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Abstract In recent years, the conjecture on the instability of Anti-de Sit-
ter spacetime, put forward by Dafermos—Holzegel (Dynamic instability of
solitons in 4 + 1 dimesnional gravity with negative cosmological con-
stant, 2006. https://www.dpmms.cam.ac.uk/~md384/ADSinstability.pdf) and
Dafermos (The Black Hole Stability problem, Talk at the Newton Institute,
Cambridge, 2006. http://www-old.newton.ac.uk/webseminars/pg+ws/2006/
gmx/1010/dafermos/) in 2006, has attracted a substantial amount of numer-
ical and heuristic studies. Following the pioneering work (Phys Rev Lett
107(3):031102, 2011) of Bizon—Rostworowski, research efforts have been
mainly focused on the study of the spherically symmetric Einstein-scalar field
system. The first rigorous proof of the instability of AdS in the simplest spheri-
cally symmetric setting, namely for the Einstein-null dust system, was obtained
in Moschidis (A proof of the instability of AdS for the Einstein-null dust sys-
tem with an inner mirror, 2017. arXiv:1704.08681). In order to circumvent
problems associated with the trivial break down of the Einstein-null dust sys-
tem occuring at the center r = 0, Moschidis (2017) studied the evolution of
the system in the exterior of an inner mirror placed at r = rg, ro > 0. How-
ever, in view of additional considerations on the nature of the instability, it was
necessary for Moschidis (2017) to allow the mirror radius r( to shrink to O with
the size of the initial perturbation; well-posedness in the resulting complicated
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setup (involving low-regularity estimates of uniform modulus with respect to
rp) was obtained in Moschidis (The Einstein-null dust system in spherical sym-
metry with an inner mirror: structure of the maximal development and Cauchy
stability, 2017. arXiv:1704.08685). In this paper, we establish the instability of
AdS for the Einstein-massless Vlasov system in spherical symmetry; this will
be the first proof of the AdS instability conjecture for an Einstein-matter sys-
tem which is well-posed for regular initial data in the standard sense, without
the addition of an inner mirror. The necessary well-posedness results for this
system are obtained in our companion paper (Moschidis in The characteris-
tic initial-boundary value problem for the Einstein-massless VIasov system in
spherical symmetry, 2018. arXiv:1812.04274). Our proof utilises an instability
mechanism based on beam interactions which is superficially similar to the
one appearing in Moschidis (A proof of the instability of AdS for the Einstein-
null dust system with an inner mirror, 2017. arXiv:1704.08681). However,
new difficulties associated with the Einstein-massless Vlasov system (such
as the need for control on the paths of non-radial geodesics in a large curva-
ture regime) will force us to develop a different strategy of proof involving
a novel configuration of beam interactions. One of the main novelties of our
construction is the introduction of a multi-scale hierarchy of domains in phase
space, on which the initial support of the Vlasov field f is localised. The prop-
agation of this hierarchical structure of the support of f along the evolution
will be crucial both for controlling the geodesic flow under minimal regularity
assumptions and for guaranteeing the existence of the solution until the time
of trapped surface formation.
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1 Introduction

In the presence of a negative cosmological constant A, the maximally sym-
metric solution of the vacuum Einstein equations

1
Ricy~y — ERgm,—l—Ag,W =0 (1.1)

in n 4+ 1 dimensions, n > 3, is Anti-de Sitter spacetime (M ags, g4ds)-
Expressed in the standard polar coordinate chart on M 445 =~ R"*H | the AdS
metric g 445 takes the form

(-2 4
nn—1)
2

T atn—1)

8Ads = — r?)dr?

+(1 Arz)_ldr2 + r2gen-t, (1.2)

where ggn-1 is the standard metric on the round sphere of radius 1. A conformal
boundary T can be naturally attached to (M ags, ga4s) at r = oo, with 7
having the conformal structure of a timelike hypersurface diffeomorphic to
R x S*~! (see Fig. 1).

More generally, a conformal boundary 7 with similar properties can be
attached to any spacetime (M, g) whichis merely asymptotically AdS, i.e. pos-
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t Mads T=Rx§?

Fig. 1 The AdS spacetime (M, Z.IS gAds) can be conformally identified with the interior of
R xS, g™ where §'; is the northern hemisphere of S" and g(A) —dr? + "(" 1) gsn
+ 8E 5%

(with conformal factor (1 — Ar2) 1 vanishing as r — 00). The timelike boundary 7 of

n(n 1)
(R x S" 1.8k )) corresponds to the conformal boundary of (M Ad S gAds) at infinity

sesses an asymptotic region with geometry resembling that of (1.2) in the
region {r > Rg}, Rop > F For a more detailed exposition of the geometric

properties associated to AdS asymptotics, see [33].

The hyperbolic nature of the system (1.1) and the timelike character of 7
imply that the right framework to study asymptotically AdS solutions of (1.1) is
that of an initial-boundary value problem, with boundary conditions imposed
asymptotically on Z. The well-posedness of the asymptotically AdS initial-
boundary value problem for (1.1) was first addressed by Friedrich [28], who
established the existence of solutions for a broad class of boundary conditions
on Z, including examples both of reflecting and of dissipative conditions (see
also the discussion in [29,34], as well as [26,27]). The formulation of appro-
priate boundary conditions for (1.1) on Z and their effects on the spacetime
geometry have also been investigated in the high energy physics literature; the
recent surge of interest on these topics was sparked by the putative AdS/CFT
correspondence, put forward by Maldacena [39], Gubser—Klebanov—Polyakov
[31] and Witten [50] (see [1,2,32]).

The well-posedness of the initial-boundary value problem for (1.1) allows
discussing the dynamics associated to families of asymptotically AdS ini-
tial data sets for (1.1). Thus, the question of stability of the trivial solution
(M adgs, gaas) under perturbation of its initial data arises naturally in this con-
text. When reflecting boundary conditions are imposed on Z, the possibility
of non-linear instability for (M g5, g4a4s) is already insinuated by the lack of
asymptotic stability for solutions to linear toy-models for (1.1); this is already
illustrated by the simple example of the conformally coupled Klein—Gordon
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equation

2
DgAdS¢—§A¢:0 (1.3)

on (MZZ;, g4ds), where imposing Dirichlet conditions for 7¢ on Z results
in the energy flux of ¢ through the foliation {r = t} to be constant in T,
thus preventing any non-trivial solution ¢ from decaying to 0 as T — +00.!
Motivated by additional considerations in the setting of the biaxial Bianchi IX
symmetry class for (1.1) in 4 + 1 dimensions, Dafermos and Holzegel [16,17]
in fact conjectured a stronger instability statement in 2006:
AdS instability conjecture There exist arbitrarily small perturbations to the
initial data of AdS spacetime which, under evolution by the vacuum Einstein
equations (1.1) with a reflecting boundary condition on I, lead to the devel-
opment of black hole regions. In particular, (M ags, gads) is non-linearly
unstable.
The scenario proposed by the conjecture can be also viewed as a manifestation
of gravitational turbulence: The formation of black hole regions signifies the
emergence of non-trivial geometric structures at small scales, arising from the
non-linear evolution of initial data which were almost trivial at the same spatial
scales.

Remark We should point out that the above formulation of the AdS instability
conjecture is ambiguous with respect to the initial datanorm ||- || 74¢, measuring
the “smallness” of the perturbations. A minimal requirement for || - ||jazq 1S
that perturbations of (M ags, g44s) Which are small with respect to || - ||qara
should give rise to solutions g of (1.1) which exist (and remain close to g445s)
for long time intervals {0 < t < T}, i.e. that (M ags, ga4s) is Cauchy stable
as a solution of the initial-boundary value problem for (1.1);> this condition
implies, in particular, that the timescale of black hole formation tends to +o00 as
the size of the initial perturbation shrinks to 0. The requirement for long-time
existence in fact imposes a condition on || - ||g44 as a measure of regularity of
initial data sets: The trapped surface formation results of [3,13,38] imply that
there is no uniform time of existence for solutions to (1.1) in terms of initial
data norms for which the vacuum equations are supercritical (such as norms
of regularity below || - ||H 3 when n = 3, as a corollary of [3]).

The choice of reflecting boundary conditions on Z is also crucial for the
validity of the conjecture: Assuming, instead, “optimally dissipative” condi-
tions on Z, Holzegel-Luk—Smulevici—Warnick [34] showed that solutions to

! The failure of asymptotic stability for (M 445, 844s) as a solution of the non-linear system
(1.1) with reflecting conditions on Z follows from the results of M. Anderson [4].

2 Here, Cauchy stability should be understood as stability over compact subsets of M 445 UZ
in the conformal picture.
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the linearized vacuum Einstein equations on (M 445, g445) decay at a super-
polynomial rate in ¢, providing a strong indication of non-linear asymptotic
stability for perturbations of (M ags, g44s) in this setting.

The study of the AdS instability conjecture in 3 + 1 dimensions has been
mainly focused, so far, on Einstein-matter systems which admit non-trivial
spherically symmetric dynamics (thus reducing the problem to the more
tractable setting of 1+ 1 dimensional hyperbolic systems), while still retaining
many of the qualitative properties of the vacuum equations (1.1);> a prominent
example of such a model is provided by the Einstein—Klein—Gordon system

Ric;w - %Rguv + Ag;w = 877T;w[§0]7
Lep —nep =0, (1.4)
Tyuvle]l = 0u@dvp — %guvaa(/)aa()o-

In the case when the Klein—Gordon mass j satisfies the so-called Breitenlohner
—Freedman bound, well-posedness for the initial-boundary value problem for
(1.4) in the spherically symmetric case was established, for a wide class of
bounilary conditions on Z, by Holzegel-Smulevici [35] and Holzegel-Warnick
[36].

The first numerical and heuristic study in the direction of establishing the
AdS instability conjecture for (1.4) was carried out by Bizon—Rostworowski
[11]in 2011. The numerical simulations of [11] verified the existence of spher-
ically symmetric initial data sets for (1.4), with small initial size, the evolution
of which (under Dirichlet conditions at 7) reaches the threshold of trapped
surface formation after sufficiently long time. In addition, Bizoi and Rost-
worowski [11] was the first to propose a mechanism driving the initial stage of
the instability: Analyzing perturbatively the interactions of different frequency
modes of the scalar function ¢, Bizoni and Rostworowski [11] suggested that
the transfer of energy from low to high frequencies was propelled by a hierar-
chy of resonant interactions.

Following [11], a vast amount of numerical and heuristic works were
dedicated to the study of the AdS instability conjecture for the spherically
symmetric system (1.4), addressing, in addition, questions related to the long
time dynamics of generic perturbations to (M ags, g44s) and the possibility
of existence of “islands of stability” in the moduli space of initial data for (1.4)

3Asa consequence of the extension of Birkhoff’s theorem to the case A < 0 (see [25]),
the vacuum equations (1.1) become trivial in spherical symmetry, which is the only surface
symmetry class compatible with AdS asymptotics in 3 4+ 1 dimensions. However, this problem
can be circumvented in 4 4 1 dimensions in the biaxial Bianchi IX symmetry class (see [8]).
4 See also [48,49] for well-posedness results for the /inear Klein—-Gordon equation on general
asymptotically AdS backgrounds, without symmetry assumptions.
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close to (Mags, gads); see, e.g. [6,9,10,12,14,15,19,20,22-24,30,37,40].
For works moving outside the realm of 1+ 1 systems, see also [7,21,46]. Most
of the aforementioned works utilised a frequency space analysis similar to the
one introduced in [11], with the notable exception of [22]. A more detailed dis-
cussion on the numerics literature surrounding the AdS instability conjecture
can be found in [41].

The first rigorous proof of the instability of AdS in a spherically symmetric
setting was obtained in [41], for the case of the Einstein-null dust system with
both ingoing and outgoing dust; this system can be formally viewed as a high
frequency limit of (1.4) in spherical symmetry (see also the discussion in [44]).
The proof of [41] uncovered and utilised an alternative instability mechanism
at the level of position space: Arranging the null dust into a specific configu-
ration of localised spherically symmetric beams, Moschidis [41] showed that
successive reflections off 7 lead to the concentration of energy in the beam
lying initially to the exterior of the rest. However, in order to circumvent a triv-
ial break down of the Einstein-null dust system occuring once the dust reaches
the center of symmetry, Moschidis [41] placed an inner mirror at a finite radius
r = ro > 0and studied the evolution restricted to the region r > ro. Moreover,
further considerations on the nature of the dynamics around (M ag4s, g4ds)
necessitated that the mirror radius rg in [41] was allowed to shrink to O at a
rate proportional to the size of the initial perturbation. Well-posedness for the
initial-boundary value problem in this rather complicated setup, in an initial
data topology allowing for estimates with uniform modulus with respect to rg,
was obtained in [42].

In this paper, we will prove the instability of (Mi; _19, gaas) for the Einstein-
massless Vlasov system in spherical symmetry; this system is well-posed for
regular initial data in the standard sense, without the addition of an inner
mirror around the center of symmetry. Novel difficulties associated with the
Einstein-massless Vlasov system (both at a technical and at a more conceptual
level) will force us to depart from the main strategy of proof followed in [41],
and develop a new physical space configuration of beam interactions, where
the sizes of the phase-space domains corresponding to each beam are part
of a complicated hierarchy of scales. It appears that the same ideas can also
yield (after merely minor modifications) the instability of (M'f"; é gAds) inthe
higher dimensional case n > 3; however, in order to avoid further complicating
our exposition, we will restrict ourselves to the case n = 3.

We will now proceed to review the main result of this paper in more detail;
a discussion on the complications arising in the proof as well as a brief com-
parison with the methods of [41] will then follow in Sect. 1.2.
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1.1 The main result: AdS instability for the spherically symmetric
Einstein-massless Vlasov system

Let (M, g) be a3 + 1 dimensional, smooth Lorentzian manifold and let f be
a non-negative measure on 7' M supported on the set of future directed null
vectors. The Einstein-massless Vlasov system for (M, g; f) takes the form

Ricyy — $Rguy + Aguy = 87Ty [ £1, (L.5)
L@ f =0, )
where £®) is the geodesic spray on T M (i.e. the Lagrangean vector field of
L TM — R, L) = %g(v, v); see [45]) and T),,[f] is expressed in
terms of f and g by (2.22). In the spherically symmetric setting, there is a
unique reflecting boundary condition for (1.5) at conformal infinity Z; it is
formulated simply as the requirement that the Vlasov field f is conserved
along the reflection of null geodesics y off Z (see Sect. 2.4).

The main result of this paper is the proof of the AdS instability conjecture
for the system (1.5) in spherical symmetry:

Theorem 1 (rough version) There exists a one-parameter family of smooth,
spherically symmetric, asymptotically AdS initial data D® for (1.5), ¢ €
(0, 1], satisfying the following properties:

e As e — 0, D® converge to the trivial data DO of (M aas, gaas: 0) with
respect to a suitable initial data norm || - ||qata-

e Forany e € (0, 1], the (unique) maximally extended solution (M, g; f)©
of (1.5) arising from D'®) with reflecting boundary conditions on T contains
a trapped sphere, and, hence, a black hole region.

In particular, (M ags, gAds) is unstable as a solution of (1.5) under spher-
ically symmetric perturbations which are small with respect to || - ||data-

For a more detailed statement of Theorem 1, see Sect. 4. For the definition
the maximal future development (M, g; f)© of an initial data set D) and
the notion of a trapped sphere, see Sect. 3.

Remark The initial datanorm ||-||z4:4 appearing in the statement of Theorem 1
is a scale invariant norm that has just enough regularity to provide control of the
integrals of the right hand sides of the constraint equations (2.38)—(2.39) in the
evolution; a precise definition of the norm is given in Sect. 3.4 (see Definition
3.14), while a simple relation expressing the size of D€ withrespect to ||| gara
is given by (1.36) (for a discussion on the scale invariance of || - ||74rq, S€€
the remark below Definition 3.14). The necessary well-posedness results for
the initial-boundary value problem for (1.5), as well as the crucial Cauchy
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stability statement for (M g5, g44s) in the topology defined by || - ||gara (Se€
the remark below the statement of the AdS instability conjecture), are obtained
in our companion paper [43] and are also reviewed in Sect. 3.

We should point out that, switching to the case A = 0, Minkowski spacetime
(R3*1, 1) is non-linearly stable as a solution of (1.5) under spherically sym-
metric perturbations which are initially small with respect to the norm || - || 7474
(suitably modified in the region r >> 1 to accommodate for the change in the
value of A). This result, which can be viewed as a straightforward corollary of
our method of proof of Cauchy stability for (M 445, ga4s) and is discussed in
more detail in Section 6 of [43], provides further justification for the use of the
initial data norm || - ||z4¢4 in the study of the AdS instability conjecture.5 In the
case A < 0, a non-linear stability statement for AdS spacetime with respect
to the initial data norm || - ||g4¢4 is also expected to hold when a maximally
dissipative boundary condition is imposed for (1.5) on Z (cf. [34]); in this
case however, such a result would not be a direct consequence of our proof of
Cauchy stability for (M ags, g4ads)-

1.2 Sketch of the proof and further discussion

In this section, we will briefly sketch the proof of Theorem 1, highlighting
the main technical complications and obstacles shaping our strategy. We will
then comment on the relation between the proof of Theorem 1 and the ideas
appearing in [41].

The proof of Theorem 1 is carried out in double null coordinates (u, v, 6, ¢),
in which a general spherically symmetric metric g takes the form

g= —Qz(u, v)dudv + rz(u, v)gs2 (1.6)

(see Sect. 2.1). The initial data family D@ in the statement of Theorem 1 is
then constructed as a family of characteristic smooth initial data prescribed
at u = 0; the necessary well-posedness results for the characteristic initial-
boundary value problem in this setting are established in our companion paper
[43] and are also reviewed in Sect. 3.

The family D is constructed so that the physical space support of the
corresponding Vlasov field f; is initially separated into a large number N, > 1

5 The non-linear stability of (R3*!, ) as a solution of the Einstein-massless Vlasov system
(1.5) without any symmetry assumptions was shown by Taylor [47], with respect to initial
perturbations which are small in a higher order, weighted Sobolev space. Our argument for
obtaining a global stability statement for (R3+1 , 17) as acorollary of a Cauchy stability statement
is in fact analogous (albeit much simpler) to the strategy implemented in [47], where global
stability is also inferred as a corollary of a quantitative, semi-global Cauchy stability statement
(see [47] for more details).
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o0+ = U

)/ALi ~ 6(7') << d,{

Fig. 2 The initial data family D) gives rise to a large number A of spherically symmetric
Vlasov beams, which are initially ingoing. The left part of the figure provides a schematic
depiction of just three of these beams, projected onto the (u, v)-plane. Each successive beam is
increasingly narrower compared to the previous ones in the configuration (as shown schemati-
cally on the right), and contains geodesics of increasingly smaller angular momenta

of narrow ingoing beams (see Fig. 2), organised in terms of a particular multi-
scale hierarchy, which we will now describe: Denoting with ¢; the i-th Vlasov
beam (with i increasing with the initial distance of the beam from r = 0), the
configuration of beams is set up so that, at u = 0, ¢; has physical space width
AL; satisfying

AL; ~ eD(=A)72, (1.7)
where the hierarchy of small parameters {e(i)}f\go (each given by an explicit
formula in terms of ¢ and i) satisfies

0D « 6@ and e =% Oforalli =0,.... N, — 1. (1.8)

The initial separation d; (with respect to the v coordinate) between the beams
¢ and ¢; 41 is chosen to satisfy

AL; < di < AL;_;. (1.9

(where we used the convention that AL _| = (—A)%).
The energy content &; of the beam ¢; at u = 0 is defined as the difference
of the renormalised Hawking mass

r

2

|
= (1 - 4Q—Zauravr) - car

@ Springer



A proof of the instability of AdS

between the inner and outer boundary of ¢; atu = 0, i.e.:
& =m(0,v) —m(0,v])

(where ¢; N {u = 0} = {0} x [v;", vl.+] in the (u, v)-plane). The Vlasov field
fe is chosen so that &; satisfies

& ~a;AL;, (1.10)

where the parameters 0 < a; < 1 are only fixed at a later stage in the proof
(we will come back to this point later in the discussion).

Remark In order to ensure the condition
1D lgara <=2 0 (1.11)

in the statement of Theorem 1, an additional smallness condition needs to be
imposed on va:go a;; we refer the reader to the detailed construction of the
initial data family in Sect. 6.2.

Regarding the momentum space conditions imposed on the beam configu-
ration, the beam ¢; is chosen to consist only of null geodesics y with angular
momentum /; satisfying:°

li
(Eo)i

As a result, the geodesics in the support of the Vlasov beam f, are nearly
radial when ¢ < 1.

~eD(—A)72, (1.12)

Remark For a null geodesic y in AdS spacetime (Mags, gaas), the nor-
malised angular momentum ELO determines the minimum value of r along y,
with geodesics having smaller normalised angular momentum approaching
closer to the center r = 0; in the case when ELO < (—A)_%, the following
approximate relation holds on (M ags, gaas) (see the relation A.2 in [43]):

[

minr ~ —. 1.13
i E (1.13)

In the maximal future development (M,; f;) of D@ the Vlasov beams
¢; are reflected off Z multiple times (see Fig. 2); between any two successive
reflections, the Vlasov beams ¢; exchange energy through their non-linear

6 Here, we define the normalised angular momentum of a geodesic y : R — M in aspherically
symmetric spacetime (M, g) simply as the ratio EL between the usual angular momentum / of

y and its initial energy Eqg = g(9y + v, ¥)|u=0 (With respect to the timelike coordinate vector
field 9, + 9y) at u = 0 this ratio is independent of the choice of affine parametrisation of y.
See also Sect. 2.3.
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interactions, possibly at a loss of coherence.” The proof of Theorem 1 will
consist of showing that, after a large number of reflections off Z, the non-linear
interactions lead to the concentration of sufficient energy at the top beam ¢y,
so that a trapped surface can form as ¢y, approaches the center » = 0 for the
last time.

Controlling the coherence of the Vlasov beams for sufficiently long time
(ensuring, in particular, that the qualitative picture of the configuration is sim-
ilar to the one depicted in Fig. 2) will constitute a major technical challenge
of the proof, but the relevant details will be only briefly sketched in this dis-
cussion. The fact that, for A = 0, the system (1.5) admits static solutions
(Mit, st fsr) with

(1.14)

(see [5])® shows that, in general, when @ exceeds a certain threshold in the
evolution, the configuration of Vlasov beams cannot be expected to behave in
a qualitatively similar fashion as on (M 445, g44s) (i-e. approach r = 0 only
for a brief period of time separating an ingoing and an outgoing phase, like the
beams depicted in Fig. 2).” The additional flexibility provided by the freedom
in the choice of the parameters &) in the multi-scale hierarchy of parameters
(1.7)—(1.10) will be crucial for circumventing this obstacle.
The evolution of D® will be studied in two steps:

1. In the first step, we will show that a scale invariant norm measuring the
concentration of energy of (M, g; f)® grows in time at a specific rate,
driven by an instability mechanism based on the interactions of the beams
similar to the one implemented in [41]. Provided the initial parameters a; in
(1.10) are chosen appropriately, we will show that the beam interactions lead
to the formation of a specific, predetermined profile S, = (g; )|, =y, at
a late enough retarded time u = u,(¢) > 1. The freedom in the choice of
the parameters ¢; and a collection of robust estimates on the exchange of

7 For the purposes of this discussion, coherence will refer to the degree of localization in
physical space of a Vlasov beam ¢;.

8 While [5] only constructs static solutions (M, gsr; f5r) for (1.5) in the case A = 0, one
can readily obtain solutions (M, g; f) in the case A < 0 which remain nearly static for an
arbitrary time interval and satisfy (1.14); this can be achieved by rescaling the solutions of [5]
and applying a suitable cut-off for r 2> 1, using the spatial decay of (M, gst; fsr) asr — 400
and the fact that the modifications introduced by A become negligible as r — 0.

9 In particular, one cannot a priori rule out the scenario that, at some point in the evolution, a

Vlasov beam entering the region 27”’ forms a profile resembling that of a nearly static solution.

@ Springer



A proof of the instability of AdS

energy between the beams will enable us to control a priori for 0 < u < u,

— < 0« (1.15)
r

where §, < 1 is fixed; the bound (1.15) will be crucial for controlling the
paths of geodesics in the support of f®) for u € [0, u,].

2. In a second step, we will show that the specific features of S, (inherited
by the properties of the multi-scale hierarchy (1.7)-(1.10)) imply that a
trapped surface necessarily forms along ¢y, N {# = u+} for some u, <
ur <uy+ 0(1), i.e. that

.
sup 2o, (1.16)

ongMu=ui} T

It will thus follow that (M, g; f©) contains a black hole region.

We will now proceed to discuss the above steps in more detail.

Remark The first of the two steps described above already provides an orbital
instability statement for AdS spacetime, since, once the profile S, is formed,
the size of the solution measured with respect to the norm || - ||garq at ¥ = Uy
is large (see (1.39) below). In the simpler case where one would be interested
in merely obtaining such an orbital instability statement, the precise form of
the profile S, would be less relevant; however, the conditions (1.8) and (1.9)
on the hierarchy of scales €), AL; would still be necessary for our proof to
carry over without major modifications.

1.2.1 First stage of the instability: growth of the scale invariant norm and
formation of the intermediate profile

The first step in the proof of Theorem 1 will consist of showing that the
interactions of the beams ¢; lead to a gradual increase in the energy content of
all beams ¢; with j > 1 (implying the concentration of energy at finer scales,
in view of the length-scale hierarchy (1.7)). In particular, our aim at this stage
would be to show that there exists a time u = u, > 1 (determined in terms of
¢) at which the solution (g; f ) |u=u, takes a specific form, characterized by
the fact the energy contents S}'f of the beams ¢; at time u = u, satisfy

287 ¢ C . .
& NEexp(—2E1) foralll < j <N, —1 (1.17)
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and,

gr ~ 2 118

Ng \/__’ ( )
where d;‘ is the distance between ¢; N {u = uy} and &1 N {u = wuy}. For
simplicity, for the rest of this discussion, we will refer to the initial data induced
on {u = u,} by the solution (M, g; f)© simply as the intermediate profile
8. This step will in fact occupy the bulk of the proof of Theorem 1.
Estimates for the geodesic flow Obtaining estimates for the null geodesic flow
on (M, g; £)© for sufficiently long times is a prerequisite for studying the
interactions of the beams ¢;. More precisely, we would like to show that,
at least until the formation of the intermediate profile S, null geodesics in
M, g f )@ follow trajectories which are similar (in a certain sense) to the
trajectories of null geodesics on (M 445, g4ds)-

The only quantitative bound assumed on the initial data family is a smallness
condition in terms of the low-regularity norm || - ||gz4z4. The well-posedness
estimates established in our companion paper [43] imply that, for any fixed
U > 0, if we define the scale-invariant norm

TU'U TMU —
1M, 8 DOl g = sup/{__}r( ULy Tl vy aw

u<U

oyt — 0,7

Tiol /1 | Tuulf1 _
+ + b d b
Sgp/{v=ﬁ}ﬂ{u§f]}r( dyr —dyr )(u v) du
(1.19)

then the following estimate holds for (M, g; f)© as e — 0:
M. g H)Nlzg S DD dara- (1.20)

where Ty, [ f] are the components of the energy momentum tensor of f ) and
the constants implicit in the < notation depend on U but are independent of
€ (this can be viewed as a corollary of Proposition 3.15). However, for values

of U which are comparable to u, (note that u,(¢) :O> +00), we will only
be able to estimate

M. g: £)Pl,-g < C (1.21)

for some absolute constant C > 1 (depending on the precise form of the
profile S,). Therefore, it will be necessary for us to obtain sufficient control on
the phase space trajectories of null geodesics y : [0, a) — (M, g)©® merely
under the (rather weak) assumption that (1.21) and the a priori estimate (1.15)
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A proof of the instability of AdS

Fig. 3 Schematic depiction
of the domain of integration
appearing in the right hand
side of (1.22) for a null
geodesic y

hold. To this end, we will rely crucially on a reformulation of the equations of
motion for null geodesics, making use of the fact that (M, g; f)© satisfies
(1.5), yielding identities such as the following:

log (2%9*)(s) — log (2* '“)(0)

V) u(y(vm o _ |
— / / W, 2471Tuv[f]> du dv
v ) i) r

v(y (s)) dyr
+ / (3, log(Q?) —2—-)(0, v) dv (1.22)
v(y(0)) r

(assuming that the initial point y (0) of ¥ belongs to {u = 0}; see Fig. 3).1°
In the above, y* denotes the u-component of the derivative y of y. We refer
the reader to Sect. 5 for more details; for the rest of this discussion, we will
suppress any technical issues related to the precise estimates on the geodesic
flow on (M, g)®.

Beam interactions and energy concentration Let us now proceed to consider
a pair of beams ¢; ¢;, with

0<i<j<N;

10 Note that it is already apparent in (1.22) that the a priori estimate (1.15) for 22 is important

for controlling y; when 2’" > 5, the bulk term in (1.22) no longer has a deﬁmte sign.
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Fig. 4 Any two beams ¢;
and ¢;,0 <i < j < Ne,
will intersect twice between
each successive pair of
reflections off conformal
infinity; here, R denotes the
intersection region closer to
the axis, while R denotes
the intersection region closer
to conformal infinity. Note
that, since i < j, the beam ¢;
lies initially in the interior of
¢j- As aresult, ¢; is outgoing
at the first intersection Ry,
while ¢; is ingoing

oo+ =

(the fact that 7 is smaller than j, i.e. that ¢; initially lies in the interior of ¢},
will be crucial for this part of this discussion). The beams ¢; and ¢; will be
successively reflected off Z multiple times in the time interval u € [0, u,],
intersecting each other twice between each successive pair of reflections, in a
pattern as depicted in Fig. 4. In particular, assuming that the geodesic flow on
(M, g)® behaves in a similar fashion as on AdS spacetime (M ags, g4ds)-
the condition (1.9) on the initial separation of the beams implies that (with
notations as in Fig. 4):

eD(—A)"Z L supr ~ di (1.23)
Ro
and
: 1 _1
infr~ (A7 > supr. (1.24)
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A proof of the instability of AdS

In view of the condition (1.12) on the angular momenta of the geodesics
in the beams ¢; and ¢;, the relations (1.23) and (1.24) imply that, on the
intersection regions R and R, the geodesics of ¢; and ¢; can be essentially
viewed as purely radial (since their angular momentum is negligible compared
to the sphere radius r in these regions, in view of (1.12) and (1.23), (1.24)).
Therefore, it is reasonable to expect that the exchange of energy occuring
between ¢; and ¢; is governed by the same mechanism as for beams of null
dust, evolving according to the Einstein-null dust system; this is the mechanism
employed in [41].

According to [41], when a localised, spherically symmetric and ingoing
null-dust beam ¢ intersects a similar outgoing beam ¢ over a region R (see
Fig. 5), the energy contents £[¢], £[¢] of ¢, ¢, respectively, right before and
right after the interaction are related by the following approximate formulas
(assuming that £[¢], £[¢] < r|r and that (1.15) holds):

£4181 = 1] - exp (> |7[f] o) (125)
and
e
5+[§]=5_[§]-exp(— r|7[j]+@tt), (1.26)

where £_ and &£, denote the energy contents of the beams before and after
the interaction, respectively, defined by the difference in the values of the
renormalised Hawking mass m at the two vacuum regions bounding each
beam before and right after the intersection (see Fig. 5); for the purpose of
this discussion, we will assume that the error terms €rv in (1.25)—(1.26) are
negligible and can be ignored. The formula (1.25) can be deduced by tracking
the change in the mass difference around ¢ through the relation

_ 2m

3,0, 77 = 2718u<1 ZTvv[flg]) (1.27)

v

(see the relation (6.57) in [41]) using the following facts:

2m

1. The change in la is determined in terms of ¢ by the constraint equation
(see (2.47))

a1 wor N 4w Tl f]
“ Og(1_2ﬂ>___ '

r

(1.28)

ro —our
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Fig. 5 Schematic depiction &4 [¢] £[¢]
of a pair ¢, ¢ of intersecting 7

Vlasov beams supported on ™
nearly radial null geodesics.
Due to the non-linear
interaction of the beams, the
energy £[¢] of the ingoing
beam ;: increases, while the
energy £[¢] of ¢ decreases
(the total energy being
conserved during the
interaction)

2. The quantity 2Tyl f |§:] is constant in u as a consequence of the conser-
vation of energy relation, i.e.:

0u(r* Tl f171) = 0 (1.29)

(see the relation (2.38) in [41]).

The formula (1.26) is obtained by following the same procedure for ¢ with the
roles of # and v inverted (resulting in a change of sign in (1.28)). Note that
(1.25)—(1.26) imply that the energy of the ingoing beam increases, while that
of the outgoing beam decreases.

In this paper, we show that the formulas (1.25)—(1.26) also hold in the case
when we are dealing with solutions of the system (1.5) instead of the Einstein-
null dust system, under the condition the beams ¢, ¢ consist of null geodesics
which are nearly radial at their intersection region R. In this case, the additional
error terms appearing in the analogues of the relations (1.27) and (1.29) (see
(7.45) and (7.49), respectively) can be eventually controlled; we should point
out, however, that the error terms appearing in this case in (1.29) are of higher
order in terms of derivatives of the metric, and are not controlled by the norm
[|-]] defined by (1.19); estimating their size requires a novel set of higher order
bounds and precise control on the size of the interaction region in terms of the
hierarchy ). We will suppress this technical issue here (for more details, see
Sect. 7).

Let us now return to the interaction of the beams ¢; and ¢; in Fig. 4. Note
that, for the interaction taking place in the region Rg, ¢; has the role of the
outgoing beam ¢ in (1.25)—(1.26), while ¢; is the ingoing beam ¢;in the case
of R, these roles are inverted.

Remark Note here the asymmetry between ¢; and ¢;: For this part of the
discussion, it is important that i < j, which is the order convention fixing ¢;
to be the outgoing beam in the region Ry closest to the axis.
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A proof of the instability of AdS

In view of the relation (1.24) between r|g, and r |, the formulas (1.25)—
(1.26) imply that the loss of energy occuring for the beam ¢ ; at R is negligible
compared to the gain of energy for the same beam occuring earlier in the
region Ro; the opposite is true for ;. As a result, the net contribution for the
energy £[¢;] of ¢; after the pair of interactions with the beam ¢; between two
successive reflections off 7 is strictly positive, i.e. £[¢;] strictly increases, with
the total energy gain estimated as follows:

28 [¢i]
gafler [é‘j] = ghefore[;j] - €Xp (%ﬁfz + tht)
0

> EpeforelCj]- (1.30)

On the other hand, the energy of ¢; strictly decreases as a result of this
interaction:

28 eforel§j 28 eforelSj
gafter [é‘l] = gbefore[é‘i] - €Xp ( - brfl'R [é‘j] + bl”);R [é‘j]
0 00

< gbefore[é‘i]- (1.31)

+ QStt)

However, using the fact that ¢©) > ¢() and assuming (in the context of
a bootstrap argument) that the energy content of each beam ¢ satisfies for
u € [0, u,] a bound of the form

M (-A)? < €] S e (-A)2,
from (1.23)—(1.24) we deduce that

28peforelt;] < e 28peforeldil

rlrg "~ e® rlry (1.32)
25bef0re[§j] < 8(_,')8(,') < ngefore[fi]'
r|'Roo ~ rlRo

Substituting (1.32) in the formula (1.31), we infer that, during the interaction of
¢i and ¢, the relative change in the energy content of ¢; is negligible compared
to the corresponding change for ¢;, i.e.:

Epeforel il _1<<M_1. (1.33)

5after[§i] gbefore[gj]

To sum up, for any beam ;,, 0 < i9p < N;, the energy content of {;, between
two successive reflections off Z changes according to the following rules:
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1. The interaction of ;, with any beam ¢;; with i1 < i results in an increase
in the energy of ¢;,, quantified by (1.30).

2. The interaction of ;, with any beam ¢;, with iy > i has virtually no effect
on the energy content of ¢;,.

3. The energy content of ¢;, before and after each reflection off 7 remains the
same (as a consequence of the reflecting boundary conditions imposed on
D).

In particular, the energy content of each beam, except for g, strictly increases
with the number of reflections off Z.!! See Proposition 7.6.

Formation of the intermediate profile S,. For any beam index 0 <i < N, — 1,
and any n € N corresponding to a specific number of reflections of the beam
¢; off Z, let us introduce the following dimensionless quantity:

L 28M[g]

uilnl = : (1.34)
di(n)

where £ (”)[Q] is the energy of ¢; after the n-th reflection off Z, while dl.(")
denotes the distance (defined in an appropriate sense) between the beams
¢ and ¢4 after the same reflection. Using the relations (1.30) and (1.31),
combined with an analogous set of estimates for the change in the separation
of the beams over time, we will be able to infer that the quantities ;] satisfy
the following recursive system of relations:

i—1
piln] = piln — 1exp (2ZM;[n] n oztt), (1.35)
i=0

(see (7.150) and Proposition 7.6). Ignoring the error terms &rr, the relation
(1.35) can be readily solved inductively in i: For i = 0, (1.35) implies that
wolnl = pol0], for i = 1 we infer that [n] =~ u1[0]e?*#0l01 and so on. In
particular, all the quantities u;[n] except for po[n] are strictly increasing in n.

Remark When n = 0, the definition of the initial data norm || - ||gaza (se€

Definition 3.14) implies that

> wil0] ~ 1D lasa- (1.36)

i>0

T The sum of the energies of all beams is conserved and is proportional to the value of i at Z.
In particular, the energy gain for the beams ¢;, 1 <i < N, eventually comes at the expense of a
decrease in the energy of (. Of course, as we noted above, this decrease is negligible compared
to the initial value of £[¢g] (which satisfies £[¢g] > £[¢;] foralli > 1).
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A proof of the instability of AdS

Therefore, while (1.35) implies a fast rate of growth for w;[n], i > 1, the
smallness condition (1.11) on the initial data necessitates that, for any fixed
value of n, max; u;[n] — 0 as e — 0; this is, of course, also implied by the
Cauchy stability of the trivial solution (M ags, g4qs) With respect to || - ||4aza
(see Proposition 3.15).

Given any natural number n, and using the fact that (1.35) can be solved
backwards in n, we can choose the initial data parameters a; in (1.10) so that
the quantities u j[n4],0 < j < N — 1, obtained by solving (1.35) (with initial
values p ;[0] computed explicitly in terms of a;), are equal to the right hand
side of (1.17), i.e.

C C .
wilngd = Eexp(—2ﬁg]). (1.37)

Similarly, using (1.30), ay, can be chosen so that the energy £*)[¢y, ] of the
last beam is equal to the right hand side of (1.18), i.e.:

e (Ne)

VA

EMen, 1= (1.38)

See Proposition 8.1 for a more detailed derivation. Provided n, is large enough
in terms of &, we can estimate a priori (using the explicit solution of (1.35) and
the fast growth of w;[n] in n) that the aforementioned values of the parameters
a; (which were defined in terms of n,) are consistent with the initial smallness
assumption (1.11). It can be then readily shown that, between the n,-th and
the (n, + 1)-th reflection of the beams off Z, there exists a time u = u, ~
n*(—A)_% such that the beam slices §; N {u = u.} satisfy (1.17) and (1.18);
see Sect. 8.

Remark At the time u = u, when the intermediate profile S is formed, the
[| - |]-norm of the solution (defined by (1.19)) satisfies

Ne—1 Ne—1

C _,c;
M, &5 )iz, 2 Z; il 2 2; NE N~ C> 1. (1.39)
1= 1=

As a result, the formation of S, already provides an instability statement for
(M adgs, gaas) with respect to the initial data norm || - ||g4¢4; for the proof of
the AdS instability conjecture, however, it is necessary to move beyond u = u.
and establish that, moreover, a trapped surface forms in (M, g; f )(8 ),
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We should also point out that, as a consequence of the explicit formulas
(1.17)—(1.18) for the energy content of ¢; at {# = u,}, we can trivially bound

C
umiln] < A forall0 <i < N, — 1.

&

Therefore, since (1.35) implies (ignoring once more the error terms) that w;[n]
is non-decreasing in n, we can estimate a priori that, for all 0 < n < n,:

max ui[n] < E (1.40)

0<i<N.—1 e

Provided that the number N, of beams is sufficiently large in terms of C and
satisfies

C >> max (z)

(where d; is the initial separation between ¢; and ¢;41), the estimate (1.40)
(combined with a number of technical lemmas related to the geodesic flow on
(M, )®) allows us to obtain the crucial a priori bound (1.15) for @ (see
the relation (8.4) in the statement of Proposition 8.1). As mentioned earlier,
this bound is fundamental for rigorously implementing the heuristic ideas
discussed in this section.'?

1.2.2 Second stage of the instability: trapped surface formation

The second step of the proof of Theorem 1 will consist of showing that a trapped
surface (and hence, a black hole region) is formed at a time u = uy > u, with
uy —uy S 1. More precisely, in Sect. 9, we will show that, in the development
of the intermediate profile Sy, the configuration of the beams ¢;, 0 <i < N,
behaves as follows (see Fig. 6):

1. For0 <i < Ng—1, the geodesics in the beams ¢; obey dynamics which are
qualitatively similar to those on AdS spacetime (albeit satisfying weaker
bounds than in the region u < uy;see (9.1) in Lemma 9.1). In particular, the
beams ¢; briefly approach the center »r = 0 before being deflected away,
intersecting with each other, in the meantime, as depicted in Fig. 6. Up
until the time u = u’ when the last intersection between these beams and

12 Observe that, while the scale invariant norm ||-]| of the solution (/\/l e f )(8) becomes large

at u = uy (see (1.39)), the slightly weaker scale invariant quantlty remains bounded by a
small constant; introducing the multiscale hierarchy (1.7)—(1.10) was fundamental for achieving
the construction of such a configuration of beams.
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5](\,’1*)

Fig. 6 Schematic depiction of the evolution of the intermediate profile S,. After interacting
with each other for one last time, the beams ¢;, 1 < i < N — 1 gain a sufficient amount of
energy so that, at the region of intersection of any of those beams with the last beam ¢, , the

mass ratio @ is proportional to the (small) constant N% In turn, ¢, gains enough energy from

those interactions, so that a trapped sphere p; is created before ¢, is deflected again to infinity

the outermost beam ¢y, occurs (see Fig. 6), the mass ratio @ satisfies the
smallness condition (1.15).

2. The final beam ¢y, , moving in the ingoing direction, interacts with all the
beams ¢;, i = 0,..., N; — 1, increasing its energy content £[{y,]. The
increase in &£[¢y, ] is sufficient for a trapped surface to form before ¢y,
has the chance to be deflected off to infinity again: There exists a point
p+ € ¢y, N{u > u'} (see Fig. 6) such that

2 (py) > 1. (1.41)

’
The first of the two statements above will be established in Sect. 9.1. In
order to prove that the beams ¢;, 0 < i < N, — 1 approximately obey the AdS
dynamics in the region {u, < u < u’}, we appeal to arguments similar to the
ones implemented in the previous step. In this case, however, the estimates
satisfied by the solution are in many respects weaker than those we obtained
previously (crucially, (1.21) will no longer be true at this step; compare also
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the statements about the regions /" and 7, in Lemma 7.8). It is the need to
obtain control over quantities like the || - ||, <, size of the solution at this step
that enforces some of the complexity of the hierarchy of parameters introduced
in Sect. 6.1.

More precisely, arguing similarly as for the proof of (1.35), we show that
an analogous approximate formula holds for the energy content £*[¢;] of the
beams ¢;, 0 < i < N, — 1, right before their intersection with ¢y, (see Fig.
6): Setting, for 0 <i < N — 1,

. 2E*¢i]
l SUPg;ney, T ’

* -
the analogue of formula (1.35) reads

W= i n*]exp( Z,u +(’3tt) (1.42)

where the quantities w;[n,] are given by (1.37) (the technical machinery for
establishing this fact is contained in the second part of Proposition 7.6). We
therefore readily deduce by substituting (1.37) in (1.42) (ignoring the error
terms €rv) that, forall0 <i < N, — 1:

. C
&€

See Lemma 9.1 for more details.

Let us now move on to the statement of trapped surface formation along the
beam ¢, ; the proof of this statement occupies Sect. 9.2. Using the formula
(1.25) for ¢y, at every intersection between ¢y, and the beams ¢;, 0 < i <
N¢—1, weinfer that the energy content & ¢;na1[¢n, ] of ¢, atu = u’ satisfies the
following lower bound in terms of the associated energy &) [Cnv,]atu = uy:

Ne—1
Erinatltn,] 2 EM[ep,] eXP( Z M,)

In view of the relations (1.38) and (1.43) for £ (”*)[g“Ng] and u;", respectively,
we thus deduce that

Efinatltn] ~ e Ny > NaTe (1.44)
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We will now argue that the lower bound (1.44) and the fact that the beam
{n, consists of geodesics satisfying initially the angular momentum condition

l S(Ns)
Ey —A

(see (1.12)) imply that there exists a point p; € ¢y, N{u > u’} such that (1.41)
holds. For any uq € [u’, u’ + O(1)], we can estimate from below

(1.45)

2m 2E ri
sup _m > fmal[gNg]

v Nlu=uo) T SUPgy A{u=ug) "

Thus, in order to establish (1.41) and complete the proof of Theorem 1, it
suffices to show that, as a corollary of (1.45), the beam slice ¢y, N {u = u+}
for a suitable u > u’ satisfies

sup  r <ryp, (1.46)
ENe Mu=u+}
where
Vo)
ro = (1.47)

]

Heuristically, on a spacetime where the geodesic flow behaves similarly as
on (M ags, gads), the bound (1.46) would follow from the fact that, for every
null geodesic y of (Mags, g4ds), the minimum value of r along y satisfies

. l
mmpr ~ —.
14 Eg

However, in our case, for u > u’, the spacetime metric g is no longer close
to gags; the fact that there exists a u such that (1.46) holds follows from
a careful manipulation of the equations of the geodesic flow (in the regime
where the condition (1.15) is violated), using in addition some of the mono-
tonicity properties of the system (1.5) (see the proof of (9.32)), as well as the
estimates on the geodesic flow for u < u, obtained in the previous step. See
Proposition 9.2.

Remark A technical issue which was not highlighted so far in this discussion
is the fact that the existence and smoothness of the development (M, g; f)©
up to the time u = u+ of trapped surface formation (including, in particular,
the statement that a naked singularity does not appear earlier in the evolution)
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is non-trivial. The Cauchy stability statement for (M 445, gaqs) guarantees
the existence of (M, g; £)® only up to times U when

M, g5 £)@lu<v < 1.

Beyond that point, and up to time u = u’, we infer the existence and smooth-
ness of (M, g; f)® using an extension principle established in our companion
paper [43], guaranteeing the smooth extendibility of a development under the
smallness condition (1.15) for 27’" From u = u’ up to u = uy, the existence
and smoothness of the solution follows from our explicit a priori estimates for
the geodesics in the beam ¢y, and the fact that, in the part of W <u< u+}
consisting of the past of the point p+, the spacetime is vacuum (and hence triv-
ially extendible) outside ¢y, ; for a review of the relevant extension principles,
see Sect. 3, as well as Sect. 6.3.

1.2.3 Discussion: comparison with the case of the Einstein-null dust system
with an inner mirror

In this section, we will highlight the differences between the strategy of proof
of Theorem 1, sketched in the previous sections, and the one implemented in
[41] for the case of the spherically symmetric Einstein-null dust system.

In [41], the instability of (M ags, g4as) as a solution of the Einstein-null
dust system with an inner mirror was established by setting up a family of
initial data (r, Q2%; 7)®)|,—¢ which gave rise to a configuration of null dust
beams ;l.’ ,0 <1i < Ng,of comparable size (see Fig. 7). These beams were suc-
cessively reflected off an inner mirror at r = r(()g) (with r(()e) proportional to the
total energy m® |7 of (r, Q%; 7)®|,—o) and conformal infinity 7, exchanging
energy through their non-linear interactions. Using the relations (1.27)—(1.29)
and the fact that the beams ¢/ were initially comparable in size, it was shown
in [41] that, for this family of configurations, the quantities

, 2
Un = max « —
T Uy=u=Unpr} 1

and

pn = r-separation between ¢y and ¢ in the region {U, < u < Upy1}
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(where U, is the value of u at the point where the beam {6 is reflected off 7
for the n-th time'?), satisfy the system of relations

Pt < Pn + Crri¥log (1 — )™+ 1),
(&)
c1r,
Wns1 > W exp (—2), (1.48)
Pn+1

forsome 0 < ¢; < 1 < Cj (seethe relation (6.165) in [41]). It was then shown
that the system (1.48) guarantees the existence of some ng = ng(e) € N such
that

fng = 1= & (1.49)

for some 8, < 1. From (1.49), it was concluded using a suitable Cauchy stabil-
ity statement that, by possibly perturbing the initial data set (r, 22; T)®|,—o
ever so slightly (with the size of the perturbation determined by §,), one could
in fact achieve

fny > 1. (1.50)

The lower bound (1.50) then implied the existence of a trapped sphere in the
development of (r, Q2% 7)®|,—0 at time u ~ Uy, + O(1); see [41].

The analysis of [41] leading to the recursive system of inequalities (1.48)
relied crucially on the fact that the null-dust beams ¢/ consisted entirely of
radial null geodesics, which, in a double null coordinate chart (u, v, 8, ¢),
necessarily move along lines of the form {# = const} or {v = const} (see Fig.
7). This trivial a priori control on the paths of radial null geodesics in the (u, v)-
plane implies, in particular, that the qualititative picture of beam interactions
depicted in Fig. 7 remains valid even in the regime where 27’” ~ 1, i.e. in the

last few reflections of the beams off r = r(gg) and 7 before a trapped surface

is formed. Furthermore, the presence of an inner mirror at » = rés) > 0 1in the
setup of [41] guaranteed the absence of naked singularities in the evolution
of the initial data family (r, Q2; 7)®|,—o (as a consequence of the results of
[42]).

In contrast, in the case of the Einstein-massless Vlasov system (1.5), there
is no useful general a priori estimate for the shape of beams consisting of
non-radial geodesics in the regime where 27’" ~ 1 (as suggested already by
the relation (1.22)). Therefore, in order to establish the formation of a trapped
sphere in this setting, we were forced to design a configuration of interact-
ing Vlasov beams with the property that all the beam interactions preceding

13 Assuming that a black hole has not formed for {# < Up}.
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oo+ = U
o0+ = U

Fig.7 Schematic depiction of the configuration of beam interactions in the case of the Einstein-
null dust system with an inner mirror (left), which was treated in [41], and the multi-scale
configuration employed in this paper for the case of the Einstein-massless Vlasov system (right).
For simplicity, only three beams are depicted in each case

the first point p; where @ = 1 lie in the regime @ <« 1; in this regime,
the qualititative picture of the (right half of) Fig. 7 can be shown to remain
relevant (see Sect. 5). In particular, this was achieved by first identifying the
profile S, (described at the end of Sect. 1.2.1) as a useful intermediate step for
trapped surface formation. In turn, the structure of S, necessitated imposing
the multi-scale hierarchy (1.7)—(1.10) on the construction of the initial data
family D@ Tt is a remarkable feature of the system (1.5) that the same hier-
archy of scales greatly simplifies the formulas of energy exchange occuring
between the Vlasov beams, resulting in the approximate monotonicity rela-
tions (1.35); the monotonicity properties of (1.35) are crucial for obtaining a
priori control of 27’” in the evolution until the formation of S, thus ensuring
the absence of naked singularities in the solution in view of results obtained
in our companion paper [43].

@ Springer



A proof of the instability of AdS

1.3 Outline of the paper

The structure of the paper is as follows:

In Sect. 2, we will introduce the Einstein-massless Vlasov system (1.5) in
spherical symmetry. In addition, we will state a number of notational con-
ventions related to asymptotically AdS spacetimes and we will introduce the
notion of a reflecing boundary condition for (1.5) on 7 .

In Sect. 3, we will introduce the asymptotically AdS characteristic initial-
boundary value problem for (1.5) and present a number of well-posedness
results in this context. These results will include a fundamental Cauchy stability
statement for (M ags, g44s) in a low regularity topology. The proofs of the
results of Sect. 3 are obtained in our companion paper [43].

The main result of this paper, namely Theorem 1, will be presented in detail
in Sect. 4.

The proof of Theorem 1 will occupy Sects. 5-9. In particular, the arguments
sketched in Sect. 1.2.1 regarding the first stage of the instability will be pre-
sented in detail in Sects. 5-8 (with Sects. 5 and 7 devoted to the development
of the necessary technical machinery); the proof of trapped surface formation
(roughly discussed in Sect. 1.2.2) will then be presented in Sect. 9.

2 The Einstein-massless Vlasov system in spherical symmetry

In this section, we will introduce the spherically symmetric Einstein-massless
Vlasov system in 3 + 1 dimensions, expressed in a double null coordinate
chart. We will also formulate the reflecting boundary condition for a massless
Vlasov field at conformal infinity Z in the asymptotically AdS setting. A more
detailed statement of the notions and the results appearing in this section can
be found in our companion paper [43].

2.1 Spherically symmetric spacetimes and double null coordinate pairs

In this paper, we will follow the same conventions regarding spherically sym-
metric double null coordinate charts as in our companion paper [43] (similar
also to those of [41,42]). Our assumptions on the topology and regularity of
the underlying spacetimes will be satisfied by the solutions of the Einstein-
massless Vlasov system (1.5) constructed in the proof of Theorem 1.

In particular, we will only consider smooth, connected and time oriented
spacetimes (M?3T1, g) which are spherically symmetric with a non-empty axis
Z (see [43]). We will further assume that Z is connected and that M\ Z splits
diffeomorphically under the action of SO (3) as

M\Z ~U x S°. 2.1)
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We will also restrict ourselves to spacetimes (M, g) such that the region
M\ Z is regularly foliated by the two families of spherically symmetric null
hypersurfaces H = {CT(p) : p € Z} and’H = {C™(p) : p € Z}, where
CT(p),C~(p) are the future and past light cones emanating from p, respec-
tively. See [43] for a more detailed discussion on the properties of spacetimes
(M, g) satisfying the aforementioned conditions.

A double null coordinate pair (u, v) on (M, g) will consist of a pair of
continuous functions u, v : M — R which are a smooth parametrization of
the foliations H, 7, respectively, on M\ Z. Note that any choice of double
null coordinate pair (#, v) on M fixes a smooth embedding (u, v) : U — R2;
from now on, we will identify / with its image in R? associated to a given
null coordinate pair.

Remark We will only consider double null coordinate pairs (u, v) for which
d, + 0y is a timelike and future directed vector field on M\ Z.

Given a double null coordinate pair (1, v), the metric g, restricted on M\ Z,
is expressed as follows:

g= —Qz(u, v)dudv + rz(u, V)8s2, 2.2)
where gg is the standard round metric on S?and Q,r : U — (0, +00) are
smooth functions, with r extending continuously to 0 on the axis Z.

For any pair of smooth functions 41, hy : R — R with A}, b}, # 0, we can
define a new double null coordinate pair on M by the relation

(i, v) = (h1(u), ha(v)). (2.3)

In the new coordinates, the metric g takes the form

g = —Q%(i, v)didv + r* (i1, v)gse, (2.4)
where
Q% (i, ) = —— Q2 (hy @), hy (D)), (2.5)
h1h2
r(i, v) = r(hy @), hy (D). (2.6)

Remark We will frequently make use of such coordinate transformations,
without renaming the coordinates each time.

Let (y!, y?) be alocal coordinate chart on S?. Then, the non-zero Christoffel
symbols ng of (2.2) in the (u, v, y', y?) local coordinate chart on M\ Z take
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the following form:

I =a,log(2%, T =a,log(2%),

Pl =r 3.8y, Ty =r""o,rsg,

Mg = Q20,0 (ge)as. Thp = Q2 (8s2) a5,

e = Te)ac. (2.7)

In the above, the latin indices A, B, C are associated to the spherical coordi-
nates y!, y%, 8 g is Kronecker delta and I'z are the Christoffel symbols of the
round sphere in the (y!, y?) coordinate chart.

We will define the Hawking mass m : M — R by

-
m = 5(1 —g(Vr, Vr)). (2.8)

Notice that, when viewed as a function on I/, the Hawking mass m is related
to the metric coefficients €2 and r by the formula:

49,r(—0yr)

2m
1=

m = %(1 +4Q729,r0,r) & QF = (2.9)

Finally, on pure AdS spacetime (./\/lizls, gAds), where gags is defined by
(1.2), we will fix a distinguished double null coordinate pair (u, v) by the
relations

%Arctan (\/gr) (2.10)

In the resulting double null coordinate chart, ga4s is expressed as
gads = —Qagsdudv +rigg, 2.11)

where

r(u, v) :,/—%tan (% —%(u—u)), (2.12)

Q2 o( IR
Aas, v) = 3Ar (u,v).
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2.2 Asymptotically Anti-de Sitter spacetimes

In this section, we will introduce the class of asymptotically AdS spacetimes
in spherical symmetry; the geometry of these spacetimes will resemble that of
(2.11) in a neighborhood of r = oc. In particular, in accordance with [43], we
will adopt the following definition:

Definition 2.1 Let (M, g) be a spherically symmetric spacetime as in
Sect. 2.1, with sup,r = +00. We will say that (M, g) is asymptotically
AdS if, for some Rop > 1, there exists a spherically symmetric double null
coordinate pair (u#, v) on M as in Sect. 2.1, such that the following conditions
hold:

1. The region V,; has the form
Vasz{ul <u <u2}ﬂ{u+vR0(u) <v <u+v1}
for some u; < up € RU {foo}, vz € R and vg, : (u1,u2) — R with

v(u) < vr.
2. The function % on U extends smoothly (as a function on R?) on

IT={uy <u<uz}N{v=u+vz} Ccloste) (2.13)

(where clos (U) denotes the closure of I/ with respect to the standard topol-
ogy of the plane) and satisfies

= 0. (2.14)

3. The function ?—22 extends smoothly on Z, with

QZ
|, #0. (2.15)

See [43] for further discussion on the above definition and its relation with
the standard definition of asymptotically AdS spacetimes (appearing, e. g., in
[28]). For a spherically symmetric, asymptotically AdS spacetime (M, g) as
above, we will use the term conformal infinity both for the planar boundary
curve 7 and for the spacetime conformal boundary ZG*D of (M, g) (Fig. 8).

2.3 Properties of the null geodesic flow and the massless Vlasov equation

Let (M, g) be atime oriented, spherically symmetric spacetime as in Sect. 2.1.
In this section, we will briefly review the properties of the geodesic flow on
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Fig. 8 Schematic depiction
of the asymptotic region
Vas = {r = Rp > 1} of an
asymptotically AdS
spacetime

e

u+ vg, (1)
In+n

v =

(M, g) and we will introduce the Vlasov field equations on 7 M. We will use
the same notations as those adopted in [43].

The geodesic flow on (M, g)

The equations of motion for a geodesic of (M, g), expressed in a local
coordinate chart (xO, x!, x2, x3) on M with dual momentum coordinates

( po, pl, pz, p3) on the fibers of T M, takes the following form

xa — pOl’
[p“ T3, pPp7 =0, 210

where Fg « are the Christoffel symbols of g with respect to the chart

1

(x9, x!, x2, x3). Fixing a non-vanishing future directed vector field Q on M
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(e.g. the vector field 9, + 9, in the notation of Sect. 2.1), the set

Pt = {(X; p)eTM: ga[ﬂ(X)p“pﬁ =0, gafs(X)p“Qﬁ(x) < 0}, 2.17)

i.e. the set of future directed null vectors in T M, is invariant under (2.16).
The angular momentum function [ : T M — [0, +00) is defined in a local
coordinate chart (i, v, y', y?) as in Sect. 2.1 by

1 =r2gapp” p? = r*(ge)anp p® (2.18)

(note that [/ is in fact coordinate independent). The spherical symmetry of
(M, g) implies that [ is a constant of motion for the geodesic flow (2.16). As
aresult, (2.16) can be reduced to a system in terms only of u, v, p*, pV and [.
Reexpressed in terms of these variables, the null-shell relation defining P in
(2.17) takes the form

Q7 phpY = . P20 (2.19)

while relations (2.16) restricted on P is reduced (using the expressions (2.7)
and (2.19)) to

o =r 2
1 4(Q2p) = (8, log(?) — 282 ) L, (2.20)
2
4(Q2pY) = (B log(@?) — 280 ) 1,
= o.

Remark Identifying a geodesic in (M, g) with its image in the planar domain
U, we will frequently refer to (2.20) simply as the equations of motion for a
“geodesic inU{”. Let us also note that, on a smooth spacetime (M, g) as above,
the relations (2.19) and (2.20) imply that a geodesic y with/ > 0 cannot cross
the axis Z = {r = 0}.

The Vlasov equation

We will adopt the following definition for a Vlasov field f on T M:

Definition 2.2 A Vlasov field f is a non-negative measure on 7'M which is
constant along the flow lines of (2.16). A Vlasov field f supported on (2.17)
will be called a massless Viasov field.
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As a consequence of the above definition, in any local coordinate chart
(x%; p%) on TM (with p* dual to x%), f satisfies the following equation
(refered to, from now on, as the Viasov field equation)

PO f — TG, pP p7dpe f = 0. (2.21)
The energy momentum tensor of a Vlasov field f is a symmetric (0, 2)-form

Typ on M (possibly defined only in the sense of distributions), given by the
expression

Top(x) = fT Wy pappf v/ —det(g(x))dp®---dp, (2.22)

where T, M denotes the fiber of T M over x € M and
Py = gys(x)p°. (2.23)
Equation (2.21) implies that
Ve =0, (2.24)
i.e. that Ty is conserved.

Another conserved quantity associated to a Vlasov field f is a 1-form called
the particle current, defined by the formula

N (x) = /T Mpaf V—det(g(x))dp°---dp’. (2.25)

The Vlasov equation (2.21) readily implies that

VYN, = 0. (2.26)
A spherically symmetric Vlasov field f,i.e. a Vlasov field which is invariant
under the induced action of SO (3) on T .M, only depends on the u, v, p*, p*
and / variables. Assuming, in addition, that f is massless, it follows that f is

conserved along the flow lines of the reduced system (2.20). The Vlasov field
equation formally reduces, in this case, to (2.21):

Pt + 00, f = (3,10 @) + 22720, Yo 1

2 2 2 12
(a log(@)(p")? + =220, 2)3 o f (2.27)
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(note that (2.27) does not contain derivatives in /).

Remark In this paper, we will only consider smooth spherically symmetric
massless Vlasov fields f,i.e. f will be of the form

_ 12
fu, v p*, pUal) = fu, vs p*, pU, 1) - 8(Qp"p® — 72)’ (2.28)

where f is smooth in its variables and § is Dirac’s delta function. For a smooth
and spherically symmetric massless Vlasov field f, we will frequently denote
with £ any smooth function for which (2.28) holds; note that f is uniquely
determined only along the null set (2.17).

Moreover, we will only consider smooth Vlasov fields f which are com-
pactly supported in the momentum coordinates p* for any fixed x. Under this
condition, it can be readily shown that N, (x), T (x) are smooth tensor fields

on M.

The energy-momentum tensor (2.22) associated to a smooth, spherically
symmetric Vlasov field f takes the form

T = Ty (u, v)du® + 2T, (u, v)du dv + Tyy(u, v)dv> + Tap(u, v)dy dy®.
(2.29)

In the case when f is in addition massless, the components of (2.29) can be
expressed as

+oo  p4o00 u
_ T 2 0\2 7 ) dp
Ty = Er /(; /0 (Q pv) f(u,v; pM7 pv,l) P i ldl,
+00 400 u
_T 2 N2 e dp
Ty = 57 /0 /0 (Q°p")" fu,v: p*, p*. 1) - Wldl,
+oo  p+oo u
_ T 2 2 ; ) dp
fo =22 [ [ (@) @) fvs )| Lotar,
8" Tap = 4Q 77T, (2.30)

Similarly, the particle current (2.25) associated to f is of the form
N = Nydu + N,dv, (2.31)

where, in the case when f is in addition massless:

_ dp"
N, = jTI”_Z/ Q2pY fu,v; p*, p¥., 1) P ldl,
T MNP+ Pt p*
_ dp¥
N, = m2/ Pp" Fu,v: p*, pt. 0| Lyl (2.32)
T, MNP+ Pt p*
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The following estimate of T}, in terms of N, will be useful later in the
paper: In view of the expressions (2.9), (2.30) and (2.32), we can bound

_ 2m _2m
—Tyy(u,v) + —Tyuo(u, v)
dyr —ayr
<2 sup (o, v)p" = B, p") - Ny, v)
(p”,p”)esupp(f(u.v;~,~,l))
(2.33)
and
_ 2m 1= 2m
—Tuv(u, v) + —Tuu(ut, v)
oyt —0y
<2 sup <8vr(u, v)p? — 3,r(u, v)p”) - Ny (u, v).
(pu’pv)esupp(f(usv;'7',1))
(2.34)

2.4 The Einstein-massless Vlasov system

The Einstein-massless Vlasov system with cosmological constant A takes the
form

Ricuv(g) - %R(g)g;w + Ag;w = 877T,uv[f]v
P f = TG, pP pYdpe f =0, (2.35)
supp(f) C P*

where (M, g) is a Lorentzian manifold, f is a non-negative measure on 7'M,
T, f] is expressed in terms of f by (2.22) and Pt C TM is defined by
(2.17) (see also [18,41,42]). In this paper, we will only consider the case when
the cosmological constant A is negative.

Reduced to the case where (M, g) is a spherically symmetric spacetime
(see Sect. 2.1) and f is a spherically symmetric massless Vlasov field (see
Sect. 2.3), the system (2.35) is equivalent to the following set of relations for

(r, Q% f):
1
3,0,(r2) = —5(1 — Ar?)Q? + 8712 T, (2.36)

QZ
3.0y log(Q%) = ﬁ(l +4Q 72, rdyr) — 87Ty — 272 B Tap, (2.37)

0 (Q720,r) = —4nrT,, Q2 2, (2.38)
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3(720yr) = —47rTHQ 2, (2.39)
PO f =T, pP p?dpe f. (2.40)
2
supp(f) {2 (u, v)p“p’ — =0, p">0¢. (2.41)
r2(u, v)

Remark In view of the relation 4Q 27, = gAB T4 p (following from the fact
that f is supported on the null set P) and the definition (2.9) of m, equation
(2.37) is equivalent to

—3ur)d
By log(2?) = 412 00T
r __zm

I

— 167 T, (2.42)

Itis useful, in general, to consider transformations of the double null coordi-
nate pair («, v) of the form (u, v) — (u’,v") = (U(u), V(v)) (see Sect. 2.1).
Under such a gauge transformation, a solution (r, 22, f) is transformed into
a solution (+/, ()%, f') in the new coordinate system through the relations:

r', v =ru,v),
! Q
U () - 4V (v)

dU . dV ,
1 (u/, v E(u)p“ : %(v)p” ,l) = f(u,v; p*, p*.1). (2.43)

Q)2 v) = 2(u, v),

Let us introduce the renormalised Hawking mass m by the relation
m=m— —Ar’, (2.44)

where m is defined by (2.9). Equations (2.36)—(2.39) yield (formally, at least)
the following system for (r, 7, f) on the subset of M where 1 — 27’" > 0 and

our <0 < 9yr:

21 — 3Ar3 (—8,r)d,r

N e AT, (2.45)
r
-9 2T,
9, log (— ) = 4nr—1ra—””, (2.46)
d °T,
dulog (—25—) = —4mr— ! L2 (2.47)
1 — 22 —0yr

r
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2m. 2 Ty 2Ty

9,0 = 2 1——( ) 2.48

ol 7'[( r ) oyt + —0yur ( )
2m rZTW rsz,

it = —2m (1 = ( )

ult n( r ) — 0yt + oyt

(2.49)

Useful relations for null-geodesics on solutions of the system (2.36)—(2.41)
We will now present a number of relations for null geodesics on solutions
(M, g; f) of the system (2.36)—(2.41). These relations, appearing also in our
companion paper [43], will be useful for the construction of localised Vlasov
beams appearing in the proof of Theorem 1.
In particular, we will establish the following result:

Lemma 2.3 Let u; : R — R be continuous and strictly increasing and, for
somea > 0, lety : [0,a) — U be a curve contained in the region {u > uy(v)}
such that:

e y is the projection of a null geodesic in (M, g) with angular momentum
!l >0and

e y(0) € {u =ui(v)}
(see Fig.9). Then, forall s € [0, a), the following relation holds for the tangent
ytoy:
log (2*7")(s) — log (Q*y")(0)

v(y(s)) puly(s) 1 @ -1 .
:/ / 7 —2471Tm,> dudv
v(y(0)) Jui(v)

v(y () dyr
+ / (3, log(Q?) — 2—=) (u1 (v), v) dv, (2.50)
v(y(0)) r

where s is defined as the value of the parameter s determined by the condition

v(y(sp)) = v, (2.51)

i.e. corresponding to the point of intersection between y and the line v = v.

Similarly, for any continuous and strictly increasing function vy : R — R
and any null geodesic y : [0,a) — {v > vi(u)} with y(0) € {v =v1(u)}, we
have

u(y(s)) prv(y(su)) ] 6L" —1 )
/ 02— 2471T,w) dv du
v

log (2277)(s) — log (2277)(0) =/
u(y(0)) Jur(w)

uy () Br
+ / (310222 — 227, vy () s
u(y(0)) r
(2.52)
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Fig. 9 Formula (2.50)
expresses the change in the
magnitude of 2y for a
future directed null geodesic
y in terms of a spacetime
integral over a region as
depiced above

N
. @@
2
‘x&\\
2D,
7
7
2
where sj; is defined by:

u(y (sa)) = u. (2.53)

Remark Inview of the relation (2.19), the projection y on I/ of a null geodesic
in (M, g) with [ > 0 is a timelike curve in ¢/ with respect to the reference
metric

gref = —dudv. (2.54)

Proof Using the equations of motion (2.20) combined with the null shell rela-
tion (2.19), we infer that, for all s € [0, a):

log (2*7")(s) — log (27y")(0)
_ / (av log(Q2) — 28”—r) dv
a([0,s])) r

v(y(s)) puy(sy)) Ay
— / / (aua,, log(Q?) — 2au—) du dv
vy ©) Jui(v) r

v(y (s)) dpr
+ / (8, log(Q%) — 2—=) (u1(v), v) dv (2.55)
v(y(0) r

(see also Fig. 9, as well as the remark above on why y is a timelike curve
in U). Therefore, substituting the relations (2.45) and (2.42) for 9,0d,r and

@ Springer



A proof of the instability of AdS

9,9y log 2 in the right hand side of (2.55) and recalling the definition (2.44)
of m, we readily infer (2.50) from (2.55).
The proof of (2.52) follows in a similar way. |

Asymptotically AdS solutions and the reflecting boundary condition at
infinity Let (M, g; f) be a spherically symmetric solution of (2.35), such
that, in addition, (M, g) is asymptotically AdS, in accordance with the Defi-
nition 2.1. In this case, the following quantities will be useful as renormalised
substitutes of r, Q2 and T},» near conformal infinity (see Sect. 2.2):

o= tan~! (,/ —%r), (2.56)

2
o2
1—%Ar2
)
Tuw =1 Ty

From (2.45) and (2.42), it readily follows that (p, 52, Tyy) satisfy the relations

- 1 Anﬁl—%Ar252+4 [ A 1
=—y/ Ty —— ————= Ty,
uivp 2 31’21—%Ar2 3r—%Ar3 “

(2.57)
> 2 1 2
<o om 1 I Arc—1\x, —EAr )
%udy log(827) = 7(72 * §Am) —lor s v

In the asymptotically AdS setting, it is natural to study the system (2.36)—
(2.41) with boundary conditions imposed for f on Z. In this paper, we will
consider the reflecting boundary condition. Defined in terms of the reflection of
null geodesics off Z?+D | the reflecting boundary condition can be formulated
as follows (see [43] for more details):

Definition 2.4 Let (M, g) be as in Definition 2.1, and let f be a smooth
massless Vlasov field on T M, as defined in Sect. 2.3. We will say that f
satisfies the reflecting boundary condition on conformal infinity if, for any pair
of future directed null geodesics y : (a, +00) — Mand y : (—00, b) — M
such that y is the reflection of y off conformal infinity Z?*!, according to
Definition 2.2 in [43], f satisfies

Flayyy = Flyeyo)s (2.58)
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Fig. 10 Schematic depiction
of the components y;, of a
maximally extended
geodesic y = UQ’:O Yn
through reflections off
conformal infinity, as defined
in [43]. Each component y;,
is the reflection off 7 of
Yn—1- A massless Vlasov
field f satisfying the
reflecting boundary
condition on Z is constant
along any such maximally
extended null geodesic

where f(,,y) is the (constant) value of f along the curve (y, y) in T M.

Remark Equivalently, f satisfies the reflecting condition on ZG+V if £ is con-
stant along the trajectory of (y, y) for any future directed, affinely parametrized
null geodesic y which is maximally extended through reflections, in accordance
with Definition 2.3 in [43] (see also Fig. 10).

The following Lemma is a trivial corollary of the relations (2.49)—(2.48) for
n, the condition (2.14) on conformal infinity 7 and the reflecting boundary
condition (2.58) for f:

Lemma 2.5 Let (r, 2, f) be an asymptotically AdS solution of (2.36)~(2.41)
as above, satisfying on I the reflecting boundary condition, in accordance with
Definition 2.4. Then, the renormalised Hawking mass m is constant along T,
satisfying formally:

(0 + dy)m|z = 0. (2.59)

See also Lemma 2.1 in [43].

14 For the purposes of this section, y is used to denote a geodesic in (M, g) and not just its
projection in the (u, v) plane, as was the case earlier.
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A proof of the instability of AdS

3 The asymptotically AdS characteristic initial-boundary value
problem

In this section, we will review the well-posedness results regarding the
characteristic-boundary initial value problem for (2.36)—(2.41) established in
[43]. In particular, we will introduce the notion of a smoothly compatible,
characteristic asymptotically AdS initial data set for the system (2.36)—(2.41)
and we will present a result on the existence and uniqueness of a maximal
future development for (2.36)—(2.41) when reflecting boundary conditions are
imposed on Z. We will also state a few continuation criteria for smooth solu-
tions of (2.36)—(2.41), which will be crucial for the constructions involved
in the proof of Theorem 1. We will end this section by presenting a Cauchy
stability statement for the trivial solution of (2.36)—(2.41) in a scale invariant
initial data topology, which will later allow us to address the AdS instabil-
ity conjecture in a low regularity setting in Sect. 4. The proofs of the results
appearing in this section are presented in detail in our companion paper [43].

3.1 Smoothly compatible characteristic initial data sets for (2.36)—(2.41)

In this paper, the study of the dynamics of the system (2.36)—(2.41) in the
asymptotically AdS setting will take place in the framework of the charac-
teristic initial-boundary value problem, with initial data prescribed at u = 0,
satisfying the constraint equation (2.39). We will consider the following class
of initial data which is compatible with smoothness of the associated develop-
ment for (2.36)—(2.41) at the axis Z and at conformal infinity Z. In fact, this
will be precisely the class of initial data giving rise to a smooth development
for (2.36)—(2.41) and it will contain the initial data family of Theorem 1 (which
will be constructed in Sect. 6.2); see also Definitions 3.4 and 3.5 in [43].

Definition 3.1 For a given vz > 0, let r/, 2, : [0,vr) — [0, +00) and
f7 (0, v1) x [0, +00)2 — [0, +00) be smooth functions. The quadruplet
(r/, Q%, f7; vz) (simplified to (r/, Q%, f7) when the value of vz is clear from
the context) will be called a smoothly compatible asymptotically AdS initial
data set for the system (2.36)—(2.41) if it satisfies the following conditions:

1. The functions (r/, Q% f/) satisfy on (0, v7) the constraint equation (2.39),
with Ty, is defined in terms of (r/, Q%, f/) by the second relation in (2.30)

with f(u, v; p*, p¥, 1) , replaced by f/(v; p“, D).
QZPLtpv:,%

2. Atv = 0, the functions r/, Q% extend smoothly and satisfy
Q7(0) >0 3.1)
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and
r/(0) = 0. 3.2)

3. The functions 1/r, and r/_ZQ% extend smoothly on v = vz and satisfy

1/r/(vz) =0, (3.3)
r2Qj () > 0, (3.4)
3,(1/r))(v7) < 0. (3.5)

Furthermore, for any p > 0 and [ > 0, the function f/(v; Q/_z(v) p, D
extends smoothly on v = v7.

4. The functions r/, Q%, f/ satisfy Conditions 1-3 of Definition 3.5 of [43]
on smooth compatibility at v = 0 and v = v7.

Remark The requirement that the functions r/, Q?, f/ satisfy Conditions 1-3
of Definition 3.5 of [43] corresponds to the statement that, roughly speaking,
the initial data set (r/, Q?, f7), whichis originally defined along {u = 0}, can

be smoothly extended as a triplet of functions (r, 22, f) defined on an open
neighborhood of {u = 0} in the region {u < v < v + vz}, such that

e The spherically symmetric metric determined by the parameters (r, Q2) is
smooth and asymptotically AdS (with smooth axis and conformal infinity)

e The functions (r, Q2, f) satisfy the system (2.36)—(2.41) at {u = 0} at all
orders.

See Definition 3.5 of [43].

We will also denote by B the set of all smoothly compatible, asymptotically
AdS initial data sets (r/, Q?, f7: vr) for (2.36)—(2.41) which have bounded
support in phase space, i.e. satisfy for every v € (0, vz) and every [ > 0:

12
2( u
sup (Q (p" + )) <C (3.6)
pesupp(f;(v;-,1)) Q?r/zpu

for some constant C < 400 independent of v, 1.1

For a more detailed discussion on Definition 3.1 and the properties of initial
data sets in 2B, see Definitions 3.4 and 3.5 in [43].

The following remarks regarding Definition 3.1 were also discussed in [43]
(see Section 3.2 of [43]):

15 1n (3.6), the supremum is taken over the values of p* in the support of f, for fixed v, 1.

@ Springer



A proof of the instability of AdS

e Under a gauge transformation of the (u, v)-plane of the form (u, v) —
W', v) = (U, V() <, 9 £ 0, solutions (r, 22, f) to (2.36)-
(2.41) transform according to (2.43). Considering the restriction of such
a transformation with U(0) = V(0) = 0 at the initial data (r/, Q%, f/)

induced on {u = 0}, we infer that (r/, Q?, f/) transform as follows:

r;(v/) =r/(v), (3.7)
Q = QI (v),
( /) W) = %{(0) v( ) 7 (V)

f/(v (0) p.D = fyw; p,D).

e In this paper, following the conventions of [43], we will study asymptoti-
cally AdS solutions (r, Q2 f) of (2.36)—(2.41) under the gauge condition
thatr = O on {# = v} and r = oo on {u = v — vz} (see Definition 3.5
in the next section). For a gauge transformation (u, v) — (U (u), V (v)) to
preserve this condition, it is necessary that

Uw)=V@ andU(v —vz) = V(v) — vg. (3.8)

At the level of the initial data transformation at u = 0 associated to the coor-
dinate transformation v — V(v) and the parameter CZI—ZL{(O), (3.8) implies
that

—(O) —(O) and V(0) =0, V(vg) = vr. (3.9)

Note that, in general, the property of an initial data set (r/, Q%, f/; V1)

being smoothly compatible is gauge dependent. In particular, when the

transformed initial data set (r;, (Q//)Z, f// ; V(v7)) is also smoothly com-

patible, Condition 4 of Deﬁnition 3.1 implies that a certain relation holds

d0)F (0) and 4 @o)F (vz) for all k € N; this relation does not hold,
in general, for gauge transformations as above, even when V satisfies the
(necessary) condition V € C*°([0, vz]). However, under certain assump-
tions on the support of f, an initial data set (r/, Q? 1z f/, vr) satisfying
Conditions 1-3 above can be gauge-transformed into a smoothly compati-
ble initial data set. See Lemma 3.4, as well as the discussion in Section 3.2
of [43].

o Let (r/, Q?, f/; vz) € Bo. We will define the function (9,7), on (0, v7)
(coinciding formally with 9d,r|,—¢ in a development of (r/, Q%, f/; v7)
solving (2.36)—(2.41) and satisfying r = 0 on {# = v}) by integrating

between <4

@ Springer



G. Moschidis

equation (2.36) in v. In particular:

(0ur)/(v) =

- (v) — Ar)Q; +8nr/2(T/)uv) dv, (3.10)

where (7)), is defined in terms of (r/, 522 f/) by (2.30) with 92 7 in
/TP

. We

place of p¥ and f/(v, pY, l) in place of £(0, v; p“, p¥, 1)

Q2pu pv:%
will also define the functions m, m, on (0, vz) through the relations (2.9),
(2.44), as well as the energy- momentum components (7)., through the

relation (2.30) (again, with

off(O, v; p*, p¥, 1)

Qz b in place of p? and f;(v; p“, ) in place
/TP

v 12 )
2

sz“[? =i

e For(r/, Q? f7; vz) € By as above, the functions (7)) .., m, and i, extend
smoothly on v = 0, with

my. iy = O@r)).
Furthermore, the condition (3.6) implies that

Iim m(v) < 400, 3.11)

v—> UE
while (2.39) and (3.5) imply that

inf  9,r/(v) >0 (3.12)

ve(0,v7)

(see also Remark 2 in Section 3.2 of [43]).

The following normalised gauge condition for initial data sets (r/, Q%, £ v7)
was introduced in [43] for the purpose of fixing a simple representation of the
trivial initial data set (raqs/, Qi ds)’ 0; v7) (see Definition 3.6 in [43]):

Definition 3.2 Let (r/, Q? f/; v7) be a smoothly compatible, asymptotically
AdS initial data set for (2.36)—(2.41), as in Definition 3.1. Let also v — v’ =
V(v) (with V€ C%([0, vz])), (ry, @7, fy; v1) = (), (), f}; v1), be a
gauge transformation, defined by (3.7), satisfying the condition (3.9). We will
say that (r/ / (Q ), f /5 v7) satisfies the normalised gauge condition if

avr/ (Q/ )2
/ (v) = /

1= JA()? 40,7

~(v) forv e (0, v7). (3.13)
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A proof of the instability of AdS

In this case, we will say that (r/, Q f/, v7) —> (r/, (Q ), f/, v7) is a gauge
normalising transformation.

We should make the following remarks regarding Definition 3.2:

e Itcanbereadily shown (see Lemma 3.2 in [43]) that, for any (r/, Q?, f_/; v7)
€ B, there exists a unique gauge normalising transformation as in Defini-

tion 3.2. The trivial (normalised) initial data set (raq4s/, Qi ds)" 0;,/— %rr)

is expressed as:
3 1 A
rads)(v) = A tan (5 —gv), (3.14)

2 L
Qygs/(v) =1- §ArAd5(U),
which are the data induced at u = 0 by the AdS metric expressed in the

standard double null coordinate chart (2.10). For different values of the
endpoint parameter vz > 0, we obtain by rescaling:

[ 3 v
FIE\IZJIS/(U)_FA“’S/( _XT[E> (3.15)
2
( ) 37 2 3 v
(@ ES/) W) =— AU_QQAdS/<\/_KﬂE>'
T

e By integrating the constraint equation (2.39), we infer that the gauge con-
dition (3.13) is equivalent to

d v’/ _ i /( /)vv
—A/Z( V) = o exp (4;1/0 Gy @ @ r/)dv> (3.16)

N Al [z r/(T))vo
o= /_35/0 exp(4n/0 Gy @ @ r/)dv)dv (3.17)

and (T))yy is defined in terms of (r/, 7, f) by in (2.30) with f;(v; p*, )

where

inplace of f (u, v; p*, p*, ;2 - Alternatively, the gauge condition
=2

(3.13) can be expressed as

8v”/ (aur)/
A2 = — T (3.18)
37/ T Tr
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A comparative advantage of considering the gauge condition (3.13) when
constructing asymptotically AdS initial data sets (r/, Q? f7; vz) for (2.36)—

(2.41) is that (3.13) allows one to completely determine (r, Q% f_/; v7) in

terms of vz and f/, which can be freely prescribed. In particular, the following
result was established in [43]:

Lemma 3.3 (Lemma 3.1 in [43]). Let vz > 0 and let F : [0,v7) X
[0, +00)2 — [0, +00) be a smooth function such that supp(F) is a com-
pact subset of (0, vz) x (0, +00)%. There exists a unique asymptotically AdS
initial data set (r, Q?, f/; v7) for (2.36)—(2.41) satisfying Conditions 1-3 of
Definition 3.1 and the gauge condition (3.13), such that

frs p*. 1) = F(v; dyr/(v)p", 1). (3.19)

Assume, in addition, that F satisfies the smallness condition

(v7) (vp)
o (VT T ags) Tags LEDwo

MIF] = /0 5 0T

vl Ads/

(@) di < co < 1, (3.20)

where co > 0 is an absolute constant, (TXZJIS)[F Dvv is defined by

1 +00  p+00 d
()—/ / P2F; p, ) Lial 321
2wy Jo Jo p

. T
(TVEFD ) = 5
Faas/

and ri\vfg / (ijgg )2 are the rescaled AdS metric coefficients given by (3.15).

Then, the following bounds hold:

Oyt avrxjd{[;
v () - (/ — ()| < CMIF] forallv € (0, vr)
— 347 - %A(rAliz’IS/)z
(3.22)
and

UI T

/ 1IN Gy a < CMLF). (3.23)
0 Oy

where C > 0 is an absolute constant and is (T))y, is defined in terms of
_ _ 2

(r/, Q%, f7; vz) by the second relation in (2.30) with f (u, v; p*, p¥,1) Qp”p”

= i—i replaced by f/(v; p“. D).

@ Springer



A proof of the instability of AdS

For the proof of Lemma 3.3, see [43].

In general, a gauge normalising transformation (as in Definition 3.2) is
not smoothly compatible; that is to say, an initial data set (r/, Q%, £ v7)
expressed in a gauge where (3.13) holds will not, in general, satisfy Condition
4 of Definition 3.1 (see also the more detailed discussion in Sections 3.2 and
3.3in [43]).

Remark For the trivial initial data set (raqs;, QE\ ds)’ 0; / —%rr), the gauge
normalised form (3.14) is also smoothly compatible (see [43]).

The following lemma, which is established in [43], shows that any initial
data set (r/, Q%, f7; vz) which satisfies Conditions 1-3 of Definition 3.1 when
expressed in a gauge where (3.13) holds can be gauge transformed into a

smoothly compatible initial data set, provided f; is supported away from v =
0,vrand/ = 0.

Lemma 3.4 (Lemma 3.3 in [43]). Let (r/, Q%, f/; vr) satisfy Conditions 1-3
of Definition 3.1, as well as the normalised gauge condition (3.13). Assume
that f/ is supported away from v = 0, vz and | = 0, i.e. there exists some
8 > 0, such that f; satisfies

fr(w; p,1) =0 forve (0,51U[vr — 8, v1) (3.24)

and
frv; p,1) =0 forl €l0,3]. (3.25)
Then, there exists a gauge transformation v — v'(V), (ry, Q% f/; vy) —
(r), (9;)2, f_//; v7) (of the form (3.7)), satisfying V. € C*[0, +00), (3.9) and

1-_
V(@) =vforv <vr— 58, (3.26)

such that the transformed initial data set (r;, (Q//)z, f// ; v7) satisfies all of the
Conditions 1-4 of Definition 3.1.

Furthermore, for any gy € (0, 1), the gauge transformation can be chosen
so that

dv
1—¢g9 < d—(v) <1+¢y forvel0,vs] (3.27)
v

and

’ d’v
max
vel0,v7] | (dv)?

vz 1— Ar/2 £0
(U)‘ = /(; (W(T/)vv + 3(T/)uv>(v) dv + E,

37
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(3.28)

where (T))yy, (T))yy are defined in terms of (r, Q? f/) by (2.30) with

f/(v; p", 1) in place of f(u, v; p*, p¥, D) R 2 and Qzl—zzu in place of
Qptpl=—~5 /e

p'. !

For the proof of Lemma 3.4, see [43].

Remark The above lemma applies, in particular, to the normalised initial data
sets (r/, Q% f7; vz) provided by Lemma 3.3 for any function F which is

compactly supported in (0, vz) x (0, +00)>.

3.2 Well-posedness of the characteristic initial-boundary value problem
and the maximal future development

In this section, we will formulate the notion of a development of a smoothly
compatible, asymptotically AdS initial data set (see Definition 3.1) with respect
to the system (2.36)—(2.41), assuming the reflecting boundary condition on 7
(see Definition 2.4). We will then present a fundamental well-posedness result
for the associated characteristic initial-boundary value problem for (2.36)—
(2.41), culminating in the statement of the existence and uniqueness of a
maximal future development for any given smoothly compatible, asymptot-
ically AdS initial data set with bounded support in phase space. The proofs
of the results presented in this section (together with a wider collection of
well-posedness results) can be found in our companion paper [43].

The following class of domains in the (u, v)-plane will appear naturally as
the class of domains of definition for solutions (r, Q2, f) to the characteristic
initial-boundary value problem for (2.36)—(2.41); see also [43].

Definition 3.5 For any given vz > 0, we will define %, to be the set of
all connected open domains U of the (u, v)-plane with piecewise Lipschitz
boundary o/, with the property that

U =S8,, Uyz U Uclos(t), (3.29)

where, for some u,,, uz € (0, +o0],

SUI = {O} X [07 UZ]! (330)
vz ={u=v}N{0<u <uy.} (3.31)
T={u=v—vr}N{0<u < ug (3.32)
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A proof of the instability of AdS

and the Lipschitz curve ¢ is achronal with respect to the reference Lorentzian
metric

Sref = —dudv (3.33)

on R?. In particular, the case ¢ = ¢ is allowed.

Remark In the case when ¢ = @ in (3.29), it is necessary that both &z and 7
extend all the way to u + v = +o00.

We will define a future development of an asymptotically AdS characteristic
initial data set for (2.36)—(2.41) with reflecting boundary conditions on Z as
follows:

Definition 3.6 For a given vz > 0, let (r/, Q?, f/; vz) be a smoothly com-
patible, asymptotically AdS initial data set for the system (2.36)—(2.41), as
introduced by Definition 3.1. A future development of (r/, Q%, f/; vz) for
(2.36)—(2.41) with reflecting boundary conditions on Z will consist of adomain
U C R? belonging to the class %, introduced in Definition 3.5, together with
a solution (r, 22, f) of the system (2.36)—(2.41) on U, such that the following
conditions hold:

1. U;r, Q2 f) is a smooth solution of (2.36)—(2.41) with smooth axis yz
and smooth conformal infinity Z, in accordance with Definitions 3.1 and
3.2 of [43].10

2. The solution (r, Q2, /) induces the initial data (r/, Q%, f/; vz) atu = 0:

(r. 29)(0,v) = (r/. 2))(v) (3.34)

and

2

()2

O v p", p" D = f i .0 - 5(RFpp? ). (333)

3. The reflecting boundary condition (2.58) is satisfied by f along conformal
infinity Z (Fig. 11).

Remark For any smooth development (I{; r, Q2, f) as in Definition 3.6, the
fact that the vector field 0, + 9, is tangential to yz, Z implies that

Wrlyz = —0urlyz, (3.36)

16 Roughly speaking, the requirement that (I/; r, Q2, f) has smooth axis yz is equivlent to
the statement that the spherically symmetric metric defined on M \ Z by the parameters Q2 r
extends smoothly on Z, with Z coinciding with the set {r = 0}; see also Definition 3.1 in [43].
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Fig. 11 Depicted above is a

typical domain U € %,;. In C .
the case when the boundary A
set ¢ is empty, it is necessary

that both yz and Z are
unbounded (i.e. extend all T
the way to u + v = 00)
Vz u I
v
R\
1(071)2)
Suo
7(0,0)
e
.. \0
1 1
d(D)lz = —0u (D). (3.37)

Moreover, differentiating the formula (2.9) for Q2 and using equation (2.45)
for 9, 0,r, the boundary condition (3.36) for » on yz and the smoothness of
(r, Q2, f) at yz (implying, in particular, that m = o) asr — 0), we
calculate that

(=0, 0y7)dyr + (—3ur)33r

_ 2m
r

%, =4

+4(((;%‘r2):f‘;;av(1 - ZTm)NyZ

vz

= 3,rdirl,,
and, similarly:
2 2
0%z = 0urd;rily

Thus, using once more (3.36) and the fact that (9, + Bv)2r|yz = 0 (since
r = 0 on yz), we infer that Q7 satisfies the following Neuman-type boundary
condition at yz:

(9, — 3,)9%| =0. (3.38)

vz
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A proof of the instability of AdS

Arguing similarly at Z (where % = (0 and using (2.57) and (3.37) in place of
(2.45) and (3.36), respectively, we also infer that:

(8 — au)(lg—z)
A

=0. 3.39
T (3.39)

Let us also point out that, for any smooth development (U/; r, Q2, f) as
in Definition 3.6 and any u, € [0, u,,), the characteristic initial data set
(fuss 27, fru.; vz) induced on the slice {u = u,} NU by (r, %, f) is
smoothly compatible, in accordance with Definition 3.1; see also the Discus-
sion in Section 3.2 of [43].

The following proposition establishes the well-posedness of the initial-
boundary value problem for (2.36)—(2.41) with reflecting boundary conditions
on Z in the class B¢ of smoothly compatible, asymptotically AdS initial data
with bounded support in phase space, as introduced in Definition 3.1:

Proposition 3.7 (Theorem 4.1 of [43]). Let (r/, Q% f/; vr) € By (see Defi-
nition 3.1). Then, there exists a uy > 0 (depending on (r, Q%, f_/; v7)) and a
unique solution (r, Q2 f) of (2.36)—(2.41) on the domain

Uy :or = {O<u<u*}ﬂ{u<v<u+vz}, (3.40)

such that Uy, vy 1, sz) is a future development of (r/, Q?, f/; vz) with
reflecting boundary conditions on L, in accordance with Definition 3.6.

For the proof of Proposition 3.7, see Section 4.3 of [43].

The existence of a unique maximal future development for smoothly com-
patible, asymptotically AdS characteristic initial data with bounded support in
phase space was also established in [43]:

Proposition 3.8 (Corollary 4.2 of [43]). Let (r/, 27, f;; vz) be initial data

set in %0 Then there exists a unique future development Uinax: 1, 2 , ) of
(r/, Q? 1z f/, vr) with reflecting boundary conditions on I having the followmg

property: If Usy; 1, Q*, fx) is any other future development of (r/, Q/, f/, v7)
with reflecting boundary conditions on I, then

Uy € Unax (3.41)
and
(r, Q2 lu, = e, 2, f2). (3.42)

The solution Upayx; r, %, f) will be called the maximal future development
of (r/, Q f/, vr) under the reflecting boundary condition on 1.
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For a a more detailed presentation and a discussion on the proof of Propo-
sition 3.8, see Section 4.2 of [43].

The following notions regarding conformal infinity for future developments
of smoothly compatible, asymptotically AdS initial data set will be frequently
used in this paper:

Definition 3.9 Let (U; r, Q2, f) be a future development of a smoothly com-
patible, asymptotically AdS initial data set (r/, Q%, f_/; vr) for the system
(2.36)—(2.41), and let u7 and 7 be defined according to Definition 3.5.

e The black hole region of (U; r, Q2, f) will be defined as the set

B={u>uz}NU. (3.43)

We will say that (U; r, 2, f) contains a black hole if B # @.
e We will say that a point p € U corresponds to a trapped sphere of
U; r, Q2 f)if

2—m(p) > 1. (3.44)
,

e We will say that (U/; r, Q2, f) has future complete17 conformal infinity 7
if

urt Q
/ ———(u,u+vg)du = +00. (3.45)
* (1)

2

Remark As a consequence of the relation (2.9) and the fact that d,r < 0
everywhere on U (following from (2.38) and the fact that 9, < 0 on {u =
0} UZ),if (u, v) € U satisfies

2m _
—(u,v) > 1,
,

then
dpr(u,v) <0.
Hence, as a consequence of (2.39):

sup dyr(u, v) < 0. (3.46)

V>0

17 The definition of future completeness of 7 that we adopt in this paper is equivalent to the
statement that 7 is future complete as a regular timelike boundary with respect to the metric
r_zg. This is the only natural definition of future completeness for Z in the asymptotically AdS
setting.
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Therefore, in this case the function r is bounded from above along {u = u}
and hence the line {# = u} does not intersect {r = oo} = Z, i.e. (u, v) is
contained in the black hole region 5. Equivalently,

2
vy <1 forall (u,v) € {u < ug) NU. (3.47)
.

For general initial data, we will not be able to show that the maximal future
development of a smooth initial data set (r/, Q? f7; vz) has future complete

conformal infinity Z.'® However, in the presence of a trapped sphere, the
following statement holds:

Lemma 3.10 (Lemma B.1 in [43]) Let (r), 27, fivr) € Bo and let

Unax; 1, Q2, f) be the maximal future development of (r/, Q?, f/; v7) with
reflecting boundary conditions on L. Assume that there exists a point (i, v) €
Unax satisfying

2m _
T(M’ v) > 1. (3.48)

Then, Upax; r, Q*, f) has future complete conformal infinity T, i.e. (3.45)
holds.

For a proof of Lemma 3.10, see Section B of the Appendix of [43].

3.3 Continuation criteria for smooth solutions of (2.36)—(2.41)

In this section, we will state two criteria that will allow us to extend smooth
solutions (r, 2, f) of (2.36)—(2.41) beyond their original domain of defini-
tion. These criteria will be applied in our proof of Theorem 1 in Sects. 7-9.
For a wider class of continuation criteria, as well as for a proof of the results
of this section, see Section 5 of our companion paper [43].

The main extension principle of this section is the following:

Proposition 3.11 (Corollary 5.1 in [43]). For any vz > 0 and u; > 0, let
(r, Q2, f) be a smooth solution of the system (2.36)—(2.41) on the domain
Uy, ;v (defined as in (3.40)), with smooth axis {u = v} and smooth conformal
infinity {u = v — vz} (see Definitions 3.1-3.3 of [43]). Assume that (r, Q2, D)

I8 The statement that for generic initial data, 7 is future complete, is of course equivalent to
the statement of the weak cosmic censorship conjecture in the asymptotically AdS settings for
(2.35) in spherical symmetry.
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satisfies

2m
sup — < 1, (3.49)
r

UMI;UI

2
limsup = <8, (3.50)

wv)—>@iuy) T

where 8o < 1 is a small absolute constant'® and, moreover, at u = 0, we have
supp(f(O, . -)) C {Qz(p” +pY) < Co} for some Cy < +o00. (3.51)

Then, there exists some uy > uy, such that (r, Q2 f) extends on the whole
of the domain Uy, .., O Uy, vy as a smooth solution of (2.36)—~(2.41) with
smooth axis {u = v} and smooth conformal infinity {u = v + vz}.

For a proof of Proposition 3.11, see Section 5.3 in [43].

The next extension principle, which is also presented in [43], applies to the
case of smooth solutions of (2.36)—(2.41), restricted to domains on which r is
bounded away from 0 and +oo:

Proposition 3.12 (Proposition 5.1 in [43]). Forany u; < us, any vy < vy and
any A € R, let (r, Q2, f) be a smooth solution of the system (2.36)—(2.41) on
an open neighborhood V of the rectangular region

R = [ur, uz] x [vr, v2]\{(u2, v2)},

satisfying
ir&fr > 0, (3.52)
supr < 400, (3.53)
s:ipn% < 400, (3.54)
Y sup our <0, (3.55)

{ur}x[vr,v2DU([u1,u2]x{v1})

and, for some C < +00:

supp(f(m, g -)),supp(f(-, vi; -)) c {Q*(p'+p") < C}. (356)

19 The precise value of §y can be determined by examining the proof of Proposition 4.1 in [43]
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A proof of the instability of AdS

Then, (r, Q2, f) extends smoothly in a neighborhood of the whole rectangle
[u1, uz] x [vy, v2] (i.e. including the corner {(uz, v2)}).

For a proof of Proposition 3.12, as well as a discussion on the connection
between Proposition 3.12 and an analogous result established in [18], see [43].
Note that Proposition 3.12 applies to the system (2.36)—(2.41) for any value
of the cosmological constant A.

3.4 Cauchy stability of (M 445, g4as) for (2.36)—(2.41) in a low
regularity topology

In this section, we will introduce a low regularity, scale invariant topology
on the space B of smoothly compatible, asymptotically AdS initial data of
bounded support in phase space (see Definition 3.1). We will then formulate a
Cauchy stability statement for the trivial solution (M 445, g4qs) in this topol-
ogy. This statement will be crucial for addressing the AdS instability conjecture
in the associated low regularity topology. A more detailed discussion on the
results of this section can be found in our companion paper [43].

In accordance with [43], we will introduce the following map from B¢ to
the space of smooth solutions of the (free) massless Vlasov equation (2.21) on
AdS spacetime:

Definition 3.13 For any given vz > 0, let (r/, Q%, f_/; vz) be an asymp-
totically AdS initial data set in the class B¢ (see Definition 3.1). Let also
(r/, Q%, frivn) — (r;, (Q’/)Q, f /’ ; v7) be the (unique) gauge transformation
such that (r;, (Q//)z, f/’ ; v7) satisfies the normalised gauge condition (3.13)
(the existence of such a gauge transformation is guaranteed by Lemma 3.2 in

[43]). Let us also define f/(AdS) : [0, —%n) x [0, 4+00)2 — [0, +00) in

terms of f/’ by the expression

/3
_KJT

vz

~(Ad o
T @ pt. 1y = F( cv; D).
We will define f(AdS) = f(AdS)[f/; vz] : TMpas — [0, +00) to be the

unique solution of the massless Vlasov equation (2.21) on (M ag4s, gAas) With

S)

initial conditions corresponding to f_/(Ad , 1.e. satisfying at u = O:

12
Fads) (o e pe. N,
P Q457 aas 0, v)

~(Ad
= FMw: pt ) - 8( s 0. PP —

2

), (3.57)

r3as (0. v)
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where Qi 45> Taas are the coefficients of g4 given by (2.12). For any u > 0

andv € (u,u+ ./ —%T[), we will also set

(u,v) = u,v) (3.58)
OvrAds

[rTvv]WS) . raasTolfAY]
oyt

(AdS) (AdS)
(and similarly for [%] , [%Tv—”r”] an

energy momentum components Tygl f
(2.30) with Q7 ¢, raqs in place of Q2, r.

o7 (AdS)
d [T‘;L’r] ), where the

(A4d$)) are defined using the relations

Using the mapping (1, Q? fr; vz) = fA95) fixed in Definition 3.13, we
will define the following positive definite functional on B (see also Section
6.1 in [43]):

Definition 3.14 For any (r/, Q%, f/; vr) € By, we will define the norm

1y, Q?, frsvpll of (r, Q%, f7; v7) in terms of the free Vlasov field f (445
on (Mags, gaas) as follows:

1y, @3, s vl

, Uity =27 /11Ty, 1(AdS) F Ty 1(AdS)
= sup ([ ] (U*,v)+[ 2 ] (U*,v))dv

U,>0JU. 8vr — 0oyl
Vs Ty 7(AdS) r Ty 1(AdS)
+ sup ([E=]™ wvo+ 2] v ) du
Vi>0 Jmax{0, Vy— —%r{} —Oyr oyt
+ V= An =y - (3.59)
Remark The functional || - || defined above is positive definite and measures

the distance of an initial data set in ‘B¢ from the trivial one with respect to an
appropriate distance function (see also the remark below). However, strictly
speaking, it is not a norm on By, since ‘B is not even a linear space. Despite
this fact, in what follows, we will keep referring to || - || as a norm on the space
of initial data; see also the discussion in Section 6.1 of [43].

Let us also notice the following regarding the definition of ||-||: As explained
in Section 6.1 of [43], the quantity || - || measures the concentration of energy
occuring along the evolution of the free Vlasov field f (AdS) jpn (M aas, gads)-
However, it turns out that, for initial data which are small with respect to || - ||,
the evolution of f remains close (in a certain sense) to that of f(A4% for a
long time; thus, in this case, || - || also measures the concentration of energy
of f in the same time interval. This is the content of Proposition 3.15 below.

Given a smooth asymptotically AdS solution (r, Q2% f)of (2.36)—(2.41) on
a domain Uy, of the form (3.40) with axis {u = v} and conformal infinity
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A proof of the instability of AdS

{u = v — vz}, we will similarly define the norm of the initial data induced
by (r, Q2 f) on slices of the form {u = u,} NU,,;,, for any u, € (0, u1) as
follows:

1, Q%5 Pluzu | = 1 ugs s Frus 0Dl (3.60)

where

(fuyr 7, (D) = () Q) (s, s + D)

and

_ _ 12
f*(ﬁ;p,l)=f(u,u +?7;P,—,l)
& o 72| (uy w40 P

(where the function £ is related to the distribution f by (2.28)).

Remark The fact that || - || takes finite values on B follows readily from the
condition (3.6) on the support of f/ Moreover, ||(r/, Q? 7 f/)|| = 0 if and
only if f/ = 0; in this case, (r/, Q? 1z 0) can be identified through a gauge
transformation with the rescaled trivial data

3 u 3 v
r/(alizIs)(”’ V) =rads \/——7'[—, ——JT— , (3.61)
A vr
Q('1))2 3 u
(Q2uds) (w,v) = Aa’S ——77— -
Notice that || - || is both gauge invariant and scale invariant, i.e. invariant under

transformations of (r/, Q?; f/) of the form

r/(v) — A_lr/()»v),
(v) - Q? (Av)
fr; p¥, 1) — )?(x) Frw; A p a4,
A — A2A,

for any A, A’ > 0. For a detailed discussion on the special properties and the
scale-invariant character of || - ||, see Section 6.1 of [43].

The following result provides a Cauchy stability statement for the triv-
ial solution (M ags, gaas) of (2.36)—(2.41) in the context of the initial data
topology defined by (3.59) on By:
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Proposition 3.15 (Theorem 6.1 in [43]). Forany vz > 0, any U > 0 and any
Co > 0, there exist g > 0 and C1 > 0 such that the following statement holds:
For any 0 < ¢ < g9 and any smooth initial data set (r/, Q%, f/; v7r) € By
satisfying

1. Q7. frivpll <& (3.62)

(where || - || is defined by (3.59)) and the bound (3.6) with Cy in place of
C, the maximal future development Uy ax; f, Q2 ) of(ry, Q? f7; vz) under
the reflecting boundary condition on T (see Proposition 3.8) satisfies

uU;vI C umax

(where the domain Uy ., C R? is defined in terms of U, vz by (3.40)). Fur-
thermore, Uy vz; T, Q2, f) satisfies the following bounds:

sup [1(r, Q% lu=u.|l < Cie, (3.63)
u,€(0,U)
sup ( sup (Qz(u, v)(p” + p“))) <+ Cie)Co,
(u,v)eMU;uI pY,plesupp(f(u,v;-,-,-))
(3.64)
v T T,
sup / r( vl f1 + uv[f]>(u’ v) dv
ue(0,U) Ju dpr —Oyr
min{v,U} T T
+ sup f r( wlf] ““[f])(u, v)du < Cie, (3.65)
ve(0,U+v7) Jmax{0,v—vz} Oyr —0yr
and
2
sup % < Che. (3.66)
Z/{U;UI r

For the proof of Proposition 3.15, see Section 6.2 of [43].

4 Statement of the main result

In this section, we will present a detailed formulation of Theorem 1 on the
instability of (M ag4s, g44s) as a solution of the system (2.36)—(2.41). In par-
ticular, the main result of this paper can be stated as follows:

Theorem 1 (final version) There exists a I-parameter family S© = (r/(g),

(Q}e))z, f;g); —%71), e € (0, 1], of smoothly compatible, asymptotically
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A proof of the instability of AdS

AdS initial data sets for (2.36)—(2.41) with bounded support in phase space
(see Definition 3.1), satisfying the following conditions:

1. S© converge to the trivial initial data as e — Owith respect to the topology
defined by (3.59), i.e.

1y @2, 719 \/ ol 25 (4.1)

2. For any ¢ e (0, 11, the corresponding maximal future development
(u,ifa)x, Te, Q2 fs) of S© with reflecting boundary conditions on T con-
tains a point (uT A )) such that

2
TR W ) > 1. 4.2)
Te

Remark As a consequence of (3.47), the relation (4.2) implies that (Z/{,ng s Tes
Qg, f¢) contains a non-trivial black hole region for any ¢ € (0, 1]. Further-
more, Lemma 3.10 implies that, in this case, (L{,(,fﬁx; Te, Qg, fe) possesses a
complete null infinity Z, for any ¢ € (0, 1].

Using the estimates established in the proof of Theorem 1, it can be actu-
ally shown (although this is not carried out in this paper) that there exists an
advanced time v > ( satisfying

3
vf? < v® <uz, + -

such that, in the region Voo = {v > v} N UL, the Vlasov field £©
vanishes identically and the solution is locally isometric to a member of the
Schwarzschild—AdS family. This fact implies, in particular, that u7 < 400

and that the future boundary of u,ngx is strictly spacelike in a neighborhood
of “future timelike infinity” (uz,, uz, + ./ —in) However, we are not able

to rule out the possibility of the future boundary of U,Smx containing a null
segment emanating from » = 0 and corresponding to a Cauchy horizon for
the maximal future development (u,ﬁfgx, Te, 92 fe) (note that the extension
principle along r = 0 provided by Theorem 5. 1 in [43] only applies under the
condition that < 1). We will not pursue this issue any further in this paper.

The proof of Theorem 1 will occupy Sects. 6-9. In particular, the construc-
tion of the initial data family S will be presented in Sect. 6, with (4.1)
established in Sect. 6.2 (see Lemma 6.5). The fact that the corresponding

maximal developments (u,Sfa)x; re, Qg, fe) contain points where (4.2) holds
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will finally be established in Sect. 9, using the technical machinery developed
in Sect. 7 and the fact that the specific choice of the initial data family leads to
the formation of an intermediate profile with certain properties (see Sect. 8).
For a sketch of the proof, see also Sect. 1.2 of the introduction.

Before proceeding to the proof of Theorem 1 and its related constructions,
we will need to establish a number of fundamental estimates that will allow
us to control the geodesic flow on solutions of (2.36)—(2.41) under minimal
assumptions on their geometry; this will be achieved in Sect. 5.

5 Auxiliary estimates for the null geodesic flow in the case 2m/r <« 1

In this section, we will establish a number of estimates related to the paths of
null geodesics on asymptotically AdS solutions (r, Q2, f) of (2.36)—(2.41),
assuming, in addition, that the spacetimes under consideration satisfy the
smallness condition

2m
— <K 1.
’

The results of this section will be crucial for the proof of Theorem 1, since
they will allow us to estimate the paths traced out by narrow Vlasov beams
with minimal control on the spacetime geometry.

5.1 Geodesic paths under rough assumptions on the spacetime geometry

Forany U > 0 and vz > 0, letUy.,, be the domain in the («, v)-plane defined
by (3.40). Let also (r, Q2 f) be a smooth solution of (2.36)—~(2.41) on Uy,
with smooth axis {# = v} and smooth conformal infinity {# = v — vz}, in
accordance with to Definitions 3.1-3.3 of [43].

The following result provides quantitative bounds for the paths of null
geodesics in Uy

Lemma 5.1 Let 0 < 89 < 1 be a sufficiently small absolute constant, and

let Uy, and (r, Q2 f) be as above. Assume that the following bounds are
satisfied for some Coy > 100:

sup <‘ log <1_L%r[\r2)‘ + |log (%)D < Cy 5.1

uU:L'I
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A proof of the instability of AdS

and®®

2 i
sup (T n —Am) < 8. (5.2)
Z/{U;UI

Lety : [0,a) — Uy.y; (witha € (0, +00]) be a future inextendible, future
directed, affinely parametrised null geodesic of (r, Q) satisfying the following
conditions:

e y is initially ingoing, i.e.
7" (0) > y*(0), (5.3)

e vy has angular momentum [ satisfying the bound

i
0 < —~/—A < e, (5.4)
Eg
where
1 . )
Eo = 5(92;/“ + sz”)(O), (5.5)
e y(0) satisfies
i
r(y(0)) > 00—, (5.6)
Ey

Then, the following statements hold for y:

1. Setting
(1o, vo) = y(0)
v .0 +€150C0 l vy — elSOC()L vo +6150C()L (5 7)
T Ey Eo’ Eo]’ '
[
150C() 150Cy "~
[ , Vot e Eoi|
X | vg — elSOCOL vo + vz + elSOCoL (5.8)
Ey’ Eo |’ '

20 Note that, since m = i + %Ar3, the bound (5.2) implies that 2 is also small in the region

1
r < (=A)2.
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the curve y is contained in the following region:

yclr= e—“oEio} N (W UV) Ny (5.9)

(see Fig. 12).
2. Forany s € [0, a), we can estimate

£200C)

1
¢~ 100C0 ) < E(szu(s) n szv(s)) <™ gy (5.10)
3. Let s. € (0, a] be defined as

se =sup{s € (0,a) : u(y(s)) +v(y(s)) <uo+vo+vz}. (5.11)

Then, for any s € [0, s;), we can bound

v 21— LaA,2
Yo eezoocol_;l’ (5.12)
)'/u - E2 ’,-2
0 y(s)
while, for any s € (s¢, a), we have:?!
u 12 1 — lA}’Z
Y (o) <e™0 37 (5.13)
E2 r2
0 y(s)

In particular, s = s, roughly separates the ingoing from the outgoing part
of the curve y.

Remark In the case when one considers future inextendible geodesics y in
Uy v with future endpoints on conformal infinity, the statement of Lemma
5.1 can be readily generalised to the extension of such geodesics through their
reflection off {u = v — v7}; see Corollary 5.2. Notice also that the condition
(5.1) implies that 1—106_C0 < J/=Avz < 10€°, i.e. that, in the class of space-

times satisfying (5.1), vz and (—A)_% can be used almost interchangeably as

units of length with merely O(e©?) errors occuring in the transition. Let us

also remark that Lemma 5.1 is also valid in the case when the initial point of

y lies on Z, i.e. ¥ (0) in the statement of the Lemma is replaced by y (—00),
2

with y (—o0) € Z, and (5.3) is replaced by gz

7}Ll _
)}v( 00) > 1.

21 This is a non-trivial case only when s < a.
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Fig. 12 Schematic depiction of the rectangular domains Vx_and V » in the statement of
Lemma 5.1

We should point out that Lemma 5.1 will be applied in situations where the
smallness of // E(y dominates any constant depending on C appearing above.

Proof We will adopt the following convention regarding the parametrization of
y: We will denote with s the affine parametrization of y (and the corresponding
derivative by "), while 7 will denote the parameter corresponding to u + v.
Let also [, 1) be the parameter interval for y associated to the parameter 7,
ie. o =uo+voand 1j = limy_, 4 (u(y(s)) + v(y(s))).

In view of the formula (2.9), the bounds (5.1) and (5.2) imply that

2

Q
sup |log| ———= )| < 2Cy. (5.14)
1—1Ar2

Z/{U;UI
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Using (2.50) with

(5.15)

) uo, v < ug+ vz,
ul‘U =
v—uvz, U >ug+ vy,

and then using the relation (3.39) for l_sfz i along {# = v — vz}, we readily

infer that, for any t € (79, 71):
log (2%y")(z) — log (2*7")(z0)

v(y (1) puly(t)) 1 6_m _ 1
/ / 2—2477Tuv) dudv
u1(v)

QZ 1__ 2
+ ((tog T _irz )(m(v(y(r))),v(y(r)))

1 > 1_%”2) )) 5.16)
Og( “TAR AP (o, vo) | .

where 7, is defined by

v(y () = v. (5.17)

In view of the fact that the first term in the right hand side of (5.16) is non-
positive (as a consequence of (5.2)), using (5.14), (5.3), (5.5) and the fact
that

r(ui(v(y (1)), v(y (1)) = r(uo, vo)
(since y has a timelike projection on the (u, v)-plane and thus v(y (7)) > vy,
while r(u1(v), v) = oo if u1(v) # ug), we infer from (5.16) that, for any
T € (10, T1):

Q2pH (1) < E290Q% " (1) < 2°VE,. (5.18)

For any t € (79, 71) such that L%r(y(r)) <0,i.e.
avr|y(r)7}v(f) = _aur|y(r))}u(f)7 (5.19)

we can estimate from (2.19) using (5.1), (5.18) and (5.19):

Q22
r2 by

= (2], () P" (D)) - (%], ()P V(7)) (5.20)
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< sup (— )(Q ly 7" (0)?

Z/{U;UI _8

< 46500 g2,

Since (5.20) holds whenever %r(y (7)) <0, using (5.14) we deduce that

1 l
infr > —e >0 —. (5.21)
14 2 Eo

The identity (5.16) implies, using the bound (5.2) for i /r, combined with
the bound

—a,m
Ty < eCO

r

(following readily from (2.49) and (5.1)), as well as the bounds (5.1) and
(5.14), that the following estimate holds for any t € (79, 71)

[ tog (@27") (1) — log (@27 (x0)

v(y (1) puly(w)) 3 r
< 400 f / ( ) du dv
uo+vy ui(v)

v(y () puly(w)) 1 - L1A;2
+62C0/ / (_8un~1)+dudv+2C0
u u

1(v) 1(v) r
u(y () (—8,r)
<co( s D ) oy () — v (10))
velvo,v(y ()] Jui(v) r

vy () u(y(rv» - 1_ Lar2
e CO/ / — 3 (—8,r)dudv
u u

[ (V) 1(v) r?
1
N G /v(y(r)) n~11 — §Ar dv
1 () r2 u=u1(v)
1.2
26 /v(y(r)) n~11 — §Ar dv
1 () r2 u=u(y(ty))
1
< *C0 qup — - (v(¥ () — v(¥(10))) + 2Co, (5.22)

fe(z,r) TV (D))

where, in passing from the first to the second line in (5.22), we integrated in
u for the d,m term. On the other hand, the identity (5.16) can also be used
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to similarly obtain an one-sided bound for log (Q?y*) (1) — log (Q2?y*)(0),
using the fact that 7,,, > 0:

log (Q2y") (1) — log (229" (%0)
v(y (@) puly(t) @ 1
< / / 1 92) du dv (5.23)

o+vz 1(v)
2

— ) (up, v
1—%Ar2 0- %0

+ (log (ﬁ)(ul Wy (@), vy () ~ log (
3

< —e*B[t] 4 2C),

where

V(@) @) (g
B[r]if ( 2“) du dv. (5.24)
ui(v) £

Therefore, in view of (5.5), (5.3):

1
_4C , _ —
e*c0 fes(lrl(?r) @) (v(y () = v(y (1)) —2Co

2.u
< log (QE—O(T)> —e~4C0B1] + 2. (5.25)

Let us define t;,, € [0, 71] as follows:
. = 300, ! =
Tin = sup {r € (19, 71): r(y(r)) > e OE_ forall T < ‘L'}. (5.26)
0

Our analysis of the path traced by y will be separated into two regimes: The
ingoing interval T € [19, T;,) and the ourgoing interval T € [t;,, 71). Note that
the latter interval will be trivial if 7;, = 7;. However, in view of (5.6), it is
necessary that the ingoing interval is non-trivial, i.e.:

Tin > T0. (5.27)
The ingoing regime T € [19, T;n). Let us define t, € (79, 7;,] by the relation:
20C l =
0— forallTt < r}.
E

T = suP{T € (@ %) : vy () — oy () = O
(5.28)

The estimate (5.25) implies, in view of the fact that r(y (7)) > e3¢ ELO for
T < T, (following from the definition (5.26) of t;;,) and the definition (5.28)

@ Springer



A proof of the instability of AdS

of 7y, that, for all T € [1g, T4):
(Q*9") () = e *CE,. (5.29)
Thus, in view of (2.19) and (5.14), we can bound for all T € [1g, T4):

(1 —1Ar?)

(Q2y") (1) < &0 \ .
4 Eor? y ()

(5.30)

In view of (5.18), (5.21), (5.29), and (5.30), we therefore infer that, for all
T € [0, Tw):

et VE) < (77")(x) + (%7")(x) < ' "VE (5.31)
and
(92)'/1))(-[) - eIOCO 12(1 — %Arz)‘ (5 32)
(@27") (@) + (@) () ~ Ey? o '

Moreover, as a result of (5.1), (5.31), (5.32) and the definition (5.26) of 7;;,, as
well as using assumption (5.4) for y, we deduce that, for all T € [1g, T4):

d
E(tan_1 («/ —Ar(y(r))))

2(1—1Ar?)

< _6—400(1 _ ¢10Co ; ) A
E§r? y ()
1
< —5e VR, (5.33)

Integrating (5.32) over t € [19, T4) and using (5.33) and (5.21), we infer
that, for all T € [0, T4):

1 I
v(y (1)) — v < EeZOCOE—O. (5.34)

In view of (5.34), the definition (5.28) of 7, implies (through a standard con-
tinuity argument) that

T« = Tin. (535)
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Therefore, the estimates (5.29)—(5.34)hold for all T € [, 7;,,). Moreover, the
bound (5.34) and the fact that u < v on Uy, implies that

i = lim (u(y (1)) + v(y (1)) <209 + ezocoEi. (5.36)

=T, 0
The outgoing regime Tt € [ti,, T1). In the case when 1;, < 711 (which is

necessarily the case, for instance, when 71 > 2uvg + ¢20€0 El as a consequence
of (5.36)), the definition (5.26) of 7;,, implies that

r(y (tin)) = e3°C°Ei0 (5.37)

from which we obtain, in view of the bound (5.1) on 9,7 and the boundary
condition r|(;—,; = 0, that

l
v(y (tin)) — u(y (tin)) < €0 — R (5.38)
The bounds (5.34) and (5.38) therefore yield:

I
u(y (tin)) — v < 2e32C"E—0. (5.39)

For any © € [tiy, T1), the analogue of the identity (5.16) after replacing
u1(v) with

B {u(y(m)), v < u(y(tin) + vr,
uz(v) =
v — v, v > u(y(tin)) + vz,

is
log (2%7")(v) — log (2*9") (tin)

vy (™) puly(n) 1 6_m -1
_ / / Q7 - dnTy)dudy (540)
v(y (Tin)) uz(v)

v (log(_ s )(uz(v()/(f))) v(y ()
2

~tog (= )y (), vy ().
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A proof of the instability of AdS

Using the fact that the first term in the right hand side of (5.40) is non-positive
(in view of (5.2)), the bounds (5.14) for %/(1 — 3 Ar?) and (5.18) for *(ti)
imply that, for any t € [7;,, T1):

%y (1) < Q29" (tin) (5.41)
— %Arz)
—Ar?

x exp 3 lo
P { g( (w2 (v(y (7)), v(y (7))

ﬂ) +4C }

—Ar? Ty @) oy (@) 0

5,76 P @) vy @) (1= 5A7) e @) vy @)
Py @), vy @) (1= 3472wy (@), v(y (7))

—log (

Using (5.4) and (5.37), the bound (5.41) yields for any t € [tij, 71):

12
(20 @) @)) By’

1— LAr?
92))14(_[) < 670CO r32

(5.42)

The relation (2.19) implies, in view of (5.14), (5.42) and the fact that d,r < 0,
that, for any 7 € [14,, T1):

1—%Ar2

(u(y @) vy ()

QY (r) = e 130 Eo> e PR, (5.43)

_1a,2
1—zAr
72

(120G @) (1)

The estimates (5.42) and (5.43), combined with (5.1), (5.4) and (5.37), imply
that, for any 7 € [1;,, T1):

T o B v(y (1)) QZ-u _ B
lu(y (0)) — u(y (tin))| =/ V”(f)dr=/ szv(f)dv(y(r))
Tin v(y (Tin))
(5.44)
2 v(y() 1 — LA,2
< eISOCol_ l;m(u (v), v)dv
f— 2 2 2 )
Ey oy T
2
< e160Col_2 1
E2 r(y (tin)
< 6130C0L.
= Eq
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Using (5.37) and (5.44) (as well as (5.1), (5.4) and (5.14)), we can estimate
V(@) puly() |
f / _29 dudv
v(y (tin)) Juz(v) r
/ —292 du dv
{r=r(y (i) In{lu— u()’(‘fm))|<el3060 i } r

150C l /OO 1
<e 00— — dr <
Eo Jr(y ) 1

£120Co

(5.45)

Similarly, in view of (2.48) and (5.2):

v(y(m) puly(n))
/ / Tyydudv (5.46)
v(y (zin)) Juz(v)

viy(@) puly@) 5 m Q2
:/ / v 5 dudv
vy (@) Jus(vy 8T =01

vy() puly(@) g
<e Co / / ——dudv
v(y (Tin)) Jua(v) r?
vy (@) puly@) 45 9. 5
< ¢4 / / 222 qudv
v(y(rm)) u2(v) rr

u(y (o) 3,
[ vy o) du)
w2y I

v(y (@) puly(m) Q2
< eIOCO(SO / / — dudv
v(y (Tin)) Juz(v) r

u(v(y ()
L ™
ww(y @) Ty ()

elSOC()ao‘

Using (5.2), (5.45) and (5.46), we infer from (5.40) that, for any 7 €
[Tin, T1):

log (2°7")(x) — log (2*7") (zin) (5.47)
QZ
> —2¢% 4 (1og (—— ) (1200 (). v(y (1))
2

Q
—— ) @l (@). vy (Ti))) (5.48)

@ Springer



A proof of the instability of AdS

and, therefore, in view of the bounds (5.14) for 2/(1 — %Arz) and (5.29) for
7" (Tin):

QX (1) = Q29 (tin) (5.49)
1 — %Ar2

X exp { — 1300 4 1og (T)

(u2(v(y (), v(y (1))
— 1As2
—zir2 ) W(y (@in)) 0 (y (Tin))) +4CO} =
o et P2y (@), v(y (Tin))
- r2(ua(v(y (1)), v(y (1))
(1= 3A7) 20y (1)), v(¥ (1)) -
(1= 3Ar2) @y (@), vy (Tin)))

The estimate (5.49) implies, in view of (2.19), (5.4), (5.14), (5.21) and the fact
that d,r > 0, that, for any 7 € [1;,, T1):

—log(

Q% (r) < AL~ §2Aﬂ - (5.50)
y(0) Qeyt(t)
eeI4SC()£1 - %AI’Z
- Eo g
o (1= tar)
(1 B %Arz) (u2(v(y (1)), v(y (1)) r? ¥ (Tin)
- eeI4SC0£] — %A(infy r)?
= Eo  (inf, r)?
< ee‘SOCO Eo.

The bounds (5.18), (5.43) and (5.50) therefore imply that, forany t € [7;,, T1):

ePOE) < Q" (1) + Q@) < e

Ey. (5.51)
The estimates we have established so far are sufficient to complete the proof
of Lemma 5.1. In particular:

e Thebound (5.9) follows readily from the bound (5.21) oninf, r, the bounds
(5.34) and (5.44) on the total change of u, v along the intervals [7g, Ti),
[Tin, T1), respectively (in view also of (5.35)), and the bounds (5.38) and
(5.39) on y (7in).

e The energy bound (5.10) follows immediately from (5.31) and (5.51).
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e The estimates (5.12) and (5.13) follow readily from the bounds (5.29),
(5.30) for T € [19, Tin) and the bounds (5.42), (5.43) for t € [1;,, T1), as
well as the fact that, for any T € [1g, 71) such that r(y (7)) < esocoEL, we
can estimate as a consequence of (2.19), (5.14), (5.18), (5.31) and (5.51):

yv Q? 1
oy =P sz e % (5.52)
v r? ly@ (Q2y")3(v)
and
pU _ P2 Q25002 - ,e¥0C0 5.53
= @\W)( y2(r) < (5.53)
O

By applying Lemma 5.1 successively between the points of reflection off
7 of a maximally extended null geodesic y, we obtain the following useful
generalisation of Lemma 5.1:

Corollary 5.2 Let 0 < 59 < 1 be a sufficiently small absolute constant,
and let Uy, and (r, Q2 f) be as in Lemma 5.1, satisfying (5.1) and (5.2)
for some Cy > 100. Let also y, : (ay,by) — Uy, 0 < n < N +1
(for some N € N U {oo} and —o0 < a, < b, < 400 ), be a collection
of future directed, affinely parametrized null geodesics in Uy y;; 1, Q?) with
agp = 0 and y9(0) € {u = 0}, such that vy, is the reflection of y,—1 off Z;
thus, y = U,I:/:OJ/n constitutes an affinely parametrised, maximally extended
geodesic through reflections off Z, in accordance with Definition 2.3 in [43].
Assume that yy satisfies initially the conditions (5.3), (5.6) and

[ _
0 < E—O«/—A < ¢~ 4000+Tv7 ' UDCo, (5.54)

with Eq defined by (5.5). Then, the following statements hold for the maximally
extended geodesic y :

e The curve y = Ufl\;oyn is contained in the region

1 [ roz'Ul

_,400C, - k k

yC {r S =01z U>E_O} n U (V,(\) uvy) NUyiny. (5.55)
k=0

where, setting
vo = v(0(0)).
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A proof of the instability of AdS

the domains V.(\k), V(/,k) are defined for any k € N by
[
v& _ |k . vo + kvr + 300(k+1)Co _*
N vz, Vo V7 e E()
« v0+ka—e3OO(k+l)COL v0+ka+e3OO(k+l)C0L
Ey’ Eo |’
(5.56)
l l
V(k) _ |:U0 + kvr — e300(k+1)Co_’ vo + kvy + e300(k+1)C0_:|

7 Ey Eo
(5.57)

l l
s | vo + kg — 30KHDCo L (k4 1)y + @300kEDC L |
Ey Ey

e Denoting by y the derivative of y with respect to the affine parametrisation
of the y,’s, we can estimate

N By < @2y 47) < " IFT VR (5.58)

e forany0 < u < U, defining n[u] by the condition that y \{u = u} € yu[a,
we can bound at the point y N {u = u}:

ﬁ - ee3°OC0(1+v§'U)£1 — %Arz
V' amiy E§ r? yN{u=ii)
ify N {u =it} € Upen VY, (5.59)
ﬁ _ ee300C0(1+v§lU)£1 — %ArZ
Yl ntu=ay E; 1 YN {u=ii)
ify N {u =it} € UpenV'%. (5.60)

Proof The proof of Corollary (5.2) follows by applying Lemma (5.1) suc-
cessively on the curves y;,, treating the cases n > 1 by considering the limit
where the initial point of y in the statement of Lemma (5.1) is sent to Z and
establishing (as a consequence of (5.10)) the inductive bound

£200C)

e_IOOCOEn—l <E,<e E,—1 (5.61)

for the energy E, = %(QZJ},? + Q%'/,f) |s:_OO of y, at its initial point on Z.
Following this procedure, (5.55) is inferred from (5.9), (5.58) is inferred from
(5.61) and (5.59)—(5.60) are inferred from (5.12)—(5.13), using also that (5.58)
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and (2.19) imply that

2 1 A2 y 2 1 A,2
o~ 0014071 U) - 1—3Ar - pv < 007 Y) 1“1 —3Ar
E(Z) r2 g T E(% r2
—1
in the region U,EUZIO W (Vg) N V(/,k)). We will omit the trivial details. O

6 Construction of the initial data and notation

In this section, we will construct the family of initial data (r/(g), (Q;S))z, f_/(e);

+/ —%n) € B appearing in the statement of Theorem 1. To this end, we will
first introduce a hierarchy of parameters depending on ¢, the precise choice of
which will be crucial for the proof of Theorem 1. We will also introduce some
shorthand notation associated to a few fundamental constructions on the max-

imal future development (u,ﬁfgx; r, Q2, fe) of (r/(g), (Q;g))z, f/(e); \/ —%n).

6.1 The hierarchy of parameters

In this section, we will introduce a set of parameters that will be used in the

construction of the family of initial data (r/(e), (Q;g))z, f/(e); —%n).

We will first introduce the following hierarchy of parameters:

Definition 6.1 Let 0 < &1 <« 1 be a sufficiently small absolute constant. For
any ¢ € (0, 1), we will define the parameters &, p., 0 through the following
hierarchy of relations:

& = exp < — exp(p;w)), (6.1)
Pe = €Xp ( — exp (exp(exp(exp(églo))))),

8¢ = exp < — exp (exp(as_lo))>.

For ¢ € [e1, 1], we will define the parameters &, ps, 0c to be equal to
8¢, Py Og, - TESPECtively.

We will also set

Ne = [p; " exp (exp(s;))1. (6.2)
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A proof of the instability of AdS

Notice that
lim 8, = li = li =1lim —=0 6.3
lim 6 = lim pe = lim o = gfb (6.3)
and, as & — O:
£ K P K8 Ko K 1. (6.4)

Finally, forany ¢ € (0, I]Jandany 0 <i < N,, we will define the parameter
¢ by the recursive relation

el*D =exp (—exp ((¢)7?)),

2O _ (6.5)

Note that, as ¢ — 0:
160 e W) (6.6)

Remark In the rest of the paper, we will frequently use the relation (6.1) in
order to bound an expression involving o, d., ps (appearing usually as an
error term in some estimate) by a simpler one; for instance, (6.1) allows us to
bound

_ 1
exp (exp(e ")) = o2,

We will not always explicitly refer to (6.1) when using such bounds while
passing from one line to the next in a complicated estimate.

6.2 The initial data family

In this section, we will define the initial data family (r(s) (Q(E))2 f (8),

\/ _K”) appearing in the statement of Theorem 1 in terms of the parameters
introduced in the previous section. The construction of the initial data family
will proceed in two steps: We will first obtain a gauge normalised expression
for (r(e) (Q(e))2 f Fe). —%n) (in accordance with Definition 3.2) by suit-

ably prescribing the value of f, ) and using Lemma 3.3, and we will then
obtain a smoothly compatible initial data set through the gauge transformation
provided by Lemma 3.4.
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Let us fix a smooth cut-off function x : R — [0, 1] such that x|[—1,1] =1
and xRr\(—2,2) = 0. The following functions will later be used to define the

initial Vasov field f;*:

Definition 6.2 For any ¢ € (0, 1], where 0 < ¢; < 1 is the constant appear-
ing in Definition 6.1, we will define the following sequence of smooth functions

F(S) [0, —%n] x [0, +oo)2 — [0, +00) forany 0 <i < Ng:

(G -
F (v p, 1) =

(eJ))ZX(MS:w_ USJ)) (P =3) (@ ~4).
6.7)

where

) 3m
vei == +p8128<”< A2 (6.8)

and ¢, pe are defined in terms of ¢ by (6.1) and (6.5).

Remark Note that, for any ¢ <« 1 and any 0 < i < N, direct computation
shows that the functions Fi(g) satisfy

—am 1, ”AdS/Tv(z?dS)[Fi(S)]

Ourads/

AdS
rAdS/T( [ ,-(8)]

—(0urads);

)(v) dv < Ce®. (6.9)

for some absolute constant C > 0, where T(AdS)[F l.(g)] is defined by

+00 400 2 dp
T A F) = _rAdS/(U)/ / QAdS/(U)p> FP vy p, 1) ?ldl’

+oo p4oo Q2 (V)12 d
AdS 14
T(AdS)[F(€)] rAdS/(v)/ / “AdS]T Fi(e)(v; p,l) —ldl
rAdS/(v) p

and raq4s/, QidS/ are given by (3.14). Note, in particular, that Tv(lf‘ds)[Fi(e)]

and T(Ads) [Fi(s)] are of size ~ 1 and supported in an interval of width ~

¢ (—A)~7 centered around Ve,i ~ (—=A)72
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A proof of the instability of AdS

We will define the initial data family (r/(8>, (958))2, f/(g); \/ —%7{) in terms
of Fl.(g) as follows:
Definition 6.3 Let 0 < ¢; <« 1 be the constant appearing in Definition 6.1.

For any ¢ € (0, &1] and any finite sequence of weights {ag,-}f\go € (0,0%)
satisfying the smallness condition

N
> aei < p; o, (6.10)
i =0
we will define
N,
FOW p, )= agF i p.D), (6.11)
i=0

where Fi(g) are given by (6.7). Let also (r;(a), Q//(S), f//(g); ,/—%n) be the
gauge normalised, asymptotically AdS initial data set provided by Lemma 3.3

for F = F® and vz = ,/—37; recall that, according to Lemma 3.3, f//(e) is

related to F®) by
f_//(S)(v; pu’l) — F(S)(v; avr;(s)(v)p”, l) (6.12)

For any ¢ € (0,¢1], we will define (r/(s),Qﬁs),f/(e); ‘/—%n) as the

(unique) smoothly compatible, asymptotically AdS initial data set which is
obtained from the gauge normalised initial data set (r;(g), Q'/(S), f_/'(g); ./ —%n)
through the gauge transformation of Lemma 3.4 (note that the notation

for (r/(g), Q;s), f/(g); 1/—%7‘1’) and (r;(e), Q//<8), f_//(g); 1/—%7‘1’) is inverted in
Lemma 3.4), with ¢ in place of gg in (3.27)—(3.28) (see also Fig. 13).

For ¢ € (g1, 1], we will set
() @2, F = o @2, ), (6.13)

(the precise defintion of the family of initial data away from ¢ = 0 is irrelevant
for us; we will only be interested in the behaviour of the development for &
close to 0).
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Remark The fact that F®) is compactly supported in (0, ,/— %n) x (0, +00)2,
satisfying in particular

FOW: p =0 forve |0, v — 2 | U Lo N 2 )
SV ’ J—A
(Vo)
orl/ e 0, Zﬁ (614)

(see (6.7) and (6.11)), allows us to apply Lemma 3.4 in the statement of
Definition 6.3. In view of the fact that, as a consequence of (3.26), the
gauge transformation provided by Lemma 3.4 is the identity when restricted

tov € [0, vgn, Zf(ﬁ] (which includes the support of F ©) in the v-

variable), the following relations hold between (r(g) Q(E) /) FeE), —37) and

(r’(g) Q/(s) f/(8)9 /_KJT):

£ =Fon ., —%n) x [0, +00)? 6.15)

and

(No)
@) = (17 (@) (w) forv € |:O, ve N, + 2 } :

v—=A
(6.16)
In particular, (6.11) and (6.12) imply that:
Ne
FP@p" =Y aei F (v: 8,7 )p", 1). (6.17)

i=0

The estimates for the initial data family (r/(g), (958))2, f/(g)) stated in the
following lemma are an immediate consequence of the expression (6.7) for

F i(g) and the quantitative bounds provided by Lemmas 3.3 and 3.4:
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Fig. 13 Schematic depiction of the support in the (u, v)-plane of the Vlasov beams emanating
from the initial data at u = 0. The i-th beam in the picture corresponds to f_l.(s), 0<i < Ng,

and contains null geodesics with angular momenta ~ eD(=A)"12 je. proportional to the
width of the beam

Lemma 6.4 There exists some C > 0, such that, for all ¢ € (0, 1), the initial

data set (r(g) (Q(g))2 f (5), +/ —%TE) satisfies:

(&)
dr) T AdS)
sup ‘ VORI )2 ‘(v)
ve(O,En) ) — 30T g5/
(£)y2 2
(€7 Q
‘ 1 / O 1Adsé ‘(U)> < Ce. (6.18)
1= 3A@,7)? — 3ATs)
Furthermore, for anyi = 0, ..., N,, we can estimate on the support of F‘(S)'

(&)
sup Uav(%)‘(vw 3 )‘(0)} CV=A.

ve(0,,/—37)

(sz
U<1 3 (3))2
(6.19)
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Finally, the following estimate holds:

~ (¢)
2m /

(e)
ve©, /-3 T/

sup (6.20)

where nﬁ}a) is defined in terms of r/(e), (Q;s))z, f_/(e) by (2.48), i.e. by the
implicit relation

() (&)\2 1 (8)
" v 2m 1 (V )(T Jow
(5)(”)_2”/0 ((1_ r(s/) _§Ar/(8)) . (s)
/ U
(6)
(&)\2 7 (8)
+4(Q(8))2(/ )2 (T )uv)(v)dv (6.21)

/

Proof In view of (6.13), it suffices to establish (6.18)-(6.20) for ¢ €
(0, &1]. Furthermore, it suffices to establish the bounds (6.18)—(6.20) for the

intermediate, gauge normalised initial data set (r) ©) Q'(S) f e, J=am)
constructed in Definition 6.3. Since (r, ) Q/(S) f Free), —KT[) is related to

(8) Q(s) f (8), NES Krr) by the gauge transformation of Lemma 3.4 with ¢ in
place of 8(),22 the bounds (3.27), (3.28) and (6.9) imply (in view of the relation

ORI O (6.22)

1
LNV W) = 2 (),
@DV 0D = e ®)

between (/”, ) and (", ")) thatif (6.18)~(6.19) hold for (), 2,

f//(e); 1/—Kzr), then they also hold for (r/(g), Q;E), f_/(g); v/ —%”) with 2C in
place of C. The bound (6.20), on the other hand, is gauge invariant.

The bound (6.18) for r;(e) is acorollary of the gauge condition (3.13) relating
Q//(S) to 8vr;(8) and Lemma 3.3 relating (r;(g), Q//(S), f//(g); ,/—%n) to F® (in

particular, the estimate (3.22)), noting that the bound (3.20) for F' () is a direct
consequence of (6.9) (assuming that £1 has been fixed smaller than ¢ in (3.20)).

22 Note that the /-notation for (r(‘g) Q(S) f(‘s), ,/——:1) and (rl(s) Q/(S) f/(s), —%rr) is
inverted in Lemma 3.4.
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We will now proceed to establish that

a(%)wﬂ < CJ=A. (6.23)

sup
ve(0,v7)

Note that, since Q’/(S) and 8vr;(8) are related by the gauge normalising condition
(3.13), the bounds (6.19)—(6.19) for (r;(g), 52//(8)) follow immediately from
(6.23) and (6.18).

The alternative form (3.16) of the gauge condition (3.13) for (r
yields, after differentiating in v:

1(€) Q/(s))

, 9 I";(s) _ (4 I";(s)(T/(s)) . avr;(s) 624
( Y /(8))2)@)_(7{ @) (v))' — A0 .

where, in view of the relation (6.12) between f//(g) and F® and the gauge
condition (3.13) for (., @)

( oF /(5))2

(1)) (v) = 8 w [ FOw e Pia
v (V) = o7 1 e\ 2 v p v p, .
(/ — A, )3) 0 0 P

(6.25)

In view of (6.24) and (6.25), the bound (6.23) follows from the expression
(6.7) for F(e) and the fact that F©) = ZNE F(e)
The bound (6.20) follows readily by applylng Gronwall’s inequality on the
= ()

21
integral relation (6.21) for n;) , using the estimates (6.9) and (6.18). |
ry

The initial data family (r/(e), (Q}e))z, f/(8>) satisfies the following smallness
condition with respect to the initial data norm || - || introduced by Definition
3.14:

Lemma 6.5 There exists some C > 0, such that, for all ¢ € (0, 1), the initial

data set (r(E) (Q;E))z, f_/(e); ,/—%n) satisfies:

3
16 @)%, 77 =5l = Co, (6.26)
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where || - || is defined by (3.59). In particular, as a consequence of (6.3):

= 3
: © (@2 Fe. [
tim 117 (@))% Ff5 [ = Zmll = 0. (6.27)

Proof Since the bound (6.26) is non-trivial only in the limit ¢ — 0, it suffices
to establish it for ¢ € (0, £1].

Let (r;(g), (Q//(g))z, f//(g); \/gn) be the gauge-normalised expression
of (r/(‘s), (Q;‘E))Z, f/(g); J—37), constructed in Definition 6.3. Recall that

@2 O J= 2y and (7 (@)%, 7/~ 2) satisfy (6.15)

and (6.16), i.e. coincide in the support of f/(e) = f//(s).

(AdS)
Forany ¢ € (0,e1]and 0 <i < N,, let us define fg(‘?ds) and [raT—“f]
’ v e,i

in terms of vz = —%n and

Wi p" 0 = FO ;a0 @)p. 1) (6.28)

as in Definition 3.13; we will similarly define f; - in terms

oyr

of ) = f/“) (see (6.15)). Note that the relations (6.12), (6.15) and (6.17)
imply that

(4dS) ;4 [rTaﬂ ](Ads)
€

Ne

S(AdS) = Z e fe(,?dS) (6.29)
i=0
and
[rTaﬂ](AdS) _ %a .[rTalg](AdS) 6.30)
dyr le = o Opr dei '

Note that, in view of (6.14) and (6.16), (6.28) implies that
FO@:pt 1y = F (vs 0 )p*, 1) (6.31)

From the expression (6.7) for Fi(g), the relation (6.31) between fi(g) and
Fi(s), the bound (6.18) for r/(g) and properties of the geodesic flow on AdS
when % & 1 (see the relation A.10 in the Appendix of [43]), it readily follows
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A proof of the instability of AdS

that the support of fs(’?ds) satisfies (for some absolute constant C > 0)

(6.32)

where

@)
AdS) . / &
Vs(,i )ZLJ U_U“_ N

keZ

8(t)
u u—vg,— 2 ) (6.33)

@)
N {I’Ads(u, v)>C! ° }

NEIN

In view of (6.32), using (2.33) (with r 445 in place of r and m gg5 = %Arids

in place of m), as well as the conservation (2.26) of the particle current
f(AdS)] ff(AdS)

andanyO <i<Ng:

/«U*-l-\/iﬂ ([rTvv]g’l )(U*,v)—l— [r?v i|(z,4.dS)(U*’v)) i

we can readily calculate forany ¢ € (0, ¢1],any U, > 0

« av —Ooytde,
U*+ —Kﬂ (AdS)
<c / F (U 0) - Nl £4N (U, v) dv (6.34)
1
< C( sup )/ OridSNv[f;”?dS)]dv
u—=

r
deS)ﬂ{u:U*} AdS

for some absolute constant C > 0. Using the expression (2.32), the explicit
formula (6.7) for F' l.(e) and the bound (6.18) (the latter used in order to estimate

the term Bvr/(g) in the relation (6.31) between Fl.(g) and fs(’?ds) lu=0), we can
readily estimate

@)

2 (AdS) €
ragzsN - dv < C——, 6.35
[ AasNa s an = 5= (635)
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thus obtaining from (6.34) that, for any U, > 0 and any 0 < i < N,:

0o Ty g0 Ty 1449
/ <[ ] o Uy, v) + [ ] W, v)) dv
: Oyr e, —Our e
g 1
_c sup (6.36)

— r ’
v AvéﬁdS)m{u:U*} AdS

For any € € (0, ¢1] and any U, > 0, let us define i.[U,] to be the unique
integer i in [0, N.] for which

3 _1gl=h 3 1 g®
Vei—1+k _X”+,082 < Ui <vi+k _Xn+p82

NEN V—A
(6.37)
for some k € Z, with the convention that
. 3
Ve, —1 = Vg, N, — —Xn (6.38)

and

NCNENGAY

Then, in view of the bound (6.32) for the support of f;fds), the definition

(6.33) of the domains VA*®) (see also Fig. 14), the relation (6.8) defining ve ;

and the relations (6.1) and (6.5) between ¢, p, and £, we infer that, given
any U, > 0, we can bound

. ; _1 . .
lnfvde)m{u:U*} rAds = 08(’)(—1\) 2, fori = i.[Us],

. 1 1 . .
mfvg(f}"s)m{uzu*} raas > py e (=A)"2, forig[Usd <i < N, (6.39)

. _1 . .
mfvg_/?ds)ﬂ{uzu*} rads = c(—A)"2, for0 <i < ig[U4l,

for some absolute constant ¢ > 0. Multiplying (6.36) with a,; and adding the
resulting bounds for 0 < i < N,, we therefore infer using (6.39) (in view also
of (6.30)) and (6.5) that, for any ¢ € (0, 1] and any U, > O:
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A proof of the instability of AdS

Fig. 14 Schematic depiction
of the regions V;‘?ds)
bounding the trajectories of
the geodesics in the support
of £449) foro <i < 2.
The region Vé?ds) has width
proportional to j% The
minimum value of » along
PlAds)
e,i
&)

is also proportional
Nare On the other hand,

the separation of V;f}ds)
from the rest of these regions
when © = 0 is proportional

1 e
&

to

to p

D

Usty/ =27 /0 p Ty, 1(AdS) F Ty 7(AdS)
([52] ™ wew +[ 2] @ w) av
U, Oyr de —0yrde
Ne
< C(s + oA dei + 2(; pgagi)- (6.40)
1=

Similarly, we can estimate for any V, > 0:

/V* ([  Tuu ]mdS) [rT,w](AdS)( v )) J
u, u, u
max{O,V*—‘/—%n} —0yr e * Oyr de "
Ne
< C(e + 0232’& asi + 2(; psasi)- (6.41)
=

Using the expression (2.30), the explicit formula (6.7) for F ©) and the

relation (6.31) between Fl.(e) for f

(6.35)), we can bound

l

(4dS) |u=0 (arguing similarly as for obtaining

e,
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V—=Amglz < C( max ag)e. (6.42)

0<i<N,

Therefore, for any ¢ € (0, 1], the following estimate for the size of

(r/(g), (Q;g))z, f_/(g); \/ —%n) with respect to the norm (3.59) follows readily
by adding (6.40), (6.41) and (6.42) and using (6.1), (6.10) and the assumption
that a.; € (0, op):

N,
_ 3 £
1617, @2 75\ [=2m)ll = € (00 + ) peaer) = Cor. (643)

i=0

In particular, (6.26) holds. m|

6.3 Notational conventions for domains and fundamental computations

For the rest of this paper, we will denote with (u,ﬁfgx; Te, Qg, f¢) the maximal

future development of the initial data set (r/(g), (Qﬁg))z, f/(e); v — %71) (for the

definition of the notion of a maximal future development for (2.36)—(2.41),
see Proposition 3.8). We will also denote with Z, and yz. the conformal infin-
ity and axis, respectively, of (u,ﬁfgx; Te, Qg fe), with corresponding endpoint
parameters uz, € (0, +oo] and u, . € (0, +0oc], defined in accordance with
Definition 3.5. Note that the proof of Theorem 1 will consist of showing that

uz, < +oo.

&

Remark In order to simplify the heavy notation associated with all the param-
eters that will be introduced in the proof of Theorem 1, we will frequently
drop the subscript € in rg, Qg, mg and mg, but not in f,. Therefore, from now

on we will almost always denote (Z/l,(,f(;x; re, Qg fe) as (u,§2x; r, Q2, fe).
For any § € (0, 1] and any ¢ € (0, 1], we will define u;,e € [0, uz,]by

4. _ 2m ©)
ul, = sup {u € [0.uz,) == (u,v) < 8 forall (u,v) € Ui,

with0 < u < ﬁ}. (6.44)

Similarly, we will define for any K > 0 and any ¢ € (0, 1]:

+
dyr —0yr

/u-i- _%n (Tvv[fe] Tuv[fs]
r

ut}(;s = sup IIZ €[0,uz,): sup )(u, v)dv < K

ue(0,u)

(6.45)
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A proof of the instability of AdS

min{v,it} Tyl fe Tyl fe
[ r( [fe] n [fe]

and sup - e
v u

VE(O,ii+/—37)

We will define Z/{;f’)s C u,ifa)x to be the open subset

)(u,v)du < K]

max{0,v— —%7{}

Lll(é)a ={0<u< min{u(‘{g, u%;e}. (6.46)

Note that Z/{I(f’)6 is non-empty if and only if § and K satisfy in terms of the initial
data:

2n~1(8)

sup ( 8/) (W) < (6.47)

ve(0, —%n) r/

and

/ V=i O)
0

<<T;€>>w (T v
/

(v)dv < K. (6.48)
Bvr/(s) —aur/(s) )

As a consequence of (6.27) and Lemma 6.4, given any é € (0, 1) and K > O,
there always exists an g9 € (0, £1] such that (6.47) and (6.48) are satified for

all ¢ € (0, &p) (in particular, it suffices to choose any g9 for which oz, <
min{K, §}).

Remark In the case when Z/{,(f)(S is non-empty, (Z/I,(ﬁ)s; r, Q2, fe) is a future

development of (|, ()2, f{; \/—27) for (2.36)~(2.41) with reflecting
boundary conditions on conformal infinity, in accordance with Definition 3.6.
Note also that

+ _
ul;e = Uz,

as a trivial consequence of (3.47).
Let
0<n«l

be a small absolute constant. For the rest of the paper, we will assume that ng
has been fixed small enough in terms of the absolute constant §y appearing in
the statements of Lemma 5.1 and Proposition 3.11.

The following domains in Z/{,%x will be play a central role in the proof of
Theorem 1:

Definition 6.6 We will define the domains U, 7,7 C U,Sfa) x by
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-2
(&) o
Z/l"' uai;l;no N {Lt < \/ST_A} (649)
and
Tr=u® nfu< oYE—_Z} (6.50)
€ 8 \imo ~—A

where U @1 U (f)l are defined by (6.46).
0g 310 de im0

Remark Note that, since §; < o;,

Let us define

and
+ + o’
. . &
ulZ7] = min {0 ﬂ}
so that
. 3
U ={o<u<ullS N} nf{u<v<u+ XTK (6.51)

[ 3
T {0<u<u[T+]} u<v<u+ ——JT

As an immediate consequence of the extension principle of Proposition 3.11,
we infer the following condition for the boundary of Z/I;r and 7;* in L{,Efgx :

Lemma 6.7 Forany ¢ € (0, &1],
ulF1 < ul7,1] < uz,. (6.52)

In particular, there exists a uy > 0 such that

[0 <u <ulT;1 1+ uo} CU),. (6.53)
Furthermore, in the case when
o
ull’] < —=—, 6.54
4 < = (6.54)
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A proof of the instability of AdS

at least one of the following three conditions hold for the future boundary
{u=ull]1} of U :

) 2im
limsup —(p) = no, (6.55)
p—{u=ult;" ]}

u+ —77'[
lim  sup / (T””[fg] + Tuv[fS])(u,v)dv:ae_l, (6.56)

wsulU] oyt — 0yt

or

)(u, v)du = 08_1.

sup

3 ol —0yr
ve(O,ulll 1+ /=3 7) v !

max{0,v— —3x7

/min{v,u[uj]} Tuoolfel  Tuul fel
r( +
}

(6.57)

Similarly, the same condition holds on {u = u[T;"1} for T,F, with 8 in place
of o in (6.56) and (6.57).

Proof The proof of (6.52) and (6.53) follows immediately by applying Propo-
sition 3.11 to 7., using the fact that

2m
sup — =< 1o
v T

(following from (6.44) and the definition of ’Z:r), as well as the fact that the
initial Vlasov field f/(g) (introduced in Definition 6.3) is compactly supported
in phase space.

In order to establish that at least one of the relations 6.55-6.57 hold for
L{j , we will assume, for the sake of contradiction, that there exists a (possibly
small)d > 0

. 2m
limsup —(p) < no— 24, (6.58)
p—lu=ulti ) "

u+ —fzr
lim sup / r(Tvv[fe] + Tuv[fg])(u, v)dv < agl )

u—ulti] u oyt — 0yt

(6.59)
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and

min{v, U1} Tyl fe Tuul fe
/ r( [fe] n [fe]

{0,v— 7%71} dyr —0yr

)(u,v)du < a;l — 4.

ve(0,u ZAS +/— rr)

(6.60)

Then, we readily infer by continuity (using (6.53) and the fact that }’2T,4U and
m extend continuously on Z;) that there exists some 0 < u; < Ut

such that

F

2m 1)
sup — () <mno — X (6.61)
{0<u<u[L{§L]+u6}

u+ *77‘[
sup / r<Tvv[fe] + Tuv[fs])(u, v)dv < 08—1 _ é
1

{0<”<”[u€+]+”6 dyr —oyr )
(6.62)
and
min{v,u[uj]-i-ub} T T
sup / . r( u;[fs] + uua[fg])(u’ v) du
ve(O,u[Z/{j]_t-u;)_'_En) max{0,v—,/—x 7} 1A W
1)

<o -y (6.63)

Then, in view of the definition (6.46) and (6.49) of Z/l (5) o and Z/{;L , as well as
assumption (6.54), the bounds (6.61)—(6.63) imply that

{0 <u < ulll1+upy cUt,

which is a contradiction, in view of (6.51). Therefore, 6.55-6.57 hold for L{j .
The proof of the analogous relations for 7, follows in exactly the same way.
O

Forany e € (0, 1]andany 0 <i < N, we will define f;; to be the solution
of the Vlasov equation (2.40) on (L{,Efgx; r, 2) satisfying at u = 0:

2

r2(0, v) >’
(6.64)

Fei 0,05 p*, pts 1y = F (v 9 p, 1) - 8(220, 0)p"p* —
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A proof of the instability of AdS

where Fl.(e) is given by (6.7) for ¢ € (0, &1], and Fi(s) = Fl.(gl) for e € (1, 1].
Note that, as a consequence of (6.17), the total Vlasov field f. is expressed as

Ne
fe= Zaei < i (6.65)
i=0

We will also define the functions f., f; on the phase space over Z/l,%x,
associated to the Vlasov distributions f., f;, respectively, as in Sect. 2.3,
i.e. by the relation

_ 12
feiCu,v; p*, p¥, 1) = fei(u,v; p*, p¥, 1) - 8(9219”17” — r—2> (6.66)

and similarly for f;, f. in place of f.;, f;. Note that the relation 6.66 uniquely

determines f;; only on the shell {92 p'p’ = i—zz} see Sect. 2.3. As a conse-

quence of the Vlasov equation for (2.40), the functions f,; and f. are conserved

along the integral curves of (2.20); since [ is a constant of motion for (2.20),

we can estimate using the explicit formula (6.7) for Fi(s) and the bound (6.18)
(8.

for Bvr/ :
+oo
sup fsi(u,v;p“,p”,l)lgzpupv:g ldl  (6.67)
(.v) Elhppae, p.p* €(0,400) 7 0 e
+o0
= sup Fi(s)(v; E)vr/(g)p”, Dldl <
ve(0,,/—27), p*e(0,+00) 0

< 16.

In view of the formula (6.7) for Fi(g) , the bound (6.18) for avr/(s) and the form
(6.17) of the initial Vlasov distribution f/(g) , we infer that the total renormalised

Hawking mass |z, of (u,Efgx; r, Q2, fe) at Z, (which is conserved, in view of
the reflecting boundary condition on 7; see (2.59)) satisfies

Ne
V=RAiilz, ~ ) acie, (6.68)
i=0

where the constants implicit in the ~ notation in (6.68) are independent of &
and {aai}fvéo. In particular, in view of (6.5) and the assumption a;; € [0, 0;):

V= Az, < oge. (6.69)
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As an immediate consequence of the definition (6.44) and (6.45) of uno .

and ua_1 " respectively, and the definition (6.49) of 1", we can bound for any
e € (Of 8; ]:

2m
sup — < no, (6.70)
ut ’
T, T,
SuP/ r( vv[fa] + U[f€]>(U, v) dv 6.71)
U>0J{u=U}nu;" Oyr —0yr
T, T,
—i—sup/ r( uvl fe] 4 uu[fe]>(u’v)du 5205_1
V>0 {v=V )i dpr — 0yt
and
sup(u + v) < 2 24 37r (6.72)
u o ——T. .
rAREC LI O

In particular, integrating the constraint equations (2.45) and (2.45) along lines
of the form v = const and u = const, respectively, using also the boundary
conditions (3.36) and (3.37) for d,r, d,r on Z and yz,, we can estimate for

any ¢ € (0, g1]
)]+ e ()

sup (‘ log<

< (sup v=Au + v)) . (sup/ r Tl 12 (u,v)du (6.73)
ur {v=0)nu4"

>0 —8,,,7‘

+ sup/ fs )dv)
>0 {u:ﬁ}mm 3vr

| 8vr/(8)
R L G vyl
R NGIE

vel0,/—37)

< 5o,

where, in passing from the second to the third line in (6.73), we made use of
(6.71), (6.72) and Lemma 6.4. Notice that (6.73) implies, in particular, that
e % v —u) <r(u,v) <e%*(v—u) on U (6.74)
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A proof of the instability of AdS

Similarly, the (6.50) of 7 yields for any & € (0, &1]:
&

iy
sup il =< 1o, (6.75)
A
Toolfe]l  Tuwlfel
su r + (U,v)dv (6.76)
Uz% f{u:U}m;+ ( dpr — 0y )

T, T,
+ sup/ r( wvl fel 4 uu[f£]>(u’ Vydu < 285_1,
v>0Jw=v)nT:* Oyr —yr

3
o2+ — 7 (6.77)

sup(u +v) <

2
7;+ A/ —A

and, in analogy to (6.73):

9 )
sup (‘ log (—25 )| + | 1og (=5 )D < 5072571 <872, (6.78)
R -z

6.4 Notational conventions for the beams and their intersection regions

In this Section we will introduce some shorthand notation for regions of the

(u, v)-plane which, when intersected with the domain Z/{,(,fg » of the maximal

future development of (r/(g), (Q;g))z, f/(g); \/ —%T[), will contain the support

of the Vlasov beams emanating from the initial data on u = 0.
Using the shorthand notation

3
o = v + n,/—Xn, (6.79)

(@)
-6 &
hei = e’

D

@)

. 4 &
i =exp( —exp(o —_—
Be.i P( p(o, )) =

we will define the following “narrow” sets for any n € N, any ¢ € (0, 1] and
any integer 0 < i < Ng:

V= (v uvm), (6.80)
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where (Fig. 15)

| /\

V—Uu

A
|

’

(n) - (n)
Vi {\

< e} 0 {Be

< hs,i} N {ﬁg,i

> w| > w
S

IA

N
—_

We will also set

Vi = UneNVi(n) .

(6.81)

Remark As a consequence of the formula (6.7) for F i(g), the definition (6.64)

of f; in terms of Fi(g), the properties of the geodesic flow on AdS spacetime
(see the relation A.10 in the Appendix of [43]) and the Cauchy stability state-
ment 3.15 for (2.36)—(2.41), we readily infer that there exists some C, > 0 with

Ce 20 o0 such that the Vlasov beam corresponding to f; is supported in

Fig. 15 Schematic depiction
of the domains Vl(,n\) and

Vi(;), for some ¢ > 0 and

some 0 < i < Ng. For the
definition of vé"l), hg ; and
ag i, see the relation (6 79)

rag
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A proof of the instability of AdS

R(n) < I

Yz

)z

Fig. 16 Schematic depiction of the intersection domains Rl("]), Rl(";z and Rl("% fori > j

V; in the retarded time interval 0 < u < Cg, i.e.

supp(frnfosu<c)clune Yy nu@)  ©s2
neN

In Sect. 7.1, we will establish a quantitative refinement of (6.82) (see Lemma
7.1) (Fig. 16).

We will also define the intersection regions Rl("]) for any n € N and any
integers 0 < i # j < N, as follows:

w . YoV i,

R SN (6.83)
; 1 o . .
" Vl-(,”\+ ) ﬂVj(.g, ifi < j.
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The self-intersection regions Rl(”; - and Rl(n% will be defined for any n € N
andany 0 <i < N; as

R =V av®n {v —u> ﬂg,,-} (6.84)
and
3
(n) - y,(n+1) (n) >
RY =V ﬂVi/,ﬂ{v—uf,/—An}. (6.85)

Remark Note that the domains Rl(nj), anﬁ " and Rl(”% can be also expressed as

[0 = he o o)+ he 1 x W) — e, ol +hedd, i > ),

R =15 ) 1) ! )
/ i e
i [v;j —he j, v;j +he 1 x (v = he i, v;i +he;l, ifi < j,
(6.86)
R =) = heio o)+ heil x L) = heio o)+ heil 0 v —u = B}
(6.87)

and

1 1
REY =0 = heis v} + heil x D = e i o050 4 he i)

ﬂ{v—us,/—%n}. (6.88)

For any point p = (u, v) € u,ﬁfg +» we will define the pair of crooked lines
¢ Ipland ¢ ~[p] as follows (Fig. 17):

. _ 3 _ 3 ¢
et = ([v=5-k/-2rfUlu=5— &+ 0/~ 2x}) N,

keN
(6.89)
and
¢l = U ({u =u —k,/—in} Ulv=u —k,/—in}> NUe)
/ A A max-*
keN
(6.90)

Among other things, the intersection of those lines with {# = 0} will help us
detect the portion of the initial data that will mainly contribute to estimates
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A proof of the instability of AdS

Cr [p]<—

Fig. 17 Schematic depiction of the crooked lines ¢x [p] and ¢ [p] emanating from a point

p € u,(,f,ix. The distance functions dists [p] and dist [ p] are defined as the infimum of the
distance from the axis (measured by v — u) of the points on the intersection of the union of the

beams Vi(") with ¢ _[p] and ¢ ~[p], respectively

involving quantities in a neighborhood of a point p, as well as keep track of the
interactions of the Vlasov beams arriving at p with the rest of the Vlasov beams
emanating from the intitial data. We will also define the following functions

on Z/{,Efg "

distx [p] = inf (v —u) (6.91)
ex 1N (Unen U2, 1)

@ Springer



G. Moschidis

and
dist [p] = inf (v —u). (6.92)
PN (e V™)
Remark Notice that, if p € UneNV,\, then
dists [p] = Be,i- (6.93)
Similarly, if p € UnENVi(Q
dist A[p] = Be,i. (6.94)

Foranyn € N, any ¢ € (0, £1] and any integers 0 < i, j < Ng,i # j, such
that Rl(nj) - Z/{,(,fgx, we will introduce the following quantities related to the

energy content of V(") Vj("/), before and after their intersection with the region

(n)
Ri;j
&l )[n'z jl
N e (n) _hs Js U;Z) +he i) —meg v;nj) _hé‘,js vg? _hs,i), ifi > j,
- 1 ~ 1 o ,
e (000 g 5 ) () A5 ).t <
(6.95)
S(H[n i)l
B mg< ()—I—hs] vgll-)—l—h&, — Mg vgl;—khg,j, v‘gn he i), ifi > j,
mg< (n )+h£ s vgl;rl)—f—h )_mg(v(}j}"—hgl, vglf]) —hg ), ifi <j
(6.96)
and
5(/7)[11,1,]]
. nag(vg’; —he . 0" — hs,,) —mg( " e 0 —hg,-), ifi> j,
= 1 1 e
mg(”énj) — heg J» U.ET— ) — he,i ) ms( o )+h8 Je §n1+ ) —h“), ifi <j,
(6.97)
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A proof of the instability of AdS

5(;)[;” jl

ms(()—he/’ o™ 4, )_m€<v(>+h8]’

€l
= 1 1 e
m£< in]) _h8,17 gll'-i_)‘f'ha,l) _mg( n )+hgj U(n+ )+h5’j), if i < 7],
(6.98)

(n

é‘

)+h8i), ifi > j,

For any n € N, any ¢ € (0, 1] and any integer 0 < i < N, such that

Rl(")iz Z/{,(,fa)x and RI("I) - u,fa)x, we will define, respectively,

Eyzlns i1 = (o) = hei o) +hei) =0, (6.99)
and

é‘l

Erln; il = iz, —m( M hg g, 0D —hg,,->. (6.100)

Remark Wheni > j,the quantity 8,(\_ ) [7; i, j] measures the energy content of
the ingoing beam Vi(,"\) right before entering the region Rl("j), while 5.(\+ ) [n;1, j]
measures the energy content of V(") right after leaving Rl(nj) (when i < j,
the same holds after replacing V( ) with V("+1)) Similarly, 8(/_)[11; i, j]and
Sg) [n; i, j] measure the energy content of the outgoing beam V]('g right before

and right after, respectively, R(") Finally, £, - [n; i] measures the energy con-

(n)

tent of V( ") measured at the region R;._, while &z[n; i] measures the energy

content of Vi( ") at the region Rl( % For a schematic depiction of the definition
of the above quantities, see Fig. 18.

For any n € N, any ¢ € (0, 1] and any integers 0 < i, j < N, such
thati > 0 or j > 0, we will introduce the following quantities measuring the
separation of two successive beams of matter (defined when the corresponding

regions of integration lie in the domain Z/{,(,fg x N {27’" < 1}):

7
Q) -3

. +1h51 e
Ve = (0 Mo~ (v("):l:hgj,v)dv ifi > j,

o +<p£8+1>hs, o

+ R
@r(\)['ﬁ i, jl=
v(”ﬂ_l)—(psg'i'])hs’i_l dyr

c, I_Zﬂ@y; +hejov)dv, ifi <,
;n,Jrl])"‘(ps 8+1)h8.i71 "

(6.101)
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Fig. 18 The quantities &g\i ) [n;i, j]and 5(;) [n; i, j] measure the energy content of the beams

Vl.(,n\) (with n + 1 in place of n when i < j) and V]("/), right before and right after intersecting

the region Rl(n])
(well-defined when i > 0) and

_7
o= (pe S+ Dhe i
(n)

e, j—
() _
&J

(n)
e, j—1

) + *% 1_8251 (lt, Lgli) + ”s,i)du, ifi > j’
1 n 7] = v (pa +1)h€.- r -
(/')[ 3 L J] 1 7 Jj—1

v —(pe S +1he j1

=00 (4, "D L h ) du, i i <

_2m

_1
v (e S+ DR jo T

(6.102)

(well-defined when j > 0) (Fig. 19).

Remark Notice that, when @ <« 1and —&r dur

_8 .
in the case
—%Arz’ 1—%Ar2 L e

when i = j we have

1
”Dr(i)[n; i,i] ~ max
N R®  —1Ar

i—1;i

(6.103)
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A proof of the instability of AdS

Fig.19 Inthe figure above, we present a schematic depiction of the configuration of neighboring
beams wheni # j, using the shorthand notation i_zg, k= ,06_ 8 he k- The quantities Dr(;) [n;i, j]

and Dr(;) [n; i, j] measure the geometric separation of the beams V;n) and V" right before

/ =1/
and right after their intersection with Vl.(,"\) (or Vi(,r'\+l), when i < j), respectively. Similarly,
(. s (SoIPr ; (n) (n) (n+1)
’Dr,\ [n; i, j] and @r\ [n; i, j] measure the separation of Vi'\ and Vz‘—l'\ (or VI-\ and

V}ZT,Q, when i < j) right before and right after their intersection with VJ(.") , respectively

and
rPln: i, j1~ min r. (6.104)
RM
ii—1
Finally, setting
3 G
o=t L (6.105)

N oy e®
i =exp( —exp(§. ")) —,
:Bé‘,l p ( p( & )) \/j
(noting that fzg, i ,BNS,,- are defined like A ;, B;.;, albeit with §. in place of o),
we will define V", VI and V") by (6.80)~(6.81) with f;, fi ; in place of
hs,h :38,1', ie.

P = (TR v, (6.106)

1
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i fpsv-us [22) @)
=< 58,1'} N {Bs,i Sv—u= En}

Similarly, we will define R("), R{") . R{"Y, EF[nsi, jl, EF'ns i, j1,
Dr i, j1 and DrP[n:i. j] by (6.86). (6.87), (6.88), (6.95)~(6.96),
(6.97)—(6.98), (6.101) and (6.102), respectively (i.e. using the same definitions
asforVi("),Rg?},Eg)[n; i j],S(/j,E)[n; i j],@r,(\i)[n; i j]and@rg)[n; i, jD,

with fzg,i, ,8~g,,~ in place of hg i, Be.i-

Hn) - (n)
Vi\ = HU — Ve

() (n)
Via= {‘” Vg

Remark Note that Vl.(”) C ﬁ}”’, and similarly for Vi((), Vl.(?, and l7i(,n\), 91-(;),.

7 First steps for the proof of Theorem 1: beam interactions and energy
concentration

This section will constitute the technical core of the proof of Theorem 1.
First, in Sect. 7.1, we will obtain estimates controlling the geodesics in the
support of the components f,; constituting the total Vlasov field f. (see the
relation (6.65)) in the regions Z/lj , T;‘ C L{,(,fa)x, showing that the supports of
the f¢;’s form a configuration of intersecting beams in physical space. Then, in
Sects. 7.2-7.4, we will proceed to establish refined estimates for the exchange
of energy occuring at the intersection of any two of those beams, as well as for
the change in the geometric separation of the beams over time; these bounds
will be used in Sects. 8-9 to show that, provided the initial data parameters
ag;i in (6.17) are chosen appropriately, the total energy of f. is eventually
concentrated in regions of sufficiently small scale in phase space, resulting in
the formation of a trapped sphere.

7.1 Control of the Vlasov beams and the spacetime geometry away
from the trapped region

The following lemma will allow us to control the support of the Vlasov beams
fei in the regions U and 7," introduced in Sect. 6.3.

Lemma 7.1 For any ¢ € (0,¢1] and any 0 < i < Ng, the support of the
Viasov field fej = fei(u, v; p*, p¥, 1) on U] satisfies

supp(fei) N {(u, V) € Z/{j} C {(u, v) € V,'}

N|exp-0,%) = (" + ) sexp (exp; )| 0D
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A proof of the instability of AdS

where the regions V; = U, Vi(") in the (u, v)-plane are defined by (6.80). Fur-
thermore, if y C U is a future directed, affinely parametrised null geodesic
in the support of fe; which is maximally extended through reflections off T (see
Definition 2.3 in [43], or Corollary 5.2) and p is any point on y, then:

v 1—1Ar?

Y - .
—| < exp(exploy )P —— ‘ ifpe U,,GNV[(,"\) (7.2)
voip r p
and
. 14,2
ph _ 1 —3Ar )
S|, sew (oo P3| etV 03)

where [ is the angular momentum of y .
Similarly, on I", the support of fe; satisfies

supp(fo) 0 {(,v) € T}  {,v) € Wi

m{ exp(—8-6) < Q2(p" + p¥) < exp (exp(ag“))}, (7.4)

Furthermore, if vy C 1.7 is a future directed, affinely parametrised null
geodesic in the support of fe; which is maximally extended through reflec-
tions and p is any point on y, then (7.2)—(7.3) hold with . in place of 0.

Remark Thebound (7.1) implies that the domains V; (or )N/i, in the case of (7.4))
strictly contain the Vlasov beams ¢; appearing in the discussion of Sect. 1.2.

Proof The proof of Lemma (7.1) will be a simple consequence of Corol-
lary 5.2. In particular, let y C U is a future directed, affinely parametrised
null geodesic in the support of f;; which is maximally extended through reflec-
tions. Setting

Co = 50,73, (7.5)
3
vy = —XT[ (7.6)
and
U =supu, (7.7)
ut

we readily observe the following:
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e Using the definition (6.49) of U", we can readily bound

U=<—“——. (7.8)

e The bound (5.2) holds on Z/{j = Uy vz, in view of (6.70) (using also the
assumption that ng < §p). Moreover, the bound (5.1) follows from (7.8)
and the estimate (6.73), assuming that &1 has been fixed small enough.

e As a consequence of the expression (6.7) for F i(g) and the relation (6.64)
between Fi(g) and f; (using also the bound (6.18) for E)vr/(g) in (6.64)), we

can estimate for the angular momentum / and the initial energy Eg of y
(defined by (5.5)) that

Lo < VTR < 1060

10
and
1
— < E¢ <10,
10
as well as
°, U
J,/— <1
yHilu=0

Therefore, y satisfies the conditions (5.3), (5.6) and (5.54).

Hence, the conditions of Corollary 5.2 are satisfied for y, provided ¢ is
chosen smaller than some absolute constant. As a result, (7.1) follows readily
from (5.55) and (5.58), while (7.2) and (7.3) follow from 5.59-5.60.

The corresponding statements for y C 7,7 follow by exactly the same
arguments, after replacing o, with §, in (7.5) and using (6.78) in place of
(6.73). O

The following Lemma will allow us to control various quantities related to
the geometry of (Z/l;r ., 22) and (7?; r, 22), some of which are of higher
regularity than that controlled by the norm 3.60. Effective control on such
quantities will be obtained through the quantitative estimates provided by
Lemma 7.1 on the support of the Vlasov fields f;.

Lemma 7.2 Forany e € (0, e1] and any 0 < i < N, the following estimate
holds on U :

Q2
‘log <+)‘ < 100,73, (7.9)
1— tAr?
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A proof of the instability of AdS

while the following estimates hold in the regions UkeNVl.(k) NU;:

£

inf r>exp(—_2exp(o,h)—, 7.10
Jnf 7z p(=2exp(0, ) = (7.10)
r2 Tyl feil(u, v) < exp (exp(o; ™)), and
P Tl fei) 0, v) < exp (exp(0, %) S5 (= A) 2, if (. v) € Upern VY,
r2 Tl feil(u, v) < exp (exp(o; ), and 7.11)
PTol feil, v) < exp (expQ0; %) S (=M 2, if (u,v) € UV,
and
L5y (eD)? _
P2 Tl feil(w, v) < exp (exp(o, 7)) - m——(=A)"".  (7.12)
r*(u, v)
Furthermore, we can estimate
QZ
sup |dists [(u, v)] -8y log (—— ), v)| (7.13)
R I —3Ar
QZ
+ sup |dist A[(u, v)]- 9y log <T>(u, v)| < exp (exp(ag_s))
(u,v)eUy 1 —3Ar
and
. Oy1
( S;lfw dists [(u, v)] - 8v(m)(u, v)‘ (7.14)
u,v A
. o -5
+  sup . dist A[(u, v)] - au(w)(u, v)‘ < exp (exp(o, 7)),
(u,v)eU, -3

where the functions dist [-] and dist »[-] are defined by (6.91) and (6.92).
Moreover, foranyn € Nand 0 < i, j < N, i # j, such that Rl(nj) C L{(g),

the following estimates hold on Rf"j) depending on whetheri > jori < j:

e [nthe casei > j,

V= Arlgm

exp(—0; Ny S 5t < explo; ey (7.15)
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and

(7.16)

e [nthe casei < j,
exp(—as )pem =< _Ar|Rl§(tj) = exp(og )peg(_l-) (7.17)
and

1 1 .
sup — — inf — < exp(o, )vV/—Ae®. (7.18)
wr R
Ri;j i
Replacing UQ‘ with Tj, the estimates (7.9)—(7.18) still hold with §. in place
of o, P in place of Vi(n) and ﬁl(nl) in place of Rl("/)

1

Remark Note that, in view of the relations (6.93) and (6.94), the estimates
(7.13) and (7.14) yield, as a special case, that, for any 0 < i < N,:

Q? o2
sup 0y log (ﬁ) ‘ + sup o, log (T) ‘
Uken ViR e I=34r UkenV, i 1 —3Ar
_sV—A
< exp (2exp(o; 7)) ~5- (7.19)
and
9 Oyr N , 31
sup v<+)‘ sup ”(f))
UkenVin it =AW — 3472
_sn VA
< exp (2exp(o; 5))—g(i) (7.20)

Notice that the left hand sides of (7.19) and (7.20) are not estimated by the low
regularity norm (3.60). This loss of regularity is reflected in the fact that the
right hand sides of (7.19) and (7.20) can not be bounded merely by terms of
the form (exp(exp(ae_c)), but have additional (¢))~! terms which, in these
cases, are optimal.

Proof Lete € (0,e1]andlet0 < i < N,. In view of the formula (2.9) and the
bound (6.70) for 2m/r, the estimate (6.73) readily implies (7.9).
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A proof of the instability of AdS

Using the fact that

NG

i)rjlf(v —u) = exp ( - exp(og_4))

i

]

(following from the definition of (6.81)V, V"), the lower bound (7.10) for
r follows readily after integrating (9, — 9, )r in d,, — 9, starting from yz, and
using the bound (6.73).

The estimates (7.11) and (7.12) for T}, [ f¢; ] follow readily from the explicit
formulas (2.30) for 7, [ fe: ], the estimates (7.1) and (7.2)—(7.3) for the support

of fe; in p*, pY, the fact that f; is supported on {2 < lg < 6} (in view of
(6.7) and (6.64)), the bound (6.67), and the bounds (6.73), (7.9).

For any (i, v) € U], integrating the renormalised equation (2.57) for
in u along ¢x [(i#, v)] and in v along ¢ [ (i, v)] (see (6.89) and (6.90) for
the definition of ¢x [-] and ¢ ~[-]), making use of the boundary conditions

(3.38)—(3.39) for Q2 at yz, Z,, we infer that:

2

3, log <1_Qw)(ﬁ, 5)‘ (7.21)
3

</ (_(ileAArz—l). Q?
ed@o] NN 3 T — AP 1= SAr?
1_ 1 2
- 16n1—§Az L 2Tl fe])) d(u + )
3

(958))2
(1 — 1A () 2)‘ _
A7) u=0)nex [G1.9)]

and

2

<1_Qf§mz)(ﬁ’ )| (7.22)

<L G385
“Joqain Nr\r2 3 1= 1a2) 1 IAs2
1 2
1—%[\7’27'2 uvlJe

(Q(e))z
(o)

+

{u=0}N¢ ~[(u,v)]
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Making use of the following:

e The bounds (6.70) and (6.72) for 2m/r and ~/—A(u + v) (the latter
estimating the number of straight segments contained in ¢ [(#, v)] and

¢, v)]), .
e The bounds (6.73) and (7.9) for liavr Wr__ and —S

TAr27 1-1Ar2 1-3Ar2
e The bound

1 3v

2Tl fe] < avm and r’T,[ fo] < e

]_2 ( a,m) (7.23)

(following from (2.49)—(2.48))

e The fact that the support of m|¢. [(i,5)1> Tpuv |¢x [(i,5)) 1s contained in {v—u >
distx [(u, v)]} (and similarly for ¢ ~[ (i, v)]),

o The trivial estimates

sup / (avr) dv (7.24)
O<di<a J{u=uyn{v—u>dist [ (i, oy r
1
+ Sup / _( 8 r) du < e ‘f
0<b<v J (v=0)N{v—uzdist [(i,0)]} I dtst\[(u,v)]
and
sup / (8 r)dv (7.25)
O<d<a J{u=iyN{v—u=>dist »[(ii, DI
1
+ SUP/ _( 81")du<€ 'f
0<t<v J{fv=0)N{v—u>dist [ (i, o 2 dist A[(u, v)]
(following from (6.73)),
Q©)y2
e The initial data estimates (6.18) and (6.19) for 9, log (%),
we infer from (7.21)—(7.22) that
( i )(' ')‘< 20 : +CV=A (126)
— s ), v)| et T/ ———— — .
1—1Ar2 dist= [(it, V)]

and

Q? po— 1
(ﬁ)(ﬁ, ﬁ)‘ <e% —— +CV/—A. (1.27)
1— §Ar

dist 5[(u, v)]

The bound (7.13) follows readily from (7.26)—(7.27).
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A proof of the instability of AdS

The constraint equations (2.39) and (2.38) imply that

dyr Q? d,r v 1,
3(7)2810( ) _ = 2Tl fe]
N -2 Vo 1—1ar2) 1-Iarz 1 da2r 77 e

(7.28)
and
dur Q2 dur 47 1
au —_— =8ul . “ - - 2Tuu el
(1—§Ar2> °g<1—§1\r2) 1— A2 1—fAr2r rTulfel
(7.29)

The estimate (7. 14) is obtained readily from the relations (7.28)—(7.29), the
bound (7.13) for 5, the bound (6.73) for 5, the bounds (7.11) for

fei, the fact that T,w[ fg] is supported only on U; _OV and the trivial estimate

sup (max{dist\[(u, V)], dist 5[(u, v)]})
u
(1,0) €U enUNE V) ru, v)
- e08_4 sup (max{dist\[(u, V)], dist 5[(u, v)]}> < 6%-4
vV—u

N,
(u,v) EUHGNU,':S()V,'(")

(following from the bound (6.74) and the definition (6.91), (6.92) of dist~ [-],
dist 4[-]).

Finally, letn € Nand 0 < i, j < N, i # j, be such that Rl("j) C Mf). In
view of the form (6.86) of RZ("J), we infer the following:

e Inthecasei > j, integrating (3, — d,)r in 9, — 9, from (&2, 15L) € yz,
up to (u,v) € R;"}, using the bound (6.73) and the formulas (6.8) and
(6.79) for v;  and v}, we obtain (7.15) and (7.16).

e Inthe case i < j, arguing similarly but integrating (d,, — Bu)% in 0y — 0y
from (452 — J./= 37, #4¥ + 5/~ 37) € To up to (u,v) € Ryl we

A
obtain (7.17) and (7.18).

The proof of the analogous estimates for 7" in place of " (with &, 9(")
R( j) replacing o, V(”) R(")) follows in exactly the same way, using (6.78)

1

in place of (6.73). a
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7.2 Interaction of the Vlasov beams: energy exchange and
concentration

In this section, we will establish a number of results providing quantitative
bounds on the change of the energy content (as measured by (6.95)—(6.98))
and the geometric separation (as measured by (6.101)—(6.102)) of the beams
Vi("), before and after their pairwise intersections. As a corollary of these
technical bounds, we will be able to estimate the total change of the energy
content and the separation of the beams after each successive reflection off Z,
in the next section (see Proposition 7.6).

The next result provides an estimate for the change of the energy content of
the beams V"), and Vl-(") (or Vl.("H), if i < j)before and after their intersection
(recall the definition (6.1) of the hierarchy of parameters p., 8¢, 0¢).

Proposition 7.3 Let ¢ € (0,e1] and letn € Nand 0 < i, j < N, i # j, be
such that

R U
Let us also define
Fpii,j = inf r. (7.30)
R(n)

i
Then the following relations hold for the change of the energy of the two Vlasov
beams entering and leaving the intersection region Rl(nj) :
e Ifi > j, then
S T (e . . 25(/_)[”§i,ﬂ
E i, jl=&E"nii, j]-exp (—

Tnii,j

3
+0(0d))
N0
J=A

3 oD
EPMnsi, j1= Qi j1- (14 0()) + O(pg £ ) (7.32)

n 0<p§ ) (7.31)

]

o Ifi < j, then

()

EDnsi, j1= s i j1- (14 0(e)) + 0(8M>, (7.33)
()
EPtnsi, j1=£Cni, j1- (14 0@) + 0(e jq) (7.34)
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In the case when ﬁl(nj) C 7?, the relations (7.31)—(7.34) also hold for
EX s i, 1, EPMnsd, jlin place of € [ns i, j1, €53, j1
Proof For the purpose of simplifying the expressions appearing in the proof
of Proposition 7.3, let us introduce the shorthand notation

(n) P .
(+) v, T he, ifi > j,

v = , 7.35
ni, j v(""i-l) +h e ifi < j, ( )
(B (n)

W) =" (7.36)

Note that, with this notation,

(n) =), =
Ri;j [u nyi,j’ nl]] x [v ,i,j’vn;i,j]'
Let us introduce the following energy densities: On {v( ) i Sv=wv r(:)j}
we will set
1= 2m
Ex[n;i, j1 =2 r? - asi Tl fril, (7.37)
v
: (=) (+) :
while on {u, . jSus un;i’j} we will set
_2m
EAln; i, j1 =20 ——r% - ae Tuul £ (7.38)
—Vu

We will also define the following energy-related quantities by integrating
Ex [n;i, jland E A[n; i, j]indirections transverse to the corresponding index

arrow: On {v}gfi) j <v< vr(;;) j}’ we will define
v
enmi i = [ B jwods,  139)
Unsi, j
while on {u;,_l.) jSus uﬁi) j} we will define
u
Elnsi, jl(u, v) i/(_) E Aln; i, j1(u, v) di. (7.40)
un;i,j

In view of the fact that, among all the f¢¢’s, only f; and f;; are supported
on Rl("j), the expression (6.65) for f, implies that

T,uv[fe]lR{”} = dgi Tuv[fsi“R{n} + aj Tuv[fsj]lR{")- (7.41)
) 3] 3y
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Notice that, in view of the fact that T}, [ f¢;] and T}, [ f¢;] are supported on
(*)

V; and V;, respectively (and hence vanish to infinite order on v = v nii,j and
u = u,(fl.) It respectively), the relation (7.41) implies (in view of the relations

(2.49)—(2.48) for m, the definition (7.37)—(7.38) of Ex_, E » and the bounds
(6.73) and (7.12) on or, T,,,,) that:

i, vy ) = )
)

= & [n: i, jlu, vy ) ul

DA (’Ettf"l}\(u), foranyu & [u, ; ;. u,; ;1.

(7.42)
=)

i, j’

+)

nii,jo V)

= EAn:i, 1’ ) f

=&l i, jl(u,.; 50 v) + €ry (), forany v € [v

1

m(u v) — m(u

(=) (+)
n;i,j’ Un;i,j]’

where

(e®)2 g®
A nf V=R

(e))2 e
(A)infm )2 =R

|c»:rt§j1]?\(u)| < exp (exp(20,)) (7.43)

1

€™ (v)] < exp (exp(20, 7))

In particular, in view of the definition (6.95)—(6.98) of &% ), 8(;):
+ .. .o, (£ +
EPnsi, j1 = ExIns 1, J](M,(,;,-),j, v,(;’,-?j) + el ()

CoT R ¢ NG ) &)
Eq i jl=Eqln i, jlu, ;50 0,005 + €L (v,0 ).

D 44

The conservation of energy relation (2.24) for the Vlasov field f;; reads
(in view of the relation Ty, [ fei] = %ngABTAB[fS,-] holding for all massless
Vlasov fields):

0,
0 Tl fer) = =000 Tl ferD) + (3 10g(2D) = 275 ) (P Tul ferD,
(7.45)

O
00 Tl forl) = =00 Ty fer)) + (8 log(@) = 275 ) P Tr L fer)
(7.46)
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and similarly for f;;. Furthermore, Eqs. (2.46) and (2.47) readily yield:

1= 2 T 1= 2
() = (4r- “g[fg])- . (7.47)
ot — 0,7 ot
1_2m rTvv[fs] 1_2m
av( r ): (—471 ) r (7.48)
— 0,7 oyt — 0,7

Differentiating (7.37) with resepect to d,, and using (7.45) and (7.47), we
obtain:

rTuul fel

By Ex [n:i, j]= (47r e

)+ Exnii j] (7.49)

2m

- 8v(72Tuv[f£i])

— dgj {27‘[
s
2m

7 (50 toa(@) —2"1) Tl i |

v

+ 27

Remark Notice that the coefficient of Ex [n; i, j] in the right hand side of
(7.49) is strictly positive. It is the sign of this coefficient that will lead to the
increase of the energy quantity £x [n; i, j] as quantified by (7.31).

From (7.49), we obtain the following explicit formula for Ex [n; i, j](u, v)
for (u,v) € RI(”J)

.. " Fluul fel - -
Ex[n; i, jl(u, v) = exp / do ———(u,v)du
h ( oy ~0ur )
Ex [ i, Il 0 v) = agi€ees [0, jlu, ), (7.50)
where
Cren [n; 4, jl(u, v)
u u T
= —/ exp(/ 4nM(ﬁ,v)dﬁ) (7.51)
”nji,j I —0yr
1= 2
x {2n 0y (r? Tuw [ fei])
Oyt
— sz 2 Wy - P
+ 2 —— (9, log(??) — 275 ) T L) | (@ v) di
vl r
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Similarly, differentiating (7.38) with respect to d,, we infer the following
formula for E [n: i, j1(u, v) on R{!:

v
T,
E/'[n,l, j](M,U) :exp(_/( : 47Trlév—|j‘2‘:|
v s

nii,j

(u, D) dﬁ)

‘E Alnii, jl(u, v,(l;_i?j) —agj€re a[ns i, jl(u, v),

(7.52)
where
Crr A[n; i, jl(u, v)
v v
T,
= —/ exp(—/ 4nM(u,ﬁ)dﬁ> (7.53)
U:(;i)j ] Oy1
| 2m
x {2n 3 (r Tyl fe])
—0yr

_ 2m

1 oyt o
My (3"1°g<92>—27)<r2Tle[fgj]>}<u,v)dv.

u

In view of the relation (7.41) for f, fe; and f¢; on RI("J) and the defini-

tion (7.37)—(7.38) of Ex_, E », we have for any (u,v) € [u(_) u ] x

ni,j’ nii,j
(=) +) 1.
[Un;i,j’ Un;i,j]'

u
T,
/ 471M(,;7 v) dii
u) — Oy

nii,j

_ /u {2E/[n;i, j](ﬁ,v)
u(*) r

nyi, j

— '] 2 j
( m ) 1 n drag; r Tuul feil - }dﬁ (7.54)

(1-—@w o V)

and

) At ) r

nsi, j nii, j

/v 47‘[rTvv[f8](M,l_))dl_):/U {2E\[n,l,]](u’l_})

oyt

(u, 17)} dv. (7.55)
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A proof of the instability of AdS

Using (7.11) for Tyl feil, Toul fej], recalling that R(n) V(”) V;’;, as well
as the bound (6.73) and the assumption a.; € (0, 08] the relatlons (7.54) and
(7.55) yield:

“ 47_[”Tuu[fe
u'?) —Oyr

nsi, j

_ /u { ZE/[n;i,j] (L_t l))

(u,v)du

ufl_l)j r- (1 — %AI‘Z — O(Mi;j))
(i)y4
-2 ey (&) -
+0((—A) exp (exp(o; ))m>}du (7.56)
and
v
f g ToolSel o 0
Ur(z‘_i)j dpr
v 2Exn;i,j _
:f { 1\[n oL (u, v)
iy L (1= A7 = 00ui)
()4
A2 -6 (&Y’ _
+0( (=22 exp (exp(o; ))—rs(u’ﬁ))}dv, (7.57)
where
2ﬂ1
Mi;j = sup — (7.58)
R(n) r
Note that
Kizj = O0Mo), (7.59)

as a trivial consequence of (6.70).

For the rest of the proof of (7.31)—(7.34), we will consider the cases i > j
and i < j separately.
The case i > j: Proof of (7.31) and (7.32). Integrating (2.48) in v from the
axis yz, up to R(n) using the fact that, among all the fet’s, only f, 7, j < j<i

are supported on {u . <u< u(+) j} N{v < v(+) } we can readily estimate
(using (6.73) and (7 11) (7.12)):

6 £
sup m < exp(exp(o, ~))

R™ ~—A ’

B

(7.60)

@ Springer



G. Moschidis

From (7.60) and the bound (7.15) for r on Rl("j), we immediately infer that:

2m -7 7
Mizj =Sup —= = exp(exp(o, '))ps < pe - (7.61)
rM
[2¥)

Using the bounds (7.61), (7.15) and (7.16) on Rl(n[) aswell as (6.1) and (6.5),
the relation (7.56) yields: '

/“ 4,,M(ﬁ,v)dﬁ:/“ {2E/[n;i,j](ﬁ,v)‘(1+0(p5))
u(:?j —ayur

o) —hej Tniij
RGN I

+ 0(«/—1\,08 exp (e’ 8)((80—)))5) } dii (7.62)
_ 28050, j1(u, v) 3 os (D)

2€ Aln; i, jl(u, v) 3 5 o8 (e
- Fusi,j (14 06H) + 0<‘ —Ap; exp(e )(s<j>)4>

2 i, 3
= AL (14 o)) + 0

n;i,j

(where we have used the bound % < ewheni > j). Similarly, (7.57) yields:

v 4anUU[f€](u,17)dl_) _ 283 i, jl(u, v)
U;;Z oyt Tnii,j

: s (¢ (J))4

.(1+0(p8 ) + O(V—Ape exp(e® )( O he.i), (7.63)
28 Ins i, j1(u, v)

(14 0(o) + 0(e).

Tnii,j

where r,,,; ; is defined by (7.30).

Substituting (7.62) in (7.50) and integrating in v over [v i ] , v], we obtain:

ExInii, jl(u, v) =/() {exp(zg/[”;i’ jl(u, v)

nii, j Tnii.j

3
-1+ 0@H)) + O(s)) Ex [n; i, ]](un” ‘)}dﬁ (7.64)

@ Springer



A proof of the instability of AdS

v
— Qg /() Cre [n; 4, jl(u, v) dv.

Unsi, j

Integrating by parts in d, for the term 9, (r?Tyy) in f - Crex [n; i, jl(u,v)dv
n i,j

(see the expression (7.51)), and using the fact that Tuol fei]1s supported on V;

(and hence vanishes to infinite order on v = vfﬁ j) we calculate:

| / Cren [1: 7, j1(u, D) dv’ (7.65)
nii, j

“ P 7
| [, A

{2n gTa 2Tl fei])

vl

_Z_m

+ 27— (8, log(2?) - af)(rznv[fsi])}](a, b) diid?

7
T
/ / exp /4anw(ﬁ,ﬁ)dﬁ)
") h“ ™ e, i —Oyr

'27[ 3,1 Tuol feil
" 47 ) o
X { _L av(r(_aur)> - r Tuu[fs](”’ U)du
- _u 47”_ 3y (r* T fe]) (@, D) i
— 0 10%( — 7) + (av log(Q%) — 2?)}](&, {))dﬁdﬁ‘.

We will estimate the right hand side of (7.65) in a number of steps:

e Using the bounds (6.70), (6.73), (7.11), (7.41), (7.15) and (7.16), we can

estimate:
u
T,
/ PRIV ey
i 0

sup
(u, v)eR(n) ue[v(m*hg] ul —oul
(n)+h£ J 1
< / exp (exp(40£_5)) : du (7.66)
o) e j nii,j
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< exp (exp(0, ) - e

Tni,j
< 1.

e Using the bounds (6.73), (7.12), (7.15) and (7.16), we can estimate:

-2 5 oo (602 :
2 ; rr rTuul feil < exp(exp(aa_ )) 5 (=N, (7.67)
v n;i, j

e Using equation (2.45) and the bounds (6.70), (6.73), (7.11), (7.12), (7.15)
and (7.16) (as well as the relation (7.41) between f;, fe; and fg; on RZ("J)
and the bound a.; < 1), we can estimate:

sup
@, D)eR), aelv!")~he j.u]

/ 8v<r(jgur)) 2Tl £ G, ) dit|

= sup
w,D)eR(), el ~he j.u]

[447,(_ dr L Bubor )rzTuu[fg](ﬁ,l_))dﬁ)

r2(=d,r)  r(—0o,r)?

= sup
@,0)eR\), aelv")—h j,u]
/u4 ( ot e
T J—
it r2(—8ui”) I’Z(l _ 2Tm) —3,r
A7 r3T, o
) Tl fla, D i
o e, |
= ' exp (exp(ag_g))_ du
U(")_h ) 2. .
&f TS n;i, j
<2 _g\y Ne,j
< 2exp (exp(o; )=
n;i,j

< exp (exp(2o, ) e

Tnsi,j

O pop—

<p (7.68)

e Using (7.46) for f. in place of f,; to express 9, (rzTuu[ fe]) in terms of
Oy (r2 T,vl fe]) and integrating by parts in d,,, we calculate (in view of the
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A proof of the instability of AdS

bounds (6.70), (6.73), (7.12), (7.19) for 9,22 with Jj in place of i, (7.20)
for 83;’ with j in place of i, (7.15) and (7.16)):

“Ar 1 5 o

Sup 00Tl D, ) dil
(u,ﬁ)eRf;"},ﬁe[vg’.’]).—hw,u] a T ul
A4 1

= sup
DR, ielv")~he jul

(=002l £D)

i —0yr

+ (0utog@) — 22 (Tl 21 ) @, D i
r

u 1 ’
/ﬁ 4w (=) Tl fe

oy r
r

= sup
(u,z’))eR;?}», ﬁe[vgf’; —he j,ul

2 2 A =\ gA
+ I"(—au}") <au log(Q ) -2 >(r Tuv[fs])) (u, v) du

R R A [ g

2 _
-rT,
r _aur r —8ur r uv[fa](uvv)

(n)
vs,j +h5,j

-9
< exp (exp(o; "))
v —h,
PN

y A 5 du
Fuij | €0 Tnsinj " (=)
1 (8(j))2

T'nii,j (_A)rr%;i,j

1

+ exp (exp(o, )

< exp (exp(2a£—9))/?,;2 -

1

= Pe (7.69)

Fnii,j

e Using the the relation (2.48) for d,m, the estimate (7.20) for agr, as well as
the bounds (6.73), (7.11),(7.12),(6.70), (7.15) and (7.16), we can estimate:

: ; 27"1)) < exp (exp(o; ) (% +

sup |9, log . (1.70)
( )

(n) vl Fnii,j
Ri;j !
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e Using the estimate (7.19) for 9, Q2, as well as the bounds (6.73), (7.12),
(7.15) and (7.16), we can estimate:

sup |9y log(§22) — 2—| < exp (exp(o‘ )) <_”(l) +
R(") Tnii,j

). (7.71)

Using the estimates (7.66)—(7.71) (together with the relation of the param-
eters €, pg, 8¢ and o) to bound the right hand side of (7.65), we therefore
obtain:

v
sup )/U Cee [1; 7, j1(u, 9) d|
) eR!) Vi

el he pvlithe ()2 » .
< s—— exp (exp(o, %)) (—A) (7.72)

v(n.)—h i v(n}—h i o

&,i &1 e J &J nt,j

v=A 1 1
X (exp (exp(ae_7))(—. + —> +2p¢ )dﬁdﬁ
e® i Tnsi,j
2 (€D)r V=A

< exp (expo; ) p? D) Ths,ihe,j

) V= ROWG

1
< exp (exp(o,” )),oe( 02 (l) (—A)~

3
< p2eD(=n)7
where, in the last step in (7.72), we have used the bound e® < gl) (holding
when i > j). Returning to (7.64) and using (7.72) to estimate the last term in
the right hand side (using also the bound a,; < §; < exp ( — exp(oe_s))), we

infer that, for any (u, v) € Rl(nj)

Exlni i, jlu, v)
! 28 alns i, jl(u, v

nl]

3
(14 00H) + 0))

Fnii,j

3 ()
Ex [nsi jll) .0 ‘)}dﬁ+0(pg jj) (7.73)

Similarly, substituting (7.63) in (7.52) and integrating in u over [u i j ,ul,

estimating fu<_) €rr A[n; i, j1(u, v) du in the same way as we did for (7.72),
nii, j
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A proof of the instability of AdS

we obtain for any (u, v) € Rl(nj)

Elnsi, jl(u, v)
=/ {exp(_ 26 [n; i, jl(u, v) 1+ 0(,05)) n 0(5))

fr‘ii)j Tnsi, j
O ~ 3 W)
E A i, j](u,vn;i’j)}du—i-O(pgf). (7.74)

Using the bounds (6.73), (7.11), (7.15) and (7.16), we can trivially estimate

EAlns i, jl(u, v)

sup
Foii.i
woery)  Twb

Tnii,j

he: 3
<2exp (exp(og_ﬁ))# < pd. (7.75)

ni,j

Dividing (7.73) with r,; ; and using (7.75) to estimate its right hand side,
(=)

making also use of (6.73) and (7.11) to estimate Ex [n;i, jl(u,.; I V), we

obtain:

ExIn; i, jl(u, v)

sup
(M,U)GRE?; rn;i,j
v e i 3 i il 0 v
o™ {exp(O(pe“))E\[n;”J](“fz;i?j’ v)+ 0(’0““2 Jgj)}dw
< &,i &1
= Tnsi, j
(7.76)
véni)‘i'hs,i —6
<" exp (exp(0; ) o
v e i
-6 h&‘,i
§4exp(exp(% ))_
Tnsi, j

<eg

’

where, in passing from the third to the fourth line in (7.76), we made use of the
bound j((—;)) < ¢ and the approximate relation (7.15) between /) and Tnsi,j-
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Returning to (7.74) and using the bound (7.76), we infer:

g/[n; I j](u, U)
) 3 ()
— /( ) {exp <0(8)) . E/l[n,l,]](ﬁ vr(l 1)])}du+ 0( 52 S_A)
(7.77)

u(_,), nit,j /_A

n,j

u ()
=+ 0@ [ Bl di+o(pl =)

3 W)
= (1 + 0E)E A i, j, vl ) + 0 (02 ——),

n;i, j

from which (7.32) follows by setting u = u(+)] andv = v(+) and using (7.44).
Returning, now, to (7.73) and using (7.77) to estimate the exponentlal in the
right hand side, as well as the bound (7.75) to estimate the M O(,o,S )
error term, we obtain:

ExInii, jl(u, v) (7.78)
( )
)

v 2E A 3

o) Tnii,j

I’ll]

3 8(1)
AN IS J]( nlj v)}dv—i—O(pe \/T_A>
(= )) 3
"4 0(0d)

2€ Aln; i, jl(u, v

=exp(

Tnii,j

f“ =) 3 e

Ex [n:i, 1) o) dv + 0( Py )
) ni,j’ —r
ni,j A
) 3

28 Alns i, jl(u, v,/ 3
L+ 0(o2))

—exp(

Fnii,j

3 ¢
~Ex In; i, J](u,,,j v)+0<pg2 H)

(+) and v = v(+)

ni.j i, j and using

from which (7.31) follows by setting u = u
(7.44).
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A proof of the instability of AdS

Remark More generally, setting u = uffl) ; in (7.77),v = v,(:) i in (7.78) and
using (7.42), we obtain

(+) v)

i’}N’L(M(._‘) V) — nﬁ(un;i’j,

nit,j
=0 nzi. j1- (1+ 0))
o)

+0<p§ﬁ) forall v e [v) ;. vi7)] (7.79)
and
e, ,7) = (. v,)
< &7 nsi, j1- exp (m )
4 Tnii,j
+0(p§ %) forall u € [, ul!) 1. (7.80)

The case i < j: Proof of (7.33) and (7.34). The proof of (7.33) and (7.34)
will follow by the same arguments as the proof of (7.32) and (7.31), the main
difference being that in this case, we will use (7.17) and (7.18) in place of (7 15)
and (7.16), respectively. In particular, in this case, the fact that r,,;; ; 2 >1 - will
actually render all the error terms appearing in the relevant computatlons of
order O (e) or smaller, simplyfying the whole procedure substantially.

Using the bounds (6.73), (7.11), (7.17) and (7.18) on Rfj) as well as (6.1)
and (6.5), we can estimate

u
MM f&‘
/M() 471 our (u,v)du

ni,j

/u b NI Gwar a8
= r lyy u,v)du .
;(11)1 r(l — l1\"2) —ur ’
< exp(exp(o, 7))r he j(—=8)~!

n;i,j

and, similarly

v
T,
g TSl s < (7.82)
vr(r_i)j dyr

@ Springer



G. Moschidis

Substituting (7.81) in (7.50) and integrating in v over [v
the following analogue of (7.64):

i j v], we obtain

v

E s i, j1(u, v) = f(_) {exp (0@)- Extnsi 1wy, 17)}d17
vn;i,j
— ay /(_) Cee [n:i, j1(u, ) di (7.83)

vnlj

= (1 + 0(e)éx [n;: 1, J](Mn V)
v
—ag,-/ Crex [n; 4, jl(u, v) dv.
”,(1;71'?1'
Repeating the same procedure as for the proof of (7.72), but using (7.17) and
(7.18) in place of (7.15) and (7.16), we can estimate:

v g@
sup / Ceen [n: 7, j1(u, 6)d17| <s.

< (7.84)
(u,v)eRE?; vr(l:,i?j —A

Therefore, from (7.83) we infer that

()
Ex s i, 1w, ) = (1+ O@)E s i, 1) )+ 0 (e M)
(7.85)

(+)
n;i, j

(+)

from which (7.33) follows by setting u = u and v = v,

Ny and using
(7.44). Similarly,

.. .. (=) e
Eqlnii, jlu,v) = (14 0E)E Alni i, jlu, v, ) + 0( >

v —=A
(7.86)
: : . _ ., (+)
from which the estimate (7.34) follows by setting u = u,; g and v = Upsi -

Remark Similarly as in the case i > j, from (7.85) and (7.85) (7.86), using
(7.42), we obtain

) =) ) = (1+ 0@)e s i, ]

m(u’ Un,t,_/ ’ n i,]
NO)

+0<g ) foralluE[u,(,,_i)] ,(1+z)]]

(7.87)
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and

) ov) —mwl) v = (1+0©)ES i j]

n;i,j’ n;i,j’
eW)

A

+0<8 ) forall v € [v(f) o) .

nii,j’ Tnii,j

(7.88)

The relations (7.31)~(7.34) for &7, jl. €3[n:i, j] in place of
S,SE ) [n; i, jl, 5(;) [n; i, j] follow in exactly the same way, after replacing o,
he.i, V-("), Rl(”) with &g, ﬁg’i, ﬁ(’”, ’Rl(nj) respectively, in all the expressions

l 1

above and usihg (6.78) in place of (6.75). |
The next result provides an estimate for the change of the geometric sep-

aration of the beams Vi(,"\) and Vi(f)l\ before and after their intersection with
Vj(fg, as well as the change of the separation of VJ(”/), and Vj('”—)l /,before and
after their intersection with Vl.(,fl\) (with Vi('<+1) and V;T;,Q in place of Vi(,"\) and
Vit < ).
Proposition 7.4 Let ¢ € (0,e1] and letn € Nand 0 < i, j < N, i # j, be
such that
(n) +
Ri;j cu,.
Let also ry;;,j be defined by (7.30). Then, the following relations hold
regarding the change of the separation-measuring quantities ’)Dr,gt ) [n;1, j],
orQnii, jl:
/1 s by ,] .

e [nthe casei > j, the quantities ’Dr(/f,c) [n; i, j] (defined for j > 0) satisfy

9”9)[’“ i, jl= @r(/_)[n; i, j1-(1+ 0(¢)), (7.89)
while for the quantities @r,(\i) [n; i, j] the following hold:

- Ifi=j+1,

orPnsi, j1=9rnsi, j1- (1 + O( : 7.90

\ s by ] - Y\ ) ls J /08 ))' ( . )
-Ifi>j+1,

26Dy i, j1 3
O n i, j1 =D i j1-exp (= ===+ 0(?)).
nii, j
(7.91)
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e Inthe casei < j, the quantities ’Dr(;)[n; i, j1 satisfy
orPinii, 1 =2rD i, j1- (14 0(). (7.92)
while the quantities Z)rs) [n; i, j] (defined fori > 0) satisfy:
Or i, j1=2r i, j1- (14 0()). (7.93)
In the case when
R RY Ut

the following relations hold for @rf\i ) [n;i,1], ’Dr;:) [n;i,1]:

Or i, il =0r[n:i.i]- (14 0(e), (7.94)
3
orPini i1 =2r s il (1+ 0(pd)). (7.95)

Replacing U with T." and Vl.(") with ﬂi(n), the relations (7.89)—(7.95)

also hold with ’}Sr,(\i)[n;i, jl ’}5;'(/1,:)[11;1', j1 in place of ’Dr.(\i)[n;i,j],

Ci)r(;)[n; i, Jjl

Proof In order to establish (7.89)—(7.95), we will assume without loss of gen-
erality thati > O and j > 0, so that both @r,g:) [n; i, j]and @rg) [n;i, j] are

well defined. In the case when i = 0 (when @r,gt ) [7; i, j] is not defined), the
proof of (7.92) follows exactly as in the case i > 0, and similarly for the proof
of (7.90)—(7.91) in the case j = 0.

As we did in the proof of Proposition 7.3, we will use the shorthand notation

r(fl.) I uﬁ) i for the expressions (7.35), (7.36), respectively. We will also define
the energy quantities Ex [n; i, jl(u, v), E A[n; i, jl(u, v), E [n; i, jl(u, v)
and & A[n; i, jl(u, v) by (7.37), (7.38), (7.39) and (7.40), respectively.

Let us define the domains

v

-1 _ -1 —
WA lns i j1= 10,5 s+ pe Phe g = pe e o] x Lo, vy,
(7.96)

_1 -~ _7
Waln i, j1= ) ult) VxS pe Sheior vl — pe Pheial,
(7.97)
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A proof of the instability of AdS

Fig. 20 Schematic depiction of the domains W\ [n;i, j]and W Alns i, ]

with the following convention for vfﬂ ;1 (recall that (7.35) defined v,(lf.)j
only fori # j):

ot =00 e (7.98)
Notice that the quantities @r(i) [n; 1, j] and @rg) [7; i, j] (given by (6.101)
and (6.102)) are defined through integration on the u = u( ) cand v = v(i)

parts of the boundary of W ~[n; i, j] and Wk [n; i, j], respectlvely Note also
that

Wr [ i, j1 € V)
. (n+1) . ) wp .
(with Vi\ in place of Vl.,\ ifi < j)and
W Aln: i, j1 V")
s by J/’
as well as (Fig. 20)
W\[n;i,j]le?ff) W Alns i, ]]mz(") 7.

In view of the definition (6.91) and (6.92) of dist~ [-] and dist #[-], we can
readily calculate that:
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e Forall (u,v) € Wx In; 1, jl:

(i)
&
dist [(u,v)] =exp( —ex o4 7.99
Nl T = exp (= exp(o, ) —— (7.99)
and®3
o _1U=D
dist A[(u,v)] > e % pg e (7.100)
e Forall (u,v) € W[n; i, jl:
()
dist A[(u, v)] =exp(—exp(a€_4))ﬂ (7.101)
and
6 _1gl=D
distx [(u, v)] > e™% p, 8«/3' (7.102)

In view of the bound (7.1) on the support of f;, we know that, among all
the fer’s, only fe; is supported on W [n; i, jl, and only f; is supported on
W aln; i, j]. As aresult,

TMV[fg]}W\[n;i,j] = lei TMV[fgiHW\[n;i,j]’ (7.103)
TluLV[fS]\W/v[n;i,j] = aﬁjTHV[fsj]|W/r[n;i,j]'

Furthermore, (6.73) and the definition (7.96), (7.97) of Wx [n; i, jl, W »
[n; i, j], readily yield the following lower bounds:

e Wheni > j:
() 7 o)
—6 & -6 —% &
inf r>e % p! and inf  r>e % pg 8 .
W lmii, j] *J=A W slnsi, j) to=

(7.104)

23 For the derivation of (7.100), note that, among all the tubes V, the crooked line ¢ A, v)
intersects V;_1 closest to the axis. In view of the defintition (7.96) of Wk [n; i, j], the inter-
7

section of ¢ (u, v) and V;_1 has to take place at distance 2, pggh&j_l from the axis in the
(u, v)-coordinates. See also Fig. 17.
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A proof of the instability of AdS

e Wheni < j:
. f > —0*_6 1 d . f -~ _0,—6 1
in r>e % p,———— an in r>e % pp——.
Wi [mii jl — p e/ —A W n3i, j1 P e J—A
(7.105)
Integrating (2.47) from u = u,(l,_l.)j up to u = uffl)j exponentiating the
resulting expression and then integrating inv € [v ffl) lj—l—,og Shgl 1,V r(l_l) i~
hg i—1], we readily obtain using the definition (6.101) of ’Dr(+)[n; i, Jjl
“ _ %
U,r_i.'_ps ha,i—l
or i, j1 = '
,(;) 1 /‘HOS hs,i—l
W
L J rluulfe]l _ Oyr
exp(—/() A, ) di )1 Sl 9 dB. (7.106)
nii,j r

Similarly, after integrating (2.46):

(=) -4
u —Pe 8 hs,j—l

(+) L. nii,j
Dr,n i, jl= _1
4 uf,t?j,1+pa 8he,jfl
o
nii,. T,
exp( /g Tl S ﬁ)dv) (@) ydi. (7.107)
o) oyl 1— = J

ﬂlj

In view of (7.103), we readily infer (arguing exactly as in the proof of

(7.56)—(7.57)) that, for all (u, v) € W a[n; i, jl,

u Tuu u 2E : -’ . . )
/ G, ”)d”_/ EAEI Gy aa
s T uly, m e (1= 3872 = 0 i)))
(7.108)
and, for all (u, v) € W [n; i, j],
v T v 2E ; " . ) )
/ 4 L] vv[fs](u,ﬁ)dﬁ :/ : N (. 3) di.
ey O v, re (1= 3472 = O(uni))
(7.109)
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where
. 2m
Mnij = sup — (7.110)
Walni,j1 T
. 2m
MNij = sup —.
W ;i j1 T
Note that
m i, usij = 0(Mo), (7.111)

as a trivial consequence of (6.70).
Substituting (7.108) and (7.109) in (7.106) and (7.107), respectively, we
obtain

_7
U,(, ,)J —Pe § hei—1

or s i, j1 = f

,(1-*;) 1j+i0£ 8h€t 1
W i
exp<—/ " ZAUILIF] (i, 9) dit)
u(i). r- (1 — §A7'2— O(M/’ij))
oyt
.1_2_m(n” 5) di (7.112)
r
and
7
() —Pe 8h<‘;‘j 1

7
+) -8
nyi, j— ]+p5 h&f*l

or s j]:f "
u

(+)

i, T = 5A = 0 )

LN
1_2m ’ntJ
r

)du. (7.113)

From (7.49) (and the analogous equation for 9, E ~[n; i, j](u, v)), we obtain
the following formulas (in analogy with (7.50) and (7.52)):

e For (u,v) € Wx [n; 1, jl,

Exn;i, jl(u,v)
(=)

Ui j Tuu - -
=exp(—/u j4n$(u,v)du)
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A proof of the instability of AdS

Ex [n: i, ) 1 v) = asi€llngi, jlu,v), (7.114)

n;i,j’
where

¢ee[n:i, jlu, v)

[P [y ons

2m

{ T ’
X {2mw —0y(r Tuvl fei]D)
oyl

v

_ 2m

+ 2 r <8v log(Q?) — 2av—r>(r2Tuv[fsi])}(ﬁ, v)du.
0yr r

v

e For (u,v) e W a[n; i, jl,

E s[n;i, j1(u, v)

V)
nsi, T,
:exp(/v j4n%£f€](u,t_))dt_))

E sz, 1, vy ) ) = ag€eSlns i jlw, v),  (7.116)

where

et Vlnsi, j1(u, v)

Unsi, j v T,
i/ ’exp<—f 4an[f£](u,a)do)x (7.117)
v v Oyt
1= 2m
X {2n = 3 (r2 Tyl f2j1)
—oyur

gl T (au log(2) — 28“—r)(r2Tuv[f8,-])}(u, 5)do.
o,r r :

We will now procced to treat the cases i > j and i < j separately.
The case i > j: Proof of (7.89)—(7.91). Integrating (2.48) in v from the axis
Yz, up to W/Ln; i, j1, Wrn; i, j], using the fact that, among all the fe’s,
only f, J<Jj<iare supported on the domain

inf u<u< sup wugNjv=< sup v
W alnii, j] W alnii, j] W alnii, j]
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(and the same for Wx [n; i, j]), we can readily estimate (using (6.73) and
(7.11), (7.12)):

)

- —6\\ €
sup m < exp(exp(o, ")) .

W alnsi, jJUW [n3i. ] VA

(7.118)

From (7.118) and the bound (7.104) for r on W #[n; i, j], W~ [n; i, j], we
immediately infer that:

2m 2m

M ij + UNij = sup —+ sup —

Walni gl 7 WImsinjl "
3

7 3
< exp(exp(og Npd < pi. (7.119)

Using the fact that T}, [ fe] = agj Ty fejlon W 4[n; i, j], the bound (7.11)
for Tyylfejl on W 4ln; i, j1 C VJ( } combined with (6.73), implies that

V)
nit, T
sup / ! 4 el vol fe] (u,v)dv

(w,v)eW A[n;i, jlJv 3UI’

< agj exp (exp(a; ) (—A) 2

) ) -
Py oV 1) (eUNH*

X —= dr
rut) ot o 8hg, DT

< exp (exp(o, 9))(—A) 2 (eW)*

=) (+) (+) 8
r(nz]’nt]) (I’lij ,”1]+,0,9 hgl 1)

(r(u,(:—l)’] v,(j;) 1,j +108 Shel 1))

< exp (expo, ")) (—=A) (V)
:

(u(+) ())—|—(U() _U,(;L,)U_Psghet D)

n;i,j nlj n;i,j

7
- + +
(e Shei1 o5y —ull) )3

X

X

< exp (exp(o; ) (e)?

X
_7 . .
(pe "= +sgn(i — j — 1) - p; 'e())
= Pss (7.120)
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A proof of the instability of AdS

where

0, i=j+1,

sgn(i_j_l):{ﬂ i>j+1

and, in passing from the second to the third line in (7.120), we used the fact
that d,r < 0 and 9,7 > 0 on Z/{;r . Substituting the bound (7.120) in (7.116),
we infer that, for any (u, v) € W #[n; i, jl:

E sln; i, j1(u, v)

= (14 0(0))  E sl i, A, v\ ) — acj€eQins i, 1w, v).
(7.121)

Dividing (7.121) with r and integrating in u, we infer that, for any (u, v) €
W aln; i, jl:

“ Elnsi, ] - _
L G vy din = (14 0(p0)
un:_i,j r
w Ealnii, 160 o el
. — U — agj ———(u,v)du.
”:(1-_1‘)/' r(u,v) “iz‘_i)j
(7.122)
Using the bound
6 1 1
sup( sup ‘M - ID <e% 6,058 <ps (7.123)
020 \ (u1.v). (u2,v)eW #lmzi, j1 | T (U2, V)

(following readily from (6.73) and the definition (7.97) of W x[n; i, j1), we
readily infer from (7.122) that:

“ E 31, 71 _
/ EAlmii ooy aa
u<_v). r

nii,j

1 1
=(1+0()) -

r(u, v)

J

/<—> E q[n:i, j1@. v, ) di (7.124)
un:i,j

0) .o
u v L [n; i, j]
G, v) did

_ (1+0(p8%)).5/'[n;i, A, o))

0) ..
u  CreSn; i, jl
- gj/ /7(12,1))(112.
u(_> r

nii, j

r(u,v)
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Similarly, for any (u, v) € Wx [n; i, jl:

vOEx(n;i, j .
/ Exlmi 1o as
vr(l 1)/ r

Exn; i, ]](un” V)
r(u,v)

= (1+0(pd)) -

) .o
v Crerg[n; 0, ]
— i / T L (7.125)
v

i, j
Arguing similarly as for the derivation of (7.65), integrating by parts in d,, for

@tr/, [n;i, ]

the term 9, (r2T,,) in fu”(_) (u, v) du (see the expression (7.117)),

we calculate:

err )[n i, Jjl
‘/() —( v)du‘ (7.126)

nii,j

he.i v rTolfel _ o .
Uw / '@, v)[exp( | o v ao)

{27[ o r 8 (I’ Tl fs]])

2m

+2n

(a log(Q%) — )(rZTm, fg,])}(u v)] didii

o) —he,i (,,(u v)[exp< /vf’MrT,g;[fs (. ) d )

o 8; P2 Tl foj1(i, D)
— 0Oy

X {/v 8u( 42;-[ )rvav[fé‘](I/_l, ﬁ)dﬁ+

(n)

v

2Tyl fe) (i, ©) dD

v

— B log(l_ 2:1)(14 v)+(a 1og(522)—2—>(ﬁ 17)”
—I—a—(u v)exp( /:4 g;[fg (u,0)dv )
_ 2m

27 P2 Tl feil G, v)) dvdii|.

-
—0yur
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A proof of the instability of AdS

We will estimate the right hand side of (7.126) similarly as we did for (7.65):

e Using the bounds (6.70), (6.73), (7.11), (7.103) (and the fact thati > j+1),
we can estimate:

sup
WVIEW Alnsi, 1, @, 0)eluy, | ulx[v,07))]
‘/ ””[f"’” i, 0) do (7.127)
Unsi ()4
< ; 7 exp (exp(do, ™)) - (8(+)) (—A) 2 dv
,(”> 1]+(ps +Dhe i1 r (”n;i,j’ V)
_ (et _
< exp (exp(o, ) - — (—A)7?
I"4(I/tn i, Vnii—1,j + (/08 + Dhei-1)
7
< exp (exp20, ) - pf
<1.
e Using the bounds (6.73) and (7.12), we can estimate:
1= 2m
sup (2 ——r Tl fiy1)
W aln;i, j] vl
(e (1))2
< exp(exp(ag_6)) sup (— A)_
W alnsi, jl r
_ (V)2 _
< exp (exp(o; %)) T (-
rz(”n ij> Unsi—1,j + (pe + Dhei-1)
3
< exp (exp(20, 6)),08 < p?. (7.128)

e Using equation (2.45) and the bounds (6.70), (6.73), (7.103), (7.11), (7.12),
and (7.104) (as well as the trivial bound a¢; < 1), we can estimate for all
(u,v) e Waln; i, jl:

v 4 A
sup / au( )rvav[fa](ﬁ, 0) db (7.129)
1 v royr
@ )elul ulxv,v) —pe Sheii]
= sup
(u, v)elun,, RARIOR ,)j—pé he i1l

v 9 9,0
/4n(— WL N ), D) di
v

r20,r  r(9,r)?
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= sup

.
@, 0)eluy) s ulxv,vs) =pe Sheiil

'_’4 Our Rl 2Ar —Oyr  AnriTy,,
”( — ot 2m T3 2
v reoyr r2(1 — z My Qyr r#(0yr)

)Pl £ ) dd
Uit oy 1 (U P

< /U exp (exp(o; ")) 2w D) (=A)"2d

()4

3 (u, v)

< oxp (exp(20,)) 0!

(=N

< exp (exp(o; ™))

r(u,v)’

e Using (7.45) to express 3, (r>Tyy[ f:1) in terms of 3, (r>Tyo[ f¢]) and inte-
grating by parts in d,, we calculate for any (u, v) € W x[n; i, j] (in view
of (7.103) and the bounds (6.70), (6.73), (7.103), (7.12), (7.104), (7.13) for
3,22, (7.14) for 32r and (7.102) for distx [-] on W A[n; i, j]):

D@, v)do

UU[

sup ‘
(=) (=) -%
(@, 0)€lu, ;) ulx[v,0,7) —=pe Sheioi1]

(7.130)
v 47( 1
= sup ‘

1 N
(u, v)élu,” ulx[v, v,(l ,)j—pg he,i-1]

— (= 0,0 Tl feD

+ (9v108@) — 2"0) 2Tl 1) )@, 9 i

v 1
= sup ] ‘/v 47 <av(r8vr)

@ D)elul) ulxv,vl) —pe Sheii]

2 Tl fel

+—(108(@) ~ 2" ) P Tl ) ) @ By

royr
dr 1

2 _ 4o 1 2 —
+ P T f@D) — P Tl 1@ )|
r oyr ro0yr

o) —p_ih i—1
nii, j & &,i 9 1
< EXp \ explo
_/v ( ( ¢ ))r(u,f))

( 1 N 1 (8(1))2
distx [(u, 0)] ~ r(u,0)’ (—=A)r*(u, 0)

1 (g(j))2
r(u,v) (—=A)r2(u, v)

+ exp (exp(o; )
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A proof of the instability of AdS

_1
9 1 r(zz)] Pe 8hs,ifl
< exp (2 exp(o, )) (1 + / 7

r(u, U) (+) —1,j i+ e 8hez 1
1 . (g(j))z
dists [(u, )] dv) (—A)r?(u, 0)
1 (8(1'))2
r(u, v) (=A)r2(u, v)

(1+expoNor )

i (s(j))2
r(u,v) (—A)r2(u, v)

13

< exp (exp(20,%)) ot

+exp (exp(, )
()2
(=A)r(u, v)

< exp (4 exp(crg_9)) e

+ exp (exp(o, )

r(u,v)

e Using the the relation (2.49) for d,m, the estimate (7.14) for 831’, as well
as the bounds (6.73), (7.11), (7.12) and (6.70), we can estimate for any
(u,v) € Waln; i, jl:

2m 1

1-2m, ~
< _au; )(”’ ”)‘ < exp (exp(o; 6))(dist\[(it, o @ a))'
(7.131)

e Using the estimate (7.13) for 8,2, as well as the bound (6.73),, we can
estimate for any (u, v) € W [n; i, jl:

2y av_r - - -6 1 1
9, log(2) — 2@, 9) < exp (exp(o; ))(dist\[(ﬁ,ﬁ)] + r(ﬁ,ﬁ))
(7.132)

Using the estimates (7.127)—(7.132) (together with (6.73), (7.12), (7.103),
(7.102), (7.104) and the relation of the parameters ¢, p;, 6 and o) to bound the
right hand side of (7.126), we therefore obtain for any (u, v) € W »[n; i, j]:

PPN
g gl o v dil (7.133)

(—)
Uy,

v, )7h€I 1 % 9 % 1
26~
Lo 7 (Geeteseti

13
+ exp (exp(20 )),0T

r(u, v)
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1 1 o1 1
—6 o, 2 ==
2 ——— ) dvd
+exp (exp(o; ))(dist\[(ﬁ’ ST r(ﬁ,ﬁ))} +e% r2(ﬁ,v)> idii
_ 3 _ T/—A 1 1
< exp (exp(3o; 9))’082 he.j - pe et (’088 PG + r(u, v)) r(u, v)

Pl !

< exp (exp(4o,” )),028(/) G-h (,QE (i_1)+p£ (,))(— )77

r(u,v)
11

< exp (exp(do, ) p: max{e ™D, eW}(—A) "2

r(u, v)
s e() 1
&

S P —F—— -
v—=Ar(u,v)

Returning to (7.124) and using (7.133) to estimate the last term in the right
hand side, we infer that, for any (u, v) € W 4[n; i, jl:
“ E an;i, jl

() r
nzj

(i1, v) dit

L Eplni ), ,),)+0< S%j%)
= (1+ 0(p?)) - A2 (7.134)

r(u,v)

epmijl i
W(u, v) dv similarly as we did for fu”<_>

n i,j nii,j

Similarly, estimating f( )

©)
M(u v) du, we infer from (7.125) that, for all (u, v) € Wx [n; i, jl:

- 2 0
Exlns i, jl ,,,j ,v)+ 0 (é‘ *’_A

r(u, v)

[U Mw,ama:(wmpé» ) (7.135)

G
Substituting (7.134) in (7.112) and using (7.119), (7.44) and the fact that
Ar? = 0(e) on W aln; i, jl wheni > j, we infer that

7
) Uiy et
Dr nsi, jl =
N ,(lt)lj'f'/os 81191 1
_ ENG)
s 28 j]+0(p4 : )
El /V s by & /71\
xexp(—(l-i—O(,og‘))- Ew— )
r(un;i’j,v)
8 r (=)
.1 2m( nii g ,0)dv.
r
(7.136)
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A proof of the instability of AdS

Similarly, from (7.113) we infer that

=)

7
Uy ;=Pe hs, 1
or P, 1 =/ '

)
i, j— 1+p£ he/ 1

5 -
c 20 1+ 0(pd S5) o
— u = (=) =
exp ((1 +0(H)- T Ur(l l)j) ) T I @, v,.; ;) di.
(7.137)

e In the case when i = j + 1, using the bounds (6.73), (7.11) and (7.104),
we can trivially estimate

5 .
5(/_)[11; i, j1+ 0(/05‘ £ )

—A
sup ; ( (+) U) LA
velvl 1 jtee ghu 1l ,)j —pe Shei1] L
(7.138)
T’E?" exp (exp(o,©)) du + 0(p§ )
< nii, j - v=A
T L

N

< exp (exp(20,%)) o3
3
<p..

From (7.136), we therefore infer that

7
( ) 3
—Pe hs,ifl 3 0
L. n;i,j ) r _ _ _
Qr@[n;l,]] =/ 7 exp (0(pd)) - UZm (uf,;,-),-,v)dv

r(l+l) Ij+p5_§h€,i7| 1 _ T J
(7.139)
7
U(i)A—p_gh i—1 3
nit,j & &, 3 avr
= _7 14+ 0(,04) ( ,0)db
fﬁf) 1 j+Pe Sheioi ( ¢ )1 _ 2:11 nii ,

=(1+ 0(p§>)©r£\‘)[n; i, jl.
As aresult, the relation (7.90) follows readily fori = j + 1.
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e In the case when i > j 4+ 1, we can trivially estimate (using (7.15)

and the relation (6.5) between the ¢®)’s) that, for any v € [vnl 1, +
8h81 1s v,§ ,)J - ps_ghs,i—l]5
+ = (+) ( ) (+)
r(u,. . v)  ru,.; ., ) —r(u v)
1- —=L — = nib)? (+)’ N mET T O(e). (7.140)
Tnii.j r(un;i,j n;i ])
Thus, from (7.136), we infer that
orins i, 1
7
U,(;,-)j_Ps_ghe,ifl
= 7
,(l-t) 1/+p£ 8h(v,ifl
- . 2 W
; 260 i J]+0(,04 Eﬁ)
3 /1 L] &€ —
exp(—(l—l—O(p;‘)—FO(s))- — A )x
n;i, j
(7.141)
dyr
1_2_m( n:] ,0)dv =
-
- . 3 D
, 28! )[n'l J]—I—O(,o4 £ )
3 /Y s by & —A
—exp (- (1 0(0)- )
nit,j
O, 1.
265 n3i, j)

From (7.141) and (7.15) (as well as the upper bound (7.75) for +),
T'nii, j

the relation (7.91) follows readily fori > j + 1.
e In all the cases when i > j, we can readily estimate using (6.73) and
(7.11):

£Dmi, j) < exp (exp20, %)) (—A) "2 (7.142)
and

: = () o8 % _(j—-1) -1
inf r(u,vn,ij)Ze e pp SeUTI(=A)T2,
uel unz/ 1 Fpe 8h£J 1, U, ,)]+ps he j—1]

(7.143)
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A proof of the instability of AdS

Thus, from (7.137) (and the relation (6.5) between the ¢ ®)°s) we infer that

u)
nlj Pe h£~j_1

or Plnsi, j1 =

3
“;J:)J 11 Pe hEJ 1
exp exp(2cr_6) @ —o,r _
o (oML AITY) T
e Us p g(] 1) 1 —== r

(7.144)

u) 7
L he,jfl

- exp (0(8)) —Or G v ) di
_ , .
a4 e EETE

= (14 0(9)) - @r(/*)[n; i, jl

In particular, (7.89) follows from (7.144).

The case i < j: Proof of (7.92)—(7.93). In the case when i < j, the proof of
(7.92)—(7.93) follows by repeating exactly the same steps as for the proof of
(7.89)—(7.91), but using the bound (7.105) in place of (7.104). This results in
several simplifications and improvements in the bounds of the various error
terms (compare with the proof of (7.33)—(7.34) in relation to (7.31)—(7.32)):
using (7.105), it readily follows that the first term in the right hand side of
(7.124)—(7.125) is of order 0(8%), while the right hand side of (7.126) is
of order O(e). As a result, using once more the bound (7.105) for the Ar?
terms, one infers that the arguments of the exponentials in (7.112)—(7.113)
are of order O (¢), therefore obtaining (7.92)—(7.93). We will omit the tedious
details.
Proof of (71.94)—(7.95). The proof of (7.94) follows by repeating exactly the
same steps as for the proof of (7.90), while the proof of (7.95) follows exactly
in the same way as the proof of (7.93). We will omit the relevant details.

The relations (7.89)~(7.95) for Dri[n: 7. j1, Dr'Sn: i, j] in place of
’Dr(i) [n; i, jl, ’Dr(i) [n; i, j] follow by repeating exactly the same steps, after

replacing o, hg i, V(n) R("/) with &, hg is V(") R( j) respectively, in all the
expressions above and using (6.78) in place of (6. 73) O

7.3 The instability mechanism: energy growth for the Vlasov beams

In this section, we will use Propositions 7.3 and 7.4 in order to obtain quan-
titative control on the total change in the energy content and the geometric

separation of the beams Vi(n) between two successive reflections off Z.. To
this end, we will first introduce the quantities w;[n], &[n] and R;[n], which
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are determined by a recursive system of relations and will be later shown to
26 [n3i.0]

o Tmiol’ 8,(\_)[11; i,0] and ’Dr(\_) [n; 1, 0], respec-

approximate sufficiently
tively:

Definition 7.5 For any ¢ € (0, g1], let us define the sequences u; : N —
(0, 4+00),0 <i < N; — 1, by the recursive relations

i—1
wiln + 1= il - exp (23 ln +11)), (7.145)
j=0

with initial conditions

25(\”[0; i,0]
~orO10:i 1,01

wi[0] (7.146)

We will also define & : N — (0, +00) (for0 <i < Ng)and R; : N —
(0, +00) (for 1 <i < N,) by the following recursive system of relations:

i—1

Eiln+11=Elnl -exp (Y wjln +11), (7.147)
j=0
i—2
Ri[n—l-l]=Ri[n]-exp(—2uj[n+l]), (7.148)
j=0

with initial conditions
&101 = &[0 4, 0], (7.149)
R;[0] = ©r{[0: 1, 0.

Notice that the quantities w;[n], &[n] and R;11[n] satisfy for all 0 < i <
Ng - 1:

2&i[n]
Riyi1ln]

= 1ilnl. (7.150)

Remark The relations (7.145) and (7.146) uniquely determine w;[n] for all
0 <i < N, —1,n € N, as can be seen by arguing inductively on i: Fori = 0,
(7.145) yields that po[n] = wuo[0] for alln € N. Provided u; : N — (0, +00)
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A proof of the instability of AdS

has been determined for 0 < i < i — 1, the relation (7.145) yields

n i—l1

wiln] = wil0]-exp (23 D L) (7.151)

=1 j=0

for all n € N. In particular, note that, as a consequence of (7.151), for any
i>0,

miln] === to0.

We will later show that the quantities w;[n] provide a good proxy for the
evolution of the scale-invariant norm of the Vlasov beams after n successive
reflections.

The following proposition is the main result of this section. It will provide
us with useful approximate formulas for the total change of the energy content
and the geometric separation of the beams between two successive reflections
off 7., expressed in terms of the quantities &[n] and R;[n]. In particular, it
will be readily inferred from these formulas that, for any i > 0, the energy

content of each beam Vi(”) increases in n, while the geometric separation of
the beams remains under control.>*

Proposition 7.6 Let n € N be such that

3
0<u=<v)—heo)n{u<v<u +,/—Xn} cU. (1.152)

Then the following relations hold:

o 1M ,
5(\)[n;z,0]=5i[n]+0(pg6ﬁ) forall0<i<N,, (7.153)

1
@r,(\‘)[n; i,0] = Ri[n]- (1+ 0(pd) foralll <i < N,, (7.154)

where the sequences &; and R; were introduced in Definition 7.5.
In addition, for any 0 < j < N, — 1 such that

Ry, T, (7.155)

24 Both these statements hold modulo error terms that will be shown to be negligible after a
careful choice of the initial weights a,; in the next Section.
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we have
5-) : eV
E I New j1 = &jln + 11+ 0(,08 ﬂ) (7.156)
and, if j > 1:
~ 1
Dr s Ne, j1 = Rjln+11- (1+ 0(p7)). (7.157)
Finally, if
ﬁ(") T+
Ne:Ne—1 © 26 s
we have
EMm; Ny Ne — 1] = En[n+ 1]+ O(pﬁ e ) (7.158)
\ ’ ’ & ﬂ

Proof The proof of Proposition 7.6 will be separated in a number of steps.
We will first establish a number of auxiliary relations and estimates, before
proceeding with the proof of (7.153)—(7.154) and (7.156)—(7.158).

Auxiliary bounds and relations. In view of the fact that

Ne

supp(T;w[fs]) ﬂu;— C U Vi
k=0

(following readily from the bound (7.1) on the support of the f.;’s and the
relation (6.65) between f; and the f’s), we infer from equations (2.49) and
(2.48) for m that the function m (u, v) is constant in every connected component
of U\ Ueny 11<Vio V,Em, i.e. in the regions between the beams V,E"). This fact
immediately implies, in view of the definition (6.95)—(6.100) of the quantities

£9,650.&,, and &7, that, forall n € Nand all 0 < i, j < N with i # j:

& i, 1= i, j— 11 (7.159)
and
Xz i, 1= EP i — 1, j1, (7.160)

where we have used the following index convention for (7.159) and (7.160):
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A proof of the instability of AdS

e Wheni=j—1lorj=i—1:

E i i1 = &y lni i), (7.161)
£70In; 1,11 = Exlns i),
£ s i, i1 = Exlns i)

and
EP i i)=&y In: i), (7.162)

e When j = —lori =—1:

EP i —11= 0 — 110, N (7.163)
and
EPn: ~1, 1= P Ne. ] (7.164)

The relations (7.159) and (7.160) also hold with g,g\i ), g(j) in place of 5,(\1: ),
£ (Fig. 21).

By the same reasoning, the right hand side of the constraint equations (2.46)
and (2.47) vanishes in every connected component of 24\ U,ICV;O Vi; hence, it

readily follows (by the definition (7.93)~(6.102) of Dr.>", DrG”) that, for all
neNandall0 <i,j < N i #j:

or i, j1=0r i j - 1] (7.165)
and
or i, j1=2rF i — 1, 1, (7.166)

where we have used the index convention

@rs)[n;i,—l]ﬁgrv(\Jr)[n—hivNe] (7.167)
and
or P 1, j1=2rPn: Ne. j1. (7.168)

Similarly for 5r,(\i), 5r§t> in place of @rs), @r(/j,t).
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vz z

fS,(\_)[n; Ne,0]
2TeD i, 0]

(G d
Dr, ’[n;i,0] 1

/5‘,(\7) [n;0,0]

Fig. 21 The relations (7.153)—(7.154) provide approximate formulas for the incoming energy
5,(\_) [n; i, 0] of the i-th beam, as well as its geometric separation Dr,g\_) [n; i, O] from the (i — 1)-

th beam, as measured atu = véng —he o (schematic depiction on the left). Similarly, the relations

(7.156)—(7.157) provide approximate formulas for the outgoing energy of the i-th beam and

its geometric separation from the (i — 1)-th beam, as measured before its intersection with the

inl)vg — ﬁe, N, (schematic depiction on the right). The reason for using

the ~ quantities (as well as the slightly larger beams ]7,-) in the latter case is that the relations

Ne-th beam, i.e.atv =v

(7.156)—(7.157) will later be used in a region of the maximal development domain Z/{,Efg » Which
is a subset of Te"', but not a subset of Z/IE+ ; however, the analogous relations also hold (with

exactly the same proof) for 5(/7)[n; Ne, j]and @r(;)[n; N¢, j] in the region Z/{:‘

The following bounds will be useful for estimating the error terms appearing
after repeated applications of the formulas (7.31)—(7.34): In view of the bounds
(7.11) and (7.12) for the components of the energy momentum tensor, the
bounds (6.73) and (7.15)—(7.18) for r on RZ("J) and the relations (2.49)—(2.48)
for m, we can readily bound for any n € Nand 0 < i, j < N, i # J, such
that R{") C U+

£ i, j . £ i, j]

Tnsi,j Tnii,j

< exp (exp(Zag_S))pg. (7.169)

Moreover, in view of the definition (7.93)~(6.102) of Dr*, Dr. the def-
inition (6.8) of v ; and the estimate (6.73), we infer that, for any n € N and

any 0 < i, j < Ng, such that Rl("j) C Z/leJr ifi # jor Rf”;Z,Rl(”% C L{j if
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i=j:

e % p;! <DrOmi, jl< e prl——, (7.170)

Forany 0 <i < N, — 1 such that Rl('jr)l ; C U, we can express ry:i11,; by

integrating d,r in v from (u,(l’Ll)Jrl i uf::)Jrl ;) € Yz, upto (u,(l’Ll)Jrl i v,(l z)+1 ;) as

follows (using the notational conventions (7.35)—(7.36) and (7. 98) as well as
the bounds (7.15)—(7.16), the fact that i = O on {u,(;.)Jrl,i} X[ ffl)ﬂl vi;i)ﬂ’i]
and the bounds (6.73) and (7.170)):

Fasirni = r s ) (7.171)

=)
nyi+1,i (+)
= /(+) dur (.14 45 v) AV

n1+ll

v
_ nt+lt 8]" (u(+)

v)-(14+ 0(e))dv

+) n; l+1,l’
un'i+ll 1
( ) _%
Vpeig1,i Pe hs,i 1 a r +)
= 7 ( i+1,i° )
nt i
o' +ps he,ifl 1 -

ﬂll

gD
(14 0(e) dv + O(exp(exp(Za )ps ¥
_71 =D

=)
)

= (1+ 0D ns i + 1,11+ 0(exp (exp20,)) e *
=33r,(\+)[n;i+1,i]-(1+O(pgm)).

However, we can similarly exXpress ry,.;+1,; as anintegral of —d,r inu (provided

J’_ . . .
<”;(1;i)+1,n V. l+1 ;) X {vn iv1.i) C UF, which is necessarily true if Rf’fl vz C
Uur:
-)
nyi+1,i
il = /u(+) (—0ur)(u, vn H—l Ddu = (7.172)

nyi+1,i

=0r i+ 1Li+ 11 (1+ 0(pd o).
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Arguing similarly (replacing o, with §, and using (6.78) in place of (6.73)),

we infer that, for any 0 <i < N, — 1 such that 7’551)1;},2 C 7T, the relations
(7.171) and (7.172) also hold with
it = inf r (7.173)
R
i+1;i

in place of r,,.; 41, and ’}Sr,(\Jr)[n; i+1,i], 35r(/7)[n; i +1,i+ 1] in place of
@r,(\ﬂ[n; i+1,i], ’Dr(/_)[n; i +1,i + 1], respectively.
From (7.171) and (7.172), we immediately infer that, forall0 <i < N, —1

such that RE?I.Y _ CUt:

1
Or i+ i+ 11 =2r i + 1] (1+ 0(pd%). (7.174)

1
Tniii+1

), weinfer that, forall0 <i < N.—1 suchthatR?jr)l.I - Z/lj

Similarly, expressing

+) (=)
(i1 Vst

as an integral of E)U(%) and au(%) from Z, up to

1
Or i+ Li+ 11 =2rPinii i +11- (1+ 0(pl). (7.175)

Proof of (7.153)—(7.154). In order to establish (7.153) and (7.154), we will
first show that, for all n € N such that

3
0<u=<v'V —heobn [u <v<u +,/—Xn} c U (1.176)

and any 0 <i < Ng:

i-1 =) j
2687 +1; 4,0]
e+ 1:4,0] = & [n:4, 0] - exp (Z <—>\
jzogr\ [n+1;j+1,0]

+ o)

+o(p§ j%) (7.177)

and, forall 1 <i < N,:

OrIn+ 15,0 = Dri_[n: 7, 0]
=2 260 ]

(-3

or I+ 1:j+1.0]

+ O(pjz)). (7.178)
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Note that the recursive system (7.177)—(7.178), modulo the O(-) error terms,
is in fact the same as the recursive system (7.147)—(7.148) for &;[n], R;[n],
with the quantities 5,(\7 )[n; i, 0], @rf( )[n; i, 0] and &;[n], R;[n], respectively,
satisfying the same initial conditions at n = 0.

Let us first assume that (7.177)—(7.178) have been established. The relations
(7.153) and (7.154) will then follow by showing that the quantities

L &I, 01— Eiln

]
v—=A for0<i <N,

”Dr(\_)[n; i,0]
riln] = ———— forl <i < N,
R;i[n]
i 260 [n:i,0)
filnl = o (=0 —iln]) for0<i=N—1
@r\ [n;i+1,0]
satisfy
1
lei[n]l, |ri[n] — 11, |@i[n]] < pd°. (7.179)
To this end, let n* be the maximum number in {0, 1, ..., n} such that, for
all0 <n <n™
1
lai[n]] < pe° forall0 <i <N, —1 (7.180)

(note that (7.180) is trivially true for n = 0, since i;[0] = 0 by (7.149)).
Assuming, for the sake of contradiction, that n* < n, we will show that
(7.180) also holds for n* 4 1, hence contradicting the maximality of n*. Note
that, in view of the definition (6.49), it is necessary that

n*<n<o? (7.181)

(otherwise, (7.176) cannot hold). We will argue inductively on i, assuming
that, forall0 <i <i — 1,

1

;] < p*  forall0 <i <n*+1 (7.182)

and then showing that (7.182) also holds for i = i. Note that (7.182) holds

trivially for i = 0, since, in this case, (7.145), (7.177)—~(7.178) and (7.181)
imply that

poln] = wol0] (7.183)
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and
26 [#: 0.0 2£.7[0: 0, 0] -l
A — (140 4))— +0(p: ), (7.184)
O [ii; 1, 0] r10; 1,

which yield (in view of our initial data bounds)

- iy 200,01 o
lolill < p; 'O (pd ) —5——— +O0(pe °)| < explexp(o;))pe"
@r\ [0; 1, 0]

(7.185)

In view of the relation (7.145) for u;[n] and the relations (7.177)—(7.178) for
8,(\_)[11; i, 0], @r,(\_) [n; i 41, 0], we can readily calculate that, for0 < n < n*:

il + 11| (7.186)
&z i, 0] il 2 +1;4,0] 1
=p, ! C ) exp (22 (_v)\_ - + O(pg? ))
Ory ;i +1,0] SO i+ 1; j+1,0]

i—1
+ O(,ogHé) — piln]exp <22Mj[l’_l + 1])'

5<\‘>[ﬁ; i,0]
or i +1,0]

=l 260+ 15 .0] ) .
&

—exp(
;’D n+1J+10]

— wi[n]

i—1

R 14+
xexp<—2p82uj[n+l])+0(p€ =N
J=0

Note that we can estimate, in view of (7.169)—(7.170) and the fact that N, =
—15
p ! exp(e®):

Nl 28 ks 0]

2

= or ks j+1.0)

< exp(exp(28; %)) forall0 <k <n (7.187)

Thus, using also the the bounds (7.169)—(7.170), the bound
i—1 i
Zp,j[k] <pe Bexplexp(8;'%) forall0 <k <n*+1 (7.188)
j=0
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(following from the inductive assumption (7.182)) and the bound (7.180), we
obtain from (7.186) that, for 0 < n < n™:
|l + 1] (7.189)
£ 1z 1,0]
or itz +1,0]

= exp (O (exp(exp25; %)) ) ;!

1
— milil(1 —2ngM,[n+ 4008 5:4) + 0T
j=0

< exp (exp (658_16)> - |iln]]

_ 1
+exp ((exp (¢ )psZIM,[nJrl]ler“-
j=0

Applying (7.189) successively forn = 0, . ..n™*, using also the bound (7.181)
for n* < n, we obtain

max |[;i[n + 1]‘ < exp <n exp( 57 16)>
0<n<n*
n* i—1 6 N
U gl + 1]+ exp (n*exp (e )) ol
=0 j=0
(7.190)
3 »
S a5
where
- . 8—16
5 =exp ((—exp (2¢4")). (7.191)

Since (7.190) is similarly valid for any i with 0 < i < i in place of i, we
infer from (7.190) after applying a discrete Gronwall-type argument in the i
variable (using also the bound (7.185) for fi¢ and the fact thati < N,):

L
max |p,l n+ 1]| < exp(28 ,ogNs),o < exp(cS 2),0 4 (7.192)

0<n<n*

from which (7.182) for i = i follows, in view of the relation (6.1) between Pe
and §;.
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As a result, we have established inductively that (7.182) holds for any 0 <
i < N, — 1, and hence:

L
max max |x;[n]] < pd. (7.193)

0<i<N,—10<n<n

From the relations (7.177)~(7.178) for £ [n:i.0], ©r{[n:i + 1,0]
and (7.147)—(7.148) for &;[n], R;[n], the bounds (7.169)—(7.170), the bound
(7.187) and the bound (7.193), we obtain for any 0 < n < n — 1 and any
0<i<Ng:

el + 1]] (7.194)
=l 287+ 1:4.0]

’ X0y 5( )[n i,0]- exp(z

o+ 1:j+1,0]

+0(pd ))

0 - */_S[n] eXp(ZMJ[n])‘

i—1 8( )[I’l+1'j,

=exp(z

= 0©r( )[n—{—l j+1,0]

'(1+0( ;2))—”5( i i, 0]

J—A - .
- ati-en (- Zf"'[ﬁ +11) +000)
J:
<5 el + O(péz) 8< iz i, 0] + O (exp(exp(8.19))p0%)

/—A 1
Tgi 1]+ O(ps)

5" (1l + o)

and, forany 1 <i < N,:

il + 11 - 1]
Ve i O exp (o2 25 L0 b )
- ‘@F\ [n; i, 0] CXP( >0 DO +1,0] O(pe~) 1‘
Rl - exp (= Y2075 1,1 + 1)
(7.195)
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il exp (= pe 3 1A+ 114 0(of) ~ 1

1

rilil - exp (O (exp(exp(s; 15>>p%)) - 1‘

L L
< (1 + exp(exp(8; ') pd%) - Irilii + 11— 1] + exp(exp(8; 1)) ps°.

From (7.194) and (7.195), using also the initial conditions ¢;[0] = 0 and
ri[0] = 1, we obtain (using also (7.181))

1

1
max max |e;[ii + 1]] < exp(nd, )8 Lpds < pdé (7.196)

0<i<N,0<n<n

and

1

- 1
max  max |r;[i] — 1| <8, 'np15 < pge. (7.197)
1<i<N,0<n<n

From (7.193), (7.196) and (7.197), we therefore infer (7.179), thus obtaining
(7.153) and (7.154) (assuming that (7.177) and (7.178) have been proven).
Proof of (7.177)—(7.178). We will now proceed with the proof of (7.177)—
(7.178). Let n € N be an integer satisfying (7.176) and let 0 <i < N,.

(n)

1. First, moving along the beam Vl.(?\) fromu = v, § —he;uptou = v(”)

he i (see Fig. 22) and calculating the differene between 55\ )[n, i, j] and
8,(\4') [n; i, j] using (7.31) for all 0 < j < i (measuring the change in the

energy content of Vl.(") asitcrosses each of the outgoing beams Vj(."/),, j<i),
making also use of the equality (7.159) (expressing the conservation of the
ener (n) . . . . .
gy content of V;” in the region between two successive intersections

with the outgoing beams) and the bound (7.169), we infer

Eyzln;i]

i— 125( )[ ] i—1
= ;4,01 exp(Z 2, bl ZO(,OS ) (7.198)

il ]125()nlk] i 3 e®
~ e . 2
J;){GXP<Z Fsik +ZO(/0£> <€ﬂ>}
(=)
—8( n:i,0]- exp(ZM O(ngg%))
=0 T'n;i,j
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7z

Fig. 22 For the proof of (7.177), we move along V; in the direction of the red arrows in

() (n)

three steps: First, from u = v:o —hejuptou = Vei — he,; (ingoing regime), then from

v= véni) +hejuptov = vén{’_l) +he,; (outgoing regime) and finally again fromu = véni) +he i
uptou = vé"g— b_ he,; (ingoing regime). Along the way, we use the formulas (7.31)—(7.34) to
calculate the change in the energy content of V; after each intersection with one of the beams
Vi, j#i

J »

3 ()
+ O(exp (Ng exp (exp(ZagS)),og) - Nepé 8—)
NG

=)

i—1 26(*)[’1, i, J]
j=0

1 1
+0(0)) +0(p;*

Tnsi,j

where, in passing from the second to the third line in (7.198), we have made
use of the definition (6.2) of N, and the relations (6.1) between p., §. and
O¢.

2. Moving along Vi(? from v = 0" + he; uptov = v —

he i (see Fig.
22), calculating the differene between 8(/7)[n; Jj,i]and 8(;) [n; j, i] using
(7.32) fori < j < N and (7.34) for 0 < j < i (measuring the change
in the energy content of Vi(") as it crosses each of the ingoing beams V](.',l\),
1 < j < N;), making also use of the equality (7.160), we similarly infer

@ Springer



A proof of the instability of AdS

that
Ne il 3 e
Erln: i1 = &, [n: 0] 1+J§0(a) +;0(pgm)
N Z o(e 8(”) (7.199)

Jj=i+l

. ; o)
=&, i1 (1+ O(N.e)) + O(Ng(,og +8)M)

. , Ll

= n;i]-(1+ O(e2 +0< >

3. Finally, moving along Vl.(,"\H) from u = vg’? +hejuptou = vé"(;r D
he; (see Fig. 22), calculating the difference between 5,(\)[11, i, j] and
Ef\ﬂ [n; i, jlusing (7.33) for all j > i (making use of the equality (7.159)),

we obtain:

Ne Ne (i)

=) 0] = . £
£ + 154,01 = Eln: i1 (l-i-j;_lO(E))-i-j;lO(sm)

(7.200)

0
= &zlnsil- (1+ 0(8%)) + 0<8% jq)

Combining (7.198), (7.199) and (7.200) and using the relations (6.1)
between ¢ and p., we therefore infer that:

25( )[n i, Jjl 1
£+ 154,01 = £ [n: 1,01 - exp(Z— O(pg)>
Pnji,j
% 8(1)
+o( )- 7.201
Pe ﬂ ( )
Using the estimates (7.15), (6.73), (6.70) and the fact that AR?> = O(e) on
{u ,(fl)]} X [vn JINT ’(1 I)J] we can readily estimate:
Vi) )
nii,j
. o dor (U, s ,v)dv
o = (7.202)
Tnyj+1,j Fn;j+1,j
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1 8
< sup (@yr) Z Pe —
P  Ax 0 e ”r(fi)/] k=j+l
DY, j+1°¢
< exp(exp(o, 6)),0 ! ](,)
<el.

Using the relation (7.172) and the bounds (7.169) and (7.202), from (7.201)
we then infer that

i1 o

_ _ 28, [ns i, j] i

£ +1:1.0] =5,(\)[n;i,0]-exp<§ — +0(p;2))
im0 Or s j+ 1)+ 1]

+o(p§ j%) (7.203)

Assuming that 1 <i < N, we will now repeat the same procedure for the
geometric separation Dr in place of the energy content £ of the beams:

1. First, moving in the u direction along the strip
S ="+ (07" + Dheiot <v <0 — (o7 + Dheia),

from u = 58 up to the axis yz,, calculating the difference between

Or{nsi. j1 and ©r{[n: i, j] using (7.91) for all 0 < j < i — 1 and

(7.90) for j = i — 1, making also use of the equality (7.165) between
g q y

@r,(\_)[n; i, jland @r,(\jL)[n; i, j — 1], we infer

oriniii =11 =2r[n:1,0]

i=2 5. i_2
’eXp(‘ZM ZO(PS)+0(K>5 ) (7.204)

j:0 rn;i,j j= =0
=0r 7 n:i,0]
- T\ s by
i—2 (e
25/ [nvlv ]]

«exp(—Z

3 3
+OWNepd) +0(0))
=0 Tnii j

i—-2 (=) T
_ 28, [n; 1, j]
=®r(\)[n;i,0]-exp(— E A

=0 Tnii, j

+0(h)).
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2. Moving in the v direction along along the strip
S =l 4 (o7 + Dheyr <u <o) — (o7 + Dheia),

from the axis yz, up to conformal infinity Z,, calculating the differene

between @r(/,)[n j,i] and @r(;)[n j.i] using (7.95) for j = i, (7.89)
fori < j < N, and (7.92) for 0 < j < i, making also use of the equality
(7.166) as well as the approximate equality (7.174) between @r(/_) [n;1,1]

and ’Dr,g\’L )[n; i,i — 1], we similarly infer that

Ng 3
Or P Ne. il =0r Pl iil- (1+ ). 0(e) + 0(pd)) (7.209)
j=0,j#i
= @r(\“[n; ii—1]

-0+0«M—nw+0w3+0wﬁn

=0rPlnii — 11 (14 0(p! ),

(n+1)
e,0

he i, calculating the difference between @r,(\_ )[n; j,i] and @r,(\+ ) [n; j, 1]
using (7.94) for j =i and (7.93) for all j > i, making use of the equality
(7.165) and the approximate equality (7.175) between @r,g\_ )[n; i,i] and

@r(;)[n; i — 1, 1], we obtain:

3. Finally, moving in the u direction along Sl.(,"\ﬂ) fromZ,uptou = v

Ne
O+ 150,01 =Dr_'niiil- (14 ) 0(e) = (7.206)
j=i

1
=0rP i — 1.1+ (14 0(p)).
Combining (7.204), (7.205) and (7.206), we obtain that

’Dr(\_)[n +1;4,0]

i— 225( )[n i, ]]

1
= Or{ [0, 0 - exp ( Z n O(p;O)). (7.207)

T'nsi,j
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Using the relation (7.172) and the bounds (7.169) and (7.202), from (7.207)
we then infer that

OrIn+ 154,01 = Dr_[n: 7, 0]
2 2657 )

-exp(—z

o+ + 1

+ 0P )). (7.208)

For any n € N such that (7.176) is satisfied, arguing in exactly the same way
as for the proof of (7.199), but moving along Vj('g starting from v = vé'fi) —he

(n+1)

ej he, j, we infer that, for any

(instead of v = vé”j) +hej)uptov = v
0<j<i-—1:

Erln: j1= D n: i j]-(1+0(8%))+0(,0% i ) (7.209)
) /l 9 by & \/—_A

Using (7.200) (for j in place of i) and (7.209), we therefore infer that

/ N —

Similarly, using the first line of (7.205) and (7.206), we obtain:

). (7.210)

1
Or P j+ 1 j+ 11=0r"n + 1 j + 1,01 (14 0(pd). (7.211)

Substituting 8(/,_)[11; i, j] and ’Dr(;)[n; j + 1, j + 1] in the right hand side
of (7.203) with (7.210) and (7.211), respectively, we therefore obtain (7.177).
Similarly, from (7.208) we infer (7.178).

Remark Forany 0 < j; <i < Ngsand 0 < jy < ji, it readily follows from
the proof of (7.177) and (7.178) (after restricting ourselves to the interactions
of the beams taking place only between u = v —h, j, and v = vl.(f;) —hei)

J0,€
that: ’
£ ;i il =& s i, ol
ol 28D

-exp(z

J=Jo

1 1 g®
S 1 000) + 00 =),
Or i, j+1]

(7.212)
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A proof of the instability of AdS

Qi il = £ s i, ol
Jji—1 .
25/1 [n’ lv .]]

-exp

1 10D
+0(01)) + 0(p? __A)

(7.213)

J=Jo C‘Dr(;)[n; Lj+1

(with the convention that, when i = ji, 5y(<)[n; ,i] = 5,(\7)[11; i,i] =
&yzIn;i]) and

or s i, il =23 i, o]
j1—2 25(_)[11'1' .
i, Jj]
-exp(— Z Z
— Drnsi, j+1]
J=Jo JED D
provided i > 0, (7.214)
or i, j11=2r s i, jol
jz2 25(/_)[71;1',]']

-exp ( - A
];) @r(/)[n; i,j+1]
provided j; > 0 (7.215)

+06l).

+ 0<p§2>),

(with the convention that, when i = jj, @r,(\_)[n; i,i]= @r(;)[n; i, j1D).
Similarly, for 0 <i < j; < N;and 0 < jo </,

£ ;i il =& s i, ol

i—1 (G N i
28, n; i, j] € JNG!
/ 12 3
-exp K + O0(pe”) )+ O(p ;
(.Zi:o@r(/')[miaj-l-]] D)ol =)
(7.216)

£ i, ji1 = &7 n: i, ol
26 ms i, ]

(Y

J=Jo

% % gl
+o0 ) n 0( )
() Pe ﬂ

(7.217)

@r(/_)[n; i,j+1]

(with the convention that, when i = ji, 5y(<)[n; i,i] = 5,(\7)[11; i,i] =
Erln; i]) and
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or s, jil = Dr s i, o]
220 260,
eXp | — Z —(7) .
Or i, j+1]

J=Jo

1
+ 0(,0512)), provided i > 0,

(7.218)
orns iy i) = 2r s i, o)
226,

1
- m + 0(,08‘2)), provided j; > 0
=j r n;it,J
J=Jo /!

- exp

(7.219)

(with the convention that, when i = jj, @r(/_)[n; i, 1] = ’}Dr,g\_)[n; i,i]).
The same relations also hold for £ (i), ”}5r(i) in place of £ (i), DrE),

Proof of (7.156)—(7.158). In order to establish (7.156) and (7.157), we will
use the fact that, for any n € N ar_1d 0 < j < N — 1 such that (7.152) and
(7.155) hold, we have forall0 < j < j

25( in: Ny, k]

-1
~ 1
EQn: N, j1= €03 7,01 exp(z +0(p%)
= r g Ney k +1]
1 e
+0( ) 7.220
pé = (7.220)
and, for all 1 bi
Drn; Ne, j
_ i=2 280 N, k]
=2rn: J 01 exp (= Y =% roeh).
=0 91 »"[n; Ne, k + 1]
(7.221)
Note that, if (7.152) holds, then it is also necessarily true that
7“3“;”5 C T forall0<j <] (7.222)

and hence all the terms in the relations (7.220)—(7.221) are well defined. The
relations (7.220) and (7.221) are immediate corollaries of (7.213) and (7.215)
(for E®, Dr® in place of £®), Dr®)) with i = N, ji = j and jo = 0,
using also the fact that, since (7.152) holds,
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A proof of the instability of AdS

g,(\_)[n; j,0]= Ef\_)[n; j,0] forall0 < j < jand (7.223)
~ _ _ 1 _
Brm J.01=9r 10 10114+ 0(o2)) forall 1 < j <
(which is inferred from the definition of 5,(\7 ), ’)Dr,(\f ), gf{ )and 51’,(\7 ) in
Sect. 6.4, as well as the fact that
~ () (n) ~ . (n) n 4 7
m(v;0 — he o, v:j-_ + hw—.) = m(vsf’0 — he o, v:j-_ + hw-),

since the support of T, [f]in {0 < u < vé’fg — heo} C U is contained in
e sk

UkeN Ul]-v:O V; >).

In order to infer (7.156)—(7.157) from (7.220)—(7.221), we will argue sim-
ilarly as in the case of (7.153)—(7.154): Defining the quantities

EC I Ne j1— Eln +1]

&iln + 11 = 5 V=A for0<j<j
~[+1]‘5r(/_)[n;Ne’j] forl<j<j

r= = or s

iln Rj-.[n+1] =J=J

i L 280N ) .
Mi[n-}—l]ﬁpg_( —pc;[nJrl]) for0<j </,

DrIn; Ne, j+ 11

the relations (7.156) and (7.157) will follow by showing that

1
max [&5[n + 11|, max |[Fi[n+1]1—1|, max |5ln+ 11| < pd7.
0<j=j I<j=j 0<j=j

(7.224)
We will argue by induction on j: Forany 0 < j < j, we will show that, if

1

max |fxln + 11| < i, (7.225)
0<k<j—1
then
1
|[sln + 11 < pé°. (7.226)

In view of the relations (7.220)—(7.221) for g(/_)[n; Ng, f], ”)5r(/7)[n; Ng, f]
and the relation (7.145) for u j[n], we infer using the bounds (7.169)—(7.170)
(for £ s Dr® and 8¢ inplace of £ &, 9r® and o¢, respectively), the bound
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o0 287 Nk

R —-

= Nk + 10

< exp(exp(8; %) forall0 <k <n (7.227)

(following from (7.169)—(7.170) for ED , Dr® and the fact that N, =
—1 51
p; ' exp (e ")), the bound

1+ 515
Z filn +11< pe “exp (e’ ) (7.228)

(following from the inductive assumption (7.225)) and the estimate (7.193)
for 1 HQ established previously that:

|sln + 1] (7.229)
280 g0 (2§ 287 [n; Ne, k]
=p — — exp ~
C1or s j+1.0] 2O s Ne k+1]

1 1+1
+0(01)) + 00 )
j-1 ‘

_ IL][”] exp (2/;;%[11 + 1])

“DrC )[n Nk +1]
j—1

— wjlnlexp ( — PaZMk[n+l]> +0(ps+“)
k=0

e 7
p_1< 25\ [n’ ]’0]
’ @r,(\_)[n;f+1,0]

26 7[n; j. 0]
orn: j+1,0]

(1+0(pj2))

e (2 zl

= exp (O (exp (2685_15)))

j—1

— )1 = 2pc Y fixln + 1)

k=0
] 1
<5 it + oo Y it + 1114+ 0ol
k=0
_ J_ ! 1
=5 o 2 liln + 101+ 9 |,
k=0
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A proof of the instability of AdS

where 8, was defined in terms of 8, by (6.1). Note that, for ]_ = 0, from (7.229)
we infer that

1

|oln + 11 < 8, 1o (7.230)

In general, for 0 < j < j, applying a Gronwall-type inequality in the j
variable, from (7.229) and (7.230) we infer that:

[ijln 4+ 11] < exp (57 Nepe ) o < 0, (7.231)

thus establishing (7.226). As a result,

max \u [n+ 11| < pd®. (7.232)
0<j<j

From the relations (7.220)~(7.221) for £ [n: N, j1, ®r'; [n: N, jl and
(7.147)—(7.148) for SJ-[n +17, R]v [n+1], in view of the bounds (7.169)—(7.170)
(for g &) Dr@® ), the bound (7.227), the bound (7.232), as well as the approx-
imate equalities (7.153) and (7.154) between 5,(\_) [n; j_ 0], ’Dr,(\_) [n; f, 0] and
& ;ilnl, Rs[nl, respectively, we can estimate for any 0 < j < j (arguing simi-
larly as for the derivation of (7.194) and (7.195)):

le5[n + 11| (7.233)
_ VAo, 5 ~ g(_)[”' Ne. k] i
1 4/ j-!
+O00H = Sl eXp(ZMk[n+ ])‘
k=0

-l 25"(/‘)[n; N,. k]

=exp(z

k=0 ’}Sr(;)[n; Ng, k+1]

1 J=A _
)‘(1 + 0 === 81 . 0]

/—A j—1 o %
— ng[n] - exp ( — Pe Z,u]r[n + 1]) + O(ps)
< exp (exp(exp(25; %)) ' 8< [n; 7,01 = &n ])
N — —=A 1
+ 0l 0 2O 1,01+ 0(o! >—5 [n] + O (ps)
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< exp (explexp@s; ) (1% + expexp(o; i)

and, forany 1 < j < j:

|7i[n 4+ 1] — 1]

< S, 1
-7 01. (_ j=2 26, IniNe K] n )
Dre [n; i, 0] exp ( — 2o 5N k] + O(pe™) 1‘

Rj[n]-exp( Zk Opek n+1])

(7.234)

@r(_)[n'z_' 0] j-! 1
\ 9 9 ~ 12
_ | - " . _ § 1 -1
j[n] exp ( Pe : O;Lk[n + 114+ O(ps )) ‘

(1 + O(pé%)) - exp (O(GXp(e e )p%)) —1| <

1
S ?

From (7.233), (7.234) and (7.232), in view of the relation (6.1) between p., 8,
and o, we readily obtain (7.224). Thus, we infer (7.156) and (7.157).

Using the relation (7.212) for i = Ne, jo = 0, j1 = Ne — 1 with £, Dr in
place of £, Dr, the relation (7.31) fori = N, j = Ne — 1 with € in place of
&, as well as the relation (7.172) fori = N, — 1 with 7.;41 ;, ©r in place of
Tn:it1.i» Or, we readily infer that:

EIn; Ney Ne — 1]

Ne—1 s(=) :
~ ¢ 28,7 [n; Ng, j]
=5§\)[n;N8,O]-exp< E — (_)/ 5_

=0 @r/, [n; Ne, j+ 1]

1
+0(o))
(7.235)

The relation (7.158) now readily follows from (7.235) using (7.156), (7.157)
and (7.223) for the right hand side of (7.235), as well as the relation (7.147)

for En,[n + 1] and the fact that (7.153) holds for 8,(\_)[11; Ng, 0]. O

@ Springer



A proof of the instability of AdS

7.4 Control of the evolution in terms of &;[n], R;[n], w;[n]

In this section, we will establish some additional bounds on various quantities
related to the geometry of (u,ﬁfa) o 2, fe) in terms of the quantities &;[n],
R;[n] and p;[n]. These bounds will enable us to obtain a priori control of the

evolution of (r/(£>, (Q;’S))z, f (8)) by estimating the growth rate of solutions to
the recursive systems 7.145 and 7.147-7.148.

The following result can be viewed as a supplement to Proposition 7.6,
providing us with additional bounds on the energy content and the geometric

separation of the beams on the regions Rl(”]) (not necessarily with j = 0 or
i - Ng):

Lemma 7.7 For any n € N such that

. 3
0<u<vly—heoynfu<v< uty—wfcul (7.236)

andanyQ < i, j < Ng, such thathqu). C U, ifi # J, andRE@Z, Rl(n% c U,

ifi = j,%> we can estimate:

@)

1
P i, j1 < &l + 11+ pff j_A (7.237)
Gy, & eV
EL i, jl=Ejln+ 11+ pe «/T_A
(ifi #j)
£, il < Exln 1 1] 4+ plF 0 7.238
yZ[”? l] S l[n’+ ]+108 M’ ( . )
FRN))
Sz[n;i]fc‘fj[n+l]+p£8m
(ifi = j) and
1
Orni, j1 = Riln+11- (1= p&*). ifi > 0, (7.239)

oo‘_‘

25 Note that Rl(n]), Rf”;z and Rl(n% are contained in {u > vé”& — hg0}.
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Similarly, for any 0 < i,j < Ng such that ﬁf"j) c TN ifi # j, or
ﬁg?;z,ﬁl?j’} C TN, ifi = j, the bounds (1.237)—(7.239) also hold with
o) o) & o (£ = (D) . + + +
5,(\ ), 5(/ ), &z &1, ”Dr,(\) and ”Dr(/) in place of&(\ ), 5(/ ), &y €1, @r,(\)
and @rg), respectively.

Proof Letn € N be such that (7.236) is satisfied, and let0 < i, j < N,,i > J,
be such that

(n) +
Ri?j cu;r. (7.240)

Notice that (7.240) implies that

Rlﬁfl}.cujforauogigi,05]5]',27517 (7.241)
and
) 0 - .
Rl{’yz, R;?I C U forall0 <i < j. (7.242)

Using (7.213) and (7.215) for jo = 0 and j; = f, we obtain for any
0=<j=j:

=1 26D i k)
ED i, j1= £ [n: 7, 0] - exp A
4 N (,;’Dr(/_)[n;i,k—l—l]

)

1)
+0( L ) 7243
IOS ﬂ ( )

and, provided j > I:

_ ) i2 26Dy i k)
@r(/j)[n;i,j]:@ryg\_)[n;j,o]'eXP<_Z (—{ ;
im0 Or 5 [ny ik + 1]

1
+ O(p;2>).
(7.244)

Arguing exactly as in the proof of (7.156)—(7.157), by comparing the system
(7.243)—~(7.244) for 5(; ns i, jl, @r(;)[n; i, j1 with the system (7.147)—
(7.148) for EJ-[n + 1], R3[n + 1], using also the approximate equalities

(7.153)~(7.154) for £ [n: j. 01, Dr{[n; j. 0] and ;[n], R;[n]. respec-
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A proof of the instability of AdS

tively, we infer that

L ()
«/_—A
@r;—)[n;i, J1=R;n+1]- (1+0(p ©)) foralll <j<j. (7.246)

e i, j1= & [n+1]+0( ) forall0 < j < j, (7.245)

Using (7.212) and (7.214) for jo = 0 and j; = f, we obtain for any
O0=j=J:

& n;i, j1
= 2eQmsi K

=5,(\_)[n;i,0]-exp(2

k=0 i)r(/_)[n; i, k+1]

)

+0(p§ e ) (7.247)

and, provided j > 1:

’Dr,(\_)[n; I f] = Z)r,(\_)[n; i,0]-exp ( —

(7.248)

Using the approximate equalities (7.153)—(7.154) for 8,5\_ )
[n; i, 0], @r,(\_ )[n; i, 0] and &;[n], R;[n], respectively, as well as the approxi-
mate equalities (7.245)—(7.246) for 5(;) [n; 1, ]_'], @r(;) [n; 1, f] and EJ-.[n +1],
R jr[n + 1], respectively, and the bounds (7.169) and (7.170), we obtain from
(7.247)—(7.248) that, forany 0 < j < j:

i—1 .
2&In+11 L 1 g
+0 17 + 0( 4
Realn+1] (Pe )) Pe __A)
(7.249)
NO)

+00!) +0(p§*ﬁ)

£z i, 1= &nl - exp (
k=0

i—1

< &n]- exp(
k=0

2&n + 1]
Rit1ln + 1]
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and, provided i > 1:

)
— .7 gk n+1] &
D7) i, 71 = Ri[n] - + O(pd’ 7.250
i, 1= Rilnl -exp ( - kz(:)Rk_H[ o )) (250
i—2
' 2&[n + 1] &
> Ri[n] - exp( 2 m + O(pe ))

(where we have used the fact that i > f). On the other hand, from (7.147)—
(7.148) we obtain:

i—1

2&[n + 1]
Eiln+1]=&; . _ 7.251
[+ 1] = &iln] exp(I;RkH[nH]) (7.251)
and, fori > 1:
i—2
Riln + 1] = Ri[n] - exp ( -y M) (7.252)

= Riiln+ 11/

Comparing (7.249)—(7.250) and (7.251)—(7.252), using also the bounds
(7.169) and (7.170), we obtain
- 1 _
E i j1 < Eln+ 11+ pd forall 0 < j < j, (7.253)
- L _
orlnii, j1 = Riln + 1](1 —pgS) forall0 < j < j, ifi > 1. (7.254)
From (7.245)—(7.246) and (7.253)—(7.254), we infer (7.237) and (7.239) in
the case i > j. The proof of (7.237) and (7.239), when i < j, or (7.238) and

(7.239), when i = j, follows in exactly the same way (using (7.216)—(7.219)
in place of (7.212)—(7.215)), and hence the details will be omitted. O

The following result will be useful in obtaining a priori control on the
concentration of the energy of f. on U, and 7, in terms of the sequence

wilnl:
Lemma 7.8 For any n € N such that

3
0<u=<vl)—heoyNfu<v<u+ JoRTheut (255
we can estimate on

U, =U Nl —heo <u <0l — heo) (7.256)
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(see Fig. 23) that:

Tl fel  Tuwolfel
su r + (u, V)du (7.257)
Vz% /{U=V}mu;n < —0yr Opr )

U=0

Ne—1 B i
<8 ) wiln+ 11+ max {(exp(e® )ac} + pi”

i=0 -

Toolfel  Tuvlfel
U,v)d
+ sup /{MZU}W;nr< Bor + o >( v) dv

(where w;[n] were introduced in Definition 7.5). Furthermore,

2m -8 i
oo % Vag ) + 2 7.258
sup == = max, {(exp(e” )aci} +¢ (7.258)

and, for any 0 < j < N:
2m s .
sup "= < max {(exp(e” )ag} +e2. (7259
“;-—,,ﬂ{uﬁvg'j).-f-hw} r 0<i<j

Similarly, the estimates (7.257), (7.258) and (7.259) also hold on

T =T 0l —heo <u <0l —heol, (7.260)

n =
with &, and fzg, j in place of o and h,_j, respectively.

Remark Notice that L[:ﬂ can be alternatively expressed as

[ 3
L{:n={v§”8—hg,0§u§u;fn}ﬂ{u<v<u+ _Xn}’

where

ul, = minfv!Y — he o, ultd} ) (7.261)

e,
(see the relation (6.51) for U1).

Proof In order to show (7.257), we will first show that, for any V > 0,

Tulfel Tl fel
/{v=V}ﬂujnr( —0,r T dor >(M,V)du
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Ne—1

1 c 1 L

< 5 max {(exp(e” )aci) +4 §0ﬁ piln + 11+ 2p8  (1.262)
1

Note that, in view of the definition (7.256) of U/ , the inequality (7.262) is

non trivial only when

[ 3
2”3 h80<V<v("+l) heo + AT[.

In view of the relation (2.49) for d,m, the linear relation (6.65) between f;
and fz;, as well as the bound (7.1) on the support of f;, we have

Tuulfe]l | Tuol fel
/{vzvmu;nr( —0,r + E )(”’ V)du

Ne

sn’

(1= 22 Lyt 2o

r 3

1

47 = /{U=V}m(vf”)uvf"“))ﬂu;jn

(u, V)du.

(7.263)

We will proceed to establish (7.262) by considering the cases when V(=) <
V<VH V<V and V > VP separately, where we have set

VO =™+ b, (7.264)
v = v(”) n ¢ 7.265
&,Ng ,08 /—_A ( )

(see Fig. 23).
Case I: V € [V, VD], In this case, the bound (6.73) and the definition

(7.265) of V) imply that

o7t p—2_ & (7.266)

<
pmyinw! Ne (VMUY = e” pg I=A

Furthermore, for any 0 < i < N,, we have
w=vinw"uv"nul, = w=vinvinul,. 1267
Let us define i as the maximum number in {0, 1, ..., N} such that

V" cuf, foralli <iy. (7.268)
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Fig. 23 Schematic depiction
of the domain Z/l:fn in the

case \fvhen
oY — he o < ulldF). For

simplicity, we have only
depicted three of the beam
domains V;

Note that, if i < Ng, then it is necessary that V(") NUS = ¢ forall iy <
Jj < Ng. Moreover, for any i < iy:

, ) ) ety
{ V};‘;fnhm V=) Z VN iyt T iyt 2 e (7:269)
V=

en

Note that the above definition of i} implies that, in the extreme case when
V(") NUF = ¢ forall j, we have ip = 0.

Remark In the case when vi”(;r Y — heo = ulld;] (and hence ug, = vi"o+ .

heo1n (7.261)), such as the case depicted in Fig. 23, the parameter i is equal
to N,; similarly, in this case, for the parameters zfrl), i +) defined by (7.278)—

(7.279), we have 1(1) = zf) Ng. The parameters i, zsrl) and 1(2) are only
introduced to treat the case when u;rn < vé"(;L D —hgpandu = u+ intersects

one of the outgoing beam components Vl L 0<i=<N;.
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For any i < i, let us denote for simplicity

Pt (V) = inf r= r(vi’f} + hei, V), (7.270)
=vinvnut,
= s =l = hes V).

_ (n) ~ 1+
{v_V}ﬂvi/ﬂus;n

In view of the definition (6.80) of Vl.('}), the bound (7.15) for r,. v, i, the bound

(6.73) on 9d,r, the bounds (6.70), (7.266) on @, r, the fact that d,7 > 0 on
U and the lower bound (7.269), we have for any i < iy:

rax (V) =18 (V) - f([vi’f}fhg,,-,v,ifi>+hg,i]x{V}>mu;n (= dur) du
(V) Farin (V)
exp(20.0)e® 3
< S0 et _ % (7.271)

'n;Ng,i

Using (6.70), (7.266), (7.267) and (7.271), together with the fact that 9,,m <
0 on Z/{;L, we infer that, for any i < i;:

21 1 _1 —0y,m
f 1= 2 A 2 vydu (7.272)
p=VINO" W  net r 3
—d,m
= e LT OO+ OE) =2 g Vadu
=vinvnut, Fain V(1 + 0(pd))
2 ~
< T/ — (—0,m)(u, V)du.
rmin(v) {U:V}mvi/'mus:n

Using the definition (6.98) of E(/J,r) [n; Ng, i], with the convention that
59_)[”1; Ne, Ne]l = &y ;[n; Nel,

as well as the fact that /7 is constant on each connected component of 24"\ U;yio
V; and that d,r > 0, from (7.272) we obtain that, for any i < iy:
2m 1
(1— 22— —Ar)

f _1—0,m
{v:V}ﬂ(vi(”)uvi(’1+l))mu:;’n r 3

(u, Vydu (7.273)

2
< ——&Pn Ne. i),
Yn;Ng,i
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A proof of the instability of AdS

Using the relations (7.172) and (7.202) (implying that 7.y, ; = ’}Dr(/T)[n; i+

1
Li+1](1+ 0(pd))). the bound (7.169) for £ and the estimates (7.237)-
(7.239) for £, ©r), we infer from (7.273) that, for any i < i :

2m 1 _1—0,m
/ 1__m_—Ar2) ! um(u,V)du
w=VIn" Wt ro 3 r
Eiln + 1] 141
gl oy 7.274
DTESTREGE 72

1+ 7%
<2ui[ln+ 11+ O(ps ).

On the other hand, for i = i, using directly the bounds (6.73), (7.10),
(7.11), (7.12) and the fact that

Je |V§'zm{v(f)§v5v(+)} = agj fej |V](."/),O{V(*)§v§V(+)} (7.275)

(as a consequence of (6.65), (7.1) and the definition of V), v, we infer
that

2m 1 5, 1 —0um
(1-=——=2Ar") (u, V)du (7.276)
=vVInW D, ro 3
T, T,
:/ r( uu[fe] + uv[fg])(M,V)dM
=vinv® i, —0ur ol
T, ; T, ;
_ asi+/ r( uu[fsu.] + uv[fau_])(u’ V) du
{v:V}ﬂVi(i)/,ﬂL{:;n —yr oyr
< agi, exp (exp(30,7)) / -
w=vinvnut,
(8(i+))4 L (8(i+))2 4
“A “A ) V)d
x (rs(u,v)( ) +r3(u,v)( ) ), V) du
3 (8(i+))4 B (8(i+))2 B
= dgiy €XP (exp(3ag 5)) (.—4(_1\) 2+ .—2(_/\) 1)
(min, ) r) (min, ) *)
Vi+/' Vi+/'

< agi, exp (exp(o; %)).

From (7.263), (7.267), (7.274), (7.276) and the fact that
e 1+ 145 &
Y 0(pe )= O0(Neps ™) = 0(p)
i=0
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and

V(") NUS =@ forany j > iy,

we immediately infer (7.262) in the case V € (v, v
Casell: V € [v(n) — he 0, V(). In this case, the upper bound (7.266) for r
still holds. However forany 0 <i < N,, we now have

w=vin"uvPnul, =w=vinv" nul,. 7217
Let us define z( ) as the maximum number in the set {0, 1, ..., N.} such
that
v=vinV" nut, #dforalli <if’ (7.278)
and let i +) be the maximum number in {0, 1, ifrl)} such that
v+ hei <uf, foralli <if (7.279)

(where {u = u ¢} 18 the future boundary of Z/{ + ,)- Note that the definition of

zfrl) implies that

=vinv"nul =9 forali>i{" (7.280)
(which is a non-trivial statement only if l(l) < N,) and that

V=" —h . (7.281)

&,y iy

Let us also remark that, trivially, in view of the form (6.80) of V(") V(”)

(n)
Vl/’
.2)
Ly
(1
l-(l-)_z’ 1fu€,,e[v (1) . h (1) 1 ()(1) 1+h - 1]
and V < U(n_)(l) +h .,
— ey &y (7.282)

() e+ (n) ()
i’ —1, ifug, €lv —h .1,v +h .l
+ en €V o s,z(+> i T ol

n)

ij_l), for all other values of usyn < vé 0 — Ne.0-
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A proof of the instability of AdS

It can be readily inferred from (7.281) and the form (6.80) of Vl.(n) = Vl.(:’\) U
(n)

() T
iy

Vi(”/) (and in particular, the fact that Vl.(,"\) clv<v h,, ﬂ)} wheni < i Srl))

that
=vinv?nul, =w=vinynul, forali<i{ (7.283)

and

@)
. 1 € N E))
inf (w—u)>p. ! foralli <il’.  (7.284)
=N nugt © VA i

From (7.266), (7.284), (6.73) and the fact that 9, > 0, we infer that, for
any i < if), analogously to (7.271):

Py — r,gfl.)n(V) _ f([vgf?—hg,,»,v;{@)+h8,i]x{V})mujm (= 8ur) du
(i) - @ .. )
rmin(v) rmin(veyi_(:) - hg,ig))
exp(20.0)e® 3
< PO DET 5 (7.285)
ro. .
nyiy’ i

where r,% +(V), r,(,il)n (V) are defined by (7.270). Therefore, using (7.277) and

(7.285) and arguing as in the proof of (7.272)—(7.274), using in addition the
estimate
()

VA

3
/ - (—3u"~1)duS(‘:(/*)[n;ifrl),i]-(1—i—Cs)+C,o,s2
o=V,

(following from (7.79)) in the case when V ¢ [v("?(l) - h&7 OB v(",)(l) + h8 0],
851+ [t o (";‘,IJr by

we obtain forany i < i f):
2m 1 | — 0,
/ — AT 2 L V) du
p=VInVPur ro 3 r
1
< 2uiln + 11+ 0. %) (7.286)

On the other hand, for if) <i< iil), using the relation
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2m 1 _1—0,m
/ (1= - oA 220, vy du
=Pt v T3 ’
; J<iy
T, i T, i
:agi/ r( uul feil 4 uv[fsz]>(u’ V) du
{v:V}ﬂVi(Qﬂu;n\U, ‘(Z)Vj(«n) _aur avr
; j<iy

(following from (2.49), (6.65) and (7.1)), we infer by arguing exactly as in the
proof of (7.276) that

(1)

l+ ) )
2 1 i —9
Z/ 1__m_—AI"2) 1 u (u’v)du
im® {v=V}mv§”>mugfn\uj<i(2) e . 3 -
=i @
i(l)
+
= 2 aci oxp (exp(0, ). (7.287)
- (2)
l:l+

From (7.263), (7.277), (7.280)(7.286), (7.287) and the fact that |i£r1) —if) | <
2, we readily infer (7.262) in the case V < v,
CaseIll: V € (VD) vg'(;”) —heo+ —%n). In this case, we will split the
left hand side of (7.263) as

TMM[fS] Tuv[fs]
/{vz\/}ﬂujnr< —dyr * dyr )(u’ V) du (7.288)

/ r(Tuu[fs] 4 Tuvl fe]
=Vinlu=U®)negt, N —Or dor

T, T,
+/ r( uul fel + uv[fs])(u, V)du,
=Vinu=U®)nut, N —Or Oyl

)(u, V) du

where

) 5, &
U® =" — p; = (7.289)
and we will estimate each term in the right hand side of (7.288) separately.

From the form (6.80) of V") and the definitions (7.265), (7.289) of V),
U™, respectively, we infer that

1
inf W—u) > =p; > (7.290)

=V <UL V)t 2

en

VA
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A proof of the instability of AdS

Thus, using (6.73), we infer that

inf r> e—f’fp;ZLA. (7.291)

N, —_
{2 VOINu<UDINUYE VT, v/

Using the relation (6.65) and the bounds (6.73), (7.11)—(7.12), from (7.291)
we infer that

T, T,
/ r( uu[fs] + uv[fe])(u’ V) du (7.292)
=VinlusU®neet, N —r A
N,
£ T, i T, ;
:Zasi/ I’( uu[fel] I uv[fs:])(u’ V) du
= =VINu<U®)nu, —0yr oyl
N, .
€ 1 (8(1))4 .
< explexp(o, D Y [ (Ccar
p p & ; €l {U=V}ﬂ{u§U(+)}mu;n 1 — %Arz }"5

()

+ (—A)—‘)(u, V) du

r3
N .
& 1 (8(1))4 |
9Mw@%2%{1 (4<%r
i=0 I—3ar2% 7
()2 _
+ (=N .
" r=e=% p;? T
<pl.

On the other hand, in the case when

=Vin{u=UP)nut, #0.

from the form (6.80) of V" and the definitions (7.265), (7.289) of V), U™,

(n+1)

respectively, we infer that, depending on whether V belongs to Uf\go[vs ;

he.i, vi"fl) + he ;] or not:

e Either
=Vin{u=UDn{u% v uv P nut, =0,

in which case

/ r(Tuu[fe] i Tyl f¢]
=Vinu=U®)net, N —r ol

)(u, Vydu =0, (7.293)

@ Springer



G. Moschidis

e Or

=vinu=uP)n{ul, "oy nul, =

={v=VIn{u>=UP}n {V,(O"{D} nuS, forsome0 <ip < Ne,

in which case, using the bounds (6.73), (7.1), (7.10), (7.11) and the fact
that the regions

Vi(,n\H) NUP <u < uin}

are disjoint, we can estimate

T, T,
/ I’( uul fel + uv[fs])(u’ V) du (7.294)
w=V)nuzUSnut, —Our Oyr
T, i T, i
=a8i0f r( uu[fsxo] 4 uv[felo])(u’ V) du
{v:V}ﬂ{uzUH)}ﬂL{;n —0yr Opr
6 400 1 (8(10))4
< exp(exp(o, ")) ai / T 2( (=)
mfv(,,H) rl— Ar r
o\
(i0))2
+(8 )( A)” 1)dr<
r

1 _
< 3 exp(exp(o, 7))a,gio.

From (7.292), (7.293) and (7.294), we therefore infer (7.262) in the case
V > V) Thus, we have established (7.262) for all values of V.
Arguing as for the proof of(7.262), we similarly obtain that, for all U > 0:

Tyolfel  Tuvlfel
/{u:U}mujnr< Oyt + — Oy >(U, v)dv

Ne—1

1 7 1 L
< 3 Ogas)l(vg {(exp(e” )asi} +4 X(; wiln + 11+ 5,08'9. (7.295)
1=

Thus, adding (7.262) and (7.295), we infer (7.257).
We will now proceed to establish (7.258). To this end, let us define the
domains

o = ({{u <o+ heiy 0w =0l — b))

Ufv = o) - hg,i}) Nfv—u=> ,Bs,i} nu;

&, e,n’

(7.296)
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A proof of the instability of AdS

Fig. 24 The domain Qg") is equal to the union of the beam V; N Z/{:’: n with the darker shaded

region depicted above (where we assumed for simplicity that véng_ b_ heo < ulUF])

where B¢ ; are defined by (6.79) (see Fig. 24).

Remark Notice that, for any 0 < i < N,, the domain Ql(") consists of the
region “to the right” of the beam V; (including V;), within the domain L{;f -
Moreover, in view of (7.1), we have

i =0onlUl,\ U QM. (7.297)

(since Z/l:n\ UlN:So Q;”) consists of the single connected component of

Z/{;rn\ va:go V; containing yz).
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As a corollary of the bound (6.73) for dr and the definition (6.79) of B ;, we
can bound for any 0 <i < Ng:

NG
inf r > ex exp(o, ) — 7.298
inf 2 (= exp(o; %) . (7.298)

In view of the relation (6.65) between f, and the f;’s, the fact that f; is

supported on UkV( ). the bound (6.73) for or and the bounds (7.11)—(7.12) on
Tyl fejl, we obtam from the relations (2.49)—(2.48) for 9m (and the fact that
mly,, = O) that, forany 0 <i < Ng:

Ne 0
e
sup m < exp(exp(oq)) Agi ———
(n)\Uz IOQ(n) & JZ:; ) /—A

; () g gD
< exp(exp(o, '))a + exp(exp(o, . (7.299
_p(p(g))g,«/_A p(exp( ))\/_A (7.299)

Combining (7.298) and (7.299), we infer that, for any 0 < i < Ng,

27 g |
SUp = = exp(exp(o, )i + €2 (7.300)
Q(n)\ul Q(”)

The upper bound (7.258) now follows readily from (7.300), (7.297) and the
fact that

Ne
us, =U (QE")\ Ui Qﬁ-’”) U (U:;n\ U, QE")). (7.301)
i=0

The upper bound (7.259) follows similarly from (7.300) and (7.297), after
noting that

(O UZh Q™) N = o) + he s = Bforall j < i < N,

The proof of the estimates (7.257), (7.258) and (7.259) (with &, fzg, j in
place of o, h¢ j) on ’Zjn follows in exactly the same way, using (6.78) in

place of (6.73) and replacing all the statements about Vl.(") ,E® | Dr® with

the corresponding statements about )71-("), E®, Dr@®), respectively; we will
omit the details. O
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A proof of the instability of AdS

8 The first stage of the instability

In this section, we will show that the parameters {ag,-}f\io, appearing in the

definition of the initial data family (r/(g), (Q;g))z; f/(g)), can be carefully cho-

_3
sen (without violating the smallness condition (6.10)) so that, after ~ o, >
reflections off Z,, the Vlasov beams form a configuration of a particular form;
this configuration will be shown in the next section to guarantee the formation

of a trapped sphere in O (1) retarded time.
(n)

e,i”’
he i and the domain L{j C u,§f,§x, see Sects. 6.3—6.4; for the definition of the
sequences i;, & and R;, see Sect. 7.3):

In particular, we will establish the following result (for the definition of v

Proposition 8.1 For any ¢ € (0, g1], there exists a finite sequence {agi}fvio €
(0, o¢) satisfying (6.10),

. _ —10
omax  dei < exp(—exp(d; ")) 8.1
and
agn, < exp(—exp(o, ™)), (8.2)

such that the following statements hold for the maximal future development
Unsax: 1, 2, fe) of the initial data set (r/(s), (Q;S))Z; f/(g)) associated to
{agi}lN:so (see Definition 6.3):

1. Setting

3

ny = [oe *7, (8.3)

we have

3
O<u§v(n+)—h80 N{u<v<u+,—=mt clU’. (84
8,0 ’ A &

2. The quantities i[ny] (introduced in Definition 7.5) satisfy, for all 0 <
j S NE - 1)

3
j 4
¢ 2t (8.5)

Se
pilnyl = N

&

@ Springer



G. Moschidis

and, for j = Ng:
o s(Ne)
En,[ny] = exp(—exp(4o, ))M. (8.6)
Proof Let us set for convenience
. V—=A
un,[n] = 2,0(»35N‘8 [ﬂ]m (8.7)

for any n € N. In this way, the quantities w;[n] are defined forall 0 <i < N,
(note that Definition 7.5 only defined p;[n] for 0 <i < N — 1). In particular,
(8.6) becomes equivalent to

pn 4] = 2p; exp(—exp(do; ). (8.8)
Note that (7.147) implies that

Ne—1

v+ 1= el -exp (3l +11) (8.9)
j=0

foralln € N.
In view of the initial condition (7.146) for u; for 0 <i < N, — 1 (which,
in i ; i — @
particular, expresses j; as a function of 7}, and r along u = Ve 0 ho.e),

the form (6.17) of f (8), the bound (6.26) and the Cauchy stability statement of

/
Proposition 3.15 applied to (r/(a), (Q;s))z; f/(g)) (implying, in particular, that

Dyt
1—%Ar2

= % 4+ O(og) on {0 < u < vg)()) — ho.¢}), we readily infer that, for

any ¢ € [0, 1), the quantities {u; [O]};V:SO uniquely determine {agi}lN:SO and
vice-versa and, moreover,

Cipeagi < ni[0] < Crpgas; forall0 <i < N, (8.10)

for some constants Cy, C» > 0 independent of 7, €.

By solving the recursive relation (7.145) for w;[n] backwards in n, for
0<i<N,-— 1,26 and then solving (8.9) backwards in n for i = N,, we infer
that, imposing (8.5) and (8.8) as initial conditions in the future, the values of

26 Solving (7.145) backwards in n can be performed inductively in i: For i = 0, u;[n] is
constant in n, while for any i > 0, knowledge of {;[n]} for all 0 < n < n completely

i<i—1
determines w;[n], for all 0 < n < n, in terms of p;[n].
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A proof of the instability of AdS

{,u,-[O]}fv:‘E0 are completely determined; thus, {az.;,-}f\]:sO are also uniquely deter-
mined. For this reason, in order establish Proposition 8.1, it suffices to show
the following (in view of (8.10)):

&

e The finite sequence {u;[0] lN: o- fixed uniquely by the future conditions
(8.5) and (8.8), satisfies

wil0] < ps exp(— exp(268_10)) forall0 <i < N, —1, (8.11)

1N, [0] < pe exp(—exp(20, ")) (8.12)
and
Ne
> uil0] < Cioe. (8.13)
i=0

e The maximal future development (u,fgx; r, Q2, fe) of the initial data set
(r/(s), (Q;e))z; f/(g) ) associated to the finite sequence {asi}fv:‘go (uniquely
determined by {u; [O]}lN‘EO) satisfies (8.4).

Step 1: Proof of (8.11)—(8.13). The relations (8.5) and (8.8) for u;[n.] readily
imply that

N
1 &
7= il =1, (8.14)
i=0
From (7.145) and (8.9) we infer that, for any 0 <i < N,:
piln] < wiln + 1] (8.15)
(with equality only when i = 0). In particular,
wil0] < pilny] forall0 <i < N,. (8.16)
From (8.16), we infer, using (8.5) and (8.8), that
_3
wil0] < N '8 7,
1, [0] < 2pe exp(— exp(da, ),

from which (8.11) and (8.12) follow readily, in view of the fact that §, <
0: < land N, = p;! exp(e‘ss_ls).
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Let us define i to be the minimum number in the set {0, 1, ..., N¢} such
that
l()
> wil0] = clag (8.17)
i=0

Notice that the definition of ig implies that

io—1 1
> wilol < SC10%. (8.18)
i=0

Note also that the bound (8.11) (which we already established) implies that,
necessarily,

ig > 1.

For the proof of (8.13), we will consider two cases, depending on the value
of ip:

e In the case when iy = N,, the bound (8.17) trivially implies (8.13).

e Inthe case whenig < N, —1,foranyip+1 < j < N, —landanyn > 0,
we can estimate using the recursive formula (7.145), the monotonicity
property (8.15) and the lower bound (8.17):

\.
,_.

jjln + 1] = pjlnlexp (2 weln + 1]) (8.19)
0
J
= 1;[01exp (2 el + 1)
k

~

S|
I

—_

S
Il
o
I
o

i0

ukn+1])
k=0

Zuk )

1
2 il0lew (2363 SCiov))

M:

> nj[0]exp (2

=
Il
=

M:

0k

Y
=

=

= u;[0]exp(Cioen).

(2
(2
- yl0rexp (2]
(23
(
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A proof of the instability of AdS

Similarly, for j = N,, we can estimate using (8.9) in place of (7.145):

Ne—1

Z piln + 1]) (8.20)

n Ng—l

ZZMkn+1])

n=0 k=0
i0
ZZuk[O])

n=0 k=0

= un,[0]exp (%Cldgn).

l’LNg [n + 1] - l'LNg n] exp

= un,[0] exp

> un,[0]exp

From (8.19) and (8.20) for n = ny — 1, using also the definition (8.3) of
n4, the upper bound (8.14) and the fact that Cy is an absolute constant, we
obtain that (provided e has been fixed small enough)

> 101 = exp (— 3Croeny — 1) S @20
Jj=io+1 Jj=io+1
<exp (- 5C m(m—l))
ex (- 310:)
< exp(—ag_z)

From (8.18), (8.11) and (8.21) (using also the relation (6.1) between p,,
8¢, 0¢) , we therefore obtain that

N, ) Ng
D w01 =Y uil01+ uig[01+ Y l0] <
j=0 j=0 j=io+1

A
S~
IA

1 _
< EClag + ps exp(— exp(28;10)) + exp < — 0g

S C1087

hence inferring (8.13).
Step 2: Proof of (8.4). The inclusion (8.4) is equivalent to the bound

o) — heo < ull, (8.22)
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in view of the form (6.51) of 1. For the sake of contradiction, let us assume
that

W] < v — hey. (8.23)

£,

Notice that (8.23) implies (in view of (8.3)) that

[SI[o8)

- )
WU < :;S__A < j’f__A (8.24)

Hence, Lemma 6.7 implies that at least one of the relations (6.55), (6.56)and
(6.57) holds.
In view of the bound (7.257), we can estimate (using the hypothesis (8.23)):

sup/ r(T“”[fg] + T””[fg])(u, V) du (8.25)
V=0 J{v=vinu+ —0yr Ot

+ sup/ r<Tvv[fa] + Tuv[fs])(U’ V) dv
{u=Uynu+

U>0 31,1” —3ur

T, T,
—  max {sup/ I’< uul fel + uv[fs])(u, V) du
n<niy—I1 V>0 {U=V}””:n —o,r 0yt

4 sup/ r<Tvv[fe] 4 Tuv[fs])(U’ v) dv}
u=Uinuf,

U>0 Oyr —Oyr
Ne—1 ; .
< ng:iuil {8 z(; wiln + 1] +0gil?1(vg {(CXp(e"s ))aai} + pd }
1=

Using the bounds (8.1) and (8.2) for a,;, the relation (8.5) for w;[n4], as well
as the fact that ;[n] is increasing inn for all 0 < i < N,, we infer from (8.25)
that

sup/ r(Tuu[fs] + Tuv[fe]>(u, V) du (8.26)
{v=V N

V>0 —yr ol

T, T,
+ sup/ r( vv[fs] + v[fe])(U’ v) dv
U=0Ju=U)nu dpr — 0y

Ne—1 ) ) N
<3 Z {Mi [n4]+ exp(e’ 7) -exp(e” % 9) + ,0519}

i=0

Ne-l 8_‘3T i3
<8 £ e72W% T 4 0(o,) < 20.
< g NC +0(0,) <
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Furthermore, we infer from (7.258) (using the bounds (8.1) and (8.2) for a,;)
that
2m 2m
sup — < max { sup —}
ut r n<ny—l1 r

(8.27)
ur,
= max {(exp(e™ Jas } + ¢
1

< exp(e"é:s) . exp(e_agg) +e2
= 1770-
-2
In view of the estimates 8.26 and 8.27, we therefore deduce that none of the
relations (6.55), (6.56) and (6.57) can hold on ¢", which is a contradiction.
Hence, (8.22) holds.
Therefore, the proof of Proposition 8.1 is complete. O

9 The final stage of the instability: formation of a black hole region

In this section, we will show that, with the initial data parameters {aei}f\go
chosen as dictated by Proposition 8.1, the maximal future development
(u,§fa)x; r, Q2, fe) of the associated initial data set (r/(e), (52;8))2; f/(e)) satis-
fies (4.2). Since (4.1) was already established in Lemma 6.5, this section will
complete the proof of Theorem 1.

9.1 Energy growth for the final beam

In order to complete the proof of Theorem 1, our aim is to show that a trapped
sphere is formed along the beam V](\ZT.\), after its interaction with the beams

Vi(";), i < Ng — 1. To this end, in this section, we will first establish the
following result regarding the increase in the energy content of the N,-th
Vlasov beam occuring through these interactions:

Lemma 9.1 For any ¢ € (0, &1], let {ag,'};\]:so and n. be as in Proposition
8.1, and let (Z/{,Efg o Q2 fe) be the maximal future development of the initial
data set (r/(s), (Q;s))z; f/(e)) associated to {ag,-}fvzso. Then, the following (u, v)-

region is contained in the domain Tj C u,ﬁfg + (see Sect. 6.3 and, in particular,
(6.50) for the definition of the domain T.F):

- 3
{O <u < v§71\+/3—1 —i—hg,NS_l} N {u <v < u—i—,/—Xn} cT;m 9.1)

@ Springer



G. Moschidis

(see (6.79) for the definition of vgli) and (6.105) for the definition of fzgy,-. )
Furthermore, we have

() 4 &™)
Eng; Ney Ne — 112 6 NaN 9.2)
Proof Before establishing (9.1) and (9.2), we will first show that
_3
pilngy +11=N;'8,* forany0 < j < N, — 1. (9.3)
The recursive formula (7.145) yields that, forall 0 < j < N, — 1:
j—1
ity + 1= jlne]-exp (23 ulny +11), 9.4)
k=0
while, in view of the relation (8.5), we have forall0 < j < N, — 1:
3
8 4 _,isd
ilnel = —gme PR ©9.5)

&
We will show (9.3) by arguing inductively in j:
e For j =0, (9.4) and (9.5) imply that

_3
polny + 11= polny] = N '8: *.

e Assuming that, for some 1 < jo < N, — 1, the relation (9.3) holds for all
0 < j < jo— 1, we calculate from (9.4) and (9.5) for j = jj that

Jjo—1
wplns +11= pjlnel-exp (2 ) uxlns +11)
k=0

3

i 3 Jo—1
884 —2405, 4 1.3
== e W% Lexp(2Y (Vs )
N &€
€ k=0
3
-1 3 3
JO 4 JO i)
_ Se LSt 42gks,
Ne
e
=

i.e.(9.3) alsoholds for j = jjy. Therefore, (9.3) holds forall0 < j < N.—1.
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A proof of the instability of AdS

We will now proceed to show the inclusion (9.1). In view of the form (6.51)
of the domain ’Z;Jr, (9.1) is equivalent to the bound

o) he -1 < [T, (9.6)
In order to establish (9.6), we will assume, for the sake of contradiction, that
ulZ 1 < 0%+ he,-. 9.7)

In view of the inclusion (8.22) for ;" and the fact that u[U"] < u[7."], the
bound (9.6) in fact implies that

o) = heo < ul T < 00+ he -1, (9.8)

In view of (9.7) and the definition (8.3) of n, we can bound

-2
O¢

VA

As a consequence of Lemma 6.7, we therefore infer that one of the following
conditions holds:

ulT,71 < 9.9)

. 2m
limsup —(p) = no, (9.10)
p—tu=ul7 7y "

u+ —3x T T
lim  sup / * r< wlfel | ””[f8]>(u,v)dv=5;1, ©.11)
u—)u[’]?'] u 8U7‘ —8ul"
or
min{v,u[’]j]} T T
sup / r( uvl fel n uu[fe]>(u’v)du:88—1.
max{0,v— —%n} dr —Oyr

ve(O,u[’Z}"']-ﬁ-,/—%n)

(9.12)

In view of the bounds (9.8) and (8.1), Lemma 7.8 (and, in particular, the
estimate (7.259) for 7.1, 8, in place of U * 0. implies that

en’ en’

-8
sup — < max {(exp(e‘ss )agi}
N gy = r 0<i<N,—1
Tipy Mu=vg ;1 Fhe ne—1)

1 _$ 1
+e2 <exp(e ™ ) < 370 (9.13)
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Furthermore, the bound (7.257) of Lemma 7.8 (with T;’n, 3¢ in place of L[:n,
o¢), together with (8.1), (9.3) and the fact that ;[n] is increasing in n for all
0 <i <N, — 1, imply that

T, T,
supf r( uul fe] + uv[fe])(u, V)du (9.14)
v=0J=vinTt N —Our Ol

T, T,
n sup/ r< vl fel n v[fs])(U’ v) dv
{u:U}ﬂ'er” dyr —dyr

U=0

Ne—1 . 1
<8 ) wilng + 11+ max {(expe™ )asi} + ol

i=0 -

_3 _
<8N, N 's;* + exp(e_‘sﬁg)

The bounds (9.13) and (9.14) readily imply that none of the relations (9.10)—
(9.12) can hold, which is a contradiction. Hence, (9.6) (and, therefore, (9.1))
holds.

We are finally ready to establish (9.2): From Proposition 7.6 (in particular,
the relation (7.158)), the relations (8.6) for &y, [n] and (9.3) for w j[ny + 1],
as well as the recursive formula (7.147) for €y, [n], we obtain that

S+ & e
EPIny: Ney N — 11 = En Iy + 11+ 0(,08 M) 9.15)

Ne—1 1 g(Ne)

= En.[nyl- exp( Z wilng + 1]) + 0(,0517 ﬂ)
=0

e (No)

V—A

_3
— exp(— exp(40.?)) . exp (Ng NS, 4)
1 8(N€)

+0( ﬁ—)
Pe J=hn
1 (Ng)

= (exp (5 F —exp(do, %) + 0(0")) Fmc.

T

The bound (9.2) now follows readily from (9.15), in view of the relations (6.1)
between p,, o and §,. O
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A proof of the instability of AdS

9.2 Trapped surface formation and completion of the proof of
Theorem 1

In this section, we will show that the energy content of the N.-th beam V("+)

after its interaction with the rest of the beams at the final step of the evolutlon
(which was studied in the previous section), is sufficiently high for a trapped

sphere to form before V( "+) reaches its minimum distance from the axis VZ.
This statement will thus conclude the proof of Theorem 1.
In particular, we will show the following:

Proposition 9.2 For any & € (0, e1, let {agi )y, Usiar: 1, %, fe) and ny
be as in Proposition 8.1 and Lemma 9.1. Then, setting
= [, @m4) 7 (ny) —i
Be ={v, N1 +hen—1 <u<v'y =8 "hen,} (9.16)
N {v < vé 1\+/) + exp(e )hg,Ns} N {u < v}
(Where he , is defined by (6.79) and fz&Ng,l is defined by (6.105)), there
exists a point (u+, vi) € Be N u,ifa)x such that

2m
—(uy, vy) > 1. (9.17)
,

In particular, (Z/{,(,fgx; r, Q2, fe) contains a trapped sphere.

Proof In order to establish (9.17) for some (u+, vy) € Be N u,Efgx, we will
assume for the sake of contradiction that

2
e <1 everywhere on B, NUE) . (9.18)
,
Note that the bound (9.18) implies, in view of the inequality
QZ
h(—=—) =0 9.19)
—yr

(following readily from the constraint equation (2.38)), the relation (2.9) and

the fact that 2 is smooth on u,ﬁfgx, that

dur <0 <d,r onB.NUE . (9.20)
Furthermore, integrating the inequality (9.19) in u from u = v( ) — hgoand

using (8.4) and (6.73) atu = vgla’ ) he 0, we obtain the followmg one-sided
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bound:
Q? Q2 oyt
sup 5 < max 3 <e’ . (9.21)
Bl ~ O u=al —hey T

Note also that, in view of (9.20) and the bound (6.78) for {u = vé";)_l +

flg, N.—1} N Bg (which is contained in 7?, in view of (9.1)), we can estimate

—A 2 =—A 2 n ~ n — <
szlglf( r) r I(u o= (,fﬁ 1+hg,1vs—1,viﬁg),ﬁrexp(e"s7)hg,N8) <eg
(9.22)
and, hence, (9.18) also implies (in view of (2.44)) that
2m ©
— < 1+ ¢ everywhere on B, NU,,,.. (9.23)

r

Among all components f,; of the Vlasov field f. (see the relation (6.65)),
only f;n, has non-trivial support on {u = v(n+) ot hg Ne—1} N Bg mu,Efgx (as
a consequence of Lemma 7.1 on the support of Jfei and (9.1)). Hence, by the
domain of dependence property, all the f;;’s fori # N, vanish on B, N u},ﬁix,
Le.:

Jeli,cuggy, = Ao SoNelg,curf, ©24)

Let y C u,ﬁfa) + be a future directed null geodesic which is maximally
extended through reflections off Z,, in accordance with Definition 2.3 of [43]
(see also the statement of Corollary 5.2), such that (y, y) lies in the support of
fen. (Where y denotes the derivative with respect to the fixed affine parametri-
sation of each maximal geodesic component y;,, of y = U, ). In view of the
bound (7.1) for the support of f¢y, and the inclusion (8.4), we can trivially

estimate that, at the point of y where u = v( n+) — he ot

(n4)
U =0 e ) > vy, = hen, (9.25)

Since y traces out a causal curve in u,Efg » (and, in particular, the coordinate
function v is non-decreasing along y ), we infer from (9.25) that

vlyng, = 005 — hew,. (9.26)
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A proof of the instability of AdS

Fig. 25 In the figure above, the domain B¢ consists of the two darker shaded regions Be \ B
and B, while th region D¢ is the blue-shaded triangle (containing Be \ BY). A fundamental
step in the proof of Proposition 9.2 consists of showing that the physical-space support of the

Vlasov field fy, in the region {r > 5 1 %} is contained in a domain BE C B and that

the region D¢ is vacuum (colour figure online)

Therefore:
supp(fon,) N Be C {v > v( +) — hew, ). (9.27)

In view 0f(9.24) and (9.27), we obtain that

fe =00n (B:\BY) NUE)., (9.28)
where
B—{v>v —he N} N B

(see Fig. 25). By the domain of dependence property, we therefore infer that
the solution (r, Q2, fe) extends to the whole triangle

De = {v <o) = hew,} 0 {u = 00| + hen,—1} 0 {u < v},
i.e. that

D, cU®)

max’>
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and that D, is a vacuum region, i.e.

felp, = 0. (9.29)
In view of (9.29), we readily infer that 9,7 > 0 on D,, and, therefore:

inf r> 0.
B0 fv=v"¥) ~he ;)

Thus, using (9.20), we infer that

0 < inf = P (9.30)
« _ (n4) max
Bgﬂ{v_vS’N‘8 —he N}

< max r < +o0.
BEO(u=v")_ e ne-1)

The bounds (9.18) and (9.30) and the extension principle of Proposition 3.12
then readily imply that the solution extends on the whole of the domain B},
i.e.

Bf c U

max -

(9.31)

The following estimate for the support of the Vlasov field fn, will be
crucial for the proof of Proposition 9.2:

g(Ne)

M} c{w v eBi}, (932

supp(fen,) N Be N {r = 8,

where
1 _
B = {ufy) —hen, <v <o) + 5 5 exple” Yhen, ) (9.33)
- ,1
n {vgl;\r’s)*l +henN—1 Su = U(n]\z) 4h€,N€} C B;.

This will be established by Lemma 9.3.

Remark Note that the bound (9.32) does not follow from Lemma 7.1, since

we do not expect the region Bﬁ to lie within the domains U, or 7", where

27’" < no (in fact, our aim is to show that 22 - " exceeds 1 at some point on Bﬁ)

However, even when restricted to B, N {u = v(n+) ot hg N.—1},(9.32)is a
partial improvement of the bounds provided by Lemma 7.1, since B N {u =

(n+) =~ . . . + . . . . +
Vo N1 T he n.—1}1s contained in 7., but is not necessarily contained in I,
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A proof of the instability of AdS

©

Fig. 26 Schematic depiction of the domains D¢ and Bg C B. The timelike curve Ce = {r =

1
—7 ¢We) . . .
S * %} does not necessarily have to intersect the region Bg. In the case when the future

1
boundary segment {u = vi";\;) — 8¢ * he, NN BE of BE lies to the left of the curve C, the point
(Ux, Vi) lies on Ce¢

and hence Lemma 7.1 can only guarantee bounds for supp( fen,) in terms of
hen, .

Let us assume, for a moment, that Lemma 9.3 (and, thus, (9.32)) has been
established, and let us set

1 _
(44, vy) = future endpoint of the curve {v = vg’;j_l + 3 exp(e’s 7)hg, Ng}

_1 gNe)
NB:N{r=>6,"

(9.34)

il

(see also Fig. 26).
In view of (9.24), the bound (9.32) on the support of fy, implies that

1 _
f: =0o0n {v > vé’fi)il + —exp(e’ 7)h,g,Ng} N B, NUE)

2 max?
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and hence 71 is constanton {v > vén;,z_l + % exp(e® i 6N, | NBs ML), . This

fact, combined with (9.29) and the definition (6.96) of &[n4; N,. N, — 1]
implies that

Ay, v2) = E s Ney Ne — 11, (9.35)

The definition (9.34) of (u,, v,) implies that:
e Either

L1 (N
F(Uy, V) = 8¢ *

) (9.36)

]

e Or
_1 1 _
(s, v,) = (vif’;j,l =8 Then.. vy + 5 exp(e” 7)hg,Ng), (9.37)

in which case, by integrating the bound

0yr 2 1, »
avrzl_sz.(l_T—gAr)fzfe

(following from (9.21) and (9.22)) along # = u, fromv = u, uptov = v,,
we can estimate

1 8(N8)

7 (ity, v4) < exp(e’ )3 * T

Since (9.38) is weaker than (9.36), we infer that, in any case, (9.38) always
holds for (u,, v,). Combining (9.35), (9.38), (9.22) and the lower bound (9.2)
for SS) [n4; Ne, No — 1], we therefore calculate (using the relation (6.1)
between o, and J,) that

(9.38)

2m( ) (2m lA 2)( )
—Us, Ux) = \—— — A7 J(Ux, Ux
r r 3

28 [n4s N, Ne — 1

r(Us, Vy)

8¢
> —— +0()

exp(e )3, *

+ O(e)

=

_ _1
— exp(—e% )8 + 0(e)
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A proof of the instability of AdS

%
OO\»—‘

e
> 1,

which is a contradiction, in view of our assumption (9.18). Thus, we infer that

(9.18) cannot hold, i.e. that there exists some (u+, vi) € Be N u,§fgx for which
(9.17) holds.
This completes the proof of Proposition 9.2. O

Lemma 9.3 The support of the Vlasov field f.y, inside the rectangle B, sat-
isfies

(Ne)

supp(fen,|5,) N {r = 8 * } < {(u,v) e BE}, (9.39)

DJ

Proof Let y be any affinely parametrised, future directed, null geodesic y
(which is maximally extended through reflections off 7) in the support of
fen,. The definition (6.7) of F 1(\5? ) and the relation (6.64) between F ]E,) and the
initial data for f;y, implies that the angular momentum / of y satisfies

¢ (Ne) g (Ne)
2H_l§6m. (9.40)
In view of (9.27), in order to show (9.39), it suffices to show that (Fig. 27)
_1 gV
max{v(p) cpeynB.nir=s; 4\/3}}
<"+ %exp(e%”)he, N, (9.41)

Applying Lemma 7.1 for i = N, and using (8.4) and (6.73) we infer that,
at the point

(U(n+)

po = hgo,vo)—)/ﬂ{u—v —hgo}

we can estimate

[0 — vo| < he.n,. (9.42)
exp(—o, %) = QG + 7|, <exp(expo; ) (943)

and

o v 12
< exp (exp(a ))— <e
0 r2 Po

oI

J}u

(9.44)
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Fig. 27 Schematic depiction Qe
of a null geodesic y in the
support of fe, . In order to e
establish the estimate (9.41),
we will integrate the Qe R
geodesic equation starting > P e

from the point pg (which lies g e e N~
in the region "), i.e. before
the last interaction of y with
the beams Vi(’”),
0<i<Ne—1

(where, for 9.44, we made use of the fact that (c:(Ns)/r|pO < eWNe) 16O < ),

Furthermore, using (6.73), (7.13) and the form (6.80) of V](\ZT\), we can estimate

for any v € [vg, vo + eXp(€J;7)hg,N5]i

v 9
| / (0, log(@?) = 2=5) (0('g” = he0, v) dv
)

—6vy |V — Vol
< eXp (6Xp(0’8 6)) _Ag(Tg)o (945)

We will establish (9.41) by continuity: We will show that, for any u €
1

[vi‘ng) - hé‘vO? U‘gn]j\;j_l - S;Zhe,Ng] SUCh that

1 _
v(p) < vy + A—‘exp(.e"‘g 7)h8,N€ forall p e y N {vgfo” —heo <u <u
n{r=s.* M}} (9.46)

@ Springer



A proof of the instability of AdS

(

(note that (9.46) holds trivially when u = Voo — he o), the following stronger

bound actually holds:
1 _
v(p) < vy + gexp(eos 7)hg,N8 forallp e y N {vé’fo” —heo<u< 12}
e
Alr > s } 9.47
_1
Letu € [v(m“) he.o, vgl;,g)_l — 8¢ “he n,] satisfy (9.46). Then, for any
u' € [v( +) — hg., ], setting

=sup{v(p) peyﬂ{( h0<u<u}

1 gV
Nfr=>s } 9.48
{ - Ye ﬂ ( )
and applying (2.50) for u;(v) = v(n+) he o, we obtain:
[ 1og (227" [u=r — log (227" sy

u(y (50)) 1 6 _

< ‘ / / Q2 — 247 Tuv> du du( (9.49)
<n+>_h 0 r2

+ |/ (3, log(2%) — 2%)(141(1)), v)dv|.
)

In view of the relation (2.49) for m, the upper bound (9.21) and the fact that
dym < 0 (which follows readily from (2.49) and (9.20)), we can estimate on
Be:

2 ~

Q° —o,m
247 T, <3 5 (9.50)
—_ ur
- 3e"874 —o,m

=3¢ (= u(35) + 255 (=aun))-

Furthermore, from the relation (2.9) and the upper bound (9.21), we can esti-
mate on B;:

Q% < 4¢%  (—d,r). (9.51)
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Using the bounds (9.23), (9.45), (9.50) and (9.51) to estimate the right hand
side of (9.49) (integrating, also, in u for the 9, ( ) term), we obtain:

‘log QZ 'u)|v:v’ _ log (QZ ‘u)|v:v0

uy (sv)) 16—"’+1 o pu(y(s0)
/ /w QZ)dudv+24n/ /w Tuwdudv  (9.52)

vo Jv, o —heo

+

/ (9, 1og(§22)—2—)(u1(u) v)dy

u(y (s0)) a v ey (sv)) 7
/ f “ r)d dv — 3¢ / / 0u() du dv
v<"+) heo ) vg,(f)fhg,o r

/ (8, 1og(522)—2—)(u1(v) v)dv‘

vo

+

-5 1 v — g
<e% ————v' —vo| +exp (exp(a; O))V=A | G |
r|yﬂ{v=v’}

In view of the definition (9.48) of v’ (and, in particular, the fact that r >

IS
8 * f/(% aty N {v = v'}), from (9.52) we obtain that:

[ 1og (@27 =y — log (27" |v:v0

< exp (exp(20 )«/—A v - (N . (9.53)
In view of (9.43) and assumption (9.46), from (9.53) we infer that

Q2P |y > exp ( — exp (exp(oe_g)). (9.54)

Furthermore, using the null-shell relation (2.19) for y, the relation (2.9) for
Q2, the upper bounds (9.18) and (9.21) and the lower bound (9.54), we can

g(Ne)

readily estimate (using also the fact that r > §, * —

consequence of (9.46)):

aty N{v=1},asa

8r-)}”| 1(1 2m)( Q? )212 1
—Bur - pulv=r T g roN=3,r/) r2(Q2pu)2 ly=y
1 1
< exp(exp(exp(agg)>882 <é. (9.55)
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In particular, (9.55) implies that the integration forms dr and du along y satisfy
atv =0’

7Y
drlyﬁ{v:v’} = (aur + Wavr)dmyﬂ{vzv/}
1
= 3ur (1 + 0(8:))dulynp=v)- (9.56)

Using the relation (2.19) for y as well as the bounds (9.21), (9.54), (9.55)

and (9.56), we can readily estimate that, forall p € y N {véng - heo <u <

i) fr= ot 2.

A
u 92))1)
_ < R d 9.57
v(p) —vo < fv%)_hm 7 G du 9.57)

u Q%2 1
_ / (s2) du
v

gg')—hg,o r2 (92)}14)2

u 9212
72

<exp (2 exp (exp(og8)> / s )du
v u

- g > Q?
< exp 4exp(exp(o)3 )

Y {vélfo ) ”S,Of”fu} u
< -9

12
) ) r—zdl"
yNvg ¢ —heosu<u}
12

(ny)
gn()+ _hs,O

dr

< exp (exp (exp(ag_g)) e .
Yl —he g <u<it)
1 e(Ne)

< &g

=0 =

where, in passing to the last line of (9.57), we made use of (9.40) and the bound
gWNe) (n+)

1
r>8 ° T ony N {v&O — heo < u < u} (following from (9.46)). From
(9.57), the bound (9.47) follows readily, in view of the relation (6.1) between o,
and §.. Thus, by continuity, we have established (9.41) and, therefore, (9.39).
Thus, the proof of Lemma 9.3 (and, thus, Proposition 9.2) has been completed.
O

Acknowledgements I would like to thank Mihalis Dafermos for originally suggesting this
problem to me, as well as for numerous insightful discussions and for valuable comments
on earlier versions of the manuscript. I am also grateful to Igor Rodnianski for many helpful

@ Springer



G. Moschidis

comments on earlier ideas on the problem. I would like to acknowledge support from the Miller
Institute for Basic Research in Science, University of California Berkeley.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source, provide
alink to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aharony, O., Gubser, S., Maldacena, J., Ooguri, H., Oz, Y.: Large N field theories, string
theory and gravity. Phys. Rep. 323(3—4), 183-386 (2000)

2. Ammon, M., Erdmenger, J.: Gauge/Gravity Duality. Cambridge University Press (2015)

3. An, X., Luk, J.: Trapped surfaces in vacuum arising from mild incoming radiation. Adv.
Theor. Math. Phys. 21(1), 1-120 (2017)

4. Anderson, M.: On the uniqueness and global dynamics of AdS spacetimes. Class. Quantum
Gravity 23(23), 6935-6954 (2006)

5. Andréasson, H., Fajman, D., Thaller, M.: Models for self-gravitating photon shells and
geons. Ann. Henri Poincaré 18(2), 681-705 (2017)

6. Balasubramanian, V., Buchel, A., Green, S., Lehner, L., Liebling, S.: Holographic thermal-
ization, stability of Anti-de Sitter space, and the Fermi-Pasta-Ulam paradox. Phys. Rev.
Lett. 113, 071601 (2014)

7. Bantilan, H., Figueras, P., Kunesch, M., Romatschke, P.: Nonspherically symmetric collapse
in asymptotically AdS spacetimes. Phys. Rev. Lett. 119(19), 191103 (2017)

8. Bizofi, P., Chmaj, T., Schmidt, B.: Critical behavior in vacuum gravitational collapse in 4
+ 1 dimensions. Phys. Rev. Lett. 95, 071102 (2005)

9. Bizon, P., Evnin, O., Ficek, F.: A nonrelativistic limit for AdS perturbations (2018). arXiv
preprint arXiv:1810.10574

10. Bizon, P, Maliborski, M., Rostworowski, A.: Resonant dynamics and the instability of
Anti-de Sitter spacetime. Phys. Rev. Lett. 115, 081103 (2015)

11. Bizon, P, Rostworowski, A.: Weakly turbulent instability of Anti-de Sitter spacetime. Phys.
Rev. Lett. 107(3), 031102 (2011)

12. Buchel, A., Lehner, L., Liebling, S.: Scalar collapse in AdS spacetimes. Phys. Rev. D
86(12), 123011 (2012)

13. Christodoulou, D.: The formation of black holes in general relativity. In: Monographs in
Mathematics. European Mathematical Society (2009)

14. Craps, B., Evnin, O., Vanhoof, J.: Renormalization group, secular term resummation and
AdS (in)stability. J. High Energy Phys. (2014). https://doi.org/10.1007/JHEP10(2014)048

15. Craps, B., Evnin, O., Vanhoof, J.: Renormalization, averaging, conservation laws and AdS
(in)stability. J. High Energy Phys. (2015). https://doi.org/10.1007/JHEP01(2015)108

16. Dafermos, M.: The Black Hole Stability problem. Talk at the Newton Institute, Cambridge.
http://www-old.newton.ac.uk/webseminars/pg+ws/2006/gmx/1010/dafermos/ (2006)

17. Dafermos, M., Holzegel, G.: Dynamic instability of solitons in 4 + 1 dimesnional
gravity with negative cosmological constant. https://www.dpmms.cam.ac.uk/~md384/
ADSinstability.pdf (2006)

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1810.10574
https://doi.org/10.1007/JHEP10(2014)048
https://doi.org/10.1007/JHEP01(2015)108
http://www-old.newton.ac.uk/webseminars/pg+ws/2006/gmx/1010/dafermos/
https://www.dpmms.cam.ac.uk/~md384/ADSinstability.pdf
https://www.dpmms.cam.ac.uk/~md384/ADSinstability.pdf

A proof of the instability of AdS

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Dafermos, M., Rendall, A.: Strong cosmic censorship for surface-symmetric cosmological
spacetimes with collisionless matter. Commun. Pure Appl. Math. 69, 815-908 (2016)
Dias, O., Horowitz, G., Marolf, D., Santos, J.: On the nonlinear stability of asymptotically
anti-de Sitter solutions. Class. Quantum Gravity 29(23), 235019 (2012)

Dias, O., Horowitz, G., Santos, J.: Gravitational turbulent instability of anti-de Sitter space.
Class. Quantum Gravity 29(19), 194002 (2012)

Dias, O., Santos, J.: AdS nonlinear instability: moving beyond spherical symmetry. Class.
Quantum Gravity 33(23), 23LTO01 (2016)

Dimitrakopoulos, F., Freivogel, B., Lippert, M., Yang, L.-S.: Position space analysis of
the AdS (in)stability problem. J. High Energy Phys. (2015). https://doi.org/10.1007/
JHEP08(2015)077

Dimitrakopoulos, F., Freivogel, B., Pedraza, J., Yang, 1.-S.: Gauge dependence of the AdS
instability problem. Phys. Rev. D 94(12), 124008 (2016)

Dimitrakopoulos, F., Yang, 1.-S.: Conditionally extended validity of perturbation theory:
persistence of AdS stability islands. Phys. Rev. D 92(8), 083013 (2015)

Eiesland, J.: The group of motions of an Einstein space. Trans. Am. Math. Soc. 27, 213-245
(1925)

Fournodavlos, G., Smulevici, J.: On the initial boundary value problem for the Einstein
vacuum equations in the maximal gauge (2019). arXiv preprint: arXiv:1912.07338
Fournodavlos, G., Smulevici, J.: The initial boundary value problem for the Einstein equa-
tions with totally geodesic timelike boundary (2020). arXiv preprint: arXiv:2006.01498
Friedrich, H.: Einstein equations and conformal structure: existence of Anti-de Sitter-type
space-times. J. Geom. Phys. 17, 125-184 (1995)

Friedrich, H.: On the AdS stability problem. Class. Quantum Gravity 31(10), 105001 (2014)
Green, S., Maillard, A., Lehner, L., Liebling, S.: Islands of stability and recurrence times
in AdS. Phys. Rev. D 92, 084001 (2015)

Gubser, S., Klebanov, 1., Polyakov, A.: Gauge theory correlators from non-critical string
theory. Phys. Lett. B 428(1), 105-114 (1998)

Hartnoll, S.: Lectures on holographic methods for condensed matter physics. Class. Quan-
tum Gravity 26, 224022 (2009)

Hawking, S., Ellis, G.: The Large Scale Structure of Space-Time. Cambridge University
Press (1973)

Holzegel, G., Luk, J., Smulevici, J., Warnick, C.: Asymptotic properties of linear field
equations in anti-de Sitter space. Commun. Math. Phys. 374(2), 1125-1178 (2020)
Holzegel, G., Smulevici, J.: Self-gravitating Klein—Gordon fields in asymptotically Anti-
de-Sitter spacetimes. Ann. Henri Poincaré 13(4), 991-1038 (2012)

Holzegel, G., Warnick, C.: The Einstein—Klein—Gordon—AdS system for general boundary
conditions. J. Hyperbolic Differ. Equ. 12(2), 293-342 (2015)

Horowitz, G., Santos, J.: Geons and the instability of Anti-de Sitter spacetime. Surv. Differ.
Geom. 20, 321-335 (2015)

Klainerman, S., Luk, J., Rodnianski, I.: A fully anisotropic mechanism for formation of
trapped surfaces in vacuum. Invent. Math. 198(1), 1-26 (2014)

Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv.
Theor. Math. Phys. 2, 231-252 (1998)

Maliborski, M., Rostworowski, A.: Time-periodic solutions in Einstein AdS—massless
scalar field system. Phys. Rev. Lett. 111, 051102 (2013)

Moschidis, G.: A proof of the instability of AdS for the Einstein-null dust system with an
inner mirror (2017). arXiv preprint: arXiv:1704.08681

Moschidis, G.: The Einstein-null dust system in spherical symmetry with an inner mir-
ror: structure of the maximal development and Cauchy stability (2017). arXiv preprint:
arXiv:1704.08685

@ Springer


https://doi.org/10.1007/JHEP08(2015)077
https://doi.org/10.1007/JHEP08(2015)077
http://arxiv.org/abs/1912.07338
http://arxiv.org/abs/2006.01498
http://arxiv.org/abs/1704.08681
http://arxiv.org/abs/1704.08685

G. Moschidis

43.

44,

45.

46.

47.

48.

49.

50.

Moschidis, G.: The characteristic initial-boundary value problem for the Einstein-massless
Vlasov system in spherical symmetry (2018). arXiv preprint: arXiv:1812.04274

Poisson, E., Israel, W.: Internal structure of black holes. Phys. Rev. D 41(6), 1796-1809
(1990)

Rein, G., Rendall, A.: Global existence of solutions of the spherically symmetric Vlasov-
Einstein system with small initial data. Commun. Math. Phys. 150, 561-583 (1992)
Rostworowski, A.: Higher order perturbations of Anti-de Sitter space and time-periodic
solutions of vacuum Einstein equations. Phys. Rev. D 95(12), 124043 (2017)

Taylor, M.: The global nonlinear stability of Minkowski space for the massless Einstein-
Vlasov system. Ann. PDE (2017). https://doi.org/10.1007/s40818-017-0026-8

Vasy, A.: The wave equation on asymptotically anti de Sitter spaces. Anal. PDE 5(1),
81-144 (2012)

Warnick, C.: The massive wave equation in asymptotically AdS spacetimes. Commun.
Math. Phys. 321(1), 85-111 (2013)

Witten, E.: Anti de Sitter space and holography. Adv. Theor. Math. Phys. 2,253-291 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

@ Springer


http://arxiv.org/abs/1812.04274
https://doi.org/10.1007/s40818-017-0026-8

	A proof of the instability of AdS for the Einstein-massless Vlasov system
	Abstract
	1 Introduction
	1.1 The main result: AdS instability for the spherically symmetric Einstein-massless Vlasov system
	1.2 Sketch of the proof and further discussion
	1.2.1 First stage of the instability: growth of the scale invariant norm and formation of the intermediate profile
	1.2.2 Second stage of the instability: trapped surface formation
	1.2.3 Discussion: comparison with the case of the Einstein-null dust system with an inner mirror

	1.3 Outline of the paper

	2 The Einstein-massless Vlasov system in spherical symmetry
	2.1 Spherically symmetric spacetimes and double null coordinate pairs
	2.2 Asymptotically Anti-de Sitter spacetimes
	2.3 Properties of the null geodesic flow and the massless Vlasov equation
	The geodesic flow on (mathcalM,g)
	The Vlasov equation

	2.4 The Einstein-massless Vlasov system

	3 The asymptotically AdS characteristic initial-boundary value problem
	3.1 Smoothly compatible characteristic initial data sets for (2.36)–(2.41)
	3.2 Well-posedness of the characteristic initial-boundary value problem and the maximal future development
	3.3 Continuation criteria for smooth solutions of (2.36)–(2.41) 
	3.4 Cauchy stability of (mathcalMAdS,gAdS) for (2.36)–(2.41) in a low regularity topology

	4 Statement of the main result
	5 Auxiliary estimates for the null geodesic flow in the case 2tildem/rll1 
	5.1 Geodesic paths under rough assumptions on the spacetime geometry

	6 Construction of the initial data and notation
	6.1 The hierarchy of parameters
	6.2 The initial data family 
	6.3 Notational conventions for domains and fundamental computations
	6.4 Notational conventions for the beams and their intersection regions

	7 First steps for the proof of Theorem 1: beam interactions and energy concentration
	7.1 Control of the Vlasov beams and the spacetime geometry away from the trapped region
	7.2 Interaction of the Vlasov beams: energy exchange and concentration
	7.3 The instability mechanism: energy growth for the Vlasov beams
	7.4 Control of the evolution in terms of mathcalEi[n], Ri[n], µi[n]

	8 The first stage of the instability
	9 The final stage of the instability: formation of a black hole region 
	9.1 Energy growth for the final beam
	9.2 Trapped surface formation and completion of the proof of Theorem 1

	Acknowledgements
	References




