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Abstract

Physically-based rendering algorithms generate photorealistic images of virtual scenes.

By simulating light paths in a scene, complex physical e�ects such as shadows, re�ec-

tions and volumetric scattering can be reproduced. Over the last decade, physically-

based rendering methods have become e�cient enough for widespread use. They are

used to synthesize realistic imagery for visual e�ects, animated movies and games, as

well as architectural, product and scienti�c visualization.

We investigate the use of physically-based rendering for inverse problems. For ex-

ample, given a set of images (e.g., photographs of a real scene), we would like to recon-

struct scene geometry, material properties and lighting conditions that when rendered

reproduce the provided reference images. Such a task can be formalized as minimizing

the di�erence between reference and rendered images over the space of scene parame-

ter. The resulting non-linear objective functions can be minimized by using a di�eren-

tiable renderer and gradient descent. However, the complexity of physically-based light

transport algorithms makes it infeasible to compute parameter gradients by naïvely us-

ing o�-the-shelf automatic di�erentiation (AD) tools. In this thesis, we present several

novel algorithms that e�ciently and accurately compute gradients of a physically-based

renderer.

First, conventional AD cannot scale to the complexity that is due to long light paths.

For example, di�erentiable rendering of participatingmedia requires di�erentiating light

paths with potentially hundreds of interactions. We introduce path replay backpropaga-

tion, an unbiased method that enables di�erentiation of multiple-scattering light trans-

port at a computational and storage complexity similar to the original simulation. Lever-

aging the invertibility of local Jacobians, our method e�ciently di�erentiates even per-

fectly specular scattering and unbiased volume rendering using delta tracking. Path re-

play backpropagation is the �rst unbiased di�erentiable rendering method that scales to

an arbitrary number of di�erentiated variables and an unbounded number of scattering

events.

Second, di�erentiating a rendering algorithm requires handling parameter-depen-

dent discontinuities due to occlusion. This is essential for using such methods to re-

construct the geometry of objects. We propose a method that accurately di�erentiates

renderings of surfaces represented by signed distance functions (SDFs). We leverage

their spatial structure to construct a reparameterization of the integration domain. This

reparameterization accounts for gradients due to occlusion changes and enables image-

based reconstruction of objects of arbitrary topology, without requiring strong priors or
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knowledge about object silhouettes.

Lastly, inverse rendering has led to renewed interest in developing non-standard

scene representations that are amenable to optimization. In the last part of the thesis,

we introduce a novel transmittance model for participating media. This model allows

representing scenes containing opaque surfaces as a scattering volume. This uni�ed

representation can be used to compress complex scenes into a sparse volumetric data

structure. The compressed representation is visually almost identical to the original

high-resolution scene. Our new model further bene�ts inverse rendering, recovering

relightable volumetric representations that more faithfully capture opaque surfaces than

prior models.

Keywords: di�erentiable rendering, inverse rendering, di�erentiable Monte Carlo,

path replay backpropagation, delta tracking, signed distance functions, scene recon-

struction, non-exponential media, level of detail, scene representation
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Zusammenfassung

Physikalisch basierte Renderingalgorithmen erzeugen realistische Bilder virtueller Sze-

nen. Durch die Simulation von Lichtpfaden können komplexe physikalische E�ekte wie

Schatten, Re�exionen und volumetrische Streuung reproduziert werden. Im Laufe des

letzten Jahrzehnts wurden physikalisch basierte Renderingmethoden e�zient genug für

eine breite Verwendung. Sie werden eingesetzt, um realistische Bilder für visuelle Ef-

fekte, animierte Filme und Videospiele sowie Architektur-, Produkt- und wissenschaft-

liche Visualisierungen zu generieren.

Wir untersuchen die Verwendung von physikalisch basiertem Rendering für inverse

Probleme. Beispielsweise möchten wir ausgehend von Referenzbildern (z.B. Fotogra�en

einer realen Szene) die Szenengeometrie, Materialeigenschaften und Lichtverhältnisse

rekonstruieren, die beim Rendern die Referenzbilder reproduzieren. Das Ziel ist, den Un-

terschied zwischen Referenz- und gerenderten Bildern über den Szenenparameterraum

zu minimieren. Diese Kostenfunktion kann mithilfe eines di�erenzierbaren Renderers

und dem Gradientenverfahren minimiert werden. Die Komplexität der Lichtsimulatio-

nen erschwert die Anwendung herkömmlicher automatischer Di�erenzierung (AD).Wir

stellen neue Algorithmen vor, die e�zient und genau Ableitungen einer Lichtsimulation

berechnen.

Konventionelle AD kann nicht mit der Komplexität von langen Lichtpfaden umge-

hen. Volumetrische Streuung erfordert zum Beispiel die Ableitung von Lichtpfaden mit

möglicherweise Hunderten von Interaktionen. Wir führen Path Replay Backpropagation

ein, eine erwartungstreue Methode, welche die Ableitung des Lichttransports bei einer

Rechen- und Speicherkomplexität ähnlich der ursprünglichen Simulation ermöglicht.

Unter Ausnutzung der Umkehrbarkeit lokaler Jakobimatrizen di�erenziert unser Ver-

fahren e�zient sogar perfekte Spiegelstreuung und erwartungstreues Volumenrender-

ing. Path Replay Backpropagation ist die erste erwartungstreue di�erenzierbare Ren-

deringmethode, die auf eine beliebige Anzahl Parameter und eine unbegrenzte Anzahl

von Lichtinteraktionen skaliert.

Weiterhin erfordert die Di�erenzierung die Berücksichtigung parameterabhängiger

Unstetigkeiten aufgrund von Okklusionen. Dies ist notwendig, um mit solchen Metho-

den die Geometrie von Objekten zu rekonstruieren. Wir schlagen eine Methode vor,

die Renderings von Ober�ächen, die durch vorzeichenbehaftete Abstandsfunktionen

dargestellt werden, akkurat di�erenziert. Wir nutzen die räumliche Struktur dieser Funk-

tionen, um eine Reparametrisierung der Integrationsdomäne zu konstruieren. Diese

berücksichtigt Gradienten aufgrund von Okklusionsänderungen und ermöglicht die Re-
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konstruktion von Objekten beliebiger Topologie, ohne die Kenntnis von a-priori Infor-

mationen oder Silhouetten.

Inverse Probleme haben zudem das Interesse an der Entwicklung von neuen, zur Op-

timierung geeigneten, Szenenrepräsentationen wiedererweckt. Im letzten Teil der Ar-

beit stellen wir ein neuartiges Transmissionsmodell für Volumen vor. Dies ermöglicht

die Darstellung von Szenen mit opaken Ober�ächen als Volumen. Diese neue Repräsen-

tation kann verwendet werden, um komplexe Szenen in ein komprimiertes Volumen

umzuwandeln. Unsere Methode erstellt eine volumetrische Darstellung, die visuell fast

identisch mit der ursprünglichen Szene ist. Unser neues Modell bietet weiterhin Vorteile

für das inverse Rendering, indem esVolumen rekonstruiert, die opakeOber�ächen besser

modellieren als frühere Modelle.

Schlüsselwörter: di�erenzierbares Rendering, inverses Rendering, di�erenzierbare

Monte-Carlo-Integration, Path Replay Backpropagation, Delta Tracking, vorzeichenbe-

haftete Abstandsfunktionen, Szenenrekonstruktion, nicht-exponentielle Volumen, De-

taillierungsgrad, Szenenrepräsentation
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1 | Introduction

1.1 Motivation

As humans, one of the primary ways in which we perceive the world is by using our

sense of vision. We obtain a tremendous amount of information by leveraging various

visual cues. Vision provides an evolutionary advantage for essential tasks such as ob-

taining food and evading danger. Not only can we recognize objects and people, but we

also use our stereo vision to accurately judge the distance of objects. We further intu-

itively infer useful information from the complex ways that light interacts with objects.

For example, shading and cast shadows help determine the 3D shape of objects or the

ground that we walk on. We can distinguish between metal and glass objects by observ-

ing how they re�ect or refract incident illumination [1]. When assessing the color of

a surface, our brain implicitly considers the illumination conditions [2]. In this thesis,

our goal is to develop algorithms that infer various physical properties of the real world

from images. Di�erent from human perception, algorithms can directly leverage our

mathematical understanding of the underlying light transport.

Concretely, we build on physically-based rendering algorithms [3, 4], which explic-

itly simulate the interaction of light with objects. These algorithms synthesize pho-

torealistic images of virtual scenes. A virtual scene consists of a description of object

geometries, surface material parameters, light sources and one or more virtual cameras.

Figure 1.1 shows a rendering of an example scene. Physically-based rendering algo-

rithms then explicitly simulate light paths to produce images containing accurate re�ec-

tions, shadows, volumetric scattering and indirect illumination. This is a computation-

ally expensive process, but the development of e�cient algorithms and fast computer

hardware has enabled the widespread adoption of physically-based rendering in movie

production, games, architecture and product visualization. Physically-based methods

have largely replaced heuristics and approximate algorithms [5]. The reason is simple:

accurate rendering models are easier to control and lead to more predictable results with

fewer rendering artifacts. While certain approximate algorithms are still necessary for

real-time rendering applications (e.g., games), their use is expected to diminish over time

in favor of fully physically-based methods [6].

In this thesis, we are primarily concerned with the associated inverse problem. Given

a set of images or visual observations, wewant to infer the parameters of a corresponding

virtual scene. Similar to previous and concurrent work, we approach this problem as an
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Figure 1.1: A scene description usually consists of geometry, surface textures, material models, light

sources and a virtual camera. Rendering produces a photorealistic image of such a virtual scene. We will

o�en refer to this process as forward rendering. This is in contrast to inverse rendering, which a�empts

to reconstruct a scene description given one or more images.

iterative optimization. Starting from some initial guess of scene parameters, we render

our virtual scene and (numerically) compare the result to the reference images. In each

iteration, we then update our parameters to gradually more closely approximate the

reference observations.

Reconstructing the real world from images is generally considered to be a topic of

computer vision. However, there is a mismatch between the generality and accuracy of

forward rendering algorithms and the lighting models used in most computer vision

research. Many existing 3D reconstruction algorithms for example ignore the e�ect of

shadows and interre�ections. Our goal is to apply modern rendering algorithms to in-

verse problems, thereby reducing the gap between the light transport models used in

computer vision and graphics. Similar to forward rendering, we believe that physically-

based algorithms will reduce the need for application-speci�c heuristics and allow to

robustly solve both current and future problems. Our goal is to develop algorithms that

can solve general inverse problems speci�ed in terms of light transport. The use of these

methods is not limited to 3D scene reconstruction, as wewill see when discussing related

work.

Historically, the understanding of light transport and its use for inverse problems

were often intertwined. For example, Ibn-Sahl (940–1000 AD) is credited for discover-

ing the law of refraction and using his insights to design better refractive lenses [7].

Johannes Kepler (1571-1630 AD) and Isaac Newton (1643-1727 AD) used their under-

standing of light to design and build telescopes. In the twentieth century, the theory

of neutron scattering was used to design and improve radiation shielding and nuclear

reactors. Both in astronomy and atmospheric sciences solving inverse problems under
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physical constraints is common. All these problems are highly related, and we hope to

provide some of the building blocks that can help tackle general inverse problems related

to light and radiation scattering.

1.2 Di�erentiable Monte Carlo rendering

In this section, we will brie�y introduce the general framework used throughout the

thesis. We will provide detailed de�nitions of the fundamentals of light transport and

rendering algorithms at a later point.

Mathematically, the intensity of light incident at a pixel of a virtual sensor can be

written as a high-dimensional integral over light paths. Physically-based rendering algo-

rithms estimate pixel colors using Monte Carlo integration [3, 8]. Practically, this means

that they trace many light paths through the scene to estimate the contribution of light

sources to the sensor of a virtual camera. When light paths encounter an object, they

either scatter or get absorbed. To render even a moderately complex scene, millions of

light paths have to be simulated to estimate the color of each pixel of the output image.

The physical analogy of this process is how photon particles scatter on objects in a real

scene.

While costly, Monte Carlo methods have the key advantage that they are unbiased.

The only error in the rendered image is due to variance, which manifests in the form

of per-pixel noise (similar to noise in nighttime photography). Monte Carlo methods

further scale well to high-dimensional problems (e.g., integration over long light paths)

and, unlike deterministic quadrature methods, do not su�er from the curse of dimension-

ality. They work using the original scene representation and do not require a specialized

discretization of the scene. This is an advantage compared to �nite element methods,

which require adequate discretization to obtain plausible results. While forward ren-

dering is not a solved problem, Monte Carlo methods are e�ective at simulating a large

range of physical e�ects. The mathematical framework is very �exible and can easily be

extended by specialized techniques for cases not well handled by a general method. Tai-

lored rendering methods have been developed for e�ects such as scattering volumes [9,

10], human skin [11, 12, 13], hair [14], glints [15, 16] and layered materials [17].

We can leverage these favorable properties of Monte Carlo integration for inverse

problems by developing di�erentiable Monte Carlo rendering algorithms. By di�erenti-

ating the output of a rendering algorithm, we can solve complex optimization problems

using gradient descent. Di�erentiating a physically-based forward model is not a new
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idea and follows a general trend. The widespread use of gradient descent to train arti-

�cial neural networks and other machine learning models has inspired a shift toward

using di�erentiable programming for various inverse problems. Conceptually this is a

very simple, general approach, although in practice there are some challenges. Machine

learning frameworks providing automatic di�erentiation (AD) methods can be used to

implement general di�erentiable computations. The extensive adoption of these AD

frameworks has enabled the rapid exploration of di�erentiable computation, eliminat-

ing the need for tedious manual implementation of derivative code. Automatic di�er-

entiation is not a new idea either, but its use has increased dramatically thanks to the

availability of easy-to-use tools (primarily in the form of Python libraries).

This dissertation focuses on di�erentiating Monte Carlo rendering algorithms to

solve inverse problems related to light transport. We aim to develop general, princi-

pled methods, without introducing major approximations or ignoring relevant physical

e�ects. Ultimately, we expect di�erentiable Monte Carlo rendering algorithms to ben-

e�t a large range of inverse problems. Similar to forward rendering, handling the full

complexity of light transport allows accounting for many important physical e�ects in

a single uni�ed framework. This reduces the need for application-speci�c methods and

heuristics. Many prior approaches for inverse light transport problems ignore multiple

scattering or only consider simple special cases (e.g., �at geometry). With the develop-

ment of di�erentiable Monte Carlo rendering, there is no fundamental reason for inverse

methods to be signi�cantly less physically-based than their forward counterparts. This

thesis proposes several methods that increase the applicability of di�erentiable render-

ing for important problems. We show that accurate gradients can often be obtained at a

similar complexity as forward rendering.

While our methods are physically-based, we do restrict ourselves to considering ge-

ometric optics and ignore wave e�ects such as interference and di�raction. We assume

steady-state light transport and do not consider temporal e�ects such as light moving

with the speed of light or materials heating up and glowing. These assumptions are

commonly made in forward rendering, and going beyond them is out of scope for this

thesis. Additionally, di�erentiable rendering is not a silver bullet: practical applications

oftentimes do require some amount of problem-speci�c initialization or parameteriza-

tion of the scene. Nevertheless, we believe di�erentiable Monte Carlo rendering will be

an important baseline and building block for many inverse problems.
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1.3 Inverse rendering and related problems

In this section, we provide a high-level overview of important inverse rendering and

related problems. The thesis is focused on techniques relevant to image-based recon-

struction. However, (di�erentiable) Monte Carlo estimators also have applications in

other �elds. We believe that some of the methods developed in this thesis could po-

tentially also be adapted to these problems. This section serves to further motivate the

work presented in this thesis but is not a comprehensive overview of the vast �eld of

inverse problems. Chapter 4 provides a focused review of more closely related prior and

concurrent work from the computer graphics and vision communities.

Reconstruction. As mentioned above, a primary application of di�erentiable render-

ing algorithms is 3D reconstruction. Given a set of reference images, we aim to recover

physically plausible scene parameters. Such methods are useful for any type of applica-

tionwhere a digital copy of real-world objects is needed (e.g., for visual e�ects or cultural

preservation). By considering physically-based rendering in the optimization loop, we

aim to recover editable and relightable scene representations. Di�erentiable rendering

is particularly useful for scenes with complex light scattering. For example, to recover

the material properties of objects exhibiting subsurface scattering [18]. We will review

related work on 3D reconstruction in Chapter 4.

Computational design. The term computational design describes the use of optimiza-

tion methods to (semi-)automatically design physical items. The idea is to use optimiza-

tion methods to design objects satisfying complex constraints, for which it is impossible

to come up with a suitable design by hand. Computational design is often associated

with satisfying certain mechanical constraints. For example, one can optimize the shape

of objects to make them balance [19] or design spinning tops of unusual shapes [20].

However, interesting problems can also be speci�ed in terms of light transport. For

these applications, we can use di�erentiable rendering to optimize the shape or material

of objects. Such problems include the fabrication of translucent objects of a desired ap-

pearance [21, 22] and end-to-end optimization of optical systems and camera lenses [23].

Another interesting problem is optimizing combustion chambers and gas turbines con-

sidering heat transfer. Heat transfers by convection, conduction and radiation. While

convection and conduction are commonly solved using �nite element methods, the ra-

diative transfer can be simulated by Monte Carlo integration. Such heat transport sim-

ulations have for example been proposed to simulate gas turbines [24]. Di�erentiable
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Monte Carlo methods have also been used to analyze and improve combustion chambers

of complex geometry [25].

Neutron transport. Monte Carlo methods were originally invented to simulate neu-

tron scattering in nuclear reactors and weapons [8, 26, 27]. The problem of neutron

scattering is mathematically very similar to light transport, and many techniques from

neutron transport have been imported into rendering. Given its origins in nuclear en-

gineering, it is not surprising that neutron transport simulations have been used for

inverse problems. Unlike many other �elds, di�erentiating Monte Carlo estimators is

common in the neutron transport literature. Already in 1967, Mikhailov [28] showed

how to di�erentiate Monte Carlo neutron transport estimators. In the same year, Brain-

ina et al. [29] proposed to use di�erentiableMonte Carlo estimators to optimize the shape

and composition of radiation shielding. Sidorenko and Khisamutdinov [30] optimize a

radiation shielding consisting of two layers and mention the issue of discontinuous in-

tegrands, which is also relevant in di�erentiable rendering. Di�erentiable Monte Carlo

methods have further been used for sensitivity analysis of the criticality of a nuclear

reactor [31, 32].

Atmospheric science. Directly measuring gas concentrations, temperature and pres-

sure in the whole atmosphere is infeasible. However, all these important quantities a�ect

the way both visible and non-visible light is scattered. It is therefore common to recover

the physical parameters of the atmosphere by solving inverse problems. For example,

already in the 1930s Götz et al. [33] inferred Ozone concentration from the scattered

sunlight observed from the ground. There is a large body of work on using various

combinations of satellite and aerial measurements to infer temperature and gas concen-

trations. Di�erent from typical rendering problems, atmospheric observation oftentimes

leverages measurements of radiation outside the visible range (e.g., infrared radiation).

However, many existing methods do not account for multiple scattering of light in three

dimensions [34]. We believe that physically-based di�erentiable rendering could further

improve these methods and related problems such as cloud reconstruction [35].

Computational imaging. The �eld of computational imaging encompasses image

acquisition techniques that produce images by solving inverse problems. Speci�cally,

such techniques are common in microscopy, medicine, geophysics and astronomy. In

many cases, specialized techniques build on domain-speci�c heuristics and assume heav-

ily simpli�ed physical models. The use of such approximate models oftentimes leads to
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suboptimal results. For example, both positron emission tomography (PET) and comput-

erized tomography (CT) scans su�er from artifacts due to reconstruction algorithms not

considering multiple scattering of radiation [36, 37, 38]. In many applications, it could

be possible to improve the results of existing approximate methods by using a di�eren-

tiable light transport simulation to further re�ne the solution. In particular, accounting

for multiple scattering could be bene�cial in many contexts.

Partial di�erential equations. Partial di�erential equations (PDEs) describe a range

of important natural phenomena such as heat transfer or di�usion processes. These

problems are commonly approached by partitioning the domain into triangles or tetra-

hedra and then solving a discretized di�erential equation. Such �nite element methods

have also found early use in rendering, but have since largely been replaced by Monte

Carlo methods. The reason is that discretizing the domain is expensive, and the resulting

solutions often su�er from artifacts. On the other hand, Monte Carlo methods handle

complex geometry without signi�cant preprocessing.

It turns out that for certain PDEs we can formulate practical Monte Carlo estimators.

The walk on spheres method [39, 40, 41] estimates the solution to PDEs by sampling ran-

dom walks on the domain. The structure of these algorithms closely resembles Monte

Carlo rendering. Recently, these methods have been imported into computer graph-

ics [42, 43]. Similar to rendering, the generality and simplicity of Monte Carlo methods

enable solving complex problems without discretization artifacts. Di�erentiating such

solvers could allow addressing inverse problems. We brie�y touch on this topic in Chap-

ter 5, as our proposed di�erentiable rendering method can be applied to PDEs [44].

Machine learning. Another use of di�erentiable rendering algorithms is their com-

bination with machine learning methods. For example, one could envision a generative

model that generates scene parameters that could then be rendered using a physically-

based renderer. By using a di�erentiable renderer, such a system could be trained end-

to-end, thus potentially opening up text-based 3D scene or model generation.
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1.4 Summary of original contributions

In this section, we brie�y summarize the main contributions presented in this thesis.

Path replay backpropagation [45]. We propose a novel method to e�ciently di�er-

entiate multiple scattering light transport. The complexity of multiple scattering makes

it infeasible to use conventional automatic di�erentiation. When using AD, gigabytes

of memory are required to hold information related to the derivative computation. This

is problematic, because for many important optimization problems, the optimized scene

itself might already use a large amount of memory. We can simply not a�ord for the dif-

ferentiation process to tie up all the available memory. We present a simple, yet general

method that di�erentiates light paths at a computational and memory complexity that

is comparable to forward rendering. We call our method path replay backpropagation, as

it relies on re-tracing light paths to estimate derivatives. Up to numerical di�erences, it

computes the same derivatives we would get from AD, but without the extreme storage

overheads. Our method is well-suited for the highly dynamic nature of light transport

algorithms. For example, it for the �rst time makes it feasible to di�erentiate unbiased

volume rendering methods.

Di�erentiable signed distance function rendering [46]. Another important prob-

lem in di�erentiable rendering is the reconstruction of 3D shapes. In forward rendering,

most shapes are represented as triangle meshes, which can be rendered very e�ciently.

However, triangle meshes are cumbersome to use for inverse problems, as their topology

is generally �xed. A common solution to this problem is to instead use an implicit sur-

face representation, where the surface is represented as the zero-level set of a function

5 : R3 → R. A particularly well-structured class of implicit representations are signed

distance functions (SDFs). A signed distance function measures the signed distance to the

surface that is de�ned to be the zero-level set. We present a new method for di�eren-

tiable rendering of SDF surfaces. This enables the reconstruction of shapes of arbitrary

topology from a set of reference images.

Non-exponential media for scene representation [47]. The third contribution is

related to the scene representation itself. An interesting alternative to surface-based

scene representation are participating media. The theory of participating media has

been derived to render e�ects such as smoke or clouds. However, participating media

are also an appealing model for more general scenes containing surfaces. The motiva-
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tion for this is two-fold: in rendering, level of detail methods describe techniques that

simplify objects that are far away from the camera. For example, a 3D model of a tree

might consist of millions of triangles. But if that tree is only visible on a few pixels on

the screen, it is ine�cient to load and render the complex original asset. On the other

hand, di�erentiable rendering might be used to reconstruct scenes containing complex

geometry. Again, a good example of this is vegetation, where directly reconstructing

leaves as surfaces is highly non-convex.

For both level of detail and di�erentiable rendering, an approximation of the scene

as a participating medium can be e�cient. However, conventional participating media

struggle to represent opaque surfaces. By default, we would get a representation that is

prone to light leaking artifacts. We introduce a new volumetric appearance model based

on non-exponential media, that can accurately represent fully opaque surfaces. We show

that this improves both level of detail and di�erentiable rendering.

Systems [48, 49]. Di�erentiable rendering is not only a question of algorithms but

also of the underlying system used for implementation. The author of this thesis was

involved in the design and implementation of the Mitsuba 2 [48] di�erentiable renderer.

The work on the path replay algorithm has further been tightly coupled to the develop-

ment of Dr.Jit [49], a just-in-time compiler for di�erentiable rendering. This compiler

is a key component of Mitsuba 3 [50], a recently released new version of the Mitsuba

renderer. This thesis will not go into the implementation details of these systems, but all

our methods have been implemented on top of these systems. We will touch on some of

the general insights on di�erentiable rendering systems in Chapter 4.

1.5 Publication list

This thesis is primarily based on the following three publications [45, 46, 47]

• Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021. Path Replay Backprop-

agation: Di�erentiating Light Paths using Constant Memory and Linear Time. In

Transactions on Graphics (Proceedings of SIGGRAPH) 40(4).

• Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022, Di�erentiable Signed

Distance Function Rendering. In Transactions on Graphics (Proceedings of SIG-

GRAPH) 41(4).
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• Delio Vicini, Wenzel Jakob, and Anton Kaplanyan. 2021. A Non-Exponential

Transmittance Model for Volumetric Scene Representations. In Transactions on

Graphics (Proceedings of SIGGRAPH) 40(4).

Each of these publications is covered in a dedicated chapter, and Chapter 4 partially

uni�es their background and related work sections. Over the course of the Ph.D., the

author was involved in the following additional publications [13, 48, 49]:

• Delio Vicini, Vladlen Koltun, and Wenzel Jakob. 2019. A Learned Shape-Adaptive

Subsurface Scattering Model. In Transactions on Graphics (Proceedings of SIG-

GRAPH) 38(4).

• Merlin Nimier-David*, Delio Vicini*, Tizian Zeltner, and Wenzel Jakob. 2019. Mit-

suba 2: A Retargetable Forward and Inverse Renderer. In Transactions on Graphics

(Proceedings of SIGGRAPH Asia) 38(6) (*joint �rst authors)

• Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Delio Vicini, 2022. Dr.Jit: A

Just-In-Time Compiler for Di�erentiable Rendering. In Transactions on Graphics

(Proceedings of SIGGRAPH) 41(4).

The Mitsuba 2 rendering system was instrumental in the development of all our work

on di�erentiable rendering and the Dr.Jit compiler is a key component of the subsequent

Mitsuba 3 system.

1.6 Organization of the thesis

We �rst cover the basics of Monte Carlo integration (Chapter 2) and rendering algo-

rithms (Chapter 3). We then introduce background and related work on di�erentiable

rendering in Chapter 4. The following chapters then each present the contributions

of one publication: Chapter 5 is dedicated to the path replay backpropation algorithm.

Chapter 6 presents our di�erentiable signed distance function rendering method. Chap-

ter 7 introduces our non-exponential scene representation model. Chapter 8 concludes

the thesis and gives an outlook on future directions.
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In this chapter, we review the basics of probability theory and Monte Carlo integration.

This sets the stage for the later chapters, in which Monte Carlo integration is used to

render realistic images and estimate parameter gradients for optimization. At its core,

physically-based di�erentiable rendering requires formulating Monte Carlo estimators

for parameter gradients. The overview here is restricted to the concepts that are used in

the later chapters. We do not discuss the foundations of measure theory or quasi-Monte

Carlo andMarkov chain Monte Carlo methods. A comprehensive review of Monte Carlo

integration can for example be found in Eric Veach’s thesis [51].

2.1 Probability theory

Monte Carlo integration estimates complex integrals using random sampling. This re-

quires reasoning about random variables, their expected values and variance. We brie�y

recapitulate theoretical concepts to then develop Monte Carlo estimators.

2.1.1 Definitions

Probability space. We �rst de�ne the sample space Ω as the set of all possible out-

comes of a random process (e.g., the numbers 1 to 6 on a die). The event space F is

de�ned as the f-algebra of subsets of Ω. It is a collection of subsets that is closed under

set complement and countable union operations. The probability measure % : F → [0, 1]

is a function that satis�es:

1. % (∅) = 0 and % (Ω) = 1

2. %
(⋃∞

8=1�8
)
=

∑∞
8=1 % (�8), for countable, pairwise disjoint events �1, �2, ... ∈ F .

A probability space (Ω, F , %) is the collection of sample space, event space and probabil-

ity measure.

Random variables. A random variable models an outcome that depends on random

events (e.g., the result of rolling a die). We distinguish between discrete and continuous

random variables, depending on whether the values attained by the random variable are

discrete or continuous. Formally, a random variable is a measurable function- : Ω → �,

where � is a measurable space. This could for example be the real line R or the set
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Chapter 2. Monte Carlo Integration

{1, 2, 3, 4, 5, 6}. We de�ne % (- ∈ �) ≔ % ({l ∈ Ω : - (l) ∈ �}) as a notation to express

the probability of - taking a value in set �.

Probability density function. The probability density function (PDF) of a continuous

random variable - is de�ned as a non-negative function ?- such that

% (- ∈ �) =

∫
�

?- (x) dx. (2.1)

This de�nition is valid both for scalar and vectorial random variables. We generally use

bold variable names (e.g., x) for vectorial quantities and regular text (e.g., G ) for scalar

variables. Since % (- ∈ Ω) = 1, the PDF integrates to one when integrated over the

entire domain. We will use the notation - ∼ ?- to indicate that the distribution of the

random variable- is described by the PDF ?- . For real-valued random variables, we can

further de�ne the cumulative density function (CDF) as

�- (C) = % (- ≤ C) =

∫ C

−∞

?- (G) dG . (2.2)

The PDF can also be de�ned as the derivative of the CDF and exists if and only if the CDF

is di�erentiable almost everywhere. For our purposes, we assume that all our continuous

random variables admit a valid PDF.

Another important concept is the transformation of random variables. Given a vari-

able - and an invertible function ) , the PDF of the transformed variable . = ) (- ) can

be written as:

?. (y) =
?- (x)

|J) (x) |
, (2.3)

where |J) (x) | is the Jacobian determinant of the transformation) . For scalar functions,

the Jacobian determinant is simply the derivative.

Probability mass function. The discrete analog of the PDF is the probability mass

function (PMF):

?- (G) = % (- = G) = % ({l ∈ Ω : - (l) = G}) . (2.4)

The following sections will explain various concepts using continuous random variables,

but many de�nitions trivially generalize to discrete variables. We will mostly deal with

continuous random variables for the remainder of this thesis and hence do not further

delve into details on discrete variables.
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2.1. Probability theory

2.1.2 Expected value and variance

The expected value characterizes the average outcome of a random variable. In the con-

tinuous case, it is de�ned as an integral:

E [- ] =

∫
Ω

x?- (x) dx. (2.5)

As an integral, the expected value operator is linear and therefore satis�es E [0- + . ] =

0 E [- ] + E [. ], where 0 is a scalar and - , . are random variables. Using the expected

value, we can de�ne the n-th moment of a random variable as the value E [-=]. A related

quantity is the variance:

Var [- ] = E
[
(- − E [- ])2

]
= E

[
- 2

]
− E [- ]2 . (2.6)

The variance is a measure of the spread of the random variable. In the context of Monte

Carlo rendering, a higher variance indicates a higher error in the rendered image. The

standard deviation f is de�ned as the root of the variance:

f (- ) =
√
Var [- ] . (2.7)

Two random variables - and . might exhibit correlation in their outcomes. The covari-

ance is a measure of that relation:

Cov [-,. ] = E [(- − E [- ]) (. − E [. ])] = E [-. ] − E [- ] E [. ] . (2.8)

The covariance will be zero if - and . are independent. The expectation of the product

of two random variables can be expressed using the covariance:

E [-. ] = E [- ] E [. ] + Cov [-,. ] . (2.9)

If - and . are independent, the covariance term on the right disappears and the expec-

tation of the product is simply the product of expectations.

2.1.3 Estimators

In the following, we will deal with estimators that are designed to estimate a certain

quantity (e.g., an image pixel or a derivative). An estimator is a function \̂# = \̂ (-1, ..., -# ),

where -1, ..., -# are random samples. For an estimator \̂# of a true quantity \ , the ex-

pected squared error decomposes into bias and variance:

E

[
(\̂# − \ )2

]
= E

[
\̂# − \

]
︸       ︷︷       ︸

Bias

+Var
[
\̂#

]
︸    ︷︷    ︸
Variance

. (2.10)
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Chapter 2. Monte Carlo Integration

An estimator is called unbiased if its expected value matches the ground truth (i.e.,

E[\̂# ] = \ ). In that case, the bias is zero and the error only consists of variance. In

physically-based rendering, our goal is usually to construct unbiased estimators that

produce the correct output image up to some amount of variance. The variance of the

estimator is visible as per-pixel noise, which gradually disappears as the number of sam-

ples # is increased.

An estimator is called consistent if its value converges to the ground truth as the

number of samples is increased, i.e., lim#→∞ \̂# = \ . While we usually strive to con-

struct unbiased estimators, biased consistent estimators are also frequently encountered

in rendering. In some cases, allowing a non-zero bias enables reducing the variance

such that the overall error is lower. An example of this are image-based denoising algo-

rithms [52], which reduce the variance of the rendered image by applying a non-linear

�lter to the rendered image. The noise reduction produces a biased, consistent estimator

of the image that has less visible error than an unbiased estimator. De-biasing methods

eliminate bias of certain consistent estimators at the cost of additional variance and com-

putation time [53]. Technically, it is also possible to construct unbiased estimators that

are not consistent, but these are of little practical use.

2.2 Monte Carlo integration

Rendering requires the numerical estimation of high-dimensional integrals such as

� =

∫
X

5 (x) d` (x). (2.11)

Here, X denotes the integration domain, 5 a scalar-valued integrand and ` a measure

on X. We will mostly omit the measure and simply write dx instead of d` (x).

It is generally not possible to compute the value of such an integral analytically.

Deterministic quadrature methods evaluate the integrand at regularly spaced sample lo-

cations and compute a piecewise polynomial approximation that can then be integrated

analytically. This canworkwell for low-dimensional integrals, but su�ers from the curse

of dimensionality. The number of evaluations grows exponentially as the dimensionality

increases. Rendering instead relies on Monte Carlo integration, in which the integral is

approximated by randomly sampling the integration domain. More speci�cally, we can

estimate the value of � as:

� ≈ �̂# =
1

#

#∑
8=1

5 (x8)

? (x8)
, (2.12)
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2.3. Variance reduction

where x1, x2, ..., x# ∈ X are independent samples drawn from a distribution with the

PDF ? (x). In the simplest case, ? (x) could be the uniform distribution over the domain

X. More sophisticated sampling strategies are needed to obtain e�cient estimators with

good convergence characteristics as # → ∞. If ? (x) > 0 for all x ∈ X where 5 (x) ≠ 0,

then the Monte Carlo estimator is unbiased. We can show that indeed E
[
�̂#

]
= � by

using the linearity and de�nition of the expected value operator:

E
[
�̂#

]
= E

[
1

#

#∑
8=1

5 (x8)

? (x8)

]
=

1

#

#∑
8=1

E

[
5 (x8)

? (x8)

]
=

1

#

#∑
8=1

∫
X

5 (x)

? (x)
? (x) dx

=
1

#

#∑
8=1

∫
X

5 (x) dx =
1

#

#∑
8=1

� = � . (2.13)

Additionally, the law of large numbers guarantees that the average of independent and

identically distributed random variables converges to their mean as the number of sam-

ples goes to in�nity. Therefore, the Monte Carlo estimator is consistent. Regardless of

the dimensionality of X, the convergence rate of the root mean squared error of this

estimator is O(# −1/2).

2.3 Variance reduction

While Monte Carlo integration is unbiased, it su�ers from error in the form of variance.

Applications of Monte Carlo integration usually rely on a range of variance reduction

strategies. Common variance reduction methods form the basis of all modern rendering

algorithms. We introduce the main variance reduction techniques that are referenced

in the remainder of the thesis. We will not discuss additional techniques such as low

discrepancy sequences, strati�ed sampling and adaptive sampling.

2.3.1 Importance sampling

A key factor determining the variance of a Monte Carlo estimator is the used sampling

distribution. The ideal sampling distribution is proportional to the integrand and has

the following PDF:

? (x) =
1∫

X
5 (y) dy

5 (x). (2.14)

The normalization constant 1/
∫
X
5 (y) dy ensures that the PDF integrates to 1. Using this

sampling distribution, each individual Monte Carlo sample x8 exactly computes � and
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Figure 2.1: We visualize an example integrand 5 (x) and the used importance sampling distribution ? (x).

Depending on how closely the importance sampling distribution matches 5 (x), we get a di�erent distri-

bution of Monte Carlo sample values 5 (x)/? (x). The strategy in (a) only loosely matches the integrand,

while the strategy in (b) is close to the optimal strategy. It achieves a 24× lower variance than the less

optimal sampling distribution.

the variance of the estimator is therefore 0:

5 (x8)

? (x8)
=

∫
X

5 (y) dy5 (x8)/5 (x8) =

∫
X

5 (y) dy = � . (2.15)

In practice, we cannot use this ideal distribution, as constructing it would require the so-

lution of the original integration problem. Nevertheless, this ideal distribution provides

the important intuition that the variance of a Monte Carlo estimator depends on how

closely the PDF follows the shape of the integrand. A simple numerical example of this

is shown in Figure 2.1, where we compare two di�erent sampling distributions on the

same integrand. By more closely matching the importance sampling distribution to the

integrand, the variance of individual samples can be reduced signi�cantly. Often there

is a tradeo� between using a more complex sampling strategy and simply using a larger

number of samples. An advanced samplingmethodmight be too computationally expen-

sive to reduce error compared to a simpler method at equal time. A signi�cant fraction

of rendering research is aimed at constructing e�cient sampling algorithms that more

closely approximate the ideal strategy. For example, bidirectional path tracing [54, 55]

improves importance sampling of indirect illumination for challenging scenes and path

guiding methods [56, 57, 58] build scene-speci�c sampling strategies on the �y. Visible

normal sampling [59] reduces variance for microfacet surface appearance models. As

we will see in Chapter 3, rendering algorithms employ a combination of local sampling

strategies to achieve a high-quality image estimate.
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Figure 2.2: (a) We visualize an example integrand 5 (x) and two sampling strategies ?1 (x) and ?2 (x).

Plot (b) shows the balance heuristic MIS weights and (c) the e�ective resulting PDF, which is simply the

average of the two sampling strategies. It matches the integrand 5 (x) more closely than each individual

sampling strategy.

2.3.2 Multiple importance sampling

It can be di�cult to formulate practical algorithms that perfectly sample all parts of

the integrand. However, for some problems, we can come up with strategies that focus

on di�erent terms in the integrand. Multiple importance sampling (MIS) [60] can then

be used to combine di�erent strategies to form a uni�ed estimator. Given " sampling

strategies, we can de�ne weighting functions F1,F2, ...,F" : X → R and formulate a

weighted Monte Carlo estimator:

� =

∫
X

5 (x) dx =

"∑
9=1

∫
X

F 9 (x) 5 (x) dx ≈
1

#

"∑
9=1

#∑
8=1

F 9 (x8 9 )
5 (x8 9 )

? 9 (x8 9 )
, (2.16)

where x8 9 ∼ ? 9 . This estimator assumes that we draw # samples using each strat-

egy. The weights can be arbitrary, but need to form a pointwise partition of unity, i.e.,∑"
9=1F 9 (x) = 1 for each x where 5 (x) ≠ 0. If non-negative weights are assumed, the

optimal weights are given by the balance heuristic [60]

F 9 (x) =
? 9 (x)∑"
:=1 ?: (x)

. (2.17)

E�ectively, using the balance heuristic amounts to sampling using the average PDF,

while ensuring that all sampling strategies are being used equally often. A simple exam-

ple is shown in Figure 2.2, where the balance heuristic leads to an e�ective PDF that more

closely matches the integrand than the individual sampling strategies. The variance can

sometimes be improved by using the power heuristic, which raises the individual PDF

values to a power @ when computing the weights. Interestingly, the variance can be

further reduced by allowing negative weights [61].
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Figure 2.3: We visualize an example integrand 5 (x) and the used importance sampling distribution ? (x).

We compare the distribution of Monte Carlo sample values both without (a) and with (b) a piecewise

constant control variate 6. When using the control variate, the Monte Carlo integration only needs to

estimate the di�erence between 5 and 6. The integral of 6 can trivially be computed analytically.

2.3.3 Control variates

Importance sampling andMIS are themain variance reduction techniques used forMonte

Carlo rendering. Another commonmethod are control variates. The idea is to use an aux-

iliary integrand 6 to reformulate the problem as follows:

� =

∫
X

5 (x) dx =

∫
X

5 (x) − U6(x) dx + U

∫
X

6(x) dx, (2.18)

where U is a scalar weight. This formulation is useful if the integral over 6 is either

known analytically or can be estimated more easily than the original integral. The inte-

gral over the di�erence of 5 and 6 can then be easier to solve than the original problem.

Ideally, 6(x) = 5 (x) + � , where � is some constant. In that case, the di�erence inte-

gral can be estimated with zero variance using a single sample. Similar to importance

sampling, we cannot use this ideal 6 without solving the original problem. However,

as in importance sampling, we can already achieve a signi�cant variance reduction if 6

approximates 5 in some way. The optimal weight U can be computed by considering the

covariance between evaluations of 5 and 6 in the di�erence integral [62].

In Figure 2.3, we show the e�ect of using a piecewise constant control variate on a 1D

problem. In that case, the integral of 6 can be computed analytically. In rendering, there

has been work on constructing scene-speci�c control variates using a binary tree [56],

piecewise polynomials [63] or neural networks [64]. Another use of control variates

are gradient-domain rendering algorithms [62, 65, 66], which use neighboring pixels as

control variates to reduce the noise level of the �nal image.
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Figure 2.4: For a nearly symmetrical integrand 5 (x), antithetic sampling can drastically reduce the vari-

ance. In this example here, we set ) (x) = −x, as the integrand exhibits a symmetry around the origin.

Each sample x (green point) then produces a corresponding sample −x (red point). The values 5 (x) and

5 (−x) are highly correlated, leading to most Monte Carlo samples having a value close to zero. Both with

and without antithetic sampling we use the same sampling distribution ? (x).

2.3.4 Antithetic sampling

A closely related technique is antithetic sampling, which reduces variance by correlating

samples. This is for example useful for integrands that consist of a positive and negative

part, that overall integrate to a value that is small relative to the absolute magnitude of

the integrand (or even zero). In this case, the variance can be reduced by introducing

correlation between some of the Monte Carlo samples:

� =

∫
X

5 (x) dx ≈
1

#

# /2∑
8=1

5 (x8) + 5 () (x8))

? (x)
, (2.19)

where ) : X → X is a transform that maps a sample to another location inside the

domain. ) should be designed to maximize anticorrelation between 5 (x) and 5 () (x)).

Ideally, |5 (x8) + 5 () (x8)) | is then smaller in magnitude than 5 itself, reducing the overall

variance of the estimator. Equation 2.19 assumes that) does not distort the domain, i.e.,

the Jacobian determinant satis�es |J) | = 1. If this is not the case, 5 () (x8)) needs to be

multiplied by this Jacobian determinant to account for the change in sampling density.

Figure 2.4 shows a simple example of antithetic sampling applied to a nearly symmetrical

integrand.

Antithetic sampling can be particularly useful for di�erentiable rendering, where

derivatives of integrands may exhibit symmetries that can be exploited to reduce vari-

ance [67, 68, 69]. For example, the positional derivative of a Gaussian PDF will exhibit a

similar symmetry as the example integrand in Figure 2.4.
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Figure 2.5: Given a probability distribution in 1D (a), we can generate samples using inverse transform

sampling (b) or rejection sampling (c). In rejection sampling, we repeatedly draw samples until we gen-

erate a point that lies within the blue area under the PDF. All other samples (red) are discarded.

2.4 Sampling random variables

To use Monte Carlo integration, we need to be able to generate random numbers fol-

lowing a certain target distribution. Moreover, the sample generation algorithms must

be computationally e�cient.

Pseudo-random generators. While true randomness can only be achieved by ded-

icated hardware, pseudo-random generators such as the permuted congruential gener-

ator (PCG) [70] su�ce for rendering applications. PCG and similar random number

generators deterministically generate a sequence of random numbers from a seed num-

ber. The generated numbers statistically closely resemble true random numbers. All

commonly used sampling methods in rendering rely on �rst generating pseudo-random

samples uniformly in [0, 1]. These samples can then be used to generate random vari-

ables following a desired distribution.

Inverse transform sampling. For many practically relevant distributions in render-

ing, we can generate samples using inverse transform sampling [71]. The idea is to lever-

age the distribution’s CDF to transform uniformly distributed samples to the target dis-

tribution. While the CDF is generally not invertible, we can de�ne �−1
-

(D) ≔ min{C ∈

R : �- (C) ≤ D}. This "inverse" CDF is useful to generate random samples following the

distribution de�ning the CDF.We �rst generate a uniformly distributed random variable

* in [0, 1]. Then, - = �−1
-

(* ) is a random variable that is distributed according to ?- .

This sampling method is illustrated in Figure 2.5b.

If � is invertible, the correctness proof of this method is a direct application of the
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density change formula (Equation 2.3):

? (G) = ? (�−1- (D)) =
?* (D)(
�−1
-

)′
(D)

= 1 · ?- (�
−1
- (D)) = ?- (G), (2.20)

where we used the inverse function derivative rule
(
�−1
-

)′
(D) = 1/� ′

- (�
−1
-

(D)) = 1/?- (� −1-
(D)).

This concept can be generalized to higher dimensions by using the marginal and

conditional distributions. For example, a 2D distribution ? (G,~) could be sampled by

�rst sampling - ∼ ? (G), where ? (G) =
∫
Y
? (G,~) d~. In a second step, . can be sampled

according to the conditional distribution ? (~ |G) = ? (G,~)/? (G).

Rejection sampling. If the CDF cannot be inverted e�ciently, the solution is often-

times to use rejection sampling. This method repeatedly draws candidate samples, until

one is accepted. For a real-valued continuous distribution ? (G) over an interval [0, 1], we

de�ne" to be an upper bound on the values of ? (G). The rejection sampling algorithm

then works as follows: we �rst sample a value - uniformly in the interval [0, 1]. Then,

we generate a random number . in [0, "] uniformly and check if . < ? (G). If this is

the case, we accept the sample and otherwise we start again by sampling a value - . We

illustrate this method in Figure 2.5c. A similar scheme can also be used to sample points

inside subsets of Euclidean space. For example, we can generate uniformly distributed

points inside a disk by �rst drawing a sample from an enclosing rectangle and accepting

it only if it lies within the disk. Rejection sampling is typically less e�cient than inverse

transform sampling and is only used if no other method is available.
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3 | Light Transport and Rendering

Algorithms

Rendering and inverse rendering both rely on simulating light transport in a virtual

scene. We will in the following de�ne basic quantities and equations that describe

steady-state light transport. This means we do not attempt to model temporal e�ects

such as temperature changes a�ecting infrared radiation. We restrict the discussion to

the large range of phenomena described by geometric optics, and ignore the wave nature

of light (e.g., interference or di�raction). The chapter concludes with a brief overview

of the Monte Carlo rendering algorithms that we use in the remainder of the thesis.

3.1 Radiometry

To de�ne how light interacts with a scene, we �rst need to establish relevant units and

measures of electromagnetic radiation. The study of these quantities is called radiometry.

In geometric optics, we can think of light as consisting of photon particles traveling at

light speed along trajectories in 3D space. A photon has a certain wavelength _ and

can either be emitted, scattered or absorbed. The pixel response of a (virtual) camera

sensor depends on the number of incident photons and their energy as determined by

the wavelength. The energy of a single photon is

� =
ℎ2

_
, (3.1)

where ℎ = 6.626 × 10−34m2kg/s is Planck’s constant, 2 = 299 792 458m/s the speed of

light and _ the photon’s wavelength (in meters). The human visual system is sensitive

to wavelengths from 380 nm to 700 nm.

While one could describe light transport by modeling individual photon events, we

do not need to work at that granularity for the types of problems discussed in this thesis.

The involved numbers of photons are large enough that we can safely assume their

total energy to be a continuous quantity. For example, a typical camera sensor collects

around 105 photons per pixel [72]. We do not discuss applications such as single-photon

imaging [73], where photons need to be modeled individually.

Energy We �rst de�ne the total energy of photons in a region of space (e.g., emitted

by a surface ( ⊂ R3) in a time interval [0, C] as & (C). The units of energy are joules J.
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Radiant flux. Given the total energy, we de�ne the radiant �ux (or power) as its in-

�nitesimal temporal change:

Φ(C) =
d& (C)

dC
. (3.2)

The �ux is measured in watts W = J/s. When rendering a scene in steady state, we are

concerned about �ux rather than the total amount of energy. For example, we specify

the intensity of a light source in watts instead of the total amount of energy emitted

over a time interval. Since we are interested in static scenes, we will drop the explicit

dependency of Φ on the time C .

Irradiance. For a given surface ( , the irradiance describes the density of incident �ux

per area and is de�ned as

� (x) =
dΦ(x)

d�(x)
. (3.3)

The units of irradiance are W/m2
. Irradiance measures incident �ux density and the

corresponding outgoing quantity is called radiant exitance. The de�nition here can be

understood as a derivative of the �ux with respect to the area measure d�. More pre-

cisely, this derivative is the Radon-Nikodym derivative ofmeasures. Thismeans that � (x)

is a function that integrates to the �ux Φ when using the area measure on the surface ( :

Φ(x) =

∫
(

� (x) d�(x) . (3.4)

The Radon-Nikodym derivative is uniquely de�ned up to sets of measure zero. A precise

measure-theoretic derivation of all radiometric quantities is not required for the meth-

ods introduced in this thesis and we refer to Eric Veach’s Ph.D. thesis for details [51,

Chapter 3].

Radiance. The central quantity of interest in rendering is radiance. Radiance is de-

�ned as �ux per solid angle per projected area. A solid angle measures the area sub-

tended by an object on the unit sphere S2
. Its units are steradians sr and it is the two-

dimensional analog of one-dimensional angles. Radiance is measured per projected area,

which is a small surface patch perpendicular to the direction of interest. Formally, the

radiance ! is de�ned as:

!(x,8) =
d2Φ(x,8)

df (8) d�⊥(x)
. (3.5)

The units of radiance are watts per steradian per square meter W/srm2
. The projected

area measure relates to the standard area measure on a surface as

d�⊥(x) ≔ |8 · n| d�(x) = |cos\ | d�(x), (3.6)
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3.1. Radiometry

Figure 3.1: Illustration of the terms used in the definition of radiance.

where n is the surface normal and \ the angle between the surface normal and 8. The

cosine term |cos\ | = |8 · n| accounts for the foreshortening e�ect: incident light at a

grazing angle will hit a larger surface patch. See Figure 3.1 for an illustration of the

various terms used in the de�nition of radiance.

The cosine term is sometimes absorbed into the solid angle measure instead of the

area measure, forming the projected solid angle measure:

df⊥(8) ≔ |8 · n| df (8). (3.7)

To avoid notational clutter, wewill often use themore compact notation d8⊥
≔ df⊥(8).

We will also distinguish between incident radiance !8 and outgoing radiance !> . For

a point x that is not on a surface (or inside of a participating medium), it holds that

!8 (x,8) = !> (x,−8). In other words, radiance is constant along a ray through empty

space. This property does not hold on surfaces or inside participating media, as then the

incident radiance might be re�ected or absorbed.

Spectral radiance. We so far implicitly assumed the radiance ! to integrate over all

wavelengths. However, to render RGB images, we need to handle spectrally resolved

quantities. The most important one is spectral radiance:

!(x,8, _) =
d3Φ(x,8, _)

df (8) d�⊥(x) d_
, (3.8)

where we assumed Φ to be the spectral energy of incident illumination. Wewill typically

not write out the wavelength dependency of radiance for conciseness. But unless stated

otherwise, any use of radiance ! in the following is assumed to be spectral radiance.
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3.2 Image formation

Measurement equation. We will now specify the equations that govern image for-

mation. While the presented theory describes arbitrary radiance measurement pro-

cesses, the following discussion assumes that our goal is to ultimately compute (RGB)

intensity values of a digital image consisting of (square) pixels. This image is captured

by a virtual camera that is placed in a virtual scene. Given a virtual scene, the intensity

of a pixel 9 can be written using the measurement equation:

� 9 =

∫
M

∫
S2

,
( 9)
4 (x,8)!8 (x,8) df

⊥(8) d�(x), (3.9)

where M ⊂ R3 is the union of all scene surfaces (including the sensor itself), S2
the

unit sphere of directions, !8 the incident radiance and,
( 9)
4 (x,8) is the sensor importance

function. Intuitively, the measurement equation computes a weighted average of inci-

dent radiance to produce the intensity of a pixel 9 . The importance function,
( 9)
4 (x,8)

models the (spectral) response of the virtual sensor’s pixel 9 to radiance arriving at a

given location x from the direction 8. Its speci�c form depends on the camera model

that is used (e.g., perspective or orthographic camera) and its position and orientation.

Moreover, it depends on the pixel �lter, which controls the response of a single pixel to

radiance arriving at the sensor. A box pixel �lter implies that a pixel only accumulates

radiance incident on its physical area, whereas a continuous �lter with a larger support

(e.g., a Gaussian) also considers incident radiance slightly outside the pixel. The latter is

often preferred, as it leads to a smoother image with less visible aliasing.

Camera models. The most commonly used camera model is that of a perspective

pinhole camera. In the real world, a pinhole camera is a primitive, lensless camera that

contains a �lm (or digital sensor) opposite a tiny hole in an otherwise opaque box. The

image is produced by light passing through the opening and hitting the camera �lm.

In rendering, the idealized pinhole camera models a setting where the pinhole itself

is in�nitesimally small and hence produces a perfectly sharp image of the scene. A

better approximation of a real lens-based camera is the thin lens model, which assumes

a camera lens consisting of a single lens element focusing incident illumination onto the

sensor, which enables modeling of defocus blur. More advanced camera models simulate

multi-element optics [74].
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3.3. Surface light transport

Figure 3.2: Illustration of light sca�ering on a surface. Incident radiance arriving from direction 88 is

a�enuated by the BSDF 5B before being reflected in direction 8> . The BSDF might also depend on the

surface location x.

3.3 Surface light transport

The measurement equation depends on the unknown incident radiance. In this section,

we describe how radiance relates to surface re�ectance models and emission. This will

lead to an integral formulation of light transport, that allows estimating the pixel colors

usingMonte Carlo integration. In this section, we assume the scene to consist of surfaces

in a vacuum. Objects are made up of in�nitesimally thin "shells" (e.g., triangle meshes)

and light travels uninterrupted through free space. We will discuss participating media

and volumetric scattering in Section 3.4.

3.3.1 Surface light sca�ering

Surface scattering converts the radiance incident on a surface to outgoing radiance. The

outgoing radiance !> linearly depends on the incident radiance !8 arriving from all pos-

sible incident directions:

!> (x,8>) =

∫
S2

5B (x,8> ,88)!8 (x,88) df
⊥(88). (3.10)

Figure 3.2 illustrates some of the terms used in this equation. The bidirectional scattering

distribution function (BSDF) 5B represents the constant of proportionality between inci-

dent and outgoing radiance. It can equivalently be de�ned as the derivative of outgoing

radiance divided by the incident radiance:

5B (x,8> ,88) =
d!> (x,8>)

!8 (x,88) df⊥(88)
. (3.11)

The BSDF captures both absorption and the directional distribution of scattered light.

These e�ects can be spatially, directionally and spectrally varying. For example, a red

object will mostly re�ect at wavelengths that we perceive as red while absorbing others.
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(a) Diffuse BSDF (b) Conductor BSDF (c) Disney principled BSDF

(d) Dielectric BSDF (e) Rough dielectric BSDF (f) Measured BSDF

Figure 3.3: Renderings of a test object with di�erent analytic BSDFs (a)–(e) and an example of a complex

BSDF measured using a goniophotometer (f).

For our rendering to be physically plausible, we require BSDFs to be non-negative

functions that satisfy energy conservation: the total amount of re�ected light can never

exceed the amount of incident light. Formally, we can write this condition as

∫
S2

5B (x,8> ,88) df
⊥(88) ≤ 1. (3.12)

Additionally, if we only consider the re�ective part of the BSDF (i.e., the hemi-

sphere of directions on one side of the surface), a physically-based BSDF is reciprocal,

which means that the incident and outgoing direction can be swapped: 5B (x,8> ,88) =

5B (x,88,8>). Somewhat counterintuitively, the reciprocity does not hold for refractions,

where 8> and 88 are on di�erent sides of the surface [51].

3.3.2 BSDF models

Di�erent BSDFs are used to model the range of surface appearances that are present in

the real world. For example, the BSDF for a metal is di�erent from the BSDF of glass. A

digital replica of a real material can be acquired by measuring its re�ectance spectrum
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for all combinations of incident and outgoing directions. A goniophotometer is a device

that does exactly that by moving a sensor and light source around a given material sam-

ple. Depending on the desired accuracy of the reconstruction, this process can be quite

time-consuming. Even a state-of-the-art commercial goniophotometer might need sev-

eral hours per material [75]. The result of the measurement is a tabulated BSDF that

replicates the appearance of a material sample.

Many common real-worldmaterials can be approximated quite well by analytic mod-

els. For most rendering applications, suchmodels are more useful thanmeasuredmateri-

als, as they o�er direct (artistic) control over material appearances using a small number

of parameters. For inverse problems, parametric BSDFmodels help to reduce the number

of parameters that need to be considered in the optimization. In many inverse rendering

applications, we simply do not have enough observations to recover a tabulated BSDF.

Figure 3.3 shows a test object rendered using a few di�erent analytic BSDFs and also

shows an example of a more complex measured material.

Di�use BSDF. For example, the di�use BSDF (Figure 3.3a) assumes that light is re-

�ected uniformly in the hemisphere above the surface. This is an idealized BSDF, since

no real material has this perfectly uniform behavior. However, it is a plausible approxi-

mation for some matte objects and it has an extremely simple closed form:

5B (x,8> ,88) =
1

c
d, (3.13)

where d is the spectrally varying surface albedo and the division by c ensures energy

conservation.

Specular BSDFs. Another important class of materials are smooth specular BSDFs,

which re�ect or refract light into a discrete set of directions. Such BSDFs approximate

the appearance of polished metal (Figure 3.3b) or glass (Figure 3.3d). The BSDF then

becomes a combination of weighted Dirac delta functions. For example, an idealized

mirror has the following BSDF

5B (x,8> ,88) =
X (88 − 8A )

|cos\8 |
, (3.14)

where 8A = 2⟨n,8>⟩n − 8> is the direction 8> re�ected on a surface of normal n. The

delta function X (88 − 8A ) is 1 if the incident direction matches the re�ected direction

and 0 otherwise. The division by the cosine term is necessary to cancel out the cosine

term from the projected solid angle measure. For dielectric surfaces such as glass, the
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(a) Smooth specular BSDF (b) Microfacet BSDF (c) Layered BSDF

Figure 3.4: Illustration of di�erent BSDF models. A smooth specular BSDF (a) reflects light according to

the surface normal. A microfacet BSDF (b)models reflectance due to microscopic surface imperfections.

A layered BSDF (c) might consist of a rough base surface with a smooth dielectric coating and has to

account for light interacting with both layers.

BSDF both re�ects and refracts incident illumination at a ratio that is determined by

the Fresnel equations. For metal surfaces, the BSDF will include Fresnel terms computed

from a material-dependent complex index of refraction. We will not go into details of

these equations here.

Microfacet theory In reality, most surfaces are not perfect mirrors or smooth glass,

but exhibit some kind of microscopic imperfections that determine their appearance.

For a specular surface, imperfections cause light to be re�ected in a non-trivial set of

directions, instead of just one discrete direction. We illustrate this e�ect in Figure 3.4b.

Microfacet theory [76, 77, 78, 79, 80] is a statistical framework to model such imperfec-

tions. It formalizes the idea of surface imperfections by assuming the surface to be made

up of small facets, so-called microfacets, with a certain statistical distribution of surface

normals. The normal distribution function (NDF) characterizes this distribution of sur-

face normals and controls the roughness of the surface. If all surface normals point in the

same direction, we are back to a smooth surface. If the normals follow a uniform distri-

bution over the hemisphere, we get a rough appearance that resembles a di�use surface.

Microfacet BSDFs are convenient, as they allow to parameterize surface appearances of

varying roughness.

During rendering, microfacet BSDFs do not need to instantiate actual microfacets

and instead directly consider the aggregate e�ect of a certain NDF. A classic microfacet

BSDF is the Torrance-Sparrow [77] model:

5B (x,8> ,88) =
� (8ℎ)� (8> ,88)�A (8>)

4 cos\> cos\8
, (3.15)

where8ℎ is the microfacet normal, � the normal distribution function and �A the fresnel

term. The function� accounts for shadowing and masking of microfacets, meaning that

it models that some microfacets might block each other when seen from the observer
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(masking) or occlude the incident illumination (shadowing). One caveat of this BSDF

model is that it does not account for interre�ection between microfacets. This leads

to a visible loss in energy (i.e., a darkened appearance), especially when rendering very

rough surfaces. One way to address this problem is to estimate microfacet interre�ection

using a nested Monte Carlo simulation [81, 82].

Layered BSDFs. The above microfacet BSDF describes a rough specular material.

Many materials in the real world exhibit some form of layered structure, such as for

example a ceramic object with a transparent glossy glaze applied to it. We illustrate a

simple layered surface schematically in Figure 3.4c. A range of works suggest algorithms

that can layer di�erent BSDFs while accounting for e�ects such as light scattering in-

side or between layers [17, 82, 83, 84]. Many production rendering systems use some

form of multi-layer BSDF that is designed to model large ranges of appearances in a

uni�ed way. A popular such model is the Disney principled BSDF [85], which supports

a number of di�erent BSDF lobes. An example rendering using this BSDF is shown in

Figure 3.3c. While not strictly physically accurate, models such as this one o�er a sim-

ple way to parameterize the complex space of surface appearances. This is relevant for

artistic purposes, but also for inverse problems addressed by di�erentiable rendering.

For di�erentiable rendering, it is useful to constrain the space of BSDFs to a small set of

meaningful parameters in order to restrict the solution space.

3.3.3 Rendering equation

The full light transport in a scene is described by the rendering equation [3]:

!> (x,8>) = !4 (x,8>) +

∫
(2
!8 (x,88) 5B (x,8> ,88) df

⊥(88) . (3.16)

Here, !4 is radiance emitted from position x into direction 8> . This term models the dif-

ferent light sources illuminating the scene, such as emissive surfaces or distant emitters

like the sun.

Since photons traverse empty space unimpeded, the incident radiance relates to the

outgoing radiance using the ray tracing function A (x,8). This function traces a ray from

x in direction 8 and returns the closest intersection with another surface in the scene.

We can then write:

!8 (x,8) = !> (A (x,8),−8). (3.17)
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n

Figure 3.5: Illustration of the geometric configuration used in the definition of the three-point form of

the rendering equation.

This makes the rendering equation a recursive equation, where the outgoing radiance

occurs on both sides. This type of integral equation is called a Fredholm equation of the

second kind.

The above rendering equation is in projected solid angle form, but it can also be

useful to write it as an integration over surfaces in the scene. This is also called the

three-point form [51]:

!> (x
′→x) = !4 (x

′→x) +

∫
M

� (x↔x′)!8 (x
′′→x′) 5B (x

′′→x′→x) d�(x′′), (3.18)

where we now integrate in surface area measure over the union of scene surfaces M.

We use the shorthand notation x′ → x to indicate the direction of light propagation.

This is simply a convention to not have to write directions as functions of x and x′. For

example, !> (x
′→x) is de�ned as:

!> (x
′→x) = !>

(
x′,

x − x′

∥x − x′∥

)
. (3.19)

The de�nitions are analogous for !8 , !4 and 5B . The geometry term � accounts for the

change from solid angle to area measure:

� (x↔x′) = + (x↔x′)
|cos\ cos\ ′|

∥x − x′∥2
. (3.20)

The angles \ and \ ′ denote angles between the segment x′′→x′ and the surface normals

at x′ and x′′. Figure 3.5 illustrates the geometrical con�guration of all these terms. The

visibility function + (x↔x′) is zero if a surface is intersecting the straight line segment

x→ x′ and one otherwise. Deriving the geometry term is challenging and we refer to

Lessig et al. [86] for a full derivation using exterior calculus.
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Figure 3.6: Illustration of the the terms used in the definition of the image contribution function 59 (x̄).

3.3.4 Path space integral

Wecan transform the recursive rendering equation into a non-recursive, high-dimension-

al integral. This path integral formulation expresses the pixel intensity as an integral over

the in�nitely-dimensional space of light paths. In this context, a light path is assumed to

be consisting of straight segments
1
. The path integral formulation is fundamental to de-

veloping various Monte Carlo estimators, in particular, more advanced methods such as

bidirectional path tracing [54, 55] or Metropolis light transport [87]. It is convenient to

be able to reason about (di�erentiable) rendering algorithms in a non-recursive manner.

The path space formulation can be derived by recursively substituting Equation 3.18

into the measurement equation (Equation 3.9). We express the intensity of a pixel as a

sum of integrals, each accounting for paths of a di�erent number of segments:

� 9 =

∫
M2

,
( 9)
4 (x1→x0)� (x0↔x1) !4 (x1→x0) dx1 dx0

+

∫
M3

,
( 9)
4 (x1→x0)� (x0↔x1) 5B (x2→x1→x0)

� (x1↔x2) !4 (x2→x1) dx2 dx1 dx0

+

∫
M4

,
( 9)
4 (x1→x0)� (x0↔x1) 5B (x2→x1→x0)

� (x1↔x2) 5B (x3→x2→x1)� (x2↔x3) !4 (x3→x2) dx3 dx2 dx1 dx0

+

∫
M5

... (3.21)

We use the simpli�ed notation dx8 = d�(x8) to denote integration using the local area

measure. The product of sensor importance, BSDF and geometry terms is also called the

1
This path integral formulation is not to be confused with Feynman path integrals, in which all curved

paths between two end points are considered.
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throughput V . For a light path x̄ = (x0, x1, ..., x=) it is de�ned as:

V (x̄) =,
( 9)
4 (x1→x0)

=−1∏
8=1

� (x8↔x8−1) 5B (x8+1→x8→x8−1). (3.22)

The image contribution function 5 9 (x̄) measures the total contribution of a light path to

pixel 9 . It is de�ned separately for each path length= and is the product of the throughput

and the emission at the last path vertex:

5 9 (x̄) =,
( 9)
4 (x1→x0)

=−1∏
8=1

� (x8↔x8−1) 5B (x8+1→x8→x8−1)!4 (x=→x=−1). (3.23)

Figure 3.6 illustrates the terms used in this de�nition for an example path. Using this

function we can write the value of a pixel as integral over the path space P:

� 9 =

∫
P

5 9 (x̄) d` (x̄). (3.24)

The path space is de�ned as the set of all possible light paths in a scene. The measure `

is the product of the local surface area measures:

` (x̄) =

=∏
8=0

d�(x8). (3.25)

3.4 Volumetric light transport

The discussion so far assumed the scene to be made up of surfaces in a vacuum. Volu-

metric light transport occurs whenever the space between surfaces is �lled with a par-

ticipating medium that interacts with light. The appearance of �re, smoke, clouds, cloth

or human skin is largely due to volumetric light transport, see also Figure 3.7 for a few

example photographs.

For inverse rendering applications, simulating volumetric scattering is essential to

recover the appearance of scenes containing such e�ects. Many scienti�c applications

of inverse rendering heavily feature participating media. For example, the scattering

in biological tissue, Earth’s atmosphere and 3D printed plastics is volumetric. More-

over, volumetric appearance is oftentimes strongly determined by multiple scattering,

which makes it a prime use case for physically-based di�erentiable rendering. Addi-

tionally, volumetric rendering models can be useful as a general scene representation,

as discussed further in Chapters 4 and 7. While in forward rendering volumetric light

transport is somewhat of a special case, for inverse rendering it is at least equally as im-

portant as surface light transport. In the following, we outline the fundamental theory

of participating media and volumetric light transport.
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(a) Cloud (b) Orange juice (d) Candle(c) Human skin

Figure 3.7: Various examples of real world scenes containing participating media. The appearance of all

these scenes is largely determined by volumetric sca�ering. For the candle (d), both the wax and the

flame are participating media.

3.4.1 Radiative transfer

For now, we assume that the participating media we consider are made up of uncor-

related, microscopic particles. The size of the particles is so small that we can reason

about light interactions in a statistical sense, without explicitly considering individual

particles. Along a beam, the medium particles can either absorb, out-scatter, in-scatter

or emit light. Figure 3.8 schematically illustrates these di�erent e�ects. In the following,

we provide the mathematical description of these interactions.

Absorption. At any point along a beam, a fraction of photons might be absorbed by

medium particles. Since we do not intend to model individual photons or particles, we

reason about the absorption in a di�erential sense: what is the derivative of the radiance

!(x,8) with respect to a small step C along the ray? Formally, we want to characterize

d

dC
!(x + 8C,8)

��
C=0

= (8 · ∇)!(x,8), (3.26)

where 8 · ∇ denotes the directional derivative. Assuming uncorrelated particles, the

derivative due to absorption is:

(8 · ∇)!(x,8) = −f0!(x,8), (3.27)

where the absorption coe�cient f0 speci�es the amount of absorption in m−1
.

Out-sca�ering. Radiance can further be scattered away from the current beam, which

results in a loss quanti�ed by the scattering coe�cient fB [m
−1
]:

(8 · ∇)!(x,8) = −fB!(x,8). (3.28)
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(a) Absorption (b) Out-scattering (d) Emission(c) In-scattering

Figure 3.8: Along a ray through a medium, radiance can either be absorbed (a), out-sca�ered (b), in-

sca�ered (c) or emi�ed (d). Out-sca�ering refers to the loss in radiance due to light sca�ering away

from the current direction, and in-sca�ering summarizes the gains due to light sca�ering towards the

current direction. Conceptually, these e�ects are caused by photons interacting with medium particles.

In practice, we do not need to explicitly simulate individual photons or particles.

In-sca�ering. On the other hand, the radiance along a beam can also be increased by

light being in-scattered. The corresponding di�erential change is

(8 · ∇)!(x,8) = fB!B (x,8), (3.29)

where the incident radiance is computed as the spherical integral

!B (x,8>) =

∫
S2

5? (x,8> ,88)!8 (x,88) d88 . (3.30)

The phase function 5? models the angular variation of scattering, similar to the BSDF in

surface rendering. Unlike a BSDF, the phase function is usually normalized, as absorp-

tion is accounted for separately:∫
S2

5? (x,8> ,88) d88 = 1. (3.31)

Emission. Finally, the medium might emit photons itself. The radiance derivative is

then simply

(8 · ∇)!(x,8) = f0!4 (x,8), (3.32)

where the function !4 is the emitted radiance. Sometimes the multiplication by the ab-

sorption coe�cient is left out, but this is simply a matter of the de�nition of !4 .

Radiative transfer equation. Summing up all the di�erential changes to radiance,

we obtain the radiative transfer equation (RTE) [88] that describes the equilibrium radi-

ance distribution:

(8 · ∇)!(x,8) = f0!4 (x,8) + fB

∫
S2

5? (x,8> ,88)!(x,8) d88 − f0!(x,8) − fB!(x,8) .

(3.33)
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Figure 3.9: Example renderings of participating media with di�erent (spatially-varying) coe�icients. Par-

ticipating media can represent a range of appearances, from objects exhibiting subsurface sca�ering to

clouds of smoke or dust.

In Figure 3.9 we show a few examples renderings of participating media produced by

solving the RTE using Monte Carlo integration.

The losses due to absorption and out-scattering can be combined using the extinction

coe�cient fC = f0+fB . The transmittance functionmeasures the total fraction of radiance

that is lost along a beam between two points in the medium. It can be derived from the

RTE and has the following explicit form:

T(x, x′) = exp

(
−

∫ ∥x′−x∥

0

fC (xC ) dC

)
. (3.34)

All the medium parameters are potentially spatially varying. We thus write fC as a func-

tion of xC , which is a shorthand notation for a point at distance C between x and x′:

xC ≔ x + C
x′ − x

∥x′ − x∥
. (3.35)

The inner integral over the extinction coe�cient is also called the optical depth g . The

transmittance function here is exponential. This is a consequence of the assumption

of uncorrelated medium particles. We will discuss non-exponential transmittance in

Chapter 7, where we use such alternative formulations to improve volumetric scene

representation.

The RTE can be integrated to derive the volume rendering equation (VRE), which,

analogous to the surface case, is a recursive integral equation:

!> (x,8>) =

∫ B

0

T(x, xC )

[
f0 (xC )!4 (xC ,8>) + fB (xC )

∫
S2

5? (xC ,8> ,88)!8 (xC ,88) d88

]
dC

+T(x, xB)!> (xB,8>), (3.36)
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Figure 3.10: This illustration shows some of the terms used in the volume rendering equation. The outgo-

ing radiance consists of in-sca�ered radiance on points in the volume and the outgoing radiance at the

closest surface along the ray. Both quantities are a�enuated by the transmi�ance T.

where C is the distance along the ray (x,−8>) and B is the distance to the closest surface

along that ray. The term !> (xB,8>) is the outgoing radiance at the surface at point xB .

Some of the terms in this equation are illustrated in Figure 3.10

3.4.2 Phase functions

Similar to the BSDF for surfaces, the phase function is an important factor determining

the appearance of scattering volumes. A variety of analytical phase function models

have been derived. The simplest one is the isotropic phase function, which models a

uniform directional distribution:

5 iso? (x,8> ,88) =
1

4c
. (3.37)

Like the di�use BSDF, this is an idealized model that is unlikely to hold for real scenes.

Henyey-Greenstein phase function. A slightly more complex model is the aniso-

tropic Henyey-Greenstein [89] phase function. It was designed to �t measured data and

is de�ned as

5 HG? (x,8> ,88) =
1

4c

1 − 62

(1 + 62 − 26⟨−8> ,88⟩)3/2
. (3.38)

The model is parameterized by the mean cosine 6 ∈ [−1, 1]. The mean cosine of a phase

function is the expected value of the cosine of the angle between incident and outgoing

direction:

6 =

∫
S2

⟨−8> ,88⟩5? (x,8> ,88) d88 . (3.39)
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(a) HG, 6 = −0.75 (b) HG, 6 = 0 (c) HG, 6 = 0.75 (d) SGGX

Figure 3.11: Example renderings using di�erent phase functions. The scene consists of a slab illuminated

by a projected checkerboard pa�ern. For the Henyey-Greenstein phase function, the mean cosine pa-

rameter 6 controls if the phase function is backsca�ering (a), isotropic (b) or forward sca�ering (c). The

SGGX phase function (d)models an anisotropic medium. The parameters here are chosen such that light

sca�ers primarily along the diagonal from bo�om le� to top right.

A forward scattering phase function has a positive mean cosine and a backscattering

phase function has a negative mean cosine. The Henyey-Greenstein phase function con-

veniently parameterizes the space between forward and backscattering, reducing to the

isotropic phase function for 6 = 0. Figure 3.11 shows example renderings using di�erent

values for 6.

Microflake theory. The previously described models describe media that are locally

rotation invariant, or isotropic. Note that the terms isotropic and anisotropic have two

di�erent uses in the context of participating media. Both the phase function itself and

the medium can either be isotropic or anisotropic. For example, the Henyey-Greenstein

phase function is an anisotropic phase function describing an isotropic medium. The

Henyey-Greenstein scattering only depends on the angle between incident and outgoing

direction, but not on their absolute orientation.

In an anisotropic medium, the scattering of light is no longer rotation invariant. An

important class of phase function models for anisotropic media are micro�ake phase

functions [90, 91]. These allow modeling oriented structures, such as observed in wood

or woven fabrics [92]. In these materials, the light scattering is strongly in�uenced by

the �ber orientation. In Chapter 7, we use a micro�ake model to convert scenes consist-

ing of surfaces to volumes. By using a micro�ake phase function, we can more closely

match the appearance of opaque surfaces in a purely volumetric renderingmodel. Aniso-

tropic media have also been used as a model to accurately downsample existing isotropic

volumes [93].

Conceptually, micro�ake phase functions assume that the medium is made up of

microscopic �akes. These �akes are oriented disks with a surface BSDF. The micro�ake
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model is the volumetric analog of the microfacet model used for surfaces. Just like for

microfacets, we do not reason about individual �akes, but only consider the aggregate

e�ect caused by a certain normal distribution function (NDF). The phase function then

becomes an expected value over micro�ake normals:

5? (x,8> ,88) =
1

f (88)

∫
S2

? (8<,8> ,88)⟨88,8<⟩� (8<) d8<, (3.40)

where 8< is a micro�ake normal, � (8<) the micro�ake NDF and ? (8<,8> ,88) the mi-

cro�ake’s surface BSDF. For a micro�ake distribution, the projected area along a direc-

tion 88 is

f (88) =

∫
S2

⟨88,8<⟩� (8<) d8< . (3.41)

The micro�ake model has the consequence that the medium’s extinction is scaled by this

projected area and thus becomes directionally varying:

fC (88) = fCf (88). (3.42)

Intuitively, the extinction coe�cient depends on the proportion of micro�akes facing

direction 88 .

A commonmicro�ake phase function is the SGGX [91] phase function. It is the three-

dimensional generalization of the Trowbridge-Reitz (GGX) [78, 80] microfacet distribu-

tion used for surface rendering. The SGGX micro�ake normal distribution is de�ned to

match the distribution of surface normals of a 3D ellipsoid. The ellipsoid can approxi-

mate the normal distribution of both �bers and �at surfaces, and anything in between.

Figure 3.11d contains an example rendering using �ber-like settings. The ellipsoid can

be parameterized in terms of a 3D rotation matrix [81,82,83] and the projected areas

along each coordinate axis:

( = (81,82,83)

©­­­
«
f2(81) 0 0

0 f2(82) 0

0 0 f2(83)

ª®®®
¬
(81,82,83)

) . (3.43)

The matrix ( is a symmetrical 3-by-3 matrix and can be stored compactly using just six

�oating point numbers. In Figure 3.12, we show a few example ellipsoids and their corre-

sponding normal distributions. Heitz et al. [91] show how to �t ( to a given distribution

of micro�ake normals and present e�cient sampling and evaluation routines for both

specular and di�use micro�ake BSDFs. The sampling uses visible normal sampling [59,

94] to only sample to micro�ake normals that face the incident direction.
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NDFEllipsoid NDFEllipsoid NDFEllipsoid

Figure 3.12: The SGGX normal distribution function (NDF) matches the normals of a 3D ellipsoid. In these

three examples, di�erent ellipsoid parameters are used to produce a range of NDFs, including fiber-like

(le�), surface-like (middle) and nearly uniform (right) distributions.

3.4.3 Volumetric path space integral

The path space integral formulation from Section 3.3.4 can be extended to volumetric

light transport [9, 95]. We can write a uni�ed path integral formulation that accounts

for both surface and volumetric scattering. The image contribution function is then

written

5 9 (x̄) =,
( 9)
4 (x1→x0)

=−1∏
8=1

� (x8↔x8−1)

T(x8↔x8−1) 5̂ (x8+1→x8→x8−1)!4 (x=→x=−1). (3.44)

Instead of the BSDF, we use a generalized term 5̂ that is evaluates either the BSDF or the

phase function scaled by the scattering coe�cient fB , depending on if the current path

vertex is on a surface or inside the volume:

5̂ (x→x′→x′′) =



5B (x→x′→x′′) x′ ∈ M

fB (x
′) 5? (x→x′→x′′) x′ ∈ V

(3.45)

The emission term !4 (x= → x=−1) will evaluate either surface or volume emission, de-

pending on the type of vertex x= . The geometry term is also slightly modi�ed:

� (x↔x′) = + (x↔x′)
�x(x

′)�x′ (x)

∥x − x′∥2
, (3.46)

where �x(x
′) evaluates to the usual cosine term if x is on a surface and to 1 otherwise.

There is no foreshortening e�ect for a path vertex that lies in the volume, but the division

by the squared distance is still needed. The integration measure is now the product of

the local area and volume measures, depending on the type of the current vertex:

` (x̄) =

=∏
8=0



d�(x8) x8 ∈ M

dV(x8) x8 ∈ V
(3.47)
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3.4.4 Null-sca�ering path integral

The above path integral still contains a nested integral over optical depth in the de�nition

of the transmittance term (see Equation 3.34), which complicates the formulation of un-

biased Monte Carlo integration algorithms. We can eliminate the nested transmittance

integral by introducing null scattering [95, 96, 97]. To do so, we add a certain amount of

�ctitious null particles, which do not scatter or absorb radiance. We �rst de�ne f̄ to be

a constant upper bound of the medium’s extinction and then de�ne the null scattering

coe�cient f= (x) = f̄ − fC (x) ≥ 0. We then introduce null scattering terms into the RTE

(Equation 3.33) without modifying the result:

(8 · ∇)!(x,8) = f0!4 (x,8) + fB

∫
S2

5? (x,8,8)!(x,8) d8
′ − fC!(x,8)

= f0!4 (x,8) + fB

∫
S2

5? (x,8,8)!(x,8) d8
′ + f=!(x,8) − fC!(x,8) − f=!(x,8)

= f0!4 (x,8) + fB

∫
S2

5? (x,8,8)!(x,8) d8
′ + f=!(x,8) − f̄!(x,8). (3.48)

The null-scattering RTE is then integrated along 8 to yield the null-scattering volume

rendering equation [97, 98]:

!> (x,8>) =

∫ B

0

T̄(x, xC )

[
f0 (xC )!4 (xC ,8>)

+ fB (xC )

∫
S2

5? (xC ,8> ,88)!8 (xC ,88) d88 + f= (xC )!> (xC ,8>)

]
dC

+ T̄(x, xB)!> (xB,8>), (3.49)

where T̄(x, xC ) = exp(−Cf̄) is the transmittance computed using the constant extinction

majorant. We no longer need to solve an integral to compute the transmittance function.

The newly added null-scattering terms compensate for the fact that T̄(x, xC ) ≤ T(x, xC ).

Based on this formulation, a null-scattering path integral formulation can be de-

rived [95]. Compared to the previous path integral, there are now three types of vertices:

surface, volume and null vertices. A null vertex is a vertex in the volume where we eval-

uate f= (xC )!> (xC ,8>). At such a vertex, radiance continues in the same direction and is

scaled by the null-scattering coe�cient. Formally, we now write the image-contribution

function as:

5 9 (x̄) =,
( 9)
4 (x1→x0)

'−1∏
8=1

�
(
xA8 ↔xA8−1

)
=−1∏
8=1

T̄(x8→x8−1) 5̂ (x8+1→x8→x8−1)!4 (x=→x=−1). (3.50)
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Real scattering

Null scattering

Figure 3.13: Illustration of the terms used in the definition of the null-sca�ering path integral formulation.

We distinguish between real sca�ering (grey) and null sca�ering vertices (blue).

Some of the terms used here are illustrated in Figure 3.13. The geometry term � only

needs to be evaluated between non-null vertices (i.e., surface or volume vertices), listed

with indices {A0, . . . , A'−1}. The function 5̂ becomes:

5̂ (x→x′→x′′) =




5B (x→x′→x′′) x′ ∈ M

fB (x
′) 5? (x→x′→x′′) x′ ∈ V

f= (x
′) x′ ∈ VX

(3.51)

whereVX is the space of null vertices. The null vertices are constrained to lie on straight

lines between volume and surface vertices. Their contributions are integrated along the

line between the previous and next non-null vertices, see Miller et al. [95] for details on

the used integration measures. We will discuss how this null scattering formulation can

be used to formulate unbiased Monte Carlo estimators in Section 3.5.2.

3.5 Monte Carlo rendering

Starting from these theoretical foundations of light transport, we can render images

using Monte Carlo integration. Our goal is to estimate pixel values by sampling a �nite

number of light paths:

� 9 =

∫
P

5 9 (x̄) dx̄ ≈
1

#

#∑
8=1

5 9 (x̄)

? (x̄)
, (3.52)

where 5 9 is the image contribution function and ? is the PDF of sampling a given path.

In the following, we �rst discuss surface rendering and then explain the changes needed

for the volumetric case.
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Image
Shadow ray

Figure 3.14: Illustration of the path tracing algorithm. Starting from the camera, a light path is con-

structed by alternating direction sampling and ray intersection. At each path vertex, next event estima-

tion samples a point x48 on the light source and checks for occlusion by tracing a shadow ray.

3.5.1 Path tracing

The simplest and at the same time most common Monte Carlo rendering algorithm is

unidirectional path tracing [3]. All di�erentiable rendering techniques described in this

thesis use a variation of this method to render images. Path tracing constructs light

paths by starting from the camera and iteratively sampling the direction of the next path

segment, as shown in Figure 3.14. The basic surface path tracing algorithm consists of

the following sequence of steps:

1. Sample a position x0 and outgoing direction 80 according to the sensor. Initialize

a throughput variable V = 1 and running radiance estimate ! = 0.

2. Intersect the ray (x8,88) with the scene geometry to obtain the next vertex x8+1.

3. If the surface is emissive, add the emission weighted by throughput V to the radi-

ance estimate !.

4. Sample the direction 88+1 of the next path segment and multiply V by the ratio of

the BSDF evaluation and sampling PDF.

5. Repeat steps 2 to 4 until a termination criterion is met. Once the path terminates,

accumulate ! to the image.

Sampling strategies. This above procedure samples a path x̄ ∈ P segment by seg-

ment. Therefore, the probability of sampling the entire path is decomposed into a prod-

uct of the (conditional) probabilities of the local direction sampling steps. The choice of
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these local sampling probabilities will a�ect the variance of the �nal estimator. Path trac-

ing usually samples the direction of the next segment using a distribution that closely

follows the BSDF at the current path vertex. Certain BSDFs admit a perfectly propor-

tional sampling strategy (e.g., the di�use BSDF), while for others (e.g., microfacet BSDFs)

we only have approximately proportional distributions [80, 94].

Next event estimation. The variance of path tracing can be reduced further using

next event estimation, which explicitly samples the contributions due to directly visible

light sources at each path vertex. For this, we sample a position x4 on a light source at

each iteration and evaluate visibility, geometry and BSDF terms for a path connecting

from the current vertex x8 to the sampled point x48 . (see also Figure 3.14). Next event

estimation and BSDF sampling are combined using multiple importance sampling [60]

to obtain a robust estimator that works for a large range of light sources and BSDF

parameters.

Path termination. The path tracing algorithm terminates when the path’s through-

put becomes zero or no further ray intersection is found. The e�ciency can be improved

by probabilistically terminating light paths using Russian roulette. At each iteration, Rus-

sian roulette terminates the light path with a probability @. If the light path is continued,

the throughput is scaled by the reciprocal of the continuation probability. Intuitively,

this scales up the path’s throughput to compensate for the energy loss due to early ter-

mination. As a result, the estimator remains unbiased. The termination probability can

be de�ned as a constant or consider the current path throughput. Using Russian roulette

will reduce the computation time by preventing the algorithm from tracing too many

long light paths.

Advanced sampling strategies. Path sampling according to the BSDF completely

ignores the distribution of the radiance !8 incident at the current vertex. Next event es-

timation addresses this, but only handles directly visible light sources. For scenes with

complex indirect illumination, path tracing results in a high variance estimator (i.e., noise

in the �nal image). These issues can for example be addressed by bidirectional path trac-

ing methods [54, 55], which construct paths both from the sensor and the emitters. An-

other option is to replace standard Monte Carlo integration with Markov chain Monte

Carlo [26], which constructs paths by mutating a set of initial samples [87, 99]. Path

guiding [56, 57, 58, 100, 101] algorithms on the other hand �t a sampling distribution to

the current scene. This distribution is then used to importance sample directions that
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more closely follow the distribution of incident radiance. All the work in this thesis uses

the standard path tracing algorithmwithout any guiding or bidirectional methods. How-

ever, it is clear that for many complex settings, more advanced path sampling strategies

could improve the robustness of inverse rendering methods.

3.5.2 Volumetric path tracing

When rendering participating media, we account for volumetric scattering and emission

by sampling path vertices in the volume, instead of always continuing at the closest sur-

face. Volumetric path tracing alternates between sampling a distance along the segment

and the direction of the next segment. If a path vertex lies within the volume, we sample

the next direction proportionally to the phase function. If a surface is intersected, the

next direction is sampled according to the BSDF, just as in the surface-only case.

Sampling the free-�ight distance to the next scattering event is a key challenge. The

distance is commonly sampled proportionally to the transmittance. If the medium is

homogeneous, i.e., the extinction is constant, the transmittance has a closed form:

T(x, x′) = exp

(
−

∫ ∥G−G ′∥

0

fC (xC ) dC

)
= exp (− ∥x − x′∥ fC ) . (3.53)

In that case, the PDF ? (C) = fC exp(−CfC ) is proportional to the transmittance. The

extinction fC is simply the normalization constant of this PDF. We can then sample a

free-�ight distance C using inverse transform sampling:

C = −
log(1 −* )

fC
, where* ∼ U[0, 1) . (3.54)

All results in this thesis use monochromatic extinction coe�cients fC . If they were spec-

trally varying, we could for example select a single wavelength for each generated path

and sample all the free-�ight distances according to the extinction at that wavelength.

This would yield a di�erent sampling strategy for each wavelength, which could then

be combined using MIS [95, 102].

Evaluating the transmittance and sampling the free-�ight distance becomes more

di�cult if the extinction is spatially varying. If the spatial variation is simple, e.g., it

is described by a grid of values, it can still be possible to evaluate the transmittance in

closed form. We could then sample a free-�ight distance by analytically inverting the

CDF. This method is called regular tracking and is both computationally expensive and

rather in�exible.
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C = ) −1 (1 −* )

(a) Ray marching

Extinction fC (x)

fC (xC )

f= (xC )

* · f̄

(b) Delta tracking

Extinction fC (x)

Majorant f̄

Figure 3.15: Illustration of using ray marching (a) and delta tracking (b) for free-flight distance sampling.

The former evaluates the extinction at regular steps, whereas the la�er samples interactions until a real

sca�ering event is sampled.

Ray marching. A di�erent approach is ray marching [103, 104], which approximates

the optical depth integral by evaluating the extinction along regular steps in the medium

and using a quadrature rule. The transmittance estimator is then exp(−ĝ), where ĝ is

the estimated optical depth. The free-�ight distance can then be sampled using inverse

transform sampling, whichmeans we solve a root-�nding problem for C such that 1−* =

T(x, xC ). This process is shown in a 1D example in Figure 3.15a.

However, even if the optical depth integral is evaluated in an unbiased way [9], the

naïve ray marching transmittance estimator will be biased. This is due to the application

of the exponential function: E [exp(−ĝ)] ≠ exp(−E [ĝ]). Recent methods de-bias the

ray marching estimator by using a Taylor expansion of the exponential function or a

telescoping series [53, 105]. It turns out that by forming independent estimators of the

individual terms in the Taylor series of exp(−g), one can obtain an unbiased estimate of

the transmittance even when using ray marching. However, these methods so far only

have been used to evaluate the transmittance, but not for free-�ight distance sampling.

Delta tracking. E�cient unbiased sampling of the free-�ight distance is made possi-

ble by the null-scattering formulation (Section 3.4.4) and an algorithm called delta track-

ing [96, 106]. The key idea is to sample an initial free-�ight distance according to the

homogeneous upper bound on the extinction. Given such a tentative free-�ight sample,

the interaction is then probabilistically determined to either be a real or null scattering

event. Speci�cally, the interaction is real if * · f̄ < fC (xC ), and null otherwise (where

again * ∼ U[0, 1)). When a null scattering event is sampled, the procedure repeats

and the trajectory of the path segment remains unchanged. If a real interaction is sam-

pled, we proceed to sample the scattered direction according to the phase function. This

amounts to only evaluating one of the two recursive radiance terms in Equation 3.49.
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The procedure is shown in Figure 3.15. We refer to Novák et al. [107] for a thorough

discussion of delta tracking and related algorithms. We will discuss how to di�erentiate

this algorithm with respect to the medium parameters in Chapter 5.

Transmi�ance estimation. When the free-�ight distance is sampled proportionally

to the transmittance, the transmittance terms along the light path cancel out and do not

need to be evaluated explicitly. However, we still need to evaluate the transmittance

during next event estimation. Using delta tracking, the transmittance T(x, x′) between

points x and x′ can be estimated by sampling the free-�ight distance from x towards

x′ and returning 1 if x′ is reached, and 0 otherwise [106]. A better estimator is ratio

tracking [10], which replaces the probabilistic termination of delta tracking by multipli-

cation with the continuation probability. Mathematically, we substitute a binary random

variable by its expectation. The variance can be further reduced by employing a con-

trol variate [10]. Alternatively, biased or unbiased versions of ray marching can also be

used [9, 105].
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With the necessary background on Monte Carlo methods and rendering algorithms es-

tablished, we now move on to inverse problems. Inverse rendering techniques solve a

general minimization problem of the form

0̂ = argmin
0

6(� (0)). (4.1)

The vector of scene parameters 0 encodes a representation of the virtual scene, which

could include parameters of scene geometry, participating media, BSDFs, virtual cam-

eras and light sources. At this point, we do not assume a speci�c representation. Some

parameters might be stored on grids (e.g., 2D textures), but they could also be scalars or

even the weights of a neural network.

The function � (0) renders an image given the scene parameters. The objective func-

tion6 is a di�erentiable function that takes the full image as input. In the simplest case, 6

computes the mean squared error between � (0) and a reference image. In more complex

cases, it could be an arbitrary black-box nonlinear function. Ultimately, our goal is to

minimize this function over a selection of scene parameters. Wewill write all derivations

assuming a single rendered image, but they trivially generalize to multi-view optimiza-

tions, where several reference images are provided.

We cannot expect to �nd a closed-form solution for the general minimization prob-

lem in Equation 4.1. Moreover, the dimensionality of the optimization space is vast.

Even a simple scene with a low-resolution material (e.g., 768× 768 RGB texels) has over

1.7 million parameters that must all be optimized. The optimization algorithms we use

therefore need to scale to millions of parameters. Gradient-based optimization methods

are commonly used to tackle such high-dimensional problems. The gradient of the ob-

jective function provides the steepest descent direction that can guide the optimization

algorithms. A central challenge in inverse rendering is e�ciently computing the gra-

dient of the objective function. Due to the high-dimensional parameter space and the

structure of physically-based rendering algorithms, this is a non-trivial problem.

We �rst review gradient-based optimization in Section 4.1 and general-purpose com-

putational di�erentiation methods in Section 4.2, followed by a description of the Mit-

suba system. We then discuss the fundamentals of physically-based di�erentiable ren-

dering. This will also introduce some of the challenges we then address in Chapter 5

and Chapter 6. The chapter concludes with an overview of some of the applications of

di�erentiable rendering.
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This chapter is based in part on the related work and background sections of the

publications covered in the later chapters [45, 46, 47]. The discussion of AD methods is

inspired by the Dr.Jit paper [49].

4.1 Gradient-based optimization

The large number of parameters in inverse rendering problems and the non-linear na-

ture of the objective function can most e�ectively be tackled using gradient-based opti-

mizers. Starting from an initialization 00, gradient descent [108] iteratively updates the

parameters using the gradient of the objective function:

08 = 08−1 − _ · m06(� (08−1)), (4.2)

where mc ≔ m/mc is the derivative operator and _ is the step size (or learning rate). The

step size is oftentimes gradually decreased as the optimization progresses. Given a small

enough step size, this algorithm will decrease the objective function value in each it-

eration until converging to a local minimum. Unless the problem is convex, there is

no guarantee for the optimization to reach a global minimum. The optimization might

terminate in an undesirable local minium that is far from the optimum. Consistently

avoiding such local minima remains a largely open problem in physically-based di�er-

entiable rendering.

Adam optimizer. In many applications, optimized parameters are represented in dif-

ferent units and their derivatives exhibit di�erent levels of variance. For example, the

gradient of the albedo texture of a material will have signi�cantly less variance than

the gradient of the roughness texture. In practice, this requires careful per-parameter

tuning of the gradient descent step size. This is di�cult to do manually, which has led

to the development of several improved gradient-based optimizers [109, 110, 111]. In

particular, the Adam optimizer [111] has been shown to robustly handle a wide range of

optimization problems. It computes a per-variable step size and can deal with extremely

noisy gradients. In each iteration, it �rst updates running estimates of gradient mean<8

and second moment E8 :

68 = m06(� (08−1))

<8 = V1<8−1 + (1 − V1)68

E8 = V2E8−1 + (1 − V2)6
2
8
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Then, these estimators are used to compute the actual per-variable updates:

<̂8 =<8/(1 − V
8
1)

Ê8 = E8/(1 − V
8
2)

08 = 08−1 − _ · <̂8/(Ê8 + Y)

Both <0 and E0 are set to 0 in the beginning. The parameters V1 and V2 control the

in�uence of past gradients. The authors propose to use V1 = 0.9 and V2 = 0.999. The

constant Y = 10−8 prevents division by zero. We use the Adam optimizer for all our

optimization results in the following chapters.

4.2 Di�erentiation methods

While we will later discuss the theoretical implications of di�erentiating a rendering al-

gorithm, we �rst focus on the purely computational aspect of the problem. How can we

best obtain the derivatives of a complex computation such as path tracing? Conceptu-

ally, the simplest approach is to di�erentiate the computation by hand and implement

code for the resulting analytic expressions. This is certainly feasible and has been done

for example in the Redner di�erentiable renderer [112] and for the project presented

in Chapter 7
1
. However, as the complexity of the rendering algorithm increases, this

becomes very tedious and error-prone. It makes adding new types of BSDFs or phase

functions laborious and increases the barrier to experimenting with new algorithms. It

is therefore desirable to use automated methods, which we review in this section.

4.2.1 Finite di�erences

The simplest gradient computation method is �nite di�erences (FD). It numerically ap-

proximates the derivative of a scalar function 5 : R→ R as:

5 ′(G) ≈
5 (G + ℎ) − 5 (G)

ℎ
, (4.3)

where ℎ is a small step size. A commonly used variant of FD are central di�erences:

5 ′(G) ≈
5 (G + ℎ) − 5 (G − ℎ)

2ℎ
. (4.4)

1
This project was developed before the ones presented in Chapter 5 and Chapter 6.
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Finite di�erences are biased since they evaluate a blurred version of the true deriva-

tive [53]:

5 (G + ℎ) − 5 (G)

ℎ
=
1

ℎ

∫ G+ℎ

G

5 ′(C) dC =

∫ ∞

−∞

 (C − G) 5 ′(C) dC, (4.5)

where  (G) =
1
ℎ
✶[0,ℎ] (G) is a box kernel. The e�ect of this blur kernel becomes negli-

gible as ℎ decreases, and FD is commonly used as a reference to validate other gradient

computation methods. Misso et al. [53] further show that by progressively reducing the

step size ℎ one can construct an unbiased gradient estimator. However, this comes at the

signi�cant cost of evaluating the FD estimator many times.

It is straightforward to apply �nite di�erences to a renderer by generating the image

once with the original and once with the o�set parameter. When using a Monte Carlo

renderer, the evaluation of 5 will be noisy. If 5 (G + ℎ) and 5 (G) are evaluated inde-

pendently, the FD estimator requires an enormous number of Monte Carlo samples to

converge. The issue can easily be resolved by using the same random number generator

seed for both evaluations. The correlation of the two estimators then causes a signi�cant

part of the variance to cancel out.

Fundamentally, the main problem of �nite di�erences is that they cannot scale to

functions with many input parameters. For inverse rendering, we would need to render

the image twice for each parameter. This is completely impractical for most real use

cases. An alternative is simultaneous perturbation [113], which is a stochastic estimator

that estimates high-dimensional gradients by simultaneously o�setting all parameters.

For 5 : R= → R, the i’th component of the gradient vector can be estimated as:

mx8 5 (x) ≈
5 (x + ℎΔ) − 5 (x − ℎΔ)

2ℎΔ8
, (4.6)

where Δ is a randomly sampled vector and Δ8 is its i’th component. This approach

replaces the scalability issue with additional variance, which harms optimization per-

formance. Unfortunately, this and related derivative-free optimization methods cannot

compete with gradient descent using the true in�nitesimal gradient.

4.2.2 Automatic di�erentiation

Instead of �nite di�erences or analytic gradients, we typically want to use some form

of automatic di�erentiation (AD). These methods compute gradients automatically by

leveraging the chain rule to decompose the derivative of a computation into a Jacobian

product:

mx [6(5 (x))] = J6 (5 (x)) J5 (x), (4.7)
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Figure 4.1: Example computation graph corresponding to the expression G2 sin(2G~). The edge weights

are the derivative of the operation applied to the input node.

where J6 (5 (x)) is the Jacobian of 6 evaluated at 5 (x).

This principle enables scalable derivative computation that supports an arbitrary

number of input variables. Automatic di�erentiation was initially introduced between

the 1950s and 1970s [114, 115, 116] and then later gained signi�cant traction thanks to its

application to training neural networks [117]. The following overview of AD discusses

the basic principles and outlines some of the main constraints posed by the inverse ren-

dering problem. Amore in-depth discussion of AD can be found in the book byGriewank

and Walther [118].

Computation graphs. The central idea is to think of a given computation as graph of

operations. The individual operations are nodes and the derivatives of individual steps

are assigned to the graph’s edges. For example, consider the following expression:

G2 sin(2G~) . (4.8)

In a computer program, we could implement the evaluation of this expression as a se-

quence of steps:

a = 2 * x

b = a * y

c = sin(b)

d = x * x

e = c * d

The corresponding computation graph is shown in Figure 4.1. The weight of an edge

0 → 1 between nodes 0 and 1 is the derivative m1/m0. An implementation of AD can com-

pute these edge weights during the forward computation. The forward computation will

henceforth also be referred to as primal computation. Many quantities used in the edge

weights are redundant with the primal computations. The stored weights then allow to

e�ciently compute variable gradients. The stored graph of operations is sometimes also

referred to as tape or Wengert tape [115].
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Forward-mode di�erentiation. A key choice in AD algorithms is the directionality

of the gradient computation. The stored computation graph can be traversed either in

forward or reverse direction. If the computation has a single di�erentiable input variable,

but many outputs, it is e�cient to evaluate gradients from the variable to the output in

forward direction. Mathematically, the di�erentiation turns into a series of Jacobian-

vector products (JVP). For a function y = 5 (x), forward-mode AD computes the output

gradient Xy as the product of the Jacobian J5 with the input gradient Xx:

Xy = J5 Xx. (4.9)

Here and in the following, we use X to denote vectors that are inputs and outputs of

Jacobian products.

We can apply forward-mode AD to di�erentiate the output of Equation 4.8 with

respect to G . We �rst initialize a variable XG = 1 and then traverse the graph in Fig-

ure 4.1 from left to right, in each step multiplying the derivative value by the stored

edge weights. This results in the following sequence of operations:

Xx = 1

Xa = Xx * 2

Xb = Xa * y

Xc = Xb * cos(2 * x * y)

Xd = Xx * 2 * x

Xe = Xc * x * x + Xd * sin(2 * x * y)

In the end, the variable Xe contains the derivative m5/mG. Using the computation graph,

we can di�erentiate an arbitrary sequence of elementary operations, without explicitly

computing and storing the full Jacobian matrix of the program.

Forward-mode di�erentiation can be formalized by using dual numbers. Similar to a

complex number, a dual number 0 + n1 consists of a real part 0 and a dual part 1. The

symbol n satis�es n2 = 0 and hence the product of two dual numbers is (0 + n1) (2 +

n3) = 02 + (03 + 12)n . For a function 5 , we can use a Taylor expansion around 0 to

see that 5 (0 + n1) = 5 (0) + n15 ′(0). All the higher-order terms contain a factor n2

and vanish. Therefore, the derivative 5 ′(0) can be obtained by extracting the dual part

after evaluating 5 (0+n). In an implementation, forward-mode AD can be realized using

operator overloading. We can compute gradients by implementing a dual number type,

where basic operators are overloaded to compute the corresponding derivatives. This

means that we compute both the used edge weights and their application to the gradient

variables alongside the primal computation, without storing a computation graph.

The main issue with forward-mode di�erentiation is that the entire derivative com-

putation needs to be carried out separately for each input variable. Similar to �nite dif-

ferences, this does not scale to the large number of parameters encountered in inverse

56



4.2. Di�erentiation methods

rendering. The use of forward-mode AD is therefore restricted to debugging and valida-

tion of di�erentiable rendering algorithms, where it can be used to visualize derivatives

of individual pixels with respect to a single input variable. Researchers working on

rendering algorithms often debug methods by inspecting rendered images. Some of that

intuition can be applied to derivatives by analyzing such forward-mode gradient images.

Reverse-mode di�erentiation. The solution to this limitation is to traverse the com-

putation graph in reverse order. Given a sequence of operations, reverse-mode AD will

start by evaluating the chain rule for the last operation and proceed toward the input

of the algorithm. Mathematically, reverse-mode computation evaluates vector-Jacobian

products (VJP) from the output end of the computation. For a function 5 , it evaluates

Xx = X
)
y �5 . (4.10)

The advantage of this evaluation order is that the gradient computation no longer needs

to be duplicated for each input variable. For the previous example, reverse-mode AD

can simultaneously compute the gradient with respect to G and ~:

Xe = 1 # Initialize the output gradient

Xd = Xe * sin(2 * x * y)

Xc = Xe * x * x

Xb = Xc * cos(2 * x * y)

Xa = Xb * y

# Accumulate x gradient

Xx = Xd * 2 * x + Xa * 2

# Accumulate y gradient

Xy = Xa * 2 * x

The G gradient is identical to the forward-mode version, but we now got the ~ gradient

at almost no extra cost. This reverse-mode gradient computation is also called backprop-

agation.

While simple for our example program, reverse-mode AD is generally more di�-

cult to implement than forward-mode. Since it propagates gradients opposite to the

primal program’s computation order, it requires storing some of the edge weights of

the computation graph in memory to be able to run e�ciently. If we naïvely imple-

mented reverse-mode AD without storing any of the edge weights, each gradient com-

putation step would require re-running the primal computation up to the current node

in the graph. The complexity would be quadratic in the number of computation steps,

which makes such an approach unusable in practice. On the other hand, storing all edge

weights of the graphwould easily exceed the available systemmemory for most complex

computations.

57



Chapter 4. Di�erentiable Rendering

The standard remedy for this issue is to only store the program state at a sparse set

of checkpoints [119, 120]. Between checkpoints, derivative terms are recomputed dur-

ing the graph traversal. The number and placement of checkpoints control the tradeo�

between memory use and recomputation. This can be done by manually de�ning check-

points or using some heuristics in the AD system. Another aspect of this problem is the

granularity of the AD graph. For commonly used complex operations, e.g., convolution

layers in a neural network, it can be worthwhile to implement the vector-Jacobian prod-

uct manually, rather than relying on AD to construct an e�cient implementation from

elementary operations. In the context of physically-based di�erentiable rendering, we

will see that using checkpointing is insu�cient and propose a rendering-speci�c solu-

tion in Chapter 5.

Tracing AD. There are a large number of design choices when building a reverse-

mode AD implementation. A common pattern is to trace computations using operator

overloading. Every operation in the traced program will add a node to the AD graph.

A tracing framework is generally not aware of higher-level control structures such as

loops, if-conditions and function calls. Any loops will be unrolled and function calls will

be inlined.

Popular machine learning frameworks such as TensorFlow [121] and PyTorch [122]

employ this approach and are designed for programs consisting of a relatively small

number of neural network layers (usually less than 100) without complex control �ow.

The individual neural network operations are implemented on top of highly optimized

GPU kernels (e.g., using cuDNN [123]). Each operation is equipped with a custom for-

ward and backward gradient propagation implementation. The frameworks then simply

connect up a few dozen of these individual operations. By default, the result of each op-

eration is written to memory and cached for the reverse-mode gradient computation.

This uses a signi�cant amount of memory, but since the number of operations is low

this scales reasonably well to machine learning workloads.

However, complex programs such as a renderer consist of thousands of elementary

operations that need to be evaluated and di�erentiated e�ciently. In that case, writ-

ing out all intermediate results is infeasible and we need to use checkpointing. High-

performance reverse-mode AD of large programs further requires some form of a com-

piler to fuse several operations into a single program orGPU kernel. By fusing operations

into a single kernel, temporary variables can use registers andwe can reduce costly reads

and writes to (large) temporary memory bu�ers. For example, JAX [124] builds on the

XLA compiler [125] to convert a program trace into a set of e�cient kernels.
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Source transformation. While tracing is commonly used, it has the disadvantage of

not supporting control �ow such as loops. The trace of a program can be much larger

than the original program, which makes the compilation expensive and prevents the

use of sophisticated optimizations. The alternative is to use a source transformation ap-

proach, in which a derivative program is compiled by analyzing the control �ow of the

primal program. Tapenade [126] compiles derivative code for C programs, while Zy-

gote [127] works on programs in single-static assignment form. Similarly, Enzyme [128]

computes derivatives of optimized LLVM IR [129]. Stalin∇ [130] enables reverse-mode

AD support in a functional programming context. Source transformation and tracing

approaches are not mutually exclusive: several systems combine high-level tracing with

a limited version of source transformation AD.

Di�erentiable programming in computer graphics. All our algorithms are imple-

mented on top of Mitsuba [50] and Dr.Jit [49], which we discuss in Section 4.3. Several

other AD systems tailored to computer graphics applications have been proposed. The

recent TensorRay [131] system implements a JIT compiler supporting reverse-mode AD

of di�erentiable renderers. The Taichi [132, 133] language enables writing e�cient, dif-

ferentiable physics simulations in Python. It is particularly e�cient at handling com-

putation on sparse grids, as commonly used for �uid simulation and can fuse a large

number of operations into a single GPU kernel. Di�erentiable Halide [134, 135] allows

backpropagating gradients through high-performance image processing code. Halide is

a domain-speci�c language for image processing that decouples the speci�cation of algo-

rithms from their execution schedule, which enables writing high-performance, di�er-

entiable CPU and GPU code. Di�VG [136] is a framework for di�erentiable rasterization

of vector graphics.

4.2.3 Reversible computation

Instead of relying on automatic di�erentiation, we could try to exploit domain knowl-

edge to come up with more e�cient gradient estimators. At its core, a large part of

di�erentiable rendering research, including some of the methods presented in this the-

sis, falls into this category. There is a rich history of custom di�erentiation methods for

a range of applications.

A key di�culty for reverse-mode di�erentiation are long-running loops that require

trading o� storage and expensive recomputation. The simplest solution is to store the

state of the loop variables after each iteration, but this has a very high memory use and
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performs poorly if the number of loop iterations is unbounded.

However, there is a way around this problem for certain special cases: If the loop

iteration is reversible, the required intermediate state can be reconstructed during the

reverse-mode gradient accumulation. The gradient computation traverses the loop state

from iteration # to iteration 1. At step 8 , we can recover the state at step 8 − 1 by ap-

plying the inverse loop iteration. The adjoint sensitivity method [137] from the area of

optimal control is the classical example of this idea: its primal phase integrates an or-

dinary di�erential equation up to a certain point in time. Di�erentiation then follows

the same trajectory in reverse by taking negative timesteps starting from the endpoint.

This idea has been used to reduce the costs of di�erentiation in �uid dynamics [138],

robotics [139], and reversible residual networks in machine learning [140, 141]. Invert-

ible neural network architectures can further be employed to learn parametric sampling

methods [142, 143].

In Chapter 5, we introduce a novel di�erentiation method that is similar to reversible

programming. Instead of explicitly running an inverse program, it relies on the in-

vertibility of the (low-dimensional) Jacobian relating adjacent scattering interactions.

In Chapter 7 we use invertibility to di�erentiate through a novel transmittance model,

similar to concurrent work on di�erentiable volume rendering for scienti�c visualiza-

tion [144].

4.3 Mitsuba and Dr.Jit

The e�cient implementation of reverse-mode AD for large programs is also a compi-

lation problem. In this section, we brie�y describe Mitsuba 3 [50], which is the di�er-

entiable rendering system developed in our lab alongside the research on algorithms. It

is implemented on top of Dr.Jit [49], a just-in-time compiler for di�erentiable render-

ing. This stack represents the evolution of the Mitsuba 2 renderer [48, 145]. The aim

of this section is to outline some of the requirements for physically-based di�erentiable

rendering systems.

Mitsuba o�ers a variety of plugins implementing di�erent types of shapes, BSDFs,

light sources, sensors and phase functions. Scenes are described as XML �les or Python

dictionaries, specifying a combination of di�erent plugins and their parameters. For a

detailed description of the system features, see Mitsuba 3’s documentation
2
. The system

is designed to support the rapid exploration of physically-based di�erentiable rendering

2https://mitsuba.readthedocs.io/
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algorithms. This is enabled by a just-in-time (JIT) compiler called Dr.Jit which compiles

algorithms implemented in a Python frontend. The compilation by Dr.Jit is essential to

achieve competitive performance, and all functionality in Mitsuba is implemented on

top of it.

Dr.Jit compiler. At the lowest level, the Dr.Jit compiler is built around 1D arrays that

process independent elements in parallel (e.g., often each element corresponds to a sep-

arate Monte Carlo sample). These arrays support various mathematical operations and

can be combined to form structures of arrays (e.g., a 3D vector). Any operation on these

arrays will be added to a trace of operations. This trace is unrelated to AD and is sim-

ply a sequence of operations. The tracing is uninterrupted and no actual computation is

carried out until the user requests it. Crucially, Dr.Jit supports tracing virtual function

calls, loops and calls to ray tracing acceleration libraries (concretely, Embree [146] and

OptiX [147]). These operations are preserved in the trace (e.g., loops remain loops and

are not unrolled). The uninterrupted tracing allows fusing the entire rendering process

into a single GPU or CPU kernel. This megakernel stores intermediate values in regis-

ters and only accesses systemmemory for inputs and outputs. This is not only useful for

AD, but also makes it possible to implement a fast, memory-e�cient GPU path tracer in

Python. On the contrary, a wavefront implementation stores temporary results in large

bu�ers in system memory. We found that megakernels are often faster than their wave-

front counterparts, especially when compiling for CPUs, where the system memory’s

throughput is much lower than on a GPU.

The compiler implements standard optimizations like constant propagation and com-

mon subexpression elimination. It further performs optimizations speci�c to virtual

function calls, e.g., it propagates constants across virtual function call boundaries. Since

tracing happens every time we render an image, it needs to be fast and the compiler

does not feature any complex multi-pass optimizations. The trace of operations is then

handed o� to OptiX [147] for GPU compilation or LLVM [129] CPU compilation. These

frameworks take care of challenging low-level problems like register allocation.

Tracing AD. This JIT compiler naturally combines well with a second level of trac-

ing that constructs an AD graph. Traversing the AD graph in forward or reverse di-

rection then simply emits instructions to the JIT compiler. Dr.Jit supports �ne-grained

control over how gradients are propagated in the AD graph. For example, it allows tem-

porarily suspending gradient computation for all variables not in a user-de�ned group.

Virtual function calls support gradient computation as well. The gradient propagation
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then simply performs a virtual function call on derivative functions (instead of inlining

everything). Di�erentiating through polymorphism is important, as rendering mostly

accesses scene parameters through virtual function calls (e.g., when evaluating di�erent

BSDFs). Note that some problems are deliberately left to the user: Dr.Jit does not di�er-

entiate loops or ray tracing calls. However, it facilitates the implementation of custom

gradient computation algorithms. The di�erentiation approach that we use in rendering

is a combination of specialized algorithms, hand-written derivatives, automatic di�er-

entiation and source transformation. The design of Dr.Jit was partially driven by the

needs of the path replay backpropagation algorithms that we introduce in Chapter 5.

That algorithm di�erentiates a rendering algorithm by only using AD locally inside of

the path tracer loop, without the need to build an AD graph across iterations.

4.4 Di�erentiable Monte Carlo rendering

With this, we now turn to the problem of di�erentiating Monte Carlo rendering algo-

rithms. As stated earlier, our goal is to solve problems of the form:

0̂ = argmin
0

6(� (0)), (4.11)

where 6 is an image-based objective function. In the following, we will simplify the

notation by considering only the intensity � of a single pixel 9 and one di�erentiable

parameter c . The derivations generalize to di�erentiable rendering of RGB images and

multiple parameters. The theoretical framework also applies to more general objective

functions 6(� (0), 0) that contain additional loss terms de�ned on the parameters (e.g.,

regularization or priors). We will focus on the gradients related to the rendered image,

as additional terms can be handled by standard AD.

Objective function gradient. Using the simpli�ed notation, our goal is to compute

the derivative mc6(� (c)). The chain rule allows writing this term as:

mc6(� (c)) = 6
′(� (c)) mc � (c), (4.12)

where 6′ is the derivative of the objective function. We further declutter the notation

by dropping the explicit dependency of � on c from now on. As explained in Chapter 3,

we will use Monte Carlo integration to estimate � . If we replace � with a Monte Carlo

estimator �̂ in the equation above and take the expected value we get

E
[
mc6(�̂ )

]
= E

[
6′(�̂ ) mc �̂

]
= E

[
6′(�̂ )

]
E

[
mc �̂

]
+ Cov

[
6′(�̂ ), mc �̂

]
= E

[
6′(�̂ )

]
mc �̂ + Cov

[
6′(�̂ ), mc �̂

]
≠ mc6(� ). (4.13)
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Generally, this will not result in an unbiased estimator of the true objective function

gradient. Without any problem-speci�c knowledge, we can assume gradient descent to

work best if our estimate of mc6(� ) is as accurate as possible.

The bias arises from two sources and can partially be eliminated. First, 6′(�̂ ) and mc �̂

are correlated, which produces the covariance term. We can get rid of this bias by using

two independent estimators: a primal estimator �̂? used to evaluate 6′ and a separate

gradient estimator mc �
0
[148, 149]. Using these decorrelated estimators the covariance

term disappears:

E
[
6′(�̂?) mc �̂

0
]
= E

[
6′(�̂?)

]
mc �̂

0 . (4.14)

We will in the following always use a separate set of samples for primal and gradient

estimators. In practice, this means we render two images using di�erent random number

seeds.

The second source of bias is the estimation of 6′(� ). We can observe that if 6(� ) =

(� − �'4 5 )2 is the squared di�erence to a reference value �'4 5 , the derivative function is

linear: 6′(� ) = 2(� − �'4 5 ). Thus, any unbiased estimator of the pixel color � produces an

unbiased estimator of 6′(� ).

Unfortunately, this does not hold for arbitrary objective functions. For example, the

gradient of the !1 loss cannot easily be estimated in an unbiased way. The gradient of

6(� ) = |� − �'4 5 | is 6′(� ) = sign(� − �'4 5 ). Naïvely estimating this gradient yields the

following expected value:

E
[
6′(�̂ )

]
= E

[
sign(�̂ − �'4 5 )

]
= % (�̂ − �'4 5 ≥ 0) − % (�̂ − �'4 5 < 0). (4.15)

This will be a value in [−1, 1] and typically does not equal the true sign, which is either

-1 or +1. However, the sign of the expected value will be correct and the gradient will

therefore in expectation point in the right direction. The situation is less clear when

using more complex loss functions that might mix information from di�erent pixels

(e.g., a perceptual neural loss [150]). In this thesis, we use variants of !1 and !2 losses

and did not experiment with more complex loss functions. Fortunately, even with a

more complex objective function, the gradient estimator remains consistent and the bias

decreases as the number of samples is increased.

Detached estimator. The remaining challenge is to estimate mc � itself. Mathemati-

cally, we need to di�erentiate a parameter-dependent, high-dimensional integral over

light paths:

mc � = mc

∫
P

5 (x, c) dx, (4.16)
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where 5 is the parameter-dependent image contribution function. We omit its usual pixel

index subscript, as all the following derivations focus on a single pixel. If 5 does not

contain parameter-dependent discontinuities, we can directly estimate this derivative

using Monte Carlo integration. The derivative operator can be moved into the integral:

mc

∫
P

5 (x, c) dx =

∫
P

mc 5 (x, c) dx ≈
1

#

#∑
8=1

mc 5 (x8, c)

? (x8, c)
. (4.17)

For this estimator, we need to di�erentiate the evaluation of 5 . We do not have to dif-

ferentiate the sampling process that produces x8 or the corresponding PDF ? (x8). We

call this estimator detached since both sampling and PDF evaluation are detached from

the di�erentiation process. This is the most commonly used estimator in di�erentiable

rendering [45, 48, 148, 151]. If 5 contains c-dependent discontinuities, additional precau-

tions are required (see Section 4.5). Similarly, if the path spaceP is parameter-dependent,

we need to account for changes in its geometry [152] or switch to a parameterization of

the integration domain that is independent of c . Since the path space is de�ned as the

cartesian product of scene surfaces, any parameter in�uencing the shape or position of

surfaces will modify it.

The derivation here only considers a single scene parameter, but we are usually con-

cerned with evaluating the gradient of many parameters at once. For e�ciency, the same

set of sampled light paths can be used to evaluate all parameter derivatives simultane-

ously. The mathematical formulation here does not address practical considerations of

evaluating all these derivative integrals. In Chapter 5 we will further investigate how to

e�ciently compute derivatives of 5 , in particular in the presence of long light paths.

A�ached estimator. While conceptually simple, the detached estimator does not han-

dle all potential use cases. In particular, it does not support perfectly specular BSDFs.

Such BSDFs are delta functions, which do not yield valid derivatives. The solution to

this problem is to also di�erentiate the BSDF sampling process. By doing so, we switch

from di�erentiating the integrand by itself to di�erentiating the ratio of integrand to

PDF. This avoids having to di�erentiate the delta function of the specular BSDF, as it

cancels out with the sampling density.

Di�erentiating the sampling process can be interesting beyond perfectly specular

surfaces. Many of the sampling steps in a Monte Carlo renderer are highly scene-

dependent. For example, the roughness parameter of a microfacet BSDF will a�ect the

sampling of the scattered direction. This and other sampling methods usually trans-

form a set of uniformly distributed random numbers to the desired target distribution,
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Figure 4.2: We plot the Monte Carlo sample weights for the primal, detached and a�ached estimators

for two example problems. In both problems, integrand and sampling density are based on a Gaussian

function and di�erentiatedwith respect to its variance. The samplingweights are plo�ed over the primary

sample space [0, 1]. Top row: the sampling density is close to proportional to the integrand. In that case,

the a�ached estimator achieves a variance close to the primal estimator. Bo�om row: the integrand is

multiplied by a parameter-independent sine wave. The additional motion due to the a�ached sampling

strategy causes additional variance, while the detached estimator performs similarly to the first example.

e.g., using inverse transform sampling [71]. We can interpret this transformation as a

reparameterization of the original integral. This poses the question of when we should

di�erentiate before or after applying this reparameterization of the integrand. Because

the sampling strategy may potentially produce di�erent distributions depending on the

parameter c , samples from the latter approach can be understood to smoothly follow

the motion of the underlying sampling strategy with respect to perturbations in c . This

in�uences the variance properties of the resulting estimators.

Formally, sampling strategies can be understood as a change of variables to new

coordinates u ∈ U parameterizing the integration domain P via a mapping ) : U →

P, where U = [0, 1]= is a unit-sized hypercube of suitable dimension. The space U

is called the primary sample space [153]. The mapping x = ) (u) is constructed from

a target density ? (x) so that its Jacobian determinant satis�es |J) (u) | = ? (x)−1. The

reparameterized integral then takes the form

� =

∫
P

5 (x, c) dx =

∫
U

5 () (u, c), c) |J) (u, c) | du =

∫
U

5 () (u, c), c)

? () (u, c), c)
du. (4.18)

This formulation is called attached, since samples geometrically follow the motion of
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) (u, c) with respect to perturbations of c . Similar to before, we can build an estimator

of the derivative by applying Monte Carlo integration:

mc � =

∫
U

mc

[
5 () (u, c), c)

? () (u, c), c)

]
du ≈

1

#

#∑
8=1

mc

[
5 () (u8, c), c)

? () (u8, c), c)

]
. (4.19)

The attached estimator is primarily useful for perfectly specular surfaces, but Zeltner

et al. [68] also showed that it can produce lower variance than the detached version

for derivatives of BSDFs with low roughness. On the other hand, the additional motion

of the samples might introduce more variance in the evaluation of other terms in the

integrand. Figure 4.2 shows two example integrands on which we compare attached

and detached estimators. In the �rst example, the sampling distribution closely matches

the integrand and the attached estimator can outperform the detached version. However,

in the second example, the di�erentiated parameter does not a�ect the high-frequency

variation and hence themotion of the samples causes additional variance for the attached

estimator.

Finally, the attached estimator is more di�cult to use as in practice it requires han-

dling discontinuities in the sampling function ) . Examples of such discontinuities are

discrete sampling decisions such as in delta tracking or discontinuities due to sampled

rays hitting di�erent objects as c changes [48, 68, 154]. Zeltner et al. [68] propose to

adaptively switch between attached and detached estimators to circumvent some of

these issues.

Related formulations. As mentioned before, di�erentiable Monte Carlo estimators

have been used in other disciplines as well. We show how several formulations from

other �elds can be reduced to our detached and attached estimators.

Di�erentiable Monte Carlo has for example been used to train certain generative

neural networkmodels [155, 156]. During training, the goal is to optimize the parameters

of the neural network to reproduce the distribution of samples in a data set. This requires

di�erentiating an expected value with respect to the parameters c of a distribution with

PDF ? (-, c). Paisley et al. [155] proposed to reformulate the derivative of an expected

value as:

mc E-∼? (-,c) [5 (- )] = mc

∫
X

5 (x)? (x, c) dx =

∫
X

5 (x)? (x, c)mc log? (x, c) dx

= E-∼? (-,c) [5 (- )mc log(? (-, c))] , (4.20)

where the second equality moves the derivative operator into the integral and uses

mc log(? (x, c)) = mc? (x, c)/? (x, c). The second expected value can then be estimated by
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sampling - according to ? . It is easy to see that this is nothing else than the previously

introduced detached estimator applied to the integrand 5 (G)? (G, c):

E-∼? (-,c) [5 (- )mc log(? (-, c))] ≈
1

#

#∑
8=1

5 (x8)mc log(? (x8, c)) =
1

#

#∑
8=1

5 (x8)mc? (x8, c)

? (x8, c)
.

(4.21)

Similar to rendering, this detached estimator can su�er from high variance. In varia-

tional autoencoder [156] training, this issue is mitigated using the so-called reparame-

terization trick:

mc E-∼? (-,c) [5 (- )] = mc E*∼@(* ) [5 () (* , c))] = E*∼@(* ) [mc 5 () (* , c))] , (4.22)

where @ is a suitable parameter-independent distribution and ) transforms a sample *

into a sample of the distribution ? (-, c). This reduces the variance of the gradient esti-

mator and corresponds to using an attached estimator. Similar ideas were also present

in early work on reinforcement learning [157].

In physics, de Lataillade et al. [158] discussed tradeo�s of di�erent estimators, similar

to the work by Zeltner et al. [68]. They suggest an alternative detached estimator, that

works if we can only access the sample weightF (x8, c) ≔ 5 (x8, c)/? (x8, c), but not the

integrand 5 itself:

mc

∫
X

5 (x) dx ≈
1

#

#∑
8=1

mcF (x8, c) +F (x8, c)
mc? (x8, c)

? (x8, c)
. (4.23)

They motivate this estimator by physical simulations that might not provide an explicit

integral formulation. An example of this used to be delta tracking, where an integral

formulation was only proposed a few years ago [97]. Mathematically, the formulation is

equivalent to the detached estimator, since substituting the de�nition ofF yields:

mcF (x, c) +F (x, c)
mc? (x, c)

? (x, c)
=
mc 5 (x, c)? (x, c) − 5 (x, c)mc? (x, c)

? (x, c)2
+
5 (x, c)mc? (x, c)

? (x, c)2

=
mc 5 (x, c)

? (x, c)
. (4.24)

In summary, it seems that the main classes of di�erentiable Monte Carlo estimators are

indeed detached and attached, and various alternative methods can be reduced to these.
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4.5 Discontinuities

So far, all derivations assumed 5 to be free of parameter-dependent discontinuities. This

allowed moving the derivative operator inside the integral. However, if the integrand

contains parameter-dependent discontinuities, we cannot swap derivative and integral

operator:

mc

∫
P

5 (x̄, c) dx̄ ≠

∫
P

mc 5 (x̄, c) dx̄. (4.25)

For example, if c controls the position of an object, it will a�ect the position of dis-

continuities in the visibility function. Discontinuities are a primary concern when re-

constructing object shape or pose, which are important use cases for inverse rendering

methods. Note that only parameter-dependent discontinuities are problematic. Discon-

tinuities in the integrand that are una�ected by c do not cause any issues. Even in the

presence of parameter-dependent discontinuities, the image formation process inher-

ently remains di�erentiable. It simply becomes more di�cult to estimate its derivative

using Monte Carlo integration. In this section, we will discuss methods to handle these

geometric discontinuities in physically-based di�erentiable rendering.

4.5.1 Reynolds transport theorem

We �rst consider the simple problem of di�erentiating a one-dimensional integral. In

that case, the Leibniz integral rule states:

mc

∫ 1 (c)

0(c)

5 (G, c) dG =

∫ 1 (c)

0(c)

mc 5 (G, c) dG + mc1 (c) 5 (1 (c), c) − mc0(c) 5 (0(c), c),

(4.26)

where 0(c) and 1 (c) are parameter-dependent integration boundaries and 5 is a scalar

di�erentiable function with continuous partial derivative mc 5 . If the integration bounds

are not parameter-dependent, we simply move the derivative operator into the integral

and all other terms become zero. However, if the boundary moves with c , we need to

speci�cally evaluate the two boundary terms.

This idea can be generalized to discontinuous integrands in higher dimensions. The

Reynolds transport theorem [159, 160] implies that the derivative of an integral containing

discontinuities can be decomposed into an interior and a boundary integral:

mc

∫
X(c)

5 (x, c) dx =

∫
X(c)

mc 5 (x, c) dx

︸                 ︷︷                 ︸
Interior integral

+

∮
Γ(c)

Δ5 (x, c)⟨mcx, n⟩ dx

︸                           ︷︷                           ︸
Boundary integral

, (4.27)
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4.5. Discontinuities

Figure 4.3: This figure illustrates the terms used in the Reynolds transport theorem (Equation 4.27).

where X(c) is the integration domain and Γ(c) ⊂ X(c) is the union of the domain

boundary mX(c) and the set of (parameter-dependent) interior discontinuities ΔX(c).

The boundary integral integrates the dot product of the normal direction n at x and the

motion of the boundary mcx multiplied by Δ5 . The function Δ5 is de�ned as

Δ5 (x, c) =



limY→0 5 (x + Yn, c) − 5 (x − Yn, c) if x ∈ ΔX(c),

5 (x, c) if x ∈ mX(c)
(4.28)

The two-sided limit computes the di�erence between function values on either side of

the discontinuity. The terms used in the theorem are illustrated in Figure 4.3.

The set Γ(c) implicitly depends on the integrand 5 and the parameter being di�eren-

tiated. For example, if X(c) is the support of a pixel, Γ(c) would contain the silhouette

edges of visible objects in that pixel. The notation here assumes that potentially X itself

is parameter dependent. The theorem also applies for integrals over (subsets of) man-

ifolds, e.g., the unit sphere [160]. However, this formulation does not work if X is a

moving manifold, e.g., the surface of a shape that depends on c . It is possible to con-

sider these cases as well, but this requires introducing additional derivative terms along

normals and tangents of manifolds [152]. These terms must be considered if we want to

rigorously di�erentiate a path space integral with respect to shape parameters. We will

not go into this here, as we do not rely on that formulation for any of our algorithms.

4.5.2 Edge sampling

The interior term in Equation 4.27 can be evaluated using the previously described di�er-

entiable Monte Carlo estimators, but the boundary integral is more di�cult to estimate.

The derivatives caused by discontinuities need to be explicitly integrated over silhouette

edges.

Li et al. [112] were the �rst to systematically investigate discontinuities in di�eren-

tiable rendering. They proposed to useMonte Carlo integration to evaluate the boundary

69



Chapter 4. Di�erentiable Rendering

Figure 4.4: Visualization of some of the terms evaluated during edge sampling. The motion mc8B and the

normal n⊥ are both in the local tangent space T8B
S2.

term. For scenes consisting of triangle meshes, this can be done by explicitly sampling

the set of edges causing discontinuities. At a shading point x, the boundary integral over

incident illumination becomes [160]:∫
Γ(x)

Δ!8 (x,8B) 5B (x,8B,8>)⟨n
⊥, mc8B⟩+ (x, xB)

sin\

∥x − xB ∥
dB, (4.29)

where Γ(x) =
⋃#
8=1 �8 is the set of silhouette edges �8 in 3D and B parameterizes the

edge. The direction 8B is the normalized vector from x to xB : 8B ≔ xB−x/∥xB−x∥. The dot

product ⟨n⊥, mc8B⟩ computes the velocity of 8B against the normal of the discontinuity

in the tangent space of the unit sphere. The division by the distance accounts for the

projection of points on an edge to the unit sphere of directions. The angle \ is the

angle between 8B and edge itself. Similar to the cosine term for surfaces, it attenuates

contributions at grazing angles. The radiance di�erence Δ!8 (x,8B) requires estimating

the radiance on both sides of the edge (i.e., by recursively tracing two light paths). Some

of the terms in this integral are shown in Figure 4.4.

Naïvely, one could uniformly sample all the triangle edges in the scene and then

check if the sampled edge is a silhouette. However, this would scale extremely poorly

to complex scenes. Therefore, Li et al. propose a hierarchical data structure that allows

sampling discontinuities during path tracing. They �rst sample an edge using this hier-

archical structure and then sample a point on the edge by using a linearly transformed

cosine distribution to approximately sample the edge according to the BSDF [161, 162].

Zhang et al. [160] extend this method to handle scenes containing participating media.

Sampling silhouette edges in this way is di�cult and the acceleration data structure

cannot always guarantee e�cient sampling. For example, it only poorly samples edges

of complex meshes that are visible in re�ections. A more robust edge sampling approach

are path-space methods proposed by Zhang et al. [152, 163]. These �rst sample a point

and direction on a silhouette edge and then connect to subpaths sampled from the sensor
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4.5. Discontinuities

and light sources. While complex to implement, this can result in high-quality edge

gradients in scenarios with challenging lighting conditions. The performance can be

improved further by employing a KD-tree to guide the initial sampling step [164].

The edge sampling problem is closely related to next event estimation in the pres-

ence of a large number of light sources. If the number of lights is large, simple uniform

sampling is insu�cient for e�cient next event estimation. It then becomes necessary to

use importance sampling to decide which light source to evaluate. Similar to the discon-

tinuities, the set of important light sources depends on the current shading point. Sev-

eral works have investigated strategies to reduce variance for scenes with many light

sources [165, 166, 167, 168]. Another closely related problem is drawing contours for

non-photorealistic rendering [169, 170, 171]. To imitate a drawing using a rendering

algorithm, we need to render outlines around objects, which also requires a way of de-

tecting silhouette edges.

4.5.3 Reparameterization

Directly sampling discontinuity edges might not always work e�ciently. It further

seems di�cult to generalize this idea to implicit surface representations, where the sur-

face is given as the zero-level set of a function. In that case, the set of discontinuities to

consider is not just a discrete list of triangle mesh edges.

As we have already seen in the discussion of detached and attached estimators, repa-

rameterizing the integral is a powerful tool to construct new estimators. Roger et al. [25]

provided an early example of such an idea applied to discontinuities, which we illustrate

in Figure 4.5. Consider the problem of estimating the derivative of the area subtended

by a rectangle on the hemisphere. There are two primal estimators we can construct for

this problem: either we integrate over the hemisphere by sampling outgoing directions

(Figure 4.5a) or we directly integrate over the area of the rectangle (Figure 4.5b). The

�rst strategy results in a discontinuous integrand, as some rays might miss the rectan-

gle. On the other hand, if we use area sampling and an attached derivative estimator,

we circumvent the problem and can directly estimate the gradient by di�erentiating the

Monte Carlo estimator. Zhang et al. [152] used this idea to compute derivatives of light

sources and shapes with discontinuous surface normals.

Loubet et al. [154] proposed to design general reparameterizations that follow geo-

metric discontinuities. The idea is that this reparameterized integrand should then be

free of parameter-dependent discontinuities. Following this step, it is legal to move the

derivative operator inside the integral and estimate parameter derivatives by sampling
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(a) Solid angle integration (b) Area integration

x x

Figure 4.5: The parameterization of the integrand a�ects the types of discontinuities we encounter. In this

example, the parameter c controls the scale of the top rectangle. Our goal is to estimate the derivative

of the area subtended by this rectangle in the hemisphere of directions at x. We can do this by either

integrating over the hemisphere itself (a) or over the area of the rectangle (b). The integration domain

is marked in light blue. When integrating over the hemisphere, the integrand is discontinuous on the

border of the rectangle (red). By directly sampling the rectangle’s surface, this issue vanishes and we can

correctly estimate the derivative of the subtended area.

light paths using standard path tracing.

1D example. We can further illustrate this idea on a simple 1D example. Consider the

following integral derivative:

mc

∫
R

✶[c,∞] (G) 6(G) dG . (4.30)

The integrand consists of a step function at position c multiplied by a smooth func-

tion 6. Due to the discontinuity, we cannot simply move the derivative operator in-

side the integral. Following Loubet et al., we can introduce a simple reparameterization

T (G, c) = G + c , which turns the step function into a parameter-independent disconti-

nuity and enables swapping gradient and integration operators:

mc

∫
R

✶[c,∞] (G) 6(G) dG = mc

∫
R

✶[c,∞] (G + c) 6(G + c) dG = mc

∫
R

✶[0,∞] (G) 6(G + c) dG

=

∫
R

✶[0,∞] (G) mc6(G + c) d~. (4.31)

This example is illustrated in Figure 4.6. Intuitively, the reparameterization of the inte-

grand modi�es the integrand to factor in the e�ect of discontinuity, while decoupling

the discontinuity itself from the parameter.

Divergence theorem. While the two previous examples provide intuitive understand-

ing, Bangaru et al. [69] showed that the reparameterization idea can be motivated and
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Figure 4.6: In this example, we consider a 1D integrand (a) that is the product of a step function at position

c and a smooth function 6. (b) The derivative of the original integrand with respect to c is zero for all

combinations of G and c . (c) By using a simple reparameterization, we can eliminate the dependence

of the step function on c . The new derivative integrand is non-zero and can be integrated using Monte

Carlo to estimate the derivative of the integral.

formally justi�ed by considering the divergence theorem. The divergence theorem states

that ∮
m�

⟨f, n⟩ ds =

∫
�−m�

∇8 · f d8, (4.32)

where f is a vector �eld, n is a normal vector and ∇8 is the divergence operator. This

equality relates an integral over the domain boundary m� to an integral over the inte-

rior � − m�. Bangaru et al. applied the divergence theorem to convert an integral over

discontinuity boundaries into an area integral:∮
Γ(c)

5 (x, c)⟨mcx, n⟩ ds =

∫
X

∇x · (5 (x, c)V(x, c)) dx

=

∫
X

mx5 (x, c) · V(x, c) dx +

∫
X

5 (x, c) ∇x · V(x, c) dx.

(4.33)

Here, V is a so-called warp �eld, which can be thought of as an interpolated vector

�eld of the velocity of the discontinuities. The warp �eld needs to satisfy the following

criteria:

1. Continuity: The warp �eldV itself has to be continuous.

2. Boundary consistency: For x1 on the boundary, we need V(x1, c) = mcx1
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As long as the warp �eld continuously interpolates the boundary velocities, the area

form of the boundary term is equivalent to the original boundary integral. The area

integral can then be estimated using regular Monte Carlo integration, without explicitly

sampling edges.

Relation to reparameterization. Following Bangaru et al. [69], we can connect this

back to the idea of reparameterization. By change of variables, a reparameterization T

can be used to rewrite an integral as:∫
T (X)

5 (x, c) dx =

∫
X

5 (T (x, c), c) |JT (x, c) | dx. (4.34)

For now, this assumes the integrationX to be �at, e.g., this derivation does not apply for

integration over the unit sphere of directions. We will discuss this important use case

shortly.

For the di�erentiable rendering problem, we can construct T such that at the current

parameter c it is simply the identity: T (x, c) = x. However, we do this such that it

depends on c and mcT ≠ 0. We can therefore also assume that the integration domain

remains unchanged: T (X) = X. The idea is that the reparameterization should only

a�ect derivative computation, but not the primal integrals [154]. The derivative of the

reparameterized integral is then:

mc

∫
X

5 (T (x, c), c) |JT (x, c) | dx =

∫
X

mc 5 (x, c) dx

+

∫
X

mx5 (x, c) · mc) (x, c) dx

+

∫
X

5 (x, c)mc |JT (x, c) | dx, (4.35)

where we used that T is a c-dependent identity map with unit Jacobian determinant.

We can contrast this with the result of the interior term and the boundary term after

applying the divergence theorem:

mc

∫
X

5 (x, c) dx =

∫
X

mc 5 (x, c) dx

+

∫
X

mx5 (x, c) · V(x, c) dx

+

∫
X

5 (x, c)∇x · V(x, c) dx. (4.36)

This shows that both approaches are in fact equivalent, as long as V(x, c) = mcT (x, c)

and ∇x · V(x, c) = mc |JT (x, c) |. The �rst equality implies that the reparameterization
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T should be constructed such that mcT (x1, c) = mcx1 for points x1 on the boundary.

In other words, di�erentiating the reparameterization should result in a di�erential mo-

tion that perfectly matches the motion of the discontinuity. The second equality can

be shown by using Jacobi’s formula [69]: mc |JT (x, c) | = tr (adj(JT (x, c))mcJT (x, c)),

where tr(...) is the trace of a matrix and adj(...) is the adjugate matrix. Since JT (x, c)

is the identity matrix, its adjugate is the identity as well. Therefore, we get the desired

equality between the derivative of the Jacobian determinant and the divergence of the

warp �eld:

mc |JT (x, c) | = tr (mcJT (x, c)) = ∇x · mcT (x, c) = ∇x · V(x, c). (4.37)

In summary, this shows that we can approach the problem either as a reparameterization

or using the divergence theorem. We will in the following adopt the reparameterization

perspective. The main reason for this is that it naturally leads to mathematical expres-

sions compatible with reverse-mode AD. The reparameterization and its Jacobian can

depend on an arbitrary number of di�erentiable parameters.

Spherical integrals. In the following, we will establish the necessary theory to apply

reparameterizations to spherical integrals. This perspective on reparameterizations is

novel and was published as part of the article we discuss in Chapter 6. We provide these

theoretical insights here, as they are general and not speci�c to the representation used

in that later chapter.

In rendering, we commonly integrate quantities over the set of directions, or equiv-

alently, over the surface of the unit sphere. Unidirectional rendering algorithms can

be expressed as the recursive solution of spherical integrals. Therefore, our goal is to

di�erentiate integrals of the form:

mc � (c) = mc

∫
S2

5 (8, c) d8 . (4.38)

This formulation, for now, does not handle recursive integration, i.e., to account for in-

terre�ections, but that will be su�cient for most derivations. We will not handle the

very challenging special case of discontinuities observed through perfectly specular in-

teractions (e.g., geometry observed through a water surface).

Given this spherical integral, we can reformulate the problem using a change of vari-

ables T : S2 → S2
that maps the unit sphere onto itself. The reparameterization T has

to be chosen so that the resulting integrand is free of discontinuities with respect to the
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S2

ω

T (ω,π)

π

(a) Integrand (b) Vector field ∂πT (c) Original gradient (d) Reparam. gradient

Figure 4.7: Illustration of a discontinuous integrand on the unit sphere S2. (a) We integrate the color

of a shaded shape over a constant-colored background. The scene parameter c controls the translation

of the object. (b) We then introduce a reparameterization T , which is designed so that the vector field

mcT follows the motion of the object boundary and falls o� continuously to 0 away from the object. (c)

We further visualize the gradient of the original integrand and (d) the gradient a�er reparameterizing,

including the area change. Blue and red colors indicate negative and positive values, respectively.

scene parameters, which then allows moving the derivative operator into the integral:

mc � (c) = mc

∫
S2

5 (8, c) d8

= mc

∫
S2

5 (T (8, c), c)


DT8,c (s) × DT8,c (t)



 d8
=

∫
S2

mc
[
5 (T (8, c), c)



DT8,c (s) × DT8,c (t)


] d8, (4.39)

where s and t are orthonormal tangent vectors of the unit sphere at 8 and DT8,c is the

di�erential of T with respect to the vector 8. The norm of the cross product of trans-

formed tangent vectors accounts for the distortion in the integration domain, similar

to the Jacobian determinant for a change of variables in ambient space. If we were to

reparameterize the 3D ambient space, we would simply use the Jacobian determinant of

the mapping. However, here this would be incorrect as the reparameterization works on

a manifold. We instead need to use the norm of the cross product of the tangent vectors,

mapped through the di�erential of the reparameterization.

This formulation of the reparameterized integral using the cross product of the trans-

formed tangent vectors is more explicit than what has been described in previous work.

We use this framework in Chapter 6 to de�ne reparameterizations for implicit surfaces.

In Appendix A, we draw the connection between this formulation as a reparameteri-

zation over the unit sphere and the divergence formulation by Bangaru et al. [69]. We

show that we can evaluate either the cross-product term or the divergence of the map-

ping and both will give the same results when di�erentiated, and correctly account for

the fact that we reparameterize an integral over a manifold.
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For correctness, we need the reparameterization to satisfy mcT (81, c) = mc81 for all

directions 81 that lie on the set of discontinuities of the original integrand. Note that

now mcT (81, c) and mc81 are vectors that lie in the tangent space of the unit sphere.

Aside from that, we need mcT (8, c) itself to be continuous for the reparameterization

to be valid.

Figure 4.7 illustrates a reparameterization of an integral over the unit sphere. We

visualize the original integrand, the vector �eld mcT (8, c), and the derivatives of the

original and reparameterized integrand. The gradient of the original integrand does not

contain any terms related to the occlusion change on the silhouette of the moving object.

Constructing a reparameterization. The key challenge in using the reparameteri-

zation approach is constructing a suitable map T , or equivalently, a warp �eld V . For

triangle meshes, a suitable reparameterization can be obtained by �rst constructing an

auxiliary reparameterization, which attains the correct motion at triangle boundaries.

This reparameterization is then convolved with a �lter kernel in the spherical domain,

that removes discontinuities from the reparameterization itself [69]. Since this blurring

only a�ects the reparameterization, it can be used to construct an unbiased gradient es-

timator of the original integral. Concretely, Bangaru et al. [69] suggest the following

warp �eld:

V(8, c) =

∫
S2F (8,8′)Vdirect(8′, c) d8′∫

S2F (8,8′) d8′
, (4.40)

where F (8,8′) is a weighting kernel and Vdirect(8′, c) is a naïve, discontinuous warp

�eld that simply follows the triangle motion. It is computed by evaluating the surface

motion at the ray intersection location. The weighting kernel is de�ned as

F (8,8′) =
1

D(8,8′) + B(8′)
. (4.41)

Here,D(8,8′) = exp(^ (1− ⟨8,8′⟩)) − 1measures the distance between two directions

and the scalar concentration parameter ^ controls the width of the kernel. The boundary

test B(8′) measures the distance to the triangle mesh boundary. As 8
′
approaches a

boundary, B goes to zero. The combination of these two distance measures ensures that

the warp �eld attains the correct boundary motion. The convolution is evaluated using

Monte Carlo integration and requires tracing a number of auxiliary rays to sample the

space around 8. Moreover, unbiased estimation of 1/
∫
S2F (8,8′) d8′

requires the use

of a de-biasing technique, which introduces additional variance. This method has been
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designed for triangle meshes, but can also be generalized to other representations. In

Chapter 6, we use this as a baseline when proposing a new reparameterization method.

4.5.4 Alternative methods

Edge sampling and reparameterization are themainmethods that address discontinuities

that occur in physically-based di�erentiable rendering. The problem of di�erentiating

discontinuities also occurs in a few related contexts, which we will brie�y mention here.

Domain-specific languages. There has been some work on incorporating support

for discontinuities directly into AD frameworks or a domain-speci�c language (DSL).

An automated, general-purpose solution to di�erentiate discontinuous programs would

be useful for a wide range of tasks. Discontinuities for example also occur in a rigid

body simulation, where objects might collide and instantaneously change directions.

TEG [172] is a DSL that uses local invertibility to localize discontinuities symbolically.

However, the current system is too constrained to handle the complexity of di�eren-

tiable Monte Carlo rendering. Yang et al. [173] build support for discontinuities into

shader programs. They demonstrate that this enables the optimization of parameters

used in procedural shaders. Their method does not generalize to arbitrary programs

and is therefore not directly applicable to physically-based di�erentiable rendering.

While it is interesting to consider a compilation approach, it is unlikely that the prob-

lem of discontinuities can e�ciently be solved entirely by the compiler. If anything,

a compiler might be able to reduce the implementation work, similar to the Aether

DSL [174], which aids the implementation of rendering algorithms by automatically

computing Jacobians and PDFs.

Rasterization. Several works [175, 176, 177, 178, 179] have proposed di�erentiable

versions of trianglemesh rasterization. A rasterizer renders trianglemeshes to the screen

by iterating over all triangles and then �lling in the pixels occupied by the visible parts

of each of them. The color of each pixel will be determined by the triangle overlap-

ping its center. This discrete assignment of triangles to pixels is inherently not di�er-

entiable. Di�erentiable rasterization methods either introduce a form of soft blending

of triangles [177], approximate analytic visibility [178] or di�erentiable splatting of sur-

face samples to the image bu�er [179]. Zhou et al. [180] used a data structure to compute

di�erentiable analytic visibility for primary rays. Rasterization is computationally e�-

cient and commonly used in real-time rendering applications (e.g., games), but di�cult
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to use to (di�erentiably) render soft shadows, re�ections or indirect illumination. For

many inverse rendering applications, di�erentiating these physical e�ects is important

and therefore rasterization is less useful.

4.6 Applications of di�erentiable rendering

In the following, we provide a high-level overview and survey of recent work on appli-

cations of physically-based di�erentiable rendering.

4.6.1 Surface reconstruction

Di�erentiable rendering facilitates the joint reconstruction of surface geometry, mate-

rial properties and lighting conditions. We focus on works that consider some form of

physically-plausible light transport. Nayar et al. [181] showed 30 years ago that object

reconstruction can bene�t from accounting for multiple scattering. Their method is re-

stricted to mostly �at, textured Lambertian surfaces and does not consider occlusion

change. Similarly, Chandraker et al. [182] demonstrated that considering interre�ec-

tions resolves depth ambiguities. Hauagge et al. [183] improved surface reconstruction

by estimating the average local occlusion of incident ambient illumination. All these

works consider the reconstruction of objects using a single camera view, but multiple

lighting conditions. Recently, several papers suggest using di�erentiable path tracing to

estimate BSDF and lighting parameters of indoor scenes [149, 184]. The scene param-

eters obtained using these methods enable applications such as relighting or realistic

object insertion for augmented reality. It is also possible to jointly reconstruct object

geometry and BSDF parameters [185, 186, 187]. In these applications, there is generally

a correlation between reconstruction accuracy and how controlled the capture setup is.

For example, we most likely cannot hope to obtain fully relightable assets only using a

single static illumination condition.

Objects made out of glass or refractive materials are another example that requires

considering indirect illumination in the reconstruction process. Di�erentiable render-

ing has recently been used to reconstruct glass objects [188, 189]. The complexity of this

problem requires either controlled illumination [188] or pre-training of a neural network

to guide the reconstruction process [189]. Bemana et al. [190] reconstruct transparent

objects by optimizing a volumetric representation with a spatially-varying index of re-

fraction. They exploit the reversibility of the specular light paths to e�ciently compute

gradients. Kassubeck et al. [191] reconstruct transparent objects from a single image of
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the refractive caustic they produce.

Edge sampling methods have also been applied to di�erentiate time-resolved render-

ing [192, 193]. Time-of-�ight (ToF) sensors not only capture photon intensities, but also

information about photon arrival times. By simulating and di�erentiating the ToF cap-

ture process, additional information about a scene can be retrieved. This can for example

be useful for non-line of sight imaging [194], where an unknown scene is reconstructed

by observing its di�use re�ectance (e.g., on a white wall). This problem is severely ill-

posed and time-of-�ight sensors are necessary to reduce ambiguities.

4.6.2 Implicit surfaces

Surface reconstruction and the problem of discontinuities are closely related to the un-

derlying choice of geometry representation. Triangle meshes are extremely popular for

forward rendering, but their �xed topology can be a burden for inverse problems. In-

verse problems have therefore considered a broader range of possible geometry repre-

sentations. For general 3D geometry, an implicit representation models the surface as

a zero-level set: S = {5 (x) = 0 : x ∈ R3}. Using an implicit surface for 3D reconstruc-

tion is a form of a level set method [195]. A common implicit representation are signed

distance functions (SDFs). A signed distance function q measures the distance to the

3D surface. The distance is positive for points outside an object and negative for points

inside. Many works have used SDFs or general level set methods for 3D object recon-

struction using laser scanners [196, 197] or RGB-D sensors [198, 199]. Level set methods

have also been extended to account for the motion of occlusion boundaries [200, 201].

Recently, there has been some work on using SDFs as a geometry representation

for di�erentiable rendering. Concurrently, Jiang et al. [202] and Liu et al. [203] pro-

posed to use SDFs for scene reconstruction using di�erentiable rendering. These works

use sphere tracing [204, 205, 206] to intersect rays with an SDF. To deal with visibility

discontinuities, Liu et al. [203] introduced a di�erentiable version of a silhouette loss,

similar to later work by Yariv et al. [207]. Niemeyer et al. [208] optimize implicit sur-

faces by adding a 3D loss based on the visual hull [209]. Mehta et al. [210] present a

level-set approach to update the parameters of SDFs represented by neural networks.

Relying on a silhouette loss can be problematic. Such approaches are di�cult to gen-

eralize to shadows and higher-order light interactions. Additionally, they cannot work

in cases where silhouette information is not applicable (e.g., reconstructing a room from

the inside). Cole et al.’s [179] di�erentiable splatting method does not require silhou-

ette information but cannot generalize to shadows and interre�ections. An alternative

80



4.6. Applications of di�erentiable rendering

approach is to convert the SDF to a triangle mesh using marching cubes [211] or march-

ing tetrahedra [212], to then fall back to using di�erentiable triangle mesh rendering

methods [213, 214]. These methods can work well [186, 187], but do not directly di�er-

entiate the process of SDF rendering. In Chapter 6, we present an algorithm that avoids

meshing and leverages the SDF’s global structure to obtain high-quality gradients us-

ing a reparameterization. A concurrent article proposes a similar approach for neural

SDFs [215].

4.6.3 Volume rendering

Inverse multiple sca�ering. Recovering the parameters of a participating medium

is an important use case for physically-based di�erentiable rendering and requires ac-

counting for potentially long light paths with many bounces. Unlike surface recon-

struction, we cannot hope to get physically-plausible parameters when ignoring multi-

ple scattering. In computer graphics, di�erentiable volume rendering was pioneered by

Gkioulekas et al. [18], who recovered the parameters of homogeneous media from mul-

tiple scattering. Khungurn et al. [151] optimized the parameters of fabric appearance

models. Later work used image-based acquisition to reconstruct volumes (e.g., smoke)

undermultiple scattering [148]. Zhao et al. [216] applied di�erentiable volume rendering

to the problem of downsampling volume rendering parameters. Velinov et al. [217] �t the

scattering parameters of human teeth using gradient descent. Di�erentiable rendering

has also been combined with the di�usion approximation [11] to recover the subsurface

scattering parameters of real objects [218]. Che et al. [219] use a di�erentiable renderer

to train a neural network that infers scattering parameters from images. They formulate

an autoencoder architecture, where images are encoded into medium parameters using

a neural network. The parameters are then rendered using a di�erentiable volume ren-

derer, which allows training the entire encoder-decoder architecture end-to-end. The

complex, non-linear relation between volume parameters and appearance has also led

to inverse rendering methods being developed for user-guided appearance editing [220,

221]. In our work on the Mitsuba 2 renderer, we showed that one can use automatic

di�erentiation to optimize the parameters of heterogeneous volumes while accounting

for multiple scattering [48].

Scene representation and neural rendering. While surface-based representations

enable e�cient rendering and are the standard for forward rendering, image-based op-

timization of surface geometry can be challenging due to the inherent non-convexity
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of such an optimization. As an alternative, volumetric representations have recently

seen widespread use as a di�erentiable, general-purpose scene representation. Volumet-

ric approaches are particularly useful for scenes containing aggregate geometry such as

hair or foliage. These are generally poorly approximated by triangle mesh geometry and

a volumetric representation is easier to optimize. They are often used in combination

with neural rendering, where (part of) the rendering process is approximated by a neu-

ral network instead of physically-based rendering. For example, Lombardi et al. [222]

used a neural volumetric representation to model facial performances. In their case, the

volumetric model is used to represent hair, which is di�cult to reconstruct as a triangle

mesh.

The most popular volumetric representation are neural radiance �elds (NeRFs) [223].

NeRFs are emissive volumes represented by a neural network. Given a 3D point and

direction, a small fully-connected neural network predicts emitted radiance and a vol-

ume density value. This representation is rendered by accumulating emitted radiance

along camera rays using ray marching. The neural network is optimized to reproduce

the appearance of a set of reference views. Several works have suggested replacing the

neural network by grid-based spherical harmonics [224, 225, 226], which can achieve

similar performance. Related volumetric representations have also been extended to al-

low re-rendering under novel illumination conditions [227, 228]. The work we discuss

in Chapter 7 proposes a new relightable volumetric representation for general scenes.

Coordinate-based neural networks like NeRFs are also called neural �elds and can

be used as a representation for any coordinate-based data (e.g., 2D images). Since they

do not su�er from the curse of dimensionality, they allow pushing beyond the reso-

lution limits of discretized grids and generalize to higher-dimensional signals like the

directional emission used by NeRF. Recent works have also suggested combining neu-

ral �elds with adaptive data structures [229, 230] or hash grids [231] to further improve

evaluation performance. We refer to the state-of-the-art report by Xie et al. [232] for an

overview.

4.6.4 Alternative di�erentiable representations

Aside from purely surface-based or volumetric representations, there has also been some

work on alternative representations. Recent hybrid methods [233, 234] de�ne a volume

density based on an underlying SDF to improve the convexity of the geometry recon-

struction problem. Unlike the method we discuss in Chapter 6, these approaches rely on

di�erentiable volume rendering and do not directly di�erentiate the surface rendering
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process.

Alternatively, point-based shape representations have also been shown to produce

high-quality scene reconstructions [235, 236]. PointNeRF [237] uses a set of points to

control an emissive volumetric representation. The Pulsar renderer [238] represents

objects as collections of colored spheres.

The design space for scene representations is large: we can combine points, explicit

surfaces, implicit surfaces and volumes. The representation can further be compressed

by using adaptive data structures or coordinate-based neural networks. Depending on

the representation, the inverse rendering problem can become signi�cantly easier. A

disadvantage of many hybrid or neural representations is that they are di�cult to rec-

oncile with physically-based light transport, e.g., to account for interre�ection. In this

thesis, we focus on representations that admit a physically-based light transport model.

4.6.5 Optics and digital fabrication

Di�erentiable rendering can be used to optimize the design of optical system or fabri-

cated objects.

Lens design. An interesting application of di�erentiable rendering is optimizing lenses

and camera systems to satisfy certain quality criteria. Li et al. [239] optimize a single

lens element using di�erentiable ray tracing. Sun et al. [23] optimize an entire lens sys-

tem by tracing light paths through a lens consisting of multiple elements. Tseng et al.

[240] optimize compound optical systems by training a neural network to approximate

a commercial black-box optics simulator. The neural network approximation is then

di�erentiated to optimize optical parameters.

Caustic design. A closely related problem is caustic design. The idea is to design a

re�ective or refractive surface that focuses the light into a caustic that approximates

a given target picture [241, 242, 243]. This problem can be addressed using optimal

transport [243] or by solving a series of Poisson problems [242]. We showed in [48]

that good results can also be achieved by simply di�erentiating a suitable Monte Carlo

rendering algorithm.

This idea can further be extended to gradient index optics, which are lenses with a

spatially-varying index of refraction (IOR). By di�erentiating a forward simulation [244]

of the photon trajectories through thematerial, the IOR values can be optimized for a cer-

tain target caustic. Accurately manufacturing such lenses is still an open problem [245].
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(a) Scene setup (b) Target appearance (c) Naı̈ve (d) Ours (optimized)

Optimized volume

Figure 4.8: Colored 3D printer inks can be highly translucent, leading to internal sca�ering (a). If we

naïvely a�empt to replicate the appearance of a textured solid object (b), we end up with undesirable

blurring due to sca�ering (c). We optimize the volume’s albedo coe�icients to be�er reproduce the refer-

ence appearance (d). This can recover some of the contrast that is lost due to sca�ering. All images are

rendered, as we did not a�empt to fabricate these objects.

Recently, Teh et al. [246] exploited reversibility of iteration steps to optimize gradient-

index optics without storing a computation graph. They show that their approach can

for example be used to optimize the design of optical �bers.

3D printing. Di�erentiable volume rendering has been employed to fabricate 3D ob-

jects with a certain target appearance. Papas et al. [22] optimized mixing proportions

of colored pigments to produce silicone objects replicating the scattering properties of a

reference material. Another application is 3D color printing, where mixtures of colored

plastics are deposited to fabricate colored objects. The used inks are highly translucent,

which leads to volumetric scattering inside the printed object. The scattering reduces

the contrast of printed surface textures. Several specialized heuristics for this problem

exist [247, 248], but we showed in [48] that the surface appearance can be optimized

directly using di�erentiable volumetric path tracing. In Figure 4.8 we show an example

result of this optimization. The di�erentiable rendering optimization optimizes volume

albedo values stored on a voxel grid. The setting here is slightly simpli�ed, in that we do

not consider density variation between voxels. We consider up to 64 scattering events

inside the medium. Nindel et al. [249] build an optimization pipeline that considers the

full complexity of the problem, including measured scattering properties of the actual

3D printer inks. A di�erentiable rendering approach has also been proposed to optimize

the transmittance of a 3D printed light �eld display [250].
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4.7 Di�erential transport in other fields

Similar di�erentiable Monte Carlo estimators have been used in a range of adjacent

�elds. Depending on the context, these methods are also referred to as perturbation

Monte Carlo or sensitivity analysis. We have already discussed a few of these in Sec-

tion 1.3.

In nuclear engineering, di�erentiable estimators of neutron scattering are useful to

analyze the criticality of nuclear reactors [31, 32] and to optimize radiation shielding [29,

30]. Di�erentiable Monte Carlo simulations have found use in improving the design of

combustion chambers [25] and the reconstruction of of transparent gas �ows encoun-

tered during fuel injection [246].

The reconstruction of the scattering properties of participating media has a range

of interesting medical applications. Di�erentiable transport has been used to recover

the scattering parameters of organic tissue [251, 252]. An application of this is cancer

diagnosis, where it has been observed that the phase function parameters di�er between

healthy liver tissue and liver tumors [253]. It is also possible to simulate scattering in a

virtual waveguide produced by applying ultrasound to tissue. This can be used to guide

radiation for cancer therapy [254].

In physics, di�erentiable delta tracking [96, 255] has been investigated to compute

derivatives of atmospheric scattering. Previous work however is restricted to forward-

mode di�erentiation, which only allows considering a small number of parameters. In

Chapter 5, we show how to e�ciently di�erentiate delta tracking with respect to an

arbitrary number of variables. Di�erentiable Monte Carlo has also been used to recover

parameters of the aggregate scattering due to plant canopy [36]

Lastly, Monte Carlo integration and its derivatives also �nd use in computing pricing

of �nancial options [256]. The derivatives estimate the sensitivity of option prices with

respect to parameters such as interest rates.

4.8 Derivatives in forward rendering

Aside from inverse rendering, derivative computations have also found use in forward

rendering applications. Various prior works in computer graphics have di�erentiated

light paths in forward mode, propagating an in�nitesimal perturbation of a scene or ray

parameter through the calculation to determine how it in�uences the rendered image

or outgoing ray. These derivatives then �nd use in texture �ltering of objects observed
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through specular re�ection [257], when interpolating precomputed di�use [258] or spec-

ular illumination [259], and for adaptive sampling and reconstruction [260]. They can

also be used to determine valid specular path con�gurations to render e�ects such as

caustics or glints [99, 261, 262]. Derivatives have also been used in image space, for

example to render gradient images that are subsequently reconstructed [65, 66, 263].

Li et al. [264] used forward-mode AD to compute �rst and second-order gradients to

improve exploration of the path space for Markov chain Monte Carlo methods. Later

work combined �rst-order gradients with insights from gradient-based optimization to

further improve on this idea [265].
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Figure 5.1: Inverse reconstruction of a scene with complex lighting and heterogeneous structure. Given

the initialization (a), we seek to reconstruct the target (b) involving normal-mapped surface variation

and roughness changes on the fish sculpture, and the addition of a plant based on triangular geometry.

Using three rendered views of the target, we apply our proposed path replay backpropagation (PRB) (c)

and a linear-time version of radiative backpropagation (RB) [266] (d) to reconstruct the modified sculpture

and a heterogeneous medium approximating the plant. Our method computes unbiased gradients and is

able to converge to a higher-quality solution at equal time. The second and third rows show insets and

PRB’s convergence over time.

With the necessary background established, we now move on to discuss the �rst pub-

lication. In this chapter, we introduce path replay backpropagation, an algorithm that is

designed to e�ciently di�erentiate physically-based rendering algorithms with a high

number of scattering events. In principle, we can di�erentiate physically-based light

transport simulations using automatic di�erentiation. Mathematically, the estimators

introduced in Section 4.4 are compatible with using a standard AD implementation.

However, simulations featuring complex light transport phenomena pose severe chal-

lenges: e�ects like global interre�ection, subsurface scattering, and heterogeneous par-

ticipating media produce immense amounts of unstructured arithmetic, whose e�ect on

derivatives must be carefully tracked. The computation of derivatives must proceed in

reverse mode to e�ciently convert a small number of derivatives at the rendering algo-

rithm’s output end into a large number of derivatives at the input end. The output end

typically involves a scalar objective computed from the rendered image, while the input

refers to the high-dimensional scene parameter space.
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The inevitable predicament faced by reverse-mode di�erentiation is that the di�er-

ential version of an algorithm requires access to certain quantities of the original com-

putation, and these accesses occur in an order that is reversed when compared to the

primal calculation. As discussed in Chapter 4, the standard remedy to this problem

entails discarding most primal variables except for a sparse set of checkpoints [120]

placed at strategic locations like function calls or the beginning of each loop iteration. A

checkpoint captures the full program state at an instant of time, enabling the recovery

of discarded information via re-computation in a classic computation versus memory

trade-o�. However, even individual checkpoints tend to be large in the context of ren-

dering, and accessing them incurs signi�cant storage costs and memory access latencies.

Allocating gigabytes of memory for checkpoints limits the use of di�erentiable render-

ing to simple scenes, where the memory needed for the scene parameters is relatively

small. This is undesirable, as in most practical use cases we want to allocate as much

memory as possible to a high-resolution scene representation (e.g., a large voxel grid

storing volume parameters). The memory use of large scenes is already a constraint for

forward rendering [267], and di�erentiation must not exacerbate this problem.

Nimier-David et al. [266] observed that the gradient of the rendering process can be

formulated as the solution of a di�erential rendering equation. Instead of relying on au-

tomatic di�erentiation, their radiative backpropagation (RB) method computes gradients

by tracing light paths. This algorithm accumulates gradients directly without memo-

rizing intermediate state, which removes the memory footprint issue and also improves

e�ciency. At the time of its publication, the RB method achieved impressive speedups

over Mitsuba 2 [48], which relied entirely on automatic di�erentiation.

However, radiative backpropagation has twomain limitations: the algorithm is either

severely biased or requires a recursive radiance estimate at each scattering interaction

in addition to its own recursion, making its computation time quadratic in the number

of scattering events along a light path. The method also cannot di�erentiate interactions

involving perfectly specular BSDFs, such as smooth conductors or dielectrics.

We propose path replay backpropagation (PRB) to address both limitations. Our

method splits gradient evaluation into two separate passes: in a �rst step, we sample

light paths as usual and record a small amount of information about each complete light

path: in the simplest case, this is just the path’s contribution to the (hypothetical) image.

Then, we reset the pseudorandom number generator and recompute the same light paths

once more, while backpropagating derivatives to scene parameters. The key idea of our

approach is that certain steps of the computation can be inverted. By taking advantage
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this invertibility and the data stored by the preceding pass, we are able to recover all

information required by the adjoint phase on the �y.

The time complexity of the resulting algorithm has a linear dependence on path

length, while computing the same unbiased derivatives as conventional AD with dra-

matically reduced memory usage. The two-pass scheme can furthermore generalize to

derivatives of specular materials, requiring only a small amount of extra storage (a 4× 4

matrix per sample) that remains independent of path length. Unlike conventional AD,

PRB does not have any issues di�erentiating light paths of arbitrary length. This for the

�rst time enables e�cient computation of reverse-mode derivatives of unbiased volume

rendering using delta tracking. In summary, our contributions are:

• A linear time, unbiased method for di�erentiable path tracing.

• A generalization of that algorithm to specular materials.

• The ability to e�ciently di�erentiate unbiased volume transport based on delta

tracking.

While originally motivated by the di�erentiable rendering problem, our path replay

method can be applied to other problems of similar structure. To the best of our knowl-

edge, this is a new di�erentiation approach that has not been proposed previously. We

will discuss the fundamental mathematical idea behind path replay and also provide an

outlook on its application outside of rendering.

In this chapter, we will �rst introduce the predecessor method (RB), as it is one of

the main baselines against which we evaluate PRB. Both methods replace conventional

automatic di�erentiation with a specialized path tracing loop that uses AD only for cer-

tain local quantities. We then describe our method in depth and present results and

validations.

5.1 Background

5.1.1 Problem se�ing

Our goal is to e�ciently compute derivatives of an image-based objective function6with

respect to scene parameters. As seen in Section 4.4, by the chain rule, this derivative

decomposes into a product of the objective function and pixel gradient:

mc6(� (c)) = 6
′(� (c)) mc � (c). (5.1)
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We would like to evaluate this product for a large number of scene parameters c . For

notational convenience, we will again focus on such gradients with respect to a sin-

gle scene parameter c , though all techniques developed will also support simultaneous

optimization involving vast numbers of parameters.

For any method to scale to an arbitrary number of parameters, it needs to evalu-

ate this derivative in reverse mode. Mathematically, we seek to implement the vector-

Jacobian product of the derivative of the objective function and the Jacobian of the

image-formation process J� :

Xc = X)6 J� . (5.2)

The derivative of the objective function with respect to the image can be computed

using automatic di�erentiation. Conceptually, the term X6 is an image, where each pixel

value is the gradient of the objective function with respect to that pixel. For example, if

the objective function is the mean squared error, then the derivative of the objective in

each pixel of X6 will simply be 2/" · (� 9 − �
A4 5
9 ), where " is the number of pixels. The

Jacobian �� of the rendering process is of size =×? , where ? is the number of parameters.

This Jacobian is oftentimes dense: due to the global nature of light transport, a single

parameter might a�ect all pixels in the image. At their core, both the prior work and

ours evaluate this Jacobian product without explicitly computing the Jacobian. However,

reverse-mode AD still leads to extremely high memory usage due to the need to store

checkpoints that are later accessed during reverse-mode di�erentiation.

In this chapter, we focus on e�cient reverse-mode di�erentiation and disregard dis-

continuity handling via reparameterization or edge sampling. The combination of cus-

tom adjoints such as RB and PRB with a reparameterization of the visibility discontinu-

ities was explored by Zeltner et al. [68]. We will showcase PRB for scenes and optimiza-

tion problems that do not contain parameter-dependent discontinuities. Such examples

are the reconstruction of participatingmedia or thematerial properties of surfaces, while

leaving the geometric representation of the scene �xed.

5.1.2 Radiative backpropagation

Since using conventional AD su�ers from the aforementioned limitations, Nimier-David

et al. [266] proposed exploiting properties unique to light transport and turn reverse-

mode derivative propagation into an independent simulation that transports derivative

radiation from sensors to objects with di�erentiable parameters. We brie�y review how

this works and point out issues of this transformation addressed by our work.
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If we assume the use of a box pixel �lter and only a single parameter c , the Jacobian

product can be written as a sum over pixels:

Xc = X)6 �� =

"∑
9=1

X6,9 mc � 9 =

"∑
9=1

1

#

#∑
8=1

X6,9
mc 5 9 (x8, c)

? 9 (x8)
, (5.3)

where" is the number of pixels andX6,9 is the component 9 of the image gradient (i.e., the

value of pixel 9 in the "gradient image"). The integer # denotes the number of samples.

For each Monte Carlo sample x8 , we evaluate the ratio of the derivative of 5 9 and the

PDF. This formulation computes a detached estimator, but we will later show how our

method can also be extended to attached sampling.

This equation illustrates one of the key ideas of RB: we can compute gradients by

emitting the adjoint quantityX6,9 from each pixel independently. This already reduces the

complexity of the problem, as we now just need to �gure out how to compute the product

of X6,9 and the derivative of a single light path’s contribution. Most importantly, this

product has to be evaluated in a way that can scale to an arbitrary number of parameters.

At this point, the remaining issue is to di�erentiate the image-contribution function

itself. At its core, this requires di�erentiating the radiance arriving at the sensor. We

focus on the surface-only case for simplicity, where the light transport in a scene is

characterized by the rendering equation [3]:

!> (x,8>) = !4 (x,8>) +

∫
S2

!8 (x,88) 5B (x,8> ,88) d8
⊥
8 . (5.4)

Here, !> , !4 , and !8 refer to the outgoing, emitted, and incident radiance, and 5B is the

BSDF. The product of incident radiance and BSDF is integrated over projected solid an-

gles 8
⊥
8 . Nimier-David et al. then apply the derivative operator mc to both sides of this

equation, which produces several terms via the product rule:

mc!> (x,8>) = mc!4 (x,8>) +

∫
S2

mc!8 (x,88) 5B (x,8> ,88) (5.5)

+ !8 (x,88) mc 5B (x,8> ,88) d8
⊥
8 .

This equation can be interpreted as another kind of energy balance that now involves

di�erential radiance mc!8 , mc!4 , and mc!> . Inspecting the various terms, this di�erential

radiance can then be seen to satisfy the following properties:

1. Di�erential radiance is emitted when the primal emission !4 depends on c .

2. Ordinary radiance generates di�erential radiance when it interacts with objects,

whose BSDF depends on c .
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3. Finally, once created, di�erential radiance scatters like ordinary light (i.e., involv-

ing the BSDF of scene objects).

A di�culty that might not be apparent from the above equation is that a separate

set of di�erential radiance functions exist for each scene parameter. Starting from the

gradient image X6, radiative backpropagation solves equation (5.5) by constructing light

paths from the sensor, using the same sampling strategy as path tracing. Using only a

single simulation, gradients for all scene parameters are accumulated simultaneously.

In a sense, RB exploits the reciprocity of the scattering and transport operators [55].

Unlike reverse-mode AD, the gradient computation pass runs in the same direction as

the original computation.

Limitations. Two issues become apparent when further scrutinizing this approach.

First, The di�erential scattering equation (5.5) references the primal incident radiance !8 ,

coupling the primal and di�erential light transport problems so that both must now be

solved at the same time. The standard approach for evaluating integral equations using

recursive Monte Carlo sampling then requires recursion to handle both m!8 and !8 . This

double recursion leads to a quadratic growth in the amount of computation as the maxi-

mum path length increases, which can be very costly when the scene involves signi�cant

multiple scattering. A similar quadratic complexity would be attained using AD if the

checkpoints at each iteration were replaced by full recomputation of the required state.

Avoiding this quadratic complexity was the motivation to store the intermediate state in

the �rst place. While the recursion could be restricted by probabilistically choosing only

one of the two terms, there is no obvious sampling scheme to do so. Finally, variance in

such a stochastic scheme would increase exponentially due to this repeated sub-optimal

choice.

Second, the method of Nimier-David et al. does not support materials containing

Dirac delta functions (e.g. ideal specular BSDFs like smooth glass or metal surfaces).

This case involves additional challenges that arise from coupling within specular chains,

which refer to uninterrupted sequences of vertices along a light path involving such

ideal specular materials.

Biased RB Nimier-David et al. suggest that to avoid quadratic time complexity, one

can simply set the incident radiance !8 to 1 during di�erentiation. They argue that the

resulting bias is innocuous because gradients will still have the correct component-wise

sign and can thus be expected to converge to a local minimum when combined with
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robust gradient-based optimization techniques. However, we �nd that both of these

claims are generally incorrect: the sign may not match, and convergence is then also

not guaranteed. In particular, we found that the sign is only correct in a very local sense

for exactly the term !8 (x,88) mc 5B (x,8> ,88), in which the incident radiance speci�es a

positive multiplicative factor. This means that the sign of this product is preserved if the

radiance is set to a value of one. In practice, many such local gradients are accumulated

due to the global nature of light transport and scattering, and the combination of these

various signed quantities is not guaranteed to result in a sum that still has the correct

sign.

Figure 5.2 demonstrates this issue by optimizing an enclosed object. In this case,

next event estimation is not available and the method must rely on the incident radiance

term that was assumed to equal 1. This experiment shows that bias due to this approx-

imation breaks the convergence even in a simple unimodal 1D optimization problem.

Our method produces unbiased estimates and converges as expected while retaining the

linear time complexity of biased RB.

Note that we use the color map of Figure 5.2 throughout this chapter: gray, blue, and

red denote zero, positive, and negative-valued regions, respectively.

5.2 Method

We now explain the principles of our method, starting with the basic idea that we then

expand into a more general principle to address the limitations noted in Section 5.1.

We �rst focus on the detached case and postpone the more complex attached case to

Section 5.2.2.

5.2.1 Replaying light paths to estimate derivatives

While Monte Carlo estimators are in principle random, real-world usage relies on de-

terministic pseudorandom number generators that can be rewound or reinitialized to

produce an identical stream of variates. This turns out to be surprisingly useful because

it enables running two variants of an algorithm that will perform an identical random

walk. At the same time, these two algorithms can then use the generated path vertices

for di�erent purposes. In rendering, this approach has for example been used to gen-

erate correlated light paths in gradient-domain rendering [66, 268] or, more recently, to

re-use light paths in interactive path tracing [269].

We build on this idea to run a regular forward path tracing pass that is followed by
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Optimization result

Reference (Conv. AD) Ours RB (biased)
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Figure 5.2: Analysis of Bias in radiative backpropagation (RB) [266]. We optimize the scalar roughness of

an indirectly illuminatedmetal bunny contained inside a glass container. The top row shows the reference

configuration and optimization results obtained by our method and biased RB. Not only did RB not con-

verge here: it cannot converge regardless of initialization. Due to the scalar objective and 1D parameter

space, we can exhaustively plot gradients for a range of initial and target roughness values (bo�om row).

A zero-valued gradient is expected on the diagonal, where initial and target roughness coincide. We also

plot intermediate optimization steps for the optimization task of the top row. These visualizations show

that the gradients computed by our method match the result of conventional AD. Biased RB is not only

biased but also produces incorrect signs throughout the parameter space. Optimization will therefore fail

even when initialized with the correct solution.
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an adjoint pass visiting the same sequence of vertices. The �rst phase will determine the

total amount of radiance accumulated by the path, and the second “random” walk can

then exploit this information to precisely reconstruct the incident illumination at each

path vertex. Our method produces the same result as automatic di�erentiation, while

using a constant amount of storage and retaining the linear time complexity of regular

forward path tracing. The results do not just match conventional AD in expectation:

they produce the same noise pattern, with only small numerical di�erences related to

the di�erent evaluation in terms of IEEE-754 �oating point arithmetic.

Our method is best explained using a few lines of pseudocode. To reduce the idea to

its core, we will assume that emitters are static, and we will also work without standard

optimizations like MIS or next event estimation. The following code fragment speci�es

a standard unidirectional path tracer to clarify all notation. It takes a ray as input and

returns the resulting accumulated radiance. The code is heavily simpli�ed and focuses

on what is relevant for di�erentiation: changes to the path throughput V and the total

radiance ! accumulated along the path.

1 def sample_path(ray):

2 ! = 0, V = 1

3 for i in range(N):

4 ! += V * !4(...)

5 88, bsdf_value, bsdf_pdf = sample_bsdf(...)

6 V *= bsdf_value / bsdf_pdf

7 ray = spawn_ray(88, ...)

8 return !

Algorithm 5.1: Path tracer sketch, where V and ! denote throughput and accumulated radiance. ! is also

an input of the adjoint pass discussed next.

The subsequent adjoint phase has the purpose of back-propagating adjoint radiance

X! along the same light path: this is the derivative of radiance with respect to the opti-

mization’s objective function, which captures how the radiance along this speci�c path

should change to improve the objective’s current value. In the case of a box pixel �lter,

this adjoint radiance is simply X! = X6,9/# . We now must evaluate the terms of the di�er-

ential transport problem outlined in Equation 5.5. Due to the simplifying assumption of

static emitters, this equation further reduces to

mc!> (x,8>) =

∫
S2

mc!8 (x,88) 5B (x,8> ,88)

+ !8 (x,88) mc 5B (x,8> ,88) d8
⊥
8 . (5.6)
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To recapitulate, the �rst term of this equation states that di�erential radiation propa-

gates according to a standard random walk, and the adjoint phase simply handles this

part using a loop. The second term must be handled specially and requires backpropa-

gating the product of adjoint and incident radiance into the BSDF 5B . For our algorithm,

Equation 5.6 is helpful to describe which terms we need to evaluate. However, all we do

is di�erentiate the contribution of the path that was already sampled in the �rst pass.

Replaying the path is simply a convenient way of accessing the required terms, but all

the sampling decisions are simply repeated from the �rst pass.

The following code fragment implements the path tracer’s adjoint phase. The func-

tion backward_grad(expr, grad_out) evaluates the reverse-mode derivative of the ex-

pression expr to propagate a gradient with respect to the expression’s output (grad_out)

towards the scene parameters, returning another gradient resulting from this step.

1 def sample_path_adjoint(ray, !, X!):

2 V = 1

3 for i in range(N):

4 ! -= V * !4(...)

5 88, bsdf_value, bsdf_pdf = sample_bsdf(...)

6 Xc += backward_grad(bsdf_value, X! * ! / bsdf_value)

7 V *= bsdf_value / bsdf_pdf

8 ray = spawn_ray(88, ...)

9 return Xc

Algorithm 5.2: The adjoint phase takes ! as input and reverses certain operations in sample_path() to

propagate adjoint radiance X! to scene parameters.

Line 4 of the adjoint pass reconstructs the incident illumination at the current vertex by

subtracting emission, if present. This is the inverse of line 4 in Listing 5.1. The resulting

modi�ed value ! still includes the bsdf_value / bsdf_pdf ratio that was applied in line

6 of Listing 5.1.

Our goal is now to evaluate the term !8 (...) m5B (...) of the di�erential scattering equa-

tion (5.6), for which we reuse the existing samplel8 with density bsdf_pdf. This entails

dividing out the BSDF value but retaining the reciprocal density and back-propagating

the product of this quantity with the adjoint radiance X! into the scene parameters cor-

responding to the current BSDF 5B .

Several aspects of this algorithm are remarkable: it is mathematically equivalent to

reverse-mode AD that normally requires a complete program reversal including ample

storage of intermediate values. Yet, the loop of our adjoint pass retains its order, exploit-
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ing the repeatability of the random walk along with a minimal use of extra information

(L) computed in a prior phase.

We note that Listing 5.2 involves a subtraction, which can lead to �oating point can-

cellation errors. This case could arise when a path vertex has an extremely high con-

tribution that dominates that of other path vertices. When processing this vertex in the

adjoint pass, cancellation could cause ! to round to zero. Arguably, this corresponds to

a situation where the numerical accuracy of the primary simulation is also suspect.

Next event estimation can be integrated into this framework by carefully reconstruct-

ing the direct illumination at each vertex and performing the inverse of the primal oper-

ations that are needed to accomplish this. The pseudocode in Listing 5.3 shows an imple-

mentation considering next event estimation and surface emission derivatives. The code

assumes that we have a function sample_emitter that samples an emitter contribution

!NEE. Adding MIS to this algorithm is straightforward: since this estimator is detached,

MIS weights are simply constant factors multiplied into emitter contributions. We omit

the MIS weights here for brevity.

1 def sample_path_adjoint_nee(ray, !, X!):

2 V = 1

3 for i in range(N):

4 !NEE = sample_emitter(...)

5 Xc += backward_grad(!4(...) + !NEE, X! * V)

6 ! -= V * (!4(...) + !NEE)

7

8 88, bsdf_value, bsdf_pdf = sample_bsdf(...)

9 Xc += backward_grad(bsdf_value, X! * ! / bsdf_value)

10 V *= bsdf_value / bsdf_pdf

11 return Xc

Algorithm 5.3: The adjoint phase if we also consider emission and next event estimation derivatives.

5.2.2 A�ached sampling strategies

While the previously discussed method works well in a wide range of situations, a de-

tached estimator cannot compute parameter derivatives related to perfectly specular

surfaces, as this would entail backpropagating gradients through Dirac delta functions.

This prevents optimizing index of refraction, geometry, or surface normals of smooth

conductors and dielectrics, including interesting applications like caustic design or the
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inverse reconstruction of transparent objects [188]. The detached estimator might also

result in high variance for nearly specular surfaces with low roughness.

In this section, we show how our path replay method can be extended to handle

attached estimators. As �rst introduced in Section 4.4, attached estimators di�erentiate

the integral after transforming to primary sample space:

mc � 9 (c) = mc

∫
P

5 9 (x, c) dx =

∫
U

mc

[
5 9 () (u, c), c)

? () (u, c), c)

]
du, (5.7)

where ) : U → P maps from the unit hypercube U = [0, 1]= to the original space P.

The mapping x = ) (u) is constructed from a target density ? (x) so that its Jacobian

determinant satis�es |J) (u) | = ? (x)−1. Our aim is now to di�erentiate not only the

integrand itself, but also the parameter-dependent mapping ) and PDF.

Applying the ideas of Section 5.2.1 poses additional challenges compared to the pre-

viously discussed detached case. Consider a perturbation of the shading normal or a

material parameter at a given surface interaction: this change will further propagate,

in�uencing the geometry of the remainder of this path. This will in turn also change

the value of subsequent BSDF and emission terms. It is important to correctly account

for these non-local dependencies during di�erentiation to ensure unbiased gradient es-

timates. Fortunately, it remains possible to follow the same core idea to develop similar

methods for the attached case.

To motivate our approach, let us apply the partial derivative to the various terms in

Equation (5.7):

mc � 9 (c) =

∫
U

mc 5 9 () (u, c), c)

? () (u, c), c)
−
5 9 () (u, c), c) mc? () (u, c), c)

? () (u, c), c)2
du, (5.8)

where we have applied the quotient rule. Focusing only on the �rst term, we can apply

the chain rule to see that it further expands to:

=

∫
U

mc 5 9 (...) + mx5 9 (...) · mc) (...)

? (...)
− · · · du. (5.9)

This derivation shows how the numerator splits into a term that tracks the change of the

primal integrand with respect to c , and the following product of two Jacobian matrices

expresses how changes in the parameterization in�uence 5 9 due to its dependence on

the light path vertices x.

We can also derive a recursive energy balance equation for the attached case, similar

to Equation 5.5 which produced detached estimators. We start by expressing the render-

98



5.2. Method

ing equation as an integral over primary sample space (ignoring emission for brevity):

!> (x,8>) =

∫
S2

!8 (x,88) 5B (x,8> ,88) d8
⊥
8

=

∫
U2

!8 (x,) (u, c))
5B (x,8> ,) (u, c))

? (x,8> ,) (u, c))
du, (5.10)

where ) maps uniformly distributed random variates u ∈ [0, 1]2 to sampled directions

and ? is the solid angle density of the generated samples. Similar to the detached case,

we apply the derivative operator mc to this integral:

mc!> (x,8>) =

∫
U2

!8 (x,) (u, c)) mc

[
5B (x,8> ,) (u, c))

? (x,8> ,) (u, c))

]

+ mc!8 (x,) (D, c))
5B (x,8> ,) (u, c))

? (x,8> ,) (u, c))

+ m88
!8 (x,) (u, c)) · mc [) (u, c)]

5B (x,8> ,) (u, c))

? (x,8> ,) (u, c))
du, (5.11)

where we used the product and chain rule to split the derivative into three separate

terms. The �rst two terms involve the primal incident radiance and its parametric deriva-

tive. They resemble the detached case and can therefore be evaluated analogously. How-

ever, the third term is new and requires the directional derivative of the incident radiance.

These directional derivatives constitute the main change due to attached sampling

strategies, and our approach will be to similarly reconstruct them on the �y using a

constant amount of precomputed information generated by a prior phase. In contrast to

the previous algorithm, we therefore not only need to track quantities related to the total

accumulated radiance and throughput, but also to the path geometry. In each iteration,

we spawn a ray according to the BSDF sampling strategy, and the computed derivatives

must then take into account how this new ray will depend on the previous ray.

Speci�cally, we must compute the Jacobian relating subsequent vertices (x0, x1, x2)

in a light path. We assume that x2 is sampled given an incident ray x0 → x1, as il-

lustrated in Figure 5.3. We must then compute the Jacobian capturing the di�erential

relationship m(x2, x1)/m(x1, x0) of these path vertices. Performed naïvely, this would be

a 6× 6matrix. However, as we are only interested in rays originating on surfaces (or the

camera), and directions are normalized, we can reduce it to a 4 × 4 matrix by switching

to a 2D parametrization using coordinates that leverage the available tangential basis

vectors at path vertices.

It is interesting to note that these derivatives can in principle be computed using

any kind of parameterization of the space of light paths and rays, and we initially used

a position-angle parameterization of rays. In this case, the Jacobian matrices involve
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Ray 

Figure 5.3: The a�ached version of our method must consider how the geometry of a light path changes

with respect to infinitesimal perturbations of scene parameters. Our method does so by tracking the

di�erential relationship of a subsequent path vertex x2 generated from an incident path segment x0 → x1

using the combination of BSDF sampling routines and ray tracing.

components with incompatible units and di�erent resulting scales, which can cause poor

numerical conditioning. Switching to a position-position parameterization addressed

this issue.

Pseudocode Listing 5.4 contains the pseudocode of our attached gradient evaluation

technique following the same conventions previously outlined in Listings 5.1 and 5.2.

Each loop iteration uses forward-mode di�erentiation (via a function forward_grad())

to capture the di�erential relationship of adjacent path vertices and reverse-mode dif-

ferentiation (via a function backward_grad()) to backpropagate adjoint radiance into

the scene parameter gradient.

Concretely, the function backward_grad(x, X) propagates the gradient of the func-

tion’s output to the input parameters by evaluating the Jacobian product J
⊺

xX using au-

tomatic di�erentiation. On the other hand, the function forward_grad() takes an input

variable and several output variables and computes the Jacobian matrices of all the out-

put variables with respect to the input. This function returns Jacobian matrices, while

backward_grad() internally multiplies the Jacobian with vector. By J◦ we denote Ja-

cobian matrices of some output variable ◦ with respect to the current "ray". Here, a

ray is represented by the tuple of UV coordinates at its origin and intersection location.

For RGB values, e.g., the accumulated radiance !, these Jacobians have 3 rows and 4

columns. The implementation keeps track of the derivative of the accumulated radi-

ance, path throughput and the next ray. We denote these quantities by J! , JV and Jray.

For example, Jray contains the derivatives of the UV coordinates at bounce 8 and 8 + 1,

(D8, E8, D8+1, E8+1), with respect to the camera ray, represented by the tuple (D0, E0, D1, E1).

The �rst pass then returns the accumulated radiance ! and its directional derivative J!

to be used in the adjoint phase.
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1 def sample_path(ray):

2 ! = 0, V = 1

3 J! = 03,4, JV = 03,4, Jray = I4

4 for i in range(N):

5 ! += V * !4(...)

6 8>, bsdf_value, bsdf_pdf = sample_bsdf(...)

7 bsdf_weight = bsdf_value / bsdf_pdf

8 ray′ = spawn_ray(8>, ...)

9 # Accumulate the directional radiance derivative

10 Jray′, Jbsdf, J!4 = forward_grad(ray, {ray′, bsdf_weight, !4})

11 Jbsdf = Jbsdf @ Jray

12 J!4 = J!4 @ Jray

13 Jray = Jray′ @ Jray

14 J! += V * J!4 + !4 * JV

15 JV = bsdf_weight * JV + V * Jbsdf

16 V *= bsdf_weight

17 return !, J!

18

19 def sample_path_adjoint(ray, !, J!, X!):

20 V = 1, Jray = I4

21 for i in range(N):

22 ! -= V * !4(...)

23 8>, bsdf_value, bsdf_pdf = sample_bsdf(...)

24 bsdf_weight = bsdf_value / bsdf_pdf

25 ray′ = spawn_ray(8>, ...)

26 Jray′, Jbsdf, J!4 = forward_grad(ray, {ray′, bsdf_weight, !4})

27 Jbsdf = Jbsdf @ Jray

28 J!4 = J!4 @ Jray

29 Jray = Jray′ @ Jray

30

31 # Update the directional radiance derivative

32 J! -= ! / bsdf_weight * Jbsdf + V * J!4

33 J′! = J! @ J−1ray

34

35 # Backpropagate gradients of the current BSDF weight

36 Xc += backward_grad(bsdf_weight, X! ∗ ! / bsdf_weight)

37 # Backpropagate through shading frame and BSDF sampling calculation

38 Xc += backward_grad(ray′, X! @ J′!)

39 V *= bsdf_weight

40 return Xc

Algorithm 5.4: Pseudocode of our a�ached backpropagation algorithm.
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Note that automatic di�erentiation is only used within the loop body, and does not

need to build an AD graph over loop iterations. Our explicitly computed Jacobian ma-

trices account for all derivative information that is needed across loop iterations.

Practical considerations We always perform three rendering steps: the �rst com-

putes an ordinary primal image and uses a pseudorandom number seeding scheme that

de-correlates it from the subsequent two gradient-related evaluation steps. Recall from

Section 4.4 that we need to decorrelate primal and gradient rendering to eliminate, or

at least reduce, gradient bias. The primal image is then used to evaluate the objective

function and compute its gradient, which produces the adjoint image (i.e., the derivative

of the rendered image with respect to the optimization objective) that we then backprop-

agate from the sensor to objects with di�erentiable parameters. These two steps rely on

the coupled pair of algorithms presented earlier, which are perfectly correlated in the

sense that they visit the exact same sequence of path vertices.

Compared to conventional AD or radiative backpropagation, we perform one addi-

tional rendering pass. This comes at an extra cost, which means that our linear-time

approach may ultimately be slower than existing two-pass methods when the problem

to be solved is su�ciently simple so that lack of linear computation time or constant

memory usage are not bottlenecks.

Stochastic regularization The Jacobian matrix relating adjacent path segments is

singular when the sampling strategy lacks a dependence on the previous vertex. This

case for example arises following an interaction with a di�use material, whose sampling

strategy does not depend on the incident direction.

We use the following simple regularization scheme to avoid numerical failure during

the inversion process: at each vertex, we add a small amount of statistically independent

noise with zero mean, which does not bias the resulting gradients. In particular, we add

a diagonal matrix _ ·I4 ·sign (D − 1/2) to the ray Jacobian, whereD ∼ U(0, 1) is a uniform

variate, I4 the 4 × 4 identity matrix and _ = 0.01 denotes a regularization weight. We

again make sure to use the exact same random variates in both of our computation

passes (i.e., the second and third passes according to the unbiased evaluation scheme

discussed above). By using the same noise matrix in both passes, we ensure that our

method remains unbiased. A detailed proof is provided in Appendix B. The e�ect of this

regularization is illustrated in Figure 5.4.
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(a) Reference (b) Ours (no regularization) (c) Ours (d) Conventional AD

Figure 5.4: We show the e�ect of our random regularization of the ray Jacobian. In this example, we

computed the gradient of the surface normals of the ridges on the glass cups. Without stochastic regu-

larization, the di�use material of the wooden table produces singular Jacobian matrices, and the resulting

gradients are mostly invalid (NaN, shown as white). With a small amount of regularization (_ = 0.01), our

gradient estimates are very close to those computed using conventional automatic di�erentiation.

Moving discontinuities So far we have assumed that discontinuities, when present,

do not depend on c and are thus static within the integration domain. A serious issue

can arise when the c-dependent parameterization introduces an undesirable parameter

dependence in previously static discontinuities. Without additional precautions, such

a combination can then lead to biased gradients. Zeltner et al. [68] suggest (smoothly)

replacing attached estimators with detached versions near discontinuities. This is done

by leveraging a convolution to detect occlusion edges, similar to the reparameterization

work by Bangaru et al. [69] discussed earlier. This adds some implementation com-

plexity and computational cost. In practice, bias due to naïve attached sampling may be

acceptable given the simplicity and e�ciency of the uncorrected approach. For example,

in the Mitsuba 2 paper [48], we demonstrated a working caustic design application that

applies AD to an entire specular chain, which is functionally equivalent to an attached

sampler without corrections for moving discontinuities. We will pay no further atten-

tion to discontinuities here, as our focus is purely on the time and storage complexity of

reverse-mode attached derivatives.

5.2.3 Di�erentiable delta tracking

Path replay backpropagation unlocks the door to e�cient reverse-mode di�erentiation

of volume transport based on unbiased null-collision methods like delta tracking [96],

which we introduced in Section 3.5.2.

Di�erentiating such algorithms in reverse mode previously involved three separate

sources of di�culty: �rst, light paths in participating media are generally much longer

and can reach 100-1000s of scattering interactions, exacerbating the di�culty of pro-
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gram reversal. Second, null-scattering can introduce a large number of additional null

interactions that expand the size of the intermediate program state even further. Third,

null-scattering makes discrete decisions that require additional precautions during dif-

ferentiation.

The former two issues are easily addressed by switching to detached or attached

PRB with generalizations for volumes (e.g., scattering by a phase function in addition to

the BSDF). To resolve the third issue, let’s recall the null-scattering integral form of the

radiative transfer equation [97, 98]:

!8 (x) =

∫ ∞

0

f̄ T̄(x, xC )

[
f0 (xC )

f̄
!4 (xC ) +

fB (xC )

f̄
!B (xC ) +

f= (xC )

f̄
!8 (xC )

]
dC

=

∫ ∞

0

? (C) [%0 (xC )!4 (xC ) + %B (xC )!B (xC ) + %= (xC )!8 (xC )] dC, (5.12)

where we have omitted the dependence on 8 and surface-related terms for readability.

The majorant transmittance T̄(x, xC ) is the homogeneous transmittance according to the

extinction majorant f̄ . We write the integral in this particular way as it aligns well with

the delta tracking algorithm: the term f̄ T̄(x, xC ) is exactly the free-�ight density ? (C)

implied by the majorant. The radiance terms inside the brackets are all weighted by

terms of the form f◦/f̄ = : %◦. These conveniently sum to 1, so delta tracking can estimate

this integral by evaluating one term at a time, sampled according to the probabilities %◦:

!8 (x) ≈ !4 (xC )H [D < %0 (xC )]

+ !B (xC )H [%0 (xC ) ≤ D < 1 − %= (xC )]

+ !8 (xC )H [1 − %= (xC ) ≤ D], (5.13)

where the Heaviside function H equals 1 if the speci�ed condition is satis�ed and 0

otherwise. The variable C is sampled according to ? (C) and D ∼ U(0, 1). In the pri-

mal estimator, all probabilities simply cancel out with the corresponding terms in the

integrand.

We assume the majorant to be a constant and to not participate in the di�erentiation

process. We can form a detached derivative estimator by explicitly only computing the

derivative of the integrand, but not of the discrete sampling step:

mc!8 (x) ≈
mc [%0 (xC ) !4 (xC )]

%0 (xC )
H [D < %0 (xC )]

+
mc [%B (xC ) !B (xC )]

%B (xC )
H [%0 (xC ) ≤ D < 1 − %= (xC )]

+
mc [%= (xC ) !8 (xC )]

%= (xC )
H [1 − %= (xC ) ≤ D], (5.14)
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Note that all functions %◦ and !◦ can potentially depend on c . The particle proportions

%◦ occur twice in each row, but they must only be di�erentiated in the numerator, as

required by the detached estimator.

Practical implementations of this method will likely also need to make use of next

event estimation. One additional challenge that arises here is that transmittance eval-

uation towards the sampled light position using a method like ratio tracking [10] adds

another recursive loop over an unbounded number of scattering events. To correctly

di�erentiate this entire process, we rely on a second nested application of PRB within

the volumetric path tracer loop.

We provide pseudocode for the primal delta tracking estimator with next event esti-

mation in Listing 5.5. For simplicity, the pseudocode does not handle volumetric emis-

sion. The code assumes that we access medium parameters using a function fC(x)

and a function albedo(x) which query medium extinction and albedo, respectively.

The function sampler.rand() generates a uniformly distributed random variable. The

sample_emitter function samples a direction towards an emitter and evaluates the

emitter radiance weighted by the phase function and sampling PDF. The resulting !4

is then attenuated using the ratio tracking transmittance estimate computed in the fol-

lowing lines. Listing 5.6 shows the pseudocode for a detached delta tracking gradient

estimator with next event estimation. Compared to the surface case, it handles the dis-

crete sampling decisions due to delta tracking and contains nested PRB for the ratio

tracking loop.

We have not yet experimented with attached versions of volume transport estima-

tors but consider them an interesting avenue for future work, especially to handle the

directional domain of the in-scattering integral: light paths in forward-scattering me-

dia (6 > 0.99) are highly constrained and reminiscent of specular chains in the surface

case. Simple detached sampling strategies can be a poor choice for such a direction-

ally peaked integrand [68]. Our di�erentiable delta tracking also does not account for

density gradients in empty space. This important special case needs to be handled by

explicitly sampling medium interactions at points where fC = 0, as done by follow-up

work [270]. This improved sampling technique slightly improves reconstruction results

on some scenes.
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1 def sample_path_delta_tracking(ray):

2 ! = 0, V = 1, x = ray.o

3 while active path:

4 # Sample the free-flight distance

5 t = -log(1 - sampler.rand()) / f̄

6 x += t * ray.d

7 # Continue in next iteration if a null interaction was sampled

8 if sampler.rand() < 1 - fC(x) / f̄:

9 continue

10 V *= albedo(x)

11

12 # Sample emitter direction towards an emitter and emitter contribution

13 !4, 84 = sample_emitter(...)

14

15 # Attenuate emitter contribution by ratio tracking transmittance estimator

16 x4 = x, tr = 1

17 while not reached emitter:

18 t = -log(1 - sampler.rand()) / f̄

19 x4 += t * 84

20 tr *= 1 - fC(x4) / f̄ # ratio tracking transmittance estimate

21 ! += V * tr * !4

22 88, phase_value, phase_pdf = sample_phase_function(...)

23 V *= phase_value / phase_pdf

24 ray = spawn_ray(x, 88)

25 return !

Algorithm 5.5: Pseudocode of a volumetric path tracer with delta tracking and ratio tracking next event

estimation.
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1 def sample_path_delta_tracking_adjoint(ray, !, X!):

2 V = 1, x = ray.o

3 while active path:

4 t = -log(1 - sampler.rand()) / f̄

5 x += t * ray.d

6 # Backpropagate for null interaction

7 if sampler.rand() < 1 - fC(x) / f̄:

8 %= = 1 - fC(x) / f̄

9 Xc += backward_grad(%=, X! ∗ ! / %=)

10 continue

11 V *= albedo(x)

12

13 # Backpropagate for real interaction

14 %C = fC(x) / f̄

15 Xc += backward_grad(%C * albedo(x), X! ∗ ! / (%C * albedo(x)))

16

17 !4, 84 = sample_emitter(...)

18 x4 = x, tr = 1

19 # Create a copy of the random number generator with its current state

20 nee_sampler = sampler.copy()

21 while not reached emitter:

22 t = -log(1 - nee_sampler.rand()) / f̄

23 x4 += t * 84

24 tr *= 1 - fC(x4) / f̄

25 x4 = x

26 nee_sampler = sampler.copy()

27 while not reached emitter:

28 t = -log(1 - nee_sampler.rand()) / f̄

29 x4 += t * 84

30 r = 1 - fC(x4) / f̄

31 Xc += backward_grad(r, X! ∗ V * tr * !4 / r)

32 ! -= V * tr * !4

33 8
′, phase_value, phase_pdf = sample_phase_function(...)

34 V *= phase_value / phase_pdf

35 # Accumulate phase function gradient

36 Xc += backward_grad(phase_value, X! * ! / phase_value)

37 ray = spawn_ray(x, 8
′)

38 return Xc

Algorithm 5.6: Pseudocode for the adjoint pass of the volumetric path tracer using delta tracking and

ratio tracking.
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5.2.4 General principles

Iterative jacobian inversion. The previously discussed method performs an itera-

tive reconstruction of the incident illumination along with its directional derivative in

the attached case. We can further generalize this idea using an abstract view that in-

terprets sampling of a light path as the repeated composition of a function ℎ. In an

implementation, ℎ would represent the body of a for loop that takes the previous itera-

tion’s state as input to compute an updated set of state variables. In the basic path tracer

from Listing 5.1, the relevant loop state is comprised of the value ! and throughput V .

The loop then evaluates

(!(c), V (c)) = ℎ(c,ℎ(c, ..., ℎ(c, !0, V0))···)︸                             ︷︷                             ︸
#

=ℎ(# ) (c, !0, V0), (5.15)

where !0 = 0 and V0 = 1. In this particular example, the function was de�ned as

ℎ(!, V) = (! + V · !4 (...), V · 5B (...)). For notational clarity, we omit the division of the

BSDF value 5B (...) by the sampling density. Using the chain rule, we can take the deriva-

tive of Equation (5.15) with respect to the scene parameter c :

mc (!(c), V (c)) = mc [ℎ(c,ℎ(c, ..., ℎ(c, !0, V0))···)]

=

#∑
:=1


#∏

9=:+1

Jℎ (! 9 , V 9 )


mcℎ(c, !:−1, V:−1), (5.16)

where (!: , V:) = ℎ(:) (c, !0, V0) and Jℎ (! 9 , V 9 ) is the Jacobian of ℎ. This expression can

be evaluated in di�erent ways. Conventional reverse-mode AD techniques would store

the function evaluations after each iteration of the forward loop and then compute the

product of the Jacobians in reverse order. This is for example how the backpropagation

algorithm for neural networks [117] operates. Alternatively, we could run the computa-

tion in reverse and recompute quantities from the output end.

We choose a di�erent approach: instead of inverting the primal calculation, we in-

vert the local Jacobian matrix relating the loop state of adjacent iterations. This is fea-

sible, as the involved quantities are low-dimensional and the computation has a simple

structure. The same approach would clearly not scale to neural networks with thousand-

dimensional latent representations in intermediate layers. For the detached path tracer,

the Jacobian Jℎ of the function ℎ is given by

Jℎ =

(
1 !4 (...)

0 5B (...)

)
, (5.17)
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and we de�ne Jℎ,: as product of Jℎ over the path su�x at vertex : :

Jℎ,: =

#∏
9=:+1

Jℎ (! 9 , V 9 ) =

(
1 !:,#

0 V:,#

)
. (5.18)

The subscript :, # denotes quantities that are accumulated from path vertex : to# . This

shows that the indirect illumination term that needs to be evaluated during backprop-

agation can be interpreted as an entry of the Jacobian product. Plugging this back into

the expression for mc! in Equation (5.16), we obtain

mc (!(c), V (c)) =

#∑
:=1

(
1 !:,#

0 V:,#

)
mcℎ(c, !:−1, V:−1)

=

#∑
:=1

(
1 !:,#

0 V:,#

) (
V:−1mc!4

V:−1mc 5B

)
=

#∑
:=1

V:−1

(
1 !:,#

0 V:,#

) (
mc!4

mc 5B

)
.

In practice, only the �rst component mc! of the gradient is desired, and we do not need

the derivative of the path throughput V . Each iteration of the adjoint pass in Listing 5.2

then accumulates one of the elements of the previous sum into the scene parameter

gradient. This equation now enables a new interpretation of the method presented in

Section 5.2.1: the incident radiance computed in a �rst forward pass provides the Jaco-

bian product �ℎ,0. As we now run our backward pass and subtract the current emitted

radiance, we are e�ectively iteratively applying the inverse Jacobian matrix:

J−1ℎ =

(
1 −!4 (...)/5B (...)

0 1/5B (...)

)
. (5.19)

The throughput-related computation simpli�es to a single division by the current BSDF

value.

Fredholm integral equations. Another perspective on path replay backpropagation

is to consider the broader class of integral problems this algorithm can be applied to. Both

surface and volume rendering equations are Fredholm integral equations of the second

kind. These equations have the general form:

i (x, c) = ( (x, c) +

∫
Y

 (x, y, c) i (y, c) dy, (5.20)

where ( is a source term and  is the kernel. Both these terms can potentially be param-

eter dependent. The function i is unknown and estimated using recursive Monte Carlo
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integration. In rendering, ( subsumes emission terms and  any terms related to BSDFs

and phase functions. We can apply the derivative operator to the above equation:

mci (x, c) = mc( (x, c) +

∫
Y

mc (x, y, c) i (y, c) +  (x, y, c) mci (y, c) dy. (5.21)

From this, it seems that path replay, at least in its detached version, should generalize

to any problem that can be expressed as such a Fredholm integral equation. For some

problems, handling discontinuities might be essential and challenging. The applicability

of the attached path replay backpropagation depends on the involved dimensionalities

and numerical properties of the problem at hand.

While beyond the scope of this thesis, we provide preliminary results of applying

detached PRB to di�erentiate Monte Carlo PDE solvers [39, 42, 43] in a recent tech re-

port [44]. Monte Carlo PDE methods express the solution to certain PDEs as a Fredholm

integral equation, which can be di�erentiated using path replay to solve inverse prob-

lems of PDEs.

5.3 Results

We turn to results and present correctness tests, several applications, and performance

evaluations. We implemented our method using an early version of Mitsuba 3 [50] and

ran experiments on a NVIDIA TITAN RTX graphics card (24 GB of RAM).

Gradients from detached sampling strategies. In Figure 5.5, we validate the cor-

rectness of our method by comparing gradients computed using detached sampling

strategies to conventional automatic di�erentiation and both biased and unbiased RB

variants. This �gure provides further demonstration that biased RB generates gradients

with an incorrect sign. This e�ect is particularly pronounced when the directional dis-

tribution of incident radiance plays a strong role, for instance when optimizing normal

or roughness maps.

Gradients from a�ached sampling strategies. Conversely, Figure 5.6 shows gra-

dients produced by attached sampling strategies. The normal map gradients were com-

puted using paths of length 12 using 128 samples per pixel. Specular interre�ection along

with both re�ection and refractionmakes it possible to reach each texture-position using

various di�erent path con�gurations. This leads to a relatively high amount of variance

compared to the previous case. Radiative backpropagation does not support this type of

computation and will return a zero-valued gradient in all three cases.

110



5.3. Results

L
iv
in
g
r
o
o
m

Scene RB RB (biased) Ours

D
iff
u
se

te
xt
u
re

Conv. AD

D
r
a
g
o
n

R
ou

gh
n
es
s
te
xt
u
re

C
o
in

N
or
m
al
m
ap

Figure 5.5: Validation of gradients computed using detached sampling strategies: we visualize several

types of parameter gradients in a somewhat construed validation testcase that involves backpropagating

the di�erence to a blurred version of the primal image. In the first row, we compute the gradient of the

di�use albedo of the wooden floor. Only one dimension is shown in the case of multidimensional param-

eters like the albedo. The second row shows the gradient of a roughness texture on the dragon. Finally,

the last row shows the gradient of the normal map of the embossed coin. Our method and the quadratic

time version of radiative backpropagation match reference gradients obtained using conventional auto-

matic di�erentiation. Biased RB can compute the gradient of a di�use texture albeit with an incorrect

scale, and it produces gradients of the wrong sign for both roughness and normal maps.
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Figure 5.6: Similar to the detached case in Figure 5.5, we now visualize the gradients of a�ached sampling

strategies that track di�erential changes of the path geometry with respect to perturbations of the scene

parameters. Parameter optimization of perfectly specular objects requires this approach. The example in

the first row shows a magnifying glass with curvature modeled using a normal map. The second scene

has normal map on an indirectly observed metallic torus, and the last row uses a normal map to model

the profile of the two glass cups.

Subsurface sca�ering Ourmethod outperforms prior work in scenes that are charac-

terized by light paths with many scattering events. Figure 5.7 showcases the asymptotic

behavior of gradient evaluation with respect to the subsurface scattering albedo of a

dielectric object with homogeneous internal scattering. The high average path length

makes both recursive radiative backpropagation and conventional automatic di�eren-

tiation approaches unsuitable: the former su�ers from quadratic computational cost to

recursively estimate the incident illumination, while the latter requires storage of in-

termediate program state for di�erentiation that grows linearly with path length and

quickly exhausts all available GPU memory.

Heterogeneous volume optimization In Figure 5.8, we use our method to opti-

mize a heterogeneous volume using delta tracking. The large number of null scattering

112



5.3. Results

(a) Scene (b) Appearance with N bounces

4 16 32 64 128
Maximum number of bounces

0

5

10

15

20

P
ea
k
m
em

o
ry

u
sa
g
e
(G

B
)

(c) Memory usage

Conv. AD

RB

Ours

4 16 32 64 128
Maximum number of bounces

0

10

20

30

40

T
im

e
(s
)

(d) Gradient render time

Conv. AD

RB

Ours

Figure 5.7: (a) In this example, we compute gradients with respect to the dragon’s subsurface sca�ering

albedo. This represents a typical casewhere long pathswith over a hundred sca�ering eventsmust be sim-

ulated to faithfully capture the material appearance. In (b), we show how the appearance would degrade

if we excluded higher order bounces. We then compute the gradient of the albedo using conventional

automatic di�erentiation, unbiased radiative backpropagation (RB), and our new unbiased method. (c)

Despite rendering the scene only at 640 × 360 pixels and 1 sample per pixel, conventional AD quickly ex-

hausts the available memory of a TITAN RTX GPU. (d) Runtime of unbiased RB grows quadratically with

path length and becomes prohibitively slow when many sca�ering events are considered. In contrast,

our method performs unbiased estimates using a constant memory footprint and only a linear increase

in computation time.
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Figure 5.8: We optimize the density of a heterogeneous volume using delta tracking andmultiple methods

at roughly equal time. The number of sampled medium interactions makes both conventional automatic

di�erentiation (conv. AD) and unbiased radiative backpropagation (RB) completely infeasible. Conven-

tional AD fails to complete even one iteration within a timespan of 45 minutes. Our method and biased

RB are both significantly faster. Our method seems converge slightly more reliably than biased RB.
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Figure 5.9: We compare the runtime and memory usage of di�erentiable rendering in multiple example

scenes, separating the time spent in the primal and two di�erentiation-related passes. The primal pass

uses a larger number (4×) of samples compared to the adjoint passes, which has a positive e�ect on

gradient variance [149]. In our method, the first adjoint pass refers to the precomputation of temporary

information (radiance estimate, ray Jacobians) consumed by the final adjoint pass that accumulates scene

parameter derivatives.
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(a) Reference (b) Initialization (c) Conventional AD (d) Ours

Figure 5.10: We optimize the normal map of a glass slab so that the refracted view matches a reference

image. Neither biased nor unbiased radiative backpropagation can optimize a perfectly specular surface,

hence we compare our method to conventional automatic di�erentiation (at equal iteration count).

events makes any method with a superlinear dependence on path length impractical.

Delta tracking maps extremely poorly to wavefront style rendering, so conventional AD,

which runs a big wavefront of rays, is unable to complete even a single iteration. Fig-

ure 5.1 showcases a similar albedo and density optimization under di�cult illumination

conditions.

Performance evaluation We evaluate the computation time and memory require-

ments of both our detached and attached derivatives in Figure 5.9. The results con�rm

that our method and radiative backpropagation both use a constant amount of memory,

which can be substantially lower than memory requirements of conventional AD.While

we build on a relatively optimized AD implementation, this approach still uses in excess

of 10 GiB of memory to compute a small number of gradient samples in several simple

tests. Please see Jakob et al. [50] for a thorough performance evaluation of PRB, includ-

ing CPU benchmarks. The slower main memory on CPUs results in PRB achieving a

100× speedup over conventional AD.

Optimization using a�ached sampling. Figure 5.10 shows how attached PRB can

be used to optimize the normal map of a glass slab. Our method matches the results

achieved using conventional AD. While this is a toy example, similar optimizations are

for example required in lens design applications.
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5.4 Summary and future work

We presented a new linear-time and constant-memory approach to di�erentiate the im-

age formation process of physically-based rendering. Our method has a cost that is

similar to a biased method presented in previous work, but its unbiased nature makes

it more reliable in many types of simulations. Our methods use a constant amount of

memory, which we expect to be crucial when optimizing large scenes. We also show

that our approach generalizes to the more complex case of attached sampling strategies

that track the di�erential dependence of Monte Carlo importance sampling on scene pa-

rameters, enabling di�erentiation of degenerate BSDFs containing Dirac delta functions.

We also expand on previous work targeting volumetric appearance reconstruction and

are the �rst to solve this problem using unbiased delta tracking. The advantages over

ray marching match those observed in primal rendering, and we hope that this possibil-

ity will inspire inverse rendering to similarly shift towards unbiased volume rendering

methods.

We also show that, unlike claimed by prior work, assuming constant incident indi-

rect illumination is generally harmful, as it can result in gradients of the wrong sign. It

remains an open question whether it is possible to reduce gradient variance in a mean-

ingful way by using a biased estimator. For such an estimator to be useful, it would

need to yield gradients of the correct sign or at least be constructed such that the bias

disappears as the optimization converges. However, it is unclear how to construct such

biased gradients more e�ciently than by post-processing the unbiased estimator (e.g.,

by using the Adam optimizer [111]). One approach could be to explore the use of biased

primal rendering methods (e.g., radiance caching) for di�erentiable rendering.

Our method is designed for unidirectional path tracing algorithms. More advanced

algorithms that need to store full light paths (e.g., bidirectional path tracing or path-

space Metropolis light transport) do not bene�t from path replay, as then the gradients

can be computed directly from stored light paths. However, these algorithms are less

commonly used since they become ine�cient for long light paths and map less well to

GPU rendering than unidirectional path tracing.

Finally, we believe that our method also has the potential to be useful outside of ren-

dering. We recently demonstrated this on the example of Monte Carlo PDE solvers [44].

The ability to di�erentiate Monte Carlo estimators for Fredholm equations of the sec-

ond kind opens the possibility to employ di�erentiable Monte Carlo methods at scale for

problems in science and engineering.
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6 | Di�erentiable Signed Distance

Function Rendering

(a) Reference images (b) Optimized surface (c) Optimization result (d) Ground truth

Figure 6.1: Image-based shape and texture reconstruction of a statue given 32 (synthetic) reference images

(a) and known environment illumination. We use di�erentiable rendering to jointly optimize a signed dis-

tance representation of the geometry and albedo texture by minimizing the !1 loss between the rendered

and the reference images. Our method correctly accounts for discontinuities and we therefore do not

require ad-hoc object mask or silhoue�e supervision. We visualize the reconstructed surface (b) and the

re-rendered textured object (c). The view and illumination condition in (b) and (c) are di�erent from the

ones used during optimization. In (d) we render the ground truth triangle mesh.

The previous chapter introduced a method that can e�ciently di�erentiate long light

paths, but ignored the important problem of discontinuities that arise at the silhouette

of occluders. Applications such as 3D reconstruction from images require accounting for

the instantaneous changes of radiance function on these discontinuities. Otherwise, the

derivatives of shape parameters are biased, which impedes the use of gradient descent

optimization.

Besides the mathematics of gradient evaluation, a closely related concern is the 3D

representation underlying the scene. Certain representations are more amenable for

e�cient inverse rendering than others. In this chapter, we investigate di�erentiable

rendering of surfaces represented by signed distance functions (SDFs). A signed distance

function measures the signed distance to a surface that is de�ned by its zero-level set.

SDFs and general implicit surfaces are a well-established representation, but the recent

popularity of inverse rendering has led to a renewed interest in them. We review some

recent inverse rendering methods using SDFs in Section 4.6.2. A key advantage of using
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SDFs as geometric representation is their ability to easily represent topological changes

during the optimization process [195].

While there is a large body of work on using SDFs for inverse rendering, no existing

technique can directly di�erentiate renderings of SDFs with respect to primary, sec-

ondary (shadows), or higher-order e�ects (global interre�ections). We generally expect

inverse problems to become more useful as their model evaluation and coupled steps

like di�erentiation become increasingly representative of physical reality, hence this is

highly desirable. The previously discussed reparameterizations methods [69, 154] can

be adapted to SDFs. While originally developed for triangle meshes, these methods are

independent of the geometry representation and therefore also apply to SDFs. They ex-

pose a bias-versus-computation tradeo�, and to achieve high-quality gradients, require

tracing many costly additional rays.

We propose a specialized reparameterization technique for di�erentiable optimiza-

tion of SDFs that addresses these drawbacks. Our method augments the sphere tracing

technique [204] commonly used for SDF rendering so that it collects a small amount of

additional informationwhile stepping through space. We use this information to cheaply

instantiate a reparameterization that addresses issues with discontinuous integrals per-

formed by the renderer, so that the remaining calculation can be handled by standard

AD techniques. An important di�erence of our approach compared to prior work is that

our parameterization does not need to trace auxiliary rays to sample the surrounding

environment in search of occlusion boundaries, since equivalent information is natu-

rally available in the signed distance value of the SDF representation. There are various

subtleties that must be considered along the way. We show how careful derivation of

gradients and Jacobian determinant leads to an e�ective and robust method that is both

faster and more accurate than prior work.

Finally, we demonstrate the use of ourmethod to reconstruct SDFs of complex objects

with gradient-based optimization, eschewing ad-hoc silhouette losses or complex priors.

An example result of such an optimization is shown in Figure 6.1. We do not pursue state-

of-the-art reconstruction from real-world data in this chapter. Our focus is mainly on

e�cient derivative evaluation for SDFs. In summary, our contributions are the following:

• We propose a modi�cation of sphere tracing that dynamically constructs reparam-

eterizations enabling accurate di�erentiable SDF rendering.

• Wedemonstrate the use of ourmethod for surface reconstructionwithout the need

for complex priors or silhouette loss.

118



6.1. Method

Figure 6.2: A signed distance function is positive outside the object and negative inside. Here we visualize

a slice of the SDF and its corresponding isolines. In our implementation, we store the values of the SDF

on a regular grid and use B-spline interpolated lookups to ensure smooth normals.

• We provide a rigorous derivation of our reparameterization and the resulting dis-

tortion of the integration domain.

Lastly, in the paper we also draw a precise connection between using a reparameteriza-

tion and applying the divergence theorem [69] for integrals over the unit sphere. This

theoretical insight is discussed in Section 4.5.3.

6.1 Method

In the following, we �rst brie�y describe howwe store and render SDFs. We then discuss

di�erentiable SDF shading and then �nally introduce our reparameterization method to

handle visibility discontinuities.

6.1.1 Preliminaries

For a surface M ⊂ R3, the signed distance function q : R3 → R measures the distance

of a point x ∈ R3 to the surface. We assume the distance to be of negative sign inside

and positive outside the surface. Figure 6.2 shows a slice through an example SDF. In

the following, we will denote the value of the SDF as q (x, 0), where 0 is the vector

of parameters de�ning the SDF. A key property of SDFs is that they satisfy the eikonal
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equation:

∥mxq (x, 0)∥ = 1, (6.1)

i.e., the positional gradient has unit norm. For a point on the surface M, its surface

normal equals the positional gradient mxq (x, 0).

SDF representation We store signed distance functions on a voxel grid. With this

representation, 0 represents the list of stored values. During rendering, the grid values

are interpolated using cubic B-spline basis functions. Su�ciently high-order interpola-

tion is important, since normals are related to the derivative of the SDF. Simple trilinear

interpolation would result in discontinuous shading producing an undesirable faceted

appearance. We interpolate positional gradient and Hessian using analytic derivatives

of the basis functions and leverage the continuity of the SDF’s positional gradient to

construct a reparameterization. Our method relies on the interpolation smoothing out

any potential discontinuities in the positional gradient (including on the SDF’s skeleton).

Ray intersection. We use the sphere tracing algorithm [204, 205] to render the SDF

representation. Sphere tracing is an iterative procedure that e�ciently skips through

empty space. In each iteration, the step size is equal to the absolute value of the SDF,

i.e., the unsigned distance to the surface, at the current location x8 . This means the

algorithm takes a step given the minimum distance to the surface, which ensures that

we do not accidentally step over it. Eventually, the ray will either escape into the void,

or the evaluated distance will fall below a speci�ed convergence threshold Y, and the ray

intersection location is returned. Our method then additionally uses the intermediate

SDF evaluations to construct a reparameterization.

Notation As in previous chapters, we simplify the notation by carrying out the deriva-

tions use a single parameter c rather than the parameter vector 0 . It will further be use-

ful to distinguish between uses of c that are di�erentiated, or attached to the automatic

di�erentiation graph, and uses that are detached. We will denote detached parameters

as c0.

6.1.2 Shading gradients

Aside from handling discontinuities, di�erentiable rendering of SDFs also requires the

ability to di�erentiate the evaluation of the surface normal that is later used when eval-

uating the shape’s re�ectance model. If a ray intersects the surface de�ned by the SDF,
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the shading normal at the intersection location is given by

n(c) =
mxq (xC (c), c)

mxq (xC (c), c)

 , (6.2)

where C (c) is the intersection distance, xC (c) ≔ xo + C (c)8 the intersection location

on the surface, with the ray origin xo and the ray direction 8. The normalization is

needed, since the grid-interpolated SDF representation cannot guarantee that the eikonal

constraint is perfectly satis�ed. To di�erentiate n(c), special care is required, since the

intersection distance C depends on c and is the result of sphere tracing, a numerical root

�nding procedure. Using the inverse function theorem [207, 208], one can show that

mcC (c) = −
mcq (xC (c0), c)

⟨mxq (xC (c0), c0),8⟩
, (6.3)

where ⟨·, ·⟩ denotes the dot product. Using this expression, we can di�erentiate the

surface normal and correctly account for its dependency on the intersection distance,

without the need to track parameter derivatives across sphere tracing iterations. For

completeness, we provide the derivation of this expression in Appendix C.1.

6.1.3 Reparameterizing discontinuities

We now turn to our reparameterization for di�erentiable SDF rendering, decomposing

the problem into two steps: �rst, we de�ne a vector �eld, whose derivative follows the

motion of the SDF surface in 3D. We then show how evaluating this vector �eld along

continuous positions in 3D space enables constructing a reparameterization on the unit

sphere, which can correctly handle occlusion and self-occlusion by SDFs. Bangaru et

al. [69] followed a similar two-step strategy to de�ne a reparameterization for render-

ing triangle meshes, but theirs is constructed from a set of auxiliary rays that must be

separately traced.

Motion of implicit surfaces. Our eventual goal is to de�ne a reparameterization on

the unit sphere. We begin by de�ning an auxiliary 3D vector �eld V : R3 → R
3
. It

is constructed so that the derivative mcV(x, c) ∈ R3 matches the in�nitesimal surface

motion with respect to c when evaluated on the zero level set.

Since tangential motion does not a�ect discontinuities, we de�neV as a scaled mul-

tiple of the surface normal, speci�cally

V(x, c) = −
mxq (x, c0)

∥mxq (x, c0)∥
2
q (x, c). (6.4)
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Here, only the value of the SDF q (x, c) depends on the di�erentiable parameter c , while

the positional gradient and its squared norm are static and hence written using c0. Sim-

ilar expressions have been used in prior work on the motion of implicit surfaces [271],

neural level sets [272] and di�erentiable marching cubes [213]. We can verify that the

gradient of this vector �eld matches the surface motion by di�erentiating with respect

to the parameter c :

mcV(x, c) = −
mxq (x, c0)

∥mxq (x, c0)∥
2
mcq (x, c)

= −

mxq (x,c0)

∥mxq (x,c0)∥〈
mxq (x, c0),

mxq (x,c0)
∥mxq (x,c0)∥

〉 mcq (x, c)
=

−n

⟨mxq (x, c0), n⟩
mcq (x, c)

= mc [x> + C (c)n] = mcx(c), (6.5)

where n =
mxq (x,c0)
∥mxq (x,c0)∥

is the surface normal. The expression on the third line is exactly the

motion of a surface point x that is the result of intersecting a ray in the normal direction

nwith the SDF. This follows from plugging8 = n into Equation 6.3, which describes the

intersection distance gradient. In this case, the ray origin x> just needs to be any point

along this ray such that the ray intersects the SDF perpendicularly. Note that this is just

a construction to prove that mcV(x, c) has the right direction and magnitude, we do not

need to actually compute such a ray intersection.

So far, this derivation does not explicitly assume the function q to be an SDF. If q is

indeed an SDF, the gradient norm in the denominator in Equation 6.4 equals 1. However,

we found that including the normalization by the squared gradient norm makes our

method more robust when working with approximate (e.g., grid-interpolated) SDFs. The

e�ect of this is shown in Figure 6.3.

Reparameterization of the unit sphere. We now use this 3D vector �eld to de�ne

a reparameterization in the solid angle domain. Recall the primary requirement of the

reparameterization: for a direction 81 on a discontinuity on the unit sphere, the repa-

rameterization’s gradient mcT (81, c) needs to exactly match the motion of that bound-

ary direction.

The key idea is the following: we de�ne an evaluation distance function C (8, c0) that,

as a boundary is approached, converges to the distance at which the edge of the SDF

causing the discontinuity is located in 3D. One important detail is that this distance

must itself be continuous in 8, or the requirements on the reparameterization would
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Figure 6.3: We visualize the gradients of a rendered image with respect to a vertical translation of an

object represented as an SDF. If we do not include the normalization term described in Equation 6.4, the

magnitude of the gradient (middle column) does not quite match the reference. Including the normal-

ization improves the accuracy of the estimated silhoue�e gradients (right). As the SDF grid resolution is

increased (y-axis), the interpolated SDF more closely matches a true SDF, and the e�ect of the normal-

ization is less pronounced.
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be violated. We compute this distance as a weighted combination of the distances that

are encountered during sphere tracing, with weights chosen so that the weighted sum

will have the right convergence characteristics as it approaches a boundary. Figure 6.4

illustrates the high-level idea. From an implementation point of view, this corresponds

to computing not just the intersection distance during sphere tracing, but one additional

distance that we can then use to de�ne our reparameterization. One important property

of this distance computation is that it does not depend on the di�erentiable parameter c .

This means that we do not need to compute expensive parameter derivatives mcq (x, c)

within the sphere tracing loop.

For now, we assume this distance C to be given and we will de�ne it precisely later.

Given the distance, we construct a reparameterization on the unit sphere by �rst de�ning

an auxiliary function:

T̄ (8, c) = [xC + V(xC , c) − V(xC , c0)] − x

= C8 + V(xC , c) − V(xC , c0), (6.6)

where x is the ray origin of the ray along 8 and xC ≔ x+ C8. The idea here is to take the

3D location xC and displace it using our vector �eldV . We then subtract the ray origin x

to turn this expression into a direction aligned with 8. The subtraction ofV(xC , c0) en-

sures that the map is simply scaling 8 when no derivative is being taken. Since T̄ (8, c)

is not yet a vector of unit length, we normalize to obtain a reparameterization of the unit

sphere:

T (8, c) =
T̄ (8, c)

T̄ (8, c)



 . (6.7)

In the primal domain, this is now an identity map from the unit sphere onto itself. We

further need the derivative of this map to follow the motion of the implicit surface over

the unit sphere. We can show this by explicitly computing the derivative mcT :

mcT (8, c) =
1

C

(
I − 8 · 8)

)
mcV(xC , c), (6.8)

where I is the 3 by 3 identity matrix and 8 ·8) is the outer product of 8 with itself (see

Appendix C.2 for the expanded derivation). This derivative expression has a simple ge-

ometric interpretation: we constructed V such that its gradient mcV(xC , c) follows the

motion of the surface in 3D space. We then assumed that C was computed such that if 8

approaches a discontinuity, the evaluation distance will converge to the distance to the

SDF edge along the current ray. By multiplying the vector �eld gradient by I − 8 · 8) ,
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(a) V(x, 0) (b) mcV(x, 0)

(c) Sphere tracing steps

025000

Weight

(d) Evaluation distance

Figure 6.4: Our reparameterization builds on a vector fieldV(x, c) that is defined everywhere in ambient

space (a). Taking the derivative of that vector field with respect to a scalar parameter c will result in

a vector field mcV that follows the parameter-dependent motion due to c . In (b), we di�erentiate the

vector field with respect to a global translation in the vertical direction. For a given ray direction, we then

compute a weighted combination of positions encountered during sphere tracing to determine where

to evaluate the vector field mcV . In (c) we visualize the intermediate sphere tracing steps and weights

that influence the final evaluation point. In (d) we draw the computed vector field evaluation locations

as a red line as the origin of the incident ray changes. The red line is continuous and coincides with

the surface on silhoue�e edges. In an actual shape optimization, we di�erentiate V(x, 0) with respect

to all SDF parameters 0 (i.e. all individual grid values) simultaneously using reverse-mode automatic

di�erentiation.
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we project it onto the unit sphere’s tangent space. This means any motion in the direc-

tion of 8 will be removed. Additionally, the division by C can be interpreted as a form

of a geometry term: the motion of the 3D surface over the sphere is decreasing linearly

as the evaluation location C moves further away. Overall, this means that our reparame-

terization attains the right motion on the discontinuities. What remains is to de�ne the

evaluation distance C more precisely.

Reparameterization evaluation distance We evaluate our 3D vector �eld V at a

distance C along the current ray. We obtain a distance function that is both continuous

and has the right characteristics on the discontinuities by computing a weighted sum of

distances along the ray that are encountered during sphere tracing:

C =
1∑#

8=1F (8)

#∑
8=1

F (8)C8, (6.9)

where C8 are the intermediate distances attained during sphere tracing andF is a weight-

ing function. We de�ne our weighting function as a product of three terms:

F (8) = Fedge(8)Fdist(8)Fbbox(8). (6.10)

The �rst factor detects proximity to discontinuities:

Fedge(8) =
©­«
Y + |q (xC8 , c0) | + U

〈
mxq (xC8 , c0)

mxq (xC8 , c0)

 ,8

〉2ª®¬
−?

, (6.11)

where we use Y = 10−6, U = 0.1, ? = 2 and 8 is the ray direction. This weighting

function is designed such thatF → ∞ as a surface is approached at a grazing angle (i.e.,

the sphere tracing reaches an edge causing a discontinuity). The dot product between

the ray direction and the (normalized) gradient ensures that the weight only goes to

in�nity at grazing angles. Without this term, the evaluation distance would coincide

with the ray intersection distance and not be continuous. It is crucial for this distance

function to be continuous in 8, as otherwise the resulting gradients would be incorrect.

This weighting scheme serves a similar purpose as the weights used by Bangaru et al.

[69]. In their method, the weights are used for a 2D convolution that has to be evaluated

using Monte Carlo integration, whereas our implementation re-uses the locations that

are already sampled during sphere tracing.

This �rst weighting term is not quite su�cient to robustly estimate gradients how-

ever. For indirect rays starting on the SDF itself it will likely select an evaluation distance
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x

x + C8

(a) x + C8 withoutFdist

x

(b) x + C8 withFdist

Figure 6.5: We compare the evaluation distance function C with and without the Fdist factor. Without

this factor, the evaluation distance approaches zero for grazing outgoing ray directions. Including Fdist

reduces the influence of the surface at the ray origin on the evaluation distance. This also implies that

the evaluation distance is undefined for rays that never approach a surface, and we need to make sure

our reparameterization continuously goes to zero before reaching this case.

that is very close to the ray origin. This is in particular the case for rays leaving a sur-

face at near grazing angles, causing unnecessary variance without improving gradient

estimation. We therefore multiply by a second term:

Fdist(8) = min


8∑
9=1

max
©­­«
��q (xC 9−1, c0)�� − ��q (xC 9 , c0)��

min
(
V,

��q (xC 9 , c0)��) , 0
ª®®¬
, 1


, (6.12)

where 9 iterates over sphere tracing steps and V = 0.05. While the formula appears

complicated, the intuition is simple: we only start considering sphere tracing locations

as a surface is approached. This present formulation ensures that this is done in a way

that remains continuous, since we want the �nal distance C to vary continuously as the

ray direction changes. Moreover, the distance term in the denominator ensures that the

weight is guaranteed to reach 1 as the surface is reached. There is little extra cost in

adding this weighting term, as it just re-uses evaluations of the SDF that are already

computed during sphere tracing. The e�ect of this weighting term is illustrated on a 2D

example in Figure 6.5.

Lastly, we need to ensure continuity of the evaluation distance even as the number

# of sphere tracing steps changes. Such a change can either be caused by the algorithm

traversing beyond the bounding box, or by a di�erent number of iterations being needed

to converge to the surface intersection. The �rst case is handled by the bounding box

weight term, which attenuates the in�uence of positions as the bounding box of the SDF

is approached:

Fbbox(8) = min
(
dist(xC8 , bbox)/0.01, 1

)
. (6.13)
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To deal with the second case, we additionally multiply each weight by the mean of the

previous and current sphere tracing step length. This works because the iteration count

increases or decreases due to samples either being right below or newly above the dis-

tance threshold used to terminate a ray intersection. In these cases, the distance be-

tween subsequent samples will approach zero. Conceptually, this weighting scheme can

be interpreted as replacing the summation in Equation 6.9 by integration and applying

a trapezoidal quadrature to both integrals:

C =
1∫

F (C) dC

∫
F (C)C dC . (6.14)

A key insight here is that we do not need these integrals to be evaluated in an unbiased

way. We just need the resulting function C (8, c0) to satisfy the necessary conditions and

the resulting gradient estimator will be unbiased.

While our algorithm here is designed to work with SDFs, the high-level idea could

potentially also be applied to more general implicit functions, where, instead of sphere

tracing, ray marching and bisection are used to compute ray intersections. Such a gener-

alization would still require the implicit function to be continuous and exhibit su�cient

global structure to enable a suitable evaluation distance computation (e.g., an indicator

function would not work).

Weighted reparameterization We can further reduce the variance of the gradient

estimator by attenuating the e�ect of the reparameterization for directions that are fur-

ther away from an actual discontinuity. In general, we can multiply our 3D vector �eld

with any continuous weighting functionFV (x, c0), as long as its value approaches 1 as

it approaches a discontinuity (with respect to the ray direction 8). We write a weighted

version of our vector �eld as:

V̄ (x, c) = FV (x, c0)V(x, c) . (6.15)

The weighting function itself depends on the detached scene parameter, which ensures

that the scene parameter gradient remains unchanged. This approach could even be gen-

eralized to a weighted sum of vector �elds, similar to multiple importance sampling [60].

The weights would only need to sum to 1 on an actual discontinuity. A similar idea has

been used by Zeltner et al. [68] to handle discontinuities that occur when computing

BSDF derivatives through the BSDF sampling routine. We use the following weighting

function to attenuate the vector �eldV(x, c):

FV (x, c0) = max

(
0, 1 −

q (xC , c0)

C · Y (x)

)
(6.16)
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where Y (x) is the minimum of 0.01 and the distance of x to the SDF’s bounding box.

This weighting e�ectively restricts the reparameterization to only have an impact as x

is approaching a surface and therefore possibly a discontinuity. Additionally, by consid-

ering the bounding box it ensures that our reparameterization continuously drops o� to

zero as the evaluation location approaches the border of the SDF volume. Finally, we

also multiply this weight by the sum of sphere tracing weights (clamped to at most 1) to

handle the degenerate case of the evaluation location being unde�ned.

Area element On top of evaluating the reparameterization T itself, we need to evalu-

ate the area element as de�ned in Equation 4.39. To do so, we �rst compute the Jacobian

matrix m8T analytically. We then simply evaluate the trace of this Jacobian to account

for the area change, as it is equivalent to the cross product formulation under di�er-

entiation (see Appendix A). The trace requires slightly less computation than explicitly

computing the cross product of the transformed tangent vectors.

Since our reparameterization depends on the distance C (8, c0), we need to evaluate

the derivative m8C (8, c0) ∈ R3 to compute the Jacobian. We analytically compute this

term during sphere tracing, and return it alongside the distance C and, if applicable, the

intersection distance. None of these terms require tracking a di�erentiable dependency

on c through the sphere tracing loop, hence there is no need to build an AD graph over

it, which would be an expensive operation. The complete derivation of the Jacobian is

laborious and done in Appendix C.3.

Variance reduction Reparameterizing the integral can cause undesirable gradient

variance in regions of the image without discontinuities. Based on the observation that

the majority of that noise is caused by the di�erentiable evaluation of the pixel �lter,

prior work suggested using antithetic sampling and control variates [69, 154]. We �nd

that steps like antithetic sampling and control variates add a signi�cant amount of im-

plementation complexity, and that a similar variance reduction can be achieved by easier

means. Renderers usually divide the accumulated radiance in each pixel by the sum of

accumulated pixel �lter weights to reduce variance [4, Section 13.9]. Interestingly, we

found that by tracking derivatives through this normalization step, most of the noise

caused by the di�erentiable pixel �lter evaluation can be eliminated.

Nested reparameterization When building a di�erentiable rendering algorithm, we

have to correctly handle the subtleties due to nested application of our reparameteri-

zation. Related to that, the surface point that results from a ray intersection might be
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Scene (a) Detached x (b) Decoupled

reparam.

(c) Correct nesting (d) Reference (FD)

Figure 6.6: This figure shows the subtleties of nesting reparameterizations. We render the same object

from two di�erent viewpoints and compute gradients with respect to a translation. If we fully detach the

origin x of the shadow ray (a) the result is wrong. If we do not track the e�ect of the reparameterization

of the primary rays, we also get wrong results (b). Only if we carefully account for these e�ects we get

output (c) that matches the reference (d).

parameter dependent due to the motion of the surface itself, as explained in Section 6.1.2.

Both these factors will have the consequence that the ray origin x, and hence xC , can dif-

ferentiably depend on the SDF parameter c . This is relevant for example when applying

our reparameterization to a shadow ray. In the derivations so far, we have not consid-

ered this potential dependency. Completely ignoring the parameter dependence of xC

when handling the shadow ray will produce wrong results. If we ignore the dependency

on the reparameterization of the primary ray when reparameterizing the shadow ray,

the gradient is also not correct. Only if we track the dependency on the primary ray’s

reparameterization all the way through the secondary reparameterization, we get cor-

rect gradients, as shown in Figure 6.6. More precisely, we need to make sure to evaluate

q (xC , c) in Equation 6.4 using the parameter-dependent xC (c) = x(c) + C8. All other

terms of the reparameterization can remain detached as before. This then ensures that

our vector �eld produces the right relative motion between occluder and ray origin. A

more detailed discussion and derivation is provided in Appendix C.4.
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Scene Convolution
2 samples

Convolution
4 samples

Convolution
8 samples

Convolution
16 samples

Convolution
32 samples

Ours Reference (FD)

Figure 6.7: We compare the gradients obtained using our method to the ground truth and an SDF version

of the convolution method by Bangaru et al. [69]. The gradient images are computed by using forward-

mode di�erentiation with respect to a translation of the entire object. For the convolution method, we

show the results using varying numbers of auxiliary rays estimating the convolution integral. Increasing

the number of rays improves the accuracy of the gradient estimate, at the cost of increased computation

time. All gradient images are rendered using 1024 samples per pixel. The Shadowing and Logo scene are

using direct illumination, and the Bunny scene is rendered with one bounce of indirect illumination.

Sh
ad
in
g
gr
ad
.

O
u
rs

C
on
v.
(k
=2
)

C
on
v.
(k
=4
)

C
on
v.
(k
=8
)

C
on
v.
(k
=1
6)

C
on
v.
(k
=3
2)

0

1

2

3

4

T
im

e
(s
)

0.303
0.569 0.633

0.858

1.356

2.324

4.256

(a) Rendering time

Adjoint rendering

Primal rendering

16
3

32
3

64
3

128
3

256
3

512
3

10
−2

10
−1

10
0

T
im

e
(s
)

0.004

0.008

0.017

0.037

0.198

1.434

(b) Redistancing time over grid resolutions

Figure 6.8: We measure the rendering time (a) and the SDF redistancing time (b). The rendering time

plot reports both the time to render the primal image and the time required to compute SDF gradients

in reverse-mode. The first column, Shading grad., only computes shading gradients and ignores discon-

tinuities. For the convolution method, : denotes the number of convolution samples. For all techniques

we render 2562 pixels at 256 primal and 64 adjoint SPP.
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6.2 Shape optimization

The reparameterization introduced in the previous section enables computing accurate

gradients for renderings of signed distance functions. An important use of such gradients

is 3D shape reconstruction given a set of observed views. In this section, we will describe

the overall pipeline and settings we use to produce the optimization examples in this

chapter. Our goal is to reconstruct a shape by solving

0
∗
= argmin

0

#∑
8=1

ℓ
(
� 8 (0), � 8A4 5

)
, (6.17)

where # is the number of views and 0 contains both the SDF parameters, as well as

any optimized parameters used in its BSDF. The loss function ℓ measures the di�erences

between images. In the following, wewill describe the speci�c parameters and heuristics

that we use to make this optimization practical.

Loss function We use an !1 loss on linear RGB pixel values for all optimizations.

We evaluate it both at the original image resolution, as well as on a 3-level pyramid of

downsampled reference and rendered images. This helps to increase the spatial support

of the loss function. If we were to only evaluate the !1 loss at the original resolution, the

optimization might more easily get stuck in a local minimum representing a low-quality

solution.

Optimizing SDFs During optimization, the di�erentiable renderer backpropagates

gradients to the SDF grid values. Even after a single iteration of gradient descent, the

values stored in the grid might not represent a valid SDF anymore [273]. In particular,

the SDF will violate the eikonal constraint and in general ∥mxq (x, 0)∥ ≠ 1. A common

approach to reduce the deviation from a true SDF is adding an eikonal regularization

term to the optimization, that penalizes deviations of the gradient norm from 1 [274].

This is particularly useful when the SDF is not stored explicitly, but rather is the output

of a neural network. The disadvantage of this regularization approach is that it does not

yield an exact SDF and introduces another hyperparameter in the form of a regulariza-

tion weight. Since we are directly storing the SDF values on a grid, we found it more

convenient to explicitly redistance the SDF after every iteration of the optimization. The

high-level idea is to reconstruct the distance function values bymarching outwards from

the current zero-level set [275, 276, 277]. In practice, we use a CUDA implementation of

the parallel fast sweeping method [278, 279] and redistance the SDF after every iteration
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Figure 6.9: Results using our method on a few challenging example objects. All these examples use 512

gradient descent iterations (using batches of 6 views). For the Dragon scene, the BSDF parameters are

assumed to be fully known. For the other scenes we optimize albedo textures, and for Chair and Boar

additionally surface roughness.

of the optimization. To further improve performance, it could be interesting to use a

sparse SDF representation in conjunction with a sparse version of fast sweeping [280].

Another approach would be to use velocity extension [281], which infers SDF-compatible

grid value updates from the speed of the surface itself. We experimented with simple

versions of such an idea, but in the end found the redistancing to work well enough. Al-

ternatively, one could investigate updating the SDF using the adjoint state method, sim-

ilar to work on art-directable �uid simulations [138] and travel-time tomography [282].

Regularization On top of the image-based loss, we found it bene�cial to slightly reg-

ularize the SDF using a Laplacian regularization. While the optimization itself is robust,

a small amount of regularization can reduce the noise on unobserved regions or due to

variance in the gradients and the rendered images. This primarily improves the sur-

face appearance when re-rendering under new illumination conditions. We use a simple

discrete Laplacian kernel, which penalizes di�erences between a voxel and its directly

adjacent neighbors. We use a regularization weight of 10−5, which is small enough to
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4 samples

Convolution
8 samples

Convolution
16 samples

Ours

Figure 6.10: We compare the reconstruction results using our reparameterization and the convolution

method [69] at equal iteration count. Increasing the number of samples to estimate the convolution

integral improves the quality of results, but at the cost of drastically increasing the total time for the

optimization. Our method both results in the most accurate reconstruction and the shortest runtime.

not oversmooth the surface.

Multiscale optimization It is further advantageous to initially optimize the SDF at

a lower resolution than the target resolution. We start optimizing at a resolution of 163

voxels and then double the resolution several times during the optimization until the

desired target resolution is reached.

Texture optimization We also optionally optimize albedo and roughness parameters,

stored on trilinearly interpolated grids. Optimization of these quantities is straightfor-

ward and only requires clamping to valid parameter ranges. When optimizing rough-

ness, we use the Disney BSDF [85], but turn o� all lobes except for di�use and specular

lobe.

6.3 Results

Implementation. In the following, we evaluate the correctness, performance and op-

timization results using our method. Our implementation is based on Mitsuba 3 [50]

and benchmarks have been conducted on a NVIDIA TITAN RTX graphics card. We use

reverse-mode AD to propagate derivatives to the SDF parameters. We implemented the
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majority of our pipeline using Mitsuba 3’s Python API. Interpreting our reparameteriza-

tion as a di�erentiable ray tracing operation, we absorb its logic into the ray intersection

function, which can then be used as follows inside an integrator:

si, ray.d, area_element = ray_intersect(ray)

# Evaluate terms in the integrand using the now reparameterized "ray.d"

throughput *= bsdf.eval(si, si.to_local(ray.d))

# ... and multiply by area elementsb

throughput *= area_element

The ray intersection routine returns a surface interaction record, the reparameter-

ized ray direction and the area element. This abstraction allows to cleanly implement

di�erent integrators leveraging the same reparameterization logic.

We use the same hyperparameters for all our results and did not �nd our method

to be particularly sensitive to the various parameters used to de�ne the weights in Sec-

tion 6.1. Unless stated otherwise, our optimizations use a direct illumination integrator

with emitter sampling. All optimizations use the Adam optimizer [111] with a learn-

ing rate that is proportional to the current grid resolution. We optimize SDFs up to a

resolution of 2563 voxels by di�erentiably rendering 5122 pixel images. Initial optimiza-

tion iterations use both a lower resolution SDF and lower rendered image resolutions

to improve performance. Similar to previous work, we decorrelate the estimation of the

primal image and the gradients [148]. For our optimizations, we use 256 primal and 64

adjoint samples per pixel. These sample counts are chosen conservatively to reduce the

impact of Monte Carlo noise on the optimization results. For the highest performance

optimization, adaptively sampling both temporal and spatial dimensions could be e�ec-

tive at reducing the overall optimization time.

Gradient validation. We validate the gradients computed using our reparameteriza-

tion in Figure 6.7. We use forward-mode di�erentiation to obtain gradients of the pixel

values with respect to a translation of the SDF. The reference gradients are obtained

using �nite di�erences (with ℎ = 10−3). For the scene using indirect illumination, we

use a reparameterized version of path replay backpropagation [45], following the work

by Zeltner et al. [68]. We also implemented an SDF version of the convolution method

by Bangaru et al. [69]. This is the only prior algorithm that can be used to di�erentiate

physically-based renderings of implicit shapes without explicit meshing. We use their

convolution kernel and apply it to our 3D vector �eld de�ned in Equation 6.4. We set

the concentration parameter ^ of the spherical von Mises-Fisher distribution to 105 for

all our experiments. This worked better than the default of 104 suggested in the original

paper. Higher values (e.g., ^ = 106) then again seemed to reduce the quality, in particular
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Figure 6.11: The robustness of the shape reconstruction depends on the number of input views. Top row:

we show an optimization result using a varying number of reference views for both our method and the

convolution method. Bo�om row: we average renderings of optimized shapes for 8 di�erent sets of

reference viewpoints. We set up evenly spaced virtual cameras around the object and then rotated them

around the vertical axis of the object by varying amounts. The haze around the object in the averaged

image is caused by variance in the reconstructed geometry.
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Figure 6.12: We compare single view reconstructions both without using any secondary gradients (mid-

dle column) and using secondary gradients (right column). Accounting for indirect e�ects improves the

reconstruction quality when the number of observations is limited.
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of shadow gradients. In Figure 6.7, we estimate the convolution integral using varying

numbers of auxiliary rays. We can see that using 4 rays already provides some edge gra-

dients, but we oftentimes need up to 16 to get a more accurate estimate with the correct

sign. This appears to be consistent with the observations made for triangle meshes in

the original paper. Our method on the other hand produces gradients that closely match

the �nite di�erence reference.

Benchmarks. We benchmark the di�erent gradient computation algorithms in Fig-

ure 6.8. We show both the time required to render the primal image and the time used

to estimate gradients. We use our direct illumination integrator for these benchmarks.

Compared to only considering shading gradients, our method is around 1.9× slower,

since it evaluates additional terms during sphere tracing and also needs to compute the

area element. It is faster than the convolution method, in particular as the number of

auxiliary rays increases. The primal rendering time remains constant across all methods,

since we are careful to only reparameterize when computing gradients. We also bench-

mark the SDF redistancing implementation to show the potential overhead caused by

the redistancing. We only need to redistance once per iteration, but each iteration of

gradient descent might require rendering multiple images. As the SDF resolution in-

creases, we also need to increase the resolution of the rendered images to e�ectively use

the additional surface resolution. Overall, we found the overhead due to redistancing

negligible compared to the di�erentiable rendering itself.

Optimization results. In Figure 6.9 we show di�erent reconstructions obtained using

our reparameterization and shape optimization scheme. We always initialize our SDF to

a sphere of a constant color. For all scenes, we re-render the optimization result from a

novel view using a new illumination condition that was not part of the optimization. Our

method can reconstruct these various objects without the use of a silhouette constraint.

One common issue in shape optimizations are pieces of geometry that are detached

from the main shape and are not removed by the optimization. We did not observe such

issues with our method. The combination of multiscale optimization and noise in the

optimization process even allows to overcome some of the local minima inherent in this

setting. For example, this allows to correctly reconstruct the complex topology of the

Chair scene. However, a purely surface-based optimization routine can also get stuck

in local minima, where the loss will not provide any useful gradients to improve further.

In the combination with optimizing albedo textures this can cause some holes of shapes

to be erroneously �lled in, e.g., between the legs of the Boar statue. This non-convexity
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is a known di�culty of the optimization problem and addressing it is beyond the scope

of this chapter.

Comparison to the convolution method. While we have already seen that our

reparameterization producesmore accurate gradients than the SDF version of themethod

by Bangaru et al. [69], we can also validate that this actually yields better optimization

results. In Figure 6.10we show optimizations both using our and the convolutionmethod

using varying numbers of auxiliary rays. Overall, we can see that using a low number

of auxiliary rays often results in artifacts in the reconstructed geometry. The inaccurate

edge gradients in particular seem to cause problems in scenes with sharp edges, as illus-

trated in the Cubes scene. As the number of auxiliary rays increases, the convolution

method manages to produce better results, at the cost of an increase in overall runtime.

Similar issues would likely occur if one were to apply the convolution method to a �nely

tesselated triangle mesh obtained, e.g., using MeshSDF [213].

Influcence of the number of viewpoints. The quality of the optimization results

depends on the number of reference images of the given scene. Studying the behavior

of this e�ect can provide additional insight in the stability of gradient estimation and

optimization methods. In Figure 6.11, we compare reconstructions obtained both using

our method and the convolution method using 4 auxiliary rays. We show both results

as the number of views increases and also show images blending results of 8 separate

runs over di�erent con�gurations to illustrate the stability of the optimization. These

results further con�rm that our method is more robust at a lower number of reference

views than the convolution method. Increasing the number of auxiliary rays would

again increase its runtime. At a higher number of viewpoints the optimization is more

constrained and the results become more similar.

Benefits of di�entiating secondary e�ects. One key advantage of our method is

that it can di�erentiate secondary e�ects such as shadows and indirect illumination.

Figure 6.12 showcases two example optimizations where accounting for those gradients

improves the reconstructed geometry. Both examples use only a single reference view

and in both cases di�erentiating secondary e�ects helps to reduce ambiguities by lever-

aging additional shape cues in the form of shadows and re�ections. In the �rst exam-

ple, the optimization that ignores secondary gradients converges to an undesirable local

minimum, where part of the shadow on the background plane ends up being approx-

imated by many small disconnected components. In the second example, we optimize
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Figure 6.13: This figure shows the image gradients computed using 4 samples per pixels both using our

method and the convolution method [69], the la�er using 16 samples to estimate the inner convolution

integral. We can reduce the noise of the gradients by using a di�erentiable pixel filter weight normaliza-

tion or using antithetic sampling.

accounting for indirect illumination, which allows to use the shape’s mirror re�ection

as an additional constraint.

Gradient variance. In Figure 6.13, we visualize forward-mode gradients computed

using a low number of samples per pixel. We compare a naïve implementation to one

that uses antithetic sampling of the pixel �lter, and one that simply keeps the pixel �l-

ter normalization weights attached to the di�erentiation, as discussed in Section 6.1.3.

We can see that the di�erentiable normalization weights reduce the variance both for

ours and prior work, and seem to perform slightly better than antithetic sampling. We

therefore use the di�erentiable weight normalization for all implemented methods.

Comparison to using only the shading gradient. While from a theoretical point of

view it is clear that we need to account for visibility discontinuities, it is worth validating

that not doing so does not work. In Figure 6.14 we run a simple optimization both using

our method and an implementation that does not reparameterize discontinuities. While

at �rst glance the gradient images look quite similar, the missing edge gradients make

the optimization diverge completely.
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Figure 6.14: Top row: Ignoring discontinuities misses important gradient contributions due to occlusion

e�ects. Bo�om row: Using such strongly biased gradients in an optimization is very likely to completely

diverge.

Non-convexity of surface-based reconstruction. Directly optimizing surfaces rep-

resented as SDFs can work surprisingly well in many cases. However, the surface recon-

struction problem itself can exhibit undesirable local minima, in particular in the pres-

ence of complex topology (i.e., objects with holes). This sometimes causes undesirable

connections between object parts that should remain disjoint. The gradient information

is then not always su�cient to infer that an opening must be created. Figure 6.15 shows

such an example, where gradient descent is unable to correctly reconstruct the topology

of a complex object.

6.4 Summary and future work

We presented a novel approach to the problem of di�erentiable rendering of signed dis-

tance functions. Our method e�ciently computes accurate gradients for image-based

optimization of SDFs. We exploit the computational structure of sphere tracing, conve-

nient properties of the SDF representation, and the �exibility admitted by the reparam-

eterization framework.

Our reparameterization handles the discontinuities caused by SDFs, but supporting
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Reference Ours Reference Ours

Figure 6.15: The presence of complex topology and spatially varying albedo textures can result in chal-

lenging, non-convex optimization problems with many undesirable local minima. In this example, we

optimized SDF and albedo texture at a resolution of 2563 using 40 input images. The result is rendered

using the same environment map that is used during optimization.

e�cient combination with other shape representations remains future work (e.g., a tri-

angle mesh occluding an SDF). It would be interesting to combine our method with a

sparse data structure storing the SDF values to allow scaling the SDF resolution more

adaptively.

While our method works well with minimal regularization, investigating more ad-

vanced regularization methods could be worthwhile to further improve results. One

could for example apply Sobolev preconditioned gradient descent, which has been used

successfully for SDF reconstruction [283] and di�erentiable mesh rendering [284]. Such

preconditioning is e�ective at reducing variance due to sparse gradients, which might

remove the need for coarse-to-�ne optimization. However, for SDFs the expected overall

improvements are smaller than for triangle meshes, which often degenerate when using

naïve gradient descent.

For practical shape reconstruction, the main limitation is the inherent non-convexity

of direct surface optimization. This could be remedied by either using a more sophisti-

cated method to initialize the SDF, or by using some form of semi-transparency. More

concretely, one could try to extend VolSDF [233] with a physically-based illumination

model by exploring connections of volume and surface rendering [285]. Related to this,

the next chapter investigates how the volumetric transmittance model can be modi�ed

to better approximate surfaces.

Lastly, it would be interesting to apply a similar reparameterization approach to tri-

angle meshes. Instead of using a convolution, one could construct a reparameterization

during the traversal of the ray acceleration data structure. This could reduce both vari-

ance and bias compared to existing gradient estimators.
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Figure 7.1: Le�: Consider the fraction of unoccluded rays in two flatland scenarios involving uncorrelated

particles (top) and an opaque surface (bo�om). The former leads to the standard exponential decay, while

the surface case exhibits an unusual linear decay profile. Right: We perform a similar experiment in a

more complex scene by tracing rays within thick beams (middle) and tracking their free-flight distance.

The distributions resulting from the three beams are plo�ed on the right. Hard surfaces induce linear

transmi�ance (purple), while unstructured geometry like foliage resembles an uncorrelated medium that

yields exponential transmi�ance (red). A beam that first traverses the trees and then a hard surface

(green) encounters both linear and exponential transmi�ance. We also show a parametric fit (do�ed

plots) using either an exponential or linear model, or piecewise combination of the two in case of the

mixed example.

The choice of scene representation is a key design decision for inverse rendering. As

shown in the previous chapter, di�erentiable rendering of implicit surfaces can work

well for certain objects, but struggles with �ne structures and aggregate geometry (e.g.,

vegetation). In these cases, optimizing surface geometry becomes highly non-convex.

One approach to this problem is to forego surface optimization and optimize a volu-

metric representation. As we will see in this chapter, this comes with a di�erent set of

challenges.

The scene reconstruction problem is closely related to the level of detail problem,

which was the initial motivation for the work presented in this chapter. Accurate repre-

sentation of digital scenes requires signi�cant detail in both geometry and textures and

can easily exceed the allotted storage or rendering budget. Depending on the chosen

view point, the level of detail of the scene may be grossly inappropriate, with an entire
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forest or city block visible in a small image region. Level of detail (LoD) techniques are

therefore essential [286] and widely used to represent complex photorealistic scenes in

production environments [287]. This is especially important for mobile and wearable

augmented and virtual reality (AR/VR) devices, where resource limits place stringent

requirements on rendering e�ciency [288].

Level of detail techniques are oftentimes based on locally simplifying scene geom-

etry. This can for example be done by iteratively collapsing edges [289] until a certain

target triangle density is reached. However, such an approach cannot e�ciently �lter

the appearance of �ne structures, such as tree leaves, where accurate modeling of par-

tial visibility is required. Ultimately, at farther distances, any geometric structure only

achieves partial coverage at the sub-pixel level and can be more e�ciently approximated

using a volumetric representation [290].

Similarly, volumetric representations are advantageous for image-based scene recon-

struction, where they can better handle "fuzzy" or sub-pixel detail than a surface-based

representation. Volume parameters can be reconstructed from input photographs using

a di�erentiable renderer and can be represented using a simple uniform grid or a neu-

ral network. The volumetric scene representation is smooth and, in contrast to surface

rendering, does not require any special treatment of visibility discontinuities.

One challenge is that the theory of radiative transfer is designed to model absorp-

tion and scattering of a medium consisting of identically distributed and uncorrelated

microscopic particles, but not opaque surfaces. The assumption of uncorrelated particles

results in an exponential transmittance function. This model is well suited for unstruc-

tured content such as the leaves of a tree, but breaks down for structured and opaque

geometry where the assumption of uncorrelated particles is violated. A distinguishing

property of surfaces is their ability to be fully opaque, i.e., impenetrable to light, which is

not possible with classic exponential volumetric light transport theory. When an opaque

object is modeled as an exponential volume, a low density leads to a signi�cant portion

of light leaking through the surface. Increasing the volume density to compensate leads

to bloated silhouettes and an overly opaque appearance of semitransparent parts of the

model. Volumetric modeling of scenes containing both opaque and semitransparent el-

ements remains a fundamental challenge in current volumetric modeling approaches.

We build on the observation that approximating the transmittance behavior of an

arbitrary scene requires a non-exponential transmittance model, as demonstrated in Fig-

ure 7.1. We use the recent advances in non-exponential light transport theory [291, 292]

to improve the volumetric representation of 3D scenes. Our novel transmittance model
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captures the wide spectrum of transport behaviors induced by geometric con�gurations

ranging from completely opaque surfaces to unstructured geometric aggregates. This

allows representing the whole scene in a single uni�ed volumetric light transport frame-

work. We demonstrate this e�ciency by achieving state-of-the-art results in applications

such as appearance pre�ltering (Figure 7.2). By using a uni�ed volumetric framework to

model the entirety of the scattering in a scene, we can avoid the problem of separating

the scene into partitions modeled using volumetric or surface scattering. A purely vol-

umetric representation also simpli�es the implementation of both forward and inverse

rendering algorithms.

Our non-exponential transmittance formulation can be useful for various tasks that

require e�cient volumetric representation of an opaque scene. In addition to appearance

pre�ltering, we also show improvements for scene reconstruction using di�erentiable

rendering. In summary, our core contributions are:

• A uni�ed volumetric representation that handles both opaque surfaces as well as

aggregate geometries within a volumetric light transport framework.

• A new practical parametric model for heterogeneous non-exponential transmit-

tance to account for correlations in a continuum from opaque to aggregate geo-

metric con�gurations.

• A new scene appearance pre�ltering method based on our uni�ed volumetric rep-

resentation and a robust scene-scale parameter optimization routine.

• E�cient image-based volumetric reconstruction of complex scenes using di�er-

entiable rendering. We also show some experiments using neural radiance �elds

(NeRFs) [223].

In the remainder of the chapter, we will �rst introduce the necessary background

on appearance pre�ltering and non-exponential media. We then proceed to introduce

our new volumetric representation and transmittance model. We then demonstrate and

discuss the application of our model to appearance pre�ltering and image-based recon-

struction.
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Figure 7.2: Prefiltered rendering of a complex scene (13.8 million triangles) at di�erent resolutions. In each

rendering, the original scene is represented as a volume with a voxel grid resolution corresponding to the

image resolution. Our method reproduces the appearance of the ground truth reference, while the state-

of-the-art Hybrid LoD [290] method has di�iculties modeling the scene’s transmi�ance function leading

to less accurate results. The original scene consists of 750MB of geometry data and 350MB of textures.

Our volumetric representation compresses this down to 4.9MB (220x compression) for a resolution of

1283, and even further at lower resolutions. All results are rendered using global illumination.
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7.1 Background

7.1.1 Appearance prefiltering

Automatically reducing the complexity of rendered objects or entire scenes is a long-

standing problem in rendering. A range of methods have been proposed to handle dif-

ferent aspects of the problem. For example, LEAN mapping [293] pre�lters the appear-

ance of normal mapped specular surfaces by converting high-frequency surface normal

variation to the roughness of a microfacet BSDF. Specialized methods have also been

proposed for displacement maps [294, 295], cloth [216], fur [296], heterogeneous scat-

tering volumes [93] and granular media [297, 298, 299]. These methods either use statis-

tical properties to obtain a closed-form solution for LoD parameters, or run a localized

parameter optimization to minimize the di�erence in appearance between the low and

high-resolution versions of an asset. Concurrent work by Hasselgren et al. [300] uses a

di�erentiable rasterizer to optimize the appearance of level of detail meshes.

Reducing the complexity of entire scenes by converting opaque surfaces into a vol-

umetric representation has been a central problem [301]. A common idea is to convert

the scene into a hierarchical volumetric representation, e.g., implemented using a sparse

octree. In its hierarchical form, this allows to e�ciently bound the per-pixel rendering

complexity by choosing the pre�ltered scale proportionally to the pixel’s footprint. The

rendering of a volumetric representation can be accelerated by using sparse data struc-

tures [302] and empty space skipping [303, 304]. Some of these techniques also �nd

application in volume rendering for scienti�c visualization [305].

The main challenge with representing surfaces as volumes is in preserving their

opaqueness as well as thin structures. This makes volumetric representations su�er

either from bloated appearance (density is too high) or light leaking (density is too low),

often leading to both at di�erent viewing directions. In order to reduce this bloating

and light leaking, Heitz and Neyret [306] used a per-voxel, implicit plane to compute a

view-dependent coverage mask.

The state-of-the-art method for general, appearance-preserving LoD is the hybrid

approach proposed by Loubet and Neyret [290]. It performs a heterogeneous simpli�ca-

tion of a scene by labeling parts of a surface mesh to use either a geometric or a voxelized

volumetric representation at every rendering scale. While theirmethod can achieve good

results for both opaque geometry and aggregate geometry, this binary classi�cation is

an ill-posed problem, as there is a smooth transient phase between surface-like and volu-

metric appearance. Moreover, their binary classi�cation algorithm is based on a heuristic
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considering local mesh topology, and can misclassify complex, unstructured geometry,

resulting in opaque surfaces appearing semitransparent, as shown in Figure 7.2.

7.1.2 Non-exponential media

Our work focuses on representing arbitrary scenes in the volumetric rendering frame-

work by introducing a new transmittance model. The transmittance function T(x, y) of

a participating medium describes the fractional visibility between two points x and y.

In the most general case, the transmittance function maps two 3D points to a scalar. By

de�nition, it is non-increasing, attaining values in the interval [0, 1], and reciprocal, i.e.,

T(x, y) = T(y, x). If the medium is made up of uncorrelated particles, the transmittance

follows the Beer-Lambert law and can be expressed as:

T(x, y) = exp

(
−

∫ ∥x−y∥

0

fC (xC ) dC

)
, (7.1)

where xC is the position at a distance C on the segment between x and y.

On the other hand, in a scene consisting of opaque surfaces, the transmittance is

simply the binary visibility between points. Our goal is to model a pre�ltered version

of this function, where the pre�ltering kernel size is determined by the resolution of the

voxel grid storing the volume parameters. Conceptually, this pre�ltered transmittance

function is the result of the convolution of the original function with a kernel K:

Tpre�ltered(x, y) =

∫
R3

∫
R3

K(s, t)T(x + s, y + t) ds dt. (7.2)

This pre�ltered transmittance function does not have to be exponential. When repre-

senting a complex 3D scene as a volume, transmittance generally takes one of two main

modes, as shown in Figure 7.1: classic exponential mode (e.g., with unstructured geom-

etry, like leaves), as well as linear mode (e.g., when hitting a planar opaque surface). In

di�erent parts of the scene, the transmittance may vary continuously between these two

extremes.

Non-exponential transmittance functions have recently been introduced to computer

graphics [291, 292] to handle more general cases of participating media, such as crys-

tal structures, fabric, or water droplets formed in clouds, where microparticles exhibit

some form of correlation. Bitterli et al. [292] proposed a reciprocal path integral formu-

lation for non-exponential media with correlated particles. Concurrent work by Jarabo

et al. [291] extends the non-exponential generalized Boltzmann equation (GBE) with

support for boundary surfaces to be compatible with rendering algorithms. D’Eon [307]
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introduced a weakly reciprocal non-exponential rendering formulation and investigated

di�usion approximations [308] and binary mixtures of scatterers [309]. Several previous

works [291, 292, 310, 311] have introduced parametric families of non-exponential trans-

mittance functions. These parametric models mostly cover the space of transmittance

functions which fall o� less quickly than the exponential function (e.g., due to clump-

ing of medium particles). However, our method needs to cover the spectrum between

linear and exponential transmittance, which is not supported by these models. Jarabo

et al. [291] discuss how particles aligned in certain grid structures give rise to a linear

transmittance function and show example renderings using homogeneous media.

Non-exponential volume rendering equation. To render images with volumetric

light scattering, the transmittance function is inserted into the volume rendering equa-

tion. In the following, we only consider non-emissive volumes. As discussed in Sec-

tion 3.4, the outgoing radiance is given by the volume rendering equation:

!> (x,8>) =

∫ B

0

fC (xC )T(x, xC ) U (xC )

∫
S2

5? (xC ,8> ,88)!8 (xC ,88) d88 dC

+T(x, xB)!> (xB,8>), (7.3)

where U (xC ) is the medium’s albedo. Volumetric path tracing then constructs light paths

by alternating between sampling the free-�ight distance and the scattered direction. In

an exponential medium, the free-�ight distance is sampled using the density to ? (C) =

fC (xC )T(x, xC ).

This equation assumes the transmittance function to be exponential. One key ob-

servation made in previous work [291, 292] is that simply replacing T by an arbitrary

function is not energy preserving. The solution to that issue lies in realizing that the

term fC (xC )T(x, xC ) inside the integral in Equation 7.3 is exactly the physical free-�ight

distance probability density function of the exponential medium. The transmittance is

de�ned as the probability of a photon traversing a region of space without collision

and the corresponding free-�ight distance PDF is its negative derivative. That T itself

is a factor in that term is simply due to it being an exponential function. Moving to

a non-exponential transmittance, this whole term has to be replaced by the associated

free-�ight distance PDF, as opposed to merely replacing the function T in the integral.

Denoting the free-�ight distance PDF by Tpdf , we then obtain a generalized volume ren-
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dering equation:

!> (x,8>) =

∫ B

0

Tpdf (x, xC ) U (xC )

∫
S2

5? (xC ,8> ,88)!8 (xC ,88) d88 dC

+ T(x, xI)!> (xB,8>), (7.4)

where Tpdf (x, xC ) = −mCT(x, xC ). This simple formulation of the non-exponential trans-

port has one caveat: If we want the light transport to be reciprocal, the transmittance

function and free-�ight distance distribution need to be di�erent if the path starts on

a surface or medium boundary [292, 307]. Our work is aimed at representing entire

scenes as a participating medium. We thus use this simpli�ed model and do not support

combining our representation with separate surfaces.

7.2 Heterogeneous non-exponential transmi�ance

7.2.1 Transmi�ance model

In this section, we present our novel heterogeneous non-exponential transmittance for-

mulation. We propose an integral formulation, where the transmittance behavior can

change from one region of the medium to another, speci�cally to model the transmit-

tance functions that occur in opaque 3D scenes. In previous work on non-exponential

media, the transmittance function is assumed to be parametric on the optical depth and

is �xed throughout the medium. The heterogeneity model proposed by Bitterli et al.

[292], similar to Camminady et al. [312], expresses the transmittance in a heterogeneous

medium as

T(x, y) = 5 (g) = 5

(∫ ∥x−y∥

0

fC (C) dC

)
, (7.5)

where 5 is the transmittance function, the extinction fC (C) ≔ fC (xC ) is evaluated at

distance C along the segment between x and y; and g is the optical depth.

This formulation has the advantage that it naturally �ts into a reciprocal rendering

framework and for some special cases even admits unbiased sampling of the free-�ight

distance. However, as a limitation, it does not support continuously varying the trans-

mittance behavior inside of a medium. This is necessary if we want to be able to cap-

ture di�erent transmittance modes present in a single scene. Note that subdividing the

scene into homogeneous regions with di�erent non-exponential transmittances would

not solve this problem, as this would be restricted to using a voxel grid representation
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with nearest-neighbor interpolation. Jarabo et al. [291] discuss handling heterogeneous

volumes in a such a way, but also acknowledge its limitations and do not provide a prac-

tical algorithm. Our goal is to allow for spatial variation in the transmittance function 5 .

For scene representation, we need to cover the spectrum between exponential and

linear transmittance. While the exponential behavior arises due to photons interacting

with uncorrelated medium particles, linear transmittance can be achieved by placing

particles in a regular grid or crystal-like structure [291, 313]. Such models could po-

tentially be useful to form a direct connection from the scene’s geometry to medium

parameters. However, it seems to be di�cult to smoothly transition from a linear to an

exponential transmittance using such theoretical scatterer distributions. Therefore, we

instead build a simple parametric model that can represent the desired appearance space

and �t its parameters using gradient descent. Since we need to capture the full spectrum

from linear to exponential transmittance, we base our model on a linear combination of

the two:

5 (g,W) = W exp(−g) + (1 − W)max(0, 1 − g/2), (7.6)

where W varies between 0 and 1. We will refer to this parameter as transmittance mode.

The division by two in the linear transmittance ensures that exponential and linear trans-

mittance have the same mean free path.

Given this transmittance function, we need to be able to vary W spatially. In the

following, we present a novel transmittance framework that enables this. The derivation

of the framework is independent of the concrete form of 5 . We construct our model such

that it satis�es the following requirements:

1. The formulation needs to be an extension of the traditional exponential transmit-

tance and previous heterogeneous non-exponential transmittance formulations.

2. The transmittance function needs to be non-increasing.

3. The transmittance function should be continuous for continuously varying pa-

rameters.

4. Evaluating the transmittance should have similar memory and computational re-

quirements as conventional heterogeneous media.

We do notmake any explicit assumptions about the particle correlation in themedium

and also do not enforce reciprocity. Our goal is to merely introduce the additional degree
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of freedom to spatially vary the transmittance behavior. To achieve this, we write the

transmittance as a recursive integral over transmittance function derivatives:

T(x, y)=1 +

∫ ∥x−y∥

0

5g
(
5 −1 (T(x, xC ), W (C)) , W (C)

)
fC (C) dC (7.7)

where 5g is the partial derivative of 5 with respect to the optical depth. This formulation

satis�es requirements (1) – (4), as we explain in the rest of this and the following section.

In particular, to show that requirement (1) holds and to justify our formulation, we �rst

consider a constant transmittance mode, i.e., 5 (g,W) = 5 (g). In that case, we can directly

derive our formulation from the previous model (Equation 7.5):

T(x, y) = 5

(∫ ∥x−y∥

0

fC (C) dC

)

= 1 +

∫ ∥x−y∥

0

m

mC

[
5

(∫ C

0

fC (B) dB

)]
dC

= 1 +

∫ ∥x−y∥

0

5g

(∫ C

0

fC (B) dB

)
fC (C) dC

= 1 +

∫ ∥x−y∥

0

5g
(
5 −1 (T(x, xC ))

)
fC (C) dC .

The �rst step uses the fundamental theorem of calculus, the second step applies the chain

rule, and in the third step we substitute the optical depth integral using the original

transmittance de�nition, i.e.,

∫ C

0
fC (B) dB = 5

−1(T(x, xC )). Georgiev et al. [314] used a

similar integral formulation to derive new transmittance estimators for exponential light

transport. They derived their formulation directly from the RTE, whereas we leveraged

the fundamental theorem of calculus.

The requirements (2) and (3) are satis�ed by de�nition and we show how to evalu-

ate the model e�ciently in the next section. While satisfying these requirements, our

model’s simple form has the downside that it does not explicitly track correlation across

voxels. Just modifying the transmittance behavior per voxel is still an approximation of

the ground truth transmittance function. The only "state" that we carry along a ray is

the transmittance up to the current location. As a consequence of this approximation,

our model ends up being non-reciprocal. A reciprocal model most likely would need to

track some form of correlation between encountered voxels to more faithfully represent

the true transmittance function. Combining reciprocity and heterogeneous transmit-

tance behavior remains an important avenue for future work. Since we use our model

in conjunction with unidirectional path tracing, we did not �nd non-reciprocity to be a

noticeable issue in any of our experiments. We provide an evaluation of the impact of

non-reciprocity when discussing results (Section 7.6).
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7.2.2 Evaluation and sampling

To use this model for rendering, we need to evaluate and sample the transmittance func-

tion. We use ray marching to estimate transmittance and sample free-�ight distances.

Ray marching approximates the transmittance integral using a quadrature based on a

set of evenly spaced locations along the ray. We found that naïvely approximating the

integral from Equation 7.7 using quadrature does not work well. Our model was derived

from the original transmittance formulation using the fundamental theorem of calculus.

If we want this relation to hold when performing quadrature, we cannot simply evalu-

ate the integrand as is. We need to use a discrete approximation of the derivative terms

which are part of the integrand. Otherwise, the error of the quadrature can be almost

arbitrarily high.

We, therefore, replace the analytic transmittance derivative by a �nite di�erence ap-

proximation, where we use a step size proportional to the medium extinction and the

ray marching step size. We provide an expanded explanation and derivation in Ap-

pendix D.1. The ray marching algorithm then simpli�es to evaluating the following

recursive expression:

T(x, y) ≈ 5
(
5 −1 (T#−1, W (C8)) + fC (C8)Δstep, W (C8)

)
, (7.8)

where # is the number of steps in the ray marching routine, C8 the distance in the cur-

rent step, Δstep the step size and T8 refers to the transmittance from iteration 8 in the

evaluation (with T0 = 1). We provide pseudocode for the transmittance evaluation in

Listing 7.1. This formulation has a simple intuitive meaning: It can be seen as iteratively

decreasing the transmittance according to the local transmittance model and density.

Free-flight distance sampling. We sample the free-�ight distance using standard

inverse transform sampling. We �rst draw a uniform random number* ∼ U (0, 1) and

then �nd C such that T(x, xC ) = * by marching along the ray. We perform a bisection

search on the last segment to precisely determine the sampled distance.

This works because the transmittance is de�ned to be one minus the CDF of the

free-�ight distance distribution. The PDF of the resulting sample is then the negative

derivative of the �nal transmittance value. Since the transmittance is a de�nite integral

evaluated from 0 to C , the derivative of the transmittance with respect to C is simply the

integrand itself:

Tpdf(C) = −5g
(
5 −1 (T(x, xC ), W (C)) , W (C)

)
fC (C). (7.9)
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1 def transmittance(fC, W):

2 T = 1

3 for i in range(N):

4 t = i · Δstep # Evaluate distance along ray

5 T = 5
[
5 −1 (T, W (C)) + fC (C) · Δstep, W (C)

]
6 return T

Algorithm 7.1: Pseudocode to evaluate the transmi�ance using our model.

We assume the extinction and transmittance mode to be monochromatic, which means

that this PDF cancels out with the integrand during forward rendering.

7.3 Volumetric appearance model

In this section, we describe the full set of parameters required by our uni�ed volumetric

scene representation. Our representation is parametrized by albedo U , phase function

parameters and transmittance parameters. For our main experiments, all parameters are

stored on a voxel grid and interpolated trilinearly between voxels.

Transmi�ance. The transmittance is modeled by our heterogeneous transmittance

model introduced in the previous section. We store both extinction fC and transmittance

mode W on voxel grids. These parameters are monochromatic, but the method could be

extended to handle spectrally varying transmittance parameters.

Phase function. The phase function describes the angular distribution of scattering

in a volume and plays a crucial role in representing complex appearance. Since we are

interested in representing surfaces, it is preferable to use an anisotropic phase func-

tion [90]. We use the SGGX micro�ake phase function [91], as it is straightforward to

use and has robust sampling and evaluation routines. The ellipsoid de�ning the SGGX’

NDF is parameterized by 6 degrees of freedom, which we also store on a grid. Unless

speci�ed otherwise, we use an SGGXmicro�ake phase function with di�use micro�akes

for all our results.

When using a micro�ake phase function, the extinction is scaled by the projected

area of the micro�akes (computed from the NDF). This is useful in our context, as other-

wise we do not model any directional dependence of the transmittance. For example, the

SGGXmicro�ake distribution can almost perfectlymodel the discrete NDF of a �at plane.

The projected micro�ake area will then tend to zero as we approach grazing angles, just
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Isotropic SGGX w/o offset Ours Reference

Figure 7.3: This figure illustrates the di�erence between using an isotropic phase function, a standard

SGGX phase function and an SGGX phase function with an o�set a�er sca�ering (Ours). Applying an

o�set reduces energy loss and allows to more faithfully approximate the reference appearance.

as we would expect for the opacity of plane. For future work, it would be interesting to

develop a tighter coupling between micro�ake theory and non-exponential media. Fur-

ther, the modeling power of the phase functions is one of the main factors limiting the

generality of our methods.

Separation of local and global sca�ering. As described, the presented model does

not in any way restrict multiple scattering inside a voxel. This means that even when

using linear transmittance and a su�ciently high extinction, we can still end up with

light paths eventually going through an opaque surface due to multiple scattering. This

does not only result in light leaking, but also produces signi�cant energy loss on the

visible side of a surface.

One possible approach to this problem could be to use one-sided micro�akes, which

are transparent from the backside [285]. However, generalizing this concept to arbitrary

scenes is di�cult. We chose a simpler solution: after each medium scatter event, we

o�set the start of the next ray by the size of a voxel. This is similar to using an epsilon for

shadow rays to prevent self-intersections. The following drawing illustrates the issue.

Conventional path tracing would simulate multiple scattering inside a voxel and the

path could eventually reach the other side. By o�setting the ray origin, this is mostly

prevented:

Conventional Ours
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Figure 7.4: Overview of our scene prefiltering pipeline. We first obtain an initial binary voxelization of the

scene and then trace rays in each occupied voxel to determine local appearance parameters. We further

refine the transmi�ance model by optimizing the fC and W parameters using gradient descent. During

the optimization, we sample random line segments in the scene and compute an !1 loss between our

transmi�ance model and the reference transmi�ance (estimated using ray tracing). This whole pipeline

is run once for each target resolution.

We show the practical impact of this o�set on an example scene in Figure 7.3. O�setting

the ray origin is related to shell tracing [297, 299], where local transport is summarized

over a spherical region and the light path proceeds from a location sampled on a sphere

around the current location in the medium.

7.4 Application: Appearance prefiltering

A primary application of our model is appearance pre�ltering for level of detail, or scene

compression. Given a complex scene, we approximate it using a lower resolution volu-

metric representation. In our volumetric appearance model, we have to determine the

parameters that reproduce a certain target appearance. During rendering, we use a voxel

grid resolution that is appropriate for the size of the image pixels. Therefore, we build

a hierarchy of voxel grids covering di�erent resolutions, doubling the resolution be-

tween each scale. We �t the medium parameters separately for each target resolution,

as simply downsampling from the �nest resolution would not preserve appearance. The

�tting time is dominated by the runtime at the highest resolution, so �tting parameters

independently at lower resolutions does not signi�cantly impact processing time.

The �tting pipeline consists of multiple stages illustrated in Figure 7.4. First, we

compute a binary voxelization of the scene, marking each non-empty voxel for further

processing. We use Binvox [315, 316] to determine the set of non-empty voxels. This

�rst step is important for computational e�ciency, since the total number of voxels in a

grid of width = is =3, but the number of occupied surface voxels only increases at a rate

of O(=2). Our goal is to create a surface voxelization, i.e., we do not �ll in solid objects.

This ensures that our representation remains sparse, and therefore e�cient to render
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Resolution 16 32 64 128 Original

Checkerboards 53.7 KB 0.2 MB 0.9 MB 3.3 MB 36 KB

37.6% 66.1% 83.9% 92.5%

Fractal 51.7 KB 0.3 MB 1.5 MB 8.0 MB 42 MB

39.9% 61.1% 73.4% 81.9%

City building 49.7 KB 0.2 MB 1.1 MB 4.9 MB 1.1 GB

42.2% 65.9% 80.5% 88.8%

Trees 35.4 KB 0.2 MB 1.0 MB 5.0 MB 451 MB

58.8% 73.9% 82.6% 88.7%

City 32.6 KB 0.1 MB 0.7 MB 3.4 MB 1.5 GB

62.1% 80.3% 87.9% 92.4%

Table 7.1: The resulting file size and percentage of empty voxels of the sparse volumetric representation

for several example scenes. The variation in compressed size is due to di�erent levels of sparsity in the

original scenes.

and store. We show compression rates for a few example scenes in Table 7.1.

We then trace light paths in each non-empty voxel and estimate the voxel’s albedo

by averaging their throughput. Therefore, the albedo of a voxel already accounts for

multiple scattering within this voxel.

Phase function For the SGGX phase function, we �t parameters using the algorithm

provided by Heitz et al. [91]. The ellipsoid de�ning the SGGX phase function can be

expressed by 3 eigenvectors and corresponding projected areas. To �t these parame-

ters, we �rst obtain a distribution of surface normals inside the voxel by intersecting

rays with the geometry. Given a large number of sampled normals, we then compute

the covariance matrix of the components of these normals. By performing an eigende-

composition on this covariance matrix we obtain the eigenvectors of the ellipsoid. The

projected areas are then computed by projecting the sampled normals onto these three

eigenvectors.

7.4.1 Transmi�ance optimization

There is no closed-form solution for the extinction fC and transmittance mode W . Even

for an exponential medium, the modulation of the extinction by the view-dependent

micro�ake area makes it so that the extinction parameters can only be determined by it-

erative optimization. Previous work [290] �ts the extinction value locally by performing

gradient descent. This can be done by tracing a number of rays for each voxel and then
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optimizing the extinction value to reproduce the observed directionally varying opacity

behavior.

At �rst, this seems like the right way to solve this problem: to determine the per-

voxel extinction, we should just consider what happens inside the region of the scene

represented by that single voxel. However, there are twomain issues with this approach.

First, it completely ignores any correlation e�ects across voxels. The second issue is less

obvious but equally important: Due to the nature of the volumetric approximation, it

is typically impossible to perfectly �t the reference scene. By �tting parameters inde-

pendently per voxel, we e�ectively prioritize per voxel error over error at larger scales

or even image-space error. Empirically we found this to lead to signi�cantly less accu-

rate results than optimizing across multiple voxels. Both the exponential and our model

bene�t from optimizing transmittance over several voxels, as shown in Figure 7.5

To optimize our transmittance parameters, we �rst initialize the extinction coe�-

cient of each non-empty voxel by tracing # rays through its region in the reference

scene. We then compute

f initC = −
1

B
log

(
1

#

#∑
8=1

+8

)
, (7.10)

where B is the side length of a single voxel and +8 the visibility of sample 8 (i.e., 1 if the

ray passed through the voxel and 0 otherwise). The transmittance mode W is initialized

to 1, which corresponds to exponential transmittance. We then optimize the parameters

by minimizing the following objective function:

ℓ (fC , W) =

∫
V

∫
V

|T(x, y) − Tref (x, y) | ? (x, y) dx dy, (7.11)

where x and y are 3D points following a distribution ? (x, y). In practice, we sample x and

y by generating randomly oriented segments passing through occupied voxels. Practi-

cally, we found that segments of 20 voxels in length are su�cient for capturing even

sophisticated correlations along grazing angles. The reference transmittance Tref(x, y)

is computed by tracing rays between the two points and evaluating the binary visibil-

ity function. Since our volumetric approximation is bandlimited due to the voxel grid

resolution, we also �lter the reference transmittance with a small Gaussian kernel of a

standard deviation of B/6, where B is the voxel size in world units. This means, that in-

stead of just tracing rays between x and y, we randomly o�set the ray origin in a plane

perpendicular to the vector between the two points (as illustrated in Figure 7.4). This

aids optimization, as it reduces variance in the evaluation of the reference transmittance.
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Exponential (1 voxel) Non-exponential (1 voxel)

Exponential (20 voxels) Non-Exponential (20 voxels) Reference

Surface

Single voxel

Multiple voxels

Figure 7.5: Fi�ing over several voxels can drastically reduce error. In the top row, we fit medium parame-

ters to represent the transmi�ance behavior of a single voxel. In the bo�om row, the extinction is fit over

beams of the length of 20 voxels. In these examples, the composited background has a constant RGB color

of (4, 3, 0.9), which helps to highlight leakage. In the insets, we highlight pixels with more than 99.99%

opacity. The exponential representation does not even come close to being fully opaque. The illustration

in the top right shows how fi�ing over multiple voxels be�er represents the absorption behavior for rays

at grazing angles.
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We optimize this loss over batches of 16000 voxels simultaneously using the Adam op-

timizer [111] and a learning rate of 0.5. We run this optimization for 512 epochs over all

occupied voxels.

7.4.2 Transmi�ance gradient

To optimize our transmittance model, we need to compute the gradient of the objective

function with respect to the parameters. Simply using automatic di�erentiation to op-

timize transmittance parameters results in high memory consumption, as the state of

each loop iteration has to be stored. This was also observed by previous work on op-

timizing transmittance [250]. We leverage the invertibility of individual loop iterations

in our ray marching routine to compute gradients without allocating a large amount of

temporary storage (as described in Section 4.2.3). We only store the current wavefront of

rays and the volume parameters. We �rst evaluate the transmittance using ray marching

and then compute the objective function and its gradient, which is then propagated to

the parameters in a reversed ray marching loop. In each iteration of the reverse loop,

we compute the previous loop state using the inverse transmittance function. We vali-

dated our analytic gradients against �nite di�erences and automatic di�erentiation. The

pseudocode for our reverse transmittance evaluation is given in Listing 7.2. The adjoint

function takes the loss gradient XT and the result of the forward pass, T, as inputs. Ad-

ditionally, we pass the transmittance parameters and corresponding gradient variables,

in which the gradients are accumulated.

1 def transmittance_adjoint(XT, T, fC, W, XfC , XW):

2 for i in reversed(range(N)):

3 t = i · Δstep

4 f̂C = fC(t) # Get current medium parameters

5 Ŵ = W(t)

6 T = 5
[
5 −1 (T, 6) − f̂C · Δstep, Ŵ

]
# Inverse loop iteration

7 g = 5 −1 (T, Ŵ) + f̂C · Δstep # Optical depth

8 XfC += XT · Δstep · 5g (g, Ŵ) # Accumulate fC gradient

9 XW += XT ·
[
5g (g, Ŵ) · 5

−1
W (T, Ŵ) + 5W (g, Ŵ)

]
# Accumulate W gradient

10 XT *= 5g (g, Ŵ) · 5
−1
T (T, Ŵ) # Update Jacobian

Algorithm 7.2: Pseudocode for the memoryless adjoint transmi�ance evaluation. Subscripts to functions

denote partial derivatives, e.g., 5g = m5/mg .
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7.5 Application: Image-based reconstruction

Our non-exponential transmittance model can also be applied to the problem of image-

based volumetric scene reconstruction. Our volumetric model is always continuous and

therefore, unlike surface-based representation, does not require any edge sampling or

reparameterization.

Given a set of reference images, we can optimize extinction values, transmittance

mode, phase function parameters and albedo on a voxel grid to match the reference

appearance. In our experiments, we use voxel grid resolutions of up to 2563. For all

parameters, we start with a uniform grid as our initial guess. We optimize parameters

using di�erentiable rendering and up to 4 bounces of indirect illumination. A higher

number of indirect bounces could be used, but this increases computation time and did

not signi�cantly change our results. We use a coarse-to-�ne optimization routine to

improve the convexity of the problem. We start at a volume and image resolution of

43 and 42, respectively, and then increase both resolutions after a number of iterations

up to reaching the �nal volume resolution. The low starting resolution not only makes

the problem more convex but also makes the initial optimization iterations cheaper to

render.

We perform the optimization under a uniform illumination and then re-render the

result using a novel illumination condition. The illumination condition we use for the

optimization is advantageous as no hard shadows are cast into the scene. We leave the

issue of optimizing under more di�cult illumination conditions to future work. Our op-

timization uses a silhouette loss to further reduce ambiguities between fore- and back-

ground. We found this to be useful to achieve fully opaque results, even when using our

non-exponential model.

7.6 Results

We implemented our method on top of Mitsuba 2 [48] and Enoki [145]. We use an

NVIDIA RTX TITAN GPU and run large parts of the pipeline using CUDA and Op-

tiX [147]. For the image-based reconstruction, we implemented a di�erentiable volume

renderer using CUDA and analyic derivatives, building on our path replay backpropaga-

tion algorithm. To di�erentiate transmittance terms, we use the gradient computation

from Listing 7.2. This project predates the Dr.Jit compiler [49], but could now easily be

implemented using that instead of handwritten CUDA ceode.
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Figure 7.6: These results show the di�erences between using conventional exponential and our novel

non-exponential transmi�ance. We also compare to the result of optimizing the exponential model using

a relative loss, which favors higher extinction values. Regardless of the loss function, the exponential

model o�en leads to light leaking, resulting in overly bright shadows. Using a relative loss, we get bloated

appearance on semitransparent structures, such in the Fence scene.
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Figure 7.7: We plot the reference simulated transmi�ance (solid line) against both our non-exponential

and exponential transmi�ance fits. In all these results we use a voxel grid of 163 resolution and compare

to the ground-truth transmi�ance computed using ray tracing in a beam of the same footprint. The

exponential transmi�ance o�en decreases too rapidly for surfaces, which leads to bloating. However, in

other scenarios, despite this rapid decrease in transmi�ance, the exponential model leads to significant

leaking, as highlighted in the inset plots, due to its inability to easily reach zero. The non-exponential

model fits the transmi�ance curves more faithfully and prevents leakage.

For our appearance pre�ltering results, we implemented a dynamic mip mapping

scheme based on ray di�erentials [257]. Using the ray di�erentials, we estimate the size

of a pixel in world space as we intersect the volume bounding box. We then probabilisti-

cally choose one of the two volume resolutions whichmost closely match the scale of the

pixels. For simplicity, we use the same volume resolution for the whole light path. Please

see the supplemental video of the paper for animated zoom-ins using this method
1
. The

following static images all have been computed at a �xed scale to facilitate comparisons

to previous work.

Performance. We evaluate the performance of our methods using both exponential

and non-exponential transmittance models. When pre�ltering the City building scene

(see Figure 7.2) at a resolution of 1283 voxels, it takes around 1minute to compute albedo,

SGGX parameters and initial extinction values. Optimizing the transmittance takes 4

minutes using an exponential model and around 4.5 minutes using our non-exponential

transmittance, which amounts to around 12.5% overhead. Rendering the optimized vol-

ume on the CPU is around 35% slower when using our non-exponential model than

when using the exponential model. For reference, path tracing the same scene using

Embree [146] is around 5× faster than rendering the volumetric representation. This is

not surprising, as our volume rendering implementation was only lightly optimized.

1
The video is available on http://rgl.epfl.ch/publications/Vicini2021NonExponential
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0.0 0.5 1.0

W

Figure 7.8: We visualize the fi�ed values for W over several horizontal slices in the same scene. The voxel

grid used here has a resolution of 643. These slices show that the optimizer indeed automatically clas-

sifies voxels containing opaque geometry to use linear transmi�ance (blue) and voxels containing more

unstructured geometry (e.g. leaves) toward using exponential transmi�ance (red).

Image-based reconstruction of a volumetric scene representation is signi�cantlymore

challenging than appearance pre�ltering and takes around 1 hour for the results shown

in Figure 7.14 (2563 voxels). The non-exponential model takes around 10% more time

to optimize. However, the CUDA implementation could be simpli�ed to support purely

exponential media more e�ciently.

Exponential vs. non-exponential transmi�ance. For appearance pre�ltering, we

show the practical bene�ts from switching to a non-exponential transmittance in Fig-

ure 7.6. We ran our transmittance optimization both for the exponential and our general

non-exponential model. For both sets of results, we separate local and global scattering

by o�setting the starting location of rays. This is a form of non-exponentiality, but a

standard exponential medium would result in energy loss, as shown in Figure 7.3.

We found that the exponential model su�ers from signi�cant leaking artifacts. One

possible approach to reduce leaking is tomore strongly penalize this type of error. There-

fore, we experimented with using a relative loss, where the !1 transmittance loss is di-

vided by the ground truth transmittance (clamped to a small epsilon to prevent division

by zero). This increases the loss value if the reference transmittance is zero or close to

zero. We found that this helped to reduce leaking, but at the same time drastically in-

creased bloating, especially for semitransparent regions such as the fence in Figure 7.6.

This indicates that the exponential model cannot easily be �xed by just changing the op-

timization routine. This is a trade-o� between opaqueness and amount of bloating inher-

ent to the exponential transmittance model. Our more general non-exponential model

can �nd a better compromise between these con�icting goals. We found it to mostly

eliminate leaking as well as reducing bloating compared to the exponential model.

In Figure 7.7 we plot the transmittance obtained after optimizing medium param-
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eters, and the corresponding values of W . These plots demonstrate that the optimizer

is able to automatically detect regions with di�erent modes (opaque vs. aggregate un-

correlated) and pick the proper transmittance mode for it by selecting the W parameter

value. It further showcases the issues related to bloating and leaking found in the ex-

ponential model. We can also see that both the non-exponential and exponential model

are approximations and do not give a perfect match to the reference transmittance.

Figure 7.8 shows slices of the optimized voxel grid of W values. The optimizer prefers

using linear transmittance for solid objects, while it resorts to the classic exponential

transmittance for aggregate or unstructured detail, such as leaves toward the outside of

the trees.

Reciprocity. Our transmittance model is not reciprocal and the transmittance T(x, y)

might not match T(y, x). We evaluate the practical impact of this limitation by switch-

ing the evaluation direction of the transmittance when tracing shadow rays. We ren-

der several volumetric scene representations both using the unmodi�ed path tracer and

the implementation with the reversed shadow rays. The results of this experiment are

shown in Figure 7.9. The di�erences caused by non-reciprocal behavior are almost im-

perceptible. This indicates that the non-reciprocity is not a limiting factor in practice.

We provide some additional evaluation in Figure 7.10.

Specular surfaces The problem of �nding the right transmittance model is mostly or-

thogonal to the problem of de�ning the phase function. We therefore use simple di�use

BSDFs in most of our scenes. However, our pre�ltering method can also be applied to

scenes with specular surfaces, as we show in Figure 7.11. Our volumetric model repro-

duces the overall appearance of the golden bunny, but leads to a slight loss in sharpness

of the re�ection.

Comparison to prior work We compare our pre�ltering method to the state-of-the-

art Hybrid LoD method [290]. Figure 7.12 shows the comparison on several example

scenes. We used the original implementation provided by the authors, which we ex-

tended to be able to load Mitsuba 2 scenes. We run both methods at resolutions 162

and 642 and compare to the ground truth of rendering the reference scene at the same

resolution. The Hybrid LoD method produces good results on volume-friendly scenes

(i.e., aggregate details), e.g., the Trees scene. However, it often misclassi�es complex

and mixed types of geometry as a volume (e.g., for the City building and City scenes),

which leads to a semitransparent appearance that is far from the ground truth. The
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Original Reversed shadow rays !1 error

0.000 0.008

Figure 7.9: We evaluate the practical impact of our model’s non-reciprocity by rendering our volume as

usual, but evaluating shadow rays in the reverse direction (second column). The di�erence to the original

rendering using the unmodified path tracer is almost imperceptible. All error maps are scaled consistently

and normalized to make the small di�erences visible.
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either direction. The error depends on the medium parameters fC and W . We show two plots over the

extinction values of the two voxels, each for di�erent se�ings of transmi�ance modes. The di�erence is
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Figure 7.11: By switching the SGGX phase function to use specular microflakes, we can also compute

level of detail for metallic objects.
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Checkerboards scene also shows how this behavior is scale-dependent. At the higher

resolution, it correctly classi�es all surfaces as surfaces. However, as the resolution is

decreased it switches to a volumetric representation, which changes the appearance of

the object drastically. Our method does not perform a binary classi�cation and therefore

can maintain a consistent approximation quality across scales. The optimizer automati-

cally lands at the best transmittance mode, also including the spectrum between linear

and exponential transmittance modes. We show a higher resolution rendering of an LoD

volume computed using our method compared to Hybrid LoD to show the issues of this

binary classi�cation in Figure 7.13. The binary classi�cation results in drastic changes

of appearance across a single LoD.

Application to image-based reconstruction As described in Section 7.5, we can

also apply our non-exponential transmittance model to improve image-based recon-

struction using di�erentiable path tracing. In Figure 7.14, we show reconstructions of

several example scenes using an exponential and our non-exponential representation.

All results use a voxel grid resolution of 2563, which means that we optimize ca. 184

million parameters. However, since a lot of the voxels are empty, the optimization prob-

lem remains tractable. We optimize for 64 views of the synthetic scene at once.

Both the exponential and our non-exponential model converge to a meaningful vol-

umetric approximation of the reference scene. However, the exponential model again

su�ers from leaking, despite the explicit silhouette loss. This is primarily visible in thin

structures. At the same time, this exponential model also su�ers from more bloating

than our non-exponential model, as shown well in the details of the Lego scene. The

exponential model �lls in parts of the beams where holes should be present, while lead-

ing to leaking in other parts. This shows that using an exponential transmittance model

is not su�cient when trying to relight a volumetric scene reconstruction, which is con-

sistent with our observations made for the level of detail use case. Overall, we observe

that the improvement on image-based reconstruction is smaller than for appearance pre-

�ltering. Image-based optimization using global illumination is a harder problem than

�tting transmittance parameters against a known 3D scene. Additionally, the image-

based optimization does not enforce sparsity of the volume density �eld. The lack of

sparsity constraints makes the results less sensitive to the transmittance model than for

appearance pre�ltering, where we explicitly enforce sparsity.

Application to neural radiance fields We also ran some experiments where we

modi�ed the NeRF code base [223] to use a non-exponential transmittance. The re-

168



7.6. Results

C
h
e
c
k
e
r
b
o
a
r
d
s

Scene

16

Reference

64

Naı̈ve

MSE = 3.62

MSE = 5.26

[Loubet and Neyret 2017]

MSE = 1.65

MSE = 0.12

Ours

MSE = 0.43

MSE = 0.18

F
r
a
c
t
a
l

16
64

MSE = 0.87

MSE = 1.13

MSE = 2.44

MSE = 2.32

MSE = 0.74

MSE = 0.45

C
it
y
b
u
il
d
in
g

16
64

MSE = 1.91

MSE = 2.82

MSE = 1.25

MSE = 0.57

MSE = 0.15

MSE = 0.26

T
r
e
e
s

16
64

MSE = 0.51

MSE = 0.53

MSE = 0.93

MSE = 0.58

MSE = 0.55

MSE = 0.09

C
it
y

16
64

MSE = 1.23

MSE = 0.96

MSE = 1.50

MSE = 0.38

MSE = 0.26

MSE = 0.04

Figure 7.12: Prefiltering results on a variety of scenes with di�erent complexity. Reference is the path

traced ground truth geometry. The reference is rendered using a Gaussian pixel filter to bandlimit the

signal. Naïve is a naïve volumetric approximation of the scene. This is the starting point for our opti-

mization. All LoD methods use a voxel resolution which matches the resolution of the rendered images.

Loubet and Neyret 2017 is the previous state of the art in automatic volumetric level of detail and Ours is

our non-exponential model. All results are rendered using 1024 samples per pixel and we visualize mean

squared errors (MSE) compared to the reference image. All MSE values have been multiplied by a factor

of 100 for readability.
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Hybrid LoD Ours

Figure 7.13: If we render low-resolution LoD volumes at a higher pixel resolution, we can see that the

Hybrid LoD method by Loubet and Neyret [290] struggles to correctly separate surfaces and volumes.

Our method results in a smoother model, as it does not apply a binary classification between surface-like

and volume-like sca�ering.

sults of this are shown in Figure 7.15. Using a non-exponential transmittance, we can

achieve some improvements in the sharpness of the generated images. On theRed Plane

scene, the unmodi�ed NeRF model struggles to represent the vertical plane. Our non-

exponential model manages to produce more accurate results. However, since the NeRF

model does not admit relighting, the exponential transmittance does not su�er from the

severe light leaking issues present in the other applications. The �xed lighting and direc-

tionally varying emission component seem to make NeRF less sensitive to the accuracy

of the transmittance model. The combination of non-exponential transmittance with

neural networks to solve real computer vision problems remains an interesting future

direction.

7.7 Summary and future work

In this chapter, we introduced a new volumetric transmittance model, which represents

both surface-like and volumetric appearance in a uni�ed framework. Ourmodel does not

require explicit binary classi�cation and we show that its parameters can be optimized

e�ciently using gradient-based optimization. We further show improvements to image-

based reconstruction using di�erentiable rendering. Our model can easily be integrated

into existing systems and is simple to implement.

One of the main practical limitations is the representation power of the phase func-

tion. The SGGX phase function [91] can represent di�use and metallic surfaces, but
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Figure 7.14: Results of reconstructing scenes using an image-based optimization. We compare our non-

exponential transmi�ance model with the exponential model and the ground truth reference. All volumes

use a resolution of 2563 and we use the same resolution to render the resulting images.
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Reference NeRF NeRF

NeRF + linear model NeRF + linear model

Reference NeRF NeRF

NeRF + our model NeRF + our model

Figure 7.15: Neural volumetric representation of the Lego scene (top) using NeRF [223] with the original

exponential transmi�ance model and with a purely linear model. We also applied exponential NeRF and

a version using our transmi�ance model to the Red plane scene (bo�om).
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more work is required to de�ne more general phase functions to handle plastic-like or

dielectric materials. The phase function further serves an important role in preventing

leaking due to multiple scattering. With the SGGX phase functions, more sampled direc-

tions will point into the surface as the roughness of the normal distribution is increased.

This can result in leaking of multiple scattering on the back of a surface and energy

loss on the front side. Dupuy et al. [285] discussed the idea of approximating surface

appearance using one-sided micro�akes, but it is an open question if that concept could

be used for scene representation.

While we found our transmittance formulation to work well for the shown applica-

tions, it is not constrained to be reciprocal. Developing a reciprocal formulation would

make the model applicable in the context of bidirectional rendering algorithms. It would

also be interesting to investigate if the transmittance could be sampled and evaluated in

an unbiased way, instead of using biased ray marching. For evaluation, recent work

on de-biasing Monte Carlo estimators has demonstrated unbiased evaluation for certain

non-exponential transmittance models [53].

Overall, we hope that this work enables future research to go beyond standard ex-

ponential transmittance models. We believe that this is a necessary step toward further

uni�cation of surface and volume rendering. With the gain in popularity of di�eren-

tiable rendering, unifying these two worlds can bene�t practical scene reconstruction

approaches.
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8 | Conclusion

We conclude this thesis by summarizing our main contributions and providing an out-

look on directions for future work.

8.1 Contributions

Path replay backpropagation. In Chapter 5, we presented a novel di�erentiation

method for path tracing and similar algorithms. Instead of storing a large computation

graph, we exploit the local invertibility of the Jacobian of each iteration in the main path

tracing loop, which enables computing unbiased gradients in linear time and at constant

memory use. This is a crucial building block for the di�erentiation of complex light

transport. No prior method was able to scale to the full complexity posed by rendering

algorithms such as delta tracking. Furthermore, we demonstrated the generality of our

approach by proposing a version for perfectly specular surfaces. While developed for

di�erentiable rendering, our approach can also be used for other applications such as

inverse problems speci�ed using partial di�erential equations [44].

Di�erentiable SDF rendering. We proposed the �rst general di�erentiable SDF ren-

dering method in Chapter 6. Unlike many prior works, it does not assume knowledge

about object silhouettes or masks. By constructing a reparameterization during sphere

tracing, we can compute accurate gradients of both directly visible edges and indirect

e�ects (e.g., shadows). Since we carefully design our reparameterization to not build an

AD graph over sphere tracing iterations, this algorithm again does not require storing a

large computation graph. We show that the gradients estimated using our reparameter-

ization enable image-based shape reconstruction. Our method is both faster and more

accurate than the previous state-of-the-art reparameterization approach.

Non-exponential scene representation. In the last project (Chapter 7), we demon-

strate that we can more accurately represent general scenes as participating media by

switching to a non-exponential transmittance model. This bene�ts both pre�ltering for

level of detail and image-based reconstruction. This project shows that these problems

are closely related, and can be investigated jointly. Similarly to image-based reconstruc-

tion, the pre�ltering problem can be addressed using gradient-based optimization tech-

niques. Converting an existing scene to a volumetric representation is an easier problem
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than the full image-based reconstruction. It can be useful to illustrate the potential im-

provements due to changes in the scene representation. The non-exponential model

that we propose successfully eliminates most light leaking problems faced by the con-

ventional, exponential model.

Overall, our methods expand the scope and applicability of di�erentiable rendering.

We can di�erentiate important transport phenomena e�ciently and accurately, which

will hopefully enable future applications.

8.2 Open problems and future work

Recently, a lot of progress has been made on di�erentiable rendering methods (see also

Chapter 4). However, there are still many open problems and potential future directions.

In this section, we outline some of the main open problems.

Scene and object reconstruction. A key application of di�erentiable rendering is

scene reconstruction. While many methods have been proposed, we are still unable

to fully recover a relightable representation of an arbitrary scene. Refractive objects

for example still break most state-of-the-art algorithms. Ideally, one would develop a

uni�ed, physically-based representation that can be optimized while considering global

illumination. While volumetric representations are promising, it is currently unclear

how to best extend them to handle the large variety of real-world materials (e.g., layered

BSDFs). A potential avenue would be to use a participating medium with a learned

neural phase function. However, it seems di�cult to accurately model high-frequency

aspects of light transport (e.g, perfectly specular BSDFs) using such a representation.

The problem is also inherently riddled with ambiguities. For example, a �at mirror on

an interior wall could also be an opening to a symmetrical room.

To ensure some level of convexity, the optimization probably needs to progress in

a multi-stage fashion, where each stage considers additional light transport properties.

Neural radiance �elds [223] impressively demonstrate how optimizing a purely emissive

representation is comparably easy. In hindsight, this is not surprising: traditional pho-

togrammetry algorithms can be understood as computing an emissive representation, as

they simply project captured images onto reconstructed geometry. They do not consider

shadows, interre�ections and BSDF models.

At a high level, it is also unclear what quality of representation we can expect to re-

cover from using only a single illumination condition, as done when casually capturing

176



8.2. Open problems and future work

multiple photos of a real scene. The robust reconstruction of a general, physically-based

representation likely requires at least some form of active illumination (e.g., a camera

�ash). Including multiple illumination conditions into a di�erentiable rendering opti-

mization is straightforward, but this has not yet been done at scene scale. Ambiguities

could also be addressed by constructing suitable priors, e.g., by training a neural repre-

sentation on a large data set of scenes. The main challenge in such approaches is the

generalization to unknown objects or scenes.

E�iciency. The methods in this thesis are all designed to be computationally e�cient.

Most of the featured experiments ran in a few minutes or at most a few hours. How-

ever, further e�ciency gains are likely possible. Our optimizations all build on a basic

unidirectional path tracer, without any advanced variance reduction techniques. Many

e�cient forward rendering algorithms could potentially be adapted to the di�erentiable

rendering context. With forward path tracing of certain scenes already running at inter-

active frame rates, di�erentiable rendering could possibly be optimized to run similarly

fast.

In particular, methods that re-use information across multiple renderings could be

useful. We could for example use a path guiding data structure that is re�ned across it-

erations. Other options are temporal denoising algorithms, adaptive sampling or control

variates. Any technique reducing the variance of the rendering itself could help reduce

the number of samples needed during an optimization. Gradient estimators often have a

higher variance than their primal versions, and developing targeted variance reduction

schemes for di�erentiable Monte Carlo estimators is still largely an open problem.

System. The Mitsuba 3 and Dr.Jit systems appear to be in a good local minimum for

the development of di�erentiable rendering algorithms. The combination of uninter-

rupted tracing, megakernel compilation and �ne-grained control over AD has proven

useful. Long term, the system could bene�t from aggressively caching JIT tracing. Cur-

rently, the performance overhead of tracing long Python functions can be signi�cant.

Eliminating this could reduce the need to partially implement methods in C++ simply to

reduce tracing costs. It could also enable more sophisticated optimization passes, which

are too slow to be run on every rendering. The system could also be extended to support

higher-order derivatives. These would for example be useful to automatically compute

reparameterization Jacobians (i.e., positional derivatives), which are then further di�er-

entiated with respect to the scene parameters.

177



Chapter 8. Conclusion

Applications to other fields. Asmentioned in the introduction, di�erentiable Monte

Carlo estimators could bene�t a range of practical problems outside of computer graph-

ics. It would be interesting to import some of the tools developed in di�erentiable ren-

dering into other �elds. One example are PDEs that admit a solution using Monte Carlo

methods, but we expect these methods to also bene�t important problems in computa-

tional design, (medical) imaging and atmospheric sciences. More research is required

to fully understand the potential applications as well as application-speci�c priors and

regularizations that are needed to tackle ill-posed inverse problems. We are hopeful that

di�erentiable Monte Carlo methods will become increasingly useful for a broad range

of problems.
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A | Equivalence of area element and

divergence derivatives

In the following, we prove that we can either evaluate the area element (using the cross

product) or the divergence of the mapping computed in ambient space. Under di�eren-

tiation with respect to the scene parameter c , these are equivalent. Since we reparam-

eterize the manifold of the unit sphere, we found this is to be not immediately obvious.

We would like to show:

mc


DT8,c (s) × DT8,c (t)



 = mcdivT (8, c). (A.1)

The di�erential DT8,c is computed in ambient space and in the following we write it as

a parameter dependent Jacobian matrix J(c). We then prove the original statement by

simplifying the derivative of the area element:

mc ∥J(c)s × J(c)t∥ = 8 · (mcJ(c)s × J(c)t + J(c)s × mcJ(c)t)

= 8 · (mcJ(c)s × t + s × mcJ(c)t) ,

where we di�erentiated the vector norm and moved the derivative operator inside the

cross product and "·" denotes the dot product. We also used that J(c) maps s and t onto

themselves and therefore J(c)s × J(c)t = 8. We simplify further by using the fact that

the triple product a · (b × c) is invariant under circular shifts of its arguments:

8 · (mcJ(c)s × t + s × mcJ(c)t) = mcJ(c)s · t × 8 + mcJ(c)t · 8 × s

= mcJ(c)s · s + mcJ(c)t · t,

where we additionally used that t × 8 = s and 8 × s = t. We then add the zero-valued

term mcJ(c)8 ·8 to the expression above and use that the sum of inner products of basis

vectors with mcJ(c) is exactly its trace:

= mcJ(c)s · s + mcJ(c)t · t + mcJ(c)8 · 8

= T(mcJ(c)) = mcT(J(c)) = mcdivT (8, c).

With this, Equation A.1 has been proven. This makes the equivalence of reparameteri-

zation and divergence formulation explicit and shows that in practice either formulation

yields the same result. Both formulations correctly account for the geometry of the unit

sphere.
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Appendix A. Equivalence of area element and divergence derivatives

To complete the proof, we still need to show the following:

mcJ(c)8 · 8 = 0. (A.2)

We do so assuming that we can write T (8, c) = T̄ (8, c)/


T̄ (8, c)



, where T̄ (8, c) might

not have unit norm, but preserves the direction, i.e. T̄ (8, c) = _8. Our reparameter-

ization keeps the primal value of 8 �xed, but there can still be an arbitrarily complex

di�erentiable relation to the parameter c . We then explicitly compute the parameter

derivative of the Jacobian matrix J(c) = m8T :

mcJ(c)= mc

[
m8

(
T̄ (8, c)

T̄ (8, c)




)]

= mc

[(
1

T̄ 

 I − 1

T̄ 

3 T̄ T̄)

)
m8 T̄

]

=

(
1

T̄ 

 I − 1

T̄ 

3 T̄ T̄)

)
mc m8 T̄

︸                                ︷︷                                ︸
(1)

+ mc

[
1

T̄ 

 I − 1

T̄ 

3 T̄ T̄)

]
m8 T̄

)

︸                                  ︷︷                                  ︸
(2)

,

where I is the 3 by 3 identity matrix and T̄ T̄)
is an outer product. We omit the argu-

ments of T̄ (8, c) for brevity. In order for Equation A.2 to hold, we need to show that

multiplying 8 with this matrix is a projection into tangent space of the unit sphere at

8. For the term (1) this follows immediately, since the terms inside the parentheses are

such a projection (recall that T̄ is simply a scaled 8). For (2) this is a bit more laborious

to show, but can be done by computing the derivative of the terms inside the brackets:

mc

[
1

T̄ 

 I − 1

T̄ 

3 T̄ T̄)

]
= −

1

T̄ 

3
(
T̄) mc T̄

(
I −

1

T̄ 

2 T̄ T̄)

)
︸                           ︷︷                           ︸

(1)

+ mc T̄ T̄) −
T̄) mc T̄

T̄ 

2 T̄ T̄)

︸                         ︷︷                         ︸
(2)

+ T̄ mc T̄
) −

T̄) mc T̄

T̄ 

2 T̄ T̄)

︸                         ︷︷                         ︸
(3)

)

Here, we can again see that (1) is a projection (scalar factors do not matter), and (2) and

(3) require a few additional steps. We can simplify (2) to again see that it indeed projects

onto tangent space:

mc T̄ T̄) −
T̄) mc T̄

T̄ 

2 T̄ T̄)

=

(
mc T̄ −

T̄) mc T̄

T̄ 

2 T̄

)
T̄)

=

(
I −

1

T̄ 

2 T̄ T̄)

)
mc T̄ T̄) .
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The second equality used that T̄) mc T̄ is a scalar to commute it with T̄ . We skip the

derivation for the term (3), as it is analogous. This shows that Equation A.2 indeed

holds.
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B | Probabilistic regularization of

path replay backpropagation

The adjoint phase of our attached PRB estimator requires an unbiased estimate of the

directional derivative of the incident radiance at every path vertex. Regularization is

necessary to avoid situations in which the associated computation becomes ill-de�ned.

We now justify that this regularization of the Jacobian and the associated inversion of

noisy matrices do not introduce bias.

During the adjoint phase, we must undo the e�ects of the path pre�x to obtain the

directional derivative at the current path vertex. This is in part done by subtracting

matrices, which is unproblematic. However, the second part is more involved: we must

multiply the directional radiance derivative by the inverse matrix J−1ray. The matrix Jray =

A1 · A2 · · ·A: is the product of all the local ray derivatives A8 encountered in the path

pre�x. The challenge is now that some of these matrices may not be invertible (e.g.,

when the associated vertex has a di�use BRDF). The subsequent derivations will prove

two claims:

1. Adding noise to factors of the Jacobian product does not a�ect its expected value.

2. This noise can be added in away so that even an estimator based onmatrix inverses

remains unbiased.

Regarding claim (1), we must show that

EJray [=] E [A1 · A2 · · ·A:] = E [(A1 + Y1I) · (A2 + Y2I) · · · (A: + Y: I)] (B.1)

where A1, . . . ,A: are (�xed) matrices, and Y1, . . . , Y: ∈ R are i.i.d. random variables with

an expected value of 0. The equality follows directly from the linearity of the expected

value and the statistical independence of the Y: . Without loss of generality, we can con-

sider the case of : = 2:

E [(A1 + Y1I) (A2 + Y2I)] = E [A1A2] + E [Y1IA2]︸     ︷︷     ︸
=0

+E [A1Y2I]︸     ︷︷     ︸
=0

+E [Y1Y2I]︸    ︷︷    ︸
=0

= E [A1A2] □

(B.2)

The �rst equality uses the linearity of the expected value. We then see that all terms

except for the �rst one become zero due since EY: [=] 0.
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Now for claim 2, we need to show that we can invert the pre�x of that product with-

out introducing bias. This is possible by using the same noise both during the forward

accumulation and the backward pass. We can then invert the samematrices as during the

forward pass. Under the assumption that the noisy matrices are then indeed invertible,

the computation of the relevant Jacobian at bounce 8 can be written as:

E
[
[(A1 + Y1I) · · · (A8 + Y8I)]

−1︸                             ︷︷                             ︸
Path pre�x

(A1 + Y1I) · · · (A8 + Y8I) · (A8+1 + Y8+1I) · · · (A: + Y: I)
]

= E

[ [
✘
✘

✘
✘
✘

(A1 + Y1I) · · ·✘✘
✘
✘
✘

(A8 + Y8I)
]−1

✘
✘
✘
✘
✘

(A1 + Y1I) · · ·✘✘
✘

✘
✘

(A8 + Y8I) · (A8+1 + Y8+1I) · · · (A: + Y: I)
]

= E [(A8+1 + Y8+1I) · · · (A: + Y: I)] □

We see that we do not take the expected value of a matrix inverse, but the accumulated

gradient sample values only ever include regular matrix products and additive noise.

Therefore, the regularization in itself does not introduce bias. However, our system of

adding uniform noise to every matrix is simplistic, and better strategies may be needed

to guarantee good numerical conditioning.
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C | Derivations for di�erentiable SDF

rendering

C.1 Ray intersection gradient

When computing a ray intersection with an implicit surface, we solve a root-�nding

problem over the intersection distance C . An important quantity of interest is the param-

eter gradient mcC of the intersection distance. It turns out that we can readily compute

this quantity using the inverse function theorem [207, 208].

We de�ne 5 (C, c) to be the value of the implicit function at a distance C along a �xed

ray: 5 (C, c) = q (xC , c) and 5
−1(B, c) its inverse with respect to the �rst argument. The

intersection distance C satis�es 5 (C, c) = 0 and can therefore be written as C = 5 −1(0, c).

We can then expand using the chain rule:

0 =
3

3c
C =

3

3c

[
5 −1(5 (C, c), c)

]
=

m

mc
5 −1(5 (C, c0), c) +

m

mc
5 (C, c)

m

mB
5 −1(5 (C, c0), c0) . (C.1)

We �rst use the standard rule for derivatives of inverse functions to see that:

m

mB
5 −1(5 (C, c0), c0) =

1
m
mC
5 (C, c0)

. (C.2)

We therefore get:

m

mc
5 −1(5 (C, c0), c) = −

m
mc
5 (C, c)

m
mC
5 (C, c0)

. (C.3)

The denominator is simply equal to mC 5 (C, c0) = ⟨qx, d⟩, where d is the ray direction

and qx the spatial derivative of the implicit function. So �nally, the derivative of the

intersection distance with respect to the parameter c becomes:

m

mc
C (c) = −

m
mc
q (xC , c0)

⟨qx(xC , c0), d⟩
. (C.4)

This derivation works for any su�ciently smooth implicit surface, and in particular also

holds for signed distance functions.
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C.2. Parameter derivative of the reparameterization T

C.2 Parameter derivative of the reparameterizationT

The parameter derivative of the reparameterization T should follow the motion of the

visible surface boundary on the unit sphere. We validate this by explicitly computing

this derivative. In practice, the following computation will be carried out by automatic

di�erentiation. Taking the derivative mcT of our reparameterization we obtain:

mcT (8, c) = mc

[
T̄ (8, c)

T̄ (8, c)




]

=

(
1

T̄ (8, c0)



 I − 1

T̄ (8, c0)


3 T̄ (8, c0) ·T̄ (8, c0)

)

)
mc T̄ (8, c)

=

(
1

C
I −

1

C3
T̄ (8, c0) · T̄ (8, c0)

)

)
mc T̄ (8, c)

=

(
1

C
I −

1

C
8 · 8)

)
mc T̄ (8, c)

=
1

C

(
I − 8 · 8)

)
mc T̄ (8, c)

=
1

C

(
I − 8 · 8)

)
mcV(xC , c). (C.5)

The �rst equality used the de�nition of T . In the second equality we evaluate the deriva-

tive of the division by the norm and use the chain rule. Here, I is the 3 by 3 identitymatrix

and T̄ (8, c0) · T̄ (8, c0)
)
is the outer product. For the terms inside the parentheses, we

do not need to track parameter derivatives. In other words, we have c = c0 and the term

+ (x + C8, c) − + (x + C8, c0) in the de�nition of T̄ is then equal to 0. This allows sim-

plifying further to arrive at the �nal expression, where we use the shorthand notation

xC ≔ x+C8. This shows that the normalization projects the derivative vector mcV(xC , c)

to tangent space and divides by the distance, producing a vector correctly matching the

motion of the discontinuity.

C.3 Jacobian of the reparameterization T

Accounting for the distortion of the integration domain requires computing the Jacobian

m8T (8, c) ∈ R3×3. To do so, we �rst compute the positional Jacobian mxV . The vector

�eldV is used to de�ne the reparameterization T and was de�ned as:

V(x, c) = −
mxq (x, c0)

∥mxq (x, c0)∥
2
q (x, c) (C.6)
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Appendix C. Derivations for di�erentiable SDF rendering

Note that only q (x, c) is di�erentiable with respect to the scene parameter c . Taking

the derivative with respect to the position x we get:

mxV(x, c) = −A · m2xq (x, c0)q (x, c) −
mxq (x, c0)

∥mxq (x, c0)∥
2
· mxq (x, c)

)
(C.7)

with A being the Jacobian of the division by the squared norm:

A =
1

∥mxq (x, c0)∥
2

(
I −

2

∥mxq (x, c0)∥
2
mxq (x, c0) · mxq (x, c0)

)

)

Accounting for the additional weighting factor FV , we compute the weighted vector

�eld’s Jacobian using the product rule:

mxV̄ (x, c) = m8 [FV (x)V(x, c)] = V(x, c) · m8FV (x))

+FV (x)m8V(x, c) (C.8)

So far, this Jacobian assumes we vary the 3D position x. We need to convert it to a

Jacobian with respect to the ray direction 8:

m8V̄ (xC , c) = mxV̄ (x, c)m8xC , (C.9)

where m8xC = m8 [xo + C8] = I · C + 8 · m8C
)
. And �nally, accounting for the conversion

to a reparameterization on the unit sphere:

m8T (8, c) = B ·
(
m8xC + m8V̄ (xC , c) − m8V̄ (xC , c0)

)
, (C.10)

where B is the normalization Jacobian which we used before:

B =
1

T̄ (8, c)



 I − 1

T̄ (8, c)


3 T̄ (8, c) · T̄ (8, c)) .

Finally, we then simply evaluate T (m8T (8, c)). We can further reduce the number of

3 × 3 matrix products by analyzing this expression more closely. First of all, we know

that


T̄ (8, c)



 = C and does not depend on c in a di�erentiable way (C is computed

using c0). We will also drop any term that is additive and does not depend on c directly,

as its derivative will be zero. In the end, we only need the derivative of the trace of the

Jacobian:

mcT (m8T (8, c)) = mcT
(
B·

(
m8xC + m8V̄ (xC , c) − m8V̄ (xC , c0)

) )
= mcT (B · m8xC ) + mcT

(
B·m8V̄ (xC , c)

)
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C.4. Nesting reparameterizations

We can now show that mcT (B · m8xC ) = 0:

mcT (B · m8xC ) = mcT
(
B ·

[
I · C + 8 · m8C

)
] )

= C · mcT (B) + mcT
(
B · 8 · m8C

)
)

Since B is simply the projection onto tangent space, we know that T(B) = rank(B) = 2

and therefore its derivative is zero. Additionally, B ·8 · m8C
)
is zero, since B removes any

component in the direction of 8. Hence, mcT (B · m8xC ) = 0 and the derivative simpli�es

to:

mcT (m8T (8, c)) = mcT
(
B · m8V̄ (xC , c)

)

C.4 Nesting reparameterizations

When reparameterizing a rendering algorithm, we need to correctly nest reparameter-

izations of the solid angle domain. For example, when rendering an image with direct

illumination, we solve the following nested integration for each pixel:

� (c) =

∫
S2

50(80, c)

∫
S2

51(80,81, x1(80, c), c) d81 d80, (C.11)

where 50 and 51 contain all relevant importance, visibility, BSDF and incident radiance

terms. We use this simpli�ed notation to reduce notational clutter. We explicitly write

the dependency of 51 on the ray intersection x1(80, c) of the camera ray in direction 80.

The inner integration is over re�ected directions 81.

To di�erentiate this nested integral, we need to introduce two reparameterizations.

The �rst one reparameterizes the primary ray and the second one the secondary ray (or

put more simply, the shadow ray). First, applying a reparameterization T0 on the primary

ray:

� (c) =

∫
S2

50(T0(80, c), c) |T0 |∫
S2

51(T0(80, c),81, x1(T0(80, c), c), c) d81 d80, (C.12)

where in a slight abuse of notation |T0 | denotes the area element. Assuming a static

sensor, we drop the dependency of T0 on x0 for clarity. We further reparameterize the
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Appendix C. Derivations for di�erentiable SDF rendering

second ray to obtain:

� (c) =

∫
S2

50(T0(80, c), c) |T0 |∫
S2

51

(
T0(80, c),T1(81, x1(T0(80, c), c), c),

x1(T0(80, c), c), c

)
|T1 | d81 d80. (C.13)

The second reparameterization can now potentially depend on the �rst reparameteriza-

tion, and hence c , through the position x1. On top of that, x1 might also directly depend

on the parameters, e.g., if c controls the distance of the object from the sensor, x1 will

move away or closer to the sensor as c changes.

The remaining question is whether our reparameterization T1 still evaluates to the

correct motion over the unit sphere when di�erentiated. This can be validated by plug-

ging the parameter-dependent position into the de�nition of our reparameterization.

Equation 6.6 now needs to evaluateV using a parameter-dependent position x:

mcV(xC (c), c) = mcV(x(c) + C8, c). (C.14)

We previously assumed the ray origin to be �xed and did not consider the parameter

dependence of xC . Here we simpli�ed the notation by omitting the explicit dependency

of x on T0.

We can now use the following fact: when solving the inner integral and integrating

over secondary rays, x(c) is �xed. That means that the dependency of x on c can be

re-interpreted as simply another way in which the SDF values depend on c . When

evaluating V we therefore need to evaluate

V(xC (c), c) = −
mxq (xC (c0), c0)

∥mxq (xC (c0), c0)∥
2
q (xC (c), c) . (C.15)

It is important to detach the evaluation of the positional gradient from the parameter

dependence introduced through x. With this, we moved the parameter dependency of

x into the vector �eld evaluation, which then in turn guarantees the correct (relative)

motion of the surface, as our formulation of V does not assume any speci�c relation

of c and q in order to produce a valid reparameterization. For future work, it could be

interesting to generalize these derivations to path space, similar to the work by Zhang

et al. [160].
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D | Non-exponential transmi�ance

D.1 Ray marching algorithm

We use ray marching to estimate the transmittance by our model. Our transmittance

model was de�ned to be:

T(x, y) =1 +

∫ ∥x−y∥

0

m5

mg

(
5 −1 (T(x, xC ), W (C)) , W (C)

)
fC (C) dC (D.1)

To evaluate the transmittance, we need to approximate the value of this integral. We

can do that by applying a Riemann summation:

T(x, y) ≈ 1 +

#∑
8=1

m5

mg

(
5 −1 (T8−1, W (C8)) , W (C8)

)
fC (C8)Δstep (D.2)

where for convenience we de�ned the transmittance after 8 − 1 steps in the summation

as T8−1 (with T0 = 1). However, when trying to use this formulation, one will encounter

an issue. Our transmittance model was derived using the fundamental theorem of cal-

culus, but the fundamental theorem of calculus does not hold under a basic Riemann

summation. This can be �xed by also using a discrete version of the derivative term in

the integrand. We use a �nite di�erence approximation with the step size of fCΔstep:

m5

mg
(g,W) ≈

1

fCΔstep

[
5 (g + fCΔstep, W) − 5 (g,W)

]
(D.3)

Using the extinction as the �nite di�erence o�set is convenient, as the division by it will

then cancel out with the fCΔstep term in the original Riemann sum:

T(x, y) ≈ 1 +

#∑
8=1

1

fC (C8)Δstep

[
5

(
5 −1(T8−1, W (C8)) + fC (C8)Δstep, W (C8), W (C8)

)
− 5

(
5 −1(T8−1, W (C8)), W (C8)

) ]
fC (C8)Δstep

= 1 +

#∑
8=1

5
(
5 −1(T8−1, W (C8)) + fC (C8)Δstep, W (C8)

)
− T8−1

(D.4)

In the last step, we actually arrive at a telescoping sum. This means that we can also

write the ray marching algorithm as a simple recursive function:

T(x, y) ≈ 5
(
5 −1 (T#−1, W (C8)) + fC (C8)Δstep, W (C8)

)
(D.5)
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Appendix D. Non-exponential transmittance

Each iteration in the ray marching algorithm can simply just update the current value

of T based on its previous value and the current values for fC and W .

To evaluate our model, we need to invert the transmittance function 5 (g,W) with re-

spect to the �rst parameter. The simple form of 5 allows expressing the inverse explicitly

using the Lambert, function:

5 −1(~,W) =




2 − 2~ W = 0

− log(~/W) W exp(−2) > ~

2
~+W−1
W−1

+,
[
−2W exp

(
−2

~+W−1
W−1

)]
W exp(−2) ≤ ~

. (D.6)

D.2 Volume access statistics

In the following, we provide additional statistics on the number of non-empty voxels ac-

cessed at render time. This shows that a sparse voxelization of the scene scales favorably

as the resolution increases.

Resolution 16 32 64 128

City building 153.1 204.9 231.1 257.2

City 97.7 102.6 128.3 161.0

Trees 122.9 177.9 242.5 283.9

Checkerboards 230.2 291.9 288.8 310.4

Fractal 269.1 347.8 474.4 532.7

Plane 126.5 125.9 152.1 150.1

Table D.1: The amount of non-empty voxel data accessed per sample for di�erent scenes and resolutions.

The reported numbers are the average number of bytes accessed while rendering di�erent views of the

scene. The data is measured per sample, using multiple sca�ering and next event estimation. These

measurements show that the growth in data access size is sublinear as the volume resolution increases.
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