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Abstract: Despite their high sensitivity and their suitability for miniaturization, biosensors are still
limited for clinical applications due to the lack of reproducibility and specificity of their detection
performance. The design and preparation of sensing surfaces are suspected to be a cause of these
limitations. Here, we first present an updated overview of the current state of use of capacitive
biosensors in a medical context. Then, we summarize the encountered strategies for the fabrication of
capacitive biosensing surfaces. Finally, we describe the characteristics which govern the performance
of the sensing surfaces, along with recent developments that were suggested to overcome their main
current limitations.
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1. Introduction

Affinity-based biosensors operate by specifically capturing a biological target with
biological or synthetic capture agents such as aptamers, DNAzymes, single stranded DNAs
or antibodies. The binding event between the capture molecule and its target is later
translated into a readable signal.

Labelling the target molecules with fluorophores, magnetic beads, quantum dots or
enzymes, was reported to facilitate and amplify the readout signal. However, labelled-
detection methods are expensive and necessitate multi-step processes, hence are limited
for real-time detection. Label-free methods are therefore of interest for high throughput
biomolecules screening, portable devices and suitable for large-scale production [1].

A variety of transducing methods have been described to translate the binding event
between the targeted molecules and the probes (Figure 1). Conventional approaches include
optical, electrical or mass-sensitive techniques [2]. Electrical biosensors are great candidates
for miniaturized, portable and label-free detection, relying on potentiometric, voltammetric,
amperometric or impedimetric readout signals. Impedance-based sensors are themselves
divided in faradaic or non-faradaic detection. Faradaic biosensors refer to the detection
of charge transfer across a membrane [3]. They often rely on electrochemical impedance
spectroscopy (EIS) [4] which detects the binding events via the change of electron transfer
resistance and double layer capacitance within a frequency range [5]. However, faradaic
detection is complex as it necessitates a wide window of frequencies [4]. It also requires
the addition of potentially hazardous redox couples, that can degrade biomolecules [4,6].
On the other hand, non-faradaic based sensors, also called capacitive sensors or third-
generation biosensors [7], detect the changes of capacitance at the electrode surface caused
by the molecular binding events. These sensors have a high-sensitivity potential [4], and
do not require the addition of external reagent unlike other conventional methods, such
as in situ hybridization or enzyme linked immunosorbent assays (ELISA) [4,8]. They offer
a simple and rapid detection that can be inserted into portable devices [9]. Addition-
ally, non-faradaic capacitive detection does not require trained laboratory personal or
samples preparation, and is therefore interesting for point-of-care applications [4,10–12].
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Unfortunately, it has been reported that capacitive biodetection suffers from poor to poor
reproducibility [4,12–15] and large standard deviation [16,17], preventing their translation
for clinical application. These limitations have been suspected to arise form sensing surface
parameters such as its cleanliness [4,18], homogeneity [4] and insulation [10,19–21].
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Figure 1. Illustration of the different types of electrical sensors.

Previous review articles focused on the different types of capacitive sensors [3,22,23],
geometries of electrodes [3], the use of nanomaterials for signal enhancement [5], the prepa-
ration of the electrodes by molecular imprinting [1,24]. A specific insight into capacitive
immunosensors was also disclosed [25]. Here, we present the importance of the preparation
of sensing surfaces to overcome the limitations which capacitive biosensors face in clinical
applications. Towards this goal, we will discuss the different functionalization strategies to
immobilize the capture molecules on the electrodes, in addition to the influence of surface
properties (cleanliness and homogeneity) on the performance and reliability of the resulting
biosensors. Additionally, methods to obtain well-insulated surfaces and efforts made to
avoid non-specific binding of the target molecules at the surface will be examined.

2. Methodologies for Capacitive Biosensor Detection

Two main electrode geometries were reported for capacitive sensing, leading to two
distinct capacitive methodologies for the detection of binding events between capture
molecules and their targets. The most common is based on potentiostatic capacitance
measured at the electrode/solution interface. In this case, the capture molecules are
immobilized on the working electrodes. As an alternative, interdigitated electrodes have
received growing attention over the last three decades for capacitive detection [3]. In this
case, the recognition elements are immobilized on a substrate in between the electrodes,
which undergo capacitance changes upon binding to the molecular targets [22].
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2.1. Potentiostatic Capacitance

Potentiostatic capacitance measurements at the electrode/solution interface is based
on the theory of the electrical double-layer. The electrodes are generally made of a con-
ductive metal, often covered by an insulating layer on which the capture biomolecules are
immobilized. When the electrode is immersed in an electrolyte solution, at a given potential,
the surface charge (qm) and solution charge (qs) equilibrate according to qm = −qs. Charged
species and dipoles contained in the solution will orientate towards the surface, forming
the double-layer. It was demonstrated experimentally that the system can be represented as
three capacitors in series, as illustrated in Figure 2. The insulating layer represents the first
capacitor, Cins. The second capacitor, Crec, corresponds to the immobilized molecules and
their target, in addition to the double layer. The last capacitor (Cd) represents the diffuse
layer. Overall, the capacitance of the system Ctot is given by Equation (1) [22].

Ctot =
1

1
Cins

+ 1
Crec

+ 1
Cd

(1)
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Figure 2. Schematic representation of electrode–solution interfaces for capacitive detection of
biomolecules. Crec increases after capture of the target biomolecules.

When the target molecule binds to the capture probe, it results in a change of Crec
that can be detected via the monitoring of the total capacitance, Ctot. As shown in the
Equation (1), Ctot is dominated by the smallest capacitance of the three. Therefore, if
present, the insulating layer should be thin with a high dielectric constant to result in a
high Cins value.

2.2. Interdigitated Electrodes

Capacitive sensors based on interdigitated electrodes (IDE) are also called interdigital
capacitive sensors. The use of these electrodes results in enhanced impedance changes,
higher signal-to-noise ratio, and increased speed of detection [4].

The geometry of IDEs is illustrated in Figure 3. Usually, IDEs are fabricated by
lithography techniques on glass substrates or silicon wafers. The electrodes width and
spacing can vary from tenths of nanometers to tenths of microns [3]. In this configuration,
the sensor surface consists of two parallel metal electrodes separated by a dielectric surface.
The capture probe can be immobilized on the electrodes, on the insulating surface, in
between, or on both [19]. The capacitance of the electrodes is linked to the dielectric
constant of the surface in between the electrodes with the Equation (2) [22].

C =
ε× ε0 × A

d
(2)

where ε stands for the dielectric constant of the substrate between the plates,
ε0 = 0.8.85419 pF/m (vacuum permittivity), A is the area of the electrodes and d the
distance between them.
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Thus, when molecule binds to the surface, it causes a change in the dielectric prop-
erties of the substrate, that can be retrieved by monitoring the changes of capacitance of
the electrodes.

Instead of measuring a capacitance change, an alternative approach consists of mea-
suring the changes of distances between the capacitor plates. These devices are composed
of a rigid electrode and a flexible one, often a membrane. Capacitive membranes were
previously reported by Tsouti et al. [3] and therefore are not further described.

3. Current State of Capacitive Biosensors Used in Clinical Applications

Due to the variety of capture probes which can be immobilized on the electrodes
surface, capacitive biosensors can be designed for a wide range of medical applications.
Viruses, unicellular and disease markers were detected in biological fluids, via non-faradaic
measurements. The following sections focus on the most recent studies which enabled to
significantly decrease the limits of detection (LoD) compared to previous systems and/or
addressed capacitive detection in complex biological samples.

3.1. Infections

Immunosensors have been reported for the capacitive detection of viruses such as
Influenza virus [26,27], foot and mouth disease [28], Hepatitis B [29], Norovirus [30], Zika
virus [31] and SARS-CoV-2 [32]. However, genosensors were more widely described
for viral capacitive detection, and generally displayed lower LoD than immunosensors.
In 1999, Bergreen et al. could detect Cytomegalovirus with a limit of detection of 0.2 aM
from DNA standard fragments [13]. More recently, commercial DNA sequence of West
Nile virus could be detected with a limit of detection (LoD) of 1.5 aM [4].

While these studies investigated the specificity of the obtained sensors with non-
targeted genes, none of them reported the detection of viral targets in complex biological
samples. Matrix effect, coming from the interaction of non-targeted biomolecules with the
sensors surface, can have deleterious effect on the sensing efficiency. For example, in 2017,
Cheng et al. reported a genosensor for the detection of Herpes 1 virus [33]. While a LoD
of 10.7 aM could be achieved in standard buffer, the limit increased to 0.21 fM in neat
serum, likely due to unwanted interactions of non-targeted biomolecules with the sensor
surface [33]. To our knowledge, no capacitive sensors displaying attomolar detection has
been reported to detect viruses in real biological samples.

Diagnosing a viral infection can also be performed by recognizing antibodies,
i.e., performing serological tests. In that regard, Zeng et al. recently reported an im-
pedimetric biosensor that can detect SARS-CoV-2 antibodies (Abs). The authors studied
two enhancement techniques (illustrated in Figure 4) to improve the LoD of the system,
(1) by probing the targeted Abs with a gold nanoparticle (AuNP)-tagged secondary anti-
body and (2) by using dielectric electrophoresis (DEP). In the case of the AuNPs enhance-
ment strategy, the presence of the nanoparticles enhances the measurable signal, that can
reduce the LoD value. In the case of DEP enhancement, targeted biomolecules can be
selectively moved and concentrated to the sensing surface due to the dielectric properties
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of each molecule. While a LoD of 2 µg/mL was obtained with the DEP enhancement
technique, the authors could detect down to 200 ng/mL with AuNPs [34].
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Non-faradaic impedimetric sensors were also reported for other type of pathogens, in-
cluding protozoan, worms and bacteria. In 2022, Figueroa-Miranda et al. reported a aptasen-
sor based on a graphene surface for the detection of a malaria marker, Plasmodium falciparum
lactate dehydrogenase, with a limit of detection of 0.78 fM in diluted human serum [35],
allowing the detection of low-density parasitemia, and surpassing the LoD previously
achieved via Faradaic detection [36–38].

Worm’s antigens were also detected via non-faradaic impedance measurements.
Zhou et al., reported the use of gold electrodes modified with Schistosoma japonicum anti-
bodies to detect the worms’ antigens. A LoD of 0.1 ng/mL was reached in PBS., and the
selectivity of the sensor was assessed by comparing the capacitance changes with other
proteins [39].

The presence of bacteria can either be detected via the presence of toxins, or directly
detecting the unicellular organisms. While capacitive detection of toxins was reported
in food [40,41] or in water [42], detection of toxins has not been reported for diagnosis
purposes. On the contrary, direct detection of bacteria has been reported and is described
in the Unicellular detection section.

3.2. Cancer, Chronic and Inflammatory Diseases

Early detection and diagnosis of cancer, chronic or inflammatory diseases can drasti-
cally improve the chances of survival [43–45]. Capacitive detection of such biomarkers has
been used in this sense for a variety of pathologies.

A variety of cancer biomarkers were selected as targeted molecules for early cancer
detection. Recent studies pointed to the detection of markers with a sufficient LoD to
enable cancer early diagnosis. For example, in 2018, Arya et al. [46] reported a LoD of
0.1 ng/mL in non-diluted serum. As patients suffering from breast cancer possess around
14 to 75 ng/mL of Her2 markers in their blood, this aptasensor could be used in the future
for diagnosis [46].

The detection of marker for chronic and inflammatory diseases was also reported via
capacitance measurements. For example, the capacitive detection of C-reactive protein
(CRP), a biomarker for cardiovascular disease risks, sepsis and other tissue inflammation
was extensively studied [11,12,47–49]. A decade later, Macwan et al. [48], could surpass the
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sensitivity of previous CRP electrochemical sensors [11,12] and reached a 10 fg/mL LoD
in both PBS buffer and serum by switching to an interdigitated sensing device integrated
sputtered with nanofibers to enhance the sensitivity and selectivity of the sensing surface.
Human chitinase-3-like protein 1, a marker for tissue inflammation and cardiac disease
was also detected by capacitive systems with a LoD of 0.07 µg/L. This is 300 times lower
than ELISA method, currently used for this marker detection [50]. However, this study was
performed in diluted serum to prevent the matrix effect and complementary studies should
thus be performed to assess the LoD in real biological sample. Other biomarkers have
been targeted for chronic-disease diagnosis, such as LDL-cholesterol [6], interleukin-3 [51]
or transferrin [20,52]. Nampt, an obesity marker for which Park et al. improved the
binding affinity with the surface compared to previously reported techniques, could be
detected in the nanomolar range [53]. Finally, Kumar Sharam et al. recently reported
the detection of amyloid beta within 5 s with a LoD of 0.1 fg/mL for the diagnostic of
Alzheimer disease [54].

3.3. Unicellular Organisms

Capacitive sensors for whole cell detection and analysis were developed over the last
decade. The first occurrence of unicellular organism detection by non-faradaic measure-
ments dates back 2004, for E. Coli detection in food samples by using an immunosensor
targeting antigens present at the bacteria surface [55]. Since then, the detection of Salmonella
(bacteria), Cryptosporidium (protozoan) in food or water samples was disclosed. In 2013,
Couniot et al. also reported a simulation for optimal design of capacitive sensors for bacte-
ria detection [56]. Recently, Borsel-Oliu et al. reported the use of a 3D IDE platform that
evaluates the response of bacteria to antibiotics [57]. This platform could in the future be
used for a variety of toxicity evaluations.

Non-faradaic biosensors have also been developed for eukaryotic cell detection.
In 2022, Zhang et al. [58], detailed the detection of peripheral blood mononuclear cell
(PBMCs), that can indicate the immune function state of a patient. While PMBCs cells
are normally found in concentrations ranging from 0.7 to 6.2·106 cells/mL, their sensor
displayed a LoD of 104 PBMCs/mL, with the possibility to quantify the cells. However,
further experiments would be needed to assess the LoD in real samples for potential
clinical applications.

Finally, yeast detection has also been reported with a non-pathogenic strain,
Saccharomyces cerevisiae. A LoD value of 0.1 ng/mL was achieved, with a detection range of
0.4 to 18 ng/mL [59]. We expect that further developments could lead to the detection of
pathogenic strains for clinical use.

Viruses, unicellular organisms and diseases markers detected via capacitive biosensing
are summarized in Table 1.



Biosensors 2023, 13, 17 7 of 22

Table 1. Non-faradaic impedimetric biosensors reported for clinical applications. Capacitive sensors for food and waste control were not included.

Target Sensor Type Electrode Material Sensor Preparation Detection Range LoD Ref.

Viral infection

Foot and Mouth disease Immunosensor Gold SAM formation of
thiol-modified epitope N/D N/D [28]

Hepatitis B Immunosensor Gold nanoislands Parylene coating, followed by
glutaraldehyde cross-linking 0.1–1000 ng/mL <100 pg/mL in both buffer

and serum [29]

Influenza H5N2 Immunosensor Gold Magnetic nanobeads coated
with antibodies 1.5·101–1.5·105 ELD50/ml 1.6.102 ELD50/mL of

purified virus [27]

Influenza H5N1 Immunosensor Gold Antibody immobilization through
adsorbed Protein A 101–105 EID50/mL 103 EID50/mL in buffer [26]

Norovirus Immunosensor Gold
Polyaniline followed by

streptavidin coupling and
biotinylated Ab immobilization

1 fg/mL–1 ng/mL 60 ag/mL in buffer [30]

Zika virus Immunosensor Polyvinyl alcohol, Alignate
and Polyaniline

EDC/NHS coupling of antibodies
on alginate N/D 6.6 × 103 PFU/mL

in buffer [31]

SARS-CoV-2 virus
Immunosensor

Poly(3,4-
ethylenedioxythiophene)

polystyrene sulfonate
Antibodies adsorption N/D 147 TCID50/mL of virus

from culture fluid [32]

Genosensor Platinium/Titanium APTES modification, followed by
phosphoramidite linkage 5 µM–10 nM 10 nM in PBS [60]

SARS-CoV-2 antibodies Immunosensor Gold APTES modification, followed by
EDC/NHS coupling of antibodies N/D

200 ng/mL and 2 µg/mL
in buffer

(for AuNP and DEP
enhancements,
respectively)

[34]

Cytomegalovirus Genosensor Gold SAM formation of
thiolated oligonucleotides N/D 0.2 aM of pure fragment

in buffer [13]

West Nile virus Genosensor Gold SAM formation of
thiolated oligonucleotides 3–33 aM 1.5 aM in buffer [4]

Herpes 1 virus Genosensor Aluminum SAM formation of
thiolated oligonucleotides 0.2 fM–0.2 pM in serum 10.7 aM in buffer

0.21 fM in neat serum [33]

Papillomavirus Genosensor Indium oxide SAM formation of
thiolated oligonucleotides 0.1 pM–0.1 µM 20 fM in buffer [61]

Pathogen markers
Malaria enzyme marker

Aptasensor Graphene oxide
Graphene modified aptasensors
linked to grapehene surface via

π- π stacking
0.78 fM–100 nM 0.78 fM in diluted human

serum [35]

Aptasensor Gold
Thiolated-aptamers

Polyethylene glycol layer added
to reduce non-specific adsorption

1 pM–100 nM

0.77 fM in 50%
human serum

1.49 pM in whole
human serum

[62]

Schistosoma japonicum
antigen Immunosensor Gold Antibody immobilization through

adsorbed Protein A 0.4–18 ng/mL 0.1 ng/mL in PBS [39]
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Table 1. Cont.

Target Sensor Type Electrode Material Sensor Preparation Detection Range LoD Ref.

Cancer biomarkers

SSAT Immunosensor Gold/Titanium Parylene coating, followed by
glutaraldehyde cross-linking 1.25–10 mg/L 1.25 mg/mL in buffer [9]

Her2

Aptasensor Gold SAM formation of
thiol-modified aptamers 1 pM–100 nM 0.1 ng/mL in

non-diluted serum [46]

Aptasensor Gold
SAM formation of

mercaptopropionic acid followed
by peptide coupling

0.2–2 ng/mL 0.2 ng/mL in
diluted serum [8]

Her4 Affimer-based sensor Gold SAM formation of
cysteine-modified aptamers 1 pM–100 nM 1 pM in non-diluted serum [63]

PMSA Protein-affinity-based
sensor Aluminum electrodes

Carboxylic-modified gold
nanoparticles layer formed via
thiol-gold bond, followed by

peptide coupling

10 pM–100 nM 10 pM pure antigens
in buffer [64]

Platelet derived
growth factor Aptasensor Silicium APTES modification followed by

phosphoramidite bond 1–50 µg/mL 1 µg/mL in buffer [65]

Squamous
carcinoma antigen Immunosensor Gold

Carboxylic acids introduced via
SAM formation, followed by

peptide coupling
N/D 2.43 µg/mL in buffer [14]

Chronic or
inflammatory diseases

Protein C reactive

Immunosensor Gold
Carboxylic acids introduced via

SAM formation, followed by
peptide coupling

25 pg/mL–25 ng/ml 25 pg/mL in PBS [11]

Aptasensor Gold SAM formation of
thiol-modified aptamers 200 pg/mL–2 ng/mL 200 pg/mL in PBS [12]

Immunosensor Gold
ZnO thin film deposition,
followed by succinimidyl
propionate crosslinking

0.01–20 µg/mL. 0.10 µg/mL in human
serum and whole blood [47]

Immunosensor Gold

Carbon fibers sputtered on the
electrode, followed by
dithiobis(succinimidyl)

propionate cross-linking

1 fg/mL–1 ng/mL 10 fg/mL in PBS and
serum buffer [48]

Immunosensor Nickel SAM formation of carboxylic
acids, followed by 1–250 ng/ml 1 ng/mL of purified

antigens [66]

Myeloperoxidase Immunosensor Gold

Immobilization of streptavidin via
SAM formation, followed by

biotinylated-antibodies
conjugation

1 pg/mL to 1 µg/ml ~1 pg/mL in buffer [49]
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Table 1. Cont.

Target Sensor Type Electrode Material Sensor Preparation Detection Range LoD Ref.

Chronic or
inflammatory diseases

Troponin

Immunosensor Screen printed electrode
Gold nanoparticles spread on the
electrode, followed by adsorption

of the antibody
0.1–12.5 0.2 ng/mL in buffer [67]

Immunosensor Alumiium
Amino groups introduced via
SAM formation, followed by

cross-linking with glutaraldehyde

0.01–5 ng/mL in PBS
buffer 0.07–6.83 ng/mL in

human blood serum

0.01 ng/mL in PBS
0.07 ng/mL in
human serum

[68]

Human
chitinase-3-like protein 1 Immunosensor Gold

Thiourea introduction via SAM
formation, followed by

glutaraldehyde cross-liking
0.1 µg/L–1 mg/L 0.07 µg/L in buffer [50]

Transferrin

Immunosensor Silicon doped
semiconductor

Introduction of amine followed by
glutaraldehyde cross-linking N/D N/D [20]

Immunosensor Glass carbon
Electropolymerization of

phenylenediamine, followed by
glutaraldehyde cross-coupling

0.1–45.0 ng/mL in 0.061 ng/mL in PBS [52]

Interleukin-3 Immunosensor Zeolite-Iron Amine introduction followed by
peptide coupling 3–100 pg/mL 3 pg/mL in buffer [51]

Interleukin-6 Immunosensor Gold
Carboxylic acids introduced via

SAM formation, followed by
peptide coupling

25 pg/mL–25 ng/ml 25 pg/mL in PBS [11]

Nampt Aptasensor Gold SAM thiol aptamers 1–50 ng/mL 1 ng/mL in diluted serum [53]

Amyloid beta Aptasensor Platinium/Titanium Amine introduction followed by
peptide coupling 0.001–10 µM 1 fg/mL in buffer [54]

LDL-Cholesterol Immunosensor Gold
Amino groups introduced via
SAM formation, followed by

cross-linking with glutaraldehyde
N/D 120 pg/mL of

pure antigens [6]

Unicellular organisms

Peripheral blood
mononuclear cell Immunosensor Gold

Carboxylic groups introduced via
SAM formation followed by

peptide coupling
N/D 104 cells/mL in buffer [34]

CD34+ T-cells Immunosensor Gold
Carboxylic acids introduced via

SAM formation, followed by
peptide coupling

50–1 × 105 cells/mL 44 cells/mL in
diluted serum [69]

Bacteria answers
to antibiotics / Tantalum silicide Polyethyleneimine layer for

bacteria adsorption (non-specific) N/D N/D [57]

Abbreviations: N/D: not detailed. TCID50: tissue culture infective dose. ELD50: 50% Egg Lethal Dose. EID50: 50% Egg Infective Dose. APTES: aminopropyltriethoxy silane.
SAM: Self-assembled monolayer.
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4. Capacitive Sensing Surfaces Preparation, and Limitations
4.1. Capacitive Sensors Limitations

Capacitance biosensors, whether they are based on IDEs or potentiostatic capacitance
measurements, necessitate the immobilization of biomolecules on a surface. In the case
of IDEs, the molecules are immobilized on the interface between the electrodes. For
potentiostatic capacitance measurements, probes are immobilized directly on the electrode,
eventually covered with an insulating layer (see in Figures 2 and 3). The capture molecules
can be antibodies, to further detect an antigen or a pathogen (immunosensor), single-strand
DNAs, for the detection of RNA or DNA single strands (genosensor) or aptamers, for the
fabrication of aptasensors.

Unfortunately, even after years of progress in capacitive biodetection, challenges re-
main. Poor reproducibility [4,12,12–15] and large standard-deviation [16,17] of capacitive
biosensors have been reported and linked to non-optimal parameters of their sensing
surfaces [4,13,19]. Critical parameters in the capacitive sensing surfaces preparation have
been raised, such as the probe immobilization strategy [13,19,52], surface cleanliness [4,18],
homogeneity [4] and insulation [10,19–21]. Obtaining a high specificity with capacitive
sensors is also challenging as any adsorbed biomolecules at the sensing surface can pre-
vent target binding or generate a false-positive signal [10,16,17,62]. After describing the
most common strategies for the preparation of sensing surfaces, the surface parameters
suspected to affect capacitive sensors behavior are presented, along with the solutions
recently reported to overcome these limitations.

4.2. Biomolecules Immobilization Techniques

Various immobilization strategies have been reported for the immobilization of capture
molecules on capacitive sensing surfaces. The functionalization procedures may depend
on the type of electrodes used and the nature of capture molecules immobilized. Selection
of the functionalization pathway for a capacitive sensor is crucial, as it can affect drastically
its performance [23].

While electrodes are generally made from metals such as gold [4,8,11,12,14,19,21,26–
29,33,39,40,46–48,50,53,55,58,62,70–79], platinum [41], graphene [35,80], glass carbon [7,52]
or aluminum [33,64,68], electrodes made of titanium [9,60,63,81,82], nickel [66], or sili-
cium [65,83–85] are less described even though they are great candidates for capacitive
measurements. Indeed, they display high insulation properties, can present smooth sur-
faces with homogeneous functionalities for capture probe immobilization [23]. Finally, few
more exotic materials have been reported as electrodes material. For example, tantalum
was selected for antibodies [86] or bacteria detection [57]. Recently, polymers were reported
for the production of electrodes for capacitive biodetection. Park et al. described the
use of electrodes made of a conductive polymer layer of PEDOT:PSS for the detection of
SARS-CoV-2 [32]. Frias et al. used polyvinyl alcohol, alginate and polyaniline to fabricate
electrodes for Zika virus detection [31].

Gold electrodes are generally favored for capacitive measurements as they are fre-
quently encountered in other detection transduction techniques such as surface plasmon
resonance, quartz crystal microbalance or reflection absorption IR spectroscopy, thus allow-
ing for dual-mode detection and direct comparison of readout signals [18].

Two main strategies are commonly described for the immobilization of capture
molecules on sensing surfaces. A first method consists of the formation of a self-assembled
monolayer (SAM) at the surface of metallic electrodes. This layer can be directly made of
the capture molecule, or of a linker that is later used to conjugate the capture molecule [87].
A second methods relies on the deposition a thin insulating film at the surface of the
electrodes, generally made of a polymer or silanes, followed by the conjugation of the
capture molecule to this first layer [23].

The most frequently reported strategies for the immobilization of capture probes on
the electrode and/or insulating layer are detailed in the following sections.
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4.2.1. Self-Assembled Monolayer (SAM) Formation on Metal Electrodes

The adsorption of SAMs of biomolecules on metals and metal oxides is frequently
used for the modification of electrodes. Due to the strong affinity of sulfur atoms for
gold, the most reported SAM technique is based on the incubation of gold surfaces with
thiol-modified biomolecules [87].

Thiol-modified single-strand DNA (ssDNA) probes were immobilized on gold elec-
trodes for cytomegalovirus detection [13]. ssDNA immobilization on aluminum electrodes
was also performed for the detection of West Nile [4] and Herpes viruses [33], but also on
indium oxide for the detection of papillomavirus [61]. The immobilization of thiol-modified
aptamers on gold electrodes was described for the detection of obesity markers [53], can-
cer [46] or inflammatory diseases markers [12], but also thrombin [21], and malaria [62].
Finally, other capture molecules such as affirmers [63], peptide-nucleic acids [74], and
epitopes [28], were exploited for diagnosis application.

Another strategy consists of adding a first layer of alkyl-thiol chain on the electrode,
to which the capture molecules is further conjugated. This strategy was reported for
the immobilization of antibodies [6,11,14,27,48,50,58,69,71,72,75,77–79], ssDNA [13] and
aptamers [8,80]. Numnuam et al. also reported the immobilization of histones on gold
electrodes for the detection of DNA traces [88]. Figure 5 illustrates the differences between
direct surface functionalization with thiol-containing biomolecules via SAM formation, and
the use of a thiol linker for covalent conjugation of the capture molecule.
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thiol linker (right) for the immobilization of biomolecules at the surface of a metallic electrode.

The direct immobilization of biomolecules via SAM formation is the simplest way to
functionalize metallic surfaces with capture probes [89]. However, it requires the use of
thiol-containing biomolecules or the modification of native biomolecules with a thiol group
beforehand. Procedures involving a linker were shown to provide more stable function-
alized surfaces. Bergreen et al. compared the two immobilization strategies [13]. On one
hand, a 26 bases thiol-modified ssDNA was directly immobilized on gold electrodes, while
on the other hand, an 8-base probe was coupled via carbodiimide chemistry to a cysteamine
monolayer previously deposited on the gold electrode. The pre-functionalization strategy
with a linker resulted in enhanced selectivity of the sensor, despite the use a shorter probe.
The length of the linker is also of importance. Mirsky et al. studied various SAMs of
mercapto-alkyl derivatives deposited on gold electrodes, followed by conjugation with Abs.
The study concluded that longer mercapto-alkyl layers were preferable, due to spontaneous
desorption of shorter chains. Finally, the use of linkers has also impact on the insulating
properties of sensing surfaces which will be discussed in Section 4.5.

4.2.2. Covalent Immobilization on an Insulating Layer

Beside SAM formation on metallic electrodes, capture molecules can also be immobi-
lized on a surface-deposited insulating layer presenting reactive functionalities for further
chemical conjugation.
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The most common routes for deposition of the insulating layer include silanization
methodologies [19,20,41,60,65,81,82,86] and polymerization strategies. Electropolymeriza-
tion of tyramine [70,76], phenylenediamine [52], and polyaniline [83,85] were reported for
the functionalization of surfaces with amine or carboxylic-containing polymers. Thermal
deposition of parylene was also proposed by Jung et al. for the fabrication of a capac-
itive biosensor [29]. The thickness of the insulating layer is also critical to keep a high
sensitivity [29,83]. Using platinum electrodes covered by tin oxide films, Choudhury et al.
demonstrated that film thickness below 100 nm resulted in good insulation properties and
higher sensitivity than thicker films for the capacitive detection of immunoglobulin [83].

Functionalization of surfaces with polymers instead of silanes was found to improve
the sensitivity and specificity of the resulting device, which might be due to surface
insulation enhancement [9]. Deposition of a polymeric layer can also be performed with a
simpler fabrication procedure than silanization [85]. However, if the sensor is inserted in a
microfluidic platform, we believe that the adhesion of the polymer to the surface must be
carefully controlled to avoid the removal of the polymer due to the pressure.

Various chemical linkages can be then used to immobilize capture molecules on the
formed insulating layer. Among them, peptide bond coupling has been extensively re-
ported. It has the advantages of being stable under a wide range of pH [90], compatible with
many types of surfaces and suitable for the conjugation of a variety of biomolecules due to
the presence of amines and/or carboxylic groups in their structure. Carbodiimide chem-
istry was described for the covalent conjugation of Abs to silanized surfaces [19,86]. The
use of cross-linkers was also widely reported. Glutaraldehyde is the most common spacer
for the immobilization of biomolecules and was highlighted for the conjugation of Abs
to parylene [29], poly(o-phenylenediamine) [52], polytyramine-[70], polyaniline [83,85],
and amino-silane modified surfaces [20,81,82]. Similar strategy was reported for the im-
mobilization of phages to a polytyramine insulating layer for the capacitive detection of
Salmonella spp. Noticeably, the sensor could be used up to 40 times following alkaline
treatment to regenerate the active sensing surface [76]. Other cross-linkers such as N-γ-
maleimidobutyryloxy succinimide ester [41,55] or dithiobis (succinimidyl propionate) [47]
were disclosed for the conjugation of Abs to capacitive sensing surfaces.

The different methods for covalently conjugating biomolecules to insulating layers are
now summarized in Table 2.

As alternative chemical linkage to peptide-bond formation, a few other types of chem-
ical conjugations were reported in the context of the fabrication of capacitive biosensors.
When considering nucleic acids as capture molecules, phospharamidite bond formation
is of interest for their covalent immobilization. Liao and Cui reported the attachment of
a phosphated aptamer with 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as
coupling agent to an APTES-modified surface [65]. Finally, Varlan et al. reported the
silanization of TiO2 surfaces with glycidoxysilane for the immobilization of antibody via
epoxide ring-opening for hormone detection [81]. Figueroa-Miranda et al. described the
modification of a graphene oxide surface with pyrene-modified aptamers via π stacking.
The resulting sensing surface was later used for malaria detection [35]. EDC/NHS coupling
was reported by Yagati et al. for the covalent attachment of aptamers on pyrenebutyric
acid previously immobilized on a graphene IDEs via π-π stacking. The obtained aptasen-
sors were studied for the detection of thrombin in blood [80]. The use of biotin/avidin
complex formation was also disclosed for the immobilization of antibodies on gold sur-
faces, addressing the capacitive detection of cardiovascular protein biomarkers [49] and
norovirus [30].
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Table 2. Methods reported for the covalent conjugation of capture biomolecules on insulating layers.
R: Capture molecule.

Function Introduced Coupling Agent Capture Molecule Chemical Linkage Reference
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However, no mention of click chemistry, or use of vinyl sulfone moieties were found
in the literature for the conjugation of biomolecules to capacitive sensing surfaces, while
encountered in the context of EIS detection [91–93].

4.2.3. Influence of the Conjugation Strategy on the Sensor Performance

The immobilization strategy has been highlighted as a crucial parameter to consider
for the preparation of a capacitive sensing surface [9,13,19,52].

Castiello et al. recently reported a comparative study of four immobilization tech-
niques for the conjugation of Abs to interdigitated gold electrodes, based on peptide
coupling to: (i) a mercapto-alkyl SAM; (ii) an amino-silane monolayer between the elec-
trodes; or a iii) spin-coated poly(methyl methacrylate) (PMMA) layer. These covalent
strategies were assessed against passive adsorption of the probe on the electrode (Figure 6).
Immobilization to a PMMA spin coated electrode provided the best capacitive behavior
due to its smooth surface, leading to reproducible detection of the antigen-Ab binding
events. Adsorption of Abs on the gold electrode resulted in the most heterogeneous surface
covering and the least repeatable measurements. Additionally, the immobilization layer
configuration—on electrodes only (SAM layer, B), in between the electrodes only (APTES
modification, C) or on both (PMMA layer, A)—impacted the overall performance of the
sensing device. The binding events occurring in between the electrodes were playing a
major role in the overall change in capacitance compared to the ones occurring directly
at the surface of the electrodes [19]. Therefore, we believe that the SAM deposition of the
capture molecule (via the use of a linker or not) on interdigitated electrodes should not be
indicated as it leads to the deposition of the probe only at the top of the electrodes.

4.3. Impact of Surface Cleanliness and Contamination

Significant variations in reported results among different studies may arise from the
lack of homogeneity and reproducibility of the coating procedure, as a result of improper
electrode cleaning before functionalization [4,94]. In the context of mercapto-alkyl SAM
formation on gold electrodes, Love et al. discussed the importance of proper electrode
cleaning procedures to achieve uniform coatings [18]. SAM formation is based on exchange
process, suggesting that thiolated molecules can displace miscellaneous contaminants ad-
sorbed at the electrode surface. However, the presence of contaminants greatly affects the
kinetics of the reaction, and therefore its reproducibility. To achieve reproducible coatings,
the electrodes can be cleaned with piranha solutions or oxygen plasma [18], or via electro-
chemical methods [14] in the case of metallic electrodes. In 2010, Bhalla et al. compared the
efficacy of piranha, plasma, reductive and oxidative cleaning methods on micro-fabricated
chips used for EIS detection [94]. By analyzing cyclic voltammetry scans, scanning electron
microscope images and capacitance measurements, the authors demonstrated that the
two electrochemical cleaning techniques could effectively remove contaminants from the
chips without degradation. However, the reductive pathway may lead to the deposition of
materials on the conducting surface. Therefore, oxidative electrochemical treatment was
found to be the most suitable and reproducible method for cleaning gold electrodes [94].
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4.4. Non-Specific Adsorption

Non-specific adsorption of molecules has a critical impact on biosensing measure-
ments, especially when using capacitive detection [10,62]. Any molecule immobilized at the
surface of a capacitive sensor through non-specific interactions may result in false-positive
detection, and therefore greatly reduces its selectivity. Such matrix effect was described
by Liao and Cui, in the context of capacitive detection of platelet-derived growth factor.
The study demonstrated the beneficial effect of electrode potential sweeping in potentio-
static EIS for discriminating between specific target binding and non-specific adsorption of
biomolecules at the surface of the sensors [65]. Although, despite this optimization, the
ratio of the positive to negative control was still around 10:1. By increasing the background
noise, the matrix effect can also decrease the sensitivity of the studied device. For example,
the detection of Herpes virus 1 reached a LoD value of 0.21 fM in neat serum while the
attomolar detection range was achieved in pure buffer [33].

A variety of anti-biofouling strategies—classified as active or passive techniques—were
explored for many biomedical applications, such as bioelectronic devices, biosensors,
nanoparticles, dental implants or polymeric materials [95–99]. Physical and chemical
passive methods include the addition of adsorption blocking agents and the addition of
a repelling chemical layer based on a polyethylene glycol (PEG) layer, alkanethiol SAM
layer, or zwitterionic polymer. Controlling the extent of biomolecule adsorption may also
be achieved by changing the surface topography. Active methods, on the other side, create
shear forces that are stronger than the forces causing non-specific adsorption. They can be
generated through acoustic waves generation, pressure-driven flow, or from electrical or
mechanical transducers [95]. To our knowledge, only passive methods were reported to
reduce non-specific adsorption of biomolecules on capacitive sensing surfaces.

Among physical methods, the addition of bovine serum albumin (BSA) as a blocking
agent was reported for the detection of enzymes [35], Abs [34], disease protein markers [8,14,67],
viruses [26,32] or cells [73]. The use of biotin [74] or glycine [53] was shown to minimize
non-specific binding events. Additionally, the addition of concentrated solutions of KCl was
found to greatly reduce non-specific adsorption by disrupting weak interactions. Dijskma
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et al. showed that the injection of 100 mM KCl solution completely remove interferon
gamma from gold surface without damaging the SAM functionalized layer [75].

Among chemical methods, the addition of an anti-biofouling PEG layer was high-
lighted in DNA-hybridization and interleukin biosensors [57,76]. Miranda-Figueroa et al.
demonstrated the beneficial effect of added PEG chains on malaria biosensors. Not only
the matrix tolerance was improved, but also the LoD adynamic detection range were
enhanced [30].

The design of suitable strategies against nonspecific binding highly depends on the
nature of the targeted analytes, therefore requiring extensive trial iterations. Dykstra et al.
developed a microfluidic platform that can measure protein adsorption on selected surfaces.
This device offers the possibility to rapidly screen various materials toward their tendency
to repel biomolecules, and could be of great interest for the design of capacitive biosensors
in the future [100].

4.5. Surface Insulation and Coverage

The surface of capacitive sensors must be insulated and hole-free to avoid charges
to move through the layer, leading to the apparition of a faradaic current between the
conductors [3,19,20,71], that would result in a change of capacitance of the surface and
therefore a decrease in sensitivity [10]. Common insulating strategies relies on SAM
covering based on alkyl-thiols, polymeric layers and silanization [19].

In the context of gold-thiol SAM formation, alkylthiols are added to insulate the
sensing layer. Mirsky et al. reported that long chains should be privileged as short
chains were prone to desorption. Proper insulation of gold electrodes was achieved with
15-/16-mercaptohexadecanoic acid [73]. Later, dodecanethiol [21,39,40,76–78,88], hexade-
canethiol [101], mercaptohexanol [102], and mercapto-undecanol [4] were extensively used
to insulate gold electrodes.

The quality of surface insulation largely depends on the selection of the functionaliza-
tion procedure. Rickert et al. studied the insulation of epitope-modified gold electrodes
with hydroxyundecanethiol (HUT). Simultaneous adsorption of a mixture of HUT and
peptide was compared to the sequential adsorption of both components. The adsorption
of mixed solutions resulted in poorly reproducible functionalization. On the contrary,
reproducible and highly resistive films were obtained when the HUT was adsorbed after
the epitope was immobilized [28].

In addition to provide chemical functionalities for the post-conjugation of capture
biomolecules, polymeric layers were reported for the insulation of conductive electrodes.
The insulation of Abs-modified gold electrodes with a 50 nm polytyramine film led to the
detection of HSA down to 1.6 ng/mL concentration and with high reproducibility [72]. The
quality of the insulating layer was probed by cyclic voltammetry. Berney et al. developed
a capacitive detector for transferrin and studied the effect of PEG, as a non-conductive
polymer, to insulate the sensing surface. When transferrin Ab was immobilized on non-
insulated surface, the capacitance measurements after exposition to the targeted antigen
were not reproducible. The addition of a PEG overlay system indicated the possibility to
develop differential capacitive biosensors. However, the lack of continuity and integrity of
the PEG layer did not allow for quantitative measurement of transferrin [20].

In conclusion, several requirements must be followed when designing and preparing
a sensing surface for capacitive biosensors. First, the surface must be free of contaminants
and prepared in as clean conditions as possible. Then, an insulation layer must be present
to avoid faradaic currents that would lead to a drastic decrease in sensitivity. In the case
of deposition of an oxide or polymeric layer on top of the electrodes, this layer should
be however as thin as possible to keep good sensitivity properties. Finally, non-specific
adsorption should be avoided to reduce false-positive results. Toward this goal, the addition
of BSA or PEG layers have been the most reported technique.
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5. Conclusions and Perspectives

Capacitive biosensors could greatly contribute to various diagnostic applications.
Compared to other classic sensors, they offer the opportunity to develop in rapid and
non-expensive portable sensors. Since their first development 30 years ago, capacitive
biosensors were mainly applied to virus detection, and cancer or inflammatory diseases
diagnostics. Several limitations restrained their expansion to other clinical applications. In
particular, non-faradaic impedimetric sensors generally suffered from poor measurements
reproducibility [4,12,13,19] and large standard deviations, as a result of non-optimal surface
characteristics. Among the parameters which were evaluated to improve the performance
of capacitive biosensors, one might concentrate on the following aspects: (i) surface cleaning
by electrochemical treatment proved to increase the repeatability of subsequent function-
alization steps; (ii) selection of the immobilization strategy in combination with proper
insulation techniques showed to have drastic impact on the resulting sensor sensitivity;
and (iii) the addition of blocking agents to mitigate non-specific adsorption events resulted
in enhanced specificity and sensitivity.

Considering these multiple parameters, we can expect that the next generation of ca-
pacitive biosensors will result from rational design of the surface composition, morphology
and geometry to enlarge the scope of these sensors in clinical applications.
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