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Abstract
We present a study on planar equilibria of a terminally loaded elastic rod wrapped around
a rigid circular capstan. Both frictionless and frictional contact between the rod and the
capstan are considered. We identify three cases of frictionless contact – namely where the
rod touches the capstan at one point, along a continuous arc, and at two points. We show
that, in contrast to a fully flexible filament, an elastic rod of finite length wrapped around
a capstan does not require friction to support unequal loads at its two ends. Furthermore,
we classify rod equilibria corresponding to the three aforementioned cases in a limit where
the length of the rod is much larger than the radius of the capstan. In the same limit, we
incorporate frictional interaction between the rod and the capstan, and compute limiting
equilibria of the rod. Our solution to the frictional case fully generalizes the classic capstan
problem to include the effects of finite thickness and bending elasticity of a flexible filament
wrapped around a circular capstan.

Keywords The capstan equation · Bending elasticity · Contact · Friction
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1 Introduction

The classic capstan problem in mechanics comprises a fully flexible filament wrapped
around a rigid circular capstan (Fig. 1a), with the frictional interaction between them gov-
erned by Coulomb’s inequality of static friction. The problem entails computing the maxi-
mum possible output load FL that the filament can sustain at one end, for a prescribed input
load F0 at the other. The two loads are related by the well known capstan equation

FL = F0e
μφ , (1)

where μ is the coefficient of static friction between the filament and the capstan, and φ is
the wrap angle (Fig. 1a) of the end loads.
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Fig. 1 (a) A thin flexible filament with no bending elasticity wrapped around a circular capstan. The tangents
at s = 0 and s = L remain aligned with the tangents at s = s1 and s = s2, respectively. This ensures that the
contact angle φc equals the prescribed wrap angle φ. (b) An elastic rod of finite thickness wrapped around
a circular capstan. The bending elasticity of the rod causes the tangents at s = s1 and s = s2 to deviate from
the tangents at s = 0 and s = L, respectively. As a result, the contact angle φc has a complicated dependence
on the wrap angle φ, and the end loads F0 and FL

The classic capstan problem is often introduced in undergraduate mechanics to demon-
strate the role of friction in limiting equilibrium of flexible bodies [1–4]. In addition to its
pedagogical significance, the problem has found relevance in several diverse domains of en-
gineering, such as textile engineering [5–9], theory of power transmission by belts [10–16],
design of surgical robots [17–19], analysis of musical instruments [20], and even the me-
chanics of the DNA molecule [21]. Despite its wide use in engineering design with conser-
vative values of the friction coefficient [10], it has long been known that equation (1) is not
adequately ratified by experiments [5–7]. Workers in the field have typically attributed this
discrepancy to primarily two reasons: i) most materials do not obey Coulomb’s inequality
of static friction [22], and ii) the bending elasticity of the filament is completely ignored in
the derivation of equation (1) [6]. The main objective of this article is to remedy the latter
shortcoming of the classical theory, by incorporating bending elasticity of the filament into
the analysis.

Some of the earliest works on including bending elasticity of the filament in the capstan
problem was done by I.M. Stuart [23]. He recognized that bending elasticity would cause the
filament to bow out near the contact boundaries (points s1 and s2 in Fig. 1b). Consequently,
computing the contact angle φc for such a filament becomes a non-trivial task, unlike in the
classic problem where φc is easily shown to be equal to the prescribed wrap angle φ of the
end forces (Fig. 1a). Notwithstanding this realization, Stuart does not attempt to compute
the unknown contact region (quantified by φc) in [23], and instead formulates his theory
with φc prescribed. Subsequent attempts to generalize the capstan problem, such as those of
Groseberg and Plate [6], McGee [7], Beflosky [10], Jung et al. [24, 25], and Gao et al. [9],
have also circumvented this issue by prescribing the contact angle φc instead of the wrap
angle φ.

Another critical consequence of incorporating bending elasticity of the filament in the
capstan problem, also pointed out by Stuart in [23], is the possible occurrence of point
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reaction forces at the contact boundaries [26, 27]. Any such forces would induce jumps in the
internal force of the rod, and may contribute significantly to the computation of the output
load FL. While some authors, such as Stuart [23], Groseberg and Plate [6], and McGee [7],
have considered point forces at the contact boundaries in their models, those considerations
have largely been ad hoc. Other authors, such as Beflosky [10, 12], Jung et al. [24, 25], and
Gao et al. [9], have altogether ignored the possibility of point reaction forces at the contact
boundaries.

In this article, we generalize the classic capstan problem by treating the filament as an
elastic rod of finite thickness. We refer to this system as the generalized capstan problem,
where we study both frictionless and frictional contact between the rod and the capstan.
Contrary to the approaches taken in the literature on the problem, we treat the two ends
(i.e., points s1 and s2 in Fig. 1b) of the contact region as free boundaries, namely boundaries
whose locations cannot be prescribed a priori, but must be determined as part of the solu-
tion [27, 28]. A distinguishing ingredient of the solution presented in this article is a jump
condition – which we derive systematically using the principle of virtual work – valid at the
contact boundaries. The said jump condition not only locates the contact boundaries on the
rod’s centerline (and on the capstan), but also determines the jumps that the internal force
and the curvature of the rod may suffer across such points.

In the frictionless contact case, we compute three qualitatively distinct kinds of rod equi-
libria, i.e., where the rod touches the capstan at one point, along a continuous arc, and at
two points (Fig. 3). Our treatment of the frictionless case reveals that an elastic rod of finite
length wrapped around a capstan does not require friction to support unequal loads at its
two ends. In other words, force amplification across a finite length of an elastic rod can be
achieved entirely by virtue of its bending elasticity. This is in stark contrast to the classic
case where the absence of friction, i.e., μ = 0, implies F0 = FL for any wrap angle φ of
the filament, as is evident from equation (1). We classify the three aforementioned kinds of
equilibria in a limit where the length of the rod is much larger than the radius of the capstan.
In the same limit, we incorporate frictional interaction between the capstan and the elastic
rod, and obtain a generalization of equation (1). We show that the maximum force ratio
FL/F0 delivered by the generalized solution is a function of both φ and F0, as opposed to
the classic case where the force ratio is independent of the latter (see equation (1)).

Generalizations of the capstan problem in different directions have also been treated
in the literature. The effects of nonlinear friction laws on the capstan problem have been
considered by Lodge and Howell [22], Beflosky [12], Jung et al. [25] and Gao et al. [9],
while Liu and Vaz [29] have considered the capstan problem with external pressure applied
to the filament. A notable generalization of the capstan equation to thin inextensible strings
lying on arbitrary surfaces was done by Maddocks and Keller [30], and was revisited later
from a variational perspective by Konyukhov [31]. Grandgeorge et al. [32] performed an
experimental and theoretical study of two filaments in tight orthogonal contact, which serves
as a generalization of the classic capstan problem by accounting for the filament thickness,
and replacing the rigid circular capstan altogether with an identical filament. A system of
a closed flexible belt hanging on two pulleys has been studied by Belyav et al. [33] and
Vetyukov et al. [34], while transient dynamics of a belt-pulley system with dry friction has
been analyzed by Oborin et al. [35]. More recently, Grandgeorge et al. [36] have presented a
study on the stationary dynamics of a sliding elastic rod in frictional contact with a circular
capstan, with applications to belt-driven pulley systems.

The structure of this article is as follows. We begin in Sect. 2 with a brief overview
of the standard Cosserat rod theory, where we outline the balance laws, jump conditions,
conservation laws, and constitutive assumptions. We setup our specific problem of interest
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in Sect. 3, and obtain relevant equations for planar deformations of an elastic rod wrapped
around a rigid circular capstan. In Sect. 4, we compute three distinct kinds of frictionless
contact equilibria for a finite length of an elastic rod, where the rod touches the capstan at
one point, along a continuous arc, and at two points connected by an intermediate contact-
free (or lift-off) region of the rod. We also compute configurations where the elastic rod in
frictionless contact with the capstan supports unequal loads at its two ends. In Sect. 5, we
consider a long length limit where the length L of the rod is assumed much larger than the
radius R of the capstan (i.e. L/R � 1), and classify the three kinds of rod equilibria from
Sect. 4 in this limit. Thereafter, in Sect. 6, we introduce frictional interaction between the
capstan and the rod in the long length limit, and obtain a generalization of equation (1).
Finally, we end with conclusions in Sect. 7.

2 Overview of the Essential Theory

Following Antman [37], we identify any configuration of an elastic rod with its centerline
curve x(s) ∈R

3, and an ordered orthonormal frame of directors d i (s), i ∈ {1,2,3}, attached
to it. The parameter s is the arc-length coordinate of the centerline in some reference config-
uration. We will restrict our discussion to rods that are inextensible and unshearable, so that
s remains the arc-length coordinate in any configuration. The inextensibility and unshear-
ablity constraint, along with the orthonormality of the director frame, can be expressed,
respectively, by the relations,

x ′ = d3 , d ′
i = u × d i . (2)

Here u(s) is the Darboux (or strain) vector associated with the director frame, and the prime
denotes derivative w.r.t. s. The director components ui := u ·d i , i ∈ {1,2,3}, of the Darboux
vector measure the bending strains of the rod about the directors d i .

For a cross-section of the rod centered at s, we denote by n(s) and m(s), respectively,
the net internal force and internal moment exerted by the material in s+ on the material in
s−, where s± = limε→0(s ± ε), and ε > 0. The force and moment balance of a fixed material
segment [s1, s2] are then given by,

[n]s2
s1

+
∫ s2

s1

p ds = 0 , (3a)

[m + x × n]s2
s1

+
∫ s2

s1

x × p ds +
∫ s2

s1

l ds = 0 , (3b)

where p(s) and l(s) are the external force and moment densities (per-unit length) distributed
over the material segment. When all the fields appearing in (3a) and (3b) are sufficiently reg-
ular in [s1, s2], the two integral balances can be localized to obtain the following pointwise
force and moment balance equations,

n′ + p = 0 , (4a)

m′ + x ′ × n + l = 0 . (4b)

Let s0 ∈ [s1, s2] be a point around which p and l are highly localized. At such a point,
we idealize the two fields using the description [38],

p = P δ(s − s0) , l = L δ(s − s0) , (5)
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where δ(s) is the standard Dirac-delta function. We also require the position and tangent
vectors to be continuous, i.e., �x� = 0 and �x ′� = 0, where �A� = A+ − A− denotes the
jump in A, across any such points. Then, using (5), we localize (3a) and (3b) around the
singular point s0 to obtain the following force and moment jump conditions [27, 38],

�n� + P = 0 , (6a)

�m� + L = 0 . (6b)

The source terms P and L are identified, respectively, as the point force and the point mo-
ment exerted on the rod at s = s0 by its environment.1

To obtain a closed system of equations for the rod in regions away from any singular
points, we introduce constitutive relations by assuming the rod to be hyperelastic with a
straight and uniform natural configuration. This means that there exists a scalar valued strain
energy density function W(u) for the rod, such that,

m = ∂W(u)

∂u
. (7)

We further assume the following quadratic form for the energy function,

W(u) = 1

2
u · Bu =

3∑
i=1

1

2
Biu

2
i , (8)

where B is a 3 × 3 diagonal positive-definite stiffness matrix of the rod. Using (8) in (7) we
obtain,

m = Bu , (9)

which delivers the internal moment as a linear function of the Darboux vector.

2.1 Conservation Laws

In regions where n and m are sufficiently regular, equations (4a) and (4b) imply the follow-
ing conservation laws in absence of external force density p and moment density l,

n(s) = n(0) , (10a)

m(s) + x(s) × n(s) = m(0) + x(0) × n(0) , (10b)

where (10a) has been used to arrive at (10b). These force and moment conservation laws are,
respectively, consequences of the translational and rotational invariance of the rod in ambient
space, and are insensitive to the geometry and the material constituents of the rod [40]. In
the generalised capstan problem, these conservation laws will hold only in the contact-free
regions of the rod.

Next, we define the following function on the centerline of the elastic rod, which will
prove to be of great significance in the upcoming analysis,

H(s) := n · x ′ + m · u − W(u) . (11)

1For a discussion on the existence of singular forces in contact problems with various beam theories see [39].
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We will refer to this function as the Hamiltonian function.2 Differentiating (11) w.r.t. s, and
using (4a), (4b), and (2), it can be shown that in the absence of p and l, the Hamiltonian
function (11) is conserved along s [27, 40–43, 45–48], i.e.,

H(s) = H(0) . (12)

This law results from the translational symmetry of the rod in the arc-length coordinate s,
and is valid only for hyperelastic constitutive relations [40, 49].

As we will see later, unlike the force and moment conservation laws (10a) and (10b), the
conservation of the Hamiltonian function (12) may persist even in the presence of external
load densities, particularly when the rod is in frictionless contact with a rigid surface. We
will prove and make extensive use of this fact in the upcoming analysis.

For isotropic rods with no external moment density l, the twist m ·d3 is another conserved
quantity. However, for planar deformations (as in the generalized capstan problem), this
conservation law holds identically true as a result of the moment balance (4b), and offers no
further utility. We will therefore not expound upon this law any further.

2.2 Jump Condition at Free Boundaries

A free boundary is a boundary whose location in the material is unknown a priori, and
must be computed as part of the solution [28]. A propagating crack in a solid, and a shock
wave in a fluid, are examples of such boundaries. In the present context of an elastic rod
wrapped around a capstan, the boundaries of a contact region (such as s1 and s2 in Fig. 3b),
or any isolated points of contact (such as s1 in Fig. 3a, and s1 and s2 in Fig. 3c) qualify
as free boundaries. In this subsection, we use the principle of virtual work to postulate a
jump condition valid at such points. The said jump condition will enable us to locate the
free boundaries, and determine the jumps that the internal force and the curvature of the rod
may suffer across such points.

Consider the following energy functional, augmented with the inextensibility and un-
shearability constraint, for a material segment [s1, s2] of the rod,

E =
∫ s2

s1

[
W(u) − n · (x ′ − d3

)]
ds . (13)

We consider a transformation of the arc-length coordinate s to s∗, where the latter is given
by,

s∗ ≡ s + δs . (14)

We stipulate that, under a transformation of the form s → s∗, the variation of functional (13)
equals the net virtual work expended by the external force and moment densities, i.e.,

δE = δWext , (15)

2Our choice of the term “Hamiltonian” in this context is admittedly a slight abuse of terminology. A Hamil-
tonian, by definition, is an explicit function of the phase space variables of a dynamical system. We, however,
treat it as an implicit function of the arc-length coordinate s, whose numerical value for any given configu-
ration of the rod coincides with the proper Hamiltonian function for hyperelastic rods defined by Dichmann
and Maddocks [41]. Other workers (including the present author) have used different names, such as “contact
material force” [42] and “material stress/force” [43, 44], in the past to refer to the function defined in (11).
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where,

δWext =
∫ s2

s1

p · δ̃x ds +
∫ s2

s1

l · δ̃zds . (16)

Here δ̃x and δ̃z are first order variations3 in the position vector, and an angle variable z
conjugate to l.

We assume that the material segment encapsulates a free boundary identified with an
unknown arc-length coordinate s0 ∈ [s1, s2], at which p and l admit the description given by
(5). Computing δE due to s → s∗, and localising (15) around s = s0 leads to the following
condition for configurations satisfying (4a) and (4b) away from s0,

−�
n · x ′ + m · u − W

�
δs0 = P · δ̃x(s0) + L · δ̃z(s0) . (17)

For brevity of exposition, the details of the computations resulting in the above expression
have been deferred to Appendix A. One can immediately recognise the expression in the
double brackets in (17) as the Hamiltonian function H defined in (11), while the expression
on the right can be interpreted as the net virtual work expended by the reaction force P and
moment L.

Next, we place a constitutive assumption on the mechanics of the free boundary: We
assume that the net work expended by the point force and the point moment at s = s0, i.e.,
the right side of equation (17), is zero.4 This reduces equation (17) to,

−�
n · x ′ + m · u − W

�
δs0 = 0 . (18)

Since free boundaries by definition cannot be prescribed a priori, we have δs0 �= 0, and
consequently we conclude from above that the following jump condition must hold at s = s0,

�H � = 0 . (19)

We will refer to this jump condition5 as the free boundary condition from here onward.
There are other incarnations of (19) present in the literature on rod mechanics. For in-

stance, one can obtain (19) from the static version of the balance of “material momentum”
for rods, posited by O’Reilly, by identifying C = −H and B = 0 in equation (23) of [42].
For an alternative approach to free boundary problems in rods using a quasi-static balance
of energy, in lieu of (19), the reader may refer to [44].

3 Problem Setup

We now specialize the theory presented so far to planar deformations, and obtain relevant
equations for the contact and contact-free regions of an elastic rod wrapped around a circular
capstan.

3The variation δ̃ is defined as δ̃x ≡ x∗(s) − x(s), such that the vector x∗(s∗) and x(s) correspond to the
same material point. For more details see Appendix A.
4Equation (17) indicates that the net virtual work done by the point force and moment at s = s0 must be
absorbed by the internal structure of the interface at that point. Assuming this work to be zero is tantamount
to assuming that the interface has no such internal structure.
5Some authors also refer to (19) as the Weierstrass-Erdmann corner condition, a term borrowed from the
calculus of variations. However, we must point out that traditional derivations of these corner conditions [50,
51] do not consider Dirac-delta functions in the description of the integrand of the functional. Consequently,
these derivations arrive directly at expressions equivalent to (19), skipping the intermediate step (17).
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Fig. 2 (a) An elastic rod in continuous planar contact with an obstacle with convex boundary of variable
curvature κO(S). Here S is a coordinate along the boundary of the obstacle, and is in one-to-one correspon-
dence with s along the centerline of the rod. (b) Contact-free tails of an elastic rod wrapped around a circular
capstan. The incoming and outgoing tails make contact with the capstan at s = s1 and s = s2 respectively,
while the corresponding points on the capstan are identified with angles θ1 and θ2. Angles are defined positive
when measured counter-clockwise

The internal force, internal moment, and the strain vector associated with a planar con-
figuration can be given the following representations,

n = n1d1 + n3d3 , m = m2d2 , u = u2d2 . (20)

Similarly, equations (9) and (11) can written for planar deformations using (2)1, (8), and
(20), as,

m2 = B2u2 , H = n3 + m2
2

2B2
, (21)

where B2 is the second diagonal component of the stiffness matrix B of the rod, and repre-
sents its bending modulus about d2.

3.1 Contact Region

Consider a thick elastic rod in continuous planar contact with a rigid obstacle with a convex
boundary, as shown in Fig. 2a. For simplicity, we will assume the rod to be of circular cross-
section of radius r . The force and moment densities exerted by the obstacle on the rod can
then be represented in the director basis as,

p = p1d1 − p3d3 , p1 ≥ 0 ,p3 ≥ 0 , (22a)

l = −rd1 × p ,

= −rp3d2 , (22b)

where we have assumed, without loosing generality, that the frictional component p3 acts
against the direction of the arc-length parametrization of the centerline.
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Using (22a), (22b), (20) and (2)2, the d1 and d3 components of the force balance (4a),
and the d2 component of the moment balance (4b), can be, respectively, written as,

n′
3 − n1u2 − p3 = 0 , (23a)

n′
1 + n3u2 + p1 = 0 , (23b)

n1 − rp3 + B2u
′
2 = 0 . (23c)

Furthermore, we identify the bending strain, given by u2 for planar deformations, with the
Frenet curvature κ > 0 as,

u2 = −κ . (24)

Using (21) and (23c), we eliminate n3 and n1 in favour of H and p3 in (23a) and (23b),
and non-dimensionalize the variables as r → r/R̃, κ → R̃κ , H → H/F̃ , p1 → (R̃/F̃ )p1,
p3 → (R̃/F̃ )p3 using some characteristic length scale R̃ and force scale F̃ . The result is the
following dimensionless set of equations,

H ′ = p3(1 − rκ) , (25a)

rp′
3 = Hκ − p1 − B

(
1

2
κ3 + κ ′′

)
, (25b)

where B = B2/(F̃ R̃2) is the dimensionless bending stiffness of the rod. In the contact re-
gion, the centerline of the rod and the boundary of the obstacle form a pair of parallel (or
offset) curves, separated uniformly by distance r . As a consequence, the curvature κ(s) of
the centerline is related to the curvature κO(S) of the obstacle boundary as [52]

κ(s) = κO(S)

1 + rκO(S)
. (26)

Here S is the arc-length coordinate along the obstacle boundary, and is in some one-to-one
correspondence with s. Given this correspondence, along with κO(S) for a given obstacle,
κ(s) becomes a known function.6

Equations (25a) and (25b) can also be used in the contact-free regions by substituting
p1 = p3 = 0, and treating κ(s) as an unknown function to be determined by integrating
(25b) under an appropriate set of boundary conditions.

3.2 Contact-Free Region

Consider Fig. 2b, which shows the schematic of two contact-free tails of a terminally loaded
elastic rod wrapped around a circular capstan of radius R. We identify this radius as the
characteristic length scale of the problem, and therefore, from here onward, all lengths will
be stated in units of R. We will refer to the two contact-free regions touching the left and
the right half of the capstan as the incoming and outgoing tail respectively. Here we derive
formulas needed to determine the location of the contact points, labeled by θ1 and θ2 on the
capstan, and s1 and s2 on the rod’s centerline.

6Relation (26) can be obtained by invoking a geometric property of parallel curves, namely that their radii of
curvatures must differ by r for all s, i.e. κ(s)−1 − κO(S)−1 = r . This expression delivers (26) on rearrange-
ment.
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We assume a Cartesian frame {ex, ey} such that its origin coincides with the cen-
ter of the capstan, and ey bisects the angle π − φ (see Fig. 1). The two end forces
can then be accorded the representations F0 = −F0

[
cos(φ/2)ex + sin(φ/2)ey

]
and FL =

FL

[
cos(φ/2)ex − sin(φ/2)ey

]
. Similarly, the tangents at the two points of contact can be

represented as d3(s1) = cos θ1ex + sin θ1ey and d3(s2) = cos θ2ex + sin θ2ey , where θ1 and
θ2 are angles as defined in Fig. 2b. Using these representations, together with the conserva-
tion of the internal force (10a), and the conservation of the Hamiltonian function (12), θ1

and θ2 can be written as,

θ1 = φ

2
− arccos

[
1

F0

(
H0 − 1

2
Bκ2

1

)]
, θ2 = −φ

2
+ arccos

[
1

FL

(
HL − 1

2
Bκ2

2

)]
.

(27)

Here κ1 = κ(s−
1 ) and κ2 = κ(s+

2 ), and H0 and HL are the constant numerical values of the
Hamiltonian function in the incoming and outgoing tails respectively.

To locate the points s1 and s2 on the centerline of the rod, we use (25a) and (25b) for
the incoming and outgoing tails with p1 = p3 = 0. Equation (25a) then simply reduces
to H ′ = 0 confirming the conservation of the Hamiltonian function in the two tails, while
(25b) reduces to 0 = Hκ −B

(
1
2κ3 + κ ′′).7 Integrating this equation after multiplying it with

2Bκ ′, and identifying the constant of integration as |n|2 − H 2 [43], we obtain after some
rearrangement,

(
Bκ ′)2 +

(
1

2
Bκ2 − H

)2

= |n|2 . (28)

Upon resolving the above equation for the positive root of κ ′ and integrating it again, we
obtain the following expression for the length lAB of the rod between any two points sA and
sB with curvatures κA and κB ,

lAB =
∫ κB

κA

dκ√( |n|−H

B
+ 1

2κ2
) ( |n|+H

B
− 1

2κ2
) = L (|n|,H ;κ)

∣∣κB

κA
. (29)

The explicit expression for L in terms of Elliptic integral of the first kind is provided in Ap-
pendix B. The arc-length coordinates s1 and s2 are then easily expressed using (29) between
the two ends of the incoming and outgoing tails,

s1 = L (F0,H0;κ)|κ1
0 s2 = L − L (FL,HL;κ)|κ2

0 . (30)

Once θ1 and θ2 along with s1 and s2 are determined, the incoming and outgoing tails can be
computed by integrating the following set of equations,

θ ′ = −κ , x ′ = cos θ , y ′ = sin θ , (31a)

Bκ ′ = n1 , n′
1 = n3κ , n′

3 = −n1κ . (31b)

Equations in (31a) are obtained using (20)3, (24), and the representations x = xex + yey

and d3(s) = cos θex + sin θey in (2). While (31b) are obtained from (23a)-(23c) using

7This is the planar version of a more general equation derived by Langer and Singer [53] governing three
dimensional deformations of Kirchhoff elastic rods.
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p1 = p3 = 0 and (24). For the incoming tail, equations (31a) and (31b) can be integrated
from s1 to 0 using the following initial conditions,

θ(s−
1 ) = θ1 , x(s−

1 ) = −(1 + r) sin θ1 , y(s−
1 ) = (1 + r) cos θ1 , (32a)

κ(s−
1 ) = κ1 , n1(s

−
1 ) = F0 sin

(
φ

2
− θ1

)
, n3(s

−
1 ) = F0 cos

(
φ

2
− θ1

)
, (32b)

whereas the configuration for the outgoing tail can be obtained by integrating (31a) and
(31b) from s2 to L using the following initial conditions,

θ(s+
2 ) = θ2 , x(s+

2 ) = −(1 + r) sin θ2 , y(s+
2 ) = (1 + r) cos θ2 , (33a)

κ(s+
2 ) = κ2 , n1(s

+
2 ) = −FL sin

(
φ

2
+ θ2

)
, n3(s

+
2 ) = FL cos

(
φ

2
+ θ2

)
. (33b)

Note that, for simplicity, we will ignore any possible contact that may arise between the
incoming and outgoing tails (such as in Fig. 3c), i.e., the two tails will be allowed to pass
through one another without physical interaction.

3.3 Corollary of the Free Boundary Condition

Analogous to (22a) and (22b), a point reaction force at a free boundary can be written in
the director frame as P = P1d1 − P3d3 and L = −rP3d2, with P1 ≥ 0, P3 ≥ 0. Using these
expressions, along with (20) and (21), the director components of the force and moment
jump conditions (6a) and (6b) are written as,

�n3� − P3 = 0 ,
�
rp3 + Bκ ′� + P1 = 0 , �Bκ� + rP3 = 0 . (34)

Similarly, using (21), equation (19) can be written as
�
n3 + 1

2 Bκ2
� = 0, which upon using

the algebraic identity
�
A2

� = 2�A�〈A〉 and equation (34)3 can be rearranged as,

P3 (1 − r〈κ〉) = 0 . (35)

Assuming that the term inside the bracket is non-zero,8 we conclude from above that P3 = 0.
Combining this observation with (34), we conclude,

�n3� = 0 , �Bκ� = 0 , (36)

meaning that the tension and the curvature (and as a result the internal moment) of the elastic
rod must be continuous across the free boundaries. The rod may still, however, experience a
jump in the shear component n1 = rp3 + Bκ ′, induced by a non-zero P1 in (34)2.

4 Frictionless Contact with Finite Length

We first consider frictionless contact of a finite length L of an elastic rod wrapped around
a circular capstan. We identify the following three qualitatively distinct kinds of equilibria:

8For a cylindrical tube of constant radius to remain smooth, the curvature function of its centerline must
satisfy κ < 1/r [54]. Therefore, as a consequence we have 1 − r〈κ〉 > 0.
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1.) one-point contact, where the rod touches the capstan at precisely one point (Fig. 3a), 2.)
line contact, where the rod touches the capstan along a continuous arc (Fig. 3b), and 3.) two-
point contact, where the rod touches the capstan at two distinct points, with the intermediate
contact-free length of the rod referred to as the lift-off region (Fig. 3c).

A key property of the three kinds of frictionless equilibria stated above is that the Hamil-
tonian function H(s) remains conserved throughout the length of the rod with the same
numerical value, i.e.,

H(s) = H(0) = H for s ∈ [0,L]. (37)

In other words, the conservation of the Hamiltonian function is insensitive to frictionless
contact between the rod and the capstan. Note that this fact does not depend on the shape of
the capstan. For one-point and two-point contact equilibria, statement (37) follows directly
from (12) and (19). For line contact, however, one must additionally show the conservation
of H in the contact region, which can be easily deduced from equation (25a) by substituting
p3 = 0.

4.1 One-Point Contact

One-point contact equilibria entails the rod touching the capstan at exactly one point, where
the centerline curvature is smaller than the critical value κc = (1 + r)−1, obtained from (26)
using κO = 1 in units of R. The two key unknowns needed to compute such a configuration
are the location of the point of contact, and the rod’s centerline curvature at that point. To
determine these two quantities, we will need the following two relations,

L (F0,H ;κ)|κ1
0 + L (FL,H ;κ)|κ1

0 = L, (38a)

arccos

[
1

F0

(
H − 1

2
Bκ2

1

)]
+ arccos

[
1

FL

(
H − 1

2
Bκ2

1

)]
= φ . (38b)

The first equation above enforces the total length L of the rod, and has been obtained using
(29). The second equation is obtained by enforcing θ1 = θ2 using (27), and substituting in
it H0 = HL = H due to (37), and κ2 = κ1 due to (36)2. For prescribed values of F0, FL, φ,
and L, equations (38a), (38b) can be numerically solved to obtain κ1 and H , which on back
substitution in (27) and (30) delivers θ1 and s1, respectively.

The entire configuration can then be constructed by solving two initial value problems:
one for the incoming tail, and the other for the outgoing. The former can be obtained by
integrating (31a), (31b) from s1 to 0 using initial conditions (32a), (32b), and the latter by
integrating (31a), (31b) from s2 = s1 to L, using initial conditions (33a), (33b).

4.2 Line Contact

For configurations with line contact between the elastic rod and the capstan, the curvature
of the rod’s centerline in the contact region is identically equal to κc = (1 + r)−1. Therefore,
using (36)2 across the contact boundaries at s1 and s2 (Fig. 3b), we conclude that κ(s−

1 ) =
κ(s+

2 ) = κc . With this observation, the only remaining unknown needed to compute the
locations θ1 and θ2 from (27), and s1 and s2 from (30), is H0 = HL = H . This can be
computed by enforcing the total length of the rod using (27) and (29) as,
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Fig. 3 Three symmetric equilibrium configurations of an elastic rod in frictionless contact with a circular
capstan. The rod has a length L = 10, radius of cross-section r = 0.2, and bending modulus B = 1. (a)
One-point contact with θ1 = θ2 = 0 and s1 = 0.5L. The capstan exerts a point reaction force |Ps1 | = 0.386
in the normal direction at s1. (b) Line contact with s1 = 0.374L, s2 = 0.626L, and θ1 = −θ2 = 1.052 rad.
The magnitude of the normal point reaction forces are |Ps1 | = |Ps2 | = 0.845, and the distributed pressure
density p1 = 0.71. (c) Two-point contact where s1 = 0.209L, s2 = 0.791L and θ1 = −θ2 = 2.05 rad. The
magnitudes of the normal point reaction forces are |Ps1 | = |Ps2 | = 0.167

L (F0,H ;κ)|κc

0 + (1 + r)

{
φ − arccos

[
1

F0

(
H − 1

2
Bκ2

c

)]
− arccos

[
1

FL

(
H − 1

2
Bκ2

c

)]}

+ L (FL,H ;κ)|κc

0 = L, (39)

where the middle term is simply (1 + r)(θ1 − θ2) substituted with (27), and measures the
length of the centerline in the contact region. For prescribed values of F0, FL, φ, and L,
equation (39) can be numerically solved for H , and θ1, θ2, s1, and s2 can be computed by
substituting H back into (27) and (30). Equations (23c), (21), and (25b) then imply the
following relations for n1, n3 and p1 in the contact region, with p3 = 0 and κ = κc ,

n1 = 0 , n3 = H − 1
2Bκ2

c , p1 = Hκc − 1

2
Bκ3

c . (40)

Finally, the incoming and outgoing tails can be computed by integrating (31a), (31b)
using initial conditions (32a), (32b) and (33a), (33b), respectively.

4.2.1 Force Amplification with Frictionless Contact

It is worth emphasising here that for frictionless contact, the two kinds of equilibria de-
scribed in Sects. 4.1 and 4.2 do not require the end loads F0 and FL to be equal. The impli-
cation being that force amplification across an elastic rod wrapped around a circular capstan
can be achieved without friction. This is in stark contrast to the classic capstan problem
governed by equation (1), where the absence of friction, i.e., μ = 0, implies F0 = FL.

Configurations with unequal end loads for one-point and line contact equilibria are shown
in Fig. 4. Although this ability of partially constrained elastic rods to support unequal loads
may appear unintuitive at first, it is revealed quite remarkably by relation (37). Comput-
ing the Hamiltonian function at s = 0 using (21) as H(0) = −F0 cosα0, and analogously
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H(L) = FL cosαL (α0 and αL being the smaller angles between the tangent and the force at
s = 0 and s = L, respectively), we obtain using (37),

F0 cosα0 + FL cosαL = 0 . (41)

One can now clearly see that any inequality between F0 and FL can be accommodated by the
difference in the angles α0 and αL (see Fig. 4). Therefore, in principle, for any given load
F0, an arbitrarily high load FL can be supported by the rod by assuming a configuration
where α0 → π and αL → π/2.

This property of a partially constrained elastic rod to be able to support unequal loads has
been exploited in the design of the elastica arm scale in [55],9 which is a weight measuring
balance scale with deformable lever arms, as opposed to rigid arm scales that have been used
to measure weight since time immemorial. For an illuminating treatment of the elastica arm
scale using a non-classical “material force” balance, the reader may refer to [58].

4.3 Two-Point Contact with a Lift off Region

If the wrap angle φ of the forces around the capstan is greater than 2π , and the applied
forces are small enough, the rod equilibria may transition from line contact to two-point
contact, with an intermediate contact-free lift-off region (Fig. 3c). Here we consider two-
point equilibria which are symmetric under reflection across the ey axis. Consequently, we
will only compute equilibria for one half of the rod, while the other half is obtained by
symmetry. We will also ignore any contact interactions between the incoming and outgoing
tails of the rod.

Consider a configuration as shown in Fig. 3c, loaded with forces of magnitude F with a
wrap angle greater than 2π . To compute such an equilibrium, we would need to determine
the constant value H of the Hamiltonian function, and the curvature κ1 of the rod at the point
of contact. To this objective, we first write down the internal force nl in the lift-off region,
and the curvature κL/2 of the rod at s = L/2, in terms of H and κ1 as follows,

nl =
(

H − 1

2
Bκ2

1

)
sec θ1ex , κL/2 =

√
2(H − nl)

B
. (42)

Here θ1 is given by (27)1 with F0 = F and H0 = H , and nl = |nl | in the second expression
above. Equation (42)1 has been obtained using nl = nl1(s1)d1(s1)+nl3(s1)d3(s1), requiring
nl · ey = 0 (by symmetry), and using nl3(s1) = H − (1/2)Bκ2

1 . Equation (42)2 has similarly
been obtained using the fact that the tension at s = L/2 is given by nl3(L/2) = nl = H −
(1/2)Bκ2

L/2.
The two conditions needed to solve for H and κ1 can then be written as,

L (F,H ;κ)|κ1
0 + L (nl,H ;κ)|κL/2

κ1 = L

2
, (43a)

−(1 + r)

(
H − 1

2
Bκ2

1

)
tan θ1 + P (nl,H ;κ)

∣∣κL/2

κ1
= 0 . (43b)

9Equation (41) is equivalent to equation (2.11) of [55], which the authors of that article described as a “‘ge-
ometrical condition’ of equilibrium” representing the balance of axial thrust on the rod. We also note that
since (37) is independent of the shape of the constraining rigid body, its corollary (41) is equally applicable
to problems involving frictionless sleeve constraints in [55–57].
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The first expression above, obtained using (29), is a statement enforcing the length of one
symmetric half of the rod. To obtain the second expression, we integrated the relation nl3 =
H − (1/2)Bκ2 from s1 to L/2, used the fact that nl3 = nl ·d3 = nl ·x ′ = (nl ·x)′, substituted
nl · x(s1) = −(1 + r)nl sin θ1, and then finally enforced nl · x(L/2) = 0 (due to symmetry)
in the resulting expression. The function P in the second expression results from a variable
change in

∫ L/2
s1

(H − (1/2)Bκ2)ds from s to κ via ds = dκ/κ ′, and using equation (28) to
substitute for κ ′ to yield,

∫ κL/2

κ1

(
H − 1

2Bκ2
)

√(
nl−H

B
+ 1

2κ2
)(

nl+H

B
− 1

2κ2
) dκ = P (nl,H ;κ)

∣∣κL/2

κ1
. (44)

The explicit representation of P in terms of the Elliptic integrals of the first and second
kind is provided in Appendix B. The two transcendental equations (43a) and (43b) can be
numerically solved to obtain the values of H and κ1, which when substituted in (27) and
(30) deliver θ1 and s1. Furthermore, the incoming tail of the configuration can be obtained
by integrating (31a) and (31b) with initial conditions (32a) and (32b), while the symmetric
left half of the lift-off region can be obtained by integrating (31a) and (31b) from s1 to L/2
with the following initial conditions,

θ(s+
1 ) = θ1 , x(s+

1 ) = −(1 + r) sin θ1 , y(s+
1 ) = (1 + r) cos θ1 , (45a)

κ(s+
1 ) = κ1 , n1(s

+
1 ) = −

(
H − 1

2
Bκ2

1

)
tan θ1 , n3(s

+
1 ) = H − 1

2
Bκ2

1 . (45b)

The right half of the configuration can then be computed by symmetry.

5 Frictionless Contact in the Long Length Limit

In this section, we consider frictionless contact in a limit where the length L of the rod is very
large compared to the radius R of the capstan. We show that, in this limit, computations from
the previous section undergo radical simplification, which allows for a clean classification
of the three kinds of previously discussed equilibria.

Consider the shape equation (28) valid in the incoming and outgoing tails in a typical
configuration. Scaling it by the total length L (normalized by R) of the rod, we obtain
( B

L2 κ ′)2 + ( B

2L2 κ2 − H)2 = |n|2. If the length L is large, the equation becomes a singular
perturbation problem in the parameter B/L2, indicative of the existence of boundary layers
in its solutions [59]. Outside the boundary layer, or the “outer region”, we substitute B/L2 =
0 to obtain the following relation up to leading order,

H = |n| , (46)

where the negative root of the equation has been discarded. Since this relation involves two
quantities conserved throughout the length of the rod, it must hold true inside the boundary
layer, or the “inner region”, as well. In this limit, most of the bending energy of the rod
gets concentrated near the boundary of the contact region, while away from it, the rod is
relatively straight. Equation (46), when combined with (37), implies,

H = F0 = FL = F , (47)
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Fig. 4 Some examples of asymmetric equilibria of an elastic rod with r = 0.2, L = 10, and B = 1, in
frictionless contact with a circular capstan. Each row above depicts three configurations where the load
on the left end, and the wrap angle φ, are kept fixed, while the loads on the right end is increased.
The numerical values {s1, θ1, |Ps1 |} in configurations (a), (b), and (c), respectively, are {5,0,0.346},
{6.25,−0.0641,0.391}, {7.02,−0.115,0.436}. Similarly, the values of {s1, s2, θ1, θ2, |Ps1 |, |Ps2 |,p1} for
configurations shown in (d), (e), and (f), respectively, are {4.54,5.46,0.379,−0.379,0.397,0.397,0.0391},
{5.61,6.54,0.39,−0.384,0.397,0.417,0.0427}, {6.47,7.4,0.393,−0.376,0.397,0.457,0.0436}

meaning that the applied end loads must be equal in order to maintain equilibrium. In other
words, asymmetric equilibria of the kind shown in Fig. 4 is not possible in the long length
limit.

Another consequence of (46) is that the length constraints, given by (38a), (39), and
(43a), become identically satisfied, which greatly simplifies the computations of the free
boundaries in all the three kinds of equilibrium, as is shown next.

To compute one-point contact equilibria, we use equation (38b) with (47) and obtain
after some rearrangement the following expression for the rod’s centerline curvature at the
contact point
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Fig. 5 (a) Regions corresponding to one-point, line, and two-point contact in the {F,φ} space for a suffi-
ciently long elastic rod with B = 1. The curve at the intersection of the green and the blue region is given
by equation (48) with κ1 = κc . Equilibrium configurations corresponding to the vertices of the two closed
rectangular paths are shown in (c) and (d), where the red dashed caps at the two ends of the rod signify that
the actual length of the rod is much longer than the displayed length. A video showing quasi-static transition
of contact along the two loops is available in supplementary material. (b) Difference between the wrap angle
φ and the corresponding contact angle φc (for line contact), given by equation (49), is plotted against F for
different values of B . Each curve begins with a minimum value of F , given by Fmin = (1/2)Bκ2

c , necessary
to maintain line contact between the rod and the capstan. The curve at B = 0 corresponds to a fully flexible
filament for which φ = φc for all values of F . For a non-zero value of B the difference φ − φc approaches
zero asymptotically as F tends to infinity

κ1 = 2

√
F

B
sin

φ

4
. (48)

The region in the {F,φ} space with κ1 ≤ κc corresponds to one-point contact equilibria,
and is shown in green in Fig. 5. The location of the point of contact can be deduced from
symmetry as θ1 = 0, which can also be confirmed by substituting (48) in (27)1. The entire
configuration can then be computed following the same procedure as described towards the
end of Sect. 4.1.

When κ1 delivered by equation (48) hits the critical curvature κc for prescribed values of
F and φ, one-point contact transitions to line contact. In that case, θ1 and θ2 can be directly
computed from (27) using equation (47), along with the fact that κ = κc in the contact region.
Consequently, the contact angle φc = θ1 − θ2 can be explicitly written as

φc = φ − 2 arccos

(
1 − B

2F
κ2

c

)
, with F >

1

2
Bκ2

c , (49)

where the inequality ensures that the contact pressure from equation (40), i.e.,
p1 = Fκc − (1/2)Bκ3

c , remains non-negative.
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The region corresponding to line contact in the {F,φ} space, with p1 > 0, is shown in
blue in Fig. 5a. No contact equilibria exists for the region shown in white,10 as the contact
pressure between the capstan and the rod in that region becomes negative. The difference
φ − φc from (49) is plotted against F for different values of B in Fig. 5b. The shear force,
tension, and pressure in the contact region can be computed using (40), and the incoming
and outgoing tail can be constructed using the same procedure as described in the end of
Sect. 4.2.

For φ > 2π , and F < 1
2 Bκ2

c , the pressure required to maintain line contact between the
rod and the capstan becomes negative, leading to line contact degenerating into two-point
contact. In Fig. 5, the corresponding region is shown in red. To compute such configurations,
we obtain θ1 in terms of the unknown curvature κ1 at the point of contact using equation
(27)1 and (47). Thereafter, κ1 can be obtained by solving (43b) numerically. Finally, the full
configuration can be constructed as described towards the end of Sect. 4.3.

6 Frictional Contact and Limiting Equilibrium

We now address the last facet of the generalized capstan problem, i.e., a generalization of
the classic capstan equation (1), governing limiting equilibria of an elastic rod in frictional
contact with a circular capstan. Before we proceed further, a few comments on the problem
are in order.

We showed in Sect. 4.2.1 that force amplification across a finite length of an elastic rod
wrapped around a circular capstan can be achieved in the absence of frictional interactions
between them. Since friction appears unnecessary to support unequal loads at the two ends
of the rod, a precise definition of limiting equilibrium seems unclear. However, in the long
length limit discussed in Sect. 5, relation (47) forbids frictionless equilibria with unequal
end loads, which insinuates that friction is indeed necessary for force amplification in this
limit. Therefore, we will pursue the generalization of the classical capstan equation (1) in
the long length limit, where we define limiting equilibrium under frictional contact as the
configuration which maximizes the output load FL, for a given input load F0 and wrap angle
φ. We will also consider only line contact between the rod and the capstan, as corollary (35)
of our assumption (19) forbids any point reaction force P3 in the tangential direction at
isolated points of contact.

Consider a sufficiently long elastic rod wrapped around a circular capstan as shown in
Fig. 6. Using equations (46) and (12) in the incoming and outgoing tails, along with (19)
across the contact boundaries s1 and s2, we can establish the following relations,

H(s−
1 ) = H(s+

1 ) = F0 and H(s−
2 ) = H(s+

2 ) = FL . (50)

With the second relation above, the requirement of maximizing the output load FL can be
transferred to maximizing the value of H(s2). The evolution of the Hamiltonian function H

of the rod in the contact region is governed by the following equations obtained by substi-
tuting κ = κc in (25a) and (25b)

H ′ = p3(1 − rκc) , (51a)

rp′
3 = Hκc − p1 − 1

2
Bκ3

c . (51b)

10Note that for a given value of B , one can always find a finite length of the rod for which a one-point
equilibrium exists at any chosen point in the white region in Fig. 5a.
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Fig. 6 On the left is a configuration corresponding to limiting equilibrium of a sufficiently long elastic rod in
frictional contact with a rigid capstan with φc = 1.61. The coefficient of friction μ = 0.3. The rod experiences
a normal point force of magnitude |Ps2 | = 1.05 at s2, while no such point reaction force exists at s1 for reasons
explained in the text surrounding equation (56). The plots of the Hamiltonian H , normal pressure p1, tension
n3, and shear force n1 are also shown. The shaded region on the plots corresponds to the contact region.
The normal pressure p1 suffers a Dirac-delta function singularity at the outgoing end of the contact region,
causing a jump in the shear force n1 at the same point

The two ODEs above contain three unknown functions of s, namely H , p3, and p1.
To obtain a closed system of equations, we assume frictional interaction between the rod
and the capstan to be governed by Coulomb’s inequality of static friction, which relates the
frictional force density p3 and the normal pressure p1 as,

p3 ≤ μp1 , (52)

where μ is the coefficient of static friction between the rod and the capstan.
To maximize the value of H(s2), and consequently of the output load FL, we seek those

solutions of (51a) and (51b) for which H grows at the fastest possible rate over the yet
unknown contact region. This is ensured when inequality (52) saturates, and p3 attains its
maximum value given by p3 = μp1. Using this equality, we eliminate p3 in favor of p1 in
(51a) and (51b) to obtain the following set of equations governing limiting equilibria of the
rod,

H ′ = μp1(1 − rκc) , (53a)

rμp′
1 = Hκc − p1 − 1

2
Bκ3

c . (53b)

The above set of ODEs, which are linear in H and p1, can be integrated analytically to
obtain,

H(s) = c1

(
A + 1

2κc

)
e

A−1
2rμ

(s−s1) − c2

(
A − 1

2κc

)
e

− A+1
2rμ

(s−s1) + 1

2
Bκ2

c , (54a)

p1(s) = c1e
A−1
2rμ

(s−s1) + c2e
− A+1

2rμ
(s−s1)

, (54b)
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where s ∈ [s1, s2], A = √
1 + 4rκcμ2(1 − rκc), and c1 and c2 are constants given by,

c1 = p1(s
+
1 )(A − 1) + κc

[
2H(s+

1 ) − Bκ2
c

]
2A

, c2 = p1(s
+
1 )(A + 1) − κc

[
2H(s+

1 ) − Bκ2
c

]
2A

.

(55)

These constants must be determined by the initial conditions p(s+
1 ) and H(s+

1 ) accompany-
ing the system (53a), (53b).

To compute p(s+
1 ), we invoke the jump condition (34)2 on the shear force at s1, and note

that p1(s
−
1 ) = 0, p3(s

+
1 ) = μp1(s

+
1 ), and κ ′(s+

1 ) = 0. The said jump condition can then be
rearranged as,

rμp1(s
+
1 ) = Bκ ′(s−

1 ) − P1(s1) . (56)

Both p1 and P1 in the equation above are positive numbers – as the capstan can only push
on the rod and not pull – and as a consequence, κ ′(s−

1 ) must also be positive. To maximize
the growth rate of H at s+

1 , the highest possible value of p1(s
+
1 ) must be deduced from (56),

which is ensured when P1(s1) = 0.11 This implies that at limiting equilibria no point reaction
force can occur at s1.12 Consequently, we have p1(s

+
1 ) = Bκ ′(s−

1 )/rμ from (56), where

the term Bκ ′
1(s

−
1 ) = (κc/2)

√
B[4H(s−

1 ) − Bκ2(s−
1 )] can be obtained from (28) applied at

s = s−
1 . Finally, noting the equalities at s1 from (50), along with κ(s−

1 ) = κ(s+
1 ) = κc from

(36)2, we can write the initial conditions for (53a) at s = s+
1 as,

H(s+
1 ) = F0 , p1(s

+
1 ) = κc

2rμ

√
B(4F0 − Bκ2

c ) . (57)

The constants c1 and c2 in (54a) and (54b) can now be determined by substituting (57)
in (55), thereby completing the description of H(s) and p1(s) in the contact region. The
normal reaction force at the outgoing boundary s2 can be computed using (34)2, along with
p(s+

2 ) = 0 and κ ′(s−
2 ) = 0, to be P1(s2) = rμp1(s

−
2 )−Bκ ′(s+

2 ). The contact region between
the rod and the capstan still remains an unknown, which we compute next.

The extent of contact region is measured by the length s2 − s1. Since the length of the
rod is infinitely large, the precise value of s1 is irrelevant, and can be assigned an arbi-
trary value for simplicity leaving s2 to be the only unknown to be found. We note that
s2 − s1 = (1 + r)(θ1 − θ2), and substitute in it θ1 and θ2 from (27). In the resulting expres-
sion we use H0 = F0 and HL = FL = H(s2) due to (50) and (12), and κ1 = κ2 = κc due to
(36)2 across s1 and s2, to obtain the following equation after some rearrangement,

arccos

(
1 − Bκ2

c

2F0

)
+ s2 − s1

1 + r
+ arccos

(
1 − Bκ2

c

2H(s2)

)
= φ . (58)

The first and the third term on the left measure the angular displacements of the tangents
between the two terminal ends and their corresponding contact boundaries, while the middle
term measures the angular displacement of the tangent in the contact region. The above

11This argument has precedence in [32], where limiting equilibria of a fully flexible filament of finite thick-
ness in contact with a curved capstan was considered.
12The same conclusion in the context of an elastic rod in frictional contact with a rotating cylinder was
reached in [36]. However, at variance with the present approach, the authors there employ a “geometrical
argument”, where they invoke the circular geometry of the capstan to arrive at this conclusion.
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Fig. 7 (a) A 3D plot of maximum force ratios FL/F0 as a function of F0 and φ, for a sufficiently long rod
with B = 1, and coefficient of friction μ = 0.3. The gray region of the surface corresponds to configurations
where negative pressures between the rod and the capstan develop, and are therefore unphysical. The two
perspectives of the surface in the {FL/F0, φ} and {FL/F0,F0} plane are shown in (c) and (e) respectively.
(b) A 3D plot of the contact angle φc as a function of F0 and φ. As in (a), the gray region corresponds
to configurations where negative pressures develop. The two perspectives of the surface in the {φc,φ} and
{φc,F0} plane are shown in (d) and (f) respectively

equation essentially constrains the angular displacements of the tangents in the tails and the
contact region to add up to the prescribed wrap angle φ. The expression for H(s2) can be
substituted in (58) from (54a), and the entire equation can be numerically solved to obtain
s2. The output load corresponding to limiting equilibrium is then given by FL = H(s2), and
the contact angle can be computed as φc = (s2 − s1)/(1 + r).

The surface generated by the maximum force ratios FL/F0 for an elastic rod in the
{FL/F0,F0, φ} space is plotted in Fig. 7a for B = 1 and μ = 0.3. The corresponding sur-
face for the contact angles φc is shown in Fig. 7b. The gray region marked on both the
surfaces represents configurations with small initial force and high wrap angle where the
contact pressure p1 goes negative, and must therefore be discarded. Note that unlike in the
classic capstan problem, the force ratio FL/F0 in the presence of bending elasticity is also
a function of the initial force F0, as can be seen in the projection of the surface in Fig. 7e.
A comparison between the classic and the generalized capstan problem in Fig. 7c shows
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that force ratios for the latter are always lower than the former. The solutions to the gener-
alized problem asymptotically merge with the classic solution as the input force F0 tends to
infinity. A typical configuration of a sufficiently long elastic rod in frictional contact with
a circular capstan is shown in Fig. 6, along with the plots of the Hamiltonian function H ,
contact pressure p1, tension n3, and shear force n1, against the arc-length coordinate.

7 Conclusion

We have presented a generalization of the classic capstan problem to include the effects of
finite thickness and bending elasticity of the filament. The problem was referred to as the
generalized capstan problem, where we modeled the filament as an elastic rod of finite thick-
ness, and computed configurations with both frictionless and frictional contact between the
rod and the capstan. Unlike much of the prior work on the subject, we treated the boundaries
of the contact region as free boundaries [27, 28], and computed their location with the aid
of a jump condition, systematically derived using the principle of virtual work.

For frictionless contact, we computed three kinds of rod equilibria, where the rod touches
the capstan at one point, along a continuous arc, and at two points connected by an interme-
diate lift-off (or contact-free) region. Our analysis revealed that, in general, a finite length
of elastic rod wrapped around a circular capstan does not require friction to sustain unequal
loads at its two ends. This is in stark contrast to the classic case governed by equation (1),
where friction is necessarily required for force amplification across the length of the fila-
ment. We showed this property of elastic rods to be a consequence of the conservation of
the Hamiltonian function throughout its length. We then considered a limit where the length
of the rod is much larger than the radius of the capstan. In this limit, we showed that fric-
tionless contact equilibria between the capstan and the rod with unequal end loads is no
longer possible. This long length limit lead to significant simplifications in the computation
of frictionless equilibria, and allowed for a clean classification of the three aforementioned
kinds of frictionless contact equilibria in a two parameter space of the applied end load F

and wrap angle φ.
Finally, we incorporated frictional interaction between the elastic rod and the capstan

under the assumption of the long length limit, and obtained a generalization of the classic
capstan equation (1) to include bending elasticity and finite thickness of the rod. We showed
that the maximum force ratios predicted by our model depend not only on the wrap angle φ,
but also on the prescribed input load F0, which is in contrast to the classic capstan problem
where the force ratios are independent of the latter. We found that for any given input load
F0 and wrap angle φ, the maximum force ratios predicted by our model remained lower
than the predictions made by the classic capstan equation (1). Since our theory inputs the
wrap angle φ as opposed to the contact angle φc – which is much more difficult to enforce
experimentally than the former – we hope that its validity could be put to test against simple
experiments.

Appendix A: Derivation of the Free Boundary Condition

Here, following the procedure laid out in [60], we present the details of the derivation re-
sulting in equation (17). Consider an infinitesimal transformation in the arc-length coor-
dinate s → s∗, with s∗ given by equation (14), such that the corresponding total varia-
tion in the position vector and the directors is zero, i.e. δx(s) ≡ x∗(s∗) − x(s) = 0, and
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δd i (s) ≡ d∗
i (s

∗) − d i (s) = 0. We then define a variation δ̃ in the position vector and the
directors at a material label s such that,

x∗(s) := x(s) + δ̃x(s) , d∗
i (s) := d i (s) + δ̃d i (s) . (59)

Using the conditions x∗(s∗) = x(s) and d∗
i (s

∗) = d i (s), the variations δ̃x(s) and δ̃d i (s) can
be represented as,

δ̃x(s) = −x ′(s)δs , δ̃d i (s) = −d ′
i (s)δs . (60)

To compute the corresponding variation in the Darboux vector, we observe that,

(d∗
i )

′ = u∗ × d∗
i = d ′

i + u × δ̃d i + δ̃u × d i + higher order terms. (61)

The orthonormality of the director frame requires

δ̃dj = δ̃z × dj , (62)

where δ̃z is some infinitesimal function of the independent coordinates. Using (60)2 and (2)2

in (62), δ̃z can be represented as,

δ̃z = −u δs . (63)

Substituting (62) into (61), and using the fact that d i is a basis of R3, we obtain after some
manipulations the relation δ̃u = δ̃z′ − u × δ̃z, from which we deduce

δ̃ui = δ̃z′ · d i (64)

where δ̃ui ≡ δ̃(u · d i ).
Following standard procedure [60], and using (60) and (64), the variation due to s → s∗

in the energy functional (13) can be computed as,

δ̃E =
∫ s2

s1

[(
W(u,x) − n · x ′ − m · u)

δs
]′

ds +
∫ s2

s1

[
−

(
∂W

∂u

)′
− d3 × n

]
· δ̃zds

+
∫ s2

s1

[−n′] · δ̃x ds . (65)

Finally, we substitute the above, along with δ̃Wext from (16), in (15), and then split various
integrals into two domains [s1, s

−
0 ] and [s+

0 , s2]. Thereafter, we use (4a), (4b), and (9) to get
rid of the bulk terms in the two domains. The remaining terms are localised around s = s0

by taking the limit s1 → s−
0 and s2 → s+

0 to arrive at (17).

Appendix B: Elliptic Integrals

Consider the length integral stated in (29). A change of variable from κ to t , such that t =√
B/2(H − |n|)κ , transforms the integral into i

√
2B/(H + |n|) ∫ [

(1 − t2)(1 − kt2)
]−1

dt ,
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which can subsequently be transformed to a canonical form using t = sin θ . The resulting
expression is,

L (|n|,H ;κ) := −i

√
2B

H + |n| F (ϕ |k) , (66)

where F(ϕ |k) is the Elliptic Integral of the first kind [61, 62] given by,

F (ϕ |k) =
∫ ϕ

0

dθ√
1 − k sin2 θ

, ϕ = arcsin

(√
B

2(H − |n|)κ

)
, k = H − |n|

H + |n| .
(67)

Using the same change of variables as for the length integral from κ to t and then from t to
θ , the integral in (44) can be written as,

P(|n|,H : κ) := −i

√
2B

H + |n| [(H + |n|)E (ϕ |k) − |n|F (ϕ |k)] , (68)

where F(ϕ |k) is given by (67), while E(ϕ |k) is the Elliptic Integral of the second kind
[61, 62] given by,

E (ϕ |k) =
∫ ϕ

0

√
1 − k sin2 θ dθ , (69)

with the same expressions for ϕ and k as stated in (67).
Note that although L and P are in general complex valued functions, their differences

between any two values of κ (for fixed |n| and H ), i.e. L (|n|,H ;κ)|κB
κA

and P(|n|,H ;κ)|κB
κA

,
are always real valued. This is due to the fact that the real components F(ϕ |k) and E(ϕ |k)

(or the imaginary components of L and P) are functions of k alone [62], and get canceled
out when subtracted with different values of ϕ (or κ).
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