ratio better
than 1 —1/e [24].

2.7.3 The matroid Intersection problem in the semi-streaming
model

In the weighted matroid intersection problem, we are given an oracle access to
two matroids My = (E, I;) and M, = (E, I) on a common ground set E and
a non-negative weight function w : E — IR on the elements of the ground
set. The goal is to find a subset X C E that is independent in both matroids,
ie., X € I and X € I, and whose weight w(X) = Y ,cx w(e) is maximized.

In the submodular matroid intersection problem, we are given an oracle access
to two matroids M; = (E, ;) and M, = (E,) on a common ground set E
and an oracle access to non-negative submodular function f : 2F — R>(on
the powerset of the elements of the ground set. The goal is to find a subset
X C E that is independent in both matroids, i.e.,, X € I; and X € I, and
whose weight f(X) is maximized.

In his seminal work [20], Edmonds gave a polynomial-time algorithm for
solving the weighted matroid intersection problem to optimality in the
classic model of computation when the whole input is available to the
algorithm throughout the computation. In contrast, the problem becomes
significantly harder and tight results are still eluding us in the semi-streaming
model where the memory footprint of the algorithm and its access pattern
to the input are restricted. Specifically, in the semi-streaming model, the
algorithm has an independence-oracle access to the matroids M; and M
which is restricted to the elements stored in the memory, i.e., for a set of
such elements, the algorithm can query whether the set is independent in
each matroid. Moreover, the memory usage should be near-linear O((r; +
r2) polylog(r1 +72)) at any time, where r1 and r, denote the ranks of the input
matroids M; and M, respectively. We remark that the memory requirement
O((r1 + r2) polylog(r1 + r2)) is natural as 1 + r, = |V| when formulating a
bipartite matching problem as the intersection of two matroids!.

IThe considered problem can also be formulated as the problem of finding an independent
set in one of the matroids, say Mj, and maximizing a submodular function which would
be the (weighted) rank function of M,. For that problem, [37] recently gave a streaming
algorithm with an approximation guarantee of (2 + ¢). However, the space requirement of
their algorithm is exponential in the rank of M; (which would correspond to exponential in

11

2. PRELIMINARIES

12

2.7.4 Submodular Santa Claus problem in the Restricted Assign-
ment Case

The submodular Santa Claus problem was introduced in [33] as an application
of their structural result. The result by [33] implies a polynomial time
O(n'/?*%)-approximation algorithm.

In the submodular Santa Claus problem, n unsplittable resources have to be
assigned to m players, each with a monotone submodular utility function
fi- The goal is to maximize min; f;(S;) where Sy, ..., Sy, is a partition of the
resources. Further in the restricted assigment case, each player is given a set
of desired resources I'; and the individual valuation functions are defined
as fi(S) = f(SNT;) for a global submodular function f. This can also be
interpreted as maximizing min; f(S;) with additional assignment restrictions,
i.e., certain resources can only be assigned to certain players.

2.8 Probability Bounds

In this section, we state a few probability bounds that are essential to our
analysis in Part III of our thesis. Consider the sum of independent random
variables drawn from some distribution. The central limit theorem asserts
that such a sum converges to the normal distribution with the right scaling.
However, it does not tell us how fast this convergence happens. Chernoff
bounds are useful as they provide us with a much more quantitative estimate
of how this happens. We state two versions that we will repeatedly use
below.

Proposition 2.2 (Chernoff bounds (see e.g. [54])) Let X =), X; be a sum of
independent random variables such that each X; can take values in a range [0, 1].
Define u = E(X). We then have the following bounds

P (X > (1+6)E(X)) <exp (_mm{gfsz}%f)

forany 6 > 0.

forany 0 <6 < 1.
The following proposition follows immediately from Proposition 2.2 by

applying it with X’ = X /a.

Proposition 2.3 Let X =) ; X; be a sum of independent random variables such
that each X; can take values in a range [0, a] for some a > 0. Define y = E(X). We
then have the following bounds

|V| in the matching case) and thus it does not provide a meaningful algorithm for our setting.

2.8. Probability Bounds

min 2
P(X > (1+0)E(X)) <exp (—W)

for any 6 > 0.

forany 0 <6 < 1.

In Part III of our thesis, we would like to bound the probability of some
bad events happening in many cases. If the bad events were completely
independent, then we would be done as there always exists a non zero
chance of none of the bad events taking place. But, this is unfortunately
not the case for us. However, the Lovasz Local Lemma stated below comes
in handy as it implies a similar statement for bad events that are not too
interdependent.

Proposition 2.4 (Lovasz Local Lemma (LLL)) Let By, ..., B; be bad events, and
let G = ({Bu,...,B:}, E) be a dependency graph for them, in which for every i,
event B; is independent of all events B; for which (B;, Bj) ¢ E. Let x; for 1 <i <t
be such that 0 < x(B;) < 1and P[B;] < x(B;) H(Bi,B/-)eE(l — x(B;)). Then with
positive probability no event B; holds.

13

Part 1

Adversarial Injections

15

Chapter 3

Introduction

In this part of the thesis, we develop robust streaming algorithms for the
problems of unweighted maximum matching and monotone submodular
maximization under a cardinality constraint. We first start of by motivating
our model in which we develop these robust algorithms.

3.1 Motivation

The most common approach to analyze the quality of an algorithm in the
streaming and online models of computation is worst-case analysis. Here,
an adversary has full knowledge of the algorithm’s strategy and presents a
carefully crafted instance to it, trying to make the ratio between the value of
the algorithm’s solution and that of an optimum solution (the approximation
ratio; for online algorithms called the competitive ratio) as small as possible!.
While worst-case analysis gives very robust guarantees, it is also well-known
that such an analysis is often very pessimistic. Not only are good guarantees
not possible for many problems, but in many cases worst-case instances
appear quite artificial. Hence, the worst-case approximation/competitive
ratio does not necessarily represent the quantity that we want to optimize.

One way to remedy this is to weaken the power of the adversary. A popular
model to do so is the random-order model. Here, an adversary may pick the
same instance as before, but it is presented in a uniformly-random order to
the algorithm. This often allows for significantly better provable guarantees.
A prime example is the secretary problem: For the worst-case order it is
impossible to get a bounded competitive ratio whereas for the random-order
a very simple stopping rule achieves a competitive ratio of 1/e. Unfortunately,
in this model, algorithms tend to overfit and the assumption of a uniformly-
random permutation of the input is a strong one. To illustrate this point, it is

'We assume that the problem is a maximization problem.

17

3. INTRODUCTION

18

instructive to consider two examples of techniques that break apart when the
random-order assumption is slightly weakened:

Several algorithms in the random-order model first read a small fraction
of the input, say, the first 1% of the input. Such an algorithm relies on the
assumption that around 1% of the elements from an optimum solution are
contained in this first chunk. It computes some statistics, summaries, or
initial solutions using this chunk in order to estimate certain properties of
the optimum solution. Then in the remaining 99% of the input it uses this
knowledge to build a good solution for the problem. For examples of such
streaming algorithms, see Norouzi-Fard et al. [59] who study submodular
maximization and Gamlath et al. [30] who study maximum matching. Also
Guruganesh and Singla’s [35] online algorithm for maximum matching for
bipartite graphs is of this kind. Due to their design, these algorithms are very
sensitive to noise at the beginning of the stream.

Another common technique is to split the input into fixed parts and exploit
the fact that with high probability the elements of the optimum solution are
distributed evenly among these parts, e.g., each part has at most one opti-
mum element. These methods critically rely on the assumption that each part
is representative of the whole input or that the parts are in some way homo-
geneous (the properties of the parts are the same in expectation). Examples of
such algorithms include the streaming algorithm for maximum matching [45],
and the streaming algorithm for submodular maximization ([1], [50]) that
achieves the tight competitive ratio 1 — 1/e in the random-order model.

The motivation of this work is to understand whether the strong assumption
of uniformly-random order is necessary to allow for better algorithms. More
specifically, we are motivated by the following question:

Can we achieve the same guarantees as in the uniform-random
order but with algorithms that are more robust against some
distortions in the input?

In the next section, we describe our proposed model which is defined so
as to avoid overfitting to the random-order model, and, by working within
this model, our algorithms for submodular maximization and maximum
matching are more robust while maintaining good guarantees.

3.2 The Adversarial Injections Model

Our model—that we call the adversarial-injections model—lies in between the
two extremes of random-order and adversarial-order. In this model, the input
elements are divided into two sets Exorse and Egoop. An adversary first picks

3.3. Related Models

all elements, puts each element in either Eyoise Or Ecoop, and chooses the
input order. Then the elements belonging to E¢oop are permuted uniformly
at random among themselves. The algorithm does not know if an element is
good or noise. We judge the quality of the solution produced by an algorithm
by comparing it to the best solution in Egoop.

An equivalent description of the model is as follows. First, a set of elements
is picked by the adversary and is permuted randomly. Then, the adversary
injects more elements at positions of his choice without knowing the random
permutation of the original stream?. Comparing this with the previous
definition, the elements injected by the adversary correspond to Eyoise and
the elements of the original stream correspond to E¢oop.

We denote by Eqpr € Egoon the elements of a fixed optimum solution of the
elements in Egoop. We can assume without loss of generality that Ecoop =
Eopr, because otherwise elements in Egoop \ Eopr can be treated as those
belonging to Exorse (Which only strengthens the power of the adversary).

3.3 Related Models

With a similar motivation, Kesselheim, Kleinberg, Niazadeh [43] studied the
robustness of algorithms for the secretary problem from a slightly different
perspective: They considered the case when the order of the elements is not
guaranteed to be uniformly-at-random but still contains “enough” random-
ness with respect to different notions such as entropy. Recently, Esfandiari,
Korula, Mirrokni [22] introduced a model where the input is a combination of
stochastic input that is picked from a distribution and adversarially ordered
input. Our model is different in the sense that the input is a combination of
randomly ordered elements (instead of stochastic input) and adversarially
ordered elements.

Two models that are more similar to ours in the sense that the input is
initially ordered in a uniformly-random order and then scrambled by an
adversary in a limited way are [34] and [10]. First, in the streaming model,
Guha and McGregor [34] introduced the notion of a t-bounded adversary
that can disturb a uniformly-random stream but has memory to remember
and delay at most t input elements at a time. Second, Bradac et al. [10]
very recently introduced a new model that they used to obtain robust online

2We remark that the assumption that the adversary does not know the order of the
elements is important. Otherwise, the model is equivalent to the adversarial order model
for “symmetric” problems such as the matching problem. To see this, let Eqpr correspond to
an optimum matching in any hard instance under the adversarial order. Since a matching is
symmetric, the adversary can inject appropriately renamed edges depending on the order
of the edges (which he knows if this assumption does not hold) and obtain exactly the hard
instance.

19

3. INTRODUCTION

20

algorithms for the secretary problem. Their model, called the Byzantine
model, is very closely related to ours: the input is split into two sets which
exactly correspond to Egoop and Eyorse in the adversarial-injections model.
The adversary gets to pick the elements in both of them, but an algorithm will
be compared against only Egoop. Then—this is where our models differ—the
adversary chooses an arrival time in [0, 1] for each element in Eyose. He has
no control over the arrival times of the elements in E.oop, which are chosen
independently and uniformly at random in [0,1]. The algorithm does not
know to which set an element belongs, but it knows the timestamp of each
element, as it arrives. While the Byzantine model prevents certain kinds of
overfitting (e.g., of the classical algorithm for the secretary problem), it does
not tackle the issues of the two algorithmic techniques we discussed earlier:
Indeed, by time t = 0.01, we will see around 1% of the elements from Eqpy.
Hence, we can still compute some estimates based on them, but do not lose
a lot when dismissing them. Likewise, we may partition the timeline, and
thereby the input, into parts such that in each part at most one element of
Eopr appears.

Hence, even if our model appears very similar to the Byzantine model, there
is a subtle, yet crucial, difference. The adversarial-injections model does
not add the additional dimension of time, and hence, does not allow for
the kind of overfitting that we discussed earlier. To further emphasize this
difference, we now describe why it is strictly harder to devise algorithms
in the adversarial-injections model compared to the Byzantine model. We
know that it is at least as hard as the Byzantine model, because any algorithm
for the former also works for the latter. This holds because the adversarial-
injections model can be thought of as the Byzantine model with additional
power for the adversary and reduced power for the algorithm: The adversary
gets the additional power of setting the timestamps of elements in Egoop, but
not their identities, whereas the algorithm is not allowed to see the timestamp
of any element.

To show that it is strictly harder, consider online bipartite matching. We
show that one cannot beat 1/2 in the adversarial-injections model (for further
details, see Section 4.3) whereas we observe that the (1/2 + §)-approximation
algorithm [35] for bipartite graphs and its analysis generalizes to the Byzan-
tine model as well. This is the case because the algorithm in [35] runs a
greedy algorithm on the first small fraction, say 1% of the input and “aug-
ments” this solution using the remaining 99% of the input. The analysis
crucially uses the fact that 99% of the optimum elements are yet to arrive in
the augmentation phase. This can be simulated in the Byzantine model by
using timestamps in the online setting as one sees 1% of Eqpr in expectation.

3.4. Our Results

3.4 Our Results

We consider two benchmark problems in combinatorial optimization under
the adversarial-injections model in both the streaming and the online settings,
namely maximum matching and monotone submodular maximization subject
to a cardinality constraint. As we explain next, the study of these classic
problems in our new model gives interesting insights: for many settings we
can achieve more robust algorithms with similar guarantees as in the random-
order model but, perhaps surprisingly, there are also natural settings where
the adversarial-injection model turns out to be as hard as the adversarial
order model.

The maximum matching problem. We first recall the (unweighted) maximum
matching problem. Given a graph G = (V,E), a matching M is a subset of
edges such that every vertex has at most one incident edge in M. The goal
in the maximum matching problem is to compute a matching of maximum
cardinality. Work on maximum matching has led to several important con-
cepts and new techniques in theoretical computer science [56, 51, 19, 41].
The combination of streaming and random-order model was first studied by
Konrad, Magniez and Mathieu [45], where edges of the input graph arrive
in the stream. The question that Konrad et al. answered affirmatively was
whether the trivial 1/2-approximation algorithm that computes a maximal
matching can be improved in the random-order model. Since then, there has
been some work on improving the constant [31, 23, 9, 4]. The state-of-the-art
is an approximation ratio of 2/3 + ¢y for some absolute constant g > 0
proved by Assadi and Behnezad [4]. We show that beating the ratio of
1/2 is possible also in the adversarial-injections model by building on the
techniques developed for the random-order model.

Theorem 3.1 There exists an absolute constant v > 0 such that there is a semi-
streaming algorithm for maximum matching under adversarial-injections with an
approximation ratio of 1/2 + <y in expectation.

We note that beating 1/2 in adversarial-order streams is a major open problem.
In this regard, our algorithm can be viewed as a natural first step towards
understanding this question.

Now we move our attention to the online setting, where the maximum
matching problem was first studied in the seminal work of Karp, Vazirani,
and Vazirani [42]. They gave a tight (1 — 1/e)-competitive algorithm for the
so-called one-sided vertex arrival model which is an important special case
of the edge-arrival model considered here. Since then, the online matching
problem has received significant attention (see e.g. [12, 21, 26, 38, 31]). Unlike
the adversarial streaming setting, there is a recent hardness result published
in [31] in the adversarial online setting that the trivial ratio of 1/2 cannot
be improved. We also know by [35] that one can beat 1/2 for bipartite

21

3. INTRODUCTION

22

graphs in the random-order online setting. Hence, one might hope at least
for bipartite graphs to use existing techniques to beat 1/2 in the online
adversarial-injections setting and get a result analogous to Theorem 3.1. But
surprisingly, this is not the case. We observe that the construction used in
proving Theorem 3 in [31] also implies that there does not exist an algorithm
with a competitive ratio of 1/2 + ¢ for any € > 0 in the adversarial-injections
model.

Maximizing a monotone submodular function subject to a cardinality
constraint. We recall that in this problem, we are given a ground set E of
n elements and an oracle access to a monotone submodular set function
f :2F — R>. The problem we consider is to find a set S C E with |S| < k
that maximizes f(S).

In the offline setting, a simple greedy algorithm that iteratively picks the
element with the largest marginal contribution to f with respect to the current
solution is (1 — 1/e)-approximate [58]. This is tight: Any algorithm that
achieves an approximation ratio of better than (1 — 1/¢) must make Q(n¥)
oracle calls [57], which is enough to brute-force over all k-size subsets. Even
for maximum coverage (which is a special family of monotone submodular
functions), it is NP-hard to get an approximation algorithm with a ratio better
than 1 —1/e [24].

In the random-order online setting, this problem is called the submodular
secretary problem, and a exponential time 1/e-approximation and polynomial-
time (1 —1/e)/e-approximation algorithms are the state-of-the-art [44]. In the
adversarial online setting, it is impossible to get any bounded approximation
ratio for even the very special case of picking a maximum weight element.
In this case, |Eopr| = 1 and the adversarial and adversarial-injections models
coincide; hence the same hardness holds. In light of this negative result, we
focus on adversarial-injections in the streaming setting. Note that to store
a solution we only need the space for k element identities. We think of k to
be much smaller than n. Hence, it is natural to ask, whether the number of
elements in memory can be independent of n.

For streaming algorithms in the adversarial order setting, the problem
was first studied by Chakrabarti and Kale [13] where they gave a 1/4-
approximation algorithm. This was subsequently improved to 1/2 — ¢ by
Badanidiyuru et al. [5]. Later, Norouzi-Fard et al. [59] observed that in the
random-order model this ratio can be improved to beyond 1/2. Finally,
Agrawal et al. [1] obtained a tight (1 — 1/e)-approximation guarantee in the
random-order model. Very recently, Liu et al. [50] decreased the memory
requirement of the algorithm in [1] from O(kexp(poly(1/¢)) to O(k/¢) by
simplifying their algorithm and analysis.

The algorithm of Agrawal et al. [1] and Liu et al. [50] involves partitioning

3.4. Our Results

Table 3.1: Comparison of different models for the two studied problems. Here, v > 0, ¢g > 0
are fixed absolute constants and € > 0 is any constant.

Maximum matching

Random order Adversarial Injections | Adversarial order
Streaming | > 2/3 + ¢ [4] >1/247 <1-—1/e+¢€[40]
Online > 1/2 (folklore) <1/2 <1/2]31]
Submodular function maximization

Random order Adversarial Injections | Adversarial order
Streaming | > 1—-1/e—¢[1] | > 055 >1/2—¢[5]

<1—1/e+¢[53] <1/2[28]

the stream as a crucial step in order to isolate the elements of the optimum
solution. As discussed earlier, this approach does not work under adversarial-
injections. However, we note that the algorithm and analysis by Norouzi-Fard
et al. [59] can be easily modified to work under adversarial-injections as well.
Their algorithm, however, has an approximation ratio of 1/2+8-10714. In
this work, we remedy this weak guarantee.

Theorem 3.2 There exists a 0.55-approximation algorithm that stores a number of
elements that is independent of n for maximizing a monotone submodular function
with a cardinality constraint k under adversarial-injections in the streaming setting.

We summarize and compare our results with random-order and adversarial-
order models for the problems we study in Table 3.1. It is interesting to
see that in terms of beating 1/2, our model in the streaming setting agrees
with the random-order model and in the online setting agrees with the
adversarial-order model.

23

Chapter 4

Matching

In this chapter, we consider the problem of unweighted maximum matching
under adversarial injections in both streaming and online settings where the
edges of the input graph arrive one after another.

4.1 Streaming Setting

We show that the trivial approximation ratio of 1/2 can be improved upon.
We provide a robust version of existing techniques and prove a statement
about robustness of the greedy algorithm to achieve this.

First, let us introduce some notation which we will use throughout this
section. We denote the input graph by G = (V, E), and let M* be a maximum
matching. For any matching M, the union M U M* is a collection of vertex-
disjoint paths and cycles. When M is clear from the context, a path of length
i =2 3 in MU M* which starts and ends with an edge of M* is called an
i-augmenting path. Notice that an i-augmenting path alternates between
edges of M* and M and that we can increase the size of M by one by taking
all edges from M* and removing all edges from M along this path. We say
that an edge in M is 3-augmentable if it belongs to some 3-augmenting path.
Otherwise, we say it is non-3-augmentable. Also, let M* = Eqpr; as described
in Section 3.2, this can be done without loss of generality.

As a subroutine for our algorithm we need the following procedure.
Lemma 4.1 (Lemma 3.1 in [30]) There exists a streaming algorithm 3-Auc-PaTHS
with the following properties:

1. The algorithm is initialized with a matching M and a parameter § > 0. Then
a set E of edges is given to the algorithm one edge at a time.

25

4. MATCHING

26

2. If MUE contains at least B|M| vertex disjoint 3-augmenting paths, the
algorithm returns a set A of at least (B2 /32)| M| vertex disjoint 3-augmenting
paths. The algorithm uses space O(|M]).

The Algorithm

We now describe our algorithm March. It runs two algorithms in parallel and
selects the better of the two outputs. The first algorithm simply constructs
a maximal matching greedily by updating the variable M;. The second
algorithm also constructs a matching Mgl) greedily, but it stops once Mél)
has |M*|(1/2 — €) edges. We call this Phase 1. Then, it finds 3-augmentations
using the 3-AucG-Patns algorithm given by Lemma 4.1. Finally, it augments
the paths found to obtain a matching M,. The constant B used in 3-Auc-
PaTHSs is optimized for the analysis and will be specified there.

Notice that here we assumed that the algorithm knows |M*|. This assumption
can be removed using geometric guessing at the loss of an arbitrary small
factor in the approximation ratio. We refer the reader to the appendix for full
details.

Overview of the Analysis

Consider the first portion of the stream until we have seen a small constant
fraction of the elements in Eqpr. If the greedy matching up to this point is
already close to a 1/2-approximation, this is good for the second algorithm
as we are able to augment the matching using the remaining edges of M*.
The other case is good for the first algorithm: We will show that the greedy
matching formed so far must contain a significant fraction of the edges in
M* which we have seen upto this point. If this happens, the first algorithm
outputs a matching of size a constant fraction more than |M*|/2.

A technical challenge and novelty comes from the fact that the two events
above are not independent of the random order of E,y;. Hence, when
conditioning on one event, we can no longer assume that the order of Eqpy
is uniformly at random. We get around this by showing that the greedy
algorithm is robust to small changes in streams. The intuition is that in the
first part of the stream the greedy solution either is large for all permutations
of Eopr Or it is small for all permutations. Hence, these are not random events
depending on the order, but two cases in which we can assume a uniform
distribution.

4.2. Analysis of the streaming algorithm for maximum matching

4.2 Analysis of the streaming algorithm for maximum
matching

In this section, we prove that MATCH has an approximation ratio of at least
1/2 + 7 in expectation for some fixed constant y > 0.

First we prove a lemma on the robustness of the greedy algorithm to small
changes in the stream. The lemma is required to deal with correlations that
may arise in the case where we need to show that the greedy algorithm picks
a significant fraction of edges of |M*|.

Lemma 4.2 Let 0 and ¢’ be streams of edges in G such that o can be transformed
into o’ by deleting an edge from o. Let M and M’ be the matchings computed by the
greedy algorithm on o and ¢’ respectively. Then ||M| — |M'|| < 1.

Proof Let C = (M \ M')U (M’ \ M), that is, the symmetric difference of M
and M'. Notice that C is a collection of disjoint paths and cycles that alternate
between edges of M and M'. We claim that in this collection there is at most
one path of non-zero length. This implies the statement in the lemma.

We argue that if such a path exists, it must contain the edge that was deleted.

Hence, it is the unique path. Assume toward contradiction, that there exists a
path in C, which does not contain the deleted edge. We now closely examine
the first edge e of this path that arrives. Note that this is the same for ¢
and ¢’. In both runs of the greedy algorithm, the two vertices of e are not
incident to a matching edge when e arrives. This means that ¢ should have
been taken in both runs and therefore cannot be in the symmetric difference
of the matchings, a contradiction.

In our analysis we will use the following lemma by Konrad et al which
bounds the number of edges that cannot be augmented by 3-augmenting
paths if the size of maximal matching is small.

Lemma 4.3 (Lemma 1 in [45]) Let « > 0, M be a maximal matching in G and
M* be a maximum matching in G with |M| < (1/2 + a)|M*|. Then the number
of 3-augmentable edges in M is at least (1/2 — 3a)|M*|. In particular, the number
of non-3-augmentable edges in M is at most 4o| M*|.

We are now ready to prove Theorem 3.1. We restate it for the convenience of
the reader.

Theorem (3.1 restated) There exists an absolute constant v > 0 such that there
is a semi-streaming algorithm for maximum matching under adversarial-injections
with an approximation ratio of 1/2 + vy in expectation.

Proof Define ¢ = 1/50, « = ¢, and p = ¢/4. Without loss of generality, we
assume that |[M*| > 2/p. Otherwise, the algorithm can just store the whole
graph as it is sparse i.e., it has a linear number of edges.

27

4. MATCHING

28

Let o7 be the smallest prefix of the stream that contains k = [p - |[M*|]
elements of M*. Further, let 0» be the remainder of the stream. Notice,
that Mél) C M;, since the first algorithm starts the same way, but continues

even after reaching this threshold. Let Mégl’l) c Mél) be a random variable
corresponding to only those edges in Mgl) taken during 7.

Case 1: For all permutations of E,p; it holds that Mé"l’l) = Mél). Notice that
by definition, [M{"| = M| > (1/2 —)| M*|.

The basic idea for this case is to show that in 0> there are a lot of

3-augmenting paths that can be used to improve Mél) via 3-AuG-PATHs.

If |[Mq]| > |[M*[(1/2 + «), we are already significantly better than 1/2.
Hence, assume otherwise. From Lemma 4.3 it follows that the number
of non-3-augmentable edges in M; is at most 4a|M*|. The number of
3-augmentable edges in Méﬁ’l) is obviously |M§‘71’1)| minus the number
of non-3-augmentable edges in it. The former is at least |[M*|(1/2 —¢)
while the latter is a subset of the non-3-augmentable edges in M; and

hence at most 4a|M*|. It follows that the number of 3-augmentable
edges in Méal’l) is at least (1/2 —4a —€)| M*|.

We will now restrict our attention to the subgraph of the edges in Mém’l)

and 0, and the 3-augmentable edges there. Recall, every 3-augmentable
edge corresponds to a 3-augmenting path that has two edges from M*
and one from Mém’l). If at least one of the edges from M* appears in
0, this edge is no longer 3-augmentable when we restrict ourselves
to 0». However, by definition only k of the edges from M* appear in

oy and each of them can appear in only one 3-augmenting path. In

consequence, the number of 3-augmentable edges in Mém’l) considering
only o7 is at least

1 1 1
I — k> = — —eg—0— *
(2 4u s) |M*| k/<2 4o —e—p | *‘>]M\

Here we use that by assumption |[M*| > 2/p. After constructing the

matching Mél), the second algorithm proceeds to collect 3-augmenting

paths for it using 3-Auc-Parns. We fix its parameter

B = <;—4oc—e—32p>/<;—s>.

Notice that after completing Phase 1, the second algorithm has at
least ﬁ\M£1)| many 3-augmenting paths in the remaining instance.

4.2. Analysis of the streaming algorithm for maximum matching

Case

Hence, by Lemma 4.1 we are guaranteed to find (8%/32) |M | many
3-augmenting paths. We conclude that

ot > (14 8) 1l > (14 8) a- o

Using the definitions of the constants, we calculate that p = (4 —
43¢)/ (4 — 8¢).

2: For at least one permutation of E,p; it holds that Mém’l) - Mgl). Let
o} be the realization of the random variable ¢ for such a permutation,

i.e., we have]Méaf’l)\ < (1/2 —¢)|M*|. We will argue that in expecta-
tion (not just for o7) the greedy algorithm will select a considerable
number of elements from M*. This directly improves its guarantee:
Let S = M* N M. Every edge in M* \ S intersects with some edge in
M; \ S, but every edge in M; \ S can only intersect with two edges in

M*\'S. This implies 2|M; \ S| > |M*\ S| and consequently
[Mi| = (IM*] +1S])/2. (41)

We bound E[|S|] from below by examining the elements of M* in 07,
denoted by e7,e5,...,¢;. Let o), ...,a® correspond to the prefix of o

until right before e7, ..., e; arrive. Further, define M§1),. .., Mgk) as the

value of M; after each prefix o, .., o),

Notice that ¢®) can be transformed to ¢} by adding and deleting at
most 2k elements. Thus, it follows from Lemma 4.2 that for all i < k
and any oy,

M| < M| < (172 - &) |M*| + 2k,
This implies that the number of edges in M* not intersecting with edges
in M%l) is at least |M*| — 2|M§l)\ > 2¢|M*| — 4k. If e} is one of these
edges, then it is taken in M;. The probability for each element in M,
which has not arrived yet, to be e is equal. Hence, conditioning on
some choice of (Tl(l) the probability that e} is taken in M; is at least
(2e| M*| — 4k)/ (|M*| — (i — 1)) > 2¢e — 4k/|M*|. Thus,

k
E[S] >) Ple; €] > k<2e ‘;‘4"*0

" M*| +1
”'M’(-4f rM|*\ >:<

With assumption M* > 2/p, (4.1) we conclude that

4 *
uvf*|> M)

1) i} 1 82 .
E[M)) > (3 +200— 602) 7| = (145) 1wl

29

4. MATCHING

30

Taking the worst of the bounds, we calculate the constant
: 1 (4—436\° e 1
'}’—mln{g,32<4_88> (1—€>—€,8}—20000 O

4.3 Online Setting

Since we can improve 1/2 for the streaming setting, it is natural to hope that
the existing techniques (e.g., the approach of the previous section) can be
applied in the online setting as well. Surprisingly, this is not the case. In
other words, the competitive ratio of 1/2 is optimal even for bipartite graphs.
The technique from the previous section breaks apart, because the algorithm
constructs several candidate solutions in parallel by guessing |[M*|. This is
not a problem for a streaming algorithm, but, an online algorithm can only
build one solution.

For a formal proof, we rely on the bipartite construction used in the proof
of Theorem 3 from [31]. The authors show that there is no (randomized)
algorithm with a competitive ratio of 1/2 + ¢ for any ¢ > 0. More precisely,
they show that not even a good fractional matching can be constructed online.
For fractional matchings, randomization does not help and therefore we can
assume the algorithm is deterministic. The original proof is with respect
to adversarial order, but it is not hard to see that it transfers to adversarial
injections.

The authors construct a bipartite instance that arrives in (up to) N rounds. In
round i, a matching of size i arrives. The algorithm does not know whether
the current round is the last one or not. Hence, it has to maintain a good
approximation after each round. This forces the algorithm to take edges that
do not belong to the optimal matching and eventually leads to a competitive
ratio of 1/2. The same construction works in our model: The edges from the
optimal matching arrive in the last round and their internal order does not
affect the proof. In fact, the construction works for any order of the elements
within a round. Thus, an algorithm cannot exploit the fact that their order is
randomized and therefore also cannot do better than 1/2.

Chapter 5

Submodular Maximization

In this chapter, we consider the problem of submodular maximization subject
to a cardinality constraint. Recall that in this problem, the algorithm has
query access to a monotone, submodular function f : 28 — R, over a
ground set E. Moreover, f is normalized with f(®) = 0. The goal is to
compute a set S of size at most k that maximizes f(S). We present a 0.55-
approximate streaming algorithm in the adversarial-injections model which
only needs the memory to store (O(k))F many elements. Importantly, this
number is independent of the length of the stream.

5.1 Notation

We denote by o the stream of elements E, and by —co0 and oo the start and
end of the stream. For elements a and b, we write o[a, b] for the interval
including a and b and o(a, b) for the interval excluding them. Moreover, we
may assume that f(@) = 0, since otherwise, we can otherwise replace the
submodular function with f’: 2 — R, T+ f(T) — f(@).

Denote the permutation of Eqpr by 77. Let 0" be the i’th element of Eqpy in the
stream according to the order given by 7. Let Of = @ and O] = {o,...,07"}
for all i; hence, Eopr = Of for any 7. Finally, let OPT = f(O[).

5.2 The Algorithm

For simplicity we present an algorithm with the assumption that it knows
the value OPT. Moreover, for the set of increases in f, thatis I = {f(e| S) :
e € E,S C E}, we assume that |I| < O(k). These two assumptions can be
made at a marginal cost in the approximation ratio and with an insignificant
increase in memory. This follows from standard techniques. We refer the
reader to Appendix A.2 for details.

31

5. SUBMODULAR MAXIMIZATION

32

Figure 5.1: In this example, function f counts the dots covered by a set of rectangles. On
the right, the tree for stream 0 = (A, B,C, D) and k = 2 is depicted. The labels on the edges
correspond to the increase in f. The maximal leaves are highlighted.

As a central data-structure, the algorithm maintains a rooted tree T of height
at most k. Every node except for the root stores a single element from E. The
structure resembles a prefix tree: Each node is associated with the solution
where the elements on the path from the root to the node is selected. The
nodes can have at most || children, that is, one for each increase. The basic
idea is that for some partial solution S C E (corresponding to a node) and
two elements e, ¢’ with f(e | S) = f(¢/ | S) we only consider one of the
solutions SU {e} and SU {¢’}. More precisely, the algorithm starts with a
tree consisting only of the root. When it reads an element e from the stream,
it adds e as a child to every node where (1) the distance of the node to the
root is smaller than k and (2) the node does not have a child with increase
f(e| S), where S is the partial solution corresponding to this particular node.

Because of (1), the solutions are always of cardinality at most k. When the
stream is read completely, the algorithm selects the best solution among all
leaves. An example of the algorithm’s behavior is given in Figure 5.1.

5.2.1 Overview of the Analysis

For analyzing the algorithm, we will use a sophisticated strategy to select one
of the leaves and only compare this leaf to the optimum. We emphasize that
this selection does not have to be computed by the algorithm. In particular, it
does not need to be computable by a streaming algorithm and it can rely on
knowledge of Eopr and Eyorse, Which the algorithm does not have. Since the
algorithm always takes the best leaf, we only need to give a lower bound for
one of them. Before we describe this strategy, we analyze the tree algorithm
in two educational corner cases.

The first one shows that by a careful selection of a leaf the algorithm appears
to take elements based on the location of the Eqpr, although it does not know
them. Let " = argmax,. o (—o0,07] f(e), that is, the most valuable element until
the arrival of the first element from Eqpr. Here argmax breaks ties in favor of
the first element in . We do not know when o arrives, but we know that the

5.2. The Algorithm

algorithm will have created a node (with the root as its parent) for rJ* by then.
We define iteratively R = {r{,..., 7} and r[| = ArgMaX, e, o f(e | RT)
for all i. Again, we can be sure that rn
R until the arrival of 07"

71, which yields the best i increase for

7.1, is appended to the path r{ — -+ — [

This selection is inspired by the following idea. Suppose we could partition
the stream into k intervals such that in each exactly one element from Eqpy
appears. Then a sensible approach would be to start with an empty solution
and greedily add the element that yields the maximal increase to our partial
solutlon in each interval. Clearly one such partition would be o (0], 07, ;],
i = ., k. We note that while the selection detailed in the previous
paragraph is similar, it does not cornpletely capture this idea. Although 7],
is an element that arrives before 07 i1, we cannot be certain that it arrives after
o/*. We only know that it arrives after 7.

Next, we prove that the solution R is a 1/2-approximation. This already
shows that the tree algorithm is 1/2-approximate even in the adversarial
order model. By definition of R and], we have

k

FRE) =)} f(rf [RLy) >

i=1

.M*

Il
—

flof" [RL4)

'M* i

—_

[Fof I Ry) = f(o | RE)] +) f(of | RY).

i= i=1

Notice that due to submodularity the term f(o7 | R ;) — f(of | R) is

1
always non-negative. Moreover, if o7 = r/* € RT, it collapses to f(o | R™ ;).
Thus, we can bound the right term of the equation and thereby f(R]) 1th

on

S =

k
FRE) >) f(Of!R£1)+;f(0?!R?)-

T
i =0;

From submodularity and monotonicity of f it follows that

k
> f(ol" | RY) = F(OF | RY) = fF(OF URY) = F(RY) = f(OF) = f(R).

i=1

Hence, we conclude that

k
2f(RY) = F(OF) + o flof" | RiZy).

This shows that R} is 1/2-approximate, because Of = Eopr. Indeed, if a
significant value of the elements in Ep; are taken, then R is even better
than 1/2-approximate.

33

5. SUBMODULAR MAXIMIZATION

34

Recall that the elements E,y; are ordered randomly in the adversarial-
injections model. Hence, the worst-case in the analysis above is that R
is disjoint from Epr for all realizations of 7r. However, by a different analysis
we can see that this case is in fact well-behaved. This is because the algorithm
would select the same elements 77, ..., 7 for every realization of 7r. Hence,
we can safely drop the superscript 77 in R and r]*. Since for every element
0 € Eopr there is some realization of 7t where 0" = o, yet the algorithm does
not pick 07, we can bound the increase of each r; by

1

f(ri| Riz1) > max f(o|Ri-1) =+ 3, f(o|Ri1).
0E€Eopr k 0€Eops
By submodularity and monotonicity we get
1 1 1
¢ ¥ FOIRi1) > 1 f(Fom | Ria) > L (OPT = f(Ri 1))
0€Eopr

This is the same recurrence formula as in the classic greedy algorithm and
by simple calculations we get the closed form

F(Ry) = (1 - (1 - i)k) OPT > (1 - 1) OPT.

In other words, the algorithm is (1 — 1/e)-approximate even in this case. In
our main proof we will use a more involved strategy for selecting a leaf. This
is to be able to combine the two approaches discussed above.

5.2.2 Analysis

Let us first define the selection of the leaf we are going to analyze. The
elements on the path to this leaf will be denoted by s7, ..., s and we write
ST for {s],...s7}. The elements are defined inductively, but in contrast to
the previous section we also need indices 1y, . . ., n;. Recall that we previously
defined the (i + 1)’th element 7 ; as the best increase in o (r]", 07 ,]|. Here, we
use 141 to describe the index of the element from E,pr which constitutes the
end of this interval. It is not necessarily o], ; anymore. We always start with
n1 = 1, but based on different cases we either set n;,1 = n; + 1 or n; 1 = n;.
We underline that n; is independent of the realization of 7r. In the following,
t €]0,1] denotes a parameter that we will specify later.

The element sT* will be chosen from two candidates u* and of. The former is
the best increase of elements excluding o7, that is,

aTMAX, ¢y (_ g o) f (€) ifi=1,
OF,

argmaxeea(sf%)f(e | SI,) otherwise.

5.2. The Algorithm

The latter is defined in the same way, except it includes oy, in the choices,
that is,

argmaxeea(fwlogl}f(e) ifi=1,

Z argmaxeea(sﬁllog]f(e | S,) otherwise.

We now define the choice of s/ and 7,1 based on the following two cases.
Note that the cases are independent from the realization of 7.

Case 1: Enf(u] | S ;) >t -Exf(o} | ST ;). In this case, we set s = u]" and
niy1 = n;. Notice that this means sT is chosen independently from
oﬁi. In other words, we did not see 0,7{,, yet. The element oﬁi is still
each of the remaining elements in Eqpr with equal probability. In the
analysis this is beneficial, because the distribution of o7, . .., off remains
unchanged. This is similar to the second case in the previous section.

Case 2: E.f(u] | ST ;) <t-Exnf(o} | SI;). Here, set s7 = o] and n;;1 =
n; +1. Now the distribution of of,...,0 can change. However, a
considerable value of sT over different 7 comes from taking oj;. As
indicated by the first case in the previous section this will improve the

guarantee of the algorithm.

The solution S corresponds to a leaf in the tree algorithm. Clearly, u7" and
v} are children of the root. Hence, s7 is also a child. Then for induction
we assume s]* is a node, which implies u7, ; and v]; are also nodes: The
elements 1] ; and v, ; are the first elements after s} with the respective gains
(f(u], | STF) and f(v], | SI)). Hence, 7, is a child of s7.

In order to bound [E, f (S[7), we will study more broadly all values of E . f(S]})
where h < k. To this end, we define a recursive formula R(k, 1) and prove
that it bounds E f(S;]) /OPT from below. Then, using basic calculus we will

show that R(k, k) > 0.5506 for all k. Initialize R(k,0) = O for all k. Then let
R(k,h), h < k, be defined by

. t t 1 14t 1

Lemma 5.1 For all instances of the problem and h < k, the solution S;f as defined
above satisfies IE f (S7) = R(k, h)OPT.

Proof The proof is by induction over h. For h = 0, the statement holds as
R(k,0)0OPT = 0 = E,f(S§). Let h > 0 and suppose the statement of the
lemma holds with & — 1 for all instances of the problem. Suppose we are
given an instance with k > h. We distinguish the two cases sT = uf and
st =of.

First, consider E. f(u]) > t-E.f(0o7), which implies that sT = u7. Note that
u7l is the best element in o(—oo,0]), consequently, its choice is independent

35

5. SUBMODULAR MAXIMIZATION

36

from the realization of 7r. Let us drop the superscript in u{ and s for clarity.
We construct a new instance mimicking the subtree of s1. Formally, our new
instance still has the same k elements from Eqpy, i.e., k' = k. The stream is
o' = 0(s7,00) and, the submodular function f’: 24 — R, f'(T) — f(T | s1).
In this instance we have OPT' = f'(Eopr) = f(Eorr | 1) = OPT — f(s1).
It is easy to see that the elements s{7, .. .,s;ﬁ 1 chosen in the new instance
correspond exactly to the elements s7,...,s;. Hence, with the induction

hypothesis we get

Ef(Si) = f(s1) + Exf(Sy | 51) = f(s1) + Exf'(S)
> f(s1) + R(k,h —1)(OPT — f(s1)).

By assumption we have f(s;) > t-E,f(0of) > t-OPT/k. Together with
R(k,h—1) <1/(1+t) <1 we calculate

F(s1) + R(k,h — 1)(OPT — f(s1)) = %om +R(E—1) (1 - Ii) OPT.

The right-hand side is by definition at least R(k, h)OPT.

Now we turn to the case E,f(u]) < t-Exf(o]), which means s = o] is
chosen. Similar to the previous case, we construct a new instance. After
taking s, our new instance has k' = k — 1 elements E},. = Eopr \ {0] }, the
stream ¢’ = ¢(s1,00), and the submodular function f’ : 2F — R, f(T)
£(T | s7). Thus, OPT' = f'(Eje,) = f(Ecrr \ {07} | $T) > OPT — £(s7 Uof).
We remove o] from Eqpr, because sT = v depends on it. The distribution of
05,...,0 when conditioning on the value of o (and thereby the choice of
sT7) is still a uniformly random permutation of EJ ;. Like in the previous case,
we can see that §;" ; = ST\ {s]} and we can apply the induction hypothesis.
First, however, let us examine E f(s7 Uo]). Since we know that whenever
si' # of we have s = uf, it follows that

Pr(sT # of | - Ex[f(s1) | sT # of | < Enf(uf) <t-Enf(of) <t -Erf(s7).
Hence, we deduce
Erf(st UoT) < Exnf(of) + Prlst # of] - Ex[f(s1) | sT # o]
S Enf(of) +t-Exf(sT).

We are ready to prove the bound on Ef(S]"). By induction hypothesis, we
get

Erf(Sif) = Ernf(sT) +Erf' (57 1)
> Enf(s]) +R(k—1,h—1)(OPT — E.f(s7 Uol)).

5.2. The Algorithm

0.5512 T T T T T T T T
0.5511
0.551
0.5509
0.5508
0.5507
05506 | | | | | | | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

k

Rk, kl) _

Figure 5.2: Values of the recurrence formula for t = 0.8.

Inserting the bound on E, f(s] Uo7) we know that the right-hand side is at
least
E f(sT) +R(k—1,h—1)(OPT —Exf(of) —t-Erf(s])).

Using that f(s7') > f(of) forall rand R(k—1,h —1) -t <t/(1+1t) <1we
bound the previous term from below by

Ef(0F) + R(k — 1,1 — 1)(OPT — (1 + t)Ef (o).

Finally, we use that E;f(o]) > OPT/k and R(k—1,h —1)(1+1t) < 1to
arrive at

%OPT FR(k—1,h—1) (OPT - 1k+tOPT> > R(k,h)OPT,
which concludes the proof. g

With t = 0.8 we are able to show that for sufficiently large k the minimum
in the definition of R(k, k) is always attained by the first term. Then, after
calculating a lower bound on R(k, k) for small values, we can easily derive a
general bound.

Lemma 5.2 With t = 0.8 for all positive integers k it holds that R(k, k) > 0.5506 .

Figure 5.2 contains a diagram (generated by computer calculation), which
shows that the formula tends to a value between 0.5506 and 0.5507 for
k € {0,...,10000}. The proof requires tedious and mechanical calculations
and hence is omitted here. We refer the reader to Appendix A.2 for complete
details.

37

Part 11

Submodular Matroid
Intersection

39

Chapter 6

Introduction

In this second part of the thesis, we consider the problem of weighted matroid
intersection in the semi-streaming setting. We refer the reader to Section
2.3 for the definition of a matroid. Recall that in our problem, we are given
an oracle access to two matroids M; = (E,), M, = (E, I;) on a common
ground set E, and a non-negative weight function w : E — R>(on the
elements of the ground set. The goal is to find a subset X C E that is
independent in both matroids, i.e., X € I and X € I, and whose weight
w(X) = Y,cxw(e) is maximized. Our main result is a (2 + ¢)-approximate
semi-streaming algorithm for this problem. We then extend this algorithm to
also work for submodular functions by borrowing some ideas from [49].

6.1 Literature Review

For the unweighted maximum matching problem (See Subsection 2.7.1 for
a definition), the best known semi-streaming algorithm is the basic greedy
approach:

Initially, let M = @. Then for each edge e in the stream, add it to M
if MU {e} is a feasible solution, i.e., a matching; otherwise the edge
e is discarded.

The algorithm uses space O(|V|log|V|) and a simple proof shows that it
returns a 2-approximate solution in the unweighted case, i.e, a matching of size
at least half the size of a maximum matching. However, this basic approach
fails to achieve any approximation guarantee for weighted graphs.

Indeed, for weighted matchings, it is non-trivial to get even a small constant-
factor approximation. One way to do so is to replace edges if we have a much
heavier edge. This is formalized in [27] whose authors get a 6-approximation.

41

6. INTRODUCTION

42

Later, [52] improved this algorithm to find a 5.828-approximation; and, with
a more involved technique, [17] provided a (4 + ¢)-approximation.

It was only in the recent breakthrough work [60] that the gap in the approxi-
mation guarantee between unweighted and weighted matchings was closed.
Specifically, [60] gave a semi-streaming algorithm for weighted matchings
with an approximation guarantee of 2 + ¢ for every ¢ > 0. Shortly after,
[32] came up with a simplified analysis of their algorithm, reducing the
memory requirement from O (|V|log? |V]) to O¢(|V|log |V|). These results
for weighted matchings are tight (up to ¢) in the sense that any improvement
would also improve the state-of-the-art in the unweighted case, which is a
long-standing open problem.

The algorithm by [60] is an elegant use of the local ratio technique in [8]
and [7] in the semi-streaming setting. While this technique is very versatile
and it readily generalizes to weighted hypergraph matchings, it is much
harder to use for the related problem of weighted matroid intersection. This
is perhaps surprising as many of the prior results for the matching problem
also applied to the matroid intersection problem in the semi-streaming model.
Indeed, the greedy algorithm still returns a 2-approximate solution in the
unweighted case and the algorithm in [17] returns a (4 + ¢)-approximate
solution for weighted instances. So, prior to our work, the status of the
matroid intersection problem was that of the matching problem before [60].

6.2 Overview of Results and Techniques

We now describe at a high-level the reason that the techniques from [60] are
not easily applicable to matroid intersection and our approach for dealing
with this difficulty. The approach in [60] works in two parts, first certain
elements of the stream are selected and added to a set S, and then at the end
of the stream a matching M is computed by the greedy algorithm that inspects
the edges of S in the reverse order in which they were added. This way of
constructing the solution M greedily by going backwards in time is a standard
framework for analyzing algorithms based on the local ratio technique.
Now in order to adapt the algorithm in [60] to matroid intersection, recall
that the bipartite matching problem can be formulated as the intersection
of two partition matroids. We can thus reinterpret their algorithm and
analysis in this setting. Furthermore, after this reinterpretation, it is not
too hard to define an algorithm that works for the intersection of any two
matroids. However, bipartite matching is a special case of matroid intersection
which captures a rich set of seemingly more complex problems. This added
expressiveness causes the analysis and the standard framework for analyzing
local ratio algorithms to fail. Specifically, we prove that a solution formed
by running the greedy algorithm on S in the reverse order (as done for the

6.2. Overview of Results and Techniques

matching problem) fails to give any constant-factor approximation guarantee
for the matroid intersection problem. To overcome this and to obtain our
main result, we make a connection to a concept called matroid kernels (see
[29] for more details about kernels), which allows us to identify a subset of S
with an approximation guarantee of 2 + ¢ in a more complex way.

Finally, for the intersection of more than two matroids, the approach used
in the analysis does not work, because the notion of matroid kernel does
not generalize to more than two matroids. However, we conjecture that the
subset S generated for the intersection of k matroids still contains a (k + ¢)-
approximation. Currently, the best approximation results are a (k? + ¢)-
approximation from [17] and a (2(k + \/k(k — 1)) — 1)-approximation from
[13]. For k = 3, the former is better, giving a (9 + ¢)-approximation. For
k > 3, the latter is better, giving an O(k)-approximation.

Generalization to submodular functions. Recently, Levin and Wajc [49]
obtained improved approximation ratios for matching and b-matching prob-
lems in the semi-streaming model with respect to submodular functions.
Specifically, they get a (3 + 2v/2)-approximation for monotone submodu-
lar b-matching, a (4 + 3v/2)-approximation for non-monotone submodu-
lar matching, and a (3 + ¢)-approximation for maximum weight (linear)
b-matching. In our work, we are able to extend our algorithm for weighted
matroid intersection to work with submodular functions by combining our
and their ideas. In fact, we are able to generalize all their results to the case
of matroid intersection with better or equal! approximation ratios: we get a
(3+ 22 + 6)-approximation for monotone submodular matroid intersection,
a (4 +3v/2 + &)-approximation for non-monotone submodular matroid inter-
section and a (2 + ¢)-approximation for maximum weight (linear) matroid
intersection.

10ne can get rid of the ¢ factor if we assume that the function value is polynomially
bounded by |E|, an assumption made by [49].

43

Chapter 7

The Local Ratio Technique for
Weighted Matroid Intersection

In this chapter, we first present the local ratio algorithm for the weighted
matching problem that forms the basis of the semi-streaming algorithm
in [60]. We then adapt it to the weighted matroid intersection problem. While
the algorithm is fairly natural to adapt to this setting, we give an example
in Section 7.2 that shows that the same techniques as used for analyzing the
algorithm for matchings does not work for matroid intersection. Instead,
our analysis, which is presented in Section 7.3, deviates from the standard
framework for analyzing local ratio algorithms and it heavily relies on a
structural property of matroid intersection known as kernels. We remark
that the algorithms considered in the aforementioned sections do not have
a small memory footprint. We deal with this in Section 7.4 to obtain our
semi-streaming algorithm.

7.1 Local Ratio Technique for Weighted Matching

The local ratio algorithm for the weighted matching problem is given in
Algorithm 1. The algorithm maintains vertex potentials w(u) for every vertex
u, a set S of selected edges, and an auxiliary weight function g : S — R
of the selected edges. Initially the vertex potentials are set to 0 and the set
S is empty. When an edge e = {u, v} arrives, the algorithm computes how
much it gains compared to the previous edges, by taking its weight minus
the weight/potential of its endpoints (g(e) = w(e) — w(u) — w(v)). If the
gain is positive, then we add the edge to S, and add the gain to the weight of
the endpoints, that is, we set w(u) = w(u) + g(e) and w(v) = w(v) + g(e).

45

7. THE LocAL RaTio TECHNIQUE FOR WEIGHTED MATROID INTERSECTION

2
Time 1 Time 3 Time 4
_
K 1 1 1 \
Oo—O | O1-1 OO 0 Q110
| | 2 | N2
| | e | N
O O O | O0—0O | G210
Time 1 E Time 2 E Time 3 E Time 4

Figure 7.1: The top part shows an example execution of the local ratio technique for weighted
matchings (Algorithm 1). The bottom part shows how to adapt this (bipartite) example to the
language of weighted matroid intersection (Algorithm 2).

Algorithm 1 Local ratio algorithm for weighted matching

Input: A stream of the edges of a graph G = (V, E) with a weight function
w:E— IRQ().
Output: A matching M.
1. 5+ @
22 VueV,w(u) <« 0
3: for edge e = (u,v) in the stream do

4 ifw(u)+w(v) < w(e) then

5: g(e) «+ w(e) —w(u) —w(v)

6: w(u) < w(u) + g(e)

7: w(v) < w(v) + g(e)

8: S+« SuU{e}

9: end if
10: end for
11: return a maximum weight matching M among the edges stored on the

stack S

For a better intuition of the algorithm, consider the example depicted on the
top of Figure 7.1. The stream consists of four edges e, e, €3, 4 with weights
w(er) =1and w(ep) = w(ez) = w(es) = 2. At each time step i, we depict the
arriving edge ¢; in thick along with its weight; the vertex potentials before
the algorithm considers this edge is written on the vertices, and the updated

46

7.2. Adaptation to Weighted Matroid Intersection

vertex potentials (if any) after considering e; are depicted next to the incident
vertices. The edges that are added to S are solid and those that are not added
to S are dashed.

At the arrival of the first edge of weight w(e;) = 1, both incident vertices
have potential 0 and so the algorithm adds this edge to S and increases the
incident vertex potentials with the gain g¢(e;) = 1. For the second edge of
weight w(e;) = 2, the sum of incident vertex potentials is 1 and so the gain
of ey is g(e2) = 2 — 1, which in turn causes the algorithm to add this edge
to S and to increase the incident vertex potentials by 1. The third time step
is similar to the second. At the last time step, edge es of weight w(es) = 2
arrives. As the incident vertex potentials sum up to 2 the gain of ¢4 is not
strictly positive and so this edge is not added to S and no vertex potentials
are updated. Finally, the algorithm returns the maximum weight matching
in S which in this case consists of edges {e1,e3} and has weight 3. Note that
the optimal matching of this instance had weight 4 and we thus found a
4 /3-approximate solution.

In general, the algorithm has an approximation guarantee of 2. This is proved
using a common framework to analyze algorithms based on the local ratio
technique: We ignore the weights and greedily construct a matching M by
inspecting the edges in S in reverse order, i.e., we first consider the edges that
were added last. An easy proof (see e.g. [32]) then shows that the matching
M constructed in this way has weight at least half the optimum weight.

In the next section, we adapt the above described algorithm to the context of
matroid intersections. We also give an example that the above framework for
the analysis fails to give any constant-factor approximation guarantee. Our
alternative (tight) analysis of this algorithm is then given in Section 7.3.

7.2 Adaptation to Weighted Matroid Intersection

When adapting Algorithm 1 to matroid intersection to obtain Algorithm
2, the first problem we encounter is the fact that matroids do not have a
notion of vertices, so we cannot keep a weight/potential for each vertex. To
understand how we overcome this issue, it is helpful to consider the case
of bipartite matching and in particular the example depicted in Figure 7.1.
It is well known that the weighted matching problem on a bipartite graph
with edge set E and bipartition V;, V, can be modelled as a weighted matroid
intersection problem on matroids M; = (E, I;) and M, = (E, I;) where for
ie{1,2}

I; = {E' C E | each vertex v € V; is incident to at most one vertex in E'} .

Instead of keeping a weight for each vertex, we will maintain two weight
functions w; and wy, one for each matroid. These weight functions will be

47

7. THE LocAL RaTio TECHNIQUE FOR WEIGHTED MATROID INTERSECTION

Algorithm 2 Local ratio for matroid intersection

Input: A stream of the elements of the common ground set of matroids
M, = (E,), My = (E, I).
Output: A set X C E that is independent in both matroids.
S« @
for element e in the stream do
calculate w!(e) = max ({0} U{0:e€spany ({f €S| wi(f) = 9})})
forie {1,2}.
if w(e) > wj(e) + w3
g(e) — wle) — wi (e
wie) < wi(e) + g
wale) < wj(e) + g
S« Su{e}
end if
end for
return a maximum weight set T C S that is independent in M; and M,

e) then

) —w;(e)
e)

e)

set so that the following holds in the special case of bipartite matching: on
the arrival of a new edge ¢, let T; C S be an independent set in I; of selected
edges that maximizes the weight function w;. Then we have that

feﬂ:Ti{?}?u{e}eIi w;i(f) if T; U{e} ¢ I; and 0 otherwise (7.1)
equals the vertex potential of the incident vertex V; when running Algorithm
1. It is well-known (e.g. by the optimality of the greedy algorithm for
matroids) that the cheapest element f to remove from T; to make T; \ {f} U
{e} an independent set equals the largest weight 6 so that the elements of
weight at least 6 spans e. We thus have that (7.1) equals

max ({o} U{6:eespany, ({f €S| wl(f) > e})}) .

It follows that the quantities wj(e) and wj(e) in Algorithm 2 equal the
incident vertex potentials in Vi and V, of Algorithm 1 in the special case of
bipartite matching. To see this, let us return to our example in Figure 7.1
and let V] be the two vertices on the left and V, be the two vertices on the
right. In the bottom part of the figure, the weight functions w; and w, are
depicted (at the corresponding side of the edge) after the arrival of each
edge. At time step 1, e; does not need to replace any elements in any of
the matroids and so wj(e1) = wj(e2) = 0. We therefore have that its gain is
g(e1) =1 and the algorithm sets wj(e1) = wa(e1) = 1. At time 2, edge e; of
weight 2 arrives. It is not spanned in the first matroid whereas it is spanned
by edge e; of weight 1 in the second matroid. It follows that wj(e;) = 0
and wj(e;) = wy(e;) = 1 and so e; has positive gain g(e;) = 1 and it sets

48

7.2. Adaptation to Weighted Matroid Intersection

wi(e2) = 1 and wa(e2) = wa(e1) +1 = 2. The third time step is similar to
the second. At the last time step, e4 of weight 2 arrives. However, since it is
spanned by e; with wy(e1) = 1 in the first matroid and by e3 with wy(e3) =1
in the second matroid, its gain is 0 and it is thus not added to the set S. Note
that throughout this example, and in general for bipartite graphs, Algorithm
2 is identical to Algorithm 1. One may therefore expect that the analysis of
Algorithm 1 also generalizes to Algorithm 2. We explain next why this is not
the case for general matroids.

Counter Example to Same Approach in Analysis

We give a simple example showing that the greedy selection (as done in the
analysis for Algorithm 1 for weighted matching) does not work for matroid
intersection. Still, it turns out that the set S generated by Algorithm 2 always
contains a 2-approximation but the selection process is more involved.

Lemma 7.1 There exist two matroids My = (E, I) and My = (E, I) on a common
ground set E and a weight function w : E — Rxq such that a greedy algorithm that
considers the elements in the set S in the reverse order of when they were added by
Algorithm 2 does not provide any constant-factor approximation.

Proof The example consists of the ground set E = {a,b,c,d} with weights
w(a) =1, w(b) =1+¢w(c) =2¢w(d) = 3¢ for a small ¢ > 0 (the approx-
imation guarantee will be at least ()(1/¢)). The matroids M; = (E,I;) and
M; = (E, I) are defined by

* asubset of E is in [; if and only if it does not contain {a,b}; and
* asubset of E is in I if and only if it contains at most two elements.

To see that M; and M, are matroids, note that M; is a partition matroid with
partitions {a,b}, {c} and {d}, and M, is the 2-uniform matroid (alternatively,
one can easily check that M; and M, satisfy the definition of a matroid).

Now consider the execution of Algorithm 2 when given the elements of E in
the order 4, b, ¢, d:

e Element a has weight 1, and {a} is independent both in M; and My, so
we set wy(a) = wy(a) = g(a) =1 and a is added to S.

¢ Element b is spanned by a in M; and not spanned by any element in
M,. So we get g(b) = w(b) —wi(b) —w;(b) =1+e—-1—-0=¢. As
e>0,weadd bto S, and set w1 (b) = wy(a) +e =1+ ¢and wy(b) =«

e Element ¢ is not spanned by any element in M; but is spanned by {a, b}
in My. As b has the smallest w, weight, w}(c) = wy(b) = e. So we have
g(c) =2e—wi(c) —wi(c) =2 —0—e=¢ >0, and we set wi(c) = ¢
and wy(c) = 2¢ and add c to S.

49

7. THE LocAL RaTio TECHNIQUE FOR WEIGHTED MATROID INTERSECTION

50

e Element d is similar to c. We have g(d) =3¢ —0 —2¢ = ¢ > 0 and so
we set wy(d) = ¢ and wy(d) = 3e and add d to S.

As the algorithm selected all the elements, we have S = E. It follows that
the greedy algorithm on S will select d and c (in the reverse order of when
elements were added), after which the set is a maximal independent set in
M,. This gives a weight of 5¢, even though a and b both have weight at least
1, which shows that this algorithm does not guarantee any constant factor
approximation. U

7.3 Analysis of Algorithm 2

We prove that Algorithm 2 has an approximation guarantee of 2.

Theorem 7.2 Let S be the subset generated by Algorithm 2 on a stream E of
elements, matroids My = (E, 1), Mo = (E, I) and weight function w : E — Rxy.
Then there exists a subset T C S independent in My and in My whose weight w(T)
is at least w(S*)/2, where S* denotes an optimal solution to the weighted matroid
intersection problem.

Throughout the analysis we fix the input matroids M; = (E,), M = (E, I»),
the weight function w : R — IR0, and the order of the elements in the
stream. While Algorithm 2 only defines the weight functions w; and w;
for the elements added to the set S, we extend them in the analysis by, for
i € {1,2}, letting w;(e) = w; (e) for the elements e not added to S.

We now prove Theorem 7.2 by showing that g(S) > w(5*)/2 (Lemma 7.4)
and that there is a solution T C S such that w(T) > ¢(S) (Lemma 7.5). In the
proof of both these lemmas, we use the following properties of the computed
set S.

Lemma 7.3 Let S be the set generated by Algorithm 2 and S C S any subset.
Consider one of the matroids M; with i € {1,2}. There exists a subset T' C S’ that
is independent in M;, i.e., T' € I;, and w;(T") > g(S'). Furthermore, the maximum
weight independent set in M; with respect to w; over the whole ground set E can be
selected to be a subset of S, i.e. T; C S, and it satisfies w;(T;) = g(S).

Proof Consider matroid M; (the proof is identical for M) and fix S’ C S.
The set T; C S’ that is independent in M; and that maximizes w- (T;) satisfies

W (T]) = /Ooorank({e € T) | wie) >0))do = /Ow rank({e € §' | wi(e) > 6))do.

The second equality follows from the fact that the greedy algorithm that
considers the elements in decreasing order of weight is optimal for matroids
and thus we have rank({e € T | wy(e) > 6}) = rank({e € S’ | wi(e) > 6})
for any 0 € R.

7.3. Analysis of Algorithm 2

Now index the elements of S’ = {ej, ey, ...,¢e,} in the order they were added
to S by Algorithm 2 and let S;- = {e1,...,ej} forj=0,1,...,¢ (where S = ©).
By the above equalities and by telescoping,

{)
1(Ty) = Z%/o (rank({e € S; | wi(e) > 0}) —rank({e € S;_; | wi(e) > 0})) d6.

We have that rank({e € S | wq(e) > 0}) —rank({e € S, | wi(e) > 0})
equals 1 if w(e;) > 6 and e; € span({e € S|_; | wi(e) > 0}) and it equals 0
otherwise. Therefore, by the definition of wj(-), the gain g(-) and w1 (e;) =
wj (e;) + g(e;) in Algorithm 2 we have

L

wi(T}) =Y [wi(e;) —max ({0} U {6 :e; € span ({f € S;_; | wi(f) = 6})})]

=1

~.

4

>) gle) =

i=1

The inequality holds because S;_, is a subset of the set S at the time when
Algorithm 2 considers element e;. Moreover, if S’ = S, then S;_l equals the
set S at that point and so we then have

wi(e;) = max ({0} U{0:e; € span ({f € Si_; | wi(f) > 6})})

which implies that the above inequality holds with equality in that case.
We can thus also conclude that a maximum weight independent set T; C S
satisfies w1 (T1) = g(S). Finally, we can observe that T; is also a maximum
weight independent set over the whole ground set since we have rank({e €
S| wi(e) = 0}) = rank({e € E | wy(e) > 0}) for every 6 > 0, which holds
because, by the extension of wj, an element e ¢ S satisfies e € span({f € S:

wi(f) = wi(e)})- O

We can now relate the gain of the elements in S to the weight of an optimal
solution.

Lemma 7.4 Let S be the subset generated by Algorithm 2. Then g(S) > w(S*)/2.

Proof We first observe that wj(e) + wa(e) > w(e) for every element e € E.
Indeed, for an element e € S, we have by definition w(e) = g(e) + wj(e) +
w3(e), and wi(e) — g(e) +w! (€), 50 w (¢) +wa(e) — 2g(e) + w} (e) + wh(e) —
w(e) + g(e) > w(e). In the other case, when e ¢ S then wj(e) + w3 (e) > w(e),
and wj(e) = w} (e), so automatically, w;(e) + wz(e) > w(e).

The above implies that w1 (S*) + w2(5*) > w(S*). On the other hand, by
Lemma 7.3, we have w;(T;) > w;(S*) (since T; is a max weight independent
set in M; with respect to w;) and w;(T;) = g(S), thus g(S) > w;(S*) for
i=1,2. U

51

7. THE LocAL RaTio TECHNIQUE FOR WEIGHTED MATROID INTERSECTION

52

We finish the proof of Theorem 7.2 by proving that there isa T C S indepen-
dent in both M; and M, such that w(T) > g(S). As described in Section 7.2,
we cannot select T using the greedy method. Instead, we select T using the
concept of kernels studied in [29].

Lemma 7.5 Let S be the subset generated by Algorithm 2. Then for any subset
S" C S, there exists a subset T C S’ independent in My and in My such that

w(T) > g(S").

Proof Consider one of the matroids M; with i € {1,2} and define a total
order <; on E such that e <; f if w;(e) > w;(f), or if w;(e) = w;(f) and
e appeared later in the stream than f. The pair (M;, <;) is known as an
ordered matroid. We further say that a subset E’ of E dominates element e
of E if e € E’ or there is a subset C, C E’ such that e € span(C,) and ¢ < e
for all elements ¢ of C,. The set of elements dominated by E’ is denoted by
D, (E'). Note that if E’ is an independent set, then the greedy algorithm
that considers the elements of Dy, (E’) in the order <; selects exactly the
elements E'.

Theorem 2 in [29] says that for two ordered matroids (M, <1), (M, <2)
there always is a set K C E, which is referred to as a M; M,-kernel, such that

¢ K is independent in both M; and in M>; and
i DM1 (K) U DMZ(K) = E.

We use the above result on M; and M, restricted to the elements in S'.
Specifically we select T C S’ to be the kernel such that Dy, (T) U Dy, (T) = S'.
Let Sy = D, (T) and Sy = Dy, (T). By Lemma 7.3, there exists a set T C Sq
independent in M; such that wy(T") > ¢(S1). As noted above, the greedy
algorithm that considers the element of S; in the order <; (decreasing weights)
selects exactly the elements in T. It follows by the optimality of the greedy
algorithm for matroids that T is a maximum weight independent set in S;
for M; with weight function w;, which in turn implies w1(T) > g(S1). In
the same way, we also have wy(T) > ¢(S,). By definition, for any e € &/,
we have w(e) = wi(e) + wa(e) — g(e). Together, we have w(T) = w1 (T) +
wy(T) — g(T) > g(S1) + g(S2) — g(T). As elements from T are in both Sy
and S,, and all other elements are in at least one of both sets, we have
8§(51) +8(52) = g(8') +&(T), and thus w(T) = g(5'). O

7.4 Making the Algorithm Memory Efficient

We now modify Algorithm 2 to only select elements with a significant gain,
parametrized by a > 1, and delete elements if we have too many in memory,
parametrized by a real number y. If « is close enough to 1 and y is large
enough, then Algorithm 3 is very close to Algorithm 2, and allows for a

7.4. Making the Algorithm Memory Efficient

similar analysis. This method is very similar to the one used in [60] and [32],
but our analysis is quite different.

More precisely, we take an element e only if w(e) > a(wj (e) + w3 (e)) instead
of w(e) > wj(e) + wj(e), and we delete elements if the ratio between two
also need to keep independent sets T; and T, which maximize the weight
functions w; and w, respectively. If an element with small g weight is in T; or
T>, we do not delete it, as this would modify the w;-weights and selection of
coming elements. We show that this algorithm is a semi-streaming algorithm
with an approximation guarantee of (2 + ¢) for an appropriate selection of
the parameters (see Lemma 7.7 for the space requirement and Theorem 7.8
for the approximation guarantee).

g weights becomes larger than y (> y). For technical purposes, we

Lemma 7.6 Let S be the subset generated by Algorithm 3 with « > 1 and y = .
Then w(S*) < 2ag(S).

Proof We define w, : E — R by w,(e) = w(e) if e € S and wy(e) = wﬂ(f)
otherwise. By construction, Algorithm 3 and Algorithm 2 give the same set
S, and the same weight function g for this modified weight function. By

Lemma 7.4, w,(5*) < 2¢(S). On the other hand, w(S*) < aw,(5*). O

Lemma 7.7 Let S be the subset generated by Algorithm 3 witha =1+ ¢eand y =
% and S* be a maximum weight independent set, where r1 and r, are the ranks
of My and M respectively. Then w(S*) < 2(1+2¢+o0(e))g(S). Furthermore, at

any point of time, the size of S is at most r1 + r, + min(r1, 72) log, (%).

Proof We first prove that the generated set S satisfies w(S*) < 2(1 4 2¢+
0(¢))g(S) and we then verify the space requirement of the algorithm, i.e.,
that it is a semi-streaming algorithm.

Let us call S’ the set of elements selected by Algorithm 3, including the
elements deleted later. By Lemma 7.6, we have 2ag(S’) > w(S*), so if we
prove that g(5') — g(S) < aeg(S) = (e+0(e))g(S), we are done. We set
i € {1,2} to be the index of the matroid with smaller rank.

In our analysis, it will be convenient to think that the algorithm maintains
the maximum weight independent set T; of M; throughout the stream. At
the arrival of an element e that is added to S, we have that the set T; is
updated as follows. If T; U {e} € I; then e is simply added to T;. Otherwise,
before updating T;, there is an element e* € T; such that w;(e*) = w;(e) and
T; \ {e*} U{e} is maximum weight independent set in M; with respect to w;.
Thus we can speak of elements which are replaced be another element in T;.
By construction, if e replaces f in T;, then w;(e) > aw;(f).

We can now divide the elements of S’ into stacks in the following way: If e
replaces an element f in T;, then we add e on top of the stack containing f,

53

7. THE LocAL RaTio TECHNIQUE FOR WEIGHTED MATROID INTERSECTION

54

otherwise we create a new stack containing only e. At the end of the stream,
each element e € T; is in a different stack, and each stack contains exactly
one element of Tj, so let us call S, the stack containing e whenever e € T;. We
define S, to be the restriction of S/, to S. In particular, each element from S’ is
in exactly one S/ stack, and each element from S is in exactly one S, stack. For
each stack S/, we set e;,(S.) to be the highest weight element of S, which was
removed from S. By construction, ¢(S.) — g(S.) < wi(egi(S,)). On the other
hand, w;(f) < H£g(f) for any element f € S’ (otherwise we would not have
selected it), so g(S.) — g(Se) < g (e41(S)). As eger(Sh) was removed from

S, we have g(ez(S))) < 5% where gax = masxg(e). As there are exactly r;
ec

1+¢)

stacks, we get ¢(S") — g(S) < ri% = e(1+¢&)gmar < (e+0(e))g(5).

We now have to prove that the algorithm fits the semi-streaming criteria.
In fact, the size of S never exceeds r1 + r, + r;log, (°£). By the pigeonhole
principle, if S has at least 7; loga(%y) elements, then there is at least one
stack S, which has at least log, (*) elements. By construction, the w; weight
increases by a factor of at least & each time we add an element on the same
stack, so the w; weight difference between the lowest and highest element
on the biggest stack would be at least °Y. As w;(f) < X£g(f), the g weight
difference would be at least y, and we would remove the lowest element,
unless it was in T; or T».

Theorem 7.8 Let S be the subset generated by running Algorithm 3 withx =1+ ¢
and y = % Then there exists a subset T C S independent in My and in M,
such that w(T) > g(S). Furthermore, T is a 2(1 + 2¢ + o(¢))-approximation for

the intersection of two matroids.

Proof Let S* be a maximum weight independent set. By Lemma 7.7, we
have 2(1 +2e +0(¢)g(S) > w(S*). Let S’ be the set of elements selected by
Algorithm 3, including the elements deleted later. As long as we do not
delete elements from T; or T, Algorithm 2 restricted to S’ will select the
same elements, with the same weights, so we can consider S’ to be generated
by Algorithm 2. Since S C S’, we now observe that by Lemma 7.5, we can
find an independent set T C S such that w(T) > g(S). O

Remark 7.9 It is easy to construct examples where the set S only contains a 2u-
approximation (for an example, see Figure 7.2 involving a bipartite graph), so our
analysis is tight up to e.

Remark 7.10 The techniques of this section can also be used in the case when the
ranks of the matroids are unknown. Specifically, the algorithm can maintain the
stacks created in the proof of Theorem 7.7 and allow for an error €/2 in the first two
stacks created, an error of e/4 in the next 4 stacks, and in general an error of e/2! in
the next 2 stacks by having a y value specific to each stack. The idea of constructing

7.4. Making the Algorithm Memory Efficient

b:a

Figure 7.2: Consider the example on a bipartite graph where edges arrive in the order ¢, ey, .. It
is easy to see that the set S formed by Algorithm 3 contains only the edge e, of weight 1 whereas
the optimal matching consists of taking edges e, e, of combined weight 2«.

such a geometric sequence is to have a total error of at most e. We explain this in
detail in Appendix B.1.

Algorithm 3 Semi-streaming adaptation of Algorithm 2
Input: A stream of the elements and 2 matroids (which we call M;, M;) on
the same ground set E, a real number & > 1 and a real number y.
Output: A set X C E that is independent in both matroids.
Whenever we write an assignment of a variable with subscript i, it means
we doitfori=1,2.
S« @
for element ¢ in the stream do
calculate w} (e) = max <{0} U{0:e€spany ({f €S| wi(f) > 9})})
if w(e) > a(wj(e) + w3 (e)) then
g(e) w(e) - wi(e) — w3 (e)
S« Su{e}
wi(e) gle) +w(e)
Let T; be a maximum weight independent set of M; with respect to w;.

Let gmax = I?Easxg(e)
Remove all elements ¢/ € S, such that y - g(¢/) < gmax and ¢’ ¢ T U Ty
from S.
end if
end for
return a maximum weight set T C S that is independent in M; and M

Chapter 8

Extension to Submodular Functions

In this chapter, we consider the problem of submodular matroid intersection
in the semi-streaming model. We refer the reader to Section 2.3 to recall
the definition of matroids and Section 2.2 for the definition of submodular
functions. In this problem, we are given an oracle access to two matroids
M, = (E,), My = (E,) on a common ground set E and an oracle access
to non-negative submodular function f : 2 — Ry on the powerset of
the elements of the ground set. The goal is to find a subset X C E that is
independent in both matroids, i.e., X € I and X € I, and whose weight
f(X) is maximized.

Our Algorithm 4 is a straightforward generalization of Algorithm 2 and
Algorithm 1 of [49]. Since, the weight of an element ¢ now depends on the
underlying set that it would be added to, we (naturally) define the weight of e
to be the additional value e provides after adding it to set S, i.e. w(e) = f(e |
S). If e provides S a good enough value, i, f(e | S) > a(wj(e) + w3 (e)),
we add it to set S but now with a probability g. This probability g is the
most important difference between Algorithm 3 and Algorithm 4. This is a
trick that we borrow from the Algorithm 1 of [49] which is useful when f is
non-monotone because of the following Lemma 2.2 from [11].

Lemma 8.1 (Lemma 2.2 in [11]) Let h : 2F — R be a non-negative submodu-
lar function, and let S be a a random subset of E containing every element of M with
probability at most q (not necessarily independently), then E[h(S)] > (1 — q)h(D).

In our proof, we can relate the weight of the set that we pick to the value
f(§*US¢), where Sy denotes the elements in the stack when the algorithm
stops and S* denotes the set of optimum elements. If the function f is
monotone, this is sufficient as f(S* U S f) > f(S*). If, however, function f is
non-monotone, one can use Lemma 8.1 with the function h(T) = f(T U S*).
This enables us to conclude that E[f(S* U S¢)] > (1 —q)f(5%).

57

8. EXTENSION TO SUBMODULAR FUNCTIONS

58

Algorithm 4 Extension of Algorithm 3 to submodular functions

Input: A stream of the elements and 2 matroids (which we call M;, M;) on
the same ground set E, a submodular function f : 2E 3 R, a real number
« > 1, a real number g such that 0 < g < 1 and a real number y.
Output: A set X C E that is independent in both matroids.
Whenever we write an assignment of a variable with subscript i, it means
wedoitfori=1,2.
SO
for element e in the stream do
calculate w} (e) = max ({0} U{0:e€spany ({f €S| wi(f) > 9})})
if f(e | S) > a(wj(e) + w5 (e)) then
with probability 1 — g, continue; {//skip e with probability 1 —g.}
g(e) < f(e|S) —wi(e) —wj(e)
S« Su{e}
wi(e) < g(e) +wj (e)
Let T; be a maximum weight independent set of M; with respect to w;.

Let gmax = Izéasxg(e)
Remove all elements ¢’ € S, such that - g(¢/) < gmaxand ¢’ € TIU T,
from S.
end if
end for
return a maximum weight set T C S that is independent in M; and M,

8.1 Analysis of Algorithm 4

We extend the analysis of Section 7.4 by using ideas from [49] to analyze our
algorithm. Before going into the technical details, we give a brief overview of
our analysis. For the sake of intuition, we assume that the Algorithm 4 does
not delete elements and also does not skip elements with probability 1 — g.
Then, due to the fact that the weight of an element e is the additional value it
provides to the current set S, one can relate the weight of the independent set
picked to the weight of the optimal solution given by the set S¢ i.e., f(S* | S¢)
by basically using the analysis of the previous chapter. However, this is not
enough as the weight of the optimal solution is f(S*). But, we can still relate
the gain of S¢ to f(S¢) similar to [49], which helps us relate f(S* U S¢) to the
weight of our solution. In order to extend it to the case when elements are
skipped with probability 1 — g, we show the above to hold in expectation
similar to [49], which is helpful for dealing with non-monotone functions
because of Lemma 8.1. Finally, we remark that one can use an analysis similar
to Section 7.4, to show that the effect of deleting elements does not affect the
weight of the solution by a lot.

8.1. Analysis of Algorithm 4

Let S; denote the set S generated when the algorithm stops and S} denote
the union of S; and the elements that were deleted by the algorithm. For the
sake of the analysis, we define the weight function w : E — R of an element
e to be the additional value it provided to the set S when it appeared in the
stream, i.e., w(e) = f(e | S). Like before, we extend the definition of weight
functions w; and w, for an element e that is not added to S as w;(e) = w; (e)
for i € {1,2}. We note here that all the functions defined above are random
variables which depend on the internal randomness of the algorithm. Unless
we explicitly mention it, we generally talk about statements with respect to
any fixed realization of the internal random choices of the algorithm.

In our analysis, we will prove properties about our algorithm that are already
proven for Algorithms 2 and 3 in the previous chapter. Our proof strategy
will be simply running Algorithm 2 or 3 with the appropriate weight function
which will mimick running our original algorithm. Hence, we will prove
these statements in a black-box fashion. A weight function that we will use
repeatedly in our proofs is w’ : E — R where w'(e) = w(e) if e € 5,
otherwise w’(e) = 0. This basically has the effect of discarding elements not
in S} i.e, elements that were never picked by the algorithm either because
they did not provide a good enough value or because they did but were still
skipped.

Lemma 8.2 Consider the set S} which is the union of Sy generated by Algorithm

4 and the elements it deletes. Then a maximum weight independent set in M; for
i € {1,2} over the whole ground set E can be selected to be a subset of S',, i.e.

T C S} and satisfies w;(T;) = g(S%).

Proof Consider running Algorithm 2 with weight function w’. Notice that
doing this generates a stack containing exactly the elements in the set S} and

exactly the same functions w;, w, and g. Now by applying Lemma 7.3, we
get our result. O

We prove the following lemma similar to [49] which relates the gain of
elements in S} to the weight of the optimal solution given the set S} ie,

f(S*] S}) Notice that the lemma below holds only in expectation for g # 1.

Lemma 8.3 Denote the set S}, which is the union of Sy generated by the Algorithm
4 with q € {1/(2a +1),1} and the elements it deletes. Then, E[f(S* | S})] <

20E[g(SF)].

Proof We first prove the lemma for 4 = 1 as the proof is easier than that
for g = 1/(2a + 1). Consider running Algorithm 2 with the weight function
w"” . E — R which is defined as follows. If e € S, then w' (e) = w(e), else

w"”(e) = w(e)/a. Notice that doing this generates a stack containing exactly

the elements in the set S} and exactly the same functions w;, w, and g. Now

59

8. EXTENSION TO SUBMODULAR FUNCTIONS

60

by applying Lemma 7.4, we get that w(S*) < 2a¢(S}). By submodularity, we
get f(S* | S}) < 2ag(Sh).

Now, we prove the lemma for g = 1/(2a + 1). We first define A : E — R for
an element e € E as Ae) = f(e | S}) Notice that, by submodularity of f
and definition of A, we have f(5* | S}) < A(S*). Hence, it suffices to prove
E[A(57)] < 24E[g(S})]. We prove this below.

Let the event that the element e € E does not give us a good enough value
i.e, it satisfies a (w7 (e) +wj(e)) > w(e) be R,. We have two cases to consider
now.

1. The first is when R, is true. Then, for any fixed choice of randomness of
the algorithm for which R, is true, we argue as follows. By definition,
w;i(e) = w;(e). Hence, a(wq(e) + wa(e)) > w(e). Also, w(e) = f(e|S)
where S is the stack when e appeared in the stream. As S C S}, by
submodularity and definition of A, we get that w(e) > A(e). Hence, we
also get that aIE[w (e) + wa(e)|Re] = E[A(e)|R,].

2. The second is when R, is false. Then, for any fixed choice of randomness
of the algorithm for which R, is false, we argue as follows. The element
e is picked with probability g given the set S at the time e appeared
in the stream. If we pick e, then w(e) + wa(e) = g(e) + wj(e) + g(e) +
w;(e) = 2w(e) — wj(e) —wi(e). If we do not pick e, then wj(e) +
wy(e) = wi(e) + wj(e). Hence, the expected value of wj(e) 4+ wy(e)
satisfies,

E[w:(e) +wa(e)|=Re, S| = 2qw(e) + (1 —2g)(wi (e) + w3 (e)) = 2quw(e).

The last inequality follows as we have g = 1/(2a +1) < 1/2. By the
choice of g and submodularity, we get that alE[w; (e) + wz(e)|—R,, S] >
2gaw(e) = (1 —q)w(e) = (1 —g)A(e). By law of total expectation and
conditioned on R, not taking place we get, alE[w;(e) + wa(e)|—R,] >
E[A(e)[=R.].

Finally by the law of total expectation and the points 1 and 2, we obtain
that alE[w1 (e) + wa(e)] > E[A(e)] holds for any element e € E. Applying
this to the elements of S*, we get that alE[w; (S*) + w2 (S*)] = E[A(S*)]. On
the other hand, by Lemma 8.2, we have w;(T;) > w;(5*) (since T; is a max
weight independent set in M; with respect to w;) and w;(T;) = g(S}), thus
8(S%) 2 wi(S*) fori = 1,2. Hence, we get that E[A(S")] < 2«E[g(S})]. D

Since we would like to relate the gain of elements in S} to the optimal

solution, we now bound the value of f (S}) in terms of the gain, similar to
[49].

8.1. Analysis of Algorithm 4

Lemma 8.4 Consider the set S/f, which is the union of Sy generated by Algorithm 4
and the elements it deletes. Then, g(S}) > (1- 1/zx)f(S}).

Proof By definition, any element e € S’f, satisfies w(e) > a(wj(e) + wj(e)).
Hence, g(e) > w(e) — w(e)/a. Summing over all elements in S, we get
g(S’f) > (1- 1/oc)w(S}) > f(S}) where the last inequality (it is not an
equality as S} also contains deleted elements) follows by definition of w and
submodularity of f. U

Our algorithm only has the set S and not S} which also includes the deleted
elements. Hence, in our next lemma, we prove that the gain of elements in
these two sets is roughly the same.

Lemma 8.5 Consider the set S} which is the union of Sy generated by running

Algorithm 4 with « > 1, y = min(ry,12) /6% for any 6, such that 0 < 6 < a — 1
and the elements it deletes. Here, r; is the rank of M; for i € {1,2}. Then,
8(S%) —&(S¢) < 6ag(S¢). Moreover, at any point during the execution, S contains

at most r1 + ro +min(r1, r2) log, (-5) elements.

Proof Consider running Algorithm 3 with weight function w’. Notice that
doing this generates a stack containing exactly the elements as in the set
S, exactly the same set of deleted elements and exactly the same functions
w1, wp and g. Moreover, this generates the exact same stacks as the Algorithm
4 at every point of execution. Now by the proof of Lemma 7.7, we get our
result. U

Lastly, we prove that there exists a set T that is independent in both matroids
and has a weight at least the gain of the elements in Sy.

Lemma 8.6 Let Sy be the subset generated by Algorithm 4. Then there exists a
subset T C S independent in My and in My such that w(T) > g(Sy).

Proof Consider running Algorithm 3 with weight function w’. Recall that
for any element ¢ € S}, w'(e) = w(e) or w'(e) = 0. Notice that doing this
generates a stack containing exactly the elements as in the set Sy and exactly
the same functions wy, w, and g. The result follows by Theorem 7.8.]

Now, we have all the lemmas to prove our main theorem which we state
below.

Theorem 8.7 The subset Sy generated by Algorithm 4 with a > 1, q € {1/(2a +
1),1} and y = min(ry,rp)/6% for any 6, such that 0 < 6 < a — 1 contains
a (4a® —1)/(2a — 2) + O(6) approximation in expectation for the intersection
of two matroids with respect to a non-monotone submodular function f. This
is optimized by taking « = 1+ +/3/2, resulting in an approximation ratio of
4 +2v/3+ 0O(8) ~ 7.464. Moreover, the same algorithm run with ¢ = 1 and

61

8. EXTENSION TO SUBMODULAR FUNCTIONS

62

y = min(ry,r2) /6% is (2a + a/(a — 1)) + O(8) approximate if f is monotone.
This is optimized by taking & = 1+ 1/+/2, which yields a 3+ 2+/2 + O(5) ~ 5.828
approximation.

Proof By Lemmas 8.3 and 8.4, we have that 2«E [g(S})] > E[f(S*] S})] and
8(SF)(a/(a—1)) = f(S%). Combining them, we get,

(20 +a/(a —1))E[g(Sy)] > B[f(SF) + f(S™ | Sp)] = E[f(S"US))].
By Lemma 8.5, we also get that g(S}) — g(Sf) < dag(Sy). This gives us that

(20 +a/(x—1))(1+6a)E[g(Ss)] > E[f(S*U S})]

Now, by Lemma 8.6, there exists a subset T C S 7 independent in M; and M
such that w(T) > g(Sy). By definition of w and the submodularity of f, we
get that f(T) > w(T). This in turn implies, f(T) > g(Ss). This gives us that

(2a+a/(a—1))(1+0a)E[f(T)] = E[f(S” US})].

Notice that the above inequality also holds if 4 = 1 as all the above arguments
also work if g = 1. Hence, if f is monotone, we get f(S* U Ss) > f(S*) which
gives us our desired inequality by rearranging terms. However, if f is
non-monotone one has to do a little more work, as we show below.

To deal with the case when f is non-monotone, we use Lemma 8.1 and
take h(T) = f(S*UT) for any T C E within the lemma statement, to get
that E[f(S* U S)] = (1 —q)f(S*) as every element of E appears in S} with
probability at most g. Putting everything together, we get that

(20 +a/ (2 = 1)) (1 + 6a)E[f(T)] = (1 - q)f(S7).

Now, substituting the value of g = 1/(2a + 1) and rearranging terms, we get
the desired inequality.

Remark 8.8 We can exactly match the approximation ratios in [49] i.e, without
the extra additive factor of O(6) by not deleting elements. Moreover, S stores at
most O(min(ry,r2)log, |E|) elements at any point if we assume that values of f
are polynomially bounded in |E|, an assumption that the authors in [49] make.

Chapter 9

More than Two Matroids

We can easily extend Algorithm 3 to the intersection of k matroids (see
Algorithm 5 for details). Most results remain true, and in particular, we
can have kg(S) > (1 +¢)w(S*) by carefully selecting & and y. The only part
which does not work is the selection of the independent set from S. Indeed,
matroid kernels are very specific to two matroids. We now prove that a
similar approach fails, by proving that the logical generalization of kernels
to 3 matroids where one tries to define the order given by the w; weights is
wrong and that a counter-example can arise from Algorithm 5. Thus, any
attempt to find a k + e approximation using our techniques must bring some
fundamentally new idea. Still, we conjecture that the generated set S contains
such an approximation.

Proposition 9.1 There exists a set S and 3 matroids (S, 1), (S, o), (S, I3) such
that there does not exist a set T C S such that S = Dy, (T) U D, (T) U D, (T)
(see Lemma 7.5 for a definition of Dy, (T)) and T is independent in My, M, and M
where <; is given by w; generated by Algorithm 5 (for a sufficiently small).

Proof We set S = {a,x,y,z,b}. These elements are given in this order to
Algorithm 5. We now define Iy, I, I3 in the following way. A set of 2 elements
is in [; if and only if:

-In I if it is not {a, x}
-In I if it is not {a,y}
-In I3 if it is not {a, z}

A set of 3 elements is in I; if and only if each of its subsets of 2 elements is in
I; and:

-In I; if it contains z

-In I, if it contains x

63

9. MORE THAN Two MATROIDS

64

-In I3 if it contains y
A set of 4 elements is not in [;.

Let us verify that these constraints correspond to matroids. As the problem
is symmetrical, it is sufficient to verify that M; is a matroid. The 3 element
independent sets in M; are exactly {y,z, b}, {x,z b},

{x,y,2},{a,z,b} and {a,y,z}. Now we consider X,Y € [; with |X| < |Y].
We should find e € Y\ X such that XU {e} € I;. If X = @, take any element
from Y. If X is a singleton, then there are two cases: either it is one of
X C {a,x}, or it is not. In any case, Y contains at most one element from
{a,x}. As it contains at least two elements, Y has to contain an element from
{y,z,b}. In the first case, we can add any of these to X to get an independent
set. In the second case, X C {y,z,b}, so we can add any element to X and it
will remain independent, so just pick any element from Y\ X. If X contains
two elements, then Y is one of the sets from the list above. In particular, it
contains z. If z ¢ X, then we can add z to X. Otherwise, either X C {y, z, b},
in which case we can add any element, or X is {a,z} or {x,z}. In either case,
Y must contain an element from {y, b}, which we can add to X.

We now set the weights w(a) = 1, w(x) = w(y) = w(z) = 3 and w(b) = 8
and run Algorithm 5.

e Element a has weight 1, and {a} is independent in M;, M, and M3, so
we set wy(a) = wy(a) = ws(a) = g(a) =1 and a is added to S.

¢ Element x is spanned by a4 in M;, and not spanned by any element
in M, and Ms, so we get g(x) = w(x) — wi(x) —wj(x) — wi(x) =
3—1-0—-0=2.As2>0,weadd x to S. We also set w;(x) = 3 and
wy(x) = ws(x) = 2.

¢ Element y and z are very similar to x.

¢ Element b is spanned in all three matroids by the elements of w; weight
at least 2. On the other hand, b is not spanned in any matroid by the
elements of w; weight strictly bigger than 2, so w(b) =2 fori=1,2,3,
thus g(b) =8 —-2—2—2=2and w;(b) =2+ 2 = 4 for every i.

To recapitulate, we have wy(a) =1, w;i(x) = 3,w1(y) = wi(z) =2, w1(b) =4
and the w, and w3 weights are similar, with y respectively z being heavier.
Let us assume for contradiction that T is a solution to the problem.

T must contain b, as it is the heaviest element in every matroid.

If T contains a, then it cannot contain any of x,y, z, otherwise it would not
be independent in one of the matroids, so we would have T C {a,b}. But x
has to be in at least one Dy, (T), and the set {x,b} is independent in every
matroid, and has a bigger weight than {a,b}, so x would not be in D), (T).
Thus T cannot contain 4.

As the problem is symmetrical for {x,y,z}, it is sufficient to test T =
{z,b},T = {y,z,b} and T = {x,y,z,b}. The last two are not in I, so
the only remaining possibility is T = {z,b}. But then y is not in Dy, or Dy,
because {z,b,y} is independent in M; and M3, and it is not in Dy, because
wy(y) > wa(z) © y <z z and {y,b} is independent in M,. As y is not in any
Dy, this concludes the proof. O

Remark 9.2 In the example of Proposition 9.1, we have g(S) = w(a) + w(b), and
{a, b} is independent in all 3 matroids, so this does not contradict Conjecture 9.3.

Conjecture 9.3 The stack S generated by Algorithm 2 contains a k approximation
for any k.

In the case k = 2, this corresponds to Theorem 7.2. For any k, one can easily
find examples were S does not contain more than a k approximation, but we

were unable to find an example where it does not contain a k approximation.

65

9.

MOoRE THAN Two MATROIDS

66

Algorithm 5 Extension of Algorithm 3 to k matroids
Input: A stream of the elements and k matroids (which we call My, ..., M)
on the same ground set E, a real number « > 1 and a real number y.
Output: A set S C E of “saved” elements.
When we write an assignment of a variable with subscript i, it means we
doitfori=1,...,k.
S« 0
for element e in the stream do
calculate w; (e) = max ({0} U{0:e€spany, ({f €S| wi(f) = 0})})
if w(e) > aY¥ ; w!(e) then
8(e) w(e) — iy i (e)
S« SuU{e}
wi(e) < g(e) + wi(e)
Let T; be a maximum weight independent set of M; with respect to w;.

Let gmax = r&asxg(e)

Remove all elements ¢’ € S, such that y - g(¢') < guar and &’ ¢ U5 T;
from S.
end if
end for

Part 111

Submodular Santa Claus

67

Chapter 10

Introduction

In this part of the thesis, we study the submodular Santa Claus problem in
the restricted assignment case. We note that unlike the previous parts of the
thesis, we deal with the classical model of computation, i.e Random Access
Machine (RAM) model, in this part of the thesis.

10.1 Literature Review

In the Santa Claus problem (sometimes referred to as Max-Min Fair Alloca-
tion) we are given a set of n players P and a set of m indivisible resources R.
In its full generality, each player i € P has a utility function f; : 28 — R,
where f;(S) measures the happiness of player i if he is assigned the resource
set S. The goal is to find a partition of the resources that maximizes the
happiness of the least happy player. Formally, we want to find a partition
{S;}icp of the resources that maximizes
min fi(Si).

Most of the recent literature on this problem focuses on cases where f; is a
linear function for all players i. If we assume all valuation functions are linear,
then the best approximation algorithm known for this problem, designed by
Chakrabarty, Chuzhoy, and Khanna [14], has an approximation rate of n® and
runs in time n°(/#) for e € O(loglog(n)/ log(n)). However, it is only known
that computing a (2 — §)-approximation is NP-hard [48]. Apart from this
there has been significant attention paid to the so-called restricted assignment
case. Here the utility functions are defined by one linear function f and a
set of resources I'; for each player i. Intuitively, player i is interested in the
resources I';, whereas the other resources are worthless to him. The individual
utility functions are then implicitly defined by f;(S) = f(SNT;). In a seminal
work Bansal and Srividenko [6] provide an O(loglog(m)/ logloglog(m))-
approximation algorithm for this case. This was improved by Feige [25] to an

69

10. INTRODUCTION

70

O(1)-approximation. Further progress on the constant or the running time
was made since then, see e.g. [2, 18, 16, 15, 39, 3, 61].

Let us now move to the non-linear case. The problem becomes hopelessly
difficult without any restrictions on the utility functions. Consider the
following reduction from set packing. There are sets of resources {5y, ..., S}
and all utility functions are equal and defined by f;(S) = 1if S; C S for
some j and f;(S) = 0 otherwise. Deciding whether there are m disjoint sets
in S1,..., Sk (a classical NP-hard problem) is equivalent to deciding whether
the optimum of the Santa Claus problem is non-zero. In particular, obtaining
any bounded approximation ratio for the Santa Claus problem in this case is
NP-hard.

Two naturally arising properties of utility functions are monotonicity and
submodularity, see for example the related submodular welfare problem [47,
64] where the goal is to maximize) ; f;(S;). Recall that a function f is
monotone, if f(S) < f(T) for all S C T. It is submodular, if f(SU {a}) —
f(S) > f(Tu{a})— f(T) forall S C T and a ¢ T. The latter is also known
as the diminishing returns property in economics. A standard assumption
on monotone submodular functions (used throughout this part) is that the
value on the empty set is zero, i.e.,, f(©®) = 0. Goemans, Harvey, Iwata,
and Mirrokni [33] first considered the Santa Claus problem with monotone
submodular utility functions as an application of their fundamental result on
submodular functions. Together with the algorithm used in [14] it implies an
O(n'/?*%)-approximation in time O(n!/¢).

In this part of the thesis, we investigate the restricted assignment case with
a monotone submodular utility function. That is, all utility functions are
defined by f;(S) = f(SNT;), where f is a monotone submodular function
and I; is a subset of resources for each players i. Before our work, the
state-of-the-art for this problem was the O(n!/2*¢)-approximation algorithm
mentioned above, since none of the previous results for the restricted as-
signment case with a linear utility function apply when the utility function
becomes monotone submodular.

10.2 Overview of Results and Techniques

Our main result is an approximation algorithm for the submodular Santa
Claus problem in the restricted assignment case.

Theorem 10.1 There is a randomized polynomial time O(log log(n))-approximation
algorithm for the restricted assignment case with a monotone submodular utility
function.

Our way to this result is organised as follows. In Chapter 11, we first reduce
our problem to a hypergraph matching problem (see next paragraph for a

10.2. Overview of Results and Techniques

formal definition). We then solve this problem using Lovasz Local Lemma
(LLL) in Chapter 12. In [6] the authors also reduce the Santa Claus problem to
a hypergraph matching problem which they then solve using LLL, although
both parts are substantially simpler. The higher generality of our utility
functions is reflected in the more general hypergraph matching problem.
Namely, our problem is precisely the weighted variant of the (unweighted)
problem in [6]. We will elaborate later in this section why the previous
techniques do not easily extend to the weighted variant.

The hypergraph matching problem. After the reduction in Chapter 11 we
arrive at the following problem. There is a hypergraph # = (P UR, C) with
hyperedges C over the vertices P and R. We write m = |P| and n = |R|. We
will refer to hyperedges as configurations, the vertices in P as players and R
as resources'. Moreover, a hypergraph is said to be regular if all vertices in P
and R have the same degree, that is, they are contained in the same number
of configurations.

The hypergraph may contain multiple copies of the same configuration. Each
configuration C € C contains exactly one vertex in P, that is, [CNP| = 1.
Additionally, for each configuration C € C the resources j € C have weights
w;jc > 0. We emphasize that the same resource j can be given different
weights in two different configurations, that is, we may have w; ¢ # w; cr for
two different configurations C, C'.

We require to select for each player i € P one configuration C that contains
i. For each configuration C that was selected we need to assign a subset of
the resources in C which has a total weight of at least (1/a) - ¥jcc wjc to the
player in C. A resource can only be assigned to one player. We call such a
solution an a-relaxed perfect matching. One seeks to minimize a.

We show that every regular hypergraph has an a-relaxed perfect matching for
some & = O(loglog(n)) assuming that w;c < (1/a) - Yyec wyc for all j,C,
that is, all weights are small compared to the total weight of the configuration.
Moreover, we can find such a matching in randomized polynomial time. In
the reduction we use this result to round a certain LP relaxation and «
essentially translates to the approximation rate. This result generalizes that of
Bansal and Srividenko on hypergraph matching. They proved the same result
for unit weights and uniform hyperedges, that is, w;c = 1 for all j,C and
all hyperedges have the same number of resources®. In the next paragraph
we briefly go over the techniques to prove our result for the hypergraph
matching problem.

IWe note that these do not have to be the same players and resources as in the Santa Claus
problem we reduced from, but # and m do not increase.
%In fact they get a slightly better ratio of « = O(loglog(m)/ logloglog(m)).

71

10. INTRODUCTION

72

Our techniques. Already the extension from uniform to non-uniform hy-
pergraphs (assuming unit weights) is highly non-trivial and captures the
core difficulty of our result. Indeed, we show with a (perhaps surprising)
reduction, that we can reduce our weighted hypergraph matching problem
to the unweighted (but non-uniform) version by introducing some bounded
dependencies between the choices of the different players. For the sake of
brevity we therefore focus in this section on the unweighted non-uniform
variant, that is, we need to assign to each player a configuration C and at
least |C|/a resources in C. We show that for any regular hypergraph there
exists such a matching for « = O(loglog(#n)) assuming that all configurations
contain at least a resources and we can find it in randomized polynomial
time. Without the assumption of uniformity the problem becomes signifi-
cantly more challenging. To see this, we lay out the techniques of Bansal
and Srividenko that allowed them to solve the problem in the uniform case.
We note that for « = O(log(n)) the statement is easy to prove: We select for
each player i one of the configurations containing i uniformly at random.
Then by standard concentration bounds each resource is contained in at
most O(log(n)) of the selected configurations with high probability. This
implies that there is a fractional assignment of resources to configurations
such that each of the selected configurations C receives ||C|/O(log(n))| of
the resources in C. By integrality of the bipartite matching polytope, there is
also an integral assignment with this property.

To improve to « = O(loglog(n)) in the uniform case, Bansal and Srividenko
proceed as follows. Let k be the size of each configuration. First they reduce
the degree of each player and resource to O(log(n)) using the argument
above, but taking O(log(n)) configurations for each player. Then they sample
uniformly at random O(nlog(n)/k) resources and drop all others. This is
sensible, because they manage to prove the (perhaps surprising) fact that
an a-relaxed perfect matching with respect to the smaller set of resources is
still an O(a)-relaxed perfect matching with respect to all resources with high
probability (when assigning the dropped resources to the selected configura-
tions appropriately). Indeed, the smaller instance is easier to solve: With high
probability all configurations have size O(log(n)) and this greatly reduces
the dependencies between the bad events of the random experiment above
(the event that a resource is contained in too many selected configurations).
This allows them to apply Lovéasz Local Lemma (LLL) in order to show that
with positive probability the experiment succeeds for « = O(loglog(n)).

It is not obvious how to extend this approach to non-uniform hypergraphs:
Sampling a fixed fraction of the resources will either make the small configura-
tions empty—which makes it impossible to retain guarantees for the original
instance—or it leaves the big configurations big—which fails to reduce the
dependencies enough to apply LLL. Hence it requires new sophisticated
ideas for non-uniform hypergraphs, which we describe next.

10.2. Overview of Results and Techniques

Suppose we are able to find a set K C C of configurations (one for each
player) such that for each K € K the sum of intersections |K N K’'| with
smaller configurations K’ € I is very small, say at most |K|/2. Then it is
easy to derive a 2-relaxed perfect matching: We iterate over all K € K from
large to small and reassign all resources to K (possibly stealing them from the
configuration that previously had them). In this process every configuration
gets robbed of at most |K|/2 of its resources, and in particular, it keeps
the other half. However, it is non-trivial to obtain a property like the one
mentioned above. If we take a random configuration for each player, the
dependencies of the intersections are too complex. To avoid this we invoke
an advanced variant of the sampling approach where we construct not only
one set of resources, but a hierarchy of resource sets Rp 2 --- 2 R, by
repeatedly dropping a fraction of resources from the previous set. We then
formulate bad events based on the intersections of a configuration C with
smaller configurations C’, but we write it only considering a resource set Ry
of convenient granularity (chosen based on the size of C’). In this way we
formulate a number of bad events using various sets Ry. This succeeds in
reducing the dependencies enough to apply LLL. Unfortunately, even with
this new way of defining bad events, the guarantee that for each K € K the
sum of intersections |K N K’| with smaller configurations K’ € K is at most
|K|/2 is still too much to ask. We can only prove some weaker property
which makes it more difficult to reconstruct a good solution from it. The
reconstruction still starts from the biggest configurations and iterates to finish
by including the smallest configurations but it requires a delicate induction
where at each step, both the resource set expands and some new small
configurations that were not considered before come into play.

Additional implications of non-uniform hypergraph matchings to the Santa
Claus problem. We believe this hypergraph matching problem is interesting
in its own right. Our last contribution is to show that finding good matchings
in unweighted hypergraphs with fewer assumptions than ours would have
important applications for the Santa Claus problem with linear utility func-
tions. We recall that here, each player i has its own utility function f; that can
be any linear function. In this case, the best approximation algorithm is due
to Chakrabarty, Chuzhoy, and Khanna [14] who gave a O(n®)-approximation
running in time O(n'/¢). In particular, no sub-polynomial approximation
running in polynomial time is known. Consider as before H = (PUR,C) a
non-uniform hypergraph with unit weights (w;jc = 1 for all j, C such that
j € C). Finding the smallest « (or an approximation of it) such that there ex-
ists an a-relaxed perfect matching in H is already a very non-trivial question
to solve in polynomial time.

We show, via a reduction, that a c-approximation for this problem would yield
a O((clog*(n))?)-approximation for the Santa Claus problem with arbitrary

73

10. INTRODUCTION

74

linear utility functions. In particular, any sub-polynomial approximation for
this problem would significantly improve the state-of-the-art®. All the details
of this last result can be found in Chapter 13.

A remark on local search techniques. We focus here on an extension of
the LLL technique of Bansal and Srividenko. However, another technique
proved itself very successful for the Santa Claus problem in the restricted
assignment case with a linear utility function. This is a local search tech-
nique by Asadpour, Feige, and Saberi [3] who were inspired by the work of
Haxell [36] and used it to give a non-constructive proof that the integrality
gap of the configuration LP of Bansal and Srividenko is at most 4. One can
wonder if this technique could also be extended to the submodular case as
we did with LLL. Unfortunately, this seems problematic as the local search
arguments heavily rely on amortizing different volumes of configurations
(i.e., the sum of their resources” weights or the number of resources in the
unweighted case). Amortizing the volumes of configurations works well,
if each configuration has the same volume, which is the case for the prob-
lem derived from linear valuation functions, but not the one derived from
submodular functions.

3We mention that our result on relaxed matchings in Chapter 12 does not imply an
O(loglog(n))-approximation for this problem since we make additional assumptions on the
regularity of the hypergraph or the size of hyperedges.

Chapter 11

Reduction to hypergraph matching
problem

In this chapter we give a reduction of the restricted submodular Santa Claus
problem to the hypergraph matching problem. As a starting point we solve
the configuration LP, a linear programming relaxation of our problem. The
LP is constructed using a parameter T which denotes the value of its solution.
The goal is to find the maximal T such that the LP is feasible. In the LP we
have a variable x; ¢ for every player i € P and every configuration C € C(i, T).
The configurations C(i, T) are defined as the sets of resources C C T; such that
f(C) > T. We require every player i € P to have at least one configuration
and every resource j € R to be contained in at most one configuration.

Z xic=>1 foralliecP
CeC(i,T)
Z Z xic<1l foralljeR
i€eP CeC(i,T):;jeC
xic>0 forallie P,CeC(iT)

Since this linear program has exponentially many variables, we cannot di-
rectly solve it in polynomial time. We will give a polynomial time constant
approximation for it via its dual. This is similar to the linear variant in [6], but
requires some more work. In their case they can reduce the problem to one
where the separation problem of the dual can be solved in polynomial time.
In our case even the separation problem can only be approximated. Never-
theless, this is sufficient to approximate the linear program in polynomial
time.

Theorem 11.1 The configuration LP of the restricted submodular Santa Claus
problem can be approximated within a factor of (1 — 1/e) /2 in polynomial time.

We defer the proof of this theorem to Appendix C.1. Given a solution x* of
the configuration LP we want to arrive at the hypergraph matching problem

75

11. REDUCTION TO HYPERGRAPH MATCHING PROBLEM

76

from the introduction such that an a-relaxed perfect matching of that problem
corresponds to an O(a)-approximate solution of the restricted submodular
Santa Claus problem. Let T* denote the value of the solution x*. We will
define a resource j € R as fat if
. T
U > 1000

Resources that are not fat are called thin. We call a configuration C € C(i, T)
thin, if it contains only thin resources and denote by C(i,T) C C(i, T) the
set of thin configurations. Intuitively in order to obtain an O(«)-approximate
solution, it suffices to give each player i either one fat resource j € I'; or a thin
configuration C € C;(i, T*/O(a)). For our next step towards the hypergraph
problem we use a technique borrowed from Bansal and Srividenko [6]. This
technique allows us to simplify the structure of the problem significantly
using the solution of the configuration LP. Namely, one can find a partition
of the players into clusters such that we only need to cover one player from
each cluster with thin resources. All other players can then be covered by fat
resources. Informally speaking, the following lemma is proved by sampling
configurations randomly according to a distribution derived in a non-trivial
way from the configuration LP.

Lemma 11.2 Let ¢ > 121og(n). Given a solution of value T* for the configuration
LP in randomized polynomial time we can find a partition of the players into clusters
KiU--- UKy UQ = P and multisets of configurations Cy, C Ujeg, Cr(i, T*/5),
h=1,...,k, such that

1. |Cyl=Lforallh=1,..., kand
2. Each small resource appears in at most £ configurations of |, Cp,.

3. Given any i1 € Ky,ip € Ky, ..., ix € K there is a matching of fat resources
to players P\ {i1, ..., iy} such that each of these players i gets a unique fat
resource j € I';.

The role of the players Q in the lemma above is that each one of them gets a
fat resource for certain. The proof closely follows that in [6]. For completeness
we include it in Appendix C.1.

We are now ready to define the hypergraph matching instance. The vertices
of our hypergraph are the clusters Kj, ..., Ky and the thin resources. Let
Cy,...,Ck be the multisets of configurations as in Lemma 11.2. For each
Ky, and C € Cj, there is a hyperedge containing Kj and all resources in C.
Let {j1,...,j¢} = C ordered arbitrarily, but consistently. Then we define the
weights as normalized marginal gains of resources if they are taken in this
order, that is,

Wi, = e f i} | Do) = 2 i i}) = F(G - i }).

11.1. Reduction to unweighted hypergraph matching

This implies that Y ;cc wjc > 5f(C)/T* > 1foreachCeCy,h=1,...,k

Lemma 11.3 Given an a-relaxed perfect matching to the instance as described by the
reduction, one can find in polynomial time an O(w)-approximation to the instance of
the restricted submodular Santa Claus problem.

Proof The a-relaxed perfect matching implies that cluster Kj, gets some small
resources C’ where C' C C for some C € C; and Yjccwjc > 1/a. By
submodularity we have that f(C") > T*/(5«). Therefore we can satisfy one
player in each cluster using thin resources and by Lemma C.1 all others using
fat resources. U

The proof above is the most critical place in our work where we make use
of the submodularity of the valuation function f. We note that since all
resources considered are thin resources we have, by submodularity of f, the
assumption that

5 iy 5 T >
<2 < = S 100x ‘
ZU],C S T*f({]}) = T* 100« = 100«]-EZCZU],C

for all j, C such that j € C. This means that the weights are all small enough,
as promised in introduction. From now on, we will assume that } ;cc wjc =1
for all configurations C. This is w.l.o.g. since we can just rescale the weights
inside each configuration. This does not hurt the property that all weights
are small enough.

11.1 Reduction to unweighted hypergraph matching

Before proceeding to the solution of this hypergraph matching problem, we
first give a reduction to an unweighted variant of the problem. We will then
solve this unweighted variant in the next section. First, we note that we
can assume that all the weights w;c are powers of 2 by standard rounding
arguments. This only loses a constant factor in the approximation rate.
Second, we can assume that inside each configuration C, each resource has a
weight that is at least a 1/(2n). Formally, we can assume that

minw;c > 1/(2n)

jeC
for all C € C. If this is not the case for some C € C, simply delete from C
all the resources that have a weight less than 1/(2n). By doing this, the total
weight of C is only decreased by a factor 1/2 since it looses in total at most a

weight of
1 1

n-—=-.
2n 2
(Recall that we rescaled the weights so that } jcc wjc = 1).

77

11. REDUCTION TO HYPERGRAPH MATCHING PROBLEM

78

Hence an a-relaxed perfect matching in the new hypergraph after these
two operations, is still an O(«)-relaxed perfect matching in the original
hypergraph. From there we reduce to an unweighted variant of the matching
problem. Note that each configuration contains resources of at most log(n)
different possible weights (powers of 2 from 1/(2n) to 1/a). We create the
following new unweighted hypergraph 7’ = (P’ UR,C’). The resource set
R remains unchanged. For each player i € P, we create log(n) players,
which later each correspond to a distinct weight. We will say that the
players obtained from duplicating the original player form a group. For
every configuration C containing player i in the hypergraph H, we add a set
Sc ={Cy,...,Cs,..., Clog(n)} of configurations in H'. Cs contains player i,
and all resources that are given a weight 2=+ in C. In this new hypergraph,
the resources are not weighted. Note that if the hypergraph H is regular then
H’ is regular as well.

Additionally, for a group of player and a set of log(n) configurations (one for
each player in the group), we say that this set of configurations is consistent if
all the configurations selected are obtained from the same configuration in
the original hypergraph H (i.e. the selected configurations all belong to Sc
for some C in H).

Formally, we focus of the following problem. Given the regular hypergraph
H', we want to select, for each group of log(n) players, a consistent set of
configurations Cy,...,GCs,..., Clog(n) and assign to each player i; a subset of
the resources in the corresponding configuration Cs so that is is assigned
at least | |Cs|/a] resources. No resource can be assigned to more than one
player. We refer to this assignment as a consistent a-relaxed perfect matching.
Note that in the case where |C;| is small (e.g. of constant size) we are not
required to assign any resource to player i;.

Lemma 11.4 A consistent a-relaxed matching in H' induces a O(«)-relaxed match-

ing in H.

Proof Let us consider a group of log(n) players iy, ...,is, ..., g in H'
corresponding to a player i in H. These players are assigned a consistent
set of configurations Cy,...,Cs,..., Clog(n) that correspond to a partition of a
configuration in 7. Moreover, each player i, is assigned ||Cs|/«| resources
from C;. We have two cases. If |Cs| > a then we have that i; is assigned at
least

LIGs|/a] =[G/ (24)

resources from Cs. On the other hand, if | |Cs|/a| = 0 then the player i; might
not be assigned anything. However, we claim that that the configurations
Cs of cardinality less than a can represent at most a 1/5 fraction of the total
weight of the configuration C in the original weighted hypergraph. To see

11.1. Reduction to unweighted hypergraph matching

this note that the total weight they represent is upper bounded by

“ Z x| = *\ T00a Z) Z wij,c-
(klog(lOOzx /5) 2k) (1000 = 100]GC

Hence, the consistent a-relaxed matching in H’ induces in a straightforward
way a matching in ‘H where every player gets at least a fraction 1/(2«) -
(1-1/10) > 1/(3w) of the total weight of the appropriate configuration.
This means that the consistent a-relaxed perfect matching in H’ is indeed a
(3«)-relaxed perfect matching in . O

79

Chapter 12

Matchings in regular hypergraphs

In this chapter we solve the hypergraph matching problem we arrived to in
the previous chapter. For convenience, we give a self contained definition of
the problem before formulating and proving our result.

Input: We are given H = (P UR,C) a hypergraph with hyperedges C over
the vertices P (players) and R (resources) with m = |P| and n = |R|. As
in previous chapters, we will refer to hyperedges as configurations. Each
configuration C € C contains exactly one vertex in P, that is, [CN P| = 1. The
set of players is partitioned into groups of size at most log(n), we will use A
to denote a group. These groups are disjoint and contain all players. Finally
there exists an integer ¢ such that for each group A there are ¢ consistent sets
of configurations. A consistent set of configurations for a group A is a set of
|A| configurations such that all players in the group appear in exactly one
of these configurations. We will denote by S, such a set and for a player

i € A, we will denote by SX) the unique configuration in S4 containing i.

Finally, no resource appears in more than ¢ configurations. We say that the
hypergraph is regular (although some resources may appear in less than ¢
configurations).

Output: We wish to select a matching that covers all players in P. More
precisely, for each group A we want to select a consistent set of configurations

(denoted by {Sg) }iea). Then for each player i € A, we wish to assign a subset
of the resources in SX) to the player i such that:
1. No resource is assigned to more than one player in total.

2. For any group A and any player i € A, player i is assigned at least

s
o

81

12. MATCHINGS IN REGULAR HYPERGRAPHS

82

resources from SX).
We call this a consistent a-relaxed perfect matching. Our goal in this chapter
will be to prove the following theorem.

Theorem 12.1 Let H = (P UR,C) be a regular (non-uniform) hypergraph where
the set of players is partitioned into groups of size at most log(n). Then we can, in
randomized polynomial time, compute a consistent a-relaxed perfect matching for

a = O(loglog(n)).

We note that Theorem 12.1 together with the reduction from the previous
section will prove our main result (Theorem 10.1) stated in the introduction.

12.1 Overview and notations

To prove Theorem 12.1, we introduce the following notations. Let ¢ € IN
be the regularity parameter as described in the problem input (i.e. each
group has ¢ consistent sets and each resource appears in no more than ¢
configurations). As we proved in Lemma 11.2 we can assume with standard
sampling arguments that £ = 300.0001og> (1) at a constant loss. If this is not
the case because we might want to solve the hypergraph matching problem
by itself (i.e. not obtained by the reduction in Section 11), the proof of Lemma
11.2 can be repeated in a very similar way here.

For a configuration C, its size will be defined as |[C N R| (i.e. its cardinality
over the resource set). For each player i, we denote by C; the set of con-
figurations that contain i. We now group the configurations in C; by size:

We denote by Cfo) the configurations of size within [0, #*) and for k > 1 we

write Cgk) for the configurations of size within [£k+3, €k+4). Moreover, define

ch =, Cl(k) and CGK) = Un>k C"™. Let d be the smallest number such that
C(>4) is empty. Note that d < log(n)/ log(¥).

Now consider the following random process.

Random Experiment 12.2 We construct a nested sequence of resource sets R =
Ro D Ry D ... D Ry as follows. Each Ry is obtained from Ry_q by deleting every
resource in Ry_q independently with probability (¢ —1) /.

In expectation only a 1// fraction of resources in Ri_; survives in Ry. Also
notice that for C € C¥) we have that E[|R, N C|] = poly(¥).

The proof of Theorem 12.1 is organized as follows. In Section 12.2, we give
some properties of the resource sets constructed by Random Experiment 12.2
that hold with high probability. Then in Section 12.3, we show that we can
find a single consistent set of configurations for each group of players such
that for each configuration selected, its intersection with smaller selected

12.2. Properties of resource sets

configurations is bounded if we restrict the resource set to an appropriate Ry.
Restricting the resource set is important to bound the dependencies of bad
events in order to apply the Lovédsz Local Lemma. Finally in Section 12.4, we
demonstrate how these configurations allows us to reconstruct a consistent
a-relaxed perfect matching for an appropriate assignment of resources to
configurations.

12.2 Properties of resource sets

In this section, we give a precise statement of the key properties that we
need from Random Experiment 12.2. The first two lemmas have a straight-
forward proof. The last one is a generalization of an argument used by Bansal
and Srividenko [6]. Since the proof is technical and tedious, we defer it to
Appendix C.2 along with the proofs of the first two lemmas.

We start with the first property which bounds the size of the configura-
tions when restricted to some Ry. This property is useful to reduce the
dependencies when applying LLL later.

Lemma 12.3 Consider Random Experiment 12.2 with ¢ > 300.000 10g3(n). For
any k > 0 and any C € CZX) we have

1
SHICI < IReNCl < gﬂ\c‘

with probability at least 1 —1/n'°.

The next property expresses that for any configuration the sum of intersec-
tions with configurations of a particular size does not deviate much from
its expectation. In particular, for any configuration C, the sum of it’s in-
tersections with other configurations is at most |C|¢ as each resource is in
atmost ¢ configurations. By the lemma stated below, we recover this up to a
multiplicative constant factor when we consider the appropriately weighted
sum of the intersection of C with other configurations C’ of smaller sizes
where each configuration C’ € C™%) is restricted to the resource set Ry.

Lemma 12.4 Consider Random Experiment 12.2 with ¢ > 300.000 logS(n). For
any k > 0 and any C € C=X) we have

1
Y [CNCNR < 72 (!CH) yc'mq>
Cc’ectd) ¢ c’ec®)

with probability at least 1 — 1/n'°.

We now define the notion of good solutions which is helpful in stating our last
property. Let F be a set of configurations, « : ¥ — N, v € N, and R’ C R.

83

12. MATCHINGS IN REGULAR HYPERGRAPHS

84

We say that an assignment of R’ to F is (&, y)-good if every configuration
C € F receives at least a(C) resources of C N R’ and if no resource in R’ is
assigned more than <y times in total.

Below we obtain that given a («, v)-good solution with respect to resource
set Ry 1, one can construct an almost (£ - &, y)-good solution with respect to
the bigger resource set Ry. Informally, starting from a good solution with
respect to the final resource set and iteratively applying this lemma would
give us a good solution with respect to our complete set of resources.

Lemma 12.5 Consider Random Experiment 12.2 with £ > 300.0001log>(n). Fix
k > 0. Conditioned on the event that the bounds in Lemma 12.3 hold for k, then with
probability at least 1 — 1/n'° the following holds for all F C CEF1) a: F - N,
and v € N such that £3/1000 < a(C) < nforall C € Fand v € {1,...,0}:
If there is a (a,7y)-good assignment of Ry,1 to F, then there is a (&', 7)-good
assignment of Ry to F where

&(C) > ¢ <1 - bgl(n)> «(C)

for all C € F. Moreover, this assignment can be found in polynomial time.

Given the lemmata above, by a simple union bound one gets that all the
properties of resource sets hold.

12.3 Selection of configurations

In this section, we give a random process that selects one consistent set of
configurations for each group of players such that the intersection of the
selected configurations with smaller configurations is bounded when consid-
ered on appropriate sets Ry. We will denote by S, the selected consistent set
for group A and for ease of notation we will denote by K; = 81(41) the selected
configuration for player i € A. For any integer k, we write ICZ.(k) = {K;} if
K; € Ci(k) and ICZ.(k) = @ otherwise. As for the configuration set, we will also
denote K*) = U; ICZ.(k) and K = J, £®). The following lemma describes what
are the properties we want to have while selecting the configurations. For
better clarity we also recall what the properties of the sets Ry, ..., R; that we
need are. These hold with high probability by the lemmata of the previous
section.

Lemma 12.6 Let R = Ro O ... D Ry be sets of fewer and fewer resources. Assume
that for each k and C € Cl.(k) we have

1/2- 05" <|CNRy| <3/2-07MC| < 3/2- ¢+

12.3. Selection of configurations

forallh =0,...,k. Then there exists a selection of one consistent set S, for each
group A such forallk =0,...,d,C € c) and j =0,...,k then we have

d+ /1
l

DY €h|KmCmRh|<% Y Y ' ncnR,l+1000% 1 Llog(o)cl.

j<h<k Kek® j<h<k crech

Moreover, this selection of consistent sets can be found in polynomial time.

Before we prove this lemma, we give an intuition of the statement. Consider
the sets Ry,...,R; constructed as in Random Experiment 12.2. Then for
C’' € ¢ we have E[¢"|C' N CNRy|] = |C' N C|. Hence

Y. Y IKncl=E[Y. Y MKNCNRy]

h<k Kefc) h<k kefC(h)

Similarly for the right-hand side we have

B[Y Y eenenr+ ot iogolcl)

j<h<k crect ¢

_1 Y. Y |¢ncl+0 <delog(£)yCy> =0 (delog(f)\CO :

j<h<k crec

<\c

Hence the lemma says that each resource in C is roughly covered O((d +
¢)/¢ -log(¢)) times by smaller configurations.

We now proceed to prove the lemma by performing the following random
experiment and by the Lovédsz Local Lemma show that there is a positive
probability of success.

Random Experiment 12.7 For each group A, select one consistent set Sp uni-
formly at random. Then for each player i € A set K; = Sg).

Forallh=0,...,d and i € P we define the random variable

X" = Y [KNCNR,| <min{3/2- £, |CNRy|}.
/ Kek!™

Let X2 =y X! Then

Y. IC'NCNRy| <[CNRy
crecth

|-

We define a set of bad events. As we will show later, if none of them occur,
the properties from the premise hold. For each k, C € C*%), and h < k let B(Ch)
be the event that

w — [EXY]+63/CN Ryl log(f) ifk—5<h<k,
xW > (

E[X] +135/C N Ry |log(f) - £~' i h <k—6.

85

12. MATCHINGS IN REGULAR HYPERGRAPHS

86

There is an intuitive reason as to why we define these two different bad events.
In the case h < k — 6, we are counting how many times C is intersected
by configurations that are much smaller than C. Hence the size of this
intersection can be written as a sum of independent random variables of value
at most O(¢*) which is much smaller than the total size of the configuration
|C N Ry|. Since the random variables are in a much smaller range, Chernoff
bounds give much better concentration guarantees and we can afford a very
small deviation from the expectation. In the other case, we do not have
this property hence we need a bigger deviation to maintain a sufficiently
low probability of failure. However, this does not hurt the statement of
Lemma 12.6 since we sum this bigger deviation only a constant number of
times. With this intuition in mind, we claim the following.

Claim 12.8 Foreach k, C € C®, and h < k we have

P[BY] < exp (—2 € ;LR}Z' - 1810g(£)> .

Proof Consider first the case that h > k —5. By a Chernoff bound (see
Proposition 2.3) with

|C N Ry|log(f)

5 =63
h
E[X¢']
we get
SE[X™]
PIBY) < exp (— ien)) < xp(-21log(0)
CNR
< ex <—2’ ® AT (€)>
H/_/
<3/2

Now consider I < k — 6. We apply again a Chernoff bound with

5 = 135/C 0 Rullog(6) 1

Ex) T
This implies

A min{J, 0>} E[X "] CNRy|log(¢
]P[B(C)} < exp (- 3.3/2 14 C < exp —30|Zlg()

<exp (—2|C29Rh‘ — 1810g(£)) . O

We now restate Lovasz Local Lemma for the convenience of the reader and
use it in our setting.

12.3. Selection of configurations

Proposition ((2.4 restated) Lovasz Local Lemma (LLL)) Let By, ..., B; be bad
events, and let G = ({By, ..., B:}, E) be a dependency graph for them, in which for
every i, event B; is independent of all events B; for which (B;, B;) ¢ E. Let x; for
1 < i < tbesuch that 0 < x(B;) < 1 and P[B;] < x(Bi)H(Bi/B]_)GE(l — x(B))).
Then with positive probability no event B; holds.

Letk € {0,...,d},C € C® and h < k. For event Bgl) we set

x(BI) = exp(—|C N Ry| /£ —181og(¢)).

We now analyze the dependencies of B(Ch). The event depends only on

random variables S, for groups A that contain at least one player i that has

a configuration in Cl.(h) which overlaps with C N Rj,. The number of such

configurations (in particular, of such groups) is at most ¢|C N Ry | since the
hypergraph is regular.

In each of these groups, we count at most log(n) players, each having ¢
configurations hence in total at most ¢ - log(n) configurations.

Each configuration C’ € C") can only influence those events B(C;f,,) where
C'NC"NRy # @. Since |C' N Ry/| < 3/2- ¢* and since each resource appears
in at most ¢ configurations, we see that each configuration can influence at
most 3/2 - £° events.

Putting everything together, we see that the bad event B(Ch) is independent of
all but at most

(£|ICNRy|) - (£-log(n)) - (3/2-£°) =3/2-¢7 -log(n)|C N Ry| < |CN Ry
other bad events.
We can now verify the condition for Proposition 2.4 by calculating

B TT a-xB"))
(B Bk

> exp(—|CNRy|/€° —181og(£)) - (1 — £718)ICNRAIE®

> exp(—|CNRy|/¢° —181og(£)) -exp(—|C N Ry|/£°)

> exp(—2|C N Ry| /& —18log(¢)) > P[BY].

By LLL we have that with positive probability none of the bad events happen.
Letk € {0,...,d} and C € C¥). Then for k —5 < h < k we have

OxW < PEXI] + 630" C N Ry|log(¢) < E[XM] + 95|C| log(¢).
Moreover, for h < k — 6 it holds that

X < MBI 413501 |C N Ry log(¢) < (ME[XCY] +203|Clog(¢) - £

87

12. MATCHINGS IN REGULAR HYPERGRAPHS

88

We conclude that, for any 0 < j <k,

Y Y KncnRy < Y KhIE[Xéh)]+1OOO(k_]+1)+£!Cllog(€)
j<h<k Kek® j<h<k ¢
<Ly oy joncnr+ 100027 clog o)
S h] 815

j<h<k crect

This proves Lemma 12.6.

Remark 12.9 Since there are at most poly(n, m,) bad events and each bad event
B has ((33) < 1/2 (because x(B) < (~18) the constructive variant of LLL by

Moser and Tardos [55] can be applied to find a selection of configurations such that
no bad events occur in randomized polynomial time.

12.4 Assignment of resources to configurations

In this section, we show how all the previously established properties allow
us to find, in polynomial time, a good assignment of resources to the configu-
rations K Chosen as in the previous section. We will denote as in the previous

sectlon IC ={K} if K; € C() and ICZ.(k) = @ otherwise. We also define
=U; ICZ. and (0 = Un>k K®). Finally we define the parameter

v = 100.000”1‘6M log(?),

which will define how many times each resource can be assigned to configura-
tions in an intermediate solution. Note that d < log(n)/ log(¢). By our choice
of £ = 300.00010g>(11), we have that v < 310.000loglog(). Lemma 12.6 im-
plies the following bound. For sake of brevity, the proof is deferred to
Appendix C.3.

Claim 12.10 Forany k >0, any 0 < j < k, and any C € K"

Y ¥ WWOCHRM 44 oe()]C
j<h<k ke ¢

The main technical part of this section is the following lemma, which is
proved by induction.

Lemma 12.11 For any j > 0, there exists an assignment of resources of R; to

configurations in K> ‘) such that no resource is taken more than -y times and each
configuration C € KW (k > j) receives at least

(1-5i)eicnri-2 ¥ § aikncng,
1o JICAR -2 “IKNCAR,
log(n) j<h<k Kexh

resources from Ry.

12.4. Assignment of resources to configurations

Before proceeding to the proof, we first give the intuition of why this is what
we want to prove. Note that the term £5~/|C N Ry] is roughly equal to £~/|C]|
by the properties of the resource sets (precisely Lemma 12.3). The second

term .
Y Y dHKncnRy
j<h<k ke (h)

can be shown to be

O (E‘jd_gglog(ﬁﬂco = O(¢/1oglog(n)|C|)

by Claim 12.10. Hence by choosing <y to be ®(loglog(n)) we get that the
bound in Lemma 12.11 will be ©(¢/7/|C|). At the end of the induction, we
have j = 0 which indeed implies that we have an assignment in which
configurations receive

e(¢~°|cl) = e(|cl)

resources and such that each resource is assigned to at most O(loglog(n))
configurations.

Proof We start from the biggest configurations and then iteratively recon-
struct a good solution for smaller and smaller configurations. Recall 4 is the
smallest integer such that X(>%) is empty. Our base case for these configura-
tions in K> is vacuously satisfied.

Now assume that we have a solution at level j, i.e. an assignment of resources
to configurations in (/) such that no resource is taken more than -y times
and each configuration C € K*) such that k > j receives at least

1 N2 3 ,
Tkj = (1—> FICnR == Y, Y IKNCNRy

log(n) j<h<k KeK®

resources from R;. We show that this implies a solution at level j — 1 in the
following way. First by Lemma 12.5, this implies an assignment of resources
of R; 1 to configurations in K1) such that each C € K®) receives at least

2(k—(j=1))-1 _
<1—1> gi’k,]' = <1—1> Ek_(]_l)’CﬂRH

log(n) log(n)
3 (1) b (1
I =U-DIKNC Ry
Y log(n) jg%k Kezic(h)
1\
1 i
> (1= i) £ Ienk
3

= Y Y UIKNCNRy|
T j<n<k kex®

89

12. MATCHINGS IN REGULAR HYPERGRAPHS

90

resources and no resource of R; 1 is taken more than <y times. Note that we
can apply Lemma 12.5 since we have by Claim 12.10 and Lemma 12.3 that

1 2(k=j) e 3 -
<L_bgﬂQ CIICNR == Y, Y, ¢"JIKNCNRy|

j<h<k ke ()
k= 3 A+l
> — Ry| — =2 - I
2 1CN Ry = 2000075 log(0)]C
i 1 6000d + ¢
> i 4 SbaTt
> 1] (5 — 20 log(0))

eilc|
> -
Z 32~ 1000

Now consider configurations in K=Y and proceed for them as follows. Give
to each C € KU~ all the resources in C N R;j_1 except all the resources that

appear in more than v configurations in U~ Since each deleted resource
is counted at least « times in the sum Yy _x-;-1) [KN C N R;_;|, we have that

each configuration C in U~ receives at least

1
KHRFH—; Y. IKNCNRj,|

Kekl-1)

resources and no resource is taken more than -y times by configurations in
KU=1. Notice that now every resource is taken no more than 7 times by
configurations in X(*/) and no more than < times by configurations in A U~1)
which in total can sum up to 27 times.

Therefore to finish the proof consider an resource i € R;_1. This resource is

taken b; times by configurations in X(*/) and a; times by configurations in
KO-, 1f a; + b; < 7, nothing needs to be done. Otherwise, denote by O the
set of problematic resources (i.e. resources i such that a; 4+ b; >). For every
i € O, select uniformly at random a; + b; — ¢ configurations in (/) that
currently contain resource i and delete the resource from these configurations.
When this happens, each configuration in C € K(*/) that contains i has a
probability of (a; + b; —) /b; to be selected to loose this resource. Hence the
expected number of resources that C looses with such a process is

a; +b; —y
=3 - b%
ieonC i
It is not difficult to prove the following claim. However, for better clarity we

defer its proof to appendix C.3.

Claim 12.12 For any C € K7,

1 2
Y [KNCNR1NO[<pu<=), [KNCNR;-1NO|

~2
T kexi-n T kexl-v

12.4. Assignment of resources to configurations

|CNRg|
1021og®(n) "
Ykexi-n [IKNCNR;_1 NO| resources in any case. Therefore, by assumption
on y, and since

Assume then that y < Note that C cannot loose more than

= Y. |[KNCNR;_1NOJ,

1
~2

T kexi-n
we have that

2

v
KNCNR,_;N0O| < ————|CNR
Keg‘-n’ = | 101210g3(n)’ g
10" log?1 1
< 10 log ;’g(”)|CmRky< ICARy| .
10" 1log’(n) log(n)

Therefore C looses at most |C N Rg|/ log(n) resources. Otherwise we have
that X
|C N Ry S 14

1021og?(n) ~ 102log>(n)

u> > 2001log(n)

by Lemma 12.3. Hence noting X the number of deleted resources in C we

have that
3 U 1
>"u) <)<=
v (X ~ 2”) <ew(—3) <4
With high probability no configuration looses more than

§y<§ Y. |[KNCNR;-1NO| <

Y. |[KNCNRj_q]
25 Y ki

Kek(-1

=] w

resources. Hence each configuration C € K(*/) ends with at least

1 \2k=G-1)-1 3
<1— > FUDICAR] -2 Y [KNCNRj]
log(n) KexU-1)

1 1 N\26-G-)-1
- 1— =U-11C N Ry|
log(n) log(n)
23 Yo N UDIKNCNRy|
T j<n<k ke

2
> S — U= R
<1 log<n>> EICN R

3 Yo Y UYIKNCNRy
T j-1<h<k ke

resources which concludes the proof. O

91

12. MATCHINGS IN REGULAR HYPERGRAPHS

92

Corollary 12.13 There exists an assignment of resources R to K such that each
configuration C € K receives at least | |C|/(100)| resources. Moreover, this
assignment can be found in polynomial time.

Proof Lemma 12.11 for k = 0 and Claim 12.10 together imply that we can
assign at least

C] 6000 C]

2¢2 100.000 100
resources to every C € K such that no resource in R is assigned more than v
times. In particular, we can fractionally assign at least |C|/ (1007) resources to
each C € K such that no resource is assigned more than once. By integrality
of the bipartite matching polytope, the corollary follows. g

IC| >

Chapter 13

Further connections between
hypergraph matching and Santa Claus

In Chapter 12, we essentially prove that every regular (non-uniform) hy-
pergraph has an a-relaxed perfect matching for some o« = O(loglog(n)),
assuming that all hyperedges contain at least a resources. This means that we
give a sufficient condition for a hypergraph to have a good relaxed matching.
A natural optimization problem that arises from this is the following: Given
any unweighted hypergraph, which is not necessarily regular and whose
hyperedges do not necessarily contain all resources, what is the minimum «
such that there exists an a-relaxed perfect matching in this hypergraph?

In this chapter, we investigate the relationship between this problem and the
Santa Claus problem with linear utility functions. Formally, the two problems
considered are precisely the following.

Matching in general hypergraphs. Consider a (non-uniform) hypergraph
H = (PUR,C) with unit weights, that is, w;c = 1 for all j, C such that j € C.
The problem is to find the minimum a such that H has an a-relaxed perfect
matching (and output such a matching).

The Santa Claus problem with linear utility functions. In this case, each
player i has an arbitrary linear utility function f;. We note that there is no
relationship assumed between the utility functions of different players. The
goal is to assign resources to players to maximize the minimum utility among
players. As mentioned in the introduction, the best approximation algorithm
for this problem is an O(nf)-approximation running in time O(n'/¢).

We show by a straightforward reduction that a c-approximation for the Santa
Claus problem immediately implies a c-approximation for the matching
problem.

93

13. FURTHER CONNECTIONS BETWEEN HYPERGRAPH MATCHING AND SANTA CLAUS

94

13.1 From Matchings to Santa Claus

The idea in this reduction is to replace each player by a set of players, one
for each of the t configuration containing him. These players will share
together t — 1 large new resources, but to satisfy all, one of them has to
get other resources, which are the original resources in the corresponding
configuration.

Players. For every vertex v € P, and every hyperedge C € C that v belongs
to, we create a player p, c in the Santa Claus instance.

Resources. For every vertex u € R, create a resource r, in the Santa Claus
instance. For any vertex v € P such that it belongs to t edges in C,
create t — 1 resources 1,792, ..., 1o t—1-

Values. For any resource r, for some u € R and any player p, ¢ for some

C € C, the resource has a value IC\%l if u € C, otherwise it has value 0.
Any resource 1, ; for some v € P and i € IN, has value 1 for any player

po,c for some C € C and 0 to all other players.

It is easy to see that given an a-relaxed matching in the original instance, one
can construct an a-approximate solution for the Santa Claus instance.

For the other direction, notice that for each v € P, there exists a player p, c
for some C € C, such that it gets resources only of the type r,. One can
simply assign the resource u € R to the player v for any resource r, assigned

to Po,C-

Interestingly, there is also a close connection in the opposite direction.

13.2 From Santa Claus to Matchings

Theorem 13.1 A c-approximation algorithm to the hypergraph matching problem
in general hypergraphs yields an O((clog” (n))?)-approximation algorithm to the
Santa Claus problem.

Before giving the proof, we mention some remarks regarding the statement
above.

Remark 13.2 Notice that Theorem 13.1 implies that any sub-polynomial approxi-
mation to the matching problem would be a significant improvement of the state-of-
the-art for the Santa Claus problem with arbitrary linear utility functions.

Remark 13.3 Since hypergraphs considered here might be non-regqular and some
hyperedges might contain very few resources, our result in Chapter 12 does not imply
any approximation for the optimization problem considered here. Our reduction in
this section makes a crucial use of small hyperedges containing only one resource.

13.2. From Santa Claus to Matchings

This shows that handling the small hyperedges is one of the core difficulties in this
case.

We now give the proof of Theorem 13.1.

Proof We write (log)¥(n) = log - - - log(n) and (log)°(n) = n.
h\,kd
X

Construction. We describe how to construct a hypergraph matching in-
stance from a Santa Claus instance in four steps by reducing to the following
more and more special cases.

(1) Geometric grouping. In this step, given arbitrary v;;, we reduce it to
an instance such that OPT = 1 and for each i, j we have v;; = 27k for some
integer k and 1/(2n) < v;; < 1. This step follows easily from guessing OPT,
rounding down the sizes, and omitting all small elements in a solution.

(2) Reduction to O(log*(n)) size ranges. Next, we reduce to an instance in
which there is some k < log*(2n) for each player i such that for each resource
j, vij € {0,1} or 1/ (log)*(2n) < v;j < 1/(log)*™(2n). We explain this step
below.

Each player and resource is copied to the new instance. However, we will also
add auxiliary players and resources. Let i be a player. In the optimal solution
there is some 0 < k < log”(2n) such that the values of all resources j with
1/ (log)*(2n) < vj; < 1/(log)¥™!(2n) assigned to player i sum up to at least
1/ log™(2n). Hence, we create log*(2n) auxiliary players which correspond
to each k and each of which share an resource with the original player that
has value 1 for both. The original player needs to get one of these resources,
which means one of the auxiliary players needs to get a significant value
from the resources with 1/ (log)¥(2n) < v;; < 1/(log)**!(2n). This reduction
loses a factor of at most log”(2n). Hence, OPT > 1/ log*(2n).

(3) Reduction to 3 sizes. We further reduce to an instance in which for each
player i there is some value v; such that for each resource j, v;; € {0,v;,1}.

Let i be some player who has only resources of value v; € {0,1} or
1/(log)¥(2n) < v;; < 1/(log)**(2n) for some integer k. There are at most
log((log)¥(2n)) < (log)**1(2n) distinct values of the latter kind. The idea is
to assign bundles of resources of value 0.5/ (log”(211)(log)**!(2n)) to player
i

Fix a resource value s such that 1/(log)*(2n) < s < 1/(log)**!(2n). We
denote by R; the set of resources j such that v;; = s.

95

13. FURTHER CONNECTIONS BETWEEN HYPERGRAPH MATCHING AND SANTA CLAUS

96

We define the integer

= | sigEtegam |

which is the number of resources of value s that are needed to make a
bundle of total value at least 0.5/ (log”(2n)(log)**1(2n)). We remark that
if s > 0.5/ (log"(2n)(log)*™1(2n)) we have b = 1. However, since s <
1/ (log)k*1(2n), the value of a bundle never exceeds 1/ (log)**!(2n) in the
instance of step (2).

Then we create

LIRs[/b]

auxiliary players iy, i, . . . and auxiliary resources ji, j2, . . . (note that we create
0 players and resources if |R;| < b).

Each auxiliary player i, shares resource j, with player i. This resource has
value 2/ (log™(2n)(log)**1(2n)) for player i and value 1 for player i;. Then
for all resources j € R;, we set v;; = 0 and

1
Yid = (log” (2n))2b

for any auxiliary player i, that was created.

We see that we are now in the case where for each player i, there exists some
v; such that v;; € {0,v;,1} for all resources j. We claim the following.

Claim 13.4 In the instance created at step (3), we have that OPT > 1/ (log*(2n))>.

Proof To see this, take an assignment of resources to player that gives
1/log*(2n) value to every player in the instance obtained at the end of
step (2). Define R; to be the set of resources assigned to player i in this
solution. Either R; contains a resource of value 1 or only resources that
are in a range (1/(log)*(2n),1/ (log)**(2n)] for some integer k. In the first
case, nothing needs to be done as the resource j of value 1 assigned to i still
satisfies v;; = 1 in the new instance. Hence we assign j to i and all auxiliary
players created for player i get their auxiliary resource of value 1.

In the second case, fix a resource value s. Let R;; be the set of resources
assigned to i for which v;; = s and b defined as before. We select | |R;4|/b]
auxiliary players to receive b resources from R;s and player i takes the
corresponding auxiliary resources. The remaining auxiliary players of the
corresponding value take their auxiliary resource.

Doing this, we ensure that all auxiliary players receive either a value of 1 (by
taking the auxiliary resource) or 1/ (log*(2n))? by taking resources assigned
to 7 in the instance of step (2). Moreover, we claim that i receives a total value

13.2. From Santa Claus to Matchings

of at least 1/ (log"(2n))2. To see this, we have 3 cases depending on the value
of band ||R;s|/b].

e If b =1, then [|R;s|/b| = |R;s|. We note that the value of a bundle of
b resources of size s never exceeds 1/ (log)**!(2n) in instance (2). Since
each auxiliary resource represents a value of 2/ (log*(2n)(log)*™(2n))
to player i in instance (3), it must be that player i receives in instance (3)
at least a 2/ log™(2n) fraction of the value he would receive in instance

(2).

e If b >1and [|R;s|/b] > 0. Then we have that | |R;s|/b] > |R;s|/(2b).

Since in this case we have s < 0.5/ (log*(2n)(log)**1(2n)) it must be
that each bundle of b resources of size s represents a total value of at
most 1/ (log*(2n)(log)**1(2n)). Since the value of auxiliary resources
is twice this value and because [|R;s|/b] > |R;s|/(2b) it must be that
in this case player i receives in instance (3) at least the same value he
would receive in instance (2).

e If [|Ris|/b] = 0, then player i receives 0 value from resources of
this value. However, when we combine all the values s for which
||Ris|/b] = 0, it represents to player i in instance (2) a total value of at
most

0.5/ (1og* (2n) (log)+1 (Zn)) . (log)**1(2n) = 0.5/ log" (2n)

since there are at most (log)**1(2n) different resource values.

Putting everything together, we see that in the first two cases, player i receives
at least a 2/ log™(2n) fraction of the value he would receive in instance (2)

and that he looses at total value of at most 0.5/ log*(2n) in the third case.

Since in instance (2) we have that OPT > 1/ log" (2n) we see that in instance
(3) player i receives a value at least

(2/1log*(2n)) - (1/log*(2n) — 0.5/ log*(2n)) > 1/ (log*(2n))>. O

Finally, we also claim that it is easy to reconstruct an approximate solution to
the instance obtained at step (1) from an approximate solution to the instance
at step (3).

Claim 13.5 A c-approximate solution to the instance obtained at step (3) induces a
O((clog*(2n))?)-approximate solution to the instance obtained at step (1).

Proof To see this, note that a c-approximate solution must give at least
1/(c(log*(2n))?) value to every player since OPT > 1/ (log”™(21))? (by Claim
13.4). This means that each player i either takes a resource of value 1 which
also has a value 1 for him in the instance at step (1) or he must take at
total value of 1/(c(log*(2n))?) in auxiliary resources and the corresponding

97

13. FURTHER CONNECTIONS BETWEEN HYPERGRAPH MATCHING AND SANTA CLAUS

98

auxiliary players must take bundles of resources that represent a value of at
least

0.5/ <c 10g*(2n)(10g)k+1(2n))

for player i in the instance at step (1). We simply assign all the resources
appearing in these bundles to the player i in the instance of step (1). Since
the value of an auxiliary resource for player i is 2/ (log"(2n)(log)**1(2n)) it
must be that player i takes at least

1/(c(log"(2n))?>) ~ _ (log)**'(2n)
2/ (log"(2n)(log)**+1(2n)) 2clog™(2n)

auxiliary resources. Since each auxiliary resource brings a value of
0.5/ (c log*(2n)(log)k+1(2n))

to player i (in the instance at step (1)) then player i receives in total a value of
at least

(2clog™(2n))?
in the instance of step (1). i

Before the last step, we rescale the instance appropriately to get OPT = 1 (we
keep the property that each player i has 3 distinct sizes 0,1 and v;).

(4) Reduction to hypergraph matching. For each player create a vertex
in P and for each resource create a vertex in R. For each player add one
hyperedge for each resource he values at 1 (containing i and this resource).
Moreover, for every player i, add 1/v; new vertices to P and the same number
of new resources to R. Pair these 1/v; new vertices in P and R together (one
from R and one from P) and for each pair add a hyperedge containing these
two vertices in the pair. Add another hyperedge for i containing i and all
corresponding 1/v; new vertices in R. Finally, for each new vertex in P and
each resource that i values at v;, add a hyperedge containing them. See
Figure 13.1 for an illustration: New resources and players are marked as
squares and hyperedges containing only 2 vertices are marked as simple
edges.

We claim that there exists a 1-relaxed perfect matching in this instance. Since
OPT = 1 there is an assignment of resources to players such that every player
gets a value of 1. If player i takes one resource of value 1, give to player i
the corresponding hyperedge and the resource in it in the hypergraph. All
the new players get the new resource they are paired to. If player i takes
1/v; resources of value v;, give to player i in the hypergraph all the 1/v; new
resources contained in the new hyperedge. Then we give to each new player

13.2. From Santa Claus to Matchings

= T

U

Py Ui
Vi
Vi

Ui

Figure 13.1: An example of the reduction to hypergraph matching for player i with v; = 1/2.

the hyperedge (and the resource in it) corresponding to a resource that is
assigned to i in instance from step (3). This is indeed a 1-relaxed perfect
matching.

Correctness. In the reduction we arrive at in step (3), we prove that a
c-approximate solution can be used to easily reconstruct a O((clog*(2n))?)-
approximate solution to the original instance (in Claim 13.5). It remains
to show that a c-relaxed perfect matching in the instance (4) induces a c-
approximate solution to step (3). To see this, note that a c-relaxed perfect
matching in the instance (4) either gives to player i the resource in one
hyperedge corresponding to a resource of value 1 to player 7 in instance (3).
In that case we assign this resource to player i in instance (3). Or it gives
at least 1/(cv;) new resources to player i. In this case, it must be that each
new player paired to one of these resources takes one resource of value v; in
instance (3). We give these resources to i in instance (3). In this case i receives
a total value of v;/(cv;) = 1/¢ which ends the proof.

We finish by remarking that the size of our construction is indeed polynomial
in the size of the original instance. This is clear for step (1). In step (2), only
O(log*(n)) new players and items are created for each player in the original
instance. In step (3), for each player i and each resource size v;;, at most a
polynomial number of resources and players are created. As for the last step,
O(1/v;) new resources and players are created for each player i which is also
polynomial since v; = ()(1/n). The number of hyperedges in the hypergraph
is also clearly polynomial in the number of vertices in our construction. [

99

Chapter 14

Conclusions

Submodular functions are an important class of functions that have been
influential in theoretical computer science. In this thesis, we have studied
fundamental combinatorial optimization problems with submodular objective
functions. In the first two parts of the thesis we focussed mainly on the
streaming model of computation whereas in the third part we focussed on
approximation algorithms in the classical model of computation.

In Part I of our thesis, we developed robust streaming algorithms for the
problems of cardinality constrainted submodular maximization and un-
weighted maximum matching. We introduced a semi-random model called
adversarial-injections with the motivation of eliminating algorithms that over-
tit to random-order streams while still being easier than adversarial-order
streams. We studied two classical problems in combinatorial optimization in
this model.

For unweighted matching, we could beat 1/2 in the streaming setting whereas
we observed from [31] that we could not beat 1/2 in the online setting. This
also makes our model non-trivial as there is a separation between the online
and streaming setting.

For monotone submodular maximization with cardinality constraint k, we
obtained a 0.55-approximate streaming algorithm with a memory footprint
that is only a function of k. The obvious open question is whether one can
design a (1 — 1/e)-approximation algorithm which stores number of elements
that is independent of n. Does our algorithm have an approximation ratio of
1 —1/e? We observed that the algorithm in [59] is a 1/2 + € approximation
for a very small ¢ > 0. The algorithm stores poly(k) elements. Can one
design an algorithm that stores only poly(k) elements and beats 1/2 by a
significant constant or, even better, gets 1 — 1/e?

In Part II, we studied the matroid intersection problem in the streaming set-
ting. Our main result was a (2 + ¢)-approximation semi-streaming algorithm

101

14. CONCLUSIONS

102

for the weighted matroid intersection problem. Even though our algorithm is
based on the local-ratio technique, the analysis is a departure from previous
works as we use the concept of kernels from [29] for the analysis of our
algorithm. Moreover, we were able to extend our results to submodular
functions using ideas from [49]. Lastly, we showed that our algorithm could
be generalized in a natural way to work for the intersection of k matroids.
However, we proved that the logical generalization of matroid kernels to 3
matroids is wrong and specifically gave a counter-example. Hence, we need
new techniques for the analysis. We, however conjecture that the natural
generalization of the algorithm contains a (k + €)-approximation.

Finally, in Part III, we investigated the submodular Santa Claus problem
in the restricted assignment case and gave a O(loglog(n))-approximation
for this problem. This represents a significant generalization of the results
for the linear case. The submodularity of the utility function introduced
new obstacles compared to the linear case. These difficulties are captured
by the fact that we need to solve a new matching problem in non-uniform
hypergraphs that generalizes the case of uniform hypergraphs which has
been already studied in the context of the resttricted Santa Claus problem
with a linear utility function. Under the assumption that the hypergraph is
regular and all edges are sufficiently large, we proved that there is always
a a-relaxed perfect matching for « = O(loglog(n)). This result generalizes
the work of Bansal and Srividenko [6]. It remains an intriguing question
whether one can get « = O(1) as it is possible in the uniform case. One
idea (similar to Feige’s proof in the uniform case [25]) would be to view our
proof as a sparsification theorem and to apply it several times. Given a set
of hyperedges such that every player has ¢ hyperedges and every resource
appears in no more than ¢ hyperedges, one would like to select polylog(¢)
hyperedges for each player such that all resources appear in no more than
polylog(¢) of the selected hyperedges. It is not difficult to see than our proof
actually achieves this when ¢ = polylog(n). However, repeating this after
the first step seems to require new ideas since our bound on the number of

times each resource is taken is () (% log(ﬁ)) where / is the current sparsity

and d the number of configuration sizes. For the first step, we conveniently
have that d = O(log(n)) = O(¥¢) but after the first sparsification, it may not
be true.

We also provided a reduction from the Santa Claus problem with arbitrary
linear utility functions to the hypergraph matching problem in general hy-
pergraphs. This shows that finding the smallest a such that a hypergraph
has an a-relaxed perfect matching (or approximating it) is a very non-trivial
problem (even within a sub-polynomial factor). Another interesting question
is to improve the O(log™(n))? factor in the reduction to a constant.

Appendix A

Deferred Proofs from Part |

A.1 Removing the assumption that |M*| is known

We start by briefly recalling the algorithm MarcH. We refer the reader to
Section 4.1 for complete details.

MaATtcH runs two algorithms in parallel and outputs the better solution. The
first algorithm runs greedy whereas the second algorithm runs greedy up to
a certain point (Phase 1), and then starts collecting 3-augmenting paths.

Now we recall some definitions introduced in Chapter 4 that we will use
here. Let M* denote the maximum matching and M; the variable that is
updated by the first algorithm.

Our algorithm MATCH assumed that it knew |M*|. This is because the second
algorithm that is run in MATCH needs to know |M*| as it starts collecting
3-augmenting paths when it has collected at least |M*[(1/2 — ¢) edges. Until
this point in the stream, it has collected exactly |M;| edges. By definition,
| M| is also a lower bound on |M*|. Hence at any point, we will run multiple
copies of the second algorithm initialized with a guess for |M*| based on
what the value of | M| is at that point. Thus, for any fixed § > 0, we can guess
the value of |[M*| up to a factor of (14 ¢) by running the algorithm in parallel
for all powers i of 1+ 6, that satisfy |M;|/(1+6) < (1406)" < 4|My|/(1 — 2e).
Notice that some copies of our algorithm may stop after some time as their
|M*| estimate is no longer valid, others will continue and new ones with
|M*| estimates that are not already running will start initialized with the

matching M at that point in the stream. This increases algorithm’s space
4(1+9)
1-2¢

only by a factor of O(log
most O(5|M*|).

) and deteriorates the solution value by at

103

A. DEFERRED PROOFS FROM PART I

104

A.2 Omitted proofs for submodular function maximiza-
tion

We start by briefly recalling the algorithm. We refer the reader to Section 5.2
for the complete details.

The algorithm produces a tree of height at most k (the cardinality constraint)
and each root to node (at height i) path corresponds to a solution (of i
elements). Each node has at most |I| (the set of all possible increments)
children. At the beginning of the stream, the root of the tree stores the empty
set. For each element ¢ in the stream, we add it as a child of any node T at
height less than k, if for no existing child ¢ of T it holds that f(c | S)=f(e| S)
where S denotes the solution corresponding to the path from root to T. At
the end of the stream, the algorithm produces the best solution among all
leaves.

We will choose I to be a set of size O(k). For this however, we first need to
know OPT. We show below how to remove this assumption with a small
increase in space.

A.2.1 Assumption that OPT is known

The algorithm presented in Section 5.2 uses the assumption that it knows the
value OPT. We will describe in the following how to remove this assumption.
We use the same trick as described in [5]. Let § > 0 be a small constant.
It is easy to see that when using some value g < OPT instead of OPT, the
algorithm produces a solution of value at least 0.5506g. We will run the
algorithm in parallel for multiple guesses of g. If ¢ < OPT < (14 6)g for
some guess, we would only loose a factor of (14 ¢) in the approximation
ratio. However, the range in which OPT lies cannot be bounded. Hence, we
must adapt our guesses as we read the stream. To that end, we keep track
of the maximum element in the stream at any point of time. Let m; denote
the maximum element after observing the first i elements of the stream o,
i.e., m; = max;¢; f({0j}). It is easy to see that any subset of o7, ...,0; with
cardinality at most k has a value between m; and k - m;. Let

Gi— {(1+5>1 e]N,liémi <(1+4) < ’;m}
At any point i in the stream, we will run our algorithm in parallel for all
guesses in G;. When a new maximum element arrives, this may remove
previously existing guesses, in which case we stop the execution for this
guess and dismiss its result. On the other hand, new guesses may be added
and we start a new execution pretending the stream begins at o;.

Let us consider g, the correct guess for OPT, i.e.,, g < OPT < (1+6)g. Once g
is added to G;, it remains in the set of guesses until the end of the execution:

A.2. Omitted proofs for submodular function maximization

If it was removed, this would mean there exists an element of value greater
than (14 6)g > OPT. However, no set smaller than k can have a value
larger than OPT. It remains to check that the error induced by starting the
algorithm late is not significant. Let O denote the elements from the optimal
solution and O’ C O those that arrived before execution for g was started.
All elements in O’ were smaller than g6/k. Hence, f(O') < k- gé/k = 6.
This implies

f(O\O') = f(O) — f(O') = OPT — 8¢ > (1 — §)OPT.

Hence, the approximation ratio decreases by a factor of at most (1 —6)/(1+9)
and the space increases by a factor of log; s(k(1+6)/6) = O(1/élog(k/9)).

A.2.2 Bounding the number of increases

Recall, the tree algorithm stores roughly |I|¥ elements. Here I = {f(e |
S)| S CE, S| < ke € E} is the set of all possible increases of f. In order
to achieve a reasonable memory bound, we need to make sure that |I| is
small. In the following we describe a way that bounds |I| by O(k) and only
decreases the approximation ratio marginally.

We assume that OPT is known (see previous section). Let § > 0 be a
small constant. We divide the range 0 to OPT into k/é buckets each of size
0 - OPT/k. The idea is that I now represents the set of possible range of
increases of f where each bucket corresponds to a range. We now argue that
this discretization does not affect the approximation ratio much. Recall that
the recursion R(k, 1) was defined as follows:

R(k,) = min (£+ (1—£) R(k i —1), 7 + (1—1k“) R(k—1,—1), —)

14t

In Section 5.2.2, R(k, k) - OPT was proven to be a lower bound on the expected
value of the solution returned by the algorithm. Due to bucketing, the element
that is picked now might differ in value by at most (OPT - §/k) from the
value promised by the analysis. As the recursion R(k, k) has depth k (the
solution Sy consists of k elements), it is not hard to see that one can place a
lower bound on the expected value of the returned solution after bucketing
by R(k, k) - OPT — k- O(6/k)OPT. Thus the loss incurred by discretization
can be made arbitrarily small by appropriately selecting 6 > 0.

A.2.3 Analysis of recursion function

In order to prove that our algorithm is 0.55 competitive, we will lower bound
the value of the recursion R(k, i) where R(k,h) was defined as the lower
bound on the approximation ratio of the solution (we defined in Section 5.2.2)
at height i as compared to OPT over all submodular functions, streams and
opt elements. The heart of the proof lies in the fact that for a certain threshold

105

A. DEFERRED PROOFS FROM PART I

106

t and large k, the complicated recursion which involves taking the minimum
of three terms simplifies to a recursion (that one can solve easily) involving
just the first term. We prove this in Lemma A.4. For complete details on
the recursion definition and the solution we analyze, we refer the reader to
Section 5.2.2.

We first state some technical claims which will be helpful in proving Lemma
A4
Claim A.1 The following inequality is satisfied for all x € [—0.1,0]:

2 2,3
x x* X

e ——<l4+x<er————.
2 = 2 6

Proof We first write down the taylor expansion of e*:
X
~ L
i=0

For x € [-0.1,0],

o X IXI3 !xP | IXI3 P 1
Z l' \ Z | | 24 1 _ ‘X’ X O

i=3

2
Hence, e* <1+ x+ 5.

Similarly,
00 .. 4 4 o0) 4 4
Zx)]i_]i Z||l_ﬁ_x7 1 > 0.
= ! 24 120 = 24 120 1-— \x’

Hence,ex>1+x+%z+%3.

Claim A.2 For k > 999 and t < 1, the following inequality is satisfied:

1 (2et)
— < .
22(19«) S3R

Proof By using the formula for the sum of an infinite geometric series:

i t l_ t4‘€% . 1 o t4 D
=\19- k 192 ek 30K
19k

Now we prove a closed form expression for R(k,) when only the first rule
is applied.

A.2. Omitted proofs for submodular function maximization

Claim A.3 For any integer k > 1000 and any non-negative integer h < k such
that R(k,0') = t/k+ (1 —t/k)R(k,h' —1) for all 1 < W' < h it holds that

R(kJ) =1— (1— ;)h

In fact, Lemma A.4 will show that for large values of k (and any h) the
condition and thereby this closed form holds.

Proof We will prove the equality by induction on & for any k > 1000.
For h = 0, the equality holds as R(k,) = 0. Then by induction hypothesis

R(k,h) =

Lemma A.4 With t = 0.8 for every k > 1000 and h < k it holds that

R(k k) =1 + (1 _ ;) R(kh—1).

Proof We will prove by induction on k and h.

For h =1, R(k,1) = i For k = 1000, we have verified that the induction
hypothesis holds by computer assisted calculation. Hence the base case
holds.

Recall that R(k, 1) is defined as:

14t

R(k,h)zmin(li—i-R(k,h—l)- (1—;),11{+R(k—1,h—1)~ <1—1k+t> ! >

By induction hypothesis and Claim A.3, we know that R(k,h —1) =1— (1 —
t/k)h_l. Hence for k > 1000 and h < k, we get:

ommaen -4) - -

11 B
—1-(1-)

tk
<1-—(1-)k

107

A. DEFERRED PROOFS FROM PART I

As (1 — £)¥ is monotonically decreasing in k and ¢ = 0.8, we get:

t t t
_ —_1). Y <11 - 5 y1000
o+ Rk —1) <1 k) <1 (1~ 3555)

< 0.5509
b
14+t

N

Hence it suffices to prove the below for k > 1000 and h < k:
t 1 1+t
—-1). N P - ~-1). — .
R(k,h — 1) (1 k) \k—i—R(k 1,h—1) <1 p)
Or, equivalently:
t<1+R(k—1h—-1)-(k—1—t)—R(k,h—1)-(k—1t).

By induction hypothesis and Claim A.3, we know that R(k,h —1) =1— (1 —
%)h—l andR(k—l,h—l):l_(l ktl)h 1

ST = (1=)) (k=16 = (1= (1= ') (k= 1)

et) o)
(k—t)" (k—1—t)"

G <k—1>h1
<k-(1-) = (k=1 (1=)" (A1)

E

E; is monotonically decreasing in / as shown below:

Hence we can lower bound E; by assuming & = k. We lower bound E; below:

108

A.2. Omitted proofs for submodular function maximization

E1>k-(1—£)k—(k—1)-(1—ﬁ)k.

By using Claim A.1, k > 1000 and ¢ < 1, we get:

k
_ t2 —t i‘z t3
Ey>k-(eF — Ko (k=1)- | eFr —
12kt —) kD) e e Y g1y
Ty
k ; N =
t2 . ek t2 . eF 1 £ . eFT
>k-et [1—-——] —(k=1) - Ty-et- —
e (2~k2> (k—1)-Ty-e <1 2 (k=)2—1—6 =)3>
—_—
T, T
(A2)

We lower bound the term T5.

k
t2-e%
h=1[1-

2ot 2k (2

S vk [ter . . o,
Tk g > (2 k2> (By Binomial Expansion.)
Pt 18 (2ot

RN _2§<2-k

S1o e B Claim A2, £ < 1and k > 1000

>1-—— —3'k2.(y aim A2, t<land k >)

We now simplify and lower bound k - et Ty

£2 . ek 4
ket Th>k-et-(1—
¢ e U-5r 35
£2.ek.emt et
— ket > — (A.3)

We now upper bound T3.

T 1 tz.eﬁ t3.eﬁ k=1
AR G VR V) B

109

A. DEFERRED PROOFS FROM PART I

By using Binomial Expansion, we get:

2. oFT 3 1 = tZ.eﬁ Z
T3<1_2t.(ke_1)+3.(kt—1)2+2’1.§<1.9-(k—1)>
2. erT P 4
<1_2-(k—1)+3-(k—1)2+3'(k—1)2 (By Claim A.2, t < 1, k > 1000.)
1 £2. eFT R £3

We now upper bound T;. By using Claim A.1, k > 1000 and ¢ < 1, we get:

<1t P
PSP k-1 6 (k—1)3

We now simplify and upper bound (k—1) - Ty e~ - Ts:

(k—1)-Ty-e ' T3

£2. et 2.4
<(k—=1)-et. Ty (1=
<(k—=1)-e"-T1-(1 2-(k—1)+3 (k—l)z)

£2. e 2.3
p— 7t- . J— —
=e Ty ((k=1) > +3_(k_1))
t £3 2. eFT 2.3

<ot (1— _
se U tgaons) (D435

2.eF1 7.3 ek £2. eF1
<eto[k—1—t— : :
<e (k 1—t¢ > +6-(k—1) 3 (k—1) (A.4)

110

A.2. Omitted proofs for submodular function maximization

By replacing (A.3) and (A.4) in (A.2), we get:

2.ek.et et
Ey>k-ef—
1= 2 3.k
2.ek1 7.3 ekt £2. ek
—e o (k—1—t—
e > e k-1 T3 -1
2.oer1 2. el B 7P ert
fnd 7t- 1 t 7t. — — —t
e+t ter-(— 2)¢ Gt ey
_t tz.eﬁ
e
3-(k—1)?
S ot (1t L 2-Bern , f2.eRd A5
Ze (14t —e k-1 ¢ 3. (k-12 (A-5)
By using (A.1) and (A.5), we get that it suffices to prove the following;:
D (VR N (V)
Here, t = 0.8 satisfies the final inequality. O

Lemma (5.2 restated) For all positive integers k, R(k, k) > 0.5506.

Proof For k < 1000, R(k, k) > 0.5506 can easily be verified with computer
assistance, since it involves only a dynamic program of size 1000 x 1000. For
k > 1000, by Lemma A.4 and Claim A3, R(k,k) > 1—(1—-%8)F > 1—¢708 >
0.5506. 0

111

Appendix B

Deferred Proofs from Part ||

B.1 Extending Algorithm 3 when matroid ranks are
unknown

In this section, we extend Algorithm 3 to the case where the matroid ranks,

i.e r;, are unknown. Since r; is not known, we can not set y = W The
idea is to guess the rank of one of the matroids, say M; and adapt the y value
that would be assigned to newly added elements as we update our guess.
The y values are set in a way that the errors arising from deleting elements
specific to a single y value form a geometrically decreasing sequence.

More concretely, we set a y value specific to each element e € S using the
notion of stacks introduced in the proof of Theorem 7.7. To recap, on the
arrival of element e that is added to our set S initially (may be deleted later),
the following two things might happen to the maximum weight independent
set with respect to w; i.e, T;. Either it replaces an element ¢’ in Ty, or it is
added to T;. In the former case, we say that e is added to the stack that
contains ¢’. In the latter, we say that we create a new stack and add e to
it. In Algorithm 6, we use s to denote the number of stacks at any point
during the execution. The y value of an element is decided based on the
stack it belongs to. Specifically, the y value of the elements in the first two
stacks is set to ;%, the next four stacks to 1—? and in general a value of 3—21 for
the next 2 stacks. This is done in Algorithm 6 by the function z : N +— R
where z(1) = z(2) = ;iz, z(3) = z(4) = z(5) = z(6) = 1—26 and in general
a value of 3—21 for the next 2’ numbers. The values are set in such a way so
that the error introduced in each bundle of stacks forms a geometrically
decreasing sequence. Using arguments used in the proof of Lemma 7.7, the
error introduced in the i bundle of stacks that contains 2/ stacks is at most
z g"l”’fie(lﬂ) = g’"”xg(ilJrS). Summing this over all i gives us that the error is at
most gmax€(1+ €) giving us the same error we obtained in the proof of Lemma

113

B. DEFERRED PrOOFS FROM PART II

114

7.7. By an analysis similar to the one in the proof of Lemma 7.7, we can prove
that the size of S never exceeds r1 + 1, + max(r,17) 1oga(%) where y is the
value in the last bundle of stacks formed. By simple calculation, y is at most

max(rq,r2)>
€2 :

Algorithm 6 Extension of Algorithm 3 to unknown 7;

Input: A stream of the elements and 2 matroids (which we call M;, M;) on
the same ground set E, a real number & > 1 and a function z : N — R.
Output: A set X C E that is independent in both matroids.
Whenever we write an assignment of a variable with subscript i, it means
we doitfori=1,2.
S+, T, + @
s=0 {//initialize no. of stacks to zero.}
for element ¢ in the stream do
calculate w} (e) = max ({O} U{0:e€spany ({f €S |wi(f) > 9})})
if w(e) > a(wj(e) + wj(e)) then
g(e) « w(e) —wi(e) —w;(e)
S« SuU{e}
wi(e) g(e) +w} (¢)
Let H; be a maximum weight independent set of M; with respect to

w;.
if {¢} UT; = H; then
s=s+1
y(e) = z(s) {//H; is formed by adding e to T;}
else
{¢} =T1\ (Hi\{e}) {//Hi is formed by replacing ¢’ with e in
T, }
y(e) = y()
end if
T, = H;

Let gmax = n;easxg(e)
Remove all elements ¢/ € S, such that y(¢’) - g(¢') < gmaxr and €’ ¢
T1 UT, from S.
end if
end for
return a maximum weight set T C S that is independent in M; and M,

Appendix C

Deferred Proofs from Part ||

C.1 Omitted proofs from Chapter 11

C.1.1 Solving the configuration LP

The goal of this section is to prove Theorem 11.1. We consider the dual of the
configuration LP (after adding an artificial minimization direction min 07 x).

max Zyl — Z Z]'
iep jER
Zz]- >y; forallie P,CeC(iT)
jeC
]/j, Zj 2 0

Observe that the optimum of the dual is either 0 obtained by y; = 0 and z; = 0
for all 7, j or it is unbounded: If it has any solution with) ;cpyi — Yjcr 2 > 0,
the variables can be scaled by an arbitrary common factor to obtain any
objective value. If it is unbounded, this can therefore be certified by providing
a feasible solution vy, z with

Yyi—-) zi>1 (%)

ieP JER

We approximate the dual in the variant with a constraint (*) instead of a
maximization direction using the ellipsoid method. The separation problem
of the dual is as follows. Given z;, y; find a player i and set C with g(CNT;) >
T such that }icc zj < yi.

To this end, consider the related problem of maximizing a monotone sub-
modular function subject to knapsack constraints. In this problem we are
given a monotone submodular function g over a ground set E and the goal
is to maximize g(E’) over all E' C E with } ;cpra; < b. Herea; > Ois a
weight associated with j € E and b is a capacity. For this problem Srividenko

115

C. DEFERRED PrOOFS FROM ParT III

116

gave a polynomial time (1 — 1/e)-approximation algorithm [63]. It is not
hard to see that this can be used to give a constant approximation for the
variation where strict inequality is required in the knapsack constraint: As-
sume w.l.o.g. that 0 < a; < b for all j. Then run Srivideko’s algorithm to
find a set E' with Y ;cp a; < b. Notice that g(E') is at least (1 —1/¢)OPT,
including when OPT is the optimal value with respect to strict inequality. If
E’ contains only one element then equality in the knapsack constraint cannot
hold and we are done. Otherwise, split E’ into two arbitrary non-empty
parts E” and E™. It follows that Y jcpva; < b and Y jcpna; < b. Moreover,
either ¢(E”) > g(E’)/2 or g(E") > g(E’)/2. Hence, this method yields a
c-approximation for ¢ = (1 — 1/e) /2. We now demonstrate how to use this
to find a c-approximation to the configuration LP.

Let OPT be the optimum of the configuration LP. It suffices to solve the
problem of finding for a given T either a solution of value cT or deciding that
T > OPT. This can then be embedded into a standard dual approximation
framework. We run the ellipsoid method on the dual of the configuration
LP with objective value c¢T and constraint (*). This means we have to solve
the separation problem. Let z, y be the variables at some state. We first check
whether (x) is satisfied, that is };cpyi — Ljcr zj = 1. If not, we return this
inequality as a separating hyperplane. Hence, assume (x) is satisfied and
our goal is to find a violated constraint of the form } ;cc zj < y; for some
i€ Pand C € C(i,T). For each player i we maximize f over all S C T'; with
Yjes zj < yi- We use the variant of Srividenko’s algorithm described above to
obtain a c-approximation for each player. If for one player i the resulting set S
satisfies f(S) > cT, then we have found a separating hyperplane to provide to
the ellipsoid method. Otherwise, we know that f(S) < T for all players i and
S C T; with ¥ jc5zj < y;. In other words, for all players i and all C € C(i, T)
it holds that } ;cczj > y; ie, zy is feasible for objective value T and
hence OPT < T. If the ellipsoid method terminates without concluding that
OPT < T, we can derive a feasible primal solution with objective value cT:
The configurations constructed for separating hyperplanes suffice to prove
that the dual is bounded. These configurations can only be polynomially
many by the polynomial running time of the ellipsoid method. Hence, when
restricting the primal to these configurations it must remain feasible. To
obtain the primal solution we now only need to solve a polynomial size
linear program. This concludes the proof of Theorem 11.1.

C.1.2 Clusters

This section is devoted to proving Lemma 11.2. The arguments are similar to
those used in [6].

Lemma C.1 Let x* be a solution to the configuration LP of value T*. Then x*
can be transformed into some xlf,C > 0forie P, C e C(i, T*) which satisfies the

C.1. Omitted proofs from Chapter 11

following. There is a partition of the players into clusters Ky U--- UK, UQ = P
that satisfy the following.

1. any thin resource j is fractionally assigned at most once, that is,

Y,)Y xc<l

i€P CeCy(i,T*):;jeC
We say that the congestion on item j is at most 1.

2. every cluster K; gets at least 1/2 thin configurations in x', that is,

i€K; CeCy(i,T)

3. given any iy € Ky,ip € Ky, ...,ix € Ky there is a matching of fat resources
to players P\ {i1,...,ix} such that each of these players i gets a unique fat
resource j € I';.

The role of the set of players Q in the lemma above is that each of them gets
one fat resource for certain.

Proof We first transform the solution x* as follows. For every configuration
C (for player i) that contains at least one fat resource and such that x;. > 0,
we select arbitrarily one of these fat resources j and we set x; M= x/c and
then we set x7~ = 0. It is clear that this does not increase the congestion
on resources and now every configuration that has non-zero value is either
a thin configuration or a singleton containing one fat resource. Therefore
we can consider the bipartite graph G formed between the players and the
fat resources where there is an edge between player i and fat resource j if
the corresponding configuration C = {j} is of non zero value (i.e. x;- > 0).
The value of such an edge will be exactly the value x/.. We now make G
acyclic by doing the following operation until there exists no cycle anymore.
Pick any cycle (which must have even length since the graph is bipartite)
and increase the coordinate of x* corresponding to every other edge in the
cycle by a small constant. Decrease the value corresponding to the remaining
edges of the cycle by the same constant. This ensures that fat resources are
still (fractionally) taken at most once and that the players still have one unit
of configurations fractionally assigned to them. We continue this until one of
the edge value becomes 0 or 1. If an edge becomes 0, delete that edge and if
it becomes 1, assign the corresponding resource to the corresponding player
forever. Then delete the player and the resource from the graph and add the
player to the cluster Q. By construction, every player added to Q is assigned
a unique fat resource. Notice that when we stop, each remaining player still
has at least 1 unit of configurations assigned to him and every fat resource
is still (fractionally) taken at most once. Hence we get a new assignment

117

C. DEFERRED PrOOFS FROM ParT III

118

vector where the assignments of fat resources to players form a forest. We
also note that the congestion on thin resources did not increase during this
process (it actually only decreased either when we replace fat configurations
by a singleton and when players are put into the set Q and deleted from the
instance). We show below how to get the clusters for any tree in the forest.

1. If the tree consists of a single player, then it trivially forms its own
cluster. By feasibility of the original solution x*, condition 2 of the
lemma holds.

2. If there is a fat resource that has a degree of 1, assign it to its player, add
the player to Q and delete both the player and resource. Continue this
until every resource has a degree of at least 2. This step adds players to
cluster Q. By construction, every added player is assigned a unique fat
resource.

3. While there is a resource of degree at least 3, we perform the following
operation. Root the tree containing such a resource at an arbitrary
player. Consider a resource j of degree at least 3 such that the subtree
rooted at this resource contains only resources of degree 2. Because
this resource must have at least 2 children in the tree iy, iy, ... (which
are players) and because

Y) xc<]l,

ieP C:;jeC

it must be that one of the children (say i;) satisfies x;.kl 0 < 1/2. We

then delete the edge (j,i1) in the tree and set x; (jy 0.

4. Every resource now has degree exactly 2. We form a cluster for each
tree in the forest. The cluster will contain the players and fat resources
in the tree. We note that in every tree, only the player at the root lost at
most 1/2 unit of a fat resource by the previous step in the construction.
By the degree property of resources and because the graph contains
no cycle, it must be that in each cluster K we have |R(K)| = |P(K)| — 1
where |R(K)| is the number of resources in the cluster and |P(K)| the
number of players. Because each resource is assigned at most once,
and because only one player in the cluster lost at most 1/2 unit of a fat
resource, it must be that the cumulative amount of thin configurations
assigned to players in K is at least

IP(K)| — |R(K)| —1/2 = 1/2.

This gives the second property of the lemma. For the third property,
notice that for any choice of player i € K, we can root the tree corre-
sponding to the cluster K at the player i and assign all the fat resources

C.1. Omitted proofs from Chapter 11

in K to their only child in the tree (they all have degree 2). This gives
the third property of the lemma.

As each of these steps individually maintained a congestion of at most
1 on every thin resource, we indeed get a new solution x’ and the
associated clusters with the required properties. g

Lemma C.1 implies that for each cluster we need to cover only one player
with a thin configuration. Then the remaining players can be covered with fat
resources. We will now replace x’ by a solution x” which takes slightly worse
configurations C;(i, T*/5), but satisfies (2) in Lemma C.1 with 2 instead of
1/2. This can be achieved by splitting each configuration C € C(i, T*) in
4 disjoint parts Cy,Cy, C3,Cy € C(i, T*/5). Let C; C C with f(Cy) > T*/5
minimal in the sense that f(C; \ {j}) < T*/5for all j € C;. Let j; € Cy. By
submodularity and because j; is thin it holds that

fFICNC) = f(C) = f(Cr\ {j}) = f({in}) = 4T"/5—T"/100.

Hence, in the same way we can select C; C C\ C;, C3 C C\ (C; UCy) and
Cs CC\ (C1UCUC3). We now augment x’ to x” by initializing x” with 0
and then for each i and C € C(i, T*) increasing x/'- , x/~ , x!'~ , and x/~ by

~1 72 73 7~4
xglc. Here Cy,Cy,C3,Cy € C(i, T*/5) are the configurations derived from C
by splitting it as described above.

Finally, we sample for each cluster some ¢ > 121log(n) many configurations
with the distribution of x” to obtain the statement of Lemma 11.2 which we
restate for convenience.

Lemma (11.2 restated) Let ¢ > 12log(n). Given a solution of value T* for
the configuration LP in randomized polynomial time we can find a partition of
the players into clusters Ky U --- U Ky U Q = P and multisets of configurations
Ch C Uiex, Cr(i,T*/5), h =1,...,k, such that

1. |Cyl=Lforallh=1,..., kand
2. Each small resource appears in at most £ configurations of |, Cp,.
3

. Given any iy € Ky,1p € Ky, ..., iy € Ky there is a matching of fat resources
to players P\ {i1,...,ix} such that each of these players i gets a unique fat
resource j € I';.

Proof We start with the clusters obtained with Lemma C.1 and the solution
x"" described above. Recall that

Y,)Y xc=2

i€K, CECy(i,T*/5)
for each cluster Kj,. We assume w.l.o.g. that equality holds by reducing some

variables xl/-’c. Clearly then each resource is still contained in at most one
configuration in total.

119

C. DEFERRED PrOOFS FROM ParT III

For each cluster K}, we sample a configuration that contains a player in
this cluster according to the probability distribution given by the values
{xi'c/2}iek, cecii+/5)- By the assumption of equality stated above this
indeed defines a probability distribution. We repeat this process ¢ times. We
first note that for one iteration, each resource is in expectation contained in

) Y. xle/2<1/2

i€P CeC(i,T*/5):jeC

selected configurations. Hence in expectation all the resource are contained
in £/2 selected configurations after ¢ iterations. By a standard Chernoff
bound (see Proposition 2.2), we have that with probability at most

exp (—£/6) < 1/n?

a resource is contained in more than ¢ configurations. By a union bound, it
holds that all resources are contained in at most ¢ selected configurations
with high probability. U

C.2 Omitted proofs from Section 12.2

Theorem (12.3 restated) Consider Random Experiment 12.2 with £ > 300.000 log® (n).
For any k > 0 and any C € CX we have

1, 3,
SUHICI < RN Cl < S£77(C
with probability at least 1 —1/n'0.

Proof The lemma trivially holds for k = 0. For k > 0, by assumption
C € €K hence |C| > (k3. Since each resource of R = R survives in Ry
with probability /=% we clearly have that in expectation

E(|R¢NCl) = ¢7¥|C|

Hence the random variable X = |R N C| is a sum of independent variables of
value either 0 or 1 and such that [E(X) > /3. By a standard Chernoff bound
(see Proposition 2.3), we get

(e 0250 oo (240)

2 72 12

3
exp (_300.002;055 (n)) 1

since by assumption £ > 300.000 log®(n). O

120

C.2. Omitted proofs from Section 12.2

Lemma (12.4 restated) Consider Random Experiment 12.2 with ¢ > 300.000 logS(n).

For any k > 0 and any C € C=H)

Y |C’ﬂCﬂRk|<zg<|C|+) |C’mC|>

C’ec®) C'ec®)
with probability at least 1 — 1/n'°.

Proof The expected value of the random variable X = Y~ _cw [C'NC N Ry|

1S
115()():l Y c'ncl.

k
& oecw
Since each resource is in at most ¢ configurations, X is a sum of independent
random variables that take value in a range [0,¢]. Then by a standard
Chernoff bound (see Proposition 2.3), we get

C] 3[C| 1

since by assumption, |C| > ¢5*3 and ¢ > 300.000 log®(n). O

We finish by the proof of the last property. As mentioned in the main body of
the Part III of our thesis, this statement is a generalization of some ideas that
already appeared in [6]. However, in [6], the situation is simpler since they
need to sample down the resource set only once (i.e. there are only two sets

R; € R and not a full hierarchy of resource sets R; C R;_1 C --- C R; C R).

Given the resource set Rj, they want to select configurations and give to each
selected configuration K all of its resource set |[K N Ry so that no resource is
assigned too many times. In our case the situation is also more complex than
that since at every step the selected configurations receive only a fraction of
their current resource set. Nevertheless, we extend the ideas of Bansal and
Srividenko to our more general setting. We recall the main statement before
proceeding to its proof.

Lemma (12.5 restated) Consider Random Experiment 12.2 with £ > 300.000 log>(n).

Fix k > 0. Conditioned on the event that the bounds in Lemma 12.3 hold for k,
then with probability at least 1 — 1/n'° the following holds for all F C CZk+1),
a: F — N, and v € N such that ¢3/1000 < a(C) < n forall C € F and
v e {1,...,0}: If there is a («,y)-good assignment of Ry, to F, then there is a
(«, v)-good assignment of Ry to F where

o' (C) =4 (1 — logl(n)) a(C) (C.1)

forall C € F. Moreover, this assignment can be found in polynomial time.

121

C. DEFERRED PrOOFS FROM ParT III

122

Figure C.1: The directed network and an s-t cut

We first provide the definitions of a flow network that allows us to state a
clean condition whether a good assignment of resources exists or not. We
then provide the high probability statements that imply the lemma.

For any subset of configurations F C C(>k+1), resource set Ry, & : F — NN,
and any integer <y, consider the following directed network (denoted by
N (F,Rg,a,7)). Create a vertex for each configuration in F as well as a
vertex for each resource. Add a source s and sink t. Then add a directed
arc from s to the vertex C € F with capacity a(C). For every pair of a
configuration C and a resource i such that i € C add a directed arc from C to
i with capacity 1. Finally, add a directed arc from every resource to the sink
of capacity 7. See Figure C.1 for an illustration.

We denote by
maxflow (N (F, Ry, &, 7))

the value of the maximum s-t flow in N'(F, Ry, a,).

Before delving into the technical lemmas, we provide a brief road map for
the proof. First, we argue that for any subset of configurations, in the two
networks induced on this subset and the consecutive resource sets (which
are Ry and Ry, 1), the value of the maximum flow differs by approximately
a factor / (this is Lemma C.3 stated below). Then by a union bound over
all possible subsets of configurations, we say that the above argument con-
secutively holds with good probability. This helps us conclude that a good
assignment of the resource set Ry 1 implies that there is a good assignment of
the resource set Ry. Notice that if one does not have the above argument with
respect to all subsets of configurations at once, it is not necessary that a good
assignment of resources must exist. In particular, we need Lemma C.2 to
show that if on all subsets of configurations the maximum flow is multiplied

C.2. Omitted proofs from Section 12.2

by approximately ¢ when we expand the resource set from Ry to Ry, then
an (a,y)-good assignment of Ry implies an (a’,y)-good assignment of Ry,
where o' is almost equal to fa.

Lemma C.2 Let F be a set of configurations, R" C R, a : F — IN a set of resources,
v € N, and € > 0. Define

o(C) = [(1=2)a(C)].

There is an (', y)-good assignment of R' to F if and only if for every F' C F,
the maximum flow in the network N'(F',R’,«,y) is of value at least Y . 7 &' (C).
Moreover, this assignment can be found in polynomial time.

Proof First assume there is such an (&, 7)-good assignment. Then send a
flow of &’(C) from s to each C € F. If resource i is assigned to C, send a
flow of 1 from C to i. Finally ensure that flow is preserved at every vertex
corresponding to a resource by sending the correct amount of flow to . Since
no resource is taken more than 7 times, this flow is feasible.

We prove the other direction by contradiction. Denote by N the network
N (F,R,a,). If there is no good assignment satisfying the condition of the
lemma then the maximum flow in N must be strictly less than } . r a’(C)
(otherwise consider the maximum flow, which can be taken to be integral,
and give to every configuration C all the resources to which they send a flow
of 1). Then by the max-flow min-cut theorem, there exists an s-f cut S that
has value strictly less than Y . 7 &’ (C). Let C’ be the set of configurations on
the side of the source in S. Notice that C’ cannot be empty by assumption on
the value of the cut.

Consider the induced network N (C’,R’,&’,7) and the cut S in it. It has a
value strictly lower than Y . &/(C). This, in turn implies that the cut S in
N(C',R',a,v) has a value strictly lower than }_ . a/(C), since this cut does
not contain any edge from the source s to some configuration. Hence the
maximum flow in N (C’,R’, a,) has a value strictly less than } .0 2/(C), a
contradiction to the assumption in the premise. g

Lemma C.3 Let F C CZ*+Y) n: F — N such that £3/1000 < a(C) < n for all
C e F,and 1 < y < L. Denote by N the network N'(F, Ry, £ - a, 7y) and by N the
network N'(F,Riy1,,7). Then

> 14
1+0.5/log(n)

maxflow (N) maxflow ()

with probability at least 1 — 1/ (n)?0171,

Proof We use the max-flow min-cut theorem that asserts that the value of
the maximum flow in a network is equal to the value of the minimum s-t

123

C. DEFERRED PrOOFS FROM ParT III

124

cut in the network. Consider a minimum cut S of network N with s € S
and t ¢ S. Denote by ¢(S) the value of the cut. We will argue that with high
probability this cut induces a cut of value at most ¢(S)/¢- (1+ 0.5/ log(n))
in the network N. This directly implies the lemma.

Denote by C’ the set of configurations of F that are in S, i.e., on the source
side of the cut, and C"” = F \ C'. Similarly consider R’ the set of resources
in the s side of the cut and R” = Ry \ R’. With a similar notation, we
denote R’ = R’ N Ry, the set of resources of R’ surviving in Ry, ; and
R" = R” N Ry1. Finally, denote by S the cut in N obtained by removing
resources of R’ that do not survive in Ry, from S, i.e, S = {s} UC'UR'.
The value of the cut S of NV is

= Y ¢-a(C)+e(C',R")+v|R|
Cec”

where ¢(X,Y) denotes the number of edges from X to Y. The value of the
cut Sin N is .
c(8) =Y a(C)+e(C,R")+7|R
cec”

We claim the following properties.

Claim C.4 For every C € F, the outdegree of the vertex corresponding to C in N'
is at least (*/2.

Since C € C***1) and by Lemma 12.3, we clearly have that |C N Ry| > ¢*/2.
Claim C.5 It holds that

| 7162
> .
“(5)> To00
We have by assumption on «(C)
/ " 63 / 1 /
cec” cec”
C"\ g3
> ’10(‘)0 —I—E(C/,RH) +,)/‘R/’

Now consider the case where e(C’, R"”) < |C’|¢3/1000. Since each vertex in C’
has outdegree at least ¢*/2 in the network N (by Claim C.4) it must be that
e(C',R") > |C"|¢*/2—|C'|¢3 /1000 > |C’|¢*/3. Using that each vertex in R’ has
indegree at most ¢ (each resource is in at most ¢ configurations), this implies
IR’| > |C'|¢3/3. Since v > 1 we have in all cases that e(C’,R") + y|R'| >
|C’|¢3/1000. Hence

|C”|€3 N |C/M3 _ ‘]:MS

> = .
¢(8) = 000 T 1000 = 1000

C.3. Omitted proofs from Section 12.4

This proves Claim C.5. We can now finish the proof of the lemma. Denote by
X the value of the random variable e(C’, R”) + ¢|R’|. We have that

E[X] = ;(e(C,R") + 7R

Moreover, X can be written as a sum of independent variables in the range
[0,] since each vertex is in at most ¢ configurations and 7 < ¢ by assumption.
By a Chernoff bound (see Proposition 2.3) with

0.5¢(S) _ 05

* = Tog(n) - (e(5) — Lecera(C)) ~ log(n)

we have that

P <X > E(X) + ;i;%) < exp <_mi“{5f ;Z}E(X)>

c(5) 7|62 1
< —— =)L . < ,
P (12¢210g? (1)) exp < 12.000¢2 10g? (1) (nl)2017]

where the third inequality comes from Claim C.5 and the last one from
the assumption that £ > 300.000log>(n). Hence with probability at least
1-— 1/(n€)20|f‘, we have that

—_

0.5

7610g(n)c(s)' O

c(8) = Z a(C)+e(C',R")+9|R'| < ZC(S) +
ceer

We are now ready to prove Lemma 12.5. Note that Lemma C.3 holds with
probability at least 1 — 1/ (n0)2171, Given the resource set Ry and a cardi-
nality s = |F| there are O((nf)?*) ways of defining a network satisfying
the conditions from Lemma C.3 ((mf)* < (nf)° choices of F, n® choices
for @ and ¢ choices for 7). By a union bound, we can assume that the
properties of Lemma C.3 hold for every possible network with probabil-
ity at least 1 — 1/n1%. Assume now there is a (a,y)-good assignment of
Ri1 to some family F. Then by Lemma C.2 the maxflow (N (F’, Rgiq,a,7))
is exactly Y.ccr «(C) for any 7' C F. By Lemma C.3, this implies that
maxflow (N (F’, Ry, £ - a, 7)) is at least £/(1+ 0.5/1og(n)) Y cc 7 «(C). By
Lemma C.2, this implies a (a’,y)-good assignment from Rj to F, where

a'(C) = [£/(1+0.5/1log(n))]a(C) = ¢/(1+1/log(n))a(C)
> 0(1— 1/ log(n))a(C).

C.3 Omitted proofs from Section 12.4

Claim (12.10 restated) Forany k > 0,any 0 < j <k, and any C € Kk

Y. Y MKnCnRy < 20007

j<h<k Kek

log(£)[C].

125

C. DEFERRED PrOOFS FROM ParT III

Proof By Lemma 12.6 we have that

—_

h <7 h / R
2 X UIKNCARI<;),), £ICNCAR
j<h<k Kexh) j<h<k crec®)

d+/4
14

+ 1000 log(4)|C].

Furthermore, by Lemma 12.4, we get
h| ! h 10 /
Yo MenenRry < —([Cl+ Y |C'nCl].
/h
CcreCt CeC®

Finally note that each resource appears in at most ¢ configurations, hence

Y. Y IIncl<c)

j<h<k crec®)
Putting everything together we conclude

1

h - AVali
2 X UIKNCARI<),), £ICNCAR
j<h<k ke j<h<k crec®
+1000% z £ log(0)[C]
1 , d+1
<7 Y 1o(|cl+ Y |c'ncl] +1000 7 log(0)[C]|
j<h<k clec
< klj]m|c| +10[C| + 1oood'€M log(£)|C]|
< 20/C| +1oood‘;£10g(e)|q < ZOOOd—gelog(ﬁ)\C\. O

Claim (12.12 restated) For any C € K(Z)),
1 2
—), |[KNCNRi1NOl<u<=)Y |KNCNRi_1NO|
" kekG-v Y Kexi-1)
Proof Note that we can write
R b —
iconc bl' ieONC ﬂibl’ KekU-D

The reason for this is that each resource i accounts for an expected loss of
(a; + b; — 7v) /b; while it is counted a; times in the sum

Y. |[KNCNR;-1NO.
Kekl-1

126

C.3. Omitted proofs from Section 12.4

Similarly,

a; +b; —y . fai+bi—
p= Y Zl}églélc{ll Y. |[KNCNR;-1NO.

icoNC bi aib; Kekli-1)

Note that by assumption we have that a; + b; > <. This implies that either a;
or b; is greater than y/2. Assume w.l.o.g. that a; > /2. Since by assumption

a; < v we have that

ai+bi—'y< b; o 1 %
a;b; Sab o oa Ty

In the same manner, since a; + b; > < and that a;, b; < 7, we can write

a;i +bi — > L > i
a;b aib; ~— ?

We therefore get the following bounds
1 2
— Y, |[KNCNR1NOl<u<=) [KNCNRj-1NO|,
,),2] 0%]
KekU-1 Kek (-1

which is what we wanted to prove.

127

Bibliography

(2]

3]

[7]

Shipra Agrawal, Mohammad Shadravan, and Cliff Stein. Submodular
secretary problem with shortlists. In 10th Innovations in Theoretical
Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego,
California, USA, pages 1:1-1:19, 2019.

Chidambaram Annamalai, Christos Kalaitzis, and Ola Svensson. Com-
binatorial algorithm for restricted max-min fair allocation. ACM Trans.
Algorithms, 13(3):37:1-37:28, 2017.

Arash Asadpour, Uriel Feige, and Amin Saberi. Santa claus meets
hypergraph matchings. ACM Trans. Algorithms, 8(3), July 2012.

Sepehr Assadi and Soheil Behnezhad. Beating two-thirds for random-
order streaming matching. arXiv preprint arXiv:2102.07011, 2021.

Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi,
and Andreas Krause. Streaming submodular maximization: massive
data summarization on the fly. In The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD "14, New York,
NY, USA - August 24 - 27, 2014, pages 671-680, 2014.

Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In
Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of
Computing, STOC 06, page 31-40, New York, NY, USA, 2006. Association
for Computing Machinery.

R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the
weighted vertex cover problem. In G. Ausiello and M. Lucertini, editors,
Analysis and Design of Algorithms for Combinatorial Problems, volume 109
of North-Holland Mathematics Studies, pages 27 — 45. North-Holland, 1985.

Reuven Bar-Yehuda, Keren Bendel, Ari Freund, and Dror Rawitz. Local
ratio: A unified framework for approximation algorithms. in memoriam:

129

BIBLIOGRAPHY

130

[12]

[13]

[14]

[18]

Shimon even 1935-2004. ACM Computing Surveys (CSUR), 36:422-463,
12 2004.

Aaron Bernstein. Improved bound for matching in random-order
streams. arXiv preprint arXiv:2005.00417, 2020.

Domagoj Bradac, Anupam Gupta, Sahil Singla, and Goran Zuzic. Robust
algorithms for the secretary problem. In 11th Innovations in Theoreti-
cal Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle,
Washington, USA, pages 32:1-32:26, 2020.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz.
Submodular maximization with cardinality constraints. In Proceedings
of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms,
pages 1433-1452. SIAM, 2014.

Niv Buchbinder, Danny Segev, and Yevgeny Tkach. Online algorithms
for maximum cardinality matching with edge arrivals. Algorithmica,
81(5):1781-1799, 2019.

Amit Chakrabarti and Sagar Kale. Submodular maximization meets
streaming: matchings, matroids, and more. Math. Program., 154(1-2):225-
247, 2015.

Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allo-
cating goods to maximize fairness. In 50th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta,
Georgia, USA, pages 107-116. IEEE Computer Society, 2009.

Siu-Wing Cheng and Yuchen Mao. Restricted max-min fair allocation.
In JIoannis Chatzigiannakis, Christos Kaklamanis, Daniel Marx, and
Donald Sannella, editors, 45th International Colloqguium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, volume 107 of LIPIcs, pages 37:1-37:13. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2018.

Siu-Wing Cheng and Yuchen Mao. Restricted max-min allocation: Ap-
proximation and integrality gap. In 46th International Colloquium on
Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Pa-
tras, Greece, pages 38:1-38:13, 2019.

M. Crouch and D.M. Stubbs. Improved streaming algorithms for
weighted matching, via unweighted matching. Leibniz International
Proceedings in Informatics, LIPIcs, 28:96-104, 09 2014.

Sami Davies, Thomas Rothvoss, and Yihao Zhang. A tale of santa
claus, hypergraphs and matroids. In Proceedings of the 2020 ACM-SIAM

Bibliography

Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 2748-2757, 2020.

[19] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,
17:449-467, 1965.

[20] Jack Edmonds. Matroid intersection. In Discrete Optimization I, volume 4
of Annals of Discrete Mathematics, pages 39 — 49. Elsevier, 1979.

[21] Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann. Improved
bounds for randomized preemptive online matching. Inf. Comput.,
259(1):31-+40, 2018.

[22] Hossein Esfandiari, Nitish Korula, and Vahab Mirrokni. Online alloca-
tion with traffic spikes: Mixing adversarial and stochastic models. In
Proceedings of the Sixteenth ACM Conference on Economics and Computation,
pages 169-186, 2015.

[23] Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao,
and Ryan A. Rossi. Approximate maximum matching in random streams.
In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1773-1785,
2020.

[24] Uriel Feige. A threshold of In n for approximating set cover. J. ACM,
45(4):634-652, 1998.

[25] Uriel Feige. On allocations that maximize fairness. In Proceedings
of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 08, page 287-293, USA, 2008. Society for Industrial and Applied
Mathematics.

[26] Uriel Feige. Tighter bounds for online bipartite matching. CoRR,
abs/1812.11774, 2018.

[27] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth
Suri, and Jian Zhang. On graph problems in a semi-streaming model.
Theoretical Computer Science, 348(2-3):207-216, 2005.

[28] Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zen-
klusen. The one-way communication complexity of submodular maxi-
mization with applications to streaming and robustness. In Proceedings
of the Fifty-Second Annual ACM on Symposium on Theory of Computing,
STOC (to appear), 2020.

[29] Tamaés Fleiner. A matroid generalization of the stable matching poly-
tope. In International Conference on Integer Programming and Combinatorial
Optimization, pages 105-114. Springer, 2001.

131

BIBLIOGRAPHY

132

[30]

[32]

Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson.
Weighted matchings via unweighted augmentations. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC
2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 491-500, 2019.

Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svens-
son, and David Wajc. Online matching with general arrivals. In 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, pages 26-37, 2019.

Mohsen Ghaffari and David Wajc. Simplified and Space-Optimal Semi-
Streaming (2+epsilon)-Approximate Matching. In Jeremy T. Fineman
and Michael Mitzenmacher, editors, 2nd Symposium on Simplicity in
Algorithms (SOSA 2019), volume 69 of OpenAccess Series in Informatics
(OASlIcs), pages 13:1-13:8, Dagstuhl, Germany, 2018. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Michel X Goemans, Nicholas JA Harvey, Satoru Iwata, and Vahab Mir-
rokni. Approximating submodular functions everywhere. In Proceedings
of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages
535-544. SIAM, 2009.

Sudipto Guha and Andrew McGregor. Approximate quantiles and the
order of the stream. In Proceedings of the Twenty-Fifth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 26-28,
2006, Chicago, Illinois, USA, pages 273-279, 2006.

Guru Prashanth Guruganesh and Sahil Singla. Online matroid inter-
section: Beating half for random arrival. In Integer Programming and
Combinatorial Optimization - 19th International Conference, IPCO 2017,
Waterloo, ON, Canada, June 26-28, 2017, Proceedings, pages 241-253, 2017.

Penny E Haxell. A condition for matchability in hypergraphs. Graphs
and Combinatorics, 11(3):245-248, 1995.

Chien-Chung Huang, Naonori Kakimura, Simon Mauras, and Yuichi
Yoshida. Approximability of monotone submodular function maximiza-
tion under cardinality and matroid constraints in the streaming model.
CoRR, abs/2002.05477, 2020.

Zhiyi Huang, Binghui Peng, Zhihao Gavin Tang, Runzhou Tao, Xiaowei
Wu, and Yuhao Zhang. Tight competitive ratios of classic matching
algorithms in the fully online model. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 2875-2886, 2019.

Bibliography

[39] Klaus Jansen and Lars Rohwedder. A note on the integrality gap of the
configuration lp for restricted santa claus. Information Processing Letters,
164:106025, 2020.

[40] Michael Kapralov. Better bounds for matchings in the streaming model.
In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,
2013, pages 1679-1697, 2013.

[41] Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect
matching is in random NC. Combinatorica, 6(1):35-48, 1986.

[42] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal
algorithm for on-line bipartite matching. In Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore,
Maryland, USA, pages 352-358, 1990.

[43] Thomas Kesselheim, Robert D. Kleinberg, and Rad Niazadeh. Secretary
problems with non-uniform arrival order. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 879-888, 2015.

[44] Thomas Kesselheim and Andreas Tonnis. Submodular secretary prob-
lems: Cardinality, matching, and linear constraints. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, pages
16:1-16:22, 2017.

[45] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum
matching in semi-streaming with few passes. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques - 15th
International Workshop, APPROX 2012, and 16th International Workshop,
RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings,
pages 231-242. 2012.

[46] Harold W Kuhn. The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83-97, 1955.

[47] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial
auctions with decreasing marginal utilities. Games Econ. Behav., 55(2):270—
296, 2006.

[48]]. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms
for scheduling unrelated parallel machines. In 28th Annual Symposium

on Foundations of Computer Science (sfcs 1987), pages 217-224, 1987.

133

BIBLIOGRAPHY

134

[49]

[55]

[56]

[57]

Roie Levin and David Wajc. Streaming submodular matching meets the
primal-dual method. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1914-1933. SIAM, 2021.

Paul Liu, Aviad Rubinstein, Jan Vondrak, and Junyao Zhao. Cardinality
constrained submodular maximization for random streams. Advances in
Neural Information Processing Systems, 34, 2021.

Laszl6 Lovasz. On determinants, matchings, and random algorithms. In
Fundamentals of Computation Theory, FCT 1979, Proceedings of the Conference
on Algebraic, Arthmetic, and Categorial Methods in Computation Theory,
Berlin/Wendisch-Rietz, Germany, September 17-21, 1979, pages 565-574,
1979.

Andrew McGregor. Finding graph matchings in data streams. In Chan-
dra Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan, editors,
Approximation, Randomization and Combinatorial Optimization. Algorithms
and Techniques, pages 170-181, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

Andrew McGregor and Hoa T. Vu. Better streaming algorithms for
the maximum coverage problem. Theory Comput. Syst., 63(7):1595-1619,
2019.

Michael Mitzenmacher and Eli Upfal. Probability and computing: Ran-
domization and probabilistic techniques in algorithms and data analysis. Cam-
bridge university press, 2017.

Robin A Moser and Gébor Tardos. A constructive proof of the general
lovéasz local lemma. Journal of the ACM (JACM), 57(2):1-15, 2010.

Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is
as easy as matrix inversion. Combinatorica, 7(1):105-113, 1987.

George L. Nemhauser and Laurence A. Wolsey. Best algorithms for
approximating the maximum of a submodular set function. Math. Oper.
Res., 3(3):177-188, 1978.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An
analysis of approximations for maximizing submodular set functions—i.
Mathematical programming, 14(1):265-294, 1978.

Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovic, Amir
Zandieh, Aidasadat Mousavifar, and Ola Svensson. Beyond 1/2-
approximation for submodular maximization on massive data streams.
In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmiissan, Stockholm, Sweden, July 10-15, 2018, pages
3826-3835, 2018.

Bibliography

[60] Ami Paz and Gregory Schwartzman. A (2+ ¢)-approximation for maxi-
mum weight matching in the semi-streaming model. ACM Transactions
on Algorithms (TALG), 15(2):1-15, 2018.

[61] Lukas Polacek and Ola Svensson. Quasi-polynomial local search for
restricted max-min fair allocation. In Artur Czumaj, Kurt Mehlhorn,
Andrew Pitts, and Roger Wattenhofer, editors, Automata, Languages, and
Programming, pages 726737, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[62] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algo-
rithms and Combinatorics. Springer, 2003.

[63] Maxim Sviridenko. A note on maximizing a submodular set function
subject to a knapsack constraint. Oper. Res. Lett., 32(1):41-43, 2004.

[64] Jan Vondrak. Optimal approximation for the submodular welfare prob-
lem in the value oracle model. In Cynthia Dwork, editor, Proceedings of
the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 67-74. ACM, 2008.

135

	Contents
	List of Figures
	List of Tables
	Introduction
	Overveiw of our Contributions
	Outline of the Thesis

	Preliminaries
	Notation
	Submodular functions
	Matroids
	Streaming Model of Computation
	Online Model of Computation
	Approximation Algorithms
	Problems Considered
	The maximum matching problem in the semi-streaming model
	Maximizing a monotone submodular function subject to a cardinality constraint
	The matroid Intersection problem in the semi-streaming model
	Submodular Santa Claus problem in the Restricted Assignment Case

	Probability Bounds

	Adversarial Injections
	Introduction
	Motivation
	The Adversarial Injections Model
	Related Models
	Our Results

	Matching
	Streaming Setting
	Analysis of the streaming algorithm for maximum matching
	Online Setting

	Submodular Maximization
	Notation
	The Algorithm
	Overview of the Analysis
	Analysis

	Submodular Matroid Intersection
	Introduction
	Literature Review
	Overview of Results and Techniques

	The Local Ratio Technique for Weighted Matroid Intersection
	Local Ratio Technique for Weighted Matching
	Adaptation to Weighted Matroid Intersection
	Analysis of Algorithm 2
	Making the Algorithm Memory Efficient

	Extension to Submodular Functions
	Analysis of Algorithm 4

	More than Two Matroids

	Submodular Santa Claus
	Introduction
	Literature Review
	Overview of Results and Techniques

	Reduction to hypergraph matching problem
	Reduction to unweighted hypergraph matching

	Matchings in regular hypergraphs
	Overview and notations
	Properties of resource sets
	Selection of configurations
	Assignment of resources to configurations

	Further connections between hypergraph matching and Santa Claus
	From Matchings to Santa Claus
	From Santa Claus to Matchings

	Conclusions
	Deferred Proofs from Part I
	Removing the assumption that |M*| is known
	Omitted proofs for submodular function maximization
	Assumption that OPT is known
	Bounding the number of increases
	Analysis of recursion function

	Deferred Proofs from Part II
	Extending Algorithm 3 when matroid ranks are unknown

	Deferred Proofs from Part III
	Omitted proofs from Chapter 11
	Solving the configuration LP
	Clusters

	Omitted proofs from Section 12.2
	Omitted proofs from Section 12.4

	Bibliography

