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Abstract

The human ability to perceive and understand music is remarkable. From an unstruc-
tured stream of acoustic input it creates a wide range of experiences, from psycho-
acoustic effects to emotional and aesthetic responses. One such set of phenomena is
the experience of structure, the perception of notes standing in musically meaningful
relationships to each other and to abstract entities such as chords, voices, schemata,
formal segments, motives, or themes, which are not directly represented in the stream
of notes and thus must be inferred.

This dissertation argues that the perception of musical structure from notes is an in-
stance of the general principle of Bayesian perception, which states that perception is
probabilistic inference to the latent causes that produce the sensory input. It first ex-
plores the fundamental relations between notes and latent entities in three case studies
on modal melodies, recognition of voice-leading schemata, and harmonic ornamenta-
tion. Subsequently, it proposes a unified generative model of the note-level structure
underlying Western tonal music and potentially other styles. This model is based on the
elaboration of simple latent note configurations into the musical surface, maintaining
vertical, horizontal, and hierarchical relations in the process.

On the music-theoretical side, this model provides a language to formally express ana-
Iytical intuitions and a foundation for precise definitions of traditional concepts and
clarification of their relation to the musical surface. On the computational side, the
model demonstrates how complex musical structures can be inferred and how the struc-
tural properties of a style can be learned using parsing and probabilistic inference. On
the cognitive side, the model shows that the perception of tonal structure can linked to
general Bayesian perception through a generative process. This thesis therefore consti-
tutes a bridge between different perspectives and disciplines, and thus contributes to a
unified understanding of the human capacity for music.
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Zusammenfassung

Die menschliche Fahigkeit, Musik wahrzunehmen und zu verstehen, ist bemerkenswert.
Aus einem ungeordneten Strom akustischer Signale generiert sie eine breite Palette an
Erlebnissen, von psycho-akustischen Effekten bis hin zu emotionalen und dsthetischen
Erfahrungen. Eines dieser Phdnomene ist die Wahrnehmung von Struktur, das Héren
von Ténen in einer musikalischen Beziehung zu einander und zu abstrakten Entitdten
wie Akkorde, Stimmen, Satzmodellen, formalen Abschnitten, Motiven, oder Themen,
welche nicht direkt aus dem Strom der Téne ablesbar sind sondern aus ihm inferiert
werden miissen.

Diese Dissertation vertritt und erldutert den Standpunkt, dass die Wahrnehmung musi-
kalischer Struktur aus einem Strom von Ténen eine Instanz des allgemeinen Prinzips
der bayesschen Wahrnehmung ist, nach dem alle Wahrnehmung das Schlieen von
sensorischer Information auf die zugrunde liegenden Ursachen nach den Regeln der
subjektiven Wahrscheinlichkeit ist. Sie ndhert sich zundchst den grundlegenden Bezie-
hungen zwischen Tonen und latenten Entititen in drei Fallstudien zu modalen Melodien,
Erkennung von Satzmodellen und zur Ornamentierung von Harmonien. Im Anschluss
wird ein vereinheitlichtes generatives Modell der Tonstruktur, die westlicher tonaler
Musik (und méglicherweise auch anderen Stilen) zugrunde liegt, vorgestellt. Dieses
Model beschreibt einen Prozess der Elaboration einfacher, latenter Tonkonfigurationen
zur komplexen Oberflachenstruktur von Musikstiicken, in dessen Verlauf die vertikalen,
horizontalen, und hierarchischen Beziehungen zwischen Tonen hergestellt werden.

Aus musiktheoretischer Sicht bietet dieses Modell eine Sprache, in der analytische Intui-
tionen formell ausgedriickt werden kénnen, sowie eine Grundlage zur Definition und
Schérfung von traditionellen theoretischen Begriffen und deren exakter Beziehung zu
den Tonen, aus denen ein Musikstiick besteht. Aus mathematischer Sicht wird gezeigt,
wie komplexe musikalische Strukturen algorithmisch inferiert und die Struktureigen-
schaften eines Stils gelernt werden konnen. Im Bezug auf Kognition zeigt das Modell
durch seinen zugrunde liegenden generativen Prozess, wie die Wahrnehmung von to-
naler Struktur als Spezialfall von allgemeiner bayesscher Wahrnehmung verstanden
werden kann. Damit bildet diese Dissertation eine Briicke zwischen verschiedenen Per-
spektiven und Disziplinen und trdgt somit zu einem ganzheitlichen Verstdndnis der
menschlichen Fihigkeit zur Musik bei.
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|8 Introduction

1.1 Music and Structure

1.1.1 Basic Structural Relations

Music is a cognitive phenomenon. While music is commonly associated with sound
that has certain characteristics, “music” is not the same as “sound”, even sound of a
certain quality. Instead, music corresponds to a set of mental experiences that arise
when humans are confronted with such a sound, with other representations of music
(such as written scores), when imagining, remembering, or inventing, or when singing
or playing an instrument. The unifying aspect of all these activities is not a physical
sound (the vibration of air), which does not even occur in all cases, but rather the mental
representations and experiences that humans have when partaking in these activities
(Longuet-Higgins 1976; Bernstein 1976; Jackendoff 1977; Pearce and Rohrmeier 2012).

Musical experiences come in a large variety, ranging from acoustic and psycho-acoustic
phenomena (such as perception of individual tones, or consonance and dissonance), to
recognition of familiar patterns (such motives, themes, chord types, or voice leading
schemata), to anticipation and resolution, to metaphor, symbolism, and association.
One particular mode of experiencing music is trying to make sense of the notes that
are heard or read. Notes are not perceived in isolation, they get their musical meaning
through relations to other notes. However, which relations are important for understand-
ing the function of a note in its context is generally not obvious but must be inferred and
is subject to interpretation. Everyone who has performed an unknown piece of music
from a score will be familiar with the problem, that certain constellations of notes seem
to be irritating and strange at first, but begin to make sense and sound “right” once they
are looked at from a certain angle and integrated with their context.

An example shall help to illustrate this point. Figure 1.1 shows the last four measures of
the Courante fromJ. S. Bach’s French Suite No. 2. Already from the number of accidentals
and the prevalence of leaps in the melody one can tell that making sense of the tonal
relations in this excerpt is not trivial. Indeed, looking just at the penultimate measure (m.
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Figure 1.1 - French Suite No. 2 in C minor (BWV 813), II. Courante by J. S. Bach, mm. 54-57.

56), the direct relations between the notes seem strange: On beat 56.2, the G3 in the left
hand is juxtaposed with an Ab4 in the right hand, forming the rather dissonant interval
of a minor 9th. Similarly, the melody in the right hand mainly consists of dissonant
intervals, first leaping up a minor 7th from D4 to C5 and later alternating between
F and B, using the interval of a tritone twice in a row. Thus, when only considering
directly occurring vertical and horizontal note relations, it looks like Bach is using a
rather unstable and unconventional configuration of notes in m. 56.

Bach’s composition makes more sense when we start looking at the less direct note
relations (indicated by red lines in Figure 1.1): F4 and B4, while directly adjacent on the
surface, can be understood as resolving independently into Eb4 and C5, respectively. The
B is thus not primarily understood as coming from F (a tritone up) and going back to F (a
tritone down), but rather as a coming from the first C5 in m. 56 and going back to C5 in
m. 57. Similarly, the Ab in m. 56 is logically neither a minor 9th above the simultaneous
G, nor third from its melodic predecessor and successor, but rather another neighbor to
a later G, a temporary dissonance that is resolved once the reference tone G is reached.
' E B, and Ab, can thus all be considered as neighbor notes to tones of the final chord. At
the same time, the musical texture gives rise to a number of harmonic entities, starting
with a D half-diminished chord on b. 56.1, continuing to a G’ chord (with a b9 on b.
56.2 resolves either on b. 56.3 or on b. 57.1) and ending on a C minor chord, which
is a typical cadential progression in the minor key. In this context, even the D4 on b.
56.1 is not an isolated tone but can be seen as sustained through m. 56 before resolving
into a C in m. 57 (either an implied C4 or one of the other Cs in the chord). Except
for the final chord, none of these chords occurs literally as a group of simultaneous
notes. Instead, the harmonic events in m. 56 (and the preceding measures) must be
inferred by grouping notes that are not vertical in the original score, just as the sequential
connections described above are assumed between notes that are not directly adjacent

'There are two potential interpretations about the resolution of the Ab: Either, the Ab is assumed to be
active throughout the remainder of m. 56 and only resolve on beat 57.1 with the G entering in the same
octave; or the absence of the Ab on beat 56.3 is taken as a resolution of the Ab to an implied G4.
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in the score. However, together these inferred relations provide an explanation for the
observed notes.

The goal of this thesis is to develop a formal model of the three basic types of tonal
relations that we have seen in the above example — sequentiality, simultaneity, and
functional dependency — as well as the latent entities that they give rise to (such as
harmonies). Dependency relations refer to the purpose or “function” of a note relative
to a reference note. For example, the function of the F in m. 56 is that of a neighbor note
to the following Eb. Similarly, the B is a neighbor to the two Cs that precede and follow
it. These dependency relations can be recursive: a note that depends on a reference
note can itself become the reference for another note. All three types of relations are
generally latent, i.e., they cannot be directly derived from the musical surface (the
literal note configuration that is written or played) but must be inferred. In particular,
it is unclear, which notes stand in a direct, musically meaningful relation at all. For
example, the second F4 in m. 56 is not directly related to the C5 in m. 57, although they
are directly adjacent in time. Instead, they are indirectly related, for example, via the
Eb4 that is simultaneous to the C and at the same time the resolution tone of the E In
addition, inferred interpretations are usually ambiguous, as there can be several different
interpretations for the same surface, although they might not be equally plausible.

The two main problems that need to be addressed are the following: How exactly are
the three types of relations characterized and what is their musical interpretation? And
how do the three independent dimensions they represent — horizontal (sequentiality),
vertical (simultaneity), and recursive-hierarchical (dependency) — interact with each
other? So far, no formal model exists that addresses all of these aspects jointly.

1.1.2 Previous Models of Tonal Structure

Models of Harmony and Voice Leading

There are a number of models that address the problem of harmonic analysis (see
e.g., Aldwell and Cadwallader 2018), i.e., the extraction of a sequence of underlying
harmonies (expressed as chord labels) from the surface notes (Temperley 1997; Raphael
and Stoddard 2004; Sapp 2007; Rhodes et al. 2009; Temperley 2009; Mearns 2013; Ju et al.
2017; Koops et al. 2020; McLeod and Rohrmeier 2021). Harmonic analysis addresses to
some extent the problem of latent simultaneity and the corresponding latent entities: The
surface notes are grouped into segments each of which is supposed to represent a chord.
Since not all notes in the segment have to directly represent the chord, the problem of
non-chord tone identification is sometimes addressed explicitly to differentiate between
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chord tones and ornaments (Chuan and Chew 2011; Ju et al. 2017; T. Hu and Arthur 2021).
To this extent, harmonic labeling can create at least implicitly a form of dependency
relation between chord tones and non-chord tones. However, relations between notes
across chords (sequential and functional) are not modeled explicitly.

The analogous problem to harmonic labeling for horizontal organization is voice separa-
tion, i.e., the partitioning of the surface notes into a set of monophonic streams (Kilian
and Hoos 2002; Chew and Wu 2005; Kirlin and Utgoff 2005; Cambouropoulos 2006;
Cambouropoulos 2008; Temperley 2009; Guiomard-Kagan et al. 2015; Makris et al. 2016;
McLeod and Steedman 2016; de Valk and Weyde 2018). Voice separation is generally
based on the idea of auditory streaming (McAdams and Bregman 1979; Bregman 1990),
which postulates that humans group tones horizontally by assigning them to common
sound sources based on principles such as pitch proximity. While the equation of au-
ditory streams and musical voices is problematic on its own (Cambouropoulos 2008,
also see Section 1.1.3 below), voice separation alone says nothing about the vertical and
functional relations between notes discussed above.

Another approach at treating voice leading is to model theoretical rules of counterpoint
and part-writing (e.g., Aldwell and Cadwallader 2018; Huron 2016) in constraint- and
optimization-based systems that aim to create voices that observe these rules as closely
as possible (Ebcioglu 1979; Herremans and S6rensen 2013; Harrison and Pearce 2020a).
Similar systems often include knowledge about chords and harmonic progressions to
solve a family of tasks around chorale generation and harmonization (Ebcioglu 1988;
Farbood and Schoner 2001; Allan and Williams 2004; Phon-Amnuaisuk et al. 2006; Chuan
and Chew 2011; Hadjeres et al. 2016; Whorley and Conklin 2016; Colombo and Gerstner
2018; Wilk and Sagayama 2019; Wassermann and Glickman 2020). These approaches
integrate harmonic and voice-leading structure to varying extents, and can also contain
knowledge about ornamental notes, usually in the form of local passing notes, neighbor
notes, and suspensions as they are used in chorale-style part writing.

While some of these approaches have produced impressive results, the general method-
ology is of limited use as a model of musical understanding for several reasons (which
apply to various degrees to the different solutions, but to some extent to each solu-
tion): First, they usually aim at reproducing a musical style and its specific composition
techniques rather than modeling a general understanding of tonal relations. As a con-
sequence, they either implement explicit rules and heuristics (based on theoretical
writings about composition techniques, such as Fuxian counterpoint, or on the authors
own insights and intuitions), or the train implicit black-box models on dataset (e.g.,
through deep learning) that are difficult to interpret. Second, they are usually only
concerned with generating a piece, not with obtaining an interpretation of its structure.
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Notable exceptions are the systems by Ebcioglu (1988), which includes a hand-crafted
heuristic parser of Schenker-like analysis for the generated melody and bass (that does
not seem to contribute to the composition process, however), and the unified model by
Temperley (2009), that presents a generative probabilistic system for tonal music that
can be inverted to provide analyses (similar to the model proposed in this thesis, in this
respect). Third, most of these systems make relatively strong assumptions about the
musical texture (chorale style with a fixed number of voices, including bass, melody,
and inner voices), and none of them explicitly models latent relations between notes
that are not directly adjacent vertically or horizontally (at least up to the insertion of
simple, non-recursive ornamental notes). Thus, phenomena such as latent polyphony
and latent simultaneity as we have seen in Figure 1.1 are not addressed in the general
case and thus general polyphonic structure remains an unsolved problem.

Two notable theoretical accounts of voice leading from the constraint-based perspective
have been given by Huron (2016) and Tymoczko (2011). Both accounts build on a set of
constraining principles or compositional goals that shape music in the Western tradition.
Huron starts from a set of canonic voice-leading rules and explores the underlying
perceptual effects (such as pitch perception and auditory streaming) that explain why
these rules have become standard. Tymoczko, on the other hand, begins with a set of five
“features” that in his view constitute the foundation of tonality. Instead of investigating
their perceptual underpinnings, he then demonstrates how the combination of these
features give rise to the musical patterns observed in (extended) common practice
tonality, in particular a syntax of chord progressions.

Like the other approaches on harmony and voice leading mentioned above, both Huron
and Tymoczko integrate horizontal and vertical relations but do not take into account
the functional-hierarchical aspect. While Huron discusses ornamental notes in the
context of embellishing homophonic part writing (his Chapter 9), he does not consider
arecursive form of elaboration. The “hierarchical streams” he mentions (his Chapter
13) refer to a hierarchical understanding of what constitutes a stream, not to functional
dependencies. Tymoczko considers functional relations between chords, but uses them
in a non-hierarchical state-transition model (his Chapter 7, see also the section on
sequential models below). He even explicitly discusses the (non-)relation of his model to
the hierarchical structures in Schenkerian analysis (his Section 7.6, see also the section
on Schenkerian analysis below), advocating for a “pluralist” perspective that asserts
independence between the harmonic and Schenkerian view on a piece. The primary
reason for this non-relatedness is that Tymoczko intends his model as a characterization
of which harmonic progressions are licensed or typical, a solution to the constraints given
by his five principles of tonality, rather than a means of uncovering the latent structure of
a given piece. Even if a non-hierarchical model is sufficient to describe typical harmonic
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progressions (although that is debated, see Rohrmeier 2011; Rohrmeier 2020a), it does
not necessarily capture all functional dependencies between chords, in particular if
those are nested.?

Sequential Models

A general model architecture that is used by many of the above approaches (but also
for other problems) are probabilistic, generative models that produce a piece from left
to right (or vice versa), namely Markov and hidden Markov models (for a review, see
Pearce and Wiggins 2012; Rohrmeier and Graepel 2012). It is interesting to note the
difference between the two model types: Markov models (and similar non-probabilistic
models) generate new tokens based solely on previously generated tokens and features
that can be deterministically derived from previous tokens (e.g., Ebcioglu 1988; Conklin
and Witten 1995; Farbood and Schoner 2001; Pearce 2005; Chuan and Chew 2011; Moss,
Neuwirth, Harasim, et al. 2019). 1st-order Markov chains consider only the directly pre-
ceding token, while higher-order models consider longer contexts. For Markov models of
any order, however, all information that is needed to understand the generative process
of a sequence is entirely represented in the sequence, so there is no uncertainty about
the decisions the model made when the sequence is fully observed. Markov models
thus provide no interpretation of a piece and its latent structure, they just observe the
sequence of tokens. However, Markov models learn latent structure that is shared across
several sequences, which is represented in their transition probabilities. In particular,
viewpoint models (Conklin and Witten 1995; Pearce 2005; Pearce and Rohrmeier 2012;
Whorley and Conklin 2016) represent this shared knowledge in a structured way by using
viewpoints, different representations (or features in modern machine learning termi-
nology) of the surface tokens that allow parameters (and thus predictive information)
to be shared between different surface configurations with the same viewpoint values.
Viewpoint models, such as IDyOM (Pearce 2005), also extend basic Markov models with
a number of additional mechanisms: A backoff mechanisms allows the model to look at
contexts of different lengths, which addresses the problem that longer contexts are more
informative but also much rarer to encounter several times. A combination of long-term
(offline) and short-term (online) learning can capture both stylistic regularities in a
corpus as well as recurring patterns within a single piece, and thus be seen as a form
of inference to latent information (namely patterns) within a piece. Finally, the set of
viewpoints (including derived viewpoints) can be selected according to their predictive
power, which constitutes a form of learning beyond the bare transition probabilities.

%In linguistic terms, a non-hierarchical and a hierarchical model can be weakly equivalent (in particular
cases) without being strongly equivalent (Chomsky 1963).
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Hidden Markov models, in contrast to regular Markov models, make use of a hidden
state (e.g., Allan and Williams 2004; Mavromatis 2009; McLeod and Steedman 2016;
C. W. White and Quinn 2018; Wilk and Sagayama 2019; Duane 2019; Wassermann and
Glickman 2020; also Tymoczko 2011, as discussed above). At each step, the current
token in the sequence as well as the next hidden state are determined based on the
current state. The latent states, however, are generally not observed, only the sequence
of emitted tokens. Hidden Markov models thus represent latent information that is not
directly represented in the observed surface. Similar to the latent relations and entities
we identified in the Bach example in Figure 1.1, the latent states provide explanations
for the surface tokens. A token might be unlikely under one state but have a high
probability under another state, and an unusual progression of surface tokens might be
explained by a change in the latent state. Hidden Markov models are therefore often
used in the context of harmonic analysis: Latent states encode harmonies, while state
transition model harmonic progression and emission probabilities model the realization
of harmonies by surface notes.

Hierarchical Models

A limitation of sequential models such as (hidden) Markov models is their limited ability
to capture recursive dependency structure since generated elements can only depend
on their predecessors in the sequence. More complex, embedded forms of dependency
structure can be modeled by grammatical models such as context-free grammars (CFG,
Chomsky 1956). In a CFG, a sequence of symbols is recursively elaborated through the
application of production rules that replace a symbol by a string of symbols. In this
way, grammars can establish relations both between nested, non-adjacent elements in a
sequence, and between surface entities and latent entities. Grammars (both CFGs and
other grammar formalisms) have been used to model recursive structure in melodies
(Bod 2001; Gilbert and Conklin 2007; Groves 2016; Abdallah, N. E. Gold, and Marsden
2016; Nakamura et al. 2016), chord progressions (Rohrmeier 2011; Rohrmeier 2020a;
Harasim, Rohrmeier, et al. 2018; Granroth-Wilding and Steedman 2014; Melkonian
2019), and rhythm (Melkonian 2019; Harasim, O’Donnell, et al. 2019; Foscarin et al.
2019; Rohrmeier 2020b).

The main limitation of standard grammar formalisms is that they produce sequences of
tokens (i.e., chords or melody notes) but are generally not able to integrate several dimen-
sions of relations. As a result, two families of grammar models have developed: Object-
based grammars (e.g., Hamanaka et al. 2016; Rohrmeier 2020a; Harasim, Rohrmeier,
et al. 2018) operate on musical objects such as notes or chords, and can thus express
modification of existing objects (e.g., harmonic substitution) or the derivation of objects
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from abstract categories that need not correspond to surface entities. Transition-based
grammars (e.g., Mavromatis and Brown 2004; Yust 2006; Gilbert and Conklin 2007), on
the other hand, elaborate the transitions between two sequential objects, such as the
interval between two notes. This allows the generated objects to depend on two parents
(which is essential for passing notes, for examples), but prevents already inserted objects
from being modified or used as latent entities. One of the main technical contributions
of the present thesis is to introduce a class of models that unify the elaboration of ob-
jects and transitions, which allows both latent simultaneities (such as chords) to be
horizontalized and latent note transitions to be ornamented.

One reason that using grammars to model musical structure has been popular for a long
time is that it has been argued that the hierarchical properties of music and language are
similar and even that their underlying biological mechanisms might be tightly related
(e.g., Forte 1967; Winograd 1968; Bernstein 1976; Katz and Pesetsky 2011; Fitch and Mar-
tins 2014; but see also Jackendoff 2009, for a more skeptical view). The first major attempt
at a unified model of tonal structure using hierarchical tools inspired by linguistics was
the Generative Theory of Tonal Music (GTTM) by Lerdahl and Jackendoff (1983). Despite
its name, the GTTM is not a generative theory in the sense that it describes a generative
process that produces the observed notes (as noted by others, e.g., Longuet-Higgins
1983; Rohrmeier 2007). Instead it defines a space of possible interpretations of a piece
by means of well-formedness rules, together with a set of preference rules for obtaining
analyses in a bottom up fashion.

The GTTM defines four types of hierarchies: a metrical grid of stronger and weaker
time points, a grouping structure that expresses a piece as a hierarchy of nested seg-
ments, a time-span reduction that adds a head (the most salient event) to groups and a
prolongational structure, which forms a separate hierarchy of superordinate and sub-
ordinate events. While time-span reduction is based on the grouping structure (and
thus a form of nested constituency), prolongational structure rather expresses a form
of dependency among events based on a notion of relative stability and movement
away and towards stable points (tension and relaxation), which may not agree with
the time-span hierarchy. Prolongational structure thus comes closest to the type of
structures that are of interest in this thesis, although a different set of functional relations
is assumed here. A somewhat odd property of prolongational structure in GTTM is that
itis introduced as a dynamic hierarchical phenomenon: the progression from a stable
note to a neighbor note, for example, increases tension while the progression from the
neighbor back to the reference constitutes a relaxation (Lerdahl and Jackendoff 1983,
their Figure 8.1, p. 180). Longer progressions can exhibit both internal and overarching
tension or relaxation (their Figures 8.2 and 8.3). Despite this dynamic character, the
GTTM encodes prolongational structure using binary trees over events (their Figures 8.4

10
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ff.), which necessarily ignores one of the two connections between an event and the two
adjacent events. This shortcoming is particularly evident in the examples that Lerdahl
and Jackendoff themselves use to introduce prolongational structure, (complete) neigh-
bor and passing motions. Not only does the middle note (the neighbor or passing note,
respectively) logically depend on both its predecessor and its successor as reference
points, a tree analysis of these configurations cannot express both the tension leading to
the ornament and the relaxation going away from it at the same time. This problem has
been noted and addressed in subsequent models of tonal dependency structure, which
describe hierarchies of transitions rather than events (see above).

Since the GTTM analyses are derived from the surface of a piece, they constitute passive
interpretations rather than explanations of a piece (see also Section 1.2.2), although
later computational implementations have aimed to extended the theory to generative,
grammar-like models (e.g., Nakamura et al. 2016). Besides that, the GTTM represents
the surface as a string of events, either single notes (for melodies) or vertical groups
of notes (for polyphonic textures), but only describes relations between events, not
between the individual notes within a complex event. It thus shares a lack of voice-like
note-to-note connections with most grammar-based models and like them is unable to
capture polyphonic structure.

Schenkerian Analysis

The arguably most elaborate theoretical framework for describing tonal relations is
Schenkerian analysis (Schenker 1979; see Cadwallader and Gagné 2011, for an introduc-
tion). Schenkerian analysis involves all three types of relations between notes: sequen-
tial, vertical, and functional, including latent relations of each type. It also assumes a
hierarchy of latent configurations, reductions of the piece’s surface that are organized
in a series of levels, which outline the evolution of a piece from a shared background
structure (the Ursatz) to its specific surface. The levels are connected by a number of
transformations (prolongations or diminuitions) that elaborate the structures of the
higher levels and introduce the latent relations between latent and surface entities. Be-
ing a music-theoretical framework, Schenkerian analysis is usually described informally,
and relies on the intuition of the analyst to apply these transformations correctly and
select the most plausible and musical interpretation of a piece. For this reason, it has
proven notoriously difficult to formalize, and its logical consistency and adequacy as a
psychological (pre-)theory have been subject of debate (e.g., Narmour 1977; Temperley
2011).

While Schenkerian analysis seems to achieve the integration of the three dimensions,

11
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all previous attempts at formalizing and implementing it so far had to abandon this
integration in some way. For example, a family of models based on transition elaboration
(Marsden 2001; Yust 2006; Kirlin and Utgoff 2008; Kirlin and Jensen 2011) only describe
relations within melodies. These models have later been extended to integrate several
voices at the cost of assigning one primary voice that carries the relations (Yust 2015b;
Yust 2018) and to homophonic note-groups similar to the GTTM representation (Kirlin
and Thomas 2015; Mavromatis and Brown 2004), which in principle allows for horizontal
relations between individual notes but cannot express the horizontalization of latent
verticalities, as discussed above. Other approaches have prioritized event-based elab-
oration (e.g., Marsden 2010), which can capture horizontalization but not consistent
sequential relations and elaboration of note transitions (e.g., for passing notes).

Besides the practical difficulties with expressing Schenkerian analysis in a consistent
formal language, there are some underlying theoretical issue with using it as a model of
general perception and understanding: First, many of the diminuitions are not general
and fundamental operations on structure but rather specific and high-level transfor-
mations. Some of them can only be applied in specific conditions or in a specific way
depending on context, such as many of the transformations between the Ursatz and
the first level (e.g., the initial ascent (Anstieg), a linear progression up to the head of
the Urlinie, Schenker 1979, §§ 120 ff.). Some diminuitions can be decomposed into a
set of simpler operations, such as the voice exchange, which consists of note repetition
combined with octave transposition (§§ 236, 237). Finally, most of the structures and
operations have some very specific connotations beyond the notes that they produce
and beyond the primitive operations in which they might be decomposed, such Ziige
(linear progressions, §$§ 113 ff., 203 ff.) which have a sense of directionality (the “will” to
move forward, § 116) and of vertical connection between their endpoints (§ 115), or the
voice exchange which establishes a relation between two voices (§ 236). All of this taken
together makes clear that Schenkerian theory does not operate on the most general
and fundamental level that this thesis is looking for. This situation can be compared to
the relation between physics and chemistry, where the former provides the principles
while the latter describes specific structures and process (i.e., substances and reactions)
based on these principles in a contextual, conditional, and more macroscopic way. The
difference is that in the case of Schenkerian theory it is not precisely known how it maps
to the fundamental principles of tonal structure or how these principles look like.

The second difficulty lies in the lack of orthogonality in Schenkerian principles. Since
Schenker’s point of reference is the piece, in which all constraints and conditions are
satisfied, there is little reason for him to postulate principles that are independent from
each other. On the other hand, some degree of independence is required for a limited set
of principles to produce the high variety of pieces. As a result, Schenker generally claims

12
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that diminunitions can be freely chosen (e.g., § 47), but rarely gives a characterization
of a specific transformation or configuration that does not integrate several principles
at once. For example, the earlier transformations of the Ursatz are presented almost
like a lexicon of possible forms (e.g., the possible extensions of the fundamental bass in
Schenker 1979, Fig. 14 - 19) rather than general formulations of these transformations,
with variants that are impossible due to a different principle already excluded. This
conflict between an analytical or combinatorial and a holistic perspective, as well as the
aforementioned specificity of Schenkerian concepts can be seen as a consequence of
Schenker describing compositional practice (and its perception) rather than the general
perception and interpretation of structure in music (or even in Western tonal music). In
particular, there is no real distinction between what is understandable in principle — the
language — and what is considered adequate, idiomatic, or licensed — the style.

There are two ways to resolve the above issues: One option is to take Schenkerian analysis
as a starting point and try to disentangle, sharpen, and generalize its concepts. This is
the route that most of the formalization attempts mentioned above have taken, although
those have usually adopted the more generic features of Schenkerian theory (e.g., its
recursive structure) rather than its more specific concepts. The other approach, which is
adopted here, is to construct a new theory based on principles that have an independent
justification and are orthogonal, general, and primitive by design. Such a theory need
not abandon the insights provided by Schenkerian theory, and the outcome might in fact
look very similar to Schenkerian theory or some of its formalization attempts. However,
its principles would be supported by an independent motivation instead of an argument
to Schenkerian authority, and there would be neither guarantee nor obligation to be
compatible with Schenkerian theory in all respects.

Expectation and Schemata

A different line of criticism against Schenkerian analysis argues that it does not cover all
aspects of musical organization that are relevant to both the experience of music in time
and to historical composition (or improvisation) practice. The first aspect refers to the
experience of expectation and anticipation when listening to a piece of music, which
Schenkerian analysis is not really concerned about and only addresses implicitly. The
implication-realization model (Narmour 1977; Narmour 1990; Narmour 1992) proposes
a more direct, less rationalistic mode of musical experience than analytical approaches:
By directly observing melodic patterns that immediately precede the current point in
time, expectations about the continuation of these patterns are formed. The formation
of these implications and their realization (or denial) then give rise to a musical and
emotional experience. This perspective has sparked a separate line of psychological

13
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and theoretical research (e.g., Huron 2006; McAdams 2004; Pearce and Wiggins 2006;
Pearce and Wiggins 2012; Vuust and Witek 2014; Arthur 2017; Sears, Pearce, et al. 2018;
Sears, Spitzer, et al. 2018; B. P. Gold et al. 2019; Koelsch et al. 2019; Morgan et al. 2019;
Quiroga-Martinez et al. 2021; Vuust, Heggli, et al. 2022) and serves as a motivation
and justification for some of the left-to-right models already mentioned above (e.g.,
Conklin and Witten 1995; Pearce 2005; Pearce and Wiggins 2006). Models of expectation
in music are usually sequential models as described above: they make use of both
vertical and horizontal note relations for predicting the next event, but they usually do
not consider hierarchical relations between notes. Instead, the dependency of interest
is the one between the upcoming event and its predecessors, as well as higher-order
quantities such as the uncertainty about the next event. Similarly, prediction models are
often (but not necessarily) less concerned with latent entities and rather try to predict
the next event directly based on its predecessors. It should be noted that the set of
musical experiences (and the corresponding computational problems) captured by
the expectation perspective are different from the ones that motivate this thesis (i.e.,
understanding and interpretation). The differences and intersections between the two
perspectives will be discussed in greater detail in Section 1.2.3.

The other major theoretical perspective focuses on historical composition practice
based on compositional patterns, such as voice-leading schemata and cadences (Forte
1979; R. O. Gjerdingen 1988; R. Gjerdingen 2007; Jan 2013; Rice 2015; Rabinovitch 2018;
[Jzerman 2019). Schema theory asserts that historical composition and improvisation
have been based on the reproduction and concatenation of prototypical patterns, which
can in turn be recognized by an informed listener. It is thus somewhat complementary to
Schenkerian theory: instead of a shared set of relations and operations that can encode
a large variety of configurations (which are proprietary to each piece), schema theory
provides a vocabulary of fixed configurations, which themselves are shared across pieces.
Instead of general but abstract principles, the composer is believed to apply and combine
ready-made templates, which is why schema theory has been compared to similar
construction-based approaches in linguistics (R. Gjerdingen and Bourne 2015). Since
schema prototypes are usually not reproduced literally, but ornamented and elaborated,
they constitute another class of latent structural entities, similar to harmonies (but
larger, more complex, and more specific). Despite an increased theoretical interest
in voice-leading schemata, there have been relatively few computational models that
address them (e.g., Symons 2017; Finkensiep, Neuwirth, et al. 2018; Katsiavalos et al.
2019). In the context of this thesis, the focus is less on the characterization of schema
prototypes, their contents, functions, and implications, but rather on how schemata (as
latent entities) can serve as explanations of the surface. Thus, the main question is how
schema prototypes are connected with the notes encountered on the musical surface,
which will be discussed in Chapters 3 and 7.
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1.1 Music and Structure

1.1.3 The Voice Problem

One of the three basic types of relations discussed in Section 1.1.1 is sequentiality: notes
are usually considered to form horizontal progressions with other nodes, they have
predecessors and successors. What exactly characterizes these sequential progressions?
The traditional answer to this question is that notes form voices, contiguous streams of
notes in which notes do not overlap and in which every note has exactly one predecessor
and one successor, except for the first and the last note of the voice.®> In many cases,
these voices are known explicitly either because the piece is just a single melody (which
forms a single voice) or because it is written in several concurrent parts, for example for
several singers or instrumentalists. Likewise, theoretical accounts of voice leading are
usually based on the combination of a fixed set of voices, for example a cantus firmus
and a counterpoint, or a set of parts including soprano, bass, and middle voices (e.g.,
Aldwell and Cadwallader 2018).

As the example in Figure 1.1 shows, the explicitly written parts of a piece do not neces-
sarily coincide with the musically meaningful sequential connections between notes.
This problem becomes even more obvious when considering free polyphony, where
notes are not organized in strict parts in the first place. This has two consequences:
First, horizontal relations between notes are not always directly observable and must be
inferred, just like other forms of latent structure. Second, if sequentiality between notes
is not given, we need a criterion for determining which notes are sequentially related
and which are not. One such criterion is derived from auditory streaming (McAdams
and Bregman 1979; Bregman 1990), which assumes that a listener interprets acoustic
events as originating from a set of sources. When two events are assigned to the same
source, they are considered to be part of the same stream. This idea is applied to implicit
voices too: If a listener assigns two notes to the same stream (based on Gestalt principles
such as pitch proximity or good continuation), they are considered to be in a sequential
relationship. In the excerpt from Figure 1.1, for example, one could assign the notes C5,
B4, and C5 to one stream and the notes Ab4 and G4 to a different stream, each of which
is an implied voice.

In the common understanding of streams — as, for example, used by voice-separation
algorithms (see Section 1.1.2) — streams are distinct entities that keep their identity over
time. A note is never part of two voices at the same time since this would imply that
it was produced by two different sources at once. However, Figure 1.2 shows that the
same is not generally true for sequential relations in tonal music. The shown four-part

3The condition of monophony is sometimes dropped for streams of chords (that do not give away
independent voices) or voices that are so strongly coupled that they seem to fuse into one voice with a
complex timbre (Cambouropoulos 2008; Huron 2016)
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Figure 1.2 — Chorale “Wer hat dich so geschlagen” (BWV 244.37) by J. S. Bach, mm. 11-12.

chorale ends on a perfect authentic cadence. The alto part moves down from the leading
tone E4 to a C4 in order to complete the tonic triad. The tenor part also moves down
from C4 to A3 through a passing Bb3. When disregarding the written parts, however,
there is a second interpretation of the voice leading in this configuration: The E as the
leading tone wants to resolve into the root of the tonic chord E not only because this is
the closest possible resolution, but also because its function as a leading tone (a lower
neighbor of the tonic) is defined relative to the tonic E However, the soprano’s preferred
resolution direction is also down to the tonic, and its 2-1 progression is important for
expressing cadential closure, so the two progressions (7-1 and 2-1) meet on a single tone.
Conversely, the C4 in the tenor is involved in two kinds of progressions, one going down
to A3 via Bb3, the other reflecting a repetition of the C, the only common tone between
the two chords, which again reflects parsimonious voice leading and another functional
relation: repetition.

The underlying problem that causes this apparent conflict is that there are at least three
criteria for defining voice-like relationships.* One criterion is simply what is written.
This criterion only really applies to explicitly written parts, as there is not one single
systematic way parts are constructed (parts in fugues work very differently from parts
in chorales). The second criterion is voice assignment based on streaming. From a
streaming perspective, both the E4-F4 and the C4-C4 connection are locally plausible
(because of pitch proximity), but they are excluded contextually: the most parsimonious
voice assignment must assign the F4 to the soprano and the A3 to the tenor, leaving the
C to the alto voice. The example shows, that notes can be involved in several sequential
progressions at the same time, they can have several predecessors or successors. Only
if the assumption of mutually exclusive streams is dropped, configurations such as
two voices meeting on the same note (F) or departing from the same note (C) can be
expressed, allowing the third criterion to be applied: functional relatedness. From this

“The ambiguity of the concept of a “voice” has been observed by Cambouropoulos (2008), but in the
context of a different problem (voice separation) and correspondingly with slightly different conclusions.
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1.1 Music and Structure

perspective, the C4 in the tenor is both the starting point of a passing motion and a
repetition of the final C4 in the alto. Similarly, the final F4 is the goal of both a downwards
passing motion and a lower neighbor motion, and thus is the successor of both G4 and
E4.

I argue that for voice-leading structure in free polyphony, only the criterion of functional
relatedness is generally meaningful. The first criterion does not have an intrinsic defini-
tion or interpretation, it simply reproduces the explicit parts as notated by the composer
and thus does not apply to implicit voice leading. Moreover, the example in Figure 1.1
has shown that notated voices do generally not indicate the musically meaningful rela-
tions between notes, especially in the presence of latent polyphony. Streaming refers to
an interpretation of a sequence of tones as produced by the same sound source. While
looking for underlying sound sources is meaningful for the actual purpose of analyzing
auditory scenes (i.e., identifying physical sources of acoustic events), its application to
musical structure requires the additional assumption that composers intentionally try
to evoke the impression of independent interacting sound sources or actors. While this
could be argued for in the context of explicit polyphony (Huron 2016), it is rather unclear
whether it also applies in the general case. In particular, the example in Figure 1.2 sug-
gests that distinct streams (from distinct sources) cannot capture all relevant sequential
relations at the same time. Functional relations, on the other hand, lie at the heart of
tonality since they express how notes are understood relative to other notes. In fact, they
do not only apply to free polyphony (where the other two criteria break down), but also
to explicit polyphony, as shown in the example above.’

For these reasons, this thesis proposes a new, network-based model of functional voice-
leading relations in which pairwise connected notes form a directed acyclic graph of
horizontal progressions. Since these progressions are only pairwise and do not un-
ambiguously imply larger “voice-like” entities, they are called protovoices. Earlier ap-
proaches have already abandoned the explicitly written parts in favor of more abstract
forms of counterpoint (e.g., Benjamin 1981) or atemporal voice-leading spaces between
chords and scales (Tymoczko 2006; Cohn 2012; Yust 2015a; Harasim, Schmidt, et al.
2016; Harasim, Noll, et al. 2019; Harrison and Pearce 2020a). Separately, it has been
observed that voices need not be exclusive but can split and merge on shared notes
(Marsden 2005). However, an integrated and fully formal model of free functional voice-

°It could be argued that, in certain situations, one might be explicitly interested in streaming effects
or written parts as opposed to functional voice-leading relations. My point here is that (1) these different
notions of voice leading are not identical and that (2) the functional notion is the implied one when referring
to “voice leading” in the context of general tonal structure, in particular free polyphony. This is independent
of whether voice leading is studied from the perspective of perception, composers’ intentions, or analysis,
although these different perspectives might be interested in the other notions as well (e.g., streaming effects
in perception).
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leading structure has not been proposed so far. That being said, the idea that strings
of notes form network-like structures is clearly present in Schenkerian theory which
(like protovoices) aims to capture voice-leading structure without reliance on explicit
voices. In particular, Ziige are connections between the notes of different voices and
thus introduce a subordinate structure in which the initial note and the target note both
have a double function. As discussed above, however, the operations that generate and
manipulate linear progressions in Schenkerian theory are rather specific and high-level,
whereas the protovoice model aims to describe the most fundamental and general level
of horizontal progressions.

1.2 Interpretation

1.2.1 Interpretations as Explanations

As argued in Section 1.1, structural relations in music are generally latent interpretations.
Interpretations in the most general sense are abstract representations that are in some
way derived from the surface observations and may be ambiguous, as different inter-
pretations of the same observations are possible. There is, however, a stronger notion
of interpretation under which an interpretation explains an observation: The latent
entities and relations that are assumed in the interpretation provide a justification for
why the observation looks the way it does. For example, interpreting a group of notes in
a piece as an instance of a chord could mean that they to some extent resemble a chord,
or that the impression of a chord is evoked by the notes (weak interpretation). On the
other hand, it could also mean that assuming an underlying chord explains why these
particular notes occur in the piece (strong interpretation): the (actual or hypothetical)
composer decided (consciously or intuitively) to use that chord and then chose the
notes accordingly. A weak interpretation is an interpretation that passively results from
the observation, and this connection from observation to interpretation is problem
specific (e.g., which chords are evoked by which notes). A strong interpretation, in
contrast, constitutes a cause or origin of the observation, something that presumably
produced or gave rise to the observation. For a given observation, strong interpretations
are obtained by reasoning to the best explanation. The generative or causal connection
is again problem-specific (e.g., which chords produce which notes), but the inference
process is generic: it selects the most plausible explanation.

What does it mean that an interpretation “explains” an observation? Explanation can
refer to causal relations. For example, a particular pattern of light that falls on the retina
of a human eye can be explained by a combination of physical objects and light sources
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that cause this particular pattern. Assuming a set of underlying objects and light sources
is thus a strong interpretation (in the causal sense) of the retinal input. The relation
between latent causes and observations need not be as direct as in the visual case. When
trying to understand a linguistic utterance (e.g., a sentence or a question), for example,
a strong interpretation refers to the speakers intentions. Similarly, paintings or drawings
of objects do not necessarily resemble the physical objects they refer to. Still, humans
are able to recognize that a stick figure stands for a person, not because the visual system
is deceived into believing that the visual impression is caused by an actual human body
instead of a drawing, but because we are able to infer the underlying intention of the
drawer, and because we are aware of the social convention of using stick figures to
represent persons in an abstract way. In both cases, the intention of the speaker or the
drawer together with the observers knowledge about how intentions cause the observed
entities explain that a certain observation was made.

An observer can never be completely certain that their interpretation of an observa-
tion reflects the true causes (e.g., the objects that actually produced a visual sensation)
since these are generally not directly accessible (and thus latent) and because there are
usually several possible explanations for the same observations. This divide between
latent causes and observations has two consequences: First, when inferring possible
explanations of an observed event, the observer must be able to deal with and reason
about uncertainty. Second, an interpretation need not always correspond to the true un-
derlying causes. This is particularly true when interpretations refer to abstract concepts
such as intentions. Speaker and listener might not even share the exact same concepts,
which would make it impossible for the listener to recover the exact original intention.
In the case of music (or art in general), it becomes even less important to recover the
original intention of the composer or artist. From the perspective of a listener, any
interpretation that provides a good explanation of the observed piece and connects
it to the concepts, norms, and conventions familiar to them, is a satisfactory strong
interpretation.® Thus, strong interpretations are subjective explanations in the sense
that they merely explain the observations to the observer and do not necessarily reflect
the true world.”

The same argument can even be made in the case of physical objects: Mental representations of
objects usually do not refer to the “true” physical properties of an object (e.g., its molecular structure) but
to abstract entities. The light that excites the cells of the retina is not reflected by a “chair” entity but by a
bunch of atoms; the entity of the chair “as such” only exists in the mind of the viewer. Explaining a visual
impression by referring to the concept of a chair with all its connotations does thus not exactly reproduce
the physical cause of the impression, i.e., a particular configuration of interacting particles and waves.

"Interpretations being subjective does not imply that they are arbitrary or that the interpretations of
two different observers are completely different or even unrelated to each other. Generally, observers with
similar backgrounds and in similar contexts share concepts and can thus come to similar conclusions
about the plausibility of an interpretation.
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In the case of musical structure, interpretations are inferred on several levels. Latent
relations between the observed notes in a piece explain the function of a note and
its relation to its context. In addition, latent entities (such as chords, voice-leading
schemata, motives, or themes) as well as relations between the latent and observed
entities can explain how larger configurations of notes come about. Finally, stylistic
regularities (such as chord and schema prototypes, modes, or form templates) can be
shared across many pieces, generalizing explanations of individual pieces. While these
latent concepts are connected to compositional intentions — in the sense that a composer
might “use” a scale, a chord type, or a schema, possibly unconsciously, to decide how
the notes of the piece are arranged — structural interpretation does not necessarily
recover the exact intention of the composer. For one, as mentioned above, a plausible
explanation from the listener’s perspective need not correspond to the composer’s goals
or even use the same concepts.? In addition, the composer might not just generate a
piece based on naive intentions, but play with “higher-order” intentions, for example
by making the intended interpretation very easy to discover (composing in a way that
is difficult to misinterpret) or very ambiguous, thus playing with the communication
process between composer and listener (Temperley 2007a).

Structural interpretation of a piece of music in the cognitive sense is closely related
to music-theoretical analysis, which can be seen as aiming for an understanding and
discussion of a piece on all levels, up to high-level aesthetic experience. In practice,
however, interpretations do not need to reach this level of completeness. For a casual
listener, a superficial recognition of a piece’s style as familiar might be sufficient, and
even a musician might have a good understanding of a piece’s structural properties
without being aware of all of its deep implications.

That humans try to make sense of a sensory input by inferring its underlying causes is
an old and well-known idea in cognitive science, especially in the context of Bayesian
cognition and predictive processing (Helmholtz 1860; Chater, Oaksford, et al. 2010;
Clark 2013). According to the Bayesian framework, cognitive tasks that involve some
form of uncertainty (such as decision making, perception, or reasoning) are solved using
(approximately) probabilistic inference. For example, the plausibility of an interpretation
I given an observation O is expressed as a conditional probability distribution over
possible I:

P(10). (1.1)

8For example, a harmonic interpretation can be plausible from the perspective of a modern-day listener,
even when anachronistically applied to music that was primarily composed contrapuntally. That being
said, subjective explanations that are somewhat close to the “true” underlying process of an observation
usually have the best explanatory power and will thus be (on average) preferred, even from a subjective
perspective.
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According to probability calculus, this conditional probability can be rewritten in terms
of the joint probability P(O, I) and the marginal probability of the observation alone
P(0):

P(O,1)

PI]0)= PO)

(1.2)

The joint distribution can be understood as the mental model of the observer that defines
how the plausibility of different combinations of observation and interpretation are
rated. In the case of strong interpretations, this joint model can be further decomposed
into a prior P(I) (the plausibility of the interpretation alone, independent from the
observation) and a likelihood P (O | I), the probability that the interpretation (if true)
would give rise to the observation. Thus, the observer can infer the posterior distribution
over possible interpretations from the prior and the likelihood:

PO|D-PU
P(I|0):%. (1.3)

When the observers model is expressed as a product of prior and likelihood, it corre-
sponds to a generative model, i.e., a hypothetical process by which the observation is
generated from the interpretation. The application of generative probabilistic models to
music theory will be discussed in detail in Chapter 2. Bayesian models of perception
have been suggested for domains such as visual perception (Knill et al. 1996; Weiss 1996;
T. S. Lee and Mumford 2003; Kersten et al. 2004; Kulkarni et al. 2015; Felip et al. 2019)
and language processing (Chater, Crocker, et al. 1998; Narayanan and Jurafsky 2001;
Chater and Manning 2006), but also for the perception of musical structure (Temperley
2007a; Abdallah and N. E. Gold 2014; Abdallah, N. E. Gold, and Marsden 2016; Harasim,
O’Donnell, et al. 2019; Harasim 2020).

Bayesian models first and foremost characterize a problem and its optimal solution.
When applied to cognitive tasks, they therefore describe first of all the computational
level of explanation, that is, they are concerned with which problem is (approximately)
solved by a cognitive system, and why (Marr 1982). However, since Bayesian inference is
a mathematically well-defined problem, algorithms for computing conditional distribu-
tions serve as hypotheses for the algorithmic level of explanation that describes how the
solution to a problem is computed. Finally, the implementation level (how inference
algorithms are realized in the brain) has been addressed to some extent by neuroscien-
tific research (see Chater, Oaksford, et al. 2010; Clark 2013, for a review). This thesis is
mainly concerned with characterizing the relationship between musical surfaces and
their possible interpretations on the computational level, as well as possible algorithms
that implement this inference.
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1.2.2 Interpretations in Music Psychology

In music psychology (especially concerning the perception of music), interpretations of
the sensory input are widely used. The focus, however, is usually on the “bottom-up”
direction, that is, which abstract representations (i.e., weak interpretations) occur in
music processing, and how they are obtained from the sensory input. The “top-down”
direction (i.e., the explanatory link between interpretation and observation) is usually
not considered. Top-down effects are, however, often acknowledged in a different sense:
the choice of interpretation can be influenced by other aspects than the direct sensory
input, such as prior beliefs, expectations, or integration with the context. In probabilistic
terms, this would refer to the prior of the latent interpretation P (I | context), rather than
the likelihood of the observation given interpretation P(O | I).

Instead of explanatory inference, structural relations between the observed entities are
usually believed to arise through heuristics such as Gestalt principles (McAdams and
Bregman 1979; Bregman 1990; Huron 2016; Lerdahl and Jackendoff 1983; Terhardt 1987;
Deutsch 1999, e.g., ), similar to the ones proposed in visual perception in the first half of
the 20th century (Wertheimer 1923). Strong interpretations, in contrast, describe the
other direction, where the observation is “generated” from (or explained by) the inter-
pretation based on generative principles, while the interpretation is obtained through
inference to the best explanation. A wide range of different types of interpretations
have been investigated in music perception both empirically and theoretically. They are
usually more low-level (and thus easier to operationalize) than their music-theorical
counterparts, and include pitch and chroma (Terhardt 1974; Longuet-Higgins 1976;
Krumhansl 1979; Shepard 1982; Krumhansl 1990a), melodic contours (B. W. White 1960;
Dowling 1978; Jones 1987), voices or streams (McAdams and Bregman 1979; Bregman
1990; Huron 2016), key and mode (Longuet-Higgins and Steedman 1971; Krumhansl
1990a; Temperley 1999b), groups (Deliege 1987; Bregman 1990; Deutsch 1999), harmony
(Parncutt 1989; Yeary 2011), and hierarchical structure (Deutsch and Feroe 1981; Lerdahl
and Jackendoff 1983).

Generative and bottom-up approaches emphasize different aspects of the same type of
phenomenon. Bottom-up approaches address the “what” and the “how”: which types
of interpretations occur at all, and how they are derived from the observed sensory
input. Generative approaches focus on the “why”: A certain type of interpretation
is used because it is a useful explanation for a large set of observations. The precise
“how” generally remains implicit at this level, it corresponds to whatever mechanism
performs the explanatory inference. Accordingly, the biggest weakness of the bottom-
up approach is the strength of the generative approach: answering the question, why
humans have learned or evolved to use the abstract representations that they use, and
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not others. From the generative perspective, interpretations are useful because they
allow for prediction and generalization. If using one type of interpretation leads to better
predictions and generalizes better to new situations, it is preferable over a different type
of interpretation. The ability to make predictions follows naturally from the definition of
strong interpretations: if latent interpretations gives rise to observations, then knowing
(or assuming) a certain latent entity changes the expectations about the observations to
be made. For example, knowing that a piece is written in a minor key (from listening to
the beginning of the piece or from reading its title) changes the listeners expectations
about the note configurations that will be encountered. Generalization arises naturally,
when the same explanations are applied to many observations. An explanation that
makes many pieces likely (e.g., that the minor mode uses certain notes more frequently
than others) is probably going to be useful for a new, unknown piece as well. Just applying
the “best explanation” principle to several observations (together with the predictive
and explanatory power of strong interpretations) thus provide a good motivation for
choosing certain types of interpretations (e.g., major and minor modes, Harasim, Moss,
et al. 2021) over others.

Another difference between the bottom-up and the generative view is the role of am-
biguity. From a pure bottom-up perspective, confronting an observer with a stimulus
generates a percept. A stimulus may evoke different percepts when presented to differ-
ent observers (or to the same observer in different conditions), but when observer and
conditions are fixed, then the path from stimulus to interpretation is fixed too. From an
explanatory perspective, there might be several competing explanations for the same
observation, even from the perspective of a single observer. The observer may prefer one
explanation as more plausible than the others (and this assessment may differ between
different observers or conditions), but there is still an inherent ambiguity in the possible
interpretations of a stimulus that is not directly visible from the bottom-up perspective.

It is important to note, however, that bottom-up and top-down approaches are not
mutually exclusive, but rather complement each other. Bottom-up studies in music
psychology often establish or confirm the existence of certain abstract representations
in the first place. Moreover, since the Bayesian perspective defines inference only on
the computational level, its concrete implementation for a specific inference task is
subject to empirical investigation. Finally, heuristic bottom-up preference rules (such
as Gestalt principles) can often be reinterpreted as generative principles (Chater 1996;
Feldman 2009).° For example, the principle of good continuation (elements are grouped

9There is some debate about whether Gestalt and Bayesian approaches are really equivalent, but this
debate focuses on the question of whether the (probabilistic) likelihood principle and the (information
theoretic) simplicity principle are really equivalent (Feldman 2009; van der Helm 2017). This debate does
not challenge that Gestalt principles often have a generative interpretation.
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if they form contiguous lines) can be understood as appealing to an underlying gen-
erative process: the next element is added relative to the previous element, keeping
the previous directions of insertion with high probability or changing direction with
lower probability. An example of the connection between bottom-up and generative
principles can be found in auditory scene analysis (Bregman 1990). The idea of auditory
streams is motivated by underlying sound sources. Acoustic events are grouped together
based on the assumption that they were generated by the same sound source. However,
the mechanisms that give rise to stream interpretations were suggested to be based
on bottom-up Gestalt principles. Conversely, the Generative Theory of Tonal Music
(Lerdahl and Jackendoff 1983) is (despite its name) a bottom-up theory rather than a
generative model, with preference rules describing how interpretations are obtained
from the observed surface (see Section 1.1.2). Only later, researchers have adapted this
bottom-up model into a generative form (Nakamura et al. 2016).

1.2.3 Interpretation and Expectation

The second major framework for perception of musical structure is expectation (Meyer
1956; Narmour 1990; Huron 2006; Pearce and Wiggins 2012). The expectation framework
describes the experience of a music in time rather than from the abstract, atemporal
point of view of interpretation. At a given point of time, a listener has already per-
ceived past musical events but not yet future events. Based on the previous events and
long-term musical knowledge, the new musical events might be expected or surprising.
Similarly, the current musical context can give rise to very strong expectations (e.g.,
right before the end of a cadence), or the listener might be rather uncertain about the
continuation of the piece (e.g., after a cadence, see Sears, Pearce, et al. 2018). All of these
phenomena contribute to the listener’s experience, and all of them rely on predicting
(or forming expectations about) future events.

Expectation and interpretation focus on different aspects of musical experience. In-
terpretation is generally applied retro- instead of prospectively and does not need to
happen in the moment, but can change the understanding of a piece over time and
through reflection. Interpretation is more concerned with “making sense” of a piece
while expectation describes the (immediate and instantaneous) dynamics of experience.
Nevertheless, these two types of experience are related and often interact, as shown in
Figure 1.3 (see also Rohrmeier and Koelsch 2012). For one, both deal with uncertainty,
although this uncertainty has different sources: In the case of interpretation, the latent
structure that explains the piece is unknown because it is generally unobservable. In the
case of prediction, the future events are unobserved because they are not accessible yet.
Furthermore, interpreting the past events yields useful information for future events. For
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Figure 1.3 — The schematic relation between prediction and interpretation.

example, when a listener infers from the past events that the piece is approaching the
end of a cadence, their expectations will change accordingly. Conversely, experiences
related to expectation can play a role in the formation of interpretative concepts such as
deceptive cadences. In addition, both perspectives share the problem of generalizing
over different pieces by learning and applying style knowledge.

The relation between interpretation and expectation can be expressed in probabilistic
terms. From a purely predictive perspective, expectation can be expressed as a probabil-
ity distribution of the next event given all previous (observed) events:

Pe;jq1e,...,€). (1.4)

When combined with the interpretation perspective, the same distribution can be ex-
pressed as a marginalization over latent interpretations I:*°

P(ej, le,...,e) =) Pleg 1 )-Pley,...,e). (1.5)
T

In general cognitive science, this integration of prediction and interpretation is the
foundation of predictive processing (Clark 2013), which is strongly linked to Bayesian

1°In Equation 1.5, no direct dependencies between the surface symbols are assumed, i.e., e;,, depends
only on I. However, by choosing an appropriate structure for I (which, for example, remembers the relevant
information about past events) these event-to-event dependencies can be included in the distribution
P(e;,, | I). Generally, however, the interpretation serves as a compression of the relevant information in the
past events, so that prediction becomes simpler and generalizes over similar (but not identical) contexts.
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inference: Abstract beliefs about the state of the world (e.g., an object moving from left to
right in front of observer) generate predictions about the next sensory input (observing
the object further to the right) while mismatch between prediction and actual input
(observing the object further left than expected) lead to updated beliefs (the object
stopped or slowed down). Thus, instead of predicting the next event directly from the
past events (as in Equation 1.4), an abstract, compressed representation of the world
state is used (as in Equation 1.5).

In music perception, this integrated view is applied less frequently, at least explicitly.
For example, Herff et al. (2021) have found that using a grammatical model of latent
harmonic structure is useful for modeling listeners’ expectations about the number of
remaining chords in an incomplete harmonic progression. The more common approach,
which goes back to Narmour’s implication-realization model (Narmour 1990; Narmour
1992), models expectations directly on the basis of past events, as in a Markov model.
In particular, the multiple-viewpoint model and its later successor IDyOM (Conklin
and Witten 1995; Pearce 2005; Pearce and Wiggins 2012) describe expectations that are
formed based on a combination of features of past events within the current piece as
well as general regularities learned over many pieces. While the features that are used to
predict the next event are deterministic, the set of features that is used is chosen based
on the training data. Thus, the model does not interpret the already observed events in
the full, probabilistic sense (although complex features could be seen as heuristic and
deterministic approximations of interpretations) but it learns to focus on stylistically
relevant features across different pieces, just like interpretative models can infer global
properties of a style. The used set of features is selected based on optimal cross entropy
of the observed sequences, which is equivalent to the likelihood principle.!!

Implicitly, expectation and interpretation are combined in some psychological paradigms.
For example, probe tone experiments (Krumhansl 1990a) reveals an abstract interpre-
tation of a presented context (the context’s key) through its effect on subsequently
presented tones. While this does not explicitly refer to prediction, it shows how the
perception of future events is influenced by an interpretation of past events. The com-
bination of expectation and interpretation can also arise implicitly in computational
models that do not directly aim at modeling listeners’ expectations but still have a se-
quential form, such as hidden Markov models (HMMs) and recurrent neural networks
(RNNS, see Section 1.1.2). HMMs directly incorporate an interpretation aspect in the
model form since they assume a sequence of latent states that are probabilistically con-

In Bayesian inference, learning of global properties 6 is not based on the likelihood P(O | 8), but on
the posterior P( | 0), which is proportional to the product of likelihood and prior (P(6)). However, when
a flat prior is assumed that assigns equal probability to all possible 6, then the maximum-likelihood and
maximum-a-posteriori estimate are equivalent.
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nected to the surface events. In particular, they assume no direct dependency between
the surface events, so prediction in HMMs is entirely based on inference over the latent
states. In RNNs, a hidden state is used as well, but it is computed deterministically from
the current observation and the previous state (Goodfellow et al. 2016). Both HMMs
and RNNs can be trained on a set of sequences, which can be understood as inference
to the stylistic properties of the dataset.

1.3 Outlook

1.3.1 Goals and Methods

The goal of this thesis is to develop a model of basic tonal structures as perceived by an
abstract, idealized listener. Such a model abstracts from human understanding of music
in two major ways: First, interpretations are conceptualized as complete and consistent
derivations of a piece. While humans can generally not be expected to have such a clear
and unified understanding of a piece, complete interpretations can be considered the
ideal case that a listener would converge to given enough time and experience, and
thus constitute an important foundation. In this sense, the goal is to model human
competence rather than performance (Chomsky 1965). Second, the model focuses on a
specific set of structural aspects (simultaneity, sequentiality, functional dependency)
while other aspects such as rhythm and meter, form, or motivic material, as well as
other modes of musical experience (e.g., acoustic, emotion, association, metaphor and
symbolism) are ignored.

The methodological approach of this project is based on computational modeling.
Broadly speaking, models are abstract descriptions of a certain domain in terms of
entities and their relations and interactions. They are foremost descriptive tools: While
models can be used to describe reality (or hypotheses about reality), they are, on their
own, neutral descriptions until applied for a certain purpose, which can be encoding
theories or hypotheses, but also communitation and understanding, or simulation and
prediction. Because of this versatility, models can serve as a useful bridge between music
cognition and music theory, two fields that do not necessarily share the same goals, but
might very well share concepts.

One aim of this thesis is to derive and justify a model in a systematic way. The mod-
eling decisions taken here are thus based on a number of design principles: First, the
model is generative, i.e., it describes a process that produces the observable objects of
interest (here: the surface notes of a piece) and reveals the latent relations and entities
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of interest. Second, it is combinatoric, i.e., it uses a small set of orthogonal primitives.
Complexity and variety in the produced surface forms arises from combination of these
primitives. Both the generative and the combinatoric principle are shared with gram-
matical approaches in computational linguistics (Chomsky 1965). As a third criterion,
the operations and relations used by the model should have a musical interpretation.
Structure is not just assumed for the sake of structure but to carry meaning and provide
an “understanding” of a piece (Marsden 2005; Rohrmeier 2020a; Rohrmeier 2020b).
Finally, this model aims at covering structure in the general case instead of the typical
case. This is important since music theory is often concerned with simple or typical
cases. When a complex or rare case is not covered by a theory, it is either regarded as
an exception or it is left to the theorist’s intuition to extend the narrow explicit rules to
the general case. While exceptions can be acceptable when caused by a phenomenon
or principle that lies outside the scope of the model or theoretical framework, all cases
that are believed to be captured by the principles of interest should be covered by the
model. This is particularly challenging when applying the principles of voice-leading in
the context of implied and free polyphony, as explained in Section 1.1.3. Shifting the
burden of generalization from the analyst to the model can require the reframing and
reorganization of music-theoretical concepts that have traditionally been formulated in
restricted settings, such as voice-leading rules in species counterpoint or part writing
(Aldwell and Cadwallader 2018; Huron 2016).

1.3.2 Thesis Outline

This thesis is structured in three parts. Part I introduces the problem, the research goal,
and the approach of the overall project. Chapter 2 gives an overview of computational
modeling for music theory and corpus research, in particular in the form of Bayesian
generative models.

Part IT approaches the problem of tonal structure through three case studies, each of
which addresses a separate structural aspect in isolation: In Chapter 3, local features
and heuristics are used to recognize voice-leading schemata (as latent entities) from a
score in a “bottom-up” fashion, by selecting and examining the notes that instantiate the
schema in the score. Chapter 4, in turn, explores the relation between harmonic types
and the ornaments they typically generate, i.e., the notes that do not instantiate them
on the surface (non-chord tones). In Chapter 5, finally, functional relations between
surface notes are modeled using a formal grammar on the example of melodies in North
Indian classical music (and potentially other styles with similar modal properties).

12This problem, extending the principles of counterpoint from strict polyphony to free composition,
was one of the motiviations for Schenker to develop his general theory (Schenker 1979).
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Part III then turns to an integrated model of tonal structure called “protovoice model”
that addresses the problems laid out in Section 1.1: coordinating basic tonal relations
of simultaneity, sequentiality, and functional dependency, and proposing a principled
solution to the voice problem for free polyphony. The model characterizes strong inter-
pretations of the tonal structure of the musical surface and its relation to latent entities.
Chapter 6 provides a formal definition of the model and presents a parsing algorithm for
obtaining protovoice interpretations. Chapter 7 demonstrates on a number of examples
how protovoice derivations can express analytical intuitions and capture a wide range
of theoretical phenomena related to implied and free polyphony as well as the surface
realization of latent entities. Chapter 8 briefly describes a family of tools for creating and
exploring derivations, as well as file formats for storage and processing. In Chapter 9, a
probabilistic version of the protovoice model is presented, closing the circle to Bayesian
modeling, learning, and inference, and thus to computational models of cognition.
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Model-Based Music Theory'

2.1 Introduction: Music Theory and Corpus Research

One of the core aims of music theory is to characterize musical structures as they occur
across cultures, historical periods, and styles, and to reveal the general principles under-
lying these structures. More specifically, music theory provides models of such structural
domains as harmony, counterpoint, rhythm, meter, form, timbre, etc. and the interplay
between these domains. A branch of music theory explores musical structures in their
ecological environment, which involves considering the cultural, social, institutional
etc. contexts in which music is produced, performed, and perceived.

For centuries, this endeavour involved either scientific speculation or the study of mu-
sical “data” in a broad sense (e.g., Rameau 1722; Koch 1782, 1787, 1793). Such early
“empirical” studies date back to the eighteenth century: treatises of composition, al-
though prescriptive in nature, often invoke notions of frequency and typicality, which
are loosely based on observations of the repertoire of the time.? Empirically conceived
in this informal sense are also what one might call “repertoire studies,” that engage with
specific corpora (e.g., of Palestrina’s vocal music, Bach chorales, Haydn’s Symphonies,
Radiohead songs, Turkish folk music, etc.?); the same applies to music theory textbooks
that draw on “intuitive statistics” when describing compositional systems, practices,
and styles (e.g., Piston 1987; Aldwell and Cadwallader 2018; Gauldin 1997; Laitz 2016).

However, both repertoire studies and theory textbooks typically suffer from a lack of

"This chapter has been submitted as:
C. Finkensiep, M. Neuwirth, and M. Rohrmeier (submitted). “Music Theory and Model-Driven Corpus
Research”. In: Oxford Handbook of Corpus Studies in Music. Oxford: Oxford University Press
CF is the main author of sections 2.3 to 2.5. Section 2.1 was written by MN and MR. Section 2.2 was
written by all three authors.
2For instance, Heinrich Christoph Koch in the third volume of his Versuch (1793, 307ff) differentiates
between formal options for the structure of the first “Hauptperiode” of a sonata-form movement’s second
part (what later came to be known as the “development”) based on their frequency of occurrence in
compositional practice.
3E.g., Jeppesen 1960; McHose 1947; Haimo 1995; Osborn 2017
“*See Neuwirth and Rohrmeier 2016.
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transparency in terms of the samples considered and the way they arrive at general
observations and insights (e.g., Neuwirth and Rohrmeier 2016). These two shortcom-
ings are addressed by the more recent musical corpus studies, whose core goal is to
examine musical data available in machine-readable formats, adopting a wide range of
quantitative methods (including sampling strategies).” Corpus studies benefit previous
music theoretical research and repertoire studies by providing an empirical underpin-
ning of arm-chair hypotheses and claims. On the other hand, corpus studies require
music theoretical foundation in order to provide insights with musically meaningful and
interpretable statistical results. In both ways, model-driven statistical corpus research
constitutes a central avenue for novel empirical music research, as it offers models es-
tablishing an explicit mapping between theoretical concepts and observed or computed
quantities.

2.2 Model-Driven Music Research

Model-driven music research may be characterized as the analytic activity by which
abstract concepts are inferred based on observations of musical objects (e.g., Temperley
2007a; Temperley 2009; Abdallah, N. E. Gold, and Marsden 2016). Claims about the
relation between objects on the “surface” (i.e., the level of observation)® and abstract
concepts as well as, for instance, about their frequencies of occurrence can be validated
using the methods available in corpus research. For corpus research and music theory (or
analysis) to efficiently interact, theories need to be sufficiently precise and formalizable;
in other words, they require a model. In the most general sense, a model is a description
of a particular segment of the world in terms of entities and their relationships.” Since
the “true” structure of the world is generally not known, models typically express a set
assumptions about a segment of the world. In a formal model, entities and relations are
expressed in a precise way using the language of mathematics.

Models inevitably involve abstraction and simplification: A model specifies which as-
pects of the world are described, and which are not. Aspects deemed irrelevant for the
structures of interest (i.e., the modeled world) are necessarily ignored. This can hap-
pen either by abstraction or by approximation. Abstraction restricts the model to refer

*One of the earliest instances of corpus study in the pre-computer age is Budge 1943.

5We use the term “surface” to describe the musical objects that are explicitly described in a corpus and
therefore can be considered to be “directly observed” in the context of corpus studies. In music cognition,
the term is also used to denote a level of a listener’s musical perception, which is a more complex issue
(Cambouropoulos 2010).

"For further literature, see for instance Tenenbaum et al. 2011; Norvig 2017; Page 2018; Flanders and
Jannidis 2018; Winn 2020.

32



2.2 Model-Driven Music Research

only to some aspects of the real world while ignoring others, but without introducing
contradictions between the world and the model.? Approximation, in contrast, trades a
simpler model for slight inconsistencies with the real world: while the model predictions
are technically wrong,® the error is deemed sufficiently small.'°
of both abstraction and approximation. By enriching the level of detail contained in
a model, it gradually approximates (some of) the richness and fuzziness of the world.
Abstraction does not only restrict the scope of a model, it is also an important internal

Most models make use

property of models: In the form of generalization, it allows one to formulate general in-
sights that transcend observations specific to individual works or corpora. In this sense,
music theories represent a form of compression (e.g., Abdallah, N. E. Gold, and Marsden
2016): abstract elements and relations are assumed to describe musical structures that
are common to a well-defined set of otherwise different passages or pieces. Instead of
making the same statement about every passage or piece individually, a theory makes
one general statement that applies to all of them.

Models are often (but not necessarily) generative (see e.g., Chomsky 1965; MacKay 2003;
Winn 2020). Generative models express the relationship between observed and latent
entities as a process that “generates” the observations based on the latent entities. Such
a model architecture is common, because it captures how latent entities give rise to
surface observations in an intuitive way (a process is easy to imagine). Note that while
the idea of a “generative process” has a causal connotation, the relationship it expresses
need not be causal. For example, a set of surface objects being connected to each other
through a latent entity (e.g., a set of pitches that form a chord) can often be expressed
as the latent entity generating the surface objects. However, this does not mean that
the surface objects are actually generated by the latent entity (a composer need not
think of the chord before deciding to write the notes), it is just a convenient way of
expressing the relation. Moreover, generative models are attractive, because they can
provide explanations of the observed entities rather than mere descriptions (e.g., notes
occurring together because they form a chord). Regarding their modelling philosophies,
one may attest a strong affinity between music theory and the framework of generative
theories, as abstract music-theoretical concepts are often used to “explain” phenomena
observed on the musical surface or in the perception of the listener. Generally, analysis

8An example of abstraction is a mathematical description of a computer, as opposed to a detailed
physical description of a computer. While the physical description would include the exact atoms the
computer is made of, the mathematical description only specifies that the computer has certain functional
capabilities. While the two descriptions focus on very different aspects, there is no contradiction between
them.

9This view is nicely captured in Box’s “All models are wrong but some are useful” (Box 1976).

1%An example of approximation is Newtonian mechanics. While it is known to be inaccurate in general
(in particular with velocities that approach the speed of light), it is a very useful model for mechanics at
lower speeds.

33



Chapter 2. Model-Based Music Theory

can be understood as reasoning about how latent structures or entities give rise to the
musical surface. Latent structures may range from rather concrete (e.g., chords) to very
abstract concepts (such as ideas or intentions). The field of generative modelling is
formally and scientifically directly linked with Bayesian modelling, as will be discussed
in Section 2.4.

Some examples shall illustrate how ideas from music theory relate to these considera-
tions about modelling. For instance, theories of tonal harmony are based on functional
categories (e.g., dominant, predominant, tonic), which abstract over classes of concrete
tones (here over classes of chords, which in turn are classes over pitch class distributions,
which in turn form classes of different single tones), in order to characterize harmonic
progressions by means of relations between categories (e.g., predominant — dominant).
Statements about sequences of functional categories generalize over the chord or note
level.

Schenkerian theory employs abstract concepts such as Ziige, couplings, neighbor notes,
horizontalization, unfolding, etc. and explains their relations (for example neighbor
notes within a Zug) by means of hierarchical-recursive constructions (e.g., Cadwallader
and Gagné 2011; Yust 2015b). These constructions are assumed to be general, being
applicable to a wide range of pieces as well as different levels of reduction within the
same piece. Attempts at a precise formal model are rare, however (e.g., Frankel et al.
1978; Marsden 2005; Kirlin and Utgoff 2008; Kirlin and Jensen 2011).

Similarly, musical schema theory takes various voice-leading patterns as elements, mod-
elling the relationships of structurally relevant and irrelevant (ornamental) tones as well
as the sequence of various schemata (R. Gjerdingen 2007). Like chords, schemata gener-
alize over different note configurations on the musical surface that can be considered
instances of a schema. In that sense, a sequence of schemata is an abstraction from
the note level, just like a chord progression (e.g., Sears and Widmer 2020; Finkensiep,
Déguernel, et al. 2020).

The above theories about structural properties of music can all be turned into formal
models by explicitly specifying the assumed objects and relations in a formal (i.e., mathe-
matical) way. This has a series of advantages: Exact formalization enables deeper insights
into as well as uncovering problems (such as internal inconsistencies, and conceptual
or logical gaps) with these theories.!’ At the same time, the statements made by these

""For example, only the attempt by Hamanaka et al. to formalize the Generative Theory of Tonal Music
(GTTM) by Lerdahl and Jackendoff (1983) exactly revealed how many aspects of the GTTM remain vague and
under-specified (Hamanaka et al. 2016). The same can be observed with attempts at precisely formalizing
Heinrich Schenker’s theory (e.g., Marsden 2010; Kirlin and Yust 2016), and schema theory (e.g., Sears, Arzt,
et al. 2017; Sears and Widmer 2020; Finkensiep, Déguernel, et al. 2020).
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theories about structural relationships can be examined and validated empirically.

2.3 Modelling Decisions in Musical Corpus Studies

In the previous section, models were introduced as consisting of entities and relation-
ships that reflect some aspect of interest of the world. To make this idea more specific, we
will now look at examples of musical corpus studies from the perspective of modelling
decisions, i.e., the questions and options that arise when defining a model. We will focus
on models related to harmonic syntax, i.e., the description of typical chord progressions
in a style, though the general principles outlined here apply to any domain.

2.3.1 Entities and Relations

One primary question in corpus research concerns which objects are represented in the
corpus, and what are the directly observable relations between them. In the example of
harmonic syntax, this is usually a set of chord progressions, i.e., sequences of chords
in some representation. Some entities and relations follow directly from this structure:
There are two types of objects, namely chords and progressions of chords (that can stand
for phrases or whole pieces). Progressions are related to chords in that progressions
combine chords into sequences. The chords involved in a single progression are related
to each other through their sequential organization: they have, for example, a temporal
order, direct neighbors, a set of predecessors, and a set of successors. Other relations
are less obvious and depend on the exact representation of chords. For example, chords
that are represented as pairs of a root and a chord type can be compared through the
intervallic distance between their roots (which is another entity). If, however, chords
are represented in terms of figured bass (e.g., “voice-leading types” in Sears, Arzt, et
al. 2017), no explicit root is assigned, so the aforementioned root relation cannot be
expressed. Instead, these chords can be related through their bass notes, for example.
Even when arootis given, different relations are implied by a notation that uses absolute
roots than by a notation in terms of scale degrees (Roman numerals), which implies
relations that are independent of the local key. Finally, different representations of a
chord type (e.g., according to Kostka-Payne, ABC, or Roman Text; see Temperley 2011;
Moss, Neuwirth, Harasim, et al. 2019; Gotham et al. 2019; Harrison and Pearce 2020b)
both contain different information and imply different relations, for example, which
chords are considered to belong to the same type. Generally speaking, the representation
ofthe information contained in the corpus determines the relations that can be expressed
and used in the model.

35



Chapter 2. Model-Based Music Theory

prolongs

dependency relations
latent prepares

T------- > P Q D------ » T functional categories

| | | |
777777777777777 A S

| | | |

\/ \/ \/ \/

observed [ ——» IV—» V—» [ sequence / bigrams

Figure 2.1 — Latent entities and relations in different models of harmonic sequences. Bi-
grams are directly represented in the observed data, while functional categories and depen-
dency relations must be inferred.

Reflecting on the way musical information is represented is especially important when
a project involves the creation of corpora by, e.g., transcription or annotation. However,
even using a given corpus requires decisions about how to use the encoded information,
whether to ignore some of it, or whether to transform it into a different representation.
In making these decisions, it can be helpful to consider what would be the ideal repre-
sentation for the goals of the project. Even if this ideal representation is not attainable,
it can also help identify limitations of the given representation, where information that
is necessary to answer a given question is not given the corpus (e.g., the roots of chords
given in figured bass notation). The choice of representation necessarily involves abstrac-
tion and approximation. For example, representing chords as labels is an abstraction
over the actual note configurations that they stand for. Similarly, assuming that the har-
monies in a piece form a single continuous sequence is an approximation (there might
be nonharmonic or polyharmonic sections). Which approximations and abstractions
are appropriate depends on the research goals and should be explicitly discussed.

While the basic entities and their relations are usually given by the data in the corpus, the
objects of interest are usually latent, i.e., they are not directly contained in the data and
must be inferred in some way. In the case of harmonic syntax, the objects of interest are
generally the relations between chords that are relevant for a certain musical style as well
as their quantitative properties. A simple model of the harmonic syntax of a style may, for
instance, look at the direct transitions from one chord to the next. While the fundamental
relation (the chord transition) is given directly in the corpus (and thus is observed, not
latent), the #ypicality of different transitions (or types of transitions) in the style must
be inferred. Such a model that looks at pairs of chords is known as a bigram model (or,
more generally, n-gram model).’? One simple way to assess the typicality of transitions

12Bigram models are very common in harmonic and melodic modelling, see for example de Clercq and
Temperley 2011; Moss, Neuwirth, Harasim, et al. 2019.
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is to look at the number of occurrences of each bigram. Alternatively, the transitions
between chords may be understood probabilistically, and typicality can be explored by
comparing the probabilities of different transitions from the same chord."® In the latter
model, which is known as a first-order Markov model (MM), the probabilities are latent
entities (the “true” probabilities of the style are unknown) and need to be inferred from
the data.

More complex models of harmonic syntax rely more extensively on latent relations and
entities. In functional analysis, for example, chords are interpreted as representatives
of a functional category (such as tonic, dominant, and predominant). The functional
category of a chord is something that is generally not known with certainty, and must
be inferred. In a model proposed by C. W. White and Quinn (2018), harmonic function
is represented as a latent variable for each chord that is connected to the observed
chords through a probabilistic generative process (Figure 2.1): The (latent) functions
are generated first according to a Markov model (i.e., each function probabilistically
depends on its direct predecessor). Then the surface chords are chosen probabilistically
based on the function. Note how this architecture, which is known as a hidden Markov
model (HMM), combines observed entities (chords) with latent entities (functions) and
specifies the relations between them through conditional probability distributions.

However, relations in harmonic sequences need not be restricted to direct neighbors.
Instead, dependency relations (such as preparation and prolongation) can also exist
between non-adjacent chords over large spans of time (Rohrmeier 2011; Rohrmeier
2020a; Rohrmeier and Neuwirth 2015). Such non-local relationships can be expressed
with grammar models such as context-free grammars (CFG). Similar to HMMs, CFGs
define a (potentially probabilistic) generative process that derives a harmonic sequence
from a set of production rules (Abdallah, N. E. Gold, and Marsden 2016; de Haas et
al. 2009; Harasim, Rohrmeier, et al. 2018; Harasim, O’Donnell, et al. 2019) that reflect
dependency relations. In this case, the dependency relations are the latent objects of
interest, and they are related to the observed entities via the concept of derivation.

In all three cases, the objects of interest determine the structure of the model. Depen-
dency relations have different properties than functional categories and chord transi-
tions, and the three models reflect these differences. While some model architectures are
more convenient than others (bigrams are arguably easier to compute than derivations
from a grammar), they also come with different limitations on the interpretability of
their relations (direct transitions cannot capture long-distance relations). Crucially, the
choice of model architecture is informed by the objects of interest, not the other way

3As will be shown in Section 2.4, the two approaches are formally related and counting the absolute
occurrences has a probabilistic interpretation as well.
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around.

2.3.2 Analysis

While a model can be a contribution on its own (e.g., by formalizing intuitive theories),
itis often used as a means of answering an empirical question, usually by performing
some kind of statistical analysis. In relation to the model, two types of analysis can
be distinguished that might be called external and internal analysis. External analysis
uses observations obtained from applying the model to the corpus and performs a
separate statistical analysis. For example, a corpus of harmonic sequences can be
dissected into bigrams, while statistics on these bigrams are used to analyze typical
patterns (e.g., de Clercq and Temperley 2011; Hedges and Rohrmeier 2011; Moss, Souza,
et al. 2020) or properties such as “directedness” (e.g., Rohrmeier and Cross 2008; Moss,
Neuwirth, Harasim, et al. 2019). In order to answer a specific question, statistics can be
combined with a hypothesis test. It is important to note that both computing statistics
and performing hypothesis tests requires assuming a relation between the statistical
quantity that is computed and the model observations. Thus, statistics and tests can be
thought of as defining implicit models that extend the explicit model on which a study is
based. An example of such an implicit model is using relative frequencies to characterize
quantitative properties of a bigram model: For a given antecedent chord it seems to be
useful to look at the relative frequencies of the consequent chord. However, knowing how
to compute this statistic (by counting and normalizing) does not tell us why the statistic
is meaningful. Instead, it is implicitly assumed that the consequent chord depends on
the antecedent chord, that this dependency is captured by a conditional probability
distribution p(c | @), and that the relative frequencies of consequent chords are good
estimates of this distribution.

Internal analysis relies on the relation between statistics and observations being intrinsic
parts of the model. In a Markov model, for example, the transition probabilities (which
were implicitly assumed in the external analysis of the bigram model) are represented
as explicit entities. In such a case, analysis can be seen as a form of inference: what can
we conclude about the latent parameters of the model from the observations given in
the corpus? The model expresses the assumed relation between the latent parameters
and other (latent or observed) entities. Often, internal and external analysis approaches
lead to similar or even the same models. For example, relative frequencies can be seen
as a maximume-likelihood estimate of the true transition probabilities (see Section 2.4.5).
The difference between the two approaches is rather one of perspective and of making
statistical relations explicit and interpretable. The central framework for systematically
approaching internal analysis is Bayesian inference, which is discussed in Section 2.4.
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2.3.3 Modelling Decisions as Assumptions

Modelling decisions are sometimes characterized as assumptions. “Assumption” here
does not refer to assuming that some individual fact is the case (e.g., that a certain har-
monic annotation is correct and reflects the “true” chord), but rather that the perspective
that is taken in the model is appropriate for a particular question. For instance, a piece of
music is not completely characterized by a sequence of chords. However, if the harmonic
properties of the piece (or a set of pieces) is of interest, then the perspective on a piece as
a sequence of chords is a sensible abstraction. Making such a model assumption (i.e. “a
piece can be represented by a sequence of chords”) does not mean believing that pieces
are, in fact, sequences of chords, or even that this is generally the best perspective. In
addition, the set of assumptions related to a model go beyond the internal structure of
the model. Since corpus studies are often motivated by abstract concepts such as “style,”
adopting a certain model structure (e.g., bigrams) or a certain type of entity (e.g., chord
sequences) means assuming that these are related to the high-level concept in the first
place.

2.4 Probabilistic Modelling and Bayesian Inference

How can a model-based research strategy be implemented practically? This section aims
to give an overview of Bayesian modelling, a framework that is well-suited for model-
based quantitative research for three reasons: a) it requires an explicit formulation of
the model as a probability distribution, which facilitates a clear and explicit expression
of the modelling assumptions; b) it constitutes a systematic way of reasoning under
uncertainty, which is a common property of models that involve latent entities; and
¢) it comes with a generic scheme for inference within and between models, which
provides a principled way of deriving statistical analyses from the model (i.e., internal
analysis). All three of these aspects apply to corpus research, which involves inferring
latent properties (e.g., statistical quantities) from a set of observations, the corpus (for
similar arguments for using Bayesian modelling in music research, see Temperley 2007a;
Abdallah, N. E. Gold, and Marsden 2016). The following subsections discuss how models
can be formulated in the Bayesian framework (Section 2.4.1), how probabilistic inference
provides a generic mechanism for analysis (Section 2.4.2), provide an overview over
inference methods (Section 2.4.3) and probabilistic programming (Section 2.4.4), and
discuss the implications of the Bayesian approach for music research (Section 2.4.5). For
more comprehensive introductions to Bayesian modelling, see Winn 2020, Murphy 2012,
MacKay 2003, and Jaynes 2003. More detailed discussions of probabilistic programming
can be found in N. D. Goodman, Tenenbaum, et al. 2016; and van de Meent et al. 2018.
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Figure 2.2 — Left: A PDF of a continuous random variable X. The probability of X being
within a certain range is given by the integral of the PDF over that range. The integral over
the full domain of X is 1. Right: A PMF of a discrete random variable Y. The probability of
Y being in some set is the sum of the PMF over the elements of that set. The sum over all
possible values of Yis 1.

2.4.1 Expressing Models as Probability Distributions

The central question of Bayesian inference is: What can be learned from entities that are
observed about entities that are not (or cannot be) directly observed? For instance, given
a corpus of chord sequences (observed, because given by the data), what can we learn
about the (unobserved) rules and regularities that give rise to these sequences? Such an
inference is only possible if the relationship between observed and unobserved entities is
specified. This relationship is typically not deterministic: for a given set of observations,
several values are possible for unobserved entities. This uncertainty is expressed through
a probability distribution over observed and unobserved random variables (which in
turn represent observed and unobserved entities of the model, respectively).!* Let X
denote the observed and Z the unobserved variables. Then the model is expressed as
the joint distribution over X and Z. Intuitively, it describes the probability (i.e., the
plausibility) of every possible instantiation of X and Z.

A probability distribution over some continuous random variable X is represented by
probability density function (PDF) py(x) over the different values that X can take (Fig-
ure 2.2). The probability of X taking a value in a certain range is given by the integral of
the PDF over that range:

b
Pla<X<bh) =f px(x)dx. (2.1)

Note that the probability of X taking a specific value is 0, since the corresponding integral

“Mathematical probabilities can be interpreted in different ways, for example as a quantification of
chance, but also as a quantification of plausibility or degree of belief in a statement. The latter interpretation
is called the Bayesian interpretation of probability. It can be argued that probability theory is a formalization
of rational inference under uncertainty (Cox 1946).
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is empty. Yet, it can still be useful to compare the value of the PDF at different individual
points. If X is a discrete random variable, the integral is replaced by a sum, so the
probability of X being in some set S becomes

P(X€eS) =) pxx). (2.2)
x€eS
Since a sum over a single value is not empty, P(X = x) = px(x) in the discrete case, and
px(x) is called a probability mass function (PMF).!> When several random variables are
involved, the joint distribution is given by a function ranging over all random variables.
In this case, a probability is obtained by integrating over all continuous and summing
over all discrete variables.

To understand how the joint distribution encodes the complete model, it is instructive
to look at an example.'® Consider the problem of inferring a chord label based on a set of
observed notes. In this case, the chord label is the unobserved variable Z while the notes
are the observation X. The joint distribution encodes the assumptions that we make
about the relationship between chord labels and notes by specifying the plausibility of
a set of notes co-occurring with a chord label, e.g. px ,([C,C,E, G, D], F§"*'!). In this
example, one may assign a low plausibility to the co-occurrence of the notes and the
chord label.

Expressing a model directly as a joint distribution is not always convenient. For example,
instead of expressing the plausibility of a co-occurrence of a set of notes and a label
(relative to other co-occurrences), it may be more straightforward to express the plau-
sibility of observing a set of notes in relation to a given chord label. For example, we
could say that it is more likely to observe the notes [Ff,Af,Bf,E] under an F{"*! chord
than the notes [C,C,E,G,D]. In probabilistic terms, this relationship is expressed as the
conditional probability P(X | Z), and it corresponds to a generative process, by which
the notes are “generated” from the given chord label. The joint distribution is related
to the conditional probability distribution via the equation p(a, b) = p(b | a) - p(a), so
we can obtain the joint distribution via p(x,z) = p(x | z) - p(z). Since this way of fac-
torizing the joint distribution is very common, the two factors have names: p(x | z) is
called likelihood and p(z) is called prior distribution, since it encodes prior knowledge
about the unobserved variable Z. Importantly, this factorization may be understood
as corresponding to a generative process: in a first step, a chord label z is chosen with
probability p(z), independently of the notes. In a second step, the collection of notes x
is chosen with probability p(x | z), i.e., based on the knowledge that the chord label is z.

When it is clear from the context which random variables the density refers to, they are omitted. For
example, instead of py ,(x, z), we write p(x, z).

18The two models of chords used as examples might be compared to the models of key given by Temperley
(2002; 2009) and to the chord model of Rhodes et al. (2009).
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The assumptions of the model are encoded in the specific prior and likelihood distri-
butions. In our example, the prior is a distribution over a finite set of values (all chord
labels), so the most generic choice for the prior is a categorical distribution, in which
every possible value (i.e., every possible chord label) is directly assigned a probability.
The likelihood generates a number of notes from the chosen chord, so we might choose
a multinomial distribution for the likelihood, which corresponds to repeatedly drawing
notes from a categorical distribution and collecting them irrespective of the order in
which they were sampled.!” The parameters of this multinomial distribution depend on
the chord label that is sampled first, so that different chords generate different notes.
We can summarize the model in a notation that reflects the generative process behind
the distribution:

Z ~ Categorical(1)

(2.3)
X | Z ~ Multinomial(v,),

where A is the parameter vector for the prior distribution (i.e., the probabilities of the
chord labels) and v, is the parameter vector for the likelihood that corresponds to the
chord label z.

A problem with the above model is that we might not want to specify the parameters
A and v manually. Instead, as empirical corpus researchers, we could be interested in
assuming a certain fype of relationship while inferring the specific parameters from a
corpus of annotated music, i.e., several pairs of notes and chord labels. We thus need to
extend our model to include the parameters A and v as random variables, so we write
the joint distribution as p (N, L, A, v), where N stands for a list of note collections and L
is the corresponding list of chord labels, one label for each note collection. Note that
now N and L are observed variables, whereas A and v are unobserved. We can adapt
the previous model to our new assumption by making two changes: First, instead of
sampling a single chord label and set of notes, we sample several label-notes pairs, which
we assume to be independent and identically distributed. This assumption allows us to
write the likelihood p(N,L | A,v) as

IN|
p(NrLll»V):l_‘[p(NirLilaylv)) (2'4)
i=1

where N; and L; correspond to a single notes-label pair and are distributed in the
same way as in the previous model, i.e. p(N;,L; | A,v) = p(N; | L;,v)p(L; | A). As a
second change, we need to provide a prior distribution p(A,v). Assuming that A and

"Note that choosing a multinomial distribution corresponds to making very specific assumptions about
how the notes depend on the chord label, and different model assumptions can be expressed through
different distributions. Generally, for more information on the probability distributions involved and their
properties, see MacKay 2003, ch. 23; or Bishop 2006, ch. 2.
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v are independent and that all chords are independent, we can rewrite the prior as
pA,v) = p)-pw) = p)-I1, p(v,) and provide separate priors for A and each v,.'®
In this case we will choose a Dirichlet distribution for both p(A) and each p(v;). The
Dirichlet distribution (see, e.g., MacKay 2003, ch. 23) is defined over probability vectors
(i.e., vectors that sum to 1), so drawing a sample from a Dirichlet distribution generates a
probability vector such as A or v;, which is exactly what we need. Moreover, the Dirichlet
distribution is the conjugate prior of both the categorical and the multinomial distribu-
tion, which means that the combination of a categorical or multinomial likelihood and a
Dirichlet prior has good mathematical properties.'® Finally, we set the parameters of the
Dirichlet distributions to 1, which amounts to a uniform distribution over all possible A
and v;. We can express the full model more compactly in the following notation:

A ~ Dirichlet(1,...,1) prior of the chord labels
vi: v, ~ Dirichlet(1,...,1) prior of the notes, one per chord label (2.5)
Vi: L;| A ~ Categorical(1) chord label of each data point '

N; | L;,v ~Multinomial(v;,) notes of each data point.

It is a common scheme for models of datasets to assume that the data points are inde-
pendent and identically distributed (i.i.d.). In that case the model is of the form

D]
p(D,0) =[]pD;10)p®), (2.6)
i=1

where D is the dataset and 6 is the set of parameters that apply to all points in the dataset.
In fact, the above example is of that form too, with D = (L, N) and 6 = (A, v).2°

Sometimes, Bayesian models are depicted using a graphical notation (Figure 2.3). Ran-
dom variables are represented by circular nodes while edges indicate the dependencies
among the random variables. Nodes with no incoming edges are sampled from their

8That each chord label has an independent set of parameters is a specific modelling choice that we do
not have to make. We might instead want to express that chords of the same type (but different roots) have
the same parameters, but transposed to the respective root. This alternative, more advanced model can
also be expressed through a corresponding probability distribution or generative process.

9To be precise, combining a likelihood with a conjugate prior results in a posterior distribution (the
distribution over unobserved variables affer taking into account the observed variables) of the same family
as the prior distribution. In this example, the posterior distributions of the model parameters will also
be Dirichlet distributions. This has the advantage that the posterior distribution is easy to compute and
that the parameters of the prior and the posterior are often directly interpretable. Therefore, conjugate
priors are an important tool for choosing priors, and it is often a good strategy to start with a likelihood that
models the problem well and then selecting a prior that is conjugate to the likelihood.

2"However, it must be ensured that the data points can actually be assumed to be i.i.d., otherwise a
different model should be chosen. For example, if we are not interested in the order of the chords, then it is
reasonable to assume them to be independent. If the order matters, then subsequent chords will likely be
related to each other, so they are not independent and the model should reflect that.
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()
O—~® (D—E—®

chords

Model 1 Model 2

Figure 2.3 — Graphical notation of the two chord models. Nodes indicate variables, edges
indicate a direct dependency, and rectangles (plates) indicate several instances of i.i.d.
variables. Observed variables are shown in grey.

respective priors. Nodes with incoming edges are sampled conditioned on their “an-
cestors.” For example, in the graphical notation of our first model, the edge between
Z and X indicates that X is sampled from the conditional distribution p(x | z) while
Z is sampled directly from its prior p(z). Whenever a set of variables is i.i.d., we can
use plates to write them just once. For example, our second model has one parameter
vector v; for each chord type. Since all of them are drawn from the same prior p(v;), we
display v; once inside a plate instead of using individual nodes for v;, v, etc. Similarly,
the observed chords (L;, N;) are i.i.d. and can be notated using a plate as well. Note
how every plate and its variables correspond to a product over the same variables in the
model’s equation: The “labels” plate corresponds to the term []; p(v;), i.e., the priors of
each v;. The “chords” plate corresponds to the term []; p(L;, N; | A, v). The dependency
of this term on A and v is reflected by the arrows going into the “chords” plate.

This graphical notation can be useful to get an overview of the dependencies (and
independencies) between a model’s random variables. However, it does not specify
the exact probabilistic relations between the variables and it can be hard to read for
larger models. It should therefore be accompanied by a full description of the generative
process, e.g., as a sequence of sampling statements as shown above, or as a probabilistic
program as explained in Section 2.4.4.

2.4.2 Types of Inference in Bayesian Models

In order to understand the different types of inference in Bayesian models, it is helpful
to revisit the two fundamental operations on probability distributions: marginalization
and conditioning. A marginal distribution isolates a subset of the joint’s random variables
and describes their distribution irrespective of the values the other random variables
take. The marginal distribution is obtained by considering all possible values for the
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eliminated variables and summing (for discrete variables) or integrating (for continuous
variables) over the corresponding probabilities, i.e.:

pala) = prA,D,C(a’ d,c), (2.7)
4 Jc

where d denotes all possible values of the discrete variable(s) D, and ¢ denotes all possible
values of the continuous variable(s) C.

A conditional distribution also isolates a subset of the random variables, but it does so
by fixing the value of the remaining variables instead of summing or integrating them
out, which is notated as A | B (read “A given B”), or p,(a | b) for the density. As we
have seen above, the conditional distribution is related to the joint distribution via the
marginal distribution of the variable(s) that we condition on:

pla,b)=p(al|b)-p)=pb|a)- pa). (2.8)

The motivating inference question in Bayesian models is what can be learned about
the unobserved (or hidden, latent) variables Z from the observed variables X. This
relationship can be expressed using a conditional distribution p x (z | x), the distribution
of the unobserved variables given that the observed variables take a certain value x, i.e.,
the observed data. As above, this conditional can be derived from the joint distribution
using p(x,z) = p(z | x) - p(x), so

_ p(x,2)

. 2.9
) (2.9)

p(z|x)
The marginal probability of the data p(x) is called evidence and can (in principle) be
derived from the joint distribution via p(x) = [, p(x,z). The distribution p(z | x) is
called the posterior distribution, since it encodes the knowledge about the unobserved
variables after considering the values of the observed variables. Its relation to the prior
can be seen when splitting up the joint into prior and likelihood:
px12)p(2)

plzlx)= W, (2.10)

which is known as Bayes’ theorem.*!
What does the posterior express in practice? When looking at our initial example, we

can see that the posterior p(z | x) is the distribution over the chord label Z given that
the set of notes X takes a certain value x, e.g., p,x(z | [C,C, E, G, D]). This distribution

ZINote how the semantics of the prior and the posterior are reflected in their mathematical form:
the prior is the knowledge about the unobserved variables irrespective of the observed variables, so it is
expressed as a marginal distribution. The posterior is the knowledge given the values of the observed
variables, so it is expressed as a conditional distribution.
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encodes the relative plausibility of each possible chord label z for the given set of notes.
It is important to note that we have a distribution of plausibility over the possible chord
labels instead of a single chord label that the model deems to be the most plausible
one, as this allows the model to express its degree of uncertainty. We can still obtain
a single chord label from the posterior, e.g., by taking the most plausible chord label,
the so-called maximum a posteriori (MAP) estimate. Similarly, in the second example
the posterior p(1,v | L, N) expresses the belief about A and v after observing a set of
example chords with labels L and note collections N. Since A and v encode properties
of chords (the probability of each label and the probabilities of notes under each label,
respectively), the posterior reflects the belief about these properties after considering the
corpus of chord instances. Again, instead of a single estimated value for the parameters,
we get a distribution that reflects the relative plausibility of different parameter values.
Finally, it is worth noting that a given joint distribution can have different posteriors
depending on which variables are observed and which are unobserved. For example,
instead of observing chords as pairs of labels and notes, we might try to learn chords in
an unsupervised fashion, i.e., just from sets of notes without knowing the chord labels.
We can express this problem using the posterior p(A, v, L | N) and it can be derived from
the joint distribution just like any other conditional:

p(A,v,L|N):M. (2.11)

p(N)

The posterior then expresses the plausibility of different combinations of label assign-
ments for each chord and global parameter estimates.*

The posterior is not the only inferred distribution one could be interested in. After
learning the posterior distribution from a set of observations, we might want to make
predictions over new observations. For example, after learning about the properties of
different chords from a set of examples, we can use this knowledge to infer the labels of
a new chord, for which we only know its notes. We can express this situation as p (I’ |
n',L,N), where [’ stands for the label of the new chord and n' stands for its notes. The
prediction problem can be reduced to the posterior by marginalizing out (i.e., integrating)
the parameters A and v:

pll'|n',L,N) =f/1fp(l’ |n',A,v)-p(A,v|N,L). (2.12)

The term p(I' | n’, A, v) expresses the distribution over the label to predict for a given set
of notes and given parameters A and v, as if they were sampled from the posterior. If we
ignore A and v for a moment, the term p (I’ | n’) can be interpreted as a posterior itself,

28ince the space of these combinations can be quite large, it may not be trivial to make use of it, for
example to find the MAP assignment of chord labels and parameters.
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namely the probability distribution over a chord label given an observed set of notes.
Using Bayes’ formula, it can be reduced to the corresponding likelihood and prior:
_p@a' 1 ,Av)-pd' 1A, v)

(l, ,)A) )_ y 2.13
p'|n',A,v PETYRY (2.13)

which we already know from our model: The prior p(I' | A,v) is the prior probability
of the chord labels, a categorical with parameters v. The likelihood is the probability
of the notes given the chord label, a multinomial with parameters 1,. Note how this
corresponds exactly to the posterior in our first model (Equation 2.10, with I’ = z and
n' = x), except that every term is conditioned on A and v.

Finally, the Bayesian approach can be used to compare the plausibility of different mod-
els, e.g., as an alternative to classic hypothesis testing. Similar to how we can integrate
parameters into the model to make inference about them, we can also integrate the
choice of the model as a random variable in a “meta model.” Let’s say, we have a model
m, over observed variables X and unobserved variables Z, i.e., the joint distribution is
Pm, (x,2). We also have a second model m, over the same observed variables, which as-
sumes a different set of unobserved variables U and is given by p,,, (x, u). By introducing
arandom variable M for the model choice, both models can be integrated into a single
joint distribution p(x, z, u, m). The original model distributions can be expressed as
Pm, (X,2) = p(x,z| my) and p,,, (x,u) = p(x,u | m,).” The plausibility of a model under
the given observations can now be expressed as p(m | x), i.e., by marginalizing over the
unobserved variables. For example, the relative plausibility of m, compared to m, is
given by
p(ximy)-pimy)
pim|x)  — pm  _ plmy)-pmy)  [px,zlm) pim)

p(my|x) e Cp(xlmy)-plmy) [ plx,ulm) pimy)’

(2.14)

This ratio requires a prior distribution over the models p,,(m), which encodes the a
priori probability of each of the models. It can be used to express, for example, that
m, is the standard model that fits within an established theoretical framework (higher
prior), while m, is more exotic and contradicts established theories (lower prior). There
is no general rule for assigning prior probabilities, although in some cases it may be
possible to justify a specific prior on quantitative grounds. In case it is not desirable to
make specific prior assumptions about the models, one option is to pick a flat prior that
assigns equal prior probability to both models. Another option is to directly compare

ZNote that the distribution for each model ignores the unobserved variables of the respective other
model. That is because assuming one model as the true generator of the data means assuming that the
other model is just fiction, so its unobserved variables should be independent from the data and the true
model.
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the likelihoods of the data given each model. The ratio of these likelihoods is called the
Bayes factor:
_ plxlm)

. 2.1
px|m,) (2.15)

The Bayes factor can be used to express the relative evidence that the date provides for
one model over the other, independent of prior beliefs in the model. It is thus (on an
abstract level) comparable to a classic hypothesis test, where m, and m, encode the null
and the alternative hypothesis, respectively. At the same time, the strong relationship
between the Bayes factor and the posterior ratio via the prior makes the Bayes factor an
indication of how the observed data would change different prior beliefs about models.**
For a more detailed discussion of Bayes factors, see Kass and Raftery 1995; MacKay 2003;
Dienes 2008; and Rougier 2019.

2.4.3 Inference Methods

Bayesian modelling provides an elegant framework for formulating models and inference
questions. However, it is not always straightforward to obtain the results for a specific
inference problem, such as calculating the posterior distribution. There are three main
approaches to inference in Bayesian models, namely exact inference, sampling, and
variational inference, and we will briefly discuss each of these approaches.

Exact inference aims at analytically deriving the shape of the posterior (or any other
inferred distribution or value). This requires marginalizing out the probability of the
observed variables py(x) (called evidence), which is a normalizing constant that turns
the product of likelihood and prior into a properly normalized probability distribution.
Since this marginal distribution cannot always be derived analytically, exact inference is
not possible for every model. A special case in which exact inference is always possible
is when the prior and the likelihood are conjugate, i.e. the distributions for the prior and
the likelihood are chosen such that the posterior is of the same family as the prior, but
with different parameters. Examples of this relationship include Bernoulli (or binomial)
likelihood with a beta prior, a categorical (or multinomial) likelihood with a Dirichlet
prior, or a Gaussian likelihood with a Gaussian prior for the mean. For example, our
second example above uses a Dirichlet distribution for the prior of the chord label
probabilities A, together with categorical distributions for each actual chord label p(L; |
A) (the likelihood of the label given the probabilities). This choice ensures that the

Z4While a posterior ratio with a flat prior and the Bayes factor amount to the same value, the interpretation
is different: the posterior ratio assumes the prior to be fixed; the Bayes factor leaves the prior unspecified
and could be combined with different priors.
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posterior of the chord-label probabilities p(A | L)is again a Dirichlet distribution.?
The same goes for the note distribution of each chord with a Dirichlet prior p(v;), a
multinomial likelihood p(N; | v;,, L;) for each chord, and again a Dirichlet posterior
p(v;| N).

Exact inference is not always possible, usually because some normalizing constant (e.g.,
the evidence term) requires computing an integral that does not have a closed form.
As an alternative, the posterior can be approximated using sampling. The idea is to
draw samples from the posterior distribution in a way that does not require to specify
the posterior as a closed formula, and then use the sample to inspect the shape of the
distribution (e.g., as a histogram) or to estimate quantities such as mean, variance, or
entropy. The simplest form of sampling is called rejection sampling, which works for
any distribution that allows drawing samples of the joint distribution (which is usually
the case for generative models). When conditioning on the observed variables, all
samples that do not have the correct assignment for the observed variables are “rejected.”
The remaining samples are distributed according to the posterior distribution. While
rejection sampling works without any knowledge about the joint distribution (except
for being able to sample from it), it becomes very inefficient when samples with the
correct values for observed variables are rare. This is particularly problematic when the
observed variables describe a whole dataset, which is usually extremely unlikely to be
exactly drawn from the joint distribution by chance, or when the observed variables are
continuous.

A different set of sampling algorithms is the family of Markov chain Monte Carlo (MCMC)
methods, which produce a set of samples from the posterior by creating an auxiliary
Markov chain that has the same stationary distribution as the posterior.”® Therefore,
samples generated by the Markov chain are approximately distributed according to
the posterior. The Metropolis-Hastings algorithm (Hastings 1970) works by drawing
samples of the unobserved variables from an arbitrarily chosen proposal distribution ¢,
conditioned on the previous sample: g(z’ | z~"). The new sample is compared to the
previous example using the true posterior distribution. By taking the ratio between the
posterior probabilities of the two samples, the normalization constant is canceled and

*The change of parameters from the Dirichlet-distributed prior to the Dirichlet-distributed posterior
even gives rise to an interpretation of the parameters as “pseudo-counts” since they correspond to how
often each chord label has been observed in the data. The parameters of the initial distribution then can be
interpreted as how often we pretend to have seen each chord label before, where 1 simply encodes that the
label is possible.

#The auxiliary Markov chain has nothing to do with the model being a Markov model, this approach
works for different model architectures. The Markov chain here is only a way of obtaining samples from the
posterior.
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we only need to evaluate the joint probabilities of the samples and the data:

_ pEln)  plE,x0)-p)  plE,x)
- p(z(i—l) |x) - p(z(i—l)’x) p(x) - p(z(i—l),x)'

(2.16)

In the case that r = 1, Z’ is accepted as the new sample z?. If r < 1, then 2z’ is accepted
with probability r, otherwise z¥ = z~V, Thus, the efficiency of Metropolis-Hastings
sampling depends on a proposal distribution g that is not too different from the actual
posterior.?’ An alternative sampling strategy is Gibbs sampling (S. Geman and D. Geman
1984), which is useful if many unobserved variables are involved. For each new sample,
each variable Z; is resampled iteratively, conditioned on the current values of all other
variables X and Z_;: pz,x,7 ,(2; | x,z_;). Since all values except one are fixed, it is often
possible to obtain this conditional distribution by renormalizing the joint distribution
over the non-fixed random variable:

px,z;,2.)  px,z;,2)
p(x,z_ﬂ-) le p(x,Z,,Z_‘i).

pz;lx,z ;)= (2.17)
The resulting Markov chain again has a stationary distribution that corresponds to the
posterior distribution p(z | x).

When many unobserved variables are involved, sampling might still be an inefficient
method since the space that should be mapped is simply too large and too many samples
would be needed to represent it accurately. An alternative to sampling is variational in-
ference (for an overview, see Blei et al. 2017), which is based on the idea of approximating
the true posterior p(z | x) with a simpler distribution q(z), the variational distribu-
tion. The variational distribution is obtained by specifying a family of distributions
gp(2) and choosing its parameters 0 to minimize the difference between p(z | x) and
gp(2), measured by the Kullback-Leibler divergence Dy; (gy(2) || p(z | x)). By replacing
the KL-divergence with an equivalent loss function, the evidence lower bound (ELBO),
a series of optimization algorithms can be used to find the optimal parameters 6. A
common choice for the variational family g, is a mean-field family, which assumes
that all unobserved variables are independent, and uses an appropriate family for each
individual variable:

a0(2) =[] a0, (20 (2.18)

Mean-field families are useful when marginal posteriors of the individual variables are
of interest, however they cannot capture any correlation between variables that are
assumed to be independent. Recently, there has been interest in so-called black-box
variational inference (Ranganath et al. 2014), i.e., the derivation of suitable variational

#"Equation 2.16 assumes that the proposal distribution q is symmetric, i.e., that g(z | z') = q(z | z). If
qz% iz

that is not the case, r needs to be corrected by PR
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families and inference procedures from any type of probabilistic model, in particular
those expressed by probabilistic programs. This has lead to the development of auto-
matic differentiation variational inference (Kucukelbir et al. 2017), which makes use of
automatic differentiation (as used, e.g., for training artificial neural networks) to derive
a stochastic gradient for the ELBO that can then be used with generic optimization
algorithms designed for stochastic gradient descent. As a result, variational inference
can be used without the need for deriving model specific algorithms or using specialized
software, making variational inference more flexible and accessible.

2.4.4 Probabilistic Programming

Deriving and implementing concrete inference algorithms for Bayesian models is tedious
and time-consuming. Probabilistic programming is a method for expressing Bayesian
models (i.e., probability distributions) as generative computer programs (e.g., N. D.
Goodman, Tenenbaum, et al. 2016; van de Meent et al. 2018). A probabilistic program is
a function or procedure that contains statements about sequentially drawing random
variables from a local distribution. As such, the program defines a joint distribution
over all sampled variables, factorized into a local conditional distribution. In fact any
probability distribution can be represented as a probabilistic program, which can be
seen by the fact that every distribution can be factorized into a product of conditional

).2% The corresponding prob-

distributions, e.g. py g c(a,b,c)=p(a)-p(b|a)-p(cla,b
abilistic program will then first sample A, then B(based on the value of A), and finally
C (based on the values of A and B). Between the sampling statements, the program
can perform arbitrary computations, which makes it possible to express very complex

generative processes.

An example of a probabilistic program is shown in 2.1. Our two models are implemented
as regular Python functions. The random variables are sampled using the sample func-
tion from the Pyro framework (Bingham et al. 2019). Both models return the observed
variables while using the unobserved variables only internally, so running either func-
tion will return samples drawn from the joint distribution. Within each model function,
sample statements can be freely mixed with other Python code, e.g., the print statements
that are used to print the values of unobserved variables when a model is executed. Note,
in particular, how the model functions reflect the structure of the notation used in
Section 2.4.1. In particular, i.i.d. variables (or plates in the graphical notation) are

ZNote that expressing a given distribution as a sequence of conditionals is not always straightforward
or even possible. However, if the model is generative, it already has a factorized form and is generally easy
to implement as a probabilistic program, which also follows a generative idea.
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import pyro
import pyro.distributions as dist
import torch

# definition of model 1
def modell(p_labels, p_notes, n_notes):
# sample the chord label from the prior p(Z)
label = pyro.sample("z", dist.Categorical(p_labels))
print(f"z = {label}")
# sample the notes X from p(X|Z)
notes = pyro.sample("X", dist.Multinomial(n_notes, p_notes[label]))
return notes # return X

# definition of model 2
def model2(n_types, n_chords, n_notes):
# sample the unobserved variables ("parameters"):
# sample A from its prior p(A)
p_labels = pyro.sample("lambda", dist.Dirichlet(torch.ones(n_types)))
print(f"lambda = {p_labels}")
# sample v from its prior p(v)
p_notes = [pyro.sample(f"nu_{1}", dist.Dirichlet(torch.ones(12)))
for 1 in range(n_types)]
print(f"nu = {p_notes}")
# sample the observed variables ("data"/chords)
chords = [] # used to collect the sampled values
for i in range(n_chords):
# sample the chord label L_i from p(L_1i|A)
label = pyro.sample(f"L_{i}", dist.Categorical(p_labels))
# sample the notes N_i from p(N_ifv,L_i)
notes = pyro.sample(f"N_{i}",
dist.Multinomial(n_notes, p_notes[label]))
# collect the values
chords.append({"label": label, "notes": notes.int()})
return chords

Listing 2.1 — A probabilistic program written in Python using the Pyro framework. It encodes
the two models discussed in the text as generative functions.
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implemented using ordinary Python for-loops and list comprehension.*

Frameworks for probabilistic programming come in a wide variety of types. A practical
distinction is whether the language used to express probabilistic programs is dedicated
or embedded. Frameworks with a dedicated language usually have full introspection
into the probabilistic program, which helps with deriving efficient inference algorithms
for a particular program since its operations (e.g., the distributions it uses) and program
structure are known by the system. A disadvantage of dedicated systems is that users
are restricted to the operations and programming constructs offered by the modelling
language, which cannot be easily integrated with other code. Examples include Stan®
(Carpenter et al. 2017), Church (N. D. Goodman, Mansinghka, et al. 2008), or WebPPL3!
(N. D. Goodman and Stuhlmiiller 2014).

Embedded probabilistic programming frameworks represent probabilistic programs as
functions in an existing programming language, i.e., they provide additional operations
(such as sampling or observing random variables) as library functions that can be mixed
with ordinary program code. While these systems are very flexible, they usually provide
less assistance with deriving inference mechanisms, which is why the application of
black-box methods in this context is a very active area of research. Examples include
Anglican® (Clojure; Wood et al. 2014), edward2®® (Python; Tran et al. 2018), Gen®*
(Julia; Cusumano-Towner et al. 2019), monad-bayes®® (Haskell; Scibior et al. 2015),
Pyro®® (Python; Bingham et al. 2019), or Turing.jI*" (Julia; Ge et al. 2018). Embedded
probabilistic programming frameworks are particularly attractive for corpus research
since they provide a simple framework to start at a high level, good integration with
existing libraries for data processing, and a high flexibility with respect to the models
they can express.

2%While both functions work (using Pyro 1.5.0 and PyTorch 1.6.0) and produce samples from the correct
distributions, they are not completely idiomatic in Pyro. In particular, the for loops would use the plate
construct to indicate that the variables in different loop iterations are i.i.d.. Another shortcoming is that
we use a fixed number of notes for all chords in the second model. A more sophisticated implementation
would either take this information from the observed chords, or model the number of notes in each chord
as another random variable (which would keep the model fully generative).

Ohttps://mc-stan.org/

3 http://webppl.org/

$https://probprog.github.io/anglican/index.html

Bhttps://github.com/google/edward2

3https://github.com/probcomp/Gen.jl

$https://github.com/tweag/monad-bayes

https:/ /pyro.ai/

https://github.com/TuringLang/Turing.jl
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2.4.5 Relevance to Music Research

Bayesian modelling, as has been just briefly outlined, is a natural fit for corpus studies
on music: Corpora naturally constitute a set of “observations” from which a corpus
researcher wants to draw conclusions about properties that cannot be directly observed.
These conclusions are also naturally uncertain since the unobserved properties are gen-
erally not unambiguously deducible from the surface observations.®® Inferences about
unobserved properties are always based on assumptions about the relation between
observed and unobserved properties. Bayesian models make this relation explicit by
defining a joint distribution over observed and unobserved variables that encodes the
modellers assumptions. In addition, Bayesian inference provides a natural way to quan-
tify the uncertainty of conclusions, since it generally does not yield a point estimate but
rather a distribution over unobserved variables.

An example might help to illustrate this point. In Section 2.2 we discussed the bigram
model of harmonic progressions. The central idea of this model is that chord progressions
consist of sequences of local transitions from one chord to the next. For a given chord, c;
there are several possibilities for the next chord c;,. The plausibility of the second chord
given the first one can be expressed as a probability p(c;,; | ¢;). Since all bigrams are
treated the same, independently of their position in the piece, this transition probability
can be expressed using a fixed transition matrix T such that p¢, ¢, (I k) =1t . The
probability of a sequence ¢ = ¢y, ..., ¢y is then

N
plcy,....en) = pley) - [ plei L e, (2.19)
i=1

which corresponds to a first-order Markov model. Given a corpus of chord sequences,
we might wish to infer the transition probabilities T, which can be understood as a
property of the style or musical language underlying the sequences. Note that the “true”
transition probabilities are unknown, but the probabilistic model defines how they are
related to the observed sequences. A common way to estimate T is to take the relative
frequency of each transition as observed in the corpus. Let n;; be the number of times the
chord transition (k, 1) is obserserved. Then the estimate for the corresponding transition

probability is
Mg

i, = )
MY

(2.20)

In the Bayesian framework, the parameters of the model (i.e., T) are considered to be

3An exception to this rule are descriptive statistics, which (as the name indicates) are used to describe
or summarize a sample (i.e., a corpus). However, as soon as a corpus study moves beyond pure description
of the data and, e.g., seeks to provide analyses or explanations of observed phenomena, inferential statistics
are necessary (of which Bayesian statistics are a special case).

54



2.4 Probabilistic Modelling and Bayesian Inference

random variables, so the probability of a sequence can be seen as the likelihood of the
sequence given the parameters p(c | T). The estimate T happens to be the estimate that
maximizes this likelihood for all sequences:

T= arngaxp(c | T), (2.21)

which is called the maximum likelihood estimate (MLE). The MLE differs from the
posterior in two points: First, it does not consider the prior of 7.3 Second, the MLE is a
point estimate since it provides a single value for T instead of a distribution over possible
values. While T'is the “best” estimate for the transition probabilities (according to the
likelihood of the observed chord progressions), there is not way to tell how good it is
compared to other possible values, or how certain we can be that it is (close to) the true
value of T.

In contrast, the posterior distribution does express this uncertainty. In the case of
the transition probabilities 7, the conjugate prior (and hence also the corresponding
posterior) is a Dirichlet distribution for each antecedent chord (Gémez-Corral et al.
2015). The Dirichlet posterior for some antecedent chord k can be easily interpreted in
terms of its parameters (one per consequent chord):

ti | C~ Dirichlet(ng, + ay;, ..., Mg + Xrp), (2.22)

where a denotes the parameters of the prior. The parameters of the posterior are obtained
by adding to the parameters of the prior the absolute occurrences of the corresponding
bigrams. How does this encode uncertainty? Intuitively, the parameters of the Dirichlet
distribution correspond to the number of times we have observed each outcome. The
more observations we have made in total, the more certain we can be about our estimates.
For example, after flipping a coin 1000 times we can be much more certain about the
coin being fair or biased than after flipping it 10 times. Accordingly, reporting the
absolute occurrences of bigrams (e.g., de Clercq and Temperley 2011) provides more
information than only reporting relative frequencies.’’ The difference becomes relevant
when analyzing the transition patterns of rare antecedent chords. The total number of
observations for that antecedent chord gives an indication of how reliable an analysis of
its transition distribution is. It is worth noting that the Bayesian perspective does not
necessarily contradict intuitive measures and analysis methods. In this case, it rather
provides formal justification and interpretability for them.

3The prior can be included in the term that is maximized. In that case, the estimate is called maximum
a posteri estimate.

“0To be precise, the absolute bigram counts correspond to the parameters of a Dirichlet posterior for an
improper prior that expresses no previous observations of any bigram (see Gémez-Corral et al. 2015).
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There is, however, an even deeper connection between music theory, corpus research,
and Bayesian inference. Listening, analysis, learning, and theory building can all be
understood as inference under uncertainty from observations to unobserved causes,
parameters, or entities. Listening and analysis aim at uncovering latent structure in
a particular piece, while learning (in the sense of becoming familiar with a musical
language) and theorizing is inference to the regularities underlying a musical language,
implicitly in the case of learning, and explicitly in the case of theory building. Bayesian
modelling provides both a general methodology that can be applied in each of these
scenarios, and a useful perspective on the relation between observations, latent enti-
ties, and inference. The generality of the Bayesian perspective has led to the idea that
Bayesian inference is one of the fundamental principles of cognition.*! If music is under-
stood as a cognitive phenomenon that involves agents such as composers, performers,
listeners, and analysts, then the cognitive capacities of these agents (and by extension
the Bayesian perspective on these capacities) is an important perspective for musical
corpus research.*?

2.5 A Recipe for Model-based Corpus Research

In the previous sections we have advocated for an approach to corpus research that
is based on explicit models and Bayesian inference. Although tying into a specific
modelling framework may seem like a limitation, (Bayesian) modelling is in fact both
very general and compatible with other methodologies. For example, probabilistic
models might not seem to be a good choice for expressing relationships that are deemed
to be deterministic. However, since deterministic relationships can be understood as a
special case of probabilistic relationships, both can usually be mixed in a straightforward
way, as can be seen, for example, in probabilistic programs. Similarly, models need not
be generative (in the sense of factorizing into prior and likelihood that “generates” the
observations) in order to do Bayesian inference. There are other ways to express joint
distributions that cannot be interpreted as causal processes.* Finally, probabilistic
models are not restricted to use a small set of known distributions, such as normal,
categorical, multinomial, or Dirichlet distributions. Any well-defined distribution can
be a valid model. However, known distributions are often both well understood in

“1E.g., Tenenbaum et al. 2011; Vilares and Kording 2011.

“For understanding music as a cognitive phenomenon, see for instance Huron 2006; Jackendoff and
Lerdahl 2006; and Pearce and Rohrmeier 2012.

“SExamples include Markov random fields, which express the joint distribution as a normalized product
of factors that encode “undirected” relationships and are interpretable as mutual influence rather than uni-
directional dependence. Note that such models are still called “generative” in machine learning terminology,
because they still describe a joint distribution.
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terms of their interpretation (which helps building interpretable models), and have good
mathematical properties (which helps with practical inference). On top of that, complex
models can be built out of simple components, as we have seen in the examples above.

In terms of compatibility, Bayesian inference and other means of analysis (e.g., frequen-
tist statistics) are not mutually exclusive and can both be model-based. For example,
the bigram model of chord progressions can be analyzed in terms of both maximum
likelihood estimates and posterior distributions. In fact, any kind of systematic analysis
can be seen as an implicit model. The advantage of the Bayesian approach is that it
makes the connection between analysis and model explicit. In many cases, the Bayesian
perspective can even provide a reinterpretation of an existing method of analyses (such
as maximum likelihood estimates), and reveal similarities and differences to genuinely
Bayesian concepts such as posterior distributions.

To summarize this chapter, we suggest a “recipe” for approaching corpus research from
amodel-based perspective. These steps should not be understood as a set of conditions
that model-based research must satisfy, but rather as a high-level guide that might
provide some orientation when conducting a model-based project. For a given research
question, the following steps are usually involved:

1. Identifying the relevant entities and relations.
This step involves finding the right level of abstraction for the purpose at hand.
Observed entities may be restricted by what is encoded in a pre-existing corpus,
but on the other hand might also inform what needs to be encoded in a yet-to-
be-created corpus (e.g., in the form of annotations). The relations between the
entities determine the fundamental structure of the model. It is important to be
as explicit as possible about the interpretation of the assumed relations since the
interpretation guides and justifies the way the relations are formalized.

2. Choosing representations of entities.
The formal representation of entities determines which information is encoded
about each type of entity, and which relations can be expressed between the
entities. For example, representing chords as absolute chord labels, scale degrees,
or note sets has different implications on which relations between the chords
or between chords and other entities (keys, sections, notes) can be expressed.
As with the identification of entities in Step 1, the representation is constrained
by (and in turn constrains) the corpus, e.g., in terms of the specific annotation
format: observed entities in the model cannot contain information that is not
present in the corpus (but one may always choose to ignore some of the available
information).

3. Formalizing relations.
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Relations encode the structural assumptions about the observed information in
the corpus and any latent entities. The model should specify exactly under which
conditions a certain relationship exists (or can exist) between two or more entities.
For example, the bigram model posits a transition relation between every pair of
neighboring chords in a harmonic sequence, while a grammar model states that a
certain syntactic or semantic relation between two chords exists if and only if the
corresponding rule is used to generate the two chords in a valid derivation of the
sequence. Relations are constrained by the representation of the model entities.
Bigrams, for example, presuppose that elements are organized in a sequence. In
generative models, relations can be represented as steps in a generative process
(e.g., the application of grammatical production rules). In a fully Bayesian model,
relations are typically probabilistic and include the relationship between the ob-
served entities of the corpus and unobserved objects and parameters that are
the subject of the research question (such as functional categories, dependency
relations, transition probabilities, chord profiles, etc.).
4. Formulating questions and defining the analysis.

The purpose of the analysis is to answer a research question based on the model.
In the Bayesian case, this is usually achieved by restating the research question
in probabilistic terms - i.e., using distributions over latent variables (posterior),
new data (predictive), or even the model itself (hypothesis testing) — and applying
a generic inference method to obtain a result. The quantities obtained by the
analysis are linked to other entities within the model via the explicitly assumed
relations. However, as we have seen above, it is also possible to perform analyses
that are external to the explicit model. In that case it is important to consider and
defend the implicit assumptions and relations that are expressed by the method of
analysis. If the main research interest is in the model itself, the “analysis” consists
in an evaluation of the models’ ability to capture the characteristics of the dataset.

Corpus studies typically involve more steps than the ones mentioned above, such as
encoding, annotation, and implementation of the analysis. Moreover, the above steps
will rarely be taken in the presented order, instead there is usually some feedback between
the different steps. However, all of the points mentioned need to be addressed, in some
form or another, in a corpus-based research project. Since Bayesian modelling enforces
fully explicit models and provides a principled way of handling uncertainty, we believe
that it presents a reasonable default for model-based corpus research. However, there
may be good reasons to deviate from this default. Ultimately, it is most important that
corpus research formulates its models as clearly as possible, regardless of the framework
that is used to do so.
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Interlude 1

The first two chapters have established the central questions and methodology of this
thesis. The goal is to develop a model of tonal structure, identifying fundamental musical
relations between the notes in a piece of music as well as between these notes and latent
entities. The model takes the form of a generative process that produces the observed
notes based on these structural relations. Reversing this process allows a listener to infer
the latent structure that explains the observed notes and thus obtain an interpretation
of a piece.

Before arriving at the final model, the second part of this thesis first explores the fun-
damental relations and latent entities that the model should capture. The following
three chapters each present a case study on a specific aspect of structure. Chapter 3
investigates the relationship between latent entities and their surface forms, presenting
a heuristic approach to finding voice-leading schemata. Voice-leading schemata are
polyphonic patterns that are used as templates of scaffolds for segments of a composi-
tion and thus can be considered a type of latent structural entity, similar to chords. The
presented approach is based on polyphonic skipgrams which are able to select groups
of notes that match the schema prototype from an unstructured stream, ascribing verti-
cal and horizontal connections to them in an ad-hoc fashion. A classifier then tries to
distinguish accidental occurrences of the schema’s interval pattern from true instances
of the schema based on features of the selected notes, such as duration, metric weight,
or regularity.

The core limitation of the schema matcher is that it does not consider schemata as
explanatory for the surface but rather tries to identify schema occurrences heuristically
from the surface. Chapter 4 explores the explanatory role of latent entities (harmonies
in this case) by linking them to the surface through a generative process. It presents a
corpus study based on a Bayesian model that characterizes chord types as distributions
of both chord tones and typical non-chord tones occurring in the surface realizations of
these chord types. The results show that different chord types have distinctive profiles
of non-chord tones, and that these profiles can differ between different genres, which
indicates that latent entities can influence the functional roles of surface notes.
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While the harmony model addresses the relation between latent harmonies and surface
notes, it is not able to capture the direct relations between notes. Chapter 5 investigates
this aspect of structure, proposing a grammar-based model of melodic elaboration in
North Indian classical music and other musical styles that are centered around modes.
The model shows how melodic complexity can arise from a small number of musically
meaningful ornamentation operations within the context of monophonic melodies.
Latent vertical structure in these melodies is explained by reference to the underlying
mode and the relative stability of notes within this mode.
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Abstract

Musical schemata constitute important structural building blocks used across historical
styles and periods. They consist of two or more melodic lines that are combined to form
specific successions of intervals. This paper tackles the problem of recognizing voice-
leading schemata in polyphonic music. Since schema types and subtypes can be realized
in a wide variety of ways on the musical surface, finding schemata in an automated
fashion is a challenging task. To perform schema inference we employ a skipgram model
that computes schema candidates, which are then classified using a binary classifier on
musical features related to pitch and rhythm. This model is evaluated on a novel dataset
of schema annotations in Mozart’s piano sonatas produced by expert annotators, which
is published alongside this paper. The features are chosen to encode music-theoretically
predicted properties of schema instances. We assess the relevance of each feature for
the classification task, thus contributing to the theoretical understanding of complex
musical objects.

3.1 Introduction

Voice-leading schemata are frequently used patterns that can be found across historical
periods, ranging from Renaissance, Baroque, and Classical to modern tonal music; exam-
ples include such well-known schemata as the Lamento, the Pachelbel, the descending-
fifths sequence, and cadences (Forte 1979; R. Gjerdingen 2007; Caplin 2014; Jan 2013).

!Originally published as:

C. Finkensiep, K. Déguernel, M. Neuwirth, and M. Rohrmeier (2020). “Voice-Leading Schema Recognition
Using Rhythm and Pitch Features”. In: Proceedings of the 21st International Society for Music Information
Retrieval Conference. ISMIR. Montreal, Canada (online), pp. 520-526. por: 10.5281/zenodo. 4245482

The skipgram-based schema matcher was developed by CE the classifier and its evaluation by CF and
KD. The schema lexicon was produced by KD and MN, the annotations by MN and an external annotator.
CE KD, and MN contributed equally to Sections 1-4. Section 5 was written by KD and CE Sections 6 and 7
were mainly written by CF with support from the other authors.
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(a) A (true) Fonte at the beginning of K281-iii. (b) A possible candidate for a Fonte in K283-iii.

Figure 3.1 — An example of a Fonte (a) with structural notes highlighted. The task is to decide
whether proposed instances such as (b) are true instances or not.

A schema serves as a template for contrapuntal structure that can be elaborated in
multiple ways.

At present, there is only scant quantitative evidence about the frequency and diachronic
distribution of schemata across history (e.g., R. Gjerdingen 2007; Byros 2009); large-
scale, machine-readable datasets on schemata are not yet available. For assessing the
prevalence of schemata in a corpus of music, automated recognition of schema instances
can be a time- and cost-efficient alternative to manually labelled data. However, there
are two key challenges for computational approaches when seeking to uncover note
patterns in music: (1) the multidimensional (polyphonic) structure of music as opposed
to, for example, the sequential structure of written text (Meredith et al. 2002); (2) the
highly flexible nature of these patterns, given that the structural notes in the individual
voices can be elaborated in a wide variety of ways.

Voice-leading schemata can be defined as configurations of two or more voices that
move together through a sequence of stages, forming particular patterns of successive
vertical intervals that occur within a specific tonal context. Consider the example of the
Fonte (e.g., R. Gjerdingen 2007): The Fonte is a four-stage pattern involving at least two
voices. The bass moves through the scale degrees 1 — 2 — 7 — 1 of a major scale, while
the soprano follows the pattern 5 — 4 — 4 — 3, thus producing the following sequence of
vertical intervals: tritone — minor third — tritone — major third. The schema prototype
can be elaborated in actual compositions in many different ways. For instance, the
notes belonging to one stage can be displaced in time; any number of elaboration notes
can be inserted between the structural notes of one stage and between stages... An
example illustrating the surface realization of a Fonte is shown in Figure 3.1a. While
containing the correct interval pattern is a central property of any schema instance, it is
not sufficient: the selected notes must also provide the contrapuntal template for its
context, so that the notes contained in the time-span covered by the schema candidate
can be meaningfully interpreted as ornamentations of the selected notes. Figure 3.1b
shows a candidate for a Fonte instance. The task at hand is to decide whether or not
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such a candidate is a true schema instance.

To tackle the problem of schema detection, this paper provides two contributions. First,
we propose a novel dataset with hand-annotated schemata found in Mozart’s piano
sonatas (Section 3.3). Second, we present a binary classifier that recognizes true schema
instances among a set of proposed schema candidates based on rhythm and pitch fea-
tures related to regularity, complexity, salience, and harmonic context (Section 3.4). We
evaluate the impact of these features on the classification task using a logistic regression
(Section 3.5).

3.2 Related Work

Automated discovery and recognition of musical patterns is a topic of ongoing interest
in the MIR community (Lartillot 2016; Conklin and Bergeron 2010; Meredith et al. 2002;
Cambouropoulos et al. 2001; Giraud, Déguernel, et al. 2014; Janssen et al. 2014; Lartillot
2008). Voice-leading schemata as a specific class of patterns have so far received only little
attention; they have been approached with computational methods only very recently.
For instance, Symons (2017) has developed an algorithm that recognizes schemata in a
small corpus, pointing out the importance of rhythmic regularity. Finkensiep, Neuwirth,
et al. (2018) tackle the problem of temporal displacement and free polyphonic textures
using a two-dimensional extension of skipgrams, which have previously been proposed
by Sears et al. (Sears, Arzt, et al. 2017; Sears and Widmer 2020). Recently, Katsiavalos
et al. (2019) have presented a system that uses heuristics-based time-span reduction to
discover and recognize schemata.

Several studies aimed at finding cadences, which can be viewed as a subcategory of
voice-leading schemata, and evaluated the features relevant for the classification task.
Bigo et al. (2018) evaluated a set of 44 features linked with the moment of cadential
arrival, which are integrated using a support-vector machine for classifying beats as
belonging to a cadence or not. Sears, Arzt, et al. (2017) use skipgrams on vertical slices to
find cadences using a figured bass-like representation of the notes in each slice. Duane
(2019) approaches cadences directly as voice-leading patterns by trying to recognize
and learn them from melodic motion.
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3.3 Dataset

Our dataset is based on the full set of Mozart’s piano sonatas encoded in MusicXML
format. These 18 sonatas with 3 movements each (thus 54 movements in total) have been
composed between 1774 and 1789 and constitute a prominent sample of the classical
style. The pieces in the dataset contain 103,829 notes in total distributed over 7,500
measures, with 244 hand-annotated true instances (0.13%) and 190,994 automatically
generated false instances (99.87%) for the selected schema types and subtypes (see Table
3.1).

3.3.1 Schema Formalization and Lexicon

For the present study, we selected 10 schema types and 20 subtypes (listed in Table 3.1)
which have been suggested in the literature (R. Gjerdingen 2007; Caplin 2014; Rice 2015;
Rice 2014). The approach presented here assumes that a schema type consists of (1)
a fixed number of voices; (2) a fixed number of stages, whereby each stage contains
one note per voice; and (3) a characteristic interval pattern between these notes. The
prototype for each schema variant (or subtype) is specified using a formal notation. For
instance, the prototype of the two-voice Fonte is encoded as:

"fonte.2": [["al", "P5"],
["mM2", "Ps&"],
["M7", "P4&"],
["P1", "M3"]]

where ”.2” indicates the two-voice variant of the Fonte. Each note is given as an interval
to some arbitrary reference point. Since all possible transpositions of the schema are
considered by the matcher, it is not necessary to know the reference key.

Schema instances are encoded as nested arrays of notes in the same form as the corre-
sponding prototypes. Instances may deviate from the shape of the prototype if (a) a note
that would repeat its predecessor (e.g., the second 4 in the Fonte) is held over or missing,
or (b) two adjacent voices merge and are represented by a single note on the surface.
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Schema Variant Occurrences
Do-Re-Mi .2 5
.2(.min) 10 (3)
. .2.flipped(.min) 43 (8)
Fenaroli .
.2.melcanon(.min) 6(2)
.2.basscanon.min 1
49
Fonte .2.flipped 2
2.majmaj 8
9
Indugio )
2.volceex 5
Lamento .2 2
Lully .2 2
Morte .2 1
Prinner .2 32
. .2 46
Quiescenza ) .
.2.diatonic 6
Sol-Fa-Mi .2 4

Table 3.1 — List of schemata with their variants and number of occurrences in the Mozart
Piano Sonata dataset.

3.3.2 Data Production

The dataset consists of two parts: manual annotations by experts and automatically
retrieved candidates for schema instances, i.e., sets of notes with an interval pattern
conforming to a schema variant. Both the annotations and the computed candidates
share the same encoding format, namely a nested lists of note IDs (one sublist per stage,
one note per voice) that corresponds to note elements in a MusicXML representation of
the scores. While the manual annotations provide the true instances of the dataset, the
false instances consist of all skipgram candidates that do not appear in the annotations.?
The complete dataset is available on github.?

2This includes alternative versions of true instances with several possible note selections.
3https://github.com/DCMLab/schema_annotation_data
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Expert Annotations

Two annotators (the third author and Adrian Nagel) provided their analyses by using a
web-based annotation app that was specifically developed for the annotation process.
The app displays a score using the Verovio toolkit (Pugin et al. 2014), and allows the user
to select individual notes from the musical score to mark schema instances. Instances are
automatically checked for conformance with the schema prototype in the lexicon, while
permitting the deviations described in Section 3.3.1. The annotators also considered
additional criteria such as harmonic signature, phrase structure, pattern repetition, and
form-functional context.*

Computing Candidates with Skipgrams

In order to compute all candidates of schemata for the classifier, we base our work on
the generalized skipgram model proposed in (Finkensiep, Neuwirth, et al. 2018), which
enumerates two-dimensional note configurations that occur within certain temporal
bounds. We use this algorithm to find configurations with a maximal note displacement
of 1 bar per stage and a maximal distance of 1 bar between the onsets of two adjacent
stages. The configurations are filtered for a specific interval pattern during enumeration
regardless of the local keys. This method provides us with all candidates for a schema
instance within a reasonable window. However, due to the exhaustive search and a high
number of possible note combinations, our resulting dataset is extremely unbalanced.
Because of the high combinatoric complexity, we restrict this study to two-voiced schema
variants. Furthermore, we reduced the number of candidates to at most 25 per group
of temporally overlapping candidates using a previous version of the model presented
here.

3.4 Features and schema classification

3.4.1 Musical Features

By using precomputed schema candidates that are known to have the correct interval
structure (which is all information that we consider for a specific schema type), the
problem is narrowed down to deciding whether or not the candidate consists of the

‘As detailed in the schema-annotation guidelines (https://github.com/DCMLab/schema_
annotation_data/blob/master/manual/manual.pdf).
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structurally important notes. To this end, we have defined a set of features with re-
gard to rhythmic, pitch, and metric information, inspired in part by previous work (R.
Gjerdingen 2007) and that we wish to evaluate with the classifier. These features attempt
to measure the recognizability of the candidate as a structural pattern, assessing, for
example, its complexity, salience, or regularity in various musical dimensions. For a
schema candidate C that consists of a number of stages n; and a number of voices n,,
let C; , denote the note from stage s and voice v. Each note is represented by an onset,
an offset, and a pitch. Whenever pairs of notes are compared, K denotes the numbers of
compared note pairs (excluding pairs with missing notes).

The first feature can be considered a rough estimate of the harmonic or modal signature of
the schema candidate. We define the harmonic profile of a candidate as the distribution
of pitch-classes (relative to the transposition of the match) of notes that overlap with the
time span of the candidate (excluding the matched notes themselves). The profiledist
is defined as the Euclidean distance between a match’s pitch profile and the average
pitch profile of all true instances of the same schema. Thus, this feature uses training
data to derive the prototype profiles instead of defining a harmonic signature a priori.

Three features address the regularity of pitch and rhythm between pairs of stages. rreg
measures the average rhythmic dissimilarity between each pair of stages. For a pair
of stages, the rhythmic dissimilarity is defined as the sum of the temporal distance of
the notes of the same voice, given the best alignment possible when projecting one
stage unto the other. mreg is defined very similarly, but here the alignment offset is fixed
to whole beats to preserve metric position. Finally, preg measures the average pitch
dissimilarity between each pair of stages. Similar to rhythmic dissimilarity of a pair of
stages, pitch dissimilarity is defined as the sum of the pitch distances of the notes of the
same voice, given the best pitch alignment possible when projecting one stage unto the
other. These features are defined as

1 i
*reg = — Z min Z |[,t(Cs,l,) _”(Cs/'y) _6| ’ (3-1)

(s,s")estages v=1
s#s!
where p corresponds to onset for rreg and mreg, and to pitch for preg. For mreg, d is
restricted to integer multiples of a beat.

We then define features corresponding to the complexity of the candidates in terms of
displacement between pairs of notes. rdsums and pdsums respectively correspond to
the average temporal and pitch distance between each note of the same stage. They are
defined as

N

Z Z “'L(Cs,y) _u(Cs,y’)l) (3'2)

s=1 (v,v")evoices
v#v!

1
*dsums = —
K
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where p corresponds to onset for rdsums and to pitch for pdsums. Similarly, rdsumv and
pdsumv respectively correspond to the average rhythmic and pitch distance between
each note of the same voice. They are defined as

Zv Z “’L(Cs,l/) _IJ(Cs’yy)l) (3.3)

v=1(s,s")estages
s#s!

1
*dsumv = —
K

where u correspond respectively to onset and pitch for rdsumv and pdsumv.

Another perspective at pitch displacement is provided by vdist, which measures the
average amount of octave jumps within a voice from one stage to the next, and is defined

as
Vdist = 1 g ”sz‘l pitch(Cy,, ,) — pitch(C; ,)

3.4
oS octave (54)

While a certain complexity may be necessary to make a regular pattern recognizable in
the first place, a more complex pattern can be more difficult to detect in the presence of
other notes. For this reason, onsets counts the average number of distinct note onsets
in the context of each stage. A low number of onsets allows the stages to be rhythmically
displaced while still being recognizable as a unit. Given the number of distinct note
onsets D, for each state s, we have

U

1
onsets=— ) D. (3.5)
ng s=1

Finally, we define two features representing the salience of the candidate. First, we
consider dur, which corresponds to the sum of all note durations in the candidate,

dur =Y offset(C; ) — onset(C; ). (3.6)

%

Then we consider mweight, a feature based on metric weight. We define our metric
weight function as follows:

2 ifonset(C,,) is on a strong beat.

mw(C; ) =41 ifonset(C;,) is on a weak beat.

1 . .
55 ifonset(Cs,) is on a subbeat,

where p is the number of prime factors needed to express the subbeat. Given that func-
tion, mweight corresponds to the average metric weight of each note of the candidate:

ng ny

mweight = %Z Y mw(C;,). (3.7)

s=1lv=1
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3.4.2 Classification and Evaluation Method

The features described above are used as an input to a logistic regression model, a simple
binary classifier model that uses a linear combination of the input features and applies
a sigmoid to that score, yielding a value between 0 and 1 that indicates the probability
of the input to be a true instance. Since a logistic regression is a special case of a neural
network without hidden layers, this approach can be naturally extended to include
more layers, allowing for more complex, non-linear feature combinations. However,
preliminary experiments have shown that non-linear models (such as simple neural
networks and support-vector machines) do not increase model performance and instead
lead to overfitting, so we exclude them here.

The input data consists of expert annotations and skipgram candidates, produced as
described in Section 3.3.2. To get consistent temporal information about the notes, we
unfold all repetitions and jumps notated in the scores. Repeated occurrences of notes
are disambiguated by selecting for every schema candidate those note occurrences that
have a consistent temporal order and cover a minimal time span. Finally, matches that
have incomplete stages (due to implicit notes, as described above) are converted into
complete instances with missing notes marked explicitly.

To evaluate the model’s performance, we use 5-fold cross validation.> The pitch his-
tograms used for profiledist are computed on the respective training set of each run.
In order to get an unbiased model, we follow the advice given in (King and Zeng 2001)
and balance our dataset by upsampling the true instances to match the number of false
instances. The model is trained on the balanced training data using the Julia package
GLM. j1° and applied to both balanced and unbalanced test data. In addition, a prior-
corrected version of the model (see King and Zeng 2001) is applied to the unbalanced
data.

The code for the whole evaluation pipeline is provided online’, including a notebook®
that was used to generate all results and figures in this paper.

5A 5-fold split was chosen to balance the number of folds and size of the resulting test set.

Shttps://github.com/JuliaStats/GLM.jl

"https://github.com/DCMLab/schemata_code/tree/ismir2020

8https://github.com/DCMLab/schemata_code/blob/ismir2020/notebooks/ismir2020_
classification.ipynb
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3.5 Results and Discussion

3.5.1 Classification Performance

The overall performance of the model is shown in Table 3.2, aggregating over the predic-
tions on all test sets. When applied to data balanced by upsampling, the model achieves
a high classification performance with an F-score of 0.894 and a Matthews correlation
coefficient (MCC) of 0.787. Since the model is trained on balanced data, applying it
to unbalanced data simply scales the number of true positives and false negatives, re-
sulting in a drastically reduced precision. Using the prior correction of the unbalanced
dataset results in a very high accuracy; however, it introduces a bias to label matches as
non-instances, which results in the false negatives dominating the false positives.

Figure 3.2 shows how the predicted probability of being a true instance is distributed
for instances and non-instances (upper-left corner). Non-instances overwhelmingly
receive low probabilities and instances are typically rated very high. This is in line
with the model’s good performance on raw data, but it also reveals why imbalance
poses a serious problem: while the majority of non-instances are correctly discarded by
the model, a minority remains indistinguishable from true instances under the model.
When the skipgrams propose many more non-instances than instances, the small part
of indistinguishable non-instances becomes huge in relation to the true instances. Note
that simply reducing the number of matches does not necessarily improve the situation:
taking away the matches with a rating < 0.5 still leaves us with the problematic cases.

A lot of non-instances are proposed as combinatoric variations around true instances.
To test whether the problematic cases are variations of true instances or genuine non-
instances, we group all matches according to temporal overlap (prior correction is based
on the imbalance of the groups here). The results (Table 3.2) show that grouping dras-
tically increases the performance compared to the ungrouped condition but does not
get close to the performance on balanced data, indicating that there is still a significant
number of indistinguishable true non-instances.

This effect of indistinguishability may be seen as an indicator that our list of features
lacks those features that would help resolve the remaining cases and clearly separate
the classes. However, it is not clear that finding such features is easily attainable. First,
consider that while the existing features are already very informative, the information
needed to distinguish the problematic cases would have to be much more precise. Even
when the probability of getting a positive result for a non-instance is only 1073, a true
instance proportion of 1073 still leaves a 50% chance that a positive result is a false
positive. Second, our annotators conformed to very strict standards in order to discard
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Figure 3.2 - Distribution of model prediction (a) and feature values (b) over instances and
non-instances as a kernel density estimate. The more the curves tend in opposite directions,
the better the two classes are separated.
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Figure 3.3 — An ambiguous Fonte match (K333-iii). While intrinsically this is a highly
plausible instance (interval pattern, tonal context, melodic parallelism), the context discards
it, as the pattern is in fact part of a larger descending-fifths sequence.

non-instances, restricting true instances to cases where the schema is a highly plausible
template for the musical surface. Such judgments rely on implicit music-theoretical
knowledge and intuition, which are difficult to model.

Finally, a look at some highly confident false positives suggests that if schema classifica-
tion is defined as a binary task (a surface pattern is a schema instance or not), then the
performance of this task can hardly been improved.

For example, the excerpt in Figure 3.1b may not look like a very plausible Fonte at first
sight (and was not classified as such by the annotators). However, the last two bars clearly
contain the correct contrapuntal pattern for the stages 3 and 4. The beginning can be
interpreted as a melodic unfolding of an Em chord that is ornamented by the notes of a
B’ chord, most clearly in the neighbor note df to e (i.e., the bass for the stages 1 and 2 of a
Fonte). Therefore, it can be argued that this section shares its contrapuntal structure with
the Fonte, even though the typical parallelism is missing. Another, converse, example
can be seen in Figure 3.3: in isolation, the pattern is a clear instance of a Fonte, but it
is continued in the manner of a larger descending-fifths sequence, which, depending
on the definition used, may discard it as a Fonte. A negative definition like this is very
difficult to check under the current paradigm.

3.5.2 Feature Evaluation

Figure 3.4 shows the influence of each feature in a model trained on the full balanced
dataset. Overall, schemata seem to expose a high regularity and low complexity com-
pared to non-instance candidates. The strong negative factors rdsumv and onsets disre-
gard candidates with a large temporal extension and a high degree of non-simultaneity.
Metric regularity (i.e., rhythmic regularity aligned to the metrical grid) has a strong
positive influence, indicating a preference for a regular temporal organization.
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Figure 3.4 — The parameters B of the model trained on the full upsampled dataset (bars)
and normalized by multiplication with the average value of the respective feature. Error
bars indicate the 95% confidence interval of the fit. Black points indicate the normalized
parameters for each model trained during cross validation.

The preference for simultaneity of the notes in the same stage is somewhat contradicted
by the moderately positive influence of the rdsums, the average note displacement within
stages. This is particularly surprising when looking at the distribution of this feature over
instances and non-instances (Figure 3.2b), which shows that instances generally show
less displacement than non-instances. One possible explanation of this phenomenon is
that the combination of both features (onsets and rdsums) expresses a general prefer-
ences for little displacement, but when the notes are non-simultaneous, then a higher
distance is preferred, which may make the structural notes more recognizable.

Less important are features based on pitch (profiledist, pdsumx, preg, and vdist) as
well as features that indicate basic salience (dur and mweight). Pitch features are likely
of moderate to little importance because most of the relevant pitch-related information
is already implied by the schema’s interval structure. Interestingly, duration and metric
weight (both properties that are taken from each note in isolation) play little to no role,
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which is confirmed in Figure 3.2b. This indicates that local properties do not mark notes
as structural, this role seems to depend only on how the note is used in relation to other
notes.

3.6 Conclusion

As the results presented above show, distinguishing between incidental and structural
note configurations based on a small number of musically and cognitively motivated
heuristics works well in the vast majority of cases. Even if a number of misclassifications
remain, a closer look at these cases provides valuable insights into the problem at hand.
First, the main limitation of our approach is that the model assesses suggested schema
instances individually, without considering, or comparing it to, alternative interpreta-
tions. In many cases, the main reason for human experts to reject a candidate does not
seem to be a lack of plausibility of the match itself, but rather the availability of a “better
explanation’, i.e. an alternative analysis of the match’s context that identifies a more plau-
sible contrapuntal scaffold. This result is in line with the reduction-based approach of
Katsiavalos et al. (2019). Since the features used in this study already proved useful for in-
dependent classification, they likely benefit from a general structural-analysis approach,
in which schema instances are recognized in reductions of the musical surface.

Asecond insight concerns the idea of schema itself and its relation to a classification task.
From a cognitive perspective, a schema does not need to be instantiated unambiguously
or even completely. It is sufficient if listeners recognize the schema as the template for
the surface events, or if they understand the composer’s intention to evoke the schema.
In this regard, discrete binary classification into instances and non-instances may be as
unattainable as it is undesirable, falling short of the complexity the relationship between
schema and realization can exhibit.
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Chord Types and Ornamentation’

Abstract

Making sense of a musical excerpt is an acquired skill that depends on previous musical
experience. Having acquired familiarity with abstract chords, a listener can distinguish
tones in a musical texture that outline these chords (i.e., chord tones) from ornament
tones such as neighbor or passing notes that elaborate the chord tones. However, music-
theoretical definitions of chord types usually only mention chord tones, excluding typical
ornaments. The aim of this project is to investigate (i) how knowledge about (chord-
specific) ornaments can be incorporated into characterizations of chord types and (ii)
how these characterizations can be acquired by the listener. To this end, we develop a
computational model of chord types that distinguishes chord tones and ornaments and
can be learned using Bayesian inference following methods in computational cognitive
science. This model is trained on two datasets using Bayesian variational inference,
comprising scores of Western classical and popular music, respectively, and containing
harmonic annotations as well as heuristically determined note-type labels. We find that
the proposed characterization of chords is indeed learnable and the specific inferred
profiles match previous music-theoretic accounts. In addition, we can observe patterns
in the use of ornaments, such as their distribution being related to the diatonic contexts
in which chords appear and chord types differing in their predisposition to generate
ornaments. Moreover, the differences in ornamentation distributions between the two
corpora indicate style-specific peculiarities in the role and usage of ornaments. The
different patterns of typical ornaments for specific chord types indicate that harmony
and ornamentation are not independent.

To be published as:
C. Finkensiep, P. Ericson, S. Klassmann, and M. Rohrmeier (in preparation). “Chord Types and Ornamen-
tation — A Bayesian Model of Extended Chord Profiles”. In: Open Research Europe
The Bayesian models were developed and implemented by CF after discussions between all authors.
Data preprocessing was jointly implemented by PE, SK, and CE The paper was mainly written by CF with
contributions from the other authors, except for the second half of Section 4.1 (related work, written by CF
and SK) and Section 4.2.3 (mainly written by PE).
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4.1 Introduction

Listening to, performing, or thinking about music gives rise to a wide array of experiences
that range from basic acoustic effects such as roughness, to cognitive aspects such as
expectation and interpretation, to high-level cultural and social phenomena such as
reference and emotional association. One such set of experiences arises from the need
to make sense of the auditory input. Generally, making sense of a perceptual input, i.e.,
relating it to known categories and finding an explanation for how it came about, is a
central task of a cognitive system (Chater, Tenenbaum, et al. 2006; Kersten et al. 2004).
Music is no exception: When a listener is presented with a musical input, obtaining
an interpretation of this input (consciously or intuitively) is crucial for the listener’s
experience. This includes a wide range of properties that are not directly represented
on the musical surface, such as key and meter of a piece (Temperley 2007a), its internal
structure (Abdallah, N. E. Gold, and Marsden 2016; Rohrmeier 2020a; Herff et al. 2021;
Finkensiep, Déguernel, et al. 2020), or even the properties of underlying musical spaces
(D. Hu and Saul 2009; Harasim, Moss, et al. 2021; Moss and Rohrmeier 2021).

One aspect of musical structure that is important for many styles of Western music is
harmony (Aldwell, Schachter, et al. 2011), i.e., the organization of pitches into vertical
sonorities and the succession of these sonorities. Interpreting a segment of music
harmonically consists of matching the notes observed in the segment with a set of
prototypical note configurations (chord types). The repertoire of chord types is generally
style-specific (although some chord types can be shared across several styles), and, as
such, must be obtained through some form of learning (Rohrmeier and Rebuschat 2012;
Pearce 2018; Tillmann et al. 2000).

Western music theory generally characterizes chord types through a set of octave-
equivalent pitches (the chord tones, CT) relative to a reference pitch, the root (Aldwell,
Schachter, et al. 2011). However, musical segments that instantiate these chord types
usually contain non-chord tones (NCT) as well as chord tones, which can often be un-
derstood as ornaments to the chord tones, e.g., suspensions, neighbor notes, or passing
notes. Figure 4.1a, for example, shows a dominant-seventh chord on B resolving into
an E minor chord. In addition to the chord tones (B, Df, Fff and A), the musical sur-
face contains the notes E and Cf}, which can be interpreted as a suspension (the first
E), and two neighbor notes (the second E and the Cf). Harmonic interpretations are
often ambiguous. For example, the B” chord could also be interpreted as a B major triad,
which would make the A another non-chord tone, a passing note. The ornaments used to
elaborate a chord can be specific to the chord type: A fourth suspension (Figure 4.1b), for
example, is more typical for some chord types (e.g., major, minor, or dominant-seventh
chords) than others (e.g., augmented triads).
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Figure 4.1 — Examples of ornaments in chords. a) A cadence from J. S. Bach’s chorale
“Christ lag in Todesbanden” (BWV 278, m. 4). The dominant chord B contains a number
of ornaments (marked in red), including a suspension and two neighbor notes. The 7th of
the chord could also be argued to be an ornament (passing note) of a B major triad. b) A
suspended 4th is a typical ornament in some chord types such as major and minor triads
(here Em and B). In other chord types, such as augmented chords (D*), it is less common.

Consequently, this study addresses the following questions: How can a listener represent
information about chord types (with both their chord tones and their typical ornaments)
in a way that they can be linked with the musical surface (i.e., segments of notes)? How
can these representations be learned from observations? How would these represen-
tations look like when obtained from real-world data? To this end, a computational
model of chord-type representations is proposed, together with a learning process that
simulates an ideal learner. We investigate the concrete chord types obtained from ap-
plying this model to specific musical corpora, what are typical ornaments, and how
ornamentation differs between chord types.

We address these questions using Bayesian modelling (MacKay 2003), which is an es-
tablished framework for the computational-level description of cognitive tasks (Chater,
Tenenbaum, et al. 2006) such as reasoning (Jaynes 1988; Griffiths and Tenenbaum 2006;
Oaksford and Chater 2018), perception (Kersten et al. 2004), and learning (Gopnik and
Bonawitz 2015; Ullman and Tenenbaum 2020a). It combines a generic inference scheme
with a problem-specific model — a characterization of the relationship between known
(observed) and unknown (latent) entities in the form of a probability distribution. Often,
this relationship is expressed as a generative process by which the observed entities
are “generated” based on the latent entities. This perspective is useful when the latent
entities cause or explain the observations, which in particular applies to harmonic types:
A harmonic interpretation “explains” the notes observed in the musical input as either
chord tones of a chord or ornaments. It should be noted that the generative process is not
amodel of the compositional process but rather of the listener’s presumed perspective
on the relation between harmonies and notes. Inference and learning in the Bayesian
framework amount to computing the posterior distribution over the latent variables. In
the present study, information of the chord instances (notes, chord label, and the role of
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each note) are assumed to be (mostly) known, while the characteristics of each chord
type are unknown and must be learned from these instances.

The model of chord types presented in this study is based on tone profiles. Tone profile
have a long history in music psychology as representations of listeners’ knowledge
about abstract tonal hierarchies. Originally established in the probe-tone experiments
performed by Krumhansl and Kessler (1982), tone profiles have since been used to
describe tonal hierarchies in a variety of styles and traditions, including Jazz scales
(Jarvinen 1995), North Indian ragas (Castellano et al. 1984; Finkensiep, Widdess, et al.
2019), Turkish makams (Gedik and Bozkurt 2010), and Western classical and rock music
(Vuvan and Hughes 2021). Tone profiles are known to reflect the distribution of pitch
classes in pieces and corpora (Krumhansl 1990a; Huron 2006; Temperley and Marvin
2008) and have therefore found computational applications in key finding algorithms
based on template matching (Krumhansl 1990a; Temperley 1999b; Bellmann 2006; J.
Albrecht and Shanahan 2013) or generative probabilistic models (Temperley 2002b).
Probabilistic model have also been used to infer tone profiles in an unsupervised fashion
(D. Hu and Saul 2009; Harasim, Moss, et al. 2021; Moss and Rohrmeier 2021), simulating
how a listener can learn to distinguish different modes based on statistical observations
alone. Corpus studies have used distributional tone profiles to investigate the relation
between tonal and metrical hierarchies (Prince and Schmuckler 2014), the development
of major-minor tonality (J. D. Albrecht and Huron 2014; Harasim, Moss, et al. 2021) and
the tranposability of tone profiles (Quinn and C. W. White 2017).

In the present paper, the concept of tone profiles used to represent knowledge about
the tonal structure of chord types rather than modes, which has precedents in music
psychology (Parncutt et al. 2019) as well as computational models. Chord-type profiles
are a common technique for chord identification from audio (Fujishima 1999; K. Lee
2006; Oudre et al. 2009; Demirel et al. 2019), usually called chromagrams in this context,
but are also used in symbolic chord labelling models (Temperley 2009; Koops et al. 2020).

The relationship between chord tones and non-chord tones is usually not modeled
using tone profiles but rather through a number of properties derived from theoretical
accounts, such as metrical position, duration, and melodic context. Chuan and Chew
(2011) and T. Hu and Arthur (2021) have developed NCT-identification algorithms for
melodies that integrate such features using decision trees and logistic regression, respec-
tively. Ju et al. (2017) use a neural network-based black-box approach with similar input
features to identify NCTs in homophonic textures. Several chord-labeling systems have
been developed that incorporate some form of NCT treatment based on a combination
of the above features and theory-derived models of chord membership, which is either
directly based on triads (Raphael and Stoddard 2004; Rhodes et al. 2009) or on some
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form of third stacking (Temperley 1997; Sapp 2007; Mearns 2013). Some of these models
allow the weights of different pitches in a chord to be learned, to some extent. For ex-
ample, Rhodes et al. (2009) use a generative probabilistic model of pitch proportions
that first decides the proportion of CTs vs NCTs (drawn from a Beta distribution) and
then assigns the proportion of root, third, and fifth within the CTs (from a Dirichlet
distribution). It thus resembles our model in that it contains an explicit decision to
generate NCTs. However, all of the above models make assumptions about the possible
structures of chords (either as fixed triads / seventh chords or as stacks of thirds), and all
of them assume ornaments to be nominal NCTs (i.e., simply the negative of CTs) and to
be equally important or likely.

Since the present study investigates the typicality of different ornaments for different
chord types, the model presented here (a) allows ornaments to have different weights,
and (b) separates the notion of ornaments and NCTs. The latter is important to capture
the situation where a nominal chord tone is used as an ornament. For example, in a
dominant-seventh chord, both 7 and 8 can be used as chord tones or as neighbor notes
of the other (the 7 can even become a passing note that leads into the next chord). The
resulting model consists of two independent tone profiles (Figure 4.2), one for chord
tones (generating notes that are intended to be perceived as part of a chord) and one
for ornaments (generating notes that are not intended to be part of the chord). As a
consequence, the model does not make any assumptions about the internal structure of
either the chord tones or the ornaments (e.g., stacking of thirds). This information is
entirely represented in the data.

4.2 Method

4.2.1 Model

Adopting the Bayesian framework (MacKay 2003), this article presents a minimal proba-
bilistic model that links surface notes, their harmonic interpretations, and the properties
of chord types, and in particular encodes an explicit distinction between chord tones
and ornaments. At the core of this model lies a simple process that generates a single
note based on a given chord type (Figure 4.3). Before a note’s pitch is selected, a Bernoulli
trial determines the type of the note, chord tone or ornament. The pitch is then drawn
from a chord-specific categorical distribution corresponding to its type. Thus, every
chord type is characterized by two categorical distributions, one for its chord tones and
one for its ornaments. These two distributions are independent, so that a single pitch
need not have a fixed role as either a chord tone or an ornament. Instead, both distribu-
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Example Profile
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Figure 4.2 — A schematic example of a chord type (a dominant-seventh chord) as represented
in the model. The chord-tone profile (blue) gives a high weight to the nominal chord tones
(root=P1, P5, M3, m7). The ornament profile (orange) gives a high weight to pitches that are
used as ornaments (P4, M2, M6, but also m7 and P1). The x-axis is arranged according to
the line of fifths around the root (P1). Note that the absolute heights of the blue bars and
the orange bars cannot be directly compared, as they indicate certainty within each profile
rather than the prevalence of ornaments over chord tones in general. The ornament-chord
tone ratio is captured in a separate set of model parameters.

tions can potentially generate every pitch (though usually with different probability).
Furthermore, categorical distributions ignore any internal structure of their support, so
the model is agnostic to theoretical assumptions about the internal structure of chords
(such as always consisting of stacks of thirds). In particular, this allows chord types to
encode “optional” chord tones that are not nominal chord tones but are still frequently
used as stable, non-ornamental pitches, e.g., major 6ths, 7ths or 9ths with major chords
in Pop or Jazz.

The model of harmonic types presented here is based on the idea that chords are latent
entities that are related to the notes observed on the musical surface by a generative pro-
cess. Since several surface constellations are possible for the same chord, this generative
relationship is probabilistic and can be expressed as a conditional distribution p(N|c),
where N stands for the observed notes and ¢ denotes the chord. A harmonic type is then
represented by a set of parameters ¢, that characterize this conditional distribution for
a given chord type c. In this case, ¢, consists of a chord-tone profile ¢¢’, an ornament
profile ¢p?", and a parameter for the prevalence of chord tones over ornaments 6,.. The
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pick note type
draw pitch from draw pitch from
chord-tone distribution ornament distribution

~,

return (pitch, type)

Figure 4.3 - The core process that generates a single note in a chord. The specific probability
distributions here depend on the chord type, which establishes a relation between the chord
type and the notes it generates.

quantity of interest is the posterior distribution of these parameters conditioned on a
dataset of chord instances

pp|N,?), (4.1)

in other words, the properties of chord types that can be inferred from this dataset.

Generally, the generative process from a chord type to the surface involves determining
the exact occurrences of the surface notes with their positions in pitch and time, includ-
ing both chord tones and ornaments to these chord tones. Since the focus of this study
is on the pitch distributions of chord tones and ornaments, we adopt a simpler “bag of
notes” representation (Harasim, Moss, et al. 2021), where temporal information and
octaves are discarded and only the number of occurrences of each tonal pitch class®
is retained. In addition to its pitch, each note has one of two note types, chord-tone
and ornament, according to the note’s role in the chord instance. The note types in the
ground truth are derived using music theoretical knowledge about the chord types and a
set of heuristics as described in Section 4.2.3. Since these heuristics may not determine
the type of a note with certainty, it can also take the value unknown. Chord labels (i.e.,
the annotated chord types of specific chord instances) are represented by a categorical
variable over some vocabulary of chord types that depends on the annotations given in
the respective datasets. The root of the chord is not represented as an absolute pitch or

“Note that from the Bayesian perspective, we do not obtain a specific value for ¢ (i.e., a point estimate)
but rather a distribution that quantifies the uncertainty about the true value of ¢p. However, this posterior
distribution can still be characterized through a pitch profile, where the relative weight of each pitch
correspond to the expected value of ¢ while their absolute magnitude indicates the variance of the posterior
distribution.

3Tonal pitch classes (Temperley 1997) respect the spelling of a pitch, i.e., Cff and Db are considered
different. This is in contrast to neutral pitch classes (often represented by numbers from 0 to 11), which
identify enharmonically equivalent notes. In this text, “pitch class” refers to tonal pitch classes.
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chord label relative pitch class note type occurrences
dominant-seventh unison (=root, P1) chord-tone 3

fifth (P5) chord-tone 2

major 3rd (M3) chord-tone 2

minor 7th (m7) chord-tone 1

fourth (P4) ornament 2

major 2nd (M2) ornament 1

Table 4.1 — Representation of a chord instance as a data point. A chord label (dominant-
seventh) is combined with a bag of notes, given by pairs of pitch classes (relative to the root)
and note types. This example shows how the B” chord in Figure 4.1.

pitch class, instead the pitch classes of all notes are encoded as interval classes relative
to the root of the chord, which results in transpositionally invariant chord types. For
example, the B’ chord shown in Figure 4.1a would be encoded as shown in Table 4.1.
Note that, in principle, the same pitch class can occur several times with different note
types, which would indicate that there are two notes in the chords with the same pitch
class but different functions.

For the generation of the notes, we assume a very simple process that draws notes
independently from two categorical distributions over pitch classes, one for chord tones
and one for ornaments. For every chord instance, the type of the chord ¢ and the number
of notes n are chosen. Then, the note type ¢ of each note is determined by a (biased)
coin flip, and its pitch is drawn from the corresponding categorical distribution ¢/ of
the chord type. Finally, to account for unknown note types, another coin is flipped
to determine whether the notetype is observed or not. The process for a single chord
instance can be summarized as follows:

1. Choose the chord label ¢ ~ Categorical(y).
2. Choose the number of notes n ~ Poisson(A) + 1.#
3. Foreachnotei€l,...,n:

1. Choose the note type ¢; ~ Bernoulli(6,).

“The notation n ~ Poisson(A) + 1 indicates that 7 is obtained by drawing a sample from a Poisson
distribution and adding 1. This is to avoid that a chord with zero notes is generated. In our experiments, the
number of notes is always observed, so choosing 7 is not really necessary. However, we include it in order
to have a fully generative model. Note that since n is observed, the choice of its distribution is independent
from all other variables and has no effect on the results of this study.
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2. Choose the pitch class depending on the note type:

{Categorical(([)g’) if t; = chord-tone

Categorical(¢p?") if t; = ornament.

3. Decide whether to observe the note type: 0; ~ Bernoulli(w).
4. Return (p;, t;) if 0; = true, and (p;, unknown) if not.
4. Count the generated pairs.

The generative process of notes resembles the process behind a multinomial distribu-
tion over pairs of pitch classes and note types, with the difference that here additional
latent variables (¢; and o;) are involved. However, since those variables are Bernoulli-
distributed, they can be marginalized out analytically:

p(p;,chord-tone | c) = p(o; =true)p(t; = chord-tone | c)p(p; | ¢,chord-tone)
:w'ec'(rbg};
p(p;,ornament | ¢) = p(o; = true)p(¢; = ornament | ¢)p(p; | ¢,ornament)

=w-(1-0,)-¢%,

p(p;,unknown | ¢) = p(o; =false) Y_p(t; =t | c)p(p; | c,t)
t

= (1-0)- (0%, + 1 =095,

The note-generation process can thus be replaced by a simple multinomial over P x
{chord-tone,ornament, unknown}, where the combined parameters ¢, can be expressed

in terms of ¢5, P27, 0,:

b = w © Ot o (1-0,)-¢7")

4.2
o (1-w) - O,-¢" + 1-6,)-p2), (42)

where o denotes vector concatenation and w is the probability that the note type is
observed. As a result, the generative process can be simplified as:

1. Choose the chord type ¢ ~ Categorical(y).
2. Choose the number of notes n ~ Poisson(A1) + 1.
3. Choose note counts N ~ Multinomial(¢,, 1).

To complete the model, we assume the following prior distributions over the parameter
variables:

1. Choose the chord probabilities y ~ Dirichlet(0.5).
2. Choose the mean number of notes (-1) A ~ Gamma(3,1).
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3. Set the type observation probability w := 0.5.

4. For each chord type h:
1. Choose the probability of generating a chord tone 8, ~ Beta(l,1).
2. Choose ¢y ~ Dirichlet(0.5).
3. Choose ¢;" ~ Dirichlet(0.5).

For all categorical parameters we use an uninformative Dirichlet prior (Jeffreys’ prior,
where each hyper-parameter is 0.5). The prior Beta(1, 1) for each 6, is uniform between
0 and 1. Since it is always known whether a note type is observed (chord-tone or
ornament) or not (unknown), the variable o; is an observed variable and w can take
an arbitrary value without affecting the other parameters. Likewise, A is conditionally
independent from the other parameters since the number of notes in each chord is
observed, so the choice of p(1) and p(n | 1) does not affect the rest of the model. The
full model is summarized in Figure 4.4.

4.2.2 Inference

In this study, the main focus is on the posterior distributions of the latent variables, in
particular the parameters of the chord-tone and ornament distributions ¢y and ¢;" for
each chord type h given the observed chords D. These marginal posterior distributions
p(¢r' | D) and p(¢;" | D) are approximately inferred using variational inference (Blei
et al. 2017) with a mean-field variational family g (¢°*,$°", A, x,0, t;j) that assumes the
posterior distributions of each varible to be independent:

g, A, x,0,t:) = g )g( [ 196 a@; g [1a;). (4.3)
h ij

The distribution family of each latent variable corresponds to its respective prior family
;j» and Dirichlet for y, ¢, and
" Variational inference optimizes the parameters of these distributions to make g as

in the model, i.e., gamma for A, beta for 8, Bernoulli for ¢

similar as possible to the true posterior by minimizing the KL-divergence between the
two: K L(g(latent) || p(latent | observed)).

The parameters of the Dirichlet posteriors for the chord-tone and ornamentation proba-
bilities have a straightforward interpretation as tone profiles. Each parameter a,, stands
for one pitch class p, with the magnitude of the parameter indicating the importance of
the pitch class in the chord as a chord-tone (for ¢;) or ornament (for ¢;"). Recall that a
sample from a Dirichlet distribution corresponds to the parameters ¢ of a categorical or
multinomial distribution, i.e., the unknown true pitch probabilities that characterize
each chord type. The expected value of these parameters is given by normalizing the
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Figure 4.4 — A factor graph of the the chord model. Variables are shown in circles (grey if
observed), the distribution a variable is drawn from is indicated by an arrow between the
parameters of the distribution and the sampled variable. A rounded rectangle denotes that
several copies of the included variables exist, one for each chord type, chord instance, or
note (corresponding to “for each” statements in the generative process). Dashed rectangles
indicate the a choice of parameter based on another variable, e.g., the choice of the chord
type ¢; determines which ¢;" (or ¢;") is used to generate a note, namely ¢¢ (or ¢¢).

Dirichlet parameters:
a;

2;q;

Elp;] = (4.4)
The combined magnitude of the parameters determines the variance of the Dirichlet
distribution, so large parameters indicate a high confidence that the true distribution is
close to the expected value (/3 The parameters & can be interpreted as pseudo counts that
express how often each pitch class has been “observed” as a chord-tone or ornament of
a given chord type.

The model and the variational family are implemented as probabilistic Python programs
using the Pyro framework (Bingham et al. 2019). Inference is performed using stochastic
gradient descent on the evidence lower bound (ELBO) between p and g with respect to
the parameters of g. The parameters were optimized using the Adam algorithm (learning
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rate = 0.01, §, = 0.95, 5, = 0.999).

Since the final parameters are quite large and the ELBO gradient is rather flat once
the parameters have the correct proportions (but not magnitude), this algorithm can
take a lot of time to converge when started from parameters close to 0 (i.e., using the
parameters of the priors). However, since we use conjugate priors in the model and the
corresponding distributions in the variational family, we initialize the parameters of g
with estimates of the final parameters based on conjugacy. For some of the latent vari-
ables (A and y), the posterior parameters can be computed exactly from the data since
they are conditionally independent from the other variables and have true conjugate
priors. The other parameters are not conjugate due to the presence of unknown note
types. They can be initialized approximately by observing only the notes with known
types: The Dirichlet parameters for each ¢;." and ¢;" are initialized with the counts of
known chord tones and ornaments, respectively. The beta-distribution parameters for
each 0,, are estimated by counting the total number of known chord tones and known
ornaments for each chord type. During training, these parameters adapt to account
for the presence of unknown note types, while the exactly initialized parameters for
A and y do not change at all. As a result, the model converges relatively soon after ca.
200 iterations on both datasets (we use the parameters after 350 iterations to guarantee
convergence). Because of this, we do not use subsampling but evaluate the full dataset
in each iteration, which reduces the variance of the stochastic gradient and stabilizes
the parameters of the converged model.”

4.2.3 Datasets and Preprocessing

The data used for training the model is not immediately available in existing corpora.
In particular, notes are not explicitly distinguished as chord tones or ornaments. We
implement a music-theoretically inspired heuristic for estimating this information from
existing harmonically annotated scores. Note, however, that the model described in
Section 4.2.1 is independent from this heuristic and could be applied to a dataset with
manual note-type annotations.

With this preprocessing step, the model is applied to two datasets: The first (ABC+) is a
collection of scores from Western common-practise music, professionally annotated
with harmonic labels in the DCML chord-annotation standard (Neuwirth, Harasim,
et al. 2018; Hentschel, Neuwirth, et al. 2021; Hentschel, Moss, et al. 2021). The second

*Training takes around 5 minutes for the ABC+ corpus and 10 minutes for the EWLD corpus on an Intel
i7-7600 CPU using a single thread. Using a GPU or multi-threading may make the inference process even
faster, but would make it not exactly reproducible due to concurrent random number generation.
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current note n  other present notes note type
any Am.nb(m, n) (no neighbor) chord-tone
ct(n) Am.ct(m) Anb(m,n) (no chord-tone neighbor) chord-tone
—ct(n) dm.ct(m) Anb(m,n) (has chord-tone neighbor) ornament
otherwise unknown

Table 4.2 — The note-type heuristic used to infer if an encoded pitch represents a chord-
tone or an ornament, if known.

one (EWLD) a collection of user-submitted lead sheets (melodies with chord symbols)
from a variety of mostly Western styles (including pop and jazz music) from the former
Wikifonia database (Simonetta 2018). The preprocessed datasets are available online
together with the model code.®

Estimating Note Types

An important part of the preprocessing of the data is in deciding whether a specific note
is an ornament or a chord tone. This can be estimated automatically from the harmonic
ground truth annotations. The basic procedure is the same for both datasets: based
on the annotated chord label, a check is made using the current note, the other notes
present during the current chord’, and the nominal notes of the present chord type.
We assume that an ornament cannot exist without a chord tone it refers to. Thus, if a
note has no “neighbor” (a note within step distance) in the current chord, it cannot be
an ornament and is considered to be a chord-tone, regardless of its relationship to the
current chord type.® Further, if a note is not one of the prototypical chord notes, and
it has a chord note neighbor present, it is assumed to be an ornament. Finally, if the
current note is one of the prototypical chord notes and has no chord-tone neighbor,
it is also encoded as a chord-tone. All other cases — a chord tone with a chord-tone
neighbor (e.g., a seventh and a root, or a third and an eleventh in some chord types),
or two neighboring notes neither of which is a nominal chord tone (e.g., a sixth and
seventh degree with neither root nor fifth present) — are ambiguous and are encoded as
unknown by the heuristic. Table 4.2 shows a summary of the heuristic.

Shttps://github.com/DCMLab/probabilistic_harmony_model/

For the purposes of this heuristic, “present” means overlapping at some point — a long note that starts
during one chord an ends during another is present during both.

8The assumption that a note that occurs without neighbors is a chord tone is made to allow a profile to
learn chord tones that are not explicitly mentioned in the theoretical description of the chord. Otherwise,
the profiles would simply recover the theoretical definition of a chord type.
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ABC+ Dataset

The first dataset consists of a collection harmonically annotated corpora created at
the Digital and Cognitive Musicology Lab (DCML) at Ecole Polytechnique Fédérale de
Lausanne, consisting of 747 full scores or piano reductions of Western classical music,
from the Baroque to the Romantic period. The dataset includes the published annota-
tions of the Beethoven string quartets (Neuwirth, Harasim, et al. 2018) and the Mozart
piano sonatas (Hentschel, Neuwirth, et al. 2021). These pieces have been harmonically
annotated, reviewed, and corrected by music theory experts. The remaining pieces have
been annotated using a similar procedure but are not yet completely reviewed or pub-
lished. However, since this study reduces the whole corpus to a small number of chord
profiles, we deem remaining annotation errors and inconsistencies to be irrelevant for
the problem at hand. Table 4.3 gives an overview of the collections included in the ABC+
dataset.

The harmonic annotation standard used in the ABC+ corpus allows for a wide variety
of harmonic annotations, including suspensions, retardations, pedal points, local key
changes, and various inversions, much of which is irrelevant to, or hard to reconcile
with the model described above. The preprocessing script thus extracts the chord-type
column from the data, where each chord is given a chord type from the following chord
vocabulary: minor, major, diminished and augmented triads, all four combinations
of minor and major thirds and sevenths, the half-diminished, fully diminished, and
augmented sevenths chords, and the three varieties of augmented sixth chords (Italian,
German, and French). Notably, suspended chords are not considered to be distinct
chord types, nor are inversions of the same chord type considered distinct from each
other. Each note is encoded as a (tonal) interval class relative to the chord root, and its
note type is estimated according to the heuristic described in Section 4.2.3. In total, this
yields 157,352 chords with 1,031,228 notes.

EWLD Dataset

The second dataset is extracted from the Enhanced Wikifonia Leadsheet Dataset (EWLD,
Simonetta 2018), which in turn is a subset of the former Wikifonia database. It contains
a collection of user-submitted transcriptions and lead-sheets of pieces from medieval
to contemporary music, with an emphasis on jazz and pop music, submitted to the
now defunct Wikifonia website. The EWLD is a subset of Wikifonia that focuses on
monophonic scores and is described in (Simonetta et al. 2018). Discarding pieces with
parsing issues, the dataset consists of 5,075 pieces, containing 199,050 chords with
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Composer Collection Pieces
Bach Suites 89
Beethoven Sonatas 62
Chopin Mazurkas 50
Corelli Sonatas 53
Couperin Concerts Royeaux 26
Gouts réunis 58
Lart de toucher 13
Debussy Suite Bergamasque 4
Dvorak Silhouettes 12
Gesualdo Libro 6 3
Grieg Lyrical Pieces 66
Kozenluh Sonatas 48
Liszt Années 11
Medtner Tales 19
Mendelssohn String Quartets 24
Monteverdi Madrigals 27
Mozart Sonatas 54
Pleyel Quartets 2
Ravel 3
Schubert Winterreise 24
Schumann Kinderszenen 13
Liederkreis 12
Schiitz Kleine geistliche Konzerte 55
Sweelinck Fantasia Cromatica 1
Tchaikovsky  Seasons 12
W.E Bach Sonatas 4
Wagner 2

Table 4.3 — Subcorpora of the ABC+ corpus.
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657,482 notes.’

A major difference from the ABC+ corpus stems from the fact that the chord symbols of
alead sheet often act as instructions for how to play an accompaniment, rather than a
music-theoretical interpretation. As for the ABC+ corpus, it is likely that some harmonic
annotations are questionable, and in general the annotation standards and choices
in this corpus vary much more widely than in the ABC+ corpus. The chord labels in
the EWLD corpus lack the extraneous information of the ABC+ corpus, are generally
less strictly applied, and not always interpretable. Moreover, the MusicXML standard
allows for a large chord vocabulary, with essentially unbounded additions, subtractions
and alterations of arbitrary scale degrees, as well as alternate bass notes and inversions.
As an additional preprocessing step, we condense this variety down to the following
vocabulary of 25 chord types, entirely informed by the kind element of the MusicXML
harmony elements:

¢ the four triads (major, minor, diminished and augmented) and the power chord
(omitting the third);

¢ the suspended fourth and second chords (both replacing the third);

* major, minor and dominant-seventh chords, each optionally extended up to their
corresponding, 9ths, 11ths or 13ths;

* augmented, half-diminished and fully diminished seventh chords, as well as the
minor triad with a major seventh;

* major and minor sixth chords.

Out of these, there are very few exemplars in the data of the major and minor 13th chords
in particular, with the major-minor, power, and the minor and dominant 11th chords
also rarely appearing. There are no instances at all of the major 11th chord in the data.

4.3 Results and Discussion

The exact numeric results of our experiments are provided in human- and machine-
readable form in the supplementary material.!” In this section, we will summarize
and discuss some observations that can be made from the inferred parameters. The
parameters that are not discussed here are shown in the appendix.

9We used the code provided by the EWLD authors at https://framagit.org/sapo/OpenEWLD to
create the dataset. Due to licensing issues, we cannot provide the full source data in the supplementary
material. However, we provide the preprocessed data together with a list of all EWLD files that were used.

Whttps://github.com/DCMLab/probabilistic_harmony_model/
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4.3 Results and Discussion

4.3.1 Chord Profiles

The posterior distributions of the chord tones ¢°* and ornaments ¢°" are shown in
Figure 4.5 for the chord types common to both corpora (The remaining distributions
are shown in Figure A.1 in Appendix A). Each bar shows the Dirichlet parameter that
corresponds to a certain pitch in a certain chord type (either as a chord tone or as an
ornament) and expresses the prevalence of that pitch in chords of that type. The true
(but unknown) pitch probabilities within a chord type can be seen as a sample from this
Dirichlet distribution. Since Dirichlet distributions with large parameters have a low
variance, the true probability distributions are expected to have the same proportions
as the posterior, but at the same time the magnitude of the parameters expresses the
model’s uncertainty about these proportions. For example, frequent chords generally
have larger parameters (resulting in low variance and high certainty) than rare chords
(higher variance, lower certainty), because seeing more examples of a chord type leads to
higher confidence in the underlying pitch probabilities. Therefore, Dirichlet parameters
can be understood as the combination of a set of proportions over pitches (i.e., a tone
profile) and a measure of certainty about these proportions.

The posterior chord profiles inferred from the ABC+ corpus (left column of Figure 4.5)
show a strong prevalence of the chord tones as predicted by the theoretical definitions
of the chord types. For example, the major triad has large chord-tone parameters for
the root, the major 3rd, and the perfect 5th, but small parameters for all other chord
tones. The ornaments are distributed around the chord tones, forming a bell-like shape
on the line of fifths for most chord types, a pattern that is typical for tonal music (Moss,
Neuwirth, and Rohrmeier 2022). At the same time, ornaments and chord-tones are
often (but not always) mutually exclusive, i.e., most tones have a clear interpretation as
either chord tone or ornament, especially when the tone is rather common in the chord
type. Together, both observations suggest that in a common-practice setting, ornaments
are mostly taken from the diatonic context in which the chord occurs, excluding the
chord tones themselves. Diatonic collections form contiguous segments on the line of
fifths, and most chord types can be associated with different diatonic collections. This is
particularly visible with chord types that are often borrowed in a parallel key, such as
the dominant-seventh chord onV (borrowed in minor) or half-diminished chord on II
(borrowed in major). Both profiles use the minor and major versions of the second and
the sixth as ornaments, where one pair comes from the “native” key and the other pair
from the parallel key. The combination of several diatonic segments around the chord
tones then could give rise to the bell-shaped distribution of ornaments: the central
pitches are more common because they are shared between different diatonic contexts
associated with the chord types.
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Figure 4.5 — The posterior distributions of the chordtones ¢°* (blue, left-leaning bars) and

ornaments ¢°" (orange, right-leaning bars) of the chord types that are common to the ABC+
(left) and EWLD (right) corpora. Pitches are ordered according to the line of fifths and
expressed as intervals relative to the root (P1, unison). (Continues on next page.)

98



1scussion

4.3 Results and D

half-diminished (EWLD)

half-diminished (ABC-+)

g u Tee
5 5 ve
2 g Le
°
S & ce
2 € oe
G o
ze
Ge
il i
e
—~ LW
S o
W
= o
— Sd
< d
ES =t vd
5 i
= - cw
:
Fzw
rSP
- 1p
rvp
rLp
rEp
rop
rap
r sPp
rIpp
T T T T T T
o =) o o o o 9 o
=] =] S S o 2
S = x S 9 oS
s & =
+ tee Tee
I yee pee
e le
Fce ce
I ge e
L ze e
rse se
rie e
e e
T ~ o
o EW + €W
ron W
m—r 7 M'm gl 71
— Gd = ——f Gd
d < d
— g [ e
——— % &L
el 7y Fzw
— G P ~ SP
b i - 1P
L4 rvp
i Lp FLp
- €p rep
r9op rop
rcp rcp
r SPP r SPp
r IpPp rIpPp
T T T T T T
= g 8 ° = 8 8 ©
o) = b} &) S x

augmented (EWLD)

augmented (ABC+)

Tee Tee Tee
pee pee pee
Le Le Le
€e €e €e
9e 9e 9e
ze ze e
se se se
e e e
e ve = ve
M w3 LW
o= Moo= €W
o L [T oW
wm m = Ll
Sd B sd £ Sd
T N 1d
vd O vd T vd
& (w @ w8 Lu
ew £ w o § u
— O 5 Fou £ ou
w £ Fzw Wo w
spE Fsp @ sp
P o 1P P
vp I vp vp
Lp FLp Lp
€p I ep €p
I op I op 9p
I zp Fzp 143
I spp I spp spp
I PP I PP PP
(=1 [=1 (=1 (=1 (=3 (=] (=1 (=1 (=]
(=1 =3 (=1 0 (=] (=1
=t 5} — -t ]
Tee  Tee Tee
pee + pee pee
Le - /e Le
ce tce ce
ge - oe oe
e e e
se ge ge
1 e e
ve 0 ve T ve
w O w3 W
W o [ €W
amw < 9 < 9
wm - m = T
s ® sd £ - Sd
d T N 1d
td S vd g "
Lw el Lw + ——
ew E WG [
u 5 qu £ I ou
< u wo - zw
P E P ® o SP
P P 1P
vp P I vp
Lp Lp FLp
£p €p - ep
9p 9p I op
4 p +zp
spp spp I spp
PP PP I PP
(=1 (=1 (=1 (=1 (=3 (=] (=1 (=] (=1 (=]
(=3 (=1 (=1 o N N —
= =t (3]

Figure 4.5 — (cont.)
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It remains unclear whether certain ornaments are specific to a chord type as such, or
whether ornaments are generally drawn from the local key (which in turn is correlated
with the chord). The latter interpretation is consistent with the traditional view that
ornamentation in classical music is mainly a result of contrapuntal elaboration, for which
the mode is the main organizational principle (Aldwell, Schachter, et al. 2011). A few
exceptions to the general diatonic bell shape (e.g., a strong m2 for the half-diminished
chord) could point to chord-specific ornaments, but in many cases the prototypical
ornaments of a chord type are at the same time in the center of its possible diatonic
contexts (such as the 4th in the dominant-seventh chord).

The chord profiles of the EWLD corpus show similar patterns (e.g., the prevalence of
the theoretical chord tones) but with some notable differences to the ABC+ corpus.
For instance, ornaments are not mutually exclusive with chord tones. In fact, most
of the common ornaments have a similarly high prevalence as a chord tone, while
the theoretically predicted chord tones also have a certain prevalence as an ornament
(though usually not as high as as a chord tone). This failure to clearly separate the classes
might be due to the data consisting of melodies, which usually do not cover all chord
tones of a harmony and preferable move in steps. Thus, the heuristics that were used to
estimate the type of a note will identify fewer clear cases and rather report an “unknown”
note type, from which the model cannot learn the difference between chord tones and
ornaments. In addition, there might be an effect due to the different role of chords in pop
and rock music compared to classical music, with a more flexible coordination between
melody and harmony (Temperley 2007b) and less strong tonal hierarchies (Vuvan and
Hughes 2021).

Most of the common chord types in the EWLD corpus exhibit a similar pattern for
ornaments as in the ABC+ corpus, i.e., a continuous line-of-fifths region around the
chord tones. However, in many cases, the span of ornament pitches is more narrow
and less bell-shaped (e.g., for dominant-seventh, minor-seventh, half-diminished, or
major-seventh chords), which indicates that chords are more strongly tied to a single
fixed diatonic collection than in the ABC+ corpus. This phenomenon could be linked
to the chord-scale idea from Jazz theory, which links certain chord types to fixed, local
scales rather than an overarching mode that is shared by several chords (Levine 2011;
Nettles and Graf 1997). A related phenomenon can be observed for the symmetric
diminished and diminished-seventh chord, which rather than a diatonic region seem
use an octatonic scale as the reservoir for ornaments. This is consistent both with chord-
scale theory and with the application of Tonfeld theory to Jazz harmony (Rohrmeier
and Moss 2021). Both observations together suggest that the relation of chords and
ornaments differs between classical and modern styles: Whereas classical styles are
rather flexible in associating chord types and diatonic contexts, using the same chord
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Figure 4.6 — The posterior distributions of 8, for common chord types. The x-axis ranges are
chosen to visually align corresponding chord types between the datasets (the highlighted
regions cover the same range).

types on different scale degrees or even borrowing from other modes, modern styles
more strongly associate chords with fixed scales. While this finding seems to be at odds
with the melodic-harmonic-divorce hypothesis (Temperley 2007b), it should be noted
that the EWLD corpus mixes different styles, which might follow different principles.

Another difference between the ABC+ and the EWLD corpus is an increased use of en-
harmonic equivalence in the latter, which can be observed most strongly for chords that
are symmetric under enharmonic equivalence, i.e., (full-)diminished and augmented
chords. While the corresponding profiles for the ABC+ corpus mostly use a single en-
harmonic interpretation of a pitch (e.g., a diminished seventh rather than a major sixth
in the full-diminished chord), the EWLD profiles allow for the enharmonic equivalents
of the classically preferred variants. For example, the profiles of the diminished and
full-diminished chords are almost symmetric around the root for the EWLD corpus,
while the corresponding profiles for the ABC+ corpus are strongly asymmetric.
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4.3.2 Degree of Ornamentation

A phenomenon that can already be observed from the chord profiles is that the general
prevalence of ornaments varies between chord types. The predisposition of a chord type
to generate ornaments occurs explicitly in the model (as 1-6),) and can thus be quantified
exactly. Figure 4.6 shows the posterior distributions of 8, for most of the common
chord types of both datasets (excluding the rare minor-major-seventh and augmented-
seventh chords). For the ABC+ corpus, the chord types form three clusters. Dominant
chords (dominant-seventh, diminished, and full-diminished) show a comparatively
high degree of ornamentation (i.e., 8;, is small) in contrast to non-dominant chords,
while the augmented chord is considerably less ornamented. There are several possible
explanations for this phenomenon. Dominants have a critical function in tonal music
as preparing motion to the tonic, which is particularly visible in the context of cadences.
Ornamenting the dominant can increase its tension (e.g., by delaying) and sense of
forward motion (e.g., through passing motions), while ornamenting the tonic in the
same way would be in contrast to the sense of arrival and stability it represents. Thereis a
number of typical ornamentations of dominant chords that fulfill this purpose, such as 4-
and 6-4-suspensions, 8-7 passing motions, and anticipations. Moreover, the dominant is
a point of increased attention and ornaments might be more noticeable at such a point,
so a composer might prefer to add ornaments where they are noticed. The augmented
chord, on the other hand, allows for almost no ornamentation. This may be due to the
instability of the chord: If ornaments are added to an augmented chord, it becomes
difficult to identify as an augmented chord, since most neighbors would allow for a
reinterpretation of the chord as a minor or major triad, or as an augmented-seventh
chord.

The EWLD corpus exposes a similar clustering of chord types, although the level of
ornamentation is generally higher (note the different x-axis ranges in Figure 4.6), which
may be due to the observed notes being taken from melodies instead of full textures.
The notable exception to this similarity is that diminished and full-diminished chords
are now much less ornamented, similar to augmented chords. This may be due to a
different use of the chords in the genres found in the EWLD corpus compared to the
styles in the ABC+ corpus, but it might also be a consequence of a different use of
chord labels as instructions for musicians rather than descriptions or interpretations
(as in the ABC+ corpus). A possible explanation of this difference is that dominant-
seventh and (full-)diminished chords occur in similar contrapuntal contexts and are
thus treated similarly in voice-leading music. If the focus is on the specific sound of a
chord, dominant-seventh and diminished chords may be perceived as very different.
Generally, however, it is unclear whether the differences between the corpora can be
fully explained by stylistic differences since the material (melodies vs. full scores), the
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4.3 Results and Discussion

purpose of chord labels, and the annotation or transcription procedures and goals differ
as well.

To further investigate the idea of different classes of chords that exhibit a similar amount
of ornamentation, the original model was extended to a clustered model, where different
chord types share the same 0 if they belong to the same cluster (all other variables staying
the same, in particular ¢°* and ¢°" remain separate for each chord type). A number
of candidate models was selected by starting with one cluster per chord type (of the
types shown in Figure 4.6), iteratively merging the two most similar clusters (similar to
hierarchical clustering) and refitting the model, until all chords are assigned to a single
cluster. All of these models were then combined into a meta model, in which the choice
of model is represented by a categorical varible M. The generative process then first
chooses the model (i.e., the clustering) from a uniform prior. and then proceeds as
before. We approximate the posterior model probabilities

pM |N,&) (4.5)

using the same variational inference method as before, but keeping the posteriors of
all model parameters fixed, only optimizing the posterior probabilities of the model
choice. From the model probabilities we can directly compute the Bayes factors between
pairs of models!!, but for the present case it suffices to look directly at the posterior
probabilities. Since the posterior model distribution in Equation 4.5 marginalizes over
the model parameters, it automatically penalizes models with more parameters in a
principled way.

Figure 4.7 shows the two cluster models with the highest posterior probability. Both
datasets prefer its respective model with a high probability of 0.98 each. The best model
for the ABC+ dataset groups chord types into four clusters, with the lowest and highest
clusters corresponding to the groups hypothesized before (dominants and augmented).
The middle region, however, still splits into two groups, which indicates that the respec-
tive chord types are sufficiently distinct in their ornamentation tendency. The EWLD
dataset prefers a more complex model with 6 clusters, which suggests that its chord
types are more distinguishable with respect to 6. This phenomenon is in line with the
observation made above that the role of chord types might have changed in modern
music, with each chord type standing for its own distinct sound rather than different
(but related) chord types emerging in similar contrapuntal configurations.

"The Bayes factor is the likelihood ratio between two models, which in this case is equivalent to the
ratio of the models’ posterior probabilities because of the uniform prior over the models.
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Figure 4.7 — The clustered-0 models with the highest probability for the ABC+ and EWLD
datasets.

4.4 Conclusion

In this study, we presented a model that describes how an idealized listener could
represent and learn the properties chord types in terms of chord-tone and ornament
distributions, based on a generative probabilistic model. Using this model, we obtained
chord profiles for two datasets, describing the ornamentation properties for a number of
chord types in different styles. Preliminary analysis and suggest that ornamentation in
classical styles might be related to diatonic contexts, while in modern styles the choice
of non-chord tones could be more strongly tied to the chord itself. Furthermore, chord
types differ in their disposition to be ornamented, with dominant chords showing a
greater prevalence of ornaments than non-dominant chords.

The model that was used in this study was designed as a simple approximation to how
chord types relate to pitches. Generally, the relation between harmonies and surface
notes is more complex, involving rhythm and meter, the sequential order of notes, and
the association of ornament notes with the respective ornamented notes. Generative
Bayesian models can serve as a principled methodology for investigating the inference
and learning in the context of complex structures, whether for statistical purporses
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or as models of cognition. As the present study has shown, the use of probabilistic
programming as a language to express probabilistic models makes it possible to move
beyond standard models and implement precise and theory-driven model assumptions.

As a consequence, hypotheses about the way ornaments are organized may be imple-
mented by adding structure to the model that reflects these hypothesized relations.
For example, the idea that ornaments are determined by a diatonic context may be
expressed by a model that explicitly selects ornaments from diatonic collections (or,
more generally, other structured pitch collections such Tonfelder, Rohrmeier and Moss
2021) instead of a categorical distribution that assumes no relation between pitches. The
simple model presented here can serve as a baseline against which to compare models
that make additional structural assumptions. Bayesian modeling may also be applied to
different learning problems, both by adding and by removing information in the data.
Removing information leads to un- or semi-supervised settings that, for example, do
not assume the chord labels or even the number of chord types to be given. Such a
model would explore the types of chords that emerge from the data set, simulating how
a listener implicitly learns to identify harmonic categories without explicit instruction
(D. Hu and Saul 2009; Harasim, Moss, et al. 2021; Moss and Rohrmeier 2021). On the
other hand, a more realistic model of ornamentation requires adding information such
as temporal properties of notes, the octaves in which they occur, or the notes that are
present before and after the chord.

Finally, the precise relationship between latent entities such as harmonies and the
musical surface remains to be described. A generative model that also takes into account
the exact placement of notes, contrapuntal structure, motivic phenomena, and other
musical parameters would clarify the way in which harmonic types influence the surface
on one hand (at least within one style or family of styles), and on the other hand explain
how listeners potentially learn, represent, and recognize harmonic types.
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8 A Graph Grammar for North Indian
Melodies'

Abstract

Hierarchical models of music allow explanation of highly complex musical structure
based on the general principle of recursive elaboration and a small set of orthogonal
operations. Recent approaches to melodic elaboration have converged to a representa-
tion based on intervals, which allows the elaboration of pairs of notes. However, two
problems remain: First, an interval-first representation obscures one-sided operations
like neighbor notes. Second, while models of Western melody styles largely agree on
step-wise operations such as neighbors and passing notes, larger intervals are either
attributed to latent harmonic properties or left unexplained. This paper presents a
grammar for melodies in North Indian raga music, showing not only that recursively
applied neighbor and passing note operations underlie this style as well, but that larger
intervals are generated as generalized neighbors, based on the tonal hierarchy of the
underlying scale structure. The notion of a generalized neighbor is not restricted to
ragas but can be transferred to other musical styles, opening new perspectives on latent
structure behind melodies and music in general. The presented grammar is based on a
graph representation that allows one to express elaborations on both notes and intervals,
unifying and generalizing previous graph- and tree-based approaches.

!Originally published as:

C. Finkensiep, R. Widdess, and M. Rohrmeier (2019). “Modelling the Syntax of North Indian Melodies
with a Generalized Graph Grammar”. In: Proceedings of the 20th International Society for Music Information
Retrieval Conference. ISMIR (Delft, The Netherlands). Delft, The Netherlands, pp. 462-469. por: 10.5281/
zenodo.3527844

The analytical and theoretical groundwork was done by RW and MR, while the mathematical formalization
was done by CF in discussion with MR and RW. The generalized neighbor idea was suggested by Fabian
Moss. CF was the main author of sections 5.2 to 5.6, the remaining sections were written jointly by the three
authors.
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Chapter 5. A Graph Grammar for North Indian Melodies

5.1 Introduction

North Indian classical music (Hindustani music) provides valuable evidence for theories
of syntactic musical organization. Like Western art music, it takes the form of aesthetic
communication with an attentive and experienced audience, and is also a subject of
theoretical discourse. Like most music outside the Western canon, it is normally un-
written, depending instead on memorization and improvisation. Instead of a system
of chordal harmony or polyphony, Indian music comprises a solo melody against a
complex background drone (of at least two pitches).

Melodic elaboration is prized as a means of musical extension and aesthetic enhance-
ment: it operates at many levels, from the ornamentation of a single pitch, to the ex-
pansion of a phrase, to the architecture of a piece or performance. Melodic coherence
is ensured by selecting one of a set of modes (raga), each comprising a scale, a pitch
hierarchy, and a set of licensed pitch transitions; any phrase that evokes a different
raga from the one selected is regarded as an error. It has been noted that Indian music
resembles language in several respects (Powers 1980), and a raga could be understood
as a melodic grammar, in which melodies are constructed by recursive elaboration over
a hierarchically organized set of pitches.

The idea of understanding music in a hierarchical fashion goes back to Schenker (1979),
and has developed through the integration of impulses from generative linguistics and
the theory of formal grammars since the 1980s (Steedman 1984; Baroni et al. 1983; Ler-
dahl and Jackendoff 1983; Rohrmeier and Pearce 2018; Pearce and Rohrmeier 2018).
Approaches most commonly addressed harmonic structure (Steedman 1996; Rohrmeier
2011; Rohrmeier and Neuwirth 2015; de Haas et al. 2009; Granroth-Wilding and Steed-
man 2014) and melody (Gilbert and Conklin 2007; Marsden 2001). Several approaches
proposed simplified formalizations of Schenkerian theory and corresponding computa-
tional implementations (Marsden 2001; Marsden 2007; Yust 2015b; Kirlin and Utgoff
2008). There is still comparably little discussion concerning the extent to which such
hierarchical frameworks extend to non-Western forms of music. Narmour’s theory of
melodic processes is explicitly directed to capture melodies outside the Western canon
as well (Narmour 1992). The application of Schenkerian methods to non-Western music
has been discussed by Stock (Stock 1993). More recently, it has been proposed to adapt
analytical tools from Schenkerian analysis and the GTTM to Indian music (Mukherji
2014; Clarke 2017).

This paper links with this discourse and proposes a generalized formal model of North
Indian melodic and phrase structure. A common shortcoming in previous models of
melodic elaboration is the treatment of leaps, which are usually either attributed to a
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latent harmonic structure that is assumed to be known (Marsden 2001; Kirlin and Yust
2016), or modelled as probabilistic intervals (Gilbert and Conklin 2007; Groves 2016)
without explicit restrictions. This paper introduces a formalism for relating leaps in
North Indian music to a latent tonal hierarchy that is stated explicitly. With respect to
this hierarchy, leaps can be viewed as instances of generalized neighbor- and passing-
note relations that take into account the stability of a pitch in a scale. As will be argued,
the generalized neighbor idea applies beyond North Indian music to some degree.

A central question for elaborative models concerns the representation of the music.
Since formal grammars - the standard formalism for recursive elaboration — operate on
strings of objects, most models of musical elaboration represent music as a sequence
of objects, such as notes or chords. As a consequence, these models mostly focus on
melodic (Gilbert and Conklin 2007; Groves 2016; Marsden 2001) or homophonic settings
(Kirlin and Thomas 2015).

A desirable property of a formal grammar is that it is context-free, meaning that elabora-
tions on a single object are independent from the objects around it. Systems that are
based on strings of notes have problems with being context-free since some elaboration
operations (such as passing notes) depend on two notes (Lerdahl and Jackendoff 1983).
Because of this, more recent approaches have been based on strings of intervals (Mars-
den 2001; Yust 2015b; Gilbert and Conklin 2007), which allow elaborations of both single
notes and pairs of notes while remaining context-free. However, in an interval grammar,
notes are represented implicitly and redundantly (as part of an incoming and outgoing
interval). In addition, all notes generated by elaboration are derived from two parent
notes, which is unintuitive for single-sided operations. As a unification and general-
ization of both approaches, this paper suggests a graph-based representation in which
both notes and intervals are represented explicitly, with a graph grammar describing
the elaboration rules. This goes beyond descriptions of derivations as graphs, which is
already an established practice (Marsden 2001; Yust 2015b; Kirlin and Utgoff 2008).

5.2 Melodic Operations

Melody in Indian music is based on a set of modes called ragas. A raga is not only a
collection of pitches that may be used, it also establishes a hierarchy of stability among
these pitches. Stable pitches are those that can serve as resting points, while less stable
pitches tend to move towards their more stable neighbors. Some pitches in a raga have
a preferred resolution direction and must resolve to the closest pitch in that direction.
An example of a raga with its scale, tonal hierarchy, and directional constraints is shown
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Figure 5.1 — Raga Multani with pitches in an approximate Western notation. The notated
duration denotes the hierarchical level, i.e., relative stability, of each pitch; arrows indicate
a constraint on the resolution direction of an unstable pitch.

in Figure 5.1. The relative stabilities indicated in Figure 5.1 is based on observation of
normal practice in this raga.

The melodic elaboration of a raga is performed most completely and systematically
(though not exclusively) in alap: a type of improvisation in which the scale and melodic
features of the raga are gradually exposed in phrases unfolding an arch-shaped trajectory,
starting from the root (scale-degree 1) and reaching the octave above (or higher) before
finally returning to the root (a process called vistar or “scalar expansion”, Widdess 1981).
This background structure is filled and elaborated recursively, generating a complex
foreground melody. Elaboration follows mainly two principles, inserting either passing
or neighbor notes.

Passing notes fill intervals that are larger than steps. They can occur close to the surface
(such as the b2 in b3 b2 1), but can also be understood to characterize dependencies in
the background (e.g., filling the top-level interval 1 - 1" with a 5). Two kinds of passing
elaborations can be distinguished: Either a single note is introduced that subdivides
the interval, potentially leaving non-step intervals that can be further elaborated; or the
interval is filled with all scale notes enclosed by the interval.

Neighbor notes can be inserted before or after an existing note. While passing notes
relate to both notes of an interval, neighbors are subordinate to single notes. When
embellishing a note with a neighbor, a trade-off can be made between pitch proximity
and stability: While unstable neighbors need to be very close to the main note’s pitch,
more distant neighbors can occur if they are sufficiently stable. In general, a pitch
can only be perceived as a neighbor to some reference pitch if no pitch in the interval
between the two is more stable than the proposed neighbor in the given mode.

Figure 5.2 shows the steps needed to derive a phrase using neighbors and passing notes.
Starting with a single 1, the note is duplicated and elaborated twice, first with a lower
neighbor 7, then with an upper neighbor b3. Finally, the space between b3 and 1 is filled
with a passing b2.
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Figure 5.2 — A short Multani phrase and its derivation.

deDy 1 b2 b3 #4 5 b6 7

oy@ 11 1 1 1 1 1
Ay 4 0 2 1 30 2

Table 5.1 — A formal description of the raga Multani, showing the direction and hierarchical
level of each scale degree (as shown in Figure 5.1). b2 and b6 are directed downwards and
can therefore only be used before 1 and 5, respectively.

5.3 Modes and Generalized Neighbors

The idea of modes and generalized neighbors can be given a formal description: A mode
M s atriple

M:=(D,6,7)
6: D—{1,,1}
A: D—N

where D, is a totally ordered set of scale degrees, §,, is a function indicating the direction
in which a scale degree is allowed to move, and A,, returns the hierarchical level of a
scale degree. For example, the raga Multani (Figure 5.1) would be formalized according
to Table 5.1.

The same scale degree can be used as a piftch in different octaves, so pitches are indicated
as scale degrees together with “’” for octaves above and “,” for octaves below the default
octave. The pitches of adjacent octaves are adjacent as well: 7, is directly below 1 and 1’
is directly above 7. As a result, a mode gives rise to a set of pitches P,;, which corresponds
to Z while scale degrees correspond to Z, . For convenience, §,, and A1, are assumed to
be defined on pitches as well and return the values of the corresponding scale degrees.

The set of pitches between a pitch p, and a pitch p, is the set of pitches in the open
interval (p,, p,) that agree with the direction of the interval:

PeEPy P <p<pANOoy(p) |} ifp <p,
PEPyIP>p>pAoy(p) #1} ifp; > p,.

Ay (pr,p2) = { (5.1)

The neighbors of a pitch p € Py, are then all pitches n € P, that have a higher level than
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7, 1 b2 b3 44 5 b6 7 1" p2

hierarchical level

Figure 5.3 — The upper and lower neighbors (dark) of b3 (black) in the Multani raga. Only
pitches that can be reached without skipping a more stable pitch are neighbors. b2 is not a
neighbor since it is directed downwards and can only be a neighbor to 1.

all pitches between p and n. In addition, the direction of » must agree with the direction

from 7 to p:
nby(p)={nePy,lp+n
AYqgeNy(n,p):Ay(q) <Ay(n) (5.2)
An— p},
where

oyn)#1 ifp<n
n—p=<6,n)+| ifp>n (5.3)

true otherwise.

Thus, every pitch is a neighbor to p only if it can be reached from the reference pitch
without skipping a more stable pitch than the neighbor, as illustrated in Figure 5.3.
Directed pitches can only be inserted as left neighbors since they must move towards
their resolution.

When a single passing note is generated, the passing note must be a neighbor to both
notes of the interval it is inserted in. However, in this case the inserted note is moving
away from the first note, so the direction is not towards the reference note but towards
the neighbor. A reverse neighbor r € rnb,;(p) is defined in analogy to a neighbor but
with inverted direction:

mby(p) ={rePylp+r
AVDb e Ny(p, 1) Ay (D) < Ay (1) (5.4)
Ap— 1}

For example, a passing b2 in the sequence b3 b2 1 is a neighbor to 1 but a reverse neighbor
to b3, as it is directed away from b3 and towards 1.
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Finally, a fill is the list of all pitches between two pitches p, and p,, sorted according to
the direction of the interval (p;, p,) and restricted to pitches agreeing with that direction
(as given by A,,).

sort(Ay(pr, po),asc)  ifpr<p,

filly(py, p2) = { (5.5)

sort(Ay(p1,pe),desc) otherwise.

5.4 A Formal Grammar of Raga Melodies

5.4.1 Representing Melodies as Graphs

As seen in Section 5.2, the two fundamental elaboration types — passing and neighbor
notes — operate on two different musical entities: While neighbors elaborate single
notes, passing notes fill intervals between two notes, elaborating both notes at the same
time. As a consequence, two main formalisms describing hierarchical elaboration have
emerged, note grammars and interval grammars.

Note grammars generate strings of notes, with derivation rules replacing single notes
by several new notes. The resulting hierarchical structure is a tree of notes as shown
in Figure 5.4a. However, elaborating single notes is problematic for passing notes, as
they elaborate two notes. Not only is the resulting hierarchy ambiguous (the passing
note must be attached to either its predecessor or its successor), but from a generative
perspective, a passing note can only be derived from one of its parents. Thus, deciding
where a passing note may be inserted becomes a context-sensitive problem.

Interval grammars (Gilbert and Conklin 2007; Kirlin and Yust 2016; Groves 2016; Mars-
den 2001) solve the passing note problem (and two-sided operations in general) by
elaborating pairs of notes, or intervals. Inserting a new note replaces an existing interval
with two new intervals. The melody is then represented as a string of intervals with each
note being represented twice, once as the second note of an interval and once as the
first. To avoid this redundancy in notation, derivations are usually not given as trees
(Figure 5.4b) but as outerplanar graphs (Figure 5.4c), giving each note two parents. How-
ever, for one-sided operations like neighbors, interval-based elaboration is conceptually
misleading, as only one of the parent notes is considered while the other is ignored. This
can lead to unwanted subordination of conceptually independent neighbors, as will be
argued below.

As a unification and generalization of note- and interval-based systems, a graph-based
representation of melodies is suggested here, representing notes as nodes and note
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1 1
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1 1 1 1
ANIVZAN VANEZAN
7,1 b3 1 7,1 b3 1
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b2 1 b3 b2

(a) Two analyses using note elaboration. The passing b2 must be attached either to the 1 on its right or to
the b3 on its left.

X — X
X—1 1- KX
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X —1 1-1 \\

X—7, 7,—1 1-b3 b3 — 1
RN

b3 —b2 b2—1
(b) An analysis of the phrase using interval elaboration. The (c) The same analysis as in 5.4b, displayed
passing b2 is generated in the interval b3 — 1. as an outerplanar graph.

Figure 5.4 — Conventional formal analyses of the phrase in Figure 5.2.

5— 5 5——5 5————5
NS/ 7 \, £
4 b6 7. 4 7
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Figure 5.5 — Three possible derivations of 5 {4 7b6 5.
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Figure 5.6 — An analysis of the phrase in Figure 5.2 using the raga grammar. Dark edges
indicate the subgraph induced by removing non-note nodes (X, X, €).
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transitions as edges. Using graphs as the basis for elaboration has both conceptual and
practical implications. Conceptually, graphs represent both notes and note transitions
explicitly, which allows the use of both entities as a starting point for elaboration. Practi-
cally, while graphs can represent strings of objects (such as melodies) as a special case,
they can easily describe much more complex structures, which potentially allows the de-
scription of elaboration operations in non-monophonic music. However, special cases
such as monophony can still be defined graph-theoretically, ensuring consistency under
elaboration. Thus, graphs provide a common framework for both melodic grammars
and more complex formalisms.

While graphs in principle allow operations on both nodes and edges, a much simpler
and more consistent system is obtained by operating only on edges, resulting in an
edge-replacement graph grammar. All operations are then defined on edges (i.e., node
transitions) with one-sided operations ignoring one node of the edge. One-sided opera-
tions still introduce an edge between the unused note and the new one in order to allow
further elaboration between them. In order to express the independency between the
new and the ignored note, a dummy node (written as ) can be introduced first between
any two notes. A dummy node does not generate a note and is analogous to the empty
string in a conventional grammar.

Only strictly one-side operations can be performed on edges adjacent to a dummy node.
This restriction expresses the independence between one-sided elaboration notes and
their opposite side, and permits a more appropriate hierarchy: Suppose two one-sided
neighbors are generated between two 5s, a t4, as a right neighbor to the first 5 and a
7 as a left neighbor to the second 5 with a passing b6, resulting in 5 #4 7b6 5 (Figure
5.5). Without a dummy node, either 7 or {4 is subordinate to the other, depending on
which is generated first (Figures 5.5a and 5.5b). By first introducing a dummy node,
both neighbors can be derived independently (Figure 5.5c). Moreover, as dummy nodes
are removed after the derivation, the resulting graph structure only retains edges that
express elaboration dependence. Thus, dummy nodes allow the derivation to formally
follow edge replacement while semantically expressing both one-sided and two-sided
operations.

5.4.2 Formal Definition of the Grammar

A melody is formally represented as a directed linear graph with notes as nodes and
transitions between notes as edges directed in time. The beginning and end of the
melody are marked with the special nodes X and X, respectively. The derivation is
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started from a single 1:
>4 - ]‘M g ><,

with 1,, indicating the root of mode M.

Derivation rules follow an edge-replacement paradigm: edges can be replaced with new
subgraphs, retaining the nodes adjacent to the original edge. Some rules use only one
of the adjacent nodes. In this case, a wildcard symbol (* € Py, U {X, X, €}) is used for
the ignored node. The special symbol € represents the empty melody and can be used
to split an edge into two parts that may be elaborated independently. Only one-sided
operations can be used on edges adjacent to an ¢, X, or X.

Foragiven mode M the raga grammar éﬁ{fg“ isdefined as the graph grammar (9, &V, .#, %)
with

I ={n;—ny, | n € P,U{X,e},n, € PyU{X,e}}
N =] (5.6)
F =X —K

as terminals 9, non-terminals ./, and initial graph .#; and the following replacement
rules %:

initialize:
H=X)=>(X—1y—X)

duplicate left: Vpe Py,
p—ox)=>p—p—=*)

duplicate right: Vp € P, :
(x—=p)=>E—p—p)

left neighbor: Vp € Py, n € nby(p) :
(x—=p)=>E—-n—-p)

right neighbor: Vp € Py, n € nby(p) Aoy (p) =1 :
p—=*x=>p—-n—rx)

passing: Vp,,p, € Py, n € rnby(p,) N nby(p,)
(P1 = p2) = (pr = 1 — py)

fill: Vp,,p, € Py:
p—P)=>pi—h— .= fu—p)
where f,, ..., f, = fill(pl, p2)

split: Vp,,p, € Py, :
(Pr— P2) = (p1 — € — pa).

In this description, rules are given as templates that are instantiated for all (combinations
of) pitches. A more elegant and efficient description is possible, if rules are considered to
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be functions on classes of structured symbols (Harasim, Rohrmeier, et al. 2018), allowing
them to look inside their inputs.

Since the raga grammar generates linear graphs, it is still possible to display derivations
with outerplanar graphs. Figure 5.6 shows a derivation of the example phrase from
Figure 5.2 using the raga grammar. Each operation used to derive the phrase is written
in the triangle formed by the old edge it replaces and the new edges it inserts. Later
derivation graphs will omit operations and edge directions to remove visual clutter, as
both are clear from the context.

In Figure 5.6, the € inserted between the two 1s separates them and allows independent
generation of neighbors. In particular, it would be possible to generate another right
neighbor to the first 1 without subordinating it to the b3, or vice versa.

While the full derivation graph displays all derivation steps as they are formalized (i.e.,
as edge replacements), it does not distinguish one-sided and two-sided operations.
Removing all non-note nodes (X, X, €) and the adjacent edges induces a subgraph in
which two-sided operations still use two edges while one-sided operations adjacent to
non-note nodes only use one edge. The resulting graph resembles both note trees and
outerplanar graphs in different regions, depending on the type of operation being used
there. Thus, using € nodes is an analytical option that reveals independencies between
adjacent parts of the graph.

The graph grammar %% is a special case of a graph grammar that is formally equivalent
to a context-free grammar on strings of notes. Therefore, it can parse melodies efficiently.
The context-free grammar can be obtained in two steps: First, the graph representation
is transformed to an interval representation in all parts of the grammar. Second, a set
of rules is added for generating notes from intervals by taking the second note of each
interval and generating empty strings (¢) where necessary.

In a directed linear graph, edges are totally ordered by their direction, so the graph can
be transformed into a sequence of edges (e.g., a — b — ¢ becomes (a, b)(b, c)). Let e
be the function that transforms linear graphs to sequences of edges. Then the context-
free melody grammar G (¥ ,) := (T, N, I, R) induced by a melody-graph grammar % ,, is
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Figure 5.7 — The spine modeling the deep structure of the octave expansion in an alap.

defined as follows:

TG::PM
NG :=(pMU {X,E}) X (PM U {E) D<})
Sgi=e(Fy) = (X, X)

(5.7)
Rs={e)=>e(n)|l=>r1eR4HU

{(x,p) = plpePyxePyUiX X elU

{(x,n) =>elneieX},x€PyUlX X, el

5.5 Discussion

A main motivation for introducing generalized neighbors is that they allow modelling
leaps in the background structure of North Indian music. Figure 5.7 shows the archi-
tecture of a typical alap in raga Multani. The melody slowly ascends from 1 to 1’ via 5
and returns back to 1 (again via 5). The upper 1’ can be seen as a very stable and distant
neighbor of 1 while the 5s in between are (again stable and distant) passing notes. Each
stage of this spine is then further elaborated by neighbors and passing notes, using
increasingly less stable pitches and smaller intervals (Figure 5.8).

North Indian music is not the only style of music in which melodies are based on hierar-
chical modes. If other mainly mode-based styles also follow the elaboration principles
of passing notes and neighbors, then the grammar defined in Section 5.4 should permit
sensible analyses for these cases. Consider, for example, the melody of Nun komm der
Heiden Heiland (based on the Dorian mode) and a phrase from the Jazz standard Moanin
(based on a Blues scale). Their respective derivations (shown in Figure 5.9) suggest plau-
sible reductions of the surface melody in both cases. Moreover, the proposed relations

’

between notes match the intuitions of generalized neighbors and passing notes.

A natural generalization of the mode-based approach is to consider the mode as a latent
variable that can change over the course of the piece but still organizes elaboration
locally. Depending on the style, this hierarchy can be constant over longer regions of the
piece or change rather frequently. The latter case occurs when harmonies are considered
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X X
7/ ————
7,/ \ba\// 5 / 1
b2 € / \5\ € 7\
/ \ ¢ // e p / \\ P
b3 // b3\ﬁ4 7\b6/ u4/ b6-5-14 ﬁ
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Figure 5.8 — This example represents selected phrases, in order of performance, excerpted
from the ascending part of an alap in raga Multani, recorded by the sitarist Dharambir Singh
(2019). For reasons of space, one phrase has been selected for each of the stations between
1,5and 1'. Surface ornamentation and rhythmic durations have been omitted.

P

>

\

b4—>b3

Figure 5.9 - The first two phrases from Nun komm der Heiden Heiland and Moanin’ (without
repetitions), and their derivations based on a Dorian and a Blues scale, respectively.
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Figure 5.10 — The A part of Take the A-Train and a summary of its underlying lines.

as the latent structure, as they also define a tonal hierarchy, ranging from the root to
non-chord notes.

However, there are two issues concerning generalized neighbor elaboration on har-
monies. First, when the latent hierarchy changes, it is not obviously clear what should
happen at the transition point. This is not an issue when these transitions are rare and
elaboration across these boundaries is avoided. However, when harmonies take the role
of the latent hierarchy, then transitions occur more often and elaborations frequently
cut across harmonic changes. Moreover, as melodic elaboration happens on every level
of reduction, it can even be considered to generate harmonic change in the background,
such as the passing 2 in the Ursatz, generating a V harmony.

Second, not all leaps in melodies can be explained as generalized neighbors. The melody
of Take the A-Train (Figure 5.10), for example, features several leaps which cannot
be consistently explained as neighbors. While the initial G, and E; might be seen as
neighbors to C;, the descent to E, in the end is left unexplained by that. Instead, it is
more plausible to assume a set of several independent lines: A higher line descends
from E; to C;, a lower line from G, to E,, and an intermediate line that connects G,
and C;. Internally these lines behave according to elaboration principles (passing notes
in this case), but the surface melody freely switches between the lines. This suggests
that the organizing latent structure in this case is a set of implicit lines, although the
elaboration and coordination of these lines might still be governed by a mode or a
harmonic sequence as another layer of latent structure.

120



5.6 Conclusion

5.6 Conclusion

This paper proposed a generalized graph grammar formalism to model North Indian
raga music. We propose that passing and neighbor note elaborations are both necessary
and (in their generalized form) sufficient operations of recursive raga melody. This
strengthens their status as fundamental musical principles across cultures. As the two
operations are based on different objects (intervals and notes), models of elaboration
should be able to represent both notes and intervals explicitly.

The notion of a generalized neighbor, based on a tonal hierarchy, shows that melodic
leaps do not happen arbitrarily but can be related to a latent background structure.
Understanding and modelling this background structure is necessary for a deeper un-
derstanding of melodic elaboration.
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Interlude 2

The three previous chapters have looked at different problems related to tonal structure.
All of these problems touch the basic aspects of tonal structure as described in Chapter 1:
recursive dependencies between surface notes (based on ornamentation), vertical and
horizontal connections between notes, and the relation between latent entities and their
surface expressions. While none of the three case studies has attempted to integrate all
of these aspects, they can still help to better understand the problem of tonal structure,
and give an idea of what an integrated model should look like.

The first case study, the schema matcher introduced in Chapter 3, attempted to model
the relation between latent and surface structure in a heuristic way. While this approach
did not fail entirely, the results still show that it is not sufficient to independently ask
whether a certain set of notes instantiate a schema or not without considering alternative
interpretations. Instead, a schema needs to part of a plausible explanation of a surface
segment. This reflects an important aspect of interpretation that has already been raised
in Chapter 1: Strong interpretations are not just derived from an observation (i.e., a
piece), they explain the observation. For an integrated model, this suggests that latent
entities such as schemata and chords? are explicitly used when generating the surface
and thus must be represented in its derivation. In particular, the full surface is eventually
derived from the latent entity, including ornamental notes that do not belong to the

entity’s prototype.

Chapter 4 presented an attempt to capture this relation between a latent entity and
the ways in which they are elaborated. It was shown that different chord types come
with different ornamental notes and can have different degrees of ornamentation. This
suggests both that elaboration operations close to the surface may be influenced by
latent entities that occurred earlier in the derivation, and that in turn particular latent
entities may be more or less plausible depending on ornamental, seemingly unimportant

2This holds at least for those entities that involve the same types of relations as the rest of the model (e.g.,
simultaneity and sequentiality), which schemata and chords do. Other entities such as motives or themes
have a different types of relations to the surface (e.g., literal or modified repetition) and will therefore not
play a direct role in the model discussed here. A generative model that explains a piece based on form and
motivic/thematic material, however, would directly represent those entities in a derivation.
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surface features. Much like the schema matcher, however, the ornamentation model
ignored the direct relations between surface notes. An integrated model would therefore
have to show how the surface is exactly derived from the prototype, that is how chord
tones are distributed on the surface and how ornaments are introduced.

The model of modal melodies presented in Chapter 5 demonstrates that a grammar
model based on edge elaboration can not only capture the hierarchical structure of
a melody (i.e., which notes are derived from which other notes), but also the precise
type of relation between parents and children (repetitions, neighbors, or passing note)
that were left unaddressed in Chapter 4. Moreover, the latent pitch hierarchy of the
mode further restricts which elaboration operations are permitted in a given situation,
accounting for some form of (static and atemporal) vertical organization. Due to this
static vertical structure, there are no vertical relations between melody notes in the
modal model, that is notes are never considered simultaneous or concurrent, not even
on a more abstract level. Thus, the modal model could be seen as a model of “properly
monophonic” melodies. In general tonal structure, however, where even monophonic
melodies can exhibit latent polyphonic structure, sequential relations between notes
are not sufficient. Vertical structure becomes something temporal that may change over
the course of the piece, and something that is explicitly modified during the generative
process. This raises two questions for an non-monophonic. model: How is latent
vertical structure represented and modified? And how are temporal expansion and
ornamentation coordinated between concurrent sequential progressions?

The third part of this thesis presents the protovoice model, a first attempt at a unified
model of the three basic relations of tonal structure, sequentiality, simultaneity, and
elaborative dependency. Just like the modal melody grammar from Chapter 5, this model
is generative and thus provides an explanation (or strong interpretation) of a piece in
the form of a derivation, a complex combination of a small set of simple operations
that produce the piece’s surface notes and their basic relations. Higher-level concepts
that go beyond the basic relations (e.g., the more specific chords and schemata) are
not explicitly represented by the model, which means that the model works without
presupposing them and in situations where they break down. However, it will still be
shown that the derivations produced by the model can implicitly reflect these entities
and their relation to the surface.

Chapter 6 introduces the model formally and presents an algorithm for obtaining all
possible derivations of a piece. Chapter 7 complements this formal characterization
with a number of music-theoretical examples and arguments, demonstrating how the
model captures a range of phenomena related to tonal structure, implied polyphony,
and latent entities. Chapter 8 briefly presents a web-based tool for manually annotating
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derivations. Finally, Chapter 9 shows how Bayesian probability theory can be integrated
into the model in order to make judgments about the plausibility of different analyses
of the same piece. The overall results are summarized and linked back to the broader
context of this research in Chapter 10.
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Abstract

Voice leading is considered to play an important role in the structure of Western tonal
music. However, the explicit voice assignment of a piece (if present at all) generally
does not reflect all phenomena related to voice leading. Instead, voice-leading phe-
nomena can occur in free textures (e.g., in most keyboard music), or cut across the
explicitly notated voices (e.g., through implicit polyphony within a single voice). This
paper presents a model of protovoices, voice-like structures that encode sequential and
vertical relations between notes without the need to assume explicit voices. Protovoices
are constructed by recursive combination of primitive structural operations, such as
insertion of neighbor or passing notes, or horizontalization of simultaneous notes. To-
gether, these operations give rise to a grammar-like hierarchical system that can be used
to infer the structural fabric of a piece using a chart parsing algorithm. Such a model
can serve as a foundation for defining higher-level latent entities (such as harmonies
or voice-leading schemata), explicitly linking them to their realizations on the musical
surface.

6.1 Introduction

A basic observation about tonal structure in music is that notes tend to form vertical and
horizontal relations, which are generally not explicit in representations of the musical
surface such as a score or a recording. An example of these relations can be seen in
Figure 6.1. The initial line of sixteenth notes in the right hand, for example, forms an
arpeggiation of a D-minor chord. A reduction or simplification of the piece might realize

!Originally published as
C. Finkensiep and M. Rohrmeier (2021). “Modeling and Inferring Proto-Voice Structure in Free
Polyphony”. In: Proceedings of the 22nd International Society for Music Information Retreival Conference.
ISMIR. Online, pp. 189-196. por: 10.5281/zenodo.5624431
Model, implementation, and paper have been designed and written by CF under the supervision of MR.
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Figure 6.1 — An example of free polyphony in J. S. Bach’s Allemande BWV 812 1. Sequential
structures (such as the A-Bb-A motion across the first measure) are generally not explicit in
the score.

this chord as a single vertical entity, but the vertical relation between the notes D5, A4,
F4, and D4 is not directly encoded in the score. Similarly, the two A4s of this arpeggiated
chord are part of a line that first moves to the neighbor note Bb4 before returning to A4
on the fourth beat of the first bar. Again, this connection is not explicitly represented in
the score, much less so in a recording.

Sequential relations between notes are sometimes equated with voices (Huron 2016) that
are either explicitly given (e.g., in monophonic melodies or strict polyphony), or inferred
through voice separation (Chew and Wu 2005; de Valk and Weyde 2018; Guiomard-Kagan
et al. 2015; Kilian and Hoos 2002; Kirlin and Utgoff 2005; Makris et al. 2016; McLeod and
Steedman 2016; Temperley 2009). However, sequential relations do not always coincide
with voices: A single voice can exhibit implicit polyphony (Aldwell and Cadwallader 2018,
p. 367; Cambouropoulos 2006; also called implied or latent polyphony), i.e., consist
itself of several implied sub-voices. For example, in the upper voice in Figure 6.1, the
notes of the D-minor chord belong to separate voices on a more abstract level. Similarly,
sequential connections can go across different voices, such as the A4 moving to Bb4
while the notated voice continues to C#4.

Implicit (or more generally free) polyphony is commonly understood as forming a set
of parallel and independent auditory streams (Bregman 1990; Cambouropoulos 2008;
Huron 2016) that are inferred from the musical surface by connecting notes into se-
quences. The present paper, in contrast, proposes a model of free polyphony that departs
from this view in several respects: First, free polyphony is understood as a network of
lines that can be connected to each other rather than a set of independent streams.
Second, this network is not defined through inference from the surface, but rather ex-
plicitly constructed in a generative process that creates the network in successive steps.
Inferring this network from a piece is then based on inverting this process, i.e., parsing
the piece. Third, connections between notes are not based on continuing a stream, but
instead follow from elaboration of existing structures through fundamental and musi-
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cally interpretable operations, adopting a top-down view instead of a left-to-right view
on voice-leading structure (Lerdahl and Jackendoff 1983; Rohrmeier 2011). We name
the resulting lines in the network protovoices, since - like voices — they connect notes to
sequential lines but cannot be themselves implicitly polyphonic. This paper presents a
formal definition of the protovoice model as a recursive process, and describes a parsing
algorithm that can infer the protovoice structure from a score. This model does not
yet account for other musical aspects such as rhythm and meter, harmony, form, or
motivic and thematic material. However, it is intended to further the understanding of
polyphonic structure on formal grounds, and could potentially serve as a module in a
more complete system for musical analysis.

The idea of modeling free polyphony as a recursively generated network of lines is central
to Schenkerian analysis (Schenker 1979). However, the constructions in Schenkerian
analysis are specific to Western Common Practice music and more high-level than the
generic operations that give rise to protovoices. Thus, the protovoice model can be
understood as a formal foundation for describing richer concepts of musical structure
(such as the ones appearing in Schenkerian analysis or other analytical frameworks),
and it is applicable to a wider range of musical styles that make use of implicit or free
polyphony (such as Jazz or melodies in Pop/Rock).? However, because of these similar
ideas, the model presented here is related to models that formalize sub-systems of
Schenkerian analysis (Frankel et al. 1978; Smoliar 1979; Rahn 1979; Kirlin and Utgoff
2008; Kirlin and Yust 2016; Kirlin and Jensen 2011; Kirlin and Thomas 2015; Yust 2006;
Marsden 2001; Marsden 2010), and to grammatical models of musical structure in
general (Lerdahl and Jackendoff 1983; Rohrmeier 2011; Harasim, Rohrmeier, et al. 2018;
Harasim, O’Donnell, et al. 2019; Finkensiep, Widdess, et al. 2019; Gilbert and Conklin
2007; Granroth-Wilding and Steedman 2014; Abdallah, N. E. Gold, and Marsden 2016;
Melkonian 2019). While protovoices inherit some of their concepts, most notably the
interval-replacement method developed in (Yust 2006), modeling the structure of free
polyphony has yet been an unsolved problem.

The principle of recursive ornamentation is also used in non-Western styles, such as Indian classical
music (Finkensiep, Widdess, et al. 2019), the model presented here is specifically inspired by Western
tonal music. However, some of the formal techniques presented here might also be useful for expressing
structural relations specific to other styles.
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6.2 The Protovoice Model

6.2.1 Constructing Protovoices

At the core of the model proposed in this paper are a number of operations that estab-
lish primitive and strictly stepwise horizontal relations between notes. These relations
include repetitions, stepwise ornaments to a note (neighbor notes), and notes that fill
larger intervals stepwise (passing notes). While the notion of a step generally depends
on what is considered a step in the respective style, we consider a step to be a diatonic
second for the purpose of modeling tonal music in the diatonic tradition.

All of these operations relate notes to one or two reference notes, or parents. Following
Yust (2006), operations with two parents are represented by edge replacement: If the two
parent notes p; and p, are connected by an edge p; — p,, then this edge can be replaced
by a child note together with two new edges to the parents: p;, — ¢ — p,.

Formally, protovoices are represented as a graph that contains one vertex per note,
one vertex each for the beginning (X) and the end () of the piece, and two types of
edges: Regular edges indicate a sequential connection between two notes (or X/X)
that may be used for elaboration by introducing a repetition or a neighbor of either
parent note (or of both if the parents have the same pitch). The interval along a regular
edge is always within the range of a step (unless one of its vertices is X or X), and
this property is maintained through the elaboration operations. Passing edges indicate
connections between two notes with an interval that is larger than a step (introducing a
new, subordinate protovoice). They must be filled with passing notes from either end
until only stepwise connections remain.

The generation of a piece starts with the empty piece X — X and recursively applies one
of several elaboration rules. Single-sided rules pick a note and insert either a repetition
or a neighbor note to its left or right:

x=x"—x repeat-before (6.1)
x=x —x' repeat-after (6.2)
x=—=n —x left-neighbor (6.3)
xX=Xx —n right-neighbor (6.4)
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Double-sided rules pick an edge and insert along it one new note and two new edges:

X— X =X —x — X root-note (6.5)
X, — X, = x; - x' —x, full-repeat (6.6)
x—y =x —y —y repeat-before' (6.7)
x—y =x —x'—y repeat-after’ (6.8)
X, — X, = Xx;—n —x, full-neighbor (6.9)

Passing rules, finally, fill passing edges with passing notes from either end until the
progression is fully stepwise:

x----»y:x—»p----) y passing-left (610)
Xy =>X-> p—y passing—right (6-11)
x-—y=>x—p—y passing-final (6.12)

In these rules, matching letters indicate matching pitches, indices disambiguate parent
notes with the same pitch, and apostrophes mark inserted repetitions of parent notes.
Neighbor notes n must be a step away from their parents, (disregarding their octaves
to allow for octave displacement). Similarly, passing notes p must be a step from the
parent(s) they are directly connected to and lie within the interval spanned by both
parents. Note that none of these rules produce passing edges, which establish new
connections between previously unconnected lines and thus require some additional
structure (see Section 6.2.2). An example protovoice derivation of the previous example
(Figure 6.1) is shown in Figure 6.2.

6.2.2 Temporal Organization

While protovoices model the sequential organization of notes, they do not specify when
notes are simultaneous. On the musical surface, simultaneity of notes is implied by their
onsets and durations. However, notes that are temporally displaced on the surface can
often be regarded as forming a vertical sonority on a higher level of abstraction, such as
the arpeggiated d-minor chord in the beginning of Figure 6.1. In order to express these
latent vertical configurations, simultaneity is modeled through slices, segments of a piece
in which the same notes sounds. A piece (or a reduction of a piece) is then represented
as a sequence of slices. Notes that are simultaneous with several non-simultaneous
notes (such as the bass note D in Figure 6.1) are split among the corresponding slices
but remain connected by edges, thus ensuring that a surface note is generated through
a single generation process.
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Figure 6.2 — A protovoice derivation of the notes in Figure 6.1. The position of a note is
chosen to indicate its pitch and onset in the piece. Later derivation steps hide some edges
from earlier steps in the interest of readability. Note that each note is shown exactly once
here, unlike in the final model, which represents each note once per slice it occurs in.
Furthermore, pitches in different octaves have been merged to simplify the graph.
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t;n t D D

(a) split (b) spread (c) freeze

Figure 6.3 — The three operations on outer structure. The slices and transitions to be elabo-
rated are shown at the top while the lower part shows the generated structure.

Protovoices are integrated into the slice structure by attaching their edges to the tran-
sitions between two slices. Note that transitions can only contain edges that connect
notes in the slices adjacent to the transition. Long-distance edges are thus represented
in latent transitions, i.e., transitions in a reduction of the piece. As a consequence, edges
“vanish” in a well-defined manner during the generation process, namely whenever a
transition is replaced through one of the generative operations. Since slices and tran-
sitions contain notes and edges, respectively, we call the slices and transitions outer
structure, and the notes and edges inner structure.

Formally, a slice s is defined as a multiset (or bag) of pitches. A transition t = (s, e, s,)
relates two slices s; and s, and a configuration of edges e = (eyeg, €p455), Which in turn
consists of a set of regular edges e, (which must be used at least once by a subsequent
operation) and a multiset of passing edges (which must be used exactly once).?

Outer structure is transformed by three operations: A split (Figure 6.3a) is a rule of the
form
t—t;s't, (6.13)

that replaces a transition ¢ by inserting a new slice s’ and two new transitions ¢; and ;.
During this operation, each edge in the transition and each note in an adjacent slice
can be elaborated by one or more inner operations. The resulting edges can either be
discarded, or kept to form the new edges of ¢; and ;. As a result, each transition only
contains edges that will be used subsequently.

A horizontalization, or spread (Figure 6.3b) has the form
tySt,— 1] S by, Sy by, (6.14)

and replaces a slice s by distributing its notes to two child slices s; and s;. This way, a
latent vertical configuration of notes can be sequentialized. In order to simplify parsing,
arestriction is made on this distribution: At least one side must inherit all instances of a

3Passing edges are treated differently to avoid filling a single passing edge several times.
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specific pitch, while the other may inherit fewer instances, i.e.,
p*es > pkes, p¥mes! or (6.15)
pFes > pFmes; p*es, (6.16)
where k denotes the number of occurrences of pitch p in s, and 0 < m < k. This way,
the s can always be inferred deterministically from s; and s; by taking for each pitch the
maximum number of occurrences in s; or s;.

In the process of a spread, passing edges may be introduced between arbitrary pairs of
notes, and regular edges may be introduced between notes with the same pitch. This way,
the introduction of passing edges becomes a local operation that is guaranteed to respect
the temporal order of notes. Since all edges in a transition must be used, a spread is
only allowed when no edges from the parent transitions ¢; and ¢, are lost by moving
notes to the opposite side. While this operation does not change the contents of #; and
t,, it replaces s with s; and s, respectively, which makes this operation context-sensitive.

Finally, a freeze (Figure 6.3c) marks a transition as terminal, stopping the generation
process for this transition:
t—st. (6.17)

It is only allowed when the transition contains only repetition edges, which are turned
into ties, creating notes that span several surface slices.

An example derivation using these three operations can be seen in Figure 6.4. We use a
notation similar to the maximal outerplanar graphs (MOPs) introduced in (Yust 2006),
with the root transition on top, surface of the piece on the bottom, and rule applications
indicated by polygons. However, since the derivations here contain latent slices that do
not occur on the surface, these derivation graphs are not outerplanar.

6.3 A Parsing Algorithm for Protovoices

6.3.1 Representing Derivations

The parsing algorithm for the protovoice model produces a set of possible derivations
of the input score. Such a derivation can be represented as a list of rule applications in
leftmost derivation order. This representation is known from context-free grammars: the
result of the derivation is obtained by applying each rule in the list to the leftmost non-
terminal symbol of the current sequence. This is possible because the derivation below
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X X
split
{e.c
spread
{e,c} {c}
split
split {b’ d}
{c,d}
(a) Outer structure (slices and transitions). (b) Inner structure (notes and edges).

j&;k:

$ o S35 ¢ ‘vﬁ‘

(c) The derivation steps in abstracted Western notation.

Figure 6.4 — An example derivation of a short cadential phrase. In each split operation,
the edges of the elaborated transition (grey in (b)) are replaced using inner elaboration
operations. The passing edge from e to c is introduced during the spread of the top-level {e,
c} slice.

each non-terminal of a string is independent from the derivations below all other non-
terminals of the string. In the protovoice grammar, this independence property does
not hold, because the context-sensitive operation spread can link two otherwise inde-
pendent transitions (and all their ancestors). However, the idea of a leftmost derivation
can still be applied here.

The maximal left-hand side of a single rule consists of two transitions. Thus, instead of
the leftmost non-terminal, we consider the two leftmost non-terminal transitions as
the context for each rule application. Freezing the left of the two transitions moves the
context to the right. A spread consumes both transitions of the context and pushes its
children onto the list of open transitions. In order to allow the right parent of a spread to
be the result of a split, splits can be applied to either the left or the right transition of
the current context. However, in order to disambiguate the derivation order, we restrict
right splits to always happen after left splits or freezes. If only a single transition
is left, then only a split or freeze can be performed. Thus, the derivation shown in
Figure 6.4a can be unambiguously described as the leftmost derivation split, spread,
freeze, split-left, split-left, freeze, freeze, freeze, freeze.

Under these restrictions, certain configurations are not possible. In particular, the right
parent transition of a spread cannot be the left child transition of another spread.
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However, this outer configuration is equivalent — with respect to the resulting inner
structure — to another configuration where the two spreads are applied in reverse order.
Thus, the generative power of the grammar (with respect to protovoice structure) is not
restricted by excluding this non-leftmost configuration.

A similar observation above can be made between splits and spreads: Whenever a
splitis made after a spread (i.e., onitsleft or right child transition), it could as well have
been made before the spread (generating its left or right parent transition, respectively),
generating the same inner structure. Therefore, we can add another restriction on the
derivation order that forbids splits to be applied to the left or right child transitions of
a spread, further removing the redundancy between (internally) equivalent derivations.

In a similar fashion, it is possible to reduce the number of derivations further by eliminat-
ing redundancy in the internal structure. For example, slices that are exact repetitions
of one of their neighbors can be generated in two ways, either by a split that only uses
repeat-+ operations on one side, or by a spread that produces identical child slices.
Since the latter is required for passing edges, the former case might be excluded as
redundant. Similarly, the repeated horizontalization of a vertical configuration can gen-
erate the same surface configuration in many different ways, which can be prevented by
restricting spreads to be strictly left- or right-branching (unless intercepted by a split).
Both of these restrictions, however, exclude some derivations with slightly different
semantics than their permitted counterparts, so it depends on the use cases whether
such restrictions are appropriate.*

6.3.2 Parsing

Previous models of hierarchical tonal structure have relied on two approaches to struc-
tural inference: Grammar-based models use variants of classical parsing techniques
such as chart parsing (Harasim, Rohrmeier, et al. 2018; Marsden 2010) while MOP-based
models work with triangulations of polygons (Yust 2006; Kirlin and Utgoff 2008). The
protovoice model can be parsed using a bottom-up chart parsing algorithm that is
adapted to account for the context-sensitive spread operation. A transition chart stores
all potential latent transitions, similar to the non-terminal chart in a context-free parser.
In addition, a verticalization chart stores items that represent the “core” of a spread, i.e.,
the parent slice and the middle transition (including the two child slices). This core is
then combined independently with the left and right child transitions, disentangling

*For example, with a strictly right-branching model, the expansion of the D-minor chord in Figure 6.1
must happen from left to right. If it is desired to split the chord first into quarter-note slices and then into
eight-note slices (to respect the metric structure), strict right-branching does not work.
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the two reductions and reducing the combinatorial complexity.’

The items in the transition chart are tuples (¢, 0, I}, I,), consisting of a transition ¢, a score
o, and two IDs I; and I, that express combination restrictions on the left and the right of
the transition, respectively. By default I; and I, have a default value * which indicates
that they can combine with other transitions with the default value. The left and the
right parent transitions of a spread, however, depend on each other through a common
child (the spread operation itself). They are therefore marked with a special ID on their
adjacent sides and can only combine with other transitions with a compatible ID. IDs
are based on the left side of the verticalization, i.e., its left child slice and its parent slice.
The details of the spread operation as well as the middle and right child transitions are
stored in the item of the right parent transition, while the left parent transition only
keeps a reference to the left child transition. This way, combining any pair of compatible
left and right parent transitions restores a complete and valid spread operation with all
its children. While this “trick” reduces complexity by exploiting some properties specific
to the protovoice grammar, it is not known whether it reduces the overall complexity of
the parser from exponential to polynomial in the number of input slices.

The score o of a transition represents the set of leftmost derivations from the transition
to the surface it covers.® It is computed bottom-up by combining the scores of the
transition’s children. When two transitions are combined, their scores are combined
by concatenating each alternative on the left with each alternative on the right.” When
parsing a split operation, this result is prepended with the split itself, which yields
the score of the parent transition. The score representing a spread operation, however,
must be distributed across the two parent transitions. This follows the same scheme
as described above: the left parent keeps the score of the left child L; the right parent
takes the scores of the right child R, the the middle child M, and the rule application the
spread itself 1. However, since the correct leftmost sequence of operations should apply
the scores in the order 7L M R the scores of the parent edges are partial, and the parser
ensures that these fragmented derivations are handled in a way that always restores the
correct sequence of derivation steps when recombined.?

SFor a given verticalization, instead of considering each pair of left and right transitions (|L| - |R|
operations), the left and right transitions can be processed independently (|L| + |R| operations).

5More generally, the parser uses semiring parsing (J. Goodman n.d.) to produce different kinds of
results, such as the number of parses or the probability of a sequence. However, the set of derivations is
both the most general and the most intuitive semiring, so we focus on it.

“In the parser, this operation is represented symbolically, which is more efficient than actually comput-
ing all combinations of alternatives.

8In particular, since fragmented derivation sets are not always re-combined right away, they need to
combine with other operations such as splits and other spreads. The formal details of this are beyond
the scope of this paper, but they are documented in the parser implementation.
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Algorithm 6.1 The steps of the parsing algorithm.
V—{
T — unfreeze each input transition

for n from 2 to |[input| — 1 do
V — verticalizations of all 7,
T —,leftvert. ofall T,® V_,and T_, ® V,
T —rightvert. ofall V,® T_,and V_,, ® T,
T —,mergesofall T, ®T_, and T_, ® T,

return T,

The parser fills the chart bottom-up using the algorithm shown in Algorithm 6.1. Here,
merge refers to the inverse of a split, left and right verticalization refer to combining a
left or right child with a verticalization item, respectively. T,, and V,, refer to the sets of
chart items with a surface coverage of 7 slices, and ® creates the pairs of those items that
are adjacent (i.e., their connecting slices match with respect to position and content)
and have compatible IDs.

The inner structure of each operation is parsed by inverting the operation, computing
all possible inputs. For spread and freeze, this is trivial since their parent elements
are unique, if they exist. For split, all possible parent transitions are computed that
generate every note in s’ using all mandatory edges in ¢; and ¢, (and possibly other edges
that have been dropped and thus not included in ¢; and ).

A reference implementation of the parser written in Haskell is provided.®

6.4 Discussion and Conclusion

The protovoice model is flexible enough to express highly complex configurations of free
polyphony. However, this generative power comes at the cost of being highly ambiguous.
The suspension sequence in Figure 6.4, for example, has 131 valid derivations, while
the first half measure (including the upbeat) of the Bach example (Figure 6.1) already
has 119,940 derivations. While this flexibility of the model allows analysts to express
very subtle interpretative nuances, it also generates the problem that a single piece or
excerpt has too many derivations to reasonably compare, and that any non-trivial piece
takes far too long to parse exhaustively in practice. The first problem can be solved
by introducing a probabilistic variant of the model that weights derivations according

Shttps://github.com/DCMLab/protovoices-haskell/tree/ismir2021
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to their probability (Abdallah, N. E. Gold, and Marsden 2016; Harasim, Rohrmeier, et
al. 2018). The second problem might be resolved by a heuristic parser that does not
guarantee globally optimal solutions.

There are structural configurations assumed in some theories that require an even higher
flexibility than what is provided by the protovoice model. For example, Schenkerian
theory allows the unfolding (i.e., horizontalization) of entire progressions (such as the
parallel thirds 3-2 and 1-7 in Figure 6.4) into a single sequence (such as 1-7-3-2(-1)).
Such an operation would either require the progression to be represented as a single
entity (to which the operation could be applied), or the ability to apply operations to
non-entity contexts (similar to how spread is applied to two transitions and a slice).

The inner structure and operations of protovoices are similar to those of MOP-based
approaches (Yust 2006; Kirlin and Utgoff 2008; Kirlin and Thomas 2015) for monophonic
and homophonic sequences. From these, the model inherits the ability to represent dou-
ble parents and, by extension, lines of notes with a start and a goal. However, protovoices
use these ideas to solve the much more complex problem of free polyphony. The key
insight that makes this extension possible is the separation of adjacency on the surface
and adjacency in a line of notes, and the explicit representation of line adjacency in the
protovoice graph. In monophonic sequences, surface and line adjacency seem to be
the same, but even this assumption does not generally hold: As the example of implied
polyphony shows, even monophonic voices can (and generally do) have a polyphonic
latent structure. Put bluntly, there is no such thing as a monophonic melody.

The outer structure (and its integration of inner operations) is similar to an approach
presented by Marsden (2010), that parses single-sided Schenkerian operations based
on a grammar on slices. In particular, Marsden’s grammar uses context notes to model
conditions of two-sided operations, which makes the grammar context-sensitive in a
very similar way as protovoices.'® While Marsden’s model does not rely on explicit voices
—and thus in principle can parse inputs in free polyphony - it also does not generate
voice-like structure among the notes, but rather individual binary dependency relations.
A similar point can be made for models working on piano-roll representations such as
many neural network approaches (Chi et al. 2020; Z. Wang, D. Wang, et al. 2020; Z. Wang,
Zhang, et al. 2020): While they can work with freely polyphonic inputs, they generally do
not explicitly establish polyphonic structure among the notes in the score.

There is, however, a deeper, more philosophical difference between the protovoice model
and the other approaches based on Schenkerian analysis: The protovoices attempt

1%Tn (Marsden 2010), this context-sensitiveness is handled by parsing with a context-free parser and
then removing inconsistent derivations, while the protovoice parser only constructs consistent derivations,
but this is just an implementation detail.
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to isolate and formalize the structural principles and primitives that give rise to free
polyphony, instead of encoding the higher-level concepts and operations of a particular
analytical framework. The two structural principles here are elaboration and recursion,
where the former consists of the application of primitives and the latter just arises
from the fact that elaboration can be applied to the output of a previous elaboration
of the same kind. The structural primitives boil down to essentially two operations:
stepwise insertion of notes (in all its variants) and horizontalization of simultaneous
elements, which operate with the two basic relations on simultaneity and sequentiality
in complementary ways.

These operations are primitive for two reasons: First, they provide what can be consid-
ered the lowest level of musically meaningful relations. Even more basic representations
of music (such as audio or piano-roll representations) do not express musical relations
(except incidental simultaneity) explicitly. Second, the basic entities and relations can
be combined to express higher-level entities and relations from more specific analyti-
cal frameworks, such as different forms of harmonic analysis, Schenkerian analysis, or
schema theory. A simple example of such a high-level concept can be seen in Figure 6.4,
which constructs the voice-leading pattern of a 2-3 suspension in a principled way: first,
a progression is generated that moves two voices down in parallel thirds, then another
time interval is inserted in which the upper voice moves while the lower voice remains,
creating the dissonant second. Similarly, the derivation in Figure 6.2 explicitly constructs
an initial ascent (Cadwallader and Gagné 2011) from D to F and the harmonic progres-
sion I — V7 — I, and describes their relation to the musical surface. The preparatory
function of the dominant chord and its dependency on the tonic (Rohrmeier 2011) are
even reflected by its notes, which are all ornaments of the following tonic harmony.

The structural principles and primitives postulated by this model are certainly not ex-
haustive. For one, they do not account for musical parameters such as harmony and
key, timbre, or rhythm and meter. Furthermore, there might be additional structural
primitives that establish other relations between objects than stepwise motion and
simultaneity. Finally, there might be other relevant structural principles, such as abstrac-
tion of particular configurations into patterns, or the repetition of complex structures
or patterns. However, since principles and primitives are generally orthogonal, the cur-
rent model can be considered as a module of a more comprehensive model of musical
structure.
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7.1 Introduction

The previous chapter introduced the protovoice model from a formal perspective, de-
scribing its mathematical definition and an algorithm for parsing pieces into protovoice
derivations. This chapter complements this formal treatment with musical intuition. It
motivates the design of the model from musical phenomena (such as implied polyphony
and harmonic reduction, Section 7.2), provides a musical interpretation of the relations
and entities it proposes (Section 7.3), and relates it to existing theoretical and formal
frameworks (Section 7.4). The chapter then proceeds to present a number of analytical
examples, discussing how exactly a protovoice derivation captures different analytical
aspects: Section 7.5 shows the various ways in which monophonic melodies can (and
usually do) exhibit an underlying polyphonic and harmonic structure, and how this
phenomenon affects explicitly polyphonic pieces consisting of several such lines. Sec-
tion 7.6 extends these ideas to pieces written in free polyphony, i.e., generally following
voice-leading principles without a strictly polyphonic organization.

While voice-leading structure is notoriously difficult to model in the absence of explicit
voices, applying the protovoice model to free polyphony reveals that free polyphony can
be understood as a sibling of rather than a deviation from strict polyphony, expressing
the same latent structures that are underlying monophony and strict polyphony. Sec-
tion 7.7 then turns to the relation between latent entities (such as chords or voice-leading
schemata) and the surface notes, arguing that latent entities are directly represented at
intermediate states in a protovoice derivation. Finally, Section 7.8 addresses relations
between latent structures, showing how functional harmonic relations emerge from
protovoice-leading relations between chords, and how harmonic syntax is a special case
of the tonal syntax described by the protovoice model.
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Figure 7.1 — The beginning (mm. 1 and 2.1) of Invention No. 13 in A minor, (J. S. Bach, BWV
784).

7.2 Motivation

One of the musical phenomena that the protovoice model seeks to explain is that
of implied polyphony (also latent, virtual, or pseudo-polyphony, compound or poly-
phonic melody, or melodic fission; see e.g., Aldwell and Cadwallader 2018; Piston 1947;
Huron 2016; Davis 2011). Figure 7.1a shows an example of a piece that exhibits implied
polyphony, Johann Sebastian Bach’s Invention in A minor (BWV 784). Like all of the
Inventions, the piece consists of two parts or voices, one for each hand of the keyboard
player. However, each of the voices decompose into several concurrent lines: In the first
half of measure 1, the right hand begins with two lines that move upward in parallel, one
that starts on C5 and continues to D5 and another one that starts on A4 and continues
to B4, before both lines meet on the C5 on beat 3. There can be different interpretations
of how the two lines are continued (the upper line could be heard as continuing to E5
instead of going back to C5), but we will, for the sake of the example, go with the current
interpretation for two reasons: first, the left hand repeats the pattern in the second half
of the measure but does not contain a corresponding E4 (although the E4 in the right
hand could be argued to take its place); and second, the D is harmonically a dissonant
note, so it might be preferred to resolve downward (as shown in Figure 7.1c).! In between

'This example shows a source of ambiguity that can be encountered in many cases. The line C5-D5
at the beginning of the piece can be very well heard to be continued to E5. However, this interpretation
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these two lines, the right hand occasionally jumps back to the third line that remains on
E4. The same pattern is repeated one octave lower by the left hand in the second half of
the first measure. It seems that, while each of the explicit voices is technically strictly
monophonic in the score, there is a polyphonic structure of several lines underlying
each of them. Moreover, these lines give rise to a number of vertical entities that are
not directly present in the score. The two upper lines, for example, seem to move in
parallel thirds before meeting: (A,C)-(B,D)-C. Taking both hands together, a sequence of
chords arises: Am, E’, Am, E’, Am. Even though at most two notes sound at the same
time, “quasi-simultaneous” groups of up to 5 different notes emerge from the texture
(Figure 7.1b).

While the phenomena of implied polyphony and implied harmony are well known,
a number of observations can be drawn from the above example. First, the concept
of a voice is more complex than a simple sequence of notes. Voices can exhibit addi-
tional internal structure such as several independent lines and notes that are presented
sequentially but can be understood as simultaneous on a higher level of abstraction.
However, the implied lines themselves cannot have this kind of internal structure.? Thus,
unlike the name implied polyphony suggests, the implied structure does not consist of
“voices” in the traditional sense, but is of a different, more fundamental kind which we
call protovoices. As irreducible building blocks, protovoices are simpler than voices in
that they always move stepwise® (modulo octave displacement), but they can form a
complex, hierarchical network between notes, with subordinate protovoices connecting
higher-level lines.

An example of this network of lines can be seen in the abstract pattern that is underlying
the beginning of the Invention (Figure 7.1c, expressed without specific octaves). On
the most abstract level, a static A minor triad is held, with one proto-voice per chord

is challenged by external factors (such as the parallelism to the same pattern in the left hand), as well as
general style regularities or conventions (such as the downward resolution of dissonant tones). Put more
generally, the analyst has to balance “bottom-up” influences (the concrete notes at hand) with top-down
influences (the context of these notes within the piece or within a style).

%It would be conceivable that implied voices are again implicitly polyphonic, recursively implying
another level of underlying voices. However, if the listener is supposed to eventually resolve the latent
structure, this nesting cannot continue ad infinitum and must thus reach a point where the implied voices
are strictly non-polyphonic. This is the structure of interest here.

*The definition of a step depends on the context in which the model is applied. In the context of this
chapter, which focuses on largely diatonic music, a step is defined as within the range of a generic second
(including augmented seconds). In a different scale system, steps may be defined differently. Importantly,
stepwise motion is, formally speaking, not an axiom of this model but a corollary. It follows from the fact
that all elaboration operations (Section 7.3) maintain stepwise connections between notes. A similar model
with different basic operations might therefore not have this property. However, these particular operations
are chosen based on the assumption that in diatonic music the fundamental horizontal relations between
notes (repetitions, neighbors, and passing notes) are based on diatonic steps.
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tone (disregarding instances of the same chord tone in different octaves for now). This
triad is embellished by inserting a number of ornaments: The top-level protovoices are
ornamented with a repetition of E and two neighbor notes G and D. In addition, the
passing note B connects the static lines on A and C, creating a subordinate protovoice.*
This example also shows that structure does not only arise within explicit voices, but
can even go across them: In the second instantiation of the pattern, the neighbor note
motion A-Gf-A is realized by the G#4 and the A4 from the right hand (beats 1.4 and 2.1),
but there are two ways of identifying its first note: either as the A3 from the left hand
(beat 1.3), or as an implied A4 that is not present in the score. For the sake of simplicity,
we will generally avoid assuming additional notes, since the goal is to interpret the given
notes of the score, but exceptions are made in cases where the score is an incomplete
representation of a piece (such as a melody with an implied harmonization, e.g., in a
lead sheet). Instead, the G#4 is here interpreted as a neighbor between the A3 in the left
and the following A4, connecting the two surface voices.’

The relationship between the implied vertical structures and traditional notions of
verticality (e.g., vertical intervals and chords) mirrors the relation between voices and
protovoices. Implied verticalities are more general than chords as they can include
sonorities that are not strictly chordal: On beat 1.2, for example, one might already (or
retrospectively) hear an E(”) chord with a suspended 4th (A3), resolving to Gf on the
next sub-beat. At the same time, implied verticalities have a more complex organization
than the literal surface verticalities, since they exist at several levels of abstraction,
with the surface sonorities at the bottom and the static A minor triad at the top. An
intermediate verticality can again be seen in Figure 7.1c. The E’ chord (generated by the
ornamentation of the A minor chord tones) is at no point literally present on the surface
but is implied by the notes during beats 1.2 (minus the suspension) and 1.4. On a higher
level, however, the ornamental role of the E’ chord tones leave only the A minor triad as
the implied verticality.

At first sight it might seem superfluous to introduce concepts such as “protovoice” and
“implied verticality”. After all, more familiar concepts such as voices and chords already
exist and seem to work well in everyday use. First, note that related concepts already exist
in some analytical frameworks, e.g., linear progressions and unfoldings in Schenkerian

*From the reduced version of this pattern alone, a number of other explanations would be possible
where B is another neighbor or D another passing note. However, the concrete realization of the pattern
on the surface and a preference for dissonances to resolve downwards speak in favor of the passing note
interpretation. Note that each of these interpretations can be expressed in the protovoice formalism.

°In a similar fashion, the pedal-like E4 in the first half of the measure is continued as both a repeated
E5 (right hand) and a repeated E3 (left hand) in the second half of the measure. In this understanding,
octave information is still generally considered when identifying relations between notes, but these note
relations can at times go across different octaves.
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analysis (Cadwallader and Gagné 2011). Furthermore, the need for more fundamental
concepts becomes clear at points where the traditional concepts break down. This is, for
example, the case when approaching the computational problem of voice separation
(recovering the voice structure underlying a set of notes) with formal methods. As
noted, for instance, by Cambouropoulos (2008), the answer to this question is not only
ambiguous, it is not even clear what kind of answer is expected: the explicit voices
notated by the composer, a set of auditory streams (Bregman 1990), or a network of
protovoices? Each of these structures follows different principles and would therefore be
recovered in different ways from the given surface notes. But even outside the domain
of algorithms, traditional notions of voice leading seem insufficient: If voice leading is
essential for tonal structure, what does that mean for contexts in which explicit voices are
not given (free polyphony)? What if explicit voices are given, but they imply an additional
latent polyphonic structure, as in the example above? The protovoice model answers
these questions as follows: The fundamental structural categories of tonal music are not
conventional voices or chords but protovoices and implied verticalities. When explicit
voices and chords are meaningful, there is a clear relation to the underlying protovoice
structure. When they break down, the protovoice structure still explains the fundamental
relations between the notes.

An analogy may help to illustrate the relation between the different conceptual levels.
The four conventional states of matter (solid, liquid, gas, and plasma) are useful and
intuitive concepts for everyday purposes and cover most of the states of matter relevant
to our daily lives. Knowing whether we come into contact with water, ice, or water
vapor is essential, but knowing about other states of H,O is mostly irrelevant to everyday
life. From a physical point of view, however, there are many more states of matter than
the above four. A more general perspective on matter is obtained by viewing matter
as a collection of molecules, atoms, or even elementary particles and their relations
rather than a substance with certain macroscopic properties. The particle view is less
convenient for everyday purposes, but it is more fundamental than the conventional
view and still offers an explanation in situations when the conventional states of matter
do not apply (e.g., in glasses, liquid crystal states, or superfluids) when the objects of
interest are the molecules, atoms, or elementary particles themselves, or when trying
to explain how the macroscopic properties of a substance arise form the properties
and the organization of the particles that it consists of (e.g., why some substances
have a high electrical conductivity, or why they are transparent). At the same time,
the configurations of particles can be related back to substance states and even reveal
differences underlying similar high-level phenomena, such as different kinds of atomic
structures that are “solid”. In this sense, the protovoice model can be regarded as a
particle model of tonal structure. It seeks to provide the “atomic” (in the sense of the
word) categories of tonal structure, describing the fundamental relations between notes
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and clarifying higher-level concepts without invalidating their usefulness.

7.3 The Protovoice Model

The goal of the protovoice model is to formally describe the relations identified in Sec-
tion 7.2, that is how individual notes are related to each other, and how the surface of a
piece relates to latent musical entities, such as voices, harmonies, or schemata. While a
complete formal specification of the model is given in Finkensiep and Rohrmeier (2021),
this section will give an overview over the concepts that are relevant for understanding
the following analyses. The model follows three principles:

1. The most fundamental structural relations between notes are simultaneity (verti-
cal) and sequentiality (horizontal). These relations are expressed explicitly in the
model and all of its operations transform them in a consistent way. Sequentiality
implies more than non-simultaneity, it expresses that a note is thought of as a
successor of another note. A note can be the successor and predecessor of several
other notes, but the sequentiality relation always respects temporal order, result-
ing in a directed acyclic graph (DAG) structure. Simultaneity, on the other hand,
can connect groups of several notes (called slices) that are considered mutually
simultaneous, and each note belongs exclusively to one such slice. Long notes
that overlap with several non-simultaneous notes are split into several parts.®

2. Each note (or note part) has a function in its context. More specifically, notes
are considered ornaments of other notes (their parents). Structure is created by
inserting new notes, elaborating and complexifying simpler configurations. A
complete analysis of a piece assigns such a function to every note in the piece,
giving each note an interpretation relative to the other notes in its context.

3. A note that is considered an ornament can itself become a new parent of an
elaboration. This simple property makes elaboration recursive: a piece is generated
by starting with a simple structure and repeatedly elaborating it into the full surface.
The starting point for this process is a single slice of root notes that do not have
parents.” Repeated elaboration is also what links latent entities (e.g., harmonies
or schemata) to the surface.

SWhen a surface note is split into several parts, these parts are connected by special sequentiality con-
nection that indicates a tie so that the full note can be recovered. On higher levels, these tie connections do
not exist, so tied and repeated notes are not distinguished in latent structure. However, the tie connections
on the surface level ensure that different parts of the same note are still derived in a consistent way based
on repetition.

"Formally, the parents of the root notes are the beginning and end of the piece, so they can be thought
of as elaborating the empty piece.

150



7.3 The Protovoice Model

M
inner structure 4 @
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(slices and transitions)

(a) Inner and outer structure.

(] e

(b) The split operation. (c) The spread operation.

Figure 7.2 - The Representation of a piece during a protovoice derivation (a). At each point
during the derivation process, the piece consists of a sequence of slices and transitions
(outer structure), which contain notes and edges, respectively (inner structure). The outer
structure can be transformed by splitting a transition (b), or by spreading a slice (c).

These three principles are formalized as a generative process that derives a piece from
a number of elaboration operations. At each point of this process, the fundamental
relations between notes are represented as follows: The piece consists of a series of slices,
each containing a group of notes. Between two adjacent slices, a transition contains
the edges that represent sequential connections, i.e., protovoices (Figure 7.2). At a given
derivation step, only edges between adjacent slices can be represented; long-range
connections are represented by direct connections at an earlier derivation step.?

The outer structure (slices and transitions) can be elaborated by two operations, splitting
and spreading. When visualizing the derivation of outer structure, we use a notation
that is adapted from Yust (2006). The starting point of the derivation (usually the “empty
piece” or some given structure) is shown horizontally at the top. Transformations of
existing structure by splits or spreads are shown below the old structure. The derivation,
read from top to bottom, thus describes how a simple structure is transformed into the
more complex surface structure.

8An example of this can be seen in Figure 7.3: After Step 2 (Figure 7.3c), there is a direct edge between
the two As. After Step 3 (Figure 7.3d), this connection has been replaced with edges to and from the neighbor
note G, since the two As are not directly adjacent anymore. The full derivation, however, reflects both
connections.
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Table 7.1 — Note-generating operations. Each operation transforms the parent object (a
note or an edge) into the structure shown in the result column.

A split (Figure 7.2b) takes an existing transition ¢ and replaces it with a new slice s’ and
two new transitions ¢; and ¢, that connect s’ to the two adjacent slices. During a split,
the new slice s’ can be filled with new notes by creating ornaments (Table 7.1). Single-
sided ornaments (one-sided neighbors or repetitions) are attached to a single parent
in either of the parent slices, creating a new edge in ¢, or ¢;. Double-sided ornaments
(neighbors and repetitions with two parents) can be created along existing edges in the
parent transition. The parent transition may also contain passing edges, which must be
filled exactly once with a passing tone that is either a step away from one of its parents
(generating a regular edge on one side and a new passing edge on the other side), or
connects the two parents if the interval between them is sufficiently small (generating
regular edges on both sides). Since all ornamentation operations require notes to be at
most a step away from their parents, regular edges are guaranteed to be stepwise too.’

9The notion of a step is generally flexible and can be adapted to the style or scale system used. In the
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The generating operations ignore the octave of a note, so a C4 can be used as a repetition
of a C3, and a Bb3 can be a neighbor of an A2. Nevertheless, the octave of each note
is generally known and the register of a note can be used to make analytical decisions.
Finally, new passing edges can be introduced in both child transitions, ¢; and t;, creating
new subordinate lines between formerly unconnected protovoices.

Spreading is the complementary operation to splitting (Figure 7.2c). It replaces a slice
s with two new slices s; and s, by distributing the notes in s to s; and s;, either moving
a note to one side or duplicating it on both sides. This operation makes notes that
are considered simultaneous on a higher level non-simultaneous. As opposed to the
ornamentation operations in a split, the octave of a note is respected in a spread and
must remain the same. The outer child transitions (¢; and ¢,) are adapted from their
corresponding parents (¢; and ¢,) by removing edges connected to notes that have
been moved to the other side. The inner child transition can be filled with regular
edges between repeated notes (or notes of the same pitch class), or with new passing
edges between other pairs of notes. Together, splitting and spreading correspond to
transformations of the two basic relations: splitting modifies sequentiality by inserting
new ornaments while spreading modifies simultaneity by horizontalizing the notes in a
slice.

Figure 7.3 shows the step-by step derivation of the abstract pattern in Figure 7.1c. Starting
with an empty piece (Figure 7.3a), the top-level transition is split and the notes A, C, and
E are inserted as root notes (Figure 7.3b). This top-level slice is spread, duplicating all of
its notes on both sides and preparing the passing motions from A to C and from C to E
(Figure 7.3c). The repetition edges between the Es and the As are also kept to use them
for further elaboration in the next step. Finally, the middle transition is split again to
insert the notes Gf, B, D, and E as neighbors, repetitions and passing notes, filling the
previously introduced passing edges (Figure 7.3d).

In most of the following examples, the outer-structure notation (as in the right column of
Figure 7.3) will be used to concisely display a derivation. In addition, a selection of inner
connections (drawn as curved arrows) and note-type markers will be used to highlight
certain relations and functions of interest. An example is shown in Figure 7.3d, where
the passing motion A-B-C is directly shown in the outer structure. Since this format
cannot display all details of a derivation, a set of interactive visualizations that can be
used to explore the full derivations will be provided in the supplementary material.'”

context of this paper it is assumed to correspond to diatonic steps, so that regular edges span seconds and
unisons (including augmented seconds and altered unisons). This also implies that the “stepness” of an
interval does not depend on its acoustic size but on how it is logically conceived in the diatonic system (an
augmented second is a step, a diminished third is not).

9The examples can be found at https://github.com/DCMLab/protovoice-annotations/tree/
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(a) The derivation starts with the empty piece.

<) ® <]

(b) Step 1: The root notes (an A minor triad) are inserted through a split operation.

PN @Nes!

Figure 7.3 — The protovoice derivation of the pattern in Figure 7.1c. The left column shows
the inner structure of the surface at the current step. The right column shows the full
derivation of the outer structure up to the current step, with the current surface (as shown
on the left) indicated by black transitions. Selected connections from the inner structure
can be shown in the outer derivation as curved arrows (d).
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7.4 Related Theoretical and Formal Frameworks

7.4.1 Theoretical Frameworks

The protovoice model as presented above builds on a number of ideas from other analyt-
ical frameworks. For one, it is closely connected to Schenkerian analysis (Schenker 1979;
Cadwallader and Gagné 2011), sharing some of its motivating phenomena such as tonal
relations between notes, the emergence of these relations from elaboration of simpler
structures, and the generalization of voice leading principles to free textures without
explicit voices. As a result the two frameworks have some commonalities such as the
focus on stepwise relations, and a set of roughly corresponding entities: The Schenkerian
Zug is approximately represented by a passing edge, connecting two endpoints with a
stepwise line of notes. The concept of unfolding (Ausfaltung) is reflected in the spread
operation and constitutes the primary mechanism behind latent polyphony in both
cases (as will be discussed in Section 7.5).!! However, not all Schenkerian concepts have
a counterpart in the protovoice model. This includes non-stepwise operations such as
consonant skips and arpeggiations, which are not assumed to establish a fundamental
relation in the protovoice model (although they are, to some extent, captured in the
spread operation); as well as higher-level constructions such as voice exchanges, which
can be expressed in a derivation but do not have a specific corresponding model entity.
Even for the operations that do have a protovoice counterpart, these counterparts are
usually less restrictive. Not every spread is an unfolding, for example, as spreads can
also be used to arpeggiate or simply prolong a slice.

Other differences between the two frameworks stem from the goals that they do not share.
For instance, the protovoice model does not aim to capture contrapuntal rules in a more
general setting. Instead, the concept of a voice in the traditional sense is abandoned
altogether and replaced with the notion of protovoice connections, mapping “voice
leading” phenomena to protovoices, which are more strict internally (requiring stepwise
motion) but less restrictive in their organization (dropping contrapuntal constraints).

main/theory-article. Analyses are encoded as .analysis.json files, the .musicxml files con-
tain the corresponding scores. Analyses can be explored using the protovoice viewer at https://
dcmlab.github.io/protovoice-annotation-tool/viewer/. The reader is also invited to try encod-
ing their own analyses of the provided scores usind the annotation tool at https://dcmlab.github.io/
protovoice-annotation-tool/. More information on annotation tool and viewer is provided in Chap-
ter 8.

""More generally, the notion of latent polyphony in which every melody is potentially polyphonic and
the underlying polyphonic structure can be distinct from explicit surface voices (which is argued for in
Section 7.5) is inherited from the Schenkerian practice to distinguish between surfaces voices (such as a
written melody) and the structural voices (such as the structural soprano, bass, and inner voices) on a given
level.
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One reason for this design decision is the goal to make every aspect of the system fully
explicit, which requires the exact conditions for the application of an operation to be
known in every situation. In Schenkerian analysis, on the other hand, the applicability
of an operation is not always well-defined and can depend on reasoning by analogy
(such as the application of counterpoint rules to free textures), prior assumptions about
the structure of a piece (e.g., the existence of an underlying fixed set of voices on a
given level), or even a particular reading of the theory.'> While it is debated whether
Schenkerian theory can be rephrased as a consistent, explicit, and formal theory without
departing too far from the original idea (Temperley 2011; Brown 2005; Westergaard 1975;
Narmour 1977; Narmour 1983), at least making prior structural assumptions seems
problematic for a general model of tonal structure and its perception. The protovoice
model thus trades some analytical specificity for generality and consistency, as argued
in Section 7.2.

A similar point can be made about the background structure that in Schenkerian analysis
is assumed to underlie tonal pieces, in particular the Ursatz. From the perspective of
interpretation, the understandability of a piece does not depend on the presence of an
Ursatz. Instead, the use of an Ursatz-like background structure is a stylistic regularity, a
compositional practice. When trying to understand a given piece, it cannot be assumed
that this piece also follows this practice. For this reason, no primary background struc-
ture is assumed in the protovoice model when generating a complete piece from scratch.
Moreover, the model itself is largely agnostic to the specific background structures and
latent configurations that are used in a particular analysis. Instead, its focus is on the
connection between the latent configurations and the surface notes. While a piece can be
derived from “nothing” via a triadic or non-triadic root slice (or even using an Ursatz-like
construction in the beginning of the derivation), the model can similarly derive a surface
passage from a given harmonic sequence or voice-leading schema, as will be shown in
Section 7.7.

Finally, the protovoice model is purely descriptive and does not make any musical quality
or value judgments. Instead it defines a space of possible interpretations for a given piece
in terms of tonal relations from a highly abstract and idealized perspective. This reverses
the roles of a given stylistic ideal and a piece as a more or less perfect instantiation of that
ideal to a given piece and a more or less meaningful interpretation of the piece: While
the model can in principle be applied to any given piece, the resulting interpretations

>The protovoice model as applied in this chapter also relies on musical intuition for selecting one
or several plausible analysis among many possible but implausible alternatives. However, the space of
possible analyses, the structural relations each of them entails, and their interpretation within the context
of the model are well-defined and fully explicit. Ranking the plausibility of the analyses is simply outside
the scope of the model at this point, but possible ways of extending the model in this direction will be
discussed in Chapter 9.
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will only be meaningful for pieces from Western common practice tonality, styles that
inherit some of its aspects (e.g., some modern Western styles), or styles that employ
similar abstract principles.

In many respects, the protovoice model is closer to Westergaard’s theory of tonal structure
1975, which inherits but reframes many Schenkerian ideas. Not only is Westergaard'’s
theory strongly generative in the interpretation sense (“the successive stages in the
generation process show how we understand the notes of that piece in terms of one
another”, Westergaard 1975, p. 375). The basic operations assumed by Westergaard
(rearticulation, neighbor embellishment, connecting step motion, and arpeggiation)
correspond to the basic ornament types in the protvoice model (repetition, neighbor,
passing note) except for rhythmic information. In particular, Westergaard considers
arpeggiation to always be the result of horizontalizing a vertical interval (or chord),
which is reflected by the spread operation in the protovoice model. Westergaard’s theory,
however, is still presented in terms of classical voice-like “lines”. While these lines can
be combined to create compound lines, the nature of lines (what makes a “line” a “line”)
is less systematic than the characterization of protovoices given here, starting from
contrapuntal voices but moving to increasingly loosely defined note sequences in the
context of free textures.'®

Besides Schenkerian analysis, the protovoice model is closely related to classical frame-
works of harmony and voice leading (e.g., Aldwell and Cadwallader 2018), as well as to
schema theory (R. Gjerdingen 2007). The idea of reduction, ornamentation, and latent
entities is (more or less explicitly) present in all of these theories, e.g., through the notion
of non-chord tones. The entities and relations of the protovoice model live generally on
a more fundamental level than these frameworks, but interacts with them in ways that
are described in the following sections.

7.4.2 Computational Models

Models of Voice Structure

On the side of computational models, the main approach to modeling polyphony is
voice separation, which has a psychological counterpart in auditory scene analysis and
stream segregation (Bregman 1990). The central metaphor of this approach is that of an
idealized sound source that generates a stream of events. In auditory scene analysis,

BB“We will use the word ‘line’ to refer to any series of notes that we have reason to understand as
connected to form a single strand. There are different kinds of reasons for understanding one note as
connected to another and, hence, different kinds of lines.” (Westergaard 1975).
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these sound sources can (less metaphorically) correspond to physical sound sources,
and the task of the perceptual system is to identify these sources from the combined
acoustic input. Through the mechanism of sequential grouping, acoustic events can be
assigned to the same sound source and are thus perceived as a stream. Voice separation
adapts this idea for identifying voices in a set of note events: a voice is a stream of
events with a common idealized source that is obtained by sequential grouping (see e.g.,
Huron 2016), and a number of voice separation algorithms are based on this idea (e.g.,
Kilian and Hoos 2002; Kirlin and Utgoff 2005; Duane and Pardo 2009; Makris et al. 2016;
McLeod and Steedman 2016; de Valk and Weyde 2018). This approach comes with several
problems: For one, what constitutes a voice is not clear in the general case, especially in
the presence of latent polyphony (Cambouropoulos 2006). Moreover, even when explicit
voices are given, it is not guaranteed that these behave according to the principles of
auditory streams. For example, the voices in a fugue are usually more complex, each
voice constituting an independent melodic line, than in a chorale where bass, melody,
and inner voices each have a different function and character. (The problem of the
concept of voice will be discussed in Sections 7.5 and 7.6.)

Most importantly, however, streams are not the right object to look at when the interest
is on tonal sequential relations. On one hand, relations such as a note being a neighbor
of another note or a leading tone resolving into another note are can neither determined
from stream assignment alone (which lacks the hierarchical parent-child quality of
these relations), nor do they have to respect streaming (e.g., when a line is continued
in a different octave). On the other hand, streams are an overly strict model for tonal
structure, as they require maintaining the identity of a stream as an object distinct from
other streams. In terms of tonal relations, however, there is no reason why two notes
should not be able to ornament or resolve into the same parent note. Consequently, the
assumption of a set of underlying “sources” seems inappropriate for these kinds of tonal
structures. For this reason, the protovoice model abandons the concepts of stream and
voice in favor of sets of binary relations, i.e., protovoice graphs, which can express the
network structures seen in Figure 7.3.

Models of Hierarchical Structure

Perhaps the most extensive formal model of tonal structure is Lerdahl and Jackendoff’s
Generative Theory of Tonal Music, or GTTM (1983). It defines a set of well-formedness
and preference rules for deriving analyses of tonal structure from a given piece, covering
four different aspects: metrical structure defines the metrical hierarchy and assigns a
metric weight to each timepoint in the piece; grouping structure segments the piece into
nested groups according to phrasing and form; time-span reduction augments grouping
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structure by a hierarchy of head events, with the head being the dominant event in
each group; and prolongational reduction expresses the hierarchy of events in terms of
elaboration or prolongation, inspired by Schenkerian ideas.

Despite its name, however, the GTTM is not a generative model since it does not have an
underlying generative process (see also Longuet-Higgins 1983; Rohrmeier 2007). Instead,
its rules are entirely defined “bottom-up”, describing how to arrive at (and rank) analyses
from a given piece. As a consequence, the exact relations between the events is not
always interpretable. For example, when a head is selected among the candidate event in
a group (the heads from the level below), there is no relation between the winner and the
remaining candidates other than one being the head and the others not being the head. A
protovoice derivation, in contrast, always provides an explicit and interpretable relation
between superordinate and subordinate entities. Generally, the GTTM is interested in
somewhat different aspects of music than the protovoice model, focusing on hierarchical
ranking of events rather than the specific inter-entity relations. In particular, the GTTM
does not model polyphonic structure at all, treating the surface either as a sequence of
notes (for melodies) or homophonic slices with a privileged melody note. Despite these
differences, there are some similarities between the two models, such as the fusion rule
of time-span reduction, which roughly corresponds to the spread operation. The closest
conceptual similarity exists between the protovoice model and prolongational reduction,
both of which describe the dependencies between reference events (heads or parents)
and adjacent events that elaborate these events. The details, however, differ drastically
for the reasons already mentioned above. Protovoices operate on individual notes
instead of events. In addition, elaboration relations have a more specific interpretation
(prolongational reduction only distinguishes non-repetition and two forms of repetition)
and are more constrained, which leads to an exact specification of which elaborations
are legal in a given situation, and what each elaborations means.

One of the most notable shortcomings of the GTTM is its reliance on tree structures,
which excludes a note being related to two parents. Lerdahl and Jackendoff themselves
acknowledge this problem in the context of passing notes and two-sided neighbors
(Lerdahl and Jackendoff 1983, p. 186). Solving this problem has been the motivation for
a number of attempts at formalizing Schenkerian analysis using interval elaboration
rather than note elaboration (Marsden 2001; Yust 2006; Kirlin and Utgoff 2008; Kirlin
and Jensen 2011). The protovoice model is inspired by these approaches, inheriting their
general transition-focused elaboration scheme as well as the corresponding notation.
The main differences stem from the discrepancies between protovoices and Schenkerian
analysis discussed above, as well as from the fact that the Schenker models are largely
restricted to melodies. Yust (2015b) extends his previous monophonic model to several
parallel voices, but still requires one primary voice that determines the hierarchical
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relations. Kirlin and Thomas (2015) replaces notes with slices of notes in a derivation to
describe homophonic elaboration. This model is already very close to the outer structure
of the protovoice model, but does not yet have its more flexible and principled internal
graph structure. There have been other Schenkerian models that are in principle able
to deal with polyphony, but those have other shortcomings, such as the single-parent
problem (Marsden 2010) or being preliminary and incomplete (Frankel et al. 1978; Rahn
1979).

The second group of formal models that strongly influenced the protovoice model are
formal grammars. Grammars tell an explicit generative story of structure: a sequence
of items (and the latent relations between them) is generated through a derivation, a
sequence of rule applications that elaborate an initial configuration. These rule ap-
plications can be associated with a semantic interpretation, e.g., functional relations
between harmonies (Rohrmeier 2020a). The main limitation of classical grammars (such
as context-free grammars) is that they can only generate sequences of objects, which is
why they have been applied to harmonic progressions (Harasim, O’Donnell, et al. 2019;
Rohrmeier 2011; Quick and Hudak 2013; Granroth-Wilding and Steedman 2014; Melko-
nian 2019) as well as monophonic melodies (Gilbert and Conklin 2007; Groves 2016;
Abdallah, N. E. Gold, and Marsden 2016; Finkensiep, Widdess, et al. 2019; Nakamura
et al. 2016) and rhythms (Melkonian 2019; Foscarin et al. 2019; Rohrmeier 2020b), but
are not directly suitable for polyphonic structure, although extensions of context-free
grammars are in principle able to work with structured categories and infinite alphabets
(Harasim, Rohrmeier, et al. 2018). The main technical contribution of the protovoice
model is the integration of the spread and split operation into a single grammatical
model while still retaining parsability. Each of the operations alone could be described
using an extended context-free grammar (one that elaborates either slices or transitions),
but their combination falls outside the range of classical grammar formalisms.

7.5 Latent Polyphony

Section 7.2 presented an example of explicit voices giving rise to an underlying structure
of lines. In Section 7.3, we discussed how this underlying structure can be derived
using the operations of the protovoice model. Let us now turn our attention to how this
underlying structure is related to the surface of Bach’s A minor Invention (as shown in
Figure 7.1a).

The first thing to notice is that both surface voices mainly use arpeggiations to turn
the underlying vertical structures into two horizontal monophonic lines. In fact, the
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(a) The derivation of the overarching structure.

Figure 7.4 — Derivation of the surface in Figure 7.1a, shown in three parts: the overarching
structure connecting the two pattern instances (a), the first pattern instance including a
suspension (b), and the more simple second pattern instance (c). The derivations in (b)
and (c) are continuations of (a). Selected protovoice connections are shown as arrows to
indicate tied notes on the surface and to highlight specific substructures. (Continued on
the next page.)

derivation of the second pattern instance (beats 1.3 to 2.1) relies exclusively on this
technique. Figure 7.4c shows a derivation of this segment starting from the pattern
structure (now with octave information). In this derivation, a binary division of the
top-level slices (through repeated spread operations) is used to create the arpeggiated
surface. This analysis is suggested by the score since the binary metrical hierarchy is
emphasized by the composed rhythms. In principle, however, other derivations would
be possible too, e.g., repeatedly branching off slices with the duration of a 16th note
from either side. Which derivation is chosen for an arpeggiation is an analytical decision
and depends on which latent verticalities the analyst wants to assume.

The first instance of the basic pattern on beats 1.1 to 1.3 is slightly more complex since it
involves a suspension (Figure 7.4b). This suspension is generated in a top-down fashion:
From the first top-level slice to the second, two protovoices move in a consonance,
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(c) The derivation of the second pattern instance (beats 1.3 to 2.1), purely based on arpeggiation (i.e.,
spreading slices).
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one from A4 to B4 and one from A3 to G#3. This progression is elaborated by a split in
which the upper voice already moves on (by repeating the B4 from the right parent slice)
while the lower voice stays (by repeating the left parent A3), creating a dissonance in
this intermediate slice. The dissonant slice is then further arpeggiated to match the
surrounding texture.

The protovoices are generally not aligned with the surface voices. This is particularly
visible in the derivation of the overarching structure behind the two pattern instances
(Figure 7.4a). For example, the first instance of the changing note progression A-Gf#-A
happens entirely, in the left hand (and within the same octave). The second instance,
however, while mostly in the right hand (G{4-A4, borrows the initial note A3 from the left
hand. Similarly, some of the static notes are repeated in several octaves, most notably E,
which means that the analyst needs to decide whether occurrences in different octaves
should be treated separately, or combined into one protovoice. For example, the E3 in
the fourth surface slice (the second E” chord, beat 1.4) is explained as a “full repetition”
of E3 on the left and E4 on the right, since the right parent slice does not contain another
E3 as a possible parent. A different way of treating this phenomenon is shown with E5
in the same slice, which is explained as a single-sided “right repetition” of the E5 in the
left parent slice, not connecting it to the E4. These decisions do not always make a big
difference for the overall analysis, but they can be used to indicate long-term structure.
In a larger context, for example, the E5 could be connected to its next occurrence, which
is the beginning of a descending line in a sequential progression.

In the most extreme form of latent polyphony, a single (technically monophonic) melody
outlines an underlying polyphonic structure. A famous example are Bach’s works for solo
instruments. Figure 7.5a shows the well-known beginning of the Prelude from Cello Suite
in G major (BWV 1007). In the first four measures, the melody uses a repeated pattern to
switch between three lines: a pedal on G2, a neighbor motion from B3 to C4 and back
to B3, and a linear connection from D3 to G3. The protovoice derivation of these three
lines (Figure 7.5b) starts with the enclosing G major chord, which is spread to create the
material for measures 1 and 4, distributing the D3 to the left and the G3 to the right, and
creating a passing connection between the two. This connection is subsequently filled
in by a series of splits: First, an F}f3 is generated as a passing note to G3, together with
C4 (neighbor to B3) and the pedal G2, to generate measure 3. Second, the passing line
is completed with an E3 that closes the gap between D3 and F{3, creating measure 2
together with the repeated G2 and C4. Finally, a uniform pattern is used to generate the
surface form of each measure (shown for the first measure in Figure 7.5c). As with the A
minor Invention, this surface pattern uses spread operations to arpeggiate the three lines,
together with a split that creates the neighbor note. The uniform application of such
figuration patterns is not enforced by the model (both analytically and during generation)
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(b) Derivation of the underlying structure.
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(c) Derivation of the surface pattern in m. 1 from the underlying G major triad.

Figure 7.5 — Mm. 1-4 of the Cello Suite in G major, I. Prelude (J. S. Bach, BWV 1007).
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but a sub-derivation such as the one in Figure 7.5c¢ can be used to characterize such a
pattern and reveal the shared structure of its different instances throughout a piece.

A slightly more complex example is shown in Figure 7.6. In this case, the underlying
structure does not form form chords, but rather two descending lines of parallel tenths
(A to E and C to Gf). In this case, the surface realization is not uniform between the
stages of the pattern. After each stage has been made sequential using a spread, some
additional ornaments are added to the third stage (measure 3): The neighbor motion
A - Gff - A is created by first duplicating the A, then inserting the Gf. An incomplete
neighbor B ornaments the A before it moves on to Gf. Similarly, the lower line takes
a detour through D, which is explained as an incomplete neighbor to the final E, thus
approaching it from two directions, F and D. F and D are themselves connected by
another passing E in measure 3.

In the previous two examples, the latent polyphonic structure was highlighted by large
melodic leaps and the different registers in which the underlying lines were realized.
The example in Figure 7.7 shows that this need not be the case for a melody to have
an underlying polyphonic structure. While the melody of the A part of Fly me to The
Moon (Bart Howard, 1954) moves mostly stepwise, it follows a sequential pattern of
three descending lines (shown at the top) that correspond to the harmonization of the
melody. Note that the middle voice is not just assumed for harmonic reasons (although
the harmony validates it), but also because of the melodic skips in measures 2 and 6,
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Figure 7.7 — The A part (mm. 1 to 8) of Fly Me to the Moon (Bart Howard, 1954) with a simplified rhythm.* The reduction (top row) contains

some harmonically implied notes.

“Adapted from The New Real Book Volume II, 1991, Sher Music Co., Petaluma, CA.
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which indicate a switch of protovoice. Unlike the two solo pieces by Bach, the melody of
Fly Me to the Moon is not indended to be performed without harmonic accompaniment.
It thus does not contain all notes of the underlying structure in its surface form, as the
missing notes would be provided by the harmony. The analysis in Figure 7.7 therefore
assumes a number of implied notes since a reduction of the full surface (including
accompaniment) would contain these notes too.

A similar latent structure with two lines can be observed in the A part of Con Alma (Dizzy
Gillespie, 1954; Figure 7.8). This may initially seem surprising since the melody moves
almost exclusively stepwise. In fact, the melody alone can be derived from a single
descending line Ab to E, in which the upwards-directed figurations in measures 3 and 7
are understood as nested neighbors and the Ab in measure 4 as an escape note (a one-
sided neighbor to Gb). The harmony, however, implies a different understanding of the
melody: The Ab that starts as the third of Fb® becomes the seventh in Bb’. Consequently,
the Bb in m. 3 is interpreted as the root of the chord and thus as a dissonance to the
Ab, which is correctly resolved in the next measure by moving the Ab down to G. Similar
suspension-like structures are implied in measures 4 and 7, resulting in two implied
lines that descend in parallel thirds with intermediate suspensions (Figure 7.8b). The
derivation of the melody shows how the dissonant seconds in the suspension slices are
spread into what appears to be melodic steps.

The latent protovoice structure of a melody does not need to move, as the two examples
in Figure 7.9 show. In both cases, a static triad is elaborated by ornamenting the chord
tones with neighbors and connecting them with passing notes. While the underlying
structure revealed by these analyses might not be very exciting, they demonstrate, how
a melody is constructed within a mode, by anchoring to the more stable tones (the tonic
triad) and using less stable tones for ornamentation.

More importantly, these examples show that seemingly monophonic melodies or voices
being supported by a latent structure of concurrent lines (static or moving) is not an
exception but rather the default case. In this sense, melodies are almost never truly
monophonic in the structural sense. To generate goal-directed motion, two notes are
required, a starting point and an end point. The vertical interval between these notes
serves as a frame for the melody, so even the simple and archetypical melodies such
as the main theme of Smetana’s The Moldau (Figure 7.10a) have a latent structure that
consists of at least two notes. Figure 7.10b shows the generation of the underlying arch
shape (black transitions, open note heads). The ascending part of the line is generated by
filling the interval between the low point (E) and the high point (B), while the descending
part fills the interval between the high point and the second low point. These two points
thus form an implicit verticality that is prolonged from the beginning to the end and
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“Adapted from The Real Book - 1980 Totally Revised Edition, The Real Book Press, Soysset, NY.
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(b) The melody can be derived from two latent voices that move in parallel thirds. The repeated half notes
are only derived once.

Figure 7.8 — The A part (mm. 1-8) of Con Alma (Dizzy Gillespie, 1954).
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(a) The first phrase (m. 1-4) of Hinunter ist der Sonne Schein (Melchior Vulpius, 1609).
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(b) The first part (mm. 1-7) of Er weckt mich alle Morgen (Rudolf Zobeley, 1941). Repeated notes have been
merged and are only generated once in the derivation.

Figure 7.9 — Two examples of melodies with static latent structure.
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(a) The main theme from Vifava (engl. The Moldau, Bedfich Smetana, 1874).
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(b) Derivation of the melodic archetype and contour of the theme in (a).  (c) A rare melodic interval.

Figure 7.10 — Two basic melodic phenomena arising from protovoices: (a,b) Basic melodic
shapes are driven by a static structure of at least two reference points. (c) Rare melodic
intervals arise through context switching between protovoices.

provides a frame of reference for the melody to unfold in.

Conversely, the protovoice perspective can also simplify some seemingly complex
melodic phenomena. For example, rare intervals (such as the diminished fourth in
Figure 7.10c, extensively featured, for example, in the 6th movement of Mahler’s Lied
von der Erde) can often be explained as the result of a single-sided elaboration (B — C)
on one side of a simpler interval (Eb - C). The uncommon interval that emerges on the
other side is a result of the context switch between two concurrent lines: the upper line
containing the Eb, and the lower line containing the progression B — C.'*

As the introductory example of the A minor Invention shows, latent polyphony affects
all voices in a polyphonic piece. Moreover, these voices do not imply independent latent
structures, but rather one underlying structure (which may contain connections across

In this example, the two clashing protovoices are completely unrelated. There can, however, even be
situations in which the two protovoices meet on the final note, e.g., in a double neighbor motion G - Ab - Ff
- G. It still holds that the notes forming the rare interval (Ab and Ff) are not part of the same protovoice (i.e.,
connected by an edge) and the melodic interval between them is incidental.

170



7.5 Latent Polyphony

A4
F4
D4
A4 a5 F4
F4 LDt D4
D4 A3
A3 m D3
D3 Z
A4 A4 =2 A F4
F4 F4 F3 D A3
D4 | D4 P o A3 21 D3
A3 D3 D3
A4l D3 zgi bG4 >E4> i P Cii4-
D4 C4l|/T=1 |
4 > D4 3 Cs |PTF4 FE4 ﬁg
A3 E4 ED4
D3 D3 A3 -A3]
— D3 A2q

A4

F4 D4

—

h | | |
bed 4oyl bid ol
g p— o | Vi f\/‘ T —
R I
- ’I | I. Il‘r F 7 |’9

~

Figure 7.11 - The first phrase (mm. 1-4) of Hinunter ist der Sonne Schein in four parts.

voices) is jointly implied by the surface voices. An example of this phenomenon is the
second Gt in the Invention (Figure 7.4a), which has one parent in the left hand (A3) and
one in the right hand (A4). Another example is the four-part version of Hinunter ist der
Sonne Schein as shown in Figure 7.11. In the beginning of the phrase, a D minor triad
is realized with different voicings. In each of these voicings, the note D4 (blue) is sung
by a different voice, first by the alto (1.1) , then by the soprano (1.4) and finally by the
tenor (2.1). The following neighbor motion D4-C4-D4 also involves two surface voices,
tenor and alto, while on the final chord the single D4 is even shared by soprano and
alto. Finally, the voice exchange between soprano and alto in measure 2 shows how the
surface voices literally exchange their underlying protovoices. As these examples show,
even in an already polyphonic setting the basic tonal relations between notes do not
need to coincide with the surface voices.
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7.6 Free Polyphony

As shown in the previous section, the protovoice model can be used to describe the
internal structure of explicitly notated voices, both in monophonic melodies and in
strict polyphony. Music written for keyboard instruments is often composed in a less
rigid manner without a strict separation of notes into a fixed set of voices. Even without
explicit surface voices, this music can exhibit horizontal relations as known from strict
polyphony. However, due to the increased flexibility of the surface, these structures
cannot be described in a framework based on a fixed set of concurrent streams anymore.

An example of a piece written in free polyphony is Schumann’s Trdumerei (Op. 15 No.
7), the beginning of which is shown in Figure 7.12. The surface structure of the piece
combines aspects of both horizontal and vertical organization. On one hand, the number
of notes that sound at the same time is flexible, ranging from 1 to 6, which hints at an
underlying harmonic structure where each chord is realized with a varying number of
surface notes. On the other hand, these chord tones are not sequentially isolated but are
ornamented and connected by neighbor and passing notes (such as the E in measure 1
or the passing motions in measures 2 and 3) and form horizontal connections across
chords (such as a descending line C-Bb-A-G in the right hand in measures 2 and 3).

One of many possible derivations of the score is shown in Figure 7.12, together with
a selection of slices and note relations from the derivation (shown above the graph).
Surface ornamentations such as neighbor notes (e.g., E4 inm. 1 or D3 in m. 4) or passing
motions (e.g., at the end of m. 2 and the end of m. 3) are directly represented using
neighbor and passing notes embedded into the surrounding structure. In particular,
the voice exchange in measure 3 (G4/Bb3 to Bb4/G3, marked with a * and highlighted
in orange) is realized as a pair of passing motions between two representations of the
same chord (C7), where one of the parent slices (here the left one) is interpreted as
a modified copy (with G and Bb flipped) of the other one, generated through a split
operation. The descending line from C5 (beat 3.1) to G4 (beat 4.2) is reflected by a series
of connections through the protovoice graph. Unlike the voice exchange, however, not
all of these connections are generated on the same level of abstraction. In this particular
analysis, the region between the Bb-major chord in m. 2 and the C-major chord in m. 4
is interpreted as the prolongation of a six-four chord over C (). The progression from
C5-Bb4-A4 is a result of this prolongation: The six-four chord is spread (introducing
a passing edge between C5 and A4) that generates the intermediate C’ chord on bb.
3.2-3.3, including the passing note Bb4 (highlighted in blue).

Other examples of free polyphony can be found in Bach’s French Suites. Figure 7.13
shows the beginning of the Allemande from the D minor Suite (BWV 812), which, like
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Figure 7.13 — Mm. 1-3 of the French Suite in D minor, I. Allemande (J. S. Bach, BWV 812).
Analyses are shown in Figure 7.14 and Figure 7.17.

Trdumerei, exhibits a complex surface realization of simple underlying structures. The
beginning (up to b. 2.2) uses a variant of the same pattern that is used in the A minor
Invention (Figure 7.1c and Figure 7.14), followed by a highly ornamented realization
of a lamento (bb. 2.1 - 3.3, Figure 7.17). Both of these background patterns have a
clear voice-leading structure, especially the lamento schema, which consists of three
independent voices. On the surface, however, this voice structure is not directly visible
anymore. Instead, fragments of voice-like structures jump between the underlying lines,
ornamenting them and connecting them with passing notes. As in the previous example,
the number of notes occurring at the same time varies constantly, making a partitioning
of the score into a set of explicit voices impossible. The derivation of the surface from the
underlying structure (Figures 7.14 and 7.17) shows how a protovoice network can express
voice-leading relations between the notes without presupposing strict voices. This works
much like in the case of latent polyphony, as discussed in Section 7.5: Ornamentation
operations provide a function (and explanation) for every note and connect it to its
context. At the same time, spreading and splitting can rearrange the given material and
evoke new groupings of notes on the surface, such as the series of 16th-notes in the right
hand. The only difference between latent polyphony in melodies and free polyphony is
that the former produces a monophonic explicit surface voice while the latter does not.

As argued before, even strictly polyphonic pieces (such as Bach’s two-part Inventions)
have an underlying protovoice structure that is generally independent from the surface
voices, as the surface voices themselves are implicitly polyphonic. The existence of
free polyphony, which has the same kind of protovoice structure but does not have
explicit voices, shows that voices are not fundamental for tonal structure. Rather than
seeing free polyphony as an extension of strict polyphony, both (as well as melodies or
“single-voice” pieces) should be understood as expressions of a more general common
principle. In this sense, using strict voices is a special case, an additional restriction
that composers follow out of convention or practical necessity, without direct relevance
to the interpretability of tonal relations in a piece. Free polyphony, on the other hand,
simply abandons these constraints.

While voices may not be fundamental entities, stylistic conventions related to voices
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(such as melodic shapes, fifth movement in the bass, or counterpoint rules) as well
as constraints of instruments and singing voice still shape compositions, even in free
polyphony. Elaboration operations are usually not applied arbitrarily but may be chosen
to generate surface melodies, bass lines, or explicit voices that satisfy these conventions.
The direct relation between protovoices and surface voices, however, is rather flexible
with surface voices being able to freely switch between concurrent protovoices, and
protovoice connections going across surface voices.

From an analytical perspective, the surface voice leading is usually informative about
the underlying structure. For example, the analysis of the voice exchange in Trdumerei
(Figure 7.12, *) follows the surface in that it places the A4 between G4 and Bb4, and the
A3 between Bb3 and G3 rather than vice versa. This need not be because of an explicit
coordination between surface voices and protovoices, but rather because an analysis
that places passing notes in the same register as their respective parents provides a
simple explanation of the surface than one that exchanges registers. Consequently,
surfaces voices will often align with protovoices for stepwise movement but go across
protovoices when larger intervals are involved.

7.7 Latent Entities

7.7.1 Harmonies

The previous sections have shown how the protovoice model can be used to capture direct
relations between the surface notes. However, analytical accounts of music often use
abstract musical entities such as harmonies, keys, schemata, lines, motivic or thematic
material, or formal segments. These entities are usually not explicitly marked in the
score (and much less in a recording), so just like the note-to-note relations they are
latent and must be inferred by the reader or listener. Some types of latent entities (e.g.,
harmonies and schemata) have known prototypes that are shared between pieces, so
the problem that the listener is faced with is to recognize the instantiations of these
prototypes, which are often elaborated. Motives and themes, on the other hand, are
usually not shared across pieces and therefore do not have a known prototype. Here,
the problem is to discover the motive or theme as such.

What does it mean that a segment of music is an instance of a certain chord? A common
approach to this problem is to assume some kind of resemblance between the chord
prototype and its instances: A template is matched against some representation of the
potential instance (e.g., by checking for the presence of certain notes), while allowing
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deviation from the template (e.g., non-chord tones) to some extent.'® In this approach,
the difference between prototype and instance is essentially treated as random noise
that is not further explained.

There are two problems that come with this form of template matching: First, if the
structural relations between the surface notes are not considered, different harmonic
interpretations can become more difficult to distinguish. Consider, for example, the
beginning of the Allemande in Figure 7.13. The notes in the first half of the first measure
can be interpreted as a Dm chord that is elaborated with a number of ornaments: two
neighbor notes Bb and G, and a passing note E. However, the given notes would also
match the template of a Gm’ chord, interpreting the notes D, Bb, G, and F as chord tones
and the two As and the E as non-chord tones. In both cases, three notes are considered
to be non-chord tones. Taking into account the metrical strength of the assumed chord
tones (which is almost identical in both cases) and the fact that the root of Dm is more
common (and the bass note) than the root of Gm’ might give a slight advantage to the
Dm interpretation, but it is not guaranteed that these disambiguating factors will always
be in favor of the more plausible intrepretation (see Chapter 3). However, once Bb and G
have been identified as neighbors of the two surrounding As, it is clear that Dm is the
only possible harmonic interpretation of the segment (as opposed to Gm”).

The second problem arises when notes that disambiguate two possible prototypes are
missing. This is also the case for the first chord of the Allemande: When only considering
chord tones, it is impossible to know whether the chord is minor or major until the
occurrence of the E Even if the Bb is taken into account, the chord remains ambiguous
for the first few notes before the E Contextually, however, already the single D5 on the
upbeat must be interpreted as a part of the overarching Dm chord. Template-based
approaches have to deal with this problem by picking reasonable segments to analyse
and by taking the adjacent segments into account (e.g., Raphael and Stoddard 2004).

Protovoices offer an alternative account of harmonies as reductions of the surface. Fig-
ure 7.14 shows a derivation of the beginning of the Allemande up to beat 2.2. As described
before, this analysis interprets the Bb and G as neighbor notes to the As and the E as
a passing note between F and D. Through a series of spreads, the whole first part of
the measure is derived from a single slice containing three Ds, an F4 and an A4, i.e., a
direct, un-elaborated instantiation of a D minor chord (marked with Dm, ). In a similar
fashion, the second Dm chord in measure 2 (Dm,) is realized by deriving an ornamented
surface from a direct instance of the chord (marked in blue), and the region in between
(orange) is derived from a slice that contains an A’ chord with a pedal. Thus, harmonies

5See, for example, Temperley 1997; Fujishima 1999; Raphael and Stoddard 2004; Sapp 2007; Oudre et al.
2009; Rhodes et al. 2009; Temperley 2009; Mearns 2013; Demirel et al. 2019.
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Figure 7.14 - Mm. 1-2 of the French Suite in D minor, I. Allemande (J. S. Bach, BWV 812).

as latent entities are directly represented by latent slices in a protovoice derivation, and
saying that a segment of the surface realizes a certain harmony amounts to saying that
there is a latent slice with the corresponding harmonic interpretation from which the
surface segment is derived. This does not mean, however, that harmonies and slices are
the same thing as there can be slices without harmonic interpretation. Harmony is a
strictly higher-level concept than verticality and recognizing that a slice constitutes a
harmonic event requires additional interpretative work. Thus, harmony is not reduced
to protovoice relations, but it is realized and instantiated by them.

Conceiving harmonies as latent slices addresses both kinds of ambiguity that are prob-
lematic for template-matching approaches. Internal ambiguity is resolved because
non-chord tones are explicitly explained away as ornaments. In the latent slice, chords
can be directly recognized without having to assume any additional “noise”. Likewise,
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latent slices can integrate the note material of several surface slices below them, so
incomplete surface slices can be disambiguated if the missing notes are provided by
the context. In addition, the derivation resolves a third type of ambiguity regarding the
granularity of analysis. Instead of being a part of the surrounding D minor chord, the
Bb and G on beat 1.2 of the Allemande could be interpreted as an inserted passing Gm
chord (together with the D in the bass) in a more fine-grained analysis. Similarly, beat
1.3 can either be interpreted as an independent C{°? chord, or as part of the following A’
(with Bb being another ornament). On an even higher level, the whole segment up to
beat 1.2 could be heard as a long Dm chord where the apparent A’ chord tones are just
treated as ornaments. The derivation in Figure 7.14 unifies all of these interpretations
because it represents the segment on several levels of reduction. The A” chord is inserted
between two copies of an overarching Dm chord, so on the highest level, the whole piece
is governed by D minor, while on the levels below it consists of a progression of three or
even four chords. Even closer to the surface, the slice containing the neighbors Bb and G
(beat 1.2) can be interpreted as a Gm chord on its own.'®

While the protovoice perspective addresses some of the problems of template match-
ing, it does not solve the fundamental problem of ambiguity. A given musical surface
generally affords several interpretations. Correspondingly, there can be (and generally
are) multiple derivations of the same surface, each of which corresponds to a different
interpretation of the tonal structure of a piece.!” This kind of ambiguity can only be
resolved to a certain degree, for example by ranking the degree of plausibility of different
derivations.!® There is, however, an important difference between the ambiguity of
structural interpretations and the ambiguity that occurs in template matching. Struc-
tural interpretations are ambiguous because of a lack of information. Latent entities
and structural relations between notes (as, e.g., intended by the composer) are not
represented on the musical and (generally) cannot be recovered unambiguously from

!Not all ambiguities related to segmentation can be resolved like this, only hierarchical ones, i.e., those
asking whether a segment is interpreted as a harmonic event on its own or as a non-harmonic elaboration of
its surrounding harmonic context. If the point of transition between two chords is ambiguous, then usually
the alternative cannot be represented in the same derivation but correspond to different derivations.

"Technically, the number of possible derivations is very large because every possible reduction of one
part of a piece can be combined with (almost) every possible reduction of a different part of the piece. In
the current form of the model, already the first half measure of the Allemande (including the upbeat) has
119,940 different derivations, most of which are either musically uninteresting or implausible, or closely
related to a plausible analysis.

8This is often done by viewing a derivation as an instance of a probabilistic process, where each decision
in the derivation has a certain probability to be chosen over its alternatives. The combined probability of
all decisions is then interpreted as a measure of the derivation’s plausibility. This principle is assumed to
be underlying inference and perception in various cognitive domains (Abdallah, N. E. Gold, and Marsden
2016; Knill et al. 1996; Chater and Manning 2006; Chater, Tenenbaum, et al. 2006). A probabilistic version of
the protovoice model is discussed in Chapter 9.
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the surface. Template matching is additionally ambiguous because it assumes the rela-
tion between the prototype and the surface representation of a chord to be noisy, i.e.,
distorted by transformations and modifications (such as temporal displacement and
ornamentation) that cannot be explained within the model. A protovoice derivation, on
the other hand, provides a detailed explanation of the relationship between prototype
and surface without assuming noisy modifications.!®

In addition to revealing harmonic events in the form of latent chord slices, protovoice
analyses can facilitate the harmonic interpretation of slices that do not directly instan-
tiate chords. For example, the slice that corresponds to the A7 chord in Figure 7.14
contains an additional pedal D3. The derivation directly shows how this note is not just a
non-chord tone but is derived from the surrounding Dm chord. The A” slice thus can be
interpreted as instantiating two harmonies: the D3 inherits its harmonic interpretation
(as the root of Dm) from the parent slices by virtue of repeating the enclosing D3 while
the remaining notes form the A7 chord as a separate harmonic entity. The A4, which
is also repeated from both parents, remains harmonically ambiguous. Similar obser-
vations can be made in chords that contain suspensions. For example, measure 3 of
Hinunter ist der Sonne Schein (Figure 7.11) contains two chords with suspentions, Dm
with suspended 9 (beat 3.1) and A major with suspended 4 (beat 3.2), both resolving to
their respective triads on the next sub-beat. The corresponding slices (the lowest slices
in the right half of the graph) are both produced by a split between the unsuspended
chords they connect, inheriting all notes from the resolved chord on the right except for
the suspended tone that is held over from the left. A similar point can be made about the
six-four chord, as it appears, for example, in Trdumerei (Figure 7.12 t). The protovoice
analysis is compatible with both interpretations of the six-four chord: Either the slice is
considered an independent harmonic entity representing an F major chord in second
inversion, or the slice is seen as a modification of the following C major chord with a 6-4
suspension (A and F) that resolve to the 5 and 3 (G and E) in the next slice while the C
remains the root of the chord that is inherited from the right parent. A third alternative
is to view the slice as a polyharmonic entity where the C is still the root of the following
C major chord, but A and F belong to a separate F major chord, much like in the pedal
example.

In all three examples the protovoice analysis itself does not provide the harmonic inter-
pretation, but it provides the underlying structural entities and relations that harmonic
interpretations may refer to and be built on. For example, slices can be interpreted as
the entities that instantiate or realize abstract harmonic categories. Protovoice edges,
on the other hand, provide the connections along which the harmonic interpretation of

YDespite the additional uncertainty they generate, template matching might still be cognitively relevant,
e.g., to produce a first, heuristic estimate that may be refined later on by a structural interpretation.
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individual notes can be inherited (e.g., pedals or unsuspended notes), modified (sus-
pensions), or explained away (non-harmonic ornaments). Thus, harmonic analysis has
its own set of concepts (that are not part of the protovoice framework) but may use
protovoice derivations to link these abstract concepts to concrete pieces.

7.7.2 Voice-Leading Schemata

Another class of latent entities are voice-leading schemata (R. Gjerdingen 2007), recur-
ring contrapuntal prototypes that usually consist of a fixed number of voices moving
through a sequence of stages. As with harmonies, characterizing the relationship be-
tween prototypes and instances of schemata is difficult due to elaboration. Figure 7.15
shows an instance of the Romanesca schema, taken from R. Gjerdingen (2007) and a
derivation of the first measure from the first two stages (the remaining measures are
analogous). Just like the harmonic slices before, the stages of the schema emerge as
latent slices that contain the schema notes as well as additional notes (as, for example,
indicated by figured-bass annotations in the schema prototype) while the surface form
is derived from these slices through horizontalization and ornamentation. In addition,
the slices of the schema are directly connected by a sequence of transitions, i.e., there is
a level of reduction on which the full schema is directly visible.

Figure 7.16 shows another surface instance of a schema, a Fonte (R. Gjerdingen 2007).
Unlike in the previous example, the soprano and bass note of the first and third stage
do not occur simultaneously, which makes this kind of schema instance very difficult
to recognize for heuristic approaches that work with surface slices. In the derivation,
however, the first two slices have been verticalized into a single latent slice, from which
the first stage of the schema can directly recognized. The example also shows how the
schema notes need not coincide with metrically strong prositions on the surface, as
the soprano notes of the second and fourth stage are both delayed by an appoggiatura.
Additionaly, the derivation highlights the internal structure of the Fonte, which consists
of two parts that both resolve a tritone into a third. In the derivation this tritone is
generated as an elaboration of the third, so the stages 1 and 3 are subordinate to the
stages 2 and 4, respectively. The two-part structure is thus directly visible at the top of the
derivation, while the four-stage progression of the schema is visible at the level below.

An even more complex example of a schema instance can be seen when going back to
the Bach’s Allemande (Figure 7.13). Measures 2 and 3 realize a (non-chromatic) lamento
bass or descending tetrachord that is harmonized with two additional voices according
to the rule of the octave (e.g., [Jzerman 2019) as shown in Figure 7.17. Because the order
of the upper voices is flipped, suspensions are introduced in the middle voice to avoid
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Figure 7.15 - Gjerdingen’s Example of a Romanesca from Handel’s exercises for Princess

Anne.
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Figure 7.16 — A Fonte at the beginning of Piano Sonata No. 3 in Bb major K. 281, III. (W. A.
Mozart). Appoggiaturas have been written out for better alignment of score and graph.

parallel fifths. The analysis in Figure 7.17 shows how the highly ornamented surface can
be derived from the schema prototype using the same techniques as discussed previously.
In particular, the second suspension (which avoids the parallel fifths) is generated as
usual by a split (*) that keeps the A from the left parent and takes D and Bb from the
right parent. The first suspensions (1), on the other hand, is derived using two splits:
Before the suspension slice itself can be generated, the Bb needs to be prepared, which
is achieved by another inserted slice () that becomes the left parent of the suspension
slice. Note that Bach chooses to suspend the bass note (D4) here in addition to the
middle voice so that only the top voice moves at this point.

In general, we can see that schema prototypes occur in protovoice derivations as se-
quences of latent slices. The relationship between prototype and surface form is thus
characterized by the elaborations that take place between the prototype and the surface.
What is less clear is whether the prototype itself must be derived in a systematic way. One
alternative is that the prototype is always produced by the same derivation or by one of a
fixed number of variants. In this case, these fixed derivations would indicate the internal
structure of the prototype (i.e., the relations and dependencies between the notes of
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Figure 7.17 — Measures 2 and 3 of the French Suite in D minor, BWV 812, 1. Allemande.

the prototype as they can be found, for example, in the Fonte in Figure 7.16), as well
as possible dependencies on the context in which the schema occurs (i.e., constraints
on what can happens right before the first or after the last stage, or in which kinds of
situations the schema can be used). On the other hand, it is not guaranteed that all
schemata have this fixed internal structure, as different instances of a schema could
just be connected by the occurrence of the same pattern, i.e., by the pitch content on
some level of reduction. In that case, any derivation that produces a sequence of slices
containing the right notes is valid, which gives schemata a higher status as independent
entities that do not “reduce” to a specific configuration of basic structure.?

%A more drastic step in this direction would be to deny that the latent schema slices are derived from
the general protovoice formalism at all. Instead, inserting the schema prototype would be a structural
primitive, a fundamental and atomic operation that constitutes an alternative to the protovoice operations.
However, this extreme view would deny that the the instantiations of schema prototypes in the latent slices
have any internal structure or could be understood in terms of protovoice structure. Moreover, it would

183



Chapter 7. Protovoice Theory

A notable omission in the above characterization of schema instances as sequences of
latent slices is the representation of voice structure in a schema prototype. As argued
in Section 7.6, voices are not fundamental for tonal structure and (unlike slices) are
therefore not directly represented by entities or relations in the protovoice model. While
schema prototype as described by Gjerdingen usually contain explicit outer voices, the
inner voices are represented by figured bass without concrete indication of the voice
leading. That this internal structure can be more complex than a set of voices can be
seen in the pattern that is underlying the beginning of Bach’s A minor Invention and
the Allemande from the D minor Suite (Figures 7.1 and 7.14). Both openings can be
seen as a version of the Do-Re-Mi schema (R. Gjerdingen 2007) in minor. Its derivation
in Figure 7.3 shows that its internal structure reflects the two outer voices described
by Gjerdingen: The bass performs a neighbor motion from 1 to 7 and back to 1, while
the soprano is implemented as a linear motion from 1 to 3. However, the pattern is not
strictly separated into voices, as some of the lines can share notes in the first and third
stage (and actually do so in the two pieces). This is at least consistent with Gjerdingen’s
prototype, which mentions the 3 in the third stage once in the melody and once in the
figured bass and thus does not exclude that both 3s are realized by the same surface note.
Explicit soprano and bass voices, on the other hand, cannot be directly represented
in the protovoice model but, as argued before, may be left to a model of higher level
concepts.’! As a consequence, deciding whether a potential schema instance respects
the explicit voices of a schema prototype remains part of the additional interpretative
work that comes with identifying protovoice structures as higher-level entities.

Two general points can be made about the relation between latent entities and protovoice
derivations. First, latent entities do generally not emerge from protovoice analysis on
its own. The plausibility of a protovoice analyses is not just determined by its ability to
derive the pitch content of the surface slices (which is a simple binary criterion), but
generally considers factors such as meter, phrasing, motivic aspects, or the plausibility
of the latent structure that is revealed. Thus, analyses containing latent configurations
that correspond to typical harmonies or schemata are generally more plausible than

place the rather high-level concept of a schemata on the same level of abstraction as the low-level relations
of the protovoice model, which seems to be a mismatch of abstraction. Formally, the viewing schemata
as structural primitives has no advantage over the less drastic view that the schema instances are freely
generated since the protovoice formalism is likely flexible enough to generate schema instances everywhere
a primitive schema operation could place them.

Z1As discussed in Section 7.6, explicit voices can but do not need to be aligned with protovoices. Both
cases can be seen with schemata too: In the structure of the Do-Re-Mi instances, both bass and soprano
have a corresponding path of protovoice connections. The structure of the Fonte instance in Figure 7.16,
on the other hand, denies a connection in the bass from to @ Instead, and @ are subordinate to
@ and @, respectively, which in turn are directly connected. The bass is thus still a connected structure,
but not a single protovoice path.
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analyses that use uncommon latent structures. Moreover, different assumptions about
latent entities may lead to preference for different analyses: A listener familiar with 18th-
century schemata might arrive at a different structural interpretation of a piece than a
listener not familiar with these patterns.?? Thus, while the formal validity of a derivation
is defined by the protovoice model itself, the preference for one valid derivation over
another is partly determined by factors that refer to entities that are external to the model
but related to the background of the listener (in a cognitive context) or the analytical
goal (in an music-theoretical context). From a generative perspective, the higher-level
concepts then become explicit parts of the generative process: Latent structures repre-
senting chords or schemata are generated explicitly as chord and schema instances, and
potentially with a higher probability than non-harmonic or non-schematic structures.”
Inferring a derivation then involves recovering these high-level decisions.

Second, the generative relation between latent and surface entities does not imply
that the latent entities represents all the actually relevant aspects of a piece’s structure
while the surface only contains irrelevant or “ornamental” details.** On the contrary, a
derivation captures the exact relationship between the latent structure and its surface
realization, as well as the relations between the elements of the surface (even though
these relations are themselves latent). Latent entities thus serve as reference points for
understanding the surface, not as an excuse to ignore it. In principle, the derivation
from a latent structure can even be part of the prototype of a higher-level entity. For
example, some schemata exihibit typical ornaments in certain stages (R. Gjerdingen
and Bourne 2015) so that derivation steps below the top-level configuration can be
considered relevant for the characterization of the schema.

ZFrom the perspective of Bayesian cognition (Chater, Oaksford, et al. 2010), for example, those latent
structures are preferred that most plausibly explain both the given piece and past musical experiences.
However, the range of these experiences (which may include hearing pieces, performing pieces, learning
and instrument, or learning theoretical concepts), usually differs between different listeners or analysts.
Thus, while there can be objective criteria for choosing the latent entity types that explain a set of experiences
best (i.e., with highest probability), taking a different set of these experiences (e.g., by including or excluding
explicit teaching) will lead to different conclusions.

ZFormally speaking, the chordness of a slice is a latent variable that is determined during the generation
of the slice and influences the probability of the slice’s content and potentially even its children.

*This concern is, for example, raised by R. Gjerdingen and Bourne (2015), regarding both reduction of
a piece to long-term structure (Section 2) and the reduction of schemata to simple prototypes or lists of
features rather than a collection of concrete exemplars (Section 6).
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Figure 7.18 — The functional structure of the harmonic progression from the Cello Suite
(Figure 7.5). The harmonic relations between the chords (a) can be expressed in a syntax
tree (b), i.e., a derivation of the progression from a harmonic grammar. The same rela-
tions are reflected in a protovoice derivation (c) that derives a sequence of harmonic slices
corresponding to the chords (e.g., as in Figure 7.5b).

7.8 Harmonic Syntax

Harmonic syntax describes the structural relations between chords in harmonic pro-
gressions. Like the protovoice model, harmonic relations are hierarchical and based
on elaboration. For example, the harmonic grammar proposed by Rohrmeier (2020;
2011) is based on two fundamental harmonic relations: preparation and prolongation.
Prolongation extends a harmony through a repretition or a functionally equivalent chord.
Preparation elaborates a harmony by prepending an applied dominant (or an equivalent
substiution) relative to the parent harmony. A complete harmonic progression is derived
from a single overarching chord by repeatedly applying preparation or prolongation
operations, just like the repeated application of protovoice operations generates a score.
Since preparation and prolongation refer to a single parent, the resulting structure is a
tree rather than a planar graph.

An example of such a tree is shown in Figure 7.18. The harmonic progression (taken from
the Prelude of the Cello Suite, Figure 7.5) starts and ends with a G major chord (the tonic).
The second tonic is prepared by a D, which in turn is prepared by C major (Figure 7.18a).
These relations are expressed in the syntactic derivation of the progression (Figure 7.18b):
Starting with a G (representing the overarching tonic), the prolongation rule creates
the initial and final G. The second G is elaborated through the preparation rule, while
the resulting D is itself elaborated by a preparation. Note that the syntax model does
not assume a direct relation between the inital G and C. This reflects that the nested
preparation of the final tonic can be continued up to an arbitrary point, so instead of a
G, the first G could as well be followed by any chord that leads back to D’ in a series of
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Figure 7.19 — The G’ chord serves as both a harmonic preparation to C as well as a voice-
leading connection between G and C. The syntactic tree (a) can only express the harmonic
relation, while the protovoice derivation (b) captures both relations. The derivation in (b) is
realized analogous to Figure 7.5b.

authentic steps.

A protovoice derivation of the same harmonic progression (i.e., of a sequence of slices
with the corresponding harmonic interpretation) reflects the harmonic relations in its
derivation steps too. The spread of the top-level G slice leads to a prolongation of the G. A
split between the two G slices inserts the D’ as a preparation of the second G, and another
split inserts a C as a preparation to the D’. This interpretation of protovoice operations
as harmonic relations requires the same additional interpretative work as interpreting
slices as chords does. Consequently, not every protovoice operation has a harmonic
interpretation because not every split or spread implements a harmonic relation. The
protovoice model is thus strictly more expressive than the harmonic grammar. Every
harmonic tree has one (or several) corresponding protovoice derivation: preparations
are turned into splits, while prolongations can be spreads (if the note material between
the chords is shared) or splits as well. The converse, however, is not true. Nevertheless,
the harmonic grammar can be seen as a special case of the protovoice model that applies
in parts of the analysis that involve functional harmonic relations.

The higher expressiveness of the protovoice model allows it to capture some phenomena
that cannot be represented in a syntax tree. Since slices that are produced by a split have
two parents, a split can represent a harmonic relation on one side and a non-functional
voice-leading connection on the other side. Consider, for example, an alternative version
of the previous chord progression with a G’ inserted between the first G and the C (G
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Figure 7.20 - Contrapuntal (a) and harmonic (b) progressions generated through elabora-
tion.

G’ CD’ G). Functionally, the G can either be explained as an applied dominant to C
or as a “passing chord”, a non-functional extension of G with a passing 7. While the
first interpretation (Figure 7.19a), cannot capture the voice-leading relation between
G and G, the “passing chord” interpretation ignores the preparatory character of G.
The protovoice derivation captures both relations (Figure 7.19b).2°> The split operation
that generates the G slice again represents the preparation relation between G’ and
C while the operations that generate the notes in the slice show how the G’ chord is
derived from the parent G. In particular, the F is explicitly marked as a passing note that
connects the two parent chords.

Once a harmonic interpretation has been assigned to the elaboration steps of a deriva-

%The notes in Figure 7.19b have been chosen to resemble the beginning of the Cello Suite Prelude and
are derived analogous to Figure 7.5b. With the inserted G” and the pedal on G this pattern corresponds to a
Quiescenza schema (R. Gjerdingen 2007). Generally, schemata can pose a challenge for functional harmony
because they can produce harmonic progressions that do not follow the general syntax: the progression is
then licensed through the schema instead of the grammar. One such example is the Pachelbel version of
the Romanesca with the bass @ @ @ @ @ @ @ @ The harmonic progression IV-I-IV on the bass
notes @ @ @ either must interpret the I as a preparation of the second IV (and thus not as a prolongation
of the tonic), or the first IV as a plagal preparation of the I rather than a regular (authentic) preparation,
which would be preferred.
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tion, the note-generating operations and protovoice connections reveal the voice leading
that takes place in a chord sequence. The protovoice model can thus shed light on how
voice leading generates harmonic progression. Consider the simple cadential phrase
shown in Figure 7.20a, consisting of a clausula tenorizans above a clausula cantizans
with a suspension. From a contrapuntal perspective, the two voices start on an imperfect
consonance, then create a dissonance by one voice moving while the other voice stays,
resolve into another imperfect consonance, and finally close on a perfect consonance.
The derivation of the progression reflects this left-to-right perspective in the protovoice
paths that connect the surface slices, but it adds a top-down component to the story:
The penultimate slice is generated as an ornamentation of the surrounding slices, the B
as a neighbor to the two Cs, and the and D as a passing note between E and C. Similarly,
the suspension is not created by first moving into a dissonance that is subsequently
resolved, but rather by starting with the preparation (slice 1) and resolution (slice 3) and
inserting the suspension as a hybrid between the two slices: one voice has already moved
on (i.e., inherits the D from the resolution) while the other voice holds the previous note
(inherits the C from the preparation). In a similar fashion, a full harmonic cadence can
be derived (Figure 7.20b). The dominant chord is created by deviating from the chord
tones of the tonic (especially the root) and repeating its fifth. Similarly, the predominant
(IIm”) is further elaborates the progression from the initial I to V with passing notes,
neighbors, and repetitions from either side.

The top-down perspective explains why the arrival of the tonic is perceived as closure.
The tonic is the reference point for the notes in the dominant slice, so moving from
the penultimate to the ultimate slice means returning to this reference point. Note
that in both versions of the cadence, there is no dissonance in the penultimate slice
the resolution of which would evoke the feeling of closure. Instead, the dissonance
is between the leading tone and the tonic that it wants to reach. The very notion of a
leading tone is a top-down phenomenon, an interpretation of the functional role of a
tone in its context as the lower neighbor of the overarching reference note.

It is important to note that this hierarchical perspective does not deny the left-to-right
expectations evoked by the dissonance in a suspension or by a dominant. A listener
does not necessarily need to hear the complete progression to form an interpretation.
Instead, incomplete progressions can be partially interpreted, and expectations about
the continuation of a progression are formed based on what is needed to complete the
progression (Herff et al. 2021). Forming these expectations is generally not possible
without some form of interpretation.?® While in some cases there are direct local markers
that indicate a specific continuation (such as the accented dissonance in a suspension
or the tritone in a dominant-seventh chord), the expectation after configurations that

*This is not to say that expectations are formed exclusively based on interpretation.
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lack these specific markers (such as the minor third in Figure 7.20a and the G major
triad in Figure 7.20b) only evoke these expectations because they are interpreted as

dominants in context.?’

The specific markers thus do not directly evoke an expectation
but rather suggest a certain interpretation which in turn evokes an expectation: The
tritone in a dominant chord wants to resolve in a specific way not because this is an
intrinsic property of tritones: Its inherent dissonance could be resolved in several ways,
for example by resolving into a perfect fifth with one note moving by a semitone. The
conventional resolution (both notes move by a semitone) is preferred because in a
diatonic context tritones typically occur as scale degrees @ and @), and the simplest
way to generate these notes is as ornaments of @ and €).?® While the specific markers
can reduce uncertainty and thus strengthen expectations, the expectation itself is based

on interpretation of the heard, and thus works even in the absence of specific markers.

7.9 Conclusion

The purpose of this chapter was to discuss the musical intuitions behind the protovoice
model and to show how it addresses the phenomena that motivate it in practice. Through
a series of examples, it was demonstrated how protovoice derivations capture the (gen-
erally hidden) tonal relations between surface notes in terms of simultaneity, sequen-
tiality, and functionality, and how they relate the surface to concepts of common music-
theoretical discourse. The protovoice model thus provides a precise formal language
for expressing analytical intuitions within flexible yet interpretable and principled con-
straints. In addition, the model can support analytical judgments about higher-level
entities such as harmonies or schemata by linking them explicitly to the surface notes.
Since protovoice analyses are not bound to these high-level concepts, however, they
are able to explain configurations in which these concepts break down, such as non-
harmonic chords or free polyphony.

The protovoice model can be seen as an instantiation of the interpretation perspective
outlined in Chapter 1. A derivation and the structural relations it entails provide a
generative explanation of the observed surface notes using principles that are shared
across many observations. In this chapter, however, the presented derivations have

%7A similar argument is made by Krumhansl (1990b) in response to Butler (1989) in the context of key
recognition: The tritone might be a useful indicator when it is present, but key identification also works in
its absence, so it cannot be the primary mechanism behind key recognition.

ZExpectations need not rely on the protovoice interpretation of the notes alone, but can involve higher-
level structures such as schemata, harmonic implications, sequential progressions, or themes and motives.
The general principle, however, remains the same: The expectation is formed by interpreting the heard
notes as an incomplete expression of a latent structure that is to be completed.
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been taken for granted, appealing to the musical knowledge of the reader or to the
derivations’ usefulness in demonstrating particular phenomena. However, in order to
propose the protovoice model as a computational cognitive model of interpretation and
understanding of (tonal) music, an important piece is missing: among the many possible
derivations of a piece, what distinguishes plausible from implausible analyses? Bayesian
perception has a principled answer to this question: Different execution paths of the
generative process occur with different probabilities. The plausibility of an explanation is
proportional to the overall probability of the derivation path. How this general principle
can be applied to the generative process of the protovoice model will be discussed in
Chapter 9.
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An Annotation Tool for Protovoice Analyses

8.1 Introduction

Corpus and machine learning research on music relies on high-quality datasets that
often involve annotations and analysis by experts. In creating these annotations, it is
important to ensure formal consistency and machine readability, but also a high musical
quality. While it might be possible to create simple types of annotations manually without
support by dedicated tools, this quickly becomes inconvenient, if not infeasible, for
complex analyses. Annotation workflows can then either rely on general music notation
tools such as the Verovio Humdrum Viewer (Ricciardi 2020; Rodin and Sapp 2010) or
MuseScore (Hentschel, Moss, et al. 2021), or work with dedicated tools for creating
specific types of annotations (Giraud, Groult, et al. 2018; Tomasevi¢ et al. 2021; Harasim,
Finkensiep, Ericson, et al. 2020). While dedicated tools come at a higher development
effort, it can usually provide more convenience to the annotator and better ensure formal
consistency.

This chapter presents a set of tools for working with protovoice analyses such as the ones
shown in Chapter 7. In the protovoice formalism, the structure of a piece is described
as a derivation, the execution trace of a generative process that produces the piece
from a small number of operations. During this process, two types of generic relations
are tracked: the horizontal connection of notes that belong to the same “protovoice”,
and the vertical organisation of notes into “slices”, groups of notes that are considered
simultaneous. At every point in the generation process, the current state of the piece is
represented as a sequence of slices and transitions, where the slices contain notes and
the transitions contain edges connecting these notes (Figure 8.1a).

A step in the derivation process has two phases: First, the temporal structure is expanded
by either splitting a transition, creating a new slice between two existing slices, or spread-
ing a slice into two slices. Figure 8.1b shows both operations in a planar graph notation
similar to Yust (2006): The top row of slices and transitions shows the original state of a
piece (or segment of a piece), while the elaboration produced by splitting or spreading
is shown below it, similar to how trees are used to visualize derivations of context-free
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Figure 8.1 — In the protovoice formalism, a piece is represented as a sequence of slices
(containing notes) and transitions (containing connections between notes). New slices and
transitions are generated by splitting a transition or spreading a slice.

grammars.

After a split, the new slice is filled with notes that are generated as ornaments to the
existing notes. Ornaments can be single-sided (neighbors or repetitions of a single
parent note), double-sided (neighbors or repetitions with two parent notes, created
along an existing edge), or passing notes (filling in a passing edge). Since repetitions
and neighbors remain within step distance of their parents, regular protovoice edges
always span step intervals. Longer intervals can be spanned by passing edges (shown as
dashed lines), which must be filled in stepwise with passing notes before the derivation
can terminate. After the new slice has been filled with notes, new passing edges can be
created between notes from the child slice and either of the parent slices.

When a slice is spread, no new notes are created. Instead, the existing notes are dis-
tributed among the two child slices, moving each note either to the left or the right, or
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repeating it on both sides. The transition between the child slices can either contain
regular edges between repeated notes (for further elaboration in subsequent steps, or to
tie the notes on the surface), as well as new passing edges.

As shown in Chapter 6, derivations can be represented as sequences of split and spread
operations in left-most derivation order. A third operation (freeze) marks transitions as
terminal, preventing them from further elaboration. Splits, spreads, freezes are then
applied to the first non-frozen transition from the left (left/only split and freeze), the
second non-frozen transition from the left, if present (right split), or both the first and
the second transition (spread). The example derivation shown in Figure 8.1c can thus
be described by the following sequence of operations, starting with a single transition
between X and X that stands for the empty piece:

split the only transition (creating root notes E4 and C4)
spread both transitions and the slice between them)

freeze the left transition (and move on to next transition)
split the left transition (creating D4 and B3)

split the left transition (creating the suspension, D4 and C4)
freeze the left transition

freeze the left transition

freeze the left transition

© XN W

freeze the only transition

The software presented in this paper provides tools for working with machine-readable
analyses in the protovoice format. It consists of three components that will be described
in Section 8.2: a web-based annotation interface for creating and editing protovoice
analyses (Section 8.2.1), a viewer component to display analyses interactively on websites
(Section 8.2.2), and a library that provides the underlying representations and operations
and can be used by third-party tools (Section 8.2.3). The data format used to store
analyses is described in Section 8.3.
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Figure 8.2 — Overview of the annotation interface.

8.2 Software Components

8.2.1 The Annotation Tool

The main purpose of the presented software is to create and edit analyses of pieces
according the protovoice formalism. The annotation component is a web-based tool’
that facilitates the annotation process by guaranteeing a correct formal structure of the
analysis and highlighting annotation inconsistencies (Figure 8.2). The tool is imple-
mented in Purescript? using the Halogen framework® and the VexFlow library*. It works
entirely on the client side without requiring any server-side backend structure.”

The annotation workflow inverts the generative process described above. A user loads
a complete piece (or a segment) they wish to analyse either in a special JSON-based
notelist format or directly from MusicXML. The notelist format (described in Section 8.3)

'https://dcmlab.github.io/protovoice-annotation-tool/. The source code is provided at
https://github.com/DCMLab/protovoice-annotation-tool.

2https://www.purescript.org/

3https://github.com/purescript-halogen/purescript-halogen

‘https://vexflow.com/

®An exception is the MusicXML-import functionality, which uses a server-side conversion service, but
this is optional to the use of the tool, and the conversion functionality could be integrated into the client in
the future.
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Figure 8.3 — An example of a reduction workflow in the annotation tool. To reduce the outer
structure, an element of the current reduction surface (top of the graph) is selected. A slice
can be reduced using a split (from (b) to (c)), a transition is reduced as the middle child of
a spread (from (f) to (g)). The notes in reduced slices are then “explained” by connecting
them to their parents. The score notation shows either the current reduction of the piece, or

the currently selected slice and its parents.
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can be created manually using a separate conversion tool.® It is advisable to add id
tags to the note elements in the source MusicXML file in order to be able to link the
notes in the score and the elements of the analysis. These id tags will be respected both
by the conversion tool and the direct MusicXML import of the annotation interface.
When the piece is loaded, the annotator reduces the piece step by step until each note
in the piece is explained. The resulting analysis can be exported to another JSON-based
format,’, which can be loaded again later to edit the analysis. Saving an incomplete or
inconsistent analysis is possible but will result in a warning. To prevent data loss, the
current analysis is saved locally using the local storage API after each edit. This allows
the user to recover an analysis after a crash or after accidentally closing the page.

In each step, they first select a temporal reduction (the inverse of split or spread), and
then provide an “explanation” for each note, connecting it to its parents. The annotation
tool will automatically create the correct parent structures and highlight unexplained
notes, unused mandatory edges, and invalid reductions. An example of the annotation
process is shown in Figure 8.3. After the piece is loaded (a), the full surface of the piece
is shown as a chain of slices and transitions, with mandatory edges between tied notes
(here the first C and the D, ties are not shown in the score). The user first selects the
second slice (b) and reduces it, which creates a split operation with the slice as a child.
The notes in this slice can now be reduced by connecting it to their parents. The C is
reduced as a repetition of the C in the left parent slice, but as part of a line that continues
to the B in the right parent slice (c). Selecting C and B as parents automatically sets the
role of the child note to RightRepeatOfLeft. In a similar fashion, the D is reduced to
its parents E and D (as a LeftRepeatOfRight), which “uses” the D-D edge and thus
reverts it back from orange to black (d). The two notes of the child slice are shown in
gray to indicate that they have been taken care of.

In the next step, the slice at beat 1.3 is similarly reduced as a split (e), explaining the B as a
neighbor note and the D as a passing note between E and C, which creates a passing edge
(dashed line). This passing edge is consumed by combining the two remaining slices (1.1
and 1.4) into a single slice using a spread operation (f). Here, the annotation tool is able
to automatically select the parent of each note, since the assignment is unambiguous
(g). This final “root slice” is reduced by another split into the empty edge between the
beginning (X) and the end () of the piece, explaining the remaining notes as root notes

(h).

The annotation tool includes support for generating graphics via LaTeX and TikZ? such

®https://github.com/DCMLab/musicxml-to-pvpiece

"To make it easier to distinguish pieces and analyses, the file extensions .piece.json and
.analysis.json are used, respectively.

8https://github.com/pgf-tikz/pgf
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Figure 8.4 — The viewer component can also display the inner protovoice graph at the
current step.

as the one shown in Figure 8.1c. The current analysis can be exported either as plain TikZ
code that can be inserted into tikzpicture environment, or as a complete standalone
document. Different types of objects (transitions, slices, notes, edges) are marked with
corresponding TikZ styles that can be used to customize their general appearance. By
default, markers that indicate the type of a note are not exported. However, for the
currently selected note, a command for decorating this note with a type marker is
provided separately, allowing the user to decorate individual notes.

8.2.2 The Viewer Widget

The viewer component provides an interactive frontend for displaying and exploring
analysis. Itis provided as a standalone JavaScript module that can be easily included
into a webpage.® The module has a single entry-point that creates a widget and binds it
to a div in the current page. The shown analysis is provided in the analysis JSON format
at creation time, e.g., by loading the analysis through the XHR or fetch API, or through a
file upload. In addition, certain settings such as the zoom level or the shown derivation
step can be pre-configured.

An  example page can be found at https://musicology.epfl.ch/posters/
protovoices-ismir21/.
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The widget shows the analysis in an interface that resembles the annotation tool. In
addition, a graph of the internal connections between the notes at the current step can
be shown. The user can step through the derivation in leftmost-derivation order and
select notes to see their functional role and related notes. Since analyses of full pieces
can become hard to read, the user can adjust the size of the visualization and enable or
disable individual components.

8.2.3 The Internal Library

The common functionality of the annotation interface and the viewer widget is collected
in a separate PureScript library. This ensures the compatibility of the two components
and permits reuse of the functionality in third-party tools. Since PureScript compiles
to JavaScript in a transparent and straightforward way, the library can either be used
directly from JavaScript, from PureScript, or by creating a thin PureScript wrapper that
exposes the relevant functionality to JavaScript.

The library covers three aspects of functionality: A set of types facilitate the representa-
tion of analyses and related data in a type-safe and consistent way. High-level editing
and graph-walking operations allow the programmer to manipulate and process these
data structures safely. Finally, conversion functions to and from JSON representations
are implemented. The library integrates with the purescript-pitches!® library for
representing pitches and checking the correct sizes of intervals.

The internal representation is not based on leftmost-derivations but rather on a tree
structure of segments, pairs of a transition and the slice to its right. The details of an
operation as well as its child segments are attached to the parent segment (to the left
parent in case of a spread). This representation can be easily converted to and from a
leftmost derivation but represents the graph structure of the analysis more directly and
are easier to navigate. Transformation operations automatically maintain the integrity of
this structure, reordering operations if necessary to preserve leftmost-derivation order.

8.3 Data Formats

The tools described in the previous section use two JSON-based formats to encode input
pieces and analyses. The input piece is encoded as an array of slices, each of which
contains a timestamp string (which usually has a measure.beat.subbeat structure)

Whttps://github.com/DCMLab/purescript-pitches
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type PiecelJSON = Array
{ time :: String
, notes :: Array { pitch :: String, hold :: Boolean, id :: String }
}

Listing 8.1 — The format of a . piece. json file expressed as a PureScript type.

as well as an array of notes. Notes have a pitch (a string using the notation of the
purescript-pitches library and its siblings), an ID (optional) and a flag that indicates
whether the note is continued in the next slice. 8.1 shows the schema of the format as a
PureScript type, which directly translates to the JSON structure. A JSON encoding of the
example in Figure 8.1c is shown in B.1

The schema of an analysis file is shown as the type AnalysisJSON in 8.2. Analyses are
encoded as a combination of a starting structure (start and topSegments) and a list
of derivation steps (derivation). Derivation steps (LeftmostJSON) are encoded as
objects consisting of atag ("type": "<operation type>")thatindicates the type of
the operation as well as where it is applied, and a body ("value": <operation>)that
contains the actual operation object. The operation types (FreezeJSON, Sp1itJSON,
and HoriJSON) encode both the notes and edges they generate, as well objects that are
left unexplained by the operation and meta information such as IDs. This ensures that
the analysis can be saved and completely restored in any state, even when incomplete.
The full specification of the format is shown in B.2, together with an example file (B.3)
that encodes the analysis in Figure 8.1c.

8.4 Conclusion

Protovoice analyses are very detailed and thus complex, both in terms of their structure
and in the consistency conditions they require. Even just displaying a complete analysis
as a static two-dimensional image is problematic because of the three-dimensional
character of a derivation (pitch, time, and generation order). Analysing scores and
exploring analyses thus is not feasible without specialized tools that enforce consistency
and allow the user to navigate a derivation in a meaningful way. Creating such a tool is
always a balance between such specialization and integration into existing and familiar
interfaces (e.g., music notation software or score-based annotation tools). Because of
the very specific requirements of protovoice analyses, the tools presented here opt for a
custom user interface that is specialized to the structure of the protovoice model and
thus provides more guidance to the user. The separately usable library that is underlying
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type AnalysisJSON

{ derivation ::

, start :: Sli

Array LeftmostJSON
ceJSON

, topSegments ::

Array

{ trans ::
, rslice ::

}

type LeftmostJISON

( freezeLeft ::
, freezeOnly ::
, splitLeft ::
, splitRight ::
, splitOnly ::

, hori :: Ho

type ChildrenJSON

type SplitJSON =
{ regular ::
, passing ::
, fromLeft ::
, fromRight ::

, unexplained ::

, keepLeft ::
, keepRight ::
, passLeft ::
, passRight ::
, ids :: { lef

Array { parent ::
Array { parent ::

TransitionJSON
SliceJSON

= Variant
FreezeJSON
FreezeJSON
SplitJSON
SplitJSON
SplitJSON
riJSON

= Array { child ::

Array { parent ::
Array { parent ::
Array Note
Array Edge

Array Edge

Array Edge

Array Edge

t :: TransId, slice ::

Note, orn ::

Edge, children ::
Edge, children ::
Note, children ::
Note, children ::

Maybe String }

ChildrenJSON }
ChildrenJSON }
ChildrenJSON }
ChildrenJSON }

SliceIld, right :: TransId }

Listing 8.2 — Parts of the format of a .analysis. json file expressed as PureScript types.

The full specification i
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8.4 Conclusion

the different tools, however, makes it possible to integrate the functionality of these tools
into more general annotation or notation software in the future.

Ensuring consistent and unambiguous encodings is particularly relevant when the
annotations are not just created for visualization purposes (as in Chapter 7) but as
datasets for computational models. Chapter 9 discusses how generative process of
the protovoice model can be described as a probabilistic program that makes random
decisions based on a learned understanding of what constitutes a plausible derivation.
A set of analysis created using the annotation tool is used to train a proof-of-concept
version of such a probabilistic model, bridging the gap between the music-theoretical
aspects shown in Chapter 7 and computational models of cognition.
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9.1 Introduction

The previous chapters have introduced the protovoice model, shown how pieces can
be parsed into derivations, and how these can encode an analytical understanding of
the tonal relations in a piece. In Chapter 6, however, we have also seen that the space of
possible derivations for a given piece is usually extremely large and contains plausible
analyses as well as implausible analyses. This chapter addresses the issue of judging the
relative plausibility of different analyses for a given piece.

A principled way of reasoning about plausibility is offered by Bayesian probability theory
(Jaynes 2003; MacKay 2003), as described in Chapter 2. In this framework, the plausibility
of an analysis a given the surface of a piece s is expressed as the conditional probability

plals), (9.1)
which in turn is derived from a joint distribution
pla,s,...) (9.2)

according to the operations of probability theory, in particular marginalization and
conditioning.! The joint distribution represents the listener’s beliefs about what makes
an analysis more or less plausible. The main question to be answered is thus what this
joint distribution looks like, and why.

Bayesian probability serves as the foundation of Bayesian cognitive modeling (Chater,
Oaksford, et al. 2010), which uses Bayesian models to describe cognitive capacities such
as reasoning and decision making (Jaynes 1988; Griffiths and Tenenbaum 2006; Oaksford
and Chater 2007; Pearl 2009), perception (Knill et al. 1996; Kersten et al. 2004; Chater and
Manning 2006), and learning (Jacobs and Kruschke 2011; Gopnik and Bonawitz 2015;

'The probabilistic notation in this paper corresponds to the slightly simplified notation that is some-
times used in machine learning: p does not directly refer to the probability of an event (which would be
problematic for continuous random variables) but to the probability mass function (for discrete variables)
or the probability density function (for continuous variables).
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Ullman and Tenenbaum 2020b; N. D. Goodman, Ullman, et al. 2011). Baysian perception
and learning, in particular, are based on the idea that the brain, when confronted with
a new perceptual input, tries to reason to the best explanation of this observation,
adjusting its beliefs about the world if necessary. The plausibility of an explanation z for
an observation x is quantified as

p(z,x) _ px|2z)p(z)
px) px)

plz|x)= (9.3)
i.e., it depends on the prior probability of the explanation p(z) (independent from the
observation), as well as the likelihood p(x | z), the probability that the explanation (if
true) would give rise to the observation.” This conditional distribution corresponds
exactly to the conditional in Equation 9.1: If an interpretation of a piece is understood
as an explanation of the piece’s surface, then the plausibility of a certain interpretation
of a piece depends on its prior plausibility p(a), as well as the likelihood of the piece
given the interpretation p(a | ).

The remainder of this chapter proposes and discusses a Bayesian version of the pro-
tovoice model. Section 9.2 gives an overview of the relationship between generative
modeling and probabilistic programs, which serves as the foundation of the overall
approach. Section 9.3 presents a simple proof-of-concept of a probabilistic program
that generates protovoice derivations. Section 9.4 evaluates this proof-of-concept and
demonstrates how it can be employed for (supervised) learning and inference. Finally,
Section 9.5 gives an outlook of possible extensions of the model and more advanced
inference methods.

9.2 Generative Models and Probabilistic Programs

A generative model is a model that describes how observations are produced through
a (generally unobserved) generative process. For example, the image of an object on
the retina can be understood as the result of a physical process that involves light being
reflected by the object, falling into the eye, and being projected to the retina by the
lens of the eye. The relation between observation and process is usually ambiguous:
A sentence can be seen as a linguistic expression of a certain intention, but the same
intention can be expressed in different ways, and the same sentence can be the product
of different intentions. In addition, just like every model, this process can be a simpli-
fication, abstraction, or approximation: The height of a person can be modeled as the

*The third term, p(x), is a constant for a fixed observation and can be thus be ignored when comparing
two explanations of the same observation.
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random result of a normal distribution with a certain mean and variance, although the
true biological process is more complicated than that.

Descriptions of generative processes typically involve several steps as well as inter-
mediate variables, which, if unobserved, are called latent variables. A simple process
generates the observed outcome directly in a single step, for example:

1. Pick a set of lottery numbers.

A slightly more complex process could involve first selecting a person that then picks
the lottery numbers according to their preferences:

1. Pick person A or person B.
2. If person A, pick numbers according to A’s preferences,
If person B, pick numbers according to B’s preferences.

If only the resulting numbers are observed, the person that picked them is a latent vari-
able. If the preferences of each person are known, observing the selected numbers lets
us draw conclusions about the person that picked them. Alternatively, the preferences
of each person can be considered part of the model and are thus chosen throughout the
process:

1. Pick preferences for A.

2. Pick preferences for B.

3. PickAorB.

4. Let the chosen person pick the numbers.

Usually, when dealing with datasets, some variables are fixed across the dataset (global)
while other variables are specific to a single datapoint (local). We could modify the
lottery process to produce several sets of numbers, each chosen by a different person
(local), but with fixed preferences for each person (global):

1. Pick preferences for A.
2. Pick preferences for B.
3. Repeat N times:
1. Pick A or B.
2. Let the chosen person pick the numbers.

While these kinds of process structures are very typical, (resembling, for example, the
chord model used in Chapter 4), the generative process can have a much more complex
structure, involving recursion or dependencies between the datapoints. The distinction
between local and global variables does thus not always apply.
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Generative processes usually involve some form of random decisions, which can reflect
either actual randomness (e.g., physical randomness) or uncertainty about the under-
lying decision process.® These random decisions can be modeled using conditional
probability distributions that characterize the probability of each outcome given on all
previous decisions in the execution of the process. Making the decision can then be
modeled as drawing a sample from this conditional distribution. The lottery process
from above could be described more precisely as such a probabilistic process:

1: Draw the preferences for A: éA ~ Dirichlet(d,).

2: Draw the preferences for B: éB ~ Dirichlet(dg).

3: for i from 1 to N do

4: Draw the person: P; ~ Bernoulli(0.5) as A (1) or B (0).

n; — @.

for j from 1 to M do
Choose anumber: n ~ Categorical(zeroAndNormalize(épi, n;)).
n; — n;Un.

In this example, the function zeroAndNormalize returns a modified preference vector
(6) where the preference of the already drawn numbers (1;) is set to 0 and the remaining
preferences are renormalized. Probabilistic decisions (e.g., the next number) can thus
be mixed with deterministic computations (updating the preferences).

The description of such a process with random decisions is called a probabilistic pro-
gram (N. D. Goodman, Mansinghka, et al. 2008; van de Meent et al. 2018). As discussed
in Chapter 2, probabilistic programs correspond to a factorization of a joint probabil-
ity distribution into the conditional distributions that correspond to the steps of the
program:

->

p(6,,05, P, it) =p(6,)
-pOg16,)
-p(P; | 64,0p)
p(ny 160,,05,P) ...

(9.4)

Each of these conditionals has in principle access to all previously sampled variables (e.g.,
n; uses P;, and 6, or 0), but they can also ignore some or all of the previous variables

(e.g., p(O510,) = pOp)).

Probabilistic programs are not just a convenient representation of complex joint distri-
butions, they also provide ways to query this distribution. Sampling from p is equivalent

3A generative process might be deterministic, i.e., it might not contain decisions, or all decisions are
predetermined. Deterministic processes are not relevant to the current discussion.
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to running the program and sampling each random variable according to its condi-
tional distribution. The probability of a full sample (where all variables are observed)
is computed by running the program with each variable assigned its observed value,
recording for each variable the local probability of the observed value, and taking the
product of these probabilities, according to Equation 9.4. Conditioning on variables in
the beginning of the program (e.g., p(f’, 11| 6,,05)) amounts to fixing these variables to
specific values. Conditioning on later variables (e.g., p(6,, 605 | b, 1)) involves the appli-
cation of more complex inference algorithms, which can nevertheless use the program
representation of the distribution, such as sampling methods (Hastings 1970; S. Geman
and D. Geman 1984; Hoffman and Gelman 2014) or variational inference (Blei et al. 2017;
Ranganath et al. 2014; Kucukelbir et al. 2017). Most modern probabilistic programming
languages use both types of inference or combinations thereof (N. D. Goodman and
Stuhlmidiller 2014; Wood et al. 2014; Carpenter et al. 2017; Cusumano-Towner et al. 2019;
Bingham et al. 2019). Because of their strong ties with generative models, the probabilis-
tic programming paradigm is a natural fit for generative Bayesian models of cognition
and perception (N. D. Goodman, Tenenbaum, et al. 2016; Kulkarni et al. 2015).

Besides the general relationship between generative models and probabilistic program-
ming, there is a more practical reason for using the latter. Previous generative models
of musical structure have generally used existing classes of probabilistic models such
as Markov chains (Conklin and Witten 1995; Ponsford et al. 1999; Pearce 2005; Moss,
Neuwirth, Harasim, et al. 2019), hidden Markov models (HMM; Allan and Williams
2004; Temperley 2007a; C. W. White and Quinn 2018; Duane 2019), or context-free gram-
mars (PCFG Gilbert and Conklin 2007; Abdallah, N. E. Gold, and Marsden 2016; Groves
2016; Harasim, Rohrmeier, et al. 2018; Rohrmeier 2020b). For these classes, special-
ized algorithms for inference, parameter estimation, and prediction are known, such
as the forward-backward algorithm, the Baum-Welch algorithm, or the inside-outside
algorithm (Manning and Schiitze 1999). Markov chains, HMMs, and PCFGs can all
be expressed as probabilistic programs (Algorithm 9.1). The generative process of the
protovoice model, on the other hand, cannot be expressed in terms of such a standard
model, but it can be described as a probabilistic program and thus be treated with the
inference methods known for probabilistic programs. From the perspective of proba-
bilistic programming, the protovoice model is thus much “larger” and more detailed than
the programs of HMMs or PCFGs, but not fundamentally more complex. The classical
models enforce strong independence assumptions between the probabilistic decisions
in the process, which usually can only see a limited context (such as the current state,
or the leftmost non-terminal). Probabilistic programs have generally much less strong
restrictions about their dependency structure, which in principle allows each generation
step to consider all previously generated structure. This flexibility comes at the cost of
not being able to perform exact inference anymore. It may therefore be necessary to
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Algorithm 9.1 Markov chains, HMMs, and PCFGs expressed as probabilistic programs.
The parameters of each model (e.g., transition probabilities) are expressed as latent

variables that are drawn from some prior distribution.

(a) A first-order Markov chain.
1: 0 ~ some prior
2: s, — start-state
3: 10
4: while s; # end-state do
5 Siv1 ~ Pz 16,8)
6 i—i+1.
(b) AHMM process.
0 ~ some prior
1) ~ some prior
Sy — start-state
i—0
while s; # end-state do
0; ~p(o; [1,s;)
Siv1 ~ P(Siv1 16,57
i—i+1

N 2R b

(c) APCFG process.
: 8 ~ some prior
: §— [start-symbol]
: while s contains a non-terminal symbol do

r~p(r|L,0)

1
2
3
4: L — leftmost non-terminal in s
5
6 applyrtoLins

> sample transition probabilities
> initialize state

> sample next state

> sample transition probabilities
> sample emission probabilities
> initialize hidden state

> sample emitted symbol
> sample next state

> sample rule probabilities
> initialize string

> choose rule with LHS L

restrict some of this flexibility again to be able to apply efficient inference methods.

9.3 A Proof-of-Concept Model

This section presents a simple probabilistic version of the protovoice model. It follows

the general scheme of the protovoice generation process: The leftmost one or two open

transitions are elaborated using splits, spreads, or freezes. Once an operation type is

chosen, its details are decided in a sequence of steps that is specific to that operation.

These sub-programs can be shared between different contexts, e.g., the same routine
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for generating a split is used for splitting the left transition, the right transition, or
the final transition. Similarly, left neighbors, right neighbors, and full neighbors are
all generated by the same process. This sharing is not necessary, as the parameters
or even the procedures might be different in the different cases, but it simplifies the
program and is sufficient for a proof-of-concept model. An overview of the program
structure is given in Figure 9.1. Some parts of this model are outlined in Algorithm 9.2
and Algorithm 9.3. The full pseudocode of the model is provided in Section C.2, and a
Haskell implementation of the full model is available online.*

The complete model describes the joint distribution
p@,D)=p@)-pDd16) (9.5)

over gobal parameters 6 and derivations D (Algorithm 9.2a). In this proof-of-concept
version of the model, all decisions within a derivation are made locally and independent
from their context as far as possible. This way, the global parameters that influence
these decisions can be inferred directly from the observed outcomes, without having
to account for the context in which the decisions were made (see Section 9.4.1). In
particular, each random decision is only based on one corresponding global parameter
that controls its probability. This parameter is drawn from a prior distribution that is
conjugate to the distribution it is used by. For example, the parameter Opcezesingle iS @ real
number between 0 and 1 that controls the probability to freeze the last open edge in the
piece (and thus terminate the derivation). The decision whether to freeze is modeled
by a Bernoulli distribution (Algorithm 9.2¢, line 5), S0 Oeesesingle is drawn from a Beta
distribution, which is conjugate to the Bernoulli distributions. Choosing conjugate
priors makes it easy to infer the posterior distribution of the parameters when learning
from a dataset of analyses (MacKay 2003). The set of all parameters 6 is chosen once in
the beginning of the derivation process (Algorithm 9.2a, line 2) and remains constant
across all pieces. A list of all global parameters and their prior distributions is given in
Table C.1 in Appendix C. All of these priors correspond to a uniform distribution over
the domain of the respective variable, although other priors within the same respective
distribution family are possible.

Throughout the generation process, it is important that random decisions are only made
if their result is needed. For example, the set of legal outer structure operations (spread,
split, freeze) depends on the number of open transitions, so the function SAMPLESTEP
(Algorithm 9.2b) will first check the number of open transitions and then branch on
whether no open transition is left (derivation is complete), one transition is open (allow-
ing only split and freeze), or more than one transition is open. Similarly, the function

*https://github.com/DCMLab/protovoices-haskell/blob/main/src/PVGrammar/Prob/
Simple.hs
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Figure 9.1 — An overview of the structure of the model program. Each node represents a
function (subroutine) in the model and is connected to the functions that it calls. Black
functions are shown in Algorithms 9.2 and 9.3. The full model is shown in Section C.2.
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9.3 A Proof-of-Concept Model

Algorithm 9.2 Generating global parameters and outer structure.

(a) Generating the full dataset.

1: function SAMPLEDATASET( )

2: globalé «— SAMPLEPARAMS( )
3: forie[1,N]do

4: D; — SAMPLEDERIVATION
5: return D

(b) Sampling one derivation.

1: function SAMPLEDERIVATION( )

2: -- start with the empty piece and derivation
3: return SAMPLESTEP(X — X, [], false)
4: function SAMPLESTEP(surface, deriv, afterRightSplit)
5 -- check number of open transitions
6: if 0 open transitions in surface then
7 return deriv
8 else if 1 open transition then
9 op — SAMPLESINGLESTEP(surface)
10: else
11: op — SAMPLEDOUBLESTEP(surface, afterRightSplit)
12 surface’ — applyLeftmost(op, surface)
13: return SAMPLESTEP(surface’, deriv + op, isRightSplit(op))

(c) Elaborating a single open transitions.

1: function SAMPLESINGLESTEP(surface)
2: return makeSingleOp(SPLITORFREEZE(last(surface), freezeSingle))

3: function SPLITORFREEZE(transition, param)
4 if transition is freezable then

5 shouldFreeze ~ Bernoulli(6 4,4,

6: if shouldFreeze then

7 return SAMPLEFREEZE( transition)
8 else return SAMPLESPLIT(transition)
9

else return SAMPLESPLIT(transition)
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SpLITORFREEZE first checks whether the current transition can be frozen, i.e., whether it
contains only repetition edges (Algorithm 9.2¢, 1. 4). If the transition is freezable, a coin
is flipped to determine whether to freeze or to split (1. 5). If it is not freezable, it is always
split (1. 9). This design ensures that all random decisions can be reconstructed from an
annotated derivation, which is essential for inference and learning.

There are cases in which it is not possible to restore the exact order of operations from
the derivation. For example, while the order in which the parent edges and notes are
elaborated can be fixed by some arbitrary ordering (e.g., Algorithm 9.3a, 1. 3-6), the
children of the same parent could have been generated in an arbitrary order. These
cases can be treated similar to the order independence in the multinomial distribution:
During generation, the children are generated in an arbitrary order, which might be
normalized later in the process (e.g., by sorting the children). When evaluating the
probability of a derivation, a separate term for the number of possible permutations is
included. During parameter inference, this permutation term is ignored because it is an
irrelevant multiplicative constant. In order to make these optimizations, permutation-
independent parts of the program are marked. In the pseudocode, this is represented
by a permute block, which repeats its code a given number of times (like a for loop),
collects the generated values (marked with yield), and returns them in some canonical
order, irrespective of the order in which they were generated. An example can be found
in SAMPLESINGLEORNAMENTS (Algorithm 9.3b, 1. 9). SAMPLESINGLEORNAMENTS also
shows how some decisions can use constant probabilities instead of global parameters,
when estimating these probabilities from the data is not of interest (L. 15).

The particular parametrisation of the model shown in this section is generally too sim-
plistic for analytical purposes. We cannot expect to distinguish plausible or implausible
analyses only based on simple preferences such as repetitions over neighbor notes, or
chromatic over non-chromatic ornaments. Keeping decisions local and independent
primarily serves a simple inference scheme, which will be used in Section 9.4 to eval-
uate the proof-of-concept model. Despite these limitations, even this simple model
demonstrates how the plausibility of a particular derivation can be linked to global
stylistic properties via a probabilistic generative process. More elaborate and musically
meaningful versions of such a process are discussed in Section 9.5.
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Algorithm 9.3 Generating inner structure.

(a) Sampling a split operation.

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

function SAMPLESPLIT(0, surface, transition)

-- sample children:

childrenReg — [ELABREGULAREDGE(edge) for edge € regularEdges(transition))
childrenPass — [ELABPASSINGEDGE(edge) for edge € passingEdges(transition)]

childrenL — [ELABLEFTNOTE(note) for note € leftSlice(transition)]

childrenR — [ELABRIGHTNOTE(note) for note € rightSlice(transition)]

-- collect generated objects:

middleSlice — makeSlice(childrenReg,childrenPass,childrenL,childrenR)

(edgesL, edgesR) — makeEdges(childrenReg,childrenPass,childrenL,childrenR)

-- generate passing edges and drop/keep regular edges:
passL — SAMPLEPASSINGEDGES(left(transition), middleSlice)
passR — SAMPLEPASSINGEDGEs(middleSlice, right(transition))
keepL — [KEEPREGULAREDGE(edge) for edge € edgesL|

keepL — [KEEPREGULAREDGE(edge) for edge € edgesR]

return makeSplit(childrenReg, childrenPass, ...)

(b) Sampling child notes from a parent on the left or right.

w =

S

A

@

~

10:
11:
12:
13:
14:
15:

16:
17:

18:

: function ELABLEFTNOTE(parent)

children — SAMPLESINGLEORNAMENTS(parent, elaboratel)
return (parent, [makeLeftOrnament(child) for child €children])

: function ELABRIGHTNOTE(parent)

children — SAMPLESINGLEORNAMENTS( parent, elaborateR)
return (parent, [makeRightOrnament(child) for child € children))

: function SAMPLESINGLEORNAMENTS( parent, paramElaborate)

n ~ Geometric, (HpammElaborate)
children — permute n do
repeat ~ Bernoulli(0,peatoverNeighbor)
if repeat then
oct — SAMPLEOCTAVE( )
yield makeRepeat(parent + oct)
else
up ~ Bernoulli(0.5)
child — SAMPLENEIGHBOR(up, parent)
yield makeNeighbor(child)

return children
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9.4 Evaluating the Proof-of-Concept Model

9.4.1 Parameter Inference

As shown in Section 9.3, all decisions in the probabilistic process are based on local
conditional distributions of the form p(o; | 8,,), where o; denotes the outcome of decision
i based on the parameter 0, (the index a is used to mark a specific parameter 6, and the
corresponding decisions that use this parameter, while 6 denotes the collection of all
parameters). When learning from a given set of derivations, all decisions of the process
except for the choice of 8 are observed. In particular, the control flow of the process is
known (up to certain permutations, as discussed above). Thus, the joint probability of a
derivation and a set of parameters can be expressed as

p©) - p(deriv|6) = p©) - p(o,16)-p(o, 16)-.... (9.6)

In addition, each decision only refers to a single parameter 8, and does not depend
on any other parameters or decisions, so the probability of one parameter 8, and all
decisions 0, referring to that parameter can be expressed as

p(ea' 5:1) = p(ea) ' p(oal | ea) : P(Oaz | Ha) Teee (9'7)

where o0,; denotes the i-th decision that uses the parameter 0,,. Finally, we have required
the prior p(0,) to be conjugate to the distributions in which it is used, which means that
the posterior of 8, after observing an outcome o,;

p(Ga | Oai) X p(@a) ' p(oai | Ga) (9-8)

can be computed analytically and is of the same family as p (6,,). Combining this property
with Equation 9.7, we observe that the posterior distribution of 8, given all §, can be
computed incrementally, by iterating over the observations 0,,:

p(eu | 5a) X p(ga)'p(oal |9a)'p(0a2 | Ba)'"'
ox p@,104) plo,10,)-... (9.9)

x p@,1041,040) ...

Equation 9.9 shows that under these particular constraints, the posterior distribution
of a parameter can be obtained exactly using the following inference scheme: For each
parameter, the posterior is initialized with the prior distribution. Going through a
derivation, each time a decision uses the parameter, the posterior is updated based on
the observed outcome of the decision. For example, for a decision with outcome o,; ~
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Algorithm 9.4 A baseline parsing algorithm.
function PARSERANDOM(surface)

1:

2 deriv — ]

3 while |surface| > 1 do

4 ops — all possible leftmost reductions of surface
5: if ops = ¢ then

6 return nothing

7 else

8 op — chooseRandom(ops)

9 surface — applyReduction(surface, op)

10: deriv — [op] o deriv

11: return deriv

Bernoulli(6,) and a corresponding parameter 0, | 0,1, ...,0,;_1) ~ Beta(a, B) (before
observing o,;), the parameter’s distribution after observing o,; is updated to

0,104,...,0,; ~Beta(a+0,;, B+1—0,;). (9.10)

Since the parameters are chosen globally for all pieces, this procedure can be continued
through all pieces in the training dataset. The intuition behind this inference scheme
is that the outcome of each decision is evidence for the underlying parameter, so ac-
cumulating this evidence across all uses of the parameter yields its overall posterior
distribution. Since different decisions do not influence each other except for changing
control flow changing the outcome of one decision does not influence the outcome of
another decision, only the presence or absence of the decision.’

9.4.2 Baseline Parsing

In order to evaluate the effect of learning (i.e., inference about the parameters), a dataset
of hand-annotated analyses (the ground truth) is compared to a set of baseline deriva-
tions of the same pieces, which are chosen arbitrarily by a random parser. Due to the
excessively large number of derivations for even moderately long pieces, completely
uniform sampling of a derivation (which would require enumerating all derivations)
is not feasible. Instead, an arbitrary derivation is selected in a bottom-up fashion. The
algorithm used by the baseline parser is shown in Algorithm 9.4. It applies the gener-
ative process backwards, starting with the full piece. In each step, the set of possible

3Generally, probabilistic programs do not satisfy the independence conditions that enable this inference
scheme to work. In that case, approximate inference methods based on sampling or optimization can be
used.
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Figure 9.2 - Four possible ways to reduce the current surface (a) at the point between frozen
and open transitions (*).

reductions of the current surface is enumerated (1. 4), i.e., all possible freeze, spread, or
(Ieft or right) split operations that could have produced the current surface. A random
reduction is selected, applied to the current surface, and added to the derivation (11.
8-10). The baseline parser does not backtrack, so if it encounters into an irreducible
configuration, it will abort and has to be restarted, similar to a rejection sampler. Al-
though such dead-end configurations are possible, the parser has never run into one
during the experiments presented here, so they seem to be extremely rare. Thus, the
non-backtracking, greedy strategy is sufficiently efficient for the present purpose. While
this procedure does not sample the distributions uniformly (thus introducing a potential
bias), it does not make use of any musical information.

The possible outer-structure reductions of the current surface are shown in Figure 9.2.
Reductions are always applied according to leftmost-derivation order, as described in
Chapter 6, i.e., at the point between frozen and open transitions (*). Depending on the
number of frozen and open transitions, not all reductions are possible. For example, at
the beginning of the reduction, all transitions are frozen, so the only possible operation
is to unfreeze the last transition. In addition, restrictions about the derivation order (no
left split or freeze after a right split) must be observed.

The parser chooses uniformly from the available reductions, i.e., from all possible ways
to realize the permitted outer-structure reductions internally. This does not guarantee
that the parser samples uniformly from the overall derivations since the number of
available reductions at a later step can vary depending on earlier decisions. However, for
the present purpose it is sufficient that the obtained derivations are not systematically
biased according to musically relevant criteria.
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Name Segment Figure Notes
Prelude in C major (BWV 939) full piece C.2 309
Prelude in D minor (BWV 940) full piece C4 442
Invention in A minor (BWV 784) mm. 1-2.1 7.4 23
Cello Suite in G major, Prelude (BWV 1007) mm. 1-4 7.5 32
Fly Me to the Moon mm. 1-8 7.7 30
Er weckt mich alle Morgen mm. 1-7 (melody) 7.9b 11
The Moldau main theme 7.10b 13
rare interval example 7.10c 3
Hinunter ist der Sonne Schein mm. 1-4 7.11 47
Traumerei mm. 1-5 7.12 124
French Suite in D minor, Allemande mm. 1-2.2 7.14 63
Quiescenza example 7.19 18
suspension example 7.20a 7
cadence example 7.20b 16

Table 9.1 - The set of examples used for evaluating the model.

9.4.3 Results and Discussion

The probabilistic model is evaluated on a small dataset of analyses that consists of all
complete reductions from Chapter 7 and derivations of two complete preludes from J. S.
Bach'’s five little preludes (No. 1 in C-major, BWV 939; and No. 2 in D-minor, BWV 940),
shown in Appendix C.® The list of examples in the dataset is shown in Table 9.1.

Using this dataset, the posterior distribution of the parameters can be computed ac-
cording to the procedure described in Section 9.4.1. Due to the locally conjugate form
of the model, the parameters are independent in the posterior and each parameter’s
posterior is in the same distribution family as its prior, which in this case are beta and
Dirichlet distributions. While some of the inferred parameters have nearly symmetric
parameters (e.g., keepL: Beta(296,309), the preference for keeping an edge in the left
child transition), most posteriors indicate a clear preference in one direction. The results
also show, how the variance of the distribution (which correspond inversely to the mag-
nitude of the parameters in beta and Dirichlet distributions) depends on the number of
decisions that the model has seen for the corresponding parameter: Freezing a single

5Scores and analyses are available at https://github.com/DCMLab/protovoice-annotations/
tree/main/theory-article and https://github.com/DCMLab/protovoice-annotations/tree/
main/bach/flinf-kleine-praludien. The analyses can be viewed more conveniently and in greater detail
using the protovoice viewer at https://dcmlab.github.io/protovoice-annotation-tool/viewer/.
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transition is a rare decision, that only happens when only one open transition is left, so
the corresponding parameter has a high variance (singleFreeze: Beta(15, 1)), while the
parameters for frequent decisions, such as how often to elaborate a note in the right
parent slice (elaborateR: Beta(677,58)), have a lower variance. The full list of posteriors
is shown in Table C.1.

The performance of the model is evaluated using leave-one-out cross-validation, in-
ferring the posterior distribution of the model parameters from each training set. For
the remaining test derivation, the predictive probability of the derivation is computed,
marginalizing’ over the possible parameter values

p(dtest | atrain) = fép(dtest | é)p(é | atrain)' (9-11)

To make this quantity comparable between pieces of different sizes, it is adjusted expo-
nentially? by the number of notes in a piece N (summing over all slices) or, equivalently,
its logarithm is scaled by ﬁ, the log-probability per note (logppn):

1
logppn(d) = N logp(a), (9.12)

which can also be interpreted as the negative cross-entropy per note in nats (using the
natural logarithm). The negative exponential of this quantity is the perplexity per note
(perppn):

perppn(d) = exp(—logppn(d)). (9.13)

When aggregating over all cross-validation splits, the overall logppn is first summed over
all test pieces and then scaled by the total number of notes:

1
Y. N,

l ]

logppn(d) = logp(d;). (9.14)
i

This effectively assigns a different weight to each test piece (proportional to its size) but
keeps the overall influence per note (and thus roughly per decision that needs to be
made) constant across pieces.

The results of the cross-validation are shown in Table 9.2. Training the model on the
training sets drastically increases the (log) probability of the test analyses compared to its
prior probability. The average amount of information needed to encode one surface note

"The integral over the parameters is approximated by drawing samples from the respective parameter
distribution and averaging the resulting likelihood over the drawn samples. Since the parameters are
independent, a small number of samples is sufficient to explore this otherwise very high-dimensional
space.

8Since probabilities are multiplicative, their average should also be multiplicative (i.e., geometric),
while log-probabilities are additive (i.e., arithmetic).
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9.4 Evaluating the Proof-of-Concept Model

test data annotated annotated random baselines
model untrained (prior) trained (posterior) trained
-> 1 ->
Ing (dtest) lOg p(dtest | dtrain) E Zi logp(bl | dtrain)
logppn (nats) -6.602 -4.512 -5.357
logppn (bits)  -9.525 -6.510 -7.729
perppn 736.58 91.11 212.18

Table 9.2 — Log-probability per note (higher is better) and perplexity per note (lower is
better), evaluated on test pieces (d,.) before and after seeing the training data (d,,,;, ), and
on baseline derivations of the same pieces (b) after training.

decreases by about 2 nats (or 3 bits). Thus, the trained model assigns more probability
mass to the annotated derivations and generally less mass to other derivations. However,
from this alone we cannot tell how the probability mass is distributed among these
non-examples. In the worst case, the model has only learned to assign more plausibility
to all derivations that generate the example pieces (as opposed to derivations of other
pieces), and in effect only distinguishes plausible from implausible pieces rather than
plausible from implausible derivations (of the same piece).

To further investigate this issue, each test derivation is compared to 100 baseline deriva-
tions of the same piece. These derivations have been obtained by the baseline parser
described in Section 9.4.2. The posterior logppn is computed on and averaged over the
baseline derivations of the same piece and then aggregated across the cross-validation
splits in the same way as the logppn of the test derivations. The results in Table 9.2
indicate that the difference between test and baseline derivations is not as pronounced
as the one between untrained and trained performance on the test derivations, which
means that the model’s plausibility judgment refers to some extent to the pieces rather
than their derivations. However, there is still a pronounced difference between test
pieces and baselines (about 0.8 nats or 1.2 bits), which shows that even this extremely
simplistic version of the model is on average able to distinguish plausible from less
plausible derivations based on previous examples.

A detailed overview of the difference between baseline and test derivations is shown
in Figure 9.3. The logppn in each row is computed over the notes of the corresponding
test piece. The blue boxes and diamonds show a summary of the baseline logppns, the
orange points indicate the logppn of the test derivation. In all but one case (Fly Me to
the Moon)?, the annotated derivation is rated higher than all of the baseline derivations.

9For the rare interval example, there are only five possible derivations, so the baselines include the
annotated derivation. Small fluctuations in the logppn values for these identical derivations are due to the
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Figure 9.3 - Baseline (blue boxes and diamonds) vs. test derivation (orange points) logppn
for each cross-validation split (indicated by the corresponding test piece). The box whiskers
show the 2nd and 98th percentiles.

Even in the remaining case, the test derivation is rated relatively high, close to the 98th
percentile.

9.5 Conclusion and Future Work

This chapter has demonstrated how the generative protovoice model can be fleshed
out into a fully Bayesian model by expressing it as a probabilistic program. Even the
simplistic proof-of-concept version of the model was able to learn useful parameters
from a small dataset and to distinguish plausible from implausible derivations based
on these observations. This constitutes the missing piece that connects the protovoice
model as an analytical language (as it is used in Chapter 7) with the cognitive framework
of Bayesian perception. The model is thus more than a music-theoretic tool to express
musical intuitions, it becomes a computational-level model of how these intuitions
could be formed by a listener.

With the current model being a proof-of-concept, there are three main directions in
which the model could be improved. First, the way that decisions are made and evaluated
is an oversimplification and should be based on more fine-grained musical knowledge.
For example, the choice of elaborations could take into account harmonic knowledge,

approximate marginalization over the parameters.
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both for generating typical ornaments fo an existing harmony (as in Chapter 4) and for
selecting ornaments that together form new harmonic entities. As argued in Chapter 7,
the combination of ornamenting harmonic entities note-wise and coordinating these
ornaments into new harmonic entities gives rise to harmonic syntax. Furthermore,
the coordination of protovoices similar to contrapuntal coordination (e.g., preferring
contrary over parallel motion) should be accounted for. Another criterion for good
analyses is coherence, i.e., ensuring that similar passages are analyzed analogously
as instances of a recurring pattern or motive. Implementing these aspects results in
a more complex model in which decisions are made based on their context (e.g., the
notes in the parent slices, or already generated concurrent notes), potentially using
additional latent variables, such as harmonic information about a slice or global patterns.
Both aspects require new modeling and inference methods: Latent variables pose a
problem for the simple analytical inference method used here, but could be solved with
sampling-based inference. Large contexts are problematic when each possible context
configuration is treated independently, which leads to an explosion of model parameters
(every possible context paired with every possible decision) and a high probability that a
specific combination of context and outcome is never observed in the training data.'® A
possible solution to this problem is to share information between different contexts, e.g.,
using a neural network. The parameters of the network then become parameters of the
probabilistic model and their posterior distributions can be inferred using variational
inference (Rezende et al. 2014; Graves 2011).

Second, the model so far does not cover the aspect of rhythm and meter. The surface
it generates does not contain all information about the notes, but only their pitch and
proto-temporal organization (simultaneity and succession). Generating the rhythmic
and metrical structure that allows placing the notes in time would require a conceptual-
ization of rhythmic information of latent entities. One possible approach is to integrate
the model with a rhythm grammar (Yust 2018; Rohrmeier 2020b), but this is not straight-
forward because of the two complementary outer structure operations in the protovoice
model.

Third, while parsing pieces into protovoice derivations is theoretically possible (as the
two parsing algorithms in Chapter 6 and in this chapter show), there is currently no
practically feasible solution that obtains an analysis with high plausibility for a given non-
trivial piece. The exhaustive chart parsing approach from Chapter 6 cannot handle large
pieces due to combinatorial explosion, while the random parser in Algorithm 9.4 does
not take the quality of the derivation into account. A possible solution would be to modify
Algorithm 9.4 to use a non-random policy (1. 8) and instead use heuristics to select a good

9This is known as the zero-frequency problem in n-gram/Markov models (Witten and Bell 1991), but it
applies to all conditional distributions with large condition spaces.
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next reduction step. The architecture of such a heuristic parser is a typical reinforcement
learning scenario: A sequence of actions (reduction steps) is chosen one after the other,
with a sparse reward (the probability of the final derivation) at the end of the process
(see also Weber et al. 2015). The right policy for choosing the next reduction step could
therefore be learned using reinforcement learning techniques. Since the state space in
this process is extremely large (consisting of the previous reduction steps as well as the
current surface), deep reinforcement learning techniques can be used to generalize over
different states (Mnih et al. 2015), potentially in combination with planning methods
(Silver, Huang, et al. 2016). When paired with a deep generative model, parser and
generative model can be trained in a semi-supervised or unsupervised fashion, in which
the generative model is trained on the results of a parser while the parser is trained on
the judgment of the generative model, as in an asymmetric and cooperative version
of self-play (Silver, Schrittwieser, et al. 2017). Such a training scheme aims to choose
parameters in such a way that the given pieces are represented as faithfully as possible,
without the need to learn from human-annotated analyses. It thus serves as a possible
approach to investigate how a human can learn musical representations only from
listening, without (or with limited) explicit theoretical instruction.
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10.1 Looking Back

Let us briefly summarize the results of the previous chapters. The protovoice model is
based on a generative process that produces the surface notes of a piece (up to their
exact rhythm). This process is based on coordinated elaboration between concurrent
notes, generating the structural relations of interest (simultaneity, sequentiality, and
functionality) together with the notes. In Chapter 7, it was shown how these structural
primitives can be used to express a number of musical phenomena, including latent
voice-leading structure in monophony and (free) polyphony, and the relation between
latent entities and their surface realizations. Chapters 6, 8, and 9 have demonstrated
how this model can be implemented computationally and used to parse a given surface,
encode analyses, and learn to judge the plausibility of competing analyses.

How do these results answer the questions raised by the preliminary studies in Chapters
5 to 4? Compared to the melodic grammar introduced in Chapter 5, the protovoice
model solves the problem of polyphonic organization. Instead of a single line of notes, a
network of several concurrent lines is established. One consequence of this extension
is that sequentiality (which used to be implicit in the melody: one note is followed
by the next in the sequence) is now modeled explicitly. This separation of surface ad-
jacency and structural sequentiality extends the range of possible analyses even for
monophonic melodies: Several concurrent streams of notes can be ascribed to a melody
which captures the phenomenon of implicit polyphony. Correspondingly, notes that are
non-simultaneous on the surface can become simultaneous on a higher level, which
the melody grammar was unable to express. As a result, latent vertical organization is
redefined: Where the melody grammar is integrated with a mode, which shapes the
operations of the melody but remains constant throughout the piece, the protovoice
model captures verticality purely as groups of notes, which is less specific on its own,
but on the other hand can be linked with different ways of organizing pitch material.

The main issue with the schema matcher identified in Chapter 3 was that the heuristic
approach to distinguishing schema instances from non-instances is not the criterion on
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which such a decision is ideally based. In other words, what it means to say that a surface
segment is an instance of a schema is not that some of its notes resemble the prototype
and are sufficiently salient, but that the prototype is underlying the surface, i.e., has
a generative and explanatory function. In particular, the surrounding non-structural
notes must be accounted for by a plausible transformation of the schema prototype into
the exact surface configuration. The protovoice model turns this insight around and
characterizes all interpretations of a piece as inferred transformations from simpler to
more complex configurations. These simpler structures do not have to correspond to
schemata, but when they do, then a protovoice derivation provides exactly the trans-
formation from schema prototype to the surface that marks a schema instance. It thus
provides a very detailed account of the relation between style structure (common struc-
tures shared by a style) and idiostructure (the specific configurations of a particular
piece, Narmour 1977).

Finally, Chapter 4 gave an account of how harmonic types (as another form of latent
entities) relate to ornamental surface tones in a systematic way. The protovoice model
complements this account by detailing the derivation from harmonic entities to precise
surface configurations. Like schemata, harmonies are not fundamental entities in the
protovoice model but can be modeled on top of more primitive structures. Knowledge
about harmonic types and their ornaments can either be used implicitly (as in the
manually obtained analyses in Chapter 7), or explicitly when judging the plausibility of
a derivation using a probabilistic model (as suggested in Chapter 9).

Looking back even further: How does the protovoice model address the issues raised in
the introduction? First of all, the protovoice model solves the problem of integrating three
dimensions of relations among the surface notes — vertical, sequential, and dependency
relations — all of which are latent and can exist on different levels of abstraction. It may
seem as if this comes at the cost of strongly aligning the three dimensions, effectively
reducing their respective expressiveness and independence.! However, coordinating
the dimensions without collapsing them into one thing is precisely the contribution of
the protovoice model: if the dimensions were completely independent, then we could
not describe how they interact; if one (or two) dimensions take precedence (such as
event hierarchy in the GTTM), then the others (harmonic structure for melodies, or
voice leading between the events for homophonic events) cannot be expressed in their
full complexity.

!In particular, both sequential and dependency relations manifest largely as protovoice edges, which
can make it look like the two are reduced to a single structure. This is not the case, as sequential and
functional relations remain non-identical, despite being aligned in many cases. They differ, for example, in
the case of a spread: The functional relation is between the parent note and the children (not between the
children), while an edge between two children indicates sequentiality but not functional dependency.
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Second, the protovoice model (or more specifically, the graph of notes and protovoice
edges) proposes a new characterization of polyphonic structure, addressing the “voice
problem”. It provides definition of horizontal, voice-like relations that is principled,
interpretable, and general: Principled, because it ascribes a sequential connection if and
onlyifit corresponds to a functional relation that has been introduced by an interpretable
generative operation. Interpretable, because the set of generative operations is chosen
to correspond to musically meaningful categories. This set of operations is not limited
to the particular operations of the model presented here — different styles have different
structural concepts and should thus be modeled through different operations that reflect
these concepts. For example, when harmony starts to become independent of voice
leading, the presence of a node might be justified directly as a representative of a chord or
a Tonfeld (Haas 2004; Polth 2018; Rohrmeier and Moss 2021) rather than an elaboration
of another note. Finally, general, because the protovoice network does neither make
assumptions about the surface notes (e.g., the maximum number of simultaneous notes,
every input can be parsed) nor specific assumptions about the underlying structures
(e.g., a scaffold of 3 or 4 voices). This is due to a shift of perspective from voice relations
as separate streams to a network of relations. It can therefore capture rare and complex
cases and seeming exceptions while still expressing meaningful interpretations of the
typical or simple cases.

Third, protovoice derivations are strong interpretations, i.e., they explain observations
(the surface notes) from the listeners perspective. The latent structures encoded in a
derivation (i.e., latent slices and protovoice edges) are used to derive each surface note,
explaining its function in its context. When combined with higher-level interpretations
(e.g., harmonies or schemata), a derivation even describes how the observed surface is
an instantiation of an abstract category: The schema or chord gives rise to the observed
notes, much like an object and a light source can give rise to an light pattern that we can
observe, or a thought or intention gives rise to a verbal utterance. The protovoice model
also represents a generalization over many observations, since the same operations
and derivation patterns (encoded by the operation’s probabilities) can be shared across
many pieces. The model thus captures both style structure and idiostructure, which
shows that recursive, hierarchical analysis does not necessarily imply that idiostructure
is ignored (cf. Narmour 1983). The insight provided by such an analysis is not only the
structure that the piece is reduced to (on any level), but the reduction (or inversely, the
derivation) process itself (Martin 1978).

Since the model derives a whole piece in a closed and coherent process, a full derivation
represents a consistent interpretation of all notes at the same time, which can be seen
as the idealized goal of the interpretation task. A human listener would not be expected
to obtain such a complete interpretation while listening to a piece for the first time,
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maybe not even after extensively studying a piece for a longer time. Nevertheless, even
a preliminary understanding of a piece (with respect to the types of relations captured
by the protovoice model) corresponds to a set of partial or underspecified derivations,
and by integrating and refining this understanding, a full derivation is approached.

10.2 General Insights

A number of general observations can be made from the protovoice model and the
general modeling approach, which provide insights for larger discourses in music theory
and cognition. First of all, better understanding a domain can require reconceptualiza-
tion. The main example of this phenomenon here is the shift from “voices as streams” to
protovoices. In traditional accounts, sequential relations between notes have usually
been identified with membership of the same “stream voice”, on some level of abstrac-
tion. Itis easy to leave this view unquestioned when focusing on typical and prototypical
cases, such as common contrapuntal patterns (R. Gjerdingen 2007; IJzerman 2019) or
voice leading in highly constrained and regular styles such as strict polyphony (Jeppesen
1946). The key to testing the assumptions underlying a conceptualization is to look at the
complex examples and edge cases in which the concept fails, and ask: Is this failure due
to a different principle being at work (that overrides the concept in question), or should
this example still be covered by the concept? In the case of voice leading, such edge cases
are implied polyphony within voices, free polyphonic textures, and different types of
strict voices (e.g., in fugues vs. chorales). Taken together, these examples show that there
are at least three different perspectives on voice structure (cf. Cambouropoulos 2006):
parts (i.e., written surface voices), auditory streams (Bregman 1990; Huron 2016), and
tonal-functional relations between sequential notes. To be clear, none of these meanings
of “voice” is privileged over the others, they simply correspond to different aspects of
musical experience: compositional conventions, perceptual effects, and structural inter-
pretation, respectively. However, it is important to be aware of their distinctness and to
know, which concept is appropriate in which context. In particular, the fundamental
type of voice in the context of tonal structure is the protovoice, not the streams or the
part.

The protovoice model also demonstrates that computational models can be very expres-
sive and meaningful. They are neither constrained to a fixed set of existing formalisms
(such as Markov models or probabilistic grammars), nor do they have to be heuristic
and ad-hoc when dealing with ambiguity. This is an important insight regarding the
question whether formal and computational modeling is an appropriate (or even nec-
essary) tool for music theory (Lerdahl and Jackendoff 1983; Temperley 1999a; Wiggins
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2012; Rohrmeier and Pearce 2018), or whether it necessarily leads to oversimplifica-
tion and decontextualization.? Formal models require abstraction and separation of
different aspects (i.e., analysis), but that doesn’t mean that they are not meaningful or
that they systematically and necessarily fail to capture certain aspects. Mathematics
and formal modeling are human-made tools, not given laws: they are designed (and
can be changed, adapted, and invented) to make sense of reality by providing abstract
descriptions of and generalizations over phenomena that are observed in reality. This
insight is important for both music theorists and computational modelers: On one
hand, modeling is not just a reduction of a complex object to numbers (or some fixed,
preexisting set of abstract concepts). Quite contrary, the abstract concepts are designed
to be meaningful and capture intuitions, and their systematic and formalistic character
only serves their exactness. That something can be executed by a computer does not
imply that it does not mean anything. On the other hand, it is important to note that
mathematical consistency is not the only criterion for the plausibility of a model. It is
important to understand the modeled domain and its phenomena well and to show that
the model captures these phenomena accurately.

The complexity of the protovoice model suggests moreover that the similarities between
syntactic structure in language and music might not be as deep as sometimes believed
(Forte 1967; Winograd 1968; Bernstein 1976; Katz and Pesetsky 2011). In particular, Katz
and Pesetsky (2011) base their claims about the identity of syntax in language and music
on the GTTM, which does not take into account polyphonic structure at all. While the
protovoice model is also a generative and recursive model (like grammars), the struc-
tures it generates are considerably different from (and arguably more complex than)
the tree-like syntactic structures generated in language. The main differences between
the two are the multidimensionality of the protovoice texture with both vertical and
horizontal connections as opposed to a flat sequence of elements, as well as the coexis-
tence of operations that elaborate slices and transitions. Taken separately, operations on
only slices or only transitions would each result in the familiar tree-like dependencies
(Yust 2006). In combination, however, no type of entity (slices or transitions) can take
precedence over the other and become the primary object that would correspond to the
elements of a syntax tree in language. For these reasons, the similarity between linguistic
and musical syntax either relies on much more generic features (such as recursive de-
pendencies) which are potentially shared with other domains (Fitch and Martins 2014),
or, if music and language specifically share syntactic mechanisms, those would have to
exhibit properties that go beyond what is needed for language in order to account for
musical structure.

*Wiggins (2012) speaks of a “deep-seated horror of reductionism”.
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10.3 Looking Onwards

There are several directions in which the work presented in this thesis can be continued.
One such direction is a better model of how interpretations are obtained and how their
plausibility is evaluated. While the current probabilistic version of the model works
surprisingly well for a rather naive proof of concept, a more refined and informed model
would take into account the context of the note to be generated, typical derivation
patterns, as well as latent entities such as harmonies. Such a model could establish
an explicit connection between higher-level concepts and structural primitives within
the model instead of external to the model (as in Chapter 7). Similarly, more flexible
parsing strategies are needed if the model should describe cognitive phenomena not
just on the computational but also on the algorithmic level. One possible strategy is to
learn heuristics for step-by-step reduction using reinforcement learning, which has been
argued to describe aspects of cognition down to the neuronal level (Gerstner et al. 2018).
The generative probabilistic model then takes the role of the reward, teaching the model
how to choose interpretations (Weber et al. 2015). Another strategy is to allow incomplete,
partial, and contradictory interpretations, which are then incrementally refined to obtain
amore complete and consistent overall analyses, reinterpreting segments when required
by their context. Such a model might more accurately describe how interpretations
develop in actual human perception, rather than the idealized listener considered here.

Another important direction is to broaden the scope of the model. In its current form,
the protovoice model focuses rather strictly on the pitch aspect of tonal structure. This
raises the question how to integrate other musical aspects such as temporal structure
(Yust 2018; Rohrmeier 2020b; Lerdahl and Jackendoff 1983). A similar point could be
made about more style-specific aspects such as regularities of surface voices, form, or
motivic structure.

Broadening the scope of the model also means applying its underlying ideas to styles
of music that use different structural primitives. Chapter 5 has already demonstrated
how an abstract model can describe phenomena across styles. While the specific details
of a model (e.g., its operations and their interpretation) will generally differ between
different styles, the idea of strong interpretations as a form of “making sense” of the
observed surface is a general cognitive phenomenon that on its own is independent
from cultural influences (although its concrete instantiation is very much dependent
on individual experience and thus cultural context). It thus remains a question that we
have conveniently ignored so far: How is the set of generative operations and structural
primitives obtained in the first place? In other words, Chapter 9 has shown how to learn
the probabilities in a probabilistic program, but where does the program itself come
from? To some extent, the rules of a system can be inferred from plain observations
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(Harasim 2020; Ullman and Tenenbaum 2020a; Tenenbaum et al. 2011), but even then
a space of hypotheses, of possible models must be assumed. The fact that the same
inference problem arises in various domains of perception and cognition (such as lan-
guage, vision, and conceptual reasoning) suggests that these domains might share a
common space of representable and learnable structures. In that sense, studying the
rich and complex structures that we encounter in various musical styles and cultures
would ultimately help us understand how humans make sense of the world in general.
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.9 Chord Types and Ornamentation
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Figure A.1 - The posterior distributions of the chordtones ¢“? (blue, left-leaning bars) and

ornaments ¢°” (orange, right-leaning bars) of the chord types that are specific to either

the ABC+ or the EWLD corpus. The chords that are common to both datasets are shown

235

in Figure 4.5 Pitches are ordered according to the line of fifths and expressed as intervals

relative to the root (P1, unison). (Continues on next page.)
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suspended-4th

augmented dominant-13th

minor-9th

German-6th major-9th

. dominant-11th
Italian-6th . .

minor-major-7th

Erench-6th 4 suspended-2nd

minor-11th

minor-major-7th - power

major-13th

augmented-7th 4 minor-13th

T T T T I T T T T
0 100000 200000 300000 400000 0 50000 100000 150000 200000
Qp Qp

Figure A.2 — Posterior distributions of the chord type probabilities y. The bars indicate
the parameters of the posterior Dirichlet distribution, where one parameter corresponds
to each chord type and indicates the prevalence of that chord type. The values essentially
correspond to the number of occurrences of each chord types.

ABC+ EWLD
120 4 1

100 A 1

60 1

40 4 1

5.50 5.52 5.54 5.56 5.58 5.60 5.62 5.64 222 2.24 2.26 2.28 2.30 2.32 2.34 2.36
A A

Figure A.3 — Posterior distributions of the note rate A for the ABC+ corpus (left) and the
EWLD corpus (right). Both plots share the y-axis and have the same scaling on the x-axis,
so the variance of the distrubtions can be compared directly. The mean, however, is much
smaller for the EWLD data, probably due to the fact that it consists of melodies instead of
full scores.
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Examples of the Annotation Format

B.1 Example of an Input Piece

[
{

"notes": [
{ "id": "sliceO.notel", "hold": false, "pitch": "E4" },
{ "id": "slice0.note0®@", "hold": true, "pitch": "C4" }

1,

"time": "1.1.0"

)

"notes": [
{ "id": "slicel.note3", "hold": true, "pitch": "D4" },
{ "id": "slicel.note0®", "hold": false, "pitch": "C&" }

1,

"time": "1.2.0"

)

"notes": [
{ "id": "slice2.note4", "hold": false, "pitch": "B3" },
{ "id": "slice2.note3", "hold": false, "pitch": "D&" }

1,

"time": "1.3.0"

"notes": [{ "id": "slice3.note6", "hold": false, "pitch": "Cz" }],

"time": "1.4.0"

}
]

Listing B.1 — An example of a . piece. json file.
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B.2 The JSON Format of an Analysis File

type AnalysisJSON =
{ derivation :: Array LeftmostJSON
, start :: SliceJSON
, topSegments ::
Array
{ trans :: TransitionJSON
, rslice :: SliceJSON

}
}
type Slice]SON =
{ id :: Sliceld -- an integer
, notes :: StartStop (Array Note) -- "start", "stop", or [notes]
}

type Note = { pitch :: String, id :: String }
type Transition]SON =
{ id :: TransIld -- an integer
, edges :: EdgesJSON
, is2nd :: Boolean
}
type EdgesJSON = { regular :: Array Edge, passing :: Array Edge }
type Edge = { left :: StartStop Note, right :: StartStop Note
type LeftmostJSON = Variant
( freezeleft :: FreezeJSON
, freezeOnly :: FreezeJSON
, splitLeft :: SplitJSON
, SplitRight :: SplitJSON
, splitOnly :: SplitJSON
, hori :: HoriJSON

type FreezeJSON =
{ ties :: Array Edge
, prevTime :: String
}
type ChildrenJSON = Array { child :: Note, orn :: Maybe String }
type SplitJSON =
{ regular :: Array { parent :: Edge, children :: ChildrenJSON }
, passing :: Array { parent :: Edge, children :: ChildrenJSON }
, fromLeft :: Array { parent :: Note, children :: ChildrenJSON }
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B.2 The JSON Format of an Analysis File

, fromRight ::
, unexplained ::

, keepLeft ::

, keepRight ::

, passLeft ::

, passRight ::

Array { parent :: Note, children :: ChildrenJSON }
Array Note

Array Edge

Array Edge

Array Edge

Array Edge

, ids :: { left :: TransId, slice :: Sliceld, right :: TransId }
}
type HorilSON =
{ children ::
Array
{ parent :: Note
, child ::
Variant
( leftChild :: Note
, rightChild :: Note
, bothChildren :: { left :: Note, right :: Note }
, tooManyChildren ::
{ left :: Array Note
, right :: Array Note
}
)
}
, unexplained :: { left :: Array Note, right :: Array Note }
, midEdges :: EdgesJSON
, ids ::
{ left :: TransId -- an integer
, lslice :: Sliceld -- an integer
, mid :: TransId
, rslice :: SliceId
, right :: TransId

Listing B.2 — The full format of a .analysis. json file expressed as PureScript types.

241



Appendix B. Examples of the Annotation Format

B.3 Example of an Analysis File

{
"topSegments": [
{
"trans": {
"is2nd": false,
"id": 9,
"edges": {
"regular": [{ "right": "stop", "left": "start" }],
"passing": []
}
b
"rslice": { "notes": "stop", "id": 5 }
}
1,

"start": { "notes": "start", "id": 0 },
"derivation": [
{
"type": "splitOnly",
"value": {
"unexplained": [],
"regular": [

{
"parent": { "right": "stop", "left": "start" },
"children": [
{
"orn": "RootNote",
"child": { "pitch": "E4", "id": "notes6.0" }
b,
"orn": "RootNote",
"child": { "pitch": "C4", "id": "notes6.1" }
}
]
}
1,

"passing": [],
"passRight": [],
"passLeft": [],
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B.3 Example of an Analysis File

"keepRight": [],
"keepLeft": [],
"ids": { "slice": 6, "right": 8, "left": 7 },
"fromRight": [],
"fromLeft": []
}
b
{
"type": "hori",
"value": {
"unexplained": { "right": [], "left": [] },
"midEdges": {
"regular": [
{
"right": { "pitch": "C4", "id": "slice3.note6" },
"left": { "pitch": "C4", "id": "sliceO.note0®" }
}
1,
"passing": [
{
"right": { "pitch": "C4", "id": "slice3.note6" },
"left": { "pitch": "E4", "id": "slice0O.notel" }
}
1
b,
"ids": { "rslice": 4, "right": 4, "mid": 6, "lslice": 1, "left": 0 },
"children": [
{
"parent": { "pitch": "E4", "id": "notes6.0" },
"child": {
"type": "leftChild",
"value": { "pitch": "E4", "id": "sliceO.notel" }
}
b,
{
"parent": { "pitch": "C4", "id": "notes6.1" },
"child": {
"type": "bothChildren",
"value": {
"right": { "pitch": "C4", "id": "slice3.note6" },
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Appendix B. Examples of the Annotation Format

Il'leftll: { "pitCh": "CLI-"' “id“:

b

{ "type": "freezelLeft", "value": { "ties":

{
"type": "splitLeft",
"value": {
"unexplained": [],
"regular": [

"slice0.note0®" }

[1, "prevTime": "" } },

"child": { "pitch": "B3", "id": "slice2.notez" }

"child": { "pitch": "D&", "id": "slice2.note3" }

{
"parent": {
"right": { "pitch": "Cs", "id": "slice3.note6" },
"left": { "pitch": "C4", "id": "sliceO.note0®" }
b,
"children": [
{
"orn": "FullNeighbor",
}
]
}
1,
"passing": [
{
"parent": {
"right": { "pitch": "C4", "id": "slice3.note6" },
"left": { "pitch": "Ez", "id": "slice0.notel" }
b,
"children": [
{
"orn": "PassingMid",
}
]
}
1,
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B.3 Example of an Analysis File

"passRight": [],
"passLeft": [],
"keepRight": [],
"keepLeft": [

{
"right": { "pitch": "B3", "id": "slice2.note4" },
"left": { "pitch": "C4", "id": "sliceO.note0®" }

b,

{
"right": { "pitch": "D4", "id": "slice2.note3" },
"left": { "pitch": "E4", "id": "sliceO.notel" }

}

1,

"ids": { "slice": 3, "right": 3, "left": 5 },
"fromRight": [],
"fromLeft": []
}
b,
{
"type": "splitLeft",
"value": {
"unexplained": [],
"regular": [

{
"parent": {
"right": { "pitch": "B3", "id": "slice2.notez" },
"left": { "pitch": "C4", "id": "sliceO.note0®" }
by
"children": [
{
"orn": "RightRepeatOfLeft",
"child": { "pitch": "C4", "id": "slicel.note0®" }
}
]
b,
{

"parent": {
"right": { "pitch": "D4", "id": "slice2.note3" },
"left": { "pitch": "E4", "id": "sliceO.notel" }
b
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"children": [
{
"orn": "LeftRepeatOfRight",
"child": { "pitch": "D4&", "id": "slicel.note3" }
}

}
1,
"passing": [],
"passRight": [],
"passLeft": [],
"keepRight": [
{
"right": { "pitch": "D4", "id": "slice2.note3" },
"left": { "pitch": "D&", "id": "slicel.note3" }
}
1,
"keepLeft": [
{
"right": { "pitch": "C4", "id": "slicel.note@" },
"left": { "pitch": "Cs&", "id": "slice0.note0®" }
}
1,
"ids": { "slice": 2, "right": 2, "left": 1 },
"fromRight": [],
"fromLeft": []
}
b,
{

"type": "freezeleft",
"value": {
"ties": [
{
"right": { "pitch": "C4", "id": "slicel.note0" },
"left": { "pitch": "Cs4", "id": "slice0@.note0" }
}
1,
"prevTime": "1.1.0/1"
}
b,
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B.3 Example of an Analysis File

{
"type": "freezeleft",
"value": {
"ties": [
{
"right": { "pitch": "D4", "id": "slice2.note3" },
"left": { "pitch": "D4", "id": "slicel.note3" }
}
1,
"prevTime": "1.2.0/1"
}
b

{ "type": "freezelLeft", "value": { "ties": [], "prevTime": "1.3.0/1" } },
{ "type": "freezeOnly", "value": { "ties": [], "prevTime": "1.4.0/1" } }

Listing B.3 — An example of a .analysis. json file.
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The Probabilistic Model

C.1 Model Parameters

Parameter Prior Posterior
singleFreeze Beta(1,1) Beta(15,1)
§ doubleGoLeft Beta(1,1) Beta(519,233)
2 doubleLeftFreeze Beta(1,1) Beta(421,31)
doubleRightSplit Beta(1,1) Beta(77,233)
elaborateRegular Beta(1,1) Beta(382,82)
elaboratel Beta(1,1) Beta(621,39)
elaborateR Beta(1,1) Beta(677,58)
rootFifths Beta(1,1) Beta(67,128)
keepL Beta(1,1) Beta(296, 309)
keepR Beta(1,1) Beta(246,396)
repeatOverNeighbor Beta(1,1) Beta(239,119)
nbChromatic Beta(1,1) Beta(8,230)
- nbAlt Beta(1,1) Beta(237,5)
5. repeatLeftOverRight Beta(l,1) Beta(86,51)
2 repeatAlter Beta(1,1) Beta(2,135)
repeatAlterUp Beta(1,1) Beta(2,1)
repeatAlterSemis Beta(1,1) Beta(2,1)
connect Beta(1,1) Beta(101,4)
connectChromaticLeftOverRight Beta(1,1) Beta(4,2)
passUp Beta(1,1) Beta(6, 14)
passLeftOverRight Beta(1,1) Beta(1,19)
newPassingLeft Beta(1,1) Beta(1821,31)
newPassingRight Beta(1,1) Beta(1993,22)
newPassingMid Beta(1,1) Beta(1638,54)
'z noteHoriDirection Dirichlet;(1)  Dirichlet;(456,264,252)
E notesOnOtherSide Beta(1,1) Beta(3,1)
horiRepetitionEdge Beta(1,1) Beta(338,524)

Table C.1 — An overview over all global parameters and their prior distributions.
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Appendix C. The Probabilistic Model

C.2 Pseudocode of the Model

Algorithm C.1 - Top-level structure of the model: sampling parameters and derivations.

SAMPLEDATASET
SAMPLEDERIVATION SAMPLEPARAMS

s
/\

SAMPLESINGLESTEP SAMPLEDOUBLESTEP

1: function SAMPLEDATASET(NN)

2: global 6 — SAMPLEPARAMS( )
3: forie[l,N]do

4: D; — SAMPLEDERIVATION( )
5: return D

6: function SAMPLEPARAMS( )

7: for a € global parameters do

8: 0, ~ prior,,

9: return 0

10: function SAMPLEDERIVATION( )
11: -- start with the empty piece and derivation
12: return SAMPLESTEP(X — IX, [], false)

13: function SAMPLESTEP(surface, deriv, afterRightSplit)

14: -- check number of open transitions

15: if 0 open transitions in surface then

16: return deriv

17: else if 1 open transition then

18: op — SAMPLESINGLESTEP(surface)

19: else

20: op — SAMPLEDOUBLESTEP(surface, afterRightSplit)
21: surface’ — applyLeftmost(op, surface)

22: return SAMPLESTEP(surface’, deriv + op, isRightSplit(op))
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C.2 Pseudocode of the Model

Algorithm C.2 - Sampling outer structure (splits, spreads, freezes).

SAMPLESINGLESTEP SAMPLEDOUBLESTEP

| _— |

SPLITORFREEZE RIGHTSPLITORSPREAD
SAMPLEFREEZE SAMPLESPLIT SAMPLESPREAD

1: function SAMPLESINGLESTEP(surface)
2: return makeSingleOp(SPLITORFREEZE(last(surface), freezeSingle))

: function SAMPLEDOUBLESTEP(6, surface, afterRightSplit)
if afterRightSplit then

return RIGHTSPLITORSPREAD(fstOpen(surface), sndOpen(surface))
else

continueLeft ~ Bernoulli(6 4, ublecorefi)

if continueLeft then

makeLeftOp(SpLITORFREEZE(fstOpen(surface), doubleLeftFreeze))

10: else
11: RIGHTSPLITORSPREAD(fstOpen(surface), sndOpen(surface))

© @° N TR W

12: function SPLITORFREEZE(transition, param)

13: if transition is freezable then

14: shouldFreeze ~ Bernoulli(8 ,4,4,,)

15: if shouldFreeze then

16: return SAMPLEFREEZE( transition)
17: else return SAMPLESPLIT( transition)
18: else return SAMPLESPLIT(fransition)

19: function RIGHTSPLITORSPREAD(leftTrans, rightTrans)
20: shouldSplitRight ~ Bernoulli(04,upierightspiic)
21: if shouldSplitRight then

22: return makeRightSplit(SamMpLESPLIT(right Trans))
23: else
24: return SAMPLESPREAD(sliceBetween(left Trans, rightTrans))
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Appendix C. The Probabilistic Model

Algorithm C.3 — Sampling freeze and spread.

SAMPLEFREEZE SAMPLESPREAD

|

SAMPLEPASSINGEDGES

1: function SAMPLEFREEZE(transition)
2 return makeFreezeOp(transition)

3: function SAMPLESPREAD(slice)

4 -- decide side of each note and collect in 'dirs'
5 for (note, n) € slice do

6: direction ~ Categorical, (0,,oerioriDirection)

7 if direction = 0 then

8 dirs[note] — BOTH

9 else if direction = 1 then

10: other ~ Binomial,_; (00tesonotherside)

11: dirs[note] — (LEFT, n — other)

12: else

13: other ~ Binomialn—l (enotesOnOtherSide)

14: dirs[note] — (RIGHT, n — other)

15: -- generate repetition edges

16: for [ € leftNotes(dirs); r € rightNotes(dirs) if pitchClass(l) = pitchClass(r) do
17: repeat ~ Bernoulli(6y,origepetitiontdge)

18: if repeat then

19: repeatEdges — repeatEdgesU (1, 1)

20: -- generate new passing edges

21: passingEdges —

22: SaMPLEPASSINGEDGES(leftNotes(dirs), rightNotes(dirs), newPassingMid))

23: return makeSpread(dirs, repeatEdges, passingEdges)

24: function SAMPLEPASSINGEDGES(notesLeft, notesRight, param)

25: for [ € notesLeft, r € notesRight if passingDistance(/, r) do
26: n ~ Geometricy (6aram)
27: passingEdges — passingEdgesU (1,1) - n
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C.2 Pseudocode of the Model

Algorithm C.4 - Sampling a split.

SAMPLESPLIT SAMPLEOCTAVE

T

ELABREGULAREDGE /* ELABPASSINGEDGE ELABLEFTNOTE ELABRIGHTNOTE
KEEPREGULAREDGE SAMPLEPASSINGEDGES
1: function SAMPLESPLIT(0, surface, transition)
2 -- sample children:
3 childrenReg — [ELABREGULAREDGE(edge) for edge € regularEdges(transition)]
4 childrenPass — [ELABPASSINGEDGE(edge) for edge € passingEdges(transition)]
5: childrenL — [ELABLEFTNOTE(note) for note € leftSlice(transition)]
6 childrenR — [ELABRIGHTNOTE(note) for note € rightSlice(transition)]
7 -- collect generated objects:
8 middleSlice — makeSlice(childrenReg,childrenPass,childrenL,childrenR)
9 (edgesL, edgesR) — makeEdges(childrenReg, childrenPass,childrenL,childrenR)
10: -- generate passing edges and drop/keep regular edges:
11: passL — SAMPLEPASSINGEDGES(left(transition), middleSlice)
12: passR — SAMPLEPASSINGEDGEs(middleSlice, right(transition))
13: keepL — [KEEPREGULAREDGE(edge) for edge € edgesL|
14: keepL — [KEEPREGULAREDGE(edge) for edge € edgesR]
15: return makeSplit(childrenReg, childrenPass, ...)
16: function KEEPREGULAREDGE(edge)
17: keep ~ Bernoulli(0yp,)
18: return (edge, keep)
19: function SAMPLEOCTAVE( )
20: -- excluded from the inference process, pseudo-uniform
21: return some octave
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Algorithm C.5 - Elaborating regular edges.

ELABREGULAREDGE
SAMPLENEIGHBOR SAMPLEOCTAVE

1: function ELABREGULAREDGE(parentEdge — (leftParent, rightParent))
2 n ~ Geometric, (eelaborateRegular)

3 children — permute n do

4 if parentEdge = (X, X) then

5: -- root edge? -> generate root note

6 fifthsDir ~ Bernoulli(0.5)

7 fifthsN ~ Geometricg (0,,orifths)

8 octaves — SAMPLEOCTAVE( ) + 4

9 yield makeRootNote(fifthsDir, fifthsN, octaves)

10: else

11: -- non-root edge -> generate normal ornament

12 if degree(leftParent) = degree(rightParent) then

13: -- parents equal -> full neighbor or full repeat
14: repeat ~ Bernoulli(6,epeatoverneighbor)

15: if repeat then

16: yield makeFullRepeat(leftNote + SAMPLEOCTAVE( ))

17: else

18: goUp ~ Bernoulli(0.5)

19: yield makeFullNeighbor(SAMPLENEIGHBOR(goUp, leftParent))
20: else

21: -- parents not equal -> repeat left or right

22: repeatLeft ~ Bernoulli(6,epeat efioverright)

23: alter ~ Bernoulli(6,epeataiter)

24: if alter then

25 direction ~ Bernoulli(6,epeataiterup)

26: semitones ~ Geometric, (6 epeataltersemis)

27: alteration — makeAlteration(direction, semitones)

28: else alteration — perfectUnison

29: octaves — SAMPLEOCTAVE( )

30: if repeatLeft then

31 makeRightRepeatOfLeft(parentLeft, alteration, octaves)
32: else

33: makeLeftRepeatOfRight(parentRight, alteration, octaves)
34: return (parentEdge, children)
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C.2 Pseudocode of the Model

Algorithm C.6 - Elaborating passing edges.

ELABPASSINGEDGE

N

SAMPLENONMIDPASSING SAMPLEOCTAVE

1: function ELABPASSINGEDGE(parentEdge — (leftParent, rightParent, n))
2 children — permute n do
3 if diatonicDistance(leftParent,rightParent) = 1 then
4 -- distance = 1 step -> chromatic passing tone
S5 onLef tSide ~ Bernoulli (6connectChromaticLeftOverRight)
6 octaves — SAMPLEOCTAVE( )
7 if onLeftSide then
8 child — parentLeft + makeAlteration(direction(parentEdge),1)
9 else
10: child — parentRight - makeAlteration(direction(parentEdge),1)
11: yield makeMidPassing(child)
12: else if diatonicDistance(leftParent,rightParent) = 2 then
13: -- distance = 2 steps -> can connect
14: connect ~ Bernoulli(0.,ect)
15: if connect then
16: child — SaAMPLENEIGHBOR(direction(parentEdge), leftParent)
17: yield makeMidPassing(child)
18: else
19: yield SAMPLENONMIDPASSING(leftParent,rightParent)
20: else
21: -- distance > 2 steps -> cannot connect
22: yield SAMPLENONMIDPASSING(leftParent,rightParent)

23: return (parentEdge, children)

24: function SAMPLENONMIDPASSING(leftParent, rightParent)
25: onLeftSide ~ Bernoulli(0 ;g1 efioverright)

26: goUp ~ Bernoulli(8,,,55yp)

27: if onLeftSide then

28: return makeLeftPassing(SAMPLENEIGHBOR(goUp, leftParent))
29: else
30: return makeLeftPassing(SAMPLENEIGHBOR(~goUp, rightParent))
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Algorithm C.7 - Elaborating single notes.

ELABLEFTNOTE ELABRIGHTNOTE

S

SAMPLESINGLEORNAMENTS

—

SAMPLENEIGHBOR —> SAMPLEOCTAVE

2N

: function ELABLEFTNOTE(parent)

children — SAMPLESINGLEORNAMENTS(parent, elaborateL)
return (parent, [makeLeftOrnament(child) for child €children])

function ELABRIGHTNOTE(parent)
children — SAMPLESINGLEORNAMENTS( parent, elaborateR)
return (parent, [makeRightOrnament(child) for child € children])

function SAMPLESINGLEORNAMENTS( parent, paramElaborate)
n-~ Geornen‘iCO (HpammElabomte)
children — permute n do
repeat ~ Bernoulli(6,peatoverNeighbor)
if repeat then
oct — SAMPLEOCTAVE( )
yield makeRepeat(parent + oct)
else
up ~ Bernoulli(0.5)
child — SAMPLENEIGHBOR(up, parent)
yield makeNeighbor(child)

return children

function SAMPLENEIGHBOR(goUp, parent)
chromatic ~ Bernoulli(0,,pchromatic)
octaves — SAMPLEOCTAVE( )
nAlteration ~ Geometricy (0,
if chromatic then
return parent + octaves + makeAlteration(goUp, nAlteration)
else
altUp ~ Bernoulli(0.5)
step — makeStep(stepUp, altUp, nAlteration)
return parent + octaves + step






Appendix C. The Probabilistic Model

C.3 Additional Data

Prelude in C major

J. S. Bach, BWV 939
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Figure C.1 - Prelude in C major by J. S. Bach (BWV 939).



C.3 Additional Data

=

Figure C.2 — Analysis of Bach’s prelude in C major (BWV 939).
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Prelude in D minor

J. S. Bach, BWV 940
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Figure C.3 - Prelude in D minor by J. S. Bach (BWV 940).
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Figure C.4 — Analysis of Bach’s prelude in D minor (BWV 940).
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