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Abstract

DNA is of fundamental interest in science, of course playing a central role in biology
and medicine, but also being a subject of great interest in chemistry, physics, and
nanotechnology. This thesis is a contribution towards bridging the different length
scales and level of detail in descriptions inherent to multiple different perspectives
on DNA, from fully atomistic Molecular Dynamics computer simulations, through
the statistical mechanics of (hetero-)polymers, to genomics and bioinformatics.

The local physical properties — such as intrinsic shape and flexibility — of the DNA
double-helix are today widely believed to be influenced by its specific base sequence
in a highly significant way. Furthermore, there is strong evidence that these proper-
ties play a role in many important cellular processes, from chromatin compaction to
protein binding and nucleosome positioning. In order to address such biologically
pertinent problems, our aim is to develop mathematical and computational tools
based on the sequence-dependent mechanical properties of the double-helix so
as to be able to both predict and identify exceptional sequences and sites within
genome-length data sets.

For this, we build on the previously developed cgDNA+ coarse-grain model, which
provides a detailed sequence-dependent description of the statistical mechanics
of DNA. The cgDNA+ model is trained on Molecular Dynamics (MD) simulation
data, and has been shown to reproduce statistics drawn from MD time series to a
remarkably high degree of accuracy for both training set and test simulations. For a
given sequence of any finite length, it predicts a multivariate Gaussian distribution on
a set of configuration coordinates corresponding to standard degrees of freedom of
DNA (tilt, roll, twist, etc.), with the particular property that the inverse covariance (or
stiffness) matrix is banded, with an overlapping squares sparsity pattern. A particular
feature of the cgDNA+ model is that its mean, or ground state, has a significant,
non-local dependence on the DNA sequence, as is known to be the case in reality.

The first main result of this thesis concerns the marginals of such Gaussian distribu-
tions. Namely, we present a pure linear algebra derivation of the fact that marginals
of Gaussians with inverse covariances with an overlapping square sparsity pattern
also have banded inverse covariance matrices, with the same sparsity pattern. Our
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Abstract

proof of this elementary, but for us fundamental, basic result further provides a
highly efficient procedure for computing such marginal inverse covariance matrices.
This marginalisation procedure is then implemented in the specific context of the
cgDNA+ model as a computational tool which we have named cgDNAloc. The
computational efficiency of cgDNAloc allows large (e.g. with millions of elements)
ensembles of marginal (but still quite high-dimensional) Gaussians to be computed
by sliding a window along genomic length-scale sequences. cgDNAloc also allows
for an averaged marginalisation to be computed for a given sequence fragment
embedded in all possible flanking sequences, which, due to the challenge of the
non-local sequence-dependence of DNA mechanics, is necessary to assign particular
statistical mechanics properties to specific short sequence fragments in a large
variety of sequence contexts.

As a first application of cgDNAloc, we introduce and use some dimensionality
reduction methods to visualise and cluster cgDNA+ predictions on exhaustive
ensemble of k-mers, embedded in flanking sequences. In particular, we apply a
form of Fisher-Information weighted Principal Component Analysis to ensembles
of cgDNA+ Gaussians of k-mers, with the desirable property to be invariant under
a linear change of coordinates. This methods yields a striking clustering of all
k-mer sequences based only on their base pair content in the purine/pyrimidine
alphabet. This clustering is much less clear cut in a standard PCA analysis. As a
second, illustrative application, we present a method inspired from information
theory techniques to scan the genome of S. cerevisiae (brewer’s yeast) in search of
mechanically exceptional sequences, thus using cgDNAloc to bridge the gap in scales
between atomistic models and genomics.

The body of the thesis concerns sequence-dependence in the standard {A, 7, C, G}
base alphabet. However within biology it is now known that base modifications
such as methylation play an important role. In a discussion of future work in the
Conclusions section some preliminary results are presented which indicate that
methylation has a very strong impact on the statistical mechanics of the DNA double
helix.

Keywords: DNA mechanics, banded model, genomics, outlier detection, information
theory, dimensionality reduction.
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Résumeé

LADN présente un intérét fondamental pour la science, jouant bien str un role
central en biologie et en médecine, mais étant également un sujet de grand intéret
en chimie, en physique et en nanotechnologie. Cette theése est une contribution a
I’établissement d'un pont entre les différentes échelles de longueur et le niveau de
détail des descriptions inhérentes a de multiples perspectives différentes sur 'ADN,
depuis les simulations informatiques de dynamique moléculaire entierement atomis-
tiques jusqu’a la génomique et la bioinformatique, en passant par la mécanique sta-
tistique des (hétéro)polymeres.

Les propriétés physiques locales - telles que la forme et la flexibilité intrinseques
- de la double hélice de 'ADN sont aujourd’hui largement considérées comme
étant influencées de maniere tres significative par sa séquence de bases spécifique.
En outre, il existe des preuves solides que ces propriétés jouent un role dans de
nombreux processus cellulaires importants, de la compaction de la chromatine a
la liaison des protéines et au positionnement des nucléosomes. Afin d’aborder ces
problemes biologiquement pertinents, notre objectif est de développer des outils
mathématiques et informatiques basés sur les propriétés mécaniques de la double
hélice dépendant de la séquence, afin de pouvoir a la fois prédire et identifier des
séquences et des sites exceptionnels dans des ensembles de données de longueur
génomique.

Pour ce faire, nous nous appuyons sur le modele a gros grains cgDNA+
précédemment développé, qui fournit une description détaillée de la mécanique
statistique de ’ADN en fonction de la séquence. Le modele cgDNA+ est entrainé sur
des données de simulation de dynamique moléculaire. Pour une séquence donnée
de longueur finie, il prédit une distribution gaussienne multivariée sur un ensemble
de coordonnées de configuration correspondant aux degrés de liberté standard de
I’ADN (inclinaison, roulis, torsion, etc.), avec la propriété particuliere que la matrice
de covariance inverse (ou matrice de rigidité) est creuse, avec un modele de sparsité
a blocs carrés superposés. Une caractéristique particuliere du modele cgDNA+ est
que sa moyenne, ou état fondamental, a une dépendance significative et non locale
sur la séquence d’ADN, comme c’est le cas dans la réalité.

Le premier résultat principal de cette these concerne les marginales de telles distri-
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Résumé

butions gaussiennes. Plus précisément, nous présentons une dérivation purement a
base d’algebre linéaire que les marginales des gaussiennes dont les covariances in-
verses ont un motif de sparsité en blocs carrés superposés ont également des ma-
trices de covariance inverse en bandes, avec le meme motif de sparsité. Notre preuve
de ce résultat de base élémentaire, mais pour nous fondamental, fournit en outre
une procédure tres efficace pour calculer ces matrices de covariance inverse margi-
nales. Cette procédure de marginalisation est ensuite implémentée dans le contexte
spécifique du modele cgDNA+ en tant qu’outil de calcul que nous avons nommé cgD-
NAloc. Lefficacité de calcul de cgDNAloc permet de calculer de grands ensembles
(par exemple, des millions d’éléments) de distributions marginales gaussiennes (mais
toujours de tres haute dimension) en faisant glisser une fenétre le long de séquences
d’échelles de longueur génomiques. cgDNAloc permet également de calculer une
marginalisation moyenne pour un fragment de séquence donné intégré dans toutes
les séquences flanquantes possibles, ce qui, en raison du défi posé par la dépendance
de la séquence non locale de la mécanique de 'ADN, est nécessaire pour attribuer des
propriétés de mécanique statistique particulieres a de courts fragments de séquence
spécifiques.

Les résultats de I'analyse de 'ADN peuvent étre utilisés dans une grande variété de
contextes de séquence.

Comme premiere application de cgDNAloc, nous introduisons et utilisons certaines
méthodes de réduction de la dimensionnalité pour visualiser et partitionner les
prédictions de cgDNA+ sur un ensemble exhaustif de k-mers, intégrés dans des
séquences flanquantes. En particulier, nous appliquons une forme d’analyse en com-
posantes principales pondérée par I'information de Fisher a des ensembles de distri-
butions cgDNA+ de k-mers.

De maniere frappante, cette méthode permet de regrouper toutes les séquences de
k-mer en se basant uniquement sur leur contenu en paires de bases dans I'alphabet
purine/pyrimidine. Cette partition est beaucoup moins nette dans une analyse PCA
standard. Comme seconde application illustrative, nous présentons une méthode
inspirée des techniques de la théorie de I'information pour scanner le génome de S.
cerevisiae (levure de biere) a la recherche de séquences mécaniquement exception-
nelles, utilisant ainsi cgDNAloc pour combler le fossé des échelles entre les modeles
atomistiques et la génomique.

Le corps de la thése concerne la dépendance des séquences dans l'alphabet de
base standard {4, T, C, G}. Cependant, en biologie, on sait maintenant que les mo-
difications des bases telles que la méthylation jouent un role important. Dans une
discussion sur les travaux futurs dans la section Conclusion, quelques résultats
préliminaires sont présentés, qui indiquent que la méthylation a un impact tres im-
portant sur la mécanique statistique de la double hélice de '’ADN.
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Introduction

It is arguable that DNA is one of the most famous molecules in history. Since the
description of its structure by Franklin, Wilkins, Watson and Crick in 1953, the
double helix has become a fundamental cornerstone in biology, and remains today
at the centre of our understanding of life. Beyond this role in the life sciences and
medicine, the DNA molecule is also of great interest to chemists, physicists, materials
scientists (for nanotechnology) and computer scientists (for its unique structural
and dynamical features that allow it to store information in both a stable and flexible
way').

In its most common form DNA molecules form right-handed double helices of two
chains of bases or nucleotides. Briefly, the fundamental units of DNA are nucleotides;
they are formed by a nucleobase coupled to a pentose sugar (deoxyribose) and a phos-
phate group. The base in each nucleotide is of four possible types: adenine (A), cy-
tosine (C), guanine (G), and thymine (T), and the type of base encodes the sequence
of the DNA. The four bases are divided into two types of heterocyclic aromatic com-
pounds: adenine and guanine have two rings and are called purines (denoted by R),
while cytosine and thymine have a single ring and are called pyrimidines (and are
denoted by Y). In particular purines are approximately twice as big as pyrimidines.
The base in each nucleotide binds to a base in another complementary nucleotide
through hydrogen bonds, always (in standard DNA) a purine with a pyrimidine, and
more specifically with A always binding to T with two hydrogen bonds, and C binding
to G with three hydrogen bonds. The resulting structures are called base pairs, some-
times meaning just the two bases, and sometimes meaning the full two nucleotides,
i.e. with the sugars and phosphates included. The base pairs are then covalently
(i.e. very strongly compared to hydrogen bonds) linked to each adjacent neighbour
through the sugar-phosphate backbones, which are formed because the phosphate
in each nucleotide is covalently bonded to the sugar ring of an adjacent nucleotide.
(The bases in adjacent nucleotides can also interact directly through various mecha-
nisms, e.g. mutual avoidance, and other so-called stacking interactions.) The detailed
chemistry of how the phosphate group attaches to the adjacent sugar implies a direc-

'For example, it has recently been used to encode entire pieces of music [1].



Introduction

tionality or orientation of the sugar-phosphate backbone via a conventional number-
ing of the carbon atoms inside the closed, deoxyribose sugar ring. By convention the
base sequence in the nucleotides forming a single backbone is always read and writ-
ten from the 5’ (or phosphoryl) end to the 3’ (or hydroxyl group) end, or, more briefly,
in the 5’-3’ direction, with the sequence in the {A, 7T, C, G} alphabet. A significant
point for this work is that the two backbones in the double helix have opposite ori-
entations, so that the double helix is formed by two antiparallel DNA backbones, or
Watson and Crick strands, meaning that the 5’ end of one strand, say Watson, always
corresponds to the 3’ end of the other, say Crick, strand. In particular after one partic-
ular backbone is picked as the reading, or Watson, strand, the sequence, or primary
structure, of a double helical fragment of DNA is just an arbitrary string of letters from
the four element alphabet. In bioinformatics this string is routinely of millions of let-
ters in length, while the physical properties of specific sequences are known to vary
significantly between fragments at the length scale of only 10 base pairs. And in the
four letter alphabet there are already more than a million different possible 10-mer
sequences.

A significant point in what follows is that if the choice of reading strand is switched
from the Watson to Crick strands, then the AT and GC base pairing rules combined
with the 5’ to 3’ sequence reading convention and the anti-parallel backbones im-
plies a transformation of sequence. For example for a four base pair tetramer (or
4-mer) the sequence (5’)ATCG(3’) is the same physical eight nucleotide double he-
lical fragment as the sequence (5’)CGAT(3’), where here we have explicitly kept the
5" and 3’ end labels, which are typically suppressed. Thus the number of indepen-
dent sequences for a fragment of given length is approximately halved, although the
presence of palindromic sequences complicates the count slightly. A palindromic se-
quence is one where the Watson and Crick sequence reads are identical, for example
(5")AGCT(3’). Palindromic sequences are known to be important in molecular biol-
ogy (for example the P in the famous CRISPR gene editing acronym stands for palin-
dromic), and palindromy will play a significant role in the sequence clustering results
presented here.



"m/[ 'PH" : ;

g i l4‘ J"

;,élhgﬁ'(-

Figure 1: An example of a DNA average or ground state shape reconstruction ob-
tained from cgDNAweb https://cgdnaweb.epfl.ch/ which is the online implementa-
tion of the cgDNA+ model that is the starting point for the work presented in this
thesis.

The starting point for this thesis is the cgDNA+ model described in detail in [2], which
is itself an evolution from the prior cgDNA model [3]. The cgDNA+ model is state
of the art within the class of models which predict for a double helical fragment of
DNA of given sequence S an equilibrium distribution, or probability density function
(pdf), expressed in a set of coordinates describing the configuration of the DNA at a
certain level of resolution. Different levels of resolution correspond to the modeling
decision of which level of coarse-graining to adopt, and the specific choice of a set of
model coordinates w. Such models take the form of a mathematical formula for the
equilibrium statistical mechanical distribution p expressed as function of the chosen
model coordinates w

QL —uws)
p(w7S) - Z(S)e )

with in the Gaussian or multivariate normal approximation

L w - p(8)) - K(S)(w — u(S))

U(w;S):2

Here the minimal energy configuration, or groundstate vector u(S) is regarded as
a prediction of average or expected shape, while rigidity is encoded in the inverse
covariance or precision or, for us, stiffness matrix K(S). The constant, or partition
function, Z(S) simply normalises the distribution. The existence of such an equilib-
rium distribution pdfis not guaranteed in any mathematical sense, but it is expected
to arise on physical grounds due to a fluctuation-dissipation hypothesis applied to
the interaction between the DNA itself and a surrounding solvent heatbath. The
accuracy of the Gaussian approximation to the equilibrium distribution is also open
to question. One motivation for making the Gaussian approximation is that it is
typically very difficult to check model predictions of statistics against any observed
experimental data statistics beyond second order, so that a Gaussian distribution is
automatically the maximum entropy approximation to the available data.



Introduction

From this point of view, many early coarse grain models of DNA assumed that each
base pair was a single rigid body, or equivalently that the degrees of freedom between
the two bases in a base pair were only treated implicitly, with the focus being on un-
derstanding a distribution of inter base pair parameters (or coordinates). In this case,
for a fragment of n base pairs the configuration coordinate w € R%"~1), Moreover,
two distinct nearest-neighbour locality assumptions were typically made at this level
of coarse graining, namely that the statistics of each subset of 6 inter base pair coor-
dinates, or junction variables, in w, were independent one from another, and that the
statistics of a given junction, depended only on the sequence composition of the two
flanking base pairs. In the Gaussian approximation these assumptions translate into
the statements that the stiffness matrix K(S) is 6 x 6 block diagonal, with each block
depending only on the local sequence (and indeed many authors further assumed
that the 6 x 6 blocks were themselves diagonal, which is now known to be a very poor
approximation). Similarly the subvectors of the groundstate vector y(S) have only a
local, dimer, dependence on sequence.

The cgDNA model introduced an explicit treatment of flexibility between the two
bases in a base pair by including an explicit treatment of intra base pair parame-
ters, and allowing coupling between inter and intra coordinates, but still with the
degrees of freedom to the phosphate group only being treated implicitly within each
nucleotide. At this level of coarse graining, we have that w € R(12"=6) for an n base
pair fragment. One of the unique features of the c¢D/NA Gaussian model is that it
was shown that assuming a physical nearest neighbour-interaction between bases
with a local sequence dependence corresponds to assuming that the free energy U
is a sum of localised quadratic energies along the DNA chain. However, because of
the double chain topology, this leads to a banded (not block diagonal) stiffness ma-
trix K(S) with 18 x 18 blocks with 6 x 6 overlaps, but with each 18 x 18 block only
having localised (dimer) sequence dependence. For such banded stiffness matrices
the associated covariance matrix is dense, with nonlocal sequence dependence of its
entries throughout. And similarly it was shown that the groundstate vector (S) also
has (often quite strong) nonlocal sequence dependence. The parameter sets for the
cgDNA model were extracted by fitting model predicted statistics for a small set of
training oligomers (of moderate length) to comparable statistics drawn directly from
long duration, fully atomistic molecular dynamics (or MD) simulations of the same
fragments. The model was verified by testing the locality assumptions made during
the parameter estimation stage to statistics drawn from both training set and inde-
pendent, test MD simulations, with quite good fits. (The accuracy between MD sim-
ulations and physical reality is another, distinct issue.)

Finally the cgDNA+ model considered here, added an explicit treatment of the de-
grees of freedom between the phosphate group and base in each nucleotide. There is



no new mathematical structure introduced in passing from the cgDNA to cgDNA+
models, and all the remarks concerning nonlocality of covariace and groundstate
carry over. In cgDNA+ the configuration coordinate is now w € R(Z*~18) for a n
base pair fragment, and the stiffness matrix K(S) now is banded with 42 x 42 blocks
with 18 x 18 overlaps. The main difference in passing from cgDNA and cgDNA+ is
the observation that the fit to statistics taken from MD simulation is now remarkably
good [2]. The doubling of the dimension of the degrees of freedom in the Gaussian
leads to an order of magnitude decrease in fitting error (measured in Kullback-Leibler
divergence per degree of freedom). With its particularly high level of detail, a price
to pay for the cgDNA+ model accuracy is the relatively high numbers of parameters
involved, as well as the high dimensionality of the predicted Gaussian. For example,
for a sequence of only 11bp in the length w € ®#24¢, and the coordinate groundstate
vector and (symmetric) stiffness matrix represent together a total of 30, 627 indepen-
dent numbers. In this sense the cgDNA+ model has the flavour of a machine learning
model, where no one model parameter is of great interest, rather it is understanding
ensembles of model predictions that is the main goal.

The goals of this thesis are to introduce and exploit mathematical frameworks
and tools to tackle the challenges of understanding the large ensembles of high-
dimensional Gaussians generated by the cgDNA+ model. First, based on a geometri-
cal approach, we discuss a variety of ways to describe a space of multivariate Gaus-
sian distributions. Second, we use appropriate unsupervised statistical learning tech-
niques for dimensionality reduction on data sets generated by the cgDNA+ model.
This provides general mappings of DNA mechanical properties, that allow for visual-
isation, and clustering. Finally, We construct a generic outlier detection method and
show how to apply it to scan genomes in the search for sequences with exceptional
mechanical properties.

The thesis is structured in two parts: Part I (Chapter 1-3) is dedicated to a summary of
the necessary theoretical background that will be used, namely the cgDNA+ model,
the basic theory of Gaussian distributions, and presentation of some statistical learn-
ing techniques, all of which are used in Part II. Most of the content of Part I can be
regarded as standard, or at least previously known, results.

Chapter 1 gives a basic introduction to the cgDNA+ model.

Chapter 2 starts with a reminder about multivariate Gaussian distributions and their
basic properties, then goes on with exposing different possible choices of diver-
gences, distances and metrics to compare Gaussian distributions, with an emphasis
on scale invariance. It then ends with a discussion on the notion of average of an
ensemble of Gaussians.



Introduction

Chapter 3 is dedicated to theoretical background around dimensionality reduction
techniques. It presents the various methods used throughout this work, and in par-
ticular for the analysis of the cgDNAloc data sets studied in Part II. We then illustrate
how these methods can be applied to ensembles of Gaussian distributions. Close at-
tention is paid to the invariance of the projection to lower dimension by linear change
of coordinates on the space on which the Gaussian distributions in the ensemble are
defined. In particular, a simple but appropriate "stiffness-weighted” metric PCA is
introduced.

In Part II, we start (Chapter 4) with an original proof of a simple result concerning
marginalisation of Gaussians with banded stiffness matrices which yields the com-
putationally efficient marginalisation tool cgDNAloc. We then (Chapter 5-6) proceed
to the applications of the different methods and tools of Part I and discuss the results.

In Chapter 4, we extend a previous result by Glowacki [4] on the maximum entropy
fit of an inverse covariance matrix with a prescribed sparsity pattern consisting of
overlapping diagonal square subblocks, to show that (square) marginals of such
matrices inherit the same banded structure. Moreover, we provide an algorithm to
compute these marginal inverse covariances explicitly in a direct and highly efficient
way. Although the result stands in more generality, the given algorithm is motivated
by and is particularly useful for applications of the cgDNA+ model to short sequences
(sites, or loci) embedded in large DNA fragments - typically, genomic material). For
it allows us to address the crucial non-locality of the cgDNA+ predictions, and thus
can capture the effects of nearby base pair content in the flanking regions of a site.
We call cgDNAloc the marginalisation algorithm, as well as the resulting Gaussian
marginal probability density.

Chapter 5 deploys the tools of Chapter 3 and 4 in an attempt to map, and classity,
the cgDNA+ predictions for exhaustive lists of short sequences (up to 10 bp). This
is done through unsupervised dimensionality reduction methods, starting with
simple Principal Component Analysis. In particular, we show how the metric PCA
introduced in Chapter 3 leads, for any sequence length N, to a clear clustering of
the 4"V possible sequences after projection. This clustering is entirely determined
by the purine/pyrimidine content of the sequences, with the number of clusters
consistently equal to 2%,

In the same spirit as Chapter 5, Chapter 6 is devoted to tackle the following question:
can we characterise sub-sequences with “exceptional” mechanical properties? In the
context of the cgDNA+ model, we develop and apply an outlier detection procedure to
detect sequences whose cgDNA+ distribution is either particularly far from, or close
to an average distribution - as described in Chapter 2. Together with the cgDNAloc



tool, this procedure is then applied on exhaustive ensembles of sequences as in Chap-
ter 5. Then, itis also used to scan the chromosomes of S. Cerevisiae, for sub-sequences
of length from dozens to 100 bps. In both cases, we find that sequences that can be
considered as exceptionally far from average, are sequences with high A/T content,
and more specifically even sequences with high AA/ TT dimer step content.

The thesis closes with a Conclusion section including a discussion of possible di-
rections for future work. In particular we present some preliminary results for the
cgDNA+ model, indicating that when the standard sequence alphabet is extended
to include some epigenetically modified bases, then some new and strikingly strong
variations in the ensembles of equilibrium distributions can be observed.






PART I: Background

Inside eukaryotic cells, DNA is tightly packed in the nucleus and for most of the cell
cycle, chromosomes form a fuzzy structure called chromatin. In humans, each single
cell contains the equivalent of about 2 meters of DNA. In such a dense environment,
the accessibility of genomic regions to the various factors interacting with DNA in the
nucleus plays a crucial role to gene regulation and other nucleic processes.

In terms of scales, the range between single base pair and chromosomes is filled with
several intermediate structures, whose description and understanding is still an ac-
tive field of research. Worth to mention is the fundamental subunit of chromatin,
the nucleosome. 1t consists of 147 bp of DNA wrapped around a core of eight histone
proteins. Each human cell contains about 30 million nucleosomes [5], thus covering
major part of the genome.

Nucleosomes, as well as higher order structures in the chromatin, strongly rely on
the local chemical, but also mechanical properties of the DNA molecule of length of
a few tens of base pairs. Indeed beyond the paradigmatic straight double helix model
of Watson and Crick, it is now known that DNA fragments come in a wide variety of
conformations. More precisely, one distinguishes between two phenomenon: first,
depending on the underlying basepair sequence, some fragments are not straight,
but can exhibit strong intrinsic bending [6]. This is referred to as DNA shape. Second,
placed in a thermal bath (as it is inside the nucleus), fluctuations affect the DNA
conformation in time as a function of its local flexibility - or, equivalently, its local
rigidity, or stiffness. It should be emphasised that DNA shape and stiffness do not
have a universal definition, and their precise meaning can vary by context.

When it comes to physical models of the DNA shape and flexibility, it is all about scale.
The most detailed models are provided by Molecular Dynamics (MD). These full
atomistic in silico simulations allow to reproduce the thermodynamics of a molecule
in solution for periods of time corresponding to (up to) tens of microseconds. Despite
their impressive descriptive power, the computational cost of these models and their
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PART I: Background

certain lack of flexibility (one DNA fragment per simulation) does not make them
directly applicable to genomic contexts, for example. At the other side of the scale
spectrum, rod-like models can approximate mechanical features of DNA pieces at
the scale of chromosomes, but do not generally account for sequence content.

At short length scales, popular coarse grained models are of two major types: the so
called rigid base pair models [7] and the rigid base models. In rigid base pair models,
all the atoms forming a base are approximated as a single rigid body. The conforma-
tion of an entire DNA chain is then described through the relative rigid body motion
between each neighboring base pair, with 6 degrees of freedom: 3 rotational (tilt, roll,
twist), and 3 translational (slide, shift, stagger). In rigid base models, 6 additional
degrees of freedom are added to describe the relative displacement between the two
bases inside each base pair.

In this work, we will focus on one of these coarse grain models, the cgDNA+ model.
This model is based on the previous rigid base cgDNA model, which was developed by
Maddocks, Gonzalez, Petkeviciute et al. [8] [3]. In addition to the base pair degrees of
freedom, the cgDNA+ upgrade [2] also includes an explicit description of the positions
and rotations of phosphate groups along the chain.

While parametrisation of coarse grain models can be done in different manners, the
cgDNA model family is parametrised based purely on MD simulation data. The idea
is to extract essential features - namely, shape and stiffness - of the dynamics from a
ensemble of MD simulations, and then being able to predict these features for any
given DNA sequence.

1 cgDNA+: a sequence dependent coarse-grained model of
DNA mechanics

In this section, we briefly present the cgDNA+ model, which will be the central tool of
this thesis. The original fully detailed description of it is available in [2].

The cgDNA+ model is a sequence-dependent coarse-grain model of double stranded
B-form DNA with an explicit treatment of bases and phosphate groups. The goal of
this model is to predict the sequence-dependent groundstate as well as the flexibility
of double-stranded B-form DNA. There is a now a variety of different sets of param-
eters for cgDNA+ (see [9], [2], [10]). All the analysis and computations performed for
this thesis use the DNA parameter set from [10], which is still currently the most re-
cent update.

12



1. cgDNA+: a sequence dependent coarse-grained model of DNA mechanics

We start by shortly describing a prior version of the model, called cgDNA, that shares
common essential features with cgDNA+. It is a sequence-dependent, rigid-base,
coarse—grain model of B—-form DNA, without explicit treatment of phosphate groups,
and was introduced in [3, 11]. This model is also parametrised from full atomistic
molecular dynamics (MD) simulations of a set of sequences of short length. Given
a parameter set P and an arbitrary DNA sequence S, cgDNA predicts a Gaussian
equilibrium probability density function in configuration space (see below), by re-
constructing the mean p = p(P,S) € RY, or ground state, and the precision matrix
K = K(P,S) € RV*N  or stiffness matrix:

pwiP.S) = 5 exp {5 (w1 Kw-p)}. W

The coordinate vector w € RY encodes the configuration in the following way:
coarse-grained at the base level, a molecule of double stranded DNA can be inter-
preted as a double chain of rigid bodies. More details can be found in [12].

v e

Buckle Propeller Opening Tilt Roll Twist
Shear Stretch Stagger Shift Slide Rise

Figure 2: The twelve (6 rotational, 6 translational) standard degrees of freedom in a
rigid-base model of the DNA molecule like the cgDNA, model, and the cgDNA+ model
- which also includes explicit degrees of freedom for phosphate groups of the DNA
backbone.

A set of internal coordinates for the double chain configuration is then introduced,
which is divided into inter coordinates describing the 3 translational and 3 rotational
degrees of freedom between consecutive base pairs, and intra coordinates describ-
ing these degrees of freedom between the two bases inside a base pair. Those take
standard names: Tilt, Roll, Twist, etc. (see Figure 2). For a DNA fragment of N bp,
there are a total of 6(V — 1) inter coordinates plus 6N coordinates, thus w € R'2V=6,
The Curves+ software [13] is used in the fitting procedures. When considering a dou-
ble representation of a n base—pair long DNA sequence S, the internal coordinates
w(S) € RI2n=6 gatisfy the following physical property, which reflects Crick-Watson
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PART I: Background

symmetry,

w(8S) = Egp_1w(S), 2)
where S is the complementary sequence to S and Es,_; € R(127=6)x(122-6) jg 3 block,
trailing diagonal matrix composed by 2n — 1 copies of £ = diag(—1,1,1,—1,1,1) €

RGXG
E

E
Eop 1 = . ; 3)

T ~1
where Eo, 1 = F3, | = E;,_ ;.

Another assumption concerns the stiffness matrix K (S) € R(127-6)x(12n=6): hased on
observation of statistics estimated from MD trajectories, we assume that the stiffness
matrix K is banded, i.e is a sparse matrix in which non-zeros entries are all close to
a diagonal band. More precisely the sparsity pattern of K is 18 x 18 block diagonal
with 6 x 6 overlaps:

Now we turn our attention to the updated cgDNA+ model, which is described in
[2]. Similarly to cgDNA, given a parameter set P and an arbitrary DNA sequence S,
cgDNA+ predicts a Gaussian equilibrium probability density function in the configu-
ration space by reconstructing the ground state u = u(P,S) € RM and the stiffness
matrix K = K(P,S) € RM*M;

p(w;S,P)Z;exp{—;(w—u)‘ff(w—u)}7 (4)

where this time M = 24N — 18, with N the length in basepairs of the sequence S. Any
configuration w € R?*V~18 can be divided into N — 1 sets of 6 inter-base—pair internal
coordinates, N sets of 6 intra—base—pair internal coordinates, and 2(N — 1) sets of
6 base-to—phosphate internal coordinates. As a single internal is represented by a
six dimensional vector the total number of components in the configuration w are
24N — 18. The inter- and intra—base—pairs coordinates havealready been introduced
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1. cgDNA+: a sequence dependent coarse-grained model of DNA mechanics

in chapter 2 of [2] while the base-to—-phosphate internal coordinates have been
introduced in chapter 8 of [2] and are further discussed in the next section.
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Figure 3: (Courtesy of Alessandro Patelli’s thesis [2]) Absolute error between model
predicted interbasepair (top) and intrabasepair (bottom) degrees of freedom and MD
observation. In solid, the error obtained by the cgDNA+ model and in dashed the er-
ror obtained by the cgDNA model. The sequences considered are part of the training

dataset.
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1. cgDNA+: a sequence dependent coarse-grained model of DNA mechanics
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Figure 4: (Courtesy of Alessandro Patelli’s thesis [2]) Comparison of base-to-
phosphate degrees of freedom, on the reading strand, between cgDNA+ predictions
(solid line) and MD observation (dashed line) for the sequences (1,5,11) of the Palin-
dromic Library. In the first column we show the rotational coordinates, while in the
second the translations.

The parameter set format for the cgDNA+ model is a natural extension of the cgDNA
one, but with the particular property that the end sigma vector and stiffness matrices
will be of different dimension than the interior ones. In detail the cgDNA+ parameter
set is defined by

P={o".0% KO KL C P (5)
where Pyor = [R36]16 x [R*2]10 x [S36]16 x [S#2]10, and SV is the set of N x N symmetric
matrices. The end sigma vectors are of dimension 36 while the interior ones are
of dimension 42. Equivalently, the stiffness end blocks are of dimension 36 x 36
while the interior ones are of dimension 42 x 42. The difference in dimension
between interior and end blocks is due to the fact that in the MD simulations the
first phosphate group on both strands is absent. Consequently, the first and last
base—pair levels are composed of only an intra-base—pair degree of freedom and a
single base-to—phosphate set of internal coordinates.

Let P be a cgDNA+ parameter set of the form (5) and let S be a V base-pair long DNA
sequence. We can define the reconstruction rule for the stiffness matrix K (P, S) and
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PART I: Background

the weighted shape vector (P, S) in the following way:

K(P,S) = PFK,P,, (6)
o(P,S) = Pgad? @
w(P,S) = K(P,8) 'a(P,S), (8)

where

. ’ e Q/
Ky = diag(K5 %1 X2 XX gXn-1Xed

Y

/ Y. /
oq = (05 XlX?, .. ,UXlX’“, .. ,UX”*X”?’ ),
and the matrix P; € R#2N-12x24N=18 yaqdg
I1g
I
Ig
Ig
Py = I , 9
Iig
Ig
L g |

where we use the notation I,, for the n-dimensional identity matrix. We recall that
the 3’ end blocks for both stiffness and weighted shape can be computed using Crick—
Watson symmetry. More precisely,

KoBY — pb g5eBES (10)

where E% is defined by

(11

Ig

with E = diag(-1,1,1,—-1,1,1) € RS, and E* e R3*36 gatisfy [E5]! = [EY]T =
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1. cgDNA+: a sequence dependent coarse-grained model of DNA mechanics

ES’ e R36%36 with

I
E
, Is
EY = 12
B (12)
Is
_E -

For the interior blocks the Crick-Watson symmetry rule is given by

K@ — _EiI'ltI(CMﬁ_EiIH7 (13)
with ) -
Is
E
I

BN = E , (14)

which satisfy £t = [E™)T = [E™]~1, Finally we have that the complementary se-
quence S of S must satisfy

where

Ef = B . (15)

E3

1.1 Protein Binding Sites and DNA mechanics

We conclude this chapter with a short detour on the role of DNA mechanics in the
understanding of protein binding sites. There are two reasons to do so: the first one
is to provide the context around the research question that is the topic of Chapter
6, that is, can we identify specific short sites in longer sequences as “mechanical
outliers” - in a sense that will be made more precise in the following sections of this
chapter. The second one is that it is an opportunity to present the notion of sequence
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logo, which is both a common and very useful way of visualising lists of sequences in
a compact way, and the most widespread basic probabilistic model for the prediction
of protein binding sites in genomic data. We make extensive use of this visualisation
tool in Chapter 5 and 6.

A challenging topic in the field of today’s genomic studies concerns protein-DNA
interactions and the understanding, finding and prediction of so called Transcription
Factor Binding Sites (TFBS). Transcription factors (TF) are proteins that bind to
DNA, often upstream from a gene transcription start site. TF are known to play an
important role in gene regulation and expression. As opposed to the well determined
way genes encode information for the formation of proteins, there is no clearly
identified mechanism by which TF find their binding sites in the genome. That is,
transcription factor binding site recognition, although clearly not a purely random
process, does not obey simple sequence-based coding rules [14]. It has thus been an
active field of research for several decades to understand the means by which these
recognitions occur. Alternatively, when it comes to prediction of binding sites, sta-
tistical approaches that did not make use of a description of the binding mechanism
at the physical level have demonstrated some level of efficiency. These approaches
encompass a large variety of methods, ranging from basic probabilistic models to
sophisticated machine learning algorithms such as neural networks [15] [16] [17] [18].

One of the earliest type of probabilistic model is based on so called position weight
matrices (PWM). It was proposed by Stormo and al. [19] and is now still widely used.
Briefly, a site to be modeled is seen to have a fixed length of L nucleotides. One
then associates to it a matrix W € R**L| that is as table of scores for each base in
{4, C, G, T} and each position of the site. For any given DNA sequence S = X; - - - X[,
of length L, a total score for that sequence is computed from the matrix W as follows:
first S can be represented as a 4 x L matrix {s;} of 1 and 0, where each column is
filled with zero except at the row corresponding to the base X; of S. The score of S
with respect to IV is then given by the matrix scalar product:

L 4

S-W =Y wis,

i=1b=1

where W = {w;}. Usually, PWM are built using some available experimental data
consisting of a collection of sequences {S;} of length L that have been found to be
binding sites for the protein studied. One often chose to define the entries of W to
be related to the frequencies f;, of the base b and at position i computed from the
collection {S;}. Most commonly,
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1. cgDNA+: a sequence dependent coarse-grained model of DNA mechanics

wy; = 10gy (foi)-

This choice allows to interpret the score of a sequence as its probability to be drawn
from a product of L independent discrete random variables on {A,C, G, T}, with
weights calculated from the dataset {S;}.

Despite their simplicity, PWM models have demonstrated some good performance
for many different types of TFBS prediction problems [20] [21]. However, their scope
is fundamentally limited by the assumption of independence between individual
bases. This caveat have already been addressed by extending to 2, 3 or even k-mer
models, which could capture these non local features, but at the cost of increasing
model complexity [22]. Furthermore, even these more elaborate models do not
account explicitly for the chemical or physical processes at stake in each specific
protein-DNA binding.

A useful aspect of the PWM approach is that it comes with a simple way to visualise
sequences associated to a site. This visual representation is commonly referred to as
a sequence logo (Fig 5). Sequences logos can just show base frequencies (frequency
logos) at each site position, but more often these frequencies are weighted by infor-
mation content (information content logos), defined as

4
. fiv
IC(i) = fiv log < > . (16)
b; 2\0.25

Sequence logos are very useful for representing collections of sequences in a com-
pact way. As a drawback, it only presents base pair content, all correlation between
frequencies of neighbouring base pairs are lost. As an attempt to overcome this issue,
one can try to represent frequencies of (e.g.) dimers. In order to do so, we have built
simple plots that will be referred to as dimer logos. See Figure 6 for an example of this

type of logo.
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Figure 5: Sequence logos of CTCF zinc finger protein binding sites [23], showing
top: base frequencies at each site position, bottom: the same frequencies weighted
by information content IC at each position, so that zero amplitude implies equal fre-
quencies.

Dimer position

Figure 6: An example of a dimer logo for a collection of sequences of length 8bp. Each
double column represents frequencies of all the successive dinucleotides X; X, ; at
position i = 1,...,7. The left part of the ith double column shows the frequencies
of the X;’s. These frequencies are themselves split on the right column to show the
frequencies of the following bp X; ;. The total frequencies of say an A at base pair
three appear in both the second column of the second step and the first column of
the third step, but reordered and the information content of the two steps need not to
be the same

The fact that transcription factors favor certain sequences in their DNA binding,
i.e. their binding specificity, is understood at the physical level to be the result of
two different phenomena. The first one involves binding energies associated with
chemical interactions (e.g. formation of hydrogen bonds) between the protein and
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1. cgDNA+: a sequence dependent coarse-grained model of DNA mechanics

specific bases of the DNA chain. This type of recognition depends only on the
chemical properties of each base type, and thus is referred to as direct readout. On
the other hand, the formation of the DNA-protein complex also involves an elastic
energy contribution, by requiring to deform both the DNA and the protein into their
bound configuration. In this case, DNA sequence, having an impact on the local
structure (shape and flexibility) of the double helix, can influence the specificity of
the binding even at base positions where no binding occurs [24]. For this reason, that
sort of recognition mechanism is called indirect readout.

The respective contribution of direct and indirect readout in TF binding has been ex-
amined, with varying outcomes depending on the protein class studied [25] [26] [27].
Nevertheless, it is now accepted that sequence-dependent structural features of DNA
can play a significative role in site recognition [28] [29] [30] [31] [32] [33].
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2 Elements on Gaussian distributions

Here we gather some standard results on Gaussian distributions, divergences, dis-
tances and metrics on probability distributions, and make a useful remark on their
invariance by linear change of scale.

2.1 Some Facts on Gaussians

We start by recalling some basic facts about Gaussian distributions on R"™.

Definition 1. Letn > 1 be an integer. A continuous random variable x on R" is said
to be normal, or Gaussian, of dimension n if its probability density function (pdf) p :
R™ — [0, 1] takes the form

p(x;p, B) = %e%m-z-l(xw).

The parameters are the mean vector n € R", and the covariance matrix ¥ € R"*"
which is symmetric and positive definite. The normalisation constant

Z=2(%) = / e~ T B gy = det(27%) /2

n

ensures that

/ p(x; p, X)dx = 1.
]Rn

Remark 1. In this work, we will use the words (probability) density, or density function,
or pdf, or (probability) distribution, interchangeably. In particular, we will never use
the word distribution to refer to the general theory of distributions as linear operators.
The measured spaces will always be finite dimensional (usually R™).

Remark 2. (notation) A general probability distribution will usually be denoted by the
letter p. When referring to a Gaussian distribution, we will usually write p(x; u, %), or

simply p(-; p, ).
Remark 3. (I1st and 2nd moment of a Gaussian)

The parameters (1, %) of a Gaussian distribution arise as its first and second moment:
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”:i/ X p(x; p, X)dx,
Rn

D= (x—p)(x—w) p(x; p T)dx.

]Rn

Definition 2. Let us denote the set of Gaussian distributions of dimensionn by

g= {P('Waz) IS R" ¥ e S:Lr}?
where S denotes the set of symmetric, positive-definite matrix of sizen.

Remark 4. The canonical mappingR"™ xS — G endows G with a differential structure,
turning G into a smooth manifold:

G=R" xS .

This implies that G is an open, convex (thus connected) manifold of dimension

n(n+1)

Of particular importance to us is the inverse of the covariance matrix.

Definition 3. The inverse covariance matrix, or precision matrix, or stiffness matrix,
of a covariance matrix X is simply its matrix inverse:

K="
. n(n+1) .
Any set of smooth coordinates € R"*~ 2 on R" x S provides a set of smooth
coordinates on G. By abuse of notation, we will often use & = (i, ) as coordinates,
where it is implicit that only the lower (or upper) triangular entries of X are needed.
Importantly, we will also sometimes use 8 = (u, K) to parametrise G.

Definition 4. Let p(-; 1, ) Gaussian pdf onR™. Its entropy S is

S(p) = = [, pw) n(p(w))dw = 5 In (2re)" det())

For a n-dimensional normally distributed variable x ~ N (u, X)), with mean parameter
w and covariance matrix ¥, it is a standard and well-known result that the marginal
distribution of a subset (z;,, ...x;,) of coordinates of x is itself normal, with mean
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parameter vector
iy
i=|
Mgy,
d i trix 3 = k itho,, = %; ; =1 k
and covariance matrix Tpq)p.q=1» With oy, N .k

2.2 Divergences, distances and metrics on Multivariate Gaussians

There are many ways that we can compare probability distributions in general, and
Gaussian distributions in particular. Here we give a non-exhaustive overview of
different metrics (in a generic sense) that can be used to express some notion of
proximity between pdfs. Some tools that are central to information theory, such as
the Kullback-Leibler divergence, and its connection to the Fisher information, are
introduced. The latter plays a historically fundamental role in the field of information
geometry, which regards it as a Riemmanian metric on the manifold of parametric
probability densities.

In the wide landscape of different tools available to compare objects, points in space,
or in our case distributions, a geometry-oriented mind will have a preference for
distances. As the meaning of the word can greatly vary depending on the context,
let us clarify here that throughout this work, we will use it only in the precise sense
of metric spaces. The word metric, which is also used to designate a large variety
of different notions, will for us specifically refer to Riemannian metrics; that is, a
smoothly varying inner product defined on a smooth manifold.

For statisticians, who often do not adopt a geometrical view on probability densities,
requiring a proximity measure to satisfy triangle inequality, or even symmetry, is in
many cases too restrictive. They will rather use the weaker notion of divergence (see
below). As a matter of fact, one of the central tool in statistics and information theory
is the famous divergence called Kullback-Leibler, whose definition we give now.

Definition 5. Let p1, po be any probability distribution on R™ with respect to the stan-
dard (flat) measure dw, n > 1. The Kullback-Leibler divergence, or relative entropy
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between p1 and ps is

KL(p1,p2) = /]Rm p1(w)In <Z;EZ;> dw. (17)

There are of course technical conditions to ensure that KL is well-defined, but since
we will use it exclusively for Gaussian distributions (for which (17) is explicit provided
that), we will not discuss them. We limit ourselves to describing some basic but
useful properties.

Properties 1.
1. KL(p1, p2) > 0;
2. KL(p1,p2) =0 p1 = po;
3. In general, KL(p1, p2) # KL(p2, p1);

4. In general, KL does not satisfy the triangle inequality (therefore, it is not a dis-
tance).

5. (Additivity for independent variables) Suppose p; and ps splitas p1(z1, ..., x,) =
pi(x1) ... pH(xy) and similarly ps(x1, . .., xn) = p3(x1) ... p3(xn). Then

n

=1

The first two properties above characterise a statistical divergence. The fact that KL
lacks symmetry in general motivates the use of its symmetrised version (in fact, the
original definition [34] by Kullback and Leibler has this form)

1
KL*™(p1, p2) := §(KL(P1,p2) + KL(p2, p1))-

For multivariate Gaussians p; = p(-; u;, K; 1), i = 1,2, the Kullback-Leibler divergence
can be computed explicitly:

{(,U,l — /‘LQ) . KQ(Ml — ,LLQ) + tI‘(KQKl_l) + ln(det(KglKl) — n} . (18)

N =

KL(p1, p2) =

The first term on the left-hand side of (18) is called the squared Mahalanobis distance:
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1
MH (1, K1, p2, Ko) = 5(#1 — p2) - Ko(p1 — p2)

Although MH has the structure of a weighted inner product between the mean vectors
u1 and uo, it should be noted that MH is not a squared distance between the pairs
(11, K1) and (p2, K2). Nevertheless, it is still a useful quantity to compare the mean
vectors of two Gaussians, as it enjoys the same properties listed in Properties 1 as KL.
A symmetrised version

1
MH*™ (1, K1, p2, Ka) = Z(Hl —p2) - (Ky +Ko)(p1 — p2)

is also often used.

Closely connected to the Kullback-Leibler divergence is the Fisher information. For a
one dimensional parametric pdf p(z; 0), it is defined as

. 82
Fisher _ .
I (0) =—-E [892 log(p(x; 9))\9] (19)
In the case where 8 = (6,,...,6,) € R" is multidimensional, then the Fisher informa-

tion becomes a matrix, whose entries read

. 0*
Ifleher(O) =-F l@ﬁ@ log(p(x; 9))|91 (20)
iY%j

fori,j=1,...,n.

The matrix I"*"*r (@) endows the manifold M of the parametric family {p(z, )} with
a Riemmanian metric, turning M into a statistical manifold.

The connection between the Fisher information matrix and the Kullback-Leibler
arises when expanding the latter with respect the parameter in the second argument:
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KL(p(x:0), p(x,0")) = KL(p(x30), p(x36')) + % KL(p(x;0), p(2:0"))lo—0(8" — 6)
1

+§(0’—0). Hy,(0)(0' — 0) + 0|0’ — 6)?), 21)

where we used 6 55 to denote the gradient operator with respect to 6’, and H,(6) is
the Hessian matrlx with entries

82
Hk1.(0)i; = 2090 KL(p(;0), p(x;0"))]g'—g
9%

On the other hand, a direct computations shows that

isher 82
Iz‘FjShe / p(x; 9 1082( (z;0)) = W KL(P(SU;@),P(%O/))’@’:B = HKL(O)z‘j,

meaning that the Fisher information matrix arises as the Hessian matrix of the
Kullback-Leibler divergence. Moreover, the first two Properties 1 imply that the first
two terms in (21) vanish, so that

KL(p(:0), p(2,0')) = 3 (6 — ) - T'(0)(6' — 0) + O(10' — 6.

In other words, the Fisher information matrix is a second-order approximation of the
KL divergence. Remarkably, it can also be shown that the same approximation holds
when expanding KL with respect to the parameter of the probability density in the
first argument of the divergence.

As IFisher(9) js symmetric and positive definite, it defines a Riemannian metric on the
manifold M, turning it into a Riemmanian manifold. In turn, it induces a distance
function dr(p(x; 01), p(z; 02)) on M via the standard formula

to -
-0 -0 — ot IFlsher o(t
dr(pla:00) p(a:02)) = int [0 T (00
In the specific case when M = G, the manifold of Gaussian distributions p(z; u, K—1),
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parametrised by 8 = (i, K), the Fisher information matrix takes the form

. K 0
Fisher _ n,nXn
I (1, K) = Onscrn %K‘l 2 K- (22)

where ® denotes the tensor product, or just Kronecker product, between matrices.
Concretely, for any pair (A6, Abs) = ((Api, AK1), (Aug, AKy)) sitting on the tangent
space 7, k)M, the inner product (A6, Ab)isher associated to IFisher reads:

1
(A1, AbO)pisher = ApKAps + §AK1(K_1 ® K™AK,

1
= AmKApz + 5 tr(AK K TAKITK ™).

In particular, the first term in this inner product takes the form of a squared Ma-
halonobis distance. This will be of importance in Chapter 5, where we apply the
Fisher information inner product to represent ensembles of vectors y’s.

The corresponding distance function dr is called the Fisher Rao. To the knowledge of
the author, no closed form general formula for d is available, but some cases can be
computed explicitly. For example, when the covariance matrix X is diagonal, then it
can be shown that in the space with (u, ¥ = diag(o1, ..., 0,)) coordinates, dr is, up to
constant, equivalent to a hyperbolic metric (see [35] for details on this beautiful fact).

It also can be shown that in the limit where p; — p2, we have

2KL(p1, p2) — dr(p1, p2),

which shows that the Kullback-Leibler divergence can be seen as an approximation
of the Fisher-Rao distance (or vice versa).

2.3 Anote on scale invariance

A desirable feature when comparing probability distributions, and Gaussians in
particular, is to satisfy some invariance under change of scale of the base space - here
R™. It is indeed the case that when the change is linear, and the pdfs are Gaussians,
then the different divergences and distances presented above do have this property.

More precisely, let A be a linear transformation on R”. Then under the linear change
of coordinates x — Ax any Gaussian distribution p = p(-; 4, ¥) maps on the cor-
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2. Elements on Gaussian distributions

responding Gaussian p® = p(;Au, AXA). If p1, po are two Gaussians, then a direct
computation yields

KL(pf, p8') = KL(p1, p2).

Similarly,

KL*™ (pf, pt) = KL (p1, p2)

and

MHSym(P?a P2A) = MH(PL P2)

2.4 Averaging Gaussians
Suppose we are given an ensemble of Gaussian probability distributions {p;}},

with means and covariances {;;, K; '}, and consider an associated collection of pos-
itive weights {«; } summing up to 1. We aim at constructing an average Gaussian pdf

Pav = p(5 pavs K3y

of the enesmble. A first simple approach to this is based on samphng given, for each
i=1,...,M,acollection {w’ } V. sampled from p;, then p; and K; ! can be approxi-
mated by the usual formula

1 .
py P = Z w!, K;'=3" = =N (w! - ) @ (w] - ) (23)
N =

Notice that ¥;*"” is not the common unbiased covariance estimator, since N : has
been replaced by 3 for convenience., and for us N; is typically very large.

Then by direct computation, it follows that the sample mean and covariance matrix
associated to the ensemble

M

-
U {w) }j:Ll
i=1
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is

M M
ﬁzzaiui, zzzai(K;l‘l‘Mi@Mi)_ﬁ@ﬁa (24)
i=1 i=1

where we have defined the weights

satisfying >, o; = 1.

Accordingly, we can define a sampling average Gaussian distribution as

= pli ),

av

Another approach, or rather class of approaches, arises from solving a minimisation
principle of the general form

pP = argmin Z a; D(pi, p). (25)
peC i

Here C is a class of probability distributions, and D is a generic divergence (in certain
cases, a distance). An elementary computation yields

Z o; KL(pi, p) = Z a; KL(pi, p) + KL(p, p), (26)

where p = >, a;p; is the mixture distribution the p;.

From relation (26), that some authors [36] [37] refer to as the compensation identity,
itimmediately follows that

argmin Z KL(pi, p) = argrrclin KL(p, p), (27)
pE

pEC i

for C any set of probability distributions. In particular, setting C to be a set of mul-
tivariate Gaussian with banded stiffness matrix (according to a cgDNA overlapping
diagonal blocks sparsity pattern), then the solution p,, to the minimisation (27) is
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determined by its mean and covariance

Hav = [, [[K(;Ul = EH,

where the brackets restrict the matrix equality to the inside of the stencil of K,,.
An algorithm introduced by J. Glowacki in his thesis [4] for such kind of maximum
entropy fitting problem allows to compute K,, under the above conditions (see also
Chapter 4 of the present thesis).

In what follows, the {p;} will often be cgDNA probability distribution of a set of
sequences {.5;}. In this case, we will refer to p,, as the cgDNA average distribution
for the collection of sequences {S;}. This averaging procedure has the advantage of
being consistent with the use of the KL-divergence as proximity measure between
distributions, and also is easy to compute even for a large collection {S;}.

We end this chapter with an observation that links K, to the covariance matrix Cx,
of the means p;’s, defined as

Indeed, from equation (24) we immediately get

K, =K;'+Cs, 28)

where

is the harmonic average of the K.
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3 Metric PCA: a coordinate-invariant Principal Component
Analysis

The goal of this chapter is to introduce the tools that will be used in Chapter 5 for
visualisation and clustering of ensembles of cgDNA+ Gaussian distributions. In par-
ticular, we address the issue of the high dimensionality of those distributions in the
context of analysing large DNA sequence datasets, such as those produced either by
exhaustively generating short k-mers or as the outcome of high throughput sequenc-
ing. Dimensionality reduction for data analysis is a vast and active field of study, and
we certainly do not aim to provide an overview of it here. Instead, we present a sim-
ple but useful variation of Principal Component Analysis (PCA) that we call Fisher PCA
on the space of multivariate Gaussian distributions, that is essentially a linear version
of Kernel PCA with a Fisher information matrix as an alternative metric tensor. This
technique exhibits the elegant property of being invariant under a linear change of
coordinate of the underlying Euclidean space. It is also related to Kullback-Leibler
divergence (which would be a natural choice of proximity measure in graph-based
approaches such as Multidimensional Scaling or Laplacian Eigenmaps), while stay-
ing computationally very efficient due to its linear nature.

3.1 Principal Component Analysis

Here we recall what Principal Component Analysis is. It is probably the most popular
dimensionality reduction method, and one of the most basic ones, but remains a
very powerful tool for data analysis. There is abundant literature on the topic (see
for example [38] [39]) and our goal is not to give a comprehensive overview on
this method and its various applications. Rather, we will describe its fundamental
principles, approached from a linear algebra perspective: in the end PCA boils
down to diagonalising a sample covariance matrix, and projecting the data onto its
eigenvectors.

More precisely, let £ = {x;}_, C R™ be a set of observations, or a data ensemble. We
associate to it the p x n data matrix

Then the sample mean of € is

Ml
I
Mi
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3. Metric PCA: a coordinate-invariant Principal Component Analysis

In what follows, we will often assume without loss of generality that the data matrix
X is centered, meaning that the sample mean X = 0.

The sample covariance matrix, or data covariance matrix is defined as

Note that for convenience, we chose the denominator to be }9 and not Zﬁ, thus
opting for the biased maximum likelihood covariance estimator. For large p, the
difference is negligible.

The projection Tpc 4 of the data matrix X onto the eigenvectors V := [v; ---v,] of
Cx is given by

Tpca :=XV.

Dimensionality reduction from n to L is obtained by reordering the columns of V
according to the magnitude of the corresponding eigenvalue of Cx, and retaining
only the first L eigenvectors, so that

Tho, = XVE,

with V' = [v; -..v;] and we have assumed that the v;s are already arranged in de-
scending order of their corresponding eigenvalue.

3.2 A Fisher metric PCA

In this section, we describe a variation of Principal Component Analysis based on
a change of inner product - or metric - on the data space. For this reason, we will
refer to it as metric PCA. This idea and terminology are not new (see [40], [41] and
references therein). This method can be recognised as a particularly simple special
case of Kernel PCA (see [38] for a detailed description), where the kernel is linear.

We then present a particular application of this method to the case where the data
ensemble is a set of Gaussian distributions, and the metric is given by the Fisher
information evaluated at the average (in the sense presented in Chapter 2) of the
ensemble. We will show why in that case, the method has the property of being
invariant under linear change of coordinates on the underlying space of the Gaussian
distributions.
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Let thus X be p x n a data matrix, X = [x - - - xp]T, and let B be a n x n positive definite
matrix. The Cholesky decomposition M of B writes as

B=M"M,

with M an upper triangular square matrix. We define a new data matrix Y =
[y1--yp]" by

Y = (Mx"HT,
so that Y satisfies

Yi-¥i =yiyi=(Mx)" (Mx;)" = x; - Bx;.

In other words, the linear transformation x — Bx sends the standard euclidean inner
product to the new weighted inner product

<+, >p: (w,z) — x - Bz,

In the language of Riemannian manifolds - at the risk of an certain excess of pedantry,
considering the fact that the manifold here is simply R” - the matrix B plays the role
of a metric tensor.

In particular, the eigendecomposition of the data covariance matrix of Y

can be seen as a generalised eigenvalue problem of the form

Cxz =)B !z (29)
where Cx is the data covariance matrix of X.
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3. Metric PCA: a coordinate-invariant Principal Component Analysis

The generalised eigenvalues \; of this generalised eigenproblem are the same as the
eigenvalues of the eigenproblem

Cyv =Av 30)

of the data covariance matrix Cv, and there exists (see Theorem 15.3.3 in [42]) a set
of generalised eigenvectors {z;} for (29) satisfying

Z; - B_1Zj.

Since B matrix is non singular, there is a one-to-one correspondance

Z; < MTVz‘
between the eigenvectors z; of (29) and the eigenvectors v; of (30).

Definition 6. Let X € RP*" be a centered data matrix in R"™ such that the associated
covariance matrix Cx is non singular, and B a square n x n positive definite matrix.
Let B = MTM be the upper Cholesky decomposition of B. We call metric PCA the
outcome of the projection T = T,,pca of Y = (MX™)T onto the basis of eigenvectors
{v.} of the covariance Cy of Y:

Tppca: =YV,

withV = [vy ---vy,]. Thev;’s are called the metric principal components.
Remark 5.

1. The metric PCA procedure of Definition 6 is equivalent to projecting the original
data X onto the generalised eigenvectors. Namely, if Z = [z, - - - z,,], then we have

Timpoa = XZ.

2. Metric PCA as defined in defintion 6 can be seen as a particular case of the well-
known kernel PCA algorithm [43], where the kernel k(x,y) is linear, and given
explicitly by
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k(x,y) =x- By.

Definition 7. Let ® 5 : x — Ax be a linear change of coordinate (thus A is invertible)
onR"™. We call an x n matrix C covariance-like with respect to ® o if C transforms as
ACAT under the change of coordinate ® 5 .

Similarly, an x n matrix B is said to be stiffness-like with respect to ® a if it transforms
as A TBA~! under ®,.

Proposition 1. Let B € S, be stiffness-like. Then for any data ensemble {x;}!_, in R",
the outcome of metric PCA is invariant under any linear change of coordinate ® 5 . That
is, Topca is identical when the data ensemble {x; }._, is transformed into {®a (x;) }1_;.

Proof. The result follows immediately from Remark 2, and the fact that kernel PCA
only depends on the values k(x;, x;); because B is stiffness-like, one has

k(®A(xi), ®a(x)) = (Ax;)) (AT BA™)Ax; = x[x; = k(x,x;),
so that those values are invariant under the change of coordinate ® 4. O

Now we turn our focus on the specific case where the data ensemble {x;}” , is a set of
Gaussian distribution parameters 0; = (u;, K;) sitting on the manifold G of Chapter 2.

Strictly speaking, the 6,’s do not sit in R", but the ambient space is finite dimensional

n(n+1)
2 .

and can easily be identified with R"*

For any Fisher information matrix

K On,nxn

Fish
I (p, K) = 0, IK-1 oK !
nxn,n 9

€29)

where (1, K) € G as introduced in Chapter 2 is symmetric, positive definite.

Definition 8. We will call Fisher PCA the particular kind of metric PCA that is applied
to a data ensemble 0; = (n;,K;) of Gaussian distribution parameters by setting B =
TVisher(; 5571 where

M M
T=_ il fzzai(Ki_ler@Mi)—ﬁ@ﬁ,
=1 =1
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3. Metric PCA: a coordinate-invariant Principal Component Analysis

as defined in equation (24) of Chapter 2.

Remark 6. The B matrix of Definition 8 is stiffness-like, thus Fisher PCA satisfies the
invariance property of Proposition 1.
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PART II: cgDNAloc and Applications

4 cgDNAloc: dealing with non-locality

This chapter is dedicated to the development of the central mathematical tool used
in this thesis. We show that marginals of banded inverse covariances with a specific
overlapping block sparsity pattern are also banded with the same inherited sparsity
pattern. Furthermore, we show that these marginal inverse covariances have very
few entries differing from those of the corresponding submatrix of the original
inverse covariance, and that the marginal stiffness matrix can be obtained from the
original stiffness matrix by truncation combined with small localised modifications
(as opposed to a full inversion of a matrix). This procedure is given explicitly, and
allows for efficient computation of marginals of our class of banded Gaussians.

The results presented in this chapter all follow from an elegant algorithm by
Glowacki [4, 44] for computing maximum entropy fitting of banded covariance
matrices. That algorithm is briefly presented in the next section.

We mention that probability distributions with structured inverse covariances
have been extensively studied in the context of what is now known as graphical
models [45, 46]. These models play an important role in modern machine learning,
but describing their full framework extends well beyond the scope of this thesis.
Very briefly, in these models a joint (discrete or continuous) probability distribution
is associated to a graph, where the nodes represent random variables, and con-
necting edges must satisfy some properties related to conditional dependence of
the variables. The graphical model representation of a multivariate normal joint
distribution, called a Gaussian graphical model, is an undirected graph whose
edges identify with the non-zero entries in the stiffness matrix K, (see section 5.3
in [45]). Moreover, Gaussians with banded stiffness matrices can be viewed as a
(rather simple) case of a decomposable Gaussian graphical model. For a banded
K, it is easy to see that the junction tree associated to this graph ( [45], section
7.1.2) is tractable, with maximum clique-size equal to the bandwidth. Therefore,
the Junction Tree (JT) Algorithm ( [45], section 7.1.2) can be used to tractably obtain
any marginal. As already remarked in [4] [44], Glowacki’s algorithm, which is our
starting point, arises as a particular case of decomposition of Gaussian graphical
model. By considering only the important, but particular, case of banded matrices
Glowacki was able to present an explicit and simply described algorithm, with
a self-contained proof involving only elementary linear algebra. The situation is
analogous for the results on marginals of banded Gaussians presented in this chapter.

More precisely, marginalisation in the JT algorithm is performed in several steps, one
of which being the factorisation of the model joint distribution p into a ratio of prod-
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4. cgDNAloc: dealing with non-locality

uct of potentials ¢, indexed over the cliques and separator in the associated graph.
Then, an iterative belief propagation procedure is applied on a particular hypergraph,
the junction tree, whose nodes are cliques of the model graph. In the particular case
of a Gaussian joint distribution with an overlapping square banded stiffness matrix
K, the cliques and separators are associated to corresponding square sub-blocks and
overlaps of the covariance matrix K—! of p. The resulting junction tree in this case
has the very simple form of a path graph and the decomposition of K yields a fac-
torisation of p where the potentials ¢ take the form of multivariate Gaussians with
sub-blocks and overlaps of K—! as covariance matrices. As a result, Theorem 2 in this
chapter can be seen as a particular case of Proposition 2 in [47]. Despite being less
general, the proof presented in this chapter only makes use of elementary linear alge-
bra, relying on the explicit procedure of Glowacki for computing maximum entropy fit
on banded stiffness matrices. Moreover, by restricting to the particular case of banded
matrices, we are able to state and prove a very simple and explicit marginalisation al-
gorithm (see Corollary 3), which is all that is directly applied in the rest of the thesis
for fast marginalisation of cgDNA+ Gaussian distributions.

4.1 A prior algorithm for maximum entropy fitting of banded covariances
with overlapping squares

We start by briefly presenting Glowacki’s algorithm [4, 44] for maximum entropy
fitting of covariances with an overlapping squares sparsity pattern. The idea is the
following: given a covariance matrix C, together with a sparsity pattern N consisting
of the union of square diagonal sub-blocks of C, we want to find a completion C
of C such that C coincides with C inside the pattern \/, and that (C)~! vanishes
outside the pattern A/. As previously showed in [45], such a C exists and is unique,
but Glowacki’s algorithm provides a direct procedure to build the banded inverse of
C.

For consistency, we will use the same notation as in [4]. In particular, for a matrix
in R"*" we introduce an index set - usually denoted by V' - as a collection of indices
N C {(4,7) : 1 <14, < n}. The index set of all other indices will be denoted by /¢,
the complement to A. The subset of indices of A/ obtained by retaining only indices
less than p will be denoted by V,. We will put double brackets [[-]|,- around a matrix
to mean that we only consider entries with indices belonging to the index set \V. For
example, expressions such as

[Ally = [Bllx, [[Allxe = [Bllxe- [[Ally, = [Blly,
are valid if and only if A and B agree in the entries associated to the index set N/, N'¢,
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--------------------------------------------------------------------------------------------

.....................

_________________________________

...................................................................

Figure 7:  (Courtesy of J. Glowacki) Entries corresponding to an index set N
on a 4 x 4 matrix A. Here NV = {(1,1),(1,3)(3,1),(2,2),(2,3),(3,2),(3,4), (4,3)},
Ne={(1,2),(2,1),(1,4),(4,1),(2,4),(4,2), (3,3), (4,4)},

)

or NV, respectively (see Figure 7). We will sometimes abuse this notation, writing for
instance

[Ally =0

to mean that (the entries of) A (whose indices lie) inside of A/ must vanish. Such
a property being particularly useful in the context of Gaussian model fitting, where
sparse (banded) matrices are often aimed for, we will sometimes refer to an index set
as a sparsity pattern.

All square matrices are assumed to be symmetric.

For a matrix A € R™*", and integers 1 <i < j <m, 1 <k <[ < n, we denote by

Qi k Q4 k+1 s Qi
Qit1k Qitlk+1 " Qi1
Aikn = | . : y : (32)
Ajk Ajk+1 as,l

the block submatrix of A = (a, 4)1<p<m,1<¢<n Obtained by keeping only entries from
row i to j and from column & to .

In what follows, we concentrate on a specific class of index sets formed by the (pos-
sibly multiple) overlap of square diagonal sub-blocks of the matrix at hand. These
index sets are completely determined by the set of top-right corners of the square
sub-blocks - see Figure 8 for an illustration. Formally, we introduce the following

Definition 9. Given an integern > 1, we call a corner set (of dimensionn) a collection
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of index pairs {(is, j5)}<_,, satisfying

11 = 1, s < Z's-‘rl < js

jk‘ =n,, jS <j5+1'

Definition 10. Let A € R™*" and let {(is, js)}*_, be a corner set of dimensionn. Then
{(is, js) Y, induces an associated sequence { A, }+_, of square diagonal sub-blocks of
A

Als) = Al g (isud).
In turn, the collection { A }k_, induces an overlapping square index set ', consisting
of all the indices of entries of A lying inside one (or several) of the sub-blocks A ).

For each 1 < s < k, the overlap between A[,_,) and A, yields a partitioning of A,
into four sub-blocks as follows:

Ay = [i[s]m A[s]m] _ [ Alivje-)isgomr)  Alisgem1).Goor+142) ] (33)

slaa Afslaz Ao 141500 isgae1)  AlGa141e),(am1+1,4s)

Remark 7. Provided that all the A are invertible, we can write

A[S} — [A[S]l,l A[s]l,Q] — l I O] [A[S}1,1 0 ] lI QS(A)‘| (34)
Ay, Ao P(A) I 0 H;(A)| [0 1

where we have defined

Q(A) = (Aly,,) " Apgss (35)
‘IIS(A) - A[S]QJ (A[S]Ll)il? (36)
H(A) = Ay, — A[Sm(A[S]Ll)—lA[s]m, (37)

orQ, = Q(A), ¥y = U (A), Hy = Hy(A) for short. In particular, we have
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Figure 8: An example of an overlapping square index set A/ (in blue) on a 24 x 24 ma-
trix formed a collection of k = 6 square overlapping sub-blocks {Cj Mk_, of various
sizes, with associated cornerset {(1,7), (5,12), (8,16), (13,18), (17,20), (20,24)}. Note
that, although it is not the case in this example, there can be multiple overlaps be-
tween the Cy.

L1 —em)] [y 0 I 0
(Aw)™ = lo I 0 (H,(A) | |- (A) I 58)
(A, )" '+ QH1W, —QH!
:l ) >0 (39)
so that
_ (A, )t o +QH 1w, —QH!
(ALg) 1—[ []6’ ol = | _H-lw, o (40)

Theorem 1. Let C be a symmetric, positive definite matrix and N be an index set con-
taining the diagonal. Let Cy(C) be the set of all symmetric, positive definite matrices
coinciding with C inside N, that is
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Cn(C)={B:B=B" B>0, [B]y=[C]x}.

Then there exists a unique matrix C in Cy(C) whose inverse vanishes outside N':

Furthermore, C has maximum determinant amongst matrices in Cyr(C):

C= max det(C).
CeCu(C)

Recalling that for a Gaussian pdf p(-; 4, C) on RY, its entropy S is

1
S(p) = — /RN pln(p) = iln ((27T€)N det(C))
leads to the following definition:

Definition 11. Given a symmetric, positive definite matrix C with sparsity pattern
given by the index set N (containing all the diagonal entries). The matrix C of The-
orem 1 is referred to as the maximum entropy fit of C with respect to N, and is denoted

by

C = Maxentf (C).

In the particular case of an overlapping squares index set, Glowacki [4] provides a
completely explicit, simple recursive procedure to compute the maximum entropy
fit (in the sense of Definition 11), as well as its inverse. This implies defining two
sequences of nested matrices - one for the maximum entropy fit C and one for its
inverse.

Definition 12. Let C be a symmetric matrix, {C[s}}]§:1 a collection of diagonal sub-
blocks induced by some cornerset, with associated overlapping squares index set .
Assume that all the C|, and all the overlaps C|,), , are invertible (which is typically the
case e.g. if C is a covariance matrix).

We recursively define two sequences {® o\ }*_,, {F ,}5_, of nested matrices as follows:
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(i) Fors =1,
@y = (Cpy) ', (41)
Fuy =Cpp; (42)
(ii) fors > 1,
I 0 o1t o o
P
Q=0 I —Q 0 0 I of, (43)
00 I 0 0 Hs' o -9, I
I 0 0][g 07T 0o o
Fo=10 I of| “" oo I 9, (44)
0 ¥, I||0 0 Hg| |0 0 I

where s = Q4(C), ¥, = W, (C), H; = Hy(C) are defined as in Remark 7. Note
that the sequences are nested in the sense that F ,_y is always a top left corner
sub-block of ¥, (and similarily for the ® )

Verifying that {®}*_, and {F}*_, yield the desired maximum entropy fit only
involves some basic matrix computations. However, it is much easier to grasp on a
concrete example, as depicted in Figure 9.

Lemma 1. Let C € R" be a symmetric matrix, and let {(is, j;)}*_, be a cornerset in-
ducing a collection {C s }%_, and an index set N as in Definition 12.

Let {® o }5_ |, {F (s }*_, be the sequences of matrices of Definition 12. Then for each
s=1,...,n, we have

P, = (Fry) " (45)

Furthermore
[Fslln;, = [Clln;, (46)
(2], =0 @

Proof. We only give a sketch here, the details can be found in [4], Lemma P1.1.1.
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The proof is by induction. Property (45) follows by direct computation with the
definitions of @,y and F ).

For s = 1, properties (46) and (47) are easily showed. For the induction step, observe
that assuming [[F,_p]ln;, | = [[Clly;,_, implies that F(, ;) can be partitioned as
follows:

F<3*1>1,1 F<5*1>1,2 )

F._ = (48)
(s—1)
Fis—1),,  Clsha
Replacing that expression in the definition (44) of F,, yields
[T 0 o] |Fi,, Fen,, O[T 0 0
F<S> = 0 I 0 F(S—1>2’1 C[Sh,l 0 0 I QS
0 ¥, I 0 0 H| |0 0 I
Friony,  Foon, Fe-n,,
= | Fry . (49)
% Cto
| s (s=1)y

where Q, = Q,(C), ¥, = ¥,(C), H;, = H,(C) are the matrices of Remark 7.

Equation (49) shows that [[Fy]]x;, = [[C]]x;,. Importantly, it also shows outside the
pattern NV, F, that the rectangular sub-blocks of C above and to the left of Cy,) are

given by the expressions F(, ;) €, and ¥,F ;)  respectively.

On the other hand, a partition similar to (48) for ®,_,

q’(s—l)
P51y

1,1 (I)<5_1>1,2 7 (50)

2,1 (I)<5_1>2,2

Q1=

inserted in the definition (43) of @, yields
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_I 0 0 <I)<5—1>1,1 q)<3—1>1,2 I
Py =0 T Q| |Ppyy,, Pl 0
0 0 I 0 0 H, ! O
(I)<5*1>1,1 <I)<3*1>1,2 0
= q)<5*1>21 ¢<5*1>22+QSH5_1‘IIS _QSHS_I
0 ~H 1w, H!

The fact that F<S,1>2’
H<I><s_1>HN = 0, then implies that H<I><S>H = 0 as well.

1571 js

50
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SR

(8.) ﬁll [[‘F“)HNl Wlth [[C”N1 (b) ﬁH the rest Of [[F‘(Q)]]NE (C) ﬁH [[F(Z)”(Sg Wlth F(l)l,zgg
with [[C]] and its transpose

k\

|
el

(d) fill the rest of [[Fs)|],, (e) fill [Fiz]lg, with Fiz), Q5 (f) fill the rest of [[Fia]]y,

with [[C]] and its transpose with [[C]],
. 1T o e ]
AN
N

N | TR
N R ‘

o\ \\ ] \\
(g) fill [[Fi)llg, with Fizy, ,Q4  (h) fill the rest of (1) fill with Fig, ,
and its transpose with and its transpose

Figure 9: (Courtesy of Jarek Glowacki’s thesis [4]) An illustrative example of the con-
struction of the maximum entropy fit C of a symmetric matrix C. Here the overlap-
ping squares index set A/ has associated cornerset {(1,4), (3,7), (4,9), (7,11), (11,14)}.
Ateachstep s = 1,...k = 5, entries outside \V in areas corresponding to F ) are filled

with F(,_;) € and its transpose, while entries inside \ are left unchanged.
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amz 115

il e il e

() add (Cp))" (b) add (Cp) (¢) subtract (Cpy,,) "

|
2,.':—-1__ | S

(d) add (Cg) " (e) subtract (Cpg,,) " (f) add (Cjy)”"
L n 8
| | 3
N
(g) subtract (CMM)_I (h) add (i) subtract

Figure 10: (Courtesy of Igrek Glowacki’s thesis [4]) An illustr~ative example of the con-
struction of the inverse C~! of the maximum entropy fit C of the same symmetric
matrix C as in example of Fig 9.

Corollary 1. Let C € R™" be a symmetric, positive definite matrix, and let { (i, j5) }*_,
be a cornerset of dimension n inducing an index set N'. Set {®,}¥_,, {F o}, asin
Definition 12. Then

@)
F(k) = Maxenth(C),

(i) Fors =2,...,n, the matrices ®, can be constructed iteratively by adding succes-
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sively the inverses of the square sub-blocks C|,), and substracting the inverses of

the overlaps Cyy, . Precisely, for s = 2,...,n, we have the recursive relation
0 0 00 0 0 0
& . — |21 1 )
(s) — 0| + 10 (C )—1 - |0 (C[S]m) 0 (52)
o0 o o0 0 0 0

(iii) Each step of the construction of F 4, = Maxentf(C) leaves elements of C inside
N unchanged (in the sense that [[F ]| n;,. = [[Cl]x;, but replaces rectangular sub-
blocks of [[Cl|n;, directly above and to the left of C\, respectively by Fio1, 2
and ¥ F, 1y, . These blocks only depends on elements of C inside of N'.

2,

Proof. (i) follows directly from relations (46) and (47) of Lemma 1 when s = k, to-
gether with the uniqueness of the maximum entropy fit. For (ii), equation (40) in
Remark 7 allows to rewrite (51) as

F<S_1>1_’1 F<S—1>112 0
P = Fro-1),, F<5_1)2,2+QSH;1\IIS -QH!
| 0 —H W, H,!
'(I) o] o 0 0
- (s—1) ol + 10 QsHs_l‘I’s —QsHs_l
o0 o |0 -H'®T, H'
'(I) o] [o oo 0 0 0
71 B
= |76 ol +|o con-1l 0 (Cip,) 1o,
(Crg))
|0 0 O] 10 0 0 0
as desired. 0

Itis relation (52) in the previous corollary that gives rise to the remarkably simple and
elegant procedure to compute the inverse of the maximum entropy fit Maxentf z-(C)
only by inverting the sub-blocks Cj, and their overlaps. This yields to significant re-
duction in computation complexity and time. An illustration of the procedure of an
example in given in Figure 10.

53



PART II: cgDNAloc and Applications

4.2 Marginals of banded inverse covariances are banded

We now turn our focus towards a specific class of square, symmetric, positive definite
matrices: covariance matrices.

In particular, for a n-dimensional normally distributed variable x ~ A(y, ), with
mean parameter ; and covariance matrix ¥, it is a standard and well-known result
that the marginal distribution of a subset (z;,, . . . z;, ) of coordinates of x is itself nor-
mal, with mean parameter vector.

Moy
X=|:
Mgy,
and covariance matrix 3 = (apq)’;q:l, with o, = %i i, 0, =1,... k.
This motivates the following definition, which considers the case when iy, ..., i are

consecutive indices.

Definition 13. Let C € R"*" be a covariance matrix. We call a square diagonal sub-
block C' of C a square marginal of C. A square marginal pattern M is an index set of
the form

M=A(,j) :a<i,j<b|l1<a<b<n}.

The indices a and b are respectively called the starting and ending index of M. For such
M, we denote by

MargM(C) = C(a,b),(a,b)~ (53)

the corresponding square marginal of C.

Introducing the notation (53) only for matrix diagonal square sub-blocks might seem
unnecessarily specific (or heavy), but it helps to emphasise the applications of results
below to covariances of multivariate Gaussian distributions.

We want to study the interaction between marginalisation and sparsity pattern. We
therefore introduce the following definition, illustrated in Figure 12.
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4. cgDNAloc: dealing with non-locality

Definition 14. Let N be any index set of dimension n € N, and let M be a square
marginal pattern with starting and ending index 1 < a,b < n. We define NM, the
(b — a)-dimensional index set induced by M on N as

NM={(i—a+1,j—a+1): (i,j) e N,a<i,j<b}.
Then

Theorem 2. Let C be a symmetric, positive definite matrix, together with N an over-
lapping squares index set. Then for any square marginal pattern M, we have

Marg \, (Maxentfr (C)) = Maxentf \r1 (Marg,(C)),

where N denotes the overlapping squares index set on Marg ,(C) induced by N'.

Proof. Let a and b be the starting, respectively ending indices of M.

Notice first that without loss of generality, one can assume a = 1. For if the theorem
is true in the cases when a = 1, then it true as well when b = n (and « is arbitrary):
just renumber the elements of C from its bottom right corner the its top left corner.

Now, for general a and b, applying this weaker version of the theorem twice succes-
sively - first with « as starting index, and ¥’ = n as ending index, then with «’ = 1 as
starting index, and b as ending index - yields the desired result. Therefore, in what
follows we assume that a = 1.

Let {(is, js) }*_, be the cornerset of \, and {Cq }*_, the associated collection of over-
lapping sub-blocks of C. Notice that

[[Cllm = Marg \((C).

Thus, by Definition 14 of the induced index set, there exists k < b < k such that the
cornerset of M is given by { (s, js) } <=+ U {(iz,b)}. The associated sequence {(NE[S] L
of sub-blocks of Marg ,,(C) satisfies
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Cly=Cp s=1,....k—1. (54)

Furthermore, C, appears as a (top left) sub-block of C--. Combining this with the

(K] ~ [K]
overlapping squares splitting (Definition 10) of C[E]’ namely
= i gm“], (55)
C[E]2,1 C@b,z

we can write C[E} as

(3[};]1,1 (3@1,2 I‘[Eh,s

Ciii = |Con Cne Tian]| - (56)

F[E]S,l F[E}s,z F[E}s,s

On the other hand, C[E} also splits as in Definition 10

(K] C

(K21 C[kh,z

Cna Cﬁéh,z] | (57)

thus, since C[75]1,1 = C[Eh,l’ we have

I (S A (58)
o= NG (59)
Wt T,

Similarily, let F ), and f‘<s> be the sequences of Definition 12 for C, and Marg,,(C),
respectively. Then we have

Fog=F s=1,....k— 1.

Now for s = k, we have by equation (49)
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5 B B 0]
F<k—1>1’1 <k_1>1,2 <k_1>12 k
F ~\ = f‘ >
F<k> N <~k71>2’1 6~
U-F ~ (K]
L k <k_1>2 1 i
- N P a Z
F<k_1>1’1 (k=1) , T (k=1),, 'k
= F ’];'_1 - 3 (60)
Flo,, -
ViF g, "
where QE = QE(C) = <C[E}1,1)7IC[E]1,2’ and ‘I”lg = ‘I"];(C) = \I’";(C) = C[E}2,1( [’/;]171)71

as in Remark 7.

With still the same convention Q2 = +(C) = (C[%]1 1)_10[75]1 ,» We can decompose
the top right corner block in (60) as follows: ’ ’

B, = B,

1,2

—F - lo-
_F<k—1> (C[kzh,l) C[k]l,2

1,2
o . \1llo- -
N F<k*1>1,2 (C[kh,l) [C[k’]m I‘[k]m}

- O~ _ o\ -lp .
= F<’f—1>1,zﬂk F<k—1>1’2(c[kh,1) F[k]l,g} : (61)
An analogous computation for the bottom left corner block of (60) gives

U-F ~
T-F ~ _ K <k‘11>2,1 (62)
g <k71>2’1 F[E]s,l(c[};]l,l)_ F<E_1>

2,1

A careful inspection of (60), as well as the two splittings (61 ) and (62) shows that F (E}
does in fact coincide with F ) inside the square marginal pattern M. That is,

Margs (i) = F iy
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Since F () is a top left sub-block of F;,, this implies

But Corollary 1 tells that the last element in the sequence {C| M (resp. {é[s] }Ezl) is
the maximum entropy fit of C (resp. Marg ,,) with respect to NV (resp. N'M):

F 1y = Maxentf »(C), f‘<g> = Maxentf yym (Marg,(C)).

Thus, (63) is the desired result, and the proof is complete.

O]

Corollary 2. Let C be a covariance matrix such that C~" is banded with sparsity pat-
tern given by an overlapping squares index set N/, i.e

[Cc™' ]y =o.

Let M be a square marginal pattern for C. Then the inverse of the square marginal of
C associated to M vanishes outside N :

[[Marg,,(C) ™|yt = 0.
4.3 Computing the inverse of marginal covariance with banded inverse: a
fast algorithm

In the previous section, we have recalled that computing the marginal probability dis-
tribution of a multivariate Gaussian p(-; u, ¥) simply boils down to cropping . and %,
eliminating the marginalised coordinates. In many applications, one might be inter-
ested in explicitly computing the inverse

Ky = (MargM(C))*1

of the symmetric, positive definite matrix C.

In general, there is no reason why K, should be equal, nor actually related to C~*.
In the case where C is the maximum entropy fit with respect to an overlapping square
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index set V, Corollary 2 shows that K, inherits the same bandedness as the full in-
verse C~ 1. It actually turns out that although

K # Marg, (C™1),
only some small correction is needed on Marg ,(C™!) to obtain K 4.

Corollary 3. Let C be a symmetric, positive definite matrix, together with N an
overlapping squares index set, with associated sequence of sub-blocks {C[S]};“:l. Let

M be a square marginal pattern for C, and {é[s]}’gzl the sequence of sub-blocks of
Marg ,,(C) associated to NM.

Then K rq and Marg ,,(C™1) coincide everywhere, except inside 6[1] and 6@—], the first
and last sub-blocks of the index set NM.

Specifically, let ky, be the index such that

~ "];:’ B ~ _
{C}er = {C, C 4y -+ Ci iy Ciig)

Then the marginal pattern M induces a splitting on the inverses of C[%ﬂ , C[El oK

(C~ )—1: B[Elh,l B[El]l,Z (C~ ~)—1: B[751+75h,1 B[El+75]1,2]
k - - ’ ki4k - SO
l B[kl]2,1 B[kl]z,z ] B[kl+k}2,1 B[kl+k]2,2
where B[};ﬂm have the same size as Cyy}, and B[};l T have the same size as C[};].
Then we have
—1 _
C[l} —BM“ 0 0
K = Marg, (C™1) + 0 0 0 (64)
Sl n
0 0 C[E] B[kﬁkh1

Proof. This directly follows from Theorem 2 and the iterative procedure (52) to com-
pute the inverse of the maximum entropy fit of C (see also Figure 10). O
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Equation (64) above means that in order to compute K from Marg,(C™1), it suf-

fices to replace the contribution of the (C@l])*1 by é[_l]l in the top left corner of K
(corresponding to the first square sub-block of the induced sparsity pattern NM) ,
and the contribution of (C[E1 +E])_1 by C[T];j1 in the bottom right corner (corresponding
to the last square sub-block of the induced sparsity pattern NM) of K .

In particular, (64) provides a simple algorithm to compute K r( from C~! that requires
full inversion to recover C, but no further full inversion of Marg,,(C). The latter is

replaced with the inversion of the four smaller sub-blocks C[El]’ C[El it 6[1] and (NJ[%].

4.4 Non-locality and cgDNA+ marginals

Given a sequence S = X;--- Xy, X5 € © = {A,C,G,T},7 = 1,..., N, the cgDNA+
model provides a (24N — 18)-dimensional Gaussian probability distribution

PcgDNA = P('; N(S)’ K(S)_l)

Here the inverse covariance, or stiffness matrix K(S) is a banded matrix, and is ob-
tained by summing the N — 1 overlapping square blocks

% 3/
{KX1X27KX2X37 s 7KXN—2XN—1 ) KXN_lXN}

from the cgDNA+ parameter set on its diagonal. The first and last blocks, called
endblocks, are of dimension 36 x 36, while the NV — 3 interior blocks are of size 42 x 42.
The overlaps are of of size 18 x 18. This structure gives rise to a particular sparsity
pattern Ny of overlapping square sub-blocks. An example for N = 5 is shown in
Figure 14

By construction, we have

thus, since K(S) is symmetric positive definite, we have that

K(S)™! = Maxentf, (K(S)™)

Furthermore, any local change in the base sequence S - replacing X; with X! # X; -
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would also resultin alocal change in K(S), as it only affects (at most) two correspond-
ing sub-blocks Kx, ,x, and Kx,x,,,. In contrast, the associated cgDNA+ covariance
matrix

i+1°

exhibits a completely non-local sequence dependence on S.

This property is of particular importance in any situation where S is embedded as a
subsequence of a sequence

S,:Yl"'Ylel"‘XNzl“’ZNT (65)

with

S ::Yl"-YNl Sr:Zy--ZNT
the left and right flanking sequences of S, of length N;, N, > 1 2 respectively. To
address this kind of context, we introduce a simple tool that will be the core of all

applications of the cgDNA+ model throughout this thesis.

Definition 15. LetS = X, --- X be a sequence, X; € © = {A,C,G, T} embedded in a
longer sequence S’ as in (65). Let

be the cgDNA+ parameters associated to S’ withn = 24(N + N; + N,) — 18. We define

plOC('; S? S,) = ploc('; ,LL(S, Sl)a C(Sa Sl))

to be the marginal distribution of pcqpna(-; S") over all the coordinates associated to
the flanking sequences S; and S, in S'. Namely

%In practice, for genomic applications, the order of N; and N,. can be up to 10° — 10°.
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[,
w(S, 8= 11, CS,S8)) = ()3 K(S,8)):=C(s,8) "

ij/i,j=n1"

/!
Hong

withny = 24N, + 1, ny = 24(Nl + N) — 18.

We will refer to the particular marginal probability density pio.(+; S,S’) of pegpna(+;S’)
as the cgDNAloc pdf associated to S € S’. The sequence S is referred to as the core
sequence.

By construction, both the cgDNAloc groundstate vector u(S,S’) and covariance
matrix C(S,S8’)) exhibit a completely non-local sequence dependence with respect
to any change in S. Importantly, differences in the flanking sequences S; and
S, surrounding the same core sequence S lead to global changes in u(S,S’) and
C(S,8’)). In practice, the amplitude of these changes decrease exponentially as the
modification in &’ is introduced further away from the core sequence S. For example
the influence of the flanking sequences on x(S,S’) becomes negligible beyond 5bp.
See Figure 11.

On the other hand, it is a direct consequence of Corollary 3 that the cgDNAloc
stiffness matrix K (S, S’)) is not globally affected by changes in &’ outside S, but only
locally at the first and last blocks of its sparsity pattern. See Figure 14 for an example
of this property.

Gains in computational time obtained via the cgDNAloc marginalisation algorithm
compared to a naive marginalisation of stiffness matrix through full inversion of a
sub-block of the covariance matrix can be quantified by running both algorithms on
a randomly generated set of sequences. See Table 1 and 2. The obtained gain is ex-
pected to increase polynomially with sequence length: cgDNAloc only requires in-
version of local sub-blocks of C(S,S’)) with fixed size. In contrast, full matrix inver-
sion has polynomial complexity in matrix size, which also corresponds to polynomial
complexity in sequence length.
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Sequence length ‘ 10bp 20bp 50bp 100bp

full inversion 2.6 8.3 60.9 383.1
cgDNAloc 2.4 52 238 95.8

Time increase ‘ 8% 37% 61% 75%

Table 1: Running time (in seconds) comparison between naive marginalisation of
cgDNA+ stiffness matrices of 1000 randomly generated DNA sequences of varying
core length (10, 20, 50, 100 bps) through full inversion of covariance sub-block and
marginalisation via the cgDNAloc algorithm. The computation is performed on a
regular laptop with MATLAB. Flanking sequences are always of a fixed length of 5 bp.
Time increase (in percent) when using full inversion compared to fast cgDNAloc al-
gorithm is indicated for each window size.

Sequence length \ 10bp 20bp  50bp

full inversion 3.9 1.4 69.0
cgDNAloc 2.2 2.2 1.8

Time increase \ 74% 426% 3778 %

Table 2: Running time (in seconds) comparison for scanning a 1000 bp randomly
generated sequence and constructing cgDNA+ marginal stiffness matrices for various
window sizes (10, 20, 50). The marginal stiffness matrices are obtained by computing
the covariance matrices (by full inversion) corresponding to overlapping chunks of
100 bp, and then either by full inversion of the window sub-blocks or via the cgDNAloc
algorithm. The computation is performed on a regular laptop with MATLAB. Time
increase (in percent) when using full inversion compared to fast cgDNAloc algorithm
is indicated for each core length.
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Effect of mutation in flanking regions on shape
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Figure 11: Relative change (in norm) of the ground state vector y of 100 random 10bp
sequences to which random flanking 50bp sequences where added and successively
randomly mutated, starting furthest away at the ends and getting closer to the core
sequence.
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b

Figure 12: For the marginal Marg,,(C) of a matrix C, the index set N induced by
the marginal pattern M (the orange square) with starting index a« and ending index
b on an overlapping square index set A/ (in black) simply corresponds to the entries
where the patterns \ and M overlap.
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Figure 13: A schematisation of the key step in the proof of Theorem 2. The marginal
pattern M is depicted as a red frame, with @ = 1 and b = 14. This implies k¥ = 3,
i.e. the induced sparsity pattern ™ on Marg,(C) is formed by the 3 overlaping
square blocks {(ND[S]}:;’:I, while the sparsity pattern N on the full matrix C is formed
of six sub-blocks {C }6_,. Since a = 1, we have (NJD] = Cpy, (NE[Q] = Cpy, and (~3[3]
is a top left sub-block of Cy3). The top right and bottom left corner (in light and dark
orange) of F 3, are given by I\, Q3 =F,, (Cy )_10[2]1,2 and its transpose. But

1,1

Cz,., splits as | '3, ,] , which implies that the top right and bottom left corner

of F 3y (in light orange) have the same corresponding entries as F 3y. As a result, the
square marginal Marg ,,(C) also have the maximum entropy property with respect to
its sparsity pattern N
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L
108

-0.04
108 -

Figure 14: Effect on the cgDNA+ marginal covariance and stiffness matrices of a sin-
gle bp change in the flanking sequences. Here the original sequence is S = AAAAA,
embedded in S = AAAAASAAAAA = poly;5(A) and S, = AAAACSAAAAA. (Top)
The difference of the marginal covariances C(S, S7) — C(S, S7) is non-zero both inside
and outside the sparsity pattern; (Bottom) in contrast, the difference of the stiffness
matrices K (S, S5) — K(S, S7) is localised in the first square sub-block of the pattern.
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5 Visualising and Clustering cgDNA+ predictions

5.1 An exhaustive study of short sequence fragments

This chapter is dedicated to the study of cgDNA+ predictions for exhaustive en-
sembles of short DNA sequences. In particular, we present visualisations after
projections of shape vectors, first via simple Principal Component Analysis (PCA),
then by applying a weighted version of PCA that we have named Fisher PCA, as
described in Chapter 3. For both methods, properties of corresponding eigenvalues
spectra are highlighted, and dimensionality discussed. Based on these projections,
the presence or absence of natural clustering of the ensemble data is considered.

The computation presented in this chapter were originally done using the first pa-
rameter set psl introduced by Patelli in his PhD thesis [2]. They were then replicated
with a more recent parameter set M/ DN A computed by Sharma [10]. We discuss the
resulting differences in the last section of this chapter.

Setting a scale for £-mer comparison

The systematic comparison of short sequences of length & bp, also called k-mers, re-
quires a reference scale to be set. For this aim, motivated by Property 1 in Chapter 2,
we use a normalised version of the Kullback-Leibler divergence:

1
KL(p1, p2)geg = KL (p1, p2), (66)

where p;, p are Gaussian distribution on R”. In the case of cgDNA+ distributions of
k-mer fragments, we have n = 24k — 18.

We refer to table 6.1 in [10], which shows an average error between MD simulated
distributions and cgDNA+ reconstructed pdf of the order of £xz,,,, = 0.03. This

number will serve as a baseline reference scale, under which divergence between two
different cgDNA+ or cgDNAloc pdfs will be considered negligible.

To illustrate this scale, we show examples of 1D Gaussian distribution in Figure 15.

68



5. Visualising and Clustering cgDNA+ predictions
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Figure 15: Two examples of 1-dimensional Gaussian distributions p (in red) NV (y, o)
such that KLy, (p, po) = 0.03, with po (in blue) a standard normal distribution N'(0, 1).
On the left: 0 = 1; on the right: 1 = 0.

Methods

To generate the sequence ensembles, we proceed as follows: for £ = 2,..., 10, every
4% possible k-mers, i.e. sequences S; = X1 - X of length k are produced to form
the ensemble S = {Sl-}fil. According to the range (5 bps) of non locality of sequence
dependence observed in Chapter 4, each S; is then padded by random flanking se-
quences X;; = Y;1---Y;sand X;, = Z; 1 ---Z;5 of length 5 on each side of S, yield-
ing a unique sequence

Sg =Yi1Yis X1 Xk Zin-Zis.

The cgDNA+ output shape vector and stiffness matrix of each S, are computed. Af-
ter marginalisation over the flanking sequences X;; and X;, on each side of S;, im-
plemented by the procedure described in Chapter 4, this yields the two collections
of ensembles of marginal shape vectors M = {u; ;*il c R d = 24k — 18, and of
marginal stiffness matrices 7}, = {Ki}fil c R¥. Although these ensembles and their
properties a priori depend on the choices of flanking sequences X;; and X; ,,, none of
the observations described below are affected by this choice in any significant way.
Indeed, ensembles of cgDNAloc pdfs were also generated and averaged over some
exhaustive or non exhaustive sets of flanking sequences of a fixed length. These pdfs
were on average very close to the ones computed with random flanking, with a mean
error in terms of symmetric Kullback Leibler divergence of £ = 0.007, well below the
scale introduced in the previous paragraph. However, replacing averaged pdfs with
randomly flanked ones implies that the ensemble M;, do not necessarily satisfy the
palindromic condition E- M, = My, where E is the involution introduced in Chapter
1. To remedy this problem, with purposely symmetrise the ensemble M, by adding
all the symmetrical ground states E - M, to it.

A wide variety of approaches for data clustering are available to use [48]. For exam-
ple, hierarchical clustering techniques are very common methods, and are based on
iterative cluster agglomeration or cluster division via a default (usually euclidean)
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or ad hoc distance between data points - although it does not need in general to
satisfy the axioms of a distance. But this requires computation of pairwise distances,
which becomes quadratically expensive with the size of dataset. In the particular
case at hand of exhaustive ensembles of £-mer cgDNA+ shape vectors, the ensemble
size grows exponentially as 4%, thus rendering the former type of approach costly to
implement. Moreover, because some scale-invariance property is desired, the use
of the symmetric Mahalanobis distance (see Chapter 2) appears as a natural choice,
increasing the computational cost of hierarchical clustering methods even more. As
a workaround to these issues, we start by reducing the dimensionality of the data. For
this aim, there is again a great variety of different approaches and methods, ranging
from simple feature selection techniques to manifold learning [49] [50] [51] [52].
Although we have applied Multidimensional Scaling (MDS) [53] and Laplacian eigen-
maps [49] on the given dataset, these two methods also suffer from the cost of taking
a distance matrix as an input, whose computational cost again becomes too high as &
increases. Therefore, we will not discuss the outcome of these methods here. Instead,
we focus on the outcome of PCA and the Fisher PCA method described in Chapter 3.
The former, being a very standard and widely used algorithm, will serve as a refer-
ence, while the latter enjoys both the scale-invariance property (see Remark 6) and
being a linear dimensionality reduction method, thus scaling well with dataset size.
It is also possible to visualize the data in dimension 2 or 3 by using dimensionality
reduction, which by inspection can reveal clusters or other interesting characteristics.

Notice that on shapes, PCA assumes a Euclidean metric to compare shape vectors,
whereas Fisher PCA (only the shape component) corresponds to replacing the
euclidean metric by a version of the Mahalanobis distance, where the weight K5 is
replaced by the constant matrix K,,. As such, we can regard Fisher PCA on shapes
as an efficient way of computing an approximation of the pairwise Mahalonobis
distance matrix of the dataset through the averaging of all stiffness matrices K;.

In both standard PCA and Fisher PCA, projection on a lower dimensional subspace
can be performed as a way of reducing size of the data by eliminating modes of low
variance. There is no absolute principles to determine the choice of a cutoff for the
dimension p of the subspace, but there are rules of thumb - e.g. thresholds on cumu-
lative variance (cumulative sum of eigenvalues must represent 90, 95, or 99% of total
variance). We rather focus on inspection of the spectra, and look for a spectral gap.
More precisely, for an eigenvalue spectrum {);}{_,, the dimension p to be retained
will be selected as

p = argmax Ajyi — A;. (67)
i=1,...,d—1
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The existence of a spectral gap at low dimension will allow for visualisation, and
potentially lead to sensible clustering. Moreover, a small dimension p allows
for efficient use of standard clustering algorithms in RP. Here we have chosen
K-means clustering, a standard, well-established algorithm [54]. The algorithm
requires the number of desired clusters K to be provided as an input. This hyper-
parameter K is chosen according to the silhouette criterion [55], in the range [2, 2¥+1].

Standard PCA

For brevity, and since the results are qualitatively very similar, we focus on the
outcome of PCA for the ensemble of 4-mers. Figure 16 shows the spectrum of the
shape covariance matrix associated with the ensemble. That is, the spectrum of
XTX, where X = [y - - pp]T € RP*™ is the centered data matrix of cgDNAloc ground
states of dimension p = 24 x 4 — 6 = 90.

A first remark is that the eigenvalues X of this spectrum are all simple,even in the low
part of the spectrum in Figure 16, with eigenvalues appearing all close to zero, while
in reality they are all distinct and range from 10~* to 10~7. This fact has an interesting
consequence on the structure of the set of eigenvectors, that we now describe.

Suppose M = {u;}’_, is any ensemble of vectors in R" with the property to be E-
invariant, with E € R™*" any involution, i.e. EE = I,,. That is, we have

E-M=M. (68)

We define the shape covariacne as the sample covariance matrix of the ensemble M,
which can be written as

where

is the sample mean, which satisfies
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ECuy E = C.

In particular, since E is an involution, we have

CuE=ECy.

This immediately implies the following property: if A is an eigenvalue of C 4, associ-
ated to the unit eigenvector v, then either A has multiplicity 2, or Ev = +wv.

Furthermore, the fact that E - M = M implies that the data matrix X satisfies

EX =X

where X = o1y« ug(p)]T, and o is a permutation of (1,...,p) (Note that in case of
cgDNA+ groundstates, o fixes the s associated to palindromic sequences).

Put together, the facts above yield the following remark:
Remark 8. Suppose that all eigenvalues of Cpq are simple. Let Tpca = [t1,...,t,]7,
then foreachi =1,...,p, we have

ti = Dty(;),

where o is the permutation of (1, ..., p) such thatXT = EXT, and X = [j1,(1) -+ Ho(p)] "
andD = diag(oy, ..., ap), Witha; € {—1,+1} the eigenvalues of E.

The eigenvalue spectrum of the shape covariance matrix for the exhaustive 4-mer en-
semble is shown in Figure 16. All the eigenvalues are simple, even though they appear
in approximate pairs (1 & 2, 3 & 4, etc.). Thus the symmetry of eigenvectors described
in Remark 8 does apply.

The two main gaps that can be observed are between the second and the third eigen-
values, and between the 4th and the 5th. In the case of the particular ensemble of
4-mers used here (keeping in mind that the random flanking can lead to some vari-
ability in that regard), the maximum gap in the eigenvalue spectrum appears after
the fourth eigenvalue, which yield a dimension for projection p = 4. We then show all
possible 2D projections in Figure 17. These projections exhibit various axial symme-
tries, that are directly related to Remark 8.
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5. Visualising and Clustering cgDNA+ predictions

For reasons to which we will return in the next section, we then colour each data
point according to the unique translation of the corresponding DNA sequence to the
purine/ pyrimidine alphabet. See also Figure 18 for the easier case of 2-mers, where
the sequences are labeled. In both cases, one can observe some proximity between
sequences that translate to the same representative in the R/Y alphabet. However, no
presence of obvious clustering can be inferred from these scatter plots. In general, it
does not appear that PCA reveals a clear structure (e.g. clustering) on ensembles of
cgDNAloc ground states of 4-mers. This fact will be made more precise in the next
section, where a comparison will be drawn with the outcome of clustering on ground
states projected via Fisher PCA. We mention that this observation is not specific to
the choice of £ = 4, but also holds for all the higher values of & studied (upto & = 9) -
with perhaps the exception of £ = 2, for which translation of the sequences in the R/Y
alphabet appears to yield separate clusters (see Figure 18).
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Figure 16: Standard PCA: eigenvalue spectrum of C x the shape covariance matrix of
exhaustive ensemble of cgDNAloc ground state (shape) vectors for 4-mer sequences.
The two main gaps appear after the second and fourth eigenvalues. Despite being
very close to zero, eigenvalues in the lower, approximately continuous part of the
spectrum are all positive and distinct.
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PCA
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Figure 17: All possible 2-dimensional projections on the 4 principal components
of PCA, from PC1 (top and left) to PC4 (bottom and right) for exhaustive ensemble
of cgDNAloc ground state (shape) vectors for 4-mers. The subplot on ith row and
jth column shows the projection on the 2-dimensional subspace corresponding to
PCi and PCj (thus pairs of subplots placed symmetrically with respect to the diagonal
are identical up to symmetry). Subplots on the diagonal show histograms of the dis-
tribution of the shape vector one-dimensional projection onto PC1 (top left) to PC4
(bottom right). Symmetries (e.g. subplot for projection on PC1 and PC2) can be ob-
served that reflect the enforcement of Watson-Crick symmetry on the ensemble of
shape vectors - see equation (68).
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Figure 18: 2-dimensional projections on the 3 principal components PC1, PC2, and
PCA3 of standard PCA for exhaustive ensemble of cgDNAloc groundstate (shape) vec-
tors for 2-mers. Points with the same colour correspond to identical sequences in the
purine/pyrimidine alphabet.
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Figure 19: 2-dimensional projections on the 3 principal components PC1, PC2, and
PC3 of standard PCA of exhaustive ensemble of cgDNAloc ground state (shape) vec-
tors for 4-mers. Points with the same colour correspond to identical sequences in the
purine/pyrimidine alphabet. There is no visually obvious clustering.
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5. Visualising and Clustering cgDNA+ predictions

Fisher PCA yields a Purine/Pyrimidine Clustering

We now present the outcome of replacing the standard PCA with Fisher PCA (see Defi-
nition 8 in Chapter 3) for the study of exhaustive k-mer ensembles. Again, we focus on
the case when k£ = 4, but all the results presented here also apply to the other values of
k = 3,...,9. Recall that the Fisher PCA relies on finding the generalised eigenvalues
of the generalised eigenproblem

Cxv =K lv, (69)

as introduced in Chapter 3. The presence of the average inverse stiffness matrix on
the right-hand side of equation (69) ensures non-dimensionality of the problem, thus
leading to an embedding that is invariant under change of scale on the shape vectors.

The spectrum of the generalised eigenvalues for the case £ = 4 is shown in Figure
20. A clear gap is present between the 4th and 5th eigenvalues. Figures 21 and 22
show generalised eigenvalue spectra for all the other values of £ = 3,...,9. Again, the
systematic presence of a gap after the kth eigenvalue can be observed. Furthermore,
the top eigenvalues appear to come closer to identical pairs (first and second, third
and fourth) as k increases. This phenomenon might be related to the symmetry (68)
of the ensemble of shape vectors, however the mechanism responsible for it remains
to be precisely understood.

As in the PCA case, all eigenvalues are simple, even on the lower part of the spectrum.
One oberves a particularly striking resemblance of the spectra shown in Figures 21
and 22 for varying k, both in terms of range of the eigenvalues and in terms of overall
structure. While similar ranges can easily be attributed to the non-dimensionality
induced by the weighting of the eigendecomposition by K.!, similarities in structure
suggest an underlying hierarchy of mixed modes, independent of length, govern-
ing the behavior of cgDNA+ ground states. Careful inspection of the generalised
eigenvectors did not provide any particular indication on the precise nature of
these modes, so it remains to be further investigated. Importantly, those features
were observed to be very stable when changing the randomly generated flanking
sequences of the k-mers in the ensembles. This strongly suggests that the dominant
differences in cgDNA+ ground state predictions reside in & distinct modes.

To investigate the reason behind this gap, we now turn to the visualisation of the
projection of the ensemble via Fisher PCA. As implied by the criterion ( 67) and the
systematically observed gap in eigenvalue spectrum, the dimension p of the space
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projected onto is equal to k£ for each ensemble of k-mer shape vectors. Outcomes of
the projections onto the first £ generalised eigenvectors are shown in Figure 23. As
in the PCA case, projections exhibit axial symmetries. These can be explained with
an argument, mutatis mutandis, identical to the one of Remark 8. In contrast to the
PCA case, visual inspection suggests the presence of clusters, particularly in those
2-dimensional projections involving the first principal component 1 (PC1).

To investigate the nature of these clusters, we perform a standard K -means algorithm
on the k-dimensional projection of the data matrix X, following the procedure de-
scribed at the beginning of the present chapter. The silhouette criterion [55] always
lead to select an optimal number for clusters of K = 2*, each containing approxi-
mately (but very close to exactly) 2¥ data points. Sequence logos of the corresponding
sequences for each cluster are shown in Figure 27. They show a particularly clear clas-
sification of the sequences according to their translation into the purine/pyrimidine
alphabet. This is confirmed when coloring data points of the scatter plots of the pro-
jection according to the R/Y content of the corresponding k-mers. Indeed, as can be
seen in Figure 26, sequences sharing the same R/Y content not only gather together,
but tend to belong to the same clusters that are visible in Figure 23. In contrast, K-
means clustering applied to the k-dimensional standard PCA projection of the same
ground state ensembles did not lead to an optimal number of K = 2k clusters, nor to a
clear classification of the sequences (see Figure 28). The difference is also particularly
striking on 3D projection onto the first three PC; views of 3D scatter plots of those 3D
projections for PCA and for Fisher PCA are shown on Figure 24 and 24. These results
do not depend on the sequence length &, nor on random initiation of the K-means
algorithm in any significant way.
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Figure 20: Fisher PCA: generalised eigenvalue spectrum of the generalised eigenvalue
problem (69) of exhaustive ensemble of cgDNAloc ground state (shape) vectors for 4-
mer sequences. A clear gap appears after the kth eigenvalue, as is also typical for other
values of k.
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Figure 21: Fisher PCA: eigenvalue spectra of the generalised eigenvalue problem (69)
for exhaustive ensemble M, of cgDNAloc ground state (shape) vectors for k-mer se-
quences. Top: k = 3,4. Bottom: k = 5,6. Scale invariance of the Fisher PCA results
in similar ranges (10~" to around 0.6) of the eigenvalues, independent of k. A gap ap-
pears systematically after the kth eigenvalue, leading to a dimensionality reduction of
ensemble of vectors to p = k. The overall shape of the spectrum appears very stable,
and has been observed not to vary significantly with the random flanking sequences
generated for building M.
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Fisher PCA

Figure 23: All possible 2-dimensional projections on the 4 principal components of
Fisher PCA, from (generalised) PC1 (top and left) to (generalised) PC4 (bottom and
right) for exhaustive ensemble of cgDNAloc ground state (shape) vectors for 4-mers.
Here principal components are to be interpreted as generalised, in the sense that they
correspond to the generalised eigenpair for the generalised eignvalue problem (69).
The subplot on ith row and jth column shows the projection on the 2-dimensional
subspace corresponding to PCi and PCj (thus pairs of subplots placed symmetrically
with respect to the diagonal are identical up to symmetry). Subplots on the diagonal
show histograms of the distribution of the shape vector one-dimensional projection
onto PCI1 (top left) to PC4 (bottom right). As in the PCA, symmetries can be observed
that reflect the enforcement of Watson-Crick symmetry on the ensemble of shape
vectors. Subplots corresponding to PC1 in particular suggest the presence of clear
clusters, which turns out to be confirmed later on by applying the K -means clustering
algorithm (see below).
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PCA

Figure 24: 3-dimensional projection on the 3 principal components PC1, PC2, and
PC3 of standard PCA of exhaustive ensemble of cgDNAloc ground state (shape) vec-
tors for 4-mers. Points with the same colour correspond to similar sequences in the
purine/pyrimidine alphabet.
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Figure 25: 3-dimensional projection on the 3 principal components PC1, PC2, and
PC3 of (metric) Fisher PCA on exhaustive ensemble of cgDNAloc ground state (shape)
vectors for 4-mers. Points with the same colour correspond to identical sequences
in the purine/pyrimidine alphabet. There is a now a strong clustering evidence, as
opposed to the standard PCA case.
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PC3 of Fisher PCA of exhaustive ensemble of cgDNAloc ground state (shape) vectors
for 4-mers. Points with the same colour correspond to identical sequences in the
purine/pyrimidine alphabet.

84



5. Visualising and Clustering cgDNA+ predictions

P

nnnnnnnnnnnnnnnn

Lo=s

=
L

nnnnnnnnnnnnnnnn

~
HN

~

P

T
(-

................

1T T
= C

-
&L

T
C

ssssssssssssssss

Sequence Position

-
- C

Figure 27: Sequence logos representing 4-mers of groundstate vectors in each cluster
obtained by Fisher PCA projection of those vectors onto the first 4 generalised eigen-
vectors. Clustering is obtained via simple K-means, with K = 2* = 16 selected as
optimal via the silhouette criterion. Each cluster contains approximately 2* vectors.
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Figure 28: Sequence logos representing 4-mers of groundstate vectors in each clus-
ter obtained by standard PCA projection of those vectors onto the first 4 eigenvector.
Clustering is obtained via simple K -means, with K = 7 selected as optimal via the
silhouette criterion. The signal is much weaker than for the analogous metric PCA

clusters.
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5.2 Comparison with the M/ DN A parameter set

We finish this chapter by brief comments on the results obtained with the same
procedure as in the last sections, but replicated with the most recent M DN A pa-
rameter set, introduced by R. Sharma in his PhD thesis [10]. The purpose of this
comparison is to test the sensitivity of the cgDNA+ model predictions to different
Molecular Dynamics simulations conditions: the M DNA and the c¢DNA + psl
parameter sets differ in the type of water model and the ions model used in the MD
simulations from which the parameters are extracted. Precisely, c¢ DN A + ps1 makes
use of the SPC/E [56] water model, with ions parameters introduced by Dang [57],
while M DN A uses the TIP3P water model [58] and Joung and Cheatham ion [59].

The main and striking difference when using the M DN A parameter set appear in the
generalised eigenvalue spectra of the Fisher PCA. Figure 30 and 31 show analogous
plots to the ones shown in Figure 21 and 22, with which they can be compared to. As
can be observed, the presence of a gap after the kth eigenvalue is now much less obvi-
ous, and the overall shape of the spectra, while staying consistent across the different
lengths £, slightly differ from the ones of Figure 21 and 22, with a small second gap
appearing after the /th eigenvalue, with [ = 3k + 2. In general however, it is still true
that the dimension p selected yb the largest gap criterion 67 is equal to k. Further-
more, clustering of projected shapes via K-means still lead to clusters of k-mers with
identical purine/pyrimidine content (see Figure 29).
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Figure 29: Sequence logos representing every sets of 4-mers associated to ground
state vectors belonging to the same cluster. Clustering is obtained via the K-means
algorithm after projecting down to p = k principal components, generated by gener-
alised eigenvectors. The silhouette criterion [55] selected K = 2% = 16 as the optimal
number of clusters. Each cluster contains close to exactly 2* shape vectors. The data
used is the same as the one shown in Figure 27, but with the psl parameter set re-

placed by M DN A
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Figure 30: Fisher PCA computed on data generated with M DN A parameter instead
of ps1 parameter set: generalised eigenvalue spectrum of the generalised eigenvalue
problem (69) of exhaustive ensemble M of cgDNAloc ground state (shape) vectors
for k-mer sequences. Top: k£ = 3, 4. Bottom: k£ = 5,6. Compared to the corresponding
projections computed using the ps1 parameter set, the gap after the kth eigenvalue is
now reduced, and a second small gap is present after | = 3k + 2 eigenvalues.
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Figure 31: Fisher PCA computed on data generated with M DN A parameter instead
of ps1 parameter set: generalised eigenvalue spectrum of the generalised eigenvalue
problem (69) of exhaustive ensemble M, of cgDNAloc ground state (shape) vectors
for k-mer sequences. Top: £ = 7,8. Bottom: k£ = 9. Compared to the corresponding
projections computed using the ps1 parameter set, the gap after the kth eigenvalue is
now reduced, and a second small gap is present after | = 3k + 2 eigenvalues.
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6 Scanning genomes for outlier sequences

The cgDNA model has so far been applied to predict mechanical properties such
as persistence length [60], J-factors [61], or to study minicircles [4] [12]. All of these
applications involved DNA length scales of a few hundred base pairs, and correspond
to the length scale for which the model was targetted with training on 10-20 bp
fragments.

Although the general chromosomic behaviour inside a cell is certainly the product
of a large variety of complex interacting physical and chemical mechanisms that
are operating at different scales, it is widely believed that the sequence-dependent
mechanical properties of the DNA molecule at the scale of tens to thousands of bp
can play a role in certain problems that are relevant to biology at these longer scales.

In particular, with its sequence-dependent, non-local description of DNA shape and
stiffness, the cgDNA+ model offers an interesting framework to study the following
question: Can we identify in (potentially any) genomic data short sequences and/or
sites that exhibit ‘exceptional’ mechanical properties,in some sense to be made
precise, and what are those properties?

Histones

DNA helix

Figure 32: A schematic representation of the different length scales of DNA source:
https://cnx.org/contents/9TxHOD30@4/The-Nucleus-and-DNA-Replicatio

As a first step toward the investigation of these questions with the cgDNA+ model,
we have introduced some mathematical tools that allow to apply it to sequences
without ends, or short sequences embedded in long ones. Namely, in Chapter
4, we have described a procedure for fast computation of marginals of Gaussian
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6. Scanning genomes for outlier sequences

distributions whose stiffness matrix exhibits an overlapping squares sparsity pat-
tern. Chapter 2 introduced a variety of proximity measures to compare probability
distributions, which will constitute a toolbox for the numerical experiments of
this chapter. Specifically, we describe the methodology we developed for this aim,
as well as some first applications in relation with the two questions formulated above.

6.1 A toolbox to compare cgDNA+ distributions

We now come back to these tools mentioned above in the context of comparisons
of cgDNA+ distributions, with the aim to explore the mechanical properties of DNA
sequences of large datasets.

For example, if p1, p2 are the cgDNA+ distributions with mean x; and stiffness matrix
K;, i = 1,2, associated with two sequences (of the same length) S;, S9, then KL(p1, p2)
is a number which we interpret as the proximity of their statistical mechanical struc-
ture, as described by the cgDNA+ model. As already mentioned, this quantity can be
computed explicitly as

det K2
det K1

1 _ 1
KL(p1,p2) = 5 l:tl" (KgKl 1) —In n| + §(M1 - uz) . Kz(,ul - ,LLQ). (70)

In this context, the KL divergence can be thought as an analogue to Shannon entropy
for continuous distributions, and in particular is used as a standard way to compare
them (although it should again be pointed out that KL. does not satisfy the axioms of
a distance). Incidentally, the integral form

KL(p1,p2) = /Pl n 2t
P2

of the KL divergence is formally very close to the information content IC(7) defined in
(16), which is precisely a discrete relative Shannon entropy with respect to a uniform
distribution on the possible bases { A, C, G, T'} at a position i.

It should also be mentioned that KL divergence is used extensively in the machinery
of cgDNA+ as an objective function, both for truncation of the stiffness matrix into a
banded version (to satisfy the nearest neighbour assumption), and for parameter op-
timisation [44]. In our setting, it will serve to compare a given sequence (e.g.a putative
binding site) to a reference distribution, the form of which could vary depending on
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the precise problem at hand.

For the purpose of comparison, in what follows we will make use of various ver-
sions of KL, namely: KL(p1, p2), KL(p2, p1), KL*¥™(p1, p2), MH*Y™(p1, p2) where p; =
p(-; i, K;). Note that all the quantities are normalised by number of degrees of free-
dom, i.e. the dimension n of the underlying space R" of p; (see equation (66) in Chap-
ter 5).

6.2 Typical and atypical sequences, from tens to hundreds of base pairs

Here we address the question of detecting sequences with ‘exceptional mechanical
properties’, in the following sense: let S’ = {S/} be an ensemble of sequences and
S = {S;} an ensemble of subsequences of &', that is we have S, C S; for each i. Then
this defines an ensemble of {p; = pioc(+;Si,S;)} of marginal cgDNA+ distributions,
as introduced in Chapter 4. In turn, the average cgDNA+ distribution p,, of the p; is
defined as in Chapter 2. Given any proximity measure d between probability distri-
butions, we consider the outlier sequences S; satisfying

dj = d(ﬂjapav) > t,

where ¢ is a threshold to be specified. In practice, we will express the parameter ¢ as
a multiple of the empirical standard deviation o of the 1-dimensional distribution of
the d; as the sequence varies:

t=po,

where p is an integer.

Note that in the spirit of Property 5, all these proximity measures d; are normalised
by number of degrees of freedom. This choice will also be justified a posteriori by
the observation that the observed values of d; ranges in practice over similar values
for different dimensions of cgDNA+ pdfs (induced by different choices of sequence
lengths).

The generic procedure above can be applied to scan long (e.g. genomic) sequences in
search for outliers sites. These sites are of fixed length /, a free parameter that typically
we take to range from tens to hundreds of bps. Longer sequences are not considered,
as they go beyond the scales for which the cgDNA+ model was envisioned where
sequence dependent elasticity is expected to play a significant role.
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6. Scanning genomes for outlier sequences

Hence, given a sequence S, e.g. a chromosome , the ensemble {S/} is extracted via
a sliding window approach, with window length I’ = [ + 2f, where f is the length
of the regions flanking S; inside S,. See Fig 33 for a schematic representation of the
procedure.

s
s .. [FGRAGl TTATGACGTA [FGTAl CTTTGATT. ..
s
= u(S51), K(51) = pioc(51), Kioc(S1)
53
s .. TIGRAGT] TATGACGTAT [GHAG) TTTGATT...
S,
= u(S55), K(53) — pioc(52), Kioc(S2)
S3
S: ... TGIRRGHT ATGACGTATT [GFAGH TTGATT...
S

— ”(Sé)r K(SI';) — .uloc(s3). Kt‘oc(53)

Figure 33: Illustration of the sliding-window scanning of a DNA sequence S with
cgDNAloc. Here cgDNA+ ground states and stiffness matrices u(S}), K(S}) are built for
all sites S, C S of length 20bp. Then, marginal cgDNAloc parameters 1i0.(S:), Kioc(Si)
are extracted, with S; C S/ a core site of length 10bp in the example shown here.

In S. cerevisiae chromosomes

In this section, we present the outcome of the genome scanning procedure applied
to the genome of S. cerevisiae (brewer’s or baker’s yeast). All the computations pre-
sented were performed on chromosomes I to VIII, with essentially the same outcome.
Thus, for brevity, we only present and discuss the case of chr I. This chromosome
has a length of 230,208 bp. Here we show and discuss the signals d; for the cases
where d is given by one of the four quantities KL(p;, pav), KL(pav, pj), KL*¥™(pj, pav),
MH*™(p;, pav), that we all assume to be normalised by number of degrees of freedom
equal to 24/ — 6 with different choices of window size [ = 10, 20 or 50 bp, and a fixed
flanking length of 5 bp. As will be shown in what follows, the properties of the signals
d; are remarkably insensitive to the choice of I. As a matter of fact, these properties
are also valid for I = 11, 100, or even 147 bp (the length of DNA wrapped around a
nucleosome - see Figure 46.

Figure 34 and 35 show all the d; signals along chr I for a window size of [ =10bp,
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together with a histogram of their cumulative distributions. A first observation to be
made is that the range of all the signals d; is much higher than with the reference scale
defined for KL*¥" in Chapter 5. This fact reflects the high sequence dependence of
DNA mechanics, as modeled by the cgDNA+ model. The case with the least variation,
and also the lowest values of d; is when d; = KL pj, pav). This might be related to the
choice of p,,, which by construction minimizes the sum of the d;’s, but a complete
explanation of this difference remains to be elucidated.

S. cerevisiae chromosome |
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S. cerevisiae chromosome |

Wﬁr M‘W ¢ N i M i i £ b _
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02 0.4 06 0.8 1 1.2 1.4 1.6 1.8 2 22 2000 4000 6000
site position (bp) x10°

Normalized KLdivs2 to average cgDNA

Figure 34: Chromosome-wide KL-divergence (with both order of the arguments) to
cgDNA+ average Gaussian, for 10 bp sliding window in S.cerevisiae chr 1. Top shows
values of KL(pj, pav), while bottom shows values of KL(pa., pj). Outliers are marked
with red crosses. Note the very different scales between the two signals, reflecting the
fundamental non-symmetric nature of the Kullback-Leibler divergence, and directly
related to the definition of p,, as a minimizer of KL(p;, pa,). Qualitatively, KL(p;, pav)
(top) also appears more homogeneous along chrl, and its cumulative distribution is
closer to a smooth normal distribution. In contrast, KL(pa., p;) (bottom) shows re-
gions with only low values, and its cumulative distribution is less regular in the high
value, with a very small mode around the higher end of the distribution, suggesting
the presence of a population a sequences with exceptionally far from average statisti-
cal mechanical properties.
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Figure 35: Chromosome-wide KL-divergence symmetrised (top), and Mahalanobis
distance symmetrised (bottom) to cgDNA+ average signal, for 10 bps sites in S. cere-
visiae chr 1. Outliers are marked with red crosses. Notice the difference in scales and
ranges of the two signals (recall that KL*¥™ decomposes as the sum of M H*Y™ plus
an extra term involving only stiffness matrices). Nevertheless, the signals appear to
follow the same patterns, particularly in the regions with no or few high values. This
observation tends to indicate that it is in fact the stiffness matrix K; that has the most

impact on MH*¥"(p,,, p;) - because if it where the ground state vector y;, the two
signals would be uncorrelated.

A second observation to be made is that for all the signals d;, the minimum values
across the entire chromosome is far from zero, which means that the distributions p;
are all far from the average distribution p,,. Moreover, the typical minimum distance
d; exhibits an order magnitude comparable to typical range of the distribution of
the d; (see for example the top signal in Figure 35). In other words, no particular
sequence appears close to average DNA (as we defined it) in terms of its statistical
mechanical properties.

Figure 36 shows sequence logos obtained from the procedure described in the

95



PART II: cgDNAloc and Applications

previous section, with ¢ = 3, a window length of 10 bp, with marginalisation over
5bp flanking sequences, and the various choices of d. Most of these logos (with
the exception of the first one) indicate that the selected outlier sequences exhibit
a relatively very a high A/T content. This preference is stable across the various
possible positions of the base pair inside the sequence, with little more variety in
bp frequency at both the first and last position of the logos. This variation could
be attributed to the previously discussed non-local sequence dependence of the
cgDNA+ model, with bp content of both flanking sequences influencing the score d;
of the sequence. The precise mechanism remains unclear however. Together with
the observation made in Figure 35 on the role of the stiffness matrix K;, the fact that
the outliers for the signal d; for the symmetrised Mahalanobis distance also yields a
strong preference for A/T base pair suggests that this preference is influenced by the
stiffness K;. It is still unclear to us why the first signal d; = KL(p;, p,») does not yield
outlier sequences with particular base pair preferences. The conjecture is that it is
related to the nature of the average p,,, which by definition minimises the sum of the

KL (05, pav)-

Further analysis of these outlier sequences can be carried out using dimer logos (see
Figure 37). With again the exception of the case when d; = KL(pj, pa), all ensembles
of outlier sequences obtained exhibit a high content of AA and TT dimers. Again,
this preference is stable across the various possible positions of the dimers inside
the sequence. This fact implies that these sequences are characterized by runs of A
or runs of T. Although the proportions of A and T are not exactly identical, as can be
observed from the logos, they are very close. That fact is not surprising, in regard
to the built-in Watson-Crick symmetry of the parameters of the cgDNA+ Gaussian
distributions (see Chapter 1).
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Figure 36: Sequence logos built from the high outliers (3 standard deviations
above the mean) in chromosome-wide KL(pj, pav), KL(pav, pj), KL*¥(pj, pav), and
MH®*¥"(p;, pav) to cgDNA+ average signal, for 10 bps sites in S. cerevisiae chr 1. All but
the first logo show a very strong preference for A/T base pair content. That preference
appears overall independent from the position of the base pair inside the sequences,
with some slight variation at the first and last (or two first and two last in the case of
the Mahalanobis distance) position.

As no value of the d; is close to zero (compared to the range of their distribution), it is
also meaningful and of interest to look at sequences S; satisfying

dj - d(Pijav) S ta

which we will refer to as low outliers.

Logos of low outlier sequences for a window size of 10 bp are represented in Figure 38.
Despite being less striking than in the case of high outliers, with a lower information
content reflecting a larger variety in monomer frequencies, one can still observe a
preference for sequences with high C/G content.

This preference is also present on the corresponding dimer logos (see Figure 39)
which shows that low outliers are rich in CC and GG dimers.
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With the purpose of studying the effect of increasing the window size [ in the
scanning procedure, we also compute analogous d; signals along S. cerevisiae with
[ = 20bp and | = 50bp. Analogous d; signals to the ones on Figure 34 and 35
are shown on Figure 40, 41 (20bp) Figure 43 and 44 (50bp). In both cases it is
quite remarkable that the scale of the different d; are very similar to the case of
10bp. This fact a posteriori motivates the choice of normalising all the d proximity
measures by number of degrees of freedom. Furthermore, all properties previously
highlighted in the case | = 10bp still hold for these larger window sizes: close to
normal cumulative distribution, qualitative similarity and matching areas of fewer
sequences with high d; values, with the exception of the case d; = KL(pj;, pav)-
The main differences appear to be a relative decrease in noisiness of the signals,
which is presumably due only to a smoothing effect related to the ratio between
the window size and the shift of 1bp that is used in the scanning. This also explains
why outlier sequences also appear increasingly more clustered together as [ increases.

Sequence logos of ensembles of high outlier sequences for the cases 20bp and 50bp
are shown on Figures 42 and 45. As in the case [ = 10bp, a rather homogenous pref-
erence for A/T base pair can be observed, even though the amplitude of the infor-
mation content in these logos decrease slightly as the window size [ increases. This
preference is even still apparent for the case 3 when | = 147bp,which is the length of
DNA wrapped around a nucleosome - see Figure 46.

¥Note that this signal was obtained with the prior cgDNA model, with which the experiments pre-
sented in this chapter were originally conducted
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Figure 37: Dimer logos built from the high outliers (3 standard deviations
above the mean) in chromosome-wide KL(p;, pav), KL(pav, pj), KL*¥"(pj, pav), and
MH®*¥"(p;, pav) to cgDNA+ average signal, for 10 bps sites in S. cerevisiae chr 1. With
the exception of the one on the first panel, each of these logos shows a very strong
preference for AA and TT dimer content, in a way that is mostly independent from
the position of the dimer inside the sequence, meaning that the corresponding out-
lier sequences are mostly formed by runs of A and runs of T.
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Figure 38: Sequence logos built from the low outliers (3 standard deviations
above the mean) in chromosome-wide KL(p;, pav), KL(pav, pj), KL*¥™(pj, pav), and
MH®*¥Y"(p;, pav) to cgDNA+ average signal, for 10 bps sites in S. cerevisiae chr I. Despite
being slightly weaker than in the case of high outliers, these logos show some prefer-
ence for G and C content, particularly on the logo corresponding to the KL(pq4y, p;)
signal (top right).
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Dimer position Dimer position

Dimer position Dimer position

Figure 39: Dimer logos built from the low outliers (3 standard deviations be-
low the mean) in chromosome-wide KL(pj, pav), KL(pav,p;), KL*™(pj, pav), and
MH®*¥"(p;, pav) to cgDNA+ average signal, for 10 bps sites in S. cerevisiae chr I. As was
observed for the case of high outliers, the C/G preference observed in the monomer
sequence logos turns out to be a preference in CC/GG dimers. This feature is par-
ticularly striking in the case d; = KL(pa, p;) (top right) and MH*™(p;, pa) (bottom
right).
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Figure 40: Chromosome-wide KL-divergence (with both order of the arguments)
to cgDNA+ average signal, for 20 bp sliding window in S.cerevisiae chr 1. Top shows
values of KL(pj, pav), while bottom shows values of KL(p,., pj). Outliers are marked
with red crosses. We observe again a lower scale and smaller range for the values
d; = KL(pj, pav), related to the definition of the average p,, as a minimiser of the sum
of KL(pj, pav). That signal also appear noisier than d; = KL(p.v, p;), as was observed
when scanning with a window size of 10bp.
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Figure 41: Chromosome-wide KL-divergence symmetrised (top), and Mahalanobis
distance symmetrised (bottom) to cgDNA+ average signal, for 20 bps sites in S. cere-
visiae chr 1. Outliers are marked with red crosses. Scales of both signals highly re-
semble the scales of the analogous signals d; computed with a window size of 10bp,
which a posteriori makes the choice of normalisation by number of degrees of free-
dom pertinent for comparison. It is also the case that these two signals exhibit similar
patterns - e.g., areas with low number of high values, indicating a predominant role
of the stiffness matrix K; in the behavior of MHy,,.
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Figure 42: Sequence logos built from the high outliers (3 standard deviations
above the mean) in chromosome-wide KL(p;, pav), KL(pav, pj), KL*¥™(pj, pav), and
MH®*Y"(p;, pav) to cgDNA+ average signal, for 20 bps sites in S.cerevisiae chr 1. Simi-
larly to the corresponding 10 bp logos (Figure 36), all but the first logo show a very
strong preference for A/T base pair content. That preference appears overall inde-
pendent from the position of the base pair inside the sequences, with some slight
variation at the first and last position.
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Figure 43: Chromosome-wide KL-divergence (with both order of the arguments) to
cgDNA+ average signal, for 50 bp sliding window in S.cerevisiae chr 1. Top shows val-
ues of KL(pj, pav), while bottom shows values of KL (pa., p;j). Note the different scales
of the two signals. Outliers are marked with red crosses. With a 5-fold increase in
scanning window size compared to the 10 bp case, but still scanning shift of 1 bp, a
window smoothing can be observed in particular when d; = KL(pa, p;) (bottom).
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Figure 44: Chromosome-wide KL symmetrised (top), and Mahalanobis symmetrised
(bottom) to cgDNA+ average signal, for 50 bps sites in S. cerevisiae chr 1. Outliers are
marked with red crosses. With a 5-fold increase in scanning window size compared to
the 10 bp case, but still scanning shift of 1 bp, a window smoothing can be observed.
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Figure 45: Sequence logos built from the high outliers (3 standard deviations
above the mean) in chromosome-wide KL(pj, pav), KL(pav, pj), KL*¥(pj, pav), and
MH?®*¥"(p;, pav) to cgDNA+ average signal, for 50bp sites in S.cerevisiae chr 1. Similarly
to the corresponding 10 bp logos (Figure 36), all but the first logo show a very strong
preference for A/T base pair content. As window size increases, information content
in the sequence logos of outlier decreases.

Figure 46: Sequence logos built from the high outliers (3 standard deviations above
the mean) in chromosome-wide KL*™(p;, pas), to cgDNA average signal, for 147bp
sites in S. cerevisiae chr 1. A weaker but still noticeable preference for A/T content can
be observed.
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Conclusion and Discussion

We start by briefly summarising the main results of the thesis.

In the framework of the sequence-dependent statistical mechanics cgDNA+
coarse grain model, that was introduced in [2] building on the precursor cgDNA
model [62] [8], we have developed a tool that we have named cgDNAloc, that allows
scanning of genomic length-scale sequences using a sliding-window approach with
short test sequence fragment. This tool permits proper account to be taken for the
significant non-local effect of flanking sequence on any groundstate vector predicted
by cgDNA+.

In order to be useful, the cgDNAloc algorithm has to be extremely efficient in order
to be able to treat the vast number of (still rather high dimensional) marginals that
need to be computed in realistic applications. The large number of sequences to be
treated arise in two different ways: first because of the inherent exponential growth
of the size of exhaustive ensembles of possible DNA sequences of length k, or k-mers.
Secondly, for scanning genomes, the sequence data is so long that the computation of
many marginals is still required just because there are so many window locations. The
efficiency of the cgDNAloc algorithm is possible due to the main mathematical cor-
nerstone of this thesis, namely: marginals of Gaussians with banded (i.e. overlapping
squares sparsity pattern) inverse covariances also have banded inverse covariance
matrices (with the same overlapping squares sparsity pattern), and in marginalisation
the only entries that change from the sub-block of the original inverse covariance are
in the first and last overlap region. This result is not obvious, and has to our knowl-
edge only been described previously in analogous versions expressed in the language
of graphical models (see [45,47]) a literature that is unlikely to be accessible to many
molecular biologists. This may be because marginalisation of Gaussians naturally in-
volves considering sub-blocks of the covariance matrix itself, which for banded in-
verse covariances is still dense, albeit with nontrivial, hidden, dependencies between
covariance sub-blocks. Our observation leads to our efficient algorithm for comput-
ing marginals, with direct application to specific cgDNA+ marginals implemented in
cgDNAloc. We make two further remarks. First in the case where the overlaps in the
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block sparsity are absent, so that a block diagonal sparsity arises for the inverse co-
variance (and in this case also for the covariance itself), then our results reduce to the
well-known, essentially trivial result for marginalising block diagonal inverse stiffness
matrices. In particular the marginal stiffness matrix is itself block diagonal, with the
only blocks that may not be sub-blocks of the original stiffness matrix, being the first
and last ones. Second, one possible reason that our result is not widely known, is that
just to formulate the hypothesis of an overlapping block sparsity pattern the order of
the components in the pdf variable w must be fixed and specified. In many appli-
cations in statistics this is not such a natural hypothesis. But in our polymer chain
model of DNA the ordering leading to overlapping block sparsity is very natural, and
arises due to nearest neighbour interaction along the polymer.

Similarly the block sparsity pattern is only preserved in the particular marginal-
isation where consecutive runs of an initial and final range of variables are to be
eliminated. Other marginals are also interesting. For example marginalising over
the base-phosphate degrees of freedom in the cgDNA+ model leaves precisely a
Gaussian in the inter and intra variables appearing in the cgDNA model. However the
cgDNA+ marginal stiffness matrices for inter and intra variables are dense, albeit with
rapidly decaying entries far from the diagonal. Specifically the marginal stiffnesses
are not limited to the banded sparsity pattern assumed in cgDNA corresponding to
locality in those degrees of freedom. This observation is probably why the cgDNA+
model predictions are considerably closer to statistics observed directly from MD
simulation. It is an example where computing with a higher dimensional, finer grain,
Gaussian model with a structured stiffness matrix can be better than assuming a
lower dimensional model without a structured stiffness matrix. In fact an analogous
observation was previously made in [4] in computing DNA persistence lengths,
which only depend on the distribution of the inter variables. Persistence lengths
could therefore be computed with a lower dimensional rigid base pair marginal of
the cgDNA rigid base model, in which the intra variables have been eliminated. But
the inter variable marginal stiffness of the banded cgDNA stiffness matrix is not itself
banded, and as a consequence it was much more efficient to run simulations using
the original higher dimension, finer grain, but structured Gaussian distribution on
both intra and inter variables.

We described and introduced some dimensionality reduction methods to visualise
and cluster ensembles of multivariate Gaussians. The methods are fast, invariant
under a linear change of coordinates, and theoretically grounded in information
geometry (via the Fisher metric). We applied the methods to ensembles of cgDNAloc
predictions of Gaussians associated to exhaustive evaluation of all k-mer sequences.
This process yielded a very clear cut clustering of 2* clusters, with the clusters group-
ing pdfs for k-mers according to their sequence in the reduced purine/pyrimidine
alphabet. In particular, the clustering we obtained is only revealed using the Fisher
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metric, rather than after a more standard PCA projection.

In the Chapter 6, we introduced methodology to use cgDNAloc to scan genomic-
length sequences in search for outlier sites - in the sense of understanding the
sequences that are furthest in their sequence-dependent statistical mechanical prop-
erties (as predicted by the cgDNA+ model) from the sequence independent, averaged
pdf. We applied this method to scan parts of the S. cerevisiae genome (chr I-VIII)
with various window sizes. We observed a strong and consistent signal, independent
of window length, that outliers had a significantly enhanced A/T content preference
as expressed in standard monomer-based sequence logos. The outliers even had
a significant preference for AA/TT dimer steps as expressed in their less standard,
dimer-based sequence logos.

We conclude this discussion with an outlook on potential further applications of the
techniques introduced in this thesis combined with the cgDNAloc marginalisation
procedure. The preliminary example data shown below has been computed with
marginals of the cgDNA model, and for reasons of available time has not yet been
extended to the analogous, but more accurate cgDNA+ computations.

As we described in section 1.1, one very important application in molecular biology
is to be able to identify binding sites along the DNA sequence for Transcription Fac-
tor Binding Proteins (or TFBPs). The belief is that TFBPs bind to DNA via so-called
indirect read out, i.e. the protein is believed to recognise certain statistical mechan-
ics properties of the binding sites, rather than directly recognising the DNA sequence
itself. (Such direct read out does happen for other proteins.) Typical experimental
data for a specific TFBP is a library of sequences known to contain a binding site at a
specific location. And the problem is to be able to scan genomes to identify all other
likely binding sites for that specific TFBP.

To illustrate the potential of the cgDNAloc machinery to be applied to the study
indirect readout, we briefly discuss a method that is analogous to the scanning of
genomic sequence by frequency matrices, but with replacing the score matrix repre-
sentation of a site with an average consensus cgDNAloc distribution. The procedure
goes as follows: from the known experimental data a sequence logo over all known
binding sites can be computed. Then a consensus cgDNAloc marginal distribution
for binding sites for that particular protein can be computed by averaging over an
ensemble of sub-sequences respecting the known binding site sequence logo. Once
the consensus binding site marginal is known, it can be slid along the genome, in an
analogous methodology to the one presented in Chapter 6, but now to identify any
window locations where there is a particularly good agreement between the binding

111



PART II: cgDNAloc and Applications

site consensus marginal, and the actual marginal at that location.

Fig 47 shows data for the particular example of the CTCF TFBP, where the binding site
is known to be of length 19 bp. The consensus binding marginal distribution is slid
along a 201 bp fragment containing precisely one known CTCF binding site. In this
example, the minimal normalised KL divergence to the consensus binding cgDNAloc
marginal distribution is obtained exactly at the site. This strongly suggests a role of
DNA mechanics in binding site recognition, as already suggested for example by Rohs
et al in [31]. However there are also many ‘false positive’ dips in the signal profile.
One problem with using KL divergence as the similarity measure is that it may well
be too stringent a criterion for similarity. More specifically it seems likely that a TFBP
will bind to DNA locations where some of the lowest energy mode deformations of
that particular sequence are a good match for the physical properties, shape and
stiffness, of the protein. However for KL divergence between two marginals to be
small, not only do the low energy modes have to be close, rather all modes have to
be close, and it is perhaps not so likely that closeness of high energy modes will be a
physically pertinent criterion for binding affinity.

CTCEF site fragment
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Figure 47: KL-divergence (normalised by number of degrees of freedom) between
the 19bp cgDNAloc consensus binding site marginal distribution for the CTCF TFBP
plotted against window location along a 201 bp DNA fragment known to contain one
CTCF binding site, located at the red circle, which is also the global minimum of the
signal.

Another important contemporary subject in the molecular biology of DNA is to un-
derstand the consequences of epigenetic base modifications. It is widely believed
that such modifications affect the statistical mechanics of the double helix. One way
to quantify that belief is to study the effects of epigenetic modifications on the spec-
tra over an ensemble of sequences S of the sequence dependent apparent ¢,(S) and
dynamic (4(S) persistence lengths of DNA fragments. As is more fully explained in (8]
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the apparent persistence length ¢, is a quite standard measure in polymer physics of
a length scale on which tangent-tangent correlation decays along a polymer. It can
be shown for Gaussian distributions such as cgDNA that the value of ¢,(S5) depends
on both the ground state u(s) and the stiffness K (.5). Generally the spectrum over
sequence of /,(.S) can be very broad, with some very low values for some sequences.
In fact the linear fit that arises in defining ¢,,(.5) is itself very bad when the ground
state p(s) is highly bent, which is invariably the case for low values of ¢,(.S). For that
reason the concept of sequence-dependent dynamic persistence length /,(S) was in-
troduced in [8] by factoring out a ground state dependent part of the tangent-tangent
correlation decay. Then the remaining part is fit to provide the dynamic persistence
length ¢,;(S) which to a good approximation depends only on the stiffness matrix
K(S). The spectrum over sequence of ¢4(S) still has variations of up to 50% between
different sequences, but it is much more compact than the spectrum for ¢,(S). Thus
the dynamic persistence length ¢,(.S) is a good scalar proxy indicating an overall stiff-
ness of the particular sequence, with larger values corresponding to stiffer sequences.
And if there is a large difference between dynamic and apparent persistence lengths
24(S) — £,(S) > 1 for a specific sequence, then that is a single scalar proxy for the
sequence being highly bent.

Two of the most biologically important epigenetic base modifications are 5’ methy-
lation or hydroxymethylation of cytosines C appearing in a CpG dimer step. From
the point of view of the cgDNA coarse grain model the possibility of such modi-
fications is just an extension of the sequence alphabet beyond the standard four
member {A, T, C, G} alphabet to allow three versions of CpG parameter set junction
blocks, depending on whether the cytosines in that junction step are unmodified, or
methylated or hydroxymethylated. (In fact there is also the possibility of e.g. hemi-
methylation, where only the Watson strand cytosine is modified, and the Crick strand
cytosine is not modified, etc. But here we will only present data for the more common
fully modified case, where either both or neither backbone cytosines are modified.) A
preliminary cgDNA parameter set in the extended sequence alphabet has been esti-
mated from an appropriate library of MD simulations, where as before the accuracy of
the cgDNA parameter set depends on the accuracy of the underlying MD simulation
and its potentials.

With extended cgDNA parameter sets (see [10]) in hand for unmodified, methylated,
and hydroxymethylated cases, the statistical mechanics effects of epigenetic modifi-
cations can be examined as follows. We first generated a library of 10K random 220bp
long sequences with equal frequencies of each of the four standard bases at each loca-
tion. For each of the 10K sequences we then generated three versions, an unmodified
one, one where every CpG step was methylated, and one where every CpG step was
hydroxymethylated. Then both apparent ¢, and dynamic ¢, persistence lengths were
computed for each each of the three variants for each of the 10K sequences. Figure
48 provides histograms of the three possible differences between the apparent per-
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sistence lengths for each of the three versions of each sequence. It can be observed
that none of the histograms of differences are sign definite, so that a change of cer-
tain type may either increase or decrease the apparent persistence length depending
on the particular sequence. In general there is the trend that methylated and hydrox-
ymethylated apparent persistent lengths are higher than for the analogous unmodi-
fied sequences, but it is only a trend that is not true for all sequences. In contrast the
signal in Fig.49 for the analogous differences in dynamic persistence lengths ¢,4(S) is
more striking. The histogram of differences in ¢; between methylated and hydrox-
ymethylated sequences is again sign indefinite, but is now quite narrow and centered
close to zero. It can therefore be concluded that methylated versions of a sequence
are sometimes slightly stiffer and sometimes slightly softer than the hydroxymethy-
lated version of the same sequence, but any difference is always quite small. In con-
trast the differences in /; between either methylated or hydroxymethylated sequences
and its unmodified version is always positive and is usually quite large. Some dif-
ferences will always be quite small simply because there can be comparatively few
CpG steps in some of the 10K 220bp sequences, so the modifications between the
full sequences will be comparatively small. But the data on the dynamic persistence
lengths /¢, reveals the clear signal that either methylation or hydroxymethylation base
modifications stiffens any sequence compared to the unmodified values, and sig-
nificantly stiffens most sequences compared to the unmodified values. When this
dynamic persistence length signal is combined with the broader and indefinite dis-
tributions for the apparent persistence length differences, it can also be concluded
that both methylation and hydroxymethylation have significant effects on the ground
state shape 1(S). However there is no obvious pattern to indicate whether the epige-
netic changes lead to an overall straightening or bending of the ground state. This
is in fact a quite subtle question as it can depend on the phasings of the modified
junctions.
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shows the variation between 2 among the 3 different versions (standard, fully methylated,
fully hydroxymethylated) of the sequences.
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Figure 49: Normalized histograms of differences in dynamic persistence lengths for 10,000
random (uniform discrete distribution on {A,C,G,T}) sequences of length 220 bp. Each curve
shows the variation between 2 among the 3 different versions (standard, fully methylated,
fully hydroxymethylated) of the sequences.

Another more striking observation concerning the consequences of methylation se-
quence modifications can be seen in a version of the scanning procedure presented in
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Chapter 6. We retain the unmodified sequence averaged mean distribution. But now
we scan with a sliding window in which any CpG dimers are methylated. As illustrated
in Fig 50, the signal is now strikingly different from the data presented in Chapter 6,
where the outliers were all AA/TT rich sequences, and the cumulative distribution
was single peaked. Now the outliers are much further from the mean, and the cumu-
lative distribution of distances from the mean is itself multi-peaked. A closer analysis
then reveals that each peak corresponds to the number of CpG steps lying inside the
window (where for this window size, the maximum possible number of CpG steps is
four). Thus in contrast to the standard alphabet case, the outliers with methylation
are the CpGrich sequences, rather than AA/TT rich sequences. Moreover the changes
in KL distance to the sequence averaged pdfinduced by even a single methylated CpG
step is much larger than any variation with sequence in the standard alphabet.
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Figure 50: (top) Chromosome-scale KL to average cgDNA signal. (3 standard devi-
ations from the mean), for 10 bps sites in a uniformly random assembled chromo-
somic length sequence, with all CpG steps fully methylated. Cumulative distribution
is shown on the right. (Bottom): the same signal, with the cumulative distribution
separately coloured by actual number of methylated CpG contained in the site.

This last observation highlights the drastic effect of CpG methylation on the statisti-
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cal mechanical properties of DNA as modeled by the cgDNA+ model on the basis of
Molecular dynamics simulation, and opens the door to future investigations in that
regard, in the context of a growing interest for the role of epigenetic modifications in
TF binding (see e.g. [63]) and in genomics in general.
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