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a b s t r a c t 

This paper considers the problem of second-degree price discrimination when the type distribution is 

unknown or imperfectly specified by means of an ambiguity set. As robustness measure we use a per- 

formance index, equivalent to relative regret, which quantifies the worst-case attainment ratio between 

actual payoff and ex-post optimal payoff. We provide a simple representation of this performance index, 

as the lower envelope of two boundary performance ratios, relative to beliefs that lie at the boundary 

of the ambiguity set. A characterization of the solution to the underlying robust identification problem 

is given, which leads to a robust product portfolio, for which we also determine the worst-case per- 

formance over all possible consumer types. For a standard linear-quadratic specification of the robust 

screening model, a worst-case performance index of 75% guarantees that the robust product portfolio ex- 

hibits a profitability that lies within a 25%-band of an ex-post optimal product portfolio, over all possible 

model parameters and beliefs. Finally, a numerical comparison benchmarks the robust solution against a 

number of alternative belief heuristics. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

Second-degree price discrimination (or “screening”) is widely 

sed by firms to distinguish buyers of unknown types. To cater to 

he heterogeneous preferences of different buyer types and maxi- 

ize expected profits, the seller offers a menu of products at dif- 

erent levels of quality (or quantity) and different prices. The per- 

ormance of standard screening relies on the quality of the firm’s 

eliefs about the distribution of buyer types. Naturally, in many 

ases the firm may have no precise idea about this distribution, 

specially for new products, or more established products in new 

arkets. To cope with the implied belief ambiguity, we propose a 

obust identification technique for the practically important two- 

ype second-degree price-discrimination model, based on relative 

egret, which provides performance guarantees over all possible 

eliefs and types. For the popular linear-quadratic parametrization 

f the general model a worst-case performance guarantee of 75% 

s obtained, with respect to all possible two-type distributions. 

There are three key motivations for our study. The first is the 

idely known “Wilson doctrine” (1987) which calls for robust 

rading mechanisms that are insensitive to the informational as- 
∗ Corresponding author. 

E-mail addresses: jun.han@epfl.ch (J. Han), thomas.weber@epfl.ch (T.A. Weber) . 
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umptions usually required in traditional models. 1 For example, 

epending on the distribution of consumer types it may sometimes 

e ex-post optimal to not serve certain customers, yet this proves 

o never be best under a robust approach. Our second motivation 

s to devise a method which provides relative performance guar- 

ntees, in terms of a fraction of what would be possible in the 

bsence of model uncertainty, for which we deploy a performance 

ndex based on relative regret. As we show, relative performance 

uarantees provide balanced performance ratios with worst-case 

cenarios attained at the boundaries of the belief spectrum. The 

hird motivation for our approach is to preserve a homotopic con- 

ection of the robust solution to the nonrobust solution, which is 

chieved by means of the ambiguity set. As its diameter varies 

rom 0 to 1, the solution changes continuously from classical to 

ully robust. 

To the best of our knowledge, this paper is the first to address 

he issue of second-degree price discrimination in a relative-regret 

ramework for a seller with ambiguous beliefs about the distribu- 

ion of consumer types. We already can note at this point that the 
1 In a more explicit manner, Wilson (1992 , p. 271) notes “... significant gaps re- 

ain. The theory relies on (...) strong assumptions, such as (...) common knowledge 

f probability distributions, (...). These assumptions facilitate theoretical work but 

hey hamper empirical and experimental studies, since they are never precisely true 

n practice and little has been done to establish the robustness of the predictions.”

nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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imple maximin principle is not useful in our case, for it generally 

eads to no price-discrimination at all, whereas when pursuing rel- 

tive robustness the firm retains a strong motivation to provide a 

ondegenerate product portfolio. 

.1. Literature 

In his “theory of differential rates,” Watkins (1916) recognized 

arly on that selling two books “differing only in the quality of 

he paper and binding to the extent of a few cents, is a case 

f differentiation” (p. 693) and that “the determination of value 

ay be either on the side of supply or on that of demand” (ibid., 

. 694). He thus foreshadows the analysis by Pigou (1920 , Ch. 14) 

f a “discriminating monopoly” with three degrees of possible 

rice discrimination, a classification that is still in use today. While 

rst-degree (“perfect”) and third-degree price discrimination tech- 

iques rely on the seller’s ability to distinguish observable char- 

cteristics of potential buyers, second-degree price discrimination 

orresponds to letting consumers self-select into groups. Indeed, 

handler (1938) points out that “[t]he wide differentials in the 

lasticities of different customers’ demands for loans at an indi- 

idual bank render rate discrimination profitable” (pp. 5–6). He 

oes on to note that “the practice of discrimination is facilitated 

y the high degree of secrecy surrounding the terms of contracts”

ibid., p. 6), which is one form of “non-transferability” ( Pigou, 1920 , 

. 247). Cassady (1946) provides a first comprehensive overview 

f price discrimination in its different facets, and in our focus on 

onobservable consumer types we are therefore concerned with 

is “indirect methods” that involve menus of differentiated prod- 

cts from which consumers individually select their most preferred 

lternatives. The implied individual-rationality constraints (i.e., a 

ustomer must want to purchase something and cannot be forced 

o do so) and incentive-compatibility constraints (i.e., a customer 

urchases only a most preferred product from the set of alterna- 

ives) correspond to Watkin’s intuition that the monopolist’s prob- 

em must be solved subject to the consumers’ free will in their 

hoices. Lewis (1941) discusses this self-selection problem for en- 

rgy consumption where larger consumers are charged a fixed 

rice and a low per-unit charge, and “[t]o avoid frightening off the 

maller customers it is also customary to offer as an alternative 

o the two-part tariff a single variable charge, somewhat higher 

han the variable charge of the two-part tariff” (pp. 262–263). As a 

eneralization of two-part tariffs, one can use “block tariffs” by ad- 

usting the variable charge for different quantity blocks consumed. 

he latter gives rise to the idea of nonlinear pricing, introduced 

y Mussa & Rosen (1978) —based on the techniques developed by 

irrlees (1971) in the context of optimal taxation. To systemati- 

ally cope with the self-selection issue, and thus to “screen” (i.e., 

eparate) consumers according to their privately known character- 

stics (or “types”) ( Rothschild & Stiglitz, 1976; Stiglitz, 1975 ) it is 

ecessary to propose a menu of options to consumers ( Maskin & 

iley, 1984 ). 2 Ever since, second-degree price-discrimination tech- 

iques have been used extensively in applications for the opti- 

al design of product portfolios (see, e.g., Anderson & Dana, 2009; 

oorthy, 1984; Villas-Boas, 1998 ). 

The revenue-management literature has addressed pric- 

ng problems with unknown demand functions (see, e.g., 
2 By the “revelation principle” the designer of this “mechanism” (in the form of 

n optimal menu of options, each of which is characterized by a price and by an at- 

ribute such as quality or quantity) can restrict attention to “truth-revealing” mech- 

nisms whereby each agent’s choice is consistent with his type. An important tacit 

ssumption is that the mechanism designer (or “principal”) can fully commit to the 

roposed scheme (characterized by an allocation function mapping a message space 

o an outcome space), so that any agent’s ex-post allocation is determined entirely 

y an agent’s message (i.e., choice) communicated ex ante to the principal, without 

he possibility of opportunistic renegotiation ex post . 
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esbes & Zeevi, 2009; Doan et al., 2020 ). In the field of ro- 

ust mechanism design, two objectives are commonly examined: 

aximin outcome and minimax regret. 3 As suggested by Wald 

1939, 1945) who uses the logic of zero-sum games by Neumann 

 Morgenstern (1944) , a distribution-free maximization of the 

orst-case payoff is extensively studied, among others, by Pınar 

 Kızılkale (2017) . Carrasco et al. (2018) examine an optimal 

elling mechanism assuming that certain moments of the type 

istribution are available; similarly, under the assumption of 

nown marginals of a multidimensional type distribution, Carroll 

2017) shows that the optimal robust multidimensional screening 

echanism for consumers with additively separable utilities leads 

o a decomposition approach along the different type dimen- 

ions. This maximin criterion is known to be conservative. For 

xample, Bergemann & Schlag (2008) reveal that the price, which 

aximizes the minimum profit, is equal to the lowest consumer 

aluation, provided it lies above the firm’s marginal cost. The 

ell-established minimax-regret approach was introduced by 

avage (1951) . In the literature on monopoly pricing, Bergemann 

 Schlag (2008) propose a random and deterministic monopoly 

ricing policy for a single product based on minimax regret, while 

aldentey et al. (2017) also use this criterion to examine dynamic 

ricing. For a recent survey of robust mechanism design we refer 

he reader to Carroll (2019) . 

In view of making the price-discrimination mechanism robust 

ith respect to distributional assumptions, our approach is pred- 

cated upon minimizing the maximal relative regret , or equiva- 

ently, maximizing the attainment ratio, since the approach is not 

s conservative as the maximin-outcome criterion and naturally 

mplies the relative performance guarantee. In a few instances, 

inimax relative regret has appeared in the pricing literature be- 

ore: Eren & Maglaras (2010) examine monopoly pricing, as well 

s two-period dynamic pricing, without knowing the consumers’ 

alue distribution. In computer science, a “competitive ratio”—akin 

o relative regret—was first used for the performance evaluation 

f online vs. offline algorithms ( Ben-David & Borodin, 1994; Bo- 

ar et al., 2015; Sleator & Tarjan, 1985 ). Relative regret has also 

een used for evaluating supply-chain performance across multi- 

le scenarios in operations management; see, e.g., Kouvelis & Yu 

1997) . Goel et al. (2009) use relative regret to determine fair allo- 

ations with respect to all symmetric concave and increasing so- 

ial welfare functions. The key there is a simple representation 

f the relative fairness measure as a function of extremal prefix 

unctions. Under quite different assum ptions, notably in the ab- 

ence of any type of convexity assumptions, we derive a similar 

imple representation of the performance index, together with a 

haracterization of the optimal robust solution. The latter provides 

erformance guarantees with respect to all possible beliefs the 

rm might hold over the type distribution. More recently, Weber 

2022) studies a general relative-regret framework for decision- 

aking in the absence of distributional assumptions, obtaining a 

epresentation of the performance index as the minimum of two 

oundary performance ratios based on a semi-ordering of the state 

pace; however, the assumptions on the objective function re- 

uired there are not satisfied in our setting. There is a stream 

f literature studying prior-independent auctions to obtain a rel- 

tive performance guarantee or bounds of the competitive ratio 

ompared with optimal revenues such as Azar & Micali (2013) ; 

hangwatnotai et al. (2015) and Fu et al. (2015) . In particular, 
3 Distributional variants of regret, in the form of “ambiguity aversion” and “regret 

version”—the former induced by the possibility of an incorrect belief and the latter 

easured by an ex-post cost based on (absolute) regret—have been used for non- 

inear pricing with continuous types ( Zheng et al., 2015 ) and discrete types ( Wong, 

020 ), respectively. Destan & Yılmaz (2020) consider “inequity aversion” in nonlin- 

ar pricing. 
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llouah & Besbes (2020) derive upper and lower bounds for the 

aximin ratio for some classes of distributions such as regular dis- 

ributions. 4 Finally, our paper is also related to robust optimization, 

hich addresses parameter uncertainties ( Ben-Tal et al., 2009 ), for 

xample, with the aid of primal-dual methods (see, e.g., Caprari 

t al., 2019 ). 

.2. Outline 

The remainder of this paper is organized as follows. 

ection 2 presents the two-type price-discrimination problem 

nd its ex-post optimal solution, in terms of an optimal menu of 

roducts and prices. Section 3 introduces the performance index as 

he minimal performance ratio of a candidate belief over all pos- 

ible beliefs. A simple representation of the performance index is 

ollowed by a characterization of the solution to the firm’s robust 

dentification problem. The worst-case performance of our belief- 

obust solution leads to a-priori performance guarantees over all 

ossible demand realizations. Finally, we provide an extension 

f the model for general ambiguity sets. Section 4 illustrates our 

esults using a standard parametrization of the model, for which 

losed-form solutions are obtained. We also provide a numerical 

omparison of the solution behavior against several standard belief 

euristics the firm might pursue. Section 5 concludes. 5 

. Model 

A monopolist faces a heterogeneous population of consumers 

or “agents”), whose preferences are characterized by their respec- 

ive “types” which belong to the agents’ private information. The 

rm’s goal is to design a portfolio of product offerings, character- 

zed by the quality (or a scalar aggregate of multiple features in- 

luding, e.g., quantity) of each product and its corresponding price, 

o as to maximize expected profits. The particular complication in 

his otherwise standard screening problem is that the type distri- 

ution is not known, requiring a robust approach to tackle the re- 

ulting model uncertainty. 

.1. Agents 

Agents can be of two different types θ ∈ � = { θL , θH } , where θL ,

H with 0 < θL < θH < ∞ are given. A type- θ agent’s willingness- 

o-pay for a given product of quality q ∈ Q = R + is described by

is gross utility u (q, θ ) ; the twice continuously differentiable func- 

ion u : Q × R + → R + is such that 6 (
θq = 0 ⇔ u (q, θ ) = 0 

)
and (

u (q, θ ) > 0 ⇒ u θ (q, θ ) , u q (q, θ ) , u qθ (q, θ ) > 0 

)
, (1) 

or all (q, θ ) ∈ Q × R + . The preceding properties include the stan-

ard assumption that for θ = 0 an agent’s willingness-to-pay van- 

shes, and that it also vanishes if the product has zero quality. 

he assumption of a positive partial derivative of the agent’s util- 

ty u (q, θ ) with respect to θ (as long as θq � = 0 ) implies that for

ny given product (with a positive quality level) the type- θH agent 

lways has a strictly higher value than the type- θL agent. This 

ersistent difference in valuations drives the firm’s motivation to 

pply price discrimination, with the aim of extracting different 
4 We thank an anonymous referee for noting the link to approximately optimal 

echanism design, aiming at guaranteeing an objective (e.g., expected revenue) to 

emain close to a full-information benchmark across scenarios. 
5 Appendix A provides all proofs, and Appendix B contains a summary of the 

otation used in this paper. 
6 For convenience, partial derivatives of the utility function are denoted by sub- 

cripts (e.g., u q = ∂ q u or u qθ = ∂ 2 
qθ

u ). For other partial derivatives, the standard op- 

rator notation is maintained (e.g., ∂ θL 
�∗

L ( ̂  μ
∗) ). 

R

u  

(  

t

a

n

797 
alues from different agents. Since this cannot be achieved by of- 

ering a single product, the firm offers a menu of products at 

ifferent prices and quality levels. Finally, it is assumed that the 

gent’s gross utility features increasing differences in (q, θ ) , which 

eans that as the agent’s type increases, his marginal utility for 

dditional quality goes up, 7 which implies the following “sorting 

ondition:”

 < 

ˆ q ⇒ u ( ̂  q , θL ) − u (q, θL ) < u ( ̂  q , θH ) − u (q, θH ) , 

or all q, ̂  q ∈ Q . This relation enables the seller to implement a 

enu of product offerings in such a way that the agents self-select 

nto the options designed for their respective types. This self- 

election takes place based on an agent’s net utility, u (q, θ ) − p, 

or a given product offering (p, q ) at price p ∈ R and quality q ∈ Q .

.2. Cost 

Each product of quality q ∈ Q costs the firm C(q ) to provide,

here the continuously differentiable function C : Q → R + , with 

(0) = 0 , is such that (∃ q > 0 : u (q, θL ) − C(q ) > 0 

)
and (∃ q̄ ∈ Q : u (q, θH ) − C(q ) ≤ 0 , ∀ q > q̄ 

)
, (2) 

hich implies that the firm would never want to increase qual- 

ty levels indefinitely, and there is no fixed cost. 8 The first part of 

q. (2) means that for some quality level the economic surplus (i.e., 

he gross value minus the cost) is positive for type- θL consumers, 

hile its second part states that when quality levels become too 

arge this is no longer possible, even for type- θH consumers. This 

eans that the firm can restrict attention to the interval [0 , q̄ ] in

ts search for optimal quality levels, which by the extreme value 

heorem implies the existence of a finite optimum. In particular, as 

hown in Remark 3 , the firm will always be able to guarantee itself

 positive expected profit. 

By Eq. (2) there exist q 1 , q 2 ∈ (0 , q̄ ) such that u q (q 1 , θH ) −
 

′ (q 1 ) < 0 < u q (q 2 , θH ) − C ′ (q 2 ) . To ensure good behavior of the

ptimal quality in the standard screening (cf. Corollary 1 ) we as- 

ume that marginal surplus u q (·, θH ) − C ′ (·) changes sign at most 

wice, so the nonempty set 

 = { q ∈ Q : u q (q, θH ) − C ′ (q ) > 0 } 
s an interval. This “regularity condition” is implied if the marginal 

urplus u q (·, θH ) − C ′ (·) is quasiconcave. 

emark 1 (Relaxation of Standard Convexity Assumptions) . Our 

nondegenerate-surplus properties” in Eq. (2) and the regularity 

ondition are weaker than the usual requirements which include 

eak concavity of the agent’s utility (so u qq (q, θ ) ≤ 0 ) and a twice

ifferentiable cost function C : Q → R + such that 

q = 0 ⇔ C(q ) = 0 

)
and 

(
C(q) > 0 ⇒ C 

′ (q) > 0 , C 

′′ (q) > 0 

)
, 

ogether with the “Inada conditions” C ′ (0) = 0 and lim q →∞ 

C ′ (q ) = 

 , in the spirit of Inada (1963) and Uzawa (1963) . In particular, 

he weaker properties of “positive surplus” and “surplus coercivity”

n Eq. (2) allow for utility functions (resp., cost functions) that are 

onconcave (resp., nonconvex) in quality. 

emark 2 (LQ Model) . A linear-quadratic (LQ) parametrization of 

tility and cost functions is u (q, θ ) = θq as in Mussa & Rosen

1978) , for θ ∈ { θL , θH } with 0 < θL < θH < ∞ , and C(q ) = γ q 2 / 2 ,
7 Topkis (1968) showed that the increasing-differences property of u (q, θ ) implies 

hat the quality choice by the customers must be nondecreasing in their type, thus 

llowing the firm to effectively separate the market. 
8 Positive fixed costs imply absolute viability constraints for the firm that are of 

o particular interest here; cf. Remark 3 . 
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p

or any quality level q ≥ 0 , where γ > 0 is a given constant. The

esulting LQ model satisfies our assumptions in Eqs. (1) and (2) . 

ection 4 uses this parametrization to illustrate the results. 

.3. Standard screening 

Assume that the firm’s beliefs about the distribution of agents 

s such that μ = P ( ̃  θ = θH ) ∈ [0 , 1] denotes the probability of a

andomly drawn consumer (of random type ˜ θ ) to be of type θH . 

ith this, the firm’s objective is to design a menu of options ( p , q ) ,

ith p = (p L , p H ) ∈ R 

2 + and q = (q L , q H ) ∈ Q 

2 , so as to maximize

xpected profits, 

( p , q ) = (1 − μ)(p L − C(q L )) + μ(p H − C(q H )) , 

ubject to the constraints implied by the fact that agents can freely 

hoose among all available options, so 

u (q L , θL ) − p L ≥ u (q H , θL ) − p H , 

 (q H , θH ) − p H ≥ u (q L , θH ) − p L , 
(3) 

nd that they have the option to walk away without purchasing 

ny product, so 

 (q L , θL ) − p L ≥ 0 and u(q H , θH ) − p H ≥ 0 . (4) 

he constraints in Eq. (3) ensure “incentive compatibility” of the 

vailable options, while the constraints in Eq. (4) characterize the 

gents’ “participation” (or “individual rationality”). 9 

The firm’s “standard screening problem” is therefore 

 (μ) = arg max 
( p , q ) ∈ R 2 + ×Q 2 

�( p , q ) , s . t . (3) , (4) , (5) 

or any μ ∈ [0 , 1] . The set-valued solution M : [0 , 1] ⇒ R 

2 + × Q 

2 

aps the firm’s belief μ to the set of optimal menus (as a sub- 

et of R 

2 + × Q 

2 ) for that belief. In the following lemma, we state a

lassical result of the solution to the standard screening problem 

a proof of which is included for completeness). 

emma 1 (Standard Screening; see, e.g., Maskin & Riley, 1984 ) . Let 

∈ [0 , 1] . The optimal menu, defined by Eq. (5) , is M (μ) =
 ( p 

∗(μ) , q ∗(μ)) } , where 

p 

∗ = (p ∗L , p 
∗
H (μ)) = 

(
u (q ∗L , θL ) , u (q ∗H , θH ) −( u (q ∗L , θH ) − u (q ∗L , θL ) ) 

)
, 

(6) 

nd q ∗ = (q ∗L (μ) , q ∗H ) , with 10 

 

∗
L (μ) ∈ Q 

∗
L (μ) = arg max q L ≥0 { F (q L , μ) } , 

q ∗H ∈ arg max q H ≥0 { u (q H , θH ) − C(q H ) } , (7) 

here 

 (q L , μ) = (1 − μ) 
(
u (q L , θL ) − C(q L ) 

)
− μ

(
u (q L , θH ) − u (q L , θL ) 

)
, 

nd Q 

∗ : [0 , 1] ⇒ Q is a correspondence. 

L 

9 The incentive-compatibility constraint (3) ensures truthful revelation of the 

gents’ types, which means that each agent prefers the product designed for his 

ype ( L, H), at least weakly. This constraint comes without loss of generality, as a 

onsequence of the revelation principle ( Gibbard, 1973; Myerson, 1979 ). The lat- 

er guarantees that any mechanism can also be implemented as a ‘direct revelation 

echanism’ where all participating agents reveal their true types. Since the firm 

as the option of inaction, that is, to provide a zero-quality product at zero cost 

and zero price), the individual-rationality constraint (4) can always be satisfied, 

nd all agents always participate (albeit by potentially buying a zero-quality/zero- 

rice product). 
10 For μ = 0 (i.e., in the absence of high-type agents), the high-type quality q ∗H 
nd the corresponding price p ∗H cannot be determined by the optimization problem 

n Eq. (5) and in principle arbitrary—as long as they satisfy constraints of incentive 

ompatibility and individual rationality. Here for convenience of presentation, we 

ssume continuous completion to still define q ∗H as shown in Eq. (7) when μ = 0 . 

e note that at μ = 0 , the definition of q ∗H does not affect any other result in this 

aper. 
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Lemma 1 shows that Eqs. (3) and (4) reduce to two binding 

onstraints which can be used to determine the optimal price vec- 

or p 

∗ in Eq. (6) as a function of the optimal quality vector q ∗. 

he latter is characterized by Eq. (7) . It is remarkable that the 

ptimal quality q ∗H for the “high type” ( θH ) does not depend on 

he characteristics of the other type, nor on μ. By contrast, the 

ptimal quality for the “low type” ( θL ) depends on the full type 

ector θ = (θL , θH ) , as well as on the firm’s belief μ, leading to

 downwards distortion relative to a “first-best” pricing solution 

hich the firm would choose if the types were observable. 11 Con- 

ersely, the optimal price p ∗L corresponds to the low-type agents’ 

ross surplus, and thus depends on the full type vector. The op- 

imal price p ∗
H 

is the gross utility of the high type minus a non-

egative “information rent” (or discount) which depends on both 

gents’ types, as well as on the firm’s belief μ. In addition, by 

ur assumption in Eq. (2) , for any belief μ, the optimal qual- 

ty q ∗ is finite, and in particular, q ∗
L 
(0) and q ∗

H 
are both positive. 

q. (6) implies that the firm’s profit contingent on either serv- 

ng a type- θL agent or a type- θH agent as �L (q L ) = u (q L , θL ) −
(q L ) and �H ( q ) = u (q H , θH ) − C(q H ) −

(
u (q L , θH ) − u (q L , θL ) 

)
, re-

pectively. The optimal expected profit �∗(μ) = �( p 

∗(μ) , q ∗(μ)) 

an be written as 

∗(μ) = (1 − μ)�∗
L (μ) + μ�∗

H (μ) , 

here �∗
L 
(μ) = �L (q ∗

L 
(μ)) , �∗

H 
(μ) = �H (q ∗

L 
(μ) , q ∗

H 
) , and q ∗

L 
(·) ∈

 

∗
L 
(·) is a selection of the compact-valued image of Q 

∗
L 

: [0 , 1] ⇒ Q .

he following corollary summarizes the behavior of the optimal 

uality, the firm’s optimal type-contingent payoffs, and its optimal 

rofit with respect to changes in the belief μ. 

orollary 1 (Comparative Statics) . 

(i) There exists a critical belief, 

μ0 = inf { μ ∈ [0 , 1] : 0 ∈ Q 

∗
L (μ) } > 0 , (8)

such that 0 ∈ Q 

∗
L (μ) , the corresponding �∗

L = 0 , and q ∗H , �
∗
H 

are constant in μ ∈ [ μ0 , 1] . For μ < μ0 , any selection q ∗
L 
(μ) ∈

Q 

∗
L 
(μ) is strictly decreasing, and so is �∗

L 
(μ) ; the quality q ∗

H 
stays constant, while �∗

H (μ) is strictly increasing. 12 Finally, it 

is always: 0 ≤ �∗
L 

≤ �∗
H 

. 

(ii) The compact-valued correspondence Q 

∗
L 
(μ) is single-valued in 

μ ∈ [0 , μ0 ] except countably many points. �∗(μ) is continu- 

ous in μ ∈ [0 , 1] , while for μ ∈ [0 , μ0 ] , it is differentiable (ex-

cept countably many points) and is increasing. 

Corollary 1 establishes a belief threshold μ0 beyond which for 

ne selection q ∗
L 

we obtain a “shut-down solution” where only the 

igh type is served with a positive quality level. That is, for μ ≥
0 , the firm is able to extract the full surplus from all high-type 

onsumers with p ∗
H 

= u (q ∗
H 
, θH ) , while selling no (positive-quality) 

roduct to low-type consumers. This part also describes the com- 

arative statics, namely that the quality of the low-type product 

ecreases as the likelihood of high-type agents in the population 

oes up, while q ∗
H 

remains unaffected by the type distribution. Un- 

er the regularity condition, Q 

∗
L is well behaved and the optimal 

rofit �∗(μ) is intuitively increasing. An additional insight, par- 

icularly important in our subsequent analysis, is that when μ in- 

reases in [0 , μ0 ) , more agents of the high type lead to a higher
∗
H and a lower �∗

L . 

emark 3 (Viability) . The assumptions in Eqs. (1) and (2) im- 

ly that the firm’s optimal profit is always positive (i.e., �∗(μ) > 
11 The “first-best” menu is ( p ∗∗, q ∗∗) with p ∗∗ = (u (q ∗L (0) , θL ) , u (q ∗H , θH )) and q ∗∗ = 

q ∗L (0) , q ∗H ) , with q ∗L (0) and q ∗H as in Eq. (7) ; it can be implemented in the absence 

f the incentive-compatibility constraint (3) , extracting all the agents’ surplus. 
12 A selection q ∗L (·) ∈ Q 

∗
L (·) is strictly decreasing if μ1 < μ2 ⇒ q ∗L (μ2 ) < q ∗L (μ1 ) . 

he monotonicity of �∗
L (·) = u (q ∗L (·) , θL ) − C(q ∗L (·)) and �∗

H (·) = u (q ∗H , θH ) − C(q ∗H ) −
u (q ∗L (·) , θH ) − u (q ∗L (·) , θL ) 

)
applies to any such selection. 
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14 In view of the generic discontinuity of the performance index, a techni- 
 , for all μ ∈ [0 , 1] ). Thus, the performance ratio introduced in

ection 3 is well defined; see Appendix A for details, including a 

ontrivial strictly positive lower bound. 

. Robust screening 

While the firm knows the type values θL and θH , it does not 

now their likelihoods; that is, its belief μ = P ( ̃  θ = θH ) is “am-

iguous” (i.e., unknown). In this section, we first introduce a ro- 

ust identification problem to find a candidate belief which implies 

 product menu with the best performance relative to all possi- 

le beliefs, as captured by a “performance index.” This problem is 

olved by simplifying the representation of the performance index, 

o it appears as the lower performance envelope with respect to 

xtreme beliefs. We then examine the properties of the optimal 

erformance ratio as a function of the type parameters to obtain 

eneral performance guarantees. Finally, we generalize our findings 

y allowing for a bounded ambiguity set, with a more focused be- 

ief structure which provides a homotopic connection between the 

ptimal robust solution to the firm’s price-discrimination problem 

nd the solution to the standard screening problem with fully de- 

ermined beliefs. 

.1. Identification problem 

With the knowledge that an agent’s type can be either θL or 

H , to arrive at a “robust belief” about the distribution of con- 

umer types, the firm needs to examine the performance of the 

enu ( p 

∗, q ∗) = ( p 

∗( ̂  μ) , q ∗( ̂  μ)) in Lemma 1 for candidate be-

iefs ˆ μ, given that the underlying true type distribution is con- 

istent with the unknown belief μ. Under this mismatch between 

he firm’s menu (geared towards ˆ μ) and the actual type distribu- 

ion (consistent with μ), the firm’s (worst-case) expected profit be- 

omes 13 

ˆ �( ̂  μ, μ) = min 

q ∗
L 
( ̂ μ) ∈Q ∗

L 
( ̂ μ) 

{ (1 − μ)�L (q ∗L ( ̂  μ)) + μ�H (q ∗L ( ̂  μ) , q ∗H ) } , 
( ̂  μ, μ) ∈ [0 , 1] × [0 , 1] , (9) 

here Q 

∗
L (·) and q ∗H are specified in Eq. (7) . The performance ratio ,

( ̂  μ, μ) = 

ˆ �( ̂  μ, μ) 

�∗(μ) 
∈ [0 , 1] , (10) 

rovides a lower bound for the achievement of a product 

enu M ( ̂  μ) = { p 

∗( ̂  μ) , q ∗( ̂  μ) } for the candidate belief ˆ μ—relative

o the “ex-post optimal profit,”

∗(μ) = 

ˆ �(μ, μ) > 0 , (11) 

hich would have been obtained in the absence of any ambiguity 

bout the type distribution. We note that the performance ratio 

s continuous in μ, while it is generically discontinuous in ˆ μ. The 

erformance index , 

( ̂  μ) = inf 
μ∈ [0 , 1] 

ϕ( ̂  μ, μ) , ( ̂  μ, μ) ∈ [0 , 1] × [0 , 1] , (12)

orresponds to the worst-case performance guarantee. For exam- 

le, a performance index ρ( ̂  μ) = 75% means that by selecting the 

roduct menu M ( ̂  μ) the firm’s performance in terms of profitabil- 

ty will be at least three quarters of what it could have been with

ull information about the type distribution. The firm’s robust iden- 

ification problem is to determine a “robust belief” ˆ μ∗ with the best 
13 The minimum is achieved, since Q 

∗
L is compact-valued by Corollary 1 . An alter- 

ative equivalent way is to take the infimum in Eq. (12) jointly with respect to μ

nd the selection q ∗L ( ̂  μ) ∈ Q 

∗
L ( ̂ μ) , while dropping the minimization in Eq. (9) . 

c

t

l

i

s
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ossible performance index: 14 

ˆ ∗ ∈ arg max 
ˆ μ∈ [0 , 1] 

ρ( ̂  μ) . (13) 

he solution to this (generally nonconvex) optimization problem is 

iscussed next. 

emark 4 (Relative Regret) . The performance index ρ in Eq. (12) is 

elated to the notion of maximum relative regret, 

( ̂  μ) = sup 

μ∈ [0 , 1] 

�∗(μ) − ˆ �( ̂  μ, μ) 

�∗(μ) 
= 1 − ρ( ̂  μ) . 

hus, maximizing the relative performance index ρ , as in Eq. (13) , 

s equivalent to minimizing the maximum relative regret r, with 

up ρ([0 , 1]) = 1 − inf r([0 , 1]) . 

.2. Robust beliefs 

To tackle the robust identification problem (13) , we now pro- 

ide a representation of the performance index as lower envelope 

f the “boundary performance ratios,” ϕ 0 (·) = ϕ(·, 0) and ϕ 1 (·) = 

(·, 1) . 

roposition 1 (Representation of Performance Index) . The perfor- 

ance ratio and the performance index are lower semicontinuous in 

ˆ . Moreover, the firm’s performance index in Eq. (12) is given by 

( ̂  μ) = min { ϕ 0 ( ̂  μ) , ϕ 1 ( ̂  μ) } , (14)

or all candidate beliefs ˆ μ ∈ [0 , 1] . 

The preceding result is driven by the fact that each perfor- 

ance ratio ϕ( ̂  μ, μ) is quasiconcave in μ. The lower semicon- 

inuity of the performance index guarantees that the supremum 

an be attained by the limit of a sequence ( ̂  μk ) 
∞ 

k =1 
; cf. foot-

ote 14. The representation of the performance index removes the 

eed to determine the selection for all μ ∈ [0 , 1] , and only two

elections to minimize �∗
L 
( ̂  μ) , �∗

H 
( ̂  μ) , respectively, are required 

cf. footnote 13). It also illustrates the balancedness of any robust 

elief with respect to extreme beliefs, and simplifies the proce- 

ure of finding the optimal robust belief in Eq. (13) substantially. 

onsider now the difference between the boundary performance 

atios, 

( ̂  μ) = ϕ 1 ( ̂  μ) − ϕ 0 ( ̂  μ) , ˆ μ ∈ [0 , 1] . 

n optimal robust action should be implemented for a belief at 

hich 	 is about to change sign. 

roposition 2 (Characterization of Robust Beliefs) . The firm’s robust 

elief ˆ μ∗ is unique and such that 

ˆ ∗ = sup { ̂  μ : 	( ̂  μ) < 0 } ≤ μ0 , (15) 

hile the optimal performance index ρ( ̂  μ∗) is positive. Moreover, if 

he correspondence Q 

∗
L 

defined in Eq. (7) is single-valued for μ ≤ μ0 , 

hen the robust belief ˆ μ∗ ∈ (0 , μ0 ) satisfies 

( ̂  μ∗) = 0 . (16) 

The characterization of the firm’s robust belief in Eq. (15) turns 

ut to be quite simple, especially when the standard screening 

roblem in Lemma 1 produces a unique optimal menu. In this case, 

t is enough to balance the performance ratios at the boundary by 
ally more correct definition of an optimal robust belief is for ˆ μ∗ to be in 

he (nonempty) set { ̂ μ ∈ [0 , 1] : ∃ ( ̂  μk ) 
∞ 
k =1 

⊂ [0 , 1] such that lim k →∞ ˆ μk = ˆ μ and 

im k →∞ ρ( ̂  μk ) = sup ρ([0 , 1]) } , which merely requires that there exists a converg- 

ng sequence of candidate beliefs with performance indices converging towards the 

upremum of ρ([0 , 1]) . 
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16 A straightforward interpretation of Eq. (18) is that the worst-case perfor- 

mance index ρ∗
WC corresponds to the ratio between the gradient of the type- 

contingent robust profit and the gradient of the type-exclusive profit, as spelled 

out by Eq. (31) in the proof of Proposition 3 : ρ∗ = [ ∂ θ �∗( ̂ μ∗)] / [ ∂ θ �∗(0)] = 
nding candidate beliefs ˆ μ such that ϕ 0 ( ̂  μ) = ϕ 1 ( ̂  μ) . It is interest-

ng to note that ˆ μ∗ < μ0 when the menu is unique, implying that 

t is best—from a robustness standpoint—to serve both consumer 

ypes. We also assert that a positive optimal performance index is 

chieved, which means that the firm is guaranteed a nontrivial rel- 

tive performance. 

.3. Performance bounds 

The robust identification problem (13) yields a robust belief ˆ μ∗, 

ogether with an optimal performance index, 

∗ = ρ( ̂  μ∗) = sup ρ([0 , 1]) . 

he latter implies a relative performance guarantee, which is 

ow examined with respect to unfavorable scenarios in terms of 

onsumer types θ ∈ 

ˆ � = { (θL , θH ) ∈ R 

2 ++ : θL < θH } . The resulting

orst-case performance index ρ∗
WC is significant in the sense that 

o matter what the demand environment might be, an optimal 

roduct portfolio (determined with respect to a robust belief) will 

e at least within the factor ρ∗
WC 

of any ex-post optimum. The cor- 

esponding result for our example (cf. Section 4 ) guarantees that 

o matter what demand environment the firm might encounter, 

y choosing its unique robust belief, the firm always achieves at 

east ρ∗
WC = 75% . That is, it attains at least three quarters of its ex-

ost optimal performance in the absence of ambiguity about the 

ype distribution. 

To simplify our presentation, we assume in this subsection that 

or μ ≤ μ0 , q ∗
L 
—as solution to the quality-optimization problem 

or the low type in Eq. (7) —is unique, i.e., Q 

∗
L 

is single-valued. 

y Propositions 1 and 2 , the optimal performance ρ∗ is such 

hat 

∗ = ϕ 0 ( ̂  μ∗) = ϕ 1 ( ̂  μ∗) , (17) 

here the second equality determines the firm’s robust belief ˆ μ∗. 

oth ρ∗ and ˆ μ∗ depend on the type vector θ ∈ 

ˆ �. Denote ˆ q ∗
L 

= 

 

∗
L ( ̂  μ∗) and consider any θ

m = (θm 

L 
, θm 

H 
) which attains the worst- 

ase optimal performance index in the open domain 

ˆ �: 

∗
WC = inf 

θ∈ ̂ �
ρ∗. 

n order to use the first-order condition in Eq. (17) , in this subsec-

ion we make the additional technical assumption that ˆ q ∗L is dif- 

erentiable with respect to θL , θH at θ
m ∈ 

ˆ �, and q ∗
H 

is uniquely 

etermined by Eq. (7) . By Cor. 4 in Milgrom & Segal (2002) ,

ll terms in Eq. (17) are differentiable with respect to θL , θH . 

hus, the standard first-order condition (∂ θL 
ρ∗, ∂ θH 

ρ∗) = 0 must 

old, which leads to a characterization of the worst-case demand 

cenario. 

emma 2 (Worst-Case Demand) . If θ
m ∈ 

ˆ � with ρ∗| θ= θm = ρ∗
WC 

, 

hen 15 

(a 1 ) 
∂ θL 

�∗
L ( ̂  μ∗) 

�∗
L 
( ̂  μ∗) 

= 

∂ θL 
�∗

L (0) 

�∗
L 
(0) 

and (a 2 ) ∂ θH 
�∗

L ( ̂  μ∗) = 0 , 

s well as 

(b 1 ) ∂ θL 
�∗

H ( ̂  μ∗) = 0 and (b 2 ) 
∂ θH 

�∗
H ( ̂  μ∗) 

�∗
H 
( ̂  μ∗) 

= 

∂ θH 
�∗

H (1) 

�∗
H 
(1) 

. 

onditions (a) and (b) are equivalent, in the sense that (a 1 ) ⇔ (b 1 ) 

nd (a 2 ) ⇔ (b 2 ) . 
15 The equivalence of conditions ( a ) and ( b) holds, provided that 	( ̂ μ∗) = 0 ; 

f. Proposition 2 . 

[

i

t

800 
Conditions ( a 1 ) and ( b 2 ) describe a situation where the type- 

lasticity of profits at the robust belief is as if that type occurs ex- 

lusively (i.e., when μ = 0 for θL , and μ = 1 for θH ). Equivalently, 

onditions ( b 1 ) and ( a 2 ) state that the profits for a given type do

ot change (at the margin) for any small variation in the other 

ype. The latter is quite natural—in view of the “type exclusivity”

rescribed in ( a 1 ) and ( b 2 ). In practice, as illustrated by our exam-

le in Section 4 , the low-type profit �∗
L has a simpler form than 

he high-type profit �∗
H 

, so that it may be advantageous to use 

onditions ( a 1 ) and ( a 2 ). Using Lemma 2 , it is now possible to char-

cterize the lowest possible performance bound. 

roposition 3 (Worst-Case Performance Index) . If θ
m = (θm 

L 
, θm 

H 
) ∈ 

ˆ with ρ∗| θ= θm = ρ∗
WC 

, then 

∗
WC = 

1 

1 − ˆ μ∗
u θ ( ̂  q ∗L , θ

m 

L ) 

u θ (q ∗
L 
(0) , θm 

L 
) 

= 1 − u θ ( ̂  q ∗L , θ
m 

H ) 

u θ (q ∗
H 
, θm 

H 
) 

> 0 , (18) 

here ˆ q ∗
L 
, q ∗

H 
, and ˆ μ∗ are determined by Eqs. (7) and (16) , respec- 

ively, for θ = θ
m 

. 

Proposition 3 provides an alternative way of determining θ
m 

after having computed ˆ μ∗ by means of Eq. (16) in Proposition 2 ). 

q. (18) provides two alternative expressions for the worst-case 

erformance index. 16 The first expression is the ratio of the type- 

radient of the low type’s utility for ˆ q ∗
L 

conditional on serving 

he low type (with 1 − ˆ μ∗ = Prob ( ̃  θ = θL ) at the robust belief ˆ μ∗)

nd his type-gradient at q ∗
L 
(0) when only low-type consumers 

re present. The second expression corresponds to the relative in- 

rease of the type-gradient in the high type’s utility when aug- 

enting quality from ˆ q ∗
L 

to q ∗
H 

. One of the most remarkable aspects 

f Proposition 3 (which was already contained in Proposition 2 ) 

s that the worst-case performance index in Eq. (18) is positive, 

hus guaranteeing the firm a certain nontrivial performance rela- 

ive to ex-post optimal profits, no matter what the demand sce- 

ario might be. As already mentioned, the worst-case performance 

uarantee may be quite substantial; see Section 4 . 

emark 5 (Nondegeneracy) . If the type vector θ lies at the bound- 

ry of the open set ˆ � (i.e., if θ ∈ ∂ ˆ �, so θL ∈ { 0 , θH } ), then by

q. (7) the performance ratio must be maximal: ϕ( ̂  μ, μ) = 1 (ex-

ept for θL = μ = 0 , when ϕ( ̂  μ, μ) is not defined). Thus, ρ∗ =
 which further implies that the worst-case performance ra- 

io is attained at an interior θ ∈ 

ˆ �, as long as θH < ∞ , so that

emma 2 and Proposition 3 can be viewed as characterization re- 

ults. 17 

.4. Extension: general ambiguity 

Expanding on the preceding developments, we now consider a 

ituation where the firm faces only limited ambiguity, based on 

 nuanced prior knowledge about the type distribution. Specifi- 

ally, we assume that all beliefs the firm considers possible are el- 

ments of the (nonempty) compact ambiguity set A ⊂ [0 , 1] . Using 

he same arguments and proof techniques as before, the firm can 

estrict attention to the performance ratios at the boundary of the 

onvex hull of the ambiguity set. 
WC L L L L 

 ∂ θH 
�∗

H ( ̂  μ
∗)] / [ ∂ θH 

�∗
H (1)] . 

17 The characterization is notwithstanding a potential multiplicity of local extrema 

n the performance index, due to the lack of higher-order curvature assumptions on 

he model primitives. 
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roposition 4 (Robust Beliefs under General Ambiguity) . Let μ1 = 

in A and μ2 = max A denote the largest lower bound and small- 

st upper bound of the firm’s ambiguity set A , respectively, and let 

(·|A ) = inf ϕ(·, A ) be the corresponding (“A -conditional”) perfor- 

ance index. Then: 

(i) The A -conditional performance index ρ(·|A ) is lower semicon- 

tinuous, and 

ρ( ̂  μ|A ) = min { ϕ( ̂  μ, μ1 ) , ϕ( ̂  μ, μ2 ) } , ˆ μ ∈ [0 , 1] . (19)

(ii) If Q 

∗
L (·) is single-valued, then any solution ˆ μ∗ to the robust 

identification problem (13) is such that 

ϕ( ̂  μ∗, μ1 ) = ϕ( ̂  μ∗, μ2 ) . (20) 

Parts (i) and (ii) of Proposition 4 generalize the earlier repre- 

entation results in Propositions 1 and 2 . It is important to note 

hat Eq. (20) will generically yield a robust belief in the convex 

ull of the ambiguity set, and thus potentially a belief that the 

rm may have considered impossible. Yet, by pragmatically design- 

ng its product portfolio in accordance with a robust belief ˆ μ∗, the 

rm achieves the best possible performance guarantee. 

emark 6 (Wasserstein Distance) . For any constant p ≥ 1 and 

ny type vector (θL , θH ) ∈ 

ˆ �, the p-Wasserstein distance be- 

ween the distributions ˆ f (θ ) = (1 − ˆ μ) δ(θ − θL ) + ˆ μδ(θ − θH ) and 

f (θ ) = (1 − μ) δ(θ − θL ) + μδ(θ − θH ) , defined for θ > 0 and the

iven beliefs ˆ μ, μ ∈ A , with the Dirac distribution δ(·) and the 

tandard absolute-value metric | · | on the real line, is 

 p ( ̂  f , f ) = | ̂  μ − μ| 1 /p (θH − θL ) . 

hus, for p = 1 that distance becomes directly proportional to | ̂  μ −
| , implying that the Wasserstein diameter of A is (μ2 − μ1 )(θH −

L ) . 

emark 7 (Homotopic Connection) . As the diameter of the am- 

iguity set tends to zero, that is, as μ2 → μ1 , the firm’s pricing 

roblem collapses to the standard screening problem discussed in 

ection 2 ; see Lemma 1 . 18 

. Example: a standard specification 

To illustrate our results, we now discuss the LQ model as a clas- 

ical instance of the price discrimination-problem, with the linear 

tility and quadratic cost as introduced in Remark 2 . Models of this 

ype are in widespread use to this day (see, e.g., Wong et al., 2021;

ou et al., 2020 ). In what follows, we first provide an explicit solu- 

ion to the firm’s price-discrimination problem with robust beliefs, 

nd then compare the performance of this solution to several com- 

on belief heuristics. 

.1. Closed-form solution 

Using Eqs. (6) and (7) in Lemma 1 , it is straightfor- 

ard to determine the (in this case unique) solution M (μ) = 

 ( p 

∗(μ) , q ∗(μ)) } to the firm’s standard screening problem (5) for 

ny given belief μ ∈ [0 , 1] : 

p 

∗(μ) = (p ∗L (μ) , p ∗H (μ)) = 

(
θL q 

∗
L (μ) , θH q 

∗
H − (θH − θL ) q 

∗
L (μ) 

)
, 

nd 

19 

 

∗(μ) = (q ∗L (μ) , q ∗H ) = 

([
θL 

γ
− μ

1 − μ

θH − θL 

γ

]
+ 
, 
θH 

γ

)
. 
18 This homotopic connection to the original problem is much in the spirit of 

angwill & Garcia (1981) . 
19 For any real number x ∈ R , we set [ x ] + = max { 0 , x } to denote its nonnegative 

art. 

e

I

801 
he nature of the solution depends on the magnitude of the beliefs 

bout the prevalence of high types in the consumer population. 

or μ ∈ [0 , μ0 ) , where the belief threshold μ0 = θL /θH ∈ (0 , 1) is

btained from Eq. (8) , the quality q ∗
L 
(μ) provided to the low type 

s positive. For μ ≥ μ0 , the firm prefers a “shutdown solution” by 

ot serving the low type and providing zero quality (at zero cost) 

hile offering a socially efficient (“first-best”) quality level q ∗
H 

to 

he high type. This first-best, undistorted quality level q ∗H served to 

he high type is constant in μ. However, the information rent (i.e., 

he price discount over full revenue extraction), 20 

R (q 

∗
L (μ)) = (θH − θL )q 

∗
L (μ) , 

s only positive when the low type is not shut down, i.e., for μ ∈
0 , μ0 ) . On the other hand, the firm’s price charged for the low-

ype product extracts all surplus (and is “first-best” in that sense). 

he quality delivered to the low type, 

 

∗
L (μ) = 

θL 

γ

[
1 − μ

μ0 

(1 − μ0 ) 

(1 − μ) 

]
+ 
, (21) 

s distorted downwards from the first-best level θL /γ . We note 

hat the optimal price-quantity tuple ( p 

∗(μ) , q ∗(μ)) is continuous 

n μ. 

We now turn our attention to the firm’s fundamentally ambigu- 

us beliefs, where the type distribution is in fact unknown. For any 

andidate belief ˆ μ the profit ˆ �( ̂  μ, μ) as a function of the true be-

ief μ is given in Eq. (9) , with type-contingent profits 

∗
L ( ̂  μ) = 

θ2 
L 

2 γ

[ 

1 −
(

ˆ μ

μ0 

)2 (
1 − μ0 

1 − ˆ μ

)2 
] 

+ 

nd 

∗
H ( ̂  μ) = 

θ2 
H 

2 γ
− (θH − θL ) q 

∗
L ( ̂  μ) , 

ith the underlying assumption that the firm’s optimal menu 

 p 

∗( ̂  μ) , q ∗( ̂  μ)) is designed according to the candidate belief ˆ μ.

his implies the performance ratio ϕ( ̂  μ, μ) = 

ˆ �( ̂  μ, μ) / �∗(μ) in

q. (10) relative to the firm’s ex-post optimal profits, 

∗(μ) = (1 − μ)�∗
L (μ) + μ�∗

H (μ) , μ ∈ [0 , 1] , 

s in Eq. (11) . It is clear that because of the multiplicative depen-

ence of both type-contingent profits on the cost parameter, the 

erformance ratio ϕ (and a fortiori also the performance index ρ) 

ust be independent of γ . Given the performance ratios, 

 0 ( ̂  μ) = 

[ 

1 −
(

ˆ μ

μ0 

)2 (
1 − μ0 

1 − ˆ μ

)2 
] 

+ 

, 

 1 ( ̂  μ) = 1 − 2(1 − μ0 ) 

[
μ0 − ˆ μ

1 − ˆ μ

]
+ 
, 

(22) 

t the boundary of the firm’s ambiguity set A = [0 , 1] ,

roposition 1 now allows for a compact representation of the 

erformance index: ρ( ̂  μ) = min { ϕ 0 ( ̂  μ) , ϕ 1 ( ̂  μ) } , for all ˆ μ ∈ [0 , 1] .

y Proposition 2 , the firm’s robust belief ˆ μ∗ is such that the dif- 

erence of the boundary performance ratios must vanish, as shown 

n Fig. 1 . The following result provides a closed-form solution 

or ˆ μ∗(μ0 ) (depicted in Fig. 2 ), together with its first-order and 

econd-order monotonicity properties. 
20 The high type’s “information rent” can be inferred from Eq. (6) : it is the differ- 

nce between the high type’s willingness-to-pay and the price charged by the firm: 

R ( ̂ q ∗L ) = u( ̂ q ∗L , θH ) − u( ̂ q ∗L , θL ) = u(q ∗H , θH ) − p ∗H . 



J. Han and T.A. Weber European Journal of Operational Research 306 (2023) 795–809 

Fig. 1. Performance ratios ϕ 0 ( ̂ μ) , ϕ 1 ( ̂  μ) and performance index ρ( ̂  μ) , for ˆ μ ∈ 
[0 , 1] . 

Fig. 2. Robust beliefs ˆ μ∗(μ0 ) , for μ0 ∈ (0 , 1) . 

L

�

l

μ

T

t  

s

μ

t

(  

q

p

b

p

ρ

Fig. 3. Optimal performance index ρ∗(μ0 ) , for μ0 ∈ (0 , 1) . 
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21 Alternatively, one can either directly minimize the closed-form expres- 

sion ρ∗(μ0 ) or else use Lemma 2 ; the latter yields: ˆ μ∗′ = [ ̂ μ∗(1 − ˆ μ∗)] / [ μ0 (1 −
μ0 )] (by condition ( a 1 ) or ( a 2 )) and ˆ μ∗′ = [(1 − ˆ μ∗)( ̂  μ∗ − 2 μ0 + 1)] / [(1 − μ0 ) 

2 ] (by 

condition ( b 1 ) or ( b 2 )), and thus again the same solution: μm 
0 = 1 / 2 . 

22 The robust belief compatible with the worst-case performance index 

is ˆ μ∗| θ= θm = 1 / 3 . 
emma 3 (Example: Robust Beliefs) . For any type vector (θL , θH ) ∈ 

ˆ , the solution ˆ μ∗ = ˆ μ∗(μ0 ) to the robust identification prob- 

em (13) (for μ0 = θL /θH ∈ (0 , 1) ) is unique and given by 

ˆ ∗(μ0 ) = μ0 

( 

1 −
√ 

μ2 
0 
(1 − μ0 ) 2 + 2 μ0 (1 − μ0 ) − μ0 (1 − μ0 ) √ 

μ2 
0 
(1 − μ0 ) 2 + 2 μ0 (1 − μ0 ) + μ0 (1 + μ0 ) 

) 

. (23) 

he two endpoints of the type-threshold domain are fixed points in 

he limit, in the sense that ˆ μ∗(0 + ) = 0 and ˆ μ∗(1 −) = 1 . Finally, the

olution is continuously differentiable, increasing and convex, with 

ˆ ∗′ (0 + ) = 0 and ˆ μ∗′ (1 −) = ∞ . 

As already formalized in Proposition 2 , Eq. (23) reflects the in- 

eriority of the optimal robust belief in the sense that ˆ μ∗(μ0 ) ∈ 

0 , μ0 ) . Thus, each consumer type is offered a product of nonzero

uality—no matter what the nature of demand might be (i.e., inde- 

endent of the type vector θ ∈ 

ˆ �). Additionally, the firm’s robust 

elief is independent of its cost parameter, and so is the optimal 

erformance index, 

∗(μ0 ) = 1 − 2 μ0 (1 − μ0 ) ·

·
(

1 + μ0 (1 − μ0 ) −
√ (

1 + μ0 (1 − μ0 ) 
)

2 − 1 

)
, 
802 
or all μ0 ∈ (0 , 1) ; see Fig. 3 . It becomes readily apparent that the

atter is fully symmetric in the type threshold, i.e., 

∗(μ0 ) = ρ∗(1 − μ0 ) . 

e now turn our attention to determining a tight lower bound 

or the performance index, as discussed in Section 3.3 . Indeed, 

q. (18) in Proposition 3 yields 21 

∗
WC = 

1 − ( ̂  μ∗/μm 

0 ) 

(1 − ˆ μ∗) 2 
= 

1 − μm 

0 

1 − ˆ μ∗ , 

here μm 

0 
= μ0 | θ= θm and θ

m = (θm 

L 
, θm 

H 
) ∈ arg min 

θ∈ ̂ �
ρ∗ is such 

hat 

θm 

L 

θm 

H 

= 

1 

2 

= μm 

0 . 

his results in the worst-case performance index: 22 

∗
WC = 75% . 

ence, no matter what the demand characteristics may be (in 

erms of the type vector θ ∈ 

ˆ �), when choosing the robust prod- 

ct menu , 

 ̂

 p 

∗
, ̂  q 

∗
) = ( p 

∗( ̂  μ∗) , q 

∗( ̂  μ∗)) , 

he firm’s profits are guaranteed to remain within a 25%-band of 

he ex-post optimal profits that could be achieved if the type dis- 

ribution was perfectly known, irrespective of (μ, θ) ∈ [0 , 1] × ˆ �. 

.2. Performance comparison 

We now benchmark our robust solution against four alternative 

elief heuristics, 

ˆ ∈ { 0 , 1 / 2 , μ0 / 2 , μ0 } . 
he worst-case heuristic , ˆ μ = 0 , is the most conservative approach 

here the firm assumes that there are no high types at all. It 

mplies a minimax approach and therefore a “worst-case product 

ortfolio.” Following the “principle of insufficient reason” Laplace 

1825) proposes to assign uniform beliefs over outcomes in the ab- 

ence of better knowledge. This yields the Laplacian ( equiprobable ) 

elief heuristic —with ˆ μ = 1 / 2 . Similarly, when the type threshold 

0 for the shutdown solution is known, then the belief ˆ μ = μ0 
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Fig. 4. Profit realizations and performance index for different belief heuristics. 

Table 1 

Profit and performance index for different belief heuristics. 

Belief heuristic ( ̂ μ) 

0 μ0 / 2 μ0 1 / 2 ˆ μ∗ μ

Average profit 1700 2093.8 2500 2500 2194.5 2619.8 

Average relative profit [%] 72.75 84.81 88.03 88.03 87.03 100 

Performance index [%] 52.00 70.00 0 0 75.67 100 
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an be termed the most-conservative shutdown heuristic . 23 Finally, a 

andidate belief ˆ μ = μ0 / 2 corresponds to a Laplacian full-coverage 

euristic , which is consistent with the firm’s decision to serve both 

onsumers (the latter being in turn consistent with μ < μ0 with- 

ut any additional distributional assumptions). The ex-post opti- 

al profit �∗(μ) with perfect information about the type distri- 

ution μ serves as a baseline for our profit comparisons. 

When the type vector is known (in our simulation it is fixed at 

he nominal value θ
0 = (θ0 

L 
, θ0 

H 
) = (40 , 100) ), then the robust prod-

ct portfolio depends only on the type threshold μ0 . For γ = 1 

nd the true belief μ ∈ [0 , 1] , we examine the performance ratio

mplied by the firm’s expected profit ˆ �( ̂  μ, μ) . 

Fig. 4 shows the (otherwise deterministic) performance compar- 

son against the four belief heuristics introduced earlier. The verti- 

al lines show the average profit for each heuristic, with the ex- 

ost optimal profits (where ˆ μ = μ) in black. We first note that the 

east-conservative shutdown heuristic ( ̂  μ = μ0 ) and the Laplacian 

euristic ( ̂  μ = 1 / 2 ), corresponding to the red curves in Fig. 4 (a)

nd (b), perform well on average because they correctly limit the 

roduct portfolio for bullish type distributions. On the flipside, 

owever, the performance ratio can drop arbitrarily low as soon 

s high types become rare in the economy (so ρ(μ0 ) = ρ(1 / 2) =
 ). The worst-case belief heuristic ( ̂  μ = 0 ) and the Laplacian full-

overage heuristic tend to do well for type distributions that favor 

he occurrence of the low type (i.e., when μ is fairly small). Finally, 

he robust product portfolio, with 

ˆ p 

∗ = (1984 − 256 
√ 

21 , 7024 + 

84 
√ 

21 ) ≈ (816 . 86 , 8783 . 71) and 

ˆ q 
∗ = ((248 − 32 

√ 

21 ) / 5 , 100) ≈
20 . 27 , 100) , shown by the blue curves, exhibits a “balanced per-

ormance,” in the sense that the boundary performance ratios are 

he same (at ρ∗
WC 

= 75% ). Table 1 compares the numerical perfor- 
23 We disregard the least-conservative shutdown heuristic ˆ μ = 1 , as it would effec- 

ively assume that all consumers are of high type, which runs counter to any idea 

f performance robustness. 

t

b

t

803 
ance, including the performance index (which is indicated by 

orizontal lines in Fig. 4 ). The average relative profit is the aver- 

ge over performance ratios. While the robust performance guar- 

ntee makes sure that the firm can never do worse than 75% of 

he ex-post optimum, the average robust outcome exceeds 85% of 

he ex-post optimal profit. 

To check the worst-case performance of the proposed robust 

elief and the various alternative belief heuristics over possible 

ype realizations θ ∈ 

ˆ �, we generate a random sample ˆ θ = ( θ
k 
) N 

k =1 
f size N = 10,0 0 0 , drawn from a uniform distribution on the rect- 

ngle 

 θ0 
L − ε, θ0 

L + ε] × [ θ0 
H − δ, θ0 

H + δ] ⊂ ˆ �, 

or the nominal type vector θ
0 = (θ0 

L 
, θ0 

H 
) = (40 , 100) and possi-

le type realizations characterized by the dispersion vector (ε, δ) = 

10 , 20) . 

In addition, we draw M = 1,0 0 0 random samples of μ from a 

niform distribution on [0,1]. Fig. 5 shows the performance ra- 

ios on the vertical axis, and the corresponding profit ˆ �( ̂  μ, μ| θ) 

n the horizontal axis. Vertical lines indicate average profits, while 

orizontal lines mark the worst-case performance index over the 

andom sample ˆ θ. The shaded areas cover 90% of the data points 

or each belief heuristic ˆ μ, around the respective average relative- 

erformance curves. We note an interesting nonmonotonicity of 

hese curves at the right end for ˆ μ ∈ { 0 , μ0 / 2 , ˆ μ∗} , which results

rom the fact that large profits are realized at shutdown solutions 

or relatively large θH and small θL , leading to full revenue extrac- 

ion and thus an improving relative performance. Table 2 juxta- 

oses the average profit (absolute and relative) and the worst-case 

erformance index for the different belief heuristics ˆ μ, including 

he proposed optimal robust belief ˆ μ∗. 

In terms of relative performance, the proposed optimal robust 

elief (as solution to the robust identification problem (13) ) fea- 

ures a performance guarantee of 75% and yet attains over 87% 
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Fig. 5. Performance distributions for different belief heuristics [Sample size M = 1,0 0 0 (in μ) and N = 10,0 0 0 (in θ) ]. 

Table 2 

Performance comparison across belief heuristics in the presence of type variation. 

Belief heuristic ( ̂ μ) 

0 μ0 / 2 μ0 1 / 2 ˆ μ∗ μ

Average profit 1745.5 2126.6 2497.6 2500.1 2215.2 2635.2 

Average relative profit [%] 74.00 85.37 86.84 87.34 87.21 100 

Worst-case performance index [%] 50.06 65.76 0.16 0.25 75.04 100 
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f the average ex-post optimal profit. The reason that the worst- 

ase performance guarantee may seem quite conservative by com- 

arison is that it holds with respect to all possible type distribu- 

ions, in particular with respect to a distribution that has all mass 

n types θ
m = (θm 

L 
, θm 

H 
) with θm 

L 
/θm 

H 
= 1 / 2 = μm 

0 
as introduced in

ection 4.1 . In such cases, the robust-belief estimator ˆ μ∗ would 

lso outperform belief heuristics that under uniform sampling may 

rovide higher average profits, but without any attractive relative 

or absolute) performance guarantees. 

. Conclusion 

In order to provide a belief-robust solution to the second- 

egree price-discrimination problem, we use a performance 

ndex—computed as the worst-case performance ratio relative 

o an ex-post optimal solution with perfectly known type 

istribution—which is consistent with the notion of relative re- 

ret. The firm’s profit using an assumed synthetic belief is thereby 

valuated as a fraction of the attainable optimal expected prof- 

ts that would have been obtained, had that belief been correct 

n view of the actual distribution of consumer types. The per- 

ormance index, as a function of the firm’s candidate robust be- 

ief, can be represented as the lower envelope of two monotonic 

oundary performance ratios, allowing for a simple computation 

f the firm’s optimal robust belief. Our characterization of robust 

eliefs is fairly simple, despite the generically nonconvex nature of 

nderlying optimization problem. An additional worst-case perfor- 

ance benchmark with respect to all possible type values provides 

n ex-ante guarantee for the firm’s relative profit attainment using 

he proposed robust product portfolio over the different demand 

cenarios. Interestingly it is possible to obtain expressions for the 
804 
orst-case performance ratio directly from the necessary optimal- 

ty conditions related to the minimization of the standard perfor- 

ance ratio. And for the LQ model, as an important parametriza- 

ion, this leads to a performance guarantee of 75% for the optimal 

obust belief with respect to all possible type values. More gener- 

lly, our method implies that the robust solution is continuously 

onnected to the standard screening solution without model un- 

ertainty. Fully integrating the type values ex ante into the robust- 

ess framework adds substantial combinatorial complications, thus 

eft as a challenge for future work. A generalization of our model 

o an arbitrary number of types and instruments presents another 

nteresting avenue for further research. 

ppendix A. Proofs 

roof of Lemma 1. Recall that θH > θL > 0 . We start by showing

hat the first constraint in Eq. (3) and the second constraint in 

q. (4) are redundant, while the two other constraints are binding, 

hich yields 

 (q H , θH ) − p H = u (q L , θH ) − p L , and u(q L , θL ) − p L = 0 . (24)

ndeed, if u (q L , θL ) − p L > 0 , then—using the second inequality in

q. (3) —it is 

 (q H , θH ) − p H ≥ u (q L , θH ) − p L ≥ u (q L , θL ) − p L > 0 , 

ince by hypothesis u θ ≥ 0 . This indicates that p L and p H can be in-

reased (by equal amounts) without affecting the constraints; yet, 

his cannot be true at any profit-maximizing solution. Hence, the 

rst constraint in Eq. (4) must be binding. Now, if the second con- 

traint in Eq. (3) is slack, then 

 (q H , θH ) − p H > u (q L , θH ) − p L ≥ u (q L , θL ) − p L = 0 , (25)
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y virtue of the fact that u θ ≥ 0 . But this means p H can

e increased without violating any constraints, which in turn 

ontradicts profit maximization. Thus, the second constraint in 

q. (3) must also be binding, which together with Eq. (25) implies 

hat 

p H − p L = u (q H , θH ) − u (q L , θH ) ≥ u (q H , θL ) − u (q L , θL ) , 

here the last inequality follows from the hypothesis that u qθ ≥ 0 . 

s an immediate consequence of the preceding inequality the first 

onstraint in Eq. (3) must hold. The second constraint in Eq. (4) is 

edundant, since (by taking into account the two binding con- 

traints and u θ ≥ 0 ): 

 (q H , θH ) − p H = u (q L , θH ) − p L ≥ u (q L , θL ) − p L = 0 . 

ence, the binding constraints in Eq. (24) are an equivalent re- 

lacement of Eqs. (3) and (4) ; they imply that for any q = 

q L , q H ) ∈ Q : 

p = (p L , p H ) = 

(
u (q L , θL ) , u (q H , θH ) − ( u (q L , θH ) − u (q L , θL ) ) 

)
, 

(26) 

nd thus also Eq. (6) for q = q ∗(μ) . By substituting Eq. (26) into

he firm’s standard screening problem (5) the objective func- 

ion becomes independent of p and additively separable in q L 
nd q H , implying the two distinct optimization problems in Eq. (7) . 

hus, the solution to the screening problem (5) is given by 

 p 

∗(μ) , q ∗(μ)) , for all μ ∈ [0 , 1] . �

roof of Corollary 1. 

i) Fix θ = (θL , θH ) ∈ 

ˆ �. Consider the first optimization problem in 

Eq. (7) , with the objective 

F (q, μ) = (1 − μ) 
(
u (q, θL ) − C(q ) 

)
− μ

(
u (q, θH ) − u (q, θL ) 

)
, 

where (q, μ) ∈ Q × [0 , 1] . 

By Eq. (2) and the assumption that u θ > 0 , it is 

q > q̄ ⇒ u (q, θL ) − C(q ) < u (q, θH ) − C(q ) ≤ 0 , 

which yields, for all μ ∈ [0 , 1] and q > q̄ : 

F (q, μ) = u (q, θL ) − C(q ) − μ
(
u (q, θH ) − C(q ) 

)
< 0 = F (0 , μ) ,

Hence, the correspondence Q 

∗
L 

(which, by the maximum theo- 

rem, has compact values) is such that Q 

∗
L 
(μ) ⊂ [0 , q̄ ] , for all μ ∈

[0 , 1] . 

Next we prove that if shutting down the low-type consumer is 

optimal for one belief μ̄ ∈ [0 , 1] , then it is also optimal to shut

down the low-type consumer for all higher beliefs. That is, 

0 ∈ Q 

∗
L ( ̄μ) ⇒ 0 ∈ Q 

∗
L (μ) , ∀ μ ∈ [ ̄μ, 1] . (27)

For this, note first the equivalence 

0 ∈ Q 

∗
L (μ) ⇔ F (q L , μ) ≤ F (0 , μ) = 0 , ∀ q L ∈ Q , (28)

for any μ ∈ [0 , 1] . Therefore, 0 ∈ Q 

∗
L 
( ̄μ) , together with u (q, ·)

being increasing, implies that 

u (q L , θL ) − C(q L ) ≤ μ̄

1 − μ̄

(
u (q L , θH ) − u (q L , θL ) 

)
≤ μ

1 − μ

(
u (q L , θH ) − u (q L , θL ) 

)
, 

for all μ ∈ [ ̄μ, 1) . Additionally, it is F (q L , 1) ≤ 0 . Thus, one ob-

tains 

0 ∈ Q 

∗
L ( ̄μ) ⇒ F (q L , μ) ≤ 0 , ∀ (q L , μ) ∈ Q × [ ̄μ, 1] , 

which, by virtue of (28) , establishes the implication (27) . 

Since by Eq. (1) we have u qθ (q, θ ) > 0 whenever θq � = 0 , it is

F (q, 1) < 0 , for all q > 0 . Thus, 

Q 

∗
L (1) = { 0 } . (29) 
805 
This implies that μ0 ∈ [0 , 1] in Eq. (8) is well-defined. More- 

over, by the upper hemicontinuity of Q 

∗
L , necessarily 

0 ∈ Q 

∗
L (μ0 ) . (30) 

It follows from Eq. (2) that 0 / ∈ Q 

∗
L (0) , so Eq. (30) implies that

necessarily μ0 > 0 . 

Now we establish the monotonicity of �∗
L 

and the monotonic- 

ity of any selection q ∗L (·) ∈ Q 

∗
L (·) . For this, we focus on the non-

trivial case where μ ∈ [0 , μ0 ) , so q ∗
L 
(μ) > 0 . Differentiating the

objective with respect to q and μ yields 

∂ 2 qμF (q, μ) = −
(
u q (q, θH ) − C ′ (q ) 

)
, (q, μ) ∈ Q × [0 , 1] . 

Recall that q ∗
L 

and q ∗
H 

are both finite, due to Eq. (2) . Thus, by

the first-order necessary optimality condition for q = q ∗L (μ) ∈ 

Q 

∗
L 
(μ) it is ∂ q F (q ∗

L 
(μ) , μ) = 0 , so 

u q (q ∗L (μ) , θL ) − C ′ (q ∗L (μ)) 

= 

μ

1 − μ

(
u q (q ∗L (μ) , θH ) − u q (q ∗L (μ) , θL ) 

)
> 0 , 

where the strict inequality follows from the fact that, by Eq. (1) , 

u qθ (q, θ ) > 0 for all (q, θ ) with θq > 0 . Since u q (q, θ ) − C ′ (q ) is

continuous, there exists a neighborhood of (q ∗
L 
(μ) , μ) , in which 

(q L , μ) still satisfies u q (q L , θL ) − C ′ (q L ) > 0 and where �L (q L ) =
u (q L , θL ) − C(q L ) is increasing in q L . Moreover, in a neighbor-

hood of (q ∗
L 
(μ) , μ) , the objective function features strictly de- 

creasing differences in (q L , μ) : 

∂ 2 qμF (q, μ) = −
(
u q (q, θH ) − C ′ (q ) 

)
< 0 . 

By the regularity condition introduced in Section 2.2 , F (q, μ) 

has strictly decreasing differences in (q, μ) ∈ I × [0 , μ0 ) , and

for any μ < μ0 , Q 

∗
L 
(μ) is in the interval I . We conclude from 

Edlin & Shannon ( 1998 , Cor. 1) that any selection q ∗
L 
(μ) is

strictly decreasing in μ for μ < μ0 (cf. footnote 12). 

From the monotonicity of �L (q L ) in q L it follows that �∗
L 
(μ) 

is strictly decreasing in μ on any connected neighborhood. For 

μ < μ0 , if there exist q 1 , q 2 ∈ Q 

∗
L (μ) satisfying q 1 < q 2 , by the

assumption of u qθ > 0 , the sorting condition holds: 

u (q 1 , θH ) − u (q 1 , θL ) < u (q 2 , θH ) − u (q 2 , θL ) , 

which implies that u (q 1 , θL ) − C(q 1 ) < u (q 2 , θL ) − C(q 2 ) , since

F (q 1 , μ) = F (q 2 , μ) . It further guarantees �L (q 1 ) < �L (q 2 ) , so

that �∗
L (μ) is also strictly decreasing. For μ ≥ μ0 , the selection 

q ∗
L 

= 0 yields �∗
L 

= 0 . 

The second optimization problem in Eq. (7) yields a solu- 

tion q ∗H which is constant in μ ∈ [0 , 1] . Hence, for μ ≥ μ0 

and the selection q ∗L (μ) = 0 , the type-contingent profit �∗
H (μ) 

is constant. Moreover, by the representation of �H ( q ) and 

the assumption u qθ > 0 , �H ( q ) is strictly decreasing in q L > 0 .

For μ < μ0 , since q ∗L is strictly decreasing, �∗
H (μ) increases 

strictly in μ. 

To show that �∗
L 

is nonnegative, note first that by Eq. (29) it 

is Q 

∗
L (1) = { 0 } , so �∗

L (1) = 0 . Let μ < 1 . Since u qθ > 0 and

F (q ∗
L 
, μ) ≥ 0 , we have �∗

L 
= u (q ∗

L 
, θL ) − C(q ∗

L 
) ≥ 0 , for any selec-

tion q ∗
L 
. Moreover, by the definition of q ∗

H 
in Eq. (7) it is 

�∗
H = max 

q H ∈Q 

{
u (q H , θH ) − C(q H ) 

}
≥ u (q ∗L , θH ) − C(q ∗L ) ≥ �∗

L ≥ 0 ;

that is, �∗
H 

is also nonnegative and not smaller than �∗
L 
. 

ii) Now we prove that for μ ∈ [0 , μ0 ] , Q 

∗
L (μ) is single-valued ex- 

cept for countably many points. Since any selection q ∗
L 

∈ Q 

∗
L 

is 

strictly decreasing in μ ∈ [0 , μ0 ) , q ∗
L 

is discontinuous only at 

countably many points (see, e.g., Rudin, 1976 , p. 96). Let D de- 

note the (countable) set of discontinuity points in [0 , μ0 ] . Sup- 

pose that Q 

∗
L 

is not single-valued at μ̆ ∈ [0 , μ0 ] \D, so that there

exists q 0 ∈ Q 

∗
L ( ̆μ) \ { q 1 } , where q 1 = q ∗L ( ̆μ) ∈ Q L ( ̆μ) . Since q ∗L is

continuous at μ̆, for all ε > 0 , there exists δ > 0 such that for



J. Han and T.A. Weber European Journal of Operational Research 306 (2023) 795–809 

 

 

 

 

 

 

P

m

a

w

E  

v  

i

�

a

�

r

�

�

w

P

s

c

h

a

&

�

(

e

�  

i

t

t

t

t

l

T

u

c

N

B  

c

t

∂

w

E  

m  

f  

R

�

μ
c  

i  

i

p

T

1  

μ  

s

w

[

ϕ

i

t

o

μ

c

P

m

ρ

f

�

a  

ϕ  

b

	

i

	

S

all μ′ satisfying | μ′ − μ̆| < δ, it is | q ∗
L 
(μ′ ) − q 1 | < ε. If q 0 < q 1 ,

we fix ε = (q 1 − q 0 ) / 2 , so 

q ∗L (μ
′ ) − q 1 > 

q 0 − q 1 
2 

⇒ q ∗L (μ
′ ) > q 0 . 

Then for the selection q̆ L (μ) = q ∗
L 
(μ) + 1 { μ= ̆μ} (q 0 − q 1 ) which

modifies q ∗L only at a single point, we have q̆ L (μ
′ ) = q ∗L (μ

′ ) > q 0 
for μ′ ∈ ( ̆μ, μ̆ + δ) , so that q̆ L is not decreasing, leading to a

contradiction. The case where q 0 > q 1 can be treated in a simi- 

lar manner. 

�∗(μ) is continuous due to the maximum theorem. For μ ∈ 

[0 , μ0 ] \D, Q 

∗
L 
(μ) is single-valued and then { ∂ μF (q ∗

L 
, μ) | q ∗

L 
∈

Q 

∗
L } is a singleton. Since F (q, μ) and ∂ μF (q, μ) are continuous 

in (q, μ) , by Milgrom & Segal (2002 , Cor. 4) the total derivative

of max q ∈ [0 , ̄q ] F (q, μ) with respect to μ is −
(
u (q ∗

L 
, θH ) − C(q ∗

L 
) 
)
.

Thus, �∗(μ) is differentiable at any μ ∈ [0 , μ0 ] \D, and 

d�∗(μ) 

dμ
= �∗

H (μ) − �∗
L (μ) ≥ 0 . 

By the Goldowsky-Tonelli Theorem (see, e.g., Saks, 1937 , p. 206) 

�∗(μ) is increasing on [0 , μ0 ] . 

This completes our proof. �

roof of Remark 3. We begin by considering two particular 

enus, namely ( p 

1 , q 1 ) , with 

p 

1 = (u (q ∗L (0) , θL ) , u (q ∗L (0) , θL )) and q 

1 = (q 

∗
L (0) , q 

∗
L (0)) , 

nd ( p 

2 , q 2 ) , with 

p 

2 = (0 , u (q ∗H , θH )) and q 

2 = (0 , q 

∗
H ) , 

here the positive quality levels q ∗L (0) and q ∗H are given by 

q. (7) in Lemma 1 . Both menus are feasible, in the sense that by

irtue of Eq. (1) they both satisfy Eqs. (3) and (4) . The correspond-

ng expected profits are 

( p 

1 , q 

1 ) = u (q ∗L (0) , θL ) − C(q ∗L (0)) 

= max 
q L ≥0 

{ u (q L , θL ) − C(q L ) } = �∗(0) > 0 , 

nd 

( p 

2 , q 

2 ) = μ
(
u (q ∗H , θL ) − C(q ∗H ) 

)
= μ max 

q H ≥0 
{ u (q H , θH ) − C(q H ) } = μ�∗(1) ≥ 0 , 

espectively, taking into account that by Eq. (2) the optimal profit 
∗(0) is strictly positive. As a result, we can conclude that 

∗(μ) ≥ max { �∗(0) , μ�∗(1) } > 0 , μ ∈ [0 , 1] , 

hich yields our claim. 24 �

roof of Proposition 1. Since the utility and cost functions are 

ingle-valued and continuous in q , they are also upper hemi- 

ontinuous in q by definition and so are �L , �H . Due to upper 

emicontinuity of Q 

∗
L , the composite correspondences �L (Q 

∗
L (·)) 

nd �H (Q 

∗
L 
(·) , q ∗

H 
) are upper hemicontinuous (see, e.g., Aliprantis 

 Border, 2006 , p. 566). Given the assumption of Eq. (2) , 

L (Q 

∗
L (·)) and �H (Q 

∗
L (·) , q ∗H ) are both compact-valued so that 

1 − μ)�L (Q 

∗
L 
(·)) + μ�H (Q 

∗
L 
(·) , q ∗

H 
) is upper hemicontinuous (see, 

.g., Aliprantis & Border, 2006 , p. 571). Since Q 

∗
L 

is compact-valued, 

ˆ ( ̂  μ, μ) as the minimum of (1 − μ)�L (Q 

∗
L 
(·)) + μ�H (Q 

∗
L 
(·) , q ∗

H 
)

s lower semicontinuous in ˆ μ (see, e.g., Moore, 1999 , p. 132). Thus, 

he performance ratios for any fixed μ are lower semicontinuous. 
24 The intuition is that the optimal expected profit can never be less than what 

he firm could obtain by choosing the best option among serving either both types 

ogether (which yields �∗(0) using the menu ( p 1 , q 1 ) ) or concentrating on the 

ype- θH consumers (which yields μ�∗(1) using the menu ( p 2 , q 2 ) ). The resulting 

ower bound is tight for μ ∈ { 0 , 1 } . 

μ  

ϕ  

d

ϕ

806 
hen the performance index, as the infimum of lower semicontin- 

ous functions over a compact interval [0,1], is also lower semi- 

ontinuous (see, e.g., Aubin, 1998 , p. 14). 

Now we prove the representation of the performance index. 

ote that by Eq. (9) it is 

d ̂  �( ̂  μ, μ) 

dμ
= �∗

H ( ̂  μ) − �∗
L ( ̂  μ) , ( ̂  μ, μ) ∈ [0 , 1] × [0 , 1] . 

y Corollary 1 , the identity also holds for ˆ μ = μ ∈ [0 , μ0 ] except

ountably many points. Thus, differentiating the performance ra- 

io ϕ( ̂  μ, μ) in Eq. (10) with respect to μ leads to 

 μϕ( ̂  μ, μ) = 

�∗
L (μ)�∗

H ( ̂  μ) − �∗
H (μ)�∗

L ( ̂  μ) 

(�∗(μ)) 2 
, ˆ μ ∈ [0 , 1] , 

hich holds for μ ∈ [0 , μ0 ] except countably many points. Since by 

q. (11) it is �∗(μ) = 

ˆ �(μ, μ) > 0 , ϕ( ̂  μ, ·) attains its global maxi-

um (of 1) at μ = ˆ μ. Then for any ˆ μ < μ0 such that ϕ( ̂  μ, ·) is dif-

erentiable at μ = ˆ μ, we have ∂ μϕ( ̂  μ, ˆ μ) = 0 . On the other hand,

emark 3 implies that either �∗
H 

or �∗
L 

is positive. By Corollary 1 , 
∗
L is strictly decreasing and �∗

H is strictly increasing when μ < 

0 , which ensures that �∗
L 
(·)�∗

H 
( ̂  μ) − �∗

H 
(·)�∗

L 
( ̂  μ) is strictly de- 

reasing on μ < μ0 . Thus, ∂ μϕ( ̂  μ, ·) is equal to 0, as long as it ex-

sts, for at most one point μ = ˆ μ on [0 , μ0 ) . Then ∂ μϕ( ̂  μ, ·) is pos-

tive for μ < min { ̂  μ, μ0 } except countably many points. Since the 

erformance ratio is continuous in μ, by the Goldowsky–Tonelli 

heorem again, ϕ( ̂  μ, ·) is increasing for μ ≤ min { ̂  μ, μ0 } . 
For μ ≥ μ0 , the performance ratio is equal to (�∗

H ( ̂  μ) + (1 /μ −
)�∗

L 
( ̂  μ)) / �∗(1) , which is decreasing in μ. Let ˆ μ < μ0 . For ˆ μ <

< μ0 , wherever ϕ( ̂  μ, ·) is differentiable, ∂ μϕ( ̂  μ, μ) is negative,

o that ϕ( ̂  μ, ·) is decreasing. 

As a result, the performance ratio is always increasing in μ
hen μ ≤ min { ̂  μ, μ0 } and decreasing otherwise, so for any ˆ μ ∈ 

0 , 1] it is 

( ̂  μ, μ) ≥ min { ϕ 0 ( ̂  μ) , ϕ 1 ( ̂  μ) } , 
mplying that the performance ratio is quasiconcave in μ and at- 

ains its minimum with respect to μ necessarily at the boundary 

f its domain [0,1], 

inf 
∈ [0 , 1] 

ϕ( ̂  μ, μ) = min { ϕ 0 ( ̂  μ) , ϕ 1 ( ̂  μ) } , 
oncluding our proof. �

roof of Proposition 2. By Eqs. (10) and (14) , the firm’s perfor- 

ance index is of the form 

( ̂  μ) = min { ϕ 0 ( ̂  μ) , ϕ 1 ( ̂  μ) } = min 

{
�∗

L ( ̂  μ) 

�∗
L 
(0) 

, 
�∗

H ( ̂  μ) 

�∗
H 
(1) 

}
, 

or ˆ μ ∈ [0 , 1] . 

Moreover, by Corollary 1 , �∗
H 
(·) is strictly increasing, whereas 

∗
L (·) is strictly decreasing on [0 , μ0 ) . By choosing a selection to 

ttain the minimum of �L (Q 

∗
L ( ̂  μ)) and 0 ∈ Q 

∗
L (μ0 ) , it is ρ( ̂  μ) =

 0 ( ̂  μ) = 0 , for all ˆ μ ≥ μ0 . As a result, the difference between the

oundary performance ratios, 

( ̂  μ) = ϕ 1 ( ̂  μ) − ϕ 0 ( ̂  μ) , ˆ μ ∈ [0 , μ0 ) , 

s strictly increasing, with 

25 

(0) = ϕ 1 (0) − 1 < 0 ≤ 	(μ0 ) . 

ince ϕ 1 (·) is strictly increasing and ϕ 0 (·) is strictly decreasing for 

< μ0 , there exists ˆ μ ∈ (0 , μ0 ) ( Eq. (8) shows μ0 > 0 ) such that

 0 ( ̂  μ) ϕ 1 ( ̂  μ) > 0 , which implies that the optimal performance in-

ex is positive. Furthermore, sup ρ([0 , 1]) in Eq. (13) is achieved 
25 It is ϕ 1 (0) = 1 −
(
u (q ∗L (0) , θH ) − u (q ∗L (0) , θL ) 

)
/ 
(
u (q ∗H , θH ) − C(q ∗H ) 

)
< 1 and 

 0 (·) = 0 on [ μ0 , 1] . 
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r 0 1  
t ˆ μ∗ ≤ μ0 given in Eq. (15) (possibly by a converging sequence of 

andidate beliefs as described in footnote 14). 

If Q 

∗
L 
(·) is single-valued on [0 , μ0 ] , it is also continuous,

mplying the continuity of ρ(·) , which in turn means ˆ μ∗ = 

 ̂

 μ ∈ (0 , μ0 ) : 	( ̂  μ) = 0 } . In that case, any solution ˆ μ∗ to the ro- 

ust identification problem (13) is such that 	( ̂  μ∗) = 0 . Indeed, 

y Eq. (30) it is Q 

∗
L 
(μ0 ) = { 0 } , so ϕ 0 (μ0 ) = 0 and ϕ 1 (μ0 ) = 1 . Then

he difference 	(μ0 ) is positive and ˆ μ∗ < μ0 , which concludes our 

roof. �

roof of Lemma 2. Since θ
m = (θm 

L 
, θm 

H 
) lies in the open set ˆ �, it

s an interior minimizer of the performance index ρ , so the first- 

rder necessary optimality condition (∂ θL 
ρ∗, ∂ θH 

ρ∗) = 0 has to be 

atisfied at θ = θ
m 

. By definition, the boundary performance ratios 

re 

ϕ 0 ( ̂  μ∗) = 

�∗
L ( ̂  μ∗) 

�∗
L 
(0) 

and ϕ 1 ( ̂  μ∗) = 

�∗
H ( ̂  μ∗) 

�∗
H 
(1) 

. 

q. (17) leads to two alternative representations of the first-order 

ecessary optimality condition, namely 

∂ θL 
ρ∗ = 

�∗
L ( ̂  μ∗) 

�∗
L 
(0) 

(
∂ θL 

log �∗
L ( ̂  μ∗) − ∂ θL 

log �∗
L (0) 

)
= 0 , 

 θH 
ρ∗ = 

�∗
L ( ̂  μ∗) 

�∗
L 
(0) 

∂ θH 
log �∗

L ( ̂  μ∗) = 0 , 

hich yields conditions (a), or alternatively, 

∂ θL 
ρ∗ = 

�∗
H ( ̂  μ∗) 

�∗
H 
(1) 

∂ θL 
log �∗

H ( ̂  μ∗) = 0 , 

 θH 
ρ∗ = 

�∗
H ( ̂  μ∗) 

�∗
H 
(1) 

(
∂ θH 

log �∗
H ( ̂  μ∗) − ∂ θH 

log �∗
H (1) 

)
= 0 , 

hich gives conditions (b). Identifying the components of the gra- 

ient vector across the two representations, we further obtain that 

a 1 ) ⇔ (b 1 ) and (a 2 ) ⇔ (b 2 ) , as claimed. �

roof of Proposition 3. By the definition of �L ( q ) and �H ( q ) , the

artial derivatives of �∗
L 
( ̂  μ∗) with respect to θL , θH are 

∂ θL 
�∗

L ( ̂  μ∗) = 

(
u q ( ̂  q ∗L , θL ) − C ′ ( ̂  q ∗L ) 

)
(∂ θL ̂

 q ∗L ) + u θ ( ̂  q ∗L , θL ) , 

 θH 
�∗

L ( ̂  μ∗) = 

(
u q ( ̂  q ∗L , θL ) − C ′ ( ̂  q ∗L ) 

)
(∂ θH ̂

 q ∗L ) , 

r equivalently, using the relevant first-order condition in Eq. (7) , 

∂ θL 
�∗

L ( ̂  μ∗) = 

ˆ μ∗

1 − ˆ μ∗

(
u q ( ̂  q ∗L , θH ) − u q ( ̂  q ∗L , θL ) 

)
(∂ θL ̂

 q ∗L ) + u θ ( ̂  q ∗L , θL ) , 

 θH 
�∗

L ( ̂  μ∗) = 

ˆ μ∗

1 − ˆ μ∗

(
u q ( ̂  q ∗L , θH ) − u q ( ̂  q ∗L , θL ) 

)
(∂ θH ̂

 q ∗L ) . 

eanwhile, the partial derivatives of �∗
H ( ̂  μ∗) are 

∂ θL 
�∗

H ( ̂  μ∗) = −
(
u q ( ̂  q ∗L , θH ) − u q ( ̂  q ∗L , θL ) 

)
(∂ θL ̂

 q ∗L ) + u θ ( ̂  q ∗L , θL ) , 

 θH 
�∗

H ( ̂  μ∗) = 

(
u q ( ̂  q ∗L , θL ) − u q ( ̂  q ∗L , θH ) 

)
(∂ θH ̂

 q ∗L ) + u θ (q ∗H , θH ) 

−u θ ( ̂  q ∗L , θH ) , 

here we have used that by Eq. (7) the optimal quality q ∗H does 

ot depend on θL . At the boundary of the belief domain [0,1] we 

btain 

(∂ θL 
�∗

L (0) , ∂ θH 
�∗

L (0)) = ( u θ (q ∗L (0) , θL ) , 0 ) , 

∂ θL 
�∗

H (1) , ∂ θH 
�∗

H (1)) = ( 0 , u θ (q ∗H , θH ) ) . 

ifferentiating Eq. (16) yields that (∂ θL 
	( ̂  μ∗) , ∂ θH 

	( ̂  μ∗)) is equal 

o 

∂ θL 
�∗

H ( ̂ μ
∗) 

�∗
H 
(1) 

− ∂ θL 
�∗

L ( ̂ μ
∗) 

�∗
L 
(0) 

+ 

∂ θL 
�∗

L (0) 

�∗
L 
(0) 

ρ∗ = 0 , 

∂ θH 
�∗

H ( ̂ μ
∗) 

�∗
H 
(1) 

− ∂ θH 
�∗

L ( ̂ μ
∗) 

�∗
L 
(0) 

− ∂ θH 
�∗

H (1) 

�∗
H 
(1) 

ρ∗ = 0 . 

ombining this with conditions ( a 2 ) and ( b 1 ) gives: 

∗
WC = 

∂ θL 
�∗

L ( ̂  μ∗) 
∂ θ �∗(0) 

= 

∂ θH 
�∗

H ( ̂  μ∗) 
∂ θ �∗ (1) 

. (31) 

L L H H 

807 
ote that by our expression of ∂ θH 
�∗

L ( ̂  μ∗) and ∂ θL 
�∗

H ( ̂  μ∗) , condi-

ions ( a 2 ) and ( b 1 ) imply, 

 θH ̂
 q ∗L = 0 and ∂ θL ̂

 q 

∗
L = 

u θ ( ̂  q 

∗
L , θL ) 

u q ( ̂  q 

∗
L 
, θH ) − u q ( ̂  q 

∗
L 
, θL ) 

, 

espectively, whence by substitution into Eq. (31) (using the rele- 

ant expressions derived earlier in this proof) we obtain: 

∗
WC = 

1 

1 − ˆ μ∗
u θ ( ̂  q ∗L , θ

m 

L ) 

u θ (q ∗
L 
(0) , θm 

L 
) 

= 1 − u θ ( ̂  q ∗L , θ
m 

H ) 

u θ (q ∗
H 
, θm 

H 
) 
. 

ote that ˆ q ∗
L 

must be smaller than q ∗
H 

(otherwise all agents would 

urchase the product of higher quality at a lower price). Also, ˆ q ∗L 
annot vanish, as otherwise ϕ 1 ( ̂  μ∗) = 1 and ϕ 0 ( ̂  μ∗) = 0 , in con-

radiction to Proposition 2 . We therefore find that u θ ( ̂  q ∗
L 
, θm 

H 
) <

 θ (q ∗H , θ
m 

H 
) , since by assumption u qθ > 0 . Thus, we conclude that

∗
WC is positive. �

roof of Proposition 4. Since the ambiguity set is by assumption 

onempty and compact, its bounds are achieved: μ1 = min A and 

2 = max A . They are such that 0 ≤ μ1 ≤ μ2 ≤ 1 . 

i) The proof of Proposition 1 establishes the fact that for any given 

candidate belief ˆ μ ∈ [0 , 1] the function ϕ( ̂  μ, ·) is nondecreasing 

on [0 , min { ̂  μ, μ0 } ] and nonincreasing on [ min { ̂  μ, μ0 } , 1] . As a

result, its minimum on the compact ambiguity set A must be 

achieved at μ1 or μ2 , so 

ρ( ̂  μ|A ) = min { ϕ( ̂  μ, μ1 ) , ϕ( ̂  μ, μ2 ) } , ˆ μ ∈ [0 , 1] , 

which, similar to the proof of Proposition 1 , is lower semicon- 

tinuous, thus establishing Eq. (19) . 

ii) Since Q 

∗
L 
(·) is single-valued, Q 

∗
L 
( ̂  μ) = { 0 } for all ˆ μ ≥ μ0 by

Corollary 1 , and if ˆ μ ≥ μ0 , the performance ratio is equal to 

μ(u (q ∗
H 
, θH ) − C(q ∗

H 
)) / �∗(μ) , which is constant in ˆ μ. Further-

more, q ∗
L 

and the performance ratio are continuous in ˆ μ. We 

claim that ˆ �( ̂  μ, μ) is increasing in ˆ μ when ˆ μ < min { μ, μ0 } ,
and is decreasing when μ ≤ ˆ μ < μ0 . We note that the partial 

derivative of (1 − μ)�L (q L ) + μ�H ( q ) with respect to q L eval- 

uated at q L = q ∗L ( ̂  μ) is equal to 

∂ q F (q ∗L ( ̂  μ) , μ) = (1 − μ)(u q (q ∗L ( ̂  μ) , θL ) − C ′ (q ∗L ( ̂  μ))) 

−μ(u q (q ∗L ( ̂  μ) , θH ) − u q (q ∗L ( ̂  μ) , θL )) , 

which must be 0 when μ = ˆ μ < μ0 due to the first-order 

condition of Eq. (7) . As shown in the proof of Corollary 1 ,

u q (q ∗
L 
, θL ) − C ′ (q ∗

L 
) is positive, implying that ∂ q F (q ∗

L 
( ̂  μ) , μ) is

strictly decreasing in μ. Thus, when ˆ μ < min { μ, μ0 } , the par- 

tial derivative of (1 − μ)�L (q L ) + μ�H ( q ) with respect to q L 
evaluated at q L = q ∗L ( ̂  μ) must be negative, and then in a neigh-

borhood of q ∗
L 
( ̂  μ) , (1 − μ)�L (q L ) + μ�H ( q ) is decreasing in q L ,

which implies that ˆ �( ̂  μ, μ) is increasing in ˆ μ since q ∗
L 

is de- 

creasing and continuous. Similarly, we can prove that ˆ �( ̂  μ, μ) 

is decreasing when μ ≤ ˆ μ < μ0 . ϕ( ̂  μ, μ) has the same mono- 

tonicity as ˆ �( ̂  μ, μ) with respect to ˆ μ. 

Consider the difference of boundary performance ratios, 

	(·|A ) = ϕ(·, μ2 ) − ϕ(·, μ1 ) , which is increasing on the inter- 

val [ μ1 , μ2 ] . It holds that 

	(μ1 |A ) = ϕ(μ1 , μ2 ) − 1 ≤ 0 ≤ 1 − ϕ(μ2 , μ1 ) = 	(μ2 |A ) . 

Hence, there exists ˆ μ ∈ [ μ1 , μ2 ] such that 	( ̂  μ|A ) = 0 . Since

two boundary performance ratios are increasing in ˆ μ ≤ μ1 and 

constant in ˆ μ ∈ [ μ0 , 1] , any optimal robust belief ˆ μ∗ must sat- 

isfy 	( ̂  μ∗|A ) = 0 , i.e., Eq. (20) . 

This completes our proof. �

roof of Lemma 3. Fix θ = (θL , θH ) ∈ 

ˆ �, inducing the belief 

hreshold μ0 = θL /θH in the open interval (0,1). The performance 

atios ϕ (·) and ϕ (·) are both continuous on [0,1]. To obtain ˆ μ∗ ∈
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0 , μ0 ) from 	( ̂  μ∗) = 0 by Proposition 2 , we introduce the vari-

bles ˆ η = ˆ μ/ (1 − ˆ μ) and η0 = μ0 / (1 − μ0 ) with values in (0 , ∞ ) ,

o ˆ η∗ = ˆ μ∗/ (1 − ˆ μ∗) . In the transformed variable ˆ η, the boundary 

erformance ratios ˆ ϕ i ( ̂  η) = ϕ i ( ̂  η/ (1 + ˆ η)) , for i ∈ { 0 , 1 } , become 

ˆ  0 ( ̂  η) = 1 − ˆ η2 

η2 
0 

and ˆ ϕ 1 ( ̂  η) = μ2 
0 

(
1 + 

1 + 2 ̂  η

η2 
0 

)
, 

espectively. These two boundary performance ratios are equal if 

nd only if ˆ η = ˆ η∗ is a root of a quadratic polynomial, 

ˆ 2 + 2 μ2 
0 ̂  η + μ2 

0 − (1 − μ2 
0 ) η

2 
0 = 0 , 

hence 

ˆ ∗ = −μ2 
0 ±

√ 

μ4 
0 

− (μ2 
0 

− η2 
0 
(1 − μ2 

0 
)) . 

ince ˆ η∗ cannot be negative, we can restrict attention to the corre- 

ponding unique nonnegative root: 

ˆ ∗ = −μ2 
0 + 

√ 

μ4 
0 

− (μ2 
0 

− η2 
0 
(1 − μ2 

0 
)) 

= μ2 
0 

( √ 

(2 − μ0 )(1 + μ0 ) 

μ0 (1 − μ0 ) 
− 1 

) 

. 

sing transformation ˆ μ∗ = 1 / (1 + 1 / ̂  η∗) , we can represent ˆ μ∗ in

he form 

ˆ ∗ = 

2 μ2 
0 

μ0 (1 + μ0 ) + 

√ 

μ0 (1 + μ0 )(1 − μ0 )(2 − μ0 ) 

= μ0 

( 

1 −
√ 

μ2 
0 
(1 − μ0 ) 2 + 2 μ0 (1 − μ0 ) − μ0 (1 − μ0 ) √ 

μ2 
0 
(1 − μ0 ) 2 + 2 μ0 (1 − μ0 ) + μ0 (1 + μ0 ) 

) 

, 

or all μ0 ∈ (0 , 1) , which establishes Eq. (23) . In addition, setting

 = μ0 (1 − μ0 ) ∈ (0 , 1) we have 26 

 < 

ˆ μ∗(μ0 ) 

μ0 

< 1 −
√ 

x 2 + 2 x − x √ 

x 2 + 2 x + 1 − √ 

1 − 4 x 
< 1 , μ0 ∈ (0 , 1 / 2] ,

o that—by taking the limit for μ0 → 0 + (and thus, x → 0 + ):
ˆ ∗(0 + ) = 0 , and (by the definition of a derivative) ˆ μ∗′ 

0 (0 + ) = 0 . On

he other hand, substituting μ0 = 1 in Eq. (23) implies ˆ μ∗(1 −) = 

ˆ ∗(1) = 1 . Furthermore, by direct differentiation, 

ˆ ∗′ (μ0 ) = 

( 

3 − μ0 (1 + μ0 ) + 

√ 

μ2 
0 
(1 − μ0 ) 2 + 2 μ√ 

μ2 
0 
(1 − μ0 ) 2 + 2 μ0 (1 − μ0 ) 

(√ 

μ2 
0 
(1 − μ0 ) 2 + 2 μ

or all μ0 ∈ (0 , 1) , which implies that ˆ μ∗′ (μ0 ) → ∞ for μ0 → 1 −

nd ˆ μ∗′ (μ0 ) ≥ 0 . Finally, since ˆ μ∗′′ (μ0 ) ≥ ˆ μ∗′′ (1 / 2) = 16 / 27 > 0 ,

or all μ0 ∈ (0 , 1) , the function ˆ μ∗(·) is strictly convex on (0,1). �
26 Here we use the fact that μ0 (1 + μ0 ) ≤ 2 μ0 = 1 − √ 

1 − 4 x , as x = μ0 (1 − μ0 ) ∈ 
0 , 1 / 4] , for μ0 ∈ [0 , 1 / 2] . 

B  

C

C  

808
− μ0 ) 

μ0 ) + μ0 (1 + μ0 ) 
)
) 

ˆ μ∗(μ0 ) , 

ppendix B. Notation 

Symbol Description Domain/Definition 

A Ambiguity set of beliefs (compact) A ⊆ [0 , 1] 

C(·) Cost function C : Q → R + 
IR Information rent R + 
M, N Sample size (beliefs, types) Z ++ 
M (·) Solution to standard screening 

problem (5) (at μ) 

M : [0 , 1] ⇒ R 
2 
+ × Q 

2 

p = (p L , p H ) Price vector ( p L for low type, p H for 

high type) 

R 
2 
+ 

q = (q L , q H ) Quality vector ( q L for low type, q H for 

high type) 

Q 

2 

Q Quality domain R + 
Q 

∗
L (·) Optimal low-type quality 

correspondence (standard screening) 

Q 

∗
L : [0 , 1] ⇒ Q 

u (·, ·) Utility function u : Q × � → R 

γ Coefficient for cost function R ++ 
	(·) Difference of boundary performance 

ratios (at ˆ μ) 

	 = ϕ 1 − ϕ 0 

θ = (θL , θH ) Type vector ˆ �

� Type space (for given θ) { θL , θH } 
ˆ � Domain for type vectors θ, with 

boundary ∂ ̂  �

{ (θL , θH ) ∈ R 2 ++ : 0 < 

θL < θH } 
μ Belief; subjective probability that 

random 

˜ θ in � is high 

Prob ( ̃ θ = θH ) ∈ [0 , 1] 

μ0 Threshold for vanishing low-type 

quality 

ˆ �

ˆ μ Candidate belief [0,1] 

ˆ μ∗(·) Robust belief (as solution to Eq. (13) ) 

(at μ0 ) 

ˆ μ∗ : (0 , 1) → (0 , 1) 

�(·, ·) Profit function (at ( p , q ) ) � : R 2 + × Q 

2 → R + 
�L (·) , �H (·) Type-contingent profit functions (at 

q ) 

�L , �H : Q 

2 → R + 

ρ(·) Performance index (at ˆ μ) ρ : [0 , 1] → [0 , 1] 

ρ∗ Optimal performance index [0,1] 

ϕ(·, ·) Performance ratio (at ( ̂  μ, μ) ) ϕ : [0 , 1] × [0 , 1] → 

[0 , 1] 

ϕ 0 (·) , ϕ 1 (·) Boundary performance ratio (at 

μ ∈ { 0 , 1 } ) 
ϕ(·, 0) , ϕ(·, 1) 
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