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Hubbard U through polaronic defect states
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Since the preliminary work of Anisimov and co-workers, the Hubbard corrected DFT+U functional has been used for predicting
properties of correlated materials by applying on-site effective Coulomb interactions to specific orbitals. However, the
determination of the Hubbard U parameter has remained under intense discussion despite the multitude of approaches proposed.
Here, we define a selection criterion based on the use of polaronic defect states for the enforcement of the piecewise linearity of
the total energy upon electron occupation. A good agreement with results from piecewise linear hybrid functionals is found for the
electronic and structural properties of polarons, including the formation energies. The values of U determined in this way are found
to give a robust description of the polaron energetics upon variation of the considered state. In particular, we also address a
polaron hopping pathway, finding that the determined value of U leads to accurate energetics without requiring a configurational-
dependent U. It is emphasized that the selection of U should be based on physical properties directly associated with the orbitals to
which U is applied, rather than on more global properties such as band gaps and band widths. For comparison, we also determine
U through a well-established linear-response scheme finding noticeably different values of U and consequently different formation
energies. Possible origins of these discrepancies are discussed. As case studies, we consider the self-trapped electron in BiVO,, the
self-trapped hole in MgO, the Li-trapped hole in MgO, and the Al-trapped hole in a-SiO,.
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INTRODUCTION

Density functional theory (DFT) including a Hubbard U correction
has been largely used to overcome limitations of standard DFT for
correlated systems'~'%. However, the parameter U associated with
an effective on-site Coulomb interaction on specific orbitals needs
to be selected. In 2005, Cococcioni and de Gironcoli introduced a
nonempirical linear-response approach based on density-functional
perturbation theory'®, which has largely been applied''2°. In other
studies, the parameter U is chosen to reproduce specific experi-
mental properties, such as band gaps®'??, reaction enthalpies?3~2°,
oxidation energies®®, activation energies?!, atomic structures®’,
density of states?®, or magnetic arrangements®®. Alternative
strategies consist in fixing U to yield states in the middle of the
band gap®°, to comply with criteria based on energy barriers®’, to
have vanishing quasiparticle corrections to the fundamental band
gap®?, or to match hybrid-functional results®3. The parameter U has
also been calculated through an alternative linear-response
method®*, through unrestricted Hartree-Fock approach3>3¢,
through the random-phase approximation®’~%, through Monte
Carlo sampling*', and through machine-learning techniques based
on Bayesian optimization*2. Clearly, a general consensus on the way
U should be determined is still lacking.

In the linear-response approach of Cococcioni and de
Gironcoli'®, U is fixed to comply with the piecewise linearity
condition (PWL) of the total energy upon electron occupation,
which is a property of the exact density functional**=*’. While
being defined for fractional charges, the PWL allows for an
accurate description of ground state and excited state properties
of systems with integer number of electrons*®. Most density
functionals do not comply with the PWL. For instance, the total
energy obtained with the Perdew-Burke-Ernzerhof (PBE)*° semi-
local functional is convex with the number of electrons. Similarly,
the total energy obtained with the Hartree-Fock functional is
concave. However, the PWL can be retrieved through suitably
tuned functionals. For instance, for hybrid functionals®®, there

exists a fraction a=aqy of Fock exchange for which the total
energy is linear upon electron occupation. Through Janak’s
theorem®', this results in a generalized Kohn-Sham level that is
constant upon electron occupation. Additionally, under this
condition, band gaps and formation energies of localized states
are accurately reproduced?®>2-62,

Localized states represent a prototypical case for enforcing the
PWL. For instance, for hybrid functionals, this can be achieved by
using either electron probes®~%°, defect states®>*46'-7! or
Wannier functions’2. In the context of polarons, the PWL has
been used to regulate the strength of potentials added to the
semilocal Hamiltonian to favor charge localization, as in the
schemes of Lany and Zunger”? and of Falletta and Pasquarello®'2,
Moreover, the properties of polaronic defects are found to be
robust for semilocal or hybrid functionals complying with the
PWLS'52, Hence, it is of interest to investigate whether such
robustness can be used to validate the determination of U in
DFT + U functionals.

In this work, we determine the Hubbard parameter U by using
polaronic defect states to explicitly enforce the piecewise linearity of
the total energy upon electron occupation. We achieve electron
densities, lattice distortions, and formation energies in accord with
results from piecewise linear hybrid functionals, thereby validating
the accuracy of the method. The resulting energetics is accurate also
for polaron hoppings, whereby the use of configurational-
dependent U values can be avoided. In this approach, the selection
of U is based on physical properties that are directly associated with
the orbitals to which U is applied, without involving more global
properties, such as band gaps and density of states. For comparison,
we also calculate U values through a widely-used linear-response
approach'® finding significantly different values of U, which result in
a departure from the condition of piecewise linearity. As case
studies, we consider the self-trapped electron in BiVO,, the self-
trapped hole polaron in MgO, the Li-trapped hole in MgO, and the
Al-trapped hole trapped a-SiO,.
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RESULTS AND DISCUSSION
Selection criterion for U

The DFT + U energy functional can be written in its simplified
rotationally-invariant form as®:

EU[{%} {%H*EO n1>”1]+ ZTr n(1 —n")], (1)

where £ is the semilocal energy, p¥ are the wave functions, n!
WY is the total density, o the spin index, U the Hubbard
parameter, | the atomic site, and n® the occupation matrix of
localized orbitals ¢! of state index m, which is defined as

Mo = D Fio(Wig o) (P W), 2

where f,, are the occupations of the Kohn-Sham orbitals.
Variational minimization of the energy functional Y leads to the
following equations:

(HY + V)i, = ebw, 3)

where ‘H2 is the PBE Hamiltonian, e are the eigenvalues, and VY
is the DFT+ U potential given by'?

UZ|: mm/:||¢m/><¢ ’ (4)
Imm’
From Eq. (4), one can see that the Hubbard potential is repulsive
for unoccupied orbitals and attractive for occupied orbitals,
thereby favoring the Mott localization of electrons on specific
atomic sites.

We here consider enforcing the PWL through polaronic defect
states associated with the orbitals subject to the correction U. The
PWL can then be determined nonempirically by finding the value
U= Uy such that the concavity of the total energy upon partial
electron occupation vanishes, namely

=0, (5
U=Uy
where q is the fractional charge. Through Janak's theorem, the
condition in Eq. (5) turns into a constraint on the energy level of
the localized state,
d y
d_q€p (q)
which requires the energy level to be independent of electron
occupation. Eq. (6) can be rewritten as

=0, (6)

U=Uy

de® 4

Py YR Y gl — 7
dq+dq<wp Ve {yE) o, 7)
where (/)gk is the wave function of the localized state and deg/dq

the variation of the energy level with g as calculated with PBE. We
remark that the second term on the right-hand side of Eq. (7)
includes complex derivatives of the matrix elements n/¢ . with
respect to g. Therefore, it is more practical to determine Uy by
solving Eq. (6) by finite differences, namely by imposing that the
energy levels calculated at integer charges g=0 and g=Q
coincide (Q=—1 for localized electrons, Q=+1 for localized
holes).

For a Hubbard parameter U, the formation energy of the defect
state is calculated as’*

E:’J(O) = EU(Q) Eref( ) + O€g7 (8)

where EY(Q) and EY(0) are the total energies of the defect state
and of the reference system, respectively, and eg is the relevant
band edge of the pristine system. In Eq. (8), the defect and
reference systems contain the same atoms. We stress that finite-
size electrostatic corrections due to the use of periodic boundary
conditions need to be applied®®”>~77. For simplicity of notation,
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we consider all total energies, formation energies, and energy
levels to be corrected by finite-size effects via the expressions in
Egs. (11) and (12) in Methods.

As case studies, we consider self-trapped and impurity-trapped
polaronic defects. In particular, we take the self-trapped electron
in BiVO,’%, the self-trapped hole in MgO??, the Li-trapped hole in
Mg0®8! and the Al-trapped hole in a-Si0,79%278¢ We remark
that, when using the PBE functional, such polaronic states are
unstable. Thus, upon structural relaxation, the lattice distortions
vanish and the defect charge delocalizes. In particular, self-
trapped polarons delocalize over the entire system, and impurity-
trapped holes distribute over the O atoms surrounding the
impurity. At variance, for the polaronic defects under considera-
tion, DFT 4 U can stabilize the localized states. We apply the U
correction to the orbitals that constitute the localized states,
namely the 3d orbitals of V atoms in BiVO,, the 2p orbitals of O
atoms in MgO, and the 2p orbitals of O atoms in a-SiO,. In BiVOy,,
the self-trapped electron localizes on a V atom. In MgO, the self-
trapped hole localizes on a O atom. In Li-doped MgO, the hole
localizes on a O atom neighboring the Li site. In a-SiO,, the hole
localizes on a O atom neighboring the Al site. Additional
computational details are given in Methods.

We determine the Hubbard parameter U, through the
enforcement of Eq. (6). We proceed as follows. We obtain the
defect structure at various values of U by performing self-
consistent structural relaxations. At such fixed structures, we
calculate the energy levels eg(Q) and eg(o) accounting for finite-
size effects [cf. Eq. (12) in Methods]. By imposing that
€k (Q) = €5(0), we then obtain Uy =3.5, 7.7, 7.5, and 8.3 eV for
the self-trapped electron in BiVO,, the self-trapped hole in MgO,
the Li-trapped hole in MgO, and Al-trapped hole in a-SiO,,
respectively. This procedure is illustrated in Fig. 1 for the self-
trapped hole in MgO. We remark that the values of Uy obtained for
the self-trapped and the Li-trapped holes in MgO differ by only
0.2 eV, indicating that our scheme is robust upon varying the
polaronic defect. This is analogous to the case of hybrid
functionals, where one observes a weak dependence of g, on
the defect used for enforcing the PWL*%°7=>%, In this context, we
remark that finite-size corrections crucially affect the value of U,.
Indeed, without such corrections, we would have obtained
U"" = 1.7, 4.9, 4.6, 5.1 eV for our respective case studies, with
differences with respect to the corrected values amounting up to
3.2 eV. This emphasizes the importance of correcting for finite-size
errors.

Energy (eV)

valence band

7.0 7.5U, 8.0 8.5
U

Fig.1 Enforcement of the piecewise linearity. Energy levels eg(—H)
and eg(o) as a function of U for the self-trapped hole in MgO. The
defect levels are identified by their respective charge. The value Uy is
found such that ep(+1) = e*(0).
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Fig. 2 Band gaps obtained with various functionals. Band edges
as obtained with DFT+ U and PBEO(a) as a function of U and q,
respectively, for BiVO,4, MgO, and a-SiO,. For MgO, we consider Uy
and ay calculated for the self-trapped hole. The vertical red line
denotes the choice of the parameter for which the piecewise
linearity condition is retrieved. The energy levels are aligned with
respect to the average electrostatic potential®®.

Band gaps and density of states

It is of interest to investigate the band gaps resulting from our
selection of U. In Fig. 2, we show the evolution of the band gaps
obtained with DFT + U as function of U and of the band gaps
obtained with PBEO(a) as a function of a. In correspondence of U,
DFT + U yields band gaps of 2.52, 6.67, and 8.82¢€V for BiVO,,
MgO, and a-SiO,, respectively. For MgO, we here use the value of
Uy calculated for the self-trapped hole, considering the negligible
difference with respect to the value for the Li-trapped hole. After
the inclusion of appropriate corrections due to spin-orbit coupling,
phonon renormalization, and exciton binding energies®?, the

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

S. Falletta and A. Pasquarello

npj

Table 1. Band gaps.

(34 Eg AEg Edor  Edor Expt.
BiVO, 2.52 3.41 -1.16 136 2.25 24-25
MgO 6.67 815  —053 614 7.62 7.77
a-Sio, 882 1051 002 884 10.53 10.30

Band gaps calculated with DFT + Uy (E‘g’k) and PBEO(ay) (Egk) compared to
reference experimental values after adding appropriate corrections (AEg)
taken from ref. %2, including spin-orbit coupling, thermal vibration, exciton
binding energy, and zero-point phonon renormalization. The reference
experimental values correspond to the optical band gap at 300K for
BiVO,+-%, the fundamental band gap at 6 K for MgO®’, and the first peak
in the reflectance spectrum for a-SiO,. In MgO, Uy is obtained from the self-
trapped hole. Energies are in eV.

DFT + Uy band gaps are found to noticeably differ from their
experimental counterparts (cf. Table 1). These discrepancies
contrast with the case of hybrid functionals, for which the
agreement with experiment is within 0.25eV (cf. Table 1). The
good performance of hybrid functionals derives from a global
improvement of the electronic structure, in accord with numerous
previous studies®2°3°7-°860.7287.88 From this analysis, we infer that
an accurate description of band gaps should generally not be
expected from DFT + Uy. We assign this to the fact that the U
correction only applies to a subset of orbitals, which are not
necessarily involved in both valence and conduction bands.
Nevertheless, we expect that physical properties directly asso-
ciated with the U-corrected orbitals should be properly described
in DFT + Uy. For instance, in the case of polaronic defects, the
formation energies express the relative stability of localized and
delocalized states both being constituted by the same U-corrected
orbitals.

Similar arguments apply when considering the effect of the
Hubbard parameter Uy on the density of states. As test case, we
take a-SiO, and compare the density of states obtained with
DFT + Uy with respect to experiment. As illustrated in Fig. 3,
DFT + Uy yields a valence band width of 8.1 eV, which is lower
than both the corresponding PBE value of 9.3eV and the
experimental value of 11.0eV®. This confirms the common
finding that DFT+ U narrows the band widths®. Hence, in
analogy to our discussion on band gaps, DFT + Uy should not
be expected to reproduce more global properties such as the
density of states, even though the polaronic properties are
reasonably well captured. This should be contrasted with the case
of the hybrid functional PBEO(ay), where the globally improved
functional also yields an improved band width. Indeed, in the case
of a-SiO,, we find a PBEO(ay) band width of 10.0 eV, improving
upon the PBE value of 9.3 eV (cf. Fig. 3).

Polaronic defects

We calculate electronic and structural properties of the polaronic
defects studied in this work using the DFT + Uy functional and
compare the results with those from PBEO(ay) hybrid functionals.
Details of the hybrid functional calculations are given in Methods.
As illustrated in Fig. 4, we find very good agreement between the
defect densities calculated with the two schemes. Moreover, the
lattice distortions practically coincide, with bond lengths deviating
by at most 0.03A (cf. Table 2). Using Eq. (8), we calculate the
respective  formation  energies E;’k = —0.49, — 0.64, — 2.01,
and —3.27 eV. These values are given in Table 3. Deviations from
PBEO(a;) results amount to at most 0.19eV (cf. Table 3). This
extends the robustness of piecewise linear functionals to DFT + U
schemes®'%2, and concurrently validates our criterion for deter-
mining the value of U.
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We further investigate the accuracy of the DFT + U, energetics
along a polaron hopping pathway. As test case, we consider the
hopping of a hole polaron between two neighboring sites in MgO.
We construct a 7-image migration pathway through linear
interpolation of the initial and final states. First, we evaluate the
energy along the path using the determined value of Uy, as given
in Fig. 5a. Next, we determine U™ through the enforcement of the
PWL for each image, finding the largest deviation with respect to
Uk in correspondence of the transition state. This is due to the fact
that at the transition state the polaron density is equally
distributed among two neighboring O sites, thus deviating the
most from the case of the hole polaron trapped at a single O site.
Then, we calculate the energy along the pathway as
EY [polaron, im] — EY [bulk] for each image. As illustrated in
Fig. 5a, the difference between the energy barriers calculated with
either fixed Uy or image-dependent UL”‘ amounts to only 0.06 eV.
This validates the choice of a fixed Ux for polaron hopping
calculations. We carry out the same analysis with the PBEO(a)
hybrid functional, finding a difference of 0.08 eV between the
barriers calculated with either fixed ay or image-dependent ai™ [cf.
Fig. 5b)]. The energy barriers obtained with DFT + U, and PBEO(a,)

11.0 eV
10.0 eV
9.3 eV
8.1 eV

Density of states

1
-5 0 5
Energy (eV)

1
-10

Fig. 3 Band widths obtained with various functionals. Density of
valence band states for a-SiO, as calculated with PBEO(ay), PBE, and
DFT + Uy, compared with the experimental XPS spectrum from
ref. 8%, The corresponding band widths are indicated. The theoretical
band widths correspond to differences between Kohn-Sham levels,
whereas the experimental band width is obtained from extrapola-
tions of the wings. The curves are aligned with respect to the
position of the highest energy peak.

differ by 0.32 eV, which is comparable with the typical accuracy
achieved upon enforcing the PWL with different functionals (cf.
Table 3 and refs. 6762),

Comparison with linear-response method

For comparison, we also determine U using the linear-response
approach introduced by Cococcioni and de Gironcoli'®. In this
method, the parameter U is chosen to enforce the PWL in density-
functional perturbation theory as

Ur = (X51 7)(_1)//7 9)

where x and x, are screened and unscreened response matrices,
respectively, which are defined as variations of the occupations
n'=3",.n  with respect to perturbations o’ of the electronic
occupations at site J. We determine U, g on neutral bulk structures
using the PBE wave functions. We find U g = 5.4, 10.9, 10.1 eV for
BiVO,, MgO, and a-SiO,, respectively. The resulting formation
energies of the polaronic defects studied in this work are
EY® = —1.34,-1.67, 3.09, and — 4.00 eV, as given in Table 3. We
remark that U is noticeably larger than Ui in all cases.
Consequently, the respective formation energies calculated with
Uy and Uy differ by 0.85, 1.03, 1.08, and 0.73eV. These large
variations are in part due to the shift of the band edges upon
variation of U (cf. Fig. 2), which enter the definition of the
formation energy in Eq. (8). To assess the dependence on the
adopted configuration in the context of this comparison, we also
use the linear-response approach on the very same polaron

Table 2. Polaron structure.

Polaronic defect DFT + Uy PBEO (ay)
BiVO, (self-trapped) 1.82 1.80

MgO (self-trapped) 222 2.20

MgO (Li-trapped) 1.92/2.17/2.30 1.90/2.17/2.33
a-SiO, (Al-trapped) 1.67/1.92 1.69/1.91

Bond lengths (in A) of the polaronic defect structures obtained with
DFT + Uy and PBEO(ay) functionals. For the Li-trapped hole in MgO, we give
the lengths of the short/intermediate/long Li-O bonds. For the Al-trapped
hole in a-SiO,, we give the lengths of the short/long Al-O bonds.

\ -4

Q

self-trapped electron in BiVO, self-trapped hole in MgO Li-trapped hole in MgO Al-trapped hole in a-SiO,

o0.8F ] 0.8F = F : .
[ a DFT+ Uk 1 [ b DFT+U. 1 0.6F c DFT+ Uy F d DFT+U; ]
0.6k PBEO() 1 0.6F PBEO(c) i PBEO(a) 1 0-6[ PBEO(cu) ]
! 1 ] o4ar 1 1 ]
0.4F 1 o.af 1 I 104r ]
0.2F J 02 j0°r 7 0.2F .
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e

0
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npj Computational Materials (2023) 263

-25 0.0
z (R)

2.5

P R "

-2.5 0.0
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Fig.4 Polaron electron density. Electron densities obtained with DFT + Uy and PBEO(ay) functionals for the self-trapped electron in BiVO,, the
self-trapped hole in MgO, Li-trapped hole in MgO, and the Al-trapped hole in a-SiO,. The defect density is integrated over xy-planes. On top,
isodensity surfaces at 5% of their maximum (Bi in orange, V in cyan, O in red, Mg in pink, Li in brown, Si in blue, Al in gray).
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configuration used for the determination of U, in the direct
piecewise linear scheme. In this way, the same configurational set-
up is used in the two approaches, thereby enabling a direct
comparison. We take the U[z parameter resulting from the linear-
response scheme for the atom where the polaron is localized.
Focusing on the hole polaron in MgO, we find Uz = 9.4 €V, to be
compared with the respective value U, = 7.7 eV found through the
direct application of the PWL condition. Thus, this analysis further
confirms that the structural configuration is not at the origin of the
differences between the two schemes for the determination of U.
Additionally, we remark that our Uy is found for a Hubbard
correction acting on all the atoms of the same species at the same

Table 3. Comparison between different schemes for the
determination of U.

Defect Uy Uir W EVs EX
BiVO, (self-trapped) 3.5 5.4 —0.49 —-1.34 —0.63
MgO (self-trapped) 7.7 10.9 —0.64 -1.67 —0.53
MgO (Li-trapped) 7.5 109  —201 ~309 182
a-SiO, (Al-trapped) 8.3 10.1 —3.27 —4.00 —-3.11

Hubbard parameter Uy obtained with the scheme introduced in this work
compared with the parameter Uy resulting from the linear-response
method'?, together with the corresponding defect formation energies. For
reference, we also give the formation energies E{* obtained with the
piecewise linear PBEO(ay) hybrid functional.

S. Falletta and A. Pasquarello
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5
time, whereas in the linear-response approach U,y is found
through a variation on a single atom. Hence, for an even closer
comparison, we also determine the value U, by enforcing the PWL
upon the application of U to the sole atom where the
polaron localizes. In the case of the hole polaron in MgO, we
find U, = 8.5 eV, which still differs sizably from Uz = 9.4 eV. This
further confirms that the differences between the two methods
are not only related to the computational setup.

The significant differences between Uy and U,y call for a deeper
investigation. Since both approaches are designed to enforce the
PWL, we explicitly verify the extent by which the PWL is satisfied in
the two schemes. This can be achieved by studying the total
energy and the defect level as a function of g for the two choices
of the parameter U. As illustrated in Fig. 6, Uy indeed yields a
piecewise linear total energy and a constant defect level with
respect to partial electron occupation. At variance, for U, the
total energy is convex with g, and the defect level is not constant.
To understand these differences, we remark that the Kohn-Sham
equations used to determine U in the linear-response approach
are

(Hs Ld Yl <¢Im|)w;:; e,

where o' is the amplitude of the perturbation, and e,% and (p,% are
the corresponding eigenvalues and wave functions. The Hamilto-
nian in Eq. (10) differs from the DFT + U Hamiltonian in Eq. (3),
whereby the U values that enforce the PWL in the two cases could
be different. This could underlie the departure from the PWL

(10)

06_‘ Q e DFT+U
; L 00es m U,
9 0.4_—
> |
9 L
o 0.2F 8.2
c i
m =
- 7.7
0.0

0.3

PBEO(«)

im

Fig. 5 Polaron hopping barriers obtained with various functionals. Energy along a polaron pathway connecting two neighboring O atoms
in MO, as calculated (a) with fixed Uy and image-dependent UY" in DFT 4 U calculations, and (b) with fixed a, and image-dependent o in
PBEO(a) calculations. The values of U}" and al™ for individual images are given.

[ a ]
~0.2F .
> L o
3 L 4
> [ ]
20.1f -
[} 5 ]
LE L 4

/M@0 v = U ]

0.0 ot
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Charge q
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> L J
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v r U= U 1
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5'50.0 0.5 1.0

Charge q

Fig. 6 Piecewise linearity of different schemes for the determination of U. a Deviation from the piecewise linearity of the total energy and
b dependence of the defect level on the charge g, for the self-trapped hole in MgO. Results for U, and U, g are compared. The solid lines are a

guide to the eye.
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observed in Fig. 6 for DFT + U, g. However, we remark that despite
the different defect formation energies, the electron densities and
the structural distortions of the polaronic defects obtained with Uy
and Uy practically coincide.

Discussion

In conclusion, our work addresses the determination of the Hubbard
U in the DFT+ U functional through enforcing the piecewise
linearity condition on polaronic defect states. Our selection of U
yields electronic and structural properties of such defects in good
agreement with results from hybrid functionals satisfying the same
constraint. Our scheme is further validated by the excellent
agreement found for formation energies obtained with piecewise
linear functionals. We demonstrate that our criterion for U leads to
accurate energy barriers in polaron hoppings, whereby
configurational-dependent U values can be avoided. We emphasize
that our approach targets physical properties related to the U-
corrected orbitals, while more global properties, such as band gaps
and band widths, are not directly involved. For comparison, we also
calculate U through a widely-used linear-response method, finding
values of U that break the piecewise linearity condition and give
larger formation energies. To sum up, we showed that polaronic
defect states can effectively be used for determining the value of the
Hubbard U parameter in DFT + U. Additionally, we demonstrated
that the resulting electronic, structural, and energetic properties of
such defects closely correspond to those obtained with hybrid
functionals, but at a noticeably lower computational cost.

METHODS

Computational details

The calculations are performed using the version 7.1 of the quanTum
Espresso suite®’. The core-valence interactions are described by
normconserving pseudopotentials®?. BiVO, is modeled with a
96-atom orthorhombic supercell (a=1034A, b=10344A,
¢=11.79 A), MgO with a 64-atom cubic supercell (a =845 A), and
a-Si0, ($\alpha$-quartz) with a 72-atom hexagonal supercell
(@a=9.97A, c=1096 A). We optimize the lattice parameters and
the atomic positions using the PBE functional for the pristine
systems. The Brillouin zone is sampled at the ' point and the energy
cutoff is set to 100 Ry in all cases. We obtain the electron and hole
polarons by either adding or removing one electron, respectively.
The defect structures are relaxed at fixed supercell parameters. The
high-frequency and static dielectric constants used for the
determination of the finite-size effects®® are calculated by applying
finite electric fields®>> at the semilocal level of theory®'2. The
Hubbard parameters U, are calculated using the code Hp?°.

Hybrid functional calculations

The procedure for determining ay is analogous to that for Uy (see
refs. 152), The hybrid functional results for the self-trapped
polarons in BiVO, and MgO, and the Al-trapped hole in a-SiO, are
taken from refs. 62, in which the same computational setup has
been employed. For the Li-trapped hole in MgO, we obtain
a, = 0.33, which is in good agreement with the value ay=0.34
found for the self-trapped hole®'%2, The corresponding formation
energy is —1.82 eV and is given in Table 3.

Finite-size corrections

For a system with supercell charge g* in a geometry Ry, relaxed in
the presence of a charge Q", the finite-size correction for the total
energy is given by®®

Ecor(q",Ro) = Em(Q", &) — Em(Q" + Qpgp €xc) (11)
+Em (q* + O;oh 500)7
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where E,, denotes the finite-size correction for defects screened
through either the high-frequency (g,.) or the static (g,) dielectric
constant’>’¢, and Q;,; = —Q"(1 — &x /&) is the ionic polarization
charge associated with the frozen lattice distortions. Through
Janak’s theorem, the corresponding finite-size correction for the
defect energy level is®°

Em(q* + Q;olv EOO)
q + Q;;ol '

We remark that the supercell charges g* and Q" coincide with the

polaron charges g and Q for self-trapped polarons, as in BiVO,4 and

MgO. At variance, in the cases of Li-doped MgO and Al-doped a-

Si0,, g°=q — 1 and Q"= Q — 1 since the hole trapping occurs in

the neutral state.

€cor(q*7 RO*) =-2 (12)
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