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Abstract In recent years, the conjecture on the instability of Anti-de Sit-
ter spacetime, put forward by Dafermos–Holzegel (Dynamic instability of
solitons in 4 + 1 dimesnional gravity with negative cosmological con-
stant, 2006. https://www.dpmms.cam.ac.uk/~md384/ADSinstability.pdf) and
Dafermos (The Black Hole Stability problem, Talk at the Newton Institute,
Cambridge, 2006. http://www-old.newton.ac.uk/webseminars/pg+ws/2006/
gmx/1010/dafermos/) in 2006, has attracted a substantial amount of numer-
ical and heuristic studies. Following the pioneering work (Phys Rev Lett
107(3):031102, 2011) of Bizon–Rostworowski, research efforts have been
mainly focused on the study of the spherically symmetric Einstein-scalar field
system. The first rigorous proof of the instability of AdS in the simplest spheri-
cally symmetric setting, namely for theEinstein-null dust system, was obtained
in Moschidis (A proof of the instability of AdS for the Einstein-null dust sys-
tem with an inner mirror, 2017. arXiv:1704.08681). In order to circumvent
problems associated with the trivial break down of the Einstein-null dust sys-
tem occuring at the center r = 0, Moschidis (2017) studied the evolution of
the system in the exterior of an inner mirror placed at r = r0, r0 > 0. How-
ever, in view of additional considerations on the nature of the instability, it was
necessary forMoschidis (2017) to allow themirror radius r0 to shrink to 0 with
the size of the initial perturbation; well-posedness in the resulting complicated
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setup (involving low-regularity estimates of uniform modulus with respect to
r0) was obtained inMoschidis (The Einstein-null dust system in spherical sym-
metry with an inner mirror: structure of the maximal development and Cauchy
stability, 2017. arXiv:1704.08685). In this paper, we establish the instability of
AdS for the Einstein-massless Vlasov system in spherical symmetry; this will
be the first proof of the AdS instability conjecture for an Einstein-matter sys-
tem which is well-posed for regular initial data in the standard sense, without
the addition of an inner mirror. The necessary well-posedness results for this
system are obtained in our companion paper (Moschidis in The characteris-
tic initial-boundary value problem for the Einstein-massless Vlasov system in
spherical symmetry, 2018. arXiv:1812.04274). Our proof utilises an instability
mechanism based on beam interactions which is superficially similar to the
one appearing inMoschidis (A proof of the instability of AdS for the Einstein-
null dust system with an inner mirror, 2017. arXiv:1704.08681). However,
new difficulties associated with the Einstein-massless Vlasov system (such
as the need for control on the paths of non-radial geodesics in a large curva-
ture regime) will force us to develop a different strategy of proof involving
a novel configuration of beam interactions. One of the main novelties of our
construction is the introduction of a multi-scale hierarchy of domains in phase
space, on which the initial support of the Vlasov field f is localised. The prop-
agation of this hierarchical structure of the support of f along the evolution
will be crucial both for controlling the geodesic flow under minimal regularity
assumptions and for guaranteeing the existence of the solution until the time
of trapped surface formation.
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1 Introduction

In the presence of a negative cosmological constant �, the maximally sym-
metric solution of the vacuum Einstein equations

Ricµν − 1

2
Rgµν + �gµν = 0 (1.1)

in n + 1 dimensions, n ≥ 3, is Anti-de Sitter spacetime (MAdS, gAdS).
Expressed in the standard polar coordinate chart on MAdS � R

n+1, the AdS
metric gAdS takes the form

gAdS = −(1− 2

n(n − 1)
�r2

)
dt2

+(1− 2

n(n − 1)
�r2

)−1
dr2 + r2gSn−1, (1.2)

where gSn−1 is the standardmetric on the round sphere of radius 1. A conformal
boundary I can be naturally attached to (MAdS, gAdS) at r = ∞, with I
having the conformal structure of a timelike hypersurface diffeomorphic to
R× S

n−1 (see Fig. 1).
More generally, a conformal boundary I with similar properties can be

attached to any spacetime (M, g)which ismerely asymptotically AdS, i.e. pos-
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Fig. 1 The AdS spacetime (Mn+1
AdS, gAdS) can be conformally identified with the interior of

(R×S
n+, g(�)

E ), where Sn+ is the northern hemisphere of Sn and g(�)
E

.= −dt2+
(
n(n−1)
−2�

)
gSn+

(with conformal factor (1− 2
n(n−1)�r2)−1 vanishing as r → ∞). The timelike boundary I of

(R× S
n+, g(�)

E ) corresponds to the conformal boundary of (Mn+1
AdS, gAdS) at infinity

sesses an asymptotic region with geometry resembling that of (1.2) in the
region {r ≥ R0}, R0 � 1√−�

. For a more detailed exposition of the geometric
properties associated to AdS asymptotics, see [33].

The hyperbolic nature of the system (1.1) and the timelike character of I
imply that the right framework to study asymptoticallyAdS solutions of (1.1) is
that of an initial-boundary value problem, with boundary conditions imposed
asymptotically on I. The well-posedness of the asymptotically AdS initial-
boundary value problem for (1.1) was first addressed by Friedrich [28], who
established the existence of solutions for a broad class of boundary conditions
on I, including examples both of reflecting and of dissipative conditions (see
also the discussion in [29,34], as well as [26,27]). The formulation of appro-
priate boundary conditions for (1.1) on I and their effects on the spacetime
geometry have also been investigated in the high energy physics literature; the
recent surge of interest on these topics was sparked by the putative AdS/CFT
correspondence, put forward byMaldacena [39], Gubser–Klebanov–Polyakov
[31] and Witten [50] (see [1,2,32]).

The well-posedness of the initial-boundary value problem for (1.1) allows
discussing the dynamics associated to families of asymptotically AdS ini-
tial data sets for (1.1). Thus, the question of stability of the trivial solution
(MAdS, gAdS) under perturbation of its initial data arises naturally in this con-
text. When reflecting boundary conditions are imposed on I, the possibility
of non-linear instability for (MAdS, gAdS) is already insinuated by the lack of
asymptotic stability for solutions to linear toy-models for (1.1); this is already
illustrated by the simple example of the conformally coupled Klein–Gordon

123



A proof of the instability of AdS

equation

�gAdSϕ − 2

3
�ϕ = 0 (1.3)

on (M3+1
AdS, gAdS), where imposing Dirichlet conditions for rϕ on I results

in the energy flux of ϕ through the foliation {t = τ } to be constant in τ ,
thus preventing any non-trivial solution ϕ from decaying to 0 as τ → +∞.1

Motivated by additional considerations in the setting of the biaxial Bianchi IX
symmetry class for (1.1) in 4+1 dimensions, Dafermos and Holzegel [16,17]
in fact conjectured a stronger instability statement in 2006:
AdS instability conjecture There exist arbitrarily small perturbations to the
initial data of AdS spacetime which, under evolution by the vacuum Einstein
equations (1.1) with a reflecting boundary condition on I, lead to the devel-
opment of black hole regions. In particular, (MAdS, gAdS) is non-linearly
unstable.
The scenario proposed by the conjecture can be also viewed as a manifestation
of gravitational turbulence: The formation of black hole regions signifies the
emergence of non-trivial geometric structures at small scales, arising from the
non-linear evolution of initial data whichwere almost trivial at the same spatial
scales.

Remark We should point out that the above formulation of the AdS instability
conjecture is ambiguouswith respect to the initial data norm ||·||data measuring
the “smallness” of the perturbations. A minimal requirement for || · ||data is
that perturbations of (MAdS, gAdS) which are small with respect to || · ||data
should give rise to solutions g of (1.1) which exist (and remain close to gAdS)
for long time intervals {0 ≤ t ≤ T∗}, i.e. that (MAdS, gAdS) is Cauchy stable
as a solution of the initial-boundary value problem for (1.1);2 this condition
implies, in particular, that the timescale of black hole formation tends to+∞ as
the size of the initial perturbation shrinks to 0. The requirement for long-time
existence in fact imposes a condition on || · ||data as a measure of regularity of
initial data sets: The trapped surface formation results of [3,13,38] imply that
there is no uniform time of existence for solutions to (1.1) in terms of initial
data norms for which the vacuum equations are supercritical (such as norms
of regularity below || · ||

H
3
2
when n = 3, as a corollary of [3]).

The choice of reflecting boundary conditions on I is also crucial for the
validity of the conjecture: Assuming, instead, “optimally dissipative” condi-
tions on I, Holzegel–Luk–Smulevici–Warnick [34] showed that solutions to

1 The failure of asymptotic stability for (MAdS, gAdS) as a solution of the non-linear system
(1.1) with reflecting conditions on I follows from the results of M. Anderson [4].
2 Here, Cauchy stability should be understood as stability over compact subsets ofMAdS ∪ I
in the conformal picture.
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the linearized vacuum Einstein equations on (MAdS, gAdS) decay at a super-
polynomial rate in t , providing a strong indication of non-linear asymptotic
stability for perturbations of (MAdS, gAdS) in this setting.

The study of the AdS instability conjecture in 3 + 1 dimensions has been
mainly focused, so far, on Einstein-matter systems which admit non-trivial
spherically symmetric dynamics (thus reducing the problem to the more
tractable setting of 1+1 dimensional hyperbolic systems), while still retaining
many of the qualitative properties of the vacuum equations (1.1);3 a prominent
example of such a model is provided by the Einstein–Klein–Gordon system

⎧
⎪⎨

⎪⎩

Ricμν − 1
2 Rgμν + �gμν = 8πTμν[ϕ],

�gϕ − μϕ = 0,

Tμν[ϕ] .= ∂μϕ∂νϕ − 1
2gμν∂

αϕ∂αϕ.

(1.4)

In the casewhen theKlein–Gordonmassμ satisfies the so-calledBreitenlohner
–Freedman bound, well-posedness for the initial-boundary value problem for
(1.4) in the spherically symmetric case was established, for a wide class of
boundary conditions onI, byHolzegel–Smulevici [35] andHolzegel–Warnick
[36].4

The first numerical and heuristic study in the direction of establishing the
AdS instability conjecture for (1.4) was carried out by Bizon–Rostworowski
[11] in 2011. The numerical simulations of [11] verified the existence of spher-
ically symmetric initial data sets for (1.4), with small initial size, the evolution
of which (under Dirichlet conditions at I) reaches the threshold of trapped
surface formation after sufficiently long time. In addition, Bizoń and Rost-
worowski [11] was the first to propose a mechanism driving the initial stage of
the instability: Analyzing perturbatively the interactions of different frequency
modes of the scalar function ϕ, Bizoń and Rostworowski [11] suggested that
the transfer of energy from low to high frequencies was propelled by a hierar-
chy of resonant interactions.

Following [11], a vast amount of numerical and heuristic works were
dedicated to the study of the AdS instability conjecture for the spherically
symmetric system (1.4), addressing, in addition, questions related to the long
time dynamics of generic perturbations to (MAdS, gAdS) and the possibility
of existence of “islands of stability” in the moduli space of initial data for (1.4)

3 As a consequence of the extension of Birkhoff’s theorem to the case � < 0 (see [25]),
the vacuum equations (1.1) become trivial in spherical symmetry, which is the only surface
symmetry class compatible with AdS asymptotics in 3+ 1 dimensions. However, this problem
can be circumvented in 4+ 1 dimensions in the biaxial Bianchi IX symmetry class (see [8]).
4 See also [48,49] for well-posedness results for the linear Klein–Gordon equation on general
asymptotically AdS backgrounds, without symmetry assumptions.
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close to (MAdS, gAdS); see, e. g. [6,9,10,12,14,15,19,20,22–24,30,37,40].
For works moving outside the realm of 1+1 systems, see also [7,21,46]. Most
of the aforementioned works utilised a frequency space analysis similar to the
one introduced in [11], with the notable exception of [22]. Amore detailed dis-
cussion on the numerics literature surrounding the AdS instability conjecture
can be found in [41].

The first rigorous proof of the instability of AdS in a spherically symmetric
setting was obtained in [41], for the case of the Einstein-null dust system with
both ingoing and outgoing dust; this system can be formally viewed as a high
frequency limit of (1.4) in spherical symmetry (see also the discussion in [44]).
The proof of [41] uncovered and utilised an alternative instability mechanism
at the level of position space: Arranging the null dust into a specific configu-
ration of localised spherically symmetric beams, Moschidis [41] showed that
successive reflections off I lead to the concentration of energy in the beam
lying initially to the exterior of the rest. However, in order to circumvent a triv-
ial break down of the Einstein-null dust system occuring once the dust reaches
the center of symmetry,Moschidis [41] placed an inner mirror at a finite radius
r = r0 > 0 and studied the evolution restricted to the region r > r0.Moreover,
further considerations on the nature of the dynamics around (MAdS, gAdS)
necessitated that the mirror radius r0 in [41] was allowed to shrink to 0 at a
rate proportional to the size of the initial perturbation. Well-posedness for the
initial-boundary value problem in this rather complicated setup, in an initial
data topology allowing for estimates with uniform modulus with respect to r0,
was obtained in [42].

In this paper, wewill prove the instability of (M3+1
AdS, gAdS) for theEinstein-

massless Vlasov system in spherical symmetry; this system is well-posed for
regular initial data in the standard sense, without the addition of an inner
mirror around the center of symmetry. Novel difficulties associated with the
Einstein-massless Vlasov system (both at a technical and at a more conceptual
level) will force us to depart from the main strategy of proof followed in [41],
and develop a new physical space configuration of beam interactions, where
the sizes of the phase-space domains corresponding to each beam are part
of a complicated hierarchy of scales. It appears that the same ideas can also
yield (aftermerelyminormodifications) the instability of (Mn+1

AdS, gAdS) in the
higher dimensional case n ≥ 3; however, in order to avoid further complicating
our exposition, we will restrict ourselves to the case n = 3.

We will now proceed to review the main result of this paper in more detail;
a discussion on the complications arising in the proof as well as a brief com-
parison with the methods of [41] will then follow in Sect. 1.2.
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1.1 The main result: AdS instability for the spherically symmetric
Einstein-massless Vlasov system

Let (M, g) be a 3+ 1 dimensional, smooth Lorentzian manifold and let f be
a non-negative measure on TM supported on the set of future directed null
vectors. The Einstein-massless Vlasov system for (M, g; f ) takes the form

{
Ricμν − 1

2 Rgμν + �gμν = 8πTμν[ f ],
L(g) f = 0,

(1.5)

where L(g) is the geodesic spray on TM (i.e. the Lagrangean vector field of
L : TM → R, L (v)

.= 1
2g(v, v); see [45]) and Tμν[ f ] is expressed in

terms of f and g by (2.22). In the spherically symmetric setting, there is a
unique reflecting boundary condition for (1.5) at conformal infinity I; it is
formulated simply as the requirement that the Vlasov field f is conserved
along the reflection of null geodesics γ off I (see Sect. 2.4).

The main result of this paper is the proof of the AdS instability conjecture
for the system (1.5) in spherical symmetry:

Theorem 1 (rough version) There exists a one-parameter family of smooth,
spherically symmetric, asymptotically AdS initial data D(ε) for (1.5), ε ∈
(0, 1], satisfying the following properties:
• As ε → 0, D(ε) converge to the trivial data D(0) of (MAdS, gAdS; 0) with
respect to a suitable initial data norm || · ||data.

• For any ε ∈ (0, 1], the (unique) maximally extended solution (M, g; f )(ε)

of (1.5)arising fromD(ε) with reflecting boundary conditions onI contains
a trapped sphere, and, hence, a black hole region.

In particular, (MAdS, gAdS) is unstable as a solution of (1.5) under spher-
ically symmetric perturbations which are small with respect to || · ||data.

For a more detailed statement of Theorem 1, see Sect. 4. For the definition
the maximal future development (M, g; f )(ε) of an initial data set D(ε) and
the notion of a trapped sphere, see Sect. 3.

Remark The initial data norm ||·||data appearing in the statement of Theorem1
is a scale invariant norm that has just enough regularity to provide control of the
integrals of the right hand sides of the constraint equations (2.38)–(2.39) in the
evolution; a precise definition of the norm is given in Sect. 3.4 (see Definition
3.14),while a simple relation expressing the size ofD(ε)with respect to ||·||data
is given by (1.36) (for a discussion on the scale invariance of || · ||data , see
the remark below Definition 3.14). The necessary well-posedness results for
the initial-boundary value problem for (1.5), as well as the crucial Cauchy
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stability statement for (MAdS, gAdS) in the topology defined by || · ||data (see
the remark below the statement of the AdS instability conjecture), are obtained
in our companion paper [43] and are also reviewed in Sect. 3.

We should point out that, switching to the case� = 0,Minkowski spacetime
(R3+1, η) is non-linearly stable as a solution of (1.5) under spherically sym-
metric perturbations which are initially small with respect to the norm || · ||data
(suitably modified in the region r � 1 to accommodate for the change in the
value of�). This result, which can be viewed as a straightforward corollary of
our method of proof of Cauchy stability for (MAdS, gAdS) and is discussed in
more detail in Section 6 of [43], provides further justification for the use of the
initial data norm || · ||data in the study of the AdS instability conjecture.5 In the
case � < 0, a non-linear stability statement for AdS spacetime with respect
to the initial data norm || · ||data is also expected to hold when a maximally
dissipative boundary condition is imposed for (1.5) on I (cf. [34]); in this
case however, such a result would not be a direct consequence of our proof of
Cauchy stability for (MAdS, gAdS).

1.2 Sketch of the proof and further discussion

In this section, we will briefly sketch the proof of Theorem 1, highlighting
the main technical complications and obstacles shaping our strategy. We will
then comment on the relation between the proof of Theorem 1 and the ideas
appearing in [41].

The proof of Theorem 1 is carried out in double null coordinates (u, v, θ, ϕ),
in which a general spherically symmetric metric g takes the form

g = −�2(u, v)du dv + r2(u, v)gS2 (1.6)

(see Sect. 2.1). The initial data family D(ε) in the statement of Theorem 1 is
then constructed as a family of characteristic smooth initial data prescribed
at u = 0; the necessary well-posedness results for the characteristic initial-
boundary value problem in this setting are established in our companion paper
[43] and are also reviewed in Sect. 3.

The family D(ε) is constructed so that the physical space support of the
correspondingVlasov field fε is initially separated into a large number Nε � 1

5 The non-linear stability of (R3+1, η) as a solution of the Einstein-massless Vlasov system
(1.5) without any symmetry assumptions was shown by Taylor [47], with respect to initial
perturbations which are small in a higher order, weighted Sobolev space. Our argument for
obtaining a global stability statement for (R3+1, η) as a corollary of a Cauchy stability statement
is in fact analogous (albeit much simpler) to the strategy implemented in [47], where global
stability is also inferred as a corollary of a quantitative, semi-global Cauchy stability statement
(see [47] for more details).
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Fig. 2 The initial data family D(ε) gives rise to a large number Nε of spherically symmetric
Vlasov beams, which are initially ingoing. The left part of the figure provides a schematic
depiction of just three of these beams, projected onto the (u, v)-plane. Each successive beam is
increasingly narrower compared to the previous ones in the configuration (as shown schemati-
cally on the right), and contains geodesics of increasingly smaller angular momenta

of narrow ingoing beams (see Fig. 2), organised in terms of a particular multi-
scale hierarchy, which we will now describe: Denoting with ζi the i-th Vlasov
beam (with i increasing with the initial distance of the beam from r = 0), the
configuration of beams is set up so that, at u = 0, ζi has physical space width
�Li satisfying

�Li ∼ ε(i)(−�)−
1
2 , (1.7)

where the hierarchy of small parameters {ε(i)}Nε

i=0 (each given by an explicit
formula in terms of ε and i) satisfies

ε(i+1) � ε(i) and ε(i) ε→0−−→ 0 for all i = 0, . . . , Nε − 1. (1.8)

The initial separation di (with respect to the v coordinate) between the beams
ζi and ζi+1 is chosen to satisfy

�Li � di � �Li−1. (1.9)

(where we used the convention that �L−1
.= (−�)

1
2 ).

The energy content Ei of the beam ζi at u = 0 is defined as the difference
of the renormalised Hawking mass

m̃
.= r

2

(
1− 4�−2∂ur∂vr

)
− 1

6
�r3
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between the inner and outer boundary of ζi at u = 0, i.e.:

Ei .= m̃(0, v+
i ) − m̃(0, v−

i )

(where ζi ∩ {u = 0} = {0} × [v−
i , v+

i ] in the (u, v)-plane). The Vlasov field
fε is chosen so that Ei satisfies

Ei ∼ ai�Li , (1.10)

where the parameters 0 ≤ ai � 1 are only fixed at a later stage in the proof
(we will come back to this point later in the discussion).

Remark In order to ensure the condition

||D(ε)||data ε→0−−→ 0 (1.11)

in the statement of Theorem 1, an additional smallness condition needs to be
imposed on

∑Nε

i=0 ai ; we refer the reader to the detailed construction of the
initial data family in Sect. 6.2.

Regarding the momentum space conditions imposed on the beam configu-
ration, the beam ζi is chosen to consist only of null geodesics γ with angular
momentum li satisfying:6

li
(E0)i

∼ ε(i)(−�)−
1
2 . (1.12)

As a result, the geodesics in the support of the Vlasov beam fε are nearly
radial when ε � 1.

Remark For a null geodesic γ in AdS spacetime (MAdS, gAdS), the nor-
malised angular momentum l

E0
determines the minimum value of r along γ ,

with geodesics having smaller normalised angular momentum approaching

closer to the center r = 0; in the case when l
E0

� (−�)− 1
2 , the following

approximate relation holds on (MAdS, gAdS) (see the relation A.2 in [43]):

min
γ

r ∼ l

E0
. (1.13)

In the maximal future development (Mε; fε) of D(ε), the Vlasov beams
ζi are reflected off I multiple times (see Fig. 2); between any two successive
reflections, the Vlasov beams ζi exchange energy through their non-linear

6 Here, we define the normalised angular momentum of a geodesic γ : R → M in a spherically
symmetric spacetime (M, g) simply as the ratio l

E0
between the usual angular momentum l of

γ and its initial energy E0 = g(∂u + ∂v, γ̇ )|u=0 (with respect to the timelike coordinate vector
field ∂u + ∂v) at u = 0; this ratio is independent of the choice of affine parametrisation of γ .
See also Sect. 2.3.

123



G. Moschidis

interactions, possibly at a loss of coherence.7 The proof of Theorem 1 will
consist of showing that, after a large number of reflections off I, the non-linear
interactions lead to the concentration of sufficient energy at the top beam ζNε

so that a trapped surface can form as ζNε approaches the center r = 0 for the
last time.

Controlling the coherence of the Vlasov beams for sufficiently long time
(ensuring, in particular, that the qualitative picture of the configuration is sim-
ilar to the one depicted in Fig. 2) will constitute a major technical challenge
of the proof, but the relevant details will be only briefly sketched in this dis-
cussion. The fact that, for � = 0, the system (1.5) admits static solutions
(Mst , gst ; fst ) with

sup
Mst

2m̃

r
>

4

5
(1.14)

(see [5])8 shows that, in general, when 2m̃
r exceeds a certain threshold in the

evolution, the configuration of Vlasov beams cannot be expected to behave in
a qualitatively similar fashion as on (MAdS, gAdS) (i.e. approach r = 0 only
for a brief period of time separating an ingoing and an outgoing phase, like the
beams depicted in Fig. 2).9 The additional flexibility provided by the freedom
in the choice of the parameters ε(i) in the multi-scale hierarchy of parameters
(1.7)–(1.10) will be crucial for circumventing this obstacle.

The evolution of D(ε) will be studied in two steps:

1. In the first step, we will show that a scale invariant norm measuring the
concentration of energy of (M, g; f )(ε) grows in time at a specific rate,
driven by an instability mechanism based on the interactions of the beams
similar to the one implemented in [41]. Provided the initial parameters ai in
(1.10) are chosen appropriately,wewill show that the beam interactions lead
to the formation of a specific, predetermined profile S∗ = (g; f )(ε)|u=u∗ at
a late enough retarded time u = u∗(ε) � 1. The freedom in the choice of
the parameters εi and a collection of robust estimates on the exchange of

7 For the purposes of this discussion, coherence will refer to the degree of localization in
physical space of a Vlasov beam ζi .
8 While [5] only constructs static solutions (Mst , gst ; fst ) for (1.5) in the case � = 0, one
can readily obtain solutions (M, g; f ) in the case � < 0 which remain nearly static for an
arbitrary time interval and satisfy (1.14); this can be achieved by rescaling the solutions of [5]
and applying a suitable cut-off for r � 1, using the spatial decay of (Mst , gst ; fst ) as r → +∞
and the fact that the modifications introduced by � become negligible as r → 0.
9 In particular, one cannot a priori rule out the scenario that, at some point in the evolution, a
Vlasov beam entering the region 2m̃

r forms a profile resembling that of a nearly static solution.

123



A proof of the instability of AdS

energy between the beams will enable us to control a priori for 0 ≤ u ≤ u∗

2m̃

r
≤ δ∗ (1.15)

where δ∗ � 1 is fixed; the bound (1.15) will be crucial for controlling the
paths of geodesics in the support of f (ε) for u ∈ [0, u∗].

2. In a second step, we will show that the specific features of S∗ (inherited
by the properties of the multi-scale hierarchy (1.7)–(1.10)) imply that a
trapped surface necessarily forms along ζNε ∩ {u = u†} for some u∗ <

u† ≤ u∗ + O(1), i.e. that

sup
ζNε∩{u=u†}

2m̃

r
> 1. (1.16)

It will thus follow that (M, g; f (ε)) contains a black hole region.

We will now proceed to discuss the above steps in more detail.

Remark The first of the two steps described above already provides an orbital
instability statement for AdS spacetime, since, once the profile S∗ is formed,
the size of the solution measured with respect to the norm || · ||data at u = u∗
is large (see (1.39) below). In the simpler case where one would be interested
in merely obtaining such an orbital instability statement, the precise form of
the profile S∗ would be less relevant; however, the conditions (1.8) and (1.9)
on the hierarchy of scales ε(i), �Li would still be necessary for our proof to
carry over without major modifications.

1.2.1 First stage of the instability: growth of the scale invariant norm and
formation of the intermediate profile

The first step in the proof of Theorem 1 will consist of showing that the
interactions of the beams ζi lead to a gradual increase in the energy content of
all beams ζ j with j ≥ 1 (implying the concentration of energy at finer scales,
in view of the length-scale hierarchy (1.7)). In particular, our aim at this stage
would be to show that there exists a time u = u∗ � 1 (determined in terms of
ε) at which the solution (g; f )(ε)|u=u∗ takes a specific form, characterized by
the fact the energy contents E∗

j of the beams ζ j at time u = u∗ satisfy

2E∗
j

d∗
j

∼ C

Nε

exp
(− 2

C

Nε

j
)

for all 1 ≤ j ≤ Nε − 1 (1.17)
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and,

E∗
Nε

∼ ε(Nε)

√−�
, (1.18)

where d∗
j is the distance between ζ j ∩ {u = u∗} and ζ j+1 ∩ {u = u∗}. For

simplicity, for the rest of this discussion, wewill refer to the initial data induced
on {u = u∗} by the solution (M, g; f )(ε) simply as the intermediate profile
S∗. This step will in fact occupy the bulk of the proof of Theorem 1.
Estimates for the geodesic flow Obtaining estimates for the null geodesic flow
on (M, g; f )(ε) for sufficiently long times is a prerequisite for studying the
interactions of the beams ζi . More precisely, we would like to show that,
at least until the formation of the intermediate profile S∗, null geodesics in
(M, g; f )(ε) follow trajectories which are similar (in a certain sense) to the
trajectories of null geodesics on (MAdS, gAdS).

The only quantitative bound assumed on the initial data family is a smallness
condition in terms of the low-regularity norm || · ||data . The well-posedness
estimates established in our companion paper [43] imply that, for any fixed
Ū > 0, if we define the scale-invariant norm

||(M, g; f )(ε)||u≤Ū
.= sup

ū≤Ū

∫

{u=ū}
r
(Tvv[ f ]

∂vr
+ Tuv[ f ]

−∂ur

)
(ū, v) dv

+ sup
v̄

∫

{v=v̄}∩{u≤Ū }
r
(Tuv[ f ]

∂vr
+ Tuu[ f ]

−∂ur

)
(u, v̄) du,

(1.19)

then the following estimate holds for (M, g; f )(ε) as ε → 0:

||(M, g; f )(ε)||u≤Ū � ||D(ε)||data, (1.20)

where Tμν[ f ] are the components of the energy momentum tensor of f (ε) and
the constants implicit in the � notation depend on Ū but are independent of
ε (this can be viewed as a corollary of Proposition 3.15). However, for values

of Ū which are comparable to u∗ (note that u∗(ε)
ε→0−−→ +∞), we will only

be able to estimate

||(M, g; f )(ε)||u≤Ū ≤ C (1.21)

for some absolute constant C � 1 (depending on the precise form of the
profile S∗). Therefore, it will be necessary for us to obtain sufficient control on
the phase space trajectories of null geodesics γ : [0, a) → (M, g)(ε) merely
under the (rather weak) assumption that (1.21) and the a priori estimate (1.15)
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Fig. 3 Schematic depiction
of the domain of integration
appearing in the right hand
side of (1.22) for a null
geodesic γ

hold. To this end, we will rely crucially on a reformulation of the equations of
motion for null geodesics, making use of the fact that (M, g; f )(ε) satisfies
(1.5), yielding identities such as the following:

log
(
�2γ̇ u)(s) − log

(
�2γ̇ u)(0)

=
∫ v(γ (s))

v(γ (0))

∫ u(γ (sv))

u1(v)

(1
2

6m̃
r − 1

r2
�2 − 24πTuv[ f ]

)
du dv

+
∫ v(γ (s))

v(γ (0))

(
∂v log(�

2) − 2
∂vr

r

)
(0, v) dv (1.22)

(assuming that the initial point γ (0) of γ belongs to {u = 0}; see Fig. 3).10
In the above, γ̇ u denotes the u-component of the derivative γ̇ of γ . We refer
the reader to Sect. 5 for more details; for the rest of this discussion, we will
suppress any technical issues related to the precise estimates on the geodesic
flow on (M, g)(ε).
Beam interactions and energy concentration Let us now proceed to consider
a pair of beams ζi ζ j , with

0 ≤ i < j ≤ Nε

10 Note that it is already apparent in (1.22) that the a priori estimate (1.15) for 2m̃
r is important

for controlling γ ; when 2m̃
r ≥ 1

3 , the bulk term in (1.22) no longer has a definite sign.
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Fig. 4 Any two beams ζi
and ζ j , 0 ≤ i < j ≤ Nε ,
will intersect twice between
each successive pair of
reflections off conformal
infinity; here,R0 denotes the
intersection region closer to
the axis, while R∞ denotes
the intersection region closer
to conformal infinity. Note
that, since i < j , the beam ζi
lies initially in the interior of
ζ j . As a result, ζi is outgoing
at the first intersection R0,
while ζ j is ingoing

(the fact that i is smaller than j , i.e. that ζi initially lies in the interior of ζ j ,
will be crucial for this part of this discussion). The beams ζi and ζ j will be
successively reflected off I multiple times in the time interval u ∈ [0, u∗],
intersecting each other twice between each successive pair of reflections, in a
pattern as depicted in Fig. 4. In particular, assuming that the geodesic flow on
(M, g)(ε) behaves in a similar fashion as on AdS spacetime (MAdS, gAdS),
the condition (1.9) on the initial separation of the beams implies that (with
notations as in Fig. 4):

ε(i)(−�)−
1
2 � sup

R0

r ∼ di (1.23)

and

inf
R∞

r ∼ 1

ε(i)
(−�)−

1
2 � sup

R0

r. (1.24)
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In view of the condition (1.12) on the angular momenta of the geodesics
in the beams ζi and ζ j , the relations (1.23) and (1.24) imply that, on the
intersection regionsR0 andR∞, the geodesics of ζi and ζ j can be essentially
viewed as purely radial (since their angular momentum is negligible compared
to the sphere radius r in these regions, in view of (1.12) and (1.23), (1.24)).
Therefore, it is reasonable to expect that the exchange of energy occuring
between ζi and ζ j is governed by the same mechanism as for beams of null
dust, evolving according to theEinstein-null dust system; this is themechanism
employed in [41].

According to [41], when a localised, spherically symmetric and ingoing
null-dust beam ζ̄ intersects a similar outgoing beam ζ over a region R (see
Fig. 5), the energy contents E[ζ̄ ], E[ζ ] of ζ̄ , ζ , respectively, right before and
right after the interaction are related by the following approximate formulas
(assuming that E[ζ ], E[ζ̄ ] � r |R and that (1.15) holds):

E+[ζ̄ ] = E−[ζ̄ ] · exp
(2E−[ζ ]

r |R + Err
)

(1.25)

and

E+[ζ ] = E−[ζ ] · exp
(
− 2E−[ζ̄ ]

r |R + Err
)
, (1.26)

where E− and E+ denote the energy contents of the beams before and after
the interaction, respectively, defined by the difference in the values of the
renormalised Hawking mass m̃ at the two vacuum regions bounding each
beam before and right after the intersection (see Fig. 5); for the purpose of
this discussion, we will assume that the error terms Err in (1.25)–(1.26) are
negligible and can be ignored. The formula (1.25) can be deduced by tracking
the change in the mass difference around ζ̄ through the relation

∂u∂vm̃ = 2π∂u

(1− 2m
r

∂vr
r2Tvv[ f |ζ̄ ]

)
(1.27)

(see the relation (6.57) in [41]) using the following facts:

1. The change in
1− 2m

r
∂vr

is determined in terms of ζ by the constraint equation
(see (2.47))

∂u log
( ∂vr

1− 2m
r

)
= −4π

r

r2Tuu[ f ]
−∂ur

. (1.28)
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Fig. 5 Schematic depiction
of a pair ζ , ζ̄ of intersecting
Vlasov beams supported on
nearly radial null geodesics.
Due to the non-linear
interaction of the beams, the
energy E[ζ̄ ] of the ingoing
beam ζ̄ increases, while the
energy E[ζ ] of ζ decreases
(the total energy being
conserved during the
interaction)

2. The quantity r2Tvv[ f |ζ̄ ] is constant in u as a consequence of the conser-
vation of energy relation, i.e.:

∂u
(
r2Tvv[ f |ζ̄ ]

) = 0 (1.29)

(see the relation (2.38) in [41]).

The formula (1.26) is obtained by following the same procedure for ζ with the
roles of u and v inverted (resulting in a change of sign in (1.28)). Note that
(1.25)–(1.26) imply that the energy of the ingoing beam increases, while that
of the outgoing beam decreases.

In this paper, we show that the formulas (1.25)–(1.26) also hold in the case
when we are dealing with solutions of the system (1.5) instead of the Einstein-
null dust system, under the condition the beams ζ , ζ̄ consist of null geodesics
which are nearly radial at their intersection regionR. In this case, the additional
error terms appearing in the analogues of the relations (1.27) and (1.29) (see
(7.45) and (7.49), respectively) can be eventually controlled; we should point
out, however, that the error terms appearing in this case in (1.29) are of higher
order in terms of derivatives of the metric, and are not controlled by the norm
|| · || defined by (1.19); estimating their size requires a novel set of higher order
bounds and precise control on the size of the interaction region in terms of the
hierarchy ε(i). We will suppress this technical issue here (for more details, see
Sect. 7).

Let us now return to the interaction of the beams ζi and ζ j in Fig. 4. Note
that, for the interaction taking place in the region R0, ζi has the role of the
outgoing beam ζ in (1.25)–(1.26), while ζ j is the ingoing beam ζ̄ ; in the case
of R∞, these roles are inverted.

Remark Note here the asymmetry between ζi and ζ j : For this part of the
discussion, it is important that i < j , which is the order convention fixing ζi
to be the outgoing beam in the region R0 closest to the axis.
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A proof of the instability of AdS

In view of the relation (1.24) between r |R0 and r |R∞ , the formulas (1.25)–
(1.26) imply that the loss of energy occuring for the beam ζ j atR∞ is negligible
compared to the gain of energy for the same beam occuring earlier in the
region R0; the opposite is true for ζi . As a result, the net contribution for the
energy E[ζ j ] of ζ j after the pair of interactions with the beam ζi between two
successive reflections off I is strictly positive, i.e. E[ζ j ] strictly increases, with
the total energy gain estimated as follows:

Ea f ter [ζ j ] = Ebe f ore[ζ j ] · exp
(2Ebe f ore[ζi ]

r |R0

+ Err
)

> Ebe f ore[ζ j ]. (1.30)

On the other hand, the energy of ζi strictly decreases as a result of this
interaction:

Ea f ter [ζi ] = Ebe f ore[ζi ] · exp
(
− 2Ebe f ore[ζ j ]

r |R0

+ 2Ebe f ore[ζ j ]
r |R∞

+ Err
)

< Ebe f ore[ζi ]. (1.31)

However, using the fact that ε(i) � ε( j) and assuming (in the context of
a bootstrap argument) that the energy content of each beam ζk satisfies for
u ∈ [0, u∗] a bound of the form

ε(k+1)(−�)
1
2 � E[ζk] � ε(k)(−�)

1
2 ,

from (1.23)–(1.24) we deduce that

2Ebe f ore[ζ j ]
r |R0

� ε( j)

ε(i)
� 2Ebe f ore[ζi ]

r |R0

,

2Ebe f ore[ζ j ]
r |R∞

� ε( j)ε(i) � 2Ebe f ore[ζi ]
r |R0

.

(1.32)

Substituting (1.32) in the formula (1.31), we infer that, during the interaction of
ζi and ζ j , the relative change in the energy content of ζi is negligible compared
to the corresponding change for ζ j , i.e.:

Ebe f ore[ζi ]
Ea f ter [ζi ] − 1 � Ea f ter [ζ j ]

Ebe f ore[ζ j ] − 1. (1.33)

To sum up, for any beam ζi0 , 0 ≤ i0 ≤ Nε, the energy content of ζi0 between
two successive reflections off I changes according to the following rules:
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1. The interaction of ζi0 with any beam ζi1 with i1 < i0 results in an increase
in the energy of ζi0 , quantified by (1.30).

2. The interaction of ζi0 with any beam ζi1 with i1 > i0 has virtually no effect
on the energy content of ζi0 .

3. The energy content of ζi0 before and after each reflection off I remains the
same (as a consequence of the reflecting boundary conditions imposed on
I).

In particular, the energy content of each beam, except for ζ0, strictly increases
with the number of reflections off I.11 See Proposition 7.6.
Formation of the intermediate profile S∗. For any beam index 0 ≤ i ≤ Nε −1,
and any n ∈ N corresponding to a specific number of reflections of the beam
ζi off I, let us introduce the following dimensionless quantity:

μi [n] .= 2E (n)[ζi ]
d(n)
i

, (1.34)

where E (n)[ζi ] is the energy of ζi after the n-th reflection off I, while d(n)
i

denotes the distance (defined in an appropriate sense) between the beams
ζi and ζi+1 after the same reflection. Using the relations (1.30) and (1.31),
combined with an analogous set of estimates for the change in the separation
of the beams over time, we will be able to infer that the quantitiesμi [n] satisfy
the following recursive system of relations:

μi [n] = μi [n − 1] exp
(
2
i−1∑

ī=0

μī [n] + Err
)
, (1.35)

(see (7.150) and Proposition 7.6). Ignoring the error terms Err, the relation
(1.35) can be readily solved inductively in i : For i = 0, (1.35) implies that
μ0[n] � μ0[0], for i = 1 we infer that μ1[n] � μ1[0]e2nμ0[0], and so on. In
particular, all the quantities μi [n] except for μ0[n] are strictly increasing in n.
Remark When n = 0, the definition of the initial data norm || · ||data (see
Definition 3.14) implies that

∑

i≥0

μi [0] ∼ ||D(ε)||data. (1.36)

11 The sum of the energies of all beams is conserved and is proportional to the value of m̃ at I.
In particular, the energy gain for the beams ζi , 1 ≤ i ≤ Nε eventually comes at the expense of a
decrease in the energy of ζ0. Of course, as we noted above, this decrease is negligible compared
to the initial value of E[ζ0] (which satisfies E[ζ0] � E[ζi ] for all i ≥ 1).
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Therefore, while (1.35) implies a fast rate of growth for μi [n], i ≥ 1, the
smallness condition (1.11) on the initial data necessitates that, for any fixed
value of n, maxi μi [n] → 0 as ε → 0; this is, of course, also implied by the
Cauchy stability of the trivial solution (MAdS, gAdS) with respect to || · ||data
(see Proposition 3.15).

Given any natural number n∗ and using the fact that (1.35) can be solved
backwards in n, we can choose the initial data parameters ai in (1.10) so that
the quantitiesμ j [n∗], 0 ≤ j ≤ Nε −1, obtained by solving (1.35) (with initial
values μ j [0] computed explicitly in terms of a j ), are equal to the right hand
side of (1.17), i.e.

μ j [n∗] = C

Nε

exp
(− 2

C

Nε

j
)
. (1.37)

Similarly, using (1.30), aNε can be chosen so that the energy E (n∗)[ζNε ] of the
last beam is equal to the right hand side of (1.18), i.e.:

E (n∗)[ζNε ] =
ε(Nε)

√−�
. (1.38)

See Proposition 8.1 for a more detailed derivation. Provided n∗ is large enough
in terms of ε, we can estimate a priori (using the explicit solution of (1.35) and
the fast growth ofμi [n] in n) that the aforementioned values of the parameters
ai (which were defined in terms of n∗) are consistent with the initial smallness
assumption (1.11). It can be then readily shown that, between the n∗-th and
the (n∗ + 1)-th reflection of the beams off I, there exists a time u = u∗ ∼
n∗(−�)− 1

2 such that the beam slices ζi ∩ {u = u∗} satisfy (1.17) and (1.18);
see Sect. 8.

Remark At the time u = u∗ when the intermediate profile S∗ is formed, the
|| · ||-norm of the solution (defined by (1.19)) satisfies

||(M, g; f )(ε)||u≤u∗ �
Nε−1∑

i=0

μi [n∗] �
Nε−1∑

i=0

C

Nε

e−2 C
Nε

i ∼ C � 1. (1.39)

As a result, the formation of S∗ already provides an instability statement for
(MAdS, gAdS) with respect to the initial data norm || · ||data; for the proof of
theAdS instability conjecture, however, it is necessary tomove beyond u = u∗
and establish that, moreover, a trapped surface forms in (M, g; f )(ε).
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We should also point out that, as a consequence of the explicit formulas
(1.17)–(1.18) for the energy content of ζi at {u = u∗}, we can trivially bound

μi [n] ≤ C

Nε

for all 0 ≤ i ≤ Nε − 1.

Therefore, since (1.35) implies (ignoring once more the error terms) thatμi [n]
is non-decreasing in n, we can estimate a priori that, for all 0 ≤ n ≤ n∗:

max
0≤i≤Nε−1

μi [n] ≤ C

Nε

. (1.40)

Provided that the number Nε of beams is sufficiently large in terms of C and
satisfies

Nε

C
� max

i

di
ε(i)

(where di is the initial separation between ζi and ζi+1), the estimate (1.40)
(combined with a number of technical lemmas related to the geodesic flow on
(M, g)(ε)) allows us to obtain the crucial a priori bound (1.15) for 2m̃

r (see
the relation (8.4) in the statement of Proposition 8.1). As mentioned earlier,
this bound is fundamental for rigorously implementing the heuristic ideas
discussed in this section.12

1.2.2 Second stage of the instability: trapped surface formation

The second step of the proof ofTheorem1will consist of showing that a trapped
surface (and, hence, a black hole region) is formed at a time u = u† > u∗ with
u†−u∗ � 1. More precisely, in Sect. 9, we will show that, in the development
of the intermediate profile S∗, the configuration of the beams ζi , 0 ≤ i ≤ Nε

behaves as follows (see Fig. 6):

1. For 0 ≤ i ≤ Nε−1, the geodesics in the beams ζi obey dynamicswhich are
qualitatively similar to those on AdS spacetime (albeit satisfying weaker
bounds than in the region u < u∗; see (9.1) in Lemma 9.1). In particular, the
beams ζi briefly approach the center r = 0 before being deflected away,
intersecting with each other, in the meantime, as depicted in Fig. 6. Up
until the time u = u′ when the last intersection between these beams and

12 Observe that, while the scale invariant norm || · || of the solution (M, g; f )(ε) becomes large
at u = u∗ (see (1.39)), the slightly weaker scale invariant quantity 2m̃

r remains bounded by a
small constant; introducing themultiscale hierarchy (1.7)–(1.10) was fundamental for achieving
the construction of such a configuration of beams.
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Fig. 6 Schematic depiction of the evolution of the intermediate profile S∗. After interacting
with each other for one last time, the beams ζi , 1 ≤ i ≤ Nε − 1 gain a sufficient amount of
energy so that, at the region of intersection of any of those beams with the last beam ζNε

, the

mass ratio 2m̃
r is proportional to the (small) constant C

Nε
. In turn, ζNε

gains enough energy from
those interactions, so that a trapped sphere p† is created before ζNε

is deflected again to infinity

the outermost beam ζNε occurs (see Fig. 6), the mass ratio 2m̃
r satisfies the

smallness condition (1.15).
2. The final beam ζNε , moving in the ingoing direction, interacts with all the

beams ζi , i = 0, . . . , Nε − 1, increasing its energy content E[ζNε ]. The
increase in E[ζNε ] is sufficient for a trapped surface to form before ζNε

has the chance to be deflected off to infinity again: There exists a point
p† ∈ ζNε ∩ {u ≥ u′} (see Fig. 6) such that

2m̃

r
(p†) > 1. (1.41)

The first of the two statements above will be established in Sect. 9.1. In
order to prove that the beams ζi , 0 ≤ i ≤ Nε − 1 approximately obey the AdS
dynamics in the region {u∗ ≤ u ≤ u′}, we appeal to arguments similar to the
ones implemented in the previous step. In this case, however, the estimates
satisfied by the solution are in many respects weaker than those we obtained
previously (crucially, (1.21) will no longer be true at this step; compare also

123



G. Moschidis

the statements about the regions U+
ε and T +

ε in Lemma 7.8). It is the need to
obtain control over quantities like the || · ||u≤u′ size of the solution at this step
that enforces some of the complexity of the hierarchy of parameters introduced
in Sect. 6.1.

More precisely, arguing similarly as for the proof of (1.35), we show that
an analogous approximate formula holds for the energy content E∗[ζi ] of the
beams ζi , 0 ≤ i ≤ Nε − 1, right before their intersection with ζNε (see Fig.
6): Setting, for 0 ≤ i ≤ Nε − 1,

μ∗
i

.= 2E∗[ζi ]
supζi∩ζNε

r
,

the analogue of formula (1.35) reads

μ∗
i = μi [n∗] exp

(
2
i−1∑

ī=0

μ∗̄
i
+ Err

)
, (1.42)

where the quantities μi [n∗] are given by (1.37) (the technical machinery for
establishing this fact is contained in the second part of Proposition 7.6). We
therefore readily deduce by substituting (1.37) in (1.42) (ignoring the error
terms Err) that, for all 0 ≤ i ≤ Nε − 1:

μ∗
i ∼ C

Nε

. (1.43)

See Lemma 9.1 for more details.
Let us now move on to the statement of trapped surface formation along the

beam ζNε ; the proof of this statement occupies Sect. 9.2. Using the formula
(1.25) for ζNε at every intersection between ζNε and the beams ζi , 0 ≤ i ≤
Nε−1,we infer that the energy content E f inal[ζNε ] of ζNε at u = u′ satisfies the
following lower bound in terms of the associated energy E (n∗)[ζNε ] at u = u∗:

E f inal[ζNε ] � E (n∗)[ζNε ] · exp
( Nε−1∑

i=0

μ∗
i

)
.

In view of the relations (1.38) and (1.43) for E (n∗)[ζNε ] and μ∗
i , respectively,

we thus deduce that

E f inal[ζNε ] ∼ eC
ε(Nε)

√−�
� ε(Nε)

√−�
. (1.44)
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We will now argue that the lower bound (1.44) and the fact that the beam
ζNε consists of geodesics satisfying initially the angular momentum condition

l

E0
∼ ε(Nε)

√−�
(1.45)

(see (1.12)) imply that there exists a point p† ∈ ζNε ∩{u ≥ u′} such that (1.41)
holds. For any u0 ∈ [u′, u′ + O(1)], we can estimate from below

sup
ζNε∩{u=u0}

2m̃

r
� 2E f inal[ζNε ]

supζNε∩{u=u0} r
.

Thus, in order to establish (1.41) and complete the proof of Theorem 1, it
suffices to show that, as a corollary of (1.45), the beam slice ζNε ∩ {u = u†}
for a suitable u† > u′ satisfies

sup
ζNε∩{u=u†}

r ≤ r0, (1.46)

where

r0
.= ε(Nε)

√−�
. (1.47)

Heuristically, on a spacetime where the geodesic flow behaves similarly as
on (MAdS, gAdS), the bound (1.46) would follow from the fact that, for every
null geodesic γ of (MAdS, gAdS), the minimum value of r along γ satisfies

min
γ

r ∼ l

E0
.

However, in our case, for u ≥ u′, the spacetime metric g is no longer close
to gAdS; the fact that there exists a u† such that (1.46) holds follows from
a careful manipulation of the equations of the geodesic flow (in the regime
where the condition (1.15) is violated), using in addition some of the mono-
tonicity properties of the system (1.5) (see the proof of (9.32)), as well as the
estimates on the geodesic flow for u ≤ u∗ obtained in the previous step. See
Proposition 9.2.

Remark A technical issue which was not highlighted so far in this discussion
is the fact that the existence and smoothness of the development (M, g; f )(ε)

up to the time u = u† of trapped surface formation (including, in particular,
the statement that a naked singularity does not appear earlier in the evolution)
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is non-trivial. The Cauchy stability statement for (MAdS, gAdS) guarantees
the existence of (M, g; f )(ε) only up to times U when

||(M, g; f )(ε)||u≤U � 1.

Beyond that point, and up to time u = u′, we infer the existence and smooth-
ness of (M, g; f )(ε) using an extension principle established in our companion
paper [43], guaranteeing the smooth extendibility of a development under the
smallness condition (1.15) for 2m̃

r . From u = u′ up to u = u†, the existence
and smoothness of the solution follows from our explicit a priori estimates for
the geodesics in the beam ζNε and the fact that, in the part of {u′ ≤ u ≤ u†}
consisting of the past of the point p†, the spacetime is vacuum (and hence triv-
ially extendible) outside ζNε ; for a review of the relevant extension principles,
see Sect. 3, as well as Sect. 6.3.

1.2.3 Discussion: comparison with the case of the Einstein-null dust system
with an inner mirror

In this section, we will highlight the differences between the strategy of proof
of Theorem 1, sketched in the previous sections, and the one implemented in
[41] for the case of the spherically symmetric Einstein-null dust system.

In [41], the instability of (MAdS, gAdS) as a solution of the Einstein-null
dust system with an inner mirror was established by setting up a family of
initial data (r, �2; τ̄ )(ε)|u=0 which gave rise to a configuration of null dust
beams ζ ′

i , 0 ≤ i ≤ Nε, of comparable size (see Fig. 7). These beams were suc-

cessively reflected off an inner mirror at r = r (ε)
0 (with r (ε)

0 proportional to the
total energy m̃(ε)|I of (r, �2; τ̄ )(ε)|u=0) and conformal infinity I, exchanging
energy through their non-linear interactions. Using the relations (1.27)–(1.29)
and the fact that the beams ζ ′

i were initially comparable in size, it was shown
in [41] that, for this family of configurations, the quantities

μn
.= max{Un≤u≤Un+1}

2m̃

r

and

ρn = r -separation between ζ ′
Nε

and ζ ′
0 in the region {Un ≤ u ≤ Un+1}
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(where Un is the value of u at the point where the beam ζ ′
0 is reflected off I

for the n-th time13), satisfy the system of relations

ρn+1 ≤ ρn + C1r
(ε)
0 log

(
(1− µn)

−1 + 1
)
,

µn+1 ≥ µn exp
(c1r

(ε)
0

ρn+1

)
, (1.48)

for some 0 < c1 < 1 < C1 (see the relation (6.165) in [41]). It was then shown
that the system (1.48) guarantees the existence of some n0 = n0(ε) ∈ N such
that

μn0 ≥ 1− δε (1.49)

for some δε � 1. From (1.49), it was concluded using a suitable Cauchy stabil-
ity statement that, by possibly perturbing the initial data set (r, �2; τ̄ )(ε)|u=0
ever so slightly (with the size of the perturbation determined by δε), one could
in fact achieve

μn0 > 1. (1.50)

The lower bound (1.50) then implied the existence of a trapped sphere in the
development of (r, �2; τ̄ )(ε)|u=0 at time u ∼ Un0 + O(1); see [41].

The analysis of [41] leading to the recursive system of inequalities (1.48)
relied crucially on the fact that the null-dust beams ζ ′

i consisted entirely of
radial null geodesics, which, in a double null coordinate chart (u, v, θ, ϕ),
necessarily move along lines of the form {u = const} or {v = const} (see Fig.
7). This trivial a priori control on the paths of radial null geodesics in the (u, v)-
plane implies, in particular, that the qualititative picture of beam interactions
depicted in Fig. 7 remains valid even in the regime where 2m̃

r ∼ 1, i.e. in the

last few reflections of the beams off r = r (ε)
0 and I before a trapped surface

is formed. Furthermore, the presence of an inner mirror at r = r (ε)
0 > 0 in the

setup of [41] guaranteed the absence of naked singularities in the evolution
of the initial data family (r, �2; τ̄ )(ε)|u=0 (as a consequence of the results of
[42]).

In contrast, in the case of the Einstein-massless Vlasov system (1.5), there
is no useful general a priori estimate for the shape of beams consisting of
non-radial geodesics in the regime where 2m̃

r ∼ 1 (as suggested already by
the relation (1.22)). Therefore, in order to establish the formation of a trapped
sphere in this setting, we were forced to design a configuration of interact-
ing Vlasov beams with the property that all the beam interactions preceding

13 Assuming that a black hole has not formed for {u ≤ Un}.
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Fig. 7 Schematic depiction of the configuration of beam interactions in the case of the Einstein-
null dust system with an inner mirror (left), which was treated in [41], and the multi-scale
configuration employed in this paper for the case of the Einstein-massless Vlasov system (right).
For simplicity, only three beams are depicted in each case

the first point p† where 2m̃
r = 1 lie in the regime 2m̃

r � 1; in this regime,
the qualititative picture of the (right half of) Fig. 7 can be shown to remain
relevant (see Sect. 5). In particular, this was achieved by first identifying the
profile S∗ (described at the end of Sect. 1.2.1) as a useful intermediate step for
trapped surface formation. In turn, the structure of S∗ necessitated imposing
the multi-scale hierarchy (1.7)–(1.10) on the construction of the initial data
family D(ε). It is a remarkable feature of the system (1.5) that the same hier-
archy of scales greatly simplifies the formulas of energy exchange occuring
between the Vlasov beams, resulting in the approximate monotonicity rela-
tions (1.35); the monotonicity properties of (1.35) are crucial for obtaining a
priori control of 2m̃

r in the evolution until the formation of S∗, thus ensuring
the absence of naked singularities in the solution in view of results obtained
in our companion paper [43].
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1.3 Outline of the paper

The structure of the paper is as follows:
In Sect. 2, we will introduce the Einstein-massless Vlasov system (1.5) in

spherical symmetry. In addition, we will state a number of notational con-
ventions related to asymptotically AdS spacetimes and we will introduce the
notion of a reflecing boundary condition for (1.5) on I .

In Sect. 3, we will introduce the asymptotically AdS characteristic initial-
boundary value problem for (1.5) and present a number of well-posedness
results in this context. These resultswill include a fundamentalCauchy stability
statement for (MAdS, gAdS) in a low regularity topology. The proofs of the
results of Sect. 3 are obtained in our companion paper [43].

The main result of this paper, namely Theorem 1, will be presented in detail
in Sect. 4.

The proof of Theorem 1will occupy Sects. 5–9. In particular, the arguments
sketched in Sect. 1.2.1 regarding the first stage of the instability will be pre-
sented in detail in Sects. 5–8 (with Sects. 5 and 7 devoted to the development
of the necessary technical machinery); the proof of trapped surface formation
(roughly discussed in Sect. 1.2.2) will then be presented in Sect. 9.

2 The Einstein-massless Vlasov system in spherical symmetry

In this section, we will introduce the spherically symmetric Einstein-massless
Vlasov system in 3 + 1 dimensions, expressed in a double null coordinate
chart. We will also formulate the reflecting boundary condition for a massless
Vlasov field at conformal infinity I in the asymptotically AdS setting. A more
detailed statement of the notions and the results appearing in this section can
be found in our companion paper [43].

2.1 Spherically symmetric spacetimes and double null coordinate pairs

In this paper, we will follow the same conventions regarding spherically sym-
metric double null coordinate charts as in our companion paper [43] (similar
also to those of [41,42]). Our assumptions on the topology and regularity of
the underlying spacetimes will be satisfied by the solutions of the Einstein-
massless Vlasov system (1.5) constructed in the proof of Theorem 1.

In particular, we will only consider smooth, connected and time oriented
spacetimes (M3+1, g)which are spherically symmetricwith a non-empty axis
Z (see [43]). We will further assume thatZ is connected and thatM\Z splits
diffeomorphically under the action of SO(3) as

M\Z � U × S
2. (2.1)
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We will also restrict ourselves to spacetimes (M, g) such that the region
M\Z is regularly foliated by the two families of spherically symmetric null
hypersurfaces H = {

C+(p) : p ∈ Z
}
and H = {

C−(p) : p ∈ Z
}
, where

C+(p), C−(p) are the future and past light cones emanating from p, respec-
tively. See [43] for a more detailed discussion on the properties of spacetimes
(M, g) satisfying the aforementioned conditions.

A double null coordinate pair (u, v) on (M, g) will consist of a pair of
continuous functions u, v : M → R which are a smooth parametrization of
the foliations H,H, respectively, on M\Z . Note that any choice of double
null coordinate pair (u, v) onM fixes a smooth embedding (u, v) : U → R

2;
from now on, we will identify U with its image in R

2 associated to a given
null coordinate pair.

Remark We will only consider double null coordinate pairs (u, v) for which
∂u + ∂v is a timelike and future directed vector field on M\Z .

Given a double null coordinate pair (u, v), the metric g, restricted onM\Z ,
is expressed as follows:

g = −�2(u, v)du dv + r2(u, v)gS2, (2.2)

where gS2 is the standard round metric on S
2 and �, r : U → (0,+∞) are

smooth functions, with r extending continuously to 0 on the axis Z .
For any pair of smooth functions h1, h2 : R → R with h′

1, h
′
2 �= 0, we can

define a new double null coordinate pair onM by the relation

(ū, v̄) = (h1(u), h2(v)). (2.3)

In the new coordinates, the metric g takes the form

g = −�̄2(ū, v̄)dūd v̄ + r2(ū, v̄)gS2, (2.4)

where

�̄2(ū, v̄) = 1

h′
1h

′
2
�2(h−1

1 (ū), h−1
2 (v̄)), (2.5)

r(ū, v̄) = r(h−1
1 (ū), h−1

2 (v̄)). (2.6)

Remark We will frequently make use of such coordinate transformations,
without renaming the coordinates each time.

Let (y1, y2) be a local coordinate chart on S2. Then, the non-zero Christoffel
symbols �α

βγ of (2.2) in the (u, v, y1, y2) local coordinate chart onM\Z take
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the following form:

�u
uu = ∂u log(�

2), �v
vv = ∂v log(�

2),

�A
uB = r−1∂urδ

A
B , �A

vB = r−1∂vrδ
A
B ,

�u
AB = �−2∂v(r

2)(gS2)AB, �v
AB = �−2∂u(r

2)(gS2)AB,

�A
BC = (�S2)

A
BC . (2.7)

In the above, the latin indices A, B,C are associated to the spherical coordi-
nates y1, y2, δAB is Kronecker delta and �S2 are the Christoffel symbols of the
round sphere in the (y1, y2) coordinate chart.

We will define the Hawking mass m : M → R by

m = r

2

(
1− g(∇r,∇r)

)
. (2.8)

Notice that, when viewed as a function on U , the Hawking mass m is related
to the metric coefficients � and r by the formula:

m = r

2

(
1+ 4�−2∂ur∂vr

) ⇔ �2 = 4∂vr(−∂ur)

1− 2m
r

. (2.9)

Finally, on pure AdS spacetime (M3+1
AdS, gAdS), where gAdS is defined by

(1.2), we will fix a distinguished double null coordinate pair (u, v) by the
relations

u = t −
√

− 3

�
Arctan

(√

−�

3
r
)
,

v = t +
√

− 3

�
Arctan

(√

−�

3
r
)
. (2.10)

In the resulting double null coordinate chart, gAdS is expressed as

gAdS = −�2
AdS du dv + r2gS2, (2.11)

where

r(u, v) =
√

− 3

�
tan

(1
2

√

−�

3
(v − u)

)
, (2.12)

�2
AdS(u, v) = 1− 1

3
�r2(u, v).

123



G. Moschidis

2.2 Asymptotically Anti-de Sitter spacetimes

In this section, we will introduce the class of asymptotically AdS spacetimes
in spherical symmetry; the geometry of these spacetimes will resemble that of
(2.11) in a neighborhood of r = ∞. In particular, in accordance with [43], we
will adopt the following definition:

Definition 2.1 Let (M, g) be a spherically symmetric spacetime as in
Sect. 2.1, with supM r = +∞. We will say that (M, g) is asymptotically
AdS if, for some R0 � 1, there exists a spherically symmetric double null
coordinate pair (u, v) onM as in Sect. 2.1, such that the following conditions
hold:

1. The region Vas has the form

Vas = {
u1 < u < u2

} ∩ {
u + vR0(u) ≤ v < u + vI

}

for some u1 < u2 ∈ R ∪ {±∞}, vI ∈ R and vR0 : (u1, u2) → R with
v(u) < vI .

2. The function 1
r on U extends smoothly (as a function on R

2) on

I .= {
u1 < u < u2

} ∩ {
v = u + vI

} ⊂ clos(U) (2.13)

(where clos(U) denotes the closure of U with respect to the standard topol-
ogy of the plane) and satisfies

1

r

∣
∣∣
I
= 0. (2.14)

3. The function �2

r2
extends smoothly on I, with

�2

r2

∣∣
∣
I
�= 0. (2.15)

See [43] for further discussion on the above definition and its relation with
the standard definition of asymptotically AdS spacetimes (appearing, e. g., in
[28]). For a spherically symmetric, asymptotically AdS spacetime (M, g) as
above, we will use the term conformal infinity both for the planar boundary
curve I and for the spacetime conformal boundary I(2+1) of (M, g) (Fig. 8).

2.3 Properties of the null geodesic flow and the massless Vlasov equation

Let (M, g) be a time oriented, spherically symmetric spacetime as in Sect. 2.1.
In this section, we will briefly review the properties of the geodesic flow on
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Fig. 8 Schematic depiction
of the asymptotic region
Vas = {r ≥ R0 � 1} of an
asymptotically AdS
spacetime

(M, g) and we will introduce the Vlasov field equations on TM. We will use
the same notations as those adopted in [43].

The geodesic flow on (M, g)

The equations of motion for a geodesic of (M, g), expressed in a local
coordinate chart (x0, x1, x2, x3) on M with dual momentum coordinates
(p0, p1, p2, p3) on the fibers of TM, takes the following form

{
ẋα = pα,

ṗα + �α
βγ p

β pγ = 0,
(2.16)

where �
γ
βα are the Christoffel symbols of g with respect to the chart

(x0, x1, x2, x3). Fixing a non-vanishing future directed vector field Q on M
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(e. g. the vector field ∂u + ∂v in the notation of Sect. 2.1), the set

P+ .=
{
(x; p) ∈ TM : gαβ(x)pα pβ = 0, gαβ(x)pαQβ(x) ≤ 0

}
, (2.17)

i.e. the set of future directed null vectors in TM, is invariant under (2.16).
The angular momentum function l : TM → [0,+∞) is defined in a local

coordinate chart (u, v, y1, y2) as in Sect. 2.1 by

l2
.= r2gAB p

A pB = r4(gS2)AB p
A pB (2.18)

(note that l is in fact coordinate independent). The spherical symmetry of
(M, g) implies that l is a constant of motion for the geodesic flow (2.16). As
a result, (2.16) can be reduced to a system in terms only of u, v, pu , pv and l.
Reexpressed in terms of these variables, the null-shell relation defining P+ in
(2.17) takes the form

�2 pu pv = l2

r2
, pu ≥ 0 (2.19)

while relations (2.16) restricted on P+ is reduced (using the expressions (2.7)
and (2.19)) to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

du
ds = pu,
dv
ds = pv,

d
ds

(
�2 pu

) =
(
∂v log(�2) − 2 ∂vr

r

)
l2

r2
,

d
ds

(
�2 pv

) =
(
∂u log(�2) − 2 ∂ur

r

)
l2

r2
,

dl
ds = 0.

(2.20)

Remark Identifying a geodesic in (M, g) with its image in the planar domain
U , we will frequently refer to (2.20) simply as the equations of motion for a
“geodesic inU”. Let us also note that, on a smooth spacetime (M, g) as above,
the relations (2.19) and (2.20) imply that a geodesic γ with l > 0 cannot cross
the axis Z ≡ {r = 0}.

The Vlasov equation

We will adopt the following definition for a Vlasov field f on TM:

Definition 2.2 A Vlasov field f is a non-negative measure on TM which is
constant along the flow lines of (2.16). A Vlasov field f supported on (2.17)
will be called a massless Vlasov field.
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As a consequence of the above definition, in any local coordinate chart
(xα; pα) on TM (with pα dual to xa), f satisfies the following equation
(refered to, from now on, as the Vlasov field equation)

pα∂xα f − �α
βγ p

β pγ ∂pα f = 0. (2.21)

The energy momentum tensor of a Vlasov field f is a symmetric (0, 2)-form
Tαβ on M (possibly defined only in the sense of distributions), given by the
expression

Tαβ(x)
.=
∫

TxM
pα pβ f

√−det (g(x))dp0 · · · dp3, (2.22)

where TxM denotes the fiber of TM over x ∈ M and

pγ = gγ δ(x)p
δ. (2.23)

Equation (2.21) implies that

∇αTαβ = 0, (2.24)

i.e. that Tαβ is conserved.
Another conserved quantity associated to a Vlasov field f is a 1-form called

the particle current, defined by the formula

Nα(x)
.=
∫

TxM
pα f

√−det (g(x))dp0 · · · dp3. (2.25)

The Vlasov equation (2.21) readily implies that

∇αNα = 0. (2.26)

A spherically symmetric Vlasov field f , i.e. a Vlasov field which is invariant
under the induced action of SO(3) on TM, only depends on the u, v, pu , pv

and l variables. Assuming, in addition, that f is massless, it follows that f is
conserved along the flow lines of the reduced system (2.20). The Vlasov field
equation formally reduces, in this case, to (2.21):

pu∂u f + pv∂v f =
(
∂u log(�

2)(pu)2 + 2

r
�−2∂vr

l2

r2

)
∂pu f

+
(
∂v log(�

2)(pv)2 + 2

r
�−2∂ur

l2

r2

)
∂pv f (2.27)
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(note that (2.27) does not contain derivatives in l).

Remark In this paper, we will only consider smooth spherically symmetric
massless Vlasov fields f , i.e. f will be of the form

f (u, v; pu, pv, l) = f̄ (u, v; pu, pv, l) · δ(�2 pu pv − l2

r2
)
, (2.28)

where f̄ is smooth in its variables and δ is Dirac’s delta function. For a smooth
and spherically symmetric massless Vlasov field f , we will frequently denote
with f̄ any smooth function for which (2.28) holds; note that f̄ is uniquely
determined only along the null set (2.17).

Moreover, we will only consider smooth Vlasov fields f which are com-
pactly supported in the momentum coordinates pα for any fixed x . Under this
condition, it can be readily shown that Nα(x), Tαβ(x) are smooth tensor fields
on M.

The energy-momentum tensor (2.22) associated to a smooth, spherically
symmetric Vlasov field f takes the form

T = Tuu(u, v)du2 + 2Tuv(u, v)du dv + Tvv(u, v)dv2 + TAB(u, v)dyAdyB .

(2.29)

In the case when f is in addition massless, the components of (2.29) can be
expressed as

Tuu = π

2
r−2

∫ +∞

0

∫ +∞

0

(
�2 pv

)2
f̄ (u, v; pu, pv, l)

∣∣∣P+
dpu

pu
ldl,

Tvv = π

2
r−2

∫ +∞

0

∫ +∞

0

(
�2 pu

)2
f̄ (u, v; pu, pv, l)

∣∣∣P+
dpu

pu
ldl,

Tuv = π

2
r−2

∫ +∞

0

∫ +∞

0

(
�2 pu

) · (�2 pv
)
f̄ (u, v; pu, pv, l)

∣∣∣P+
dpu

pu
ldl,

gABTAB = 4�−2Tuv. (2.30)

Similarly, the particle current (2.25) associated to f is of the form

N = Nudu + Nvdv, (2.31)

where, in the case when f is in addition massless:

Nu = πr−2
∫

TxM∩P+
�2 pv f̄ (u, v; pu, pv, l)

∣
∣∣
P+

dpu

pu
ldl,

Nv = πr−2
∫

TxM∩P+
�2 pu f̄ (u, v; pu, pv, l)

∣
∣∣
P+

dpu

pu
ldl. (2.32)
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The following estimate of Tμν in terms of Nμ will be useful later in the
paper: In view of the expressions (2.9), (2.30) and (2.32), we can bound

1− 2m
r

∂vr
Tvv(u, v) + 1− 2m

r

−∂ur
Tuv(u, v)

≤ 2 sup
(pu ,pv)∈supp

(
f (u,v;·,·,l)

)

(
∂vr(u, v)pv − ∂ur(u, v)pu

)
· Nv(u, v)

(2.33)

and

1− 2m
r

∂vr
Tuv(u, v) + 1− 2m

r

−∂ur
Tuu(u, v)

≤ 2 sup
(pu ,pv)∈supp

(
f (u,v;·,·,l)

)

(
∂vr(u, v)pv − ∂ur(u, v)pu

)
· Nu(u, v).

(2.34)

2.4 The Einstein-massless Vlasov system

The Einstein-massless Vlasov system with cosmological constant � takes the
form

⎧
⎪⎨

⎪⎩

Ricμν(g) − 1
2 R(g)gμν + �gμν = 8πTμν[ f ],

pα∂xα f − �α
βγ p

β pγ ∂pα f = 0,

supp( f ) ⊂ P+
(2.35)

where (M, g) is a Lorentzian manifold, f is a non-negative measure on TM,
Tμν[ f ] is expressed in terms of f by (2.22) and P+ ⊂ TM is defined by
(2.17) (see also [18,41,42]). In this paper, we will only consider the case when
the cosmological constant � is negative.

Reduced to the case where (M, g) is a spherically symmetric spacetime
(see Sect. 2.1) and f is a spherically symmetric massless Vlasov field (see
Sect. 2.3), the system (2.35) is equivalent to the following set of relations for
(r, �2, f ):

∂u∂v(r
2) = −1

2
(1− �r2)�2 + 8πr2Tuv, (2.36)

∂u∂v log(�
2) = �2

2r2
(
1+ 4�−2∂ur∂vr

)− 8πTuv − 2π�2gABTAB, (2.37)

∂u(�
−2∂ur) = −4πrTuu�

−2, (2.38)
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∂v(�
−2∂vr) = −4πrTvv�

−2, (2.39)

pα∂xα f = �α
βγ p

β pγ ∂pα f, (2.40)

supp( f ) ⊆
{
�2(u, v)pu pv − l2

r2(u, v)
= 0, pu ≥ 0

}
. (2.41)

Remark In view of the relation 4�−2Tuv = gABTAB (following from the fact
that f is supported on the null set P) and the definition (2.9) of m, equation
(2.37) is equivalent to

∂u∂v log(�
2) = 4

m

r3
(−∂ur)∂vr

1− 2m
r

− 16πTuv. (2.42)

It is useful, in general, to consider transformations of the double null coordi-
nate pair (u, v) of the form (u, v) → (u′, v′) = (U (u), V (v)) (see Sect. 2.1).
Under such a gauge transformation, a solution (r, �2, f ) is transformed into
a solution (r ′, (�′)2, f ′) in the new coordinate system through the relations:

r ′(u′, v′) .= r(u, v),

(�′)2(u′, v′) .= 1
dU
dv

(u) · dV
dv

(v)
�2(u, v),

f ′
(
u′, v′; dU

du
(u)pu

′
,
dV

dv
(v)pv′

, l

)
.= f (u, v; pu, pv, l). (2.43)

Let us introduce the renormalised Hawking mass m̃ by the relation

m̃
.= m − 1

6
�r3, (2.44)

where m is defined by (2.9). Equations (2.36)–(2.39) yield (formally, at least)
the following system for (r, m̃, f ) on the subset ofM where 1− 2m

r > 0 and
∂ur < 0 < ∂vr :

∂u∂vr = −2m̃ − 2
3�r3

r2
(−∂ur)∂vr

1− 2m
r

+ 4πrTuv, (2.45)

∂v log
( −∂ur

1− 2m
r

) = 4πr−1 r
2Tvv

∂vr
, (2.46)

∂u log
( ∂vr

1− 2m
r

) = −4πr−1 r
2Tuu
−∂ur

, (2.47)
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∂vm̃ = 2π
(
1− 2m

r

)(r2Tvv

∂vr
+ r2Tuv

−∂ur

)
, (2.48)

∂um̃ = −2π
(
1− 2m

r

)(r2Tuu
−∂ur

+ r2Tuv

∂vr

)
. (2.49)

Useful relations for null-geodesics on solutions of the system (2.36)–(2.41)
We will now present a number of relations for null geodesics on solutions

(M, g; f ) of the system (2.36)–(2.41). These relations, appearing also in our
companion paper [43], will be useful for the construction of localised Vlasov
beams appearing in the proof of Theorem 1.

In particular, we will establish the following result:

Lemma 2.3 Let u1 : R → R be continuous and strictly increasing and, for
some a > 0, let γ : [0, a) → U be a curve contained in the region {u ≥ u1(v)}
such that:

• γ is the projection of a null geodesic in (M, g) with angular momentum
l > 0 and

• γ (0) ∈ {u = u1(v)}
(see Fig. 9). Then, for all s ∈ [0, a), the following relation holds for the tangent
γ̇ to γ :

log
(
�2γ̇ u)(s) − log

(
�2γ̇ u)(0)

=
∫ v(γ (s))

v(γ (0))

∫ u(γ (sv))

u1(v)

(1
2

6m̃
r − 1

r2
�2 − 24πTuv

)
du dv

+
∫ v(γ (s))

v(γ (0))

(
∂v log(�

2) − 2
∂vr

r

)
(u1(v), v) dv, (2.50)

where sv̄ is defined as the value of the parameter s determined by the condition

v(γ (sv̄)) = v̄, (2.51)

i.e. corresponding to the point of intersection between γ and the line v = v̄.
Similarly, for any continuous and strictly increasing function v1 : R → R

and any null geodesic γ : [0, a) → {v ≥ v1(u)} with γ (0) ∈ {v = v1(u)}, we
have

log
(
�2γ̇ v

)
(s) − log

(
�2γ̇ v

)
(0) =

∫ u(γ (s))

u(γ (0))

∫ v(γ (su))

v1(u)

(1
2

6m̃
r − 1

r2
�2 − 24πTuv

)
dv du

+
∫ u(γ (s))

u(γ (0))

(
∂u log(�

2) − 2
∂ur

r

)
(u, v1(u)) du,

(2.52)
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Fig. 9 Formula (2.50)
expresses the change in the
magnitude of �2γ̇ u for a
future directed null geodesic
γ in terms of a spacetime
integral over a region as
depiced above

where sū is defined by:

u(γ (sū)) = ū. (2.53)

Remark In view of the relation (2.19), the projection γ on U of a null geodesic
in (M, g) with l > 0 is a timelike curve in U with respect to the reference
metric

gre f = −du dv. (2.54)

Proof Using the equations of motion (2.20) combined with the null shell rela-
tion (2.19), we infer that, for all s ∈ [0, a):

log
(
�2γ̇ u)(s) − log

(
�2γ̇ u)(0)

=
∫

α([0,s]))

(
∂v log(�

2) − 2
∂vr

r

)
dv

=
∫ v(γ (s))

v(γ (0))

∫ u(γ (sv))

u1(v)

(
∂u∂v log(�

2) − 2∂u
∂vr

r

)
du dv

+
∫ v(γ (s))

v(γ (0))

(
∂v log(�

2) − 2
∂vr

r

)
(u1(v), v) dv (2.55)

(see also Fig. 9, as well as the remark above on why γ is a timelike curve
in U). Therefore, substituting the relations (2.45) and (2.42) for ∂u∂vr and
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∂u∂v log�2 in the right hand side of (2.55) and recalling the definition (2.44)
of m̃, we readily infer (2.50) from (2.55).

The proof of (2.52) follows in a similar way. ��

Asymptotically AdS solutions and the reflecting boundary condition at
infinity Let (M, g; f ) be a spherically symmetric solution of (2.35), such
that, in addition, (M, g) is asymptotically AdS, in accordance with the Defi-
nition 2.1. In this case, the following quantities will be useful as renormalised
substitutes of r , �2 and Tμν near conformal infinity (see Sect. 2.2):

ρ
.= tan−1 (

√

−�

3
r
)
, (2.56)

�̃2 .= �2

1− 1
3�r2

,

τμν
.= r2Tμν.

From (2.45) and (2.42), it readily follows that (ρ, �̃2, τμν) satisfy the relations

∂u∂vρ = −1

2

√

−�

3

m̃

r2
1− 2

3�r2

1− 1
3�r2

�̃2 + 4π

√

−�

3

1

r − 1
3�r3

τuv,

(2.57)

∂u∂v log(�̃
2) = m̃

r

( 1

r2
+ 1

3
�

�r2 − 1

1− 1
3�r2

)
�̃2 − 16π

1− 1
2�r2

1− 1
3�r2

r−2τuv.

In the asymptotically AdS setting, it is natural to study the system (2.36)–
(2.41) with boundary conditions imposed for f on I. In this paper, we will
consider the reflecting boundary condition. Defined in terms of the reflection of
null geodesics off I(2+1), the reflecting boundary condition can be formulated
as follows (see [43] for more details):

Definition 2.4 Let (M, g) be as in Definition 2.1, and let f be a smooth
massless Vlasov field on TM, as defined in Sect. 2.3. We will say that f
satisfies the reflecting boundary condition on conformal infinity if, for any pair
of future directed null geodesics γ : (a,+∞) → M andγ|� : (−∞, b) → M
such that γ|� is the reflection of γ off conformal infinity I(2+1), according to
Definition 2.2 in [43], f satisfies

f |(γ,γ̇ ) = f |(γ|�,γ̇|�), (2.58)

123



G. Moschidis

Fig. 10 Schematic depiction
of the components γn of a
maximally extended
geodesic γ = ⋃N

n=0 γn
through reflections off
conformal infinity, as defined
in [43]. Each component γn
is the reflection off I of
γn−1. A massless Vlasov
field f satisfying the
reflecting boundary
condition on I is constant
along any such maximally
extended null geodesic

where f |(γ,γ̇ ) is the (constant) value of f along the curve (γ, γ̇ ) in TM.14

Remark Equivalently, f satisfies the reflecting condition on I(3+1) if f is con-
stant along the trajectory of (γ, γ̇ ) for any future directed, affinely parametrized
null geodesicγ which ismaximally extended through reflections, in accordance
with Definition 2.3 in [43] (see also Fig. 10).

The following Lemma is a trivial corollary of the relations (2.49)–(2.48) for
m̃, the condition (2.14) on conformal infinity I and the reflecting boundary
condition (2.58) for f :

Lemma 2.5 Let (r, �2, f ) be an asymptotically AdS solution of (2.36)–(2.41)
as above, satisfying on I the reflecting boundary condition, in accordancewith
Definition 2.4. Then, the renormalised Hawking mass m̃ is constant along I,
satisfying formally:

(∂u + ∂v)m̃|I = 0. (2.59)

See also Lemma 2.1 in [43].

14 For the purposes of this section, γ is used to denote a geodesic in (M, g) and not just its
projection in the (u, v) plane, as was the case earlier.
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3 The asymptotically AdS characteristic initial-boundary value
problem

In this section, we will review the well-posedness results regarding the
characteristic-boundary initial value problem for (2.36)–(2.41) established in
[43]. In particular, we will introduce the notion of a smoothly compatible,
characteristic asymptotically AdS initial data set for the system (2.36)–(2.41)
and we will present a result on the existence and uniqueness of a maximal
future development for (2.36)–(2.41) when reflecting boundary conditions are
imposed on I. We will also state a few continuation criteria for smooth solu-
tions of (2.36)–(2.41), which will be crucial for the constructions involved
in the proof of Theorem 1. We will end this section by presenting a Cauchy
stability statement for the trivial solution of (2.36)–(2.41) in a scale invariant
initial data topology, which will later allow us to address the AdS instabil-
ity conjecture in a low regularity setting in Sect. 4. The proofs of the results
appearing in this section are presented in detail in our companion paper [43].

3.1 Smoothly compatible characteristic initial data sets for (2.36)–(2.41)

In this paper, the study of the dynamics of the system (2.36)–(2.41) in the
asymptotically AdS setting will take place in the framework of the charac-
teristic initial-boundary value problem, with initial data prescribed at u = 0,
satisfying the constraint equation (2.39). We will consider the following class
of initial data which is compatible with smoothness of the associated develop-
ment for (2.36)–(2.41) at the axis Z and at conformal infinity I. In fact, this
will be precisely the class of initial data giving rise to a smooth development
for (2.36)–(2.41) and it will contain the initial data family of Theorem 1 (which
will be constructed in Sect. 6.2); see also Definitions 3.4 and 3.5 in [43].

Definition 3.1 For a given vI > 0, let r/, �/ : [0, vI) → [0,+∞) and
f̄/ : (0, vI) × [0,+∞)2 → [0,+∞) be smooth functions. The quadruplet
(r/, �2

/, f̄/; vI) (simplified to (r/, �2
/, f̄/) when the value of vI is clear from

the context) will be called a smoothly compatible asymptotically AdS initial
data set for the system (2.36)–(2.41) if it satisfies the following conditions:

1. The functions (r/, �2
/, f̄/) satisfy on (0, vI) the constraint equation (2.39),

with Tvv is defined in terms of (r/, �2
/, f̄/) by the second relation in (2.30)

with f̄ (u, v; pu, pv, l)
∣
∣∣
�2 pu pv= l2

r2

replaced by f̄/(v; pu, l).
2. At v = 0, the functions r/, �2

/ extend smoothly and satisfy

�2
/(0) > 0 (3.1)
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and

r/(0) = 0. (3.2)

3. The functions 1/r/ and r
−2
/ �2

/ extend smoothly on v = vI and satisfy

1/r/(vI) = 0, (3.3)

r−2
/ �2

/(vI) > 0, (3.4)

∂v(1/r/)(vI) < 0. (3.5)

Furthermore, for any p̄ ≥ 0 and l ≥ 0, the function f̄/(v;�−2
/ (v) p̄, l)

extends smoothly on v = vI .
4. The functions r/, �2

/, f̄/ satisfy Conditions 1–3 of Definition 3.5 of [43]
on smooth compatibility at v = 0 and v = vI .

Remark The requirement that the functions r/, �2
/, f̄/ satisfy Conditions 1–3

of Definition 3.5 of [43] corresponds to the statement that, roughly speaking,
the initial data set (r/, �2

/, f̄/), which is originally defined along {u = 0}, can
be smoothly extended as a triplet of functions (r, �2, f̃ ) defined on an open
neighborhood of {u = 0} in the region {u ≤ v < v + vI}, such that
• The spherically symmetric metric determined by the parameters (r, �2) is
smooth and asymptotically AdS (with smooth axis and conformal infinity)

• The functions (r, �2, f̃ ) satisfy the system (2.36)–(2.41) at {u = 0} at all
orders.

See Definition 3.5 of [43].

Wewill also denote byB0 the set of all smoothly compatible, asymptotically
AdS initial data sets (r/, �2

/, f̄/; vI) for (2.36)–(2.41) which have bounded
support in phase space, i.e. satisfy for every v ∈ (0, vI) and every l ≥ 0:

sup
pu∈supp( f/(v;·,l))

(
�2

/

(
pu + l2

�2
/r

2
/ p

u

)) ≤ C (3.6)

for some constant C < +∞ independent of v, l.15

For a more detailed discussion on Definition 3.1 and the properties of initial
data sets inB0, see Definitions 3.4 and 3.5 in [43].

The following remarks regarding Definition 3.1 were also discussed in [43]
(see Section 3.2 of [43]):

15 In (3.6), the supremum is taken over the values of pu in the support of f/ for fixed v, l.
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• Under a gauge transformation of the (u, v)-plane of the form (u, v) →
(u′, v′) = (U (u), V (v)), dU

du , dV
dv

�= 0, solutions (r, �2, f ) to (2.36)–
(2.41) transform according to (2.43). Considering the restriction of such
a transformation with U (0) = V (0) = 0 at the initial data (r/, �2

/, f̄/)

induced on {u = 0}, we infer that (r/, �2
/, f̄/) transform as follows:

r ′/(v′) .= r/(v), (3.7)

(�′
/)

2(v′) .= 1
dU
du (0) · dV

dv
(v)

�2
/(v),

f̄ ′/(v′; dU
du

(0) · p, l) .= f̄/(v; p, l).

• In this paper, following the conventions of [43], we will study asymptoti-
cally AdS solutions (r, �2, f ) of (2.36)–(2.41) under the gauge condition
that r = 0 on {u = v} and r = ∞ on {u = v − vI} (see Definition 3.5
in the next section). For a gauge transformation (u, v) → (U (u), V (v)) to
preserve this condition, it is necessary that

U (v) = V (v) and U (v − vI) = V (v) − vI . (3.8)

At the level of the initial data transformation at u = 0 associated to the coor-
dinate transformation v → V (v) and the parameter dU

du (0), (3.8) implies
that

dU

du
(0) = dV

dv
(0) and V (0) = 0, V (vI) = vI . (3.9)

Note that, in general, the property of an initial data set (r/, �2
/, f̄/; vI)

being smoothly compatible is gauge dependent. In particular, when the
transformed initial data set (r ′/, (�′

/)
2, f̄ ′/; V (vI)) is also smoothly com-

patible, Condition 4 of Definition 3.1 implies that a certain relation holds
between dkV

(dv)k
(0) and dkV

(dv)k
(vI) for all k ∈ N; this relation does not hold,

in general, for gauge transformations as above, even when V satisfies the
(necessary) condition V ∈ C∞([0, vI]). However, under certain assump-
tions on the support of f̄ , an initial data set (r/, �2

/, f̄/; vI) satisfying
Conditions 1–3 above can be gauge-transformed into a smoothly compati-
ble initial data set. See Lemma 3.4, as well as the discussion in Section 3.2
of [43].

• Let (r/, �2
/, f̄/; vI) ∈ B0. We will define the function (∂ur)/ on (0, vI)

(coinciding formally with ∂ur |u=0 in a development of (r/, �2
/, f̄/; vI)

solving (2.36)–(2.41) and satisfying r = 0 on {u = v}) by integrating
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equation (2.36) in v. In particular:

(∂ur)/(v)
.= 1

2r/(v)

∫ v

0

(
− 1

2
(1− �r2/ )�2

/ + 8πr2/ (T/)uv

)
d v̄, (3.10)

where (Tuv)/ is defined in terms of (r/, �2
/, f̄/) by (2.30) with l2

�2
/r

2
/ p

u in

place of pv and f̄/
(
v; pu, l) in place of f̄ (0, v; pu, pv, l)

∣∣
∣
�2 pu pv= l2

r2

. We

will also define the functionsm/, m̃/ on (0, vI) through the relations (2.9),
(2.44), as well as the energy-momentum components (T/)μν through the

relation (2.30) (again, with l2

�2
/r

2
/ p

u in place of pv and f̄/
(
v; pu, l) in place

of f̄ (0, v; pu, pv, l)
∣
∣∣
�2 pu pv= l2

r2

).

• For (r/, �2
/, f̄/; vI) ∈ B0 as above, the functions (T/)μν ,m/ and m̃/ extend

smoothly on v = 0, with

m/, m̃/ = O(r3/ ).

Furthermore, the condition (3.6) implies that

lim
v→v−

I
m̃(v) < +∞, (3.11)

while (2.39) and (3.5) imply that

inf
v∈(0,vI )

∂vr/(v) > 0 (3.12)

(see also Remark 2 in Section 3.2 of [43]).

The following normalised gauge condition for initial data sets (r/, �2
/, f̄/; vI)

was introduced in [43] for the purpose of fixing a simple representation of the
trivial initial data set (rAdS/, �

2
AdS/, 0; vI) (see Definition 3.6 in [43]):

Definition 3.2 Let (r/, �2
/, f̄/; vI) be a smoothly compatible, asymptotically

AdS initial data set for (2.36)–(2.41), as in Definition 3.1. Let also v → v′ =
V (v) (with V ∈ C∞([0, vI])), (r/, �2

/, f̄/; vI) → (r ′/, (�′
/), f̄ ′/; vI), be a

gauge transformation, defined by (3.7), satisfying the condition (3.9). We will
say that (r ′/, (�′

/), f̄ ′/; vI) satisfies the normalised gauge condition if

∂vr ′/
1− 1

3�(r ′/)2
(v) = (�′

/)
2

4∂vr ′/
(v) for v ∈ (0, vI). (3.13)
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In this case, we will say that (r/, �2
/, f̄/; vI) → (r ′/, (�′

/), f̄ ′/; vI) is a gauge
normalising transformation.

We should make the following remarks regarding Definition 3.2:

• It can be readily shown (seeLemma3.2 in [43]) that, for any (r/, �2
/, f̄/; vI)

∈ B0, there exists a unique gauge normalising transformation as in Defini-

tion 3.2. The trivial (normalised) initial data set (rAdS/, �
2
AdS/, 0;

√
− 3

�
π)

is expressed as:

rAdS/(v) =
√

− 3

�
tan

(1
2

√

−�

3
v
)
, (3.14)

�2
AdS/(v) = 1− 1

3
�r2AdS(v),

which are the data induced at u = 0 by the AdS metric expressed in the
standard double null coordinate chart (2.10). For different values of the
endpoint parameter vI > 0, we obtain by rescaling:

r (vI )

AdS/(v) = rAdS/

(√

− 3

�
π

v

vI

)
, (3.15)

(
�

(vI )

AdS/

)2
(v) = − 3

�

π2

v2I
�2

AdS/

(√

− 3

�
π

v

vI

)
.

• By integrating the constraint equation (2.39), we infer that the gauge con-
dition (3.13) is equivalent to

∂vr/

1− 1
3�r2/

(v) = 1

2a
exp

(
4π

∫ v

0

r/(T/)vv

(∂vr/)2
(v̄) (∂vr/)d v̄

)
, (3.16)

where

a
.=
√

−�

3

1

π

∫ vI

0
exp

(
4π

∫ v

0

r/(T/)vv

(∂vr/)2
(v̄) (∂vr/)d v̄

)
dv (3.17)

and (T/)vv is defined in terms of (r/, �2
/, f̄/) by in (2.30) with f̄/(v; pu, l)

in place of f̄ (u, v; pu, pv, l)
∣∣
∣
�2 pu pv= l2

r2

. Alternatively, the gauge condition

(3.13) can be expressed as

∂vr/

1− 1
3�r2/

= − (∂ur)/

1− 2m/

r/

. (3.18)

123



G. Moschidis

A comparative advantage of considering the gauge condition (3.13) when
constructing asymptotically AdS initial data sets (r/, �2

/, f̄/; vI) for (2.36)–

(2.41) is that (3.13) allows one to completely determine (r/, �2
/, f̄/; vI) in

terms of vI and f̄/, which can be freely prescribed. In particular, the following
result was established in [43]:

Lemma 3.3 (Lemma 3.1 in [43]). Let vI > 0 and let F : [0, vI) ×
[0,+∞)2 → [0,+∞) be a smooth function such that supp(F) is a com-
pact subset of (0, vI) × (0,+∞)2. There exists a unique asymptotically AdS
initial data set (r/, �2

/, f̄/; vI) for (2.36)–(2.41) satisfying Conditions 1–3 of
Definition 3.1 and the gauge condition (3.13), such that

f̄/(v; pu, l) = F
(
v; ∂vr/(v)pu, l

)
. (3.19)

Assume, in addition, that F satisfies the smallness condition

M[F] .=
∫ vI

0

r (vI )

AdS/(T
(vI )

AdS [F])vv

∂vr
(vI )

AdS/

(v̄) d v̄ < c0 � 1, (3.20)

where c0 > 0 is an absolute constant, (T (vI )

AdS [F])vv is defined by

(T (vI )

AdS [F])vv(v)
.= π

2

1

(r (vI )

AdS/)
2(v)

∫ +∞

0

∫ +∞

0
p2F(v; p, l) dp

p
ldl (3.21)

and r (vI )

AdS/, (�
(vI )

AdS/)
2 are the rescaled AdS metric coefficients given by (3.15).

Then, the following bounds hold:

∣
∣
∣

∂vr/

1− 1
3�r2/

(v) − ∂vr
(vI )

AdS/

1− 1
3�(r (vI )

AdS/)
2
(v)

∣
∣
∣ ≤ CM[F] for all v ∈ (0, vI)

(3.22)

and
∫ vI

0

r/(T/)vv

∂vr/
(v̄) d v̄ ≤ CM[F], (3.23)

where C > 0 is an absolute constant and is (T/)vv is defined in terms of

(r/, �2
/, f̄/; vI) by the second relation in (2.30)with f̄ (u, v; pu, pv, l)

∣
∣∣
2

�
pu pv

= l2

r2
replaced by f̄/(v; pu, l).
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For the proof of Lemma 3.3, see [43].
In general, a gauge normalising transformation (as in Definition 3.2) is

not smoothly compatible; that is to say, an initial data set (r/, �2
/, f̄/; vI)

expressed in a gauge where (3.13) holds will not, in general, satisfy Condition
4 of Definition 3.1 (see also the more detailed discussion in Sections 3.2 and
3.3 in [43]).

Remark For the trivial initial data set (rAdS/, �
2
AdS/, 0;

√
− 3

�
π), the gauge

normalised form (3.14) is also smoothly compatible (see [43]).

The following lemma, which is established in [43], shows that any initial
data set (r/, �2

/, f̄/; vI)which satisfies Conditions 1–3 of Definition 3.1 when
expressed in a gauge where (3.13) holds can be gauge transformed into a
smoothly compatible initial data set, provided f̄/ is supported away from v =
0, vI and l = 0.

Lemma 3.4 (Lemma 3.3 in [43]). Let (r/, �2
/, f̄/; vI) satisfy Conditions 1–3

of Definition 3.1, as well as the normalised gauge condition (3.13). Assume
that f̄/ is supported away from v = 0, vI and l = 0, i.e. there exists some
δ̄ > 0, such that f̄/ satisfies

f̄/(v; p, l) = 0 for v ∈ (0, δ̄] ∪ [vI − δ̄, vI) (3.24)

and

f̄/(v; p, l) = 0 for l ∈ [0, δ̄]. (3.25)

Then, there exists a gauge transformation v → v′(V ), (r/, �2
/, f̄/; vI) →

(r ′/, (�′
/)

2, f̄ ′/; vI) (of the form (3.7)), satisfying V ∈ C∞[0,+∞), (3.9) and

V (v) = v for v ≤ vI − 1

2
δ̄, (3.26)

such that the transformed initial data set (r ′/, (�′
/)

2, f̄ ′/; vI) satisfies all of the
Conditions 1–4 of Definition 3.1.

Furthermore, for any ε0 ∈ (0, 1), the gauge transformation can be chosen
so that

1− ε0 ≤ dV

dv
(v) ≤ 1+ ε0 for v ∈ [0, vI] (3.27)

and

max
v∈[0,vI ]

∣∣
∣
d2V

(dv)2
(v)

∣∣
∣ ≤

∫ vI

0

( 1− �r2/

1− 1
3�r2/

(T/)vv + 3(T/)uv

)
(v) dv + ε0

vI
,
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(3.28)

where (T/)vv , (T/)uv are defined in terms of (r/, �2
/, f̄/) by (2.30) with

f̄/(v; pu, l) in place of f̄ (u, v; pu, pv, l)
∣∣
∣
�2 pu pv= l2

r2

and l2

�2
/r

2
/ p

u in place of

pv .

For the proof of Lemma 3.4, see [43].

Remark The above lemma applies, in particular, to the normalised initial data
sets (r/, �2

/, f̄/; vI) provided by Lemma 3.3 for any function F which is

compactly supported in (0, vI) × (0,+∞)2.

3.2 Well-posedness of the characteristic initial-boundary value problem
and the maximal future development

In this section, we will formulate the notion of a development of a smoothly
compatible, asymptoticallyAdS initial data set (seeDefinition 3.1)with respect
to the system (2.36)–(2.41), assuming the reflecting boundary condition on I
(see Definition 2.4). We will then present a fundamental well-posedness result
for the associated characteristic initial–boundary value problem for (2.36)–
(2.41), culminating in the statement of the existence and uniqueness of a
maximal future development for any given smoothly compatible, asymptot-
ically AdS initial data set with bounded support in phase space. The proofs
of the results presented in this section (together with a wider collection of
well-posedness results) can be found in our companion paper [43].

The following class of domains in the (u, v)-plane will appear naturally as
the class of domains of definition for solutions (r, �2, f ) to the characteristic
initial-boundary value problem for (2.36)–(2.41); see also [43].

Definition 3.5 For any given vI > 0, we will define UvI to be the set of
all connected open domains U of the (u, v)-plane with piecewise Lipschitz
boundary ∂U , with the property that

∂U = SvI ∪ γZ ∪ I ∪ clos(ζ ), (3.29)

where, for some uγZ , uI ∈ (0,+∞],

SvI = {0} × [0, vI], (3.30)

γZ = {u = v} ∩ {0 ≤ u < uγZ }, (3.31)

I = {u = v − vI} ∩ {0 ≤ u < uI} (3.32)
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and the Lipschitz curve ζ is achronal with respect to the reference Lorentzian
metric

gre f
.= −du dv (3.33)

on R2. In particular, the case ζ = ∅ is allowed.

Remark In the case when ζ = ∅ in (3.29), it is necessary that both αZ and I
extend all the way to u + v = +∞.

Wewill define a future development of an asymptotically AdS characteristic
initial data set for (2.36)–(2.41) with reflecting boundary conditions on I as
follows:

Definition 3.6 For a given vI > 0, let (r/, �2
/, f̄/; vI) be a smoothly com-

patible, asymptotically AdS initial data set for the system (2.36)–(2.41), as
introduced by Definition 3.1. A future development of (r/, �2

/, f̄/; vI) for
(2.36)–(2.41)with reflecting boundary conditions onI will consist of a domain
U ⊂ R

2 belonging to the classUvI introduced in Definition 3.5, together with
a solution (r, �2, f ) of the system (2.36)–(2.41) on U , such that the following
conditions hold:

1. (U; r, �2, f ) is a smooth solution of (2.36)–(2.41) with smooth axis γZ
and smooth conformal infinity I, in accordance with Definitions 3.1 and
3.2 of [43].16

2. The solution (r, �2, f ) induces the initial data (r/, �2
/, f̄/; vI) at u = 0:

(r, �2)(0, v) = (r/, �
2
/)(v) (3.34)

and

f (0, v; pu, pv, l) = f̄/(v; pu, l) · δ
(
�2

/(v)pu pv − l2

(r/(v))2

)
. (3.35)

3. The reflecting boundary condition (2.58) is satisfied by f along conformal
infinity I (Fig. 11).

Remark For any smooth development (U; r, �2, f ) as in Definition 3.6, the
fact that the vector field ∂v + ∂u is tangential to γZ , I implies that

∂vr |γZ = −∂ur |γZ , (3.36)

16 Roughly speaking, the requirement that (U; r,�2, f ) has smooth axis γZ is equivlent to
the statement that the spherically symmetric metric defined onM \Z by the parameters �2, r
extends smoothly on Z , with Z coinciding with the set {r = 0}; see also Definition 3.1 in [43].
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Fig. 11 Depicted above is a
typical domain U ∈ UvI . In
the case when the boundary
set ζ is empty, it is necessary
that both γZ and I are
unbounded (i.e. extend all
the way to u + v = ∞)

∂v(
1

r
)|I = −∂u(

1

r
)|I . (3.37)

Moreover, differentiating the formula (2.9) for �2 and using equation (2.45)
for ∂u∂vr , the boundary condition (3.36) for r on γZ and the smoothness of
(r, �2, f ) at γZ (implying, in particular, that m = O(r3) as r → 0), we
calculate that

∂v�
2|γZ = 4

(−∂u∂vr)∂vr + (−∂ur)∂2v r

1− 2m
r

∣∣∣
γZ

+ 4
( (−∂ur)∂vr

(1− 2m
r )2

∂v

(
1− 2m

r

))∣∣∣
γZ

= ∂vr∂
2
v r |γZ

and, similarly:

∂u�
2|γZ = ∂ur∂

2
ur |γZ

Thus, using once more (3.36) and the fact that (∂u + ∂v)
2r |γZ = 0 (since

r ≡ 0 on γZ ), we infer that �2 satisfies the following Neuman-type boundary
condition at γZ :

(∂v − ∂u)�
2
∣
∣∣
γZ

= 0. (3.38)
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A proof of the instability of AdS

Arguing similarly at I (where 1
r ≡ 0 and using (2.57) and (3.37) in place of

(2.45) and (3.36), respectively, we also infer that:

(∂v − ∂u)
( �2

1− 1
3�r2

)∣∣∣
∣
I
= 0. (3.39)

Let us also point out that, for any smooth development (U; r, �2, f ) as
in Definition 3.6 and any u∗ ∈ [0, uγI ), the characteristic initial data set
(r/u∗, �

2
/u∗, f̄/u∗; vI) induced on the slice {u = u∗} ∩ U by (r, �2, f ) is

smoothly compatible, in accordance with Definition 3.1; see also the Discus-
sion in Section 3.2 of [43].

The following proposition establishes the well-posedness of the initial-
boundary value problem for (2.36)–(2.41) with reflecting boundary conditions
on I in the classB0 of smoothly compatible, asymptotically AdS initial data
with bounded support in phase space, as introduced in Definition 3.1:

Proposition 3.7 (Theorem 4.1 of [43]). Let (r/, �2
/, f̄/; vI) ∈ B0 (see Defi-

nition 3.1). Then, there exists a u∗ > 0 (depending on (r/, �2
/, f̄/; vI)) and a

unique solution (r, �2 f ) of (2.36)–(2.41) on the domain

Uu∗;vI
.= {

0 ≤ u < u∗
} ∩ {

u < v < u + vI
}
, (3.40)

such that (Uu∗,vI ; r, �2 f ) is a future development of (r/, �2
/, f̄/; vI) with

reflecting boundary conditions on I, in accordance with Definition 3.6.
For the proof of Proposition 3.7, see Section 4.3 of [43].
The existence of a unique maximal future development for smoothly com-

patible, asymptotically AdS characteristic initial data with bounded support in
phase space was also established in [43]:

Proposition 3.8 (Corollary 4.2 of [43]). Let (r/, �2
/, f̄/; vI) be initial data

set in B0. Then there exists a unique future development (Umax ; r, �2, f ) of
(r/, �2

/, f̄/; vI)with reflecting boundary conditions on I having the following

property: If (U∗; r∗, �2∗, f∗) is any other future development of (r/, �2
/, f̄/; vI)

with reflecting boundary conditions on I, then

U∗ ⊆ Umax (3.41)

and

(r, �2, f )|U∗ = (r∗, �2∗, f∗). (3.42)

The solution (Umax ; r, �2, f ) will be called the maximal future development
of (r/, �2

/, f̄/; vI) under the reflecting boundary condition on I.
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For a a more detailed presentation and a discussion on the proof of Propo-
sition 3.8, see Section 4.2 of [43].

The following notions regarding conformal infinity for future developments
of smoothly compatible, asymptotically AdS initial data set will be frequently
used in this paper:

Definition 3.9 Let (U; r, �2, f ) be a future development of a smoothly com-
patible, asymptotically AdS initial data set (r/, �2

/, f̄/; vI) for the system
(2.36)–(2.41), and let uI and I be defined according to Definition 3.5.
• The black hole region of (U; r, �2, f ) will be defined as the set

B .= {u ≥ uI} ∩ U . (3.43)

We will say that (U; r, �2, f ) contains a black hole if B �= ∅.
• We will say that a point p ∈ U corresponds to a trapped sphere of

(U; r, �2, f ) if

2m

r
(p) > 1. (3.44)

• We will say that (U; r, �2, f ) has future complete17 conformal infinity I
if

∫ uI

0

�
(
1− 1

3�r2
) 1
2

(u, u + vI) du = +∞. (3.45)

Remark As a consequence of the relation (2.9) and the fact that ∂ur < 0
everywhere on U (following from (2.38) and the fact that ∂ur < 0 on {u =
0} ∪ I), if (ū, v̄) ∈ U satisfies

2m

r
(ū, v̄) ≥ 1,

then

∂vr(ū, v̄) ≤ 0.

Hence, as a consequence of (2.39):

sup
v≥v̄

∂vr(ū, v) ≤ 0. (3.46)

17 The definition of future completeness of I that we adopt in this paper is equivalent to the
statement that I is future complete as a regular timelike boundary with respect to the metric
r−2g. This is the only natural definition of future completeness for I in the asymptotically AdS
setting.
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Therefore, in this case the function r is bounded from above along {u = ū}
and hence the line {u = ū} does not intersect {r = ∞} = I, i.e. (ū, v̄) is
contained in the black hole region B. Equivalently,

2m

r
(u, v) < 1 for all (u, v) ∈ {u < uI} ∩ U . (3.47)

For general initial data, we will not be able to show that the maximal future
development of a smooth initial data set (r/, �2

/, f̄/; vI) has future complete

conformal infinity I.18 However, in the presence of a trapped sphere, the
following statement holds:

Lemma 3.10 (Lemma B.1 in [43]) Let (r/, �2
/, f̄/; vI) ∈ B0 and let

(Umax ; r, �2, f ) be the maximal future development of (r/, �2
/, f̄/; vI) with

reflecting boundary conditions on I. Assume that there exists a point (ū, v̄) ∈
Umax satisfying

2m

r
(ū, v̄) > 1. (3.48)

Then, (Umax ; r, �2, f ) has future complete conformal infinity I, i.e. (3.45)
holds.

For a proof of Lemma 3.10, see Section B of the Appendix of [43].

3.3 Continuation criteria for smooth solutions of (2.36)–(2.41)

In this section, we will state two criteria that will allow us to extend smooth
solutions (r, �2, f ) of (2.36)–(2.41) beyond their original domain of defini-
tion. These criteria will be applied in our proof of Theorem 1 in Sects. 7–9.
For a wider class of continuation criteria, as well as for a proof of the results
of this section, see Section 5 of our companion paper [43].

The main extension principle of this section is the following:

Proposition 3.11 (Corollary 5.1 in [43]). For any vI > 0 and u1 > 0, let
(r, �2, f ) be a smooth solution of the system (2.36)–(2.41) on the domain
Uu1;vI (defined as in (3.40)), with smooth axis {u = v} and smooth conformal
infinity {u = v − vI} (see Definitions 3.1–3.3 of [43]). Assume that (r, �2, f )

18 The statement that for generic initial data, I is future complete, is of course equivalent to
the statement of the weak cosmic censorship conjecture in the asymptotically AdS settings for
(2.35) in spherical symmetry.
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satisfies

sup
Uu1;vI

2m

r
< 1, (3.49)

lim sup
(u,v)→(u1,u1)

2m̃

r
≤ δ0, (3.50)

where δ0 < 1 is a small absolute constant19 and, moreover, at u = 0, we have

supp
(
f (0, ·; ·)

)
⊂
{
�2(pu + pv) ≤ C0

}
for some C0 < +∞. (3.51)

Then, there exists some ū1 > u1, such that (r, �2, f ) extends on the whole
of the domain Uū1;vI ⊃ Uu1;vI as a smooth solution of (2.36)–(2.41) with
smooth axis {u = v} and smooth conformal infinity {u = v + vI}.

For a proof of Proposition 3.11, see Section 5.3 in [43].
The next extension principle, which is also presented in [43], applies to the

case of smooth solutions of (2.36)–(2.41), restricted to domains on which r is
bounded away from 0 and +∞:

Proposition 3.12 (Proposition 5.1 in [43]). For any u1 < u2, any v1 < v2 and
any � ∈ R, let (r, �2, f ) be a smooth solution of the system (2.36)–(2.41) on
an open neighborhood V of the rectangular region

R .= [u1, u2] × [v1, v2]\{(u2, v2)},

satisfying

inf
V

r > 0, (3.52)

sup
V

r < +∞, (3.53)

sup
V

m̃ < +∞, (3.54)

sup
({u1}×[v1,v2])∪([u1,u2]×{v1})

∂ur < 0, (3.55)

and, for some C < +∞:

supp
(
f (u1, ·; ·)

)
, supp

(
f (·, v1; ·)

)
⊆ {

�2(pv + pu) ≤ C
}
. (3.56)

19 The precise value of δ0 can be determined by examining the proof of Proposition 4.1 in [43]
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Then, (r, �2, f ) extends smoothly in a neighborhood of the whole rectangle
[u1, u2] × [v1, v2] (i.e. including the corner {(u2, v2)}).

For a proof of Proposition 3.12, as well as a discussion on the connection
between Proposition 3.12 and an analogous result established in [18], see [43].
Note that Proposition 3.12 applies to the system (2.36)–(2.41) for any value
of the cosmological constant �.

3.4 Cauchy stability of (MAdS, gAdS) for (2.36)–(2.41) in a low
regularity topology

In this section, we will introduce a low regularity, scale invariant topology
on the space B0 of smoothly compatible, asymptotically AdS initial data of
bounded support in phase space (see Definition 3.1). We will then formulate a
Cauchy stability statement for the trivial solution (MAdS, gAdS) in this topol-
ogy. This statementwill be crucial for addressing theAdS instability conjecture
in the associated low regularity topology. A more detailed discussion on the
results of this section can be found in our companion paper [43].

In accordance with [43], we will introduce the following map from B0 to
the space of smooth solutions of the (free) massless Vlasov equation (2.21) on
AdS spacetime:

Definition 3.13 For any given vI > 0, let (r/, �2
/, f̄/; vI) be an asymp-

totically AdS initial data set in the class B0 (see Definition 3.1). Let also
(r/, �2

/, f̄/; vI) → (r ′/, (�′
/)

2, f̄ ′/; vI) be the (unique) gauge transformation

such that (r ′/, (�′
/)

2, f̄ ′/; vI) satisfies the normalised gauge condition (3.13)
(the existence of such a gauge transformation is guaranteed by Lemma 3.2 in

[43]). Let us also define f̄ (AdS)
/ : [0,

√
− 3

�
π) × [0,+∞)2 → [0,+∞) in

terms of f̄ ′/ by the expression

f̄ (AdS)
/ (v; pu, l)

.= f̄ ′/(

√
− 3

�
π

vI
· v; pu, l).

We will define f (AdS) = f (AdS)[ f̄/; vI] : TMAdS → [0,+∞) to be the
unique solution of the massless Vlasov equation (2.21) on (MAdS, gAdS)with
initial conditions corresponding to f̄ (AdS)

/ , i.e. satisfying at u = 0:

f (AdS)

(

0, v; pu, l2

pu · �2
AdSr

2
AdS(0, v)

, l

)

= f̄ (AdS)
/ (v; pu, l) · δ

(
�2

AdS(0, v)pu pv − l2

r2AdS(0, v)

)
, (3.57)
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where �2
AdS , rAdS are the coefficients of gAdS given by (2.12). For any ū ≥ 0

and v̄ ∈ (ū, ū +
√
− 3

�
π), we will also set

[rTvv

∂vr

](AdS)

(ū, v̄)
.= rAdSTvv[ f (AdS)]

∂vrAdS
(ū, v̄) (3.58)

(and similarly for
[
rTuv−∂ur

](AdS)

,
[
rTuv

∂vr

](AdS)

and
[
rTuu−∂ur

](AdS)

), where the

energy momentum components Tαβ[ f (AdS)] are defined using the relations
(2.30) with �2

AdS , rAdS in place of �2, r .

Using the mapping (r/, �2
/, f̄/; vI) → f (AdS) fixed in Definition 3.13, we

will define the following positive definite functional on B0 (see also Section
6.1 in [43]):

Definition 3.14 For any (r/, �2
/, f̄/; vI) ∈ B0, we will define the norm

||(r/, �2
/, f̄/; vI)|| of (r/, �2

/, f̄/; vI) in terms of the free Vlasov field f (AdS)

on (MAdS, gAdS) as follows:

||(r/,�2
/, f̄/; vI)||

.= sup
U∗≥0

∫ U∗+
√
− 3

�
π

U∗

([rTvv

∂vr

](AdS)

(U∗, v) +
[ rTuv

−∂ur

](AdS)

(U∗, v)
)
dv

+ sup
V∗≥0

∫ V∗

max{0,V∗−
√
− 3

�
π}

([ rTuu
−∂ur

](AdS)

(u, V∗) +
[rTuv

∂vr

](AdS)

(u, V∗)
)
du

+ √−�m̃/|v=vI . (3.59)

Remark The functional || · || defined above is positive definite and measures
the distance of an initial data set inB0 from the trivial one with respect to an
appropriate distance function (see also the remark below). However, strictly
speaking, it is not a norm onB0, sinceB0 is not even a linear space. Despite
this fact, in what follows, we will keep referring to || · || as a norm on the space
of initial data; see also the discussion in Section 6.1 of [43].

Let us also notice the following regarding the definition of ||·||: As explained
in Section 6.1 of [43], the quantity || · ||measures the concentration of energy
occuring along the evolution of the freeVlasov field f (AdS) in (MAdS, gAdS).
However, it turns out that, for initial data which are small with respect to || · ||,
the evolution of f remains close (in a certain sense) to that of f (AdS) for a
long time; thus, in this case, || · || also measures the concentration of energy
of f in the same time interval. This is the content of Proposition 3.15 below.

Given a smooth asymptotically AdS solution (r, �2; f ) of (2.36)–(2.41) on
a domain Uu1;vI of the form (3.40) with axis {u = v} and conformal infinity
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{u = v − vI}, we will similarly define the norm of the initial data induced
by (r, �2; f ) on slices of the form {u = u∗} ∩ Uu1;vI for any u∗ ∈ (0, u1) as
follows:

||(r, �2; f )|u=u∗ || .= ||(r/u∗, �2
/u∗, f̄/u∗; vI)|| (3.60)

where

(r/u∗, �
2
/u∗)(v̄)

.= (r, �2)(u∗, u∗ + v̄)

and

f̄/u∗(v̄; p, l) = f̄

(
u∗, u∗ + v̄; p, l2

�2r2|(u∗,u∗+v̄) p
, l

)

(where the function f̄ is related to the distribution f by (2.28)).

Remark The fact that || · || takes finite values onB0 follows readily from the
condition (3.6) on the support of f̄/. Moreover, ||(r/, �2

/, f̄/)|| = 0 if and

only if f̄/ ≡ 0; in this case, (r/, �2
/, 0) can be identified through a gauge

transformation with the rescaled trivial data

r (vI )

AdS (u, v) = rAdS
(√

− 3

�
π

u

vI
,

√

− 3

�
π

v

vI

)
, (3.61)

(
�

(vI )

AdS

)2
(u, v) = − 3

�

π2

v2I
�2

AdS

(√

− 3

�
π

u

vI
,

√

− 3

�
π

v

vI

)
.

Notice that || · || is both gauge invariant and scale invariant, i.e. invariant under
transformations of (r/, �2

/; f̄/) of the form

r/(v) → λ−1r/(λv),

�2
/(v) → �2

/(λv),

f̄/(v; pv, l) → λ2(λ′)4 f̄/(λv; λ′ pv, λ · λ′l),
� → λ2�,

for any λ, λ′ > 0. For a detailed discussion on the special properties and the
scale-invariant character of || · ||, see Section 6.1 of [43].

The following result provides a Cauchy stability statement for the triv-
ial solution (MAdS, gAdS) of (2.36)–(2.41) in the context of the initial data
topology defined by (3.59) onB0:
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Proposition 3.15 (Theorem 6.1 in [43]). For any vI > 0, any U > 0 and any
C0 > 0, there exist ε0 > 0 andC1 > 0 such that the following statement holds:
For any 0 ≤ ε < ε0 and any smooth initial data set (r/, �2

/, f̄/; vI) ∈ B0
satisfying

||(r/, �2
/, f̄/; vI)|| < ε (3.62)

(where || · || is defined by (3.59)) and the bound (3.6) with C0 in place of
C, the maximal future development (Umax ; f, �2, f ) of (r/, �2

/, f̄/; vI) under
the reflecting boundary condition on I (see Proposition 3.8) satisfies

UU ;vI ⊂ Umax

(where the domain UU ;vI ⊂ R
2 is defined in terms of U, vI by (3.40)). Fur-

thermore, (UU ;vI ; r, �2, f ) satisfies the following bounds:

sup
u∗∈(0,U )

||(r, �2; f )|u=u∗ || ≤ C1ε, (3.63)

sup
(u,v)∈UU ;vI

(
sup

pu ,pv∈supp( f (u,v;·,·,·))

(
�2(u, v)

(
pu + pv

))) ≤ (1+ C1ε)C0,

(3.64)

sup
u∈(0,U )

∫ u+vI

u
r
(Tvv[ f ]

∂vr
+ Tuv[ f ]

−∂ur

)
(u, v) dv

+ sup
v∈(0,U+vI )

∫ min{v,U }

max{0,v−vI }
r
(Tuv[ f ]

∂vr
+ Tuu[ f ]

−∂ur

)
(u, v) du ≤ C1ε, (3.65)

and

sup
UU ;vI

2m̃

r
< C1ε. (3.66)

For the proof of Proposition 3.15, see Section 6.2 of [43].

4 Statement of the main result

In this section, we will present a detailed formulation of Theorem 1 on the
instability of (MAdS, gAdS) as a solution of the system (2.36)–(2.41). In par-
ticular, the main result of this paper can be stated as follows:

Theorem 1 (final version) There exists a 1-parameter family S(ε) = (r (ε)
/ ,

(�
(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π), ε ∈ (0, 1], of smoothly compatible, asymptotically
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AdS initial data sets for (2.36)–(2.41) with bounded support in phase space
(see Definition 3.1), satisfying the following conditions:

1. S(ε) converge to the trivial initial data as ε → 0with respect to the topology
defined by (3.59), i.e.

||(r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√

− 3

�
π)|| ε→0−−→ 0. (4.1)

2. For any ε ∈ (0, 1], the corresponding maximal future development
(U (ε)

max ; rε, �2
ε, fε) of S(ε) with reflecting boundary conditions on I con-

tains a point (u(ε)
† , v

(ε)
† ) such that

2mε

rε
(u(ε)

† , v
(ε)
† ) > 1. (4.2)

Remark As a consequence of (3.47), the relation (4.2) implies that (U (ε)
max ; rε,

�2
ε, fε) contains a non-trivial black hole region for any ε ∈ (0, 1]. Further-

more, Lemma 3.10 implies that, in this case, (U (ε)
max ; rε, �2

ε, fε) possesses a
complete null infinity Iε for any ε ∈ (0, 1].

Using the estimates established in the proof of Theorem 1, it can be actu-
ally shown (although this is not carried out in this paper) that there exists an
advanced time v

(ε)∗ > 0 satisfying

v
(ε)
† < v(ε)∗ < uIε +

√

− 3

�
π

such that, in the region V∞
.= {v ≥ v

(ε)∗ } ∩ U (ε)
max , the Vlasov field f (ε)

vanishes identically and the solution is locally isometric to a member of the
Schwarzschild–AdS family. This fact implies, in particular, that uI < +∞
and that the future boundary of U (ε)

max is strictly spacelike in a neighborhood

of “future timelike infinity” (uIε , uIε +
√
− 3

�
π). However, we are not able

to rule out the possibility of the future boundary of U (ε)
max containing a null

segment emanating from r = 0 and corresponding to a Cauchy horizon for
the maximal future development (U (ε)

max ; rε, �2
ε, fε) (note that the extension

principle along r = 0 provided by Theorem 5.1 in [43] only applies under the
condition that 2m̃r � 1). We will not pursue this issue any further in this paper.

The proof of Theorem 1 will occupy Sects. 6–9. In particular, the construc-
tion of the initial data family S(ε) will be presented in Sect. 6, with (4.1)
established in Sect. 6.2 (see Lemma 6.5). The fact that the corresponding
maximal developments (U (ε)

max ; rε, �2
ε, fε) contain points where (4.2) holds

123



G. Moschidis

will finally be established in Sect. 9, using the technical machinery developed
in Sect. 7 and the fact that the specific choice of the initial data family leads to
the formation of an intermediate profile with certain properties (see Sect. 8).
For a sketch of the proof, see also Sect. 1.2 of the introduction.

Before proceeding to the proof of Theorem 1 and its related constructions,
we will need to establish a number of fundamental estimates that will allow
us to control the geodesic flow on solutions of (2.36)–(2.41) under minimal
assumptions on their geometry; this will be achieved in Sect. 5.

5 Auxiliary estimates for the null geodesic flow in the case 2m̃/r � 1

In this section, we will establish a number of estimates related to the paths of
null geodesics on asymptotically AdS solutions (r, �2, f ) of (2.36)–(2.41),
assuming, in addition, that the spacetimes under consideration satisfy the
smallness condition

2m̃

r
≤ δ0 � 1.

The results of this section will be crucial for the proof of Theorem 1, since
they will allow us to estimate the paths traced out by narrow Vlasov beams
with minimal control on the spacetime geometry.

5.1 Geodesic paths under rough assumptions on the spacetime geometry

For anyU > 0 and vI > 0, letUU ;vI be the domain in the (u, v)-plane defined
by (3.40). Let also (r, �2, f ) be a smooth solution of (2.36)–(2.41) on UU ;vI ,
with smooth axis {u = v} and smooth conformal infinity {u = v − vI}, in
accordance with to Definitions 3.1–3.3 of [43].

The following result provides quantitative bounds for the paths of null
geodesics in UU ;vI :

Lemma 5.1 Let 0 < δ0 � 1 be a sufficiently small absolute constant, and
let UU ;vI and (r, �2, f ) be as above. Assume that the following bounds are
satisfied for some C0 > 100:

sup
UU ;vI

(∣
∣∣ log

( ∂vr

1− 1
3�r2

)∣∣∣+
∣
∣∣ log

( −∂ur

1− 1
3�r2

)∣∣∣
)

≤ C0 (5.1)
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and20

sup
UU ;vI

(2m̃
r

+√−�m̃
)
≤ δ0. (5.2)

Let γ : [0, a) → UU ;vI (with a ∈ (0,+∞]) be a future inextendible, future
directed, affinely parametrised null geodesic of (r, �2) satisfying the following
conditions:

• γ is initially ingoing, i.e.

γ̇ u(0) > γ̇ v(0), (5.3)

• γ has angular momentum l satisfying the bound

0 <
l

E0

√−� ≤ e−50C0, (5.4)

where

E0
.= 1

2

(
�2γ̇ u + �2γ̇ v

)
(0), (5.5)

• γ (0) satisfies

r(γ (0)) ≥ e50C0
l

E0
. (5.6)

Then, the following statements hold for γ :

1. Setting

(u0, v0)
.= γ (0)

and

V↖ =
[
u0, v0 + e150C0

l

E0

] [
v0 − e150C0

l

E0
, v0 + e150C0

l

E0

]
, (5.7)

V↗ =
[
v0 − e150C0

l

E0
, v0 + e150C0

l

E0

]

×
[
v0 − e150C0

l

E0
, v0 + vI + e150C0

l

E0

]
, (5.8)

20 Note that, since m = m̃ + 1
6�r3, the bound (5.2) implies that m

r is also small in the region

r � (−�)
1
2 .
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the curve γ is contained in the following region:

γ ⊂
{
r ≥ e−6C0

l

E0

}
∩
(
V↖ ∪ V↗

)
∩ UU ;vI (5.9)

(see Fig. 12).
2. For any s ∈ [0, a), we can estimate

e−100C0E0 ≤ 1

2

(
�2γ̇ u(s) + �2γ̇ v(s)

)
≤ ee

200C0 E0. (5.10)

3. Let sc ∈ (0, a] be defined as

sc = sup
{
s ∈ (0, a) : u(γ (s)) + v(γ (s)) ≤ u0 + v0 + vI

}
. (5.11)

Then, for any s ∈ [0, sc), we can bound

γ̇ v

γ̇ u
≤ ee

200C0 l2

E2
0

1− 1
3�r2

r2

∣
∣
∣∣
γ (s)

(5.12)

while, for any s ∈ (sc, a), we have:21

γ̇ u

γ̇ v
(s) ≤ ee

200C0 l2

E2
0

1− 1
3�r2

r2

∣
∣
∣∣
γ (s)

. (5.13)

In particular, s = sc roughly separates the ingoing from the outgoing part
of the curve γ .

Remark In the case when one considers future inextendible geodesics γ in
UU ;vI with future endpoints on conformal infinity, the statement of Lemma
5.1 can be readily generalised to the extension of such geodesics through their
reflection off {u = v − vI}; see Corollary 5.2. Notice also that the condition
(5.1) implies that 1

10e
−C0 ≤ √−�vI ≤ 10eC0 , i.e. that, in the class of space-

times satisfying (5.1), vI and (−�)− 1
2 can be used almost interchangeably as

units of length with merely O(eC0) errors occuring in the transition. Let us
also remark that Lemma 5.1 is also valid in the case when the initial point of
γ lies on I, i.e. γ (0) in the statement of the Lemma is replaced by γ (−∞),

with γ (−∞) ∈ I, and (5.3) is replaced by �2γ̇ u

�2γ̇ v (−∞) > 1.

21 This is a non-trivial case only when sc < a.
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Fig. 12 Schematic depiction of the rectangular domains V↖ and V↗ in the statement of
Lemma 5.1

We should point out that Lemma 5.1 will be applied in situations where the
smallness of l/E0 dominates any constant depending on C0 appearing above.

Proof Wewill adopt the following convention regarding the parametrization of
γ :Wewill denotewith s the affine parametrization of γ (and the corresponding
derivative by ˙ ), while τ will denote the parameter corresponding to u + v.
Let also [τ0, τ1) be the parameter interval for γ associated to the parameter τ ,
i.e. τ0 = u0 + v0 and τ1 = lims→a

(
u(γ (s)) + v(γ (s))

)
.

In view of the formula (2.9), the bounds (5.1) and (5.2) imply that

sup
UU ;vI

∣
∣∣ log

( �2

1− 1
3�r2

)∣∣∣ ≤ 2C0. (5.14)
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Using (2.50) with

u1(v) =
{
u0, v ≤ u0 + vI,

v − vI, v ≥ u0 + vI,
(5.15)

and then using the relation (3.39) for �2

1− 1
3�r2

along {u = v − vI}, we readily
infer that, for any τ ∈ (τ0, τ1):

log
(
�2γ̇ u)(τ ) − log

(
�2γ̇ u)(τ0)

=
∫ v(γ (τ ))

v0

∫ u(γ (τv))

u1(v)

(1
2

6m̃
r − 1

r2
�2 − 24πTuv

)
du dv

+
(
log

( �2

1− 1
3�r2

1− 1
3�r2

−�r2

)(
u1(v(γ (τ ))), v(γ (τ ))

)

− log
( �2

1− 1
3�r2

1− 1
3�r2

−�r2

)
(u0, v0)

)
, (5.16)

where τv is defined by

v(γ (τv̄)) = v̄. (5.17)

In view of the fact that the first term in the right hand side of (5.16) is non-
positive (as a consequence of (5.2)), using (5.14), (5.3), (5.5) and the fact
that

r(u1(v(γ (τ ))), v(γ (τ ))) ≥ r(u0, v0)

(since γ has a timelike projection on the (u, v)-plane and thus v(γ (τ)) ≥ v0,
while r(u1(v), v) = ∞ if u1(v) �= u0), we infer from (5.16) that, for any
τ ∈ (τ0, τ1):

�2γ̇ u(τ ) ≤ e3C0�2γ̇ u(τ0) ≤ 2e3C0E0. (5.18)

For any τ ∈ (τ0, τ1) such that d
dτ
r(γ (τ )) ≤ 0, i.e.

∂vr |γ (τ)γ̇
v(τ ) ≤ −∂ur |γ (τ)γ̇

u(τ ), (5.19)

we can estimate from (2.19) using (5.1), (5.18) and (5.19):

�2l2

r2

∣
∣∣
γ (τ)

= (�2|γ (τ)γ̇
u(τ )) · (�2|γ (τ)γ̇

v(τ )) (5.20)
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≤ sup
UU ;vI

( ∂vr

−∂ur

)
(�2|γ (τ)γ̇

u(τ ))2

≤ 4e8C0E2
0 .

Since (5.20) holds whenever d
dτ
r(γ (τ )) ≤ 0, using (5.14) we deduce that

inf
γ
r ≥ 1

2
e−5C0

l

E0
. (5.21)

The identity (5.16) implies, using the bound (5.2) for m̃/r , combined with
the bound

Tuv ≤ eC0
−∂um̃

r2

(following readily from (2.49) and (5.1)), as well as the bounds (5.1) and
(5.14), that the following estimate holds for any τ ∈ (τ0, τ1)

∣
∣∣ log

(
�2γ̇ u)(τ ) − log

(
�2γ̇ u)(τ0)

∣
∣∣

≤ e4C0

∫ v(γ (τ ))

u0+vI

∫ u(γ (τv))

u1(v)

(−∂ur)

r2
du dv

+ e2C0

∫ v(γ (τ ))

u1(v)

∫ u(γ (τv))

u1(v)

(−∂um̃)
1− 1

3�r2

r2
du dv + 2C0

≤ e4C0
(

sup
v∈[v0,v(γ (τ ))]

∫ u(γ (τv))

u1(v)

(−∂ur)

r2
du

)(
v(γ (τ)) − v(γ (τ0))

)

+ e2C0

∫ v(γ (τ ))

u1(v)

∫ u(γ (τv))

u1(v)

4
m̃

r

1− 1
3�r2

r2
(−∂ur) du dv

+ e2C0

∫ v(γ (τ ))

u1(v)

m̃
1− 1

3�r2

r2

∣
∣∣
u=u1(v)

dv

− e2C0

∫ v(γ (τ ))

u1(v)

m̃
1− 1

3�r2

r2

∣
∣∣
u=u(γ (τv))

dv

≤ e4C0 sup
τ̄∈(τ0,τ )

1

r(γ (τ̄ ))
· (v(γ (τ)) − v(γ (τ0))

)+ 2C0, (5.22)

where, in passing from the first to the second line in (5.22), we integrated in
u for the ∂um̃ term. On the other hand, the identity (5.16) can also be used
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to similarly obtain an one-sided bound for log
(
�2γ̇ u

)
(τ ) − log

(
�2γ̇ u

)
(τ0),

using the fact that Tuv ≥ 0:

log
(
�2γ̇ u)(τ ) − log

(
�2γ̇ u)(τ0)

≤
∫ v(γ (τ ))

u0+vI

∫ u(γ (τv))

u1(v)

(1
2

6m̃
r − 1

r2
�2

)
du dv (5.23)

+
(
log

( �2

1− 1
3�r2

)(
u1(v(γ (τ ))), v(γ (τ ))

)− log
( �2

1− 1
3�r2

)
(u0, v0)

)

≤ −e−4C0B[τ ] + 2C0,

where

B[τ ] .=
∫ v(γ (τ ))

u1(v)

∫ u(γ (τv))

v−vI

(−∂ur)

r2
du dv. (5.24)

Therefore, in view of (5.5), (5.3):

−e4C0 sup
τ̄∈(τ0,τ )

1

r(γ (τ̄ ))
· (v(γ (τ)) − v(γ (τ0))

)− 2C0

≤ log
(�2γ̇ u(τ )

E0

)
≤ −e−4C0B[τ ] + 2C0. (5.25)

Let us define τin ∈ [τ0, τ1] as follows:

τin
.= sup

{
τ ∈ (τ0, τ1) : r(γ (τ̄ )) ≥ e30C0

l

E0
for all τ̄ ≤ τ

}
. (5.26)

Our analysis of the path traced by γ will be separated into two regimes: The
ingoing interval τ ∈ [τ0, τin) and the outgoing interval τ ∈ [τin, τ1). Note that
the latter interval will be trivial if τin = τ1. However, in view of (5.6), it is
necessary that the ingoing interval is non-trivial, i.e.:

τin > τ0. (5.27)

The ingoing regime τ ∈ [τ0, τin). Let us define τ∗ ∈ (τ0, τin] by the relation:

τ∗ = sup
{
τ ∈ (τ0, τc) : v(γ (τ̄ )) − v(γ (τ0)) ≤ e20C0

l

E0
for all τ̄ ≤ τ

}
.

(5.28)

The estimate (5.25) implies, in view of the fact that r(γ (τ̄ )) ≥ e30C0 l
E0

for
τ < τin (following from the definition (5.26) of τin) and the definition (5.28)
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of τ∗, that, for all τ ∈ [τ0, τ∗):
(
�2γ̇ u)(τ ) ≥ e−4C0E0. (5.29)

Thus, in view of (2.19) and (5.14), we can bound for all τ ∈ [τ0, τ∗):

(�2γ̇ v)(τ ) ≤ e6C0
l2(1− 1

3�r2)

E0r2

∣
∣∣
γ (τ)

. (5.30)

In view of (5.18), (5.21), (5.29), and (5.30), we therefore infer that, for all
τ ∈ [τ0, τ∗):

e−4C0E0 ≤ (
�2γ̇ u)(τ ) + (

�2γ̇ v
)
(τ ) ≤ e10C0E0 (5.31)

and

(�2γ̇ v)(τ )
(
�2γ̇ u

)
(τ ) + (�2γ̇ v)(τ )

≤ e10C0
l2(1− 1

3�r2)

E2
0r

2

∣
∣
∣
γ (τ)

. (5.32)

Moreover, as a result of (5.1), (5.31), (5.32) and the definition (5.26) of τin , as
well as using assumption (5.4) for γ , we deduce that, for all τ ∈ [τ0, τ∗):

d

dτ

(
tan−1 (√−�r(γ (τ ))

))

≤ −e−4C0
(
1− e10C0

l2(1− 1
3�r2)

E2
0r

2

∣
∣∣
γ (τ)

)√−�

≤ −1

2
e−4C0

√−�. (5.33)

Integrating (5.32) over τ ∈ [τ0, τ∗) and using (5.33) and (5.21), we infer
that, for all τ ∈ [τ0, τ∗):

v(γ (τ)) − v0 ≤ 1

2
e20C0

l

E0
. (5.34)

In view of (5.34), the definition (5.28) of τ∗ implies (through a standard con-
tinuity argument) that

τ∗ = τin. (5.35)
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Therefore, the estimates (5.29)–(5.34)hold for all τ ∈ [τ0, τin). Moreover, the
bound (5.34) and the fact that u ≤ v on UU ;vI implies that

τin = lim
τ→τ−

in

(
u(γ (τ )) + v(γ (τ))

) ≤ 2v0 + e20C0
l

E0
. (5.36)

The outgoing regime τ ∈ [τin, τ1). In the case when τin < τ1 (which is
necessarily the case, for instance, when τ1 > 2v0+e20C0 l

E0
, as a consequence

of (5.36)), the definition (5.26) of τin implies that

r(γ (τin)) = e30C0
l

E0
(5.37)

from which we obtain, in view of the bound (5.1) on ∂vr and the boundary
condition r |{u=v} = 0, that

v(γ (τin)) − u(γ (τin)) ≤ e32C0
l

E0
. (5.38)

The bounds (5.34) and (5.38) therefore yield:

u(γ (τin)) − v0 ≤ 2e32C0
l

E0
. (5.39)

For any τ ∈ [τin, τ1), the analogue of the identity (5.16) after replacing
u1(v) with

u2(v) =
{
u(γ (τin)), v ≤ u(γ (τin)) + vI,

v − vI, v ≥ u(γ (τin)) + vI,

is

log
(
�2γ̇ u)(τ ) − log

(
�2γ̇ u)(τin)

=
∫ v(γ (τ ))

v(γ (τin))

∫ u(γ (τv))

u2(v)

(1
2

6m̃
r − 1

r2
�2 − 24πTuv

)
du dv (5.40)

+
(
log

( �2

−�r2

)(
u2(v(γ (τ ))), v(γ (τ ))

)

− log
( �2

−�r2

)
(u(γ (τin)), v(γ (τin)))

)
.
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Using the fact that the first term in the right hand side of (5.40) is non-positive
(in view of (5.2)), the bounds (5.14) for�2/(1− 1

3�r2) and (5.18) for γ̇ u(τin)

imply that, for any τ ∈ [τin, τ1):

�2γ̇ u(τ ) ≤ �2γ̇ u(τin) (5.41)

× exp

{
log

(1− 1
3�r2

−�r2
)∣∣
∣
(u2(v(γ (τ ))),v(γ (τ )))

− log
(1− 1

3�r2

−�r2
)∣∣
∣
(u(γ (τin)),v(γ (τin)))

+ 4C0

}

≤ 2e7C0
r2(u(γ (τin)), v(γ (τin)))

r2(u2(v(γ (τ ))), v(γ (τ )))
·
(
1− 1

3�r2
)
(u2(v(γ (τ ))), v(γ (τ )))

(
1− 1

3�r2
)
(u(γ (τin)), v(γ (τin)))

E0.

Using (5.4) and (5.37), the bound (5.41) yields for any τ ∈ [τin, τ1):

�2γ̇ u(τ ) ≤ e70C0
1− 1

3�r2

r2

∣
∣∣(
u2(v(γ (τ ))),v(γ (τ ))

) l
2

E0
. (5.42)

The relation (2.19) implies, in view of (5.14), (5.42) and the fact that ∂ur < 0,
that, for any τ ∈ [τin, τ1):

�2γ̇ v(τ ) ≥ e−72C0

1− 1
3�r2

r2

∣∣
∣(
u(γ (τ ))),v(γ (τ ))

)

1− 1
3�r2

r2

∣
∣∣(
u2(v(γ (τ ))),v(γ (τ ))

)
E0 ≥ e−72C0E0. (5.43)

The estimates (5.42) and (5.43), combinedwith (5.1), (5.4) and (5.37), imply
that, for any τ ∈ [τin, τ1):

|u(γ (τ )) − u(γ (τin))| =
∫ τ

τin

γ̇ u(τ̄ ) d τ̄ =
∫ v(γ (τ ))

v(γ (τin))

�2γ̇ u

�2γ̇ v
(τ̄ ) dv(γ (τ̄ ))

(5.44)

≤ e150C0
l2

E2
0

∫ v(γ (τ ))

v(γ (τin))

1− 1
3�r2

r2
(u2(v), v) dv

≤ e160C0
l2

E2
0

1

r(γ (τin))

≤ e130C0
l

E0
.

123



G. Moschidis

Using (5.37) and (5.44) (as well as (5.1), (5.4) and (5.14)), we can estimate

∫ v(γ (τ ))

v(γ (τin))

∫ u(γ (τv))

u2(v)

1

r2
�2 du dv

≤
∫

{r≥r(γ (τin))}∩{|u−u(γ (τin))|≤e130C0 l
E0

}
1

r2
�2 du dv (5.45)

≤ e150C0
l

E0

∫ ∞

r(γ (τin))

1

r2
dr ≤

≤ e120C0 .

Similarly, in view of (2.48) and (5.2):

∫ v(γ (τ ))

v(γ (τin))

∫ u(γ (τv))

u2(v)

Tuv du dv (5.46)

=
∫ v(γ (τ ))

v(γ (τin))

∫ u(γ (τv))

u2(v)

∂vm̃

8πr2
�2

−∂ur
du dv

≤ e4C0

∫ v(γ (τ ))

v(γ (τin))

∫ u(γ (τv))

u2(v)

∂vm̃

r2
du dv

≤ e4C0
( ∫ v(γ (τ ))

v(γ (τin))

∫ u(γ (τv))

u2(v)

2
m̃

r

∂vr

r2
du dv

+
∫ u(v(γ (τ )))

u2(v(γ (τ )))

m̃

r2
(u, v(γ (τ ))) du

)

≤ e10C0δ0

( ∫ v(γ (τ ))

v(γ (τin))

∫ u(γ (τv))

u2(v)

�2

r2
du dv

+
∫ u(v(γ (τ )))

u2(v(γ (τ )))

1

r(γ (τ1))
du

)

≤ e150C0δ0.

Using (5.2), (5.45) and (5.46), we infer from (5.40) that, for any τ ∈
[τin, τ1):

log
(
�2γ̇ u)(τ ) − log

(
�2γ̇ u)(τin) (5.47)

≥ −2e120C0 +
(
log

( �2

−�r2

)(
u2(v(γ (τ ))), v(γ (τ ))

)

− log
( �2

−�r2

)
(u(γ (τin)), v(γ (τin)))

)
(5.48)
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and, therefore, in view of the bounds (5.14) for �2/(1− 1
3�r2) and (5.29) for

γ̇ u(τin):

�2γ̇ u(τ ) ≥ �2γ̇ u(τin) (5.49)

× exp

{
− e130C0 + log

(1− 1
3�r2

−�r2
)∣∣∣

(u2(v(γ (τ ))),v(γ (τ )))

− log
(1− 1

3�r2

−�r2
)∣∣∣

(u(γ (τin)),v(γ (τin)))
+ 4C0

}
≤

≥ e−e140C0 r2(u(γ (τin)), v(γ (τin)))

r2(u2(v(γ (τ ))), v(γ (τ )))

·
(
1− 1

3�r2
)
(u2(v(γ (τ ))), v(γ (τ )))

(
1− 1

3�r2
)
(u(γ (τin)), v(γ (τin)))

E0.

The estimate (5.49) implies, in view of (2.19), (5.4), (5.14), (5.21) and the fact
that ∂vr > 0, that, for any τ ∈ [τin, τ1):

�2γ̇ v(τ ) ≤ e2C0l2
1− 1

3�r2

r2

∣∣
∣
∣
γ (τ)

1

�2γ̇ u(τ )
(5.50)

≤ ee
145C0 l2

E0

1− 1
3�r2

r2

∣∣
∣
∣
γ (τ)

· r2
(
1− 1

3�r2
)
∣
∣∣
∣
(u2(v(γ (τ ))),v(γ (τ )))

·
(
1− 1

3�r2
)

r2

∣
∣∣
∣
γ (τin)

≤ ee
145C0 l2

E0

1− 1
3�(infγ r)2

(infγ r)2

≤ ee
150C0 E0.

The bounds (5.18), (5.43) and (5.50) therefore imply that, for any τ ∈ [τin, τ1):

e−72C0E0 ≤ �2γ̇ u(τ ) + �2γ̇ v(τ ) ≤ ee
200C0 E0. (5.51)

The estimates we have established so far are sufficient to complete the proof
of Lemma 5.1. In particular:

• The bound (5.9) follows readily from the bound (5.21) on infγ r , the bounds
(5.34) and (5.44) on the total change of u, v along the intervals [τ0, τin),
[τin, τ1), respectively (in view also of (5.35)), and the bounds (5.38) and
(5.39) on γ (τin).

• The energy bound (5.10) follows immediately from (5.31) and (5.51).
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• The estimates (5.12) and (5.13) follow readily from the bounds (5.29),
(5.30) for τ ∈ [τ0, τin) and the bounds (5.42), (5.43) for τ ∈ [τin, τ1), as
well as the fact that, for any τ ∈ [τ0, τ1) such that r(γ (τ )) ≤ e50C0 l

E0
, we

can estimate as a consequence of (2.19), (5.14), (5.18), (5.31) and (5.51):

γ̇ v

γ̇ u
(τ ) = l2

�2

r2

∣
∣∣
γ (τ)

1

(�2γ̇ u)2(τ )
≥ e−60C0 (5.52)

and

γ̇ v

γ̇ u
(τ ) = l−2 r

2

�2

∣
∣∣
γ (τ)

(�2γ̇ v)2(τ ) ≤ ee
200C0

. (5.53)

��
By applying Lemma 5.1 successively between the points of reflection off

I of a maximally extended null geodesic γ , we obtain the following useful
generalisation of Lemma 5.1:

Corollary 5.2 Let 0 < δ0 � 1 be a sufficiently small absolute constant,
and let UU ;vI and (r, �2, f ) be as in Lemma 5.1, satisfying (5.1) and (5.2)
for some C0 > 100. Let also γn : (an, bn) → UU ;vI , 0 ≤ n < N + 1
(for some N ∈ N ∪ {∞} and −∞ ≤ an < bn ≤ +∞ ), be a collection
of future directed, affinely parametrized null geodesics in (UU ;vI ; r, �2) with
a0 = 0 and γ0(0) ∈ {u = 0}, such that γn is the reflection of γn−1 off I;
thus, γ = ∪N

n=0γn constitutes an affinely parametrised, maximally extended
geodesic through reflections off I, in accordance with Definition 2.3 in [43].

Assume that γ0 satisfies initially the conditions (5.3), (5.6) and

0 <
l

E0

√−� ≤ e−400(1+�v−1
I U )C0, (5.54)

with E0 defined by (5.5). Then, the following statements hold for the maximally
extended geodesic γ :

• The curve γ = ∪N
n=0γn is contained in the region

γ ⊂
{
r ≥ e−e400C0 (1+v−1

I U ) l

E0

}
∩

�v−1
I U ⋃

k=0

(
V(k)
↖ ∪ V(k)

↗
)
∩ UU ;vI , (5.55)

where, setting

v0
.= v

(
γ0(0)

)
,
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A proof of the instability of AdS

the domains V(k)
↖ , V(k)

↗ are defined for any k ∈ N by

V(k)
↖ =

[
kvI, v0 + kvI + e300(k+1)C0

l

E0

]

×
[
v0 + kvI − e300(k+1)C0

l

E0
, v0 + kvI + e300(k+1)C0

l

E0

]
,

(5.56)

V(k)
↗ =

[
v0 + kvI − e300(k+1)C0

l

E0
, v0 + kvI + e300(k+1)C0

l

E0

]

(5.57)

×
[
v0 + kvI − e300(k+1)C0

l

E0
, v0 + (k + 1)vI + e300(k+1)C0

l

E0

]
.

• Denoting by γ̇ the derivative of γ with respect to the affine parametrisation
of the γn’s, we can estimate

e−300C0(1+v−1
I U )E0 ≤ �2(γ̇ u + γ̇ v) ≤ ee

300C0 (1+v−1
I U )E0. (5.58)

• For any 0 ≤ ū < U, defining n[ū] by the condition that γ∩{u = ū} ∈ γn[ū],
we can bound at the point γ ∩ {u = ū}:

γ̇ v

γ̇ u

∣∣
∣
∣
γ∩{u=ū}

≤ ee
300C0 (1+v−1

I U ) l
2

E2
0

1− 1
3�r2

r2

∣∣
∣
∣
γ∩{u=ū}

if γ ∩ {u = ū} ∈ ∪k∈NV(k)
↖ , (5.59)

γ̇ u

γ̇ v

∣∣
∣∣
γ∩{u=ū}

≤ ee
300C0 (1+v−1

I U ) l
2

E2
0

1− 1
3�r2

r2

∣∣
∣∣
γ∩{u=ū}

if γ ∩ {u = ū} ∈ ∪k∈NV(k)
↗ . (5.60)

Proof The proof of Corollary (5.2) follows by applying Lemma (5.1) suc-
cessively on the curves γn , treating the cases n ≥ 1 by considering the limit
where the initial point of γ in the statement of Lemma (5.1) is sent to I and
establishing (as a consequence of (5.10)) the inductive bound

e−100C0En−1 ≤ En ≤ ee
200C0 En−1 (5.61)

for the energy En = 1
2

(
�2γ̇ u

n + �2γ̇ v
n

)∣
∣
s=−∞ of γn at its initial point on I.

Following this procedure, (5.55) is inferred from (5.9), (5.58) is inferred from
(5.61) and (5.59)–(5.60) are inferred from (5.12)–(5.13), using also that (5.58)
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and (2.19) imply that

e−e300C0 (1+v−1
I U ) l

2

E2
0

1− 1
3�r2

r2
≤ γ̇ v

γ̇ u
≤ ee

300C0 (1+v−1
I U ) l

2

E2
0

1− 1
3�r2

r2

in the region ∪�v−1
I U 

k=0 (V(k)
↖ ∩ V(k)

↗ ). We will omit the trivial details. ��

6 Construction of the initial data and notation

In this section, we will construct the family of initial data (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π) ∈ B0 appearing in the statement of Theorem 1. To this end, we will

first introduce a hierarchy of parameters depending on ε, the precise choice of
which will be crucial for the proof of Theorem 1. We will also introduce some
shorthand notation associated to a few fundamental constructions on the max-
imal future development (U (ε)

max ; r, �2, fε) of (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π).

6.1 The hierarchy of parameters

In this section, we will introduce a set of parameters that will be used in the

construction of the family of initial data (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π).

We will first introduce the following hierarchy of parameters:

Definition 6.1 Let 0 < ε1 � 1 be a sufficiently small absolute constant. For
any ε ∈ (0, ε1), we will define the parameters δε, ρε, σε through the following
hierarchy of relations:

ε = exp
(
− exp(ρ−10

ε )
)
, (6.1)

ρε = exp
(
− exp

(
exp(exp(exp(δ−10

ε )))
))

,

δε = exp
(
− exp

(
exp(σ−10

ε )
))

.

For ε ∈ [ε1, 1], we will define the parameters δε, ρε, σε to be equal to
δε1, ρε1, σε1 , respectively.

We will also set

Nε
.= �ρ−1

ε exp
(
exp(δ−15

ε )
) . (6.2)
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Notice that

lim
ε→0

δε = lim
ε→0

ρε = lim
ε→0

σε = lim
ε→0

1

Nε

= 0 (6.3)

and, as ε → 0:

ε � ρε � δε � σε � 1. (6.4)

Finally, for any ε ∈ (0, 1] and any 0 ≤ i ≤ Nε, we will define the parameter
ε(i) by the recursive relation

{
ε(i+1) = exp

(− exp
(
(ε(i))−2

))
,

ε(0) = ε.
(6.5)

Note that, as ε → 0:

1 � ε(0) � ε(1) � . . . � ε(Nε). (6.6)

Remark In the rest of the paper, we will frequently use the relation (6.1) in
order to bound an expression involving σε, δε, ρε (appearing usually as an
error term in some estimate) by a simpler one; for instance, (6.1) allows us to
bound

exp
(
exp(eδ−6

ε )
) ≤ ρ

1
20
ε .

We will not always explicitly refer to (6.1) when using such bounds while
passing from one line to the next in a complicated estimate.

6.2 The initial data family

In this section, we will define the initial data family (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π) appearing in the statement of Theorem 1 in terms of the parameters

introduced in the previous section. The construction of the initial data family
will proceed in two steps: We will first obtain a gauge normalised expression

for (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π) (in accordance with Definition 3.2) by suit-

ably prescribing the value of f̄ (ε)
/ and using Lemma 3.3, and we will then

obtain a smoothly compatible initial data set through the gauge transformation
provided by Lemma 3.4.
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Let us fix a smooth cut-off function χ : R → [0, 1] such that χ |[−1,1] = 1
and χR\(−2,2) = 0. The following functions will later be used to define the

initial Vlasov field f̄ (ε)
/ :

Definition 6.2 For any ε ∈ (0, ε1], where 0 < ε1 � 1 is the constant appear-
ing inDefinition 6.1,wewill define the following sequence of smooth functions

F (ε)
i : [0,

√
− 3

�
π ] × [0,+∞)2 → [0,+∞) for any 0 ≤ i ≤ Nε:

F (ε)
i (v; p, l) .= 1

(ε(i))2
χ
(√−�(v − vε,i )

ε(i)

)
· χ(p − 3

) · χ
(√−�l

ε(i)
− 4

)
,

(6.7)

where

vε,i
.=
√

− 3

�

π

2
+ ρ−1

ε

i−1∑

j=0

ε( j)(−�)−1/2 (6.8)

and ε(i), ρε are defined in terms of ε by (6.1) and (6.5).

Remark Note that, for any ε � 1 and any 0 ≤ i ≤ Nε, direct computation
shows that the functions F (ε)

i satisfy

∫
√
− 3

�
π

0

(
1− 1

3
�r2AdS/

)(rAdS/T
(AdS)
vv [F (ε)

i ]
∂vrAdS/

+rAdS/T
(AdS)
uv [F (ε)

i ]
−(∂urAdS)/

)
(v) dv ≤ Cε(i), (6.9)

for some absolute constant C > 0, where T (AdS)
μν [F (ε)

i ] is defined by

T (AdS)
vv [F (ε)

i ] .= π

2
r−2
AdS/(v)

∫ +∞

0

∫ +∞

0

(
�2

AdS/(v)p
)2 · F (ε)

i (v; p, l) dp
p
ldl,

T (AdS)
uv [F (ε)

i ] .= π

2
r−2
AdS/(v)

∫ +∞

0

∫ +∞

0

�2
AdS/(v)l2

r2AdS/(v)
· F (ε)

i (v; p, l) dp
p
ldl

and rAdS/, �2
AdS/ are given by (3.14). Note, in particular, that T (AdS)

vv [F (ε)
i ]

and T (AdS)
uv [F (ε)

i ] are of size ∼ 1 and supported in an interval of width ∼
ε(i)(−�)− 1

2 centered around vε,i ∼ (−�)− 1
2 .
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A proof of the instability of AdS

We will define the initial data family (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π) in terms

of F (ε)
i as follows:

Definition 6.3 Let 0 < ε1 � 1 be the constant appearing in Definition 6.1.
For any ε ∈ (0, ε1] and any finite sequence of weights {aεi }Nε

i=0 ∈ (0, σε)

satisfying the smallness condition

Nε∑

i=0

aεi ≤ ρ−1
ε σε, (6.10)

we will define

F (ε)(v; p, l) =
Nε∑

i=0

aεi F
(ε)
i (v; p, l), (6.11)

where F (ε)
i are given by (6.7). Let also (r ′(ε)/ , �

′(ε)
/ , f̄ ′(ε)/ ;

√
− 3

�
π) be the

gauge normalised, asymptotically AdS initial data set provided by Lemma 3.3

for F = F (ε) and vI =
√
− 3

�
π ; recall that, according to Lemma 3.3, f̄ ′(ε)/ is

related to F (ε) by

f̄ ′(ε)/ (v; pu, l) = F (ε)
(
v; ∂vr

′(ε)
/ (v)pu, l

)
. (6.12)

For any ε ∈ (0, ε1], we will define (r (ε)
/ , �

(ε)
/ , f̄ (ε)

/ ;
√
− 3

�
π) as the

(unique) smoothly compatible, asymptotically AdS initial data set which is

obtained from the gauge normalised initial data set (r ′(ε)/ , �
′(ε)
/ , f̄ ′(ε)/ ;

√
− 3

�
π)

through the gauge transformation of Lemma 3.4 (note that the notation

for (r (ε)
/ , �

(ε)
/ , f̄ (ε)

/ ;
√
− 3

�
π) and (r ′(ε)/ , �

′(ε)
/ , f̄ ′(ε)/ ;

√
− 3

�
π) is inverted in

Lemma 3.4), with ε in place of ε0 in (3.27)–(3.28) (see also Fig. 13).
For ε ∈ (ε1, 1], we will set

(r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ )
.= (r (ε1)

/ , (�
(ε1)
/ )2, f̄ (ε1)

/ ), (6.13)

(the precise defintion of the family of initial data away from ε = 0 is irrelevant
for us; we will only be interested in the behaviour of the development for ε

close to 0).
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Remark The fact that F (ε) is compactly supported in (0,
√
− 3

�
π)×(0,+∞)2,

satisfying in particular

F (ε)(v; p, l) = 0 for v ∈
[

0, vε,0 − 2
ε(0)

√−�

]

∪ [vε,Nε + 2
ε(Nε)

√−�
,+∞)

or l ∈
[

0, 2
ε(Nε)

√−�

]

(6.14)

(see (6.7) and (6.11)), allows us to apply Lemma 3.4 in the statement of
Definition 6.3. In view of the fact that, as a consequence of (3.26), the
gauge transformation provided by Lemma 3.4 is the identity when restricted

to v ∈ [0, vε,Nε + 2 ε(Nε)√−�
] (which includes the support of F (ε) in the v-

variable), the following relations hold between (r (ε)
/ , �

(ε)
/ , f̄ (ε)

/ ;
√
− 3

�
π) and

(r ′(ε)/ , �
′(ε)
/ , f̄ ′(ε)/ ;

√
− 3

�
π):

f̄ (ε)
/ = f̄ ′(ε)/ on (0,

√

− 3

�
π) × [0,+∞)2 (6.15)

and

(r (ε)
/ , (�

(ε)
/ )2)(v) = (r ′(ε)/ , (�

′(ε)
/ )2)(v) for v ∈

[

0, vε,Nε + 2
ε(Nε)

√−�

]

.

(6.16)

In particular, (6.11) and (6.12) imply that:

f̄ (ε)
/ (v; pu, l) =

Nε∑

i=0

aεi F
(ε)
i

(
v; ∂vr

′(ε)
/ (v)pu, l

)
. (6.17)

The estimates for the initial data family (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ) stated in the
following lemma are an immediate consequence of the expression (6.7) for
F (ε)
i and the quantitative bounds provided by Lemmas 3.3 and 3.4:
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Fig. 13 Schematic depiction of the support in the (u, v)-plane of the Vlasov beams emanating

from the initial data at u = 0. The i-th beam in the picture corresponds to f̄ (ε)
i , 0 ≤ i ≤ Nε ,

and contains null geodesics with angular momenta ∼ ε(i)(−�)−1/2, i.e. proportional to the
width of the beam

Lemma 6.4 There exists some C > 0, such that, for all ε ∈ (0, 1), the initial

data set (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π) satisfies:

sup
v∈(0,

√
− 3

�
π)

(∣
∣∣

∂vr
(ε)
/

1− 1
3�(r (ε)

/ )2
− ∂vrAdS/

1− 1
3�r2AdS/

∣
∣∣(v)

+
∣
∣∣

(�
(ε)
/ )2

1− 1
3�(r (ε)

/ )2
− �2

AdS/

1− 1
3�r2AdS/

∣
∣∣(v)

)
≤ Cε. (6.18)

Furthermore, for any i = 0, . . . , Nε, we can estimate on the support of F
(ε)
i :

sup
v∈(0,

√
− 3

�
π)

[∣∣
∣∂v

( ∂vr
(ε)
/

1− 1
3�(r (ε)

/ )2

)∣∣
∣(v) +

∣∣
∣∂v

( (�
(ε)
/ )2

1− 1
3�(r (ε)

/ )2

)∣∣
∣(v)

]
≤ C

√−�.

(6.19)

123



G. Moschidis

Finally, the following estimate holds:

sup
v∈(0,

√
− 3

�
π)

2m̃(ε)
/

r (ε)
/

< Cε, (6.20)

where m̃(ε)
/ is defined in terms of r (ε)

/ , (�
(ε)
/ )2, f̄ (ε)

/ by (2.48), i.e. by the
implicit relation

m̃(ε)
/ (v) = 2π

∫ v

0

(
(
1− 2m̃(ε)

/

r (ε)
/

− 1

3
�r (ε)

/

)(r (ε)
/ )2(T (ε)

/ )vv

∂vr
(ε)
/

+4
∂vr

(ε)
/

(�
(ε)
/ )2

(r (ε)
/ )2(T (ε)

/ )uv

)
(v̄) d v̄. (6.21)

Proof In view of (6.13), it suffices to establish (6.18)–(6.20) for ε ∈
(0, ε1]. Furthermore, it suffices to establish the bounds (6.18)–(6.20) for the

intermediate, gauge normalised initial data set (r ′(ε)/ , �
′(ε)
/ , f̄ ′(ε)/ ;

√
− 3

�
π)

constructed in Definition 6.3. Since (r ′(ε)/ , �
′(ε)
/ , f̄ ′(ε)/ ;

√
− 3

�
π) is related to

(r (ε)
/ , �

(ε)
/ , f̄ (ε)

/ ;
√
− 3

�
π) by the gauge transformation of Lemma 3.4 with ε in

place of ε0,22 the bounds (3.27), (3.28) and (6.9) imply (in view of the relation

r ′(ε)/ (V (v)) = r (ε)
/ (v), (6.22)

(�
′(ε)
/ )2(V (v)) = 1

dV
du (0) · dV

dv
(v)

�
(ε)
/ (v),

between (r ′(ε)/ , �
′(ε)
/ ) and (r (ε)

/ , �
(ε)
/ )) that if (6.18)–(6.19) hold for (r ′(ε)/ , �

′(ε)
/ ,

f̄ ′(ε)/ ;
√
− 3

�
π), then they also hold for (r (ε)

/ , �
(ε)
/ , f̄ (ε)

/ ;
√
− 3

�
π) with 2C in

place of C . The bound (6.20), on the other hand, is gauge invariant.
The bound (6.18) for r ′(ε)/ is a corollary of the gauge condition (3.13) relating

�
′(ε)
/ to ∂vr

′(ε)
/ and Lemma 3.3 relating (r ′(ε)/ , �

′(ε)
/ , f̄ ′(ε)/ ;

√
− 3

�
π) to F (ε) (in

particular, the estimate (3.22)), noting that the bound (3.20) for F (ε) is a direct
consequence of (6.9) (assuming that ε1 has beenfixed smaller than c0 in (3.20)).

22 Note that the ′-notation for (r (ε)
/ , �

(ε)
/ , f̄ (ε)

/ ;
√
− 3

�π) and (r ′(ε)/ , �
′(ε)
/ , f̄ ′(ε)/ ;

√
− 3

�π) is
inverted in Lemma 3.4.
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We will now proceed to establish that

sup
v∈(0,vI )

∣
∣∣∂v

( ∂vr
′(ε)
/

1− 1
3�(r ′(ε)/ )2

)
(v)

∣
∣∣ ≤ C

√−�. (6.23)

Note that, since�
′(ε)
/ and ∂vr

′(ε)
/ are related by the gauge normalising condition

(3.13), the bounds (6.19)–(6.19) for (r ′(ε)/ , �
′(ε)
/ ) follow immediately from

(6.23) and (6.18).
The alternative form (3.16) of the gauge condition (3.13) for (r ′(ε)/ , �

′(ε)
/ )

yields, after differentiating in v:

∂v

( ∂vr
′(ε)
/

1− 1
3�(r ′(ε)/ )2

)
(v) =

(
4π

r ′(ε)/ (T ′(ε)
/ )vv

(∂vr
′(ε)
/ )

(v)
)
· ∂vr

′(ε)
/

1− 1
3�(r ′(ε)/ )2

, (6.24)

where, in view of the relation (6.12) between f̄ ′(ε)/ and F (ε) and the gauge

condition (3.13) for (r ′(ε)/ , �
′(ε)
/ ):

(T ′(ε)
/ )vv(v)

.= 8π
(∂vr

′(ε)
/ )2

(
r ′(ε)/ − 1

3�(r ′(ε)/ )3
)2 (v)

∫ +∞

0

∫ +∞

0
p2F (ε)(v; p, l) dp

p
ldl.

(6.25)

In view of (6.24) and (6.25), the bound (6.23) follows from the expression
(6.7) for F (ε)

i and the fact that F (ε) = ∑Nε

i=0 F
(ε)
i .

The bound (6.20) follows readily by applying Gronwall’s inequality on the

integral relation (6.21) for
2m̃(ε)

/

r (ε)
/

, using the estimates (6.9) and (6.18). ��

The initial data family (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ) satisfies the following smallness
condition with respect to the initial data norm || · || introduced by Definition
3.14:

Lemma 6.5 There exists some C > 0, such that, for all ε ∈ (0, 1), the initial

data set (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π) satisfies:

||(r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√

− 3

�
π)|| ≤ Cσε, (6.26)
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where || · || is defined by (3.59). In particular, as a consequence of (6.3):

lim
ε→0

||(r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√

− 3

�
π)|| = 0. (6.27)

Proof Since the bound (6.26) is non-trivial only in the limit ε → 0, it suffices
to establish it for ε ∈ (0, ε1].

Let (r ′(ε)/ , (�
′(ε)
/ )2, f̄ ′(ε)/ ;

√
− 3

�
π) be the gauge-normalised expression

of (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π), constructed in Definition 6.3. Recall that

(r ′(ε)/ , (�
′(ε)
/ )2, f̄ ′(ε)/ ;

√
− 3

�
π) and (r (ε)

/ , (�
(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π) satisfy (6.15)

and (6.16), i.e. coincide in the support of f̄ (ε)
/ = f̄ ′(ε)/ .

For any ε ∈ (0, ε1] and 0 ≤ i ≤ Nε, let us define f (AdS)
ε,i and

[
rTαβ

∂vr

](AdS)

ε,i

in terms of vI =
√
− 3

�
π and

f̄ (ε)
i (v; pu, l) .= F (ε)

i

(
v; ∂vr

′(ε)
/ (v)pu, l

)
(6.28)

as in Definition 3.13; we will similarly define f (AdS)
ε and

[
rTαβ

∂vr

](AdS)

ε
in terms

of f̄ ′(ε)/ = f̄ (ε)
/ (see (6.15)). Note that the relations (6.12), (6.15) and (6.17)

imply that

f (AdS)
ε

.=
Nε∑

i=0

aεi f
(AdS)
ε,i (6.29)

and

[rTαβ

∂vr

](AdS)

ε
=

Nε∑

i=0

aεi

[rTαβ

∂vr

](AdS)

ε,i
. (6.30)

Note that, in view of (6.14) and (6.16), (6.28) implies that

f̄ (ε)
i (v; pu, l) .= F (ε)

i

(
v; ∂vr

(ε)
/ (v)pu, l

)
(6.31)

From the expression (6.7) for F (ε)
i , the relation (6.31) between f̄ (ε)

i and

F (ε)
i , the bound (6.18) for r (ε)

/ and properties of the geodesic flow on AdS

when l
E � 1 (see the relation A.10 in the Appendix of [43]), it readily follows
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that the support of f (AdS)
ε,i satisfies (for some absolute constant C > 0)

supp
(
f (AdS)
ε,i

) ⊂
({

(u, v) ∈ V(AdS)
ε,i

}
∩
{
�2

AdS(u, v)
(
pu + pv

)
≤ C

}

∩
{
2 ≤

√−�l

εi+1 ≤ 6
})

, (6.32)

where

V(AdS)
ε,i

.=
⋃

k∈Z

({∣∣∣v − vε,i − k

√

− 3

�
π

∣
∣∣ ≤ C

ε(i)

√−�

}

∪
{∣∣∣u − vε,i − k

√

− 3

�
π

∣
∣∣ ≤ C

ε(i)

√−�

})
(6.33)

∩
{
rAdS(u, v) ≥ C−1 ε(i)

√−�

}
.

In view of (6.32), using (2.33) (with rAdS in place of r andmAdS = 1
6�r3AdS

in place of m), as well as the conservation (2.26) of the particle current
Nμ[ f (AdS)

ε,i ] of f (AdS)
ε,i , we can readily calculate for any ε ∈ (0, ε1], anyU∗ ≥ 0

and any 0 ≤ i ≤ Nε:

∫ U∗+
√
− 3

�
π

U∗

([rTvv

∂vr

](AdS)

ε,i
(U∗, v) +

[ rTuv

−∂ur

](AdS)

ε,i
(U∗, v)

)
dv

≤ C
∫ U∗+

√
− 3

�
π

U∗
r(U∗, v) · Nv[ f (AdS)

ε,i ](U∗, v) dv (6.34)

≤ C
(

sup
V(AdS)

ε,i ∩{u=U∗}

1

rAdS

)
·
∫

u=0
r2AdSNv[ f (AdS)

ε,i ] dv

for some absolute constant C > 0. Using the expression (2.32), the explicit
formula (6.7) for F (ε)

i and the bound (6.18) (the latter used in order to estimate

the term ∂vr
(ε)
/ in the relation (6.31) between F (ε)

i and f (AdS)
ε,i |u=0), we can

readily estimate

∫

u=0
r2AdSNv[ f (AdS)

ε,i ] dv ≤ C
ε(i)

√−�
, (6.35)
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thus obtaining from (6.34) that, for any U∗ ≥ 0 and any 0 ≤ i ≤ Nε:

∫ U∗+
√
− 3

�
π

U∗

([rTvv

∂vr

](AdS)

ε,i
(U∗, v) +

[ rTuv

−∂ur

](AdS)

ε,i
(U∗, v)

)
dv

≤ C
ε(i)

√−�
sup

V(AdS)
ε,i ∩{u=U∗}

1

rAdS
. (6.36)

For any ε ∈ (0, ε1] and any U∗ ≥ 0, let us define iε[U∗] to be the unique
integer i in [0, Nε] for which

vε,i−1 + k

√

− 3

�
π + ρ

− 1
2

ε

ε(i−1)

√−�
< U∗ ≤ vε,i + k

√

− 3

�
π + ρ

− 1
2

ε

ε(i)

√−�

(6.37)

for some k ∈ Z, with the convention that

vε,−1
.= vε,Nε −

√

− 3

�
π (6.38)

and

ε(−1) .= ε(Nε).

Then, in view of the bound (6.32) for the support of f (AdS)
ε,i , the definition

(6.33) of the domains V(AdS)
ε,i (see also Fig. 14), the relation (6.8) defining vε,i

and the relations (6.1) and (6.5) between ε, ρε and ε(i), we infer that, given
any U∗ ≥ 0, we can bound

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

infV(AdS)
ε,i ∩{u=U∗} rAdS ≥ cε(i)(−�)− 1

2 , for i = iε[U∗],
infV(AdS)

ε,i ∩{u=U∗} rAdS ≥ ρ−1
ε ε(i)(−�)− 1

2 , for iε[U∗] < i ≤ Nε,

infV(AdS)
ε,i ∩{u=U∗} rAdS ≥ c(−�)− 1

2 , for 0 ≤ i < iε[U∗],
(6.39)

for some absolute constant c > 0. Multiplying (6.36) with aεi and adding the
resulting bounds for 0 ≤ i ≤ Nε, we therefore infer using (6.39) (in view also
of (6.30)) and (6.5) that, for any ε ∈ (0, ε1] and any U∗ ≥ 0:
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Fig. 14 Schematic depiction

of the regions V(AdS)
ε,i

bounding the trajectories of
the geodesics in the support

of f (AdS)
ε,i , for 0 ≤ i ≤ 2.

The region V(AdS)
ε,i has width

proportional to ε(i)√−�
. The

minimum value of r along

V(AdS)
ε,i is also proportional

to ε(i)√−�
. On the other hand,

the separation of V(AdS)
ε,i

from the rest of these regions
when u = 0 is proportional

to ρ−1
ε

ε(i)√−�

∫ U∗+
√
− 3

�
π

U∗

([rTvv

∂vr

](AdS)

ε
(U∗, v) +

[ rTuv

−∂ur

](AdS)

ε
(U∗, v)

)
dv

≤ C
(
ε + max

0≤i≤Nε

aεi +
Nε∑

i=0

ρεaεi

)
. (6.40)

Similarly, we can estimate for any V∗ ≥ 0:

∫ V∗

max{0,V∗−
√
− 3

�
π}

([ rTuu
−∂ur

](AdS)

ε
(u, V∗) +

[rTuv

∂vr

](AdS)

ε
(u, V∗)

)
du

≤ C
(
ε + max

0≤i≤Nε

aεi +
Nε∑

i=0

ρεaεi

)
. (6.41)

Using the expression (2.30), the explicit formula (6.7) for F (ε)
i and the

relation (6.31) between F (ε)
i for f (AdS)

ε,i |u=0 (arguing similarly as for obtaining
(6.35)), we can bound
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√−�m̃ε|I ≤ C
(

max
0≤i≤Nε

aεi
)
ε. (6.42)

Therefore, for any ε ∈ (0, ε1], the following estimate for the size of

(r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π) with respect to the norm (3.59) follows readily

by adding (6.40), (6.41) and (6.42) and using (6.1), (6.10) and the assumption
that aεi ∈ (0, σε):

||(r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√

− 3

�
π)|| ≤ C

(
σε +

Nε∑

i=0

ρεaεi

)
≤ Cσε. (6.43)

In particular, (6.26) holds. ��

6.3 Notational conventions for domains and fundamental computations

For the rest of this paper, we will denote with (U (ε)
max ; rε, �2

ε, fε) the maximal

future development of the initial data set (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π) (for the

definition of the notion of a maximal future development for (2.36)–(2.41),
see Proposition 3.8). We will also denote with Iε and γZε the conformal infin-
ity and axis, respectively, of (U (ε)

max ; rε, �2
ε, fε), with corresponding endpoint

parameters uIε ∈ (0,+∞] and uγZε
∈ (0,+∞], defined in accordance with

Definition 3.5. Note that the proof of Theorem 1 will consist of showing that
uIε < +∞.

Remark In order to simplify the heavy notation associated with all the param-
eters that will be introduced in the proof of Theorem 1, we will frequently
drop the subscript ε in rε, �2

ε , mε and m̃ε, but not in fε. Therefore, from now
on we will almost always denote (U (ε)

max ; rε, �2
ε, fε) as (U (ε)

max ; r, �2, fε).

For any δ ∈ (0, 1] and any ε ∈ (0, 1], we will define u+
δ;ε ∈ [0, uIε ] by

u+
δ;ε

.= sup
{
ū ∈ [0, uIε ) : 2m̃

r
(u, v) < δ for all (u, v) ∈ U (ε)

max

with 0 < u < ū
}
. (6.44)

Similarly, we will define for any K > 0 and any ε ∈ (0, 1]:

u�

K ;ε
.= sup

{
ū ∈ [0, uIε ) : sup

u∈(0,ū)

∫ u+
√
− 3

�
π

u
r
(Tvv[ fε]

∂vr
+ Tuv[ fε]

−∂ur

)
(u, v) dv < K

(6.45)
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and sup
v∈(0,ū+

√
− 3

�
π)

∫ min{v,ū}

max{0,v−
√
− 3

�
π}

r
(Tuv[ fε]

∂vr
+ Tuu[ fε]

−∂ur

)
(u, v) du < K

}
.

We will define U (ε)
K ,δ ⊂ U (ε)

max to be the open subset

U (ε)
K ,δ

.= {
0 < u < min{u+

δ;ε, u�

K ;ε
}
. (6.46)

Note that U (ε)
K ,δ is non-empty if and only if δ and K satisfy in terms of the initial

data:

sup
v∈(0,

√
− 3

�
π)

2m̃(ε)
/

r (ε)
/

(v) < δ (6.47)

and

∫
√
− 3

�
π

0
r (ε)
/

((T (ε)
/ )vv

∂vr
(ε)
/

+ (T (ε)
/ )uv

−∂ur
(ε)
/

)
(v) dv < K . (6.48)

As a consequence of (6.27) and Lemma 6.4, given any δ ∈ (0, 1) and K > 0,
there always exists an ε0 ∈ (0, ε1] such that (6.47) and (6.48) are satified for
all ε ∈ (0, ε0) (in particular, it suffices to choose any ε0 for which σε0 �
min{K , δ}).
Remark In the case when U (ε)

K ,δ is non-empty, (U (ε)
K ,δ; r, �2, fε) is a future

development of (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π) for (2.36)–(2.41) with reflecting

boundary conditions on conformal infinity, in accordance with Definition 3.6.
Note also that

u+
1;ε = uIε

as a trivial consequence of (3.47).

Let

0 < η0 � 1

be a small absolute constant. For the rest of the paper, we will assume that η0
has been fixed small enough in terms of the absolute constant δ0 appearing in
the statements of Lemma 5.1 and Proposition 3.11.

The following domains in U (ε)
max will be play a central role in the proof of

Theorem 1:

Definition 6.6 We will define the domains U+
ε , T +

ε ⊂ U (ε)
max by
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U+
ε

.= U (ε)

σ−1
ε ;η0 ∩

{
u <

σ−2
ε√−�

}
(6.49)

and

T +
ε

.= U (ε)

δ−1
ε ;η0 ∩

{
u <

σ−2
ε√−�

}
(6.50)

where U (ε)

σ−1
ε ;η0 , U

(ε)

δ−1
ε ;η0 are defined by (6.46).

Remark Note that, since δε � σε,

U+
ε ⊆ T +

ε .

Let us define

u[U+
ε ] .= min

{
u+

η0;ε, u�

σ−1
ε ;ε,

σ−2
ε√−�

}

and

u[T +
ε ] .= min

{
u+

η0;ε, u�

δ−1
ε ;ε,

σ−2
ε√−�

}
,

so that

U+
ε = {

0 < u < u[U+
ε ]} ∩ {

u < v < u +
√

− 3

�
π
}
, (6.51)

T +
ε = {

0 < u < u[T +
ε ]} ∩ {

u < v < u +
√

− 3

�
π
}
.

As an immediate consequence of the extension principle of Proposition 3.11,
we infer the following condition for the boundary of U+

ε and T +
ε in U (ε)

max :

Lemma 6.7 For any ε ∈ (0, ε1],

u[U+
ε ] < u[T +

ε ] < uIε . (6.52)

In particular, there exists a u0 > 0 such that

{
0 < u < u[T +

ε ] + u0
} ⊂ U (ε)

max . (6.53)

Furthermore, in the case when

u[U+
ε ] <

σ−2
ε√−�

, (6.54)
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at least one of the following three conditions hold for the future boundary
{u = u[U+

ε ]} of U+
ε :

lim sup
p→{u=u[U+

ε ]}

2m̃

r
(p) = η0, (6.55)

lim sup
u→u[U+

ε ]

∫ u+
√
− 3

�
π

u
r
(Tvv[ fε]

∂vr
+ Tuv[ fε]

−∂ur

)
(u, v) dv = σ−1

ε , (6.56)

or

sup
v∈(0,u[U+

ε ]+
√
− 3

�
π)

∫ min{v,u[U+
ε ]}

max{0,v−
√
− 3

�
π}

r
(Tuv[ fε]

∂vr
+ Tuu[ fε]

−∂ur

)
(u, v) du = σ−1

ε .

(6.57)

Similarly, the same condition holds on {u = u[T +
ε ]} for T +

ε , with δε in place
of σε in (6.56) and (6.57).

Proof The proof of (6.52) and (6.53) follows immediately by applying Propo-
sition 3.11 to T +

ε , using the fact that

sup
T +

ε

2m̃

r
≤ η0

(following from (6.44) and the definition of T +
ε ), as well as the fact that the

initial Vlasov field f̄ (ε)
/ (introduced in Definition 6.3) is compactly supported

in phase space.
In order to establish that at least one of the relations 6.55–6.57 hold for

U+
ε , we will assume, for the sake of contradiction, that there exists a (possibly

small)δ > 0

lim sup
p→{u=u[U+

ε ]}

2m̃

r
(p) < η0 − δ, (6.58)

lim sup
u→u[U+

ε ]

∫ u+
√
− 3

�
π

u
r
(Tvv[ fε]

∂vr
+ Tuv[ fε]

−∂ur

)
(u, v) dv < σ−1

ε − δ

(6.59)
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and

sup
v∈(0,u[U+

ε ]+
√
− 3

�
π)

∫ min{v,u[U+
ε ]}

max{0,v−
√
− 3

�
π}

r
(Tuv[ fε]

∂vr
+ Tuu[ fε]

−∂ur

)
(u, v) du < σ−1

ε − δ.

(6.60)

Then, we readily infer by continuity (using (6.53) and the fact that r2Tμν and

m̃ extend continuously on Iε) that there exists some 0 < u′
0 <

σ−2
ε√−�

− u[U+
ε ]

such that

sup
{0<u<u[U+

ε ]+u′0}

2m̃

r
(p) < η0 − δ

2
, (6.61)

sup
{0<u<u[U+

ε ]+u′0}

∫ u+
√
− 3

�
π

u
r
(Tvv[ fε]

∂vr
+ Tuv[ fε]

−∂ur

)
(u, v) dv < σ−1

ε − δ

2

(6.62)

and

sup
v∈(0,u[U+

ε ]+u′0+
√
− 3

�
π)

∫ min{v,u[U+
ε ]+u′0}

max{0,v−
√
− 3

�
π}

r
(Tuv[ fε]

∂vr
+ Tuu[ fε]

−∂ur

)
(u, v) du

< σ−1
ε − δ

2
. (6.63)

Then, in view of the definition (6.46) and (6.49) of U (ε)

σ−1
ε ,η0

and U+
ε , as well as

assumption (6.54), the bounds (6.61)–(6.63) imply that

{0 < u < u[U+
ε ] + u′

0} ⊂ U+
ε ,

which is a contradiction, in view of (6.51). Therefore, 6.55–6.57 hold for U+
ε .

The proof of the analogous relations for T +
ε follows in exactly the same way.

��
For any ε ∈ (0, 1] and any 0 ≤ i ≤ Nε, we will define fεi to be the solution

of the Vlasov equation (2.40) on (U (ε)
max ; r, �2) satisfying at u = 0:

fεi (0, v; pu, pv, l) = F (ε)
i (v; ∂vr

(ε)
/ pu, l) · δ

(
�2(0, v)pu pv − l2

r2(0, v)

)
,

(6.64)
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where F (ε)
i is given by (6.7) for ε ∈ (0, ε1], and F (ε)

i = F (ε1)
i for ε ∈ (ε1, 1].

Note that, as a consequence of (6.17), the total Vlasov field fε is expressed as

fε =
Nε∑

i=0

aεi · fεi . (6.65)

We will also define the functions f̄ε, f̄εi on the phase space over U (ε)
max ,

associated to the Vlasov distributions fε, fεi , respectively, as in Sect. 2.3,
i.e. by the relation

fεi (u, v; pu, pv, l)
.= f̄εi (u, v; pu, pv, l) · δ

(
�2 pu pv − l2

r2

)
(6.66)

and similarly for f̄ε, fε in place of f̄εi , fεi . Note that the relation 6.66 uniquely
determines f̄εi only on the shell

{
�2 pu pv = l2

r2
}
; see Sect. 2.3. As a conse-

quence of theVlasov equation for (2.40), the functions f̄εi and f̄ε are conserved
along the integral curves of (2.20); since l is a constant of motion for (2.20),
we can estimate using the explicit formula (6.7) for F (ε)

i and the bound (6.18)

for ∂vr
(ε)
/ :

sup
(u,v)∈U (ε)

max , pu ,pv∈(0,+∞)

∫ +∞

0
f̄εi (u, v; pu, pv, l)|

�2 pu pv= l2

r2
ldl (6.67)

= sup
v∈(0,

√
− 3

�
π), pu∈(0,+∞)

∫ +∞

0
F (ε)
i (v; ∂vr

(ε)
/ pu, l) ldl ≤

≤ 16.

In view of the formula (6.7) for F (ε)
i , the bound (6.18) for ∂vr

(ε)
/ and the form

(6.17) of the initialVlasov distribution f̄ (ε)
/ , we infer that the total renormalised

Hawking mass m̃|Iε of (U (ε)
max ; r, �2, fε) at Iε (which is conserved, in view of

the reflecting boundary condition on I; see (2.59)) satisfies

√−�m̃|Iε ∼
Nε∑

i=0

aεiε
(i), (6.68)

where the constants implicit in the ∼ notation in (6.68) are independent of ε

and {aεi }Nε

i=0. In particular, in view of (6.5) and the assumption aεi ∈ [0, σε):

√−�m̃|Iε ≤ σεε. (6.69)
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As an immediate consequence of the definition (6.44) and (6.45) of u+
η0;ε

and u�

σ−1
ε ;ε, respectively, and the definition (6.49) of U

+
ε , we can bound for any

ε ∈ (0, ε1]:

sup
U+

ε

2m̃

r
≤ η0, (6.70)

sup
U≥0

∫

{u=U }∩U+
ε

r
(Tvv[ fε]

∂vr
+ Tuv[ fε]

−∂ur

)
(U, v) dv (6.71)

+ sup
V≥0

∫

{v=V }∩U+
ε

r
(Tuv[ fε]

∂vr
+ Tuu[ fε]

−∂ur

)
(u, V ) du ≤ 2σ−1

ε

and

sup
U+

ε

(u + v) ≤ 2√−�
σ−2

ε +
√

− 3

�
π. (6.72)

In particular, integrating the constraint equations (2.45) and (2.45) along lines
of the form v = const and u = const , respectively, using also the boundary
conditions (3.36) and (3.37) for ∂vr , ∂ur on Iε and γZε , we can estimate for
any ε ∈ (0, ε1]

sup
U+

ε

(∣
∣
∣ log

( ∂vr

1− 2m
r

)∣∣
∣+

∣
∣
∣ log

( −∂ur

1− 2m
r

)∣∣
∣
)

≤ (
sup
U+

ε

√−�(u + v)
) ·

(
sup
v̄≥0

∫

{v=v̄}∩U+
ε

r
Tuu[ fε]
−∂ur

(u, v̄) du (6.73)

+ sup
ū≥0

∫

{u=ū}∩U+
ε

r
Tvv[ fε]

∂vr
(ū, v) dv

)

+ sup
v∈[0,

√
− 3

�
π)

∣
∣∣ log

( ∂vr
(ε)
/

1− 1
3�(r (ε)

/ )2

)∣∣∣

≤ 5σ−3
ε

where, in passing from the second to the third line in (6.73), we made use of
(6.71), (6.72) and Lemma 6.4. Notice that (6.73) implies, in particular, that

e−σ−
ε 4(v − u) ≤ r(u, v) ≤ eσ−

ε 4(v − u) on U+
ε . (6.74)
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Similarly, the (6.50) of T +
ε yields for any ε ∈ (0, ε1]:

sup
T +

ε

2m̃

r
≤ η0, (6.75)

sup
U≥0

∫

{u=U }∩T +
ε

r
(Tvv[ fε]

∂vr
+ Tuv[ fε]

−∂ur

)
(U, v) dv (6.76)

+ sup
V≥0

∫

{v=V }∩T +
ε

r
(Tuv[ fε]

∂vr
+ Tuu[ fε]

−∂ur

)
(u, V ) du ≤ 2δ−1

ε ,

sup
T +

ε

(u + v) ≤ 2√−�
σ−2

ε +
√

− 3

�
π (6.77)

and, in analogy to (6.73):

sup
T +

ε

(∣∣
∣ log

( ∂vr

1− 2m
r

)∣∣
∣+

∣∣
∣ log

( −∂ur

1− 2m
r

)∣∣
∣
)

≤ 5σ−2
ε δ−1

ε ≤ δ−2
ε . (6.78)

6.4 Notational conventions for the beams and their intersection regions

In this Section we will introduce some shorthand notation for regions of the
(u, v)-plane which, when intersected with the domain U (ε)

max of the maximal

future development of (r (ε)
/ , (�

(ε)
/ )2, f̄ (ε)

/ ;
√
− 3

�
π), will contain the support

of the Vlasov beams emanating from the initial data on u = 0.
Using the shorthand notation

v
(n)
ε,i

.= vε,i + n

√

− 3

�
π, (6.79)

hε,i
.= eσ−6

ε
ε(i)

√−�
,

βε,i
.= exp

(− exp(σ−4
ε )

) ε(i)

√−�
,

we will define the following “narrow” sets for any n ∈ N, any ε ∈ (0, ε1] and
any integer 0 ≤ i ≤ Nε:

V(n)
i

.=
(
V(n)
i↖ ∪ V(n)

i↗
)
, (6.80)
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where (Fig. 15)

V(n)
i↖

.=
{∣∣∣v − v

(n)
ε,i

∣
∣∣ ≤ hε,i

}
∩
{
βε,i ≤ v − u ≤

√

− 3

�
π
}
, (6.81)

V(n)
i↗

.=
{∣∣∣u − v

(n)
ε,i

∣
∣∣ ≤ hε,i

}
∩
{
βε,i ≤ v − u ≤

√

− 3

�
π
}
.

We will also set

Vi
.= ∪n∈NV(n)

i .

Remark As a consequence of the formula (6.7) for F (ε)
i , the definition (6.64)

of fεi in terms of F (ε)
i , the properties of the geodesic flow on AdS spacetime

(see the relation A.10 in the Appendix of [43]) and the Cauchy stability state-
ment 3.15 for (2.36)–(2.41),we readily infer that there exists someCε > 0with

Cε
ε→0−−→ +∞ such that the Vlasov beam corresponding to fεi is supported in

Fig. 15 Schematic depiction

of the domains V(n)
i↖ and

V(n)
i↗ for some ε > 0 and

some 0 ≤ i ≤ Nε . For the
definition of v

(n)
ε,i , hε,i and

αε,i , see the relation (6.79)
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A proof of the instability of AdS

Fig. 16 Schematic depiction of the intersection domains R(n)
i; j ,R

(n)
i;γZ andR(n)

i;I for i > j

Vi in the retarded time interval 0 ≤ u ≤ Cε, i.e.

supp( fεi ) ∩
{
0 ≤ u ≤ Cε

}
⊂
{
(u, v) ∈

⋃

n∈N
V(n)
i ∩ U (ε)

max

}
. (6.82)

In Sect. 7.1, we will establish a quantitative refinement of (6.82) (see Lemma
7.1) (Fig. 16).

We will also define the intersection regions R(n)
i; j for any n ∈ N and any

integers 0 ≤ i �= j ≤ Nε as follows:

R(n)
i; j

.=
{
V(n)
i↖ ∩ V(n)

j↗, if i > j,

V(n+1)
i↖ ∩ V(n)

j↗, if i < j.
(6.83)
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The self-intersection regions R(n)
i;γZ and R(n)

i;I will be defined for any n ∈ N

and any 0 ≤ i ≤ Nε as

R(n)
i;γZ

.= V(n)
i↖ ∩ V(n)

i↗ ∩
{
v − u ≥ βε,i

}
(6.84)

and

R(n)
i;I

.= V(n+1)
i↖ ∩ V(n)

i↗ ∩
{
v − u ≤

√

− 3

�
π
}
. (6.85)

Remark Note that the domainsR(n)
i; j ,R

(n)
i;γZ andR(n)

i;I can be also expressed as

R(n)
i; j =

{
[v(n)

ε, j − hε, j , v
(n)
ε, j + hε, j ] × [v(n)

ε,i − hε,i , v
(n)
ε,i + hε,i ], if i > j,

[v(n)
ε, j − hε, j , v

(n)
ε, j + hε, j ] × [v(n+1)

ε,i − hε,i , v
(n+1)
ε,i + hε,i ], if i < j,

(6.86)

R(n)
i;γZ = [v(n)

ε,i − hε,i , v
(n)
ε,i + hε,i ] × [v(n)

ε,i − hε,i , v
(n)
ε,i + hε,i ] ∩

{
v − u ≥ βε,i

}

(6.87)

and

R(n)
i;I = [v(n)

ε,i − hε,i , v
(n)
ε,i + hε,i ] × [v(n+1)

ε,i − hε,i , v
(n+1)
ε,i + hε,i ]

∩
{

v − u ≤
√

− 3

�
π

}

. (6.88)

For any point p = (ū, v̄) ∈ U (ε)
max , we will define the pair of crooked lines

ζ↖[p] and ζ↗[p] as follows (Fig. 17):

ζ↖[p] .=
⋃

k∈N

({
v = v̄ − k

√

− 3

�
π
} ∪ {

u = v̄ − (k + 1)

√

− 3

�
π
}) ∩ U (ε)

max

(6.89)

and

ζ↗[p] .=
⋃

k∈N

({
u = ū − k

√

− 3

�
π
} ∪ {

v = ū − k

√

− 3

�
π
}) ∩ U (ε)

max .

(6.90)

Among other things, the intersection of those lines with {u = 0} will help us
detect the portion of the initial data that will mainly contribute to estimates

123



A proof of the instability of AdS

Fig. 17 Schematic depiction of the crooked lines ζ↖[p] and ζ↗[p] emanating from a point

p ∈ U (ε)
max . The distance functions dist↖[p] and dist↗[p] are defined as the infimum of the

distance from the axis (measured by v − u) of the points on the intersection of the union of the

beams V(n)
i with ζ↖[p] and ζ↗[p], respectively

involving quantities in a neighborhood of a point p, as well as keep track of the
interactions of theVlasov beams arriving at pwith the rest of theVlasov beams
emanating from the intitial data. We will also define the following functions
on U (ε)

max :

dist↖[p] .= inf
ζ↖[p]∩

(
∪n∈N∪Nε

i=0V
(n)
i

)(v − u) (6.91)
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and

dist↗[p] .= inf
ζ↗[p]∩

(
∪n∈N∪Nε

i=0V
(n)
i

)(v − u). (6.92)

Remark Notice that, if p ∈ ∪n∈NV(n)
i↖ , then

dist↖[p] = βε,i . (6.93)

Similarly, if p ∈ ∪n∈NV(n)
i↗:

dist↗[p] = βε,i . (6.94)

For any n ∈ N, any ε ∈ (0, ε1] and any integers 0 ≤ i, j ≤ Nε, i �= j , such
that R(n)

i; j ⊂ U (ε)
max , we will introduce the following quantities related to the

energy content of V(n)
i↖ , V(n)

j↗ before and after their intersection with the region

R(n)
i; j :

E(−)
↖ [n; i, j]

.=
⎧
⎨

⎩

m̃ε

(
v
(n)
ε, j − hε, j , v

(n)
ε,i + hε,i

)
− m̃ε

(
v
(n)
ε, j − hε, j , v

(n)
ε,i − hε,i

)
, if i > j,

m̃ε

(
v
(n)
ε, j − hε, j , v

(n+1)
ε,i + hε,i

)
− m̃ε

(
v
(n)
ε, j − hε, j , v

(n+1)
ε,i − hε,i

)
, if i < j,

(6.95)

E(+)
↖ [n; i, j]

.=
⎧
⎨

⎩

m̃ε

(
v
(n)
ε, j + hε, j , v

(n)
ε,i + hε,i

)
− m̃ε

(
v
(n)
ε, j + hε, j , v

(n)
ε,i − hε,i

)
, if i > j,

m̃ε

(
v
(n)
ε, j + hε, j , v

(n+1)
ε,i + hε,i

)
− m̃ε

(
v
(n)
ε, j + hε, j , v

(n+1)
ε,i − hε,i

)
, if i < j

(6.96)

and

E(−)
↗ [n; i, j]

.=
⎧
⎨

⎩

m̃ε

(
v
(n)
ε, j − hε, j , v

(n)
ε,i − hε,i

)
− m̃ε

(
v
(n)
ε, j + hε, j , v

(n)
ε,i − hε,i

)
, if i > j,

m̃ε

(
v
(n)
ε, j − hε, j , v

(n+1)
ε,i − hε,i

)
− m̃ε

(
v
(n)
ε, j + hε, j , v

(n+1)
ε,i − hε,i

)
, if i < j,

(6.97)
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E(+)
↗ [n; i, j]

.=
⎧
⎨

⎩

m̃ε

(
v
(n)
ε, j − hε, j , v

(n)
ε,i + hε,i

)
− m̃ε

(
v
(n)
ε, j + hε, j , v

(n)
ε,i + hε,i

)
, if i > j,

m̃ε

(
v
(n)
ε, j − hε, j , v

(n+1)
ε,i + hε,i

)
− m̃ε

(
v
(n)
ε, j + hε, j , v

(n+1)
ε,i + hε,i

)
, if i < j,

(6.98)

For any n ∈ N, any ε ∈ (0, ε1] and any integer 0 ≤ i ≤ Nε such that
R(n)

i;γZ ⊂ U (ε)
max and R(n)

i;I ⊂ U (ε)
max , we will define, respectively,

EγZ [n; i] .= m̃
(
v

(n)
ε,i − hε,i , v

(n)
ε,i + hε,i

)
− 0, (6.99)

and

EI[n; i] .= m̃|Iε − m̃
(
v

(n)
ε,i + hε,i , v

(n+1)
ε,i − hε,i

)
. (6.100)

Remark When i > j , the quantity E (−)
↖ [n; i, j]measures the energy content of

the ingoing beamV(n)
i↖ right before entering the regionR(n)

i; j , while E
(+)
↖ [n; i, j]

measures the energy content of V(n)
i↖ right after leaving R(n)

i; j (when i < j ,

the same holds after replacing V(n)
i↖ with V(n+1)

i↖ ). Similarly, E (−)
↗ [n; i, j] and

E (+)
↗ [n; i, j]measure the energy content of the outgoing beamV(n)

j↗ right before

and right after, respectively,R(n)
j;i . Finally, EγZ [n; i]measures the energy con-

tent of V(n)
i measured at the regionR(n)

i;γZ , while EI[n; i]measures the energy

content of V(n)
i at the regionR(n)

i;I . For a schematic depiction of the definition
of the above quantities, see Fig. 18.

For any n ∈ N, any ε ∈ (0, ε1] and any integers 0 ≤ i, j ≤ Nε such
that i > 0 or j > 0, we will introduce the following quantities measuring the
separation of two successive beams of matter (defined when the corresponding
regions of integration lie in the domain U (ε)

max ∩ {2m
r < 1

}
):

Dr (±)
↖ [n; i, j] .=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ v
(n)
ε,i −(ρ

− 7
8

ε +1)hε,i−1

v
(n)
ε,i−1+(ρ

− 7
8

ε +1)hε,i−1

∂vr
1− 2m

r
(v

(n)
ε, j ± hε, j , v) dv, if i > j,

∫ v
(n+1)
ε,i −(ρ

− 7
8

ε +1)hε,i−1

v
(n+1)
ε,i−1+(ρ

− 7
8

ε +1)hε,i−1

∂vr
1− 2m

r
(v

(n)
ε, j ± hε, j , v) dv, if i ≤ j,

(6.101)
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Fig. 18 The quantities E(±)
↖ [n; i, j] and E(±)

↗ [n; i, j]measure the energy content of the beams

V(n)
i↖ (with n + 1 in place of n when i < j) and V(n)

j↗ right before and right after intersecting

the region R(n)
i; j

(well-defined when i > 0) and

Dr (±)
↗ [n; i, j] .=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ v
(n)
ε, j−(ρ

− 7
8

ε +1)hε, j−1

v
(n)
ε, j−1+(ρ

− 7
8

ε +1)hε, j−1

−∂ur
1− 2m

r
(u, v

(n)
ε,i ± hε,i ) du, if i ≥ j,

∫ v
(n)
ε, j−(ρ

− 7
8

ε +1)hε, j−1

v
(n)
ε, j−1+(ρ

− 7
8

ε +1)hε, j−1

−∂ur
1− 2m

r
(u, v

(n+1)
ε,i ± hε,i ) du, if i < j.

(6.102)

(well-defined when j > 0) (Fig. 19).

Remark Notice that, when 2m̃
r � 1 and ∂vr

1− 1
3�r2

, ∂ur
1− 1

3�r2
� ρ−δ

ε , in the case

when i = j we have

Dr (±)
↖ [n; i, i] ∼ max

R(n)
i−1;i

1

−1
3�r

(6.103)
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Fig. 19 In thefigure above,wepresent a schematic depiction of the configuration of neighboring

beamswhen i �= j , using the shorthand notation h̄ε,k = ρ
− 7

8
ε hε,k . The quantitiesDr (−)

↗ [n; i, j]
andDr (+)

↗ [n; i, j]measure the geometric separation of the beamsV(n)
j↗ andV(n)

j−1↗ right before

and right after their intersection with V(n)
i↖ (or V(n+1)

i↖ , when i < j), respectively. Similarly,

Dr (−)
↖ [n; i, j] and Dr (+)

↖ [n; i, j] measure the separation of V(n)
i↖ and V(n)

i−1↖ (or V(n+1)
i↖ and

V(n+1)
i−1↖ , when i < j) right before and right after their intersection with V(n)

j↗, respectively

and

Dr (±)
↗ [n; i, j] ∼ min

R(n)
i;i−1

r. (6.104)

Finally, setting

h̃ε,i
.= eδ−6

ε
ε(i)

√−�
, (6.105)

β̃ε,i
.= exp

(− exp(δ−4
ε )

) ε(i)

√−�
,

(noting that h̃ε,i , β̃ε,i are defined like hε,i , βε,i , albeit with δε in place of σε),
we will define Ṽ(n)

i , Ṽ(n)
i↖ and Ṽ(n)

i↗ by (6.80)–(6.81) with h̃ε,i , β̃ε,i in place of
hε,i , βε,i , i.e.:

Ṽ(n)
i

.=
(
Ṽ(n)
i↖ ∪ Ṽ(n)

i↗
)
, (6.106)
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Ṽ(n)
i↖

.=
{∣∣
∣v − v

(n)
ε,i

∣∣
∣ ≤ h̃ε,i

}
∩
{
β̃ε,i ≤ v − u ≤

√

− 3

�
π
}
, (6.107)

Ṽ(n)
i↗

.=
{∣∣∣u − v

(n)
ε,i

∣
∣∣ ≤ h̃ε,i

}
∩
{
β̃ε,i ≤ v − u ≤

√

− 3

�
π
}
.

Similarly, we will define R̃(n)
i; j , R̃(n)

i;γZ , R̃(n)
i;I , Ẽ (±)

↖ [n; i, j], Ẽ (±)
↗ [n; i, j],

D̃r (±)
↖ [n; i, j] and D̃r (±)

↗ [n; i, j] by (6.86), (6.87), (6.88), (6.95)–(6.96),
(6.97)–(6.98), (6.101) and (6.102), respectively (i.e. using the same definitions
as forV(n)

i ,R(n)
i; j ,E

(±)
↖ [n; i, j],E (±)

↗ [n; i, j],Dr (±)
↖ [n; i, j] andDr (±)

↗ [n; i, j]),
with h̃ε,i , β̃ε,i in place of hε,i , βε,i .

Remark Note that V(n)
i ⊂ Ṽ(n)

i , and similarly for V(n)
i↖ , V(n)

i↗ and Ṽ(n)
i↖ , Ṽ(n)

i↗ .

7 First steps for the proof of Theorem 1: beam interactions and energy
concentration

This section will constitute the technical core of the proof of Theorem 1.
First, in Sect. 7.1, we will obtain estimates controlling the geodesics in the
support of the components fεi constituting the total Vlasov field fε (see the
relation (6.65)) in the regions U+

ε , T +
ε ⊂ U (ε)

max , showing that the supports of
the fεi ’s form a configuration of intersecting beams in physical space. Then, in
Sects. 7.2–7.4, we will proceed to establish refined estimates for the exchange
of energy occuring at the intersection of any two of those beams, as well as for
the change in the geometric separation of the beams over time; these bounds
will be used in Sects. 8–9 to show that, provided the initial data parameters
aεi in (6.17) are chosen appropriately, the total energy of fε is eventually
concentrated in regions of sufficiently small scale in phase space, resulting in
the formation of a trapped sphere.

7.1 Control of the Vlasov beams and the spacetime geometry away
from the trapped region

The following lemma will allow us to control the support of the Vlasov beams
fεi in the regions U+

ε and T +
ε introduced in Sect. 6.3.

Lemma 7.1 For any ε ∈ (0, ε1] and any 0 ≤ i ≤ Nε, the support of the
Vlasov field fεi = fεi (u, v; pu, pv, l) on U+

ε satisfies

supp( fεi ) ∩
{
(u, v) ∈ U+

ε

} ⊂
{
(u, v) ∈ Vi

}

∩
{
exp(−σ−6

ε ) ≤ �2(pu + pv) ≤ exp
(
exp(σ−4

ε )
)}

, (7.1)
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where the regions Vi = ∪nV(n)
i in the (u, v)-plane are defined by (6.80). Fur-

thermore, if γ ⊂ U+
ε is a future directed, affinely parametrised null geodesic

in the support of fεi which is maximally extended through reflections off I (see
Definition 2.3 in [43], or Corollary 5.2) and p is any point on γ , then:

γ̇ v

γ̇ u

∣∣
∣
p
≤ exp

(
exp(σ−4

ε )
)
l2
1− 1

3�r2

r2

∣∣
∣
p
if p ∈ ∪n∈NV(n)

i↖ (7.2)

and

γ̇ u

γ̇ v

∣∣
∣
p
≤ exp

(
exp(σ−4

ε )
)
l2
1− 1

3�r2

r2

∣∣
∣
p
if p ∈ ∪n∈NV(n)

i↗, (7.3)

where l is the angular momentum of γ .
Similarly, on T +

ε , the support of fεi satisfies

supp( fεi ) ∩
{
(u, v) ∈ T +

ε

} ⊂
{
(u, v) ∈ Ṽi

}

∩
{
exp(−δ−6

ε ) ≤ �2(pu + pv) ≤ exp
(
exp(δ−4

ε )
)}

, (7.4)

Furthermore, if γ ⊂ T +
ε is a future directed, affinely parametrised null

geodesic in the support of fεi which is maximally extended through reflec-
tions and p is any point on γ , then (7.2)–(7.3) hold with δε in place of σε.

Remark The bound (7.1) implies that the domainsVi (or Ṽi , in the case of (7.4))
strictly contain the Vlasov beams ζi appearing in the discussion of Sect. 1.2.

Proof The proof of Lemma (7.1) will be a simple consequence of Corol-
lary 5.2. In particular, let γ ⊂ U+

ε is a future directed, affinely parametrised
null geodesic in the support of fεi which ismaximally extended through reflec-
tions. Setting

C0
.= 5σ−3

ε , (7.5)

vI
.=
√

− 3

�
π (7.6)

and

U
.= sup

U+
ε

u, (7.7)

we readily observe the following:
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• Using the definition (6.49) of U+
ε , we can readily bound

U ≤ σ−2
ε√−�

. (7.8)

• The bound (5.2) holds on U+
ε

.= UU ;vI , in view of (6.70) (using also the
assumption that η0 < δ0). Moreover, the bound (5.1) follows from (7.8)
and the estimate (6.73), assuming that ε1 has been fixed small enough.

• As a consequence of the expression (6.7) for F (ε)
i and the relation (6.64)

between F (ε)
i and fεi (using also the bound (6.18) for ∂vr

(ε)
/ in (6.64)), we

can estimate for the angular momentum l and the initial energy E0 of γ

(defined by (5.5)) that

1

10
ε(i) ≤ √−�l ≤ 10ε(i)

and

1

10
≤ E0 ≤ 10,

as well as

γ̇ v

γ̇ u

∣
∣
∣
u=0

< 1.

Therefore, γ satisfies the conditions (5.3), (5.6) and (5.54).

Hence, the conditions of Corollary 5.2 are satisfied for γ , provided ε1 is
chosen smaller than some absolute constant. As a result, (7.1) follows readily
from (5.55) and (5.58), while (7.2) and (7.3) follow from 5.59–5.60.

The corresponding statements for γ ⊂ T +
ε follow by exactly the same

arguments, after replacing σε with δε in (7.5) and using (6.78) in place of
(6.73). ��

The following Lemma will allow us to control various quantities related to
the geometry of (U+

ε ; r, �2) and (T +
ε ; r, �2), some of which are of higher

regularity than that controlled by the norm 3.60. Effective control on such
quantities will be obtained through the quantitative estimates provided by
Lemma 7.1 on the support of the Vlasov fields fεi .

Lemma 7.2 For any ε ∈ (0, ε1] and any 0 ≤ i ≤ Nε, the following estimate
holds on U+

ε :

∣∣
∣ log

( �2

1− 1
3�r2

)∣∣
∣ ≤ 10σ−3

ε , (7.9)
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while the following estimates hold in the regions ∪k∈NV(k)
i ∩ U+

ε :

inf
Vi∩U+

ε

r ≥ exp
(− 2 exp(σ−4

ε )
) ε(i)

√−�
, (7.10)

{
r2Tvv[ fεi ](u, v) ≤ exp

(
exp(σ−5

ε )
)
, and

r2Tuu[ fεi ](u, v) ≤ exp
(
exp(2σ−5

ε )
)

(ε(i))4

r4(u,v)
(−�)−2, if (u, v) ∈ ∪n∈NV(n)

i↖,
{
r2Tuu[ fεi ](u, v) ≤ exp

(
exp(σ−5

ε )
)
, and

r2Tvv[ fεi ](u, v) ≤ exp
(
exp(2σ−5

ε )
)

(ε(i))4

r4(u,v)
(−�)−2, if (u, v) ∈ ∪n∈NV(n)

i↗,
(7.11)

and

r2Tuv[ fεi ](u, v) ≤ exp
(
exp(σ−5

ε )
) · (ε(i))2

r2(u, v)
(−�)−1. (7.12)

Furthermore, we can estimate

sup
(u,v)∈U+

ε

∣
∣
∣dist↖[(u, v)] · ∂v log

( �2

1− 1
3�r2

)
(u, v)

∣
∣
∣ (7.13)

+ sup
(u,v)∈U+

ε

∣∣
∣dist↗[(u, v)] · ∂u log

( �2

1− 1
3�r2

)
(u, v)

∣∣
∣ ≤ exp

(
exp(σ−5

ε )
)

and

sup
(u,v)∈U+

ε

∣
∣∣dist↖[(u, v)] · ∂v

( ∂vr

1− 1
3�r2

)
(u, v)

∣
∣∣ (7.14)

+ sup
(u,v)∈U+

ε

∣∣
∣dist↗[(u, v)] · ∂u

( ∂ur

1− 1
3�r2

)
(u, v)

∣∣
∣ ≤ exp

(
exp(σ−5

ε )
)
,

where the functions dist↖[·] and dist↗[·] are defined by (6.91) and (6.92).

Moreover, for any n ∈ N and 0 ≤ i, j ≤ Nε, i �= j , such that R(n)
i; j ⊂ U (ε)

+ ,

the following estimates hold on R(n)
i; j , depending on whether i > j or i < j :

• In the case i > j ,

exp(−σ−7
ε )ρ−1

ε ≤
√−�r |R(n)

i; j
ε( j)

≤ exp(σ−7
ε )ρ−1

ε (7.15)
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and

sup
R(n)

i; j

r − inf
R(n)

i; j
r ≤ exp(σ−7

ε )√−�
ε( j). (7.16)

• In the case i < j ,

exp(−σ−4
ε )ρε

1

ε(i)
≤ √−�r |R(n)

i; j
≤ exp(σ−4

ε )ρε

1

ε(i)
(7.17)

and

sup
R(n)

i; j

1

r
− inf

R(n)
i; j

1

r
≤ exp(σ−7

ε )
√−�ε(i). (7.18)

Replacing U+
ε with T +

ε , the estimates (7.9)–(7.18) still hold with δε in place

of σε, Ṽ(n)
i in place of V(n)

i and R̃(n)
i; j in place of R

(n)
i; j .

Remark Note that, in view of the relations (6.93) and (6.94), the estimates
(7.13) and (7.14) yield, as a special case, that, for any 0 ≤ i ≤ Nε:

sup
∪k∈NV(k)

i↖∩U+
ε

∣∣
∣∂v log

( �2

1− 1
3�r2

)∣∣
∣+ sup

∪k∈NV(k)
i↗∩U+

ε

∣∣
∣∂u log

( �2

1− 1
3�r2

)∣∣
∣

≤ exp
(
2 exp(σ−5

ε )
)
√−�

ε(i)
(7.19)

and

sup
∪k∈NV(k)

i↖∩U+
ε

∣
∣∣∂v

( ∂vr

1− 1
3�r2

)∣∣∣+ sup
∪k∈NV(k)

i↗∩U+
ε

∣
∣∣∂u

( ∂ur

1− 1
3�r2

)∣∣∣

≤ exp
(
2 exp(σ−5

ε )
)
√−�

ε(i)
(7.20)

Notice that the left hand sides of (7.19) and (7.20) are not estimated by the low
regularity norm (3.60). This loss of regularity is reflected in the fact that the
right hand sides of (7.19) and (7.20) can not be bounded merely by terms of
the form (exp(exp(σ−C

ε )), but have additional (ε(i))−1 terms which, in these
cases, are optimal.

Proof Let ε ∈ (0, ε1] and let 0 ≤ i ≤ Nε. In view of the formula (2.9) and the
bound (6.70) for 2m̃/r , the estimate (6.73) readily implies (7.9).
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Using the fact that

inf
Vi

(v − u) = exp
(− exp(σ−4

ε )
) ε(i)

√−�

(following from the definition of (6.81)V(n)
i↖,V(n)

i↗), the lower bound (7.10) for
r follows readily after integrating (∂v − ∂u)r in ∂v − ∂u starting from γZε and
using the bound (6.73).

The estimates (7.11) and (7.12) for Tμν[ fεi ] follow readily from the explicit
formulas (2.30) for Tμν[ fεi ], the estimates (7.1) and (7.2)–(7.3) for the support

of fεi in pu , pv , the fact that fεi is supported on {2 ≤ l
√−�

ε(i) ≤ 6} (in view of
(6.7) and (6.64)), the bound (6.67), and the bounds (6.73), (7.9).

For any (ū, v̄) ∈ U+
ε , integrating the renormalised equation (2.57) for �

in u along ζ↖[(ū, v̄)] and in v along ζ↗[(ū, v̄)] (see (6.89) and (6.90) for
the definition of ζ↖[·] and ζ↗[·]), making use of the boundary conditions
(3.38)–(3.39) for �2 at γZ , Iε, we infer that:

∣
∣∣∂v log

( �2

1− 1
3�r2

)
(ū, v̄)

∣
∣∣ (7.21)

≤
∫

ζ↖[(ū,v̄)]

( m̃
r

( 1

r2
+ 1

3
�

�r2 − 1

1− 1
3�r2

)
· �2

1− 1
3�r2

− 16π
1− 1

2�r2

1− 1
3�r2

1

r2
(r2Tuv[ fε])

)
d(u + v)

+
∣
∣
∣∂v log

( (�
(ε)
/ )2

1− 1
3�(r (ε)

/ )2

)∣∣
∣

∣
∣∣
∣
{u=0}∩ζ↖[(ū,v̄)]

and

∣∣
∣∂u log

( �2

1− 1
3�r2

)
(ū, v̄)

∣∣
∣ (7.22)

≤
∫

ζ↗[(ū,v̄)]

( m̃
r

( 1

r2
+ 1

3
�

�r2 − 1

1− 1
3�r2

)
· �2

1− 1
3�r2

− 16π
1− 1

2�r2

1− 1
3�r2

1

r2
(r2Tuv[ fε])

)
d(u + v)

+
∣∣
∣∂v log

( (�
(ε)
/ )2

1− 1
3�(r (ε)

/ )2

)∣∣
∣

∣
∣
∣∣
{u=0}∩ζ↗[(ū,v̄)]

.
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Making use of the following:

• The bounds (6.70) and (6.72) for 2m̃/r and
√−�(u + v) (the latter

estimating the number of straight segments contained in ζ↖[(ū, v̄)] and
ζ↗[(ū, v̄)]),

• The bounds (6.73) and (7.9) for ∂vr
1− 1

3�r2
, ∂ur
1− 1

3�r2
and �2

1− 1
3�r2

• The bound

r2Tuv[ fε] ≤ 1

2π

−∂ur

1− 2m
r

∂vm̃ and r2Tuv[ fε] ≤ 1

2π

∂vr

1− 2m
r

(−∂um̃) (7.23)

(following from (2.49)–(2.48))
• The fact that the support of m̃|ζ↖[(ū,v̄)], Tμν |ζ↖[(ū,v̄)] is contained in {v−u ≥
dist↖[(ū, v̄)]} (and similarly for ζ↗[(ū, v̄)]),

• The trivial estimates

sup
0≤û≤ū

∫

{u=û}∩{v−u≥dist↖[(ū,v̄)]}
1

r2
(∂vr) dv (7.24)

+ sup
0≤v̂≤v̄

∫

{v=v̂}∩{v−u≥dist↖[(ū,v̄)]}
1

r2
(−∂ur) du ≤ eσ−4

ε
1

dist↖[(ū, v̄)]

and

sup
0≤û≤ū

∫

{u=û}∩{v−u≥dist↗[(ū,v̄)]}
1

r2
(∂vr) dv (7.25)

+ sup
0≤v̂≤v̄

∫

{v=v̂}∩{v−u≥dist↗[(ū,v̄)]}
1

r2
(−∂ur) du ≤ eσ−4

ε
1

dist↗[(ū, v̄)]

(following from (6.73)),

• The initial data estimates (6.18) and (6.19) for ∂v log
(

(�
(ε)
/ )2

1− 1
3�(r (ε)

/ )2

)
,

we infer from (7.21)–(7.22) that

∣
∣
∣∂v log

( �2

1− 1
3�r2

)
(ū, v̄)

∣
∣
∣ ≤ e2σ

−4
ε

1

dist↖[(ū, v̄)] + C
√−� (7.26)

and

∣∣
∣∂u log

( �2

1− 1
3�r2

)
(ū, v̄)

∣∣
∣ ≤ e2σ

−4
ε

1

dist↗[(ū, v̄)] + C
√−�. (7.27)

The bound (7.13) follows readily from (7.26)–(7.27).
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The constraint equations (2.39) and (2.38) imply that

∂v

( ∂vr

1− 1
3�r2

)
= ∂v log

( �2

1− 1
3�r2

)
· ∂vr

1− 1
3�r2

− 4π

1− 1
3�r2

1

r
· r2Tvv[ fε]

(7.28)

and

∂u

( ∂ur

1− 1
3�r2

)
= ∂u log

( �2

1− 1
3�r2

)
· ∂ur

1− 1
3�r2

− 4π

1− 1
3�r2

1

r
· r2Tuu[ fε].

(7.29)

The estimate (7.14) is obtained readily from the relations (7.28)–(7.29), the
bound (7.13) for ∂�2

1− 1
3�r2

, the bound (6.73) for ∂r
1− 1

3�r2
, the bounds (7.11) for

fεi , the fact that Tμν[ fε] is supported only on ∪Nε

i=0Vi and the trivial estimate

sup
(u,v)∈∪n∈N∪Nε

i=0V
(n)
i

(max{dist↖[(u, v)], dist↗[(u, v)]}
r(u, v)

)

≤ eσ−4
ε sup

(u,v)∈∪n∈N∪Nε
i=0V

(n)
i

(max{dist↖[(u, v)], dist↗[(u, v)]}
v − u

)
≤ eσ−4

ε

(following from the bound (6.74) and the definition (6.91), (6.92) of dist↖[·],
dist↗[·]).

Finally, let n ∈ N and 0 ≤ i, j ≤ Nε, i �= j , be such that R(n)
i; j ⊂ U (ε)

+ . In

view of the form (6.86) of R(n)
i; j , we infer the following:

• In the case i > j , integrating (∂v − ∂u)r in ∂v − ∂u from (u+v
2 , u+v

2 ) ∈ γZε

up to (u, v) ∈ R(n)
i; j , using the bound (6.73) and the formulas (6.8) and

(6.79) for vi,ε and v
(n)
i,ε , we obtain (7.15) and (7.16).

• In the case i < j , arguing similarly but integrating (∂v − ∂u)
1
r in ∂v − ∂u

from (u+v
2 − 1

2

√
− 3

�
π, u+v

2 + 1
2

√
− 3

�
π) ∈ Iε up to (u, v) ∈ R(n)

i; j , we
obtain (7.17) and (7.18).

The proof of the analogous estimates for T +
ε in place of U+

ε (with δε, Ṽ(n)
i ,

R̃(n)
i; j replacing σε, V(n)

i , R(n)
i; j ) follows in exactly the same way, using (6.78)

in place of (6.73). ��
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7.2 Interaction of the Vlasov beams: energy exchange and
concentration

In this section, we will establish a number of results providing quantitative
bounds on the change of the energy content (as measured by (6.95)–(6.98))
and the geometric separation (as measured by (6.101)–(6.102)) of the beams
V(n)
i , before and after their pairwise intersections. As a corollary of these

technical bounds, we will be able to estimate the total change of the energy
content and the separation of the beams after each successive reflection off Iε

in the next section (see Proposition 7.6).
The next result provides an estimate for the change of the energy content of

the beams V(n)
j↗ and V(n)

i↖ (or V(n+1)
i↖ , if i < j) before and after their intersection

(recall the definition (6.1) of the hierarchy of parameters ρε, δε, σε).

Proposition 7.3 Let ε ∈ (0, ε1] and let n ∈ N and 0 ≤ i, j ≤ Nε, i �= j , be
such that

R(n)
i; j ⊂ U+

ε .

Let us also define

rn;i, j
.= inf

R(n)
i; j
r. (7.30)

Then the following relations hold for the change of the energy of the two Vlasov
beams entering and leaving the intersection region R(n)

i; j :
• If i > j , then

E (+)
↖ [n; i, j] = E (−)

↖ [n; i, j] · exp
(2E (−)

↗ [n; i, j]
rn;i, j

+ O(ρ
3
2
ε )
)

+ O
(
ρ

3
2
ε

ε(i)

√−�

)
, (7.31)

E (+)
↗ [n; i, j] = E (−)

↗ [n; i, j] · (1+ O(ε)
)+ O

(
ρ

3
2
ε

ε( j)

√−�

)
. (7.32)

• If i < j , then

E (+)
↖ [n; i, j] = E (−)

↖ [n; i, j] · (1+ O(ε)
)+ O

(
ε

ε(i)

√−�

)
, (7.33)

E (+)
↗ [n; i, j] = E (−)

↗ [n; i, j] · (1+ O(ε)
)+ O

(
ε

ε( j)

√−�

)
. (7.34)
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In the case when R̃(n)
i; j ⊂ T +

ε , the relations (7.31)–(7.34) also hold for

Ẽ (±)
↖ [n; i, j], Ẽ (±)

↗ [n; i, j] in place of E (±)
↖ [n; i, j], E (±)

↗ [n; i, j].
Proof For the purpose of simplifying the expressions appearing in the proof
of Proposition 7.3, let us introduce the shorthand notation

v
(±)
n;i, j =

{
v

(n)
ε,i ± hε,i , if i > j,

v
(n+1)
ε,i ± hε,i if i < j,

(7.35)

u(±)
n;i, j = v

(n)
ε, j ± hε, j . (7.36)

Note that, with this notation,

R(n)
i; j = [u(−)

n;i, j , u
(+)
n;i, j ] × [v(−)

n;i, j , v
(+)
n;i, j ].

Let us introduce the following energy densities: On {v(−)
n;i, j ≤ v ≤ v

(+)
n;i, j },

we will set

E↖[n; i, j] .= 2π
1− 2m

r

∂vr
r2 · aεi Tvv[ fεi ], (7.37)

while on {u(−)
n;i, j ≤ u ≤ u(+)

n;i, j } we will set

E↗[n; i, j] .= 2π
1− 2m

r

−∂ur
r2 · aε j Tuu[ fε j ]. (7.38)

We will also define the following energy-related quantities by integrating
E↖[n; i, j] and E↗[n; i, j] in directions transverse to the corresponding index
arrow: On {v(−)

n;i, j ≤ v ≤ v
(+)
n;i, j }, we will define

E↖[n; i, j](u, v)
.=
∫ v

v
(−)
n;i, j

E↖[n; i, j](u, v̄) d v̄, (7.39)

while on {u(−)
n;i, j ≤ u ≤ u(+)

n;i, j } we will define

E↗[n; i, j](u, v)
.=
∫ u

u(−)
n;i, j

E↗[n; i, j](ū, v) dū. (7.40)

In view of the fact that, among all the fεk’s, only fεi and fε j are supported

on R(n)
i; j , the expression (6.65) for fε implies that

Tμν[ fε]|R(n)
i; j

= aεi Tμν[ fεi ]|R(n)
i; j

+ aε j Tμν[ fε j ]|R(n)
i; j

. (7.41)
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Notice that, in view of the fact that Tμν[ fεi ] and Tμν[ fε j ] are supported on
Vi and V j , respectively (and hence vanish to infinite order on v = v

(±)
n;i, j and

u = u(±)
n;i, j , respectively), the relation (7.41) implies (in view of the relations

(2.49)–(2.48) for m̃, the definition (7.37)–(7.38) of E↖, E↗ and the bounds
(6.73) and (7.12) on ∂r , Tuv) that:

m̃
(
u, v

(+)
n;i, j

)− m̃
(
u, v

(−)
n;i, j

)

= E↖[n; i, j](u, v
(+)
n;i, j ) + Err

(n)
i, j↖(u), for any u ∈ [u(−)

n;i, j , u
(+)
n;i, j ],

(7.42)

m̃(u(−)
n;i, j , v) − m̃(u(+)

n;i, j , v)

= E↗[n; i, j](u(+)
n;i, j , v) + Err

(n)
i, j↗(v), for any v ∈ [v(−)

n;i, j , v
(+)
n;i, j ],

where

|Err(n)
i, j↖(u)| ≤ exp

(
exp(2σ−5

ε )
) · (ε(i))2

(−�)(infR(n)
i; j

r)2
· ε(i)

√−�
, (7.43)

|Err(n)
i, j↗(v)| ≤ exp

(
exp(2σ−5

ε )
) · (ε( j))2

(−�)(infR(n)
i; j

r)2
· ε( j)

√−�
.

In particular, in view of the definition (6.95)–(6.98) of E (±)
↖ , E (±)

↗ :

E (±)
↖ [n; i, j] = E↖[n; i, j](u(±)

n;i, j , v
(+)
n;i, j ) + Err

(n)
i, j↖(u(±)

n;i, j ), (7.44)

E (±)
↗ [n; i, j] = E↗[n; i, j](u(+)

n;i, j , v
(±)
n;i, j ) + Err

(n)
i, j↗(v

(±)
n;i, j ).

The conservation of energy relation (2.24) for the Vlasov field fεi reads
(in view of the relation Tuv[ fεi ] = 1

4�
2gABTAB[ fεi ] holding for all massless

Vlasov fields):

∂u(r
2Tvv[ fεi ]) = −∂v(r

2Tuv[ fεi ]) +
(
∂v log(�

2) − 2
∂vr

r

)
(r2Tuv[ fεi ]),

(7.45)

∂v(r
2Tuu[ fεi ]) = −∂u(r

2Tuv[ fεi ]) +
(
∂u log(�

2) − 2
∂ur

r

)
(r2Tuv[ fεi ])

(7.46)
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and similarly for fε j . Furthermore, Eqs. (2.46) and (2.47) readily yield:

∂u

(1− 2m
r

∂vr

)
=
(
4π

rTuu[ fε]
−∂ur

)
· 1− 2m

r

∂vr
, (7.47)

∂v

(1− 2m
r

−∂ur

)
=
(
− 4π

rTvv[ fε]
∂vr

)
· 1− 2m

r

−∂ur
. (7.48)

Differentiating (7.37) with resepect to ∂u and using (7.45) and (7.47), we
obtain:

∂u E↖[n; i, j] =
(
4π

rTuu[ fε]
−∂ur

)
· E↖[n; i, j] (7.49)

− aεi

{
2π

1− 2m
r

∂vr
∂v(r

2Tuv[ fεi ])

+ 2π
1− 2m

r

∂vr

(
∂v log(�

2) − 2
∂vr

r

)
(r2Tuv[ fεi ])

}
.

Remark Notice that the coefficient of E↖[n; i, j] in the right hand side of
(7.49) is strictly positive. It is the sign of this coefficient that will lead to the
increase of the energy quantity E↖[n; i, j] as quantified by (7.31).
From (7.49), we obtain the following explicit formula for E↖[n; i, j](u, v)

for (u, v) ∈ R(n)
i; j :

E↖[n; i, j](u, v) = exp
( ∫ u

u(−)
n;i, j

4π
rTuu[ fε]
−∂ur

(ū, v) dū
)

·E↖[n; i, j](u(−)
n;i, j , v) − aεiErr↖[n; i, j](u, v), (7.50)

where

Err↖[n; i, j](u, v)

.= −
∫ u

u(−)
n;i, j

exp
( ∫ u

ū
4π

rTuu[ fε]
−∂ur

(û, v) dû
)

(7.51)

×
{
2π

1− 2m
r

∂vr
∂v(r

2Tuv[ fεi ])

+ 2π
1− 2m

r

∂vr

(
∂v log(�

2) − 2
∂vr

r

)
(r2Tuv[ fεi ])

}
(ū, v) dū.
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Similarly, differentiating (7.38) with respect to ∂v, we infer the following
formula for E↗[n; i, j](u, v) on R(n)

i; j :

E↗[n; i, j](u, v) = exp
(
−
∫ v

v
(−)
n;i, j

4π
rTvv[ fε]

∂vr
(u, v̄) d v̄

)

·E↗[n; i, j](u, v
(−)
n;i, j ) − aε jErr↗[n; i, j](u, v),

(7.52)

where

Err↗[n; i, j](u, v)

.= −
∫ v

v
(−)
n;i, j

exp
(
−
∫ v

v̄

4π
rTvv[ fε]

∂vr
(u, v̂) d v̂

)
(7.53)

×
{
2π

1− 2m
r

−∂ur
∂u(r

2Tuv[ fε j ])

+ 2π
1− 2m

r

−∂ur

(
∂u log(�

2) − 2
∂ur

r

)
(r2Tuv[ fε j ])

}
(u, v̄) d v̄.

In view of the relation (7.41) for fε, fεi and fε j on R(n)
i; j and the defini-

tion (7.37)–(7.38) of E↖, E↗, we have for any (u, v) ∈ [u(−)
n;i, j , u

(+)
n;i, j ] ×

[v(−)
n;i, j , v

(+)
n;i, j ]:
∫ u

u(−)
n;i, j

4π
rTuu[ fε]
−∂ur

(ū, v) dū

=
∫ u

u(−)
n;i, j

{
2E↗[n; i, j]

r
(ū, v)

·
(
1− 2m

r
(ū, v)

)−1 + 4πaεi

r
· r

2Tuu[ fεi ]
−∂ur

(ū, v)

}
dū (7.54)

and

∫ v

v
(−)
n;i, j

4π
rTvv[ fε]

∂vr
(u, v̄) d v̄ =

∫ v

v
(−)
n;i, j

{
2E↖[n; i, j]

r
(u, v̄)

·
(
1− 2m

r
(u, v̄)

)−1 + 4πaε j

r
· r

2Tvv[ fε j ]
∂vr

(u, v̄)

}
d v̄. (7.55)
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Using (7.11) for Tuu[ fεi ], Tvv[ fε j ], recalling thatR(n)
i; j = V(n)

i↖ ∩ V(n)
j↗, as well

as the bound (6.73) and the assumption aεk ∈ (0, σε], the relations (7.54) and
(7.55) yield:

∫ u

u(−)
n;i, j

4π
rTuu[ fε]
−∂ur

(ū, v) dū

=
∫ u

u(−)
n;i, j

{
2E↗[n; i, j]

r · (1− 1
3�r2 − O(μi; j )

)(ū, v)

+O
(
(−�)−2 exp

(
exp(σ−6

ε )
) (ε(i))4

r5(ū, v)

)}
dū (7.56)

and
∫ v

v
(−)
n;i, j

4π
rTvv[ fε]

∂vr
(u, v̄) d v̄

=
∫ v

v
(−)
n;i, j

{
2E↖[n; i, j]

r · (1− 1
3�r2 − O(μi; j )

)(u, v̄)

+O
(
(−�)−2 exp

(
exp(σ−6

ε )
) (ε( j))4

r5(u, v̄)

)}
d v̄, (7.57)

where

μi; j
.= sup

R(n)
i; j

2m̃

r
. (7.58)

Note that

μi; j = O(η0), (7.59)

as a trivial consequence of (6.70).
For the rest of the proof of (7.31)–(7.34), we will consider the cases i > j

and i < j separately.
The case i > j : Proof of (7.31) and (7.32). Integrating (2.48) in v from the
axis γZε up toR

(n)
i; j , using the fact that, among all the fεk’s, only fε j̄ , j ≤ j̄ ≤ i

are supported on {u(−)
n;i, j ≤ u ≤ u(+)

n;i, j } ∩ {v ≤ v
(+)
n;i, j }, we can readily estimate

(using (6.73) and (7.11), (7.12)):

sup
R(n)

i; j

m̃ ≤ exp(exp(σ−6
ε ))

ε( j)

√−�
. (7.60)
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From (7.60) and the bound (7.15) for r on R(n)
i; j , we immediately infer that:

μi; j = sup
R(n)

i; j

2m̃

r
≤ exp(exp(σ−7

ε ))ρε ≤ ρ
3
4
ε . (7.61)

Using the bounds (7.61), (7.15) and (7.16) onR(n)
i; j as well as (6.1) and (6.5),

the relation (7.56) yields:

∫ u

u(−)
n;i, j

4π
rTuu[ fε]
−∂ur

(ū, v) dū =
∫ u

v
(n)
ε, j−hε, j

{
2E↗[n; i, j](ū, v)

rn;i, j
· (1+ O(ρ

3
4
ε )
)

+ O
(√−�ρε exp(e

σ−8
ε )

(ε(i))4

(ε( j))5

)}
dū (7.62)

= 2E↗[n; i, j](u, v)

rn;i, j
· (1+ O(ρ

3
4
ε )
)+ O

(√−�ρε exp(e
σ−8

ε )
(ε(i))4

(ε( j))5
hε, j

)

= 2E↗[n; i, j](u, v)

rn;i, j
· (1+ O(ρ

3
4
ε )
)+ O

(√−�ρ2
ε exp(e

σ−8
ε )

(ε(i))4

(ε( j))4

)

= 2E↗[n; i, j](u, v)

rn;i, j
· (1+ O(ρ

3
4
ε )
)+ O(ε4)

(where we have used the bound ε(i)

ε( j) ≤ ε when i > j). Similarly, (7.57) yields:

∫ v

v
(−)
n;i, j

4π
rTvv[ fε]

∂vr
(u, v̄) d v̄ = 2E↖[n; i, j](u, v)

rn;i, j

· (1+ O(ρ
3
4
ε )
)+ O(

√−�ρε exp(e
σ−8

ε )
(ε( j))4

(ε( j))5
hε,i ), (7.63)

= 2E↖[n; i, j](u, v)

rn;i, j
· (1+ O(ρ

3
4
ε )
)+ O(ε).

where rn;i, j is defined by (7.30).
Substituting (7.62) in (7.50) and integrating in v over [v(−)

n;i, j , v], we obtain:

E↖[n; i, j](u, v) =
∫ v

v
(−)
n;i, j

{
exp

(2E↗[n; i, j](u, v̄)

rn;i, j

· (1+ O(ρ
3
4
ε )
)+ O(ε)

)
· E↖[n; i, j](u(−)

n;i, j , v̄)

}
d v̄ (7.64)

123
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− aεi

∫ v

v
(−)
n;i, j

Err↖[n; i, j](u, v̄) d v̄.

Integrating by parts in ∂v for the term ∂v(r2Tuv) in
∫ v

v
(−)
n;i, j

Err↖[n; i, j](u, v̄) d v̄

(see the expression (7.51)), and using the fact that Tuv[ fεi ] is supported on Vi

(and hence vanishes to infinite order on v = v
(±)
n;i, j ), we calculate:

∣
∣∣
∫ v

v
(−)
n;i, j

Err↖[n; i, j](u, v̄) d v̄

∣
∣∣ (7.65)

=
∣∣
∣∣

∫ v

v
(n)
ε,i −hε,i

∫ u

v
(n)
ε, j−hε, j

[
exp

( ∫ u

ū
4π

rTuu[ fε]
−∂ur

(û, v̄) dû
)

×
{
2π

1− 2m
r

∂vr
∂v(r

2Tuv[ fεi ])

+ 2π
1− 2m

r

∂vr

(
∂v log(�

2) − 2
∂vr

r

)
(r2Tuv[ fεi ])

}]
(ū, v̄) dūd v̄

∣
∣
∣∣

=
∣
∣
∣∣

∫ v

v
(n)
ε,i −hε,i

∫ u

v
(n)
ε, j−hε, j

[
exp

( ∫ u

ū
4π

rTuu[ fε]
−∂ur

(û, v̄) dû
)

· 2π 1− 2m
r

∂vr
r2Tuv[ fεi ]

×
{
−
∫ u

ū
∂v

( 4π

r(−∂ur)

)
· r2Tuu[ fε](û, v̄) dû

−
∫ u

ū

4π

r

1

−∂ur
∂v(r

2Tuu[ fε])(û, v̄) dû

− ∂v log
(1− 2m

r

∂vr

)
+
(
∂v log(�

2) − 2
∂vr

r

)}]
(ū, v̄) dūd v̄

∣∣
∣∣.

We will estimate the right hand side of (7.65) in a number of steps:

• Using the bounds (6.70), (6.73), (7.11), (7.41), (7.15) and (7.16), we can
estimate:

sup
(u,v̄)∈R(n)

i; j , ū∈[v(n)
ε, j−hε, j ,u]

∣∣
∣
∫ u

ū
4π

rTuu[ fε]
−∂ur

(û, v̄) dû
∣∣
∣

≤
∫ v

(n)
ε, j+hε, j

v
(n)
ε, j−hε, j

exp
(
exp(4σ−5

ε )
) · 1

rn;i, j
du (7.66)
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≤ exp
(
exp(σ−6

ε )
) · hε, j

rn;i, j
≤ 1.

• Using the bounds (6.73), (7.12), (7.15) and (7.16), we can estimate:

2π
1− 2m

r

∂vr
r2Tuv[ fεi ] ≤ exp

(
exp(σ−6

ε )
)(ε(i))2

r2n;i, j
(−�)−1. (7.67)

• Using equation (2.45) and the bounds (6.70), (6.73), (7.11), (7.12), (7.15)
and (7.16) (as well as the relation (7.41) between fε, fεi and fε j on R(n)

i; j
and the bound aεk ≤ 1), we can estimate:

sup
(u,v̄)∈R(n)

i; j , ū∈[v(n)
ε, j−hε, j ,u]

∣
∣∣
∫ u

ū
∂v

( 4π

r(−∂ur)

)
· r2Tuu[ fε](û, v̄) dû

∣
∣∣

= sup
(u,v̄)∈R(n)

i; j , ū∈[v(n)
ε, j−hε, j ,u]

∣∣
∣
∫ u

ū
4π

(
− ∂vr

r2(−∂ur)
+ ∂u∂vr

r(−∂ur)2

)
r2Tuu[ fε](û, v̄) dû

∣∣
∣

= sup
(u,v̄)∈R(n)

i; j , ū∈[v(n)
ε, j−hε, j ,u]

∣∣
∣
∫ u

ū
4π

(
− ∂vr

r2(−∂ur)
+

2m̃
r − 2

3�r2

r2(1− 2m
r )

∂vr

−∂ur

+ 4πr2Tuv

r2(−∂ur)2

)
r2Tuu[ fε](û, v̄) dû

∣
∣∣

≤
∫ v

(n)
ε, j+hε, j

v
(n)
ε, j−hε, j

exp
(
exp(σ−9

ε )
) 1

r2n;i, j
du

≤ 2 exp
(
exp(σ−9

ε )
) hε, j

r2n;i, j

≤ exp
(
exp(2σ−9

ε )
)
ρε

1

rn;i, j

≤ ρ
1
2
ε

1

rn;i, j
. (7.68)

• Using (7.46) for fε in place of fεi to express ∂v(r2Tuu[ fε]) in terms of
∂u(r2Tuv[ fε]) and integrating by parts in ∂u , we calculate (in view of the
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bounds (6.70), (6.73), (7.12), (7.19) for ∂u�
2 with j in place of i , (7.20)

for ∂2ur with j in place of i , (7.15) and (7.16)):

sup
(u,v̄)∈R(n)

i; j , ū∈[v(n)
ε, j−hε, j ,u]

∣
∣
∣
∫ u

ū

4π

r

1

−∂ur
∂v(r

2Tuu[ fε])(û, v̄) dû
∣
∣
∣

= sup
(u,v̄)∈R(n)

i; j , ū∈[v(n)
ε, j−hε, j ,u]

∣∣
∣∣

∫ u

ū

4π

r

1

−∂ur

(
− ∂u(r

2Tuv[ fε])

+
(
∂u log(�

2) − 2
∂ur

r

)
(r2Tuv[ fε])

)
(û, v̄) dû

∣
∣
∣∣

= sup
(u,v̄)∈R(n)

i; j , ū∈[v(n)
ε, j−hε, j ,u]

∣
∣∣
∣

∫ u

ū
4π

(
∂u
( 1

r(−∂ur)

) · r2Tuv[ fε]

+ 1

r(−∂ur)

(
∂u log(�

2) − 2
∂ur

r

)
(r2Tuv[ fε])

)
(û, v̄) dû

+ 4π

r

1

−∂ur
· r2Tuv[ fε](ū, v̄) − 4π

r

1

−∂ur
· r2Tuv[ fε](u, v̄)

∣∣
∣∣

≤
∫ v

(n)
ε, j+hε, j

v
(n)
ε, j−hε, j

exp
(
exp(σ−9

ε )
)

× 1

rn;i, j
(
√−�

ε( j)
+ 1

rn;i, j
) (ε( j))2

(−�)r2n;i, j
du

+ exp
(
exp(σ−9

ε )
) 1

rn;i, j
(ε( j))2

(−�)r2n;i, j

≤ exp
(
exp(2σ−9

ε )
)
ρ2

ε

1

rn;i, j

≤ ρε

1

rn;i, j
. (7.69)

• Using the the relation (2.48) for ∂vm̃, the estimate (7.20) for ∂2v r , as well as
the bounds (6.73), (7.11), (7.12), (6.70), (7.15) and (7.16), we can estimate:

sup
R(n)

i; j

∣
∣∣∂v log

(1− 2m
r

∂vr

)∣∣∣ ≤ exp
(
exp(σ−6

ε )
)(

√−�

ε(i)
+ 1

rn;i, j

)
. (7.70)

123



G. Moschidis

• Using the estimate (7.19) for ∂v�
2, as well as the bounds (6.73), (7.12),

(7.15) and (7.16), we can estimate:

sup
R(n)

i; j

∣
∣∣∂v log(�

2) − 2
∂vr

r

∣
∣∣ ≤ exp

(
exp(σ−6

ε )
)(

√−�

ε(i)
+ 1

rn;i, j

)
. (7.71)

Using the estimates (7.66)–(7.71) (together with the relation of the param-
eters ε, ρε, δε and σε) to bound the right hand side of (7.65), we therefore
obtain:

sup
(u,v)∈R(n)

i; j

∣
∣∣
∫ v

v
(−)
n;i, j

Err↖[n; i, j](u, v̄) d v̄

∣
∣∣

≤
∫ v

(n)
ε,i +hε,i

v
(n)
ε,i −hε,i

∫ v
(n)
ε, j+hε, j

v
(n)
ε, j−hε, j

(ε(i))2

r2n;i, j
exp

(
exp(σ−6

ε )
)
(−�)−1 (7.72)

×
(
exp

(
exp(σ−7

ε )
)(

√−�

ε(i)
+ 1

rn;i, j

)
+ 2ρ

1
2
ε

1

rn;i, j

)
dūd v̄

≤ exp
(
exp(2σ−7

ε )
)
ρ2

ε

(ε(i))2

(ε( j))2

√−�

ε(i)
hε,i hε, j

≤ exp
(
exp(σ−8

ε )
)
ρ2

ε

(ε(i))2

(ε( j))2

√−�

ε(i)
ε(i)ε( j)(−�)−1

≤ ρ
3
2
ε ε(i)(−�)−

1
2

where, in the last step in (7.72), we have used the bound ε(i) < ε( j) (holding
when i > j). Returning to (7.64) and using (7.72) to estimate the last term in
the right hand side (using also the bound aεi < δε � exp

(− exp(σ−8
ε )

)
), we

infer that, for any (u, v) ∈ R(n)
i; j :

E↖[n; i, j](u, v)

=
∫ v

v
(−)
n;i, j

{
exp

(2E↗[n; i, j](u, v̄)

rn;i, j
· (1+ O(ρ

3
4
ε )
)+ O(ε)

)

·E↖[n; i, j](u(−)
n;i, j , v̄)

}
d v̄ + O

(
ρ

3
2
ε

ε(i)

√−�

)
. (7.73)

Similarly, substituting (7.63) in (7.52) and integrating in u over [u(−)
n;i, j , u],

estimating
∫ u
u(−)
n;i, j

Err↗[n; i, j](ū, v) dū in the same way as we did for (7.72),
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we obtain for any (u, v) ∈ R(n)
i; j :

E↗[n; i, j](u, v)

=
∫ u

u(−)
n;i, j

{
exp

(
− 2E↖[n; i, j](ū, v)

rn;i, j
· (1+ O(ρ

3
4
ε )
)+ O(ε)

)

·E↗[n; i, j](ū, v
(−)
n;i, j )

}
dū + O

(
ρ

3
2
ε

ε( j)

√−�

)
. (7.74)

Using the bounds (6.73), (7.11), (7.15) and (7.16), we can trivially estimate

sup
(u,v)∈R(n)

i; j

E↗[n; i, j](u, v)

rn;i, j

≤
∫ v

(n)
ε, j+hε, j

v
(n)
ε, j−hε, j

exp
(
exp(σ−6

ε )
)
du

rn;i, j

≤ 2 exp
(
exp(σ−6

ε )
) hε, j

rn;i, j
≤ ρ

3
4
ε . (7.75)

Dividing (7.73) with rn;i, j and using (7.75) to estimate its right hand side,

making also use of (6.73) and (7.11) to estimate E↖[n; i, j](u(−)
n;i, j , v̄), we

obtain:

sup
(u,v)∈R(n)

i; j

E↖[n; i, j](u, v)

rn;i, j

≤
∫ v

(n)
ε,i +hε,i

v
(n)
ε,i −hε,i

{
exp(O(ρ

3
4
ε ))E↖[n; i, j](u(−)

n;i, j , v̄) + O
(
ρ

3
2
ε

ε(i)√−�

)}
d v̄+

rn;i, j
(7.76)

≤ 2
∫ v

(n)
ε,i +hε,i

v
(n)
ε,i −hε,i

exp
(
exp(σ−6

ε )
)

rn;i, j
d v̄

≤ 4 exp
(
exp(σ−6

ε )
) hε,i

rn;i, j
≤ ε,

where, in passing from the third to the fourth line in (7.76), we made use of the

bound ε(i)

ε( j) ≤ ε and the approximate relation (7.15) between ε( j) and rn;i, j .
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Returning to (7.74) and using the bound (7.76), we infer:

E↗[n; i, j](u, v)

=
∫ u

u(−)
n;i, j

{
exp

(
O(ε)

)
· E↗[n; i, j](ū, v

(−)
n;i, j )

}
dū + O

(
ρ

3
2
ε

ε( j)

√−�

)

(7.77)

= (1+ O(ε))

∫ u

u(−)
n;i, j

E↗[n; i, j](ū, v
(−)
n;i, j ) dū + O

(
ρ

3
2
ε

ε( j)

√−�

)

= (1+ O(ε))E↗[n; i, j](u, v
(−)
n;i, j ) + O

(
ρ

3
2
ε

ε( j)

√−�

)
,

fromwhich (7.32) followsby settingu = u(+)
n;i, j andv = v

(+)
n;i, j andusing (7.44).

Returning, now, to (7.73) and using (7.77) to estimate the exponential in the

right hand side, as well as the bound (7.75) to estimate the 2E↗[n;i, j]
rn;i, j · O(ρ

3
4
ε )

error term, we obtain:

E↖[n; i, j](u, v) (7.78)

=
∫ v

v
(−)
n;i, j

{
exp

(2E↗[n; i, j](u, v
(−)
n;i, j )

rn;i, j
· (1+ O(ρ

3
4
ε )
)+ O(ρ2

ε )
)

· E↖[n; i, j](u(−)
n;i, j , v̄)

}
d v̄ + O

(
ρ

3
2
ε

ε(i)

√−�

)

= exp
(2E↗[n; i, j](u, v

(−)
n;i, j )

rn;i, j
+ O(ρ

3
2
ε )
)

·
∫ v

v
(−)
n;i, j

E↖[n; i, j](u(−)
n;i, j , v̄) d v̄ + O

(
ρ

3
2
ε

ε(i)

√−�

)

= exp
(2E↗[n; i, j](u, v

(−)
n;i, j )

rn;i, j
+ O(ρ

3
2
ε )
)

· E↖[n; i, j](u(−)
n;i, j , v) + O

(
ρ

3
2
ε

ε(i)

√−�

)
,

from which (7.31) follows by setting u = u(+)
n;i, j and v = v

(+)
n;i, j and using

(7.44).
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Remark More generally, setting u = u(+)
n;i, j in (7.77), v = v

(+)
n;i, j in (7.78) and

using (7.42), we obtain

m̃(u(−)
n;i, j , v) − m̃(u(+)

n;i, j , v)

= E (−)
↗ [n; i, j] · (1+ O(ε)

)

+O
(
ρ

3
2
ε

ε( j)

√−�

)
for all v ∈ [v(−)

n;i, j , v
(+)
n;i, j ] (7.79)

and

m̃
(
u, v

(+)
n;i, j

)− m̃
(
u, v

(−)
n;i, j

)

≤ E (−)
↖ [n; i, j] · exp

(2E (−)
↗ [n; i, j]
rn;i, j

+ O(ρ
3
2
ε )
)

+O
(
ρ

3
2
ε

ε(i)

√−�

)
for all u ∈ [u(−)

n;i, j , u
(+)
n;i, j ]. (7.80)

The case i < j : Proof of (7.33) and (7.34). The proof of (7.33) and (7.34)
will follow by the same arguments as the proof of (7.32) and (7.31), the main
difference being that in this case,wewill use (7.17) and (7.18) in place of (7.15)
and (7.16), respectively. In particular, in this case, the fact that rn;i, j � 1

ε
will

actually render all the error terms appearing in the relevant computations of
order O(ε) or smaller, simplyfying the whole procedure substantially.

Using the bounds (6.73), (7.11), (7.17) and (7.18) on R(n)
i; j as well as (6.1)

and (6.5), we can estimate

∫ u

u(−)
n;i, j

4π
rTuu[ fε]
−∂ur

(ū, v) dū

=
∫ u

u(−)
n;i, j

4π
1

r(1− 1
3�r2)

1− 1
3�r2

−∂ur
r2Tuu[ fε](ū, v) dū (7.81)

≤ exp(exp(σ−7
ε ))

1

r3n;i, j
hε, j (−�)−1 ≤ ε

and, similarly

∫ v

v
(−)
n;i, j

4π
rTvv[ fε]

∂vr
(u, v̄) d v̄ ≤ ε. (7.82)
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Substituting (7.81) in (7.50) and integrating in v over [v(−)
n;i, j , v], we obtain

the following analogue of (7.64):

E↖[n; i, j](u, v) =
∫ v

v
(−)
n;i, j

{
exp

(
O(ε)

)
· E↖[n; i, j](u(−)

n;i, j , v̄)

}
d v̄

− aεi

∫ v

v
(−)
n;i, j

Err↖[n; i, j](u, v̄) d v̄ (7.83)

= (1+ O(ε))E↖[n; i, j](u(−)
n;i, j , v)

− aεi

∫ v

v
(−)
n;i, j

Err↖[n; i, j](u, v̄) d v̄.

Repeating the same procedure as for the proof of (7.72), but using (7.17) and
(7.18) in place of (7.15) and (7.16), we can estimate:

sup
(u,v)∈R(n)

i; j

∣
∣
∣
∫ v

v
(−)
n;i, j

Err↖[n; i, j](u, v̄) d v̄

∣
∣
∣ ≤ ε · ε(i)

√−�
(7.84)

Therefore, from (7.83) we infer that

E↖[n; i, j](u, v) = (1+ O(ε))E↖[n; i, j](u(−)
n;i, j , v) + O

(
ε · ε(i)

√−�

)
,

(7.85)

from which (7.33) follows by setting u = u(+)
n;i, j and v = v

(+)
n;i, j and using

(7.44). Similarly,

E↗[n; i, j](u, v) = (1+ O(ε))E↗[n; i, j](u, v
(−)
n;i, j ) + O

(
ε · ε( j)

√−�

)
,

(7.86)

from which the estimate (7.34) follows by setting u = u(+)
n;i, j and v = v

(+)
n;i, j .

Remark Similarly as in the case i > j , from (7.85) and (7.85) (7.86), using
(7.42), we obtain

m̃
(
u, v

(+)
n;i, j

)− m̃
(
u, v

(−)
n;i, j

) = (
1+ O(ε)

)
E (−)
↖ [n; i, j]

+O
(
ε

ε(i)

√−�

)
for all u ∈ [u(−)

n;i, j , u
(+)
n;i, j ]
(7.87)
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and

m̃(u(−)
n;i, j , v) − m̃(u(+)

n;i, j , v) = (
1+ O(ε)

)
E (−)
↗ [n; i, j]

+O
(
ε

ε( j)

√−�

)
for all v ∈ [v(−)

n;i, j , v
(+)
n;i, j ].
(7.88)

The relations (7.31)–(7.34) for Ẽ (±)
↖ [n; i, j], Ẽ (±)

↗ [n; i, j] in place of

E (±)
↖ [n; i, j], E (±)

↗ [n; i, j] follow in exactly the same way, after replacing σε,

hε,i , V(n)
i , R(n)

i; j with δε, h̃ε,i , Ṽ(n)
i , R(n)

i; j respectively, in all the expressions
above and using (6.78) in place of (6.73). ��

The next result provides an estimate for the change of the geometric sep-
aration of the beams V(n)

i↖ and V(n)
i−1↖ before and after their intersection with

V(n)
j↗, as well as the change of the separation of V(n)

j↗ and V(n)
j−1↗before and

after their intersection with V(n)
i↖ (with V(n+1)

i↖ and V(n+1)
i−1↖ in place of V(n)

i↖ and

V(n)
i−1↖, if i < j).

Proposition 7.4 Let ε ∈ (0, ε1] and let n ∈ N and 0 ≤ i, j ≤ Nε, i �= j , be
such that

R(n)
i; j ⊂ U+

ε .

Let also rn;i, j be defined by (7.30). Then, the following relations hold

regarding the change of the separation-measuring quantities Dr (±)
↖ [n; i, j],

Dr (±)
↗ [n; i, j]:

• In the case i > j , the quantitiesDr (±)
↗ [n; i, j] (defined for j > 0) satisfy

Dr (+)
↗ [n; i, j] = Dr (−)

↗ [n; i, j] · (1+ O(ε)
)
, (7.89)

while for the quantitiesDr (±)
↖ [n; i, j] the following hold:

– If i = j + 1,

Dr (+)
↖ [n; i, j] = Dr (−)

↖ [n; i, j] · (1+ O(ρ
3
4
ε )
)
. (7.90)

– If i > j + 1,

Dr (+)
↖ [n; i, j] = Dr (−)

↖ [n; i, j] · exp
(
− 2E (−)

↗ [n; i, j]
rn;i, j

+ O(ρ
3
2
ε )
)
.

(7.91)
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• In the case i < j , the quantitiesDr (±)
↗ [n; i, j] satisfy

Dr (+)
↗ [n; i, j] = Dr (−)

↗ [n; i, j] · (1+ O(ε)
)
, (7.92)

while the quantitiesDr (±)
↖ [n; i, j] (defined for i > 0) satisfy:

Dr (+)
↖ [n; i, j] = Dr (−)

↖ [n; i, j] · (1+ O(ε)
)
. (7.93)

In the case when

R(n)
i;γZ ,R(n)

i;I ⊂ U+
ε

the following relations hold for Dr (±)
↖ [n; i, i], Dr (±)

↗ [n; i, i]:

Dr (+)
↖ [n; i, i] = Dr (−)

↖ [n; i, i] · (1+ O(ε)
)
, (7.94)

Dr (+)
↗ [n; i, i] = Dr (−)

↗ [n; i, i] · (1+ O(ρ
3
4
ε )
)
. (7.95)

Replacing U+
ε with T +

ε and V(n)
i with Ṽ(n)

i , the relations (7.89)–(7.95)

also hold with D̃r (±)
↖ [n; i, j], D̃r (±)

↗ [n; i, j] in place of Dr (±)
↖ [n; i, j],

Dr (±)
↗ [n; i, j].

Proof In order to establish (7.89)–(7.95), we will assume without loss of gen-
erality that i > 0 and j > 0, so that bothDr (±)

↖ [n; i, j] andDr (±)
↗ [n; i, j] are

well defined. In the case when i = 0 (whenDr (±)
↖ [n; i, j] is not defined), the

proof of (7.92) follows exactly as in the case i > 0, and similarly for the proof
of (7.90)–(7.91) in the case j = 0.

As we did in the proof of Proposition 7.3, we will use the shorthand notation
v

(±)
n;i, j , u

(±)
n;i, j for the expressions (7.35), (7.36), respectively.Wewill also define

the energy quantities E↖[n; i, j](u, v), E↗[n; i, j](u, v), E↖[n; i, j](u, v)

and E↗[n; i, j](u, v) by (7.37), (7.38), (7.39) and (7.40), respectively.
Let us define the domains

W↖[n; i, j] .= [u(+)
n;i, j−1 + ρ

− 7
8

ε hε, j−1, u
(−)
n;i, j − ρ

− 7
8

ε hε, j−1] × [v(−)
n;i, j , v

(+)
n;i, j ],
(7.96)

W↗[n; i, j] .= [u(−)
n;i, j , u

(+)
n;i, j ] × [v(+)

n;i−1, j + ρ
− 7

8
ε hε,i−1, v

(−)
n;i, j − ρ

− 7
8

ε hε,i−1],
(7.97)
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Fig. 20 Schematic depiction of the domainsW↖[n; i, j] andW↗[n; i, j]

with the following convention for v
(+)
i−1,i−1 (recall that (7.35) defined v

(±)
n;i, j

only for i �= j):

v
(+)
n;i−1,i−1 = v

(n)
ε,i−1 + hε,i−1. (7.98)

Notice that the quantities Dr (±)
↖ [n; i, j] and Dr (±)

↗ [n; i, j] (given by (6.101)

and (6.102)) are defined through integration on the u = u(±)
n;i, j and v = v

(±)
n;i, j

parts of the boundary ofW↗[n; i, j] andW↖[n; i, j], respectively. Note also
that

W↖[n; i, j] ⊂ V(n)
i↖

(with V(n+1)
i↖ in place of V(n)

i↖ if i < j) and

W↗[n; i, j] ⊂ V(n)
j↗,

as well as (Fig. 20)

W↖[n; i, j] ∩R(n)
i; j = W↗[n; i, j] ∩R(n)

i; j = ∅.

In view of the definition (6.91) and (6.92) of dist↖[·] and dist↗[·], we can
readily calculate that:
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• For all (u, v) ∈ W↖[n; i, j]:

dist↖[(u, v)] = exp
(− exp(σ−4

ε )
) ε(i)

√−�
(7.99)

and23

dist↗[(u, v)] ≥ e−σ−6
ε ρ

− 7
8

ε

ε( j−1)

√−�
. (7.100)

• For all (u, v) ∈ W↗[n; i, j]:

dist↗[(u, v)] = exp
(− exp(σ−4

ε )
) ε( j)

√−�
(7.101)

and

dist↖[(u, v)] ≥ e−σ−6
ε ρ

− 7
8

ε

ε(i−1)

√−�
. (7.102)

In view of the bound (7.1) on the support of fεi , we know that, among all
the fεk’s, only fεi is supported on W↖[n; i, j], and only fε j is supported on
W↗[n; i, j]. As a result,

Tμν[ fε]
∣∣
W↖[n;i, j] = aεi Tμν[ fεi ]

∣∣
W↖[n;i, j], (7.103)

Tμν[ fε]
∣∣
W↗[n;i, j] = aε j Tμν[ fε j ]

∣∣
W↗[n;i, j].

Furthermore, (6.73) and the definition (7.96), (7.97) of W↖[n; i, j], W↗
[n; i, j], readily yield the following lower bounds:
• When i > j :

inf
W↖[n;i, j]

r ≥ e−σ−6
ε ρ−1

ε

ε( j)

√−�
and inf

W↗[n;i, j]
r ≥ e−σ−6

ε ρ
− 7

8
ε

ε( j)

√−�
.

(7.104)

23 For the derivation of (7.100), note that, among all the tubes Vk , the crooked line ζ↗(u, v)

intersects V j−1 closest to the axis. In view of the defintition (7.96) of W↖[n; i, j], the inter-
section of ζ↗(u, v) and V j−1 has to take place at distance � ρ

− 7
8

ε hε, j−1 from the axis in the
(u, v)-coordinates. See also Fig. 17.
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• When i < j :

inf
W↖[n;i, j]

r ≥ e−σ−6
ε ρε

1

ε(i)
√−�

and inf
W↗[n;i, j]

r ≥ e−σ−6
ε ρε

1

ε(i)
√−�

.

(7.105)

Integrating (2.47) from u = u(−)
n;i, j up to u = u(+)

n;i, j , exponentiating the

resulting expression and then integrating in v ∈ [v(+)
n;i−1, j+ρ

− 7
8

ε hε,i−1, v
(−)
n;i, j−

ρ
− 7

8
ε hε,i−1], we readily obtain using the definition (6.101) of Dr (+)

↖ [n; i, j]:

Dr (+)
↖ [n; i, j] =

∫ v
(−)
n;i, j−ρ

− 7
8

ε hε,i−1

v
(+)
n;i−1, j+ρ

− 7
8

ε hε,i−1

exp
(
−
∫ u(+)

n;i, j

u(−)
n;i, j

4π
rTuu[ fε]
−∂ur

(ū, v̄) dū
) ∂vr

1− 2m
r

(u(−)
n;i, j , v̄) d v̄. (7.106)

Similarly, after integrating (2.46):

Dr (+)
↗ [n; i, j] =

∫ u(−)
n;i, j−ρ

− 7
8

ε hε, j−1

u(+)
n;i, j−1+ρ

− 7
8

ε hε, j−1

exp
( ∫ v

(+)
n;i, j

v
(−)
n;i, j

4π
rTvv[ fε]

∂vr
(ū, v̄) d v̄

) −∂ur

1− 2m
r

(ū, v
(−)
n;i, j ) dū. (7.107)

In view of (7.103), we readily infer (arguing exactly as in the proof of
(7.56)–(7.57)) that, for all (u, v) ∈ W↗[n; i, j],
∫ u

u(−)
n;i, j

4π
rTuu[ fε]
−∂ur

(ū, v) dū =
∫ u

u(−)
n;i, j

2E↗[n; i, j]
r · (1− 1

3�r2 − O(μ↗i j )
)(ū, v) dū

(7.108)

and, for all (u, v) ∈ W↖[n; i, j],
∫ v

v
(−)
n;i, j

4π
rTvv[ fε]

∂vr
(u, v̄) d v̄ =

∫ v

v
(−)
n;i, j

2E↖[n; i, j]
r · (1− 1

3�r2 − O(μ↖i j )
)(u, v̄) d v̄,

(7.109)
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where

μ↗i j
.= sup

W↗[n;i, j]
2m̃

r
, (7.110)

μ↖i j
.= sup

W↖[n;i, j]
2m̃

r
.

Note that

μ↗i j , μ↖i j = O(η0), (7.111)

as a trivial consequence of (6.70).
Substituting (7.108) and (7.109) in (7.106) and (7.107), respectively, we

obtain

Dr (+)
↖ [n; i, j] =

∫ v
(−)
n;i, j−ρ

− 7
8

ε hε,i−1

v
(+)
n;i−1, j+ρ

− 7
8

ε hε,i−1

exp
(
−
∫ u(+)

n;i, j

u(−)
n;i, j

2E↗[n; i, j]
r · (1− 1

3�r2 − O(μ↗i j )
)(ū, v̄) dū

)

· ∂vr

1− 2m
r

(u(−)
n;i, j , v̄) d v̄ (7.112)

and

Dr (+)
↗ [n; i, j] =

∫ u(−)
n;i, j−ρ

− 7
8

ε hε, j−1

u(+)
n;i, j−1+ρ

− 7
8

ε hε, j−1

exp
( ∫ v

(+)
n;i, j

v
(−)
n;i, j

2E↖[n; i, j]
r · (1− 1

3�r2 − O(μ↖i j )
)(ū, v̄) d v̄

)

· −∂ur

1− 2m
r

(ū, v
(−)
n;i, j ) dū. (7.113)

From (7.49) (and the analogous equation for ∂vE↗[n; i, j](u, v)), we obtain
the following formulas (in analogy with (7.50) and (7.52)):

• For (u, v) ∈ W↖[n; i, j],
E↖[n; i, j](u, v)

= exp
(
−
∫ u(−)

n;i, j

u
4π

rTuu[ fε]
−∂ur

(ū, v) dū
)
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·E↖[n; i, j](u(−)
n;i, j , v) − aεiErr

(0)
↖ [n; i, j](u, v), (7.114)

where

Err
(0)
↖ [n; i, j](u, v)

.=
∫ u(−)

n;i, j

u
exp

(
−
∫ ū

u
4π

rTuu[ fε]
−∂ur

(û, v) dû
)
× (7.115)

×
{
2π

1− 2m
r

∂vr
∂v(r

2Tuv[ fεi ])

+ 2π
1− 2m

r

∂vr

(
∂v log(�

2) − 2
∂vr

r

)
(r2Tuv[ fεi ])

}
(ū, v) dū.

• For (u, v) ∈ W↗[n; i, j],

E↗[n; i, j](u, v)

= exp
( ∫ v

(−)
n;i, j

v

4π
rTvv[ fε]

∂vr
(u, v̄) d v̄

)

·E↗[n; i, j](u, v
(−)
n;i, j ) − aε jErr

(0)
↗ [n; i, j](u, v), (7.116)

where

Err
(0)
↗ [n; i, j](u, v)

.=
∫ v

(−)
n;i, j

v

exp
(
−
∫ v̄

v

4π
rTvv[ fε]

∂vr
(u, v̂) d v̂

)
× (7.117)

×
{
2π

1− 2m
r

−∂ur
∂u(r

2Tuv[ fε j ])

+ 2π
1− 2m

r

−∂ur

(
∂u log(�

2) − 2
∂ur

r

)
(r2Tuv[ fε j ])

}
(u, v̄) d v̄.

We will now procced to treat the cases i > j and i < j separately.
The case i > j : Proof of (7.89)–(7.91). Integrating (2.48) in v from the axis
γZε up to W↗[n; i, j], W↖[n; i, j], using the fact that, among all the fεk’s,
only fε j̄ , j ≤ j̄ ≤ i are supported on the domain

{

inf
W↗[n;i, j]

u ≤ u ≤ sup
W↗[n;i, j]

u

}

∩
{

v ≤ sup
W↗[n;i, j]

v

}
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(and the same for W↖[n; i, j]), we can readily estimate (using (6.73) and
(7.11), (7.12)):

sup
W↗[n;i, j]∪W↖[n;i, j]

m̃ ≤ exp(exp(σ−6
ε ))

ε( j)

√−�
. (7.118)

From (7.118) and the bound (7.104) for r on W↗[n; i, j], W↖[n; i, j], we
immediately infer that:

μ↗i j + μ↖i j = sup
W↗[n;i, j]

2m̃

r
+ sup

W↖[n;i, j]
2m̃

r

≤ exp(exp(σ−7
ε ))ρ

7
8
ε ≤ ρ

3
4
ε . (7.119)

Using the fact that Tμν[ fε] = aε j Tμν[ fε j ] onW↗[n; i, j], the bound (7.11)
for Tvv[ fε j ] on W↗[n; i, j] ⊂ V(n)

j↗, combined with (6.73), implies that

sup
(u,v)∈W↗[n;i, j]

∫ v
(−)
n;i, j

v

4π
rTvv[ fε]

∂vr
(u, v̄) d v̄

≤ aε j exp
(
exp(σ−6

ε )
)
(−�)−2

×
∫ r(u(−)

n;i, j ,v
(−)
n;i, j )

r(u(+)
n;i, j ,v

(+)
n;i−1, j+ρ

− 7
8

ε hε,i−1)

(ε( j))4

r̄5
dr̄

≤ exp
(
exp(σ−6

ε )
)
(−�)−2(ε( j))4

× r(u(−)
n;i, j , v

(−)
n;i, j ) − r(u(+)

n;i, j , v
(+)
n;i−1, j + ρ

− 7
8

ε hε,i−1)

(
r(u(+)

n;i, j , v
(+)
n;i−1, j + ρ

− 7
8

ε hε,i−1)
)5

≤ exp
(
exp(2σ−6

ε )
)
(−�)−2(ε( j))4

× (u(+)
n;i, j − u(−)

n;i, j ) + (v
(−)
n;i, j − v

(+)
n;i−1, j − ρ

− 7
8

ε hε,i−1)

(ρ
− 7

8
ε hε,i−1 + v

(+)
n;i−1, j − u(+)

n;i, j )5

≤ exp
(
exp(σ−7

ε )
)
(ε( j))4

× ε( j) + ρ−1
ε ε(i−1)

(ρ
− 7

8
ε ε(i−1) + sgn(i − j − 1) · ρ−1

ε ε( j))5

≤ ρε, (7.120)
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where

sgn(i − j − 1) =
{
0, i = j + 1,

+1, i > j + 1

and, in passing from the second to the third line in (7.120), we used the fact
that ∂ur < 0 and ∂vr > 0 on U+

ε . Substituting the bound (7.120) in (7.116),
we infer that, for any (u, v) ∈ W↗[n; i, j]:

E↗[n; i, j](u, v)

= (
1+ O(ρε)

) · E↗[n; i, j](u, v
(−)
n;i, j ) − aε jErr

(0)
↗ [n; i, j](u, v).

(7.121)

Dividing (7.121) with r and integrating in u, we infer that, for any (u, v) ∈
W↗[n; i, j]:
∫ u

u(−)
n;i, j

E↗[n; i, j]
r

(ū, v) dū = (
1+ O(ρε)

)

·
∫ u

u(−)
n;i, j

E↗[n; i, j](ū, v
(−)
n;i, j )

r(ū, v)
dū − aε j

∫ u

u(−)
n;i, j

Err
(0)
↗ [n; i, j]

r
(ū, v) dū.

(7.122)

Using the bound

sup
v≥0

(
sup

(u1,v),(u2,v)∈W↗[n;i, j]

∣
∣
∣
r(u1, v)

r(u2, v)
− 1

∣
∣
∣
)

≤ eσ−6
ε ρ

7
8
ε ≤ ρ

1
2
ε (7.123)

(following readily from (6.73) and the definition (7.97) of W↗[n; i, j]), we
readily infer from (7.122) that:

∫ u

u(−)
n;i, j

E↗[n; i, j]
r

(ū, v) dū

= (
1+ O(ρ

1
2
ε )
) · 1

r(u, v)

∫ u

u(−)
n;i, j

E↗[n; i, j](ū, v
(−)
n;i, j ) dū (7.124)

−aε j

∫ u

u(−)
n;i, j

Err
(0)
↗ [n; i, j]

r
(ū, v) dū

= (
1+ O(ρ

1
2
ε )
) · E↗[n; i, j](u, v

(−)
n;i, j )

r(u, v)
− aε j

∫ u

u(−)
n;i, j

Err
(0)
↗ [n; i, j]

r
(ū, v) dū.

123



G. Moschidis

Similarly, for any (u, v) ∈ W↖[n; i, j]:
∫ v

v
(−)
n;i, j

E↖[n; i, j]
r

(u, v̄) d v̄

= (
1+ O(ρ

1
2
ε )
) · E↖[n; i, j](u(−)

n;i, j , v)

r(u, v)

−aεi

∫ v

v
(−)
n;i, j

Err
(0)
↖ [n; i, j]

r
(u, v̄) d v̄. (7.125)

Arguing similarly as for the derivation of (7.65), integrating by parts in ∂u for

the term ∂u(r2Tuv) in
∫ u
u(−)
n;i, j

Err
(0)
↗ [n;i, j]
r (ū, v) dū (see the expression (7.117)),

we calculate:

∣
∣∣
∫ u

u(−)
n;i, j

Err
(0)
↗ [n; i, j]

r
(ū, v) dū

∣
∣∣ (7.126)

=
∣
∣∣
∣

∫ u

v
(n)
ε, j−hε, j

∫ v
(n)
ε,i −hε,i

v

1

r(ū, v)

[
exp

(
−
∫ v̄

v

4π
rTvv[ fε]

∂vr
(ū, v̂) d v̂

)

×
{
2π

1− 2m
r

−∂ur
∂u(r

2Tuv[ fε j ])

+ 2π
1− 2m

r

−∂ur

(
∂u log(�

2) − 2
∂ur

r

)
(r2Tuv[ fε j ])

}
(ū, v̄)

]
d v̄dū

∣
∣∣
∣

=
∣∣
∣∣

∫ u

v
(n)
ε, j−hε, j

∫ v
(n)
ε,i −hε,i

v

(
1

r(ū, v)

[
exp

(
−
∫ v̄

v

4π
rTvv[ fε]

∂vr
(ū, v̂) d v̂

)

· 2π 1− 2m
r

−∂ur
r2Tuv[ fε j ](ū, v̄)

×
{∫ v̄

v

∂u

( 4π

r∂vr

)
r2Tvv[ fε](ū, v̂) d v̂ +

∫ v̄

v

4π

r∂vr
∂u(r

2Tvv[ fε])(ū, v̂) d v̂

− ∂u log
(1− 2m

r

−∂ur

)
(ū, v̄) +

(
∂u log(�

2) − 2
∂ur

r

)
(ū, v̄)

}]

+ ∂ur

r2
(ū, v) exp

(
−
∫ v̄

v

4π
rTvv[ fε]

∂vr
(ū, v̂) d v̂

)

· 2π 1− 2m
r

−∂ur
r2Tuv[ fεi ](ū, v̄)

)
d v̄dū

∣
∣
∣∣.
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We will estimate the right hand side of (7.126) similarly as we did for (7.65):

• Using the bounds (6.70), (6.73), (7.11), (7.103) (and the fact that i ≥ j+1),
we can estimate:

sup
(u,v)∈W↗[n;i, j], (ū,v̄)∈[u(−)

n;i−1, j ,u]×[v,v
(−)
n;i, j ]

∣∣
∣
∫ v̄

v

4π
rTvv[ fε]

∂vr
(ū, v̂) d v̂

∣∣
∣ (7.127)

≤
∫ v

(−)
n;i, j

v
(−)
n;i−1, j+(ρ

− 7
8

ε +1)hε,i−1

exp
(
exp(4σ−5

ε )
) · (ε( j))4

r5(u(+)
n;i, j , v)

(−�)−2 dv

≤ exp
(
exp(σ−6

ε )
) · (ε( j))4

r4(u(+)
n;i, j , v

(−)
n;i−1, j + (ρ

− 7
8

ε + 1)hε,i−1)

(−�)−2

≤ exp
(
exp(2σ−6

ε )
) · ρ

7
2
ε

≤ 1.

• Using the bounds (6.73) and (7.12), we can estimate:

sup
W↗[n;i, j]

(
2π

1− 2m
r

∂vr
r2Tuv[ fε j ]

)

≤ exp
(
exp(σ−6

ε )
)

sup
W↗[n;i, j]

(ε( j))2

r2
(−�)−1

≤ exp
(
exp(σ−6

ε )
) (ε( j))2

r2(u(+)
n;i, j , v

(−)
n;i−1, j + (ρ

− 7
8

ε + 1)hε,i−1)

(−�)−1

≤ exp
(
exp(2σ−6

ε )
)
ρ

7
4
ε ≤ ρ

3
2
ε . (7.128)

• Using equation (2.45) and the bounds (6.70), (6.73), (7.103), (7.11), (7.12),
and (7.104) (as well as the trivial bound aεk ≤ 1), we can estimate for all
(u, v) ∈ W↗[n; i, j]:

sup

(ū,v̄)∈[u(−)
n;i, j ,u]×[v,v

(−)
n;i, j−ρ

− 7
8

ε hε,i−1]

∣∣∣
∫ v̄

v

∂u

( 4π

r∂vr

)
r2Tvv[ fε](ū, v̂) d v̂

∣∣∣ (7.129)

= sup

(ū,v̄)∈[u(−)
n;i−, j ,u]×[v,v

(−)
n;i, j−ρ

− 7
8

ε hε,i−1]
∣∣∣
∫ v̄

v

4π
(
− ∂ur

r2∂vr
− ∂u∂vr

r(∂vr)2

)
r2Tvv[ fε](ū, v̂) d v̂

∣∣∣
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= sup

(ū,v̄)∈[u(−)
n;i, j ,u]×[v,v

(−)
n;i, j−ρ

− 7
8

ε hε,i−1]
∣
∣∣
∫ v̄

v

4π
(
− ∂ur

r2∂vr
+

2m̃
r − 2

3�r2

r2(1− 2m
r )

−∂ur

∂vr
+ 4πr2Tuv

r2(∂vr)2

)
r2Tvv[ fε](ū, v̂) d v̂

∣
∣∣

≤
∫ v

(−)
n;i, j

v

exp
(
exp(σ−9

ε )
) 1

r2(u, v̂)

(ε( j))4

r4(u, v̂)
(−�)−2 d v̂

≤ exp
(
exp(σ−9

ε )
) (ε( j))4

r5(u, v)
(−�)−2

≤ exp
(
exp(2σ−9

ε )
)
ρ

7
2
ε

1

r(u, v)
.

• Using (7.45) to express ∂u(r2Tvv[ fε]) in terms of ∂v(r2Tuv[ fε]) and inte-
grating by parts in ∂v , we calculate for any (u, v) ∈ W↗[n; i, j] (in view
of (7.103) and the bounds (6.70), (6.73), (7.103), (7.12), (7.104), (7.13) for
∂v�

2, (7.14) for ∂2v r and (7.102) for dist↖[·] on W↗[n; i, j]):

sup

(ū,v̄)∈[u(−)
n;i, j ,u]×[v,v

(−)
n;i, j−ρ

− 7
8

ε hε,i−1]

∣∣
∣
∫ v̄

v

4π

r∂vr
∂u(r

2Tvv[ fε])(ū, v̂) d v̂

∣∣
∣

(7.130)

= sup

(ū,v̄)∈[u(−)
n;i, j ,u]×[v,v

(−)
n;i, j−ρ

− 7
8

ε hε,i−1]

∣∣
∣
∫ v̄

v

4π

r

1

∂vr

(
− ∂v(r

2Tuv[ fε])

+
(
∂v log(�

2) − 2
∂vr

r

)
(r2Tuv[ fε])

)
(ū, v̂) d v̂

∣∣
∣

= sup

(ū,v̄)∈[u(−)
n;i, j ,u]×[v,v

(−)
n;i, j−ρ

− 7
8

ε hε,i−1]

∣
∣
∣
∫ v̄

v

4π
(
∂v

( 1

r∂vr

) · r2Tuv[ fε]

+ 1

r∂vr

(
∂v log(�

2) − 2
∂vr

r

)
(r2Tuv[ fε])

)
(ū, v̂) d v̂

+ 4π

r

1

∂vr
· r2Tuv[ fε](ū, v̄) − 4π

r

1

∂vr
· r2Tuv[ fε](ū, v)

∣
∣∣

≤
∫ v

(−)
n;i, j−ρ

− 7
8

ε hε,i−1

v

exp
(
exp(σ−9

ε )
) 1

r(u, v̂)

( 1

dist↖[(u, v̂)] +
1

r(u, v̂)

) (ε( j))2

(−�)r2(u, v̂)
d v̂

+ exp
(
exp(σ−9

ε )
) 1

r(u, v)

(ε( j))2

(−�)r2(u, v)
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≤ exp
(
2 exp(σ−9

ε )
) 1

r(u, v)

(
1+

∫ v
(−)
n;i, j−ρ

− 7
8

ε hε,i−1

v
(+)
n;i−1, j+ρ

− 7
8

ε hε,i−1

1

dist↖[(u, v̂)] d v̂
) (ε( j))2

(−�)r2(u, v̂)

+ exp
(
exp(σ−9

ε )
) 1

r(u, v)

(ε( j))2

(−�)r2(u, v)

≤ exp
(
4 exp(σ−9

ε )
) 1

r(u, v)

(
1+ exp(σ−7

ε )ρ
− 1

8
ε

) (ε( j))2

(−�)r2(u, v̂)

+ exp
(
exp(σ−9

ε )
) 1

r(u, v)

(ε( j))2

(−�)r2(u, v)

≤ exp
(
exp(2σ−9

ε )
)
ρ

13
8

ε

1

r(u, v)
.

• Using the the relation (2.49) for ∂um̃, the estimate (7.14) for ∂2ur , as well
as the bounds (6.73), (7.11), (7.12) and (6.70), we can estimate for any
(ū, v̄) ∈ W↗[n; i, j]:
∣
∣
∣∂u log

(1− 2m
r

−∂ur

)
(ū, v̄)

∣
∣
∣ ≤ exp

(
exp(σ−6

ε )
)( 1

dist↖[(ū, v̄)] +
1

r(ū, v̄)

)
.

(7.131)

• Using the estimate (7.13) for ∂u�
2, as well as the bound (6.73)„ we can

estimate for any (ū, v̄) ∈ W↗[n; i, j]:
∣
∣∣∂v log(�

2) − 2
∂vr

r

∣
∣∣(ū, v̄) ≤ exp

(
exp(σ−6

ε )
)( 1

dist↖[(ū, v̄)] +
1

r(ū, v̄)

)
.

(7.132)

Using the estimates (7.127)–(7.132) (together with (6.73), (7.12), (7.103),
(7.102), (7.104) and the relation of the parameters ε, ρε, δε and σε) to bound the
right hand side of (7.126), we therefore obtain for any (u, v) ∈ W↗[n; i, j]:

∣∣∣
∫ u

u(−)
n;i, j

Err
(0)
↗ [n; i, j]

r
(ū, v) dū

∣∣∣ (7.133)

≤
∫ u

v
(n)
ε, j−hε, j

∫ v
(n)
ε,i −hε,i−1

v

(
1

r(ū, v)
ρ

3
2
ε

{
exp

(
exp(2σ−9

ε )
)
ρ

7
2
ε

1

r(u, v)

+ exp
(
exp(2σ−9

ε )
)
ρ

13
8

ε

1

r(u, v)
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+ exp
(
exp(σ−6

ε )
)( 1

dist↖[(ū, v̄)] + 1

r(ū, v̄)

)}
+ eσ−6

ε ρ
3
2
ε

1

r2(ū, v)

)
d v̄dū

≤ exp
(
exp(3σ−9

ε )
)
ρ

3
2
ε hε, j · ρ−1

ε hε,i−1 ·
(
ρ

7
8
ε

√−�

ε(i−1)
+ 1

r(u, v)

) 1

r(u, v)

≤ exp
(
exp(4σ−9

ε )
)
ρ

1
2
ε ε( j)ε(i−1) ·

(
ρ

7
8
ε

1

ε(i−1)
+ ρ

7
8
ε

1

ε( j)

)
(−�)−

1
2

1

r(u, v)

≤ exp
(
exp(4σ−9

ε )
)
ρ

11
8

ε max{ε(i−1), ε( j)}(−�)−
1
2

1

r(u, v)

≤ ρ
5
4
ε

ε( j)

√−�

1

r(u, v)
.

Returning to (7.124) and using (7.133) to estimate the last term in the right
hand side, we infer that, for any (u, v) ∈ W↗[n; i, j]:

∫ u

u(−)
n;i, j

E↗[n; i, j]
r

(ū, v) dū

= (
1+ O(ρ

1
2
ε )
) ·

E↗[n; i, j](u, v
(−)
n;i, j ) + O

(
ρ

5
4
ε

ε( j)√−�

)

r(u, v)
. (7.134)

Similarly, estimating
∫ v

v
(−)
n;i, j

Err
(0)
↖ [n;i, j]
r (u, v̄) d v̄ similarly as we did for

∫ u
u(−)
n;i, j

Err
(0)
↗ [n;i, j]
r (ū, v) dū, we infer from (7.125) that, for all (u, v) ∈ W↖[n; i, j]:

∫ v

v
(−)
n;i, j

E↖[n; i, j]
r

(u, v̄) d v̄ = (
1+ O(ρ

1
2
ε )
) ·

E↖[n; i, j](u(−)
n;i, j , v) + O

(
ρ

5
4
ε

ε(i)√−�

)

r(u, v)
.(7.135)

Substituting (7.134) in (7.112) and using (7.119), (7.44) and the fact that
�r2 = O(ε) on W↗[n; i, j] when i > j , we infer that

Dr (+)
↖ [n; i, j] =

∫ v
(−)
n;i, j−ρ

− 7
8

ε hε,i−1

v
(+)
n;i−1, j+ρ

− 7
8

ε hε,i−1

× exp

(
− (

1+ O(ρ
3
4
ε )
) ·

2E (−)
↗ [n; i, j] + O

(
ρ

5
4
ε

ε( j)√−�

)

r(u(+)
n;i, j , v̄)

)

· ∂vr

1− 2m
r

(u(−)
n;i, j , v̄) d v̄.

(7.136)
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Similarly, from (7.113) we infer that

Dr (+)
↗ [n; i, j] =

∫ u(−)
n;i, j−ρ

− 7
8

ε hε, j−1

u(+)
n;i, j−1+ρ

− 7
8

ε hε, j−1

exp
((
1+ O(ρ

3
4
ε )
) ·

2E(−)
↖ [n; i, j] + O

(
ρ

5
4
ε

ε(i)√−�

)

r(ū, v
(−)
n;i, j )

)
· −∂ur

1− 2m
r

(ū, v
(−)
n;i, j ) dū.

(7.137)

• In the case when i = j + 1, using the bounds (6.73), (7.11) and (7.104),
we can trivially estimate

sup

v̄∈[v(+)
n;i−1, j+ρ

− 7
8

ε hε,i−1,v
(−)
n;i, j−ρ

− 7
8

ε hε,i−1]

E (−)
↗ [n; i, j] + O

(
ρ

5
4
ε

ε( j)√−�

)

r(u(+)
n;i, j , v̄)

(7.138)

≤
∫ u(+)

n;i, j
u(−)
n;i, j

exp
(
exp(σ−6

ε )
)
du + O

(
ρ

5
4
ε

ε( j)√−�

)

e−σ−6
ε ρ

− 7
8

ε
ε( j)√−�

≤ exp
(
exp(2σ−6

ε )
)
ρ

7
8
ε

≤ ρ
3
4
ε .

From (7.136), we therefore infer that

Dr (+)
↖ [n; i, j] =

∫ v
(−)
n;i, j−ρ

− 7
8

ε hε,i−1

v
(+)
n;i−1, j+ρ

− 7
8

ε hε,i−1

exp
(
O(ρ

3
4
ε )
) · ∂vr

1− 2m
r

(u(−)
n;i, j , v̄) d v̄

(7.139)

=
∫ v

(−)
n;i, j−ρ

− 7
8

ε hε,i−1

v
(+)
n;i−1, j+ρ

− 7
8

ε hε,i−1

(
1+ O(ρ

3
4
ε )
) ∂vr

1− 2m
r

(u(−)
n;i, j , v̄) d v̄

= (
1+ O(ρ

3
4
ε )
)
Dr (−)

↖ [n; i, j].

As a result, the relation (7.90) follows readily for i = j + 1.
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• In the case when i > j + 1, we can trivially estimate (using (7.15)
and the relation (6.5) between the ε(k)’s) that, for any v̄ ∈ [v(+)

n;i−1, j +
ρ
− 7

8
ε hε,i−1, v

(−)
n;i, j − ρ

− 7
8

ε hε,i−1]:

1− r(u(+)
n;i, j , v̄)

rn;i, j
= r(u(+)

n;i, j , v
(−)
n;i, j ) − r(u(+)

n;i, j , v̄)

r(u(+)
n;i, j , v

(−)
n;i, j )

= O(ε). (7.140)

Thus, from (7.136), we infer that

Dr (+)
↖ [n; i, j]

=
∫ v

(−)
n;i, j−ρ

− 7
8

ε hε,i−1

v
(+)
n;i−1, j+ρ

− 7
8

ε hε,i−1

exp

(
− (

1+ O(ρ
3
4
ε ) + O(ε)

) ·
2E (−)

↗ [n; i, j] + O
(
ρ

5
4
ε

ε( j)√−�

)

rn;i, j

)
×

(7.141)

× ∂vr

1− 2m
r

(u(−)
n;i, j , v̄) d v̄ =

= exp

(
− (

1+ O(ρ
3
4
ε )
) ·

2E (−)
↗ [n; i, j] + O

(
ρ

5
4
ε

ε( j)√−�

)

rn;i, j

)

·Dr (−)
↖ [n; i, j].

From (7.141) and (7.15) (as well as the upper bound (7.75) for
2E(−)

↗ [n;i, j]
rn;i, j ),

the relation (7.91) follows readily for i > j + 1.
• In all the cases when i > j , we can readily estimate using (6.73) and
(7.11):

E (−)
↗ [n; i, j] ≤ exp

(
exp(2σ−6

ε )
)
ε(i)(−�)−

1
2 (7.142)

and

inf

ū∈[ u(+)
n;i, j−1+ρ

− 7
8

ε hε, j−1, u
(−)
n;i, j+ρ

− 7
8

ε hε, j−1]
r(ū, v

(−)
n;i, j ) ≥ e−σ−6

ε ρ
− 7

8
ε ε( j−1)(−�)− 1

2 .

(7.143)
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Thus, from (7.137) (and the relation (6.5) between the ε(k)’s) we infer that

Dr (+)
↗ [n; i, j] =

∫ u(−)
n;i, j−ρ

− 7
8

ε hε, j−1

u(+)
n;i, j−1+ρ

− 7
8

ε hε, j−1

exp
(
O
(exp

(
exp(2σ−6

ε )
)
ε(i)

e−σ−6
ε ρ

− 7
8

ε ε( j−1)

))
· −∂ur

1− 2m
r

(ū, v
(−)
n;i, j ) dū

(7.144)

=
∫ u(−)

n;i, j−ρ
− 7
8

ε hε, j−1

u(+)
n;i, j−1+ρ

− 7
8

ε hε, j−1

exp
(
O(ε)

)
· −∂ur

1− 2m
r

(ū, v
(−)
n;i, j ) dū

= (1+ O(ε)) ·Dr (−)
↗ [n; i, j].

In particular, (7.89) follows from (7.144).

The case i < j : Proof of (7.92)–(7.93). In the case when i < j , the proof of
(7.92)–(7.93) follows by repeating exactly the same steps as for the proof of
(7.89)–(7.91), but using the bound (7.105) in place of (7.104). This results in
several simplifications and improvements in the bounds of the various error
terms (compare with the proof of (7.33)–(7.34) in relation to (7.31)–(7.32)):
using (7.105), it readily follows that the first term in the right hand side of

(7.124)–(7.125) is of order O(ε
1
2 ), while the right hand side of (7.126) is

of order O(ε). As a result, using once more the bound (7.105) for the �r2

terms, one infers that the arguments of the exponentials in (7.112)–(7.113)
are of order O(ε), therefore obtaining (7.92)–(7.93). We will omit the tedious
details.
Proof of (7.94)–(7.95). The proof of (7.94) follows by repeating exactly the
same steps as for the proof of (7.90), while the proof of (7.95) follows exactly
in the same way as the proof of (7.93). We will omit the relevant details.

The relations (7.89)–(7.95) for D̃r (±)
↖ [n; i, j], D̃r (±)

↗ [n; i, j] in place of

Dr (±)
↖ [n; i, j],Dr (±)

↗ [n; i, j] follow by repeating exactly the same steps, after

replacing σε, hε,i , V(n)
i , R(n)

i; j with δε, h̃ε,i , Ṽ(n)
i , R̃(n)

i; j respectively, in all the
expressions above and using (6.78) in place of (6.73). ��

7.3 The instability mechanism: energy growth for the Vlasov beams

In this section, we will use Propositions 7.3 and 7.4 in order to obtain quan-
titative control on the total change in the energy content and the geometric
separation of the beams V(n)

i between two successive reflections off Iε. To
this end, we will first introduce the quantities μi [n], Ei [n] and Ri [n], which
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are determined by a recursive system of relations and will be later shown to

approximate sufficiently
2E(−)

↖ [n;i,0]
Dr (−)

↖ [n;i,0] , E
(−)
↖ [n; i, 0] and Dr (−)

↖ [n; i, 0], respec-
tively:

Definition 7.5 For any ε ∈ (0, ε1], let us define the sequences μi : N →
(0,+∞), 0 ≤ i ≤ Nε − 1, by the recursive relations

μi [n + 1] = μi [n] · exp
(
2
i−1∑

j=0

μ j [n + 1]
)
, (7.145)

with initial conditions

μi [0] =
2E (−)

↖ [0; i, 0]
Dr (−)

↖ [0; i + 1, 0]
. (7.146)

We will also define Ei : N → (0,+∞) (for 0 ≤ i ≤ Nε) and Ri : N →
(0,+∞) (for 1 ≤ i ≤ Nε) by the following recursive system of relations:

Ei [n + 1] = Ei [n] · exp
( i−1∑

j=0

μ j [n + 1]
)
, (7.147)

Ri [n + 1] = Ri [n] · exp
(
−

i−2∑

j=0

μ j [n + 1]
)
, (7.148)

with initial conditions

Ei [0] = E (−)
↖ [0; i, 0], (7.149)

Ri [0] = Dr (−)
↖ [0; i, 0].

Notice that the quantities μi [n], Ei [n] and Ri+1[n] satisfy for all 0 ≤ i ≤
Nε − 1:

2Ei [n]
Ri+1[n] = μi [n]. (7.150)

Remark The relations (7.145) and (7.146) uniquely determine μi [n] for all
0 ≤ i ≤ Nε − 1, n ∈ N, as can be seen by arguing inductively on i : For i = 0,
(7.145) yields that μ0[n] = μ0[0] for all n ∈ N. Provided μī : N → (0,+∞)
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has been determined for 0 ≤ ī ≤ i − 1, the relation (7.145) yields

μi [n] = μi [0] · exp
(
2

n∑

n̄=1

i−1∑

j=0

μ j [n̄]
)

(7.151)

for all n ∈ N. In particular, note that, as a consequence of (7.151), for any
i > 0,

μi [n] n→∞−−−→ +∞.

We will later show that the quantities μi [n] provide a good proxy for the
evolution of the scale-invariant norm of the Vlasov beams after n successive
reflections.

The following proposition is the main result of this section. It will provide
us with useful approximate formulas for the total change of the energy content
and the geometric separation of the beams between two successive reflections
off Iε, expressed in terms of the quantities Ei [n] and Ri [n]. In particular, it
will be readily inferred from these formulas that, for any i > 0, the energy
content of each beam V(n)

i increases in n, while the geometric separation of
the beams remains under control.24

Proposition 7.6 Let n ∈ N be such that

{0 ≤ u ≤ v
(n)
ε,0 − hε,0} ∩

{
u < v < u +

√

− 3

�
π
} ⊂ U+

ε . (7.152)

Then the following relations hold:

E (−)
↖ [n; i, 0] = Ei [n] + O

(
ρ

1
16
ε

ε(i)

√−�

)
for all 0 ≤ i ≤ Nε, (7.153)

Dr (−)
↖ [n; i, 0] = Ri [n] ·

(
1+ O(ρ

1
16
ε )

)
for all 1 ≤ i ≤ Nε, (7.154)

where the sequences Ei and Ri were introduced in Definition 7.5.
In addition, for any 0 ≤ j ≤ Nε − 1 such that

R̃(n)
Nε; j ⊂ T +

ε , (7.155)

24 Both these statements hold modulo error terms that will be shown to be negligible after a
careful choice of the initial weights aεi in the next Section.
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we have

Ẽ (−)
↗ [n; Nε, j] = E j [n + 1] + O

(
ρ

1
17
ε

ε( j)

√−�

)
(7.156)

and, if j ≥ 1:

D̃r (−)
↗ [n; Nε, j] = R j [n + 1] · (1+ O(ρ

1
17
ε )

)
. (7.157)

Finally, if

R̃(n)
Nε;Nε−1 ⊂ T +

ε ,

we have

Ẽ (−)
↖ [n; Nε, Nε − 1] = ENε [n + 1] + O

(
ρ

1
17
ε

ε(Nε)

√−�

)
. (7.158)

Proof The proof of Proposition 7.6 will be separated in a number of steps.
We will first establish a number of auxiliary relations and estimates, before
proceeding with the proof of (7.153)–(7.154) and (7.156)–(7.158).
Auxiliary bounds and relations. In view of the fact that

supp(Tμν[ fε]) ∩ U+
ε ⊂

Nε⋃

k=0

Vk

(following readily from the bound (7.1) on the support of the fεk’s and the
relation (6.65) between fε and the fεk’s), we infer from equations (2.49) and
(2.48) for m̃ that the function m̃(u, v) is constant in every connected component
of U+

ε \⋃n∈N
⋃Nε

k=0 V
(n)
k , i.e. in the regions between the beams V(n)

k . This fact
immediately implies, in view of the definition (6.95)–(6.100) of the quantities
E (±)
↖ , E (±)

↗ , EγZ and EI , that, for all n ∈ N and all 0 ≤ i, j ≤ Nε with i �= j :

E (−)
↖ [n; i, j] = E (+)

↖ [n; i, j − 1] (7.159)

and

E (−)
↗ [n; i, j] = E (+)

↗ [n; i − 1, j], (7.160)

where we have used the following index convention for (7.159) and (7.160):
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• When i = j − 1 or j = i − 1:

E (−)
↖ [n; i, i] .= EγZ [n; i], (7.161)

E (−)
↗ [n; i, i] .= EI[n; i],
E (+)
↖ [n; i, i] .= EI[n; i]

and

E (+)
↗ [n; i, i] .= EγZ [n; i]. (7.162)

• When j = −1 or i = −1:

E (+)
↖ [n; i,−1] .= E (+)

↖ [n − 1; i, Nε] (7.163)

and

E (+)
↗ [n;−1, j] .= E (+)

↗ [n; Nε, j] (7.164)

The relations (7.159) and (7.160) also hold with Ẽ (±)
↖ , Ẽ (±)

↗ in place of E (±)
↖ ,

E (±)
↖ (Fig. 21).
By the same reasoning, the right hand side of the constraint equations (2.46)

and (2.47) vanishes in every connected component of U+
ε \⋃Nε

k=0 Vk ; hence, it

readily follows (by the definition (7.93)–(6.102) ofDr (±)
↖ ,Dr (±)

↗ ) that, for all
n ∈ N and all 0 ≤ i, j ≤ Nε, i �= j :

Dr (−)
↖ [n; i, j] = Dr (+)

↖ [n; i, j − 1] (7.165)

and

Dr (−)
↗ [n; i, j] = Dr (+)

↗ [n; i − 1, j], (7.166)

where we have used the index convention

Dr (+)
↖ [n; i,−1] .= Dr (+)

↖ [n − 1; i, Nε] (7.167)

and

Dr (+)
↗ [n;−1, j] .= Dr (+)

↗ [n; Nε, j]. (7.168)

Similarly for D̃r (±)
↖ , D̃r (±)

↗ in place ofDr (±)
↖ ,Dr (±)

↗ .
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Fig. 21 The relations (7.153)–(7.154) provide approximate formulas for the incoming energy

E(−)
↖ [n; i, 0] of the i-th beam, as well as its geometric separationDr (−)

↖ [n; i, 0] from the (i−1)-

th beam, asmeasured at u = v
(n)
ε,0−hε,0 (schematic depiction on the left). Similarly, the relations

(7.156)–(7.157) provide approximate formulas for the outgoing energy of the i-th beam and
its geometric separation from the (i − 1)-th beam, as measured before its intersection with the

Nε -th beam, i.e. at v = v
(n)
ε,Nε

− h̃ε,Nε
(schematic depiction on the right). The reason for using

the ·̃ quantities (as well as the slightly larger beams Ṽi ) in the latter case is that the relations

(7.156)–(7.157) will later be used in a region of the maximal development domain U (ε)
max which

is a subset of T +
ε , but not a subset of U+

ε ; however, the analogous relations also hold (with

exactly the same proof) for E(−)
↗ [n; Nε, j] and Dr (−)

↗ [n; Nε, j] in the region U+
ε

The following boundswill be useful for estimating the error terms appearing
after repeated applications of the formulas (7.31)–(7.34): In view of the bounds
(7.11) and (7.12) for the components of the energy momentum tensor, the
bounds (6.73) and (7.15)–(7.18) for r on R(n)

i; j and the relations (2.49)–(2.48)
for m̃, we can readily bound for any n ∈ N and 0 ≤ i, j ≤ Nε, i �= j , such
thatR(n)

i; j ⊂ U+
ε :

E (±)
↖ [n; i, j]
rn;i, j

+ E (±)
↗ [n; i, j]
rn;i, j

≤ exp
(
exp(2σ−5

ε )
)
ρε. (7.169)

Moreover, in view of the definition (7.93)–(6.102) of Dr (±)
↖ , Dr (±)

↗ , the def-
inition (6.8) of vε,i and the estimate (6.73), we infer that, for any n ∈ N and
any 0 ≤ i, j ≤ Nε, such that R(n)

i; j ⊂ U+
ε if i �= j or R(n)

i;γZ ,R(n)
i;I ⊂ U+

ε if
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i = j :

e−σ−4
ε ρ−1

ε

ε(i−1)

√−�
≤ Dr (±)

↖ [n; i, j] ≤ eσ−4
ε ρ−1

ε

ε(i−1)

√−�
, (7.170)

e−σ−4
ε ρ−1

ε

ε( j−1)

√−�
≤ Dr (±)

↗ [n; i, j] ≤ eσ−4
ε ρ−1

ε

ε( j−1)

√−�
.

For any 0 ≤ i ≤ Nε − 1 such thatR(n)
i+1;i ⊂ U+

ε , we can express rn;i+1,i by

integrating ∂vr in v from (u(+)
n;i+1,i , u

(+)
n;i+1,i ) ∈ γZε up to (u(+)

n;i+1,i , v
(−)
n;i+1,i ) as

follows (using the notational conventions (7.35)–(7.36) and (7.98), as well as
the bounds (7.15)–(7.16), the fact that m̃ = 0 on {u(+)

n;i+1,i }×[u(+)
n;i+1,i , v

(−)
n;i+1,i ]

and the bounds (6.73) and (7.170)):

rn;i+1,i = r(u(+)
n;i+1,i , v

(−)
n;i+1,i ) (7.171)

=
∫ v

(−)
n;i+1,i

u(+)
n;i+1,i

∂vr(u
(+)
n;i+1,i , v) dv

=
∫ v

(−)
n;i+1,i

u(+)
n;i+1,i

∂vr

1− 2m
r

(u(+)
n;i+1,i , v) · (1+ O(ε)) dv

=
∫ v

(−)
n;i+1,i−ρ

− 7
8

ε hε,i−1

v
(+)
n;i,i+ρ

− 7
8

ε hε,i−1

∂vr

1− 2m
r

(u(+)
n;i+1,i , v)

· (1+ O(ε)) dv + O
(
exp

(
exp(2σ−5

ε )
)
ρ
− 7

8
ε

ε(i−1)

√−�

)

= (1+ O(ε))Dr (+)
↖ [n; i + 1, i] + O

(
exp

(
exp(2σ−5

ε )
)
ρ
− 7

8
ε

ε(i−1)

√−�

)

= Dr (+)
↖ [n; i + 1, i] · (1+ O(ρ

1
10
ε )

)
.

However,we can similarly express rn;i+1,i as an integral of−∂ur inu (provided
(u(+)

n;i+1,i , v
(−)
n;i+1,i ) × {v(−)

n;i+1,i } ⊂ U+
ε , which is necessarily true ifR(n)

i+1;γZ ⊂
U+

ε :

rn;i+1,i =
∫ v

(−)
n;i+1,i

u(+)
n;i+1,i

(−∂ur)(u, v
(−)
n;i+1,i ) du = (7.172)

= Dr (−)
↗ [n; i + 1, i + 1] · (1+ O(ρ

1
10
ε )

)
.

123



G. Moschidis

Arguing similarly (replacing σε with δε and using (6.78) in place of (6.73)),
we infer that, for any 0 ≤ i ≤ Nε − 1 such that R̃(n)

i+1;γZ ⊂ T +
ε , the relations

(7.171) and (7.172) also hold with

r̃n;i+1,i
.= inf

R̃(n)
i+1;i

r (7.173)

in place of rn;i+1,i and D̃r (+)
↖ [n; i + 1, i], D̃r (−)

↗ [n; i + 1, i + 1] in place of

Dr (+)
↖ [n; i + 1, i], Dr (−)

↗ [n; i + 1, i + 1], respectively.
From (7.171) and (7.172), we immediately infer that, for all 0 ≤ i ≤ Nε −1

such thatR(n)
i+1;γZ ⊂ U+

ε :

Dr (−)
↗ [n; i + 1, i + 1] = Dr (+)

↖ [n; i + 1, i] · (1+ O(ρ
1
10
ε )

)
. (7.174)

Similarly, expressing 1
rn;i,i+1

as an integral of ∂v(
1
r ) and ∂u(

1
r ) from Iε up to

(u(+)
n;i,i+1, v

(−)
n;i,i+1),we infer that, for all 0 ≤ i ≤ Nε−1 such thatR(n)

i+1;I ⊂ U+
ε

Dr (−)
↖ [n; i + 1, i + 1] = Dr (+)

↗ [n; i, i + 1] · (1+ O(ρ
1
10
ε )

)
. (7.175)

Proof of (7.153)–(7.154). In order to establish (7.153) and (7.154), we will
first show that, for all n ∈ N such that

{0 ≤ u ≤ v
(n+1)
ε,0 − hε,0} ∩

{

u < v < u +
√

− 3

�
π

}

⊂ U+
ε (7.176)

and any 0 ≤ i ≤ Nε:

E(−)
↖ [n + 1; i, 0] = E(−)

↖ [n; i, 0] · exp
( i−1∑

j=0

2E(−)
↖ [n + 1; j, 0]

Dr (−)
↖ [n + 1; j + 1, 0]

+ O(ρ
1
12
ε )

)

+O
(
ρ

1
4
ε

ε(i)

√−�

)
(7.177)

and, for all 1 ≤ i ≤ Nε:

Dr (−)
↖ [n + 1; i, 0] = Dr (−)

↖ [n; i, 0]

· exp
(
−

i−2∑

j=0

2E (−)
↗ [n; i, j]

Dr (−)
↖ [n + 1; j + 1, 0]

+ O(ρ
1
12
ε )

)
. (7.178)
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Note that the recursive system (7.177)–(7.178), modulo the O(·) error terms,
is in fact the same as the recursive system (7.147)–(7.148) for Ei [n], Ri [n],
with the quantities E (−)

↖ [n; i, 0], Dr (−)
↖ [n; i, 0] and Ei [n], Ri [n], respectively,

satisfying the same initial conditions at n = 0.
Let us first assume that (7.177)–(7.178) have been established. The relations

(7.153) and (7.154) will then follow by showing that the quantities

ei [n] .= E (−)
↖ [n; i, 0] − Ei [n]

ε(i)

√−� for 0 ≤ i ≤ Nε,

ri [n] .= Dr (−)
↖ [n; i, 0]
Ri [n] for 1 ≤ i ≤ Nε,

μ̄i [n] .= ρ−1
ε

( 2E (−)
↖ [n; i, 0]

Dr (−)
↖ [n; i + 1, 0]

− μi [n]
)

for 0 ≤ i ≤ Nε − 1

satisfy

|ei [n]|, |ri [n] − 1|, |μ̄i [n]| ≤ ρ
1
16
ε . (7.179)

To this end, let n∗ be the maximum number in {0, 1, . . . , n} such that, for
all 0 ≤ n̄ ≤ n∗:

|μ̄i [n̄]| ≤ ρ
1
15
ε for all 0 ≤ i ≤ Nε − 1 (7.180)

(note that (7.180) is trivially true for n̄ = 0, since μ̄i [0] = 0 by (7.149)).
Assuming, for the sake of contradiction, that n∗ < n, we will show that
(7.180) also holds for n∗ + 1, hence contradicting the maximality of n∗. Note
that, in view of the definition (6.49), it is necessary that

n∗ < n � σ−2
ε (7.181)

(otherwise, (7.176) cannot hold). We will argue inductively on i , assuming
that, for all 0 ≤ ī ≤ i − 1,

|μ̄ī [n̄]| ≤ ρ
1
15
ε for all 0 ≤ n̄ ≤ n∗ + 1 (7.182)

and then showing that (7.182) also holds for ī = i . Note that (7.182) holds
trivially for ī = 0, since, in this case, (7.145), (7.177)–(7.178) and (7.181)
imply that

μ0[n̄] = μ0[0] (7.183)
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and

2E (−)
↖ [n̄; 0, 0]

Dr (−)
↖ [n̄; 1, 0]

= (1+ O(ρ
1
14
ε ))

2E (−)
↖ [0; 0, 0]

Dr (−)
↖ [0; 1, 0]

+ O(ρ
1+ 1

6
ε ), (7.184)

which yield (in view of our initial data bounds)

|μ̄0[n̄]| ≤ ρ−1
ε

∣
∣
∣O(ρ

1
14
ε ))

2E (−)
↖ [0; 0, 0]

Dr (−)
↖ [0; 1, 0]

+ O(ρ
1+ 1

6
ε )

∣
∣
∣ ≤ exp(exp(σ−9

ε ))ρ
1
14
ε .

(7.185)

In view of the relation (7.145) forμi [n] and the relations (7.177)–(7.178) for
E (−)
↖ [n; i, 0],Dr (−)

↖ [n; i+1, 0], we can readily calculate that, for 0 ≤ n̄ ≤ n∗:

∣∣μ̄i [n̄ + 1]∣∣ (7.186)

= ρ−1
ε

∣∣
∣
∣

E (−)
↖ [n̄; i, 0]

Dr (−)
↖ [n̄; i + 1, 0]

exp
(
2
i−1∑

j=0

2E (−)
↖ [n̄ + 1; j, 0]

Dr (−)
↖ [n̄ + 1; j + 1, 0]

+ O(ρ
1
12
ε )

)

+ O(ρ
1+ 1

6
ε ) − μi [n̄] exp

(
2
i−1∑

j=0

μ j [n̄ + 1]
)∣∣∣
∣

= exp
(
2
i−1∑

j=0

2E (−)
↖ [n̄ + 1; j, 0]

Dr (−)
↖ [n̄ + 1; j + 1, 0]

)
ρ−1

ε

∣∣
∣∣

E (−)
↖ [n̄; i, 0]

Dr (−)
↖ [n̄; i + 1, 0]

− μi [n̄]

× exp
(
− 2ρε

i−1∑

j=0

μ̄ j [n̄ + 1]
)
+ O(ρ

1+ 1
13

ε )

∣∣
∣∣.

Note that we can estimate, in view of (7.169)–(7.170) and the fact that Nε =
ρ−1

ε exp(eδ−15
ε ):

Nε−1∑

j=0

2E (−)
↖ [k; j, 0]

Dr (−)
↖ [k; j + 1, 0]

≤ exp(exp(2δ−15
ε )) for all 0 ≤ k ≤ n (7.187)

Thus, using also the the bounds (7.169)–(7.170), the bound

i−1∑

j=0

μ̄ j [k] ≤ ρ
−1+ 1

15
ε exp(exp(δ−15

ε )) for all 0 ≤ k ≤ n∗ + 1 (7.188)
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(following from the inductive assumption (7.182)) and the bound (7.180), we
obtain from (7.186) that, for 0 ≤ n̄ ≤ n∗:

∣
∣μ̄i [n̄ + 1]∣∣ (7.189)

= exp
(
O(exp(exp(2δ−15

ε )))
)
ρ−1

ε

∣
∣
∣∣

E (−)
↖ [n̄; i, 0]

Dr (−)
↖ [n̄; i + 1, 0]

− μi [n̄]
(
1− 2ρε

i−1∑

j=0

μ̄ j [n̄ + 1] + O(ρ
2
15
ε δ−4

ε )
)
+ O(ρ

1+ 1
13

ε )

∣∣
∣∣

≤ exp
(
exp

(
eδ−16

ε
)) · |μ̄i [n̄]|

+ exp
(
exp

(
eδ−16

ε
))

ρε

i−1∑

j=0

|μ̄ j [n̄ + 1]| + ρ
1
14
ε .

Applying (7.189) successively for n̄ = 0, . . . n∗, using also the bound (7.181)
for n∗ < n, we obtain

max
0≤n̄≤n∗

∣∣μ̄i [n̄ + 1]∣∣ ≤ exp
(
n∗ exp

(
eδ−16

ε
))

·
n∗∑

n̄=0

i−1∑

j=0

|μ̄ j [n̄ + 1]| + exp
(
n∗ exp

(
eδ−16

ε
)) · ρ

1
14
ε

(7.190)

≤ δ̄−1
ε ρε

i−1∑

j=0

(
max

0≤n̄≤n∗
μ̄ j [n̄ + 1])+ δ̄−1

ε ρ
1
14
ε ,

where

δ̄ε
.= exp

(
− exp

(
2eδ−16

ε
))

. (7.191)

Since (7.190) is similarly valid for any ī with 0 ≤ ī ≤ i in place of i , we
infer from (7.190) after applying a discrete Gronwall-type argument in the i
variable (using also the bound (7.185) for μ̄0 and the fact that i ≤ Nε):

max
0≤n̄≤n∗

∣∣μ̄i [n̄ + 1]∣∣ ≤ exp(2δ̄−1
ε ρεNε)ρ

1
14
ε ≤ exp(δ̄−2

ε )ρ
1
14
ε , (7.192)

from which (7.182) for ī = i follows, in view of the relation (6.1) between ρε

and δε.
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As a result, we have established inductively that (7.182) holds for any 0 ≤
i ≤ Nε − 1, and hence:

max
0≤i≤Nε−1

max
0≤n̄≤n

|μ̄i [n̄]| ≤ ρ
1
15
ε . (7.193)

From the relations (7.177)–(7.178) for E (−)
↖ [n; i, 0], Dr (−)

↖ [n; i + 1, 0]
and (7.147)–(7.148) for Ei [n], Ri [n], the bounds (7.169)–(7.170), the bound
(7.187) and the bound (7.193), we obtain for any 0 ≤ n̄ ≤ n − 1 and any
0 ≤ i ≤ Nε:

|ei [n̄ + 1]| (7.194)

=
∣
∣∣
∣

√−�

ε(i)
E (−)
↖ [n̄; i, 0] · exp

( i−1∑

j=0

2E (−)
↖ [n̄ + 1; j, 0]

Dr (−)
↖ [n̄ + 1; j + 1, 0]

+ O(ρ
1
12
ε )

)

+ O(ρ
1
4
ε ) −

√−�

ε(i)
Ei [n̄] · exp

( i−1∑

j=0

μ j [n̄]
)∣∣
∣∣

= exp
( i−1∑

j=0

2E (−)
↖ [n + 1; j, 0]

Dr (−)
↖ [n + 1; j + 1, 0]

)∣∣∣
∣(1+ O(ρ

1
12
ε ))

√−�

ε(i)
E (−)
↖ [n̄; i, 0]

−
√−�

ε(i)
Ei [n̄] · exp

(
− ρε

i−1∑

j=0

μ̄ j [n̄ + 1]
)
+ O(ρ

1
4
ε )

∣
∣∣
∣

≤ δ̄
− 1

2
ε

∣∣
∣
∣ei [n̄] + O(ρ

1
12
ε )

√−�

ε(i)
E (−)
↖ [n̄; i, 0] + O(exp(exp(δ−15

ε ))ρ
1
15
ε )

√−�

ε(i)
Ei [n̄] + O(ρ

1
4
ε )

∣
∣
∣∣

≤ δ̄−1
ε

(
|ei [n̄]| + ρ

1
15
ε

)

and, for any 1 ≤ i ≤ Nε:

|ri [n̄ + 1] − 1|

=
∣
∣∣
∣

Dr (−)
↖ [n̄; i, 0] · exp

(
−∑i−2

j=0
2E(−)

↖ [n̄+1; j,0]
Dr (−)

↖ [n̄+1; j+1,0] + O(ρ
1
12
ε )

)

Ri [n̄] · exp
(
−∑i−2

j=0 μ̄ j [n̄ + 1]
) − 1

∣
∣∣
∣

(7.195)
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=
∣∣
∣∣ri [n̄] · exp

(
− ρε

i−2∑

j=0

μ̄ j [n̄ + 1] + O(ρ
1
12
ε )

)
− 1

∣∣
∣∣

=
∣
∣∣
∣ri [n̄] · exp

(
O(exp(exp(δ−15

ε ))ρ
1
15
ε )

)
− 1

∣
∣∣
∣

≤ (
1+ exp(exp(δ−16

ε ))ρ
1
15
ε

) · |ri [n̄ + 1] − 1| + exp(exp(δ−15
ε ))ρ

1
15
ε .

From (7.194) and (7.195), using also the initial conditions ei [0] = 0 and
ri [0] = 1, we obtain (using also (7.181))

max
0≤i≤Nε

max
0≤n̄≤n

|ei [n̄ + 1]| ≤ exp(nδ̄−1
ε )δ̄−1

ε ρ
1
15
ε ≤ ρ

1
16
ε (7.196)

and

max
1≤i≤Nε

max
0≤n̄≤n

|ri [n̄] − 1| ≤ δ̄−1
ε nρ

1
15 ≤ ρ

1
16
ε . (7.197)

From (7.193), (7.196) and (7.197), we therefore infer (7.179), thus obtaining
(7.153) and (7.154) (assuming that (7.177) and (7.178) have been proven).
Proof of (7.177)–(7.178). We will now proceed with the proof of (7.177)–
(7.178). Let n ∈ N be an integer satisfying (7.176) and let 0 ≤ i ≤ Nε.

1. First, moving along the beam V(n)
i↖ from u = v

(n)
ε,0 − hε,i up to u = v

(n)
ε,i −

hε,i (see Fig. 22) and calculating the differene between E (−)
↖ [n; i, j] and

E (+)
↖ [n; i, j] using (7.31) for all 0 ≤ j < i (measuring the change in the

energy content ofV(n)
i↖ as it crosses each of the outgoing beamsV(n)

j↗, j < i),
making also use of the equality (7.159) (expressing the conservation of the
energy content of V(n)

i↖ in the region between two successive intersections
with the outgoing beams) and the bound (7.169), we infer

EγZ [n; i]

= E (−)
↖ [n; i, 0] · exp

( i−1∑

j=0

2E (−)
↗ [n; i, j]
rn;i, j

+
i−1∑

j=0

O(ρ
3
2
ε )
)
+ (7.198)

+
i−1∑

j=0

{
exp

( j−1∑

k=0

2E (−)
↗ [n; i, k]
rn;i.k

+
j−1∑

k=0

O(ρ
3
2
ε )
)
· O

(
ρ

3
2
ε

ε(i)

√−�

)}

= E (−)
↖ [n; i, 0] · exp

( i−1∑

j=0

2E (−)
↗ [n; i, j]
rn;i, j

+ O(Nερ
3
2
ε )
)
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Fig. 22 For the proof of (7.177), we move along Vi in the direction of the red arrows in

three steps: First, from u = v
(n)
ε,0 − hε,i up to u = v

(n)
ε,i − hε,i (ingoing regime), then from

v = v
(n)
ε,i +hε,i up to v = v

(n+1)
ε,i +hε,i (outgoing regime) and finally again from u = v

(n)
ε,i +hε,i

up to u = v
(n+1)
ε,0 − hε,i (ingoing regime). Along the way, we use the formulas (7.31)–(7.34) to

calculate the change in the energy content of Vi after each intersection with one of the beams
V j , j �= i

+ O
(
exp

(
Nε exp

(
exp(2σ−5

ε )
)
ρε

) · Nερ
3
2
ε

ε(i)

√−�

)

= E (−)
↖ [n; i, 0] · exp

( i−1∑

j=0

2E (−)
↗ [n; i, j]
rn;i, j

+ O(ρ
1
4
ε )
)
+ O

(
ρ

1
4
ε

ε(i)

√−�

)
,

where, in passing from the second to the third line in (7.198), we havemade
use of the definition (6.2) of Nε and the relations (6.1) between ρε, δε and
σε.

2. Moving along V(n)
i↗ from v = v

(n)
ε,i + hε,i up to v = v

(n+1)
ε,i − hε,i (see Fig.

22), calculating the differene between E (−)
↗ [n; j, i] and E (+)

↗ [n; j, i] using
(7.32) for i < j ≤ Nε and (7.34) for 0 ≤ j < i (measuring the change
in the energy content of V(n)

i↗ as it crosses each of the ingoing beams V(n)
j↖,

1 ≤ j ≤ Nε), making also use of the equality (7.160), we similarly infer

123



A proof of the instability of AdS

that

EI[n; i] = EγZ [n; i] ·
⎛

⎝1+
Nε∑

j=0

O(ε)

⎞

⎠+
i−1∑

j=0

O
(
ρ

3
2
ε

ε( j)

√−�

)

+
Nε∑

j=i+1

O
(
ε

ε( j)

√−�

)
(7.199)

= EγZ [n; i] · (1+ O(Nεε)
)+ O

(
Nε(ρ

3
2
ε + ε)

ε( j)

√−�

)

= EγZ [n; i] · (1+ O(ε
1
2 )
)+ O

(
ρ

1
4
ε

ε( j)

√−�

)
.

3. Finally, moving along V(n+1)
i↖ from u = v

(n)
ε,i + hε,i up to u = v

(n+1)
ε,0 −

hε,i (see Fig. 22), calculating the difference between E (−)
↖ [n; i, j] and

E (+)
↖ [n; i, j] using (7.33) for all j > i (making use of the equality (7.159)),

we obtain:

E (−)
↖ [n + 1; i, 0] = EI[n; i] ·

(
1+

Nε∑

j=i+1

O(ε)
)+

Nε∑

j=i+1

O
(
ε

ε(i)

√−�

)

(7.200)

= EI[n; i] ·
(
1+ O(ε

1
2 )
)+ O

(
ε
1
2

ε(i)

√−�

)
.

Combining (7.198), (7.199) and (7.200) and using the relations (6.1)
between ε and ρε, we therefore infer that:

E (−)
↖ [n + 1; i, 0] = E (−)

↖ [n; i, 0] · exp
( i−1∑

j=0

2E (−)
↗ [n; i, j]
rn;i, j

+ O(ρ
1
4
ε )
)

+O
(
ρ

1
4
ε

ε(i)

√−�

)
. (7.201)

Using the estimates (7.15), (6.73), (6.70) and the fact that �R2 = O(ε) on
{u(+)

n;i, j } × [v(−)
n; j+1, j , v

(−)
n;i, j ], we can readily estimate:

rn;i, j
rn; j+1, j

− 1 =
∫ v

(−)
n;i, j

v
(−)
n; j+1, j

∂vr(u
(+)
n;i, j , v) dv

rn; j+1, j
(7.202)
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≤ 1

rn; j+1, j
sup

{u(+)
n;i, j }×[v(−)

n; j+1, j ,v
(−)
n;i, j ]

(∂vr)
i−1∑

k= j+1

ρ−1
ε

ε(k)

√−�

≤ exp(exp(σ−6
ε ))ρ−1

ε

∑i−1
k= j+1 ε(k)

ε( j)

≤ ε
1
2 .

Using the relation (7.172) and the bounds (7.169) and (7.202), from (7.201)
we then infer that

E(−)
↖ [n + 1; i, 0] = E(−)

↖ [n; i, 0] · exp
( i−1∑

j=0

2E(−)
↗ [n; i, j]

Dr (−)
↗ [n; j + 1, j + 1]

+ O(ρ
1
12
ε )

)

+O
(
ρ

1
4
ε

ε(i)

√−�

)
. (7.203)

Assuming that 1 ≤ i ≤ Nε, we will now repeat the same procedure for the
geometric separationDr in place of the energy content E of the beams:

1. First, moving in the u direction along the strip

S(n)
i↖

.= {v(n)
ε,i−1 + (ρ−1

ε + 1)hε,i−1 ≤ v ≤ v
(n)
ε,i − (ρ−1

ε + 1)hε,i−1},

from u = v
(n)
ε,0 up to the axis γZε , calculating the difference between

Dr (−)
↖ [n; i, j] and Dr (+)

↖ [n; i, j] using (7.91) for all 0 ≤ j ≤ i − 1 and
(7.90) for j = i − 1, making also use of the equality (7.165) between
Dr (−)

↖ [n; i, j] andDr (+)
↖ [n; i, j − 1], we infer

Dr (+)
↖ [n; i, i − 1] = Dr (−)

↖ [n; i, 0]

· exp
(
−

i−2∑

j=0

2E(−)
↗ [n; i, j]
rn;i, j

+
i−2∑

j=0

O(ρ
3
2
ε ) + O(ρ

3
4
ε )
)
(7.204)

= Dr (−)
↖ [n; i, 0]

· exp
(
−

i−2∑

j=0

2E(−)
↗ [n; i, j]
rn;i, j

+ O(Nερ
3
2
ε ) + O(ρ

3
4
ε )
)

= Dr (−)
↖ [n; i, 0] · exp

(
−

i−2∑

j=0

2E(−)
↗ [n; i, j]
rn;i, j

+ O(ρ
1
4
ε )
)
.
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2. Moving in the v direction along along the strip

S(n)
i↗

.= {v(n)
ε,i−1 + (ρ−1

ε + 1)hε,i−1 ≤ u ≤ v
(n)
ε,i − (ρ−1

ε + 1)hε,i−1},

from the axis γZε up to conformal infinity Iε, calculating the differene
between Dr (−)

↗ [n; j, i] and Dr (+)
↗ [n; j, i] using (7.95) for j = i , (7.89)

for i < j ≤ Nε and (7.92) for 0 ≤ j < i , making also use of the equality
(7.166) as well as the approximate equality (7.174) betweenDr (−)

↗ [n; i, i]
and Dr (+)

↖ [n; i, i − 1], we similarly infer that

Dr (+)
↗ [n; Nε, i] = Dr (−)

↗ [n; i, i] · (1+
Nε∑

j=0, j �=i

O(ε) + O(ρ
3
4
ε )
)
(7.205)

= Dr (+)
↖ [n; i, i − 1]

· (1+ O((Nε − 1)ε) + O(ρ
3
4
ε ) + O(ρ

1
10
ε )

)

= Dr (+)
↖ [n; i, i − 1] · (1+ O(ρ

1
10
ε )

)
.

3. Finally, moving in the u direction along S(n+1)
i↖ from Iε up to u = v

(n+1)
ε,0 −

hε,i , calculating the difference between Dr (−)
↖ [n; j, i] and Dr (+)

↖ [n; j, i]
using (7.94) for j = i and (7.93) for all j > i , making use of the equality
(7.165) and the approximate equality (7.175) between Dr (−)

↖ [n; i, i] and
Dr (+)

↗ [n; i − 1, i], we obtain:

Dr (−)
↖ [n + 1; i, 0] = Dr (−)

↖ [n; i, i] · (1+
Nε∑

j=i

O(ε)
) = (7.206)

= Dr (+)
↗ [n; i − 1, i] · (1+ O(ρ

1
10
ε )

)
.

Combining (7.204), (7.205) and (7.206), we obtain that

Dr (−)
↖ [n + 1; i, 0]

= Dr (−)
↖ [n; i, 0] · exp

(
−

i−2∑

j=0

2E (−)
↗ [n; i, j]
rn;i, j

+ O(ρ
1
10
ε )

)
. (7.207)
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Using the relation (7.172) and the bounds (7.169) and (7.202), from (7.207)
we then infer that

Dr (−)
↖ [n + 1; i, 0] = Dr (−)

↖ [n; i, 0]

· exp
(
−

i−2∑

j=0

2E (−)
↗ [n; i, j]

Dr (−)
↗ [n; j + 1, j + 1]

+ O(ρ
1
12
ε )

)
. (7.208)

For any n ∈ N such that (7.176) is satisfied, arguing in exactly the sameway
as for the proof of (7.199), but moving along V(n)

j↗ starting from v = v
(n)
ε,i −hε,i

(instead of v = v
(n)
ε, j + hε, j ) up to v = v

(n+1)
ε, j − hε, j , we infer that, for any

0 ≤ j ≤ i − 1:

EI[n; j] = E (−)
↗ [n; i, j] · (1+ O(ε

1
2 )
)+ O

(
ρ

1
4
ε

ε( j)

√−�

)
. (7.209)

Using (7.200) (for j in place of i) and (7.209), we therefore infer that

E (−)
↗ [n; i, j] = E (−)

↖ [n + 1; j, 0] · (1+ O(ε
1
2 )
)+ O

(
ρ

1
4
ε

ε( j)

√−�

)
. (7.210)

Similarly, using the first line of (7.205) and (7.206), we obtain:

Dr (+)
↖ [n; j + 1, j + 1] = Dr (−)

↖ [n + 1; j + 1, 0] · (1+ O(ρ
1
10
ε )

)
. (7.211)

Substituting E (−)
↗ [n; i, j] and Dr (−)

↗ [n; j + 1, j + 1] in the right hand side
of (7.203) with (7.210) and (7.211), respectively, we therefore obtain (7.177).
Similarly, from (7.208) we infer (7.178).

Remark For any 0 ≤ j1 ≤ i ≤ Nε and 0 ≤ j0 ≤ j1, it readily follows from
the proof of (7.177) and (7.178) (after restricting ourselves to the interactions
of the beams taking place only between u = v

(n)
j0,ε

− hε, j0 and v = v
(n)
i,ε − hε,i )

that:

E (−)
↖ [n; i, j1] = E (−)

↖ [n; i, j0]

· exp
( j1−1∑

j= j0

2E (−)
↗ [n; i, j]

Dr (−)
↗ [n; i, j + 1]

+ O(ρ
1
12
ε )

)
+ O

(
ρ

1
4
ε

ε(i)

√−�

)
,

(7.212)
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A proof of the instability of AdS

E (−)
↗ [n; i, j1] = E (−)

↖ [n; j1, j0]

· exp
( j1−1∑

j= j0

2E (−)
↗ [n; i, j]

Dr (−)
↗ [n; i, j + 1]

+ O(ρ
1
12
ε )

)
+ O

(
ρ

1
4
ε

ε( j1)

√−�

)

(7.213)

(with the convention that, when i = j1, E (−)
↖ [n; i, i] = E (−)

↖ [n; i, i] =
EγZ [n; i]) and

Dr (−)
↖ [n; i, j1] = Dr (−)

↖ [n; i, j0]

· exp
(
−

j1−2∑

j= j0

2E (−)
↗ [n; i, j]

Dr (−)
↗ [n; i, j + 1]

+ O(ρ
1
12
ε )

)
,

provided i > 0, (7.214)

Dr (−)
↗ [n; i, j1] = Dr (−)

↖ [n; j1, j0]

· exp
(
−

j1−2∑

j= j0

2E (−)
↗ [n; i, j]

Dr (−)
↗ [n; i, j + 1]

+ O(ρ
1
12
ε )

)
,

provided j1 > 0 (7.215)

(with the convention that, when i = j1, Dr (−)
↖ [n; i, i] = Dr (−)

↗ [n; i, j1]).
Similarly, for 0 ≤ i ≤ j1 ≤ Nε and 0 ≤ j0 ≤ i ,

E (−)
↖ [n; i, j1] = E (−)

↖ [n; i, j0]

· exp
( i−1∑

j= j0

2E (−)
↗ [n; i, j]

Dr (−)
↗ [n; i, j + 1]

+ O(ρ
1
12
ε )

)
+ O

(
ρ

1
4
ε

ε(i)

√−�

)
,

(7.216)

E (−)
↗ [n; i, j1] = E (−)

↖ [n; j1, j0]

· exp
( j1−1∑

j= j0

2E (−)
↗ [n; i, j]

Dr (−)
↗ [n; i, j + 1]

+ O(ρ
1
12
ε )

)
+ O

(
ρ

1
4
ε

ε( j1)

√−�

)

(7.217)

(with the convention that, when i = j1, E (−)
↖ [n; i, i] = E (−)

↖ [n; i, i] =
EI[n; i]) and
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Dr (−)
↖ [n; i, j1] = Dr (−)

↖ [n; i, j0]

· exp
(
−

i−2∑

j= j0

2E(−)
↗ [n; i, j]

Dr (−)
↗ [n; i, j + 1]

+ O(ρ
1
12
ε )

)
, provided i > 0,

(7.218)

Dr (−)
↗ [n; i, j1] = Dr (−)

↖ [n; j1, j0]

· exp
(
−

j1−2∑

j= j0

2E(−)
↗ [n; i, j]

Dr (−)
↗ [n; i, j + 1]

+ O(ρ
1
12
ε )

)
, provided j1 > 0

(7.219)

(with the convention that, when i = j1, Dr (−)
↗ [n; i, j1] = Dr (−)

↖ [n; i, i]).
The same relations also hold for Ẽ (±), D̃r (±) in place of E (±),Dr (±).

Proof of (7.156)–(7.158). In order to establish (7.156) and (7.157), we will
use the fact that, for any n ∈ N and 0 ≤ j ≤ Nε − 1 such that (7.152) and
(7.155) hold, we have for all 0 ≤ j̄ ≤ j

Ẽ (−)
↗ [n; Nε, j̄] = E (−)

↖ [n; j̄, 0] · exp
( j̄−1∑

k=0

2Ẽ (−)
↗ [n; Nε, k]

D̃r (−)
↗ [n; Nε, k + 1]

+ O(ρ
1
12
ε )

)

+O
(
ρ

1
4
ε

ε( j̄)

√−�

)
(7.220)

and, for all 1 ≤ j̄ ≤ j

D̃r (−)
↗ [n; Nε, j̄]

= Dr (−)
↖ [n; j̄, 0] · exp

(
−

j̄−2∑

k=0

2Ẽ (−)
↗ [n; Nε, k]

D̃r (−)
↗ [n; Nε, k + 1]

+ O(ρ
1
12
ε )

)
.

(7.221)

Note that, if (7.152) holds, then it is also necessarily true that

R̃(n)

Nε; j̄ ⊂ T +
ε for all 0 ≤ j̄ ≤ j, (7.222)

and hence all the terms in the relations (7.220)–(7.221) are well defined. The
relations (7.220) and (7.221) are immediate corollaries of (7.213) and (7.215)
(for Ẽ (±), D̃r (±) in place of E (±), Dr (±)) with i = Nε, j1 = j̄ and j0 = 0,
using also the fact that, since (7.152) holds,
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Ẽ (−)
↖ [n; j̄, 0] = E (−)

↖ [n; j̄, 0] for all 0 ≤ j̄ ≤ j and (7.223)

D̃r (−)
↖ [n; j̄, 0] = Dr (−)

↖ [n; j̄, 0]
(
1+ O(ρ

1
9
ε )
)

for all 1 ≤ j̄ ≤ j

(which is inferred from the definition of E (−)
↖ , Dr (−)

↖ , Ẽ (−)
↖ and D̃r (−)

↖ in
Sect. 6.4, as well as the fact that

m̃(v
(n)
ε,0 − hε,0, v

(n)

ε, j̄
± hε, j̄ ) = m̃(v

(n)
ε,0 − hε,0, v

(n)

ε, j̄
± h̃ε, j̄ ),

since the support of Tμν[ f ] in {0 ≤ u ≤ v
(n)
ε,0 − hε,0} ⊂ U+

ε is contained in

∪k∈N ∪Nε

i=0 V
(k)
i ).

In order to infer (7.156)–(7.157) from (7.220)–(7.221), we will argue sim-
ilarly as in the case of (7.153)–(7.154): Defining the quantities

ẽ j̄ [n + 1] .= Ẽ (−)
↗ [n; Nε, j̄] − E j̄ [n + 1]

ε( j̄)

√−� for 0 ≤ j̄ ≤ j,

r̃ j̄ [n + 1] .= D̃r (−)
↗ [n; Nε, j̄]
R j̄ [n + 1] for 1 ≤ j̄ ≤ j,

μ̃ j̄ [n + 1] .= ρ−1
ε

( 2Ẽ (−)
↗ [n; Nε, j̄]

D̃r (−)
↗ [n; Nε, j̄ + 1]

− μ j̄ [n + 1]
)

for 0 ≤ j̄ ≤ j,

the relations (7.156) and (7.157) will follow by showing that

max
0≤ j̄≤ j

∣∣ẽ j̄ [n + 1]∣∣, max
1≤ j̄≤ j

∣∣r̃ j̄ [n + 1] − 1
∣∣, max

0≤ j̄≤ j

∣∣μ̃ j̄ [n + 1]∣∣ ≤ ρ
1
17
ε .

(7.224)

We will argue by induction on j̄ : For any 0 ≤ j̄ ≤ j , we will show that, if

max
0≤k≤ j̄−1

∣∣μ̃k[n + 1]∣∣ ≤ ρ
1
16
ε , (7.225)

then

∣
∣μ̃ j̄ [n + 1]∣∣ ≤ ρ

1
16
ε . (7.226)

In view of the relations (7.220)–(7.221) for Ẽ (−)
↗ [n; Nε, j̄], D̃r (−)

↗ [n; Nε, j̄]
and the relation (7.145) for μ j̄ [n], we infer using the bounds (7.169)–(7.170)
(for Ẽ (±), D̃r (±) and δε in place of E (±),Dr (±) and σε, respectively), the bound
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j−1∑

k=0

2Ẽ (−)
↗ [n; Nε, k]

D̃r (−)
↗ [n; Nε, k + 1]

≤ exp(exp(δ−6
ε )) for all 0 ≤ k ≤ n (7.227)

(following from (7.169)–(7.170) for Ẽ (±), D̃r (±) and the fact that Nε =
ρ−1

ε exp
(
eδ−15

ε
)
), the bound

j̄−1∑

k=0

μ̃k[n + 1] ≤ ρ
−1+ 1

16
ε exp

(
eδ−15

ε
)

(7.228)

(following from the inductive assumption (7.225)) and the estimate (7.193)
for μ̄ j̄ [n] established previously that:
∣
∣μ̃ j̄ [n + 1]∣∣ (7.229)

= ρ−1
ε

∣
∣∣
∣

2E (−)
↖ [n; j̄, 0]

Dr (−)
↖ [n; j̄ + 1, 0]

exp
(
2

j̄−1∑

k=0

2Ẽ (−)
↗ [n; Nε, k]

D̃r (−)
↗ [n; Nε, k + 1]

+ O(ρ
1
12
ε )

)
+ O(ρ

1+ 1
6

ε )

− μ j̄ [n] exp
(
2

j̄−1∑

k=0

μk[n + 1]
)∣∣∣
∣

= exp
(
2

j̄−1∑

k=0

2Ẽ (−)
↗ [n; Nε, k]

D̃r (−)
↗ [n; Nε, k + 1]

)
ρ−1

ε

∣∣
∣∣

2E (−)
↖ [n; j̄, 0]

Dr (−)
↖ [n; j̄ + 1, 0]

(1+ O(ρ
1
12
ε ))

− μ j̄ [n] exp
(
− 2ρε

j̄−1∑

k=0

μ̃k[n + 1]
)
+ O(ρ

1+ 1
6

ε )

∣
∣∣
∣

= exp
(
O(exp

(
2eδ−15

ε
)
)
)
∣∣
∣
∣ρ

−1
ε

( 2E (−)
↖ [n; j̄, 0]

Dr (−)
↖ [n; j̄ + 1, 0]

− μ j̄ [n](1− 2ρε

j̄−1∑

k=0

μ̃k[n + 1]
)
+ O(ρ

1
13
ε )

∣∣
∣∣

≤ δ̄
− 1

2
ε

{
|μ̄ j̄ [n]| + ρε

j̄−1∑

k=0

|μ̃k[n + 1]| + O(ρ
1
13
ε )

}

≤ δ̄−1
ε

{
ρε

j̄−1∑

k=0

|μ̃k[n + 1]| + ρ
1
15
ε

}
,
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where δ̄ε was defined in terms of δε by (6.1). Note that, for j̄ = 0, from (7.229)
we infer that

∣
∣μ̃0[n + 1]∣∣ ≤ δ̄−1

ε ρ
1
15
ε . (7.230)

In general, for 0 ≤ j̄ ≤ j , applying a Gronwall-type inequality in the j̄
variable, from (7.229) and (7.230) we infer that:

∣∣μ̃ j̄ [n + 1]∣∣ ≤ exp
(
δ̄−1
ε Nερε

)
ρ

1
15
ε ≤ ρ

1
16
ε , (7.231)

thus establishing (7.226). As a result,

max
0≤ j̄≤ j

∣
∣μ̃ j̄ [n + 1]∣∣ ≤ ρ

1
16
ε . (7.232)

From the relations (7.220)–(7.221) for Ẽ (−)
↗ [n; Nε, j̄], D̃r (−)

↗ [n; Nε, j̄] and
(7.147)–(7.148) for E j̄ [n+1], R j̄ [n+1], in view of the bounds (7.169)–(7.170)

(for Ẽ (±), D̃r (±)), the bound (7.227), the bound (7.232), as well as the approx-
imate equalities (7.153) and (7.154) between E (−)

↖ [n; j̄, 0],Dr (−)
↖ [n; j̄, 0] and

E j̄ [n], R j̄ [n], respectively, we can estimate for any 0 ≤ j̄ ≤ j (arguing simi-
larly as for the derivation of (7.194) and (7.195)):

|ẽ j̄ [n + 1]| (7.233)

=
∣∣
∣∣

√−�

ε( j̄)
E (−)
↖ [n; j̄, 0] · exp

( j̄−1∑

k=0

2Ẽ (−)
↗ [n; Nε, k]

D̃r (−)
↗ [n; Nε, k + 1]

+ O(ρ
1
12
ε )

)

+ O(ρ
1
4
ε ) −

√−�

ε( j̄)
Ei [n] · exp

( j̄−1∑

k=0

μk[n + 1]
)∣∣
∣∣

= exp
( j̄−1∑

k=0

2Ẽ (−)
↗ [n; Nε, k]

D̃r (−)
↗ [n; Nε, k + 1]

)∣∣∣
∣(1+ O(ρ

1
12
ε ))

√−�

ε( j̄)
E (−)
↖ [n; j̄, 0]

−
√−�

ε( j̄)
E j̄ [n] · exp

(
− ρε

j̄−1∑

k=0

μ̃ j̄ [n̄ + 1]
)
+ O(ρ

1
4
ε )

∣∣
∣∣

≤ exp
(
exp(exp(2δ−15

ε ))
)
∣
∣
∣∣

√−�

ε( j̄)

(
E (−)
↖ [n; j̄, 0] − E j̄ [n]

)

+ O(ρ
1
12
ε )

√−�

ε(i)
E (−)
↖ [n; j̄, 0] + O(ρ

1
15
ε )

√−�

ε(i)
Ei [n] + O(ρ

1
4
ε )

∣∣
∣
∣
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≤ exp
(
exp(exp(4δ−15

ε ))
)(

ρ
1
16
ε + exp(exp(σ−6

ε ))ρ
1
15
ε

)

≤ δ̄−1
ε ρ

1
16
ε

and, for any 1 ≤ j̄ ≤ j :

|r̃i [n + 1] − 1|

=
∣
∣∣
∣

Dr (−)
↖ [n; ī, 0] · exp

(
−∑ j̄−2

k=0
2Ẽ(−)

↗ [n;Nε,k]
D̃r (−)

↗ [n;Nε,k+1] + O(ρ
1
12
ε )

)

R j̄ [n] · exp
(
−∑ j̄−1

k=0 μk[n + 1]
) − 1

∣
∣∣
∣

(7.234)

=
∣∣
∣∣
Dr (−)

↖ [n; ī, 0]
R j̄ [n]

· exp
(
− ρε

j̄−1∑

k=0

μ̃k[n + 1] + O(ρ
1
12
ε )

)
− 1

∣∣
∣∣

=
∣∣
∣
∣
(
1+ O(ρ

1
16
ε )

)
· exp

(
O
(
exp(eδ−15

ε )ρ
1
15
ε

))− 1

∣∣
∣
∣ ≤

≤ δ̄−1
ε ρ

1
16
ε .

From (7.233), (7.234) and (7.232), in view of the relation (6.1) between ρε, δε

and σε, we readily obtain (7.224). Thus, we infer (7.156) and (7.157).
Using the relation (7.212) for i = Nε, j0 = 0, j1 = Nε − 1 with Ẽ , D̃r in

place of E , Dr , the relation (7.31) for i = Nε, j = Nε − 1 with Ẽ in place of
E , as well as the relation (7.172) for i = Nε − 1 with r̃n;i+1,i , D̃r in place of
rn;i+1,i , Dr , we readily infer that:

Ẽ (+)
↖ [n; Nε, Nε − 1]

= Ẽ (−)
↖ [n; Nε, 0] · exp

( Nε−1∑

j=0

2Ẽ (−)
↗ [n; Nε, j]

D̃r (−)
↗ [n; Nε, j + 1]

+ O(ρ
1
12
ε )

)

+O
(
ρ

1
4
ε

ε(Nε)

√−�

)
. (7.235)

The relation (7.158) now readily follows from (7.235) using (7.156), (7.157)
and (7.223) for the right hand side of (7.235), as well as the relation (7.147)
for ENε [n + 1] and the fact that (7.153) holds for E (−)

↖ [n; Nε, 0]. ��
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7.4 Control of the evolution in terms of Ei [n], Ri [n], µi [n]
In this section, we will establish some additional bounds on various quantities
related to the geometry of (U (ε)

max ; r, �2, fε) in terms of the quantities Ei [n],
Ri [n] and μi [n]. These bounds will enable us to obtain a priori control of the
evolution of (r (ε)

/ , (�
(ε)
/ )2, f̄ (ε)

/ ) by estimating the growth rate of solutions to
the recursive systems 7.145 and 7.147–7.148.

The following result can be viewed as a supplement to Proposition 7.6,
providing us with additional bounds on the energy content and the geometric
separation of the beams on the regions R(n)

i; j (not necessarily with j = 0 or
i = Nε):

Lemma 7.7 For any n ∈ N such that

{0 ≤ u ≤ v
(n)
ε,0 − hε,0} ∩

{
u < v < u +

√

− 3

�
π
} ⊂ U+

ε (7.236)

and any 0 ≤ i, j ≤ Nε, such thatR(n)
i; j ⊂ U+

ε , if i �= j , andR(n)
i;γZ ,R(n)

i;I ⊂ U+
ε ,

if i = j ,25 we can estimate:

E (±)
↖ [n; i, j] ≤ Ei [n + 1] + ρ

1
18
ε

ε(i)

√−�
, (7.237)

E (±)
↗ [n; i, j] ≤ E j [n + 1] + ρ

1
18
ε

ε( j)

√−�

(if i �= j ),

EγZ [n; i] ≤ Ei [n + 1] + ρ
1
18
ε

ε(i)

√−�
, (7.238)

EI[n; i] ≤ E j [n + 1] + ρ
1
18
ε

ε( j)

√−�

(if i = j) and

Dr (±)
↖ [n; i, j] ≥ Ri [n + 1] · (1− ρ

1
18
ε

)
, if i > 0, (7.239)

Dr (±)
↗ [n; i, j] ≥ R j [n + 1] · (1− ρ

1
18
ε

)
, if j > 0.

25 Note thatR(n)
i; j ,R

(n)
i;γZ and R(n)

i;I are contained in {u ≥ v
(n)
ε,0 − hε,0}.
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Similarly, for any 0 ≤ i, j ≤ Nε such that R̃(n)
i; j ⊂ T +

ε if i �= j , or

R̃(n)
i;γZ , R̃(n)

i;I ⊂ T +
ε , if i = j , the bounds (7.237)–(7.239) also hold with

Ẽ (±)
↖ , Ẽ (±)

↗ , ẼγZ , ẼI , D̃r (±)
↖ and D̃r (±)

↗ in place of E (±)
↖ , E (±)

↗ , EγZ , EI , Dr (±)
↖

and Dr (±)
↗ , respectively.

Proof Let n ∈ N be such that (7.236) is satisfied, and let 0 ≤ i, j ≤ Nε, i > j ,
be such that

R(n)
i; j ⊂ U+

ε . (7.240)

Notice that (7.240) implies that

R(n)

ī; j̄ ⊂ U+
ε for all 0 ≤ ī ≤ i, 0 ≤ j̄ ≤ j, ī �= j̄ (7.241)

and

R(n)

ī;γZ ,R(n)

ī;I ⊂ U+
ε for all 0 ≤ ī ≤ j. (7.242)

Using (7.213) and (7.215) for j0 = 0 and j1 = j̄ , we obtain for any
0 ≤ j̄ ≤ j :

E (−)
↗ [n; i, j̄] = E (−)

↖ [n; j̄, 0] · exp
( j̄−1∑

k=0

2E (−)
↗ [n; i, k]

Dr (−)
↗ [n; i, k + 1]

+ O(ρ
1
12
ε )

)

+O
(
ρ

1
4
ε

ε( j̄)

√−�

)
(7.243)

and, provided j̄ ≥ 1:

Dr (−)
↗ [n; i, j̄]=Dr (−)

↖ [n; j̄, 0] · exp
(
−

j̄−2∑

k=0

2E (−)
↗ [n; i, k]

Dr (−)
↗ [n; i, k + 1]

+ O(ρ
1
12
ε )

)
.

(7.244)

Arguing exactly as in the proof of (7.156)–(7.157), by comparing the system
(7.243)–(7.244) for E (−)

↗ [n; i, j̄], Dr (−)
↗ [n; i, j̄] with the system (7.147)–

(7.148) for E j̄ [n + 1], R j̄ [n + 1], using also the approximate equalities

(7.153)–(7.154) for E (−)
↖ [n; j̄, 0], Dr (−)

↖ [n; j̄, 0] and E j̄ [n], R j̄ [n], respec-
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A proof of the instability of AdS

tively, we infer that

E (−)
↗ [n; i, j̄] = E j̄ [n + 1] + O

(
ρ

1
16
ε

ε( j̄)

√−�

)
for all 0 ≤ j̄ ≤ j, (7.245)

Dr (−)
↗ [n; i, j̄] = R j̄ [n + 1] · (1+ O(ρ

1
16
ε )

)
for all 1 ≤ j̄ ≤ j. (7.246)

Using (7.212) and (7.214) for j0 = 0 and j1 = j̄ , we obtain for any
0 ≤ j̄ ≤ j :

E (−)
↖ [n; i, j̄]

= E (−)
↖ [n; i, 0] · exp

( j̄−1∑

k=0

2E (−)
↗ [n; i, k]

Dr (−)
↗ [n; i, k + 1]

+ O(ρ
1
12
ε )

)

+O
(
ρ

1
4
ε

ε(i)

√−�

)
(7.247)

and, provided j̄ ≥ 1:

Dr (−)
↖ [n; i, j̄] = Dr (−)

↖ [n; i, 0] · exp
(
−

j̄−2∑

k=0

2E (−)
↗ [n; i, j]

Dr (−)
↗ [n; i, j + 1]

+ O(ρ
1
12
ε )

)
.

(7.248)

Using the approximate equalities (7.153)–(7.154) for E (−)
↖

[n; i, 0], Dr (−)
↖ [n; i, 0] and Ei [n], Ri [n], respectively, as well as the approxi-

mate equalities (7.245)–(7.246) for E (−)
↗ [n; i, j̄],Dr (−)

↗ [n; i, j̄] and E j̄ [n+1],
R j̄ [n + 1], respectively, and the bounds (7.169) and (7.170), we obtain from

(7.247)–(7.248) that, for any 0 ≤ j̄ ≤ j :

E (−)
↖ [n; i, j̄] = Ei [n] · exp

( j̄−1∑

k=0

2Ek[n + 1]
Rk+1[n + 1] + O(ρ

1
17
ε )

)
+ O

(
ρ

1
4
ε

ε(i)

√−�

)

(7.249)

≤ Ei [n] · exp
( i−1∑

k=0

2Ek[n + 1]
Rk+1[n + 1] + O(ρ

1
17
ε )

)
+ O

(
ρ

1
4
ε

ε(i)

√−�

)
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and, provided i ≥ 1:

Dr (−)
↖ [n; i, j̄] = Ri [n] · exp

(
−

j̄−2∑

k=0

2Ek[n + 1]
Rk+1[n + 1] + O(ρ

1
17
ε )

)
(7.250)

≥ Ri [n] · exp
(
−

i−2∑

k=0

2Ek[n + 1]
Rk+1[n + 1] + O(ρ

1
17
ε )

)

(where we have used the fact that i ≥ j̄). On the other hand, from (7.147)–
(7.148) we obtain:

Ei [n + 1] = Ei [n] · exp
( i−1∑

k=0

2Ek[n + 1]
Rk+1[n + 1]

)
(7.251)

and, for i ≥ 1:

Ri [n + 1] = Ri [n] · exp
(
−

i−2∑

k=0

2Ek[n + 1]
Rk+1[n + 1]

)
. (7.252)

Comparing (7.249)–(7.250) and (7.251)–(7.252), using also the bounds
(7.169) and (7.170), we obtain

E (−)
↖ [n; i, j̄] ≤ Ei [n + 1] + ρ

1
18
ε for all 0 ≤ j̄ ≤ j, (7.253)

Dr (−)
↖ [n; i, j̄] ≥ Ri [n + 1]

(
1− ρ

1
18
ε

)
for all 0 ≤ j̄ ≤ j, if i ≥ 1. (7.254)

From (7.245)–(7.246) and (7.253)–(7.254), we infer (7.237) and (7.239) in
the case i > j . The proof of (7.237) and (7.239), when i < j , or (7.238) and
(7.239), when i = j , follows in exactly the same way (using (7.216)–(7.219)
in place of (7.212)–(7.215)), and hence the details will be omitted. ��

The following result will be useful in obtaining a priori control on the
concentration of the energy of fε on U+

ε and T +
ε in terms of the sequence

μi [n]:
Lemma 7.8 For any n ∈ N such that

{0 ≤ u ≤ v
(n)
ε,0 − hε,0} ∩

{
u < v < u +

√

− 3

�
π
} ⊂ U+

ε , (7.255)

we can estimate on

U+
ε;n

.= U+
ε ∩ {v(n)

ε,0 − hε,0 ≤ u ≤ v
(n+1)
ε,0 − hε,0} (7.256)

123



A proof of the instability of AdS

(see Fig. 23) that:

sup
V≥0

∫

{v=V }∩U+
ε;n

r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du (7.257)

+ sup
U≥0

∫

{u=U }∩U+
ε;n

r
(Tvv[ fε]

∂vr
+ Tuv[ fε]

−∂ur

)
(U, v) dv

≤ 8
Nε−1∑

i=0

μi [n + 1] + max
0≤i≤Nε

{(
exp(eσ−7

ε
)
aεi

}+ ρ
1
19
ε

(where μi [n] were introduced in Definition 7.5). Furthermore,

sup
U+

ε;n

2m̃

r
≤ max

0≤i≤Nε

{(
exp(eσ−8

ε
)
aεi

}+ ε
1
2 (7.258)

and, for any 0 ≤ j ≤ Nε:

sup
U+

ε;n∩{u≤v
(n)
ε, j+hε, j }

2m̃

r
≤ max

0≤i≤ j

{(
exp(eσ−8

ε
)
aεi

}+ ε
1
2 . (7.259)

Similarly, the estimates (7.257), (7.258) and (7.259) also hold on

T +
ε;n

.= T +
ε ∩ {v(n)

ε,0 − h̃ε,0 ≤ u ≤ v
(n+1)
ε,0 − h̃ε,0}, (7.260)

with δε and h̃ε, j in place of σε and hε, j , respectively.

Remark Notice that U+
ε;n can be alternatively expressed as

U+
ε;n = {

v
(n)
ε,0 − hε,0 ≤ u ≤ u+

ε,n

} ∩
{

u < v < u +
√

− 3

�
π

}

,

where

u+
ε,n

.= min{v(n+1)
ε,0 − hε,0, u[U+

ε ]} (7.261)

(see the relation (6.51) for U+
ε ).

Proof In order to show (7.257), we will first show that, for any V ≥ 0,

∫

{v=V }∩U+
ε;n

r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du
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≤ 1

2
max

0≤i≤Nε

{(
exp(eσ−7

ε
)
aεi

}+ 4
Nε−1∑

i=0

μi [n + 1] + 1

2
ρ

1
19
ε (7.262)

Note that, in view of the definition (7.256) of U+
ε;n , the inequality (7.262) is

non trivial only when

v
(n)
ε,0 − hε,0 < V < v

(n+1)
ε,0 − hε,0 +

√

− 3

�
π.

In view of the relation (2.49) for ∂um̃, the linear relation (6.65) between fε
and fεi , as well as the bound (7.1) on the support of fεi , we have

∫

{v=V }∩U+
ε;n

r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du

= 1

4π

Nε∑

i=0

∫

{v=V }∩(V(n)
i ∪V(n+1)

i )∩U+
ε;n

(
1− 2m̃

r
− 1

3
�r2

)−1−∂um̃

r
(u, V ) du.

(7.263)

We will proceed to establish (7.262) by considering the cases when V (−) ≤
V ≤ V (+), V < V (−) and V > V (+) separately, where we have set

V (−) .= v
(n)
ε,Nε

+ hε,Nε , (7.264)

V (+) .= v
(n)
ε,Nε

+ ρ−2
ε

ε√−�
(7.265)

(see Fig. 23).
Case I: V ∈ [V (−), V (+)]. In this case, the bound (6.73) and the definition
(7.265) of V (+) imply that

r |{v=V }∩(∪Nε
i=0(V

(n)
i ∪V(n+1)

i ))∩U+
ε

≤ eσ−4
ε ρ−2

ε

ε√−�
. (7.266)

Furthermore, for any 0 ≤ i ≤ Nε, we have

{v = V } ∩ (V(n)
i ∪ V(n+1)

i ) ∩ U+
ε;n = {v = V } ∩ V(n)

i↗ ∩ U+
ε;n. (7.267)

Let us define i+ as the maximum number in {0, 1, . . . , Nε} such that

V(n)
i↗ ⊂ U+

ε;n for all i < i+. (7.268)
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A proof of the instability of AdS

Fig. 23 Schematic depiction
of the domain U+

ε;n in the
case when
v
(n+1)
ε,0 − hε,0 < u[U+

ε ]. For
simplicity, we have only
depicted three of the beam
domains Vi

Note that, if i+ < Nε, then it is necessary that V(n)
j↗ ∩ U+

ε = ∅ for all ι+ <

j ≤ Nε. Moreover, for any i < i+:

inf
{v=V }∩V(n)

i↗∩U+
ε;n

(v − u) ≥ v
(+)
n;Nε,i++1 − u(+)

n;Nε,i++1 ≥ ρ−1
ε

ε(i++1)

√−�
. (7.269)

Note that the above definition of i+ implies that, in the extreme case when
V(n)
j↗ ∩ U+

ε = ∅ for all j , we have i+ = 0.

Remark In the case when v
(n+1)
ε,0 − hε,0 = u[U+

ε ] (and hence u+
ε,n = v

(n+1)
ε,0 −

hε,0 in (7.261)), such as the case depicted in Fig. 23, the parameter i+ is equal
to Nε; similarly, in this case, for the parameters i (1)+ , i (2)+ defined by (7.278)–

(7.279), we have i (1)+ = i (2)+ = Nε. The parameters i+, i (1)+ and i (2)+ are only

introduced to treat the case when u+
ε,n < v

(n+1)
ε,0 − hε,0 and u = u+

ε,n intersects

one of the outgoing beam components V(n)
i↗ , 0 ≤ i ≤ Nε.
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For any i < i+, let us denote for simplicity

r (i)
min(V ) = inf

{v=V }∩V(n)
i↗∩U+

ε;n
r = r

(
v

(n)
ε,i + hε,i , V

)
, (7.270)

r (i)
max (V ) = sup

{v=V }∩V(n)
i↗∩U+

ε;n

r = r
(
v

(n)
ε,i − hε,i , V

)
.

In view of the definition (6.80) of V(n)
i↗ , the bound (7.15) for rn;Nε,i , the bound

(6.73) on ∂ur , the bounds (6.70), (7.266) on 2m̃
r , r , the fact that ∂vr > 0 on

U+
ε and the lower bound (7.269), we have for any i < i+:

r (i)
max (V ) − r (i)

min(V )

r (i)
min(V )

≤
∫
([v(n)

ε,i −hε,i ,v
(n)
ε,i +hε,i ]×{V })∩U+

ε;n

(− ∂ur
)
du

r (i)
min(V

(−))

≤ exp(2σ−6
ε )ε(i)

rn;Nε,i
≤ ρ

3
4
ε . (7.271)

Using (6.70), (7.266), (7.267) and (7.271), together with the fact that ∂um̃ ≤
0 on U+

ε , we infer that, for any i < i+:
∫

{v=V }∩(V(n)
i ∪V(n+1)

i )∩U+
ε;n

(
1− 2m̃

r
− 1

3
�r2

)−1−∂um̃

r
(u, V ) du (7.272)

=
∫

{v=V }∩V(n)
i↗∩U+

ε;n
(1+ O(η0) + O(ε))

−∂um̃

r (i)
min(V )

(
1+ O(ρ

3
4
ε )
)(u, V ) du

≤ 2

r (i)
min(V )

∫

{v=V }∩V(n)
i↗∩U+

ε;n
(−∂um̃)(u, V ) du.

Using the definition (6.98) of E (+)
↗ [n; Nε, i], with the convention that

E (+)
↗ [n; Nε, Nε] = EγZ [n; Nε],

aswell as the fact that m̃ is constant on each connected component ofU+
ε \∪Nε

j=0
V j and that ∂vr > 0, from (7.272) we obtain that, for any i < i+:

∫

{v=V }∩(V(n)
i ∪V(n+1)

i )∩U+
ε;n

(
1− 2m̃

r
− 1

3
�r2

)−1−∂um̃

r
(u, V ) du (7.273)

≤ 2

r (i)
min(V

(−))
E (+)
↗ [n; Nε, i] ≤

≤ 2

rn;Nε,i
E (+)
↗ [n; Nε, i].
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Using the relations (7.172) and (7.202) (implying that rn;Nε,i = Dr (−)
↗ [n; i +

1, i + 1](1+ O(ρ
1
10
ε )

)
), the bound (7.169) for E (±)

↗ and the estimates (7.237)–

(7.239) for E (±)
↗ , Dr (−)

↗ , we infer from (7.273) that, for any i < i+:
∫

{v=V }∩(V(n)
i ∪V(n+1)

i )∩U+
ε;n

(
1− 2m̃

r
− 1

3
�r2

)−1−∂um̃

r
(u, V ) du

≤ 4
Ei [n + 1]
Ri [n + 1] + O(ρ

1+ 1
18

ε ) ≤ (7.274)

≤ 2μi [n + 1] + O(ρ
1+ 1

18
ε ).

On the other hand, for i = i+, using directly the bounds (6.73), (7.10),
(7.11), (7.12) and the fact that

fε|V(n)
j↗∩{V (−)≤v≤V (+)} = aε j fε j |V(n)

j↗∩{V (−)≤v≤V (+)} (7.275)

(as a consequence of (6.65), (7.1) and the definition of V (−), V (+)), we infer
that
∫

{v=V }∩(V(n)
i+ ∪V(n+1)

i+ )∩U+
ε;n

(
1− 2m̃

r
− 1

3
�r2

)−1−∂um̃

r
(u, V ) du (7.276)

=
∫

{v=V }∩V(n)
i+↗∩U+

ε;n
r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du

= aεi+

∫

{v=V }∩V(n)
i+↗∩U+

ε;n
r
(Tuu[ fεi+]

−∂ur
+ Tuv[ fεi+]

∂vr

)
(u, V ) du

≤ aεi+ exp
(
exp(3σ−5

ε )
) ∫

{v=V }∩V(n)
i+↗∩U+

ε;n

×
( (ε(i+))4

r5(u, v)
(−�)−2 + (ε(i+))2

r3(u, v)
(−�)−1

)
(u, V ) du

≤ aεi+ exp
(
exp(3σ−5

ε )
)( (ε(i+))4

(minV(n)
i+↗

r)4
(−�)−2 + (ε(i+))2

(minV(n)
i+↗

r)2
(−�)−1

)

≤ aεi+ exp
(
exp(σ−6

ε )
)
.

From (7.263), (7.267), (7.274), (7.276) and the fact that

Nε∑

i=0

O(ρ
1+ 1

18
ε ) = O(Nερ

1+ 1
18

ε ) = O(ρ
1
19
ε )
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and

V(n)
j↗ ∩ U+

ε = ∅ for any j > i+,

we immediately infer (7.262) in the case V ∈ [V (−), V (+)].
Case II: V ∈ [v(n)

ε,0 − hε,0, V (−)). In this case, the upper bound (7.266) for r
still holds. However, for any 0 ≤ i ≤ Nε, we now have

{v = V } ∩ (V(n)
i ∪ V(n)

i+1) ∩ U+
ε;n = {v = V } ∩ V(n)

i ∩ U+
ε;n. (7.277)

Let us define i (1)+ as the maximum number in the set {0, 1, . . . , Nε} such
that

{v = V } ∩ V(n)
i ∩ U+

ε;n �= ∅ for all i ≤ i (1)+ (7.278)

and let i (2)+ be the maximum number in {0, 1, . . . , i (1)+ } such that

v
(n)
ε,i + hε,i < u+

ε,n for all i ≤ i (2)+ (7.279)

(where {u = u+
n,ε} is the future boundary of U+

ε;n). Note that the definition of

i (1)+ implies that

{v = V } ∩ V(n)
i ∩ U+

ε;n = ∅ for all i > i (1)+ (7.280)

(which is a non-trivial statement only if i (1)+ < Nε) and that

V ≥ v
(n)

ε,i (1)+
− h

ε,i (1)+
. (7.281)

Let us also remark that, trivially, in view of the form (6.80) of V(n)
i = V(n)

i↖ ∪
V(n)
i↗ ,

i (2)+

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

i (1)+ − 2, if u+ε,n ∈ [v(n)

ε,i (1)+ −1
− h

ε,i (1)+ −1
, v

(n)

ε,i (1)+ −1
+ h

ε,i (1)+ −1
]

and V ≤ v
(n)

ε,i (1)+
+ h

ε,i (1)+
,

i (1)+ − 1, if u+ε,n ∈ [v(n)

ε,i (1)+
− h

ε,i (1)+
, v

(n)

ε,i (1)+
+ h

ε,i (1)+
],

i (1)+ , for all other values of u+ε,n ≤ v
(n)
ε,0 − hε,0.

(7.282)
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It can be readily inferred from (7.281) and the form (6.80) of V(n)
i = V(n)

i↖ ∪
V(n)
i↗ (and in particular, the fact thatV(n)

i↖ ⊂ {v ≤ v
(n)

ε,i (1)+
−h

ε,i (1)+
}when i < i (1)+ )

that

{v = V } ∩ V(n)
i ∩ U+

ε;n = {v = V } ∩ V(n)
i↗ ∩ U+

ε;n for all i < i (1)+ (7.283)

and

inf
{v=V }∩V(n)

i ∩U+
ε

(v − u) ≥ ρ−1
ε

ε(i)

√−�
for all i < i (1)+ . (7.284)

From (7.266), (7.284), (6.73) and the fact that ∂vr > 0, we infer that, for
any i < i (2)+ , analogously to (7.271):

r (i)
max (V ) − r (i)

min(V )

r (i)
min(V )

≤
∫
([v(n)

ε,i −hε,i ,v
(n)
ε,i +hε,i ]×{V })∩U+

ε;n

(− ∂ur
)
du

r (i)
min(v

(n)

ε,i (1)+
− h

ε,i (1)+
)

≤ exp(2σ−6
ε )ε(i)

r
n;i (1)+ ,i

≤ ρ
3
4
ε , (7.285)

where r (i)
max(V ), r (i)

min(V ) are defined by (7.270). Therefore, using (7.277) and
(7.285) and arguing as in the proof of (7.272)–(7.274), using in addition the
estimate

∫

{v=V }∩V(n)
i↗∩U+

ε;n
(−∂um̃) du ≤ E (−)

↗ [n; i (1)+ , i] · (1+ Cε
)+ Cρ

3
2
ε

ε( j)

√−�

(following from (7.79)) in the case when V ∈ [v(n)

ε,i (1)+
− h

ε,i (1)+
, v

(n)

ε,i (1)+
+ h

ε,i (1)+
],

we obtain for any i < i (2)+ :

∫

{v=V }∩(V(n)
i ∪V(n+1)

i )∩U+
ε;n

(
1− 2m̃

r
− 1

3
�r2

)−1−∂um̃

r
(u, V ) du

≤ 2μi [n + 1] + O(ρ
1+ 1

18
ε ) (7.286)

On the other hand, for i (2)+ ≤ i ≤ i (1)+ , using the relation
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∫

{v=V }∩V(n)
i ∩U+

ε;n\∪ j<i(2)+
V(n)
j

(
1− 2m̃

r
− 1

3
�r2

)−1−∂um̃

r
(u, V ) du

= aεi

∫

{v=V }∩V(n)
i↗∩U+

ε;n\∪ j<i(2)+
V(n)
j

r
(Tuu[ fεi ]

−∂ur
+ Tuv[ fεi ]

∂vr

)
(u, V ) du

(following from (2.49), (6.65) and (7.1)), we infer by arguing exactly as in the
proof of (7.276) that

i (1)+∑

i=i (2)+

∫

{v=V }∩V(n)
i ∩U+

ε;n\∪ j<i(2)+
V(n)
j

(
1− 2m̃

r
− 1

3
�r2

)−1−∂um̃

r
(u, V ) du

≤
i (1)+∑

i=i (2)+

aεi+ exp
(
exp(σ−6

ε )
)
. (7.287)

From (7.263), (7.277), (7.280)(7.286), (7.287) and the fact that |i (1)+ −i (2)+ | ≤
2, we readily infer (7.262) in the case V < V (−).

Case III: V ∈ (V (+), v
(n+1)
ε,0 − hε,0 +

√
− 3

�
π). In this case, we will split the

left hand side of (7.263) as

∫

{v=V }∩U+
ε;n

r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du (7.288)

=
∫

{v=V }∩{u≤U (+)}∩U+
ε;n

r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du

+
∫

{v=V }∩{u≥U (+)}∩U+
ε;n

r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du,

where

U (+) .= v
(n+1)
ε,0 − ρ−2

ε

ε√−�
, (7.289)

and we will estimate each term in the right hand side of (7.288) separately.
From the form (6.80) of V(n)

i and the definitions (7.265), (7.289) of V (+),
U (+), respectively, we infer that

inf
{v≥V (+)}∩{u≤U (+)}∩(∪Nε

i=0V
(n)
i )∩U+

ε;n
(v − u) ≥ 1

2
ρ−2

ε

ε√−�
. (7.290)
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Thus, using (6.73), we infer that

inf
{v≥V (+)}∩{u≤U (+)}∩(∪Nε

i=0V
(n)
i )∩U+

ε;n
r ≥ e−σ−4

ε ρ−2
ε

ε√−�
. (7.291)

Using the relation (6.65) and the bounds (6.73), (7.11)–(7.12), from (7.291)
we infer that
∫

{v=V }∩{u≤U (+)}∩U+
ε;n

r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du (7.292)

=
Nε∑

i=0

aεi

∫

{v=V }∩{u≤U (+)}∩U+
ε;n

r
(Tuu[ fεi ]

−∂ur
+ Tuv[ fεi ]

∂vr

)
(u, V ) du

≤ exp(exp(σ−6
ε ))

Nε∑

i=0

aεi

∫

{v=V }∩{u≤U (+)}∩U+
ε;n

1

1− 1
3�r2

((ε(i))4

r5
(−�)−1

+ (ε(i))2

r3
(−�)−1

)
(u, V ) du

≤ exp(exp(σ−6
ε ))

Nε∑

i=0

aεi

{
1

1− 1
3�r2

((ε(i))4

r4
(−�)−1

+ (ε(i))2

r2
(−�)−1

}

r=e−σ
−4
ε ρ−2

ε
ε√−�

≤ ρ3
ε .

On the other hand, in the case when

{v = V } ∩ {u ≥ U (+)} ∩ U+
ε;n �= ∅,

from the form (6.80) ofV(n)
i and the definitions (7.265), (7.289) of V (+),U (+),

respectively, we infer that, depending on whether V belongs to ∪Nε

i=0[v(n+1)
ε,i −

hε,i , v
(n+1)
ε,i + hε,i ] or not:

• Either

{v = V } ∩ {u ≥ U (+)} ∩ { ∪Nε

i=0 (V(n)
i ∪ V(n+1)

i

} ∩ U+
ε;n = ∅,

in which case
∫

{v=V }∩{u≥U (+)}∩U+
ε;n

r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du = 0, (7.293)
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• or

{v = V } ∩ {u ≥ U (+)} ∩ { ∪Nε

i=0 (V(n)
i ∪ V(n+1)

i

} ∩ U+
ε;n =

= {v = V } ∩ {u ≥ U (+)} ∩ {V(n+1)
i0↖

} ∩ U+
ε;n for some 0 ≤ i0 ≤ Nε,

in which case, using the bounds (6.73), (7.1), (7.10), (7.11) and the fact
that the regions

V(n+1)
i↖ ∩ {U (+) ≤ u ≤ u+

ε,n}
are disjoint, we can estimate

∫

{v=V }∩{u≥U (+)}∩U+
ε;n

r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du (7.294)

= aεi0

∫

{v=V }∩{u≥U (+)}∩U+
ε;n

r
(Tuu[ fεi0]

−∂ur
+ Tuv[ fεi0]

∂vr

)
(u, V ) du

≤ exp(exp(σ−6
ε ))aεi0

∫ +∞

infV(n+1)
i0↖

r

1

1− 1
3�r2

((ε(i0))4

r5
(−�)−1

+ (ε(i0))2

r3
(−�)−1

)
dr ≤

≤ 1

2
exp(exp(σ−7

ε ))aεi0 .

From (7.292), (7.293) and (7.294), we therefore infer (7.262) in the case
V > V (+). Thus, we have established (7.262) for all values of V .

Arguing as for the proof of(7.262), we similarly obtain that, for allU ≥ 0:

∫

{u=U }∩U+
ε;n

r
(Tvv[ fε]

∂vr
+ Tuv[ fε]

−∂ur

)
(U, v) dv

≤ 1

2
max

0≤i≤Nε

{(
exp(eσ−7

ε
)
aεi

}+ 4
Nε−1∑

i=0

μi [n + 1] + 1

2
ρ

1
19
ε . (7.295)

Thus, adding (7.262) and (7.295), we infer (7.257).
We will now proceed to establish (7.258). To this end, let us define the

domains

Q(n)
i =

({{u ≤ v
(n)
ε,i + hε,i } ∩ {v ≥ v

(n)
ε,i − hε,i }

}

∪{v ≥ v
(n+1)
ε,i − hε,i

}) ∩ {
v − u ≥ βε,i

} ∩ U+
ε,n, (7.296)
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Fig. 24 The domain Q(n)
i is equal to the union of the beam Vi ∩ U+

ε,n with the darker shaded

region depicted above (where we assumed for simplicity that v(n+1)
ε,0 − hε,0 < u[U+

ε ])

where βε,i are defined by (6.79) (see Fig. 24).

Remark Notice that, for any 0 ≤ i ≤ Nε, the domain Q(n)
i consists of the

region “to the right” of the beam Vi (including Vi ), within the domain U+
ε,n .

Moreover, in view of (7.1), we have

m̃ ≡ 0 on U+
ε;n\ ∪Nε

i=0 Q
(n)
i . (7.297)

(since U+
ε;n\ ∪Nε

i=0 Q(n)
i consists of the single connected component of

U+
ε;n\ ∪Nε

i=0 Vi containing γZ ).
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As a corollary of the bound (6.73) for ∂r and the definition (6.79) of βε,i , we
can bound for any 0 ≤ i ≤ Nε:

inf
Q(n)

i

r ≥ exp(− exp(σ−5
ε ))

ε(i)

√−�
. (7.298)

In view of the relation (6.65) between fε and the fε j ’s, the fact that fε j is

supported on ∪kV(k)
j , the bound (6.73) for ∂r and the bounds (7.11)–(7.12) on

Tμν[ fε j ], we obtain from the relations (2.49)–(2.48) for ∂m̃ (and the fact that
m̃|γZ = 0) that, for any 0 ≤ i ≤ Nε:

sup
Q(n)

i \∪i−1
j=0Q

(n)
j

m̃ ≤ exp(exp(σ−7
ε ))

Nε∑

j=i

aε j
ε( j)

√−�

≤ exp(exp(σ−7
ε ))aεi

ε(i)

√−�
+ exp(exp(σ−8

ε ))
ε(i+1)

√−�
. (7.299)

Combining (7.298) and (7.299), we infer that, for any 0 ≤ i ≤ Nε,

sup
Q(n)

i \∪i−1
j=0Q

(n)
j

2m̃

r
≤ exp(exp(σ−8

ε ))aεi + ε
1
2 . (7.300)

The upper bound (7.258) now follows readily from (7.300), (7.297) and the
fact that

U+
ε;n =

Nε⋃

i=0

(
Q(n)

i \ ∪i−1
j=0 Q

(n)
j

)
∪
(
U+

ε;n\ ∪Nε

i=0 Q
(n)
i

)
. (7.301)

The upper bound (7.259) follows similarly from (7.300) and (7.297), after
noting that

(Q(n)
i \ ∪i−1

k=0 Q
(n)
k ) ∩ {u ≤ v

(n)
ε, j + hε, j } = ∅ for all j < i ≤ Nε.

The proof of the estimates (7.257), (7.258) and (7.259) (with δε, h̃ε, j in
place of σε, hε, j ) on T +

ε;n follows in exactly the same way, using (6.78) in

place of (6.73) and replacing all the statements about V(n)
i , E (±), Dr (±) with

the corresponding statements about Ṽ(n)
i , Ẽ (±), D̃r (±), respectively; we will

omit the details. ��

123



A proof of the instability of AdS

8 The first stage of the instability

In this section, we will show that the parameters {aεi }Nε

i=0, appearing in the

definition of the initial data family (r (ε)
/ , (�

(ε)
/ )2; f̄ (ε)

/ ), can be carefully cho-

sen (without violating the smallness condition (6.10)) so that, after ∼ σ
− 3

2
ε

reflections off Iε, the Vlasov beams form a configuration of a particular form;
this configuration will be shown in the next section to guarantee the formation
of a trapped sphere in O(1) retarded time.

In particular, wewill establish the following result (for the definition of v(n)
ε,i ,

hε,i and the domain U+
ε ⊂ U (ε)

max , see Sects. 6.3–6.4; for the definition of the
sequences μi , Ei and Ri , see Sect. 7.3):

Proposition 8.1 For any ε ∈ (0, ε1], there exists a finite sequence {aεi }Nε

i=0 ∈
(0, σε) satisfying (6.10),

max
0≤i≤Nε−1

aεi < exp(− exp(δ−10
ε )) (8.1)

and

aεNε < exp(− exp(σ−9
ε )), (8.2)

such that the following statements hold for the maximal future development
(U (ε)

max ; r, �2, fε) of the initial data set (r (ε)
/ , (�

(ε)
/ )2; f̄ (ε)

/ ) associated to

{aεi }Nε

i=0 (see Definition 6.3):

1. Setting

n+
.= �σ− 3

2
ε  , (8.3)

we have

{
0 < u ≤ v

(n+)

ε,0 − hε,0
} ∩

{

u < v < u +
√

− 3

�
π

}

⊂ U+
ε . (8.4)

2. The quantities μi [n+] (introduced in Definition 7.5) satisfy, for all 0 ≤
j ≤ Nε − 1,

μ j [n+] = δ
− 3

4
ε

Nε

e−2 j
Nε

δ
− 3
4

ε , (8.5)
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and, for j = Nε:

ENε [n+] = exp(− exp(4σ−9
ε ))

ε(Nε)

√−�
. (8.6)

Proof Let us set for convenience

μNε [n] .= 2ρεENε [n]
√−�

ε(Nε)
(8.7)

for any n ∈ N. In this way, the quantities μi [n] are defined for all 0 ≤ i ≤ Nε

(note that Definition 7.5 only defined μi [n] for 0 ≤ i ≤ Nε −1). In particular,
(8.6) becomes equivalent to

μNε [n+] = 2ρε exp(− exp(4σ−9
ε )). (8.8)

Note that (7.147) implies that

μNε [n + 1] = μNε [n] · exp
( Nε−1∑

j=0

μ j [n + 1]
)

(8.9)

for all n ∈ N.
In view of the initial condition (7.146) for μi for 0 ≤ i ≤ Nε − 1 (which,

in particular, expresses μi as a function of Tμν and r along u = v
(0)
ε,0 − h0,ε),

the form (6.17) of f̄ (ε)
/ , the bound (6.26) and the Cauchy stability statement of

Proposition 3.15 applied to (r (ε)
/ , (�

(ε)
/ )2; f̄ (ε)

/ ) (implying, in particular, that
∂vr

1− 1
3�r2

= 1
2 + O(σε) on {0 ≤ u ≤ v

(0)
ε,0 − h0,ε}), we readily infer that, for

any ε ∈ [0, ε1), the quantities {μi [0]}Nε

i=0 uniquely determine {aεi }Nε

i=0 and
vice-versa and, moreover,

C1ρεaεi ≤ μi [0] ≤ C2ρεaεi for all 0 ≤ i ≤ Nε, (8.10)

for some constants C1,C2 > 0 independent of i , ε.
By solving the recursive relation (7.145) for μi [n] backwards in n, for

0 ≤ i ≤ Nε − 1,26 and then solving (8.9) backwards in n for i = Nε, we infer
that, imposing (8.5) and (8.8) as initial conditions in the future, the values of

26 Solving (7.145) backwards in n can be performed inductively in i : For i = 0, μi [n] is
constant in n, while for any i > 0, knowledge of {μī [n̄]}ī≤i−1 for all 0 ≤ n̄ ≤ n completely
determines μi [n̄], for all 0 ≤ n̄ ≤ n, in terms of μi [n].
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{μi [0]}Nε

i=0 are completely determined; thus, {aεi }Nε

i=0 are also uniquely deter-
mined. For this reason, in order establish Proposition 8.1, it suffices to show
the following (in view of (8.10)):

• The finite sequence {μi [0]}Nε

i=0, fixed uniquely by the future conditions
(8.5) and (8.8), satisfies

μi [0] < ρε exp(− exp(2δ−10
ε )) for all 0 ≤ i ≤ Nε − 1, (8.11)

μNε [0] < ρε exp(− exp(2σ−9
ε )) (8.12)

and

Nε∑

i=0

μi [0] ≤ C1σε. (8.13)

• The maximal future development (U (ε)
max ; r, �2, fε) of the initial data set

(r (ε)
/ , (�

(ε)
/ )2; f̄ (ε)

/ ) associated to the finite sequence {aεi }Nε

i=0 (uniquely

determined by {μi [0]}Nε

i=0) satisfies (8.4).

Step 1: Proof of (8.11)–(8.13). The relations (8.5) and (8.8) forμi [n+] readily
imply that

1

4
≤

Nε∑

i=0

μi [n+] ≤ 1. (8.14)

From (7.145) and (8.9) we infer that, for any 0 ≤ i ≤ Nε:

μi [n] ≤ μi [n + 1] (8.15)

(with equality only when i = 0). In particular,

μi [0] ≤ μi [n+] for all 0 ≤ i ≤ Nε. (8.16)

From (8.16), we infer, using (8.5) and (8.8), that

μi [0] ≤ N−1
ε δ

− 3
4

ε ,

μNε [0] ≤ 2ρε exp(− exp(4σ−9
ε )),

from which (8.11) and (8.12) follow readily, in view of the fact that δε �
σε � 1 and Nε = ρ−1

ε exp(eδ−15
ε ).
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Let us define i0 to be the minimum number in the set {0, 1, . . . , Nε} such
that

i0∑

i=0

μi [0] ≥ 1

2
C1σε. (8.17)

Notice that the definition of i0 implies that

i0−1∑

i=0

μi [0] <
1

2
C1σε. (8.18)

Note also that the bound (8.11) (which we already established) implies that,
necessarily,

i0 ≥ 1.

For the proof of (8.13), we will consider two cases, depending on the value
of i0:

• In the case when i0 = Nε, the bound (8.17) trivially implies (8.13).
• In the case when i0 ≤ Nε −1, for any i0+1 ≤ j ≤ Nε −1 and any n ≥ 0,
we can estimate using the recursive formula (7.145), the monotonicity
property (8.15) and the lower bound (8.17):

μ j [n + 1] = μ j [n] exp
(
2

j−1∑

k=0

μk[n + 1]
)

(8.19)

= μ j [0] exp
(
2

n∑

n̄=0

j−1∑

k=0

μk[n̄ + 1]
)

≥ μ j [0] exp
(
2

n∑

n̄=0

i0∑

k=0

μk[n̄ + 1]
)

≥ μ j [0] exp
(
2

n∑

n̄=0

i0∑

k=0

μk[0]
)

≥ μ j [0] exp
(
2

n∑

n̄=0

(
1

2
C1σε)

)

= μ j [0] exp
(
C1σεn

)
.
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Similarly, for j = Nε, we can estimate using (8.9) in place of (7.145):

μNε [n + 1] = μNε [n] exp
( Nε−1∑

k=0

μk[n + 1]
)

(8.20)

= μNε [0] exp
( n∑

n̄=0

Nε−1∑

k=0

μk[n̄ + 1]
)

≥ μNε [0] exp
( n∑

n̄=0

i0∑

k=0

μk[0]
)

= μNε [0] exp
(1
2
C1σεn

)
.

From (8.19) and (8.20) for n = n+ − 1, using also the definition (8.3) of
n+, the upper bound (8.14) and the fact that C1 is an absolute constant, we
obtain that (provided ε1 has been fixed small enough)

Nε∑

j=i0+1

μ j [0] ≤ exp
(
− 1

2
C1σε(n+ − 1)

) Nε∑

j=i0+1

μ j [n+] (8.21)

≤ exp
(
− 1

2
C1σε(n+ − 1)

)

≤ exp
(
− 1

2
C1σ

− 1
2

ε

)

≤ exp
(
− σ

− 1
4

ε

)
.

From (8.18), (8.11) and (8.21) (using also the relation (6.1) between ρε,
δε, σε) , we therefore obtain that

Nε∑

j=0

μ j [0] =
i0∑

j=0

μ j [0] + μi0[0] +
Nε∑

j=i0+1

μ j [0] ≤

≤ 1

2
C1σε + ρε exp(− exp(2δ−10

ε )) + exp
(
− σ

− 1
4

ε

)
≤

≤ C1σε,

hence inferring (8.13).

Step 2: Proof of (8.4). The inclusion (8.4) is equivalent to the bound

v
(n+)

ε,0 − hε,0 < u[U+
ε ], (8.22)
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in view of the form (6.51) of U+
ε . For the sake of contradiction, let us assume

that

u[U+
ε ] ≤ v

(n+)

ε,0 − hε,0. (8.23)

Notice that (8.23) implies (in view of (8.3)) that

u[U+
ε ] � σ

− 3
2

ε√−�
� σ−2

ε√−�
. (8.24)

Hence, Lemma 6.7 implies that at least one of the relations (6.55), (6.56)and
(6.57) holds.

In view of the bound (7.257), we can estimate (using the hypothesis (8.23)):

sup
V≥0

∫

{v=V }∩U+
ε

r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du (8.25)

+ sup
U≥0

∫

{u=U }∩U+
ε

r
(Tvv[ fε]

∂vr
+ Tuv[ fε]

−∂ur

)
(U, v) dv

= max
n≤n+−1

{
sup
V≥0

∫

{v=V }∩U+
ε;n

r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du

+ sup
U≥0

∫

{u=U }∩U+
ε;n

r
(Tvv[ fε]

∂vr
+ Tuv[ fε]

−∂ur

)
(U, v) dv

}

≤ max
n≤n+−1

{
8
Nε−1∑

i=0

μi [n + 1] + max
0≤i≤Nε

{(
exp(eσ−7

ε )
)
aεi

}+ ρ
1
19
ε

}
.

Using the bounds (8.1) and (8.2) for aεi , the relation (8.5) for μi [n+], as well
as the fact thatμi [n] is increasing in n for all 0 ≤ i ≤ Nε, we infer from (8.25)
that

sup
V≥0

∫

{v=V }∩U+
ε

r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du (8.26)

+ sup
U≥0

∫

{u=U }∩U+
ε

r
(Tvv[ fε]

∂vr
+ Tuv[ fε]

−∂ur

)
(U, v) dv

≤ 8
Nε−1∑

i=0

{
μi [n+] + exp(eσ−7

ε
) · exp(e−σ−9

ε
)+ ρ

1
19
ε

}

≤ 8
Nε−1∑

i=0

δ
− 3

4
ε

Nε

e−2 j
Nε

δ
− 3
4

ε + O(σε) ≤ 20.
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Furthermore, we infer from (7.258) (using the bounds (8.1) and (8.2) for aεi )
that

sup
U+

ε

2m̃

r
≤ max

n≤n+−1

{
sup
U+

ε;n

2m̃

r

}
(8.27)

≤ max
0≤i≤Nε

{(
exp(eσ−8

ε
)
aεi

}+ ε
1
2

≤ exp(eσ−8
ε
) · exp(e−σ−9

ε
)+ ε

1
2

≤ 1

2
η0.

In view of the estimates 8.26 and 8.27, we therefore deduce that none of the
relations (6.55), (6.56) and (6.57) can hold on U+

ε , which is a contradiction.
Hence, (8.22) holds.

Therefore, the proof of Proposition 8.1 is complete. ��

9 The final stage of the instability: formation of a black hole region

In this section, we will show that, with the initial data parameters {aεi }Nε

i=0
chosen as dictated by Proposition 8.1, the maximal future development
(U (ε)

max ; r, �2, fε) of the associated initial data set (r (ε)
/ , (�

(ε)
/ )2; f̄ (ε)

/ ) satis-
fies (4.2). Since (4.1) was already established in Lemma 6.5, this section will
complete the proof of Theorem 1.

9.1 Energy growth for the final beam

In order to complete the proof of Theorem 1, our aim is to show that a trapped
sphere is formed along the beam V(n+)

Nε↖, after its interaction with the beams

V(n+)

i↗ , i ≤ Nε − 1. To this end, in this section, we will first establish the
following result regarding the increase in the energy content of the Nε-th
Vlasov beam occuring through these interactions:

Lemma 9.1 For any ε ∈ (0, ε1], let {aεi }Nε

i=0 and n+ be as in Proposition

8.1, and let (U (ε)
max ; r, �2, fε) be the maximal future development of the initial

data set (r (ε)
/ , (�

(ε)
/ )2; f̄ (ε)

/ ) associated to {aεi }Nε

i=0. Then, the following (u, v)-

region is contained in the domain T +
ε ⊂ U (ε)

max (see Sect. 6.3 and, in particular,
(6.50) for the definition of the domain T +

ε ):

{
0 < u ≤ v

(n+)

ε,Nε−1 + h̃ε,Nε−1
} ∩

{

u < v < u +
√

− 3

�
π

}

⊂ T +
ε (9.1)
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(see (6.79) for the definition of v
(n)
ε,i and (6.105) for the definition of h̃ε,i .)

Furthermore, we have

Ẽ (+)
↖ [n+; Nε, Nε − 1] ≥ δ

− 1
2

ε

ε(Nε)

√−�
. (9.2)

Proof Before establishing (9.1) and (9.2), we will first show that

μ j [n+ + 1] = N−1
ε δ

− 3
4

ε for any 0 ≤ j ≤ Nε − 1. (9.3)

The recursive formula (7.145) yields that, for all 0 ≤ j ≤ Nε − 1:

μ j [n+ + 1] = μ j [n+] · exp
(
2

j−1∑

k=0

μk[n+ + 1]
)
, (9.4)

while, in view of the relation (8.5), we have for all 0 ≤ j ≤ Nε − 1:

μ j [n+] = δ
− 3

4
ε

Nε

e−2 j
Nε

δ
− 3
4

ε . (9.5)

We will show (9.3) by arguing inductively in j :

• For j = 0, (9.4) and (9.5) imply that

μ0[n+ + 1] = μ0[n+] = N−1
ε δ

− 3
4

ε .

• Assuming that, for some 1 ≤ j0 ≤ Nε − 1, the relation (9.3) holds for all
0 ≤ j ≤ j0 − 1, we calculate from (9.4) and (9.5) for j = j0 that

μ j0[n+ + 1] = μ j0[n+] · exp
(
2

j0−1∑

k=0

μk[n+ + 1]
)

= δ
− 3

4
ε

Nε

e−2 j0
Nε

δ
− 3
4

ε · exp
(
2

j0−1∑

k=0

(N−1
ε δ

− 3
4

ε )
)

= δ
− 3

4
ε

Nε

e−2 j0
Nε

δ
− 3
4

ε · e+2 j0
Nε

δ
− 3
4

ε

= δ
− 3

4
ε

Nε

,

i.e. (9.3) also holds for j = j0. Therefore, (9.3) holds for all 0 ≤ j ≤ Nε−1.
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A proof of the instability of AdS

We will now proceed to show the inclusion (9.1). In view of the form (6.51)
of the domain T +

ε , (9.1) is equivalent to the bound

v
(n+)

ε,Nε−1 + h̃ε,Nε−1 < u[T +
ε ]. (9.6)

In order to establish (9.6), we will assume, for the sake of contradiction, that

u[T +
ε ] ≤ v

(n+)

ε,Nε−1 + h̃ε,Nε−1. (9.7)

In view of the inclusion (8.22) for U+
ε and the fact that u[U+

ε ] < u[T +
ε ], the

bound (9.6) in fact implies that

v
(n+)

ε,0 − hε,0 < u[T +
ε ] ≤ v

(n+)

ε,Nε−1 + h̃ε,Nε−1. (9.8)

In view of (9.7) and the definition (8.3) of n+, we can bound

u[T +
ε ] � σ−2

ε√−�
. (9.9)

As a consequence of Lemma 6.7, we therefore infer that one of the following
conditions holds:

lim sup
p→{u=u[T +

ε ]}

2m̃

r
(p) = η0, (9.10)

lim sup
u→u[T +

ε ]

∫ u+
√
− 3

�
π

u
r
(Tvv[ fε]

∂vr
+ Tuv[ fε]

−∂ur

)
(u, v) dv = δ−1

ε , (9.11)

or

sup
v∈(0,u[T +

ε ]+
√
− 3

�
π)

∫ min{v,u[T +
ε ]}

max{0,v−
√
− 3

�
π}

r
(Tuv[ fε]

∂vr
+ Tuu[ fε]

−∂ur

)
(u, v) du = δ−1

ε .

(9.12)

In view of the bounds (9.8) and (8.1), Lemma 7.8 (and, in particular, the
estimate (7.259) for T +

ε;n , δε in place of U+
ε;n , σε) implies that

sup
T +

ε;n+∩{u≤v
(n+)

ε,Nε−1+h̃ε,Nε−1}

2m̃

r
≤ max

0≤i≤Nε−1

{(
exp(eδ−8

ε
)
aεi

}

+ε
1
2 ≤ exp(e−δ−9

ε
) ≤ 1

2
η0. (9.13)
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Furthermore, the bound (7.257) of Lemma 7.8 (with T +
ε;n , δε in place of U+

ε;n ,
σε), together with (8.1), (9.3) and the fact that μi [n] is increasing in n for all
0 ≤ i ≤ Nε − 1, imply that

sup
V≥0

∫

{v=V }∩T +
ε;n

r
(Tuu[ fε]

−∂ur
+ Tuv[ fε]

∂vr

)
(u, V ) du (9.14)

+ sup
U≥0

∫

{u=U }∩T +
ε;n

r
(Tvv[ fε]

∂vr
+ Tuv[ fε]

−∂ur

)
(U, v) dv

≤ 8
Nε−1∑

i=0

μi [n+ + 1] + max
0≤i≤Nε

{(
exp(eδ−7

ε
)
aεi

}+ ρ
1
19
ε

≤ 8Nε · N−1
ε δ

− 3
4

ε + exp(e−δ−9
ε
)

≤ 1

2
δ−1
ε .

The bounds (9.13) and (9.14) readily imply that none of the relations (9.10)–
(9.12) can hold, which is a contradiction. Hence, (9.6) (and, therefore, (9.1))
holds.

We are finally ready to establish (9.2): From Proposition 7.6 (in particular,
the relation (7.158)), the relations (8.6) for ENε [n+] and (9.3) for μ j [n+ + 1],
as well as the recursive formula (7.147) for ENε [n], we obtain that

Ẽ (+)
↖ [n+; Nε, Nε − 1] = ENε [n+ + 1] + O

(
ρ

1
17
ε

ε(Nε)

√−�

)
(9.15)

= ENε [n+] · exp
( Nε−1∑

j=0

μ j [n+ + 1]
)
+ O

(
ρ

1
17
ε

ε(Nε)

√−�

)

= exp(− exp(4σ−9
ε ))

ε(Nε)

√−�
· exp

(
Nε · N−1

ε δ
− 3

4
ε

)

+ O
(
ρ

1
17
ε

ε(Nε)

√−�

)

=
(
exp

(
δ
− 3

4
ε − exp(4σ−9

ε )
)+ O(ρ

1
17
ε )

) ε(Nε)

√−�
.

The bound (9.2) now follows readily from (9.15), in view of the relations (6.1)
between ρε, σε and δε. ��
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A proof of the instability of AdS

9.2 Trapped surface formation and completion of the proof of
Theorem 1

In this section, we will show that the energy content of the Nε-th beam V(n+)

Nε↖,
after its interaction with the rest of the beams at the final step of the evolution
(which was studied in the previous section), is sufficiently high for a trapped
sphere to form before V(n+)

Nε↖ reaches its minimum distance from the axis γZ .
This statement will thus conclude the proof of Theorem 1.

In particular, we will show the following:

Proposition 9.2 For any ε ∈ (0, ε1], let {aεi }Nε

i=0, (U (ε)
max ; r, �2, fε) and n+

be as in Proposition 8.1 and Lemma 9.1. Then, setting

Bε
.= {

v
(n+)

ε,Nε−1 + h̃ε,Nε−1 ≤ u ≤ v
(n+)

ε,Nε
− δ

− 1
4

ε hε,Nε

}
(9.16)

∩ {
v ≤ v

(n+)

ε,Nε
+ exp(eσ−7

ε )hε,Nε

} ∩ {
u < v

}

(where hε,Nε is defined by (6.79) and h̃ε,Nε−1 is defined by (6.105)), there
exists a point (u†, v†) ∈ Bε ∩ U (ε)

max such that

2m

r
(u†, v†) > 1. (9.17)

In particular, (U (ε)
max ; r, �2, fε) contains a trapped sphere.

Proof In order to establish (9.17) for some (u†, v†) ∈ Bε ∩ U (ε)
max , we will

assume for the sake of contradiction that

2m

r
≤ 1 everywhere on Bε ∩ U (ε)

max . (9.18)

Note that the bound (9.18) implies, in view of the inequality

∂u

( �2

−∂ur

)
≤ 0 (9.19)

(following readily from the constraint equation (2.38)), the relation (2.9) and
the fact that �2 is smooth on U (ε)

max , that

∂ur < 0 ≤ ∂vr on Bε ∩ U (ε)
max . (9.20)

Furthermore, integrating the inequality (9.19) in u from u = v
(n+)

ε,0 − hε,0 and

using (8.4) and (6.73) at u = v
(n+)

ε,0 − hε,0, we obtain the following one-sided
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bound:

sup
Bε∩U (ε)

max

�2

−∂ur
≤ max

u=v
(n+)

ε,0 −hε,0

�2

−∂ur
≤ eσ−4

ε . (9.21)

Note also that, in view of (9.20) and the bound (6.78) for {u = v
(n+)

ε,Nε−1 +
h̃ε,Nε−1} ∩ Bε (which is contained in T +

ε , in view of (9.1)), we can estimate

sup
Bε

(−�r2) = −�r2|
(u,v)=

(
v

(n+)

ε,Nε−1+h̃ε,Nε−1,v
(n+)

ε,Nε−1+exp(eσ
−7
ε )hε,Nε

) ≤ ε

(9.22)

and, hence, (9.18) also implies (in view of (2.44)) that

2m̃

r
≤ 1+ ε everywhere on Bε ∩ U (ε)

max . (9.23)

Among all components fεi of the Vlasov field fε (see the relation (6.65)),
only fεNε has non-trivial support on {u = v

(n+)

ε,Nε−1+ h̃ε,Nε−1} ∩Bε ∩U (ε)
max (as

a consequence of Lemma 7.1 on the support of fεi and (9.1)). Hence, by the
domain of dependence property, all the fεi ’s for i �= Nε vanish on Bε ∩U (ε)

max ,
i.e.:

fε|Bε∩U (ε)
max

= aεNε fεNε |Bε∩U (ε)
max

. (9.24)

Let γ ⊂ U (ε)
max be a future directed null geodesic which is maximally

extended through reflections off Iε, in accordance with Definition 2.3 of [43]
(see also the statement of Corollary 5.2), such that (γ, γ̇ ) lies in the support of
fεNε (where γ̇ denotes the derivative with respect to the fixed affine parametri-
sation of each maximal geodesic component γn of γ = ∪nγn). In view of the
bound (7.1) for the support of fεNε and the inclusion (8.4), we can trivially

estimate that, at the point of γ where u = v
(n+)

ε,0 − hε,0:

v|
γ∩{u=v

(n+)

ε,0 −hε,0} ≥ v
(n+)

ε,Nε
− hε,Nε . (9.25)

Since γ traces out a causal curve in U (ε)
max (and, in particular, the coordinate

function v is non-decreasing along γ ), we infer from (9.25) that

v|γ∩Bε ≥ v
(n+)

ε,Nε
− hε,Nε . (9.26)
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A proof of the instability of AdS

Fig. 25 In the figure above, the domain Bε consists of the two darker shaded regions Bε \ B∗
ε

and B∗
ε , while th region Dε is the blue-shaded triangle (containing Bε \ B∗

ε ). A fundamental
step in the proof of Proposition 9.2 consists of showing that the physical-space support of the

Vlasov field fεNε
in the region

{
r ≥ δ

− 1
4

ε
ε(Nε )√−�

}
is contained in a domain B�

ε ⊂ B∗
ε and that

the region Dε is vacuum (colour figure online)

Therefore:

supp( fεNε ) ∩ Bε ⊂ {v ≥ v
(n+)

ε,Nε
− hε,Nε}. (9.27)

In view of(9.24) and (9.27), we obtain that

fε ≡ 0 on
(
Bε\B∗

ε

) ∩ U (ε)
max , (9.28)

where

B∗
ε

.= {v ≥ v
(n+)

ε,Nε
− hε,Nε} ∩ Bε

(see Fig. 25). By the domain of dependence property, we therefore infer that
the solution (r, �2, fε) extends to the whole triangle

Dε
.= {v ≤ v

(n+)

ε,Nε
− hε,Nε} ∩ {u ≥ v

(n+)

ε,Nε−1 + h̃ε,Nε−1} ∩ {u < v},
i.e. that

Dε ⊂ U (ε)
max ,

123



G. Moschidis

and that Dε is a vacuum region, i.e.

fε|Dε = 0. (9.29)

In view of (9.29), we readily infer that ∂vr > 0 on Dε, and, therefore:

inf
B∗

ε∩{v=v
(n+)

ε,Nε
−hε,Nε }

r > 0.

Thus, using (9.20), we infer that

0 < inf
B∗

ε∩{v=v
(n+)

ε,Nε
−hε,Nε }

r ≤ r |B∗
ε∩U (ε)

max
(9.30)

≤ max
B∗

ε∩{u=v
(n+)

ε,Nε−1+h̃ε,Nε−1}
r < +∞.

The bounds (9.18) and (9.30) and the extension principle of Proposition 3.12
then readily imply that the solution extends on the whole of the domain B∗

ε ,
i.e.

B∗
ε ⊂ U (ε)

max . (9.31)

The following estimate for the support of the Vlasov field fεNε will be
crucial for the proof of Proposition 9.2:

supp( fεNε ) ∩ Bε ∩ {
r ≥ δ

− 1
4

ε

ε(Nε)

√−�

} ⊂ {
(u, v) ∈ B�

ε

}
, (9.32)

where

B�
ε

.= {
v

(n+)

ε,Nε
− hε,Nε ≤ v ≤ v

(n+)

ε,Nε
+ 1

2
exp(eσ−7

ε )hε,Nε

}
(9.33)

∩ {
v

(n+)

ε,Nε−1 + h̃ε,Nε−1 ≤ u ≤ v
(n+)

ε,Nε
− δ

− 1
4

ε hε,Nε

} ⊂ B∗
ε .

This will be established by Lemma 9.3.

Remark Note that the bound (9.32) does not follow from Lemma 7.1, since
we do not expect the region B�

ε to lie within the domains U+
ε or T +

ε , where
2m
r ≤ η0 (in fact, our aim is to show that 2m

r exceeds 1 at some point on B�
ε).

However, even when restricted to Bε ∩ {u = v
(n+)

ε,Nε−1 + h̃ε,Nε−1}, (9.32) is a
partial improvement of the bounds provided by Lemma 7.1, since Bε ∩ {u =
v

(n+)

ε,Nε−1+ h̃ε,Nε−1} is contained in T +
ε , but is not necessarily contained in U+

ε ,
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A proof of the instability of AdS

Fig. 26 Schematic depiction of the domains Dε and B�
ε ⊂ B∗

ε . The timelike curve Cε
.= {r =

δ
− 1

4
ε

ε(Nε )√−�
} does not necessarily have to intersect the region B�

ε . In the case when the future

boundary segment {u = v
(n+)
ε,Nε

− δ
− 1

4
ε hε,Nε

}∩B�
ε of B�

ε lies to the left of the curve Cε , the point
(u�, v�) lies on Cε

and hence Lemma 7.1 can only guarantee bounds for supp( fεNε ) in terms of
h̃εNε .

Let us assume, for a moment, that Lemma 9.3 (and, thus, (9.32)) has been
established, and let us set

(u�, v�)
.= future endpoint of the curve

{
v = v

(n+)

ε,Nε−1 +
1

2
exp(eσ−7

ε )hε,Nε

}

∩Bε ∩ {
r ≥ δ

− 1
4

ε

ε(Nε)

√−�

}
. (9.34)

(see also Fig. 26).
In view of (9.24), the bound (9.32) on the support of fεNε implies that

fε ≡ 0 on
{
v ≥ v

(n+)

ε,Nε−1 +
1

2
exp(eσ−7

ε )hε,Nε

} ∩ Bε ∩ U (ε)
max ,
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and hence m̃ is constant on
{
v ≥ v

(n+)

ε,Nε−1+ 1
2 exp(e

σ−7
ε )hε,Nε

}∩Bε∩U (ε)
max . This

fact, combined with (9.29) and the definition (6.96) of Ẽ (+)
↖ [n+; Nε, Nε − 1]

implies that

m̃(u�, v�) = Ẽ (+)
↖ [n+; Nε, Nε − 1]. (9.35)

The definition (9.34) of (u�, v�) implies that:

• Either

r(u�, v�) = δ
− 1

4
ε

ε(Nε)

√−�
, (9.36)

• Or

(u�, v�) =
(
v

(n+)

ε,Nε−1 − δ
− 1

4
ε hε,Nε , v

(n+)

ε,Nε−1 +
1

2
exp(eσ−7

ε )hε,Nε

)
, (9.37)

in which case, by integrating the bound

∂vr = ∂vr

1− 2m
r

· (1− 2m̃

r
− 1

3
�r2

) ≤ 2eσ−4
ε

(following from (9.21) and (9.22)) along u = u� from v = u� up to v = v�,
we can estimate

r(u�, v�) ≤ exp(eσ−8
ε )δ

− 1
4

ε

ε(Nε)

√−�
. (9.38)

Since (9.38) is weaker than (9.36), we infer that, in any case, (9.38) always
holds for (u�, v�). Combining (9.35), (9.38), (9.22) and the lower bound (9.2)
for Ẽ (+)

↖ [n+; Nε, Nε − 1], we therefore calculate (using the relation (6.1)
between σε and δε) that

2m

r
(u�, v�) = (2m̃

r
− 1

3
�r2

)
(u�, v�)

= 2Ẽ (+)
↖ [n+; Nε, Nε − 1]

r(u�, v�)
+ O(ε)

≥ δ
− 1

2
ε

exp(eσ−8
ε )δ

− 1
4

ε

+ O(ε)

= exp(−eσ−8
ε )δ

− 1
4

ε + O(ε)
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≥ δ
− 1

8
ε

> 1,

which is a contradiction, in view of our assumption (9.18). Thus, we infer that
(9.18) cannot hold, i.e. that there exists some (u†, v†) ∈ Bε ∩ U (ε)

max for which
(9.17) holds.

This completes the proof of Proposition 9.2. ��
Lemma 9.3 The support of the Vlasov field fεNε inside the rectangle Bε sat-
isfies

supp( fεNε |Bε ) ∩
{
r ≥ δ

− 1
4

ε

ε(Nε)

√−�

} ⊂ {
(u, v) ∈ B�

ε

}
, (9.39)

Proof Let γ be any affinely parametrised, future directed, null geodesic γ

(which is maximally extended through reflections off I) in the support of
fεNε . The definition (6.7) of F

(ε)
Nε

and the relation (6.64) between F (ε)
Nε

and the
initial data for fεNε implies that the angular momentum l of γ satisfies

2
ε(Nε)

√−�
≤ l ≤ 6

ε(Nε)

√−�
. (9.40)

In view of (9.27), in order to show (9.39), it suffices to show that (Fig. 27)

max
{
v(p) : p ∈ γ ∩ Bε ∩ {

r ≥ δ
− 1

4
ε

ε(Nε)

√−�

}}

≤ v
(n+)

ε,Nε−1 +
1

2
exp(eσ−7

ε )hε,Nε . (9.41)

Applying Lemma 7.1 for i = Nε and using (8.4) and (6.73) we infer that,
at the point

p0 = (v
(n+)

ε,0 − hε,0, v0)
.= γ ∩ {u = v

(n+)

ε,0 − hε,0},
we can estimate

∣∣v(n+)

ε,Nε
− v0

∣∣ ≤ hε,Nε , (9.42)

exp(−σ−6
ε ) ≤ �2(γ̇ u + γ̇ u)

∣
∣
p0

≤ exp
(
exp(σ−4

ε )
)

(9.43)

and

γ̇ v

γ̇ u

∣
∣∣
p0

≤ exp
(
exp(σ−4

ε )
)2l2

r2

∣
∣∣
p0

≤ ε
1
2 (9.44)
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Fig. 27 Schematic depiction
of a null geodesic γ in the
support of fεNε

. In order to
establish the estimate (9.41),
we will integrate the
geodesic equation starting
from the point p0 (which lies
in the region U+

ε ), i.e. before
the last interaction of γ with

the beams V(n+)
i↗ ,

0 ≤ i ≤ Nε − 1

(where, for 9.44, we made use of the fact that ε(Nε)/r |p0 � ε(Nε)/ε(0) < ε).

Furthermore, using (6.73), (7.13) and the form (6.80) ofV(n+)

Nε↖, we can estimate

for any v̄ ∈ [v0, v0 + exp(eσ−7
ε )hε,Nε ]:

∣
∣∣
∫ v̄

v0

(
∂v log(�

2) − 2
∂vr

r

)
(v

(n+)

ε,0 − hε,0, v) dv

∣
∣∣

≤ exp
(
exp(σ−6

ε )
)√−�

|v̄ − v0|
ε(Nε)

. (9.45)

We will establish (9.41) by continuity: We will show that, for any ū ∈
[v(n+)

ε,0 − hε,0, v
(n+)

ε,Nε−1 − δ
− 1

4
ε hε,Nε ] such that

v(p) ≤ v0 + 1

4
exp(eσ−7

ε )hε,Nε for all p ∈ γ ∩ {
v

(n+)

ε,0 − hε,0 ≤ u ≤ ū
}

∩{r ≥ δ
− 1

4
ε

ε(Nε)

√−�

}}
(9.46)
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(note that (9.46) holds trivially when ū = v
(n+)

ε,0 −hε,0), the following stronger
bound actually holds:

v(p) ≤ v0 + 1

8
exp(eσ−7

ε )hε,Nε for all p ∈ γ ∩ {
v

(n+)

ε,0 − hε,0 ≤ u ≤ ū
}

∩{r ≥ δ
− 1

4
ε

ε(Nε)

√−�

}}
. (9.47)

Let ū ∈ [v(n+)

ε,0 − hε,0, v
(n+)

ε,Nε−1 − δ
− 1

4
ε hε,Nε ] satisfy (9.46). Then, for any

u′ ∈ [v(n+)

ε,0 − hε,0, ū], setting

v′ = sup
{
v(p) : p ∈ γ ∩ {

v
(n+)

ε,0 − hε,0 ≤ u ≤ u′}

∩{r ≥ δ
− 1

4
ε

ε(Nε)

√−�

}}
(9.48)

and applying (2.50) for u1(v) = v
(n+)

ε,0 − hε,0, we obtain:

∣
∣∣ log

(
�2γ̇ u)|v=v′ − log

(
�2γ̇ u)|v=v0

∣
∣∣

≤
∣
∣∣
∫ v′

v0

∫ u(γ (sv))

v
(n+)

ε,0 −hε,0

(1
2

6m̃
r − 1

r2
�2 − 24πTuv

)
du dv

∣
∣∣ (9.49)

+
∣∣
∣
∫ v′

v0

(
∂v log(�

2) − 2
∂vr

r

)
(u1(v), v) dv

∣∣
∣.

In view of the relation (2.49) for m̃, the upper bound (9.21) and the fact that
∂um̃ ≤ 0 (which follows readily from (2.49) and (9.20)), we can estimate on
Bε:

24πTuv ≤ 3
�2

−∂ur

−∂um̃

r2
(9.50)

≤ 3eσ−4
ε

−∂um̃

r2

= 3eσ−4
ε

(
− ∂u

( m̃
r2
)+ 2

m̃

r3
(−∂ur)

)
.

Furthermore, from the relation (2.9) and the upper bound (9.21), we can esti-
mate on Bε:

�2 ≤ 4eσ−4
ε (−∂ur). (9.51)
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Using the bounds (9.23), (9.45), (9.50) and (9.51) to estimate the right hand
side of (9.49) (integrating, also, in u for the ∂u

( m̃
r2
)
term), we obtain:

∣
∣
∣ log

(
�2γ̇ u)|v=v′ − log

(
�2γ̇ u)|v=v0

∣
∣
∣

≤
∫ v′

v0

∫ u(γ (sv))

v
(n+)

ε,0 −hε,0

(1
2

6m̃
r + 1

r2
�2

)
du dv + 24π

∫ v′

v0

∫ u(γ (sv))

v
(n+)

ε,0 −hε,0

Tuv du dv (9.52)

+
∣
∣
∣
∫ v′

v0

(
∂v log(�

2) − 2
∂vr

r

)
(u1(v), v) dv

∣
∣
∣

≤ eσ−5
ε

∫ v′

v0

∫ u(γ (sv))

v
(n+)

ε,0 −hε,0

(−∂ur)

r2
du dv − 3eσ−4

ε

∫ v′

v0

∫ u(γ (sv))

v
(n+)

ε,0 −hε,0

∂u
( m̃
r2
)
du dv

+
∣
∣
∣
∫ v′

v0

(
∂v log(�

2) − 2
∂vr

r

)
(u1(v), v) dv

∣
∣
∣

≤ eσ−5
ε

1

r |γ∩{v=v′}
|v′ − v0| + exp

(
exp(σ−6

ε )
)√−�

|v′ − v0|
ε(Nε)

.

In view of the definition (9.48) of v′ (and, in particular, the fact that r ≥
δ
− 1

4
ε

ε(Nε)√−�
at γ ∩ {v = v′}), from (9.52) we obtain that:

∣
∣∣ log

(
�2γ̇ u)|v=v′ − log

(
�2γ̇ u)|v=v0

∣
∣∣

≤ exp
(
exp(2σ−6

ε )
)√−�

|v′ − v0|
ε(Nε)

. (9.53)

In view of (9.43) and assumption (9.46), from (9.53) we infer that

�2γ̇ u|v=v′ ≥ exp
(
− exp

(
exp(σ−8

ε )
)
. (9.54)

Furthermore, using the null-shell relation (2.19) for γ , the relation (2.9) for
�2, the upper bounds (9.18) and (9.21) and the lower bound (9.54), we can

readily estimate (using also the fact that r ≥ δ
− 1

4
ε

ε(Nε)√−�
at γ ∩ {v = v′}, as a

consequence of (9.46)):

∂vr · γ̇ v

−∂ur · γ̇ u

∣∣
v=v′ = 1

4

(
1− 2m

r
)
( �2

−∂ur

)2 l2

r2
1

(�2γ̇ u)2

∣∣
∣
v=v′

≤ exp
(
exp

(
exp(σ−9

ε )
)
δ
1
2
ε ≤ δ

1
4
ε . (9.55)
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In particular, (9.55) implies that the integration forms dr and du along γ satisfy
at v = v′:

dr |γ∩{v=v′} =
(
∂ur + γ̇ v

γ̇ u
∂vr

)
du|γ∩{v=v′}

= ∂ur(1+ O(δ
1
4
ε ))du|γ∩{v=v′}. (9.56)

Using the relation (2.19) for γ as well as the bounds (9.21), (9.54), (9.55)
and (9.56), we can readily estimate that, for all p ∈ γ ∩ {

v
(n+)

ε,0 − hε,0 ≤ u ≤
ū
} ∩ {

r ≥ δ
− 1

4
ε

ε(Nε)√−�

}}
:

v(p) − v0 ≤
∫ ū

v
(n+)

ε,0 −hε,0

�2γ̇ v

�2γ̇ u
(su) du (9.57)

=
∫ ū

v
(n+)

ε,0 −hε,0

�2l2

r2
1

(�2γ̇ u)2
(su) du

≤ exp
(
2 exp

(
exp(σ−8

ε )
) ∫ ū

v
(n+)

ε,0 −hε,0

�2l2

r2

∣∣
∣
γ (su)

du

≤ exp
(
4 exp

(
exp(σ−8

ε )
) ∫

γ∩{v(n+)

ε,0 −hε,0≤u≤ū}
l2

r2
�2

−∂ur
dr

≤ exp
(
exp

(
exp(σ−9

ε )
) ∫

γ∩{v(n+)

ε,0 −hε,0≤u≤ū}
l2

r2
dr

≤ exp
(
exp

(
exp(σ−9

ε )
) l2

inf
γ∩{v(n+)

ε,0 −hε,0≤u≤ū} r

≤ δ
1
8
ε

ε(Nε)

√−�
,

where, in passing to the last line of (9.57), wemade use of (9.40) and the bound

r ≥ δ
− 1

4
ε

ε(Nε)√−�
on γ ∩ {v(n+)

ε,0 − hε,0 ≤ u ≤ ū} (following from (9.46)). From
(9.57), the bound (9.47) follows readily, in viewof the relation (6.1) betweenσε

and δε. Thus, by continuity, we have established (9.41) and, therefore, (9.39).
Thus, the proof of Lemma 9.3 (and, thus, Proposition 9.2) has been completed.
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8. Bizoń, P., Chmaj, T., Schmidt, B.: Critical behavior in vacuum gravitational collapse in 4
+ 1 dimensions. Phys. Rev. Lett. 95, 071102 (2005)
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