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Abstract
Flapping wing flight used predominately in nature by flying insects, birds, and mammals

generally has a higher aerodynamic performance than rotary or fixed wing micro air vehicles

at low Reynolds numbers. However, due to its complexity the bio-inspired flight system is not

as widely used as their rotary wing counter-parts. In this thesis, the aerodynamic challenges

in flapping wing flight are addressed. In particular, the effects of different wing kinematics,

flexibilities, and planforms on the the leading edge vortex development and aerodynamic

performance are investigated.

In a first part, we experimentally optimise the kinematics of a flapping wing system in hover

with the objective to maximise the lift production and hovering efficiency. Additional flow

field measurements are performed to link the vortical flow structures to the aerodynamic

performance for the optimal kinematics. We obtain kinematics which promote the formation

of a strong leading edge vortex and yield high lift coefficients, and kinematics which promote

leading edge vortex attachment and are more power efficient. We identify the shear layer

velocity as a scaling parameter for the growth of the vortex and its impact on the aerodynamic

forces. The experimental data agree well with the shear layer velocity prediction, making it a

promising metric to quantify and predict the aerodynamic performance of the flapping wing

hovering motion for the design and control of micro air vehicles.

In a second part, a novel bio-inspired membrane wing design is introduced, and used to study

the fluid-structure interactions of flapping membrane wings. We find optimal combinations

of the membrane properties and flapping kinematics that out-perform their rigid counterparts

both in terms of increased stroke-average lift and efficiency, and characterise them with

an aeroelastic number. Flow field measurements around the membrane wings reveal that

the leading edge vortex formation is suppressed at lift and efficiency optimal aeroelastic

conditions. These results demonstrate that a leading edge vortex is not always required to

generate high lift in flapping wing flight. If the membrane wings become too flexible, the flow

separates over the high curvature of the wing, and the wing experiences great losses in lift and

hovering efficiency. These findings explain the flight behaviour of bats which adapt either

their wing’s angle of attack, stiffness, or flight velocity. We suggest using active flow control for

artificial membrane wing vehicles, and the leading and trailing edge angles as indicators for

the flow state to maintain optimal aeroelastic conditions in flight.

In a third and final part, hawk moth wing shapes are collected and their aerodynamic perfor-

mance, and leading edge vortex formation compared to flat and rectangular wings. Three-

component flow field measurements over the full span and aerodynamic force recordings
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Abstract

are conducted for scaled wing models on a robotic flapping wing system. We investigate if

the morphology of hawk moth wings could have evolved to accommodate the formation of

a strong and coherent leading edge vortex for aerodynamic benefits. While all wings have

the same surface area and aspect ratio, the rectangular wing produces only half the lift and

drag coefficients compared to the hawk moth wings. The difference in force production is

also reflected in the leading edge vortex formation on the wings. At mid-span the vortex lifts

off of the wing on the rectangular planform, and a strong tip vortex impedes on the leading

edge vortex formation and span-wise vorticity transport. On the hawk moth wing planform,

the local chord length reduces greatly towards the tip and allows the leading edge vortex to

expand over the full wing span. In consequence, the hawk moth wings generate double the

wing loading compared to the rectangular wings. Higher wing loading improves the flight

control and escape capabilities of flapping wing fliers, and allows the smaller, high aspect ratio

wings of the hawk moth to produce sufficient lift to stay in hover.
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Zusammenfassung
Der Flügelschlag wird in der Natur von fliegenden Insekten, Vögeln und Säugetieren genutzt

und kann bei niedrigen Reynolds-Zahlen eine höhere Effizienz als Starrflügel oder Rotoren

haben. Aufgrund seiner Komplexität wird das biologisch inspirierte Flugsystem bisher je-

doch weniger eingesetzt als Propeller betriebene Drohnen. In dieser Doktorarbeit werden

die aerodynamischen Zusammenhänge beim Schlagflügelflug untersucht. Insbesondere wer-

den die Auswirkungen von Flügelbewegung, -flexibilität und -form auf die Entwicklung des

Vorderkantenwirbels und die aerodynamischen Kräfte untersucht.

Im ersten Teil optimieren wir experimentell die Bewegung eines Schlagflügelsystems, mit

dem Ziel, den Auftrieb und die Effizienz im Schwebeflug zu maximieren. Zusätzlich wird das

Strömungsfeld um den Flügel aufgezeichnet, um den Zusammenhang zwischen den Wirbel-

strukturen und den aerodynamischen Kräften für den optimalen Flügelschlag herzustellen.

Wir finden Flügelkinematiken, die die Bildung eines starken Wirbels an der Vorderkante be-

günstigen und hohe Auftriebskoeffizienten erzugen, sowie Kinematiken, bei denen der Wirbel

nah am Flügel bleibt und die energieeffizienter sind. Wir identifizieren die Geschwindigkeit

der Scherschicht an der Vorderkante als geeigneten Parameter, um das Wachstum des Wirbels

und seinen Einfluss auf die aerodynamischen Kräfte zu berechnen. Die experimentellen Daten

stimmen mit der Vorhersage der Scherschichtgeschwindigkeit gut überein, was sie zu einer

vielversprechenden Kennzahl für die Quantifizierung und Vorhersage der aerodynamischen

Leistung des Schwebeflugs für die Konstruktion und Steuerung von Schlagflügel Drohnen

macht.

In dem zweiten Teil wird ein neuer biologisch inspirierter Membranflügel vorgestellt und zur

Untersuchung der Fluid-Struktur-Wechselwirkung von Schlagflügeln verwendet. Wir finden

optimale Kombinationen von Materialeigenschaften und Schlagflügelbewegungen, die relativ

zu den unflexiblen Flügeln einen erhöhten Auftrieb haben und gleichzeitig die Energieeffi-

zienz des Systems steigern. Diese Fluid-Struktur-Wechselwirkung charakterisieren wir mit

der aeroelastischen Zahl. Weitere Strömungsfeldmessungen um die Membranflügel zeigen,

dass die Wirbelbildung an der Vorderkante bei optimalen aeroelastischen Auftriebs- und

Wirkungsgradbedingungen unterdrückt wird. Diese Ergebnisse suggerieren, dass ein Vorder-

kantenwirbel nicht immer erforderlich ist, um einen hohen Auftrieb beim Schlagflügelflug zu

erzeugen. Wenn die Membranflügel zu flexibel werden, löst sich die Strömung über der starken

Krümmung des Flügels ab, und starke Verluste an Auftrieb und Energieeffizienz treten auf.

Diese Erkenntnisse erklären zum Teil das Flugverhalten von Fledermäusen, die den Anstell-

winkel, die Steifigkeit oder die Fluggeschwindigkeit ihres Flügels anpassen können um eine
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Zusammenfassung

zu starke Verformung des Flügels zu verhindern. Diese Art der aktiven Strömungssteuerung

könnte auch für künstliche Membranflügel verwendet werden. Die Winkel der Vorder- und

Hinterkanten können dabei als Indikatoren für den Strömungszustand verwendet werden,

um optimale aeroelastische Bedingungen im Flug aufrechtzuerhalten.

In dem dritten und letzten Teil werden die Flügelformen von Schwärmern untersucht und ihre

aerodynamische Leistung sowie die Wirbelbildung an der Vorderkante mit flachen und recht-

eckigen Flügeln verglichen. Drei-Komponenten-Strömungsfeldmessungen über die gesamte

Spannweite und Aufzeichnungen der aerodynamischen Kräfte werden für skalierte Flügelm-

odelle an einem Roboter-Schlagflügelsystem durchgeführt. Wir untersuchen, ob sich die

Morphologie von Falkenmottenflügeln so entwickelt haben könnte, dass sie die Bildung eines

starken und kohärenten Wirbels an der Vorderkante ermöglicht, um aerodynamische Vorteile

zu erzielen. Obwohl alle Flügel die gleiche Oberfläche und das gleiche Streckungsverhältnis

haben, erzeugt der rechteckige Flügel nur die Hälfte der Auftriebs- und Widerstandskoeffi-

zienten im Vergleich zu den Falkenmottenflügeln. Der Unterschied in der Krafterzeugung

spiegelt sich auch in der Wirbelbildung an der Vorderkante des Flügels wider. In der Mitte

der Spannweite löst sich der Wirbel beim rechteckigen Flügel ab, und ein starker Flügelrand-

wirbel behindert die Entwicklung und den Wirbelstärketransport des Vorderkantenwirbels.

Beim Falkenmottenflügel nimmt die lokale Sehnenlänge zur Spitze hin stark ab, so dass sich

der Vorderkantenwirbel über die gesamte Spannweite ausbreiten kann. Dabei erzeugen die

Falkenmottenflügel die doppelte Flächenbelastung im Vergleich zu rechteckigen Flügeln. Ei-

ne höhere Flächenbelastung verbessert die Flugkontrolle und die Fluchtmöglichkeiten der

Schwärmer und ermöglicht es mit kleineren, hochgestreckten Flügeln genügend Auftrieb zu

erzeugen, um im Schwebeflug zu bleiben.
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Introduction

After the Wright brothers took the first controlled, powered flight in 1903 [1], high lift pro-

duction has always been sought after in the research and development of aerodynamics and

aeronautics. Higher lift coefficients allow to carry a bigger payload, to reduce the wing size for

higher manoeuvrability, and flight at varying speeds. Figure 1 gives an overview of the different

flow regimes relevant to natural and engineered flight characterized by the Reynolds number.

Fixed wing aircrafts, typically used in flight at higher Reynolds numbers (Re > 106), reach lift

coefficients up to CL = 2 by keeping the flow attached to the airfoil and create large leading

edge pressure gradients [2]. At transitional flow velocities (Re = 104 to 106) the maximum lift

of a rigid, smooth airfoil is greatly reduced due to boundary layer separation. Turbulators help

to keep the flow attached at transitional flight velocities and allow to reach high maximum lift

coefficients again. Even at lower Reynolds numbers (Re < 104, fig. 1), the boundary layer over

the airfoil stays laminar and separates easily when subjected to adverse pressure gradients [2].

Conventional airfoils stall even at low angles of attack and yield low lift coefficients, insufficient

for sustained flight [4]. Yet, it is in this flow regime where most insects fly successfully.

Most engineered flying vehicles use fixed or rotating wings Flying insects, birds, and mammals

can flap their wings to generate lift. Flapping wing fliers generally have a higher aerodynamic

performance than revolving wing aircraft at low Reynolds numbers (Re < 5000), and their

lift-to-power ratio can be improved by up to 200% compared to fixed or revolving wings at

Re < 100 [9, 10]. Natural fliers move their wings at a high wingbeat frequency relative to their

flight speed and create an unsteady flow field around their wings. At the high angles of attack

commonly seen by flapping wing fliers, the flow separates over the wing and rolls up into

a coherent flow structure - the leading edge vortex (fig. 2c,d). The formation of the leading

edge vortex under unsteady flow conditions produces transient high lift coefficients sufficient

for sustained flapping wing flight at low Reynolds numbers [11–15]. But the leading edge

vortex does not stay on the wing for long. The typical life cycle of a leading edge vortex last

between 3 and 6 convective times as presented for an impulsively started flat plate in fig. 3 [2].

At the beginning, a leading and a trailing edge vortex form on the wing. The leading edge

vortex is formed due to accumulation of shear-layer vorticity from the leading edge and grows

consistently. The starting trailing edge vortex sheds into the wake shortly after. The leading

edge vortex gains strength and size until it covers the entire chord length of the wing. Then,

the vortex loses coherence and eventually lifts off of the wing. Finally, the vortex sheds when it
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Introduction

Figure 1 – The maximum lift coefficient CL,max as function of Reynolds number for different lift
generators in steady and unsteady flow. Figure from [2, 3]

no longer accepts additional vorticity from the shear-layer (not shown in fig. 3).

During the vortex’ growth cycle flapping wings undergo large variations in force. Figure 4

shows the temporal evolution of the lift and drag coefficient variations over one stroke-cycle

for a robotic flapping wing in hover at an angle of attack α= 40° [16]. Here, the dashed lines

represent the sinusoidal stroke-velocity profile used by most natural fliers and engineered

flapping wing vehicles. During the beginning and end of every stroke cycle (1), the wing rotates

to position its leading edge in front of the wing indicated by the grey shaded areas. When the

leading edge vortex first emerges, it coincides with a large increase in lift but also drag force

coefficient (fig. 4). During the vortex growth (2) the forces on the wing are greatly increased

until they reach a peak at mid-stroke, where the wing is at its highest rotational velocity and

the vortex has grown in strength and size to cover the full chord. The forces decrease sharply

when the wing slows down in the second part of the cycle (3) and the vortex lifts off of the

wing. At the end of the stroke cycle (4), the wing rotates to reverse its leading edge for the

next cycle. The leading edge vortex sheds into the wake and breaks down. In this last stage

of the leading edge vortex growth cycle, the aerodynamic forces on the wing reduce to zero.

A new stroke cycle follows and the next leading edge vortex gives rise to high lift forces. The

unsteady nature of successive vortex formation and shedding provides the necessary lift in
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a. b.

c. d.

Figure 2 – a. An osprey diving to catch its prey (adopted from [5]). b. A ladybug unfolding its
wings (adopted from [6]). c. Flow field around a bat in slow forward flight (adopted from [7]).
d. Smoke wire flow visualisation of a hawk moth in hovering flight feeding on an artificial
flower (adopted from [8]).

forward or hovering flapping wing flight at Reynolds numbers below Re < 10 [17, 18], currently

unmatched by human-made flying devices.

The flight at low Reynolds numbers opens up many applications in urban environments, like

parcel delivery, communications relay, and environmental monitoring [19, 20]. Especially

at the insect scale, autonomous micro air vehicles can provide invaluable assistance during

natural disasters like earthquakes in confined spaces or could be employed in environment

preservation on a small scale but large areas [21]. Low Reynolds number flight also has the

potential to open up aerial exploration on other planets with less dense atmospheres [22],

motivated by the recent success of Ingenuity, the first autonomous controlled flight of an

aircraft in the Mars environment [23].

The reason flapping wing micro air vehicles are not as widely used as their rotary wing counter-

parts, is due to the great complexity the bio-inspired flight system presents. Successful flapping

wing flight in nature is the result of a successful interplay between wing and body morphol-

ogy [24–27], muscle actuation [28, 29], and sensory control [30, 31]. All of these are controlled

by an intricate nervous system, and an underlying flight strategy and navigation [32–34].

Natural fliers present a vast diversity within each of the elements. To generate lift and manoeu-

vrer insects control the wing motion with great precision [35–37], and can even adapt their

kinematics to compensate for wing damage [38, 39], or when they are moving on the surface

3
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Figure 3 – Leading edge vortex life cycle for an impulsively started, two-dimensional plate in
translation at an angle of attack α= 35°. The lines represent vorticity field contours (colour),
streamlines (grey), and stagnation streamlines (black). Here, t∗= tU /c is the convective time
based on the wing velocity U and the chord length c. Figure from [2]

of water [40, 41]. Insects and bats adjust the stiffness of their wings to limit the deformation

and control the flow separation over their wings [42, 43]. The body and its centre of mass

can also play a crucial role. Butterflies undergo large angle rotations with their body which

helps to direct the trajectories of their shed vortices and reduce drag [44, 45]. Despite all

the challenges associated with flapping wing flight, recent advances in wing actuators and

electronic miniaturization paved the way for the successful flight of human-made flapping

wing vehicles [46–52].

In this thesis, the aerodynamic challenges in flapping wing flight are addressed. In particular,

the effects of different wing kinematics, flexibility, and planforms on the leading edge vortex

development and aerodynamic performance are investigated experimentally on a robotic

flapping wing platform. The objective of the thesis is to gain an understanding of the underly-

ing fluid dynamic phenomena in flapping wing flight, and to explore different methods for

improving the aerodynamic performance in terms of lift production and energy efficiency. The

thesis aims to explain morphological and behavioural traits in natural fliers, and to provide

guidelines for the design and control of engineered flapping wing vehicles.

Thesis outline

The thesis consists of three parts dedicated to the effects of wing kinematics (part I), wing

flexibility (part II), and wing planform (part III) on the vortex formation and aerodynamic

performance of flapping wing flight.

In part I, we experimentally optimise the kinematics of a flapping wing system in hover to

maximise the average lift production and hovering efficiency with the help of an evolutionary

algorithm. In chapter 1, three different approaches to parametrise the motion kinematics for
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Figure 4 – The lift and drag force coefficients as function of time over one half-cycle for a
flapping wing system in hover. The drawings depict the leading edge vortex life cycle. The
dashed line represents the stroke velocity dφ/dt The grey shaded areas indicate the wing
rotation at the beginning and end of every cycle. Figure from [16]

the experimental optimisation are presented. A set of control points that are connected by a

spline interpolation, a finite Fourier series, and a reduced-order modal reconstruction based

on a proper orthogonal decomposition of a set of random walk trajectories. We compare the

results and performance of the different parametrisations with regard to the diversity of the

randomly created initial populations, and the convergence behaviour of the optimisation.

Dedicated applications for each parametrisation approach are suggested.

The fluid dynamic analysis and discussion of the flapping wing optimisation is presented

in chapter 2. Additional flow field measurements are conducted to link the vortical flow

structures to the aerodynamic performance for the Pareto-optimal kinematics. In all cases,

a leading edge vortex is fed by vorticity through the leading edge shear layer which makes

the shear layer velocity a good indicator for the growth of the vortex and its impact on the

aerodynamic forces. We estimate the shear layer velocity at the leading edge solely from the

input kinematics and use it to scale and predict the average and the time-resolved evolution

of the circulation and the aerodynamic forces.

In part II, chapter 3, we introduce a novel bio-inspired membrane wing design and systemati-

cally investigate the fluid-structure interactions of flapping membrane wings. We find optimal

combinations of the membrane properties and flapping kinematics that out-perform their

rigid counterparts both in terms of increased stroke-average lift and efficiency. The lift and

efficiency optima occur at different angles of attack and effective membrane stiffnesses which

we characterise with an aeroelastic coefficient. Additional deformation measurements are

conducted to link the membrane dynamics to the aerodynamic force production. We identify

membrane geometry parameters and thresholds for the control of the optimal membrane

shape.
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In chapter 4, the impact of the membrane deformation on the leading edge vortex formation

at different aeroelastic conditions is investigated. The observations on the flapping membrane

wing platform from chapter 3 are expanded with flow field measurements and additional

deformation measurements. The goal is to relate the fluid-structure interaction of the passively

deforming membrane with the force production on the wing. The findings should explain

certain behaviours in bat flight and provide means of flow control applications for flapping

membrane wing.

In part III, chapter 5, the effects of different wing planforms and wing shapes on the leading

edge vortex formation and aerodynamic performance are explored. The aerodynamic perfor-

mance and three-dimensional flow fields around scaled hawk moth wing models and basic

reference wing shapes are investigated. The objective is to identify key morphological traits

which govern the leading edge vortex formation on hawk moth wings and explain the diver-

sification of different wing planforms found in nature. The findings in this chapter, provide

guidelines for the design of different wing planforms for flapping wing vehicles.

Finally, the conclusions of this thesis and an outlook are provided in chapter 6.
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1 On the parametrisation of motion
kinematics for experimental aerody-
namic optimisation

In this chapter, three different approaches to parametrise the motion kinematics for exper-

imental optimisations are presented. The objective is to evaluate the performance of the

different approaches during the experimental optimisation of a flapping wing system in hover.

Dedicated applications for each parametrisation approach are suggested. The fluid dynamic

analysis and discussion of the optimisation results follows in chapter 2.

The work presented in this chapter has been published in Experiments in Fluids [53].

1.1 Introduction

Unsteady locomotion of flying animals such as birds and insects have inspired the devel-

opment of micro air vehicles, which are less than 15 cm in size and operate in a Reynolds

number range from 10 to 10 000 [27, 54, 55]. Their field of application includes information

gathering in confined spaces, areal mapping, or the transport of small goods [21, 56]. Flap-

ping wing configurations are a suitable manner of propulsion for micro air vehicles, since

they offer better efficiency at low Reynolds number (Re < 100) and an improved manoeu-

vrability in comparison to fixed and rotating wing configurations [57, 58]. The development

of complex flapping wing kinematics for various flight scenarios poses a challenge in this

field. A similar challenge is the selection of optimal motion kinematics of other bio-inspired

propulsion systems such as underwater vehicles mimicking fish propulsion. A standardised

optimisation procedure facilitates the identification of motions with desired characteristics.

The motion kinematics have to be parametrised by a finite number of variable parameters

prior to optimisation to reduce the dimensionality of the solution space and allow for optimal

solutions to be found in an affordable way within a reasonable timeframe. The optimisation

solution landscape can dependent strongly on the parametrisation and possible optima might

be missed [59]. The ideal parametrisation has as little variable parameters as necessary to

reduce the computational complexity of the optimisation problem without restricting the
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solution space or creating a bias in a certain direction. Yet, any parametrisation will exclude

possible solutions due to discretisation in comparison to a continuous solution in an infinite-

dimensional solution space and it is vital to carefully select the most suitable approach for

each optimisation problem at hand.

Past efforts to optimise bio-inspired motion kinematics initially focussed on simple linear

and harmonic motions. [60] numerically optimised a flapping airfoil for combined maximum

thrust and efficiency. They parametrised the sinusoidal plunge and pitching motions with

a variable amplitude and phase shift for a fixed frequency. [61] implemented a quasi-steady

model of insects with a hybrid optimisation algorithm. Their kinematic function enables

a continuous transition of the pitching angle evolution β with the parameter C between

sinusoidal and trapezoidal motions according to

β(t ) = βm

tanh(C )
tanh

(
C sin(2π f t +Φ)

)+β0 (1.1)

with f being the flapping frequency,Φ the phase shift between the stroke and pitching motions,

β0 the offset angle and a scaling factor βm for further modulations. The temporal evolutions

of the stroke and elevation angles were defined similarly, yielding a total of twelve variable

parameters. Solutions for these twelve parameters were determined that maximised the aero-

dynamic efficiency while providing enough lift to support the body weight of different insects.

The aerodynamic performance can be further increased by more complex, non-harmonic,

and asymmetric kinematics, which have to be defined using more parameters or different

base functions. The pitching kinematics of insects in nature are often asymmetric which could

be an evolutionary adaption to improve the performance [62]. Martin and Gharib [63] were

among the first to implement a kinematic motion function with the possibility to represent

asymmetric motions. Liu and Aono [62] performed an optimisation of the motion of a pectoral

fish fin which was defined as a complex combination of trigonometric expressions for all three

spatial angles. The motion kinematics were successfully optimised for a combined objective

of minimal side-thrust and maximal efficiency. They noticed an increasing difficulty in finding

the global optimum with increasing number of parameters describing the kinematics. Mandre

et al. [59] investigated the influence of the parametrisation with a finite Fourier series on

a heaving and pitching hydrofoil. Small modifications of the parametrisation can lead to

a significantly altered solution landscape with a bias towards small but pronounced local

optima. The examples highlight the potential of asymmetric and more complex kinematics to

push the performance envelope of bio-inspired micro aerial vehicles.

In this chapter, we will present three different approaches to define and parametrise kine-

matics for optimisation studies. The different approaches will be presented, compared, and

evaluated for the example of the experimental optimisation of the pitching kinematics of a

flapping wing. An optimisation is performed for each kinematic function with 6,12 and 18

parameters, leading to more than 30 000 individual experiments in total. The different ap-

proaches to parametrise motion kinematics for optimisation selected here are control points

connected by a spline interpolation, a finite Fourier series, and a linear combination of modes
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Figure 1.1 – Pitch angleβ kinematics of various natural fliers, adopted from [62] and trapezoidal
pitch angle kinematics from a robotic flapper [64].

determined by a modal decomposition of kinematics created by a random walk. Dedicated

applications for each approach are suggested. The details about the experimental setup and

the fluid dynamic interpretation of the results will follow in chapter 2.

1.2 Methods

1.2.1 Kinematic functions

Three different approaches to parametrise motion kinematics are selected here:

• control points connected by a spline interpolation,

• a finite Fourier series, and

• a linear combination of modes determined by a modal decomposition of kinematics

created by a random walk.

The different parametrisation were selected by their ability to mimic trapezoidal and sinusoidal

pitch angle profiles commonly seen on robotic flapping wing devices as well as more complex

pitch angle kinematics observed on nature’s fliers (fig. 1.1). We created kinematic functions

using the three approaches with three different parameter counts (p = 6,12,18). The first

(p − 1) parameters are used to modify the pitching angle evolution and the phase shift is

controlled with the last parameter ∆t 0 for all kinematic functions. The motions are described

by the pitching angle β (fig. 1.1). The sinusoidal stroke angleφ remains unchanged throughout

the optimisations and the elevation angle is kept at zero due to its negligible influence on the

lift production [62].
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Figure 1.2 – Example of the parametrisation of the pitch angle kinematics using control points
connected by a spline interpolation with p = 6 parameters. Five parameters describe the
pitch angles (β1, ...,β5) of the five control points that are equidistantly distributed within a half
stroke. A fifth degree spline connects the five control points and the half half stroke profile is
point mirrored to create the full symmetric pitch angle profile in grey. The sixth parameter ∆t 0

introduced a phase shift leading to the final pitching profile in colour.

Control points connected by splines

As a first intuitive approach, we select a limited number of control points that will be connected

using spline interpolation. To start, we create a symmetric pitch profile by distributing (p −1)

control points equidistantly throughout a half-stroke which represents the most efficient use

of the available parameters. Freely spaced control points could lead to large gradients for

higher parameter counts which can not be executed by our experimental set-up. In a way, the

temporal spacing of the control points acts as a build-in low-pass filter for the pitch angle

gradients. If the phase of the control points is not fixed, the phase bounds of the individual

points depend on each other which makes the selection of the kinematics slightly more

complicated. Depending on the specific problem at hand, it is possible to place more control

points in certain parts of the motion where larger variations are required to optimise and

reduce the parameter count. The beginning and end of the half-stroke are fixed at β= 0° and

the control points are solely specified by their pitch angleβn, with 1 ≤ n ≤ (p−1) as indicated in

fig. 1.2. Next, the control points are connected by a fifth degree spline interpolation to minimise

the local acceleration β̈. By point-mirroring the first half-stroke around (t/T,β) = (0.5,0), we

obtain a symmetric pitching profile for the back and forth stroke, represented by the grey

curve in fig. 1.2. Finally, we added a phase-shifted ∆t 0 to allow for advanced and delayed

wing rotation with respect to the stroke reversal, leading to the coloured curve in fig. 1.2. This

procedure allows us to created complex non-linear and non-harmonic motions with high

curvatures. The main advantage of the control point parametrisation, is its intuitive and direct

local control of the pitching profiles. Local adjustments can be made by moving individual

control points and the values of the control points are directly linked to the pitch angle values,
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Figure 1.3 – Example of the parametrisation of the pitch angle kinematics using a finite Fouries
series p = 6, 12, and 18 parameters. The last parameter ∆t 0 introduced the phase shift.

which facilitates the formulation of pitch angle constraints due to mechanical and motor

limitations. The distribution of the control points along the time axis can be easily varied to

adapt the approach to specific restrictions or requirements for a broad range of applications.

On the downside, we noticed that the creation of a random set of control point splines is

computationally demanding and required 22.8s on average for motions with 12 parameters

on a typical desktop computer. The computational time increases exponentially with the

parameter count and takes a couple of minutes for the tests with 18 parameters.

Fourier-series kinematics

In the second approach, we use a finite Fourier sine-cosine series to define our pitching

kinematics:

β (t ) =
N∑

k=1,3,5,...

(
ak cos

(
2πk f0t

)+bk sin
(
2πk f0t

))
(1.2)

with ak the cosine coefficients, bk the sine coefficients, and f0 the flapping frequency. For

the current application, we use only the odd coefficients. The first odd sine-coefficients bk

are responsible for the base oscillation whereas the odd cosine-coefficients ak are used for

smaller modulations. The ability to represent higher curvatures, as they appear in trapezoidal

motions, mainly depends on the number of Fourier terms included. A finite Fourier series

is not ideal to describe sudden jumps or discontinuities and tends to display an overshoot

followed by decaying oscillations near sharp gradients. This behaviour is known as the Gibbs

phenomenon and can be reduced by adding a Lanczos-σ-factor [65]. The Lanczos-σ-factor is

defined as:

σ

(
k

m

)
=

sin
(

k
mπ

)

k
mπ

(1.3)

13



Chapter 1. On the parametrisation of motion kinematics for experimental aerodynamic
optimisation

−50
0

50

β
[◦

]

−0.1

0

0.1

ψ

0 0.25 0.5
−0.1

0

0.1

t/T

ψ

0.25 0.5

t/T

0.25 0.5

t/T

0.25 0.5

t/T

0.25 0.5

t/T

0.25 0.5

t/T

0 0.25 0.5

−60

−30

0

30

60

t/T

β
[◦

]

p = 6

12

18

∆t0

0.25 0.5 0.75 1

t/T

Figure 1.4 – Example of an individual random walk-based motion (top left) and the first 17
eigenmodes of the proper orthogonal decomposition of a family of 2×105 random walk-based
motions. The first 5 modes are presented with a green background, modes 6 to 11 with a red
background, and modes 12 to 17 with a grey background. Examples of new motions created as
a linear combination of the first 5, 11, and 17 modes are presented in the bottom left. The half
stroke motions are point-mirrored around (T /2,0) to obtain a full stroke and the phase shift is
applied to create the final motions in the bottom right.

with m as the last plus one summing index of a finite Fourier series. The Fourier series based

pitching kinematics used in this paper are described by a finite Fourier series with Lanczos-σ

correction factor:

β (t ) =
(p−1)/2∑

k=1,3,5,...
σ

(
2k

p +1

)(
ak cos

(
2πk f0t

)+bk sin
(
2πk f0t

))
(1.4)

with (p − 1) parameters, (p − 1)/2 cosines and (p − 1)/2 sine coefficients. The obtained

motion kinematics are periodic, continuous in all derivatives and can easily be expressed in a

closed form. The half strokes can be asymmetric around the quarter stroke. The phase-shift

parameter ∆t 0 is again applied at the end to create advanced or delayed wing rotations with

respect to the stroke reversal. Exemplary motions created using 6, 12, and 18 parameters are

presented in fig. 1.3.
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Modal reconstruction

In the third approach, we use a low-order eigenmode reconstruction. The eigenmodes are ob-

tained by a modal decomposition of a family of available arbitrary kinematics. This parametri-

sation approach is particularly elegant if a family of kinematics is known. For example, if a

database of kinematics is available from direct observations of insects or fish motions, we

can first reduce the dimensionality of the available kinematics using modal decomposition.

Measured and new kinematics can then be created by low-order reconstruction of the most

dominant kinematic modes. Here, we do not have a database of measured kinematics at

our disposal. To demonstrate the concept of eigenmode reconstruction as a parametrisation

approach, we have artificially generated a family of randomised kinematics based on a biased

random walk algorithm. The random walk motion generator is not an essential part of the

approach it merely serves as bypass to obtain a generalised motion database. The random walk

algorithm takes randomly sized steps in a discretised half-stroke. The random expectation

value distribution for the individual step sizes is defined such that their sum equals zero over

one half-stroke. Each step is defined as the expectation value plus a random fluctuation. The

motions starts at β= 0° and is set again to zero at the end of the half-stroke. This creates a

wider spread of values and higher gradients at the end of the half-stroke in comparison to

the start of the half-stroke. This bias is resolved by line-mirroring motions at mid-half-stroke

(T /4). An example of a random walk-based motion is presented in the top left panel of fig. 1.4.

A large amount of motions (O (105)) is created within a few minutes with this method.

The family of random walk-based motions are then decomposed using proper orthogonal

modal decomposition (POD). All modes start and end with a zero passage and are nearly

symmetric (fig. 1.4). The symmetry is expected to improve with a larger data basis of random

kinematics whereas the computational complexity of the POD is the limiting factor for the

number of input motions. The modes exhibit high similarity with Legendre polynomials

starting from the second polynomial. The POD ensures the optimality of the projection space

for a given set of training motions and the optimal use of parameters. A large variety of

complex, asymmetric motions and oscillations can be defined by a linear combination of the

first (p −1) eigenmodes:

β(t ) =
p−1∑
n=1

an

√
2λnψn(t ) (1.5)

with ψn the POD eigenmodes, λn the corresponding eigenvalues, and an the parametrisation

coefficients. The first 17 eigenmodes,ψ1-ψ17, are presented in fig. 1.4 for the proper orthogonal

decomposition of the family of random walk based motions used in this paper. The coefficients

an are considered normalised and have values confined between −1 and −1. The motions are

point-mirrored around (T /2,0) to obtain a full stroke and the phase shift is applied to create

the final motion as depicted in the bottom row of fig. 1.4. Discontinuities in the gradient

between the end and beginning of each half-stroke cannot be executed by the motors and

are mitigated by a robust local regression smoothing, which is tuned to mainly affect the

sections around stroke reversal. Discontinuities in the velocity β̇ appear for randomly created
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kinematics in the early populations and diminish when the convergence progresses.

1.2.2 Genetic algorithm optimisation

The pitching kinematics of our robotic flapping wing device have been optimised using the

multi-objective genetic algorithm optimisation algorithm (gamultiobj) from the global op-

timisation toolbox of Matlab® [66]. More details about the experimental procedure of the

optimisation will be provided in chapter 2. A genetic algorithm is a meta-heuristic optimisa-

tion method, suited to find the global optimum in a non-linear solution space with a large

number of degrees of freedom. It mimics the process of natural selection known from evolu-

tion by recombination and mutation. An initial population of 200 individuals, with a uniform

distribution of the parameters within their bounds is created to start the optimisation. Each

individual corresponds to one periodic flapping motion. The fitness values for two optimisa-

tion objectives are directly measured during experiments for each motion. The optimisation

objectives are the maximum stroke average lift C L and the maximum stroke average efficiency

η. The stroke average efficiency η is defined here as:

η= C L

C P

. (1.6)

The overline indicates stroke average quantities. The lift and power coefficients,CL and CP, are

defined as

CL =
L

1
2ρRcU

2 (1.7)

CP =
P

1
2ρRcU

3 . (1.8)

The dimensional lift L and power P are normalised with the density ρ, the wing span R, the

chord length c and the stroke average velocity U . Each motion is executed over eight cycles.

The evaluations of the individual experiments take 39s each, including a settling time for the

water in the tank. The fittest individuals produce offspring by recombination and mutation.

Recombined individuals account for 60 % of the following population with the parameters

calculated by a randomised linear combination child = parent 1+R(parent 2−parent 1), with

R a randomly picked number from a uniform distribution covering the interval [0,1] [66]. The

remaining 40 % of the new population are created by random mutation of the individuals’

parameters. No clones from the elite are transferred into the next generation. The fitness

values of the new individuals are determined and the procedure is repeated until convergence

is detected, after which the optimisation is stopped. The final output of the genetic algorithm

optimisation is a global Pareto front, which consists of all non-inferior solutions in the C L

versus η space. The solutions on the Pareto front are called non-inferior solutions if the value

for each objective can only be improved by decreasing the value of another one. The results

of 9 optimisations will be presented and compared here. We have considered each of the
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parametrisation approaches with p = 6, 12, and 18 parameters.

The experimental set-up is subjected to mechanical and safety constraints to protect the

equipment. The will constrain the boundaries of the optimisation. The maximum pitching

angle is limited by the range of free movement in the experimental set up such that |βmax| ≤ 90°.

The minimum angle of βmin = 0° is imposed for the parametrisation of the initial half stroke

before applying the phase-shift ∆t 0 to avoid ambiguous solutions where advance or delayed

rotation is not governed entirely by the phase-shift. The phase shift is bound by [−π/2,π/2].

The minimum and maximum pitch angle bounds are easy to define for the control point

approach by directly limiting the values of β of the control points. This does not apply for the

Fourier series and modal reconstruction based parametrisations. Here, the extreme angles

are the result of a combination of different parameters. We opted here to keep the allowed

parameter ranges as wide as possible and to reject proposed kinematics that are not safe or

not feasible for the experimental mechanism before execution.

The most important constraint for our robotic flapper is the pitch angle acceleration. High

accelerations put stress on the load cell due to the inertial forces on the wing and have to be lim-

ited to avoid damage. The maximally allowed pitch angle accelerations are |β̈max| ≤ 1800°/s2.

The majority of randomly created individuals for the control point and modal reconstruction

approach exceed the acceleration constraint. This leads to a validity rate of ≤ 10% in combi-

nation with the constraint |βmax| ≤ 90°. The parameter bounds are tightened for the Fourier

series approach to keep the share of invalid motions within a range of 10 % to 15 %. A simple

restriction of the parameter space does not have the same effect for the splines connecting

control points and the modal reconstruction. Here, a pre-selection of kinematics is necessary

to obtain a full initial population of 200 individuals. The average and peak acceleration values

of the randomly created motions increase with the parameter count and so does the share

of randomly generated motions that cannot be executed. The pre-selection process takes a

couple minutes for the modal reconstruction with 6 parameters and up to 4h for the control

points connected by splines with 12 parameters on a standard desktop computer. The control

point approach with 18 parameters has very tightly spaced control points, which lead to high

local accelerations above the limit value but they only appear for a very short time such that

their risk of damaging the set-up is deemed low. The constraint of a minimum angle βmin ≥ 0°

in combination with the acceleration and velocity constraints is too strict for the modal re-

construction approach to create an initial population in a reasonable amount of time. By

loosening the lower angular constraint βmin, and allowing βmin < 0, we obtain more kinematics

that have a maximum acceleration below the mechanically allowed limit. All parametrisation

approaches required a customised implementation of the constraints and adapted selection

of the parameter bounds. The implementation of the experimental constraints was most

straight forward for the control point based approach due to the more direct local access to

the kinematics.

17



Chapter 1. On the parametrisation of motion kinematics for experimental aerodynamic
optimisation

1.2.3 Convergence criterion

To monitor the progress of the optimisations and to decide when to consider the result to be

converged, we have implemented a generational distance measure. The generational distance

allows for a quantitative comparison between the optimisations of the different kinematic

functions possible. It is a common measure to determine optimisation progress in genetic

algorithms if no optimal Pareto front as reference is known [67]. The generational distance

(GD) is defined by [68] as:

GD(S,P ) = 1

|S|

( ∑
s∈S

min
r∈P

∥ F (s)−F (r ) ∥p

) 1
p

, (1.9)

with S the set of Pareto front members of the current generation, P the Pareto set members

of the previous generation, F the objective function, and p the selected distance norm. The

generational distance describes the average distance the Pareto front members are shifted

between successive generations and represents the optimisation progress. The individual

distances are measured between the point of the current front and the closest point from the

previous front. All distance measures for the efficiency η and stroke over lift coefficient C L are

normalised by the average range of values for the first ten generations (or all generations if

less that ten generations have been tested). The convergence speed is defined as the gradient

of the generational distance.

An optimisation is considered converged if the convergence speed ≤ 5×10−4 for two consecu-

tive generations and if the generational distance ≤ 5×10−3. The changes of the Pareto front

are assumed to be minor after the convergence criterion is fulfilled.

1.3 Results and discussion

Here, we will analyse and compare the performance of the three selected parametrisation

approaches for optimisation applications by the example of a multi-objective optimisation of

the pitching kinematics of a flapping wing. The pitching kinematics are parametrised by

• control points connected by a spline interpolation,

• a finite Fourier series, and

• a modal reconstruction of POD eigenmodes.

Each of the approaches has been tested with 6, 12, and 18 parameters. This lead to more

than 30000 experimental iterations that have been executed over a period of several weeks.

We will first compare how well the different approaches cover the motion space, discuss

the optimisation process and convergence. The Pareto front solutions and the optimised

kinematics will be discussed in chapter 2.
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Figure 1.5 – Probability density map of a randomly selected initial population consisting of
200 individuals for the different parametrisations with 12 parameters without applying a
phase-shift. The pitching angle is bound by βmin = 0° and βmax = 90°. First row shows the
coverage of the solutions space for the different parametrisation methods: a) control points
connected by a spline interpolation, b) finite Fourier series, c) modal reconstruction, without
taking into account an acceleration constraint. The second row shows the coverages when the
acceleration constraint (β̈max ≤ 1800°/s2) is applied. The lower angular bound was lifted for
the modal reconstruction when applying the acceleration constraint to allow for a set of 200
executable individuals to be found in a reasonable amount of time.

1.3.1 Coverage of the kinematic solution space

Suitable parametrisation approaches for optimisation studies should be able to represent a

high variety of qualitative shapes and achieve good initial coverage of the solution space to

not a priori exclude potential optimal solutions. To quantify and compare the ability of the

different approaches to cover the solution space, we randomly created an initial population

consisting of 200 individuals for the different parametrisations with 12 parameters without

any acceleration constraint and without applying the phase-shift. The probability density

maps for these initial populations of pitching kinematics are presented in the top row of

fig. 1.5 to give a visual impression of the coverage of the solution space. The density maps

for p = 18 do not show significant differences and lead to the same conclusions as for p = 12.

The splines connecting control points and the modal reconstruction functions cover almost

all achievable angles in the first half-stroke (fig. 1.5a1,c1). The Fourier-series have a slightly

narrower band of admissible motions around stroke reversal with lower diversity (fig. 1.5b1).

The fixed phase-locations of the control points lead to the occurrence of regions in the density

map with higher local probabilities indicating an inhomogeneous coverage and slight bias

towards low angles at the control points.

A quantitative comparison is presented in fig. 1.6, where the brighter bars indicate the values
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Figure 1.6 – Quantitative comparison of the characteristic properties of the initial population
consisting of 200 individuals for the different parametrised of the kinematics for 12 parame-
ters. The brighter bars indicate values obtained without taking into account the acceleration
constraint. The darker bars include the influence of the acceleration constraint. The diver-
sity of the population is characterised by the maximum pitch rate β̇max, maximum pitching
acceleration β̈max, the half-stroke-averaged standard deviation of the pitching angle σ(β),

the half-stroke-averaged normalised standard deviation of the pitch rate σ(β̇)/σ(β) and the

pitching acceleration σ(β̈)/σ(β), and the correlation-coefficients for the pitch rate r (β̇) and
pitching acceleration r (β̈).

without the application of the acceleration constraint. The parameters we calculated to charac-

terise the coverage of the solutions space and diversity of the parametrised motions kinematics

include the maximum pitch rate β̇max and pitch acceleration β̈max, the half-stroke-averaged

standard deviation of the pitching angle σ(β), the half-stroke-averaged normalised standard

deviation of the pitch rate σ(β̇)/σ(β) and the pitch acceleration σ(β̈)/σ(β). The Fourier series-

based kinematics have the lowest maximum pitch rate and pitch accelerations and a lower

diversity based as indicated by lower values of the standard deviations of the pitch angle, rate,

and acceleration compared to the control point approach and the modal reconstruction. The

highest gradients are measured among the modal reconstruction solutions if the acceleration

constraint is not applied. The control point kinematics exhibit the highest diversity closely

followed by the modal reconstruction method if we do not apply the acceleration constraint.

If we apply the acceleration constraint to omit solutions that cannot or should not be executed

by our experimental device, we obtain the probability density plots presented in the bottom

row of fig. 1.5. The quantitative measures after application of the acceleration constraint are

depicted in fig. 1.6 by the darker bars. Here, the acceleration is limited to β̈≤ 1800°/s2.

The coverage achieved by the initial populations is now reduced for all approaches especially

near the stroke reversal. Motions with larger angles around stroke reversal are omitted due to

the acceleration limit. This affects the control point approach the most. The splines connecting
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1.3. Results and discussion

the control points tend to develop characteristic spikes when the distance between control

points decreases which leads to accelerations above the allowed limit. The initial population

for Fourier series kinematics exhibits a small band of angles with very low diversity around

stroke reversal and a poor coverage for smaller β. This is caused by the different restriction

of the parameter space for the Fourier series. The best coverage is achieved for all kinematic

functions at moderate angles between t/T = 0.125−0.375. The modal reconstruction has

the highest density at lower angles compared to the others (fig. 1.5c1). Unfortunately, this

increases the chance that a randomly selected individual does not meet the acceleration

constraint and needs to be omitted and replaced when building he initial population. To

obtain a set of 200 executable individuals for the initial population within a reasonable amount

of time, the lower angular constraint βmin is loosened. This explains the non-zero probability

for βmin < 0 in fig. 1.5c2.

All kinematic functions show a significant loss in diversity following the application of the ac-

celeration constraint. The modal reconstruction now outperforms the control point approach

and the Fourier series in all measures. Most of the diversity of the initial control point approach

without constraint is created over the tightly spaced control points with a large spectrum of

admissible angles. This allows for a large variety of angles, velocities, and accelerations, but

it also leads to higher number of omitted kinematics. This could potentially be reduced by

distributing the control points differently or by also considering their time coordinates as

variable parameters.

Alternative measures for the diversity of the randomly selected individuals in an initial popula-

tion are obtained by determining the correlation-coefficients for the pitch rate r (β̇) and the

pitch acceleration r (β̈). They are calculated as the ensemble average correlation-coefficient r

for each individual with the rest of the population. A higher diversity within a population now

leads to a lower correlation coefficient r . Overall, the diversity decreases upon application of

the acceleration constraint as the correlation values increase. The control point approach and

the modal reconstruction show again a higher diversity than the population of Fourier series.

To more quantitatively compare the similarity between different randomly generated kine-

matic, we borrow ideas here from a network topology approach proposed by [69] and more

recently used e.g. by [70] for comparing the similarity between trajectories. The similarity

between kinematics can be quantified using the maximum cross-correlation coefficient Ri,j for

each pair of kinematics βi and βj. The maximum cross-correlation coefficient is defined as:

Ri,j = max
τ=0...T

cov
(
βi(0 : T ),βj(τ : (T +τ))

)
√

var
(
βi(0 : T )

)
var

(
βj(τ : (T +τ)

) (1.10)

with T the period, cov(.) the covariance, and var (.) the variance operators. By taking the max-

imum over all possible phase shifts τ, the resulting value only evaluates the shape similarity

and is not influence by a phase shift, e.g. introduced by ∆t 0 here. Another metric proposed
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Figure 1.7 – Cumulative distribution of the relative node degree nd/N in the similarly net-
works describing the initial population of N = 200 individuals for the three parametrisation
approaches. Distributions corresponding to the networks based on Ri,i are in the top row,
those based on D i,i are in the bottom row. The light and dark shading correspond respec-
tively to randomly selected populations without and with the application of the acceleration
constraint.

by [69] is the mean absolute error D i,j between two curves, which is defined here as:

D i,j = min
τ=0...T

1

T

T∑
t=0

∣∣βi(t )−βj(t +τ)
∣∣ . (1.11)

We normalised D i,j by the period T and expressed the result in degree such that D i,j can be

interpreted as an average pitch angle amplitude difference between two kinematics. Two

identical curves have a maximum cross-correlation coefficient Ri,j = 1 and a minimal mean

absolute error D i,j = 0. Both quantities evaluate different aspects, Ri,j provides a measure for

the shape similarity between curves and D i,j provides a measure for the amplitude variations

between curves. We use both here to evaluate the degree of similarity within a randomly

generated population.

After calculating Ri,j and D i,j between all curves with the initial population, we construct two

similarity networks. Each kinematic motion is represented by a node in the network. Different

nodes are connected to each other if the shape similarity measure Ri,j is higher than a prede-

fined threshold Rth or if the amplitude dissimilarity measure D i,j is lower than a predefined

threshold Dth. We then determine the node degree for each node, which corresponds to the

number of nodes it is connected to. Kinematics with a low node degree show similarity only to

a low number of other kinematics in the population. The cumulative distributions of the node

degrees (nd) among the initial population for the three different parametrisation approaches

with p = 12 are presented in fig. 1.7. The light and dark shading correspond respectively to

randomly selected populations without and with the application of the acceleration constraint.

The more diverse a population of kinematics the more kinematics we expect with a low degree
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1.3. Results and discussion

of connectivity and the larger the coloured area in fig. 1.7. The distributions in the top row

have been obtained for the networks based on the shape similarity measure Ri,j and indicate

how diverse the population is in terms of the shape of the kinematics. The distributions in the

bottom row have been obtained for the networks based on the amplitude difference measure

D i,j and indicate how diverse the population is in terms of the amplitudes of the kinematics.

The unconstraint populations for the control point and the modal reconstruction have a

high degree of diversity as the majority of the kinematics have a low node degree and show

similarities to only a few other kinematics in the population. The Fourier series performs

slightly lower than the two others. By construction, the Fourier series have an inherent

similarity in shape and it is not entirely unexpected to find more nodes with a higher node

degree for this approach. Almost all cumulative distributions in fig. 1.7 shift to higher node

degrees when the acceleration constraint is applied, indicating that the constraint decreases

the diversity both in terms of shapes and in terms of amplitudes. The only exception is

the shape diversity for the modal reconstruction which remains nearly unaffected by the

constraint. The spline population is the most diverse for the unconstrained case and the

modal population exhibits the highest diversity for the constrained case.

We have also used these metrics to analyse the ability of the different approaches to create the

insect-like kinematics and trapezoidal motions presented in fig. 1.1. All approaches except

the modal reconstruction are capable to mimic the presented kinematics with a minimum

correlation coefficient R ≥ 0.993 and a maximum mean absolute error D ≤ 1°. The modal

reconstruction does equally well for most of the motions except for the trapezoid with steep

edges which is approximated with a larger mean absolute error of D = 2.3°.

Based on all visual and quantitative comparison presented here, the control point method

yields the best coverage of the solution space and the largest diversity within an initial popu-

lation if no acceleration constraint is applied. The modal reconstruction method performs

better than the control point method when the constraint is applied. The Fourier series popu-

lations are least diverse and have the lowest coverage, but still perform sufficiently well for our

optimisation application.

1.3.2 Optimisation progress and convergence

Due the specific implementation of the genetic algorithm for our flapping wing optimisation,

we can not replace individual kinematics that are omitted based on the acceleration constraint.

This is not a general limitation of the approach and can be overcome for future applications.

However, in the current study, the total number of the executable individuals in first gen-

erations is significantly lower than the nominal 200 individuals due to the implementation

(fig. 1.8). This is in particular the case for the control point and modal reconstruction methods

with 12 or 18 parameters. The Fourier series method is less affected and also the optimisation

with a lower number of control points has populations with consistently close to 85 % of

executable individuals. The number of executable individuals per generation increases for
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Figure 1.8 – Number of executable motions or individuals per generation for all optimisations
with 6, 12, and 18 parameters and the three parametrisation approaches.
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Figure 1.9 – Moving average over 10 iterations for the generational distance (GD) versus the
number of iterations. Each iteration corresponds to the evaluation of one flapping motion.

most of the optimisations but never reaches full population size with exception of the control

point approach with 6 parameters. The control point approach with 12 parameters and the

modal reconstruction approach have particularly low numbers of executable individuals in

the early generations, but the situation improves in the course of the optimisation. The lower

number of executable individuals in the populations decrease the diversity which hampers

the search for the optimum solutions and delays convergence.

The convergence of the different approaches is analysed based on the generational distance

introduced in equation 1.9. The variation of the generational distance with the number

of executed motions is presented in fig. 1.9. Surprisingly, the parameter count is not the

most important factor that influences the convergence behaviour. The largest influence

on the convergence is the parametrisation approach. The optimisations using the same

parametrisation form groups with similar convergence speed according to the generational

distance metric.
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Table 1.1 – Number of iterations and generations required until convergence for the different
parametrisation approaches. Convergence is reached if the convergence speed ≤ 5×10−4 and
generational distance ≤ 5×10−3 for two consecutive generations.

parametrisation p iterations generations

control points 6 2718 14
12 2742∗ 25∗

18 2968 25
Fourier series 6 2118 11

12 2486 13
18 2491 13

modal reconstruction 6 2683 18
12 2721 23
18 2702 29

∗ The convergence for this case is determined manually by
observing the evolution of the Pareto kinematics.

The modal reconstructions exhibit the highest relative generational distance and convergence

speed at the very beginning. The modal reconstruction with 18 parameters has the highest

initial generational distance of 0.346 but also the modal approach with 12 (GD=0.129) and

6 parameters (GD=0.125) have initial values that are one magnitude larger than the values

obtained for the other conditions. The higher initial generational distance can be explained

by a larger diversity of the initial population. The convergence speed behaves proportionally

to the generational distance such that all optimisations converge in comparable time. The

smallest relative generational distance and convergence speed is observed for the Fourier

series. The motions of the initial Fourier population are less diverse and closer to the final

solution due to the different constriction of the parameter bounds. The optimisation progress

is slower because the differences between the motions are less pronounced and consequently

harder to determine. On the other side, higher diversity for the initial populations leads to

higher convergence speed.

The total convergence time differs by 40 % between the slowest (control point approach with

p = 12) and fastest (Fourier series approach with p = 6) optimisation and the majority takes

between 2486 (Fourier series approach with p = 12) and 2742 (control point approach with

p = 12) iterations (table 1.1). The optimisations are not deterministic and uncertainties are

introduced due to random initialisation, recombination and mutation. The differences in

convergence time are small when considering that the computational complexity of the opti-

misations increases exponentially with the parameter count. The Fourier series optimisations

tend to reach convergence slightly faster than the modal and control point approaches.
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Figure 1.10 – Global Pareto front for all kinematic function optimisations for the last generation.
Kinematics corresponding to the final global Pareto front solutions for the different kinematic
functions.

1.3.3 Pareto fronts and optimal kinematics

The resulting Pareto fronts for all 9 optimisations are presented in fig. 1.10. The colours

indicate the number of optimisation parameters and the symbols indicate the parametrisation

approach. The different Pareto fronts have the same shape but there is a shift between them

and they reach slightly different extreme values. The modal reconstruction approach with

p = 6 finds the most efficient solutions (up to η≈ 1.4) and the Fourier series approach with

p = 12 finds the solutions that generate the highest stroke average lift (up to C L ≈ 2.2). Overall,

the optimisations with the highest number of parameters are most limited in finding highly

efficient solutions. The higher number of parameters might lead to more complex kinematics

that require more power to achieve the same performance in lift. For our current example,

p = 12 seems to provide the best balance across the different parametrisation approaches.

The additional complexity provided by 12 optimisation parameters compared to the p = 6

optimisations is beneficial in improving the aerodynamic performance without increasing

the power requirements and penalising the efficiency. Increasing the parameter count leads

to slower convergence and kinematics with higher harmonics variations. To aid the genetic

algorithm to fine tune the parameters, we have conducted an additional optimisation where

we have taken the results for p = 6 as a start point for a p = 12 optimisation using the Fourier

series parametrisation approach. The results did not lead to significant differences with

respect to the regular p = 12 optimisation and are not presented here. Overall, the differences

between Pareto fronts are of the same order of magnitude as the inherent experimental

variations. The influence of the number of parameters seems to have a stronger influence

than the parametrisation approach.

In general, the performance of the three parametrisations is comparable and we can not

identify a clear preference of any one of them. The optimal kinematics that make up the Pareto
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front are included in fig. 1.10. The columns with the same background colour correspond

to optimisations with the same number of parameters. The rows correspond to different

parametrisation approaches. The colour of the β(t/T ) curves for one half stroke varies from

grey to green, red, or black with increasing efficiency. All Pareto kinematics show a continuous

transition from high lift motions to more efficient ones, which indicates that the solutions are

converged and we obtained a well developed Pareto front. For the same number of parame-

ters, the Pareto kinematics show similar characteristic features for the three parametrisation

approaches but also display some subtle differences that cause the shifts in the Pareto front.

The main differences between the Pareto optimal kinematics of the different cases are the

number of local maxima and their timing. The control point and modal reconstruction

approaches with p = 6 show two local maxima around t/T = 0.125 and t/T = 0.375 (fig. 1.10).

These two maxima are less pronounced or even absent in the Fourier series kinematics which

look more like a smooth trapezoidal profile. The two local maxima become more pronounced

for the control point approach with p = 12 and only the second one around t/T = 0.375

remains present when p is increased to 18 for this approach. The modal reconstructions for

p = 18 are also characterised by a single peak that is located around t/T = 0.32. The Fourier

series with p = 12 and p = 18 have a distinct bump at the beginning of the stroke, around

t/T = 0.1. Overall, the complexity of the motions increases with the parameter count and

different shapes and kinematics can lead to similar Pareto fronts depending on the choice

of the parametrisation and the parameter count. This is due to the complex relationship

between the flow development and the growth of the leading edge vortex for flapping wings

motions [64, 71] and are further discussed in chapter 2.

1.4 Conclusion

In this study, we presented three different approaches to parametrise motion kinematics,

demonstrated their application, and evaluated their performance by the example of an experi-

mental optimisation of the pitching kinematics of a robotic flapping wing in hover. The pitch

angle kinematics in our application are described by

• control points that are connected by a fifth-order spline interpolation,

• a finite Fourier series, and

• a linear combination of modes determined by a modal decomposition of kinematics

created by a random walk.

Each of the parametrisation approaches is implemented with three different parameter counts:

6, 12 and 18, which leads to a total of nine optimisations and more than 30000 experimental

iterations conducted over a period of several weeks. The performance of the different ap-

proaches has been analysed by comparing the diversity of the solutions and coverage of the

motion space, the optimisation process and convergence.
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The coverage of the solution space was qualitatively evaluated based on a probability density

map of the random initial population of 200 individuals. For a more quantitative comparison of

the coverage and the diversity of the solutions, we introduced a number of diversity measures

including the maximum pitch angle, rate, and acceleration, their standard deviations, and

correlation coefficients for the pitch and acceleration. To further quantify the diversity between

the kinematics within the initial populations, we calculated similarity networks based on a

mutual shape similarity measure and an amplitude error. The cumulative distribution of the

node degree in a population is an intuitive quantitative measure to compare the diversity of

the kinematics based on their shape and amplitude. Based on all qualitative and quantitative

measures, the control point kinematics exhibit the highest diversity closely followed by the

modal reconstruction method if no experimental constraints are in place. The Fourier series-

based kinematics have the lowest maximum pitch rate, pitch acceleration, and a lower diversity

compared to the control point and the modal reconstruction approach.

In most experimental applications, the theoretical parameter space cannot be fully explored

due to mechanical, electrical, or other constraints for example related to the measurement

equipment. In our case, the main limitation is imposed by the sensitivity and measurement

range of the load cell and the performance envelope of the motor that controls the pitching

motion. These limitations lead to a pitch acceleration constraint that significantly reduces the

coverage and the solution diversity for all three parametrisation approaches. The practical

implementation of an acceleration constraint is easier for the Fourier series approach than for

the two other approaches. The modal reconstruction parametrisation performs best in the

various diversity measures, followed by the control point and the Fourier series approaches

when the acceleration constraint is in place.

The generational distance criterion is implemented to monitor the progress of the optimisation

and as a convergence measure to end the optimisation. All optimisations converged in

comparable time which did not depend on the parameter count. In the presented optimisation

study, it is desirable to have fewer parameters as more parameters increase complexity without

a clear aerodynamic benefit. The subtle changes in the kinematics lead to variations in the

loads that are of the same order as the inherent experimental fluctuation of the system. This

can slow down the convergence of the genetic algorithm especially in later stages when only

minor aerodynamic improvements are achieved.

The resulting Pareto fronts for the different optimisations are similar in shape and in the

range of values of the two objective functions they cover. The parameter count has a stronger

influence on the final results than the parametrisation approach. This is encouraging for the

robustness of the three parametrisation approaches presented here. The optimal kinematics

corresponding to the Pareto fronts have slightly different shapes depending on the parameter

count and the parametrisation approach selected but they yield comparable fitness values.

The main differences between the optimal kinematics of the different cases are the number of

local maxima and their timing.
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The goal of this paper was to present three different methods to parametrise complex motion

kinematics for optimisation studies and to compare their performance on an experimen-

tal flapping wing system. Each optimisation application has different objective functions,

constraints, and specific challenges. There is no one solution that fits all and the different

approaches to parametrise the solutions have their specific advantages and disadvantages

outlined in table 1.2. The Fourier series approach is the easiest method to implement but

the introduction of parameter constraints and the parameter bounds cannot be as directly

contained as for the control point approach. Nevertheless, the Fourier series has an analytical

definition and continuous high-order derivatives which make it a promising parametrisation

for structurally sensitive applications like vertical-axis wind turbines or flapping-foil energy

harvesters. By definition, the control points are more intuitive to constrain and their parame-

ter values can be interpreted directly in terms of their influence on the temporal evolution

and amplitude of the kinematics. With the ability to create sharp and zero gradient curves,

the control point method is most suitable for intermittent kinematics like burst and coast

swimming of fish- and squid-like devices, and flapping wing flight. The modal reconstruction

is extremely versatile and adaptable. The initial family of solutions can be generated by a

random walk method as presented here, but can also be a family of kinematics measured in

nature or in the lab. Building a parametrisation upon an existing library of kinematics can

be an extremely powerful tool. Complex animal-like locomotions can be described by only a

few modes which would require many parameters being constructed by analytical kinematic

definitions.

Depending on the individual complexity of the mode shapes, it is difficult to restrict parameters

bounds to meet experimental constraints. Instead, motions have to be omitted after generation

if they do not meet constrains such as start and end position and acceleration. This can

severely hamper the creation of initial populations for a genetic algorithm optimisation, for

example. In the presented application of an experimental optimisation of a robotic flapping

wing mechanism, all three approaches yielded similar results in a comparable amount of time.

Other applications might have different challenges, but we expect that the main characteristics

of the presented approaches are valid for different systems and that the choice of the most

suitable parametrisation approach can be guided by the properties listed in table 1.2.

Table 1.2 – Overview of the key characteristics for the different parametrisations.

Complexity Handling Interpretability Applications
of constraints of parameters

control - + + intermittent kinematics, e.g.
points burst and coast swimming
Fourier + ◦ - vertical axis wind turbines,
series flapping foil energy harvester
modal recon- ◦ - ◦ complex animal-like
struction locomotion
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2 Phenomenology and scaling of opti-
mal flapping wing kinematics

In this chapter, a kinematic optimisation for highest aerodynamic performance on a robotic

flapping wing system is performed. Additional flow field measurements are conducted to link

the vortical flow structures to the aerodynamic performance for the Pareto-optimal kinematics.

The objective is to identify vortex characteristics and scaling parameters for optimal flapping

wing kinematics. The extend of this work, provides guidelines for the aerodynamic design of

human-engineered devices that automatically adapt their motion kinematics to optimally fit

varying flight conditions.

The work presented in this chapter has been published in Bioinspiration & Biomimetics [71].

2.1 Introduction

Bio-inspired mechanical flapping wing systems have been increasingly used in the past

decades to study and understand the behaviour of natural fliers and serve as inspiration

for the design of flapping wing micro air vehicles (MAV) [11, 72–74]. Recently, MAV with

similar sizes and weights as natural fliers have found their applications [46–49]. With the

development of novel wing actuators [52] and the miniaturisation of flight control systems

and improvements in energy storage, MAV are employed to accomplish complex autonomous

missions in urban environments [20]. With the decrease in size, the Reynolds number reduces

and unsteady effects have more influence on the aerodynamic performance of the fliers. At

lower Reynolds numbers (Re < 5000), flapping wing vehicles generally perform better than

revolving wing aircraft and at Re < 100 the lift-to-power ratio is about twice as high for flapping

wings in comparison to their revolving counterparts [9, 10].

Natural flapping wing fliers are extremely versatile. They seamlessly change between hovering

and forward flight, use their wings to generate both lift and thrust, and can even glide to

conserve energy. Flapping wings operate at high angles of attack above the static stall angle of

the wing. These high angles cause a shear layer to separate at the leading edge which rolls up

and forms a large scale coherent structure, the leading edge vortex. The stall of the wing is
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Chapter 2. Phenomenology and scaling of optimal flapping wing kinematics

delayed through the rotational acceleration of the flapping wing which stabilises the leading

edge vortex during the majority of the stroke cycle [75]. A bound leading edge vortex creates a

low pressure region on the suction side of the wing which generates high aerodynamic forces

and torques required for the fast maneuverings of flapping wing fliers [76, 77]. The unsteady

aerodynamic effects of the leading edge vortex give rise to exceptional lift and thrust yields

well beyond the aerodynamic performance of fixed wings under steady-state conditions [3,78].

At the end of the flapping half-cycle, the wing rotates to keep the leading edge in front of the

trailing edge along the stroke direction. During the end-of-stroke rotation, the vortex separates

from the shear layer and sheds into the wake and a new stroke begins.

Nature’s flapping wing fliers do not cease to amaze us with their incredible flight performance

and efficiency, but many bio-inspired human-engineered devices do not yet manage to com-

pete with their natural inspirers [79]. One reason for this is that the functional morphology

of insect wings is not yet fully understood and can not directly be incorporated in robotic

flapping wing vehicles. During the natural evolution of birds and insects, the wing shape and

their kinematics advanced simultaneously and different wing shapes favour specific kinemat-

ics for hovering flight [74]. Complex flapping wing motions are observed in nature [80, 81]

and especially the pitch angle profile is highly depended on the wing geometry and elasticity

but also varies with the flight conditions or flow characteristics expressed by the Reynolds

number and reduced frequency [8, 62]. Recent improvements in miniature wing actuators

motivate the exploration of the influence of more complex wing kinematics on the flapping

wing performance [52].

Wing kinematics measured on birds and insects provide a starting point to design effective

flapping wing motions but they are specific to each wing’s properties and actuation system.

Various parameter studies have been carried out in the past to characterise the performance

of flapping wing kinematics for different wing planforms [17, 64, 72, 82]. On a dynamically

scaled mechanical model of a fruit fly Sane and Dickinson [72] varied the stroke amplitude,

angle of attack, flip timing, flip duration and the shape and magnitude of stroke deviation

in an extensive parameter study. Among other findings, they concluded that the mean drag

increases monotonically with increasing angle of attack and a short flip duration advanced of

the stroke reversal is beneficial for lift production. The influence of different stroke- and pitch

angle waveforms at a fixed flapping frequency and amplitude was investigated recently by Bhat

et al. [64] for a fruit fly wing planform. The stroke angle evolution was modulated between a

sinusoidal and a triangular profile and the pitch angle evolution between a sinusoidal and a

trapezoidal profile. The stroke angle evolution has a main influence on the magnitude of the

lift coefficient CL maxima whereas the pitch angle evolution mostly impacts the instantaneous

CL at stroke reversal.

The vast parameter space of possible complicated flapping wing kinematics makes it chal-

lenging to derive general relationships between motion parameters and optimal aerodynamic

performance. Experimental and numerical optimisations can aid to find optimal kinematics

within the vast parameter space of the flapping wing actuation. Optimisations have been
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applied primarily to numerical models which are only limited by the computational cost

and the validation of the numerical method [61, 83, 84]. A hybrid optimisation approach

which combines aspects of a genetic algorithm and a gradient-based optimiser was applied

by Berman and Wang [61]. They parameterised the stroke, pitch, and elevation angle profiles

to minimise the power usage on three differently weighted insect models in hovering flight.

The aerodynamic forces are computed using a quasi-steady model and assuming a thin flat

plate wing. The optimal kinematics found in their study exhibit a sinusoidal stroke evolution

where the pitch angle is kept constant throughout the cycle. The kinematic functions found

take advantage of passive wing rotation by using the aerodynamic moments to reverse the

wing pitch. By treating the flapping wing kinematics optimisation as a calculus-of-variation

problem along with quasi-steady aerodynamics, Taha et al. [83] find that a triangular wave-

form for the stroke angle and a constant pitching angle throughout the half-stroke yield the

best performance index in terms of C 2
D/C 3

L with CD the drag coefficient. A stroke profile with

a harmonic waveform requires 20 % more aerodynamic power compared to the triangular

waveform for the same performance evaluation. More recently, Lee and Lua [84] used a

two-stage optimisation algorithm to investigate the effects of more complex, insect-like pitch

angle kinematics on the hovering flight of a hawkmoth. They initiate the optimisation with

a semi-empirical quasi-steady model to narrow down the parameter space and then use a

computational fluid dynamics simplex optimisation method to refine the optimal pitch angle

kinematics found.

Quasi-steady or low-order unsteady aerodynamic models have good computational perfor-

mance, however they are often restricted to wing kinematics within their local validated

trajectory space. Computational fluid dynamics simulations at low Re can accurately calculate

the aerodynamic loads generated by a flapping wing, but are too computationally expensive

to use in large scale optimisations.

Experimental optimisations with dynamically scaled wings and force measurements combine

accurate measurements with comparatively low experimental times [63, 85, 86]. Automated

data transfer and processing between the experimental system and the optimisation frame-

work is required and the mechanism needs to have a robust control scheme and mechanical

design to conduct a large number of iterations without human supervision. The early work

of Milano and Gharib [85] on experimental flapping wing optimisations applies a genetic

algorithm to a two-axis system of a translating and rotating wing. The solution that yields the

most lift in hovering flight was related to the strongest leading edge vortex growth. Martin

and Gharib [63] employed a covariance matrix adaptive evolutionary strategy to find effective

kinematics for a bio-inspired flapping fin which can be used as a side or a rear propulsor for

underwater vehicles.

In this study, we propose a unique robust optimisation scheme to obtain optimal pitch angle

kinematics for a given wing geometry and Reynolds number on an experimental flapping

wing platform. We employ a multi-objective evolutionary algorithm to find complex flapping

wing motions which yield highest stroke-average lift and highest efficiency during hovering.
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The trade-off between lift and efficiency of the optimal solutions is represented by a Pareto

front. Complementary velocity flow field measurements are conducted for the Pareto optimal

kinematics to determine the leading edge vortex circulation and its position throughout the

flapping wing cycle. The results consist of two parts. In a first part, we focus on explaining the

interaction between the complex motion kinematics and the resulting aerodynamic perfor-

mance using flow field data and qualitative information on the state of the leading edge vortex

development. In the second part, we quantitatively describe and propose a novel approach

to scale the temporal evolution of the vortex development and the aerodynamic forces and

efficiency for all solutions along the Pareto front.

2.2 Materials and Methods

2.2.1 Wing Model and Kinematics

The flapping wing kinematics can be described by three angles and their temporal evolution,

the stroke angle φ, the pitch or rotation angle β, and the flap or elevation angle ψ. The stroke

angle θ describes the position of the wing in the horizontal stroke plane (fig. 2.1b). In hovering

flight, the stroke follows a sinusoidal profile for most insect species. The pitch angle β in

fig. 2.1b describes the rotational position of the wing and determines the geometric angle

of attack. The pitching motion is the most complex motion function in the hovering flight

kinematics and its shape varies strongly between different species [87]. The pitch actuation is

the main focus of this study. The elevation angle ψ is measured relative to the vector normal

to the stroke plane (not shown in fig. 2.1). It plays a minor role in the hovering of insects

with similar Reynolds number and wing aspect ratio [62]. In this study, the flap angle is

kept constant at ψ= 0° and the stroke angle varies sinusoidally with a fixed amplitude and

frequency.

2.2.2 Dynamic scaling

The two non-dimensional parameters that characterise the aerodynamic properties of the

flapping wing in hover are the reduced frequency k and the Reynolds number Re. The reduced

frequency k measures the degree of unsteadiness of the flow by relating the spatial wavelength

of the flow disturbance to the chord length c and can be calculated as:

k = πc

2φR2
, (2.1)

where 2φ is the peak-to-peak stroke amplitude and R2 =
√∫ R

0 (R0 + r )2dr /R is the radius to

the second moment of area. For a rectangular wing, which is used in this study, R2 is also the

span-wise position where the force applies [88]. The root cutout R0 of the wing is indicated in

fig. 2.1c and is the distance between the stroke axis and the wing root.

The Reynolds number Re describes the ratio between the inertial and viscous forces and is
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Figure 2.1 – a. Schematic of the experimental configuration with the flapping wing mechanism
submerged in an octagonal water tank. A light-sheet and camera are positioned to record the
velocity field normal to the axis of rotation of the wing. b. Definition of stroke φ and pitch
angles β characterising the flapping wing kinematics, and c. wing dimensions.

determined for the hovering flight by

Re = U c

ν
= 2φ f cR2

ν
, (2.2)

where ν is the kinematic viscosity of the fluid and the characteristic velocity U = 2φ f R is

defined as the stroke average wing velocity at the second moment of area R2 [72, 88].

The experimental parameters for the model wing are summarised in table 2.1. They are se-

lected to match the characteristics of larger insects, such as hawk moths, or the hummingbird

in hovering flight [27, 86].

The model wing used in this study has a rectangular planform (fig. 2.1c). Even though insect

or bird wing in nature are typically not rectangular, the rectangular planform is commonly

used to study the aerodynamic of revolving and flapping wings [16, 27, 89]. The performance

of flapping wings is influenced by the wing shape and geometry and the wing planform can be

optimised for specific flight modes and mission profiles of the aerial vehicle [90]. Results of

systematic investigations of the influence of the wing geometry by Ansari et al. [91] revealed

that planforms with straight leading edges are desirable for increased performance. Therefore,

we believe that the flat plate is a valid simplification of an insect wing. Our numerical results

will still be specific to the selected wing planform but the main procedure and underlying flow
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physics are expected to be generalisable for different more insect-inspired wing planforms.

2.2.3 Experimental Setup

A schematic representation of the experimental setup is depicted in fig. 2.1a. The flapping wing

mechanism is submerged in an octagonal tank with an outer diameter of 0.75 m filled with

water. For a tip-to-tip amplitude of 0.47 m this leads to a 6.91c minimum tip clearance which

has been shown to be sufficient to avoid wall effects in flapping wing experiments [16, 92].

The stroke and pitch motion are driven by two servo motors (Maxon motors, type RE35, 90 W,

100 N mm torque, Switzerland) reduced by 35 : 1 with a planetary gear-head for the stroke and

19 : 1 for the pitch actuation. This experimental flapping wing mechanism is a unique set-up in

terms of its robustness, repeatability, and the variety of kinematic motions that can be executed.

Initial tests on the highest lift kinematics showed an error of < 0.1° between the motor input

signal and the motor response measured by the encoder throughout the entire cycle. A

motion controller (DMC-4040, Galil Motion Control, USA) is used to control the motors. The

aerodynamic loads are recorded with a six-axis IP68 force-torque transducer (Nano17, ATI

Industrial Automation, USA) with a resolution of 3.13 mN for force and 0.0156 N mm for torque

measurements positioned at the wing root. The forces are recorded via a data acquisition card

(National Instruments, USA) with sampling frequency of 1000 Hz. The force data was filtered

with a zero phase delay low-pass 5th order digital Butterworth filter. The cut-off frequency

was chosen to be 12 times higher than the flapping frequency f .

A high-power light-emitting diode (LED) (LED Pulsed System, ILA_5150 GmbH, Germany)

and a cylindrical lens are used to produce a 4 mm-thick light-sheet. The illuminated plane

of interest is recorded by a sCMOS camera (ILA_5150 GmbH / PCO AG, Germany) with a

2560 px×2160 px resolution covering a 119 mm×101 mm field of view. Phase-locked particle

image velocimetry (PIV) is conducted by triggering the LED and camera simultaneously to

record a single image pair for a specific phase angle φ. To record the different phase positions

throughout the stroke cycle the initial stroke angle is shifted relative to the LED-plane similar

to the procedure used by Krishna et al. [16]. A total of 39 different stroke angle positions

are recorded and averaged over 64 flapping cycles. A multi-grid algorithm with a resulting

Table 2.1 – Summary of the experimental parameters of the dynamically scaled wing
used throughout this study. The working fluid in the experiments is water with ν20 ◦C =
1.00×10−6 m2/s.

Parameters model wing
Wing stroke frequency f 0.25 Hz
Wing chord c 34 mm
Wing span R 107 mm
Stroke amplitude φ 180°
Reduced frequency k 0.19
Reynolds number Re 4895
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interrogation window size of 48 px×48 px and an overlap of 50 % is used to correlate the raw

images and reconstruct the velocity flow field with a physical resolution of 1.1 mm or 0.034 c.

The flow field measurements were conducted on the plane normal to the span-wise direction

at the R2 location or 0.56R measured from the wing root (fig. 2.1a). To quantify the flow

properties for the converged optimisation kinematics, PIV experiments are carried out for 19

out of the 35 Pareto front individuals.

2.2.4 Optimisation

Genetic algorithms and other evolutionary optimisation strategies employ a survival of the

fittest strategy. Multiple sets of parameters are tested each generation and the best performing

individuals are advanced to improve further generations. Genetic algorithms have proven to

be effective and robust for experimental data which is prone to more noise in the data. Due to

their stochastic nature, evolutionary algorithms are strong in evading local optima which is

especially important for unsteady aerodynamics where some changes in the actuation can

cause a cascade of events and a drastic change in the performance. The objective scores

of the evolutionary algorithm do not need to be weighted to be used in a multi-objective

optimisation. This gives the genetic algorithm the natural ability to determine the trade-off

between objectives in the Pareto front.

The two optimisation targets in this study are the stroke average lift coefficient C L and the

hovering efficiency η. The force and power coefficients of the system can be calculated from

the force and torque measurements by the load transducer positioned at the root of the wing

(fig. 2.1a) according to:

CL =
L

1
2ρRcU

2 , CP =
P

1
2ρRcU

3 , (2.3)

where L is the instantaneous lift, D the drag, and P the aerodynamic power of the system. For

the two-axis motion, the power P is calculated as the sum of pitching power Pp and the stroke

power Ps. The pitching power is the power required to rotate the wing around its pitching axis

and is given by Pp = Tpβ̇, with Tp the measured pitch torque and β̇ the angular velocity of the

pitching motion. The stroke power is given by Ps = Tsφ̇ with Ts the stroke torque and φ̇ the

stroke velocity. The stroke torque cannot be measured directly and is calculated from the drag

force D along the span Ts =
∫

R D(r )r dr [72]. For a uniform drag coefficient distribution along

the span, the torque can be computed as Ts = DRd, where D is the drag measured at the wing

root and acting on the radial position Rd = 3
4

(R0+R)4−R4
0

(R0+R)3−R3
0

.

The hovering efficiency of the flapping wing system is computed as the ratio between the

stroke average lift coefficient C L and stroke average power coefficient C P:

η= C L

C P

. (2.4)

This basic definition of efficiency expresses how much energy is invested to generate a certain
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amount of lift. Other definitions of the hovering efficiency quantify the dimensionless aerody-

namic power to keep a unit weight in hover [93] which involves specifying the weight of the

hovering insect or aerial vehicle.

The optimisation scheme is implemented with a genetic algorithm from the MATLAB Global

optimisation Toolbox (The MathWorks Inc., USA) [66]. Genetic algorithms explore the solution

space of a process or function by using artificial evolution, a strategy also known as the

survival of the fittest. Analogous to natural evolution, the fittest individuals of a population

reproduce to ensure advancement of succeeding generations. In this study, seven parameters

characterising the pitch angle motionβ are the genes or chromosomes in the genetic algorithm

population. The total population consists of 100 individuals where the 35 highest performing

genes make up the Pareto front individuals. The pitch angle function β(t ) displayed in fig. 2.2

is defined by four parameters for the pitch angle extrema and three parameters for their

respective timings. The parameters can vary between certain bounds listed in table 2.2

to cover a wide range of possible kinematics similar to those observed in nature [62]. The

objective or fitness function converts the parameters into the specific kinematics and evaluates

their performance experimentally on the flapping wing system. Each kinematic is executed

over eight consecutive flapping cycles and its fitness, the stroke average lift coefficient, and

hovering efficiency, are calculated from the load cell data of the last four cycles to ensure a

steady-state is reached and the influence of transient effects is limited. Under certain flight

conditions like forward flight or hovering with an inclined stroke planes, asymmetric stroke

and pitch profiles are used [94, 95]. In this study, the stroke and pitch angle kinematics are

symmetric and the front- and backstroke are identical which is the normal hovering flight

as observed by the majority of insects [27]. Due to the symmetry of the prescribed motion

and thanks to the high precision of our flapping wing device we obtain symmetric force and

torque responses. The differences between the forces measurements during the front- and

the backstroke are less than 5 % of the maximum values. Only the results for one half cycle

are presented to give a more compact presentation of the kinematics and the aerodynamic

performance.

The initial population is randomly drawn from a uniform distribution bounded by the con-

straints in table 2.2. After all kinematics of the population have been evaluated, the individuals

are ranked based on their fitness and obtain a score relative to the inverse square root of

their rank. Several individuals of the population are then selected and their chromosomes are

either used directly (cloned), randomly modified (mutated), or combined with other genes

(crossover) to create the individuals for the next generation. The genes used for this process

are chosen stochastically based on their previous performance, where a higher score leads to

a higher probability to be selected. For the presented optimisation, 5 % of the previous genera-

tion’s elite are clones, 60 % are created as crossover, and 35 % as mutation offsprings. The genes

generated by the crossover function combine the parameters of two parents according to the

following rule: child = parentA + rand × (parentB - parentA), where rand is a random number

between 0 and 1 drawn from a uniform distribution. After the new generation of offsprings

is created, its fitness is evaluated by the objective function and the process continues until a
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Figure 2.2 – Pitch angle β optimisation function used throughout the experiments. The
four angles β0,β1,β2,β3 and the three phase times t1, t2, t3 are optimised by the evolutionary
algorithm to improve the objective function.

Table 2.2 – Parameter bounds for the pitching motion optimisation

β0 β1 β2 β3 t1 t2 t3

minimum 30° 30° 30° 20° 0.05T t1 +0.2(t3 − t1) 0.33T
maximum 60° 75° 75° 60° 0.18T t3 −0.2(t3 − t1) 0.43T

predefined termination condition is reached. The optimisation for this study converged after

40 generations conducting 4000 experiments on the flapping wing apparatus over the course

of three consecutive days. The evolution of the pitch angle kinematics β progressed quickly

for the first ten generations, then the solutions vary only slightly within a small margin for

the remainder of the optimisation where only minor improvements are made. The genetic

algorithm optimisation was halted after the average fitness of the Pareto front individuals did

not advance within the last ten generations.

2.3 Results

2.3.1 Phenomenological Overview

The two optimisation objectives in this study are the stroke average lift coefficient C L and the

stroke average hovering efficiency η. The final shape of the Pareto front in fig. 2.3a represents

the trade-off between those two optimisation targets. The coloured markers represent the

individuals of the final generation on the Pareto front whose specific kinematics and associated

aerodynamic loads will be analysed in more detail here. The x and y-axis in fig. 2.3a have

been inverted following standard conventions. The stroke-average lift C L produced by the

optimised kinematics ranges from 1.20 to 2.09 and the aerodynamic performance η varies

from 0.60 to 1.17. By trading off up to 43 % of its maximum lift capacity, the flapping wing

system’s efficiency can be increased by 93 % by merely adjusting the pitch angle kinematics.
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Figure 2.3 – a. Final Pareto front for the optimisation objectives hovering efficiency η vs stroke
average lift coefficient C L. Solutions marked with a square marker are examined in more detail
in Section 2.3.1. b.-d. Temporal evolution of the pitch angle β for a single stroke for different
sections of the Pareto front.

The Pareto front can be divided in three sections based on the local change in the gradient

dη/dC L along the front. Along the large central part of the Pareto front, the lift increases

approximately linearly with decreasing efficiency. In this bulk part of the Pareto front, an

increase of ∆C L = 0.1 costs ∆η= 0.058 or an increase of ∆η= 0.1 costs ∆C L = 0.167. Near the

tails of the Pareto front, there is a larger trade off between lift and efficiency. For the highest lift

cases, we can squeeze out an increase of ∆C L = 0.1 at the expense of losing ∆η= 0.138. For the

highest efficiency cases, we can squeeze out an increase of ∆η= 0.1 at the expense of losing

∆C L = 0.257.

The pitch angle kinematicsβ have a distinctly different evolution for the three different regions

of the Pareto front. The evolutions of β are presented in fig. 2.3b-d for half of the flapping cycle.

The motion is perfectly symmetric and the front- and backstroke are identical. The selected

axes limits highlight the variations of β during the main portion of the stroke prior to the rapid

end of stroke rotation where β drops to zero for all kinematics. All kinematics on the Pareto

front have an advanced rotation, which means that the majority of the end of stroke rotation

occurs before the end of the stroke. The pitch angle is the function optimised by the genetic

algorithm. The aerodynamic angle of attack α during this stroke is related to the pitch angle

as α= 90°−β.

The kinematics in the high lift tail of the Pareto front (fig. 2.3b) have an almost trapezoidal

pitch angle profile. The pitch angle is more or less constant around β= 45° for 0 < t/T < 0.4

and there is an abrupt end of stroke rotation. The kinematics in the high efficiency tail of the

Pareto front (fig. 2.3d) have a more rounded, sinusoidal profile with a maximum pitch angle
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β> 60° around mid-stroke. The high pitch angle leads to a substantially lower angle of attack

in the high efficiency tail compared to the high lift tail. The transition into the end of stroke

rotation is smooth. The kinematics in the bulk of the Pareto front (fig. 2.3c) gradually evolve

from the more trapezoidal high lift kinematics towards the almost sinusoidal high efficient

kinematics.

The intermediate and most efficient pitch angle kinematics obtained in the optimisation

resemble pitch angle evolutions observed in a dynamically scaled crane fly model in hover [96].

The stroke actuation of this crane fly model was fixed while the wing was allowed to passively

pitch in response to the aerodynamic forces. Similar pitch angle profiles were also found as

efficient hovering motions of a hawkmoth obtained by a numerical-based optimisation [84].

The high lift kinematics along the Pareto front share the same features that can be observed

in the free-hovering flight wing kinematics of a horned beetle [97]. The wings of the horned

beetle are flexible and significant contributions of the wing inertia and elastic storage from

the wing deformation lower the total power requirements for the hovering motion. Yet, the

pitch kinematics found for these natural flexible wings with different planform shapes match

the solutions obtained by our optimisation. This confirms that we are able to optimise the

underlying aerodynamic effects that govern effective flapping wing flight with the use of a

rectangular rigid plate.

To understand and characterise the variations between the different kinematic solutions and

their force and flow responses, we have selected three solutions along the Pareto front to guide

the description. The selected solutions are the highest lift generating, the most efficient, and

an intermediate solution. They are indicated by the square markers in fig. 2.3a.

The pitching kinematics of the selected cases and their flow and forces responses are presented

first for the intermediate solution (fig. 2.4), then for the highest lift generating (fig. 2.6), and

finally for the most efficient solution (fig. 2.8). The pitching kinematics are expressed now in

terms of the aerodynamic angle of attack α. Only one half cycle is shown in the figures for a

more concise representation of the results. Both the kinematics and the corresponding force

responses are symmetric between front- and backstroke. The differences between the forces

measurements during the front- and the backstroke are less than 5 % of the maximum values

which is of the same order of magnitude as the differences between cycles. The flow and force

responses are summarised by selected snapshot of the velocity and vorticity field and the

temporal evolutions of the lift and power coefficient and the leading edge vortex circulation.

The leading edge vortex circulation was computed inside the Γ2-contour with Γ2 = 0.5 and a

radius of 5 pixels over one half-cycle [98].

The summary of the input kinematics and their response for the intermediate solution along

the Pareto front corresponding to C L = 1.71 and η= 0.94 is presented in fig. 2.4. The angle of

attack of the intermediate kinematics in fig. 2.4a is already reduced to 51° at the start of the

stroke due to the advanced end-of-stroke rotation. Initially, the angle of attack continues to

decrease rapidly while the stroke velocity increases. When the angle of attack has reached a
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Figure 2.4 – Overview of the intermediate Pareto front kinematics and their aerodynamic
performance (C L = 1.71,η = 0.94). a. Temporal evolution of the angle of attack α, b. lift
coefficient C L, c. power coefficient CP, and d. leading edge vortex circulation Γ. e.-j. Selected
velocity and vorticity fields within a single stroke. The grey lines in a.-d. represent all Pareto
optimal solutions for reference. The bold lines represent the results for the intermediate Pareto
front kinematics.

value of 35° around t/T = 0.06, a leading edge vortex starts to form (fig. 2.4e). The wing in

the flow field snapshots accelerates from right to left. While the leading edge vortex grows

in chord-wise direction, the angle of attack continues to decrease but at a lower rate than

before. Despite the gradual decrease of the angle of attack, the lift and power coefficients
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increase in the first half of the stroke. The increase is due to the growing leading edge vortex

(fig. 2.4e-g) and the influence of the sinusoidal stroke motion. The power coefficient reaches a

maximum value around the mid-stroke at t/T = 0.25. The lift coefficient reaches a maximum

value shortly thereafter around t/T = 0.28 when the leading edge vortex circulation levels off.

At this point, leading edge vorticity covers the entire chord length and continues to spread

in the chord-normal direction (fig. 2.4g-h). This stage in the vortex development is know as

vortex lift-off [16]. Once the vortex lifts off of the wing, its circulation no longer increases and

the lift decreases. Around t/T = 0.33, the wing starts its end-of-stroke rotation and the angle

of attack increases rapidly when the wing rotates back to its vertical orientation. The axes

limits in fig. 2.4a highlight the variations in the angle of attack during the main portion of

the stroke and cut off the fast rotation at the end of the stroke. The fast end-of-stroke pitch

rotation pushes the leading edge vortex away and prompts the formation of a trailing edge

vortex (fig. 2.4i-j), which yields a secondary peak in the power coefficient (fig. 2.4c).

The different phases of the leading edge vortex development are more clearly visualised in

fig. 2.5 by the space-time representation of the surface velocity, snapshots of the finite time

Lyapunov exponent (FTLE) ridges, and the position of the leading edge vortex with respect

to the wing. The leading edge vortex position is determined as the vorticity density centre

within the Γ2 = 0.5-contour. Figure 2.5a shows the spatiotemporal evolution of the velocity

component usurf parallel to the wing’s surface, close to the surface. Positive values of usurf

indicate a surface flow towards the trailing edge indicative of attached surface parallel flow.

Negative values of usurf indicate a surface flow towards the leading edge induced by a leading

edge vortex. From t/T = 0.13 to 0.21, the leading edge vortex emerges at the leading edge and

gradually spreads in the chord-wise direction but never fully covers the wing chord. This is

clearly visualised by the region of negative surface velocity which gradually grows towards

the trailing but only covers about 75 % of the chord at t/T ≈ 0.33 when the end of stroke

motions sets in. The limited chordwise growth of the leading edge vortex is also evidenced

by the expansion of the positive-time FTLE ridges that indicate the outer boundary of the

vortex. The FTLE fields are calculated from the phases averaged velocity fields following the

same procedure as described by Krishna et al. [16, 99]. The scalar FTLE field is a measure

of local Lagrangian stretching of nearby trajectories as the flow evolves in space and time.

The stretching of particle trajectories can can be calculated forward and backward in time to

yield positive and negative-time FTLE fields (pFTLE and nFTLE). The maximising ridges of

the FTLE fields are effective at identifying coherent structure boundaries and aid to analyse

the dynamics in vortex-dominated flows [100, 101]. The ridges in the nFTLE fields indicate

candidate attracting material lines along which particle trajectories will locally contract. The

ridges in the pFTLE fields indicate candidate repelling material lines along which particle

trajectories will diverge. The points along the chord where pFTLE ridges seem to meet the

wing surface downstream of the leading edge vortex mark the location of surface half saddle

points. The location of a half saddle point indicates the extend of the vortex. This surface half

saddle moves downstream in time while the region of negative surface vorticity grow until

reaching mid-chord at t/T ≈ 0.2. Hereafter, the surface half saddle does not move further
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Figure 2.5 – a. Space-time representation of the surface velocity. The grey dots indicate
the trajectory of the surface half saddle. b. evolution of the angular location of the leading
edge vortex with respect to the wing and the leading edge. The grey lines in b represent all
Pareto optimal solutions as reference. The bold line represents the intermediate Pareto front
kinematics (C L = 1.71,η= 0.94). c.-f. Snapshots of the FTLE ridges for selected time instants
indicated by the vertical dashed lines in a and b.

downstream and the leading edge vortex grows in chord-normal direction. The downstream

trajectory of the surface half saddle is added on top of the surface velocity in fig. 2.5a. The end

of the chord-wise growth coincides with the saturation of the leading edge vortex circulation.

The end of the chord-wise vortex growth can also be observed by analysing the evolution of

the angular position of the leading edge vortex with respect to the wing’s surface in fig. 2.5b.

The angle θLEV is defined as the angle between the wing’s surface and the line connection the

leading edge and the vorticity density centre marking the position of the leading edge vortex

as indicate in the sketch in fig. 2.5b. This angle can also be interpreted as the angle of the shear

layer that feeds the leading edge vortex. When the vortex grows in chord-wise direction, θLEV

decreases rapidly until reaching a local minimum values of about 25° at t/T ≈ 0.20. Hereafter,

the angle remains approximately constant and increases again once the end-of-stroke rotation

has set in. The apparent stagnation of the surface half saddle and the angle θLEV between

t/T = 0.2 and t/T = 0.33 indicates that the leading edge vortex remains stable without growing

in size and circulation but not not shedding into the wake either.

The flow and force response for the highest lift generating kinematics along the Pareto front

are presented in fig. 2.6. The angle of attack for the intermediate kinematics started around

51° and decreased to α= 35° where it remained for the majority of the stroke. The evolution of
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Figure 2.6 – Overview of the highest lift generating Pareto front kinematics and their aero-
dynamic performance (C L = 2.09,η = 0.60). a. Temporal evolution of the angle of attack α,
b. lift coefficient C L, c. power coefficient CP, and d. leading edge vortex circulation Γ. e.-j. Se-
lected velocity and vorticity fields within a single stroke. The grey lines in a.-d. represent all
Pareto optimal solutions for reference. The bold lines represent the results for the highest lift
generating Pareto front kinematics.

the angle of attack for the highest lift generating cases is the other way around. The angle is

slightly above 35° at the start of the cycle and increases to values around α= 50° until a very

abrupt end of stroke motion sets in. The overall higher angles of attack lead to higher values

of lift, power, and leading edge vortex circulation during the entire cycle. The leading edge
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vortex development (fig. 2.6e-j) is similar to the intermediate case, but the vortex evolves faster

due to the higher angle of attack and associated higher circulation rate. This also results in

earlier achievement of the maximum lift, power, and circulation. The higher lift generating

kinematics thus prefer a higher overall angle of attack yielding a stronger leading edge vortex

that reaches its maximum capacity earlier.

The space-time representation of the surface velocity in fig. 2.7a confirms the faster evolution

of the leading edge vortex. The negative surface velocity starts to spread earlier and reaches all

the way through the trailing edge by t/T ≈ 0.20. For the intermediate case, this did not occur

prior to the end-of-stroke rotation. This moment coincides with the moment the surface half

saddle point extracted from the pFTLE ridges reaches the trailing edge (fig. 2.7c-e). When the

surface half saddle reaches the trailing edge, it merges with the half saddle at the trailing edge

stagnation point into a full saddle that will move away from the wing marking the separation

or the lift off of the vortex [16, 100, 102]. The time at which the vortex can no longer grow in the

chordwise direction again coincides with the moment the angle θLEV reaches a minimum value

(fig. 2.7b). The local minimum in θLEV and the surface half saddle and negative surface velocity

reaching the trailing edge all indicate the end of the growth of the leading edge vortex. The

end of the vortex growth is followed by vortex lift off. The vortex lift off is significantly faster

and more pronounced than for the intermediate case and all other cases which are shown by

the thin grey lines (fig. 2.7b). The minimum value of the angle θLEV is higher which indicates

that the vortex is less shielded by the wing, which explains the higher drag and higher power

coefficient that in required to execute these kinematics. The earlier vortex lift-off gives also

more opportunity for a trailing edge vortex to roll up around the trailing edge. This leads to a

higher secondary peak in the power coefficient (fig. 2.6i-j).

The flow and force response for the most efficient kinematics along the Pareto front are

presented in fig. 2.8. The evolution of the angle of attack (fig. 2.8a) varies more gradually than

all other kinematics and reaches values as low as 21° around mid-stroke. At these low angles

of attack, the leading edge vorticity remains close to the wing’s surface and the circulation

continues to grow during the entire stroke until the end-of-stroke motion sets in. The low

angles of attack and compact distribution of the vorticity close to the wing lead to low values

of the power coefficient during the entire stroke. The largest power values are now observed

during the end-of-stroke rotation. The overall lift coefficient is also reduced as a result of the

low angles and the lower vortex circulation, but it continues to increase during most of the

stroke.

The high lift generating kinematics aimed to accelerate the leading edge vortex development

to create a larger and stronger vortex around mid-stroke. The most efficient kinematics seem

to be doing the opposite and slowing down the vortex growth to delay vortex lift-off and

reduce the power by keeping the vortex bound to the wing. This is confirmed by the surface

velocity, FTLE saddle points, and the evolution of θLEV in fig. 2.9. The negative surface velocity

spreads slower than in the previous cases and does not cover the entire surface before the

end-of-stroke rotation sets in (fig. 2.9a). The surface half saddles also do not reach the trailing
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Figure 2.7 – a. Space-time representation of the surface velocity, b. evolution of the angular
location of the leading edge vortex with respect to the wing and the leading edge. The grey
lines in b represent all Pareto optimal solutions as reference. The bold line represents the
highest lift generating Pareto front kinematics (C L = 2.09,η= 0.60). c.-f. Snapshots of the FTLE
ridges for selected time instants indicated by the vertical dashed lines in a and b.

edge and do not lift off (fig. 2.9c-f). Due to the close proximity of the leading edge vorticity

to the wing, the calculation of the vortex position is more sensitive and the evolution of θLEV

is a little more noisy. Yet, the angle does not really start to increase before the end-of-stroke

rotation confirming the absence of vortex lift off and the associated penalty on the power

coefficient.

2.3.2 Quantitative analysis and scaling

In the previous section, we qualitatively linked three characteristic flapping wing pitch angle

kinematics along the Pareto front to their aerodynamic response based on the spatiotemporal

evolution of the leading edge vortices that are created. In the reminder of the paper, we aim

to quantitatively describe and scale the temporal evolution of the vortex development and

the aerodynamic forces and efficiency for all solutions along the Pareto front. First, we will

extract characteristic velocity and time scales directly from the kinematic input. Second, we

will demonstrate how these characteristic parameters allow us to scale the leading edge vortex

circulation and the aerodynamic performance.

The leading edge vortex formation on plunging and translating plates rapidly accelerating

from rest is well described based on the effective velocity of the leading edge shear layer [103].
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Figure 2.8 – Overview of the most efficient Pareto front kinematics and their aerodynamic
performance (CL = 1.20,η = 1.17). a. Temporal evolution of the angle of attack α, b. lift
coefficient C L, c. power coefficient CP, and d. leading edge vortex circulation Γ. e.-j. Selected
velocity and vorticity fields within a single stroke. The grey lines in a.-d. represent all Pareto
optimal solutions for reference. The bold lines represent the results for the most efficient
Pareto front kinematics.

The effective shear layer velocity for the leading edge vortex formation on pitching and rotat-

ing flat plates can be approximated by the leading-edge-normal velocity due to the motion

kinematics [104]. For our flapping wing hovering motion, the time dependent shear layer

velocity us at the span-wise location corresponding to the second moment of area of the wing
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Figure 2.9 – a. Space-time representation of the surface velocity, b. evolution of the angular
location of the leading edge vortex with respect to the wing and the leading edge. The grey
lines in b represent all Pareto optimal solutions as reference. The bold line represents the most
efficient Pareto front kinematics (CL = 1.20,η= 1.17). c.-f. Snapshots of the FTLE ridges for
selected time instants indicated by the vertical dashed lines in a and b.

(R2) is calculated using the stroke velocity φ̇ and pitch velocity β̇ components:

us(t ) = R2 φ̇(t )cos
(
β(t )

)+0.25c β̇(t ) . (2.5)

The second moment of area of the wing R2 is the span-wise location where the force is

applied [88] and the evolution of the shear layer velocity at this location serves as representative

velocity for the analysis of the vortex dynamics. By integrating the temporal evolution of the

leading edge shear layer velocity us defined by equation 2.5 over a time t since the start of the

flapping cycle, we obtain the advective time σ:

σ(t ) =
∫ t

0
us(τ)dτ=

∫ t

0
R2 φ̇(τ)cos

(
β(τ)

)+0.25c β̇(τ)dτ . (2.6)

The advective time describes the distance the leading edge has traveled since the beginning of

the stroke-cycle [104]. The shear layer velocity is a measure for the instantaneous feeding rate

of vorticity into the leading edge vortex. The advective time is a measure for the total amount

of vorticity fed into the vortex since the start of the stroke motion and indicates the age of the

vortex.

Figure 2.10a summarises the temporal evolution of the leading edge shear layer velocity us for
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all pitch angle kinematics along the Pareto front in fig. 2.3. The leading edge shear layer velocity

is non-dimensionalised by the average stroke velocity U . The shear layer velocity profiles can

again be divided into three characteristic groups based on their form (fig. 2.11). The three

groups correspond to the same main middle portion of the Pareto front and the high lift and

high efficiency tails. The solutions with trapezoidal pitch angle profiles that yield maximum

C L have sinusoidal us-evolutions. The pitch angle β is approximately constant during large

portions of the stroke cycle and the shear layer velocity is mainly driven by the stroke velocity.

The most efficient solutions with sinusoidal pitch angle profiles have more trapezoidal shear

layer velocity profiles. Here, the pitch angle decreases when the stroke velocity increases and

vice versa to obtain an approximately constant value of the shear layer velocity during most of

the stroke. The shear layer velocity profiles for the intermediate solutions gradually evolve

from the sinusoidal shape with high maximum values around mid stroke to the trapezoidal

shapes with a rounded ascending flank and a plateau at lower values.

To scale the aerodynamic performance of the flapping wing hovering motion it is desirable

to have a single characteristic velocity which is representative of the input kinematics. We

propose to use the root-mean-square value of the shear layer velocity us,rms which serves as a

fundamental measure of the magnitude of an oscillating signal. The root-mean-square value

of the shear layer velocity decreases continuously along the entire Pareto front with decreasing

stroke average lift fig. 2.10b. This single kinematic parameter allows for the sorting of the

aerodynamic performance of the kinematics in terms of the two objectives of the optimisation:

mean lift and efficiency.

The temporal evolution of the advective time σ for all pitch angle kinematics along the Pareto

front is summarised in fig. 2.10c. The advective time has the dimension of length and is

non-dimensionalised by the chord length. According to equation 2.6, the advective time is

zero at the start of the pitching cycle and increases monotonically until the shear layer velocity

becomes negative following the initiation of the pitch rotation near the end of the stroke

(t/T ≈ 0.42). The shape of the advective time curves is similar for all solutions. The advective

time evolutions of solutions that yield higher mean lift are above those that are more efficient.

This is true at any time beyond t/T = 0.125. Prior to t/T = 0.125, the more efficient kinematics

have a higher shear layer velocity due to a faster pitch rotation and higher advective times

(fig. 2.10c). The more efficient kinematics typically have lower angles of attack during most of

the stroke motions and require a more important pitch rotation around stroke reversal. The

sign-reversal of the shear layer velocity at the end of the stroke motion marks the end of the

feeding cycle of the current leading edge vortex. The maximum advective time indicates the

age of the leading edge vortex at the end of the feeding cycle. The leading edge vortex created

by the highest lift generating kinematics reaches a vortex age of 6.11 advective time scales

before the pitch rotation sets in. The maximum advective time σmax decreases with decreasing

mean lift CL along the entire Pareto front (fig. 2.10d). The leading edge vortex created by the

most efficient kinematics only reaches a vortex age of 3.64 advective time scales. Figure 2.10d

reveals a direct relationship between the maximum age of the leading edge vortex and the

aerodynamic performance of the hovering motion. This inspires us to use to the advective time
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advective time maxima σmax over C L. Color-coded is the hovering efficiency η corresponding
to the Pareto front individual.

as the characteristic time scale to scale the temporal evolution of the aerodynamic response

to the various flapping wing hovering kinematics.

In the following, we will demonstrate how the root-mean-square value of the shear layer

velocity and the advective time can be respectively used as characteristic velocity and time

to scale the temporal evolution of the leading edge vortex circulation and the aerodynamic

performance of Pareto-optimal the flapping wing kinematics.

Leading edge vortex circulation

Figure 2.12 shows a comparison of temporal evolution of the leading edge vortex circulation

Γ for all solutions along the Pareto front for two different normalisations. In fig. 2.12a, the

circulation is normalised by the stroke average velocity U and the chord length and the time

axis is normalised by the flapping period. Note that the stroke average velocity and the
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flapping period are the same for all kinematics considered here. In fig. 2.12b, the circulation is

normalised by maximum leading edge shear layer velocity us,max and the chord length and is

presented as a function of the non-dimensionalised advective time σ/c.

The leading edge vortex circulation curves all start at zero and start to increases when a new

vortex starts to emerge near the wing’s leading edge. The circulation increases as the leading

edge vortex grows and reaches a maximum value at some point during the second part of

the stroke cycle depending on the pitch angle kinematics. Kinematics that yield higher C L,

generate circulation at a higher rate, reach a higher maximum value of the circulation earlier

in the flapping cycle (fig. 2.12a). The peak circulation for the highest C L motion is reached

around mid-stroke when the maximum stroke velocity is reached. The circulation for the most

efficient motion continues to increase until the pitch rotation sets in at the end of the stroke

motion. The peak value gradually decreases and the timing of the peak gradually delays when

we move along the Pareto front sacrificing lift for efficiency.

If the circulation is now presented as a function of the advective time as defined in equation 2.6

and normalised by the maximum leading edge shear layer velocity and the chord length, all

curves collapse and follow the same trajectory (fig. 2.12b). The newly scaled circulation

Γ∗ = Γ/(us,max c) reaches a maximum value of Γ∗max ≈ 3 after σ/c = 3.90. For all pitching

kinematics along the Pareto front, the maximum leading edge vortex circulation scales with

the maximum local shear layer velocity and this maximum circulation is reached after the

leading edge has traveled a distance of four chord lengths regardless of the temporal evolution

of the pitch angle during the flapping motion.

The optimal kinematics are tailored to reach the maximum circulation right before starting

the pitch rotation near stroke reversal. The high lift kinematics continue after the maximum

leading edge vortex circulation is reached and cover more advective times during a stroke

cycle. For σ/c > 4, the vortex circulation decreases even though the vortex stays close to the

wing. During this part of the motion, vorticity continues to be produced and fed through the
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Figure 2.12 – a. Normalized leading edge vortex circulation Γ/U c over time t/T , b. leading
edge vortex circulation Γ/usc scaled with ûs over advective time σ/c. Color-coded is the
hovering efficiency η corresponding to the Pareto front individual. The dashed lines mark the
mean of the scaled circulation Γ∗ maxima and the corresponding mean timing σ/c. The gray
areas represents +/- one standard deviation around the mean.

leading edge shear layer without increasing the leading edge vortex circulation. This vorticity

must be transported either in span-wise direction or dissipates as a consequence of vortex

bursting.

This scaling of the leading edge vortex circulation based on the maximum shear layer velocity

was previously demonstrated to be effective for two-dimensional starting vortices [105] and

swept and unswept pitching wings [106]. The constant vortex formation time of approximately

four advective times is also consistent with many examples of optimal vortex formation found

in nature [107] and with the many records of vortex formation numbers around four for vortex

rings generated by a piston cylinders [108].

Aerodynamic loads

The leading edge vortex provides an important contribution to the aerodynamic forces on

unsteadily moving wings [2]. The evolution of the leading edge vortex circulation Γ in the

measurement plane at R2 scales in magnitude with the maximum leading edge shear layer

velocity us,max. Based on this new scaling of the circulation and the Kutta-Joukowski theorem,

we can formulate the sectional lift L as:

L = ρUΓ= ρUΓ∗us,maxc , (2.7)

and a rescaled lift coefficient C∗
L as:

C∗
L = L

1/2ρU us,rmsRc
. (2.8)
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timing σ/c. The gray areas represents +/- one standard deviation around the mean.

Here, we have replaced the maximum shear layer velocity us,max by the root-mean-square

value of the shear layer velocity us,rms to better account for the span-wise variation of the shear

layer velocity.

The comparison of this new scaling of the lift coefficient in comparison to the more standardly

used definition CL = L/
(
1/2ρU

2
Rc

)
is presented in fig. 2.13 for all solutions along the Pareto

front. The maximum values of lift coefficient CL in fig. 2.13a decrease and occur later in the

cycle for kinematics that are more efficient. When the lift coefficient is normalised according

to equation 2.8 and presented as a function of the non-dimensionalised advective time σ/c in

fig. 2.13b the increasing lift slopes collapse and the magnitude and timing of the lift coefficient

maxima align. With the proposed scaling, the lift coefficient reaches a maximum value around

C∗
L,max = 4.92 for σ/c = 2.90 for all Pareto-optimal kinematics. The lift coefficient maximum is

reached one advective time before the leading edge vortex circulation Γ reaches its maximum

value. This indicates that C∗
L,max depends not only on the strength of the leading edge vortex,

but also on its position with respect to the wing. The timing of both scales with the advective

time for all kinematics considered here.

Hovering efficiency

Analogous to the leading edge vortex circulation Γ and the lift coefficient CL, the drag CD and

power coefficient CP can be renormalised using the leading edge shear layer velocity to:

C∗
D = D

1
2ρU us,rmsRc

and C∗
P = P

1
2ρU u2

s,rmsRc
(2.9)

54



2.3. Results

Using the coefficients C∗
L and C∗

P , we rescale the stroke average hovering efficiency η:

η∗ = C
∗
L

C
∗
P

= L

P
us,rms . (2.10)

Figure 2.14 shows the comparison of the newly scaled stroke average lift, power, and the

efficiency with the standard normalisation for all solutions along the Pareto front. The stroke

average lift and power coefficients C L and C p normalised based solely on the stroke average

velocity U in fig. 2.14a,b increase with increasing C L. Note that we have kept the y-axis inverted

here to match the Pareto front representation in fig. 2.14c. When we normalise the coefficients

as proposed in eqs. (2.8) and (2.9) using the root-mean-square value of the shear layer velocity,

the scaled coefficients collapse and we obtain mean values of C
∗
L = 2.74 and C

∗
P = 4.90 across

the ensemble of Pareto-optimal kinematics. The rescaled hovering efficiency η∗ reaches an

average value of η∗ = 0.56 for all Pareto front solutions. The standard deviation around these

mean values across all kinematics is indicated by the grey shading in fig. 2.14.

The proposed scaling works especially well for the power coefficient. Small deviations from

the constant mean values of the lift coefficient and efficiency are observed for the most

efficient kinematics and the kinematics that yield the highest lift. The successful scaling

of the efficiency with the shear layer velocity confirms the strong correlation between the

aerodynamic efficiency and the growth rate of the leading edge vortex for the Reynolds number

considered in this work.

Based on this scaling, the shape of the Pareto-front would change from a convex η versus

C L shape, to basically a single point in the η∗ versus C
∗
L plane. The values corresponding to

this optimal performance point are expected to vary for different wing planforms, different

flow conditions, Reynolds number, and reduced frequency. The solutions that end up in the

optimal performance point are not unique, they all create a leading edge vortex of a different

size and strength, but do this in the most optimal way. This optimal vortex formation process

is governed by the shear layer velocity which serves as the main indicator of the aerodynamic

performance. The scaled values of non-Pareto optimal kinematics do not collapse and are

lower than the C
∗
L and η∗ values, and higher than the C

∗
P values found in fig. 2.14. Higher values

C
∗
L and η∗ and lower C

∗
P values are not achievable with the given geometric and kinematic

boundary conditions and the current values obtained by the scaled coefficients represent

target limits for optimal performance. The limiting values can be used to quickly estimate the

maximal achievable performance values of new or adapted kinematics using

C L(φ,β) =C
∗
L

us,rms

U
, (2.11)

C P(φ,β) =C
∗
P

u2
s,rms

U
2 , (2.12)

η(φ,β) = η∗ U

us,rms
, (2.13)
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Figure 2.14 – a. Scaled vs. unscaled stroke-average lift coefficient C L over C L, b. scaled vs.
unscaled stroke-average power coefficient C P over C L, and c. scaled vs. unscaled stroke-
average hovering efficiency η over C L. The triangles represent the normalized aerodynamic
coefficients and the circles are the coefficients rescaled with the shear layer velocity us,rms. The
dashed lines mark the mean of the scaled values. The grey areas represents +/- one standard
deviation around the mean.

with C
∗
L = 2.74, C

∗
P = 4.90 and η∗ = 0.56 respectively. This estimation is possible without addi-

tional measurements because the shear layer velocity only depends on the input kinematics

(φ, β). Further investigations are desirable to determine how the values of C
∗
L , C

∗
P , and η∗ vary

as function of the Reynolds number and wing geometry.

2.4 Conclusion

We have experimentally optimised the pitch angle kinematics for hovering flapping wing

flight using a unique mechanical flapping wing system that allows for robust and repeatable

execution of widely varying flapping kinematics. The kinematics yielding maximal stroke

average lift and hovering efficiency have been determined with the help of an evolutionary

algorithm and in-situ force and torque measurements at the wing root. Additional flow field

measurements have been conducted to reveal the phenomenology of the force and flow field

response for the Pareto-optimal kinematics.

A Pareto front of optimal solutions is obtained along which the stroke-average lift C L produced

by the optimised kinematics ranges from 1.20 to 2.09 and the aerodynamic performance η

varies from 0.60 to 1.17. By trading off up to 43 % of its maximum lift capacity, the flapping wing

system’s efficiency can be increased by 93 % by merely adjusting the pitch angle kinematics.

The Pareto-optimal pitching kinematics are classified into three groups with distinctly different

kinematic and dynamic characteristics. The three groups correspond to three sections of

the Pareto front: the large central part where the lift increases approximately linearly with

decreasing efficiency, and the high lift and high efficiency tails where there is a significantly

larger trade off between lift and efficiency. The kinematics in the high-lift tail of the Pareto

front have a trapezoidal pitch angle profile with a plateau around β= 45° and an additional

peak at the beginning of the stroke. These kinematics create strong leading edge vortices
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early in the cycle which enhance the force production on the wing. The leading edge vortex

circulation and the aerodynamic forces reach their maxima around mid-stroke marking the

the end of the growth of the leading edge vortex and the onset of vortex lift-off. The transition

between the different phases of the leading edge vortex development are identified based

on the surface velocity, the trajectory of the surface half saddles from FTLE ridges, and the

position of the leading edge vortex with respect to the wing. The most efficient kinematics have

a more rounded, sinusoidal profile with a maximum pitch angle β> 60° around mid-stroke

and create weaker leading edge vortices that stay close-bound to the wing throughout the

majority of the stroke-cycle. The aerodynamic forces and the leading edge vortex circulation

grow significantly slower in the high efficiency tail than in the rest of the Pareto front and

reach their maxima just before the end-of-stroke rotation. The efficient leading edge vortex

development is characterised by the absence of vortex lift-off. The kinematics in the bulk of

the Pareto front gradually evolve from the more trapezoidal high lift kinematics toward the

almost sinusoidal high efficient kinematics. The aerodynamic forces and leading edge vortex

circulation reach maximum values shortly after mid-stroke.

The classification into three groups also applied to the evolution of the shear layer velocity

which is directly determined from the input kinematics. Kinematics within the same group

yield similar characteristic evolutions of the shear layer velocity that are different from those

of the other groups. The integral of time-resolved leading edge shear layer velocity us over

the cycle time t yields the advective time σ which serves as a normalised time scale for the

leading edge vortex growth and aerodynamic force evolution. The root-mean-square value of

the shear layer velocity at the leading edge serves to quantitatively characterise the growth of

the leading edge vortex and scale the average and the temporal evolutions of the circulation

and the aerodynamic forces. The ascending flanks and maxima of the leading edge circulation

Γ and lift coefficient CL collapse when being normalised by the root-mean-square value of

the shear layer velocity and presented in function of the advective time for all Pareto front

kinematics. The optimal kinematics are tailored to reach the maximum circulation right before

starting the end-of-stroke pitch rotation after σ/c = 3.9. The high lift kinematics continue

after the maximum leading edge vortex circulation is reached and cover more advective times

during a stroke cycle. The vortex formation time of approximately four advective times for

the most efficient hovering kinematics is consistent with many examples of optimal vortex

formation found in nature.

The leading edge shear layer velocity us,RMS also serves to renormalise the aerodynamic power

coefficient CP and hovering efficiency η. All cycle-average aerodynamic coefficients nor-

malised by us,RMS collapse onto their mean-values C
∗
L = 2.74, C

∗
P = 4.90 and η∗ = 0.56 for every

Pareto front kinematic. The successful newly proposed scaling of the efficiency with the shear

layer velocity confirms the strong correlation between the aerodynamic efficiency and the

growth rate of the leading edge vortex for the Reynolds number considered in this work. The

correlation is based on the underlying physics and we expect the general phenomenology and

the scaling based on the shear layer velocity to be valid for different wing shapes and even flex-

ible wings. Furthermore, the shear layer velocity is determined solely on the basis of the input
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kinematics and this scaling allows us to estimate the maximally attainable stroke-average lift,

power, and efficiency of new or adapted kinematics.

Further investigations are desirable to determine how the values of C
∗
L , C

∗
P and η∗ vary as

function of the Reynolds number, different wing planforms and for non Pareto-optimal kine-

matics. Taking into account the larger variations of kinematics considered here and the

three-dimensionality of the flapping wing motion, the robustness of the proposed scaling is

remarkable and can guide the aerodynamic design of human-engineered devices that can

automatically adapt their motion kinematics to optimally fit varying flight conditions. The

results should also be transferable to other unsteady aerodynamic problems that are vor-

tex dominated and where the vortex is accumulating circulation resulting from an arbitrary

relative unsteady motion of an aerodynamic body.
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3 Aeroelastic characterisation of a bio-
inspired flapping membrane wing

In this chapter, a novel bio-inspired membrane wing design is introduced and the fluid-

structure interactions of flapping membrane wings are systematically investigated. The objec-

tive is to characterise the aerodynamic performance at different aeroelastic conditions and

relate it to membrane deformation. The extend of this work, shows that combining the effect

of variable stiffness and angle of attack variation can significantly enhance the aerodynamic

performance of membrane wings and has the potential to improve the control capabilities of

micro air vehicles.

The work presented in this chapter has been published in Bioinspiration & Biomimetics [109].

3.1 Introduction

Many swimming or flying animals use flexible appendages like fins, tails, and wings for loco-

motion on land, in water, or in air [110–114]. Natural fliers have flexible wings which turn out

to be an efficient means of propulsion that is robust to perturbations [115], lightweight [116],

reconfigurable to enhance lift production or reduce drag [117,118], and silent [119]. By actively

controlling their wing’s kinematics, flying animals can alternate between flapping wing flight

and gliding to conserve energy [120, 121]. In addition to the aerodynamic benefits, the wing’s

elasticity helps to absorb kinetic energy from collisions [122], and some species can store their

wings to protect them when moving through tight spaces on the ground [123].

Flying and gliding mammals, in particular several species of bats, lemurs, and squirrels, use

membrane wings to create lift. Bats have a lightweight bone and muscle structure that allows

them to precisely control large shape deformations of their thin and compliant membranes. By

flapping and deforming their wings, bats can adapt to different flow conditions and perform

agile flight manoeuvres [124–126].

Membrane wings have an enhanced aerodynamic performance compared to rigid wings due

to their ability to passively camber and reduce their effective angle of attack. The membrane

deformation leads to higher lift slopes, a delay in stall onset, improved gust alleviation, and

enhanced flight stability relative to rigid wings [127, 128]. These properties make membrane
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wings a promising example for advances in the design of micro air vehicles [27, 54, 129–133].

Even though our natural examples exploit the complex fluid-structure interaction between

their flexible or membrane wings and the surrounding air with great ease, it is not trivial to

replicate and scale the balance between the structural and fluid dynamical parameters for

engineering applications. Many theoretical, numerical, and experimental studies have been

conducted using flexible and deformable wings to improve our understanding of the impact of

fluid-structure interactions on the aerodynamic performance of fixed and unsteadily flapping

wings and to provide guidance for the design of micro air vehicles.

Membrane wings at fixed angles of attack have been studied extensively in the past in the

context of sailboats, hang gliders, and Cretan type wind mill designs [134–137]. First studies

on inextensible membranes were focussed on predicting the shape and aerodynamic per-

formance of sails. Thwaites [134] and Nielsen [135] were among the first to investigate the

relation between tension, aerodynamic loads, and deflection of inextensible sails. They found

that the equilibrium shape of a passively deformable sail at low angles of incidence α is solely

governed by the ratio of the aerodynamic pressure and the tension parameter T denoted by

λ [134]:

λ= 2ρU2
∞c/T . (3.1)

Different models and analytical solutions for inextensible and flexible membranes have since

been proposed building upon the early work of Thwaites and Nielsen [134, 135]. An extensive

summary of these works can be found in [138].

At higher angles of incidence and for larger excess lengths of the membranes, classical, po-

tential flow based theories fail to predict the equilibrium states of fixed membrane wings

and numerical studies coupling the Navier-Stokes equations with an aeroelastic model are

desirable. Based on the results of such coupled simulations, Smith and Shyy [139, 140] de-

rived two non-dimensional parameters to characterise the interplay between aeroelastic and

aerodynamic effects:

Π1 =
(

Eh
1
2ρU 2∞c

)1/3

and Π2 =
(

ε0h
1
2ρU 2∞c

)1/3

, (3.2)

with E the Young’s modulus of the membrane material, h the membrane thickness, ρ the fluid

density, U∞ the freestream velocity, c the chord length, and ε0 the membrane pretension. The

two parametersΠ1 andΠ2 control the steady-state, inviscid aeroelastic behaviour of an initially

flat membrane at fixed angles of attack. The dimensionless deformation of the membrane

wing is inversely proportional toΠ1 in the absence of pretension and inversely proportional to

Π2 in the limit of vanishing material stiffness [55].

If the load distribution on the membrane wing is assumed to be uniform, the maximum

camber zmax is entirely characterised by the Weber number We and the membrane pretension

ε0 [127]. The Weber number is defined as the ratio between the aerodynamic loading and the

effective stiffness of the membrane:

We =CN

1
2ρU2

∞c

Eh
= CN

Ae
, (3.3)
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where Ae is defined as the aeroelastic number [141]:

Ae = Eh
1
2ρU 2∞c

, (3.4)

and relates to the effective stiffness introduced in equation 3.2 as Ae =Π3
1 [139, 141].

The membrane shape characterisation by [127] was extended by Waldman and Breuer [141]

who included the Young-Laplace equation for non-linear deformation of the membrane at

low angles of attack, assumed a uniform pressure distribution, and incorporated a potential

flow model to estimate the aerodynamic loading from the thin membrane airfoil. Their model

shows a remarkable agreement with experimental data of the maximum camber of membranes

for different material properties, fluid characteristics, and wing angles of attack expressed in

terms of the aeroelastic parameters Ae and We. By coupling thin airfoil theory with membrane

equations, a new analytical model was derived by Alon Tzezana and Breuer [142] to predict

the membrane shape even more accurately than [141] for steady and unsteady membrane

wings under various conditions.

The deformation of flexible membrane aerofoils typically manifests in the form of a positive

wing camber. The positive camber leads to an increase in the lift coefficient, a decrease in the

drag coefficient, and an increase in the lift-to-drag ratio for flexible wings compared to their

rigid counterparts especially at angles of attack close to the stall angle of the wing [127, 143].

The curvature of the leading edge of a cambered membrane allows the flow to stay attached

at higher angles of attack [144]. The rigid wings at the same angles of attack have larger flow

separation regions and are subjected to large-scale vortex shedding accompanied by a loss in

lift and an increase in drag [145,146]. The fluid-structure interaction between the shed vortices

and the membrane leads to a reduction in the separation area and lower surface pressure on

the wing below the separation area. These changes in flow topology lead to an increase in lift at

moderate angles of attack (α= 10°−25°), but the unsteady membrane fluctuations cause a loss

in lift-to-drag ratio at the lower angles of attack [147–149]. The dominant membrane vibrations

are coupled with the shedding frequency of large-scale flow structures [150]. Membrane wings

with lower aspect ratios (≈ 1) experience higher frequency vibrations and higher vibration

mode shapes due to an increase in downwash and a delay of vortex shedding to higher angles

of attack [132]. The average membrane shape is not very sensitive to changes in angle of

attack [145].

In many technical application, the wing kinematics or the flow around flexible wings is highly

unsteady and vortex dominated, which further complicates the fluid-structure interactions.

Due to unsteady flow conditions and wing kinematics, flapping wings are subject to highly

unsteady aerodynamic loadings within each wing stroke [72] and the flow development is

governed by the formation and shedding of large-scale coherent leading edge vortices [2,

151, 152]. The large inertial force variations on the wing give rise to unsteady and non-linear

wing deformations linking the analysis of fluid and structural dynamics on the flexible wings

inevitably together. To explore the shape and force response of membrane wings subjected to

an unsteady flow or unsteady wing kinematics, several experimental [153] and numerical [128,

154–156] studies have been conducted in the recent past. Membrane wings have also been
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applied and tested in novel flapping wing micro aerial vehicle [125,133,157] and flapping wing

energy harvester designs [158].

Similar to the steady response, pitching membrane wings experience reduced and delayed

flow separation [153, 154, 158]. The flow on the membrane wings remains attached at higher

angles of attack and reattaches earlier when pitching down compared to the flow on rigid

wings. Analysis of the flow topology revealed that the flow field is dominated by the growth of

a strong leading edge vortex which eventually lifts off of the wing for rigid flapping wings. The

leading edge vortex stays bound to the wing and spreads over the entire chord when a highly

cambering membrane wing is used [154, 158]. This leads to enhanced force production on

the membrane wings compared to the rigid wings. The thrust and propulsion efficiency of

sinusoidally heaving and flapping membranes was numerically investigated by Jaworski and

Gordnier [128, 155] with a high-order Navier-Stokes solver coupled to a non-linear membrane

structural model. The maximum performance is achieved for specific sets of membrane

pre-strain ε0 and elastic modulus E . The formation and shedding of a large-scale leading edge

vortex every half-cycle interact advantageously with the local membrane camber to enhance

the propulsive force under the thrust optimal conditions. At efficiency optimal aeroelastic

conditions, the vortex shedding reduces the magnitude of the unsteady lift and minimises

the pressure drag and required power to perform the flapping motion [155]. The lift and

thrust production of a tethered flapping wing vehicle with different membrane flexibilities

in forward flight was investigated experimentally by Hu et al. [157]. The rigid wings generate

more lift at higher advance ratios J > 0.6 (J = U∞/(2 f A)). At lower advance ratios J < 0.6,

which corresponds to increased flapping frequencies f , the flexible latex wings produce higher

lift. The flexible wings produce more thrust than the rigid wings across all frequencies.

These examples reveal a clear potential for flexible membrane wings to out-perform their

rigid counterparts but they also indicate that the improvements are not persistent over the

entire input parameter space [156]. Systematic investigation on the influence of unsteady

fluid-structure interactions on the aerodynamic performance of flapping membrane wings

for a large range of flapping motions and membrane properties is highly desirable to provide

further guidance to the design of human-engineered flexible wing fliers [159].

Here, we present a novel bio-inspired membrane wing design with self-cambering and flow

alignment capabilities to systematically study fluid-structure interactions related to passively

deformable flapping wings. We experimentally characterise the force response of membrane

wings over a large range of flapping kinematics and wing material properties on a robotic

flapping wing mechanism. Additional deformation measurements are conducted to capture

the membrane shape throughout the full flapping wing cycle. We demonstrate that the

connection between membrane shape and aerodynamic force production can be explained

and scaled by two non-dimensional numbers, the aeroelastic number Ae and the Weber

number We. A unique combination of aeroelastic properties and angle of attack is found to

achieve either highest lift or most efficient hovering flight. Finally, the implications of our

findings for the design of micro air vehicles using membrane wings are discussed.
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Figure 3.1 – a. Detailed drawing of the novel membrane wing design. b. Side view of the wing
during loading indicating the passive deformation mechanism. The angle α is the wing’s angle
of attack relative to the stroke plane.

3.2 Methods

3.2.1 Membrane wing model

In this study, we present a novel bio-inspired membrane wing design shown in its flat and

undeformed shape in fig. 3.1a. The leading and trailing edges of the wing are rigid and have

brass bearings which allow the edges to rotate around their span-wise axes. The trailing

edge has an additional degree of freedom as it can translate in the chord-wise direction in a

frictionless manner. No pre-tension is applied to the membrane or the trailing edge sliders.

Depending on the aerodynamic pressure difference between the pressure and suction side

of the membrane, the wing passively cambers and the distance between the leading and

trailing edge shortens (fig. 3.1b). The adaptive wing is designed to enhance the aerodynamic

performance of the wing in two ways: 1) the camber of the wing grows with increasing

aerodynamic pressure, and 2) the leading and trailing edges of the wing rotate and align

favourably with the flow. The combined effects of these two mechanisms yield higher lift

versus angle of attack slopes, higher maximum values of the lift coefficient, and delayed stall

to higher angles of attack due to a reduction in the effective angle of attack at the leading edge.
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Figure 3.2 – a. Drawing of the membrane wing mounted on the flapping wing apparatus. The
angle α is the wing’s angle of attack relative to the stroke plane. b. Schematic visualisation of
the stereo deformation measurement configuration including the camera positions relative to
the peak-to-peak wing stroke amplitude indicated by φA.

The compliant membranes are made of a silicone-based vinylpolysiloxane polymer (Zhermack

Elite Double 32 shore A) created by mixing a base and catalyst in a 1:1 ratio and centrifuging the

mixture to homogenise it. The mixture is poured into a flat cast to create different silicon sheets

of h = 0.3 mm to 1.4 mm thickness. The membrane sheets have a density of ρ = 1160kg/m3

and a Young’s modulus of E = 1.22±0.05kPa [160]. Rectangular wings are cut from the silicon

sheets and fixed between two thin carbon fibre plates without pre-stretching the membranes

(fig. 3.1a). The rigid wings serving as a reference case have a Young’s modulus more than

three orders of magnitude higher than the membrane wings E = 1.33MPa and a thickness of

h = 1mm. The reinforced membranes are glued to hollow, cylindrical brass rods which serve

as the outer race of the leading and trailing edge bearings. The wings are mounted on the wing

frame which itself is connected to the load cell and the flapping wing mechanism [71]. The

membrane wings have a chord length c = 55mm in their undeformed state and a wing span

R = 150mm (fig. 3.1a). The root cut-out R0 is the distance from the stroke-rotation axis to the

root of the wing and is constant for all experiments. The pitch rotation axis is at a quarter

chord length from the leading edge. The rigid carbon fibre plates and brass bearings make up

lrigid = 8.5mm or 0.15c at the leading and trailing edges of the wings. A video of the membrane

wings in motion and further information about the wing platform can be found in the Gallery

of Fluid Motion contribution1 [161].

3.2.2 Wing kinematics and dynamic scaling

The wing kinematics in hovering flight are described in terms of their stroke angle φ, the angle

of attack α, and the flap or elevation angle θ (fig. 3.2a). The flap or elevation angle θ moves

the wing up or down in stroke-normal direction (not displayed in fig. 3.2). In this study, the

elevation angle is not considered and stays constant at θ = 0°. The stroke plane coincides

1V0011: Don’t be rigid, be BILLY
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Table 3.1 – Experimental parameters of the flexible membrane wings in this study. The
experiments are conducted in water with ν20 ◦C = 1.00×10−6 m2/s.

Parameters model wing
Wing chord c 55 mm
Wing span R 150 mm
Membrane thickness h 0.3 mm to 1.4 mm
Wing stroke frequency f 0.125 Hz to 0.4 Hz
Angle of attack α̂ 15° to 75°
Peak-to-peak stroke amplitude φA 90°
Reduced frequency k 0.42
Reynolds number Re 2800 to 9300

with the horizontal plane in the laboratory’s frame of reference and the stroke angle φ defines

the motion of the wing in the stroke plane. The stroke angle profile varies sinusoidally from

φ=−45° to φ= 45° and changes in frequency between f = 0.125Hz and f = 0.4Hz (table 3.1).

The angle of attack α indicates the wing’s rotation relative to the stroke plane and is defined as

the angle between the chord length and the horizontal stroke plane as indicated in fig. 3.1b,c. In

this study, the wing rotation is symmetric with respect to the stroke motion such that the angle

of attack equals 90° at the start and end of the stroke. The angle of attack follows a trapezoidal

profile and reaches minimum values ranging from α̂= 15° to α̂= 75°. Throughout this paper,

we use .̂ to denote amplitudes or minimum or maximum values of different quantities. The

angle α̂ is kept constant during 68 % of the total cycle duration T = 1/ f . During the remaining

32 % of the cycle, the wing reverses orientation between the symmetric front- and back-strokes,

this is often referred to as the flip duration [16, 72].

Non-dimensional numbers characterising the flow around the hovering wing are the Reynolds

number Re and the reduced frequency k. The fluid-structure interactions of the compliant

membranes are characterised by the Weber number We and the aeroelastic number Ae defined

in equations 3.3 and 3.4 [127, 141].

The Reynolds number Re defines the ratio between inertial and viscous forces as a measure

for the emergence of flow structures at different length and time scales. In hovering flight, the

Reynolds number can be calculated as

Re = Uc

ν
= 2φA f cR2

ν
, (3.5)

where ν denotes the kinematic viscosity of the fluid and U = 2φA f R2 is the stroke-average wing

velocity at the radius of second moment of area R2 [71,72,88]. The radius of second moment of

area is the span-wise position where the sum of all forces apply and is R2 =
√∫ R

0 (R0 + r )2dr /R

for a rectangular wing planform [71]. The Reynolds number for all presented experiments

in table 3.1 varies from Re = 2800 to 9300 which is a range where larger flying insects like

the Hawkmoth (Manduca sexta), small birds like the Rufous Hummingbird (Selasphorus

rufus), and several bat species like the Pallas’s long-tongued bat (Glossophaga soricina) take
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flight [7, 27].

The reduced frequency k compares the spatial wavelength of the flow disturbance to the chord

length c and is a metric for the unsteadiness of the flow:

k = πc

2φAR2
. (3.6)

Here, φA = 90° is the peak-to-peak stroke amplitude. The reduced frequency of all our experi-

ments is k = 0.42 which is similar to many hovering flapping wing fliers in nature [27] and is

considered to give raise to highly unsteady aerodynamics.

3.2.3 Flapping wing platform

The aerodynamic performances of the different membrane wings and the rigid reference

case are evaluated experimentally with a robotic flapping wing device. The experiments

are conducted in an octagonal tank with an outer diameter of 0.75 m filled with water at a

temperature of 20 ◦C. The mechanism is controlled by two servo motors (Maxon motors,

type RE35, 90 W, 100 N mm torque, Switzerland) which guide the stroke and pitch axis of the

system. The motors are equipped with planetary gear-heads of 35 : 1 and 19 : 1 reduction for

stroke and pitch respectively and are controlled using a motion controller (DMC-4040, Galil

Motion Control, USA). The experimental flapping wing apparatus is designed to be highly

repeatable and robust over a large number of experiments. The system allows for complex

time-varying kinematics to be executed on both motors and initial tests on all frequencies f

and amplitudes α̂ show a maximum error of < 0.1° between the motor control signal and the

motor response recorded by the encoder throughout the entire stroke.

The aerodynamic loads on the wing are measured using a six-axis IP68 force-torque transducer

(Nano17, ATI Industrial Automation, USA) mounted at the wing root with a resolution of

3.13 mN for the force and 0.0156 N mm for torque measurements. The force signals from the

load cell are recorded at a sampling frequency of 1000 Hz with a data acquisition module

(NI-9220, National Instruments, USA). The instantaneous lift L, drag D and pitch torque

Tp are directly retrieved from the load transducer. Here, the lift force L is considered to be

the component of the total force vector oriented upwards, perpendicular to the horizontal

stroke plane. The drag D is the force component in the stroke plane. The drag component

is considered positive when it acts in the direction of the instantaneous velocity U of the

flow experienced by wing during its stroke motion (fig. 3.1b and c). The aerodynamic power

P is determined as the sum of pitch power Pp and stroke power Ps. The power expended

to rotate the wing around its pitch axis with an angular velocity −α̇ is determined by Pp =
−Tpα̇. Analogously, the power required to rotate the wing around its stroke axis is found with

the stroke torque Ts and the stroke velocity φ̇ according to Ps = Tsφ̇. We cannot measure

the stroke torque directly but instead determine it from the drag force D across the span

Ts =
∫

R D(r )r dr [72]. The stroke torque is calculated as Ts = DRd and the radial position

Rd = 3
4

(R0+R)4−R4
0

(R0+R)3−R3
0

where the sum of the drag force applies assuming a uniform drag coefficient

distribution across the span [71].
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Forces and torques are recorded over 16 consecutive cycles. The first 5 cycles are discarded

to account for transient effects. The force and torque measurements are averaged over the

remaining 11 cycles to obtain phase-averaged temporal evolutions of the results within the

flapping period T and to determine the overall mean values of the aerodynamic coefficients.

A minimum tip clearance of 3.5c is found for a tip-to-tip stroke-amplitude of φA = 90° which

has been shown sufficient to avoid wall effects in flapping wing experiments [16, 92]. Initial

force measurements at different distances from the wall verify that for the selected stroke

amplitude and frequencies no changes in the stroke-average forces are identified for wing tip

to wall distances > 3c . Initial experiments collecting data for 64 cycles demonstrate that there

are some force variations due to recirculation of the tank but these only take effect after the

first 16 cycles that are considered here. The influence of the large-scale recirculation in the

tank are below 2 % compared to the mean force coefficients presented in this study (see A.1

for more details).

For high-frequency flapping wing flight in air, the wing inertial forces can be as strong as

the aerodynamic pressure forces [154]. We quantified the effect of the wing inertia on the

total forces by conducting additional experiments in air (A.2). Here, the aerodynamic forces

become negligible and the inertial forces dominate the force measurements. The average

lift and drag coefficients measured in air are largest for the high frequency cases but remain

at least one order of magnitude lower than the results measured in water. For low flapping

frequencies the dimensional inertial lift and drag are even lower and drop below the load cell

resolution (3.13mN). The inertial forces are therefore deemed negligible in this study.

3.2.4 Stereo photogrammetry

In this work, we also perform stereo deformation measurements of the flexible wing plat-

form to quantify the membrane shape and its influence on the aerodynamic forces. Defor-

mation and load measurements are conducted simultaneously for selected experimental

conditions to allow for direct comparison of deformation and aerodynamic force response.

Two CCD cameras (pco.pixelfly usb, ILA_5150 GmbH/PCO AG, Germany) at a 45° stereo angle

and equipped with 12 mm focal length lenses are used to perform marker tracking on the

membrane wing throughout the entire flapping wing cycle (fig. 3.2b). With a camera resolu-

tion of 1392px×1040px, the deformation measurements have a spatial resolution between

0.13 mm/px, when the wing is closest to the cameras, and 0.23 mm/px, when the wing is

farthest away from the cameras. We record stereo images over 20 cycles. The first 5 cycles

are discarded to remove transient effects. The deformation measurements of the remaining

15 cycles are phase-averaged over one half-cycle, using the symmetry between front- and

back-stroke of the flapping motion [71]. The images are recorded at an acquisition frequency

of 6.17Hz uncorrelated to the flapping frequency f . In consecutive cycles the images corre-

spond to different phase-times t/T within one full cycle T . After sorting the frames by their

relative phase-time we achieve an increased image acquisition rate of 186Hz per half-cycle or

between 465 and 1488 times the flapping frequency f .

The membrane is covered with black markers and the carbon fibre and structural parts with
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Figure 3.3 – a. Temporal variation of the angle of attackα and stroke angleφ over one half-cycle,
b. stroke-average lift coefficient as a function of the angle of attack, and c. hovering efficiency
as a function of the angle of attack. The shaded envelopes in b. and c. cover all conducted
experiments.

white markers to ensure high contrast (fig. 3.2a). The markers are tracked using the software

tool XMALab, an open-source software for marker-based X-ray reconstruction of moving mor-

phologies [162]. The stereo camera configuration is calibrated using a chequerboard recorded

at different positions and rotation angles for both cameras. The calibration procedure de-

termines all camera intrinsic parameters, calibration coefficients and the image distortion

matrix. The markers are tracked at each time step in the undistorted stereo images and their

position in three-dimensional space reconstructed using linear triangulation [163]. The ori-

entation and position of the rigid parts of the wing platform are determined through rigid

body transformation. Finally, we determine the membrane shape with a two-dimensional

polynomial which fits best the membrane markers and the angle between the membrane and

the rigid edges of the wing in a least-square sense.

3.3 Results

The aerodynamic performance of the new adaptive membrane wing is evaluated in terms of

the stroke-average lift coefficient C L and its hovering efficiency η [71, 86]:

CL =
L

1
2ρRcU

2 , CP =
P

1
2ρRcU

3 , η= C L

C P

, (3.7)

where L and P are the dimensional lift and power respectively. Here, . denotes stroke-average

quantities and U = 2φ f R2 is the stroke-average wing velocity computed at the radius of the

second moment of area R2. The average lift coefficient determines how much weight the

flapping wing system can support or how fast it can climb in altitude. The hovering efficiency

limits the total flight time of the vehicle.
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3.3.1 Overview of the phase-average performance of the membrane and rigid wings

The flapping wing kinematics in all experiments are defined by the stroke and pitch angle

profile presented in fig. 3.3a. Here, only the first half of the cycle is presented as the front- and

back-strokes of the flapping wing motion are symmetric. At the beginning and end of each

half-cycle the wing rotates to keep the leading edge ahead of the trailing edge. The duration

of the wing rotation is indicated by the grey area in fig. 3.3a. During the majority of the cycle,

the angle of attack remains at a constant value of α̂. For brevity, we will refer to the constant

minimum angle of attack during the stroke motion simply as the angle of attack. The system’s

base frequency f and the angle of attack α̂ are varied over a wide range shown in table 3.1 to

characterise the aerodynamic performance of the different membrane wings in comparison

to rigid reference cases.

The stroke-average lift coefficient C L and hovering efficiency η for all tested flapping frequen-

cies f , wing thicknesses h, and angles of attack α̂ are presented in fig. 3.3b and c. The black

curve connects the results for the rigid reference case averaged over all stroke frequencies f .

As the rigid wings do not deform, low variance in C L and η is observed for each angle of attack

α̂ compared to the membrane wings. The results of the best performing membrane wings are

highlighted by the large green markers. The small markers indicate individual test cases. In

general, the membrane wings reach maximum stroke-average lift C L and efficiency η values

in a range around the values attained by the rigid reference cases for the same angle attack

α̂. By varying the thickness of the membranes, we cover a relevant parameter range in terms

of membrane stiffness. Our set of tested membrane wings include membranes that perform

better and some that perform worse than their rigid counterparts. For the lowest angle of

attack α̂= 15°, all membrane wings tested at best match the performance of the rigid wing.

For the highest angle of attack α̂ = 75°, all membrane wings perform equally well or better

than the rigid wing.

The highest stroke-average lift is found at α̂= 55° with C L,max = 2.43 for the membrane wings

and at α̂= 50° with C L,max = 2.06 for the rigid wing. The variance in aerodynamic performance

of the membrane at each angle of attack α̂ in fig. 3.3a and b is due to the deformation of

the membrane which depends on the ratio between the dynamic pressure on the wing as a

function of the flapping frequency f and the rigidity or bending stiffness of the membrane

which varies with membrane thickness h. The aeroelastic number Ae (equation 3.4) repre-

sents the ratio between membrane compliance and the dynamic pressure and is used to

further characterise the influence of the fluid-membrane interaction on the aerodynamic

performance of the membrane wings. Note that no additional pre-tension is applied to the

membrane or the trailing edge sliders that could influence the effective stiffness of the system.

3.3.2 Lift enhancement through deformation

The lift produced in hovering flight is presented in fig. 3.4 as a function of the aeroelastic

number Ae (equation 3.4) for all conducted experiments. Overall, the stroke-average lift of

the membrane wings increases with increasing angle of attack for α̂≤ 50° and decreases for
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Figure 3.4 – Stroke-average lift coefficient C L for different angles of attack α̂ as a function of the
aeroelastic number Ae. Results for angles of attack ranging from α̂= 15° to 50° are presented in
a and b. Results for higher angles of attack ranging from α̂= 55° to 75° are presented in c and
d. Each dot represents an individual experiment. The solid lines indicate the average variation
of C L as a function of Ae for each angle of attack.

α̂≥ 55°. For visual clarity, the results are split in different panels in fig. 3.4. The two panels to

the left (fig. 3.4a and b) include all experiments with angles of attack ranging from α̂= 15° to

50° for the flexible membrane wings (Ae = 0.25 to 12 in fig. 3.4a) and the rigid wings (Ae = 870

to 8900 in fig. 3.4b). The markers represent individual experiments. The solid lines indicate

the average variation of C L as a function of Ae and are obtained by training a Gaussian process

regression model at each angle of attack α̂ and predicting the response over the Ae range of the

experiments. The stroke-average lift coefficient C L for 20° ≤ α̂≤ 50° increases with increasing

Ae until it reaches a maximum between Ae = 1 and Ae = 5. The maximum stroke-average lift

coefficient C L is reached at slightly lower values of the aeroelastic number at higher angles

of attack. For Ae > 5 and α̂ > 20°, the stroke-average lift decreases with increasing Ae and

asymptotically converges to the average lift produced by the rigid wings (fig. 3.4b).

At lower angles of attack α̂≤ 20°, the maximum stroke-average lift values are obtained for the

stiff wings and the flexible wings with the highest values of Ae. For the lowest angle of attack

α̂= 15°, the stroke-average lift initially decreases with increasing Ae for Ae < 1 and we notice

larger variations among individual experiments. Observations of the experiments showed

that the cambering of the membrane wings started later into the cycle compared to higher

angles of attack and that the amount of camber showed more variability between consecutive

strokes. Additional experiments at the lower angles of attacks are required to determine if

this effect is caused by unsteady aeroelastic effects or limitations of the experimental system.

For higher angles of attack α̂> 50°, the overall stroke-average lift decreases with increasing
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angles of attack (fig. 3.4c and d). At these high angles of attack, the flexible wings attain values

of the stroke-average lift above those attained by their solid counterparts for all values of the

aeroelastic number. The aeroelastic number at which the overall maximum stroke-average

lift coefficient is reached remains around Ae ≈ 1 and continues to decreases with increasing

angles of attack.

To explain the differences observed among the stroke-average lift and efficiency measured of

the flapping membrane and rigid wings, we have extracted the membrane shape deformation

for selected wings. The membrane wings passively deform when flapping. The main character-

istics of the passive deformation are the passive cambering of the membrane, the rotation of

the leading edge and the rotation of the trailing edge (fig. 3.5a). The stroke-maximum camber

ẑmax and the stroke-maximum rotation angles of the leading and trailing edges with respect

to the chord, denoted by γLE,max and γTE,max, respectively, are presented as a function of the

aeroelastic number in fig. 3.5b-c for α̂= 55°. Positive angles of γ are associated with a positive

camber ẑ following the convention indicated in fig. 3.5a. The stroke-maximum values reveal

a clear variation with the aeroelastic number which relates the stiffness of the membrane

and the aerodynamic pressure. At low values of the aeroelastic number, a relatively smaller

amount of aerodynamic pressure is required to deform the wing. This results in large values

of the stroke-maximum camber and the stroke-maximum leading and trailing edge rotation
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angles. With increasing values of the aeroelastic number, the effective stiffness of the wing

increases and the maximum camber and maximum leading and trailing edge rotation angles

decrease towards zero for values of Ae À 1.

The decrease of the stroke-maximum camber ẑmax with increasing aeroelastic number follows

an exponential decay as evidenced by the linear evolution in the semi-log space. Exponential

fits in form of straight lines are included in the semi-logarithmic plots as a reference. The

decrease of the leading and trailing edge rotation angles also appear close to linear in the

semi-log space at first glance, but a closer look reveals a more complicated variation. The

leading and trailing edge rotation angles are identical for Ae ≥ 1.68, indicating symmetric

cambering at higher values of the aeroelastic number. For lower values of the aeroelastic

number and thus reduced effective membrane stiffness, the fluid-membrane interaction leads

to asymmetric bending of the membrane and a shift of the maximum camber position towards

the leading edge where the rotation angle is largest. The asymmetric bending is the result

of a more complex fluid structure interaction between the aerodynamic pressure due to the

stroke motion and a prominent leading edge vortex. The change between symmetric and

asymmetric camber lines occurs between Ae = 1 and Ae = 2 which corresponds to the range

of aeroelastic numbers where we observe a maximum in the stroke-average lift coefficient

for this angle of attack (α̂ = 55°). The lift-optimal stroke-maximum camber in this case is

ẑmax ≈ 0.2c. An increase in the maximum camber ẑmax/c beyond 0.2 results in a decrease of

the stroke-average lift. To better understand why, we will now look at the orientation of the

leading and trailing edges with respect to the stroke plane.

The passive cambering of the membrane wings and the rotation of the leading and trailing

edges lead to a decrease in the leading edge angle of attack with respect to the stroke plane and

a decrease in the angle between the trailing edge and the stroke plane as defined in fig. 3.6a.

The stroke-minimum leading and trailing edge angles αLE,min and αTE,max are presented as a

function of the aeroelastic number in fig. 3.6b,c for α̂= 55°. As expected based on the mea-

sured decay of the maximum camber, the minimum leading and trailing edge angles both

increase with increasing aeroelastic number in an approximately exponential manner. For the

higher values of the aeroelastic number, where the deformation is symmetric, the angles lie

above the fitted approximations. For the lower values of the aeroelastic number, where the

deformation is no longer symmetric, we find angles below the fitted approximation.

The maximum stroke-average lift coefficient and the onset of asymmetric membrane defor-

mation occur at the same aeroelastic number of Ae ≈ 1.7. The measured membrane shape at

these lift-optimal aeroelastic conditions is shown in fig. 3.6a1. The rotation of the leading edge

has reduced the effective angle of attack at the leading edge to a more moderate angle and the

trailing edge is oriented vertically with respect to the stroke plane. The reduced leading edge

angle of attack allows the flow to accelerate smoothly around the leading edge and the trailing

edge orientation directs the flow straight downwards in the near wake increasing the vertically

upward force on the wing itself.

By decreasing the aeroelastic number Ae for the same angle of attack α̂, the deformation of

the membrane increases but the stroke-average lift decreases. This is attributed to the trailing
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edge angle decreasing below αTE,min < 90° (dashed line in fig. 3.6c) and the leading edge angle

decreases to values below the static stall angle of a flat plate which delays flow separation

and the formation of a strong leading edge vortex. The stroke-maximum membrane defor-

mation at Ae = 0.61 is presented in fig. 3.6a2. At this low value of the aeroelastic number, the

chord-normalised camber becomes as high as 30 % and the leading edge angle even becomes

negative which causes the lift coefficient to drop below the values of their stiff counterparts.

The stroke-average lift of our flapping wings is increased when they are deformed up to a

point when they over-camber. Here, we consider a membrane to be over-cambered when its

minimum leading edge angle αLE,min becomes negative or its minimum trailing edge angle

αTE,min rotates below 90° as marked by the dashed lines in fig. 3.6b,c. The performance of

over-cambering wings rapidly falls with decreasing aeroelastic number.

3.3.3 Temporal evolution the wing deformation and aerodynamic performance

We further explore the relationship between the aeroelastic properties and their contribution

to the force production on the wing by analysing the temporal evolution of the lift and power

coefficients for the highest lift producing angle of attack α̂ = 55° in fig. 3.7c,d. The colours

indicate the range of aeroelastic numbers from Ae = 0.61 to 4.96. Here, all quantities are

phase-averaged over one half-cycle (t/T = 0 to 0.5) exploiting the symmetry between the front-

and back-stroke of the hovering cycle [71]. The results of the rigid wing are presented by the

black dashed line. The phase-averaged temporal evolutions of the lift and power were filtered

using a 5th-order Butterworth filter with no phase delay at a cut-off frequency 12 times higher

than the flapping frequency f .

The overall temporal evolution of the lift and the power coefficient for all wings is dominated

by the evolution of the stroke velocity φ̇ (fig. 3.7b). Lift and power increase or decrease with

increasing or decreasing stroke velocity and reach a maximum value around t/T = 0.25. In-

teresting differences are observed when the aeroelastic number varies. The main differences

in the lift coefficient evolution occur towards the end of the first half and during the second

half of the stroke (t/T > 0.2) (fig. 3.7c). The flexible wings all reach a higher maximum lift

coefficient than their rigid counterpart. The highest value of CL is measured for an aeroelastic

number of Ae = 1.64. The higher lift values for the flexible wings are maintained during the

second half of the stroke. The competition for the top rankings among different aeroelastic

numbers is decided in the second half of the stroke. This holds true for all angles of attack as

evidenced by the contour plots of the average lift coefficient across the first and second half

of the stroke (fig. 3.7e1,e2). The average lift coefficient is consistently lower during the first

half of the stroke than during the second half for all values of the aeroelastic number and all

angles of attack. The average lift coefficient during the first half does not vary substantially

with the aeroelastic number for α̂ < 45°. For 45° < α̂ < 70°, the average lift increases with

increasing aeroelastic number for Ae < 1 and reaches a plateau for Ae > 1. The average lift

coefficient during the second half shows a clear global maximum for α̂≈ 50° and Ae ≈ 1.7. This

corresponds to conditions that yield the overall best performance.

76



3.3. Results

α̂

0 0.25 0.5

70

90

α̂

t/T
α

[°
]

0 0.25 0.5

0

0.5

1

t/T

φ̇
/φ̇

m
ax

0

1

2

3

4

5

C
L

0

2

4

6

8

10

C
P

100 101
15

30

45

60

75

Ae

α̂
[°

]

100 101

Ae
100 101

Ae
100 101

Ae

0 1 2
C̄L

0 2.5 5 7.5
C̄P

100 101

Ae

a. b.

c. d.

e1. e2. f1. f2.

Figure 3.7 – Temporal evolution of the flapping kinematics in terms of the angle of attack (α)
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The analysis of the power coefficient CP leads to the same conclusion that the performance dif-

ference by the deformable wings is made in the second half of the stroke (fig. 3.7d,f). All power

curves follow a similar increase in power with increase in the stroke velocity in the first part of

the stroke (fig. 3.7d). A maximum in CP is reached slightly before mid-stroke. The highest peak

in power belongs to the rigid wing. In the second half of the cycle, the aerodynamic power

curves associated with the deformable wings remain below the rigid wing curve for most of

the second part of the stroke. The least amount of power is required by the lowest value of the

aeroelastic number which is the most deformable wing. The least deformable wing with the

highest value of Ae requires approximately the same amount of power as the rigid wing. For all

tested angles of attack α̂ and aeroelastic numbers, the first half of the stroke requires more

power than the second (fig. 3.7f1,f2). The strongest dependence on the aeroelastic number is

observed for angles α̂> 45° in the second half of the stroke (fig. 3.7f2). Here, the power is drops

significantly with decreasing values of Ae. At low Ae, the stronger cambering of the membrane

leads to a decrease in the frontal area which leads to reduced drag and power coefficients.

To explain the higher aerodynamic performance at moderate Ae and the variations during

the second half of the stroke, we analyse the temporal evolution of the passive membrane

deformation characterised by the camber ẑ and the leading and trailing edge angles αLE and

αTE in fig. 3.8. The data is presented for the lift-optimal angle of attack α̂= 55° over one stroke

or half the flapping cycle. The results of the rigid wing are presented by the black dashed line.

The line colour of the solid lines indicates the value of the aeroelastic number.

The temporal evolutions of the membrane camber ẑ for the deformable wings roughly follow

a trapezoidal shape in response to the trapezoidal variation in their geometric angle of attack

α (fig. 3.8a). The camber for the lowest values of Ae reaches the highest camber of ẑ/c = 0.28

just before mid-stroke and keeps a steady camber over a larger portion of the second half of

the stroke. We refer to the time interval during which the camber remains at its maximum

value as the camber plateau time. The time at which the maximum camber is reached does

not vary significantly with effective membrane stiffness expressed by the aeroelastic number.
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The deformation seems to continue as long as the stroke velocity increases. Yet, the rate of

change of the camber during the first part of the stroke does not vary consistently with the

stroke velocity and the response strongly depends on the value of Ae. For the lowest values

of Ae, we measure an immediate increase of the camber already during the rotation phase.

For the higher values of Ae, the increase in camber becomes more prominent after the wing

rotation has ended. This suggests that the rotational acceleration affects the initial response of

the membrane, but we believe that it does not affect the maximum camber which was shown

to scale well with the aeroelastic number (fig. 3.5a). The maximum camber decreases with

increasing values of Ae and this holds try for any value of the camber ẑ at all times during

the stroke. The camber plateau time also reduces with increasing values of Ae. At the highest

presented aeroelastic number, the membrane cambers up to ẑ/c = 0.08 and immediately

reduces again during the second part of the stroke. A plateau of constant camber is no longer

observed. The persistence of the higher camber during the second part of the stroke at lower

aeroelastic numbers leads to higher lift and a reduction of the power during that time (fig. 3.7).

The temporal evolution of the phase-average leading and trailing edge angles with respect to

the stroke plane are presented in fig. 3.8b,c. When the membrane cambers more at lower Ae,

the leading and trailing edges angles drop below the corresponding reference values imposed

on the rigid wing. All leading edge angles of attack αLE in fig. 3.8b reach a minimum angle

during the wing’s camber plateau time fig. 3.8a. With increasing deformation at lower Ae,

the leading edge angle of attack minima decrease and are attained later in the second half of

the stroke. At the lowest Ae, the leading edge angle of attack becomes negative αLE =−3° at

t/T = 0.35 in fig. 3.8b. The excessive rotation of the leading edge due to over-cambering is

accompanied by a decrease in lift coefficient CL but also by reduction in power CP (fig. 3.7c,d).

The trailing edge angle αTE evolves differently than the leading edge angle (fig. 3.8c). The

trailing edge orientation appears symmetric around mid-stroke and all curves of αTE follow an

M-shape evolution. Two peaks emerge at the end and the start of the wing rotations. After the

first peak, the trailing edge angle decreases and the trailing edge rotates in the direction of

the motion. For moderate to high values of Ae, the angle remains constant for a part of the

stroke and the duration of this constant angle phase increases again with decreasing aeroelas-

tic number, similar to the behaviour of the camber plateau time. At lift-optimal aeroelastic

conditions, the trailing edge orientation is perpendicular to the flow with αTE = 90°. Further

increase in the camber ẑ, by lowering Ae, causes the trailing edge to rotate into the flow at

angles down to αTE = 70°. The trailing edge rotation αTE < 90° indicates over-cambering and

coincides with a decrease in lift production by the membrane wings.

3.3.4 Global optima of lift and efficiency

In the previous sections, we analysed the relationship between lift coefficient CL, aeroelastic

number Ae for the lift-optimal angle of attack α̂= 55°. In fig. 3.9, we summarise the results

of the stroke-average lift coefficient C L and hovering efficiency η (equation 3.7) for the entire

experimental parameter range covered in this study. The input parameter space is spanned by
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Figure 3.9 – a. Lift coefficient over aeroelastic number and angle of attack, and b. hovering
efficiency over aeroelastic number and angle of attack.

the angle of attack α̂ and the aeroelastic number Ae. The two markers in the contour plots

indicate the optimal-lift (×) and optimal-efficiency (◦) points which lie at different locations.

The maximum lift C L,max = 2.43 is found at Ae = 1.68 and α̂= 55° (fig. 3.9a). The most efficient

hovering η= 0.858 occurs at a higher aeroelastic number Ae = 2.44 and a lower angle of attack

α̂= 33° than the lift optimum (fig. 3.9b). In literature, we found an experimental study using

compliant flat plate wings with a stiff leading edge that reports an enhancement of the aerody-

namic performance of these flexible flapping wings in hover compared to rigid wings for a

range of effective stiffness fromΠ1 = 0.5 toΠ1 = 10 [164]. The maximum lift production in [164]

was found at Π1 = 3.5. We find maximum lift production at a lower value of Π1 = 1.17 using

Ae =Π3
1 . The highest efficiency for our wings occurs atΠ1 = 1.34. Both optima still fall within

the range of effective stiffness values that are reported to enhance aerodynamic performance

by [164]. Compared to different insect species, the optimum chord-wise effective stiffness in

our study matches with the tarantula-hawk wasp (Pepsis grossa) which has similar aspect ratio

wings than the membrane wings in our study [42, 164]. A recent study on membrane wings

for energy harvesting applications discovered highest energy extraction at their lowest tested

aeroelastic number Ae = 5 (Π1 = 1.71) [158].

Rigid flapping wings at lower angles of attack promote the stable growth of a leading edge

vortex and a lift favouring orientation of the normal force vector leading to more efficient

hovering flight [71]. A shift of the most efficient hovering conditions to larger value of Ae

indicates a higher relative stiffness of the membrane and lower camber. The same leading

edge deflection of up to γLE,max = 45° observed at α̂= 55° and lift-optimal aeroelastic number

Ae = 1.68 would lead to over-cambering and negative leading edge angles of attack αLE at a

geometric angle of attack α̂= 33° of most efficient hovering.
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To quantify the relationship between aerodynamic performance and membrane deformation

over the entire experimental parameter range, a Weber number is calculated, We =CN/Ae =
N /(EhR) (equation 3.3) [127, 141]. The Weber number represents the ratio between inertial

forces, e.g. lift and drag on the wing, and the membrane tension. Previous work on membranes

at a steady free-stream velocity and angle of attack demonstrated that the maximum mem-

brane camber ẑmax increases with increasing Weber number We for a pre-strain parameter

ε0 (equation 3.3) [127, 141]. The trailing edge of the membrane wing in this study can move

freely in chord-wise direction and a pre-strain of ε0 = 0 can be assumed. The Weber number is

presented in fig. 3.10a for all our experiments in the parameter space spanned by Ae and α̂.

The two markers indicate the global lift-optimum (×) and efficiency-optimum (◦) found in

fig. 3.9. The Weber number decreases from We = 2.20 to 0.94 between the lift and the efficiency

optimum. With a reduction in Weber number the pressure and lift pulling on the membrane

decrease relative to the stiffness of the membrane and less deformation is expected. Assuming

the membrane camber is a direct function of the Weber number [127, 141], we can infer the

change in maximum membrane camber ẑmax and deflection angle γmax from the deformation

measurements at α̂= 55° in fig. 3.10b and c. For most efficient hovering at We = 0.94 the cam-

ber is predicted to drop below ẑmax < 0.15c and limiting γmax < 25° preventing over-cambering

and negative angles of attack at the leading edge. The relationship between the increase in the

maximum camber ẑ and the Weber number in fig. 3.10b agrees qualitatively with experiments

conducted for fixed membrane wings without pre-strain [127, 141]. Compared to the results

under steady flow conditions, the Weber number in our study is one order of magnitude higher.

This difference in Weber number is attributed to the change to unsteady flapping wing flight
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and to a difference in the mechanism that causes the membrane deformation. In [127,141], the

membrane deformation is dominated by stretching. In our study it is dominated by bending.

Two distinct regions of maximum lift production and hovering efficiency are identified in the

full experimental parameter range. The ability to move from high lift production to efficient

hovering by modifying the angle of attack or the aeroelastic properties makes the membrane

wing platform a promising model for the design of novel micro air vehicles. Many natural

fliers already modify their wings’ angle of attack and stiffness in flight to adjust to different

flight situations, for example when performing manoeuvres or to alleviate a gust encounter.

Different types of flapping wing vehicles have already incorporated angle of attack variation

in their designs and progress has been made recently in developing membrane wings with

variable stiffness [165, 166]. Our results show that combining both effects, variable stiffness

and angle of attack variation, enhances the aerodynamic performance and has the potential

of improved control capabilities of micro air vehicles.

3.4 Conclusion

We have introduced a novel bio-inspired membrane wing design for systematic investigation

of the fluid-structure interactions of flapping membrane wings. The wing platform allows for

passive cambering of the membrane and for the rotation of the leading and trailing edges with

respect to the stroke plane. A wide range of kinematic and membrane material parameters

were tested on an experimental flapping wing platform and the aerodynamic performance in

terms of the stroke-average lift coefficient C L and hovering efficiency η was evaluated. Addi-

tional deformation measurements were conducted over the full stroke duration to capture the

temporal evolution of the membrane camber and the orientation of the leading and trailing

edges relative to the flow for selected parameter variations.

Across the entire range of angles of attack tested, we found membrane wings that can produce

up to 18 % more lift and reach 16 % higher lift to power coefficient ratios than the rigid refer-

ence wing. At the lowest tested angles of attack α̂< 25°, the rigid wings perform equally well

as the highest performing membrane wings. With increasing angles of attack, the rigid wings

loose terrain with respect to the membrane wings. At the highest angle of attack α̂= 75°, the

rigid wings have similar performance to the lowest-performing membrane wings.

We computed an aeroelastic number Ae, typically used for fixed wings, to characterise the

balance between the membrane stiffness and the dynamic pressure on the wing and confirm

that it is also suitable to characterise unsteady flapping wings. At low Ae, the dynamic pressure

of the flow on the wing is relatively high compared to the stiffness of the membrane and we

observe larger membrane deformations. With increasing Ae, the effective stiffness of the mem-

brane increases and the membrane deforms less. At the highest Ae, the membrane behaves the

same as a rigid plate. For most angles of attack, the stroke-average lift coefficient C L increases

with increasing Ae until a maximum is reached at aeroelastic numbers Ae ranging from 1 to

2. Further increasing Ae beyond the lift optimal aeroelastic conditions leads to a decrease in

the lift produced by the membrane wings and their C L values asymptotically converge to the
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average lift produced by the rigid wings at the highest Ae.

To understand the relationship between effective membrane compliance expressed by the

aeroelastic number Ae and the aerodynamic force production on the wing, we measured

and quantified the membrane deformation throughout the entire wing stroke. The stroke-

maximum camber ẑmax grows exponentially with decreasing Ae for a given angle of attack.

As the camber increases, the rotational angle of the leading and trailing edges increase. The

stroke-average lift coefficient does not increase indefinitely with increasing stroke-maximum

camber, but reaches an optimal value near ẑmax/c ≈ 0.2 for α̂= 55°. The lift optimal membrane

shape displays two features that enhance the lift production: moderate angles of attack at

the leading edge which lead to stall delay and a vertical orientation of the trailing edge which

deflects the fluid downwards and enhances the upward reaction force on the membrane.

For lower Ae, the membrane over-cambers and the lift decreases. We identify thresholds for

over-cambering when either the leading edge angle becomes negative αLE,min < 0° or when the

trailing edge angle drops below αTE,min < 90°.

The temporal evolutions of the aerodynamic forces reveal that most of the lift gain of the

membrane wings relative to the rigid wings is achieved in the second half of the stroke. The

power consumption in the second half of the stroke is lower across all tested angles of attack

and aeroelastic numbers. The membrane camber ẑ reaches a maximum around mid-stroke

(t/T = 0.25), when the stroke velocity φ̇ is highest, and maintains the maximum camber during

most of the remainder of the stroke for Ae equal or lower than the lift optimal Ae.

Across the entire parameter space considered, we identified global maxima for either maxi-

mum lift or most efficient hovering at different angles of attack α̂ and aeroelastic numbers

Ae. The maximum lift is found at Ae = 1.7 and α̂= 55° and the most efficient hovering occurs

for a higher effective membrane stiffness, Ae = 2.4, and at a lower angle of attack α̂= 33°. The

aeroelastic numbers we find are in line with previous results reported in literature for flexible

hovering wings, membrane energy harvesting applications, and insect species with matching

aspect ratio wings. In hovering flight, a lower angle of attack typically enhances the lift to drag

ratio. The same deformation and leading edge rotation angle observed at the lift optimal Ae

would lead to over-cambering and a negative leading edge angle at the efficiency optimal

angle of attack. This explains the increase in Ae to limit camber and rotation of the leading

edge at the efficiency optimum.

Finally, we quantified the relationship between membrane camber, force production, and

the relative stiffness of the membrane wing using the Weber number We. For the lift and

the efficiency optimal cases, the Weber number decreases from We = 2.20 to 0.94 suggesting

a reduction in membrane tension and membrane deformation. With a reduction in Weber

number, the pressure and force pulling on the membrane decrease relative to the stiffness of

the membrane. The lower We is associated with a decrease in membrane camber which limits

the leading edge rotation angle γmax < 25° preventing over-cambering and negative angles of

attack at the leading edge.

The ability to move from high lift production to efficient hovering by modifying the angle of

attack or the aeroelastic properties makes the membrane wing platform a promising model for

the design of novel micro air vehicles. Our results show that combining both effects, variable
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stiffness and angle of attack variation, enhances the aerodynamic performance of membrane

wings and has the potential to improve control capabilities of micro air vehicles.
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4 Vortex dynamics of highly deformable
flapping wings

In this chapter, the effects of chord-wise flexibility on the vortex topology of a flapping mem-

brane wing in hover are investigated. The objective is to describe the flow characteristics of the

highly deformable membranes at optimal and sub-optimal aeroelastic conditions. The extend

of this work, explains certain flight behaviours of bats and provides a flow control application

for flapping membrane wing. This chapter is a direct extension of the previous chapter 3 [109]

and does only provide a short introduction and no methods section.

4.1 Introduction

In the previous chapter 3, we identified two global optima of the stroke-average lift coefficient

C L and hovering efficiency η (fig. 4.1) according to [71, 86]:

CL =
L

1
2ρRcU

2 , CP =
P

1
2ρRcU

3 , η= C L

C P

. (4.1)

The optima are obtained at different aeroelastic conditions quantified by the aeroelastic

number Ae and at different angle of attack amplitudes α̂. We explain the two global maxima

by correlating the leading and trailing edge angles of attack with the flow at various Ae with

the aerodynamic loads on the wing. The membrane wings have the highest aerodynamic

performance when the angle at the leading edge is aligned with the flow and the trailing edge

angle is directed downwards relative to the stroke plane. This wing configuration promotes

flow attachment and a delay in stall due to moderate angles of attack and reaches high lift

coefficients due to the redirection of the flow downwards [109]. The effect of the wing geometry

on aerodynamic loads is consistent throughout different aeroelastic conditions Ae and angle

of attack amplitudes α̂.

In this chapter, we want to focus on the velocity flow field around the unsteady flapping mem-

brane wings. Our main objective is to characterize the flow development around the flexible

wings and relate it to the membrane deformation and aerodynamic forces. Especially the
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Figure 4.1 – a. Stroke-average lift coefficient C L for the membrane and b. rigid wing, c. stroke-
average hovering efficiency η for the membrane and d. rigid wing over aeroelastic number Ae
and angle of attack amplitude α̂. The white markers indicate where flow field measurements
are conducted. (adopted from [109])

leading edge vortex formation and its position relative to the wing are crucial in understanding

the lift and drag production over the cycle [71, 167, 168], and have received less attention in

previous studies.

4.2 Results

4.2.1 Membrane and vortex dynamics

We conduct flow field measurement for eight different cases (highlighted by the white markers

in fig. 4.1). The PIV measurements are taken normal to the span-wise direction at radius of the

second moment of area R2. Two different angle of attack amplitudes are considered, α̂= 55°

and 35° for the highest lift production and highest hovering efficiency respectively. The optimal

aeroelastic conditions selected are Ae = 1.86 for C L and Ae = 2.30 for η [1]. Additional flow

field measurements are taken where the effective stiffness is significantly lower (Ae = 0.825) or

higher (Ae = 5.17) than the global optima. Finally, two sets of velocity field measurements are

conducted for the rigid reference wings.

The time-resolved velocity flow field measurements are presented for the high lift angle of

attack amplitude α̂ = 55° in fig. 4.2 and for the high efficiency angle α̂ = 35° in fig. 4.3. The

panels (a-d) show snapshots of the wing’s cross-section and the vorticity field around them for

the rigid wing (a), too stiff membrane (b), optimal stiffness membrane (c), and the too flexible

1Note that the experimental parameters closest to the global optima in fig. 4.1 are selected for the flow field
measurements based on the parameter sweep in [109].
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Figure 4.2 – a.-d. Vorticity field snapshots, e./f. stroke-average hovering efficiency η as function
Ae for membrane and rigid wings, g. flapping wing angle of attack α and stroke velocity φ̇.
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membrane (d) at four different stroke-cycle times t/T indicated by the markers in panel

(g). Figure 4.2 also shows the stroke-average lift coefficient C L as function of the aeroelastic

number Ae for the flexible membrane and the rigid wing in panels (e) and (f), and the pitch

angle α and stroke-velocity φ̇ as function of time in panel (g).

Lift optimal angle of attack

The rigid wing presented in fig. 4.2 panels a1-a4 features the formation of a coherent leading

edge vortex, typical for a flapping wing in hovering flight [2, 11, 16, 26]. The vortex grows

strongly in strength and size early in the cycle (fig. 4.2 a1 and a2). It stretches over the entire

wing chord c around t/T = 0.3 (a3), and finally loses coherency and breaks down towards

the end of the cycle when the wing is decelerating (a4). When flexibility is introduced, the

wing starts to deform in the first half of the cycle in fig. 4.2b1 for the stiffest membrane wing.

The airfoil camber leads to lower leading edge angles and a reduction in shear at the leading

edge. Consequently, a vortex of smaller size and strength is formed at the leading edge of the

stiff membrane than on the rigid wing. A maximum camber is reached around mid-stroke

(fig. 4.2b2) when the highest stroke velocity φ̇ is experienced by the wing. The leading edge

vortex has grown less in size compared to the rigid wing, but it has a stronger core and stays

closer to the wing. The vortex grows consistently while staying coherent and close-bound to

the wing until late into the stroke cycle (fig. 4.2b4) when the leading edge vortex on the rigid

wings starts to break down. The membrane camber keeps the vortex closer to the wing and

more coherent, which leads to a significant improvement in stroke-average lift production of

the stiff membrane over the rigid wing (fig. 4.2e,f).

At lift optimal aeroelastic conditions, the flow topology around the membrane wings changes

(fig. 4.2c). The membrane deforms much stronger due the decreased Ae in the first half of the

cycle (fig. 4.2c1). As a result, the leading edge aligns with the flow and no coherent leading

edge vortex is formed. Instead, the flow stays attached to the wing and a thin shear-layer

spreads over the chord. At mid-stroke (fig. 4.2c2) the wing reaches its maximum camber. Even

this far into the stroke-cycle, no conventional leading edge vortex has rolled up whereas the

stiffer membrane and rigid wing feature pronounced, round vortices. The shear-layer remains

bound to the wing and grows in strength and height over the chord in fig. 4.2c2,c3. Towards

the end of the cycle (fig. 4.2c4) the shear-layer loses coherence and its height grows to about

1/3 of the chord length c. The vorticity still stays bound to the membrane, in contrast to

the stiffer membrane and rigid wing where the leading edge vortices lift off of the wing at

the end of the cycle. The membrane wing at optimal aeroelastic conditions keeps the flow

attached and suppresses the formation of a leading edge vortex over the entire stroke-cycle.

This leads to highest stroke-average lift coefficients in all presented experiments and more

than 20% increased C L over the rigid wing despite the absence of a leading edge vortex. Similar

improvements in lift production have been observed for active stiffness controlled membrane

wings at steady flow conditions [166].

Finally, we present in fig. 4.2d the membrane wing that hovers at a lower aeroelastic number
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Ae than the lift optimal case. The highly flexible membrane experiences strong deformation

right from the start of the stroke (fig. 4.2d1). No vortex formation is observed in the first half of

the cycle. Instead, a thin layer of vorticity stretches over the chord, similarly as seen for the lift

optimal aeroelastic conditions. At mid-stroke, a transition in the flow topology is observed

(fig. 4.2d2). The leading edge shear-layer rolls up close to the trailing edge as it separates over

the high curvature of the membrane. In the second half of the cycle, the vortex grows in size

and stays attached to the leading edge shear-layer (fig. 4.2d3). At the same time, a trailing

edge vortex of counter-clockwise rotation rolls up and forms a pair with the first vortex. Both

vortices persist until the late stages of the stroke-cycle (fig. 4.2d4). The clockwise rotating

vortex then loses its coherency, akin to the vortex evolution for the stiffer membranes and the

rigid wing. The highly flexible membrane experiences very strong deformations which cause

the flow to separate over the high camber at mid-chord. Additionally, the trailing edge rotates

into the flow which causes flow separation and the formation of a strong trailing edge vortex.

At these high membrane deformation the average lift production of the membrane wings falls

sharply compared to the optimal aeroelastic conditions, but yields more lift than the rigid

reference case (fig. 4.2e,f).

Efficiency optimal angle of attack

The vorticity flow fields at the maximum efficiency (η = C L/C P) angle of attack amplitude

α̂= 35° are presented in fig. 4.3 for four aeroelastic conditions. The four cases correspond to

the rigid wing (a), the stiff membrane (b), efficiency optimal aeroelastic conditions (c), and

the highly flexible membrane (d) indicated by the circular markers in fig. 4.1.

The flow field around the rigid wing at α̂= 35° in fig. 4.3a1-a4 shows the formation, growth and

breakdown of a coherent leading edge vortex. The strength and size of the vortex is reduced

and it stays closer to the wing compared to the rigid wing at higher angle of attack α̂ = 55°

(fig. 4.2a). The vortex stays attached to the wing even towards to the end of the cycle (fig. 4.3a4)

where at higher angles of attack the vortex lifts off of the wing and breaks down. Maintaining a

coherent and close-bound leading edge vortex over large parts of the stroke-cycle was shown

to promote energy efficient hovering flight for rigid flapping wings [71].

As wing flexibility is introduced, the stiff membrane wing begins to deform in fig. 4.3b1,b2.

The membrane camber reaches a maximum shortly after mid-stroke, after which the camber

reduces again (fig. 4.3b3,b4). The camber of the membrane leads to a rotation of the leading

and trailing edges of the wing platform and reduced the effective angles with the flow. The

leading edge vortex grows slower in size and strength (fig. 4.3b1-b3) compared to the rigid

wing due to the reduced shear at the leading edge. The leading edge vortex stays close to the

wing and coherent until the end of the stroke-cycle (fig. 4.3b4). With increased wing flexibility

at lower Ae, the lift to power ratio η increases, but the highlighted stiff membrane wing only

just reached the same η in fig. 4.3e as the rigid wing in fig. 4.3f.

The wing section and flow field snapshots at efficiency optimal aeroelasticity are presented
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Figure 4.3 – a.-d. Vorticity field snapshots, e./f. stroke-average hovering efficiency η as function
Ae for membrane and rigid wings, g. flapping wing angle of attack α and stroke velocity φ̇.
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in fig. 4.3c1-c4. The vortex topology changes considerably compared to the stiff membrane.

No leading edge vortex is formed. Instead, a thin layer of vorticity spreads over the chord

and grows slightly in height and strength over the cycle. The membrane cambers strongly

early in the cycle in fig. 4.3c1. At mid-stroke and shortly thereafter (fig. 4.3c2,c3) the leading

edge is aligned with the flow which suppresses the formation of a leading edge vortex. The

same flow topology is found at lift optimal aeroelastic conditions in fig. 4.3c. Keeping the flow

attached to the membrane and suppressing the leading edge vortex growth leads to the most

power efficient hovering flight and to improvements of more than 12% in η over the rigid wing

(fig. 4.3e,f).

Figure 4.3d1-d4 display the membrane shape and vorticity field snapshots for the most flexible

wing at α̂= 35° over one stroke-cycle. The membrane reaches already a very high camber early

in the cycle (fig. 4.3d1). The deformation leads to strong rotations of the leading edge and

trailing edges, and a negative leading edge angle (of attack). The flow stays attached on the

suction side, above the wing but the negative leading edge angle leads to the formation of a

leading edge vortex on the pressure side, below the wing. The vortex grows until mid-stroke

(fig. 4.3d2) and moves below the maximum camber at the mid-chord position. At the same

time, the flow separates over the high curvature on the suction side and a vortex forms behind

the wing, close to the trailing edge. The vortex behind the wing grows rapidly in size in the

second half of the cycle (fig. 4.3d3) and reaches a similar size as the leading edge vortex on

the stiff membrane wing (fig. 4.3b3). The vortex below the wing begins to dissipate after mid-

stroke in fig. 4.3d3, and disappears almost entirely towards the end of the cycle in fig. 4.3d4.

The strong membrane deformation at the lowest Ae gives rise to the formation of two strong

vortices below and behind the wing. These vortices induce a higher drag and for the vortex

below the wing contribute even negatively to the lift. Both effects cause a sharp decrease in

stroke-average hovering efficiency η compared to the optimal aeroelasticity in fig. 4.3e.

Wing shape and vortex phenomenology

The different emerging membrane deformation and vortex topologies are summarized for all

flow field measurements in fig. 4.4 for the membrane wings and rigid reference cases. The

upper half of the contour plot corresponds to the stroke-average lift coefficient C L and the

lower half of the contour plot corresponds to the hovering efficiency (η=C L/C P) as function

of the angle of attack amplitude α̂ and the aeroelastic number Ae. The icons represent the

membrane shape and flow field at mid-stroke (t/T = 0.25) when the wing is at the highest

stroke velocity φ̇max. The flow structures and deformation change in a similar way for the two

tested angles of attack (α̂= 35° and 55°). The rigid wings in fig. 4.4b do not deform and have

large scale coherent leading edge vortices. The leading edge vortex is a common occurrence

in many flapping wing applications and is attributed to the high lift coefficient produced by

natural fliers.

As flexibility is introduced in fig. 4.4a, the wings camber, and their leading and trailing edges

rotate with respect to the flow. The leading edge vortices reduce in size and strength, and

91



Chapter 4. Vortex dynamics of highly deformable flapping wings

100 101

60

Ae

50

α̂
[°

]

40

100 101

30

Ae

103 104
Ae

103 104

Ae

0

0.5

1

1.5

2

2.5

C
L

0

0.25

0.5

0.75

1

η

a. b.

c. d.

Figure 4.4 – Membrane deformation and flow field phenomenology. a. Stroke-average lift
coefficient C L for the membrane and b. rigid wing, c. stroke-average hovering efficiency η for
the membrane and d. rigid wing over aeroelastic number Ae and angle of attack amplitude
α̂. The graphs are split at α̂ = 35° and 55° to include depictions of the membrane and flow
topologies (icons).

stay closer to the wing for the stiffest membrane wings (Ae = 5.17). The stiff membrane wings

reach higher stroke-average lift coefficient and have an increased efficiency η compared to

the rigid wing. The flow stays fully attached and no leading edge vortex is formed at optimal

aeroelasticity and both angles α̂. Despite forming no leading edge vortex at all, the highest

lift coefficients and the most energy efficient hovering is achieved. Further decreasing the

effective membrane stiffness to Ae = 0.825 leads to even higher wing camber and rotation

of the leading and trailing edges. The high membrane deformation leads to two important

changes in the flow topology. Firstly, a vortex is forming on the suction side of the wing, but

its shear-layer is separating over the high membrane curvature instead of at the leading edge.
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Secondly, the leading edge rotates to negative angles of attack and a vortex of opposite sign

vorticity is formed below the wing for the lower angle of attack amplitude (α̂ = 35°). Both

vortices are detrimental to the aerodynamic performance of the wing and cause losses in

stroke-average lift production and power efficiency.

4.2.2 Membrane dynamics

The membrane shapes and corresponding flow fields around the wing presented in the previ-

ous section demonstrate the strong influence the wing deformation has on the formation of

different vortical structures. Especially the timing of maximum deformation and when it is

achieved has a great influence on the vortex formation. In the following section, we quantify

the membrane deformation dynamics in time, and relate them to the vortex evolution and

aerodynamic loading on the wing.

The membrane deformation as function of time is presented in fig. 4.5 for α̂= 55° (a,c,e) and

α̂= 35° (b,d,f). The sketch on the left shows the definition of the wing camber zmax, leading

edge angle αLE, and trailing edge angle αTE relative to the flow velocity U. The membrane

deformations are presented at three different aeroelastic numbers, corresponding to the PIV

cases: too stiff, optimal stiffness, and too flexible membrane wing (coloured lines)2. The rigid

reference case follows the input kinematics as it does not deform (black line).

The membrane camber ẑmax in fig. 4.5a,b increases at the beginning of the stroke-cycle until

it reaches a maximum. The maximum is maintained for a while before the camber of the

membrane decreases again. We refer to the time of constant camber as the plateau time. With

lower Ae, which corresponds to increasing relative flexibility, the value of maximum camber

increases and the maximum is reached earlier in the cycle. The plateau of the camber maxi-

mum widens with a decrease in Ae, until for the most flexible case the camber is maintained

throughout most of the cycle apart from the wing rotation at the beginning and end of each

stroke-cycle. At lift optimal aeroelastic conditions in fig. 4.5a the membrane cambers up to

ẑmax = 0.27c. The camber maximum for the highest hovering efficiency is at ẑmax = 0.23c in

fig. 4.5b. The camber peaks are attained around mid-stroke for both optimal aeroelasticities.

The wing’s leading edge angle αLE due to the membrane deformation in fig. 4.5c,d shows many

similarities to the dynamics of the membrane camber. Here, the leading edge rotates and

causes a reduction inαLE until a minimum is reached. The minimum angleαLE is lowest for the

highly flexible case and increases for higher effective stiffness. The angle αLE follows the rigid,

imposed angle of attack α of the wing frame in the beginning and end of the stroke-cycle. For

the highest lift coefficient C L, the leading edge angle is reduced by 45° at mid-stroke and arrives

at a minimum angle αLE = 9.3°, which is close to the stall angle of a flat plate. For the highest

hovering efficiency η, the leading edge aligns with the flow αLE = 1.0° at α̂= 35° (fig. 4.5d). A

minimal angle at the leading edge reduces the shear at the leading edge and suppresses the

2Note that some data points of the most flexible case are missing. During the rotation phase of the wing the
marker tracking algorithm could not follow the markers properly due to very high gradients of deformation.
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Figure 4.5 – a. Membrane camber zmax, b. leading edge angle αLE, and c. trailing edge angle αTE

over one stroke-cycle t/T = 0 to 0.5.

formation of a leading edge vortex. In addition, it allows the flow to stay attached to higher

geometric angles of attack α.

We consider the trailing edge angle αTE as another important quantity in understanding

the flow dynamics around the flexible membrane wing. The trailing edge redirects the flow

downwards and controls the trailing edge vortex formation. If the trailing edge rotates too

far, it turns into the flow causing strong flow separation and a loss in overall aerodynamic

performance [109]. The trailing edge angle αTE in fig. 4.5e,f reaches a minimum, remains at

that angle for a certain plateau time, and finally returns to the wing frame angle at the end

of the stroke cycle, akin to the observations about the leading edge angle αLE. The minima

increase in value and have a wider plateau for lower Ae. At the lift optimal aeroelasticity the

trailing edge angle reaches a minimum of αTE = 90°. This corresponds to a 35° decrease in

effective trailing edge angle. The difference between leading and trailing edge angles is due to
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a shift in maximum camber towards the leading edge, which has been reported in previous

membrane wing studies and has also been observed in bats during flight [43, 142]. The trailing

edge rotates further below < 70° for the highly flexible case, which is detrimental for its lift

production.

4.2.3 Membrane deformation and aerodynamic loads as function of Ae

In the previous section, the membrane deformation was presented as a function of time.

The wing camber, the leading edge angle, and the trailing edge angle reach different extrema

in the stroke-cycle based on the relative stiffness defined by Ae. We extract the membrane

deformation extrema for both processed angle of attack amplitudes α̂ at different Ae. In fig. 4.6

the wing camber maxima ẑmax, rotation angle maxima γ̂, leading edge angle minima α̂LE, and

trailing edge angle minima α̂TE are presented as function of the aeroelastic number Ae. The

icons depict the membrane shape and flow field at mid-stroke. The rotation angle γ is defined

as the edge’s rotation relative to the undeformed wing and relates to the leading and trailing

edge angles of attack as follows:

αLE =α−γLE , αTE = 180°−α−γTE . (4.2)
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The maximum camber ẑmax (fig. 4.6a) decreases approximately linearly with increasing Ae in

the logarithmic scale regardless of the angle of attack amplitude α̂ indicated by the ( ) and ( )

markers. This corresponds to an exponential relationship relation between ẑmax and Ae, also

referred to as a power law in the general sense. We find maximum membrane camber values

that range from 0.1c for the stiffest membrane, up to 0.3c for the most flexible membranes.

The lift and efficiency optimal cases reach a camber around and slightly above 0.2c. The

highest possible wing camber is 0.5c considering only bending deformation and no membrane

stretching.

The rotation angle maxima γ̂ in fig. 4.6b relate to log(Ae) linearly independent of the angle

of attack amplitude α̂, similar to the wing camber. Here, no distinct differences between the

rotation angle at the leading ( / ) and trailing edge ( / ) are observed for most of the cases.

Only for the lowest stiffness (Ae < 1), the leading edge rotates to higher angles γ̂ compared to

the trailing edge. This indicates that the maximum camber location is shifted closer towards

the leading edge. An asymmetry in the membrane shape has been observed for membrane

wings under various steady and unsteady conditions [109,142,158]. The asymmetry stems from

pressure distribution along the camber which is subject to different steady and unsteady effects

like vortex formation and shedding. We consider the shape asymmetry to be a secondary

effect and to not have a major impact on the aerodynamic performance.

The functional relationship between camber ẑmax and rotation angle γ̂ maxima allows us to a

priori estimate the membrane deformation from the prescribed kinematics, but it does not

directly relate to the vortex dynamics nor the aerodynamic loading on the wing. To understand

the impact of the membrane deformation on the flow, we quantify the minimum leading

α̂LE and trailing edge angles of attack α̂TE within the stroke-cycle (fig. 4.6c,d). In fig. 4.7a the

stroke-average lift coefficient C L as a function of the aeroelastic number Ae is presented for

the flexible membrane wings and the rigid reference case. The coloured markers represent

results at two different angles of attack, α̂ = 35° ( ) and α̂ = 55° ( ), and the square markers

( / ) correspond to the PIV measurements illustrated by the icons. Both angles α̂LE and α̂TE

have the same linear relationship with log(Ae) but they are shifted relative to γ̂ in equation 4.2.

The two different coloured datasets ( / ) are separated by a constant 20°, the difference in

angle of attack amplitude of the input kinematics α̂ = 35° and 55°. The grey shaded areas

indicate angles where the membrane is over-rotating or over-cambering. If either negative

angles of attack are reached at the leading edge α̂LE < 0° or the trailing edge rotates into

the flow α̂TE < 90°, the wing is over-cambering and its aerodynamic performance decreases

(fig. 4.7) [109].

The leading edge angle maxima α̂LE in fig. 4.6c decrease with a decrease in the aeroelastic

number Ae. At α̂= 35° ( ), α̂LE gets close to 0° which corresponds to the leading edge being

aligned with the flow and leads to the lowest power consumption and highest aerodynamic

efficiency (fig. 4.7b,c). The low angle at the leading edge promotes flow attachment and a

reduced projected frontal wing area compared to the stiffer membranes or the rigid wing.

Further reduction in effective stiffness Ae causes the power consumption to rise again and
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the efficiency to decline. The increase in membrane flexibility causes α̂LE to over-rotate and

become negative (fig. 4.6c). Eventually, the stall angle is crossed in the negative α̂LE which leads

to the formation of a vortex below the wing and a sharp decline in aerodynamic performance.

The flow is separating over the high membrane curvature and the negative angle of attack at

the leading edge. The increase in power (fig. 4.7b) is caused by the growth of a strong vortex

that forms near the trailing edge and a second vortex below the wing. The vortex at the trailing

edge produces additional pressure induced drag due to its position behind the wing.

The trailing edge angle minima α̂TE in fig. 4.6d decrease with decreasing Ae as the trailing edge

rotates into the flow with increasing wing camber. At α̂= 55° ( ), the highest stroke-average

lift (fig. 4.7a) is reached by the membrane wing as a minimum angle of roughly α̂TE = 90° is

attained. The trailing edge at this angle directs the flow downwards, perpendicular to the

stroke-plane in the negative lift direction. The trailing edge rotates to lower trailing edge angles

of attack for lower Ae. The flow separates and a vortex forms behind the high camber curvature

for the lowest Ae tested at α̂= 55° ( ). All cases within in the grey shaded region in fig. 4.6d

suffer losses in lift production compared to the optimal aeroelastic conditions (fig. 4.7a).

The membrane deformation data presented as function of the aeroelastic number Ae high-

lights two important findings. Firstly, the wing camber and rotation angle maxima grow

exponentially over the observed parameter space. This allows to predict the membrane shape

from the input kinematics in first approximation and infers that the fluid-structure interaction

is mainly driven by the structural and fluid inertia. Secondly, two conditions for over-rotation

or over-cambering can be defined when the rotation angle γ is decomposed into a leading

and trailing edge angle (equation 4.2). The highest aerodynamic performance is achieved

when the membrane deformation is just at the edge of one of the conditions, for highest lift

coefficient α̂TE = 90° and for most energy efficient hovering α̂LE = 0°. When these thresholds

are exceeded the aerodynamic performance decreases.

Bats and other natural fliers using compliant membrane wings have been observed to favour

lower angles of attack (α < 40°) for power efficient flight [43, 169]. Bats control the camber

of their wings by increasing the tension during flight with their muscles to adapt the wing

shape to different flow conditions. When their muscles are paralysed they regulate their flight

speed instead to control the wing camber [43]. Controlling either the wing flexibility Eh or the

flight speed U regulates the effective aeroelastic number Ae. Our findings demonstrate that

these are effective means of controlling flow separation over membrane wings and limiting

vortex formation. Based on the observed aeroelastic phenomena active flow control schemes

of artificial flapping wing vehicles can be realized. Optimal aeroelastic conditions can be

maintained in flight by modulating either the wing’s angle of attack α, membrane stiffness Eh,

or flow velocity U using the leading and trailing edge angles as indicators for the flow state

and membrane shape.
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4.3 Conclusion

In this chapter, we investigated different emerging flow topologies of flapping membrane

wings, and how they relate to the aerodynamic performance and wing deformation. We

present results from flow field measurements for the optimal aeroelastic conditions and three

reference cases where the membrane is either too flexible or too stiff, and a rigid reference

wing. We identify several new flow characteristics previously not observed in rigid flapping

wing flight or other flexible wing studies. The flow topology around the wing is similar to the

rigid wing, when the membrane wing is too stiff but the leading edge vortex stays closer to the

wing and is more coherent.

At the optimum aeroelastic conditions the wing is deformed such that the leading edge is

aligned with the incoming flow and the trailing edge oriented downwards. The flow stays close-

bound to the wing and no coherent leading edge vortex is formed in the first half of the cycle.

In the second half of the cycle, the vorticity stays close to the membrane but the flow separates

over the high curvature of the membrane and a vortex forms in the second half of the wing

chord for all observed cases. The membrane wings produce the highest lift coefficients despite

suppressing the leading edge vortex formation entirely. These results challenge the claim that

a leading edge vortex is always required to generate high lift in flapping wing flight [2, 11, 26].

If the membrane wing is too flexible, the membrane curvature increases rapidly early in

the cycle. The flow separates over the high curvature of the membrane and causes a strong

vortex to form behind the wing, close to the trailing edge. This vortex reaches a similar

strength compared to the rigid case, but the wing experiences a dramatic loss in lift and

hovering efficiency due to the vortex’ position behind the wing. The high membrane curvature

eventually leads to negative angles of attack at the leading edge for the lowest observed angle

of attack amplitude α̂= 35° and causes a vortex to grow at the pressure side, below the wing.

The vortex formation induces additional drag forces and even impacts the lift negatively as it

creates a low pressure below the wing.

Bats and other natural fliers using compliant membranes actively control the shape of their

wings in flight by increasing the tension in their muscles or varying the flight speed, both

of which regulate the aeroelastic number [43, 169]. We suggest using active flow control for

artificial flapping wing vehicles by modulating either the wing’s angle of attack α, membrane

stiffness Eh, or flow velocity U . Using the leading and trailing edge angles as indicators for the

flow state and membrane shape allows to maintain optimal aeroelastic conditions without

further sensory input.
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5 Hawk moth wing morphology and the
leading edge vortex

In this chapter, the effects of different wing planforms and wing shapes on the leading edge

vortex formation and aerodynamic performance are investigated. The objective is to identify

key morphological traits which govern the leading edge vortex formation on hawk moth wings

and explain the diversification of different wing planforms found in nature. The extend of this

work, provides guidelines for the design of different wing planforms for flapping wing vehicles.

The work presented in this chapter has been done in collaboration with Megan Matthews,

Marc Guasch, Simon Sponberg, and Karen Mulleners.

5.1 Introduction

Flight is a key evolutionary trait which augmented the abilities of various species of birds,

insects, and mammals to forage, hunt, evade predators, migrate, find mates, and more [170].

Strong selective pressure is put on the aerodynamic performance of natural fliers to perform

the different activities with highest proficiency. The aerodynamic performance in flapping

wing flight is greatly influenced by the functional wing morphology and the wing motion

[25–27]. The success of aerial organisms gave rise to a large variety in different wing sizes and

shapes which each fill their biological niche from the micron to the meter scale [171, 172]. In

particular, flying insects present one of the highest diversities in wing morphology, kinematics,

and behaviour with nearly one million species discovered to date [42, 110, 173–176]. Even

though there are many similarities shared across the different flapping wing fliers, there are

distinct differences in the wing morphology and actuation between species. To understand

which traits were key in the diversification of species, it is important to distinguish if these

differences are mainly providing aerodynamic advantages or other, functional benefits [176–

178].

The leading edge vortex is one important aerodynamic characteristic, which gives rise to the

high lift production required by flapping wing fliers at the insect-scale [11, 26, 76, 151]. The

leading edge vortex is a large scale coherent flow structure which arises when a wing operates
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at high angles of attack, above its static stall angle, typical for insect flight. The strong shear

will cause the flow to separate over the leading edge and roll-up into a vortex. The bound

leading edge vortex produces a low pressure area on the suction side of the wing and greatly

augments the aerodynamic forces and torques. The vortex grows in size to cover the entire

wing and eventually lifts off of the wing and sheds into the wake. The life cycle of the leading

edge formation and breakdown is repeated during each wingbeat and leads to high transient

lift coefficients [2, 16].

Different insect species have developed their own strategies to manipulate the flow around

their wings and in particular the formation of the leading edge vortex. Honeybees and

mosquitos for example flap their wings with low amplitude at extremely high frequencies

and perform well-timed, rapid wing rotations which create strong vorticies at every stroke-

cycle [81, 179]. Butterflies in contrast have lower aspect ratio wings and flap at reduced

wingbeat frequencies. Their bodies undergo large angle rotations which helps to direct the

trajectories of their shed vorticies and reduce drag force [44, 45]. Some of the smallest flying

insects, like the fairyflies [180] or thrips [181], use bristled wings to fly. At very low Reynolds

numbers Re = 10, the bristled wings generate large and coherent leading edge vorticies which

yields similar lift but greatly reduced drag production compared to rigid wings, especially

when flinging their wings apart [171, 182].

Even within sister-families, like the hawk moths and silk moths (Sphingidae and Saturniidae),

large diversity in wing morphology and behaviour are observed [176, 177]. Many Sphingidae,

like the hawk moth, evolved a controlled and agile flight with small, high aspect ratio wings.

Their flight is power efficient and allows them to navigate and feed in hover even in the

unsteady wakes of flowers [8, 183]. The Saturniidae developed an entirely different wing

morphology and motion in comparison. Silk moths lose their functional mouth parts and do

no longer feed during their adult life which limits their available energy budget. They evolved

large, low aspect ratio wings and adopted an erratic flight trajectories which could help in

evading predators [176, 177].

These examples demonstrate the close relation between wing morphology and wing kinemat-

ics which are both adapted to the animal’s aero-ecological niche. In this part, the hypothesis is

tested if the morphology of hawk moth wings evolved to accommodate the formation a strong

and coherent leading edge vortex. The aerodynamic performance and three-dimensional flow

fields around scaled hawk moth wing models and basic reference wing shapes are investigated.

From the velocity flow fields, the leading edge vortex strength in terms of its circulation is

extracted over the entire wing span. To explain the differences in aerodynamic performance

and leading edge vortex circulation, the wing geometries are quantified in terms of the span-

wise chord length, camber, twist, and dihedral angle. The local wing geometry parameter

are used to define a leading edge vortex scaling over the wing span. Finally, the implications

of the leading edge vortex scaling and its contribution to the aerodynamic performance are

discussed in the context of wing morphology evolution of hawk moth wings.
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a. b.

c. d.

Figure 5.1 – An overview of the different parts of the study: a. Hawk moth wing deformation
measurements, b. 3D printing of scaled hawk moth wing models, c. scaled hawk moth wing
model mounted on the flapping wing apparatus, d. PIV on the scaled hawk moth wing model.

5.2 Materials and Methods

Measuring the aerodynamic loads on natural insect wings experimentally is an extremely

challenging task. The forces produced even by larger insects like bumblebees, hawk moths

or dragonflies are only on the order of O (10−4 N) to O (10−2 N) [87, 184, 185]. To measure

the aerodynamic performance by the different hawk moth wings in this study, scaled wing

models are constructed and tested on a flapping wing mechanism submerged in water. An

overview of the different stages of the study is given in fig. 5.1. First, the three-dimensional

wing shape is extracted from deformation measurements on real hawk moth wing samples

(fig. 5.1a) conducted by our collaborators from the Agile Systems Lab at the Georgia Institute

of Technology, USA [8, 183, 186, 187]. Then, the geometric dimensions of the wing are scaled

up in size to reach the same Reynolds number (Re = 5000) in our water tank as the original

experiments in the wind tunnel. For PIV experiments the wings are painted in black. Finally,

the wings are mounted on the flapping wing mechanism and the forces (fig. 5.1c.) and flow

fields (fig. 5.1d.) around the wings are recorded. We test four different wing shapes in this

study. The shape of a fresh hawk moth wing sample, the shape of an aged hawk moth wing

sample, a flattened hawk moth wing sample and a rectangular planform. All four wings have

the same wing surface area, span-length R, and mean chord length (cm = surface area/span).
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Figure 5.2 – a. Hawk moth wing model mounted on the flapping wing apparatus, b. stereo PIV
configuration, and c. load cell, holder and wing assembly.

5.2.1 Kinematics and dynamic scaling

The different length- and time-scales of many technical and biological flows are often charac-

terized with the Reynolds number Re. The Reynolds number Re is defined as the ratio between

the inertial and viscous forces and is calculated for given wing geometries and kinematics in

this study as [188]:

Re = Uref lref

ν
= φ̇R3b/4cm

ν
, (5.1)

where φ̇ is the stroke velocity, R3b/4 the radial position at 3/4 the wing span (fig. 5.2c), cm

the mean wing chord length, and ν the kinematic viscosity. Here, the reference velocity is

calculated at a fixed 3/4-span position. The radius of the second moment of area R2 used in

the previous chapters, changes the reference velocity between the hawk moth and rectangular

planform and would not allow a direct comparison of the wings. To ensure dynamic similarity,

a Reynolds number Re = 5000 is chosen to match the hawk moth (Manduca sexta) in hovering

flight and the deformation measurements in the wind tunnel [8,183,186,187]. All wing models

have a fixed span length and the aspect ratio of the wings is preserved (table 5.1).

The kinematics of a flapping wing in hovering flight are defined by three Euler angles and

their variation in time. The stroke angle φ determines the wing’s position in the horizontal lab

frame, or the stroke-plane. The stroke velocity profile is a smoothed linear ramp given by the
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following equation [188]:

φ̇(t ) = φ̇max

2a∆t
ln

[
cosh[a (t − t1)]cosh[a (t − t4)]

cosh[a (t − t2)]cosh[a (t − t3)]

]
, (5.2)

where the amplitude is defined by the maximum angular velocity φ̇max to match the Reynolds

number to the experiments in air (Re = 5000). The parameters t1 to t4 define the beginning

and end of the ramp up or ramp down time, and a is the smoothing parameter (fig. 5.3a). The

timing parameter in this work are set so the first quarter of the cycle ∆t/T = 0.25 is used to

ramp up to the maximum angular velocity and successively ramp down to rest at the end

of the cycle. The angle of attack α relates to the rotation of the wing around its span-wise

axis. A fixed angle of attack of α = 40° is used in all experiments to match the deformation

measurements. The flap angle ψ determines the elevation of the wing relative to the stroke

plane. In this study, the elevation angle is kept constant at ψ= 0°. A summary of all relevant

wing geometry and kinematic parameters is provided in table 5.1.

5.2.2 Experimental platform

The different wing shapes are extracted in wind tunnel experiments on hawk moth wings

collected from live specimen by our collaborators from the Agile Systems Lab at the Georgia

Institute of Technology, USA [8, 183, 186, 187]. The fresh wings are first tested and then left

to age. The same experiment is repeated with the aged wings and the new wing shape is

extracted. The aged wings are deformed by the drying process and become stiffer. Each hawk

moth wing model is scaled in size, manufactured and tested on our flapping wing system

submerged in an octagonal water tank with an outer diameter of 0.75 m.

The kinematics of the wing are controlled by two servo motors (Maxon motors, type RE35,

90 W, 100 N mm torque, Switzerland) with a transmission of 35 : 1 for the stroke angle and 19 : 1

for the angle of attack. The flapping wing platform is designed to produce highly repeatable

results and precise actuation of the attached wings with errors of less than 0.1° between

motor controller input (DMC-4040, Galil Motion Control, USA) and the encoder output signal

Table 5.1 – Summary of the experimental parameters of the dynamically scaled wing used for
the force measurements. The working fluid in the experiments is water at 20° with a density of
ρ = 998.23kg/m3 and a kinematics viscosity of ν= 1.00×10−6 m2/s.

Parameters hawk moth sample model wing
Reynolds number Re 5000 5000
Wing span R 54.8 mm 120 mm
Mean wing chord cm 12.4 mm 33.8 mm
Root cutout R0 32.5 mm
Wing thickness h 2 mm
Stroke amplitude φA 180° 180°
Smoothing parameter a 167 167
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measured over multiple cycles in a previous study [71]. The aerodynamic forces and torques

are measured with a six-axis IP68 force-torque transducer (Nano17, ATI Industrial Automation,

USA) located at the wing root in fig. 5.2a. The load cell has a resolution of 3.13 mN for force

and 0.0156 N mm for torque measurements which are recorded at a sample frequency of

1000Hz with a data acquisition card (National Instruments, USA). The force and flow field

measurements are repeated 64 times for each wing and the resulting force signals are ensemble

averaged. The time-resolved force data plots are filtered with a zero phase delay low-pass

5th order digital Butterworth filter and a cut-off frequency 10 times higher than the cycle

frequency 1/T = 1/(t4 − t1).

Two high-power light-emitting diodes (LED) (LED Pulsed System, ILA_5150 GmbH, Ger-

many) and cylindrical lenses are used to produce 4 mm-thick light-sheets from opposite sides

of the wing (fig. 5.2b). Two sCMOS cameras (ILA_5150 GmbH / PCO AG, Germany) with

2560 px×2160 px resolutions at a 90° stereo angle are used to record the illuminated plane.

Both cameras are equipped with Scheimpflug tilt adapters (ILA_5150 GmbH, Germany) to

focus on the tilted plane of interest. Phase-locked three component particle image velocimetry

(PIV) is performed by simultaneously triggering the two cameras and LEDs to record individual

image pairs for a specific phase angle φ and relative spanwise position r /R. In this study, all

images are recorded on the plane normal to the span-wise direction at mid-stroke φ= 90° or

t/T = 0.5. We use a motorized linear traverse system to move the flapping wing mechanism

with the wing attached in span-wise direction r relative to the fixed camera and LED optics. At

every span-wise position, the experiment is repeated to capture the flow fields successively

over the entire wing span R (fig. 5.2a). We record a total of 21 span-wise positions or∆r = 0.05R

for the fresh and aged hawk moth wings and 11 span-wise positions or ∆r = 0.10R for the flat

hawk moth and rectangular wing models. The three component flow fields are reconstructed

from the stereo PIV image pairs and the camera intrinsic parameters obtained during the

stereo calibration procedure. A multi-grid algorithm with a final interrogation window size of

64 px×64 px and an overlap of 62 % is employed to correlate the raw images and produce the

three component velocity flow fields with a spatial resolution of 1.85 mm or 0.055 c. Finally,

the velocity flow fields are ensemble-averaged over the 64 consecutive experiments. More

details about the experimental setup and measurement procedures of the force and flow field

measurements can be found in [71].

5.3 Results

In the following section the aerodynamic performance of the different wing models is evalu-

ated in terms of their force production and the leading edge vortex evolution over the wing

span. Finally, we quantify the three-dimensional wing geometry to explain the force variation

between the different wings and to identify proper scaling parameters for the leading edge

vortex circulation.
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5.3.1 Aerodynamic forces

The dimensional lift L and drag D obtained with the force and torque transducer are normal-

ized using the following expression [188]:

CL = L

0.5ρ
(
φ̇maxR3b/4

)2
cmR

and CD = D

0.5ρ
(
φ̇maxR3b/4

)2
cmR

, (5.3)

where ρ is the density of water, (φ̇maxR3b/4) is the reference velocity, and (cmR) the surface area

of the wing (fig. 5.2c).

In fig. 5.3 the stroke velocity φ̇ profile (a), the ensemble-averaged lift coefficient CL (b), and

the ensemble-averaged drag coefficient CD (c) for the four different wings in function of time

(t/T ) and convective time (
∫ t

0 φ̇(t )Rtip/cm dτ) are presented. Panels (d) and (e) show box plots

of the lift and drag coefficients measured at mid-stroke.

The lift and drag coefficients (fig. 5.3b,c) of all four wings closely follow the timing of the stroke

velocity profile (fig. 5.3a). During the acceleration phase of the motion, the lift and drag rise

continuously. Once the wings have reached the maximum velocity φ̇max only minor force

variations are measured. During the deceleration phase, the lift and drag coefficients fall

sharply until they return to zero at the end of the motion. The fresh hawk moth wing reach the

highest lift and drag coefficients of the four wings at mid-stroke with median force coefficients

of CL,mid = 1.17 and CD,mid = 1.03 respectively. The aged wing and flat wing model produce 12%

and 7% lower lift coefficients but both wings also produce 18% lower drag coefficients. This

gives the flat wing a higher lift-to-drag ratio. The rectangular wing generates significantly lower

forces than the hawk moth planform wings. All wings have the same surface area and aspect

ratio, but the rectangular wing produces only half the lift and drag coefficients compared to

the fresh wing. The difference in planform in our experiments has the highest impact on the

aerodynamic forces. The hawk moth planform has a larger local wing area outboards of the

wing, where the flow velocities are higher, which has been shown to produce higher wing

loadings [91]. The difference in lift and drag production between the fresh, aged and flat hawk

moth wing in our study is due to the the wing’s deformation in camber, twist and dihedral

angle which will be quantified in section 5.3.3.

During the phase of constant stroke velocity the lift and drag coefficients slightly increase until

they reach a maximum value just before or around mid-stroke (fig. 5.3b,c). After reaching the

peak value the lift and drag coefficients fall slightly again. The global force peak during the

unsteady rotary motion is attributed to the growth-cycle of the leading edge vortex, or the

vortex circulation and the rate of change of the vortex circulation [2, 188]. In the following

section, the three dimensional flow fields around the wings are presented. The leading edge

vortex circulation is quantified and related to the force production on the wing.
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Figure 5.3 – a. Stroke velocity profile, b. lift coefficient, and c. drag coefficient as function of
time t/T and convective time

∫ t
0 φ̇(t )Rtip/cm dτ. The grey shaded areas show the acceleration

and deceleration phases of the motion. d. Boxplots of the lift coefficient, and e. drag coefficient
measured at mid-stroke (t/T = 0.5). The box spans the interquartile range of all recorded
values. The median of the data is represented by the horizontal line inside the box. The
whiskers enclose the minimum to the maximum values measured in all experiments excluding
the outliers which are indicated by the circles.
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5.3.2 Three dimensional flow fields

In flapping wing flight at insect scale, the leading edge vortex plays a crucial role in the

aerodynamic force production. In this section, the flow fields around the different wings are

presented over the full wing span R at mid-stroke (t/T = 0.5). The vorticity flow fields at three

radial positions normal to the span-wise direction are presented in fig. 5.4a-d for the fresh,

aged, flat and rectangular wing. The normalized leading edge vortex circulation associated to

the four cases is shown in fig. 5.4e.

The first column in fig. 5.4 displays the vorticity snapshots for all wings at r /R = 0.3. A coherent

leading edge vortex is present for all four wing shapes. The leading edge vortex stays close to

the wing and fills only 1/2 to 2/3 of the wing chord. The leading edge vortex grows along the

span in the first half of the wing r /R < 0.5 for all wings (fig. 5.4a-d, panels 1,2). The leading

edge vortex stays close to the wing and fills the entire chord for the hawk moth planform wings

(fig. 5.4a2,b2,c2). In contrast, the leading edge vortex of the rectangular wing lifts off of the

wing and stretches in flow direction (fig. 5.4d2). A trailing edge vortex forms and secondary,

counter-clockwise vorticity spreads from the trailing edge across the chord. Despite the

different wing shapes and planforms, the leading edge vortex circulation in the first half of the

wing grows at a similar rate to Γ/Ū cm = 1.5 for all wings (fig. 5.4e). The rectangular wing has a

lower local chord length c(r ) compared to the hawk moth planform and cannot maintain a

compact and coherent leading edge vortex of the same size.

All four wings reach the maximum leading edge vortex circulation around r /R = 2/3 (fig. 5.4e).

The fresh and flat hawk moth wings attain the highest non-dimensional circulation Γ/Ū cm =
2.4 The aged hawk moth wing and rectangular planform reach lower circulation peaks of

Γ/Ū cm = 1.9. In the second half of the span, the leading edge vortex of the hawk moth wings

loses coherence and lifts off of the wing (fig. 5.4a3,b3,c3). The leading edge vortex stretches

in stream-wise direction and a trailing edge vortex forms. Secondary vorticity develops over

the chord albeit not to the extend as seen for the rectangular wing (fig. 5.4d2,d3). The flow

state of the hawk moth wings at r /R = 0.7 resembles the flow field of the rectangular wing

at r /R = 0.5, especially for the flat hawk moth wing (fig. 5.4c3). The flow fields between

hawk moth wings and the rectangular planform are self-similar to some extend, but the near

wake of the hawk moth wings is increased in size relative to the local chord length. The

leading edge vortex circulation past r /R > 0.7 decreases for all four wings(fig. 5.4e). The

circulation of the hawk moth wings stays above the rectangular wing which goes to zero at the

wing tip. The hawk moth planforms do not reach zero circulation at the wing tip, indicating

that the vortex extends slightly past the wing tip. Compared to the rectangular planform

wings, no strong tip vortex growth causes the core flow within the leading edge vortex to

decelerate [188, 189]. No additional shear-layer vorticity is produced passed the wing tip but

vorticity from the leading edge core is transported in span-wise direction outboards through

rotational acceleration [75, 190]. Eventually the vorticity will tilt in down-stream direction and

the leading edge vortex does not expand further outboards [191].
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Chapter 5. Hawk moth wing morphology and the leading edge vortex

The entire vortex system around the fresh hawk moth wing and the rectangular wing is

visualised with vorticity iso-surfaces in fig. 5.5. Panels (a,b) show a side view of the wing where

the wing is seen in span-wise direction analogous to the vorticity snapshots in fig. 5.4. Panels

(c,d) display the wing and the vortex system from the top view1. The red contours in fig. 5.4c,d

show the extend of the secondary vorticity over the wing.

The near wake seen in the side-view is wider for the fresh hawk moth wing compared to the

rectangular wing (fig. 5.4a,b) due to the local increase in chord length. The leading edge vortex

of the fresh hawk moth wing stays close to the wing for most of the span whereas the leading

edge vortex over the rectangular wing lifts off of the wing and secondary edge vorticity spreads

over the chord. The extent of the secondary vorticity spread over the wing is revealed by the

red contour lines in fig. 5.4c,d. On the hawk moth wing, the secondary vorticity extends only

over a small part in the second half of the wing near the trailing edge. The secondary vorticity

on the rectangular planform reaches from the first quarter of the span all the way to the wing

tip. It reaches far up the chord and only the section directly behind the leading edge is devoid

of counter-clockwise rotating vorticity. No span-normal vorticity is present near the wing tip

for the rectangular wing attributed to the presence of a strong tip vortex [188]. The hawk moth

wing planform and in particular the reduction in chord-length towards the wing tip limits the

formation of the tip vortex and allows the leading edge vortex to grow further along the span.

The different wing geometries have a strong impact on the leading edge vortex formation

and aerodynamic force production. Often fixed wing positions and average wing geometry

quantities are used to define non-dimensional scaling parameters. In the following section,

the wing shape is quantified and local scaling parameters are derived.

5.3.3 Wing geometry analysis and leading edge vortex circulation scaling

In the previous sections, the aerodynamic forces and the leading edge vortex evolution over

the span was discussed for the four different wing shapes. In this study, all four wings have

the same aspect ratio AR, mean chord length cm, and reference velocity U . Using only the

mean chord length cm and the velocity U at 3/4 of the wing span R to scale the aerodynamic

performance does not capture the planform and wing deformation effects. First, the wing

geometry is quantified for the four different wings. Then, we apply the local wing geometry to

scale the circulation over the span.

The geometry of a wing over the span can be described by the chord length, the camber, the

wing twist, the sweep angle, and the dihedral angle. The local chord length c is the distance

between leading and trailing edge as illustrated in fig. 5.2c. For a rectangular wing, the chord

length is constant over the entire span. The local camber κ is used to describe the asymmetry

between the lower and upper surface, or the pressure and suction side, of an airfoil (fig. 5.6a). A

positive camber is referred to the suction side being more convex than the pressure side. For a

thin deformed foil the camber relates directly to the curvature of the structure. The wing twist

1Note that the wings appear skewed from the top view due to the wing’s angle of attack.
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over the span.

is the local angle of attack variation from the imposed geometric angle of attack α̂ (fig. 5.6b). A

positive twist refers to a local increase in angle of attack α. A wing is considered swept when

its centreline is angled relative to the span-wise direction. The rectangular wings are unswept

and the hawk moth planform wings have a sweep < 5° over the span. Due to the low angles,

the sweep is not further considered in the analysis. The wing’s dihedral angle δ describes

the local deflection of a wing upwards in the wing’s reference frame of view (fig. 5.6c). Here,

r ′ refers to the relative span-wise position if the wing was flattened. Flattening the wing or

integrating the local arc-length results in obtaining the full span-length R of the undeformed

wingform.

The wing geometries in terms of normalized chord length, normalized camber, wing twist, and

dihedral angle for the four different wing shapes are presented in fig. 5.7. The rectangular wing

is considered the reference case and has the most basic wing shape. The rectangular wing

has a fixed chord length of c/cm = 1, and zero camber, twist, and dihedral angle over the full

span length R . The three hawk moth planform wings have the same chord length distribution

as they inherently refer to the same wing (fig. 5.7a). The hawk moth wings have zero chord

length at the wing root, increase sharply to cm = 0.75 at r /R = 0.1. Then, the chord length

increases at a lower rate to cm = 1.0 at r /R = 0.3. The hawk moth wings have a strong increase

in local chord length and reach their maxima cm = 1.5 shortly after mid-span (r /R = 0.6). After
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the maximum the chord length decreases sharply and goes down to zero at the wing tip. The

aged hawk moth wing slightly differs from the fresh and flat wing (fig. 5.7a). The difference in

local chord length is due to drying during the ageing process and measurement uncertainties

between the two sets of deformation measurements.

The local wing camber are zero at the wing root and tip, and have one clear extremum around

mid-span. The fresh wing has a positive camber of κ= 0.09cm, whereas the aged wing has a

negative camber of κ=−0.04cm. The positive wing camber augments the force production

on the wings which leads to higher lift but also higher drag coefficients. The aged hawk moth

wings have a negative camber which explains in part the lower lift yield compared to the fresh

and flat hawk moth wings.

The wing twist or local angle of attack variation is mainly affecting the fresh wing (fig. 5.7c).

The aged wing does not exceed |1°| over the full span and the flat and rectangular wing have

zero twist. The fresh wing maintains a twist around 2° in the first quarter of the wing span.

Then, the local twist increases to reach a maximum of 11° slightly after mid-span. Finally, the

twist reduces again down to 2° at the wing tip. The positive wing twist of the fresh hawk moth

wings leads to higher local normal forces acting on the wing, which brings about higher lift

coefficients but also additional drag. A higher local angle of attack increases the shear at the

leading edge. The leading edge vortex gets fed with increases shear which can aid in keeping a

coherent leading edge vortex close to the wing along the outboard parts of the wing span.

The dihedral angle δ as defined in fig. 5.6d is presented in fig. 5.7d. The fresh and aged hawk

moth wings have only minor peaks of δ = −1° and δ = −4° just before mid-stroke. Due to

relatively low values of the dihedral angles they are most likely negligible compared to the

other geometric features of the different wings.

The wing geometry analysis highlighted two important distinctions between the different wing

shapes. Firstly, the wing chord variation or wing planform has the strongest impact on the

aerodynamic performance and leading edge vortex evolution over the span in our study. The

hawk moth wings start at a low chord length which grows steadily until mid-span. Then, the

local chord length grows strongly to a maximum in the second half the wing-span, and finally

goes down to zero. This chord length profile matches qualitatively the strength of the leading

edge vortex previously discussed (fig. 5.4e). Secondly, The difference in performance of the

three hawk moth wing planforms is most likely explained to the presence of a positive camber

for the fresh wing, no camber for the flat wing, and a negative camber for the aged wing. The

fresh wing also has a positive wing twist around mid-span which provides additional normal

force and shear at the leading edge.

The local chord length variation has the strongest impact on the aerodynamic forces and

leading edge vortex circulation. To provide additional geometric scaling parameters, we

compare now the global wing scaling of the circulation with local, span-wise scaling of the

circulation. For the global scaling, we used previously the velocity wing velocity at 3/4 the

wing span φ̇maxR3b/4 and the mean chord length cm (fig. 5.4e) [188]. As part of the span-wise
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Figure 5.8 – Leading edge vortex circulation Γ and scaling parameter (c U ) over the span for all
four tested wings.

circulation scaling, the local chord length c(r ) and wing velocity U (r ) = φ̇max(R0 + r ) will now

be used. In fig. 5.8, the local scaling parameter variation over the span is overlayed with the

leading edge vortex circulation for all four wing shapes. All figures have the same axis limits

for comparison. The local scaling for the three hawk moth wing shapes matches their leading

edge vortex circulation distributions over the span for most parts. The local scaling of the

hawk moth wings captures the rise in circulation up to the maxima particular well for the

fresh and flat wings (fig. 5.8a,b). The aged wing does not reach the same maximum values as

the fresh and flat wing which is likely tied to the negative camber and dihedral angle at that

span-wise position. The local chord and velocity matches the circulation of the rectangular

wing only partially. The leading edge vortex circulation would need to increase linearly from

the wing root to the wing tip to equal the scaling. However, the velocity field measurements

reveal that the leading edge vortex grows in diameter higher than the local chord length past

the mid-span (fig. 5.4d2). The vortex is no longer supported by the chord length and lifts off of

the wing. Further outboards, the vortex loses almost all of its strength and coherence as the

vortex bursts and the tip vortex impedes on the leading edge vortex formation [188].

The leading edge vortex circulation of the rectangular wing does not match its local chord

length and velocity scaling well, it resembles the circulation distribution of the hawk moth

wings if it were scaled down. This suggests that there is a general leading edge vortex shape for

flapping and rotating wings, and the hawk moth wings are adapted to fit the leading edge vortex

distribution. For a given wing area, the hawk moth wing planform maintains the strongest

118



5.4. Conclusion

leading edge vortex and produces the highest force coefficients. The rectangular planform

utilizes only parts of its wing area which results in lower leading edge vortex circulation and

aerodynamic forces in comparison.

5.4 Conclusion

Different insect species have developed their own strategies to manipulate the flow around

their wings and in particular the formation of the leading edge vortex. In this part, the

hypothesis is tested if the morphology of hawk moth wings evolved to accommodate the

formation of a strong and coherent leading edge vortex over the full wing span. We investigate

four different wing shapes collected of real hawk moth wings provided by our collaborators.

Fresh and then aged hawk moth wing samples are compared with a flat hawk moth wing

model and a rectangular planform. The four different wings are dynamically scaled and

manufactured for force and span-wise resolved stereo flow field measurements in a water tank.

Successively, we analyse the impact of suboptimally deformed hawk moth wings, undeformed

hawk moth wings, and the effect of the hawk moth planform relative to a rectangular planform.

The fresh wing produces the highest lift but also the highest drag coefficients. The aged and

flat wing produce 12% and 7% lower lift coefficients but both wings also produce 18% lower

drag coefficients. The rectangular planform wing has significantly lower aerodynamic forces

than the hawk moth wings. While all wings have the same surface area and aspect ratio, the

rectangular wing produces only half the lift and drag coefficients compared to the fresh hawk

moth wing.

We perform stereo PIV measurements over the full wing span to analyse the leading edge vortex

formation and to explain the aerodynamic forces produced by the different wings. The leading

edge vortex grows over the span until it reaches a maximum in size and strength around

the 2/3 wing span location. The fresh and flat wings reach similar values of the circulation

maxima Γ/(Ū cm). The aged and rectangular wings have circulation maxima reduced by up to

20%. In addition, the leading edge vortex stays close to the wing over the majority of the span

(r /R < 2/3) for the hawk moth planform wings, whereas the vortex lifts off of the wing after

mid-span for the rectangular planform. The vortex lift-off coincides with secondary vorticity

spreading from the trailing edge over the chord. For the rectangular wing, the secondary

vorticity covers large parts of the wing whereas for the fresh hawk moth only a small portion in

the second half of the wing is covered.

To further explain the difference in aerodynamic performance and leading edge vortex for-

mation, the wing geometry is quantified in terms of the local chord length, camber, twist,

and dihedral angle. The three hawk moth planform wings have a maximum in chord length

around r /R = 2/3, which coincides with the maximum in leading edge vortex size and strength.

Furthermore, the fresh hawk moth wing has positive camber and twist maxima close to mid-

span. The positive camber provides additional lift force and the wing twist increases the shear

feeding the leading edge vortex.
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Based on the wing geometry analysis, the local chord length and wing velocity are selected to

scale the leading edge vortex circulation over the full wing span. The new scaling parameter

matches the span-wise leading edge vortex circulation closely for the hawk moth planform

wings. The local scaling parameter predicts a linear increase in circulation from the wing root

to the wing tip for the rectangular wing. This circulation distribution can only be maintained

until the circulation maximum r /R < 2/3. Then, the vortex breaks down and its circulation

decreases to zero towards the wing tip where a strong tip vortex impedes further on the leading

edge vortex formation and span-wise vorticity transport. The geometric scaling reveals that

the leading edge vortex forms only over parts of the rectangular wing planform area. Its

circulation distribution looks qualitatively like a scaled down version of the hawk moth wing

circulation.

The self-similar shape of the leading edge vortex circulation indicates that there exists a

common leading edge vortex shape for flapping and rotating wings at these Reynolds numbers

and aspect ratios. The local wing geometry scaling suggests that the hawk moth wing shape

could have evolved to maintain a strong and coherent leading edge vortex over the full span.

Where the leading edge vortex expands beyond the mean chord length and breaks down for

the rectangular wing, the hawk moth planform has an increased chord length to support

the growing vortex. Towards the wing tip, the rectangular planform leads to the formation

of a strong tip vortex which impedes on the leading edge vortex formation and span-wise

vorticity transport. On the hawk moth wing planform the local chord length reduces greatly

towards the tip and eventually reaches zero. This counter-acts the tip vortex formation and

allows the leading edge vortex to expand over the full wing span. In consequence, the hawk

moth wings achieve double the wing loading compared to rectangular wings. A higher wing

loading improves the flight control and escape capabilities of the flapping wing flier [192], and

allows the smaller, high aspect ratio wings of the hawk moth to produce sufficient lift to stay

in hover [176, 177].
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6 Conclusions

Flapping wing flight is an alternative to fixed and rotary wings to produce lift used predom-

inately in nature by flying insects, birds, and mammals. The flight performance of natural

and human-made flapping wing fliers at low Reynolds numbers generally has a higher perfor-

mance in terms of lift production and energy efficiency than rotary or fixed wing micro air

vehicles. The formation of a leading edge vortex under unsteady flow conditions produces

transient high lift coefficients greatly augmenting the performance for flapping wing fliers at

low Reynolds numbers. The reason flapping wing micro air vehicles are not as widely used as

their rotary wing counter-parts, is due to the great complexity the bio-inspired flight system

presents. Successful flapping wing flight in nature is the interplay of wing and body morphol-

ogy, muscle actuation, and sensory control which is not yet met by engineered flapping wing

systems.

In this thesis, the aerodynamic challenges in flapping wing flight were addressed. In particular,

the effects of different wing kinematics, flexibilities, and planforms on the the leading edge

vortex development and aerodynamic performance were investigated experimentally on a

robotic flapping wing platform. The objective of the thesis was to gain an understanding of

the underlying fluid dynamic phenomena in flapping wing flight, and to explore different

methods for improving the aerodynamic performance in terms of lift production and energy

efficiency. The findings of this thesis aim to explain morphological and behavioural traits in

natural fliers, and to provide guidelines for the design and control of engineered flapping wing

vehicles.

In part I, the effects of wing kinematics on the vortex formation and aerodynamic performance

of flapping wing flight were investigated. We experimentally optimised the kinematics of a

flapping wing system in hover with the objective to maximise the average lift production and

hovering efficiency. In chapter 1, different parametrisations of the wing kinematics were ex-

plored using spline interpolation, Fourier series, and modal reconstruction. The performance

of the different approaches was analysed by comparing the diversity of the solutions and

coverage of the motion space, the optimisation process and the convergence. Each of the

parametrisation approaches is fit for specific applications ranging from the optimisation of
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intermittent kinematics (control points), to energy harvesters (Fourier series), and complex

animal like locomotion (modal reconstruction).

Due to its robustness in handling experimental constraints and high interpretability of the

optimisation parameters, the control point approach was chosen for the flapping wing optimi-

sation in chapter 2. Additional flow field measurements were performed to link the vortical

flow structures to the aerodynamic performance for the Pareto-optimal kinematics. We obtain

Pareto-optimal kinematics which promote the formation of a strong leading edge vortex and

yield high lift coefficients, and kinematics which promote leading edge vortex attachment

and are more power efficient. In all cases, a leading-edge vortex is fed by vorticity through

the leading edge shear layer which makes the shear layer velocity a good indicator for the

growth of the vortex and its impact on the aerodynamic forces. We estimated the shear layer

velocity at the leading edge solely from the input kinematics and use it to scale and predict the

average and the time-resolved evolution of the circulation and the aerodynamic forces. The

experimental data agree well with the shear layer velocity prediction, making it a promising

metric to quantify and predict the aerodynamic performance of the flapping wing hovering

motion for the design and control of micro air vehicles.

In part II, the effects of wing flexibility on the aerodynamic performance and flow field de-

velopment in flapping wing flight were investigated. A novel bio-inspired membrane wing

design is introduced in chapter 3 and used to study the fluid-structure interactions of flapping

membrane wings. We find optimal combinations of the membrane properties and flapping

kinematics that out-perform their rigid counterparts both in terms of increased stroke-average

lift and efficiency, but the improvements are not persistent over the entire input parameter

space. The lift and efficiency optima occur at different angles of attack and effective mem-

brane stiffnesses which we characterised with the aeroelastic number. At optimal aeroelastic

numbers, the membrane has a moderate camber between 15% and 20% and its leading and

trailing edges align favourably with the flow. Higher camber at lower aeroelastic numbers

leads to reduced aerodynamic performance due to negative angles of attack at the leading

edge and an over-rotation of the trailing edge.

In chapter 4, we investigated the impact of the membrane deformation on the leading edge

vortex formation at different aeroelastic conditions. We identified several new flow character-

istics previously not observed in rigid flapping wing flight or other flexible wing studies. The

flow topology around the wing is similar to the rigid wing, when the membrane wing is too stiff

but the leading edge vortex stays closer to the wing and is more coherent. At lift and efficiency

optimal aeroelastic conditions the wing is deformed such that the leading edge is aligned

with the incoming flow and the trailing edge oriented downwards. The flow stays attached to

the wing and no coherent leading edge vortex is formed in the first half of the cycle. In the

second half of the cycle, the vorticity stays close to the membrane but the flow separates over

the high curvature of the membrane and a vortex forms in the second half of the wing chord.

The membrane wings produce the highest lift coefficients despite suppressing the leading

edge vortex formation. These results challenge the claim that a leading edge vortex is always
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required to generate high lift in flapping wing flight [2, 11, 26]. If the membrane wing is too

flexible, the flow separates over the high curvature of the membrane, and the wing experiences

great losses in lift and hovering efficiency. The high membrane curvature eventually leads to

negative angles of attack at the leading edge for the lowest observed angle of attack amplitude

α̂ = 35°, and causes a vortex to grow at the pressure side, below the wing. Bats and other

natural fliers using compliant membranes actively control the shape of their wings in flight by

increasing the tension in their muscles or varying their flight speed, both of which regulate

the aeroelastic number we use to characterize the fluid-structure interaction [43, 169]. We

suggest using active flow control for artificial flapping wing vehicles by modulating either the

wing’s angle of attack, membrane wing stiffness, or flow velocity. Using the leading and trailing

edge angles as indicators for the flow state and membrane shape allows to maintain optimal

aeroelastic conditions without further sensory input.

In part III, the effects of different wing planforms on the leading edge vortex formation and

aerodynamic performance in flapping wing flight were explored. Chapter 5 investigates if

the morphology of hawk moth wings evolved to accommodate the formation a strong and

coherent leading edge vortex over the full wing span for aerodynamic benefits. We extract

three-dimensional wing shapes from hawk moth wing samples in wind tunnel experiments,

and scale them to the same Reynolds number on a robotic flapping wing system submerged

in water. Four different wing shapes were investigated: A Fresh and then aged hawk moth

wing sample, a flattened hawk moth wing model, and a rectangular planform. We performed

stereo PIV measurements over the full wing span at mid-stroke to analyse the leading edge

vortex formation, and recorded the aerodynamic forces produced by the four different wings.

The fresh hawk moth wing has the highest wing loading and produces the largest lift but also

drag coefficients. The aged and flat wing generate 12% and 7% lower lift coefficients but

both wings also generate 18% lower drag coefficients. While all wings have the same surface

area and aspect ratio, the rectangular wing produces only half the lift and drag coefficients

compared to the fresh hawk moth wing. The difference in force production is also reflected in

the leading edge vortex formation on the wings. The hawk moth planform wings have a strong

and coherent vortex forming over large parts of the span. The leading edge vortex on the

rectangular planform lifts off of the wing after mid-span and its strength is greatly reduced in

comparison. We quantified the geometry of the different wings and found that the planform,

or chord-length variation has the strongest impact on the aerodynamic performance, followed

by the camber and wing twist. Based on the wing geometry analysis, the local chord length and

wing velocity are selected to define a span-wise scaling of the leading edge vortex circulation

over the full wing.

The new scaling parameter matches the span-wise leading edge vortex circulation closely for

the hawk moth planform wings, whereas it can only be maintained until 2/3 of the span for the

rectangular planform. The matching of the local wing geometry scaling suggests that the hawk

moth wing shape could have evolved to maintain a strong and coherent leading edge vortex

over the full span. Where the leading edge vortex expands beyond the mean chord length

and breaks down for the rectangular wing, the hawk moth planform has an increased chord
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length to support the growing vortex. Towards the wing tip, the rectangular planform leads to

the formation of a strong tip vortex which impedes on the leading edge vortex formation and

span-wise vorticity transport. On the hawk moth wing planform the local chord length reduces

greatly towards the tip and eventually reaches zero. This counter-acts the tip vortex formation

and allows the leading edge vortex to expand over the full wing span. In consequence, the

hawk moth wings generate double the wing loading compared to rectangular wings. A higher

wing loading improves the flight control and escape capabilities of the flapping wing flier [192],

and allows the smaller, high aspect ratio wings of the hawk moth to produce sufficient lift to

stay in hover [176, 177].

Our investigations of wing kinematics, flexility, and planform in parts I to III demonstrate

the strong connection between the leading edge vortex formation and the aerodynamic

performance in flapping wing flight. By adapting the kinematics, the vortex formation is

directly influenced by a change in the shear-layer velocity feeding the vortex. A constant influx

of vorticity provided to the vortex over the full cycle, keeps the vortex attached to the wing and

yields the most efficient hovering at vortex formation times around 4. Additional vorticity fed

to the vortex generates more lift, but at the cost of increased power consumption. The effects

of chord-wise wing flexibility in flapping wing flight can be characterised with the aeroelastic

number. A variation in flow velocity or material properties, changes the aeroelastic number

and the dynamics of the wing deformation. On a membrane wing hinged at the leading and

trailing edges, lower aeroelastic numbers lead to an increase in camber, and lower angles of

the leading and trailing edges relative to the flow. The shear at the leading edge is reduced at

lower angles and leading edge vortices of lower strength grow close-bound to the wing. At lift

and efficiency optimal aeroelastic number, the leading edge is aligned with the flow. The flow

stays attached to the wing, and the leading edge vortex is fully suppressed in the first half of

the stroke cycle at geometric angles of attack up to α̂= 55°. Finally, we find that the span-wise

growth of the leading edge vortex is governed by the local chord length and wing velocity

distribution. The hawk moth wing planform and shape is adapted such that it provides the

growing vortex with enough local wing area to support its size. Towards the wing tip, the local

chord of the hawk moth wing shrinks and prevents the formation of a strong tip vortex. This

allows the leading edge vortex to form over the entire wing span, and achieve double the wing

loading compared to rectangular wings.
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A Cycle-average force measurements

A.1 Convergence of the mean force coefficient

Large-scale recirculation of the fluid within the tank due to the down-wash created by the wing

can affect the force measurements when repeating many flapping cycles in a closed vessel.

In the following section we present a quantitative study to determine the influence of the

tank confinement on the average force data for the membrane wing experiments presented

in chapter 4 [109]. Figure A.1a summarises the experimental results for two different cases

with each three repetitions conducted over 66 cycles. This is equivalent to an experimental

time of 5 minutes or more than 4 times the number of cycles of the main study for the higher

lift producing case with a frequency of f = 0.225Hz. The markers show the cycle-average

lift coefficient for the individual cycles and the solid lines represent the cumulative average

lift starting from the sixth cycle. The grey area indicates the first five cycles which are being

removed from the averaging and the vertical dashed line marks the end of 16 cycles which is

the number of cycles considered in the main study. Figure A.1b shows a close-up view with

only one out of the three cases for visual clarity. Here, the dashed lines show a moving average

over 5 cycles to highlight potential long term drift of the forces due to recirculation in the tank.

Even though we see some variation in the moving average lift, the cumulative average values

do not change substantially after the first 16 cycles. The largest relative observed drift in the

cumulative mean is found for the top case in fig. A.1b which varies from C L,n=16 = 2.449 to

C L,n=37 = 2.496 which corresponds to a 1.9 % increase.

A.2 Wing inertia

Depending on the mass ratio between the wing and the fluid, inertial forces can be of the

same order of magnitude as the aerodynamic forces for flapping wings in air [154]. Our

experiments are conducted in water which allows us to achieve low density ratios between

the membrane wing and the fluid ρm/ρwater = 1.20. We conducted additional experiments

in air where the inertial forces dominate the measurement loads on the membrane wings
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Appendix A. Cycle-average force measurements
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Figure A.1 – Average lift coefficient recorded over 66 cycles for two different frequencies.
The different colours refer to different cases and the different shades indicate the different
repetitions of the same parameter frequency. The markers indicate the cycle-average lift
coefficient for the individual cycles and the solid lines represent the cumulative average lift
starting from the sixth cycle.

presented in chapter 4 [109] . In fig. A.2 we present the dimensional average lift force L and

the average of the absolute drag force |D| for the heaviest membrane wing with thickness

t = 1.4mm, which has the highest contribution of the inertial forces to the total measured

force. The open markers show the stroke-average forces in water and the filled markers show

the results in air. The first row of images shows an overview of the entire measurement set and

the second row of images shows a zoomed in version on the experiments in air. The grey areas

highlight the force transducer resolution of 3.13 mN around zero. The inertial forces recorded

in air increase with increasing frequency but are close to or even below the resolution of the

load cell. For our set-up, the inertial forces are much lower than the fluid mechanics forces

and the former are deemed negligible.
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A.2. Wing inertia
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Figure A.2 – Dimensional average lift force L and average of the absolute drag force |D| for the
membrane wing with thickness t = 1.4mm. The open markers show the stroke-average forces
in water and the filled markers show the results in air.
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École Polytechnique Fédérale de Lausanne (EPFL), January 2023
Lausanne, Switzerland
Doctor of Philosophy, Mechanical Engineering
Thesis: The effects of kinematics, flexibility, and planform on the vortex formation
and aerodynamic performance of flapping wing flight
Advisor: Karen Mulleners

University of Kassel, Kassel, Germany October 2018
Master of Science, Mechanical Engineering
Thesis: Optimizing the kinematics of a pitching panel in forward motion with a
genetic algorithm
Advisors: Karen Mulleners, Markus Rütten & Olaf Wünsch
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