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ABSTRACT

DNA mechanics plays a crucial role in many biological processes, including nucleosome

positioning and protein-DNA interactions. It is believed that nature employs epigenetic mod-

ifications in DNA to further regulate gene expression. Moreover, double-stranded RNA and

DNA:RNA hybrid (DRH) are also important in biology, and their mechanics play a significant

role. It is now well established that the mechanics of double-stranded nucleic acid (dsNA) is

a function of its sequence. In particular, the sequence-dependent mechanics of DNA is often

considered as the “secondary genetic code” owing to its quintessential role in DNA readout.

However, a comprehensive understanding of sequence-dependent mechanics of dsNAs is still

lacking, primarily due to enormous sequence space, which is unexplorable using either exper-

iment or atomistic molecular dynamics (MD) simulation, and, thus, requires an accurate and

efficient alternative.

This thesis extends the cgDNA+ model, a sequence-dependent coarse-grained model of

dsDNA, to cgNA+ by estimating parameters for various dsNAs, including dsRNA, DRH, and

dsDNA with epigenetic base modifications. The model is trained on atomistic MD simulations

generated with state-of-the-art MD protocols. For an arbitrary sequence, the model efficiently

predicts sequence-dependent equilibrium distributions, treating bases and phosphates as rigid

bodies. The model is thoroughly assessed for mechanically diverse test sequences and various

modeling choices are explained and justified by quantifying the associated error.

Moreover, as exhibited in the protein-DNA X-ray structure data, flanking contexts are es-

sential for dimer mechanics. We compared X-ray observation with model predictions for dimers

in all tetramer contexts and found a reasonable agreement for average shape, stiffness, direction

of variation of groundstate in sequence space, and direction of dsDNA deformation in con-

figuration space. Remarkably, we also found an excellent alignment between the direction of

variation of groundstate in sequence space and the direction of dsDNA deformation in config-

uration space, implying that, for various sequences/flanking contexts, dimer adopts groundstate

by compromising more in the soft modes of configuration space.

The cgNA+ model efficiency enables the study of interesting properties of dsNAs, such

as average shape, persistence length, backbone conformations, and groove widths for millions

of sequences, thereby, drawing statistical conclusions over sequence space. It allows address-

ing questions including (a) which single nucleotide polymorphisms influence dsDNA mechan-

ics the least/most and its sensitivity to flanking sequence, (b) the role of sequence in narrow-

ing/widening of grooves, and (c) the role of flanking sequence in epigenetic modifications. Other
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applications include scanning genomes for mechanically exceptional sequences, understanding

sequence-dependent nucleosome (un)wrapping, predicting protein binding affinity, and studying

dsNA response to external load.

Lastly, we develop a deep learning tool to predict the location of sugar atoms in any cgNA+

coarse-grained configuration. It allows generating an ensemble of atomistic configurations for

any sequence comparable to MD simulations but with little computational effort and studying

backbone and sugar conformations. Furthermore, a fine-grain sequence-dependent equilibrium

structure can be used to start MD simulations, particularly useful for dsDNA mini-circles.

Keywords: Coarse-graining, MD simulations, DNA mechanics, RNA, DNA:RNA hybrid, Epi-

genetics, Neural network, Sugar puckering, Groove widths, Persistence length.
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Résumé

La mécanique de l’ADN joue un rôle crucial dans de nombreux processus biologiques, no-

tamment le positionnement des nucléosomes et les interactions protéine-ADN. On pense que

la nature utilise des modifications épigénétiques de l’ADN pour réguler davantage l’expression

des gènes. De plus, l’ARN double brin et l’hybride ADN:ARN (DRH) sont également impor-

tants en biologie, et leur mécanique joue un rôle important. Il est maintenant bien établi que

la mécanique d’un acide nucléique double brin (ADNd) est fonction de sa séquence. En par-

ticulier, la mécanique de l’ADN séquence-dépendant est souvent considérée comme le “code

génétique secondaire” en raison de son rôle primordial dans la lecture de l’ADN. Cependant,

une compréhension complète de la mécanique séquence-dépendant des acides nucléiques (AN)

fait toujours défaut, principalement en raison de l’énorme espace des séquences, qui est inex-

plorable en utilisant des expériences ou des simulations atomistiques de dynamique moléculaire

(MD), et nécessite donc une alternative précise et efficace.

Cette thèse étend le modèle cgDNA+, un modèle à gros grains séquence-dépendant de

l’ADNdb, à cgNA+ en estimant les paramètres pour divers ADNdb, y compris l’ARN, le DRH

et l’ADN avec des modifications épigénétiques. Le modèle est entraîné sur des simulations

MD atomistiques en utilisant les protocoles MD les plus récents. Pour une séquence arbitraire,

le modèle prédit efficacement les distributions d’équilibre séquence-dépendant, en traitant les

bases et les phosphates comme des corps rigides. Le modèle est évalué de manière approfondie

pour des séquences de test mécaniquement diverses et divers choix de modélisation sont ex-

pliqués et justifiés en quantifiant l’erreur associée.

De plus, ayant d’abord montré dans les données de structure aux rayons X protéine-ADN

que les contextes flanquants sont essentiels pour la mécanique des dimères, nous avons comparé

les observations aux rayons X aux prédictions du modèle pour les dimères dans tous les con-

textes de tétramères et avons trouvé un accord raisonnable pour la forme moyenne, la rigidité,

la direction de variation de l’état fondamental dans l’espace de séquence, et la direction de la

déformation de l’ADN dans l’espace de configuration. De manière remarquable, nous avons

également trouvé un excellent alignement entre la direction de variation de l’état fondamental

dans l’espace des séquences et la direction de la déformation de l’ADN dans l’espace de con-

figuration, ce qui implique que, pour diverses séquences/contextes de flanquement, le dimère

adopte l’état fondamental en faisant plus de compromis dans les modes souples de l’espace de

configuration.

L’efficacité du modèle permet d’étudier des propriétés intéressantes des AN, telles que la
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forme moyenne, la longueur de persistance, les conformations du chaîne principale et la largeur

des sillons pour des millions de séquences, ce qui permet de tirer des conclusions statistiques

sur l’espace des séquences. Elle permet d’aborder des questions telles que (a) quel polymor-

phisme nucléotidique unique influence le moins/le plus la mécanique de l’ADN et sa sensibilité

à la séquence flanquante, (b) le rôle de la séquence dans le rétrécissement/l’élargissement des

sillons, et (c) le rôle de la séquence flanquante dans les modifications épigénétiques. D’autres

applications comprennent le scanning des génomes à la recherche de séquences mécaniquement

exceptionnelles, la compréhension de l’enroulement/déroulement des nucléosomes séquence-

dépendant, la prédiction de l’affinité de liaison des protéines et l’étude de la réponse de AN aux

charges externes.

Enfin, nous développons un outil d’apprentissage profond pour prédire l’emplacement des

atomes de sucre dans toute configuration à gros grains d’ADNc+. Il permet de générer un

ensemble de configurations atomistiques pour toute séquence comparable aux simulations MD

mais en un temps très court et d’étudier les conformations du chaîne principale et des sucres. De

plus, une structure d’équilibre à grain fin séquence-dépendant peut être utilisée pour démarrer

les simulations MD, ce qui est particulièrement utile pour les mini-cercles d’ADN.
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CHAPTER 1

Introduction

The protagonist in this thesis, deoxyribonucleic acid (DNA) was first isolated [122] in 1869

by F. Miescher, and following several indispensable breakthroughs, its double-stranded helical

structure was finally deciphered by J. Watson and F. Crick in 1953 [207]. The Watson-Crick

model describes dsDNA as a helical structure with a sugar-phosphate bi-chain, also known

as Crick and Watson strands, on the outside, held together by hydrogen-bonding between ni-

trogenous base-pairs inside. This base-pairing is highly specific (Adenine[A]:Thymine[T], Gua-

nine[G]:Cytosine[C]), so that either strand has the necessary information to replicate itself and

is thus capable of transferring information from one generation to the next. Nevertheless, the

story did not end there. Contemporary to the discovery of DNA structure, Conrad H. Wadding-

ton found that environmental factors also influence phenotypic features in fruit flies [205] and

termed it “epigenetics” which means “in addition to genetics”. It is formally defined as “An

epigenetic trait is a stably heritable phenotype resulting from changes in a chromosome without

alterations in the DNA sequence” [19]. The most common epigenetic modifications include base

modifications, non-coding RNAs, and histone modifications. For instance, around 70-80% of

CpG steps in mammalian cells [77] are methylated and in promoter regions, it is anti-correlated

with gene expression [32, 151]. Epigenetics has implications in gene silencing [32, 86, 151],

X-chromosome inactivation [66], and in humans, epigenetic aberrations are associated with dis-

eases such as cancer, autoimmune disease, and neurodevelopmental disorders [93, 161] and,

therefore, is of great interest for research. Moreover, some epigenetic aberrations are reversible

and, thus, targeted in therapeutic approaches [87].

With DNA as the protagonist, ribonucleic acid (RNA) is the deuteragonist. It acts as a

genetic carrier in viruses and has other diverse roles in biology such as reaction catalysis, genetic

information processing, and gene regulation [55, 114, 192]. Chemically, RNA only differs

from DNA in deoxyribose sugar and Thymine, instead has ribose sugar and Uracil (U) base.

In biology, RNA is often present in a single-stranded form; however, double-stranded RNA

is also vital in gene regulation via RNA interference (sequence-specific gene suppression) [55],

components of several tertiary structures such as riboswitches [114], hairpins, and transfer RNA

and as the genome of some viruses. Moreover, in many biological processes [2, 24, 121, 167,

185, 204], unique heterogeneous nucleic acids (NAs) are formed with one DNA strand and one

RNA strand known as DNA:RNA hybrid (DRH). For example, during reverse transcription,

RNA viruses create transient DRH whose stability is consequential in their replication cycle [24,

116, 204]. Furthermore, DRHs are considered as potential medicinal agents for HIV or other

retroviruses diseases [185, 200] and are crucial in the CRISPR-Cas9 technology [194], genome

1
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stability, and DNA repair [135].

In parallel, it became evident that not only the chemistry but also the mechanics of double-

stranded nucleic acids, specifically their shape and flexibility, plays a crucial role in their func-

tion. For example, DNA mechanics is pivotal in nucleosome positioning [179, 180], indirect

readout [36, 126], DNA looping [3, 11, 176] and protein-DNA interactions [36, 85, 126, 146,

171]. In particular, owing to its quintessential role in DNA readout, sequence-dependent me-

chanics of DNA is often regarded as a “secondary genetic code”. Moreover, epigenetic modifica-

tions in DNA further regulate gene expression, supposedly by changing the mechanics of DNA.

For instance, methylation of CpG steps in promoter regions leads to gene silencing [32, 151]

by reducing flexibility and, thus, reducing the ability of DNA to interact with transcription

factors, modulating DNA accessibility and making them less prone to wrap around nucleo-

somes [38, 72, 156, 162, 172]. Sequence-dependent mechanics is also determining in the func-

tioning of RNA and DRH as well [132, 133, 185, 193, 196, 209]. Such direct evidence piqued

significant interest in understanding the sequence-dependent mechanics of nucleic acids.

The primary experimental tools for studying the mechanics of dsNAs are cyclization experi-

ments [188], optical tweezers [189], small-angle X-ray scattering [120], and cryogenic electron

microscopy [15, 48]. More details on various techniques for in vivo and in vitro characterization

of dsNAs mechanics can be found in ref. [157]. Even though experiment is an excellent ap-

proach to explore the role of mechanical properties of dsNAs in their functioning, designing and

performing experiments is highly time-consuming and, thus, can only be performed for a few se-

quences. Recently, Basu et al. [11] developed high-throughput methods to measure the tendency

for DNA looping and computed intrinsic cyclizabilities of roughly 300,000 50 base-pairs (bps)

DNA fragments (flanked both sides by 25 bps fixed duplex and single-stranded complementary

overhangs) and found an intricate role of sequence in the overall mechanics of DNA that can not

be sufficiently described by basic sequence descriptors such as GC content, A-tracts, and dimer

steps. Such experimental methods can provide an overall picture, but lack a finer description.

A promising alternative is provided by computational modeling and simulation. In partic-

ular, atomistic molecular dynamics (MD) simulations have been widely used to study various

structural, mechanical, and functional aspects of nucleic acids [9, 12, 28, 50, 56, 74, 97, 116,

132, 133, 142, 147, 152, 153, 155, 156, 196] and have become an indispensable tool in general

for studying bio-molecules [74]. However, due to the immense sequence space of DNA, it is not

feasible to investigate all sequences (even for DNA dodecamers); for instance, the most exten-

sive analysis using atomistic MD simulations published so far is only for the 136 independent

tetramers [50, 147] by the ABC consortium. Also, MD simulations are extremely slow for sim-

ulating longer dsNA fragments as most of the simulation time are consumed to model relatively

uninteresting water molecules. Therefore, a systematic investigation requires computationally

efficient alternatives.

There have been several attempts to model DNA, starting with worm-like chain models [92,

186]. One of the first and widely applied models for the coarse-grained sequence-dependent

DNA model was a rigid base-pair model [139] with dimer-dependent parameters obtained from

X-ray crystal data from protein-DNA complexes (which have been a great source of informa-

tion to study the structure and flexibility of DNA [128]). Similar rigid base-pair models were
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also trained on atomistic MD simulations [61, 97]. One major drawback of rigid base-pair

models is that the non-local sequence dependence in the model requires non-local sequence-

dependent parameters, which are almost impractical to obtain, particularly for a model trained

on experimental data. Therefore, most rigid base-pair models only have local dimer sequence

dependence. However, it has been observed multiple times that sequence dependence limited to

the local dimer step is not always sufficient to explain all properties of specific DNA sequences,

and non-local sequence dependence (i.e., depend on flanking sequence) plays a pivotal role in

DNA mechanics [6, 9, 56, 102, 145, 155, 208]. In particular, Balaceanu et al. [9] using MD sim-

ulations demonstrated that the structure and flexibility of the central TA step are significantly

modulated by hexamer or even beyond flanking context.

More recently, a few other models have been proposed to study sequence-dependence prop-

erties in DNA [33, 71, 143, 203]; however, the parameters in these models have often been fit

analytically to experimental data and have limited and local sequence-dependence. The first and

only model, to our knowledge, that predicts non-local sequence dependence in the shape of DNA

is cgDNA [62, 159]. cgDNA is a coarse-grained model of B-DNA which predicts the proba-

bility distribution function of an arbitrary DNA sequence (in standard A, T, C, G alphabets)

under pre-specified physical solvent conditions. Originally, in this model, DNA was coarse-

grained as a bi-chain of explicit bases, which is now extended to “cgDNA+” [149] with explicit

representation of phosphates in addition to the bases. The non-local sequence-dependence in

the cgDNA(+) model using dimer-dependent parameters originates from the fact that individ-

ual base-pair steps cannot achieve their local minima simultaneously, and frustration of energy

surfaces arises in the nearest neighbors; thus, the cgDNA(+) model naturally captures the non-

local sequence-dependence in the DNA mechanics, but only using dimer dependent parameters.

Both models are trained on molecular dynamics time-series of a comprehensive set of DNA

sequences, and the model predictions are shown to be almost indistinguishable from the corre-

sponding MD statistics of first and second moments.

The cgDNA(+) model has been successfully implemented to explore sequence-dependent

persistence lengths [123] of DNA, sequence-dependent unwrapping pathways of DNA from the

nucleosome core particle [119], crystal structure packing forces [149], and the role of histone

tails in nucleosome stability [16]. Moreover, the cgDNA+ model has been used to scan entire

genomes searching mechanically exceptional sequences [213] and obtain sequence-dependent

shapes of DNA minicircles [13, 60]. Other exciting applications of the cgDNA+ model actively

pursued (in LCVMM and with collaborators) include the response of DNA to external loading

and twisting, the calculation of the nucleosome wrapping energy for DNA, and the prediction

of protein-DNA binding affinity. Moreover, this model can potentially contribute to fine-tuning

rapidly evolving DNA applications, for example, DNA nanotechnology. Thus, the model has

shown great potential for diverse applications involving DNA mechanics with the overarching

goal of deciphering how DNA mechanics facilitate its functioning in biology.

One particular limitation is that the current model only allows standard DNA bases. How-

ever, in biology, bases in the DNA sequences are often modified, particularly, Cytosine (C),

which is either methylated or hydroxymethylated at the 5-position of Cytosine in CpG steps.

Furthermore, RNA and DRH are also ubiquitous in biology and essential for several other appli-
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cations. Therefore, in this thesis, we have extended the cgDNA+model by estimating parameter

sets for RNA, DRH, and DNA with base modifications and called it the cgNA+ model. More-

over, we have compared cgNA+model predictions with experimental findings, particularly with

the existing protein-DNA X-ray structure database for dimers in all tetramer flanking contexts,

and further emphasized the model’s potential to help understand the functioning of DNA in bi-

ology. Another limitation is that the cgNA+ model treats sugar rings implicitly and does not

provide any information on sugar pucker modes and backbone conformations. Notably, unlike

phosphate and base groups, the sugar groups can not be treated as rigid bodies due to their high

intrinsic flexibility. Therefore, we have introduced a machine learning approach that predicts

the position of all sugar atoms from the knowledge of position of neighboring phosphate and

base atoms which can be obtained from the cgNA+ model.

This thesis has been divided into eight chapters. The first two chapters are dedicated to

background material with basic details of nucleic acids in chapter 1 and the description of the

prior cgDNA+ model in chapter 2 including the discussion of model training, various methods

to assess the model, and the Monte Carlo code to sample from the predicted Gaussian pdf. In

chapter 3, we have reported the MD simulation protocol and the training library used to pa-

rameterize the model. Furthermore, we have analyzed the various aspects of MD simulations

performed for various nucleic acids. In particular, we have examined the convergence of MD

simulations and the distributions of cgNA+ internal coordinates for various nucleic acids. In

chapter 4, we have introduced the cgNA+ model with a systematic assessment of the model’s

predictive capabilities. Furthermore, we have applied the cgNA+ model to explore various ap-

plications of the cgNA+ model, such as computing persistence length and groove widths, and

comparing the statistics for DNA, RNA, and DRH. Moreover, we have also compared cgNA+
predictions with the available protein-DNA X-ray structure database in chapter 5. In chapter 6,

we have discussed the extension of the cgNA+ model for epigenetically modified bases, along

with the illustration of various applications. In chapter 7, we have introduced a neural net-

work module to predict the location of sugar atoms in any cgNA+ coarse-grained configuration

from the knowledge of neighboring base and phosphate atomic positions. It allows computing

sequence-dependent backbone conformations and sugar pucker modes for an arbitrary DNA se-

quence where the positions of base and phosphate atoms can be accurately obtained from the

cgNA+ model. Finally, chapter 8 discusses the conclusions of this thesis, outlines limitations,

and proposes directions for future work.

1.1 Nucleic acids

In this section, we describe the basic structural and chemical aspects of various NAs mod-

eled in this thesis. A NA is a polymer of repeating nucleotides composed of three basic units:

phosphate, sugar, and bases. The sugar in NA is 5-carbon sugar (pentose) which is ribose and

deoxyribose (as shown in figure 1.1) in the case of RNA and DNA, respectively. The sugar and

phosphate are alternately connected through a phosphodiester bond and make the NA backbone

(see figure 1.3). The phosphate group is attached to the 5′− and 3′− carbon of the pentose sugar

that provides directionality to the NA, and the corresponding ends of the NA are called 5′− and

3′− ends. Bases, the third component of NAs, are nitrogenous base compounds that act as ele-
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Fig. 1.1 Chemical structure and labeling of various sugar and bases in nucleic acids.

mental units of the genetic code. There are primarily two nucleobases categories: purine (R) and

pyrimidine (Y) bases. Purine bases are larger with two fused ring structures, while pyrimidine

has a single ring. The canonical purine bases are Adenine (A) and Guanine (G), while canonical

pyrimidine bases are Thymine (T), Cytosine (C), and Uracil (U) (as shown in figure 1.1). The

base is connected to the sugar, forming an N-glycosidic bond between base-nitrogen (N1 for Y

and N9 for R) and 1′− carbon of the sugar ring.

N

N

H

N

N

O

O

H

H

H

H

NN

N

N

S

S

N

N

O

NN

N

N

O

N

H

HH

S

S

minor groove minor groove

major groove major groove

Guanine               Cytosine Adenine                Thymine

Fig. 1.2 Base-pairing and grooves in DNA

Double-stranded NA (dsNA), which is the primary focus of this thesis, is composed of two

such anti-parallel chains which interact through the bases in which purine bases in one chain

form hydrogen bonds with pyrimidine bases in other or vice-versa as shown in figure 1.2. The

direction of one chain is 5′− to 3′− end while 3′− to 5′− end for the other. These interacting bases

(through H-bonds) in the anti-parallel strands are complementary. The following discussion is

relevant to dsNA.

Now, the structure of dsNA is defined at four levels, namely, primary, secondary, tertiary,

and quaternary. The primary structure of a dsNA is defined as the list of nucleotides (denoted

using the base name) read in the 5′− to 3′− end direction. To write down this sequence of

nucleotides (S), one of the strands is selected as the reading (or Watson) strand, while the other

strand is called the complementary (or Crick) strand. A dsNA oligomer comprising of N base-

pairs as S = X1X2X3...XN−1XN where Xi are in the alphabets representing bases and the
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sequence is written in the 5′ to 3′ direction. The complementary base of Xi on the Crick strand

is X̄i. Following the notation, S̄, is written as X̄NX̄N−1X̄N−2...X̄2X̄1 in the 5′ to 3′ direction

on the Crick strand. The secondary structure defines the interactions between the bases and,

thus, defines the basic shape of dsNA. For example, in canonical dsNA, the complementary

base-pairing and wrapping of the two strands lead to a double-helical structure. There may be

other types of secondary structures, such as bulges and loops but they are outside the scope of

this thesis.

The main interest in this work is the tertiary structure of dsNA which refers to its intrinsic

shape and flexibility. The tertiary structure includes key structural features, including handed-

ness of the helix (left or right), length of helix per turn, the number of base-pairs per turn, and

size of major and minor grooves. These features depend mainly on the physical conditions and

the type and sequence of dsNA. Finally, the quaternary structure of dsNAs describes their in-

teractions with other molecules, e.g., protein-DNA complexes or interactions of different RNAs

in the ribosome. The following subsections provide basic information on the various dsNAs

studied in this work.
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1.1.1 Deoxyribonucleic Acid

The three components of a DNA nucleotide are deoxyribose sugar, phosphate, and bases (A,

T, C, and G), as shown in figure 1.1. In the case of double-stranded DNA (dsDNA), comple-

mentary bases on opposite strands form H bonds, as shown in figure 1.2. In this base-pairing,

C forms three H-bonds with G while A forms two H-bonds with T. Furthermore, the distance

between the backbones of two strands is not symmetrical and forms two grooves of different

sizes called major and minor grooves, as shown in figure 1.2. The major and minor grooves

arise because the glycosidic bonds (base-sugar bonds) in the base-pair are not diametrically op-
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posite. Notably, for a given base-pair, the minor groove contains O2 of Y and N3 of R, and

the major groove is on the opposite side. Moreover, the methyl group of Thymine also lies

in the major groove. Each groove consists of potential H-bond donor and acceptor atoms that

enable specific interactions with proteins, and the sequence modulates their precise chemistry.

Thus, the sequence-dependent groove widths play a crucial role in the protein-DNA interac-

tion [134, 171, 172, 195].

The sugar-phosphate backbone is, in general, quite flexible and therefore requires more

parameters to characterize its conformations. In figure 1.3, we have shown a typical DNA

backbone and standard torsional angles used to characterize its conformation. It requires six

torsional (or dihedral) angles (defined as the angle between planes passing through two sets of

three atoms that have two atoms in common) to describe the backbone of DNA. In this case, the

two sets of three atoms are consecutive first three and last three of the four covalently bonded

atoms as described in figure 1.3. Furthermore, there is an additional torsional angle involving

base and sugar atoms called χ. The involved base atoms depend on the type of base (R or

Y) and are indicated in figure 1.3. χ torsional angle determines the nucleoside conformation,

namely anti and syn. For anti conformation, χ ∈ [+90○⋯ + 270○] while for the rest of the χ

values, nucleoside is in the syn conformation. Primarily, nucleoside stays in anti-conformation

but sometimes base flips from anti-to-syn conformation, known as base-flipping. We would

like to emphasize that the six torsional parameters in the DNA backbone are not entirely free

to rotate and are quite restricted by steric constraints. In particular, there exist two common

backbone conformations BI and BII, which are inter-convertible. These BI-BII conformations

are found to play an important role in protein-DNA recognition [65]. BI or BII conformation is

identified by using the difference between the torsional angle ϵ − ζ which is negative for the BI

conformation and positive for the BII conformation.

O4' - endo

C2' - endoC3' - exo

O
1'

2'3'

4'

4'

θ0

θ1
θ2

θ3

θ4

0°

36°

72°

108°

144°
180°

216°

252°

288°

324°

C3' - endo

C4' - exo

C1' - exoC4' - endo

O4' - exo

C1' - endo

C2' - exo N

S

O 1'

2'

3'

4'

C3' - endo
N conformation

1'
2'

4'

3'
C2' - endo
S conformation

θ0 = C4' - O4' - C1' - C2'
θ1 = O4' - C1' - C2' - C3'
θ2 = C1' - C2' - C3' - C4'
θ3 = C2' - C3' - C4' - O4'
θ4 = C3' - C4' - O4' - C1'

O

5'

5'

Fig. 1.4 Pseudorotation wheel (on the left) adopted from ref. [4] with sugar pucker notations
defined based on the pseudorotation phase angle (P). P is computed using various dihedral
angles θi ∀ i ∈ [0,1,2,3,4] as given in equation (1.1) and the label of atoms from which
dihedral angles are computed is shown in the figure. The two most common conformations
adopted by the sugar in DNA are shown on the left.
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The deoxyribose sugar ring in DNA is inherently non-planar (due to ring strains) and adopts

puckered conformations as shown in figure 1.4. To fully describe the conformations of the sugar

ring, five torsional angles are required. The different ring torsional angles give rise to different

puckered conformations, and the thermodynamic stability of these conformations is governed

by the substituents on the ring carbon atoms and how far those substituents are from each other

in a given puckered conformation. These puckered conformations can inter-convert into each

other and can be concisely explained using two parameters [4], namely, pseudorotation phase

angle (P) and maximum degree of pucker, θmax

tan(P) = (θ4 + θ1) − (θ3 + θ0)
2θ2 (sin(36○) + sin(72○))

and θmax =
θ2

cos(P) (1.1)

where P can be anything between 0 − 360○ and if θ2 < 0 then P = P + 180○. Now, puckered

conformations corresponding to P can be best represented on a pseudo-rotation wheel, as shown

in figure 1.4 with the description of θi ∀ i ∈ [0,1,2,3,4].
One of the most common pucker types is a conformation in which two of the ring atoms

are out of the plane (on either side) formed by the other three atoms. The name of such a

conformation is based on the direction of major deviation of a non-planar atom, which is if on

the opposite side as C4′−C5′ bond and base, then the atom is called exo; otherwise, if it occurs

in the same direction, then endo. The most frequently observed conformations are C2′−endo

(with P values ∈ 140 to 185○) or C3′−endo (with P values ∈ −10 to + 40○) [127] and are shown

in figure 1.1. Even though various pucker modes of deoxyribose are inter-convertible, C3′−endo

pucker conformation is primarily dominated in the case of A-form DNA while C2′−endo in case

of B-form DNA. In these two conformations, C2′−endo and C3′−endo, the relative distance

between the 3′ and 5′ phosphates as well as the orientation of the phosphate group with respect

to base/sugar is significantly different, giving rise to very different A- and B-form of DNA.

The DNA conformations are a function of the sequence, direction and amount of super-

coiling, and the physical conditions of the solution. For example, the transition of B-DNA to A-

DNA can be promoted under reduced humidity or by adding organic solvents. DNA also exists

in a few other forms, such as Z-DNA, which is a left-handed helical structure form in alternating

RY tracts under high salt, the presence of certain divalent cations, or DNA super-coiling. Z-

DNA is structurally quite different from B-DNA in terms of sugar puckering, glycosidic bond

configuration, and relative bp orientation. A concise summary of various DNA helical structures

can be found in [202].

Compared to the DNA backbone, the bases are quite rigid and planar because of conjugation

in the rings. We have heavily exploited this property of the bases by coarse-graining them. More

details on this are discussed later in this thesis.

1.1.2 Ribonucleic Acid

The key chemical differences in RNA from DNA are a) the sugar molecule is ribose instead of

deoxyribose and b) the pyrimidine base is U instead of T, as shown in figure 1.1. The ribose

sugar preferably adopts C3′−endo conformations, and the preferred geometry of the RNA is

the A-form. Discussion concerning the presence of two grooves, backbone, and sugar pucker
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modes analysis is analogous to DNA.

1.1.3 Epigenetic modifications in DNA

Most common epigenetic modifications in DNA are methylation or hydroxymethylation of Cy-

tosine at the 5− position, as shown schematically in figure 1.1. Other base modifications, such

as 5-formyl-C, 5-carboxyl-C, and N6-methyl-A, are comparatively rare in biology and are not

studied in this work. Most often, Cytosine substitution occurs at CpG dinucleotide steps[77],

which can be di-substituted if both strands are symmetrically modified or hemi-substituted if

only one of the strands is asymmetrically modified. In this thesis, we have used the letter M

for 5-methylated-Cytosine, and N for Guanine when the complementary Cytosine is methy-

lated. Similarly, the letters H and K are used for 5- hydroxymethylated-Cytosine and Guanine

complementary to 5-hydroxymethylated-Cytosine, respectively.

1.1.4 DNA-RNA hybrid

A double-stranded DNA-RNA hybrid (abbreviated as DRH in this thesis) has one DNA strand

and another RNA strand. We always take the DNA strand as the Watson or reading strand for

simplicity in writing and coding. DRHs are important intermediates in many biological pro-

cesses [2, 24, 121, 167, 185, 204]. Compared to DNA and RNA, the structure and mechanics

of DRH are much less explored. Initial crystallographic studies indicated that DRH adopts a

A-form geometry [206] but soon challenged by several other experimental techniques such as

fiber diffraction [212], circular dichroism [168], NMR [54, 58, 96, 198] finding a mix A- and

B-form geometries in DRH. Moreover, NMR results suggested that the DNA strand adopts a

geometry closer to the B-form while the RNA strand is close to the A-form geometry. Discus-

sion concerning the presence of two grooves, backbone, and sugar pucker modes analysis is

analogous to DNA.

1.2 Methods

1.2.1 Sequence logos

Sequence logos [178] are a popular graphical representation to plot sequence characteristics in

DNA, RNA, or protein sequences. It is widely used to visualize sequence motifs in multiple

sequence alignments. In sequence logos, each position has a stack of characters (A/T/C/G) on

top of each other, with the character height proportional to the relative frequency of the nucleic

base at that position, and the total height of the stacks tells the information content at that

position. In this work, we have exploited this visualization technique to understand the role of

sequence in dsNA mechanics.

In standard sequence logos, the height of the stack is the information content (in bits), which
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for nucleic acids (say DNA) is given as

Hi = ∑
b

fb,i × log2(fb,i)

Ri = 2 −Hi − e
hb,i = fb,i ×Ri

(1.2)

where b ∈ {A, T, C, G}, i is the ith position in the sequence, Hi is the uncertainty or Shannon

entropy at position i, fb,i is the frequency of bth base at position i, Ri is the total information at

position i defined as the loss in uncertainty, and lastly, hb,i tells the height of base b at position

i. e is a small sample correction taken as zero in this work. Note that the maximum value of

Ri can be 2, which implies no uncertainty at that position, and the minimum value is 0, which

implies the highest uncertainty at that position, i.e., all possible b are equally probable.

To better explain sequence logos, we have generated a set of sequences of length five bps.

In figure 1.5(top), we have plotted a variant of sequence logos with the y-axis as the probability

of alphabet b at ith position. In the bottom plot, we have plotted the corresponding standard

sequence logos with information content (in bits) on the y-axis. From the probability plot, it

can be observed that the uncertainty in base type increases from left to right. At position-1: all

sequences have A, at position-2: 75% G and 25% C, and at position-5: all alphabets are equally

probable. In the corresponding information content plot, left to right, the information decreases

with position-1 containing the maximum and position-5 containing zero information.
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Fig. 1.5 Sequence logos plot for an artificial dataset with probability (top) and the information
content (bottom) on the y-axis and base position in the sequence on the x-axis.

1.3 Codes and data availability

Details of all the codes and data used in this thesis are provided appendix F.



CHAPTER 2

cgDNA+ model

The central theme of this chapter is to provide an overview of the cgDNA+ model and its train-

ing [149]. First, we have discussed the coarse-graining of DNA atomistic configuration by

fitting frames in phosphate and base units and then defining internal coordinates used in the

cgDNA+model. The next part introduces the cgDNA+model, the underlying assumptions, and

mathematical details of how the model reconstructs groundstate and stiffness matrix given a pa-

rameter set and a sequence. The subsequent section describes the cgDNA+model training from

atomistic molecular dynamics (MD) times-series of a set of sequences. After model description

and training, this chapter discusses methods to assess the model performance and quantify var-

ious approximation errors in the model. The last part of the chapter is a brief discussion on the

cgDNA+Monte Carlo code [123], which allows efficient sampling of cgDNA+ predicted Gaus-

sian probability density function (pdf) and thus, computing the expectation of any interesting

physical observables for an ensemble of configurations.

2.1 Coarse-graining of atomistic structure of dsDNA

Fig. 2.1 Coarse-graining of atomistic structure of DNA oligomer to cgDNA+ cartoon represen-
tation by embedding frames in bases and phosphates.

This section describes the methodology to coarse-grain the atomistic representation of DNA

observed in MD simulations by fitting frames in bases and phosphates. A typical atomistic

11
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1 Compute weighted centroids x̄ = ∑
n
i=1wixi

∑n
i=1wi

and ȳ = ∑
n
i=1wiyi

∑n
i=1wi

2 Compute centred vectors pi ∶= xi − x̄ and qi ∶= yi − ȳ

3 Compute covariance matrix
R3×3 ∋ S = PWQ where P,Q ∈ R3×n

with pi, qi as their columns, respectively
and W = diag(w1,w2, ...,wn)

4 Compute singular value decomposition S = UΣV T

5 Compute R, r
R = V

⎡⎢⎢⎢⎢⎢⎣

1
1

∣V UT ∣

⎤⎥⎥⎥⎥⎥⎦
UT , r = ȳ −Rx̄

Table 2.1 Algorithm to find a rigid body transformation (translation r and rotation R) that best
aligns two rigid bodies X(x1, x2, ..., xn) and Y (y1, y2, ..., yn) in terms of least-squares error,
where W (w1,w2, ...,wn) is the weight matrix. This algorithm is used to fit frames in bases and
phosphates.

structure of dsDNA (shown in figure 2.1) is an anti-parallel double-stranded helix whose primary

structure is defined as the list of nucleotides denoted by the base name along a chosen strand

from 5′− to 3′− direction. One strand is chosen as a reading strand or Watson strand, and the

other is a complementary strand or Crick strand. Using this notion, we can write the sequence

of a DNA oligomer comprising of N base-pair as S = X1X2X3...XN−1XN where Xi ∈ {A,

T, C, G}. The complementary base of Xi on the Crick strand is written as X̄i. Following the

notation, S̄, is written as X̄NX̄N−1X̄N−2...X̄2X̄1 in 5′ to 3′ direction on the Crick strand.

The cgDNA+ model explicitly treats phosphates and bases as rigid units and fits SE(3)
frame (see appendix section C.3) to describe their position (r ∈ R3) and orientation (R ∈
SO(3)). In order to fit the SE(3) frame, we have used cgFrame, a C++ code, analogous to

CURVE+ [101], and based on the algorithm described in ref. [191]. cgFrame fits frames to

bases and phosphates in the atomistic structure of DNA with respect to the ideal atoms def-

inition formalized in the Tsukuba convention [140]. The details of the ideal coordinates are

provided in table A.1. cgFrame input is a .PDB or .nc (binary) format of the MD trajectory and

the outputs are two text files, namely .fra and .pfra files, containing frames, (R, r) ∈ SE(3), for

bases and phosphates, respectively.

The general fitting problem can be stated as, let X(x1, x2, ..., xn) and Y (y1, y2, ..., yn) be

two sets of corresponding points in R3 and R ∈ SO(3) and r ∈ R3 be a rotation matrix and

translation vector, respectively, aligning X and Y such that

n

∑
i=1

wi ∥r +Rxi − yi∥2 , (2.1)

is minimum. wi > 0 represents the weight for a particular pair of points (for cgDNA+, wi =
1 ∀ i = 1 ⋅ ⋅ n). The algorithm [191] to find R, r is summarized in table 2.1. (R, r) represents the

rigid body transformation and forms an element of the special Euclidean group SE(3). More

details on SE(3) are provided in appendix section C.3.



13 2.1. Coarse-graining of atomistic structure of dsDNA

Using the algorithm described in table 2.1, we have obtained best-fit frames for bases and

phosphates of a given MD snapshot and transformed atomistic MD time-series into a coarse-

grain time-series where each snapshot is in SE(3)4N−2 (N is the number of base-pairs in the

given oligomer). Note that the first 5′−phosphates on both the strands are not present in the MD

time-series, thus, 4N −2. A typical coarse-grain cartoon for an atomistic MD snapshot is shown

in figure 2.1 which can be perceived as a tetra-chain representation of DNA.

Fig. 2.2 A schematic view of coarse-grain dsDNA with rigid bases and rigid phosphates. The
sugar molecule is shown in the image but is modeled only implicitly in the cgDNA+ model.
{d1, d2, d3} is the orthonormal frame as per Tsukuba convention [140] while for modeling pur-
poses we flip the Crick frame to align with Watson frame to give the final orientations of Watson
and Crick frame as {d+1 , d+2 , d+3} and {d−1 , d−2 , d−3}, respectively.

This frame fitting leads to a reference point r and a right-handed, orthonormal frame R3×3 ∋
D = {d1, d2, d3} to each base as per Tsukuba convention [140]. The vector d1 is in the direction

of major-groove, d2 in the direction of the reference strand or away from the complementary

base and, d3 = d1 × d2 and is approximately in the direction pointing from base n to n+ 1 while

reading from that strand. It implies that the frames associated with the two bases in a given base-

pair are not aligned, as shown in figure 2.2 in black color and denoted as {d1, d2, d3}. However,

in the context of dsDNA modeling, it is convenient to model if both bases in the base-pair are

aligned in the same direction. Therefore, we have introduced a matrix Pflip ∈ O(3),

Pflip =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 −1 0

0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦

(2.2)
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which flips d2 and d3 directions of Crick frame. It gives the final orientation of Crick frame as

D− = DPflip = {d1,−d2,−d3} = {d−1 , d−2 , d−3} and Watson frame as D+ = D = {d1, d2, d3} =
{d+1 , d+2 , d+3}. Now, d±1 , d

±
2 , and d±3 are in the direction of major-groove, Watson (chosen as

reading) strand, and n to n+1 base while reading from the Watson strand, respectively. Note that

after flipping base frames associated with the Crick strand, we have denoted base and phosphate

frames on the Watson strand (chosen as the reading strand) with + superscript and on the Crick

strand with − superscript.

Similarly, we have defined the position of phosphate atom as the reference point, rp ∈ R3 and

three vectors, R3×3 ∋Dp = {dp1, d
p
2, d

p
3} in the direction of dp3 = O5′−O3′, dp2 = P−(O5′+O3′)/2

and, dp1 = d
p
2 × d

p
3. More details on the ideal coordinates for the phosphate are in table A.1. A

schematic diagram of coarse-grain bases and phosphates is shown in figure 2.2.

2.2 Internal coordinates

Fig. 2.3 CURVES+ coordinates for a coarse-grain DNA configuration. Intra base-pair (left) and
Inter base-pair (right). X, Y, and Z are in the direction of the reading strand, major-groove, and
from base n to n + 1 while reading the sequence from the reference strand, respectively.

The frames obtained in the last section are in absolute coordinates, i.e., in a fixed lab

frame, which are challenging to work with due to global translations and rotations of the whole

molecule during the MD simulation. A convenient alternative is to use a coordinate system fixed

on the dsDNA molecule itself, i.e., internal coordinates. In the following discussion, we have

first introduced the internal coordinates for the bases and then for the phosphates while reading

the sequence (5′ to 3′ direction) from a chosen strand. The cgDNA+ internal coordinates for

the same configuration while reading the sequence from two different strands are different but

related by a linear transformation. This linear transformation for change of reading strand is

reviewed in section 2.2.2. Furthermore, the inverse transformation from cgDNA+ internal coor-

dinates to the absolute frames is detailed in section 2.2.3. Lastly, we discussed H-bond filtering

to discard MD snapshots with broken H-bonds.
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2.2.1 Frames to cgDNA+ internal coordinates

We first defined the base-pair and the junction frames to introduce internal coordinates for bases.

The base-pair frame is defined as the average orientation (B) of two complementary base frames

of a base-pair with an average reference point, g (equation (2.3)). While the junction frame is

defined as the average orientation (J) of the two neighboring base-pair frames (nth and (n+1)th)

with average reference point t given in equation (2.4).

{Bn, gn} = {D−n
√
Λn ,

1

2
(r+n + r−n)} where Λn = (D−n)TD+n (2.3)

{Jn, tn} = {Bn

√
Γn ,

1

2
(gn+1 + gn)} where Γn = (Bn)TBn+1 (2.4)

where Λn describes the relative orientation of the base frame D+n with respect to D−n and Γn

describes the relative orientation of base-pair frame Bn+1 with respect to Bn.

Now, the internal coordinates for the bases are classified into intra and inter base-pair coor-

dinates. The rotational components of intra base-pair coordinates are defined as Cayley param-

eters (refer appendix section C.2) of the relative rotation matrix Λn and the intra translational

coordinates, ζn are defined in the reference frame of base-pair frame Bn (equation (2.3)) and

are given as,

R6 ∋ xn = {λn, ζn} = {cay−1α (Λn), BT
n (r+n − r−n)} (2.5)

where λn and ζn ∈ R3 and cay−1α (⋅) is defined in appendix equation (C.6) and α ∈ R is a

scaling parameter which is discussed later in this section. For the cgDNA+ model, we have

chosen α = 5. The inter base-pair coordinates are defined between two neighboring base-pairs.

The rotational component γn ∈ R3 is the Cayley parameters of the relative rotation matrix Γn

between nth and (n + 1)th base-pairs. While the translational coordinates ηn ∈ R3 are defined

as the relative translation between two neighboring base-pair frames but in reference of the

junction frame Jn. The inter base-pair coordinates are given as,

R6 ∋ yn = {γn, ηn} = {cay−1α (Γn), JT
n (gn+1 − gn)}. (2.6)

Notably, intra rotational and translational coordinates are commonly known as (Buckle, Pro-

peller, Opening) and (Shear, Stretch, Stagger), respectively, and inter rotational and translational

coordinates are commonly known as (Tilt, Roll, Twist) and (Shift, Slide, Rise), respectively. A

schematic diagram for intra and inter coordinates is depicted in figure 2.3.

The internal coordinates for a given phosphate are defined relative to the base to which the

phosphate is attached. It can be defined in two ways: base to 3′− phosphate and base to 5′−
phosphate. cgDNA+model adopts base to 5′− phosphate as this parameterization is through the

covalent bond between base and phosphate, which involves BI-BII backbone conformations.

Both parameterizations were investigated in ref. [149] with the findings that base to 5′− phos-

phate parameterization can capture bi-modality in the backbone conformation. This parameter-

ization is essentially defining coordinates for the phosphate with respect to the corresponding

base in the same nucleotide. More details about the choice of parameterization can be found in

A. Patelli’s thesis [149]. Finally, the internal coordinates for phosphate are defined in reference
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to the corresponding base and are given as

R6 ∋ z±n = {τ±n , ξ±n} = {cay−1α (D±nDp±
n ), D±nT (rp±n − r±n)}. (2.7)

Thus, the coarse-grain configuration of dsDNA oligomer of length N bps in terms of internal

coordinates (independent of global translation and rotation of the molecule) can be written as a

vector w in 24N − 18 dimensions made up of 6N intra base-pair (xn), 6N − 6 inter base-pair

(yn) and 12N − 12 base to 5′−phosphate coordinates (z±n) given in equation (2.8),

R24N−18 ∋ w = (x1, z−1 , y1, z+2 , x2, z−2 , ...., yn−1, z+n, xn), (2.8)

where ± denote Watson and Crick strands, respectively. The transformations in equations (2.3)

to (2.7) that transform bases and phosphates frames into internal coordinates for a given dsDNA

configuration is denoted by TFÐ→I ∶ SE(3)4N−2 Ð→ R24N−18.

Lastly, we have chosen a scale of 1 Å for translational coordinates and rad/5 for rotational

coordinates and transformed the coordinates into dimensionless form and scaled them so that

the magnitudes of the rotational and translational coordinates can be compared more directly.

More details on the scaling parameters can be found in refs. [62, 158, 159].

2.2.2 Change of reading strand

In the previous section, we introduced cgDNA+ internal coordinates to describe the configura-

tion of dsDNA while reading the sequence from a particular strand (chosen first). However, the

same dsDNA configuration read from the Watson strand (S) or the Crick strand (S̄) leads to two

different cgDNA+ internal coordinates, which are related by a linear map [149, 158] as,

w(S̄) = ENw(S)
K(S̄) = ENK(S)EN

(2.9)

where

R24N−18×24N−18 ∋ EN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E5′

Eint

⋱
Eint

E3′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.10)

and K is the stiffness matrix discussed in section 2.3. The entries in EN are given as

R36×36 ∋ E5′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E

I6

E

I6

E

I6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.11)

R36×36 ∋ E3′ = [E5′]−1 = [E5′]T , and (2.12)
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R42×42 ∋ Eint =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I6

E

I6

E

I6

E

I6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [Eint]T = [Eint]−1 (2.13)

where E = diag(−1,1,1,−1,1,1) ∈ R6×6 and I6 is a 6 × 6 identity matrix.

2.2.3 cgDNA+ internal coordinates to frames

The inverse transformation to obtain the position and orientation of base and phosphate frames

from cgDNA+ internal coordinates is denoted as TIÐ→F ∶ R24N−18 Ð→ SE(3)4N−2. For a

given configuration in cgDNA+ internal coordinates, w = (x1, z−1 , y1, z+2 , x2, z−2 , ⋅⋅⋅⋅, yn−1, z+n, xn) ∈
R24N−18 where each component can further be split into rotational and translational components

as xn = (λn, ζn), yn = (γn, ηn), and z±n = (τ±n , ξ±n), bases and phosphates frames can be obtained

in three steps. First the nth base-pair frame (Bn, gn) can be obtained from the corresponding

inter coordinates (yn−1) using recursive relation as

⎡⎢⎢⎢⎢⎣

Bn gn

0T 1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

Bn−1 gn−1
0T 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

cayα(γn−1) cayα(γn−1)ηn−1
0T 1

⎤⎥⎥⎥⎥⎦

=
n−1
∏
i=1

⎡⎢⎢⎢⎢⎣

cayα(γi) cayα(γi)ηi
0T 1

⎤⎥⎥⎥⎥⎦

(2.14)

where cayα(⋅) is the Cayley transformation defined in equation (C.5) with α as the scaling factor

discussed in section 2.2.2, and (B1, g1) is taken as (I,0) with I ∈ R3×3 an identity matrix and

0 ∈ R3×1 a zero vector. Note that absolute coordinates for frames require a reference point,

which is chosen to be the first base-pair frame. Subsequently, base and phosphate frames can be

obtained as ⎡⎢⎢⎢⎢⎣

D±n r±n
0T 1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

Bn(cayα(λn))±
1
2 gn ± 1

2Bnζn

0T 1

⎤⎥⎥⎥⎥⎦
(2.15)

⎡⎢⎢⎢⎢⎣

Dp±
n rp±n

0T 1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

D±nL±cayα(τ±n ) g±n + 1
2D
±
nL
±ξ±n

0T 1

⎤⎥⎥⎥⎥⎦
(2.16)

where L+ = I, and L− = Pflip (see equation (2.2)).

Lastly, to obtain the atomistic PDB structure one can re-embed ideal atom coordinates (ta-

ble A.1) in bases and phosphates frames using the transformation TFÐ→C ∶ SE(3) Ð→ R3×K .

For a given frame with (R, r) as orientation and position, the positions of the associated atoms

can be obtained as,

CXk =∶ RAXk + r, ∀ k = 1 ⋅ ⋅K (2.17)

where K is the number of atoms in base or phosphate, X is kind of rigid body (base or phos-

phate), AXk ∈ R3×1 is the coordinate of kth ideal atom in X type rigid body, and CXk ∈ R3×1 is
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the coordinate of kth atom embedded in the frame.

2.2.4 H-bond filtering

We have used the Cayley vector to parameterize rotational coordinates between two rigid bodies,

whose norm tends to infinity if the relative rotation between the rigid bodies is close to π. This

case can happen in MD time-series due to broken H-bonds, especially toward the ends of a

dsDNA molecule. Such cases may lead to massive bias in the statistics of the rotational internal

coordinates, which may create optimization issues in model training. Moreover, MD snapshots

after broken H-bond filtering may better represent the dsDNA properties than the raw data.

Thus, we have introduced a filtering step that removes snapshots with one or more broken H-

bonds. We have declared (consistent with [62, 99, 109, 159]) an H-bond broken if a) distance

between the heavy atoms involved in the H-bond is greater than four Å or b) the angle between

the heavy atoms via H-atom is less than 120○. The latter condition, in general, can not be applied

to dsDNA data obtained from X-ray techniques (as the H atom is missing); therefore, only the

first criterion is used [109].

2.3 cgDNA+ model

cgDNA+ model is a predictive model that given a sequence S of length N bps along the read-

ing strand and a parameter set P delivers a Gaussian pdf in configuration space by recon-

structing a ground-state ŵ(S,P) ∈ R24N−18 and a positive-definite stiffness matrix K(S,P) ∈
R24N−18×24N−18:

ρ(w;S,P) = 1

Z
exp{−1

2
(w − ŵ) ⋅ K(w − ŵ)}. (2.18)

In cgDNA+ model, a parameter set P for dsDNA in standard alphabets is made up of a)

ten independent interior dinucleotide-dependent KXY blocks ∈ R42×42 plus sixteen independent

K5′XY end blocks ∈ R36×36, and b) ten independent interior dinucleotide-dependent stress vec-

tors σXY ∈ R42 plus sixteen independent σ5′XY end stress vectors ∈ R36,

P = {σ5′XY, σXY,K5′XY,KXY} ∈ P = [R36]16 × [R42]10 × [R36×36]16 × [R42×42]10, (2.19)

where 5′XY ∈ {16 dimer steps} and XY ∈ {10 independent dimer steps}. The parameter for 3′

ends and dependent dimer steps can be obtained using Crick-Watson (CW) symmetry as;

σȲX̄ = EintσXY

KȲX̄ = EintKXYEint

σȲX̄3′ = E5′σ5′XY

KȲX̄3′ = E5′K5′XYE5′

(2.20)

Note that these symmetry conditions put additional constraints on the parameter blocks for

palindromes XX̄ (AT, TA, CG, and GC for dsDNA), which are exploited in the parameter set

extraction. The details on the parameter set estimation are provided in section 2.4.
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2.3.1 cgDNA+ model assumptions

The assumptions or approximations in the cgDNA+ model are the following:

i) MD time-series are stationary

ii) base and phosphates are rigid

iii) pdfs of internal coordinates follow Gaussian distribution, i.e., internal energy for any

oligomer assumes a shifted quadratic (see equation (2.18))

iv) total energy of the dsDNA oligomer is approximated as the sum of local junction energies,

i.e., nearest-neighbor interactions only,

U(w,S) = 1

2
(w − ŵ).K(w − ŵ) ≈ 1

2

N−1
∑
n=1
(wn − ŵn).Kn(wn − ŵn) (2.21)

where wn, ŵn, and Kn represents local junction energy contribution.

v) coefficients in the local junction energies depend on the local dimer step.

Fig. 2.4 Construction of banded oligomer stiffness matrix K and stress vector σ by overlapping
dimer-step dependent parameter set blocks shown for poly(A). The parameters for 3′ end, 5′

end, and interior blocks are different and are shown in different colors. Each cell of the matrix
is of dimension 6 × 6. Each cell in the vector is of dimension 6 × 1.

Solving equation (2.21) with appropriate algebraic considerations (for more details refer [158]),

the groundstate for the dsDNA oligomer is given as

ŵ(S) = K−1(S)σ(S) (2.22)

where K(S) and σ(S) can be computed by overlaying dimer-dependent parameter blocks (as

shown in figure 2.4 and discussed in section 2.2.4) and σn = Knŵn. It leads to one of the

most important features in the cgDNA+ model; that is, even though K matrix and σ vector

have local sequence dependence, the groundstate configuration which involves the inversion of
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overlapping banded stiffness matrix (K) has a non-local (often strongly non-local) sequence

dependence. Moreover, a non-zero constant energy term Û(S) naturally arises in the solution of

equation (2.21) reflecting that all bases and phosphates cannot simultaneously achieve absolute

zero energy minima in the ground–state and achieve an equilibrium configuration with some

non-zero frustration energy. This physical phenomenon of frustration observed here is only

possible in double chain rigid base model (cgDNA) or higher hierarchy models like cgDNA+
but not in single-chain models such as rigid base-pair models.

2.3.2 cgDNA+ reconstruction

Given a sequence S and parameter set P , the model K matrix and σ vector are constructed by

overlaying dinucleotide-step parameter set blocks as shown in figure 2.4 and given as

K(P,S) = RT
dKdRd and σ(P,S) = RT

d σd (2.23)

whereKd = diag(K5′X1X2 , ...,KXiXi+1 , ...,KXN−1XN3′) and σd = (σ5′X1X2 , ..., σXiXi+1 , ..., σXN−1XN3′)
and Rd ∈ 42N − 12 × 24N − 18 is a matrix defined in equation (2.24).

Rd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I18 . . .

I18

I18

I6

I18

I18

I6

⋮ ⋱ ⋮
I18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.24)

where Ik is k-dimensional identity matrix.

Thus, given a sequence S and parameter set P , we can define a reconstruction ruleR(P,S)
which reconstructs a banded stiffness matrix K(S) and a σ(S) vector as

R(P,S) = (σ(P,S),K(P,S)). (2.25)

It is important to note that the reconstruction rule R(P,S) is not invertible due to overlapping

blocks in the stiffness matrix K and stress vector σ.

Moreover, we have definedRvec(Pvec,S) which is equivalent toR(P,S) but allows a linear

relation between σ(P,S), K(P,S) and the vector form of parameter set Pvec ∈ RL where L is

the total number of independent entries in the parameter set P . It can be defined as

Rvec(Pvec,S) = RP(S)Pvec = (σ(P,S),K(P,S)) (2.26)

where RP(S) ∈ N + N2 × L is parameter reconstruction matrix which maps the entries in

parameter set in vector form Pvec to the entries of σ(S) and K(S). This vectorized form is

convenient to code and explain the mathematics of extracting the cgDNA+ parameter set.
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2.4 cgDNA+ parameter set estimation

In this section, we have discussed the protocol for extraction of cgDNA+ model parameter set

from MD time-series. This protocol was initially developed for the cgDNA model [159] and

was optimized and extended for the cgDNA+ model [149]. The key steps in this protocol are:

i) long-enough atomistic MD time-series for a set of sequences referred to as the training

library, Lb (discussed in section 3.3)

ii) fit rigid bodies in atomistic MD snapshots to obtain snapshots in base and phosphate

frames as discussed in section 2.1 and discard snapshots with broken H-bond.

iii) transform base and phosphate frames into internal coordinates using TFÐ→I (see sec-

tion 2.2)

iv) estimation of first and second moments (i.e., fit Gaussian pdf) for each oligomer in the

training library, assuming that MD time-series are converged (section 2.4.1).

v) train dimer-dependent σ vector and K stiffness matrix (i.e., parameter set P as defined in

equation (2.19)) using Gaussian pdfs obtained in the previous step. This step is explained

in sections 2.4.2 to 2.4.4

vi) parameter set stiffness blocks obtained in last step may not be positive-definite, so search

an element in null space to make stiffness blocks positive-definite (see section 2.4.5).

All the above steps in the parameter set estimation are briefly discussed in the following subsec-

tions and a detailed explanation can be found elsewhere [149].

2.4.1 Estimation of oligomer-level statistics

Once the internal coordinates are obtained for each MD snapshot for all sequences in the training

library (Lb = {Si}Li=1), the next step is to compute oligomer-level statistics, {w̄(S),C(S)}. For

a given MD time-series ([wm(S)]Mm=1) where m represents the mth snapshot in the time-series

and M ∼ 106 is the total number of snapshots in the time-series, the first moment (mean) and

second central moment (covariance matrix) can be computed as,

w̄(S) = 1

M

M

∑
m=1

wm(S)

C(S) = 1

M

M

∑
m=1
(wm(S) − w̄(S)) (wm(S) − w̄(S))T ∀ S ∈ Lb.

(2.27)

Furthermore, we have exploited the CW symmetry of dsDNA (only if the sequence is a palin-

drome, i.e., S = S̄) to enhance the quality of first and second centred moments by defining

palindromically symmetrized estimators as:

w̄p(S) =
1

2
(w̄ +EN w̄)

H(S) = C + w̄w̄T

Hp(S) =
1

2
(H +ENHEN)

Cp(S) =Hp − w̄pw̄
T
p

(2.28)
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where H is the second moment and EN defines a linear map for reading strand transformation

(refer section 2.2.2). Note that all sequences used to train cgDNA+ model parameters are palin-

dromes (see table B.1). Therefore, we have dropped the subscript notation for convenience, i.e.,

w̄p(S) is written as w̄(S). Lastly, the cgDNA+ model only considers the first and second mo-

ments, as the computation of higher moments in such high dimensions ∈ R24N−18 is non-trivial.

Now, the maximum entropy principle [78, 79] allows computing the least biased probability

distribution for precise prior data. The absolute entropy for a density ρ(w) is given as:

D(ρ) = −∫
R24N−18

ρ(w) log ρ(w)dx. (2.29)

By assumption, in our case, the probability distribution is a Gaussian pdf with w̄(S) and C(S)
∀ S ∈ Lb as mean and covariance, respectively. We have computed the least biased observed

Gaussian probability distribution ρo(w; w̄(S),C(S)) using equation (2.29) under the following

constraint,

C(S) = {ρ(w)∣⟨1⟩ρ = 1, ⟨w⟩ρ = w̄, ⟨(w − w̄)T (w − w̄)⟩ρ = C} (2.30)

Note that using maximum likelihood estimation to find the observed Gaussian pdf would have

resulted in the same probability distribution. More details can be found in ref. [63, 149].

2.4.2 Definition of best-fit parameter set

In the previous step, we obtained oligomer-level Gaussian pdfs (ρo(w; w̄(S),C(S)) abbreviated

as ρo(w;S)) observed in MD time-series for all S ∈ Lb. The best-fit cgDNA+ parameter set P
to these observed Gaussian pdfs is defined as

P = argmin
P∈P

L

∑
i=1

DKL(ρP(w;Si,P)), ρo(w;Si)) (2.31)

where L is the number of sequences Lb, DKL is the Kullback-Leibler (KL) divergence defined

in equation (C.11), ρo = ρo(w;S) is the observed Gaussian obtained in the previous step from

the raw MD data, and ρP = ρP(w;P ,S) is Gaussian pdf predicted by the parameter set (P )

for a given sequence. P contains all admissible parameter sets for the cgDNA+ model in which

σXY and KXY satisfy CW symmetry constraints for palindromic dimer steps as described in

equation (2.20) and KXY reconstructs a positive definite stiffness matrix for any S ∈ Lb. Lastly,

note that two notations are used for parameter set, P is the best-fit parameter set while P is any

parameter set in P.

Note that KL divergence [94] is not symmetric (details in section 2.4), and therefore, there

exist two orderings of arguments in equation (2.31). In the model training, Gaussian predicted

by the model (see equation (2.18)) is in the first argument, while the observed banded Gaus-

sian (in MD simulations) is in the second. The parameter set estimation in this ordering is the

maximum entropy estimation of the parameter set. Swapping the arguments (Maximum Likeli-

hood estimation of the parameter set) has noticeable changes in the parameter set; however, the

general predictions from the parameter set obtained from either setting are close. Comparison

of these choices is not the main focus of this thesis, and a detailed discussion on this will be

published elsewhere.
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2.4.3 Computation of initial solution for the parameter set

The next step is to numerically solve equation (2.31) which requires an initial guess solution for

the parameter set. This section briefly describes how to obtain the initial guess solution using

the Fisher information matrix, and more details can be found elsewhere [149].

The Fisher information [80] can be defined as the second centred moment of log ρ(x; θ)
conditional to parameter RN ∋ θ = {µ,K}, N > 1,

[F(θ)]ij = −E
⎡⎢⎢⎢⎢⎣

∂2

∂θi∂θj
(log ρ(x; θ))∣θ] (2.32)

where ρ(x; θ) is a pdf conditional on parameter θ ∈ RN , and µ and K are the mean and inverse

covariance matrix. Furthermore, for two parametric pdfs that are close in parametric space, say

ρ(x; θ′) and ρ(x; θ) where θ = θ′ + δθ, θ, θ′, δθ ∈ RN and δθ << 1, there exists a relation

between KL divergence (defined in appendix section C.4) and Fisher information,

F(θ) = −∫
Ω
ρ(x, θ′) ∂2

∂θ′2
log(ρ(x, θ′)) = ∂2

∂θ2
DKL(ρ(x, θ′), ρ(x, θ))∣θ=θ′ . (2.33)

Now, using Taylor expansion at θ = θ′ gives,

DKL(ρ(x; θ′), ρ(x; θ)) =
1

2
δθ.F(θ)δθ +O(∣δθ3∣) =DKL(ρ(x; θ), ρ(x; θ′)). (2.34)

The training of cgDNA+ model (refer equation (2.31)) requires computation of the KL diver-

gence between the observed Gaussian for each oligomer in the training library, ρ(w; θo(S))
and banded Gaussian predicted by cgDNA+ reconstruction, ρ(w; θPvec(S,P)). Now, equa-

tion (2.34) can be approximated as,

DKL(ρ(w; θPvec), ρ(w; θo)) ≈
1

2
θPvec .F(θo)θPvec − θPvec .F(θo)θo +

1

2
θo.F(θo)θo (2.35)

Using the relation θPvec(P ,S) = RP(S)Pvec (equation (2.26)) in equation (2.35) gives,

DKL(ρ(w; θPvec), ρ(w; θo)) ≈
1

2
Pvec.R

T
P(S)F(θo)RP(S)Pvec

− 1

2
Pvec.R

T
P(S)F(θo)θo +

1

2
θo.F(θo)θo.

(2.36)

Now, using linear change of variable F(P ,S)(θo) = RT
P(S)F(θo)RP(S) in above equation gives

DKL(ρ(w; θPvec), ρ(w; θo)) ≈
1

2
Pvec.F(P ,S)(θo)Pvec

− 1

2
Pvec.R

T
P(S)F(θo)θo +

1

2
θo.F(θo)θo.

(2.37)

Now, in order to find the best-fit parameter set, the following equation needs to be minimized,
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L

∑
i=1

DKL(ρ(w; θPvec(Si)),ρ(w; θo(Si))) ≈
L

∑
i=1

1

2
Pvec.F(P ,Si)(θo)Pvec

−
L

∑
i=1

1

2
Pvec.R

T
P(Si)F(θo)θo +

L

∑
i=1

1

2
θo.F(θo)θo.

(2.38)

Thus, differentiating equation (2.38) with respect to Pvec gives,

L

∑
i=1
F(P ,Si)(θo)Pvec −

L

∑
i=1

RT
P(Si)F(θo)θo = 0, (2.39)

which can be solved using the least squares method. Equation (2.39) can be rewritten as

F(P ,Lb)Pvec = B

where F(P ,Lb) =
L

∑
i=1
F(P ,Si)(θo),B =

L

∑
i=1

RT
P(Si)F(θo)θo.

(2.40)

However, the matrix F(P ,Lb) is not invertible due to non-injectivity of the reconstruction rule

(section 2.3.2). Therefore, to find the least squares solution for equation (2.40), Moore-Penrose

pseudo-inverse has been used to obtain the initial guess as

P lsq
vec = F†

(P ,Lb)B, (2.41)

where F†
(P ,Lb) is pseudo-inverse of F(P ,Lb). However, there are no known methods to ensure

whether P lsq
vec ∈ P. Therefore, the following two tests should be done a) do reconstructions using

P lsq
vec ∀ S ∈ Lb have positive-definite stiffness matrices?, and b) how close are reconstructions

usingP lsq
vec ∀ S ∈ Lb to the observed Gaussian pdfs in MD time-series in terms of KL divergence?

If the answers to both questions are affirmative, then P lsq
vec can be taken as P ini

vec. Fortunately, in

training the cgDNA+ model, the answer has always been affirmative.

2.4.4 Fisher-informed gradient flow to find best-fit parameter set

Once the initial guess for parameter set P ini
vec is obtained, one can use Fisher-informed gradient

descent algorithm to solve equation (2.31) as:

Pk+1
vec = Pk

vec − αF†
(P ,Lb)∇P (

L

∑
i=1

DKL(ρP(w;Si,P)), ρb(w;Si))) (2.42)

where α ∈ [0,1] is the step-size, P0
vec = P ini

vec and F†
(P ,Lb), pseudo-inverse of the Fisher matrix,

is used as pre-conditioner. However, computing ∇P (∑L
i=1DKL(ρP(w; Si,P)), ρb(w; Si))) is

non-trivial. Details can be found in ref. [149].

2.4.5 Proving positivity of the best-fit parameter set

Solving equation (2.42) leads to a best-fit parameter set Pgf for a given MD data. The final

step is now to prove that stiffness matrix reconstruction using Pgf is positive-definite for any
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arbitrary sequence, i.e., K(Pgf ,S) > 0 ∀ S of length greater than 3 base-pairs. One sufficient

condition is to prove that the stiffness blocks KXY ∈ Pgf for any dimer step XY is positive

definite and, thus, for any arbitrary sequence S, K(Pgf ,S) is the overlaying sum of positive-

definite stiffness blocksKXY and will be positive-definite. However, stiffness blocksKXY ∈ Pgf

computed in the last sub-section are often indefinite. Notably, the parameter set Pgf obtained

is non-unique due to non-injectivity in the reconstruction rule in equation (2.23) which allows

searching for the blocks in the null space such that the stiffness blocks are positive-definite.

Thus, using the null-space, one can find ΓX,ΓY ∈ R18×18 such that K̄XY, K̄5′XY ∈ P ′ are

positive definite,

K̄XY = KXY + diag(ΓX,06,Γ
Y), K̄5′XY = K5′XY + diag(018,ΓX) (2.43)

and satisfy

R(P ′,S) = R(Pgf ,S) ∀ S ∈ Lb (2.44)

where R is the reconstruction rule (equation (2.23)). However, this search in null-space is non-

trivial and therefore, this computation is only performed if Pgf reconstructs positive-definite K
for all physical decamers. More details on the algorithm to search in the null-space are provided

in ref. [149]. If blocks ΓX,ΓY ∈ R18×18 are found such that K̄XY, K̄5′XY are positive definite,

Pgf is declared as the best-fit positive-definite parameter set, P .

2.5 How to quantify errors in the model?

There are several assumptions in the model (see section 2.3.1) which lead to certain approxima-

tion errors in cgDNA+ reconstructions/predictions. This section presents methods to quantify

these approximation errors and set a scale for the comprehension of these errors.

2.5.1 Error due to non-convergence of MD time-series

The cgDNA+model assumes that the MD time-series are stationary, which leads to convergence

error in the MD statistics. In ideal conditions (stationary MD time-series), for palindromic

sequences (S = S̄), equation (2.9) can be rewritten as

w̄(S) = EN w̄(S)
C(S) = ENC(S)EN .

(2.45)

It implies that the mean estimators for a converged MD time-series of a palindromic sequence

are independent of the reading strand. Thus, this property of the mean estimators can be used to

define the approximation error (referred to as palindromic error) due to the non-convergence of

the MD time-series. Quantitatively, the palindromic error is defined as symmetric KL divergence

between pdfs while reading the dsDNA oligomer from the Watson strand and the Crick strand:

Epalin
KL (ρw, ρc) ∶=DKLS(ρw, ρc) =MS(ρw, ρc) + SS(ρw, ρc) (2.46)
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where ρw and ρc are Gaussian pdfs while reading dsDNA oligomer from the Watson and Crick

strand, respectively and DKLS is symmetrised KL divergence, and SS , andMS (also denoted

as Epalin
M ) are corresponding stiffness and shape contribution defined in equation (C.12). In the

ideal case of fully converged MD time-series both Epalin
KL and Epalin

M will be equal to zero.

2.5.2 Error due to Gaussianity imposition on the helical coordinate distributions

Another assumption in the model is that the pdfs of internal coordinates follow a Gaussian

distribution, which is not exactly the case. This assumption leads to an inevitable modeling

error which is quantified in terms of KL divergence and is referred to as EGauss
KL . EGauss

KL is defined

as symmetric KL divergence between the pdf observed in the MD time-series with the best-

fit Gaussian approximation. Since one of the involved pdfs is not Gaussian, KL divergence

can only be computed numerically, which is non-trivial for multi-dimensional pdfs. Therefore,

EGauss
KL is only computed between two 1D-pdfs (for instance, between two 1D distributions of the

Twist) obtained from MD time-series and corresponding best-fit Gaussian approximation and is

separately reported for each of the cgDNA+ variables.

2.5.3 Error due to nearest-neighbor interactions assumption

Another important assumption in the cgDNA+model is the nearest-neighbor interactions as de-

scribed in equation (2.21) in which the total energy of the oligomer is approximated as the sum

of local junction energy contributions. Moreover, another closely associated approximation is

that these local junction energy parameters depend only on the corresponding junction dinu-

cleotide step sequence. In terms of modeling, these two approximations are implemented in one

step (equation (2.31)) that computes the dimer-dependent parameters from observed Gaussian

pdfs in the MD time-series for Lb. Therefore, it is impossible to individually determine errors

associated with these two assumptions. One possible way to approximate the errors associated

with these two assumptions is by hypothesizing that the parameter set estimation proceeds in

two steps; a) first, banded Gaussian pdfs are obtained from observed Gaussian pdfs, and then b)

dimer step dependent parameters for junction energy contributions are computed.

To compute a banded Gaussian pdf from the observed Gaussian pdf ρo(w; ŵ(S),C(S)) that

corresponds to nearest-neighbor interactions assumption, the maximum entropy principle [78,

79] can be used. In other words, the best-fit density via the maximum entropy principle can

be found such that the observed stiffness matrix (i.e., inverse covariance matrix) becomes a

banded matrix of 42 × 42 block diagonal with 18 × 18 specific sparsity pattern. Thus, given

ρo (w̄(S),C(S)) ∀ S ∈ Lb, the best-fit density is defined as:

ρb(w(S); w̄b(S),Kb(S)) ∶= argmax
ρo∈R

D(ρo(S)) (2.47)

under the constraint

w̄b = w̄, [Kb]N c = 0 and [K−1b ]N = [C]N (2.48)

where N is a set of all indices associated to the sparsity pattern of 42 × 42 block diagonal with

18 × 18 overlaps (as shown in figure 2.4), N c is the complement of N and D(⋅) is defined in



27 2.5. How to quantify errors in the model?

equation (2.29). This banded stiffness matrix in equations (2.47) and (2.48) can be computed

using an analytical algorithm presented elsewhere [60, 149].

Lastly, the error associated with nearest-neighbor interactions approximation can be quanti-

fied as the symmetric KL divergence between observed unbanded Gaussian pdf and correspond-

ing banded Gaussian pdf obtained using the Maximum entropy principle:

ETrunc
KL (ρo, ρb) =DKLS(ρo, ρb) =MS(ρo, ρb) + SS(ρo, ρb) (2.49)

where ρo and ρb are observed Gaussian pdf and banded Gaussian pdf, respectively and DKLS, SS ,

and MS (also denoted as ETrunc
M ) are defined in equation (C.12). Note that in the bandedness

imposition, the average shape remains the same; therefore, ETrunc
M is zero.

2.5.4 Error due to local dimer sequence dependence in junction energy coefficients

The last assumption in the cgDNA+ model is the locality in sequence dependence in the lo-

cal junction energy parameters. It assumes that the local junction energy parameters only de-

pend on the corresponding dimer sequence of that junction. One can also contemplate a model

where local junction energy parameters are sequence-average (a relatively simple model) or lo-

cal tetramer sequence dependence (a more complex model). However, the observations in MD

data and cgDNA/cgDNA+ model conclude that dimer level sequence dependence in the local

junction energy parameters is sufficient [62, 149, 159] and the gain in accuracy by increasing

the complexity of the model is negligible compared to the increase in the number of parameters.

As described in the previous section, this assumption is implemented in the cgDNA+model

in one step along with the nearest-neighbor interactions assumption, and therefore, the associ-

ated error can only be approximated. Following the hypothesis explained in the previous section,

the error corresponding to the locality of the sequence dependence can be quantified by compar-

ing banded Gaussian pdf (i.e., truncated observed Gaussian pdf in MD) and cgDNA+ predicted

Gaussian pdf in terms of KL divergence (E local
KL ) and Mahalanobis distance (E local

M ) as,

E local
KL (ρb, ρP) ∶=DKLS(ρb, ρP) =MS(ρb, ρP) + SS(ρb, ρP) (2.50)

where ρb and ρP are observed Gaussian pdf and cgDNA+ predicted Gaussian pdf, respectively

and DKLS, SS , andMS are defined in equation (C.12).

2.5.5 How accurate are cgDNA+ reconstructions?

Lastly, the total modeling error in the cgDNA+ model (referred as reconstruction or prediction

error) can be quantified in terms of symmetrized KL divergence between the observed pdf in

MD time-series and pdf predicted by cgDNA+,

E res
KL(ρo, ρP) ∶=DKLS(ρo, ρP) =MS(ρo, ρP) + SS(ρo, ρP) (2.51)

where ρo and ρP are observed Gaussian pdf and cgDNA+ predicted Gaussian pdf, respectively

and DKLS, SS , andMS (also denoted as E res
M) are defined in equation (C.12).
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Furthermore, to gain more confidence in the cgDNA+ model, it has been tested for various

sequences not present in the training library. More details with specific examples are discussed

later in chapters 3, 4 and 6.

2.5.6 How large is the error?

While discussing the performance of cgDNA+ using the above-described approximation errors,

a natural question arises: how to set up a scale to comprehend the magnitude of the error. In an

ideal case, both KL divergence and Mahalanobis distance for any error should be zero, which

tells that the two pdfs are identical. However, this is never the case. So, in this scenario, it is

necessary to set a scale in order to understand or visualize what KL divergence or Mahalanobis

distance per dof means, in particular, for multi-dimensions pdfs.

The model primary purpose is to predict a given sequence’s groundstate and stiffness, thus

accurately capturing the features that depend on the sequence. Therefore, the errors must not be

larger than the changes introduced in the mechanics of dsDNA by changing the sequence. To

quantify this error, a scale is set by computing average pair-wise differences in all the sequences

in the training library, which provides a robust scale for comparing various errors in the model.

This scale is computed in terms of both symmetric KL divergence and Mahalanobis distance.

Using this scale, the performance of the cgDNA+ model has been evaluated and discussed

in detail in later chapters. Moreover, to visualize KL divergence between two 1D Gaussian

pdfs, figure 2.5 plots an envelope of 1D Gaussian N(ϵ1,1 + ϵ2) around N(0,1) such that the

symmetric KL divergence between two 1D Gaussian is a particular value for a family of ϵ1 and

ϵ2. Impressively, in the cgDNA+ model, the various errors (in terms of KL divergence) are of

the order of 10−2 or 10−3, and visually they belong to a very tiny difference in the 1D Gaussian

pdfs.
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Fig. 2.5 An envelope ofN(ϵ1,1+ ϵ2) 1D Gaussian around anN(0,1) Gaussian for a family of
ϵ1 and ϵ2 corresponding to various symmetric KL divergences.
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2.6 cgDNAmc+
The cgDNA+ model predicts a Gaussian pdf (groundstate and stiffness matrix) for a given

S and P . This section briefly describes how to efficiently sample cgDNA+ Gaussian pdf and

then use that ensemble of configurations to compute expectations of any function, particularly

of various interesting physical observables such as persistence length and end-to-end distribu-

tion. Mitchell et al. [123] developed a very efficient Monte-Carlo sampling method that allows

generating a million samples in only a few minutes on a single processor for a given sequence

of length 300 bps. The efficient sampling is due to the efficient Cholesky decomposition of the

sparse banded stiffness matrix, K = LLT . The cgDNA+ Gaussian can be rewritten as;

ρ(w;S,P) = 1

Z
e−βE(w) = 1

Z
e−βy

T y/2 (2.52)

where y = LT (w−ŵ)which can be easily sampled directly as product of independent uni-variate

normal Gaussian distributions and the configuration in cgDNA+ variables can be obtained by

solving LT z = y and w = z + ŵ. More details can be found in ref. [123]. Subsequently, using

these configurations in cgDNA+ internal variables, the ensemble expectation of any function,

f(w) can be approximated as 1
n ∑

n
i=1 f(wi) where n is the total number of configurations gen-

erated.

2.6.1 Persistence length

One of the interesting physical observables in the context of DNA is persistence length, which

represents the inclination of a polymer to “persist” in a given direction. It has been a popular and

traditional measure to quantify the rigidity of DNA and is defined as the length scale over which

correlations in the direction of tangent along a polymer centerline are lost [68]. Mathematically,

using the discrete version of Kratky-Porod Worm-Like Chain model [92], the persistence length

(ℓp) for a linear chain of N rigid bodies with the position ri∣i=1,...,N can be defined as;

⟨ti ⋅ t1⟩WLC = e−i/ℓp (2.53)

where ⟨⋅⟩ represents the ensemble average, t1 and ti are the unit vectors for the base-pair index

1 and i along the DNA. ti can be defined as ti ∶= (ri+1 − ri)/b where rigid bodies are separated

at length b and ri is the position of the ith rigid body.

In the context of dsDNA (and other dsNAs), the definition of persistence length has been

frequently used in the sequence-average sense, which has two crucial governing factors [201],

stiffness and intrinsic shape, which can be deconvoluted as;

1

ℓ̄p
= 1

ℓ̄s
+ 1

ℓ̄d
(2.54)

where ℓ̄p, ℓ̄s, and ℓ̄d are sequence-average apparent, static, and dynamic persistence length,

respectively and {t̂i ⋅ t̂1} = e−i/ℓ̄s where t̂i is tangent at the ith position in the groundstate

and {⋅} represents the average taken over an ensemble of sequences (thus, sequence-averaged

persistence lengths). Mitchell et al. [123] generalized these definitions introducing sequence-
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dependent dynamic persistence length as

⟨ti ⋅ t1⟩ = {t̂i ⋅ t̂1}e−i/ℓd (2.55)

where {t̂i ⋅ t̂1} = e−i/ℓs is only evaluated at the groundstate of a given sequence, thus resulting

in sequence-dependent ℓs and ℓd.

cgDNAmc+ efficiently code this using just inter-coordinates. Monte Carlo code samples a

configuration, w ∈ R24N−18 as described in equation (2.8) and from w extracts inter coordinates,

y and subsequently, the base-pair frames with orientation and position for ith base-pair frame

given as Ri ∈ SO(3) and ri (refer to section 2.2.3 for details). This work further simplifies

the computations by approximating ti as base-pair normal (third column of Ri). A detailed

discussion of the various possible definitions of ti and their implications can be found in the

original cgDNAmc article [123]. Now, ti ⋅t1 can be written as (RT
i R1)33 and is computationally

obtained as the inner-product of third column of Ri and third column of R1. The corresponding

ensemble average can be computed as ⟨ti ⋅ t1⟩ = 1
n ∑

n
i ti ⋅ t1 where n is typically chosen as 105

which provides sufficiently converged statistics [149]. Lastly, ℓp and ℓd can be computed as the

-1/slope of the linear fit, {i, log(⟨ti ⋅t1⟩)}∣i = 1, ...,N and {i, log(⟨ti ⋅t1⟩)−log(⟨t̂i ⋅t̂1⟩)}∣i=1,...,N ,

respectively, where N is the number of the base-pairs. Note that, in this work, the reference

terminal base-pairs (i.e., i = 1 and i = N ) have been chosen away from the ends to avoid

any end effects (i.e., six base-pairs from both sides have been dropped in the computation of

persistence length).
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Molecular Dynamics simulations

This chapter briefly describes the basic details of molecular dynamics (MD) simulations and

the simulation protocol used in this work. Then, we discuss the palindromic library introduced

in ref. [149] for training the cgDNA+ model. Note we also use the same library (in different

alphabets) for training corresponding parameter sets for double-stranded RNA (dsRNA) and

DNA:RNA hybrid (DRH). Moreover, we introduce a new library to train parameter sets that

allows epigenetically modified bases and all non-GC ends in dsDNA. Lastly, we brief the MD

data processing, followed by a detailed discussion on the convergence of MD simulations and

the distributions of helical coordinates in MD time-series.

3.1 Molecular Dynamics Simulations

MD simulations, based on Newtonian equations, give a dynamic evolution of the system. In a

typical MD simulation, the trajectories of a system of interacting particles (atoms and molecules)

are determined by integrating Newton’s equations. MD simulations have become state-of-the-

art for studying biomolecules and are often employed to complement several experimental tech-

niques [74, 192]. With the advance in computational power as well as the development of better

force fields, MD simulations can provide insights into how bio-molecules behave or interact.

In particular, for nucleic acids (NA), the first MD simulations for DNA [105] were performed

about four decades ago, and since then, MD simulations have contributed significantly to the

understanding of the NAs [39, 142, 155, 192].

In the simplest terms, a typical MD simulation starts with a system containing N particles

(atoms in this case) that can interact with each other based on a given forcefield. With cho-

sen starting positions of the particles, i.e., initial configuration and forcefield, one can solve

Newtonian equations to obtain a dynamic evolution of the system. This temporal evolution or

trajectory of each particle in the system (containing N particles) is determined using Newton’s

second law (equation (3.1)) where Fi ∈ R3 is the force on each particle in the system with mass

mi ∈ R and position ri ∈ R3 in Cartesian coordinates. The force, Fi on each particle is defined

as the derivative of the potential energy U(r1, r2, ..., rn) ∈ R as given in (equation (3.2)).

Fi =mi
d2

dt2
ri (3.1)

Fi = −
∂U(r1, r2, ..., rn)

∂ri
(3.2)

31
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The potential in MD, also known as forcefield, consists of bonded (first three terms in equa-

tion (3.3)) and non-bonded potential terms (last two terms in equation (3.3)). The first two terms

represent the stretching energy of a covalent bond and the bending energy of a valence angle,

which is modeled using the harmonic potential. kb and kθ are the stiffness constant for bond

stretching energy and angle bending energy with x̂b and θ̂a as equilibrium values and xb and θa

as observed values for the bond and valence angles. The third term in equation (3.3) models the

torsional energy, which is defined as the strain when the angle (ϕd) between planes through two

sets of three bonded atoms (with two atoms in common) deviates from the minimum torsional

energy determined by the phase factor δd. n is a multiplicity representing the total number of

energy minima when the torsional angle rotates from 0 to 2π and Vn is the barrier height. The

last two non-bonded terms represent the Van der Waals and Coulombic interactions between

the particles, which are not directly bonded. The Van der Waals interaction in MD is popularly

approximated by Lennard-Jones or 12-6 potential, a sum of short-range repulsive and attractive

force. εij is the depth of the potential well, r̂ij is the distance at which inter-particle potential

is zero, and rij is the observed distance. The last term in equation (3.3) is the electrostatic

energy between two particles defined by Coulombic interactions where ϵ is Coulomb constant

and rij is the distance between two particles with charge qi and qj . The different parameters

(such as stiffness constant and equilibrium bond distances and angles) in this potential, U de-

pend on the particles involved and are usually obtained from Quantum Mechanical calculations

or experiments.

U = ∑
bonds

kb(xb − x̂b)2 + ∑
angles

kθ(θa − θ̂a)2 + ∑
dihedrals

Vn

2
[1 + cos(nϕ − δd)]

+∑
i<j

⎡⎢⎢⎢⎣

εij r̂
12
ij

r12ij
−
2εij r̂

6
ij

r6ij

⎤⎥⎥⎥⎦
+∑

i<j
[qiqj
ϵrij
]

(3.3)

Along with the challenges in obtaining a good potential, there are several other challenges

in performing MD simulations, such as boundary effects, computational cost, and discretization

errors. The simulation box size must be large enough to avoid boundary effects, usually achieved

by imposing periodic boundary conditions. This method attempts to emulate the bulk conditions

by looping back one side of the simulation box to another side. The most intensive part of MD

simulations of large systems is the computation of potential energy U , particularly non-bonded

interactions. Ideally, Coulombic and Van der Waals interactions should be calculated for every

pair of particles in the system, but infeasible due to highly intensive computations. Thus, various

approximation techniques are used to reduce computational efforts. One of the most popular

methods used to reduce the computation of the Coulombic part is the Particle Mesh Ewald

(PME) method [46]. Alternatives to PME method include fast multipole method [67]. The

basic idea behind PME technique is to replace the direct computation of interaction energies of

the point particles with two components, a) the short-range potential in real space and b) the

long-range potential in Fourier space. Both components converge quickly with a minor loss

of accuracy. Similarly, Van der Waals interactions are approximated via a continuum model

beyond a cut-off. Lastly, the integration time step is crucial for the total computational cost. To
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avoid discretization errors, the integration time step must be chosen to be smaller than the fastest

vibrational frequency. The fastest internal vibrations are due to the lightest element, Hydrogen,

which is about one femtosecond. To speed up the MD simulation, typically, algorithms like

SHAKE [173], and RATTLE [5] are used, which fix the vibrations of Hydrogen atoms. Precise

details about cut-offs and algorithms used in our simulations are provided in the next section.

Once a forcefield, simulation box-size and time step are chosen, the final step in performing

MD simulations is to numerically solve N second-order differential equations in equation (3.1)

which can be simplified into 2N first-order differential equations as in equation (3.4).

dvi
dt
= Fi

mi

vi =
dri
dt

(3.4)

where vi is the velocity of ith particle. Several integration algorithms such as Verlet, velocity

Verlet, and Leapfrog have been developed to solve the above equations. The AMBER module

(used in this work) uses the Leapfrog algorithm as elaborated in equation (3.5).

rk+1i =rki + vki ∆t + 1

2
aki∆t2

vk+1i =vki +
1

2
(aki + ak+1i )∆t

(3.5)

where ∆t is the integration time-step.

Thus, a temporal evolution based on the provided potential can be obtained with a given

initial position and velocity of the particles in the system. The key steps in performing MD

simulations are the following:

• The choice of initial positions of the particle is crucial as it must not be very far from the

potential energy minima. There are several experimental databases or theoretical software

available to obtain an acceptable initial configuration for MD simulation. We have used

nucleic acid builder (NAB) by AMBERTOOLS [29] to generate the initial configurations

of dsNAs.

• In our case, a solvated dsNA molecule with ions is a complete description of the initial

setup. Therefore, the next step is to solvate the dsNA molecule obtained in the last step

and then add cations to neutralize the system, followed by adding ion pairs to reach the

desired salt concentration comparable to physiological conditions.

• The next step is the energy minimization of the solvent.

• The temperature in MD simulation is equivalent to the system’s kinetic energy, thus the

velocity of the particles. The final desired temperature is achieved in several small steps

of random velocities addition and minimization steps.

• Once the desired temperature is reached, an equilibration step follows and, finally, the

production step.

Usually, in experiments, several macroscopic parameters, such as pressure, temperature, vol-

ume, and energy, are kept fixed. In MD simulations, this can be achieved by re-scaling the

velocities of the particles. Algorithms, such as Nosé-Hoover, Andersen, and Berendsen [18]
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thermostats are available to obtain different conditions.

Lastly, special GPU-based modules are available to speed up the calculations to perform

large-scale MD simulations. For production simulations, we have used the pmemd.cuda code

by AMBER [29] on the high-performance computing facilities at EPFL. There exist several

other platforms to run MD simulations, such as CHARMM, GROMACS, and GROMOS, while

AMBER [29, 30, 150] and CHARMM [25, 26] are the most popular for DNA simulations.

Fig. 3.1 A typical snapshot of the molecular dynamics simulation setup of a 24mer dsDNA.
On the left, the dsDNA molecule and ions are solvated in water and on the right, a snapshot of
dsDNA.

3.2 Simulation details

The initial structure of a given sequence has been generated using NAB in AMBERTOOLS

18 [29]. We have used Arnott right-handed B-DNA fiber parameters [7] and Arnott right-handed

A-RNA fiber parameters [8] for DNA and RNA strands, respectively. Furthermore, to obtain

the initial geometry of DRH, we have first generated an A-form RNA (i.e., start with pure A-

form) and then modified all Uracil to Thymine and changed the sugar molecule from ribose to

deoxyribose (i.e., replace the OH group at 2′ with an H) in one of the strands. Then, in the first

few nanoseconds of production run, we observed that the molecule changes its geometry to a

mixed A-B form. Our analysis has ignored the first 100 nanoseconds of the production simu-

lation. Lastly, to methylate or hydroxymethylate the desired cytosine in the structure, we have

modified the initial structures obtained from NAB using the leap program in AMBERTOOLS

18.
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To describe the DNA and RNA strands in the MD simulations, we have used the PARMBSC1 [76]

and OL3 forcefield corrections [210], respectively along with PARMBSC0 [154] and parm99

force field [35]. Furthermore, we have used additional parameters for methylated and hydrox-

ymethylated cytosine [12, 156]. For each sequence, once the initial dsNA structure was gen-

erated, the molecule was solvated in a truncated octahedral water box of explicit TIP3P water

molecules [83] with a water layer of a minimum 10 Å surrounding the dsNA molecule. Subse-

quently, the solvated dsNA was neutralized with K+ ions, and then K+ and Cl− ion-pairs were

added to make the salt concentration approximately 150 mM. The ions were described using

the Joung and Cheatham model [84] and added with the constraint that the ions are at least 5 Å

away from the dsNA molecule and at least 3.5 Å away from each other. For training sequences

in libraries (tables B.1 and B.2), this complete initial setup contains ≈ 45,000 atoms, of which

≈ 40,000 are from water molecules. A typical snapshot of such an initial system is shown in

figure 3.1. The system size is smaller for the sequences in the 12mer library (table B.3).

The system preparation is followed by an energy minimization step to minimize the solvent

energy. Then the system temperature is slowly raised to 300 K, followed by an equilibration

step of 50 picoseconds. All simulations were performed using AMBER 18 modules [29]. Sim-

ulations were carried out in the NPT ensemble using the Berendsen algorithm [18] to maintain

the temperature (at 300K) and the pressure (1 atm) with a coupling constant of 5 picoseconds.

Furthermore, we have used SHAKE [173] algorithm to freeze the motion of bonds involving Hy-

drogen allowing a larger simulation time-step of 2 femtoseconds. Simulations were carried out

under periodic boundary conditions, and long-range electrostatic interactions were treated using

the particle mesh Ewald method [46] with 9 Å real space cut-off. The short-range Lennard-

Jones interactions were also truncated at 9 Å. Note that most simulation parameters have been

motivated by the choices made by the Ascona B-DNA Consortium (ABC) [102]. Finally, for

each system, 10 µs of production run simulations were carried out at EPFL HPC facilities using

GPUs with each node containing 2 Xeon-Gold processors and 2 NVIDIA V100 PCIe 32 GB

GPUs. Production run simulation trajectories were stored at two picosecond intervals. Each

production run simulation of length 10 µs took approximately two months for a 24mer.

3.3 Training library

In this section, we have discussed the various training and test sequences that are used to train

the cgNA+ model parameter sets.

3.3.1 Training library for interior blocks and GC ends of dsNA parameter sets

We have simulated a comprehensive set of palindromic sequences to train the parameter sets for

dsDNA and dsRNA called the palindromic training library, originally proposed in ref. [149]. It

contains 16 training sequences (with GC ends) of length 24 base-pairs such that the library has

almost similar instances for all monomers, dimers, and trimer, and all 256 tetramers appear at

least once on both strands. The sequences in both libraries, LbDNA and LbRNA are provided in

table B.1. The palindromic nature of these training libraries allows quantifying the convergence

of MD simulations, which is otherwise non-trivial as discussed in section 3.5.
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Sequence index Acceptance rate
LbDNA LbRNA LbDRH LbMet LbHmet

1 85.29 77.51 78.78 83.25 86.39
2 83.10 76.27 74.31 85.90 83.52
3 86.61 80.78 81.57 84.28 86.71
4 85.00 74.41 78.69 86.18 84.07
5 82.90 80.32 80.19 86.11 87.74
6 88.83 84.37 78.24 87.93 87.08
7 84.40 74.86 75.46 88.44 85.16
8 85.24 78.40 80.72 82.89 84.10
9 79.94 76.77 71.90 74.86 87.44

10 88.97 75.89 75.24 88.30 84.69
11 84.29 80.03 74.41 83.20 82.67
12 82.15 82.94 76.74 91.40 89.72
13 88.47 78.89 79.60
14 88.86 76.92 80.99
15 79.58 81.24 75.65
16 82.46 83.00 81.37

Table 3.1 % MD snapshots left after discarding snapshots with broken H-bonds. The total
number of configurations before filtering is 10 ⋅ 5 ⋅ 105 (10 µs) for each training sequence listed
in tables B.1 and B.2.

Sequence Acceptance Sequence Acceptance Sequence Acceptance Sequence Acceptance
index rate index rate index rate index rate

1 24.49 2 27.86 3 29.72 4 30.13
5 28.33 6 32.89 7 30.02 8 32.96
9 17.53 10 28.93 11 28.20 12 29.07
13 35.47 14 25.39 15 28.96 16 35.76
17 19.90 18 24.30 19 16.33 20 24.91
21 24.17 22 30.86 23 13.62 24 29.54
25 33.59 26 31.29 27 21.46 28 38.57
29 27.02 30 29.85 31 23.71 32 25.38
33 61.08 34 59.17 35 66.19 36 62.76
37 57.17 38 65.35 39 49.92 40 62.90
41 54.78 42 53.06 43 71.07 44 66.19
45 39.36 46 43.43 47 54.22 48 46.07
49 64.36 50 65.49 51 67.62 52 60.02
53 64.96 54 64.26 55 49.42 56 68.65
57 58.70 58 61.25 59 52.68 60 59.07

Table 3.2 % MD snapshots left after discarding snapshots with broken H-bonds. The total
number of configurations before filtering is 3 ⋅5 ⋅105 (3 µs) for each sequence listed in table B.3.
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Using these training sequences with GC ends, we have estimated model parameters for interior

blocks and GC ends. Along with the training sequences, LbDNA and LbRNA also contain test

sequences comprising a random palindrome, some mechanically exceptional sequences such as

poly(A), poly(AT), sequences with point mutations and A-tracts. We have used the same training

library (as dsDNA or dsRNA) to train coarse-grain parameters for DRH, but the sequences are

not palindrome anymore. More details on the parameter sets are provided in section 4.2.1.

3.3.2 Training library for dsDNA non-GC ends parameters

Furthermore, we have used an additional 60 sequences of length 12 base-pairs (refer table B.3)

to train parameters for non-GC ends. For each non-GC end, we have four sequences starting

with the non-GC end (while another end is GC) followed by one of the RR, RY, YR, and YY

steps (where R represents the purine base and Y represents the pyrimidine base) for a diverse

training set, and the rest of the sequence is chosen randomly. Thus, to train model parameters

for a given non-GC end, we have MD time-series data from four sequences with a non-GC end

followed by different contexts. For each sequence in the end library (LbEnd), we have generated

an MD time-series of 3 µs. More details on how these libraries are used to calculate coarse-

grained model parameters are provided in section 2.4.

3.3.3 Training library for epigenetically modified

In this work, the objective is to obtain a parameter set that allows epigenetically modified CpG

steps, in particular, methylated or hydroxymethylated, which can be symmetric or asymmetric.

For training such parameters for modified CpG steps, we have again designed a palindromic

training library that contains symmetrically and asymmetrically modified CpG steps in diverse

sequence contexts, as well as modified steps next to each other. The libraries are referred to

as LbMet and LbHmet for training sequences containing methylated and hydroxymethylated CpG

steps, respectively, and details are provided in table B.2. Moreover, table B.2 also contains a

few test sequences, in particular, typical CpG islands with CpG step modifications.

3.4 MD data processing

As described earlier in section 3.2 for each sequence (except the sequences in LbEnd), we have

run 10 µs of the production run. The data are stored in binary format (.nc) provided by AMBER,

and it takes ≈ 3.3 TB and ≈ 96 GB of storage to save the data for one sequence with water and

without water, respectively. The first step after the production run is to strip the water using

CPPTRAJ [169, 170] which makes further analysis easier due to the smaller size of the trajecto-

ries. Subsequently, we fit the frames in the MD trajectories, compute the cgNA+ model internal

coordinates from frames and discard snapshots with broken H-bonds. The last step is to com-

pute the first and second moments, i.e., oligomer level Gaussian statistics (refer equation (2.27))

for the internal coordinates distributions in (filtered) MD time-series for each sequence.

H-bond filtering is one of the most crucial steps in MD analysis, and in tables 3.1 and 3.2,

we have provided the % of accepted snapshots for each training sequence in various training

libraries along with the total number of snapshots. For each sequence with GC ends used for the
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training of interior block parameters, the acceptance is ≈ 70 − 90%. In contrast, the acceptance

after H-bond filtering in the training sequences for end-block parameters is comparatively lower,

i.e., ≈ 18 − 71% and highly depends on its non-GC end. A similar acceptance of MD snapshots

is observed for the test sequences; therefore, details of those sequences are omitted for brevity.

In figures 3.2 to 3.5, we have plotted marginal normalized histograms for various internal

coordinates observed in MD time series before and after H-bond filtering for sequence index 1

in LbDNA. The histograms are plotted for the half-sequence while reading the sequence from

both the Crick and Watson strands. The primary objective of the plots is to visualize the effect

of H-bond filtering in the MD data (by comparing histograms in dotted and solid lines for MD

data before and after filtering, respectively). Moreover, since the sequence is palindromic, the

two dotted histograms corresponding to reads from the Crick and the Watson strand comment

on the convergence of MD simulations (details are provided in sections 2.5.1 and 3.5).

Notably, for all internal coordinates, the two histograms in dotted and solid lines for broken

H-bond filtered and unfiltered MD data, respectively, are indistinguishable except for intra-

translational coordinates (Shear, Stretch, and Stagger) for terminal G and phosphate rotational

parameters for the terminal base-pair step GC on both Crick and Watson strands. It highlights

that the rejected MD snapshots with broken H-bond are primarily due to fraying of terminal

base-pairs and do not affect the distribution of coordinates for internal base-pairs and base-pair

steps. We observed similar patterns for other sequences in LbDNA and other dsNA libraries.

3.5 Convergence of MD simulations

How to determine whether a simulation is long enough is a challenging task? Several studies

have investigated the convergence of MD simulations. Traditionally, the decay of the average

root mean square deviation values from some reference structure over time has been used to

assess the convergence of MD simulations. Alternatively, one can run multiple production runs

starting from different initial configurations and compare statistics for those independent trajec-

tories. In particular, for dsDNA (ignoring terminal base-pairs), it has been suggested that 1-5 µs

of MD simulations are sufficient for converging its structure and dynamics [57]. In this work,

to quantify the convergence of MD time series, we have exploited the palindromic nature of

dsNA sequences and defined the palindromic error (Epalin
KL ) as the symmetric Kullback-Leibler

divergence between Gaussian pdfs while reading the dsNA sequence from the Crick and Watson

strands. The shape contribution in the palindromic error is the Mahalanobis distance denoted as

Epalin
M . More details on these computations are provided in section 2.5.1.

Firstly, in figures 3.2 to 3.5, each panel has two marginal normalized histograms (in solid

line) for various internal coordinates observed in the MD time series while reading the sequence

from the Crick and Watson strands. The deviations in the two histograms (plotted in the same

solid color) highlight the convergence error, and it is evident from the plots that the two solid

plots are on top of each other for intra and inter variables. In the case of phosphate coordinates,

one can find examples of observing two solid lines, for example, WRot and WTra coordinates

for AA ([3,2] panel). In general, it can be observed that the phosphate coordinates are slightly

less converged than the base coordinates, which is consistent with the earlier observations [149].
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Fig. 3.2 Marginal normalized histograms for intra base-pair rotational (top figure) and transla-
tional (bottom figure) coordinates for sequence index 1 in LbDNA. The coordinates are plotted
from left to right and from top to bottom for base-pairs 1 to 12 while reading the strands from
both Crick and Watson strands. The histograms in solid and dotted lines are for filtered (snap-
shots without broken H-bonds) and unfiltered MD data, respectively.
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Fig. 3.3 Marginal normalized histograms for inter base-pair rotational (top figure) and transla-
tional (bottom figure) coordinates for sequence index 1 in LbDNA. The coordinates are plotted
from left to right and from top to bottom for base-pair steps 1 to 12 while reading the strands
from both Crick and Watson strands. The histograms in solid and dotted lines are for filtered
(snapshots without broken H-bonds) and unfiltered MD data, respectively.
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Fig. 3.4 Marginal normalized histograms for Watson phosphate rotational (top figure) and trans-
lational (bottom figure) coordinates for sequence index 1 in LbDNA. The coordinates are plotted
from left to right and from top to bottom for base-pair steps 1 to 12 while reading the strands
from both Crick and Watson strands. The histograms in solid and dotted lines are for filtered
(snapshots without broken H-bonds) and unfiltered MD data, respectively.
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Fig. 3.5 Marginal normalized histograms for Crick phosphate rotational (top figure) and trans-
lational (bottom figure) coordinates for sequence index 1 in LbDNA. The coordinates are plotted
from left to right and from top to bottom for base-pair steps 1 to 12 while reading the strands
from both Crick and Watson strands. The histograms in solid and dotted lines are for filtered
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In table 3.3, we have provided Epalin
KL and Epalin

M per degree of freedom (dof) for the training

sequences in LbDNA over the simulation time. The dof is the number of internal coordinates

required to describe the configuration of a given dsDNA sequence, i.e., for a sequence of length

N base-pairs, the dofs are 24N − 18. Note that we have also included one test sequence (index

17) with 20 µs simulation data. In table 3.3, it can be observed that a) different sequences con-

verge differently, for example, the convergence error (both Epalin
KL and Epalin

M ) in sequence index

10 is almost double that of 11, and b) with longer simulation times, the convergence error de-

creases for all sequences. Here, we have provided the convergence error for 1-10 µs simulation

time. Notably, after ≈ 5 µs simulation time, the decrease in convergence error is relatively tiny.

Moreover, for sequence index 17, we have generated 20 µs of MD time-series. Although the

convergence error decreases for 20 µs simulation data from 10µs, it is still comparable to the

convergence error in other training sequences. Lastly, the average of Epalin
KL for 10 µs data for all

training sequences is 0.0050 which is very small, as can be seen in figure 2.5. The corresponding

Epalin, avg
M is 0.0009 which can be considered equal to 0.03 Å or rad/5 per dof which is tiny.

Furthermore, to set a scale for this convergence error, we have computed the average pair-

wise symmetric KL divergence and symmetric Mahalanobis distance between the training se-

quences in LbDNA (as described in section 2.5.6), which is 0.4395 and 0.0245 per dof, respec-

tively. It sets a scale quantifying the average difference in various sequences in the training

library, i.e., quantifies variation over sequence. This scale is approximately 27 and 88 times

larger than Epalin
M and Epalin

KL observed for 10 µs data. Thus, we conclude that 10 µs of the MD

simulations are well converged and sufficient to train the cgNA+ model.

Moreover, we again observed that convergence trends are very similar for all palindromic

sequences in LbRNA, LbMet, and LbHmet and therefore, for brevity, we have provided the average

of convergence statistics for training sequences in the various libraries. In table 3.4, we have

provided the average of Epalin
KL and Epalin

M taken over for all the training sequences in LbRNA,

LbMet, and LbHmet and corresponding scales. Firstly, the convergence trends in LbMet and LbMet

are very similar to the trends in LbDNA, which can be expected as the two libraries differ from

LbDNA slightly in terms of epigenetic modifications in some of the bases. Similarly, the scales

in the two libraries are comparable to the scale in LbDNA. In contrast, dsRNA sequences appear

to converge with a palindromic error similar to that observed in dsDNA, but in a relatively

shorter simulation time, and after that, the palindromic error decreases very slowly. It might be

attributed to the smaller conformational space of dsRNA compared to dsDNA [131, 132].

Lastly, DRH sequences are not palindromes, and therefore, we can not use palindromic error

to quantify the convergence in the MD simulations of DRH. As mentioned earlier, we have

generated 10 µs of simulation data for each sequence, which are essentially two independent

trajectories of 5 µs started with two different random initial configurations. Therefore, for DRH

sequences, we have compared the statistics for these two independent trajectories, which are

extremely close and, thus, concluded that the time-series are sufficiently converged.
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Index
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

E
palin
M

1
µ

s
0.0041

0.0049
0.0040

0.0030
0.0033

0.0076
0.0016

0.0045
0.0024

0.0034
0.0031

0.0084
0.0031

0.0045
0.0072

0.0016
0.0037

2
µ

s
0.0021

0.0028
0.0028

0.0022
0.0020

0.0027
0.0017

0.0022
0.0025

0.0014
0.0020

0.0033
0.0028

0.0030
0.0037

0.0014
0.0025

3
µ

s
0.0016

0.0018
0.0018

0.0014
0.0015

0.0018
0.0010

0.0014
0.0015

0.0013
0.0016

0.0029
0.0016

0.0017
0.0030

0.0013
0.0022

4
µ

s
0.0014

0.0014
0.0016

0.0013
0.0012

0.0014
0.0011

0.0012
0.0012

0.0013
0.0012

0.0021
0.0015

0.0017
0.0023

0.0011
0.0026

5
µ

s
0.0013

0.0012
0.0015

0.0009
0.0012

0.0012
0.0012

0.0012
0.0014

0.0011
0.0011

0.0020
0.0014

0.0015
0.0020

0.0011
0.0026

6
µ

s
0.0012

0.0010
0.0013

0.0009
0.0010

0.0011
0.0009

0.0011
0.0010

0.0012
0.0009

0.0015
0.0011

0.0012
0.0018

0.0009
0.0021

7
µ

s
0.0011

0.0010
0.0012

0.0009
0.0013

0.0011
0.0009

0.0010
0.0009

0.0013
0.0009

0.0012
0.0010

0.0011
0.0018

0.0007
0.0019

8
µ

s
0.0011

0.0009
0.0010

0.0008
0.0010

0.0009
0.0008

0.0011
0.0008

0.0013
0.0008

0.0010
0.0009

0.0010
0.0019

0.0007
0.0017

9
µ

s
0.0011

0.0009
0.0010

0.0007
0.0009

0.0008
0.0009

0.0011
0.0008

0.0014
0.0007

0.0009
0.0008

0.0009
0.0017

0.0007
0.0016

10
µ

s
0.0009

0.0009
0.0010

0.0007
0.0009

0.0008
0.0008

0.0011
0.0008

0.0012
0.0006

0.0009
0.0008

0.0009
0.0014

0.0007
0.0015

20
µ

s
0.0008

E
palin
K

L
1
µ

s
0.0570

0.0634
0.0560

0.0445
0.0402

0.0849
0.0211

0.0532
0.0342

0.0470
0.0363

0.1102
0.0426

0.0684
0.1076

0.0239
0.0420

2
µ

s
0.0213

0.0318
0.0354

0.0259
0.0254

0.0299
0.0192

0.0261
0.0235

0.0139
0.0149

0.0286
0.0311

0.0383
0.0419

0.0144
0.0221

3
µ

s
0.0118

0.0153
0.0199

0.0129
0.0147

0.0169
0.0092

0.0142
0.0148

0.0112
0.0138

0.0227
0.0165

0.0166
0.0271

0.0116
0.0178

4
µ

s
0.0084

0.0110
0.0140

0.0112
0.0111

0.0102
0.0094

0.0113
0.0092

0.0080
0.0099

0.0146
0.0142

0.0137
0.0162

0.0083
0.0238

5
µ

s
0.0085

0.0087
0.0114

0.0070
0.0096

0.0100
0.0091

0.0096
0.0091

0.0070
0.0080

0.0126
0.0144

0.0125
0.0126

0.0065
0.0221

6
µ

s
0.0078

0.0080
0.0120

0.0061
0.0082

0.0100
0.0066

0.0085
0.0061

0.0070
0.0063

0.0099
0.0090

0.0079
0.0105

0.0048
0.0176

7
µ

s
0.0072

0.0068
0.0102

0.0056
0.0083

0.0077
0.0058

0.0071
0.0059

0.0074
0.0065

0.0072
0.0084

0.0068
0.0102

0.0040
0.0148

8
µ

s
0.0076

0.0057
0.0082

0.0047
0.0062

0.0063
0.0050

0.0074
0.0049

0.0072
0.0050

0.0058
0.0069

0.0058
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0.0037
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9
µ

s
0.0070

0.0056
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0.0042
0.0051

0.0045
0.0051

0.0068
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0.0079
0.0041

0.0049
0.0056

0.0055
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0.0107

10
µ

s
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0.0052
0.0065

0.0037
0.0048

0.0041
0.0042

0.0063
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0.0062
0.0033

0.0046
0.0052

0.0051
0.0072

0.0032
0.0092

20
µ

s
0.0035
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LbRNA LbMet LbHmet

Simulation Epalin
M, avg Epalin

KL, avg Epalin
M, avg Epalin

KL, avg Epalin
M, avg Epalin

KL, avgtime (µs)
0.25 0.0010 0.0118
0.50 0.0008 0.0076
0.75 0.0008 0.0071

1 0.0007 0.0061 0.0036 0.0492 0.0035 0.0457
2 0.0008 0.0068 0.0022 0.0245 0.0022 0.0231
3 0.0008 0.0063 0.0017 0.0156 0.0017 0.0244
4 0.0009 0.0070 0.0014 0.0114 0.0014 0.0176
5 0.0008 0.0070 0.0012 0.0094 0.0012 0.0142
6 0.0008 0.0060 0.0011 0.0077 0.0011 0.0120
7 0.0008 0.0057 0.0010 0.0067 0.0010 0.0101
8 0.0007 0.0057 0.0010 0.0058 0.0009 0.0086
9 0.0007 0.0050 0.0009 0.0052 0.0009 0.0076

10 0.0006 0.0047 0.0009 0.0048 0.0008 0.0070
scale 0.0177 0.2185 0.0211 0.3378 0.0214 0.3449

Table 3.4 Average palindromic error, Epalin
KL, avg and average Mahalanobis error, Epalin

M, avg per dof
for training sequences (error is averaged over all training sequences) in LbRNA, LbMet, and
LbHmet. The details of the sequences are given in tables B.1 and B.2. The scale (which quantifies
variation over sequence) is obtained by computing the average pair-wise difference between all
the training sequences.

3.6 Distribution of internal coordinates in MD simulations

This section discusses the distributions of internal coordinates in MD time series. For dsDNA,

the distribution of helical coordinates (base internal coordinates) has been extensively studied

before, and it is well known that the helical coordinates often show a non-Gaussian distribution.

For instance, in studies by the ABC consortium [22, 50, 102, 147] as well as in other studies [9,

44, 153], it was observed that inter base-pair parameters (in particular, Shift, Slide, and Twist)

often show the multi-peak distribution, and for a given dimer step, the behavior also depends on

the flanking tetramer context. Similar observations were also found true for experimental X-ray

data [88, 112]. In ref. [158], the distributions for both inter and intra base-pair coordinates have

been investigated with the findings that non-Gaussian behavior is only dominant in Shift, Slide,

and Twist. Also, it was argued that the bimodality in internal coordinates is not the result of the

choice of configuration parameterization or MD forcefield but is an inherent physical property

of dsDNA. Lastly, it was concluded that the Gaussian approximation on the internal coordinates

for bases is a reasonable choice.

Again, referring to figures 3.2 to 3.5, one can observe that the distributions for a) intra coor-

dinates are close to Gaussian, b) inter coordinates, several are non-Gaussian distributions, and

c) lastly, most phosphate coordinates are non-Gaussian. Note that one of the model assumptions

(see section 2.3.1) is that the distributions of internal coordinates are Gaussian, and for phos-

phates, it is certainly not the case. We have quantified this approximation error in section 3.7.

Here in this section, we have provided plots for internal coordinates distribution for monomer

(intra coordinates) and dimers (inter and phosphate coordinates) in all independent trimer and

tetramer flanking contexts, respectively. We have plotted the intra coordinates for A and G (T
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and C are dependent) in all possible trimer contexts for dsDNA and dsRNA in figure 3.6. The

various trimer contexts are plotted in different colors based on Y/R classification. It can be eas-

ily observed from figure 3.6(a) that the distribution of intra coordinates is almost Gaussian for

all intra coordinates for A and G in both dsDNA and dsRNA. Moreover, for a given base-pair,

the distribution of intra coordinates is influenced by its flanking context, and different coordi-

nates are influenced differently. For example, distributions for Buckle, Propeller, and Stagger

depend more on trimer context than other intra coordinates. Note that in figures 3.6 to 3.10, we

have plotted MD time-series data for the training sequences of LbDNA, LbRNA, and LbDRH.

In figure 3.7, we have plotted inter base-pair step and phosW coordinates for CG and AT.

For CG, the distributions for inter and phosW coordinates are often non-Gaussian, in contrast,

the corresponding distributions for AT are close to Gaussian. Here we have only shown two

typical contrasting examples, but as previously observed, particularly for YR steps, Twist, Shift,

and Slide have non-Gaussian distribution. Moreover, it can be observed that non-Gaussian

behavior in inter coordinates appears to be correlated with phosphate coordinates. A systematic

investigation of the relation between inter coordinates and backbone conformations [44, 147]

revealed that multi-modality in inter coordinates (dominant in YR steps and certain tetramer

contexts) is strongly coupled with BI-BII backbone conformational states.

Moreover, in figures 3.6 and 3.8, we have plotted intra, inter and phosW coordinates for

dsRNA for some example cases. Firstly, the distributions for intra coordinates, similar to ds-

DNA, are close to Gaussian, and Buckle, Propeller, and Stagger are most sensitive to the flank-

ing sequence contexts. In contrast to the observations for dsDNA, the distributions for inter

and phosphate coordinates for dsRNA are close to Gaussian. Notably, all the internal coordi-

nates distributions depend on flanking sequence context, but the sensitivity is relatively less as

compared to dsDNA. As mentioned earlier, in the cgNA+ model, we have assumed that the

underlying distributions of the internal coordinates in MD simulations are Gaussian, and for

dsRNA, the corresponding approximation error in the model should be relatively smaller than

for dsDNA. A detailed quantification of this approximation error is in section 3.7.

Lastly, in figures 3.9 and 3.10, we have plotted the corresponding plots for DRH. In DRH,

one of the strands is DNA, and the other is RNA (more details are provided in section 1.1.4),

and the DNA strand is chosen as the reading strand. Once again, in figure 3.9, one can ob-

serve that the distributions for intra coordinates are almost Gaussian. The distributions of inter

coordinates are non-Gaussian, particularly Twist and Shift, for the CG step, whereas they are

close to Gaussian for the AT step. Notably, the deviation from the Gaussian behavior in the dis-

tributions of inter coordinates for DRH is less than the corresponding distributions for dsDNA

(figure 3.7) and more than dsRNA (figure 3.8). Furthermore, for the phosphate coordinates, the

distributions are very interesting. The DNA strand behaves like pure dsDNA, while the RNA

strand behaves like pure dsRNA. It is consistent with prior literature but quantified using differ-

ent metrics [132, 133, 196]. Figure 3.10(a) plots the distribution of phosphate coordinates for

Watson (reading strand), which is the DNA strand by choice, while (b) plots the corresponding

phosphate coordinates for the Crick strand, which is the RNA strand. For AT, distributions for

phosC and phosW coordinates show Gaussian behavior; in contrast, for CG, the distributions

are non-Gaussian for the DNA (Watson) strand while close to Gaussian for RNA (Crick) strand.
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Fig. 3.6 The normalized histograms for intra base-pair coordinates for A and G in all 16 trimer
contexts in (a) dsDNA and (b) dsRNA as observed in MD time series of training sequences. The
various contexts are plotted in different colors based on Y and R classification.
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Fig. 3.7 The normalized histograms for (a) inter base-pair step and (b) phosW coordinates for
CG and AT in all 10 independent tetramer contexts for dsDNA observed in MD time series of
the training sequences in LbDNA. The various contexts are plotted in different colors based on
Y and R classification.
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Fig. 3.8 The normalized histograms for (a) inter base-pair step and (b) phosW coordinates for
CG and AU in all 10 independent tetramer contexts for dsRNA observed in MD time series of
all the training sequences in LbRNA. The various contexts are plotted in different colors based
on Y and R classification.
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Fig. 3.9 The normalized histograms for (a) intra base-pair coordinates for A and G and (b) inter
base-pair step coordinates CG and AT in all immediate flanking contexts for DRH observed
in MD time series of all the training sequences in LbDRH. The various contexts are plotted in
different colors based on Y and R classification.
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3.7 Gaussian approximation error

In this final section, we have quantified the error associated with the Gaussian approximation

of the model in the underlying distributions of the internal coordinates. In figures 3.2 to 3.10,

we have shown that the observed distributions of internal coordinates in MD simulations of-

ten deviate from Gaussian behavior, in particular, phosphate coordinates and Shift, Slide, and

Twist in the inter-coordinates. Here, we have quantified the error, EGauss
KL corresponding to the

assumption in the model that the internal coordinates follow Gaussian behavior by numerically

computing symmetric KL divergence between the observed internal coordinate distribution in

MD simulations and the corresponding best-fit Gaussian as defined in section 2.5.2.

In figure 3.11, we have plotted EGauss
KL for each internal coordinate of sequence index 1 in

(a) LbDNA, (b) LbRNA, and (c) LbDRH as heat map with the sequence shown on the labels. The

plots for the corresponding distributions for sequence index 1 in LbDNA are shown in figures 3.2

to 3.5 where it can be visually concluded that intra coordinates are close to Gaussian, some of

the inter coordinates deviate from Gaussian behavior and almost all phosphate coordinates show

non-Gaussian distributions. The same observation can be confirmed quantitatively in terms

of EGauss
KL from figure 3.11(a) in which KL divergence between the observed distribution and

corresponding best-fit Gaussian for intra coordinates is approximately 0.004 (average), for inter

coordinates is 0.011 (average) and for Crick/Watson phosphate coordinates is 0.057 (average).

Notably, EGauss
KL for any particular internal coordinate, in general, depends on the dimer step (or

monomer for intra coordinates) as well as on the flanking context. For instance, EGauss
KL for Wtra1

for AG steps is much larger than any TT steps as well as EGauss
KL for AG steps at 5th or 22nd in

different flanking contexts are considerably different. In the same plot, one can also observe a

Crick-Watson symmetry in inter/intra coordinates (the two half of the plots look similar) and in

Crick and Watson phosphates (the two are similar when looked at from opposite directions).

In figure 3.8, we have plotted the distributions for internal coordinates as observed in the MD

simulations of training sequences in LbRNA, highlighting that the distributions are very close to

Gaussian behavior. In figure 3.11(b), we have shown the corresponding EGauss
KL in a heat map with

similar conclusions. The average EGauss
KL is approximately 0.004, 0.003, and 0.019 in intra, inter,

and phosphate coordinates, respectively. The average EGauss
KL in intra coordinates are comparable

for dsDNA and dsRNA. In contrast to dsDNA, the average EGauss
KL is considerably lower for

dsRNA in inter and phosphate coordinates. Moreover, in figure 3.11(c), we have shown the

corresponding EGauss
KL for sequence index 1 in LbDRH. Firstly, it can be noted that there is no

Crick-Watson symmetry in phosphates, inter, or intra coordinates. The average EGauss
KL in intra

coordinates is approximately 0.005, which is comparable to the corresponding observations in

dsDNA or dsRNA. The corresponding error in inter coordinates is approximately 0.006 which

is almost double than EGauss
KL for dsRNA (0.003) and half than EGauss

KL for dsRNA (0.011). Lastly,

the two phosphate coordinates (on Crick and Watson strands) in DRH, as shown in figure 3.10

behave differently depending on the strand type (DNA or RNA). The average EGauss
KL for Crick

phosphates (RNA strand) and Watson phosphates are approximately 0.036 and 0.029, which are

comparable and closer to the observed values for dsRNA (0.019) than dsDNA (0.056). However,

note that Wtra1 is often multi-modal, in particular, for TG and GA steps.
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Thus, in this section, we have quantified the approximation error due to the Gaussianity

imposition on the observed internal coordinates distributions in MD simulations. One can visu-

alize the magnitude of this error expressed in terms of the KL divergence using figure 2.5. In

general, we can conclude that for intras and most inters, the Gaussianity imposition is a natu-

ral choice. In contrast, for phosphate coordinates, EGauss
KL is considerable (average for dsDNA

≈ 0.057) which goes as high as 0.459 for GA step as shown in figure 3.11(a). For such cases, the

Gaussianity imposition is questionable. Non-Gaussian models are certainly a better approach

for treating such cases, but introduce several modeling challenges, e.g., a significant increase

in model parameters and finding a parameter set in such high dimensions. In this work, we

have continued with the Gaussianity approximation, and non-Gaussian models are left for fu-

ture research. In principle, such a non-Gaussian model can be realized using quartic free-energy;

however, the complexity of quartic models could easily explode for such large dimensions. A

feasible compromise can be introducing sequence-independent non-Gaussian perturbation in the

sequence-dependent Gaussian cgDNA+ model.



53 3.7. Gaussian approximation error

6 4 2 0 2 4 6

CG, WRot1

10.0 7.5 5.0 2.5 0.0 2.5 5.0

CG, WRot2

6 4 2 0 2 4 6

CG, WRot3

6 4 2 0 2

CG, WTra1

7 8 9 10 11 12

CG, WTra2

6 4 2 0 2

CG, WTra3

6 4 2 0 2 4 6

AT, WRot1

10.0 7.5 5.0 2.5 0.0 2.5 5.0

AT, WRot2

6 4 2 0 2 4 6

AT, WRot3

6 4 2 0 2

AT, WTra1

Flanking sequence: - R..R, - R..Y, - Y..R, - Y..Y
7 8 9 10 11 12

AT, WTra2

6 4 2 0 2

AT, WTra3

(a) PhosW coordinates in DRH

0 2 4 6 8 10

CG, CRot1

8 6 4 2 0 2 4

CG, CRot2

10 8 6 4 2 0

CG, CRot3

3 2 1 0 1 2 3

CG, CTra1

7 8 9 10 11 12

CG, CTra2

3 2 1 0 1 2 3

CG, CTra3

2 0 2 4 6 8

AU, CRot1

6 4 2 0 2 4

AU, CRot2

8 6 4 2 0

AU, CRot3

2 1 0 1 2

AU, CTra1

Flanking sequence: - R..R, - R..Y, - Y..R, - Y..Y
7 8 9 10 11 12

AU, CTra2

4 3 2 1 0 1 2 3

AU, CTra3

(b) PhosC coordinates in DRH

Fig. 3.10 The normalized histograms for (a) phosW and (b) phosC coordinates for CG and
AT/AU in all flanking tetramer contexts for DRH were observed in the MD time series of all
the training sequences in LbDRH. The various contexts are plotted in different colors based on
Y and R classification.



CHAPTER 3. Molecular Dynamics simulations 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

WRot1
WRot2
WRot3
WTra1
WTra2
WTra3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Tilt
Roll

Twist
Shift
Slide
Rise

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

CRot1
CRot2
CRot3
CTra1
CTra2
CTra3

G C T T A G T T C A A A T T T G A A C T A A G C

Buckle
Propeller
Opening

Shear
Stretch

Stagger

0.0 0.1 0.2 0.3 0.4
Gauss
KL

(a) EGauss
KL for sequence index 1 in LbDNA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

WRot1
WRot2
WRot3
WTra1
WTra2
WTra3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Tilt
Roll

Twist
Shift
Slide
Rise

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

CRot1
CRot2
CRot3
CTra1
CTra2
CTra3

G C U U A G U U C A A A U U U G A A C U A A G C

Buckle
Propeller
Opening

Shear
Stretch

Stagger

0.0 0.1 0.2 0.3 0.4
Gauss
KL

(b) EGauss
KL for sequence index 1 in LbRNA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

WRot1
WRot2
WRot3
WTra1
WTra2
WTra3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Tilt
Roll

Twist
Shift
Slide
Rise

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

CRot1
CRot2
CRot3
CTra1
CTra2
CTra3

G C T T A G T T C A A A T T T G A A C T A A G C

Buckle
Propeller
Opening

Shear
Stretch

Stagger

0.0 0.1 0.2 0.3 0.4
Gauss
KL

(c) EGauss
KL for sequence index 1 in LbDRH

Fig. 3.11 Gaussian approximation error, EGauss
KL in the internal coordinate distribution in MD

simulations for sequence index 1 in (a) LbDNA, (b) LbRNA, and (c) LbDRH which is numerically
computed as the symmetric KL divergence between the observed internal coordinate distribution
in MD simulations and the corresponding best-fit Gaussian.



CHAPTER 4

cgNA+ parameter sets for double-stranded nucleic acids

This chapter extends the cgDNA+ model introduced in A. Patelli’s thesis [149] to the cgNA+
model by estimating parameter sets for various other double-stranded nucleic acids (dsNAs).

cgNA+ is a coarse-grained model of dsNA (including dsDNA, dsRNA, and DNA:RNA hybrid)

to predict the probability distribution function (pdf) of an arbitrary dsNA sequence (in standard

A, T, C, G, U alphabets) at pre-specified physical solvent conditions. cgNA+ model explicitly

considers phosphates and bases as rigid bodies in ∈ SE(3) and uses modified CURVES+ [101]

helicoidal coordinates for their configuration (see section 2.2). The model is trained on ex-

tensive molecular dynamics (MD) time-series (refer chapters 2 and 3) of a comprehensive set

of rationally designed sequences. Given a sequence S along the reading strand and a parame-

ter set PNA (i.e., different parameter sets are trained for different kind of dsNAs), the cgNA+
model predicts a Gaussian pdf in the configuration space by reconstructing a ground-state

ŵ(S,PNA) ∈ R24N−18, and a positive-definite stiffness matrix K(S,PNA) ∈ R24N−18×24N−18:

ρ(w;S,PNA) =
1

Z
exp{−1

2
(w − ŵ) ⋅ K(w − ŵ)}, (4.1)

where PNA is the parameter set and is discussed in detail in section 4.2. A summary of the

cgDNA+ model and its training procedure is in chapter 2 and more details can be found in

ref. [149].

In the cgNA+ model, we have made a few modifications in the parameter set estimation

techniques from the original cgDNA+ model to simplify the training procedure as discussed in

section 4.1 and updated the training library used to train end-block dsDNA parameters, which

allows prediction of sequences with any ends (previously not possible in the cgDNA+ model).

Moreover, we have significantly enhanced the quality of the parameter set in the cgNA+ model

using more extensive MD training data. In the following section 4.2, we have introduced the

cgNA+ model, and in section 4.3, we have assessed the accuracy of the model and discussed

various sources of errors in the model and their quantification. The last part presents the model’s

applications. Finally, we recall that all of the discussion in this work is pertinent to dsNAs.

Details of all the codes and data used in this chapter are provided appendix F.

55



CHAPTER 4. cgNA+ parameter sets for double-stranded nucleic acids 56

4.1 Updates in the cgNA+ model

The modeling aspects, including coarse-graining, various modeling assumptions, and parameter

estimation in the cgNA+ model, remain the same as in the prior cgDNA+ model. However,

extending the model parameter sets for various dsNAs is a non-trivial task. In the section, we

have described the various updates or changes made in the parameter estimation procedure, MD

protocol, and the training library. These updates in the MD protocol and the training data have

significantly enhanced the quality of the cgNA+ parameter sets.

4.1.1 Modifications in parameter set estimation techniques

The parameter set estimation procedure remains similar to that used for training the cgDNA+
model, except for a few changes. In particular, in the cgDNA+ model, first, from the Gaussian

pdf observed in the MD simulations (after filtering snapshots with broken H-bond), a banded

Gaussian pdf was computed. Then, the best-fit parameter set is estimated by minimizing the

sum of KL divergences between the model reconstructions and banded Gaussian pdfs in the

MD simulations for all training sequences. In the cgNA+ model, the best-fit parameter set is

directly computed from the observed Gaussian pdf in the MD simulations without computing

the banded Gaussian pdfs. This step simplifies the training procedure.

Moreover, estimating the parameters for various dsNAs requires several adaptations in the

parameter estimation step, for example, expansion of the parameter set for DNA:RNA hybrid

(DRH) as there is no Crick-Watson (CW) symmetry or the parameter set for epigenetically

modified DNA requires additional (to standard) parameter blocks for modified steps. More

details are provided in sections 2.4.2, 4.2 and 6.1.4.

4.1.2 Updates in the MD protocol

In the cgNA+model, we have different parameter sets for various dsNAs trained on the extensive

MD simulations of the corresponding dsNAs. The MD protocol to simulate training data for the

cgNA+ model is described in section 3.2. As required, we have used different MD force-fields

to simulate different dsNAs. However, we have made some changes to the other MD simulation

parameters. In particular, we have replaced the water and ion model from SPC/E [17] and Dang

ions parameters [40] to TIP3P [83] and Joung and Cheatham ions models [84], respectively.

The previous choice of MD protocol in the cgDNA+model was inspired by the MD simulations

protocol used by the Ascona B-DNA Consortium [147]. However, using Dang ions parameters

is no longer recommended in the Amber user manual [31]. Therefore, we decided to change the

ions parameters and move to a widely used water model, TIP3P. These updated choices are used

for all dsNAs.

More importantly, we have also extended the duration of MD simulations from 3 µs (used

to train the cgDNA+ model) to 10 µs for each training sequence, which reduces the MD con-

vergence error in terms of symmetric KL divergence and Mahalanobis distance by a factor of

approximately 3.2 and 1.9 (details in table 3.3).
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4.1.3 Expansion of the training library for end-blocks parameters

One particular limitation of the cgDNA+ model is that for some non-GC ends, the recon-

structed/predicted stiffness matrix was non-positive definite. As discussed earlier in section 3.3,

non-GC ends parameters in the cgDNA+model are trained on a library of 15 sequences with one

non-GC end followed by a random sequence, while the other end of that sequence is GC. It im-

plies that in the training library for end parameters, each non-GC end is followed by a particular

kind of dimer step, unlike for GC ends and interior dimer steps, where all possible flanking con-

texts are present in the training sequences of LbDNA. To better understand the kind of sequences

that lead to positive-definite or non-positive definite reconstruction, we rigorously analyzed all

sequences of lengths 3 to 12 and observed that GC ends always lead to a positive-definite re-

construction of the stiffness matrix, in contrast, the non-positive definite reconstructions appear

only when non-GC ends are followed by a dimer that is absent in the training library. Moreover,

we observed that only one dimer case is sufficient for a positive-definite reconstruction of all the

steps in that Y/R alphabets. For example, if a training sequence is present for a non-GC end fol-

lowed by AG, then the reconstructions for all sequences containing that non-GC end followed

by any of the {AG, AA, GA, GG} are positive definite. It suggests that the lack of diversity

in the training sequences might be a possible reason for non-positive definite reconstructions.

Even though we do not have a pure mathematical rationale, we decided to expand the training

library for non-GC ends parameters empirically. The extended end library, LbEnd is provided

in table B.3 in which for each non-GC end, we have four training sequences such that the four

sequences have one non-GC end followed by one random example dimer from each YR, RR,

YY, and RY step. In this way, we enriched the training library for non-GC ends. We found

that using this comprehensive library, we could obtain the parameter set that guarantees positive

definite reconstructions for all sequences of any length (≥ 3).

4.2 From cgDNA+ to cgNA+ parameter sets

4.2.1 cgNA+ parameter sets

cgNA+ is a coarse-grained model for dsDNA, dsRNA, and DRH that allows computing sequence-

dependent Gaussian pdfs for an arbitrary sequence at pre-specified solvent conditions. cgNA+
model is developed over the cgDNA+ model by estimating analogous parameters for dsRNA

and DRH and improving the original cgDNA+ parameter set for dsDNA (updating MD proto-

col, more extensive and diverse training data, and simpler parameter estimation procedure) as

described in the previous section. To train the interior and GC end blocks of the cgNA+ parame-

ter sets for dsDNA, dsRNA, and DRH, we have used identical training sequences (referred to as

palindromic library [149]) listed in table B.1, and the same MD protocol except for force-fields

to describe dsNAs. More details on training sequences, MD protocol, and rigorous analysis of

MD data are provided in chapter 3.

Thus, using analogous MD time-series data for three kinds of dsNAs and parameter estima-

tion protocol described in chapter 2, we have obtained three different parameter sets (one for
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each dsNAs), which can be written as:

PDNA = {σ5′XY, σXY,K5′XY,KXY} = [R36]16 × [R42]10 × [R36×36]16 × [R42×42]10 (4.2)

where 5′XY ∈ {16 end dimer steps} and XY ∈ {10 independent dimer steps},

PRNA = {σ5′XY, σXY,K5′XY,KXY} = [R36]1 × [R42]10 × [R36×36]1 × [R42×42]10 (4.3)

where 5′XY ∈ {GC step} and XY ∈ {10 independent dimer steps},

PDRH = {σ5′XY, σXY, σ3′XY,K5′XY,KXY,K3′XY}
= [R36]1 × [R42]16 × [R36]1 × [R36×36]1 × [R42×42]16 × [R36×36]1

(4.4)

where 5′XY and 3′XY ∈ {GC step} and XY ∈ {16 independent dimer steps}. The parameter

for 3′ ends, and dependent dimer steps in PDNA/RNA can be obtained using CW symmetry.

Furthermore, it must be noted that there is no CW symmetry in DRH, as reading the sequence

from the DNA strand (in DRH) is chemically different from reading the sequence from the RNA

strand; therefore, different parameter blocks are required for all dimers, 3′−GC end and 5′−GC

end. To avoid confusion in the writing and code implementation, we have always chosen the

DNA strand (in DRH) as the reading strand, and the sequence is written in A/T/C/G alphabets.

4.3 cgNA+ reconstructions and associated modeling errors

As mentioned earlier, the cgNA+ model predicts the non-local sequence-dependent groundstate

of any dsDNA, dsRNA, and DRH sequence. In this section, we have assessed the accuracy of the

cgNA+model by plotting the predicted groundstate for a given sequence along with the average

shape obtained from the MD simulations and then quantifying the modeling error in terms of

KL divergence and Mahalanobis distance. Moreover, we have also quantified the contributions

of various modeling assumptions in the total modeling error (described in section 2.3.1).

4.3.1 Test library

To demonstrate the generalizability of the cgNA+ model for any sequence, we have tested the

model for a diverse set of sequences (listed in table B.1) not present in the training library. The

test sequences contain random palindromes, A-tracts, sequences with single-nucleotide poly-

morphism (SNP), poly(A), poly(AT), typical CpG islands, and long random sequences of length

double that of those in the training library. Note that some of the sequences in the test library,

such as A-tracts (intrinsically bent fragments), poly-A (stiffest in terms of persistence length),

and CpG islands are mechanically exceptional sequences, and the model is not directly trained

on such sequences. For instance, sequence indices 22 and 23 in LbDNA are two A-tracts of class

(XA4T4Y)n and (XT4A4Y)n where X,Y ∈ {G, C} which are similar in chemical composition

but show contrasting differences in their super-helical structure. To compare the cgNA+ model

predictions with the MD estimates for the test sequences, we have generated the same length

of MD time-series using the same protocol for each sequence. Lastly, we only have an exten-
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sive test library for dsDNA and dsRNA sequences, while test sequences are limited for DRH, a

choice to optimize resources.

4.3.2 Reconstruction or prediction error in cgNA+
In this subsection, we first plotted the groundstate for a few selected sequences along with the

observed MD estimates to visualize the accuracy of the cgNA+ model. In figure 4.1(a), we

have plotted the groundstate (w) for the sequence indices 20 and 21 of LbDNA (see table B.1).

Sequence index 20 is carefully chosen to contain all independent dimer steps, while sequence

index 21 is the point mutation (SNP) of the same sequence. Moreover, along with cgNA+
predicted groundstate (in dashed line), we plotted the corresponding average shape from the

MD time-series (in solid line). The following observations can be made from figure 4.1(a)

i) the cgNA+ model predicts the groundstate almost indistinguishable from the corresponding

MD statistics. Remarkably, the examples provided here are not in the training sequences used

to obtain cgNA+ model parameters; ii) The two sequences differ by only a point mutation at

the middle position; however, the change in groundstate due to that point mutation is highly

non-local, i.e., up to three to four base-pairs on both sides of the mutation. More importantly,

the cgNA+ model accurately captures this non-local sequence dependence in the groundstate

while only using dimer-dependent parameters. This feature is only possible in a rigid-base

model (cgDNA) or finer models (cgNA+) for which individual base-pair steps cannot achieve

their local minima simultaneously, and frustration arises between the nearest-neighbors; thus,

naturally capturing the non-local sequence-dependence in the mechanics of dsDNA but only

using dimer dependent parameters [62, 149, 159].

Furthermore, in figure 4.1(b), we have plotted the predicted groundstate of two A-tracts (se-

quence indices 22 and 23 in LbDNA) along with the corresponding MD average shape. Note that

the A-tracts are intrinsically bent fragments and the two A-tracts shown here have distinct super-

helical structures. It can be observed in the figure that the cgNA+model accurately captures the

groundstate for such mechanically exceptional sequences. However, it is worth noting that the

predictions for both sequences are not equally accurate. For example, the predicted Propeller for

sequence index 22 is equal to the value observed in MD; in contrast, for sequence index 23, the

prediction for Propeller deviates from the MD observations at the TA step. It is challenging to

understand its reason precisely, and we have left a more detailed investigation for future studies.

Moreover, in figure 4.2(a), we have compared poly(A) and poly(AU) embedded in the GC ends,

which are sequence indices 18 and 19 in LbRNA and shown that for dsRNA sequences, cgNA+
model predictions are highly accurate. Lastly, in figure 4.2(b), we have highlighted the influ-

ence of beyond tetramer context by plotting the groundstate of two dimer steps in two different

beyond tetramer flanking contexts along with the corresponding MD estimates and shown that

the cgNA+ model accurately captures such strongly non-local changes in the groundstate.

In figures 4.1 and 4.2, we have demonstrated that the cgNA+model predicts the groundstate

for any dsDNA/dsRNA/DRH sequence with negligible error and is visually almost indistin-

guishable from the corresponding MD estimates. Now, to quantify this error, we have defined

the reconstruction or prediction error, E res as the deviation of the predicted Gaussian pdf from the

corresponding observed Gaussian pdf in MD simulations. We have computed this reconstruction
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error in terms of symmetric KL divergence and symmetric Mahalanobis distance as defined in

section 2.5.5. Note that E res
KL (reconstruction error in terms of KL divergence) describes the total

reconstruction error in the predicted groundstate and stiffness matrix while E res
M (reconstruction

error in terms of Mahalanobis distance) highlights the difference in the predicted groundstate

and MD average shape scaled by the stiffness. In table 4.1, we have tabulated the reconstruction

errors per degree of freedom, dof (which is 24N − 18, i.e., the number of internal coordinates

required to describe a given sequence of length N bp) in the training and test sequences for

LbDNA, LbRNA, and LbDRH. Firstly, the average model reconstruction errors in LbDNA training

sequences are 0.0020 and 0.0313 in terms of E res
M and E res

KL, respectively, which are approximately

one order smaller than the corresponding scale (which quantifies variation over sequence) ob-

tained by computing the average pair-wise difference in the training sequences. It highlights the

precision of the cgNA+ model in capturing the non-local sequence-dependent mechanics of ds-

DNA. Similar observations can be made for dsRNA and DRH. The average reconstruction error

in test sequences (E res
M ≈ 0.0027 and E res

KL ≈ 0.0316) is slightly higher than in training sequences,

as most test sequences possess exceptional mechanical behavior, and such sequences are not

directly present in the training set. Therefore, an accuracy comparable to that in the training set

for such exceptional sequences is highly impressive.

Note that the scale obtained for three types of dsNAs are in the order dsDNA > DRH >
dsRNA, even though computed identically on similar training sequences. It can be attributed to

the larger conformational space of dsDNA compared to dsRNA [131, 132] (refer to section 3.6).

The Gaussian pdfs for two dsDNA sequences are farther from each other in conformational

space than the identical two dsRNA sequences. Unsurprisingly, DRH lies between dsDNA and

dsRNA. Similarly, the reconstruction errors are also in the same order, since it is easier to train

a model (with a fixed number of parameters) on pdfs in a smaller conformational space.

This total reconstruction error in the cgNA+ model results from several modeling assump-

tions as listed in section 2.3 and the error associated with each assumption can be quantified as

described in section 2.5. We have discussed the contributions of various modeling assumptions

to the reconstruction error in the following subsections.

4.3.3 Approximation error in the training data

The first modeling assumption is that the MD time-series is stationary, which is not the case.

The associated convergence error (referred to as palindromic error) is discussed in section 2.5.1,

and details on the quantification of this error are provided in section 3.5. For the training se-

quences in LbDNA, LbRNA, and LbDRH, the average palindromic errors in terms of KL divergence

Epalin
KL and Mahalanobis distance Epalin

M are of the order 10−4 and 10−3, respectively, which are

approximately two orders smaller than the corresponding scales.

Moreover, in section 3.6, we have shown that the distributions for inter base-pair step and

phosphate coordinates for dsDNA often deviate from Gaussian behavior (which also depend on

the flanking sequence context). In contrast, the distributions for various internal coordinates in

dsRNA are almost Gaussian. In DRH, we observed a mixed kind of behavior in the distribution

of the internal coordinates. However, for modeling purposes, we have imposed Gaussianity to

the underlying distributions for internal coordinates, leading to an inevitable modeling error.
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We have quantified this modeling error, EGauss
KL by computing the KL divergence between the

observed pdf and the best-fit Gaussian pdf to the observed pdf as described in section 2.5.2 and

quantified in section 3.7. Except for a Wtra1 phosphate coordinate, EGauss
KL is less than scale.

It should be noted that the reconstruction error is defined as the deviation of cgNA+ pre-

dicted Gaussian pdf with the stationary observed Gaussian pdf in MD simulations, i.e., ob-

served MD Gaussian pdf is the ground truth for the cgNA+ model. Therefore, the palindromic

and Gaussian approximation errors do not contribute to the aforementioned reconstruction error.

LbDNA LbRNA LbDRH

Training sequences
Index E res

M
E res

KL E res
M

E res
KL E res

M
E res

KL
1 0.0018 0.0240 0.0010 0.0058 0.0018 0.0239
2 0.0025 0.0439 0.0011 0.0064 0.0019 0.0254
3 0.0020 0.0302 0.0013 0.0070 0.0016 0.0227
4 0.0016 0.0267 0.0011 0.0083 0.0015 0.0165
5 0.0021 0.0289 0.0012 0.0081 0.0017 0.0226
6 0.0025 0.0368 0.0013 0.0063 0.0017 0.0213
7 0.0021 0.0353 0.0012 0.0070 0.0018 0.0209
8 0.0017 0.0266 0.0011 0.0071 0.0015 0.0247
9 0.0022 0.0328 0.0013 0.0080 0.0018 0.0215

10 0.0020 0.0276 0.0011 0.0074 0.0017 0.0209
11 0.0020 0.0342 0.0013 0.0095 0.0015 0.0167
12 0.0020 0.0322 0.0013 0.0067 0.0017 0.0432
13 0.0018 0.0297 0.0014 0.0101 0.0017 0.0214
14 0.0016 0.0282 0.0014 0.0092 0.0019 0.0218
15 0.0023 0.0344 0.0014 0.0101 0.0027 0.0395
16 0.0017 0.0296 0.0013 0.0076 0.0047 0.0532

Average 0.0020 0.0313 0.0012 0.0078 0.0019 0.0260
Test sequences

Index E res
M

E res
KL E res

M
E res

KL E res
M

E res
KL

17 0.0026 0.0357 0.0015 0.0087 0.0031 0.1032
18 0.0037 0.0291 0.0014 0.0095
19 0.0034 0.0483 0.0021 0.0100
20 0.0027 0.0306 0.0018 0.0101
21 0.0026 0.0291 0.0015 0.0070
22 0.0022 0.0285 0.0011 0.0092
23 0.0019 0.0283 0.0010 0.0076
24 0.0024 0.0254 0.0016 0.0061
25 0.0027 0.0297
26 0.0016 0.1449

Average 0.0027 0.0316 0.0015 0.0085
scale 0.0245 0.4395 0.0177 0.2185 0.0209 0.3273

Table 4.1 Model reconstruction error in terms of KL divergence (E res
KL) and Mahalanobis distance

(E res
M) as defined in section 2.5.5. The list of sequences is provided in the table B.1 where the

first 16 are training sequences, and the rest are test sequences. The scale (which quantifies
variation over sequence) is obtained by computing the average pair-wise difference between all
the training sequences.
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Fig. 4.1 Groundstate coordinates (elements of w) for (a) sequence indices 20 (in red, blue, and
green as shown in legend) and 21 (in dark red, dark blue, dark green) and (b) sequence indices
22 (in red, blue, and green as shown in legend) and 23 (in dark red, dark blue, dark green) in
LbDNA. The figure highlights the cgNA+ model accuracy in capturing (a) point mutation and
(b) mechanically exceptional behavior of A-tracts. MD estimates are in solid lines while dashed
lines are cgNA+ reconstructions.
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(b) Hexamer context effect on CA and TT steps

Fig. 4.2 (a) Groundstate coordinates (elements of w) for sequence indices 18 (in red, blue, and
green as shown in legend) and 19 (in dark red, dark blue, dark green) in LbRNA. MD estimates
are in solid lines while dashed lines are cgNA+ reconstructions. (b) Internal coordinates of
middle-junction dimer in different beyond tetramer context highlighting beyond tetramer flank-
ing context influence on groundstate of the middle-junction dimer. The ● is MD simulations
data, and − is cgNA+ predictions, and the two data sets are indistinguishable. Note that beyond
hexamer flanking sequence is also different but concisely denoted as - - - .
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With these two approximations on MD time-series, we obtain a Gaussian pdf for each of the

training sequences, which are used to compute the dimer-dependent parameter set based on two

assumptions: a) the nearest-neighbor interactions assumption, i.e., the total energy of any given

oligomer is the sum of local junction energies, and b) the local junction energy parameters

depend only on the sequence of the corresponding junction dimer. Note that, in the updated

cgNA+ training protocol, we directly computed the model parameters from the observed MD

Gaussian pdf, unlike previously [149], in which the parameters were obtained in two steps, first,

a banded Gaussian pdf (corresponding to the assumption of nearest-neighbor interactions) was

obtained for all training sequences followed by the estimation of dimer-dependent parameters.

As a consequence of this direct computation, we cannot precisely determine the error associated

with these two assumptions. However, we can approximate the errors associated with these

two assumptions a) by computing the banded stiffness matrix, which corresponds to nearest-

neighbor interactions from the observed stiffness matrix in MD simulations, and then defining

the truncation error as the KL divergence between banded and observed Gaussian pdfs and

b) sequence locality error in the junction energy parameters by computing the KL divergence

between banded and reconstructed Gaussian pdfs.

4.3.4 Contribution of nearest-neighbor interactions assumption in cgNA+ reconstruc-
tion error

Firstly, note that even though the nearest-neighbor interactions assumption simplifies the mod-

eling, it is based on the observations made in the MD statistics. In figure 4.3, we have plotted

the observed stiffness matrix in MD time-series for sequence index 1 in LbDNA along with the

stencils corresponding to the nearest-neighbor interactions approximation. Note that the stiff-

ness matrix is shown for only half of the sequence as the remaining entries are dependent due

to the palindromic nature of the sequence. It can be observed from the plot that the stiffness

matrix is highly banded, and there are very few entries outside the stencils, thus, justifying

the nearest-neighbor interactions approximation. However, it must be noted that the non-zero

entries outside the stencils are located very close to the stencils, which may suggest develop-

ing a model beyond nearest-neighbor interactions. The possibility of next-to-nearest-neighbor

interactions is discussed in refs. [62, 149, 159]. These works concluded that extending the

current nearest-neighbor to next-to-nearest-neighbor interactions approximation would lead to

a significant increase in model parameters, while the gain in accuracy will be comparatively

smaller. Moreover, with more model parameters, training the model and ensuring a positive-

definite reconstruction for any sequence will be challenging. Therefore, in the cgNA+ model,

we continued with the nearest-neighbor interactions approximation. We want to emphasize

that the accuracy gained in the model from cgDNA to cgDNA+ is remarkable, as discussed in

ref. [149]. Moreover, we found a similar sparsity pattern in the observed MD stiffness matrix

for dsRNA and DRH as shown in figure 4.4 for sequence index 1 in LbRNA and LbDRH. Note

that the sequence in LbDRH is not palindrome, but we plotted half stiffness matrix for better

visualization and comparison.

To quantify the error associated with this approximation, we have first computed the banded

stiffness matrix corresponding to the nearest-neighbor interactions approximation using the
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maximum entropy fit algorithm [60]. Then this approximation error (referred to as truncation er-

ror, ETrunc
KL ) can be computed as the symmetric KL divergence between the observed stiffness and

the corresponding banded stiffness as given in section 2.5.5. Note that the corresponding Maha-

lanobis contribution will be zero, since there is no change in the average shape of the oligomer

when computing the banded stiffness (refer equation (C.11)). In table 4.2, we have listed the

truncation errors, ETrunc
KL for the training sequences (for brevity, we have not provided results for

all sequences) in LbDNA, LbRNA, and LbDRH. It can be observed that for all sequences ETrunc
KL is

almost similar, with average values of 0.0046, 0.0026, and 0.0049 per dof for dsDNA, dsRNA,

and DRH, respectively, which is approximately 100 times smaller than the corresponding scale.

Lastly, the truncation error in dsRNA sequences is approximately half of the error in dsDNA

sequences, which might be attributed to the larger conformational space of dsDNA/DRH, but

can not be ascertained.

4.3.5 Contribution of sequence locality assumption in cgNA+ reconstruction error

The final assumption in the cgNA+model is the dependence of local junction energy parameters

on the local dimer sequence. For instance, inPDNA, σXY andKXY depend on the local dimer step

XY. Note that the position of a given junction is crucial; therefore, we have different parameters

for the interior and terminal junctions. The errors associated with this assumption, E local
KL and

E local
M (described in section 2.5.4), are tabulated in table 4.2 for training sequences in LbDNA,

LbRNA, and LbDRH. Remarkably, E local
KL and E local

M are at least one order of magnitude smaller

than the corresponding scale for each training sequence in LbDNA, LbRNA, and LbDRH.

LbDNA LbRNA LbDRH

Index ETrunc
KL E local

M
E local

KL ETrunc
KL E local

M
E local

KL ETrunc
KL E local

M
E local

KL
1 0.0046 0.0018 0.0198 0.0026 0.0011 0.0034 0.0051 0.0019 0.0196
2 0.0048 0.0026 0.0401 0.0026 0.0012 0.0039 0.0050 0.0019 0.0213
3 0.0046 0.0021 0.0260 0.0025 0.0014 0.0047 0.0049 0.0017 0.0185
4 0.0046 0.0016 0.0228 0.0025 0.0012 0.0060 0.0047 0.0016 0.0125
5 0.0048 0.0021 0.0249 0.0025 0.0013 0.0058 0.0049 0.0017 0.0185
6 0.0045 0.0026 0.0328 0.0026 0.0013 0.0039 0.0047 0.0018 0.0172
7 0.0043 0.0022 0.0314 0.0026 0.0013 0.0046 0.0048 0.0019 0.0168
8 0.0047 0.0017 0.0224 0.0025 0.0011 0.0047 0.0049 0.0016 0.0206
9 0.0046 0.0022 0.0288 0.0026 0.0014 0.0057 0.0051 0.0019 0.0173

10 0.0045 0.0021 0.0236 0.0026 0.0012 0.0051 0.0053 0.0018 0.0166
11 0.0043 0.0021 0.0305 0.0026 0.0013 0.0071 0.0045 0.0015 0.0127
12 0.0046 0.0021 0.0284 0.0025 0.0014 0.0044 0.0050 0.0018 0.0393
13 0.0050 0.0018 0.0255 0.0026 0.0014 0.0077 0.0055 0.0017 0.0172
14 0.0043 0.0017 0.0242 0.0025 0.0015 0.0069 0.0049 0.0019 0.0176
15 0.0046 0.0023 0.0306 0.0027 0.0014 0.0077 0.0048 0.0028 0.0355
16 0.0046 0.0017 0.0255 0.0024 0.0013 0.0053 0.0049 0.0047 0.0491

Average 0.0046 0.0021 0.0273 0.0026 0.0013 0.0054 0.0049 0.0020 0.0219
scale 0.4395 0.0245 0.4395 0.2185 0.0177 0.2185 0.3273 0.0209 0.3273

Table 4.2 Truncation error due to nearest-neighbor interactions assumption in terms of symmet-
ric KL divergence (ETrunc

KL ) and locality error due to sequence locality assumption in the junction
parameters in terms of KL divergence (E local

KL ) and Mahalanobis distance (E local
M ). The list of

sequences are provided in the table B.1. The scale (which quantifies variation over sequence) is
obtained by computing the average pair-wise difference between all the training sequences.
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(a) Stiffness matrix observed in MD simulations for sequence 1 in LbDNA
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Fig. 4.3 (a) Sparsity pattern in observed stiffness matrix in MD simulation for sequence index
1 in LbDNA (only half sequence is shown as the sequence is a palindrome), and (b) is a zoom-in
image of the same matrix corresponding to central tetramer of the sequence. The green stencils
correspond to the nearest-neighbor interactions approximation.
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(a) Stiffness matrix observed in MD simulations for sequence 1 in LbRNA
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(b) Stiffness matrix observed in MD simulations for sequence 1 in LbDRH

Fig. 4.4 Sparsity pattern in observed stiffness matrix in MD simulation for sequence index 1 (a)
in LbRNA and (b) in LbDRH (only half sequence is shown). The green stencils correspond to the
nearest-neighbor interactions approximation.
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Now, of these two sources (ETrunc and E local) in the total reconstruction error (E res), the lo-

cality assumption in sequence dependence of local junction energy parameters dominates. For

instance, for training sequences in LbDNA, the average reconstruction error in terms of KL di-

vergence, E res
KL, avg is 0.0313, of which the contribution from the nearest-neighbor interactions

assumption is 0.0046 and the locality assumption in the sequence dependence of junction en-

ergy parameters is 0.0273. This implies that the nearest-neighbor interactions assumption is

reasonable and contributes negligibly to the modeling error. Whereas, the primary source of

modeling error is the sequence locality assumption in junction energy parameters. Once again,

this error, E local is only a fraction of the scale set by computing the pair-wise difference between

the training sequences in the respective libraries. Anyhow, it highlights the non-local sequence

dependence in the local junction energy. We would like to remind the reader that E res
KL, avg or

E local
KL, avg has two components, Mahalanobis (which quantifies the error in the groundstate) and

stiffness component (which quantifies the error in the stiffness matrix). Further note that the

Mahalanobis contribution in E res
KL, avg or E local

KL, avg is relatively negligible, thus implying that the

major error is in the stiffness matrix, which has a dimer/trimer local sequence dependence. Re-

markably, groundstate has a highly non-local sequence dependence due to the inversion of the

stiffness matrix and the corresponding frustration energy associated with it. Lastly, we would

like to recall that in the last two subsections, we have only approximated the contributions due

to the nearest-neighbor interactions assumption and local sequence dependence in the junction

energy parameters. cgNA+ model performs the computation for these two approximations in

one step, and therefore, it is impossible to quantify the associated error individually. Truncation

using different methods may lead to slightly different quantification of these errors [63, 158].

4.4 Comparison of dsDNA, dsRNA, and DNA:RNA hybrid

In the previous sections, we established that the cgNA+ model is extremely accurate in predict-

ing groundstate and stiffness matrix for any given dsDNA/dsRNA/DRH sequence and quantified

the associated errors. Moreover, the prediction is extremely fast, making possible the reconstruc-

tion of groundstate and stiffness matrix for millions of sequences and, thus, statistical estimation

of various dsNA properties. For example, one can compute groove widths for all decamers and

obtain statistical conclusions about sequence-dependence in groove widths. Such a computation

is otherwise impossible to perform using traditional computational or experimental techniques.

This section has rigorously investigated various such observables for dsDNA, dsRNA, and DRH

for a large sequence space and compared the trends in these three kinds of dsNA. Some such

comparisons can be found for various dsNAs in refs. [34, 117, 131, 132, 152, 163, 192, 196];

however, most of these studies are done for a minimal number of sequences (often less than 5)

that question the generalizability of those results, especially when it is known that the proper-

ties/features of dsNAs are highly sequence-dependent (often non-local dependence) [9, 22, 50,

102, 147].
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4.4.1 Comparison of average shape of dsDNA, dsRNA, and DNA:RNA hybrid

This subsection compares the average shape of base-pairs and base-pair steps in the average

flanking context for dsDNA, dsRNA, and DRH. Moreover, we have highlighted the sensitivity

of dimer average shape to the flanking context. For this comparison, we have used statistics

obtained from MD simulations of LbDNA, LbRNA, and LbDRH along with the corresponding

cgNA+ predictions (which also allowed comparing MD statistics with cgNA+ predictions). We

have extracted average intra base-pairs coordinates and inter base-pair step and phosphate co-

ordinates in average flanking contexts and tetramer flanking contexts and plotted intra base-pair

coordinates in figure 4.5 and inter base-pair step and phosphate coordinates in figure 4.6.

It should be noted that such comparisons have been made previously in the literature [34,

131]; however, for only limited sequences. Therefore, some trends in the dimer sequence de-

pendence, particularly for inter base-pair coordinates, have been observed before; notably, this

is subjected to the source of data, such as experimental X-ray data or MD simulation data using

various MD protocols. The objective of such comparison is that at length scales at which a few

MD simulations can be performed, the cgNA+ model accurately captures the underlying trends

in the average shape.
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Fig. 4.5 Comparison of intra base-pair coordinates for dsDNA (in Blue), dsRNA (in Red), and
DRH (in Black) at the X-axis. For each base-pair in average context, coordinates observed
in MD simulations and cgNA+ predictions are plotted in ● and ×, respectively, along with the
coordinates in various flanking trimer contexts in vertical lines (∣) to highlight the role of flanking
sequence. A line plot is plotted along ● for better visualization, and the data corresponding to
dsDNA, dsRNA, and DRH is slightly shifted along the X-axis.

This work presents the most extensive comparisons of the average shape of base-pair and

base-pair steps (along with phosphate coordinates) for dsDNA, dsRNA, and DRH. In figures 4.5

and 4.6, we have one panel for each of the internal coordinates, and the value of the given

internal coordinate is plotted on the Y-axis while base-pair or base-pair step is plotted on the

X-axis. The cgNA+ predictions are plotted as × in blue, red, and black for dsDNA, dsRNA, and

DRH, respectively, together with the MD observations as ●.
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In figure 4.5, we have compared intra base-pair coordinates. Comparing MD observations

(●) with the corresponding cgNA+ predictions (×), which are almost superimposed, again high-

lights the cgNA+ model accuracy. Note that for dsDNA and dsRNA, AT and TA base-pairs and

GC and CG base-pairs represent the same physical base-pair except for reading the sequence

from the different strand (Watson or Crick). Therefore, intra base-pair coordinates for these

base-pairs are the same except for the sign convention determined by the change of reading

strand transformation (refer to section 2.2.2). The same is not true for DRH as the GC base-pair

has G on DNA strand and C on RNA strand in contrast to the CG base-pair, which has C on

DNA strand and G on RNA strand, thus representing two chemically different molecules. There-

fore, one can observe that the intra coordinates for A/T (or U) and G/C are identical (except for

Buckle and Shear, in which coordinates are anti-symmetric due to reading strand transforma-

tion). For Buckle and Shear, the average values for A and G (the independent set of base-pairs)

are in the order dsDNA > dsRNA > DRH, with sequence average values (up to 3 decimal points)

equal to 0.000 (rad/5 and Å) for dsRNA and dsDNA and -0.456 rad/5 and -0.058 Å for DRH.

Note that the difference in magnitude is much smaller for Shear than Buckle. Furthermore, it is

interesting that in A and G, the direction of Buckle for dsDNA and DRH is opposite but with a

similar magnitude. On the contrary, for dsRNA, it remains closer to zero (planarity). Propeller

values observed in dsRNA are more negative than in dsDNA, whereas DRH adopts intermediate

values of dsDNA and dsRNA. A similar trend is also observed in Stagger with DRH values rel-

atively closer to dsRNA. The order is dsRNA > DRH > dsDNA for Opening. Lastly, for Stretch,

the values for dsDNA, dsRNA, and DRH are incredibly close, with almost zero Stretch for the

A-T base-pair and slightly negative Stretch for the C-G base-pair, which can be attributed to the

three H-bonds in C-G as compared to two in A-T base-pair. Similar observations can be made

for Propeller and Opening, where the average values for the C-G base-pair tend to stay close to

zero, whereas, in the A-T base-pair, the deviation from zero is more. Lastly, from the spread

of the vertical lines (∣) around ●, it can be concluded that flanking trimer contexts significantly

impact intra-base-pair coordinates with the variation due to flanking contexts often being larger

than the variation for different base-pairs. Moreover, similar trends are observed for all three

dsNAs considered in this work.

Furthermore, for inter base-pair step and phosphate coordinates, out of the 16 dimers, six are

dependent in the case of dsDNA and dsRNA, while for DRH, 16 dimers are independent as there

is no CW symmetry. Therefore, figure 4.6 contains data corresponding to all the 16 dimers. To

start with the discussion, we focused on helical inter coordinates (Shift, Slide, Rise, Tilt, Roll,

and Twist). Shift and Tilt are odd parameters (i.e., change sign on reading strand transformation

as described in section 2.2.2); therefore, the average value for all dimers and palindromic dimers

(AT, GC, CG, and TA) of Shift and Tilt over various dimers in the average context is zero, while

the rest six dependent pairs are in positive and negative pairs. Shift for dsRNA remains very

close to zero, while it fluctuates between positive and negative values for dsDNA. Shift for

DRH is always positive, with an average value of 0.189 Å. The same observations are true for

Tilt, with values for dsRNA close to zero and relatively larger sequence-dependent fluctuations

around zero for dsDNA. At the same time, Tilt values for DRH are always positive with clear

dimer sequence dependence. The trends for Slide are in the order dsDNA > DRH > dsRNA with
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an average Slide of around -0.397 Å for dsDNA, -1.666 Å for dsRNA, and in between dsDNA

and dsRNA for DRH but slightly closer to dsRNA. The average Twist in dsDNA is considerably

higher than in dsRNA due to the B-form and A-form of dsDNA and dsRNA, whereas DRH

has a mixed A and B-form with A-form dominating and Twist, in general, close to dsRNA. In

particular, Noy et al. [132] had similar findings, with Twist and Slide values being closer to

the observed values in dsRNA, while the rest of the inter-coordinates are in between dsDNA

and dsRNA. It is interesting that Rise is greater for dsRNA than dsDNA for YR steps, whereas

it is reversed for the rest of the dimer steps. The Rise for DRH varies between dsDNA and

dsRNA values, but is generally closer to the values observed for dsRNA. Lastly, it is evident

from the spread of the vertical lines (∣) around ● that the tetramer context is crucial and highly

influences the average shape of the dimer (in terms of inter-helical coordinates). In particular,

for inter-translational coordinates, dsDNA dimers are much more sensitive to flanking tetramer

context than dsRNA, whereas DRH is in between dsDNA and dsRNA. The trends are still very

similar for rotational coordinates, but the difference is relatively smaller. Note that the dsDNA

backbone fluctuates more and occupies a larger conformational space [131, 132] and is coupled

with inter base-pair step coordinates leading to a higher sensitivity of dsDNA inter coordinates

to flanking context compared to dsRNA and DRH.

Finally, such an analysis for phosphate coordinates is entirely novel. For DRH, we chose

the DNA strand as the reading strand and the RNA strand as the complementary strand. First,

one can observe that the phosphate coordinates for dsDNA and dsRNA are very different (ex-

cept WTra2 and CTra2), which can be attributed to the A- and B-form geometry of the dsNA

in dsRNA and dsDNA, respectively. Furthermore, in contrast to inter base-pair coordinates, the

observed phosphate coordinates in DRH are not in between dsDNA and dsRNA; instead, Wat-

son phosphate coordinates are closer to those observed in dsDNA, whereas Crick phosphates

are closer to those observed in dsRNA. This implies that the backbone behavior of the DNA

strand in DRH is closer to pure dsDNA, and the RNA strand is closer to pure dsRNA. Similar

findings have been reported in [34, 108, 132, 133] but are characterized differently. Notably,

dimer-step-dependent fluctuations in phosphate coordinates for dsDNA are considerably higher

than those in dsRNA. Moreover, for a given dimer step, the differences in average phosphate co-

ordinates for various flanking tetramer contexts are also much higher in dsDNA than in dsRNA.

This behavior can be expected as the dsDNA backbone exhibits a larger conformational space

(geometry can also change from B- to A-form depending on sequence) than dsRNA (mostly

adhering to A-form geometry). In the case of DRH, once again, it can be observed that the DRH

Crick strand behaves similar to pure dsRNA (with less variation due to the dimer step sequence

and the flanking tetramer context), and the Watson strand behaves similar to pure dsDNA (i.e.,

sensitive to dimer step sequence and flanking tetramer context).
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4.4.2 Comparison of persistence lengths of dsDNA, dsRNA, and DNA:RNA hybrid

One of the most popular and traditional measures to quantify the rigidity of the NAs is persis-

tence length, which can be defined as the length scale over which correlations in the direction of

tangent along a polymer centerline are lost [68]. In the context of DNA (and other NAs), the def-

inition of persistence length has been traditionally and frequently used in the sequence-average

sense, which has two crucial governing factors, stiffness and intrinsic shape [201]. However, it

is well understood that both governing factors depend on the sequence of the given NA. Mitchell

et al. [123] rigorously studied sequence-dependent persistence lengths of dsDNA (referred to as

apparent persistence length, ℓp) using the cgDNA model and, for the first time, introduced the

notion of sequence-dependent dynamic persistence length, ℓd by factoring out the contributions

of the intrinsic shape from ℓp. This work has been summarized in section 2.6 in the context of

the cgNA+ model, and more details can be found in refs. [123, 149].

We want to remind the readers that persistence length is also sensitive to experimental tech-

niques and conditions, along with sequence dependence. For example, increasing the salt con-

centration decreases the persistence length of dsDNA from 57 to 43 nm. In the present lit-

erature, 150 bps or 50 nm is the agreed sequence-average persistence length of the dsDNA.

The persistence length predicted by the cgDNA or cgDNA+ model is, in general, considerably

higher than the experimental consensus of 150 bps. It has been thoroughly discussed in previous

work [123, 149] where they demonstrated that although the model predictions are higher than

experimental consensus, the trends in sequence-dependent persistence lengths of dsDNA are

similar to those observed in the experiments. There can be several reasons for this discrepancy

of persistence lengths given by cgNA+ tools. Firstly, in experiments, the salt concentration is

relatively higher, and often divalent counter ions are used as opposed to mono-valent ions under

physiological concentrations in the MD simulations (used to train the cgNA+ model), which

have a significant effect on the persistence length of dsDNA (or dsNA) [27, 175, 211]. More-

over, the parameterization of DNA in various MD forcefields might be stiffer [43, 76]. Notably,

it has been shown in ref. [149] that for shorter sequences (24mer), the tangent-tangent correla-

tion observed in the MD simulations is incredibly close to cgDNA+ predictions implying that

this discrepancy is not inherent to the model.

Such a rigorous study of the persistence lengths of dsRNA and DRH is entirely novel. A few

experimental investigations have measured the persistence length of a few dsRNA sequences

in various experimental setups, again providing very different values of the persistence length

for dsRNA. However, in general, the dsRNA is considered to be stiffer than dsDNA. Exper-

iments [1] performed using magnetic tweezers and atomic force microscopy (believed to be

highly accurate experimental techniques to measure persistence length) found that the mean

persistence length of dsRNA is equal to 63.8 and 62 nm, respectively. In the case of DRH,

Zhang et al. [211] found the persistence length of DRH ≈ 63 nm at one mM NaCl. Moreover,

magnetic tweezers experiments at various salt conditions have shown that the persistence length

of DRH is generally in between dsDNA and dsRNA. Lastly, all such experiments are performed

under specific conditions and for limited sequences, making it difficult to draw any statistical

conclusions about the persistence length of dsNAs.
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Fig. 4.6 Comparison of base-pair step and phosphate coordinates for dsDNA (in Blue), dsRNA
(in Red), and DRH (in Black) at the X-axis. For each base-pair step in average context, coordi-
nates observed in MD simulations and cgNA+ predictions are plotted in ● and ×, respectively,
along with the coordinates in various flanking tetramer contexts in vertical lines (∣) to highlight
the role of flanking sequence. For better visualization, a line plot is plotted along ●, and the data
corresponding to dsDNA, dsRNA, and DRH is slightly shifted along the X-axis.
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In this work, we have generated an extensive database of persistence lengths for two million

random sequences as well as all poly-dimers for dsDNA, dsRNA, and DRH, exploiting the

capabilities of the cgNA+ model and the Monte Carlo code. All sequences were of length 220

bps embedded in GC ends, and 105 Monte Carlo samples were drawn for each sequence. It is

worth highlighting that performing MD simulation for even a single sequence (of length > 200

bps) is almost impossible, whereas using cgNA+ tools to generate an ensemble of configurations

only takes a few minutes on a standard laptop. The objective of this database is to draw a

statistical conclusion about the sequence-dependent rigidity of dsNAs (defined in terms of ℓp
and ℓd) and to compare the persistence lengths of dsDNA, dsRNA, and DRH. The results are

plotted in figure 4.7 with the following observations:

• Sequence of a given dsNA plays a crucial role in the determination of persistence
length. In the top panel of figure 4.7, we have plotted the histograms of ℓp and ℓd for

dsDNA, dsRNA, and DRH. The first observation that can be made from the plot is that

the persistence length is highly sequence-dependent. The range of ℓp observed in this

database of 2 million random sequences is 138, 175, and 166 bps for dsDNA, dsRNA,

and DRH, respectively, which are significant as the corresponding average ℓp are 211,

214, and 182 bps. In contrast, the range of ℓd observed in this database is relatively narrow

(as ℓp has a combined effect of stiffness and intrinsic shape, whereas ℓd only accounts for

the stiffness) with a range of 50, 76, and 106 bps for dsDNA, dsRNA, and DRH with

average ℓd equals to 226, 270, and 236 bps. This range of ℓp and ℓd highlights the role of

sequence in the persistence length of dsNAs. Noteworthy that the range of ℓp observed for

dsDNA, dsRNA, and DRH is comparable, whereas, for ℓd, the range observed for DRH is

significantly larger than that for dsDNA and dsRNA. The mixed type of DNA and RNA

strands in DRH might make its behavior more complicated and sensitive to the sequence.

• The difference between ℓp and ℓd for a given sequence emphasizes the role of the intrinsic

shape of the sequence. For bent sequences like A-tracts, the difference is larger, whereas,

for sequences with straight groundstate, the difference is tiny.

• On average, the observed persistence lengths are in the order: ℓRNA
p ⪆ ℓDNA

p ⪆ ℓDRH
p

and ℓRNA
d ⪆ ℓDRH

d ⪆ ℓDNA
d . In the bottom panel of figure 4.7, we have plotted the his-

tograms for sequence-wise difference of ℓp and ℓd for DRH and dsRNA from dsDNA.

Lastly, in figure 4.8, we have plotted ℓp and ℓd for all independent poly-dimers for dsDNA,

dsRNA, and DRH. Note that poly(AA) and poly(TT) or poly(UU) represent the same physical

dsDNA or dsRNA; however, these are two different DRH molecules. To comment on the rigidity

of a sequence, ℓd is a better choice as it factors out the effect of the intrinsic shape of a sequence

from ℓp. For dsDNA, the stiffest sequence (in terms of ℓd) we found is poly(A) or poly(T) with

ℓp ≈ 253 bps and ℓd ≈ 254 bps whereas poly(AT) is the softest with ℓp ≈ 194 and ℓd ≈ 195

bps. Note that both sequences have a straight groundstate but a vast difference in the rigidity.

Furthermore, all dsDNA poly-dimers are intrinsically almost straight in contrast to dsRNA and

DRH, where the difference between ℓp and ℓd is significant. For dsRNA, the stiffest sequence

is poly(C)/poly(G) with ℓd ≈ 338 bps. For DRH, it is very interesting that the stiffest sequence

is poly(A) with ℓd ≈ 312 bps, whereas poly(T) is incredibly softer ℓd ≈ 196 bps. Similar

behavior can be observed for other sequence pairs such as poly(C) and poly(G), poly(TG) and
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poly(AC), and poly(TC) and poly(AG) (these pairs represent the same physical dsNA in the

case of dsDNA and dsRNA, while the two are different for DRH), i.e., a significant difference

in persistence length (both ℓd and ℓp) within the pairs. It highlights that the flexibility/rigidity

behavior in DRH is not a simple average of dsRNA and dsDNA; instead, it shows a unique and

complicated pattern.
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Fig. 4.7 Top: Histogram for dynamic (ℓd) and apparent (ℓp) persistence lengths for ≈ 2 million
random sequences (of length 220 bp) and all poly-dimers (110 repeats) for dsDNA, dsRNA, and
DRH. Bottom: Histogram for sequence-wise difference in persistence lengths of dsRNA and
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4.4.3 Comparison of groove widths of dsDNA, dsRNA, and DNA:RNA hybrid

The mechanical properties of DNA play a central role in protein binding. Proteins recognize

specific DNA sequences [82, 129, 171, 172], which are often controlled by the ability of the

DNA sequence to deform in a certain way to facilitate protein binding. Most proteins interact

with DNA through grooves. One common mechanism involves protein interaction with DNA

via major grooves by forming H-bonds between amino acids and bases in a sequence-specific

manner. Furthermore, protein also recognizes DNA without interacting with the bases directly

but recognizes the specific conformation/shape assumed by certain DNA sequences, called indi-

rect readout. For instance, positive side-chains of proteins bind to narrow minor grooves having

strong negative electrostatic potential [172]. It is worth noting that groove widths depend on the

sequence, as observed in both experiment [134, 171, 195] and simulation.

This work studies the sequence dependence in the groove widths of dsDNA, dsRNA, and

DRH and compares them. Basic details on grooves can be found in section 1.1. In this work,

for sequence-dependent analysis of grooves, we reconstructed all possible decamers embedded

in four random bases plus GC ends on both sides, i.e., 410 (≈ one million) sequences of length

22 bps. We have followed a similar protocol as that given in refs. [101, 195] for groove width

computation. For a given sequence, we chose the central phosphate on the Watson strand for

each sequence as the reference phosphate. Subsequently, we fit the cubic spline curves along

the Crick strand backbone passing through Pi (phosphate group) and tangential to Pi+1 − Pi−1.

Then we mark nine equidistant points (finer mesh has negligible effects on the results) on the

cubic spline fitted between each subsequent phosphate group and compute the distance of these

points from the chosen reference phosphate on the Watson strand. The minor groove is in the 3′

to 5′ direction (or upstream) from the reference phosphate on the Watson strand, and the major

groove is in the 5′ to 3′ direction (or downstream). Lastly, we subtract an offset of 5.8 Å (as

recommended in CURVES+ [101]) from the observed groove widths to take into account the

van der Waals radius of the phosphate.

In figure 4.9, we have plotted histograms for minor and major grooves for dsDNA, dsRNA,

and DRH. For dsDNA, the major groove is, in general, seven Å wider than the minor grooves.

Moreover, the variation in minor groove width in the sequence space of all decamers is larger

than in major groove width. In contrast, for dsRNA, minor groove is approximately four Å wider

than major groove. Furthermore, the variation in the major groove width is larger than in minor

groove width. Lastly, DRH shows average behavior for both major and minor groove widths,

with no clear distinction between the two. The minor groove width of DRH is between the

observed values of dsDNA and dsRNA, and the same observation is also true for major groove

width. These trends are comparable with previous observations in experiment [134, 171] and

simulation [34, 117, 132], however, performed for only a few sequences.

From the histograms in figure 4.9, it is clear that the sequence strongly influences the groove

widths. In particular, the range of minor groove width observed for dsDNA is approximately

six Å. It raises a natural question: which sequences lead to extreme groove widths? We have

addressed this question by plotting sequence logos [178] for the central decamer in outlier se-

quences, defined as sequences with groove widths outside three standard deviations from the

mean (i.e., 0.15% on both sides). Sequence logos are excellent graphical tools for visualizing
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and comprehending the underlying sequence pattern for any observable. Sequence logos are

described in more details in section 1.2.1.
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Fig. 4.9 Distribution of major and minor grooves in dsDNA, dsRNA, and DRH

Firstly, note that we have taken the central phosphate on the reading strand as the reference

frame such that upstream to this reference phosphate is the minor groove and the major groove is

downstream. Now, in figure 4.10(a), from the statistics obtained for dsDNA, we can observe that

the presence of A and T leads to narrow minor grooves, whereas C and G lead to wider minor

grooves. For minor grooves, the information is only present in 2 to 6 positions of the decamer

and is zero for the rest because the minor groove is upstream of the reference phosphate (between

indices 5 and 6). Furthermore, the narrow major grooves result from G/C rich sequences, and

the wide major grooves result from A/T rich sequences (even though the information content is

less). The findings that A/T-rich sequences have narrow minor grooves and C/G-rich sequences

have wider minor grooves agree with the experimental crystallographic data for free DNA and

protein-DNA complexes [134, 172] and NMR solution results [134]. Moreover, we observed

that most sequences with narrow minor grooves are A-tracts and surprisingly do not have a

single TA step (in position indices 2 to 6 of decamer). A similar conclusion has been reached in

experiments where TA steps are found to be correlated with minor grooves widening [172].

In contrast to dsDNA, the major groove of dsRNA shows much higher variation (range ≈
6 Å) in sequence space (refer to figure 4.9). Moreover, from sequence logos in figure 4.10(b),

it can be deduced that narrow major grooves are correlated with A/U content and wider major

grooves with C/G content. Similar observations have been made in MD simulations for six
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(c) Sequence logos for sequences with extreme major and minor groove widths in DRH

Fig. 4.10 Sequence logos for sequences with extreme major and minor groove widths in various
dsNAs. The statistics are obtained for all decamers (≈ one million sequences) embedded in fixed
flanking contexts. The x-axis is base index in the decamer with information content at that index
on the y-axis. The Watson phosphate between 5th and 6th is taken as the reference phosphate.
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dsRNA sequences [117] with (AUAU)n and (CGCG)n with the narrowest and widest major

grooves. The distribution for minor grooves in dsRNA is relatively narrow. The range is less

than two Å with sequences rich in G/C favoring narrow minor grooves and rich in A/U favoring

wider minor grooves (although the information content is quite less).

RNAase H enzyme (crucial for genome stability and DNA replication of the mitochondrial

genome [24, 185]) selectively recognizes DRH (among other dsNAs) and degrades the RNA

strand without affecting the complementary DNA strand [193]. Experimental findings [54, 198]

attribute this selectivity to intermediate minor groove width as the key structural characteristic.

Initially, the activity of this enzyme was considered sequence-independent, while some recent

experimental evidence [75, 174] suggested otherwise, with a higher purine content in RNA (or

lower purine content in DNA) strand leads to resistance in RNAase H activity. Gorle et al. [196]

attributed this inactivity of the RNAase H enzyme to the widening of minor grooves by showing

that varying the pyrimidine content (on the DNA strand) from 0 to 100 % gradually widens

the minor grooves comparable to pure dsRNA. In our results, in DRH, the distributions for

major and minor grooves are between dsDNA and dsRNA. Moreover, there exists an overlap

between the distributions of major and minor grooves, which implies that which groove is wider

or narrower depends on the sequence. From the sequence logos in figure 4.10, it is clear that

A/G rich sequences prefer narrow minor grooves and wider major grooves, whereas there is no

equally clear sequence preference for wider minor grooves and narrow major grooves.

In summary, we have shown that sequence influences groove widths and specific sequences

adopt extreme groove widths. We would like to emphasize that the sequence logos are plotted for

a standard outliers definition (i.e., outside three standard deviations from the mean). However,

similar choices, such as the extreme 1 or 2% sequences, also give similar results. Finally, the

major and minor grooves have no clear correlation in sequence space.

4.5 Single nucleotide polymorphism

Single nucleotide polymorphisms (SNPs) [23] are the most common genetic variations in the

human genome that include substitution variants (in which a nucleotide is replaced by other),

insertion or deletion variants (in which a nucleotide is either inserted or deleted). SNPs are

abundantly present in both coding and non-coding regions of the genome and are related to in-

dividuality, diversity in the population, susceptibility to diseases, and individual’s response to

chemicals/medicines/vaccines. SNPs are found to play a crucial role in several common medi-

cal conditions, such as migraine, diabetes, high blood pressure, cancer, and heart disease [184].

Therefore, understanding SNPs opens potential applications in personalized medicine, pharma-

cogenetics, forensics, and disease causation.

In this section, we have focused on substitution SNPs and have attempted to understand,

along with the chemical changes, how SNPs influence dsDNA mechanics. To address this prob-

lem systematically, we have computed the Mahalanobis distance between all possible nonamers

(9mers) with SNPs at the central nucleotide. The total possible substitution SNPs in the stan-

dard DNA alphabets (A, T, C, and G) are twelve. As we want to compute the distance between

SNPs, 12 possible SNPs reduce to six (A←→T, A←→C, A←→G, T←→C, T←→G, and G←→C).

Furthermore, in a systematic study of all nonamers, A←→G and T←→C are dependent; sim-



CHAPTER 4. cgNA+ parameter sets for double-stranded nucleic acids 80

ilarly, A←→C and T←→G, thus, only four independent SNPs. Then, we have computed the

change in groundstate in terms of symmetric Mahalanobis distance (see equation (C.12)) for

each independent SNP embedded in all tetramers and a fixed flanking sequence to avoid end-

effects. Note that the SNP modifies the NA on both strands and maintain CW pairs and should

not be confused with DNA mismatches.

In figure 4.11(a), we have plotted the change in groundstate for each SNP, where the error bar

shows the effect of flanking context. It can be expected that purine←→purine substitution should

result in less change in groundstate as compared to purine←→pyrimidine. The observations in

figure 4.11(a) align with this anticipation, i.e., A←→G substitution lead to the minimum change

in groundstate whereas A←→T lead to maximum change in groundstate, which is approximately

twice the change by A←→G. However, the order obtained for change in groundstate for various

purine←→pyrimidine SNPs, i.e., A←→T > A←→C > G←→C can not be explained easily.

It is noteworthy that the flanking sequence strongly influences the change in groundstate

on point mutation, as can be deduced from the errorbars in figure 4.11(a) and therefore, in

figure 4.11(b-e), we have plotted sequence logos (refer section 1.2.1) for flanking contexts in

which a given point mutation leads to most or least change in groundstate. In other words,

the sequence logos are plotted for outlier sequences that have a minimum/maximum change in

groundstate (outside three standard deviations from the mean) on SNP at the central nucleotide.

Firstly in figure 4.11(b-e), one can notice that along with the immediate flanking context to the

SNP location, the next or next-nearest flanking context also plays a considerable role. Moreover,

we point out that the findings here are not very sensitive to the definition of outliers or the

measure of difference in groundstate.

Lastly, to visualize the effect of point mutation on groundstate of a given sequence, we have

plotted groundstate of two sequences in figure 4.12, one has a slight change in groundstate on

AÐ→G substitution and the other has a highly non-local change in groundstate on AÐ→T sub-

stitution. The non-local change is up to four base-pairs on either side of the AÐ→T substitution.
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Fig. 4.11 (a) Change in groundstate in terms of symmetric Mahalanobis distance on single
nucleotide polymorphism (SNP) at central base-pair with error bars showing the influence on
the flanking context. (b)-(e) sequence logos for flanking contexts that least and most change the
groundstate on various SNPs at 5th position.
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Fig. 4.12 cgNA+ predicted groundstate coordinates (elements of w) for sequences with (a) A
Ð→ G SNPs and (b) A Ð→ T SNPs at the middle base-pair. The figure highlights change
in groundstate on SNPs as predicted by the cgNA+ model. cgNA+ groundstate for a given
sequence is in solid lines and with the same sequence after point mutation in dashed lines.



CHAPTER 5

Comparison of non-local sequence-dependent mechanics of double-stranded
DNA in protein-DNA crystal structures ensemble with the cgNA+ model

The work in this chapter is done in collaboration with Prof. Wilma K. Olson, Dr. Luke Czapla,

and Dr. Helen Lindsay. In particular, Prof. Olson and Dr. Czapla helped obtain and curate the

protein-DNA X-ray data set and Dr. Lindsay helped with the initial analysis.

How well double-stranded DNA (dsDNA) conformations in the protein-DNA crystal struc-

ture ensemble relate to the thermodynamic fluctuations of dsDNA in the simulated solution and

exhibit non-local sequence-dependence is unclear. In this chapter, we have made a detailed

comparison between the groundstate and covariance of dsDNA dimer predicted by the cgNA+
model, a non-local sequence-dependent coarse-grained model trained on atomistic MD simu-

lations with an ensemble of protein-DNA crystal X-ray structures. For the first time, we have

compared all independent dimers in tetramer contexts in both intra- and inter-base-pair coordi-

nates. For the groundstate of the middle junction dimer in a tetramer context, we have shown

that a) to study the mechanics of dsDNA at the dimer level, the tetramer context plays a crucial

role and thus, can not be ignored, b) the cgNA+ model, which is indistinguishable from the cor-

responding MD simulation statistics provides an efficient alternative to repeating atomistic MD

simulations for different flanking sequences, and c) the groundstate of dimers in their tetramer

context predicted by the cgNA+ model is in agreement with the corresponding X-ray crystal

data, and the direction of variation of groundstate in sequence space aligns very closely in the

two data sets. Furthermore, the directions of dsDNA deformations as given by the eigenvectors

of sequence-average configuration covariance are very close in the two data sets, as well as an

excellent correlation between the non-local sequence-dependent configurational volume (a mea-

sure of dsDNA deformability) in terms of inter variables, and principal components of intra and

inter variables both. Lastly and most interestingly, we found that the directions of maximum

variation in groundstate over sequence space align with the softest modes in the configuration

space in both the data sets. It justifies the nearest-neighbor assumption in the model with the

observation that the minimum energy configuration (i.e., groundstate) can only be achieved by

compromising more on the softest modes. Thus, in this chapter, we demonstrate that the cgNA+
model explains the dsDNA mechanics observed in the protein-DNA crystal structures ensem-

ble and is an extensive model (almost indistinguishable from atomistic MD) that could not be

trained otherwise on limited experimental data.

83
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5.1 Introduction

Sequence-dependent mechanics of DNA plays a crucial role in several biological processes such

as nucleosome positioning [179, 180], indirect readout [36, 126], and DNA looping [3, 176]. For

example, specific proteins recognize the groundstate and deformability of DNA, which are often

highly sequence-dependent [36, 85, 126, 146, 171]. Such direct evidence piqued significant

interest in understanding the sequence-dependent mechanics of DNA. It has been established

that the groundstate and stiffness of DNA can be modeled as a combination or the overall effect

of local dimer contributions [49, 103, 136, 137]. However, there has been growing evidence

both in experiments [110, 208] as well as in atomistic simulations [50, 97, 147] that along with

the base composition of the dimer-step, non-local sequence context is also an important factor

in the mechanical behavior of DNA and thus, can not be ignored.

Due to the immense sequence space of DNA, it is not feasible to investigate all sequences

(even for DNA dodecamers) either experimentally or using atomistic molecular dynamics (MD)

simulations. For example, the most extensive analysis using atomistic MD simulations pub-

lished so far is only for the 136 independent tetramers [50, 147] by the ABC consortium. Due

to these limitations, coarse-grained modeling provides an excellent alternative. By choosing

the right degrees of freedom to efficiently model sequence-dependent mechanics of DNA, such

coarse-grained models allow statistical sampling in this vast sequence space to better understand

the mechanics of DNA.

There have been several attempts to model DNA, starting from worm-like chain mod-

els [92, 186], but one of the first and widely applied models for sequence-dependence in coarse-

grained models of dsDNA was a base-pair model developed by the Olson group [139]. In that

model, dimer-dependent parameters were obtained from available X-ray crystal data of protein-

DNA complexes which have been a great source of information for studying groundstate and

flexibility of DNA [128]. The model holds under the assumption that in protein-DNA com-

plexes, proteins distort the DNA structure in different random directions but in specific ways

that are compatible with sequences’ intrinsic deformability, thus, the available X-ray protein-

DNA crystal data can be used to study the conformational space of dsDNA and the propensity

for different sequences to naturally distort in different ways. Similar base-pair models were

also obtained using atomistic MD simulations as the training data [61, 97]. One of the major

drawbacks of base-pair models is local sequence-dependence. It has been shown several times

that sequence dependence limited to the dimer level is not always sufficient to explain all the

properties of specific DNA sequences, and non-local sequence dependence often plays a pivotal

role in DNA mechanics [6, 56, 102, 145, 155, 208]. The only way to obtain a base-pair model

that captures sequence dependence beyond the dimer level is to train parameters for all possible

tetramers or even beyond, which is unfeasible with the limited experimental data.

The Maddocks group provided a novel approach to overcome the limitations with the it-

eration over indefinitely longer DNA contexts by developing finer coarse-grain models of ds-

DNA trained on atomistic MD simulations with state-of-the-art force fields optimized explicitly

for nucleic acid conformational flexibility and structure. In such finer coarse-grained mod-

els, cgDNA [47, 62, 159] (rigid-base level) and cgDNA+ [149] (rigid base and rigid phos-
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phate level), individual base-pair steps cannot achieve their local minima, and frustration energy

arises in the nearest-neighbors; thus, this approach naturally captures the non-local sequence-

dependence of dsDNA but only uses dimer-dependent parameters. The latest development in

this direction, the cgDNA+ model, predicts non-local sequence-dependent Gaussian pdfs for

a given sequence instantly and almost indistinguishably from the corresponding atomistic MD

statistics [149]. There also exist other coarse-grained models for DNA [71, 190, 203] that have

been developed using a mixture of sources for training data.

Irrespective of the modeling approach, there has been a debate about training data. It is

not clear how well the average structure and conformational flexibility of dsDNA in protein-

DNA crystal structure ensembles reflect the average structure and thermodynamic fluctuations

of dsDNA in the solvent, for example, modeled in atomistic MD simulations. In general, the

deformability of dsDNA in X-ray crystal structures is significantly less than in MD simulations,

since the effective temperature in X-ray crystal structures is lower [14, 97]. There have been

several studies comparing X-ray crystal structure data with atomistic MD simulations [41, 56,

111, 141, 152, 155] and they have been shown to agree reasonably well for both groundstate and

stiffness (ignoring the magnitude of stiffness). For example, in ref. [155] a general agreement

was found between various MD force-fields (AMBER parambsc0 and CHARMM27) and the X-

ray crystal database, with subtle differences seen in the force fields. Along with the equilibrium

values of the helicoidal parameters of dsDNA, Dans et al. [41] explored the distributions of these

parameters for both X-ray structures in the RCSB database and MD simulations, and found that

the bimodality in helical coordinates has similar trends (although the study was limited due to

the scarcity of X-ray data). Moreover, in ref. [97], authors argued that at the dimer level, X-

ray crystal structures data and MD simulations are in good agreement but demonstrated that

the dimer level model is not sufficient for either the groundstate or to study the deformability

of DNA. However, the available literature comparing MD with X-ray data is limited to inter

base-pair coordinates and primarily at the dimer level.

Furthermore, the base-pair resolution is insufficient to understand dsDNA mechanics and

requires an explicit treatment of intra-base-pair interactions. In ref. [148], large-scale atomic

force microscopy measurements found that a high Propeller (or propeller twist) is linked to

higher DNA flexibility as well as higher surface accessibility, allowing propeller changes to act

in regulatory elements. Also, the propeller plays a crucial role in discriminating ChIP-seq (Chro-

matin immunoprecipitation sequencing) bound sites from background genomic regions [118].

Furthermore, Buckle plays a crucial role in the intercalation of amino acid side groups [89, 90].

Therefore, a finer comparison, including both intra and inter base-pair coordinates is required,

and with the increase in the number of protein-DNA crystal structures in the RCSB database,

we believe that now there are sufficient X-ray data available for a finer comparison and to make

comparisons for all independent dimers in tetramer contexts.

In this chapter, for the first time, we have carried out a systematic comparison of the ground-

state and stiffness of dsDNA in protein-DNA X-ray crystal structure ensemble (say X-ray data

set) with the cgNA+ model data set (which is indistinguishable from atomistic MD data) for

dimers in specific tetramer context, in terms of both intra base-pair and inter base-pair step

coordinates. First, we have justified why the cgNA+ model is a better choice than atomistic
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MD simulations for such a comparison. Then, we have shown how crucial flanking con-

text is to studying sequence-dependent mechanics of dsDNA and why dimer level sequence-

dependence is insufficient for such purposes. Furthermore, we found an excellent agreement

between sequence-independent groundstate of dimer and directions of variation of groundstate

over sequence space. Subsequently, we compared the groundstate of dimers (both in average

context and specific tetramer context) in the two data sets. Lastly, we have compared the stiff-

ness in terms of configurational volume. We have found that tetramer context influences the

stiffness (in inter base-pair coordinates) of flexible dimer steps more significantly than the rigid

ones and have found an excellent agreement between the two data sets.

Details of all the codes and data used in this chapter are provided appendix F.

5.2 Methodology

We compare the groundstate (equilibrium shape) and stiffness (inverse configuration covari-

ance) of dsDNA dimers (in average flanking sequence) and middle junction dimer step in a

specific tetramer context (for 136 independent tetramers) in X-ray and cgNA+ model data set.

In the following subsections, we describe various choices, assumptions, and methods used in

this work.

5.2.1 Choices in dimers and tetramers

For dsDNA, the total number of possible dimers and tetramers are 16 and 256, of which only

10 and 136 are independent, respectively. As X-ray data are limited, we have carried out our

analysis only for independent dimers and tetramers to enhance the statistics. For dimers, we

have chosen RR, RY, and YR steps (a non-unique but deliberate choice) where R and Y denote

purine and pyrimidine bases, respectively, and then opted for a set of 10 independent dimers.

We have again chosen a non-unique set of 136 independent tetramers, but kept the same dimer

steps as the central junction dimer steps. The chosen 136 independent tetramers are depicted

concisely in figure 5.1.

5.2.2 Database definition

Protein-DNA X-ray crystal structures have been taken from the RCSB Protein Data Bank [20]

(www.rcsb.org) (last updated here in August 2020) using Biojava [73, 95] for retrieval and

caching, and for implementing the criteria to identify redundant structures. Since some of the

protein-DNA crystal entries in this database include identical sequences bound to the same pro-

tein or nearly the same protein with small chemical changes (examples include nucleosome

structures with an identical 147 bp DNA sequence bound to histone core protein, such as struc-

tures with PDB accession codes 1KX5, 5AV5, 5AV6, 5AV8, 5AVA, 5AVB, and 5AV9), which

can bias the statistics, we developed and implemented a method to identify redundant structures.

The different sequences bound to the same protein do provide new information about the

compatible flexibility as the induced bending is different for different sequences due to aspects

like different hydrogen-bonding patterns with the protein; however, the inclusion of the same

sequence several times would bias the statistics toward certain protein-induced bending modes.
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Therefore, such redundant structures must be discarded to explore the unbiased dsDNA confor-

mational space. To identify redundant information, which would involve the same sequence or

nearly an identical sequence bound to the same protein, ECOD (evolutionary classifications of

domains) [37] classification groups are used to identify the protein category, and then sequence

matching (having a longest common sub-sequence in two structures that is greater than 70 %

of the total DNA length) is used as the second criterion to determine if a structure is redundant

compared to one previously chosen if it is bound to the same protein. For structures that meet

both criteria, the one with the better X-ray resolution is chosen, and the other structures that are

nearly identical in sequence and bound to the same protein are discarded.

Subsequently, we have coarse-grained those selected atomistic structures by fitting a rigid-

body frame [191] using standard DNA atomic coordinates defined in the Tsukuba conven-

tion [140]. From these frames, we obtained CURVES+ internal coordinates [101]. Lastly, from

a sequence of any length, we have extracted coordinates of all dimers in their tetramer contexts

with the constraint that the tetramer should be at least two base-pairs away from ends.
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Fig. 5.1 Number of appearances of 136 independent tetramers in X-ray data set (case-I). Ab-
scissa is middle junction dimer-step and ordinate is flanking tetramer context. The blank entries
in the plot represent the dependent tetramer. Note that palindromic steps (self-complementary)
are only read from the reading strand here. Further note that while computing the sequence-
independent average and covariance, we consider all 256 tetramers and for palindromic steps,
we have used double of their corresponding weights (details in section 5.2.3.1).

Furthermore, the crude data contain some entries with highly distorted DNA, broken H-

bonds, and nicks which requires filtering. One of the consequences of these distortions is that

the rotation angles may go very close to π. In cgNA+ coordinates, rotation angles are defined
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as the norm of Cayley vector [149, 158] which tends to infinity when the angle approaches

π (details in section 2.2.1). It allows us to efficiently filter such cases as the corresponding

Cayley components become very high (of the order ∼ 106). This step removed ≈ 9% of the

data. Following this, to ensure that each parameter follows a quasi-normal distribution and

does not have long asymmetric tails, we adopted a variant of the 3σ method used originally in

ref. [139]. We remove a snapshot if any parameters are outside three standard deviations from

the mean. This method has been often used to curate X-ray data [139, 152], but only while

using inter parameters and at the dimer level, which allows the algorithm to converge in 5-6

steps. However, in our case, we are using 18 parameters and analyzing 136 tetramers, which

rejects ≈ 50% of the data and convergence requires 10-20 cycles. An alternative approach might

be to reject the dimer steps that have broken H-bonds [56], but with a risk of long tails in the

distribution of some of the internal coordinates for some of the tetramers. Therefore, in this

chapter, we decided to use the 3σ approach for just one cycle (to eliminate long asymmetric

tails, if any) and ensure that the accepted data contains no broken H-bonds keeping ≈ 70% of

the crude data. Moreover, we also analyzed the data obtained after two and three cycles of the

above approach and found a negligible impact on the conclusions as it only removes the data

from the tails without influencing the mean.

Lastly, we performed our analysis for two sets of data I) No resolution cut-off on PDB

structures and II) PDB structures with at least 3.0 Å resolution or better. In the chapter, we have

presented results for case-I and for case-II, corresponding results are provided in appendix E.

The precise number of instances for each tetramer in the X-ray data set for case-I and case-II

are provided in figures 5.1 and E.7, respectively.

5.2.3 Methods to compare X-ray statistics with cgNA+ statistics

5.2.3.1 Computation of sequence-independent groundstate and covariance

To compute the sequence-independent (or sequence-average) groundstate and covariance, we

have considered all 256 tetramers with double the corresponding weights for palindromic steps.

It is because, for non-palindromic steps, we are counting the same physical dimer step twice

while reading from both the strands; therefore, to balance the statistics, we are taking double

weights for the palindromic steps. In this chapter, we have defined two covariance matrices,

namely, shape covariance (Cs) and configuration covariance (C) defined as:

Cs =
∑N

i=1wi (xi − µ∗) (xi − µ∗)T

∑N
i=1wi

where µ∗ = ∑
N
i=1wixi

∑N
i=1wi

(5.1)

C = ∑
N
i=1wi (Ci + xixTi )
∑N

i=1wi

− µ∗(µ∗)T (5.2)

where wi, xi, Ci, and µ∗ are the weight (or number of instances), average shape, covariance for

a given tetramer, and weighted sequence-independent (i.e., sequence-average) average shape,

respectively. Shape covariance (Cs) is computed over the groundstate of dimer in tetramer

context and can be described as the directions in which groundstate varies over sequence space.

For the X-ray data set, configuration covariance (C) is defined as the deformation of DNA in
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the configuration space computed over all entries in the X-ray data set. For cgNA+ model data

set, it is the Gaussian average of the covariance matrices for DNA dimer in tetramer contexts.

We would like to emphasize that the groundstate and covariance computed using 256 tetramers

will respect the palindromic properties as discussed in section 5.2.3.2. Note that we have used

the subscript X and M to highlight the statistics from the X-ray and cgNA+ model data sets,

respectively. For instance, CX
s and CM

s are shape covariance for X-ray and cgNA+ model data

sets, respectively.

5.2.3.2 Eigenvector parity

There is an inherent CW symmetry in the groundstate of dsDNA due to the reading strand

choice. E (= ET ) matrix (reading strand transformation matrix defined in section 2.2.2) maps

the groundstate of dsDNA read from one strand to another, i.e., µ(S̄) = Eµ(S). This inherent

CW symmetry is also reflected in the configuration covariance matrices and thus, follows the

CW symmetry condition C(S̄) = EC(S)E. For a palindromic or self-complementary sequence

(invariant of reading strand) or the average sequence (which is also invariant of reading strand),

S = S̄, the relation becomes µ(S̄) = µ(S) and C(S) = EC(S)E. For such palindromic cases,

D = P TCP = P TECEP = (EP )TC(EP ) (5.3)

where D and P are the eigenvalue (eigenvalues on the diagonal) and eigenvector matrix (with

columns as eigenvector), respectively. Due to CW symmetry, if Pi is an eigenvector, then EPi is

also an eigenvector with the relation Pi = ±EPi where positive or negative signs define a parity

of the eigenvector. Furthermore, we used cosine similarity to compare eigenvectors in the two

covariance matrices, defined as the dot product (Pi ⋅Pj) between the corresponding eigenvectors.

Note that we have continued to use the subscript X and M to highlight the statistics from the

X-ray and cgNA+ model data sets, respectively.

5.2.3.3 Hierarchical Clustering

Clustering is an unsupervised machine learning method that finds patterns in the data sets con-

sisting of input data without labels. It finds meaningful structure, features, and groupings inher-

ent in the input data. In particular, we have performed hierarchical clustering (which group data

into a tree of clusters) on the groundstate of dsDNA dimers in tetramer context using the square

root of symmetric Mahalanobis distance,M (defined in equation (C.12)) as the metric and av-

erage linkage as the linkage algorithm [124]. The standard python or Matlab linkage algorithm

is used in which the distanceD(p, q) between two clusters is computed. The algorithm starts by

treating every data point as an individual cluster and then combining two nearest clusters, say p

and q, into one cluster, and then removing p and q. It iterates until only one cluster is left, which

becomes the root. The average linkage algorithm defines the distance between two clusters as

D(p, q) = 1

∣p∣ ∗ ∣q∣

i=∣p∣,j=∣q∣
∑

i=0,j=0

√
M(ρi, ρj) (5.4)

where ∣p∣ and ∣q∣ are cardinalities of clusters.
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5.2.3.4 Configurational volume

For X-ray crystal data or atomistic simulations, the deformability of DNA can be quantified in

terms of fluctuations of internal coordinates in the configuration space. For fluctuations ∈ RN ,

configurational volume [139, 141] can be defined as:

S =
√
λ1λ2⋯λN (5.5)

where λi are the eigenvalues of the covariance matrix, C ∈ RN×N . The unit of S is equivalent to

Å
N/2 ⋅ (rad/5)N/2.

5.2.4 Assumptions in this study

• The primary assumption in this comparison is that in protein-DNA X-ray crystal ensem-

ble, distortions of dsDNA resulting from proteins effectively balance out for a sufficiently

large ensemble exposing the intrinsic mechanical behavior of dsDNA. It leads to the fol-

lowing assumption that we have sufficient data for each dimer in the tetramer context.

The exact number of instances for each dimer in the tetramer context is provided in fig-

ure 5.1. For most tetramer contexts, we have at least 150 instances (after filtering), and

the distribution of internal coordinates is peaked around a particular value (sometimes

bi-modal) providing confidence in the statistics, at least for the groundstate. Moreover, as

described in section 5.2.3.2, groundstate for the palindromic dimer should be invariant of

the reading strand, which allows us to define the palindromic error (refer section 2.5.1)

to quantify the convergence in X-ray statistics. For X-ray data set, palindromic error for

dimer in tetramer context is 0.0197 while for dimer in average tetramer context is 0.0042

(details in figure E.4). Notably, the corresponding palindromic error in MD simulations

training data for the cgNA+ model is 0.0025 and 0.00037, respectively, which contains

∼ 107 snapshots. Even though the palindromic error is the norm of a scaled vector with

mixed rotational and translational entries, Å or rad/5 can be treated as the units of palin-

dromic error. The palindromic error obtained in the X-ray data set is still reasonable

because, in the X-ray data set, flanking sequence beyond tetramer context is different for

most entries.

• Furthermore, in this comparison, we have only considered the first and second moments

of the distribution of helical internal coordinates for each dimer step (either in average

context or tetramer context). However, it is well known that for some of the internal coor-

dinates, there exists an inherent bi-modality in helical internal coordinates [41]. Further

investigation of bimodality is outside the scope of this chapter (also limited by the scarcity

of experimental data) and was previously discussed at dimer level in ref. [41, 138].

• Lastly, it is not clear how physical conditions in crystallization experiments (which might

be different for each protein-DNA complex) influence the mechanics of dsDNA. For ex-

ample, the effective temperature of protein-DNA crystal ensemble is significantly less

than in atomistic MD simulations and is unknown and not easy to determine [14, 97].

Furthermore, other factors such as divalent cations, salt concentration, buffer-type, and

packing forces are poorly understood.



91 5.3. Results and Discussion

5.3 Results and Discussion

5.3.1 cgNA+ model over atomistic MD simulations

In the X-ray data set, each instance of a dimer in the tetramer context is most likely flanked

by a different sequence. However, it is not computationally feasible to perform atomistic MD

simulations for tetramers in all the possible flanking sequences, even up to two base-pair steps

on both sides. In contrast, the cgNA+ model provides an excellent alternative whose predic-

tions are almost indistinguishable from MD and can efficiently compute statistics for millions

of sequences. In figure 4.1, we have exemplified that the cgNA+ model prediction is almost in-

distinguishable from the corresponding MD statistics for a sequence outside the cgNA+ model

training library. Furthermore, in figure 4.2(b), we have also compared internal coordinates of

middle junction dimers embedded in different beyond tetramer contexts for MD simulations and

demonstrated that beyond tetramer context could influence the groundstate of junction dimer,

and the cgNA+ model can capture such highly non-local changes due to change in hexamer or

beyond context. A detailed assessment of the cgNA+ model prediction accuracy is in chapter 4.

Thus, in this chapter, we have used the cgNA+ model over MD simulations and recon-

structed the groundstate and stiffness matrix of all possible sequences with a length of 10 base-

pair steps (plus GC ends) using the cgNA+ model. Subsequently, we extracted the marginal of

the middle junction dimer in each tetramer context to obtain the statistics in the average flanking

sequence context beyond tetramer context.

Lastly, we would like to remind that the cgNA+ model is a rigid-base and rigid-phosphate

model which predicts the groundstate of a given sequence in base and phosphate internal coor-

dinates. However, in this chapter, we have only compared the cgNA+ model predictions with

X-ray data set in base-coordinates (both intra- and inter-base coordinates) by taking marginals

over the phosphate coordinates. It is well known that phosphate coordinates are highly multi-

modal (see section 3.6) and is related to BI–BII backbone conformations [44, 69] which is again

found to be dependent on the sequence [44]. Such comparison of backbone conformations in

X-ray and MD data set was carried out previously in ref. [111]. Therefore, we believe that

there are not enough experimental data to compare phosphates coordinates, particularly at the

tetramer level, and is, therefore, left for further detailed investigations in the future.

5.3.2 Comparison of groundstate

5.3.2.1 Comparison of dsDNA dimer groundstate and the directions of variations in
groundstate over sequence space

In figure 5.2(a), firstly, we have plotted the sequence-independent (or sequence-average) average

shape of the dimer predicted by the model along with the corresponding observations in the X-

ray data set. The average shapes of dimers in the two data sets are very close. These results

agree well with previous findings [41, 56, 111, 141, 152, 155] limited to inter variables.

Furthermore, it is interesting to understand the directions in which groundstate of dsDNA

varies over sequence space and whether these directions are consistent in the two data sets. We

have computed “shape covariance matrices” denoted as CX
s and CM

s ∈ R18×18 for X-ray and
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Fig. 5.2 a) Plot comparing sequence-independent groundstate (average shape) of dimer coordi-
nates in X-ray and cgNA+ model data set. On right, PX

s and PM
s are the associated eigenvector

matrices for the shape covariance matrix (denoted by subscript s) describing the directions of
variation in groundstate over sequence space for X-ray (denoted by superscript X) and cgNA+
model (denoted by superscript M) data sets, respectively and DX

s and DM
s are corresponding

eigenvalues in b). While PX and PM are the eigenvectors of average configuration covariance
describing the direction of deformation of dsDNA in configuration space and DX and DM are
corresponding eigenvalues in c). In d), there is cosine similarity index for corresponding eigen-
vectors in (CX ,CM ), (CM

s ,CM ), (CX
s ,CX ), and (CX

s ,CM
s ).

cgNA+model data sets, respectively, and plotted the corresponding eigenvectors (PX
s and PM

s )

and eigenvalues (DX
s and DM

s ) in figure 5.2. The shape covariance matrices (defined in sec-

tion 5.2.3.1) describe the directions in which groundstate varies over sequence space. CX
s and

CM
s are shown in figure E.1 and ignoring the scale, the two matrices look very close and there-

fore, explored further by looking into the eigenvalues and eigenvectors. For both the data sets,

observed eigenvectors are quite sparse, in particular, follow a unique sparsity pattern with de-

coupling of inter variables with intra1 and intra2 variables (intra1 and intra2 are intra base-pair

coordinates for the first and second base-pair of the dimer). This decoupling originates from the

inherent CW symmetry in groundstate of dimer and is algebraically explained in appendix D.

There are 8 negative parity eigenvectors (Pi = −EPi) with no fluctuations in the direction of

Roll, Twist, Slide, and Rise, while for 10 positive parity eigenvectors (Pi = +EPi), there are

no fluctuations in the directions of Shift and Tilt where Pi and E are eigenvectors and reading

strand transformation matrix. More details on reading strand transformation and eigenvector

parity are provided in section 5.2.3.2. The number of positive and negative parity eigenvectors

and this sparsity pattern in eigenvectors can be explained by inherent CW symmetry in ground-

state of dsDNA. Now, the question arises how much eigendirections in the two data sets align?
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To quantify this, we have computed the cosine similarity (details in section 5.2.3.2) between

the best aligned eigenvectors in the two data sets which is plotted in figure 5.2(d). The average

cosine similarity between the eigendirections of two data sets is 0.81 ± 0.11. More importantly,

in the two data sets, eigenvectors align approximately according to the magnitude of the cor-

responding eigenvalues, i.e., eigenvectors with comparable eigenvalues in both the data sets

align with each other. However, note that the magnitude of eigenvalues for the model shape

covariance CM
s is larger than the corresponding aligned eigenvalues for X-ray data set CX

s , par-

ticularly the larger ones. It indicates that even though the direction of variation in the average

shape over sequence space is similar, the magnitude of variation in the X-ray data set is less,

which can be attributed to lower effective temperature in the X-ray data set.

Another interesting observation is to identify the directions (in CURVES+ coordinates) from

which eigenvectors are composed of. For example, eigenvectors with large eigenvalues are

dominated by the Buckle, Propeller, and Shear (intra variables). While in inter variables, Rise

is associated with the eigenvector that has the smallest eigenvalue and the rest of the CURVES+
inter base-pair coordinates seems important. For the CURVES+ coordinates associated with

eigenvectors with the lowest eigenvalues, the variation over the sequence space is so low that

it is almost impossible to distinguish the sequence effect from the underlying noise. This can

be quantified by looking at the variance of internal coordinates for groundstates over sequence

space as listed in table E.1. For example, the variance in Stretch and Rise over tetramer sequence

space is 0.007 and 0.006 Å
2

in X-ray data set. Notably, in the cgNA+ model data set, Stretch

and Rise have relatively low variance than others.

5.3.2.2 How crucial is tetramer context?

In this section, we have investigated how crucial tetramer contexts are by comparing the dimers

in specific tetramer contexts with those in the average context. In figure 5.3, we have directly

plotted the internal coordinates of a dimer in tetramer and average context as small and large

horizontal lines, respectively, using a different color for each specific tetramer context and the

last column as the sequence-average groundstate in each panel. As can be seen in the plots, the

internal coordinates of a dimer are, in general, sensitive to its context, and this sensitivity varies

for different coordinates. In some cases, such as Buckle or Rise, the variation in groundstate

due to flanking tetramer context change is larger than the variation in groundstate due to change

in central dimer step in the average context. Furthermore, the variation in some internal coor-

dinates over sequence space is negligible, for instance, Stretch and Rise. Figure 5.3 contains

all the data condensed into one plot to provide an overall picture of various aspects of the two

data sets and for identifying exciting questions. For instance, is there any pattern in dimer se-

quences (in average context) for which a given internal coordinate is far from the corresponding

sequence-averaged internal coordinate or for a given dimer, which tetramer contexts result a

dimer groundstate far from its groundstate in average context? More standard questions include

the correlation between the various internal coordinates in two data sets.

Firstly, we have plotted the shifted (by the sequence-average shape) average shape for all

the dimers in figure 5.4(a) to visualize which dimers have the shape farthest or nearest to the

sequence-average shape. Once again, it can be observed that the spread of various internal
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Fig. 5.3 Plot of Intras and Inter for X-ray (bottom) and cgNA+ model (top) data set in which
large dash lines depict internal coordinates of a dimer (in average context) while the other
smaller dash lines are the internal coordinates for that dimer in a specific tetramer context.
For better and concise visual representation, in each subplot, the three internal coordinates are
slightly shifted on the X-axis. Also, separate flanking contexts are plotted in different colors as
described at the bottom of the plot. SA is sequence-average groundstate.

coordinates is smaller in X-ray data than in the model data. Furthermore, different dimer steps

adopt extreme values for different internal coordinates. For instance, RR and YY steps adopt

the extreme values for Tilt and Shift, whereas RY and YR for Roll and Slide, and this trend is

generally present in both data sets. In contrast, there is no clear pattern for Twist and Rise.
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Moreover, from figure 5.3, it is clear that the flanking tetramer context significantly influ-

ences the average shape adopted by a dimer. In figure 5.4(b), we have attempted to answer

which flanking contexts influence the shape of dimers the most. For each internal coordinate

(IC), we have defined γXUVZ = ICXUVZ− ICXavgUVZavg as the difference of the internal coordinate

of a dimer (UV) in tetramer context (X - - Z) with the same dimer in average context, where X,

U, V, Z ∈ [A, T, C, G]. Then, for each internal coordinate, we have defined positive and neg-

ative outliers as, γXUVZ < −σ and γXUVZ > +σ, where σ is standard deviation of γXUVZ. In

figure 5.4(b), we have sequence logos plot with the information content in the tetramer flanking

context (X - - Z) for which γXUVZ are negative or positive outliers. Sequence logos are described

in more detail in section 1.2.1. From the sequence logos, it can be observed that dimer adopts

extreme values only in specific flanking contexts. For instance, in the presence of Y - - Y flank-

ing contexts, Tilt and Shift adopt a lower value than the average context, and the converse is true

for R - - R flanking contexts. Similarly, R - - Y and Y - - R flanking contexts tend to decrease and

increase the equilibrium Slide values adopted by dimers, whereas the same contexts increase

and decrease the equilibrium Twist and Rise values. Lastly, C/G flanking contexts decrease the

equilibrium Roll values preferred by dimers, whereas A/T contexts have the opposite effect.

These observations are made for the cgNA+ model data set, but similar conclusions can also be

made for X-ray data sets. In general, less information is present for the X-ray data set, which

implies that the preference for particular flanking contexts is not equally strong. Moreover, for

Roll and Shift, no information in flanking contexts. Note that the statistics are obtained for a

limited X-ray data set, which might be noisy, so such an agreement is still impressive. Thus,

it can be concluded from the two subplots in figure 5.4 that different sequences prefer differ-

ent equilibrium shape, and some conclusions can be made about their preference based on the

pyrimidine or purine nature of the sequence.

An alternate way of exploring the role of tetramer contexts can be dendrograms using hi-

erarchical clustering in the two data sets as plotted in figure 5.5. For clustering, we have used

the square root of symmetric Mahalanobis distance [113] as the distance metric, and “average

linkage” algorithm to compute the distance between clusters, which is defined in terms of the

square root of Mahalanobis distance. More technical details on the dendrograms are provided

in section 5.2.3.3. In figure 5.5, we observed similar clustering in both data sets,

• there are three main clusters corresponding to YR, RR, and RY dimer steps with an ex-

ception in RR and RY clusters, where R is Purine and Y is Pyrimidine base. This classi-

fication highlights the importance of the middle-junction dimer step;

• in each cluster, there are sub-clusters that correspond to the same middle junction dimer-

steps in different tetramer contexts. However, sub-clusters in YR cluster are not well-

resolved;

• YR step is farthest from all the clusters (interestingly, YR dimer steps are found to be

exceptionally flexible [139]).

At the same time, there are some differences in the dendrograms for the two data sets; no-

tably, the distance between clusters is not the same in the two data sets, which can be attributed

to the fact that the magnitude of shape covariance and configurational covariance in the two data

sets are not identical due to lower effective temperature in X-ray data set. With these observa-
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Fig. 5.4 a) Inter coordinates (shifted with respect to sequence-average groundstate) are plotted
for dimers in average flanking context to identify which dimers assume distant values from
sequence-average groundstate for a given variable and whether that signal is consistent in the
two data sets. For each IC, the left column is for the cgNA+model data set and the right column
is for the X-ray data set. b) Sequence logos plot to statistically quantify the role of tetramer
context on the groundstate (in inter variables) of a given dimer. For each internal coordinate
(IC), we have defined γXUVZ = ICXUVZ− ICXavgUVZavg as the difference of the internal coordinate
of a dimer (UV) in tetramer context (X - - Z) with the same dimer in average context, where X,
U, V, Z ∈ [A, T, C, G]. Then, for each internal coordinate, we have defined positive and negative
outliers as, γXUVZ < −σ and γXUVZ > +σ, where σ is standard deviation of γXUVZ. In the
sequence-logos plot, we have plotted the information content in the tetramer flanking context
(X - - Z) for which γXUVZ are negative or positive outliers.
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Fig. 5.5 Dendrograms using hierarchical clustering on independent tetramers using square root
of symmetric Mahalanobis distance (taking inverse of sequence-dependent configuration covari-
ance as the weight matrix) as metric and average linkage algorithm section 5.2.3.3.

tions, we can conclude that the tetramer context plays a crucial role in the dimer groundstate and

thus, dimer models are not sufficient for a complete description of sequence-dependent mechan-

ical properties of dsDNA. Therefore, in the next section, we have performed a further rigorous

analysis comparing groundstate of dsDNA dimer in all independent tetramer contexts.

5.3.2.3 Comparison at tetramer level

In this sub-section, we have first compared the groundstate of dimers in specific tetramer con-

texts by computing Pearson correlation (PC) between each internal coordinate for the two data

sets as plotted in figure 5.6(a). One can observe that PC for some of the internal coordinates

(such as Buckle, Propeller, Shear, Tilt, Roll, Slide) is excellent, while for others (such as Stretch,

Stagger, Rise) PC is quite low. We observed that the internal coordinates with the lowest PC

(except Twist) are the internal coordinates that are the stiffest modes in shape covariance or,

say, varies the least in sequence space for groundstate as listed in table E.1. Note that the X-ray

data have an inherent noise, and for internal coordinates, which have very low variation over the

sequence space, it is almost impossible to distinguish the sequence effect from the underlying

noise. For example, the variance in the Stretch and Rise over tetramer sequence space is 0.007

and 0.006 Å
2

in the X-ray data set. Notably, in the cgNA+ model data set, the same internal

coordinates also have relatively lower variance than others. Moreover, we have also shown a

corresponding correlation in two data sets for dimers in the average context in the same figure.
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Fig. 5.6 Pearson correlation between X-ray and cgNA+ data set a) in standard CURVES+ coor-
dinates and b) in transformed coordinates in the eigenspace of cgNA+ shape covariance and the
corresponding eigenvectors shown in c) with the +/− parity as defined in section 5.2.3.2.

The agreement between the two data sets at the dimer level is generally better.

To further justify this hypothesis, we have transformed CURVES+ internal coordinates into

the eigenspace of cgNA+ shape covariance matrix. The eigenvectors and eigenvalues are plotted

in figure 5.6(c) (note this is the same matrix plotted earlier in figure 5.2 but differently). In this

plot, one can observe that the higher modes are populated mainly by Buckle, Propeller, Shift,

and inter coordinates except for Rise. It roughly fits the hypothesis that the PC is lower for

variables with less variation in average shape over sequence space. So, we have computed the

PC in the transformed coordinates of the eight principal modes for both dimer and tetramers,

and it can be observed in figure 5.6(b) that the PC between the two data sets is excellent for both

dimers in average and specific tetramer contexts. In contrast, the PC for transformed coordinates

in lower modes is very low (except index 13). Thus, the outcomes agree with our hypothesis

that in the directions with least variation in the sequence space, inherent noise might have a

dominating effect, and thus, in those directions, it is not sensible to compare the two data sets

directly.

Therefore, lastly, we have compared 136 independent tetramers in terms of symmetric Ma-

halanobis distance (defined in section 2.5.5) but only in eight principal components of cgNA+
shape covariance matrix. The cgNA+ shape covariance matrix is shown in figure 5.6(c), and

the eight principal modes explain ≈ 97.6% variability in the data computed as the sum of eigen-

values of the eight principal modes divided by the sum of all eigenvalues. Thus, in this way,

we have removed the directions which are believed to be dominated by the inherent noise.
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Fig. 5.7 In the heat map (bottom), the diagonal entries are Mahalanobis distance between the
groundstate of dimers (in 136 independent tetramer contexts) in the X-ray and cgNA+ model
data set. Whereas lower and upper off-diagonal entries are Mahalanobis distance between dif-
ferent dimers (in specific tetramer context) within the cgNA+ model and X-ray data set, respec-
tively. The diagonal entries of the heat-map are again plotted in the scatter plot (top) along with
the histogram in the same plot. Note that the Mahalanobis distance (defined in section 2.5.5)
is computed in the transformed coordinates in the eight principal modes of cgNA+ shape co-
variance and using cgNA+ shape covariance matrix (in transformed coordinates) as the weight
matrix. The equivalent plot using all 18 CURVES+ coordinates is shown in figure E.13.
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In figure 5.7, we have plotted a heat map with the diagonal entries as Mahalanobis distance

between the groundstate of dimers (in 136 independent tetramer contexts) in the X-ray and

cgNA+model data set and the lower and the upper off-diagonal entries as Mahalanobis distance

between different dimers (in specific tetramer context) within cgNA+model and X-ray data set,

respectively. The diagonal entries of the heat-map are again plotted in the scatter plot (top)

along with the histogram in the same plot. Note that in Mahalanobis distance computation, we

have used cgNA+ shape covariance matrix (in transformed coordinates) as the weight matrix.

Firstly, it can be observed in the heat-map that a given dimer step in various tetramer flanking

contexts are closer to each other than the rest of the dimer steps (with some exceptions in YR

steps). YR dimer steps in various tetramer contexts are farther from each other than other dimer

steps, indicating a stronger influence of tetramer contexts on YR steps. Moreover, the pattern

observed above and below the diagonal in the heat-map is similar. Similar conclusions were also

drawn from the dendrograms in figure 5.5. Along the diagonal in the heat-map are Mahalanobis

distance between the average shape of dimer in specific tetramer context in X-ray data set with

the corresponding dimer in cgNA+ data set, which is approximately 0.2 for most cases (as can

also be seen in the scatter plot above the heat-map). The Mahalanobis distance is reasonably

small, differentiating a given dimer step from the other. However, for a given central dimer

step, the change in average shape due to various flanking contexts is sometimes less than 0.2

implying that it is not always possible to resolve the influence on average shape due to variation

in tetramer context. Alternatively, in the two data sets, there is no one-to-one mapping between

various dimers (in tetramer context) with the least Mahalanobis distance. It could also be in-

ferred from the Pearson correlation (which is ≈ 0.7) in transformed coordinates between the two

data sets. Thus, there is no perfect agreement between the two data sets, but the data sets are

very close given the scarcity of the X-ray data set and the two very different data sources.

5.3.3 Comparison of sequence-independent deformability of dsDNA in configura-
tional space

It is not very clear how to best compare the dsDNA deformation in X-ray data which come from

an ensemble of different dsDNA conformations in different protein-DNA crystals, in contrast,

to dsDNA simulations in a solvent under particular physical conditions and is a result of ther-

mal fluctuations. Furthermore, it is well known that the magnitude of dsDNA deformations in

MD simulations is quite large (thus, also reflected in the cgNA+ model) as compared to X-ray

data set due to unknown effective temperature for the X-ray crystal data and finding such T

is also non-trivial [14, 97]. Ignoring the magnitude of deformations, in this section, we have

compared the directions of deformations in the two data sets in a sequence-independent manner.

We have computed the average covariance matrix in the configuration space (say configuration

covariance) CX and CM for X-ray data and cgNA+ model data, respectively (see details in

section 5.2.3.1 and plotted in figure E.1). To obtain uncorrelated directions, we have computed

eigenvectors matrices, PX and PM corresponding to CX and CM configuration covariances

and are shown in figure 5.2. Both the PX and PM matrices are quite sparse and similar in

eyeball metrics. Once again, we observed the decoupling of inter coordinates with intra1 and

intra2 coordinates as well as the ratio of positive to negative parity eigenvectors to be 10:8. Such
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behavior of these eigenvectors originates from the inherent CW symmetry in the groundstate of

dsDNA also reflected in configuration covariance (see section section 5.2.3.2 for more details).

To best compare PX and PM , we have computed the cosine similarity index (defined in sec-

tion 5.2.3.2) between the corresponding columns of PX and PM and found an excellent match

with average cosine similarity 0.88 ± 0.07. It shows a remarkable similarity in the directions

of dsDNA deformations in the two data sets. As expected, the corresponding eigenvalues, DX

and DM have a significant difference in magnitude because of effective temperature. However,

more importantly, eigenvectors with large eigenvalues in one data set align with eigenvectors

with large eigenvalues in another data set, and the same is true for eigenvectors corresponding

to smaller eigenvalues. This trend can be observed almost perfectly for PX and PM further

highlighting that the direction as well as the trends in magnitude of deformations (ignoring the

scaling due to the effective temperature) in those directions are similar in the two data sets.

Lastly, we observed that both data sets have similar eigenvectors corresponding to shape

covariance and average configuration covariance. The average cosine similarity between the

eigenvectors of CX and CX
s is 0.82 ± 0.11 and between CM and CM

s is 0.85 ± 0.1. Such a

similarity between the eigenvectors of shape and configuration covariance is unexpected if we

perform a similar analysis for a set of random pdfs with some mean and positive definite covari-

ance. It is a remarkable similarity in both data sets with the observation that the largest sequence

variation of groundstate (eigenvector of Ps with largest eigenvalue) is highly aligned with softest

configuration dependent modes (eigenvector of Ps with largest eigenvalue). Similarly, smaller

sequence variations of groundstate are aligned with the stiffest modes in the configuration space.

It justifies the nearest-neighbor assumption in which all base-pair steps can not simultaneously

achieve their individual local minima, and frustration energy arises in nearest-neighbors, and

base-pair steps compromise from their local minima to attain a minimum energy configuration

(which is not zero energy). For this minimum energy configuration, the consecutive base-pair

steps have to negotiate the deformations in various directions such that it minimizes the sum of

nearest-neighbor junction energies, and the findings suggest that the deformations are more in

the directions of the soft modes of configuration space (as these cost the least). In other words,

for various sequences/flanking contexts, the dimer adopts groundstate by compromising more

in the soft modes of configuration space.

5.3.4 Comparison of Co-variance or sequence-dependent deformability of dsDNA

One of the methods to quantify the deformability of DNA is to compute the configurational

volume or entropy of DNA as defined in section 5.2.3.4. Once again, it must be noted that the

magnitude of S is larger for the cgNA+model data set than for the X-ray data set, and therefore,

we have compared the two data sets ignoring this scaling due to effective temperature.

Moreover, computing configuration covariance matrix for dimers in tetramer context with

fewer representations in X-ray data set is questionable and thus, should be treated with caution.

We observed that the range and product of eigenvalues for a dimer in tetramer context and

dimer in average context (which have more than 2000 instances) are comparable, which provides

confidence in this computation.

We have carried out this comparison computing Sinter (for inter coordinates, taking marginal
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Fig. 5.8 Comparison of configurational volume for cgNA+ model covariance vs X-ray data set
covariance a) in inter coordinates for independent dimer steps in average context, b) in inter co-
ordinates for dimers in independent tetramer contexts, c) in PCA coordinates (in eight principal
modes of cgNA+ model shape covariance ∈ R18) for independent dimer steps in average con-
text, d) in PCA coordinates (in eight principal modes of cgNA+ model shape covariance ∈ R18)
for dimers in independent tetramer contexts. The red line is best-fit line between the two data
sets using linear regression.

over intra coordinates) and SPCA8 (for the transformed coordinates in the eight principal modes

of cgNA+ shape covariance matrix). For Sinter, first we compared the two data sets at dimer level

(i.e., average flanking context) in figure 5.8a and found an excellent correlation (PC = 0.98)

between the two data sets. We also observed that the YR step is significantly more flexible

in inter variables than other dimer steps. TA being the most flexible and AT most stiff (for

inters parameters), which was also observed previously [53, 97, 141]. In figure 5.8b), we have

compared Sinter for independent dimer in tetramer context and found good agreement (with

PC = 0.72). In the plot, each dimer is color-coded differently with the label described in the

figure 5.8b. S highly depends on the tetramer context for some dimers, while for others, the

flanking context has a negligible effect. In general, dimer steps that are easily deformable than

the stiff ones are more sensitive to the flanking tetramer context. For example, the most flexible

YR steps (TA, CA, and CG) show a higher variation in configuration volume than RR and RY

steps over the tetramer context in both data sets.

For SPCA8, PC in the two data sets is 0.98 for dimers in average context, while for dimer in

tetramer context, the PC in SPCA8 for the two data sets is 0.564 as shown in figure 5.8. Again,

we observed that soft dimers are more affected by the change in the tetramer context. Note that

we obtained similar results on carrying out comparison in 8±2 principal components. We would
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like to highlight that the comparison of SPCA8 or Sinter for dimer in tetramer context is limited

by the scarcity of experimental data, which might be a reason for a poor correlation.

Lastly, in figure E.2, we have put an analogous comparison for the cgNA+ model data set

and MD data set. For dimer in the average context, we found PC of 0.998 for Sinter and 0.998

for SPCA8. For dimer in tetramer context, the observed PC for Sinter is 0.918 and for SPCA8 is

0.922.

5.4 Conclusions

In this chapter, we have shown that cgNA+model prediction is in reasonable agreement with the

available protein-DNA X-ray structure database for all dimers in various tetramer contexts. As

dimer steps in the X-ray data set are often present in various flanking sequence contexts and as

shown previously (in figure 4.2) that beyond tetramer flanking context could have a considerable

effect on the average shape, we argued that the cgNA+model is a better alternative over the MD

simulations for such comparisons due to its accuracy and efficiency, which allowed computing

the average shape of dimer in various tetramer contexts by averaging over all possible beyond

flanking tetramer contexts. Moreover, we have compared both intra base-pair and inter base-pair

step coordinates in the two data sets. Notably, the comparison of the intra base-pair coordinates

and for all dimers in all tetramer contexts are complete novelties.

Firstly, we have shown that the sequence-independent (or sequence-average) average shape

in the two data sets is extremely close. Moreover, defining “shape covariance” as the variation

of groundstate in sequence space, we have shown that the direction of variation of groundstate in

sequence space, i.e., the eigenvectors of shape covariance align closely with a cosine similarity

of 0.81±0.11. Then, we have demonstrated that, in the X-ray data, along with the central dimer

step immediate tetramer flanking context is crucial in determining the average shape of dimer

and in some cases, change in average shape can be larger due to change in tetramer contexts

than change in central dimer step. Also, we found that certain flanking contexts systematically

influence the average shape of dimer more than others. Furthermore, we have also emphasized

the role of sequence by performing hierarchical clustering on the average shape of dimer in

tetramer contexts, resulting in four main clusters based on pyrimidine-purine steps of the central

base-pair step further sub-clusters based on the specific base-pair steps. Notably, the results are

reasonably similar in the two data sets.

The next part of this chapter is dedicated to directly comparing internal coordinates in the

two data sets. Firstly, we found that the Pearson correlation between the two data sets for some

internal coordinates is excellent; whereas the correlation is poor for a few other coordinates, such

as Rise or Stretch. We observed that coordinates with poor correlation are the ones that change

the least in the sequence space, which leads to the hypothesis that for such coordinates, inherent

noise in the X-ray data might have a dominating effect and, thus, it is not possible to resolve the

sequence effect, in particular, the role of tetramer flanking context. We justified this hypothesis

by demonstrating that correlation for the transformed coordinates in the principal modes of

shape covariance is excellent, in contrast, to the correlation in the lower modes. Furthermore,

we have also shown that Mahalanobis distance between the average shape for dimers in tetramer

contexts in the two data sets is also close, however, it is not always possible to resolve dimers in
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various tetramer contexts.

In the final part, we have defined sequence-average “configuration covariance” which tells

dsDNA deformation in the configuration space and found as excellent alignment (cosine sim-

ilarity of 0.88 ± 0.07) in the eigenvectors of the configuration covariance, i.e., the direction of

deformation of the two data sets. However, the magnitude of the deformation is significantly

less in the X-ray data set, which can be attributed to its lower effective temperature. More in-

terestingly, the directions of deformation in configuration space align well to the direction of

variation in the average shape in sequence space, implying that a given dimer attains minimum

total nearest-neighbor junction energies, i.e., equilibrium shape by negotiating more in the di-

rection of soft modes. Furthermore, for sequence-dependent analysis of dsDNA deformability,

we have used the configurational volume as a metric to quantify deformability and found an

excellent correlation of 0.98 at dimer level for both inter-variables and PCA coordinates (trans-

formed on eight principal modes). Notably, at the tetramer level, the correlation in the data set

is not equally good with a Pearson correlation of 0.72 for inter-coordinates and 0.56 for PCA

coordinates but are still reasonable given the scarcity of the X-ray data for dimers in various

tetramer flanking contexts. Moreover, we found that the sensitivity in deformability to flanking

contexts is maximum in flexible dimer steps (YR).

Thus, we have demonstrated that the flanking tetramer contexts are crucial for dsDNA me-

chanics in X-ray data, and cgNA+ model predictions are in reasonable agreement for both the

average shape and deformability; thus, it presents itself as an excellent tool for routine investi-

gation of non-local sequence-dependent dsDNA mechanics for various applications.
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Extension of cgNA+ parameter sets for epigenetically modified DNA

The primary focus of this chapter is DNA base modifications, in particular, methylation or

hydroxymethylation at the 5-position of cytosine in CpG steps. DNA methylation, regulated

by the DNA methyltransferase enzyme, plays a pivotal role in several biological processes,

such as X-chromosome inactivation and genomic imprinting, while aberrations in methylation

patterns are often associated with diseases such as cancer [93, 161]. Around 70-80% of the CpG

steps are methylated in mammalian cells [77] except for the CpG islands (dominantly present

in the gene promoter regions). In general, methylation of CpG steps in promoter regions is

anti-correlated with gene expression [32, 151]. It is believed that CpG methylation reduces

the flexibility of DNA [38, 156, 162] and thus, reduces the ability of DNA to interact with

transcription factors, modulates DNA accessibility, and makes them less prone to wrap around

nucleosomes. However, recent works have shown contrasting findings with hypermethylation

related to increased DNA flexibility [107, 115, 160, 187]. It highlights that the influence of

base modifications on DNA mechanics is complex and depends on the extent and position of

base modifications. Moreover, Rausch et al. [166] showed in vivo and in vitro experiments that

cytosine methylation stabilizes double-stranded DNA (dsDNA) helix by increasing its melting

temperature and resisting enzymatic activities toward dsDNA, therefore, suggesting its crucial

role in regulating dsDNA access and genomic processes.

In comparison to DNA methylation, DNA hydroxymethylation has received much less atten-

tion because of its relatively low abundance in genomes and the lack of experimental techniques

to resolve hydroxymethylated C from methylated C. Hydroxymethylated C is the result of oxida-

tion of methylated cytosine in CpG steps catalyzed by ten-eleven translocation proteins [199].

DNA hydroxymethylation has been observed in the genomic regions of many organisms, in

particular, prevalent in mammalian brain cells [125] and embryonic stem cells. The disturbed

hydroxymethylation pattern of DNA cytosine may result in disordered cell function and, thus,

in different types of cancers, e.g., myeloid cancers [91].

There are both experimental and theoretical evidence that these modifications bring about

changes at the structural level [12, 28, 104, 164, 165] as well as modulate overall mechan-

ics [28, 59, 81, 130, 181, 182]. However, these studies lack consensus on their findings. It is

probably because alterations in dsDNA properties on base modifications are highly dependent

on the modification level and the flanking sequence. Thus, a systematic investigation of how

epigenetic base modifications influence dsDNA mechanics is required. A coarse-grained model

such as cgNA+, which has been demonstrated to be indistinguishably accurate in predicting

the mechanics (equilibrium shape and stiffness) of dsDNA, dsRNA, and DRH, will be highly

105
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beneficial to obtain insights into the role of epigenetic base modifications in dsDNA mechan-

ics and, thus, better understand its function in biology. This chapter discusses the extension of

the cgNA+ model for epigenetically modified dsDNA, in particular, for sequences containing

methylated and hydroxymethylated CpG steps.

Details of all the codes and data used in this chapter are provided appendix F.

6.1 cgNA+ for epigenetically modified dsDNA

This section describes the extension of cgNA+ to predict the Gaussian pdfs for sequences con-

taining methylated and hydroxymethylated CpG steps. First, we describe the epigenetic base

modifications in dsDNA and introduce a notation for modified cytosine. We then describe the

training sequences used to train the cgNA+ parameters for modified base-pair steps. Lastly,

we discuss the training of the cgNA+ parameter set PMet/Hmet which in combination with ex-

isting PDNA will allow predicting groundstate and stiffness matrix for any sequence containing

methylated/hydroxymethylated CpG steps.

6.1.1 Epigenetic modifications in DNA bases

The most common epigenetic modifications in DNA bases are methylation and hydroxymethy-

lation of cytosine at the 5–position. The chemical structures of these modified cytosines are

shown in figure 1.1. Other base modifications, such as 5-formyl-C, 5-carboxyl-C, and N6-

methyl-A, are comparatively rare in biology. Furthermore, most often, cytosine methylation

or hydroxymethylation occurs at CpG dinucleotide steps, which can be di-substituted if both

strands are symmetrically modified or hemi-substituted if only one of the strands is asymmetri-

cally modified. This work focuses only on cytosine modification in CpG steps.

6.1.2 Alphabets for epigenetically modified cytosine

In this work, to describe the DNA sequence, we have used the standard alphabets A, T, C, and G

for bases. However, the notation for hydroxymethylated or methylated cytosines is not standard-

ized. This thesis uses the letter M for 5-methylated-cytosine, and N for Guanine when comple-

mentary cytosine is methylated. Similarly, letters H and K are used for 5-hydroxymethylated-

cytosine and Guanine complementary to 5-hydroxymethylated-cytosine, respectively. For ex-

ample, MN represents symmetrically methylated cytosine on both strands, CN denotes asym-

metrically methylated cytosine on the Crick (complementary) strand, and MG denotes asym-

metrically methylated cytosine on the Watson (reading) strand. Following this notation, M and

H are complementary bases to N and K, respectively, and dimer steps such as MN, NM, HK, and

KH are palindromes. Thus, for modified DNA, any sequence can be described using alphabets

Xi ∈ {A, T, C, G, M, N, H, K}.

6.1.3 Training library

As discussed in chapter 2, cgNA+ is a coarse-grained model trained on MD simulations for

a set of sequences called the training library. To train the cgNA+ parameter set that allows
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cytosine base modifications in CpG steps, we have used an extensive library of 12 sequences

provided in table B.2. The libraries are denoted as LbMet and LbHmet containing sequences with

methylated and hydroxymethylated CpG steps. The key features of these libraries include: (a)

all the training sequences are palindromes, which allows quantifying the convergence of the MD

simulations (refer to chapter 3 for details), (b) contains both di-substituted and hemi-substituted

CpG steps in diverse sequence contexts, and (c) contains various combinations on modified

CpG steps (for instance, MNMN or MGCN or CNMG in LbMet). Thus, training sequences

are designed optimally to have minimal sequences in the library with various combinations of

modified base-pair steps in diverse sequence contexts. It should be noted that library design

is a crucial step in the cgNA+ model. The training data must have sufficient diversity for any

data-driven model to ensure accurate/reasonable predictions for unseen samples. In the case

of the cgNA+ model, as discussed in section 4.1, lack of diversity in the training sequence

may lead to a non-positive reconstruction of the stiffness matrix as observed in some dsDNA

sequences with non-GC ends [149]. This problem was solved using a comprehensive library

with diverse contexts for non-GC ends (refer section 4.1 and table B.3). A similar problem was

also encountered during experimentation of modified parameter set; in particular, a parameter

set trained on sequences without various combinations of modified CpG steps (i.e., without

using sequence indices 9 to 12) predicts a non-positive definite stiffness matrix for sequences

with adjacent repeats of modified CpG steps (for instance, GC⋯ATMNCNMG⋯GC). It again

highlights how crucial library design is for the cgNA+ model.

Lastly, MD simulations for all sequences in LbMet and LbHmet are performed using the same

MD protocol used for dsDNA with additional force-field parameters for modified cytosine. De-

tails of MD protocol and post-processing are provided in sections 3.2 and 3.4, respectively.

6.1.4 Training of cgNA+ parameter set to allow epigenetically modified cytosine

The cgNA+ model requires a parameter set containing dimer-dependent blocks for stiffness

matrix and stress vector to predict a Gaussian pdf for a given sequence. In this work, the aim is to

extend PDNA (defined in equation (4.2)) that allows prediction of Gaussian pdf for any sequence

containing methylated or hydroxymethylated CpG steps. We started with the approximation that

the parameter blocks for the unmodified base-pair steps remain the same.It implies that we need

to estimate parameters only for {MN, NM, MG, CN, AM, TM, CM, GM, NA, NG, NT, NC}

dimer steps out of which {MN, NM, MG, AM, TM, CM, GM} dimer steps are independent.

Similarly, to allow hydroxymethylated CpG steps, parameters for {HK, KH, HG, AH, TH, CH,

GH} dimer steps are required, while for the dependent dimers, the parameters can be obtained

using the CW symmetry relation defined in equation (2.20). Thus, for any sequence containing

modified CpG steps, the groundstate and stiffness matrix can be predicted using cgNA+ model

with a combination of PDNA and PMet/Hmet given as

PMet/Hmet = {σXY,KXY} ∈ [R42]7 × [R42×42]7, (6.1)

where XY ∈ {MN, NM, MG, AM, TM, CM, GM} for PMet and XY ∈ {HK, KH, HG, AH, TH,

CH, GH} for PHmet.
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Once again, it must be noted that PMet/Hmet only allows modified CpG steps, not modi-

fied GpC steps. Taking the example of dsDNA methylation, NM and GM (or NC) steps are

not allowed. It is contradictory and confusing, as PMet already contains parameters for these

dimer steps. This is because NM and GM (or NC) steps naturally arise in various combi-

nations of methylated CpG steps which are allowed. For example, NM and GM steps are

present in repeated combinations of methylated CpG steps such as MNMN/CNMN/CNMG and

MGMN/MGMG, respectively. Therefore, to write precisely, XNMZ and XGMZ (or XNCZ)

steps are not allowed where X ∈ {A, T, G} and Z ∈ {A, T, C} as these steps represent methy-

lated GpC step. Moreover, in the current version of cgNA+, a sequence containing both hy-

droxymethylated and methylated CpG steps is only allowed as input when they are not present

adjacent to each other.

Lastly, since we already have parameters for NM and GM, one can contemplate using these

parameters to predict Gaussian pdf for a sequence containing methylated GpC steps. Such an

exercise might lead to a non-positive definite stiffness matrix for that sequence. The only expla-

nation justifying the non-positive definite reconstruction of such sequences is that the training

library does not contain any such example cases. It again highlights the importance of train-

ing library design. However, it leads to a technical issue in PMet/Hmet parameter sets. As once

the cgNA+ parameter set is computed, the next step is to search the block elements in the null

space to check whether dimer stiffness blocks in the parameter set are positive-definite (refer to

sections 2.4 and 2.4.5) which ensure a positive-definite stiffness matrix for any given sequence.

However, in the case of PMet/Hmet, we already know that it is not possible to find such block

elements as sequences containing XNMZ and XGMZ (or XNCZ) steps where X ∈ {A, T, G}

and Z ∈ {A, T, C} give non-positive definite stiffness matrix. The next best check to confirm

positive-definite reconstruction for any sequence is to examine the reconstructed stiffness matrix

for a large ensemble of sequences and hope that for any other sequences, not in this ensemble;

the cgNA+ model will predict positive-definite Gaussian pdf. We checked the definiteness of

the predicted stiffness matrix for (a) all 16mers in GC ends and (b) 108 random sequences of

length varying from 16 to 300 bps containing at least one modified CpG steps. This test was

performed individually for both PMet/Hmet, and positive-definite stiffness matrices were obtained

for all sequences. Note that for dsDNA/dsRNA/DRH, before searching for block elements in

null-space, we reconstruct all sequences of length 4-10 and check the definiteness of the stiff-

ness matrix. In all the cases (RNA/DNA/DRH), even if stiffness matrices for all hexamers for

a given parameter set are positive definite, we were always able to find positive-definite dimer

stiffness parameter blocks. It further establishes trust in PMet/Hmet that for any given sequence

containing modified CpG steps, cgNA+ reconstruction will be positive-definite, however, it can

not be guaranteed as in the case of PDNA/RNA/DRH.

6.2 cgNA+ reconstructions and associated modeling errors

This section is similar to the previous discussion in section 4.3 and investigates the performance

of the cgNA+ model in predicting groundstate and stiffness for dsDNA sequences with epige-

netic base modifications. In particular, we have tested the cgNA+ model on sequences that are

not part of the training sequences for PMet/Hmet.
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6.2.1 Test library

To assess the cgNA+model, we have simulated several test sequences (listed in table B.2) using

the same MD protocol as used for the training sequences. These test sequences are designed

carefully to critically examine various aspects of the cgNA+ model’s predictive capability. For

instance, sequence index 18 in LbMet or LbHmet is the symmetric modified (methylated or hy-

droxymethylated) version of sequence index 20 in LbDNA at the interior CpG step. This se-

quence allows to check how well cgNA+ captures the change in groundstate of this sequence

“GCGGATTACGCAGGC” upon symmetric modification of the CpG step (highlighted in bold).

Furthermore, sequence index 24 in LbDNA is a typical CpG island, and to check the effect of

CpG methylation/hydroxymethylation, we have simulated sequence indices 19 to 21 (in LbHmet

or LbMet) which are differently modified variants of the same CpG islands.

6.2.2 Reconstruction error in cgNA+ model

In this subsection, first, we have plotted the groundstate for a few selected sequences along with

the observed MD estimates to visualize the model accuracy and highlighted that the cgNA+
model captures non-local changes (i.e., the change in groundstate is propagated to the neighbor-

ing base-pair steps) in groundstate due to base modifications in the sequence (notably base mod-

ification can be considered as a smaller change than point mutation). In figure 6.1(a), we have

compared the groundstate of unmethylated and methylated versions of “GCGGATTACGCAGGC”

(symmetric methylation at the highlighted CpG step). First, note that the change in groundstate

due to methylation of one CpG step is highly non-local. Furthermore, it can be observed in

the plot that the average shape in MD simulations and groundstate predicted by the cgNA+
model are indistinguishable and, thus, the cgNA+ model accurately captures non-local changes

in groundstate on methylation of CpG steps. This is further quantified as the reconstruction error

in terms of the Mahalanobis distance and is equal to ≈ 0.0027 Å2 or (rad/5)2 for test sequences

(refer table 6.1(a)). An analogous plot for hydroxymethylation of the highlighted CpG step in

“GCGGATTACGCAGGC” is provided in figure 6.1(b), and similar conclusions can be drawn

about the accuracy of the model and the impact of CpG hydroxymethylation on groundstate.

Furthermore, in figure 6.2(a), we have compared the groundstate for monomethylated (asym-

metric) and dimethylated (symmetric) typical CpG islands to highlight the difference in ground-

state for two differently substituted CpG steps. It can be observed that asymmetric and sym-

metric methylation of CpG steps leads to a significantly different groundstate and the model

accurately captures those changes. Similar results were also observed for asymmetric and sym-

metric hydroxymethylation of CpG steps in CpG islands (not shown in the thesis for brevity).

Lastly, we would like to emphasize that internal coordinates for CpG steps are often multi-

modal (refer to figure 3.7) and highly sensitive to flanking sequence context. So, one can expect

a larger reconstruction error in the prediction of groundstate for CpG steps compared to other

dimer steps for dsDNA or, in general, for dsRNA (where internal coordinate distributions are

close to Gaussian) due to much complicated and larger conformational space. Therefore, it

again highlights how impressive the cgNA+ model is in predicting groundstate for such modi-

fied sequences containing CpG steps.
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(b) Hydroxymethylation of CpG step

Fig. 6.1 Groundstate coordinates (elements of w) for (a) sequence index 20 in LbDNA (red, blue,
and green as shown in legend) and 18 in LbMet (in dark red, dark blue, dark green) and (b)
sequence index 20 in LbDNA (red, blue, and green as shown in legend) and 18 in LbHmet (in
dark red, dark blue, dark green). The figure highlights the cgNA+ model accuracy in predicting
the non-local change in groundstate due to (a) methylation and (b) hydroxymethylation of CpG
step. MD estimates are in solid lines while dashed lines are cgNA+ reconstructions.
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(a) Symmetric vs asymmetric methylation of CpG islands
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(b) Symmetric and asymmetric methylation and hydroxymethylation of CpG islands

Fig. 6.2 Groundstate coordinates (elements of w) for (a) sequence index 19 (red, blue, and green
as shown in legend) and 20 in LbMet (in dark red, dark blue, dark green) where MD estimates are
in solid lines while dashed lines are cgNA+ reconstructions, and (b) sequence index 20 in LbDNA
(red, blue, and green as shown in legend) and 21 in LbMet (in solid lines) and LbHmet (in dashed
lines) in dark red, dark blue, dark green. The figure highlights (a) the cgNA+model accuracy in
predicting change in groundstate due to symmetric and asymmetric methylation of CpG islands
and (b) impact of methylation and hydroxymethylation on groundstate of CpG islands.
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In the second part, we have quantified the total reconstruction error in the cgNA+ model for

sequences with epigenetic modifications. The reconstruction error E res (refer to section 2.5.5)

for the cgNA+ model is defined as the deviation of the predicted Gaussian pdf from the corre-

sponding observed Gaussian pdf in MD simulations and is computed in terms of symmetric KL

divergence and symmetric Mahalanobis distance. Note that E res
KL (reconstruction error in terms

of KL divergence) describes the total reconstruction error (both in groundstate and stiffness ma-

trix) in the cgNA+model, while the E res
M (reconstruction error in terms of Mahalanobis distance)

highlights the difference in the predicted groundstate and MD average shape scaled by stiffness.

In table 6.1(a), we have tabulated the reconstruction errors per degree of freedom, dof (which

is 24N − 18, i.e., the number of internal coordinates required to describe a given sequence of

length N bp) in the training and test sequences for LbMet and LbHmet. Firstly, the average recon-

struction error in the training sequences in LbMet is 0.0023 and 0.0304 in terms of E res
M and E res

KL,

respectively, which is roughly one order of magnitude smaller than the corresponding scale,

0.0211 and 0.3378, computed as average pair-wise difference of training sequences (see sec-

tion 2.5.6) and is a quantification of variation over sequence. It highlights the precision of the

cgNA+ model in accurately capturing the non-local sequence-dependent mechanics of dsDNA.

Moreover, the analogous reconstruction errors, E res
KL and E res

M for the test sequences in LbMet are

0.0025 and 0.0311 which are almost equal to the errors in the reconstruction of the training se-

quences. It comments on the generalizability of the cgNA+ model. Similar observations can be

made for training and test sequences in LbHmet. It should be noted that the reconstruction errors

obtained here are comparable to the corresponding results for LbDNA (in table 4.1). However,

the scale obtained here for LbHmet and LbMet is noticeably smaller than scale for LbDNA because

the training sequences in LbHmet or LbMet are similar to each other than in LbDNA.

This total reconstruction error in the cgNA+ model results from several modeling assump-

tions in our model, as listed in section 2.3 and the error associated with each assumption can be

quantified as described in section 2.5. We have discussed the contributions of various modeling

assumptions to the reconstruction error in the following subsections.

6.2.3 Approximation error in the training data

The first modeling assumption in the cgNA+model is that the MD time series is fully converged.

The associated convergence error (referred to as palindromic error) is discussed in section 2.5.1,

and details of this error quantification are provided in section 3.5 and table 3.4. For the train-

ing sequences in LbHmet and LbMet, the average palindromic error in terms of KL divergence

Epalin
KL, avg and Mahalanobis distance Epalin

M, avg are of the order 10−4 and 10−3, respectively, which

are approximately two orders smaller than the corresponding scales.

Moreover, in section 3.6, we have discussed the distribution of internal coordinates in MD

time-series and shown that the distributions for inter base-pair step and phosphate coordinates

for dsDNA often deviate from Gaussian behavior and depend on the flanking sequence context.

However, for modeling purposes, we have imposed Gaussianity to the underlying distribution

for internal coordinates, leading to an inevitable modeling error. We have quantified this mod-

eling error by computing the KL divergence between observed pdf and best-fit Gaussian pdf to

the observed pdf and found that except for Wtra1 phosphate coordinate, EGauss
KL is less than scale.
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LbMet LbHmet

Training sequences
Index E res

M
E res

KL E res
M

E res
KL

1 0.0021 0.0329 0.0020 0.0322
2 0.0020 0.0266 0.0019 0.0268
3 0.0021 0.0261 0.0020 0.0245
4 0.0016 0.0211 0.0017 0.0357
5 0.0019 0.0260 0.0019 0.0256
6 0.0017 0.0290 0.0018 0.0291
7 0.0028 0.0329 0.0028 0.0322
8 0.0026 0.0281 0.0027 0.0304
9 0.0024 0.0342 0.0025 0.0352
10 0.0033 0.0402 0.0031 0.0387
11 0.0026 0.0329 0.0025 0.0307
12 0.0028 0.0350 0.0029 0.0360

Average 0.0023 0.0304 0.0023 0.0314
Test sequences

Index E res
M

E res
KL E res

M
E res

KL
13 0.0025 0.0339 0.0026 0.0349
14 0.0033 0.0389 0.0032 0.0377
15 0.0022 0.0295 0.0024 0.0297
16 0.0023 0.0306 0.0022 0.0299
17 0.0025 0.0356 0.0023 0.0333
18 0.0027 0.0324 0.0027 0.0319
19 0.0019 0.0244 0.0018 0.0226
20 0.0025 0.0281 0.0028 0.0316
21 0.0024 0.0262 0.0023 0.0266

Average 0.0025 0.0311 0.0025 0.0309
scale 0.0211 0.3378 0.0214 0.3449

(a) Model reconstruction error
LbMet LbHmet LbMet LbHmet

Index ETrunc
KL ETrunc

KL E local
M

E local
KL E local

M
E local

KL
1 0.0049 0.0051 0.0021 0.0288 0.0021 0.0280
2 0.0044 0.0047 0.0021 0.0223 0.0020 0.0223
3 0.0045 0.0046 0.0021 0.0221 0.0020 0.0204
4 0.0047 0.0049 0.0016 0.0169 0.0017 0.0314
5 0.0049 0.0050 0.0019 0.0218 0.0019 0.0212
6 0.0045 0.0050 0.0018 0.0250 0.0019 0.0247
7 0.0041 0.0045 0.0029 0.0290 0.0028 0.0280
8 0.0047 0.0051 0.0027 0.0240 0.0027 0.0261
9 0.0047 0.0048 0.0025 0.0302 0.0026 0.0311

10 0.0041 0.0043 0.0034 0.0362 0.0032 0.0345
11 0.0043 0.0044 0.0027 0.0290 0.0025 0.0267
12 0.0048 0.0047 0.0029 0.0307 0.0030 0.0316

Average 0.0046 0.0048 0.0024 0.0263 0.0024 0.0272
scale 0.3378 0.3449 0.0211 0.3378 0.0214 0.3449

(b) Truncation and locality error

Table 6.1 (a) Model reconstruction error in terms of KL divergence (E res
KL) and Mahalanobis

distance (E res
M) defined in section 2.5.5, and (b) truncation error due to nearest-neighbor interac-

tions assumption (ETrunc
KL ) and sequence locality error (E local

KL and E local
M ). The list of sequences

is provided in the table B.2. The first 12 sequences are training sequences, while the rest are
test sequences in LbMet or LbHmet. The scale (quantifies variation over sequence) is obtained by
computing the average pair-wise difference between all training sequences.
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It must be noted that the reconstruction error is defined as the deviation of cgNA+ predicted

Gaussian pdf with the stationary observed Gaussian pdf in MD simulations, i.e., observed MD

Gaussian pdf is the ground truth for the cgNA+model. Therefore, the palindromic and Gaussian

approximation errors do not contribute to the aforementioned reconstruction error.

With these two assumptions on MD time-series, we obtain Gaussian pdf for each train-

ing sequence, which are used to compute the dimer-dependent parameter set based on two as-

sumptions: a) the nearest-neighbor interactions assumption, i.e., the total energy of any given

oligomer is the sum of local junction energies, and b) the local junction energy parameters de-

pend only on the sequence of corresponding junction dimer. We have approximated the error

associated with these two assumptions in the following subsections.

6.2.4 Contribution of nearest-neighbor interactions assumption in cgNA+ reconstruc-
tion error

As discussed previously in section 4.3.4, the nearest-neighbor interactions assumption is a mod-

eling choice inspired by the observations in the MD time series. One can refer back to fig-

ure 4.3 where we have plotted the observed stiffness matrix in the MD time series along with

the stencils corresponding to the nearest-neighbor interactions assumption. Note that similar

conclusions can be made from the corresponding plots for modified sequences (not shown for

brevity). To quantify the error associated with this approximation, we have first computed the

banded stiffness matrix corresponding to the nearest-neighbor interactions approximation using

the maximum entropy fit algorithm [60] to the observed stiffness matrix. Then this approxi-

mation error (referred to as truncation error) can be computed as the symmetric KL divergence

between the observed stiffness and the corresponding banded stiffness as defined in section 2.5.5

and denoted as ETrunc
KL . Notably, the corresponding Mahalanobis contribution will be zero, since

there is no change in the average shape of the oligomer while computing banded stiffness. In

table 6.1(b), we have listed the truncation errors, ETrunc
KL for the training sequences (for brevity,

we have not provided results for the test sequences) in LbMet and LbHmet. It can be observed

that for all training sequences in LbMet and LbHmet, ETrunc
KL is comparable with average values

of 0.0046 and 0.0048 per dof, respectively, which is approximately two orders smaller than the

corresponding scale.

6.2.5 Contribution of sequence locality assumption in cgNA+ reconstruction error

The last assumption in the cgNA+ model is that the local junction energies, which sum up to

make the total oligomer level energies, depend on the local dimer sequence. The error associated

with this assumption (described in section 2.5.4) is tabulated in table 6.1(b) with average E local
M

and E local
KL equal to 0.0024 and 0.0263, and 0.0024 and 0.0272 for training sequences in LbMet

and LbHmet, respectively. The error associated with the locality in sequence dependence is one

order smaller than the corresponding scale for LbMet and LbHmet.

When comparing the two sources of errors (ETrunc and E local) in the total reconstruction

error in the cgNA+ model (E res), the sequence locality assumption for junction energy param-

eters dominates. For instance, for training sequences in LbMet, the average reconstruction error
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in terms of KL divergence, E res
KL, avg is 0.0304, out of which the contribution from the nearest-

neighbor interactions assumption in interaction energies is 0.0046 while from the locality as-

sumption in the sequence dependence of junction energy parameters is 0.0263. It implies that

the nearest-neighbor interactions assumption in the interaction energy is reasonable and con-

tributes negligible to the modeling error, whereas the primary source of modeling error is the

locality assumption in sequence dependence of junction energy parameters. Once again, this

error, E local is only a fraction of the scale set by computing the pair-wise difference between

the training sequences in the respective libraries. Anyhow it highlights the non-local sequence

dependence in the local junction energy. It should be noted that even though the stiffness matrix

in the cgNA+ model has dimer/trimer local sequence dependence, the groundstate has a highly

non-local sequence dependence due to the inversion of the stiffness matrix and the correspond-

ing frustration energy associated with it.

6.3 Effect of cytosine substitution on dsDNA mechanics

In the previous section, we have demonstrated that the cgNA+ model is highly accurate in pre-

dicting the groundstate and stiffness matrix for any modified dsDNA sequence. Moreover, the

prediction is extremely fast, making possible the prediction of groundstate and stiffness matrix

for millions of sequences and, thus, statistical estimation of various dsDNA properties. Such

a computation is impossible to perform using traditional computational or experimental tech-

niques. This section has rigorously investigated various such observables for modified dsDNA

for a large sequence space and the impact of CpG modifications in dsDNA. Notably, most of

the prior studies [12, 28, 59, 81, 104, 130, 156, 164, 165, 181, 182] are done for a minimal

number of sequences, which questions the generalizability of those results, primarily when it

is known that the properties of dsNAs are highly sequence-dependent (often non-local depen-

dence) [9, 22, 50, 102, 147].

6.3.1 Effect of cytosine substitution on the groundstate of dsDNA

In figure 6.3, we have compared base-pair step coordinates of dimers containing unmodified,

methylated, and hydroxymethylated bases by plotting the MD observations (as ●) in the training

sequences along with corresponding cgNA+ model predictions (as ×). Firstly, for all dimers

and various internal coordinates, ● and × are indistinguishable, highlighting the accuracy of the

cgNA+ model. Secondly, in general, both hydroxymethylation and methylation have a similar

effect on the average shape of dimers, and their magnitude depend on the base-pair step and

internal coordinate. The observations in figure 6.3 can be summarized as:

• Intra coordinates: The intra-coordinates of CG base-pair have a negligible effect due to

methylation/hydroxymethylation substitution. The results are not shown for brevity.

• Inter coordinates: cytosine modification decreases Twist for all dimer steps, whereas in-

creases Roll for modified CpG steps and decreases for other steps. Rise and Slide reduce,

in general, upon cytosine modification. Lastly, Tilt and Shift either decrease or increase

for a set of independent dimers following the CW symmetry conditions, while are zero

for palindromes (CG and GC).



CHAPTER 6. Extension of cgNA+ parameter sets for epigenetically modified DNA 116

• Phosphate coordinates: Only the Crick phosphate coordinates are shown as the Watson

phosphate coordinates are linearly dependent (refer equation (2.20)). In general, on cyto-

sine modification, rotational coordinates increase, whereas translational coordinates de-

crease except CTra2. Interestingly, phosphate coordinates of base-pair steps adjacent to

CpG step are more affected by CpG modification.

Furthermore, in figure 6.4, we have plotted the analogous plot to figure 6.3 but only for

CpG step in various tetramer contexts to highlight that the flanking sequence context influences

the effect of cytosine modification. It can be observed that, in general, a) variations in internal

coordinates in different flanking contexts are larger than due to epigenetic modifications, and b)

the magnitude of change in a given coordinate due to CpG step modification is highly sensitive to

flanking sequence context. Some of these results have been observed in earlier works [12, 28] for

inter-coordinates, such as a decrease in Twist and an increase in Roll upon cytosine modification

or tetramer context induces larger changes in dimer shape than epigenetic modifications.

6.3.2 Role of flanking sequence context in epigenetic base modifications

In figures 6.1 to 6.3, we have shown that epigenetic modifications in CpG step lead to a sig-

nificant change in groundstate of a given sequence. Moreover, this change in groundstate is

also influenced by the flanking context of the modified CpG step (figure 6.4). It raises a natural

question: which flanking sequence context to CpG step lead to a minimum or maximum change

in groundstate of a given sequence upon epigenetic modification of that CpG step.

To address the question formally, we have considered all sequences of length 10 bps with

central CpG step, i.e., Si = GCGTCGX4X3X2X1CGY1Y2Y3Y4GTCGGC embedded in random

but fixed flanking context on both sides and Xj and Yj ∈ {A, T, C, G} ∀j ∈ {1,2,3,4}. It leads

to 48 ( 60,000) sequences of 22 bps length. It can be expected that modifying the highlighted

central CpG step will change the groundstate of a given sequence. Now, the question is for

which Xj and Yj , the central CpG step modification will lead to a minimum and maximum

change in the groundstate where the change is defined as the symmetric Mahalanobis distance

(refer equation (C.12)) in groundstate before and after the central CpG step modification.

Firstly, we observed that CpG step modification results in significant changes in the ground-

state and the change is highly sensitive to the flanking contexts. For instance, the Mahalanobis

distance between the groundstate before and after central CpG methylation and hydroxymethy-

lation (symmetric) ranges from 1.57 to 3.36 and 1.69 to 3.63 Å2 or rad/52, respectively. In

figure 6.5, we have presented the sequence logos (described in section 1.2.1) to highlight which

flanking contexts (Xj and Yj) lead to a minimum and maximum change in groundstate of a given

sequence upon epigenetic modification of the central CpG step. We have plotted sequence logos

(detail in section 1.2.1) for outlier sequences defined as 0.5% sequences with the least and most

change in groundstate on the central CpG step modification.
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Fig. 6.3 Comparison of base-pair step coordinates for dsDNA where unmodified steps (X = C
and Z = G) are in Blue, methylated steps (X = M and Z = N) are in Red, and hydroxymethylated
steps (X = H and Z = K) are in Black. For each base-pair step, average coordinates observed in
MD simulations and corresponding cgNA+ predictions are plotted in ● and ×, respectively. For
better visualization, a line plot is plotted along ●.

In figure 6.5(a), we have plotted the findings when the central CpG step was substituted

by MN. It can be seen that sequences with the least change in groundstate have X1,X2 = A,

G and Y1,Y2 = T, C alphabets to the upstream (left) and the downstream (right) of CpG step,

respectively, with information content ≈ 2. If we read the sequence from both strands in 5′− to

3′− direction, there is a GA before C/M, implying a strong correlation between the least change

in groundstate of the modified sequence and the presence of purines upstream to C. Lastly, there

is no information content for X3, X4, Y3, and Y4, indicating that beyond hexamer sequence does

not influence the groundstate on epigenetic modifications. Moreover, in the bottom plot, we have

presented the information content in the sequences that are most influenced by the methylation

of the central CpG step. The findings indicate that the maximum change in groundstate is

correlated with the presence of C or G base-pairs adjacent to the central CpG steps and A or T

base-pairs at hexamer context. Figure 6.5(b) is an analogous plot for the asymmetric methylation



CHAPTER 6. Extension of cgNA+ parameter sets for epigenetically modified DNA 118

(MG) to the central CpG step. The sequences with the least change in groundstate when CpG

step is substituted by either MG or MN are almost the same. The similarities in the sequence

logos include X1 = A, X2 = A or G, and Y1 = T, whereas differences include no information at

Y2 (possibly because as Y2 is away from M) and X3 is more likely to be C or T (pyrimidine). In

contrast, the sequences with maximum changes in groundstate due to asymmetric methylation

are slightly different from those with symmetric methylation. The sequence logos show a strong

preference for T and G at X2 and X1, respectively, and A at Y1, which can be explained by the

fact that in asymmetric methylation, Y1 position is, in fact, two base-pairs away from methylated

C and can be considered as Y2 which agrees with the sequence logos for symmetric methylation.

Lastly, the corresponding plots for CpG step hydroxymethylation are almost identical as shown

in figure 6.5(c) and (d).
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Fig. 6.4 Comparison of CpG step coordinates in various flanking contexts where coordinates
for unmodified, methylated, and hydroxymethylated CpG steps are in blue, red, and black,
respectively. X-axis are the flanking contexts where X = C and Z = G for unmodified CpG
steps, X = M and Z = N for methylated CpG steps, X = H and Z = K for hydroxymethylated
CpG steps. For better visualization, a line plot is plotted along ●.
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In summary, sequences with flanking A or T before modified cytosine (in CpG step) are

relatively inert to epigenetic modifications, whereas sequences with C or G before modified

cytosine are highly sensitive. In the plots, we have shown statistics obtained from extreme 0.5%

sequences and using symmetric Mahalanobis distance as a metric; however, we would like to

emphasize that the results are not sensitive to these choices. Any other choices for metric (such

as L1-norm of the difference in groundstate) and outlier cut-off lead to similar conclusions.

Moreover, in figure 6.6, we have plotted the groundstate for two sequences which only differ by

immediate flanking context (underlined) to CpG step, GCGTCGGAACGTTTTGTCGGC and

GCGTCGGTGCGCTTTGTCGGC to visualize the change in groundstate on the symmetric

methylation of the central CpG step (in bold). The change in groundstate for the latter sequence

on CpG methylation is much larger and non-local compared to the former, particularly for the

phosphate coordinates.
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Fig. 6.5 Sequence logos to highlight flanking contexts that least and most influence
the change in groundstate upon epigenetic modification of central CpG step. Statis-
tics are obtained from all decamers with central CpG steps embedded in a 22mer, i.e.,
GCGTCGX4X3X2X1CGY1Y2Y3Y4GTCGGC and information content in Xj and Yj for most
(top 0.5%) and least change (bottom 0.5%) in the groundstate are plotted on the ordinate.

We want to highlight that the probability of occurrence of C or G base-pairs adjacent to

CpG step is much more likely in CpG islands than in non-CpG islands. Traditionally, increased

dsDNA stiffness due to epigenetic modifications is considered the controlling factor to act as a

gene silencer [38, 156, 162]. It is believed that methylation of CpG steps reduces dsDNA flex-

ibility and therefore, reduces its ability to interact with transcription factors, modulates dsDNA



CHAPTER 6. Extension of cgNA+ parameter sets for epigenetically modified DNA 120

accessibility, and makes them less prone to wrap around nucleosomes. Here, we have shown

that the change in the equilibrium shape, i.e., groundstate is also a contributing factor to the

differential behavior of modified dsDNA, in particular, for CpG islands.

6.4 Impact of epigenetic base modifications on groove widths

As discussed earlier in section 2.4.3, dsDNA displays a wide range of groove widths as a func-

tion of sequence; for example, minor groove widths range from 3 to 9 Å. The groove widths

were computed for all decamers ( one million) embedded in a flanking sequence of length

six bps on both sides and taking central Watson phosphate (index 6 in decamer) as the refer-

ence phosphate. Notably, we concluded from the sequence logos that the sequence alphabets at

positions 2-6 in decamers influence the minor groove, and 4-10 influence the major groove.

In limited prior studies exploring the influence of CpG modification on groove widths, the

observations are inconsistent. For instance, the general belief is that CpG methylation narrows

and widens the minor and major grooves, respectively [45, 106]. However, a thorough analysis

of available X-ray crystallographic and NMR data [164] has shown that the methylation of CpG

step may reduce or widen the minor groove depending on the sequence and location of the

modified CpG step.

In this section, we have investigated how epigenetic modifications of the CpG step influence

groove widths. Firstly, in figure 6.7(a), we have plotted a schematic diagram of the CG base-pair

showing that the methyl or hydroxymethyl (shown as X) is present in the major groove, thus,

explicitly change the major groove chemical environment, while the minor groove remains the

same. For a systematic analysis of how this change affects the groove widths, we have performed

two studies to explore the effect on groove widths due to (a) location of CpG modification, and

(b) extent of CpG modification in the sequence. Note that we have used the same protocol

described in section 2.4.3 for both studies.

For the first study, we have considered sequences of length 22 bps, i.e., GCTGTGX1X2X3-

X4X5X6X7X8X9X10CATGGC and varied the position of CpG step in X2X3X4X5X6 and com-

puted the difference in groove widths before and after the modification of that CpG step. The

results are plotted in figure 6.7(b), showing that the minor grooves generally widen on CpG step

modification and depend on the position of the CpG step. Moreover, the widening of the minor

groove on CpG modification is more for symmetric modifications than for asymmetric ones,

and hydroxymethylation of CpG step widens the minor groove more than methylation. Lastly,

the error bars in the plot are for various possible sequences by changing Xis.

Furthermore, to investigate the influence on groove widths due to the extent of CpG modi-

fications, we have considered a sequence GCTGTGCGCGCGCGCGCATGGC of length 22 bp

such that the central decamer is (CG)5. Then, we have iteratively modified (symmetric/asymmetric

methylation/hydroxymethylation) this sequence by replacing one, two, three, four, and all five

CpG steps and computed the groove widths, and presented the findings in figure 6.7. We have

plotted minor groove widths with the percentage of CpG modification, which shows a posi-

tive correlation between the minor groove widths and % CpG modification. The minor groove

width for a fully symmetrically methylated sequence is approximately one Å larger than the

corresponding unmodified sequence.
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Fig. 6.6 Groundstate coordinates (elements of w) for (a) GCGTCGGAACGTTTTGTCGGC
(red, blue, and green as shown in legend) and same sequence with symmetric methy-
lation on central CpG step in dashed lines, and (b) groundstate coordinates for
GCGTCGGTGCGCTTTGTCGGC (red, blue, and green as shown in legend) and same se-
quence with symmetric methylation on central CpG step in dashed lines. The two sequences
differ only in the immediate flanking sequence context (underlined) of the central CpG step (in
bold), and the figure highlights the role of flanking sequence context in the change of dsDNA
groundstate upon CpG methylation.
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Fig. 6.7 (a) Schematic diagram for grooves in modified CG base-pair where
methyl/hydroxymethyl group (X) is in major groove. Change in minor groove widths
due to (b) CpG modification at different positions in the highlighted sub-sequence of
GCTGTGX1X2X3X4X5X6X7X8X9X10CATGGC, and (c) various extent of CpG modification
in the highlighted sub-sequence of GCTGTGCGCGCGCGCGCATGGC.
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Fig. 6.8 Each subplot plots apparent (ℓp) or dynamic (ℓd) persistence lengths for sequences
containing x% CpG steps (shown in title) for increasing % randomly modified CpG steps (shown
in legend). ● and error bar are the mean and standard deviation for 20,000 random sequences.
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Similar trends are observed for asymmetric methylation of CpG steps, but the range of variation

is slightly smaller (≈ 0.8 Å). Moreover, hydroxymethylation of CpG steps has an almost iden-

tical effect on the minor groove widths. Also, we would like to highlight that the position of

the modified CpG step is crucial, as can be deduced from the error bar in the plot, in which se-

quences with the same percentage of CpG step modification have different minor groove widths.

Lastly, CpG modification slightly widens the major grooves. The plots are not shown here

for brevity. However, it must be noted that even though the major groove width does not change

significantly on CpG modification, it significantly changes the chemical environment inside the

major grooves (with methyl group being hydrophobic while hydroxymethyl being hydrophilic)

and therefore, has implications in protein-DNA interactions [164].

6.5 Effect of CpG modification on the persistence lengths of dsDNA

In this work, we have computed sequence-dependent dynamic persistence length, ℓd by factoring

out the contributions of the intrinsic shape from apparent persistence length ℓp as described in

ref. [123] and summarized in section 2.6 in the context of the cgNA+ model. Moreover, in

section 4.4.2, we have shown that both the apparent and dynamic persistence lengths strongly

depend on the sequence.

A general consensus is that methylation leads to an increase in persistence length [10, 68,

156, 181]. However, recent experimental studies [160, 187] revealed that hypermethylation

could increase dsDNA flexibility. Therefore, to investigate the influence of CpG modification on

the persistence length of dsDNA, we conducted a systematic study for 0.5 million sequences of

length 220 bps for each type of CpG modification. In particular, we have generated several lists

of 20,000 sequences with different percentages of CpG steps, namely, 1.3%, 2.7%, 5.8%, 8.9%,

11.6%, 14.7%, and 17.4% and then randomly modified 0%, 25%, 50%, 75%, and 100% of the

CpG steps. In figure 6.8, we have plotted the dynamic and apparent persistence of all sequences.

Each subplot, from left to right, plots persistence length for sequences with increasing %CpG

steps, and in each subplot, we have shown persistence length for sequences with different %CpG

modification, i.e., 0% and 100% CpG modification means unmodified and completely modified

(CpG steps) sequences. Each data point is the mean and standard deviation of persistence length

for 20,000 random sequences with a particular percentage of CpG steps and a certain number

of those CpG steps are randomly modified. The following observations can be made from

figure 6.8:

• With an increase in %CpG steps in the sequence (which may also correspond to GC

content) both ℓp and ℓd increase.

• The effects on persistence length for both modifications, methylation and hydroxymethy-

lation, are almost similar.

• According to the definition, ℓd − ℓp > 0, but this difference increases with increasing

% modified CpG steps. It implies that the modified CpG steps make the intrinsic or

groundstate shape of the sequence more bent, which might be attributed to the increased

Roll of the CpG steps (refer to figure 6.4).

• The symmetric and asymmetric modifications show a similar pattern for ℓp, i.e, ℓp de-

creases when % modification increases. Moreover, the decrease in ℓp also depends on the
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number of CpG steps in the sequence, since more modified CpG steps lead to a further

decrease in ℓp.

• Whereas, ℓd remains constant on symmetric modification and ℓd increases when % asym-

metric modification increases.

Thus, by rigorous computations, we found that the apparent persistence length of a given se-

quence decreases with the CpG step modification, while the dynamic persistence length remains

almost similar for symmetric modification and increases for asymmetric modification.



CHAPTER 7

Neural networks to predict the location of sugar atoms in cgNA+
configurations

DNA consists of three elementary units: base, phosphate, and deoxyribose sugar, and the latter

two form DNA backbone (refer figure 1.3). The main focus of this chapter is on the sugar and

DNA backbone. The deoxyribose sugar is an inherently non-planar ring molecule that primarily

stays in either C2′−endo or C3′−endo conformations. These conformations are strongly linked

to two common geometries adopted by dsDNA (or any dsNA), i.e., A-form (C3′−endo) and

B-form (C2′−endo), having distinct structural and mechanical properties. Moreover, the sugar-

phosphate backbone is quite flexible and is characterized by the six dihedral parameters, but

these dihedral angles are not entirely free to rotate due to steric constraints. Therefore, the ds-

DNA backbone prefers some conformations over others; in particular, the two typical backbone

conformations include BI and BII identified based on the difference between the dihedral angle

ϵ − ζ, which is negative for BI and positive for BII conformation (refer section 1.1 for details).

These backbone conformations directly related to the structural properties of dsDNA, for exam-

ple, groove widths [70, 134] and base-pair step coordinates [51, 52, 144, 147] and are found to

be important in protein-DNA recognition [51, 65]. Furthermore, it has been observed that the

sugar pucker modes directly influence dsDNA backbone conformations with BII conformation

is strongly constrained by the C2′−endo pucker, while BI conformations are much less affected

by various sugar pucker modes [177].

Moreover, dsDNA backbone conformations are found to have specific sequence preferences

in X-ray and NMR structures [51, 70, 144, 197, 208] with BI as the dominant conformation.

In computational studies, it has been observed that along with the associated dimer step, the

backbone conformations are also affected by the flanking sequence contexts [21, 39, 42, 69,

147]. A rigorous analysis by the ABC consortium [147] using MD simulations found that

for most RR and RY steps, the backbone conformation is highly sensitive to flanking contexts

with 5′−flanking Y and R favoring higher BII and BI %, respectively. In contrast, YR steps

strongly prefer the BI state, irrespective of the flanking contexts. Thus, the dsDNA backbone

and sugar conformations have specific sequence (often non-local) preferences and are crucial in

determining the structural and mechanical properties of dsDNA and its functioning in biology.

The cgNA+ model explicitly treats bases and phosphates as rigid bodies, while sugar is

treated implicitly; thus, it does not provide direct information on the dsDNA backbone and

sugar conformations. For a given sequence, the cgNA+ model predicts the groundstate and

the stiffness matrix in the internal coordinates of the base and the phosphate. Furthermore, us-

ing Monte Carlo sampling, one can obtain an ensemble of configurations corresponding to this

125
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groundstate and stiffness matrix. For any such configuration (including groundstate) described

in internal coordinates, the absolute position and orientation of each rigid base and each rigid

phosphate can be reconstructed (refer section 2.2.3), and subsequently, an atomistic represen-

tation can be obtained by embedding localized ideal atoms coordinates (listed in table A.1) in

bases and phosphates using equation (2.17). However, this atomistic representation of the con-

figuration is missing the sugar group in the dsDNA backbone as the model does not consider

sugar explicitly. This chapter presents a machine learning tool to completely fine-grain any

cgNA+ configuration by additionally predicting sugar atoms. In particular, we have used feed-

forward Neural Network (NN) to predict the location of sugar atoms in cgNA+ configuration

using the positions of the phosphates and bases atoms. Note that the sugar atoms are the only

heavy atoms missing in cgNA+ configurations.

With the same goal of finding missing heavy atoms, an alternative approach based on mini-

mizing the force field potential (taken from the same force field used for MD simulations) was

proposed in ref. [149]. In this approach, the total potential energy of the sub-molecule (given

sugar and the covalently attached base and phosphates) is minimized to obtain the most stable

sugar configuration while freezing the position of the attached phosphate and base as predicted

by the cgNA+ model. Even though the approach worked reasonably well for cgNA+ ground-

state, this approach had limitations. The primary constraint is that the minimization is slow

and the algorithm is not guaranteed to find the minima. Thus, reconstructing the sugar ring for

an ensemble of configurations for a given groundstate and stiffness (to perform any statistical

analysis of the backbone configurations) is computationally expensive. Moreover, for any con-

figuration that is not groundstate, the sugar ring should not adopt the local minima state; thus,

the approach is unsuitable.

In the following section, we have first described the elementary details of the sugar ring and

NNs. Then, a detailed mathematical framework to approach the problem and the necessary de-

tails of the NN training are provided. Once neural networks are trained, we have evaluated the

accuracy of the cgNA+ sugar module to predict the location of sugar atoms and dihedral angles

for the sugar ring and the backbone. Then we have shown an application of the model in the

sequence-dependent analysis of pucker modes and backbone angles and discussed the poten-

tial application in obtaining an equilibrium structure that can be used to start MD simulations,

particularly useful for dsDNA mini-circles. Finally, we showed that, despite some limitations,

the module’s predictions are impressively good; furthermore, we argued that the module has a

scope for improvement and discussed the possible directions for future work.

Details of all the codes and data used in this chapter are provided appendix F.

7.1 Elementary details and implementation of the Neural Networks

In this section, we have discussed the implementation of NNs to predict the location of sugar

atoms from bases and phosphates coordinates in cgNA+ configurations. First, we have described

modeling assumptions, followed by a brief description of NN, and finally, the implementation

and performance of the NNs in predicting the location of sugar atoms.
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7.1.1 Sugar ring in DNA

Deoxyribose sugar in DNA is a five-member ring (C1′, C2′, C3′, C4′, and O4′) with C substi-

tution (C5′) at C4′ as shown in figures 1.4 and 7.1. The sugar ring is typically characterized

in terms of dihedral angles (θi ∀ i ∈ [0,1,2,3,4]) and pseudo-rotation phase angle (P) as de-

fined in figure 1.4 and equation (1.1), respectively. The pseudo-rotation phase angle (P) and the

maximum degree of pucker (θmax) are defined as

tan(P) = (θ4 + θ1) − (θ3 + θ0)
2θ2 (sin(36○) + sin(72○))

and θmax =
θ2

cos(P) (7.1)

where P can be anything between 0− 360○ and if θ2 < 0 then P = P + 180○. Sugar ring is highly

flexible, non-planar, and exists in various puckered conformations (characterized by P), which

are inter-convertible into each other. A figure explaining various pucker conformations and re-

spective definitions is provided in figure 1.4. Due to steric constraints, not all conformations are

equally accessible, and the two most common puckered conformations are C2′− and C3′−endo.

7.1.2 Assumptions and mathematical formulation

The primary goal of this work is to predict the position of sugar atoms given the atomistic

coordinates of adjacent phosphate and base atoms. It is reasonable to assume that the position

of the surrounding bases and phosphates atoms can determine the location of the missing sugar

atoms. In particular, it has been observed in previous works that the sugar modes and backbone

orientations depend non-locally on the sequence [21, 39, 42, 69, 147].

To formulate a mathematical framework, we first introduce the notation. Let us assume that

a configuration w(S) ∈ R24N−18 is provided in cgNA+ internal variables where N is the length

of the sequence S in the number of base-pairs (bps). Using transformation TIÐ→F ∶ R24N−18 Ð→
SE(3)4N−2 as defined in section 2.2.3, one can rewrite

TIÐ→F (w) = {Fn
B+ , F

n
B− , F

n′

P+ , F
n′′

P−}n=1⋯N, n′=2⋯N, n′′=1⋯N−1 (7.2)

where F ∈ SE(3) represents the frame (with orientation R ∈ SO(3) and translation r ∈ R3)

with subscript B and P representing the base and phosphate frame, respectively, and + and −
denote the Watson (chosen as reading) and the Crick (complementary) strands. Note that the

first 5′-phosphate on both strands is not considered. Subsequently, in these frames, ideal atoms

can be embedded using the transformation TFÐ→C ∶ SE(3) Ð→ R3×K defined as

CXk = TFÐ→C(FX) =∶ RAXk + r, ∀ k = 1⋯K (7.3)

where K is the number of atoms in base or phosphate, X is the kind of rigid body (base or

phosphate), AXk ∈ R3×1 is the coordinate of the kth ideal atom in X type rigid body (listed in

table A.1), and CXk ∈ R3×1 is the coordinate of the kth atom embedded in frame FX . Thus,

equation (7.2) can be written as

TFÐ→C(TIÐ→F (w)) = {CnB+ ,CnB− ,Cn
′

P+ ,Cn
′′

P−}n=1⋯N, n′=2⋯N, n′′=1⋯N−1 (7.4)
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where CX ∈ R3×K(X) and K is a function of the rigid body type (X). Lastly, we have denoted

the sugar ring as {Sn+,Sn−}n=1⋯N where + and − denote the reading and the complementary

strands and n denotes the index of the base to which the sugar is attached.

In this work, we have assumed that the atomic coordinates of any sugar in a DNA strand

can be determined from the location of the covalently attached base and phosphates and the

two nearest bases (which are not directly bonded to the sugar) on the same strand. Figure 7.1

depicts a typical atomistic structure of a DNA strand where the sugar atoms for the nth base-pair

level (Sn+) are highlighted in red, and the assumption is that the location of these atoms can be

predicted from the atomic coordinates of the three nearest bases (i.e., bases at the n-1, n, and n+1

base-pair level) and two phosphates (between these three base-pair levels) on the same strand.

In other words, Sn± can be determined from the positions of {Cn+1B± ,Cn+1P± ,CnB± ,CnP± ,Cn−1B± }, i.e.,

Sn± = f ({Cn+1B± ,Cn+1P± ,CnB± ,CnP± ,Cn−1B± }) (7.5)

We have used NNs to approximate the underlying function (f(⋅)) that predicts the position of

sugar atoms from the position of neighboring bases and phosphates. In the following subsection,

we have briefly discussed NN and its training. More details about NNs can be found in an

excellent book by Goodfellow et al. [64].

Notably, we assumed that location of sugar atoms depends on neighboring three bases and

two phosphates (on the same strand), however, the positions of these bases and phosphates are

non-locally dependent on further neighbors on both strands; thus, the predicted location of sugar

atoms will have non-local sequence dependence. We have tested the NN predictions for various

choices and concluded that this approximation is optimal.
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Fig. 7.1 A schematic diagram of a DNA strand with bases and phosphates (which can be ob-
tained from the cgNA+model) along with the missing sugar atoms highlighted in light red color.
The figure only focuses on one middle sugar ring; the rest of the sugar rings and the comple-
mentary strand are not shown.
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Fig. 7.2 Typical schematic diagram for a feed-forward Neural Network with D input units, C
output units, and H hidden layers each containing m neurons. The input and output layers are
considered as 0th and (H + 1)th layers.

7.1.3 Feed-forward Neural Network

Feed-forward Neural Networks (NNs), also known as multilayer perceptrons, are an important

class of machine learning algorithms whose structure and name are inspired by neurons in the

human brain. The goal of an NN is to approximate the true underlying function (f∗) for the

given input (X) and output (Y ∗) as Y = f(X;Θ) by learning the NN parameters Θ. A typi-

cal NN diagram is shown in figure 7.2 with the zeroth layer as input layer (containing D input

units), H hidden layers (containing m neurons each), and the final layer as output layer (con-

taining C outputs). The inputs X(x1, x2, ..., xD) can also be denoted as (y(0)1 , y
(0)
2 , ..., y

(0)
D )

and similarly, the outputs Y (y1, y2, ..., yC) as (y(H+1)1 , y
(H+1)
2 , ... , y

(H+1)
C ). y(h)j is the output

of the jth neuron in layer h that is given as a function of the output of neurons in layer h − 1 as,

y
(h)
j = f (h)(y(h−1)) = Φ(∑

i

w
(h)
i,j y

(h−1)
i + b(h)j ) (7.6)

where i denotes the index of neuron in (h − 1)th layer, w(h)i,j is an NN parameter called weight

that connects ith neuron in (h − 1)th layer in jth neuron of the hth layer and b
(h)
j is the bias term

at hth layer for the jth neuron. Lastly, Φ(⋅) is the activation function, which is often non-linear.

Popular choices for Φ(⋅) include sigmoid function, inverse tangent function, and rectified linear

unit (ReLU). The final output, Y, is given as the composition of functions applied at every layer

as

Y = f(X) = f (H+1) o ⋅ ⋅ ⋅ o f (2) o f (1)(X). (7.7)

This step is also known as the forward pass.

Given the training data with P samples, STrain = (Xp, Y
∗
p )p=1⋅⋅P , the training of NN in-

volves finding NN parameters, w and b, such that it minimizes the cost function defined as

L = 1

P

P

∑
p=1
(Y ∗p − Yp)

2
. (7.8)
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The above loss function is the most popular choice called mean square error. Other popular

choices include the mean absolute error, a combination of mean square error and mean absolute

error, or some custom choices. The NN training step is called the back-propagation step, and

there exist several algorithms to minimize the loss function and, thus, optimize w and b starting

from some random initialization. Popular algorithms for the back-propagation step are gradient

descent, stochastic gradient descent, and Adam optimizer.

Before training NN, one must make various choices, including the number of hidden layers

(H), neurons in each layer (m), activation function (Φ(⋅)), optimizer, network initialization,

and loss function. These choices are collectively called hyperparameters, and various options

should be explored to find optimal hyperparameters for the given training data. One of the

standard techniques for searching in hyperparameter space is the k-fold cross-validation (CV)

technique[64]. In the CV technique, a subset of training data is separated (randomly chosen),

termed the validation set, used to test the performance of the NN trained on the remaining

training data. This performance of the NN for a given choice of hyperparameters is called

validation accuracy. The k-fold CV repeats the train-validation split k times so that all the

samples in the training data become part of the validation data exactly once. The most common

choice for k is 5, i.e., in every split, 20% of the data are taken as validation data, and the model

is trained on the remaining 80%. Thus, using k-fold CV, one can compute the average validation

accuracy for a given choice of hyperparameters, and based on this average validation accuracy,

one can choose the optimal hyperparameters while searching in hyperparameter space.

7.1.4 Training data

As described in chapter 3, we have performed 10 µs long MD simulations for 16 palindromic

sequences (of length 24 bps) referred to as the training sequences in LbDNA (see table B.1)

to train the PDNA in cgNA+ model. To train the NN, we have used snapshots from the same

training data. Note that the training sequences in LbDNA contain all possible trimers with almost

the same frequency. We have used the following steps to obtain the training data for NN:

i) In the MD time-series of each training sequence, we sub-sampled snapshots such that

the configurations are uncorrelated (100 picoseconds apart from each other). It leads to

16 ⋅ 105 snapshots in the training data, since we have 10µs of MD simulations for 16

sequences. Subsequently, we removed snapshots with broken H-bond (as done in training

the cgNA+ model), which discarded ≈ 15% of the initial training data; thus, 0.85 ⋅16 ⋅105

snapshots.

ii) Each MD configuration is split into trimers centered around the middle sugar ring, as

shown in figure 7.1 while reading separately from both strands. It led to 22 trimers per

strand for each configuration (as sugar rings associated with terminal base-pairs are ig-

nored). Thus, the total samples to train NN ≈ 0.85 ⋅ 16 ⋅ 105 ⋅ 2 ⋅ 22 where the atomistic

coordinates of the phosphates and bases are inputs, while the sugar atoms are outputs.

iii) Before training, we have aligned all the trimers about its central base, i.e., the frame

associated with the central base is taken as {I,0} where I ∈ R3×3 is an identity matrix

and 0 ∈ R3×1 is a zero vector.
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Model Weight Optimizer Batch Epoch Activation Number Hidden Learning
initialization size function of nodes layers rate

(a) Hyperparameter space explored

Xavier normal Adam 32 50 ReLU 200 to 1800 2, 4, 0.001
Random normal SGD 64 100 tanh in steps of 200 6, 8 0.005

128 200 sigmoid

(b) Optimal hyperparameters

RRR Xavier normal Adam 32 200 ReLU 1200 4 0.001
RRY Xavier normal Adam 32 200 ReLU 1200 4 0.001
RYR Xavier normal Adam 32 200 ReLU 1800 4 0.001
YRR Xavier normal Adam 32 200 ReLU 1200 4 0.001
YYR Xavier normal Adam 32 200 ReLU 1200 4 0.001
YRY Xavier normal Adam 32 200 sigmoid 400 4 0.0005
RYY Xavier normal Adam 32 200 ReLU 1800 6 0.001
YYY Xavier normal Adam 32 200 ReLU 400 4 0.0005

Table 7.1 (a) Hyperparameters space explored and (b) the optimal hyperparameters found for
neural networks trained for each trimer.

Since the overarching aim of this work is to fit the sugar ring in cgNA+ predicted coarse-

grained configurations, which have rigid phosphates and rigid bases, i.e., fixed position of atoms

within a given rigid body. Therefore, the model should also be trained on similar data rather than

crude MD snapshots, which have non-rigid phosphates and bases. Thus, the input data for the

NN are the best-fit ideal coordinates in the phosphate and base units, which are obtained by

first fitting the frames in the MD snapshots (refer section 2.1) and then re-embed ideal atoms as

described in equation (7.4).

7.1.5 Implementation

In the previous sections, we have described the typical architecture of the NN and the training

data. In this section, we have discussed the implementation of the NN to predict the location of

sugar atoms from the positions of neighboring bases and phosphates. In other words, we have

trained the NN for which the input is the atomic positions of the three nearest bases and the two

nearest phosphates to the sugar ring on the same strand, and the output is the coordinate of the

sugar atoms. It is mathematically described in equation (7.5).

One of the crucial aspects of the NN architecture pertinent to this implementation is that the

NN has a fixed number of input features (once chosen). However, the number of atoms in the

neighboring bases depends on the type of base (A/T/C/G). A/G are purines with more atoms,

while C/T are pyrimidines with fewer atoms. Therefore, we have trained eight different NNs for

eight possible trimers in the pyrimidine and purine alphabets.
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Fig. 7.3 Sugar pucker angles on Watson strand of sequence index 20 in LbDNA (GCGGAT-
TACGCAGGC). The parameters observed in MD simulations (labeled as MD) are in red, ob-
tained by re-fitting sugar in coarse-grained MD snapshots (labeled as NN) are in blue, and ob-
tained by fitting sugar in an ensemble of coarse-grained configurations generated by the cgNA+
Monte Carlo (labeled as CG) are in green. The ensemble mean and standard deviation for a
given parameter are plotted as ● and vertical line, respectively.
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Fig. 7.4 Sugar pucker angles on Watson strand of sequence index 17 in LbDNA (GCAT-
TACGCTCCGGAGCGTAATGC). The parameters observed in MD simulations (labeled as
MD) are in red, obtained by fitting sugar in coarse-grained MD snapshots (labeled as NN) are
in blue, and obtained by fitting sugar in an ensemble of coarse-grained configurations generated
by the cgNA+ Monte Carlo (labeled as CG) are in green. The ensemble mean and standard
deviation for a given parameter are plotted as ● and vertical line, respectively.
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7.1.5.1 Hyperparameters selection

Before training the final (best-fit) NN model, one must choose the hyperparameters for NN.

We have chosen the hyperparameters for each NN based on the average validation accuracy as

described in section 7.1.3. We have used a five-fold CV, i.e., randomly split the total training

data (for each trimer) into five equal sets, of which four sets were used as training data, while

the remaining one was used as validation data. This process is repeated five times such that

each set becomes the validation data exactly once. Based on this average validation accuracy,

we have selected the hyperparameters for the best-fit model. In table 7.1, we have listed the

hyperparameter space explored to find the optimal choice for the best-fit model. In total, we have

explored 7,776 combinations, of which many choices gave a comparable average validation

accuracy. Finally, for each trimer model, the set of hyperparameters with the highest average

validation accuracy was selected as the optimal hyperparameters as tabulated in table 7.1. In

particular, we found that the Adam optimizer performed best with 200 epochs (the number

of times the training data pass through the algorithm), batch-size (number of samples in one

iteration of training) of 32, and Xavier normal initialization of the neural network parameters.

The ReLU activation function generally works best, and the optimal choices for the number of

neurons and hidden layers are different for different trimer models.

7.1.5.2 Best-fit model

Once the optimal hyperparameters are found (listed in table 7.1), the best-fit model is trained for

each trimer using the complete training data. The training of each model took approximately 12

hours on one CPU.

7.1.6 How accurate is the model?

In this section, we have discussed the NN accuracy in predicting sugar atom coordinates. First,

we have described the test data and then quantified NN performance.

7.1.6.1 Test data for model

Test data should not be involved in model training or hyperparameter selection. Recall that

NNs are trained on MD snapshots that are 100 picoseconds apart in the MD times-series (which

has snapshots at two picosecond intervals) of the training sequences in LbDNA. Therefore, in

principle, the remaining MD snapshots not used in NN training can be used as test data. A

more severe test would be to check the model prediction accuracy for sequences not used in

the training data, i.e., test sequences in LbDNA. In the following section, we have compared

the predictions with observations in MD simulations for two sequences that are not part of the

training library.

7.1.6.2 Model accuracy in the prediction of sugar atoms position

The cgNA+ sugar module predicts the location of sugar atoms in any cgNA+ coarse-grained

configuration. Then, various dihedral angles (commonly used to characterize the DNA back-
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bone and sugar ring) can be computed from these atomic positions. We have assessed the quality

of the model predictions for a) atomistic coordinates of sugar and b) various backbone dihedrals

and sugar pucker angles for two test sequences (indices 17 and 20 in LbDNA).

To evaluate the accuracy of the cgNA+ sugar module, we first have coarse-grained MD

snapshots (by fitting phosphate and base frames) and then fine-grain those coarse-grained snap-

shots using the cgNA+ sugar module. The mean square error per degree of freedom (dof) in

predicting the location of sugar atoms for the test data is approximately 0.005 Å2 or ≈ 0.07 Å

as the root mean square error per dof. The statistics are obtained from 105 snapshots (minus

snapshots with broken H bond) for each of two test sequences (indices 17 and 20 in LbDNA).

Thus, in absolute terms, the mean error in the predictions of the cgNA+ sugar module for test

sequences is negligible. Compared to the reconstruction error in the cgNA+ model, which is

≈ 0.003 Å2 or (rad/5)2 per dof in terms of the Mahalanobis distance (see table 4.1 for more

details), the prediction error in the cgNA+ sugar module is only slightly larger. It highlights that

the cgNA+ sugar module can accurately fine-grain any cgNA+ coarse-grained configuration.

The standard parameters for analyzing the DNA backbone and sugar conformations are

dihedral angles. In figures 7.3 and 7.4, we have plotted the sugar ring dihedral angles and

the pseudo-rotation phase angle (P) (defined in section 1.1.1) for two test sequences with MD

observations in red and the corresponding NN predictions (for the same MD configurations) in

blue. The following observations can be made from the figures:

• Both the mean and standard deviation for various parameters are highly sequence-dependent.

• NNs capture the distribution of various parameters exceptionally well, with mean values

almost identical and standard deviation slightly smaller in the predictions.

• In a one-to-one comparison of the configurations in the ensemble, the Pearson correlation

for any parameter is greater than 0.9.

Furthermore, in figures 7.5 and 7.6, we have plotted various backbone dihedral angles (de-

fined in section 1.1.1). First, note that the sugar pucker angles are defined using the sugar atoms

predicted by the NNs; in contrast, backbone dihedral angles involve some atoms that are part of

either rigid base or rigid phosphate. For instance, αn is defined as the dihedral angle between

O3′n−1–Pn–O5′n–C5′n (see figure 1.3) involving frozen atoms O3′n−1, Pn, and O5′n. Therefore,

a larger prediction error can be expected in the backbone dihedral angles because of the rigid

base/phosphate assumption, which can not be attributed to the NNs performance. As can be ob-

served in figures 7.5 and 7.6, NNs capture the dihedral angles of the backbone; their mean and

standard deviation are almost similar and highly dependent on the underlying sequence. How-

ever, one can also notice that the various backbone dihedrals are consistently underestimated

or overestimated (only a few degrees) irrespective of the sequence, e.g., α and ζ are overesti-

mated, while the rest are underestimated. Lastly, in figure 7.7, we have compared the backbone

conformations in the two test sequences by plotting % BII population identified as ϵ − ζ > 0.

NNs predictions systematically overestimate % BII conformations compared to those observed

in the corresponding MD simulations, which can be expected as a slight underestimation and

overestimation of ϵ and ζ, respectively, have a pronounced effect on % BII or BI conformations.
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Fig. 7.5 Backbone dihedrals (on the Watson strand) for sequence index 20 in LbDNA (GCG-
GATTACGCAGGC). The parameters observed in MD simulations (labeled as MD) are in red,
obtained by fitting sugar in coarse-grained MD snapshots (labeled as NN) are in blue, and ob-
tained by fitting sugar in an ensemble of coarse-grained configurations generated by the cgNA+
Monte Carlo (labeled as CG) are in green. The ensemble mean and standard deviation for a
given parameter are plotted as ● and vertical line, respectively.
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Fig. 7.6 Backbone dihedrals (on the Watson strand) for sequence index 17 in LbDNA (GCAT-
TACGCTCCGGAGCGTAATGC). The parameters observed in MD simulations (labeled as
MD) are in red, obtained by fitting sugar in coarse-grained MD snapshots (labeled as NN) are
in blue, and obtained by fitting sugar in an ensemble of coarse-grained configurations generated
by the cgNA+ Monte Carlo (labeled as CG) are in green. The ensemble mean and standard
deviation for a given parameter are plotted as ● and vertical line, respectively.
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Fig. 7.7 BII % on the Watson strand for sequence indices 20 and 17 in LbDNA. The parameters
observed in MD simulations (labeled as MD) are in red, obtained by fitting sugar in coarse-
grained MD snapshots (labeled as NN) are in blue, and obtained by fitting sugar in an ensemble
of coarse-grained configurations generated by the cgNA+ Monte Carlo (labeled as CG) are in
green. The ensemble mean and standard deviation for a given parameter are plotted as ● and
vertical line, respectively.
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7.2 Applications of the cgNA+ sugar module

The primary goal of the cgNA+ sugar module is to fine-grain any cgNA+ coarse-grained config-

uration. It allows to predict a complete atomistic equilibrium structure for an arbitrary sequence.

Moreover, using the cgNA+ Monte Carlo code (refer section 2.6), one can obtain an ensemble

of configurations (in cgNA+ coarse-grained coordinates) and then using the cgNA+ sugar mod-

ule, an ensemble of atomistic configurations. This ensemble allows for studying backbone and

sugar-pucker conformations for any sequence. In particular, we have predicted the ensemble of

atomistic configurations (using the cgNA+ Monte Carlo code and sugar module) for sequence

indices 17 and 20 (of LbDNA listed in table B.1) and plotted the various pucker angles, dihedral

angles and backbone conformations in figures 7.3 to 7.7 in green. For the sugar pucker angles

shown in figures 7.3 and 7.4, the two data sets, a) MD observations and b) ensemble of atom-

istic configurations obtained using the cgNA+ Monte Carlo code, are close in terms of mean

and standard deviation (standard deviation is greater in MD observations). However, there are

some noticeable exceptions, for example, C at the 11th position of index 20 as shown in fig-

ure 7.3. Similar observations can also be made for the dihedral angles and conformations of the

backbone in figures 7.5 to 7.7. We would like to highlight that the provided MD statistics are

for 10 µs of simulation data which took approximately two months (for a sequence of length 24

base-pairs) on a highly efficient GPU node (containing 2 Xeon-Gold processors and 2 NVIDIA

V100 PCIe 32 GB GPUs); in contrast, the ensemble of 105 atomistic configurations obtained us-

ing the cgNA+ tools merely took an hour. Thus, this approach provided an accurate and highly

efficient alternative to obtain a sampling of configurations for any sequence. Such an analysis

can be easily performed for a large number of sequences. It will be beneficial to generate such

an ensemble for some mechanically exceptional sequences discovered using the cgNA+ model,

for instance, sequences with extreme groove widths or persistence lengths, as discussed in chap-

ter 4. This analysis is not performed in this thesis, as the authors believe that there is scope for

improvement in the current cgNA+ sugar module, as discussed in the next section; therefore, an

extensive analysis of interesting sequences will be undertaken in the future.

Another application of this module is to obtain a sequence-dependent atomistic equilibrium

structure for an arbitrary sequence, which can then be used as a starting point for the MD sim-

ulations. Note that the starting structure in an MD simulation is crucial and desirable that it

is close to the equilibrium structure under the given physical conditions. A starting structure

far from the equilibrium structure may take a prohibitively long simulation time to equilibrate.

There are several reliable sources to obtain an initial structure for short linear NA fragments,

such as the nucleic acid builder (NAB) in AMBERTOOLS 18 [29]. However, for large sys-

tems, in particular, dsDNA mini-circles (typically are of length 60-500 base-pairs), obtaining

a good initial structure is non-trivial and crucial as full atomistic MD simulation is computa-

tionally expensive. Previous studies [98] have used JUMNA software [100] to obtain the initial

structures, and then the energy of that structure is minimized using some force fields. In par-

ticular, Glowacki et al. [13, 60] developed an algorithm to compute the equilibrium structure

of the dsDNA mini-circle (in cgDNA/cgDNA+ internal coordinates) for a given sequence and

linking number from a linear groundstate predicted by the cgDNA/cgDNA+ model. This al-
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gorithm, combined with the cgNA+ sugar module, presents an excellent method to obtain a

sequence-dependent equilibrium atomistic structure that can be used to start MD simulations.

Such an accurate sequence-dependent equilibrium structure for dsDNA mini-circles should take

significantly less simulation time to equilibrate in MD simulations. Note that the location of

sugar atoms predicted by the cgNA+ sugar module for dsDNA mini-circles might not be highly

accurate compared to linear fragments (as the NNs are trained on linear fragments data), in par-

ticular, for highly overwound or underwound dsDNA mini-circles, but it is still an excellent tool

to obtain a good initial structure for dsDNA mini-circles. At the time of the thesis writing, we do

not have any MD simulation results for dsDNA mini-circles to compare the predicted dsDNA

mini-circle equilibrium structure with the MD observations, but in the future, such a comparison

will help validate and further improve the cgNA+ sugar module for dsDNA mini-circles.

7.3 Limitations of the cgNA+ sugar module and improvement directions

We would like to emphasize that the current version of the module presented in this chapter

has a further scope of improvement in several directions. In particular, we have used only the

feed-forward architecture of the NNs, which works reasonably well. However, other popularly

used NN architectures, such as recurrent and long-short-term memory NN, might improve the

predictions.

Calculating the dihedral angles and backbone conformational state involves phosphate or

base atoms that are assumed to be frozen in the cgNA+ configurations. This approximation for

phosphate and base as rigid bodies is reasonable; however, it might lead to erroneous backbone

dihedral angles. In particular, the atoms within a phosphate group fluctuate more and are in-

volved in the computation of most dihedral angles. Therefore, a possible solution to improve

the prediction of the backbone dihedral angles is to allow perturbations in the phosphate atoms.

This can be implemented by predicting perturbations in the phosphate atoms (or perturbed phos-

phate position) using the NNs as additional outputs.

Finally, in the current module, we do not have parameters for the terminal sugar as it does not

have the same number of neighbors as the interior sugar. It requires training new networks with

a different number of input features. Moreover, the current module is limited to dsDNA only,

and it would be particularly beneficial to extend the module for dsDNA with epigenetic base

modifications that significantly impact backbone conformation and sugar puckering modes [10,

107]. The module should also be extended for dsRNA and DRH for completeness.



CHAPTER 8

Conclusions and future work

8.1 Summary and conclusions

In this work, we have extended the cgDNA+ model, which predicts a non-local sequence-

dependent Gaussian pdf for any arbitrary DNA sequence, to the cgNA+ model by estimating

parameter sets for a wider variety of double-stranded nucleic acids (dsNAs), including dsDNA

with epigenetic base modifications, dsRNA, and DNA:RNA hybrid (DRH). Just as in its pre-

cursor cgDNA+ model, the cgNA+ model explicitly treats bases and phosphates as rigid bod-

ies ∈ SE(3) and uses helicoidal CURVES+ coordinates to parameterize the configuration of

dsNAs. For a sequence S of length N base-pairs, any configuration can be described using in-

ternal coordinates in 24N − 18 dimensions with 6N intra base-pair, 6(N − 1) inter base-pair

step, 6(N − 1) Crick phosphate and 6(N − 1) Watson phosphate coordinates. Thus, given a

sequence S and a parameter set PNA, the cgNA+model predicts a Gaussian pdf in configuration

space by reconstructing a ground-state ŵ(S,PNA) ∈ R24N−18, and a positive-definite stiffness

matrix K(S,PNA) ∈ R24N−18×24N−18:

ρ(w;S,PNA) =
1

Z
exp{−1

2
(w − ŵ) ⋅ K(w − ŵ)}. (8.1)

The parameter setPNA contains dinucleotide-step dependent stiffness blocks ∈ R42×42 and stress

vectors ∈ R42 for interior dinucleotide steps and stiffness blocks ∈ R36×36 and stress vectors

∈ R36 for terminal dinucleotide steps. From these dinucleotide-step dependent parameters,

oligomer level stiffness matrix K(S) and stress vector σ(S) are constructed by overlaying the

blocks with 18 × 18 overlap in K(S) and 18 × 1 overlap in σ(S). Notably, the parameter set is

dinucleotide-step dependent; thus, both the stiffness matrix K(S) and stress vector σ(S) have

local sequence-dependence, but the groundstate ŵ(S) constructed as,

ŵ(S) = K−1(S)σ(S), (8.2)

and so has a non-local (often strongly non-local) sequence dependence due to the inversion of

the banded stiffness matrix K. It reflects the physical phenomenon of frustration that originates

because each base-pair level (complementary bases along with their 5′-phosphates) participates

in two base-pair level junctions which can not simultaneously minimize their energy. This

phenomenon of frustration energy and, thus, non-local sequence dependence is only possible in

rigid base models or higher hierarchy models such as cgDNA+ and cgNA+ (details in chapter 2).

141
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The cgNA+ model is trained on atomistic molecular dynamics (MD) simulations of a com-

prehensive set of diverse sequences (sixteen 24mers for each dsDNA, dsRNA, and DRH) using

state-of-the-art MD simulation protocols. In chapter 3, we have discussed the training sequences

whose palindromic nature (for dsDNA and dsRNA) allows quantifying the convergence error

in the MD time-series. By defining a scale (which quantifies variation over sequence) as the

average pair-wise distance/divergence between pdfs for all training sequences for a given dsNA,

we have demonstrated that 10 µs of MD time-series for each sequence is sufficient with conver-

gence error almost two orders smaller than scale. Moreover, we found that the distributions of

internal coordinates for dsDNA are often non-Gaussian, particularly for phosphates and some

inter base-pair coordinates. In contrast, for dsRNA, the corresponding distributions of inter-

nal coordinates are close to Gaussian. Most interestingly, DRH behavior is between dsDNA

and dsRNA, with the DNA strand similar to pure dsDNA and the RNA strand similar to pure

dsRNA. Notably, the cgNA+ model assumes that the internal coordinates follow a Gaussian be-

havior, i.e., the cgNA+model energy is quadratic. Lastly, we have shown that the corresponding

Gaussian approximation error is negligible, with a few exceptions in the phosphate coordinates.

In chapter 4, we have introduced the cgNA+ parameter sets and illustrated that the model

predictions are almost indistinguishable from the corresponding MD statistics (first and sec-

ond moments) by assessing the model for diverse test sequences, including sequences with

exceptional mechanical behavior (e.g., A-tracts) and showing that the model accurately cap-

tures changes in groundstate due to change in the hexamer context or beyond (highly non-

local change). We have quantified the error due to various modeling assumptions and showed

that the largest error in the model originates from the sequence locality assumption (dinu-

cleotide dependence) in the parameter set; however, the model is highly accurate with a predic-

tion/reconstruction error one order smaller than scale (which quantifies variation over sequence).

Furthermore, we have presented a systematic and rigorous comparison of various observables,

including average shape, persistence length, and groove widths for dsDNA, dsRNA, and DRH.

It is worth highlighting that some of these observables, such as average shape and groove widths,

can be obtained using MD simulations but only for few short sequences, while it is almost infea-

sible to estimate persistence length even for a single sequence (of length greater than 100 bps)

using atomistic MD simulations.

Firstly at length scales at which a few MD simulations can be performed, we confirmed that

the model predictions are extremely close to the corresponding observations in MD simulations

and agree well with the findings in prior literature. For instance, the average shape for various

dimers in dsDNA and dsRNA are considerably different; Twist and Slide in dsDNA are higher

than in dsRNA, whereas the trend is opposite for Roll. Moreover, the phosphate coordinates

are dramatically different for the two dsNAs. The difference, in general, can be interpreted with

the A-form and B-form geometry adopted by dsRNA and dsDNA, respectively. Notably, DRH

adopts a mixed geometry (slightly closer to A-form) with base coordinates slightly closer to

pure dsRNA and phosphate coordinates on the DNA strand closer to pure dsDNA and on the

RNA strand closer to pure dsRNA. For persistence length, the general trends computed for ap-

proximately two million random sequences (of length 220 bps) are in order ℓRNA
p ⪆ ℓDNA

p ⪆ ℓDRH
p

and ℓRNA
d ⪆ ℓDRH

d ⪆ ℓDNA
d , where ℓp and ℓd are apparent and dynamic (obtained by factoring out
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shape contributions from ℓp) persistence length. It is worth noting that both dsDNA and dsRNA

exhibit a wide range of persistence lengths over sequence space, which is further complicated

for DRH with much larger variation, for instance, ℓd is approximately 312 bps for poly(A) while

196 bps for poly(T). In general, the trends for persistence lengths agree fairly well with the lim-

ited experimental observations, except that the predictions of the cgNA+ model are larger. It

should be noted that the tangent-tangent correlations obtained from the cgNA+ Monte Carlo

code and MD simulations for shorter sequences (24mers) are incredibly close; thus, the discrep-

ancy in persistence lengths between model predictions and the experimental consensus is not

inherent to the cgNA+model and might be due to the MD protocol, which differs strongly from

the experimental setups. Regardless, this work provided a detailed insight into the persistence

length spectrum of various dsNAs in the sequence space, and notably, such computation for even

a single sequence of length greater than 200 bps is almost unfeasible using MD simulations.

Moreover, we found that groove widths, which play a significant role in indirect readout and

other protein-DNA interactions, are highly sensitive to the sequence and showed that A/T rich

sequences tend to have very narrow minor grooves (with the exception that the TA step is never

present), whereas C/G rich sequences have minor groove widths almost twice as compared to

A/T rich sequences. The major groove (wider than the minor groove) for dsDNA does not

exhibit strong sequence preferences for extreme widths. In contrast, the minor groove is wider

than the major groove in dsRNA and comparable to the major groove for DRH. Similar to

dsDNA, extreme groove widths are also adopted by specific sequences in dsRNA and DRH as

well. Lastly, we demonstrated that single nucleotide polymorphisms (SNPs) have a strongly

non-local impact on the groundstate of dsDNA which depends on the kind of mutation as well

as the flanking contexts. We revealed that the impact on groundstate due to various SNPs is

in the order A←→G < C←→G < A←→C < A←→T and all of these SNPs are highly sensitive to

flanking contexts. Notably, these statistics are obtained over millions of sequences in only a few

hours on a standard laptop. Thus, in this chapter, we have illustrated the efficiency and potential

of the cgNA+ model to explore the sequence-dependent structural and mechanical properties of

various dsNAs.

The next chapter systematically compared the predictions of the cgNA+ model with the

available protein-DNA X-ray crystal structure data for dimers in all flanking tetramer contexts.

First, we have shown that the flanking tetramer context strongly influences the average shape

of a given dimer in the X-ray data set and thus can not be ignored. Moreover, using hierar-

chical clustering, we have demonstrated that the trends in the sequence space for the dimer’s

average shape are similar in the two data sets. In a direct comparison, we found a reasonable

agreement between the average shape and a close alignment in the direction of variation of the

average shape over the sequence space. Furthermore, the directions of dsDNA deformations in

configuration space are very close in the two data sets, with an excellent correlation between

the non-local sequence-dependent configurational volume (a measure of DNA deformability).

Lastly and most interestingly, we found a striking alignment between the direction of variation of

groundstate in sequence space and the direction of dsDNA deformation in configuration space,

implying that the dimer adopts minimum energy configurations for various sequences/flanking

contexts by compromising more in the soft modes of configuration space.
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In chapter 6, we have extended the cgNA+ model to include alphabets for epigenetically

modified bases, in particular, for 5-methylated or 5-hydroxymethylated cytosine in CpG steps,

by training parameters for additional dinucleotide steps (to standard dsDNA) using MD statistics

obtained from a palindromic library containing twelve 24mers. We have demonstrated that the

model accuracy is similar to that obtained in predicting a Gaussian pdf for the standard dsDNA

sequence. The model can capture the non-local change in groundstate due to epigenetic base

modifications (arguably a smaller change than a point mutation). The change in groundstate as a

result of either methylation or hydroxymethylation is similar and highly sensitive to the flanking

sequence contexts. Moreover, a rigorous analysis of change in groundstate upon methylation

or hydroxymethylated revealed that the minimum change in groundstate is when the C to be

modified is preceded by A and the maximum change is when CpG step is present in the C/G

context. This implies that the CpG modifications are likely to have a much larger influence on

the groundstate in CpG islands. Furthermore, we found that increasing base modifications lead

to a widening of the minor groove and depend on the modification position. Lastly, contrary to

general belief, we found that apparent persistence lengths decrease upon symmetric modification

of CpG steps, whereas dynamic persistence remains almost the same. However, asymmetric

modifications of the CpG steps lead to an increase in persistence length. Also, in general,

the influence of both types of modification (methylation or hydroxymethylation) on persistence

length is similar.

In the final chapter of the thesis, we have introduced a neural network module to predict

the atomistic position of the sugar atoms from the knowledge of adjacent phosphate and base

atoms. The module is trained on the same MD simulation data used for training the cgNA+
model. It allows fine-graining any cgNA+ coarse-grained configuration or generating an en-

semble of atomistic configurations for any sequence comparable to MD simulations but in a

very short time. In particular, we have shown that this module can generate an ensemble of 105

configurations for a 24mer within an hour with statistics comparable to 10 µs of MD simulations

which take approximately two months on a highly efficient GPU. It enables an accurate anal-

ysis of sequence-dependent sugar-pucker modes and backbone configuration for any sequence

in negligible time. Furthermore, a fine-grain sequence-dependent equilibrium structure can be

used to start MD simulations, particularly useful for dsDNA mini-circles.

Thus, with the overarching goal of widening the impact and applicability of the cgDNA+
model, we have extended it to the cgNA+model, which allows predicting a non-local sequence-

dependent Gaussian pdf for any dsDNA (with epigenetic base modifications), dsRNA, or DRH

sequence and an additional machine learning tool has been developed to predict the positions of

sugar atoms in any cgNA+ configuration. Moreover, we have demonstrated that the error in the

model prediction for mechanically diverse test sequences is negligible, and for dsDNA, we have

also shown that the model predictions are in reasonable agreement with the available protein-

DNA X-ray structure data for both the average shape and stiffness. Lastly, we have illustrated

the model efficiency by exploring applications such as persistence length, groove widths, the

impact of SNPs and the role of flanking contexts, and the impact of base-modifications and the

role of flanking contexts for millions of sequences, which is otherwise unfeasible.
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8.2 Future work

There are many possible further extensions of the cgNA+ model that could be of practical inter-

est. For example,

1. In terms of implementation, the current machine learning module to predict the location

of sugar atoms is only developed for dsDNA and will be particularly useful to extend

it for dsDNA with epigenetically modified bases which have a significant impact on the

backbone conformation and sugar puckering modes [10, 107]. Similarly, it could also be

extended for dsRNA and DRH for completeness.

2. In this work, we have only compared model prediction with the available protein-DNA

X-ray data in base coordinates, and it would be interesting to extend the comparison for

phosphate coordinates which are currently ignored in this work due to the scarcity of the

experimental data and multi-modal behavior of phosphate coordinates. Similarly, there

are not enough experimental data for dsRNA, DRH, or epigenetically modified dsDNA to

make such a comparison.

3. One particular direction in which the cgNA+ parameter sets should be extended is to al-

low both methylated and hydroxymethylated CpG steps in the same sequence (currently

allowed but not adjacent to each other) that are frequent in biology. It will require comput-

ing additional parameters for dimer steps such as NH and KM, which is relatively simple,

but ensuring a positive-definite reconstruction of stiffness matrix for any sequence is a

challenging task and is in progress. Furthermore, parameters for other base modifications

can also be added for further generalisability of the cgNA+ model. In particular, methy-

lation or hydroxymethylation of GpC steps is relatively rare but has a potential role in

regulating mitochondrial gene expression. However, note that any such extension leads

to considerable expansion of the parameter set, which requires comprehensive MD simu-

lation data to train those parameters, and lastly, considerable effort to ensure that the pre-

dicted stiffness for any sequence will be positive-definite. Moreover, the extension of the

model parameter sets for other rare base modifications such as 5-formyl-C, 5-carboxyl-C,

and N6-carboxymethyl-A is also limited by the availability of reliable MD forcefields.

4. Another interesting extension of the cgNA+model is to include parameters for DNA mis-

matches (when two non-complementary bases align in the same base-pair, e.g., A aligns

with C or A or G). Such mismatches are frequent in biology and can occur during DNA

replication and due to ionizing radiation, mutagenic chemicals, or spontaneous deamina-

tion. The inclusion of parameters for DNA mismatches would help better understand how

DNA mismatches influence the local mechanics of the DNA and provide insights into

DNA mismatch repair.

5. Another avenues for future research lie in the development of tools for various applica-

tions of the model. For instance, T. Zwahlen, in his thesis, developed cgDNA+loc to

scan the whole genome, and thus, identified exceptional sequences in various genomes.

Similar efforts are required in several other directions (some of them are ongoing in the
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LCVMM or collaboration) at the time of thesis writing. One particular ongoing project

is the easy implementation of the method that predicts sequence-dependent equilibria for

dsDNA (or for any dsNAs) mini-circles of various lengths using the groundstate predicted

by the cgNA+model. Another interesting problem is to compute the energy required for a

linear dsDNA fragment to wrap around the nucleosome core particle and to understand the

role of sequence in dsDNA wrapping energy and the changes induced by the epigenetic

modifications (which are often related to gene silencing). Moreover, the deformation of

dsNAs on the application of external loads such as pulling and twisting is another exciting

application actively pursued in the LCVMM group. Other potential applications include

modeling protein-DNA interactions.

6. Lastly, to further expand the impact of the cgNA+ model, one of the ongoing projects

includes the incorporation of sequence-dependent mechanics of dsDNA (using cgNA+)

in the oxDNA model [143, 190] which is a successful model for studying the mechan-

ical [183] and thermodynamic properties [143] of large DNA nanostructures. This will

allow fine-tuning of DNA nanostructures or origamis, which have potential applications

in molecular machine and drug delivery, catalysis, and biophysics.
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Appendix A

Ideal atoms coordinates in Tsukuba convention

This chapter lists the ideal coordinates for bases and phosphates used to fit the frames to coarse-

grain NAs. The ideal coordinates for standard bases are as per Tsukuba convention [140] and

phosphate is approximated as tetrahedron as provided in table A.1 For non-standard bases, 5-

methylated Cytosine and 5-hydroxylmethylated Cytosine, Cytosine coordinates are taken.

Atom Adenine Guanine Phosphate
x (Å) y (Å) z (Å) x (Å) y (Å) z (Å) x (Å) y (Å) z (Å)

C1′ -2.479 5.346 0.000 -2.477 5.399 0.000 — — —
N9 -1.291 4.498 0.000 -1.289 4.551 0.000 — — —
C8 0.024 4.897 0.000 0.023 4.962 0.000 — — —
N7 0.877 3.902 0.000 0.870 3.969 0.000 — — —
C5 0.071 2.771 0.000 0.071 2.883 0.000 — — —
C6 0.369 1.398 0.000 0.424 1.460 0.000 — — —
N6 1.611 0.909 0.000 — — — — — —
O6 — — — 1.554 0.955 0.000 — — —
N1 -0.668 0.532 0.000 -0.700 0.641 0.000 — — —
C2 -1.912 1.023 0.000 -1.999 1.087 0.000 — — —
N2 — — — -2.949 0.139 -0.001 — — —
N3 -2.320 2.290 0.000 -2.342 2.364 0.001 — — —
C4 -1.267 3.124 0.000 -1.265 3.177 0.000 — — —
P — — — — — — 0.000 0.000 0.000

O3′ — — — — — — 1.518 0.000 -0.537
O5′ — — — — — — -0.759 -1.315 -0.537
OP1 — — — — — — -0.698 1.208 -0.493
OP2 — — — — — — 0.000 0.000 1.480

Atom Thymine Cytosine Uracil
C1′ -2.481 5.354 0.000 -2.477 5.402 0.000 -2.481 5.354 0.000
N1 -1.284 4.500 0.000 -1.285 4.542 0.000 -1.284 4.500 0.000
C2 -1.462 3.135 0.000 -1.472 3.158 0.000 -1.462 3.131 0.000
O2 -2.562 2.608 0.000 -2.628 2.709 0.001 -2.563 2.608 0.000
N3 -0.298 2.407 0.000 -0.391 2.344 0.000 -0.302 2.397 0.000
C4 0.994 2.897 0.000 0.837 2.868 0.000 0.989 2.884 0.000
O4 1.944 2.119 0.000 — — — 1.935 2.094 -0.001
N4 — — — 1.875 2.027 0.001 — — —
C5 1.106 4.338 0.000 1.056 4.275 0.000 1.089 4.311 0.000

C5M 2.466 4.961 0.001 — — — — — —
C6 -0.024 5.057 0.000 -0.023 5.068 0.000 -0.024 5.053 0.000

Table A.1 Cartesian coordinates defined for non-Hydrogen atoms of standard bases (A, G, T, C,
and U) in Tsukuba convention [140] and phosphate coordinates used in this work.
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Appendix B

MD libraries

For MD simulations of DNA, RNA, and DNA:RNA hybrid (DRH), we have used a palindromic

library (given in table B.1) introduced in ref. [149]. This library contains all 256 tetramers on

the reading strand, and the palindromic nature of the library allowed us to check the convergence

of MD time-series and enhance the statistics. All the sequences in the palindromic library have

GC ends to minimize fraying. Furthermore, we have imposed this palindromic property in the

library of sequences with epigenetic modifications (table B.2). However, it is impossible to

design a palindromic library for hybrid DNA-RNA (HDR). So, we used the same library as

given in table B.1 as it provides comparable statistics for all the monomer, dimer, and trimer, as

well as allows us a systematic comparison between DNA, RNA, and DRH at atomistic levels.

All the libraries discussed above have GC ends. In order to obtain parameter set blocks for other

end blocks, we have used the library described in table B.3. For each non-GC end, we have

four sequences of length 12-nt of the form XYUV-(hex)-GC where XY ∈ {15 non-GC ends},

UV is randomly chosen YY, YR, RR, and RY steps (to provide a rich context for XY), hex is

randomly chosen hexamer, and the other end is fixed to be GC (as both non-GC ends lead to

very low acceptance of the MD time-series after HB filtering).

B.1 Total number of monomers, dimers, monomers in trimer contexts,
and dimers in tetramer contexts containing at least one modified base
in monomers and dimers

We have only considered methylation and hydroxymethylation of CpG steps in this work. We

have used the letter M for 5-methylated-Cytosine, and N for Guanine when the complementary

Cytosine is methylated. Similarly, the letters H and K are used for 5- hydroxymethylated-

Cytosine and Guanine complementary to 5-hydroxymethylated-Cytosine, respectively. This

section discusses the total possible monomers, dimers, monomers in trimer contexts, and dimers

in tetramer contexts containing at least one modified base in monomers and dimers by taking

the example of methylated Cytosine.
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Index Sequence
Training sequences

1 GCTTAGTTCAAATTTGAACTAAGC
2 GCTCTCTGTATTAATACAGAGAGC
3 GCCCTTGGCGATATCGCCAAGGGC
4 GCTAAAGCCTTATAAGGCTTTAGC
5 GCGGTAGAAAACGTTTTCTACCGC
6 GCCAAGACATTGCAATGTCTTGGC
7 GCAGATGGTCAGCTGACCATCTGC
8 GCCTCACCGCTCGAGCGGTGAGGC
9 GCAGTGGAATCATGATTCCACTGC
10 GCTTTACTTCGTACGAAGTAAAGC
11 GCTACCTATGCTAGCATAGGTAGC
12 GCGCACTGGGGATCCCCAGTGCGC
13 GCTGAGGAGTCCGGACTCCTCAGC
14 GCTGCCGTCGGGCCCGACGGCAGC
15 GCGCACAACACGCGTGTTGTGCGC
16 GCCTAACCCTGCGCAGGGTTAGGC

Test sequences
17 GCATTACGCTCCGGAGCGTAATGC
18 GCAAAAAAAAAAAAAAGC
19 GCATATATATATATATGC
20 GCGGATTACGCAGGC
21 GCGGATTCCGCAGGC
22 GCGCGAAAATTTTCGAAAATTTTCGCGC
23 GCGCGTTTTAAAACGTTTTAAAACGCGC
24 GCGCGCGCGCGCGCGCGCGC
25 CGGCGCACGTGACCGCG
26 GCATCGCCACTGAAGTTGGTTATAACCAACTTCAGTGGCGATGC

Table B.1 Palindromic library in standard A, T, C, and G alphabets. For DNA this library has
been referred as LbDNA. For RNA, we have used the same library except the T is replaced by U
and referred as LbRNA. For HDR, we have intentionally chosen the DNA strand as the reading
strand and thus keeping the same library which is called LbDRH.



171
B.1. Total number of monomers, dimers, monomers in trimer contexts, and dimers in tetramer

contexts containing at least one modified base in monomers and dimers

Index Sequence
Training library Test library

1 GCTAMNTGTAMNMNTACAMNTAGC 13 GCTAMGTGTCMNMNGACACNTAGC
2 GCATMNACGAMNMNTCGTMNATGC 14 GCATMGACGTMNMNACGTCNATGC
3 GCGCMNGGAGMNMNCTCCMNGCGC 15 GCTGMGTTCGMNMNCGAACNCAGC
4 GCTCMNCTAAMNMNTTAGMNGAGC 16 GCCTMGCGTTMNMNAACGCNAGGC
5 GCTGMNTTCCMNMNGGAAMNCAGC 17 GCCTGAGTAMGMNCNTACTCAGGC
6 GCCTMNCGTGMNMNCACGMNAGGC 18 GCGGATTAMNCAGGC
7 GCGCMGGGATMNMNATCCCNGCGC 19 GCGCGCGMNMNMNCGCGCGC
8 GCTCMGCTACMNMNGTAGCNGAGC 20 GCGCGCGMGMGMGCGCGCGC
9 GCTAMGTGTCCNMGGACACNTAGC 21 GCGCGMNCGCGCGMGCGCGC
10 GCATMGACGTMGCNACGTCNATGC
11 GCAGMGMGATAATTATCNCNCTGC
12 GCCACAAGTCNMNMGACTTGTGGC

Table B.2 Methylated or Hydroxymethylated libraries. The first 12 sequences are in the training
library, and the rest of the sequences are in the test library. The Methylated and Hydroxymethy-
lated libraries have been referred to as LbMet and LbHmet, respectively.

Index Sequence Index Sequence Index Sequence

1 AAGACCACTTGC 21 TGAGGCCACCGC 41 GTAAGATTACGC
2 AAGTTTAGGGGC 22 TGATCAAGTAGC 42 GTGCGACGCTGC
3 AATGCGTATCGC 23 TGTGCCGAGAGC 43 GTCAGGATAAGC
4 AATCACTTAGGC 24 TGCTTGATTTGC 44 GTTTCTAATAGC
5 ATAGACCCAAGC 25 TCAATTCGACGC 45 CGGACTACTCGC
6 ATGTATCACAGC 26 TCACAGCCATGC 46 CGGTGCTGCTGC
7 ATCAGGATAGGC 27 TCTGTGCAAAGC 47 CGTGGTGGAGGC
8 ATTTCTAGTGGC 28 TCTTGCGTTGGC 48 CGTCCTATTGGC
9 AGAAACTCGTGC 29 TTGATACCGCGC 49 CCGGCCCGCCGC
10 AGATAACACTGC 30 TTATCATGCAGC 50 CCACCCCGTCGC
11 AGCGCTCGTCGC 31 TTTGAATTATGC 51 CCTAAGTCTAGC
12 AGCCATGAAAGC 32 TTCTGGTTACGC 52 CCTTGCCTACGC
13 ACGGACGAATGC 33 GGGGCTCTTCGC 53 CTAGAGCGTGGC
14 ACGTTCAGTGGC 34 GGGTCGGACCGC 54 CTGCAACCCAGC
15 ACCGCGGTGAGC 35 GGTATCGACGGC 55 CTCATCCAACGC
16 ACCCAAAGCTGC 36 GGCCTATTATGC 56 CTCTGAGGTGGC
17 TAGACACTGTGC 37 GAGAGATGTCGC 57 CAAAGTCGACGC
18 TAATCCTCGCGC 38 GAATTATTACGC 58 CAACCCATTCGC
19 TATAGTGAGCGC 39 GACAGATCACGC 59 CACGGAAAGCGC
20 TATCGGGAATGC 40 GACTATGGTAGC 60 CATTAACGCCGC

Table B.3 Library for end-block parameters (LbEnd)
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Nmers cases total possibilities
X M, N 2

WXY

AMN, TMN, GMN, CMN, NMN

20
AMG, TMG, GMG, CMG, NMG
− − − − − − − − − − − − − − − − −−
MNA, MNT, MNG, MNC, MNM
CNA, CNT, CNG, CNC, CNM

XY MN, NM, MG, CN, AM, TM, CM, GM, NA, NT, NC, NG 12

WXYZ

AMNA, TMNA, CMNA, GMNA, NMNA

163

AMNT, TMNT, CMNT, GMNT, NMNT
AMNC, TMNC, CMNC, GMNC, NMNC
AMNG, TMNG, CMNG, GMNG, NMNG
AMNM, TMNM, CMNM, GMNM, NMNM
− − − − − − − − − − − − − − − − − − − − −−

CNMG, MNMG, CNMN, MNMN
− − − − − − − − − − − − − − − − − − − − −−
AMGA, TMGA, CMGA, GMGA, NMGA
AMGT, TMGT, CMGT, GMGT, NMGT
AMGC, TMGC, CMGC, GMGC, NMGC
AMGG, TMGG, CMGG, GMGG, NMGG
AMGM, TMGM, CMGM, GMGM, NMGM
− − − − − − − − − − − − − − − − − − − − −−
ACNA, TCNA, CCNA, GCNA, NCNA
ACNT, TCNT, CCNT, GCNT, NCNT
ACNC, TCNC, CCNC, GCNC, NCNC
ACNG, TCNG, CCNG, GCNG, NCNG
ACNM, TCNM, CCNM, GCNM, NCNM
− − − − − − − − − − − − − − − − − − − − −−
AAMN, TAMN, CAMN, GAMN, NAMN
AAMG, TAMG, CAMG, GAMG, NAMG
− − − − − − − − − − − − − − − − − − − − −−
ATMN, TTMN, CTMN, GTMN, NTMN
ATMG, TTMG, CTMG, GTMG, NTMG
− − − − − − − − − − − − − − − − − − − − −−
ACMN, TCMN, CCMN, GCMN, NCMN
ACMG, TCMG, CCMG, GCMG, NCMG

− − − − − − − − − − − − − − − − − − − − − − − − −
MGMN, AGMN, TGMN, CGMN, GGMN, NGMN
MGMG, AGMG, TGMG, CGMG, GGMG, NGMG
− − − − − − − − − − − − − − − − − − − − − − − − −

MNAM, MNAA, MNAT, MNAC, MNAG
CNAM, CNAA, CNAT, CNAC, CNAG
− − − − − − − − − − − − − − − − − − − − −−
MNTM, MNTA, MNTT, MNTC, MNTG
CNTM, CNTA, CNTT, CNTC, CNTG

− − − − − − − − − − − − − − − − − − − − − − − − −
MNCN, MNCM, MNCA, MNCT, MNCC, MNCG
CNCN, CNCM, CNCA, CNCT, CNCC, CNCG
− − − − − − − − − − − − − − − − − − − − − − − − −

MNGM, MNGA, MNGT, MNGC, MNGG
CNGM, CNGA, CNGT, CNGC, CNGG

Table B.4 Total number of monomers, dimers, monomers in trimer contexts, and dimers in
tetramer contexts containing at least one modified base in monomers and dimers. Palindromes
are highlighted in bold. Trimers and tetramers with the same central monomer and dimer, re-
spectively, are separated by a dashed line.



Appendix C

Mathematical detail

C.1 Rotations in three-dimensions, SO(3) group

The special orthogonal matrix group, SO(3) represents all proper rotations in three-dimensional

Euclidean space, i.e., ∈ R3 and is defined as:

SO(3) = {R ∈ R3×3 ∣ RTR = RRT = I ∈ R3×3, detR = +1} (C.1)

where I is an identity matrix. R is a proper right-handed rotation matrix with {1, eιθ, e−ιθ} as

eigenvalues, where θ is the angle of rotation, and the real eigenvector of R is the axis of rotation

u.

Furthermore, for a given rotation matrix, R, the Euler-Rodrigues formula gives the following

relation between the rotation matrix R and a unit axis of rotation u and angle of rotation θ:

SO(3) ∋ R = cos θI + (1 − cos θ)u⊗ u + sin θu× (C.2)

where I ∈ R3×3 is an identity matrix, u⊗ u = uuT is outer-product and u× is a skew-symmetric

matrix satisfying (u×)v = u × v ∀ v ∈ R3 and of the form:

u× =

⎡⎢⎢⎢⎢⎢⎢⎣

0 −u3 u2

u3 0 −u1
−u2 u1 0

⎤⎥⎥⎥⎥⎥⎥⎦

(C.3)

A skew-symmetric matrix u× can be transformed to its corresponding as u = vec(u×).

Using Euler-Rodrigues formula in Equation (C.2), a direct relation between R and u, θ is

given as:

[0, π) ∋ θ = arccos( tr(R) − 1
2

) and R3 ∋ u = 2

1 + tr(R)vec(R −RT ) (C.4)

Note that, for θ = 0 and π, the rotation matrix become symmetric which means R − RT will

be a zero-matrix and thus, can’t be used for the computation of rotation axis, u. In the case of

θ = 0, Q becomes an identity matrix, and any unit vector can be the rotation axis. However,

when θ = π, the axis of rotation will be the eigenvector of matrix Q + I .
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C.2 Parameterisation of rotations in cgDNA+ model

Now, to parameterise rotations in cgDNA+ model, we have used Cayley parameters (details in

[99, 149, 158]). We have defined the function cay ∶ R3 Ð→ SO(3) as:

cayα(η) = I +
1

4α2 + ∣η∣2
[4αη× + 2(η×)2] = R(u, θ) ∀ α ∈ R, η ∈ R3 (C.5)

where R3 ∋ u = η
∣η∣ and θ = 2arctan ( ∣η∣2α). The inverse of cay transformation can be defined

as cay−1: SO(3) Ð→ R3 and is given in Equation (C.6).

cay−1α (R) =
2α

1 + tr(R)vec(R −RT ) (C.6)

C.3 Rigid body transformation, SE(3) group

To describe the position and orientation of rigid body, we have used special euclidean group,

SE(3) which is defined as:

SE(3) = {R4×4 ∋ G =
⎡⎢⎢⎢⎢⎣

R r

0 1

⎤⎥⎥⎥⎥⎦
} (C.7)

where R ∈ SO(3) is the rotational component and r ∈ R3 is the translational component of the

rigid body transformation.

The product of G1 ∈ SE(3) and G2 ∈ SE(3) is given as

SE(3) ∋ G1G2 =
⎡⎢⎢⎢⎢⎣

R1R2 R1r2 + r1
0 1

⎤⎥⎥⎥⎥⎦
(C.8)

and the inverse of an element in SE(3) is,

SE(3) ∋ G−1 =
⎡⎢⎢⎢⎢⎣

RT −RT r

0 1

⎤⎥⎥⎥⎥⎦
(C.9)

C.4 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence [94], also known as relative entropy, between two con-

tinuous pdfs ρ1(x) and ρ2(x) defined on Ω ⊂ RN is given as:

DKL(ρ1(x), ρ2(x)) = ∫
Ω
ρ1(x) log

ρ1(x)
ρ2(x)

dx ≥ 0 (C.10)

where the equality holds if ρ1 = ρ2.

Some of the key properties of KL divergence are:

• KL divergence is non-symmetric, i.e., DKL(ρ1, ρ2) ≠DKL(ρ2, ρ1), in general.

• KL divergence doesn’t satisfy triangle inequality and doesn’t qualify as a metric. It just

defines a premetric on the set of pdfs.



175 C.4. Kullback-Leibler divergence

• Invariant under re-scaling i.e say X1,X2 are random variables associated to pdfs ρ1, ρ2

and X ′1,X
′
2 are random variables associated to pdfs ρ′1, ρ

′
2 where {Xi = aX ′i}i=1,2, then

DKL(ρ1, ρ2) =DKL(ρ′1, ρ′2). This invariance of KL divergence under re-scaling allowed

an easier re-scaling of rotational coordinates in cgDNA family of models and change of

reading strand.

• In case, when the pdfs ρ1, ρ2 are normal multivariate distributions, equation (C.10) sim-

plifies to an algebraic form,

DKL(ρ1, ρ2) = S(ρ1, ρ2) +M(ρ1, ρ2)

S(ρ1, ρ2) =
1

2
[K−11 ∶K2 − ln(

∣K2∣
∣K1∣
) − I ∶ I]

M(ρ1, ρ2) =
1

2
(µ1 − µ2)TK2(µ1 − µ2)

(C.11)

where µ1 and µ2 are mean vectors, K1 and K2 are inverse covariance matrices, and ∶
represents the standard Euclidean inner product for square-matrices and I is the identity

matrix of the size same as K1 and K2.
√
M is also known as Mahalanobis distance [113].

Moreover, KL divergence can be symmetrised as follows:

DKLS(ρ1, ρ2) =
1

2
[DKL(ρ1, ρ2) +DKL(ρ2, ρ1)]

= SS(ρ1, ρ2) +MS(ρ1, ρ2),

SS(ρ1, ρ2) =
1

2
[K−11 ∶K2 +K−12 ∶K1 − 2I ∶ I] ,

MS(ρ1, ρ2) =
1

2
[(µ1 − µ2)T (K2 +K1)(µ1 − µ2)] ,

(C.12)

where SS(ρ1, ρ2) is symmetrised stiffness contribution, andMS(ρ1, ρ2) is symmetrised shape

contribution of the symmetrised KL divergence.
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Appendix D

An involution of 3 × 3 block structure

Let P be an orthogonal matrix

P =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 P1

0 P2 0

P1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

where P 2 = I,P TP = I,P ∈ n×n,P 2
i = I,Pi ∈ ni×ni and P T

i = Pi ∀ i = 1,2

(D.1)

and a symmetric matrix K

K =

⎡⎢⎢⎢⎢⎢⎢⎣

A B E

BT C D

ET DT F

⎤⎥⎥⎥⎥⎥⎥⎦

such that KT =K (D.2)

which is also an involution symmetric matrix such that K = PKP = P TKP . Let’s define

another orthogonal matrix Q,

Q = 1√
2

⎡⎢⎢⎢⎢⎢⎢⎣

I 0 I

0
√
2I 0

−P1 0 P1

⎤⎥⎥⎥⎥⎥⎥⎦

such that QTQ = I (D.3)

Now, if P2 is diagonal matrix with s elements -1 and rest of the r elements +1 (as ±1 are

the only possibility as P 2
2 = I ) then the involution symmetry of K implies that the orthogonal

transformation QTKQ yields a 2 × 2 block structure, i.e.,

QTKQ =
⎡⎢⎢⎢⎢⎣

H1 O

O H2

⎤⎥⎥⎥⎥⎦
where H1 ∈ (n1 + s) × (n1 + s) and H2 ∈ (n1 + r) × (n1 + r) (D.4)

PKP =

⎡⎢⎢⎢⎢⎢⎢⎣

P1FP1 P1D
TP2 P1E

TP1

P2DP1 P2CP2 P2BP1

P1EP1 P1B
TP2 P1AP1

⎤⎥⎥⎥⎥⎥⎥⎦

(D.5)

so the symmetry and involution symmetry iff 4 conditions (independent) satisfy

• A = P1FP1

• P1B =DTP2

• EP1 = P1E
T = (EP1)T

• P2CP2 = C
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Now,

QTKQ =1
2

⎡⎢⎢⎢⎢⎢⎢⎣

I 0 −P1

0
√
2I 0

I 0 P1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

A B E

BT C D

ET DT F

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

I 0 I

0
√
2I 0

−P1 0 P1

⎤⎥⎥⎥⎥⎥⎥⎦

=1
2

⎡⎢⎢⎢⎢⎢⎢⎣

I 0 −P1

0
√
2I 0

I 0 P1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

A −EP1

√
2B A +EP1

BT −DP1

√
2C BT +DP1

ET − FP1

√
2DT ET + FP1

⎤⎥⎥⎥⎥⎥⎥⎦

=1
2

⎡⎢⎢⎢⎢⎢⎢⎣

A + P1FP1 − P1E
T −EP1

√
2[B − P1D

T ] A − P1FP1 +EP1 − P1E
T

√
2[BT −DP1] 2C

√
2[BT +DP1]

A − P1FP1 − P1E
T −EP1

√
2[B + P1D

T ] A + P1FP1 +EP1 + P1E
T

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A −EP1
1√
2
B[I − P2] O

1√
2
[I − P2]BT C 1√

2
[I + P2]BT )

O 1√
2
B[I + P2] A +EP1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=1
2

⎡⎢⎢⎢⎢⎣

H1 O

O H2

⎤⎥⎥⎥⎥⎦
(D.6)

where H1 ∶=
⎡⎢⎢⎢⎢⎣

A −EP1

√
2B1√

2BT
1 C11

⎤⎥⎥⎥⎥⎦
and H2 ∶=

⎡⎢⎢⎢⎢⎣

C22

√
2B2√

2BT
2 A +EP1

⎤⎥⎥⎥⎥⎦
.

Lemma

• Orthogonal similarity doesn’t change eigenvalues and systems for H1 and H2 are decou-

pled, i.e., λ(K) = µ(H1) ∪ γ(H2)

• If (µi,

⎡⎢⎢⎢⎢⎣

wi

xi

⎤⎥⎥⎥⎥⎦
) is eigenpair for H1 then corresponding eigenpair for K is (µi,Q

⎡⎢⎢⎢⎢⎢⎢⎣

wi

xi
o

⎤⎥⎥⎥⎥⎥⎥⎦

=

1√
2

⎡⎢⎢⎢⎢⎢⎢⎣

wi√
2x̂i

−P1wi

⎤⎥⎥⎥⎥⎥⎥⎦

) where x̂i =
⎡⎢⎢⎢⎢⎣

xi
0

⎤⎥⎥⎥⎥⎦

• Similarly, if (γj ,
⎡⎢⎢⎢⎢⎣

yj
zj

⎤⎥⎥⎥⎥⎦
) is eigenpair for H2 then corresponding eigenpair for K is (γj ,Q

⎡⎢⎢⎢⎢⎢⎢⎣

o

yj
zj

⎤⎥⎥⎥⎥⎥⎥⎦

=

1√
2

⎡⎢⎢⎢⎢⎢⎢⎣

zj√
2ŷj
+P1zj

⎤⎥⎥⎥⎥⎥⎥⎦

) where ŷj =
⎡⎢⎢⎢⎢⎣

0

yj

⎤⎥⎥⎥⎥⎦
It explains the sparsity pattern in eigenvectors of a palindromically symmetrized matrix.



Appendix E

Supplementary figures for Comparison of non-local sequence-dependent
mechanics of DNA in protein-DNA crystal structures ensemble with cgNA+model

E.1 Additional figures and tables

Fig. E.1 Heat map for shape and configuration covariance for X-ray (CsX and CX) and cgNA+
(CsM and CM ) model data set. The corresponding variances are listed in the table E.1. Note
that the scale in all four covariance is different. Scale of configuration covariance is approxi-
mately two times that shape covariance in both the data set. Scale in cgNA+ model data set,
for both the covariance (shape and configuration), is almost three times than in X-ray data set
possibly due less effective temperature in X-ray data set.
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Internal Shape Shape Configurational Configurational
Coordinate variance (X-ray) variance (CG) variance (X-ray) variance (CG)

Buckle 0.0799 0.2441 0.4764 0.9488
Propeller 0.0499 0.0956 0.3487 0.5143
Opening 0.0070 0.0035 0.1272 0.1335

Shear 0.0191 0.0136 0.1333 0.0954
Stretch 0.0006 0.0013 0.0231 0.0136
Stagger 0.0073 0.0092 0.1061 0.1361

Tilt 0.0147 0.0223 0.1078 0.1660
Roll 0.0439 0.0629 0.2241 0.2870
Twist 0.0432 0.0767 0.1888 0.3094
Shift 0.0413 0.1238 0.3470 0.6836
Slide 0.1447 0.1127 0.4347 0.3938
Rise 0.0063 0.0167 0.0497 0.0964

Table E.1 List of variances (the diagonal elements) for shape and configuration covariances for
X-ray and cgNA+model data set. The unit for the variance can be considered as Å

2
and (rad/5)2

for translational and rotational coordinates, respectively. The corresponding full covariance
matrix is plotted in figure E.1. Due to palindromic symmetry, the variance for both the base-
pairs (in terms of intra coordinates) is identical and, thus, listed once.
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Fig. E.2 Comparison of configurational volume (S) for cgNA+ model covariance vs MD data
set covariance a) in inter coordinates for independent dimer steps in average context, b) in
inter coordinates for dimers in independent tetramer contexts, c) in PCA coordinates (in eight
principal modes of cgNA+ model shape covariance) for independent dimer steps in average
context, d) in PCA coordinates (in eight principal modes of cgNA+model shape covariance) for
dimers in independent tetramer contexts. The red line is best-fit line between the two data sets
using linear regression.
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Fig. E.3 The diagonal entries in the heat map (bottom) are Mahalanobis distance between the
groundstate of dimers (in 136 independent tetramer contexts) in the X-ray and cgNA+ model
data set. Whereas lower and upper off-diagonal entries are Mahalanobis distance between dif-
ferent dimers (in specific tetramer context) within the cgNA+ model and X-ray data set, respec-
tively. The diagonal entries of the heat-map are again plotted in the scatter plot (top) along
with the histogram in the same plot. Note that the Mahalanobis distance (as defined in ??) is
computed in the 18 CURVES+ coordinates and using the cgNA+ shape covariance matrix as
the weight matrix.
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Fig. E.4 Palindromic error (as defined in section 2.5.1) per degree of freedom in the groundstate
of palindromic dimer in tetramer flanking context and in average flanking context for X-ray data
set and MD simulations (used to train cgNA+ model).

E.2 Comparison of two X-ray data sets with different resolutions and re-
sults for case-II
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Fig. E.7 Number of appearances of 136 tetrameters in X-ray data set (case-II). Abscissa is
middle junction dimer-step and ordinate is tetramer context. Note that the palindromic steps are
only read from reading strand.
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Fig. E.5 Plot comparing the average shape of dimer in two X-ray datasets as defined in case-I
and case-II where case-I has no resolution cut-off and case-II has data only resolution better that
3 Å in section 5.2.2. In this figure, we have plotted the difference in average shape of dimers in
average context as the scatter plot and dashed line is the average difference between two data
sets for a given internal coordinate.
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Fig. E.6 Plot comparing the average shape of dimer in two X-ray data sets as defined in case-I
and case-II where case-I has no resolution cut-off and case-II has data only resolution better that
3 Å in section 5.2.2. In this figure, we have plotted the difference in average shape of tetramers
as the scatter plot and dashed line is the average difference between two data sets for a given
internal coordinate.
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Fig. E.8 a) Plot comparing sequence-independent groundstate (average shape) of dimer coordi-
nates in X-ray (case-II) and cgNA+ model data set. On right, PsX and PsM are the associated
eigenvector matrices for the shape covariance matrix (denoted by subscript s) describing the
directions of variation in groundstate over sequence space for X-ray (denoted by superscript X)
and cgNA+ model (denoted by superscript M) data sets, respectively and DsX and DsM are
corresponding eigenvalues in b). While PX and PM are the eigenvectors of average config-
uration covariance describing the direction of deformation of DNA in configuration space and
DX and DM are corresponding eigenvalues in c). In d), there is cosine similarity index for
corresponding eigenvectors in (CX,CM ), (CsM,CM ), (CsX,CX), and (CsX,CsM ).
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Fig. E.9 Plot of Intras and Inter for X-ray, case-II (bottom) and cgNA+ model (top) data set in
which large dash lines depict ICs of a dimer (in average context) while the other smaller dash
lines are the ICs for that dimer in a specific tetramer context. For a better and more concise
visual representation, the three ICs are slightly shifted on the X-axis in each subplot. Also,
various flanking contexts are plotted in different colors, as described at the bottom of the plot.
SA is sequence-average groundstate.
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Fig. E.10 a) Inter ICs (shifted with respect to sequence-average groundstate) are plotted
for dimers in average flanking context to identify which dimers assume distant values from
sequence-average groundstate for a given variable and whether that signal is consistent in the
two data sets. The left column is for the cgNA+ model data set for each IC, and the right col-
umn is for the X-ray data set. b) Sequence logo plot to statistically quantify the role of tetramer
context on the ground-state (in inter variables) of a given dimer. For each internal coordinate
(IC), we have defined γXUVZ = ICXUVZ− ICXavgUVZavg as the difference of the internal coordinate
of a dimer (UV) in tetramer context (X - - Z) with the same dimer in average context, where X,
U, V, Z ∈ [A, T, C, G]. Then, for each internal coordinate, we have defined positive and neg-
ative outliers as, γXUVZ < −σ and γXUVZ > +σ, where σ is standard deviation of γXUVZ. In
the sequence-logo plot, we have plotted the information content in the tetramer flanking context
(X - - Z) for which γXUVZ are negative or positive outliers.
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Fig. E.11 Dendrograms using hierarchical clustering on independent tetramers using Maha-
lanobis distance (taking inverse of sequence-dependent configuration covariance as the weight
matrix) and average linkage algorithm section 5.2.3.3.
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Fig. E.12 Pearson correlation between X-ray (case-II) and cgNA+ data set in a) standard
CURVES+ coordinates and b) transformed coordinates in eigenspace of cgNA+ shape covari-
ance and corresponding eigenvectors shown in c) with +/− parity as defined in section 5.2.3.2.
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Fig. E.13 In the heat map (bottom), the diagonal entries are Mahalanobis distance between the
groundstate of dimers (in 136 independent tetramer contexts) in X-ray and cgNA+ model data
set. Whereas lower and upper off-diagonal entries are Mahalanobis distance between different
dimers (in specific tetramer context) within cgNA+ model and X-ray data set, respectively. The
diagonal entries of heat-map are again plotted in scatter plot (top) along with the histogram in
the same plot. Note that the Mahalanobis distance (defined in section 2.5.5) is computed in the
18 CURVES+ coordinates and using cgNA+ shape covariance matrix as weight matrix.
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Appendix F

Codes and data availability

The current version of the cgNA+ model is available (in python and MATLAB) at

https://github.com/rahul2512/cgNA_plus. This code is straightforward to use and requires a

few python libraries to run the python code. The Python version has more functionalities; for

instance, the code to obtain the sugar ring from cgNA+ coarse-grained configuration.

The codes used for training the cgNA+ model are available at

https://github.com/rahul2512/cgNA_plus_training and https://github.com/rahul2512/cgNAplus_sugar_fitting.

Note that these codes require data to train the model, which is not provided on GitHub due to

size limits. However, all the data can be obtained on request to rs25.iitr@gmail.com.

Finally, all the codes used for plotting the figures in this thesis can be accessed at

https://github.com/rahul2512/rsharma_thesis along with the latex file of this thesis. Note that

some of the data must be requested to rs25.iitr@gmail.com due to the size limits on GitHub.
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