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Abstract. This paper presents a distributed estimation and control ar-
chitecture for leader-follower formations of multi-rotor micro aerial vehi-
cles. The architecture involves multi-rate extended Kalman filtering and
nonlinear model predictive control in order to optimize the system perfor-
mance while satisfying various physical constraints of the vehicles, such
as actuation limits, safety thresholds and perceptual restrictions. The ar-
chitecture leverages exclusively onboard sensing, computation, and com-
munication resources and it has been designed for enhanced robustness
to perturbations thanks to its tightly coupled components. The archi-
tecture has been initially tested and calibrated in a high-fidelity robotic
simulator and then validated with a real two-vehicle system engaged
in formation navigation and reconfiguration tasks. The results not only
show the high formation performance of the architecture while satisfy-
ing numerous constraints but also indicate that it is possible to achieve
full navigation and coordination autonomy in presence of severe resource
constraints as those characterizing micro aerial vehicles.

Keywords: Formation control, micro aerial vehicles, distributed non-
linear model predictive control, relative and onboard localization, dis-
tributed estimation

1 Introduction

Recent years have been characterized by various improvements in the coordi-
nation and cooperation strategies of autonomous robots. This is because loosely
connected systems controlled by decentralized or distributed strategies have in-
herent advantages over centrally governed systems such as additional flexibility,
robustness, and scalability [1]. Among those strategies, formation control, usu-
ally aimed at achieving prescribed inter-vehicle geometric constraints, is one of
the most actively investigated topics [2]. One promising method to optimally
accomplish this goal while satisfying diverse constraints is the Nonlinear Model
Predictive Control (NMPC) due to its architectural heterogeneity, simple re-
configurability, and hierarchical flexibility [3]. Furthermore, to improve the per-
formance, the distributed version of this algorithm is a prominent candidate
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because it approximates the global objective more accurately than its decentral-
ized counterpart by including inter-robot communication.

However, NMPC-based algorithms require an accurate model of the system,
correct state estimates, and sufficient computational resources. Furthermore, the
pure distributed version of the algorithm requires a robust communication frame-
work. These requirements might be challenging to satisfy primarily on resource-
constrained Micro Aerial Vehicles (MAVs). For example, system identification
techniques might not yield a faithful model, the system might be time-varying
due to the intrinsic nature of multiple vehicles, and only the partial state infor-
mation and limited computational power might be available because of hardware
and software constraints. As a result, these problems should be addressed in a
tightly-coupled estimation and control architecture that considers the various
constraints in order to be deployed successfully on real robots. Another criti-
cal challenge for deploying such systems is the dependency of the robotic plat-
forms on global localization systems, such as Motion Capture Systems (MCSs) or
Global Navigation Satellite Systems (GNSSs), for indoor and outdoor scenarios,
respectively.

There are various successful real-world implementations of model predictive
approaches for the formations of multi-robot systems. Among those, we focus
on decentralized and distributed approaches with real-world implementations. In
[4], authors propose a trajectory planner that considers various task requirements
such as swarm coordination, flight efficiency, obstacle avoidance for a swarm of
micro flying robots and demonstrates the method in cluttered environments. Al-
though the strategy seems highly effective and scalable for flocking navigation,
visual-inertial odometry (VIO) coupled with Ultra-Wide Band (UWB) distance
measurement (without orientation information) might not be accurate enough
for formation control applications. In [5], authors present a decentralized strat-
egy for the compact swarm of unmanned aerial vehicles without communication
and external localization. The approach is well-constructed for outdoor flocking
applications; however, the accuracy of the ultra-violet (UV) direction and rang-
ing technique is limited for indoor formation applications. Furthermore, since
the predictive information is not shared among the vehicles, it might yield low
performance for dynamic scenarios. A distributed methodology is studied for
formation control and obstacle avoidance of homogeneous robots by employing
multi-robot consensus in [6]. The method is scalable and efficient with the num-
ber of robots; however, the implementation is not carried out onboard, and a
motion capture system is used to obtain state feedback. In [7], a distributed pre-
dictive approach for the swarms of drones in cluttered environments and under
high sensor noise is presented. Although the real-world experiments with sixteen
quadrotors show the scalability of the strategy, the computations are not carried
out onboard, and the localization solution is global. In [8], authors introduce
a decentralized robotic front-end for autonomous aerial motion-capture in an
outdoor environment and integrate perception constraints into the optimization
problem. Although the computations are performed onboard, GNSS information
is collected and shared among vehicles to generate relative position information,
which is not always reliable. Other works with real-world implementations in-
clude dynamic encirclement [9], outdoor predictive flocking [10], formation in
motion [11], formation with communication constraints [12] and indoor forma-
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tion with visual-inertial odometry [14]. However, the works listed previously
relies on global localization systems and/or offboard computation and/or shared
coordinate frames and/or reliable communication network.

This paper presents a distributed estimation and control architecture based
on a multi-rate Extended Kalman Filter (EKF) and NMPC to perform leader-
follower formations of multi-rotor MAVs under state, actuation, and perception
constraints and in the presence of environmental disturbances and model uncer-
tainties. Our focus here is mainly on the follower subsystem since it constitutes
the central part of the leader-follower formations. We validate the performance
and applicability of this architecture, leveraging exclusively onboard resources
and relative sensing in a high-fidelity robotic simulator and a real-world setup
with diverse experiments. In particular, the followers obtain the relative pose
and body-fixed velocity information by employing their coupled optical flow and
distance sensor, and an RGB camera tracking April bundles [15].

The main contribution of this paper is to meet the following requirements
simultaneously. First, the formation subsystems exclusively employ onboard re-
sources for localization, computation, communication, and sensing. This brings
the multi-robot system closer to practical applications. Second, the overall ar-
chitecture components are designed to be scalable, performant, and robust on
the network level. The main ingredient that allows such a characteristic is the
tight-coupling of perception, communication, estimation, and control at the in-
dividual robot level. This unified architecture leads each component not only to
exploit its full potential but also to assist the other components in maintaining
a robust operation. In particular, the distributed NMPC exhibits high perfor-
mance with an accurate model, state estimates, information from neighboring
vehicles, and enough computational resources. For this purpose, the computa-
tionally efficient distributed EKF on each vehicle employs both the information
received over communication and perception assets to provide uninterrupted
state and uncertainty estimates, even if the communication channel has flaws.
On the other hand, the individual EKFs require sufficient perception and com-
munication update rates to perform successfully. This is where the distributed
NMPC helps the perception and communication components to satisfy their
various constraints, such as Field Of View (FOV) and range. Furthermore, the
simple but efficient prediction model selected for NMPC not only minimizes the
communication requirements but also maximizes the computational efficiency.
Finally, the distributed architecture can be scaled up linearly by increasing the
computational power up to a maximum number of neighbors.

2 Problem Formulation

Similar to [16], the following notation for vectors and rotation matrices will
be adopted assuming that {a}, {b}, {c} are the coordinate frames and x is the
name of the vector:

xca/b : Vector quantity x ∈ Rn of the origin of {a} with respect to the origin

of {b} expressed in {c}.
Rb
a : Rotation matrix R ∈ SO3 that transforms a vector expression from {a}

to {b} with Z-Y-X convention.
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Fig. 1: An example of formation network consist-
ing of one leader (L0) and five followers (Fi, i =
1, .., 5): two sub-networks for the F1 and F4, the
corresponding relative positions, sensing and com-
munication ranges are also indicated.
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Fig. 2: MPC coordinate frames in a prediction
horizon of length N: {m} (blue), {b} (yellow),
{c} (red), {c} (green).

∥ . ∥ denotes the Euclidean norm of a vector or the spectral norm of a real

matrix and ∥ . ∥P :=
√
xTPx (with P ∈ Rn×n and P ≻ 0) stands for the weighted

Euclidean norm of x ∈ Rn.
Consider a formation networkN which consists ofK+1 aerial robots. Assume

that one of them is assigned as a leader L and the rest are followers Fi so that
N = {L,F1, ..., FK}. All robots are operating in a workspace W ⊂ R3. The state
of each robots i ∈ N is defined as follows:

χi = [xnb/n
T vnb/n

T tnb/n
T wb

b/n

T
]T (1)

where xnb/n and vnb/n represent the position and linear velocity, tnb/n is the Euler

angles, wb
b/n denotes the angular velocities. Here, {n} is the Earth-fixed inertial

frame and {b} is the body-fixed frame. Then, for instance, the vector xnb/n would

represent the position of the origin of {b} with respect to {n} and expressed in
the latter coordinate system.

We adopt the full dynamics of the multi-rotor MAV including dominant
(propeller) and auxiliary (drag) aerodynamic effects based on [17] and [18]. Note
that although this model can be used as a plant model for any simulation, it
is too complex for the MPC purposes. We will explain the simplified model
employed for MPC in the Section 3. Finally, due to the physical limits of the
propellers and electric motors of the aerial vehicle, inputs should be inside a
constraint set, i.e. ubb/n ∈ Uc. In addition, due to the safety limits of the vehicle,

we have χi ∈ Xc.

Consider that a robot i ∈ N has a sensing area of As ⊂ Bs(xi, rs) and
communication area Ac ⊂ Bc(xi, rc) where xi is the center and rs and rc are
the radius of norm-balls Bs and Bc, respectively. Assume ∆xij = xj − xi is the
relative position of the robot j ∈ N with respect to the robot i ∈ N \ {L}. Then
the sub-network for the follower i is defined as follows: Ni := {i, j ∈ N , j ̸= i :
∥∆xij∥ < min(rs, rc)}. Fig. 1 represents such a network structure.

In this work, all robots including the leader have output type of feedback
(i.e. no state-based feedback across the vehicles are possible). The only vehicle
that has access to its absolute position by a global localization system is the
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leader. As a result, the leader is responsible for the absolute navigation of the
robot ensemble. All vehicles are equipped with a coupled optical flow - distance
sensor to obtain linear velocities and ground distance, an Inertial Measurement
Unit (IMU) and magnetometer to acquire linear accelerations, rotational veloci-
ties, and Euler angles. All follower vehicles are endowed with an onboard, limited
range and FOV, 3D, relative localization system for measuring inter-vehicle poses
of neighboring vehicles (i.e., relative range, bearing and orientation). We selected
to use a RGB camera and April bundles to obtain such 3D relative pose informa-
tion of the neighbor vehicles due to its accuracy and implementation simplicity.
We do not assume any reliable communication network among vehicles but we
benefit from it when it is available. Furthermore, all vehicles are under the dis-
turbed effect of model uncertainty and slowly-varying airflow disturbance due
to the wake effect of neighboring vehicles. Finally, all sensors are characterized
by zero-mean Gaussian noise.

Problem 1. Consider one leader and K follower robots under the input, percep-
tion, communication and state constraints ubb/n ∈ Uc, zbb/n ∈ Zc and χ ∈ Xc.

Here, the leader can be considered as an separate and independent trajectory
tracking robot. Under the assumptions explained on the previous paragraph,
design a control and estimation strategy for the followers so that the robotic
network will follow a predefined reference trajectory rp ∈ R3 while maintaining
formation structure and connectivity defined by, possibly time-varying, relative

positions references ∆x̃ij , relative yaw angles references ∆ψ̃i where i ∈ Ni \ {L}
and j ∈ Ni.

3 Methodology

The components of our distributed architecture are selected and designed
in order to take resource constraints into account. In particular, we have paid
attention to distribute the architecture over the network while preserving its
strong integration at the robot level. The former feature allows us to obtain a
scalable behavior, while the latter one brings high performance and robustness
due to the tight coupling of the perception, communication, estimation and
control components.

The proposed architecture is represented in Fig. 3. Here, the neighborhood
consists exclusively of followers, but the leader could also be part of the sub-
network. One can observe the tight-coupling of components on the vehicle level
and their distribution over the network. The details of the estimation and for-
mation control components and their relationship with the perception and com-
munication will be explained in the next section.

In order to comprehend the details of estimation-control architecture, we
should define the coordinate frames employed here. The first frame is the body-
fixed reference frame {b} and it is defined for the real-time horizon, the second
one is the body-fixed MPC reference frame {d} anchoring to the body throughout
any MPC prediction horizon. As a result, {b} and {d} coincide at the beginning
of each prediction horizon. In addition, {m} is defined as the inertial MPC-EKF
frame, which corresponds to the zero vector in the beginning of the motion. The
final reference frame is introduced as MPC control frame {c}, which is a roll and
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Fig. 3: Distributed architecture for a sub-network, tight coupling of components on the agent level
is observable.

pitch free frame anchored to the {d} and adopted in order to define control and
reference variables. These frames are represented in Fig. 2.

3.1 Follower Estimation Scheme

We adopt a distributed multi-rate EKF approach for carrying out the esti-
mation function due to its computational efficiency. The related literature is vast
and we refer the reader to [19], [20] and the references there in. For the sake of
clarity, we will present the process, and the perception models and highlight the
important points.

Consider a new extended state definition for each robot i ∈ N \ {L}:

ξii = [vTi ψ̇i d
T
i,a]

T

ξij = [∆xTij v
T
j ∆ψij ψ̇j ]

T (2)

where ∆xij , ∆vij and ∆ψij are the relative positions, velocities and yaw angles

of the robot i with respect to j ∈ Ni; vi, vj , ψ̇i and ψ̇j are the linear and
yaw velocities of the robot i and j ∈ Ni, respectively. Finally, di,a stands for
the slowly varying disturbances on the acceleration dynamics of the agent i.
Note that all states are expressed in the inertial frame {m}. Let us concatenate
the states defined so that we obtain one extended state for an individual robot
i ∈ Ni \ {L}:

ξi = [ξTii ξ
T
ij1 ξ

T
ij2 ... ξ

T
ijN ]T (3)

where j1, j2, ..., jN ∈ Ni.

Consider a generic nonlinear time-discrete model of an individual agent i:

ξi[k + 1] = fi(ξi[k],ui[k],wi[k])

zi[k] = hi(ξi[k],νi[k]) (4)

where fi is the process map, hi is the perception map, wi ∼ N (0,σw) and
νi ∈ N (0,σν) are the zero-mean Gaussian noise vectors on the process and
perception model, respectively. Then, inspired by [21], for ∀j ∈ Ni, the process
model can be written explicitly as follows:

vi[k + 1] = vi[k] +∆t

(
Ri[k]

Fi[k]

m
− g + di,a[k] +wi,a[k]

)
(5)
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ψi[k + 1] = ψi[k] +∆t (wi,ψ[k]) (6)

ψ̇i[k + 1] = ψ̇i[k] + wi,ψ[k] (7)

∆xij [k + 1] = ∆xij [k] +∆t(vj [k]− vi[k])− (8)

∆t2

2

(
Ri[k]

Fi[k]

m
− g − di,a[k]−wij,∆a[k]

)
(9)

vj [k + 1] = vj [k] +∆t (wj,a[k]) (10)

∆ψij [k + 1] = ∆ψij [k] +∆t(∆ψ̇ij [k] +wij,∆ψ[k]) (11)

∆ψ̇ij [k + 1] = ∆ψ̇ij [k] +wij,∆ψ[k] (12)

di,a[k + 1] = di,a[k] +wi,d[k] (13)

where Fi is the input, Ri stands for the rotation matrix, g is the gravitational
acceleration vector, ∆t is the sample time, w’s represent the Gaussian noise,
d’s are the slowly varying disturbance (or uncertainty) on the corresponding
states. Note that these lumped disturbance estimations accounting for model
uncertainty, environmental disturbance and time-varying characteristics of the
vehicle are crucial for the robust behavior of the predictive formation controller.
In addition, some definitions in the model can be written as follows: wij,∆a :=
wj,a−wi,a and wij,∆ψ := wj,ψ −wi,ψ. Note that all equations are written with
respect to {m} frame and ∀j ∈ Ni . Furthermore, ∀j ∈ Ni, the perception model
is given as follows:

zi,∆x[k] = g(Ri[k]∆xij [k] + νi,∆x[k]) (14)

zi,v[k] = Ri[k]vi[k] + νi,v[k] (15)

zi,∆ψ[k] = ∆ψij [k] + νi,∆ψ[k] (16)

zi,ψ[k] = ψij [k] + νi,ψ[k] (17)

zi,ψ̇[k] = ψ̇ij [k] + νi,ψ̇[k] (18)

zi,vj [k] = Rj [k](vj [k]) + νi,vj [k] (19)

where z represents the measurement, ν stands for the perception noise and
function g(.) maps the relative position to the range and bearing information.
In addition, it is assumed that the robot has an accurate attitude estimator that
generates the roll and pitch estimates ϕi[k] and θi[k] so that the rotation matrix
Ri is fully defined.

Remark 1. (Neighboring vehicle states): Eq. (19) is critical in the perception
model. vj represents the velocity of any neighboring vehicle j ∈ Ni received by
communication and it needs to be mapped to the vehicle i’s reference frame by
Rj . However, if it is not available due to various communication flaws, the EKF
provides a continuous estimation of the velocity of neighboring vehicles.

3.2 Follower Controller Scheme

Reliable and high performance attitude controllers are commonly available
for today’s aerial vehicles. In order to separate high frequency task (attitude con-
trol) from low frequency ones (formation control), to exploit the full potential
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of the autopilot and onboard computer and to simplify the prediction model, we
leverage a cascaded architecture as shown in Fig. 3. The attitude controller is se-
lected as the PID-based controller proposed by [22] and the formation controller
is a Distributed Nonlinear Model Predictive Controller (D-NMPC). The reason
behind the latter choice is that NMPC can simultaneously handle constraints
and optimize the performance in a systematic manner and the distributed ver-
sion inherently has a higher performance since it approximates the centralized
problem more accurately compared to its decentralized counterpart.

Here, we use the following notation to distinguish the predicted values from
the actual ones: v[m|n] is the value of variable v at discrete instant k = n,
predicted at k = m where m ≥n. Furthermore, N is defined as the prediction
(and control) horizon and ∆t is the sampling time. Now, let’s write the Open

Loop Control problem (OCP) P(ξ̂[0], k) (at time k with initial estimated state

ξ̂[0]) inspired by [23]:

min
ξi[k|k],...,ξi[k+N |k]

ui[k|k],...ui[k+N−1|k]

N−1∑
n=0

Jk(ξi[k + n|k],ui[k + n|k], ri[k + n|k])+

JN (ξi[k +N |k],ui[k +N |k], ri[k +N |k]) (20)

subject to the following constraints for n= 1,2, ..., N ,

ξi[k + n+ 1|k] = f̂(ξi[k + n|k],ui[k + n|k]) (21)

gn(ξi[k + n|k],ui[k + n|k]) ≤ 0 (22)

hn(ξi[k + n|k],ui[k + n|k]) = 0 (23)

ξi[k|k] = ξ̂i[0] (24)

Here, Jk is the stage cost, JN is the terminal cost, ξi, ui and ri stand for

state, input and reference for the vehicle i, respectively. Additionally, f̂ is the
prediction function and gn and hn represent inequality and equality constraints.

Before explaining the individual terms of the OCP, it is worth to visit the
pinhole camera model [24] so that we can extract the coordinates of the detected
vehicle on image plane and incorporate this information to OCP to obtain a
perception-aware behavior. Let’s consider that ∆xij is a representation of the
relative 3D coordinates of neighbor vehicle j and pj is the image coordinates
of the same vehicle assuming that the origin is the image center. Then we can
obtain the following relationship,

pj =KC∆xij (25)

where C is the camera matrix, which is a function of focal length f of the camera
and K is the gain.

Now, the stage and terminal cost functions can be expressed as follows:

Jk(ξi[k + n|k],ui[k + n|k], ri[k + n|k]) =∑
j∈Ni

∥∆x̃ij [k + n|k]−∆xij [k + n|k]∥Q∆x+
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∑
j∈Ni

∥vj [k + n|k]− vi[k + n|k]∥Qv+

∥ui[k + n|k]∥Qu + ∥∆ui[k + n|k]∥Q∆u +
∑
j∈Ni

∥pj∥Qp (26)

JN (ξi[k +N |k],ui[k +N |k], ri[k +N |k]) =∑
j∈Ni

∥∆x̃ij [k +N |k]−∆xij [k +N |k]∥Q∆xN
+

∑
j∈Ni

∥vj [k +N |k]− vi[k +N |k]∥QvN
+

∑
j∈Ni

∥pj∥QpN
(27)

where ∆x̃ij represents the geometric formation reference and ∆ui stands for
the rate of change of inputs. As a result, in the stage cost function, the first
term minimizes the formation errors, the second term stabilizes the relative
velocities, the third and fourth terms optimizes the control effort and the last
one is responsible for satisfying camera FOV constraints.

The continuous version of the prediction function, which includes not only

ego but also the neighboring vehicle motion characteristics, f̂ expressed in eq.
(21) and can be discretized with any efficient method such as the implicit Runge
Kutta (i-RG), can be written as follows:

∆̇x
m

d/m,ij = v
m
d/m,j − v

m
d/m,i

v̇md/m,i =
Rm
d

mb
F dd/m,i + g + Cdv

m
d/m,i + di,a

ṫmd/m,i =
1

τi
(kitref,i − tmd/m,i)

ψ̇md/m,j = 0, ∀j ∈ Ni (28)

where inputs are thrust F dd/m,i and attitude angle references tref,i. Finally, gn
and hn includes constraints to impose the safety conditions/limits such as the
maximum velocity, thrust and Euler angle that the robotic agent is allowed to
achieve. The following remarks will be helpful to gain more insights about the
OCP:

Remark 2. (Information sharing): At each sample instant, vmd/m,j , the predicted

velocity of neighboring vehicles should be received and vmd/m,i, the the vehicle’s

predicted velocity should be transmitted over the communication channel for the
whole horizon. If the received information not available for some reason, the D-
NMPC leverages the estimates sent by the local EKF for the prediction. In this
case, the formation controller assumes a constant velocity over the prediction
horizon.

Remark 3. (Prediction model): The prediction model includes the closed-loop
attitude subsystem as three first order linear differential equations. This sim-
plifies the prediction model and allows a seamless separation of tasks. Their
parameters can be identified easily by conducting attitude tracking tests.
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Fig. 5: Webots simulation consisting of three drones
equipped with April-bundles and a RGB camera.

Remark 4. (Disturbance estimates): The disturbances acting on the prediction
model, di,a, are received from the estimator and assumed constant over the
horizon. This is a valid assumption if the horizon length is not very long and/or
the main disturbance source is model uncertainty.

Remark 5. (Perception requirements): The horizontal and vertical field of view
requirements are not added to hn in order to not increase the number of con-
straints on the OCP. Although it does not provide guarantees, the inclusion of
the last terms in the cost function ensures a reliable perception operation.

Real-time iteration scheme

We adopt a modified Real-Time Iteration (RTI) strategy combined with esti-
mation. This is one of the state-of-the-art solution methods applied to real-time
systems as explained by [25]. In this method, first discretization then lineariza-
tion are applied to the OCP around operating points and Quadratic Program-
ming (QP) solvers are used successively to solve the generated problem. The
optimality of the solution is determined by the Karush-Kuhn-Tucker (KKT)
value. The computational constraints can be satisfied by monitoring the online
solver time. Please refer to [13] for the details of the RTI scheme repeated for
each control iteration. Note that to realize the algorithm, the nonlinear pro-
gram solver ACADO [?] is integrated with the necessary modifications. Note
that ACADO employs qpOASES as convex solver.

4 Experiments and Results

The architecture proposed has been firstly tested in simulation leveraging the
high-fidelity robotics simulator Webots [27] interfaced with the Robot Operating
System (ROS). A screen-shot from a formation experiment with three MAVs is
shown in Fig. 5. The simulator employs a realistic quadrotor model obtained and
identified in our previous work [13] where we tuned the parameters of both the
estimator and controller to faithfully match the reality. Since the interfaces of the
Webots simulator with ROS is exactly the same as that of physical quadrotors,
the transition to physical reality was quite smooth.

The quadrotor used in our experiments is a modified Helipal Storm Drone-4
v3, endowed with a Hex Cube Orange autopilot, a Jetson Xavier NX onboard
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Fig. 7: Leader’s trajectory for the navigation experiment.

computer, an IMU, a coupled optical flow - distance sensor, a wide FOV global
shutter RGB camera and a bundle consisting of April tags, as shown in Fig.
4. The instrumented quadrotor weighs 1.71 kg and has a center-to-propeller
distance of 21 cm. All computations are performed onboard by leveraging ROS.
The Jetson Xavier NX computer has six parallel NVIDIA Carmel ARM v8.2
(max. 1.9 GHz) cores and one dedicated GPU (384 NVIDIA CUDA cores and
48 Tensor cores). For the experiments, all CPUs are activated with maximum
power. Only the leader has access to 3D position information generated by a MCS
with millimeter accuracy. The communication among the robots are realized
using Wide Area Network (WAN) and the multimasterfkie ROS package. The
trajectories are generated inside an indoor volume of 27m3. This arena including
two quadrotors can be seen in Fig. 6. The measurement update rates of the
3D relative localization solution, optical flow sensor, distance sensor, IMU and
magnetometer are 10 Hz, 20 Hz, 60 Hz, 100 Hz and 40 Hz, respectively. The
control and estimation frequency is 40 Hz. NMPC for the follower solves the
OCP with 40 horizon steps, which corresponds to 1 second of prediction window.
The optical flow and distance sensors are selected and calibrated for indoor use.
As can be seen from Fig. 6, various white stripes are placed on the floor to
improve the optical flow quality. The appropriate camera and tag selection and
calibration for the mission and the measures taken against vibration and blur are
the critical parts of the integration. With this solution, we have a detection range
of 6 m and field of view of 120 degrees. The magnetometer is not fully reliable
indoor, however, the onsite and on-the-fly calibration improves the performance
significantly. Lastly, the computational resources of both the onboard computer
and autopilot are allocated in order to have smooth perception, communication,
estimation and control.

We will present the results of two different types of experiments: formation
navigation and reconfiguration, which are two common tasks for multi-robot
systems performing formations. Note that you can view the video of the exper-
iments on the following research page https://www.epfl.ch/labs/disal/research/
quadrotorformationmpc/.
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Fig. 8: Formation errors for the navigation ex-
periment: x,y,z and norm error, dashed red lines
indicate the averages over time.

Fig. 9: Solver metrics: cost function value, KKT
value, solver time and the number of iterations,
dashed red lines indicate the averages over time.

4.1 Formation navigation

For this section, after the follower engaged into the formation, the leader fol-
lows a predefined 3D trajectory and the follower tries to maintain the formation
geometry. The formation reference is given as [2,2,0] m and the leader’s path
can be seen from the Fig. 7. The total duration of the experiment is nearly 90
seconds and the same scenario is executed five times.

Fig. 8 presents the mean and standard deviations of the formation errors for
each axis and their norm over five experiments. For this calculation, the MCS is
employed as a ground truth. As can be seen from the figure, while the average
norm error is less than 0.16 m, ≈ 5% of the total range, the maximum norm
error is lower than 0.27 m ≈ 9% of the total range . While the mean errors on
the x and y axes are different than zero, the one for the z axis is very close to
zero. This is possibly due to the fact that modelling uncertainty for the altitude
dynamics is less time-varying and compensated well with higher gains.

Fig. 9 shows the mean and standard deviations of the solver metrics over five
experiments. These are the cost function value, KKT value, solver time and iter-
ation number. Despite some occasional peaks, the cost value stays below a upper
limit and KKT value is lower than 0.005, which is a solid indication that Non-
linear Program (NP) is converging to Quadratic Program (QP) approximations.
Furthermore, the solver time remains below 0.025 seconds, with at most three
SQP iterations, which in turn defines/results the sample time of the controller.

Finally, Fig. 10 shows the estimation errors, again calculated with respect
to the ground truth, and disturbance estimations. As can be observed from
the figure, the average error is around 0.1 m and it follows a similar trend
as the formation errors. The absence of sudden peaks indicates that the FOV
is maintained so that the 3D relative pose measurement is received steadily.
Furthermore, the velocity estimation error in the body frame is less than 0.1m/s
on average and the disturbance estimations are mostly steady, which indicates
that the biggest disturbance source in this experiment is the time-invariant model
uncertainty.

4.2 Formation reconfiguration

For these experiments, the position of the leader is kept fixed and the forma-
tion reference of the follower is changed over a prescribed duration in order to
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Fig. 10: Estimation errors (relative position, velocity) and
disturbance estimations in 3D, dashed red lines indicate the
averages over time.
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Fig. 13: Solver metrics: cost function value, KKT
value, solver time and the number of iterations,
dashed red line indicate the averages over time

reconfigure the formation geometry. Three distinct relative position references
for the follower are displayed in Fig. 11. The total duration of the experiment is
around 23 seconds and the scenario is realized five times.

The mean and standard deviations of the formation errors are given in Fig.
12. We can see the oscillatory behavior of the errors due the fact that the ref-
erence commands are sent separately over the course of experiment. As a result
the mean error is around 0.21 m ≈ 7% of the total range. However, the errors
reach steady state after some time and on average, they stabilize around 0.17
m.

Solver metrics are shown in Fig. 13. We can make similar observations for
the solver metrics, except the cost value. It can be seen that cost value is overall
higher but reaches the same low levels at the end of the experiment. This is
because the experiment is more dynamic compared to the formation navigation
experiment. Furthermore, the plateaus observed are possibly due to the transient
compromise between the individual terms in the cost function.

4.3 Discussion

In order for the reader to compare the quality of the results, we present a brief
benchmarking about relative position estimation and formation errors. Recently,
[28] introduced a decentralized VIO-UWB perception and estimation scheme for
aerial swarms. For an indoor trajectory of 27.8 m, they obtained about 0.08 m
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average relative position estimation error, which is comparable to our vision-
based solution. Another state-of-the-art localization method presented by [5]
targets outdoor applications with their ultra-violent (UV) markers and camera,
and they achieved 1.16 m relative localization RMSE. Finally, [21] employed
a distributed infrared-based relative localization system for the formations of
quadrotors. The system attained an error of less than 0.20 m in range, 5 degrees
in bearing, and 10 degrees in elevation for the sensor-to-target distance of 3
m. Considering formation control errors, [21] adopted a distributed graph-based
formation control method that obtained a 0.27 m range and 5 degrees elevation
error for the desired range of 2.26 m, which corresponds to 12% of the full range.
In our previous work [13], we proposed a decentralized predictive approach and
achieved an average formation error of 0.44 m. The high error observed in this
work was due to the exclusion of aerodynamic disturbances occurring between
vehicles and the constant neighbor velocity assumption in the prediction model.

The low average estimation (≤ 0.1 m) and formation (≤ 0.17 m) errors ob-
tained in two different formation control scenarios reveal the high performance
of our strategy. By leveraging the tightly-coupled distributed MPC and EKF
scheme, we could simultaneously comply with the perception, communication,
and vehicle constraints. Although the method is scalable in terms of algorith-
mic properties, a couple of issues should be addressed for real-world scalability.
First, at least three wide-lens cameras should be used to perceive the neighbor
vehicles in all directions. Next, the April-bundle pose detection algorithm is not
lightweight, and in our current implementation, it runs on the CPU. There are
efficient implementations of this algorithm using a GPU [29]. Finally, obtaining
the SQP solution of NMPC is also costly, which limits the maximum number
of neighbors each vehicle can have; however, there is no theoretical limit on the
total swarm size.

5 Conclusion

Obtaining a robust, autonomous, performant and scalable control and es-
timation architecture for multi-robot systems is a significant challenge. In this
work, we present a unified, predictive and distributed architecture to carry out
leader-follower formations with MAVs. Our approach employs onboard resources
and integrates various physical constraints such as camera FOV, actuation, ve-
locity and acceleration limits, into the architecture. After a parameter tuning
process in a high-fidelity simulator with three vehicles, we validated and showed
the performance of our approach with two real quadrotors, one serving as leader
and the other as follower, for two common formation tasks.

In the future, we intend to validate the approach with more following vehicles,
improve the autonomy of the leader, analyze the robustness in presence of various
communication problems and compare our solution with alternative approaches
in detail.
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6. Alonso-Mora, J., Montijano, E., Nägeli, T., Hilliges, O., Schwager, M. & Rus, D.
Distributed multi-robot formation control in dynamic environments. Autonomous
Robots. 43, 1079-1100 (2019)

7. Soria, E., Schiano, F. & Floreano, D. Distributed Predictive Drone Swarms in
Cluttered Environments. IEEE Robotics and Automation Letters. 7, 73-80 (2022)

8. Allamraju, R., Price, E., Ludwig, R., Karlapalem, K., Bülthoff, H., Black, M. &
Ahmad, A. Active Perception Based Formation Control for Multiple Aerial Vehi-
cles. IEEE Robotics and Automation Letters. 4, 4491-4498 (2019)

9. Hafez, A., Marasco, A., Givigi, S., Iskandarani, M., Yousefi, S. & Rabbath, C. Solv-
ing multi-UAV dynamic encirclement via model predictive control. IEEE Transac-
tions on Control Systems Technology. 23, 2251-2265 (2015)

10. Yuan, Q., Zhan, J. & Li, X. Outdoor flocking of quadcopter drones with decentral-
ized model predictive control. International Society of Automation Transactions.
71 pp. 84-92 (2017)

11. Van Parys, R. & Pipeleers, G. Distributed MPC for multi-vehicle systems moving
in formation. IEEE Robotics and Autonomous Systems. 97 pp. 144-152 (2017)

12. Abichandani, P., Levin, K. & Bucci, D. Decentralized Formation Coordination
of Multiple Quadcopters under Communication Constraints. IEEE International
Conference on Robotics and Automation. pp. 3326-3332 (2019)

13. Erunsal, I., Ventura, R. & Martinoli, A. NMPC for Formations of Multi-Rotor
Micro Aerial Vehicles: An Experimental Approach. International Symposium on
Experimental Robotics. pp. 449-461 (2020)

14. Thakur, D., Tao, Y., Li, R., Zhou, A., Kushleyev, A. & Kumar, V. Swarm of
inexpensive heterogeneous micro aerial vehicles. International Symposium on Ex-
perimental Robotics. pp. 413-423 (2020)

15. Olson, E. AprilTag: A robust and flexible visual fiducial system. IEEE International
Conference on Robotics and Automation. pp. 3400-3407 (2011)

16. Fossen, T. Handbook of marine craft hydrodynamics and motion control. John
Wiley and Sons (2011)

17. Mahony, R., Kumar, V. & Corke, P. Multirotor aerial vehicles: Modeling, esti-
mation, and control of quadrotor. IEEE Robotics and Automation Magazine. 19,
20-32 (2012)

18. Omari, S., Hua, M., Ducard, G. & Hamel, T. Nonlinear control of VTOL UAVs in-
corporating flapping dynamics. IEEE/RSJ International Conference on Intelligent
Robots and Systems. pp. 2419-2425 (2013)

19. Jazwinski, A. Stochastic processes and filtering theory Jazwinski. AH Academic
Press (1970)



16 I. Kagan Erunsal, Rodrigo Ventura, Alcherio Martinoli

20. Quan, Q. Introduction to multicopter design and control. Springer (2017)
21. Dias, D. Distributed State Estimation and Control of Autonomous Quadrotor For-

mations Using Exclusively Onboard Resources. (EPFL–IST PhD Thesis, No. 9224)
(2019)

22. https://docs.px4.io/, Autopilot control, accessed in July 2022
23. Magni, L. & Scattolini, R. Stabilizing decentralized model predictive control of

nonlinear systems. Automatica. 42, 1231-1236 (2006)
24. Szeliski, R. Computer vision: algorithms and applications. Springer Science Busi-

ness Media (2010)
25. Gros, S., Zanon, M., Quirynen, R., Bemporad, A. & Diehl, M. From linear to

nonlinear MPC: bridging the gap via the real-time iteration. International Journal
of Control. 93, 62-80 (2020)

26. Ferreau, H., Kraus, T., Vukov, M., Saeys, W. & Diehl, M. High-speed moving hori-
zon estimation based on automatic code generation. IEEE Conference On Decision
And Control. pp. 687-692 (2012)

27. Michel, O. Webots: Professional Mobile Robot Simulation. International Journal
of Advanced Robotic Systems. 1, 39-42 (2004)

28. Xu, H., Zhang, Y., Zhou, B., Wang, L., Yao, X., Meng, G. & Shen, S. Omni-Swarm:
A Decentralized Omnidirectional Visual–Inertial–UWB State Estimation System
for Aerial Swarms. IEEE Transactions on Robotics. (2022)

29. https://github.com/NVIDIA-AI-IOT/isaac ros apriltag, accessed in September
2022.


