
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Sketches, metrics and fast algorithms

Navid NOURI

Thèse n° 8993

2022

Présentée le 9 novembre 2022

Prof. M. T. Göös, président du jury
Prof. M. Kapralov, directeur de thèse
Prof. M. Thorup, rapporteur
Prof. A. Andoni, rapporteur
Prof. O. Svensson, rapporteur

Faculté informatique et communications
Laboratoire de théorie du calcul 4
Programme doctoral en informatique et communications

To my parents...

Acknowledgements

I have many people to thank for making my five-year stay at EPFL memorable. The following is certainly

an incomplete attempt.

I was very fortunate to have Michael as my advisor and I would like to thank him for his support, guidance

and for introducing me to many great people. It would not have been possible for me to complete my

PhD studies successfully without his mentorship. I want to thank the jury members of my thesis defense,

Mikkel Thorup, Ola Svensson, Alexandr Andoni and Mika Göös for agreeing to be on the committee and

the discussions we had during the oral exam. I am also grateful to many of my collaborators for stimulating

discussions. More specifically, I want to thank Moses Charikar, for showing me the right attitude towards

research. Moreover, I want to thank Amir Zandieh, Jakab Tardos and Arnold Filtser, for their research

passion, hard work and dedication to get things done in our research projects.

Another special thanks to European Research Council, for financially supporting our research during this

period.1

I also want to thank Pauline Raffestin who always kindly helped me deal with all administrative processes

in the smoothest way possible.

I am grateful to Credit Suisse and JPMorgan Chase & Co. for the internship opportunities. More specifically,

I want to thank Elham Zargari, for being a very supportive manager during my internship at Credit Suisse.

And I want to express my gratefulness to Eleonora Kreacic and Vamsi Krishna Potluru for the awesome

experience I had in the AI research team at JPMorgan.

My special appreciation goes to my dear friends. In particular, I want to thank Omid (Mashinchian),

Amir and Khashayar for all the fun and enjoyable moments we had together. I also want to thank my

long-distance friends, Morteza, Omid (Sadeghi) and Saghar for our long and yet enjoyable discussions

about almost everything.

Finally, and most importantly, I want to thank my parents, for their endless support, never-ending

sacrifices and their understanding throughout this journey. They were always the most caring and

kind parents imaginable. And a special thanks to my lovely girlfriend, Darya, who was supportive and

understanding during all these years.

1I was supported by ERC Starting Grant 759471.

i

Abstract

As it has become easier and cheaper to collect big datasets in the last few decades, designing efficient

and low-cost algorithms for these datasets has attracted unprecedented attention. However, in most

applications, even storing datasets as acquired has become extremely costly and inefficient, which

motivates the study of sublinear algorithms. This thesis focuses on studying two fundamental graph

problems in the sublinear regime. Furthermore, it presents a fast kernel density estimation algorithm and

data structure.

The first part of this thesis focuses on graph spectral sparsification in dynamic streams. Our algorithm

achieves almost optimal runtime and space simultaneously in a single pass. Our method is based on a

novel bucketing scheme that enables us to recover high effective resistance edges faster. This contribution

presents a novel approach to the effective resistance embedding of the graph, using locality-sensitive hash

functions, with possible further future applications.

The second part of this thesis presents spanner construction results in the dynamic streams and the

simultaneous communication models. First, we show how one can construct a Õ(n2/3)-spanner using the

above-mentioned almost-optimal single-pass spectral sparsifier, resulting in the first single-pass algorithm

for non-trivial spanner construction in the literature. Then, we generalize this result to constructing

Õ(n2/3(1−α))-spanners using Õ(n1+α) space for any α ∈ [0,1], providing a smooth trade-off between

distortion and memory complexity. Moreover, we study the simultaneous communication model and

propose a novel protocol with low per player information. Also, we show how one can leverage more

rounds of communication in this setting to achieve better distortion guarantees.

Finally, in the third part of this thesis, we study the kernel density estimation problem. In this problem,

given a kernel function, an input dataset imposes a kernel density on the space. The goal is to design fast

and memory-efficient data structures that can output approximations to the kernel density at queried

points. This thesis presents a data structure based on the classical near neighbor search and locality-

sensitive hashing techniques that improves or matches the query time and space complexity for radial

kernels considered in the literature. The approach is based on an implementation of (approximate)

importance sampling for each distance range and then using near neighbor search algorithms to recover

points from these distance ranges. Later, we show how to improve the runtime, using recent advances in

the data-dependent near neighbor search data structures, for a class of radial kernels that includes the

Gaussian kernel.

iii

Abstract

Keywords: Sublinear Algorithms, Spectral Graph Theory, Graph Sparsification, Spanners, Dynamic

Streams, Simultaneous Communication Model, Kernel Density Estimation.

iv

Zusammenfassung

Da es in den letzten Jahrzehnten einfacher und billiger geworden ist, große Datenmengen zu sammeln,

hat die Entwicklung effizienter und kostengünstiger Algorithmen für diese Datenmengen beispiellose

Aufmerksamkeit auf sich gezogen. In den meisten Anwendungen ist jedoch selbst das Speichern von

erfassten Datensätzen extrem kostspielig und ineffizient geworden, was die Studie sublinearer Algo-

rithmen motiviert. Diese Dissertation konzentriert sich auf die Untersuchung zweier grundlegender

Graphenproblemen im sublinearen Regime. Darüber hinaus stellt sie einen schnellen Algorithmus und

eine Datenstruktur zur Schätzung der Kerndichte bereit.

Der erste Teil dieser Arbeit konzentriert sich auf die Sparsifizierung von Graphenspektralen in dynamis-

chen Streams. Unser Algorithmus erreicht gleichzeitig in einem einzigen Durchgang eine nahezu optimale

Laufzeit und Speicherplatz. Unsere Methode basiert auf einem neuartigen Bucket-Schema, das es uns

ermöglicht, hocheffektive Resistenz-Kanten schneller wiederherzustellen. Dieser Beitrag präsentiert einen

neuartigen Ansatz zur effektiven Resistenz-Einbettung des Graphen unter Verwendung ortsabhängiger

Hash- Funktionen mit möglichen weiteren zukünftigen Anwendungen.

Der zweite Teil dieser Arbeit präsentiert Ergebnisse der Spanner-Konstruktion in den dynamischen

Streams und den simultanen Kommunikationsmodellen. Zuerst zeigen wir, wie man einen Õ(n2/3)-

Spanner unter Verwendung des oben erwähnten fast optimalen Single-Pass-Spektralsparsifiers konstru-

ieren kann, was zum ersten Single-Pass-Algorithmus für nicht-triviale Spanner-Konstruktionen in der

Literatur führt. Dann verallgemeinern wir dieses Ergebnis zum Konstruieren von Õ(n2/3(1−α))-Schlüsseln

unter Verwendung von Õ(n1+α)-Raum für jedes α ∈ [0,1], was zum einen glatten Trade off zwischen

Verzerrung und Speicherkomplexität führt. Darüber hinaus untersuchen wir das simultane Kommunika-

tionsmodell und schlagen ein neuartiges Protokoll mit geringen Informationen pro Spieler vor. Außerdem

zeigen wir, wie man in dieser Umgebung mehr Kommunikationsrunden nutzen kann, um bessere Verzer-

rungsgarantien zu erreichen.

Schließlich untersuchen wir im dritten Teil dieser Arbeit das Kerndichteschätzungsproblem. Bei diesem

Problem erlegt ein Eingabedatensatz bei gegebener Kern-Funktion dem Raum eine Kerndichte auf.

Ziel ist es, schnelle und speichereffiziente Datenstrukturen zu entwerfen, die Annäherungen an die

Kerndichte an abgefragten Punkten ausgeben können. Diese Arbeit stellt eine Datenstruktur vor, die

auf der klassischen Suche nach nahen Nachbarn und lokalitätssensitiven Hashing-Techniken basiert,

die die in der Literatur betrachtete Abfragezeit und Raumkomplexität für radiale Kern verbessert oder

anpasst. Der Ansatz basiert auf einer Implementierung einer (ungefähren) Wichtigkeitsabtastung für jeden

v

Abstract

Entfernungsbereich und dann der Verwendung von Suchalgorithmen für nahe Nachbarn, um Punkte aus

diesen Entfernungsbereichen wiederherzustellen. Später zeigen wir, wie die Laufzeit verbessert werden

kann, indem wir die jüngsten Fortschritte in den datenabhängigen Datenstrukturen für die Suche nach

nahen Nachbarn für eine Klasse von radialen Kernen verwenden, die den Gaußschen Kern enthalten.

Zusammenfassung Schlüsselwörter: Sublineare Algorithmen, Spectrale Graphentheorie, Graph Sparsi-

fizierung, Spanners, dynamische Streams, Simultaten Kommunikationsmodelle, Kerndichteschätzung.

vi

Contents
Acknowledgements i

Abstract iii

Introduction 1

1 Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space 5

1.1 Introduction . 5

1.2 Preliminaries . 8

1.3 Main result . 10

1.3.1 Overview of the approach . 10

1.3.2 Our algorithm and proof of main result . 14

1.3.3 Maintenance of sketches . 23

1.3.4 Proof of Theorem 1.1.1 . 24

2 Graph Spanners by Sketching in Dynamic Streams and the Simultaneous Communication

Model 25

2.1 Introduction . 25

2.2 Preliminaries . 29

2.3 Technical Overview . 31

2.4 Spectral Sparsifiers are Spanners . 33

2.4.1 Sparse graphs . 37

2.4.2 Tightness of Theorem 2.1.1 and Theorem 2.4.1 . 38

2.4.3 Stretch-Space trade-off . 39

2.5 Simultaneous Communication Model . 41

2.5.1 The filtering algorithm . 42

2.5.2 Stretch-Communication trade-off . 45

3 Kernel Density Estimation through Density Constrained Near Neighbor Search 48

3.1 Introduction . 48

3.1.1 Our results . 49

3.1.2 Related Work . 51

3.1.3 Outline . 52

3.2 Technical overview . 52

vii

Contents

3.2.1 Data-independent algorithm (Section 3.4) . 53

3.2.2 Data dependent algorithm (Section 3.5) . 57

3.3 Preliminaries . 68

3.3.1 Basic notation . 68

3.3.2 F (η) and G(s,η,σ) . 68

3.3.3 Projection . 69

3.3.4 Pseudo-Random Spheres . 69

3.4 Kernel Density Estimation Using Andoni-Indyk LSH . 70

3.5 Improved algorithm via data dependent LSH . 82

3.5.1 Preprocessing algorithm and its analysis . 83

3.5.2 Parameter settings . 86

3.5.3 Query procedure . 90

3.6 Query time analysis . 93

3.6.1 Path geometries . 95

3.6.2 Upper-bounding the expected number of points examined by the query 101

3.6.3 Proof of Lemma 3.6.1 . 107

3.7 Reduction to zero-distance monotone execution paths . 108

3.8 Feasible LP solutions based on valid execution paths . 112

3.8.1 Construction of a feasible solution . 115

3.8.2 Monotonicity claims . 117

3.8.3 Bounding terminal densities using feasible LP solutions 119

3.9 Upper bounding LP value . 125

4 Conclusion 134

A Supplementary Materials for Chapter 1 135

B Supplementary Materials for Chapter 2 137

B.1 Conjectured hard input distribution . 137

B.2 Omitted Proofs . 138

B.2.1 Omitted proofs from Section 2.2 . 138

B.2.2 Omitted proofs from Section 2.4 . 139

C Supplementary Materials for Chapter 3 142

C.1 Omitted proofs from Section 3.3 . 142

C.2 Pseudo-random data sets via Ball carving . 144

C.3 Correctness proof of the data-dependent algorithm . 146

C.4 Omitted discussion from Section 3.6.1 . 151

C.5 Omitted claims and proofs from Section 3.6 . 152

C.6 Proof of Claim 3.8.3 . 159

Bibliography 164

Curriculum Vitae 175

viii

Introduction

Modern daily life is deeply affected by algorithms and their products, ranging from social media networks

and search engines to even the simplest smartphone applications. Recently, collecting massive datasets

has become relatively cheap, and data analysis techniques are almost common knowledge for engineers

and scientists in almost every area. Furthermore, the growth of dataset volumes is crippling existing

algorithms and demands more time and memory-efficient algorithms and data structures.

One commonly used solution for the challenges mentioned above is to trade accuracy for less cost (e.g.,

time, memory usage), using approximation algorithms, where an approximate output is acceptable.

In most practical settings, as there are already numerical errors imposed on the final result, using ap-

proximate algorithms that run comparably faster than previously known algorithms is an appealing

alternative.

Moreover, motivated by the fact that large graphs are generally expected to be dynamic, the streaming

model for graphs has been introduced. More specifically, in the dynamic streaming model for graphs,

the input is a stream of edge insertions or deletions. The algorithm is supposed to update its limited

memory accordingly to output an answer for a predefined problem afterward. Ideally, one expects the

following properties for a dynamic streaming algorithm. First, the memory usage needs to be (almost)

linear in the output size. Second, the update time of the memory state after each update is expected to be

(almost) constant time. Finally, the algorithm generates the output in time (almost) linear in the size of

the output. Graph sketching is essentially the only general purpose tool to handle dynamic streams for

graphs in a space-efficient manner, first introduced by the seminal work of Ahn, Guha, and McGregor

[1]. Given a graph G with n vertices and edge-vertex incidence matrix B , a random projectionΠB , where

Π ∈ Rd×(n
2) and d ≪ n, is called a (linear) sketch of G . Note that the sketches are not limited to this

definition. However, this thesis focuses on this specific family of sketches.

The increasing need for designing parallel algorithms motivates the study of a less-discovered model

called the simultaneous communication model. In the simultaneous communication model, each vertex

in the graph is considered a machine with a list of its neighbors, and all machines have access to a source

of shared randomness. In each round, all the nodes are allowed to broadcast a limited-length message. It

is somewhat apparent that sketching the edge-vertex incidence matrix naturally yields sketches with low

communication in the simultaneous communication model.

1

Introduction

In this thesis, we study two graph approximation notions, namely spectral sparsification and spanner

construction, in the computation models defined above. The rest of the thesis is focused on Kernel Density

Estimation problem. Below, we introduce the main questions investigated in this thesis.

Graph spectral sparsification in dynamic streams. One major question in graph theory is to sparsify

dense graphs while preserving, in some cases approximately, some predetermined properties, such

as cut sizes and spectral properties. As a result, graph sparsification algorithms have gained massive

attention in recent years. The first attempt was to approximately preserve cut sizes in graphs [2, 3], while

sparsifying the graph to Õ(n) number of edges. This line of research later continued with a more general

approximation guarantee called spectral approximation by the seminal work of Spielman and Teng [4].

Below, we informally define spectral sparsifiers.

Definition 0.0.1 (Informal). A graph G̃ is a spectral sparsifier of graph G if it satisfies the following condi-

tions. First, for any real-valued vector x, xT LG x ≈ xT LG̃ x, where LG and LG̃ are the Laplacian matrices of G

and G̃, respectively. Second, G̃ has fewer edges than G.

Spectral sparsification has been studied extensively for the setting that the graph is given as input; see the

survey [5] for a comprehensive set of pioneering works. Recently, with the extensive need for algorithms

with low space complexity on dynamic streams, [6, 7] studied the spectral sparsification problem in the

streaming model. However, these results suffered from overhead in the memory (and/or) overhead in the

runtime.

Spanners in dynamic streams and in the simultaneous communication model. Another challenging

question in designing graph algorithms in dynamic streams is to design an algorithm that outputs a

spanner of the input graph. Below, we informally define spanners.

Definition 0.0.2 (Informal). A spanner of graph G is a subgraph H of the input graph that preserves the

shortest path metric between pair of vertices up to some error factor.

In a single pass dynamic stream, the best-known result in the literature that uses almost linear space

constructs a spanning tree, which cannot guarantee a better worst-case distortion than (n −1)-stretch.

Thus, one main open question was whether it is possible to construct a spanner with a o(n) distortion

using almost linear space. Another undiscovered question is to design algorithms in the simultaneous

communication model. In this model, as explained above, initially, each node knows its list of neighbors

in the graph. Then, in each round, the nodes post a short message on a shared board. The goal is to be

able to extract a correct output with a high probability from the content published on the board. Although

there are inherent similarities between this model and the sketching ideas used in streaming models, we

discuss the fundamental differences in Chapter 2.

Kernel Density Estimation. Kernel Density Estimation (KDE) is one of the critical problems in machine

learning, statistics, and data analysis. Below, we informally define the kernel density estimation problem

discussed in this thesis.

2

Introduction

Definition 0.0.3 (Informal). Given a kernel function K (·, ·) and a set of data points P in a Euclidean space,

a kernel density estimation algorithm prepares an efficient data structure so that when a query point q is

received, the Kernel Density (KD) at the query point, i.e.,

1

|P |
∑

p∈P
K (p, q), (1)

can be approximated using a relatively fast procedure.

This problem has received much attention among researchers in recent years; however, in most cases, the

algorithms are suffering from the curse of dimensionality. A recent line of work [8, 9], studied sublinear

algorithms for this problem in high dimensions. The dominant idea is implementing a coarse importance

sampling procedure using locality sensitive hashing (LSH). The intuition is based on the fact that as

close points have a higher contribution to the KD at the query point, we can leverage LSH functions

to implement a rough version of importance sampling. Although this approach paved the way to a

better understanding of the problem and breakthrough results, the variance analysis of this approach

remained cumbersome. Therefore, the possibility of designing a simple and easy-to-analyze algorithm for

this problem that can improve upon prior results remained unclear in the literature. Furthermore, the

implications of new advanced data-dependent LSH techniques for this problem were undiscovered.

Contribution overview

This thesis focuses on designing fast and space-efficient algorithms for the two graph approximation

notions mentioned above, spectral sparsification and spanner construction, as well as the kernel density

estimation problem. We leverage appropriate graph sketches in the dynamic streaming model and the

simultaneous communication model to achieve low memory cost data structures and fast algorithms

for the graph approximation problems. On the other hand, we present a sublinear time and space data

structure for the kernel density estimation problem. The following paragraphs discuss the summary of

our contributions in more detail.

In the first part of this thesis, using a novel approach based on bucketing vertices in the effective resistance

metric, we present an algorithm that achieves almost optimal runtime and space complexity simultane-

ously for the graph sparsification problem in the dynamic streaming model. In general, one can reduce

the sparsification problem to the problem of recovering edges with high effective resistance using the

sketch of the graph. This problem has been solved in [7] by brute-forcing over all pairs of vertices, i.e.,

using Õ(n2) test vectors. On the other hand, this thesis shows how this problem can be solved using

Õ(n) test vectors by leveraging a bucketing approach, using an LSH function on the effective resistance

embedding of the graph. This is to ensure that only close points in the effective resistance metric can fall

into the same buckets and use this fact to design an almost linear-sized set of pairs of vertices to recover

all high effective resistance edges.

In the second part of this thesis, we show how the result of the first part can be used to construct

o(n)-spanners in a single pass over a dynamic stream. More specifically, we show how one can obtain

Õ(n2/3)-spanners using spectral sparsifiers with Õ(n) space. This result improves the best-known (trivial)

3

Introduction

approach of constructing a spanning tree that incurs a worst-case Ω(n) distortion to the shortest path

metric. Moreover, we show how one can trade more space for a better distortion, namely our algorithm

generates Õ(n2/3(1−α))-spanners using Õ(n1+α) space, in one pass over the dynamic stream. Later, we also

investigate this problem in the simultaneous communication model. We show a trade-off between the

number of rounds nodes can broadcast their messages and the distortion.

In the last part of this thesis, we present sublinear algorithms to tackle the kernel density estimation

problem in high dimensions. First, we present a simple and easy-to-analyze algorithm by implementing

importance sampling and leveraging the properties of data-independent Andoni-Indyk LSH [10]. This

algorithm improves upon or up to polylogarithmic factors matches the best-known results for radial

kernels such as the Gaussian and exponential kernels. As opposed to the best-known algorithms in the

literature [8, 9], we do not use an LSH function as a tool to implement a coarse importance sampling.

Instead, we leverage the fact that a certain amount of KD at some query point imposes an upper bound

on the distribution of points at each distance, which we call density constraints. Furthermore, noting that

points from the same distance contribute the same amount, in order to sample points from a specific

distance range, with a probability proportional to their contribution (i.e., importance sampling), one

can first subsample the whole dataset with that rate, and then use LSH function to recover points in that

distance range, for any given query point. The crucial point is that density constraints limit the number of

points that will end up in the same bucket as the query in the LSH function, which results in fast query

time.

Additionally, we improve our algorithm by utilizing new data-dependent LSH data structures [11, 12, 13].

Our data-dependent algorithm not only improves the result of the first part for a class of kernels that

includes the Gaussian kernel but also shed light on understanding the behavior of data-dependent LSH

functions when there are constraints over the distribution of the input dataset.

Organization

The following three chapters discuss graph sparsification in dynamic streams, spanner construction in

dynamic streams and the simultaneous communication model, and kernel density estimation problem,

respectively. The results of each chapter have been presented in a self-contained way and can be read

independently. In addition, each chapter has its introduction covering a more comprehensive set of prior

work and a thorough explanation of techniques and contributions.

4

1 Dynamic Streaming Spectral Sparsification
in Nearly Linear Time and Space

This chapter is based on a joint work with Michael Kapralov, Aida Mousavifar, Cameron Musco, Christo-

pher Musco, Aaron Sidford and Jakab Tardoss. It has been accepted to the ACM-SIAM Symposium on

Discrete Algorithms [14, SODA].

1.1 Introduction

Graph sketching, i.e. constructing small space summaries for graphs using linear measurements, has

received much attention since the work of Ahn, Guha and McGregor [1] gave a linear sketching primitive

for graph connectivity with optimal O(n log3 n) space complexity [15]. A key application of linear sketching

has been to design small space algorithms for processing dynamic graph streams, where edges can be

both inserted and deleted, although the graph sketching paradigm has been shown very powerful in many

other areas such as distributed algorithms and dynamic algorithms (we refer the reader to the survey [16]

for more on applications of graph sketching). Furthermore, it is known that linear sketching is essentially

a universal approach to designing dynamic streaming algorithms [17], and yields distributed protocols

for graph processing with low communication. Sketching solutions have been recently constructed for

many graph problems, including spanning forest computation [1], cut and spectral sparsifiers [18, 7],

spanner construction [18, 19], matching and matching size approximation [20, 21], sketching the Lapla-

cian [22, 23] and many other problems. The focus of our work is on oblivious sketches for approximating

spectral structure of graphs with optimally fast recovery. A sketch is called oblivious if its distribution is

independent of the input – such sketches yield efficient single pass dynamic streaming algorithms for

sparsification. We now outline the main ideas involved in previous works on this and related problems,

and highlight the main challenges in designing a solution that achieves both linear space and time.

Oblivious linear sketches with nearly optimal n logO(1) n have been obtained for the related problems

of constructing a spanning forest of the input graph [1], the problem of constructing cut sparsifiers of

graphs [24] and for the spectral sparsification problem itself [7]. In the former two cases the core of the

problem is to design a sketch that allows recovery of edges that cross small cuts in the input graph, and

the problem is resolved by applying ℓ0-sampling(see, e.g., [25, 26, 27]), and more generally exact (i.e.,

ℓ0) sparse recovery techniques on the edge incidence matrix B ∈R(n
2)×n of the input graph: one designs

a sketching matrix S ∈ RlogO(1) n×(n
2) and maintains S ·B ∈ RlogO(1) n×n throughout the stream. A natural

5

Chapter 1. Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space

recovery primitive that follows Boruvka’s algorithm for the MST problem then yields a nearly linear time

recovery scheme. Specifically, to recover a spanning tree one repeatedly samples outgoing edges out of

every vertex of the graph and contracts resulting connected components into supernodes, halving the

number of connected components in every round. Surprisingly, a sketch of the original graph suffices

for sampling edges that go across connected components in graphs that arise through the contraction

process, yielding a spanning forest in O(logn) rounds and using n logO(1) n bits of space.

The situation with spectral sparsifiers is very different: edges critical to obtaining a spectral approximation

do not necessarily cross small cuts in the graph. Instead, ‘important edges’ are those that have large

effective resistance, i.e can be made ‘heavy’ in the ℓ2 sense in an appropriate linear combination of the

columns of the edge incidence matrix B . This observation was used in [7] to design a sketch with nearly

optimal n logO(1) n space complexity, but the recovery of the sparsifier was brute-force and ran inΩ(n2)

time: one had to iterate over all potential edges and test whether they are in the graph and have ‘high’

effective resistance. Approaches based on relating effective resistances to inverse connectivity have been

proposed [6], but these result in suboptimalΩ(n5/3) space complexity. In a very recent work [28] a subset

of the authors proposed an algorithm with n1.4+o(1) space and runtime complexity, but no approach that

yields optimal space and runtime was known previously.

A key reason why previously known sketching techniques for reconstructing spectral approximations

to graphs failed to achieve nearly linear runtime is exactly the lack of simple ‘local’ (akin to Boruvka’s

algorithm) technique for recovering heavy edges. The main contribution of this paper is such a technique:

we propose a bucketing technique based on ball carving in (an approximation to) the effective resistance

metric that recovers appropriately heavy effective resistance edges by routing flows between source-sink

pairs that belong to the same bucket. This ensures that the recovery process is more ‘localized’, and results

in a nearly linear time algorithm.

Our result. Formally, we consider the problem of constructing spectral sparsifiers [29, 30] of graphs

presented as a dynamic stream of edges: given a graph G = (V ,E) presented as a dynamic stream of edge

insertions and deletions and a precision parameter ϵ ∈ (0,1), our algorithm outputs a graph G ′ such that

(1−ϵ)L ⪯ L′ ⪯ (1+ϵ)L,

where L is the Laplacian of G , L′ is the Laplacian of G ′ and ≺ stands for the positive semidefinite ordering

of matrices.

Our main result is a linear sketching algorithm that compresses a graph with n vertices to a n logO(1) n-bit

representation that allows logO(1) n-time updates, and from which a spectral approximation can be recov-

ered in n logO(1) n time. Thus, our result achieve both optimal space and time complexity simultaneously.

Theorem 1.1.1 (Near Optimal Streaming Spectral Sparsification). There exists an algorithm such that for

any ϵ ∈ (0,1), processes a list of edge insertions and deletions for an unweighted graph G in a single pass and

maintains a set of linear sketches of this input in O(ϵ−2n logO(1) n) space. From these sketches, it recovers in

O(ϵ−2n logO(1) n) time, with high probability, a weighted subgraph H with O(ϵ−2n logn) edges, such that H

is a (1±ϵ)-spectral sparsifier of G.

6

1.1 Introduction

Our result in Theorem 1.1.1 can be thought of as the first efficient ‘ℓ2-graph sketching’ result, using an

analogy to compressed sensing recovery guarantees. It is interesting to note that compressed sensing

primitives that allow recovery in time nearly linear in sketch size (which is exactly what our algorithm

achieves for the sparsification problem) usually operate by hashing the input vector into buckets so as to

isolate dominant entries, which can then be recovered efficiently. The main contribution of our work is

giving a ‘bucketing scheme’ for graphs that allows for nearly linear time recovery. As we show, the right

‘bucketing scheme’ for the spectral sparsification problem is a space partitioning scheme in the effective

resistance metric.

Effective resistance, spectral sparsification, and random spanning trees. The effective resistance metric

or effective resistance distances induced by an undirected graph plays a central role in spectral graph theory

and has been at the heart of numerous algorithmic breakthroughs over the past decade. They are central

to the to obtaining fast algorithms for constructing spectral sparsifiers [29, 31], spectral vertex sparsifiers

[32], sparsifiers of the random walk Laplacian [33, 34], and subspace sparsifiers [35]. They have played a

key role in many advances in solving Laplacian systems [4, 36, 37, 38, 39, 31, 32, 40] and are critical to the

current fastest (weakly)-polynomial time algorithms for maximum flow and minimum cost flow in certain

parameter regimes [41]. Given their utility, the computation of effective resistances has itself become an

area of active research [23, 42].

In a line of work particularly relevant to this paper, the effective resistance metric has played an important

role in obtaining faster algorithms for generating random spanning trees [43, 44, 45]. The result of [44]

partitions the graph into clusters with bounded diameter in the effective resistance metric in order to

speed up simulation of a random walk, whereas [45] proposed a more advanced version of this approach

to achieve a nearly linear time simulation. While these results seem superficially related to ours, there

does not seem to be any way of using spanning tree generation techniques for our purpose. The main

reason is that the objective in spanning tree generation results is quite different from ours: there one

would like to find a partition of the graph that in a sense minimizes the number times a random walk

crosses cluster boundaries, which does not correspond to a way of recovering ‘heavy’ effective resistance

edges in the graph. In particular, while in spanning tree generation algorithms the important parameter is

the number of edges crossing the cuts generated by the partitioning, whereas it is easily seen that heavy

effective resistance edges cannot be recovered from small cuts. Finally, the problem of partitioning graphs

into low effective resistance diameter clusters has been studied recently in [46]. The focus of the latter

work is on partitioning into induced expanders, and the results of [46] were an important tool in the

work of [28] that achieved the previous best n1.4+o(1) space and runtime complexity for our problem. Our

techniques in this paper take a different route and achieve optimal results.

Prior work. Streaming algorithms are well-studied with too many results to list and we refer the reader

to [47, 16] for a survey of streaming algorithms. The idea of linear graph sketching was introduced in

a seminal paper of Ahn, Guha, and McGregror [1], where a O(logn)-pass sparsification algorithm for

dynamic streams was presented (this result is for the weaker notion of cut sparsification due to [2, 3]).

A single-pass algorithm for cut sparsification with nearly optimal Õ(ϵ−2n) space was given in [24], and

extensions of the sketching approach of [1] to hypergraphs were presented in [48]. The more challenging

7

Chapter 1. Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space

problem of computing a spectral sparsifier from a linear sketch was addressed in [6], who gives an

Õ(ϵ−2n5/3) space solution. An Õ(ϵ−2n) space solution was obtained in [7] by more explicitly exploiting the

connection between graph sketching and vector sparse recovery, at the expense of Õ(ϵ−2n2) runtime. In a

recent work [28] a subset of the authors gave a single pass algorithm with ϵ−2n1.4+o(1) space and runtime

complexity.

We also mention that spectral sparsifiers have been studied in the insertion-only streaming model, where

edges can only be added to G [49, 50, 51], and in a dynamic data structure model [52, 22, 23], where more

space is allowed, but the algorithm must quickly output a sparsifier at every step of the stream. While

these models are superficially similar to the dynamic streaming model, they seem to allow for different

techniques, and in particular do not require linear sketching since they do not constrain the space used

by the algorithm. The spectral sparsification problem on its own has received a lot of attention in the

literature (e.g., [30, 53, 54, 55, 56, 57]. We refer the reader to the survey [5] for a more complete set of

references.

1.2 Preliminaries

General Notation. Let G = (V ,E) be an unweighted undirected graph with n vertices and m edges. For

any vertex v ∈V , let χv ∈Rn be the indicator vector of v , with a one at position v and zeros elsewhere. Let

Bn ∈R(n
2)×n denote the vertex edge incidence matrix of an unweighted and undirected complete graph,

where for any edge e = (u, v) ∈ (V
2

)
,u ̸= v , its e’th row is equal to be := buv :=χu −χv . Let B ∈R(n

2)×n denote

the vertex edge incidence matrix of G = (V ,E). B is obtained by zeroing out any rows of Bn corresponding

to (u, v) ∉ E .1

For weighted graph G = (V ,E , w), where w : E → R+ denotes the edge weights, let W ∈ R+(n
2)×(n

2) be

the diagonal matrix of weights where W (e,e) = w(e) for e ∈ E and W (e,e) = 0 otherwise. Note that

L = B⊤W B = B T
n W Bn , is the Laplacian matrix of G . Let L+ denote the Moore-Penrose pseudoinverse of L.

Also, for a real valued variable s, we define s+ := max{0, s}. We also use the following folklore:

Fact 1.2.1. For any Laplacian matrix L of an unweighted and undirected graph, its minimum nonzero

eigenvalue is bounded from below by λℓ = 1
8n2 and its maximum eigenvalue is bounded from above by

λu = 2n.

Definition 1.2.1. For any unweighted graph G = (V ,E) and any γ≥ 0, we define LGγ , as follows:

LGγ = LG +γI .

This can be seen in the following way. One can think of Gγ as graph G plus some regularization term.

In order to distinguish between edges of G and regularization term in Gγ, we let BGγ = B ⊕p
γI , where

B ⊕p
γI is the operation of appending rows of

p
γI to matrix B. One should note that B⊤

GγBGγ = LGγ . Also

1Note this is different then the possibly more standard definition of B as the E ×V matrix with the rows not in the graph
removed altogether.

8

1.2 Preliminaries

for simplicity we define Lℓ for any integer ℓ ∈ [0,d +1] as follows:

Lℓ =
LG + λu

2ℓ
I if 0 ≤ ℓ≤ d

LG if ℓ= d +1.

where d and λu are defined as in Lemma A.0.1.

We often denote the matrix LGγ = LG +γI by K , and in particular use the notation L and K interchangeably.

Effective Resistance. Given a weighted graph G = (V ,E , w) we associate it with an electric circuit where

the vertices are junctions and each edge e is a resistor of resistance 1/w(e). Now suppose in this circuit

we inject one unit current at vertex u, extract one from vertex v , and let fuv ∈ Rm denote the currents

induced on the edges. By Kirchhoff’s current law, except for the source u and the sink v , the sum of the

currents entering and exiting any vertex is zero. Hence, we have buv = B⊤fuv . Let ϕ ∈ Rn denote the

voltage potentials induced at the vertices in the above setting. By Ohm’s law we have f =W Bϕ. Putting

these facts together:

χu −χv = B⊤W Bϕ= Lϕ.

Observe that (χu −χv) ⊥ ker(L), and hence ϕ= L+(χu −χv).

The effective resistance between vertices u and v in graph G , denoted by Ruv is defined as the voltage

difference between vertices u and v , when a unit of current is injected into u and is extracted from v .

Thus we have:

Ruv = b⊤
uv L+buv . (1.1)

We also let Ruu := 0 for any u ∈V , for convenience. For any matrix K ∈Rn×n , we let RK
uv := b⊤

uv K +buv .

Also, for any pair of vertices (w1, w2), the potential difference induced on this pair when sending a unit of

flow from u to v can be calculated as:

ϕ(w1)−ϕ(w2) = b⊤
w1w2

L+buv . (1.2)

Furthermore, if the graph is unweighted, the flow on edge (w1, w2) is

fuv (w1w2) = b⊤
w1w2

L+buv . (1.3)

We frequently use the following simple fact.

Fact 1.2.2 (See e.g. [7], Lemma 3). For any graph G = (V ,E , w), γ≥ 0 and any Laplacian matrix L ∈RV , let

K = L+γI . Then, for any pair of vertices (u, v), (u′, v ′) ∈V ×V ,

|b⊤
u′v ′K +buv | ≤ b⊤

uv K +buv .

Proof. Let ϕ = K +buv . Suppose that for some x ∈ V \ {u}, ϕ(x) > ϕ(u). Then, since K = L +γI is a full

rank and diagonally dominant matrix, then one can easily see that we should have buv (x) > 0, which is a

9

Chapter 1. Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space

contradiction. So, ϕ(u) ≥ϕ(x) for any x ∈V \ {u} . In a similar way, we can argue that ϕ(v) ≤ϕ(y) for any

y ∈V \ {v}. So, the claim holds.

Spectral Approximation. For matrices C ,D ∈ Rp×p , we write C ⪯ D, if ∀x ∈ Rp , x⊤C x ≤ x⊤Dx. We say

that C̃ is (1± ϵ)-spectral sparsifier of C , and we write it as C̃ ≈ϵ C , if (1− ϵ)C ⪯ C̃ ⪯ (1+ ϵ)C . Graph G̃

is (1± ϵ)–spectral sparsifier of graph G if, LG̃ ≈ϵ LG . We also sometimes use a slightly weaker notation

(1−ϵ)C ⪯r C̃ ⪯r (1+ϵ)C , to indicate that (1−ϵ)x⊤C x ≤ x⊤C̃ x ≤ (1+ϵ)x⊤C x, for any x in the row span of C .

1.3 Main result

We start by giving some intuition and presenting the high level idea of our algorithm in Section 1.3.1

below. In Section 1.3.2 we formally state the algorithm and provide correctness analysis. In Section 1.3.3

we describe how the required sketches can be implemented using the efficient pseudorandom number

generator from [28]. Finally in Section 1.3.4 we give the proof of Theorem 1.1.1.

1.3.1 Overview of the approach

To illustrate our approach, suppose for now that our goal is to find edges with effective resistance at least
1

logn in a graph G = (V ,E), which we denote by "heavy edges". This task has been studied in prior work on

spectral sparsification [7] and was essentially shown in [28] to be sufficient to yield a spectral sparsification

with only almost constant overhead. Each of [7] and [28] solve this problem by running ℓ2-heavy hitters

on approximate flow vectors, obtained by coarse sparsifier of the graph. The number of test flow vectors

used in [7] is quadratic in the number of vertices, i.e., they brute force on all pair of vertices to find the

heavy edges, and this was improved to n1.4+o(1) in [28]. Consequently, a natural question that one could

attack to further improve the running times of these methods is the following:

Can we efficiently find a nearly linear number of test vectors that enable us to recover all heavy

edges?

In this work, we answer this question in the affirmative and formally show that there exist a linear number

of test vectors, which suffice to find all heavy edges. This is essentially the key technical contribution of

this paper and generalizing this solution yields our main algorithmic results.

To illustrate our approach, suppose that one can compute the flow vector using the following formula 2

BL+buv = fuv (1.4)

for any pair of vertices in polylogarithmic time (in our actual algorithms we will be unable to compute

2Note that in the actual algorithm we use K+ as opposed to L+, since we work with regularized versions of the Laplacian of G ,
denoted by K . We use L in this overview of our techniques to simplify notation.

10

1.3 Main result

(a) Graph of Example 1.3.1 (b) Graph of Example 1.3.2

Figure 1.1: (a) Graph of Example 1.3.1. A star with n petals along with one additional edge. (b) Graph of
Example 1.3.2. A star graph withΘ(n0.7) petals, along with one additional edge. Each zigzag represents a
path of connected cliques with effective resistance diameter O(1).

these flow vectors exactly). Note that

||fuv ||22 = b⊤
uv L+B⊤BL+buv = b⊤

uv L+buv = Ruv (1.5)

and

fuv (uv) = b⊤
uv L+buv = Ruv . (1.6)

This implies that, when Ruv > 1
logn , the contribution of uv coordinate of this vector to the ℓ2 norm is

substantial, and known ℓ2-heavy hitters can recover this edge using corresponding sketches, efficiently.

One should note that ℓ2-heavy hitter returns a set of edges withΩ(1
polylogn) contribution to the ℓ2

2 of the

flow vector. A natural question that arises is whether it is possible to recover a heavy edge without using

its flow vector, but rather using other flow vectors. Consider the following example.

Example 1.3.1 (Star Graph Plus Edge). Suppose that graph G = (V ,E) is a “star" with a center and n

petals along with one additional edge that connects a pair of petals, i.e., V = {v1, v2, . . . , vn} and E =
{(v1, v2), (v1, v3), ·, (v1, vn)}∪ {(v2, v3)} (see Figure 1.1a).

Clearly, for edge (v2, v3), Rv2v3 = 2
3 . Suppose that we want to recover this edge by examining an electrical

flow vector other than fv2v3 . We can in fact pick an arbitrary vertex x ∈V \ v2 and send one unit of flow to

v2. Regardless of the choice of x, edge (v2, v3) contributes anΩ(1) fraction of the energy of the flow, and thus

can be recovered by applying heavy hitters to fxv2 . Similarly, for any vi , when one unit of flow is sent from x

to vi , at least a constant fraction of the energy is contributed by edge (x, vi). So, all high effective resistance

edges in this graph (all edges) can be recovered using n −1 simple flow vectors, i.e., {fxv1 , . . . , fxvn }.

Of course, the graph in Example 1.3.1 has only n edges, and so could be stored explicitly in the streaming

setting, without needing to recover edges from heavy hitter queries. However, we can give a similar

example which is in fact dense.

Example 1.3.2 (Thick Star Plus Edge). Suppose that graph G is a dense version of the previous example

as follows: it has a center and Θ(n0.7) petals. Each petal consists of a chain of Θ(n0.2) cliques of size n0.1,

11

Chapter 1. Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space

C1 C2 C3 C4 Cn0.2 Cn0.9

Figure 1.2: Graph of Example 1.3.3. Each Ci represents a cluster with n0.1 vertices (with no internal edges)
and each zigzag represents the edges of a complete bipartite graph between consecutive Ci ’s.

where each pair of consecutive cliques is connected with a complete bipartite graph. One can verify that

the effective resistance diameter of each petal isΘ(1). Now, we add an additional edge, e, that connects an

arbitrary node in the leaf of one petal to a node in the leaf of another petal (see Figure 1.1b).

As in Example 1.3.1, e is heavy, with Re =Θ(1). In fact, it is the only heavy edge in the graph. One can verify

that, similar to Example 1.3.1, if we let C2 and C3 denote the cliques that e connects, choosing an arbitrary

vertex x and sending flow to any node in C2 and then to any node in C3, will give an electrical flow vector

where e contributes an Ω(1) fraction of the energy. Thus, e can be recovered by applying heavy hitters to

these vectors. Consequently, using n test vectors (sending flow from x to each other node in the graph) one

can recover all heavy edges of this example.

Unfortunately, it is possible to give an example where the above simple procedure of checking the flow

from an arbitrary vertex to all others fails.

Example 1.3.3 (Thick Line Plus Edge). Suppose that graph G = (V ,E) is a thick line, consisting of n0.9

set of points (clusters) where any two consecutive clusters form a complete bipartite graph. Formally,

V = {v1, v2, . . . , vn} =C1 ∪C2 ∪·· ·∪Cn0.9 , where Ci ’s are disjoint sets of size n0.1 and

E =
n0.9−1⋃

i=1
Ci ×Ci+1.

Also, add an edge e = (u, v) such that u ∈C1 and v ∈Cn0.2 (see Figure 1.2).

One can verify that Re =Ω(1). However, if one picks an arbitrary vertex x ∈V and sends one unit of flow

each other vertex, running ℓ2-heavy hitters on each of these flows will not recover edge e if x is far from

u and v in the thick path. Any flow that must cross (u, v) will have very large energy due to the fact that

it must travel a long distance to the clusters containing these vertices, so e will not contribute non-trivial

fraction.

Fortunately, the failure of our recovery method in Example 1.3.3 is due to a simple fact: the effective resis-

tance diameter of the graph is large. When the effective resistance diameter is small (as in Examples 1.3.1

and 1.3.2) the strategy always suffices. This follows from the following simple observation:

Observation 1.3.1. For a graph G = (V ,E), suppose that for an edge e = (u, v) ∈ E, one has

Re ≥β.

12

1.3 Main result

Then, for any x ∈V , in at least one of these settings, edge e carries at least β/2 units of flow:

1. One unit of flow is sent from x to u.

2. One unit of flow is sent from x to v.

This observation follows formally from the following simple lemma.

Lemma 1.3.1. For a graph G = (V ,E), suppose that D ∈RV ×V is a PSD matrix. Then, for any pair of vertices

(u, v) ∈ (V
2

)
and for any vertex x ∈V \ {u, v},

max{|b⊤
xuDbuv |, |b⊤

xv Dbuv |} ≥
b⊤

uv Dbuv

2
.

Proof. Note that

b⊤
uv Dbuv = (

b⊤
ux +b⊤

xv

)
Dbuv = b⊤

ux Dbuv +b⊤
xv Dbuv ,

and hence, the claim holds.

Consider the setting where β= 1
logn . The observation guarantees that edge e contributes at least 1

4log2 n
energy to either flow fxv or fxu . Thus, we can recover this edge via ℓ2 heavy hitters, as long as the total

energy ∥fxv∥2
2 or ∥fxu∥2

2 is not too large. Note that this energy is just equal to the effective resistance

Rxv between x and v (respectively x and u). Thus it is bounded if the effective resistance diameter is

small, demonstrating that our simple recovery procedure always succeeds in this setting. For example,

if the diameter is O(1), both ∥fxv∥2
2 =O(1) and ∥fxu∥2

2 =O(1), and so by Observation 1.3.1, edge e = (u, v)

contributes at least aΘ
(

1
log2 n

)
fraction of the energy of at least one these flows.

We next explain how to extend this procedure to handle general graphs, like that of Example 1.3.3.

Ball carving in effective resistance metric: When the effective resistance diameter of G is large, if we

attempt to recover e using ℓ2-heavy hitters on the flow vectors fxu and fxv , for an arbitrary chosen x ∈V ,

we may fail if the effective resistance distance between x and v or u (∥fxv∥2
2 or ∥fxu∥2

2) is large. This is

exactly what we saw in Example 1.3.3.

However, using the fact that ||fxv ||22 = Rxv , our test will succeed if we find a vertex x, which is close to u

and v in the effective resistance metric. This suggests that we should partition the vertices into cells of

fairly small effective resistance diameter, ensuring that both endpoints of an edge (u, v) that we would

like to recover fall in the same cell with nontrivially large probability. This is exactly what standard metric

decomposition techniques achieve through a ball-carving approach, which we use, as described next.

Partitioning the graph into low effective resistance diameter sets: It is well-known that using Johnson-

Lindenstrauss (JL) dimension reduction (see Lemma A.0.3), one can embed vertices of a graph in Rq ,

for q =O(logn), such that the Euclidean distance squares correspond to a constant factor multiplicative

13

Chapter 1. Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space

approximation to effective resistance of corresponding vertices. We then partition Rq intro ℓ∞ balls

centered at points of a randomly shifted infinite q-dimensional grid with side length w > 0, essentially

defining a hash function that maps every point in Rq to the nearest point on the randomly shifted grid.

We then bound the maximum effective resistance of pair of vertices in the same bucket (see Claim 1.3.2),

and show how an appropriate choice of the width w ensures that u and v belong to the same cell, with a

probability no less than a universal constant (see Claim 1.3.1). This ensures that in at least one of O(logn)

independent repetitions of this process with high probability, u and v fall into the same cell. We note that

the parameters of our partitioning scheme can be improved somewhat using Locality Sensitive Hashing

techniques (e.g., [58, 59, 60, 61, 62]). More precisely, LSH techniques would improve the space complexity

by polylogarithmic factors at the expense of slightly higher runtime (the best improvement in space

complexity would result from Euclidean LSH [60, 62], at the cost of an no(1) additional factor in runtime).

However, since the resulting space complexity does not quite match the lower bound ofΩ(n log3 n) due to

[15], we leave the problem of fine-tuning the parameters of the space partitioning scheme as an exciting

direction for further work.

Sampling edges with probability proportional to effective resistances: The above techniques can actu-

ally be extended to recover edges of any specific target effective resistance. Broadly speaking, if we aim to

capture edges of effective resistance about R, we can afford to lower our grid cell size proportionally to R.

Unfortunately, these edges don’t contribute enough to the flow vector to be recoverable. Thus, we will also

subsample the edges of the graph at rate approximately proportional to R to allow us to detect the target

edges while also subsampling them.

1.3.2 Our algorithm and proof of main result

As mentioned in the introduction, our algorithm consists of two phases. In the first phase, our algorithm

maintains sketches of the stream, updating the sketches at each edge addition or deletion. Then, in the

second phase, when queried, it can recover a spectral sparsifier of the graph from the sketches that have

been maintained in the first phase. In the following lines, we give a brief overview of each phase:

Updating sketches in the dynamic stream. Our algorithm maintains a set of sketches ΠB , of size

O(n polylog(n) ·ϵ−2), and updates them each time it receives an edge addition or deletion in the stream.

ΠB consists of multiple sketches (Πℓs Bℓ
s)ℓ,s where Bℓ

s is a subsampling of the edges in B at rate 2−s and Πℓs
is an ℓ2 heavy hitters sketch. In section 1.3.3 we discuss these sketches in more detail and we show that

the update time for each edge addition or deletion is O(polylog(n) ·ϵ−2).

Recursive sparsification: After receiving the updates in the form of a dynamic stream, as described above,

our algorithm uses the maintained sketches to recover a spectral sparsifier of the graph. This is done

recursively, and heavily relies on the idea of a chain of coarse sparsifiers described in Lemma A.0.1. For

a regularization parameter ℓ between 0 and d = O(logn) the task of SPARSIFY(Π≤ℓB ,ℓ,ϵ) is to output a

14

1.3 Main result

spectral sparsifier to matrix Lℓ, which is defined as follows:

Lℓ =
LG + λu

2ℓ
I if 0 ≤ ℓ≤ d

LG if ℓ= d +1.

where d = ⌈log2
λu
λℓ

⌉ (see Lemma A.0.1 for more details about chain of coarse sparsifiers). Note that the

call receives a collection of sketchesΠ≤ℓB as input that suffices for all recursive calls with smaller values

of ℓ. So, in order to get a sparsifier of the graph we invoke SPARSIFY(Π≤d+1B ,d +1,ϵ), which receives all

the sketches maintained throughout the stream and passes the required sketches to the recursive calls

in line 6 of Algorithm 1. This recursive algorithm takes as inputΠ≤ℓB corresponding to the parts of the

sketch used to recover a spectral approximation to Lk for all k ≤ ℓ, ℓ corresponding to the current Lℓ
which we wish to recover a sparsifier of, and ϵ corresponding to the desired sparsification accuracy. The

algorithm first invokes itself recursively to recover K̃ , a spectral approximation for Lℓ−1 (or uses the trivial

approximation λu I when ℓ= 0). The effective resistance metric induced by K̃ is then approximated using

the Johnson-Lindenstrauss lemma (JL). Finally, the procedure RECOVEREDGES (i.e. Algorithm 2) uses this

metric and the heavy hitters sketches (Πℓs Bℓ
s)s . We formally state our algorithm, Algorithm 2 below.

Algorithm 1 SPARSIFY(Π≤ℓB ,ℓ,ϵ)

1: procedure SPARSIFY(Π≤ℓB ,ℓ,ϵ)

2: W ← 0n×n

3: if ℓ= 0 then

4: K̃ ←λu I

5: else

6: K̃ ← 1
2(1+ϵ) SPARSIFY(Π≤ℓ−1B ,ℓ−1,ϵ)

7: B̃ ← the edge vertex incident matrix of K̃ (discarding the regularization)

8: W̃ ← the diagonal matrix of weights over the edges of K̃ (discarding the regularization)

9: Q ← q × (n
2

)
is a random ±1 matrix for q ← 1000logn

10: ▷ q above is chosen as it suffices to get a (1± 1
5) approximation from JL

11: M ← 1p
q QW̃ 1/2B̃ K̃ + ▷ M is such that R K̃

uv ≤ 5
4 ||M(χu −χv)||22 ≤ 3

2 R K̃
uv w.h.p.

12: ▷ R K̃ is the effective resistance metric in K̃

13: for s ∈ [− log
(
3 · c2 · logn ·ϵ−2

)
,10logn] do

14: Es ← RECOVEREDGES(Πℓs+Bℓ
s+ , M , K̃ +, s, q,ϵ) ▷We use the notation s+ = max(0, s)

15: for e ∈ Es do

16: W (e,e) ← 2+(s+)

17: if ℓ=
⌈

log2
λu
λℓ

⌉
+1 then

18: γ← 0

19: else

20: γ← λu

2ℓ

21: return B⊤
n W Bn +γI .

Algorithm 2 (the RECOVEREDGES primitive) is the core of Algorithm 1. It receives a parameter s as input,

15

Chapter 1. Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space

and its task is to recover edge of effective resistance ≈ ϵ2

logn 2−s from a sample at rate min(1,O(1
ϵ2 logn ·2−s))

from an appropriate sketch. It is convenient to let s range from −O(log(logn/ϵ2)) to O(logn), so that the

smallest value of s corresponds to edges of constant effective resistance. That way the sampling level

corresponding to s is simply equal to s+ := max(0, s). Therefore Algorithm 2 takes as input a heavy hitters

sketch Πℓs+Bℓ
s+ of Bℓ

s+ , the edge incidence matrix of Lℓ sampled at rate 2−s+ , an approximate effective

resistance embedding M , the target sampling probability 2−s , the dimension q of the embedding, and the

target accuracy ϵ. This procedure then performs the previously described random grid hashing of the

points using the effective resistance embedding and queries the heavy hitters sketch to find the edges

sampled at the appropriate rate.

The development and analysis of RECOVEREDGES (Algorithm 2) is the main technical contribution of our

paper. In the rest of the section we prove correctness of Algorithm 2 (Lemma 1.3.2, our main technical

lemma), and then provide a correctness proof for Algorithm 1, establishing Theorem 1.3.4. We then put

these results together with runtime and space complexity bounds to obtain a proof of Theorem 1.1.1.

Algorithm 2 RECOVEREDGES(Πℓs+Bℓ
s+ , M , K̃ +, s, q,ϵ)

1: procedure RECOVEREDGES(Πℓs+Bℓ
s+ , M , K̃ +, s, q,ϵ)

2: E ′ ←;. ▷ q is the dimension to perform hashing in, s is the sampling level
3: C ← the constant in the proof of Lemma 1.3.2
4: c2 ← the oversampling constant of Theorem A.0.1

5: w ← 2q ·
√

ϵ2

c2·2s ·logn .

6: for j ∈ [
10logn

]
do

7: For each dimension i ∈ [q], choose si ∼ Unif([0, w]).
8: Initialize H ←; to an empty hash table
9: for u ∈V do ▷Hash vertices to points on randomly shifted grid

10: For all i ∈ [q], let G (u)i :=
⌊

(Mχu)i−si

w

⌋
.

11: Insert u into H with key G (u) ∈Zq

12: ▷ G (u) ∈Zq indexes a point on a randomly shifted grid

13: for b ∈ keys(H) do ▷ b ∈Zq indexes a point on a randomly shifted grid
14: x ←arbitrary vertex in H−1(b)
15: for v ∈ H−1(b) \ {x} do

16: F ← HEAVYHITTER

(
Πℓs+Bℓ

s+ K̃ +bxv , 1
2 · 1

C ·q3 ·
√

ϵ2

logn

)
. ▷ As per Lemma A.0.2

17: for e ∈ F do
18: p ′

e ← 5
4 · c2 · ||Mbe ||22 · logn/ϵ2

19: if p ′
e ∈ (2−s−1,2−s] then

20: E ′ ← E ′∪ {e}.

21: return E ′.

Lemma 1.3.2 below is our main technical lemma. Specifically, Lemma 1.3.2 proves that if Algorithm 1

successfully executes all lines before line 13, then each edge is sampled and weighted properly (as required

by Theorem A.0.1), in the remaining steps.

Lemma 1.3.2 (Edge Recovery). Consider an invocation of RECOVEREDGES(Πℓs+Bℓ
s+ , M , K̃ , s, q,ϵ) of Algo-

rithm 2, where Πℓs+Bℓ
s+ is a sketch of the edge incidence matrix B of the input graph G as described in

Section 1.3.3, s is some integer, and ϵ ∈ (0,1/5). Suppose further that K̃ and M satisfy the following guaran-

16

1.3 Main result

tees:

(A) K̃ is such that 1
3 ·Lℓ ⪯r K̃ ⪯r Lℓ (see lines 4 and 6 of Algorithm 1)

(B) M is such that for any pair of vertices u and v, R K̃
uv ≤ 5

4 ||M(χu −χv)||22 ≤ 3
2 R K̃

uv (R K̃ is the effective

resistance metric in K̃ ; see line 11 of Algorithm 1)

Then, with high probability, for every edge e, RECOVEREDGES(Πℓs+Bℓ
s+ , M , K̃ , s, q,ϵ) will recover e if and only

if:

(1) 5
4 · c2 · ||Mbe ||22 · log(n)/ϵ2 ∈ (2−s−1,2−s] where c2 is the oversampling constant of Theorem A.0.1 (see

lines 18 and 19 of Algorithm 2), and

(2) edge e is sampled in Bℓ
s+ .

The proof of Lemma 1.3.2 relies on the following two claims regarding the hashing scheme of Algorithm 2.

First, Claim 1.3.1 shows that the endpoints of an edge of effective resistance bounded by a threshold most

likely get mapped to the same grid point in the random hashing step in line 10 of Algorithm 2.

Claim 1.3.1 (Hash Collision Probability). Let q be a positive integer and let the function G :Rq →Zq define

a hashing with width w > 0 as follows:

∀i ∈ [q], G (u)i =
⌊ui − si

w

⌋
where si ∼ Unif[0, w], as per line 10 of Algorithm 2. If for a pair of points x, y ∈ Rq , ||x − y ||2 ≤ w0 and

w ≥ 2w0q, then G (x) =G (y) with probability at least 1/2.

Proof. First note that by union bound

P(G (x) ̸=G (y)) =P(∃i : G (x)i ̸=G (y)i) ≤
q∑

i=1
P(G(x)i ̸=G(y)i) . (1.7)

Now let us bound each term of the sum.

P(G (x)i ̸=G (y)i) =P
(⌊ xi − si

w

⌋
̸=

⌊ yi − si

w

⌋)
= |xi − yi |

w

≤ ||x − y ||2
w

≤ 1

2q

(1.8)

Combining (1.7) and (1.8), we get that P(G (x) ̸=G (y)) ≤ 1/2 as claimed.

The next claim, Claim 1.3.2 bounds the effective resistance diameter of buckets in the hash table con-

structed in line 11 of Algorithm 2.

17

Chapter 1. Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space

Claim 1.3.2 (Hash Bucket Diameter). Let the function G :Rq →Zq , for some integer q, define a hashing

with width w > 0 as follows:

∀i ∈ [q], G (u)i =
⌊ui − si

w

⌋
where si ∼ Unif[0, w], as per line 10 of Algorithm 2. For any pair of points u, v ∈Rq , such that G (u) =G (v),

one has

||u − v ||2 ≤ w ·pq .

Proof. Since G (u) =G (v), then

||u − v ||2 =
√∑

i∈q
(ui − vi)2

≤
√

w2 ·q since ∀i ∈ q, |ui − vi | ≤ w

= w ·pq .

Using Claim 1.3.1 and Claim 1.3.2 we now prove Lemma 1.3.2.

Proof of Lemma 1.3.2: Let p ′
e := 5

4 · c2 · ||Mbe ||22 · log(n)/ϵ2. First note that both of conditions (1) and (2)

are necessary. Indeed, if e is not sampled in Bs , it will never be returned by HEAVYHITTER in line 16, and if

p ′
e ̸∈ (2−s−1,2−s] then e will not be added to E ′ due to line 19 of Algorithm 2. It remains to show that the

two conditions are sufficient to recover e with high probability.

For an edge (u, v) = e ∈ E satisfying conditions (1) and (2) we prove that the size of the grid (w as defined

in line 5 of Algorithm 2) is large enough to capture edge e, as described by Claim 1.3.1. Specifically, we

invoke the claim with w0 = ||Mbe ||2. Note that we have w ≥ 2qw0 by the setting of w in line 5 and the fact

that

||Mbe ||2 =
√

4

5
·p ′

e ·
ϵ2

c2 · logn
≤

√
ϵ2

c2 ·2s · logn
,

where we used the fact that p ′
e ≤ 2−s . Thus, we have w ≥ 2qw0 as prescribed by Claim 1.3.1, so u and v fall

into the same cell with probability at least 1/2 in a single instance of hashing. Hashing is then repeated

10logn times to guarantee that they fall into the same cell at least once with high probability, see line 6 of

Algorithm 2.

Consider now an instance of hashing where u and v fall into the same cell, say C (which corresponds to a

hash bucket in our hash table H). Let x be chosen arbitrarily from C as per line 14 of Algorithm 2 . Our

algorithm sends electrical flow from x to both u and v and by Observation 1.3.1 in at least one of these

flows e will have weight R K̃
e /2. More precisely, by Lemma 1.3.1 invoked with D = K̃ + we have

max{|b⊤
xuK̃ +buv |, |b⊤

xv K̃ +buv |} ≥
b⊤

uv K̃ +buv

2
= R K̃

e /2. (1.9)

18

1.3 Main result

Without loss of generality assume that this is the flow from x to v .

It remains to show, that unlike in Example 1.3.3, the total energy of the xv flow does not overshadow the

contribution of edge e. Intuitively this is because the effective resistence of e is proportional to 2−s · ϵ2

and therefore its ℓ2-contribution is proportional to 2−2s ·ϵ4. On the other hand, the effective resistence

diameter of C is proportional to 2−s · ϵ2, which bounds the energy of the xv flow before subsampling.

Subsampling at rate 2−s decreases the energy by a factor of 2−s in expectation, and the energy concentrates

sufficiently around its expectation with high probability. We prove everything in more detail below. It

turns out that the actual ratio between contribution of e and the entire energy of the subsampled flow is

polylogarithmic in n and quadratic in ϵ. Therefore, we can afford to store a heavy hitter sketch powerful

enough to recover e.

Now let f̃xv = BK̃ +(χx −χv), and f̃xu = BK̃ +(χx −χu). Note that fxv ∈R(n
2) is a vector whose nonzero entries

are exactly the voltage differences across edge in G when one unit of current is forced from x to v in K̃ . We

have, writing L instead of Lℓ to simplify notation,

||̃fxv ||22 = (χx −χv)⊤K̃ +B⊤BK̃ +(χx −χv)

≤ (χx −χv)⊤K̃ +LK̃ +(χx −χv) Since B⊤B ⪯ L

≤ 3 · (χx −χv)⊤K̃ +K̃ K̃ +(χx −χv) Since L ⪯ 3 · K̃ by assumption (A)

= 3 · (χx −χv)⊤K̃ +(χx −χv) of the lemma

= 3 ·R K̃
xv

Moreover we have

f̃xv (uv) = (χu −χv)⊤K̃ +(χx −χv)

and

f̃xu(uv) = (χu −χv)⊤K̃ +(χx −χu).

For simplicity, let

β := ϵ2

c2 · logn
.

By (1.9) we have

|̃fxv (uv)| ≥ b⊤
uv K̃ +buv

2

≥ 5

12
· ||Mbe ||22 By assumption (B) of the lemma

≥ 1

3
· 1

2s+1 · c2
· ε2

logn
Since p ′

e ≥
1

2s+1

= 1

3
· β

2s+1

(1.10)

19

Chapter 1. Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space

Since x, v belong to the same cell, by Claim 1.3.2, ||M(χu −χv)||2 ≤ w ·pq , thus,

||̃fxv ||22 ≤ 3 ·R K̃
xv

≤ 5

4
(w2 ·q) Since R K̃

xv ≤ 15

4
||M(χx −χv)||22 by (B)

= 15q3 · ϵ2

c2 ·2s · logn
By line 5 of Algorithm 2

= 15q3 · β
2s

(1.11)

Now, let f̃(s)
xv := BsK̃ bxv denote an independent sample of the entries of f̃xv with probability 1

2s . We now

argue that, if the edge (u, v) is included in Bs , then it is recovered with high probability by the heavy hitter

procedure HEAVYHITTER in line 16. We let f̃(s) := f̃(s)
xv and f̃ := f̃xv (i.e., we omit the subscript xv) to simplify

notation.

We will prove a lower bound on f̃(s)(uv)2

||̃f(s)||22
that holds with high probability. Note that

||̃f(s)||22 =
∑

e∈Bs \{(u,v)}
f̃(s)(e)2 + f̃(s) (uv)2 (1.12)

For ease of notation let X := ∑
e∈Bs \{(u,v)} f̃(s)(e)2, and let τ := R K̃

xv . Thus, we have for a sufficiently large

constant C > 1

Pr

(
f̃(s)(uv)2

||̃f(s)||22
< 1

C 2 ·q6 · ϵ2

logn

∣∣∣(u, v) ∈ Bs

)

=Pr

(
X >

(
C 2 ·q6 · logn

ε2 −1

)
· f̃(s)(uv)2

∣∣∣(u, v) ∈ Bs

)
≤Pr

(
||̃f(s)||22 >

1

2
·C 2 ·q6 · logn

ϵ2 · f̃(uv)2
)

≤Pr

(∣∣∣∣∣
∣∣∣∣∣ f̃(s)

τ

∣∣∣∣∣
∣∣∣∣∣
2

2

> 1

τ2 · 1

2
·C 2 ·q6 · logn

ϵ2 · f̃(uv)2

)

=Pr

(
||ỹ(s)||22 >

1

τ2 · 1

2
·C 2 ·q6 · logn

ϵ2 · f̃(uv)2
)

,

(1.13)

where we let ỹ := f̃
τ and ỹ(s) := f̃(s)

τ to simplify notation in the last line and used the fact that f̃(s)(uv)2 = f̃(uv)2

conditioned on (u, v) ∈ Bs in going from line 2 to line 3. Noting that |̃f(uv)| ≥ 1
3 ·

β

2s+1 by (1.10) and τ≤ 5q3 · β2s

by (1.11), we get that the last line in (1.13) is upper bounded by

Pr

(
f̃(s)(uv)2

||̃f(s)||22
< 1

C 2 ·q6 · ϵ2

logn

∣∣∣(u, v) ∈ Bs

)
≤ Pr

(
||ỹ(s)||22 >

C ′ · logn

ϵ2

)
, (1.14)

where C ′ is a constant that can be made arbitrarily large by increasing C . On the other hand, we have the

20

1.3 Main result

following

E
(||ỹ(s)||22

)= 1

2s ·
||̃f||22
τ2 Since f̃(s) is obtained by sampling at rate

1

2s

≤ 1

2s ·
3

τ
By (1.11)

≤ 1

2s ·
6

R K̃
uv

By (1.9) and Fact 1.2.2

≤ 1

2s ·
36

5 · ||Mbuv ||22
By assumption (B) of the lemma

≤ 1

2s ·
36

5 · 4
5·c2

· 1
2s+1 · ϵ2

logn

By condition (1) of the lemma

= 18 · c2 · logn

ϵ2 ,

where the transition from line 2 to line 3 is justified by noting that

τ≥ ∣∣(χu −χv)⊤K̃ +(χx −χv)
∣∣≥ 1

2
(χu −χv)⊤K̃ +(χu −χv) = 1

2
R K̃

uv

by Fact 1.2.2 and choice of x.

We now upper bound the right hand side of (1.14). For every entry (a,b) in ỹ, using Fact 1.2.2 one has

∣∣ỹab
∣∣= |(χa −χb)⊤K̃ +(χx −χv)|

τ
≤ |(χx −χv)⊤K̃ +(χx −χv)|

τ
= 1

Thus, every entry is in [−1,1], and since every entry is sampled independently, so we can use standard

Chernoff/Hoeffding [63] bound and we get

Pr

(∣∣∣∣ỹ(s)
∣∣∣∣2

2 >
C ′ · logn

ϵ2

)
≤ n−10

as long as C ′ is a sufficiently large absolute constant (which can be achieved by making the constant C

sufficiently large). Hence, we get from (1.13) that with high probability over the sampling of entries in Bs

|̃f(s)(uv)|
||̃f(s)||2

≥ 1

C ·q3 ·
√

ϵ2

logn
.

We set η= 1
2 · 1

C ·q3 ·
√

ϵ2

logn , thus if |̃f(s)(uv)| ≥ 2η||̃f(s)||2 our sparse recovery sketch must return uv with high

probability, by Lemma A.0.2.

Theorem 1.3.4. (Correctness of Algorithm 1) Algorithm SPARSIFY(Π≤ℓB ,ℓ,ϵ), for ℓ= d +1 = ⌈log2
λu
λℓ

⌉+1

(see Lemma A.0.1), any ϵ ∈ (0,1/5) and sketches Π≤ℓB of graph G as described in Section 1.3.3, returns a

graph H with O(n ·polylogn ·ϵ−2) weighted edges, with Laplacian matrix LH , such that

LH ≈ϵ LG ,

21

Chapter 1. Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space

with high probability.

Proof. Let γ=λu/2ℓ. As the algorithm only makes recursive calls with lower values of ℓ, we proceed by

induction on ℓ.

Inductive hypothesis: A call of SPARSIFY(Π≤ℓB ,ℓ,ϵ) returns a graph Hℓ with O(n ·polylogn ·ϵ−2) weighted

edges, with Laplacian matrix LHℓ , such that

LHℓ ≈ϵ Lℓ

with high probability, where

Lℓ =
LG + λu

2ℓ
I if 0 ≤ ℓ≤ d

LG if ℓ= d +1.

and for all ℓ≥ 0 the matrix K̃ defined at the beginning of Algorithm 1 is a 3-spectral sparsifier of Gγ(ℓ).

Base case: ℓ= 0. In this case we set K̃ =λu I (see line 4 of Algorithm 1). By Lemma A.0.1 we have

1

2
·Lℓ ⪯ K̃ ⪯ Lℓ, (1.15)

i.e. K̃ is a factor 3 spectral approximation of Lℓ for ℓ= 0. We argue that the graph output by Algorithm 1

satisfies LHℓ ≈ϵ Lℓ below, together with the same argument for the inductive step.

Inductive step: ℓ−1 → ℓ. As per line 6 of Algorithm 1 we set K̃ = 1
2(1+ϵ) SPARSIFY(Π≤ℓ−1B ,ℓ−1,ϵ), therefore

the corresponding Laplacian for this call is Lℓ−1. By the inductive hypothesis SPARSIFY(Π≤ℓ−1B ,ℓ−1,ϵ)

returns an ϵ-sparsifier of Lℓ−1, so we have

(1−ϵ) ·Lℓ−1 ⪯r 2(1+ϵ)K̃ ⪯r (1+ϵ) ·Lℓ−1. (1.16)

Moreover, by Lemma A.0.1, we have
1

2
·Lℓ ⪯

1

2
·Lℓ−1 ⪯ Lℓ. (1.17)

Putting (1.16) and (1.17) together we get

1−ϵ
2(1+ϵ)

·Lℓ ⪯r K̃ ⪯r Lℓ, (1.18)

which implies for ϵ≤ 1/5 that

1

3
·Lℓ ⪯r K̃ ⪯r Lℓ. (1.19)

We thus have that for all values of ℓ the matrix K̃ defined at the beginning of Algorithm 1 is a 3-spectral

sparsifier of Gγ(ℓ), assuming the inductive hypothesis for ℓ−1 (except for the base case case, where no

22

1.3 Main result

inductive hypothesis is needed). Consequently, for any pair of vertices (u, v) in the same connected

component in L,

b⊤
uv L+

ℓbuv ≤ b⊤
uv K̃ +buv ≤ 3 ·b⊤

uv L+
ℓbuv (1.20)

For the rest of the proof, we let L := Lℓ for simplicity. We now show that the rest of the algorithm constructs

an ϵ-sparsifier for L by sampling each edge e with some probability at least min{1,RL
uv log(n)/ϵ2} and

giving it weight inverse proportional to the probability. This will indeed give us an ϵ-sparsifier due to

Theorem A.0.1. In particular, this probability will be the following: For edges e in the appended complete

graph γI the probability is 1. For an edge e in the original graph G we define the variable p ′
e , as in line 18

of Algorithm 2, to be 5
4 ·c2 · ||Mbe ||22 · log(n)/ϵ2, and we define pe to be min{1, p ′

e }. Let se be the integer such

that p ′
e ∈ (2−se−1,2−se]. Note that then pe ∈ (2−s+e −1,2−s+e]. Our probability for sampling an edge e of the

original graph will be 2−s+e , which is less than min{1,c2 ·RL
e log(n)/ϵ2}, as required by Theorem A.0.1.

Consider the conditions of Lemma 1.3.2.

1. 1
3 ·Lℓ ⪯r K̃ ⪯r Lℓ is satisfied as shown above.

2. Note that R K̃
uv = ||W̃ 1/2B̃ K̃ +bu −W̃ 1/2B̃ K̃ +bv ||22 so we can use the Johnson-Lindenstrauss lemma

to approximate R K̃
uv using a smaller matrix. In lines 10 and 9 we use the exact construction of

Lemma A.0.3 with q being large enough for parameters ϵ = 1/5 and β = 6. Therefore, R K̃
uv ≤

5
4 ||M(χu −χv)||22 ≤ 3

2 R K̃
uv is satisfied with high probability, by Lemma A.0.3.

Thus by Lemma 1.3.2 if edge e is sampled in Bℓ
s+e

then RECOVEREDGES(Πℓ
s+e

Bℓ
s+e

, M , K̃ +, se , q,ϵ) will recover

e with high probability in line 14 of Algorithm 1. It will then be given the required weight (2s+e). Note

that e will not be recovered in any other call of RECOVEREDGES, that is when s ̸= se . Note also, that 2−s+e

is indeed an upper bound on min{1,c2 ·RL
e · log(n)/ϵ2}, and within constant factor of it. Therefore, by

Theorem A.0.1, the resulting graph will be an ϵ-spectral sparsifier of Gγ, and it will be O(n ·polylog(n)/ϵ2)-

sparse (disregarding the regularization).

1.3.3 Maintenance of sketches

Note that Algorithm 2 takes sketch ΠB as input. More precisely, Π is a concatenation of HEAVYHITTER

sketch matrices composed with sampling matrices, indexed by sampling rate s and regularization level ℓ.

In particular, for all s and ℓ let Bℓ
s be a row-sampled version of B at rate 2−s . ThenΠℓs is a HEAVYHITTER

sketch drawn from the distribution from Lemma A.0.2 with parameter η= 1
2 · 1

C ·q3 ·
√

ϵ2

logn . Note that the

matrices
(
Πℓs

)
s,ℓ are independent and identically distributed. We then maintainΠℓs Bℓ

s for all s and ℓ. We

define

ΠℓB =Πℓ0Bℓ
0 ⊕ . . .⊕Πℓ10lognBℓ

10logn ,

where ⊕ denotes concatenation of rows. We letΠ≤ℓ denoteΠ0⊕. . .⊕Πℓ, and letΠ denoteΠ≤d+1 to simplify

notation. Thus, the algorithm maintainsΠB throughout the stream. We maintainΠB by maintaining each

Πℓs Bℓ
s individually. To this end we have for each s and ℓ an independent hash function hℓs mapping

(V
2

)
23

Chapter 1. Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space

to {0,1} independently such that P(hℓs (u, v) = 1) = 2−s . Then when an edge insertion or deletion, ±(u, v),

arrives in the stream, we updateΠℓs Bℓ
s by ±Πℓs ·buv ·hℓs (u, v).

Overall, the number of random bits needed for all the matrices in an invocation of Algorithm 2 is at most

R = Õ(n2), in addition to the random bits needed for the recursive calls. To generate matrixΠwe use the

fast pseudo random numbers generator from Theorem 1.3.5 below:

Theorem 1.3.5. [28] For any constants q,c > 0, there is an explicit pseudo-random generator (PRG) that

draws on a seed of O(S polylog(S)) random bits and can simulate any randomized algorithm running in

space S and using R =O(Sq) random bits. This PRG can output any pseudorandom bit in O(logO(q) S) time

and the simulated algorithm fails with probability at most S−c higher than the original.

Observe that the space used by Algorithm 2 is s = Õ(n) in addition to the space used by the recursive calls.

Since R =O(n2), we have R =O(s2). Therefore, by Theorem 1.3.5 we can generate seed of O(s ·poly(log s))

random bits in O(s ·poly(log s)) time that can simulate our randomized algorithm.

Also, note that the random matrix Q ∈ RΘ(logn)×(n
2) for JL (line 9 of Algorithm 2) can be generated using

O(logn)-wise independent hash functions.

1.3.4 Proof of Theorem 1.1.1

Proof of Theorem 1.1.1:

Correctness of Algorithm 2 is proved in Theorem 1.3.4. It remains to prove space and runtime bounds.

Run-time and space analysis. We will prove that one call of SPARSIFY in Algorithm 1 requires Õ(n)

time and space, discounting the recursive call, where n is the size of the vertex set of the input graph.

Consider first lines 9 and 11, and note that the random matrix Q ∈RΘ(logn)×(n
2) for JL (line 9 of Algorithm

2) can be generated using O(logn)-wise independent hash functions, resulting in poly(logn) time to

generate an entry of Q and O(logn) space. We then multiply QW̃ 1/2B̃ by K̃ + which amounts to solving

Θ(logn) Laplacian systems and can be done in O(n polylogn · ϵ−2) time, since K̃ is O(n polylog(n) · ϵ−2)

sparse, using any of a variety of algorithms in the long line of improvements in solving Laplacian systems

[4, 36, 37, 64, 65, 38, 39, 31, 32, 40]. The resulting matrix, M , is again Θ(logn ×n) and can be stored in

n polylogn space. We note that the aforementioned Laplacian solvers provide approximate solutions with

inverse polynomial precision, which is sufficient for application of the HEAVYHITTER sketch.

The for loops in both line 13 and line 6 iterate over onlyΘ(logn) values. For all non-empty cells we iterate

over all vertices in that cell, so overall, we iterate n times. The HEAVYHITTERS subroutine called with

parameter η= ϵ/polylogn returns by definition at most polylogn/ϵ2 elements, so the for loop in line 17 is

over polylogn/ϵ2 iterations. In total this is O(n polylogn ·ϵ−2) time and space as claimed.

To get an ϵ-sparsifier of the input graph G , we need only to run SPARSIFY(Π≤d+1B ,d +1,ϵ). Therefore chain

of recursive calls will beΘ(log(n)) long, and the total run time will still be Õ(nϵ−2).

24

2 Graph Spanners by Sketching in Dynamic
Streams and the Simultaneous Communi-
cation Model

This chapter is based on a joint work with Arnold Filtser and Michael Kapralov. It has been accepted to the

ACM-SIAM Symposium on Discrete Algorithms [66, SODA].

2.1 Introduction

Graph sketching, introduced by [67] in an influential work on graph connectivity in dynamic streams

has been a de facto standard approach to constructing algorithms for dynamic streams, where the

algorithm must use a small amount of space to process a stream that contains both edge insertions and

deletions. The main idea of [67] is to represent the input graph by its edge incident matrix, and applying

classical linear sketching primitives to the columns of this matrix. This approach seamlessly extends

to dynamic streams, as by linearity of the sketch one can simply subtract the updates for deleted edges

from the summary being maintained: a surprising additional benefit is the fact that such a sketching

solution is trivially parallelizable: since the sketch acts on the columns of the edge incidence matrix,

the neighborhood of every vertex in the input graph is compressed independently. In particular, this

yields efficient protocols in the simultaneous communication model, where every vertex knows its list

of neighbors, and must communicate a small number of bits about this neighborhood to a coordinator,

who then announces the answer. Surprisingly, several fundamental problems such as connectivity [67],

cut [68] and spectral sparsification [69, 7, 14] admit sketch based simultaneous communication protocols

with only polylogarithmic communication overhead per vertex, which essentially matches existentially

optimal bounds.1 The situation is entirely different for the problem of approximating the shortest path

metric of the input graph: it is not known whether existentially best possible space vs approximation

quality tradeoffs can be achieved using a linear sketch. This motivates the main question that we study:

1There is some overhead to using linear sketches, but it is only polylogarithmic in the number of vertices in the graph –
see [15].

25

Chapter 2. Graph Spanners by Sketching in Dynamic Streams and the Simultaneous
Communication Model

What are the optimal space/stretch/pass tradeoffs for approximating the shortest path metric

using a linear sketch?

Sketching and dynamic streams. Sketching is the most popular tool for designing algorithms for the

dynamic streaming model. Sketching solutions have been recently constructed for many graph problems,

including spanning forest computation [1], cut and spectral sparsifiers [69, 7, 14], spanner construction

[68, 19], matching and matching size approximation [20, 21], sketching the Laplacian [70, 23] and many

other problems. Also, results showing universality of sketching for this application are known, at least

under some restrictions on the stream. The result of [71] shows such an equivalence under the assumption

that the stream length is at least doubly exponential in the size of the graph. The assumption on the stream

length was significantly relaxed for binary sketches, i.e., sketches over GF2, by [72, 73]. Very recently, it has

been shown [74] that lower bounds on stream length are crucial for such universality results: the authors

of [74] exhibit a problem with a sketching complexity, which is polynomial in the input size, that can be

solved in polylogarithmic space on a short dynamic stream.

Spanners in the sketching model. A subgraph H = (V ,E) of a graph G = (V ,E) is a t-spanner of G if for

every pair u, v ∈V one has

dG (u, v) ≤ dH (u, v) ≤ t ·dG (u, v) ,

where dG stands for the shortest path metric of G and dH for the shortest path metric of H . We assume in

this paper that the input graph is unweighted, as one can reduce to this case using standard techniques

at the expense of a small loss in space complexity.2 For every integer k ≥ 1, every graph G = (V ,E) with

n vertices admits a (2k −1)-spanner with O(n1+1/k) edges, which is optimal assuming the Erdős girth

conjecture. The greedy spanner [77, 78], which is sequential by nature, obtain the optimal number of

edges. The celebrated algorithm of Baswana and Sen [79] obtains (2k −1)-spanner with Õ(n1+1/k) edges.

This algorithm consists of a sequence of k clustering steps, and as observed by [68], can be implemented

in k passes over the stream using the existentially optimal Õ(n1+1/k) space. A central question is therefore

whether it is possible to achieve the existentially optimal tradeoff using fewer rounds of communication,

and if not, what the optimal space vs stretch tradeoff is for a given number of round of communication.

Prior to our work this problem was studied in [68] and [19]. The former showed how to construct a

(k log2 5 − 1)-spanner in log2 k passes using space Õ(n1+1/k), and the latter showed how to construct a

(2k −1)-spanner in two passes and Õ(n1+1/k) space. In a single pass, the previously best known algorithm

which uses n1+o(1) space is simply to construct a spanning tree, guaranteeing distortion n −1. Thus, our

first question is:

2Specifically, one can partition the input edges into geometric weight classes and run our sketch based algorithm on every
class, paying a multiplicative loss in space bounded by the log of the ratio of the largest weight to the smallest weight. See also
[75, 76].

26

2.1 Introduction

In a single pass in the dynamic semi streaming model using Õ(n) space, is it possible to

construct an o(n) spanner?

We prove the following theorem in Section 2.4, as a corollary we obtain a positive answer to the question

above (as spectral sparsifier can be computed in a single dynamic stream pass [7]).

Theorem 2.1.1. Let G = (V ,E) be an undirected, unweighted graph. For a parameter ε ∈ (0, 1
18], suppose

that H is a (1±ε)-spectral sparsifier of G. Then Ĥ is an Õ(n
2
3)-spanner of G, where Ĥ is unweighted version

of H.

Corollary 2.1.1. There exists an algorithm that for any n-vertex unweighted graph G, the edges of which

arrive in a dynamic stream, using Õ(n) space, constructs a spanner with O(n) edges and stretch Õ(n
2
3) with

high probability.

Additionally, for the same setting, using similar techniques, we prove stretch Õ(
p

m) (see Theorem 2.4.1).

One might think that the polynomial stretch is suboptimal, but we conjecture that this is close to best

possible, and provide a candidate hard instance for a lower bound in Section B.1. Specifically,

Conjecture 2.1.1. Any linear sketch from which one can recover an n2/3−Ω(1)-spanner with probability at

least 0.9 requires n1+Ω(1) space.

More generally, we give the following trade off between stretch and space in a single pass:

Corollary 2.1.2. Consider an n-vertex unweighted graph G, the edges of which arrive in a dynamic stream.

For every parameter α ∈ (0,1), there is an algorithm using Õ(n1+α) space, constructs a spanner with stretch

Õ(n
2
3 (1−α)) with high probability.

Similarly, for the same setting, we prove stretch Õ(
p

m ·n−α) (see Theorem 2.4.3).

Simultaneous communication model. We also consider the related simultaneous communication

model3, which we now define. In the simultaneous communication model every vertex of the input

graph G = (V ,E), |V | = n, knows its list of neighbors (so that every e = (u, v) ∈ E is known to both u and v),

and all vertices have a source of shared randomness. Communication proceeds in rounds, where in every

round the players simultaneously post short messages on a common board for everyone to see (note

that equivalently, one could consider a coordinator who receives all the messages in a given round, and

then posts a message of unbounded length on the board). Note that a given player’s message in any given

round may only depend on their input and other players’ messages in previous rounds. The content of the

board at the end of the communication protocol must reveal the answer with high constant probability.

The cost of a protocol in the simultaneous communication model is the length of the longest message

communicated by any player.

3This model has also been referred to as distributed sketching in the literature (see e.g., [15]).

27

Chapter 2. Graph Spanners by Sketching in Dynamic Streams and the Simultaneous
Communication Model

Sketching algorithms for dynamic connectivity and cut/spectral approximations based on the idea of

applying a sketch to the edge incidence matrix of the input graph [67, 7, 14] immediately yield efficient

single pass simultaneous communication protocols with only polylogarithmic message length. We

note, however, that existing sketch based algorithms for spanner construction (except for our result in

Corollary 2.1.1 and the trivial k-pass implementation of the algorithm of Baswana and Sen [79]) do not

yield low communication protocols. This is because they achieve reductions in the number of rounds by

performing some form of leader election and amortizing communication over all vertices. To illustrate the

difference between dynamic streaming and simultaneous communication model, consider the following

artificial problem. Suppose that we are given a graph with all but
p

n isolated vertices, and the task is

to recover the induced subgraph. Then using sparse recovery we can recover all the edges between the

vertices using a single pass over a dynamic stream of updates. However, it is clear from information

theoretic considerations that a typical vertex will need to communicateΩ(
p

n) bits of information to solve

this problem.

The main result of Section 2.5.1 is the following theorem.

Theorem 2.1.2. For any integer g ≥ 1, there is an algorithm (see Algorithm 3) that in g rounds of communi-

cation outputs a spanner with stretch min
{

Õ(n
g+1

2g+1), (12+o(1)) ·n2/g · logn
}

.

Note that when g = 1, the above theorem gives a Õ(n2/3) approximation using polylogarithmic com-

munication per vertex. We think that the n2/3 approximation is likely best possible in polylogarithmic

communication per vertex, and the same candidate hard instance from Section B.1 that we propose

for Conjecture 2.1.1 can probably be used to obtain a matching lower bound. Analyzing the instance

appears challenging due to the fact that every edge is shared by the two players – exactly the feature of our

model that underlies our algorithmic results (this sharing is crucial for both connectivity and spectral

approximation via sketches). This model bears some resemblance to the number-on-the-forehead (NOF)

model in communication complexity (see, for example, [80], where a connection of this form was made

formal, resulting in conditional hardness results for subgraph counting in data streams).

The proof of this theorem is presented in Section 2.5.1.

Additionally, in Subsection 2.5.2 we first provide a trade off between size of the communication per player

and stretch in one round of communication.

Theorem 2.1.3. There is an algorithm that in 1 round of communication, where each player communicates

Õ(nα) bits, outputs a spanner with stretch

min
{

Õ(n(1−α) 2
3), Õ

(p
m ·n−α)}

.

Then, we also prove a similar trade off when more than one round of communication is allowed.

Theorem 2.1.4. For any integer g ≥ 1, there is an algorithm that in g rounds of communication, where

each player communicates Õ(nα) bits, outputs a spanner with stretch

min
{

(12+o(1)) ·n(1−α)· 2
g · logn , Õ

(
n

(g+1)(1−α)
2g+1

)}
.

28

2.2 Preliminaries

Related work. Streaming algorithms are well-studied with too many results to list and we refer the reader

to [47, 16] for a survey of streaming algorithms. The idea of linear graph sketching was introduced in a

seminal paper of Ahn, Guha, and McGregror [1]. An extension of the sketching approach to hypergraphs

were presented in [48]. The simultaneous communication model has also been used for lower bounding

the performance of sketching algorithms – see, e.g. [20, 81].

Spanners are a fundamental combinatorial object. They have been extensively studied and have found

numerous algorithmic applications. We refer to the survey [82] for an overview. The most relevant related

work is on insertion only streams [83, 84] where the focus is on minimizing the processing time of the

stream, and dynamic algorithms, where the goal is to efficiently maintain a spanner while edges are

continuously inserted and deleted [83, 85, 86].

2.2 Preliminaries

All the logarithms in the paper are in base 2. We use Õ notation to suppress constants and poly-logarithmic

factors in n, that is Õ(f) = f ·polylog(n).

We consider undirected, graphs G = (V ,E), with a weight function w : E →R≥0. If we say that a graph is

unweighted, we mean that all the edges have unit weight. Ĝ = (V ,E ,1E) denotes the unweighted version

of G , i.e. the graph G where all edge weights are changed to 1. Sometimes we abuse notation and write

G instead of E . Given two subsets X ,Y ⊆V , EG (X ,Y) is the set of edges from X to Y , wG (X ,Y) denotes

the total weight of edges in EG (X ,Y) (number if G is unweighted). We sometimes abuse notation and

write instead EG (X ×Y) and wG (X ×Y) (respectively). For a subset of vertices A ⊆V , let G[A] denote the

induced graph on A.

Let dG denote the shortest path metric in G . A subgraph H of G is a t-spanner of G if for every u, v ∈V ,

dH (u, v) ≤ t ·dG (u, v) (note that as H is a subgraph of G , necessarily dG (u, v) ≤ dH (u, v)). Following the

triangle inequality, in order to prove that H is a t-spanner of G it is enough to show that for every edge

(u, v) ∈ E , dH (u, v) ≤ t ·dG (u, v).

For an unweighted graph G = (V ,E), such that |V | = n and |E | = m, let BG ∈Rm×n denote the vertex edge

incidence matrix. The Laplacian matrix of G is defined as LG := B⊤
G BG . Similarly, for a weighted graph

H = (V ,E , w), we let W ∈Rm×m be the diagonal matrix of the edge weights. The Laplacian of the graph H

is defined as LH := B⊤
H W BH . H ⪯G denotes that for every x⃗ ∈Rn , x⃗ t LH x⃗ ≤ x⃗ t LG x⃗. We say that a graph H

is (1±ϵ)-spectral sparsifier of a graph G , if

(1−ϵ)H ⪯G ⪯ (1+ϵ)H .

Fact 2.2.1. Suppose that a graph H is a (1± ϵ)-spectral sparsifier of a graph G, then H is a (1± ϵ)-cut

sparsifier of G, i.e., for every set of vertices S ⊂V , we have

(1−ϵ) ·wH (S,V \ S) ≤ wG (S,V \ S) ≤ (1+ϵ) ·wG (S,V \ S) .

29

Chapter 2. Graph Spanners by Sketching in Dynamic Streams and the Simultaneous
Communication Model

For any Laplacian matrix LG , we denote its Moore-Penrose pseudoinverse by L+
G . For any pair of vertices

u, v ∈V , we denote their indicator vector by buv =χu −χv , where χu ∈Rn is the indicator vector of u, i.e.,

the entry corresponding to u is +1 and all other entries are zero. Also, for any edge e = (u, v), we define its

indicator vector as be := buv . We also define effective resistance of a pair of vertices u, v ∈V as

RG
uv := b⊤

uv L+
G buv .

Fact 2.2.2. Given a (1±ϵ)-spectral sparsifier H of a G, for every u, v ∈V it holds that

(1−ϵ)RG
uv ≤ R H

uv ≤ (1+ϵ)RG
uv .

The following fact is a standard fact about effective resistances (see e.g., [30])

Fact 2.2.3. In every n vertex graph G = (V ,E , w) it holds that
∑

e∈E we RG
e ≤ n −1.4

Dynamic streams. In dynamic streams, there is a fixed set V of n vertices, unweighted edges arrive in a

streaming fashion, where they are both inserted and deleted.

ℓ0-samplers.: Given integer vector in Rn in a dynamic stream, using s ·polylog(n) space, we can sample

s different non-zero entries. In particular if the vector is s-sparse, we can reconstruct it. Furthermore,

given a stream of edges in an n-vertex graph G , using s ·polylog(n) samplers per vertex, we can create a

subgraph G̃ of H where each vertex has either at least s edges, or has all its incident edges from G . This

samplers are linear, therefore if we sum up the samplers of S vertices, we can sample an outgoing edge.

Consider a vector v⃗ ∈Rn , given a subset A ⊆ [n] of coordinates, we denote by v⃗[A] the restriction of v⃗ to A.

Lemma 2.2.1. Consider a vector v⃗ ∈ Rn that arrives in a dynamic stream via coordinate updates. The

coordinates [n] are partitioned into subsets A1, A2, . . . , Ar (the space required to represent this partition

is negligible). Let I = {
i | v⃗[Ai] ̸= 0⃗

}
be the indices of the coordinate sets on which v⃗ is not zero. Given

A1, A2, . . . , Ar and a parameter s > 0, and a guarantee that |I | ≤ s, using s ·polylog(n) space, one can design

a sketching algorithm recovering a set S ⊆ [n] such that

• For every j ∈ S, v⃗ j ̸= 0.

• For every i ∈I , Ai ∩S ̸= ;.

The proof uses a technique commonly used in sketching literature, and is given in Section B.2.1 for

completeness.

Lemma 2.2.2. [Edge recovery] Consider an unweighted, undirected graph G = (V ,E) that is received in

a dynamic stream. Given A,B ⊆V such that A ∩B =;, one can design a sketching algorithm that using

polylog(n) space in a single pass over the stream, with probability 1/poly(n), can either recover an edge

4If graph G is connected, then the inequality is satisfied by equality.

30

2.3 Technical Overview

A1 A2

u

A3 As

v

Figure 2.1: An illustration of the graph discussed in Section 2.3.

between A to B, or declare that there is no such edge.

Further, provided that there are at most m edges in A ×B, using m ·polylog(n) space, with probability

1/poly(n) we can recover them all.

The proof is using the same techniques as in the proof of Lemma 2.2.1 and is deferred to Section B.2.1.

2.3 Technical Overview

We consider an n vertex unweighted graph G = (V ,E).

Spectral sparsifiers are spanners (Section 2.4). The technical part of the paper begins by proving the

following fact: consider a spectral sparsifier H of G . Consider an edge (u, v) ∈ E . Denote the distance

between its endpoints in Ĥ by dĤ (u, v) = s. Divide the vertices V into the BFS layers w.r.t. u in Ĥ . That

is, Ai is the set of all vertices at distance i from u in Ĥ . In particular v ∈ As . See illustration in Figure 2.1.

Let W G
i = wG (Ai × Ai+1) be the total weight of the edges in EG (Ai , Ai+1). Similarly W H

i = wH (Ai × Ai+1).

Let H ′ be the graph created from H by contracting all the vertices in each set Ai into a single vertex. The

rough intuition is the following:

1
(a)≥ RG

u,v

(b)
≳ R H

u,v
(c)≥ R H ′

u,v
(d)=

s−1∑
i=0

1

W H
i

(∗)≈
s−1∑
i=0

1

W G
i

(e)≥
s−1∑
i=0

1

|Ai ||Ai+1|
(f)≥ Ω

(
s3

n2

)
. (2.1)

Here (a) follows as the effective resistance between the endpoints of an edge is at most 1. (b) as H is a

spectral sparsifier of G . (c) as the effective resistance can only reduce by contracting vertices. (d) as H ′ is a

path graph. (e) as G is unweighted and thus W G
i is bounded by the number of edges in Ai × Ai+1. And (f)

as
∑

i |Ai | ≤ n and the function
∑s−1

i=0
1

|Ai ||Ai+1| is minimized when |Ai | =Ω(n
s) for all i . The tricky part is the

rough equality (*). Note that if (2.1) holds, it will follow that s =O(n
2
3), implying the desired stretch.

While H is a spectral sparsifier of G , W G
i does not represent the size of a cut in G . This is as there might be

edges in G crossing from Ai to ∪ j>i+1 A j , or from Ai+1 to ∪ j<i A j . Thus a priori there is no reason to expect

that W H
i will approximate W G

i . Interestingly, we were able to show that W G
i =W H

i ±ϵ·(W H
i−1+W H

i +W H
i+1).

That is, while we are not able to bound |W G
i −W H

i | using the standard factor ϵ ·W H
i , we can bound this

error once we take into account also the former and later cuts in the BFS order! We use this fact to show

that for most of the indices i , W H
i ≤ |Ai ||Ai+1|. The desired bound follows. See proof of Theorem 2.1.1 for

more details.

31

Chapter 2. Graph Spanners by Sketching in Dynamic Streams and the Simultaneous
Communication Model

Next, using similar analysis we show that in case where the graph G has m edges, the stretch of Ĥ

is bounded by O(
p

m) (see Theorem 2.4.1). Suppose that dĤ (u, v) = s. Intuitively, following (2.1), as∑
i W G

i ≤ m, it follows that 1 ≥ RG
u,v ≳

∑s−1
i=0

1
W G

i
= Ω

(
s2

m

)
(as

∑s−1
i=0

1
W G

i
us minimized when all W G

i ’s are

equal), implying s = O(
p

m). Both bounds (O(n
2
3) and O(

p
m)) are tight. Essentially, we construct the

exact instance tightening all the inequalities in (2.1). That is a graph with Θ̃(n
2
3) layers, each one containing

Θ̃(n
1
3) vertices, and all possible edges between layers (see Subsection 2.4.2).

In Section 2.4.3, we show that using Õ(n1+α) space (instead of Õ(n)), the stretch can be reduced to

min{Õ(n
2
3 (1−α)),Õ(

p
m ·n−α)}.

The idea is the following: randomly partition the graph G into Õ(n2α) induced subgraphs G1,G2, . . . , such

that each Gi contains O(n1−α) vertices, and every pair of vertices u, v belong to some Gi . Furthermore, the

(expected) number of edges in each Gi is m ·n−2α. Next, we construct a spectral sparsifier for each graph

Gi and take their union as our spanner. The stretch gurantee follows (see Theorem 2.4.2, Theorem 2.1.2

and Theorem 2.4.3).

Simultaneous communication model (Section 2.5). In a single pass, one can construct a spectral spar-

sifier and therefore obtain the exact same results as in the streaming model. However, as opposed to

streaming, no known approach can reduce the stretch in less than logarithmic number of rounds. We

propose a natural peeling algorithm (see Algorithm 3). Denote G1 =G . Given a desired stretch parameter

t , the algorithm computes a spectral sparsifier H1, and removes all the satisfied edges (u, v) ∈ E where

dĤ1
(u, v) ≤ t , to obtain a graph G2. Generally, in the i ’th round the algorithm computes a spectral sparsifier

Hi for the graph Gi , and removes all the satisfied edges to obtain Gi+1. This procedure continues until all

the edges are satisfied (that is Gi+1 =;). The resulting spanner is Ĥ =∪i Ĥi the union of (the unweighted

version of) all the constructed sparsifiers. Notably, for every parameter t ≥ 1 the algorithm will eventually

halt, and return a t-spanner. The arising question is, how many rounds are required to satisfy a specific

parameter t?

We show that this procedure will halt after g steps for

t ≥ min{Õ(n
g+1

2g+1) , (12+o(1)) ·n2/g · logn}

(see Theorem 2.1.2). Interestingly, in g = logn rounds we can obtain stretch O(logn), which is asymp-

totically optimal. That is, we present a completely new construction for a O(logn)-spanner with Õ(n)

edges. Interestingly, there are constructions of spectral sparsifiers which are based on taking a union of

poly-logarithmically many O(logn)-stretch spanners (see [87, 88]). In a sense, here we obtain the opposite

direction. That is, by taking a union of logn sparsifiers, one can construct an O(logn) stretch spanner.

That is, sparsifiers and spanners are much more related from what one may initially expect.

To show that the algorithm halts in g round for a specific t , we bound the number of edges in Gi , which

eventually will lead us to conclusion that Gg+1 =;:

32

2.4 Spectral Sparsifiers are Spanners

• Set t = Õ(n
g+1

2g+1). Here the analysis is based on the effective resistance. Using (2.1), one can see

that after the first round, G2 will contain only edges with effective resistance at leastΩ(t 3

n2) (in G).

As the sum of all effective resistances is bounded by n −1, we conclude |G2| ≤Ω(n3

t 3). In general,

following the O(
p

m) upper bound on stretch, one can show that Gi+1 contain only edges with

effective resistanceΩ(t 2

|Gi |), implying |Gi+1| ≤ n
t 2 |Gi |. t is chosen so that |Gg | ≤ t 2, hence a spectral

sparsifier will have stretch at most
√|Gg | = t for all the edge, implying Gg+1 =;.

• Set t =O(n2/g · logn). Here the analysis is based on low diameter decomposition. In general, for a

weighted graph H and parameter φ= n−2/g , we construct a partition C of the vertices, such that

each cluster C ∈C has hop-diameter O(logn
φ) = t (i.e. w.r.t. Ĥ), and the overall fraction of the weight

of inter-cluster edges is bounded by φ. Following our peeling algorithm, when this clustering is

preformed w.r.t. Hi , Gi+1 will contain only inter-cluster edges from Gi . As Hi is a spectral sparsifier

of Gi , the size of all cuts are preserved. It follows that |Gi+1|≲φ · |Gi |. In particular, in log 1
φ
|G| ≤ g

rounds, no edges will remain.

Interestingly, for this analysis to go through it is enough that each Hi will be a cut sparsifier of Gi ,

rather than a spectral sparsifier. Oppositely, a single cut sparsifier H of G can have stretch Ω̃(n) (see

Remark 2.4.1).

Next, similarly to the streaming case, we show that if each player can communicate a message of size

Õ(nα) in each round, then we can construct a spanner with stretch min{Õ(n
2
3 (1−α)),Õ(

p
m ·n−α)} in a

single round, or stretch min
{

(12+o(1)) ·n(1−α)· 2
g · logn , Õ

(
n

(g+1)(1−α)
2g+1

)}
in g rounds (see Theorem 2.1.3

and Theorem 2.1.4). The approach is the same as in the streaming case, and for the most part, the

analysis follows the same lines. However, the single round Õ(
p

m ·n−α) bound is somewhat more involved.

Specifically, in the streaming version we’ve made the assumption that m ≥ n1+α, as otherwise, using

sparse recovery we can restore the entire graph. Unfortunately, sparse recovery is impossible here. Instead,

we show that in a single communication round we can partition the vertex set V into V1,V2, such that all

the incident edges of V1 are restored, while the minimum degree in G[V2] is at least nα. The rest of the

analysis goes through.

2.4 Spectral Sparsifiers are Spanners

In this section, we show that spectral sparsifiers can be used to achieve low stretch spanners in one pass

over the stream. Our algorithm works as follows: first, given a graph G = (V ,E), it generates a (possibly

weighted) spectral sparsifier H of G , using the sketches which can be stored in Õ(n) space [7, 89, 14]. Then,

the weights of all edges are set to be equal to 1. We show that the resulting graph Ĥ is a Õ(n
2
3)-spanner of

the original graph.

Theorem 2.1.1. Let G = (V ,E) be an undirected, unweighted graph. For a parameter ε ∈ (0, 1
18], suppose

that H is a (1±ε)-spectral sparsifier of G. Then Ĥ is an Õ(n
2
3)-spanner of G, where Ĥ is unweighted version

of H.

As [7] constructed (1±ε)-spectral sparsifier with O(n
ϵ2) edges in a dynamic stream, by fixing ε= 1

18 , we

conclude:

33

Chapter 2. Graph Spanners by Sketching in Dynamic Streams and the Simultaneous
Communication Model

Corollary 2.1.1. There exists an algorithm that for any n-vertex unweighted graph G, the edges of which

arrive in a dynamic stream, using Õ(n) space, constructs a spanner with O(n) edges and stretch Õ(n
2
3) with

high probability.

Proof of Theorem 2.1.1. By triangle inequality, it is enough to prove that for every edges (u, v) ∈ E , it

holds that dĤ (u, v) = Õ(n
2
3). Our proof strategy is as follows: consider a pair of vertices u, v ∈ V such

that dĤ (u, v) = s. We will prove that RG
u,v ≥ Ω̃(s3

n2). As for every pair of neighboring vertices it holds that

RG
u,v ≤ 1, the theorem will follow.

Consider a pair of vertices v,u ∈V such that dĤ (v,u) = s. We partition V to sets A0, A1, . . . , As where for

i < s, Ai = {z ∈ V | dĤ (v, z) = i } are all the vertices at distance i from v in Ĥ . As = {z ∈ V | dĤ (v, z) ≥ s}

are all the vertices at distance at least s. Let W H
i = wH (Ai × Ai+1) be the total weight in H (the weighted

sparsifier) of all the edges between Ai to Ai+1. Similarly, set W G
i = wG (Ai × Ai+1). We somewhat abused

notation here, we treat non-existing edges as having weight 0, while all the edges in the unweighted graph

G have unit weight. For simplicity of notation set also W H
−1 =W G

−1 =W H
s =W G

s = 0. Note that while W H
i

denotes the size if a cut in H , it does not correspond to a cut in G (as e.g. there might be edges from Ai to

Ai+2). Thus, a priori there should not be a resemblance between W G
i to W H

i . Nevertheless, we show that

W H
i approximates W G

i . However, the approximation will depend also on W H
i−1,W H

i+1 rather than only on

W H
i .

Claim 2.4.1. For every i , W H
i −ϵ · (W H

i−1 +W H
i +W H

i+1) ≤W G
i ≤W H

i +ϵ · (W H
i−1 +W H

i +W H
i+1).

Proof of Claim 2.4.1. For a fixed i , set

A<i = A0 ∪·· ·∪ Ai−1 A>i+1 = Ai+2 ∪·· ·∪ As

A≤i = A0 ∪·· ·∪ Ai A≥i+1 = Ai+1 ∪·· ·∪ As

In addition we denote the weight of several edge sets as follows, (see Figure 2.2 for illustration)

a = wG (Ai × Ai+1) b = wG (Ai × A>i+1) c = wG (A<i × Ai+1)

d = wG (A<i × A>i+1) e = wG (A<i × Ai) f = wG (Ai+1 × A>i+1)

(2.2)

Similarly by replacing wG with wH in (2.2), we obtain the values a′,b′,c ′,d ′,e ′, f ′ (e.g. a′ = wH (Ai ×Ai+1)).

Note that by the definition of the sets A0, . . . , As , it holds that b′ = c ′ = d ′ = 0. Using this notation,

Claim 2.4.1 states that a′−ϵ · (a′+e ′+ f ′) ≤ a ≤ a′+ϵ · (a′+e ′+ f ′).

Note that any (1±ε)-spectral sparsifier is a (1±ε)-cut sparsifier. Thus, as H is a (1±ε)-spectral sparsifier

of G , it preserves weights of all the cuts up to ϵ error factors. We derive the following inequalities:

34

2.4 Spectral Sparsifiers are Spanners

a

b

c

fe

d

Ai+1Ai
A>i+1A<i

Figure 2.2: An illustration of the diffferent edges sets, the weight of which is denoted in (2.2). Note that a =W G
i ,

e =W G
i−1, and f =W G

i+1.

(1−ϵ)a′ ≤ a +b + c +d ≤ (1+ϵ)a′ By (A≤i , A≥i+1)-cut

(1−ϵ) f ′ ≤ b +d + f ≤ (1+ϵ) f ′ By (A≤i+1, A>i+1)-cut

(1−ϵ)e ′ ≤ c +d +e ≤ (1+ϵ)e ′ By (A<i , A≥i)-cut

(1−ϵ)(a′+e ′+ f ′) ≤ a +d +e + f ≤ (1+ϵ)(a′+e ′+ f ′) By (A<i ∪ Ai+1, Ai ∪ A>i+1)-cut

Or equivalently
(1−ϵ)a′ ≤ a +b + c +d ≤ (1+ϵ)a′

−(1+ϵ) f ′ ≤ −b −d − f ≤ −(1−ϵ) f ′

−(1+ϵ)e ′ ≤ −c −d −e ≤ −(1−ϵ)e ′

(1−ϵ)(a′+e ′+ f ′) ≤ a +d +e + f ≤ (1+ϵ)(a′+e ′+ f ′)

By summing up these 4 inequalities, and dividing by 2, we get

a′−ϵ · (a′+e ′+ f ′) ≤ a ≤ a′+ϵ · (a′+e ′+ f ′) .

The claim now follows.

Our next goal is to bound
∑s−1

i=0
1

W H
i

, as this quantity lower-bounds the resistance between u and v in

H . Since
∑s

i=0 |Ai | = n and W G
i ≤ |Ai | · |Ai+1|, one can bound

∑s−1
i=0

1
W G

i
by Ω

(
s3

n2

)
. However relating this

quantity to the effective resistances in G is not as straightforward as one might expect.

Claim 2.4.2.
∑s−1

i=0
1

W H
i
≥Ω

(
s3

n2 · log2 1
ϵ

log2 n

)
.

Proof of Claim 2.4.2. For all i ∈ [s], set ai = |Ai |. Set

α := 10log 1
6ϵ

n2 , (2.3)

and

I :=
{

i ∈ [s] | ai ≤ αn

s

}
.

35

Chapter 2. Graph Spanners by Sketching in Dynamic Streams and the Simultaneous
Communication Model

It holds that |I | ≥ (
1− 1

α

)
s +1, as otherwise there are at least s

α indices i for which ai > αn
s , implying∑

i ai > n, a contradiction, since A0, . . . , As forms a partition of V . Set

Ĩ :=
{

i | such that ∀ j such that |i − j | ≤ α

10
, it holds that j ∈ I

}
.

Note that, since there are less than s
α indices i such that i ∉ I , then there are less than s

α · 2α
10 ≤ s

5 indices

out of Ĩ , implying ∣∣Ĩ
∣∣≥ s

2
. (2.4)

Fix an index i0 ∈ Ĩ , we argue that W H
i0

≤ 2
(
αn

s

)2. For every index j ∈ [
i0 − α

10 , i0 + α
10 −1

]
, it holds that

W G
j = |EG (A j , A j+1)| ≤ a j · a j+1 ≤ (

αn
s

)2. Assume for the sake of contradiction that W H
i0

> 2
(
αn

s

)2. We

prove by induction that for 1 ≤ j ≤ α
10 , there is an index i j such that |i j − i0| ≤ j and W H

i j
> 1

(6ϵ) j

(
αn

s

)2. For

the base case, by Claim 2.4.1,

W H
i0−1 +W H

i0
+W H

i0+1 ≥
1

ϵ

(
W H

i0
−W G

i0

)
> 1

ϵ

(
2
(αn

s

)2
−

(αn

s

)2
)
= 1

ϵ

(αn

s

)2
.

The we can choose i1 ∈ {i0 −1, i0, i0 +1} such that W H
i1

> 1
3ϵ

(
αn

s

)2 > 1
6ϵ

(
αn

s

)2.

For the induction step, suppose that there is an index i j such that |i j − i0| ≤ j < α
10 and W H

i j
> 1

(6ϵ) j

(
αn

s

)2.

As |i j − i0| ≤ α
10 −1, it follows that W G

i j
≤ (

αn
s

)2. Hence

W H
i j−1 +W H

i j
+W H

i j+1 ≥
1

ϵ

(
W H

i j
−W G

i j

)
≥ 1

ϵ

(
1

(6ϵ) j

(αn

s

)2
−

(αn

s

)2
)
> 1

2ϵ
· 1

(6ϵ) j

(αn

s

)2
.

Thus there is an index i j+1 ∈
{
i j −1, i j , i j +1

}
such that W H

i j+1
> 1

(6ϵ) j+1

(
αn

s

)2, as required.

We conclude that,

W H
i α

10

> (6ϵ)−
α
10

(αn

s

)2 (2.3)≥ n2
(αn

s

)2
≥ n2 ,

where the last inequality follows as s ≤ n. This is a contradiction, as H is an (1±ϵ) spectral sparsifier of the

unweighted graph G , where the maximal size of a cut is n2

4 . We conclude that for every i ∈ Ĩ , it holds that

W H
i ≤ 2

(
αn

s

)2. The claim now follows as

s−1∑
i=0

1

W H
i

≥ ∣∣Ĩ
∣∣ · 1

2

(αn

s

)−2

≥ s3

4α2n2 By (2.4)

=Ω
(

s3

n2 · log2 1
ϵ

log2 n

)
By (2.3) (2.5)

36

2.4 Spectral Sparsifiers are Spanners

We are now ready to prove the theorem. Construct an auxiliary graph H ′ from H , by contracting all

the vertices inside each set Ai , and keeping multiple edges. Note that by this operation, the effective

resistance between u and v cannot increase. The graph H ′ is a path graph consisting of s vertices, where

the conductance between the i ’th vertex to the i +1’th is W H
i . Using Claim 2.4.2, we conclude

(1+ϵ)RG
u,v ≥ R H

u,v By Fact 2.2.2

≥ R H ′
u,v As explained above

=
s−1∑
i=0

1

W H
i

Since H ′ is a path graph

=Ω
(

s3

n2 · log2 1
ϵ

log2 n

)
By (2.5) (2.6)

As u, v are neighbors in the unweighted graph G , it necessarily holds that RG
u,v ≤ 1, implying that s =

O

((
n2 · log2 n

log2 1
ϵ

) 1
3

)
= Õ

(
n

2
3

)
.

We state the following corollary, based on the last part of the proof of Theorem 2.1.1.

Corollary 2.4.1. Let G = (V ,E) be an unweighted undirected graph, and let H be a (1±ϵ)-spectral sparsifier

of G for some small enough constant ϵ. Also, let Ĥ denote the unweighted H. If for a pair of vertices u, v ∈V

we have s := dĤ (u, v), then

RG
u,v = Ω̃

(
s3

n2

)
,

and

R H
u,v = Ω̃

(
s3

n2

)
.

2.4.1 Sparse graphs

Suppose we are guaranteed that the graph G we receive in the dynamic stream has eventually at most

m edges. In Theorem 2.4.1 we show that the distortion guarantee of a sparsifier is at most Õ(
p

m), and

thus together with Theorem 2.1.1 it is Õ(min{
p

m,n
2
3 }). Later, in Section2.5 we will use this to obtain a

two pass algorithm in the simultaneous communication model with distortion Õ(n
3
5).

Theorem 2.4.1. Let G = (V ,E) be an undirected, unweighted such that |V | = n and |E | = m. For a parameter

ε ∈ (0, 1
18], suppose that H is a (1±ε)-spectral sparsifier of G. Then Ĥ is an Õ(

p
m)-spanner of G, where Ĥ is

the unweighted version of H.

The proof follows similar lines to the proof of Theorem 2.1.1 and is deferred to Section B.2.2. Theorem 2.4.1

implies a streaming algorithm using space Õ(n) that constructs a spanner with stretch Õ(
p

m). Notice

that the number of edges m, does not need to be known in advance.

Similar to Corollary 2.4.1, using the last part of the proof of Theorem 2.4.1, we conclude the following:

37

Chapter 2. Graph Spanners by Sketching in Dynamic Streams and the Simultaneous
Communication Model

V1 V2 VN−1 VNV0 VN+1

u v

e

Figure 2.3: An illustration of the graph G constructed during the proof of Lemma 2.4.1.

Corollary 2.4.2. Let G = (V ,E) be an unweighted undirected graph with m = |E |, and let H be a (1± ϵ)-

spectral sparsifier of G for some small enough constant ϵ. Also, let Ĥ denote the unweighted H. If for a pair

of vertices u, v ∈V we have s := dĤ (u, v), then

RG
u,v = Ω̃

(
s2

m

)
,

and

R H
u,v = Ω̃

(
s2

m

)
.

2.4.2 Tightness of Theorem 2.1.1 and Theorem 2.4.1

In this section, we show that the stretch guarantees in Theorem 2.1.1 and Theorem 2.4.1 are tight up to

polylogarithmic factors.

Lemma 2.4.1 (Tightness of Theorem 2.1.1). For every large enough n, there exists an unweighted n vertex

graph G, and a spectral sparsifier H of G such that Ĥ has stretch Ω̃(n2/3) w.r.t. G.

Proof. As was shown by Spielman and Srivastava [30], one can create a sparsifier H of G (with high

probability) by adding each edge e of G to H with probability pe = min{ϵ−2 ·RG
e · logn,1} (and weight 1/pe).

This approach is known as spectral sparsification using effective resistance sampling. We will construct a

graph G and argue that for a random graph H sampled according to the scheme above [30], the stretch of

Ĥ will (likely) be Ω̃(n2/3).

For brevity, we will construct a graph with n +2 vertices and ignore rounding issues. The graph G =
(V ,E) is constructed as follows. Let N := n

2
3

c for c := logn. We partition the set of vertices, V , into

V0,V1, . . . ,VN ,VN+1, where for each i ∈ [1, N], we have |Vi | = a = cn
1
3 , and V0 = {u}, VN+1 = {v} are single-

tons. For every i ∈ [0, N], we connect all vertices in Vi to all vertices in Vi+1, and furthermore, we connect

u and v by an edge called e. That is,

E = (∪N
i=0Vi ×Vi+1

)∪ {(u, v)}.

See Figure 2.3 for illustration. Next, we calculate RG
e , by observing the flow vector when one units of flow

38

2.4 Spectral Sparsifiers are Spanners

is injected in v and is removed from u. Denote R := RG
e . Then R units of flow is routed using edge e, while

(1−R) units of flow is routed using the rest of the graph. By symmetry, for each cut Vi ×Vi+1 the flow will

spread equally among the edges. Farther, the potential of all the vertices in each set Vi is equal. Denote by

Pi the potential of vertices in Vi . Thus 0 = P0 < P1 < ·· · < PN+1 = R. For i = 0, each edge in V0 ×V1 carries
(1−R)

a flow, thus P1 −P0 = (1−R)
a . Similarly, PN+1 −PN = (1−R)

a . On the other hand, for i ∈ [1, N −1], each

edge in Vi+1 ×Vi carries (1−R)
a2 flow, thus Pi+1 −Pi = (1−R)

a2 . We conclude

R = PN+1 −P0 =
N∑

i=0
(Pi+1 −Pi) = 2 · (1−R)

a
+ (1−R)

a2 · (N −1) = (1−R) · 2a +|N |−1

a2

Thus,

RG
e = R = 2a +|N |−1

a2 −2a −|N |+1
= 2cn1/3 + n

2/3

c −1

c2n2/3 −2cn1/3 − n2/3

c +1
= 1

c3 (1+o(1)) =O(
1

log3 n
) .

Note that it is thus most likely that e will not belong to H (for large enough n). For a sampled graph H

excluding e, we will have dĤ (u, v) ≥ |N | = Ω̃(n2/3). From the other hand, as a graph H sampled in this

manner is a spectral sparsifier with high probability, it implies the existence of a spectral sparsifier H of G

with stretch Ω̃(n2/3), as required.

Lemma 2.4.2 (Tightness of Theorem 2.4.1). For every large enough m, there exists an unweighted graph G

with m edges, and a spectral sparsifier H of G such that Ĥ has stretch Ω̃(
p

m) w.r.t. G.

Proof. Fix n = (m
2logm)3/4. Note that the graph we constructed during the proof of Lemma 2.4.1 has

2a+ (N −1)a2 = 2cn1/3 + (n
2/3

c −1) ·c2n2/3 < 2c ·n4/3 < m edges. We can complement it to exactly m edges by

adding some isolated component. Following Lemma 2.4.1, this graph has a sparsifier H , such that Ĥ has

stretch Ω̃(n2/3) = Ω̃(
p

m) w.r.t. G , as required.

Remark 2.4.1. Cut sparsifiers are somewhat weaker version of spectral sparsifiers. Specifically, a weighted

subgraph H of G is called a cut sparsifier if it preserves the size of all cuts (up to 1±ε factor). A natural

question is the following: given a cut sparsifier H of G, how good of a spanner is Ĥ?

The answer is: very bad. Specifically, consider the hard instance constructed during the proof of Lemma 2.4.1.

Construct the same graph G where we change the parameter N to equalΘ(n
logn) and a toΘ(logn). There

exist a cut sparsifier H of G excluding the edge e = (u, v). In particular, Ĥ will have stretch Ω̃(n).

2.4.3 Stretch-Space trade-off

In this section, we first prove a result, which given an algorithm that uses Õ(n) space in the dynamic

streaming setting, converts it to an algorithm that uses Õ(n1+α) space and achieves a better stretch

guarantee (see Theorem 2.4.2). Then, we apply this theorem to Corollary 2.1.1 and get a space-stretch

trade off. Next, in Theorem 2.4.3 we prove a similar trade off in terms of number of edges.

Theorem 2.4.2. Assume there is an algorithm, called ALG, that given a graph G = (V ,E) in a dynamic

stream, with |V | = n, using Õ(n) space, outputs a spanner with stretch Õ(nβ) for some constant β ∈ (0,1)

39

Chapter 2. Graph Spanners by Sketching in Dynamic Streams and the Simultaneous
Communication Model

with failure probability n−c for some constant c. Then, for any constant α ∈ (0,1), one can construct an

algorithm that uses Õ(n1+α) space and outputs a spanner with stretch Õ(nβ(1−α)) with failure probability

Õ(n(2+c)α−c).

Proof. Let P ⊂ 2[n] be a set of subsets of [n] such that: (1) |P | = O(n2α logn), (2) every P ∈ P is of size

|P | =O(n1−α), and (3) for every i , j ∈ [n] there is a set P ∈P containing both i , j . Such a collection P can

be constructed by a random sampling. Denote V = {v1, . . . , vn}. For each P ∈P , set AP = {vi | i ∈ P }. For

each P ∈P , we use ALG independently to construct a spanner HP for G[AP] the induced graph on AP .

The final spanner will be their union H =∪P∈P HP .

The space (and also the number of edges in H) used by our algorithm is bounded by
∑

P∈P Õ(|P |) =
Õ(n2α ·n1−α) = Õ(n1+α). From the other hand, for every vi , v j ∈V such that i , j ∈ P , it holds that

dH (vi , v j) ≤ dHP (vi , v j) ≤ Õ(|P |β) ≤ Õ(nβ(1−α)) .

By union bound, the failure probability is bounded by Õ(n2α) ·O(n−c(1−α)) = Õ(n(2+c)α−c).

Combining Corollary 2.1.1 with Theorem 2.4.2, we conclude:

Corollary 2.1.2. Consider an n-vertex unweighted graph G, the edges of which arrive in a dynamic stream.

For every parameter α ∈ (0,1), there is an algorithm using Õ(n1+α) space, constructs a spanner with stretch

Õ(n
2
3 (1−α)) with high probability.

Remark 2.4.2. We can reduce the number of edges in the spanner returned to O(n), by incurring additional

O(logn) factor to the stretch. This is done by computing additional spanner upon the one returned by

Theorem 2.1.2.

Following the approach in Theorem 2.4.2, we can also use more space to reduce the stretch parameterized

by the number of edges. Note that the Theorem 2.4.3 provides better result than Theorem 2.1.2 when

m ≤ n
4
3+ 2

3α.

Theorem 2.4.3. Consider an n-vertex unweighted graph G, the edges of which arrive in a dynamic stream.

For every parameter α ∈ (0,1), there is an algorithm using Õ(n1+α) space, constructs a spanner with stretch

Õ(
p

m ·n−α).

Proof. Similarly to Theorem 2.4.2, our goal here is to partition the vertices into ≈ n2α sets of similar size.

However, while in Theorem 2.4.2 we wanted to bound the number of vertices in each set, here we want to

bound the edges in each set. As the edge set is unknown, we cannot use a fixed partition. Rather, in the

preprocessing phase we will sample a partition that w.h.p. will be good w.r.t. arbitrary fixed edge set.

Fix p = n−α. With no regard to the rest of the algorithm, during the stream we will sample Õ(n1+α) = Õ(n
p)

edges from the stream using sparse recovery (Lemma 2.2.2), and add them to our spanner Ĥ . If m ≤ np−1,

40

2.5 Simultaneous Communication Model

we will restore the entire graph G , and thus will have stretch 1. The rest of the analysis will be under the

assumption that m > np−1.

For every i ∈ [1, 8
p2 lnn], sample a subset Ai by adding each vertex with probability p. Consider a single

subset Ai sampled in this manner, and denote Gi = G[Ai] the graph it induces. We will compute a

sparsifier Hi for Gi . Our final spanner will be Ĥ = ∪i Ĥi a union of the unweighted versions of all the

sparsifiers (in addition to the random edges sampled above). The space we used for the algorithm is∑
i Õ(|Ai |). Note that with high probability, by Chernoff inequality

∑
i Õ(|Ai |) = Õ(n2α ·n1−α) = Õ(n1+α).

Next we bound the stretch. Consider a pair of vertices (u, v) ∈ E . Denote by ψi the event that both u, v

belong to Ai . Note that P[ψi] = p2. Denote by mi =
∣∣∣(Ai

2

)∩E
∣∣∣ the number of edges in Gi . Set

µi = E
[
mi |ψi

]≤ 1+p · (degG (v)+degG (u)
)+mp2 < 1+2np +mp2 < 4mp2 ,

to be the expected number of edges in Gi provided that u, v ∈ A. The first inequality follows as (1)

(u, v) ∈ Gi , (2) every edge incident on u, v belongs to Gi with probability p, and (3) every other edge

belongs to Gi with probability p2. In the final inequality we used the assumption n < mp. Denote by φi

the event that mi ≤ 8mp2. By Markov we have

P
[
ψi ∧φi

]=P[
ψi

] ·P[
φi |ψi

]≥ 1

2
p2 .

As {ψi ∧φi }i are independent, we have that the probability that none of them occur is bounded by

P

[∧
i

(
ψi ∧φi

)]
≤ (1− 1

2
p2)

8
p2 lnn < e

− 1
2 p2· 8

p2 lnn = n−4 .

Note that if both ψi ,φi occurred, and Hi is an 1±ε sparsifier of Gi , by Theorem 2.1.1 we will have that

dĤ (u, v) ≤ dĤi
(u, v) ≤ Õ(

p
mi) = Õ(

p
m ·p) = Õ(

p
m ·n−α)

By union bound, the probability that for every (u, v) ∈ E , there is some i such that ψi ∧φi occurred is at

least 1−n−2. The probability that every Gi is a spectral sparsifier is 1−n−Ω(1). The theorem follows by

union bound.

2.5 Simultaneous Communication Model

In Section 2.4, we considered streaming model and proved results for the setting when one pass over

the stream was allowed. The remaining question is as follows: using small number of communication

rounds (but more than 1), can we improve the stretch of a spanner constructed in the simultaneous

communication model? A partial answer is given in the following subsections.

First, in Section 2.5.1 we present a single filtering algorithm that provides two different trade-offs between

stretch and number of communication rounds (see Algorithm 3 and Theorem 2.1.2). Basically, the

41

Chapter 2. Graph Spanners by Sketching in Dynamic Streams and the Simultaneous
Communication Model

algorithm receives a parameter t > 1, in each communication round, an unweighted version of a sparsifier

is added to the spanner. Then, locally in each vertex, all the edges that already have a small stretch in the

current spanner are deleted (stop being considered), and another round of communication begins.

In Theorem 2.1.2 we present two arguments. The first argument is based on effective resistance filtering,

which results in a spanner with Õ(n
g+1

2g+1) stretch in g communication rounds. The second argument, which

is based on low-diameter decomposition, results in a spanner with Õ
(
n

2
g

)
stretch in g communication

rounds. The latter approach outputs a spanner with smaller stretch compared to the former algorithm for

g ≥ 4.

Finally, in Subsection 2.5.2 we generalize our results to the case where each player is allowed Õ(nα)

communication per round for some α ∈ (0,1). In that section, we prove two results: (1) in Theorem 2.1.3

we give a space (communication per player) stretch trade off for one round of communication (2) in

Theorem 2.1.4 we give a similar trade off for more than one round of communication.

2.5.1 The filtering algorithm

The algorithm will receive a stretch parameter t . During the execution of the algorithm, we will hold in

each step a spanner Ĥ , and a subset of unsatisfied edges. As the algorithm proceeds, the spanner will

grow, while the number of unsatisfied edges will decrease. Initially, we start with an empty spanner Ĥ ,

and the set of unsatisfied edges E0 = E is the entire edge set. In general, at round i , we hold a set Ei of

edges yet unsatisfied. We construct a spectral sparsifier Hi for the graph Gi = (V ,Ei) over thus edges. Ĥi ,

the unweighted version of Hi is added to the spanner Ĥ . Ei+1 is defined to be all the edges (u, v) ∈ Ei , for

which the distance in Ĥ is greater than t , that is dĤ (u, v) > t . Note that as the sparsifier Hi , and hence the

spanner Ĥ is known to all, each vertex locally can compute which of its edges belong to Ei+1.

In addition, the algorithm will receive as an input parameter g to bound the number of communication

rounds. We denote by Eg+1 the set of unsatisfied edge by the end of the algorithm. That is edges from

(u, v) ∈ E for which dĤ (u, v) > t . Note that during the execution of the algorithm, Eg+1 ⊆ Eg ⊆ Eg−1 ⊆ ·· · ⊆
E1 = E . Finally, if Eg+1 =;, it will directly imply that Ĥ is a t-spanner of G . See Algorithm 3 for illustration.

Algorithm 3 Spanners Using Filtering(G = (V ,E), t , g)

1: procedure SPANNERSUSINGFILTERING(G = (V ,E), t , g)

▷ g is the number of rounds and t is the stretch parameter

2: ϵ← 1
18

3: Ĥ ←; ▷ Ĥ will be the output spanner

4: for i = 1 to g do

5: Ei ← {e = (u, v) ∈Gi−1 such that dĤ (u, v) > t }

6: Gi ← (V ,Ei)

7: Let Hi be a (1±ϵ)-spectral sparsifier of graph Gi

8: Ĥ ← Ĥ ∪ Ĥi ▷ Ĥi is the unweighted version of Hi

9: return Ĥ ▷ t-spanner of G with Õ(n · g) edges

42

2.5 Simultaneous Communication Model

Below, we state the theorem, which proves the round complexity and correctness of Algorithm 3.

Theorem 2.1.2. For any integer g ≥ 1, there is an algorithm (see Algorithm 3) that in g rounds of communi-

cation outputs a spanner with stretch min
{

Õ(n
g+1

2g+1), (12+o(1)) ·n2/g · logn
}

.

Proof. For g = 1, the theorem holds due to Theorem 2.1.1, thus we will assume that g ≥ 2. We prove each

of the two upper-bounds on stretch separately. We prove the first bound using an effective resistance

based argument. The latter upper-bound is proven using an argument based on filtering low-diameter

clusters.

Effective resistance argument: We execute Algorithm 3 with parameter g , and t = Õ(n
g+1

2g+1). Consider an

edge e = (u, v) ∈ E1. If e ∈ E2, then it follows from Corollary 2.4.1 that R H1
u,v = Ω̃

(
t 3

n2

)
. Set a1 = Ω̃

(
t 3

n2

)
. Then

|E2| ≤ 1

a1

∑
e∈E1

R H1
e ≤ 1+ε

a1

∑
e∈Ei

RG1
e ≤ 1+ε

a1
· (n −1) ≤ Ω̃

(
n3

t 3

)
, (2.7)

where the first inequality follows as a1 ≤ R H1
e for e ∈ E2, the second inequality is by Fact 2.2.2, and the

third inequity follows by Fact 2.2.3, as Gi−1 is unweighted. In general, for i ≥ 2, we argue by induction

that |Ei | = Õ
(

ni+1

t 2i−1

)
. Indeed, consider an edge e ∈ Ei+1. Using the induction hypothesis, it follows from

Corollary 2.4.2 that

R Hi
u,v = Ω̃

(
t 2

|Ei |
)
= Ω̃

(
t 2(i+1)−1

ni+1

)
Set ai = Ω̃

(
t 2(i+1)−1

ni+1

)
. Using the same arguments as in (2.7), we get

|Ei+1| ≤ 1

ai

∑
e∈Ei

R Hi
e ≤ 1+ε

ai

∑
e∈Ei

RGi
e ≤ 1+ε

ai
· (n −1) ≤ Õ

(
n(i+1)+1

t 2(i+1)−1

)
.

Finally, for every e ∈ Eg , following Theorem 2.4.1, it holds that

dĤ (u, v) ≤ dĤg
(u, v) ≤ Õ

(√
Eg

)
= Ω̃

√
ng+1

t 2g−1

≤ t ,

where the last inequality holds for t = Ω̃(n
g+1

2g+1). We conclude that Eg+1 =;. The theorem follows.

Low diameter decomposition argument: Fix φ= 1
3 n−2/g . We will execute Algorithm 3 with parameter

g and t = 4+o(1)
φ · lnn. We argue that for every i ∈ [2, g +1], |Ei+1| ≤ 3φ|Ei |. As |E1| < n2, it will follow that

Eg+1 =;, as required.

Consider the unweighted graph Gi , and the sparsifier Hi we computed for it. We will cluster Gi based on

cut sizes in Hi . The clustering procedure is iterative, where in phase j we holds an induced subgraph

Hi , j of Hi , create a cluster C j , remove it from the graph Hi , j to obtain an induced subgraph Hi , j+1,

and continue. The procedure stops once all the vertices are clustered. Specifically, in phase j , we

43

Chapter 2. Graph Spanners by Sketching in Dynamic Streams and the Simultaneous
Communication Model

pick an arbitrary unclustered center vertex v j ∈ Hi , j , and create a cluster by growing a ball around

v j . Set Br = BĤi , j
(v j ,r) to be the radius r ball around v j in the unweighted version of Hi , j . That is

Br+1 = Br ∪N (Br), where N (Br) are the neighbors of Br in Hi , j . Let r j be the minimal index r such that

∂Hi , j (Br) <φ ·VolHi , j (Br) . (2.8)

Here ∂Hi , j (Br) denotes the total weight of the outgoing edges from Br , while VolĤi , j
(Br) =∑

u∈Br
degĤi , j

(u)

denotes the sum of the weighted degrees of all the vertices in Br . Note that while Br is defined w.r.t. an

unweighted graph Ĥi , j , ∂Hi , j and VolHi , j are defined w.r.t. the weighted sparsifier. For every r , it holds

that VolĤi , j
(Br+1) ≥ VolĤi , j

(Br)+∂Ĥi , j
(Br). We argue that r j ≤ 2(1+ϵ) ·(n

2

)
. If v j is isolated in Hi , j , then (2.8)

holds for r = 0 and we are done. Else, as the minimal weight of an edge in a sparsifier is 1,5 it holds that

VolHi , j (B0) = degHi , j
(v j) ≥ 1. We conclude that for r j , the minimal index for which (2.8) holds, we have

that

VolHi , j (Br j) ≥ (1+φ)VolHi , j (Br−1) ≥ ·· · ≥ (1+φ)r j VolHi , j (B0) ≥ (1+φ)r j ,

On the other hand, as Hi is a (1+ε) spectral sparsifier of an unweighted graph Gi , we have

VolHi , j (Br j) ≤ VolHi , j (Hi , j) ≤ 2(1+ϵ) · |E | ≤ 2(1+ϵ) ·
(

n

2

)
.

Therefore, it must holds that (1+φ)r j ≤ 2(1+ϵ)
(n

2

)
, which implies

r j ≤ ln((1+ε)n2)

ln(1+φ)
= 2+o(1)

φ
· lnn .

We set C j = Br j and continue to construct C j+1. Overall, we found a partition of the vertex set V into

clusters C1,C2, . . . such that each cluster satisfies (2.8), and has (unweighted) diameter at most 4+o(1)
φ ·lnn =

t . In particular, for every edge e = (u, v) ∈ Ei , if u, v are clustered to the same Ci , then the distance between

them in Ĥ will be bounded by t . Thus Ei+1 will be a subset ∂Hi (C1,C2, . . .), the set of inter-cluster edges. It

holds that

∂Hi (C1,C2, . . .) = ∑
j≥1

∂Hi , j (C j) ≤φ · ∑
j≥1

VolHi , j (C j) ≤φ ·VolHi (V) , (2.9)

where the first inequality holds as each edge counted exactly once. For example the edge (u, v) ∈ E (Ca ,Cb),

where a < b counted only at ∂Ĥi ,a
(Ca). Hence,

|Ei+1| ≤ ∂Gi (C1,C2, . . .) ≤ (1+ϵ)∂Hi (C1,C2, . . .) By Fact 2.2.1

≤ (1+ϵ)φ ·VolHi (V) By (2.9)

≤ φ(1+ϵ)

1−ϵ ·VolGi (V) By Fact 2.2.1

=φ ·
(
1+ 2ϵ

1−ϵ
)
·2|Ei | < 3φ · |Ei | .

5Since we are producing spectral sparsifiers by effective resistance sampling method using corresponding sketches, each edge
e is reweighted by 1

pe
where pe is the probability that edge e is sampled, and hence the weights are at least 1.

44

2.5 Simultaneous Communication Model

Remark 2.5.1. Note that in fact for the low diameter decomposition argument, it is enough to use in

Algorithm 3 cut sparsifiers rather than spectral sparsifiers.

2.5.2 Stretch-Communication trade-off

We note that if more communication per round is allowed, then we can obtain the following.

Theorem 2.1.3. There is an algorithm that in 1 round of communication, where each player communicates

Õ(nα) bits, outputs a spanner with stretch

min
{

Õ(n(1−α) 2
3), Õ

(p
m ·n−α)}

.

Proof. We prove the stretch bounds, one by one.

Proving Õ(n(1−α) 2
3): Basically, the claim follows by Corollary 2.1.1. More specifically, we work on graphs

induces on O(n1−α) sized set of vertices. For each such subgraph, we can construct sparsifiers using

O(polylog(n)) sized sketches communicated by each vertex involved. Since each vertex is involved

in Õ(nα) subgraphs, then communication per vertex is Õ(nα). And by Corollary 2.4.1, the stretch is

Õ(n(1−α) 2
3).

Proving Õ
(p

m ·n−α)
: First, the reader should note that we cannot directly use Corollary 2.4.2 for this

part. The reason is that during the proof of Theorem 2.4.3, for the special case where m ≤ n1+α, we simply

used a sparse recovery procedure to recover the entire graph. However, as the graph G might contain

a dense subgraph, sparse recovery is impossible in the simultaneous communication model. Instead,

we use a procedure, called peeling low degree vertices, where using Õ(nα) bits of information per vertex,

we can partition the vertices into two sets, V1 and V2, where all edges incident on V1 are recovered and

minimum degree in G[V2] is at least n−α. We present this procedure in Algorithm 4 and its guarantees are

proved in Claim 2.5.1 below.

Lemma 2.5.1 (Peeling low-degree vertices). In a simultaneous communication model, where communica-

tion per player is Õ(s), there is an algorithm that each vertex can locally run and output a partition of the

vertices into V1,V2 such that:

1. All the incident edges of V1 are recovered.

2. The min-degree in the induce graph G[V2] is at least s.

Furthermore, the partitions output by all vertices are identical, due to the presence of shared randomness.

Proof. First, we argue that using s-sparse recovery procedure on the neighborhood of vertices, one can

find a set V1 ⊆V such that all the vertices in V \V1 have degree more than s. This is done in the following

45

Chapter 2. Graph Spanners by Sketching in Dynamic Streams and the Simultaneous
Communication Model

way: each vertex prepares an s-sparse recovery sketch for its neighborhood, and in the first round of

communication writes its sketch alongside its degree on the board. Then, each vertex runs Algorithm 4

locally. Note that the output is identical in all vertices since they have access to shared randomness.

Now, we argue the correctness of Algorithm 4. First, we let RECOVER be a s-sparse recovery algorithm.

More specifically, the following fact holds.

Fact 2.5.1. For any integer s, given S, a Õ(s)-bit sized linear s-sparse recovery sketch of a vector b⃗, such that

SUPPORT(⃗b) ≤ s, algorithm RECOVER(S) outputs the non-zero elements of b⃗, with high probability.

Consider the execution of Algorithm 4. If in the beginning there does not exist a low-degree vertex, we are

done. Otherwise, there exists a vertex u with degree ≤ s. Now, when we call RECOVER(Su) it is guaranteed

that the support of the vector is bounded by s (see line 4 of Algorithm 4). In that case, RECOVER(Su)

succeeds with high probability. Note that in case of success, the output of RECOVER(Su) is deterministic-

that is depend only the graph and not on the random coins. Then, we delete vertex u alongside its

incident edges. The sketches for the rest of the graph can be updated accordingly, since the sketches are

linear. Thus, we can use the updated sketches in the next round to recover the neighborhood of another

low-degree vertex (in the updated graph), without encountering dependency issues (as the series of events

we should succeed upon is predetermined). We repeat this procedure until no vertex with degree ≤ s

remains. Furthermore, we call RECOVER at most n times per vertex (since we can delete at most n vertices),

in total, using union bound, the algorithm succeeds with high probability. 6

Algorithm 4 Low-Degree Peeling({Su}u∈V , s)

1: procedure LOWDEGREEPEELING({Su}u∈V , s)

▷ linear s-sparse recovery sketches (denoted by Su for each vertex u)

2: V1 ←;
3: V2 ←V

4: while ∃ a vertex u with degree ≤ s do

5: u ← a vertex with degree ≤ s ▷Using a universal ordering, and degrees in G[V2]

6: Eu ← RECOVER(Su) ▷ See Fact 2.5.1

7: Remove Eu from the sketches and update degrees. ▷ Sketches are linear

8: V1 ←V1 ∪ {u}.

9: V2 ←V2 \ {u}.

10: return (V1,V2)

▷ A partition of vertices into two sets, V1 and V2, with the guarantees mentioned in Claim 2.5.1

We use Algorithm 4 with s = nα. In the same time, we use the algorithm from Theorem 2.4.3. That is,

partition the vertices into Õ(n2α) sets such that each vertex belong to each set with probability n−α. Than

compute a sparsifier H for each set and take their union. It follows that the total required communication

6A similar argument is also given in [90].

46

2.5 Simultaneous Communication Model

is Õ(nα) per vertex. Note that the algorithm of Theorem 2.4.3 is linear. Hence after using Claim 2.5.1,

we can add all the edges incident on V1 to the spanner, and update the algorithm from Theorem 2.4.3

accordingly. That is we will use it only on G[V2].

Note that we have |E(G[V2])| ≥ |V2| ·nα, and consequently we can use the argument in the proof of

Theorem 2.4.3. In total from one hand we will obtain stretch 1 on edges incident to V1, and from the other

hand, for edges inside G[V2] we will have stretch of Õ(
p|E(G[V2])| ·nα) ≤ Õ(

p
m ·nα).

Theorem 2.1.4. For any integer g ≥ 1, there is an algorithm that in g rounds of communication, where

each player communicates Õ(nα) bits, outputs a spanner with stretch

min
{

(12+o(1)) ·n(1−α)· 2
g · logn , Õ

(
n

(g+1)(1−α)
2g+1

)}
.

Proof. We use the same set of subsets of vertices as in Theorem 2.4.2, i.e., let P ⊂ 2[n] be a set of subsets of

[n] such that: (1) |P | =O(n2α logn), (2) every P ∈P is of size |P | =O(n1−α), and (3) for every i , j ∈ [n] there

is a set P ∈P containing both i , j . Such a collection P can be constructed by a random sampling. Denote

V = {v1, . . . , vn}. For each P ∈P , set AP = {vi | i ∈ P }. For each P ∈P , we use Algorithm 3 independently

on each subgraph. Then, using Theorem 2.1.2 on each subgraph, since the size of each subgraph is

O(n1−α) and since for each edge we have a subgraph that this edge is present, the claim holds.

47

3 Kernel Density Estimation through Density
Constrained Near Neighbor Search

This chapter is based on a joint work with Moses Charikar, Michael Kapralov and Paris Siminelakis. It has

been accepted to the 61st IEEE Annual Symposium on Foundations of Computer Science [91, FOCS]

3.1 Introduction

Kernel density estimation is a fundamental problem with numerous applications in machine learning,

statistics and data analysis [92, 93, 94, 95, 96, 97, 98]. Formally, the Kernel Density Estimation (KDE)

problem is: preprocess a dataset P of n points p1, . . . ,pn ∈Rd into a small space data structure that allows

one to quickly approximate, given a query q ∈Rd , the quantity

K (P,q) := 1

|P |
∑

p∈P
K (p,q). (3.1)

where K (p,q) is the kernel function. The Gaussian kernel

K (p,q) := exp(−||p−q||22/2)

is a prominent example, although many other kernels (e.g., Laplace, exponential, polynomial etc) are the

method of choice in many applications [99, 100].

In the rest of the paper, we use the notation µ∗ defined as µ∗ := K (P,q), and µ is a quantity that satisfies

µ∗ ≤ µ ≤ 4µ∗. Moreover, in the statement of the main results, we assume that a constant factor lower

bound to the actual kernel density, µ∗, is known. In general, if we only know that µ∗ ≥ τ for some τ, then

the µ∗ terms in the space should be replaced by τ (similar to prior results in the literature). However, the

query time can always be stated in terms of µ∗.

The kernel density estimation problem has received a lot of attention over the years, with very strong

results available for low dimensional datasets. For example, the celebrated fast multipole method [101]

and the related Fast Gauss Transform can be used to obtain efficient data structure for KDE (and in fact

solves the more general problem of multiplying by a kernel matrix). However, this approach suffers from

an exponential dependence on the dimension of the input data points, a deficiency that it shares with

48

3.1 Introduction

other tree-based methods [102, 103, 104, 105, 106]. A recent line of work [8, 9, 107, 108] designed sublinear

query algorithms for kernel density estimation in high dimensions using variants of the Locality Sensitive

Hashing [8] framework of Indyk and Motwani [58].

Most of these works constructed estimators based on locality sensitive hashing, and then bounded the

variance of these estimators to show that a small number of repetitions suffices for a good estimate.

Bounding the variance of LSH-based estimators is nontrivial due to correlations inherent in sampling

processes based on LSH, and the actual variance turns out to be nontrivially high.

In this work we take a different approach to implementing importance sampling for KDE using LSH-based

near neighbor search techniques. At a high level, our approach consists of first performing independent

sampling on the dataset, and then using using LSH-based near neighbor search primitives to extract

relevant data points from this sample1. The key observation is that the sampled dataset in the KDE

problem has nice geometric structure: the number of data points around a given query cannot grow

too fast as a function of distance and the actual KDE value µ (we refer to these constraints as density

constraints – see Section 3.2 for more details). The fact that our approach departs from the idea of

constructing unbiased estimators of KDE directly from LSH buckets turns out to have two benefits: first,

we immediately get a simple algorithm that uses classical LSH-based near neighbor search primitives

(Euclidean LSH of Andoni and Indyk [10]) to improve on or essentially matches all prior work on kernel

density estimation for radial kernels. The result is formally stated as Theorem 3.1.1 for the Gaussian kernel

below, and its rather compact analysis in a more general form that extends to other kernels is presented in

Section 3.4. The second benefit of our approach is that it distills a clean near neighbor search problem,

which we think of as near neighbor search under density constraints, and improved algorithms for that

problem immediately yield improvements for the KDE problem itself. This clean separation allows us to

use the recent exciting data-depending techniques pioneered by [11, 12, 13] in our setting. It turns out that

while it seems plausible that data-dependent techniques can improve performance in our setting, actually

designing and analyzing a data-dependent algorithm for density constrained near neighbor search is

quite nontrivial. The key difficulty here lies in the fact that one needs to design tools for tracking the

evolution of the density of the dataset around a given query through a sequence of recursive partitioning

steps (such evolution turns out to be quite involved, and in particular governed by a solution to an integral

equation involving the log density of the kernel and properties of Spherical LSH). The design of such tools

is our main technical contribution and is presented in Section 3.5. The final result for the Gaussian kernel

is given below as Theorem 3.1.2, and extensions to other kernels are presented in Section 3.5.

3.1.1 Our results

We instantiate our results for the Gaussian kernel as an illustration, and then discuss extensions to more

general settings. We assume that µ∗ = n−Θ(1), since this is the interesting regime for this problem. For

µ∗ = n−ω(1) under the Orthogonal Vectors Conjecture (e.g. [109]), the problem cannot be solved faster

than n1−o(1) using space n2−o(1) [9], and for larger values µ∗ = n−o(1) random sampling solves the problem

in no(1)/ϵ2 time and space.

1The approach of [107] also used near neighbor search techniques, but was only using c-ANN primitives as a black box,
which turns out to be constraining – this only leads to strong results for slowly varying kernels (i.e., polynomial kernels). Our
data-independent result recovers the results of [107], up to a µ−o(1) loss, as a special case.

49

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Data-Independent LSH Our first result uses data-independent LSH of Andoni-Indyk [10] to improve

upon the previously best known result [8] and follow up works that required query time Õ(µ−0.5−o(1)/ϵ2) if

only polynomial space in 1/µ is available.

Theorem 3.1.1. Given a kernel K (p,q) := e−a||p−q||22 for any a > 0, ϵ=Ω
(

1
polylogn

)
, µ∗ = n−Θ(1) and a data

set of points P, there exists an algorithm for preprocessing and an algorithm for query procedure such that

after receiving query q one can approximate µ∗ := K (P,q) (see Definition 3.4.1) up to (1±ϵ) multiplicative

factor, in time Õ

(
ϵ−2

(
1
µ∗

)0.25+o(1)
)
, and the space consumption of the data structure is

min

{
ϵ−2n

(
1

µ∗

)0.25+o(1)

,ϵ−2
(

1

µ∗

)1+o(1)
}

.

Remark 3.1.1. In Theorem 3.1.1 (and similar theorems in the rest of the paper), we assumed that ϵ =
Ω

(
1

polylogn

)
and µ∗ = n−Θ(1), so that we can assume d = Õ(1) (and ignore the dependencies on dimension

in the statements). The reason (for d = Õ(1)) is that in this case the contribution of far points (points at

distanceΩ(logn)) is negligible and for close points, we can use Johnson-Lindenstrauss (JL) lemma to reduce

the dimension to O(polylogn), without distorting the kernel value by a more than 1±o(1) multiplicative

factor. If we remove these assumptions, we need to multiply the query-time and space bounds by dimension

d.

This theorem is stated and proved as Theorem 3.4.1 in Section 3.4. To get a sense of the improvement,

the result of [8] exhibited query time that is roughly a square root of the query time of uniform random

sampling. Our result uses the same LSH family as in [8] but achieves query time that is itself roughly the

square root of that of [8]!

Data-Dependent LSH Our main technical contribution is a collection of techniques for using data

dependent hashing introduced by [11, 12, 13] in the context of kernel density estimation. Unlike these

works, however, who had no assumptions on the input data set, we show how to obtain refined bounds on

the efficiency of near neighbor search under density constraints imposed by assumptions on KDE value

as a function of the kernel. This turns out to be significantly more challenging: while in approximate near

neighbor search, as in [13], it essentially suffices to track the size of the dataset in recursive iterations of

locality sensitive hashing and partitioning into spheres, in the case of density constrained range search

problems arising from KDE one must keep track of the distribution of points across different distance

scales in the hash buckets, i.e. track evolution of functions as opposed to numbers. This leads to a natural

linear programming relaxation that bounds the performance of our algorithm that forms the core of our

analysis2. Our ultimate result for the Gaussian kernel is:

Theorem 3.1.2. For Gaussian kernel K , any data set of points P and any ϵ=Ω
(

1
polylogn

)
, µ∗ = n−Θ(1), using

Algorithm 5 for preprocessing and Algorithm 6 for the query procedure, one can approximate µ∗ := K (P,q)

(see Definition 3.4.1) up to (1±ϵ) multiplicative factor, in time Õ(µ−0.173−o(1)/ϵ2). The space complexity of

2The actual optimal evolution is described by an integral equation involving the log density of the kernel function and collision
probabilities of LSH on the Euclidean sphere, but we do not make the limiting claim formal here since the ultimate integral
equation appears to not have a closed form solution, and hence would not be useful for analysis purposes.

50

3.1 Introduction

the algorithm is also bounded by

min
{
O(n ·µ−(0.173+o(1))/ϵ2),O

(
µ−(1+c+o(1))/ϵ2)} ,

for c = 10−3.3

The proof of Theorem 3.1.2 is given in Section 3.5.

Our techniques extend to other kernels – the extensions are presented in Section 3.5.

3.1.2 Related Work

For d ≫ 1, KDE was studied extensively in the 2000’s with the works of [102, 103, 104, 105, 106] that

employed hierarchical space partitions (e.g. kd-trees, cover-trees) to obtain sub-linear query time for

datasets with low intrinsic dimensionality [110]. Nevertheless, until recently [8], in the regime of d =
Ω(logn) and under worst case assumptions, the best known algorithm was simple random sampling that

for constant δ> 0 requires O(min{1/ϵ2µ,n}) evaluations of the kernel function to provably approximate

the density at any query point q .

[8] revisited the problem and introduced a technique, called Hashing-Based-Estimators (HBE), to imple-

ment low-variance Importance Sampling (IS) efficiently for any query through Locality Sensitive Hashing

(LSH). For the Gaussian f (r) = e−r 2
, Exponential f (r) = e−r , and t-Student kernels f (r) = (1+ r t)−1 the

authors gave the first sub-linear algorithms that require O(min{1/ϵ2pµ,n}) kernel evaluations. Using

ideas from Harmonic Analysis, the technique was later extended in [9], to apply to more general kernels

resulting in the first data structures that require O(min{1/ϵ2pµ,n}) kernel evaluations to approximate

the density for log-convex kernels eφ(〈x,y〉). Furthermore, under the Orthogonal Vectors Conjecture it was

shown that there does not exist a data structure that solves the KDE problem under the Gaussian kernel in

time n1−o(1)/µo(1) and space n2−o(1)/µo(1).

The work most closely related to ours is that of [107]. [107] introduced a technique, called Spherical

Integration, that uses black-box calls to c-ANN data structures (constructed on sub-sampled versions

of the data set) to sample points from “spherical annuli” (r,cr) around the query, for all annuli that had

non-negligible contribution to the density of the query. For kernels with polynomial tails of degree t , their

approach required Õ(c5t) calls to such data-structures (without counting the query time required for each

such call) to estimate the density. Unfortunately, this approach turns out to be constraining due to its

reliance on black-box c-ANN calls, and in particular only applies to polynomial kernels. Our techniques

in this paper recover the result of [107] up to µ−o(1) factors as a special case (see Section 3.4). Furthermore,

the µ−o(1) factor loss that we incur is only due to the fact that we are using the powerful Euclidean LSH

family in order to achieve strong bounds for kernels that exhibit fast decay (e.g., Gaussian, exponential

and others) using the same algorithm. For polynomial kernels the dependence on µ in our approach

can be reduced to polylogarithmic in 1/µ by using an easier hash family (e.g., the hash family of [111];

see [112, Chapter 10] for details).

3This c can be set to any small constant that one desires. For our setting of parameters c = 10−3.

51

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Scalable approaches to KDE and Applications Recent works [113, 108] also address scalability issues

of the original approach of [8]. [113] designed a more efficient adaptive procedure that can be used

along with Euclidean LSH [111] to solve KDE for a variety of power-exponential kernels, most promi-

nently the Gaussian. Their algorithm is the first practical algorithm for Gaussian KDE with worst case

guarantees that improve upon random sampling in high dimensions. Experiments in real-world data

sets show [113] that the method of [8], yields practical improvements for many real world datasets. [108]

introduced a way to sparsify hash tables and showed that in order to estimate densities µ∗ ≥ τ≥ 1
n one

can reduce the space usage of the data structures [113] from O(1/τ3/2ϵ2) to O(1/τϵ2). The authors also

evaluated their approach on real world data for the Exponential e−∥x−y∥2 and Laplace e−∥x−y∥1 kernels

showing improvements compared to [8] and uniform random sampling. A related approach of Locality

Sensitive Samplers [114] has also been applied to obtain practical procedures in the contexts of Outlier

detection [115], Gradient Estimation [116] and Clustering [117]. Finally, [118] uses similar ideas to address

the problem of approximate range counting on the unit sphere.

Core-sets and Kernel sketching The problem of KDE is phrased in terms of guarantees for any single

query q ∈Rd . A related problem is that of Core-sets for kernels [119], where the goal is to find a (small) set

S ⊂ P such that the kernel density estimate on P is close to the one on S. After recent flurry of research

efforts [120, 121] has resulted in near optimal [121] unweighted |S| =O(
√

d log(1/ϵ)/ϵ) and optimal [122]

weighted core-sets |S| =O(
p

d/ϵ) for positive definite kernels. Somewhat related to this problem is the

problem of oblivious sub-space embeddings for polynomial kernels [123, 124, 125, 126].

3.1.3 Outline

We start by giving a technical overview of the paper in Section 3.2. Preliminary definitions and results are

presented in Section 3.3. In Section 3.4, we present our data-independent result for Gaussian KDE and

state a general version of our result for other decreasing kernels. We present our data structure based on

Data-Dependent LSH for Gaussian KDE in Section 3.5 and its analysis in Sections 3.6 (Query time), 3.7

(Valid execution path analysis), 3.8 (Linear Program analysis), and 3.9 (Primal-Dual solution).

3.2 Technical overview

In this section we give an overview of our results and the main ideas behind them. For simplicity we use

the Gaussian kernel, even though both our results extend to more general settings. Thus, for the purposes

of this overview our problem is: preprocess a dataset P of n points p1, . . . ,pn ∈Rd into a small space data

structure that allows fast KDE queries, i.e. can quickly approximate, given q ∈Rd , the quantity

K (P,q) := 1

|P |
∑

p∈P
K (p,q), (3.2)

where

K (p,q) := exp(−||p−q||22/2).

52

3.2 Technical overview

We present two schemes based on ideas from data independent and data dependent LSH schemes. Both

schemes employ the strategy of first sampling the dataset at a sequence of geometric levels, and then using

near neighbor search algorithms to retrieve all points at an appropriate distance from the query from

the sample. The difference between the two approaches lies in the implementation and analysis of the

near neighbor search primitive used for this retrieval. In what follows we first overview our approach to

implementing importance sampling for KDE using near neighbor search primitives, and then instantiate

this scheme with data-independent (Section 3.2.1) and data-dependent (Section 3.2.2) schemes.

3.2.1 Data-independent algorithm (Section 3.4)

We start by showing a new application of data-independent locality sensitive hashing to KDE that results

in a simple scheme that provides the following result.

Theorem 3.2.1 (Informal version of Theorem 3.4.1). If µ∗ := K (P,q), then there exists an algorithm that

can approximate µ∗ up to (1±ϵ) multiplicative factor, in time
(

1
µ∗

)0.25+o(1)
, using a data structure of size

min

{
ϵ−2n

(
1

µ∗

)0.25+o(1)

,ϵ−2
(

1

µ∗

)1+o(1)
}

.

We remark that the actual non-adaptive algorithm that we present in Section 3.4 is more general than the

above and applies to a wide class of kernels. In particular, it simultaneously improves upon all prior work

on radial kernels that exhibit fast tail decay (such as the exponential and the Gaussian kernels) [8] as well

as matches the result of [107] on kernels with only inverse polynomial rate of decay up to µ−o(1) factors.

We now outline the algorithm and the analysis. The main idea is simple: we note that in order to

approximate the sum on the right hand side of (3.2), ideally we would like to do importance sampling,

i.e. pick every point with probability proportional to its contribution to the KDE value. It is of course not

immediate how to do this, since the contribution depends on the query, which we do not know at the

preprocessing stage. However, we show that it is possible to simply prepare sampled versions of the input

dataset using a fixed geometric sequence of sampling rates, and then use locality sensitive hashing to

retrieve the points relevant to the given query from this sample efficiently. Below, we present an overview

of our algorithm.

Geometric weight levels: Let J := ⌈log 1
µ⌉ and partition the points in the data set into J sets, such that the

contribution of any point in the j ’th set to the kernel density is ≈ 2− j . If wi := K (pi ,q), then we define (see

Definition 3.4.2) level sets

L j :=
{

pi ∈ P : wi ≈ 2− j
}

.

The kernel density can be expressed in terms of the level sets as

K (P,q) ≈ 1

n

J∑
j=1

|L j | ·2− j ,

53

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

which implies size upper bounds for L j , namely:

|L j |≲ 2 j nµ. (3.3)

This means that for every query q such that the KDE value at q equals µ to within constant factors one can

place an upper bound of 2 j nµ on the number of points at distance corresponding to level L j – these are

exactly the geometric weight constraints that make our near neighbor search primitives very efficient.

Note that we are only considering level sets L j for j at most J = ⌈log 1
µ⌉. We describe our implementation

of importance sampling now.

Importance sampling: Suppose that one designs a sampling procedure that samples each point pi with

probability pi and calculates the following estimator

Z =∑
i

χi

pi
wi

where χi = 1 if pi is sampled and χi = 0 otherwise. Obviously, this estimator is an unbiased estimator

for nµ∗. So, if we can prove that this estimator has a relatively low variance, then by known techniques

(repeating many times, averaging and taking the median) one can approximate µ∗, efficiently. It can be

shown (see Claim 3.4.4) that if pi ’s are proportional to wi ’s (more specifically, we set pi ≈ wi
nµ) then the

variance is low. This approach is known as importance sampling. In other words, we need to sample

points with higher contribution, with higher probability.

If L j ’s were known to the algorithm in the preprocessing phase, then for each j , one could have sampled

points in L j with probability ≈ 1
2 j nµ

. However, the query is not known in the preprocessing phase and

hence geometric weight levels are not known beforehand.

Our approach is the following: for each j we sample the data set P with probability 1
2 j nµ

. Then, we

prepare a data structure (for this sampled data set) that can recover any sampled point with contribution

≈ 2− j in the query procedure, efficiently and with high probability. Note that the number of points with

contribution ≥ 2− j is upper bounded by 2 j nµ. So, on average after the sub-sampling we expect to have at

most O(1) point from L1 ∪ . . .∪L j . On the other hand, since Gaussian kernel is a decreasing function of

distance, points in L j+1 ∪ . . .∪L J are actually further than the query. Thus, our recovery problem can be

seen as an instance of near neighbor problem. Therefore, we use the locality sensitive hashing (LSH)

approach, which has been used in the literature for solving the approximate near neighbor problem.

Using Euclidean LSH for recovery: Now, we explain how one can use Euclidean LSH scheme to design a

data structure to recover points from L j in the corresponding sub-sampled data set.

We first present an informal and over-simplified version of LSH function used in [10]. Roughly speaking

[10] presents the following result (see Lemma 3.4.1 for the formal statement):

Lemma 3.2.1 (Informal version of Lemma 3.4.1). For every r there exists a (locality sensitive) hash family

such that, if p (a ‘close’ point) and p′ (a ‘far’ point) are at distance r and ≥ c ·r (for some c ≥ 1) of some point

54

3.2 Technical overview

q

Figure 3.1: Illustration of distance levels induced by geometric weight levels. Areas marked with colors
red, green, brown, blue and so on correspond to geometric weight levels L1, . . . ,L4 and so on.

q, respectively, then if

p :=P[h(p) = h(q)],

then

P[h(p′) = h(q)] ≤ p(1−o(1))c2
.

Now given a query q, for every j we use Euclidean LSH to retrieve the points in L j from a sample of the

dataset where every point is included with probability 1
2 j nµ

. We repeat the hashing process multiple times

to ensure high probability of recovery overall, as in the original approach of [58]. However, the parameter

setting and the analysis are different, since in the context of KDE we can exploit the geometric structure of

the sampled dataset, namely upper bounds on the sizes of level sets L j given in (3.3) above – we outline

the parameter setting and analysis now.

On the other hand, geometric weight levels induce distance levels (see Definition 3.4.2 and Figure 3.1).

Roughly speaking, for the Gaussian kernel if p ∈ L j and p′ ∈ Li , then

∥p′−q∥2

∥p−q∥2
≈

√
i

j
=: ci , j .

Recall that since we sampled the data set with probability 1
2 j nµ

then for every i we will have at most ≈ 2i− j

points from Li in the sampled set, in expectation. In particular, most likely the sample does not contain

points from level sets i < j . We instantiate Euclidean LSH from Lemma 3.2.1 with the ‘near’ distance r

being the distance to the target level set L j . Let p denote the probability that the query collides with a

point in L j . Now by Lemma 3.2.1 we upper bound the expected number of points from level sets Li , i > j ,

55

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

in the bucket of the query: ∑
i> j

2i− j ·pc2
i , j

We now select p (note that Lemma 3.2.1 allows flexibility in selecting p, which is achieved by concatenating

hash functions; see Section 3.4 for the detailed analysis). We set p such that the number of points from

each Li in the bucket of the query is at most 1 for all i > j . For every such i , 2i− j ·p i
j ≤ 1 implies p ≤ (1

2

) j− j 2

i ,

and hence we let

p = p j = min
i> j

(
1

2

) j− j 2

i

,

where we give the probability a subscript j to underscore that this is the setting for level set L j .

On the other hand, note that since the point that we want to recover will be present in the query’s

bucket with probability p j , we need to repeat this procedure Õ
(

1
p j

)
times, to recover the point with high

probability. This means that for every j the contribution of level set L j to the query time will be Õ
(

1
p j

)
.

Now, note that

max
j∈[J]

log2
1

p j
= max

j∈[J]
max

i∈(j ,J]

(
j − j 2

i

)
= J ·max

j∈[J]

j

J
·
(
1− j

J

)
= J

4

= 1

4
log

1

µ
,

(3.4)

implying a (1/µ)0.25 upper bound on the query time. This (informally) recovers the result mentioned in

Theorem 3.2.1. Note that the space complexity of our data structure is no larger than the number of data

points times the query time, i.e., ≈ n(1/µ)0.25, since at every sampling rate we hash at most the entire

dataset about (1/µ)0.25 times independently. The space complexity can also be bounded by Õ(1/µ) by

noting that the datasets for which we have the highest query time and hence many repetitions are in

fact heavily subsampled versions of the input dataset. These bounds are incomparable, and the latter is

preferable for large values of KDE value µ.

We used the Gaussian kernel in the informal description above to illustrate our main ideas, but the

approach extends to a very general class of kernels. In particular, it gives improvements over all prior work

on the KDE problem for shift invariant kernels (with the only exception that our results essentially match

the results of [107], where an already very efficient algorithm with a polylogarithmic dependence on 1/µ

is presented). We present the detailed analysis of this approach in Section 3.4.

56

3.2 Technical overview

3.2.2 Data dependent algorithm (Section 3.5)

We note that the efficiency of our implementation of importance sampling relies heavily on the effi-

ciency of near neighbor search primitive under density constraints. In this section we show how to use

data-dependent techniques, i.e. data partitioning followed by the use of the more efficient Spherical

LSH, to achieve significantly better results. Our approach builds on the exciting recent line of work on

data-dependent near neighbor search [11, 12, 13], but the fact that we would like to optimally use the

assumptions on the density of various spherical ranges that follow from assumptions on KDE value, the

analysis turns out to be significantly more challenging. In particular, the core of our approach is a linear

program that allows one to analyze the worst case evolution of densities during the hashing process. The

analysis is presented in Section 3.5, Section 3.8 and Section 3.9. Since the analysis is somewhat involved,

we present it for the case of the Gaussian kernel to simplify notation. We then provide a version of the key

lemma for other kernels and state the corresponding results.

Theorem 3.2.2 (Informal version of Theorem 3.5.1). There exists an algorithm that, when K is the Gaussian

kernel and µ∗ := K (P,q), for ϵ ∈ (0,1) approximates µ∗ to within a (1±ϵ) multiplicative factor, in expected

time
(

1
µ∗

)0.173+o(1)
and space min{n

(
1
µ∗

)0.173+o(1)
,
(

1
µ∗

)1+o(1)
}.

Our techniques extend to kernels beyond the Gaussian kernel (e.g., the exponential kernel, for which we

obtain query time
(

1
µ∗

)0.1+o(1)
and space n

(
1
µ∗

)0.1+o(1)
). We outline the extension in Section 3.5.

Recall that we need to preprocess a dataset P of n points p1, . . . ,pn ∈Rd into a small space data structure

that allows fast KDE queries, i.e., can quickly approximate, given q ∈Rd , the quantity

µ∗ = K (P,q) = 1

|P |
∑

p∈P
exp(−||p−q||22/2). (3.5)

Recall also that we assume knowledge of a quantity µ such that

µ∗ ≤µ≤ 4µ∗. (3.6)

This is without loss of generality by a standard reduction – see Section 3.5, Remark 3.4.2. For simplicity of

presentation, in this section we use a convenient rescaling of points so that

µ∗ = K (P,q) = 1

|P |
∑

p∈P
(1/µ)−||p−q||22/2. (3.7)

Note that this is simply a rescaling of the input points, namely multiplying every coordinate by (log(1/µ))−1/2.

This is for analysis purposes only, and the algorithm does not need to perform such a rescaling explicitly.

We fix the query q for the rest of this section.

Densities of balls around query. Upper bounds on the number of points at various distances from the

query point in dataset (i.e., densities of balls around the query) play a central part in our analysis. For any

57

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

x ∈ (0,
p

2) let

Dx (q) := {||p−q|| : p ∈ P, ||p−q||≳ x}, (3.8)

denote the set of possible distances from q to points in the dataset P . Note that we are ignoring distances

that are too close to x – this is for technical reasons that let us introduce some simplifications with respect

to the analysis of [13] at the expense of a small constant loss in the exponent of the ultimate query time

(see Section 3.5.3 for more discussion of this). When there is no ambiguity we drop q and x and we simply

call it D . For any y ∈ D we let

Py (q) := {p ∈ P : ||p−q|| ≤ y} (3.9)

be the set of points at distance y from q. Since for every y > 0

µ∗ = K (P,q) = 1

n

∑
p∈P

µ||p−q||22/2

≥ µy2/2

n
|Py (q)|

we get

|Py (q)| ≤ nµ∗ ·
(

1

µ

) y2

2 ≤ n ·
(

1

µ

) y2

2 −1

, (3.10)

since µ∗ ≤µ by assumption.

We implement the same importance sampling strategy as in Section 3.2.1: sample the dataset at a

geometric sequence of sampling rates, and for each such sampling rate use approximate near neighbor

search primitives (in this case data dependent ones) to retrieve the relevant points (which are generally a

few closest points to the query) from the sample. The rescaling of the input space (3.7) together with the

assumption (3.6) implies that one essentially only needs to care about points p ∈ P such that

||p−q||2 ≈ x for some x ∈ [0,
p

2).

This is because every p ∈ P such that ||p−q||2 ≥
p

2 contributes at most (1/µ)−||p−q||22/2 ≤µ≤ 4µ∗ by (3.6).

This means that the contribution of such points can be approximated well by simply sampling every point

with probability ≈ 1/n = 1/|P | and examining the entire sample – see Section C.3 for details. Therefore in

the rest of this section (and similarly in its formal version, namely Section 3.5) we focus on the following

single scale recovery problem:

Given x ∈ (0,
p

2) and a sample P̃ of the dataset P that includes every point with probability

1
n ·

(
1
µ

)1− x2

2
, recover all sampled points at distance at most ≈ x from the query.

Fix x ∈ (0,
p

2), and recall that P̃ contains every point in P independently with probability 1
n ·

(
1
µ

)1− x2

2
. Note

that by (3.10) for every y ∈ (x,
p

2] the expected number of points at distance at most y from q that are

58

3.2 Technical overview

included in P̃ is upper bounded by

n ·
(

1

µ

) y2

2 −1

· 1

n
·
(

1

µ

)1− x2

2 ≈
(

1

µ

) y2−x2

2

. (3.11)

What we defined so far is of course just a reformulation of our approach from Section 3.2.1, and indeed

our data-dependent result follows the overall uniform sampling scheme. The difference comes in a much

more powerful primitive for recovering data points at distance ≈ x from the query from the uniform

sample. We describe this primitive now. In this development we start with the observation that underlies

the work of [13] on data-dependent near neighbor search. Namely, one first observes that if the points in

the sampled dataset P̃ were uniformly random on the sphere (except of course for the actual points at

distance ≈ x from the query q), then instead of Euclidean LSH one could use random spherical caps to

partition the dataset, leading to significantly improved performance. In order to leverage this observation,

the work of [13] introduces the definition of a pseudo-random dataset (see Definition 3.3.3 below), gives

an efficient procedure for decomposing any dataset into pseudorandom components and shows that the

pseudorandom property is sufficiently strong to allow for about the same improvements as a random

dataset does. Then their algorithm is a recursive process that partitions a given input dataset using

random spherical caps, decomposes the resulting smaller datasets into pseudorandom components and

recurses. Our algorithm follows this recipe, but the analysis turns out to be significantly more challenging

due to the fact that we need to track the evolution of the densities of balls around the query during this

recursive process. In what follows we state the necessary definitions and outline our algorithm.

The work of [13] introduces a key definition of a pseudorandom dataset (see Definition 3.3.3), which we

reuse in our analysis and state here for convenience of the reader:

Definition 3.3.3 (Restated) Let P be a set of points lying on S d−1(o,r) for some o ∈Rd and r ∈R+. We call

this sphere a pseudo-random sphere4, if ∄u∗ ∈S d−1(o,r) such that∣∣∣{u ∈ P : ||u−u∗|| ≤ r (
p

2−γ)
}∣∣∣≥ τ · |P |.

In other words, a dataset is pseudorandom on a sphere if at most a small fraction of this dataset can

be captured by a spherical cap of nontrivially small volume. It turns out [13] that every dataset can be

partitioned into pseudorandom components efficiently, so one can assume that the input dataset is

pseudorandom. The significance of this lies in the fact that the power of Spherical LSH manifests itself on

the points p at distance
p

2−γ from the query essentially as well as on uniformly random points. Thus,

if the fraction τ of ‘violating’ points is small, one now use Spherical LSH to partition the dataset into

hash buckets and then recursive on the hash buckets, partition them into pseudorandom components

and proceed recursively in this manner. Our algorithms follows this recipe, but the analysis introduces

new techniques, as we describe below. We start by fixing some notation. Our algorithm (Algorithm 7)

recursively constructs a tree T with alternating levels of SPHERICALLSH nodes and PSEUDORANDOMIFY

nodes, which correspond to partitioning the dataset using locality sensitive hashing and extraction of

dense components as per Definition 3.3.3 respectively. At every SPHERICALLSH node (Algorithm 8) we

4Whenever we say pseudo-random sphere, we implicitly associate it with parameter τ,γ which are fixed throughout the paper.

59

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

repeatedly generate subsets P ′ of the dataset P by sampling a Gaussian vector g ∼ N (0,1)d and letting

P ′ ←
{

p ∈ P :
〈 p −o

R
, g

〉
≥ η

}
,

where R and o are the radius and center of the sphere that dataset P resides on, and η = ω(1) is an

appropriately chosen parameter – we choose η to ensure that the collision probability of the query with a

point at distance x from it is exactly µ1/T for a parameter T (see line 16 of Algorithm 8). Crucially, we chose

the parameter η to ensure that the size of the spherical cap is not too large. Specifically, for a parameter

T =ω(1) that governs the depth of our recursive process we choose η to ensure that for every p ∈ P such

that ||p−q||2 ≈ x one has

P
g∼N (0,I)d

[〈p−o

R
, g

〉
≥ η|

〈q−o

R
, g

〉
≥ η

]
≈µ1/T ,

where we assume for simplicity of presentation here that the query is on the sphere. The number of

datasets P̃ is chosen to be such that the query q collides with any given point p at distance ≈ x with high

constant probability over all O(T) levels of the tree T . This means (see Section 3.6) that the expected

number of datasets that the query q will be exploring is (1/µ)1/T . We limit the depth of the exploration

process to ≈ 0.172 ·T (see line 27 of Algorithm 8), so that the QUERY algorithm (see Algorithm 10) explores

at most ((1/µ)1/T)0.172·T = (1/µ)0.172 leaf datasets in the tree T . The main challenge lies in showing that

these leaf datasets have small (nearly constant) expected size. In other words, we need to bound the effect

of such a filtering process on the density of balls of various radius y around the query q. Generally, the

densities along any root to leaf path are decreasing because of two effects:

Truncation due to pseudorandom spheres: First effect that we consider is the condition that pseudo-

randomness of spheres imply over the densities. Consider any query q and any pseudo-random sphere

with radius r , and let ℓ be the distance from q to the center of the sphere. Let q′ be the projection of

the query on the sphere. Then, by pseudo-randomness of the sphere, we know that most of the points

are orthogonal to q′, i.e., have distance ≈p
2r from q′ (see Lemma 3.3.1). However, we are interested in

the condition that implies over the densities. Roughly speaking, the orthogonal points are at distance

c :=
p
ℓ2 + r 2. So we expect that the number of points at distance ≈ c will dominate the densities.

Claim 3.2.1 (Informal version of Claim 3.6.1). Suppose that a sphere with center o and radius r is pseudo-

random. Then, if ℓ≈ ||q−o||, c :=
p
ℓ2 + r 2 and for all y we let By be the number of points at distance y

from q in the sphere. Then, the following conditions hold.∑
y≤c−rψ

By ≤ τ

1−2τ
· ∑

y∈(c−rψ,c+rψ)
By ,

and ∑
y≥c+rψ

By ≤ τ

1−2τ
· ∑

y∈(c−rψ,c+rψ)
By ,

where ψ= o(1) is small factor.

60

3.2 Technical overview

Removing points due to Spherical LSH: The second phenomenon that reduces the densities is spherical

LSH rounds. We set the size of the spherical cap as described above. Under this setting of size of spherical

cap, the probability that a spherical cap conditioned on capturing the query, captures p, which is at

distance y from q, is given by Claim 3.6.2, which is restated informally below.

Claim 3.2.2 (Informal version of Claim 3.6.2). Consider a sphere of radius r around point o, and let

ℓ≈ ||q−o||. Also let p be a point on the sphere such that y = ||p−q||. Now, suppose that one generates a

Gaussian vector g as in Algorithm 8. Then, we have

P
g∼N (0,1)d

[
〈g ,

p−o

||p−o|| 〉 ≥ η|〈g ,
q−o

||q−o|| 〉 ≥ η
]
≲ expµ

(
−4(r /x ′)2 −1

4(r /y ′)2 −1
· 1

T

)
.

where

• η is such that F (η)
G(x ′/r,η) ≈

(
1
µ

) 1
T

(see line 16 of Algorithm 8).

• x ′ := PROJECT(x,ℓ,r) (see Definition 3.3.2).

• y ′ := PROJECT(y,ℓ,r).

We use Claim 3.2.1 and Claim 3.2.2 to bound the evolution of the density of various balls around the query

q in the datasets constructed on the way from the root of the tree T down to a leaf.

Formally, we gather all necessary information about such a path in the definition of a valid execution path

below:

61

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Definition 3.6.3 (Valid execution path; slightly informal version) Let R := (r j)J
j=1 and L := (ℓ j)J

j=1 for

some positive values r j ’s and ℓ j ’s such that for all j ∈ [J], x ≳ |ℓ j − r j |. Also let D be as defined in (3.8).

Then, for

A := (ay, j), y ∈ D, j ∈ [J]∪ {0} (Intermediate densities)

B := (by, j), y ∈ D, j ∈ [J +1]∪ {0} (Truncated intermediate densities)

(L,R, A,B) is called a valid execution path, if the conditions below are satisfied for ψ := o(1) and c j :=√
r 2

j +ℓ2
j for convenience.

(1) Initial densities condition. The ay,0 and by,0 variables are upper-bounded by the initial expected

densities in the sampled dataset: for all y ∈ D

∑
y ′∈[0,y]∩D

ay ′,0 ≤ min

{
expµ

(
y2 −x2

2

)
,expµ

(
1−x2

2

)}

and ∑
y ′∈[0,y]∩D

by ′,0 ≤ min

{
expµ

(
y2 −x2

2

)
,expµ

(
1−x2

2

)}

(2) Truncation conditions (effect of PSEUDORANDOMIFY). For any j ∈ [J], for all y ∈ D \[ℓ j −r j ,ℓ j +r j]

one has by, j = 0 (density is zero outside of the range corresponding to the j -th sphere on the path;

condition (2a)), for all y ∈ D ∩ [ℓ j − r j ,ℓ j + r j] one has by, j ≤ ay, j−1 (removing points arbitrarily

(2b)) and ∑
y∈[0,c j−ψr j]∩D

by, j ≤ τ

1−2τ
· ∑

y∈(c j−ψr j ,c j+ψr j)∩D
by, j (condition (2c))

(3) LSH conditions. For every j ∈ [J] and all y ∈ [ℓ j − r j ,ℓ j + r j]∩D

ay, j ≤ by, j ·expµ

−4
(

r j

x ′

)2 −1

4
(

r j

y ′

)2 −1
· 1

T


where x ′ := PROJECT(x +∆,ℓ j ,r j) and y ′ := PROJECT(y −∆/2,ℓ j ,r j). See Remark 3.6.1 below for a

discussion about ∆ factors.

(4) Terminal density condition. For any y such that ay,J is defined, by,J+1 ≤ ay,J .

Thus, our main goal is to show that

For every valid execution path (L,R, A,B) one has
∑

y by,J+1 = no(1).

The main challenge here is optimizing over sequences (ℓ j ,r j)J
j=1 (distance to center of the sphere from q

and the radius of the sphere). We perform this optimization in two steps, which we describe below.

62

3.2 Technical overview

r j

q

c j

o
o′

r ′
jc ′j = c j

(a) When the query is outside of the sphere.

r ′
j

q

c ′j = c j

o′
o

r jc j

(b) When the query is inside the sphere

Figure 3.2: Converting a (non-zero-distance) sphere to its corresponding zero-distance sphere

Step 1.Suppose that there are two spheres such that the distance from the query to the orthogonal points

for these spheres are the same. Also, assume that for the first sphere the query is not on the sphere, but

for the second sphere the query is on the sphere (see Figure 3.2). Now, let p and p′ lie on the first and the

second spheres, respectively. Moreover, assume that they have the same distance from the query (see

Figure 3.3). Comparing the spherical LSH effect on these two spheres, we prove that p is removed with

higher probability compared to p′ (see Claim 3.7.1). So, when the query is on the sphere, the densities are

shrinking with a lower rate.

q
o

o′

p

p ′

(a) When the query is outside of the sphere

q

p ′

p

o′
o

(b) When the query is inside the sphere

Figure 3.3: Mapping points from a sphere to its corresponding zero-distance sphere.

Step 2. Now consider two spheres with different radii, and assume that query q lies on them at the same

time. Due to less curvature on the larger sphere, after one round of spherical LSH on these two spheres, the

densities are shrinking with a lower rate on this sphere compared to the smaller sphere (see Claim 3.7.2).

63

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

The following definition enables us to state our claims more efficiently.

Definition 3.6.5 (Zero-distance and monotone path) Let (L,R, A,B) be an execution path defined in Def-

inition 3.6.3. If for R = (r j)J
j=1, r j ’s are non-increasing in j , and L = R, then we say that (L,R, A,B) is a

zero-distance and monotone execution path. When L = R, we usually drop L, and simply write (R, A,B).

Now, using the two steps above, we can argue that for any valid execution path, we can find a zero-distance

monotone execution path, with the same terminal densities and the same length (see Lemma 3.6.2 restated

below for the convenience of the reader).

Lemma 3.6.2 (Zero-distance and monotone path) For every valid execution path (L,R, A,B) (see Defini-

tion 3.6.3), there exists a zero-distance and monotone valid execution path (R ′, A′,B ′) (see Definition 3.6.5)

such that b′
y,J+1 = by,J+1 for all y ∈ D5 and |R ′| = |R| (i.e., the length of the paths are equal).

The proof of the lemma (the formal version of the two steps mentioned above) is given in Section 3.7.

As mentioned before, we analyze the evolution of density of points in various distances. First, we define

a grid of distances around query, which we use to properly round the distances of real spheres in the

execution of algorithm. Second, instead of analyzing continuous densities, we define a new notion, called

discretized log-densities (see Definition 3.6.7 below), for which we round densities to the discretized

distances in a natural way, and for simplicity of calculations we take the log of these densities.

Definition 3.6.6 (x-centered grid Zx ; restated) For every x ∈ (0,Rmax) define the grid Zx = {zI , zI−1, . . . , z0}

by letting zI = x, letting zI−i := (1+δz)i · zI for all i ∈ [I] and choosing the smallest integer I such that

z0 ≥ Rmax
p

2.

Definition 3.6.7 (Discretized log-densities fzi , j ; restated) For any zero-distance monotone valid execution

path (R, A,B) (as per Definition 3.6.3) with radii bounded by Rmax and J = |R|, for all j ∈ [J] let k j be the

index of the largest grid element which is not bigger than r j · (
p

2+ψ), i.e.,

r j · (
p

2+ψ) ∈ [zk j , zk j−1) (3.12)

and for every integer i ∈ {k j , . . . , I } define

fzi , j := log1/µ

(∑
y∈D∩[zi+1,zi−1)

by, j

)
(3.13)

Note that the variables by, j on the right hand side of (3.13) are the by, j variables of the execution path

(R, A,B).

These two steps, allow us to analyze the evolution of densities over the course of time. In this section, we

present an LP (see (3.33)) that its optimal cost bounds the query time of our algorithm. The main idea

behind the linear program is to relax the notion of a zero-distance monotone path, which may involve

only a small number of decreasing sphere radii, to a process that uses a grid Z = Zx of decreasing radii

and possibly applies locality sensitive hashing at every such point (see the spherical LSH constraint in

5We need the final condition to argue that we have the same number of points remaining at the end.

64

3.2 Technical overview

(3.14) below), and applies pseudorandmification, i.e. ensures that the dataset is dominated by points at

distance z j ≈
p

2r j from the query (see the truncation constraints in (3.14) below). We note that the grid

Zx represents distances to points on the j -the sphere that are nearly orthogonal to the query, i.e. whose at

distance ≈p
2r j , as opposed to the radii themselves. It is also important to note that the linear program is

parameterized by two quantities: the target distance x ∈ [0,
p

2] and a parameter j∗ that indexes a point

z j∗ in the grid Zx . The quantity z j∗ should be thought of as the distance scale that contributes the most to

query time, i.e. the band that the has the most number of points in the final densities (see non-empty

range constraints in the linear program (3.14), as well as the similar calculation (3.4) in Section 3.2.1). To

obtain our final bound on the query time, we enumerate over all x and j∗ ∈ Zx , upper bound the value of

the corresponding LP(x, j∗) and take the maximum. Finally, we note that the intended LP solution is as

follows. Consider a root to leaf path in the tree T constructed by PREPROCESS(P̃ , x,µ) that an invocation of

QUERY(q,T , x), and suppose that the sequence of radii of spheres traversed by QUERY is exactly Zx . Then

letting α j denote the number of LSH nodes that correspond to sphere with radius r j = z j /
p

2, divided by

T , should intuitively give a feasible solution6.

In Section 3.8 we will show in details why this LP formulation is enough to analyze the query time.

Informally, this LP considers all possible root to leaf paths, and applies corresponding truncation and

spherical LSH functions on the density and its cost is related to the length of root to leaf paths. We show in

Section 3.8 that any execution path with large enough final densities gives a feasible solution to the linear

program whose cost is (almost) equal to the length of the path divided by T . Thus, if we take any path

with length more than T ·OPT(LP), the final densities are small.

Letting Z := Zx to simplify notation, we will consider I linear programs defined below in (3.33), enumerat-

ing over all j∗ ∈ [I], where we let x ′ = x +∆:

LP(x, j∗) : max
α≥0

j∗−1∑
j=1

α j (3.14)

∀y ∈ Z : g y,1 ≤ min

{
y2 −x2

2
,1− x2

2

}
Density constraints

for all j < j∗, y ∈ Z , y < z j :

g y, j ≤ gz j , j Truncation

g y, j+1 ≤ g y, j −
2
(
z j /x

)2 −1

2
(
z j /y

)2 −1
·α j Spherical LSH

gz j∗ , j∗ ≥ 0 Non-empty range constraint

The following claim is the main technical claim relating zero-distance monotone execution paths and the

linear program (3.14):

6This statement is somewhat imprecise, and in fact is quite nontrivial to make fully formal – this is exactly what our algorithm
achieves by introducing the notion of valid execution paths.

65

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Claim 3.8.6(Feasible LP solution from an execution path; Restated) If integer J is such that J > T
1−10−4 OPT(LP)

then, for all y ≤ z j∗−1 , fy,J+1 < 7δz for j∗ = k J +1 (see Definition 3.6.7 for the definition of k J).

The proof of Claim 3.8.6 is somewhat delicate, and exploits specific properties of the (negative) log-density

of the Gaussian kernel. In fact, one can construct rather simple kernels with non-decreasing log-density

for which Claim 3.8.6 is false – we give an example in Figure 3.4a. Informally, we call a kernel well-behaved,

if the log-densities after applying a few rounds of LSH (and corresponding truncations), are increasing

up to some point and then they are decreasing. More formal description is given after the following

paragraph.

Intuitively, the reason is the difference between how the LP works and how the algorithm works. In the

algorithm if we are running LSH on some sphere z we apply truncations based on distance z after each

round of LSH (except the last step, for the intuition we can ignore this fact) and when we move to the next

sphere z ′, the algorithm applies truncation to log-densities with respect to log-density at z ′. However, the

LP applies all the LSH rounds at once and then does truncation with respect to all bands from z to z ′. Now,

if some kernel is not well-behaved, say like the kernel depicted in Figure 3.4a then when the LP wants to

move from z to z ′ it also truncates the log-densities with respect to the log-density at any η ∈ (z ′, z). Then,

for some η as shown in Figure 3.4a the log-density at some η ∈ (z ′, z) is lower compared to the density at z

and z ′. Thus the log-densities in the LP shrink faster than the algorithm, which makes this approach not

applicable to these set of kernels. However, for instance in the case of Gaussian kernel, the truncation

with respect to log-densities at η ∈ (z ′, z), do not impose a problem since the log-density at any η ∈ (z ′, z)

is larger than the minimum of densities at z and z ′. This informally suggests that the evolution of the LP,

can be seen as evolution of log-densities for well-behaved kernels, and thus can be used to analyze the

run-time of the algorithm.

Now, we present a relatively more formally definition of well-behaved kernels. We say that a kernel

k(p,q) = exp(−h(||p−q||2)) with the input space scaled so that exp(−h(
p

2)) = µ is well-behaved if for

every integer t ≥ 1, x ∈ (0,
p

2) and any sequence c1 ≥ c2 ≥ . . . ≥ ct ≥ x, such that

f (y) = y2 −x2

2
−

t∑
s=1

2(cs/x)2 −1

2(cs/y)2 −1
· 1

T

satisfies f (
p

2ct) > 0, the following conditions hold. There exists y∗ ∈ (x,
p

2ct] such that the function

satisfies f (y∗) = 0 is monotone increasing on the interval [y∗,η], where η is where the (unique) maximum

of f on (y∗,
p

2ct] happens. See Fig. 3.4b for an illustration. Intuitively, a log-density h is well-behaved if

the result of applying any amount of LSH on any collection of spheres to h results in a function with at

most one maximum. This lets us control the structure of log-densities that arise after several iterations of

LSH and truncation primitives in a valid execution path (and thus in a root to leaf path in T that a query

q traverses).

We show in Section 3.8 (see Claim 3.8.4) that the Gaussian kernel is well behaved, and use this fact that

prove Claim 3.8.6. We also show a similar claim for the class of kernels whose negative log density is

concave (the exponential kernel is one example). This lets us extend our result to kernels beyond Gaussian

(see Remark 3.5.1 in Section 3.5).

66

3.2 Technical overview

z ′ η z

Distance from the queryLo
g-

d
en

si
ty

(a) A kernel, which is not well-behaved

z ′ η z

Distance from the query

Lo
g-

d
en

si
ty

(b) A well-behaved kernel

Figure 3.4: In both figures, the red curve and the blue curve represents the densities before and after
running LSH rounds on sphere z, respectively. In the case of well-behaved kernels the density at any
η ∈ (z ′, z) is lower-bounded by the minimum of densities at z and z ′. However, for a kernel which is not
well-behaved, for instance for the η shown in the left figure, the density is lower than the density at z and
z ′.

On the other hand, we show numerically that the solution of the LP in (3.14) is upper bounded by 0.1718

for the Gaussian kernel. This is done in Section 3.9 by formulating the dual LP

min
∑
y∈Z

{
y2 −x2

2
,1− x2

2

}
ry,0 (3.15)

such that :

∀ j ∈ [j∗−1], y ∈ Z , y < z j : ry, j−1 − ry, j +qy, j = 0 (g y, j) Mass transportation

∀ j ∈ [j∗−1] : rz j , j−1 −
∑

x∈Z ,x<z j

qx, j = 0 (gz j , j) Max tracking

∀y ∈ Z , y < z j∗ : ry, j∗−1 = 0 (g y, j∗) Sink

−η+ rz j∗ , j∗−1 = 0 (gz j∗ , j∗) Terminal flow

j ∈ [j∗−1] :
∑

y∈Z :y<z j

2
(
z j /x

)2 −1

2
(
z j /y

)2 −1
ry, j ≥ 1 (α j)

ry, j , qy, j ≥ 0

η≥ 0

and exhibiting a dual feasible solution of value ≈ 0.1716 for a fine grid of points Zx and every x in a fine

grid over [0,
p

2]. We also give an analytic upper bound of x2

2 (1− x2

2)+0.001 on the value of the LP (3.14).

67

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

3.3 Preliminaries

We let µ∗ ∈ (0,1] denote the kernel density of a dataset P in Rd at point q ∈Rd :

µ∗ = K (P,q) := 1

|P |
∑

p∈P
K (p,q).

3.3.1 Basic notation

Throughout the paper we assume that the points lie in a d-dimensional Euclidean space, Rd . We let

S d−1 denote the set of points on the unit radius sphere around the origin in Rd . Also, for any o ∈Rd and

R > 0, we let S d−1(o,R) to be the set of points on the sphere centered at o and radius R , and for any point

q ∈Rd \ {o}, the projection of q onto S d−1(o,R) is defined as the closest point in S d−1(o,R) to q. For any

pair of points u,v ∈Rd , we let ||u−v|| to be the Euclidean distance of u and v.

For any integer J we define [J] := {1,2, . . . , J }. For ease of notation in the rest of the paper, we let expµ (a) :=(
1
µ

)a
and (abusing notation somewhat) let exp2(a) = 2a for any a ∈R.

3.3.2 F (η) and G(s,η,σ)

In this section, we define notations and present results, which we later use to analyze the collision

probability of spherical-LSH.

Lemma 3.3.1 (Lemma 3.1, [13]). If for any u ∈S d−1 we define

F (η) := P
z∼N (0,1)d

[〈z,u〉 ≥ η]
,

then, for η→∞

F (η) = e−(1+o(1))· η2

2 .

Lemma 3.3.2 (Lemma 3.2, [13]). If for any u, v ∈S d−1 such that s := ||u − v ||, we define

G(s,η,σ) := P
z∼N (0,1)d

[〈z,u〉 ≥ η and 〈z, v〉 ≥σ]
,

then if σ,η→∞, and max{σ,η}
min{σ,η} ≥α(s), then one has

G(s,η,σ) = e
−(1+o(1))· η2+σ2−2α(s)ησ

2β2(s) ,

where α(s) := 1− s2

2 and β(s) :=
√

1−α2(s).

Definition 3.3.1. For ease of notation we also define

G(s,η) :=G(s,η,η).

68

3.3 Preliminaries

3.3.3 Projection

Definition 3.3.2. Let q be a point on S d−1(o,R1) and p be a point on S d−1(o,R2), such that y := ||q −p||.
Now, if we define q′ as the projection of q on S d−1(o,R2). Then, we define the following

PROJECT(y,R1,R2) := ||q′−p||.

Lemma 3.3.3. For any R1,R2 ∈R+ and o ∈Rd assume that we have points q,p on spheres S1 :=S d−1(o,R1)

and S2 :=S d−1(o,R2), respectively. Also, let x := ||p−q|| and let q′ be the projection of point q on S2. Then

we have the following

PROJECT(x,R1,R2) = ||q′−p|| =
√

R2

R1

(
x2 − (R2 −R1)2

)
.

The proof is deferred to Appendix C.1.

3.3.4 Pseudo-Random Spheres

Definition 3.3.3. (Pseudo-random spheres) Let P be a set of points lying on S d−1(o,r) for some o ∈Rd and

r ∈R+. We call this sphere a pseudo-random sphere7, if ∄u∗ ∈S d−1(o,r) such that∣∣∣{u ∈ P : ||u−u∗|| ≤ r (
p

2−γ)
}∣∣∣≥ τ · |P |.

As shown in [12, Section 6], it is possible to decompose a dataset P into pseudo-random components in

time poly
(
d ,γ−1,τ−1, log |P |) · |P |. We present a slight modification of their argument using our notation

in Appendix C.2. The following claim summarizes the properties of a pseudo-random sphere that we use

later:

Claim 3.3.1. If P is a set of points lying on S d−1(o,r) for some o ∈Rd and r ∈R+, and P is a pseudo-random

sphere (see Definition 3.3.3) then for any point q′ on the sphere we have the following property∣∣∣{u ∈ P : ||u−q′|| ≤ r (
p

2−γ)
}∣∣∣≤ τ

1−2τ
·
∣∣∣{u ∈ P : ||u−q′|| ∈

(
r
(p

2−γ
)

,r (
p

2+γ)
)}∣∣∣ ,

and consequently, ∣∣∣{w ∈ P : ||w−q′|| ∈
(
r
(p

2−γ
)

,r
(p

2+γ
))}∣∣∣=Ω(|P |).

The proof is deferred to Appendix C.1.

7Whenever we say pseudo-random sphere, we implicitly associate it with parameter τ,γ which are fixed throughout the paper.

69

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

3.4 Kernel Density Estimation Using Andoni-Indyk LSH

In this section, we present an algorithm for estimating KDE, using the Andoni-Indyk LSH framework. In

order to state the main result of this section for general kernels, we need to define a few notions first. Thus,

we state the main result for Gaussian kernel in the following theorem, and then state the general result,

Theorem 3.4.2, after presenting the necessary definitions.

Theorem 3.4.1. Given a kernel K (p,q) := e−a||p−q||22 for any a > 0, ϵ=Ω
(

1
polylogn

)
, µ∗ = n−Θ(1) and a data

set of points P, using Algorithm 5 for preprocessing and Algorithm 6 for the query procedure, one can ap-

proximate µ∗ := K (P,q) (see Definition 3.4.1) up to (1±ϵ) multiplicative factor, in time Õ

(
ϵ−2

(
1
µ∗

)0.25+o(1)
)

,

for any query point q. Additionally, the space consumption of the data structure is

min

{
ϵ−2n

(
1

µ∗

)0.25+o(1)

,ϵ−2
(

1

µ∗

)1+o(1)
}

.

Throughout this section, we refer to Andoni-Indyk LSH’s main result stated in the following lemma.

Lemma 3.4.1 ([10]). Let p and q be any pair of points in Rd . Then, for any fixed r > 0, there exists a hash

family H such that, if pnear := p1(r) :=Ph∼H [h(p) = h(q) | ||p−q|| ≤ r] and pfar := p2(r,c) :=Ph∼H [h(p) =
h(q) | ||p−q|| ≥ cr] for any c ≥ 1, then

ρ := log1/pnear

log1/pfar
≤ 1

c2 +O

(
log t

t 1/2

)
,

for some t, where pnear ≥ e−O(
p

t) and each evaluation takes d tO(t) time.

Remark 3.4.1. From now on, we use t = log2/3 n, which results in no(1) evaluation time and ρ = 1
c2 +o(1).

In that case, note that if c =O
(
log1/7 n

)
, then

1
1
c2 +O

(
log t
t 1/2

) = c2(1−o(1)).

Definition 3.4.1. For a query q, and dataset P = {p1, . . . ,pn}, we define

µ∗ := K (P,q) := 1

|P |
∑

p∈P
K (p,q)

where for any p ∈ P, K (p,q) is a monotone decreasing function of ||q−p||. Also, we define

wi := K (pi ,q).

From now on, we assume that µ is a quantity such that

µ∗ ≤µ (3.16)

We also use variable J :=
⌈

log2
1
µ

⌉
.

70

3.4 Kernel Density Estimation Using Andoni-Indyk LSH

Definition 3.4.2 (Geometric weight levels). For any j ∈ [J]

L j :=
{

pi ∈ P : wi ∈
(
2− j ,2− j+1

]}
.

This implies corresponding distance levels (see Figure 3.1 and Figure 3.5), which we define as follows

∀ j ∈ [J] : r j := max
s.t. f (r)∈(2− j ,2− j+1]

r.

where f (r) := K (p,p′) for r = ||p−p′||. Also define L J+1 := P \∪ j∈[J]L j .8

r j−1

r j

L j

q

Figure 3.5: Illustration of definition of r j ’s based on L j ’s.

We start by stating basic bounds on collision probabilities under the Andoni-Indyk LSH functions in terms

of the definition of geometric weight levels L j (Definition 3.4.2):

Claim 3.4.1. Assume that kernel K induces weight level sets, L j ’s, and corresponding distance levels, r j ’s

(as per Definition 3.4.2). Also, for any query q, any integers i ∈ [J +1], j ∈ [J] such that i > j , let p ∈ L j and

p′ ∈ Li . And assume that H is an Andoni-Indyk LSH family designed for near distance r j (see Lemma 3.4.1).

Then, for any integer k ≥ 1, we have the following conditions:

1. Ph∗∼H k

[
h∗(p) = h∗(q)

]≥ pk
near, j ,

2. Ph∗∼H k

[
h∗(p′) = h∗(q)

]≤ pkc2(1−o(1))
near, j ,

where c := ci , j := min
{

ri−1
r j

, log1/7 n
}

(see Remark 3.4.1) and pnear, j := p1(r j) in Lemma 3.4.1.

Proof. If p ∈ L j by Definition 3.4.2, we have

||q−p|| ≤ r j .

8One can see that L J+1 = {pi ∈ P : wi ≤ 2−J }.

71

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

ri−1

r j

L j

Li

q

p

p′

Figure 3.6: Illustration of r j and ri−1 in terms of L j and Li .

Similarly using the fact that the kernel is decaying, for p′ ∈ Li we have

||q−p′|| ≥ ri−1 ≥ c · r j .

So, by Lemma 3.4.1 and Remark 3.4.1 the claim holds. Figure 3.6 shows an instance of this claim.

Now, we prove an upper-bound on sizes of the geometric weight levels, i.e., L j ’s (see Definition 3.4.2).

Lemma 3.4.2 (Upper bounds on sizes of geometric weight levels). For any j ∈ [J], we have

|L j | ≤ 2 j nµ∗ ≤ 2 j nµ.

Proof. For any j ∈ [J] we have

nµ≥ nµ∗ = ∑
p∈P

K (p,q) By Definition 3.4.1

≥ ∑
i∈[J]

∑
p∈Li

K (p,q)

≥ ∑
p∈L j

K (p,q)

≥ |L j | ·2− j

which proves the claim.

Definition 3.4.3 (Cost of a kernel). Suppose that a kernel K induces geometric weight levels, L j ’s, and

corresponding distance levels, r j ’s (see Definition 3.4.2). For any j ∈ [J] we define cost of kernel K for weight

72

3.4 Kernel Density Estimation Using Andoni-Indyk LSH

level L j as

cost(K , j) := exp2

(
max

i= j+1,...,J+1

⌈
i − j

c2
i , j (1−o(1))

⌉)
,

where ci , j := min
{

ri−1
r j

, log1/7 n
}

. Also, we define the general cost of a kernel K as

cost(K) := max
j∈[J]

cost(K , j).

Description of algorithm: The algorithm runs in J phases. For any j ∈ [J], in the j ’th phase, we want

to estimate the contribution of points in L j to K (P,q). We show that it suffices to have an estimation of

the number of points in L j . One can see that if we sub-sample the data set with probability min{ 1
2 j nµ

,1},

then in expectation we get at most O(1) points from Li for any i ≤ j . Now, assume that a point p ∈ L j gets

sampled by sub-sampling, then we want to use Andoni-Indyk LSH to distinguish this point from other

sub-sampled points, efficiently. Thus, we want to find the appropriate choice of k for the repetitions of

Andoni-Indyk LSH (see Claim 3.4.1). Suppose that we call Claim 3.4.1 with some k (which we calculate

later in (3.18)). Then we have

P
h∗∼H k

[
h∗(p) = h∗(q)

]≥ pk
near, j ,

which implies that in order to recover point p with high probability, we need to repeat the procedure

Õ
(
p−k

near, j

)
times. Another factor that affects the run-time of the algorithm is the number of points that

we need to check in order to find p. Basically, we need to calculate the number of points that hash to the

same bucket as q under h∗’s. For this purpose, we use the second part of Claim 3.4.1, which bounds the

collision probability of far points, i.e., points such as p′ ∈ Li for any i > j . Intuitively, for any point p′ ∈ Li

for any i > j , by Claim 3.4.1 we have

P
h∗∼H k

[
h∗(p′) = h∗(q)

]≤ pkc2(1−o(1))

where c := ci , j := min
{

ri−1
r j

, log1/7 n
}

and p := pnear, j
9. On the other hand, by Lemma 3.4.2, for i = j+1, . . . , J

we have

|Li | ≤ 2i nµ∗ ≤ 2i nµ.

Then, one has the following bound,

E
[∣∣{p′ ∈ Li : h∗(p′) = h∗(q)}

∣∣]
≤ 2i nµ · 1

2 j nµ
·pkc2(1−o(1)) Sub-sampling and then applying LSH

= 2i− j ·pkc2(1−o(1)). (3.17)

9The indices are dropped for ci , j and pnear, j for ease of notation.

73

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Since we have O
(
log 1

µ

)
geometric weight levels, then the expression in (3.17) for the worst i , bounds the

run-time up to O
(
log 1

µ

)
multiplicative factor. In order to optimize the run-time up to Õ(1) multiplicative

factors, we need to set k such that the expression in (3.17) gets upper-bounded by O(1) for all i > j . So,

in summary, for any fixed j ∈ [J], we choose k such that any weight level Li for i ≥ j contributes at most

Õ(1) points in expectation to the hash bucket of the query, i.e., h∗(q). One can see that we can choose k as

follows

k := k j := −1

log p
· max

i= j+1,...,J+1

⌈
i − j

c2
i , j (1−o(1))

⌉
. (3.18)

For sampling the points in L J+1, it suffices to sample points in the data set with probability 1
n (see line 15

in Algorithm 5), since the size of the sampled data set is small and there is no need to apply LSH. One can

basically scan the sub-sampled data set.

Algorithm 5 Preprocessing

1: procedure PREPROCESS(P,ϵ)
2: ▷ P represents the set of data points
3: ▷ ϵ represents the precision of estimation
4: K1 ← C logn

ϵ2 ·µ−o(1) ▷C is a universal constant

5: J ←
⌈

log 1
µ

⌉
▷We use geometric weight levels with base 2, see Definition 3.4.2

6: for a = 1,2, . . . ,K1 do ▷O(logn/ϵ2) independent repetitions

7: for j = 1,2, . . . , J do ▷ J =
⌈

log 1
µ

⌉
geometric weight levels

8: K2 ← 100logn ·p
−k j

near, j
9: ▷ See Claim 3.4.1 and (3.18) for definition of pnear, j and k j

10: psampling ← min{ 1
2 j nµ

,1}

11: P̃ ← sample each element in P with probability psampling.
12: for ℓ= 1,2, . . . ,K2 do
13: Draw a hash function from hash family H k j as per Claim 3.4.1 and call it Ha, j ,ℓ

14: Run Ha, j ,ℓ on P̃ and store non-empty buckets

15: P̃a ← sample each element in P with probability 1
n

16: Store P̃a ▷ Set P̃a will be used to recover points beyond L J+1

74

3.4 Kernel Density Estimation Using Andoni-Indyk LSH

Algorithm 6 Query procedure

1: procedure QUERY(P,q,ϵ,µ)

2: ▷ P represents the set of data points

3: ▷ ϵ represents the precision of estimation

4: K1 ← C logn
ϵ2 ·µ−o(1) ▷C is a universal constant

5: J ←
⌈

log 1
µ

⌉
▷We use geometric weight levels with base 2, see Definition 3.4.2

6: for a = 1,2, . . . ,K1 do ▷O(logn/ϵ2) independent repetitions

7: for j = 1,2, . . . , J do ▷ J =
⌈

log 1
µ

⌉
geometric weight levels

8: K2 ← 100logn ·p
−k j

near, j ▷ See Claim 3.4.1 and (3.18) for definition of pnear, j and k j

9: for ℓ= 1,2, . . . ,K2 do

10: Scan Ha, j ,ℓ(q) and recover points in L j

11: Recover points from L J+1 in the sub-sampled dataset, P̃a .

12: S ← set of all recovered points in this iteration

13: for pi ∈ S do

14: wi ← K (pi ,q)

15: if pi ∈ L j for some j ∈ [J] then

16: pi ← min{ 1
2 j nµ

,1},

17: else if pi ∈ P \∪ j∈[J]L j then

18: pi ← 1
n

19: Za ←∑
pi∈S

wi
pi

Now, we present the main result of this section.

Theorem 3.4.2 (Query time). For any kernel K , the expected query-time of the algorithm is equal to

Õ
(
ϵ−2no(1) ·cost(K)

)
.

Assuming Theorem 3.4.2, we prove Theorem 3.4.1.

Proof of Theorem 3.4.1: We first start by proving the query time bound and then we prove the space

consumption of the data structure, and the guarantee over the precision of the estimator is given in

Claim 3.4.4.

Proof of the query time bound: We calculate the cost of Gaussian kernel e−a||x−y||22 . First, we present the

weight levels and distance levels induced by this kernel. As per Definition 3.4.1, let

µ∗ := K (P,q) = ∑
p∈P

e−a||p−q||22 .

75

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

By Definition 3.4.2, one has

L j :=
{

pi ∈ P : wi ∈
(
2− j ,2− j+1

]}
=

pi ∈ P : ||pi −q||2 ∈
√

(j −1)ln2

a
,

√
j ln2

a

 ,

which immediately translates to r j :=
√

j ln2
a for all j ∈ [J]. Also, we for all i ∈ [J +1], j ∈ [J] such that i > j ,

we have

ci , j := min

{
ri−1

r j
, log1/7 n

}

= min

{√
i −1

j
, log1/7 n

}

At this point, one can check that

max
j∈[J]

max
i= j+1,...,J+1

⌈
i − j

c2
i , j (1−o(1))

⌉
= (1+o(1))

1

4
log

1

µ
,

Therefore, the cost of Gaussian kernel is

cost(K) =
(

1

µ

)(1+o(1)) 1
4

.

Now, invoking Theorem 3.4.2, the statement of the claim about the query time holds.

Proof of the space bound: First, since the query time is bounded by ϵ−2
(

1
µ∗

)0.25+o(1)
, then the number of

hash functions used is also bounded by the same quantity. This implies that the expected size of the space

needed to store the data structure prepared by the preprocessing algorithm is ϵ−2n
(

1
µ∗

)0.25+o(1)
, since for

each hash function we are hashing at most n points (number of points in the dataset).

For the other bound, we need to consider the effect of sub-sampling the data set. Fix j ∈ [J]. In the phase

when we are preparing the data structure to recover points from L j , we sub-sample the data set with

probability min{ 1
2 j nµ

,1}, and then we apply Õ
(
p
−k j

near, j

)
hash functions to this sub-sampled data set. Since

k j = −1

log p
· max

i= j+1,...,J+1

⌈
i − j

c2
i , j (1−o(1))

⌉
,

by (3.18), where p = pnear, j , we have

p
−k j

near, j = exp2

(
max

i= j+1,...,J+1

⌈
i − j

c2
i , j (1−o(1))

⌉
− j

)
. (3.19)

76

3.4 Kernel Density Estimation Using Andoni-Indyk LSH

At the same time, the expected size of the sampled dataset is bounded by n ·min{ 1
2 j nµ

,1} ≤ 1
µ ·2− j . Putting

this together with the equation above, we get that the expected size of the dataset constructed for level L j

is upper bounded by
1

µ
exp2

(
max

i= j+1,...,J+1

⌈
i − j

c2
i , j (1−o(1))

⌉
− j

)
. (3.20)

Now for every i = j +1, . . . , J such that ci , j =
√

i−1
j one has

max
i= j+1,...,J+1

⌈
i − j

c2
i , j (1−o(1))

⌉
− j = max

i= j+1,...,J+1

⌈
j · i − j

(i −1)(1−o(1))

⌉
− j ≤ o(J),

and for the other values of i we have maxi= j+1,...,J+1

⌈
i− j

log1/7 n(1−o(1))

⌉
− j ≤ o(J) as well. Putting this together

with (3.20) and multiplying by J =O(log(1/µ)) = µ−o(1) to account for the number of choices j ∈ [J], we

get the second bound for the expected size of the data structure ϵ−2
(

1
µ∗

)1+o(1)
.

Proof of the precision of the estimator: First, we prove the following claim, which guarantees high

success probability for recovery procedure.

Claim 3.4.2 (Lower bound on probability of recovering a sampled point). Suppose that we invoke Al-

gorithm 5 with (P,ϵ). Suppose that in line 11 of Algorithm 5, when k = k∗ and j = j∗, we sample

some point p ∈ L j∗ . We claim that with probability at least 1 − 1
n10 , there exists ℓ∗ ∈ [K2] such that

Hk∗, j∗,ℓ∗(p) = Hk∗, j∗,ℓ∗(q).

Proof. By Claim 3.4.1 we have

P
h∗∼H k

[
h∗(p) = h∗(q)

]≥ p
k j

near, j .

Now note that we repeat this process for K2 = 100logn ·p
−k j

near, j times. So any point p which is sampled

from band L j∗ is recovered in at least one of the repetitions of phase j = j∗, with high probability.

Now, we argue that the estimators are unbiased (up to small inverse polynomial factors)

Claim 3.4.3 (Unbiasedness of the estimator). For every µ∗ ∈ (0,1), every µ≥ µ∗, every ϵ ∈ (µ10,1), every

q ∈Rd , estimator Za for any a ∈ [K1] constructed in QUERY(P,q,ϵ,µ) (Algorithm 6) satisfies the following:

(1−n−9)nµ∗ ≤ E[Za] ≤ nµ∗

Proof. Let E be the event that every sampled point is recovered and let Z := Za (see line 19 in Algorithm 6).

By Claim 3.4.2 and union bound, we have

P[E] ≥ 1−n−9

77

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

We have that E[Z] =∑n
i=1

E[χi]
pi

wi with (1−n−9)pi ≤ E[χi] ≤ pi , where we now define χi = 1 if point pi is

sampled and recovered in the phase corresponding to its weight level, and χi = 0 otherwise. Thus

(1−n−9)nµ∗ ≤ E[Z] ≤ nµ∗. (3.21)

Remark 3.4.2. We proved that our estimator is unbiased10 for any choice of µ≥µ∗. Therefore if µ≥ 4µ∗, by

Markov’s inequality the estimator outputs a value larger than µ at most with probability 1/4. We perform

O(logn) independent estimates, and conclude that µ is higher than µ∗ if the median of the estimated values

is below µ. This estimate is correct with high probability, which suffices to ensure that we find a value of

µ that satisfies µ/4 < µ∗ ≤ µ with high probability by starting with some µ = n−Θ(1) (since our analysis

assumes µ∗ = n−Θ(1)) and repeatedly halving our estimate (the number of times that we need to halve the

estimate is O(logn) assuming that µ is lower bounded by a polynomial in n, an assumption that we make).

Claim 3.4.4 (Variance bounds). For every µ∗ ∈ (0,1), every ϵ ∈ (µ10,1), every q ∈Rd , using estimators Za , for

a ∈ [K1] constructed in QUERY(P,q,ϵ,µ) (Algorithm 6), where µ/4 ≤µ∗ ≤µ, one can output a (1±ϵ)-factor

approximation to µ∗.

Proof. By Claim 3.4.3 and noting that Z ≤ n2µ∗, where the worst case (equality) happens when all the

points are sampled and all of them are recovered in the phase of their weight levels. Therefore,

E [Z |E] ·P[E]+n2µ∗(1−P[E]) ≥ E[Z].

Also, since Z is a non-negative random variable, we have

E [Z |E] ≤ E [Z]

P[E]
≤ nµ∗

P[E]
= nµ∗(1+o(1/n9))

Then, we have

E[Z 2] = E
[(∑

pi∈P
χi

wi

pi

)2]

= ∑
i ̸= j

E

[
χiχ j

wi w j

pi p j

]
+ ∑

i∈[n]
E

[
χi

w2
i

p2
i

]

≤ ∑
i ̸= j

wi w j +
∑

i∈[n]

w2
i

pi
I[pi = 1]+ ∑

i∈[n]

w2
i

pi
I[pi ̸= 1]

≤
(∑

i
wi

)2

+ ∑
i∈[n]

w2
i +max

i

{
wi

pi
I[pi ̸= 1]

} ∑
i∈[n]

wi

≤ 2n2(µ∗)2 + max
j∈[J],pi∈L j

{wi 2 j+1}nµ ·nµ∗

≤ 4n2µ2 Since µ∗ ≤µ
10Up to some small inverse polynomial error.

78

3.4 Kernel Density Estimation Using Andoni-Indyk LSH

and

E[Z 2|E] ≤ E[Z 2]

P[E]
≤ n2µ2−o(1)(1+o(1/n9))

Now, since µ≤ 4µ∗, in order to get a (1±ϵ)-factor approximation to µ∗, with high probability, it suffices to

repeat the whole process K1 = C logn
ϵ2 ·µ−o(1) times, where C is a universal constant.

Suppose we repeat this process m times and Z̄ be the empirical mean, then:

P[|Z̄ −µ∗| ≥ ϵnµ∗] ≤P[|Z̄ −E[Z]| ≥ ϵµ∗−|E[Z]−nµ∗|]
≤P[|Z̄ −E[Z]| ≥ (ϵ−n−9)nµ∗]

≤ E[Z̄ 2]

(ϵ−n−9)2(n2µ∗)2

≤ 1

m

16n2(µ∗)2

(ϵ−n−9)2(n2µ∗)2

Thus by picking m =O(1
ϵ2) and taking the median of O(log(1/δ)) such means we get a (1±ϵ)-approximation

with probability at least 1−δ per query.

All in all, we proved the expected query time bound, the expected space consumption and the precision

guarantee in the statement of the theorem.

Now, we calculate the cost of kernel for t-student kernel.

t-student kernel (1
1+||x−y||t2

): We directly calculate distance levels induced by this kernel as follows

r j = t
√

2 j −1

which implies that for all i ∈ [J +1], j ∈ [J] such that i > j ,

ci , j := min

{
ri−1

r j
, log1/7 n

}

= min

 t

√
2i−1 −1

2 j −1
, log1/7 n

 .

Now, one can check that

max
j∈[J]

max
i= j+1,...,J+1

⌈
i − j

c2
i , j (1−o(1))

⌉
=

log 1
µ

log2/7 n
(1+o(1)).

Thus, we have

cost(K) =µ−o(1).

79

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

We note that this matches the result of [107] up to the difference between µ−o(1) and log(1/µ) terms. The

µ−o(1) dependence comes from the fact that we used the LSH of [10], and the dependence can be improved

to log(1/µ) by using the hash family of [111], for instance.

Exponential Kernel (e−∥x−y∥2) The distance levels induced by the kernel are given by r j = j log(2) for

j ∈ [J]. Hence, we get that ci j = min
{

ri−1
r j

, log1/7 n
}
= min{ i−1

j , log1/7 n}. If i > j log1/7 n +1 then the cost is

increasing in i > 0 becomes:

cost(K , j) = exp2

(
J +1− j

log2/7 n

)
≤ exp2

(
J

log2/7 n

)
=µ−o(1).

Thus, for the rest we will assume that i ≤ j log1/7 n +1, and we need to find the maximum over j of

(1+o(1)) max
i= j+1,...,J+1

⌈
j 2((i −1)− (j −1))

(i −1)2

⌉

Setting x = i −1 and A = j −1, we optimize the function (x−A)
x2 for x ≥ A+1. We get that the optimal value

is attained for i∗(j) = max{min{2 j −1, J +1}, j +1}. We distinguish three cases:

1. j = 1: then i∗ = 2 and we get cost(K ,1) =µ−o(1)

2. j > J+2
2 : then the maximum over i is j 2(J+1− j)

J 2 (1+o(1)), and the optimal choice of j is j∗ = 2(J+1)
3 .

We thus get

max
j> J+2

2

{cost(K , j)} =µ−(1+o(1)) 4
27

3. j ≤ J+2
2 : then the maximum over i is j 2

4(j−1) (1+o(1)) and the optimal choice for j is j∗ = J+2
2 . We

thus get

max
j≤ J+2

2

{cost(K , j)} =µ−(1+o(1)) 1
8 .

Overall, the worst-case cost is attained for i∗ = J and j∗ = 2J
3 and yields

cost(K) =µ−(1+o(1)) 4
27 .

Proof of Theorem 3.4.2: One should note that the query time of our approach depends on the number

of times that we hash the query and the number of points that we check, i.e., the number of points that

collide with the query. First, we analyze the number of points colliding with the query. We Fix j ∈ [J], so,

we want to estimate the contribution of points in Li to K (P,q). We consider 3 cases:

Case 1. i ≤ j : Note that we have |Li | ≤ 2i nµ and note that in j ’th phase, we sample the data set with rate

min{ 1
2 j nµ

,1}. Thus, we have at most 1 =O(1) sampled points from Li in expectation.

80

3.4 Kernel Density Estimation Using Andoni-Indyk LSH

Case 2. i = j +1, . . . , J : Again, note that by Lemma 3.4.2, |Li | ≤ 2i nµ, and the sampling rate is min{ 1
2 j nµ

,1}.

Thus, we have at most 2i− j sampled points from Li in expectation. Now, we need to analyze the effect of

LSH. Note that we choose LSH function such that the near distance is r j (see Claim 3.4.1). Also, note that

as per (3.18), we use

k := k j := −1

log pnear, j
· max

i= j+1,...,J+1

⌈
i − j

c2
i , j (1−o(1))

⌉
.

as the number of concatenations. Now, we have the following collision probability for p ∈ Li using

Claim 3.4.1

P
h∗∈H k

[
h∗(p) = h∗(q)

]≤ pkc2(1−o(1)),

where c := ci , j := min
{

ri−1
r j

, log1/7 n
}

and p := pnear, j for ease of notation. This implies that the expected

number of points from weight level Li in the query hash bucket is at most

2i− j ·pkc2(1−o(1)) = Õ(1)

by the choice of k.

Case 3. points in L J+1: We know that we have n points, so after sub-sampling, we have at most 1
2 jµ

points

from this range, remaining in expectation. For any p ∈ L J+1, note that ||p−q|| ≥ c · r j for c := c J+1, j :=
min

{
r J

r j
, log1/7 n

}
. Then,

P
h∗∈H k

[
h∗(p) = h∗(q)

]≤ pkc2(1−o(1)),

which implies that the expected number of points form this range in the query hash bucket is at most

1

2 jµ
·pkc2(1−o(1)) = 2J− j ·pkc2(1−o(1)) = Õ(1)

by the choice of k j .

All in all, we prove that each weight level Li for i ∈ [J +1] contribute at most Õ(1) points to the hash bucket

of query. Now, we need to prove a bound on the number of times we evaluate our hash function. One

should note that by the choice of k j in (3.18) we have

k j = Õ(1)

which basically means that we only concatenate Õ(1) LSH functions. Thus, we the evaluation time of

h∗(q) for any h∗ ∈H k is Õ(no(1)), by Remark 3.4.1. On the other hand, note that for recovering the points

in L J+1 we just sub-sampled the data set with probability 1
n so in expectation we only scan 1 point. So in

total, since we repeat this for all j ∈ [J] and J = ⌈log 1
µ⌉, by the choice of K1 and K2 assigned in lines 4 and 8

of Algorithm 5, respectively, the claim holds.

81

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

3.5 Improved algorithm via data dependent LSH

In this section, we improve the algorithm presented in the previous section using data dependent LSH

approach for the Gaussian kernel. Consider a data set P ⊂Rd , a positive real number a, and a query q ∈Rd .

Let

µ∗ := K (P,q) = ∑
p∈P

e−a||p−q||22

denote the KDE value at the query q ∈ Rd of interest, and for the rest of the paper suppose that the

algorithm is given a parameter µ that satisfies the following property

µ∗ ≤µ. (3.22)

We prove the following main result in the rest of the paper.

Theorem 3.5.1. Given a kernel K (p,q) := e−a||p−q||22 for any a > 0, ϵ=Ω
(

1
polylogn

)
, µ∗ = n−Θ(1) and a data

set of points P, there exists a preprocessing algorithm and a corresponding query algorithm that one can ap-

proximate µ∗ := K (P,q) (see Definition 3.4.1) up to (1±ϵ) multiplicative factor, in time Õ

(
ϵ−2

(
1
µ∗

)0.173+o(1)
)

,

for any query point q. Additionally, the space consumption of the data structure is

min

{
ϵ−2n

(
1

µ∗

)0.173+o(1)

,ϵ−2
(

1

µ∗

)1+c+o(1)
}

.

for a small constant c = 10−3.

Proof. First, in Section 3.5.1 we present the main primitives in the preprocessing phase (Algorithms 7,

8 and 9) and prove the space bound in Lemma 3.5.2. The standard outer algorithm is presented in

Appendix C.3 for completeness. The main query primitive in query algorithm is presented in Section 3.5.3,

and the query time is proved in Section 3.6 in Lemma 3.6.1. The correctness proof (precision of the

estimator) is rather standard and similar to the correctness proof in Section 3.4 and is given in Appendix C.3

for completeness.

Remark 3.5.1. Although we present the analysis for the Gaussian kernel, our techniques can be used

for other kernels such as the exponential kernel as well. We do not present the full analysis to simplify

presentation of our main result for the Gaussian kernel, but provide proofs of key lemmas in Appendix C.6.

Specifically, we present the equivalent of Claims 3.8.4 and 3.8.5, which underly our LP analysis, for kernels

whose negative log density is concave (this includes the exponential kernel exp(−||x||2)). Our dual solution

presented in Section 3.9 gives an upper bound of ≈ 0.1 on the value of the corresponding LP. Replacing the

parameter α∗ in the algorithms presented in this section with 0.1 thus yield an data structure for KDE with

the exponential kernel with query time Õ

(
ϵ−2

(
1
µ∗

)0.1+o(1)
)

and space consumption ϵ−2n
(

1
µ∗

)0.1+o(1)
for the

exponential kernel.

In order to simplify notation we apply the following normalization without loss of generality: For any

point in p ∈ P ∪ {q}, let p′ :=σp and σ :=
√

2a
log(1/µ) such that a point p′ at distance

p
2 from the query q′

82

3.5 Improved algorithm via data dependent LSH

contributes exactly µ to the kernel. In other words, we assume by convenient scaling that

K (P,q) = 1

n

∑
p′

(µ)||p
′−q′||22/2.

and to lighten notation we will assume that σ = 1, i.e. points are already properly scaled. For x ∈
(0,

p
2), let P̃ be the dataset obtained from P by including every point independently with probability

min

{
1
n ·

(
1
µ

)1− x2

2
,1

}
. We state these conditions in a compact way as follows and use them in the rest of

the paper.

Assumption 3.5.1. We have the followings

• P ⊂Rd and |P | = n.

• q ∈Rd .

• µ∗ := K (P,q)

• 1
µ∗ = nΩ(1)

• µ is such that µ∗ ≤µ.

• µ= n−Θ(1).

• The points are scaled so that K (p,q) =µ ||p−q||2
2 .

• P̃ is obtained by independently sub-sampling elements of P with probability min

{
1
n ·

(
1
µ

)1− x2

2
,1

}
,

for some x ∈ (0,
p

2), which is clear from the context.

In this section we design a data structure that allows preprocessing P̃ as above using small space such

that every point at distance at most x from any query q is recovered with probability at least 0.8 (see

Lemma C.3.1).

In what follows we present our preprocessing algorithm (Algorithm 7) in Section 3.5.1, the query algorithm

(Algorithm 10) in Section 3.5.3 as well as proof of basic bounds on their performance in the same sections.

Our main technical contribution is the proof of the query time bound. This proof relies on a novel linear

programming formulation that lets us bound the evolution of the density of points around the query q as

the query percolates does the tree T of hash buckets produced by PREPROCESS. This analysis is given in

Section 3.6, with the main supporting technical claims presented in Section 3.8.

3.5.1 Preprocessing algorithm and its analysis

Our preprocessing algorithm is recursive. At the outer level, given the sampled dataset P̃ as input, the

algorithm hashes P̃ into buckets using Andoni-Indyk Locality sensitive hashing. The goal of this is to

ensure that with high probability all hash buckets that a given query explores are of bounded diameter,

83

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

while at the same time ensuring that any close point p hashes together with q in at least one of the hash

buckets with high constant probability. The corresponding analysis is presented in Sections 3.5.3 and 3.6.

Our main tool in partitioning the data set into (mostly) low diameter subsets is an Andoni-Indyk Locality

Sensitive Hash family. Such a family is provided by Lemma 3.4.1, which was our main tool in obtaining

the non-adaptive KDE primitives in Section 3.4, and Corollary 3.5.1 below. We restate the lemma below

for convenience of the reader:

Lemma 3.4.1 ([10]) (Restated) Let p and q be any pair of points in Rd . Then, for any fixed r > 0, there

exists a hash family H such that, if pnear := p1(r) :=Ph∼H [h(p) = h(q) | ||p−q|| ≤ r] and pfar := p2(r,c) :=
Ph∼H [h(p) = h(q) | ||p−q|| ≥ cr] for any c > 1, then

ρ := log1/pnear

log1/pfar
≤ 1

c2 +O

(
log t

t 1/2

)
,

for some t, where pnear ≥ e−O(
p

t) and each evaluation takes d tO(t) time. One should also recall Re-

mark 3.4.1, which ensures no(1) evaluation time, with appropriate choice of t in Lemma 3.4.1.

Corollary 3.5.1. Let α be a constant, and let x ∈ (0,
p

2) and y be such that y ≥ x. Then, there exists a

hash family H such that for any points q ∈Rd , p and p′, where ||p−q|| ≤ x and ||p′−q|| ≥ y, we have the

following conditions

• Ph∼H

[
h(q) = h(p)

]≥µα
• Ph∼H

[
h(q) = h(p′)

]≤µαc2(1−o(1))

where c := min
{ y

x , log1/7 n
}
, and we call such a hash family a (α, x,µ)-AI hash family.

Our preprocessing algorithm is given below. It simply hashes the dataset several times independently

using an Andoni-Indyk LSH family and calls SPHERICAL-LSH (Algorithm 8 below) on the buckets. The

hashing is repeated several times to ensure that the query collides with any given close point with high

probability in at least one of the hashings. Overall PREPROCESS simply reduces the diameter of the dataset,

whereas most of the work is done by SPHERICAL-LSH, defined below.

84

3.5 Improved algorithm via data dependent LSH

Algorithm 7 PREPROCESS: P̃ is the subsampled data-set, x is the target distance to recover

1: procedure PREPROCESS(P̃ , x,µ)

2: Add a root w0 to the recursion tree T

3: w0.P ← P̃ , w0.level ← 0, w0.g ← 0 ▷ g = 0 since this node uses Euclidean LSH

4: if x >p
2 then return P̃ ▷ In that case the expected size of P̃ is small

5: α← 10−4 ▷ Choice of α affects hash bucket diameter, see Lemma 3.5.1

6: K1 = 100
(

1
µ

)α
▷ The number of repetitions of the first round of hashing

7: for j = 1,2, . . . ,⌈K1⌉ do

8: Pick h j from a (α, x,µ)-AI hash family, H ▷ See Definition 3.5.1

9: B ← set of non-empty hash buckets by hashing points in P using h j .

10: for each b ∈ B do

11: Add a node v as a child of w0 in recursion tree T

12: v.P ← b, v.l evel ← 0, v.g ← 0

13: v.o ← any point in bucket b

14: SPHERICAL-LSH(v, x,µ)

15: return T

We will use the following basic upper bound on the Euclidean diameter of LSH buckets:

Lemma 3.5.1 (Diameter bound for Andoni-Indyk LSH buckets). Under Assumption 3.5.1, suppose that H

is a (α, x,µ)-AI hash family (see Corollary 3.5.1), for some constant α and let c := min
{

Rdiam
x , log1/7 n

}
for

some Rdiam ≥p
2, then if αc2 = 2+Ω(1) then one has

(a) Eh∼H ,P̃

[∣∣{p ∈ P̃ : ||p−q|| ≥ Rdiam and h(p) = h(q)
}∣∣]≤ (

1
µ

)2−αc2(1−o(1))

(b) and consequently

P
h∼H ,P̃

[diameter of h−1(q)∩ P̃ is larger than Rdiam] ≤
(

1

µ

)2−αc2(1−o(1))

.

Proof. One has for every Rdiam ≥p
2

EP̃

[∣∣{p ∈ P̃ : ||p−q|| ≥ Rdiam
}∣∣]≤ EP̃

[∣∣P̃ ∣∣]= n · 1

n

(
1

µ

)1− x2

2 =
(

1

µ

)1− x2

2

Taking the expectation with respect to the hash function h, we get,

Eh∼H ,P̃

[∣∣{p ∈ P̃ : ||p−q|| ≥ Rdiam and h(p) = h(q)
}∣∣]≤ (

1

µ

)1− x2

2 −αc2(1−o(1))

≤
(

1

µ

)2−αc2(1−o(1))

,

establishing (a). Claim (b) now follows by applying Markov’s inequality since αc2 = 2+Ω(1).

85

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Now, we establish a constant upper bound on the diameter of data set after the Andoni-Indyk LSH round.

Since we have µ= n−Θ(1), and α= 10−4 as per line 5 of Algorithm 7, by Lemma 3.5.1 if we let Rdiam be a

large enough constant, then one has

P
h

[diameter of h−1(q)∩ P̃ is larger than Rdi am] ≤ n−20
(3.23)

Let Edi am denote the event that all Andoni-Indyk hash buckets that the query hashes to have diameter

bounded by Rdi am . We have, combining the failure event over sampling of P̃ (over-sampling by a factor

more than O(logn)) with (3.23) that P[Ē] ≤ 2n−20 ≤ n−19. Conditioned on E buckets that the query hashes

have diameter bounded by Rdiam. Now, if we take any point in the data set and consider a ball of radius

Rmax := 2Rdiam, using the triangle inequality, it contains all the points of this hash bucket. This ensures

that all the spheres in the recursion tree have radius bounded by Rmax =Θ(1).

Corollary 3.5.2 (Bounded diameter spheres). All the spheres that the query scan in the algorithm have

radius bounded by Rmax =Θ(1).11

We are now ready to present our main preprocessing primitive SPHERICAL-LSH, given as Algorithm 8

below. The input to the algorithm is a node in the recursion tree T created by recursive invocations of

SPHERICAL-LSH. Every such node v is annotated with a dataset v.P , a radius v.r of a ball enclosing the

dataset, the center v.o of that ball and a level, v.level , initially set to 0 for the root of the tree T that is

created by PREPROCESS. SPHERICAL-LSH then proceeds as follows. First it calls the PSEUDORANDOMIFY

procedure (Algorithm 9 below). This procedure partitions the input dataset v.P into subsets that are

pseudorandom as per Definition 3.3.3. A similar procedure was used in the work of [13] on space/query

time tradeoffs for nearest neighbor search. Intuitively, a dataset is pseudorandom if the points belong to a

thin spherical shell and furthermore do not concentrate on any spherical cap in this shell (appropriately

defined). These pseudorandom datasets are added to the recursion tree T as children of v . SPHERICAL-

LSH then generates random subsets of these pseudorandom spheres defined by random spherical caps,

adds these datasets to the recursion tree T and recursively calls itself until a depth budget T (see line 3

below) is exhausted. Note that the radius of spherical caps generated depends on the distance x ′ from the

projected query point to the target near point (which is assumed to be at distance x from the query). Note

that since the query is not available at the preprocessing stage, the algorithm prepares data structures for

all possible values of x ′ (see line 14 in Algorithm 8 below). Note that the value of x ′ is passed down the

recursion tree. In the section below, we set the parameters that we use in the algorithms.

3.5.2 Parameter settings

• γ= 1
logloglogn and τ= 1

10 are the parameters used for pseudo-random spheres (see Definition 3.3.3)

in Algorithm 9.

• α∗ = 0.172 (see Section 3.9), T =√
logn and J = min

{
α∗ ·T,

(
x2

2

(
1− x2

2

)
+10−4

)
·T

}
are parameters

to bound the depth of the recursion tree.

11Since we did not use any density constraints other than the upper bound of n on the number of points, this corollary applies
for all spheres in the Algorithm.

86

3.5 Improved algorithm via data dependent LSH

• δ= exp(−(loglogn)C) for some large enough constant C , is a parameter used for partitioning point

in a ball to discrete spheres of radii multiplies of δ (see Algorithm 9)

• δ′ = exp(−(loglogn)C) for some large enough constant C , is a parameter for rounding x ′’s to x ′′’s
(see lines 18 and 19 in Algorithm 10)

• Rmin = 10−5 is a lower bound on the radius of spheres that we process further, i.e., we stop whenever

the radius becomes less than Rmin.

• ∆= 10−20 is a tiny constant. For a discussion about ∆ see Remark 3.6.1.

• α= 10−4 is a parameter used for the Andoni-Indyk LSH round (see Algorithm 7)

• δz = 10−6 is a parameter used in discretizing continuous densities in Definition 3.6.7.

• δx = 10−8 is used for defining a grid over (0,
p

2), such that for any x from this grid we prepare the

data structure to recover points from [x −δ, x) (see Algorithm 13).

87

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Algorithm 8 SPHERICAL-LSH: x is the target distance to recover, v is the node in recursion tree (corre-
sponds to a subset of the dataset)

1: procedure SPHERICAL-LSH(v, x,µ)

2: γ← 1
logloglogn

3: T ←√
logn

4: U ← PSEUDORANDOMIFY(v,γ)

5: for w ∈U do

6: Add w as a child of v in recursion tree T

7: P ← w.P ▷ The dataset of w

8: R ← w.r ▷ Radius of the sphere of w

9: if R < Rmi n continue

10: δ′ ← exp(−(loglogn)C)

11: o ← w.o ▷ Center of sphere of w

12: W ←
{
⌊∆−δδ′ ⌋ ·δ′,

(
⌊∆−δδ′ ⌋+1

)
δ′, . . .

}
∩ (0,R(

p
2+γ)]

13: ▷ The smallest element in W isΘ(1) by the setting of parameters. See 3.5.2

14: for x ′′ ∈W do ▷ Enumerate over potential target distances

15: if x ′′ > R(
p

2+γ) continue

16: Choose η such that F (η)
G(x ′′/R,η) =

(
1
µ

) 1
T

17: ▷ Choose η such that a query explores
(

1
µ

) 1
T

children in expectation

18: for i = 1, . . . ,
⌈

100
G(x ′′/R,η)

⌉
do

19: Sample a Gaussian vector g ∼ N (0,1)d

20: P ′ ← {
p ∈ P :

〈p.new−o
R , g

〉≥ η}
21: ▷ p.new is the rounded p to the surface of the sphere (see line 10 of Algorithm 9)

22: if P ′ ̸= ; then

23: Add a node v ′ as child of w in T

24: v ′.P ← P ′, v ′.level ← v.level +1, v ′.g ← g , v ′.r ← R, v ′.o ← o, v ′.x ← x ′′

25: v ′.η← η

26: if v ′.level ̸= J then

27: ▷ Stop whenever the level becomes J (see Section 3.5.2 for the value of J .)

28: SPHERICAL-LSH(v ′, x,µ) ▷ Recurse unless budget has been exhausted

Algorithm 13 is the standard (similar to Section 3.4) outer algorithm and is presented in Appendix C.3. It

simply calls PREPROCESS (Algorithm 7) presented in this section. The following lemma bounds the space

complexity of the preprocessing algorithm:

Lemma 3.5.2. Under Assumption 3.5.1, the expected space consumption of the datastructure generated by

PREPROCESS-KDE(P̃ ,µ) (Algorithm 13) is bounded by

min
{

n expµ (0.173) ,expµ (1+ c +o(1))
}

,

for small constant c = 10−3.

88

3.5 Improved algorithm via data dependent LSH

Proof. First, we calculate the expected size of the data structure created by PREPROCESS(P̃ , x,µ) for any

x ∈ {δx ,2δx , . . .}∩ (0,
p

2) (see line 6 in Algorithm 13). Note that the expected size of the sampled dataset is

E[|P̃ |] ≤ min

{
expµ

(
1− x2

2

)
,n

}
.

Since PSEUDORANDOMIFY does not duplicate points, every point in the dataset is duplicated (due to their

presence in different spherical caps) at most

expµ

(
1

T

)
· |W | = expµ

(
1

T

)
·exp

(
(loglogn)O(1))

times in expectation each time we increase the level. So, in total every point is duplicated at most

expµ

(
J

T

)
· |W |J = expµ

(
J

T

)
· |W |J

in expectation. Indeed, in every level we enumerate over at most |W | = exp((loglogn)O(1)) possibilities

for x ′′, amounting to at most a factor of |W |J = exp
(
(loglogn)O(1) ·O(

√
logn)

) = no(1) duplication due

to the termination condition in line 27 of Algorithm 8. Finally, PREPROCESS itself hashes every point

100expµ (α) ≤ 100expµ
(
10−4

)
times (see line 6 and line 5 of Algorithm 7). Putting these bounds together

yields that the space consumption of PREPROCESS(P̃ , x,µ) is at most

min

{
expµ

(
1− x2

2

)
,n

}
·expµ

(
10−4 +min

{
α∗,

x2

2

(
1− x2

2

)
+10−4

}
+o(1)

)

in expectation, where c := 10−4. Now, note that we also repeat this procedure
(

1
µ

)4δx+o(1)
times (see

Algorithm 13), which results in the following bound on the total space consumption

max
x∈(0,

p
2)

(
min

{
expµ

(
1− x2

2

)
,n

}
·expµ

(
10−4 +min

{
α∗,

x2

2

(
1− x2

2

)
+10−4

}
+4δx +o(1)

))
≤ min

{
n expµ (0.173) ,expµ (1+ c +o(1))

}
,

for c = 10−3.

Finally, we introduce the procedure PSEUDORANDOMIFY (Algorithm 9 below) used in SPHERICAL-LSH.

This procedure is quite similar to the corresponding primitive in [13] and is guaranteed to output pseudo-

random spheres with parameters τ and γ (See Definition 3.3.3).

89

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Algorithm 9 PseudoRandomify

1: procedure PSEUDORANDOMIFY(v,γ)

2: δ← exp(−(loglogn)C)

3: Rmi n ← sufficiently small constant larger than ∆ and δx (see Section 3.5.2)

4: P ← v.P ▷Dataset of node v

5: R ← v.r ▷ Radius of sphere of node v

6: o ← v.o ▷ Center of sphere of node v

7: τ← 1
10

8: if R < Rmi n return

9: for p ∈ P do

10: p.new ← o +δ⌈ ||p−o||
δ ⌉ · p−o

||p−o|| ▷ p represents the initial coordinates of point p

11: V ←;
12: for i ← 1. . .⌈R

δ ⌉ do ▷ Process all resulting spheres

13: P̃ ← {p ∈ P : ||p.new −o|| = δi }

14: if P̃ ̸= ; then

15: R̂ ← (
p

2−γ)R

16: m ←|P̃ |
17: m′ ← 0

18: while m′ ≤ m
2 do

19: m ←|P̃ |
20: while ∃ô ∈ ∂B(o,δi) : |B(ô, R̂)∩ P̃ | ≥ 1

2 ·τ ·m do

21: ▷Using rounded p.new coordinates (see line 10) in line above

22: P ′ ← P̃ ∩B(ô, R̂)

23: B(o′,R ′) ← SEB(P ′) ▷ SEB=smallest enclosing ball

24: Create a node tmp

25: tmp.P ← P ′, tmp.level ← v.level , tmp.g ← 0, tmp.r ← R ′, tmp.o ← o′

26: V ←V ∪PSEUDORANDOMIFY(tmp,γ)

27: P̃ ← P̃ \ B(ô, R̂)

28: m′ ←|P̃ |
29: Create a node w

30: w.P ← P̃ , w.level ← v.level , w.g ← 0, w.r ← δi , w.o ← o

31: V ←V ∪ {w}

32: return V

3.5.3 Query procedure

We now present our query procedure (Algorithm 10 below). The procedure simply traverses the recursion

tree T from the root, exploring leaves that the query is mapped to according to line 29. Since every

node u of the tree T corresponds to a pseudorandom dataset u.P residing (essentially) on a sphere of

radius u.r centered at u.o, the query is projected onto the sphere, after which one recursively explores

the children of u in T whose Gaussian vectors (see line 29) are sufficiently correlated with the projected

query. One notable feature in comparison to the corresponding procedure in [13] is the follows. Note that

90

3.5 Improved algorithm via data dependent LSH

the procedure of [13] recurses on a sphere even if the intersection of a sphere of radius x around the query

(i.e. the range in which we would like to report points) barely touches the sphere that the dataset resides

on. Our data structure, however, uses an increased search range x +∆ (see Figure 3.7), which results in

somewhat higher runtime, but allows one to only recurse when the extended search range has nontrivial

overlap with the sphere in question – see lower bound on x ′ in line 12 of Algorithm 8. This additive ∆

technique, can also be used to simplify the technical proofs of [13], by not allowing their algorithm to

recurse on tiny spheres at distance roughly x (i.e., when the distance x barely touches the sphere). The

reason is that all the points on these small spheres has distance at most x +2Rmi n from the query, and we

have small number of such points in expectation, by sub-sampling and density constraints.

q o

x

x +∆

Figure 3.7: An (exaggerated) illustration of x and x +∆.

91

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Algorithm 10 Query

1: procedure QUERY(q,T , x)

2: Px ←;
3: δ← exp(−(loglogn)C)

4: v ← root of T

5: if v.l evel = 0 then

6: K1 = 100
(

1
µ

)α
▷ α is the constant from line 5 in Algorithm 7

7: for j = 1,2, . . . ,⌈K1⌉ do

8: Locate q in h j and u ← the corresponding node in T

9: for each w child of u do

10: Tw ← sub-tree of w and its descendants.

11: Px ← Px ∪QUERY(q,Tw , x)
return Px

12: else if T is just one node, without any children then

13: return v.P

14: else

15: o ← v.o

16: R ← v.r

17: R2 ←||q−o||
18: x ′ ← PROJECT(x +∆,R2,R)

19: x ′′ ← smallest element in the grid W (line 12 of Algorithm 8) which is not less than x ′

20: if x +δ< |R −R2| then return

21: ▷ Then no point from distance x can be on this sphere

22: if ∄u child of v , such that u.x = x ′′ then

23: return v.P

24: for each u child of v do

25: ∆← 10−20

26: if u.x = x ′′ then

27: g ← u.g

28: η← u.η

29: if 〈g , q−o
||q−o|| 〉 ≥ η then

30: for each w child of u do

31: Tw ← sub-tree of w and its descendants.

32: Px ← Px ∪QUERY(q,Tw , x)

33: return Px

Since the correctness analysis of this procedure is standard and similar to [13], we present it in Ap-

pendix C.3 (Lemma C.3.1), for completeness. Basically, we prove the query procedure outputs any given

point within distance x with high constant probability.

92

3.6 Query time analysis

3.6 Query time analysis

The main result of this section is the following lemma which bounds the expected query time of the

algorithm.

Lemma 3.6.1. The expected query time is bounded by O

((
1
µ

)0.173+o(1)
)
.

Throughout this section we consider the setting where one is given a query q ∈ Rd and a parameter

µ ∈ (0,1] with the promise that

µ∗ ≤µ, (3.24)

where

µ∗ = K (P,q)

is the true kernel density value. We assume that µ∗ = n−Θ(1), since this is the interesting regime for this

problem. For µ∗ = n−ω(1) under the Orthogonal Vectors Conjecture (e.g. [109]), the problem cannot be

solved faster than n1−o(1) using space n2−o(1) [9], and for larger values µ∗ = n−o(1) random sampling solves

the problem in no(1)/ϵ2 time and space.

Densities of balls around query. Upper bounds on the number of points at various distances from the

query point in dataset (i.e., densities of balls around the query) play a central part in our analysis. The

core of our query time bound amounts to tracking the evolution of such densities in the recursion tree

T . In order to analyze the evolution of these upper bounds we let, for a query q ∈Rd (which we consider

fixed throughout this section) and any x ∈ (0,
p

2) let

Dx (q) := {||p−q|| : p ∈ P, ||p−q|| ≥ x +1.5∆}, (3.25)

denote the set of possible distances from the query to the points in the dataset which are further that

x +1.5∆ from the query. When there is no ambiguity we drop q and x and we simply call it D. For any

y ∈ D we let

Py (q) := {p ∈ P : ||p−q|| ≤ y} (3.26)

be the set of points at distance y from q. Since for every y > 0

µ∗ = K (P,q) = 1

n

∑
p∈P

µ||p−q||22/2

≥ µy2/2

n
|Py (q)|

we get

|Py (q)| ≤ nµ∗ ·
(

1

µ

) y2

2 ≤ n ·
(

1

µ

) y2

2 −1

,

since µ∗ ≤ 4µ by assumption.

93

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Densities in the subsampled dataset. Fix x ∈ (0,
p

2), and recall that P̃ contains every point in P indepen-

dently with probability 1
n ·

(
1
µ

)1− x2

2
. Note that for every y the expected number of points at distance at

most y from query q that are included in P̃ is upper bounded by

min

n ·
(

1

µ

) y2

2 −1

,n

 · 1

n
·
(

1

µ

)1− x2

2 ≤ min

{
expµ

(
y2 −x2

2

)
,expµ

(
1−x2

2

)}
, (3.27)

and Figure 3.8 illustrates this.

x p
2

0

1− x2

2

Distance from the query

Lo
g-

d
en

si
ty

Figure 3.8: Upper-bound on log-densities after sub-sampling.

Our main goal is to track the progress of the query q and any p, for which we have ||p−q||2 ≤ x, that was

included in the set P̃ , and exploit the upper bounds (3.27) on the number of points at various distances

from q in q’s ‘hash bucket’ to show that the process quickly converges to a constant size data set at a leaf

of T . It is not hard to see (Lemma 3.6.4 below) that the number of nodes in T that the query explores is

low. The main challenge is to show that the expected size of a leaf data set in T is small, since for that

one needs to prove strong upper bounds on the number of points at various distances from the query in

dataset that the query traverses on its path to a leaf in T . We exploit two effects:

(Removal of points due to truncation) The PSEUDORANDOMIFY procedure, which is crucial to ensuring

that spheres at nodes on T are pseudorandom, essentially acts as a trunction primitive on the

density curve. See conditions (2) in Definition 3.6.3 below.

(Removal of points due to LSH) As the query explores the children of an LSH node v ∈T the probability

that a given point p ∈ v.P belongs to the same spherical cap as q depends on the distance between

p and q. This implies bounds on the evolution of the density of points at various distances y from q

in the datasets that q explores on its path towards a leaf in T . See conditions (3) in Definition 3.6.3

below.

The bulk of our analysis is devoted to understanding the worst case sequence of geometric configurations,

i.e. spheres, that the query encounters on its path towards a leaf in T .

94

3.6 Query time analysis

3.6.1 Path geometries

We start by defining the path geometries in the recursion tree. Assume an invocation of PREPROCESS

algorithm (Algorithm 7) and let T be the sub-tree that the query explores. Let

P := (w0, v0, w1, v1, . . . , w J , v J)

be any path from root to a LSH leaf at level J .

For any j ∈ [J], suppose that given x ′′ := v j .x and r := vi .r , we are interested in the distance from the

query to the center of the sphere (v j .o). For simplicity of notation let ℓ̃= ||q− v j .o||. Recall that x ′′ is the

rounded value for x ′ = PROJECT(x +∆, ℓ̃,r) (see lines 18 and 19 of Algorithm 10). However, this equation is

a degree two polynomial in ℓ̃, so it has at most two solutions. For intuition, Figure 3.9 shows these two

solutions with an example. The solutions to the equation correspond to the points that the dashed circle

intersects with the dashed line, i.e., position of q. Now, recall that x ′′ is the rounded x ′ (see line 19 of

Algorithm 10). So, x ′ can change in a small interval. This corresponds to moving the center of the dashed

circle over the red arc. This changes the position of intersections, however, they still belong to a relatively

small interval (shown in blue in Figure 3.9), we denote this intervals by left interval and right interval. Now,

given query q, we check weather it corresponds to the left interval or the right interval, and based on that

we set b j to be 1 or 2, respectively. We also let ℓ be the distance of the leftmost point in the interval of the

query, from the center of the sphere. And we call ℓ the distance induced by (x ′′,r) and q. In appendix C.4

we formally argue this procedure.

o

x +∆

x ′

Figure 3.9: Geometric illustration of equation x ′ = PROJECT(x +∆, ℓ̃,r) when we have access to an approxi-
mation of x ′ (red arc).

Definition 3.6.1 (Path geometry and induced distances). For any query q and tree T (as described above)

for any root to leaf path

P = (w0, v0, w1, v1, . . . , w J , v J),

we call

G(P) := ((x ′′
1 ,r1,b1), . . . , (x ′′

J ,r J ,b J))

the geometry of path P where for all i ∈ [J],

95

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

1. x ′′
i := vi .x,

2. ri := vi .r ,

3. bi is as described above (formally defined in Appendix C.4).

Additionally, we call L(P) := (ℓ1, . . . ,ℓJ) the induced distances of path P , where for all i ∈ [J], ℓi is induced

by (x ′′
i ,ri) as explained above and formally defined in Appendix C.4.

Definition 3.6.2 (Sphere geometries). For any query q and tree T (as described above) for any root to leaf

path

P = (w0, v0, w1, v1, . . . , w J , v J),

if the geometry of this path is defined as

G(P) := ((x ′′
1 ,r1,b1), . . . , (x ′′

J ,r J ,b J))

then for any j ∈ [J] we say that w j and v j has geometry (x ′′
j ,r j ,b j).

Recall from Definition 3.3.3 that the PSEUDORANOMIFY procedure (Algorithm 9) ensures that most of the

points on any pseudorandom sphere w are nearly orthogonal to q−w.o. We want to know, how the fact

that a sphere is pseudorandom translates to densities. For the first step, we need to understand if a point

on the sphere is almost orthogonal to the projection of the query on the sphere, then what the range

of possible distances of these points from the query is. We define the c :=
p
ℓ2 + r 2 which simplifies the

notation. As Figure 3.10 suggests, we expect the orthogonal points to be at distance ≈ c. The following

claim formally argues how pseudorandomness of a sphere translates to a condition on the densities.

r

q̃ q′

c

ℓ := ||q̃−o||
o

Figure 3.10: Illustration of the definition of c , the distance from the query to a ‘typical’ point on the sphere.

Claim 3.6.1 (Truncation claim). Given query q, let w be a pseudo random sphere with geometry (x ′′,r,b)

which induces distance ℓ. Let w.P be the set of points on this sphere, i.e., for any p ∈ w.P, p.new is on the

sphere. For all y let By be the number of points at distance y from q in w.P. Then, the following conditions

96

3.6 Query time analysis

hold. ∑
y≤c−rψ

By ≤ τ

1−2τ
· ∑

y∈(c−rψ,c+rψ)
By ,

and ∑
y≥c+rψ

By ≤ τ

1−2τ
· ∑

y∈(c−rψ,c+rψ)
By ,

where ψ= γ1/3 +δ′1/4 +δ1/4 (the same as in Claim C.5.1) and c :=
p
ℓ2 + r 2.

Proof. The proof is just a simple application of Claim C.5.1 to this sphere.

Suppose that one has two points on the sphere at some distance from each other, we can use Lemma 3.3.1

and Lemma 3.3.2, to find collision probabilities under a spherical cap of size η. However, in general the

query is not on the sphere, so we need to translate distance from q to any point p to distance from q′

(projection of q on the sphere) to p, using a function called PROJECT (formally defined in Definition 3.3.2

and its formula is given in Lemma 3.3.3). Also, there are some rounding steps, such as rounding the points

to the sphere and rounding of the distance from the query to the center of the sphere (rounding of ℓ̃ to ℓ).

Considering all these issues, the following claim illustrates the effect of spherical LSH on the points based

on their distance from the query.

Claim 3.6.2 (Spherical LSH claim). Suppose that there is a sphere with geometry (x ′′,r,b) and induced

distance ℓ (see Section 3.6.1 and Definition 3.6.1) for some x ′′ ∈W , r ∈
[⌈

Rmax
δ

⌉]
and b ∈ {1,2}. Let o be the

center of the sphere. Also, let p be a point such that y = ||p−q|| and p.new is on the sphere (see line 10 of

Algorithm 9). Now, suppose that one generates a Gaussian vector g as in Algorithm 8. Then, we have

P
g∼N (0,1)d

[
〈g ,

p.new −o

||p.new −o|| 〉 ≥ η|〈g ,
q−o

||q−o|| 〉 ≥ η
]
≤ expµ

(
−4(r /x ′)2 −1

4(r /y ′)2 −1
· 1

T

)
.

where

• η is such that F (η)
G(x ′′/r,η) =

(
1
µ

) 1
T

(see line 16 of Algorithm 8).

• x ′ := PROJECT(x +∆,ℓ,r).

• y ′ := PROJECT(y −∆/2,ℓ,r).

Proof. Let o be the center of the sphere. Let ℓ̃ := ||q−o||. Recall by the discussion in Section 3.6.1 and

Definition 3.6.1 that any sphere geometry (x ′′,r,b) induces a distance ℓ. Now, suppose that we move the

query in the direction of the vector from o to q, such that for the new point q̃, we get ||q̃−o|| = ℓ. Now,

one should note that the geometry of the sphere with respect to q and q̃ is the same. Also, the projections

of q and q̃ on the sphere are identical. Also, for point p at distance y from q, by the triangle inequality for

97

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

(q, q̃,p), since ℓ̃ ∈ [ℓ−δ′1/3,ℓ] we get

||p− q̃|| ∈ [y −δ′1/3, y +δ′1/3]. (3.28)

Now, if we let point q′ be the projection of q̃ on the sphere, and let p.new be the rounded p on the sphere,

then ||p.new − q̃|| ∈ [y −δ−δ′1/3, y +δ+δ′1/3], which implies

y ′′ := ||q′−p.new || ∈ [PROJECT(y −δ−δ′1/3,ℓ,r), PROJECT(y +δ+δ′1/3,ℓ,r)].

Note that with this definition of y ′′ one has

P
g∼N (0,1)d

[
〈g ,

p.new −o

||p.new −o|| 〉 ≥ η|〈g ,
q−o

||q−o|| 〉 ≥ η
]
= G(y ′′/r,η)

F (η)
. (3.29)

Now, by invoking Claim C.5.2, (b)

P
g∼N (0,1)d

[
〈g ,

p.new −o

||p.new −o|| 〉 ≥ η|〈g ,
q−o

||q−o|| 〉 ≥ η
]
≤ expµ

(
−4(r j /x ′)2 −1

4(r j /y ′)2 −1
· 1

T

)
(3.30)

Now, we verify the preconditions of Claim C.5.2, (b). Condition (p1) of Claim C.5.2 is satisfied by setting

of δ as δ+δ′1/3.12 Condition (p2) is satisfied by line 10 in Algorithm 8. Condition (p3) is satisfied by

setting of ∆ in line 25 of Algorithm 10. Finally, condition (p4) is satisfied due to line 15 in Algorithm 8 that

ensures that a nontrivial data structure is only prepared for x ′ ≤ R(
p

2+γ), and no recursion is performed

otherwise.

Conditioned on event Edi am (which ensures constant upper-bound on the radii of spheres, see the

discussion in Section 3.5.1), r = O(1). Thus, we can invoke part (b) of Claim C.5.2 applies and gives

(3.30).

In the following definition we summarize the effect of sub-sampling the dataset, the truncation rounds

and the spherical LSH rounds on densities along the path.

12To be more clear, we set the δ of claim C.5.2 as δ+δ′1/3 where δ and δ′ are the parameters of the algorithm.

98

3.6 Query time analysis

Definition 3.6.3 (Valid execution path). Let R := (r j)J
j=1 and L := (ℓ j)J

j=1 for some positive values r j ’s and

ℓ j ’s such that for all j ∈ [J], x +δ≥ |ℓ j − r j |. Also let D be as defined in (3.25). Then, for

A := (ay, j), y ∈ D, j ∈ [J]∪ {0} (Intermediate densities)

B := (by, j), y ∈ D, j ∈ [J +1]∪ {0} (Truncated intermediate densities)

(L,R, A,B) is called a valid execution path, if the conditions below are satisfied. We define ψ := γ1/3 +
δ′1/4 +δ1/4 and c j :=

√
r 2

j +ℓ2
j for convenience.

(1) Initial densities condition. The ay,0 and by,0 variables are upper-bounded by the initial expected

densities in the sampled dataset: for all y ∈ D

∑
y ′∈[0,y]∩D

ay ′,0 ≤ min

{
expµ

(
y2 −x2

2

)
,expµ

(
1−x2

2

)}

and ∑
y ′∈[0,y]∩D

by ′,0 ≤ min

{
expµ

(
y2 −x2

2

)
,expµ

(
1−x2

2

)}

(2) Truncation conditions (effect of PSEUDORANDOMIFY). For any j ∈ [J], for all y ∈ D \[ℓ j −r j ,ℓ j +r j]

one has by, j = 0 (density is zero outside of the range corresponding to the j -th sphere on the path;

condition (2a)), for all y ∈ D ∩ [ℓ j − r j ,ℓ j + r j] one has by, j ≤ ay, j−1 (removing points arbitrarily

(2b)) and ∑
y∈[0,c j−ψr j]∩D

by, j ≤ τ

1−2τ
· ∑

y∈(c j−ψr j ,c j+ψr j)∩D
by, j (condition (2c))

(3) LSH conditions. For every j ∈ [J] and all y ∈ [ℓ j − r j ,ℓ j + r j]∩D

ay, j ≤ by, j ·expµ

−4
(

r j

x ′

)2 −1

4
(

r j

y ′

)2 −1
· 1

T


where x ′ := PROJECT(x +∆,ℓ j ,r j) and y ′ := PROJECT(y −∆/2,ℓ j ,r j). See Remark 3.6.1 below for a

discussion about ∆ factors.

(4) Terminal density condition. For any y such that ay,J is defined, by,J+1 ≤ ay,J .

Remark 3.6.1. Throughout the paper we need good bounds on the probability that a random spherical cap

encompasses a data point p, given that the spherical cap captures the projection of the query. The expression

in condition (3) of Definition 3.6.3 is a convenient upper bound for this quantity when the distance from p

to q is equal to y. Exact expressions for such collision probabilities are unstable with respect to perturbations

of the point p when p is antipodal to q on the sphere, and because of this it is more convenient to work with

upper bounds. Specifically, we upper bound this probability by imagining that the point is slightly closer

(by ∆/2) than the actual distance y, for a small positive constant ∆ that affects our query time bounds. The

advantage is that such probabilities are more stable under small perturbations of the data point p – see the

proof of Claim C.5.2 for more details. One notes that the expression in condition (3) also depends on x. This

99

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

is because we select spherical cap sizes based on x – see line 16 of Algorithm 8.

We introduce the notion of the length of an execution path (L,R, A,B).

Definition 3.6.4. We define the length of an execution path (L,R, A,B) by Length ((L,R, A,B)) := |R| = J .

A special class of execution paths that we refer to as zero-distance monotone paths will be central to our

analysis:

Definition 3.6.5. (Zero-distance and monotone path) Let (L,R, A,B) be an execution path defined in

Definition 3.6.3. If for R = (r j)J
j=1, r j ’s are non-increasing in j , and L = R, then we say that (L,R, A,B) is a

zero-distance and monotone execution path. When L = R, we usually drop L, and simply write (R, A,B).

The following crucial lemma allows our LP based analysis of the query time:

Lemma 3.6.2. (Reduction to zero-distance monotone execution paths) For every valid execution path

(L,R, A,B) (see Definition 3.6.3), there exists a zero-distance and monotone valid execution path (R ′, A′,B ′)
(see Definition 3.6.5) such that b′

y,J+1 = by,J+1 for all y ∈ D13 and |R ′| = |R| (i.e., the length of the paths are

equal).

The proof of this lemma is given in Section 3.7.

Linear programming formulation

As we prove in Lemma 3.6.2, for any execution path there exists a zero-distance monotone path (see

Definition 3.6.5) with the same length and the same final densities. This means that if we prove that

for any zero-distance monotone path, the final densities are small, then this generalizes to all possible

execution paths. So, from now on we only consider zero-distance monotone paths.

As mentioned before, we analyze the evolution of density of points at various distances. Instead of analyz-

ing continuous densities, we define a new notion, called discretized log-densities (see Definition 3.6.7), for

which we round densities to the discretized distances in a natural way, and for simplicity of calculations

we take the log of these densities. These two steps allow us to analyze the evolution of densities over

the course of time. More specifically, we define an LP (see (3.33)) such that any zero-distance monotone

execution path with large enough final densities, imposes a feasible solution to the LP, with cost (almost)

equal to the length of the execution path divided by T . Thus, if the length of the execution path is large,

final densities cannot be too large (see Section 3.8 and Claim 3.8.6 for the formal statement), which means

that we managed to reduce the densities to a small amount.

In section 3.8 we formally describe the procedure for constructing a feasible solution based on discretized

densities.

We start by defining a convenient discretization of the distances on a valid execution path:

13We need the final condition to argue that we have the same number of points remaining at the end.

100

3.6 Query time analysis

Definition 3.6.6 (x-centered grid Zx). For every x ∈ (0,Rmax) define the grid Zx = {zI , zI−1, . . . , z0} by letting

zI = x, letting zI−i := (1+δz)i · zI for all i ∈ [I] and choosing the smallest integer I such that z0 ≥ Rmax
p

2.

Definition 3.6.7 (Discretized log-densities fzi , j). For any zero-distance monotone valid execution path

(R, A,B) (as per Definition 3.6.3) with radii bounded by Rmax and J = |R|, for all j ∈ [J] let k j be the index of

the largest grid element which is not bigger than r j · (
p

2+ψ), i.e.,

r j · (
p

2+ψ) ∈ [zk j , zk j−1) (3.31)

and for every integer i ∈ {k j , . . . , I } define

fzi , j := log1/µ

(∑
y∈D∩[zi+1,zi−1)

by, j

)
(3.32)

Note that the variables by, j on the right hand side of (3.32) are the by, j variables of the execution path

(R, A,B).

Letting Z := Zx to simplify notation, we will consider I linear programs defined below in (3.33), enumerat-

ing over all j∗ ∈ [I], where we let x ′ = x +∆:

LP(x, j∗) : max
α≥0

j∗−1∑
j=1

α j (3.33)

∀y ∈ Z : g y,1 ≤ min

{
y2 −x2

2
,1− x2

2

}
Density constraints

for all j < j∗, y ∈ Z , y < z j :

g y, j ≤ gz j , j Truncation

g y, j+1 ≤ g y, j −
2
(
z j /x

)2 −1

2
(
z j /y

)2 −1
·α j Spherical LSH

gz j∗ , j∗ ≥ 0 Non-empty range constraint

Intuitively, LP (3.33) captures the evolution of the density of points at different distances from the query

throughout the hashing process. Our main technical claim connecting the LP (3.33) and execution paths

in the query process is Claim 3.8.6 in Section 3.8.

3.6.2 Upper-bounding the expected number of points examined by the query

In this section we bound the expected number of points that the query examines in the query procedure.

Let T be the tree that the query traverses. Note that the query only examines the points that it sees in the

leaves that it visits. One should note that some leaves (which are LSH nodes for this case) in the tree have

level J (see line 27 of Algorithm 8). However, they are other leaves in tree T , due to two cases:

101

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

1. Path termination due to x ′′ > R(
p

2+γ). This case happens when query q is such that it needs

to recover points at distance x ′′ on the sphere, but this distance corresponds to points beyond

orthogonal. Note that in the preprocessing phase we did not prepare any child with this x ′′ (see

line 15 in Algorithm 8), so the query will stop at this node and scan the points (see line 22 of

Algorithm 10). Roughly speaking, since we only expect O(1) number of points at distance x, and

since the number of points on the sphere is dominated by the number of points in the orthogonal

band, then we expect to see small number of points on this sphere. We formally prove this in

Claim 3.6.3.

2. Path termination due to small sphere radius. This simple case corresponds to the cases when

PSEUDORANDOMIFY does not process a ball further due to line 8 of Algorithm 9 or SPHERICALLSH

does not partition the dataset further due to line 9 of Algorithm 8. Note that in that case the entire

ball is necessarily at distance at most x +2Rmi n , and hence the total number of points in the ball is

small. We formally argue and prove this in Claim 3.6.3.

Claim 3.6.3. For any tree T that the query q explores, the expected total number of points in the leaves

with level less than J is bounded by (
1

µ

)α+α∗+c

,

for c = 10−4.

Proof. We investigate the two cases mentioned above separately:

Path termination due to x ′′ > R(
p

2+γ). First, suppose that the exploration process terminates at node

u ∈T because of line 15 in Algorithm 8 . In that case one has by invoking Claim 3.3.1 for two diametral

points on the sphere, since the current dataset u.P is pseudorandom as per Definition 3.3.3 and τ= 1/10,∣∣∣{p ∈ u.P : ||p−q′|| ∈
(
R(

p
2−γ),R(

p
2+γ)

)}∣∣∣=Ω (|u.P |) .

Note that the expected number of points at distance at most R(
p

2+γ) from the query is upper-bounded

by the expected number of points at distance at most x +∆+δ′, since x ′′ > R(
p

2+γ) and by rounding of

x ′ to x ′′ (see line 19 in Algorithm 10). So, after sub-sampling the data set and using the density constraints,

we have at most

1

n
·
(

1

µ

)1−x2/2

·4n ·µ1− (x+∆+δ′)2

2 = 4expµ

((
x +∆+δ′)2

2
− x2

2

)

≤ 4expµ

(
(x +2∆)2

2
− x2

2

)
≤ 4expµ

(
1

2
· (4∆x +4∆2)

)
≤ expµ (5∆) Since x ≤

p
2 and ∆= 10−20

points.

102

3.6 Query time analysis

Path termination due to small sphere radius. As we discussed above for this case, the entire ball is

necessarily at distance at most x+2Rmi n , since this sphere passed the condition in line 20 of Algorithm 10,

and hence on expectation the total number of points in this ball is bounded by

1

n
·
(

1

µ

)1−x2/2

·n ·µ1−(x+2Rmi n)2/2 ≤ expµ (4Rmi n)

where the last line is by our choice of parameters, and since x ≤p
2.

Also, by Lemma 3.6.4 we know that the query explores at most
(

1
µ

)α∗+α+o(1)
leaves. Now, by setting of

parameters, the claim holds.

Lemma 3.6.3. Under Assumption 3.5.1, there exists an event E that depends on the choice of the hash

function in PREPROCESS only and occurs with probability at least 1− (1/µ)−4 such that conditioned on E ,

the following holds. The query examines at most(
1

µ

)0.173

(3.34)

number of points in expectation.

Proof. First, we just calculate the expected size of the data set examined by the query in invocations of

QUERY (Algorithm 10), and then we bound the expected total number of points of QUERY-KDE (Algo-

rithm 14). Note that the goal is to prove an upper-bound on the expected number of points that the query

examines.

Consider an invocation PREPROCESS and let T be the sub-tree of the recursion tree that the query explores.

Now, we define processes on this tree that output a subset of leaves of this tree. Suppose that

H =W ×
[⌈

Rmax

δ

⌉]
× {1,2}

And let J be the maximum number of times that we applied spherical LSH. Let q be the query. Let

M := |H J | and enumerate elements in H J . For any leaf in T if one looks at the path to the root from this

leaf, this corresponds to one element in H J (See the discussion in Section 3.6.1 and Definition 3.6.1). For

i ’th element of H J , hi = (hi (j))J
j=1, the procedure P i (T) outputs set Ei , which is the set of output(s) of

SAMPLE(T ,hi ,0).14 Note that Algorithm 11 outputs a set of leaves in the tree.

14Also, for the purpose of consistency define hi (0) = (0,0,0) and let hi ← (hi (j))J
j=0 and assume that every Andoni-Indyk LSH

bucket is consistent with hi (0).

103

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Algorithm 11

1: procedure SAMPLE(T ,hi ,k)

2: v ← a uniformly random child of the root of T which is consistent with hi (k).

3: if k = J then

4: Return v

5: for all w in the set of the childern of v do

6: if w is consistant with hi (k) then

7: T ′ ← the sub-tree of tree where the root is w .

8: SAMPLE(T ′,h,k +1).

Also, for any pseudo-random node on the tree that the query visits, since µ= n−Ω(1) by assumption, using

a simple Chernoff bound argument, we have that it explores at most

m :=O(1)

(
1

µ

) 1
T

children of this node, with high probability.

Let V be the set of leaves in T , with level J . Partition V into V1, . . . ,VM , such that for all i ∈ [M], the leaves

in Vi admit the geometry defined by hi .

Claim 3.6.4. For any u ∈Ui we have the following

P[u ∈ Ei |T] ≥
(

1

m

)J

 1

100
(

1
µ

)α
 .

Proof. There is exactly one path from root to u. So, u ∈ Ei if in all choices in line 2 of Algorithm 11, the

algorithm chooses the correct child. This happens with probability at least
(1

m

)J

(
1

100
(

1
µ

)α
)

. To be more

clear, with probability

(
1

100
(

1
µ

)α
)

the correct child of the root is chosen, and the other term correspond to

the success probability in J steps.

Now, we have the following:

∑
i∈[M]

E

[∑
v∈Ei

|v.P | |T
]
= ∑

i∈[M]
E

[∑
u∈Vi

I{u ∈ Ei }|u.P | |T
]

= ∑
i∈[M]

∑
u∈Vi

P[u ∈ Ei |T] · |u.P |

≥
(

1

m

)J ∑
i∈[M]

∑
u∈Vi

|u.P |

=
(

1

m

)J ∑
u∈V

|u.P | (3.35)

104

3.6 Query time analysis

where expectations are over the random choices of line 2 of Algorithm 11.

Let V ′ be the leaves with level ̸= J . Note that
∑

u∈V |u.P |+∑
u∈V ′ |u.P | is equal to the number of points that

the query examines in the leaves of T . Note that Claim 3.6.3 proves that

ET

[∑
u∈V ′

|u.P |
]
≤

(
1

µ

)α+α∗+0.0001

(3.36)

Now, we need to take expectation over the tree T . From now on, the goal is to prove an upper-bound on

ET

[
E

[∑
v∈Ei

|v.P | |T
]]

where the outer expectation is over the randomness of trees, and the inner expectation is over the

randomness of choices in line 2 of Algorithm 11.

For any T , define W (0,T), as the root of T . For all j ∈ [J]∪ {0} let V (j ,T) be the nodes in the tree selected

by line 2 of Algorithm 11, when k = j . Also, for all j ∈ [J] let W (j ,T) be the children of V (j−1,T) which are

consistent with hi (j), .i.e., nodes satisfying the condition in line 6 of Algorithm 11 when k = j . We drop

superscripts for the tree, when it is clear from the context.

For all j ∈ [J]∪ {0}, Ay, j denote the number of points at distance y for all y ≥ x +1.5∆ from the query in

∪u∈V (j) u.P . And similarly, for all j ∈ [J]∪ {0} define By, j as the number of points at distance y from the

query in ∪u∈W (j) u.P .

Also, let L = (ℓ j)J
j=1 be the distances induced by the geometry hi . Now, define x ′

j := Project(x +∆,ℓ j ,r j)

and y ′
j = Project(y −∆/2,ℓ j ,r j). Now, Claim 3.6.2 implies that for all j ∈ [J]

E
[

Ay, j |By, j ,T< j
]≤ py, j ·By, j , (3.37)

where the expectation is over the randomness of the tree and the random choice of line 2 of Algorithm 11,

and

py, j := expµ

(
−

4(r j /x ′
j)2 −1

4(r j /y ′
j)2 −1

· 1

T

)
. (3.38)

On the other hand, since By, j variables correspond to pseudo-random spheres, using Claim 3.6.1 they

should satisfy the following: ∑
y≤c j−ψR j

By, j ≤ τ

1−2τ
· ∑

y∈(c j−ψR j ,c j+ψR j)
By, j , (3.39)

and ∑
y≥c j+ψR j

By, j ≤ τ

1−2τ
· ∑

y∈(c j−ψR j ,c j+ψR j)
By, j . (3.40)

Also, since ∪u∈V (j) u.P ⊆∪u∈W (j) u.P , then By, j ≤ Ay, j−1. At this point, define Now, for all j ∈ [J] define

105

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

B̃y, j := E[
By, j

]
and

Ãy, j := B̃y, j ·py, j (3.41)

and define

B̃y,J+1 := Ãy,J . (3.42)

Therefore, if A := (Ãy, j)J
j=1 and B := (B̃y, j)J+1

j=1 and L is the ordered set of distances induced by the path ge-

ometry hi (see Section 3.6.1 and Definition 3.6.1) and R is the set of radii of the spheres, then we can argue

that (L,R, A,B) is a valid execution path by Definition 3.6.3. Checking the conditions of Definition 3.6.3:

• Initial conditions: They are satisfied by the expectation of sub-sampling (see (3.27)), i.e.,

∑
y ′∈[0,y]∪D

Ãy ′,0 ≤ min

{
expµ

(
y2 −x2

2

)
,expµ

(
1−x2

2

)}

and ∑
y ′∈[0,y]∪D

B̃y ′,0 ≤ min

{
expµ

(
y2 −x2

2

)
,expµ

(
1−x2

2

)}
.

• Truncation conditions: (2a) is satisfied since if a point is on the sphere, its distance to the query

can be in interval [x +1.5∆,ℓ j + r j] which is a sub-interval of [ℓ j − r j ,ℓ j + r j], by the definition

of induced distances and setting of parameters. (2b) holds, since the number of points in each

distance is non-increasing from root to leaf. (2c) is satisfied by (3.39).

• LSH conditions: They are satisfied by (3.41) and the definition of py, j in (3.38).

• Terminal density condition: It holds by (3.42).

we conclude that (L,R, A,B) is a valid execution path.

Now by Lemma 3.6.2 there exists a zero distance monotone execution path (R ′, A′,B ′) such that A′ = (a′
y, j),

B ′ = (b′
y, j) and b′

y,J+1 = B̃y,J+1. Let fy, j ’s be defined based on b′
y, j ’s using Definition 3.6.7. More specifically,

for every integer i ∈ {k j , . . . , I } (see Definition 3.6.7 for the definition of k j) define

fzi , j := log1/µ

(∑
y∈D∩[zi+1,zi−1)

b′
y, j

)
(3.43)

Now, by Claim 3.8.6 and our setting of J (see Section 3.5.2), which ensures that J > T
1−10−4 OPT(LP), for all

y ≤ z j∗−1 we have fy,J+1 < 7δz for j∗ = k J +1. Now, we need to prove that this implies that
∑

y Ãy,J is small:

106

3.6 Query time analysis

Claim 3.6.5. If for all y ≤ z j∗−1 we have fy,J+1 < 7δz for j∗ = k J +1, then we have the following bound∑
y

Ãy,J ≤ expµ (7δz +o(1)) .

The proof is deferred to Appendix C.5.

We just proved that for any fixed i ∈ [M],
∑

y Ãy,J (which bounds the expected number of points at distance

≥ x+1.5∆ (see (3.25)) that the query examines in buckets with geometry hi) is bounded by expµ (7δz +o(1)).

Moreover, recall that in this process we only considered points at distance ≥ x +1.5∆. We should also add

the contribution of points at distance < x+1.5∆. For this, just recall that after sub-sampling (even without

considering any LSH effect on these points) in expectation we have

4

(
1

µ

) (x+1.5∆)2−x2

2 ≤
(

1

µ

)10∆

. (3.44)

Now, in order to argue that the expected number of points examined by the query is bounded, we need to

multiply by M , which results in the following bound

M ·
(
expµ (7δz +o(1))+expµ (10∆)

)
(3.45)

which by the setting of parameters, combining with (3.35) and summing with (3.36), and considering the

we call QUERY (Algorithm 10) at most
(

1
µ

)4δx+o(1)
, gives the following bound on the expected number of

points scanned by the query (
1

µ

)0.173

.

3.6.3 Proof of Lemma 3.6.1

Before we present the proof of Lemma 3.6.1, we need to show another auxiliary claim that helps us

establish an upper bound on the expected number of leaves that a query explores, which helps upper

bound the work done to reach a leaf (recall that Lemma 3.6.3 shows that the expected size of the dataset

corresponding to a leaves of T that the query scans is bounded, so combining these two bounds will give

us the final result).

Lemma 3.6.4. For every q ∈Rd , every x > 0, everyµ ∈ (0,1) under Assumption 3.5.1, if T is the tree generated

by PREPROCESS(P, x,µ), then the expected number of leaves explored by a query q in a call to QUERY(q, x,T)

(Algorithm 10) is bounded by expµ(α∗+α+o(1)).

The proof is given in Appendix C.5. We will also need the following technical claim, which we also prove in

Appendix C.5.

107

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Claim 3.6.6. For every R ≥ Rmi n , for every x ′ ∈ (∆,R(
p

2+γ)) and sufficiently large ηwe have that 1
G(x ′/R,η) =(

F (η)
G(x ′/R,η)

)O(1/∆2)
.

Proof of Lemma 3.6.1: By Lemma 3.6.4 the expected number of leaves that the query explores is bounded

by (
1

µ

)α∗+α+o(1)

(3.46)

The expected size of the dataset that the query scans is bounded by
(

1
µ

)0.173
with high probability by

Lemma 3.6.3. Now by an application of Markov’s inequality to (3.46) we have that the query explores at

most
(

1
µ

)0.173+o(1)
leaves with high probability, and hence the total work is bounded by (1

µ)0.173 ·no(1), as

required. Finally, we bound the work done in line 18 of Algorithm 8. Indeed, recall that x ′ < R(
p

2+γ) by

line 15 of Algorithm 8, and at the same time by Claim 3.6.6 we have

1

G(x ′/R,η)
=

(
F (η)

G(x ′/R,η)

)O(1/∆2)

.

Equipped with this observation, we can now finish the proof. We get using the choice of T in line 16 of

Algorithm 8

100

G(x ′/R,η)
= 100 ·

(
F (η)

G(x ′/R,η)

)O(1/∆2)

= 100 · (1/µ)O(1/(∆2·T)) = no(1)

by choice of ∆=Ω(1) and T =√
logn in line 3 of Algorithm 8. This completes the proof.

3.7 Reduction to zero-distance monotone execution paths

In this section, we prove Lemma 3.6.2, which proves that for any valid execution path, there exists a

zero-distance valid execution path such that the final densities are identical and both have the same

length. First, we state the following claims, and then assuming these claims, we prove Lemma 3.6.2. Then,

we present the proof of these claims.

Claim 3.7.1 (Reduction to zero distance paths). For any L, R, A and B such that (L,R, A,B) is a valid

execution path (see Definition 3.6.3), there exists R ′ and A′ such that (R ′,R ′, A′,B) is a valid execution path

for some A′.

Claim 3.7.2 (Local improvement towards monotonicity). For every valid zero-distance execution path

(R, A,B), if for some i ∈ [J −1] one has ri ≤ ri+1, then for R ′ := (r1, . . . ,ri−1,ri+1,ri+1, . . . ,r J), there exist A′,B ′

such that the path (R ′, A′,B ′) is a valid execution path and b′
y,J+1 = by,J+1 for all y ∈ D (see (3.25) for the

definition of D).

Now, assuming the correctness of Claim 3.7.1 and Claim 3.7.2 we present the proof of Lemma 3.6.2.

Proof of Lemma 3.6.2: First, using Claim 3.7.1, we find a zero-distance valid execution path (L′′,R ′′, A′′,B).

Now, we repeat the procedure described in Claim 3.7.2 on (L′′,R ′′, A′′,B), until it becomes a zero-distance

monotone execution path, (R ′, A′,B ′), which satisfies the conditions of the lemma.

108

3.7 Reduction to zero-distance monotone execution paths

Now we present the proof of Claim 3.7.1 and Claim 3.7.2.

Proof of Claim 3.7.1: Let (ℓ j)J
j=1 = L and (r j)J

j=1 = R. Then ∀ j ∈ [J] we define: 15

r ′
j :=

√
ℓ2

j + r 2
j

2
(3.47)

ℓ′j :=
√
ℓ2

j + r 2
j

2
(3.48)

and we let R ′ := (ℓ′j)J
j=1 = (r ′

j)J
j=1. The same as Definition 3.6.3 for all j ∈ [J], we define

c ′j :=
√

(ℓ′j)2 + (r ′
j)2 =p

2 · r ′
j

which translates to c ′j = c j . First, we need to show that

[0,ℓ j + r j] ⊆ [0,ℓ′j + r ′
j].

Note that

(ℓ′j + r ′
j)2 − (ℓ j + r j)2 = 2c2

j − c2
j −2ℓ j r j ≥ 0

where the last inequality is due to c j =
√

r 2
j +ℓ2

j . One can see that since we can set a′
y,0 = ay,0 for all

y ∈ D, it suffices to show that for all j ∈ [J], x ∈ [|ℓ j − r j | −δ,ℓ j + r j] (see line 20 of Algorithm 10 and

Definition 3.6.3) and y ∈ [ℓ j − r j ,ℓ j + r j] such that y −∆/2 ≥ x +∆:

4
(

r j

PROJ(x+∆,ℓ j ,r j)

)2 −1

4
(

r j

PROJ(y−∆/2,ℓ j ,r j)

)2 −1
≥

4(r ′
j /(x +∆))2 −1

4(r ′
j /(y −∆/2))2 −1

(3.49)

We drop the indices j for ease of notation, and let α := x +∆ and β := y −∆/2. Note that using the formula

for PROJECT (see Lemma 3.3.3) have

4
(

r
PROJECT(α,ℓ,r)

)2 −1

4
(

r
PROJECT(β,ℓ,r)

)2 −1
· 4(r ′/β)2 −1

4(r ′/α)2 −1

=
4
(

r 2

r
ℓ (α2−(ℓ−r)2)

)
−1

4
(

r 2
r
ℓ (β2−(ℓ−r)2)

)
−1

·
4r ′2−β2

β2

4r ′2−α2

α2

= (ℓ+ r)2 −α2

α2 − (ℓ− r)2 · β
2 − (ℓ− r)2

(ℓ+ r)2 −β2 · α
2

β2 · 4r ′2 −β2

4r ′2 −α2

15We define ℓ′j ’s for the convenience of the reader, otherwise it is clear that ℓ′j = r ′j .

109

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

where in the second transition above we used the fact that

4
r 2

r
ℓ

(
α2 − (ℓ− r)2

) −1 = 4r 2ℓ2 − (
α2 − (ℓ− r)2

)
α2 − (ℓ− r)2 = (ℓ+ r)2 −α2

α2 − (ℓ− r)2

and

4
r 2

r
ℓ

(
β2 − (ℓ− r)2

) −1 = 4rℓ− (β2 − (ℓ− r)2)

β2 − (ℓ− r)2 = (ℓ+ r)2 −β2

β2 − (ℓ− r)2 .

Now, by re-ordering the factors, and the fact that 4r ′2 = 2(ℓ2 + r 2) by (3.47)

(ℓ+ r)2 −α2

α2 − (ℓ− r)2 · β
2 − (ℓ− r)2

(ℓ+ r)2 −β2 · α
2

β2 · 4r ′2 −β2

4r ′2 −α2

=
(

2(ℓ2 + r 2)−β2

(r +ℓ)2 −β2 · (r +ℓ)2 −α2

2(ℓ2 + r 2)−α2

)
·
(

α2

α2 − (r −ℓ)2 · β
2 − (r −ℓ)2

β2

)
We bound the two terms above separately. For the first term we have

2(ℓ2 + r 2)−β2

(r +ℓ)2 −β2 · (r +ℓ)2 −α2

2(ℓ2 + r 2)−α2 = 2(ℓ2 + r 2)−β2(
2(r 2 +ℓ2)−β2

)− (ℓ− r)2
·
(
2(r 2 +ℓ2)−α2

)− (ℓ− r)2

2(ℓ2 + r 2)−α2 ≥ 1

where the inequality follow since for any 0 < d < a ≤ b one has a
a−d

b−d
b ≥ 1. Set a = 2(r 2 +ℓ2)−β2,

b = 2(r 2+ℓ2)−α2 and d = (ℓ−r)2. Note that, a ≤ b since x+∆≤ y −∆/2, and d < a since y −∆/2 < ℓ j +r j .

Now, we bound the second term (
α2

α2 − (r −ℓ)2 · β
2 − (r −ℓ)2

β2

)
≥ 1

again by the same argument as above, by setting d = (r −ℓ)2, a = α2 and b = β2. Again, a ≤ b since

x +∆≤ y −∆/2, and d < a since x +∆> |r −ℓ| (since ∆> δ by the setting of parameters).

Now, combining these two facts (3.49) holds.

Remark 3.7.1. One should note that in some cases, the radius of a sphere may decrease when converting it

to a zero distance sphere and it means that the size of the band corresponding to orthogonal bands may

decrease and this may cause the sphere not being pseudo-random anymore. However, one should note that

in our algorithm the radius of the sphere is always Θ(1), meaning that the radius may change by a constant

multiplicative factor, so one can re-scale the size of the orthogonal band in the definition (Definition 3.6.3)

to cover the previously covered distances.

Proof of Claim 3.7.2: First note that for r ′ ≥ r , we have

4
(r

x+∆
)2 −1

4
(

r
y−∆/2

)2 −1
≥

4
(

r ′
x+∆

)2 −1

4
(

r ′
y−∆/2

)2 −1
, (3.50)

110

3.7 Reduction to zero-distance monotone execution paths

since f (c) = 4
(

r
x+∆

)2−1

4
(

r
y−∆/2

)2−1
is a decreasing function in r , assuming y −∆/2 > x +∆. For the rest of the proof, let

x ′ := x +∆ and y ′ := y −∆/2.

Defining A′ and B ′. We now construct the sequence of intermediate densities A′ that satisfies the con-

ditions in Definition 3.6.3 by modifying the original sequence A on position j (the position where

non-monotonicity occurs in the original sequence). Let a′
y,i := ay,i and b′

y,i := by,i for all y ∈ D and

i ∈ ([J]∪ {0}) \ { j }. Also, let b′
y,J+1 := by,J+1 for all y ∈ D . Now, let

∀y ∈ D : a′
y, j := by, j+1 (3.51)

and also set

b′
y, j := a′

y, j ·expµ

(
4(r j+1/x ′)2 −1

4(r j+1/y ′)2 −1
· 1

T

)
= by, j+1 ·expµ

(
4(r j+1/x ′)2 −1

4(r j+1/y ′)2 −1
· 1

T

)
(3.52)

since r ′
j = r j+1.

We now prove that our choice of A′ and B ′ above satisfies the conditions of Definition 3.6.3, i.e. yields

a valid execution path. Initial density condition (condition (1)) and the terminal density condition

(condition (4)) are satisfied since they were satisfied by the original execution path (R, A,B), and we did

not modify the path on the first and last coordinates. The LSH condition (condition (3)) is also satisfied by

(3.52) and tha fact that the original execution path satisfied it. We now verify condition (2). Condition (2a)

follows since r j+1 > r j .

Verifying condition (2b). One has, using the assumption that (L,R, A,B) is a valid execution path,

b′
y, j = by, j+1 ·expµ

(
4(r j+1/x ′)2 −1

4(r j+1/y ′)2 −1
· 1

T

)
(by (3.52))

≤ ay, j ·expµ

(
4(r j+1/x ′)2 −1

4(r j+1/y ′)2 −1
· 1

T

)
(property (2b) for (R, A,B))

≤ by, j expµ

(
−4(r j /x ′)2 −1

4(r j /y ′)2 −1
· 1

T

)
·expµ

(
4(r j+1/x ′)2 −1

4(r j+1/y ′)2 −1
· 1

T

)
(property (3) for (R, A,B))

≤ by, j (by (3.50) together with r j < r j+1)

≤ ay, j−1 (property (2b) for (R, A,B))

Verifying condition (2c). We need to prove∑
y∈[0,r j+1(

p
2−ψ)]∩D

b′
y, j ≤

τ

1−2τ
· ∑

y∈(r j+1(
p

2−ψ),r j+1(
p

2+ψ))∩D

b′
y, j (3.53)

111

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Note that by property (2c) we have∑
y∈[0,r j+1(

p
2−ψ)]∩D

by, j+1 ≤ τ

1−2τ
· ∑

y∈(r j+1(
p

2−ψ),r j+1(
p

2+ψ))∩D

by, j+1 (3.54)

Also, recall that by (3.52) we have

b′
y, j = by, j+1 ·expµ

(
4(r j+1/x ′)2 −1

4(r j+1/y ′)2 −1
· 1

T

)

Now, combing the fact that expµ
(

4(r j+1/x ′)2−1
4(r j+1/y ′)2−1 · 1

T

)
is increasing in y ′ with (3.54), proves (3.53).

We have thus shown that (R ′, A′,B ′) is a valid execution path. Note that b′
y,J+1 = by,J+1 for all y ∈ D by

definition of b′, as required.

3.8 Feasible LP solutions based on valid execution paths

First, we state the main result of this section informally below. We refer the reader to Claim 3.8.6 for the

formal version of this claim.

Claim 3.8.1. (Informal) If the length of a valid execution path is large enough, then the terminal densities

must be small.

We prove this claim, by arguing that if the terminal densities are not small then there exists a feasible

solution to the LP. However, the feasible solution that we construct, has a cost larger than the optimal

solution of the LP, which is a contradiction. This implies that we cannot have large terminal densities.

We use Definition 3.6.6, Definition 3.6.7 and the corresponding notations in the rest of this section. At

this point, one should recall that the definition of valid execution paths (Definition 3.6.3) is over the

continuous densities. Now, we need to present a similar notion for discretized log-densities.

Claim 3.8.2 (Discretized execution path). If the fzi , j variables are defined as per (3.32) (based on a zero

distance monotone execution path (R, A,B), with J = |R|) then

(1) Initial densities: For any integer i : fzi ,1 ≤ min
{ ·z2

i −x2

2 +3δz ,1− x2

2

}
.

(2) Truncation: for any j ∈ [J] and i ∈ {k j +1, . . . , I } one has fzi , j ≤ fzk j , j + log1/µ
2−2τ
1−2τ .

(3) Locality Sensitive Hashing: for any j ∈ [J] and any integer i ∈ {k j , . . . , I } one has fzi , j+1 ≤ fzi , j −
2(zk j /x)2−1

2(zk j /zi)2−1 · 1
T · (1−10−4).

Proof. For the purposes of the proof it is convenient to introduce an auxiliary definition. For every j ∈ [J]

and every integer i ∈ {k j , . . . , I } define

112

3.8 Feasible LP solutions based on valid execution paths

ãzi , j := ∑
y∈Dx∩[zi+1,zi−1)

ay, j . (3.55)

and

b̃zi , j := ∑
y∈Dx∩[zi+1,zi−1)

by, j . (3.56)

Note that with these definitions in place (3.32) is equivalent to

fzi , j := log1/µ b̃zi , j . (3.57)

We also let D := Dx , omitting the dependence on x, to simplify notation. We now prove the properties one

by one.

(1) Initial densities condition: First, note that by the initial densities condition for the execution path

(R, A,B) together with the truncation conditions (Definition 3.6.3) one has

∑
y ′∈[0,y]∩D

by ′,1 ≤ min

{
expµ

(
y2 −x2

2

)
,expµ

(
1−x2

2

)}
.

Combining this with (3.56), we get

b̃zi ,1 =
∑

y∈D∩(zi+1,zi−1)
by,1 ≤

∑
y∈[0,zi−1]∩D

by,1

≤ min

{
expµ

(
z2

i−1 −x2

2

)
,expµ

(
1−x2

2

)}

= min

{
expµ

(
(1+δz)2 · z2

i −x2

2

)
,expµ

(
1− x2

2

)}

≤ min

{
expµ

(·z2
i −x2

2
+3δz

)
,expµ

(
1− x2

2

)}
,

where we used the definition of the grid Z , the fact that µ= o(1) and that for zi ≥
p

2 the second term is

the minimum term.

113

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

(2) Truncation conditions (effect of PSEUDORANDOMIFY): We have, using (3.56),

I∑
i=k j+1

b̃zi , j ≤ 2
∑

y∈D∩(0,zk j +1)
by, j +

∑
y∈D∩(zk j +1,zk j)

by, j

≤ 2
∑

y∈D∩(0,zk j)
by, j (3.58)

≤ 2
∑

y∈D∩(0,r j (
p

2+ψ))

by, j .

The last transition uses the fact that by definition of k j (see (3.31)) we have r j · (
p

2+ψ) ∈ [zk j , zk j−1), and

in particular, r j · (
p

2+ψ) ≥ zk j .

We now note that since 10ψ≤ δz = 10−6 by assumption of the claim and zk j+1 = (1+δz)−1zk j , we further

have

(r j (
p

2−ψ),r j (
p

2+ψ)) ⊂ [zk j+1, zk j−1)

which implies ∑
y∈D∩(r j (

p
2−ψ),r j (

p
2+ψ))

by, j ≤ b̃zk j , j . (3.59)

At the same time, since (R, A,B) was a valid execution path, then by property (2c) in Definition 3.6.3, we

have ∑
y∈D∩(0,r j (

p
2+ψ))

by, j ≤
(
1+ τ

1−2τ

) ∑
y∈D∩(r j (

p
2−ψ),r j (

p
2+ψ))

by, j

= 1−τ
1−2τ

∑
y∈D∩(r j (

p
2−ψ),r j (

p
2+ψ))

by, j .

Substituting the bound above into (3.58) and using (3.59) yields

I∑
i=k j+1

b̃zi , j ≤ 2−2τ

1−2τ
· b̃zk j , j ,

establishing the claim.

(3) LSH conditions: For all j ∈ [J] let c j :=p
2r j . One can think of c j as the distance from a query on the

surface of the j -th sphere in the execution path to a ‘typical’ point on the sphere. Note that (3.31) defines

a rounding of c j ’s points on the grid D . Specifically, c j is rounded to zk j ’s.

Claim 3.8.3. Let x ′ := x +∆ and let y ∈ (zi+1, zi−1], if y ′ = y −∆/2, and i ∈ {k j , . . . , I } then we have the

114

3.8 Feasible LP solutions based on valid execution paths

following claim.

−
4
(

r j

x ′

)2 −1

4
(

r j

y ′

)2 −1
≤−

2
(zk j

x

)2 −1

2
(zk j

zi

)2 −1
(1−10−4)

We prove this claim in Appendix C.6.

By property (3) in Definition 3.6.3, one has

ay, j ≤ by, j ·expµ

(
−2(c j /x ′)2 −1

2(c j /y ′)2 −1
· 1

T

)
. (3.60)

Thus, for all i ∈ {k j , . . . , I } we have

b̃zi , j+1 =
∑

y∈D∩(zi+1,zi−1)
by, j+1 By (3.56)

≤ ∑
y∈D∩(zi+1,zi−1)

ay, j Property (2b) for (R, A,B)

≤ ∑
y∈D∩(zi+1,zi−1)

by, j ·expµ

(
−2(c j /x ′)2 −1

2(c j /y ′)2 −1
· 1

T

)
By (3.60)

≤ b̃zi , j ·expµ

(
−

2(zk j /x)2 −1

2(zk j /zi)2 −1
· 1

T
· (1−10−4)

)
By (3.56) and Claim 3.8.3

This completes the proof of (3).

3.8.1 Construction of a feasible solution

In this section, we construct a feasible solution to the LP, i.e., g y, j ’s and α j ’s, based on the execution path

that we are considering. Later, we show the relation between the cost of this solution and the length of the

execution path.

First, letting J = |R|, recall that R = (r j)J
j=1. Then, for all s ∈ [J] define cs := p

2 · rs and let c0 = +∞ for

convenience. Let T̃ be such that

1

T
· (1−10−4) = 1

T̃
. (3.61)

Let x ′ = x +∆. We classify steps s = 1, . . . , J into three types:

• We say that a step s is stationary if cs = cs−1 (this corresponds to the algorithm performing multiple

rounds of hashing on the same sphere).

• Otherwise we call step s minor, if cs
cs−1

≥ 1− 1p
T

,

• and call step s major, otherwise.

115

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Let R = Rst at∪Rm∪RM denote the partition of R into stationary, minor and major steps. Let j1, . . . , j|Rm∪RM |
be such that z j1 > z j2 > . . . > z j|Rm∪RM | are exactly the cs values corresponding to non-stationary steps, in

decreasing order.

Note that by Lemma 3.5.1 and parameter settings in the algorithm, c1 ≤ Rmax
p

2 =O(1). Since the grid D

(see (3.25)) contains only elements at least as large as x +1.5∆, and if we let x to be lower bounded by an

absolute constant we have |RM | =O(
p

T). The reason is that by the definition above, for any major step s,

we have
cs

cs−1
< 1− 1p

T
.

We define the feasible solution g y, j ’s and α j ’s to LP(x, j∗) as defined in (3.33) without the non-empty

range constraint. We construct feasible g y, j and α j by induction on j = 1, . . . , j∗. It will be important that

the constructed solutions for g y, j ’s are non-decreasing in y for y ∈ [0, z j] for every j = 1, . . . , j∗.

For the rest of the section, whenever we are working with discrete functions and it is clear from the context,

we drop the condition y ∈ Zx .

On the other hand, it is more convenient to work with the following formulation of the LP constraints,

since we construct the solution in an inductive way.

∀y : g y,1 ≤ min

{
y2 −x2

2
,1− x2

2

}
for all j < j∗, y < z j :

g y, j+1 ≤ min

{
g y, j −

2
(
z j /x

)2 −1

2
(
z j /y

)2 −1
·α j , gz j+1, j −

2
(
z j /x

)2 −1

2(z j /z j+1)2 −1
·α j

}

Base: For all j ∈ [j1] such that y ≤ z j , we set

g y, j := min

{
y2 −x2

2
,1− x2

2

}
. (3.62)

We let α j := 0 for all j ∈ [j1 − 1] so that spherical LSH constraints of the LP in (3.33) are satisfied for

j ∈ [j1 −1]. That is, we don’t have any progress using spherical LSH, since α j = 0 for all j ∈ [j1 −1]. The

truncation constraints of the LP in (3.33) are satisfied since the rhs of (3.62) is non-decreasing in y .

Inductive step ji → ji +1, . . . , ji+1: We let a := ji and b := ji+1 to simplify notation. Let s be the first step

on sphere za , i.e., cs = za and cs−1 ̸= za . Also, let N be the number of steps that we stay on sphere za , i.e.,

cs = cs+1 = . . . = cs+N−1 = za and cs+N ̸= za .

Note that steps s +1, . . . , s +N −1 are stationary as per our definitions.

116

3.8 Feasible LP solutions based on valid execution paths

It is convenient to define a sequence of auxiliary variables in order to handle the sequence of N − 1

stationary steps (note that N −1 could be zero).

Upper bounds h(q)
y , q = 0, . . . , N , on density after (possible) stationary steps:

For all y ≤ za : (Starting density)

h(0)
y := g y,a (3.63)

For all q ∈ [N −1], y ≤ za : (Stationary steps)

h(q)
y := min

{
h(q−1)

y − 2(za/x)2 −1

2(za/y)2 −1

1

T̃
, h(q−1)

za
− 2(za/x)2 −1

T̃

}
(3.64)

For y ≤ za : (Final density)

h(N)
y := h(N−1)

y − 2(za/x)2 −1

2(za/y)2 −1

1

T̃
. (3.65)

Equipped with the definitions of h above, we now define g to satisfy the inductive step. First let αa := N
T̃

and let αa+s := 0 for s = 1, . . . , N −1. Then define for all y ≤ zb :

g y,a+1 := min
{

h(N)
y , h(N)

za+1

}

and for j = a +2, . . . ,b and all y ≤ z j let

g y, j := min{g y, j−1, gz j , j−1}.

We note that this implies for all y ≤ zb

g y,b := min

{
min

j∈{a+1,...,b}

{
h(N)

z j

}
,h(N)

y

}
. (3.66)

This finished the inductive step.

Note that in the last step, i.e., when za = z j∗−1, since we do not have truncation condition for g y, j∗ ’s, we

define

∀y ≤ z j∗−1 : g y, j∗ = h(N)
y . (3.67)

3.8.2 Monotonicity claims

Claim 3.8.4 (Unique maximum after LSH). For every integer t ≥ 1, x ∈ (0,
p

2) and any sequence c1 ≥ c2 ≥
. . . ≥ ct ≥ x, such that

f (y) = y2 −x2

2
−

t∑
s=1

2(cs/x)2 −1

2(cs/y)2 −1
· 1

T

117

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

satisfies f (
p

2ct) > 0, the following conditions hold. There exists y∗ ∈ (x,
p

2ct] such that the function

satisfies f (y∗) = 0 is monotone increasing on the interval [y∗,η], where η is where the (unique) maximum

of f on (y∗,
p

2ct] happens.

Proof. We prove that ∂2 f (y)
∂y2 is a monotone decreasing function. One should note that

∂2 f (y)

∂y2 = 1−
t∑

s=1

4c2
s (2c2

s +3y2)

(2c2
s − y2)3

· 2(cs/x)2 −1

T

Now, one can see that ∂2 f (y)
∂y2 is a monotone decreasing function in y . We then note that f (x) ≤ 0, and the

function f (y) has exactly one maximum on (y∗,
p

2cs).

We will need

Claim 3.8.5 (Monotonicity). For every i ∈ [|R|] we have

(a) If gz ji , ji > 0 then there exists a y∗ ∈ (x,
p

2) such that g y∗, ji ≥ 0, g y, ji ≤ 0 for any y ∈ Zx such that y ≤ y∗,

and g y, ji is non-decreasing in y for y ∈ [y∗, z ji];

(b) If h(N−1)
z ji

> 0 then there exists a y∗ ∈ (x,
p

2) such that h(N−1)
y∗ ≥ 0, h(N−1)

y ≤ 0 for any y ∈ Zx such that

y ≤ y∗ and h(N−1)
y is non-decreasing in y for y ∈ [y∗, z ji].

Proof. Let

q(y) :=
t∑

i=1

2(cs/x)2 −1

2(cs/y)2 −1

1

T
,

where c1 ≥ c2 ≥ . . . ≥ ct ≥ z1 ≥ x for some z1 ≥ x. And let y∗
1 be such that

(y∗
1)2−x2

2 −q(y∗
1) = 0 and let ỹ1 be

the smallest value such that ỹ1 ≥ y∗
1 and

ỹ2
1−x2

2 −q(ỹ1) = θ for some θ ≥ 0. Now define G1(y) on [y∗
1 , z1], for

some z1 ≥ ỹ1 as follows

G1(y) :=


y2−x2

2 −q(y) y ∈ [y∗
1 , ỹ1)

θ y ∈ [ỹ1, z1]
(3.68)

See the red curve in Figure 3.11.

Also, let q̂(y) := 2(z1/x)2−1
2(z1/y)2−1

1
T . Let y∗

2 ≥ y∗
1 such that G1(y∗

2)− q̂(y∗
2) = 0. Now, we define G2(y) for y ∈ [y∗

2 , z2]

as follows:

G2(y) := min
{
G1(y)− q̂(y),θ′

}
where θ′ :=G1(z2)− q̂(z2) and θ′ ≥ 0 for some z2 ≤ z1. By the definition of y∗

2 , function G2(y) for y ∈ [y∗
2 , ỹ1]

is in the form of the function in Claim 3.8.4 and thus, it has a unique maximum at some η ∈ [y∗
2 , ỹ1]. Also,

118

3.8 Feasible LP solutions based on valid execution paths

y∗
1 y∗

2 ỹ2 η ỹ1 z2 z1
0

θ′

θ

Distance from the query

Lo
g-

d
en

si
ty

Figure 3.11: An illustration of proof of Claim 3.8.5. The red and blue curves represent functions G1 and G2.
The dotted part of the blue curve represents G1 − q̂ function for interval [ỹ2, z2], which gets truncated by
θ′.

recall that G1(y) = θ for y ∈ [ỹ1, z2]. Also, one should note that since q̂(y) is a monotone increasing function

for y ∈ (0,
p

2z1) and hence for y ∈ [ỹ1, z2], then θ′ ≤G2(ỹ1) and therefore θ′ ≤G2(η). This guarantees that

there exist a ỹ2 ∈ [y∗
2 ,η] such that G2(ỹ2) = θ′. The reason is that G2(y) is a continuous increasing function

for y ∈ [ỹ2,η]. So, we have

G2(y) :=


y2−x2

2 −q ′(y) y ∈ [y∗
2 , ỹ2)

θ′ y ∈ [ỹ2, z2]
(3.69)

where, q ′(y) := q(y)− q̂(y). See the blue curve in Figure 3.11. Now, one can see that by a simple inductive

argument starting with the initial densities

min

{
y2 −x2

2
,1− x2

2

}
which is in the form of (3.68), the statement of the claim holds.

3.8.3 Bounding terminal densities using feasible LP solutions

Claim 3.8.6 (Feasible LP solution from an execution path). If integer J is such that J > T
1−10−4 OPT(LP) then,

for all y ≤ z j∗−1 , fy,J+1 < 7δz for j∗ = k J +1 (see Definition 3.6.7 for the definition of k J).

Proof. We prove the claim by contradiction. Suppose that there exists z ≤ z j∗−1 such that fz,J+1 ≥ 7δz .

119

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

We define the feasible solution g y, j ’s and α j ’s to LP(x, j∗) as defined in (3.33). However, the cost of

this solution will be more than the optimal cost of the LP, which gives us the contradiction. First, we

construct the solution without considering the non-empty range constraint. Then, we show that applying

fz,J+1 ≥ 7δz the non-empty range constraint is satisfied too.

Let g y, j and α j be defined as by induction on j = 1, . . . , j∗ as above. We prove by induction on j that if

there exists a s such that cs = z j and cs−1 ̸= z j then for all y ≤ z j ,

fy,s ≤ g y, j +Xs , (3.70)

where we define

Xs := ∑
r∈Rm s.t. r≤s

O

(
1p
T

)
· 1

T̃
+ ∑

r∈RM s.t. r≤s

O(1)

T̃
+ s ·δ+3δz . (3.71)

for ease of notation, and let δ = log1/µ
2−2τ
1−2τ = Θ

(
1

log1/µ

)
. One should note that the δ used in this proof

is not related to the δ used in the algorithm. Also, let c0 =∞ and c J+1 = z j∗ , for easing the corner case

analysis.

Base: For all j ∈ {1,2, . . . , j1} = [j1] and all y ≤ z j , in (3.62) we did set

g y, j := min

{
y2 −x2

2
,1− x2

2

}
. (3.72)

Also, recall that we let α j := 0 for all j ∈ [j1 −1] (see base case in Section 3.8.1). Now, note that we have

fy,1 ≤ g y,1 +3δz for all y by Claim 3.8.2, (1) combined with the assumption that δz ≤ 1. So, the base holds.

Inductive step ji → ji +1, . . . , ji+1: We let a := ji and b := ji+1 to simplify notation. Let s be the first step

on sphere za : cs = za and cs−1 ̸= za . Also, let N be the number of steps that we stay on sphere za , i.e.,

cs = cs+1 = . . . = cs+N−1 = za and cs+N ̸= za .

Note that steps s +1, . . . , s +N −1 are stationary as per our definitions. We let t := s +N for convenience.

By the inductive hypothesis for any y ≤ za we have

fy,s ≤ g y,a +Xs (3.73)

We prove that for any y ≤ zb

fy,t ≤ g y,b +X t . (3.74)

Let h(q)
y , q = 0, . . . , N and g y, j , j = a, . . . ,b, be defined as above. We now upper bound fy,s+q in terms of

fy,s+(q−1). We have for all q ∈ [N −1] and y ≤ zb :

fy,s+q ≤ min

{
fy,s+(q−1) − 2(za/x)2 −1

2(za/y)2 −1

1

T̃
, fza ,s+(q−1) − 2(za/x)2 −1

T̃
+δ

}
≤ min

{
fy,s+(q−1) − 2(za/x)2 −1

2(za/y)2 −1

1

T̃
, fza ,s+(q−1) − 2(za/x)2 −1

T̃

}
+δ.

(3.75)

120

3.8 Feasible LP solutions based on valid execution paths

where the first transition is by Claim 3.8.2. Similarly we have (again by Claim 3.8.2)

fy,t ≤ min

{
fy,s+(N−1) − 2(za/x)2 −1

2(za/y)2 −1

1

T̃
, fz jb

,s+(N−1) − 2(za/x)2 −1

2(za/zb)2 −1

1

T̃
+δ

}
≤ min

{
fy,s+(N−1) − 2(za/x)2 −1

2(za/y)2 −1

1

T̃
, fz jb

,s+(N−1) − 2(za/x)2 −1

2(za/zb)2 −1

1

T̃

}
+δ

(3.76)

We now note that the recurrence relations (3.64) and (3.65) defining h(q)
y are only different from the

above by an additive δ term, and the initial condition (3.63) for h(0)
y is only different from the inductive

hypothesis (3.73) by an additive Xs term. Combining these observations, we get

fy,t ≤ min
{

h(N)
y ,h(N)

zb

}
+Xs +δ · (t − s). (3.77)

Now, one can see that we have the following upper bound for Xs for any s using the definition of Xs

Xs =
∑

r∈Rm s.t. r≤s
O

(
1p
T

)
· 1

T̃
+ ∑

r∈RM s.t. r≤s

O(1)

T̃
+ s ·δ+3δz

≤O

(
1p
T

)
+3δz (3.78)

since we have at most O(
p

T) major steps, at most O(T) minor steps, and δ=Θ(1
T 2

)
. This implies

fy,t ≤ min
{

h(N)
y ,h(N)

zb

}
+3δz +O

(
1p
T

)
≤ h(N)

y +4δz . (3.79)

Combining this with the assumption that there exists a z ≤ z j∗−1 such that fz,J+1 ≥ 7δz we have

h(N)
y ≥ 0 for all y ≥ z j∗−1, (3.80)

which we prove below and will be useful whenever we want to invoke Claim 3.8.5.

Claim 3.8.7. ∀y ≥ z j∗−1, we have h(N)
y ≥ 0.

Proof. ∀y ≥ z j∗ : h(N)
y ≥ 0. Assume that there exists a z ≤ z j∗−1 such that fz,J+1 ≥ 7δz . Now, by the fact

that fy, j ’s are monotone in j , and by (3.79) we have

7δz ≤ fz,J+1 ≤ fz,t ≤ h(N)
z +4δz ,

which implies

3δz ≤ h(N)
z .

On the other hand, by (3.64) we get

h(N−1)
z ≤ h(N−1)

za
.

which implies h(N−1)
za

≥ 3δz ≥ 0. Thus, by Claim 3.8.5, h(N−1)
y is non-decreasing in [z, za]. So, for any

121

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

y ∈ [z, za],

3δz ≤ h(N−1)
y (3.81)

Also, by (3.65) we have

h(N)
y = h(N−1)

y − 2(za/x)2 −1

2(za/y)2 −1

1

T̃
= h(N−1)

y −O

(
1

T

)
(3.82)

Combing (3.81) and (3.82), we prove that for y ≥ z j∗−1:

h(N)
y ≥ 2δz ≥ 0.

The following characterization of X t −Xs will be useful:

X t −Xs = δ · (t − s)+
{

O
(

1p
T

)
· 1

T̃
if t ∈ Rm

O(1)
T̃

if t ∈ RM .
(3.83)

The above follows by (3.71) since all steps between s and t are stationary.

We now the upper bound the minimum on the rhs in (3.77). Recall from (3.66) that

g y,b := min

{
min

j∈{a+1,...,b}

{
h(N)

z j

}
,h(N)

y

}
.

Let y ′′ be such that g y,b = h(N)
y ′′ . We consider two cases, depending on whether y ′′ = y .

Case 1: y = y ′′ (the simple case). In that case we have

fy,t ≤ min
{

h(N)
y ,h(N)

b

}
+Xs +δ · (t − s) By (3.77)

= h(N)
y +Xs +δ · (t − s) Since y ′′ = y

= g y,b +Xs +δ · (t − s) Combining y ′′ = y and (3.66)

≤ g y,b +X t , By (3.83)

as required.

Case 2: y ̸= y ′′ (the main case).

fy,t ≤ min
{

h(N)
y ,h(N)

zb

}
+Xs +δ · (t − s)

≤ h(N)
zb

+Xs +δ · (t − s)

= g y,b +Xs +δ · (t − s)+ (h(N)
zb

− g y,b).

(3.84)

122

3.8 Feasible LP solutions based on valid execution paths

In what follows we show that

h(N)
zb

− g y,b =
{

O
(

1p
T

)
· 1

T̃
if t ∈ Rm

O(1)
T̃

if t ∈ RM ,
(3.85)

which gives the result once substituted in (3.84), as per (3.83).

We now consider two case, depending on whether t is a minor or a major step. For both steps we use the

fact that y ′′ ̸= y implies y ′′ ≥ zb (this follows by definition of y ′′ together with (3.66)).

Minor steps (t ∈ Rm). In this case we have

h(N)
zb

− g y,b

=h(N)
zb

−h(N)
y ′′ By definition of y ′′

=h(N−1)
zb

− 2(za/x)2 −1

2(za/zb)2 −1
· 1

T̃
−h(N−1)

y ′′ + 2(za/x)2 −1

2(za/y ′′)2 −1
· 1

T̃
By (3.65)

≤ 2(za/x)2 −1

2(za/y ′′)2 −1
· 1

T̃
− 2(za/x)2 −1

2(za/zb)2 −1
· 1

T̃
.

The last transition used Claim 3.8.5, (b), and the fact that y ′′ ≥ zb : we only need to verify the preconditions

of Claim 3.8.5, which follows by (3.80) together with the fact that h(N−1)
y ≥ h(N)

y for all y .

We now bound the rhs of the equation above by

2(za/x)2 −1

2(za/y ′′)2 −1
· 1

T̃
− 2(za/x)2 −1

2(za/zb)2 −1
· 1

T̃

≤2(za/x)2 −1

T̃

(
1− 1

2(za/zb)2 −1

)
Since y ′′ ≤ za

=2(za/x)2 −1

T̃

(
1− 1

2(1−1/
p

T)−2 −1

)
Since this is a minor step

=2(za/x)2 −1

T̃
·O(1/

p
T)

≤2(za/∆)2 −1

T̃
·O(1/

p
T)

= 1

T̃
·O

(
1p
T

)
, Since za ≤ Rmax =O(1) and ∆=Ω(1)

123

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Major steps (t ∈ RM). Now, we consider the case when the step is major.

h(N)
zb

− gzb ,b

=h(N)
zb

−h(N)
y ′′ By definition of y ′′ and (3.66)

=h(N−1)
zb

− 2(za/x)2 −1

2(za/zb)2 −1
· 1

T̃
−h(N−1)

y ′′ + 2(za/x)2 −1

2(za/y ′′)2 −1
· 1

T̃
By (3.65)

≤ 2(za/x)2 −1

2(za/y ′′)2 −1
· 1

T̃
− 2(za/x)2 −1

2(za/zb)2 −1
· 1

T̃
.

The last transition used Claim 3.8.5, (b), and the fact that y ′′ ≥ zb : we only need to verify the preconditions

of Claim 3.8.5, which follows by (3.80) together with the fact that h(N−1)
y ≥ h(N)

y for all y . We now upper

bound the rhs of the equation above:

2(za/x)2 −1

2(za/y ′′)2 −1
· 1

T̃
− 2(za/x)2 −1

2(za/zb)2 −1
· 1

T̃

≤2(za/x)2 −1

T̃

(
1− 1

2(za/zb)2 −1

)
≤2(za/x)2 −1

T̃

≤2(za/∆)2 −1

T̃

=O(1)

T̃
Since za ≤ Rmax =O(1) and ∆=Ω(1)

This completes the inductive claim and establishes (3.70) for all j = 1, . . . , j∗.

The only thing we need to verify is that the solution that we presented, satisfies the non-empty range

constraint. For the sake of this proof, let us define gz j∗−1, j∗ as follows:

gz j∗−1, j∗ := gz j∗−1, j∗−1 −
2
(
z j∗−1/x

)2 −1

2
(
z j∗−1/z j∗−1

)2 −1
·α j∗−1 = gz j , j −

2
(
z j∗−1/x

)2 −1

1
·α j∗−1 (3.86)

If s is such that cs = z j∗−1 and cs−1 ̸= z j∗−1, then by the discussion above

fy,s ≤ g y, j∗−1 +Xs . (3.87)

and more specifically, when y = z by the assumption we have

7δz ≤ fz,J+1 ≤ gz, j∗ +O

(
1p
T

)
+3δz By (3.78)

which implies

gz, j∗ ≥ 3δz . (3.88)

124

3.9 Upper bounding LP value

Now, we prove that gz j∗ , j∗ ≥ 0. The same as the discussion above, if we took N steps on sphere z j∗−1 then

by (3.67) we have

gz, j∗ = h(N)
z ,

where h’s are the auxiliary variables defined for sphere z j∗−1. Now, we also have

gz, j∗ = h(N)
z ≤ h(N−1)

z By (3.65)

≤ h(N−1)
z j∗−1

By (3.64)

On the other hand, we have

h(N)
z j∗−1

= h(N−1)
z j∗−1

− 2(z j∗−1/x)2 −1

1

1

T̃
= h(N−1)

z j∗−1
−O

(
1

T

)
≥ h(N−1)

z j∗−1
−δz

Combining these facts we get

gz j∗−1, j∗ = h(N)
z j∗−1

≥ h(N−1)
z j∗−1

−δz ≥ gz, j∗ −δz ≥ 2δz

where the last inequality is due to (3.88). Also, by the construction of the solution and the fact that the

function 2(z/x)2−1
2(z/y)2−1 is increasing in y , we have

gz j∗−1, j∗ − gz j∗ , j∗ ≤ min

{
z2

j∗−1 −x2

2
,1− x2

2

}
−min

{
z2

j∗ −x2

2
,1− x2

2

}

≤ (
p

2)2 − (
(1−δz)

p
2
)2

2
≤ 2δz

which implies that gz j∗ , j∗ ≥ 0 (the non-empty range constraint in the LP (3.33)).

Now, recalling the values of α j ’s, one can see the cost of this solution of LP is equal to J (1−10−4)
T , which is

greater than the optimal solution for the LP, which is a contradiction. So, the claim holds.

It is important to note that Claim 3.8.6 is not universally true for any shift-invariant kernel, even under

natural monotonicity assumptions. An example is presented in Section 3.2 in Figure 3.4. We show,

however, that our linear programming formulation is indeed a tight relaxation for a wide class of kernels

that includes the Gaussian kernel, the exponential kernel as well as any log-convex kernel.

3.9 Upper bounding LP value

The main result of this section is a proof of Lemma 3.9.1 below:

Lemma 3.9.1. For every x ≥ 0, y ≥ x the value of the LP in (3.33) (restated below as (3.89)) is upper bounded

by 0.1718. Furthermore, for every x ∈ (0,
p

2) and y ≥p
2 the LP value is bounded by 3−2

p
2 < 0.1718, and

for every x ∈ (0,
p

2) and every y ∈ [x,
p

2] the LP value is bounded by x2

2

(
1− x2

2

)
.

125

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

The main result of this section is an upper bound on the value of the LP (3.89) below. We first derive a

dual formulation, then exhibit a feasible dual solution and then verify numerically that the value of dual is

bounded by 0.172 for all values of the input parameters x and y∗.

Fix x ∈ [0,
p

2]. Let z1 > z2 > . . . > zI , denote the distances on the grid, and we define Z := {z1, z2, . . . , zI }, we

will consider I linear programs, enumerating over all j∗ ∈ [I] such that z j∗ ≥ x.

max
α≥0

j∗−1∑
j=1

α j (3.89)

such that :

∀y ∈ Z : g y,1 ≤ min

{
y2 −x2

2
,1− x2

2

}
(ry,0) Density constraints

∀ j ∈ [j∗−1],∀y ∈ Z s.t. y < z j : g y, j ≤ gz j , j (qy, j) Truncation

g y, j+1 ≤ g y, j −
2
(
z j /x

)2 −1

2
(
z j /y

)2 −1
·α j (ry, j) Spherical LSH

gz j∗ , j∗ ≥ 0 (η)

The dual of (3.89) is

min
∑
y∈Z

{
y2 −x2

2
,1− x2

2

}
ry,0 (3.90)

such that :

∀ j ∈ [j∗−1], y ∈ Z , y < z j : ry, j−1 − ry, j +qy, j = 0 (g y, j) Mass transportation

∀ j ∈ [j∗−1] : rz j , j−1 −
∑

x∈Z ,x<z j

qx, j = 0 (gz j , j) Max tracking

∀y ∈ Z , y < z j∗ : ry, j∗−1 = 0 (g y, j∗) Sink

−η+ rz j∗ , j∗−1 = 0 (gz j∗ , j∗) Terminal flow

j ∈ [j∗−1] :
∑

y∈Z :y<z j

2
(
z j /x

)2 −1

2
(
z j /y

)2 −1
ry, j ≥ 1 (α j)

ry, j , qy, j ≥ 0

η≥ 0

We start by exhibiting a simple feasible solution for the dual that reproduces our result from Section 3.4.

Upper bound of x2

2 · (1− x2

2) for every x. Let qy, j = 0 for all y, j . Let

rz j∗ , j =
(

x

y

)2

126

3.9 Upper bounding LP value

for all j = 0,1, . . . , j∗−1 and let ry, j = 0 for y ̸= z j∗ and all y . We let η= rz j∗ , j∗−1. We first verify feasibility.

We have for every j = 1, . . . , j∗−1

∑
y∈Z :y<z j

2
(
z j /x

)2 −1

2
(
z j /y

)2 −1
ry, j =

2
(
z j∗/x

)2 −1

2
(
z j∗/y

)2 −1
rz j∗ , j∗−1

≥ 2
(
z j∗/x

)2

2
(
z j∗/y

)2 rz j∗ , j∗−1

=
(y

x

)2
·
(

x

y

)2

= 1,

where we used the fact that x ≤ y . We thus have a feasible solution. The value of the solution is(
x

y

)2

·min

{
y2 −x2

2
,1− x2

2

}
≤

(
x

y

)2

·min

{
y2 −x2

2
,1− x2

2

}

When y ≥p
2, we get,

(
x
y

)2 ·
(
1− x2

2

)
, which is maximized at y =p

2 and gives
(

xp
2

)2 · (1− x2

2). Similarly,

when y ≤p
2, we get (

x

y

)2

·
(

y2 −x2

2

)
= x2

2
− x4

2y2 ,

which is again maximized when y =p
2. Thus, we get that the value of the LP in (3.89) is bounded by

x2

2
· (1− x2

2
).

and we obtain the exponent of 0.25. This (almost) recovers the result of Section 3.4 . In what follows

we obtain a stronger bound of 0.1718 on the value of the LP in (3.89), obtaining our main result on

data-dependent KDE.

Upper bound of 0.1718 on LP value for all x. We exhibit a feasible solution for the dual in which for every

j < j∗

qz j+1, j > 0

qy, j = 0 for all y < z j+1
(3.91)

and qy, j∗ = 0 for all y < z j∗ . We later show numerically that our dual solution is optimal for the Gaussian

kernel.

127

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Simplifying (3.90) under the assumptions from (3.91), we get

min
∑
y∈Z

{
y2 −x2

2
,1− x2

2

}
ry,0

such that :

∀ j ∈ [j∗−1], y ∈ Z , y < z j+1 : ry, j−1 − ry, j = 0 (g y, j)

∀ j ∈ [j∗−1] : rz j+1, j−1 − rz j+1, j +qz j+1, j = 0 (g y, j)

∀ j ∈ [j∗−1] : rz j , j−1 −qz j+1, j = 0 (gz j , j)

∀y ∈ Z , y < z j∗ : ry, j∗−1 = 0 (g y, j∗)

−η+ rz j∗ , j∗−1 = 0 (gz j∗ , j∗)

j ∈ [j∗−1] :
∑

y∈Z :y<z j

2
(
z j /x

)2 −1

2
(
z j /y

)2 −1
ry, j ≥ 1 (α j)

ry, j , qy, j ≥ 0

η≥ 0

Eliminating the q variables from the above for simplicity, we get, making the inequality for the (α j)

constraints an equality (recall that we only need to exhibit a dual feasible solution),

min
∑
y∈Z

{
y2 −x2

2
,1− x2

2

}
ry,0 (3.92)

such that :

∀ j ∈ [j∗−1], y ∈ Z , y < z j+1 : ry, j−1 − ry, j = 0 (g y, j)

∀ j ∈ [j∗−1] : rz j+1, j−1 = rz j+1, j − rz j , j−1 (g y, j)

∀y ∈ Z , y < z j∗ : ry, j∗−1 = 0 (g y, j∗)

rz j∗ , j∗−1 = η (gz j∗ , j∗)

j ∈ [j∗−1] :
∑

y∈Z :y<z j

2
(
z j /x

)2 −1

2
(
z j /y

)2 −1
ry, j = 1 (α j)

ry, j ≥ 0

η≥ 0

Defining a dual feasible solution r . We now derive an expression for a feasible solution r . The construc-

tion is by induction: starting with j = j∗−1 as the base we define ry, j variables for y ∈ Z , y ≤ z j that satisfy

dual feasibility. The base is provided by

rz j∗ , j∗−1 = η=
(

2
(
z j∗−1/x

)2 −1

2
(
z j∗−1/z j∗

)2 −1

)−1

. (3.93)

Note that this fully defines ry, j for j = j∗−1, since ry, j∗−1 = 0 for y < z j∗ .

128

3.9 Upper bounding LP value

We now give the inductive step: j → j −1. By the inductive hypothesis the variables ry, j that we defined

satisfy the (α j) constraints in the dual (3.92), which means:

∑
i> j

2
(
z j /x

)2 −1

2
(
z j /zi

)2 −1
rzi , j = 1. (3.94)

We will define ry, j−1 so that ∑
i> j−1

2
(
z j−1/x

)2 −1

2
(
z j−1/zi

)2 −1
rzi , j−1 = 1 (3.95)

and at the same time the (g y, j) constraints relating ry, j to ry, j−1 are satisfied.

By the first constraint in (3.92) we have rzi , j−1 = rzi , j for all i > j +1, since y < z j+1 is equivalent to i > j +1.

By the second constraint in (3.92) we have rz j+1, j−1 = rz j+1, j −rz j , j−1. Putting these two constraints together,

we now find rz j , j−1 and therefore rz j+1, j−1. We rewrite the left hand side of (3.95) as

∑
i> j−1

2
(
z j−1/x

)2 −1

2
(
z j−1/zi

)2 −1
rzi , j−1 =

2
(
z j−1/x

)2 −1

2
(
z j−1/z j

)2 −1
rz j , j−1 +

2
(
z j−1/x

)2 −1

2
(
z j−1/z j+1

)2 −1
(rz j+1, j − rz j , j−1)

+ ∑
i> j+1

2
(
z j−1/x

)2 −1

2
(
z j−1/zi

)2 −1
rzi , j

=
(

2
(
z j−1/x

)2 −1

2
(
z j−1/z j

)2 −1
− 2

(
z j−1/x

)2 −1

2
(
z j−1/z j+1

)2 −1

)
rz j , j−1

+ ∑
i> j

2
(
z j−1/x

)2 −1

2
(
z j−1/zi

)2 −1
rzi , j

(3.96)

Combining this with (3.95), we thus get that

rz j , j−1 =
(

2
(
z j−1/x

)2 −1

2
(
z j−1/z j

)2 −1
− 2

(
z j−1/x

)2 −1

2
(
z j−1/z j+1

)2 −1

)−1 (
1− ∑

i> j

2
(
z j−1/x

)2 −1

2
(
z j−1/zi

)2 −1
rzi , j

)
. (3.97)

We now show that rz j , j−1 ≥ 0. The first multiplier in the expression above is non-negative since
2(z j−1/x)2−1

2(z j−1/z)2−1

is increasing in z and z j ≥ z j+1. For the second multiplier we have

1− ∑
i> j

2
(
z j−1/x

)2 −1

2
(
z j−1/zi

)2 −1
rzi , j = 1− ∑

i> j

2
(
z j−1/x

)2 −1

2
(
z j−1/zi

)2 −1
rzi , j

≥ 1− ∑
i> j

2
(
z j /x

)2 −1

2
(
z j /zi

)2 −1
rzi , j

= 0.

(3.98)

Here the first transition used (3.94) (the inductive hypothesis), and the second transition used the fact that

the function 2(z/x)2−1
2(z/y)2−1

is non-increasing in z for x ≤ y . To summarize, we let rz j , j−1 be defined by (3.97).

129

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

Also, we let

rz j+1, j−1 = rz j+1, j − rz j , j−1 (3.99)

and let rzi , j−1 = rzi , j for i > j +1. We verify numerically that rz j+1, j−1 ≥ 0.

Integral equation representation of the dual solution. While we do not use the following in our analysis,

it is interesting to note that the dual solution that we propose satisfies an integral equation in the limit as

the grid size goes to 0. Let z j denote a uniform grid with step size ∆→ 0 on the interval [0,C] for some

constant C ≥p
2. We now rewrite (3.97) as(
2
(
z j−1/x

)2 −1

2
(
z j−1/z j

)2 −1
− 2

(
z j−1/x

)2 −1

2
(
z j−1/z j+1

)2 −1

)
rz j , j−1 =

(
1− ∑

i> j

2
(
z j−1/x

)2 −1

2
(
z j−1/zi

)2 −1
rzi , j

)
. (3.100)

Note by the Mean Value Theorem and the fact that the derivative

(
2(z j−1/x)2−1

2(z j−1/z)2−1

)′
z

is Lipschitz within [z j+1, z j]

it follows that(
2
(
z j−1/x

)2 −1

2
(
z j−1/z j

)2 −1
− 2

(
z j−1/x

)2 −1

2
(
z j−1/z j+1

)2 −1

)
=

(
2
(
z j−1/x

)2 −1

2
(
z j−1/z

)2 −1

)′
z

∣∣∣∣∣
z=z j

·∆ · (1+O(∆)).

We thus have that rz j , j−1/∆ converges to the solution g (y) to the following integral equation:

(
2(u/x)2 −1

2(u/z)2 −1

)′
z

∣∣∣∣∣
z=u

· g (u) = 1−
∫ u

y∗

2(u/x)2 −1

2(u/r)2 −1
g (r)dr (3.101)

The initial condition is a point mass at y∗.

Exact solution to the primal when z j∗ ≥
p

2. We note that if z j∗ ≥
p

2 an optimal solution to the LP (3.89)

is easy to obtain. The reason is that we can simplify the constraints of LP for band z j∗ as follows: for all

j ∈ [j∗−2]

gz j+2, j+1 ≤ min

{
gz j+2, j −

2
(
z j /x

)2 −1

2
(
z j /z j+2

)2 −1
·α j , gz j+1, j −

2
(
z j /x

)2 −1

2(z j /z j+1)2 −1
·α j

}

≤ gz j+1, j −
2
(
z j /x

)2 −1

2(z j /z j+1)2 −1
·α j

and

gz j∗ , j∗ ≤ gz j∗ , j∗−1 −
2
(
z j∗−1/x

)2 −1

2
(
z j∗−1/z j∗

)2 −1
·α j∗−1.

130

3.9 Upper bounding LP value

Now, combining these inequalities with the fact that gz2,1 ≤ 1− x2

2 , one has

gz j∗ , j∗ ≤ 1−x2/2−
j∗−1∑
j=1

2
(
z j /x

)2 −1

2
(
z j /z j+1

)2 −1
α j

≤ 1− x2

2
− 1

1+5δz

j∗−1∑
j=1

(
2
(
z j /x

)2 −1
)
·α j

≤ 1− x2

2
− 1

1+5δz

j∗−1∑
j=1

(
2
(
z j∗/x

)2 −1
)
·α j

≤ 1− x2

2
− 1

1+5δz

(
2
(p

2/x
)2 −1

)
·

j∗−1∑
j=1

α j ,

(3.102)

where we used the fact that 2
(
z j /z j+1

)2 − 1 = 2(1+δz)2 − 1 ≤ 1+ 5δz and the function 2(z/x)2 − 1 is

increasing in z.

Lettingγ :=∑ j∗−1
j=1 α j denote the LP objective we need to maximizeγ subject to 1−x2/2− 1

1+5δz

(
2
(p

2/x
)2 −1

)
·

γ≥ 0 (the nonempty range LP constraint), where y∗ = z j∗ . The solution is

γ= (1+5δz) (1−x2/2)

(
2
(p

2/x
)2 −1

)−1

.

Finally, one has

maxx∈[0,
p

2]

(
1−x2/2

2(2/x2)−1

)
= 3−2

p
2 ≈ 0.171573,

which is achieved at x =
√

4−2
p

2. It remains to note that this is achievable by letting α j∗−1 = γ and

letting α j = 0 for j < j∗−1, when z j∗ =
p

2.

Numerical verification for x ∈ [0,
p

2], y ∈ [0,
p

2]. Implementing this in Matlab and optimizing over x and

j∗ (with a uniform grid on [0,
p

2] consisting of J = 400 points) yields the exponent of ≈ 0.1716, achieved at

x ≈ 1.0842 and z j∗ ≈
p

2. The Matlab code is given below. Then 0.1718 is an upper-bound on the optimal

cost of LP. Moreover, for the analysis if we set α∗ = 0.172 (as in Section 3.5.2) then α∗(1−10−4) strictly

upper bounds OPT(LP) (this simplifies the notation in other sections).

131

Chapter 3. Kernel Density Estimation through Density Constrained Near Neighbor Search

J=400;
vmax=0;
xIdxMax=0;
yIdxMax=0;

for xIdx=5:5:J-5,
for yIdx=xIdx-5:-5:1,
z=sqrt(2)*(J-(1:J))/J;
density=zeros(J);
for j=1:J,
%% density for exp(-x^2/2)
density(j)=min((z(j)^2-z(xIdx)^2)/2, 1-z(xIdx)^2/2);
end;
r=zeros(J);
r(yIdx-1)=((2*(z(yIdx-1)/z(xIdx))^2-1)/(2*(z(yIdx-1)/z(yIdx))^2-1))^(-1);
for j=yIdx-2:-1:1,
coeff=zeros(J);
for i=j:yIdx,
coeff(i)=(2*(z(j)/z(xIdx))^2-1)/(2*(z(j)/z(i))^2-1);
end;
val=0;
for i=j+1:yIdx-1,
val=val+coeff(i+1)*r(i);
end;

r(j)=(coeff(j+1)-coeff(j+2))^(-1)*(1-val);
r(j+1)=r(j+1)-r(j);
end;
val=0;
for i=1:J,
val=val+density(i)*r(i);
end;
if vmax<val
vmax=val;
xIdxMax=xIdx;
yIdxMax=yIdx;
end;
end;
end;

vmax
xIdxMax
yIdxMax
%%%%%%%%%%%%

Matlab output:

vmax = 0.1716

xIdxMax = 95

yIdxMax = 5
%%%%%%%%%%%%

For other densities replace the density assignment above accordingly. For example, for the exp(−||x||2)
(exponential kernel, scaled by

p
2 for convenience) set

%% density for exp(-|x|/sqrt{2})
density(j)=min((z(j)-z(xIdx))/sqrt(2), 1-z(xIdx)/sqrt(2));

132

3.9 Upper bounding LP value

and for the exp
(−p||x||2

)
kernel (scaled to

p
2 for convenience) set

%% density for exp(-(x/\sqrt{2})^{1/2})
density(j)=min(sqrt(z(j)/sqrt(2))-sqrt(z(xIdx)/sqrt(2)), 1-sqrt(z(xIdx)/sqrt(2)));

respectively.

133

4 Conclusion

The first part of this thesis presented an almost optimal algorithm for spectral sparsification in dynamic

streams and shed light on a better understanding of the effective resistance embedding of graphs. More-

over, our result shows a non-trivial and surprising application of locality-sensitive hash functions in

this embedding. The unexpectedness of this approach is that we are interested in finding edges with

relatively separated endpoints in the effective resistance embedding, but generally, we use LSH to find

relatively close pairs in metric spaces. One possible future research direction for this problem would be to

find a practical version of this algorithm, improve the poly-logarithmic factors, and ultimately close the

poly-logarithmic gap between the upper bounds and lower bounds.

In the second part of this thesis, we presented the first non-trivial single pass algorithm for spanner

construction in dynamic streams. Furthermore, this result presented an exciting connection between the

effective resistance metric and the shortest path metric of graphs. Proving or refuting Conjecture 2.1.1

is a possible future research direction in this area that can enable us to improve our understanding of

this connection. Moreover, we presented results for communication round-stretch trade-offs in the

simultaneous communication model. However, the optimal trade-offs are unknown currently and need

further research.

In the final part of this section, we first presented a clean and easy-to-analyze algorithm using Euclidean

LSH that improved or matched up to poly-logarithmic factors to the best-known results in the literature.

Later, using data-dependent LSH algorithms, we improved this result further for a class of kernels, includ-

ing Gaussian kernels. One major challenge is simplifying the data-dependent approach’s cumbersome

runtime analysis. Also, leveraging our method for designing novel practical algorithms for this problem is

an appealing research direction.

134

A Supplementary Materials for Chapter 1

We will need Lemma A.0.1 that we use in the correctness proof of our algorithm.

Lemma A.0.1 (Chain of Coarse Sparsifiers [127, 7]). Consider any PSD matrix K with maximum eigenvalue

bounded from above by λu = 2n and minimum nonzero eigenvalue bounded from below by λℓ = 1
8n2 . Let

d = ⌈log2
λu
λℓ

⌉. For ℓ ∈ {0,1,2, . . . ,d}, define:

γ(ℓ) = λu

2ℓ
.

So γ(d) ≤λℓ, and γ(0) =λu . Then the chain of PSD matrices, [K0,K1, . . . ,Kd] with Kℓ = K +γ(ℓ)I satisfies

the following relations:

1. K ⪯r Kd ⪯r 2 ·K ,

2. Kℓ ⪯ Kℓ−1 ⪯ 2 ·Kℓ for all ℓ ∈ {1, . . . ,d},

3. K0 ⪯ 2 ·γ(0) · I ⪯ 2 ·K0.

We will need Theorem A.0.1 that we use in the proof of correctness of the main algorithm. It is well known

that by sampling the edges of B according to their effective resistance, it is possible to obtain a weighted

edge vertex incident matrix B̃ such that (1−ϵ)B⊤B ⪯ B̃⊤B̃ ⪯ (1+ϵ)B⊤B with high probability (see Lemma

A.0.1).

Theorem A.0.1 (Spectral Approximation via Effective Resistance Sampling [30]). Let B ∈R(n
2)×n , K = B⊤B,

and let τ̃ be a vector of leverage score overestimates for B’s rows, i.e. τ̃y ≥ b⊤
y K +by for all y ∈ [m]. For ϵ ∈ (0,1)

and fixed constant c, define the sampling probability for row by to be py = min{1,c ·ϵ−2 logn · τ̃y }. Define a

diagonal sampling matrix W with W (y, y) = 1
py

with probability py and W (y, y) = 0 otherwise. With high

probability, K̃ = B⊤W B ≈ϵ K . Furthermore W has O(||τ̃||1 ·ϵ−2 logn) non-zeros with high probability.

Lemma A.0.2 (ℓ2 Heavy Hitters). For any η> 0, there is a decoding algorithm denoted by HEAVYHITTER

and a distribution on matrices Sh in RO(η−2 polylog(N))×N such that, for any x ∈RN , given Sh x, the algorithm

HEAVYHITTER(Sh x,η) returns a list F ⊆ [N] such that |F | =O(η−2 polylog(N)) with probability 1− 1
poly(N)

over the choice of Sh one has

135

Appendix A. Supplementary Materials for Chapter 1

(1) for every i ∈ [N] such that |xi | ≥ η||x||2 one has i ∈ F ;

(2) for every i ∈ F one has |xi | ≥ (η/2)||x||2.

The sketch Sh x can be maintained and decoded in O(η−2 polylog(N)) time and space.

Lemma A.0.3 (Binary Johnson-Lindenstrauss Lemma [128]). Let P be an arbitrary set of points in Rd ,

represented by a d ×n matrix A, such that the j th point is Aχ j . Given ϵ, β> 0 and

q ≥ 4+2β

ϵ2/2−ϵ3/3
logn.

Let Q be a random q ×d matrix (qi j)i j where qi j ’s are independent identically distributed variables taking

1 and −1 each with probability 1/2. Then, if M = 1p
q Q A, then with probability at least 1−n−β, for all

u, v ∈ [n]

(1−ϵ)||Aχu − Aχv ||22 ≤ ||Mχu −Mχv ||22 ≤ (1+ϵ)||Aχu − Aχv ||22

136

B Supplementary Materials for Chapter 2

B.1 Conjectured hard input distribution

Let π : [n] → [n] be a uniformly random permutation. Let d > 1 be an integer parameter. Define the

distribution D′ on graphs G = (V ,E), V = [n] as follows. For every pair (i , j) ∈ [n] such that ∥π(i)−π(j)∥◦ ≤
d include an edge (i , j) in E with probability 1/2, where ∥i − j∥◦ is the circular distance on a cycle of length

n. Define the distribution D on graphs G = (V ,E) as follows. First sample G ′ = (V ,E ′) ∼D′, and pick two

edges (a,b), (c,d) ∼ Unif(E ′) independently without replacement, and let

E = (E ′∪ {(a,c), (b,d)}) \ {(a,b), (c,d)}.

Let G = (V ,E) be a sample from D. Note that with constant probability over the choice of G ∼D one has

that the distance between G from a to c in E \ {(a,c), (b,d)} is Ω(n/d) and the distance between c and d in

E \ {(a,c), (b,d)} isΩ(n/d) (see Figure B.1 for an illustration). Thus, every k-spanner with k ≪ n/d must

contain both of these edges. We conjecture that recovering these edges from a linear sketch of the input

graph G sampled from D requires n1+Ω(1) space when d = n1/3+Ω(1). Note that the diameter of the graph

is (up to polylogarithmic factors) equals n/d , and hence this would in particular imply that obtaining an

n2/3−Ω(1) spanner using a linear sketch requires n1+Ω(1) bits of space, and therefore imply Conjecture 2.1.1.

137

Appendix B. Supplementary Materials for Chapter 2

a b

c

d

(a) Graph G ′

a b

c

d

(b) Graph G

Figure B.1: Illustration of the conjectured hard input distribution

B.2 Omitted Proofs

B.2.1 Omitted proofs from Section 2.2

Proof of Lemma 2.2.1. First, we start by the following well-known fact about ℓ0-sampling sketching

algorithms.

Fact B.2.1 (See e.g., [25, 129]). For any vector a⃗ ∈Rn that

• receives coordinate updates in a dynamic stream,

• and each entry is bounded by O(poly(n)),

one can design an ℓ0-sampler procedure, which succeeds with high probability, by storing a vector b⃗ ∈
Rpolylog(n), where

• (Bounded entries) each entry of b⃗ is bounded by O(poly(n)),

• (Linearity) there exists a matrixΠ (called sketching matrix) such that b⃗ =Π · a⃗.

Now, we use Fact B.2.1 to prepare a data structure for ℓ0 sampling of Ai for each i ∈ [r].1 Thus, we are going

to have r vectors, b⃗1, . . . , b⃗r , where for each i ∈ [r] the entries of b⃗i are bounded by O(poly(n)). However,

our space is limited to s ·polylogn, so we cannot store these vectors. Define b⃗ as concatenation of b⃗1, . . . , b⃗r .

At this point, the reader should note that by assumption |I | ≤ s, which implies that at most s ·polylog(n)

of entries of b⃗ are non-zero at the end of the stream.2 Now, we need to prepare a Õ(s)-sparse recovery

primitive for b⃗. We apply the following well-known fact about sparse recovery sketching algorithms.

1Note that we do not need to sample uniformly over the non-zero entries, and just recovering a non-zero element is enough
for our purpose, however, we still use a ℓ0-sampling procedure.

2However, at some time during the stream, you may have more than s ·polylog(n) non-zeroes, so it is not possible to store b⃗
explicitly.

138

B.2 Omitted Proofs

Fact B.2.2 (Sparse recovery). For any vector b⃗ ∈Rn that

• receives coordinate updates in a dynamic stream,

• and each entry is bounded by O(poly(n)),

one can design a s-sparse recovery sketching procedure, by storing a vector w⃗ ∈Rs·polylog(n), where

• (Bounded entries) each entry of w⃗ is bounded by O(poly(n)),

• (Linearity) there exists a matrixΠ (called sketching matrix), where w⃗ =Π · b⃗,

such that if Support(⃗b) ≤ s, then it can recover all non-zero entries of b⃗.

Using Fact B.2.2, we can store a sketch of b⃗, in Õ(s) bits of space and recover the non-zero entries of b⃗ at

the end of the stream, which in turn recovers a non-zero element from each Ai , in v⃗ . In other words, one

can see this procedure as the following linear operation

w⃗ =Π1Π2v⃗

where matrixΠ2 ∈Rr ·polylog(n)×n is in charge of ℓ0 sampling for each Ai and concatenation of vectors, and

Π1 ∈R(s·polylog(n))×(r ·polylog(n)) is responsible for the sparse recovery procedure.

Proof of Lemma 2.2.2. Let vector b⃗ be an indicator vector for edges in A×B , i.e., each entry corresponds

to a pair of vertices in A ×B and is 1 if the edge is in the graph, and is 0 otherwise. Now, by applying

Fact B.2.1 to this vector, one can recover an edge using space O(polylog(n)). Also, using Fact B.2.2 with

s = m, we can recover all m edges using space m ·polylog(n).

B.2.2 Omitted proofs from Section 2.4

Proof of Theorem 2.4.1. Consider an edge (u, v) ∈ E . Similarly to the proof of Theorem 2.1.1, fix s :=
dĤ (u, v), and Ai := {z ∈ V | dĤ (v, z) = i } for i ∈ [0, s − 1] be all the vertices at distance i from v in Ĥ .

Set As := {z ∈ V | dĤ (v, z) ≥ s} to be all the vertices at distance at least s from v . In addition set W H
i =

wH (Ai × Ai+1) and W G
i = wG (Ai × Ai+1). Also recall that W H

−1 =W G
−1 =W H

s =W G
s = 0.

We will follow steps similar to those in Claim 2.4.2. Set

α=Θ(ε logn) such that α≥ 10log 1
6ϵ

2s

α
, (B.1)

and I = {
i ∈ [0, s −1] |W G

i ≤ αm
s

}
. It holds that |I | ≥ (

1− 1
α

)
s + 1, as otherwise there are more than s

α

indices i for which W G
i > αm

s , implying
∑

i W G
i > m, a contradiction, since {W G

i }i represent the number of

139

Appendix B. Supplementary Materials for Chapter 2

elements in disjoint sets of edges. Set

Ĩ =
{

i | such that ∀ j , |i − j | ≤ α

10
it holds that j ∈ I

}
.

Then there are less than s
α · 2α

10 < s
2 indices out of Ĩ , implying

∣∣Ĩ
∣∣≥ s

2
. (B.2)

For any index i ∈ Ĩ and any index j ∈ [
i − α

10 , i + α
10 −1

]
, by Claim 2.4.1,

W H
i−1 +W H

i +W H
i+1 ≥

1

ϵ

(
W H

i −W G
i

)≥ 1

ϵ

(
W H

i − αm

s

)
.

Assume for contradiction that W H
i > 2 · αm

s . Then,

W H
i−1 +W H

i +W H
i+1 >

1

ϵ

(αm

s
− αm

s

)
= 1

ϵ
· αm

s
.

Let i1 ∈ {i −1, i , i +1} such that W H
i1

≥ 1
3ϵ · αm

s ≥ 1
6ϵ · αm

s . Using the same argument,

W H
i1−1 +W H

i1
+W H

i1+1 ≥
1

ϵ

(
W H

i1
− αm

s

)
> 1

2ϵ
· 1

6ϵ
· αm

s
.

Choose i2 ∈ {i1 −1, i1, i1 +1} such that W H
i2

> 1
(6ϵ)2 · αm

s . As i ∈ Ĩ , we can continue this process for α
10 steps,

where in the j step we have W H
i j

> 1
(6ϵ) j · αm

s . In particular

W H
i α

10

> (6ϵ)−
α
10
αm

s
≥ 2m,

a contradiction, as H is an (1±ϵ)-spectral sparsifier of the unweighted graph G , where the maximal size of

a cut is m. We conclude that for every i ∈ Ĩ it holds that W H
i ≤ 2 · αm

s . It follows that

s−1∑
i=0

1

W H
i

≥ ∣∣Ĩ
∣∣ · s

2αm

≥ s2

4αm
By (B.2)

= Ω̃
(

s2

m

)
By setting of α in (B.1) (B.3)

Construct an auxiliary graph H ′ from H , by contracting all the vertices inside each set Ai , and keeping

multiple edges. Note that by this operation, the effective resistance between u and v can only decrease.

The graph H ′ is a path graph consisting of s vertices, where the conductance between the i ’th vertex to

140

B.2 Omitted Proofs

the i +1’th is W H
i . We conclude

(1+ϵ)RG
u,v ≥ R H

u,v By Fact 2.2.2

≥ R H ′
u,v As explained above

=
s−1∑
i=0

1

W H
i

Since H ′ is a path graph

= Ω̃
(

s2

m

)
By (B.3) (B.4)

As u, v are neighbors in the unweighted graph G , it necessarily holds that RG
u,v ≤ 1, implying that s =

Õ
(p

m
)
.

141

C Supplementary Materials for Chapter 3

C.1 Omitted proofs from Section 3.3

Proof of Lemma 3.3.3: Let x ′ := ||q′−p||. If we consider the plane containing q, p,o, then q ′ also belongs

to this plane, since this plane contains q,o.1 Then, without loss of generality we can assume that we are

working on R2, where o = (0,0),q = (R1,0),q′ = (R2,0). Let p = (α,β) such that

x2 = (α−R1)2 +β2 =α2 +β2 −2αR1 +R2
1

R2
2 =α2 +β2

x ′2 = (α−R2)2 +β2 =α2 +β2 −2αR2 +R2
2

Therefore, one has

x2 = R2
2 −2αR1 +R2

1 .

Thus,

x ′2 = R2
2 −2αR2 +R2

2

= 2R2(R2 −α)

= 2R2

(
R2 −

R2
2 +R2

1 −x2

2R1

)

= R2

R1

(
x2 − (R1 −R2)2) ,

which proves the claim. One should note that the claim holds for both R1 ≥ R2 and R1 < R2.

Proof of Claim 3.3.1: Now let q′ be the projection of the query on the sphere and let q′′ be the antipodal

1The cases when q′ = p or ||p−q|| = R1 +R2 are the cases when the plane is not unique, but the reader should note that these
cases correspond to x′ = 0, x′ = 2R2 cases, which are trivial.

142

C.1 Omitted proofs from Section 3.3

R2

R1

qq′

xx ′

p

o

Figure C.1: Illustration of x ′ = PROJECT(x,R1,R2)

point of q′ on this sphere (see Figure C.2). By Definition 3.3.3, we have∣∣∣{u ∈ P : ||u−q′|| ≤ r (
p

2−γ)
}∣∣∣≤ τ · |P |

and ∣∣∣{u ∈ P : ||u−q′′|| ≤ r (
p

2−γ)
}∣∣∣≤ τ · |P |. (C.1)

On the other hand, in Figure C.2 let a, c be points at distances r (
p

2−γ) and r
p

2 respectively from q′ and

d be a point at distance r (
p

2−γ) from q′′. Then by Pythagoras theorem, we have

||q′−d||2 +|q′′−d||2 = ||q′−q′′||2,

which implies

||q′−d|| = r

√
4−

(p
2−γ

)2 = r
√

2−γ2 +2
p

2γ,

since ||q′′−d|| = ||q′−a||. Therefore, we have the following∣∣∣{u ∈ P : ||u−q′′|| ≤ r
(p

2−γ
)}∣∣∣= ∣∣∣∣{u ∈ P : ||u−q′|| ≥ r

(√
2−γ2 +2

p
2γ

)}∣∣∣∣≤ τ · |P |.

So one has ∣∣∣∣{u ∈ P : ||u−q′|| ∈
(
r
(p

2−γ
)

,r ·
√

2−γ2 +2
p

2γ

)}∣∣∣∣≥ (1−2τ) · |P |.

On the other hand, we have(
r
(p

2−γ
)

,r ·
√

2−γ2 +2
p

2γ

)
⊆

(
r
(p

2−γ
)

,r
(p

2+γ
))

,

143

Appendix C. Supplementary Materials for Chapter 3

ad

q′q′′

r (
p

2−ϵ)r
√

2−ϵ2 +2
p

2ϵ

c

o

Figure C.2: ϵ-neighborhood of orthogonal points in a sphere of radius r

and hence ∣∣∣{u ∈ P : ||u−q′|| ∈
(
r
(p

2−γ
)

,r ·
(p

2+γ
))}∣∣∣≥ (1−2τ) · |P |.

which proves the second part of the claim. Now, using (C.1) we have∣∣∣{u ∈ P : ||u−q′|| ≤ r (
p

2−γ)
}∣∣∣≤ τ

1−2τ
·
∣∣∣{u ∈ P : ||u−q′|| ∈

(
r
(p

2−γ
)

,r ·
(p

2+γ
))}∣∣∣ .

which proves the first part of the claim.

C.2 Pseudo-random data sets via Ball carving

In this section we provide a simple self-contained proof of the claim that one can efficiently (near-linear

time) detect and remove a dense ball on the sphere when it exists that avoids invoking VC-dimension

arguments as in [12].

Lemma C.2.1. There is a randomized procedure CERTIFYϵ,τ,δ(P) that given a set P ⊂S d−1 and parameters

ϵ,τ,δ ∈ (0, 1
3), runs in time O(d

ϵ2τ
log(2n/δ) ·n) and with probability 1−δ

1. either returns a point p∗ ∈ P such that |B(p∗,
√

2(1−ϵ2))∩P | ≥Ω(ϵ2) ·τ|P |

2. or certifies that the set P is (ϵ′,τ)-pseudo-random with ϵ′ =p
2(1−p

1−2ϵ) =Θ(ϵ).

The partitioning procedure is based on the following lemma adapted from [12] showing that in any set

that contains a dense ball on the unit-sphere, one can find a point in the dataset that captures a large

fraction of the points in the dense ball.

Lemma C.2.2 (Certificate). Let S′ ⊂S d−1 and x∗ ∈S d−1 such that for ϵ ∈ (0, 1
3) and all x ∈ S′, ∥x∗−x∥ ≤

144

C.2 Pseudo-random data sets via Ball carving

Algorithm 12 CERTIFYϵ,τ,δ(P)

1: Input: parameters ϵ,τ,δ ∈ (0, 1
3) and P ⊂S d−1.

2: ζ← 1
4 , m ←⌈ 48

ϵ2τ
log(2n/δ)⌉

3: Qm ← {m uniform random points with replacement from P } ▷ Sub-sampling
4: p∗ ← argmaxp∈P {|B(p,

√
2(1−ϵ2))∩Qm |}

5: if |B(p∗,
√

2(1−ϵ2))∩Qm | ≥ (1−ζ)(3ϵ2)τ ·m then
6: return p∗ ∈ P ▷ Center for a “dense ball" is found.
7: else
8: return ⊥. ▷ Set P is (Θ(ϵ),τ)-pseudo random

p
2(1−2ϵ). There exists a point x0 ∈ S′ such that∣∣∣{x ∈ S′ : ∥x −x0∥ ≤

√
2(1−ϵ2)

}∣∣∣≥ (3ϵ2) · |S|′. (C.2)

The contrapositive is that if no balls of a certain radius and density exist with points of the dataset as

centers, then the dataset is pseudo-random with appropriate constants. We can use this lemma to show

that either the data set is pseudo-random or we can always find a dense ball and decrease the size of the

remaining data set by a non-trivial factor. The issue that is left to discuss is efficiency of the process.

By repeatedly applying the lemma and by stopping only when |P | ≤ 1
τ we can decompose any set on the

sphere in at most T =O(log |P |
ϵ2τ

) “dense balls" and a pseudo-random remainder. Let χ ∈ (0,1) be a bound

on the failure probability and set δ=χ/T , then this can be done in time

O

(
d

ϵ4τ2 log
(
2n log(n)/ϵ2τχ

)
log(n) ·n

)
. (C.3)

For any point p ∈ P let Bp := B(p,
√

2(1−ϵ2))∩P and B := {Bp : p ∈ P∧|Bp | ≥ 3ϵ2τ}. If Qm is a random sam-

ple of m points from P with replacement, then by Chernoff bounds∀B ∈B we getP
[∣∣∣|B ∩Qm |− |B |

|P |m
∣∣∣≥ ζ |B |

|P |m
]
≤

2e−
ζ2

3
|B |
|P | m . Setting ζ= 1

4 and m ≥ 48
ϵ2τ

log(2n/δ) and taking union bound over at most |B| ≤ |P | events, we

get that with probability at least 1−χ for all B ∈B we have 3
4
|B |
|P | ≤ |B∩Qm |

m ≤ 5
4
|B |
|P | . Conditional on the above

event we have that:

• If there exists p∗ ∈ P such that |Bp∗ ∩Qm | ≥ 3
4 (3ϵ2)τm, then |Bp∗ | ≥ 9

16 (3ϵ2)τ · |P |.

• If for all p ∈ P , |Bp ∩Qm | < (1 − ζ)(3ϵ2)τm then |Bp | < 3ϵ2τ for all p ∈ P and by Lemma C.2.2

the set P is (ϵ′,τ)-pseudo random, with ϵ′ = p
2(1−p

1−2ϵ) ⇒ ϵ = ϵ′p
2

(1− ϵ′

2
p

2
) as

p
2(1−2ϵ) =√

2(1−p
2ϵ′(1− ϵ′

2
p

2
)) =

√
(
p

2−ϵ′)2 =p
2−ϵ′

This shows correctness of the Procedure CERTIFYϵ,τ,δ (Algorithm 12). The overall cost of this procedure is

O(dmn) =O(d log(2n/χ)
ϵ2τ

n) dominated by the cost of finding the ball of radius
√

2(1−ϵ2) centered at one of

the points in P with the most number of points in Qm .

145

Appendix C. Supplementary Materials for Chapter 3

To prove Lemma C.2.2 we are going to use the following simple lemma.

Proposition C.2.1 ([12]). For any set S ⊂S d−1 such that there exists c ∈S d−1, ∥c −x∥ ≤ rϵ =
p

2(1−2ϵ) for

all x ∈ S,
1

|S|2
∑

x,y∈S
〈x, y〉 ≥

(
1− r 2

ϵ

2

)2

= 4ϵ2 (C.4)

Proof. Given x,c ∈S d−1, ∥x − c∥ ≤ rϵ⇒〈x,c〉 ≥ 1− r 2
ϵ

2 . Thus,

∑
i , j∈S

〈xi , x j 〉 = ∥ ∑
x∈S

x∥2∥c∥2 ≥
∣∣∣∣∣∑x∈S

〈x,c〉
∣∣∣∣∣
2

≥ (1− r 2
ϵ

2
)2|S|2 (C.5)

The proof is concluded by substituting rϵ =
p

2(1−2ϵ).

Proof of Lemma C.2.2. We proceed with a proof by contradiction. Assuming that the statement is not true,

then

∀y ∈ S,
∣∣∣{x ∈ S : ∥x − y∥ ≤

√
2(1−ϵ2)

}∣∣∣< (3ϵ2) · |S| (C.6)

Moreover, ∥x − y∥ >
√

2(1−ϵ2) ⇒〈x, y〉 < ϵ2. Therefore, we get:

1

|S|2
∑

x,y∈S
〈x, y〉 < (

1−3ϵ2)ϵ2 +3ϵ2 ·1 = (4−3ϵ2)ϵ2 < 4ϵ2 (C.7)

Using Proposition 1 and the hypothesis we arrive at a contradiction.

C.3 Correctness proof of the data-dependent algorithm

In this section we present the outer algorithms for our approach. The procedure is quite routine and similar

to Section 3.4. First, in Algorithm 13 we present the outer procedure of preprocessing phase. In Algo-

rithm 13 for any x ∈ {δx ,2δx ,3δx , . . . δx⌊
p

2
δx

⌋}, we sample the data set with probability min

{
1
n

(
1
µ

)1−x2/2
,1

}
,

and then using Algorithm 7, we prepare a data structure that after receiving the query, one can recover

any point that is present in the sample and has distance [x −δx , x) from the query using Algorithm 14,

with probability 0.8 (see Lemma C.3.1 below).

Lemma C.3.1. Under Assumption 3.5.1, if T = PREPROCESS(P, x,µ), then for every point p ∈ P such that

p ∈ v0.P, where v0 is the root of tree T and ||q−p|| ≤ x, one has p ∈ QUERY(q,T , x) with probability at least

0.8.

Proof. By Corollary 3.5.1, if H is a (α, x,µ)-AI hash family then for any point p such that ||p−q|| ≤ x

P
h∼H

[h(q) = h(p)] ≥µα

Now, noting the number of repetitions of the Andoni-Indyk LSH round, i.e., setting of K1 = 100
(

1
µ

)α
(see

line 6 of Algorithm 7), with probability at least 0.9 we know that there exists a hash bucket that both query

146

C.3 Correctness proof of the data-dependent algorithm

and point p are hashed. Now, we prove by induction on depth of the tree, that if p belongs to the dataset

of root of any tree T ′ then QUERY(q,T ′, x) recovers it with probability at least 0.9.

Base: If the depth of T ′ is 1, then p ∈ Px by line 13 of Algorithm 10.

Inductive step: Suppose that p ∈ v.P such that v is the root of T ′. One should note that v is a pseudo-

random sphere. Also, suppose that q is at distance R2 from the center of this sphere. Then let x ′ :=
PROJECT(x +∆,R2,R) and let x ′′ be the smallest element in the grid W which is not less than x ′. Let

N :=
⌈

100
G(x ′′/R,η)

⌉
. Then, by Algorithm 8 we know that v has N children u1,u2, . . . ,uN such that u j .x = x ′′

for all j ∈ [N]. If p ∈ u j .P for some j then p will appear in exactly one of the children of u j , we call this

node u j (p), and if p ∉ u j .P then u j (p) =⊥. Let q′ be the projection of q on the sphere. Now, note that for

any j ∈ [N], if w is a child of u j then

P
[
QUERY(q,Tu j (p), x) will be called and p ∈ u j (p).P and p ∈ QUERY(q,Tu j (p), x)

]
=P

[〈
u j .g ,

q−o

||q−o||
〉
≥ η and p ∈ u j .P and p ∈ QUERY(q,Tu j (p), x)

]
=P

[
p ∈ QUERY(q,Tu j (p), x) |

〈
u j .g ,

q−o

||q−o||
〉
≥ η and p ∈ u j .P

]
·P

[〈
u j .g ,

q−o

||q−o||
〉
≥ η and p ∈ u j .P

]
≥ 0.9 ·P

[〈
u j .g ,

q−o

||q−o||
〉
≥ η and p ∈ u j .P

]
≥ 0.9 ·G(||q′−p.new ||/R,η)

≥ 0.9 ·G (
PROJECT(x +δ,R2,R)/R,η

)
≥ 0.9 ·G(x ′/R,η).

The first inequality holds by induction. The second inequality holds by Definition 3.3.1. The third

inequality holds since ||q′−p.new || ≤ PROJECT(x +δ,R2,R). Also, the last inequality holds since ∆ ≥ δ.

Then, we have

P
[
QUERY(q,Tu j (p), x) will not be called or p ∉ u j (p).P or p ∉ QUERY(q,Tu j (p), x)

]
≤ 1−0.9 ·G(x ′/R,η).

Consequently

P
[
p ∉ QUERY(q,T ′, x)

]≤ (1−0.9 ·G(x ′/R,η))N

≤ 0.1,

where the second inequality uses the following fact that since x ′′ ≥ x ′, we have

N =
⌈

100

G(x ′′/R,η)

⌉
≥

⌈
100

G(x ′/R,η)

⌉
≥ 100

G(x ′/R,η)
.

So the inductive step goes through, and the statement of the lemma holds. Now, by taking the union

147

Appendix C. Supplementary Materials for Chapter 3

bound over the failure probability of the Andoni-Indyk round (which succeeds with high probability) and

the failure probability of the data dependent part, we succeed by probability at least 1−0.1−0.1 = 0.8.

For points beyond δx⌊
p

2
δx

⌋ we just sample the data set with rate 1
n and just store the sampled set (see line 10

in Algorithm 13). In the query procedure we just scan the sub-sampled data set for recovering these points

(see line 10 of Algorithm 14). We repeat this procedure O(logn) times to boost the success probability to

high probability. After recovering the sampled points from the various bands using corresponding data

structures, Algorithm 14 applies the standard procedure of importance sampling by calculating Zµ.

Algorithm 13 PREPROCESS-KDE: P is the data-set

1: procedure PREPROCESS-KDE(P,µ)
2: δx ← 10−8 ▷ Step size for grid over x

3: K1 ←⌈C logn
ϵ2 ·µ−4δx ⌉ ▷where C is some large enough constant

4: for k = 1,2, . . . ,K1 do
5: for j = 1, . . . ,⌊p2/δx⌋ do ▷Uniform grid with step size δx over [0,

p
2]

6: x ← j ·δx

7: P̃k,x ← sample each point in P with probability min

{
1
n

(
1
µ

)1−x2/2
,1

}
8: for i = 1, . . . ,10logn do
9: Tx,k,i ← PREPROCESS(P̃k,x , x,µ)

10: P̃k ← sample each point in P with probability 1
n

11: Store P̃k ▷ This set will be used to recover points beyond δx⌊
p

2/δx⌋.

Below, we present the proof of correctness for the outer algorithm, which is very similar to the proof in

Section 3.4.

Claim C.3.1 (Unbiasedness of the estimator). The estimator Zµ,k for any µ≥µ∗ and any k ∈ [K1](see line 6

of Algorithm 14) satisfies the following:

(1−n−9)nµ∗ ≤ E[Zµ,k] ≤ nµ∗.

Proof. First note that if a point p ∈ P̃k,x for some k and x in line 7 of Algorithm 13 is such that ||q−p|| ∈ [x−
δx , x), then since we are preparing 10logn data structures, alongside with Lemma C.3.1 with probability at

least 1−n−10, p ∈ Sx (see line 16 of Algorithm 14). Taking union bound over all the points, with probability

1−n−9, any point in distance [x −δx , x) is being sampled with probability min

{
1
n

(
1
µ

)1−x2/2
,1

}
for any

x ∈ {δx ,2δx , . . .}∩ (0,
p

2). We call this event E . Now, since pi · (1−n−9) ≤P[χi = 1] ≤ pi , we have

E[Zµ,k] = E
[

n∑
i=1

χi
wi

pi

]
≥ (1−n−9)

n∑
i=1

wi = (1−n−10)nµ∗.

and

E[Zµ,k] ≤ nµ∗

148

C.3 Correctness proof of the data-dependent algorithm

Algorithm 14 QUERY-KDE: q is the query point

1: procedure QUERY-KDE(q,µ)
2: δx ← 10−8

3: Cx ←⌊
p

2
δx

⌋
4: K1 ←⌈C logn

ϵ2 ·µ−4δx ⌉ ▷where C is some large enough constant
5: Zµ← 0
6: for k = 1,2, . . . ,K1 do
7: Zµ,k ,← 0
8: for j = 1, . . . ,Cx do
9: x ← j ·δx

10: Sx ←;
11: for i = 1, . . . ,10logn do
12: Tx,k,i ← the data structure prepared by line 9 of Algorithm 13
13: Px,k,i ← QUERY(q,Tx,k,i , x)
14: for p ∈ Px,k,i do
15: if ||q−p|| ∈ [x −δx , x) then
16: Sx ← Sx ∪ {p}

17: for p ∈ Sx do
18: x̂ ←||q−p||
19: Zµ,k ← Zµ,k +

(
µ

x̂2

2

)(
min

{
1
n expµ

(
1− x2

2

)
,1

})−1

20: for p ∈ P̃k do ▷ Importance sampling for points beyond δxCx .
21: if ||q−p|| ≥ δxCx then
22: x̂ ←||q−p||
23: Zµ,k ← Zµ,k +n

(
µx̂2/2

)
24: Zµ← Zµ+ Zµ,k

K1

25: return Zµ

149

Appendix C. Supplementary Materials for Chapter 3

where pi is the probability of sampling i ’th point, and χi is the indicator for the event that i ’th point is

recovered.

We proved that our estimator is unbiased2 for any choice of µ ≥ µ∗. Therefore if µ ≥ 4µ∗, by Markov’s

inequality the estimator outputs a value larger than µ at most with probability 1/4. We perform O(logn)

independent estimates, and conclude that µ is higher than µ∗ if the median of the estimated values is

below µ. This estimate is correct with high probability, which suffices to ensure that we find a value of µ

that satisfies µ/4 <µ∗ ≤µ with high probability by starting with µ= n−Θ(1) (since our analysis assumes

µ∗ = n−Θ(1)) and repeatedly halving our estimate (the number of times that we need to halve the estimate

is O(logn) assuming that µ is lower bounded by a polynomial in n, an assumption that we make).

Claim C.3.2. Forµ such thatµ/4 ≤µ∗ ≤µ, QUERY-KDE(q,µ) (Algorithm 14) returns a (1±ϵ)-approximation

to µ∗.

Proof. Also, one should note that Zµ,k < n2
(

1
µ

)
which implies

E
[

Zµ,k |E
] ·P[E]+n2

(
1

µ

)
(1−P[E]) ≥ E[Zµ,k]

So,

E[Zµ,k]|E] ≥
(
(1−n−10)nµ∗− 1

n2

1

µ

)
= nµ∗−o(1/n5)

Also, since Zµ,k is a non-negative random variable, we have

E
[

Zµ,k |E
]≤ E

[
Zµ,k

]
P[E]

≤ nµ∗

P[E]
= nµ∗+o(1/n5)

Also,

E[Z 2
µ,k] = E

[(∑
i∈[n]

χi
wi

pi

)2]

= ∑
i ̸= j

E

[
χiχ j

wi w j

pi p j

]
+ ∑

i∈[n]
E

[
χi

w2
i

p2
i

]

≤ ∑
i ̸= j

wi w j +
∑

i∈[n]

w2
i

pi
I[pi = 1]+ ∑

i∈[n]

w2
i

pi
I[pi ̸= 1]

≤
(∑

i
wi

)2

+∑
i

w2
i +max

i

{
wi

pi
I[pi ̸= 1]

} ∑
i∈[n]

wi

≤ 2n2µ∗2 +n2
(

1

µ

)−1+4δx

·µ∗ ≤ n2µ2−4δx

2Up to some small inverse polynomial error.

150

C.4 Omitted discussion from Section 3.6.1

and

E[Z 2
µ,k |E] ≤

E[Z 2
µ,k]

P[E]
≤ n2µ2−4δx +o(1/n5)

So in order to get a (1±ϵ)-factor approximation to nµ, with high probability, it suffices to repeat the whole

process K1 = C logn
ϵ2 ·µ−4δx times (see Algorithm 13 and Algorithm 14), where C is a universal constant.

C.4 Omitted discussion from Section 3.6.1

o

x +∆

x ′

Figure C.3: Geometric illustration of equation x ′ = PROJECT(x +∆, ℓ̃,r) when we have access to an approx-
imation of x ′ (red arc).

Given query q, and a LSH node v with (v.x, v.r) = (x ′′,r), we define b ∈ {1,2} which we use in the definition

of the path geometry (Definition 3.6.1). Let ℓ̃ := ||q−o||, where o is the center of the sphere. Note that, if

we solve x ′ = PROJECT(x +∆,ℓ,r) for ℓ we get the following roots for this equation.

ℓ1 =
√

4r 2((x +∆)2 −x ′2)+x ′4 +2r 2 −x ′2

2r
(C.8)

and

ℓ2 = −
√

4r 2((x +∆)2 −x ′2)+x ′4 +2r 2 −x ′2

2r
(C.9)

Stability of ℓ1 and ℓ2 for small changes of x ′: Let x̃ ′ be such that x̃ ′ ∈ [x ′, x ′+δ′]. Since δ′ = o(1), r =Θ(1)

and x = Θ(1), if we solve equation x̃ ′ = PROJECT(x +∆,ℓ,r) for ℓ then we get roots ℓ̃1 and ℓ̃2 such that

ℓ̃1 ∈ (ℓ1 −δ′1/3,ℓ1 +δ1/3) and ℓ̃2 = (ℓ2 −δ′1/3,ℓ2 +δ′1/3) for large enough n, since δ′ = exp(−(loglogn)C)

(see line 10 of Algorithm 8).

Suppose that we solve x ′ = PROJECT(x +∆,ℓ,r) for ℓ for all values of x ′ ∈ [x ′′−δ′, x ′′], and let ℓ∗1 be the

151

Appendix C. Supplementary Materials for Chapter 3

largest quantity that we get by (C.8) and let ℓ∗2 be the largest quantity that we get by (C.9). More formally,

ℓ∗1 := max
x ′∈[x ′′−δ′,x ′′]

√
4r 2((x +∆)2 −x ′2)+x ′4 +2r 2 −x ′2

2r

and

ℓ∗2 := max
x ′∈[x ′′−δ′,x ′′]

−
√

4r 2((x +∆)2 −x ′2)+x ′4 +2r 2 −x ′2

2r
.

Now, if ℓ̃ ∈ [ℓ∗1 −δ′1/3,ℓ∗1] then we let b = 1 and ℓ := ℓ∗1 , and otherwise we let b = 2 and ℓ := ℓ∗2 . Note that

when b = 2 it is guaranteed that ℓ̃ ∈ [ℓ∗2 −δ′1/3,ℓ∗2]. One should note that since we define geometry for root

to leaf paths, then it is guaranteed that x ′ = PROJECT(x +∆,ℓ,r) has at least a real valued solution for ℓ,

because otherwise such a root to leaf path is not possible in the tree that the query explores. Also, note

that the maximizations above are over the real values, and we ignore the imaginary solutions.

C.5 Omitted claims and proofs from Section 3.6

Claim C.5.1. Given query q and a pseudo random sphere with geometry (x ′′,r,b) that induces distance

ℓ let q′ be the projection of q on the sphere. In that case, if a point p.new on the sphere is such that

||q′−p.new || ∈ (r (
p

2−γ),r (
p

2+γ)), then

||p−q|| ∈ (
c − rψ,c + rψ

)
where ψ := γ1/3 +δ′1/4 +δ1/4, c :=

p
ℓ2 + r 2.

Proof. Since q and the geometry of the sphere induce distance ℓ, then ||q−o|| ∈ [ℓ−δ′1/3,ℓ]. Now, suppose

that we move q in the direction of the vector from o to q and reach a point q̃ such that ||q̃−o|| = ℓ. Then,

by assumption

PROJECT(||q̃−p.new ||,ℓ,r) ∈ (r (
p

2−γ),r (
p

2+γ)).

Let ỹ := ||q̃−p.new ||. Then,

r

ℓ

(
ỹ2 − (ℓ− r)2) ∈ (

r 2(
p

2−γ)2,r 2(
p

2+γ)2
)

which using the definition c :=
p

r 2 +ℓ2 (see Figure 3.10) translates to

ỹ2 ∈
(
rℓ(2−2

p
2γ+γ2)+ (ℓ− r)2,rℓ(2+2

p
2γ+γ2)+ (ℓ− r)2

)
=

(
c2 −2

p
2rℓγ+ rℓγ2,c2 +2

p
2rℓγ+ rℓγ2

)
152

C.5 Omitted claims and proofs from Section 3.6

which also translates to

ỹ ∈
(√

c2 −2
p

2rℓγ+ rℓγ2,
√

c2 +2
p

2rℓγ+ rℓγ2

)
Now, noting that ℓ=O(1) and r =Θ(1), for large enough n we get that√

c2 −2
p

2rℓγ+ rℓγ2 ≥ c −
√

2
p

2rℓγ− rℓγ2

≥ c − rγ1/3.

And Similarly, √
c2 +2

p
2rℓγ+ rℓγ2 ≤ c −

√
2
p

2rℓγ+ℓγ2

≤ c + rγ1/3.

So, overall

ỹ ∈ (
c − rγ1/3,c + rγ1/3)

Noting that ||q− q̃|| ≤ δ′1/3 and ||p−p.new || ≤ δ, using the triangle inequality, for y := ||q−p|| we get

y ∈ (
c − rγ1/3 −δ′1/3 −δ,c + rγ1/3 +δ′1/3 +δ)

Again noting that r =Θ(1) and setting ψ= γ1/3 +δ′1/4 +δ1/4

y ∈ (
c − rψ,c + rψ

)
.

Note that in this proof we did not optimize the inequalities and we were generous in bounding variables

for the sake of brevity.

Claim C.5.2. Let y be such that y ≥ x +∆ for some x ∈ (δx ,
p

2), and y ′′ is such that

y ′′ ∈ [
PROJECT(y −δ,R2,R), PROJECT(y +δ,R2,R)

]
for some R2 and R. Let x ′ = PROJECT(x +∆,R2,R), and let x ′′ be the smallest element in Wx which is not

larger than x ′. Additionally, assume that we have the following properties:

(p1) δ
∆ = o(1)

(p2) δ′
∆ = o(1)

(p3) ∆=Θ(1)

(p4) x ′ ≤ 8
5 ·R

153

Appendix C. Supplementary Materials for Chapter 3

If η is such that F (η)
G(x ′′/R,η) = expµ

(1
T

)
, then, we have (a)

G(y ′′/R,η)

F (η)
≤ expµ

(
−(1−o(1))

4(R/x ′)2 −1

4(R/y ′)2 −1
· 1

T

)
and Furthermore, (b) when R =O(1), then

G(y ′′/R,η)

F (η)
≤ expµ

(
−4(R/x ′)2 −1

4(R/y ′)2 −1
· 1

T

)
.

Proof. By assumption we have

F (η)

G(x ′′/R,η)
= expµ

(
1

T

)
. (C.10)

On the other hand, if we set s = x ′′/R

F (η)

G(x ′′/R,η)
= e−(1+o(1)) η

2

2

e−(1+o(1)) η
2

2 · 4
4−s2

= e(1+o(1)) η
2

2 · s2

4−s2

= exp

(
(1+o(1))

η2

2
· x ′′2

4R2 −x ′′2

)
. (C.11)

By triangle inequality in Euclidean space (see Figure C.4) we have,

x ′ ≥ (x +∆)−|R2 −R| (C.12)

≥ (x +∆)− (x +δ) By line 20 of Algorithm 10

=∆−δ= (1−o(1))∆ By property (p1).

Also note that by assumption

x ′′ ∈ [
x ′, x ′+δ′] ,

then, since δ′
∆ = o(1) by property (p2), we have

x ′′ = (1±o(1)) · x ′.

And by property (p4), we have

x ′′2

4R2 −x ′′2 = (1±o(1)) · x ′2

4R2 −x ′2

154

C.5 Omitted claims and proofs from Section 3.6

R
qq ′

x ′

|R2 −R|
o

x +∆

(a) When the query is outside the sphere

R

q q ′

x +∆ x ′

|R2 −R|
o

(b) When the query is inside the sphere

Figure C.4: Triangle inequality instances for (C.12)

Therefore

F (η)

G(x ′/R,η)
= exp

(
(1+o(1))

η2

2
· x ′2

4R2 −x ′2

)
(C.13)

= expµ

(
(1±o(1))

1

T

)
. (C.14)

On the other hand, if we set s′ = y ′/R, similarly

F (η)

G(y ′/R,η)
= e−(1+o(1)) η

2

2

e−(1+o(1)) η
2

2 · 4
4−s′2

= e(1+o(1)) η
2

2 · s′2
4−s′2

= exp

(
(1+o(1))

η2

2
· y ′2

4R2 − y ′2

)
. (C.15)

Thus, by (C.13), (C.14) and (C.15)

G(y ′/R,η)

F (η)
= expµ

(
−(1±o(1))

1

T

4− s2

s2 · s′2

4− s′2

)
= expµ

(
−(1±o(1))

1

T

4(R/x ′)2 −1

4(R/y ′)2 −1

)
. (C.16)

155

Appendix C. Supplementary Materials for Chapter 3

Note that

y ′′ ∈ [
PROJECT(y −δ,R2,R), PROJECT(y +δ,R2,R)

]
Then since δ′

∆ = o(1) by property (p2), we have

y ′′ ≥ PROJECT(y −∆/2,R2,R) = y ′,

Now since G(s,η) is monotone decreasing in s, we have

G(y ′/R,η)

F (η)
≥ G(y ′′/R,η)

F (η)
. (C.17)

Now, by (C.16) and (C.17), we have the statement of the first part of the claim.

For the case when R =O(1), and consequently R2 =O(1) (by the assumption fact that x ≤p
2), by property

(p3):

y ′′2 − y ′2 ≥ (
PROJECT

(
y −δ,R2,R

))2 − (
PROJECT

(
y −∆/2,R2,R

))2

= R

R2

((
y −δ)2 − (R2 −R)2

)
− R

R2

((
y −∆/2

)2 − (R2 −R)2
)

=Ω(1) (C.18)

Then,

(1−o(1)) · 1

4(R/y ′′)2 −1
≥ (1−o(1)) · y ′2

4R2 − y ′′2 Since y ′′ ≥ y ′

≥ y ′2

4R2 − y ′2 By (C.18)

≥ 1

4(R/y ′)2 −1

which implies,

expµ

(
− 1

T

4(R/x ′)2 −1

4(R/y ′)2 −1

)
≥ expµ

(
−(1±o(1))

1

T

4(R/x ′)2 −1

4(R/y ′′)2 −1

)
= G(y ′′/R,η)

F (η)
,

which proves the second part of the claim.

Claim C.5.3. Let V denote the output of PSEUDORANDOMIFY(v,γ) on a node v of a recursion tree T

associated with a dataset P of diameter bounded by D. Then for every positive integer j , where Rmi n is the

parameter from line 3 of Algorithm 9, the number of sets with diameter at least (1−γ2/2) j D contained in V

is upper bounded byΛ j forΛ=O(D log |P |)/δ.

Proof. Note that an input dataset is first partitioned into at most ⌈R/δ⌉ = O(D/δ) spherical shells. For

each spherical shell one repeatedly removes dense clusters (containing at least a 1/10 fraction of the

current dataset), repeating this process O(log |P |) times, since at most 10 clusters are removed before the

156

C.5 Omitted claims and proofs from Section 3.6

dataset size decreases by a constant factor. Every such ball has radius smaller than the original dataset by

a (1−γ2/2) factor [13]. This gives the claimed bound.

We now give

Proof of Lemma 3.6.4: The proof is by induction on (a,b), where a is the number ℓ of LSH nodes on the

path from v ∈T to the closest leaf, b is the number of pseudorandomification nodes on such a path and

r = v.R is the radius of the dataset. We prove that the expected number of nodes in the subtree of such a

node v in T is upper bounded by

(L ·Λ)a · (100/µ1/T)b ·Λ j .

HereΛ= (O(D log |P |)/δ) is the parameter from Claim C.5.3, j = log 1
1−γ2/2

(Rmax /r) is an upper bound on

the number of times the radius of the sphere could have shrunk through calls to PSEUDORANDOMIFY from

the largest possible (bounded Rmax) to its current value r , and L = log 1
1−γ2/2

(Rmax /Rmi n) is the maximum

number of times a point can be part of a dataset that PSEUDORANDOMIFY is called on (since the radius

reduces by a factor of 1−γ2/2 in every such call).

The base is provided by the case of v being a leaf. We now give the inductive step. First suppose that

u ∈T is a pseudorandomification node. Let x ′ denote the value of rounded projected distance computed

in line 19 of Algorithm 10. Then Algorithm 8 generates 100
G(x ′/R,η) Gaussians, and the expected number

of Gaussians for which the condition in line 29 is satisfied (i.e. the number of children of u that the

query q explores) is exactly 100F (η)
G(x ′/R,η) by definition of F (η) (see Lemma 3.3.1 in Section 3.3). We also have

F (η)
G(x ′/R,η) = (1/µ)1/T by setting of parameters in line 16 of Algorithm 10. Putting this together with the

inductive hypothesis and noting that LSH nodes do not change the radius of the sphere, we get that the

expected number of nodes of T that the query explores is bounded by

100
(
1/µ

)1/T · (L ·Λ)a · (100/µ1/T)b−1 ·Λ j = (L ·Λ)a · (100/µ1/T)b ·Λ j ,

as required.

Now suppose that u ∈T is a pseudorandomification node. Then by Claim C.5.3 for every i the number of

datasets with diameter at least (1−γ2/2)i r generated by PSEUDORANDOMIFY is bounded byΛi . For every

i = 0, . . . ,L the number of nodes with radius in ((1−γ2/2)i−1r, (1−γ2/2)i r] that are generated is bounded

by Λi−1. For such nodes we have by the inductive hypothesis that the expected number of nodes of T

explored in their subtree is upper bounded by

(L ·Λ)a−1 (
100/µ1/T)b ·Λ j−i+1.

Summing over all i between 1 and log 1
1−γ2/2

(r /Rmi n), we get that the total number of nodes that the query

157

Appendix C. Supplementary Materials for Chapter 3

is expected to explore in the subtree of u is bounded by

log 1
1−γ2/2

(r /Rmi n)∑
i=1

(L ·Λ)a−1 (
100/µ1/T)b ·Λ j−i+1 ·Λi ≤ L · (L ·Λ)a−1 (

100/µ1/T)b ·Λ j+1

≤ (L ·Λ) · (L ·Λ)a−1 (
100/µ1/T)b ·Λ j+1

≤ (L ·Λ)a · (100/µ1/T)b ·Λ j

proving the inductive step.

Substituting α∗ ·T as the upper bound on the number of levels in T as per Algorithm 8, we thus get that

the number of nodes explored by the query is bounded by

(L ·Λ)T · (100/µ1/T)α
∗T ·ΛL ≤ (100L ·Λ)T ·ΛL · (1/µ)α

∗ = no(1) · (1/µ)α
∗

in expectation. In the last transition we used the fact that

(100L ·Λ)T ·ΛL = (100 · log 1
1−γ2/2

(Rmax /Rmi n) · (O(Rmax log |P |)/δ))
p

logn · ((O(D log |P |)/δ)
p

logn = no(1)

by our setting of parameters sinceγ= 1/logloglogn, Rmax =O(1), Rmi n =Ω(1) andδ= exp(−(loglogn)O(1))

as per Algorithm 8 and Algorithm 9. And also since we use 100
(

1
µ

)α
Andoni-Indyk hash functions (see

Algorithm 7), we get

no(1) ·
(

1

µ

)α∗+α

in total.

Proof of Claim 3.6.6:

By Lemma 3.3.1 and Lemma 3.3.2 and Definition 3.3.1 one has

F (η) = e−(1+o(1))· η2

2

and

G(x ′/R,η) = e
−(1+o(1))· 2η2(1−α(x′/R))

2β2(x′/R) = e−(1+o(1))· 2η2

2(1+α(x′/R)) ,

where α(x ′/R) := 1− (x ′/R)2

2 . Using the assumption that x ′ >∆we get that

G(x ′/R,η) ≤ e
−(1+o(1))· η2

2−((∆/R)2/2) .

And in particular using the fact that R ≥∆

F (η)

G(x ′/R,η)
≥ e

−(1+o(1))· η2

2 +(1+o(1))· η2

2−((∆/R)2/2) = (G(x ′/R,η))Ω(∆2),

or, equivalently, 1
G(x ′/R,η) =

(
F (η)

G(x ′/R,η)

)O(1/∆2)
.

158

C.6 Proof of Claim 3.8.3

Proof of Claim 3.6.5: For j∗ = k J +1, by definition of fz j ,J+1 for i ∈ { j∗−1, . . . , I } and the fact that

b′
y,J+1 = B̃y,J+1 = Ãy,J ,

we have

fzi ,J+1 = log1/µ

(∑
y∈D∩[zi+1,zi−1)

Ãy,J

)
(C.19)

On the other hand, (3.40) and the fact that B̃y, j = E[By, j] we have

∑
y≥c J+ψR J

B̃y,J ≤ τ

1−2τ
· ∑

y∈(c J−ψR J ,c J+ψR J)
B̃y,J .

Also recall (3.41), where we have

Ãy,J = B̃y,J ·py,J

where py,J is a decreasing and non-negative function in y (for the valid range of y). This implies that

∑
y≥c J+ψR J

Ãy,J ≤ τ

1−2τ
· ∑

y∈(c J−ψR J ,c J+ψR J)
Ãy,J .

Now, we have ∑
y

Ãy,J =
∑

y<c J+ψR J

Ãy,J +
∑

y≥c J+ψR J

Ãy,J

≤ ∑
y<c J+ψR J

Ãy,J + τ

1−2τ
· ∑

y∈(c J−ψR J ,c J+ψR J)
Ãy,J

≤ ∑
y≤z j∗−1

expµ
(

fy,J+1
)+expµ

(
fz j∗−1,J+1

)
≤ O(1) ·expµ (7δz) = expµ (7δz +o(1))

where the second inequality is based on Definition 3.6.7, (C.19) and setting of parameters (the fact that

ψ = o(1), δz = Θ(1) and Rmax = O(1)). The last inequality is by the assumption that fy,J+1 < 7δz for

y ≤ z j∗−1.

C.6 Proof of Claim 3.8.3

Proof of Claim 3.8.3: We want to prove that4
(

r j

x ′

)2 −1

4
(

r j

y ′

)2 −1


2

(zk j

zi

)2 −1

2
(zk j

x

)2 −1

≥ (1−10−4).

159

Appendix C. Supplementary Materials for Chapter 3

By defining z := zk j , s := zi and r := r j for the sake of brevity, the left hand side becomes

(
x2

x ′2

)
·
(

y ′2

s2

)
·
(

4r 2 −x ′2

2z2 −x2

)(
2z2 − s2

4r 2 − y ′2

)
.

We upper-bound each term one by one.

First term: Since x ′ := x +∆ then

x

x ′ =
x

x +∆ = 1− ∆

x +∆ ≥ 1− ∆

δx +∆
≥ 1− ∆

δx
= 1−10−12

where we used the fact that x ≥ δx , and the last transition is by the setting of parameters. So,

x2

x ′2 ≥ 1−10−11

Second term: Since y ′ := y −∆/2 and y ∈ (
s(1+δz)−1, s(1+δz)

)
then

y ′

s
≥ y −∆/2

y(1+δz)
≥ 1−δz

1+δz
≥ 1−3δz

where we used the fact that y ≥ δx (since y ≥ x) and also considered that by the parameter setting

δz = 10−6, δx = 10−8 and ∆= 10−20. Consequently, we have

y ′2

s2 ≥ 1+9δ2
z −6δz ≥ 1−10−5.

Third term: Note that by (3.31) we have

r (
p

2+ψ) ∈ [z, z(1+δz))

which combining with the fact that ψ= o(1) implies

r ∈
[

z(1−o(1))p
2

,
z(1+δz)p

2

)
. (C.20)

Note that we used the fact that z ≥ x so z =Ω(1) (actually we have z =Θ(1)). On the other hand, by the

bound for the first term we have

x ′2 ≤ x2 (
1+10−10)

160

C.6 Proof of Claim 3.8.3

Now, we use these tools to bound the third term3:

4r 2 −x ′2

2z2 −x2 ≥ 2z2(1−o(1))−x2(1+10−10)

2z2 −x2

≥ 1− 2o(1)z2 +10−10x2

2z2 −x2

≥ 1− 2×10−10x2

2z2 −x2

≥ 1−10−9

Fourth term: For the fourth term, actually its easier to upper-bound the inverse of it. First, note that

y ′ = y −∆/2 ≥ y(1−δz) ≥ s(1−δz)(1+δz)−1 ≥ s(1−10−5).

The first inequality is due to y ≥ x ≥ δx = 10−8 and δz = 10−6. This also implies that

y ′2 ≥ s2(1−3×10−5).

On the other hand, by (C.20) we have

2r 2 ≤ z2(1+δz)2 ≤ z2(1+10−5).

Combining these facts we have

4r 2 − y ′2

2z2 − s2 ≤ 2z2(1+10−5)− s2(1−3×10−5)

2z2 − s2

≤ 1+10−5 +4×10−5 s2

2z2 − s2

≤ 1+5×10−5

where the last transition is due to the fact that s ≤ z (or zi ≤ zk j equivalently). Therefore, we have a

lower-bound of 1−5×10−5 for the fourth term.

Combining the bounds: Now, we have:(
x2

x ′2

)
·
(

y ′2

s2

)
·
(

4r 2 −x ′2

2z2 −x2

)(
2z2 − s2

4r 2 − y ′2

)
≥ (1−10−11)(1−10−5)(1−10−9)(1−5×10−5)

≥ 1−10−4

which proves the claim.

3Note that for the sake of brevity we are being generous in bounding terms and the inequalities are not tight

161

Appendix C. Supplementary Materials for Chapter 3

General Kernels

Lemma C.6.1 (Uniqueness of Maximum). Let f : [a,b] →R be a three times differentiable function in (a,b)

such that:

• f (a) < 0

• ∃y ′ ∈ (a,b] such that f (y ′) > 0

• for all y ∈ (a,b) it holds d 3

d y3 f (y) ≤ 0.

Then

1. ∃y∗ ∈ (a, y ′) such that f (y∗) = 0.

2. ∃η ∈ (y∗,b] such that η is the unique maximum of f in [a,b] and the function is monotone increasing

in [a,η].

Proof. We prove the statements in order:

1. Using the first two assumptions and continuity of f (since it is differentiable) we get by the Interme-

diate Value Theorem that ∃y∗ ∈ (a, y ′) such that f (y∗) = 0.

2. Since the function is defined on a closed interval it attains a maximum. We show that there exists

only one maximum. Assume that there exist two local maxima η1 < η2 ∈ (a,b]. Then, there must be

a local minimum η0 ∈ (η1,η2) for which f ′′(η0) > 0. However, this is impossible since f ′′(η1) < 0 and

the function f ′′ is non-increasing. Hence, there is exactly one local maximum η in (a,b] and the

function is increasing in [a,η] (and decreasing in (η,b] if η ̸= b).

Corollary C.6.1. Let φ :R+ →R be any function such that φ
′′′

(y) ≤ 0. For all x > 0, T ≥ 1 and c1 ≥ c2 ≥ . . . ≥
ct > xp

2
such that ∃y ′ ∈ (x,

p
2ct] with f (y ′) > 0 define:

f (y) := [
φ(y)−φ(x)

]− t∑
s=1

2(cs/x)2 −1

2(cs/y)2 −1
· 1

T
.

Then, the conclusion of Lemma C.6.1 holds. In particular, it holds for all φ(y) ∝ (y)p with p ≤ 2.

Proof. Follows by observing that the second derivative of the summation term is decreasing and that

φ
′′′

(y) ∝−(2−p)p · (p −1) 1
y2−p ≤ 0 for all p ≤ 2 and y > 0.

Claim C.6.1 (Monotonicity). For every i ∈ [|R|] and φ :R+ →R as in Corollary C.6.1 we have

162

C.6 Proof of Claim 3.8.3

(a) there exists a y∗ ∈ (x,
p

2) such that g y∗, ji ≥ 0, g y, ji ≤ 0 for any y ∈ Zx such that y ≤ y∗, and g y, ji is

non-decreasing in y for y ∈ [y∗, z ji];

(b) there exists a y∗ ∈ (x,
p

2) such that h(N−1)
y∗ ≥ 0, h(N−1)

y ≤ 0 for any y ∈ Zx such that y ≤ y∗ and h(N−1)
y is

non-decreasing in y for y ∈ [y∗, z ji].

Proof. Let

q(y) :=
t∑

i=1

2(cs/x)2 −1

2(cs/y)2 −1

1

T
,

where c1 ≥ c2 ≥ . . . ≥ ct ≥ z1 ≥ x for some z1 ≥ x. And let y∗
1 be such that φ(y∗

1)−φ(x)−q(y∗
1) = 0 and let ỹ1

be the smallest value such that ỹ1 ≥ y∗
1 and φ(ỹ1)−φ(x)−q(ỹ1) = θ for some θ ≥ 0. Now define G1(y) on

[y∗
1 , z1], for some z1 ≥ ỹ1 as follows

G1(y) :=
φ(y)−φ(x)−q(y) y ∈ [y∗

1 , ỹ1)

θ y ∈ [ỹ1, z1]
(C.21)

See the red curve in Figure 3.11.

Also, let q̂(y) := 2(z1/x)2−1
2(z1/y)2−1

1
T . Let y∗

2 ≥ y∗
1 such that G1(y∗

2)− q̂(y∗
2) = 0. Now, we define G2(y) for y ∈ [y∗

2 , z2]

as follows:

G2(y) := min
{
G1(y)− q̂(y),θ′

}
where θ′ :=G1(z2)− q̂(z2) and θ′ ≥ 0 for some z2 ≤ z1. By the definition of y∗

2 , function G2(y) for y ∈ [y∗
2 , ỹ1]

is in the form of the function in Claim 3.8.4 and thus, it has a unique maximum at some η ∈ [y∗
2 , ỹ1]. Also,

recall that G1(y) = θ for y ∈ [ỹ1, z2]. Also, one should note that since q̂(y) is a monotone increasing function

for y ∈ (0,
p

2z1) and hence for y ∈ [ỹ1, z2], then θ′ ≤G2(ỹ1) and therefore θ′ ≤G2(η). This guarantees that

there exist a ỹ2 ∈ [y∗
2 ,η] such that G2(ỹ2) = θ′. The reason is that G2(y) is a continuous increasing function

for y ∈ [ỹ2,η]. So, we have

G2(y) :=
φ(y)−φ(x)−q ′(y) y ∈ [y∗

2 , ỹ2)

θ′ y ∈ [ỹ2, z2]
(C.22)

where, q ′(y) := q(y)− q̂(y). See the blue curve in Figure 3.11.

163

Bibliography
[1] K. J. Ahn, S. Guha, and A. McGregor, “Analyzing graph structure via linear measurements,” in Rabani

[130], pp. 459–467.

[2] D. R. Karger, “Random sampling in cut, flow, and network design problems,” in Proceedings of the

Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec,

Canada (F. T. Leighton and M. T. Goodrich, eds.), pp. 648–657, ACM, 1994.

[3] A. A. Benczúr and D. R. Karger, “Approximating S-T minimum cuts in Õ(n2) time,” in 38th Annual

Symposium on Theory of Computing, pp. 47–55, 1996.

[4] D. A. Spielman and S. Teng, “Nearly-linear time algorithms for graph partitioning, graph sparsifica-

tion, and solving linear systems,” in Proceedings of the 36th Annual ACM Symposium on Theory of

Computing, Chicago, IL, USA, June 13-16, 2004, pp. 81–90, 2004.

[5] J. D. Batson, D. A. Spielman, N. Srivastava, and S. Teng, “Spectral sparsification of graphs: theory

and algorithms,” Commun. ACM, vol. 56, no. 8, pp. 87–94, 2013.

[6] K. J. Ahn, S. Guha, and A. McGregor, “Spectral sparsification in dynamic graph streams,” in Approxi-

mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 1–10,

Springer, 2013.

[7] M. Kapralov, Y. T. Lee, C. Musco, C. Musco, and A. Sidford, “Single pass spectral sparsification in

dynamic streams,” in 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS

2014, Philadelphia, PA, USA, October 18-21, 2014, pp. 561–570, IEEE Computer Society, 2014.

[8] M. Charikar and P. Siminelakis, “Hashing-based-estimators for kernel density in high dimensions,”

in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1032–1043,

IEEE, 2017.

[9] M. Charikar and P. Siminelakis, “Multi-resolution hashing for fast pairwise summations,” in 2019

IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2019.

[10] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate nearest neighbor in high

dimensions,” in 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006),

21-24 October 2006, Berkeley, California, USA, Proceedings [131], pp. 459–468.

164

Bibliography

[11] A. Andoni, P. Indyk, H. L. Nguyen, and I. P. Razenshteyn, “Beyond locality-sensitive hashing,” in

Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,

Portland, Oregon, USA, January 5-7, 2014 (C. Chekuri, ed.), pp. 1018–1028, SIAM, 2014.

[12] A. Andoni and I. P. Razenshteyn, “Optimal data-dependent hashing for approximate near neighbors,”

in Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,

Portland, OR, USA, June 14-17, 2015 (R. A. Servedio and R. Rubinfeld, eds.), pp. 793–801, ACM, 2015.

[13] A. Andoni, T. Laarhoven, I. P. Razenshteyn, and E. Waingarten, “Optimal hashing-based time-space

trade-offs for approximate near neighbors,” in Klein [132], pp. 47–66.

[14] M. Kapralov, A. Mousavifar, C. Musco, C. Musco, N. Nouri, A. Sidford, and J. Tardos, “Fast and

space efficient spectral sparsification in dynamic streams,” in Proceedings of the 2020 ACM-SIAM

Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020 (S. Chawla,

ed.), pp. 1814–1833, SIAM, 2020.

[15] J. Nelson and H. Yu, “Optimal lower bounds for distributed and streaming spanning forest compu-

tation,” Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2019, San Diego, California, USA, January 6-9, 2019, pp. 1844–1860, 2019.

[16] A. McGregor, “Graph sketching and streaming: New approaches for analyzing massive graphs,” in

Computer Science - Theory and Applications - 12th International Computer Science Symposium in

Russia, CSR 2017, Kazan, Russia, June 8-12, 2017, Proceedings (P. Weil, ed.), vol. 10304 of Lecture

Notes in Computer Science, pp. 20–24, Springer, 2017.

[17] Y. Li, H. L. Nguyen, and D. P. Woodruff, “Turnstile streaming algorithms might as well be linear

sketches,” in Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC),

pp. 174–183, 2014.

[18] K. J. Ahn, S. Guha, and A. McGregor, “Graph sketches: sparsification, spanners, and subgraphs,” in

Benedikt et al. [133], pp. 5–14.

[19] M. Kapralov and D. P. Woodruff, “Spanners and sparsifiers in dynamic streams,” in ACM Symposium

on Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014 (M. M. Halldórsson

and S. Dolev, eds.), pp. 272–281, ACM, 2014.

[20] S. Assadi, S. Khanna, Y. Li, and G. Yaroslavtsev, “Maximum matchings in dynamic graph streams

and the simultaneous communication model,” in Proceedings of the Twenty-Seventh Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016

(R. Krauthgamer, ed.), pp. 1345–1364, SIAM, 2016.

[21] S. Assadi, S. Khanna, and Y. Li, “On estimating maximum matching size in graph streams,” in Klein

[132], pp. 1723–1742.

[22] A. Andoni, J. Chen, R. Krauthgamer, B. Qin, D. P. Woodruff, and Q. Zhang, “On sketching quadratic

forms,” Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science,

Cambridge, MA, USA, January 14-16, 2016, pp. 311–319, 2016.

165

Bibliography

[23] A. Jambulapati and A. Sidford, “Efficient Õ(n/ϵ) spectral sketches for the laplacian and its pseudoin-

verse,” in Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,

pp. 2487–2503, SIAM, 2018.

[24] K. J. Ahn, S. Guha, and A. McGregor, “Graph sketches: sparsification, spanners, and subgraphs,” in

Proceedings of the 31st Symposium on Principles of Database Systems (PODS), pp. 5–14, 2012.

[25] H. Jowhari, M. Sağlam, and G. Tardos, “Tight bounds for Lp samplers, finding duplicates in streams,

and related problems,” in Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems (PODS), pp. 49–58, ACM, 2011.

[26] G. Cormode and D. Firmani, “A unifying framework for ℓ0-sampling algorithms,” Distributed and

Parallel Databases, vol. 32, no. 3, pp. 315–335, 2014. Preliminary version in ALENEX 2013.

[27] M. Kapralov, J. Nelson, J. Pachocki, Z. Wang, D. P. Woodruff, and M. Yahyazadeh, “Optimal lower

bounds for universal relation, and for samplers and finding duplicates in streams,” in 58th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October

15-17, 2017, pp. 475–486, 2017.

[28] M. Kapralov, A. Mousavifar, C. Musco, C. Musco, and N. Nouri, “Faster spectral sparsification in

dynamic streams,” CoRR, vol. abs/1903.12165, 2019.

[29] D. A. Spielman and S.-H. Teng, “Spectral sparsification of graphs,” SIAM Journal on Computing,

vol. 40, no. 4, pp. 981–1025, 2011.

[30] D. A. Spielman and N. Srivastava, “Graph sparsification by effective resistances,” in Proceedings of

the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May

17-20, 2008 (C. Dwork, ed.), pp. 563–568, ACM, 2008.

[31] I. Koutis, A. Levin, and R. Peng, “Faster spectral sparsification and numerical algorithms for SDD

matrices,” ACM Trans. Algorithms, vol. 12, no. 2, pp. 17:1–17:16, 2016.

[32] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A. Spielman, “Sparsified cholesky and multigrid

solvers for connection laplacians,” in Proceedings of the 48th Annual ACM SIGACT Symposium on

Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pp. 842–850, 2016.

[33] D. Cheng, Y. Cheng, Y. Liu, R. Peng, and S. Teng, “Spectral sparsification of random-walk matrix

polynomials,” CoRR, vol. abs/1502.03496, 2015.

[34] G. Jindal, P. Kolev, R. Peng, and S. Sawlani, “Density independent algorithms for sparsifying k-step

random walks,” in Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, pp. 14:1–14:17,

2017.

[35] H. Li and A. Schild, “Spectral subspace sparsification,” in 59th IEEE Annual Symposium on Founda-

tions of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pp. 385–396, 2018.

166

Bibliography

[36] I. Koutis, G. L. Miller, and R. Peng, “Approaching optimality for solving SDD linear systems,” in 51th

Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las

Vegas, Nevada, USA, pp. 235–244, 2010.

[37] I. Koutis, G. L. Miller, and R. Peng, “A nearly-m log n time solver for SDD linear systems,” in IEEE

52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA,

October 22-25, 2011, pp. 590–598, 2011.

[38] R. Peng and D. A. Spielman, “An efficient parallel solver for SDD linear systems,” in Symposium on

Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pp. 333–342, 2014.

[39] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng, A. B. Rao, and S. C. Xu, “Solving SDD

linear systems in nearly mlog1/2n time,” in Symposium on Theory of Computing, STOC 2014, New

York, NY, USA, May 31 - June 03, 2014, pp. 343–352, 2014.

[40] R. Kyng and S. Sachdeva, “Approximate gaussian elimination for laplacians - fast, sparse, and simple,”

in IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October

2016, Hyatt Regency, New Brunswick, New Jersey, USA, pp. 573–582, 2016.

[41] Y. T. Lee and A. Sidford, “Path finding methods for linear programming: Solving linear programs

in õ(vrank) iterations and faster algorithms for maximum flow,” in 55th IEEE Annual Symposium

on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014,

pp. 424–433, 2014.

[42] T. Chu, Y. Gao, R. Peng, S. Sachdeva, S. Sawlani, and J. Wang, “Graph sparsification, spectral sketches,

and faster resistance computation, via short cycle decompositions,” in 59th IEEE Annual Symposium

on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pp. 361–372, 2018.

[43] J. A. Kelner and A. Madry, “Faster generation of random spanning trees,” in 50th Annual IEEE

Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia,

USA, pp. 13–21, IEEE Computer Society, 2009.

[44] A. Madry, D. Straszak, and J. Tarnawski, “Fast generation of random spanning trees and the effective

resistance metric,” in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015 (P. Indyk, ed.), pp. 2019–2036, SIAM,

2015.

[45] A. Schild, “An almost-linear time algorithm for uniform random spanning tree generation,” in

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los

Angeles, CA, USA, June 25-29, 2018 (I. Diakonikolas, D. Kempe, and M. Henzinger, eds.), pp. 214–227,

ACM, 2018.

[46] V. L. Alev, N. Anari, L. C. Lau, and S. O. Gharan, “Graph clustering using effective resistance,” in 9th

Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge,

MA, USA (A. R. Karlin, ed.), vol. 94 of LIPIcs, pp. 41:1–41:16, Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2018.

[47] A. McGregor, “Graph stream algorithms: a survey,” SIGMOD Rec., vol. 43, no. 1, pp. 9–20, 2014.

167

Bibliography

[48] S. Guha, A. McGregor, and D. Tench, “Vertex and hyperedge connectivity in dynamic graph streams,”

in Proceedings of the 34th ACM Symposium on Principles of Database Systems, PODS 2015, Mel-

bourne, Victoria, Australia, May 31 - June 4, 2015 (T. Milo and D. Calvanese, eds.), pp. 241–247, ACM,

2015.

[49] J. A. Kelner and A. Levin, “Spectral sparsification in the semi-streaming setting,” Theory of Comput-

ing Systems, vol. 53, no. 2, pp. 243–262, 2013.

[50] M. B. Cohen, C. Musco, and J. Pachocki, “Online row sampling,” in Approximation, Randomization,

and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016), 2016.

[51] R. Kyng, J. Pachocki, R. Peng, and S. Sachdeva, “A framework for analyzing resparsification algo-

rithms,” in Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,

pp. 2032–2043, 2017.

[52] I. Abraham, D. Durfee, I. Koutis, S. Krinninger, and R. Peng, “On fully dynamic graph sparsifiers,” in

57th Annual Symposium on Foundations of Computer Science, pp. 335–344, 2016.

[53] D. A. Spielman and S. Teng, “Spectral sparsification of graphs,” SIAM J. Comput., vol. 40, no. 4,

pp. 981–1025, 2011.

[54] J. D. Batson, D. A. Spielman, and N. Srivastava, “Twice-ramanujan sparsifiers,” in Proceedings of the

41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 -

June 2, 2009 (M. Mitzenmacher, ed.), pp. 255–262, ACM, 2009.

[55] Z. Allen Zhu, Z. Liao, and L. Orecchia, “Spectral sparsification and regret minimization beyond

matrix multiplicative updates,” in Servedio and Rubinfeld [134], pp. 237–245.

[56] Y. T. Lee and H. Sun, “Constructing linear-sized spectral sparsification in almost-linear time,” in

IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,

17-20 October, 2015 (V. Guruswami, ed.), pp. 250–269, IEEE Computer Society, 2015.

[57] Y. T. Lee and H. Sun, “An sdp-based algorithm for linear-sized spectral sparsification,” in Proceedings

of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,

Canada, June 19-23, 2017 (H. Hatami, P. McKenzie, and V. King, eds.), pp. 678–687, ACM, 2017.

[58] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing the curse of dimen-

sionality,” in Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,

Dallas, Texas, USA, May 23-26, 1998 (J. S. Vitter, ed.), pp. 604–613, ACM, 1998.

[59] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive hashing scheme based on

p-stable distributions,” in Proceedings of the 20th ACM Symposium on Computational Geometry,

Brooklyn, New York, USA, June 8-11, 2004 (J. Snoeyink and J. Boissonnat, eds.), pp. 253–262, ACM,

2004.

[60] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate nearest neighbor in high

dimensions,” in 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006),

21-24 October 2006, Berkeley, California, USA, Proceedings [131], pp. 459–468.

168

Bibliography

[61] A. Andoni, P. Indyk, H. L. Nguyen, and I. P. Razenshteyn, “Beyond locality-sensitive hashing,” in

Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,

Portland, Oregon, USA, January 5-7, 2014 (C. Chekuri, ed.), pp. 1018–1028, SIAM, 2014.

[62] A. Andoni and I. P. Razenshteyn, “Optimal data-dependent hashing for approximate near neighbors,”

in Servedio and Rubinfeld [134], pp. 793–801.

[63] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the

American Statistical Association, vol. 58, no. 301, pp. 13–30, 1963.

[64] J. A. Kelner, L. Orecchia, A. Sidford, and Z. Allen Zhu, “A simple, combinatorial algorithm for solving

SDD systems in nearly-linear time,” in Symposium on Theory of Computing Conference, STOC’13,

Palo Alto, CA, USA, June 1-4, 2013, pp. 911–920, 2013.

[65] Y. T. Lee and A. Sidford, “Efficient accelerated coordinate descent methods and faster algorithms

for solving linear systems,” in 54th Annual IEEE Symposium on Foundations of Computer Science,

FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pp. 147–156, 2013.

[66] A. Filtser, M. Kapralov, and N. Nouri, “Graph spanners by sketching in dynamic streams and the

simultaneous communication model,” in Proceedings of the 2021 ACM-SIAM Symposium on Discrete

Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021 (D. Marx, ed.), pp. 1894–1913,

SIAM, 2021.

[67] K. J. Ahn, S. Guha, and A. McGregor, “Analyzing graph structure via linear measurements,” in Rabani

[130], pp. 459–467.

[68] K. J. Ahn, S. Guha, and A. McGregor, “Graph sketches: sparsification, spanners, and subgraphs,” in

Benedikt et al. [133], pp. 5–14.

[69] K. J. Ahn, S. Guha, and A. McGregor, “Spectral sparsification in dynamic graph streams,” in Ap-

proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 16th

International Workshop, APPROX 2013, and 17th International Workshop, RANDOM 2013, Berkeley,

CA, USA, August 21-23, 2013. Proceedings (P. Raghavendra, S. Raskhodnikova, K. Jansen, and J. D. P.

Rolim, eds.), vol. 8096 of Lecture Notes in Computer Science, pp. 1–10, Springer, 2013.

[70] A. Andoni, J. Chen, R. Krauthgamer, B. Qin, D. P. Woodruff, and Q. Zhang, “On sketching quadratic

forms,” in Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science,

ITCS ’16, (New York, NY, USA), p. 311–319, Association for Computing Machinery, 2016.

[71] Y. Li, H. L. Nguyen, and D. P. Woodruff, “Turnstile streaming algorithms might as well be linear

sketches,” in Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,

2014 (D. B. Shmoys, ed.), pp. 174–183, ACM, 2014.

[72] K. Hosseini, S. Lovett, and G. Yaroslavtsev, “Optimality of linear sketching under modular updates,”

in 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ,

USA (A. Shpilka, ed.), vol. 137 of LIPIcs, pp. 13:1–13:17, Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2019.

169

Bibliography

[73] S. Kannan, E. Mossel, S. Sanyal, and G. Yaroslavtsev, “Linear sketching over f_2,” in 33rd Computa-

tional Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA (R. A. Servedio, ed.),

vol. 102 of LIPIcs, pp. 8:1–8:37, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[74] J. Kallaugher and E. Price, “Separations and equivalences between turnstile streaming and linear

sketching,” in Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Comput-

ing, STOC 2020, Chicago, IL, USA, June 22-26, 2020 (K. Makarychev, Y. Makarychev, M. Tulsiani,

G. Kamath, and J. Chuzhoy, eds.), pp. 1223–1236, ACM, 2020.

[75] M. Elkin and S. Solomon, “Fast constructions of lightweight spanners for general graphs,” ACM

Trans. Algorithms, vol. 12, no. 3, pp. 29:1–29:21, 2016. See also SODA’13.

[76] S. Alstrup, S. Dahlgaard, A. Filtser, M. Stöckel, and C. Wulff-Nilsen, “Constructing light spanners

deterministically in near-linear time,” in 27th Annual European Symposium on Algorithms, ESA

2019, September 9-11, 2019, Munich/Garching, Germany. (M. A. Bender, O. Svensson, and G. Herman,

eds.), vol. 144 of LIPIcs, pp. 4:1–4:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. Full

version: https://arxiv.org/abs/1709.01960.

[77] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares, “On sparse spanners of weighted graphs,”

Discret. Comput. Geom., vol. 9, pp. 81–100, 1993.

[78] A. Filtser and S. Solomon, “The greedy spanner is existentially optimal,” SIAM J. Comput., vol. 49,

no. 2, pp. 429–447, 2020.

[79] S. Baswana and S. Sen, “A simple and linear time randomized algorithm for computing sparse

spanners in weighted graphs,” Random Struct. Algorithms, vol. 30, no. 4, pp. 532–563, 2007.

[80] J. Kallaugher, A. McGregor, E. Price, and S. Vorotnikova, “The complexity of counting cycles in the

adjacency list streaming model,” in Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium

on Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019

(D. Suciu, S. Skritek, and C. Koch, eds.), pp. 119–133, ACM, 2019.

[81] J. Kallaugher, M. Kapralov, and E. Price, “The sketching complexity of graph and hypergraph

counting,” in 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,

France, October 7-9, 2018 (M. Thorup, ed.), pp. 556–567, IEEE Computer Society, 2018.

[82] R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, M. J. Latifi Jebelli, S. Kobourov, and R. Spence, “Graph

spanners: A tutorial review,” Computer Science Review, vol. 37, p. 100253, 2020.

[83] M. Elkin, “Streaming and fully dynamic centralized algorithms for constructing and maintaining

sparse spanners,” ACM Trans. Algorithms, vol. 7, no. 2, pp. 20:1–20:17, 2011.

[84] S. Baswana, “Streaming algorithm for graph spanners - single pass and constant processing time

per edge,” Inf. Process. Lett., vol. 106, no. 3, pp. 110–114, 2008.

[85] S. Baswana, S. Khurana, and S. Sarkar, “Fully dynamic randomized algorithms for graph spanners,”

ACM Trans. Algorithms, vol. 8, no. 4, pp. 35:1–35:51, 2012.

170

https://arxiv.org/abs/1709.01960

Bibliography

[86] A. Bernstein, S. Forster, and M. Henzinger, “A deamortization approach for dynamic spanner and

dynamic maximal matching,” in Proceedings of the Thirtieth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 1899–1918, 2019.

[87] M. Kapralov and R. Panigrahy, “Spectral sparsification via random spanners,” in Innovations in

Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012 (S. Goldwasser, ed.),

pp. 393–398, ACM, 2012.

[88] I. Koutis and S. C. Xu, “Simple parallel and distributed algorithms for spectral graph sparsification,”

ACM Trans. Parallel Comput., vol. 3, no. 2, pp. 14:1–14:14, 2016.

[89] M. Kapralov, N. Nouri, A. Sidford, and J. Tardos, “Dynamic streaming spectral sparsification in

nearly linear time and space,” CoRR, vol. abs/1903.12150, 2019.

[90] M. Kapralov, A. Mousavifar, C. Musco, C. Musco, and N. Nouri, “Faster spectral sparsification in

dynamic streams,” CoRR, vol. abs/1903.12165, 2019.

[91] M. Charikar, M. Kapralov, N. Nouri, and P. Siminelakis, “Kernel density estimation through density

constrained near neighbor search,” in 61st IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020 (S. Irani, ed.), pp. 172–183, IEEE,

2020.

[92] J. Fan and I. Gijbels, Local polynomial modelling and its applications: monographs on statistics and

applied probability 66, vol. 66. CRC Press, 1996.

[93] B. Scholkopf and A. J. Smola, Learning with kernels: support vector machines, regularization,

optimization, and beyond. MIT press, 2001.

[94] S. Joshi, R. V. Kommaraji, J. M. Phillips, and S. Venkatasubramanian, “Comparing distributions

and shapes using the kernel distance,” in Proceedings of the twenty-seventh annual symposium on

Computational geometry, pp. 47–56, ACM, 2011.

[95] E. Schubert, A. Zimek, and H.-P. Kriegel, “Generalized outlier detection with flexible kernel density

estimates,” in Proceedings of the 2014 SIAM International Conference on Data Mining, pp. 542–550,

SIAM, 2014.

[96] C. R. Genovese, M. Perone-Pacifico, I. Verdinelli, L. Wasserman, et al., “Nonparametric ridge estima-

tion,” The Annals of Statistics, vol. 42, no. 4, pp. 1511–1545, 2014.

[97] E. Arias-Castro, D. Mason, and B. Pelletier, “On the estimation of the gradient lines of a density and

the consistency of the mean-shift algorithm,” Journal of Machine Learning Research, 2015.

[98] E. Gan and P. Bailis, “Scalable kernel density classification via threshold-based pruning,” in Pro-

ceedings of the 2017 ACM International Conference on Management of Data, pp. 945–959, ACM,

2017.

[99] J. Shawe-Taylor, N. Cristianini, et al., Kernel methods for pattern analysis. Cambridge university

press, 2004.

171

Bibliography

[100] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine learning. Adaptive computa-

tion and machine learning, MIT Press, 2006.

[101] R. Beatson and L. Greengard, A short course on fast multipole methods, pp. 1–37. Numerical

Mathematics and Scientific Computation, Oxford University Press, 1997.

[102] A. G. Gray and A. W. Moore, “N-body’problems in statistical learning,” in Advances in neural

information processing systems, pp. 521–527, 2001.

[103] A. G. Gray and A. W. Moore, “Nonparametric density estimation: Toward computational tractability,”

in Proceedings of the 2003 SIAM International Conference on Data Mining, pp. 203–211, SIAM, 2003.

[104] C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis, “Improved fast gauss transform and efficient

kernel density estimation,” in Proceedings of the Ninth IEEE International Conference on Computer

Vision-Volume 2, p. 464, IEEE Computer Society, 2003.

[105] D. Lee, A. W. Moore, and A. G. Gray, “Dual-tree fast gauss transforms,” in Advances in Neural

Information Processing Systems, pp. 747–754, 2006.

[106] P. Ram, D. Lee, W. March, and A. G. Gray, “Linear-time algorithms for pairwise statistical problems,”

in Advances in Neural Information Processing Systems, pp. 1527–1535, 2009.

[107] A. Backurs, M. Charikar, P. Indyk, and P. Siminelakis, “Efficient density evaluation for smooth kernels,”

in 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 615–626,

IEEE, 2018.

[108] A. Backurs, P. Indyk, and T. Wagner, “Space and time efficient kernel density estimation in high

dimensions,” in Advances in Neural Information Processing Systems, 2019.

[109] A. Rubinstein, “Hardness of approximate nearest neighbor search,” in Proceedings of the 50th

Annual ACM SIGACT Symposium on Theory of Computing, pp. 1260–1268, 2018.

[110] D. R. Karger and M. Ruhl, “Finding nearest neighbors in growth-restricted metrics,” in Proceedings

of the thiry-fourth annual ACM symposium on Theory of computing, pp. 741–750, ACM, 2002.

[111] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive hashing scheme based

on p-stable distributions,” in Proceedings of the twentieth annual symposium on Computational

geometry, pp. 253–262, ACM, 2004.

[112] P. Syminelakis, Kernel Evaluation in High Dimensions: Importance Sampling and Nearest-Neighbor

Search. PhD thesis, Stanford University, 2019.

[113] P. Siminelakis, K. Rong, P. Bailis, M. Charikar, and P. Levis, “Rehashing kernel evaluation in high

dimensions,” in International Conference on Machine Learning, pp. 5789–5798, 2019.

[114] R. Spring and A. Shrivastava, “A new unbiased and efficient class of lsh-based samplers and esti-

mators for partition function computation in log-linear models,” arXiv preprint arXiv:1703.05160,

2017.

172

Bibliography

[115] C. Luo and A. Shrivastava, “Arrays of (locality-sensitive) count estimators (ace): Anomaly detection

on the edge,” in Proceedings of the 2018 World Wide Web Conference, pp. 1439–1448, International

World Wide Web Conferences Steering Committee, 2018.

[116] B. Chen, Y. Xu, and A. Shrivastava, “Lsh-sampling breaks the computation chicken-and-egg loop in

adaptive stochastic gradient estimation,” arXiv preprint arXiv:1910.14162, 2019.

[117] C. Luo and A. Shrivastava, “Scaling-up split-merge mcmc with locality sensitive sampling (lss),” in

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4464–4471, 2019.

[118] X. Wu, M. Charikar, and V. Natchu, “Local density estimation in high dimensions,” in International

Conference on Machine Learning, pp. 5293–5301, 2018.

[119] J. M. Phillips, “ε-samples for kernels,” in Proceedings of the twenty-fourth annual ACM-SIAM

symposium on Discrete algorithms, pp. 1622–1632, SIAM, 2013.

[120] J. M. Phillips and W. M. Tai, “Improved coresets for kernel density estimates,” in Proceedings of the

Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2718–2727, SIAM, 2018.

[121] J. M. Phillips and W. M. Tai, “Near-optimal coresets of kernel density estimates,” in 34th International

Symposium on Computational Geometry (SoCG 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2018.

[122] Z. S. Karnin and E. Liberty, “Discrepancy, coresets, and sketches in machine learning,” in Conference

on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA (A. Beygelzimer and D. Hsu,

eds.), vol. 99 of Proceedings of Machine Learning Research, pp. 1975–1993, PMLR, 2019.

[123] H. Avron, H. Nguyen, and D. Woodruff, “Subspace embeddings for the polynomial kernel,” in

Advances in Neural Information Processing Systems 27 (Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, eds.), pp. 2258–2266, Curran Associates, Inc., 2014.

[124] N. Pham and R. Pagh, “Fast and scalable polynomial kernels via explicit feature maps,” in Proceed-

ings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining,

pp. 239–247, ACM, 2013.

[125] H. Avron, M. Kapralov, C. Musco, C. Musco, A. Velingker, and A. Zandieh, “Random fourier features

for kernel ridge regression: Approximation bounds and statistical guarantees,” in Proceedings of the

34th International Conference on Machine Learning-Volume 70, pp. 253–262, JMLR. org, 2017.

[126] T. D. Ahle, M. Kapralov, J. B. Knudsen, R. Pagh, A. Velingker, D. P. Woodruff, and A. Zandieh, “Oblivi-

ous sketching of high-degree polynomial kernels,” in SODA (to appear), 2020.

[127] M. Li, G. L. Miller, and R. Peng, “Iterative row sampling,” in 54th Annual IEEE Symposium on

Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pp. 127–136,

IEEE Computer Society, 2013.

[128] D. Achlioptas, “Database-friendly random projections: Johnson-lindenstrauss with binary coins,” J.

Comput. Syst. Sci., vol. 66, no. 4, pp. 671–687, 2003.

173

Bibliography

[129] M. Kapralov, J. Nelson, J. Pachocki, Z. Wang, D. P. Woodruff, and M. Yahyazadeh, “Optimal lower

bounds for universal relation, and for samplers and finding duplicates in streams,” in 58th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October

15-17, 2017 (C. Umans, ed.), pp. 475–486, IEEE Computer Society, 2017.

[130] Y. Rabani, ed., Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, SIAM, 2012.

[131] 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October

2006, Berkeley, California, USA, Proceedings, IEEE Computer Society, 2006.

[132] P. N. Klein, ed., Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, SIAM, 2017.

[133] M. Benedikt, M. Krötzsch, and M. Lenzerini, eds., Proceedings of the 31st ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24,

2012, ACM, 2012.

[134] R. A. Servedio and R. Rubinfeld, eds., Proceedings of the Forty-Seventh Annual ACM on Symposium

on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, ACM, 2015.

174

Navid Nouri
Curriculum Vitae

School of Computer and Communication Sciences
EPFL

I (+41) 78 730 75 18
navidnouri1992@gmail.com

� www.linkedin.com/in/navid-nouri-b6587a1b8/

Education
2017–2022 PhD in Computer Science, (Advisor: Prof. Michael Kapralov), EPFL, Lausanne, Switzerland

My research was focused on designing and implementing efficient algorithms and data structures for problems
with applications in machine learning such as Kernel Density Estimation, Near Neighbor Search, Graph
Sparsification and Graph Spanners.

2011–2016 B.Sc. in Electrical Engineering (Communications), Minoring in Mathematical Sciences,
Sharif University of Technology, Tehran, Iran

Work Experience
Summer 2022

(3 months)
Internship, JPMorgan Chase & Co. (AI research team), London, the United Kingdom
I was honored to be a part of the AI Research and synthetic data team. As an AI research intern, I had the
opportunity to conduct research under the supervision of Dr. Eleonora Kreacic and Dr. Vamsi Potluru. In
this period, we were able to:
○ design explainable differentially private synthetic dataset generation algorithms with theoretical guarantees
○ optimize a practical version of the algorithm to perform faster on real-world datasets with a large number

of rows and features
○ test the quality of output synthetic datasets with various metrics such as KS test via SDV library and

compare it to existing synthesizers
○ prepare the manuscript of this result to be submitted for publication

Summer 2021
(6 months,

from mid-June
to mid-Dec)

Internship, Credit Suisse (International Wealth Management), Zurich, Switzerland
I was fortunate to be a part of Wealth Engine team and collaborate with highly skilled and professional
individuals in the team. During this internship, I was able to:
○ work end-to-end on a natural language processing project
○ work as a machine learning engineer on the ML aspect of the project
○ integrate the project in a micro-service architecture
○ get involved in discussions with business stakeholders and implement their needs

Summer 2014
and 2015

Internship (Junior Research Assistant), Institute of Network Coding, Chinese University of Hong
Kong, Hong Kong
In these two internships, I was fortunate to work under the supervision of Prof. Chung Chan.
○ In the first internship, I was working as a junior member of a group of highly skilled and knowledgeable

people. Mainly, my task was to bridge the gap between two related research areas for this group. As my
first international experience, I gained wonderful experiences in a professional environment.

○ In the second internship, I was also working on a problem of designing low communication schemes in
graph networks. I had the privilege of working with a group of highly motivated people from various
cultures, which enriched my communication skills.

Skills
Programming

Languages
Python (Libraries: Numpy, Pandas, Matplotlib, Scikit-learn, FastAPI, JSON, PyTest,...)
○ Hands-on experience using Python and its libraries during my internship at Credit Suisse.

C++, Java, TypeScript, MATLAB, R

Other Linux (skilled in using terminal and bash scripting)
Git, Angular (TypeScript, CSS, HTML), Docker, OpenShift, REST-API,
○ Hands-on experience using these tools during my internship at Credit Suisse.

mySQL, LATEX, Microsoft Word, Excel, PowerPoint

Honors and Awards
2011 Ranked 19th in Iran’s University Entrance Exam, among 250,000 test-takers

2011-2016 Fellowship of Iran’s National Elite Foundation

2009 Honorary Diploma in Tournament of Towns international Mathematical Contest

2008 Ranked 1st in Paya National Mathematical Contest among more than 3000 groups

1/2

175

Publications
NeurIPS 2021 Efficient and Local Parallel Random Walks,

With Michael Kapralov, Silvio Lattanzi and Jakab Tardos,
(ArXiv link: https://arxiv.org/pdf/2112.00655.pdf)

SODA 2021 Graph Spanners by Sketching in Dynamic Streams and the Simultaneous Communication
Model,
With Arnold Filtser and Michael Kapralov,
(ArXiv link: https://arxiv.org/abs/2007.14204)

FOCS 2020 Kernel Density Estimation through Density Constrained Near Neighbor Search,
With Moses Charikar, Michael Kapralov and Paris Syminelakis,
(ArXiv link: https://arxiv.org/abs/2011.06997)

AISTATS
2020

Scaling up Kernel Ridge Regression via Locality Sensitive Hashing,
With Michael Kapralov, Ilya Razenshteyn, Ameya Velingker and Amir Zandieh,
(ArXiv link: https://arxiv.org/abs/2003.09756)

SODA 2020 Fast and Space Efficient Spectral Sparsification in Dynamic Streams,
With Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Aaron Sidford and
Jakab Tardos, This paper is the merger of the following papers:
� Faster Spectral Sparsification in Dynamic Streams
With Michael Kapralov, Aida Mousavifar, Cameron Musco and Christopher Musco,
(ArXiv link: https://arxiv.org/abs/1903.12165)
� Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space
With Michael Kapralov, Aaron Sidford and Jakab Tardos,
(ArXiv link: https://arxiv.org/abs/1903.12150)

Manuscripts
Submitted for

review and
available on

Arxiv

Age of Information-Reliability Trade-offs in Energy Harvesting Sensor Networks,
With Darya Ardan and Mahmood Mohassel Feghhi,
(ArXiv link: https://arxiv.org/abs/2008.00987)

Teaching Experiences
2020 Teaching Assistant of Prof. Kapralov, Advanced Algorithms

2019 Teaching Assistant of Prof. Svensson, Advanced Algorithms

2018, 2019 Teaching Assistant of Prof. Kapralov, Algorithms

2018 Teaching Assistant of Prof. Anthony C. Davison, Probability and Statistics

Graduate Courses’ Grades
Sublinear Algorithms for Big Data Analysis, Prof. Kapralov, 6/6

Advanced Algorithms, Prof. Svensson, 6/6

Information Theory and Coding , Prof. Telatar, 6/6

Language Skills
English Professional Working Proficiency

Turkish Fluent

Azeri Native (Mother Tongue)

Persian Native

2/2

176

	Acknowledgements
	Abstract
	Contents
	Introduction
	Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space
	Introduction
	Preliminaries
	Main result
	Overview of the approach
	Our algorithm and proof of main result
	Maintenance of sketches
	Proof of Theorem 1.1.1

	Graph Spanners by Sketching in Dynamic Streams and the Simultaneous Communication Model
	Introduction
	Preliminaries
	Technical Overview
	Spectral Sparsifiers are Spanners
	Sparse graphs
	Tightness of Theorem 2.1.1 and Theorem 2.4.1
	Stretch-Space trade-off

	Simultaneous Communication Model
	The filtering algorithm
	Stretch-Communication trade-off

	Kernel Density Estimation through Density Constrained Near Neighbor Search
	Introduction
	Our results
	Related Work
	Outline

	Technical overview
	Data-independent algorithm (Section 3.4)
	Data dependent algorithm (Section 3.5)

	Preliminaries
	Basic notation
	F() and G(s,,)
	Projection
	Pseudo-Random Spheres

	Kernel Density Estimation Using Andoni-Indyk LSH
	Improved algorithm via data dependent LSH
	Preprocessing algorithm and its analysis
	Parameter settings
	Query procedure

	Query time analysis
	Path geometries
	Upper-bounding the expected number of points examined by the query
	Proof of Lemma 3.6.1

	Reduction to zero-distance monotone execution paths
	Feasible LP solutions based on valid execution paths
	Construction of a feasible solution
	Monotonicity claims
	Bounding terminal densities using feasible LP solutions

	Upper bounding LP value

	Conclusion
	Supplementary Materials for Chapter 1
	Supplementary Materials for Chapter 2
	Conjectured hard input distribution
	Omitted Proofs
	Omitted proofs from Section 2.2
	Omitted proofs from Section 2.4

	Supplementary Materials for Chapter 3
	Omitted proofs from Section 3.3
	Pseudo-random data sets via Ball carving
	Correctness proof of the data-dependent algorithm
	Omitted discussion from Section 3.6.1
	Omitted claims and proofs from Section 3.6
	Proof of Claim 3.8.3

	Bibliography
	Curriculum Vitae

