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Stain-free identification of cell nuclei using 
tomographic phase microscopy in flow 
cytometry

Daniele Pirone    1,2, Joowon Lim    3, Francesco Merola1, Lisa Miccio1, 
Martina Mugnano1, Vittorio Bianco1, Flora Cimmino4, Feliciano Visconte4, 
Annalaura Montella    4,5, Mario Capasso4,5, Achille Iolascon4,5, 
Pasquale Memmolo1, Demetri Psaltis3   & Pietro Ferraro    1 

Quantitative phase imaging has gained popularity in bioimaging because 
it can avoid the need for cell staining, which, in some cases, is difficult or 
impossible. However, as a result, quantitative phase imaging does not 
provide the labelling of various specific intracellular structures. Here we 
show a novel computational segmentation method based on statistical 
inference that makes it possible for quantitative phase imaging techniques 
to identify the cell nucleus. We demonstrate the approach with refractive 
index tomograms of stain-free cells reconstructed using tomographic 
phase microscopy in the flow cytometry mode. In particular, by means 
of numerical simulations and two cancer cell lines, we demonstrate 
that the nucleus can be accurately distinguished within the stain-free 
tomograms. We show that our experimental results are consistent with 
confocal fluorescence microscopy data and microfluidic cyto-fluorimeter 
outputs. This is a remarkable step towards directly extracting specific 
three-dimensional intracellular structures from the phase contrast data in a 
typical flow cytometry configuration.

Traditional tools of histopathology will evolve soon, and the future 
of precision medicine will pass through the accurate screening of 
single cells. A key challenge that will allow the next jump forward is 
achieving a more informative label-free microscopy. Nowadays, the 
gold-standard imaging tool in cell biology is fluorescence micros-
copy (FM), in which stains or fluorescent tags are used to make the 
biological sample visible on a selective basis1,2. Although FM has allowed 
researchers to achieve meaningful progress in cellular biology and thus 
greatly advance scientific knowledge, it has some limitations. In fact, 
FM is intrinsically an indirect imaging method mediated by chemical 
agents. As a result, drawbacks exist that limit its applications, such 

as photobleaching and phototoxicity2. Avoiding staining will permit 
one to access non-destructive, rapid and chemistry-free analysis in 
biology and medicine. On the other hand, quantitative phase imaging 
(QPI) is emerging as a very useful tool in label-free microscopy, and 
recently, many interesting results have been achieved in this field2–11. 
Starting from QPI, tomographic phase microscopy (TPM) can be per-
formed to map the refractive index (RI) of a biological specimen in 
three dimensions, thus providing a full quantitative measurement 
of the three-dimensional (3D) morphologies and RI volumetric dis-
tributions at the single-cell level12–20. However, the advantages of QPI 
are counterbalanced by the lack of direct intracellular specificity.  
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the flow cytometry condition30,31. Our method is completely different 
from the others followed so far22–28, since it avoids the learning step 
and exploits a robust ad hoc clustering algorithm, that is, it recognizes 
statistical similarities among groups of nucleus voxels. The output of 
the CSSI algorithm is the convex hull that overlaps with the cell nucleus, 
that is, the smallest convex set that, on average, contains it. For this 
reason, hereafter we will refer to the segmented region as a nuclear 
organelle convex hull (OCH). However, since the nucleus mostly has a 
convex shape, a potential misestimation of the nuclear shape is neg-
ligible. To the best of our knowledge, for the first time, we are posing 
the problem of delineating the stain-free nucleus in three dimensions 
within single suspended cells flowing in a microfluidic cytometer. 
Beyond the numerical assessment through virtual 3D cell phantoms, 
we show that the CSSI algorithm can fill the specificity gap with 2D FM 
cyto-fluorimetry and with 3D FM confocal microscopy. In addition, 
CSSI allows for direct measurements at the stain-free nuclear level of 
intrinsic 3D parameters (morphology, RI and their derivatives, like dry 
mass) correlated to cell physiology and health state11, thus providing a 
whole label-free quantitative characterization exploitable for analysing 
large numbers of flowing single cells32.

Results
Description and assessment of the CSSI method
To reconstruct the 3D RI distribution at the single-cell level in flow, 
the TPM system in the flow cytometry condition (Fig. 2a) has been 
employed, which is described in the Methods section along with the 
numerical processing summarized in Fig. 2b. Since the subcellular 
structures (that is, organelles) often cannot be detected within the 
tomogram by conventional RI-based thresholding methods, the CSSI 
algorithm is proposed to identify the nuclear OCH.

To validate the CSSI method, we preliminarily tested and assessed 
it on a 3D numerical cell phantom simulation, modelled with the cell 

Among all the intracellular structures, the nucleus is the principal one 
in the eukaryotic cell since it contains most of the genetic material 
and is responsible for the cellular lifecycle. Identifying the nucleus 
with label-free 3D imaging is a challenging task since the nuclear size 
and RI can vary among different cell lines, within the same cell line 
and even within the same cell, depending on the lifecycle’s phases. In 
addition, different subcellular structures show similar RI values21, thus 
making any threshold-based detection method ineffective. Recently, 
notable progresses have been reported to introduce specificity in QPI 
by artificial intelligence (AI). Generative networks for cross-modality 
imaging and virtual staining are good examples in this sense. Networks 
for improving data analysis have been reported and commercialized as 
well, as in the case of the Nikon NIS.ai software suite that virtually stains 
and can segment the nuclei from label-free images of cells in adhesion. 
In this software, conventional segmentation of two-dimensional (2D) 
labelled images is used to pre-train the network, which can then emulate 
the process when requested by the users. Deep learning was employed 
to virtually stain unlabelled tissues22–24 as well as single cells25,26 in quan-
titative phase maps (QPMs). The concept of virtual staining has then 
been extended to 3D RI tomograms of adherent samples, thus showing 
an AI-based RI to fluorescence mapping for the identification of the 
stain-free nucleus27 and other endogenous subcellular components28. 
In particular, fluorescent signals are inferred from 3D RI distributions 
with remarkable generalization power, which is one of the suggestable 
pathways towards label-free specificity. To illustrate the state of the 
art for intracellular specificity, the summary diagram shown in Fig. 1 
compares various label-free and fluorescent techniques.

In this paper, we propose a new 3D shape-retrieval method, called 
computational segmentation based on statistical inference (CSSI), 
to identify the nucleus in 3D TPM reconstructions in flow cytometry. 
To this aim, we employ the learning tomography (LT) reconstruction 
algorithm29 on holographic images recorded through a TPM system in 
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Fig. 1 | Comparison between label-free and fluorescent bioimaging in 
microscopy. Unlike label-free bioimaging (blue box), fluorescent bioimaging 
(yellow box) has subcellular specificity because the nucleus is marked, but it is 
qualitative and limited by the staining itself. The methods in the red box allow the 
filling of the specificity gap between the label-free and fluorescent techniques 
(dashed lines). In particular, the virtual staining of unlabelled tissues22–24 and 
single cells25,26 in the 2D imaging case has been demonstrated with the aid of 
deep learning. In the 3D imaging case, the nuclei of unlabelled and adhered cells 
have been identified using a deep convolutional neural network27,28 to introduce 

specificity in TPM reconstructions, thus making 3D label-free TPM equivalent to 
the well-established 3D confocal microscopy, but only for the static analysis of 
fixed cells at rest on a surface. The proposed technology (green pathway) fills a 
blank in the bioimaging realm because, in terms of specificity, statistics-based 
segmentation (CSSI method) makes the TPM in flow cytometry consistent 
with both 2D FM flow cytometry and 3D FM confocal microscopy of suspended 
cells. Moreover, it can also emulate the light-sheet FM, which has been recently 
integrated into microfluidic circuits, thus creating a 3D FM flow cytometer42,43.
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membrane, nucleus, cytoplasm and mitochondria (Fig. 3a and Meth-
ods). As reported by the histogram (Fig. 3b), an RI distribution has been 
assigned to each of the four subcellular structures. This 3D numerical 
cell phantom has been used to assess our CSSI algorithm for nucleus 
segmentation. However, nucleus segmentation is only one case of a 
more general technique, which, in principle, can segment any kind 
of subcellular structure with a suitable spatial resolution, because 
it only exploits the hypothesis of knowing the location of a group of 
voxels belonging to the organelle to be segmented, considered as the 
initial reference set. In fact, the CSSI method is based on the Wilcoxon–
Mann–Whitney (WMW) test33,34—a statistical test that we use to reject 
or accept the hypothesis for which a test set has been drawn from the 
same distribution as the designed reference set. In particular, the steps 
depicted in the scheme in Fig. 3c are performed as follows:

•	 Rough clustering of the organelle voxels, exploiting the WMW 
test to infer the statistical similarity between the different voxel 
clouds (that is, the test sets) and a certain voxel cloud (that is, the 
initial reference set) that contains the voxels supposed to belong 
to the organelle of interest.

•	 Filtering of the outlier organelle voxels when they are too far away 
from the centroid of the rough organelle cluster in terms of both 
geometric and statistical distances.

•	 Refinement of the filtered organelle cluster to improve its external 
shape by adding/removing smaller voxel clouds.

•	 Filling of holes and smoothing of corners of the refined organelle 
cluster by common morphological operators.

Notice that whenever the WMW test is used, the reference set is 
randomly selected from the last estimation of the organelle cluster until 
that moment, to match its dimensionality with that of the test set, thus 

preserving the fairness of the statistical test. Due to this random selec-
tion, by repeating the described steps several times, at each iteration 
j = 1,2,…K, we can obtain a slightly different estimation of the OCH. The 
output of each iteration is a binary-valued 3D volume whose non-null 
values correspond to the voxels associated with the organelle. There-
fore, the sum of all the K outputs provides a tomogram of occurrences, 
from which the probability that a voxel belongs to the organelle can be 
inferred through a normalization operation. Finally, the OCH is identi-
fied by a suitable probability threshold. A detailed description of the 
CSSI algorithm is reported in Supplementary Section 1, Supplementary 
Figs. 1 and 2 and Supplementary Table 1. In this paper, we focus on the 
problem of stain-free nucleus segmentation; therefore, we associate 
the initial reference set to the central voxels of the cell. Indeed, for many 
kinds of suspended cells, the central voxels belong to the nucleus. This 
property is particularly prevalent in cancer cells. This is confirmed by 
the 2D images of the neuroblastoma cells recorded through an FM 
cyto-fluorimeter (Supplementary Fig. 3), by the 3D morphological 
parameters reported in the literature for MCF-7 cells imaged through 
a confocal microscope35 and more generally by the increase in the 
nucleus–cytoplasm ratio demonstrated in cancer cells36–40.

In Fig. 3d, the sole simulated nucleus is reported on the left in red 
within the blue cell shell, whereas we show on the right the nucleus 
segmented from the 3D numerical cell phantom through the CSSI 
algorithm. This visual comparison shown in Fig. 3d suggests that the 
proposed CSSI method allows segmenting a nucleus region very close 
to the original one, as also confirmed by the promising quantitative 
performances reported below the tomograms. Moreover, to numeri-
cally assess the proposed 3D CSSI algorithm, it has been applied to 
reconstruct the nuclei of 1,000 numerical cell phantoms simulated 
by randomly drawing their morphological and RI parameters from 
the distributions in the Methods section and Supplementary Table 2.
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Fig. 2 | TPM in flow cytometry technique. a, Sketch of the in-flow TPM setup 
based on a digital holographic microscope in the off-axis configuration.  
BSF, beamsplitter fibre; MP, microfluidic pump; MC, microfluidic channel;  
OB, object beam; MO, microscope objective; BE, beam expander;  
RB, reference beam; BC, beam combiner; PC, personal computer. According 
to the reference system, cells flow along the y axis, rotate around the x axis and 
are illuminated along the z axis. b, Block diagram of the holographic processing 

pipeline to reconstruct the stain-free 3D RI tomograms of flowing and rotating 
single cells. Multiple digital holograms are recorded around the cell, from which 
the corresponding QPMs are numerically retrieved. The pose of each flowing 
cell is calculated by the 3D holographic tracking method and the rolling angles 
recovery approach. Finally, the LT algorithm is exploited to enhance the initial 
tomographic reconstruction obtained by the inverse Radon transform.
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The overall CSSI performances are summarized in the first column 
of Supplementary Table 3 by means of nine metrics, and the corre-
sponding histograms are displayed in blue in Supplementary Fig. 4. It 
is worth noting that, to simplify the description of the CSSI algorithm 
and highlight its results about the stain-free nucleus identification, 
so far we have neglected the presence of the nucleolus within the 3D 
numerical cell phantoms. The extended analysis with the simulation 
of the nucleolus (Supplementary Section 2 and Supplementary Figs. 4 
and 5) highlights that the presence of nucleoli inside the nucleus does 
not substantially deteriorate the performances of the CSSI nucleus 
segmentation algorithm (Supplementary Table 3 (second column) 
and Supplementary Fig. 4 (orange histograms)). For example, the 
accuracy passes from an average value of ACC = 96.28% in the case 
without the nucleolus to an average value of ACC = 95.86% in the case 
with the nucleolus.

Experimental consistency with 2D FM cyto-fluorimetry
The proposed CSSI method has been used to retrieve the 3D nuclear 
OCHs from five stain-free human neuroblastoma cancer cells (SK-N-SH 
cell line), reconstructed by TPM in flow cytometry. The isolevel rep-
resentation of the SK-N-SH cell is shown in Fig. 4a, highlighting the 
3D segmented nuclear OCH (marked in red) within the blue cell shell. 
Moreover, the segmented nucleus is marked by the red line in the central 
slice in Fig. 4b, whereas we report in Fig. 4c the corresponding 3D RI his-
togram (in green), separating the contributions of the 3D nuclear OCH 
(red) and 3D non-nucleus (blue) regions. To experimentally assess the 

3D segmentation technique, we digitally projected the segmented 3D 
TPM reconstruction back to 2D where the experimental 2D FM images 
are available for comparison. In particular, the segmented RI tomo-
gram is digitally rotated from 0° to 150° with an angular step of 30° 
around the x, y and z axes, and then its silhouettes along the z, x and 
y axes, respectively, are considered to create the 2D TPM segmented 
projections (Fig. 4a). According to the ray optics approximation, the 
phase measured by digital holography is directly proportional to the 
integral of the RI values along the direction perpendicular to the plane 
of the camera. In this way, 18 unlabelled QPMs were obtained. As shown 
in a reprojected QPM (Fig. 4d, left), it is cumbersome to recognize a 
subcellular structuring since no label is employed; however, owing to 
the proposed 3D CSSI algorithm, the region occupied by the nucleus 
can be also marked (red line) in the 2D TPM projection within the outer 
cell (blue line). We exploit this process to further assess the proposed 
segmentation algorithm, by comparing the 3D results obtained through 
the in-flow TPM technique with a conventional 2D FM cyto-fluorimeter 
(ImageStreamX; Methods). The latter has been used to record 11,549 2D 
FM images of flowing SK-N-SH single cells, in which the nuclei have been 
stained through fluorescent dyes. In Fig. 4d (right), the bright-field 
image of an SK-N-SH cell has been combined with the corresponding 
fluorescent image of the marked nucleus; therefore, the false-colour 
visualization makes the nucleus easily distinguishable (red line) with 
respect to the outer cell (blue line). ImageStreamX can record a single 
random 2D image for each cell since it goes through the field of view 
(FOV) once. Instead, TPM allows the 3D tomographic reconstruction 
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Fig. 3 | Numerical assessment of the CSSI algorithm applied to segment the 
3D nuclear OCH from a 3D numerical cell phantom. a, Isolevel representation 
of the 3D cell model, simulated with four subcellular components, that is, cell 
membrane, cytoplasm, nucleus and 18 mitochondria. b, Histogram of the RI 
values assigned to each simulated subcellular structure in a. The red arrow at the 
top highlights the RI values assigned to the transition region between the nucleus 
and cytoplasm. c, Block diagram of the CSSI method to segment the nuclear OCH 

from a stain-free 3D RI tomogram. d, Visual comparison between the simulated 
3D nucleus (left) and the 3D nuclear OCH (right) segmented from the simulated 
RI tomogram in a. The simulated nucleus and segmented nucleus are marked in 
red within the blue cell shell. ACC, accuracy; SENS, sensitivity; SPEC, specificity. 
The clustering performances obtained in this simulation are reported below 
(definitions in Supplementary Table 3). Additional information is provided in 
Supplementary Video 1.
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of a single cell. Through the reprojection process, we simulate the 
transition of the reconstructed cell within the ImageStreamX FOV at 
different 18 3D orientations with respect to the optical axis. In this way, 
we digitally replicate the ImageStreamX recording process and we also 
increase the dataset of 2D TPM images avoiding a high correlation 
between the reprojections of the same cell, because of the choice of 
a big angular step (that is, 30°). Hence, in the 3D scatter plot (Fig. 4e),  
we quantitively compare some 2D morphological parameters rep-
resentative of the nucleus size, nucleus shape and nucleus position, 

that is, nucleus–cell area ratio (NCAR), nucleus aspect ratio (NAR) and 
normalized nucleus–cell centroid distance (NNCCD), respectively, 
measured from the 90 TPM images (red dots) and 11,549 FM images 
(blue dots). In particular, we computed the NAR as the ratio between 
the minor axis and major axis of the best-fitted ellipse to the nucleus 
surface, whereas the nucleus–cell centroid distance refers to 2D cen-
troids and has been normalized to the radius of a circle having the same 
area of the cell, thus obtaining the NNCCD value. The 3D scatter plot in 
Fig. 4e highlights the very good agreement between the TPM and FM 
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Fig. 4 | Experimental assessment of the CSSI algorithm applied to segment 
the 3D nuclear OCHs from unlabelled in-flow TPM reconstructions of five 
SK-N-SH cells, compared with the morphological parameters measured 
through 2D FM cyto-fluorimetry. a, Three-dimensional segmented nucleus 
(red) within the 3D cell shell (blue) of an SK-N-SH cell reconstructed by TPM. The  
segmented tomogram is rotated around the x, y and z axes (orange arrows) and  
then reprojected along the z, x and y axes (white arrows), thus obtaining 2D TPM  
segmented projections in the x–y, y–z and x–z planes, respectively. b, Central 
slice of the isolevel representation in a, with the nucleus marked by the red 
line. c, RI histogram of the SK-N-SH cell in a and b reconstructed by 3D in-flow 
TPM (green), along with the RI distributions of its 3D nuclear OCH (red) and 

non-nucleus region (blue) segmented by the CSSI algorithm. d, Two-dimensional 
segmented projection with the nucleus (red line) and non-nucleus (blue line) 
regions, obtained by reprojecting 3D unlabelled TPM RI reconstruction in a  
and b (left) and by recording 2D labelled FM images (right). Scale bar, 5 μm.  
e, Three-dimensional scatter plot of the nucleus size versus nucleus shape versus 
nucleus position measured in 11,549 FM (blue dots) and 90 TPM (red dots) 2D 
projections. The nucleus size is NCAR, nucleus shape is NAR and nucleus position 
is NNCCD. f–h, Two-dimensional scatter plots of the nucleus size versus nucleus 
shape (f), nucleus size versus nucleus position (g) and nucleus shape versus 
nucleus position (h), containing the same points in e. Additional information is 
provided in Supplementary Video 2.
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2D nuclear features since the red dots indicating TPM are completely 
contained within the blue cloud indicating FM. In addition, by using the 
one-sample multivariate Hotelling’s T2 test41 between the TPM and FM 
measurements about NCAR, NAR and NNCCD, we also obtained a high 
p value, that is, 0.962, according to which the hypothesis that TPM and 
FM 2D nuclear features have been drawn from the same distributions is 
not rejected with a high confidence level. This quantitative comparison 
is summarized in Supplementary Table 4. Moreover, to better visualize 
the 3D scatter plot (Fig. 4e), we split it into three different 2D scatter 
plots (Fig. 4f–h).

Experimental consistency with 3D FM confocal microscopy
For the second experimental assessment, three stain-free human 
breast cancer cells (MCF-7 cells) have been reconstructed by TPM in 
flow cytometry and then segmented by the CSSI method (Fig. 5a,b). In 
particular, the nucleus shell is marked in red within the blue cell shell 
in the isolevel representation of Fig. 5a; the segmented central slice is 
displayed in Fig. 5b. Moreover, in Fig. 5c, we display the 3D RI histogram 
(green), also separating the RI distribution of the 3D nuclear OCH (red) 
and 3D non-nucleus region (blue). In this case, the experimental assess-
ment is based on a quantitative comparison with the 3D morphological 
parameters measured in another work35, in which a confocal microscope 
has been employed to find differences between the viable and apoptotic 
MCF-7 cells by extracting the 3D morphological features. In this study, 
206 suspended cells were stained with three fluorescent dyes to meas-
ure the average values and standard deviations of 3D morphological 
parameters about the overall cell and its nucleus and mitochondria.  

A synthetic description of the 3D nucleus size, shape and position is 
given by nucleus–cell volume ratio (NCVR), nucleus surface–volume 
ratio (NSVR) and normalized NNCCD, respectively. In particular, in this 
case, the nucleus–cell centroid distance refers to 3D centroids and has 
been normalized with respect to the radius of a sphere having the same 
cell volume, thus obtaining the NNCCD value. Moreover, it is worth 
noting that NCVR and NSVR are direct measurements reported else-
where35, whereas NNCCD is an indirect measurement since it has been 
computed using the direct values in that work35. In the 2D scatter plots 
(Fig. 5d–f) regarding the nucleus size, shape and position, the three TPM 
measurements (red dots) are reported along with three blue rectangles, 
which are the intervals μ ± 1σ, μ ± 2σ and μ ± 3σ, where μ is the average 
value and σ is the standard deviation of the same parameters meas-
ured by FM confocal microscopy. These scatter plots highlight a very 
good agreement between the 3D nucleus identified in labelled static 
MCF-7 cells by confocal microscopy and the 3D nucleus segmented in 
unlabelled flowing MCF-7 cells by the proposed CSSI algorithm. In fact, 
all the TPM values are located in the 1σ interval around the FM average 
values, except for shape measurement, which is, however, located in the 
2σ interval around the FM average value (Fig. 5d,f). The values shown 
in Fig. 5d–f are summarized in Supplementary Table 5.

Discussion
In this paper, we introduce and discuss an entirely new strategy for 
bridging the gap between FM and TPM in terms of subcellular speci-
ficity. In particular, we demonstrate—for the first time—the capabil-
ity to identify the cell nucleus from 3D phase contrast tomograms in 
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Fig. 5 | Experimental assessment of the CSSI algorithm applied to segment 
the 3D nuclear OCHs from unlabelled in-flow TPM reconstructions of three 
MCF-7 cells, compared with the morphological parameters measured 
through 3D FM confocal microscopy. a, Three-dimensional segmented nuclear 
OCH (red) within unlabelled 3D cell shell (blue) reconstructed through in-flow 
TPM. b, Central slice of the isolevel representation in a, with the nucleus marked 
by the red line. c, RI histogram of the MCF-7 cell in a and b reconstructed by 3D 
in-flow TPM (green), along with the RI distributions of its 3D nuclear OCH (red) 

and non-nucleus region (blue) segmented by the CSSI algorithm. d–f, Scatter 
plots of nucleus size versus nucleus shape (d), nucleus size versus nucleus 
position (e) and nucleus shape versus nucleus position (f), measured in three 
segmented TPM MCF-7 nuclei (red dots) along with the corresponding FM 
intervals (blue rectangles) around the average values, with half-widths 1σ, 2σ and 
3σ (σ is the standard deviation of the measurements). The nucleus size is NCVR, 
nucleus shape is NSVR and nucleus position is NNCCD. Additional information is 
provided in Supplementary Video 2.
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unstained cells analysed in the flow cytometry modality. Exploiting the 
learning-based tomographic reconstruction algorithm, we developed 
the CSSI method to identify a stain-free organelle region. The numerical 
simulations yielded great performances in accomplishing the task of 
nuclei extraction and measurement by our new proposed approach. In 
addition, we performed the CSSI experimental assessment by retriev-
ing the stain-free nuclei for two distinct cancer cell lines starting from 
the 3D RI reconstructions of the TPM system in flow cytometry, and we 
discussed the consistency with the classical FM microscopic methods 
(Fig. 1, green dashed lines).

To provide a general overview of the differences, advantages and 
limitations of the main methods that aim at introducing nucleus speci-
ficity, we compare the most substantial efforts towards this goal (Table 1)  
by just underlying the field of application of each listed technique with 
respect to what was claimed in the related work. Therefore, each cell in 
this table is filled with flags (✔) or crosses (×) depending on whether 
the corresponding method possesses or lacks a certain attribute, 
respectively, each of them being highly pursued in the bioimaging 
field. PhaseStain22, PICS25 and HoloStain26 are virtual staining-based 
methods that use AI (generative adversarial networks) to emulate 
fluorescence in a stain-free manner, which is certainly one of the most 
interesting approaches shown lately to overcome the main limitation 
of QPI towards organelle specificity. In the 3D case, the most promis-
ing approach to add specificity to TPM is based on a convolutional 
neural network27,28, which, so far, has been validated by identifying 
cells’ nuclei and other subcellular structures in the label-free modality 
for adherent samples. Again, the approach relies on AI to segment the 
nucleus. In this sense, we believe the CSSI method is very promising to 
promote label-free TPM with nucleus specificity since it addresses all 
the required attributes shown in Table 1. In particular, the proposed 
CSSI algorithm allows in-flow TPM to reach the same results as the 
2D FM cyto-fluorimeter, but without using dyes and preserving its 
high-throughput property. Furthermore, the TPM reprojections are 
much more informative than the FM images (Fig. 4d). Indeed, the 
phase values contain a quantitative measurement about both 3D sub-
cellular morphology and RI distribution, which can be associated to 
the cell biology, instead of the 2D FM images, from which the sole 
2D morphological parameters can be inferred. Similarly, besides the 
3D morphological analysis of confocal microscopy, a complete 3D 
label-free quantitative characterization of the RI-based fingerprint 
at the subcellular single-cell level is possible in our technology, as 
shown by the histograms in Figs. 4c and 5c. Furthermore, the confo-
cal microscope can only image static samples. Instead, in the range of 
fluorescence-based methods, recently, a light-sheet FM strategy has 
been implemented to retrieve the volumetric imaging of single cells 
as they flow in microfluidic circuits42,43. Although promising com-
pared with confocal microscopy, light-sheet FM combined with flow 
cytometry is still qualitative and limited by the staining drawbacks 
such as a priori knowledge of the target proteins, phototoxicity and 
photobleaching.

As demonstrated in the present paper, the CSSI approach is an 
ad hoc clustering algorithm based on the computation of statistical 
similarities among groups of voxels inside the same cell. The strength 
of CSSI lies in completely avoiding training neural networks through 
FM images. This feature comes with two main associated advantages. 
(1) Any network that learns from examples of fluorescence emissions 
is inherently biased by the labelling process itself (for example, pho-
tobleaching and photodamaging) and thus cannot perform better than 
the ground truth. (2) In the case of flowing biological cells in suspen-
sion, a voxel-level registration between 3D RI and 3D fluorescence is 
not obtainable; therefore, deep neural networks cannot learn from 
examples of tomogram pairs. In the absence of the ground truth, we 
rely on the statistical correlation between the tomogram voxels to 
calculate their associations to the cell regions. At the same time, our 
approach comes with two main drawbacks. (1) The computational times 

are much higher than the inference times of deep neural networks.  
(2) The accuracy of the estimated associations depends on the sta-
tistical significance of the tests the algorithm performs. Thus, a poor 
tomographic resolution can limit the accuracy in identifying small 
subcellular structures. However, we expect that a combined approach 
between deep learning and statistical inference could be successfully 
attempted in the future. For instance, CSSI could be used to generate 
a dataset of tomogram pairs to train a deep neural network to emulate 
the CSSI process and obtain real-time inference in nucleus identifica-
tion in flowing cells. It is worth pointing out that, to date, the CSSI is the 
sole method able to retrieve the 3D nuclear specificity in stain-free sus-
pended single cells in the flow cytometry mode, thus providing quanti-
tative measurements at the subcellular level with statistical significance 
on a large number of cells by potentially exploiting the high-throughput 
property. Finally, the CSSI algorithm could be prospectively transferred 
to other scenarios. In fact, the sole property requested by the CSSI 
method is having different statistical distributions of the reconstructed 
quantity among the several intracellular organelles32. Therefore, the 
same method can also be applied to other flow cytometric tomographic 
phase imaging techniques44. In particular, the WMW statistical test 
is a non-parametric hypothesis test capable to disclose differences 
between the medians of two statistical distributions. Therefore, the 
proposed CSSI method is, in principle, able to segment a desired orga-
nelle whether the difference between its RI median value and RI median 
values of all the other intracellular structures is greater than the RI 
resolution of the employed tomographic system. Thus, the CSSI is 
expected to work well when the signal-to-noise ratio is high enough 
to clarify the differences between the RI statistical distributions of the 
several cell organelles. In fact, in the considered simulations, the RI 
values were rounded at the third decimal place to investigate the CSSI 
robustness against the noise in the worst resolution case. Of course, a 
higher signal-to-noise ratio (that is, better RI resolution) would improve 
the CSSI performances. Furthermore, the steps of the CSSI algorithm 
(Supplementary Section 1) have been developed around the discussed 
statistical working principle with the aim of identifying a single com-
pact organelle having a distinctive RI distribution inside the cell, and 
it has been demonstrated for segmenting the nucleus. However, in 
view of the adopted statistical strategy, the CSSI algorithm could be, 
in principle, adapted to investigate other cell types and single compact 
organelles. To prove this, we demonstrated that, by only changing the 
starting reference cube CR, the same pipeline is also able to provide 
the stain-free nucleolus segmentation in case of cells having a single 
nucleolus (Supplementary Section 3, Supplementary Figs. 6 and 7 and 
Supplementary Table 3 (third column)). Actually, the main factor that 
could limit the success of the CSSI algorithm is a low imaging spatial 
resolution with respect to the size of the analysed organelle, which 
means that the stain-free organelle must be represented by a suitable 
number of voxels (Supplementary Section 3 and Supplementary Fig. 8).  

Table 1 | Properties of methods for nucleus identification

Label free 3D Flow cytometry Specificity

QPI ✔ × ✔ ×

TPM ✔ ✔ ✔ ×

FM cytometry × × ✔ ✔

FM confocal microscopy × ✔ × ✔

Light-sheet FM42,43 × ✔ ✔ ✔

PhaseStain22 and PICS25 ✔ × × ✔

HoloStain26 ✔ × ✔ ✔

TPM + deep learning27,28 ✔ ✔ × ✔

TPM + CSSI ✔ ✔ ✔ ✔
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Future experiments will be dedicated to the application of the CSSI 
algorithm for identifying other single stain-free intracellular organelles 
and to its extension to multiple stain-free intracellular organelles via 
the introduction of slight changes in the CSSI algorithm to avoid the 
constraints used here to gather all the candidate cubes with the aim of 
segmenting a single compact region, that is, the nucleus.

In conclusion, we believe that owing to the abovementioned prop-
erties, the CSSI algorithm combined with TPM in the flow cytometry 
condition could open a new route for label-free microscopy as a bio-
medical tool. By starting from this conceptually ground-breaking 
strategy, such a tool could revolutionize cancer diagnosis45–47, for 
example, through the search for circulating tumour cells in the liquid 
biopsy paradigm48, as well as generally affirm TPM as a viable method 
for intracellular quantitative characterization at the single-cell level, 
which can be further exploited for therapeutic purposes in personal-
ized medicine49.
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Methods
Sample preparation
The human breast cancer cells (MCF-7 cell line) and the human neuro-
blastoma cells (SK-N-SH cell line) were selected for the tomographic 
experiments. The MCF-7 and SK-N-SH cells were cultured in RPMI 
1640 and minimum essential medium Eagle from Sigma-Aldrich, 
respectively. Both cell culture media were supplemented with 10% 
foetal bovine serum, 2 mM l-glutamine, 100 μg ml−1 streptomycin 
and 100 U ml−1 penicillin. Then, the cells were collected from the Petri 
dish by incubation for 5 min with a 0.05% trypsin–EDTA solution 
(Sigma). Finally, the MCF-7 and SK-N-SH cells were centrifuged for 
5 min at 125×g, resuspended in the complete medium and injected 
into the microfluidic channel for the TPM experiment in the flow 
cytometry condition. The SK-N-SH cells were also analysed through 
an FM cyto-fluorimeter. To this aim, seven million SK-N-SH cells were 
resuspended in phosphate-buffered saline 1× (Sigma) and exposed to 
25 µM DRAQ5 fluorescent probe for 5 min at room temperature under 
agitation (#62254, Thermo Scientific).

TPM setup in flow cytometry condition
In a QPM, phase contrast is due to the optical path-length difference 
between the unlabelled biological specimen and its background 
because of the combination of its thickness and its RI2. These two 
quantities can be decoupled by recording multiple 2D QPMs at dif-
ferent viewing angles around the sample, thus performing the 3D 
TPM. However, unlike conventional TPM methods, in our setup, the 
digital holography microscope acquires multiple digital holograms 
of flowing and rotating cells within a microfluidic channel, exploiting 
the hydrodynamic forces produced by a laminar flow30,31. In fact, the 
light beam generated by the laser (Laser Quantum Torus, emitting 
at a wavelength λ = 532 nm) is coupled into an optical fibre, which 
splits it into an object beam and reference beam to constitute a Mach–
Zehnder interferometer in the off-axis configuration. The object beam 
exits from the fibre and is collimated to probe the biological sample 
that flows at 7 nl s–1 along a commercial microfluidic channel with a 
cross section of 200 μm × 200 μm (microfluidic ChipShop). The flux 
velocity is controlled by a pumping system (CETONI Nemesys) that 
ensures the temporal stability of the parabolic velocity profile into 
the microchannel. The wavefield passing throughout the sample is 
collected by a microscope objective (Zeiss, ×40, oil immersion, 1.3 
numerical aperture) and directed to the 2,048 × 2,048 pixel comple-
mentary metal–oxide–semiconductor camera (USB 3.0 uEye, IDS) 
by means of a beamsplitter that allows interference with the refer-
ence beam. The interference patterns of the single cells rotating into a 
170 μm × 170 μm FOV are recorded at 35 fps. The proposed TPM system 
in flow cytometry has the advantage to work in the label-free modality; 
therefore, the sample preparation time related to nucleus staining is 
completely skipped. Instead, the experiment to acquire 1,000 cells 
can take 30–60 min, since tens of images per cell must be recorded to 
retrieve their 3D tomographic reconstruction. The described opto-
fluidic setting is able to potentially provide a throughput of about 
100 cells per minute. It is noteworthy that the maximum throughput 
achievable by a tomographic system of rotating cells in a continuous 
flow is theoretically much lower than the conventional imaging flow 
cytometer. In fact, to retrieve the tomographic data, one needs to 
collect from tens to hundreds of images per cell instead of a single 
snapshot. This automatically reduces the throughput of the in-flow 
TPM system by one or two orders of magnitude with respect to the con-
ventional imaging flow cytometer. On the other hand, our system does 
not need the cells to be in microfluidic focusing; thus, multiple cells can 
be simultaneously imaged within the same FOV (for example, by using 
a larger camera sensor and/or by increasing the cell concentration) 
to increase the throughput. Moreover, the flow rate can be increased  
to over 7 nl s–1 but with the constraint to avoid cell deformations and 
to guarantee that a full cell rotation occurs within the imaged FOV.  

Finally, it is possible to use multiple parallel microfluidic channels on 
the same chip, proportionally increasing the throughput. Actually, 
some of these optofluidic solutions to increase the throughput have 
been exploited in our very recent work50.

According to the reference system in Fig. 2a, cells flow along the y 
axis and continuously rotate around the x axis owing to the microfluidic 
properties51, whereas their holograms are recorded along the z axis. 
Then, as summarized in Fig. 2b, numerical operations are performed 
to reconstruct the stain-free 3D RI tomograms of the recorded flowing 
single cells. The off-axis configuration allows demodulating each holo-
gram of the recorded sequence by filtering the real diffraction order52. 
Then, the 3D positions of the flowing cells within the microfluidic chan-
nel are computed through a holographic tracking algorithm53. Each 
demodulated hologram is numerically propagated along the z axis 
through the angular spectrum formula52 to minimize a contrast-based 
metric, that is, the Tamura coefficient53, to recover the z position of 
the cell and refocus it. The QPMs are then obtained by implementing 
the phase unwrapping algorithm52 on the corresponding refocused 
complex wavefronts. In each QPM, the weighted centroids provide 
the x–y positions of the cell, which are used to centre it in its cropped 
region of interest (Fig. 4d, left), thus avoiding motion artefacts in the 
final 3D tomogram. Moreover, the microfluidic properties and high 
frame rate allow to linearize the relationship between the angular and 
translational speeds51. Therefore, the K unknown rolling angles ϑk are 
estimated by using the computed y positions as follows:

k = 180∘ yk − y1
yf180 − y1

, (1)

where k = 1,…K is the frame index. The f180 value is the index of the frame 
at which the cell has rotated 180° with respect to the first frame of the 
sequence. It is computed by minimizing the Tamura similarity index, 
that is, a phase-image similarity metric based on the evaluation of the 
local contrast calculated on all the QPMs of the rolling cell through the 
Tamura coefficient. The tomographic reconstruction is first obtained 
by the inverse Radon transform, and it is then enhanced through the 
LT algorithm.

LT algorithm
LT is an iterative reconstruction algorithm based on the beam propaga-
tion method, that is a nonlinear forward model, to capture high orders 
of scattering29. Using the beam propagation method, we propagate an 
incident light illumination on an initial guess acquired by the inverse 
Radon transform and we compare the resulting field with the experi-
mentally recorded field. The error between the two fields is backpropa-
gated to calculate the gradient54. At each iteration of the LT algorithm, 
the gradient calculation is repeated for eight randomly selected rota-
tion angles, and the corresponding gradients are rotated and summed 
to update the current solution. As an intermediate step, the total vari-
ation regularization was employed. The total iteration number is 200 
with a step size of 0.00025 and a regularization parameter of 0.005. 
To run the LT algorithm, we need two electric fields: incident field and 
total electric field. The amplitude of the incident field was estimated 
from the amplitude of the total electric field by low-pass filtering in the 
Fourier domain with a circular aperture whose radius is 0.176k0, where 
k0 =

2𝜋𝜋

λ
 for a given wavelength of λ = 532 nm in a vacuum. In other  

words, we assume that the high-frequency information in the amplitude 
of the total electric field was only attributed to the light interference 
caused by a sample when illuminated by an illumination with a  
slowly varying amplitude.

FM cyto-fluorimeter
To record thousands of 2D FM images, a commercial multispectral flow 
cyto-fluorimeter has been employed, that is, Amnis ImageStreamX. Cells 
are hydrodynamically focused within a microchannel, and then they are 
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probed by both transversal bright-field light source and orthogonal 
lasers. The fluorescence emissions and the light scattered and trans-
mitted from the cells are collected by an objective lens. After passing 
through a spectral decomposition element, the collected light is divided 
into multiple beams at different angles according to their spectral 
bands. The separated light beams propagate to up to six different physi-
cal locations of one of the two charge-coupled device cameras (256 rows 
of pixels), which operates in time operation. Therefore, the image of 
each single flowing cell is decomposed into six separate subimages on 
each of the two charge-coupled device cameras, based on their spectral 
band, thus allowing the simultaneous acquisition of up to 12 images of 
the same cell, including bright-field, scatter and multiple fluorescent 
images. Hence, Amnis ImageStreamX combines the single-cell analysis 
of standard FM microscopy with statistical significance due to a large 
number of samples provided by standard flow cytometry.

ImageStreamX Mark II flow cytometer (Luminex) was used to 
acquire 11,549 single-cell images at ×60 magnification. For each single 
cell, we recorded two simultaneous images, that is, a bright-field image 
of the flowing cell and its corresponding FM image. To segment the 
nucleus, we analysed the single cells using the IDEAS software (version 
6.2.64.0), which combines fluorescence intensity (DRAQ5) and mor-
phometric measures (dark field), generating a global threshold of the 
FM signal corresponding to the nucleus size. The automatic calibration 
provided by the instrument, corresponding to 0.33 μm per pixel, was 
employed to measure the 2D morphological parameters related to the 
cell and nucleus, to realize a quantitative comparison with the tomo-
graphic reconstructions. Three of the recorded bright-field and fluores-
cent images are shown at the top and bottom of Supplementary Fig. 3,  
respectively, with the contour of the segmented nuclei overlapped in 
red. In the FM cyto-fluorimeter experiments, the sample preparation 
step takes ~45 min, consisting of adding a specific stain (DRAQ5) to 
label the nuclei, whereas the experiment to collect 1,000 images (one 
per cell) takes at least 5 min.

Three-dimensional numerical cell phantom
In another work35, a confocal microscope was employed to find differ-
ences between the viable and apoptotic MCF-7 cells by the extraction 
of 3D morphological features. In particular, 206 cells were stained with 
three fluorescent dyes to measure the average value and standard 
deviation of 3D morphological parameters about the overall cell and 
its nucleus and mitochondria. We exploit these measurements to 
simulate a 3D numerical cell phantom, by setting 1 pixel = 0.12 μm. It is 
made of four subcellular structures, that is, cell membrane, cytoplasm, 
nucleus and mitochondria. We shape the cell, nucleus and mitochon-
dria as ellipsoids and then we make the cell external surface irregular; 
finally, we obtain the cytoplasm through the morphological erosion 
of the cell shape. Moreover, in each simulation, the number of mito-
chondria is obtained from the uniform distribution U1{a1, b1}. A 3D 
numerical cell phantom is displayed in Fig. 3a, in which 18 mitochondria 
have been simulated. To each simulated 3D subcellular component, 
we assign an RI distribution (Fig. 3b). Measuring accurate RI values at 
the subcellular level is still a deeply debated topic55,56. Hence, we cannot 
replicate realistic RI values since they are not yet well known; therefore, 
we simulate the unfavourable case for our testing purpose segmenting 
the nucleus from cytoplasm, that is, we model the overlapped subcel-
lular distributions of RI values. In particular, for each cell membrane 
voxel, we draw its RI from distribution N1(μ1, σ2). Instead, without know-
ing if the nucleus RI values are greater than the cytoplasm ones or vice 
versa, in each simulation, we randomly assign cytoplasm and nucleus 
to distributions N2(μ2, σ2) or N3(μ3, σ2). It is worth remarking that to 
strengthen the numerical assessment, we increase the randomness of 
the RI assignments among the different simulations, because each 
voxel belonging to the cell membrane, nucleus and cytoplasm is drawn 
from Gaussian distributions N1, N2 and N3 (or N1, N3 and N2), respectively, 
for which the average values μ1, μ2 and μ3 are, in turn, determined from 

other Gaussian distributions for each voxel extraction, that is, 
Nμ1 (μμ1 ,σ2μ), Nμ2 (μμ2 ,σ2μ), and Nμ3 (μμ3 ,σ2μ), respectively. Instead, with 
regard to mitochondria, each of them has an RI Gaussian distribution; 
the average value μ4 is obtained from the Gaussian distribution 
Nμ4 (μμ4 ,σ2μ)  for each mitochondrion and not for each voxel.  
Moreover, we create an RI transition zone straddling the nucleus to the 
cytoplasm, thus avoiding any discontinuity that could somehow facili-
tate the segmentation. In particular, after drawing all the nucleus and 
cytoplasm values, the RI values that are in the middle of their average 
values are assigned to the voxels of the transition zone (Fig. 3b, red 
arrow). This transition zone is obtained through morphological erosion 
and dilation of the nucleus ellipsoid, by using a spherical structuring 
element, for which the radius is obtained from the uniform distribution 
U2{a2, b2} pixels for each simulation, thus resulting in an internal nucleus 
volume that is about 85–95% of the total nucleus volume. In the example 
shown in Fig. 3a,b, a 3 pixel radius has been selected. All the described 
parameters are reported in Supplementary Table 2.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.

Code availability
The codes are available from the corresponding authors upon reason-
able request.
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