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Abstract
This thesis consists of three applications of machine learning techniques to risk management.

The first chapter proposes a deep learning approach to estimate physical forward default

intensities of companies. Default probabilities are computed using artificial neural networks

to estimate the intensities of the inhomogeneous Poisson processes governing default process.

The major contribution to previous literature is to allow the estimation of non-linear forward

intensities by using neural networks instead of classical maximum likelihood estimation. The

model specification allows an easy replication of previous literature using linear assumption

and shows the improvement that can be achieved.

The second chapter, titled ‘Causal Networks with Neural Networks‘ is a co-authored work with

Damir Filipović (SFI & EPFL), Negar Kiyavash (EPFL) and Jalal Etesami (EPFL). We develop a

data-driven framework to identify the interconnections between firms using an information-

theoretic measure. This measure generalizes Granger causality and is capable of detecting

nonlinear relationships within a network. Moreover, we develop an algorithm using recurrent

neural networks and Granger causality to identify the interconnections of high-dimensional

nonlinear systems. The outcome of this algorithm is the causal graph encoding the intercon-

nections among the firms. These causal graphs can be used as preliminary feature selection

for another predictive model or for systemic risk management. We evaluate the performance

of our algorithm using both synthetic linear and nonlinear experiments and apply it to the

daily stock returns of US listed firms and infer their interconnections from 1990 to 2020.

The third chapter, titled ‘StockTwits Classified Sentiment and Stock Returns‘ is a co-authored

work with Damir Filipović (SFI & EPFL). We classify the sentiment of a large sample of Stock-

Twits messages as bullish, bearish or neutral, and create a stock-aggregate daily sentiment

polarity measure. Polarity is positively associated with contemporaneous stock returns. On

average, polarity is not able to predict next-day stock returns. But when we focus on specific

events, defined as sudden peaks of message volume, polarity has predictive power on abnor-

mal returns. Polarity-sorted portfolios illustrate the economic relevance of our sentiment

measure.

Keywords: Risk management, machine learning, neural networks, asset pricing, big data,

alternative data.
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Résumé
Cette thèse est composée de trois applications de techniques d’apprentissage automatique à

la gestion des risques.

Le premier chapitre propose une approche d’apprentissage automatique profond pour es-

timer les probabilités physiques de défaut des entreprises. Les probabilités de défaut sont

calculées en utilisant des réseaux de neurones artificiels pour estimer les intensités des pro-

cessus de Poisson non-homogènes qui gouvernent les processus stochastiques de défaut. La

contribution majeure apportée à la littérature existante est de rendre possible l’estimation

non-linéaire des intensités en utilisant les réseaux de neurones artificiels au lieu de la clas-

sique estimation du maximum de vraisemblance. Les propriétés du modèle autorisent une

réplication aisée de la littérature existante (qui utilise l’hypothèse de linéarité de l’intensité) et

montre l’amélioration qui peut être obtenue.

Le deuxième chapitre, intitulé ‘Causal Networks wih Neural Networks‘ est un travail conjoint

avec Damir Filipović (SFI & EPFL), Negar Kiyavash (EPFL) et Jalal Etesami (EPFL). Nous déve-

loppons un modèle axé sur les données et reposant sur une mesure d’information théorique

pour identifier les interconnexions entre les entreprises. Cette mesure utilise la causalité de

Granger et est capable de détecter des relations non-linéaires à l’intérieur d’un réseau. De

plus, nous développons un algorithme qui utilise les réseaux de neurones récurrents ainsi que

la causalité de Granger pour identifier les interconnexions dans les systèmes non-linéaires à

haute dimension. Le résultat de cet algorithme est le diagramme causal encodant les inter-

connexions des entreprises. Ces diagrammes causaux peuvent être utilisés comme modèles

préliminaires de sélection de variables d’un autre modèle de prédiction ou pour la gestion

de risque systémique. Nous évaluons en premier lieu la performance de notre algorithme

en utilisant des expériences synthétiques linéaires et non-linéaires puis nous appliquons

notre modèle aux rendements journaliers d’actions américaines cotées pour en déduire leurs

interconnexions de 1990 à 2020.

Le troisième chapitre, intitulé ‘StockTwits Classified Sentiment and Stock Returns‘ est un

travail conjoint avec Damir Filipović (SFI & EPFL). Nous classifions le sentiment d’un large

échantillon de messages provenant de StockTwits dans la classe haussière, baissière ou neutre

pour créer des séries temporelles de polarité propres à chaque entreprise. La polarité est

associée positivement aux rendements d’actions contemporains. En moyenne, la polarité n’est

v



Résumé

pas capable de prédire les rendements du jour suivant mais lorsque nous nous focalisons sur

des évenements spécifiques, définis par une augmentation soudaine du volume de messages,

la polarité a de la puissance prédictive sur les rendements anormaux. Nous illustrons la perti-

nence économique de notre mesure de sentiment avec des portefeuilles triés par polarité.

Mots-clés: Gestion des risques, apprentissage automatique, réseaux de neurones artificiels,

évaluation d’actifs, mégadonnées, données alternatives.
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Introduction

Improved computational power, the rise of Big Data and recent developments in machine

learning have created new areas of research in finance. This thesis consists of three machine

learning applications to risk management. The first two chapters use neural networks to

mitigate default and systemic risk and the last chapter is a financial sentiment analysis using

natural language processing.

The first chapter builds on the works from Duffie et al. (2007) and Duan et al. (2012). Both

models use a doubly stochastic argument to derive multi-period default probabilities. In

particular, they estimate the intensities of two Poisson processes, one governing default and

the other governing other exits. Duffie et al. (2007) generate future random values for the

covariates using a VAR process while Duan et al. (2012) relax this assumption and use forward

intensities. The latter specify the intensities as a linear function of state variables and uses

maximum likelihood to estimate the parameters. The first chapter of this thesis extends

existing literature by removing the assumption of linear intensities and uses artificial neural

networks to estimate the intensities of the Poisson processes. Neural networks are well-suited

in this framework because they allow an easy replication of the linear formulation in Duan et al.

(2012). Increasing the network’s width and depth allows for non-linearities and out-of-sample

Lorenz Curves show that the neural network’s approach outperforms the linear assumption

for every horizon. Finally, I show what the most important predictors of default in the short

and longer term are.

Interdepencies in a network are at the heart of systemic risk. The second chapter - connected

to the first one as another application of neural networks to risk management - employs

Granger causality to identify interconnections among a set of institutions. We build an infor-

mation measure known as directed information (DI) capable of capturing causal relationships

in both linear and non-linear systems. The output of this approach is a directed graph that

visualizes the interconnections among a set of time series. Computing DI has high computa-

tional and sample complexity which makes it not suitable for inferring the causal structure of

large networks. To overcome this problem, we develop a novel approach based on recurrent

neural networks that reduces the complexity of evaluating DI in high-dimensional settings. We

show that our approach performs well both in linear and non-linear simulated environments,

then apply it to infer the causal relationships among US firms from 1990 to 2020.
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Introduction

The last chapter uses natural language processing to assess the predictive power of social

media on stock returns. We scrape a large sample of messages from Stocktwits, a microblogging

platform similar to Twitter but designed for finance professionals. One of the challenges in

this context is to create a classifier that understands the vocabulary of the messages posted by

the users. After preprocessing steps, we use TFIDF vectorization to compute the importance

of each word in a message. This transforms the messages from a sequence of words to a vector

of numbers which is in the same dimension as the vocabulary. Next, we build two adversarial

logistic regressions using the TFIDF vectors as features and the user-labels as targets. The first

(second) classifier sets bullish (bearish) as positive and non-bullish (non-bearish) as negative

class. When the models agree, the classification is trivial and when they disagree, we treat the

tweet as neutral. This procedure allows us to create an artificial neutral class that absorbs all

the tweets that do not convey financial information. Finally, with daily intervals, we aggregate

the predicted sentiments per ticker to compute daily polarity time series. We then use the

daily volume of messages on a given firm to identify sudden peaks of activity, indicating

a firm event. Computing cumulative average abnormal return and cumulative abnormal

polarity in a 41 days window centered at the identified event, we show that abnormal polarities

have significant predictive power on the type of event. The performance of sentiment-sorted

portfolios illustrates the economic relevance of our sentiment measure.

2



1 A deep learning approach to estimate
forward default intensities

1.1 Introduction

The first default prediction models appeared forty years ago with the first generation model

presented by Altman (1968). This work led to the so-called Altman Z-score formula which uses

accounting data to compute the default probability of a firm in the next two years. However,

when used for financial firms, Altman’s Z-score formula needs to be used with care because, as

I discuss in this chapter, financial firms have to be treated carefully due to their frequent use of

off-balance sheet financing. Twenty years later, a second generation of reduced-form models

used econometrical tools such as maximum likelihood, probit, and logit regressions. The major

drawback of these models is that they do not provide multi-period forecasts. One innovative

recent development is the use of a doubly stochastic Poisson intensity model combined with

multiple logistic regressions to account for multi-period default probability estimation. This

model is proposed by Duffie et al. (2007) in Multi-period corporate default prediction with

stochastic covariates. Their main contribution over prior work is to take advantage of the

explanatory covariates’ dynamics in order to estimate the multiperiod likelihood of default.

Their model employs firm-specific and macroeconomic data to create a Markov state vector X t

in order to compute independent firm default intensitiesλ(t ) and other types of exit intensities

φ(t ). The model proposed in Duffie et al. (2007) is the first one capable of multi-period default

probability estimation using time dynamics of covariates X t . The applications of Duffie et al.

(2007) are various. We can find them in credit rating by credit rating agencies, banks who want

to calculate the minimal amount of capital to be held and other researches analyzing the link

between macroeconomic cycles and firm’s default probabilities. Covariates used by Duffie

et al. (2007) are firm’s trailing one-year stock return, Distance-to-Default, trailing one-year

return on S&P500 and three-month Treasury bill rate. Estimating their model on US-listed

industrial firms between 1980 and 2004, they find that Distance-to-Default and the current

state of the economy have a significant impact on default hazard rates.

3



Chapter 1. A deep learning approach to estimate forward default intensities

The two papers closest to this chapter are from Duffie et al. (2007) and Duan et al. (2012). The

first model uses the doubly stochastic argument to derive multi-period default probabilities.

To do so, it requires strong assumptions (e.g. vector autoregressive process) regarding the

behavior of the time series of covariates to generate future random values for the covariates. If

the process is misspecified, biases are introduced both in the forecasted covariates and in the

future default probabilities. Five years later, Duan et al. (2012) show that we can relax the VAR

assumption with the use of forward intensities. Their paper explains how we can reduce biases

by projecting current event realizations on past data. For convenience, the authors specify

intensities as a linear function of state variables. I wish to extend the latter by removing the

assumption of linear intensities and use an artificial neural network to estimate the intensities

of the Poisson processes governing both default and other exits. Machine learning techniques

for default probabilities estimation are increasingly drawing attention. Altman et al. (2017)

test several machine learning models to predict bankruptcy one year prior to the event. They

document a substantial improvement in prediction accuracy using the Z-score as well as six

complementary financial variables. However, pure data-driven models often lack economic

relevance and this is where the forward intensity model can contribute to the literature. The

forward intensity model is able to provide multi-period predictions while being supported by

an economic and econometric background.

In Duffie et al. (2007), one of the main assumptions is that the covariates governing both

default and other exits intensities follow a high-dimensional vector autoregressive (VAR)

process. Using this type of process forces the model to greatly reduce either the number of

firms in the sample or the number of state variables explaining firm attributes; if one does not

restrict the number of firms or variables in the estimation, the dimension of the model will

simply be too high and it will considerably increase computational time. A major step forward

made in Duan et al. (2012) is to get rid of the VAR process in order to reduce computational

time by using a new reduced-form approach based on a forward intensity model. These

forward intensities produce a term structure of bankruptcy probabilities without using any

sort of high-dimensional process. Using this method allows the model to incorporate a lot

more state variables or individual firms in the sample. Moreover, Duan et al. (2012) state

that their model may also improve robustness to misspecification because in a VAR model,

estimation of future values are highly sensitive to any bias. On the other side, the forward

intensity model approach is a projection of past observations on current realizations, which

does not involve random estimation of future values.

Regarding covariates used, both Duan et al. (2012) and Duffie et al. (2007) estimate their

own Distance-to-Default (hereafter DtD). An important aspect to highlight is that Distances-

to-Default specified in Duffie et al. (2007) differ from those estimated in Duan et al. (2012)

since the former estimate DtD using the variance restriction method (see (Duan and Wang,

2012)) while the latter use the transformed-data maximum likelihood estimation method to

account for financial firms. The variance restriction method is a popular way to implement

the Merton (1974) model but fails at estimating properly the default point for financial firms.

Following the KMV assumption (see Crosbie and Bohn (2003)), the default point in this method
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1.2 Methodology

is specified as short-term debt plus one half of long-term debt and does not take into account

other liabilities. However, it is well-known that financial firms such as banks specify a high

portion of their debt as other liabilities. Hence, to include financial firms in the sample, the

default point has to be adjusted to the sum of short-term debt, one half of long-term debt and

a fraction δ of other liabilities. Duan et al. (2012) use a maximum likelihood estimation in

order to compute the unknown fraction δ. The Appendix provides additional methodological

information on the DtD estimation using the variance restriction method and the maximum

likelihood estimation.

To summarize, the forward intensity model requires an assumption to link covariates to

intensities. Duan et al. (2012) use a linear assumption and a maximum likelihood to estimate

those parameters. This chapter contributes to previous literature by using neural networks to

relax the linear assumption of forward intensities. Neural networks allow the estimation of

highly non-linear functions without specifying the form of the relationships. The remainder

of this chapter is structured as follows. Section 1.2 sets up the reduced-form model of default,

develops the likelihood function used as loss function later on and describes the neural

network approach. Section 1.3 discusses summary statistics of the dataset used. Section 1.4

presents the results. Section 1.5 concludes. Appendix A.1 at the end of the thesis contains

several proofs and more details on the Distance-to-Default estimation.

1.2 Methodology

1.2.1 Default model

The model adds to the literature on reduced-form models of default for multiperiod corporate

prediction using the doubly stochastic formulation as in Duffie et al. (2007) and Duan et al.

(2012) (Duan henceforth). The default’s time is modeled as the stopping time

τD = inf{t : Nt > 0, Mt = 0}, (1.1)

where Nt and Mt are the counting processes governing default and other exits respectively.

Similarly, the stopping time for combined exits is denoted by

τC = inf{t : Nt > 0∧Mt > 0}. (1.2)

We have the following :

if the firm exits due to default, τCi = τDi ,

if the firm does not exits due to default, τCi < τDi .

}
⇒ τCi ≤ τDi

Let us denote by Zi t the set of firm-specific variables at time t for the firm i and Yt the set of

macroeconomic variables at time t . Let t 0
i be the first time of entry of firm i in the dataset.
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Chapter 1. A deep learning approach to estimate forward default intensities

The econometrician’s information set Ft at time t is thus

Ft = {Ys : s ≤ t }∪G1t ∪G2t ...∪GN t , (1.3)

where

Gi t = {(1τCi <u ,1τDi <u , Zi u) : t 0
i ≤ u ≤ min(τD ,τC , t )}. (1.4)

Start Data End Data

t 0
i τDi

Figure 1.1: Example of the lifespan of a firm
Each dot corresponds to a time period where the econometrician gathers firm-specific (if available)
and macroeconomic variables. t 0

i is the entry time of the firm i and τDi denotes the default time of
firm i .

In Figure 1.1, each dot corresponds to a period. At each period, the econometrician gathers

firm-specific variables (DtD, Cash/Total Assets, Net Income/Total Assets, ...) and macroeco-

nomic variables (S&P500 return, treasury rate). For a particular point in time t , the econome-

trician knows the time series of macroeconomic variables until t irrespective of t 0
i , and the

time series of firm-specific variables from t 0
i to τDi if t 0

i ≤ t and t ≤ τDi . Following Duffie et al.

(2007), the conditional probability of default within s years can be computed as

P[τD < t + s|Ft ] = Et

[∫ t+s

t
e−

∫ z
t (λ(u)+φ(u))du ·λ(z)d z

]
. (1.5)

The probability of default is a function of intensities λ (default) and φ (other exits). However,

these intensities are unknown and unobservable. In Duffie et al. (2007), the state variables

governing Poisson intensities are assumed to follow a specific vector autoregressive (VAR)

process. This assumption is relaxed in Duan’s paper by using forward intensity rates. Instead of

modeling λi t and φi t as some functions of state variables available at time t , Duan et al. (2012)

propose to deal with fi t (τ) and gi t (τ) directly as functions of state variables available at time t

and the forward starting time of interest τ. The analogy to interest rates would be that λt is

the short rate and ft (u) is the forward rate for horizon u. Duan et al. (2012) propose a model

to predict corporate defaults at multiple horizons by estimating these forward intensities via

maximum likelihood. To do so, they use a linear assumption in the relationship between

the variables and the forward intensities (i.e. fi t (τ) = exp(α0(τ)+α1(τ)xi t ,1 +α2(τ)xi t ,2 + ...+
αk (τ)xi t ,k ). However, it is highly likely that default intensities depend on those covariates

in a non-linear way. I propose to use an artificial neural network (ANN) to find the set of

weights governing the process fi t and gi t . I show that I am able to capture potential non-linear

relationships between the state variables and the forward intensities, which significantly

improve forecasts.
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1.2 Methodology

Forward intensities

Since we do not have the exact knowledge ofλ andφ, Duan et al. (2012) propose to use forward

intensity rates. However, the default probability given in equation 1.5 (which depends on

spot intensities) needs to be translated into a formula that depends on forward intensities. To

do so, we first compute the survival probability as a function of forward combined intensity,

which will later be used to compute the probability of default as a function of both combined

and default forward intensities. Let us denote Fi t (τ) the conditional distribution function

of the combined (default and other exits) exit time evaluated at t +τ. Hence, 1-Fi t (τ) is the

probability of surviving in the interval [t , t +τ]. Therefore, we have :

1−Fi t (τ) = E[e−
∫ t+τ

t (λ(s)+φ(s))d s]. (1.6)

Next, let us introduce the quantity ψi t (τ) to be :

ψi t (τ) ≡− ln(1−Fi t (τ))

τ
≡− ln(E[e−

∫ t+τ
t (λ(s)+φ(s))d s])

τ
. (1.7)

Reverting equation 1.7 gives :

e−ψi t (τ)·τ = 1−Fi t (τ). (1.8)

Where e−ψi t (τ)·τ is again the survival probability. We now need to compute ψi t (τ) ·τ. At this

point, Duan et al. (2012) make the assumption thatψi t is differentiable and define the forward

combined exit intensity as

gi t (τ) ≡ F ′
i t

1−Fi t
. (1.9)

Equation 1.9 comes from the definition of a hazard rate function. Referring Schönbucher

(2003), the definition of a hazard rate function is the following:

Definition 1.2.1 (Hazard rate). Let τ be a stopping time and F (T ) ≡P[τ≤ T ] its distribution

function. Assume that F (T ) < 1∀T , and that F(T) has a density f(T). The hazard rate function

h of τ is :

h(T ) ≡ f (T )

1−F (T )
.

A hazard rate is the local arrival probability of a stopping time per time interval. Under suitable

regularity conditions, intensities and hazard rates are closely similar. In particular, in our

doubly-stochastic framework, hazard rates and intensities are equivalent. Hence, in Duan

et al. (2012) and this chapter, λ(t) = h(t) and thus the distinction between hazard rates and

intensity is not made.
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Chapter 1. A deep learning approach to estimate forward default intensities

The relation between gi t (τ) and ψi t (τ) is given by :

gi t (τ) = F ′
i t (τ)

1−Fi t (τ)

=ψi t (τ)+ψ′
i t (τ)τ. (1.10)

Next, we can compute1 the quantity ψi t (τ)τ that we were looking for as :

ψi t (τ)τ=
∫ τ

0
gi t (s)d s. (1.11)

Hence, the probability of surviving over [t,t+τ] is given by :

P[τc > t +τ|Ft ] = exp(−
∫ τ

0
gi t (s)d s). (1.12)

The forward default intensity for horizon τ is defined as the limit for a small time step of the

probability of defaulting in this small time step given that the firm survives until the considered

horizon. The probability is Bayesian and the forward default intensity denoted fi t (τ) is the

following :

fi t (τ) ≡
lim∆t→0

P[t +τ< τDi = τCi ≤ t +τ+∆t ]

∆t
e−ψi t (τ)·τ . (1.13)

Hence, the probability of defaulting between t and t +τ is given by :

∫ τ

0
e−ψi t (s)s fi t (s)d s =

∫ τ

0
e−

∫ s
0 gi t (u)du fi t (s)d s. (1.14)

Likelihood function

In this setup, the likelihood function depends on three types of probabilities (default, other exit

and surviving) which themselves depend on two types of intensities (default and other exits).

The negative log-likelihood function has to be adjusted to the neural network framework

and can be used as an objective function to be minimized by feeding batches of data points.

Batch feeding is a common practice in machine learning and consists in splitting the available

data in subsets of fixed size. Next, each backward pass takes one batch to perform a gradient

descent to update the parameters of the model.

1Proofs of the following formulations can be found in Appendix A.1.
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To allow further comparison with Duan et al. (2012), I employ the same discretization of time:

t = 0,1,2, ... and τ = 0,1,2, ... are time sequences of one month increments. Similarly, fi t (τ)

and gi t (τ) are forward intensities computed at time t for the period [t+τ, t+τ+1]. The use

of the τ index is to account for multiperiod prediction. When τ = 0, the forward intensity

model computes spot intensities. When we set τ= 1, the forward intensity model produces

estimates one step ahead, and so forth. I denote Xi t = (xi t ,1, xi t ,2, ...) the set of firm-specific

and macroeconomic variables explaining both default and combined exit intensities. As

specified in Duan et al. (2012), fi t (τ) and gi t (τ) are functions of Xi t and can be specified as

any form of function as long as they satisfy the constraints that follow. Since combined exit

intensity has to be greater than or equal to default intensity, we need to make sure that the

forms specified for fi t (τ) and gi t (τ) satisfy the following conditions : fi t (τ) ≤ gi t (τ), fi t (τ) > 0,

gi t (τ) > 0.

I design two neural networks. One is trained to compute fi t and the other is trained to output

hi t where gi t = fi t +hi t . I impose non-negativity on outputs of both models such that the

combined exit intensity will never be smaller than the default intensity for all horizons. Let

us denote λ and µ the set of parameters (weights) tuned in the neural network for fi t and

hi t respectively. N (λ) and N (µ) represent the output of the neural network for fi t and hi t

respectively. The log-likelihood for prediction horizon τ is expressed2 as

L (λ(s)) =
N∑

i=1

T−s−1∑
t=0

Li ,t (λ(s)), s = 0,1, ...,τ−1 (1.15)

L (µ(s)) =
N∑

i=1

T−s−1∑
t=0

Li ,t (µ(s)), s = 0,1, ...,τ−1 (1.16)

where

Li ,t (λ(s)) = 1t0i≤t ,τCi>t+s+1︸ ︷︷ ︸
(1)

·(−N (λ)
i t (s))∆t ) (1.17)

+1t0i≤t ,τDi=τCi≤t+s+1︸ ︷︷ ︸
(2)

· ln(1−exp[−N (λ)
i t (s)∆t ])

+1t0i≤t ,τDi ̸=τCi ,τCi≤t+s+1︸ ︷︷ ︸
(3)

·(−N (λ)
i t (s)∆t ),

Li ,t (µ(s)) = 1t0i≤t ,τCi>t+s+1︸ ︷︷ ︸
(1)

·(−N (µ)
i t (s)∆t ) (1.18)

+1t0i≤t ,τDi ̸=τCi ,τCi≤t+s+1︸ ︷︷ ︸
(3)

· ln(1−exp(−N (µ)
i t (s))∆t )).

2Proof of the above formulation can be found in Appendix A.1.
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Chapter 1. A deep learning approach to estimate forward default intensities

The likelihoods (1.17) and (1.18) are the sum of the products between event indicator functions

and their respective occurence probability. I define the indicator function 1A<B to be one if

A < B or zero otherwise. These likelihoods specify three mutually exclusive indicator functions,

defining three cases over the time interval [t , t +τ+1]:

1. The firm does not exit the sample between t and t +τ and is classified as surviving. This

case is specified as (1) in the likelihood because the combined exit time τCi is not in the

interval [t , t +τ+1].

2. The firm defaults and exits the sample during the interval. This case is specified as

(2) because τCi = τDi when the firm exits due to default jointly with τDi being in the

interval [t , t +τ+1].

3. The firm exits the sample for other reasons. This case is specified in (3) since the stopping

time τDi ̸= τCi jointly with τCi ≤ t +τ+1.

As in previous studies, the likelihood functions still exhibit the decomposable property which

allows to estimate the model for each horizon of prediction independently.

Since the intensities are directly driven by the covariates, Duan et al. (2012) require an as-

sumption on the mapping from the covariates to these intensities. In Duan et al. (2012) the

mapping is made with a linear assumption, whereas in the framework of this chapter, the

mapping depends on the whole architecture of the neural network. When the neural network

has only one hidden layer of one neuron coupled with an exponential activation function, the

model boils down to Duan et al. (2012) since the intensities would be a linear combination of

the covariates. As the width and depth of the network increases, we depart more and more

from the linear assumption and we allow more non-linearities to be incorporated in these

intensities.

1.2.2 Neural Networks

Neural networks can be seen as a very general function to map a given input (in this case

firm-specific and macroeconomic variables) into a desired output (forward intensities). They

learn how to compute the output by tuning weights in order to minimize a given loss function.

A neural network is constructed by juxtaposing several hidden layers of neurons. The input of

each layer is a data transformation of the output of the previous layer. Initially, the weights

of the network are assigned random values. Then, the training process starts and consists of

many iterations of a forward pass and a backward pass. The forward pass takes as input a

batch of data and computes the loss value; the backward pass then computes the gradient and

adjusts the weights of the network based on a learning rate hyperparameter. As an illustration,

Figure 1.2 shows a neural network with 2 hidden layers : 5 neurons in the first layer and

3 neurons in the second layer. In this example, 3 features (inputs) are fed to the network.
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Each feature is connected to the first hidden layer by a set of weights. The outputs of the

first layer are also weighted to produce the inputs of the second hidden layer. Non-linearity

is introduced in each node by a non-linear activation function (e.g. sigmoid). Finally, the

output of the second hidden layer is aggregated to produce the final output of the model.

The neural networks in this chapter are implemented in Python using the library TensorFlow.

Approximately one hour of computing time is needed to fit all networks on a 32GB RAM quad

core 2.7 GHz computer.3

Input #1

Input #2

Input #3

1
1+e−x

1
1+e−x

1
1+e−x

1
1+e−x

1
1+e−x

Hidden

Layer 1

1
1+e−x

1
1+e−x

1
1+e−x

Hidden

Layer 2

Output

Input

Layer

Output

Layer

Figure 1.2: Illustration of a neural network [5, 3]
In this network, there are three input features (green circles), five neurons in the first hidden layer and
3 neurons in the second hidden layer. Each neuron is activated with a sigmoid function.

The use of neural networks can be motivated twofold. First, neural networks are well suited

to approximating a function (in our case forward intensities) with the advantage of having

different degrees of modularity. By definition, the architecture of the network generates the

form of the function approximated. A deeper network allows for more non-linearities in the

approximation of the function, at the expense of having more parameters to estimate. For

instance, suppose that every observation comes with 12 input features (i.e. x is a vector of

shape 1x12), a neural network [5, 3] (i.e. 2 layers neural network with 5 neurons in the first

hidden layer and 3 neurons in the second hidden layer) can be viewed as a function computing

the output N (λ)
i t in the following way :

N (λ)
i t =

[
φ1(

[
φ2(

[
x
]

1×12

[
w1

]
12×5

+
[

b1

]
1×5

)
]

1×5

[
w2

]
5×3

+
[

b2

]
1×3

)
]

1×3

[
w

]
3×1

,

3GPU computing is not necessary in this context as the networks are small.
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Chapter 1. A deep learning approach to estimate forward default intensities

with the activation functions being for instance the sigmoid function φ1(x) =φ2(x) = 1
1+e−x ,

x being the data input, w1, w2 and w weight matrices and b1 and b2 biases matrices. In this

architecture, the number of parameters to estimate is equal to 12x5 + 1x5 + 5x3 + 1x3 + 3x1 =

86.

Second, neural networks are well-suited for this chapter because they allow an easy replication

of the benchmark model Duan et al. (2012). More specifically, if the activation function φ(x) is

chosen as being an exponential exp(x), and the network architecture is [1] (i.e. a single hidden

layer with a single neuron), the output N (λ)
i t becomes the linear assumption

N (λ)
i t =φ(

[
x
]

1×12
·
[

w
]

12×1
+

[
b1

]
1×1

)

= exp(b1+w1 · x1 +w2 · x2 + ...+w12 · x12),

The results from this architecture are described in Section 4.

1.3 Empirical section

1.3.1 Data

The accounting data is taken from the Wharton Research Data Services (WRDS) using the

CRSP/Compustat merged database. The macroeconomic data is taken from CRSP, the Federal

Reserve Bank Reports and Datastream. The bankrupcty data is taken from the Compustat

database, using the DLRSN item for the reason of deletion and the DLDTE item for the date of

deletion. DLRSN contains the code that indicates the reason why a company becomes inactive

on the database. I consider firms with a DLRSN code 2 (bankruptcy) or 3 (liquidation) to be

defaulted, any other DLRSN code as other exits and no DLRSN code as surviving. For additional

information on DLRSN and DLDTE codes, I refer to the Wharton WRDS documentation. I

focus on the period from 1991 to 2018 to match the accounting data with the bankruptcy data.

Using the WRDS database, I download accounting information for every company that has

been listed someday on either NYSE, AMEX or NASDAQ between 1991 and 2018. The dataset

spans 27 years of data where firms entered and/or exited anywhere in this sample. Using this

kind of sample brings a problem of cylindric data : firm’s entering/exiting time are not the

same for each company. The dataset is represented as a three dimensional matrix with the

x-axis being features (i.e. variables), the y-axis being time, and the z-axis being firms. I fill

the matrix with missing values for elements where firm i does not exist or already left at time

t . Since neural networks need a lot of data points to be well trained, I choose not to remove

firms even if they have a short lifespan. When a firm has a variable completely missing, I drop

the whole firm because the likelihood is not specified if a variable is fully missing. However,

when the variable is not fully missing but only some data points are not available, I use the

last available information before the missing entry. I winsorize all variables at the 2.5 and 97.5
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Horizon Survivals Defaults Other exits
0 2’025’094 514 10’746
3 1’972’063 499 10’713
6 1’918’061 499 10’392
12 1’811’323 454 10’393
24 1’610’242 382 9’193
35 1’457’240 343 8’295

Table 1.1: Number of observations in each category for each horizon of prediction τ
These correspond to the firm-month observations used in the likelihood for horizon τ.

percentile. Finally, I standardize all variables by substracting the mean of the variable and

dividing the result by its standard deviation. The variables in the test set are also standardized

using their respective mean and standard deviation from the training set. Table 1.1 shows the

number of firms in the three categories for each horizon of prediction τ, which corresponds

to the firm-month observations used in the likelihood for horizon τ (see equations 1.17 and

1.18). Figure 1.3 shows the total number of firms that defaulted, survived or exited for other

reasons plotted on a year on year basis.

Figure 1.3: Defaults, exits for other reasons and survivals each year
The top plot shows the number of defaulted firms, the middle plot shows the number of exits for other
reasons and the bottom plot shows the number of firms surviving each year.

Leippold et al. (2012) use a theoretical model to show that the most powerful default predictor

must incorporate both macroeconomic and accounting data. For more transparency and to

allow better comparison with previous literature, I choose to work with a similar set of features

than the benchmark model Duan et al. (2012). Firm-specific values are common to each firm,

macroeconomics variables are function of market data. The exhaustive list of variables is the

following :
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1. SP500 : trailing 1-year return on the S&500 index.

2. Treasury : 3-month annualized US Treasury bill rate. I use this variable as the risk-free

rate r in the model.

3. CASH/TA : cash and short-term investment divided by total assets. Both quantities are

taken from the balance sheet of the company.

4. NI/TA : net income divided by total assets.

5. SIZE : log of the market equity value divided by the cross-sectional average market

equity value. The number of shares outsanding times the stock price gives the market

equity value.

6. DtD : the Distance-to-Default is a measure introduced in Merton (1974) to gauge how

close a firm is from default. In this chapter, the DtD is estimated using a maximum

likelihood taking into account other liabilities of each firm to handle financial firm’s bias.

It is well-known in the literature that DtD is a significant measure to estimate default

probabilities but has to be used jointly with other variables. See the Appendix A.1 for

additional information regarding the estimation procedure of DtD.

7. M/B : asset market value divded by the total book asset value.

To capture momentum of variables, I also compute one step rolling window differences for

each firm-specific variable. These variables are called “∆" followed by the name of the variable.

They represent whether the firm has been improving or deteriorating with respect to this

particular variable comparing to the last period performance. Given this model specification,

the∆ is particularly interesting because if a firm shows many consecutive negative delta values,

it means the company is in danger. However, it is also important to look at the level value to

compare a defaulted firm with a non-defaulted firm. The intuition tells us that prior default

time, a defaulted company should have shown lower level values (for instance, DtD) than a

non-defaulted firm.

1.3.2 Summary statistics

This section depicts the summary statistics of the dataset. Table 1.2 shows a summary of

the mean of each variable for the three categories of firms. Please note that we must be very

careful when comparing two means in this table. Comparing means needs to be done with

confidence intervals and significance tests, which involves standard deviations. This table is

presented to give a rough idea without performing any statistical inference. The table shows

that the average defaulted firm is smaller, has a lower DtD, a smaller Market-to-book ratio,

loses more money and has less cash than the average surviving firm. The prefixes ∆ in front of

the variables stand for the one-lag differences. Finally, Figure 1.4 shows the correlation matrix

for the twelve covariates.
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Surviving Default Other exits
Cash/TA 0.1952 0.1896 0.1851
NI/TA -0.0756 -0.2057 -0.129
Size -2.7845 -4.6743 -3.621
DtD 10.641 6.441 8.401
MBratio 2.3774 1.6995 2.202
∆ CASH/TA -0.0026 0.0023 -0.0074
∆NI/TA -0.0019 -0.0433 -0.0148
∆ Size -0.0305 -0.5095 -0.0939
∆DtD -0.1366 -0.7346 0.0295
∆MBratio -0.0285 0.0520 0.0801

Table 1.2: Mean of variables for surviving firms, defaulted firms and other exits
The prefix ∆ stands for a one period lagged difference.

Figure 1.4: Correlation matrix for firm-specific and macroeconomic covariates
Red values represent positive correlation coefficients, blue values shows negative correlation coeffi-
cients.
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1.4 Results

As for every neural network, we need to chose the optimal hyperparameters to achieve the

highest performance. In my setup, this consists mainly of choosing the architecture of the

model (i.e. the number of neurons and layers). To do so, there is currently no other better

method than trial and error. However, hyperparameters need to be carefully chosen to not

overfit the test set. To avoid any overfitting, I perform a 5-fold cross validation for each horizon

of prediction. I cut 15% of the dataset as test set, all results that I will talk about in this chapter

are out-of-sample and performed on the observations from the test set that the model has

never seen before. The remaining set of observations is partitioned into smaller subsets so

that in every fold of the validation a different subset is used as validation set and the rest is

used as training set. Finally, to measure the discriminatory power of the models, I use the

Lorenz curve (Lorenz (1905)) and I use the Gini coefficient as a scalar performance measure to

aggregate across folds to get the measure that I use to discriminate the models (see Definition

1.4.1 (Leippold et al. (2012))).

Definition 1.4.1 (Lorenz curve). The Lorenz curve of a predictor P is the two-dimensional

graph

(P{P ≤ p},P{P ≤ p|Y = 1}),

∀p ∈ (−∞,+∞).

The Lorenz curve plots on the x-axis the cumulative percentage of observations against the

fraction of defaults on the y-axis. These curves4 are often used in the literature for default

prediction (for instance Leippold et al. (2012), Duan et al. (2012)). They are different from

ROC curves and precision-recall curves because they do not rely on thresholds to discrimi-

nate between true positives and false positives. Hence, they are particularly well-suited as

performance measure in this model because of the multiperiod framework involved. The

idea is that if the model is outputting a false positive for an horizon τ but the true positive is

horizon τ+1, the model should not be too hardly penalized. The ROC and precision-recall

curves would treat this as a false positive even though the prediction was not that far from

the target. The idea behind the Lorenz curve is to order default probabilities and look how

they are distributed across defaulted and non-defaulted firms. We can easily see whether the

model is outputting high probabilities for defaulted firms and small probabilities for surviving

firms.

Finally, the Gini coefficient is used as the scalar summary statistic to compare the models. It

measures the degree of inequality of the Lorenz curve. A perfect model has a Gini coefficient

close to 1 and a poor model has a Gini coefficient of 0 (perfect equality).

4Similar plots exist also under different names (e.g. power curves, cumulative accuracy profiles).
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1.4 Results

Figure 1.5: Gini coefficient : Linear vs Neural Networks
The yellow line shows the Gini coefficient of the linear model for every horizon. The remaining
lines show the Gini coefficient for different neural network architectures. The green line is the best
performing model as it exhibits the highest Gini for every horizon.

1.4.1 Model choice

The choice of the optimal architecture of the neural network is made using k-fold cross-

validation. The average Gini coefficient across all folds for every horizon is used as a com-

parison tool to determine the best model architecture. If the architecture is too deep, the

implicit function computed in the network to output forward intensities incorporates too

many parameters and the risk of overfitting is larger, resulting in a lower accuracy measure.

Similarly, if the network is not deep enough, the forward intensities are computed using a

too simplistic representation and result in a low accuracy measure as well. This is usually

known in the machine learning literature as the bias-variance tradeoff. Figure 1.5 shows the

average Gini coefficient computed on the validation test across all folds of the cross validation

for each horizon. I compare the scores obtained with different network architectures with

those using the linear assumption. In this setup, one can interpret the architecture model as

the non-linearity degree because a higher architecture involves more weights in the output

function to be estimated. On another note, a pyramidal structure (i.e. the width of layer k

is strictly bigger than the width of layer k +1) usually improves accuracy while reducing the

number of parameters (see Ullah and Petrosino (2016) and Tripathy and Bilionis (2018)). For

these reasons, the architectures that I test in the cross-validation in Figure 1.5 are always

pyramid shaped. By disantangling the spaghettis, we can clearly see the bias-variance tradeoff.

Increasing the depth of the networks from the simplest neural network [1] to a two layers

network [2, 1] increases the Gini coefficients, in particular at mid horizons. This is probably

due to the non-linearities introduced via the second layer. Next, it looks like the [3, 2] performs

similarly as the [2, 1]; but we clearly see that [5, 3] dominates any other previous models. Fi-

nally, increasing the depth again to [10, 5] decreases Gini coefficient at all horizons, suggesting

a severe overfitting of the forward intensities function. For the following sections, I will now

only show out-of-sample results of the [5, 3] architecture using the test set.
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Horizon [5, 3] Linear

0 0.85 0.70
3 0.79 0.71
6 0.76 0.64
12 0.70 0.57
24 0.66 0.44
35 0.57 0.39

Table 1.3: Gini coefficients
Comparison of the out-of-sample Gini coefficients associated to the [5, 3] neural network and the linear
assumption.

1.4.2 Performance

Figure 1.6 shows Lorenz curves for horizons 0, 3, 6, 12, 24 and 35 but all results generalize well

to all other horizons. The curves are completely out-of-sample since they are computed on

the test set that the model has never seen before. Table 1.3 shows Gini coefficients for both

the linear assumption Duan et al. (2012) and for the [5, 3] for the same horizons. Overall, as

expected the neural network clearly outperforms the linear assumption, suggesting that the

linear assumption from Duan et al. (2012) can be greatly improved by adding non-linearities

in the specification of the intensities. Unfortunately, it is difficult to tell which kinds of non-

linearities should be taken into account since neural networks are often seen as a black box.

However, I will still try to answer this question by looking how the average intensity outputted

by the model changes when we change a feature ceteris paribus (see Section 1.4.4 dedicated to

sensitivities). Another attempt at answering this question is described in Section 1.4.3, where I

dive into the weights of the network to understand how the output is computed.

For comparison purposes, Figure 1.7 exhibits the Lorenz curves of the linear assumption, the

replication of the linear assumption in the neural network framework, and the [5, 3] model.

The linear assumption and its replication have a similar performance, showing that the neural

network “NN+exp+[1]" is indeed able to replicate the linear framework depicted in Duan et al.

(2012).
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1.4 Results

Horizon 0 Horizon 3

Horizon 6 Horizon 12

Horizon 24 Horizon 35

Figure 1.6: Out-of-sample Lorenz Curves for each horizon
The orange line shows the performance of Duan’s model and the red line shows the performance of the
[5, 3] neural network.

19



Chapter 1. A deep learning approach to estimate forward default intensities

Figure 1.7: Comparison with the benchmark model Duan et al. (2012)
The green line shows the performance of the [1] neural network (i.e. a single hidden layer with a single
neuron) with an exponential activation function. The orange line shows the performance of Duan’s
model and the red line shows the performance of the [5, 3] neural network.
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1.4.3 Computational graph

Figure 1.8 is a representation of a fully trained neural network for the forward default intensity

f at horizon 0. Negative weights are drawn as blue lines connecting neurons where orange

lines show positive weights. The thicker the line, the higher the weight is in absolute value.

Recall that each neuron is activated with a sigmoid function and the biases are not shown

on the graph. In the input layer, all variables seem to be used in the computation of the first

layer. In the first layer however, the second neuron presents a higher weight in the network

than the others. In return, the inputs connected to the second neuron of the first hidden

layer all present low relative weights. Even though the computational graph gives an overview

of the neural network and is useful to understand the way the output is computed, it is not

trivial to see which variables have more impact on the output. In the following section, I plot

sensitivities of each variable in each horizon to better understand the causality of each input.

Figure 1.8: Trained [5, 3] Neural Network for forward default intensity at horizon 0
Negative weights are drawn as blue lines connecting neurons where orange lines show positive weights.
The thicker the line, the higher the weight is in absolute value.

1.4.4 Sensitivities

Neural networks are often seen as black boxes because their outputs are coming from a general

function involving many parameters. They are incorporating non-linearities via the layers

and the activation functions. Figure 1.9 is an attempt at gauging how the model reacts to a

change of an input variable. It plots the average default forward intensity against a shift in the

specified variable and is computed the following way:
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Chapter 1. A deep learning approach to estimate forward default intensities

1. Compute the forward default intensity for all the observations in the test set and average

the result. Keeping everything else equal, change the value of one feature by an absolute

value and feed the updated observations to the network as new inputs and compute the

new average forward default intensity.

2. Repeat step 1 for all absolute values in some interval.

3. Plot the average intensity against the absolute change.

4. Repeat steps 1-3 for all 11 other features.

As explained in Section 1.2.1, I impose a non-negativity constraint on forward intensities.

A decreasing relationship means that an increase of the associated variable decreases the

probability of default of the firm. A flat relationship means that the associated variable has a

limited impact on the probability of default. We should expect CASH/TA, size, DtD, NI/TA,

Market-to-book ratio and all their lagged differences (∆) to be decreasing.

First of all, most graphs show non-linear relationships, which is not surprising given the nature

of the neural network specification. Moreover, all relationships are intuitive and expected.

Forward intensities in both Size and ∆Size are decreasing, suggesting that small firms tend to

have a higher likelihood of defaulting, which is consistent with the “too big to fail" paradigm.

Similarly, firms with decreasing cash (∆CASH/TA < 0) or low levels of CASH/TA appear to

have higher probabilities of default. The model also predicts that firms with low NI/TA or

decreasing NI/TA should have higher probabilities of default. Finally, forward intensities in

DtD should be decreasing for all horizons to reflect that a higher Distance-to-Default makes

the firm less likely to default. At horizon 0, a negative change in Distance-to-Default has

a substantially greater effect on forward intensities than any other variables. This result is

consistent with Duffie et al. (2007). Overall, it appears that the most important predictors of

default in this model are in the short term Market-to-book ratio, DtD and CASH/TA, and in

the long run NI/TA, CASH/TA, ∆CASH/TA and DtD.

1.5 Conclusion

I propose an approach to estimate forward default intensities, which relies on using machine

learning techniques. The key improvement over previous estimation methods is the introduc-

tion of possible highly non-linear relationships between covariates and forward intensities.

Neural networks are nothing else than a very general mapping of input data to an output

which is obtained by tuning weights while minimizing a given loss function. Non-linearities

are introduced via the juxtaposition of layers and the activation functions. The econometric

model governing the forward intensity written by Duan et al. (2012) has been adapted to this

new framework to allow the use of neural networks. Neural networks are also well-suited for

this chapter because they allow an easy replication of the benchmark model Duan et al. (2012).

More specifically, if the network architecture is [1] (i.e. : one layer and one neuron) and the
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1.5 Conclusion

Horizon 0 Horizon 3

Horizon 6 Horizon 12

Horizon 24 Horizon 35

Figure 1.9: Sensitivities for each horizon
These plots show the average default forward intensity against a change in the specified variable, ceteris
paribus.
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Chapter 1. A deep learning approach to estimate forward default intensities

activation function is chosen as being an exponential, the neural network boils down to a

logistic regression. The dataset used in this chapter is the same as in previous literature to allow

for an easier comparison. It consists of 5 firm-specific variables computed from accounting

data and 2 macroeconomic variables to control for the health of the economy. I also account

for momentum of these variables by feeding the model the one-lagged differences of each

variable. Looking at summary statistics only, the average defaulted firm is small, has low cash,

low market-to-book ratio, low Distance-to-Default and has large negative profits. To measure

the discriminatory power of the models, I follow the previous literature and use Lorenz curves

(also known as “cumulative accuracy profile" or “power curves"). The idea behind Lorenz

curves is to order default probabilities and look at how they are distributed across defaulted

and non-defaulted firms. The average Gini coefficient across all folds of the cross-validation

is used as a comparison tool to gauge the accuracy of the model. The results show that the

architecture [5, 3] (i.e. 2 layers with 5 neurons in the first hidden layer and 3 neurons in the

second hidden layer) seems to outperform other architectures. In this setup, one can interpret

the architecture as the non-linearity degree since a higher architecture involves more weights

in the output function to be estimated. Out-of-sample Lorenz Curves and Gini coefficients

show that the neural network approach outperforms the linear assumption for every horizon,

suggesting the presence of non-linearities in forward default intensities. Finally, even if neural

networks are known to be black boxes, I show how the model reacts to a change of input

variables. Most sensitivities plots show non-linear relationships, which is not surprising given

the nature of the neural network specification. It appears that the most important predictors

of default in this model are in the short term Market-to-book ratio, Distance-to-Default and

NI/TA, and in the long run NI/TA, CASH/TA, ∆CASH/TA and Distance-to-Default. Further

works could involve more variables in the estimation. In particular, a challenging (due to lack

of data) but nonetheless exciting study would be to explore the effect of market sentiment on

default intensities.
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2 Causal Networks with Neural Net-
works

2.1 Introduction

The causal network of a dynamical system provides important information that may help

to better understand its behavior and ultimately design better policies to predict and con-

trol it. Large number of banks, insurances, hedge funds, and other financial institutions

around the globe are interacting daily and thus their causal network is of great importance in

econometrics.

There have been many attempts during the past decades to capture and visualize the network

of interconnections among a set of financial institutions. A well-known time series causality

measure used in econometrics is Granger-causality (Granger (1969)). This is based on statis-

tical analysis of the financial time series such as their stock prices over a finite time period.

Granger’s definition of causality states that a time serie X is a cause of another time serie Y , if

the one-step future forecast of Y is more precise when the forecasting information set includes

X. Otherwise, when the forecast does not improve by including the information of X , then it is

declared that X does not cause Y . This idea is reflected in the information-theoretic measure

that we use in this chapter to infer the causal interactions among a network of time series.

Most empirical applications of Granger-causality have been studied with Vector Autoregressive

(VAR) models. For instance, Billio et al. (2012) propose several measures based on Granger-

causality to capture the interconnections between the returns of financial institutions on a

monthly basis. It uses principle component analysis and pairwise Granger-causality tests to

identify the causal networks. Other related works are Diebold and Yılmaz (2014) and Barigozzi

and Hallin (2016) in which the authors propose connectedness measures based on generalized

variance decomposition. However, the measures introduced in these works are again limited

to linear systems and they are based on pairwise comparison which as we show in Section

2.2.2 fails to infer the true causal relationships.
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Chapter 2. Causal Networks with Neural Networks

Contributions of this chapter are both in network identification literature and in finance. Our

contributions to network identification are as follows:

• We use directed information (DI), an information measure to infer the Granger-causalities

among a set of time series. This measure is non-parametric (i.e. it does not depend on the

underlying model of the dynamics) and it is capable of capturing causal relationships in

both linear and nonlinear systems. The output of this approach is a directed graph known

as Directed Information Graph (DIG) that visualizes the interconnections among a set of

time series such as stock returns.

• Computing DI has high computational and sample complexity which makes it not suitable

for inferring the causal structure of large networks. To solve this problem, we develop a

novel approach based on Recurrent Neural Networks (RNNs) that reduces the complexity of

evaluating DIs in high-dimensional settings.

Applications of DIG are various in finance. In particular, we recommend to use it as a pre-

liminary feature selection of another predictive model. Feature selection is a process often

used in machine learning and statistics which consists of keeping only a subset of relevant

features, usually to avoid overfitting or to reduce dimensionality. For example, Piramuthu

(2004) and Huang and Wang (2006) show that extraneous features are prone to reduce model’s

performance measures. Finance applications of feature selection models are various and

include credit scoring, stock market behavior analysis or even fraud detection (Altinbas and

Biskin (2015)). Tsai (2009) states that feature selection preprocessing is not addressed carefully

enough in the bankruptcy prediction literature. They compare five feature selection methods

used in bankruptcy prediction: step-wise regressions, correlation matrix, principal component

analysis, t-tests and factor analysis and show that any of these methods improves performance.

Yuqinq et al. (2013) uses a Sequential Forward Selection algorithm to select relevant features

predicting the Turkish market index. The use of such feature selection model reduces model

prediction error compared to the case where all features are used. This is due to information

embedded in several economic factors already included in the market index.

2.1.1 Related Work

In recent years, several approaches have been developed to generalize the applicability of

Granger-causality to non-linear and large dynamics. To mention a few, Psaradakis et al. (2005)

introduce different terminologies for causality based on Granger’s ideas and provide a set of

parametric non-causality constraints in the context of Markov switching VAR models. In a

similar context, Bianchi et al. (2019) investigate time-varying systemic risk based on a range

of multi-factor asset pricing models and develop a Markov Chain Monte Carlo scheme to

infer their model parameters and consequently obtain their corresponding networks. Another

attempt is Bonaccolto et al. (2019) in which the authors explore quantile-based methods of

Granger-causality. This method is consistent with Hong et al. (2009) and Corsi et al. (2018)
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that focus on causality among tail events. These methods are suitable for capturing causal

relationships that are not in the center of their distributions, or in the mean but in the tails of

their distributions. It is important to emphasize that our proposed approach using DI is also

capable of capturing such causal relations.

Most of the above aforementioned approaches are developed and tested for small size net-

works. Often, the problem of network identification in high dimensional settings requires

more considerations and even its own techniques. For instance, Billio et al. (2019) propose

a Bayesian non-parametric Lasso (BNPL) prior for high-dimensional vector autoregressive

models that improve efficiency and accuracy. To overcome overfitting in large VAR models,

BNPL clusters the vector autoregressive coefficients and shrinks the coefficients of each cluster

toward a common location. However, this method is limited to linear models with Gaussian

innovations. To overcome this limitation, Kalli and Griffin (2018) propose a Bayesian non-

parametric approach that allows for nonlinearity in the conditional mean, heteroskedasticity

in the conditional variance, and non-Gaussian innovations. However, unlike the BNP-Lasso, it

does not allow sparsity in the model. Petrova (2019) proposes yet another non-parametric,

quasi-Bayesian likelihood estimation methodology for high dimensional setting with time-

varying parameters. The work in Iacopini and Rossini (2019) tackles the curse of dimensionality

by a two-stage approach. First, a spike-and-slab prior distribution is used for each entry of the

coefficient matrix which also identifies the interconnection network. In the second stage, it

imposes prior dependence on the coefficients by specifying a Markov process for their random

distribution. A closely related work is Bernardi and Costola (2019) that proposes a shrink-

age and selection methodology designed for network inference in high-dimensional settings.

It uses a regularized linear regression model with spike-and-slab prior on the parameters.

However, both methods are limited to VAR models.

The remainder of this chapter is strutured as follows. Section 2.2 reviews the notion of Granger-

causality and formally introduces directed information graphs which are suitable for linear and

nonlinear systems. Section 2.3 introduces a novel approach for inferring the Granger-causal

network of high dimensional nonlinear systems. Section 2.4 applies our methodology to learn

the causal network of both synthetic and real-world dataset. For the real-world experiment,

we use the daily stock prices of US firms.

2.2 Causal Network

We present in this section our econometric approach to learn the causal dependencies in a

dynamical systems based on Granger-causality (see Granger (1969)). We begin by introducing

some notations. Plain capital letters denote random variables or processes, while lowercase

letters denote their realizations. Bold letters are used for column vectors, matrices, and tensors

and calligraphy letters are used for sets. We use X j ,t to denote the value of a time series X j at

time t and X t
j to denote the time series X j up to time t . For a set A = {a1, ..., an} and an index

set I ⊆ {1, ...,n}, we define A−I :=A \ {ai : i ∈I }.
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2.2.1 Granger Causality

Various frameworks and graphical models have been developed to capture and represent

interconnections among variables or processes. One of the most popular and widely used

frameworks in economics is the notion of Granger-causality originally introduced by Wiener

(1956) and generalized by Granger (1969). We say that X Granger-causes Y if the prediction

of the future of Y is more precise using all available information (including X ) than using all

available information except X .

This formulation was originally implemented using multivariate autoregressive (MVAR) mod-

els and linear regressions. In particular, let {X ,Y , Z } be three time series. In order to identify

the influence of X t on Yt , Granger’s idea is to compare the performance of two linear regres-

sions1: the first one predicts Yt given {X t−1,Y t−1, Z t−1} and the second one predicts Yt given

{Y t−1, Z t−1}. If they perform similarly, then we say X does not Granger-cause Y .

To go beyond linear systems, works such as Quinn et al. (2015) and Massey (1990) use

information-theoretical measures and generalize Granger-causality. In this chapter, we in-

troduce and apply directed information (see Quinn et al. (2015)), an information-theoretical

tool to measure interconnections among firms. Directed information (DI) has been used in

many applications to infer causal relationships. For example, Quinn et al. (2011) and Kim et al.

(2011) use it for analyzing neuroscience data and Etesami and Kiyavash (2014) and Etesami

et al. (2018) apply it to market data.

Directed information graphs (DIGs) have been developed to visualize the inferred intercon-

nections among time series (see Quinn et al. (2015)). DIGs are a type of graphical models in

which nodes represent time series and arrows indicate the direction of causation. We use DIG

to represent the causal network among the covered firms.

2.2.2 Directed Information Graphs (DIGs)

We describe in this section how the directed information is able to capture the connections in

causal networks. Next, we formally define directed information graphs (DIG).

We define a dynamical system constituted of three time series {X ,Y , Z } that we assume have a

joint probability density function p(X ,Y , Z ). Granger-causality states that to know whether X

influences Y or not, we need to compare the performance of two predictors of Y . The first

predictor uses the history of all information available (i.e. {X ,Y , Z }) while the second predictor

uses only the history of {Y , Z } If the former performs better than the latter, X has information

on Y . However, if they perform equally, it is an indication that X is not causing Y in this time

interval. To rigorously formalize this idea, we need the predictors and a measure to compare

their performances.

1Note that this formulation is only applicable in linear systems.
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In the definition of DI, the predictors belong to the space of probability measures. More

precisely, the prediction of the first predictor at time t is p(Yt |Y t−1, Z t−1, X t−1) that is the

conditional density function of Yt given the history of all time series. Similarly, the prediction

of the second predictor is p(Yt |Y t−1, Z t−1) that is the conditional density function of Yt given

the history of all time series except time series X .

Given the predictions of the first and the second predictors at time t for an outcome yt ∈Y ,

the goodness of these predictions are measured by the log-loss that are defined respectively by

− log p(Yt = yt |Y t−1, Z t−1, X t−1),

− log p(Yt = yt |Y t−1, Z t−1).

According to the above measures of goodness, the better the predictor is, the smaller its log-loss

will be. This loss function also has meaningful information-theoretical interpretations. Namely,

the log-loss is the Shannon’s code length2, i.e., the number of bits required to efficiently

represent yt (see Etesami et al. (2018)).

At time t for an outcome yt ∈Y , the difference between the log-losses of the two predictors

compares their performances. This difference is also called regret, denoted rt :

rt : =− log p(Yt = yt |Y t−1, Z t−1)− (− log p(Yt = yt |Y t−1, Z t−1, X t−1)
)

= log
p(Yt = yt |Y t−1, Z t−1, X t−1)

p(Yt = yt |Y t−1, Z t−1)
. (2.1)

Regrets are always positive for all t and all outcomes yt . Over the time interval [1,T ], the

average regret is

1

T

T∑
t=1

E[rt ], (2.2)

where the expectation is taken over the joint density function3 of X , Y , and Z , i.e.,

E[rt ] =
∫

p(y t , z t−1, x t−1) log
p(yt |y t−1, z t−1, x t−1)

p(yt |y t−1, z t−1)
d y t d x t−1d z t−1. (2.3)

The average regret in (2.2) is the directed information (DI). We use it as the measure of causa-

tion in this chapter. This measure is always positive and if it is zero, it is an indication that the

history of the time serie X does not contain significant information helping in the prediction

of the time serie Y given the past of the time series Y and Z . We can generalize this definition

to more than three time series as follows,

2It is also called the description length of yt . For more information see Cover and Thomas (2012).
3For the sake of notational simplicity, we use p(y t , z t−1, x t−1) to denote p(Y t = y t , Z t−1 = z t−1, X t−1 = x t−1).
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Chapter 2. Causal Networks with Neural Networks

Definition 2.2.1. Consider a network of m time series R = {R1, ...,Rm} with the joint probability

density function p. The directed information from Ri to R j over the time interval [1,T ] is given

by

I (Ri → R j ||R−{i , j }) := 1

T

T∑
t=1

E

[
log

p(R j ,t |Rt−1
−{i , j },R t−1

j ,R t−1
i )

p(R j ,t |Rt−1
−{i , j },R t−1

j )

]
, (2.4)

where Rt−1
−{i , j } :={R t−1

1 , ...,R t−1
m }\{R t−1

i ,R t−1
j }. We say that Ri has influence on R j over the time

interval [1,T ], if and only if

I (Ri → R j ||R−{i , j }) > 0. (2.5)

An interpretation of Ri influencing R j is that varying Ri will change the value of R j even if all

the other variables within the network remains unchanged. In another words, if Ri does not

influence R j , then varying Ri would not change R j when the values of the remaining times

series are fixed. This can be seen from the fact that DI compares two conditional distributions

of R j over a time horizon of length T ; one is conditioned on the past of all time series while

the other one is conditioned on all the history except Ri . Thus, if DI in (2.4) is zero, then these

two conditional distributions are equal over this time horizon. This implies that the history of

Ri does not contain any useful information for R j .

Note that the definition of DI does not rely on any model assumption, thus DI is capable of

inferring the causal relationships in general (linear or non-linear) dynamical systems. Next, we

define the graphical model that we use in this chapter to visualize the causal network among

firms.

Definition 2.2.2. We denote by DIG the directed information graph of a set of m time series

R = {R1, ...,Rm} which consists of a directed graph G = (V ,E ), where V stands for the set of

nodes representing time series R while E stands for the set of arrows indicating influences

between time series (i.e. an arrow from Ri to R j indicates that Ri has an influence on R j ).

A simple way to represent the DIG G of a dynamical system is via the adjacency matrix

DIG = [di , j ]m×m that is defined by

d j ,i =
{

1 if I (Ri → R j ||R−{i , j }) > 0,

0 otherwise.
(2.6)

Given a DIG G = (V ,E ), we define the parent set of node R j denoted by PA j ⊂ V to be the set

of all times series that have direct influences on R j , i.e., PA j := {Rk : d j ,k = 1}. Similarly, the

children set of node R j is given by C H j := {Rk : dk, j = 1}. Example 1 demonstrates the DIG of

a simple linear system.
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2.2 Causal Network

Example 1. Let {X ,Y , Z } be a network of three time series with the following dynamics,X t

Yt

Zt

=

0.5 0 0

0.4 0.5 0

0 −0.2 0


X t−1

Yt−1

Zt−1

+

NX t

NYt

NZt

 , (2.7)

where NX , NY , and NZ are three independent stationary Gaussian processes with zero mean

and a diagonal covariance matrix (1, 0.9, 1). Since the dynamics is linear and the exogenous

noises are Gaussian, we can compute the DIs using the following expression4(see Etesami and

Kiyavash (2014)).

I (Z → Y ||X ) = 1

2T

T∑
t=1

log
|ΣYt−1,Yt ,X t−1 ||ΣZt−1,Yt−1,X t−1 |
|ΣYt−1,X t−1 ||ΣZt−1,Yt−1,Yt ,X t−1 |

, (2.8)

where |ΣYt−1,Yt ,X t−1 | denotes the determinant of the covariance matrix of {Yt−1,Yt , X t−1}. Using
(2.8), we compute the DIs of this system,

I (Y → X ||Z ) = 0, I (Z → X ||Y ) = 0, I (Z → Y ||X ) = 0, I (Z → Z ||X ,Y ) = 0, (2.9)

I (X → Z ||Y ) = 0, I (X → Y ||Z ) ≈ 0.1, I (Y → Z ||X ) ≈ 0.03.

Figure 2.1 illustrates the DIG of the system (2.7). In this example, PA Z = {Y } and C H Z = {}.

X

Y

Z

77ooooooooooo ''OO
OOO

OOO
OOO

Figure 2.1: DIG estimated from the directed informations (2.9)
X influences Y, Y influences Z. This DIG correctly estimates the dynamics of the system in (2.7).

Inference methods based on pairwise comparison has been developed and applied in the

literature to identify the causal structure of time series. The methods in Billio et al. (2012), Billio

et al. (2010), and Allen et al. (2010) are three such examples. However, pairwise comparison is

not a correct approach in general and may fail to capture the true underlying network. For

instance, considering the pairwise comparison in Example 1 between X and Z leads to a

conclusion that X directly influences Z , which would be inaccurate. More precisely, without

conditioning on Y , we obtain

I (X → Z ) = 1

T

T∑
t=1

E

[
log

p(Zt |Z t−1, X t−1)

p(Zt |Z t−1)

]
≈ 0.002 > 0.

Notice that the DI in (2.4) is not a measure based on pairwise comparison. On the contrary, it

measures the influence by conditioning on the remaining time series within the network.

4Equation (2.8) does not hold in more general settings.
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2.2.3 Inferring DIGs

Inferring the DIG of a dynamical system requires estimating the DIs between all ordered pairs

of time series within that system. More precisely, inferring the DIG of a network of m time

series requires computing m(m −1) number of DIs. On the other hand, estimating DI requires

estimating all the expectation terms in (2.4). In information theory this expectation is known

as conditional mutual information5, i.e.,

I (R j ,t ;R t−1
i |Rt−1

−{i , j },R t−1
j ) := E

[
log

p(R j ,t |Rt−1
−{i , j },R t−1

j ,R t−1
i )

p(R j ,t |Rt−1
−{i , j },R t−1

j )

]
. (2.10)

Using this notation, (2.4) can be written as follows

I (Ri → R j ||R−{i , j }) = 1

T

T∑
t=1

I (R j ,t ;R t−1
i |Rt−1

−{i , j },R t−1
j ), (2.11)

Therefore, parametric and non-parametric estimators for the conditional mutual information

can be used to estimate the DIs. Given i.i.d. samples of the time series, it exists two main

methods to estimate the terms in (2.11) : the plug-in empirical estimator and the k-nearest

neighbor estimator. For an overview of such estimators, we refer to the articles in Paninski

(2003), Noshad et al. (2019), Sricharan et al. (2011) and Jiao et al. (2013).

In general, estimating the DI in (2.11) has high sample complexity because it requires estimat-

ing high dimensional conditional distributions. However, information about the underlying

dynamics can simplify the learning task of the DIG. For instance, in Example 1, since the

underlying dynamics is linear with Gaussian exogenous noises, the DIs can be computed

via the covariance matrices (2.8). Clearly, the covariance matrix can be estimated with lower

complexity compared to conditional mutual information. For our experimental results, we

used (2.8) for the linear Gaussian experiment and the k-nearest neighbor estimator in for the

non-linear experiment. The main reason for selecting k-nearest method is because it usually

shows better performance in comparison to the other estimators.

Side information can also help to infer the DIG of a dynamical system without directly estimat-

ing the DIs but instead providing an alternative approach to identify the DIG. For example, if

it is given that the underlying dynamics is linear, i.e., Xt = AXt−1 +Nt , then it has been shown

in Etesami and Kiyavash (2014) that the support6 of the coefficient matrix A is equal to the

adjacency matrix of its corresponding DIG. This result implies that in linear systems, one can

obtain the DIG by estimating the coefficient matrix. The latter problem has lower complexity

and it can be done using e.g., linear regression. For similar examples in econometric models

see Etesami et al. (2018).

5See Cover and Thomas (2012) for more details.
6The support of a matrix B = [bi , j ] is a binary matrix of the same dimension as B such that its entry (i , j ) is one

if and only if bi , j ̸= 0.
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2.2.4 DIG in High-dimensional Settings

For large networks with thousands nodes and millions of edges such as social or financial

networks, DIGs become too complex to infer and analyze. The main reason is that without

any side information, estimating the DI has high computational and sample complexity.

Furthermore, the estimating complexity of DI increases with the dimension of the network.

This is due to the fact that the DI in (2.4) measures the influence from Ri to R j by conditioning

on the information from the remaining network R−{i , j }. Therefore, the size of the conditioning

set grows with the size of the network. This motivates the prior works to reduce the complexity

of estimating DIs and thus make it more suitable for inferring the DIG of large networks by

reducing the size of the conditioning set.

One such approach is proposed by Quinn et al. (2013), in which they developed an efficient

algorithm to identify the best directed tree approximation of a given network. This means

reducing the size of the conditioning set to zero, i.e., no conditioning. However, this approach

comes with the price of an approximation error and furthermore it fails to identify many

interconnections between the processes.

The authors in Quinn et al. (2017) present a more generalized version of the above approxi-

mation in which they identify the optimal connected bounded in-degree7 approximations.

This method reduces the size of the conditioning set in (2.4) to some constant value (bound of

the in-degrees) which is independent of the network size. Although, this approach improves

upon the approximation error but there is still a trade-off between the sample complexity

and the approximation error. In another words, as the in-degree bound increases, the sample

complexity increases but the approximation error decreases.

In this chapter, we propose a new method that reduces the size of the conditioning set in

(2.4) to only one for any given network while introducing less approximation error compared

to the prior works. In this method, we estimate the directed information from Ri to R j by

conditioning on an auxiliary time series. This auxiliary time series is defined such that it

comprises the information that the remaining of the network R−{i , j } has about R j . Next

section explains this idea in more details.

7Connected bounded in-degree graphs with bound k are connected directed graphs in which each node has at
most k number of parents.
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2.3 Methodology

In order to present our method, we need the following preliminary result that characterizes an

important property of DI in (2.4). All the proofs are presented in the Appendix A.2.

Lemma 1. Consider a network of m time series R = {R1, ...,Rm} with corresponding DIG G =
(V ,E ). Let C be a subset of R−{i , j } such that PA j ⊆C . If Ri ̸∈PA j , then we have

I (Ri → R j ||C ) = 0. (2.12)

Note that if C =R−{i , j } and Ri is not a parent of R j , then by the definition of DIG, Equation

(2.12) holds. On the other hand, this result states that to detect whether there is an influence

from Ri to R j in a network of time series, it suffices to find a subset of time series that either

contains the parents of R j or their information. In the remaining of this section, we first clarify

the above statement via a simple linear system and later generalize it to non-linear models

using neural networks.

Remark 1. It is important to emphasize that the reverse of Lemma 1 does not hold. In another

words, if there exists a subset C ⊂R−{i , j } such that (2.12) holds, we cannot conclude that Ri has

no direct influence on R j .

2.3.1 Linear Systems

Consider a first order vector autoregression model (VAR) with m time series,

Xt = AXt−1 +Nt , (2.13)

where Xt ,Nt ∈Rm , A ∈Rm×m , and Nt is a vector of m independent exogenous noises. As we

discussed earlier, the result in Etesami and Kiyavash (2014) implies that the DIG of this VAR

model is encoded in the support of its coefficient matrix A = [ai , j ], i.e.,

I (Xi → X j ||X−{i , j }) = 0 ⇐⇒ a j ,i = 0. (2.14)

In another words, the parents of time series X j are the ones whose corresponding coefficients

are non-zero in the j -th row of matrix A. This also can be seen from the j -th row of the matrix

equation in (2.13),

X j ,t =
m∑

k=1
a j ,k Xk,t−1 +N j ,t . (2.15)

Another way to interpret the above equation is to say that the information of the network

about time series X j is in the form of a “portfolio", i.e., a linear combination of the other time

series. Therefore, it is possible to summarize the network’s information about X j into only one

time series, namely a well-designed portfolio. Next result shows the form of such portfolio.
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Lemma 2. In the linear system of (2.13), Xi has no direct influence on X j if and only if

I (Xi → X j ||Q) = 0, (2.16)

where Q is a time series which we call the ideal portfolio and it is defined by Qt−1 := uT
t X−{i },t−1,

where

ut := arg min
w∈Rm−1

E
[||X j ,t −wT X−{i },t−1||22

]
,

X−{i },t−1 := [X1,t−1, · · · , Xi−1,t−1, Xi+1,t−1, · · · , Xm,t−1]T .

According to the above Lemma, projecting X j on X−{i } results in an ideal portfolio Q that

contains all the information for deciding whether there is an influence from Xi to X j . Hence,

instead of estimating I (Xi → X j ||X−{i , j }) whose complexity depends on the network size, one

can estimate I (Xi → X j ||Q). Note that the sample complexity of the latter DI does not grow

with the size of the network and thus it is suitable for estimating the DIG of large networks.

2.3.2 Non-linear Systems with Additive Noise

Inferring the causal network of non-linear systems is a challenging problem that its complexity

increases exponentially with the dimension of the network. In this section, we study the causal

inference problem in non-linear systems whose dynamics can be captured by

X j ,t = F j (X t−1)+ε j ,t , j = 1, ...,m, (2.17)

where X t−1 = {X t−1
1 , ..., X t−1

m }, {F j (·)} is a set of non-linear continuous functions, and {ε j ,t } is a

set of independent exogenous noises. We call this model non-linear with additive noise due to

the noise term that is added to the non-linear term8. This is a general non-linear dynamics

that can be used to model the behavior of wide range of physical dynamical systems. The

dynamics is called Markovian if X t−1 is replaced by Xt−1 = {X1,t−1, ..., Xm,t−1}.

Below, we generalize the result of Lemma 2 to the non-linear system in (2.17) by showing that

in such systems, it is possible to reduce the conditioning set in the DI to one time series.

8In contrary to additive noise, there are systems in which the exogenous terms are multiplicative, e.g., X j ,t =
Xi ,t−1ε j ,t +X j ,t−1.
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Lemma 3. In (2.17), Xi has no direct influence on X j if and only if

I (Xi → X j ||Q) = 0, (2.18)

where Q is a time series defined by Qt−1 := F j (X t−1
−{i } ).

In the remaining of this section, we propose two methods to obtain the time series Q intro-

duced in the above Lemma.

Koopman-based lifting technique

Consider a particular sub-class of the non-linear system in (2.17) whose dynamics is defined

by

F j (X t−1) =
K∑

k=1
w j ,k hk (Xt−1), j = 1, ...,m, (2.19)

where {w j ,k ∈R} are the weights and {hk (·)} denotes a set of library functions that are assumed

to be known. This model is Markovian and the library functions can be seen as a set of basis

that are used to approximated F j (·). Examples of such library functions are monomials and

Gaussian radial basis functions.

In this setting, the results of Lemma 3 implies that the following time series can be substituted

in the conditioning of the DI.

Qt =
K∑

k=1
w j ,k hk (X−{i },t−1). (2.20)

However, in this formulation, the weights {w j ,k } are unknown. An approach to obtain the

weights is a non-linear filtering technique known as Koopman-based lifting (see Koopman

(1931)). This technique takes observational data and a set of library functions as inputs and

obtains the unknown coefficients {w j ,k }. The main steps of this technique are transforming the

data (lifting the data), applying a linear identification on the lifted data, and finally applying

another transformation to bring down the results into the original vector field. Figure 2.2

illustrates the main steps. For more details see Appendix A.2 and Mauroy and Goncalves

(2019).

Although, the Koopman-based lifting technique is theoretically sound but it has some short-

comings facing real-world applications. First, the Koopman’s performance depends on the

choice of the library functions and second, it often fails to estimate the real time series Q.

More precisely, this technique involves the computation of matrix L := log (P†
x Py )/Ts , where

Px and Py are estimated from the observational data9. Matrix P†
x denotes the pseudo-inverse,

and the function log(·) denotes the (principal) matrix logarithm. On the other hand, Koopman

9See Appendix A.2 for more details.
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ℝm

Lifting

ℝM

Linear identification

X

Y Yt+1 = LYt

Coming back

Xt+1 = F(Xt)
non-linear identification

Figure 2.2: Koopman lifting technique compared to classical non-linear identification
Starting from the bottom left plot, the main steps of this technique are transforming the data (lifting the
data), applying a linear identification on the lifted data, and finally applying another transformation to
bring down the results into the original vector field.

lifting technique is applicable for estimating the time series Q only when the resulting matrix

L is real10. However, this is not always the case in real-world applications due to observational

noises and lack of sufficient data. To overcome such shortcomings, we propose an alternative

approach to estimate Q using recurrent neural networks (RNNs).

RNNs method

Recurrent neural networks are a specific class of neural networks well suited to learn time

series. They are distinguished by their memory as they are able to remember information from

prior inputs to influence their current outputs. The universal approximation theorem states

that a neural network with enough hidden layers can approximate any non-linear continuous

function such as F j (·) in (2.17) (see Hornik et al. (1989)).

Given the aforementioned result, we train a RNN with LSTM layers using the observational

data to estimate the time series Q defined in Lemma 3. More precisely, our RNN maps X t−1
−{i } as

the inputs to X j ,t as the output. We choose the architecture of the network to be pyramid-like.

That is, the width of layer k is strictly bigger than the width of layer k +1. The pyramidal

structure is known to retain and improve accuracy while reducing the number of parameters

(see Ullah and Petrosino (2016) and Tripathy and Bilionis (2018)). In our case, the first hidden

layer has 100 units, the second hidden layer has 50 units, the third hidden layer has 40 units

and the fourth hidden layer has 30 units. In every layer, the activation function that we use

for the recurrent step (i.e. : forget, input and output gates) is the sigmoid function while the

activation function for the cell and hidden states is the hyperbolic tangent. Finally, to avoid

overfitting and to allow the network to generalize better on out-of-sample data, we use dropout

on every layer. Dropout is a regularization technique often used in neural networks where

10See Culver (1966) for conditions under which a real matrix has a real logarithm.
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connections within the LSTM network are randomly selected and excluded from updates in

the training process. This has the effect of introducing noise in the training process because

every training step is performed with a different network layout and it allows more nodes to

be involved. In our case, the fraction of units that we drop (i.e : the dropout rate) in each layer

is 0.5, 0.3, 0.2, 0.1, respectively.

Let R j (X t−1
−{i } ;Θ∗) denotes the trained RNN with parameters Θ∗. In this case, the time series

Q can be written as Qt−1 = R j (X t−1
−{i } ;Θ∗). Finally, we use (2.18) to detect whether Xi has

influence on X j or not. Algorithm 1 summarizes the steps of our RNN method.

Algorithm 1: Infer-DIG

Input: Observational data of m time series up to time T , X T , Threshold α> 0;
Output: Adjacency matrix of DIG = [di , j ];
for i , j = 1, ...,m do

Train a RNN R j (·;Θ∗) that maps X t−1
−{i } to X j ,t ;

Define Qt−1 = R j (X t−1
−{i } ;Θ∗);

if I (Xi → X j ||Q) >α then
d j ,i = 1

else
d j ,i = 0

2.4 Experimental Results

Since the true empirical DIG of firms is unknown, to evaluate the performance of our approach,

we use different simulated environment. In this section, we first describe the simulation

methodology in a linear Gaussian framework. We then show that our results generalize well to

nonlinear setting by conducting an experiment on a nonlinear system. Finally, we apply our

approach to a set of empirical data describing the daily stock prices of US firms and obtain

their corresponding causal network.

2.4.1 Linear Gaussian Framework

In this experiment, we consider a linear system, a VAR(1) model whose dynamics are given by

Xt = AXt−1 +Nt (2.21)

with m being the number of asset returns, Xt = (X1,t , X2,t , ..., Xm,t )⊤ being the vector of returns

at time t , A = [ai , j ] being a m ×m matrix and Nt being a N (0,I) vector of noises. As we

discussed earlier, in such linear systems, ai , j captures the influence of asset j on asset i , i.e.,

there is an influence from j to i if and only if ai , j ̸= 0.
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Figure 2.3: Adjency matrix A for the linear Gaussian framework
Structure of matrix A in (2.21) that is built using (2.22).

To reflect an important property of the market that some firms are more connected than

others in our experiment, we divided the m time series into two parts. First part (1 ≤ i ≤ s)

indicates assets with high degrees of connectedness and the second part (1+ s ≤ i ≤ m) are the

ones with low degrees of connectedness. Parameter 1 < s < m denotes the numbers of assets

with high degrees of connectedness. Afterward, for every entry (i , j ) of A, we independently

generated a random number x ∼U (−0.9,0.9) and decided on value ai , j as follows,

ai , j =


x1|x|>ϵ, if 1 ≤ i ≤ s,1 ≤ j ≤ s,

x1|x|>ϵ, if 1+ s ≤ i ≤ m,1 ≤ j ≤ m,

0, if 1 ≤ i ≤ s,1+ s ≤ j ≤ m,

(2.22)

where 1a>b denotes the indicator function which is equal to 1 when a > b and 0 otherwise

and ϵ and ϵ̄ are thresholds to define non-zero entries in the upper-left and the lower part of A,

respectively.

Figure 2.3 illustrates the structure of the resulting A. We select these thresholds such that ϵ< ϵ̄.

This ensures that the upper-left of A is denser than its lower part or equivalently, assets with

indices {1, ..., s} are more connected than the ones with indices {1+ s, ...,m}. In our experiment,

we select (s,m) = (85,100) and (ϵ, ϵ̄) = (0.4,0.7). Finally, to guarantee the stability of the time

series, we rescale11 A such that its spectral radius is strictly less than one, i.e., ρ(A) < 1. Once

the matrix A is defined, we simulate the time series using (2.21) for a period of T = 30000 and

use the resulting data for our estimations.

To study the effect of the conditioning set on detecting the influences, in our experiments,

we consider four different conditioning sets. More precisely, to measure whether asset i

influences asset j , we estimate I (Xi → X j ||C j ) for the following choices of the conditioning

set:

11Formally, we use A/(ρ(A)+ϵ), where 0 < ϵ.
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1. True parents: In this approach, we select C j to be the true parents of X j excluding Xi ,

i.e., C j =PA j \ {Xi }. Note that this approach is not practical12 and we use it only as the

benchmark to better understand the performances of the other approaches.

2. Most correlated: In this case, we define C j to be the set of k most correlated assets with

X j (except Xi ).

3. Ideal portfolio: In this scenario, C j contains the portfolio Q, where Q is defined in

Lemma 2. For further discussion see Appendix A.2.

4. RNN: This method applies Algorithm 1 to estimate the time series Q and defines C j =
{Q}.

Note that we also applied the Koopman-based lifting techniques but due to its mentioned

shortcomings, it was unable to robustly identify the interconnections. Hence, we could not

compare its performance with the other methods. In this experiment, since the dynamics

is linear and the noises are Gaussian, we use Equation (2.8) to estimate the DIs. Finally, we

obtain the adjacency matrix of the corresponding DIGs by comparing the estimated DIs with

a threshold α> 0, i.e.,

[DIG] j ,i =
{

1 if Î (Xi → X j ||C j ) >α,

0, otherwise,
(2.23)

where Î (Xi → X j ||C j ) denotes the estimated DI from Xi to X j given the conditioning set C j .

In order to compare the performances of the aforementioned four approaches, we use the

precision and recall measures between the true DIG (obtained from A) and their estimated

DIGs. Formally, the precision and the recall are defined by

Pr eci si on := T P

T P +F P
, Recal l := T P

T P +F N
,

where

T P :=
m∑

i , j=1
1a j ,i ̸=01[DIG] j ,i ̸=0, F P :=

m∑
i , j=1

1a j ,i=01[DIG] j ,i ̸=0,

F N :=
m∑

i , j=1
1a j ,i ̸=01[DIG] j ,i=0.

Figure 2.4 shows the performances of the four aforementioned approaches in the linear

framework. It is not surprising that the true parents approach achieves 100% accuracy, as it is

anticipated by Lemma 1. The ideal portfolio’s performance is guaranteed by Lemma 2 and it

is verified by our experiment. However, it is important to emphasize that the ideal portfolio

12This is because in structural learning problems, we do not know the true parents of each asset. In another
words, if we had access to the true parents of each asset, we would have the DIG of the system and there is no need
to compute the DIs.
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Figure 2.4: Precision and recall curves in the linear framework.
Precision and recall curves for the true parents, most correlated, ideal portfolio, and the RNN, respec-
tively.

shows ideal performance because the underlying model is linear. As we will see in the next

section, its performance declines when the underlying model deviates from being linear. For

the most correlated approach, we used k = 10 but as it is shown in Figure 2.4, it has the worst

performance among the four conditioning methods. This is due to the fact that the set of the

ten most correlated assets with a given asset j does not necessarily contains the true parents

of asset j . On the other hand, we observe high accuracy from the RNN approach which is a

striking result. This result is an evidence that a RNN is capable of estimating the ideal portfolio,

i.e., the time series Q in Lemma 2 without any side information about the underlying model.

2.4.2 Non-Linear framework

To compare the performances of the different approaches from the previous section in a

non-linear environment, we simulate a set of quadratic processes whose dynamics is given

below,

Xi ,t = bi XT
t−1Ai Xt−1 +Ni ,t , i = 1, ...,m, (2.24)
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where Ai ∈Rm×m , Xt = (X1,t , X2,t , ..., Xm,t )T , Ni ,t ∼N (0,σ2), and bi ∼U (−0.9,0.9). Note that

the term |[Ai ] j ,k + [Ai ]k, j | captures the effect of X j ,t−1Xk,t−1 on Xi ,t . Thus, it is possible to

obtain the true parents of asset i as follows,

PA i = {X j : [1T · (|AT
i +Ai |

)
] j > 0}, (2.25)

where 1 denotes all-one vector of length m. Each matrix Ai is simulated independently by

following the similar procedure as in Section 2.4.1. In this experiment, since the model is

non-linear, we could not apply (2.8) to estimate the DIs but instead we used the k-nearest

method to estimate the mutual information and applied Equation (2.11).

Herein, we again compare the performances of the four different conditioning approaches.

Figure 2.5 shows the precision-recall curves for these approaches in the quadratic model with

m = 15. Precision-recall curves are a standard tools to illustrate and compare the performances

of different learning methods. In this curve the precision is demonstrated in the y-axis vs. the

recall on the x-axis for all potential values of the threshold α.

Similar to the linear setting, we use the true parents as a benchmark since it has the ideal

performance. It is however important to emphasize that this conditioning approach has higher

complexity compared to the others. This is because in the true parent approach, the size of

the conditioning set is relatively larger than the other approaches.

For the most correlated approach, we use k = 5, i.e., the size of the conditioning set is five. With

this method, we could slightly reduce the estimation complexity of the DIs compared to the

true parent approach but this comes with the price of losing the performance. Clearly, the

performance of the most correlated approach can be improved by increasing k but this will

increase the complexity.

The performance of the ideal portfolio approach (using the time series in Lemma 2 as the

conditioning) is worse than all others which is not surprising as the model is no longer linear.

This means that the information embedded in the linear portfolio is not sufficient to decide

the non-linear influences among the time series.

Finally, as it is shown in Figure 2.5, the RNN approach outperforms the most correlated and

the ideal portfolio approaches and it shows close performance to the true parents but with

the size of the conditioning set equal to one. This result once more fortifies our claim that

with a RNN we can summarize the information of the network into one time series and use

it for detecting the causal relationships. This claim is due to Lemma 3 and the universal

approximation theorem which states that a neural network with enough hidden layers can

approximate any non-linear function (see Hornik et al. (1989)). The slight difference between

the performance of the RNN and the true parents is because of the estimation error in the

recurrent neural network.
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Figure 2.5: Precision-recall curves for the quadratic model
Blue, green, yellow and red lines show the precision-recall curve of the true parents, most correlated,
ideal portfolio, and the RNN, respectively.

2.4.3 Empirical DIG

This section describes how to apply our approach to empirical data and obtain the DIG of US

firms. We extracted the daily stock prices and the daily US Treasury rate as risk free returns

from the CRSP database from 1990 to 2020. As the market is likely to evolve through these

years, we chose to divide the dataset into six subsets, each of which has a length of five years

and estimate the corresponding DIG of each subset separately. Herein, we assume that the

causal structure of the market evolved but its rate was slow enough such that during a period

of five years, the DIG of the market remained unchanged.

For every subset, we keep the data of the 1000 firms with the highest maximum market capi-

talization and compute their excess return time series Xi ,t , using the following relationship,

Xi ,t = ln(Pi ,t )− l n(Pi ,t−1)− rt , (2.26)

where Pi ,t denotes the stock price of the firm i at time t and rt is the risk free rate at time

t . Afterwards, we apply Algorithm 1 with the excess returns as the input to estimate the

corresponding DIG of each subset. We use the k-nearest neighbor method to estimate the DIs.

We define the threshold α to be the unconditional mean across the estimated DIs. Note that in

this experiment, the true DIGs of the market are not known, hence, we could not compute the

precision-recall curves.
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1990-1994 1995-1999 2000-2004 2005-2009 2010-2014 2015-2019
0.23 0.27 0.18 0.28 0.32 0.25

Table 2.1: Degree of Granger Causality (DGC) for each sub-graph.
DGC is defined as the fraction of relationships in the network among all potential relationships.

For the sake of presentation, instead of the complete DIGs with 1000 nodes, we draw the

sub-graphs consisting of the 30 largest firms in Figures13 2.6, 2.7, and 2.8 . Each graph consists

of 60 nodes illustrating the cause firm on the top hemisphere and the effect firm on the

bottom hemisphere. For instance, if there is an edge between “from: AAPL” on the top and

“to: GOOGL” on the bottom, it means that Apple influences Google. The dynamic evolution

of the DIGs through time can often be explained by real events that happened in the market.

For instance, in the DIG 2010-2014, Apple was not influencing General Electric (GE). However,

on the 17th October 2017, Apple announced a partnership with GE to bring Predix, GE’s data

and analytics platform, to their iPhones and iPads. We are able to capture this partnership

in the DIG 2015-2019 as an edge is now present from Apple to GE. Another example is the

announced collaboration between AT&T and Cisco to manage IoT devices and launch 5G

service at the end of the 2010s: there was neither an edge from AT&T to Cisco nor from Cisco

to AT&T during the first half of the 2010s, but the DIG for the second half of the 2010s shows a

mutual influence, reflecting an increased relationship between the two companies.

Table 2.1 shows the Degree of Granger-Causality (DGC) defined as the fraction of relationships

in the network among all potential relationships. Formally,

DGC = 1

N 2

∑
i

∑
j

[DIG] j ,i , (2.27)

These results show that the DGC increased both in the DotCom bubble and in the Subprime

Crisis, suggesting an increase of the connectedness in turmoil periods. This finding is consis-

tent with Longin and Solnik (2001) stating that correlation increases in bear markets.

Tables 2.2 and 2.3 show the outdegree and indegree of every firm in the six subsets. Outdegree

is defined as the number of edges going out of a specific node. Indegree is the number of

edges going to a specific node. These tables also reveal interesting facts. For instance, the SPY

ticker, an ETF launched in 1993 and aiming at tracking the S&P500 return, enters in the 30

biggest market capitalizations in 2010 and has the highest number of outdegrees in the periods

2010-2014 and 2015-2019 but relatively low number of indegrees. This result suggests that the

market return is influencing a high number of firms, but the converse is not necessarily true.

13For a better presentation, interactive plots are available at https://marcaureledivernois.github.io/firm-
network/
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Figure 2.6: Empirical DIG for the periods 1990-1994 and 1995-1999.
Empirical DIG for the periods 1990-1994 (top) and 1995-1999 (bottom). Interactive graphs can be found
at https://marcaureledivernois.github.io/firm-network/
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Figure 2.7: Empirical DIG for the periods 2000-2004 and 2005-2009.
Empirical DIG for the periods 2000-2004 (top) and 2005-2009 (bottom). Interactive graphs can be found
at https://marcaureledivernois.github.io/firm-network/
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Figure 2.8: Empirical DIG for the periods 2010-2014 and 2015-2019.
Empirical DIG for the periods 2010-2014 (top) and 2015-2019 (bottom). Interactive graphs can be found
at https://marcaureledivernois.github.io/firm-network/
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1990-1994 1995-1999 2000-2004 2005-2009 2010-2014 2015-2019
Ticker Out Ticker Out Ticker Out Ticker Out Ticker Out Ticker Out
SBC 13 JNJ 12 XOM 12 PEP 15 SPY 17 SPY 14
CHV 11 HWP 12 JNJ 10 WFC 13 T 15 DIS 12
XON 10 INTC 12 MSFT 9 CSCO 12 JNJ 15 BRK 12
PG 10 BAC 12 DELL 9 WMT 11 CVX 13 PFE 11
GE 10 PFE 11 WMT 9 IBM 11 AAPL 12 UNH 11
AN 9 IBM 11 C 9 PG 11 INTC 12 JPM 11
BEL 9 MSFT 11 HD 8 CVX 11 CSCO 12 AAPL 10
MRK 8 SBC 11 JPM 8 HPQ 10 GE 12 GOOGL 10
IBM 8 GE 10 PFE 8 VZ 10 IBM 11 WMT 9
BMY 8 MRK 10 PG 7 GE 9 GOOGL 11 CSCO 9
ABT 7 LMG 9 INTC 7 UBS 9 XOM 11 VZ 9
AHP 7 MO 9 BAC 7 PFE 9 JPM 10 BA 9
T 7 NT 9 BMY 6 C 9 KO 10 CVX 8
BLS 7 XOM 9 SBC 6 SLB 9 MRK 10 WFC 8
AIG 7 KO 9 IBM 5 MSFT 9 BRK 10 V 8
F 7 HD 8 TWX 5 ORCL 9 SLB 10 PG 8
HWP 7 BEL 8 AIG 5 MRK 8 WMT 10 T 7
MOT 7 BMY 8 CSCO 4 KO 8 VZ 9 JNJ 7
DD 6 SUNW 8 GE 4 GOOG 7 DIS 9 MRK 7
DIS 6 AIG 7 VZ 4 XOM 7 PFE 9 KO 6
MOB 6 WCOM 7 MRK 4 JNJ 7 BAC 8 XOM 5
PEP 6 CSCO 6 MOT 4 MO 7 PM 8 MSFT 5
MSFT 6 QCOM 6 TXN 4 JPM 6 ORCL 7 MA 5
INTC 6 C 6 HPQ 3 COP 6 PG 7 BABA 5
WMT 6 PG 6 ORCL 3 T 6 PEP 6 FB 4
GTE 5 DELL 5 KO 2 INTC 6 MSFT 6 BAC 4
MO 5 ORCL 4 SUNW 1 AAPL 6 C 5 INTC 4
JNJ 4 WMT 4 LU 1 BAC 5 WFC 5 GE 3
PFE 4 EMC 2 EMC 0 MT 4 AMZN 5 HD 3
KO 2 AOL 2 NT 0 AIG 4 GILD 5 AMZN 2

Table 2.2: Outdegrees ranked for each sub-graph.
Outdegree (Out) is defined as the number of edges going out of a specific node.
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1990-1994 1995-1999 2000-2004 2005-2009 2010-2014 2015-2019
Tic In Tic In Tic In Tic In Tic In Tic In
XON 22 BEL 15 MOT 12 MRK 19 MRK 18 UNH 17
CHV 17 JNJ 15 INTC 11 ORCL 19 PM 15 PFE 16
AN 13 AOL 14 C 11 BAC 16 JPM 15 HD 14
SBC 12 XOM 14 SUNW 11 SLB 14 ORCL 14 AMZN 14
HWP 11 NT 12 ORCL 10 WFC 13 IBM 14 GOOGL 12
PEP 10 QCOM 12 BMY 9 JPM 12 XOM 13 GE 12
AHP 10 SUNW 11 DELL 9 COP 12 PG 13 PG 12
MOB 10 ORCL 11 TWX 7 MT 11 JNJ 12 CVX 11
GTE 9 CSCO 11 HPQ 7 PEP 10 DIS 12 BABA 9
IBM 9 C 11 GE 7 C 10 INTC 11 MRK 9
BMY 8 DELL 10 CSCO 7 MO 10 WFC 10 DIS 9
ABT 8 SBC 10 LU 6 CVX 10 C 10 WFC 8
KO 7 BMY 9 HD 6 AIG 9 VZ 10 BA 7
BEL 7 WCOM 9 TXN 6 T 9 WMT 10 MA 7
MSFT 7 GE 9 EMC 6 JNJ 8 GE 10 AAPL 7
BLS 6 IBM 9 BAC 5 GOOG 7 KO 9 T 7
PFE 6 MO 9 PG 5 KO 7 BAC 9 WMT 6
DD 6 LMG 8 WMT 5 VZ 6 PFE 9 MSFT 6
JNJ 5 HWP 6 VZ 5 MSFT 6 AAPL 9 INTC 6
WMT 4 MSFT 6 JPM 4 INTC 6 SPY 8 FB 5
F 4 BAC 5 KO 3 AAPL 6 CVX 7 KO 5
MRK 4 INTC 5 NT 3 GE 6 AMZN 7 JPM 4
PG 4 WMT 5 XOM 2 WMT 6 GILD 7 XOM 4
AIG 4 PFE 4 MSFT 2 XOM 5 CSCO 7 JNJ 4
T 3 AIG 4 AIG 2 PFE 5 GOOGL 7 SPY 4
GE 2 KO 3 MRK 1 CSCO 4 MSFT 6 BRK 4
MO 2 MRK 2 PFE 1 HPQ 4 PEP 5 CSCO 3
INTC 2 PG 2 SBC 1 UBS 2 SLB 5 BAC 2
DIS 1 HD 2 IBM 0 IBM 1 T 4 V 1
MOT 1 EMC 1 JNJ 0 PG 1 BRK 4 VZ 1

Table 2.3: Indegrees ranked for each sub-graph.
Indegree (In) is defined as the number of edges going to a specific node.
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2.5 Conclusion

In this chapter, we introduce an information-theoretic measure known as directed information

that is capable of capturing nonlinear Granger-causality in an interactive system. We develop

a novel algorithm based on recurrent neural network utilized with directed information. This

algorithm can infer the interconnections within a large network with less complexity than

previous works. As a proof of concept, we show that our approach performs well both in a

linear and in a non-linear simulated environments. Finally, we apply this algorithm to infer

the causal relationships among the major US firms during 1990 to 2020.
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3 StockTwits Classified Sentiment and
Stock Returns

3.1 Introduction

Can the stock market be predicted by analyzing social media? Recent developments in ma-

chine learning and the growing quantities of available text data from online news, social media

and annual reports have triggered intensive research in finance. In their pioneering paper,

Antweiler and Frank (2004) compute a bullishness measure out of 1.5 million messages posted

on Yahoo! Finance and Raging Bull and find that stock messages help predict market volatility.

Their results clearly reject the hypothesis that all that talk is just noise. They show that there

is financially relevant information present in social media. In a similar vein, Tetlock (2007)

constructs a measure of media pessimism from a Wall Street Journal column and finds that it

predicts downward pressure on market prices.

Most of the previous financial studies of social media rely on pre-defined or manually anno-

tated sentiment dictionaries. Such approaches are limited in various ways. How to create a

sentiment classifier that understands the vocabulary of the messages posted by the investors?

For instance, “bull" is an animal in everyday language but refers to someone optimistic in the

financial jargon. Loughran and McDonald (2011b) create a words list, which helps classify

tone in a financial document. However, this might not be sufficient in the context of social

media because messages posted present many typos, abbreviations and slang, so one needs to

have an additional layer of data preprocessing. For instance, the word “goooooood" would not

be recognized by the model if it is not corrected into “good" first. On the other hand, manually

annotating and validating dictionaries is not a scalable approach to handling social media

content.

This chapter overcomes these limitations. We develop a machine learning algorithm to classify

the sentiment of a large sample of StockTwits messages as bullish, bearish, or neutral. The

sample consists of all messages referring to US and Canadian stocks, including ETFs and

other types of securities available on CRSP/Compustat, from January 2010 to March 2020. We

train our machine learning classifier on the set of all user sentiment-labeled messages, which

constitute about one third of the sample. We then classify the sentiment of all remaining
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messages. Our method scales and performs very well. It achieves an out-of-sample accuracy

of 85.9%, which compares well to the anecdotal 80 to 85% probability that human annotators

agree on the sentiment of a document (see, e.g., Wilson et al. (2005) and Chen et al. (2020)).

As a side product, we generate a vocabulary of one million investor sentiment-labeled terms

consisting of up to three words that frequently appear in StockTwits messages.

We then construct a stock-aggregate daily sentiment polarity measure and relate it to daily

stock returns. We find that polarity is positively associated with contemporaneous returns.

However, unconditionally, polarity cannot predict next-day returns, which is in line with the

efficient market hypothesis (EMH). We then conduct an event study. We define events as days

of sudden peaks of message volume of individual tickers. We classify events as bullish, bearish,

or neutral depending on the prevailing polarities. We find that bullish (bearish) events are

strongly associated with large positive (negative) abnormal returns. Cumulative abnormal

returns over the preceding 20 days of an event have no predictive power on the type of event.

Returns normalize immediately after the jump on the event date, which again is in line with

the EMH. In contrast, remarkably, we find that cumulative abnormal polarity has statistically

significant predictive power on the type of event. We assess the economic relevance of our

findings with the performance of cumulative abnormal polarity ranked portfolios. We find

that for appropriate choices of thresholds, cumulative abnormal polarities provide valuable

signals for stock market investments.

As a technical byproduct, we develop a sentiment classifier of micro-blogs for imbalanced

data. This addresses the stylized fact that bloggers post more bullish than bearish-labeled

messages. In our sample, the ratio is five to one. On the other hand, we find that not all

messages carry a substantial stock market relevant sentiment. Rather than re-sampling from

the underrepresented bearish class, we thus introduce an auxiliary neutral class. We then

run two independent binary classifiers. The first (second) classifies messages as bullish

versus non-bullish (bearish versus non-bearish). We aggregate the two binary outcomes

and classify a message as bullish (bearish) for the concordant combination bullish/non-

bearish (non-bullish/bearish), and neutral otherwise. This approach is very simple and

efficient, and eliminates the class imbalance bias at the same time. It builds on any traditional

binary classifier. We use logistic regression on Term Frequency-Inverse Document Frequency

(TFIDF)-vectorized messages. TFIDF is a weighting scheme gauging the importance of a word

in a document.

This chapter contributes to the growing literature on machine learning classification of social

media and its interaction with the stock market. Most previous financial studies use Twitter

as their primary source of data. Twitter has the advantage of being used by a wide range of

people across the world and a few influencers can attract the attention of many investors. In

2013, following a meeting with Tim Cook (Apple CEO), Carl Icahn tweeted that he bought a

large position in Apple and believed that the company is extremely undervalued. This bullish

tweet caused the market capitalization of Apple to jump by $12 billion. In 2019, JPMorgan

has created the Volfefe Index to track Donald Trump’s tweets impact on the stock market.
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However, it is more difficult to disentangle noise from relevant tweets in Twitter than in other

more focused social media. Results from Ghoshal and Roberts (2016) show that StockTwits

is significantly more informative than Twitter data. This is not surprising as StockTwits is a

finance-focused platform whereas Twitter also captures irrelevant opinions on a wide range of

non-finance related matters.

This chapter is the first work that analyzes the predictive power of StockTwits messages on

stock returns unconditionally and around specific events. Renault (2017) builds an intraday

investor sentiment indicator using messages and finds that the change in investor sentiment

of the first half-hour of a trading day helps forecast the last half-hour market return of that

trading day. However, his classifier is based on a dictionary consisting of 8 thousand manually

validated and modified terms, which limits its scalability. Renault (2020) uses larger data sets

and compares various classifiers, including machine learning.

Our approach is in some parts similar to Ranco et al. (2015), who also study the relation of

micro-blog sentiments with stock returns. However, they use Twitter data, whereas the finance-

tailored StockTwits data we use results in higher contemporaneous correlations between stock

returns and polarity. They manually annotate 100 thousand tweets, which limits the scalability

of their approach. Our sample is much larger (90 million versus 1 million messages) and covers

a longer period (10 years versus 13 months).

Ke et al. (2020) extract sentiment from news articles on the Dow Jones Newswires. They train a

sentiment score directly on returns. In contrast, we use user sentiment-labeled StockTwits

messages as the training and validation set for our sentiment classifier.

This chapter also contributes to the EMH literature by gauging how cumulative average

abnormal returns and abnormal polarities behave around sudden peaks of message activity.

The remainder of the chapter is structured as follows. Section 3.2 discusses StockTwits and

stock market data. Section 3.3 develops our sentiment classifier based on TFIDF vectorization.

Section 3.4 introduces the sentiment polarity measure and relates it to stock returns. Section

3.5 contains the event study. Section 3.6 discusses the sentiment-sorted portfolio performance.

Section 3.7 concludes. The appendix contains additional statistics and background material.

3.2 StockTwits and Stock Market Data

StockTwits is a large social media platform similar to Twitter but designed for investors and

traders. Users register online and can post messages about any listed stock through the prefix

$ followed by the ticker of the stock. StockTwits was created in 2008 as an app built on the

Twitter’s API and later detached from Twitter to build a standalone social network. As of April

2019, it had over two million registered users and the number of daily posted messages has

been growing exponentially, see Figure 3.1.
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Figure 3.1: Number of messages posted daily on StockTwits
Message volume posted on StockTwits. Numbers are aggregated daily.

StockTwits describes itself as “the voice of social finance and the best way to find out what is

happening right now in the markets and stocks you care about”. In practice, it is effectively

used by finance professionals to express their opinions on individual stocks and the market as

a whole. Importantly, users have the option to label their posted messages as either bullish or

bearish.1 This feature is key for our approach, as it allows for sentiment classification of all

messages using machine learning trained on the user-labeled messages.2

The reasons for using StockTwits and not other social media data for financial studies are

at least threefold. First, a major challenge in applying natural language processing is the

creation of an appropriate labeled vocabulary. Loughran and McDonald (2011a) show that it is

essential to have a specific vocabulary to interpret finance documents (i.e., many words have

a different meaning in finance than in traditional English, such as “bear trap”). In addition

to that, social media slang is an additional layer of language complexity. To this extent, the

functionality to self-tag bullish and bearish messages on StockTwits is extremely valuable as it

allows the creation of a specific labeled vocabulary out of labeled messages. We are not aware

of any other social media platform in finance offering this functionality. Second, text data

from StockTwits is more reliable and less noisy than from general purpose platforms, such

as Twitter, because messages focus on finance and economics matters only. Micro-bloggers

have incentives to post valuable information in order to maintain or increase mentions and

retweets, and thus have a greater share of voice in the forum (Sprenger et al. (2014)). On the

other hand, StockTwits messages might be biased and subject to malicious users that try to

1This optional label was effectively available as of mid-2010.
2One third of the messages in our sample have a user labeled sentiment.
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manipulate the market. However, market manipulations likely happen only rarely as the SEC

closely monitors potential influencers to prevent any market abuse. Third, extracting data

from StockTwits is easy because of its API. StockTwits’ API is designed to query the database to

download messages via JSON requests. We provide a short tutorial in Appendix A.3.1.

We use stock market data from CRSP/Compustat. We extract daily closing prices, daily volume

of transactions and number of shares outstanding for all US and Canadian stocks, as well as

ETFs and some other types of securities, from January 2010 to March 2020. Stock prices and

number of shares are adjusted to account for any distribution (i.e., dividends, stock splits)

so that a comparison can be made on an equivalent basis before and after the distribution.

We use as risk-free rate the 3-month US T-bill rate, converted into daily risk-free returns. We

henceforth refer to daily stock excess returns over risk-free simply as returns. Using a Python

script, we then extract all messages from StockTwits for the list of tickers corresponding to the

sample of US and Canadian stocks. This results in 90 million messages, which we download

and store as JSON files.3 Overall, our sample covers 8843 tickers, whereof 75% refer to ordinary

common share, 15% to ETFs, and the remaining 10% to other types of securities. Henceforth,

we interchangeably refer to any of these securities as either a stock or a ticker.

Every StockTwits message includes eight features: (1) the reference ticker(s), (2) a timestamp,

(3) a unique message identifier, (4) the body of the message, (5) the sentiment label (bearish,

bullish, or none) entered by the user, (6) a unique identifier of the user who posted the message,

(7) the number of messages published by the user who posted the message, and (8) the number

of followers of the user who posted the message. Our sentiment analysis builds on the first

five features. The last three provide additional information on the network structure, which

we briefly discuss in Appendix A.3.3.

Figure 3.2 shows a screenshot of the StockTwits website as of 3rd March 2020, for a query of

AAPL, which is the ticker for Apple. The first message is labeled as bullish by the user “satkaru",

the two next are unlabeled messages that will be classified by our machine learning algorithm,

and the last message is labeled as bearish by the user “Etrading”.

The left plot of Figure 3.3 shows the top 30 most discussed tickers on StockTwits. SPY, a large

ETF that tracks the S&P 500 stock market index, is the most discussed ticker, followed by Apple

and other big tickers. The messages about the 15 (30) biggest tickers represent 20% (25%) of

the total number of messages, which indicates that users talk about a wide panel of tickers and

not only big firms. The right graph shows a histogram of the number of messages per ticker.

The x-axis is log-scaled because due to extreme values the distribution is highly skewed.

Text messages need to be transformed into a quantitative vector to be fed into our machine

learning classifier, which in turn computes a sentiment score. This transformation consists

of several steps. First, we apply some preprocessing operations to the text messages: an

apostrophe handler, a contraction form handler (e.g., “aren’t" becomes “are not"), tickers

3A message may refer to multiple tickers. We count any such message towards any ticker that it refers to. We
give more information about this double counting in Appendix A.3.2.
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Figure 3.2: Screenshot of messages posted on StockTwits
Screenshot is from the 3rd of March 2020 for a query on AAPL, the ticker of Apple.

removal, stop words removal (e.g., “a", “the", “of")4, users removal, lemmatization, URLs

removal and a simple spell corrector dealing with more than two repeated characters (e.g.,

“soooo goooood" becomes “soo good"). Table 3.1 shows five examples of messages before and

after preprocessing.

The next step is tokenization: the slicing of a text message into smaller units called terms

or tokens. In financial lingo, some words only have meaning when associated with other

words (i.e., “bad apple" or “bear flag"). N -gram models allow accounting for words frequently

occurring together with other words. The main hyperparameter in an N -gram model is the

number N of words that form a term: a unigram is a term with only one word, a bigram is a

term with two consecutive words, etc. Larger N -gram models increase dramatically the size of

the vocabulary (i.e., the collection of all terms considered). We select N = 1,2,3 and truncate

the resulting vocabulary such that it consists of the one million most frequent terms in the

union of all unigrams, bigrams and trigrams.

Figure 3.4 represents the bullish and bearish word clouds. These represent the most frequent

terms in all user-labeled bullish and bearish messages relative to their total appearance,

respectively. The size of the terms represents their relative weight in the cloud. In the bullish

cloud, we see terms such as “bullish divergence", “room to grow", “lot potential" which we

can clearly interpret as bullish signals. In the bearish cloud, we find terms such as “recent

4We follow Renault (2020) and Saif et al. (2014) and use a restrictive list of stopwords to avoid accuracy decrease.
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Figure 3.3: Ticker summary statistics
Left graph shows the top 30 most discussed tickers on StockTwits. SPY is the ticker of a large ETF
tracking the S&P 500 and AAPL is the ticker for Apple. Right graph shows the distribution of the number
of messages across tickers.

Figure 3.4: Word clouds
Bullish word cloud (left), bearish word cloud (right). These correspond to the most frequent terms (up
to trigrams) in user-labeled bullish (bearish) messages relative to their total appearance. The size of the
terms represents their importance in the cloud.

resistance", “short setup", “bad apple" which again we can directly interpret as bearish signals.

These findings are reassuring in the sense that the content of the messages on StockTwits are

consistent with their labels. We checked for anomalies at random, but did not find significant

issues. Appendix A.3.4 discusses two such anomalies.

3.3 Sentiment Classification

The left plot of Figure 3.5 shows the proportions of user sentiment-labeled messages across

time. In the early years of the platform, most messages were unlabeled, presumably because

users were not familiar with the sentiment label yet. Albeit the proportion of unlabeled

messages monotonically declines over the years, almost 60% of the more recent messages are

still unlabeled. Overall, around 30 million messages are user-labeled and 60 million messages

are unlabeled. We conjecture that by far not all unlabeled messages reflect market neutral

opinions. Indeed, the right plot of Figure 3.5 reveals that a substantial part of user-unlabeled

messages is machine learning classified as bullish or bearish. Hence these user-unlabeled
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Before preprocessing
(1) @CassandraTwit $uvxy contango 3.5%...still long. goooooood
(2) $FRPT Take profits while you still can.
(3) $UVXY $tvix go time boys and girls. Holding overnight again
(4) $dnr Nice upgrade as company goes into its quiet period!
(5) $SPY market won’t reverse again towards closing. Get put options.

After preprocessing
(1) contango still long good
(2) take profit while you still can
(3) go time boy and girl hold overnight again
(4) nice upgrade as company go into its quiet period
(5) market will not reverse again towards closing get put options

Table 3.1: Preprocessing of five sample messages
Preprocessing operations include: punctuation removal, lower casing, apostrophe handling, contrac-
tion form handling (i.e., “won’t" becomes “will not"), tickers removal, users removal, URLs removal,
parsing and a simple spell corrector dealing with more than two repeated characters (i.e., “goooood"
becomes “good")

messages contain indeed market relevant information, which we are able to capture by our

algorithm.

Figure 3.5: Message classification
Left plot shows the proportions of user-labeled messages: bullish (green), bearish (red), and unlabeled
(gray) across time. The right plot shows the proportions of machine learning classified messages:
bullish (light green predicted, green user-labeled), bearish (light red predicted, red user-labeled), and
neutral (gray) across time. Proportions are aggregated monthly.

Among the user-labeled messages we find five times more bullish than bearish ones. This

ratio indicates that investors are on average optimistic about the market, which is consistent

with findings in the literature, e.g., Renault (2017). Such an imbalance is a well-known issue

in classification as it creates a bias towards the over-represented class (see Chawla et al.

(2004)). A standard approach to tackle class imbalance is to over-sample the minority class,

which consists of randomly re-sampling from the minority class and artificially re-balance

the class sizes in the data. We use a different approach, which is tailored for our setup. As not
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every message carries a substantial relevant sentiment, we deviate from the bullish–bearish

dichotomy. Instead, we create an auxiliary neutral sentiment class to account for messages

that do not take a clear stand. See Appendix A.3.7 for examples of such neutral messages.

We then run two independent binary classifiers. The first (second) classifies messages as

bullish versus non-bullish (bearish versus non-bearish). We aggregate the two binary out-

comes and classify a message as bullish (bearish) for the concordant combination bullish/non-

bearish (non-bullish/bearish), and neutral otherwise. We use logistic regression on Term

Frequency-Inverse Document Frequency (TFIDF)-vectorized messages, as in, e.g., Yildirim

et al. (2018), Qasem et al. (2015), Erdemlioglu et al. (2017). We choose TFIDF over more

sophisticated algorithms such as BERT because of simplicity reasons and that it is already

showing good performance. Also, TFIDF is easier to interpret and generates as a side product a

dictionary of finance related terms. TFIDF is used to transform a text, in our case a message m,

into a numerical vector, T F I DFm . The components of the vector encode the importance of

the corresponding terms t in the message m, as formally defined by T F I DFm,t = T Fm,t · I DFt .

The first factor measures how frequently term t appears in the message,

T Fm,t =
∑Nm

i=1 1t=tm,i

Nm
, (3.1)

where Nm denotes the number of terms tm,i in message m. The second factor measures how

important term t is to the message,

I DFt = log
( V∑V

j=1 1t∈m j

)
, (3.2)

where V denotes the total number of messages m j . A term t appearing in many documents

(such as “the", “is", “of") is likely to have low information content, hence a low I DFt .

We use 80% of the user sentiment-labeled messages as a training set and keep 20% as a test

set, then we run two binary classifiers. The first (second) classifier sets bullish (bearish) as

positive and non-bullish (non-bearish) as negative class. Every message then classifies into

one of the following combinations: (non-bullish, bearish), (bullish, bearish), (non-bullish,

non-bearish), (bullish, non-bearish). For the first and last combinations, the two algorithms

agree and the final classification is defined to be bearish (non-bullish, bearish) or bullish

(bullish, non-bearish), respectively. For the two middle combinations, (bullish, bearish) and

(non-bullish, non-bearish), the two algorithms disagree, so that the final classification is

defined to be neutral. Formally, every message m is mapped onto either

m 7→



(non-bullish, bearish) =: bearish

(bullish, bearish) =: neutral

(non-bullish, non-bearish) =: neutral

(bullish, non-bearish) =: bullish.

(3.3)
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To select optimal classification thresholds, we maximize the F1 scores. The F1 scores of the

two binary classifiers differ because they depend on which class is defined as the positive

one. We recap the definition of the F1 score in Appendix A.3.6. Figure 3.6 shows the F1

scores as functions of the threshold. Circles indicate the maximal F1 scores, along with the

corresponding optimal thresholds, 0.50 and 0.72, respectively.

Figure 3.6: Optimal classification thresholds
The green (red) line is the F1 score for the bullish versus non-bullish (bearish versus non-bearish)
classifier as a function of the threshold. Circles indicate the maximal F1 scores.

If the sentiment score of a message is bigger (smaller) than 0.72 (0.50), respectively, then both

classifiers agree and the sentiment of the message is classified as bullish (bearish), respectively.

If the sentiment score is between 0.50 and 0.72, the classifiers disagree, (bullish, bearish),

and we consider the message as neutral. Finally, we overwrite the predicted sentiment of any

message by the user-labeled sentiment whenever the latter is available. Research in sentiment

classification shows that human annotators tend to agree about 80 to 85% of the time when

evaluating the sentiment of a document (see, e.g., Wilson et al. (2005) and Chen et al. (2020)).

This is a benchmark for the accuracy that a sentiment classifier should meet or beat. The out-

of-sample accuracy of our combined classifier is 85.9%. Appendix A.3.6 provides in-sample

and out-of-sample confusion matrices for our combined classifier.

The right plot of Figure 3.5 shows the proportions of our machine learning classifications across

time. Percentages of bearish (user-labeled and classified as bearish) and bullish (user-labeled

and classified as bearish) messages are stable over time, suggesting that our classification

method is robust. Even if most messages were not user-labeled in the early years of the

platform, as seen in the left plot of Figure 3.5, we are now able to classify the sentiment of all

messages in the sample, including a neutral class. Consistent with the over-representation of

60



3.4 Polarity

bullish messages observed in the user-labeled messages, there are substantially more messages

classified as bullish than bearish. Examples of classified messages are given in Appendix A.3.7.

3.4 Polarity

We next aggregate message sentiments on a daily ticker-level and across the market. Thereto,

we denote Ci ,t , j = 1,0,−1 for bullish, neutral, bearish, respectively, the sentiment of the j th

message about ticker i on day t .5 We follow Ranco et al. (2015) and define the sentiment

polarity of ticker i on day t as

Pi ,t =
∑Vi ,t

j=1(1Ci ,t , j=1 −1Ci ,t , j=−1)∑Vi ,t

j=1(1Ci ,t , j=1 +1Ci ,t , j=−1)
, (3.4)

where Vi ,t denotes the number of messages about ticker i on day t .6

As an aggregate, we define the market polarity as a weighted average over all tickers

P M
t =

∑
i Vi ,t ·Pi ,t

V M
t

, (3.5)

where V M
t =∑

i Vi ,t denotes the number of messages on day t . Figure 3.7 shows a scatter plot

of the market polarity P M
t versus the polarity of SPY. The slope coefficient of the regression line

is statistically significantly positive and the contemporaneous Pearson correlation coefficient

is 0.53, suggesting that the market polarity is an accurate measure of the aggregated sentiment

of the market.7 Also, consistent with Figure 3.5, SPY and market polarities are bullish-biased.

For the following time series analysis and event study we restrict our sample. There are two

reasons for doing so. First, we keep computational cost at a reasonable level. Second, and

more importantly, the time series of ticker-individual polarities exhibit spikes and are too

noisy if the daily message volumes Vi ,t are too small. We therefore exclude from now on

tickers whose median of daily message volume is less than 50. Our reduced sample contains

19 tickers, covering a range of security types, sectors, and market capitalization. We refer to

Appendix A.3.5 for more details on the coverage, including summary statistics and the list of

tickers covered.

To understand how our polarity measure is related to investor sentiment, we run linear

5We follow the close-to-close convention. First, we remove all non-business days from the sample, whereby
messages posted on non-business days count towards the next business day. “Day t” then stands for the time
interval from 4pm on the previous business day t −1 to 4pm on business day t . This convention is consistent with
the stock return data, which are close-to-close, and thus avoids any look-ahead bias of our sentiment polarity.

6If Vi ,t = 0 then we set Pi ,t = 0.
7We do not expect P M

t to be equal to the SPY polarity because the underlying sets of stocks differ: market
polarity contains stocks that are not in the S&P500 and vice versa.
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Figure 3.7: Market polarity versus SPY polarity
The red line shows the linear regression line and coefficients.

regressions of contemporaneous and next-day returns on polarity:

Ri ,t =αcont +βcont ·Pi ,t +ϵcont
i ,t , (3.6)

Ri ,t+1 =αnext +βnext ·Pi ,t +ϵnext
i ,t . (3.7)

Table 3.2 shows that the regression coefficient is positive and significant for contemporaneous

returns. This indicates that polarity is a good contemporaneous proxy for the sentiment

of investors. Further supporting evidence is given by the correlation between polarity and

contemporaneous returns at the ticker level.

Ri ,t Ri ,t+1

Constant -0.0047*** -0.0002
(0.000) (0.000)

Pi ,t 0.009*** 0.0003
(0.000) (0.000)

R2 0.012 0.000
No. Obs. 34100 34100

Table 3.2: Regressions of returns on polarity
Results from linear regressions of contemporaneous and next-day stock returns on polarity. Stock
returns are trimmed at the 5% percentile on both sides. Standard errors are reported in parentheses.
Statistical significance at the 99%, 95%, and 90% level is indicated with ***, **, *, respectively.
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Figure 3.8 shows the time series during 2019 for the top 6 most discussed tickers. In our entire

sample of tickers, correlations are always positive and range between 0.1 and 0.3. In contrast,

regressing next-day returns reveals that polarity has no predictive power for next-day stock

returns unconditionally. In the following section we show how polarity has predictive power

around specific events.

Figure 3.8: Correlation between return and polarity
Time series of daily polarity (red - left axis) and daily stock returns (blue - right axis) since 1st of January
2019 for the top 6 most discussed tickers. Pearson correlation between the two time series is shown in
the title.
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3.5 Event Study

Event studies constitute a statistical method widely used in financial econometrics (see, e.g.,

MacKinlay (1997)). In general, they are used to measure the effect of events on the market

value of stocks. Well-known applications of event studies include the testing of various forms

of the efficient market hypothesis (EMH) (see Fama et al. (1969) and Fama (1991)).

3.5.1 Events

We define events as days with an unusual large number of messages for individual tickers.

We conjecture that a sudden peak in StockTwits message volume indicates that an important

corporate or stock market event is happening on the day of the peak. Figure 3.9 shows that

increases (decreases) in message volumes are positively associated with increases (decreases)

in contemporaneous weekly stock transaction volumes. These co-movements indicate that in-

vestors who post messages about stocks also trade them accordingly, adjusting their portfolios.

This suggests that message volume peaks are a good proxy for corporate and stock market

events.

Figure 3.9: Message activity and transaction volume
Changes in weekly volume of transactions on the y-axis versus changes in message activity on the
x-axis. Activity is measured in weekly messages posted per ticker.
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To measure unusual activity peaks, we use as benchmark model a one-year rolling window

regression of daily relative message volume changes of ticker i on daily relative total message

volume changes.8 Formally,

∆Vi ,t

Vi ,t−1
=αV

i +βV
i · ∆V M

t

V M
t−1

+ϵi ,t , (3.8)

which gives the one-year rolling estimates α̂V
i and β̂V

i . We then define the abnormal message

volume changes for ticker i on day t as

AVi ,t =
∆Vi ,t

Vi ,t−1
−

(
α̂V

i + β̂V
i · ∆V M

t

V M
t−1

)
. (3.9)

We define an event for ticker i as any day t where the standardized abnormal volume exceeds

two,
AVi ,t − µ̂AVi

σ̂AVi

> 2, (3.10)

where µ̂AVi and σ̂AVi denote the one-year rolling empirical mean and standard deviation.

Next we define the type of the event as either bullish, neutral or bearish. We use the abnormal

polarity APi ,t of the event date to assess how on average investors perceive the event. Figure

3.10 shows the distribution of abnormal polarities on event dates. We chose to use the one-

Figure 3.10: Empirical distribution of abnormal polarities on event dates
The red dashed lines show the one-third and two-third percentiles.

8Accounting for the lead time of the one-year rolling estimation window, the event study effectively applies to
the shorter period from January 2011 to March 2020.
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third (-0.03) and two-third percentile (0.07) of the distribution of abnormal polarities as

thresholds for the type of the event. We define the type of the event for ticker i at t as

T y pei ,t =


Bull i sh if APi ,t > 0.07,

Neutr al if APi ,t ∈ [−0.03,0.07],

Bear i sh if APi ,t <−0.03.

(3.11)

Overall, across 19 tickers, we identify 1131 events, whereof 454 bullish, 294 neutral, and 383

bearish types. This coverage is on par with previous studies (e.g., MacKinlay (1997) analyze 30

stocks and 600 events). Figure 3.11 shows the aggregate events and their types across time.

The count of events looks stationary over time, apart from a build up phase of the platform in

the early part until 2014. The distribution of event types is also balanced across time.

Figure 3.11: Number of events of each type across time
The green area shows bullish events, the gray area shows neutral events and the red area shows bearish
events. Numbers are aggregated monthly.

As an illustration, Figure 3.12 shows for Apple the time series of message volume and the

corresponding events. Between January 2011 and March 2020, our algorithm identified 73

events for Apple. What are these events? Remarkably, we capture a variety of corporate events

and disclosures. Earning announcements constitute about half of the events. Other events

include Apple Keynotes (presentations that Apple gives to the press, often presenting new

products), or CEO letters addressed to investors. Table 3.3 lists a few examples.
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Figure 3.12: Daily message volume for Apple
Events are days with an unusual high number of messages. The green upper-triangles show bullish
events, gray circles are neutral events and red down-triangles represent bearish events.

3.5.2 Abnormal Stock Returns

How do stock returns behave around events? Similar to the relative message volume changes,

we use as benchmark model a one-year rolling window regression of the daily returns of ticker

i on the daily market returns, RM
t , i.e., daily excess returns of the S&P500,

Ri ,t =αR
i +βR

i ·RM
t +ϵi ,t , (3.12)

which gives the one-year rolling estimates α̂R
i and β̂R

i . This implies the abnormal returns

ARi ,t = Ri ,t −
(
α̂i

R + β̂i
R ·RM

t

)
. (3.13)

We define the cumulative abnormal returns (CAR) around a ticker i event τ as

C ARi (τ, t ) =
t∑

s=−20
ARi ,τ+s , (3.14)

and the cumulative average abnormal returns (CAAR) across all N = 1131 events as

C A AR(t ) = 1

N

N∑
j=1

C ARi j (τ j , t ). (3.15)

Left plot of Figure 3.13 shows the CAAR around the events. This plot is consistent with

MacKinlay (1997). It shows that CAAR related to bearish (bullish) events exhibits a significant
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Date Description Type
2012-04-24 Earnings announcement Bullish
2012-09-12 Presents iPhone 5 Neutral
2014-09-09 Presents Apple Watch Neutral
2017-05-02 Announces drop in iPhone sales Bearish
2017-08-31 Earnings announcement Bullish
2017-09-12 Presents iPhone X Bearish
2019-01-02 CEO Letter to investors Bearish
2019-09-10 Presents iPhone 11 Neutral
2019-10-30 Earnings announcement Bullish

Table 3.3: Selected events and associated description and types for Apple
This list is for illustration and non-exhaustive (9 out of 73).

downward (upward) jump at the event date, respectively. These jumps are followed by a flat

CAAR during the 20 days after the event. Interestingly, there is a systematic shift in the CAAR

already 1 day before the event. However, this shift is relatively small compared to the jump

on the event day: one day before the event, the bullish (bearish) CAAR equals 0.019 (-0.023).

The CAAR related to the neutral events exhibits a slight upward shift around the event date

but it fades away after a few days. The CAAR related to bearish events shifts already a few

days before the event but this shift is not statistically significant. This is in line with Figure

3.14, which shows that the CAR distributions prior to the events are not significantly different

from zero. This is confirmed by the Mann-Whitney U-tests shown in Table 3.4. CAR has no

predictive power on the type of the event: five days before an event, the median of the CAR

distribution of the bullish events is not statistically different from the median of the neutral

events. The same holds for the bearish events.

3.5.3 Abnormal Polarity

How does sentiment polarity behave around events? Similar to the above, we use as benchmark

model a one-year rolling window regression of the daily polarity of ticker i on the daily market

polarity defined in (3.5),

Pi ,t =αP
i +βP

i ·P M
t +ϵi ,t , (3.16)

which gives the one-year rolling estimates α̂P
i and β̂P

i . This implies the abnormal polarity

APi ,t = Pi ,t −
(
α̂i

P + β̂i
P ·P M

t

)
. (3.17)

We define the cumulative abnormal polarity (CAP) around a ticker i event τ as

C APi (τ, t ) =
t∑

s=−20
APi ,τ+s , (3.18)
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and the cumulative average abnormal polarities (CAAP) across all N = 1131 events as

C A AP (t ) = 1

N

N∑
j=1

C APi j (τ j , t ). (3.19)

The right plot of Figure 3.13 shows the CAAP around the events. There are two main findings.

First, in contrast to CAAR, the CAAP for bullish and bearish events is not constant after the

event date, suggesting that users’ sentiments about stocks tend to be biased towards recent

past events. A possible explanation is that users might still post bullish (bearish) messages

about a bullish (bearish) event during several days after the event. This is in contrast to the

returns that immediately normalize after the event. Second, and more interestingly, the CAAP

for bullish and bearish events shifts several days earlier than the CAAR. This indicates that

investors are on average able to anticipate the type of an event in the near future. However,

this sentiment only manifests through the social media, but not through abnormal returns.

Figure 3.13: CAAR and CAAP around identified events
Cumulative average abnormal returns (left plot) and cumulative average abnormal polarity (right plot)
around identified events. CAAR and CAAP related to bearish, neutral and bullish events are displayed
with the red, gray and green line, respectively. Areas around lines show confidence intervals at the 95%
level.

Figure 3.14 illustrates this striking finding with box plots (see Dekking et al. (2005) and Tukey

(1977)) showing the distributions of the CAR and CAP, for all three event types, 5 days before

the event, at the event date, and 5 days after the event, respectively.
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CAR 5 days before the event CAP 5 days before the event

CAR on the event date CAP on the event date

CAR 5 days after the event CAP 5 days after the event

Figure 3.14: Distributions of CAP and CAR around events
The line inside a box shows the median while the edges of each box represent the 25% and 75% quantile
of the distribution. From above the edges of a box, a distance of 1.5 times the interquartile range is
measured and a whisker is drawn up to the largest and lowest observed point from the data that falls
within this distance. Interquartile range is equal to the third quartile minus the first quartile.
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CAR
Alternative Hypothesis U Z n1 n2

τ-5
H1 : θbull i sh > θneutr al 61109 -1.70 452 292
H1 : θneutr al > θbear i sh 54168 -0.52 292 380

τ
H1 : θbull i sh > θneutr al 50967 -5.25*** 452 292
H1 : θneutr al > θbear i sh 43100 -4.96*** 292 380

τ+5
H1 : θbull i sh > θneutr al 52738 -4.63*** 452 292
H1 : θneutr al > θbear i sh 43239 -4.91*** 292 380

CAP
Alternative Hypothesis U Z n1 n2

τ-5
H1 : θbull i sh > θneutr al 55408 -3.70*** 452 292
H1 : θneutr al > θbear i sh 47998 -3.00*** 292 380

τ
H1 : θbull i sh > θneutr al 49385 -8.98*** 452 292
H1 : θneutr al > θbear i sh 42101 -5.36*** 292 380

τ+5
H1 : θbull i sh > θneutr al 44364 -7.55*** 452 292
H1 : θneutr al > θbear i sh 40515 -6.00*** 292 380

Table 3.4: Mann-Whitney U-test statistics
Mann-Whitney U-test statistics for pairwise significant differences between distribution medians.
Under the null hypothesis, the two samples represent two distributions with equal median values.
Statistical significance at the 99%, 95%, and 90% level is indicated with ***, **, *, respectively.

To check statistical significance, we use the Mann-Whitney U-test (see Mann and Whitney

(1947) and Sheskin (1998)) to test whether the three samples (bullish, neutral and bearish)

represent populations with different median values.9 Table 3.4 shows U-test statistics for

pairwise comparisons. The null is rejected in every case except for CAR at τ−5. That is, 5 days

before the event, CAR has no predictive power on the type of event. This is consistent with the

EMH. In contrast, 5 days before the event, CAP can predict the type of event. At the event date,

the medians of the CAR shift as the abnormal returns jump for both bullish and bearish events.

This is also consistent with the EMH. Finally, 5 days after the event, the distributions of the

CAR are very similar to the ones at the event date. Again, this is consistent with the EMH, as all

new information is instantaneously embedded into the prices and the returns normalize after

the event, immediately. The medians of the CAP 5 days after the event exhibit an extended

shift compared to the ones at the event date, as investors continue to post about recent past

events.

9This interpretation only holds under stringent assumptions on the populations, namely that the two population
distributions are equal up to a shift. Under the null hypothesis, the three samples represent distributions with
equal medians. Let θi be the median of the distribution i. Formally, we test H0 : θbull i sh = θneutr al against
H1 : θbull i sh > θneutr al and H0 : θneutr al = θbear i sh against H1 : θneutr al > θbear i sh 5 days before an event, on
event date and 5 days after an event. We define U as the Mann-Whitney test statistic, Z as the normal approximation
of the Mann-Whitney test statistic for large sample sizes, n1 and n2 as the sample sizes. We refer to Sheskin (1998)
for the test statistic computation.
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3.6 Sentiment-Sorted Portfolios

We assess the economic relevance of the sentiment polarity and construct sorted portfolios.

Thereto, we define for every ticker i and day t

C APi ,t =
t∑

s=t−14
APi ,s , (3.20)

which is the running CAP over the last 14 days plus the current day t (we rebalance the portfolio

at the close on day t).10 Note the difference to (3.18). While we cannot predict the arrival of

an event, we assume that the more C APi ,t deviates from zero the more likely there will be an

event on the next day. We will thus use C APi ,t as a baseline signal for market timing. However,

as we have seen above, CAP continues to shift after an event. To avoid exposures to short-term

reversals, we thus reset the running CAP after every event. Formally, let τi ,t ≤ t denote the

most recent past event date by t of ticker i . Then we define the reset CAP

C AP (R)
i ,t =

t∑
s=max{t−14,τi ,t+1}

APi ,s =


C APi ,t , if τi ,t < t −14,∑t

s=τi ,t+1 APi ,s , if t −14 ≤ τi ,t < t ,

0, if τi ,t = t ,

(3.21)

where we used the convention that
∑t

s=t+1 · = 0.

We also define time-varying thresholds on the reset CAP for market timing. For every day t ,

we estimate the mean µt and standard deviation σt of C AP (R)
i ,t across the 19 tickers i . For a

fixed multiplier x, we define Ut (x) =µt +x ·σt the upper threshold, and Lt (x) =µt −x ·σt the

lower threshold. Figure 3.15 shows the time series of the cross-sectional mean µt and the 99%

confidence interval, Lt (x) and Ut (x) for x = 2.58. As a robustness check of our approach, we

observe that the mean is well centered at zero. We also see a regime change in early 2015. In

the first regime the standard deviation is much larger (and more volatile) than in the second

regime.11 Appendix A.3.8 contains the results for the 95% (x = 1.96) and 99.5% (x = 2.81)

confidence intervals.

Based on these signals, we now construct reset-CAP-sorted portfolios. Formally, we define

the ticker sets I bull
t = {i | C AP (R)

i ,t > Ut (x)} and I bear
t = {i | C AP (R)

i ,t < Lt (x)}. At the close of

any day t , we form the equally weighted bullish (bearish) portfolio consisting of tickers in

I bull
t (in I bear

t ), and realize the 1-day returns. If any of the index sets is empty, we set the

corresponding return to zero. The top-left plot of Figure 3.16 shows the cumulative log returns

of bullish and bearish portfolios as well as the S&P500. Overall, the portfolio performance is

consistent with our approach: the bullish (bearish) portfolio outperforms (under-performs)

the market. Remarkably, the upward (downward) steps suggest that our portfolio strategy

succeeds to take the right positions just before an event. The remaining plots of Figure 3.16

10As above, we work here with the restricted sample of 19 tickers and dates t ranging through all business days of
the sample period, excluding the first 14 days (for the CAP) and the last day (for the last portfolio holding period).

11We could not find an exogenous cause for this regime change.
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Figure 3.15: Cross-sectional statistics of C AP (R)
i ,t

The blue line shows the daily cross-sectional mean, the green (red) line shows the cross-sectional mean
plus (minus) 2.58 standard deviations, respectively.

show the number of positions across time of our portfolios. Most of the returns are earned

with portfolios consisting of very few tickers. This is a result of our market timing and stock

picking strategy: we only invest in the top/bottom percentiles of CAP, whenever our signal is

strong enough.
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Cumulative log returns Distribution of number of positions

Number of positions over time Daily returns

Figure 3.16: Bullish and bearish portfolios for x = 2.58
Top left plot shows the cumulative log returns of the portfolios over the years, top right plot shows the
distribution of the number of positions in the portfolios, bottom left plot is the number of positions
over time and bottom right plot is the daily returns of both portfolios.
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3.7 Conclusion

We extract a large sample of messages from StockTwits from January 2010 to March 2020,

covering US and Canadian stocks. Messages are either user-labeled as bullish or bearish or

left unlabeled. Using the user-labeled messages as training set, we run logistic regressions

on TFIDF vectorized messages to classify all unlabeled messages as either bullish, neutral or

bearish. We observe a 5-to-1 bullish-to-bearish ratio, indicating that investors are on average

optimistic. We build time series of daily sentiment polarity for individual tickers and the

aggregate market. We show that daily polarity is positively associated to contemporaneous

stock returns, but this result loses its significance against next-day returns. We then define

events as days with sudden peaks of message volume and relate them to corporate and stock

market events. We show that cumulative abnormal polarity has significant predictive power

on the type of event, in contrast to cumulative abnormal returns. We also note that investor

sentiment about a ticker tends to be biased towards recent past events. As robustness check,

we show that our event study on cumulative abnormal returns is consistent with previous

literature on the efficient market hypothesis. The performance of sentiment-sorted portfolios

illustrates the economic relevance of our sentiment measure.
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Conclusion

The three chapters presented in this thesis use neural networks and natural language process-

ing to develop or improve financial risk models.

The first chapter contributes to the literature on reduced-form models for multiperiod corpo-

rate default prediction using a doubly stochastic formulation. The probability of default in a

specific horizon is a function of the forward default intensity and of the forward combined in-

tensity. Previous literature proposes a model to predict corporate default at multiple horizons

by estimating these forward intensities via maximum likelihood. To do so, they use a linear

assumption in the relationship between the variables and the forward intensities. I show in

the first chapter that a significant improvement is achieved by relaxing the linear assumption

and using an artificial neural network instead. To allow comparison with the benchmark

model, I choose to work with a similar set of features consisting of firm-specific accounting

variables and macroeconomic variables. However, a growing area of study is building market

sentiment measure and is showing their predictive power on the stock market. A potential and

interesting venue for future research would be to gauge the predictive power of such features

for default prediction.

The second chapter investigates the interconnections among a set of financial instutions. We

propose a recurrent neural network approach to reduce the computational complexity of

computing directed information. This approach is well-suited to infer the causal structure of

large networks. Future research could focus on using this new methodology as a preliminary

feature selection of another predictive model. Feature selection is a process used in machine

learning which consists of keeping only a subset of relevant features to avoid overfitting or

reduce dimensionality.

The third chapter classifies the sentiment of a large sample of social media messages to

create stock-aggregate daily sentiment polarity measure. We show that conditionally on a

stock market event happening, investors are on average able to anticipate the type of the

event. Future research could focus on understanding the causes of this result at the user-level.

In particular, some users have more influence than others because they either have more

followers or they are more active on the platform. Are these users performing on average

better than less active users ?
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A.1 Appendix to Chapter 1

A.1.1 Relation between gi t (τ) andψi t (τ)

The relation between gi t (τ) and ψi t (τ) is given by :

gi t (τ) = F ′
i t (τ)

1−Fi t (τ)

=ψi t (τ)+ψ′
i t (τ)τ. (A.1)

Proof. The last equation above can be computed with the first derivative ofψi t (τ) with respect

to time. Using Definition 1.8 we have :

ψ′
i t (τ) = u′v −uv ′

v2 =

F ′
i t (τ)

1−Fi t (τ)
τ+ ln(1−Fi t (τ))

τ2

=

F ′
i t (τ)

1−Fi t (τ)
τ

+ ln(1−Fi t (τ))

τ2

⇒ψ′
i t (τ)τ= F ′

i t (τ)

1−Fi t (τ)
+ ln(1−Fi t (τ))

τ

⇒ F ′
i t (τ)

1−Fi t (τ)
=ψi t (τ)+ψ′

i t (τ)τ.
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A.1.2 Computation ofψi t (τ)τ

The quantity ψi t (τ)τ that we are looking for is :

ψi t (τ)τ=
∫ τ

0
gi t (s)d s. (A.2)

Proof. Integrating by parts ψ′
i t (s)s between 0 and τ, we have :∫ τ

0
ψ′

i t (s) · s ·d s =ψi t (s) · s|s=τs=0 −
∫ τ

0
ψi t (s) ·1 ·d s

=ψi t (τ)τ−
∫ τ

0
ψi t (s)d s.

Integrating both sides of equation A.1 leads to :∫ τ

0
gi t (s)d s =

∫ τ

0
ψi t (s)d s +

∫ τ

0
ψ′

i t (s) · s ·d s

=
∫ τ

0
ψi t (s)d s +ψi t (τ)τ−

∫ τ

0
ψi t (s)d s

=ψi t (τ)τ.

A.1.3 Likelihood function

The likelihood function has been developed in Duan et al. (2012). However, the likelihoods

have to be slightly updated to be compatible with the neural network framework. One neural

network is trained to compute fi t and the other is trained to output hi t where gi t = fi t +hi t .

Let us denote λ and µ the set of parameters (weights) tuned in the neural network for fi t and

hi t respectively. I impose non-negativity on both fi t and hi t to ensure that the combined exit

intensity is at least bigger than the forward default intensity. The overall likelihood function

for horizon of prediction τ is by definition given by

Lτ(λ,µ;τC ,τD , X ) =
N∏

i=1

T−1∏
t=0

Lτ,i ,t (λ,µ;τCi ,τDi , Xi t ), (A.3)

where

Lτ,i ,t (λ,µ;τCi ,τDi , Xi t ) = 1t0i ≤t ,τCi >t+τ+1 ·Pt (τCi > t +τ+1) (A.4)

+1t0i ≤t ,τDi =τCi ≤t+τ ·Pt (t +τ< τDi = τCi ≤ t +τ+1)

+1t0i ≤t ,τCi ≤t+τ,τDi ̸=τCi
·Pt (t +τ< τDi ̸= τCi ≤ t +τ+1)

+1t0i >t +1τCi ≤t ,
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with

Pt (τCi > t +τ+1) = exp(−
τ∑

s=0
gi t (s)∆t ), (A.5)

Pt (t +τ< τDi = τCi ≤ t +τ+1) =


1−exp(− fi t (0)∆t ), if τCi = t +1

exp(−
τCi −t−2∑

s=0
gi t (s)∆t )×

(1−exp[− fi t (τCi − t −1)∆t ], otherwise

(A.6)

Pt (t +τ< τDi ̸= τCi ≤ t +τ+1) =



1−exp(−gi t (0)∆t )−
(1−exp(− fi t (0)∆t )), if τCi = t +1

exp(−
τCi −t−2∑

s=0
gi t (s)∆t )×

(exp[− fi t (τCi − t −1)∆t−
exp[−gi t (τCi − t −1)∆t ], otherwise

(A.7)

Since the indicator functions are all mutually exclusive, taking the log of the likelihood function

is very helpful. After the log-linearization, the product terms become summation terms,

and the two last indicator functions drop. We are left with the summation of the indicator

functions times the logarithm of each probability defined above. Similar to the proposition

2 in Duffie et al. (2007) and subsection 3.2 in Duan et al. (2012), the pseudo log-likelihood

is the product of seperate terms which are function of f and g . The first decomposition

consists of separating terms involving f and terms involving g . The second decomposition

consists of separating terms corresponding to different τ. In the end, we get two likelihood

functions to estimate for each horizon. For each horizon the parameters of the likelihood

function involving f are estimated in a neural network with output N (λ)
i t . The parameters

of the likelihood function involving h are estimated in a neural network with output N (µ)
i t .

The combined exit forward intensity g is assumed to be of the form f +h as in previous

literature. Since exp(− f )−exp(−g ) = exp(− f )−exp(− f −h) = exp(− f )∗(1−exp(−h)), the first

decomposition is the following :

Lτ,i ,t (λ;τCi ,τDi , Xi t ) = 1t0i ≤t ,τCi >t+τ+1 ·exp(−
τ∑

s=0
fi t (s)∆t ) (A.8)

+1t0i ≤t ,τDi =τCi ≤t+τ ·exp(−
τCi −t−2∑

s=0
fi t (s)∆t ) · (1−exp(− fi t (τCi − t −1)∆t )

+1t0i ≤t ,τCi ≤t+τ,τDi ̸=τCi
·exp(−

τCi −t−2∑
s=0

fi t (s)∆t ) ·exp(− fi t (τCi − t −1)∆t )

+1t0i >t +1τCi ≤t ,
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Lτ,i ,t (µ;τCi ,τDi , Xi t ) = 1t0i ≤t ,τCi >t+τ+1 ·exp(−
τ∑

s=0
hi t (s)∆t ) (A.9)

+1t0i ≤t ,τDi =τCi ≤t+τ ·exp(−
τCi −t−2∑

s=0
hi t (s)∆t )

+1t0i ≤t ,τCi ≤t+τ,τDi ̸=τCi
·exp(−

τCi −t−2∑
s=0

hi t (s)∆t ) · (1−exp(−hi t (τCi − t −1))

+1t0i >t +1τCi ≤t .

Similar to previous literature, we can still decompose the likelihoods into terms involving

different horizons of prediction τ. For each τ, we can consider as constant all terms involving

previous horizons forward intensities. After log-linearization, the second decomposition is

the following :

Li ,t (λ;τCi ,τDi , Xi t ) = 1t0i ≤t ,τCi >t+τ+1 · (− fi t (s)∆t )) (A.10)

+1t0i ≤t ,τDi =τCi ≤t+τ · ln(1−exp(− fi t (s)∆t ))

+1t0i ≤t ,τCi ≤t+τ,τDi ̸=τCi
· (− fi t (s)∆t ),

Li ,t (µ;τCi ,τDi , Xi t ) = 1t0i ≤t ,τCi >t+τ+1 · (−hi t (s)∆t ) (A.11)

+1t0i ≤t ,τCi ≤t+τ,τDi ̸=τCi
· ln(1−exp(−hi t (s)∆t )).

For all horizon of prediction s. We are now left with many small likelihoods that we can

maximize separately instead of the huge maximum likelihood A.3. Ultimately, we can design

two neural networks N Nλ and N Nµ with outputs Nλ
i t and Nµ

i t respectively to maximize the

two above loss functions.

A.1.4 Distance-to-Default estimation

Distance-to-default

Let VT be the firm value at time T , L the amount of debt to be repaid and ET the equity value

at time T . In case of bankruptcy, debt holders receive money before shareholders. The payoff

to shareholders is then given by ET = max(VT −L,0). This payoff is the same as a call option

ET on the underlying VT with the strike being L. Merton (1974) model considers that Vt is

following a geometric Brownian motion :

dVt =µVt dt +σVt dBt .
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We can then use Black-Scholes formula to get the option price and firm’s equity value Et at

any time t :

Et =Vt N (dt )−e−r (T−t ) ·L ·N (dt −σ
p

T − t ), (A.12)

dt = ln(Vt /L)+ (r +σ2/2)(T − t )

σ
p

T − t
,

with r being the risk-free rate and N(x) the normal cumulative distribution function. The

distance-to-default is defined as the difference between the expected value of the asset and

the default point. After substitution into a normal cumulative distribution function, we get :

DtD t =
ln(

VA

L
)+ (µ− σ2

A

2
)(T − t )

σA
p

T − t
. (A.13)

Note that similarly to the variance restriction method, µ cannot be estimated precisely. Thus,

we compute DtD with the following formula :

DtD =
ln(

VA

L
)

σA
p

T − t
. (A.14)

In Figure A.1 taken from Crosbie and Bohn (2003), the distance-to-default is denoted by “DD".

The higher the asset value at horizon H the greater the distance-to-default will get, which

lowers the default probability since the firm is more likely to be able to repay the debt owed.

Similarly, the more debt the firm has, the smaller the DtD will be for a given level of asset value.

Figure A.1: Distance-to-default
The distance-to-default is denoted by DD. It is defined as the difference between the expected value of
the asset and the default point.
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Variance restriction method to estimate DtD

The variance restriction method is used in Duffie et al. (2007) to estimate the distance-to-

default (DtD). This method is based on Merton (1974) model which states that the firm’s equity

value can be seen as a call option on the underlying asset and the strike being the amount of

debt. This holds because stockholders receive money only once debt holders are fully paid.

Applying the Black-Scholes call option formula to equity value, we get the following :

VE = VA N (d1)−e−r (T−t ) ·D ·N (d2)

d1 =
VA

D
+ (r − σ2

A

2
(T − t )

σA
p

T − t
d2 = d1 −σA

p
T − t .

Where VE is the market equity value, VA is the market asset value, D is the default point and N

the normal cumulative distribution function. Following KMV assumption, the default point D

in the variance restriction method is specified as short-term debt plus one half of long-term

debt.

Using Itô, we can show that

σE = VA

VE
· ∂VE

∂VA
·σA .

Hence, the method consists of solving the following system with two equations and two

unknowns VA and σA :  VE = VA N (d1)−e−r (T−t ) ·D ·N (d2)

σE = VA

VE
· ∂VE
∂VA

·σA ,

Once VA and σA are estimated, the DtD is defined as the distance between the expected value

of the asset and the default point. After substitution in a normal CDF, we get

DtD =
ln(

VA

L
)+ (µ− σ2

A

2
)(T − t )

σA
p

T − t
. (A.15)

However, many papers agree that µ is very tedious to estimate. Hence, DtD is often computed

as

DtD =
ln(

VA

L
)

σA
p

T − t
. (A.16)

The major drawback of the variance restriction method used in Duffie et al. (2007) is the

definition of the default point. The default point in the variance restriction method is following

the so-called KMV assumption. This assumption states that for every firm the default point

is exactly equal to short term debt plus one half of long-term debt. However, many financial

firms do not account debt as short or long-term debt but as “other liabilities”. This causes the
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default point to be abnormally low for financial firms when using KMV assumption. Therefore,

to take financial firms into account, we need to adjust the default point by taking into account

other liabilities. The method proposed by Duan et al. (2012) employs a maximum likelihood

to estimate the optimal fraction δ of other liabilities to include in the model.

Maximum likelihood estimation to estimate DtD

Duan et al. (2012) and Duan and Wang (2012) presented a method to estimate distance-to-

defaults without having to exclude financial firms. The method accounts for other liabilities

using a maximum likelihood estimation including a parameter δ to take into account other

liabilities. The default point in this method becomes :

L = short-term debt+0.5× long-term debt+δ×other liabilities. (A.17)

Duan et al. (2012) and Duan and Wang (2012) usually estimate δ for many firms altogether (i.e.

δ for a whole industry). However, we improve the methodology by computing δ for each firm

individually. We should obtain higher deltas for financial firms than for non-financial firms.

Estimating δ for each firm is highly time consuming because of greater computation time

but it should highly improve the granularity and precision of the model. The log-likelihood

function is given in Duan et al. (2012) and Duan and Wang (2012) by :

Li (µ,σ,δ) =−n −1

2
ln(2π)− 1

2

n∑
t=2

ln(σ2ht )−
n∑

t=2
ln(

V̂t (σ,δ)

At
)

−
n∑

t=2
ln(N (d̂t (σ,δ)))−

n∑
t=2

1

2σ2ht
× (ln(

V̂t (σ,δ)

V̂t−1(σ,δ)
· At−1

At
− (µ− σ2

2
))2.

where n is the number of period observations for each firm i . The likelihood above differs

from Duan et al. (2012) and Duan and Wang (2012) because of the index i since we estimate

the likelihood for each of the 2099 firms in our sample to get 2099 estimations of δ. Using

this kind of likelihood is complex and very time consuming because we have to solve many

inverse Black-Scholes formulas to get the time values of implied asset value V̂t (σ,δ) for each

firm by solving equation A.12. However, inverse Black-Scholes formula does not have any

closed form solution. The optimization is even more tedious since the implied asset value

V̂t (σ,δ) depends on the final output of the likelihood δ. At is the book asset value and ht is

the time interval as a fraction of a year between two observations. ht in the model is set to be

0.25 since we performed a linear interpolation when we had a missing value in the sample

(see “Missing information"). To get rid of the inverse Black-Scholes formula problem, I use a

dichotomic algorithm to compute the time series of asset values.
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A.2 Appendix to Chapter 2

A.2.1 Technical proofs

Proof of Lemma 1

From the definition of DIG, we know that for any Rk ̸∈ PA j , I (Rk → R j ||R−{k, j }) = 0. This

implies that for all t ,

p(R j ,t |Rt−1) = p(R j ,t |Rt−1
−{k}). (A.18)

On the other hand, by the assumption of the Lemma, Ri ̸∈PA j , we have

I (Ri → R j ||R−{i , j }) = 0, (A.19)

or equivalently, for all t ,

p(R j ,t |Rt−1) = p(R j ,t |Rt−1
−{i }). (A.20)

Combining (A.18) and (A.20) imply that for any pair {Ri ,Rk } that are not in the parent set of

R j , we have

p(R j ,t |Rt−1
−{k}) = p(R j ,t |Rt−1

−{i }). (A.21)

To prove the claim of this lemma, we use (A.21) to show that all the time series in R−{i , j } \C

can be removed from the conditioning in (A.19). Let Rk ∈R−{i , j } \C , by multiplying the above

equality with p(R t−1
i |Rt−1

−{i ,k}) and marginalizing over R t−1
i , we obtain∫

p(R j ,t |Rt−1
−{k})p(R t−1

i |Rt−1
−{i ,k})dR t−1

i = p(R j ,t |Rt−1
−{i ,k})

=
∫

p(R j ,t |Rt−1
−{i })p(R t−1

i |Rt−1
−{i ,k})dR t−1

i = p(R j ,t |Rt−1
−{i }).

The above equalities and (A.20) imply that for all t ,

p(R j ,t |Rt−1) = p(R j ,t |Rt−1
−{i ,k}),

or equivalently,

I (Ri → R j ||R−{i , j ,k}) = 0.

By repeating the above procedure, we obtain

I (Ri → R j ||C ) = 0.
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Proof of Lemma 2

Consider the VAR model in (2.13). First, we assume that Xi has no influence on X j , i.e., I (Xi →
X j ||X−{i , j }) = 0 or equivalently a j ,i = 0 and show that (2.16) holds. Given this assumption, we

have that for all t ,

p(X j ,t |X t−1
−{i } ) = p(X j ,t |X t−1).

Using the equations in (2.13) and the assumption that a j ,i = 0, we obtain

p(X j ,t |X t−1) = p(N j ,t +
∑
k

a j ,k Xk,t−1|X t−1) = p(N j ,t +
∑
k ̸=i

a j ,k Xk,t−1|X t−1)

= p(N j ,t +
∑
k ̸=i

a j ,k Xk,t−1|
∑
k ̸=i

a j ,k Xk,t−1, X t−1
i , X t−1

j )

= p(N j ,t +
∑
k ̸=i

a j ,k Xk,t−1|
∑
k ̸=i

a j ,k Xk,t−1, X t−1
j ).

Note that we could replace X t−1 by {
∑

k ̸=i a j ,k Xk,t−1, X t−1
i , X t−1

j } or

{
∑

k ̸=i a j ,k Xk,t−1, X t−1
j } in the above equations, because given either of them

∑
k ̸=i a j ,k Xk,t−1

becomes a constant and independent of N j ,t . By defining Qt−1 :=∑
k ̸=i a j ,k Xk,t−1, the above

equations can be rewritten as follows

p(X j ,t |X t−1) = p(X j ,t |Qt−1, X t−1
i , X t−1

j ) = p(X j ,t |Qt−1, X t−1
j ),∀t ,

or equivalently,

E

[
log

p(X j ,t |Qt−1, X t−1
i , X t−1

j )

p(X j ,t |Qt−1, X t−1
j )

]
= 0,∀t .

Using the definition of DI, the above equalities can be written in terms of DI as follows

I (Xi → X j ||Q) = 0.

On the other hand, we have

[a j ,1, ..., a j ,i−1, a j ,i+1, ..., a j ,m] = arg min
w∈Rm−1

E
[||X j ,t −wT X−{i },t−1||22

]
:= ut .

where X−{i },t−1 := [X1,t−1, ..., Xi−1,t−1, Xi+1,t−1, ..., Xm,t−1]T . This means that Qt−1 = uT
t X−{i },t−1.

Next, we show the reverse direction, i.e., we assume (2.16) holds, then we show I (Xi →
X j ||X−{i , j }) = 0. To do so, it suffices to show a j ,i = 0. Since (2.16) holds, we have

p(X j ,t |uT
t X−{i },t−1, X t−1

i , X t−1
j ) = p(X j ,t |uT

t X−{i },t−1, X t−1
j ),∀t .

Using the j -th equation of (2.13) and the above equalities, for any instances (uT
t x−{i },t−1, x t−1

i , x t−1
j )
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of (uT
t X−{i },t−1, X t−1

i , X t−1
j ), we obtain ∀t ,

E
[

X j ,t |uT
t x−{i },t−1, x t−1

i , x t−1
j

]
= E

[
X j ,t |uT

t x−{i },t−1, x t−1
j

]
,

which implies

E
[
N j ,t

]+ ∑
k ̸=i

a j ,k xk,t−1 +a j ,i xi ,t−1 =

E
[
N j ,t

]+ ∑
k ̸=i

a j ,k xk,t−1 +a j ,iE
[

Xi ,t−1|uT
t x−{i },t−1, x t−1

j

]
.

This simplifies to

a j ,i xi ,t−1 = a j ,iE
[

Xi ,t−1|uT
t x−{i },t−1, x t−1

j

]
,∀t .

This equation should hold for any xi ,t−1. This is only possible if a j ,i = 0.

Proof of Lemma 3

The proof is similar to the linear version and uses the fact that exogenous noises {ε j ,t } are

independent. More precisely, we have

p(X j ,t |X t−1) = p(F j (X t−1)+ε j ,t |F j (X t−1)).

Since there is no influence from Xi to X j , we can eliminate it from the conditioning and the

argument of function F j and obtain

p
(
F j (X t−1)+ε j ,t |X t−1)= p

(
F j (X t−1

−{i } )+ε j ,t |X t−1
−{i }

)
.

On the other hand, because given either {F j (X t−1
−{i } ), X t−1

i , X t−1
j } or

{F j (X t−1
−{i } ), X t−1

j }, the value of F j (X t−1
−{i } ) is no longer a random variable. Using this relationship

and the fact that ε j ,t is independent of X t−1, we obtain

p
(
F j (X t−1

−{i } )+ε j ,t |F j (X t−1
−{i } ), X t−1

i , X t−1
j

)= p
(
F j (X t−1

−{i } )+ε j ,t |F j (X t−1
−{i } ), X t−1

j

)
.

By defining Qt−1 := F j (X t−1
−{i } ), the above equations can be rewritten in terms of DI as follows,

I (Xi → X j ||Q) = 0.

To show the reverse, we need to prove that I (Xi → X j ||X−{i , j }) = 0 if Equation (2.18) holds.

Because I (Xi → X j ||Q) = 0 and using Equation (2.17), for all t , we have

p
(
F j (X t−1)+ε j ,t |Qt−1, X t−1

i , X t−1
j

)= p
(
F j (X t−1)+ε j ,t |Qt−1, X t−1

j

)
,

where Qt−1 = F j (X t−1
−{i } ). Note that the conditioning on the right-hand-side distribution is
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independent of X t−1
i . This implies that function F j does not depend on Xi . Therefore, we can

remove X t−1
i from the argument of F j , i.e.,

X j ,t = F j (X t−1)+ε j ,t = F j (X t−1
−{i } )+ε j ,t ,

which further implies

p(F j (X t−1
−{i } )+ε j ,t |X t−1

−{i , j }, X t−1
i , X t−1

j ) = p(F j (X t−1
−{i } )+ε j ,t |X t−1

−{i , j }, X t−1
j ).

This is equivalent to

I (Xi → X j ||X−{i , j }) = 0.

A.2.2 Koopman-based Lifting Method

Let Xt := {X1,t , ..., Xm,t } denote a network of m time series such that

Ẋt = F (Xt ), (A.22)

where the vector field F (X) = (F1(X), ...,Fm(X)) is of the form

F j (X) =
K∑

k=1
w j ,k hk (X). (A.23)

In the above equation, w j ,k ∈R are unknown weights and {hk (X)} denote a set of known library

functions, e.g., monomials. Furthermore, let ϕt (X0) denote the solution to (A.22) associated

with the initial condition X0.

Now, suppose that we have N noisy observations {(x1,y1), ..., (xN ,yN )} of the system trajectory,

where xi is the initial point and yi is the final point after Ts steps, i.e.,

yi −ϵi =ϕTs (xi −εi ), i = 1, ..., N ,

where ϵi and εi are the measurement noises. The goal is to estimate the weights {w j ,k } using

these observations and consequently infer the causal network among the time series. To do so,

we use the Koopman approach Mauroy and Goncalves (2019) that lifts the observation space

to another space in which the relationships are linear. More precisely, the steps are as follows:

• Select a set of M basis lifting functions {p1(x), ..., pM (x)}, and lift the observations,

Px :=


p1(x1) · · · pM (x1)

p1(x2) · · · pM (x2)
...

. . .
...

p1(xN ) · · · pM (xN )

 ,Py :=


p1(y1) · · · pM (y1)

p1(y2) · · · pM (y2)
...

. . .
...

p1(yN ) · · · pM (yN )

. (A.24)
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• Identify the Koopman operator L := 1
Ts

log(P†
x Py ), where P†

x denotes the pseudo-inverse of

Px and the function log denotes the (principal) matrix logarithm.

• Identify the weights using the following equations: ŵk, j := [L]k,l , with l such that pl (x) = x j ,

where x = (x1, ..., xm).

An alternative approach to obtain the weights is the dual lifting method which executes the

following steps instead of the above last step. At first, it finds matrix F̂ using the following

equation,

F̂N×m := LN×N


xT

1
...

xT
N


N×m

.

Next, it constructs

Hx :=


p1(x1) · · · pM (x1)

...
. . .

...

p1(xN ) · · · pM (xN )


N×M

,

and for each j , solve the following regression problem to get the weights

ŵ j := arg min
w∈RM

∣∣∣∣Hx w− F̂:, j
∣∣∣∣2

2 +ρ||w||1,

where F̂:, j denotes the j -th column of matrix F̂ and ŵ j = [ŵ j ,1, ..., ŵ j ,M ]T .

A.2.3 Ideal portfolio

In this section, we show how the ideal portfolio is related to the coefficients of the linear system

in (2.13). Recall the optimization problem in Lemma 2.

ut := arg min
w∈Rm−1

E
[||X j ,t −wT X−{i },t−1||22

]
,

X−{i },t−1 := [X1,t−1, · · · , Xi−1,t−1, Xi+1,t−1, · · · , Xm,t−1]T .

Consider the j -th Equation in (2.13), i.e.,

X j ,t =
m∑

k=1
a j ,k Xk,t−1 +N j ,t .
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If a j ,i = 0, by substituting the above equation into the optimization, we obtain

min
w∈Rm−1

E

[
|| ∑

k ̸=i
(a j ,k −wk )Xk,t−1 +N j ,t ||22

]
= min

w∈Rm−1
E
[||N j ,t ||22

]
+E

[
|| ∑

k ̸=i
(a j ,k −wk )Xk,t−1||22

]
+2E

[
||
(∑

k ̸=i
(a j ,k −wk )Xk,t−1

)
N j ,t ||22

]

= min
w∈Rm−1

E

[
|| ∑

k ̸=i
(a j ,k −wk )Xk,t−1||22

]
+E[||N j ,t ||22

]
The last equality is due to the fact N j ,t is independent of {Xk,t−1} and have zero mean. This

implies that the solution is wk = a j ,k for k ∈ {1, ..., i −1, i +1, ...,m}.
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A.3 Appendix to Chapter 3

A.3.1 Tutorial for StockTwits Messages Extraction

We use stock price data from CRSP/Compustat of all US and Canadian listed stocks from

January 2010 to March 2020. From this dataset, we create the list of unique tickers for which

we will extract messages. We will later be able to merge the two datasets using the date and

ticker for every observation. We use the StockTwits Application Programming Interface (API) to

download messages from StockTwits. One query on StockTwits API is called a JavaScript Object

Notation (JSON) request. Every message on StockTwits has a unique identifier ("msg_id")

posted by a user with a unique identifier ("user_id"). JSON requests allow to query the database

by ticker (called "symbol method") or by user (called "user method"). We use the query by

ticker. One query only outputs the latest 30 messages concerning that ticker. However, it

is possible to set a parameter ("max") to output the latest 30 messages up to this particular

message identifier. This parameter allows us to crawl the message history of a ticker by

recursively changing the "max" parameter to the oldest message identifier in the query. To

perform a JSON request for Apple (AAPL) up to the message identifier 30’000’000, simply enter

the following URL in a browser : https://api.stocktwits.com/api/2/streams/symbol/AAPL.

json?&max=30000000. The page we get looks unreadable but it has always the same structure :

several pairs of keys and values. The structure of JSON can easily be interpreted by modern

programming languages. We create a Python script to query the API and extract the message

history of every ticker in the ticker list. We store the output of every JSON request in .txt files in

dedicated ticker folders.

A.3.2 Message Count

A StockTwits message can refer to multiple tickers. Figure A.2 shows the histogram of the

number of tickers tagged per message. As the vast majority of message includes only one

ticker, we only show on this plot messages referring to more than one ticker. The maximum

number of tickers per message amounts to 28 and corresponds to 11 messages in the sample.

Many messages refer to several tickers and this creates duplicates in the database because we

consider the same message for all tickers tagged in the message.

Left plot of Figure A.3 shows the number of messages with and without double counting. In

our sample, the number of messages without double counting is 76 million, as opposed to

90 million messages with double counting. Right plot of Figure A.3 shows the ratio between

the number of messages with double counting and the number of messages without double

counting. Throughout this paper, we only refer to the number of messages with double

counting.
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Figure A.2: Histogram of the number of tickers per message
Histogram of the number of tickers per message, across all messages referring to more than one ticker.

Figure A.3: Number of messages
Left plot shows the total number of messages with double counting (red) compared to the total number
of messages without double counting (blue). Right plot shows the ratio between the number of
messages with double counting and the number of messages without double counting. Numbers are
aggregated daily.

A.3.3 User Summary Statistics

Left plot of Figure A.4 shows a log-log histogram of the number of followers per user and a

right plot shows a log-log histogram of the number of messages posted by users. There are a

few users with many followers (they can be seen as “influencers"), and many users with a few

followers. In addition, most users seem to post on average between 10 and 400 messages and

a few post a lot more. Overall, this appears to be a well balanced network structure. A more
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detailed study of the network effects on market sentiment is beyond the scope of this paper.

Figure A.4: User summary statistics
Left graph is a log-log histogram of the number of followers per user and the right graph shows the
log-log histogram of the number of messages posted by users.

A.3.4 Anomalies

We discuss here two anomalies that appear in the word clouds in Figure 3.4.

The term “aldox” in the bullish cloud caught our attention. After some research, it is an

abbreviation for Aldoxorubicin, a drug against tumors and is associated with pharmaceutical

messages where investors were very enthusiastic about it. An example of a related message

is “aldox is on the slide. have great faith this is truly world change". That is why the term is

appearing almost exclusively in bullish messages, hence in the bullish cloud.

The bearish cloud contains the term "long position open", which seems like a bullish signal.

Closer inspection shows that this term frequently appears in bearish user-labeled messages

of intraday alerts such as “sell $labd close labd long position. open labd short position. time:

14:53 ny price: $13.64 zquant intraday alerts”. However, this anomaly is not an issue. We tested

what happened when "long position open" is fed as a message into our sentiment classifier.

As a message, it consists of the trigram "long position open", the two bigrams “long position”

and “position open”, and the single words as unigrams. This results in a bullish score of 0.91

and the message is—correctly—classified as bullish.

A.3.5 Coverage

Stocktwits is neither regulated nor moderated, so one needs to filter the information that we

use. Even if Stocktwits has valuable information from respected contributors, a blog1 describes

the concerns that may rise when using Stocktwits as a financial information provider, namely

self-promotion, lack of credibility and other noise. To diversify noise and better extract

1https://www.warriortrading.com/stocktwits-review, last accessed on 1st of July 2022.
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information, we exclude from our sample tickers that are rarely discussed. Thereto, we

compute the median of daily message volume for each ticker and exclude from our sample

tickers with a median of less than 50. Decreasing the median threshold increases the coverage

at the expense of more noise in the daily polarity. Figure A.5 shows the coverage as a function

of the median threshold. To increase the coverage we need to decrease the threshold a lot (e.g.,

decreasing the median threshold to 40 from 50 would increase the number of tickers covered

to merely 22 from 19). We chose a median threshold of 50 as a balanced trade-off between

noise and coverage.

Figure A.5: Ticker coverage
Coverage as a function of the median threshold. A lower threshold increases the coverage at the expense
of a bigger bias in the polarity.

Table A.1 shows the list of the 19 tickers above this threshold and their associated market

capitalization as of 31st of December 2019. It appears that these most discussed tickers cover

all sizes of stock, and hence we avoid big-firm bias. Also, it includes not only single firms but

also ETFs on alternative investments. Finally, we cover several sectors so even if we have a

restrictive universe, it is well diversified.
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Ticker Name Market capitalization

AAPL Apple 1287
AMD Advanced Micro Devices 53
AMRN Amarin 7
AMZN Amazon 920
BABA Alibaba 571
BAC Bank of America 311
BB BlackBerry 4
FB Facebook 585
GLD Gold ETF 59
IWM Small-Cap ETF 55
JNUG Direxion 0.5
MNKD MannKind Corporation 0.2
NFLX Netflix 142
PLUG Plug Power 1
QQQ Nasdaq100 ETF 134
SPY S&P500 ETF 391
TSLA Tesla 76
TWTR Twitter 25
UVXY VIX ETF 0.8

Table A.1: Ticker coverage
Coverage after the trimming process. List of tickers and corresponding market capitalization as of 31st
of December 2019.
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A.3.6 Classifier Performance

We first recap the definition of the basic performance measures for a binary classifier. First, one

has to choose one class as the positive class. Instances (messages) are then divided according

to their predicted and actual labels into true positives TP (predicted positive, actual positive),

false positives FP (predicted positive, actual negative), true negatives TN (predicted negative,

actual negative), and false negatives FN (predicted negative, actual positive). Precision PRE =
T P

T P +F P
is the proportion of true positives among the predicted positives. Recall REC =

T P

T P +F N
is the proportion of true positives among the actual positives. The precision-recall

trade-off is captured by the F1 score,
2 ·PRE ·REC

PRE +REC
, the harmonic mean of precision and

recall.

Tables A.2 and A.3 show the confusion matrices of our combined classifier out-of-sample and

in-sample, respectively. We define accuracy as the fraction of correct predictions, omitting the

messages with a predicted neutral sentiment. We thus obtain an out-of-sample accuracy of

85.9%. The in-sample accuracy is 87.4%.

True

Bullish Bearish

Predicted

Bullish 3’555’896 155’280

Neutral 663’541 160’423

Bearish 550’928 746’261

Table A.2: Confusion matrix for the combined classifier out-of-sample
Rows are the predicted class of the combined classifier, columns are the user-labels. Values are the
number of messages in the corresponding category.

True

Bullish Bearish

Predicted

Bullish 14’433’375 532’509

Neutral 2’656’730 642’329

Bearish 1’992’535 3’071’837

Table A.3: Confusion matrix for the combined classifier in-sample
Rows are the predicted class of the combined classifier, columns are the user-labels. Values are the
number of messages in the corresponding category.

A.3.7 Examples of Classified Messages

Here are some representative examples of classifications. Typical messages classified as

bullish contain terms such as “buy buy” or “hope the pump come soon”. Whereas typical

bearish messages contain terms such as “sell everything” or “start short position here”. Neutral
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messages are either empty, or irrelevant to finance (e.g., “political posturing friend”2), or

ambiguous (e.g., “lol wow”).

A.3.8 Sentiment-Sorted Portfolios for Various Thresholds

As the thresholds Ut (x) and Lt (x) are functions of the hyperparameter x, we provide for ro-

bustness check the results of our CAP-sorted portfolios for the values x = 1.96 (95% confidence

band) in Figure A.6, and for x = 2.81 (99.5% confidence band) in Figure A.7. The portfolio per-

formance arguably depends on the choice of x. In particular, the smaller x the more likely the

bearish portfolio exhibits positive returns. On the other hand, the larger x the more likely the

bullish portfolio misses the opportunities of positive returns. A careful gauging of x, possibly

asymmetric in bullish and bearish, is therefore required for a real-world implementation of

these strategies. Results could also improve for a larger cross-section of stocks than the 19 of

our reduced sample.

2This is a reply to the message “honestly, how dumb can you be to believe that china was going to buy significant
amount of agricultural products after the breakdown in trade talks. Even if they buy it will be just a little bit and
not significant”
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Cumulative log returns Distribution of number of positions

Number of positions over time Daily returns

Figure A.6: Bullish and bearish portfolios for x = 1.96
Top left plot shows the cumulative log returns of the portfolios over the years, top right plot shows the
distribution of the number of positions in the portfolios, bottom left plot is the number of positions
over time and bottom right plot is the daily returns of both portfolios.
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Cumulative log returns Distribution of number of positions

Number of positions over time Daily returns

Figure A.7: Bullish and bearish portfolios for x = 2.81
Top left plot shows the cumulative log returns of the portfolios over the years, top right plot shows the
distribution of the number of positions in the portfolios, bottom left plot is the number of positions
over time and bottom right plot is the daily returns of both portfolios.
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