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Abstract
Metal plasticity is an inherently multiscale phenomenon due to the complex long-range field

of atomistic dislocations that are the primary mechanism for plastic deformation in metals.

Atomistic/Continuum (A/C) coupling methods are computationally efficient ways to model

dislocation interactions with other defects. This coupling utilizes robust but computationally

expensive atomistic models in the spatial regions where short-range nonlinear atomistic

resolution is required and the less expensive linear continuum elasticity mesoscale models

(e.g., discrete dislocations) for regions where long-range effects dominate. Traditional A/C

coupling methods use finite element methods in the continuum region, which makes them

computationally prohibitive for 3D boundary value problems due to volumetric scaling of

degrees of freedom. Here, a lattice Green’s function (LGF)-based A/C coupling method is

developed to efficiently solve 3D boundary value problems in which the number of degrees of

freedom scales with the surface area. Such A/C boundary value problems involve an internal

boundary between the atomistic and continuum domains, and an outer boundary where

surface forces and displacements are applied. Using LGF, the flexible boundary condition

method (FBCM) can be used at the internal boundary. The FBCM is analyzed for the infinite

domain A/C problems using several 1D and 2D example problems to highlight the influence

of the initial solutions and the numerical LGF on the accuracy of results. Next, a discrete

counterpart of the continuum boundary element method, the lattice Green’s function method

(LGFM), is developed for the outer boundary. The LGFM requires an atomistically-resolved

boundary which is computationally prohibitive for large realistic 3D problems. A coarse-

graining method for the LGFM on the outer boundary is introduced to address this, where

slowly varying surface forces/displacements are interpolated using local shape functions.

The coarse-grain LGFM reduces the degrees of freedom on the outer boundary, making the

simulations computationally tractable. Validation and application of the LGFM for the non-

trivial mechanics problem of a dislocation loop in a 3D FCC box with externally applied surface

displacements are shown. Finally, the FBCM and LGFM are integrated to solve the full coupled

A/C boundary value problems using LGF.

keywords: atomistic/continuum coupling, discrete dislocation modeling, flexible bound-

ary condition method, boundary element method, coarse-graining, lattice Green’s function,

hierarchical matrices
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Résumé
La plasticité des métaux est un phénomène intrinsèquement multi-échelle en raison du champ

complexe à longue portée des dislocations atomiques qui constituent le principal mécanisme

de déformation plastique des métaux. Les méthodes de couplage atomistic/continuum (A/C)

sont des moyens efficaces en terme de calculs pour modéliser les interactions entre les disloca-

tions et d’autres défauts. Ce couplage utilise des modèles atomistiques robustes mais coûteux

en calcul dans les régions spatiales où une résolution atomistique non linéaire à courte portée

est nécessaire et des modèles mésoéchelle d’élasticité continue linéaire moins coûteux (par

exemple, des dislocations discrètes) pour les régions où les effets à longue portée dominent.

Les méthodes usuelles de couplage A/C utilisent des méthodes d’éléments finis dans la région

du continuum, ce qui les rend prohibitives en termes de calcul pour les problèmes de valeurs

limites en 3D en raison de l’échelle volumétrique des degrés de liberté. Nous développons ici

une méthode de couplage A/C basée sur la lattice Green’s function (LGF) pour résoudre effica-

cement les problèmes de valeurs limites en 3D dans lesquels le nombre de degrés de liberté

s’échelonne avec la surface. Ces problèmes de valeurs limites A/C impliquent une frontière

interne entre les domaines atomique et continu, et une frontière externe où les forces et les

déplacements de surface sont appliqués. En utilisant le LGF, la flexible boundary condition

method (FBCM) peut être utilisée à la frontière interne. La méthode FBCM est analysée pour

les problèmes A/C du domaine infini à l’aide de plusieurs problèmes d’exemple 1D et 2D

afin de mettre en évidence l’influence des solutions initiales et de la LGF numérique sur la

précision des résultats. Ensuite, un équivalent discret de la méthode des éléments de frontière

du continuum, la lattice Green’s function method (LGFM), est développé pour la frontière

extérieure. La LGFM nécessite une frontière résolue de manière atomistique, ce qui est prohi-

bitif en termes de calcul pour les grands problèmes 3D réalistes. Une méthode coarse-grained

pour la LGFM sur la frontière extérieure est introduite pour résoudre ce problème, où les

forces/déplacements de surface variant lentement sont interpolés en utilisant des fonctions

de forme locales. Le LGFM coarse-grained réduit les degrés de liberté sur la frontière extérieure,

ce qui rend les simulations plus faciles à calculer. La validation et l’application du LGFM pour

le problème mécanique non trivial d’une boucle de dislocation dans une boîte FCC 3D avec

des déplacements de surface appliqués de l’extérieur sont présentées. Enfin, le FBCM et le

LGFM sont intégrés pour résoudre les problèmes de valeurs limites couplés A/C complets en

utilisant le LGF.
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1 Introduction

1.1 Multiscale modeling of plasticity

The fundamental understanding of deformation in metals in the plastic regime is of great

interest in the material science community due to its wide range of engineering applications.

It helps us develop next-generation high-performance metal alloys for different thermo-

mechanical loading and environmental effects - nuclear materials under radiation and hydro-

gen embrittlement, lightweight alloys for aerospace applications, large span steel girders in

structural engineering, and high-temperature applications such as gas turbines.

The multiscale modeling of metals in the plasticity regime is required to obtain the macro-

scopic variables like yield surface, strain hardening, creep rate, ductility limit, and fatigue limit.

Understanding the qualitative behavior of the macroscopic variables is essential for making

engineering decisions at the design level for their engineering applications and developing

metallurgical processes for sustainable industrial productions of metal alloys.

Plastic deformation in metals exists due to atomic and crystalline defects such as twinning,

phase transformation, grain boundary sliding, and dislocation slip movement. Out of these,

the slip induced by the motion of dislocations motion is the most dominating mechanism for

plasticity under general engineering temperature and strain rate regimes (Andreoni and Yip,

2020, Chapter 69). Due to the long-range fields of dislocations in metals, the interaction of

dislocations with other defects such as solutes, vacancies, precipitates, and grain boundaries

is significant. Therefore the study of plasticity requires developing multiscale methods across

the length scales from atomistic to micrometer scales (McDowell, 2010) as no single numerical

or theoretical model can cover the entire range of length and time scales involved in metal

plasticity. Multiscale modeling of plasticity aims to develop coherent multiscale models that

can derive information from existing models available at different lengths and time scales.
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Figure 1.1: Different length scale models available to study dislocation-driven metal plasticity.
The computational cost associated increases from left to the right, limiting the size of the
simulation domain. The information obtained from the lower scale models is passed to the
higher scale to construct more robust and computationally efficient higher scales models
(from McDowell (2010, Figure 1))

In the hierarchy of multiscale models, as shown in Figure 1.1, the first principle models at the

resolution of electrons derived from quantum mechanics are the most accurate. However,

the high computational costs restrict such models to a few atoms, although it enables us to

predict the correct behavior of the dislocation core, such as its energy and the critical stress

to move the dislocation. The next multiscale model in the hierarchy is the atomistic model

derived from empirical interatomic potentials obtained using in-principle Density functional

theory (DFT) calculations (Hohenberg and Kohn (1964)). The fundamental information about

the complex behavior of dislocations, slip plane, mobility, nucleation, entanglement, and

interaction with other defects can be obtained using these atomistic models at the nanometer

scale.

The information derived from atomistic and first principle calculations is used as input in

higher-scale models. At mesoscale, the dislocations are modeled using (i) discrete dislocation

(DD) dynamics (Giessen and Needleman, 1995) models where the individual dislocation lines

and their interaction with each other are modeled, (ii) continuum dislocation models based

on phase field models where dislocations are modeled as line density using Nye tensor (Nye,

1953). These models predict the behavior of dislocations in the single crystal, which are then

used in the polycrystal plasticity models. The polycrystal models use finite element method

(FEM)-based homogenization techniques to derive macroscopic hardening laws, dissipation

variables, and yield surface. The continuum elastoplastic models (Dunne and Petrinic, 2005;

Simo and Hughes, 2006) are ten used at the macroscale for engineering applications at the

macroscale. The reader can refer to Bulatov and Cai (2006), which extensively discusses the

various aspects of dislocation modeling at different lengths and time scales.
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1.2 Atomistic Modeling

Aside from the hierarchical multiscale models explained above, concurrent coupling meth-

ods link different length scales in metal plasticity-DD/crystal plasticity (Xu et al., 2016),

first-principle and atomistic modeling (Zhang et al., 2013), and atomistic/continuum cou-

pling (Shilkrot et al., 2002). These coupling methods are important to understand the phe-

nomenon in which small-scale phenomenon is directly affected by the large-scale behavior

during the simulations (dislocation nucleation at crack tip under external loading condi-

tions), and hence separation of scales is not possible to accurately capture the underlying

phenomenon. This work focuses on developing the Green’s function-based concurrent atom-

istic/continuum (DD) coupling method. Therefore, the rest of this chapter will concentrate on

the atomistic and DD modeling aspects to study dislocations.

1.2 Atomistic Modeling

Atomistic modeling is widely used for engineering applications with the development of

nanotechnology. Atomistic simulations help us to understand the macroscopic experimental

results and calibrate the continuum field theories to the fundamental understanding. These

computational simulations have brought a new paradigm shift in the faster development of

new technology, replacing the costly and time-consuming laboratory experiments (Mulligan

et al., 2020). The atomistic simulations help us link the underlying material physics and

chemistry with engineering applications to get essential insights into material behavior.

In atomistic modeling, the atoms are modeled as particles subjected to interatomic potentials.

This assumes that under the Born and Oppenheimer approximation, the time scale of electron

movement is much faster than the motion of nuclei. Therefore, the energy of the system

defined using interatomic potentials can be calculated using the positions of individual atoms

modeled as the positions of their nucleus.

The interatomic potential is empirically calibrated from first principle calculations. Histori-

cally, the energy of an atom is defined by the pair potentials - Lennard-Jones potential (Wang

et al., 2020) or Morse potential (Morse, 1929) in which the energy between two pairs of atoms

depends on the relative distance between them. More accurate representations using classical

embedded atom method (EAM) (Daw and Baskes, 1984) and Stillinger-Weber (SW) (Stillinger

and Weber, 1985) potentials introduce non-locality with many-body interactions using elec-

tron density functions or using three-body interaction terms. Recently, the development of

machine learning-based potentials trained using first-principle calculations of dislocation

core structure and other metallurgical significant properties have brought a paradigm shift in

the accuracy of atomistic simulations (Van Der Giessen et al., 2020, Section 6).

The total atomic energy of the system can be calculated by summing up the energy of individual

atoms using the classical pair-based interatomic potentialΦ(r ), where r is the relative position
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between pair of atoms. Let r 1 · · ·r N are current positions of N atoms in the atomic system,

then the total atomic energy, U (r 1 · · ·r N ) can be represented as

U (r 1 · · ·r N ) =∑
i

∑
j ̸=i
Φ(r i − r j ), ∥r i − r j∥ ≤ rc (1.1)

The above equation can be modified for other interatomic potentials, but the essential rep-

resentation will remain the same. Also, in all representations of interatomic potentials, the

interaction of an atom with its neighboring atoms is assumed short range, which is defined by

the length scale rc , the cutoff radius of the interatomic potential.

The corresponding forces in the individual atoms based on their current positions can be

calculated using the following Euler-Lagrange equation,

f i =−∂U (r 1, · · ·r N )

∂r i
(1.2)

In the cases where interatomic potentials in only dependent on the relative positions of the

atoms, the current position r (ξi ) = ξi +u(ξi ) can be expressed in terms of reference position of

an atom in perfect crystal ξi and its displacement u(ξi ); therefore the forces on an individual

atom in Equation (1.2) can be expressed in terms of the total energy U (u) of the atomic system

as the function of the displacement u of atoms

f (ξi ) =−∂U (u)

∂u(ξi )
. (1.3)

Using Newton’s second law and explicit time integration schemes, the above force definition

can be used to obtain the position of atoms at the next time step. For more information about

the various time integration algorithms available for molecular dynamics simulations, the

reader can refer to Hollingsworth and Dror (2018). In this work, we will focus on molecular

statics simulations at 0 K in which the above forces on individual atoms are relaxed under the

displacement and force boundary conditions. The algorithms based on the conjugate gradient

method (Shewchuk et al., 1994) are used for this force relaxation.

The continuum mechanics assumptions such as continuity of deformation or reversibility of

deformation maps, are not a constraint in the atomistic simulations. Therefore, the atomistic

simulations help us accurately model the dislocation short-range behavior, which is impossible

in the continuum description due to the geometric incompatibility (singularity). Also, the

length scale rc gives an intrinsic nonlocal length scale to all the atomistic calculations, which

is missing in the local continuum picture of material in which the material point is assumed to

be an infinitely divisible point (non-locality can be introduced in the continuum models using
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strain gradient theory (Dillon Jr and Kratochvil, 1970)).

In the material science research community, the open-source software LAMMPS (Plimpton,

1995) is used widely for performing atomistic simulations on supercomputers. These atomistic

calculations have to deal with massive degrees of freedom. For example, 1 cubic-mm of iron

contains around 1020 atoms. The atomistic studies of systems of such sizes are impossible

using modern supercomputers. These simulations generate big data making the useful infer-

ence from them difficult. Recently such simulation on large simulation domains has been

attempted - 7.2 million to predict the behavior of screw dislocation and twin-boundary inter-

action (Rao et al., 2019), 50 million to study the effect of curvature on nanoscale crack (Moller

and Bitzek, 2015), 35 million atoms to study twinning vs. dislocation slip mechanisms at high

strain rates (Zepeda-Ruiz et al., 2017). Practically, the cost of these expensive simulations

can be reduced using the higher scales models such as DD; for example, the atomistic region

is required near the cracks or nanoindentation site where nucleation occurs; therefore, the

atomistic models can be used to simulate this behavior near the indentor, and at larger length

scales, the less accurate but more computationally efficient DD models can be used.

1.3 Discrete Dislocation Modeling

Dislocations are atomic-scale line defects in the crystal lattice (Taylor, 1934). The motion of a

large number of dislocations gives rise to permanent deformation in material microstructure,

which is called plastic strain. The dislocation line at the continuum scale is defined using

its slip direction b, also known as a Burger vector, a slip plane n, and a line direction l of

the dislocation as shown for a dislocation loop in Figure 1.2. Based on the direction of the

Burger vector and the line direction, the dislocation can be classified as an edge, a screw, or

a mixed dislocation. The edge dislocation has a line direction perpendicular to the Burger

vector direction, whereas, in the screw dislocation, the line direction and the Burger vector

direction are parallel. The mixed dislocation has both the edge and screw components. For a

deeper understanding of the dislocation theory at the continuum scale, the reader can refer

to Hull and Bacon (2011); Anderson et al. (2017); Cai and Nix (2018).
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Figure 1.2: Dislocation loop with Burger vector b and glide plane n; the dislocation vector
l change along the direction of dislocation line; showing the edge and screw parts of the
dislocation (left). The dislocation loop discretized in straight dislocation segments for DD
modeling; black dots show dislocation nodes connecting the dislocation line segments (right).

The macroscopic plastic strain ϵpl is derived from the amount of slip in the crystal due to the

dislocations,

ϵ
pl
i j =

(bi n j +b j ni )δS

2V
, (1.4)

where δS is the total slip area of all the dislocation lines in the simulation domain of volume V .

The dislocation lines under the applied stress and interaction with other defects move due to

the Peach-Koehler force (Peach and Koehler, 1950) f PK ,

f PK = (σ ·b)× l , (1.5)

where · is the dot product between a second order tensor and a vector, × is the cross product be-

tween two vectors, and σ is the local stress tensor at a point on the dislocation which includes

externally applied stresses and stresses due to elastic interaction of the dislocation with the

other defects. The total driving force for the dislocation movement also includes the self-force

term due to short-range nonlinear effects arising from the elastic self-interaction and core en-

ergy contribution of the dislocation. The elastic self-interaction is modeled using non-singular

continuum dislocation theory (Cai et al., 2006), whereas the core energy can be calculated

using first-principle calculations (Woodward and Rao, 2002), atomistic simulations (Hu et al.,

2020), or through analytical expressions (DeWit and Koehler, 1959).

The DD models are used (Bulatov et al., 2004) for the numerical modeling of the motion of

dislocations in a single crystal. The dislocations are discretized into dislocation nodes, and the

dislocation segments are modeled using geometric shape functions. Figure 1.2(right) shows

the discretized dislocation loop using linear segments. The benefit of this approach is that

the calculations of energy and forces required for the dislocation movement can be done at

the dislocation nodes. Therefore, the degrees of freedom in the DD system scale with the

number of DD nodes. The reader can refer to Weinberger and Tucker (2016, Ch. 2) for a deeper
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understanding of plasticity modeling using DD models.

The dislocation movement is modeled by drag-dominated dynamics without inertial forces.

Therefore, the velocity of DD nodes can be calculated using the total driving force on the

node. This relation between the velocity and the total driving forces is called mobility law.

This relation is generally linear for the FCC material. In the case of BCC material, the mobility

law can be nonlinear and derived using the atomistic simulations (Andreoni and Yip, 2020,

Ch. 71). At the atomistic scale, the movement of dislocations favors the slip plane which offers

minimum resistance (energetically favorable); for example, in FCC, the dislocations glide in

the [111] plane. Therefore, the mobility law is defined such that it can model the resistance

of a dislocation movement in various crystal slip planes. Once the velocity of the dislocation

nodes is known, the position of the dislocation line can be updated using time integration

schemes (Sills and Cai, 2014; Sills et al., 2016).

Further, the DD model is used to solve boundary value problems in elasticity in the presence of

dislocations. We briefly explain the procedure to solve a boundary value problem in the pres-

ence of dislocation below. For the sake of brevity, we assume the Dirichlet boundary conditions

where only displacement boundary conditions uapp are applied on the boundary (Figure 1.3).

The boundary value problem can be solved using the superposition principle (Giessen and

Needleman, 1995), where the problem is decomposed into two subproblems. In the first

subpart (̃·), the dislocation loops are assumed in the infinite domain, and the displacement

field ũ due to elastic interactions of all the dislocations is calculated (Balluffi, 2016). In the

second subpart of the problem (̂·), the elastic boundary value problem without any dislocation

loops is solved with the corrected displacement boundary conditions û = uapp − ũ due to

the first sub-problem. Therefore the solution of the elastic boundary value problem with the

dislocations is expressed as the superposition of both the subproblems u = ũ + û. Similarly,

the corresponding stress and strain also can be calculated using the superposition.

Figure 1.3: The superposition principle is used to solve DD boundary value problems. The
solution of the full problem (left) is the superposition of the solution of the elastic interactions
of dislocations in an infinite medium (center) and the solution of the elastic boundary value
problem with the corrected boundary condition (right).

The above DD method for solving boundary value problems was developed in 2D by Giessen
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and Needleman (1995) and further developed for 3D problems by Weygand et al. (2002). On

supercomputers, the DD calculations can be performed using ParaDiS (Bulatov et al., 2004),

which was further integrated with finite element method (FEM) to solve second subproblem (̂·)
in Tang et al. (2011). Using modern supercomputers, the DD models can run the simulations

of 0.1 to 50 micrometer length scale and 1 microsecond to 1 millisecond time scale (Rao et al.,

2019).

The DD models cannot directly model the atomistic scale phenomenon, such as dislocation

nucleation, complex entanglements, the formation of pins and jogs, and the possibility of

cross slips. These complex behavior are modeled in the DD models using empirical laws

developed using insights from the atomistic simulations. The reader can refer to Bulatov and

Cai (2006) for a more detailed account of modeling such complex behavior empirically in the

DD codes. The Atomistic/Continuum coupling methods are an efficient way to circumvent

these issues of complex dislocation behavior at the atomistic scale and bridge the gap between

the atomistic and continuum DD scales to study metal plasticity.

1.4 Atomistic/Continuum coupling

In the last section, we see that nanoscale atomistic simulations require enormous computa-

tional resources. The microscale DD models are computationally much more efficient than

the atomistic simulations, but they cannot model atomistic behaviors like dislocation nucle-

ation. To cater to this issue and to study the plasticity at the microscale, the researchers have

developed concurrent multiscale methods that couple the atomistic and continuum regions

containing discrete dislocations (Shilkrot et al., 2002).

Various Atomistic/Continuum (A/C) coupling methods have been developed to bridge length

scales and minimize the effects of the interaction of finite atomistic boundaries with crystalline

defects (Tadmor et al., 1996; Anciaux et al., 2018; Miller et al., 2004a; Miller and Tadmor, 2009;

Sinclair et al., 1978). In these methods, the atomistic domain is surrounded by a sizeable elastic

continuum sufficient for capturing the long-range fields of the defects and for moving applied

boundary conditions far from the nonlinear atomistic domain. The continuum domain can

also contain defects described only by their elastic fields, as in the Coupled Atomistic/Discrete

Dislocation method (CADD) (Shilkrot et al., 2004), capturing the long-range interactions

between all defects in the system in the small deformation limit.
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continuum region
containing discrete 

dislocations (DD) 

atomistic region 
surrounded by 

pad atoms

crystalline defect
 region

Figure 1.4: Full atomistic domain (left) and corresponding A/C problem (right). In A/C
problems, the region of nonlinear deformation requiring atomistic resolution is identified,
and the rest of the domain can be treated with continuum elastic or DD models. The pad
atoms are present at the interface of atomistic and continuum regions; various A/C coupling
schemes differ in treating these pad atoms within the coupling scheme.

Figure 1.4 shows the schematic boundary value problem for atomistic simulations where the

surface atoms are subjected to the surface forces and displacements. The simulation domain

contains a highly nonlinear high deformation region that needs the compulsory atomistic

resolution (for example, nanoscale crack emitting dislocations). The rest of the region can be

modeled using computationally efficient mesoscale DD methods and solved using the FEM

technology. The pad atoms surrounding the atomistic region are within the cutoff radius rc

from the atomistic region, which ensures that atoms inside the atomistic region see all the

neighboring atoms within its cutoff radius. Most coupling schemes differ in treating these pad

atoms and their role in the coupling scheme.

The review paper by Curtin and Miller (2003) demonstrates key ideas and differences between

approaches using simple example coupling problems. The reader can also refer to Miller and

Tadmor (2009), which analyses all the coupling methods within the same framework showing

their global error and computation time, and Luskin and Ortner (2013) for the numerical

analysis of commonly used A/C methods.

Below, we will discuss three types of coupling schemes in the literature relevant to this work.

1.4.1 Energy-based A/C coupling

In the energy-based A/C methods, the system’s total energy functional is represented as the

sum of the atomistic and continuum regions. For the atomistic region, the energy is calculated
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using the sum of all the energy-per-atom contributions defined by the EAM like classical

interatomic potentials. In the continuum region, under the Cauchy-Born approximation,

the existence of strain energy density W (ϵ) is assumed. The Cauchy-Born approximation

assumes that the macroscopic deformation gradient can be applied as a linear transformation

to reference lattice vectors to obtain the shape of the deformed crystal at the atomistic scale.

This assumption is valid under the approximation that the strain gradient of∆ ·ϵ is small in

the range of interatomic potential rc . Thus, the total energy of the A/C system is written as

Utot al =
∑
i=A

Ei (r A ,r P )+∑
µ

wµ

∫
Vµ

W (ϵ)d V , (1.6)

where Ei is per atom energy which depends on both the positions of atoms in the atomistic

region r A and the pad region r P , the second term on the right-hand side corresponds to the

energy contribution of the continuum region calculated using summing the individual energy

of each FE like element µ by integrating strain energy density W (ϵ) in an element. The pad

region energy is included in the continuum description; therefore, atomistic energy doesn’t

sum up the atoms in the pad region. The weight function wµ varies from zero to one to cater

to interface elements at the A/C interface to prevent the double counting of the energy at the

interface.

Once the total energy functional of the system is known, the corresponding Euler-Lagrange

equations are solved under constraints of boundary conditions to find the equilibrium config-

uration in the quasi-static case and to update atomic positions in the case of the dynamic case.

Also, note that in the above equation, the atoms in the pad region see their neighbor atoms

in the atomistic region using the local continuum description. In contrast, the atoms in the

atomistic region see the pad region atoms using the nonlocal atomistic energy description.

This leads to a violation of Newton’s third law of equal and opposite reaction in pair of particles

and leads to the fictitious "ghost" forces in the pad atoms (Lee and Lam, 2005, Ch. 1).

Figure 1.5(left) shows the coupling scheme for the local quasicontinuum (QC) method devel-

oped by Tadmor et al. (1996). In local QC, the underlying lattice of the continuum region is

coarse-grained using FE-based elements, and local shape functions are used to interpolate

the positions of lattice sites inside the elements based on the element nodes. Each element is

represented by a "representative" atom which can be an atomic position near a Gauss point in

the element to calculate the energy of the element. In the QC framework, the atomistic and

continuum representation in the simulation domain can adapt based on the movement of

highly deformed regions (such as near defect cores, grain boundary, and dislocations) (Shenoy

et al., 1999).
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CADD

Atomistic

Pad

Continuum

local QC

Figure 1.5: local QC (left) vs. CADD (right) atomistic/continuum coupling methods. The green
box shows the atomistic region, and the continuum region is coarse-grained using triangular
elements. In QC, each element is represented by a "representative" black atom. The system’s
total energy in QC is represented as the sum of the atomistic region and continuum region. In
CADD, the atomic displacements of interface atoms (dark circles) are used as the boundary
conditions for the continuum region. (from Van Der Giessen et al. (2020, Figure 5))

The original QC method is subject to ghost forces due to the coupling of local continuum

and nonlocal atomistic regions (Curtin and Miller, 2003). Therefore, it has been modified for

ghost force correction (Shenoy et al., 1999) and nonlocal continuum representation (Knap and

Ortiz, 2001) where more representative atoms are defined for each element in a system. Other

notable extensions of the framework are for finite temperature simulations (Dupuy et al., 2005)

and efficient summation rules over representative atoms (Amelang et al., 2015). Weinberger

and Tucker (2016, Ch. 5) review different flavors of the QC with the unified framework. Recently,

the QC method has been applied for atomistic simulations of polymers (Ghareeb and Elbanna,

2021) and numerical modeling of nanoscale manufacturing processes (Yang et al., 2021).

1.4.2 Domain-decomposition-based A/C coupling

Domain-decomposition-based A/C coupling method is developed by Kohlhoff et al. (1991)

to study crack propagation in BCC crystals. The coupling scheme is further developed and

used to couple the atomistic and DD regions by Shilkrot et al. (2002) to develop a Coupled

Atomistic/Discrete Dislocations (CADD) model. Unlike the local QC counterpart, the CADD

method doesn’t face an issue of ghost forces due to local(continuum)-nonlocal (atomistic)

coupling (Curtin and Miller, 2003).

In domain-decomposition A/C methods, the atomistic and continuum regions are modeled
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through separate energy functionals. The atomistic energy functional UA is given below,

UA = ∑
i=A,P

Ei (r A ,r P ) (1.7)

and sums the energy contribution of atoms in the pad region (unlike in Equation 1.6 for the

local QC method). On the other hand, the energy of the continuum region UC is expressed as

the contribution from all the FE elements used to mesh the continuum region

UC =∑
µ

∫
Vµ

W (ϵ)d V. (1.8)

The pad region energy is included in both the energy functionals, so the system’s total energy

double counts the energy contribution from the pad region. This framework doesn’t have the

issue of ghost forces as pad atoms and atoms in the atomistic region see each other through

the same nonlocal energy description. The coupling between the two regions is provided by

passing the information about the displacement of the boundary atoms of the atomistic region

(interface atoms) (see Figure 1.5(right)) through an iterative scheme. The algorithm is briefly

described as the following. The atomistic energy functional is minimized, keeping the pad

atoms fixed. Next, the boundary atoms of the atomistic region (interface atoms) are fixed, and

the continuum region meshed using FE is minimized for applied boundary conditions. The

above iterative scheme is repeated till the forces become zero in all the degrees of freedom

(atoms in atomistic regions, FE nodes in continuum region).

The reader can refer to Dobson and Luskin (2008); Luskin and Ortner (2013); Ortner (2012)

for mathematical analysis of domain decomposition-based A/C schemes. These coupling

schemes show slower convergence than the energy-based schemes due to the non-symmetric

hessian matrix, which requires advanced but slow solvers like GMRES (Luskin and Ortner,

2012).

In the CADD model (Shilkrot et al., 2004), plasticity in the continuum region is treated using

the mesoscale discrete dislocation (DD) method, and dislocations are algorithmically passed

between atomistic and DD regimes with high fidelity. The original CADD method is developed

for 2D dislocation in a plain strain condition, where dislocations have a point representation.

In 2D, dislocation detection and passing from the atomistic region into the continuum region

is well understood. The dislocation generates very high spurious forces when the dislocation

passes from the atomistic region to the continuum region. The corrections to these spurious

forces are made through the dislocation core "templates" developed using full atomistic

simulations (Dewald and Curtin, 2006). The CADD method has inherent instability while

performing MD at finite temperatures due to the absence of a single energy functional for the

system in the formulation (Junge et al., 2015).
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CADD-2D has been extensively used for computationally efficient atomistic simulations;

for example, to predict crack-tip twinning in FCC crystal (Warner et al., 2007), the study of

temperature-dependent dislocation nucleation at the crack tip (Warner and Curtin, 2009), and

nanoindentation of thin film crystals (Miller et al., 2004b). The CADD framework was further

developed for finite temperature atomistic simulations (Qu et al., 2005) for its application

in nanoindentation problems (Shiari et al., 2005). Additionally, the CADD method has been

extended for the random alloys (Nag et al., 2019) and the parallel computing architecture (Pavia

and Curtin, 2015).

atomistic region

continuum region

pad atoms

interface

atomistic region

continuum region

pad atoms

interface

Figure 1.6: Schematic diagram showing hybrid dislocation which exists simultaneously both in
the atomistic and continuum region (left), dislocation loop nucleated in the atomistic region
(shown with a dotted line) moved on to the continuum region making hybrid dislocation
(right).

The CADD method is further developed for coupling the atomistic and 3D DD regions (Junge,

2014) for 3D nanoindentation problems. In 3D, the dislocation exists as hybrid dislocation

at the atomistic/continuum interface (Figure 1.6). CADD-3D uses an atomistic template of

the dislocation core structure to transmit the proper atomistic environment to the continuum

dislocation for the hybrid dislocations (Anciaux et al., 2018). Hodapp et al. (2018) demonstrates

the validation of the CADD-3D method using bow-out of a straight dislocation under the

applied shear stress. Further, Cho et al. (2018) model the evolution of dislocation loops from

atomistic Frank–Read sources using the CADD-3D.

In this work, we aim to use lattice Green’s function-based A/C coupling for 3D problems

such that the above CADD-3D technology can be used for fully 3D computationally efficient

atomistic simulations.

1.4.3 Lattice Green’s function-based A/C coupling

Lattice Green’s function (LGF) is an atomic scale discrete version of the continuum elastic-

ity Green’s function. LGF-based multiscale methods (Tewary, 2015) have been extensively
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used in the material science community to couple first-principle methods with atomistic

simulations (Liu et al., 2007), first-principles calculations with continuum elasticity meth-

ods (Woodward, 2005) and A/C coupling (Sinclair et al., 1978; Rao et al., 1998).

Starting with the work of Tewary (1973), researchers have used the method to study atomistic

defect structures, energies, and motions in infinite domains (Sinclair et al., 1978; Rao et al.,

1998; Trinkle, 2008) as well as to efficiently execute atomistic Monte Carlo simulations for

periodic problems to understand intrinsic material properties of alloys (Varvenne et al., 2012b;

Asta and Foiles, 1996).

LGFs have been successfully used for atomistic/DD coupling to study nanoindentation prob-

lems (Venugopalan and Nicola, 2019). In this approach, the Fourier space-based Green’s func-

tion method (Wagner et al., 2004) is used in the corrected elastic problem (Figure 1.3(right))

instead of conventional FEM (Venugopalan et al., 2017). The periodic boundary conditions

used in this approach enable computationally efficient Fast Fourier Transform (Frigo and

Johnson, 2005) machinery. Further, the methodology has been used to solve dynamics A/C

problems with the nonreflecting interface using the dynamic lattice Green’s function (Karpov

et al., 2005). The framework is successfully used in nanoscale tribology (Vakis et al., 2018)

and has a fully developed interface with LAMMPS (Kong et al., 2009). These formulations are

restricted to particular geometry suited for nanoscale contact mechanics problems and not

extensible to the general finite-size domains for arbitrary boundary conditions.

LGFs-based A/C coupling is based on the bridging scale method (Liu et al., 2006), where

the continuum region exists everywhere in the domain, even where the atomistic region is

present. The LGF is used to pass the information of the atomistic region through pad atoms

in the continuum region. These methods were initially developed to reduce the effect of

boundary interaction of finite-size atomistic simulations to obtain accurate dislocation core

structures in an infinite domain. An early method for avoiding boundary interactions in

atomistic studies is the Flexible Boundary Condition Model (FBCM) developed by Sinclair et al.

(1978). The method embeds an atomistic domain within an infinite elastic medium, removing

boundary conditions to infinity. As with other methods, the accuracy depends on the accuracy

of elasticity in the far-field region. The method has mainly been used for dislocation defects

(Rao et al., 1998) but can be applied to other defects, such as cracks (Sinclair et al., 1978). The

effects of the far-field elastic behavior are captured using the elastic Green’s functions of the

underlying crystalline material, which eliminates the need for explicit representation of the

continuum domain outside a narrow region of material surrounding the atomistic domain.

The FBCM-based A/C coupling method has the advantage that it converges faster than the

domain decomposition-based coupling method (Hodapp, 2018b; Hodapp et al., 2019). The

reader can refer to Hodapp (2021a) for the numerical analysis of the FBCM-based coupling

scheme from numerical convergence perspectives.
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LGF methods have been used to solve multiscale material science problems in infinite and

periodic domains. Recent works by Li (2012, 2009); Hodapp et al. (2019); Hodapp (2021b)

have extended the periodic and infinite domain Green’s function approach to more general

bounded domain problems but restricted to 2D problems to date. This work will mainly

focus on extending the LGF-based A/C coupling for full 3D boundary value problems with a

bounded domain.

1.5 Overview

Defects in materials such as dislocations, grain boundaries, vacancies, and cracks are atom-

istic in nature, thus often requiring atomistic resolution (Section 1.2). Atomistic studies are

necessary to understand the fundamental structures of atomic-scale defects, their motions,

and their interactions with other defects. Large fully-atomistic studies of practical problems of

interest at the micron scale and above are computationally prohibitive. The computational

cost of atomistic models limits the domain sizes that can be simulated, leading to spurious

interactions of the defects with the imposed boundary conditions on the atomistic domain.

Crystalline defects like dislocations, with both singular core and long-range elastic fields,

pose a challenge that must be overcome to fully understand plasticity phenomena in metals.

The short-range constitutive and geometrically nonlinear atomistic interactions among such

crystalline defects must be computed using interatomic potentials or first principles methods,

but the long-range fields around the defect or long-range interactions among defects occur

through small deformation elastic fields. Accurately capturing short- and long-range inter-

actions and eliminating spurious boundary effects in finite-size atomistic models requires

multiscale models (Section 1.4).

Hence, multiscale methods like the QC (Section 1.4.1) and the CADD (Section 1.4.2) (Van

Der Giessen et al., 2020; Chen et al., 2019; Kochmann and Amelang, 2016; Ortner and Zhang,

2014; Miller and Tadmor, 2009) have been developed to reduce the computational cost by

embedding atomistic domains within a continuum domain. In these methods, the high

nonlinear regions near a defect (crack tip, grain boundary, dislocation, void, etc.), where

continuum models fail, are treated explicitly using the full atomistic resolution. In contrast,

regions far from these nonlinear defect regions are treated with continuum elasticity or other

robust mesoscale models (Baker and Curtin, 2016). Such methods enable the study of complex

phenomena that span scales beyond the reach of atomistic alone but with critical behavior of

complex defect interactions (e.g., dislocations interacting with crack tips, grain boundaries,

voids, etc.) that requires full atomistic resolution.

This work aims to use discrete atomic scale LGF (Section 1.4.3) for solving 3D A/C coupling

problems. A notable benefit of using the inherent discrete LGF is its efficient integration
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connections via LGF
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continuum
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Figure 1.7: Graphical overview of this work showing LGF-based A/C boundary value prob-
lem with interior atoms (FBCM) at the A/C interface and outer boundary atoms (LGFM) for
applying boundary forces/displacements.

into the A/C coupling method within atomistic modeling codes (Thompson et al., 2022;

Hodapp et al., 2019). This is especially the case for problems where the outer domain is

adjacent to the atomistic domain, as it is the case for fracture problems involving cracks. The

LGF also does not have the singularity of continuum elasticity Green’s function at the origin

and can be used with LGFs computed from realistic multi-body atomistic potentials or first

principles methods. In Chapter 2, we will define the continuum elasticity Green’s function

and LGF using fundamental equilibrium equations and ways to compute them for real-time

A/C simulations. The computation of the infinite-domain LGF itself is infeasible, so methods

involving a transition from the discrete LGF to the continuum Green’s function (CGF) are

required, which will be discussed in Chapter 2.

Full LGF-based 3D A/C boundary value problems are computationally challenging. Coupled
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A/C bounded boundary value problems involve two boundaries (see Figure 1.7): (i) a boundary

between the fully atomistic (interior) domain and the (exterior) continuum domain, and (ii) the

outer exterior surface where external boundary conditions are applied. Typically, the number

of interior boundary atoms is very small compared to the number of outer boundary atoms.

Coupling the outer continuum domain to the inner atomistic domain can be accomplished,

within the FBCM 1.4.3, using the atomic scale lattice Green’s function (LGF) at the atomistic-

continuum interface. In Chapter 3, we will revisit the FBCM algorithm in more detail. We

will analyze the fundamental issues in the FBCM algorithm, and demonstrate that the results

depend on the initial solution and the LGF to CGF transition using several example boundary

value problems.

For the outer continuum region surrounded by outer boundary atoms, the Boundary element

method (BEM) based discrete LGF method (LGFM) can be used instead of FEM (Martinsson,

2002; Martinsson and Rodin, 2009; Li, 2012; Hodapp et al., 2019). A 3D solution using the FEM

is computationally unfeasible in large systems for the outer continuum domain. For instance,

for dislocation problems, the full solution of the displacement, stress, and strain fields for a

given dislocation configuration and specified boundary conditions requires the solution of

a 3D elasticity problem (Section 1.3). For large sizes, the inversion of the 3D stiffness matrix

is extremely costly and rarely done; storage of the inverted stiffness matrix being fully dense

is also memory intensive. Hence, there are very few large 3D simulations of this type. While

FEM requires the inversion of sparse matrices whose size scales with the number of degrees

of freedom inside the discretized continuum region, an LGFM involves fully dense matrices

that scale only with the number of atoms on the outer surface. Within the LGFM, stresses at

any points inside the continuum region can then be calculated during post-processing. In

Chapter 4, we will formally derive the discrete LGFM for the bounded domain problems and

show its equivalence with continuum BEM. Also, we will solve some example test problems to

note the issues due to the transition from discrete LGF to CGF in the formulation.

The outer surface in LGFM is atomistically resolved and contains billions of degrees of freedom

for sizes of interest. Therefore, we introduce the methodology to coarse-grain the outer

boundary and decrease the computational cost of the exact LGFM in Chapter 5. Here, we

use the fact that the applied displacements/forces vary very slowly at the atomic resolution

on the outer surface. These applied displacements/forces are interpolated using the local

shape functions over the coarsened outer surface containing very few atoms, hence effectively

decreasing the degrees of freedom on the outer boundary. We validate the coarsened LGFM

formulation using several example test cases, and then show its practical application to

obtain the solution of a 3D dislocation loop in a bounded FCC box applied with displacement

boundary conditions.

Hierarchical matrices (Hackbusch, 2015) are extensively used for the low-rank approximation
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Chapter 1. Introduction

of dense Green’s function matrices for the computational efficiency in BEM. Therefore, we

will explore the usage of the hierarchical matrices in the LGFM in Chapter 6. To address this,

the LGFM problem is divided into two subproblems. In the first subproblem, the surface

forces/displacements are applied on the surface atoms, and one needs to solve for corre-

sponding unknown displacements/forces on the surface atoms. In the second subproblem,

the surface forces and displacements are known on all the surface atoms, and the solution

inside the bounded domain at some specific points (for example, DD nodes) need to be com-

puted. We will explore various ways the hierarchical matrices can be used to increase the

computational efficiency of these two subproblems.

Finally, in Chapter 7, we will couple the FBCM method for interior atoms (Chapter 3) with

the LGFM (Chapter 4) and coarsened LGFM (Chapter 5) formulations for outer boundary

atoms to solve the full A/C boundary value problem (Figure 1.7). We will validate the proposed

algorithm using 2D example boundary value problems, and demonstrate the effects of the

coarsening and the LGF to CGF transition in the large size A/C problem. In the end, we discuss

our findings and future directions for this work in Chapter 8.
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2 Green’s function

2.1 Introduction

In this chapter, we will present the concept of the Green’s function in elasticity. We will also

discuss its computation and applications to solve boundary value problems in solid mechanics.

We first introduce the continuum Green’s function (CGF) (Section 2.2) for the continuum solid

elastic body and elaborate these concepts further to define its discrete counterpart lattice

Green’s function (LGF) for the atomistic problems (Section 2.3).

As discussed in Section 1.4.3, the LGF can be used for A/C problems. Here, in Section 2.3, we

discuss methods to numerically calculate the LGF. We further demonstrate that the usage of

numerical LGF leads to spurious forces at the LGF to CGF transition, which can have potential

implications in the LGF-based A/C coupling problems.

2.2 Continuum Green’s function (CGF)

The CGF in elasticity is the fundamental solution of the equilibrium electrostatics equation in

an infinite solid body deforming under the linear regime. Mathematically, for a d-dimensional

linear infinite continuum elasticity problem, the CGF Gi j (x −x
′
) is d ×d tensor defined as the

displacement of the point at the position x in the i -direction when a unit point load is applied

in the j -direction on the point at the position x
′
. Under the small strain regime (geometric

linear problems) with linear material behavior, the solution of the Green’s function can be used

to solve a wide variety of boundary value problems in solid mechanics using the superposition

principle.

Below, we briefly overview computing the CGF for a linear elastic homogeneous problem (Phillips,

2001, Chapter 2). Under a small strain regime, the elastostatic equilibrium equation is given
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Chapter 2. Green’s function

by

σmn,n(x)+ fm(x) = 0, (2.1)

where σ is Cauchy stress tensor and f is the body force. Also, unless otherwise specified,

Einstein’s summation convention applies to tensor algebra for Roman indices (i , j , · · · ). Using

the linear material constitutive relation σmn(x) = Cmnop ϵop (x) for homogeneous medium,

where C is the elastic stiffness tensor and ϵ is the small strain tensor, Equation (2.1) can be

expressed as

Cmnop uo,pn(x) =− fm(x). (2.2)

Now, we use the definition of CGF Gi o(x) as the displacement uo when the point load is applied

at the origin x
′ = 0 in i -direction, we reduce Equation (2.2) to

CmnopGi o,pn(x) =−δi mδ(x), (2.3)

where, δi m is Kronecker delta which is zero unless i = m, and δ(x) is the Dirac delta function.

Under the linear regime, the CGF can be used to obtain the displacement solution of an

arbitrary body force field f (x
′
) using the superposition principle (Figure 2.1) given by

ui (x) =
∫

Gi j (x −x
′
) f j (x

′
)d 3x

′
. (2.4)

The reader can verify that Equation (2.4) satisfies Equation (2.2) using Equation (2.3).

To evaluate CGF, we need to Fourier transform Equation (2.1). We define below the 3D contin-

uous Fourier transform,

f̃ (k) =
∫

f (x)exp(−ιk · x)d 3k (2.5)

and its inverse Fourier transform

f (x) = 1

8π3

∫
f̃ (k)exp(ιk · x)d 3x . (2.6)

Now, we apply the forward Fourier transform on Equation (2.3). Using the divergence theorem,

assuming the boundary displacements at the infinity boundary go to zero and the property of

Dirac delta function, we obtain

Cmnop kp knG̃i o(k) = δi m . (2.7)

which relates the CGF in Fourier space G̃(k) withthe elastic stiffness tensor for a homoge-

neous medium. For an isotropic material, with Lame’s elastic constants λ,µ, we can express

Equation (2.7) as

G̃i j (k) = 1

µkmkm

[
δi j − (λ+µ)

(λ+2µ)

ki k j

kmkm

]
(2.8)
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2.2 Continuum Green’s function (CGF)

Figure 2.1: Superposition principle using CGF (top) and LGF (bottom) to obtain the solution
of the displacement field in an infinite solid (lattice).

Hence, the CGF in the real space can be obtained by applying the inverse Fourier transform

on Equation (2.8),

Gi j (x) = 1

8πµ(λ+2µ)

(
(λ+3µ)δi jp

xm xm
− (λ+µ)xi x jp

xm xm
3

)
. (2.9)

Equation (2.9) is an analytical closed-form relation for the CGF for an isotropic material in

3D which decays as ∥x∥−1 in the long range. Appendix A.3 contains the closed form CGF

expression for 2D plain strain problem (Mura, 1982)), which decays as log∥x∥ in the long

range. This long-range character of the elasticity Green’s function is primarily responsible for

the long-range elastic interaction of various defects in solids, making the multiscale studies

bridging different length scales, as reported in this work, a prime importance for the research

community in the field of mechanics of materials.

Generally, closed-form expressions are not readily available for anisotropic materials. Hence

to obtain the CGF for anisotropic material in the real space, the numerical integration of

Equation (2.7) needs to be done, which has a singular character as k → 0 and needs careful

attention. The above fundamental equation is the benchmark for studying the solution of

elastic defects in the solids. Using the above Green’s function technology, the fundamental
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Chapter 2. Green’s function

solution to problems like half-space with a planar free surface, elastically dissimilar half-spaces,

and point defects (Balluffi, 2016) can be obtained.

2.2.1 Application: Micromechanics

The theory of Green’s function is fundamental to the development of the field of microme-

chanics, where Eshelby’s eigenstrain solution (Markenscoff and Gupta, 2006)) is used to obtain

the solution in an elastic medium due to the line defects like dislocations, surface defects like

cracks, and volume defects like the presence of inhomogeneity and foreign particles (Mura,

1982; Li and Wang, 2008)). The eigenstrain is the material deformation that doesn’t produce

any stress field. For example, no stress field is produced in the case of the sheet of metal under

a thermal expansion when it is free to deform in any direction without any external boundary

conditions. Therefore, the thermal expansion of a material is an example of the eigenstrain .

Figure 2.2: Elastic defects modeled as eigenstrain are used to obtain displacement solutions
due to defects in an infinite elastic medium using CGF (Equation (2.12))

We briefly demonstrate the use of Green’s function below to obtain solutions to the elastic

eigenstrain problem (Figure 2.2). Let the ϵ∗ be eigenstrain, and ϵ is the total strain in the solid.

We can express the stress due to the elastic component of strain (difference of total strain and

eigenstrain) in the solid at any point x as

σmn(x) =Cmnop (ϵop (x)−ϵ∗op (x)) (2.10)

for a homogeneous continuum medium. Note that the eigenstrain concept can be extended

to the inhomogeneous inclusion problem by treating it as an equivalent eigenstrain inhomo-

geneous medium (Eshelby, 1957, 1959)). Therefore, Equation (2.10) is valid for any general

eigenstrain problem.

Now, we substitute Equation (2.10) in elastostatics equation (Equation (2.1)) without any body
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2.2 Continuum Green’s function (CGF)

force

Cmnop uo,pn(x) =Cmnopϵ
∗
op,n(x). (2.11)

By comparing the right-hand sides of Equation (2.11) and Equation (2.2), we can conclude

that the right-hand side of Equation (2.11) can be treated as a body force produced due to

the eigenstrain. Therefore, the superposition rule in Equation (2.4) can be used to obtain the

displacement solution for the eigenstrain problem as the following

um(x) =−
∫

Gmi (x −x
′
)Ci j klϵ

∗
kl , j (x

′
)d 3x

′
. (2.12)

Many defects like dislocations, cracks, etc., which have displacement discontinuities, can be

expressed as the eigenstrain. Equation (2.12) can then be directly used to obtain the solution

to these defects in an infinite solid. The eigenstrain theory and its linkage with the Green’s

function, along with the famous Betti’s reciprocal theorem (Betti, 1872; Truesdell, 1963) also

paved the way for the development of the field of configuration mechanics (Maugin, 2013;

Eshelby, 1999). In this field, the above Green’s function framework is used to calculate the

elastic interaction energy and the corresponding driving force on the defects; for example,

Peach-Koheler force (Peach and Koehler, 1950; Peach, 1951) in case of dislocations, J-integral

in case of cracks (Rice et al., 1968).

2.2.2 Application: Boundary Element Method (BEM)

The CGF is also used to develop the Boundary Element Method (BEM) for solving boundary

value problems in solids mechanics under linear regime (Katsikadelis, 2016). It has a com-

putational advantage, particularly in the case of 3D problems, when compared with FEM,

where one needs to mesh the whole 3D domain. In BEM, the degrees of freedom scale with

the surface area of the domain, whereas in FEM, it scales with the volume of the domain.

Therefore, for 3D problems, the degrees of freedom in BEM are appreciably less than FEM.

Here, we mention the main fundamental equation used in the BEM. The displacement at

any point x inside the domain subjected to the tractions t and the displacements u on the

boundary and the body forces f inside the domain (Figure 2.3), is given by the following

relation (Gaul et al., 2013, Chapter 5)

um(x) =
∫

Gmi (x −x
′
)ti (x

′
)d 2x

′ −
∫

Ci j kl Gmk,l (x −x
′
)n j (x

′
)ui (x

′
)d 2x

′

+
∫

Gmi (x −x
′
) fi (x

′
)d 3x

′
. (2.13)

Note here in the absence of body force f , the displacement solution at any point x inside

the domain only depends on the surface integrals (the first two terms on the right side). The
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Chapter 2. Green’s function

Figure 2.3: Schematic diagram of BEM for solving bounded domain boundary value problems
(Equation (2.13)). Note that the meshing is only required on the boundary of the domain,
which reduces the degrees of freedom involved in the problem compared to FEM.

second term on the right side contains a derivative of Green’s function along the normal of the

surface, which is the fundamental solution of the second kind, which relates displacements

between two points in the domain. Also, the CGF is a fundamental solution of the first kind

as it relates the forces at the point with the displacement of the other point (first term on the

right side).

For complex bounded geometries, the above integrals cannot be computed analytically;

therefore, the tractions and displacements at the boundary are interpolated using local shape

functions (Bonnet et al., 1998). The resulting approximate Green’s function matrix of the first

and second kinds are computed using numerical integration of singular integrals along the

boundary. The interested reader can refer to the BEM literature to understand the numerical

implementation (Cruse, 1974). Numerically, Equation (2.13) boils down to matrix-vector

multiplication of dense Green’s function matrix of the first and second kind. The techniques

like Hierarchical matrices (Hackbusch, 2015) or fast multipole method (Liu, 2009) are used for

low tank approximation of these numerical Green’s function matrices, which helps to improve

the computational efficiency of matrix-vector multiplication. In Chapter 4, we develop a

discrete analog of the BEM for the bounded domain problems using the LGF.

2.3 Lattice Green’s function (LGF)

The lattice Green’s function (LGF) can be seen as a discrete counterpart of the CGF, which is

extensively used in the material science community (Tewary, 1973; Sinclair et al., 1978; Rao

et al., 1998)) to decrease the finite-size effects in atomistic simulations.

We first consider a domainΛ∞ consisting of an infinite discrete lattice of sites. For the sake
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2.3 Lattice Green’s function (LGF)

of brevity, we denote ξ both as the lattice site and the atom label. We will work within the

regime of small deformations. We denote the displacement of the atom at lattice site ξ as u(ξ).

In the small-displacement harmonic approximation, the total potential energy U (u) of an

infinite crystal under displacement field u can then be expressed as (Ashcroft and Mermin,

1976, Chapter 22)

U (u) ≈ 1

2

∑
ξ,ξ

′∈Λ∞
u(ξ) ·L(ξ,ξ

′
)u(ξ

′
), (2.14)

where L is a second-order force constant tensor defined as the second derivative of the exact

energy functional with components

Li j (ξ,ξ
′
) = ∂2U (u)

∂ui (ξ)∂u j (ξ
′
)

∣∣∣∣∣
u=0

= Li j (|ξ′ −ξ|), (2.15)

The force constant tensor satisfies Li j (ξ,ξ
′
) = L j i (ξ

′
,ξ) and also L(ξ,ξ

′
) = L(|ξ−ξ′ |) due to the

translational invariance and inversion symmetry of an infinite Bravais lattice. Since any rigid

displacement does not change the total potential energy of the undeformed crystal, L also

satisfies the sum rule ∑
ξ
′∈Λ∞

L(ξ−ξ′
) = 0, ∀ξ ∈Λ. (2.16)

The potential energy of the system can then also be expressed as

U (u) =−1

4

∑
ξ,ξ

′∈Λ

(
u(ξ

′
)−u(ξ)

)
·L(ξ−ξ′

)
(
u(ξ

′
)−u(ξ)

)
, (2.17)

which we will use below.

If the atom at ξ is subject to an applied force f (ξ), the equilibrium equation for that atom is

obtained from the Euler-Lagrange equations as

−∂U (u)

∂u(ξ)
+ f (ξ) = 0,∑

ξ
′∈Λ∞

L(ξ−ξ′
)
(
u(ξ

′
)−u(ξ)

)
= f (ξ), ∀ξ ∈Λ∞, (2.18)

or using the sum rule, as ∑
ξ
′∈Λ∞

L(ξ−ξ′
)u(ξ

′
) = f (ξ), ∀ξ ∈Λ∞. (2.19)

Thus, L(ξ−ξ′
) relates the forces on atom ξ to the displacements of all other atoms ξ

′
, with
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Chapter 2. Green’s function

Li j (ξ−ξ′
) the force fi (ξ) on atom at ξ in the i -direction due to a unit displacement u j (ξ

′
)

in the j−direction on the atom at ξ
′
. For materials where the interatomic interactions are

short-ranged, i.e., non-zero within a specified cutoff distance rc , the force constant tensor is a

sparse tensor with non-zero entries only for atoms where ∥ξ−ξ′∥ ≤ rc .

In the case of the pair or EAM-based interatomic potential, it is possible to obtain the closed-

form expressions for the force constant tensor (Varvenne et al., 2012a)) using Equation (2.15);

otherwise, the force constant tensor is computed using the elastic stiffness tensor of the

solid by comparing the elastic energy of the elastic medium with the potential energy under

harmonic approximation. A brief overview of deriving this relation is given below.

We assume that under a small strain regime in the continuum limit, the displacement field is

slowly varying at the atomic scale, and a Taylor series expansion of continuous displacement

field u(x) is possible as below,

ui (ξ
′
) = ui (ξ)+ (ξ

′
j −ξ j ) ui , j (x)

∣∣
x=ξ. (2.20)

Substituting Equation (2.20) in the potential energy of the harmonic system (Equation (2.17))

gives

U (u) = 1

2

∫ (
−1

2V

∑
ξ

ξi L j l (ξ)ξk

)
u j ,i (x)ul ,k (x)d 3x . (2.21)

Here, V is the volume of the primitive cell of the underlying lattice, which is used as a normal-

izing factor when summations over the variable ξ
′

in Equation (2.17) are replaced with the

integral form with the variable x in Equation (2.21) in the continuum limit. For example, in

FCC crystal, V = a3/4, where a is the lattice constant.

Comparing Equation (2.21) with the elastic energy of the continuum solid

U (u) = 1

2

∫
ϵi j (x)Ci j klϵkl (x)d 3x , (2.22)

we get the following relation between the elastic stiffness tensor and the force constant tensor,

Ci j kl =
−1

8V

∑
ξ

[
ξiξk L j l (ξ)+ξiξl L j k (ξ)+ξ jξk Li l (ξ)+ξ jξl Li k (ξ)

]
. (2.23)

One can verify that the above relation satisfies the major and minor symmetries of the elastic

stiffness tensor. The above relation can also be derived by comparing the eigenmodes of the

long wave behavior of plane waves in the continuum elastic solid and discrete crystal lattice

by introducing inertial forces in the system (see Ashcroft and Mermin (1976)). In Appendix A.1

and A.2, we provide the closed-form expressions for 2D hexagonal lattice and 3D FCC lattice,

respectively, when atoms are connected through nearest neighbors. In subsequent chapters,
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2.3 Lattice Green’s function (LGF)

these relations will be used to solve various example LGF-based boundary value problems.

We now move our discussion to the formal definition of the LGF in the context of the force

constant tensor introduced above. The LGF G(ξ,ξ
′
) is a second-order tensor that relates the

displacement of atom ξ caused by a unit force is applied on atom ξ
′
. The LGF has the same

lattice symmetry properties L, and hence is G(|ξ−ξ′ |). Given the LGF for the underlying lattice

and material, the displacement u(ξ) of the atom ξ due to applied forces f (ξ
′
) on atoms ξ

′
is

obtained using the superposition principle (Figure 2.1) as

u(ξ) = ∑
ξ
′∈Λ∞

G(ξ−ξ′
) f (ξ

′
). (2.24)

Substituting Equation (2.19) into Equation (2.24) reveals that the LGF is the inverse of the force

constant tensor L, ∑
ξ
′′∈Λ∞

G(ξ−ξ′′
)L(ξ

′′ −ξ′
) = δ

ξ,ξ
′ I , (2.25)

where I is the second order identity tensor, and δ
ξ,ξ

′ is Kronecker delta defined as,

δ
ξ,ξ

′ =
1 if ξ= ξ′

,

0 otherwise.
(2.26)

2.3.1 LGF Computation: Fourier space method

As in the case of the CGF, we can compute the LGF using the Fourier space methods (Hodapp

et al., 2019). Here, because of the underlying discrete characteristic of the equilibrium equation

(Equation (2.19)), we use a semi-discrete Fourier transform,

F{ f (ξ)}(k) = f̃ (k) = ∑
ξ∈Λ∞

f (ξ)exp(−ιk .ξ), ∀k ∈ BZ , (2.27)

and its inverse semi-discrete Fourier transform

F−1{ f̃ (k)}(ξ) = f (ξ) = 1

VBZ

∫
f̃ (k)exp(ιk .ξ)d 3k , ∀ξ ∈Λ∞, (2.28)

to calculate the LGF. Here, B Z ⊂R3 denotes the Brillouin zone of the underlying crystal lattice,

which is the primitive cell of the reciprocal space of the underlying crystal; for example, the

reciprocal space for FCC crystal with lattice constant a is BCC crystal with lattice constant

4π/a; VB Z is the volume of Brillouin zone.

Now, we apply semi-discrete Fourier transforms on Equation (2.25) with respect to free vari-
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ables ξ and ξ
′

and use the convolution property to get,( ∑
η∈Λ∞

G(η)exp(−ιk .η)

)( ∑
ω∈Λ∞

L(ω)exp(−ιk .ω)

)
= I , ∀k ∈ BZ . (2.29)

Equation (2.29) requires matrix-matrix multiplication of d×d matrices comprised of component-

wise semi-discrete Fourier transform of LGF and force constant tensors. Therefore, the com-

ponents of LGF in Fourier space F{G(ξ)}(k) can be calculated by inverting Equation (2.29)

[F{G(ξ)}(k)] = [F{L(ξ)}(k)]−1 . (2.30)

Equation (2.30) looks cumbersome; therefore, for simplicity, we write the expression for real

space LGF G(ξ) in 2D for the 11-component for readability,

G11(ξ) = F−1
(

F{L11(ξ)}(k)

F{L11(ξ)}(k)F{L22(ξ)}(k)−F{L12(ξ)}(k)F{L21(ξ)}(k)

)
(ξ). (2.31)

Equation (2.31) involves inverse semi-discrete Fourier transform, which requires integration of

singular integrand; the closed-form expressions for this singular integral are rarely available in

the literature. Therefore, numerical integration is required, which converges very slowly in the

case of singular integrals (Ghazisaeidi and Trinkle, 2009)). Hence, the following strategy can be

used to remove singularity. First, to observe the singularity more closely, we take the example

of a 1D chain of atoms connected with spring constant ks with their first neighbors. The lattice

constant is a, the force constant tensor, which has only one component, is L(0) = 2ks , and

L(a) = L(−a) =−ks . Now, applying Equation (2.30) for this 1D case gives us

G(ξ) = 1

a

∫ a/2

−a/2

exp(ιkξ)

−2ks(cos k −1)
d k, (2.32)

which is a singular integral at k = 0. We can remove the singularity by fixing G(0) and express

Equation (2.32) as,

G(ξ)−G(0) = −1

aks

∫ a/2

0

cos(kξ)−1

cos k −1
d k, (2.33)

which doesn’t contain singularity at k = 0 and can then be solved analytically.

Similarly, for 2D and 3D cases, the singularity in the integrals in Equation (2.30) can be

removed using CGF. The CGF converges to LGF sufficiently far from the origin, although the

convergence is slow due to long-range fields of Green’s function in elasticity (see Section 2.3.3).

The expressions (closed-form in the case of isotropic material) for CGF are readily available.

We chose an atom ξ∗ sufficiently far away from origin say as distance d∞; for example ξ∗ =
(d∞,0,0), and express the LGF as the following,

G l g f (ξ) =G (ξ)−G(ξ∗)+Gcg f (ξ∗). (2.34)
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The above definition of LGF removes the singularity and makes the integration of G (ξ)−
G(ξ∗) computationally tractable for numerical integration. The interested reader can refer to

Trinkle (2008)) for computing LGF which has more robust and faster convergence numerical

integration properties.

Also, in real-time A/C simulations, the numerical integration of Equation (2.31) is impossible.

Therefore, for all practical purposes, the values LGF are pre-computed for lattice sites within

a certain distance and are stored in the computer RAM for simulation purposes. In the

next section, we discuss a more robust method for practical applications for calculating the

numerical LGF using atomistic simulations, which provides an automatic length scale for

storing the numerical LGF and computing them using the CGF.

2.3.2 LGF Computation: Atomistic method

The LGF can also be calculated numerically within a finite-sized atomistic simulation by fixing

the displacements of boundary atoms beyond a chosen distance dc using the analytical CGF

(Appendix A.3) and then fully relaxing the inner atoms (Sinclair et al., 1978; Rao et al., 1998)).

The steps to calculate the numerical LGF (nLGF) are described as follows, (i) impose a point

force at the origin, (ii) displace all atoms outside some selected distance dc to the positions

given by the CGF, and (iii) relax all atoms at or within dc to zero force as shown in Figure 2.4.

Figure 2.4: Schematic diagram to compute numerical LGF (nLGF) using atomistic calculations.
The atoms in green are fixed to the displacement field obtained using closed-form CGF ex-
pressions, and interior atoms in red up to the distance dc from the origin are relaxed to obtain
nLGF.

The result is a numerical LGF (nLGF) equal to the CGF outside of dc and close to, but not

exactly, the true (infinite lattice) LGF inside dc . As dc is increased, the nLGF converges to the
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exact LGF. The resulting atom displacements at or within dc are essentially the numerical LGF,

and so the full numerical LGF is

Gnl g f
i j (ξ;dc ) =

 u j (ξ)/ fi , ∥ξ∥ ≤ dc ,

Gcg f
i j (ξ), ∥ξ∥ > dc .

(2.35)

The requirement to compute LGF numerically makes it compulsory to do these calculations

in the pre-processing time before any real-time Atomistic/Continuum simulations. Thus,

nLGF needs to be stored in computer RAM during the simulations. The length scale dc is an

inevitable feature of LGF-based boundary value problems.

2.3.3 The implication of numerical LGF

As discussed above, generally from the implementation point of view, the LGF is computed

numerically, and the numerical problem uses the CGF solution beyond some distance dc .

Therefore, the entire pre-computed LGF must be stored in an efficient data structure to be

recalled during the simulation. For large system sizes ∼ 1000 a typical of multiscale problems,

the memory required for storing the LGF is prohibitive. Therefore, the nLGF, where the

analytical CGF is used beyond dc , is generally needed for both numerical and operational

reasons. Because the Green’s function is generally long-range, the distance dc at which the

transition to the CGF is made affects the solution relative to an exact solution.

To understand the implication of numerical LGF on our LGF-based A/C studies in the rest of

this work, we consider a 2D infinite hexagonal lattice with force constant tensor L calculated

using Appendix A.1 with Poisson ratio ν= 0.25 and shear modulus µ, and nLGF calculated as

described in Equation (2.35). The value of µ doesn’t affect the result as it will be normalized in

our calculations. We first examine the relative error of the nLGF itself computed at various

dc < 200 a compared to the nLGF computed at dc = 200 a. The relative error is computed as

ϵl g f (ξ;dc ) = ∥Gnl g f (ξ;dc )−Gnl g f (ξ;dc = 200 a)∥
∥Gnl g f (ξ;dc = 200 a)∥ (2.36)

Figure 2.5(left) shows the relative errors in the nLGF for dc = 10 a,20 a,50 a, and 100 a out

to the distance dc . Recall that beyond dc , the nLGF equals the CGF (Equation (2.35)). With

decreasing dc , the relative error increases steadily in the entire domain, with the largest errors

near the origin. The error decreases with distance but then increases again near dc because the

nLGF must match the CGF at dc ; the CGF values are also shown for comparison. For dc = 10 a,

which is larger than values often used in the literature (Sinclair et al., 1978; Rao et al., 1998),

the errors are typical 10−3 − 10−4 throughout the domain.
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2.3 Lattice Green’s function (LGF)

An alternative way of examining errors in the nLGF is to investigate the spurious forces

generated by the nLGF when the atoms are fixed at the exact solution. For an exact LGF,

the only force would be the force at the origin. Thus any other forces are spurious. The

relaxation of these forces leads to the errors in displacement shown in Figure 2.5(left). To be

specific, we apply the displacement field

ui (ξ;dc ) =Gi ,1(ξ;dc ), ∀i ∈ {1,2} (2.37)

in the governing equation of the 2D hexagonal lattice (Equation (3.4)) and compute the

resulting forces f (ξ;dc ).

Figure 2.5: (left) Relative error ϵl g f (ξ;dc ) in the nLGF versus distance ∥ξ∥ for various values of
the nLGF transition distance dc , with dc = 200 a the reference. (right) Spurious "transition"
forces (Equation (2.38)) on atoms at a distance ∥ξ∥ for atoms in the exact reference (dc = 200 a)
positions; there is a notable spike in the spurious forces near the transition boundary.

We examine the difference in the force field∆ f (ξ;dc ) produced due to dc =∞ as the additional

"transition" forces f (ξ;dc ) defined as the following,

∆ f (ξ;dc ) = f (ξ;dc )− f (ξ;dc =∞) (2.38)

Here, the reference force field f (ξ;dc =∞) will correspond to the true LGF, and therefore it

should be a unit force in 1-direction and zero force everywhere else. The normalization of

this difference is impossible as the reference force is zero everywhere except at the origin;

therefore, the results are normalized with shear modulus µ.

Figure 2.5(right) shows the vector norm of the spurious forces (Equation (2.38)) for dc =
10 a,20 a, and 50 a at any atom ξ versus its distance from origin. There are zero spurious forces

inside of dc because the nLGF, as defined in Equation (2.35), has all forces within dc zero by

construction. There is then a large spike in the spurious forces near the LGF/CGF transition

(∥ξ∥ ∼ dc ), approaching 10−3, for dc = 10 a. There are further spurious forces beyond ∥ξ∥ ≥ dc

31



Chapter 2. Green’s function

because the CGF is used in this region and deviates from the actual LGF.

The study of errors due to the spurious forces generated due to the length scale dc will be a

recurring theme for the rest of this work. In the subsequent chapters, we will see the effect of

this length scale in various example A/C boundary value problems.

2.4 Summary

Here, we introduce the concept of the continuum and lattice Green’s function, which paves

the way to discuss the LGF-based multiscale method for the rest of this work. Also, we raise

the effect of LGF to CGF transition (Section 2.3.3) while computing numerical LGF, which

introduces the length scale dc in the LGF-based multiscale problems. We will discuss its

implication for the traditional Flexible boundary condition method (FBCM) for infinite domain

A/C coupling in Chapter 3. In Chapters 4 and 5, we will discuss its effects on lattice Green’s

function method (LGFM) for bounded domain problems. Further, the errors produced in

fully coupled FBCM and LGFM formulation due to LGF-CGF transition will be discussed in

Chapter 7.
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3 Flexible Boundary Condition Method

3.1 Introduction

The flexible boundary condition method (FBCM) has been traditionally (Sinclair et al., 1978;

Rao et al., 1998) used to solve LGF-based A/C coupling problems in an infinite medium

(Section 1.4.3). The FBCM has been assumed to be accurate but is usually used in cases where

the atomistic behavior is non-linear and, thus, for which there are no known exact solutions.

In the absence of exact solutions, it is difficult to establish rigorous measures of accuracy

and convergence. To our knowledge, the FBCM has not been explicitly compared to exact

solutions, which can be achieved using strictly elastic materials.

In this chapter, we thus study several idealized elastic problems and show that the FBCM

can give rise to errors both inside and outside the explicit atomistic domain. The errors are

associated with (i) the assumed initial solution at the start of the iterations in the FBCM and (ii)

the need to make a transition from the LGF to the continuum Green’s function (CGF) because

the exact infinite-space LGF cannot be computed as discussed in Section 2.3.3.

We first discuss the original FBCM iterative scheme in Section 3.2. In Section 3.3.1, we then use

a simple infinite 1D discrete linearly-elastic system with internal eigenstrain to demonstrate

the non-uniqueness of the converged FBCM solution. Further results are presented for an

infinite linear 2D discrete hexagonal lattice. Section 3.3.2 then demonstrates the effects of

the necessary transition from LGF to CGF on the FBCM solution, showing that making a

transition at a distance of just a few atomic spacings creates notable errors, especially outside

the atomistic domain.
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Chapter 3. Flexible Boundary Condition Method

3.2 The FBCM algorithm

The FBCM is an iterative solution process based on using the perfect-lattice Green’s functions

to update atomic displacements until forces are reduced below some desired threshold. The

method considers an infinite lattice of atomic sites, and we denote the lattice sites by the

spatial positions ξ. The atoms have some model for their interactions (e.g. an interatomic

potential) that is non-zero over some finite range rc and zero at further distances.

The discrete lattice with atomistic interactions has a lattice Green’s function (LGF) associated

with infinitesimal deformations of the lattice. As discussed in Section 2.3, the LGF at position ξ

is the displacement u(ξ) created at ξ caused by a unit point force f (ξ
′ = 0) acting at the origin

ξ
′ = 0. Since both displacement and force are vectors, the LGF G(ξ) is a tensor whose Gi j (ξ)

component represents the displacement in the i -th direction of an atom at ξwhen a unit point

force is applied in the j -th direction to the atom at the origin. The calculation of G(ξ) depends

only on the elastic (linear) interactions among the atoms and the crystal lattice structure.

Within the assumption of elasticity, the superposition principle holds. Therefore, with no

assumptions, the displacement field u(ξ) at ξ due to forces f (ξ
′
) at any positions ξ

′
can be

obtained by summing the contributions of each individual force using LGF in Equation (2.24).

Since the FBCM is applied to non-linear problems, i.e., the non-linear atomistic response near

the defects of interest, the superposition principle does not apply. Thus, as discussed next, the

superposition principle is used iteratively to successively but approximately update atomic

displacements until some convergence criterion is satisfied.

As shown in Figure 3.1 in a 2D representation, the FBCM partitions a finite atomistic domain

into three sub-regions. A central region ΛI contains all the atoms expected to deform non-

linearly. A surrounding regionΛI I includes all atoms within at least rc of the outer boundary

of ΛI . Thus, all atoms in ΛI only interact directly with atoms in ΛI and ΛI I . A third region

ΛI I I of thickness rc surrounds ΛI I so that all atoms in ΛI I have a full complement of atom

neighbors that determine their forces. The atoms in ΛI I I do not have a full complement of

neighbors - there is an outer surface - but forces on atoms in ΛI I I are never computed nor

used in the FBCM.

The FBCM algorithm then starts with an initial assumed atomic displacement field ui ni t in

the entire domainΛI+I I+I I I . With atoms inΛI I+I I I held fixed, all atoms inΛI are relaxed to

zero force according to the full non-linear interatomic interactions. Since the atoms inΛI I

are not relaxed, these atoms develop some forces f I I . The displacements of all atoms in the

system (ΛI+I I+I I I ) are then updated by adding the displacements caused by the forces f I I

that would exist in the perfect (no defect) discrete elastic lattice. This updating is achieved

using the elastic LGF for the perfect discrete lattice. Specifically, in the first iteration,
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3.2 The FBCM algorithm

Figure 3.1: The FBCM uses four domains of atoms, as shown here for a 2D hexagonal lattice
with atomistic interaction cut-off radius rc = 2 a: An inner domainΛI (red) that is solved with
full non-linear interatomic interactions; a surrounding domainΛI I (blue) of thickness rc that
is solved using Green’s functions; and an outer domainΛI I I (yellow) also of thickness rc that is
solved using Green’s functions;ΛIV domain outsideΛI+I I+I I I ; see the text for a more detailed
description of the method.

u(ξ) = ui ni t (ξ)+ ∑
ξ
′∈ΛI I

G(ξ−ξ′
) f I I (ξ

′
), ∀ξ ∈ΛI+I I+I I . (3.1)

After this first step, the atoms in ΛI are no longer in equilibrium, i.e., they now have some

non-zero forces. Note that atoms in ΛI I are also not at zero force - the updating eliminates

forces as if the entire system was linearly elastic, which it is not. The new forces in ΛI are

then relaxed to zero while holding atoms inΛI I+I I I at their current positions. This relaxation

generates further new forces f k
I I in ΛI I . The forces on atoms in ΛI I are then again relaxed

using the LGF. This process is iterative so that the displacements in iteration k are

uk (ξ) = uk−1(ξ)+ ∑
ξ
′∈ΛI I

G(ξ−ξ′
) f k

I I (ξ
′
), ∀ξ ∈ΛI+I I+I I . (3.2)

Convergence is achieved when the forces f k
I I are below a desired threshold ϵ f . Note that the

updating ofΛI is always followed by full relaxation of that domain to zero forces (i.e., to the

pre-determined convergence limit), so the use of the LGF in this domain is intended to speed

convergence to the final solution; there is no assumption of superposition or linearity in this

domain.
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3.3 Non-uniqueness of the FBCM

From the above analysis, it can be seen that the converged FBCM has zero (below threshold)

forces in both ΛI and ΛI I . However, this does not imply that the atomic displacements in

ΛI+I I are correct for the posed problem. ΛI I is coupled to ΛI I I via atomic forces, and ΛI is

subject to the displacements in ΛI I . Therefore, the FBCM does not guarantee that the final

solution satisfies global equilibrium and the proper constitutive behavior. The FBCM only

ensures that, for some displacements inΛI I I , the atoms inΛI+I I have zero force. The FBCM

solution is, thus, in principle, not unique. In other words, it can depend on the assumed initial

displacements ui ni t . We now demonstrate this explicitly in both 1D and 2D linear elastic

problems for which the exact solutions can be computed, enabling quantification of errors

due to the FBCM methodology alone.

3.3.1 1D linear lattice

A 1D problem might appear to be too idealized for realistic 3D problems. However, the 1D

problem is fully equivalent to problems in 3D where the imposed deformations are planar in

the domain. The 1D problem has also been used to beautifully illustrate intrinsic issues/errors

in various multiscale coupling methods (Curtin and Miller, 2003), and so has a firm history

of utility in the field. The atom positions in the 1D infinite lattice are defined as ξ= a m,m =
0,±1,±2, . . . where a is the lattice constant. We only consider a linear system with first neighbor

linear springs of stiffness ks . The force constant tensor L(ξ,ξ′) is the force on atom ξ when

atom at ξ′ is displaced by a unit displacement as discussed in Section 2.3. The force constant

tensor for the 1D near-neighbor springs is easily seen to be

L(ξ,ξ
′
) = L(|ξ−ξ′ |) =


2ks , for |ξ−ξ′ | = 0

−ks , for |ξ−ξ′ | = a

0, otherwise.

(3.3)

The force f (ξ) at atom ξ due to displacement u(ξ
′
) of atoms at ξ

′
within rc is given by

f (ξ) =∑
ξ
′

L(ξ−ξ′
)u(ξ

′
). (3.4)

The Lattice Green’s function G(ξ,ξ
′
) is the inverse of the force constant tensor and can be

determined using Fourier transforms using Equation (2.33),

G(ξ,ξ
′
) =G(ξ−ξ′

) = |ξ−ξ′ |
2ks

. (3.5)
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3.3 Non-uniqueness of the FBCM

We consider a finite domain consisting of 13 atomic sites sufficient to demonstrate all impor-

tant features of our study. The domain ξ=−6a, . . . ,6a is partitioned into the three domains

as shown in Figure 3.2: ΛI comprises atoms ξ=−4a, . . . ,4a;ΛI I contains the adjacent atoms

ξ=−5a,5a since the range of interactions is rc = a; similarly,ΛI I I contains the next adjacent

atoms ξ=−6a,6a that borderΛI I . The remaining atoms in the infinite system do not need to

be considered explicitly.

We apply an external force dipole consisting of forces − f at ξ = −a and + f at ξ = a. The

analytical solution is trivially obtained using superposition of the exact LGFs (Equation (3.5))

as

uexact (ξ) =


f

ks
, for ξ≥ a

− f
ks

, for ξ≤−a

0, for ξ= 0

(3.6)

There are strains only in the central region ξ=−a,0, a with zero displacement of the center

atom. The application of the FBCM starts with an initially assumed solution. For the first

example, we select ui ni t (ξ) = 0 for all atoms in ΛI+I I+I I I . Executing the iterative algorithm

discussed in Section 3.2, we obtain the results shown in Figure 3.3(a). Because the system

is linear, convergence to error ϵ f = 10−10 is achieved after two iterations. The final FBCM

solution agrees exactly with the analytical (Equation (3.6)) for this initial displacement field.

Figure 3.2: 1D lattice with FBCM domains (ΛI (red), ξ=−4 a, . . . ,4 a;ΛI I (blue), ξ=−5 a,5 a ;
ΛI I I (yellow), ξ=−6 a,6 a; see text and Figure 3.1 for more detail). The system is then loaded
by a force dipole applied at atoms ξ= −a, a, as shown.

Next, we use initial displacements for atoms ξ=−a, . . . ,−6a selected randomly from a uniform

distribution in the interval 0.0 to 1.0, with atoms ξ= a, . . . ,6a having the negative displace-

ments of the atoms ξ=−a, . . . ,−6a, and 0 for ξ= 0, to preserve antisymmetry about the origin.

Preserving this antisymmetry is unnecessary, but assumed initial displacements are usually

selected to preserve some general features of the expected solution whenever possible. Figures

3.3(b) and (c) show the converged FBCM atom displacements for two different initial random
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displacements. The converged solutions differ substantially from the exact analytical result.

The FBCM solution is independent of the initial conditions in ΛI since the first step of the

algorithm involves relaxing atoms inΛI to zero force, which thus depends only on the initial

displacements inΛI I . The resulting forces inΛI I depend on the initial displacements of the

fixed atoms in ΛI I I . Thus, the final converged solution with zero forces in ΛI+I I depends

on the assumed initial displacements in ΛI I+I I I . Figures 3.3(d,e) show the FBCM solutions

using the same initial displacements in ΛI I+I I I as those used in Figures 3.3(b,c) but with

different initial displacements in ΛI . The same solutions are obtained, i.e., the solutions in

Figures 3.3(b,d) are identical to those in Figures 3.3(c,e).

The above examples demonstrate unambiguously that the FBCM solution is non-unique and

depends on the initial displacement field in theΛI I+I I I domain.

3.3.2 2D hexagonal lattice

We now examine the application of the FBCM in 2D problems, illustrating the non-uniqueness

of the converged FBCM solution again depending on the initial displacement field. We con-

sider a 2D infinite hexagonal lattice specified by the lattice sites

ξ= m1b1 +m2b2,m1,m2 = 0,±1,±2, . . . ;b1 = a (1,0),b2 = a/2
(
1,
p

3
)
, (3.7)

where a is the lattice constant. We design neighbor interactions among atoms to achieve a

macroscopic elastic material with two independent elastic constants, µ, and ν. Details of the

procedure to obtain force constant tensor L(ξ) are given in Section 2.3.

Here, we compute the LGF numerically. We have already seen that this can introduce additional

errors in the FBCM (Section 2.3.3). As a first step, the continuum Green’s function (CGF) for

2D is computed using Appendix A.3. The CGF has a divergence at the origin, and so in later

applications, we will set the Gcg f (ξ = 0) = 0, but this will have no impact on any results.

Second, we calculate the numerical LGF (nLGF) with the numerical procedure discussed in

Section 2.3, which introduces the length scale dc in the FBCM solutions.

Here, we apply the numerical LGF (nLGF) in the FBCM for atomic domains whose maximum

distances between atoms are ≪ dc . Thus, the FBCM solution does not use the CGF at all, aside

from its effects on the nLGF within dc . Specifically, we use dc = 200 a and study problems of

maximum dimension 100 a. While specific values are unimportant, we use the 2D elastic con-

stants ν= 0.25 to compute Gnl g f . The numerical value of the shear modulus µ is unimportant

for calculations as it will get normalized while analyzing the results.

To test the FBCM, we select a central atomistic region of atoms within a distance 10 a of the
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3.3 Non-uniqueness of the FBCM

(a)

(b) (c)

(d) (e)

Figure 3.3: Displacement versus atom position in the 1D linear lattice due to the imposition of
a force dipole (see Figure 2) for both the initial (black) and converged (green) FBCM solutions.
The domain boundaries ofΛI ,ΛI I andΛI I I are identified as dashed vertical lines for clarity.
(a) ui ni t (ξ) = 0 where the converged solution matches the exact result of Equation (3.6). (b, c)
Random initial displacements in ΛI+I I+I I I (black) for which the converged solutions differ
greatly from the exact solution. (d) Initial solution as in case(b) inΛI I+I I I but different random
displacements in ΛI ; the converged solution is the same as found for case (b). (e) Initial
solution as in case(c) in ΛI I+I I I but different random displacements in ΛI ; the converged
solution is the same as found for case(c). The converged solution thus depends on the initial
displacements inΛI I+I I I .
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origin asΛI as shown in Figure 3.1. The atoms inΛI I andΛI I I are then defined in Section 3.2.

However, here we are also interested in solutions outside the usual FBCM domainΛI+I I+I I I .

We, therefore, examine the solutions in an outer domain ΛIV extending out to ∥ξ∥ ≤ 50 a

and compute displacement fields in this outer domain using the converged FBCM solution

obtained withinΛI+I I+I I I . Even in this extendedΛI+I I+I I I+IV domain, the maximum distance

between any atom pair is r I+I I+I I I+IV
max = 100 a and thus dc = 200 a > r I+I I+I I I+IV

max .

(a) (b)

Figure 3.4: 2D hexagonal lattice with radial outward force f on atoms at distance (a) ∥ξ∥ = a
and (b) ∥ξ∥ = 8 a from origin, inΛI .

As in the 1D examples, we again impose a set of dipole forces insideΛI to generate a non-trivial

stress state throughout the infinite space. Specifically, we apply outward (radial) unit forces on

each of the central six atoms around the origin (Figure 3.4(a)),

f (ξ) =


f ξ
a , for ∥ξ∥ = a,

0, otherwise.
(3.8)

The reference solution ur e f (ξ) for this problem is obtained using the nLGF with dc = 200 a

and the superposition principle, since the problem is elastic. This is not an exact solution due

to the use of the nLGF, but, since dc = 200 a is large, it can be a perfect solution suitable for

comparisons and demonstration. The continuum solution ucg f (ξ) is obtained using the CGF

instead of the nLGF in the entire simulation domain.

Problems of physical interest involve the strain and stress fields, so it is helpful to determine

the strain fields in the atomistic domain and compare various solutions. We thus compute the

strain fields ϵr e f (x) and ϵF BC M (x) corresponding to the reference and FBCM displacement

fields, respectively, using constant strain triangular elements that naturally compose the
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3.3 Non-uniqueness of the FBCM

hexagonal lattice. For comparing solutions of the FBCM to the reference solutions, we then

define error measures for the displacement and strain fields as

∆uF BC M (ξ;ui ni t ,dc ) = uF BC M (ξ;ui ni t ,dc )−ur e f (ξ), ∀ξ ∈ΛI+I I+I I I+IV , (3.9)

∆ϵF BC M (x ;ui ni t ,dc ) = ϵF BC M (x ;ui ni t ,dc )−ϵr e f (x). (3.10)

We consider two initial displacements as input to the FBCM. The first is zero displacement

ui ni t (ξ) = 0 and the second is the continuum solution ui ni t (ξ) = ucg f (ξ). The continuum

solution would be typically used as the initial solution for many real problems. The FBCM

solutions are converged so that norm f I I (ξ)/ f < ϵ f = 10−10. The solutions converge in two

iterations and are at the resolution limit (10−10) throughout the entire FBCM domainΛI+I I+I I I .

The errors in the displacement and strain solutions are defined in Equation (3.9) and are

normalized by the reference solution. The errors in the FBCM for zero initial displacements

are shown in Figure 3.5(a, b). With zero initial displacements, the FBCM solution differs

negligibly (∼ 10−8) from the reference solution. The small difference is due to the fact that

FBCM uses the true L inside ΛI to relax forces while the reference solution uses the nLGF

with dc = 200 a, which is not the exact inverse of the true L. The FBCM solution remains very

small in the outer region ofΛIV . If the outer domainΛIV were expanded by several orders of

magnitude, as in an actual multiscale problem, the errors would increase and could become

important; this is not addressed further here.

(a) relative error in displacements (b) relative error in strains

Figure 3.5: Normalized errors in FBCM solutions for the 2D hexagonal lattice with internal
point forces as computed using the nLGF with dc = 200 a, for (a) the displacement field and (b)
the strain field, for both zero (black) and continuum (blue) initial displacements; a tolerance
of 10−10 has been added to accommodate the logarithmic scale. Vertical dashed lines show
the outer limits of the domains ΛI , ΛI I , ΛI I I , and ΛIV , respectively. The initial continuum
displacement field (yellow) is also shown for reference.

The errors in the FBCM displacement and strain solutions when using the continuum initial
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displacement are also shown in Figure 3.5 (a, b). Here, the errors are significantly larger -

4−7 orders of magnitude relative to the zero displacement case. The strain errors, which

are proportional to the stress errors that would drive physical behavior, reach into the range

10−3 −10−2 near the outer edge of ΛI and across the outer domains. The initial continuum

displacement field (yellow) is also shown for reference, demonstrating that the FBCM does

evolve the system toward smaller errors. But the FBCM reaches convergence prematurely due

to the lack of equilibrium inΛI I I . Again, the FBCM solution is shown to be non-unique and

dependent on initial conditions.

In both 1D (Figure 3.3) and 2D (Figure 3.5) cases, we observe that the gradients in the FBCM

boundary (ΛI I , ΛI I I ) influence the final FBCM solution in the entire domain. We further

demonstrate this feature by applying outward radial forces f on six atoms at a distance

∥ξ∥ = 8 a from the system center (see Figure 3.4(b)). In this case, the atoms on which forces

are applied inΛI now lie near the FBCM boundary (∥ξ∥ = 8 a). Thus, the exact displacement

fields inΛI I+I I I are not the asymptotic fields of the applied force multipole.

Figure 3.6: Normalized errors in FBCM strains for the 2D hexagonal lattice with the larger
multipole force configuration (Fig 3.4(b)), for zero and continuum initial solutions with dc =
200 a; a tolerance of 10−10 has been added to accommodate the logarithmic scale. Vertical
dashed lines show the outer limits ofΛI ,ΛI I ,ΛI I I , andΛIV , respectively. The initial continuum
displacement field (yellow) is also shown for reference.

The normalized errors in the converged FBCM solution using the continuum solution as the

initial solution are shown in Figure 3.6. The solution shows relative strain errors on the order

of 10−3 in the interior, several orders of magnitude larger than the errors for the more-compact

force multipole. Large errors approaching 10−1 are found near the boundary region. The

errors in the outer domain are even larger than the errors of the initial solution and show no

sign of decaying with distance. However, for zero initial displacements (Figure 3.6(a)), the

results are excellent and similar to the smaller multipole arrangement. This confirms that the
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FBCM errors arise due to gradients of the initially assumed solution.

Also shown in Figure 3.6 is the solution obtained using the common atomistic strategy of fixing

atoms in the outer boundariesΛI I+I I I according to the continuum solution and relaxing only

the interior atoms. This is the first step of the FBCM method without subsequent LGF-based

updating and iterations. This solution is actually better than the FBCM solution in the interior

and the far field. This result is surprising - for a rational initial solution (the CGF field), the

FBCM iterations lead to worse results than no iterations at all.

3.4 Role of LGF to CGF transition

In Section 2.3.3, we have seen the differences in the nLGF versus dc and the spurious forces

created due to the transition from the nLGF to the CGF. We now examine their effects on the

solution of the model problem of Section 3.3.2, multipolar forces applied in the hexagonal 2D

lattice. We previously showed excellent solutions for dc = 200 a, and zero displacement initial

conditions. We continue with zero initial displacements to eliminate errors due to the initial

conditions. We then vary the nLGF-CGF transition distance in the range dc = 1 a,5 a,10 a,15 a.

For these values, atoms in different regions ofΛI I will interact via the nLGF and CGF, spanning

the transition regime.

(a) relative error in displacements (b) relative error in strains

Figure 3.7: Relative error ( Eq.(3.9)) in the converged FBCM solution (ui ni t = 0) for the 2D
hexagonal lattice with varying dc . The high relative error in both displacements and strains
is observed in the region beyond ΛI (∥ξ∥ > 10a) with a spike in error at a distance dc from
∥ξ∥ ∼ 11 a.

Figure 3.7 shows the error relative to the (small) error for dc = 200 a for the final converged

FBCM displacement and strain over the entire domain, includingΛIV . Focusing on the strains,

the relative error is now varying through the domain, increasing as the outer boundaryΛI is

approached, and with a spike in error at a distance ≈ dc beyond theΛI I atoms as indicated by
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the vertical dashed lines in the figure. These spikes are a direct consequence of the spurious

forces discussed earlier. For dc = 1, the strain error at the boundary ofΛI is reaching 1% for

dc = 1 a and then approaching 10% slightly further away, and reducing only to 10−2 at large

distances. These are not insignificant errors and are caused solely by the LGF to CGF transition

beyond dc = 1 a. Increasing to dc = 15 a, the strain errors decrease steadily, but only by less

than two orders of magnitude over the entire domain.

The FBCM requires more than two iterations for all of these cases to achieve convergence. The

ΛI I atoms interact with each other across the LGF-CGF transition regime. So each iteration

produces new spurious forces on other atoms that require further iterations to reduce/elimi-

nate. The number of iterations thus increases with decreasing dc . The use of a small dc thus

not only introduces errors in the solution but also renders the method less computationally

efficient, even for the linear problems studied here.

(a) relative error in the displacements (b) relative error in the strains

Figure 3.8: Relative error of the FBCM solution versus position for the large force multipole
with zero displacement initial solution, for dc = 50 a,80 a,100 a,200 a chosen such that the
nLGF/CGF transition does not affect atom interactions in ΛI+I I+I I I (size 22 a). Errors are
significantly lower than those in Figure 3.7 and decrease with increasing dc . For presentation
purposes, a tolerance of 10−10 has been added to all strain values.

When dc is larger than the explicit FBCM domain, here r I+I I+I I I
max = 22 a, greatly improved

results are obtained, as shown in Figs. 3.8(a, b). The relative errors are at least 2-3 orders of

magnitude small insideΛI and, while larger, again much smaller than for the small dc values.

There is also no spike in error just outside theΛI I domain. Thus, the choice of dc has multiple

effects on the nature of the solution accuracy, especially outside the explicit atomistic domain

but near the atomistic/continuum boundary, where phenomena in the continuum domain

would have the greatest effects on the atomistic behavior.

Finally, zero displacement initial conditions are not normally feasible for realistic problems
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where an atomistic defect requires some initial deformations in the atomistic domain, partic-

ularly for defects such as dislocations and cracks that have long-range displacement fields.

The continuum elasticity solution is thus generally used in the literature as an initial displace-

ment field for the FBCM, which seems reasonable. However, due to the non-uniqueness of

the FBCM solution and the effects of the nLGF, additional errors may be caused by using a

physically-motivated but approximate initial displacement field.

(a) small applied multipole Fig.3.4(a) (b) large applied multipole Fig.3.4(b)

Figure 3.9: Relative error in the converged FBCM strains for the large multipole force configu-
ration using the continuum initial solution (ui ni t (ξ) = ucg f (ξ)), for varying dc . High relative
error is observed in the region beyondΛI domain (∥ξ∥ > 10 a), but essential independent of
dc .

Here, we thus use the continuum initial solution ui ni t (ξ) = ucg f (ξ) and show the relative

error in the strain fields for dc = a,5 a,15 a, and 50 a in Figure 3.9(a); the initial continuum

solution is also shown for comparison. In this case, the choice of dc does not significantly

affect the converged solution. The errors caused by the non-uniqueness (dependence on

the initial solution) dominate the error, and the relative error due to the combination of the

initial solution and the dc are not additive even though the exact problem is linearly elastic.

Interestingly, the results at dc = a with the continuum initial solution are better than the

results with zero initial solution (Figure 3.7). There is also no spike in the relative error beyond

distance dc from the ΛI I atoms. A similar study of the role of the LGF to CGF transition for

the larger multipole of Figure 3.4(b) is shown in Figure 3.9(b). As in the previous case, the

strain errors are dominated by the initially assumed solution and are nearly independent of

the LGF-to-CGF transition distance dc .
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3.5 Summary

This chapter revisited the traditional FBCM algorithm for LGF-based A/C coupling problems in

an infinite medium. Using linear 1D and 2D example test problems with the known reference

solutions, we highlighted issues of non-uniqueness of FBCM solutions depending on the initial

guess solution assumed at the start of the iterative process. We demonstrated that setting

the initial guess solution as zero leads to more accurate results in the FBCM algorithm than

the CGF-based initial solution conventionally used to calculate dislocation core structures or

short-range crack behavior in atomistic simulations (Sinclair et al., 1978; Rao et al., 1998).

Further, this chapter highlight that the LGF to CGF transition length scale dc has significant

effects on the FBCM solutions, particularly in ΛIV region, though the initial guess solution

error entirely overshadows this error if CGF initial guess is used. We will again discuss the

effect of this length scale on the LGFM problems in Chapter 4.

Building on the understanding of the initial guess solution in an infinite case FBCM, we will

further develop FBCM for the bounded domain problem by coupling it with LGFM to solve

full A/C coupling problems in Chapter 7.

We now set aside the A/C coupling problems and focus on the continuum part with the outer

surface (no A/C coupling via inner "pad" atoms), where surface forces/displacements can

be applied as the boundary conditions. We will develop a discrete counterpart of CGF based

boundary element method (BEM): LGFM, in Chapter 4.
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4 Lattice Green’s function method

4.1 Introduction

In Chapter 3, we discussed the FBCM algorithm for A/C coupling in an infinite medium that

couples the atoms at the atomistic/continuum interface using LGF. As discussed in Section 1.5,

LGF-based A/C coupled boundary value problems for the bounded domain involve two sets of

surfaces: (i) interior atoms, which are coupled to the fully atomistic domain, which is usually

embedded within the continuum domain, and (ii) exterior atoms on the outer boundaries

where external boundary conditions are applied.

In this chapter, we will focus on the outer boundary of the coupling problem. Therefore, we

assume that the entire bounded domain, along with the nonlinear atomistic region embedded

inside it, is deforming under a small-strain regime. Thus, the whole bounded domain is

assumed to be behaving linearly, replicating the linear elastic continuum behavior in typical

A/C coupling. As we are using LGF for developing A/C coupling, the entire bounded domain

consists of atoms connected via linear springs, and we call such an LGF based method for

solving linear discrete atomistic systems with external boundary; the lattice Green’s function

method (LGFM). The LGFM can be seen as a discrete counterpart of the continuum-based

Boundary Element Method (BEM). While the BEM (Section 2.2.2) uses the continuum Green’s

function (CGF) of an infinite domain obtained from the underlying continuum partial differen-

tial equations of elasticity, the LGFM uses the lattice Green’s function (LGF) of an infinite lattice

in the small-deformation limit where atoms on lattice sites interact with each other in the

linear elastic (harmonic) regime. The linear elasticity approximation is valid in the small-strain

regime even if atoms interact via complex multibody nonlinear interatomic potentials.

In Section 4.2, we discuss the LGFM for the bounded domain and the computational cost

involved for the exact solution of a boundary value problem. In Section 4.3, we discuss the

practical computation of the LGF and illustrate the errors created due to the need for an
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LGF-to-CGF transition (Section 2.3.3) at some finite distance dc .

4.2 The LGFM formulation

We now discuss the application of the LGF to a bounded domainΛc with specified boundary

conditions (LGFM problem). The domain Λc contains all atoms in the problem, consisting

of atoms "on" the boundary and in the interior of the domain. The atoms lying "on" the

boundary are the subset of atoms Λ− that lie within the cutoff radius rc of the boundary;

these are the atoms on which external boundary conditions (forces and/or displacements) are

applied for any posed boundary value problem. The boundary atoms (Λ−) are near the outer

surface and hence do not have the full complement of surrounding neighbors as in the infinite

crystal or the interior atoms. The LGFM thus also requires retention of an outer domain of

atoms Λ+ that are outside Λc but within the cutoff radius rc of the atoms in Λ−. These Λ+

atoms are not part of the physical domain of the boundary value problem but are required in

the LGFM formulation, as discussed in the following. The interior atoms are then denoted as

the setΛi n =Λc −Λ−. Figure 4.1(a) shows an example of the three domains for a 2D hexagonal

lattice with rc = 2 a, where a is the lattice constant. The total potential energy of the bounded

domain follows from Equation (2.17) as

U (u) =−1

4

∑
ξ,ξ

′∈Λc

(
u(ξ

′
)−u(ξ)

)
·L(ξ−ξ′

)
(
u(ξ

′
)−u(ξ)

)
. (4.1)

For specified displacements and/or forces on the outer boundary (Λ−), we now wish to solve

the reaction forces (on degrees of freedom with specified displacements) and displacements

(on degrees of freedom with specified forces) on the outer boundaryΛ−. With these results,

we can then obtain the displacements on all interior atomsΛi n , completing a full solution of

the boundary value problem.

We first distinguish forces on the boundary atoms in Λ−, which may be applied forces or

reaction forces, from the applied forces on any interior atoms in Λi n . From the atomistic

perspective, all forces are fundamentally similar, but from the continuum boundary value

problem perspective, the applied forces defined for interior atoms in Λi n are "body" forces

that we label as fb , and the applied and reaction forces on the boundary atoms in Λ− are

"surface" forces that we label as fs for clarity. Then, using the Euler-Lagrange equations, the

equilibrium equation for the atom ξ inΛ− subjected to the surface force fs (ξ) is

∑
ξ
′∈Λc

L(ξ−ξ′
)
(
u(ξ

′
)−u(ξ)

)
= fs (ξ), ∀ξ ∈Λ−. (4.2)
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(a) (b)

Figure 4.1: (a) Domains for an LGFM problem on a finite 2D hexagonal lattice with atomic
interaction range rc = 2 a. Blue circles: outer boundary of the bounded domain where bound-
ary displacements u and/or surface forces fs are applied, denoted asΛ−; Red circles: atoms
outside the physical domain but required for bounded LGFM formulation, denoted asΛ+ and
within the cutoff distance rc ofΛ− atoms; Black circles: interior atoms, denoted asΛi n . The
physical domain of the problem isΛc =Λi n ∪Λ−. Body forces fb can be applied to any interior
atom. (b) As in (a) but for a 2D hexagonal domain with L = 10 a with rc = a; this geometry is
used in Section 4.3 for several 2D boundary value problems.

For atoms inΛ−, we then separate Equation (2.16) into two parts as∑
ξ
′∈Λc

L(ξ−ξ′
)+ ∑

ξ
′∈Λ+

L(ξ−ξ′
) = 0, ∀ξ ∈Λ−, (4.3)

and substitute this into Equation (4.2) and relabel the indices to obtain∑
ξ
′∈Λc

L(ξ
′′ −ξ′

)u(ξ
′
)+ ∑

ξ
′∈Λ+

L(ξ
′′ −ξ′

)u(ξ
′′
) = fs (ξ

′′
), ∀ξ′′ ∈Λ−. (4.4)

Using Equation (2.25) for atoms ξ and ξ
′

inΛc , we have∑
ξ
′′∈Λc

G(ξ−ξ′′
)L(ξ

′′ −ξ′
)+ ∑

ξ
′′∈Λ+

G(ξ−ξ′′
)L(ξ

′′ −ξ′
) = δ

ξ,ξ
′ I , ∀ξ,ξ

′ ∈Λc . (4.5)

because L is short-ranged so that the sum over all atoms ξ
′′

is limited to domainsΛc andΛ+.

Also, because L is short-ranged, the equilibrium equation Equation (2.19) is valid for atoms
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inside the domainΛi n , and hence∑
ξ
′∈Λc

L(ξ
′′ −ξ′

)u(ξ
′
) = fb(ξ

′′
), ∀ξ′′ ∈Λi n . (4.6)

We now multiply Equation (4.4) by G(ξ−ξ′′
) for ξ ∈Λc and sum over all atoms ξ

′′ ∈Λ−, leading

to ∑
ξ
′∈Λc

∑
ξ
′′∈Λ−

G(ξ−ξ′′
)L(ξ

′′ −ξ′
)u(ξ

′
)

+ ∑
ξ
′∈Λ+

∑
ξ
′′∈Λ−

G(ξ−ξ′′
)L(ξ

′′ −ξ′
)u(ξ

′′
) = ∑

ξ
′′∈Λ−

G(ξ−ξ′′
) fs (ξ

′′
) ∀ξ ∈Λc . (4.7)

Similarly, we multiply Equation (4.6) by G(ξ−ξ′′
) for ξ ∈Λc and sum over all atoms ξ

′′ ∈Λi n ,

leading to ∑
ξ
′∈Λc

∑
ξ
′′∈Λi n

G(ξ−ξ′′
)L(ξ

′′ −ξ′
)u(ξ

′
) = ∑

ξ
′′∈Λi n

G(ξ−ξ′′
) fb(ξ

′′
) ∀ξ ∈Λc . (4.8)

Adding Equation (4.7) and Equation (4.8), using the Equation (4.5), the property of δ
ξ,ξ

′ I , and

recalling the definition of domainΛ− ⊂Λc , we obtain after some algebra

u(ξ) = ∑
ξ
′∈Λ−

∑
ξ
′′∈Λ+

(
G(ξ−ξ′′

)−G(ξ−ξ′
)
)

L(ξ
′′ −ξ′

)u(ξ
′
)

+ ∑
ξ
′′∈Λ−

G(ξ−ξ′′
) fs (ξ

′′
)+ ∑

ξ
′∈Λi n

G(ξ−ξ′
) fb(ξ

′
), ∀ξ ∈Λc . (4.9)

Equation 4.9 is our full result for the displacement of all atoms in the domain in terms of any

imposed displacements and/or forces on the surface and imposed forces in the interior.

To simplify the notation, we define the second order tensor F (ξ,ξ
′
) as

F (ξ,ξ
′
) = ∑

ξ
′′∈Λ+

(
G(ξ−ξ′′

)−G(ξ−ξ′
)
)

L(ξ
′′ −ξ′

), ∀ξ ∈Λc ,ξ
′ ∈Λ−. (4.10)

Note that the sum is over the atomsΛ+ outside the physical domain, which is a feature unique

to the LGFM formulation that does not appear in a continuum BEM formulation. However, the

continuum BEM formulation involves gradients on the boundary, and those are the continuum

analog of the differences in displacements between atoms inΛ− andΛ+, providing a physical

context for the gradients in the BEM. The contribution of theΛ+ atoms to the formulation is

now entirely within the F tensor. With this notational change, we obtain our final result for the
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displacement of any atom in the physical domain as

u(ξ) = ∑
ξ
′∈Λ−

F (ξ,ξ
′
)u(ξ

′
)+ ∑

ξ
′∈Λ−

G(ξ−ξ′
) fs (ξ

′
)+ ∑

ξ
′∈Λi n

G(ξ−ξ′
) fb(ξ

′
), ∀ξ ∈Λc . (4.11)

Atom displacements are calculated once the displacements u and surface forces fs are known

for the atoms on the boundary (Λ−), and the body forces fb on the inner atoms (Λi n) are

specified. For practical problems of interest, the number of atoms with non-zero body forces

fb inΛi n will be negligible compared to the number ofΛ− atoms and so will not contribute

significantly to the computation cost of Equation (4.11). The computation of the displacement

u(ξ) for atom ξ inΛc then scales as O (d N−), where N− is the number of boundary atoms in

Λ−. Note that there is no explicit mention ofΛ+ in Equation (4.11), and therefore no forces /

displacements need to be prescribed inΛ+, as expected for any boundary value problem posed

in Λc . We further develop the bounded LGFM formulation for different types of boundary

conditions in the next sub-section.

4.2.1 Solving the boundary value problem

We first consider pure Dirichlet conditions for which the boundary displacements u(ξ
′
) are

specified on all atoms inΛ− and nonzero body forces fb are specified on atoms inΛi n . From

Equation (4.11), we must first solve for the unknown reaction forces fs (ξ
′
) on the atoms inΛ−.

Therefore, we rewrite Equation (4.11) for the unknown forces on atoms inΛ−, leading to the

system of linear equations∑
ξ
′∈Λ−

G(ξ−ξ′
) fs (ξ

′
) = u(ξ)− ∑

ξ
′∈Λ−

F (ξ,ξ
′
)u(ξ

′
)− ∑

ξ
′∈Λi n

G(ξ−ξ′
) fb(ξ

′
), ∀ξ ∈Λ−. (4.12)

The solution of these linear equations requires the numerical inversion of a fully dense sym-

metric matrix [G(ξ−ξ′
)] of size d N−×d N− in dimensions d , which is an O ((d N−)3) operation.

If N− is large, this inversion is computationally prohibitive. However, since by construction a

multiscale problem should have slow variations in all fields along the continuum boundary so

that full atomistic resolution is not needed, we will introduce a coarse-graining approximation

in Chapter 5 that will reduce the number of degrees of freedom and, hence, the computational

cost associated with the above inversion.

For Neumann boundary conditions where the surface forces fs (ξ
′
) are specified on all atoms

Λ− and nonzero body forces fb are given onΛi n atoms, we need to solve the system of linear
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equations∑
ξ
′∈Λ−

(
δ
ξ,ξ

′ I −F (ξ,ξ
′
)
)

u(ξ
′
) = ∑

ξ
′∈Λ−

G(ξ−ξ′
) fs (ξ

′
)+ ∑

ξ
′∈Λi n

G(ξ−ξ′
) fb(ξ

′
),∀ξ ∈Λ−, (4.13)

for unknown boundary displacements u(ξ
′
) for which the numerical inversion of the dense

matrix [δ
ξ,ξ

′ I −F (ξ,ξ
′
)] of size d N−×d N− is required.

For mixed boundary value problems, each atom degree of freedom on the outer surface

is specified as a boundary displacement component ui (ξ
′
) or a surface force component

fs i (ξ
′
) for all i ∈ 1. . .d for all the atoms ξ

′
in the outer boundary. The LGFM can be solved by

treating Equation (4.12) for the outer surface atoms where displacements are prescribed and

Equation (4.13) for the outer surface atoms where surface forces are prescribed, as separate

equations, and solving these equations iteratively (Katsikadelis (2016, Ch. 3)) to find the

unknown boundary displacement and the surface forces in the outer boundary domain.

In this work, we examine Dirichlet problems that are typical of multiscale problems, but the

methodologies are fully adaptable to other boundary conditions.

4.3 Effect of numerical LGF

In Section 2.3.3, we have shown that the LGF-CGF transition length scale dc give rise to

additional spurious forces near ∥ξ∥ ∼ dc , which can has a significant effect on the LGF based

boundary value problems. Here, we study the effect of the nLGF on bounded LGFM problems

and show that there is a region (a "boundary layer") of size ≈ dc very near the outer boundary

that has a high error. Fortunately, as will be shown, on the (large) scale of the outer domain,

this (atomistic scale) boundary layer can be controlled to avoid spurious effects in the solution

of relevant problems.

The nLGF Gnl g f (ξ;dc ) with parameter dc is calculated using an atomistic simulation as dis-

cussed in Section 2.3.2 and use Equation (2.35) to define nLGF. The nLGF for the discrete lattice

sites is stored in an efficient data structure before any LGFM simulation so that the nLGF can

be evaluated in O (1) computational time during the simulations (Gupta et al., 2016). Increas-

ing dc lessens the difference between the nLGF and the true LGF but at the cost of increased

storage/memory. The nLGF and its embedded LGF-CGF transition are thus unavoidable

consequences of a practical LGFM.

To demonstrate the effects of the nLGF and associated LGF-CGF transition in bounded LGFM

problems, we use a 2D hexagonal lattice subjected to Dirichlet boundary value problems. The

domainΛc has a hexagonal shape, as shown in Figure 4.1(b), with edge length L = 100 a. We

choose the Poisson ratio ν= 0.25, and all results are independent of the choice of the shear
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modulus. Atoms interact linearly with their first neighbors (rc = a), defining the domainsΛ−

andΛ+; note that Figure 4.1 (a) is a more general case shown with rc = 2 a. The corresponding

force constant tensor is obtained using Appendix A.4.

Here, we consider nearest-neighbor linear interactions in a hexagonal lattice, which appears to

be a special case. However, such a model can also be used with any real atomistic system with

any lattice structure because the method only requires the correct lattice structure (hexagonal

in this case) and material elastic constants so that the far-field Green’s functions will be

the same independent of any non-locality of interactions among the atoms. Ultimately, in

Chapter 7, when we couple the LGFM domain to an interior atomistic domain to solve a fully

multiscale problem, we can use the nearest-neighbor Green’s functions even in the pad region

adjacent to the atomistic domain, since this is operationally the same as using the typical

elastic FEM-based A/C coupling scheme in which an atomistic (non-local) domain is coupled

with an FEM (local) domain (Curtin and Miller, 2003).

The first boundary value problem we consider is a rigid shift in the 1-direction with u = [a,0,0]

where we apply a displacement of magnitude a in the 1-direction to all atoms in Λ−. The

exact solution to this problem is a rigid shift of all atoms in Λc by a in the 1-direction. The

corresponding exact strain field is thus zero everywhere.

We use the nLGF with different values of the transition distance dc = 10 a,20 a, and 30 a in

Equation (2.35). The surface forces f s on the atoms inΛ− are obtained using Equation (4.12)

which is then used to obtain the displacements of all interior atomsΛc using Equation (4.11).

Subsequently, these displacements are used to calculate the strain components for any point

x by triangulating the 2D hexagonal and obtaining the strain field within each element by

interpolating the values of the displacements at the nodes (atoms) of the element.

Figure 4.2(a,b,c) shows the absolute values of the strain error for ϵ11 in the interior domain for

dc = 10 a,20 a, and 30 a. Similarly, Figure 4.2(d,e) shows the errors for ϵ22 and ϵ12 at dc = 20 a.

Due to the LGF-CGF transition at dc , errors are created in the LGFM solution. The errors

are particularly high (∼ 10−3) (Figure 4.2(a)) within distance dc from the boundary (shown

as the white dashed lines). However, away from this boundary region, errors quickly drop to

machine tolerance (∼ 10−8) with increasing distance from the outer boundary. Thus, the use of

dc creates a spurious boundary layer where the errors in strain are high. The magnitude of the

error in the boundary layer decreases with increasing dc , reducing to 10−4 for dc = 30 a. The

same qualitative behavior is seen for strain errors for ϵ22 and ϵ12 in Figure 4.2(d,e) for dc = 20 a,

but the boundary layer is more dominant in the ϵ11 case because the domain is displaced in

the 1-direction. Fortunately, the width of the boundary layer depends on dc , which will always

remain at the nanoscale as in the cases shown here, and is independent of the size of the

system L. Hence, in multiscale problems intended for very large sizes L >>> a the boundary

layer is a tiny region adjacent to the actual boundary, and the effects of the boundary layer can
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be mitigated.

(a) |ϵ11|,dc = 10 a (b) |ϵ11|,dc = 20 a (c) |ϵ11|,dc = 30 a

(d) |ϵ22|,dc = 20 a (e) |ϵ12|,dc = 20 a

Figure 4.2: (a,b,c) Absolute error in the strain component ϵ11 in the LGFM solution for rigid-
body displacement [a,0,0] of a 2D hexagonal lattice domain of size L = 100 a, for varying
distances dc = 10 a,20 a, and 30 a at which the LGF-CGF transition is imposed. (d,e) Absolute
error in the strain components ϵ22 and ϵ12 for dc = 20 a. White dashed lines indicate the
distance dc from the outer boundary.

The second example problem is pure radial expansion. Atoms in Λ− are displaced radially

away from the origin (center of the domain, shown as O in Figure 4.1(b)), u(ξ) = αξ with

magnitude varying linearly with the distance of the atom from the origin with scaling factor α.

The exact solution to this problem is

u(ξ) =αξ, ∀ξ ∈Λc , (4.14)

and the corresponding exact strain components inside the domain are

ϵexact (x) =

α 0 0

0 α 0

0 0 α

 . (4.15)

Figure 4.3 shows the relative values of the strain error of ϵ11 throughout the domain for
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dc = 10 a,20 a and 30 a, as well as the relative error for ϵ22 and the absolute strain for ϵ12,

both for dc = 20 a. There is again a boundary layer having high errors within dc of the outer

boundary (black dashed lines at dc from the boundary). Here, the magnitude of the strain

errors is much larger, reaching ∼ 10−1 at a distance dc from the outer boundary. In the interior

just inside dc , the strain errors decrease by one or two orders of magnitude and then are typical

10−5 in the middle of the domain. Increasing dc reduces the maximum errors in the boundary

layer, but also widens the boundary layer. The exact solution has no shear strain, but the

numerical method creates very small non-zero shear strains in the interior domain.

(a) |ϵ11 −α|/α,dc = 10 a (b) |ϵ11 −α|/α,dc = 20 a (c) |ϵ11 −α|/α,dc = 30 a

(d) |ϵ22 −α|/α,dc = 20 a (e) |ϵ12|/α,dc = 20 a

Figure 4.3: Relative error in the strain component ϵ11 of the LGFM solution for radial expansion
of a 2D hexagonal lattice domain of size L = 100 a, for varying dc = 10 a,20 a and 30 a. (d,e)
Relative error in ϵ22 and absolute error in the strain components ϵ12 for dc = 20 a. Black dashed
lines indicate the distance dc from the outer boundary.

From the two simple examples above, we conclude that the use of the nLGF creates a spurious

layer of width ∼ dc within which the strain errors can be very high, but otherwise the errors

in the interior of the domain are small and independent of dc . In real multiscale problems,

the domain sizes are expected to be very large, L ∼ 10000 a corresponding to a few microns or

more. Thus, a spurious boundary layer of width dc for typical dc < 50a (limited by storage)

exists only very close to the outer boundary, and the solution in the remainder of the very

large domain should be quite accurate. Nonetheless, any defects (dislocations, vacancies, etc.)

should always be excluded from this boundary layer because they will not be treated accurately,
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independent of the resolution of the outer boundary (we are using full atomistic resolution

in these example problems). However, rules can be implemented to prevent defects from

entering this boundary layer region; i.e., the large problem can be treated as if the boundary

for defects is at ∼ dc from the boundary.

4.4 Summary

In this chapter, we derive the LGFM formulation for the continuum domain in LGF-based

A/C boundary value problems in which the nonlinear atomistic region is replaced with the

linearized atomistic region. We implemented the LGFM for bounded domain on 2D test

problems and observed the effect of LGF/CGF transition length scale dc on the solution. We

concluded that the dc length scale results in a high error region near the outer surface of size

dc , which we call the "boundary layer" in this work. We will again observe the similar boundary

layer near the outer surface when we couple the FBCM and LGFM to solve full A/C boundary

value problems in the bounded domain problems in Chapter 7.

The boundary layer in the LGFM does not create practical problems for most problems of

interest, as explained below. A material boundary is also a type of defect. Therefore, the

treatment of defects like dislocations near the outer boundaries of the domain would also

invalidate strict assumptions about when the mesoscale methods should be used to model

such inherently atomic-scale defect-defect interactions. Thus, for example, the interactions of

a dislocation with the outer boundary should be treated atomistically or with atomistically

refined meshes in the discrete dislocation-based continuum mesoscale method (Crone et al.,

2014) if the distance between the dislocation and the outer boundary is approaching atomistic

scales. In either case, the advantage of the multiscale method is lost. Thus, defects should

typically be kept away from the boundaries in all cases, regardless of the method.

Further, we highlight that the outer surface may contain millions of atoms in realistic A/C

problems; therefore, it requires the development of an approximate coarsened LGFM scheme

to effectively reduces the number of atoms on the outer surface with the controllable error

in the solution inside the domain. We will discuss such a coarsened LGFM formulation in

Chapter 5.
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5.1 Introduction

In Chapter 4, the application of the LGFM to bounded problems is envisioned conceptually.

However, an atomistically-discretized outer surface could have billions of degrees of freedom

for practical problems of interest. Therefore, the outer surface of a bounded LGFM domain

must be coarse-grained to reduce the degrees of freedom. In this chapter, we thus introduce

a coarse-graining method that interpolates the boundary degrees of freedom on the outer

surface, significantly reducing the number of degrees of freedom and making the LGFM

computationally feasible.

The coarse-grained scheme, which has several subtle aspects, is demonstrated using simple

and application-oriented boundary value problems on a 3D FCC crystal. We show essentially

no loss of accuracy relative to full solutions until the coarsening scale h is an appreciable

fraction of the domain size L. Section 5.2 explains the formulation for the coarse-grained

LGFM formulation, including the necessary boundary elements. In Section 5.3, we discuss the

full implementation of 2D and 3D coarsened LGFM formulations. We will mainly focus on

the issues related to coarsening in a 3D FCC domain. In Section 5.4, we discuss our results

and validate the methodology using simple boundary value problems where the bounded

domain is subjected to a rigid shift and radial expansion test cases. In Section 5.5, we apply

the coarsened LGFM formulation to solve for the strain fields of a circular dislocation loop

embedded in an FCC domain with zero displacements on the boundary for both small systems

where exact solutions are possible and very large systems where coarse-graining is essential.
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5.2 Coarsened LGFM formulation

The governing equations for the bounded LGFM (Equation (4.11)) require atomic-scale dis-

cretization of the entire outer boundaryΛ−. Note, however, that Equation 4.11 does not scale

with number of atoms Λ+ since these atoms are only required to compute F (ξ,ξ
′
) in Equa-

tion (4.11) for any specific atom ξ
′

inΛ−. For 3D applications, there can be millions of degrees

of freedom (d N−) on the outer boundary, making the bounded LGFM computationally in-

tractable. However, by construction, most multiscale boundary value problems have boundary

conditions that vary very slowly over the atomic scale. Therefore, an atomistically-resolved

outer boundary is not necessary and can be coarse-grained.

The boundary displacements and surface forces for any atom ξ in Λ− can be interpolated

using the values on a reduced set of N h atoms α using local shape functions φα. Denoting

this set of N h atoms asΛh , we interpolate

u(ξ) = ∑
α∈Λh

φα(ξ)u(α), ∀ξ ∈Λ−, (5.1)

fs (ξ) = ∑
α∈Λh

φα(ξ) fs (α), ∀ξ ∈Λ−, (5.2)

where the local shape functions φα are non-overlapping with compact support as shown in

Fig 5.1, and thus satisfying

φα(α
′
) =

1 ifα=α′
,

0 otherwise,
(5.3)

for all atomsα,α
′

in the domainΛh .

Figure 5.1: Schematic of the 1D local shape functionφα for an atomα in theΛh domain. Open
green circles: atoms in domainΛα for this atomα.
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5.2 Coarsened LGFM formulation

Substituting Equation (5.1) and Equation (5.2) in Equation (4.11), we get

u(ξ) = ∑
ξ
′∈Λ−

∑
α∈Λh

G(ξ−ξ′
)φα(ξ

′
) fs (α)+ ∑

ξ
′∈Λ−

∑
α∈Λh

F (ξ,ξ
′
)φα(ξ

′
)u(α)

+ ∑
ξ
′∈Λi n

G(ξ−ξ′
) fb(ξ

′
), (5.4)

for any atom ξ in the domainΛc . With some rearrangements, we can rewrite this as

u(ξ) = ∑
α∈Λh

G̃(ξ,α) fs (α)+ ∑
α∈Λh

F̃ (ξ,α)u(α)+ ∑
ξ
′∈Λi n

G(ξ−ξ′
) fb(ξ

′
), (5.5)

where the coarse-grained G̃ and F̃ are defined as

G̃(ξ,α) = ∑
ξ
′∈Λα

G(ξ−ξ′
)φα(ξ

′
) (5.6)

and

F̃ (ξ,α) = ∑
ξ
′∈Λα

F (ξ,ξ
′
)φα(ξ

′
). (5.7)

Once the coarse-grained F̃ (ξ,α) and G̃(ξ,α) are computed initially, and the surface forces and

boundary displacements of atoms inΛh are computed, the computational cost to obtain u(ξ)

for any atom at ξ inΛc scales as O (d N h). This is a considerable reduction relative to the cost

O (d N−) for the atomistically-resolved solution, assuming the number of atoms inΛi n with

non-zero fb are significantly smaller (and for most problems, there will be no interior body

forces).

To compute the displacements in Λc when the Dirichlet boundary conditions are applied

on the outer boundary Λ−, we first solve for the surface forces fs (α) for all atoms α in Λh .

Restricting Equation (5.5) toΛh , the displacements u(α) are the solution of

u(α) = ∑
α

′∈Λh

G̃(α,α
′
) fs (α

′
)+ ∑

α
′∈Λh

F̃ (α,α
′
)u(α

′
)+ ∑

ξ
′∈Λi n

G(α−ξ′
) fb(ξ

′
), ∀α ∈Λh , (5.8)

59



Chapter 5. Coarsening of the bounded LGFM

which can be rewritten as a system of linear equations

∑
α

′∈Λh

G̃(α,α
′
) fs (α

′
) = u(α)− ∑

α
′∈Λh

F̃ (α,α
′
)u(α

′
)− ∑

ξ
′∈Λi n

G(α−ξ′
) fb(ξ

′
), ∀α ∈Λh . (5.9)

The computation of the surface forces fs requires numerical inversion of the fully dense

[G̃(α,α
′
)] matrix of size d N h ×d N h which requires O ((d N h)

3
) operations, as compared to

O ((d N−)3) operations for the atomistically resolved LGFM solution. Thus, if N h is much

smaller than N−, the computational cost is greatly reduced. There is then some error in the

coarse-grained solution due to the interpolation of the boundary displacements, which we

will analyze in Section 5.5.

5.3 Implementation

The coarse-graining formulation shown in Section 5.2 is deceptively simple. The LGFM

formulation requires attention to several details that do not arise in standard finite element or

boundary element formulations. Here, we present the implementation details for both a 2D

hexagonal lattice and a 3D face-centered cubic lattice.

5.3.1 1D Linear Element for two-dimensional problems

The coarse-graining of the outer boundaryΛ− of the bounded 2D hexagonal domain is accom-

plished using linear 1D elements. We introduce the coarse-grain length scale h, which is the

length of the longest 1D element on the outer boundary. Figure 5.2(a) shows a bounded 2D

hexagonal domain of size L = 10 a and h = 4 a where all atoms in the outer boundaryΛ− are

shown as blue circles, and the coarse-grained subsetΛh are indicated by red squares. In con-

tinuum techniques like FEM or BEM, the sharp corners in the domain can sometimes require

mesh refinement (Gerstle et al., 1987). In the coarsening of bounded LGFM problems, the

sharp corners always need special treatment because corner atoms inΛ− have a different set

ofΛ+ atoms than atoms along the edges. Specifically, as shown in Figure 5.2(a), a corner atom

in Λ− (blue) has three neighbors in the Λ+ domain (corner type environment). In contrast,

any atom other than a corner atom inΛ− has two atoms associated with theΛ+ domain (edge

type environment).

The partitioning ofΛ− is accomplished with two types of 1D elements, as shown in an exploded

view in Figure 5.2(a, b): (i) 12 corner (type C ) elements in which vertices of the element

connect a corner blue atom to an immediate neighbor edge blue atom, and (ii) 12 edge (type
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E ) elements that contain a number of edge blue atoms lying along the edge of the hexagonal

domain which need interpolation. This partitioning has an atomistic resolution on the corners

(type C element) - no interpolation of boundary displacements/surface forces for any blue

atom is required. On the other hand, in the E type 1D element, the vertices are situated on

atoms with the edge-typeΛ+ environment. Therefore, no interpolation error occurs if surface

forces/boundary displacements vary linearly along the boundary and linear shape functions

are used.

Figure 5.2: (a) A partitioned outer boundary (Λ−) of a bounded 2D hexagonal domain with
size L = 10 a and coarse-grain length scale h = 4 a. The outer boundary is partitioned into
24 linear 1D elements (12 type C , 12 type E ). Blue circles are associated withΛ−, red circles
withΛ+, and red squares withΛh . The top left part shows two types of blue atoms: a corner
atom with 3 red atoms inΛ+ and an edge atom with 2 red atoms inΛ+.(b) 1D elements in the
dotted region of Figure (a) are shown in an exploded view, clearly depicting the atoms (blue)
associated with each 1D element. (c) A general 1D linear element. The black arrow shows the
local coordinate system, and local positionsα0,α1 inΛh domain are vertices of the element
that are used to define the 1D element in Equation (5.10).

An essential feature of this implementation of LGFM coarse-graining is that, as shown in

61



Chapter 5. Coarsening of the bounded LGFM

Figure 5.2(b), each actual atom (Λ−) is allocated to a single unique element, while the coarse-

grained sitesΛh are each associated with two elements. This is important during the construc-

tion of G̃ and F̃ because if real atoms are shared among elements (blue atoms lying on the

boundary of the elements), then there can be over-counting in the shape function matrix [φ]

resulting in incorrect summations in Equations 5.6 and 5.7.

The two elements type C and E are topologically identical, and so both can be represented

by a single linear parametric 1D element as shown in (Figure 5.2(c)) with verticesα0,α1. Any

atom at ξ contained in this element is interpolated as

ξ=α0 + t1(ξ) (α1 −α0), (5.10)

where t1(ξ) ∈ [0,1[ is a local coordinate of the atom ξ in 1D element along the local coordinate

vectorα1 −α0 as shown in Figure 5.2(c). Note that t1 ̸= 1 ensures that when the elements are

connected to represent the discrete outer boundary, the blue atom at theα1 vertex belongs

to the neighboring element. Thus, each atom Λ− is contained within one and only one 1D

element.

We can rearrange Equation (5.10) to express ξ in terms of local shape functions φα0 ,φα1 as

ξ=φα0 (ξ)α0 +φα1 (ξ)α1, (5.11)

where

φα0 (ξ) = 1− t1(ξ),

φα1 (ξ) = t1(ξ), (5.12)

Similarly, for any atom ξ in Λ−, the surface forces and boundary displacements in Equa-

tion (5.1), (5.2) are reduced to

fs (ξ) =φα0 (ξ) fs (α0)+φα1 (ξ) fs (α1),

u(ξ) =φα0 (ξ)u(α0)+φα1 (ξ)u(α1). (5.13)

Thus, the element defined above is a parametric linear element, with the boundary atom

displacements, surface forces, and coordinates all interpolated using the same local shape

functions.
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5.3.2 2D Linear Elements for three-dimensional problems

We now demonstrate the use of 2D linear elements for partitioning the outer boundary of a

3D FCC box for three-dimensional problems. In most bounded LGFM problems of practical

importance, a complex outer boundary geometry is not needed. We thus consider the FCC

lattice in a cuboidal domain aligned along the cubic [100], [010] and [001] crystal axes, labeled

as the 1, 2, and 3, of lengths L1, L2, and L3, respectively. The outer crystal surfaces are then

(100),(1̄00), (010), (01̄0), (001), and (001̄) normal to the +1,−1,+2,−2,+3, and −3 coordinate

axes, respectively. This geometry can be used for a wide variety of problems. For the same

reasons mentioned in Section 4.3 for 2D hexagonal domains, we want to ultimately use the

LGFM for multiscale A/C coupling problems where an atomistic (non-local) model is coupled

with a continuum/LGFM (local) model. So we again assume nearest-neighbor interactions in

the continuum region of the FCC crystal.

As in the 2D case, the edges and corners of the FCC domain must be treated, especially when

partitioning the surface, because the different types of Λ− atoms have different types of Λ+

environments. Specifically, there are three types ofΛ− atoms (blue) as shown in Figure 5.3 in a

3D FCC box: (i) corner atoms (blue in Figure 5.3 (a)) that have nine nearest-neighbor atoms

(red) inΛ+, (ii) edge atoms (Figure 5.3 (b)) that have seven nearest-neighbor atoms inΛ+, and

(iii) face atoms (Figure 5.3 (c)) that have four nearest-neighbor inΛ+.

(a) corner atom (b) edge atom (c) face atom

Figure 5.3: The three types of outer boundary atoms inΛ− (blue) and their surroundingΛ+

atom environments (red) for a cuboidal FCC domain. (a) corner case: 9 Λ+ atoms; (b) edge
case: 7Λ+ atoms; (c) face case: 4Λ+ atoms.

In the 3D FCC box geometry and for nearest-neighbor interactions, all FCC atoms on the outer

boundary lie in the same plane of the outer boundary and constitute theΛ− atoms. All atoms

inside the FCC box constitute the remaining atomsΛi n . The atoms in domainsΛi n ,Λ−, and

Λ+ are obtained as described in A.6 for the nearest-neighbor interactions. All theΛ− atoms on

the outer boundary of the 3D FCC box exist on one of the six side faces of the FCC box.
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Figure 5.4: (a) An 3D FCC cuboidal domain of size L1 = 22 a,L2 = 17 a,L3 = 12 a in the
[100], [010], [001] directions, respectively. Partitioned side panels with coarse-grain length
h = 6 a are indicated in (b) 4 − 3 − 7 − 8 , (c) 1 − 2 − 3 − 4 , and (d) 2 − 6 − 7 − 3 . (e)
Magnified view near the 7 corner of panel 2 − 6 − 7 − 3 showing associated 2D elements
(enclosed within the red dotted lines) in a separated way and blueΛ− atoms contained in each
element and showing the three types of 2D elements (C corner element, E edge element, F
face element). (f ) Side panels are partitioned into 2D parallelogram-shaped linear elements
with vertices atα0,α1,α2,α3 in the domainΛh (red squares). The t1, t2 are the components of
the local coordinates (black arrows) with origin atα0 for atom ξ (blue circles) in the domain
Λ−.

64



5.3 Implementation

As for the 1D elements, we introduce a coarse-grain length scale h that is the size of the largest

2D element on the outer boundary. The FCC surface is assembled from the six side faces, and

each face is partitioned into 2D elements. Figure 5.4 shows three of the six partitioned FCC

side faces assembled to create an FCC box of dimensions L1 = 22 a,L2 = 17 a,L3 = 12 a and

coarse-grain length scale h = 6 a.

This type of assembly ensures that no atoms in the domain Λ− (blue) are duplicated in the

two side panels, and thus no duplication of blue atoms occurs in two different elements. For

example, the blue atoms on the edge 3 − 4 of the FCC box are contained in 2D elements

associated with the side panel 3 − 4 − 8 − 7 but not in the side panel 1 − 2 − 3 − 4 .

Similarly, the blue atom at the corner 3 is contained in a 2D element of the side panel

1 − 2 − 3 − 4 . Such constraints are ensured by carefully choosing the directions of the

local coordinates of each side panel.

Figure 5.4(e) shows a magnified view of the individual 2D elements enclosed within the red

dotted lines near the corner, denoted as 7 on the face defined by corners 2 − 6 − 7 − 3 .

The individual elements are shown as separated from each other. Here also, the blue atoms on

the border of two elements exist only on one of the 2D elements, which is clearly seen while

observing two adjacent elements closely. Also, the black arrows on the top-right vertex of each

element show the local coordinate axis of the element, and red squares are the vertices of the

2D elements ofΛh . The partitioning of this face contains three types of 2D elements: 4 type C

corner elements, 12 type E edge elements and 8 type F face elements.

We can use a generic 2D parallelogram-shaped element to obtain the local shape functions

for the different 2D elements. Figure 5.4(f) shows 2D parallelogram-shaped linear parametric

element with vertices at α0,α1,α2 and α3. In this element, the pairs of vectors (α1 −α0,

α3 −α2) and (α3 −α1,α2 −α0) are parallel and of equal length. Any atom ξ contained in one

of these elements can be represented as

ξ=α0 + t1(ξ) (α1 −α0)+ t2(ξ) (α2 −α0), (5.14)

where t1, t2 ∈ [0,1[. Theα1 −α0,α2 −α0 represent the local coordinate system with origin at

α0. The t1(ξ) and t2(ξ) are components of ξ along the local coordinate vectors α1 −α0 and,

α2−α0 respectively, as shown in Figure 5.4. Also, as in the 1D linear element, t1, t2 ̸= 1 ensures

that the atoms along the element boundaries connectingα3 andα1, andα3 andα2, are not

associated with this element but belong to an adjacent element (Figure 5.4(e)). The left and

bottom borders (red dotted line) of the element do not contain any blue atoms, while the right

and top borders of the element contain the border blue atoms. Thus, each atom inΛ− is again

represented within only one element.
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Rearranging Equation (5.14), we rewrite ξ in terms of local shape functions as

ξ=φα0 (ξ)α0 +φα1 (ξ)α1 +φα2 (ξ)α2 +φα3 (ξ)α3, (5.15)

where

φα0 (ξ) = (1− t1(ξ))(1− t2(ξ)),

φα1 (ξ) = t1(ξ)(1− t2(ξ)),

φα2 (ξ) = (1− t1(ξ))t2(ξ),

φα3 (ξ) = t1(ξ) t2(ξ), (5.16)

are the local shape functions for α0,α1,α2, and α3 respectively. Similarly, for any atom ξ

in Λ−, the surface forces/boundary displacements can be interpolated by reducing equa-

tions (5.1), (5.2) to

fs (ξ) =φα0 (ξ) fs (α0)+φα1 (ξ) fs (α1)+φα2 (ξ) fs (α2)+φα3 (ξ) fs (α3),

u(ξ) =φα0 (ξ)u(α0)+φα1 (ξ)u(α1)+φα2 (ξ)u(α2)+φα3 (ξ)u(α3). (5.17)

The various kinds of 2D linear elements of type C ,E , and F shown in Figure 5.4(e) are topolog-

ically identical, and local shape functions associated with them can be obtained using generic

parallelogram shape 2D element. For each such 2D element, the local shape functions associ-

ated with itsΛh points need to be computed using Equation (5.16). This requires computation

of local coordinate components t1(ξ), t2(ξ) by inverting Equation (5.14).

Further, the corners (type C ) and some edge (type E ) 2D linear elements do not satisfy the

parallelogram-shaped 2D elements, as shown in Figure 5.4(e). However, the type C elements

do not contain any (blue) atom on which the interpolation of the surface forces/boundary

displacements is required. The only (blue) atom contained in the corner 2D element exists on

one of the ends (red square) of the element. Similarly, the type E elements do have the (blue)

atoms on which interpolation of surface forces/boundary displacements are required, but

these atoms only exist in one of the local coordinate axis (black arrows) of the element. Thus,

the edge elements (type E ) are effectively the 1D linear elements, and only one of the local

coordinate components t1 or t2 is meaningful in this case. We use the least-square solution

technique to invert Equation (5.14) and get local coordinate components t1(ξ), t2(ξ) for the

given atom ξ in the 2D element. This easily resolves the issue of a 2D element being treated as

an effective 1D element, and thus the generic parallelogram-shaped 2D element can be used

for any type C ,E and F of 2D linear elements.
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5.4 Validation of Implementation

To demonstrate that the formulation and implementation of the coarse-grained LGFM method-

ology above have been achieved for full 3D problems, we present results for the two basic

test cases studied in Section 4.3: rigid body motion that serves as a patch test and uniform

radial expansion. We use a cubic 3D FCC domain (dimensions L1 = L2 = L3 = L), and there are

then two numerical length scales in the coarse-grained problem: the 2D element coarse-grain

size h on the faces of the domain and the LGF-to-CGF transition distance dc . We choose an

isotropic material with Poisson’s ratio ν = 0.3. The reported results are independent of the

shear modulus of the material. The corresponding force constant tensor is calculated using

Appendix A.2.

For both the rigid shift and radial expansion (Equation (4.14)) problems, the displacement

fields on the boundary (Λ−) can be expressed as linear functions along the outer boundary.

We thus expect results for the coarse-grained LGFM formulation with linear 2D elements to be

independent of h. We will solve for the displacement field and then compute the strains in the

domain. For the rigid shift, the exact strains are zero throughout the domain. For the radial

expansion, the exact solution is ϵ11 = ϵ22 = ϵ33 =α, and ϵ12 = ϵ13 = ϵ23 = 0.

We choose an FCC box of size L = 100 a that enables us to study the effects of h and dc in

the entire interior region of the FCC box within available computational resources. For the

rigid shift case, Figure 5.5 shows the absolute error in various strain components versus the

minimum distance of r (x) of the point x to the surface for every point in the domain defined as

r (x) = min
ξ∈Λ− ∥x −ξ∥. (5.18)

This use of r as the independent variable enables the largest strain errors in the entire interior

domain to be shown clearly within a 2D graph. The graphical resolution of every point leads

to overlap and an apparent continuum of results, but the main features remain the maximal

values.

Results are shown for Figure (a) h = 5 a (N h = 2906), Figure (b) 20 a (N h = 386) and Figure (c)

50 a (N h = 98) in a domain of size L = 100 a (N− = 120002, with a total of 4 million atoms in

the 3D domain), and using dc = 20 a. The surface forces generated in the rigid shift case in the

exact LGFM formulation should be zero, but this is not true due to the LGF-CGF transition.

The non-zero surface forces generated on the boundary atoms due to the rigid shift in the

1-direction produce spurious forces at a distance dc from the boundary, predominately in the

1-direction. These spurious forces interact with each other, and the non-zero surface reaction

forces generate high error within dc of the boundary. Beyond dc , the errors are minimal, with

the largest errors smaller than 10−6.
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(a) h = 5 a

(b) h = 20 a

(c) h = 50 a

Figure 5.5: Absolute error in various strain components in the 3D FCC domain of size L = 100 a
versus nearest distance r from the outer boundary, for the rigid shift test for different h when
the coarse-grained LGFM solution (5.4) is obtained using the nLGF (2.35) with dc = 20 a. The
vertical black line indicates the distance dc from the outer boundary.

Results are qualitatively similar for all strain components, but the errors produced within dc

from the boundary are higher for the strain component ϵ11 than the other strain components.

Most importantly, the errors are largely independent of the coarse-graining scale h. There is a

slight increase in error for the largest h = 50 a, which is half the domain size. This is due to

interpolation of the coarsened G̃ , F̃ between the LGF and CGF regimes when h is greater than

dc . These errors are comparable to the other errors and are negligible.

For the radial expansion around the center of the domain, Figure 5.6 shows the relative error

in the strain components ϵ11 and ϵ12 for all points inside the domain for Figure (a) h = 5 a,

Figure (b) 20 a, and Figure (c) 50 a cases with nLGF calculated using dc = 20 a. As for the rigid

shift case, the results are qualitatively independent of the coarse-grain length scale h. The

peak errors near the boundary are ∼ 10−2 in ϵ11, relative to the applied strain of unity, and

are ∼ 10−3 in ϵ12. The magnitude of the peak error is the same for all h and higher than in
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the rigid shift case, similar to results found earlier in the 2D hexagonal domain problems (see

Figures 4.2 and 4.3).

(a) h = 5 a (b) h = 20 a (c) h = 50 a

Figure 5.6: Relative error in various strain components in the 3D FCC domain of size L = 100 a
versus nearest distance r from the outer boundary, for the rigid shift test for different h
when the coarse-grained LGFM solution (Equation (5.4)) is obtained using the nLGF (Equa-
tion (2.35)) with dc = 20 a. The vertical black line indicates the distance dc from the outer
boundary.

Beyond dc from the boundary, the errors decrease to ∼ 10−4 for ϵ11 and ∼ 10−5 for ϵ12. In the

radial expansion case, the direction of the generated surface forces is in the radial direction

from the center of the FCC box. Hence, the spurious forces produced by the LGF-CGF transition

near dc from the boundary, and their interactions, produce errors predominantly in the

hydrostatic strain components.

We now, more closely, examine the interplay between the LGF-CGF transition distance dc

and the coarse-graining scale h. Since ϵ11 shows the most prominent errors for both the rigid

shift and radial expansion cases, we only examine the absolute errors and the relative error of

this strain component. Figure 5.7 shows the absolute error in the rigid shift case (Figure (a))

and the relative error in the radial expansion case (Figure (b)) for a domain size L = 120 a

(N− = 172,802), with h = 50 a (N h = 218), for dc = 10 a,20 a and 30 a.
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dc = 10 a dc = 20 a dc = 30 a

(a) rigid shift case

(b) radial expansion case

Figure 5.7: Variation in ϵ11 strain component for (a) the absolute error for the rigid shift and
(b) the relative error in the radial expansion case, versus distance r from the outer boundary,
in a 3D FCC domain of size L = 120 a for varying dc = 10 a,20 a and 30 a at fixed h = 50 a. Black
vertical lines show the distance dc from the outer boundary.

Increasing dc in both cases reduces the peak error near the boundary. The decrease is ap-

proximately half an order of magnitude for each incremental increase in dc . Away from the

boundary layer, however, the decrease of the errors is smaller, and, furthermore, little differ-

ence is seen between dc = 20 a and 30 a. The errors near the center of the domain remain

small, 10−7 −10−8 for the rigid shift and less than 10−4 for the radial expansion. The errors

associated with dc are thus weakly coupled to the coarse-graining. The choice of dc should

thus be dictated by the desired control of the range and magnitude of the strain errors in the

boundary layer, and the coarse-graining scale h can be chosen largely independently.

These simple test cases demonstrate that the magnitude of the strain errors is essentially

independent of h. The main error in coarse-graining arises when h is larger than dc , so

the LGF-CGF transition is embedded into the interpolation. These results also validate our

implementation and treatment of the corners, edges, and faces that have to vary Λ+-atom

environments in the coarsened LGFM formulation, as discussed in Section 5.3.2.
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5.5 Applications

5.5.1 Dislocation loop (small size)

We now apply the coarse-grained LGFM formulation to a near-practical problem in the field of

computational material science. Specifically, we use the coarse-grained LGFM formulation to

compute the corrective fields caused by a planar dislocation loop contained within a domain

having zero displacements u(ξ) = 0 on the outer boundary. The relevant boundary conditions

vary substantially over the outer boundary, and the resulting strains inside the domain are

complex. We use a small domain size so that exact LGFM results can be obtained, enabling

assessment of the accuracy of the coarse-graining method.

Figure 5.8: (a) Schematic of a circular dislocation loop of radius R in an FCC cubic domain
of size L with zero displacements (u(ξ) = 0) applied on the boundary. The superposition
principle is used to solve the boundary value problem, decomposing the problem into the sum
of the fields due to a (b) circular dislocation loop in an infinite domain ũ and (c) a "corrective"
problem with no dislocation loop but corrected displacements field (û(ξ) =−ũ(ξ)) applied on
the boundary.

The full boundary value problem is solved using the superposition principle (Section |1.3). The

full problem is decomposed into two sub-problems (Giessen and Needleman, 1995) as shown

in Figure 5.8. In the first sub-problem, the displacement field ũ(ξ) of a planar dislocation

circular loop in an infinite isotropic elastic material is computed analytically (Khraishi et al.,

2000). In the second "corrective" sub-problem, the negative of the displacement field in the

first sub-problem is applied on the outer boundary of the box, û(ξ) =−ũ(ξ). The fields in the

interior of the domain of the second sub-problem are then computed using the coarsened

LGFM formulation. The total solution of the interior fields is then the superposition of the

interior fields of the two sub-problems, which properly satisfies equilibrium and the true full

boundary conditions.

We study a circular dislocation loop lying in the 1−2 plane, centered in a cubic domain and
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having Burgers vector [a,0,0]. For the FCC domain aligned with the cubic axes, this is not a

physical dislocation for an FCC material, but it remains a useful and otherwise realistic test

problem. We use a domain of size L1 = L2 = L3 = L = 40 a (N− = 19,202 and total 256,000

atoms in the entire domain) so that the exact solution can be computed. The loop radius is

set to R = 5 a so that the loop diameter is 1/4 of the domain size. For the nLGF, we use a large

value of dc = 100 a >p
3L so that there is no boundary layer LGF-CGF transition inside the

domain. We then examine the coarse-grain scales h = a (N h = 9,602) and 5 a (N h = 602) and

compare the computed corrective strain fields to the exact reference LGFM solution ϵr e f (also

using dc = 100 a, and hence not affecting the solution). Note that the exact LGFM solution

with nLGF dc = 100 a also carries an intrinsic error (10−7) that is orders of magnitude less than

the errors produced due to the coarsening length scale h.

Figure 5.9(a) shows contour plots for the applied displacement û2(ξ) in the 2-direction on

the +1 face boundary (see Figure 5.8(c)). The interpolated displacement is calculated using

Equation (5.1) for h = a and 5 a, and the differences between the exact and interpolated fields

are also shown in Figure 5.9(b,c). The displacements are normalized with Burgers vector

length a since the displacement field of the dislocation loop scales with the magnitude of

Burgers vector. The effects of the coarse-grain scale h are clearly visible in the interpolated

displacement field, with errors of ∼ 10−5 for h = a and ∼ 10−4 for h = 5 a. It is important to

note here that independent of the method used to compute the interior ”corrective" solution

(e.g., LGFM or FEM), the interpolation errors in the boundary displacements will be of the

same order if linear shape functions are used with the same level of coarsening. Therefore,

these interpolation errors are not intrinsically linked with the coarse-grain LGFM but will be

present in any coarsening scheme using FEM or BEM in the continuum region.

Figure 5.10(a) shows the exact reference strain ϵ31 for every point in the domain as a function

of the minimum distance of the point from the outer boundary. To aid the interpretation of

the coarse-grain solutions, the exact strains are divided into bins of different strain ranges, and

a different color indicates each bin. Figure 5.10(b) shows the absolute and relative error for ϵ31

for the smallest coarse-graining scale h = a. Over nearly the entire domain, the absolute errors

are below 10−5 and, more typically, 10−6 or below; these errors are comparable to the errors

seen in the simple test cases above. For minimal absolute strains below 10−5 (yellow points),

the relative errors can be as high as 10−2 to 100. However, for strains of 10−5−10−4 (red points),

the relative errors are below 10−2 except very near the boundaries. Away from the boundaries,

strains in the range 10−4 −10−3 have relative errors of 10−3 (green points), and errors in the

center of the domain, where the strains are 10−3 −2×10−3, the relative errors are below 10−3.

Thus, the LGFM method generally creates absolute errors on the order of 10−5 throughout the

domain, independent of the actual strains that vary over orders of magnitude. Thus, intrinsic

errors in the LGFM method and small interpolation errors in the coarse-grained boundary

conditions create minimal errors (< 10−5) for most engineering problems.

72



5.5 Applications

applied û2 on +1 face

(a)

interpolated û2 interpolated û2 - applied û2

(b) h = a

(c) h = 5 a

Figure 5.9: (a) Contour plot of the applied displacement û2 on +1 face of the 3D FCC domain
of size L = 40 a for the sub-problem defined in Figure 5.8(c); (b) interpolated field and error in
interpolation, respectively, for h = a; (c) interpolated field and error in interpolation, respec-
tively, for h = 5a.

Figure 5.10(c) shows the absolute and relative error for ϵ31 for the larger coarse-graining of

h = 5 a (1/8 of the domain size). In this case, the loop perimeter is at a distance of only 2h

from the outer boundary; hence, interpolation errors are fully expected. Nonetheless, the

absolute errors are below 5×10−4 throughout most of the domain and often far lower. The

relative errors can be as high as 100 to 101 but mainly within h of the boundary and only when

the absolute strains are small.

For this study, we keep in mind that the need for an exact solution limits the total domain

size L, and hence the coarse grain scale h quickly approaches a fraction of the domain size L

and loop diameter 2R. A full atomistic solution to this problem with 128,000 atoms could be

solved easily, so multiscale or LGFM methods are not actually needed. Nonetheless, we find

results that would be typical of an FE solution: high accuracy when h is small compared to all

other dimensions in the problem (h ≪ L/2,R,L/2−R) and reduced accuracy as h approaches

these dimensions. The dislocation loop is also a crucial test case since the fields decay slowly

over a distance of R from the loop, becoming dipolar only at much larger distances. The

demonstration here shows that the coarse-grain LGFM method has been implemented and

applied to a realistic dislocation problem with complex fields throughout the domain and

shows small errors in the interior of the domain.
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(a) exact LGFM solution

(b) h = a

(c) h = 5 a

Figure 5.10: (a) Strain component ϵ31 for the exact LGFM solution to the "corrective" sub-
problem defined in Figure 5.8(c) throughout the domain of a 3D FCC domain of size L = 40 a
with dislocation loop radius R = 5 a and LGF-CGF transition at dc = 100 a that is larger than
the maximum distance across the domain; colors indicate ranges of strain for examining errors
due coarse-graining. (b,c) Absolute and relative errors for all points inside the domain for
h = a and 5 a, respectively, with colors corresponding to the ranges of the absolute strain (see
Figure (a)).

5.5.2 Multipole problem

Exact LGFM solutions for problems like dislocations are computationally intractable for system

sizes on the order of L = 1000 a or larger. Here, we thus start with a problem that can be

solved exactly and then compare the coarsened LGFM solution with the exact reference

solution. Specifically, we solve a problem involving only internal body forces in a multipole

configuration. The multipole problem is similar to an eigenstrain problem in a continuum

setting (Eshelby, 1956), where a region of material having an eigen- or transformation strain

is embedded in an infinite continuum medium, and the effects of the eigenstrain can be

represented by self-equilibrating point forces along the surface of the inclusion.

To mimic such a problem for a lattice system, we create an artificial multipole in which 26

atoms in the interior of the FCC box are subjected to the radial outward interior forces, f b of

magnitude f (blue arrows) away from the center of the FCC box (C) as shown in Figure 5.11(a).
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(a) (b)

Figure 5.11: force multipole problem (a) and its reference solution (ϵ11 strain component) vs.
minimum distance from boundary r (b) obtained using superposition of nLGF with dc = 100 a
for D = 900 a in 3D FCC box of size L = 1000 a.

These 26 atoms are chosen as the corners (8), face centers (6), and centers of the edges (12)

of a cuboid of a side length D centered around the center of the box. The solution for the

fields created by the multipole in an infinite crystal can be calculated using the LGF G and the

superposition principle.

ur e f (ξ) = ∑
ξ
′∈Λi n

G(ξ−ξ′
) fb(ξ

′
), ∀ξ ∈Λ∞. (5.19)

Figure 5.11(b) shows the absolute strain component ϵ11 of the exact solution at a large set of

interior points, shown using the minimum distances r (x) from the outer boundaries of an

FCC domain of size L = 1000 a. The multipole size D = 900 a is a significant fraction of the

domain size so that there are spatially-rapid variations in the boundary displacement field

that will enable testing of the effects of introducing the coarsening scale h. The displacement

field inside the domain has a scaling factor of f /aµ; therefore, all the results are normalized

using this scaling factor. The nLGF with dc = 100 a, and again color-code the results according

to strain ranges for subsequent use. The strain is calculated using the displacements at the

four near-neighbor lattice sites that form a tetrahedral element. The absolute strain is highest

(∼ 10−1) for points near r = 50 a where the forces are applied.

The boundary value problem for the multipole problem is defined by the displacement field of

the exact solution (computed in the infinite domain) along the boundaries of the finite FCC

domain,

u(ξ) = ur e f (ξ), ∀ξ ∈Λ−. (5.20)
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Figure 5.12 shows the relative error in strain component ϵ11 in the coarsened LGFM solution

when dc = 20 a is fixed for simulations and mesh size h = 25 a,50 a,100 a,200 a,500 a is varied

for multipole problem in the FCC box with L = 1000 a and D = 900 a. The coarsened boundary

contains N h = 10586,2906,866,386,98 for h = 25a,50a,100a,200a,500a respectively com-

pared with 12 million atoms on the actual boundary N−. The x-axis denotes the minimum

distance r (x) for any point with coordinate x inside the FCC box from the boundary of the

FCC box. The points are color-coded based on the absolute strain in the reference solution.

For example, the blue points in the figure show the points with the reference absolute ϵ11

strain component within 10−5 −10−4 range. The relative error in the strain decreases with

distance from the boundary. The relative error decreases on decreasing h; for example, at a

distance r = 400 from the boundary, the max relative error is of the order 1 for h = 500, 10−1

for h = 200 a which decreases to 10−2 for h = 100 a, and 10−3 for h = 25 a case.

Figure 5.12(f) shows the convergence of relative error in ϵ11 strain component in the coars-

ened LGFM solution for particular points in the domain with varying h. The figure shows

convergence for 5 points chosen at distance r = 50 a,150 a,250 a,350 a, and 450 a. At each

such distance, the point with maximum absolute reference strain in ϵ11 component is chosen.

We clearly observe a steady decrease in the relative error on decreasing h. For example, at

r = 450 a, the point with the absolute reference strain 10−6, the relative error drops from ∼ 10−2

to ∼ 10−4. An anomaly in the results for r = 150 a case where h = 500 a solution seems better

than any other h solution.

The nLGF results used for reference calculation have intrinsic length scale dc embedded

in it, therefore even if the reference solution is obtained using the superposition principle

(Equation (5.19)), it produces spurious forces (Section 2.3.3) at the LGF-CGF transition at a

distance dc = 100 a from the applied interior force f b at r = 50 a. Also, we observe that the

solution lacks uniform convergence with decreasing h for higher h > 100a, so it is necessary to

choose a small value of h while doing realistic A/C multiscale problems, which creates lower

error than intrinsic coupling error of A/C scheme and within the computational resources

available to compute coarsened LGFM matrices for such a small h.

The above multipole problem solved for a very large-size atomistic system clearly shows the

advantage of coarsened LGFM solution procedure for problems of practical interest. It helps

us to conclude the application of LGFM for the practical problems by showing the convergence

of relative error in the coarsened approximate solution with coarsening length scale h.

5.5.3 Dislocation loop (large size)

Finally, we evaluate the 3D dislocation problem of Figure 5.8(c) using the LGFM for a large

system size L = 1000 a as shown in Figure 5.13 with lines OA, OB, OC, OD, and OE along
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(a) h = 25 a (b) h = 50 a

(c) h = 100 a (d) h = 200 a

(e) h = 500 a (f) convergence with h

Figure 5.12: Relative error in ϵ11 strain component vs. minimum distance from boundary r ,
for force multipole problem in 3D FCC box with L = 1000 a,D = 900 a, and LGF-CGF transition
dc = 20 a for various coarsening length scale h values. Figure (f) shows the convergence of
relative error with h for 5 interior points selected inside the domain with various minimum
distance from boundary r values.

which the coarse-grain LGFM solution is examined below. This LGFM problem involves 4
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billion atoms in the entire domain and 12 million atoms on the outer boundary, and the

latter prevents obtaining an exact LGFM solution. We study a large dislocation loop of radius

R = 450 a, which is a significant fraction of the domain size such that portions of the loop are

only 50 a from the outer boundary, thus creating a rapidly-varying displacement field on the

boundary that enables examination of the role of the coarsening scale h.

Figure 5.13: Circular dislocation loop of radius 450 a in a 3D FCC domain of L = 1000 a with
origin at O; various lines OA (aligned with the Burgers vector), OB, OC, OD, and OE, along
which strains are measured and compared are shown.

We use a Poisson ratio ν= 0.3 and Burgers vector [a,0,0], noting that the displacement field

scales with Burgers vector length and is independent of the shear modulus. We study coarsen-

ing scales h = 25 a,50 a,100 a,250 a,500 a that retain N h = 10586,2906,866,218,98 atoms on

the outer boundary, respectively. Note that even at h = 25 a, the number of degrees of freedom

has been reduced by a factor of approximately 103. Also note that for h = 50 a and above, some

regions of the dislocation loop (along lines OA and OC) are at a distance (50 a) equal to or

smaller than the coarse-graining scale and so where large errors in any coarse-grained method

can be anticipated.

Figure 5.14 shows contour plots for the applied (Figure (a)) and interpolated displacements on

the +1-direction face of the outer boundary of the 3D FCC box for h = 25 a (Figure (b)), 50 a

(Figure (c)) and h = 100 a (Figure (d)), and the difference in the interpolated displacements

and the actual applied displacements over the coarsened boundary. Again, the displacements

are normalized with Burgers vector length a as the displacement field of the dislocation loop

scales with the magnitude of Burgers vector. The interpolation error in applied displacement

on the boundary is of the order of ∼ 10−4 for h = 25 a, ∼ 10−3 for h = 50 a, and ∼ 10−3 for

h = 100 a. The interpolated displacement field (Figure 5.14(b)) for h = 25 a resembles the

applied displacement field. The absolute errors (10−4) are small, so we use the h = 25 a coarse-

grain LGFM solution as a reference solution against which results at larger h are compared.

The coarse-grain LGFM solution is computed in the interior of the domain for coarsening
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applied û2 on +1 face

(a)

interpolated û2 interpolated û2 - applied û2

(b) h = 25 a

(c) h = 50 a

(d) h = 100 a

Figure 5.14: (a) Contour plot of the applied displacement û2 on +1 face of the 3D FCC domain
of size L = 1000 a for the sub-problem defined in Figure 5.8(c) with loop radius R = 450 a and
Burgers vector [a,0,0]; (b,c,d) interpolated field and error in interpolation for h = 25a, h = 50a,
and h = 100a, respectively.

levels h = 50 a,100 a,250 a, and 500 a, the latter being 1/2 of the domain size. A uniformly

distributed set of points at spacing 50 a are examined with the strain field computed using

constant strain tetrahedral elements constructed using the nearest four lattice sites enclosing

the point. This methodology ensures that the strains are calculated from the displacement

field without any interpolation error.

Figure 5.16(a) shows the absolute strain component ϵ31 for many points inside the domain

versus the minimum distance r of the point from the outer boundary of the box (Figure 5.16)

with nLGF dc = 20 a. We evaluate the strain field in the subset of points distributed uniformly

at spacing 50 a. The strain at each point is calculated from the computed displacements of

the corner atoms (on the FCC lattice sites). It assumes a constant strain tetrahedral element,

so there is no interpolation error in the strain calculation from the displacement field. The

color code indicates strain ranges of the reference solution (h = 25 a), which are used to clearly
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along OA along OB along OC

along OD along OE

Figure 5.15: Relative strain error of ϵ31 with respect to the reference solution along lines OA
(along the Burgers vector), OB, OC, OD, and OE, for various coarse-grain length, scales h as
indicated.

observe and distinguish the relative errors for different h variations in the other sub-figures.

We primarily focus on the larger reference strains from 10−5 −10−3 (blue, orange) that are

larger than the intrinsic errors due to the use of the numerical LGF even within the exact LGFM

formulation (Section 4.3). Figures 5.16(b, c, d, e) show the variation of relative error in the

interior points versus distance r , with the colors indicating the absolute strain of the reference

solution for each point.

The relative errors inside the domain decrease with decreasing h. For reference strains in the

range 10−4 −10−3 (blue in the figures), the relative error decreases from 100 at h = 500 a, to

10−1 at h = 250 a, to 10−2 at h = 100 a, to 10−3 at h = 50 a case. Similar trends are observed in

other reference strain ranges. In addition, the relative error results for the highly coarsened

boundary h = 500 a and h = 250 a cases are very high and of no practical usage for realistic

applications of the coarse-grain LGFM. Lastly, the relative error decreases with the distance

from the boundary r , consistent with our conclusion from the small system size dislocation

problem that the coarse-grain LGFM solution improves for the points in the interior of the

domain away from the boundary.

Figure 5.15 shows the relative error in ϵ31 along the various lines shown in Figure 5.13, with
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(a) assumed reference solution at h = 25 a

(b) h = 50 a (c) h = 100 a

(d) h = 250 a (e) h = 500 a

Figure 5.16: Strain component ϵ31 for the "corrected" sub-problem defined in Figure 5.8(c)
throughout the domain of a 3D FCC box of size L = 1000 a, with dislocation loop radius
R = 450 a and LGF-CGF transition at dc = 20 a. (a) Absolute strain in interior points in the
domain versus the distance of the point from the outer boundary, h = 25 a case; assumed
reference solution for comparing with other coarse-graining length scales; colors indicate
ranges of strain for examining errors due to coarse-graining. (b,c,d,e) Relative strain errors
for different h variations in interior points with the colors indicating the assumed reference
solution for each point.

respect to the distance from the center of the loop (O). Along all lines, the relative strain errors

increase steadily with increasing h. For lines OA and OC in the plane of the loop, the error also
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increases notably as the outer boundary is approached due to the close distance (50 a) of the

dislocation to the boundary along these lines. In contrast, the error for line OB increases only

modestly. Errors along OD are weakly dependent on distance, aside from a significant decrease

related to positions of the field points relative to the nodal points Λh that is not important

for understanding the broad convergence. Along line OE, there is again an increase of error

with increasing distance as the corner of the domain is approached. Over most of the domain,

the relative error for h = 50 a is below 10−2 and with strain below 10−3 throughout, and hence

absolute errors of 10−5 or less that are comparable to intrinsic errors of the method as seen in

earlier examples.

Figure 5.17: Relative error in the ϵ31 strain versus coarse-grain length scale h along the lines
OA (aligned with the Burgers vector), OB, OC, OD, and OE as indicated in Figure 5.13.

Figure 5.17 shows the relative strain errors along the various lines versus the coarse-graining

scale h, with no spatial/position information. Broadly, there is a near-power-law convergence

with the error scaling roughly as h2. The larger errors correspond to points along OA, OC, and

OE near the boundary (see Figure 5.15), but the rough scaling with h is preserved. Again, loss of

accuracy for points within h of the boundary is fully expected. Also, the internal displacements

would scale as h due to the usage of the linear interpolates at the domain boundary for the

boundary displacements/surface forces. Therefore, the h2 scaling in the relative strain errors

for the solutions at the interior points is entirely expected and demonstrates the correct

functioning of the coarse-grain LGFM method. We anticipate that this can be rigorously

proven, but this is out of the scope of the present work.

The above results show the broad convergence of solutions inside the 3D FCC box versus h

for a large domain. These results show the advantage of the coarsened LGFM for problems of

practical interest. These sizes (4 billion atoms) are intractable using full atomistics. The LGFM

involves coarsening only on the boundary and has fewer degrees of freedom than in 3D FEM.
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The LGFM then enables high accuracy at distances larger than h from the boundary, and the

solution is computed only at points of interest.

5.6 Summary

In this chapter, we introduce a coarsening scheme at the outer boundary to reduce the degrees

of freedom on the atomistically resolved outer boundary of LGFM. Here, we use the fact that

the applied displacements/forces on the outer surface don’t vary much at the atomistic scale.

Therefore, by introducing coarsening length scale h and using the local shape function at the

surface, the applied forces/displacements can be resolved atomistically at the boundary using

very few atoms on the coarsened boundary (Λh).

We discuss that the above coarsening scheme looks similar to the classical BEM-based approx-

imation method. Still, due to the atomistic nature of the boundary, it has subtle differences

during the implementation. We note that due to the atomistic resolution of the boundary,

the coarsened formulation requires special treatment of corners and the edge atoms on the

boundary depending on theirΛ+ environment.

We validated the coarsened formulation and the special treatment of corners/edges using

simple boundary value problems and showed the application of coarsened LGFM by solving

force-multipole and a 3D dislocation loop in the 3D FCC box under the Dirichlet boundary

conditions.

Now, we shift focus to applying H -matrices in the LGFM formulation. The H -matrices are

generally used in BEM literature to improve the computational efficiency of the method any

low-rank approximation of Green’s function matrix involved (Börm et al., 2003). In Chapter 6,

we will discuss how H -matrices can be used along with coarsened LGFM formulation to

improve the overall efficiency of exact LGFM problems for A/C multiscale problems. At last, in

Chapter 7, we will integrate the coarsened LGFM formulation with FBCM (Chapter 3) to solve

A/C coupled for bounded domain problems.
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6 Hierarchical Matrices and LGFM

6.1 Introduction

In Section 2.2.2, we note that the CGF-based BEM for solving elastostatics boundary value

problems involves dense Green’s function matrices which require matrix compression using

low-rank approximation techniques like H -matrices to exploit the full known advantages

of BEM. In this chapter, we will explore the possibility of using H -matrices to improve the

computational efficiency of coarsened LGFM formulation introduced in Chapter 5.

As discussed, the LGFM does not require discretization of the entire 3D domain. The solution at

interior points can thus be computed as needed using Equation (5.5) in on-the-fly processing

after the LGFM solution of Equation (5.9) is obtained. Thus, the LGFM method can be split

into two sub-problems: (i) an LGFM "surface" problem to obtain the displacement/forces on

the boundary followed by (ii) an LGFM ”interior" problem where the displacements on any

desired number N of interior points is computed.

The coarse-grain LGFM "surface" problem scales as N h , the number of atoms on the coarsened

boundary, but requires pre-computation of the [F̃ ] and [G̃] coarse-grained matrices using

Equations (5.6) and (5.7). The construction of these coarse-grained matrices involves matrix-

matrix multiplication of a dense Green’s function matrix of size d N h×d N− and a sparse shape

function matrix ([φ]) of size N−×N h with computation cost O (N h N−). This computation

does involve the N− atoms on the outer boundary. Still, these matrices can be constructed

and stored in memory during pre-processing and thus do not produce any hindrances in the

LGFM ”surface" problem, which still scales as N h for the on-the-fly computation of unknown

forces/displacements during the simulations.

For the LGFM "interior" problem, the interior points at which a solution is required may

not be known before the simulation. For example, for a quasi-static discrete dislocation
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dynamics problem, the stresses on the discrete dislocation nodal points are required during

the simulation as the dislocation evolves, and the location of these nodal points is unknown.

One efficient solution is to identify an interior set of points akin to an FE mesh, for which these

matrices can be pre-computed. Then during the simulation, e.g., gliding of the dislocation

loop, the displacements at the nodal points of the pre-chosen mesh can be computed in those

elements where a solution is required, and the field at the dislocation nodal points inside

each such element can then be computed by interpolation. The cost of such simulations then

scales linearly with the number of interior points N at which the solution is desired. However,

on-the-fly computation of the [F̃ ] and [G̃] coarse-grained matrices with computational cost

O (N N−) can remain very high. To solve this issue, we can envision the use of the low-rank-

Hierarchical-matrices (Hackbusch, 2015) technique to construct the coarse-grained matrices

[F̃ ], [G̃]. While such a formulation introduces further numerical length scales in the coarsened

LGFM formulation, and the scaling of errors with these new length scales will require careful

assessment, it provides a further systematic path for reducing the computational cost. We will

explore this direction in this chapter.

We will start by giving the brief technical background of H -matrix technique and their

construction based on tunable parameters in Section 6.2. In Section 6.3, we will discuss how

H -matrices can be used in LGFM formulation: the surface problem (Section 6.3.1) and the

interior problem (Section 6.3.2), and further explore various possibilities of using exact LGFM

and coarsened LGFM with H -matrices depending on the boundary value problem one needs

to solve.

6.2 Hierarchical Matrices: Background

H -matrices have been successfully employed to solve elliptic Helmholtz (Banjai and Hack-

busch, 2008), Laplace (Ostrowski et al., 2006), and elastostatics (Maerten, 2010) problems.

H -matrices were initially introduced in the context of potential problems by Hackbusch

(1999); Khoromskij and Hackbusch (2000) for efficient matrix compression of dense Green’s

function matrices. H -matrices are purely algebraic and thus don’t require manual kernel

expansion in the Taylor series like in the fast multipole method (Liu, 2009). Due to it, storing

H -matrices in computer memory, approximations for the usual matrix operations (addition,

multiplication, inversion, etc.), and their fast iterative solvers scales with logarithmic-linear

complexity (Grasedyck and Hackbusch, 2003). In particular, the H -matrix/vector product

accelerates the usual matrix/vector product and, consequently, reduces the time of each

iteration of iterative BEM solvers (Bebendorf, 2005). The readers can refer to a vast literature

on the theory and applications of H -matrices (Bebendorf, 2008; Hackbusch, 2015; Börm et al.,

2003) for further details about the approximation technique.

The low-rank H -matrix approximation of Green’s function kernels is equivalent to the fast
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multipole method (FMM) (Greengard and Rokhlin, 1987), which uses the fact that long-range

asymptotically decaying kernels like elasticity Green’s functions G can be expanded using

Taylor approximation into a series of kernel separable functions g and f as the following. We

assume a group of atoms σ (say, m atoms) are interacting with another group of atoms τ (say,

n atoms). The interaction Green’s function matrix [G] between these groups of atoms is of size

m ×n. Now, if ξc is representative atom of group σ and ξ
′
c representative atom of group τ, the

G(ξ,ξ
′
) entry for the interaction matrix for ξ ∈σ and ξ

′ ∈ τ can be approximated using Taylor

series expansion

G(ξ,ξ
′
) =

r∑
i=1

g i (ξc ) f i (ξ
′
c )+O (θr+1(σ,τ)), ∀ξ ∈σ,ξ

′ ∈ τ. (6.1)

Using the above kernel separable approximation upto the r terms, the interaction matrix

[G] ≈ [g ][ f ] can approximated as matrix-matrix multiplication of matrices [g ] of size m × r

and [ f ] of size r ×n. Thus the storage requirement of interaction matrix is reduced from

O (m n) to O (r (m +n)) given r ≪ m,n.

Figure 6.1: Geometric criteria θ for groups of atoms σ and τ. Right-top shows another pair of
groups (σ1,τ1) with approximately same θ value.

The error bound in the separable kernel approximation in Equation (6.1) is dominated by the

geometric parameter θ between two groups of atoms whose interaction matrix needs to be

computed. We define the geometric parameter θ as

θ(σ,τ) = max{di a(σ),di a(τ)}

di st (σ,τ)
, (6.2)

87



Chapter 6. Hierarchical Matrices and LGFM

where di a represents the size or the diameter of the group in the space, and di st is the

separation distance between two groups of atoms, as shown in Figure 6.1.

FMM requires a manual Taylor series expansion of the closed-form representation of the

elasticity kernels (Pfalzner and Gibbon, 1996, Chapter 7). On the other hand, H -matrices re-

quire the direct numerical entries of the interaction matrix, and then fast singular value

decomposition-based techniques are used for matrix compression. This makes H -matrices a

natural choice for using nLGF instead of FMM as the nLGF lacks closed-form representa-

tion (Section 2.3.2).

H -matrices involve tree data structure (Cormen et al., 2022). Below, we introduce different

notations used in H -matrices related to its tree data structure. A tree node represents a set of

indices that label the atoms/points in the space. A root node represents the entire set of points

in the domain. In a binary tree, as shown in Figure 6.3, each node is divided into two children

nodes. The root node is assumed to be in level = 1 of the tree. The root node is divided into

two levels, level = 2 children nodes. Similarly, we denote the next level in increasing order.

The nodes belonging to the last level are known as leaf nodes (level = 3 in the figure)

Figure 6.2: A binary tree data structure T with three levels showing root and leaf nodes
(l evel = 3).

6.2.1 Construction of Hierarchical matrices

There are three steps to construct H -matrices. This involves introduction of three H -

matrix parameters: nmin, θc , and rmax which will be further explained below.

Cluster trees for row and column indices (nmin)

We define I and J as the set of indices representing the row and column indices of the matrix.

The tree data structure TI and TJ represent the cluster binary tree representation of index set
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I and J respectively. Figure 6.3 represents the cluster tree TJ for the index set J = {1,2 . . .16}.

For H -matrix representation, we define parameter nmi n , which represents the minimum

number of indices represented by any node in the cluster tree. Using this definition, the leaf

nodes in the cluster tree will contain nmi n number of indices. Theoretically, nmin is chosen

based on the cache memory of the CPU used for simulations. While deciding nmin, it is made

sure that the entire cache memory is used while doing computations for leaf nodes.

Figure 6.3: A binary cluster tree, TJ for the index set J = {1,2 . . .16} with three levels showing
root and leaf nodes and nmin = 4.

The above example shows the binary clustering of indices. One can also use the geometric

clustering based on the spatial distribution of atoms/points involved in constructing dense

Green’s function kernels to make the tree data structure (Bebendorf, 2008).

Block cluster tree and admissibility criteria (θc )

Once the row TI and the column TJ cluster trees are constructed, a block cluster tree of

Cartesian product TI ×TJ is constructed as shown in Figure 6.4. For H -matrices, we define

admissibility criteria using Equation (6.2) for node (σ,τ) in block cluster tree TI ×TJ when

both σ and τ nodes belong to same level number,

θ(σ,τ) < θc . (6.3)

Here, θc is H -matrix parameter which controls the admissibility criteria. The θc thus controls

the accuracy and storage memory of H -matrices. The admissible blocks are subjected to

lower-rank approximation algorithms. The θc parameter ensures that each admissible block is
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controlled by the same approximation level in the block matrices hierarchy. Thus the higher

value of θc results in better memory compression but with high approximation error. In

Figure 6.4: A block cluster tree TI ×TJ of row cluster tree TI and column cluster tree TJ

showing three different levels. The grey-colored blocks are admissible.

Figure 6.4, the grey-colored blocks show the admissible blocks. In general, the admissible

blocks are decided such that all the children nodes of the admissible blocks also satisfy the

admissibility condition. The leaf nodes in the block cluster tree are always assumed admissible

irrespective if they satisfy the admissibility condition.

While constructing H -matrices, the data structure corresponding to only admissible blocks is

stored in the memory, as shown in Figure 6.5.
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Figure 6.5: H -matrix representation of a 16×16 size matrix. The grey-colored blocks are
admissible.

Low-rank approximation of block matrices (rmax)

The block matrix corresponding to the admissible block cluster at each level is stored using

its low-rank approximation. Any dense matrix [M ] of size m ×n can be approximated as its

low-rank approximation of rank r as the following

[M ]︸︷︷︸
m×n

≈ [A]︸︷︷︸
m×r

[B ]︸︷︷︸
r×n

. (6.4)

Equation (6.4) is an equivalent representation of Equation (6.1) in the matrix form with r

terms. Thus, the cost of storing the dense matrix is reduced from O (mn) to O (r (m +n)). Thus

the low-rank approximation helps reduce the storage cost, which in turn leads to a reduction

of the computational cost of matrix-vector operations when these low-rank matrices are used

for linear algebra operations.

The low-rank approximation of the matrix is based on the Singular Value decomposition (SVD)

technique (Golub and Van Loan, 2013). However, SVD algorithms require information of

all the entries of the dense matrix, which defeats the purpose of its efficient compression.

Therefore, the heuristic approaches like Adaptive Cross Approximation (ACA) (Bebendorf and

Rjasanow, 2003), Hybrid cross approximation (Börm and Grasedyck, 2005), and advanced

ACA (Bebendorf et al., 2015) techniques are commonly used for low-rank approximation in

H -matrix algorithms which costs O (r (m +n)).

In the case of H -matrices, the corresponding entries in the block matrices come from the

asymptotically decaying Green’s function kernels, where one can prove that the errors caused
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Figure 6.6: Low-rank approximation of admissible block matrices of size 8×8 and 4×4 using
H -matrices parameter rmax = 2.

due to the low-rank approximation are in the controllable accuracy range (Bebendorf and

Rjasanow, 2003) (Equation (6.1)). Therefore, in the case of H -matrices, we introduce a rank

parameter rmax, which reduces the maximum rank of all the admissible block matrices to rmax.

Using this parameter the storage of H -matrices of size m×n scales as O (rmax(m+n) log(m+n))

instead of O (m n) for fully dense matrix. Figure 6.6 shows the low-rank approximation of block

matrices of size 8×8 and 4×4 using H -matrices parameter rmax = 2.

6.2.2 Multiplication of a Hierarchical matrix with the dense vector

The previous section discussed how low-rank admissible block matrices are stored using the

H -matrix technique. In this section, we discuss the matrix-vector algorithm with H -matrices.

Figure 6.7 shows the algorithm for an example H -matrix of size 16×16 and nmi n = 4. The

admissible blocks are shown using a grey color. As explained before, the block matrices of leaf

nodes of size 4×4 are considered admissible blocks.

Figure 6.7: Schematic diagram of H -matrix-vector multiplication algorithm
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In the H -matrix-vector multiplication algorithm, the block cluster tree is traversed from the

root level to the leaf level. In each level, the admissible block matrices are multiplied by the

corresponding indices of the given column vector. As block matrices are stored in low rank

form (Equation (6.4)), this operation costs O (rmax(m +n)) for the m ×n size block matrix. The

tree is traversed to the next level for all the non-admissible blocks, and the above operation

is repeated for the new admissible blocks at this level. These tree traversals are repeated

until the leaf level is reached. Similar to storage cost, the H -matrix-vector operation cost

O (rmax(m +n) log(m +n)) for m ×n size H -matrix.

6.3 Application of Hierarchical Matrices to LGFM

We will now explore how H -matrices can be used for LGFM formulation discussed in Chap-

ter 4. We divide the LGFM boundary value problem into an LGFM surface (Section 6.3.1) and

an LGFM interior (Section 6.3.2) problem. In the LGFM surface problem, we are only interested

to know the surface forces/displacements on the domain’s boundary if either is unknown on

the surface of the boundary value problem. On the other hand, in the LGFM interior problem,

we assume that we already know the surface forces/displacements but need to calculate the

displacements for the given set of points inside the domain. We restrict our discussion to the

Dirichlet boundary condition where surface atoms are applied uapp displacement field and

surface forces f s is unknown on all the surface atoms, however, the main conclusion holds for

other types of boundary conditions.

6.3.1 LGFM surface problem

In the surface problem, we need to know either surface forces/displacements on the boundary

of the domain. So, the solution in this section always refers to the unknown forces/displace-

ments on the surface, as shown in Figure. 6.8. We assume the number of surface atoms (N−)

is very high in the real problem of interest. We compare different LGFM formulations and

differentiate their computational and storage cost for the realistic problems of interest.

Exact formulation

In exact LGFM formulation Chapter 4, the surface force f s needs to be calculated for all the

surface atoms by solving the following system of linear equations,∑
ξ
′∈Λ−

G(ξ,ξ
′
) f s(ξ

′
) = uapp (ξ)− ∑

ξ∈Λ−
F (ξ,ξ

′
)uapp (ξ

′
), ∀ξ ∈Λ− (6.5)

• Equation (6.5) requires numerical inversion of [G(ξ,ξ
′
)] of size (d N−,d N−) with com-
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Figure 6.8: LGFM surface problem to solve unknown surface forces/displacements on the
outer boundary; (left) exact LGFM, (right) coarsened LGFM.

putational cost O (d 3N−3). This numerical inversion needs to be done every time dis-

placements/forces on boundary change during the simulation.

• Equation (6.5) requires matrix-vector multiplication of matrix of size (d N−,d N−) with

computational cost O (d 2N−N−).

• Need to store two (d N−,d N−) size matrices and the LU decomposition of [G(ξ,ξ
′
)] to

solve changing boundary conditions in the simulations.

• Total computational cost: O (d 3N−3 +d 2N−2).

• Total storage demand: O (3d 2N−N−).

Coarsened formulation

In coarsened LGFM formulation (Chapter 5), the surface forces on the coarsened boundary

Λh containing N h atoms need to be computed by solving the following set of the linear system

of equations, ∑
α∈Λh

G̃(ξ,α) f s(α) = uapp (ξ)− ∑
α∈Λh

F̃ (ξ,α)uapp (α),∀ξ ∈Λh (6.6)

where,

G̃(ξ,α) = ∑
ξ
′∈Λ−

G(ξ,ξ
′
)φα(ξ

′
),∀ξ,α ∈Λh ,

F̃ (ξ,α) = ∑
ξ
′∈Λ−

F (ξ,ξ
′
)φα(ξ

′
),∀ξ,α ∈Λh . (6.7)

• In coarsening formulation, we only know surface forces inΛh from which we can obtain

surface forces inΛ− by multiplying it with the shape function matrix [φ] (Equation (5.2)),
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which is O (d N−) operation. The storage cost of the shape function matrix is O (N−).

• Equation (6.7) requires multiplication of dense [G], [F ] matrices of size (d N h ,d N−) and

sparse shape function matrix [φ] of size (N−, N h) which costs O (d 3N h N−).

• Equation (6.6) requires numerical inversion of (d N h ,d N h) size matrix which costs

O (d 3N h 3
)

• Equation (6.6) requires matrix-vector multiplication of matrices of size (d N h ,d N h) with

computational cost O (d 2N h N h).

• Matrices of size (d N h ,d N h) and the LU decomposition of [G̃(ξ,ξ
′
)] can be easily stored

to solve changing boundary conditions in the simulations.

• Total computational cost: O (d 3N h 3 +d 3N h N−+d 2N h 2
) (cost of construction of coars-

ened [G̃] and [F̃ ] matrices included)

• Total storage demand: O (3d 2N h N h).

H -matrices with exact formulation

If we don’t use coarsened formulation, we can reduce the computational cost of LGFM by

using the H -matrix arithmetic directly in the exact formulation to solve Equation (6.5). It

requires constructing H -matrices for dense [G], [F ] matrices of size (d N−,d N−). We denote

the compressed H -matrices representation of dense [G], [F ] matrices as [Ĝ], [F̂ ] respectively.

Then, the H -matrix assisted exact formulation leads to the following expressions,

∑
ξ
′∈Λ−

Ĝ(ξ,ξ
′
) f s(ξ

′
) = uapp (ξ)− ∑

ξ∈Λ−
F̂ (ξ,ξ

′
)uapp (ξ

′
), ∀ξ ∈Λ−. (6.8)

• In continuum BEM literature, direct numerical inversion of a H -matrix [Ĝ] is not

recommended (Maerten, 2010). The compressed H -matrix version of [G], [Ĝ] is usually

used as a preconditioner for the numerical inversion of [G] itself. Therefore, for very

high value of N−, numerical inversion of [Ĝ] matrix of size (d N−,d N−) is not possible.

• H -matrix algorithm is based on the relative distance between the spatial distribution

of points; on the other hand, in LGFM, we have the boundary effects such as corners

and edges. In coarsened LGFM formulation, we use particular elements near corners

and edges to ensure that they have enough degrees of freedom for a good approximation

of the exact solution. Suppose we use the H -matrix compression directly on [G], [F ]

matrices. In that case, we can’t implicitly mention which indices are important from the

corners/edges point of view, and this information is lost while reducing the degrees of

freedom via H -matrix.

• Equation (6.8) requires H -matrix-vector multiplication of matrices of size (d N−,d N−)

with computational cost O (d 2N− log(N−)).

• Total computational cost: O (kd 3N−3 +d 2N− log(N−)), where k is reduction obtained
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using preconditioner.

• Total storage demand: O (2d 2N− log(N−)+d 2N−2).

Hybrid coarsened and H -matrix formulation

In the previous section, we observed that directly using H -matrix in exact formulation for the

solution is not an efficient way to reduce the computational cost. As an alternative, we can use

H -matrix arithmetic with the coarsened formulation in the following way. Again, we denote

the compressed H -matrices representation of dense [G], [F ] matrices as [Ĝ], [F̂ ] respectively.

∑
α∈Λh

ˆ̃G(ξ,α) f s(α) = uapp (ξ)− ∑
α∈Λh

ˆ̃F (ξ,α)uapp (α),∀ξ ∈Λh (6.9)

where,

ˆ̃G(ξ,α) = ∑
ξ
′∈Λ−

Ĝ(ξ,ξ
′
)φα(ξ

′
),∀ξ,α ∈Λh ,

ˆ̃F (ξ,α) = ∑
ξ
′∈Λ−

F̂ (ξ,ξ
′
)φα(ξ

′
),∀ξ,α ∈Λh . (6.10)

• We can use H -matrix to compress dense matrices [G], [F ] of size (d N h ,d N−) so that

they become [Ĝ], [F̂ ] in Equation (6.10), and then multiply it with sparse shape function

matrix [φ] with cost O (d(N h + N−) log(N h + N−)). This will lead to coarsened G̃ , F̃

matrices of size (d N h ,d N h).

• There is no direct implementation of multiplying H -matrices [Ĝ], [F̂ ] of size (d N h ,d N−)

with sparse shape function matrix of size (N−, N h). As a workaround, we could explore

an alternative approach, in which H -matrix of [G], [F ] corresponding to nonzeros

entries of each column of shape function matrix (let’s say Nα entries in column α)

is constructed. In this approach, N h number of H -matrices of size (d N h ,d Nα) are

constructed and multiplied by corresponding nonzero entries column vectors of the

shape function matrix. This approach has a lot of overheads as N h number of H -

matrices need to be constructed. Also, as multidimensional kernels like d ×d elasticity

kernels are not directly implemented in the HLIBpro library, the total H -matrices we

are constructing in this approach is d ×d ×N h which creates tremendous overheads

and defeat any purpose to fasten matrix-matrix multiplication in Equation (6.10).

• Equation (6.9) requires matrix-vector multiplication of matrices of size (d N h ,d N h) with

computational cost O (d 2N h N h).

• Total computational cost: O (d 3N h 3 +d 3(N h +N−) log(N h +N−)+d 2N h 2
).

• Total storage demand: O (3d 2N h N h).
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Above, we explored how the H -matrices can be used for the LGFM surface problem. Com-

paring different options, we can conclude that the coarsened LGFM formulation without

H -matrices is the best choice for the LGFM surface problem. Also, it is better to look for an

alternative approach to parallelize dense-matrix/sparse-matrix multiplication in coarsening

formulation in Equation (6.7) using both OpenMP and MPI techniques. This approach will

make sure that the accuracy of the surface forces/displacements is only affected by h,dc coars-

ening length scale, and no new length scales/parameters due to H -matrices are introduced

in these solutions. Coarsened LGFM still requires the numerical inversion of (d N h ,d N h) size

matrix, which costs O (d 3N h 3
), for which LU decomposition can be done before the simula-

tions and stored for usage during runtime. Even if boundary conditions are changing, LU

decomposition will remain constant.

6.3.2 LGFM interior problem

In the LGFM interior problem, we want to know the displacements (or stresses) on the given

set of points (maybe DD nodes for A/C problems) inside the domain, as shown in Figure 6.9.

The spatial distribution of this set of points can change during the simulations; therefore, the

group of matrices involved here needs to be constructed in real time during the simulations.

We denote the set of points/atoms on which displacements are required asΛ, which contains

N number of atoms. Also, we assume that both surface forces f b/displacements uapp are

already known, in this case in every atom inΛ− using the LGFM surface problem discussed in

the previous section.

Figure 6.9: LGFM interior problem with known surface displacements/forces to find a solution
inside the bounded domain; (left) exact LGFM ;(right) coarsened LGFM
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Exact formulation

The solution inside the bounded domain using the exact LGFM formulation requires the

solution of the following equation.

u(ξ) = ∑
ξ
′∈Λ−

G(ξ,ξ
′
) f s(ξ

′
)+ ∑

ξ∈Λ−
F (ξ,ξ

′
)uapp (ξ

′
), ∀ξ ∈Λ. (6.11)

• Equation (6.11) requires matrix-vector multiplication of matrices of size (d N ,d N−) with

computational cost O (d 2N N−).

• Need to store two (d N ,d N−) size matrices.

• Total computational cost: O (d 2N N−).

• Total storage demand: O (2d 2N N−).

Coarsened formulation

The coarsened formulation for the LGFM interior problem will lead to the following equations.

u(ξ) = ∑
α∈Λh

G̃(ξ,α) f s(α)+ ∑
α∈Λh

F̃ (ξ,α)uapp (α), ∀ξ ∈Λ (6.12)

where,

G̃(ξ,α) = ∑
ξ
′∈Λ−

G(ξ,ξ
′
)φα(ξ

′
),∀α ∈Λh ,ξ ∈Λ,

F̃ (ξ,α) = ∑
ξ
′∈Λ−

F (ξ,ξ
′
)φα(ξ

′
),∀α ∈Λh ,ξ ∈Λ. (6.13)

• Equation (6.13) requires multiplication of dense [G], [F ] matrices of size (d N ,d N−) and

sparse shape function matrix of size (d N−,d N h) which costs O (d 3N N−).

• Equation (6.12) requires matrix-vector multiplication of matrices of size (d N ,d N h) with

computational cost O (d 2N N h).

• Need to store two (d N ,d N h) size matrices.

• Total computational cost: O (d 3N N−+d 2N N h). (cost of construction of coarsened [G̃]

and [F̃ ] matrices included)

• Total storage demand: O (2d 2N N h).

H -matrices with exact formulation

Using the H -matrix arithmetic directly in the exact formulation to evaluate Equation (6.11)

requires constructing H -matrices for dense [G], [F ] matrices of size (d N ,d N−), which leads

to the following expressions,
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u(ξ) = ∑
ξ
′∈Λ−

Ĝ(ξ,ξ
′
) f s(ξ

′
)+ ∑

ξ∈Λ−
F̂ (ξ,ξ

′
)uapp (ξ

′
), ∀ξ ∈Λ. (6.14)

Here, the H -matrix version of dense [G], [F ] are denoted as [Ĝ], [F̂ ] respectively.

• Equation (6.14) requires H -matrix-vector multiplication of H -matrices of size (d N ,d N−)

with computational cost O (d 2(N +N−) log(N +N−)).

• Due to the limit of the multidimensional kernel in the HLIBpro library (Kriemann, 2008),

we need to construct 2×d ×d H -matrices .

• Need to store two (d N ,d N−) size matrices of storage O (d 2(N +N−) log(N +N−)).

• Total computational cost: O (d 2(N +N−) log(N +N−)).

• Total storage demand: O (2d 2(N +N−) log(N +N−)).

Hybrid coarsened and H -matrix formulation

We can use H -matrices with the coarsen formulation for the LGFM interior problem as

follows,

u(ξ) = ∑
α∈Λh

ˆ̃G(ξ,α) f s(α)+ ∑
α∈Λh

ˆ̃F (ξ,α)uapp (α), ∀ξ ∈Λ (6.15)

where,

ˆ̃G(ξ,α) = ∑
ξ
′∈Λ−

Ĝ(ξ,ξ
′
)φα(ξ

′
),∀α ∈Λh ,ξ ∈Λ,

ˆ̃F (ξ,α) = ∑
ξ
′∈Λ−

F̂ (ξ,ξ
′
)φα(ξ

′
),∀α ∈Λh ,ξ ∈Λ. (6.16)

• We can use H -matrix arithmetic on dense matrices [G], [F ] of size (d N ,d N−) to make

them H -matrix [Ĝ], [F̂ ] in Equation (6.16), and then multiply it with sparse shape

function matrix [φ] with cost O (d(N +N−) log(N +N−)). This will lead to coarsened ˆ̃G , ˆ̃F

matrices of size (d N ,d N h).

• Again, as explained in the previous section, there is no direct implementation of multi-

plying H -matrices [Ĝ], [F̂ ] of size (d N ,d N−) with sparse shape function matrix [φ] of

size (N−, N h) in the HLIBpro library. As a workaround, we could implement an alterna-

tive approach, in which H -matrix [Ĝ], [F̂ ] corresponding to nonzeros entries of each

column of shape function matrix (let say Nα entries in column index, α) is constructed.

Therefore, N h number of H -matrices of size (d N , d Nα) are constructed and multiplied

by corresponding nonzero entries column vectors of the shape function matrix. As ex-

plained in the case of the LGFM surface problem, this approach has a lot of overheads as
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N h number of H -matrices need to be constructed. Also, as multidimensional kernels

like d ×d elasticity kernels are not directly implemented in the HLIBpro library, the

total H -matrices we are constructing in this approach is 2×d ×d ×N h which creates

tremendous overheads and defeat any purpose to fasten dense-matrix/sparse-matrix

multiplication in Equation (6.16).

• Equation (6.15) requires matrix-vector multiplication of matrices of size (d N ,d N h) with

computational cost O (d 2N N h).

• Total computational cost: O (d 2(N +N−) log(N +N−)+d 2N N h).

• Total storage demand: O (d 2(N +N−) log(N +N−)+d 2N N h).

Above, we have explored the possibilities in which H -matrices can be used for the LGFM inte-

rior problem. Due to heavy implementation overheads, the hybrid H -matrices formulation

should be avoided. Depending on the number of atoms in Λ(N ), Λh(N h), and Λ−(N−), the

coarsened LGFM, or H -matrices with exact LGFM can be tried. We suspect that if N ≪ N−,

we should prefer coarsened LGFM, and in case N ∼ N−, we should prefer H -matrix with exact

LGFM formulation, which can be validated in future work.

6.4 Summary

This chapter examined the use of H -matrices to enhance the computational and memory

efficiency of the LGFM formulation. To achieve this, we divide the LGFM problem into two

problems: the LGFM surface problem, in which the unknown surface displacements/forces

need to know on the outer boundary, and the LGFM interior problem, in which the solution at

a particular set of points (N ) inside the bounded domain is required given that LGFM surface

problem is already solved. Further, we discuss four different flavors of LGFM formulations,

namely: an exact LGFM, a coarsened LGFM, a H -matrix with exact LGFM, and a hybrid

H -matriceswith coarsened LGFM.

Though coarsened LGFM scales with the number of atoms on the coarsened outer surface

(N h), it requires the construction of coarsened Green’s function matrices which scales with N−.

For the LGFM surface problem, these matrices can be constructed before the A/C simulations

as the position of the outer boundary atoms is fixed. We found that for the LGFM surface

problem, coarsened LGFM is a better option computationally compared to other H -matrix-

based approaches. Hence, the MPI version for coarsened LGFM could be developed for

large-scale A/C problems to construct coarsened Green’s function matrices G̃ , F̃ as future

work.

On the other hand, the position of interior points (say, their number is N ) where the LGFM

solution is required may change during the simulation (e.g., moving DD nodes). Hence, the

coarsened LGFM formulation for the LGFM interior problems scales as N−. We conclude
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that for the LGFM interior problem, the coarsened LGFM formulation computationally scales

better N ≪ N−, and the H -matrices with exact LGFM formulation has better scaling for the

case when N ∼ N−. In both cases, however, on-the-fly construction of coarsened Green’s

matrices G̃ , F̃ or H -matrix version of Green’s function matrices Ĝ , F̂ maybe not possible due

to huge computational overheads. As a workaround in future work, the coarsened Green’s

matrices/H -matrix Green’s function matrices can be constructed on a predefined grid inside

the domain, and state-of-the-art Machine Learning techniques (Guo and Buehler, 2020) or

adaptive level set method (Wang and Xiang, 2013) can be used to accelerate the computation

of solution inside the domain on-the-fly during the A/C simulations.
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7 Coupling LGFM and FBCM

7.1 Introduction

In Chapter 3, we discussed the issues of the initial solution and LGF-CGF transition effects in

the FBCM algorithm used to solve LGF-based couple A/C problems for an infinite domain.

In this chapter, we will integrate the FBCM with LGFM for bounded domains discussed in

Chapter 4 to solve full A/C boundary value problems. We will validate this A/C algorithm

coupling of FBCM and LGFM using several example problems and further probe the effect of

LGF to CGF transition length scale dc (Chapter 2). Subsequently, we couple the FBCM with

coarsened LGFM (Chapter 5) and discuss the effect of coarse-graining length scale h on the

outer surface for a large-size 2D system containing three million atoms.

7.2 LGF-based A/C boundary value problem

We define a bounded domainΛc with surface atomsΛ− ⊂Λc , where we can apply displace-

ment uapp /force f app boundary conditions. The bounded domain contains an atomistic

region embedded inside it where material defects like voids, precipitates, etc., exist, requiring

atomistic resolution for the accuracy of the solution. We call this atomistic region ΛI ⊂Λc

embedded inside the bounded domain. Similar to the infinite domain FBCM algorithm (Chap-

ter 3), we define domainsΛI ,ΛI I andΛI I I domains. The domainΛI I is within cutoff radius rc

of every atom inΛI defined by the interatomic potential of the underlying crystal. The domain

ΛI I I atoms are required outside ΛI+I I domains and within cutoff rc of every atom inΛI I so

that the forces in the domainΛI I atoms can be calculated accurately as if they are non-surface

atoms. In addition to that, we define ΛIV atoms outside the ΛI+I I+I I I but within bounded

domain Λc , which will be entirely treated linearly using the bounded LGFM formulation.

Thus the bounded domainΛc is subdivided into four non-overlapping regionsΛI ,ΛI I ,ΛI I I ,

and ΛIV as shown in Figure 7.1(a). We divide the bounded FBCM problem into two sub-
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problems: (a) atomistic problem containingΛI+I I+I I I and (b) bounded LGFM problem with

linear bounded domainΛc , surface atomsΛ− andΛI I to pass body forces information from

atomistic problem to LGFM problem. We need to solve both problems iteratively to obtain the

converged solution in the entire bounded domain Figure 7.1. The details of the algorithm for

three different types of boundary conditions are given in Sections 7.2.1, 7.2.2 and 7.2.3.

(a) Full A/C boundary value problem

(b) Atomistic problem (c) Bounded LGFM problem

Figure 7.1: (a) Full A/C coupling boundary value problem with the FBCM at A/C interface
and the bounded LGFM on the outer surface. (b, c) Atomistic and bounded LGFM problems
are iteratively solved to obtain the fully converged results. The connection between the two
problems is made using the forces in theΛI I atoms

7.2.1 Dirichlet Boundary Condition

First, we present the LGFM and FBCM coupling algorithm for the Dirichlet boundary condition

when the surface atoms are subjected to the displacements boundary condition uapp (ξ) for

104



7.2 LGF-based A/C boundary value problem

every ξ ∈Λ−.

1. LGFM Problem(Figure 7.1(c)): We start our algorithm with the initial solution and assign

the iteration number ι= 0. We solve the LGFM problem in the whole bounded domain

(Λc ), to calculate the surface forces f ιs in Λ− assuming the displacement field uapp is

applied on the surface atoms and the body forces f ιb = 0 in theΛI I atoms,∑
ξ
′∈Λ−

G(ξ−ξ′
) f ιs(ξ

′
) = uapp (ξ)− ∑

ξ
′∈Λ−

F (ξ,ξ
′
)uapp (ξ

′
), ∀ξ ∈Λ− (7.1)

Now we calculate the displacements uι in theΛI I+I I I atoms using

uι(ξ) = ∑
ξ
′∈Λ−

G(ξ−ξ′
) f ιs(ξ

′
)+ ∑

ξ
′∈Λ−

F (ξ,ξ
′
)uapp (ξ

′
), ∀ξ ∈ΛI I+I I I (7.2)

Note the above equation is also valid for the ΛIV atoms as we are solving the LGFM

problem for the whole domain, but we will calculate the displacements in theΛIV atoms

during the post-processing phase. Now we increase the iteration number ι= 1.

2. Atomistic Problem(Figure 7.1(b)): Solve the atomistic problem by relaxing theΛI atoms

to obtain the displacement field uι inΛI with theΛI I atoms fixed at the displacement

field uι−1. Also, obtain forces f ιb inΛI I atomistically using the displacements uι inΛI

obtained after atomic relaxation and uι−1 displacements inΛI I+I I I . If ∥ f ιb∥ < ϵ, where ϵ

is some predefined tolerance parameter, then STOP and go to post-processing the step

4.

3. LGFM Problem(Figure 7.1(c)): The next step is to relax the non-zero spurious forces

f ιb produced during the previous step using the LGFM problem. As the displacement

boundary condition uapp is already applied on the surface atoms in the initial step, we

apply zero displacements on the surface atoms in this step to satisfy the superposition

principle at the boundary. Therefore, solve the LGFM problem with zero displacements

on the surface atoms and − f ιb forces inΛI I to relax the spurious forces. Hence, calculate

the surface forces f ιs inΛ− using∑
ξ
′∈Λ−

G(ξ−ξ′
) f ιs(ξ

′
) =− ∑

ξ
′∈ΛI I

G(ξ−ξ′
)
(
− f ιb(ξ

′
)
)

, ∀ξ ∈Λ−, (7.3)

and then obtain the displacement field uι inΛI I+I I I using

uι(ξ) = uι−1(ξ)+ ∑
ξ
′∈Λ−

G(ξ−ξ′
) f ιs(ξ

′
)+ ∑

ξ
′∈ΛI I

G(ξ−ξ′
)
(
− f ιb(ξ

′
)
)

, ∀ξ ∈ΛI I+I I I . (7.4)

Here again, the above equation is valid for theΛIV atoms which we shall deal with in the

post-processing stage. Now the iteration number is updated as ι← ι+1, and we move to

step 2.
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4. Post-processing: Steps 1-3 ensure that we get the converged displacement field in

ΛI+I I+I I I . As Equations (7.2) and (7.4) are valid for theΛIV atoms, we can sum up these

equations for ξ ∈ΛIV up to the final iteration number to obtain the displacement field

in theΛIV atoms. Thus, the displacement u(ξ) in any atom ξ inΛIV can be calculated

using

u(ξ) = ∑
ξ
′∈Λ−

G(ξ−ξ′
)

(
ι∑

j=0
f j

s (ξ
′
)

)
+ ∑
ξ
′∈Λ−

F (ξ,ξ
′
)uapp (ξ

′
)

+ ∑
ξ
′∈ΛI I

G(ξ−ξ′
)

(
−

ι∑
j=0

f j
b(ξ

′
)

)
, ∀ξ ∈ΛIV . (7.5)

7.2.2 Neumann Boundary Condition

Now, we apply the Neumann boundary condition on the surface atoms. We assume that the

force f app (ξ) is applied on all the surface atoms ξ inΛ−. Then the coupling algorithm can be

expressed as follows.

1. LGFM Problem: Again, we start our algorithm with the initial solution and assign the

iteration number ι= 0. The boundary displacements in the surface atoms are unknown

for this problem; therefore, we assume that the boundary displacement at each iteration

ι is δuι and the final displacement field in the surface atoms is the summation of all

these "perturbed" displacements at each iteration. Now, we solve the LGFM problem in

the whole bounded domain (Λc ) to calculate the perturbed displacements δuι in the

surface atomsΛ− assuming the force field f app is applied on surface atoms and body

forces f ιb = 0 inΛI I atoms,

∑
ξ
′∈Λ−

(
δ
ξ,ξ

′ I −F (ξ,ξ
′
)
)
δuι(ξ

′
) = ∑

ξ
′∈Λ−

G(ξ−ξ′
) f app (ξ

′
), ∀ξ ∈Λ−. (7.6)

Now we calculate the displacements uι in theΛI I+I I I atoms using

uι(ξ) = ∑
ξ
′∈Λ−

G(ξ−ξ′
) f app (ξ

′
)+ ∑

ξ
′∈Λ−

F (ξ,ξ
′
)δuι(ξ

′
), ∀ξ ∈ΛI I+I I I (7.7)

Again, the above equation is also valid for the ΛIV atoms as we are solving the LGFM

problem for the whole domain, but we will calculate the displacements in theΛIV atoms

during the post-processing phase. Now we increase the iteration number ι= 1.

2. Atomistic Problem: The atomistic problem remains the same as the previous one.

Hence, solve the atomistic problem by relaxing theΛI atoms to obtain the displacement

field uι in ΛI with the ΛI I atoms fixed at the displacement field uι−1. Also obtain the
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7.2 LGF-based A/C boundary value problem

forces f ιb in ΛI I atomistically using the displacements uι in ΛI obtained after atomic

relaxation and uι−1 displacements in ΛI I+I I I . If ∥ f ιb∥ < ϵ, then STOP and go to the

post-processing step 4.

3. LGFM Problem: The next step is to relax the non-zero spurious forces f ιb produced

during the previous step using the LGFM problem. As the force boundary condition

f app is already applied on the surface atoms in the initial step, we apply zero forces on

the surface atoms in this step to satisfy the superposition principle on the boundary as

in the case of the Dirichlet boundary condition. Therefore, solve the LGFM problem

with zero forces on the surface atoms and − f ιb forces inΛI I to relax the spurious forces.

Thus, calculate the perturbed displacements δuι for this iteration inΛ− using∑
ξ
′∈Λ−

(
δ
ξ,ξ

′ I −F (ξ,ξ
′
)
)
δuι(ξ

′
) = ∑

ξ
′∈ΛI I

G(ξ−ξ′
)
(
− f ιb(ξ

′
)
)

, ∀ξ ∈Λ−, (7.8)

and then obtain the displacement field uι inΛI I+I I I using

uι(ξ) = uι−1(ξ)+ ∑
ξ
′∈Λ−

F (ξ,ξ
′
)δuι(ξ

′
)+ ∑

ξ
′∈ΛI I

G(ξ−ξ′
)
(
− f ιb(ξ

′
)
)

, ∀ξ ∈ΛI I+I I I . (7.9)

The above equation is again valid for the ΛIV atoms which we shall deal with in the

post-processing stage. Now the iteration number is updated as ι← ι+1, and we move to

step 2.

4. Post-processing: Again, steps 1-3 ensure that we get the converged displacement field

in ΛI+I I+I I I . As Equations (7.7) and (7.9) are valid for the ΛIV atoms, we can sum up

these equations for ξ ∈ΛIV up to the final iteration number to obtain the displacement

field inΛIV atoms. Thus, the displacement u(ξ) in any atom ξ inΛIV can be calculated

using

u(ξ) = ∑
ξ
′∈Λ−

G(ξ−ξ′
) f app (ξ

′
)+ ∑

ξ
′∈Λ−

F (ξ,ξ
′
)

(
ι∑

j=0
δu j (ξ

′
)

)

+ ∑
ξ
′∈ΛI I

G(ξ−ξ′
)

(
−

ι∑
j=0

f j
b(ξ

′
)

)
, ∀ξ ∈ΛIV . (7.10)

7.2.3 Mixed boundary condition

The above algorithms for the Dirichlet and the Neumann boundary conditions can be eas-

ily modified for Mixed boundary conditions. For the sake of brevity, we express the post-

processing displacement solution u(ξ) for any atom ξ inΛIV when the displacements uapp is
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applied onΛ−
u ⊂Λ−, and the forces f app is applied onΛ−

t ⊂Λ−,

u(ξ) = ∑
ξ
′∈Λ−

t

G(ξ−ξ′
) f app (ξ

′
)+ ∑

ξ
′∈Λ−

u

F (ξ,ξ
′
)uapp (ξ

′
)+ ∑

ξ
′∈Λ−

u

G(ξ−ξ′
)

(
ι∑

j=0
f j

s (ξ
′
)

)

+ ∑
ξ
′∈Λ−

t

F (ξ,ξ
′
)

(
ι∑

j=0
δu j (ξ

′
)

)
+ ∑
ξ
′∈ΛI I

G(ξ−ξ′
)

(
−

ι∑
j=0

f j
b(ξ

′
)

)
, ∀ξ ∈ΛIV , (7.11)

where, δuι is the perturbed displacements inΛ−
t , f ιs is the surface forces inΛ−

u and f ιs is the

body forces inΛI I at the iteration number ι.

7.2.4 Special case: Infinite FBCM

Now, we revisit the infinite FBCM algorithm (Chapter 3) within the same framework as dis-

cussed above for the bounded LGFM/FBCM coupling. In this case, there are no outer surface

atoms where one can apply displacement or forces. The continuum regions extend to infinite;

therefore, ΛIV =Λ∞−ΛI+I I+I I I is defined as lattice sites other than ΛI+I I+I I I , as shown in

Figure 7.2(a).

We again divide the problem into two sub-problems in Figure 7.2(b,c), where the solution for

infinite LGFM problem for the forces f inΛI I can be simply obtained using the superposition

principle,

u(ξ) = ∑
ξ
′∈ΛI I

G(ξ−ξ′
) f (ξ

′
), ∀ξ ∈ΛI+I I+I I I+IV . (7.12)

Therefore, the coupling between the FBCM and the infinite LGFM (original FBCM (Sinclair

et al., 1978)) can be achieved using the following algorithm.

1. Infinite LGFM Problem(Figure 7.2(c)): We start our algorithm with the initial solution

and assign the iteration number ι= 0. Next, we assume the forces f ι = 0 in theΛI I atoms

, and therefore the displacements uι in theΛI I+I I I atoms is

uι(ξ) = ∑
ξ
′∈ΛI I

G(ξ−ξ′
)
(

f ι(ξ
′
)
)
= 0, ∀ξ ∈ΛI I+I I I (7.13)

Note that the above equation results in a zero displacement solution for the initial

solution, which is also the conclusion from our discussion of the original FBCM in

Chapter 3. Again, the above equation is valid also forΛIV as we are solving an infinite

LGFM problem for the whole domain, but we will do the calculation of displacements in

ΛIV atoms during the post-processing phase. Now we increase the iteration number

ι= 1.
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7.2 LGF-based A/C boundary value problem

(a) atomistic and infinite continuum
region coupling

(b) Atomistic problem (c) infinite LGFM problem

Figure 7.2: (a) Atomistic region embedded inside the infinite continuum region solved using
the FBCM and infinite LGFM (b, c) Atomistic and infinite LGFM problems are iteratively solved
to obtain the fully converged results. The connection between the two problems is made using
the forces in theΛI I atoms

2. Atomistic Problem(Figure 7.2(b)): Solve the atomistic problem relaxing theΛI atoms

to obtain the displacement field uι inΛI withΛI I atoms fixed at the displacement field

uι−1. Also obtain the forces f ι in ΛI I atomistically using the displacements uι in ΛI

obtained after the atomic relaxation and uι−1 displacements inΛI I+I I I . If ∥ f ι∥ < ϵ, then

STOP and go to post-processing Step 4.

3. Infinite LGFM Problem(Figure 7.2(c)): The next step is to relax the non-zero spurious

forces f ι produced during the previous step using the LGFM problem. Therefore, solve

the infinite LGFM problem with zero displacements with − f ι forces inΛI I to relax the

non-zero spurious forces and then obtain the displacement field uι inΛI I+I I I using

uι(ξ) = uι−1(ξ)+ ∑
ξ
′∈ΛI I

G(ξ−ξ′
)
(
− f ι(ξ

′
)
)

, ∀ξ ∈ΛI I+I I I . (7.14)

Here again, the above equation is valid for theΛIV atoms which we shall deal with in the

post-processing stage. Now the iteration number is updated as ι← ι+1, and we move to

Step 2.

4. Post-processing: Steps 1-3 ensure that we get the converged displacement field in
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ΛI+I I+I I I . As Equations (7.13) and (7.14) are valid for the ΛIV atoms, we can sum up

these equations for ξ ∈ΛIV up to the final iteration number to obtain the displacement

field inΛIV atoms. Thus, the displacement field u in any atom ξ inΛIV can be calculated

using

u(ξ) = ∑
ξ
′∈ΛI I

G(ξ−ξ′
)

(
−

ι∑
j=0

f j (ξ
′
)

)
, ∀ξ ∈ΛIV . (7.15)

7.3 Coarsened LGFM and FBCM coupling

As discussed in Chapter 5, the boundary surfaceΛ− may contain millions of atoms, making

the above exact LGFM and FBCM coupling algorithms computationally prohibitive. Therefore,

we now integrate the coarsened LGFM with the FBCM such that the coarsened boundary

Λh containing N h atoms replaces the actual surface atoms Λ− containing N− atoms. We

assume N h ≪ N−. The modification to the coarsened LGFM is straightforward, hence, we only

explain the algorithm for the Dirichlet boundary conditions and discuss the corresponding

computational cost for each step. We also assume that N I I and N I I I are the number of atoms

inΛI I andΛI I I , respectively.

1. Coarsened LGFM Problem: We start with the initial solution and assign the iteration

number ι= 0. Now, solve the coarsened LGFM problem in the whole bounded domain

(Λc ) to calculate the surface forces f ιs in Λh assuming the displacement field uapp is

applied on the surface atoms and the body forces f ιb = 0 in theΛI I atoms ,∑
ξ
′∈Λh

G̃(ξ,ξ
′
) f ιs(ξ

′
) = uapp (ξ)− ∑

ξ
′∈Λh

F̃ (ξ,ξ
′
)uapp (ξ

′
), ∀ξ ∈Λh . (7.16)

The above equation involves coarsened [G̃], [F̃ ] (Equations (5.7) and (5.6)) matrices of

size N h ×N h , which need to computed and stored in the memory before the simula-

tions. Similarly, the pseudo-inverse of [G̃] can be computed in the memory to save the

computational costs during the simulation. Using this strategy, the above equation cost

O ((N h)2). Now we calculate the displacements uι in theΛI I+I I I atoms using

uι(ξ) = ∑
ξ
′∈Λh

G̃(ξ,ξ
′
) f ιs(ξ

′
)+ ∑

ξ
′∈Λh

F̃ (ξ,ξ
′
)uapp (ξ

′
), ∀ξ ∈ΛI I+I I I , (7.17)

which involves the coarsened [G̃], [F̃ ] matrices of size N I I+I I I × N h and the matrix-

vector multiplications. In 3D problems, N I I+I I I with finite rc ≈ 3 a, can approach a

million atoms; therefore the possibility of using the H -matrices(Chapter 6) should be

explored to improve the computational cost associated with this equation. Also, as
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these matrices need to be constructed before the simulation, one can explore using the

H -matrix approximation directly on the exact LGFM matrices of size [G], [F ] of sizes

N I I+I I I ×N h instead of using the coarsened matrices. Now, we increase the iteration

number ι= 1.

2. Atomistic Problem: The atomistic problem remains the same. We repeat it for the sake

of completion. Solve the atomistic problem in which relax theΛI atoms to obtain the

displacement field uι in ΛI with ΛI I atoms fixed at the displacement field uι−1. Also

obtain the forces f ιb inΛI I atomistically using the displacements uι inΛI obtained after

the atomic relaxation and uι−1 displacements inΛI I+I I I . If ∥ f ιb∥ < ϵ, then STOP and go

to the post-processing step 4.

3. Coarsened LGFM Problem: Again, the next step is to relax the non-zero spurious forces

f ιb produced during the previous step using the LGFM problem. As the displacement

boundary condition uapp is already applied on the surface atoms in the initial step, we

apply zero displacements on the surface atoms in this step to satisfy the superposition

principle. Therefore, solve the LGFM problem with zero displacements on the surface

atoms and − f ιb forces inΛI I to relax the spurious forces. Hence, calculate the surface

forces f ιs inΛh using∑
ξ
′∈Λh

G̃(ξ,ξ
′
) f ιs(ξ

′
) =− ∑

ξ
′∈ΛI I

G(ξ−ξ′
)
(
− f ιb(ξ

′
)
)

, ∀ξ ∈Λh . (7.18)

The remarks about the computational cost associated with Equation (7.16) can be

repeated here. Also, here the matrix-vector multiplication for [G] matrix of size N h ×N I I

is required, where one can explore the use of the H -matrices if N h ∼ N I I . Then, the

displacement field uι inΛI I+I I I can be obtained using

uι(ξ) = uι−1(ξ)+ ∑
ξ
′∈Λh

G̃(ξ,ξ
′
) f ιs(ξ

′
)+ ∑

ξ
′∈ΛI I

G(ξ−ξ′
)
(
− f ιb(ξ

′
)
)

, ∀ξ ∈ΛI I+I I I . (7.19)

Here again, the same arguments about the computational cost can be made as previously

elaborated for Equation (7.17). Also, the above equation involves the matrix-vector

multiplication for [G] matrix of size N I I+I I I ×N I I , which is an ideal case for efficient use

of H -matrix approximation (Hodapp et al., 2019; Hodapp, 2021b). Now the iteration

number is updated as ι← ι+1, and we move to Step 2.

4. Post-processing: Steps 1-3 ensure that we get the converged displacement field in

ΛI+I I+I I I . As Equations (7.17) and (7.19) are valid for the ΛIV atoms, we can sum up

these equations for ξ ∈ΛIV up to the final iteration number to obtain the displacement

field in ΛIV atoms. Thus, the displacement field u(ξ) in any atom ξ in ΛIV can be

111



Chapter 7. Coupling LGFM and FBCM

calculated using

u(ξ) = ∑
ξ
′∈Λh

G̃(ξ,ξ
′
)

(
ι∑

j=0
f j

s (ξ
′
)

)
+ ∑
ξ
′∈Λh

F̃ (ξ,ξ
′
)uapp (ξ

′
)

+ ∑
ξ
′∈ΛI I

G(ξ−ξ′
)

(
−

ι∑
j=0

f j
b(ξ

′
)

)
, ∀ξ ∈ΛIV . (7.20)

Here, the computational cost of the operation depends on the number of lattice sites

(say, N ) in theΛIV in which the displacement solution is required. The position of the

lattice sites where one needs to find the solution is unknown before the simulations and

therefore requires on-the-fly construction of the coarsened Green’s function matrices of

sizes N ×N I I and [G] matrix of size N ×N I I during the simulation.

We have concluded in Chapter 6 that the H -matrices are suitable for on-the-fly compu-

tational due to the high cost of the initial matrix compression algorithms used at the time

of their construction. One way forward is to use the adaptive level set method (Wang

and Xiang, 2013) where the coarsened matrices or the corresponding H -matrices can

be constructed before the simulations on the predefined grids. Then the solution on

the points of interest can be calculated using the interpolation from the solutions of

associated grid points in the region of the points of interest.

7.4 Computational and Memory requirements

In this section, we will discuss the scalings of the computational and memory costs associ-

ated with the coarsened LGFM/FBCM coupling problem discussed in the previous section.

Throughout this section, we emphasize the cost of the coupling algorithm during the sim-

ulations and point out the matrices or pseudoinverses, which can be calculated during the

pre-processing phase before the simulations.

To understand the scaling for the LGFM/FBCM coupling problem, we design a 3D model ex-

ample problem below. We take a spherical atomistic domain of diameter D inside a coarsened

LGFM FCC box of side length L with coarsening length scale h as our model problem. To

calculate the solutions inside the FCC box on evolving DD nodes during the simulations, we

use a pre-defined regular cubic grid with hg spacing with total grid points N inside the FCC

box. We assume that the cutoff radius for the atomistic domain is rc and identify the domains

ΛI ,ΛI I , andΛI I I accordingly, with N I , N I I , and N I I I atoms respectively. We assume rc = 2 a

for our scaling arguments. The number of atoms in relevant LGFM/FBCM domains is then

given as follows.

N− = 12

(
L

a

)2
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N h = 6

(
L

h
+1

)2

N =
(

L

hg
+1

)3

N I = 16πD3

24a3

N I I = 16πrc

3a3

(
r 2

c + 3D2

4
+ 3Drc

2

)

N I I+I I I = 32πrc

3a3

(
4r 2

c + 3D2

4
+3Drc

)
The memory and computational cost scalings depend on the interplay of the dimensionless

length scales L/a, L/h, D/a, and L/hg , as discussed below. Better accuracy in the coarsened

LGFM solutions is achieved for higher L/h and L/hg ratios. Larger values of D can incorporate

large atomistic domains within which nonlinear defects are represented.

For our scaling analysis, the coupled coarsened LGFM/FBCM problem can be subdivided into

the LGFM surface problem and the LGFM interior problem, as discussed in Chapter 6. The

LGFM surface problem is required to calculate the unknown displacements/surface forces on

the boundary and the LGFM interior problem is used to calculate displacements inside the

bounded domain.

First, we discuss the scaling for the LGFM surface problem in the context of LGFM/FBCM cou-

pling. The governing equation for the coarsened LGFM surface problem when displacement

boundary conditions uapp are applied on the surface atoms is

fs (ξ) = ∑
α∈Λh

G̃
−1

(ξ,α)

uapp (α)− ∑
α

′∈Λh

F̃ (α,α
′
)uapp (α

′
)− ∑

ξ
′∈ΛI I

G(α,ξ
′
) fb(ξ

′
)

 , ∀ξ ∈Λh .

(7.21)

Here, [G̃
−1

] is the pseudoinverse of the coarsened Green’s function matrix [G̃]. The coarsened

Green’s function matrix [G̃] and the additional matrix [F̃ ] are of sizes 3N h ×3N h , and the size

of Green’s function matrix [G] connecting the FBCM internal boundary to the coarsened LGFM

outer boundary is 3N h ×3N I I .

Though the LGFM surface problem requires the numerical inversion of Green’s function

matrices, the pseudoinverse of these matrices can be computed before the actual simulations.

Then, only matrix-vector multiplications are needed during the actual simulations. The

pseudoinverse of coarsened Green’s function matrix [G̃] of size 3N h ×3N h (computed using,

for example, LU decomposition) can be calculated with cost scaling as O (27(N h)3) ∼ (L/h)6,
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independent of N I I or D . The memory requirement for this operation scales as O (9(N h)2) ∼
(L/h)4. Both memory and computational cost requirements are independent of N− or L.

An estimate of the computational requirements for a system size L = 1000 a with h = 25 a

(L/h = 40), the largest size simulated in this work, on an Intel Core i7–7820X CPU are a memory

of 8 GB and computational time of approximately 2 hours.

Further, the coarsened Green’s function matrices [G̃] and [F̃ ] can be computed before the

simulations using the following relations.

G̃(ξ,α) = ∑
ξ
′∈Λ−

G(ξ,ξ
′
)φα(ξ

′
), ∀ξ,α ∈Λh . (7.22)

Similar relation can be written for [F̃ ] matrix. Here [φ] is the sparse shape function matrix

for which the memory requirement scales as O (N−) ∼ (L/a)2. Figure 7.3 shows the 100 GB

contour line for the memory requirement for constructing the coarsened Green’s function

matrices. Simulation domains with approximately L/h < 70 and L < 10,000a are possible in a

100 GB RAM system. Further, in Equation (7.22), the summation over the non-zero entries

of the shape function matrix can be easily parallelized for each entry of [G̃] matrix. Each

such summation scales as O (72h), so the total cost of the coarsened matrix construction is

O (72h(N h)2) ∼ 72h(L/h)4. The current serial implementation of the in-house code performs

this calculation in 15 hours for L = 1000 a,h = 25 a, which can be improved using a parallelized

version of the code.

Figure 7.3: Contour of 100 GB memory requirment for constructing coarsened Green’s function
matrices for LGFM surface problem (Equation (7.22)).

Next, we focus on the cost of computing Equation (7.21) during the simulations if the coars-

ened matrices and pseudoinverse are constructed before the simulations. The memory re-
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quirements for the matrix-vector operations involving Equation (7.21) for the LGFM surface

problem scale as (L/h)4 and (D/a)2. The strong dependence on D/a is due to the Green’s

function matrix [G], which relates the internal boundary with the outer boundary matrix of

the size 3N h ×3N I I . To reduce the strong dependence on D/a, an efficient compression of

this matrix would be required before the simulations using H -matrix techniques.

As a next step, we analyze the computational and memory cost associated with the LGFM

interior problem. For LGFM/FBCM coupling algorithm, the displacements of atoms in the

domainΛI I+I I I are required. Also, to find the solution on the evolving DD nodes inside the

bounded domain, we can compute the solution on a predefined grid inside the bounded

domain. We define the points on the predefined grids asΛ domain containing N points. Thus,

the LGFM interior problem involving matrix-vector multiplications can be expressed as

u(ξ) = ∑
α∈Λh

G̃(ξ,α) fs (α)+ ∑
α∈Λh

F̃ (ξ,α)uapp (α)

+ ∑
ξ
′∈ΛI I

G(ξ,ξ
′
) fb(ξ

′
), ∀ξ ∈ΛI I+I I I andΛ. (7.23)

This equation involves coarsened Green’s function matrices [G̃] [F̃ ] of size 3N I I+I I I ×3N h and

3N×3N h , and a Green’s function matrix [G] of size 3N I I+I I I×3N I I and 3N×3N I I . As explained

above, the coarsened Green’s function matrices can be constructed before the simulations. For

our example problem, the cost of construction of these coarsened Green’s function matrices is

72(h/a)(D/a)2(L/h)2 and 72(h/a)(L/hg )3(L/h)2 while the memory bottleneck of storing the

shape function matrix with scaling (L/a)2 still holds. Figure 7.4 shows the 100 GB contours

of memory requirement for constructing the coarsened Green’s function matrices for the

LGFM interior problem. The solution inΛI I+I I I depends on the length scale D/a along with

L/a and L/h. For a given D/a value, the permissible values of length scales L/a and L/h for

the simulation domain on a 100 GB RAM machine can be obtained using these figures. As

we expect, increasing D from D = 20a to D = 100a reduces the permissible L/h allowed for

constructing coarsened matrices. Similarly, the memory requirement for the solution on the

predefined grid of size hg depends on L/hg along with L/a and L/h. Again, increasing L/hg

reduces the permissible L/h values for a system with 100 GB RAM.

Once the corresponding Green’s function matrices are constructed for the above LGFM interior

problem, the computational cost of the problem during the simulations only depends on

the matrix-vector operations involving these matrices, which scale as the size of the matrices

involved. For solutions in ΛI I+I I I , the matrix sizes scale as (D/a)4 and (D/a)2(L/h)2. As

explained before for the LGFM surface problem, the strong dependence on D/a can be

reduced using the H -matrix compression techniques on Green’s function matrix [G] of size

3N I I+I I I ×3N I I . Similarly, for the predefined grid of size hg , the memory scaling depends

on (L/hg )3(L/h2). Due to the strong dependence on the L/hg ratio, it is important to devise
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(a) solution inΛI I+I I I (b) solution in predefined gridΛ

Figure 7.4: Contours of 100 GB memory requirement for constructing coarsened Green’s
function matrices for the LGFM interior problem (Equation (7.23))

an efficient adaptive scheme in which only the sub-blocks of the matrices involving the grid

points where DD nodes are present in the simulations are populated into the RAM as a part of

future development.

Table 7.1: Summary of LGFM/FBCM coupling algorithm cost

Memory Computational

LGFM surface problem
LU-decomposition (L/h)4 (L/h)6

Coarsened matrices (L/h)4 + (L/a)2 72(h/a)(L/h)4

Simulation runtime (D/a)2(L/h)2+ (D/a)2(L/h)2+
(L/h)4 (L/h)4

LGFM interior problem
inΛI I+I I I

Coarsened matrices (D/a)2(L/h)2+ 72(h/a)(D/a)2(L/h)2

(L/a)2

Simulation runtime (D/a)2(L/h)2+ (D/a)2(L/h)2+
(D/a)4 (D/a)4

LGFM interior problem
in predefined grid

Coarsened matrices (L/hg )3(L/h)2+ 72(h/a)(L/hg )3(L/h)2

(L/a)2

Simulation runtime (L/hg )3(L/h)2+ (L/hg )3(L/h)2+
(D/a)2(L/hg )3 (D/a)2(L/hg )3

Based on the above discussion, we summarize the computational and memory cost associated

with the full coarsened LGFM/FBCM coupling algorithm in Table 7.1.
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Figure 7.5: Contours of 100 GB memory requirement for full LGFM/FBCM coupled problem
(Equations (7.21) and (7.23)) during the simulation runtime.

We now evaluate the memory bottleneck during the simulation runtime for the full LGFM/F-

BCM coupled problem. To calculate the memory requirement during simulation runtime, we

add the RAM required for the LGFM surface problem and LGFM interior problem (both for

ΛI I+I I I and predefined grid). This scaling depends on the length scales L/h, D/a, and L/hg .

Figure 7.5 shows the contour line for the memory requirement for various L/hg values if the

CPU RAM is limited to 100 GB. Thus, for the given L/hg value, we can decide the permissible

D/a and L/h values possible in a 100 GB RAM system during the simulation runtime. As

the coarsened Green’s function matrices can be constructed before the simulation, these

matrices for each subproblem (LGFM surface, LGFM interior inΛI I+I I I and predefined grid)

can be constructed individually utilizing the full 100 GB RAM for each subproblem. After

choosing the best possible L/hg , D/a, and L/h length scales for the 100 GB RAM system, we

refer to Figures 7.3 and 7.4 to determine the maximum FCC box size L that can be constructed

corresponding coarsened Green’s function matrices before the simulations. For example, for

L/hg = 50, if we chose L/h = 20 and D/a = 10, we can use an FCC box of size L = 10,000 a in a

100 GB RAM system.

7.5 Validation

We validate the above FBCM and LGFM coupling algorithms for the simpler example problems

and understand the effect of the LGF-CGF transition length scale dc by comparing the coupling

solution with the reference solution. We restrict ourselves to a 2D hexagonal lattice prob-
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lem Figure 7.6. An atomistic region of radius r1 is embedded inside the linear LGFM hexagonal

domain defined by Appendix A.5 with r2 = L. We identifyΛI ,ΛI I ,ΛI I I andΛIV regions for the

problem. For the sake of simplicity, we assume that the atomistic region is linear in which

every atom is connected to its first neighbor rc = a by the linear springs. The force constant

tensor for such interaction can be obtained for lattice constant a and shear modulus µ using

Appendix A.1. The Poisson ratio is taken as ν= 0.25. The same interaction law is assumed in

the linear LGFM region. This will eliminate any errors caused due to nonlocal-local coupling

of atomistic and continuum domains, and we can focus our attention on the errors caused

dues to the LGF-CGF transition.

(a) TC-I (b) TC-II

Figure 7.6: Force multipole test problems to validate the FBCM/LGFM coupling algorithm (a)
force multipole at ∥x∥ = a (b) force multipole at ∥x∥ = 8 a.

Next, we introduce a self-equilibrating force multipole of a force magnitude f per unit out of

the plane dimension inside ΛI near the origin (O) shown in Figure 7.6. We define two force

multipole problems; (a) Test Case I (TC-I): at ∥x∥ = a with the distance between the force

dipoles is 2 a, and (b) Test Case II (TC-II): at ∥x∥ = 8 a with the distance between the force

dipoles is 16 a. These force multipoles mimic the problem of eigenstrain (or point defects) in

the atomistic domain in an infinite domain where the distance between the force dipole gives

the magnitude of the force multipole. The reference solution for this multipole problem in an

infinite domainΛ can be obtained using the superposition principle of LGF

ur e f (ξ) =∑
ξ
′

G(ξ−ξ′
;dc = 600 a) f (ξ

′
), ∀ξ ∈Λ. (7.24)

Here, the reference solution is calculated using dc = 600 a, and we chose r2 < 600 a for all the
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test cases, such that the LGF-CGF transition at dc = 600 a doesn’t affect the reference solution

for the example test problems.

Now, we apply this reference solution as the displacement boundary conditions on the surface

atomsΛ− such that uapp = ur e f . By construction, the solution of this boundary value problem

where the multipole exists inside the ΛI domain and the surface atoms are subjected to

the reference displacement field, should exactly match the reference solution for an infinite

domain.

7.5.1 Exact LGFM solution: no FBCM coupling

First, we solve TC-I with the force multipole at ∥x∥ = a and r2 = 102 a using the exact LGFM

formulation with dc = 5 a,10 a, and 20 a. We apply uapp = ur e f on the surface atoms. No

coupling exists between the FBCM and LGFM, and the boundary value problem is solved using

the direct LGFM formulation discussed in Chapter 4. Figure 7.7 shows the reference solution

and the relative error in the ϵ11 strain component for the boundary value problem. The results

are shown using two kinds of representation. We show the relative error at a point inside

the bounded domain in the ϵ11(x) strain component vs. the distance of the point from the

origin ∥x∥. The points are color-coded according to the absolute reference solution in the ϵ11

strain component as shown in the figure (top). For example, the points with reference strain

ϵ11 in the range 10−5 −10−4 are shown with the blue colors. Also, we represent the solution

inside the bounded domain in all the points using the 2d contour plots. The points are color

coded, as shown in the color bar on the right side. The top-right 2d contour plot shows the

absolute reference solution, and the middle figure shows the reference error in the ϵ11 strain

component.

We observe the presence of the boundary layer, or the high relative error in the region ∥x∥ ≥
r2
p

3/2−dc to ∥x∥ ≤ r2 due to the LGF-CGF transition length scale dc in the solution which

is expected from our discussions in Chapter 4. Also, as there are body forces at a distance a

from the origin due to the multipole, there is a high error region at a distance dc +a from the

origin (shown in the white circle in contour plots). This error is also associated with LGF/CGF

transition at a distance dc from this force multipole. The magnitude of errors in both the

boundary layers and the high error region due to the force multipole decreases as we increase

dc , as shown in Figure 7.7(bottom).

7.5.2 FBCM and exact LGFM coupling

Now, we solve the TC-I using the FBCM/LGFM coupling with r1 = 10 a,r2 = 100 a and changing

dc = 5 a,10 a and 20 a. Again, we apply the Dirichlet boundary condition with uapp = ur e f at

the surface atoms. Figure 7.8 shows the relative error for strain component ϵ11 as the 1d scatter
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reference solution

dc = 5 a dc = 10 a dc = 20 a

Figure 7.7: Solution for the exact LGFM with no coupling with FBCM for TC-I for r2 = 102 a for
different dc . (top) Normalized ϵ11 component of the reference solution versus distance of the
point from the origin ∥x∥ and corresponding contour plot in the bounded domain. Effect of dc

on the relative error in ϵ11; (middle) Contour plots show the same regions with white dashed
circles and lines; (bottom) Relative error versus distance form the origin; Dotted vertical line
shows distance a +dc from the origin, and black vertical line shows the boundary layer at a
distance r2 − r2

p
3/2+dc from the surface atomsΛ−.

plots and the 2d contour plots as explained above. All the FBCM/LGFM coupling problems

converged to a solution when the tolerance parameter ϵ is set to 10−10 for calculations. Also,

compared to the LGFM solution, the FBCM/LGFM coupling algorithm gives better results in
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theΛI region as they arise from the direct atomistic relaxation (for example, the CG method

involves inversion of stiffness matrix). Further, the high error region exists at a distance

r1 + a +dc for the origin as the coupling consists of the relaxation of forces in ΛI I atoms

using LGF. We also obtain the expected boundary layer of size dc from the outer boundary.

Again, the magnitude of both the reported errors decreases as dc increases, as shown in

Figure 7.8(bottom).

dc = 5 a dc = 10 a dc = 20 a

Figure 7.8: Relative error in ϵ11 strain component for the FBCM and the bounded LGFM
coupling problem for TC-I for r1 = 10 a,r2 = 102 a for different dc . (top) Contour plots show an
inner circle for theΛI region, an outer circle for the high error region at a distance dc fromΛI I ,
and dashed white lines for the boundary layer. (bottom) Relative error versus distance from
the origin. Shaded region showsΛI region; Dotted vertical line shows distance r1+a+dc from
origin, and black vertical line shows boundary layer at a distance r2 − r2

p
3/2+dc from the

surface atomsΛ−.

Next, we solve the TC-II using the FBCM/LGFM coupling algorithm for r1 = 10 a,r2 = 102 a and

varying dc = 5 a,10 a and 20 a. The reference solution and the relative error in the ϵ11 strain

component are shown in Figure 7.9. The TC-II has a larger magnitude of multipole; therefore,

the magnitude of the reference solution is higher in this test problem than TC-I, as shown

in Figure 7.9(top). Also, for these problems, the force multipole exists near theΛI boundary,

which results in higher forces in theΛI I atoms. These higher forces in theΛI I atoms produce

high errors due to the LGF/CGF transition in theΛIV region at a distance dc fromΛI I atoms.

Therefore, TC-II solutions have a high magnitude of the relative error compared to the TC-I

solutions. Similar to the TC-I case, we observe a boundary layer near size dc from the outer
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surface; the magnitude of which decreases as we increase dc (bottom).

reference solution

dc = 5 a dc = 10 a dc = 20 a

Figure 7.9: Results for ϵ11 strain component for the FBCM/LGFM coupling for TC-II for
r1 = 10 a,r2 = 102 a. (top) Normalized reference solution; Effect of dc on relative error; (middle)
Relative error versus distance from the origin; Shaded region showsΛI region; Dotted vertical
line shows distance r1 + a +dc from the origin, and the black vertical line shows boundary
layer at a distance r2 − r2

p
3/2+dc from the surface atomsΛ−. (bottom) Contour plots show

the inner circle for theΛI region, an outer circle for a high error region at a distance dc from
ΛI I , and dashed white lines for the boundary layer.
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7.5.3 FBCM and coarsened LGFM

Now, we demonstrate the coarsened LGFM/FBCM coupling below. We use the coarsened

outer boundary (Λ−) with the atomistic resolved corners, as shown in Figure 7.6 (Section 5.3.1).

Figure 7.10 shows the results for the fixed dc = 20 a, varying h = 50 a(N h ∼ 10),25 a(N h ∼ 30),

and 10 a(N h ∼ 60) with r1 = 10 a and r2 = 102 a.

h = 10 a h = 25 a h = 50 a

Figure 7.10: Relative error in ϵ11 strain component for FBCM/coarsened-LGFM coupling
problems for the TC-II with r1 = 10 a,r2 = 102 a for the different coarsening length scale
h = 10 a,25 a and 50 a. (top) Contour plots show the inner circle for the ΛI region, an outer
circle for a high error region at a distance dc fromΛI I , and dashed white lines for the boundary
layer. (bottom) Relative error versus distance from the origin; Shaded region showsΛI region;
Dotted vertical line shows distance r1+a+dc from the origin, and the black vertical line shows
the boundary layer at a distance r2 − r2

p
3/2+dc from the surface atomsΛ−.

As expected, we observe the relative error in the strain component ϵ11 decreases as the coarsen-

ing length-scale h decreases. Also, the results of h = 10 a with N h ∼ 60 atoms on the coarsened

boundary at dc = 20 a (Figure 7.10) closely match the exact FBCM/LGFM coupling solution

(Figure 7.9) at dc = 20 a with N− ∼ 600 atoms in the exact boundary. This clearly shows the

coarsened boundary with N h ∼ 60 atoms is enough to capture the results from the exact

boundary with N− ∼ 600 atoms.
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7.6 Application: Large 2D system

Next, we use the TC-II problem and apply the coupled FBCM/coarsened-LGFM algorithm

for a large 2D hexagonal lattice system with r1 = 10 a and r2 = 502 a containing three million

atoms in the entire bounded domain. The actual outer boundary (Λ−) contains 3,000 atoms.

Figure 7.11 shows the reference solution for the ϵ11 strain component of the problem vs.

the distance from the origin. The color codes show the absolute reference solution of the

point, as explained in the previous figures. First, we fix dc = 20 a and varies h from 10 a(N h ∼
300),25 a(N h ∼ 120) to 50 a(N h ∼ 60) (Figure 7.11(middle)). We observe no apparent changes

in the relative error for the reference solution of 10−5 order (blue). We expect that due to

the large size, the magnitude of the applied displacement uapp at the boundary is too low.

Therefore its gradients don’t significantly change along the boundary, and the coarsening

length-scale h doesn’t affect the solution.

Due to the above reasons, we expect the error in the solution is due to the LGF-CGF tran-

sition length scale dc . To investigate it, we fix h at 10 a and change dc = 10 a,20 a, and 30 a

(Figure 7.11(bottom)). We observe that the relative error decreases by orders of 10 when

we increase dc from 10 a to 30 a. All the results reiterate our claim about the existence of a

boundary layer in the region dc from the boundary and the high error region at a distance dc

from ΛI I atoms. We also conclude that the errors in the ΛIV region are quite low and aren’t

affected by the dc length scale for the large system sizes.

These results validate our FBCM/LGFM coupling algorithm and show its potential application

for the large 2D systems by integrating it with the coarsened LGFM formulation.

7.7 Summary

Domain decomposition methods like CADD calculate the solution in ΛIV domain in the

post-processing stage using the converged solution of the coupling algorithm whereΛI I (pad

atoms in CADD) andΛ− atoms serve as boundaries of theΛIV region. Therefore, the CADD-

based coupling may require coarsening of the ΛI I atoms. The local shape function based

coarsening ofΛI I atoms is not straightforward given the gradients of the forces/displacements

along ΛI I are expected to be high due to the proximity to the nonlinear atomistic region

(ΛI ). On the other hand, in the FBCM/LGFM-based A/C coupling, the post-processing phase

(Equation (7.11)) doesn’t require the solution of a separate boundary value problem in the

ΛIV region. Here, the boundary only containsΛ− atoms (Λh in case of coarsened-LGFM), and

the ΛI I atoms are treated as the interior atoms. Therefore, in the case of the FBCM/LGFM

coupling, the H -matrices can be used for the efficient memory reduction of the matrices

associated with theΛI I atoms in the future work.
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reference solution

h = 10 a h = 25 a h = 50 a

dc = 10 a dc = 20 a dc = 30 a

Figure 7.11: Results for strain component ϵ11 for FBCM/coarsened-LGFM coupling for large
2D bounded domain with r1 = 10 a,r2 = 502 a; (top) Normalized reference solution; (middle)
coarsening length scale h variation with fixed dc = 20 a; (bottom) dc variation with fixed
h = 10 a.

In this chapter, we successfully couple the LGFM formulation discussed in Chapter 4 with the

FBCM discussed in Chapter 3 to solve the full A/C coupled boundary value problems using

LGF. We discussed the FBCM/LGFM coupled algorithms for different boundary conditions.

We validated the convergence of the iterative algorithm using the simple test cases whose

reference solution can be obtained using the superposition principle of LGF. We also integrated

the coarsened LGFM formulation with the FBCM and discussed various aspects in which H -

matrices can be used to make this algorithm more computationally efficient for the A/C

simulations. At last, we apply the coarsened LGFM/FBCM coupling for the large 2D system
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containing 3 million atoms and show the effects of length scales h and dc on the solution.

Thus, we demonstrate the ability of LGFM/FBCM framework to solve the full A/C coupling

boundary value problems.
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8 Conclusion and Future Work

The development and implementation of the LGF-based Atomistic/Continuum coupling

scheme are novel for the field of multiscale modeling. Existing coupling methods (taking the

quasicontinuum and CADD methods as the two prototypical methods, although there are

many formulations) use finite elements (FE), with hyperelasticity or linear elasticity, in the

continuum. Enabling accurate coupling to the atomistic domain requires that the FE to be

resolved down to the atomistic scale in a "pad" region around the atomistic domain. The

FE domain is then coarsened, using ad-hoc strategies, to reduce the degrees of freedom in

the continuum domain. For large sizes, the inversion of the 3D stiffness matrix is extremely

costly and rarely done; storage of the inverted stiffness matrix being fully dense is also memory

intensive. Hence, there are very few large 3D simulations of this type. To our knowledge,

the boundary element method (BEM) has not been used in these problems. The LGF-based

Atomistic/Continuum coupling replaces the FE approach with a BEM-type approach. It results

in dense Green’s function matrices of much smaller size than those in the FE counterpart since

the number of degrees of freedom scales with the surface area of the domain rather than the

volume.

In this work, we revisited the traditional LGF-based flexible boundary condition method

(FBCM) (Chapter 3) used for Atomistic/Continuum coupling for atomistic and infinite contin-

uum domains (Sinclair et al., 1978). The FBCM has not been used in full atomistic-continuum

coupling methods to date. Instead, the outer domain fields are computed with continuum

methods, such as finite elements. Here, we have demonstrated the existence of fundamental

problems with the FBCM (Sinclair et al., 1978) using very simple 1D and 2D elastic problems

in the presence of dipole-like self-equilibrating point forces. Any defect eigenstrain can be

represented by a distribution of such point forces, so our findings are of broad generality

despite their simplicity. These errors are also not due to well-established spurious ghost forces

that can be generated by the nonlocality of the interatomic forces when coupling atomistic

and continuum domains (Curtin and Miller, 2003).
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Chapter 8. Conclusion and Future Work

Our work uncovers two fundamental problems in the FBCM. The first problem is that the

FBCM solution is not unique, and it depends on the chosen initial solution in the outer

domains ΛI I+I I I . In the original FBCM work (Sinclair et al., 1978), various initial solutions

were shown to affect results near elastically-singular eigenstrains, but the main focus was on

capturing the resulting nonlinear response in the atomistic domain around the defect. The

standard approach of using an initial displacement field derived from a continuum solution

thus creates intrinsic errors. If the outer boundary is far from the central core region of the

atomistic defects of interest, the effects of the initial solution can be minimized. However,

this requires using large atomistic domains, which is antithetical to the goal of reducing the

atomistic domain size. It also restricts the nonlinear behavior and, thus, the position of the

atomistic defects to a small region in the center of the large atomistic computational domain.

For multiscale problems where atomistic defects may be approaching the atomistic domain

boundary, FBCM problems cannot be avoided, in principle.

The second problem is that a transition from the LGF to the CGF is required for computational

reasons, i.e., an nLGF is needed with some value of dc . The difference between the true LGF and

the nLGF creates spurious forces on atoms placed in the true exact solution or, conversely, leads

to spurious displacements and strains when these spurious forces are relaxed by the FBCM

algorithm. It has been common for researchers to use dc ≤ 5a, which is relatively small and

typically smaller than the atomistic domain size. Such values lead to significant errors near the

outer boundary and especially outside the atomistic domain (but such errors are not important

when the atomistic domain is embedded in an infinite defect-free elastic outer domain). These

errors can be mitigated by using larger dc , but this may incur prohibitive memory requirements

for large, fully 3D domains that would typically be of interest. For example, if one wants to

exactly solve an L = 1000 a problem in a 3D FCC box, then dc >
p

3L ≈ 1800 a with 1 TB storage

cost is required to avoid the effects of any LGF-CGF transition. This storage is not feasible, so

the effects of an LGF-CGF transition will inevitably arise for large-size problems. Interestingly,

however, we find that the role of dc is small when using the continuum solution as the initial

solution.

The second major component of this study was the formulation and implementation of

a discrete Lattice Green’s function method (LGFM) based on continuum BEM (Chapter 4).

Although there is a long history for continuum BEM, the LGFM introduces new features and

complexities; hence, the coarse-grained LGFM is not simply continuum BEM. In addition,

BEM methods have not yet been applied to multiscale coupling problems, especially in 3D.

The LGFM provides a more-natural connection between the "continuum" and atomistic

domains in a multiscale framework. The LGFM has an advantage over the BEM because the

non-singular Lattice Green’s function of the true interatomic potential of the underlying crystal

can be used. However, without coarse-graining, the surface boundary in LGFM is atomistically

resolved and contains billions of degrees of freedom for sizes of interest. Therefore, the
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coarsening graining introduced here is essential for a usable/practical implementation of

the LGFM. We have developed and assessed an LGFM method for general boundary value

problems in a finite domain and have demonstrated its success in a sequence of test problems

of increasing complexity.

We have highlighted the role of the necessary LGF-CGF transition length dc , which generates

intrinsic errors in this method that is, fortunately, restricted to a boundary layer of width

∼ dc and hence manageable. Therefore, for realistic simulations with domain sizes ∼ 10000 a,

choosing dc ≈ 20 a is a viable and robust choice that does not affect the solutions in the interior

of the domain. We tried to mitigate the errors created by the LGF-CGF transition using an

adaptive interpolation scheme using the tree data structure (Gupta et al., 2017) to interpolate

the LGFs in the entire simulation region. This scheme can reduce the errors in the boundary

region dc but creates more significant errors in the region beyond dc , where the most accurate

solutions are needed. Due to the increased error in the interior, we have not discussed that

implementation here. There may yet be other approaches to mitigating the effects of the

LGF-CGF transition. For example, using smoothing functions in reciprocal space, as discussed

by Trinkle (2008), might reduce errors near the boundary layer. These areas remain for future

work.

Further, we introduce a coarsened LGFM formulation to effectively treat millions of atoms on

the outer surface in Chapter 5. Here, we have shown errors due to the coarse-graining scale

h. These errors are a natural consequence of coarse-graining and thus show trends typical of

any other discretized solution methods such as FE. However, compared to FE, the number

of degrees of freedom scales differently because the LGFM only requires discretization of the

surface and not the volume of the domain. Errors here must thus be compared with expected

errors using FE at comparable spatial resolution. The LGFM formulation is complicated,

relative to FE, by the need to carefully partition the domain near the corners and edges due to

the differentΛ+ environments that arise. However, this partitioning can be automated and is

a pre-processing issue, which is not a bottleneck in applications. Here, we have used linear

parametric boundary elements to interpolate boundary displacements and surface forces. A

more robust coarsened LGFM formulation using rational non-uniform B-splines (NURBS) to

interpolate boundary displacements/surface forces/Green’s function tensors, as increasingly

used in continuum BEM (Simpson et al., 2012), could be developed in the future. Also, the

work is limited to the FCC system, but knowledge gained here to treatΛ+ atoms carefully while

coarsening the outer boundary can be used to coarsened the chosen bounded domains for

the BCC and HCP systems in the future.

The coarsened LGFM formulation discussed in this work scales with the number of atoms

in coarsened surface, given the coarsened Green’s function matrices G̃ and F̃ involved in the

formulation is constructed and saved in computer memory before the simulation (Chapter 6).
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Chapter 8. Conclusion and Future Work

Thus in the future, we would like to develop a parallelized MPI version of the coarsened

LGFM to utilize multiple CPU nodes in an HPCE to improve the scaling of the construction

of these matrices a priori to the A/C simulations. Further, in the case of atomistic/discrete

dislocation coupling problems, the location of DD nodes may change during the simulations.

Therefore, the position of points where the solution is required inside the continuum domain

(ΛIV ) is not known a priori to the simulations. For these moving points, the construction of

the coarsened matrices scales as the number of actual atoms in the outer boundary where

boundary forces/displacements are applied, which may have millions of atoms. Therefore, it

is not computationally tractable to construct these matrices on-the-fly during the simulations.

We need to develop an efficient method to compute the stresses on these moving points. One

may explore using state-of-the-art Machine Learning (ML) techniques (Guo and Buehler, 2020),

where one can obtain stresses on any point inside the domain using the grid of significantly

less interior set of points. The other approach that could be investigated is the adaptive level

set approach (Wang and Xiang, 2013), in which the coarsened matrices can be built before

simulations on the predefined grids (using the MPI version of the coarsened LGFM), and the

solution at the points of interest can be calculated using interpolation from the solutions of

associated grid points in the region of the points of interest.

We ultimately demonstrated the LGF-based A/C coupling method using a 2D hexagonal do-

main having a fictitious force multipole embedded inside a linear atomistic region (Chapter 7).

We validated the coupling algorithm and highlighted the effects of dc length scale near the

A/C interface in the continuumΛIV region and the existence of a high error boundary layer of

size dc near the outer surface. The results show the possibility of a boundary layer near the

A/C interface in the continuum region depending on the defect topology inside the atomistic

region when it approaches the continuum region. We can investigate the above coupling

scheme by introducing other defects in the atomistic region and treating the atomistic region

using nonlinear LJ interatomic potentials. This testing framework can further incorporate

3D FCC problems to understand the scaling of errors in 3D problems and study the effect of

nonlocal atomistic potentials and local LGFM interactions (which generate spurious forces

in the traditional energy-based A/C schemes). From the computational aspects, even af-

ter using coarsened LGFM with FBCM in our full A/C problems, the high number of atoms

in A/C interface atoms ΛI I can make the A/C problems computationally intractable; For

example, the atomistic region of 100 a contains two hundred thousand atoms for rc = 3 a.

The Green’s function matrices involvingΛI I atoms are rectangular matrices and require H -

matrix approximation for efficient scaling for solving large-size 3D A/C problems. This require

implementation of 3D coarsened-LGFM/FBCM algorithm with the H -matrices in the future.

For using the above LGF-based A/C framework to study the multiscale plasticity phenomenon,

we need to integrate it with CADD-3D infrastructure (Anciaux et al., 2018; Hodapp et al.,

2018; Cho et al., 2018). The present CADD-3D framework requires developing (i) a dislo-
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cation detection algorithm in the atomistic region, and (ii) a dislocation passing algorithm

from the atomistic to continuum region as discrete dislocations. The state-of-the-art and

robust detection tool DXA (Stukowski et al., 2012; Stukowski and Albe, 2010), implemented

in OVITO (Stukowski, 2009), is computationally intensive for practical use on-the-fly during

the CADD-3D simulations. In the future, an efficient method using Nye tensor (Hartley and

Mishin, 2005; Begau et al., 2012) or Delaunay tesselation (Anciaux et al., 2018; Stukowski,

2014) could be explored to fasten the on-the-fly dislocation detection in the atomistic region.

Regarding the dislocation passing algorithm, there is practically no literature available for

passing a dislocation from atomistic to continuum DD dislocations in 3D. One such method

which can be explored in the future is superimposing the displacement solution of a fictitious

dislocation loop on the incoming dislocation loop at the A/C interface to make it a hybrid

dislocation existing both in atomistic and continuum domains. Further, the CADD algorithm

produces spurious forces on the dislocation while passing them from their atomistic descrip-

tion to a discrete dislocation continuum description (Dewald and Curtin, 2006). We need to

re-investigate the spurious forces and their interplay with LGF/CGF transition length scale,

dc , for our LGF-based coupling scheme. The investigation may require developing new dislo-

cation core "template" solutions introduced for CADD-3D by Anciaux et al. (2018). Recently

developed FBCM for the periodic problem to simulate long dislocations (Hodapp, 2021b) can

provide an effective framework to validate and test multiscale dislocation problems for these

investigations in the future.

Finally, we want to test the LGF-based A/C coupling method for realistic 3D microscale

mechanics of materials problems. Some exciting problems which come to our mind for

future studies are as follows: study the dislocation nucleation from a penny-shaped circular

crack in the 3D cuboid box under applied load (Moller and Bitzek, 2015; Andric and Curtin,

2018), 3D nanoindentation under rigid indentor on the free surface in semi-infinite half

space (Zimmerman et al., 2001; Junge, 2014), and dislocation punching due to the loss of

coherency of inhomogeneous inclusion in a ductile matrix (Weatherly and Nicholson, 1968;

Ashby and Johnson, 1969).

Also, while implementing the work presented in this thesis, we developed a C++ template li-

brary: libLGFM (Hodapp, 2018a) with its interface with pybind11 (Jakob et al., 2017), atomistic

modeling code LAMMPS (Plimpton, 1995), and commercial (free for academic use) hierarchical

matrices code HLIBpro (Ronald, 2020). Due to the lack of support for the multidimensional

elasticity kernel in the HLIBpro library and the computational overhead associated with it,

we want to move to open-source hierarchical matrices code with support for the elastic-

ity kernel (Lecampion, 2022) in the libLGFM library in the future. Furthermore, we need

to integrate libLGFM with ParaDiS (Bulatov et al., 2004) for CADD-3D applications using

LibMultiScale (Anciaux et al., 2006) as a part of the future project.
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A Appendix

A.1 Computation of force constant tensor for the 2D hexagonal lat-

tice

The 2D hexagonal lattice can be related to a finite element plane strain triangular element

representation with material properties shear modulus µ and Poisson ratio ν (Logan, 2016).

The different stiffness coefficients of any node (atom) with its connected nodes (first neighbor

atoms) give the value of the corresponding force constant tensor for that particular neighboring

atom. The analytical expression of the force constant tensor obtained using this approach is

given in Table A.1.

ξ L1,1(ξ) L1,2(ξ) = L2,1(ξ) L2,2(ξ)

(0,0)
p

3µ(4ν−3)
2ν−1 0

p
3µ(4ν−3)

2ν−1

(−a,0) or (a,0) µ(5−4ν)

2
p

3(2ν−1)
0 µ(1−4ν)

2
p

3(2ν−1)

(−a/2,−p3a/2) or (a/2,
p

3a/2) − µp
3

µ
2(2ν−1) − 2µ(ν−1)p

3(2ν−1)

(a/2,−p3a/2) or (−a/2,
p

3a/2) − µp
3

− µ
2(2ν−1) − 2µ(ν−1)p

3(2ν−1)

Table A.1: Components of force constant tensor L for 2D hexagonal lattice with first neighbor
connections obtained using stiffness tensor approach.

A.2 Calculation of force constant tensor for 3D FCC lattice

For the 3D FCC lattice with the first neighbor connections, the cubic elastic constants C11,C12,

and C44 can be related to the various components of the force constant tensor L via Table A.2.

These relations between the nearest-neighbor force constant tensor and continuum elastic

constants are calculated using Equation 2.23 (Leibfried and Breuer, 1978, Section 5.3)
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A
p

p
en

d
ix

ξ L1,1(ξ) L1,2(ξ) = L2,1(ξ) L1,3(ξ) = L3,1(ξ) L2,2(ξ) L2,3(ξ) = L3,2(ξ) L3,3(ξ)

(0,0,0) a (C11 +2C44) 0 0 a (C11 +2C44) 0 a (C11 +2C44)

(0,−a/2, a/2)

or

(0, a/2,−a/2)

− a
4 (−C11 +2C44) 0 0 − a

4 C11
a
4 (C12 +C44) − a

4 C11

(0, a/2, a/2)

or

(0,−a/2,−a/2)

− a
4 (−C11 +2C44) 0 0 − a

4 C11 − a
4 (C12 +C44) − a

4 C11

(−a/2,0, a/2)

or

(a/2,0,−a/2)

− a
4 C11 0 a

4 (C12 +C44) − a
4 (−C11 +2C44) 0 − a

4 C11

(−a/2,0,−a/2)

or

(a/2,0, a/2)

− a
4 C11 0 − a

4 (C12 +C44) − a
4 (−C11 +2C44) 0 − a

4 C11

(−a/2, a/2,0)

or

(a/2,−a/2,0)

− a
4 C11

a
4 (C12 +C44) 0 − a

4 C11 0 − a
4 (−C11 +2C44)

(a/2, a/2,0)

or

(−a/2,−a/2,0)

− a
4 C11 − a

4 (C12 +C44) 0 − a
4 C11 0 − a

4 (−C11 +2C44)

Table A.2: Components of force constant tensor L for the 3D FCC lattice with first neighbor connections.
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A.3 CGF for 2D and 3D cases for isotropic material

If the material is isotropic with shear modulusµ and Poisson ratio, ν, the cubic elastic constants

C11,C12, and C44 can be related to the isotropic material properties as

C11 = 2µ(1−ν)

1−2ν
, (A.1)

C12 = 2µν

1−2ν
, (A.2)

C44 =µ. (A.3)

A.3 CGF for 2D and 3D cases for isotropic material

The CGF for two-dimensional problems under plane strain conditions (Mura, 1982) is given by

Gcg f
i j (ξ) = 1

8πµ(1−ν)

[
ξiξ j

ξ2
1 +ξ2

2

− (3−4ν)δi j log(
√
ξ2

1 +ξ2
2)

]
. (A.4)

The CGF for three-dimensional problems under a point load is given by

Gcg f
i j (ξ) = 1

16πµ(1−ν)

 ξiξ j

(ξ2
1 +ξ2

2 +ξ2
3)3/2

+ (3−4ν)δi j√
ξ2

1 +ξ2
2 +ξ2

3

 . (A.5)

Here, the shear modulus and Poisson ratio of isotropic material are µ and ν, respectively.

A.4 Mathematical definitions of domains in bounded LGFM prob-

lems

Mathematically, we can define a domain of neighbor sites Λrc

ξ
for any atom ξ ∈Λ∞ (infinite

lattice) with cutoff radius rc as

Λ
rc

ξ
= {ξ

′ ∈Λ∞ | L(ξ
′ −ξ) ̸= 0},

= {ξ
′ ∈Λ∞ | ∥ξ′ −ξ∥ ≤ rc }. (A.6)

SupposeΛc is the bounded domain. In that case, the surface atomsΛ− ⊂Λc and corresponding
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Appendix

Λ+ ⊂ Λ∞−Λc outside the bounded region are domains of lattice sites that have non-zero

forces when any atom in the other domain is displaced. Mathematically, we can restate this as

Λ− = ⋃
ξ∈Λ∞−Λc

Λ−
ξ ,

Λ+ = ⋃
ξ∈Λc

Λ+
ξ , (A.7)

where

Λ−
ξ =Λrc

ξ
∩Λc , ∀ξ ∈Λ∞−Λc ,

Λ+
ξ =Λrc

ξ
∩ (
Λ∞−Λc) , ∀ξ ∈Λc .

A.5 Construction of the bounded 2D hexagonal domain

Any lattice site ξ in the 2D hexagonal lattice is defined as

ξ= m1b1 +m2b2, ∀m1,m2 = 0,±1,±2, . . . ;b1 = a (1,0),b2 = a/2
(
1,
p

3
)
, (A.8)

where a is the lattice constant of the lattice.

We can construct a 2D hexagonal bounded domain of size L as shown in Figure 4.1(b) with the

first neighbor connections from an infinite 2D hexagonal lattice as below. For any atom ξ, we

define distance measure r0(ξ) from the origin as

r0(ξ) = max{|m|, |n|, |m +n|}, (A.9)

where m,n = 0,±1,±2, . . . are defined by

n = 2ξ2

a
p

3
,

m = ξ1

a
− n

2
. (A.10)

Hence,Λc ,Λ−, andΛ+ can be defined as
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A.6 3D FCC box construction

Λc = {ξ ∈Λ∞ | r0(ξ) ≤ L},

Λ− = {ξ ∈Λ∞ | r0(ξ) = L},

Λ+ = {ξ ∈Λ∞ | r0(ξ) = L+1}, (A.11)

where L denotes the size of the domain, these definitions are consistent with Equation (A.7) if

the 2D hexagonal lattice has only first neighbor connections in its force constant tensor.

A.6 3D FCC box construction

Any lattice site ξ in the 3D FCC lattice is defined as

ξ= m1b1 +m2b2+m3b3, ∀m1,m2,m3 =±1,±2, . . . ;

b1 = a/2(0,1,1),b2 = a/2(1,0,1),b3 = a/2(1,1,0), (A.12)

where a is the lattice constant of the lattice. We want to construct a 3D FCC box that is a

bounded domain extracted from an infinite FCC lattice, with lengths L1,L2, and L3 in direction

1,2, and 3 respectively. The domainΛc can be defined as

Λc =
3⋂

i=1

(
{ξ ∈Λ∞ | ξi ≥ 0}∩ {ξ ∈Λ∞ | ξi ≤ Li }

)
. (A.13)

Due to the first neighbor connections in the force constant tensor, theΛ− atoms for the above

cuboidal domainΛc are exactly contained in planar surfaces (Figure 5.4) such that the domain

Λ− can be defined as,

Λ− =
3⋃

i=1

(
{ξ ∈Λc | ξi = 0}∪ {ξ ∈Λc | ξi = Li }

)
. (A.14)

The correspondingΛ+ atoms of theseΛ− atoms can be obtained using Equation (A.7).
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Glossary

Acronyms

LGFM lattice Green’s function method

FBCM flexible boundary condition method

A/C atomistic/continuum

FEM finite element method

BEM boundary element method

CADD coupled atomistic/discrete dislocations

QC quasicontinuum

CGF continuum Green’s function

LGF lattice Green’s function

nLGF numerical lattice Green’s function

DD discrete dislocations

H -matrix hierarchical matrix

FCC face-centered cubic

BCC body-centered cubic

HCP hexagonal-closed pack

1D one-dimensional

2D two-dimensional

3D three-dimensional

DFT density functional theory

EAM embedded atom method
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Glossary

Notations

d dimension of the problem

a lattice constant

rc cutoff radius in interatomic potential

u displacement of a point/atom

f force on atom in infinite lattice

σ Cauchy stress tensor at a point

ϵ small strain tensor at a point

C material stiffness tensor

ν Poisson ratio

µ shear modulus

ξ lattice site or atom label or atom position in perfect lattice

L force constant tensor

G Green’s function

Gcg f continuum Green’s function

Gnl g f numerical lattice Green’s function

b Burger vector

f s "surface" force on atom in outer surface in LGFM

f b "body" force on atom within bounded region in LGFM

U total energy of the system

ũ displacement field of dislocations in infinite domain

û corrective displacement field due to DD boundary conditions

Λ∞ infinite discrete lattice sites

Λc discrete lattice sites inside bounded domain in LGFM

Λ− atoms on outer boundary in LGFM

Λ+ atoms outside bounded domain but within cutoff radius ofΛ− in LGFM

Λi n atoms inside bounded domain but not in outer boundary in LGFM

Λh atoms on coarsened outer surface in coarsened LGFM

ΛI atomistic region in FBCM

ΛI I atoms within atomistic cutoff radius ofΛI but treated using LGF in FBCM

ΛI I I atoms outsideΛI+I I within cutoff radius ofΛI I in FBCM

ΛIV atoms outsideΛI+I I+I I I but within bounded domain in FBCM/LGFM coupling

L side of 3D FCC box or side of 2D hexagonal domain

h coarsening length scale in coarsened-LGFM

dc LGF to CGF transition length scale
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