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Abstract

The electron self-interaction is a long-standing problem in density functional theory
and is particularly critical in the description of polarons. Polarons are quasiparticles
involving charge localization coupled with self-induced lattice distortions. Since
their prediction by Landau almost a century ago, polarons have drawn a great deal
of attention in physics, chemistry, and materials science. The polaron stability
results from the competition between the energy gain associated with the charge
localization and the energy cost of the involved lattice distortions. Therefore,
the polaron localization and its formation energy are sensitively affected by the
description of the electron self-interaction. Various competitive correction schemes
based on either one-body or many-body descriptions of the self-interaction have
been proposed to solve this longstanding problem. At present, it remains unclear
which of these two descriptions of the self-interaction needs to be addressed in
polaron physics.

In this thesis, we address the self-interaction problem in relation to polarons
in density functional theory. First, we develop a scheme for correcting finite-
size electrostatic effects involving the polaron charge density, which is crucial for
achieving energetics of isolated polarons. Then, we study polarons with state-
of-the-art hybrid functionals, highlighting the notion of formation energy for
determining the polaron stability. Next, we develop a unified theoretical framework
encompassing one-body and many-body forms of self-interaction, which confers
superiority to the notion of many-body self-interaction over the notion of one-
body self-interaction. Given the preeminence of the many-body self-interaction,
we introduce an efficient semilocal scheme for localizing polarons based on the
inclusion of a weak local potential in the semilocal Hamiltonian to suppress the
many-body self-interaction. Taking advantage of these findings, we develop a
selection criterion for the Hubbard interaction in Hubbard-corrected functionals.
Finally, we apply our methodologies to the case of an anisotropic system, and use
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Abstract

semilocal functionals free from many-body self-interaction to calculate polaron
hopping rates. In this context, we demonstrate that polaron properties free from
many-body self-interaction, including formation energies, hopping energy barriers,
and hopping rates are robust upon variation of the functional. This supports
the use of our semilocal scheme and of the Hubbard-corrected functional over
computationally more expensive hybrid functionals.

This thesis advances the conceptual understanding of the self-interaction problem
in density functional theory, and paves the way to efficient calculations of polarons
in large systems, in systematic studies involving large sets of materials, in molecular
dynamics evolving over long time periods, and in charge transfer mechanisms.

Keywords: Self-interaction, Polarons, Defects, Phonons, Electronic Structure
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Résumé

L’auto-interaction des électrons est un problème de longue date dans la théorie de
la fonctionnelle de la densité et est particulièrement critique dans la description de
polarons. Les polarons sont des quasi-particules impliquant une localisation de la
charge couplée à des distorsions auto-induites du réseau. Depuis leur prédiction
par Landau il y a presque un siècle, les polarons ont attiré une grande attention en
physique, en chimie et en science des matériaux. La stabilité de polarons résulte
de la compétition entre le gain d’énergie associé à la localisation de la charge et le
coût énergétique des distorsions induite du réseau. Par conséquent, la localisation
du polaron et son énergie de formation sont affectées de manière sensible par la
description de l’auto-interaction des électrons. Divers schémas de correction basés
sur des descriptions à un ou plusieurs corps de l’auto-interaction ont été proposés
pour résoudre cet ancien problème. A l’heure actuelle, il n’est pas clair laquelle
de ces deux descriptions de l’auto-interaction doit être prise en compte dans la
physique de polarons.

Dans cette thèse, nous abordons le problème de l’auto-interaction en relation
avec les polarons dans la théorie de la fonctionnelle de la densité. Tout d’abord,
nous développons un schéma pour corriger les effets électrostatiques de taille
finie impliquant la densité de charge du polaron, ce qui est crucial pour obtenir
l’énergétique de polarons isolés. Ensuite, nous étudions les polarons à l’aide de
fonctionnelles hybrides de pointes, en mettant en évidence la notion d’énergie de
formation pour déterminer la stabilité de polarons. Par la suite, nous développons
un cadre théorique unifié englobant les formes d’auto-interaction à un corps et à
plusieurs corps, ce qui confère à la notion d’auto-interaction à plusieurs corps une
supériorité sur la notion d’auto-interaction à un corps. Étant donné la prééminence
de l’auto-interaction entre plusieurs corps, nous introduisons un schéma semilo-
cal efficace pour localiser les polarons, basé sur l’inclusion d’un potentiel local
faible dans l’Hamiltonien semilocal pour supprimer l’auto-interaction à plusieurs
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Résumé

corps. En exploitant ces résultats, nous développons un critère de sélection pour
l’interaction de Hubbard dans les fonctionnelles corrigées par Hubbard. Enfin, nous
appliquons nos méthodologies au cas d’un système anisotrope, et nous utilisons
des fonctionnelles semilocales exemptes d’auto-interaction à plusieurs corps pour
calculer les taux de sauts des polarons. Dans ce contexte, nous démontrons que
les propriétés des polarons affranchis de l’auto-interaction à plusieurs corps, dont
les énergies de formation, les barrières énergétiques de saut, et les taux de saut
sont robustes lors de variations de la fonctionnelle. Ceci soutient l’utilisation de
notre schéma semi-local et de la fonctionnelle corrigée par Hubbard par rapport
aux fonctions hybrides plus coûteuses en termes de calcul.

Cette thèse fait progresser la compréhension conceptuelle du problème de l’auto-
interaction dans la théorie de la fonctionnelle de la densité, et ouvre la voie à des
calculs efficaces de polarons dans de grands systèmes, dans des études systématiques
impliquant de grands ensembles de matériaux, dans des dynamiques moléculaires
évoluant sur de longues périodes de temps, et dans des mécanismes de transfert de
charges.

Mots-clés: Auto-interaction, Polarons, Défauts, Phonons, Structure électronique
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1 Introduction

"The underlying physical laws necessary for the mathe-
matical theory of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty
is only that the exact application of these laws leads to
equations much too complicated to be soluble. It therefore
becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which
can lead to an explanation of the main features of com-
plex atomic systems without too much computation." –
Paul Dirac, 1929 [1]

1.1 Self-interaction in electronic structure theory

Quantum mechanics is a fundamental theory that describes the physical phenomena
at the atomic and subatomic scale. In this theory, particles like electrons can be
treated as waves and they are governed by a complex wave equation, namely the
Schrödinger equation. Even though quantum mechanics is not yet fully understood,
our current knowledge of quantum mechanics can be used for making predictions
of physical properties to be compared with experiment. In particular, one of the
most important applications of quantum mechanics consists in modelling condensed
matter from first principles, in order to understand its properties at a quantitative
level. Condensed matter refers to any system with many constituents interacting
with each other, such as solids and liquids; modelling refers to the description of
a system using mathematical laws; from first principles denotes the approach of
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Chapter 1 Introduction

starting from basic concepts that cannot be deduced from any other proposition. In
the language of quantum mechanics, these concepts refer to solving the Schrödinger
equation for a given atomic system. Despite knowing this exact law of quantum
mechanics, its solution is extremely challenging. Indeed, condensed matter systems
are characterized by a multitude of interactions between electrons and ions. While
the treatment of ions can be generally simplified assuming that their movements are
much slower than those of electrons, the number of electron-electron interactions
grows tremendously with the number of electrons. For this reason, the exact
treatment of such interactions becomes inaccessible from a computational point of
view. As highlighted by the Nobel laureate Kohn [2],

"In general the many-electron wave function Ψ(r1, . . . , rN ) for a system
of N electrons is not a legitimate scientific concept, when N > N0,
where N0 ≈ 103."

This calls for the development of approximate strategies for modelling the com-
plex Coulomb interactions between electrons, thus paving the way to the field of
electronic structure theory.

Electronic structure methods have made an unprecedented impact on the use
of quantum mechanics for studying challenging problems in physics, chemistry
and materials science. In such methods, the interactions between electrons are
calculated in an approximate way, thereby allowing for the computational modelling
of condensed matter from first principles. Depending on the level of theory, more
physical ingredients can be taken into account, and the comparison between theory
and experiments can be improved. However, the computational cost of such
calculations increases with the level of theory, and can become inaccessible for
studying technologically relevant applications. Hence, for this reason, the ability
of obtaining accurate results within computationally efficient methods is a core
objective of electronic structure methods.

One of the most notorious shortcomings in electronic structure theory is the long-
standing problem of the electron self-interaction. This consists in the interaction
of the electron with itself, which arises from the approximate treatment of the
electron-electron interactions. Clearly, such a spurious effect is absent in the exact
theory, since electrons interact only in pairs. The self-interaction is responsible for
many failures of widely-used electronic structure methods, including the incorrect

2



Introduction Chapter 1

prediction of binding energies, ionization potentials, electron affinities, charge
transfer rates, and band gaps. These properties are critical for the determination
of the structural, electronic, and transport properties of materials. For instance,
the optical and transport properties of semiconductors are largely affected by the
presence of defects in the crystal lattice. In this context, the account of the electron
self-interaction enables a direct comparison between theory and experiment, and is
thus crucial for the design of electronic and optoelectronic devices.

In the following, we give a brief overview of some landmark schemes developed in
electronic structure theory, and of related approaches for addressing the electron
self-interaction. In 1927, Thomas and Fermi proposed a semiclassical approach
[3, 4] in which the potential energy is a function of the total electron density n,
namely

U [n] =
1

2

∫
drdr′

n(r)n(r′)

|r− r′|
. (1.1)

However, as highlighted in 1934 by Fermi and Amaldi [5], the potential energy
U does not vanish for a one electron system due to the spurious interaction of
the electron with itself. To address such issue, these authors proposed a simple
expression of the self-interaction energy correction, namely

∆E[n]|TF = −NU
[
n

N

]
, (1.2)

which constitutes the first attempt for addressing the electron self-interaction. In
this way, the potential energy U + ∆E|TF vanishes in the limit of a system with one
electron. However, the Thomas-Fermi theory carries several shortcomings, including
the classical treatment of the kinetic energy, and the lack of exchange-correlation
effects between electrons. Improvements to the Thomas-Fermi theory were made
by Hartree in 1928 [6], by including the quantum-mechanical treatment of the
kinetic term. However, Hartree theory suffers from the lack of exchange-correlation
effects, and therefore its applicability remains limited.

In 1930, Fock included exchange effects to the Hartree energy, thereby leading to
the Hartree-Fock theory [7]. In this case, the potential energy is defined as

U =
1

2

∫
drdr′

n(r)n(r′)

|r− r′|
− 1

2

∑
ij

∫
drdr′

ψ∗i (r)ψ
∗
j (r
′)ψj(r)ψi(r

′)

|r− r′|
, (1.3)
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Chapter 1 Introduction

which is a functional of the wave functions due to the presence of the Fock exchange
energy. The Fock exchange energy cancels the Hartree self-interaction of each
orbital. In this sense, the Hartree-Fock method is considered to be free from self-
interaction. However, correlation effects are still missing. Moreover, the dependence
of U on the wave functions leads to a more substantial computational cost compared
to methods based on the electron density, like Hartree theory.

In 1965, density functional theory was introduced [8, 9]. Similarly to Thomas-Fermi
theory, density functional theory is based on using the electron density to describe
the complex many-body effects within a single-particle formalism. However, in
contrast to Thomas-Fermi theory, density functional theory includes an approximate
exchange-correlation energy [10], which is a functional of the electron density. Due
to its lower computational cost compared to methods based on wave functions, like
Hartree-Fock theory, density functional theory has become a widely-used method
for modelling condensed matter systems.

In density functional theory, the concept of self-interaction has been associated
to one-body and many-body formulations [11–21]. The one-body self-interaction
generally refers to the way the interaction of a charge with itself is cancelled in
Hartree-Fock theory. At variance, the many-body self-interaction corresponds to the
deviation from the piecewise linearity of the total energy upon electron occupation
[11–14, 16]. At the present, it remains unclear which of these two descriptions of the
self-interaction needs to be addressed for an accurate determination of quasiparticle
stabilities. Additionally, it remains to be determined how the suppression of the
self-interaction can be achieved through a computationally-efficient scheme.

1.2 Self-interaction and polarons

The electron self-interaction is particularly critical in the description of a class of
quasiparticles with relevant applications in optical and transport properties: the
polarons [23]. In a crystal, a polaron is a quasiparticles consisting of a localized
charge dressed by its self-induced lattice distortions (cf. Fig. 1.1). Historically, the
concept of polarons has been first discussed in 1933 by Landau [24], who introduced
the idea of a trapped electron coupled with lattice distortions. In 1946, Pekar
illustrated the first theoretical description of a free electron interacting with a
polarizable dielectric continuum [25]. Subsequently, Landau and Pekar showed
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that such interactions can lead to the localization of the wave function, and to an
increased effective mass [26]. This result inspired several studies based on effective
Hamiltonians treating electron-phonon interactions. Depending on the strength of
the electron-phonon interactions, two types of polarons are distinguished. In the
limit of weak coupling, the polaron has a large spatial extension and is called large
polaron (or Fröhlich polaron) [27]. At variance, in the limit of strong coupling, the
polaron localizes over a short length scale comparable to the lattice parameter and
is named small polaron (or Holstein polaron) [28]. A great deal of attention has
been devoted to finding accurate solutions of the Fröhlich polaron Hamiltonian for
various strengths of the electron-phonon interactions, including the preliminary
work of Lee, Low, and Pines [29], Fröhlich [30], Feynman [31], and others [32–35].
Large polarons have generally been studied via Monte Carlo [36], path-integral
Monte Carlo [37], and the renormalization group [38]. At variance, small polarons
have mostly been investigated through first-principles approaches based on density
functional theory [39–48]. Recently, Sio et al. have developed a unified formulation
for small and large polarons inspired by the Landau-Pekar model, which allows
one to obtain the polaron wave functions and the associated lattice displacements
[49, 50]. An alternative approach based on a canonical transformation has been
proposed for capturing lattice vibrations and thermal effects [51, 52]. A comparison
between the two methods has been discussed by Luo et al. [52], including the
advantages and shortcomings of both approaches. These recent developments
combining many-body theories with density functional theory open up interesting
possibilities in the field of polaron physics.

Figure 1.1 – Sketch of a polaron in a crystal. Image taken from Ref. [22].
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Chapter 1 Introduction

Figure 1.2 – (a) Stability of the hole polaron in MgO as obtained with the hybrid functional
PBE0(α) [53]. The parameter α denotes the amount of mix between semilocal density
functional theory (α = 0) and Hartree-Fock theory (α = 1). The stability is measured
through the concept of formation energy (cf. Chapter 4). The many-body and the one-body
self-interaction are suppressed at α = αk and at α = 1, respectively. (b) Isodensity surface of
the hole polaron at 5% of its maximum (Mg in pink, O in red). The hole polaron is centered
on an O atom, leading to longer bonds with neighboring Mg atoms.

The localized nature of polarons is opposed to the delocalized nature of electrons
in periodic crystals, which are described by Bloch waves. The charge localization
is enabled by the structural symmetry breaking, when the energy gain due to
charge localization overcomes the energy cost due to lattice distortions. Therefore,
the polaron stability is sensitively affected by the description of the electron self-
interaction. As an example, in Fig. 1.2(a) we consider the stability of the hole
polaron in magnesium oxide when using hybrid functionals [53], which admix a
fraction of Fock exchange to the semilocal exchange. The polaron stability can
deviate by several electronvolts when addressing either the many-body or the
one-body self-interaction. However, it should be remarked that the cancellation of
the many-body self-interaction further guarantees an accurate description of the
band gap [40], which in turn gives defect energy levels in good agreement with
experiment and state-of-the-art GW many-body calculations [54]. At variance, the
cancellation of the one-body self-interaction generally leads to very large polaron
formation energies, on par with the overestimation of band gaps in Hartree-Fock
theory. This strongly suggests that one should correct for the many-body rather
than for the one-body self-interaction. In the following, we focus on the concepts of
one-body and many-body self-interaction in density functional theory, and briefly
outline various approaches developed to address them.
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1.3 One-body self-interaction

The one-body self-interaction generally refers to the way the interaction of a charge
with itself is cancelled in Hartree-Fock theory. This arises from the interaction of
the electron with the effective potential generated by the total electron density,
which includes the electron density itself. As a consequence, the electron interacts
with the potential generated by itself (cf. Fig. 1.3).

Many schemes have been developed to solve the problem of the one-body self-
interaction. In 1981, Perdew and Zunger proposed an approach that removes
the single-particle self-interaction pertaining to each electron state [55]. In this
approach, the self-interaction energy is written as

∆E|PZ = −
∑
iσ

(EH[niσ] + Exc[niσ, 0]), (1.4)

where niσ is the density of the i-th orbital in the spin channel σ, EH the Hartree
energy, and Exc the exchange-correlation energy. The total energy functional
including ∆E|PZ vanishes for a one-electron system, thereby recovering an exact
property. However, the self-consistent minimization of the resulting energy func-
tional is challenging, since the Hamiltonian becomes orbital dependent. Hence, the
diagonalization of such orbital-dependent Hamiltonian requires the use of more
sophisticated diagonalization algorithms [56].

Subsequently, schemes that specifically address the one-body self-interaction of an

Figure 1.3 – In semilocal density functional theory, each electron interacts with the effective
potential generated by the total electron density. Each electron contributes to the effective
potential, thus generating a spurious electron self-interaction.

7



Chapter 1 Introduction

excess charge were proposed [57, 58]. Without loss of generality, we here consider
the case of an extra electron in the spin channel ↑. Then, the Perdew-Zunger
method can be simplified by considering only the energy contribution pertaining
to the extra charge [57], namely

∆E|sPZ = −(EH[m] + Exc[m, 0]), (1.5)

where m = n↑− n↓ is the magnetization density. A variation of the Perdew-Zunger
functional is achieved by introducing two parameters a and b in Eq. (1.5), resulting
in the following expression [58]

∆E|SS = −(aEH[m] + bExc[m, 0]), (1.6)

where a and b are tuned to obtain accurate energetics [58]. A further step proposed
by d’Avezac et al. consists in identifying the self-interaction energy as [57]

∆E|US = −(EH[m] + Exc[n↑, n↓]− Exc[n↑ −m,n↓]), (1.7)

which replaces the exchange-correlation functional of the charged system with
the one of the neutral system. The self-consistent minimization of the energy
functionals including either ∆E|sPZ, ∆E|SS, or ∆E|US requires the use of the
restricted open shell condition on the wave orbitals [57], which enforces the valence
wave functions of the two spin channels to be equal. Moreover, in the approach of
d’Avezac et al., the exchange-correlation interaction of the valence electrons with
the polaron is cancelled [50].

More recently, Sio et al. modelled electron-phonon interactions within an ab-initio
formulation and derived therefrom a one-body self-interaction approach for polarons
[49, 50]. In this approach, the self-interaction energy correction is identified as
the second-order expansion term of the total energy with respect to the polaron
density, namely

∆E|Sio = −

(
EH[np] +

1

2

∫
drdr′

δ2Exc[n↑, n↓]

δnσp(r)δnσp(r′)
np(r)np(r′)

)
, (1.8)

where np is the polaron density, and σp the corresponding spin channel. For an
electron polaron in the spin channel σp = ↑, Eq. (1.8) can be expressed with finite

8
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differences as

∆E|Sio = −
(
EH[np] +

1

2
Exc[n↑val + np, n↓val]

+
1

2
Exc[n↑val − np, n↓val]− Exc[n↑val, n↓val]

)
, (1.9)

where nσval denotes the density of the valence electrons in the spin channel σ.

1.4 Many-body self-interaction

The many-body self-interaction corresponds to the deviation from the piecewise
linearity of the total energy upon electron occupation [11, 14, 18, 59], which is
a property of the exact density functional [11–14, 16]. The piecewise linearity
is related to the notion of grand canonical ensemble, since it is defined for a
system with fractional charge. Nevertheless, the enforcement of the piecewise
linearity is crucial for achieving an accurate description of ground-state and excited-
state properties of systems with integer number of electrons [19]. For instance,
defect energy levels are crucially affected by the description of the many-body
self-interaction and have a large impact on the optical properties of materials.

The concept of piecewise linearity was introduced by Perdew et al. in 1982 [11].
These authors showed that the ground state energy of a system with a fractional
number of electrons N + ∆N can be written as a linear interpolation of the ground
state energies of the corresponding integer states, namely

E(N + ∆N) = (1−∆N) · E(N) + ∆N · E(N + 1), (1.10)

where ∆N is in between 0 and 1. Then, a system with a fractional number of
electrons can be interpreted as a statistical mixture of ground-state systems with
integer number of electrons. This exact property must hold for any ensemble, and in
particular it must be true also in density functional theory. Another interpretation
involving replicas of pure states was given by Yang et al. [14]. In this picture, for a
system of N + ∆N electrons, one considers many replicas of N -electrons systems
with an extra electron. The extra electron can be in any of the replicas, resulting
in various degenerate systems. Any linear combination of such degenerate systems,
resulting into a fractional number of electrons, is still degenerate and thus satisfies

9



Chapter 1 Introduction

Figure 1.4 – Total energy as a function of the electron occupation f , as obtained with standard
semilocal density functional theory, Hartree-Fock theory, and piecewise-linear functionals.

Eq. (1.10). These two interpretations are connected through the Boltzmann’s
ergodic hypothesis [19].

Most density functionals do not comply with the piecewise linearity. As illustrated
in Fig. 4.1(a), semilocal density functional theory [10] yields a total energy with
positive concavity with respect to the fractional electron charge. Similarly, the
total energy obtained with the Hartree-Fock functional is concave. When the
functional is piecewise linear, the many-body self-interaction vanishes. Hybrid
functionals mixing semilocal density functional and Hartree Fock energies offer a
straightforward way to address the many-body self-interaction. In order to cancel
the many-body self-interaction, the hybrid functional parameters are adjusted to
enforce the piecewise linearity of the total energy upon electron occupation [19,
40, 60]. Hybrid functionals satisfying such a constraint yield localized polarons
[40, 61–63] and band gaps in agreement with state-of-the-art GW calculations [40,
60, 64–67]. However, hybrid functionals increase dramatically the computational
cost of density functional theory calculations and therefore become unaccessible
for large systems.

Alternatively, the inclusion of a Hubbard correction U can also be used to overcome
the many-body self-interaction and to enforce the piecewise linearity condition [17,
68]. In particular, Cococcioni and de Gironcoli proposed a linear response approach
to fix the parameter U in order to retrieve the piecewise linearity in perturbation
theory [68]. A similar approach was introduced by Lany and Zunger [17], which
consists in including a Hubbard-like operator in the Hamiltonian with a strength
adjusted to comply with the piecewise linearity. However, the performance of
Hubbard-corrected functionals in comparison to hybrid functionals remain to be
assessed. Moreover, it is of interest to investigate whether polaronic states can be

10
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used to determine of U in DFT+U functionals.

An alternative approach for addressing the many-body self-interaction in relation
to polarons has been proposed by Sadigh et al. [61]. In their method, the self-
interaction corrected energy is linear, with a slope corresponding to the polaron
energy level calculated in the limit of zero charge. However, this leads to an
overestimation of the polaron formation energy due to the enforcement of the
polaron energy level at zero charge. Other methods enforce the piecewise linearity
condition on the entire electronic manifold by modifying the Hamiltonian pertaining
to each orbital [69–71], like in the Perdew-Zunger method. However, the resulting
equations are orbital dependent and therefore require more complex diagonalization
algorithms [56].

1.5 Thesis outline

The goal of this thesis is to address the self-interaction problem in relation to
polarons. This thesis is organised as follows.

In Chapter 2, we summarize background methodology in density functional theory,
including semilocal, hybrid, and Hubbard-corrected functionals, and notorious
theorems. Additionally, we emphasize the importance of correcting for finite-
size electrostatic effects when modelling excess charges in supercells, and discuss
state-of-the-art methods for calculating electron-transfer rates.

In Chapter 3, we develop a scheme for correcting the finite-size effects of defects
involving frozen lattice distortions, which is necessary for achieving an accurate
energetics of isolated polarons. Our scheme accounts on an equal footing for
the screening of the electrons and of the polarization charge due to the lattice
distortions, and finds applications in correcting vertical transition energies.

In Chapter 4, we study polarons free from many-body self-interaction with hybrid
functionals. In particular, we highlight the concept of formation energy for de-
termining the polaron stability. Moreover, we show that hybrid functionals free
from many-body self-interaction lead to an overall improvement of the electronic
structure, including the band gap.

In Chapter 5, we develop a unified formulation for one-body and many-body forms

11



Chapter 1 Introduction

of self-interaction. Within this formulation, we quantitatively connect the two
forms of self-interaction through the dielectric constant. We show that addressing
the many-body self-interaction accounts for additional screening effects, which
are overseen when addressing the one-body self-interaction. This allows us to
demonstrate the superiority of the concept of many-body self-interaction over the
concept of one-body self-interaction.

In Chapter 6, we introduce a semilocal scheme for polaron localization. This is
achieved by including a weak local potential in the semilocal Hamiltonian that
suppresses the many-body self-interaction of the polaron state. Possible resonances
involving the polaron state and delocalized states are overcome by including a scissor
operator to the Hamiltonian. Our approach yields polaron formation energies in
agreement with those obtained with hybrid functionals, but at a significantly lower
computational cost. This highlights that polaron properties free from many-body
self-interaction are robust upon variation of the functional adopted.

In Chapter 7, we introduce a criterion for selecting the Hubbard parameter U in
DFT+U calculations such that the many-body self-interaction of polarons is sup-
pressed. We show that the resulting polaron properties are in good agreement with
results from hybrid functional calculations, thereby corroborating the robustness
of polaron properties free from many-body self-interaction. This further supports
the use of semilocal functionals for modelling polarons.

In Chapter 8, we use functionals free from many-body self-interaction to study the
polaron energy landscape and hopping rates in the case of an anisotropic material
hosting multiple polaronic states. We find that single-site and multi-site polaronic
states can be found in close energetic competition. Moreover, we show that the
robustness of polaron properties obtained with piecewise-linear functionals also
extends to polaron transport properties, including energy barriers and hopping
rates. This validates the use of semilocal piecewise-linear functionals for studying
polaron transport.

In Chapter 9, we summarize our results, and give an outlook on future developments
and applications.

In Appendix A, we address the band-gap problem in semilocal density functional
theory by introducing a scissor operator to the Hamiltonian. We show that
this methodology leads to accurate properties of bulk system when compared to
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those obtained with hybrid functionals, but at a lower computational cost. In
Appendix B, we discuss the implementation details of our semilocal scheme for
polaron localization and of the scissor operator.
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2 Methodology

We present the state-of-the art methodology for density functional theory cal-
culations that constitute the basis for this thesis. First, we discuss semilocal
functionals, hybrid functionals, and Hubbard corrected DFT+U functionals.
Then, we present the Hellmann-Feynman theorem and the Janak’s theorem,
which will be frequently used throughout this thesis. Next, we highlight the
importance of correcting the energetics obtained in the presence of external
charges in supercells to avoid spurious electrostatic interactions. Finally,
we outline the nudged-elastic-band method for calculating adiabatic energy
landscapes, and a widely-used method for determining electron-transfer rates.
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Chapter 2 Methodology

2.1 Semilocal functional PBE

Without loss of generality, we here adopt a plane-wave-pseudopotential formulation.
We take the Perdew-Burke-Ernzerhof (PBE) functional [10] as reference for our
semilocal calculations. This consists in solving the following set of Kohn-Sham
equations for each spin channel σ:

H0
σ[n0
↑, n

0
↓]ψ

0
iσ = ε0iσψ

0
iσ, (2.1)

where H0
σ is the PBE Hamiltonian, ψ0

iσ and ε0iσ are the resulting wave functions
and energy levels, and n0

σ =
∑

i |ψ0
iσ|2 is the electron density in the spin channel σ.

The Hamiltonian H0
σ is defined as

H0
σ[n0
↑, n

0
↓] = −1

2
∇2 + Vps + VH[n0] + Vxcσ[n0

↑, n
0
↓], (2.2)

where n0 =
∑

σ n
0
σ is the total electron density, −1

2
∇2 the kinetic term, Vps the

sum of the local and nonlocal pseudopotentials, VH(r) =
∫
dr′ n0(r′)/|r − r′| the

Hartree potential, and Vxcσ = Vxσ + Vcσ the semilocal PBE exchange-correlation
potential [10]. We remark that the semilocal exchange potential Vxσ depends only
on the density in the spin channel σ. This can be seen by using the exact relation
[72]

Vxσ[n0
↑, n

0
↓] = Vx[2n0

σ], (2.3)

where Vx[2n0
σ] denotes the spin-unpolarized exchange potential evaluated for the

density 2n0
σ. Then, the PBE energy is given by

E0[{ψ0
i↑}, {ψ0

i↓}] = T [n0] + EH[n0] + Exc[n
0
↑, n

0
↓]

+ Eps[{ψ0
i↑}, {ψ0

i↓}] + EEwald, (2.4)

where T is the kinetic energy, EH the Hartree energy, Exc = Ex + Ec the semilocal
exchange-correlation energy, Eps the pseudopotential energy, and EEwald the Ewald
energy. The Hartree energy is given by

EH[n0] =
1

2

∫
drdr′

n0(r)n0(r′)

|r− r′|
. (2.5)

16



Methodology Chapter 2

2.2 Hybrid functional PBE0(α)

We consider the class of hybrid functionals PBE0(α) [53], in which a fraction α
of Fock exchange is admixed to a fraction (1 − α) of local PBE exchange. This
corresponds to solving the following generalized Kohn-Sham equations

Hα
σ [{ψαj↑}, {ψαj↓}]ψαiσ = εαiσψ

α
iσ, (2.6)

where ψαiσ and εαiσ are the resulting wave functions and energy levels, respectively,
and the Hamiltonian Hα

σ is given by

Hα
σ [{ψαi↑}, {ψαi↓}] = −1

2
∇2 + Vps + VH[nα] + V α

xcσ[nα↑ , n
α
↓ ] + V α

X [{ψαiσ}], (2.7)

where

V α
xcσ = (1− α)Vxσ + Vcσ (2.8)

is the semilocal exchange-correlation potential,

V α
X [{ψαiσ}](r, r′) = −α

∑
i

fiσ
|ψαiσ〉〈ψαiσ|
|r− r′|

(2.9)

the Fock potential multiplied by α with fiσ being the electron occupation of the
i-th state in the spin channel σ, nασ =

∑
i fiσ|ψαiσ|2 the electron density in the spin

channel σ, and nα =
∑

σ n
α
σ the total electron density. We remark that the Fock

potential contributing to Hα
σ is constructed using only the wave functions in the

spin channel σ. Then, the PBE0(α) energy is given by

Eα[{ψαi↑}, {ψαi↓}] = T [nα] + EH[nα] + Eα
xc[n

α
↑ , n

α
↓ ] + Eα

X[{ψαi↑}, {ψαi↓}]
+Eps[{ψαi↑}, {ψαi↓}] + EEwald, (2.10)

where Eα
xc = (1− α)Ex + Ec is the semilocal exchange-correlation energy, and Eα

X

the Fock energy, which is defined as

Eα
X[{ψαi↑}, {ψαi↓} = −α

2

∑
ijσ

fiσfjσ

∫
drdr′

ψ∗iσ(r)ψ∗jσ(r′)ψjσ(r)ψiσ(r′)

|r− r′|
. (2.11)
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For α = 0, PBE0(α) reduces to PBE.

2.3 Hubbard-corrected functional DFT+U

We consider the Hubbard corrected DFT+U functional. In its simplified rotationally-
invariant form, the DFT+U total energy is written as [68, 73]:

EU [nU↑ , n
U
↓ ] = E0[nU↑ , n

U
↓ ] +

U

2

∑
Iσ

Tr[nIσ(1− nIσ)], (2.12)

where E0 is the PBE energy, nUσ the total density in the spin channel σ, U the
Hubbard parameter, nIσ the occupation matrix of localized orbitals φIm, I the
atomic site, m the state index, and σ the spin. The matrix elements nIσmm′ are
defined as

nIσmm′ =
∑
i

fiσ 〈ψUiσ|φIm〉 〈φIm′|ψUiσ〉 . (2.13)

where ψUiσ are the wave functions, and fiσ the respective occupations. Variational
minimization of the energy functional EU leads to the following Kohn-Sham
equations

(H0
σ + V U

σ )ψUiσ = εUiσψ
U
iσ, (2.14)

where H0
σ is the PBE Hamiltonian, εUiσ are the Kohn-Sham eigenvalues, and V U

σ is
the Hubbard potential, which is given by

V U
σ = U

∑
Imm′

[
δmm′

2
− nIσmm′

]
|φIm′〉〈φIm| . (2.15)

From Eq. (2.15), one can see that the Hubbard potential is repulsive for unoccupied
orbitals and attractive for occupied orbitals, thereby favoring the Mott localization
of electrons on specific atomic sites.

The parameter U can be calculated in linear-response theory to enforce the piecewise
linearity of the total energy upon electron occupation. In the perturbative approach
of Cococcioni and de Gironcoli [68], one solves the following set of Kohn-Sham
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equations:(
H0
σ + αI

∑
m

|φIm〉〈φIm|
)
ψα

I

iσ = εα
I

iσ ψ
αI

iσ , (2.16)

where αI is the amplitude of the perturbation, and εαIiσ and ψαIiσ are the corresponding
eigenvalues and wave functions. This corresponds to minimizing the following
energy functional

EαI [{ψαIi↑ }, {ψα
I

i↓ }] = E0[nα
I

↑ , n
αI

↓ ] + αInI , (2.17)

where nI is the total occupation of the localized states for atom I, which is defined
as

nI =
∑
σm

nIσmm =
∑
m

fiσ|〈ψα
I

iσ |φIm〉|2. (2.18)

Then, U is chosen as

Ulr = (χ−1
0 − χ−1)II , (2.19)

where χ and χ0 are the screened and unscreened response matrices, respectively,
which are defined as variations of the occupations nI .

2.4 Atomic forces and Hellmann-Feynman theo-

rem

Without loss of generality, we consider the case of the PBE0(α) hybrid functional.
Then, the atomic forces are defined as

Fα
Iµ = −dE

α

dτIµ
, (2.20)

where τIµ denotes the Cartesian coordinate µ of the atom I. A naive approach
for determining the forces consists in performing multiple evaluations of the total
energy for different atomic diplacements, and then use a finite-difference expression
of Eq. (2.20). However, this approach would require 3NI + 1 evaluations of the
total energy, where NI is the number of ions.
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A more efficient method consists in using the Hellmann-Feynman theorem, which
allows one to determine the forces on all atoms with a single evaluation of the total
energy. For simplicity, we here illustrate the Hellmann-Feynmann theorem for a
one-dimensional example. We consider an Hamiltonian H with eigenstate ψ and
energy E. Then, the derivative of the energy E with respect to a parameter λ is
given by

dE

dλ
=

d

dλ

∫
drψ∗Hψ =

∫
dr

[
dψ∗

dλ
Hψ + ψ∗

dH
dλ

ψ + ψ∗Hdψ
dλ

]
. (2.21)

Considering that by construction Hψ = Eψ, then

dE

dλ
=

∫
drψ∗

dH
dλ

ψ + E
d

dλ

∫
dr |ψ|2 =

∫
drψ∗

dH
dλ

ψ, (2.22)

where we used the normalization of the wave function ψ. This gives

dE

dλ
= 〈ψ|dH

dλ
|ψ〉 . (2.23)

Hence, using Eq. (2.23), the atomic forces in Eq. (2.20) can be rewritten as

Fα
Iµ = −

(∑
iσ

〈ψαiσ|
dVps

dτIµ
|ψαiσ〉+

dEEwald

dτIµ

)
, (2.24)

where τIµ is the Cartesian coordinate µ of the atom I. When the wave functions ψαiσ
are expanded on a plane-wave basis set, no Pulay forces appear [74]. In Eq. (2.24),
there are no explicit contributions resulting from electron-electron interactions
(Hartree, exchange-correlation, Fock). Their influence on the atomic forces occurs
via the self-consistent optimization of the wave functions ψαiσ.

2.5 Janak’s theorem

Here, we consider the case of an electron system with only one partially-filled
orbital with occupation f . Without loss of generality, we consider the case of the
PBE0(α) hybrid functional. Then, the Janak’s theorem establishes a connection
between the variation of the total energy Eα with respect to the occupation f ,
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namely

dEα(f)

df
= εαp(f), (2.25)

where εαp is the Kohn-Sham energy level of the partially-filled orbital. To prove Eq.
(2.25), we introduce the orbitals φαiσ = fiσψ

α
iσ, where fiσ is the occupation of the

i-th state of the spin channel σ. For the partially-filled orbital, one has fipσp = f ,
where ip and σp denote the index and the spin-channel of the partially-filled orbital,
respectively. Then, by applying the chain rule for the derivative of Eα(f) with
respect to f and by using the variational relation

δEα

δφαiσ
= Hα

σψ
α
iσ = εαiσψ

α
iσ, (2.26)

the left-hand side of Eq. (2.25) can be written as

dEα(f)

df
=
∑
iσ

∫
dr

δEα

δφα∗iσ (r)

dφα∗iσ (r)

df
+h.c. =

∑
iσ

εαiσ

∫
drψαiσ(r)

dφα∗iσ (r)

df
+h.c., (2.27)

where h.c. stands for hermitian conjugate. Considering that the wave functions
ψαiσ are normalized, then

∫
drψαiσ(r)

dφα∗iσ (r)

df
+ h.c. =

1 if σ = σp, i = ip

0 else
. (2.28)

Inserting Eq. (2.28) in Eq. (2.27), one obtains Eq. (2.25). Janak’s theorem finds
applications for calculating charge transition levels within density functional theory
[75] and will be frequently used in this thesis.

2.6 Electrostatic corrections due to finite-size su-

percells

Density functional theory calculations subject to periodic boundary conditions
represent the method of choice for studying defect properties [76]. However, in
a supercell, the long-range nature of the electric field associated with a localized
charge leads to spurious finite-size effects on defect formation energies [77, 78].
This limitation can be overcome by addressing various supercells of increasing size
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and extrapolating to the limit of an infinitely large supercell [78–82]. Since this
method becomes prohibitive for large systems, it is preferable to apply a posteriori
correction schemes [77, 78, 81, 83–85]. Such corrections depend quadratically on
the extra electronic charge and scale inversely with the dielectric constant of the
material.

Here, we illustrate the scheme introduced by Freysoldt, Neugebauer, and Van
de Walle for addressing such spurious effects [77, 86]. Upon insertion of a defect
density ρm of charge q in the system, a compensating background charge −q/Ω
is generated, where Ω is the volume of the supercell. We denote Vm the potential
generated by ρm, and Ṽm the potential generated by the periodic arrangement or ρm.
Then, the spurious energy related to finite-size effects is given by two contributions.
The first contribution arises from the interaction between the potential Ṽm − Vm

with the charge density ρm and the related compensating background charge. The
other contribution arises from the interaction between ρm and the background
charge. This results in the following corection energy to be added to the total
energy from density functional theory calculations [77]

Em = −

{
1

2

∫
Ω

dr
[
ρm(r)− q

Ω

]
[Ṽm(r)− Vm(r)]− q

Ω

∫
Ω

drVm(r)

}
, (2.29)

where the prefactor 1/2 accounts for double-counting effects. The potential Vm is
then split into long-range and short-range contributions, namely

Vm = V lr
m + V sr

m , (2.30)

where the long-range potential V lr
m is defined as

V lr
m (r) =

1

ε

∫
dr

ρm(r)

|r− r′|
, (2.31)

and the short range potential V sr
m is calculated as Vm − V lr

m . Then, Eq. (2.29) can
be rewritten as [77, 86]

Em = Elat − q∆V, (2.32)

where Elat and q∆V are the lattice and alignment energies, respectively. The lattice
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energy Elat is related to V lr
m and is given by

Elat =
1

2

1

(2π)3

∫ |k|≤Gcut

0

dk ρm(k)V lr
m (k)− 1

2

1

Ω

|G|<Gcut∑
G 6=0

ρm(G)V lr
m (G), (2.33)

where G runs over the reciprocal lattice vectors with modulus lower than the
cutoff Gcut. The divergent G = 0 component is cancelled by the compensating
background charge. The alignment term q∆V is related to V sr

m and is given by

q∆V = q|VDFT − V lr
m |far, (2.34)

where VDFT is the potential obtained through density functional theory calculations,
and the difference is evaluated in a region far from the defect.

For a radial distribution ρm, and using the fact that

V lr
m (k) =

4π

ε

ρm(k)

|k|2
, (2.35)

the lattice energy Elat in Eq. (2.33) reduces to [86]

Elat =
1

πε

∫ Gcut

0

dk ρ2
m(k)− 2π

εΩ

|G|≤Gcut∑
G 6=0

ρ2
m(|G|)
|G|2

. (2.36)

The charge distribution ρm is generally taken as a Gaussian distribution of width
σ.

The finite-size corrections depend on the high-frequency and static dielectric
constants of the system under consideration. Through the application of finite
electric fields [87], the dielectric tensor ε can be calculated as

εij = 1 +
4π

Ω

dpi
dej

, (2.37)

where Ω is the volume of the supercell, ej the electric field along the direction j,
and pi the polarization in the direction i. For the evaluation of the high frequency
dielectric tensor ε∞, the structure is kept fixed, such that the polarization arises
only from electronic relaxation. At variance, for the calculation of the static
dielectric tensor ε0, the structure is relaxed in the presence of the electric field, to
account for both the electronic and the ionic screening. In the case of anisotropic
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screening, the dielectric constant ε is obtained from the trace of ε as ε = Tr(ε)/3.

2.7 Nudged-elastic-band method

One relevant application of density functional theory consists in calculating transi-
tion rates for diffusion events or chemical reactions. The characteristic time scale
of such transitions depends exponentially on the energy barrier between inital and
final states. Hence, thermally-activated transitions can take very long molecular dy-
namics to be observed and therefore constitute a rare-event problem. To overcome
such issue, one can focus on determining the path with highest statistical weight,
which corresponds to the minimum energy path. This can be found by minimizing
the forces orthogonal to the path in the configurational space, so that the energy
is stationary along the direction perpendicular to the path. In the simplest case,
the energy profile along the minimum energy path is represented by two minima
connected by a maximum. Such maximum constitutes a saddle point and can be
considered as the transition state. This allows one to determine energy barriers,
thus overcoming the rare-event problem of determining transition rates through
molecular dynamics.

A common approach for determining the minimal energy path consists in discretizing
the path between two states into a series of images connected by springs. For
simplicity, we here consider that all springs have the same stiffness. Then, one
considers the following object function

S =
M∑
m=1

E({Rm
J }) +

M∑
m=1

∑
I

Mk

2

(
Rm
I −Rm−1

I

)2
, (2.38)

where m is the image index, M the total number of images, I the atom index,
Rm
I the Cartesian coordinate of the atom I in the m-th image, and k the spring

constant. The minimization of such object function leads to the following forces

Fm
I = −∇IE({Rm

J }) + k
[
(Rm+1

I −Rm
I )− (Rm

I −Rm−1
I )

]
, (2.39)

where the first and second terms on the right-hand side represent the Hellmann-
Feynman force and the spring force acting on the atom I, respectively. This method
does not however guarantee convergence towards the transition state. Indeed, the
orthogonal component of the spring forces to the path can cause a path edge
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Figure 2.1 – Sketch of potential energy surface for a transition between two states A and B.
In green the minimal energy path, in blue the path minimized with the forces in Eq. (2.39), in
red the spring force perpendicular to the path and the Hellmann-Feynman force parallel to the
path for two intermediate images.

cutting close to the transition state. Moreover, the Hellmann-Feynman forces have
a components along the path, which can lead to a non-equidistance distribution of
the images along the energy pathway and consequent sliding down of the images
away from the barrier region. These two shortcomings are schematically illustrated
in Fig. 2.1.

The nudged elastic band method allows one to determine the minimum energy path
connecting two states [88, 89] overcoming the issues of corner cutting and sliding
down images. This is achieved by projecting out the component of the spring force
perpendicular to the path and the component of the Hellmann-Feynman force
parallel to the path. This results in the following force acting on the atom I of the
m-th image:

Fm
I = −

[
∇IE(Rm)−∇IE(Rm) · tmtm

]
+ k
[
(Rm+1

I −Rm
I )− (Rm

I −Rm−1
I )

]
· tmtm, (2.40)

where tm is the normalized tangent to the reaction path. We remark that the
first and second contributions on the right-hand side of Eq. (2.40) represent the
component of the Hellmann-Feynman force orthogonal to the path, and the com-
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ponent of the spring force parallel to the path. In this way, the optimization of the
path is decoupled from the discrete representation of the path, which allows for a
convergence towards the minimal energy path. Considering that the springs act
only along the path, the choice of the spring constant is arbitrary. This represents
a great advantage of the nudged-elastic-band method.

2.8 Polaron hopping rate

The rate of polaron charge transfer from the initial to the final state can be calculated
using the Marcus-Emin-Holstein-Austin-Mott theory [90–94]. Depending on the
coupling between the initial and final states, two regimes are distinguished: for
large coupling the regime is adiabatic, for small coupling the regime is diabatic [95].
Depending on the regime, different analytic expressions for the polaron hopping
rate have been derived [95]. Such expressions can be incorporated within the
Landau-Zener formula [96, 97], and have largely been applied to polaron hopping
processes [46, 98–113]. A schematical illustration of the energy profiles in these
two regimes is given in Fig. 2.2, where the energy profile of the transition between
two states is given as a function of a one-dimensional configurational coordinate Q.
A common choice for Q is

(Qn)2 =
∑
I

mI |Rn
I −R1

I |2, (2.41)

where n is the image index, and mI the mass of atom I. The adiabatic energy
profile can be obtained by performing nudged-elastic-band calculations.

Then, the charge transfer rate kt for the hopping from an initial state to a final
state can be calculated using the Landau-Zener formula [95–98], namely

kt = κνΓ exp

(
− Ea

kBT

)
, (2.42)

where κ is the thermally-averaged electronic transmission coefficient, ν an effective
nuclear frequency along the reaction coordinate, Γ the nuclear tunnelling factor, Ea

the activation energy, and T the temperature. The tunnelling factor Γ takes into
account the nuclear quantum effects and can generally be approximated as Γ ≈ 1,
except when considering low temperatures or light elements [108]. The effective
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Figure 2.2 – Energy profile for electron transfer from the initial state A to the final state B
along a configurational coordinate Q. The activation energy Ea, the coupling J between the
two states, the lower and upper adiabatic energy surfaces E− and E+, and the transition
state (TS) are indicated.

nuclear frequency ν can be calculated as [111]

ν2 =
∂2E(Q)

∂Q2
, (2.43)

and can be estimated from the nudged-elastic-band energy profile around the initial
state within an effective one-dimensional phonon frequency approximation [114,
115]. We remark that presence of the atomic masses in Eq. (2.41) allows one to
directly associate the right-hand side of Eq. (2.43) to the nuclear frequency ν. The
transmission coefficient κ describes the transition probability from the initial state
to the final state through multiple passages via the intersection point between
the diabatic surfaces [95–98]. By denoting (1− P ) the probability of the diabatic
transition at the transition state from the low-energy adiabatic surface to the
high-energy adiabatic surface and viceversa (cf. Fig. 2.2), κ can be expressed as
[95–98]

κ = P + (1− P )2

∞∑
k=0

P 2k+1 =
2P

1 + P
, (2.44)

where it is assumed that no transition occurs when the system falls back to the
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initial state [95]. The probability P is calculated as [95–98]

P = 1− exp

[
− π2J2

hν
√

4π(Ea + J)kBT

]
, (2.45)

where h is the Planck constant, kB the Boltzmann constant, and J the coupling
between initial and final states (cf. Fig. 2.2). We note that Ea + J corresponds to
the diabatic activation energy, as schematically illustrated in Fig. 2.2. The coupling
J can be calculated as the difference of the bonding and antibonding energy levels
at the transition state [116]. For P → 1 the regime is adiabatic, whereas the regime
is diabatic for P → 0.
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3 Finite-size corrections of defect
energy levels involving ionic polar-
ization

We develop a scheme for finite-size corrections of vertical transition energies
and single-particle energy levels involving defect states with built-in ionic
polarization in supercell calculations, which is necessary for addressing
the self-interaction problem for polarons. The method accounts on an
equal footing for the screening of the electrons and of the ionic polarization
charge arising from the lattice distortions. We demonstrate the accuracy
of our corrections for various defects in MgO and in water by comparing
with the dilute limit achieved through the scaling of the system size. The
general validity of our formulation is also confirmed through a sum rule
that connects vertical transition energies with the formation energies of
structurally relaxed defects.

This chapter is adapted from:
Ref. [117]: S. Falletta, J. Wiktor, A. Pasquarello, Finite-size corrections
of defect energy levels involving ionic polarization, Physical Review B 102,
041115(R) (2020).
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Chapter 3 Finite-size corrections of defect energy levels involving ionic polarization

3.1 Introduction

The suppression of the self-interaction of polarons requires one to consider the
defect state without polaronic charge and with polaronic distortions. Similar states
are of interest when dealing with vertical transitions involving defect states, which
have gained attention in recent years for their potential in optoelectronic and
photovoltaic applications [60, 118–120]. In this case, available model corrections
[77, 83–85] cannot trivially be applied to vertical transitions, which involve defect
charge states in the presence of a frozen lattice distortion.

For illustration, we consider in Fig. 3.1(b) the stability corresponding to the neutral
state obtained upon vertical electron injection in the hole polaron state of MgO.
While current schemes do not give any correction for neutral defects [77, 83–85],
we observe noticeable scaling. Similarly, in Fig. 3.1(c), we show that the vertical
extraction energy of the hydrated electron scales significantly with the system size,
an effect that should be assigned to the neutral state as the negatively charged
state is heavily screened (ε0 = 78.3 at ambient conditions [121]). In the absence
of a hydrated electron, the water dipoles remain oriented in a frozen geometry
leading to a divergence of the ionic polarization [cf. Fig. 3.1(d)], which needs to be
properly accounted for in correction schemes.

Since vertical transitions only involve electronic relaxations, the spurious interac-
tions in the supercell are expected to be dominated by the high-frequency dielectric
constant ε∞. This generally leads to significantly larger corrections than for relaxed
defects. For instance, in a recent study of transition energies in Ga2O3, the choice
of the dielectric constant leads to differences up to 1 eV and the issue could not be
solved by system size scaling because of the prohibitive computational cost [60].

3.2 Methodology

We generalize the notion of formation energy [76, 78] to account for a defect in the
charge state q within a frozen geometry Rq′ as induced by a charge q′,

Ef(q,Rq′) = E(q,Rq′)−E(0,R0) + q(εF + εv)−
∑
i

niµi +Ecor(q,Rq′), (3.1)

30



Finite-size corrections of defect energy levels involving ionic polarization Chapter 3

Fo
rm

at
io

n
 e

n
er

g
y 

(e
V
)

V
er

t.
 t

ra
n
s.

 e
n
er

g
y 

(e
V
)

MgO

0.00 0.06 0.12
L 1 (Å 1)

1

0

1
6421

6
51

2
10

00

MgO

0.00 0.06 0.12
L 1 (Å 1)

0

1

2

6421
6

51
2

10
00

2

3

4

12
8

0.04 0.08

H2O

0.00
L 1 (Å 1)

64

(b)(a)

(c) (d)

uncorrected
corrected

uncorrected
corrected

uncorrected
corrected

Figure 3.1 – Scalings with inverse supercell size L−1 for (a) the formation energy of the hole
polaron in MgO (for εF = 0), (b) the formation energy of the neutral defect in the geometry
of the hole polaron in MgO, and (c) the vertical transition energy for the hydrated electron
in water (non corrected values from Ref. [120]). The number of atoms or water molecules
in the supercell is given at the top. The formation energies in the dilute limit are found by
linear extrapolation of the two largest supercells and are indicated by horizontal red lines. (d)
Schematics pointing to the presence of a divergence in the ionic polarization, ∇ ·P 6= 0, due
to lattice distortions, which cause finite-size effects even in the absence of an external charge
(q = 0).

where E(q,Rq′) and E(0,R0) are total energies, εv is the valence band maximum,
εF the Fermi level, ni the number of atoms of species i involved in the defect, and
µi the respective chemical potential. Ecor(q,Rq′) corrects the finite-size effects and
constitutes a crucial auxiliary quantity in our formulation.

The correction Ecor(q,Rq) for a defect in charge state q within a geometry relaxed
in the presence of the same charge q can be expressed as

Ecor(q,Rq) = Em(q, ε0), (3.2)
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where Em(q, ε0) corresponds to a regular model correction [77, 83–85] for an external
charge q screened by the dielectric constant ε0. Similarly, we define Em(q, ε∞) as
the model correction due to the sole electronic screening of the charge q through the
high-frequency dielectric constant ε∞. For instance, the latter correction applies to
the case of a charge q in a neutral pristine lattice in which only electronic relaxation
is allowed.

Here, we describe the effect of lattice distortions in the configuration Rq′ by
considering the ionic polarization charge q′pol. This charge can be defined by setting
the long-range screened potential q′/(ε0r) equal to (q′ + q′pol)/(ε∞r). This leads to

q′pol = −q′
(

1− ε∞
ε0

)
. (3.3)

When an external free charge amounting to −q′pol is inserted at the defect site
in the configuration Rq′ , the electronic polarization vanishes. Hence, the system
(−q′pol,Rq′) defined in this way can be used as a starting point for model finite-size
corrections involving electronic screening, i.e. governed by ε∞.

To find an expression for Ecor(q,Rq′), we construct the final state through a
three-step procedure, as illustrated in Fig. 3.2. The first step (0,R0)→ (q′,Rq′)

corresponds to the formation of a regularly relaxed defect of charge state q′ and
is hence described by a correction Em(q′, ε0) [cf. Eq. (3.2)]. The second step
(q′,Rq′) → (−q′pol,Rq′) needs a correction corresponding to −Em(q′ + q′pol, ε∞),
where the minus sign results from the application of the model correction to the
inverted step from (−q′pol,Rq′) to (q′,Rq′) and q′ + q′pol represents the net localized
charge to which the electrons respond. The use of ε∞ is warranted by the purely
electronic nature of the screening as the lattice structure Rq′ is kept fixed. The
last step (−q′pol,Rq′)→ (q,Rq′) leads to the final configuration (q,Rq′) and needs
a correction Em(q + q′pol, ε∞), which can be justified analogously to the previous
step.

Summing up the corrections pertaining to the three steps, we obtain the correction
for a defect of charge q in the frozen equilibrium geometry pertaining to the charge
state q′,

Ecor(q,Rq′) = Em(q′, ε0)− Em(q′ + q′pol, ε∞) + Em(q + q′pol, ε∞). (3.4)

Equation (3.4) has a well defined physical meaning. Indeed, the difference between
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Figure 3.2 – Schematics for deriving the formula in Eq. (3.4). The external charge is shown
in green, the ionic polarization charge in blue, and the electronic polarization charge in red.
The system (0,R0) does not show any localized polarization charge and can be used as the
starting point for the application of model corrections involving ε0. Similarly, (−q′pol,Rq′)
does not have any electronic polarization charge and can be used as the starting point for
model corrections involving ε∞.

the first two terms accounts for the finite-size effects due to the establishment of
the ionic polarization charge q′pol, while the last term results from the electronic
response to the localized charge q + q′pol. Furthermore, our formula in Eq. (3.4)
properly recovers the model corrections for regularly screened defects. When a
charge q is in its relaxed structure Rq, i.e., q′ = q, the last two terms on the
right-hand side of Eq. (3.4) cancel and the correction reduces to Em(q, ε0), as in Eq.
(3.2). Similarly, when the charge q is added to a pristine lattice R0 without allowing
for ionic relaxation, i.e., taking q′ = 0 and hence q′pol = 0, the first two terms on
the right-hand side of Eq. (3.4) vanish and Em(q, ε∞) is correctly retrieved.

We now consider the vertical transition energy between the charge states q′ and q
in the geometry Rq′ ,

µ(q′→q,Rq′) = Ef(q,Rq′)− Ef(q
′,Rq′). (3.5)

Using Eq. (3.4), we obtain the finite-size correction for this vertical transition,

µcor(q
′→q,Rq′) = Em(q + q′pol, ε∞)− Em(q′ + q′pol, ε∞), (3.6)

where the terms due to the establishment of the ionic polarization charge q′pol cancel
and only the terms related with the electronic response to the net localized charge
remain. When the charge q′ in the initial configuration is neutral, our correction for
the vertical transition in Eq. (3.6) becomes Em(q, ε∞), which results from purely
electronic screening. However, for the general case q′ 6= 0, the expression in Eq.
(3.6) shows that a complex interplay of ionic and electronic screening occurs.

The present formulation also opens the way to the corrections for single-particle

33



Chapter 3 Finite-size corrections of defect energy levels involving ionic polarization

defect levels. Such corrections find immediate application when calculating quasi-
particle shifts in many-body GW formulations [122, 123] and when enforcing the
generalized Koopmans’ condition to defect states [40, 48, 60, 61, 65, 124]. The
Kohn-Sham level ε of a defect of charge q in the geometry Rq′ can be related to its
total energy E(q,Rq′) through Janak’s theorem [75],

ε(q,Rq′) = − lim
Q→q

∂E(Q,Rq′)

∂Q
. (3.7)

Using Eq. (3.4) and the quadratic dependence of Em(q, ε) on q, we find that the
corresponding finite-size correction εcor is expressed as

εcor(q,Rq′) = −∂Ecor(q,Rq′)

∂q
= −

∂Em(q + q′pol, ε∞)

∂q
. (3.8)

Considering the quadratic dependence of the model correction energy Em(q, ε) on
q [78, 86], one gets

εcor(q,Rq′) = −2
Em(q + q′pol, ε∞)

q + q′pol
. (3.9)

For structurally relaxed defects, i.e. when q′ = q, the formula in Eq. (3.9) falls back
to the expression found by Chen and Pasquarello [125] in view of the relation in
Eq. (3.3).

3.3 Results

The calculations are performed at the hybrid-functional level [53], as implemented
in the cp2k code [126–130]. Goedecker-Teter-Hutter pseudopotentials [127, 128] are
used to describe the electron core-valence interactions. Calculations are performed
with double-ζ MOLOPT Gaussian basis sets [129]. The Brillouin zone is sampled
at the sole Γ-point. The energy cutoff for the plane waves is set to 800 Ry. We
use a dielectric dependent hybrid functional defined by the one-parameter PBE0
functional [53], in which we fix the fraction of exact exchange at α = 1/ε∞. For
MgO, we use the experimental value of ε∞ = 3.0 [131], resulting in α = 0.33.
This choice gives a fundamental band gap of 7.8 eV, in excellent agreement with
the experimental value of 7.83 eV [132]. The hybrid functional calculations are
accelerated through the use of the auxiliary density matrix method, in which cFIT3
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auxiliary basis set is used for the Gaussian functions [130]. By applying a finite
electric field [87] to the largest supercell under consideration (1000 atoms), we
determine ε0 = 8.6 and ε∞ = 2.5, in agreement with the experimental values
εexpt

0 = 9.8 [133] and εexpt
∞ = 3.0 [131]. As the model correction Em for regularly

screened defects, we adopt the method introduced by Freysoldt, Neugebauer, and
Van de Walle (FNV) [77].

In Fig. 3.1(b), we illustrate the quality of our correction scheme for the formation
energy Ef(0,R+1) of the neutral charge state in the geometry of the hole polaron.
In the case of the oxygen vacancy, we consider Ef(q,Rq′) for q, q′ = 0,+1,+2,
resulting in eight cases excluding Ef(0,R0), which we take as the reference. Figure
3.3 shows the scaling towards the dilute limit in the cases in which standard
correction schemes cannot be applied. Excluding the case of the relatively small
64-atom supercells, the errors of the corrected formation energies with respect to
the extrapolated value in the dilute limit are smaller than 0.16 eV in all cases.
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Figure 3.3 – Formation energies of various states (q,Rq′) of the oxygen vacancy in MgO as a
function of the inverse supercell size L−1. The number of atoms in the supercell is given at
the top. The formation energies in the dilute limit are found by linear extrapolation of the
two largest supercells and are indicated by horizontal red lines. In charged systems, we take
εF = 0.
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Similar errors are found for the FNV scheme applied to the formation energies of
regularly screened oxygen vacancies (cf. Fig. 3.4), in agreement with the literature
[78]. This is illustrated in Fig. 3.4, where we show the scaling towards the dilute
limit of the formation energies of regularly screened defects. The error with respect
to the dilute limit becomes negligible for sufficiently large supercells.

In Fig. 3.5, we illustrate the vertical transition energies obtained for the 64-atom
supercell of MgO. This highlights the importance of accounting for finite-size
corrections when considering configurational diagrams. Additionally, Fig. 3.6(a)
shows the performance of the scheme by Chen and Pasquarello [125] applied to
the regularly relaxed hole polaron in MgO (q = q′ = +1). Figure 3.6(b) illustrates
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Figure 3.4 – Formation energies of regularly screened defect states of the oxygen vacancy in
MgO as function of the inverse supercell size L−1. The corrections are performed with the
FNV model correction scheme [77]. The number of atoms in the supercell is given at the top.
The formation energies in the dilute limit are found by linear extrapolation of the two largest
supercells and are indicated by horizontal red lines. In all these cases, we take the Fermi level
εF = 0.
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the accuracy of the present finite-size correction scheme applied to the charged
and neutral states of the hole polaron in MgO, in which a built-in polarization is
present. The errors with respect to the dilute limit in the two cases are similar,
thereby supporting the validity of our formulation.

The scaling behavior here studied is affected not only by the finite-size of the
simulation cell but also by the varying accuracy of the k-point sampling. However,
the consideration of large band-gap materials, such as MgO and liquid water,
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Figure 3.6 – Kohn-Sham defect levels ε of the charged (a) and neutral (b) hole polaron in
MgO as a function of the inverse supercell size L−1. The defect levels are referred to the
valence bands of the pristine system. In both cases, we use the correction formula given in Eq.
(11) of the main text, which corresponds to that of Chen and Pasquarello [125] in the case of
the positively charged state. The number of atoms in the supercell is given at the top. The
defect levels in the dilute limit are found by linear extrapolation of the two largest supercells
and are indicated by horizontal red lines.
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ensures that the effect from the latter is negligible. For the hole polaron in the
64-atom supercell, we verified that a k-point sampling involving the sole Γ point
gives results within only 0.07 eV from the fully converged sampling. This effect
becomes fully negligible for the larger supercells.

3.4 Ionic polarization charge

To highlight the role of the ionic polarization charge q′pol, we focus on the (0,R+1)

state of the oxygen vacancy in MgO, in which the localized charge is solely provided
by the ionic polarization. In Fig. 3.7(a), we display the potential VDFT obtained
from the hybrid functional calculation. We compare the latter with the long-range
model potential associated with a charge q′pol screened by ε∞,

V lr
m (r; q′pol, ε∞) =

1

ε∞

∫
dr′

ρm(r′; q′pol)

|r− r′|
, (3.10)

where ρm(r′; q′pol) represents a Gaussian distribution of charge q′pol. Figure 3.7(a)
shows that VDFT is well described by Vm in the long range, supporting the description
of the ionic polarization in terms of the charge q′pol. The role of q′pol can be further
emphasized by displaying the finite-size errors with respect to the dilute limit for
Ef(q,R+1), where the charge states q = 0,+1,+2 are considered in the presence
of the same frozen configuration R+1. In Fig. 3.7(b), we display these errors for
every considered supercell size and interpolate them with parabola. When the
supercells are sufficiently large, the minima of these parabola occur at charge −q′pol

pertaining to R+1. This is consistent with our finite-size expression in Eq. (3.4),
since the third term Em(q+ q′pol, ε∞) is quadratic in the localized charge [77, 83–85]
and is thus minimized for q = −q′pol. At the minimum the electronic polarization
is absent, but the correction does not vanish because of the first two terms in
Eq. (3.4), which correspond to the establishment of the ionic polarization in the
geometry R+1. Figures 3.7(c-d) corresponds to the same analysis for the O vacancy
in MgO as illustrated in Fig. 3.7(b) but for the lattice configurations relaxed in
the presence of a charge q′ = 0,+2.

As a second case study, we focus on the vertical extraction energy of the hydrated
electron. In the final state, the system is neutral but the structure of liquid water
presents a strong dipolar polarization giving rise to significant finite-size effects (cf.
Fig. 3.1) [120]. We take uncorrected data for the vertical transition µ(−1→0,R−1)
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Figure 3.7 – (a) Comparison between the potential VDFT obtained from the hybrid func-
tional calculation for the (0,R+1) state of the O vacancy in MgO and the model potential
Vm(r; q′pol, ε∞) resulting from a Gaussian distribution of charge q′pol = −(1− ε∞/ε0) with a
width of 1 bohr. (b-d) Absolute finite-size error with respect to the dilute limit for Ef(q,Rq′)
with q = 0,+1,+2 and q′ = 0,+1,+2 (solid circles). Supercells based on various numbers of
atoms are considered. The data are interpolated with parabola and the obtained minima are
indicated with open circles. The vertical line indicates the charge −q′pol and corresponds to
the theoretical minimum of the finite-size correction for Rq′ .

calculated in Ref. [120] and apply our scheme based on FNV model corrections for
Em [77, 86, 125]. We use static and high-frequency dielectric constants inferred
from experimental data (ε0 = 78.3 [121] and ε∞ = 1.78 [134]). Compared to the
extrapolated limit, our corrected transition energies show errors of 0.11 and 0.04 eV
for supercells containing 64 and 128 water molecules, respectively, thereby further
supporting the accuracy of our scheme [cf. Fig. 3.1(c)].

3.5 Sum rule from thermodynamic integration

To corroborate the general validity of our formulation, we show that the finite-
size corrections for vertical transition energies in Eq. (3.6) satisfy a sum rule
that connects them to standard corrections of structurally relaxed defects [cf. Eq.
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Figure 3.8 – Illustration of the sum rule defined in Eq. (3.13) for a transition between the
defect charge states of q′ = 0 and q = +1 in a 1000-atom supercell of MgO. For each value
of the Kirkwood parameter η, the correction µcor(0→+1,Rη) is evaluated through Eq. (3.6).
The mean value of µcor(0→+1,Rη) (red line) equals Em(+1, ε0).

(3.2)]. To derive the sum rule, we adopt a procedure commonly utilized in the
framework of the thermodynamic integration method [135–137]. To describe the
transition from the charge state q′ to that of q, we introduce a fictitious Hamiltonian
Hη = ηHq + (1− η)Hq′ , where η is the Kirkwood parameter [138], and Hq′ and Hq

are the Hamiltonians associated to the initial and final states, respectively. This
leads to

E(q,Rq)− E(q′,Rq′) =

∫ 1

0

dη µ(q′→q,Rη), (3.11)

where the terms on the left-hand side correspond to equilibrium energies of relaxed
defects, whereas the integrand on the right-hand side is the vertical transition
energy defined in Eq. (3.5). This leads to the following relationship between the
corresponding finite-size corrections,

Em(q, ε0)− Em(q′, ε0) =

∫ 1

0

dη µcor(q
′→q,Rη). (3.12)

It can be proven that this relationship is generally satisfied by our finite-size
corrections for vertical charge transition energies. The proof uses the quadratic
dependence of the model correction Em(q, ε) on q and the linearity of the model
potential Vm(r; q, ε) in q. In Fig. 3.8, we illustrate the relationship between the
finite-size corrections in Eq. (3.13) for a transition from q′ = 0 to q = +1 in MgO.

Without loss of generality, we here explicitly demonstrate the validity of the sum
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rule in case of FNV model corrections [77]. We start by inserting the expression of
µcor given in Eq. (3.6) into Eq. (3.13), namely

Em(q, ε0)−Em(q′, ε0) =

∫ 1

0

dη
[
Em(q + qηpol, ε∞)− Em(q′ + qηpol, ε∞)

]
, (3.13)

where qηpol = ηqpol + (1 − η)q′pol. The ionic polarization charges qpol and q′pol

correspond to the defect states (q,Rq) and (q′,Rq′), respectively. From the def-
inition of the ionic polarization charge in Eq. (3.3), it follows that ρm(qpol) =

−ρm(q)(1− ε∞/ε0).

Next, considering that Em = Elat − q∆V [cf. Eq. (2.33)], we can decompose Eq.
(3.13) in two separate equations, for the lattice energy Elat and for the alignment
term q∆V , respectively. For the lattice energy terms, we get

ρm(q)V lr
m (q, ε0)− ρm(q′)V lr

m (q′, ε0) =

∫ 1

0

dη
{

[ρm(q) + ρm(qηpol)]V
lr
m (q + qηpol, ε∞)

− [ρm(q′) + ρm(qηpol)]V
lr
m (q′ + qηpol, ε∞)

}
.

(3.14)

Using the explicit expression of the model potential V lr
m in Eq. (2.31), Eq. (3.14)

becomes

ρm(q)2

ε0

− ρm(q′)2

ε0

=
1

ε∞

∫ 1

0

dη
{[
ρm(q) + ρm(qηpol)

]2 − [ρm(q′) + ρm(qηpol)
]2}

=
1

ε∞

{
ρm(q)2 − ρm(q′)2 + 2 [ρm(q)− ρm(q′)]

∫ 1

0

dη ρm(qηpol)

}
.

(3.15)

Using the relation ρm(qηpol) = ηρm(qpol) + (1 − η)ρm(q′pol) and performing the
integration in η, we obtain

ρm(q)2

ε0

− ρm(q′)2

ε0

=
1

ε∞

{
ρm(q)2 − ρm(q′)2 + [ρm(q)− ρm(q′)][ρm(qpol) + ρm(q′pol)]

}
=

1

ε∞

{
ρm(q)2 − ρm(q′)2 −

(
1− ε∞

ε0

)[
ρm(q)2 − ρm(q′)2

]}
=
ρm(q)2

ε0

− ρm(q′)2

ε0

. (3.16)

Therefore, Eq. (3.13) is satisfied for the lattice energy terms.
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For the alignment terms, Eq. (3.13) is satisfied when

q∆V (q, ε0)− q′∆V (q′, ε0) =

∫ 1

0

dη
{

(q + qηpol)∆V (q + qηpol, ε∞)

− (q′ + qηpol)∆V (q′ + qηpol, ε∞)
}
. (3.17)

Using the linearity of the alignment term with respect to the charge distribution
[78], the latter becomes

q∆V (q, ε0)− q′∆V (q′, ε0) = q∆V (q, ε∞)− q′∆V (q′, ε∞)

+ (q − q′)
∫ 1

0

dη ∆V (qηpol, ε∞)

+ [∆V (q, ε∞)−∆V (q′, ε∞)]

∫ 1

0

dη qηpol. (3.18)

Using the fact that qηpol = ηqpol + (1 − η)q′pol and the linearity of the alignment
term with respect to the charge density, Eq. (3.18) can be rewritten as

q∆V (q, ε0)− q′∆V (q′, ε0) = q∆V (q, ε∞)− q′∆V (q′, ε∞)

+
1

2
(q − q′)[∆V (qpol, ε∞) + ∆V (q′pol, ε∞)]

+
1

2
[∆V (q, ε∞)−∆V (q′, ε∞)](qpol + q′pol).

(3.19)

Finally, re-elaborating Eq. (3.19), we get

q∆V (q, ε0)− q′∆V (q′, ε0) = q∆V (q + qpol, ε∞)− q′∆V (q′ + q′pol, ε∞),

(3.20)

which is satisfied by definition of qpol. This concludes our proof of Eq. (3.13).

3.6 Comparison with previous literature

In Tables 3.1 and 3.2, we report the finite-size errors with respect to the dilute limit
for all the defect states in MgO and H2O considered in this work. It is seen that
the mean percentage errors defined as the ratio of the corrected and uncorrected
errors generally decrease with increasing supercell size.
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Table 3.1 – Errors with respect to the dilute limit (DL) of formation energies for the hole
polaron and the oxygen vacancy in MgO, with (δcor) and without (δuncor) the finite-size energy
corrections. We use the correction formula derived in this work with FNV model corrections
[77]. The footnotes specify when they are equivalent to model correction schemes for regularly
screened defects. The mean percentage errors (MPE) defined as the average δcor/δuncor for a
given supercell size are reported. All energies are in eV.

64 atoms 216 atoms 512 atoms 1000 atoms
DL δuncor δcor δuncor δcor δuncor δcor δuncor δcor

hole polaron Ef(+1,R+1)I −0.384−0.172 0.094−0.113 0.069−0.109 0.030−0.087 0.027
Ef(0,R+1) 1.425−0.663 0.006−0.411 0.025−0.311 0.022−0.249 0.022
MPE 27.8% 33.7% 17.2% 19.9%

O vacancy Ef(+1,R0)II −3.145−0.811 0.087−0.583 0.039−0.446 0.026−0.357 0.023
Ef(+2,R0)II −3.060−3.122 0.427−2.226 0.223−1.709 0.155−1.367 0.136
Ef(0,R+1) 1.364−0.773−0.156−0.470−0.034−0.350−0.017−0.280−0.012
Ef(+1,R+1)I −4.458−0.138 0.125−0.179 0.010−0.160−0.020−0.128−0.015
Ef(+2,R+1) −6.726−1.299 0.379−1.085 0.087−0.869 0.017−0.695 0.020
Ef(0,R+2) 5.148−2.941−0.571−1.807−0.159−1.320−0.051−1.056−0.024
Ef(+1,R+2) −3.059−0.894−0.008−0.624 0.005−0.484−0.010−0.388−0.005
Ef(+2,R+2)I −8.057−0.616 0.412−0.666 0.074−0.563−0.008−0.450−0.002
MPE 31.5% 7.2% 5.2% 4.9%

Table 3.2 – Errors with respect to the dilute limit (DL) of the vertical excitation energy µ of
the hydrated electron in water, with (δcor) and without (δuncor) finite-size energy corrections.
We use the correction formula derived in this work with FNV model corrections [77]. The
Gaussian distribution of the model charge has a width corresponding to the gyration radius of
the hydrated electron (2.49 Å, Ref. [120]) to ensure a vanishing alignment term [86, 125].
The mean percentage errors (MPE) defined as the average δcor/δuncor for a given supercell
size are reported. All energies are in eV.

64 molecules 128 molecules
DL δuncor δcor δuncor δcor

hydrated e− µ(−1→ 0,R−1) 3.581 −0.832 −0.108 −0.668 −0.044
MPE 13.0% 6.6%

In Table 3.3, we compare uncorrected and corrected vertical transitions with
previous results in the literature for the hole polaron [39] and the oxygen vacancy
[139] in MgO. We used a simulation cell of 216 atoms for the hole polaron and of
64 atoms for the oxygen vacancy to enable comparisons with the results in Refs.
[39, 139]. Generally, the difference between corrected and uncorrected results is
sizable demonstrating the usefulness of our correction scheme. The differences
between our values and the values in the literature [39, 139] result from different
correction schemes but also from different computational setups, which make a
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detailed comparison difficult.

Table 3.3 – Vertical transition energies for the hole polaron and the oxygen vacancy in
MgO, uncorrected and corrected using our scheme. It is specified whether εF is taken at the
conduction band minimum (CBM) or at the valence band maximum (VBM). A comparison
with previously calculated values is reported. The simulation cell contains 216 atoms for the
hole polaron and 64 atoms for the oxygen vacancy. All energies are in eV.

εF Uncorrected Corrected Previous

hole polaron µ(+1→0,R+1) VBM 1.32 1.72 1.15I

CBM 6.48 6.08 6.8I

O vacancy µ(0→+1,R0) VBM −3.96 −3.06 −2.7II

CBM 3.84 4.74 5.4II

µ(+1→0,R+1) VBM 5.19 5.53 4.3II

CBM −2.61 −2.27 −3.8II

µ(+1→+2,R+1) VBM −3.43 −2.01 −2.6II

CBM 4.37 5.79 5.5II

µ(+2→+1,R+2) VBM 4.72 4.57 4.0II

CBM −3.08 −3.23 −4.1II

I Ref. [39], II Ref. [139].

3.7 Discussion

In conclusion, we derived finite-size corrections for vertical transition energies and
single-particle energy levels involving defect states with built-in ionic polarization.
The present formulation is fully general and applies to defect states in condensed
systems ranging from the solid to the liquid state. Its physical motivation is
transparent and the limiting cases are trivially recovered. Our method allows for
the combination with existing schemes for regularly relaxed defects, making its
implementation and use widely accessible [140]. Our corrections are validated
through numerical case studies in MgO and water and through the analytical
condition set by a sum rule. This scheme allows one to achieve accurate optical
transition energies for identifying defect signatures in measured optical spectra
without requiring computationally prohibitive system-size scalings.
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4 Polarons modelled through hybrid
functionals

We study polarons free from many-body self-interaction using hybrid
functionals. First, we present the notion of polaron formation energy in
relation to Janak’s theorem, and discuss practical ways through which the
piecewise linearity of the total energy can be enfoced. We demonstrate
that hybrid functionals stabilize polarons, as opposed to semilocal density
functionals. Then, we show that piecewise linear hybrid functionals lead to
an overall improvement of the electronic structure, yielding accurate band
gaps when compared to experiment. As test cases, we consider the electron
polaron in BiVO4, the hole polaron in MgO, and the Al-trapped hole in
α-SiO2.

This chapter is adapted from:
Ref. [141]: S. Falletta, A. Pasquarello, Many-body self-interaction and po-
larons, Physical Review Letters 129, 126401 (2022).
Ref. [142]: S. Falletta, A. Pasquarello, Polarons free from many-body self-
interaction in density functional theory, Physical Review B 106, 125119
(2022).
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4.1 Introduction

Hybrid functionals mixing semilocal density functional and Hartree Fock energies
allow one to suppress the many-body self-interaction [19, 40, 60]. Here, we consider
the PBE0(α) hybrid functional, in which a fraction α of Fock exchange is admixed to
the semilocal exchange. As illustrated in Fig. 4.1, the total energy Eα(q) generally
shows either a positive or negative concavity with respect to the fractional charge q.
For α = 0, PBE0(α) reduces to PBE, which is known to have a convex total energy
as a function of q. On the other hand, for α = 1, the nonlocal exchange operator
in PBE0(α) is the same as in Hartree-Fock theory, which is characterized by a
concave total energy as a function of q. For a specific value α = αk, PBE0(αk) is
essentially piecewise linear upon electron occupation. In this case, the many-body
self-interaction vanishes. Through Janak’s theorem, the energy level of the excess
charge obtained with PBE0(αk) is independent of q.

Localized states represent a prototypical case for enforcing the piecewise linearity.
For instance, this can be achieved by using either electron probes [64–67], defect
states [40, 43, 48, 61, 111, 117, 141–147], or Wannier functions [148]. In this context,
piecewise-linear hybrid functionals yield localized polarons [40, 61–63] and band
gaps in agreement with state-of-the-art GW calculations [40, 60, 64–67]. However,
the use of hybrid functionals demands computationally expensive structural and
electronic relaxations as compared to semilocal functionals. This is particularly
the case in plane-wave codes, but could represent a limiting factor also when using
localized-orbital codes, for instance in molecular dynamics simulations.

Figure 4.1 – (a) Total energy and (b) energy level of the excess charge as a function of the
electron occupation for different PBE0(α) functionals.
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4.2 Polaron formation energy

We consider a polaron of charge Q coupled with its self-induced lattice distortions
Rα
Q, which are obtained by performing structural relaxation with PBE0(α). For

electron polarons Q = −1, while for hole polarons Q = +1. Then, the PBE0(α)

polaron formation energy is defined as [76, 78]

Eα
f (Q) = Eα(Q)− Eα

ref(0) +Qεαb , (4.1)

where Eα(Q) is the total energy of the polaron system, Eα
ref(0) the total energy of

the pristine bulk system, and εαb the band edge corresponding to the delocalized
state as calculated for the pristine bulk system. The total energy Eα(Q) is related
to the polaron level εαp(Q) through Janak’s theorem [75], namely

εαp(Q) = − dEα(q)

dq

∣∣∣∣
q=Q

, (4.2)

where we have introduced the fractional polaron charge q to perform the derivative
of the total energy with respect to charge at fixed geometry Rα

Q. The integral
version of Eq. (4.2) reads

Eα(Q)− Eα(0) = −
∫ Q

0

dq εαp(q). (4.3)

The many-body self-interaction vanishes in correspondence of a fraction αk of Fock
exchange such that

d

dq
εαp(q)

∣∣∣∣
α=αk

= 0, (4.4)

where αk is found self-consistently with the geometry Rα
Q. Then, using Eq. (4.3),

one can write

Eαk(Q) = Eαk(0)−Qεαk
p . (4.5)

By inserting Eq. (4.5) in Eq. (4.1) for α = αk, one obtains the following expression
for the polaron formation energy

Eαk
f (Q) = Q(εαk

b − ε
αk
p ) + [Eαk(0)− Eαk

ref(0)], (4.6)
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where the first and the second term on the right hand side correspond to the
energetic gain due to the electronic localization and to the energetic cost due to
the lattice distortions, respectively. To simplify the notation, the energetics is
considered to be corrected by finite-size effects in all formulas. At α = αk, Eqs.
(4.1) and (4.2) coincide, and the difference between them can be used to estimate
the accuracy by which αk enforces the piecewise linearity condition.

The notion of formation energy is equivalent to the notion of binding energy,
with the convention that, for stable polarons, the formation energies are given
with a negative sign while the binding energies are given with a positive sign.
Experimentally, the polaron binding energy can be measured using photoemission
spectroscopy (PES). Photoemission spectroscopy is a well-established method for
studying the electronic structure of polarons. Indeed, the energy measured by
photoemission can be directly associated with the energy difference between the
polaron level and the delocalized band edge. This is due to the fact that the
photoemission is faster than the atomic relaxation, and hence the lattice does not
relax during the emission. For an electron polaron, this results in the following
expression [23]

Eb + Est = hνp − Te − Φ, (4.7)

where Eb is the polaron binding energy, Est is the cost of lattice distortions, hνp is
the incident photon energy, Te is the kinetic energy of the emitted electron, and
Φ is the work function of the spectrometer. In our notation, Eb = −Eαk

f , and
Est = [Eαk(0)− Eαk

ref(0)]. Hence, using Eq. (4.6) in the case of an electron polaron,
Eq. (4.7) can be rewritten as

εαk
b − ε

αk
p = hνp − Te − Φ, (4.8)

which provides a direct connection between the notion of formation energy and
experimental signatures from photoemission spectroscopy.

4.3 Computational details

As case studies, we consider the electron polaron in BiVO4 [41], the hole polaron
in MgO [39], and Al-trapped hole in α-SiO2 [39, 57, 149–152]. The calculations
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are performed using a plane-wave density functional approach as implemented
in the Quantum Espresso suite [153]. We use the semilocal functional PBE
[10] and the hybrid functional PBE0(α) [53]. The core-valence interactions are
described by normconserving pseudopotentials [154]. We model BiVO4 with a
96-atom orthorhombic supercell (a = 10.34 Å, b = 10.34 Å, c = 11.79 Å), MgO
with a 64-atom cubic supercell (a = 8.45 Å), and α-SiO2 with a 72-atom hexagonal
supercell (a = 9.97 Å, c = 10.96 Å). The lattice parameters and the atomic
positions are optimized at the semilocal level of theory for the pristine systems.
We sample the Brillouin zone at Γ point. The energy cutoff is set to 100 Ry. The
self-trapped polarons (BiVO4, MgO) are obtained by either adding or removing
one electron from the system. The Al-trapped polaron in α-SiO2 is obtained in the
neutral system. The polaron structures are obtained through atomic relaxation at
fixed supercell parameters.

The high-frequency and static dielectric tensors, ε∞ and ε0, respectively, are
determined by applying finite electric fields [87] at the semilocal level of theory. We
use the values ej = 0, 1× 10−4, 2.5× 10−4, 5× 10−4 a.u. (j = x, y, z) and perform a
linear regression to find the components of the dielectric tensors. In the case of
isotropic screening (MgO), the electric field is applied only along one Cartesian
direction. At variance, in the case of anisotropic screening (BiVO4, α-SiO2), the
electric field is applied along the three Cartesian directions. As an example, we
show in Fig. 4.2 the calculation of the zz-component of the high-frequency and
static dielectric tensors in BiVO4, MgO, and α-SiO2. Additionally, as illustrated in
Fig. 4.3, the dielectric constants depend quadratically on α, but their variations are
minor and can thus be neglected. The obtained values of the dielectric constants
are given in Table 4.1.

Table 4.1 – High-frequency and static dielectric constants, ε∞ and ε0, respectively, for the
systems considered in this thesis, as calculated with the functional PBE.

System ε∞ ε0

BiVO4 5.83 64.95

MgO 2.77 10.73

α-SiO2 2.25 4.52
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Figure 4.2 – Determination of the component εzz of the high-frequency and static dielectric
constant in BiVO4, MgO, and α-SiO2.
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Figure 4.3 – Components εxx, εyy, and εzz of the high-frequency and static dielectric constant
as a function of the fraction α of Fock exchange in BiVO4, MgO, and α-SiO2.

4.4 Results

In Fig. 4.4, we show the polaron density obtained with PBE0(αk) for all cases
studied. In BiVO4, the electron polaron localizes on a vanadium atom, thereby
causing an elongation of the neighboring V-O bonds from 1.73 to 1.80 Å. In MgO,
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Table 4.2 – Finite-size corrections of total energies and polaron levels for the systems with
and without polaron charge in the polaron geometry. All values are in eV.

With polaron Without polaron

System Ecor εcor Ecor εcor

BiVO4 0.03 0.06 0.29 −0.58

MgO 0.13 −0.25 0.59 1.34

α-SiO2 0.00 0.00 1.24 2.47

the hole polaron is centered on an oxygen atom, thereby elongating the neighboring
Mg-O bonds from 2.11 to 2.20 Å. In α-SiO2, the hole is trapped at the Al impurity,
with three short Al-O bonds of 1.69 Å and one long Al-O bond of 1.91 Å.

For each system, the fraction αk of Fock exchange used in the polaron calculation
is determined according to Eq. (4.4) as follows. We first fix an approximate value
of αk and relax the polaron to find the geometry Rαk

Q . Second, for this geometry,
we obtain the levels εαp(0) and εαp(Q) pertaining to the charge states 0 and Q as a
function of α. Their intersection gives an improved value for αk, with which the
procedure is repeated until self-consistency is reached. As illustrated in Figs. 4.5(a-
c), we find αk = 0.14, 0.34, and 0.45 for BiVO4, MgO, and α-SiO2, respectively.
This study allows us to determine the polaron level εαk

p . The finite-size corrections
for total energies and polaron levels are given in Table 4.2. In the case of Al-trapped
hole in α-SiO2, the hole trapping occurs in a neutral calculation and is not affected
by finite-size effects.

From εαk
p , we obtain the formation energies via Eq. (4.6) for all the systems under

consideration. For BiVO4, MgO, and α-SiO2, we find −0.63 eV, −0.53 eV, and
−3.11 eV, respectively. In the case of α-SiO2, the larger formation energy stems
from the fact that the hole is not self-trapped but bound to the Al impurity.
Furthermore, we illustrate in Figs. 4.5(d-f) the polaron stability as a function of
the fraction of Fock exchange α using the formation energy of Eq. (4.1) at fixed
geometry Rαk

Q . The PBE0(α) formation energies are found to be very sensitive
to α, which is an effect mainly resulting from the strong dependence of the band
edge εαb on α [cf. Figs. 4.5(a-c)]. Moreover, the polaron at α = 0 (i.e. PBE) is not
stable in all cases. This emphasizes that the functional PBE fails in localizing the
polaronic states. In the case of α-SiO2, we also calculate the formation energy
corresponding to the geometry found in PBE, in which the hole is delocalized over
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BiVO4 𝛼-SiO2MgO

1.80 Å
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1.91 Å

1.69 Å

Figure 4.4 – Polaron isodensity surface at 5% of its maximum calculated with PBE0(αk) for
the electron polaron in BiVO4, the hole polaron in MgO, and the Al-trapped hole in α-SiO2

(Bi in orange, V in cyan, O in red, Mg in pink, Si in blue, Al in grey).

Figure 4.5 – (a-c) Energy levels and (d-f) formation energies obtained with PBE0(α) as a
function α for the electron polaron in BiVO4, the hole polaron in MgO, and the Al-trapped
hole in α-SiO2. The polaron levels are identified by their respective polaron charge. In all
cases, the polaron geometry is obtained with PBE0(αk).
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the four nearest neighbor O atoms (Al-O bond lengths of 1.74 Å). Also in this case,
the hole trapped at a single O atom is unstable at α = 0, in accord with previous
studies [149, 150]. At variance, for α = αk, the one-site polaron is found to be
more stable than the four-site polaron by 1.25 eV.

4.5 Band gaps

To assess the overall quality of the electronic structure, it is of interest to compare the
PBE0(αk) band gaps with experimental values. The comparison with experiment
requires the consideration of relevant effects, such as due to spin-orbit coupling,
atomic vibrations (zero-point phonon renormalization), electron-hole interaction
(for optical band gaps), and magnetic ordering [155–157]. For PBE0(α) functionals,
the agreement with experiment is generally rather good when such effects are
accounted for [40, 60, 64, 65, 67, 124, 148, 158]. In particular, for BiVO4, MgO,
and α-SiO2, we indeed find errors of at most 0.25 eV when comparing PBE0(αk)
band gaps with relevant experimental values after including suitable corrections
(see Table 7.1), consistent with typical values for the mean absolute errors in such
comparisons [40, 67].

We remark that the enforcement of the piecewise linearity condition is in principle
defect dependent. As investigated in Refs. [40, 64–66], αk can vary up to ±0.03 de-

Table 4.3 – Band gaps calculated with PBE (E0
g) and PBE0(αk) (E

αk
g ) compared to experi-

mental values after including suitable corrections (∆Eg). Energies are in eV.

System E0
g Eαk

g ∆Eg Eαk
g + ∆Eg Expt.

BiVO4 2.38 3.41 −1.16I 2.25 2.4-2.5 II

MgO 4.65 8.15 −0.53III 7.62 7.77 IV

α-SiO2 5.81 10.51 0.02V 10.53 10.30 VI

I Ref. [155], including spin-orbit coupling, thermal vibrations, and exciton binding energy.
II Refs. [159–161], optical band gap at 300 K.
III Ref. [162], zero-point phonon renormalization.
IV Ref. [163], fundamental band gap at 6 K.
V Separation of 0.60 eV between fundamental band gap and first absorption peak [164],
and zero-point phonon renormalization of −0.58 eV [165].
VI Ref. [166], first peak in reflectance spectrum.
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pending on the defect under consideration. However, by selecting an optimal defect
ensuring minimal hybridization with the delocalized band states, the uncertainty
in αk can be further reduced [65]. Accurate comparisons with experimental band
gaps in Refs. [65, 67] show agreement within 0.25 eV. The dependence of αk on
the defect considered ultimately reflects the approximate nature of the PBE0(α)
functional.

4.6 Discussion

We showed that implementing a constraint like the piecewise linearity from ex-
act density functional theory in approximate functionals results in a successful
description of the many-body self-interaction. Following the same lines, one could
also specifically focus on including the long-range −1/(ε∞r) dependence of the
Coulomb potential [158], which is another property of the exact density functional
[19]. In PBE0(α) functionals, these properties correspond to setting the fraction of
Fock exchange to αk and αlr = 1/ε∞, respectively. For most materials, the values
of αk and αlr are generally quite close, leading to similar band gaps [40, 64]. When
αk and αlr differ noticeably, it is still possible to include both conditions coming
from exact density functional theory through the consideration of more involved
functionals, such as range-separated hybrid functionals [40, 66, 158, 167].

The class of PBE0(α) hybrid functionals is particularly relevant since it can
cover straightforwardly either the one-body or the many-body self-interaction. In
particular, for α = 1 the one-body self-interaction is removed as in Hartree-Fock
theory and band gaps are largely overestimated. At variance, for α = αk the
many-body self-interaction vanishes, leading to accurate polaron formation energies
and band gaps.
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5 Unified formulation for the self-
interaction

We develop a unified theoretical framework encompassing one-body and
many-body forms of self-interaction. We find an analytic expression
for both the one-body and the many-body self-interaction energies, and
quantitatively connect the two expressions through the dielectric constant.
This demonstrates that the many-body notion of self-interaction accounts
for additional electron screening effects, which are missing in the one-body
notion of self-interaction. Moreover, the two forms of self-interaction are
found to coincide in the absence of electron screening. This analysis allows
us to confer superiority to the notion of many-body self-interaction over the
notion of one-body self-interaction.

This chapter is adapted from:
Ref. [141]: S. Falletta, A. Pasquarello, Many-body self-interaction and po-
larons, Physical Review Letters 129, 126401 (2022).
Ref. [142]: S. Falletta, A. Pasquarello, Polarons free from many-body self-
interaction in density functional theory, Physical Review B 106, 125119
(2022).
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5.1 Introduction

In the previous Chapter, we studied polarons free from many-body self-interaction
using hybrid functionals. We emphasized that piecewise-linear hybrid functionals
lead to an overall improvement of the electronic structure, including band gaps.
At variance, suppressing the one-body self-interaction leads to an overestimation
of polaron formation energies and band gaps (cf. Fig. 4.5), thus suggesting that
one should correct for the many-body self-interaction rather than for the one-body
self-interaction. In this context, the family of hybrid functionals PBE0(α) allows
one to investigate the notions of one-body and many-body self-interaction in a
comparative fashion.

Here, we develop a unified formulation for both forms of self-interaction within the
family of hybrid functionals PBE0(α). This can be used to quantify the connection
between these two forms of self-interaction and thereby to determine which form
of self-interaction should be addressed when modelling polarons. In the following,
we start by presenting the assumptions of our formulation.

5.2 Assumptions

We consider a localized polaron with the atomic structure Rαk
Q as obtained with

the piecewise-linear PBE0(αk) functional. The single-particle levels are known to
depend linearly on α in PBE0(α) calculations [40, 43, 48, 60, 64, 65]. Furthermore,
the total energy Eα(q) obtained with PBE0(α) generally shows a quadratic behavior
upon addition of a fractional polaron charge q [20, 168]. Hence, through Janak’s
theorem [75] [cf. Eq. (4.2)], the polaron level εαp(q) can be taken to depend linearly
on both q and α. This assumption has implications on the wave functions ψαiσ. We
denote ψαp the polaron wave function, and nαp = |ψαp |2 the polaron density. The
electron (hole) polaron state is identified as the last-occupied (first unoccupied)
state in the spin channel σp. The density of valence electrons can be then expressed
as

nασval(q) = nασ(q) + δσ,σpqn
α
p , (5.1)

where δ is the Kronecker delta, and nασ is the total density in the spin channel σ.
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We first focus on the assumption of linearity of εαp(q) with respect to q. Then, the
first derivative of εαp(q) with respect to q must be a constant. For simplicity, we
consider the case α = 0. Using the Hellmann-Feynman theorem and the chain rule
for the derivatives with respect to q, we get

dε0p(q)

dq
= 〈ψ0

p|
dH0

σp

dq
|ψ0

p〉 =
∑
σ

∫
drdr′

δH0
σp

[n0
↑, n

0
↓](r)

δn0
σ(r′)

dn0
σ(r′)

dq
n0

p(r). (5.2)

We note that the derivative dn0
σ/dq can be split into contributions pertaining to

the polaron and to the valence electrons. Using the definition of the density of
valence electrons in Eq. (5.1), we can write

dn0
σ

dq
=
dn0

σval

dq
− δσ,σp

(
n0

p + q
dn0

p

dq

)
. (5.3)

By inserting Eq. (5.3) in Eq. (5.2), one infers that dε0p(q)/dq is constant with q

when neglecting the variations of the polaron density with q and the second-order
derivative of the valence electron density with respect to q, i.e.

dn0
p

dq
= 0 and

d2n0
σval

dq2
= 0. (5.4)

Such conditions also apply to the respective wave functions and can be extended
to the case α 6= 0.

Next, we consider the assumption of linearity of εαp(q) in α. Then, the first
derivative of εαp(q) with respect to α must be a constant. Using the Hellmann-
Feynman theorem and expliciting the α-dependency of the Hamiltonian Hα

σp
, one

has

dεαp(q)

dα
= 〈ψαp |

dHα
σp

dα
|ψαp 〉 = 〈ψαp |

d

dα

(
H0
σp

+ α
∂Hα

σp

∂α

)
|ψαp 〉

= 〈ψαp |
(
dH0

σp

dα
+
∂Hα

σp

∂α
+ α

d

dα

∂Hα
σp

∂α

)
|ψαp 〉 . (5.5)

Then, neglecting the explicit α-dependent term in Eq. (5.5), one obtains

dεαp(q)

dα
= 〈ψαp |

(
dH0

σp

dα
+
∂Hα

σp

∂α

)
|ψαp 〉 . (5.6)

The first term in the right-hand side of Eq. (5.6) can be expressed using the chain
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rule, namely

dH0
σp

dα
=
∑
σ

∫
dr
δH0

σp
[nα↑ , n

α
↓ ]

δnασ(r)

dnασ(r)

dq
. (5.7)

The second term in the right-hand side of Eq. (5.6) is easily reformulated using Eq.
(2.7) as

∂Hα
σp

∂α
= −Vxσp [nα↑ , n

α
↓ ] + VX[{ψαiσp

}]. (5.8)

Thus, Eq. (5.6) depends on α only through the wave functions ψαiσ. Therefore, the
assumption of constant dεαp(q)/dα with α implies neglecting the variations of the
wave functions with α, i.e.

dψαiσ
dα

= 0. (5.9)

Hence, in our formulation, the variations of the polaron wave function with q, the
second-order derivative of the wave functions of the valence states with respect to
q, and the variations of the wave functions with α can be taken to vanish.

We then expand εαp(q) in α around αk,

εαp(q) = εαk
p + (α− αk)

dεαp(q)

dα
, (5.10)

where εαk
p is independent of q because of the definition of αk [cf. Eq. (4.4)]. By

further expanding the right-hand side of Eq. (5.10) with respect to q around q = 0,
we get

εαp(q) = εαk
p + (α− αk)

[
dεαp(0)

dα
+ q

d2εαp(q)

dαdq

]
. (5.11)

By introducing the fractional charge qk defined as

qk = −
dεαp(0)

dα

/
d2εαp(q)

dαdq
, (5.12)
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we can rewrite Eq. (5.11) as

εαp(q) = εαk
p + (α− αk)(q − qk)

d2εαp(q)

dαdq
. (5.13)

The result in Eq. (5.13) can be equivalently obtained by first expanding εαp(q) in q
around qk and then by expanding in α around αk. In this case, we get the following
expression for αk

αk = −
dε0p(q)

dq

/
d2εαp(q)

dαdq
, (5.14)

which is analogous to Eq. (5.12). By taking the ratio between the expressions in
Eqs. (5.12) and (5.14), we find a relationship that links αk and qk:

qk
αk

=
dεαp(0)

dα

/
dε0p(q)

dq
, (5.15)

which emphasizes the duality between αk and qk in the expression of εαp(q) [cf. Eq.
(5.13)]. In particular, as αk represents the fraction of Fock exchange for which
the polaron level is free from many-body self-interaction at any fractional charge
q, qk is the fractional charge for which the polaron level is free from many-body
self-interaction at any fraction of Fock exchange α. This will be instrumental in
the following derivations.

5.3 Many-body self-interaction

We define the many-body self-interaction energy correction to the PBE0(α) energy
as

∆Eα(q)|mb = [Eα(0)− qεαk
p ]− Eα(q), (5.16)

such that the energy Eα(q) + ∆Eα(q)|mb is piecewise linear as a function of q. At
α = αk, ∆Eαk|mb vanishes by definition of αk. The total energy Eα(q) in Eq. (5.16)
can be expanded at second order in q as

Eα(q)− Eα(0) = −qεαp(0)− q2

2

dεαp(q)

dq
, (5.17)
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where we have applied Janak’s theorem for expressing the first and the second
derivative of the total energy with respect to q in terms of the polaron level. By
inserting Eq. (5.17) in Eq. (5.16) and by expressing εαk

p = εαp(qk), we get

∆Eα(q)|mb = q[εαp(0)− εαp(qk)] +
q2

2

dεαp(q)

dq
. (5.18)

By using the linearity of the polaron level in q, the latter equation becomes

∆Eα(q)|mb =
1

2

[
(q − qk)2 − q2

k

]dεαp(q)

dq
. (5.19)

Expanding εαp(q) in α and using the definition of αk in Eq. (5.14), we obtain

dεαp(q)

dq
=
(

1− α

αk

)dε0p(q)

dq
= −

(
1− α

αk

)d2E0(q)

dq2
, (5.20)

where the second equality stems from Janak’s theorem. This allows us to express
Eq. (5.19) as

∆Eα(q)|mb = −1

2

(
1− α

αk

)[
(q − qk)2 − q2

k

]d2E0(q)

dq2
. (5.21)

Using the chain rule on the second derivative of the total energy with respect to q,
we get

∆Eα(q)|mb = −
(

1− α

αk

)[
(q − qk)2 − q2

k

]{
EH

[
dn

dq

]

+
1

2

∑
σσ′

∫
drdr′

δ2Exc[n↑, n↓]

δnσ(r)δnσ′(r′)

dnσ(r)

dq

dnσ′(r)

dq

}
, (5.22)

where the second derivatives of nσ with respect to q have been taken to vanish
and the superscript 0 in the densities nσ has been skipped, consistently with
the assumptions of our formulation. In Eq. (5.22), the Fock exchange effects are
entirely described by qk and αk. Apart from the parameters qk and αk, ∆Eα(q)|mb

is herewith expressed in terms of a quantity that can be evaluated at the semilocal
PBE level. By applying Janak’s theorem to ∆Eα(q)|mb in Eq. (5.21), we find the
many-body self-interaction correction to the polaron level

∆εαp(q)
∣∣
mb = − d

dq
∆Eα(q)|mb = −

(
1− α

αk

)
(q − qk)

dε0p(q)

dq
, (5.23)
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Figure 5.1 – Many-body self-interaction corrected (a-c) total energy E0(q) and (d-f) polaron
level ε0p(q) as a function of the charge q, for the electron polaron in BiVO4, the hole polaron in
MgO, and the trapped hole at the Al impurity in α-SiO2. The localized polarons are obtained
with the hybrid functional PBE0(αk).

which vanishes at both α = αk or q = qk, consistently with Eq. (5.13). Thus, the
polaron level εαp + ∆εαp

∣∣
mb is constant for varying polaron charge q. Applying the

Hellmann-Feynman theorem to the derivative of ε0p(q) with respect to q, we get

dε0p(q)

dq
= 〈ψp|

dH0
σp

(q)

dq
|ψp〉 . (5.24)

Then, using the chain rule on the derivative of the Hamiltonian H0
σp

(q) with respect
to q, Eq. (5.23) can be rewritten as

∆εαp(q)
∣∣
mb = −

(
1− α

αk

)
(q − qk)

∫
dr

{
VH

[
dn

dq

]
(r)

+
∑
σ

∫
dr′

δVxcσp [n↑, n↓](r)

δnσ(r′)

dnσ(r′)

dq

}
np(r). (5.25)

We evaluate the many-body self-interaction corrected total energy and polaron level
as a function of q for the cases studied. Here, we determine the polaron energetics
at α = 0 (PBE) at first-order perturbation theory using the wave functions and
the atomic structure obtained with the hybrid functional PBE0(αk). The many-
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Figure 5.2 – (a-c) Polaron density np and (d-i) variation of the valence-electron densities
nσval upon the occupation f of the polaron level (cf. Eq. (5.27)) for the electron polaron
in BiVO4, and the hole polaron in α-SiO2, as obtained with the functional PBE0(αk). The
densities are integrated over the z direction and plotted in the xy plane. The results for the
hole polaron in MgO are shown in Ref. [141].

body self-interaction corrections are evaluated using the following finite-difference
expression for dε0p(q)/dq

dε0p(q)

dq
=
ε0p(Q)− ε0p(0)

Q
, (5.26)

where the levels ε0p(Q) and ε0p(0) are calculated with the semilocal functional PBE.
As illustrated in Figs. 5.1(a-b) in the cases of BiVO4 and α-SiO2, the PBE total
energy exhibits a concavity upon partial electron occupation, and a corresponding
linear variation of the polaron level [cf. Figs. 5.1(c-d)]. Upon applying the corrections
∆E0(q)|mb and ∆ε0p(q)

∣∣
mb, the total energy and the polaron level become linear

62



Unified formulation for the self-interaction Chapter 5

and constant in q, respectively.

The electron screening affects the many-body self-interaction corrections in Eqs.
(5.22) and (5.25) through the derivatives dnσ/dq. To illustrate such screening effects,
it is convenient to focus on the density of valence electrons [cf. Eq. (5.1)]. Then,
the variations of nσval(q) with respect to q can be calculated by finite differences as

dnσval(q)

dq
=
nσ(Q) + δσ,σpQnp − nσ(0)

Q
. (5.27)

These variations are shown in Fig. 5.2 for both spin channels in the cases of the
electron polaron in BiVO4 and the Al-trapped hole in α-SiO2. First, we remark
that the response of the valence electrons with respect to the polaron charge is not
negligible compared to the polaron charge density. Second, the screening effects
in the two spin channels are noticeably different. This emphasizes the limitation
of using the restricted open-shell Kohn-Sham constraint in the self-consistent
optimization of the Kohn-Sham equations.

5.4 One-body self-interaction

We define the one-body self-interaction energy correction to Eα(q) as

∆Eα(q)|ob = [E1(q)− E1(0)]− [Eα(q)− Eα(0)], (5.28)

which reproduces the q dependence of the energy found for the Hartree-Fock like
regime at α = 1. The correction ∆Eα(q)|ob vanishes for α = 1. Given the linearity
of the total energy with respect to α, Eq. (5.28) can be rewritten as

∆Eα(q)|ob = (1− α)
d

dα
[Eα(q)− Eα(0)]. (5.29)

Using the total energy expansion in Eq. (5.17), the definitions of qk and αk in Eqs.
(5.12) and (5.14), and Janak’s theorem in Eq. (4.2), we find

∆Eα(q)|ob = −1

2

(1− α)

αk

[
(q − qk)2 − q2

k

]d2E0(q)

dq2
. (5.30)
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Using Janak’s theorem, the one-body energy correction to the polaron level is
obtained as

∆εαp(q)
∣∣
ob = − d

dq
∆Eα(q)|ob = −(q − qk)

(1− α)

αk

dε0p(q)

dq
, (5.31)

which corresponds to the energy difference ε1p(q)− εαp(q).

5.5 Relationship between many-body and one-body

self-interaction

Interestingly, the one-body self-interaction energy corrections can be derived starting
from the many-body self-interaction energy corrections. For the total energy, one
has

∆Eα(q)|ob = ∆Eα(q)|mb − ∆E1(q)
∣∣
mb . (5.32)

Similarly, for the polaron level,

∆εαp(q)
∣∣
ob = ∆εαp(q)

∣∣
mb − ∆ε1p(q)

∣∣
mb . (5.33)

This relation is illustrated in Fig. 5.3 in the case of a hole polaron.

The relationship between the two forms of self-interaction can be further highlighted

Figure 5.3 – One-body and many-body self-interaction energy corrections for a hole polaron
level εαp (Q = +1), illustrating Eq. (5.33).
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by taking the ratio between ∆Eα(q)|mb and ∆Eα(q)|ob in Eqs. (5.21) and (5.30):

∆Eα(q)|mb =
αk − α
1− α

∆Eα(q)|ob , (5.34)

which reveals that these two forms of self-interaction are related by a proportionality
relation. For α = 0 (PBE), Eq. (5.34) takes the simple form

∆E0(q)
∣∣
mb = αk ∆E0(q)

∣∣
ob . (5.35)

The parameter αk is generally related to electron screening, as represented by
the high-frequency dielectric constant ε∞ [169, 170]. In particular, αk ' 1/ε∞

reproduces the correct asymptotic potential in the long-range limit [19, 167] and
generally yields band gaps in good agreement with state-of-the-art GW calculations
[40, 171, 172]. Hence, Eq. (5.35) can be rewritten as

∆E0(q)
∣∣
mb '

1

ε∞
∆E0(q)

∣∣
ob , (5.36)

which establishes a quantitative relationship between these self-interaction energies
in case of α = 0. Equation (5.36) carries similarity with the Hartree-Fock theory of
excitons [173, 174]. Indeed, when calculating the exciton binding energy, the bare
Coulomb kernel 1/|r− r′| is replaced with the screened kernel 1/(ε∞|r− r′|), which
includes the dielectric constant analogously to Eq. (5.36). Hence, the account of
screening effects in the many-body self-interaction emphasizes its superiority over
the one-body self-interaction.

The connection between many-body and one-body forms of self-interaction can
be further highlighted by turning off the electron screening. This can be achieved
by setting equal to zero the variations of the wave functions with respect to q.
Starting from Eq. (5.1), this gives

dnσ
dq

∣∣∣∣
bare

= −δσ,σpnp. (5.37)

In this limit, we apply the Hellmann-Feynmann theorem to dεαp(q)/dq and obtain

dεαp(q)

dq

∣∣∣∣
bare

= 〈ψp|
dHα

σp
(q)

dq

∣∣∣∣
bare
|ψp〉 . (5.38)

Using the chain rule similarly to Eq. (5.25), neglecting the variations of the valence
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Table 5.1 – Screening effects in electron density and Coulomb kernel for the various forms of
self-interaction.

Screening many-body one-body bare

Electron density 3 3 7

Coulomb kernel 3 7 7

wave functions with q, and noticing that

〈ψp|
|ψp〉 〈ψp|
|r− r′|

|ψp〉 = 〈ψp|VH[np]|ψp〉 , (5.39)

we get

dεαp(q)

dq

∣∣∣∣
bare

= −〈ψp|

{
(1− α)VH[np] +

∫
dr
δV α

xcσp
[n↑, n↓]

δnσp(r)
np(r)

}
|ψp〉 . (5.40)

Considering that V α
xcσp

= (1− α)Vxσp + Vcσp [cf. Eq. (2.8)], one finds that the right
hand side of Eq. (5.40) vanishes for α = 1, apart from weaker correlation terms.
Hence, the piecewise linearity condition of Eq. (4.4) is satisfied for αbare

k = 1. In the
limit in which the electron screening is turned off, the many-body and one-body
forms of self-interaction coincide and are equal to

∆Eα(q)|bare = −(1− α)
[
(q − qbare

k )2 − (qbare
k )2

]
·

{
EH[np] +

1

2

∫
drdr′

δ2Exc[n↑, n↓]

δnσp(r)δnσp(r′)
np(r)np(r′)

}
. (5.41)

A summary of the screening effects in the density and Coulomb kernel for the
various forms of self-interaction studied in this work is given in Table 5.1.

It is interesting to note that the expression in Eq. (5.41) evaluated at α = 0

essentially coincides with the self-interaction energy correction found by Sio et al.
[49, 50]:

∆E0(q)
∣∣
bare* = −q2

{
EH[np] +

1

2

∫
drdr′

δ2Exc[n↑, n↓]

δnσp(r)δnσp(r′)
np(r)np(r′)

}
. (5.42)

Indeed, in their derivation, Sio et al. neglected the electron screening effects like in
our bare approximation. The only difference between the two expressions arises
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from the q-dependent prefactor, which is related to the different definitions adopted
for the self-interaction-corrected energy functional. In our case [cf. Eq. (5.16)],

E0(q)
∣∣
bare + ∆E0(q)

∣∣
bare = E0(0)− q ε0p(qbare

k )
∣∣
bare , (5.43)

whereas, in the case of Sio et al., the total energy E0(q) is expanded in q around
q = 0 and the second order derivative of E0(q) with respect to q is removed. This
results in

E0(q)
∣∣
bare + ∆E0(q)

∣∣
bare* = E0(0)− qε0p(0). (5.44)

Hence, in the absence of electron screening, the difference between our bare
expression and that derived in Refs. [49, 50] can be associated with the slope of
the linear dependence of self-interaction corrected energy functional with q, which
corresponds to the polaron level at q = 0 in the case of Sio et al. and to the
polaron level at q = qbare

k in our case. This comparison clarifies the underlying
assumptions leading to previous expressions for the self-interaction in the literature.
In particular, we remark that when the electron screening is allowed, as in realistic
conditions, the self-interaction-corrected energy E0(q) + ∆E0(q)|bare* no longer
satifies the piecewise linearity condition.

In Table 5.2, we quantify the differences between the various forms of self-interaction
discussed in this work by comparing the corresponding polaron formation energies.
The formation energies free from many-body self-interaction are calculated with the
PBE0(αk) functional [cf. Fig. 4.5(d-f)]. The formation energies corrected for the
one-body self-interaction are obtained by extrapolating the results in Fig. 4.5(d-f)
to the fraction of Fock exchange α = 1. We determine the formation energies
corrected for the self-interaction proposed by Sio et al. as

E0
f (Q)

∣∣
bare* = E0

f (Q) + ∆E0(Q)
∣∣
bare* , (5.45)

where E0
f (Q) corresponds to the formation energies at α = 0 in Figs. 4.5(d-f)

[cf. Eq. (4.1)] and ∆E0(Q)|bare* is evaluated using the wave functions obtained
with PBE0(αk). As already pointed out in Ref. [141], the binding energies free
from one-body self-interaction are considerably larger than those corrected for
many-body self-interaction, because of the large shift of the band edges with α
[cf. Figs. 4.5(a-c)]. Moreover, we also find larger values for the formation energies
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Table 5.2 – Polaron binding energies corrected for different forms of self-interaction. For
self-trapped polarons, the binding energy coincides with the formation energy in absolute value.
In the case of α-SiO2, the binding energy measures the stability of the hole localized at one O
atom with respect to the hole delocalized over four O atoms. The binding energies free from
many-body and one-body self-interaction are obtained with PBE0(αk) and PBE0(α = 1),
respectively. The binding energy including the self-interaction correction proposed by Sio et
al. is obtained through Eq. (5.45).

System Many-body One-body Eq. (5.45)

BiVO4 0.63 7.73 3.34
MgO 0.53 3.88 1.98
α-SiO2 1.25 3.83 1.56

corrected with ∆E0(Q)|bare*, which reflects the neglect of screening effects in Eq.
(5.42).

5.6 Screening model

The many-body self-interaction corrections ∆Eα(q)|mb and ∆εαp(q)
∣∣
mb depend on

the parameters αk and qk defined by Eqs. (5.14) and (5.12). In principle, the
evaluation of these parameters requires the use of hybrid functionals on the polaron
supercell. However, computationally expensive hybrid functional calculations can
be avoided.

Here, we develop an electrostatic screening model to estimate αk and qk. The
model is based on the following assumptions. First, as far as the polaron state
is concerned, we consider to be dominant the Hartree-like terms, including the
diagonal Fock exchange contribution. Second, we neglect the variations of the wave
functions with α. Third, we describe the variations of the total electron density n
upon polaron occupation f according to classical electrostatics,

dn(f)

df
=
np

ε∞
, (5.46)

where ε∞ accounts for the electron response of the system.

We first focus on αk. Applying the Hellmann-Feynman theorem to both sides of
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Eq. (5.20), we obtain

〈ψp|
dHα

σp
(q)

dq
|ψp〉 =

(
1− α

αk

)
〈ψp|

dH0
σp

(q)

dq
|ψp〉 . (5.47)

Considering only the Hartree-like contributions and using the screening model in
Eq. (5.46), we write Eq. (5.47) as( 1

ε∞
− α

)
EH[np] =

(
1− α

αk

) 1

ε∞
EH[np], (5.48)

from which one derives αk = 1/ε∞, which is a common approximation in the
literature [19, 40, 167, 169–172]. This confirms the validity of the assumptions of
our electrostatic model.

We now turn to qk. Starting from Eq. (5.32), the one-body self-interaction energy
correction at α = 0 is given by

∆E0(Q)
∣∣
ob = ∆E0(Q)

∣∣
mb−∆E1(Q)

∣∣
mb = −1

2

1

αk

[
(Q−qk)2−q2

k

]d2E0(q)

dq2
. (5.49)

For convenience, we rewrite the right-hand side of Eq. (5.49) in terms of the polaron
occupation rather than the polaron charge. Hence, we introduce the occupation fk

pertaining to qk such that fk = −qk for electron polarons, and fk = 1− qk for hole
polarons. Then, in the case of an electron polaron (Q = −1), Eq. (5.49) becomes

∆E0(Q)
∣∣
ob = −1

2

1

αk

[
(1− fk)2 − (fk)2

]d2E0(f)

df 2
. (5.50)

Proceeding in the same way as in Eq. (5.47) and taking αk = 1/ε∞, we get

∆E0(Q)
∣∣
ob ≈ EH[fknp]− EH[(1− fk)np]. (5.51)

For fk = 1/ε∞, this result lends itself to a meaningful physical interpretation.
To the extent that the Hartree contributions are dominant, the right-hand side
of Eq. (5.51) can be seen as the difference between the one-body self-interaction
of the screened polaron density np/ε∞ and the one-body self-interaction of the
polaron screening density −(1 − 1/ε∞)np, as in classical electrostatics. This is
physically meaningful because in the Hartree-Fock regime, the self-interaction of
the bare polaron density is already cancelled and the first term on the right-hand
side accounts for the self-interaction of the polaron screening charge. At variance,
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Table 5.3 – Parameters αk and qk calculated with PBE0(α) and with our electrostatic screening
model.

Hybrid functional Screening model

System αk qk Ef αk qk Ef

BiVO4 0.14 −0.20 −0.63 0.17 −0.17 −0.62

MgO 0.34 +0.62 −0.53 0.36 +0.64 −0.40

α-SiO2 0.45 +0.60 −3.11 0.44 +0.56 −3.03

in PBE, the screened polaron density needs to be corrected in its entirety, which is
taken care of by the second term on the right-hand side. An equivalent reasoning
applies to hole polarons and also leads to fk = 1/ε∞. Thus, we take qk = −1/ε∞

for electron polarons and qk = 1− 1/ε∞ for hole polarons.

We evaluate the accuracy of our screening model for αk and qk by comparison with
the reference PBE0(αk) values calculated through Eqs. (5.14) and (5.12). We find
that our approximate values for αk and qk deviate from the reference values by at
most 0.03 and 0.04, respectively (cf. Table 5.3). This further confirms the validity
of the electrostatic screening model.

Furthermore, using the values of αk and qk determined with the screening model, we
calculate the polaron formation energy resulting from the application of our many-
body self-interaction corrections ∆E0(q)|mb and ∆ε0p(q)

∣∣
mb to the PBE energetics.

We hence introduce the following many-body self-interaction corrected formation
energy at PBE

E0sic
f (Q) = Q[εαk

b − ε
0
p(qk)] + [E0(0)− E0

ref], (5.52)

where the band-edge εαk
b can be determined through a simple hybrid-functional

calculation for the primitive cell of the pristine bulk system. This expression is
targeted to reproduce the formation energy obtained with the hybrid functional
PBE0(αk), with an accuracy relying on the assumption of linearity of the polaron
level with α and q. Using the wave functions the wave functions ψγkiσ and the
geometry Rγk

Q , we find formation energies of −0.62 eV, −0.40 eV, −3.03 eV for
BiVO4, MgO, and α-SiO2, respectively. These values differ from the PBE0(αk)
results by 0.01, 0.13, and 0.08 eV, which corresponds to 0.3%, 1.6%, and 0.8% of
the band gaps in the three cases, respectively. This agreement corroborates the
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validity of the involved assumptions and approximations.

5.7 Connection with other previous literature

Following the work of Lany and Zunger [17], the electron addition energy can be
expressed as

Eα(q)− Eα(0) = −qεαp(0) + Πα
p(q) + Σα

p(q), (5.53)

where Πα
p is defined as self-interaction energy of the polaron in the absence of

electron screening, and Σα
p is the energy contribution arising from wave-function

relaxation. We here find the expression of Πα
p and Σα

p within our formulation. We
start by expanding the total energy Eα(q) in q around q = 0:

Eα(q)− Eα(0) = q
dEα(q)

dq

∣∣∣∣
0

+
q2

2

d2Eα(q)

dq2
= −qεαp(0) +

q2

2

d2Eα(q)

dq2
, (5.54)

where we used Janak’s theorem. Next, we split the second order derivative of Eα(q)

with respect to q into bare and screening contributions, namely

d2Eα(q)

dq2
=
d2Eα(q)

dq2

∣∣∣∣
bare

+

(
d2Eα(q)

dq2
− d2Eα(q)

dq2

∣∣∣∣
bare

)
. (5.55)

We remark that

d2Eα(q)

dq2
=

(
1− α

αk

)
d2E0(q)

dq2
, (5.56)

and that, similarly to Eq. (5.40),

d2Eα(q)

dq2

∣∣∣∣
bare

= (1− α)
d2E0(q)

dq2

∣∣∣∣
bare

. (5.57)
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Then, comparing Eqs. (5.53) and (5.54), and using Eq. (5.42), one identifies the
following expressions for Πα

p and Σα
p :

Πα
p(q) =

1

2
(1− α)q2 d

2E0(q)

dq2

∣∣∣∣
bare

= (1− α) ∆E0(q)
∣∣
bare* , (5.58)

Σα
p(q) =

1

2

(
1− α

αk

)
q2d

2E0(q)

dq2
− (1− α) ∆E0(q)

∣∣
bare* . (5.59)

Through our formulation, we thus find a connection between the approaches in Ref.
[17] and Refs. [49, 50].

5.8 Discussion

In conclusion, we developed a unified theoretical formulation encompassing many-
body and one-body forms of self-interaction. We found an analytic expression
for both forms of self-interaction and highlighted their connection in terms of the
dielectric constant. In particular, the many-body self-interaction accounts for the
presence of electron screening in the Coulomb kernel, which is not accounted for
in the one-body self-interaction. Moreover, the two forms of self-interaction are
found to coincide when the electron screening is turned off. This analysis thus
confers superiority to the notion of many-body self-interaction with respect to that
of one-body self-interaction.

It is of interest to identify a semilocal functional incorporating the many-body
self-interaction corrections of the polaron state in a self-consistent calculation.
However, the variational minimization of the functional E0 + ∆E0|mb carries some
limitations. On the one hand, this would require the knowledge of qk, which is
inherent to the hybrid-functional calculation, as can be seen in Eq. (5.12). On
the other hand, such a variational implementation would not guarantee polaron
localization, since the self-interaction of the electron states pertaining to the relevant
delocalized band edge has not been corrected. For instance, in the case of the hole
polaron in MgO, the polaron level εαk

p free from many-body self-interaction is in
resonance with the PBE valence band [cf. Fig. 4.5(b)]. The competition between
localized and delocalized states prevents polaron localization in this case. Indeed,
to achieve polaron localization and a negative formation energy, the polaron level
must lie sufficiently deep in the band gap to overcome the energy cost of lattice
distortions [cf. Eq. (4.6)].
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laron localization

We develop a semilocal density functional scheme that addresses the
many-body self-interaction of polarons, thereby overcoming the limitations of
standard density functional theory. Polaron localization is achieved through
the addition of a weak local potential in the Kohn-Sham Hamiltonian that
enforces the piecewise linearity of the total energy upon partial electron
occupation. The implementation of this scheme does not produce any
computational overhead compared to standard semilocal calculations
and achieves fast convergence. Possible resonances involving the polaron
state and the delocalized band states are addressed by including to the
Hamiltonian a scissor operator, which is constructed with the self-consistent
wave functions. This approach results in polaron properties, including the
atomic geometry, the electron density and the formation energy, which are
close to those achieved with a hybrid functional that similarly satisfies the
piecewise linearity condition. This suggests that addressing the many-body
self-interaction results in a polaron description that is robust with respect to
the functional adopted. We illustrate our approach through applications to
the electron polaron in BiVO4, the hole polaron in MgO, and the Al-trapped
hole in α-SiO2.

This chapter is adapted from:
Ref. [141]: S. Falletta, A. Pasquarello, Many-body self-interaction and po-
larons, Physical Review Letters 129, 126401 (2022).
Ref. [142]: S. Falletta, A. Pasquarello, Polarons free from many-body self-
interaction in density functional theory, Physical Review B 106, 125119
(2022).
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Chapter 6 Semilocal γDFT scheme for polaron localization

6.1 Introduction

Given the superiority of the many-body self-interaction over the one-body self-
interaction, we are interested in localizing polarons free from many-body self-
interaction at the semilocal level of theory. Considering that the localized and
delocalized forms of the polaron state are generally found in close energetic compe-
tition [175, 176], polaron localization could be achieved by favoring the localized
solution over the delocalized one. Such an approach would have the advantage
of avoiding resonances between the electron (hole) polaron level and the conduc-
tion (valence) band edge, thereby not requiring accounting for the many-body
self-interaction of the band edges. This would enable efficient polaron calculations,
thus avoiding computationally-expensive hybrid functional calculations.

6.2 Methodology

We assume that the localization can be achieved by adding a weak local potential
to the PBE Hamiltonian in Eq. (2.1), which favors the localized state with respect
to the delocalized band states. We denote this potential V γ

σ , where γ is a parameter
that regulates the strength of the potential. This leads to the following set of
equations

(H0
σ + V γ

σ )ψγiσ = εγiσψ
γ
iσ, (6.1)

where ψγiσ and εγiσ are the resulting wave functions and eigenvalues, respectively.
We find that a suitable expression for V γ

σ is

V γ
σ (q) = qγ

∂Vxcσ

∂q
. (6.2)

The use of the exchange-correlation potential in the definition of V γ
σ ensures its

locality. Using the chain rule for the derivative of Vxcσ with respect to q and
considering Eq. (5.1), V γ

σ can be rewritten as

V γ
σ (q) = −qγ

∫
dr
δV 0

xcσ[nγ↑ , n
γ
↓ ]

δnγσp(r)
nγp(r), (6.3)

where nγσ is the total density in the spin channel σ, and nγp is the density of the
polaron state. The dominant contribution to the potential V γ

σ is given by the
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exchange term, which only occurs in the spin channel σ = σp [cf. Eq. (2.3)]. For
q = 0, the potential V γ

σ vanishes, thus recovering the PBE Hamiltonian.

The total energy corresponding to the Kohn-Sham equations in Eq. (6.1) is given
by

Eγ(q) = E0(q) + ∆Eγ(q), (6.4)

where E0(q) is the semilocal PBE energy, and ∆Eγ the energy correction related
to the potential V γ

σ . We here derive the analytic expression of ∆Eγ.

We assume that the total energy is well described by an expansion up to second
order in q [141, 142]. Then, ∆Eγ can be written as

∆Eγ(q) = ∆Eγ(0) + q
d∆Eγ

dq

∣∣∣∣
q=0

+
q2

2

d2(∆Eγ)

dq2
. (6.5)

We remark that ∆Eγ(0) = 0 since the potential V γ
σ vanishes at q = 0. Moreover,

since V γ
σ is linear in q then also d(∆Eγ)/dq is linear in q, which thus vanishes at

q = 0. Hence, by using the chain rule for derivatives with respect to q, Eq. (6.5)
can be rewritten as

∆Eγ(q) =
q2

2

∑
σσ′

∫
drdr′

δ2(∆Eγ)

δnγσ(r)δnγσ′(r′)

dnγσ(r)

dq

dnγσ′(r′)

dq
. (6.6)

Similarly, the potential V γ
σ can be expanded in q as follows

V γ
σ (r) = q

∑
σ′

∫
dr′

δV γ
σ (r)

δnγσ′(r′)

dnγσ′(r′)

dq
. (6.7)

Using the variational relation V γ
σ (r) = δ(∆Eγ)/δnγσ(r) in Eq. (6.7), and inserting

the resulting expression in Eq. (6.6), one gets

∆Eγ(q) =
q

2

∑
σ

∫
drV γ

σ (r)
dnγσ(r)

dq
, (6.8)

which can be easily evaluated by finite differences, namely

∆Eγ(q) =
1

2

∑
σ

∫
drV γ

σ (r)[nγσ(q, r)− nγσ(0, r)]. (6.9)
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We remark that the expression in Eq. (6.9) is valid for any potential V γ
σ with a

prefactor q in V γ
σ , under the assumption of quadraticity of the total energy with q.

The structural relaxations are performed in the presence of the polaron charge Q
through the usual Hellmann-Feynmann forces, as defined in Eq. (2.24). We denote
the resulting relaxed geometry of the polaron Rγ

Q. We remark that the Hellmann-
Feynmann theorem and Janak’s theorem are still satisfied when introducing the
potential V γ

σ in the Kohn-Sham equations.

We find the value of the parameter γ = γk for which the piecewise linearity of the
total energy upon electron occupation is enforced, i.e.,

d

dq
εγp(q)

∣∣∣∣
γ=γk

= 0, (6.10)

where εγp is the polaron level. In Eq. (6.10), γk and Rγk
Q are obtained self-consistently.

By using the Hellmann-Feynman theorem, Eq. (6.10) can be rewritten as

dεγp(q)

dq
= 〈ψγkp |

(
dH0

σp

dq
+
dV γ

σp

dq

)
|ψγkp 〉 =

dε0p(q)

dq
+ 〈ψγkp |

dV γk
σp

dq
|ψγkp 〉 = 0. (6.11)

Using finite-difference expressions, Eq. (6.11) becomes

〈ψγkp |V γk
σp

(Q)|ψγkp 〉 = ε0p(0)− ε0p(Q), (6.12)

which gives a self-consistent procedure to evaluate γk. We remark that, for a
sufficiently large system, finite-size effects in Eq. (6.12) are negligible. For small
systems, one needs to take into account the finite-size corrections on the left-hand
side of Eq. (6.12).

Since the piecewise linearity condition is satisfied for γk, the total energy can be
written as

Eγk(Q) = Eγk(0)−Qεγkp . (6.13)

Therefore, the corresponding polaron formation energy is

Eγk
f (Q) = Q(εγkb − ε

γk
p ) + [Eγk(0)− Eγk

ref(0)]. (6.14)

The quantities in Eq. (6.14) are all calculated at the semilocal level of theory,
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thus avoiding computationally expensive hybrid functional calculations. Moreover,
the band edge εγkb and the total energies Eγk(0) and Eγk

ref(0) coincide with their
respective PBE values, because of the vanishing prefactor q in Eq. (6.2). For
simplicity of notation, we consider all energies to be corrected by finite-size effects
in all formulas. We denote this semilocal scheme γDFT.

The γDFT scheme guarantees a symmetric treatment in the case of electron and
hole polarons. This stems from the fact that the potential V γ

σ acts in the same
way on all the states, irrespectively of their occupation. Hence, electron and hole
polarons, which correspond to the last-occupied and the first-unoccupied Kohn-
Sham states, respectively, localize in a analogous manner under the action of this
potential.

The γDFT scheme can be compared with previously proposed methods. The idea
that a localized potential might be sufficient for correcting the self-interaction
through enforcing the piecewise linearity condition has previously been used in the
DFT+U scheme [68] and in the scheme proposed by Lany and Zunger [17]. In both
these schemes, the U correction applies to specific atomic orbitals. At variance,
the γDFT scheme leads to a localized potential, which self-consistently originates
from the electron or hole density and which acts on all the states of the system
rather than on selected atomic orbitals.

6.3 Computational advantages

In practical calculations, the potential V γ
σ in Eq. (6.2) can be implemented through

finite differences. For an electron polaron (q = −1, σp = ↑), we use

V γ
σ (−1) = γ

(
V 0

xcσ[nγ↑(−1), nγ↓(−1)]− V 0
xcσ[nγ↑(−1)− nγp(−1), nγ↓(−1)]

)
. (6.15)

where the densities are found through self-consistent calculations with q = −1.
Analogously, for a hole polaron (q = +1, σp = ↓), we have

V γ
σ (+1) = γ

(
V 0

xcσ[nγ↑(+1), nγ↓(+1)]− V 0
xcσ[nγ↑(+1), nγ↓(+1) + nγp(+1)]

)
. (6.16)

The expressions in Eqs. (6.15) and (6.16) can be easily determined using available
exchange-correlation subroutines.
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In previous one-body self-interaction schemes [50, 57, 58], it is common to adopt
the restricted open-shell constraint, which consists in setting ψi↑ = ψi↓ for all
states. The restricted open-shell condition is useful to avoid multiminima problems
encountered in self-interaction-corrected calculations [50, 57, 58]. However, this
approximation enforces the same screening in the two spin channels, which is not
generally the case as seen in Fig. 5.2. This could affect the polaron energetics. At
variance, our methodology does not require the restricted open-shell constraint and
reaches convergence as fast as standard PBE calculations.

The γDFT scheme guarantees the orthogonalization of the wave functions without
requiring any modification of the available algorithms for the diagonalization of
the Hamiltonian, like the Davidson or the conjugate-gradient method. Indeed,
the potential V γ

σ acts as a local potential on all the states in the spin channel σ
[cf. Eq. (6.1)]. This is a great advantage compared to previous self-interaction
approaches [50, 55, 57, 58], which feature orbital-dependent Hamiltonians [21,
56, 177, 178]. In particular, in the self-interaction correction scheme of Perdew
and Zunger [55], a different Hamiltonian acts on each state. In more recent self-
interaction methods [49, 50, 57, 58], a distinct Hamiltonian is only used for the
polaron state. Such orbital-dependent Hamiltonians require more sophisticated
diagonalization algorithms [56], which are not necessary in our methodology.

The γDFT scheme is only marginally affected by the rotational invariance problem
[21, 177, 178]. We note that the potential V γ

σ depends on the polaron density
nγp. In the case of hole polarons, the occupied manifold preserves the rotational
invariance under unitary transformations, since nγp pertains to an unoccupied state.
On the other hand, in the case of electron polarons, the rotational invariance is not
formally satisfied, since the polaron state is occupied. However, the diagonalization
of the Hamiltonian H0

σ + V γ
σ is only affected to a minor extent because the energy

separation between the polaron level and the other occupied levels is generally
sizable. This is a great advantage of our methodology compared to previous
self-interaction-correction schemes [50, 55, 57, 58].

We implemented the γDFT scheme in the code pw of quantum espresso [153].
In particular, this implementation has been merged in the developer version of
quantum espresso and it is ready to be incorporated in the official release of
the code. In the self-consistent iteration, the polaron density nγp is mixed with the
polaron densities at previous steps in the same way as the total electron density.
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Then, the addition of the potential V γ
σ requires only minimal changes to existing

codes. Implementation details are given in Appendix B.

6.4 Self-consistent scissor operator

In the γDFT scheme, the inclusion of the potential V γ
σ to the semilocal Hamiltonian

increases the energy separation between the polaron level and the respective
delocalized band edge. In the case of electron polarons, the polaron level is
stabilized by going down in energy with respect to the conduction band. At
variance, in the case of hole polarons, the polaron level is stabilized by going up
in energy with respect to the valence band. Considering that in semilocal density
functional theory the band gap is underestimated, resonances involving the electron
(hole) polaron state with the valence (conduction) band states could occur, which
may prevent polaron localization.

This problem can be overcome by including in the Hamiltonian a scissor operator
Sσ that artificially increases the band gap of the system. The scissor operator only
affects electron bands that are unrelated to the polaronic state. This allows one
to address resonances between the polaron level and the delocalized band states,
without affecting the polaron properties. The adopted scissor operator has the
following expression

Sσ = ∆
∑
i∈Mγ

σ

|ψγiσ〉〈ψ
γ
iσ| , (6.17)

where ψγiσ are the wave functions obtained in the self-consistent optimization of the
Kohn-Sham equations, and ∆ is a constant. For electron polarons,Mγ

σ denotes
the manifold of valence-band states and ∆ is taken to be negative, while for hole
polaronsMγ

σ denotes the manifold of conduction-band states and ∆ is taken to
be positive. The energy levels of all states belonging to the manifold Mγ

σ are
then shifted by the amount ∆. WhenMγ

σ denotes the valence band manifold, the
inclusion of Sσ in the Hamiltonian shifts the total energy by a contribution N∆,
where N is the number of valence electrons. In Appendix A, we show an example
of scissor operator to open band gaps in bulk systems.

We implemented the self-consistent scissor operator in the code PW of Quantum
Espresso [153]. This implementation is incorporated in the developer version of
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the code. Details on the implementation are given in Appendix B.

6.5 Results

First, we calculate the value γk for which the piecewise linearity condition is satisfied.
Following Eq. (6.10), we perform structural relaxations for different values of γ
and obtain the corresponding polaron geometries Rγ

Q. For each structure Rγ
Q,

we calculate the energy levels εγp(0) and εγp(Q) pertaining to the charge states 0
and Q, as illustrated in Fig. 6.1. We thus determine γk such that those energy
levels coincide, resulting in γk = 1.80, 1.96, 2.40 for BiVO4, MgO, and α-SiO2,
respectively. In all cases, the polaron level is situated in the band gap and provides
the required electronic energy gain to counterbalance the energy cost of the lattice
distortions. This yields stable localized polarons.

We now present the electronic and atomic properties obtained with the γDFT
scheme in comparison with the hybrid-functional PBE0(αk) results. We show in
Figs. 6.2(a-c) the polaron density integrated over the xy planes, namely

np(z) =

∫
dxdy np(x, y, z), (6.18)

and find an excellent agreement between the two schemes. To compare the polaron
structures, we report in Table 7.2 the lengths of the distorted bonds. For all inves-
tigated polarons, the agreement between the semilocal and the hybrid-functional
values is very good. The differences are all within 0.03 Å, except for the weak Al-O

Figure 6.1 – Polaron energy levels εγp(Q) and εγp(0) for the structure Rγ
Q as a function of

γ for the electron polaron in BiVO4, the hole polaron in MgO, and the Al-trapped hole in
α-SiO2. The polaron levels are identified by their respective polaron charge. The value γk is
found such that εγk

p (Q) = εγk
p (0).
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Figure 6.2 – (a-c) Polaron densities for the electron polaron in BiVO4, the hole polaron in MgO,
and the Al-trapped hole in α-SiO2 as obtained with the hybrid functional PBE0(αk) and with
the γDFT scheme. The polaron densities are integrated over xy-planes. (d-f) Electrostatic
potential Velec = VH[Qnγk

p ] and potential V γk
σp (Q) averaged over xy-planes (Q = −1 for

electron polarons, Q = +1 for hole polarons).

bond in α-SiO2, which differs by 0.12 Å.

Next, we determine the polaron formation energies and give the results in Table 6.2.
With our semilocal scheme, we find formation energies of −0.44 eV, −0.50 eV, and
−2.75 eV for BiVO4, MgO, and α-SiO2, respectively. These values differ from the
hybrid functional values by 0.19, 0.03, and 0.36 eV, respectively. This agreement is
remarkable given the large differences in formation energies found as a function of α
in Figs. 4.5(d-f). Furthermore, this agreement suggests that enforcing the piecewise
linearity condition leads to robust polaron formation energies, irrespective of the
choice of the functional.

We validate the expression of the energy ∆Eγ(q) in Eq. (6.9) by calculating the
difference between two ways of estimating the total energy Eγk(q), namely

δ =
∣∣[E0(q) + ∆Eγk(q)]− [E0(0)− qεγkp ]

∣∣ , (6.19)

which should vanish by definition of γk, because of the piecewise linearity condition.
For the three polarons considered, we find a mean average δ of 0.1 eV. This
agreement is satisfactory, considering the assumption of quadraticity underlying
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Table 6.1 – Bond lengths (in Å) of the distorted polaronic structures (q = Q) as obtained
with the hybrid functional PBE0(αk) and with the semilocal γDFT scheme. For α-SiO2, we
give the lengths of the short/long Al-O bonds. For reference, we also report the corresponding
bond lengths as obtained with PBE in the absence of the polaron (q = 0).

q = 0 q = Q

System PBE γDFT PBE0(αk)

BiVO4 1.73 1.82 1.80

MgO 2.11 2.23 2.20

α-SiO2 1.74/1.74 1.71/2.03 1.69/1.91

Table 6.2 – Polaron formation energy obtained with the hybrid functional PBE0(αk) and with
the semilocal γDFT scheme. Energies are in eV.

System γDFT PBE0(αk)

BiVO4 −0.44 −0.63

MgO −0.50 −0.53

α-SiO2 −2.75 −3.11

Eq. (6.9).

The γDFT scheme allows one to carry out convergence tests with cell size and k-
point sampling overcoming computational limitations inherent to hybrid-functional
calculations. We calculate the polaron formation energy for larger supercell sizes
and finer k-point sampling for the three systems studied in this work, as given
in Table 6.3. The converged results deviate by at most 0.07 eV from the results
in Table 6.2. This further corroborates the accuracy of the employed finite-size
correction scheme [117]. For the electron polaron in BiVO4, we calculate with
αk = 0.14 a converged formation energy of −0.38 eV, to be compared with the value
of −1.09 eV obtained in Ref. [41] with α = 0.22 and with a different electronic-
structure set-up. This is consistent with the variation of the formation energy by
−0.65 eV when α increases from 0.14 to 0.22, as can seen in Fig. 4.5(d). For the
hole polaron in MgO, the converged formation energy with αk = 0.34 is found to
be −0.49 eV, in good agreement with the value of −0.38 eV found in Ref. [117]
with a different electronic structure set-up and with α = 0.33. Accounting for the
variation of the formation energy when α goes from 0.33 to 0.34 [cf. Fig. 4.5(e)],
reduces the discrepancy to only 0.04 eV.
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Table 6.3 – Polaron formation energies Eγk
f as calculated with the γDFT scheme for various

supercell sizes and k-point samplings.

System Number of atoms k-point grid Eγk
f

BiVO4 96 Γ −0.44

96 2×2×2 −0.36

216 2×2×2 −0.38

MgO 64 Γ −0.50

64 2×2×2 −0.49

512 2×2×2 −0.49

α-SiO2 64 Γ −2.75

64 2×2×2 −2.69

243 2×2×2 −2.68

We remark that the formation energies obtained with the γDFT scheme are close
to the PBE0(αk) values, despite the fact that the band gaps are underestimated
like in PBE. This can be understood by considering that the polaron states of
interest in our study are mainly constructed with band states to which the polaron
belongs, i.e. conduction band states for electron polarons and valence band states
for hole polarons. In such conditions, the description of the band gap is thus not a
stringent requirement for achieving accurate formation energies.

In the case of MgO, the robustness of the results for the self-trapped hole polaron
is of particular interest. Indeed, the experimental situation concerning the self-
trapped hole remains difficult to interpret in a clear way [179, 180] and the
theoretical description is controversial [39, 48, 117, 181]. In these regards, the
hybrid-functional and semilocal schemes with vanishing many-body self-interaction
consistently predict a self-trapped hole with almost identical formation energy (see
Table 6.2).

It is important to formally investigate the relationship between the formation
energies obtained with the semilocal γDFT the and hybrid functional PBE0(αk)
schemes. Indeed, the piecewise linearity in these functionals is achieved in remark-
ably different ways, either through the local potential V γk

σ or through the nonlocal
Fock exchange terms. The difference between the formation energies in Eqs. (4.6)
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and (6.14) can be expressed as

Eαk
f (Q)− Eγk

f (Q) = Q(εαk
b − ε

0
b)−Q(εαk

p − εγkp ), (6.20)

where we focus on the electronic gain due to localization, assuming that the cost
of lattice distortions is similar in the two schemes. Given the linear dependence of
the band-edge levels with α [cf. Fig. 4.5(a-c)], the band contributions in Eq. (6.20)
can be expanded in α as

εαk
b − ε

0
b = αk

dεαb
dα

. (6.21)

Moreover, using the linearity of the polaron level with α [cf. Fig. 4.5(a-c)], the
polaron terms in Eq. (6.20) can be rewritten as

εαk
p − εγkp = εαk

p (0)− ε0p(0) = αk
dεαp(0)

dα
, (6.22)

where we used the facts that εαk
p and εγkp are constant with q and that εγkp = ε0p(0)

due to the presence of the prefactor q in V γk
σ [cf. Eq. (6.2)]. Hence, through the

use of Eqs. (6.21) and (6.22), Eq. (6.20) becomes

Eαk
f (Q)− Eγk

f (Q) = Qαk

[
dεαb
dα
−
dε0p(0)

dα

]
. (6.23)

This expression indicates that when the piecewise linearity is satisfied the formation
energies obtained with γDFT and PBE0(α) functionals coincide, provided that
the polaron level at q = 0 and the associated band edge vary with α in the same
way. This condition is generally closely satisfied because these states belong to the
same electronic manifold. A schematical representation of Eq. (6.23) is given in
Fig. 6.3. This analysis emphasizes the robustness of the polaron formation energies
achieved through the enforcement of the piecewise linearity, irrespective of the
detailed features of the employed functional.

We verify that V γk
σ (Q) is indeed a weak potential. For this purpose, we compare

V γk
σp

(Q) and the electrostatic potential VH[Qnγkp ] generated by the polaron charge
density Qnγkp , where Q = −1 for electron polarons and Q = +1 for hole polarons.
In Figs. 6.2(d-f), we show these potentials averaged over xy planes as a function of
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Figure 6.3 – Graphical representation related to Eq. (6.23) to show the robustness of polaron
formation energies obtained with γDFT and PBE0(αk) schemes.

the z coordinate, namely

V (z) =
1

Axy

∫
dxdy V (x, y, z), (6.24)

where Axy denotes the area of xy planes in the supercell. In all cases, we find
that the potential V γk

σp
(Q) is considerably weaker than the electrostatic potential.

Moreover, the peak of the potential V γk
σp

(Q) amounts to a small fraction of an
electronvolt [cf. Fig. 6.2(d-f)]. This confirms a posteriori that the polaron can
be localized by adding a weak potential to the PBE Hamiltonian. Additionally,
we remark that the potential V γk

σp
(Q) carries an opposite sign with respect to the

electrostatic potential. To understand this property, let us focus on the case of
electron polarons [e.g., in BiVO4, Fig. 6.2(d)]. The electrostatic potential VH[−nγkp ]

generated by the polaron charge density results in a potential well which repels the
negative charge of the electron polaron. Hence, VH[−nγkp ] tends to delocalize the
electron polaron charge density. The potential V γk

σp
(Q) opposes this electrostatic

potential, thereby favoring polaron localization. A similar reasoning applies to the
case of hole polarons.

6.6 Discussion

In conclusion, we introduced a scheme that addresses the many-body self-interaction
of polarons at the semilocal level of theory. Polaron localization is achieved by the
inclusion of a weak local potential in the Kohn-Sham Hamiltonian that enforces the
piecewise linearity of the total energy upon electron occupation. Our methodology
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is particularly advantageous from the computational point of view. In particular,
it does not entail any computational overhead compared to regular semilocal
calculations, does not suffer from diagonalization problems related to orbital-
dependent Hamiltonians, and avoids the use of the restricted open-shell constraint.
Possible resonances involving the polaron state and the delocalized band edges are
overcome by adding a scissor operator to the Hamiltonian. We applied our scheme
to various polarons, and obtained structural and electronic properties of polarons
in agreement with those achieved with a hybrid functional satisfying the same
constraint. This agreement suggests that the suppression of the many-body self-
interaction leads to polaron properties that are robust with respect to the adopted
functional. This is expected to hold also in the case of competitive polaronic states
at surfaces [182] or in amorphous materials [183].
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7 Hubbard U through polaronic
defect states

We define a selection criterion or the Hubbard parameter U in DFT+U
based on the use of polaronic defect states for the enforcement of the
piecewise linearity of the total energy upon electron occupation. A good
agreement with results from piecewise linear hybrid functionals is found
for the electronic and structural properties of polarons, including the
formation energies. The values of U determined in this way are found
to give a robust description of the polaron energetics upon variation of
the considered state. In particular, we also address a polaron hopping
pathway, finding that the determined value of U leads to accurate energetics
without requiring a configurational-dependent U . It is emphasized that the
selection of U should be based on physical properties directly associated
with the orbitals to which U is applied, rather than on more global
properties such as band gaps and band widths. For comparison, we also
determine U through a well-established linear-response scheme finding
noticeably different values of U and consequently different formation
energies. Possible origins of these discrepancies are discussed. As case
studies, we consider the self-trapped electron in BiVO4, the self-trapped
hole in MgO, the Li-trapped hole in MgO, and the Al-trapped hole in α-SiO2.

This chapter is adapted from:
Ref. [184]: S. Falletta, A. Pasquarello, Hubbard U through polaronic defect
states, npj Computational Materials 8(1), 263.
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Chapter 7 Hubbard U through polaronic defect states

7.1 Introduction

Density functional theory including a Hubbard U correction has been largely
used to overcome limitations of standard density functional theory for correlated
systems [68, 185–193], including the account for the electron self-interaction [17, 68].
However, since the preliminary work of Anisimov and co-workers, the determination
of the Hubbard U parameter has remained under intense discussion. In 2005,
Cococcioni and de Gironcoli introduced a nonempirical linear-response approach
based on density-functional perturbation theory [68], which has largely been applied
[73, 194–202]. In other studies, the parameter U is chosen to reproduce specific
experimental properties, such as band gaps [99, 203], reaction enthalpies [204–206],
oxidation energies [207], activation energies [99], atomic structures [208], density
of states [209], or magnetic arrangements [210]. Alternative strategies consist
in fixing U to yield states in the middle of the band gap [100], to comply with
criteria based on energy barriers [211], to have vanishing quasiparticle corrections
to the fundamental band gap [212], or to match hybrid-functional results [213].
The parameter U has also been calculated through an alternative linear-response
method [214], through unrestricted Hartree-Fock approach [215, 216], through the
random-phase approximation [217–220], through Monte Carlo sampling [221], and
through machine-learning techniques based on Bayesian optimization [222]. Clearly,
a general consensus on the way U should be determined is still lacking, including a
criterion for U that suppresses the self-interaction.

7.2 Selection criterion for U

Taking advantage of the our developments in the previous Chapters, we introduce
a selection criterion for U that consists in enforcing the piecewise linearity through
polaronic defect states associated with the orbitals subject to the correction U .
The piecewise linearity can then be determined nonempirically by finding the value
U = Uk such that the concavity of the total energy upon partial electron occupation
vanishes, namely

d2

dq2
EU(q)

∣∣∣∣
U=Uk

= 0, (7.1)
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where q is the fractional charge. Through Janak’s theorem, the condition in Eq.
(7.1) turns into a constraint on the energy level of the localized state,

d

dq
εUp (q)

∣∣∣∣
U=Uk

= 0, (7.2)

which requires the energy level to be independent of electron occupation. Equation
(7.2) can be rewritten as

dε0p
dq

+
d

dq
〈ψUk

p |V Uk
σ |ψUk

p 〉 = 0, (7.3)

where ψUk
p is the wave function of the localized state and dε0p/dq the variation

of the energy level with q as calculated with PBE. We remark that the second
term on the right-hand side of Eq. (7.3) includes complex derivatives of the matrix
elements nIσmm′ with respect to q. Therefore, it is more practical to determine Uk by
solving Eq. (7.2) by finite differences, namely by imposing that the energy levels
calculated at integer charges q = 0 and q = Q coincide (Q = −1 for localized
electrons, Q = +1 for localized holes).

For a Hubbard parameter U , the formation energy of the polaronic defect state is
calculated as [76]

EU
f (Q) = EU(Q)− EU

ref(0) +QεUb , (7.4)

where EU(Q) and EU
ref(0) are the total energies of the defect state and of the

reference bulk system, respectively, and εUb is the relevant band edge of the pristine
system. In Eq. (7.4), the defect and reference systems contain the same atoms. We
remark that finite-size electrostatic corrections due to the use of periodic boundary
conditions need to be applied [77, 78, 86, 117]. For simplicity of notation, we
consider all total energies, formation energies, and energy levels to be corrected by
finite-size effects.

7.3 Results

As case studies, we consider self-trapped and impurity-trapped polaronic defects.
In particular, we take the self-trapped electron in BiVO4 [41], the self-trapped hole
in MgO [39], the Li-trapped hole in MgO [223, 224], and the Al-trapped hole in
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Figure 7.1 – Energy levels εUp (+1) and εUp (0) as a function of U for the self-trapped hole in
MgO. The defect levels are identified by their respective charge. The value Uk is found such
that εUk

p (+1) = εUk
p (0).

α-SiO2 [39, 57, 149–152]. The calculations are performed using the Quantum
Espresso suite [153]. The computational set-up is the same given in Sec. 4.3.

We remark that, when using the PBE functional, such polaronic states are unstable.
Thus, upon structural relaxation, the lattice distortions vanish and the defect
charge delocalizes. In particular, self-trapped polarons delocalize over the entire
system, and impurity-trapped holes distribute over the O atoms surrounding the
impurity. At variance, for the polaronic defects under consideration, DFT+U
can stabilize the localized states. We apply the U correction to the orbitals that
constitute the localized states, namely the 3d orbitals of V atoms in BiVO4, the
2p orbitals of O atoms in MgO, and the 2p orbitals of O atoms in α-SiO2. In
BiVO4, the self-trapped electron localizes on a V atom. In MgO, the self-trapped
hole localizes on a O atom. In Li-doped MgO, the hole localizes on a O atom
neighboring the Li site. In α-SiO2, the hole localizes on a O atom neighboring the
Al site.

We determine the Hubbard parameter Uk through the enforcement of Eq. (7.2).
We proceed as follows. We obtain the defect structure at various values of U
by performing self-consistent structural relaxations. At such fixed structures, we
calculate the energy levels εUp (Q) and εUp (0) accounting for finite-size effects. By
imposing that εUk

p (Q) = εUk
p (0), we then obtain Uk = 3.5, 7.7, 7.5, and 8.3 eV for the

self-trapped electron in BiVO4, the self-trapped hole in MgO, the Li-trapped hole
in MgO, and Al-trapped hole in α-SiO2, respectively. This procedure is illustrated
in Fig. 7.1 for the self-trapped hole in MgO. We remark that the values of Uk

obtained for the self-trapped and the Li-trapped holes in MgO differ by only 0.2
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eV, indicating that our scheme is robust upon varying the polaronic defect. This is
analogous to the case of hybrid functionals, where one observes a weak dependence
of αk on the defect used for enforcing the piecewise linearity [40, 64–66]. In this
context, we remark that finite-size corrections crucially affect the value of Uk.
Indeed, without such corrections, we would have obtained Uuncor

k = 1.7, 4.9, 4.6,
5.1 eV for our respective case studies, with differences with respect to the corrected
values amounting up to 3.2 eV. This emphasizes the importance of correcting for
finite-size errors.

7.4 Band gaps and density of states

It is of interest to investigate the band gaps resulting from our selection of U . In Fig.
7.2, we show the evolution of the band gaps obtained with DFT+U as function of U
and of the band gaps obtained with PBE0(α) as a function of α. In correspondence
of Uk, DFT+U yields band gaps of 2.52, 6.67, and 8.82 eV for BiVO4, MgO, and
α-SiO2, respectively. For MgO, we here use the value of Uk calculated for the
self-trapped hole, considering the negligible difference with respect to the value for
the Li-trapped hole. After the inclusion of appropriate corrections due to spin-orbit
coupling, phonon renormalization, and exciton binding energies [142], the DFT+Uk

band gaps are found to noticeably differ from their experimental counterparts
(cf. Table 7.1). These discrepancies contrast with the case of hybrid functionals,
for which the agreement with experiment is within 0.25 eV (cf. Table 7.1). The
good performance of hybrid functionals derives from a global improvement of the
electronic structure, in accord with numerous previous studies [40, 60, 64, 65,
67, 124, 148, 158]. From this analysis, we infer that an accurate description of
band gaps should generally not be expected from DFT+Uk. We assign this to
the fact that the U correction only applies to a subset of orbitals, which are not
necessarily involved in both valence and conduction bands. Nevertheless, we expect
that physical properties directly associated with the U -corrected orbitals should be
properly described in DFT+Uk. For instance, in the case of polaronic defects, the
formation energies express the relative stability of localized and delocalized states
both being constituted by the same U -corrected orbitals.

Similar arguments apply when considering the effect of the Hubbard parameter Uk

on the density of states. As test case, we take α-SiO2 and compare the density of
states obtained with DFT+Uk with respect to experiment. As illustrated in Fig.
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Figure 7.2 – Band edges as obtained with DFT+U and PBE0(α) as a function of U and α,
respectively, for BiVO4, MgO, and α-SiO2. For MgO, we consider Uk and αk calculated for
the self-trapped hole. The vertical red line denotes the choice of the parameter for which the
piecewise linearity condition is retrieved. The energy levels are aligned with respect to the
average electrostatic potential [225].

Table 7.1 – Band gaps calculated with DFT+Uk (EUk
g ) and PBE0(αk) (E

αk
g ) compared to

reference experimental values after adding appropriate corrections (∆Eg) taken from Ref.
[142]. The reference experimental values correspond to the optical band gap at 300 K for
BiVO4 [159–161], the fundamental band gap at 6 K for MgO [163], and the first peak in the
reflectance spectrum for α-SiO2. In MgO, Uk is obtained from the self-trapped hole. Energies
are in eV.

System EUk
g Eαk

g ∆Eg EUk
g,cor Eαk

g,cor Expt.

BiVO4 2.52 3.41 −1.16 1.36 2.25 2.4-2.5

MgO 6.67 8.15 −0.53 6.14 7.62 7.77

α-SiO2 8.82 10.51 0.02 8.84 10.53 10.30

7.3, DFT+Uk yields a valence band width of 8.1 eV, which is lower than both the
corresponding PBE value of 9.3 eV and the experimental value of 11.0 eV [226].
This confirms the common finding that DFT+U narrows the band widths [227].
Hence, in analogy to our discussion on band gaps, DFT+Uk should not be expected
to reproduce more global properties such as the density of states, even though
the polaronic properties are reasonably well captured. This should be contrasted
with the case of the hybrid functional PBE0(αk), where the globally improved
functional also yields an improved band width. Indeed, in the case of α-SiO2, we
find a PBE0(αk) band width of 10.0 eV, improving upon the PBE value of 9.3 eV
(cf. Fig. 7.3).
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Figure 7.3 – Density of valence band states for α-SiO2 as calculated with PBE0(αk), PBE, and
DFT+Uk, compared with the experimental XPS spectrum from Ref. [226]. The corresponding
band widths are indicated. The theoretical band widths correspond to differences between
Kohn-Sham levels, whereas the experimental band width is obtained from extrapolations of
the wings. The curves are aligned with respect to the position of the highest energy peak.

7.5 Polaronic defects

We calculate electronic and structural properties of the polaronic defects studied in
this work using the DFT+Uk functional and compare the results with those from
PBE0(αk) hybrid functionals. The hybrid functional results for the self-trapped
polarons in BiVO4 and MgO, and the Al-trapped hole in α-SiO2 are taken from
Chapter 4. For the Li-trapped hole in MgO, we obtain αk = 0.33, which is in
good agreement with the value αk = 0.34 found for the self-trapped hole [141, 142].
The corresponding formation energy is −1.82 eV and is given in Table 7.3. As
illustrated in Fig. 7.4, we find very good agreement between the defect densities
calculated with the DFT+Uk and PBE0(αk) functionals. Moreover, the lattice
distortions practically coincide, with bond lengths deviating by at most 0.03 Å
(cf. Table 7.2). Using Eq. (7.4), we calculate the respective formation energies
EUk

f = −0.49, −0.64, −2.01, and −3.27 eV. These values are given in Table 7.3.
Deviations from PBE0(αk) results amount to at most 0.19 eV (cf. Table 7.3). This
extends the robustness of piecewise-linear functionals to DFT+U schemes [141,
142], and concurrently validates our criterion for determining the value of U .

We further investigate the accuracy of the DFT+Uk energetics along a polaron
hopping pathway. As test case, we consider the hopping of a hole polaron between
two neighboring sites in MgO. We construct a 7-image migration pathway through
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Figure 7.4 – Electron densities obtained with DFT+Uk and PBE0(αk) functionals for the
self-trapped electron in BiVO4, the self-trapped hole in MgO, Li-trapped hole in MgO, and the
Al-trapped hole in α-SiO2. The defect density is integrated over xy-planes. On top, isodensity
surfaces at 5% of their maximum (Bi in orange, V in cyan, O in red, Mg in pink, Li in brown,
Si in blue, Al in grey).

Table 7.2 – Bond lengths (in Å) of the polaronic defect structures obtained with DFT+Uk
and PBE0(αk) functionals. For the Li-trapped hole in MgO, we give the lengths of the
short/intermediate/long Li-O bonds. For the Al-trapped hole in α-SiO2, we give the lengths
of the short/long Al-O bonds.

Polaronic defect DFT+Uk PBE0(αk)

BiVO4 (self-trapped) 1.82 1.80

MgO (self-trapped) 2.22 2.20

MgO (Li-trapped) 1.92/2.17/2.30 1.90/2.17/2.33

α-SiO2 (Al-trapped) 1.67/1.92 1.69/1.91

Table 7.3 – Hubbard parameter Uk obtained with the scheme introduced in this work compared
with the parameter Ulr resulting from the linear-response method [68], together with the
corresponding defect formation energies. For reference, we also give the formation energies
Eαk

f obtained with the piecewise linear PBE0(αk) hybrid functional.

Polaronic defect Uk Ulr EUk
f EUlr

f Eαk
f

BiVO4 (self-trapped) 3.5 5.4 −0.49 −1.34 −0.63

MgO (self-trapped) 7.7 10.9 −0.64 −1.67 −0.53

MgO (Li-trapped) 7.5 10.9 −2.01 −3.09 −1.82

α-SiO2 (Al-trapped) 8.3 10.1 −3.27 −4.00 −3.11
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Figure 7.5 – Energy along a polaron pathway connecting two neighboring O atoms in MgO,
as calculated (a) with fixed Uk and image-dependent U im

k in DFT+U calculations, and (b)
with fixed αk and image-dependent αim

k in PBE0(α) calculations. The values of U im
k and αim

k
for individual images are given.

linear interpolation of the initial and final states. First, we evaluate the energy
along the path using the determined value of Uk, as given in Fig. 7.5(a). Next, we
determine U im

k through the enforcement of the piecewise linearity for each image,
finding the largest deviation with respect to Uk in correspondence of the transition
state. This is due to the fact that at the transition state the polaron density is
equally distributed among two neighboring O sites, thus deviating the most from
the case of the hole polaron trapped at a single O site. Then, we calculate the
energy along the pathway as EU im

k [polaron,im] − EU im
k [bulk] for each image. As

illustrated in Fig. 7.5(a), the difference between the energy barriers calculated with
either fixed Uk or image-dependent U im

k amounts to only 0.06 eV. This validates
the choice of a fixed Uk for polaron hopping calculations. We carry out the same
analysis with the PBE0(α) hybrid functional, finding a difference of 0.08 eV between
the barriers calculated with either fixed αk or image-dependent αim

k [cf. Fig. 7.5(b)].
The energy barriers obtained with DFT+Uk and PBE0(αk) differ by 0.32 eV, which
is comparable with the typical accuracy achieved upon enforcing the piecewise
linearity with different functionals (cf. Table 7.3 and Refs. [141, 142]).

7.6 Comparison with linear-response method

For comparison, we also determine U using the linear-response approach introduced
by Cococcioni and de Gironcoli [68]. In this method, the parameter U is chosen
to enforce the piecewise linearity in density-functional perturbation theory as
given in Eq. (2.19). We calculate the Hubbard parameters using the code hp
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[202]. We determine Ulr on neutral bulk structures using the PBE wave functions.
We find Ulr = 5.4, 10.9, 10.1 eV for BiVO4, MgO, and α-SiO2, respectively. The
resulting formation energies of the polaronic defects studied in this work are
EUlr

f = −1.34, −1.67, 3.09, and −4.00 eV, as given in Table 7.3. We remark
that Ulr is noticeably larger than Uk in all cases. Consequently, the respective
formation energies calculated with Uk and Ulr differ by 0.85, 1.03, 1.08, and 0.73
eV. These large variations are in part due to the shift of the band edges upon
variation of U (cf. Fig. 7.2), which enter in the definition of the formation energy
in Eq. (7.4). To assess the dependence on the adopted configuration in the context
of this comparison, we also use the linear-response approach on the very same
polaron configuration used for the determination of Uk in the direct piecewise linear
scheme. In this way, the same configurational set-up is used in the two approaches,
thereby enabling a direct comparison. We take the U ′lr parameter resulting from
the linear-response scheme for the atom where the polaron is localized. Focusing on
the hole polaron in MgO, we find U ′lr = 9.4 eV, to be compared with the respective
value Uk = 7.7 eV found through the direct application of the piecewise linearity
condition. Thus, this analysis further confirms that the structural configuration is
not at the origin of the differences between the two schemes for the determination
of U . Additionally, we remark that our Uk is found for a Hubbard correction
acting on all the atoms of the same species at the same time, whereas in the
linear-response approach Ulr is found through a variation on a single atom. Hence,
for an even closer comparison, we also determine the value U ′k by enforcing the
piecewise linearity upon the application of U to the sole atom where the polaron
localizes. In the case of the hole polaron in MgO, we find U ′k = 8.5 eV, which
still differs sizably from U ′lr = 9.4 eV. This further confirms that the differences
between the two methods are not only related to the computational setup.

The significant differences between Uk and Ulr call for a deeper investigation. Since
both approaches are designed to enforce the piecewise linearity, we explicitly verify
the extent by which the piecewise linearity is satisfied in the two schemes. This
can be achieved by studying the total energy and the defect level as a function of q
for the two choices of the parameter U . As illustrated in Fig. 7.6, Uk indeed yields
a piecewise linear total energy and a constant defect level with respect to partial
electron occupation. At variance, for Ulr, the total energy is convex with q, and
the defect level is not constant. To understand these differences, we remark that
the Hamiltonian in Eq. (2.16) used to determine U in the linear-response approach
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Figure 7.6 – (a) Deviation from the piecewise linearity of the total energy and (b) dependence
of the defect level on the charge q, for the self-trapped hole in MgO. Results for Uk and Ulr
are compared. The solid lines are a guide to the eye.

differs from the DFT+U Hamiltonian in Eq. (2.14). Thus, the U values that enforce
the piecewise linearity in the two cases could be different. This would explain the
departure from the piecewise linearity observed in Fig. 7.6 for DFT+Ulr. However,
we remark that despite the different defect formation energies, the electron densities
and the structural distortions of the polaronic defects obtained with Uk and Ulr

practically coincide.

7.7 Discussion

In conclusion, we addressed the determination of the Hubbard U in the DFT+U
functional through enforcing the piecewise linearity condition on polaronic defect
states. Our selection of U yields electronic and structural properties of such
defects in good agreement with results from hybrid functionals satisfying the same
constraint. Our scheme is further validated by the excellent agreement found for
formation energies obtained with piecewise-linear functionals. We emphasize that
our approach targets physical properties related to the U -corrected orbitals, while
more global properties, such as band gaps, are not directly involved. For comparison,
we also calculate U through a widely-used linear-response method, finding values
of U that break the piecewise linearity condition and give larger formation energies.
To sum up, we showed that polaronic defect states can effectively be used for
determining the value of the Hubbard U parameter in DFT+U . Additionally, we
demonstrated that the resulting electronic, structural, and energetic properties of
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such defects closely correspond to those obtained with hybrid functionals, but at a
noticeably lower computational cost.
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8 Polaron hopping through
piecewise-linear functionals

We use piecewise-linear functionals to study the polaron energy landscape
and hopping rates in β-Ga2O3, which we adopt as an example of an
anisotropic material hosting multiple polaronic states. We illustrate various
functionals for polaron localization, including a hybrid functional and two
types of semilocal functionals, and discuss how to ensure the piecewise
linearity condition. Then, we determine the formation energies of stable
polarons, and show that single-site and multi-site polaronic states can be
found in close energetic competition. We perform nudged-elastic-band
calculations to determine energy landscapes and hole transfer rates of all
first-nearest-neighbor polaron hoppings. We show that when the piecewise
linearity condition is ensured polaron properties are robust upon variation of
the functional adopted, including formation energies, energy barriers, and
charge transfer rates. This supports the use of semilocal functionals for
calculating polaron transport properties.

This chapter is adapted from:
Ref. [228]: S. Falletta, A. Pasquarello, Polaron hopping though piecewise-
linear functionals, in preparation.
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8.1 Introduction

Polarons have a large impact on transport properties of materials and on related
applications in photovoltaics [23]. From an experimental point of view, it has been
shown that small polarons follow an Arrhenius-like behavior, which is characterized
by a thermally activated carrier concentration and by an increasing mobility as a
function of temperature [229]. From a theoretical point of view, most of the studies
on polaron hopping are based on Marcus theory [90, 91] or on Emin-Holstein-
Austin-Mott theory [92–94], which are equivalent for such hopping processes [99].
In these approaches, the initial and final polaron states are represented through
independent Born-Oppenheimer surfaces, and a reaction pathway is defined to
determine the transition state. The difference between the energies of the transition
state and of the initial state gives the activation energy for the hopping process.
Depending on the coupling between the initial and final states, two regimes are
distinguished: for large coupling the regime is adiabatic, for small coupling the
regime is diabatic [95]. Depending on the regime, different analytic expressions
for the polaron hopping rate have been derived [95]. Such expressions can be
incorporated within the Landau-Zener formula [96, 97], and have largely been
applied to polaron hopping processes [46, 98–113]. The theoretical framework for
studying polaron hopping is thus well defined. However, in such framework, the
hopping rate depends exponentially on the activation energy, which hence needs to
be accurately determined to yield reliable theoretical predictions.

The potential of piecewise-linear functionals in the determination of polaron prop-
erties can be systematically assessed when considering an anisotropic system, which
can host multiple polaronic states. Indeed, the presence of various polaronic states
allows for a multitude of polaron hopping pathways. This enables an extended
comparison of polaron properties obtained with different piecewise-linear func-
tionals. For this reason, as a test case, we consider monoclinic gallium oxide
(β-Ga2O3), a promising semiconductor for power electronics and optoelectronics
due to its large band gap and large breakdown field [230–235]. In particular, it
has been shown that β-Ga2O3 can host both self-trapped holes [39, 60, 236–246]
and impurity-trapped holes [246–258]. Hybrid functional and DFT+U calculations
have shown that self-trapped holes can localize at differently-coordinated oxygen
sites [39, 60, 236–246], due to the anisotropic structure of β-Ga2O3. Paramagnetic
resonance experiments suggest the existence of self-trapped holes at only one type
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of O site in β-Ga2O3 [250, 257]. Experimental results of self-trapped holes at other
O sites are missing. Additionally, previous theoretical results may also not be
accurate, due to the choice of the adopted functional. For these reasons, β-Ga2O3

represents a prototypical material for our study.

8.2 Stable polaronic states

We consider functionals that can address the many-body self-interaction of polarons,
namely the hybrid functional PBE0(α) [53], the γDFT functional [141, 142], and the
Hubbard-corrected DFT+U functional [68, 185–193]. All these functionals depend
on a parameter, which we denote ξ. In particular, for the PBE0(α) functional, ξ
corresponds to the fraction of Fock exchange α admixed to the semilocal exchange.
For the γDFT functional, ξ is the strength γ of a weak local potential dependent
on the polaron density. For the DFT+U functional, ξ is the Hubbard interaction
U . In this notation, the polaron formation energy is written as

Eξ
f (q) = Eξ(q)− Eξ

ref(0) + qεξb, (8.1)

where Eξ(q) is the total energy of the polaron system, Eξ
ref(0) is the total energy

of the reference pristine system, and εξb is the band level corresponding to the
delocalized state. When the piecewise linearity is enforced, Eq. (8.1) becomes

Eξk
f (q) = q(εξkb − ε

ξk
p ) + [Eξk(0)− Eξk

ref(0)]. (8.2)

The calculations are performed using the Quantum Espresso suite [153]. The
core-valence interactions are described by normconserving pseudopotentials [154].
We model β-Ga2O3 with a 120-atom monoclinic supercell (a = 12.38 Å, b = 9.28,
c = 11.76 Å). The energy cutoff is set to 60 Ry. The lattice parameters are
determined at the PBE level of theory for the pristine system. The Brillouin zone
is sampled at the Γ point. Through the application of finite electric fields [87]
at the PBE level of theory, we determine the high-frequency and static dielectric
constants, ε∞ = 3.75 and ε0 = 11.98, which are used for the finite-size corrections
[77, 117]. We remark that in β-Ga2O3 there are three differently-coordinated O
atoms. As illustrated in Fig. 8.1(a), we denote OI the oxygen atom shared by two
GaO6 octahedra and one GaO4 tetrahedron, OII the oxygen atom shared by one
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Figure 8.1 – (a) Bulk structure of β-Ga2O3 (OI in yellow, OII in cyan, OIII in green, Ga
in pink). (b) Polaron isosurfaces at 5% of their maximum for the various hole polarons in
β-Ga2O3 (Ga atoms in pink, O atoms in red).

GaO6 octahedron and two GaO4 tetrahedra, and OIII the oxygen atom coordinated
with four oxygen atoms.

Using the hybrid functional PBE0(α), the enforcement of the piecewise linearity
leads to hole polarons localized either at a single OI site, at two neighboring OII

sites, which we denote O2II, or at a single OIII site. For these states, we find
αk = 0.25, 0.26, and 0.24. Considering that αk is essentially independent of the
polaronic defect, we set αk = 0.25 and calculate the formation energies of the three
polaron states, obtaining −0.63, −0.71, and −0.39 eV, respectively.

With the semilocal functional γDFT, the enforcement of the piecewise linearity
yields hole polarons localized either at a single OI site, at a single OII site, or
at a single OIII site, with respective γk = 1.37, 1.45, and 1.40. Considering that
γk is essentially independent of the polaronic defect, we take a fixed γk = 1.4

and find respective formation energies of −0.59, −0.56, and −0.11 eV. To avoid
resonances between the polaron level and the conduction band, the conduction
band manifold has been shifted by a constant amount ∆ = 3 eV through the use of
the self-consistent scissor operator introduced in Sec. 6.4.

In the DFT+U calculations, following Ref. [184], we apply the Hubbard U correction
to the 2p orbitals of the O atoms, which constitute the localized polaron state. The
enforcement of the piecewise linearity leads to polarons localized either at a single
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Figure 8.2 – (a) Energy levels and (b) formation energy obtained with γDFT as a function
of γ for the hole polaron trapped at the OI site in β-Ga2O3. In (a), the polaron levels are
identified by their respective charge states.

Table 8.1 – Polaron formation energies obtained with piecewise-linear PBE0(α), γDFT, and
DFT+U functionals. The formation energies of the metastable states are given in parentheses.
Energies in eV.

PBE0(α) γDFT DFT+U

OI −0.63 −0.59 −0.74

OII (−0.66) −0.56 −0.54

O2II −0.71 (−0.25) (−0.28)

OIII −0.39 −0.11 −0.42

OI site, at a single OII site, or at a single OIII site, with respective Uk = 4.7, 5.1,
and 4.9 eV. Considering that Uk is essentially independent of the polaronic defect,
we take a fixed Uk = 4.9 eV and determine the respective formation energies of
−0.74, −0.54, and −0.42 eV. We illustrate the various polaron states in Fig. 8.1(b)
and give all the formation energies in Table 8.1.

We remark that polarons localized at single OI and OIII sites are achieved with
all piecewise-linear functionals. However, different descriptions are found for the
polaronic state involving OII sites. In particular, PBE0(α) stabilizes the double-
site O2II state, while γDFT and DFT+U stabilize the single-site OII state. The
localization of hole polarons at OI and O2II sites was already reported in previous
studies [39, 60, 241, 244, 255, 257], while the localization of the hole polaron
at a OIII site was only recently found in the work of Frodason et al. [244]. All
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Figure 8.3 – Energy competition between the hole polarons localized either at the OII site or
at the O2II site, as obtained with PBE0(α), γDFT, and DFT+U functionals.

such previous studies employ hybrid functionals, namely the PBE0 functional [39,
60, 241, 255, 257] and a range-separated hybrid functional [244]. The adopted
fraction of Fock exchange α in these works ranges from 0.26 to 0.35 [39, 60, 241,
244, 255, 257]. For comparison, we consider the recent study of Frodason et
al. [244], in which the OI, O2II, and OIII states are found. In particular, these
authors calculated polaron formation energies of −0.48, −0.49, and −0.33 eV,
respectively. These results systematically underestimate our PBE0(α) values in
Table 8.1, while showing similar relative stability. However, a direct comparison
with all such previous studies [39, 60, 241, 244, 255, 257] remains ambiguous, due
to the disparity in the functional adopted and in the treatment of finite-size effects.

Our findings suggest that the hole polaron localized at the OII site is in competition
with the hole polaron localized over two OII sites (O2II). In particular, the piecewise-
linear PBE0(α) functional stabilizes the O2II state, while the piecewise-linear γDFT
and DFT+U functionals stabilize the OII state. Here, we determine the energy
of the metastable state for each functional. In the PBE0(α) calculations, we find
the structure of the OII state using large values of α, for which the OII state is
more stable than the O2II state. Then, we progressively optimize the structure by
lowering α to approximately αk. Similarly, in γDFT and DFT+U calculations,
we find the structures of the O2II state using low values of γ and U , which we
subsequently increase until approaching γk and Uk, respectively. As illustrated
in Fig. 8.3, we extrapolate the formation energies of these metastable states at
αk, γk, and Uk, and find that for the three functionals considered the energies of
the competing OII and O2II states lie within 0.05, 0.31, and 0.26 eV, respectively.
These values are comparable with the accuracy of piecewise-linear functionals in
the determination of polaron formation energies (cf. Table 8.1). For comparison,
we add to Table 8.1 the formation energies of these metatable states.
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The competing OII and O2II states show very different polaron distributions [cf.
Fig. 8.1(b)]. Hence, it is of interest to evaluate the parameter ξ′k that enforces
the piecewise linearity for the metastable polaronic states, namely the OI state in
PBE0(α), the O2II state in γDFT, and the O2II state in DFT+U . At fixed atomic
structure, the enforcement of the piecewise linearity for such states gives α′k = 0.26,
γ′k = 2.23, and U ′k = 7.44 eV. This shows that the values of αk and α′k obtained for
the O2II and OII states pratically coincide, in accord with previous studies showing
that αk is essentially independent of the considered defect [40, 64–66, 184]. This is
due to the fact that the hybrid functional PBE0(α) addresses the self-interaction
on the entire electronic manifold. At variance, the values of γ′k and U ′k obtained for
the O2II state vary from the values of γk and Uk obtained for the OII state. This can
be related to the fact that γDFT and DFT+U mainly address the self-interaction
of the polaron state, and hence the values of γk and Uk are consequently affected by
the polaron distribution. Additionally, we remark that γ′k and U ′k are both larger
than γk and Uk, respectively. Moreover, the OII state becomes more stable than
the O2II state for sufficiently large values of γ and U [cf. Fig. 8.3]. This implies
that self-consistent electronic and structural optimizations for the enforcement of
the piecewise linearity using γDFT and DFT+U functionals yield the OII state.
This suggests that piecewise-linear functionals may have the tendency of favoring
single-site localization over multi-site localization.

We now compare the properties of the stable polaronic states obtained with the
various piecewise-linear functionals. As illustrated in Fig. 8.4, the polaron electron
densities are practically independent of the adopted functional. An excellent
agreement is also found for the polaronic lattice distortions, with deviations smaller
than 0.05 Å (cf. Table 8.2), with the sole exception of the weak bonds for the
OIII state for which a deviation of 0.10 Å is observed. Similarly, differences in the
formation energies due to the choice of the functional are within 0.15 eV in all
cases, except for the OIII state where we find a larger discrepancy of 0.31 eV (cf.
Table 8.1). Overall, this analysis confirms the robustness of the polaron properties
obtained with piecewise-linear functionals [141, 142, 184].

It is of interest to determine the accuracy by which γk, Uk, and αk enforce the
piecewise linearity condition. This can be achieved by taking the difference between
the formation energies obtained with the expressions in Eqs. (8.2) and (8.1) at
ξ = ξk. Indeed, these two expressions are formally equivalent for all partial
charge occupations q when the piecewise linearity condition is satisfied. We hence
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Figure 8.4 – Polaron densities integrated over xy planes obtained with piecewise-linear
PBE0(α), γDFT, and DFT+U functionals for the hole polarons localized at the OI, OII, O2II,
and OIII sites.

Table 8.2 – Lengths of Ga-O polaronic bonds (in increasing order) obtained with piecewise-
linear PBE0(α), γDFT, and DFT+U functionals. The bond lenghts of the less-stable states
are given in parentheses. Bond lengths in Å.

PBE0(α) γDFT DFT+U

OI 1.97/2.17/2.17 2.02/2.16/2.16 1.98/2.20/2.20

OII (1.97/1.97/2.21) 2.02/2.02/2.18 1.99/1.99/2.22

O2II 1.93/1.93/2.09 (1.94/1.94/2.06) (1.93/1.93/2.08)

OIII 1.96/2.09/2.24/2.69 2.01/2.12/2.23/2.73 1.97/2.12/2.33/2.65

determine the quantity

δ =
∣∣Eξk(q)− [Eξk(0)− qεξkp ]

∣∣ , (8.3)

and find for the stable polarons a mean average δ of 0.02, 0.06, and 0.02 eV using
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Figure 8.5 – (a) Band edges of β-Ga2O3 as obtained with PBE0(α) and DFT+U as a function
of α and U , respectively. The vertical line denotes the choice of the parameter for which the
piecewise linearity condition is retrieved. The energy levels are aligned with respect to the
average electrostatic potential [225]. (b) Band gaps and energy levels of the hole polaron
localized at the OI site, as obtained with γDFT, DFT+Uk, and PBE0(αk). The γDFT band
gap coincides with that obtained with PBE. The polaron level calculated with γDFT is found
by applying the scissor operator to the conduction band manifold (cf. Sec. 6.4).

γDFT, DFT+U , and PBE0(α) functionals, respectively. This agreement validates
the parameters chosen to enforce the piecewise linearity condition.

We now highlight the role of the band gap in the determination of accurate polaron
energetics. As illustrated in Fig. 8.5(a), we obtain band gaps of 4.38, 2.05, and
3.68 eV with PBE0(αk), PBE, and DFT+Uk, respectively. The PBE0(αk) band
gap is in very good agreement with the range of experimental values 4.4−4.8 eV for
β-Ga2O3 [259, 260]. This is in accord with previous findings showing the accuracy
of band gaps obtained with piecewise-linear hybrid functionals with respect to
the experiment [19, 40, 60–67, 141, 142]. At variance, both PBE and DFT+Uk

noticeably underestimate the experimental band gap. Nevertheless, the incorrect
description of the band gap in γDFT and DFT+U is not critical for the accurate
determination of polaron properties [184]. Additionally, we remark that the energy
level of the hole polaron localized on a OI site calculated with the piecewise-linear
γDFT functional is in resonance with the PBE conduction band. This demonstrates
the necessity of including a self-consistent scissor operator in the γDFT Hamiltonian
to avoid the delocalization of the polaron wave function (cf. Sec. 6.4).
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8.3 Polaron hopping

We now study the minimal energy path for hopping of hole polarons in β-Ga2O3

by perfoming nudged-elastic-band calculations with piecewise-linear γDFT and
DFT+U functionals. We avoid the use of the hybrid functional PBE0(α) for
nudged-elastic-band calculations, which would require an excessively large amount
of computational resources. We consider all the 21 first-nearest-neighbor hoppings,
which are indexed in Table 8.3 by the pairs of O sites involved in the hopping
and their respective distance. This requires performing 14 nudged-elastic-band
calculations with each functional, since hoppings involving two different O sites
provide information on both forward and backward transitions. In particular, for
each nudged elastic band we take a 15-image path connecting the initial and final
states. We use a fixed ξk instead of an image-dependent one, as this affects the
activation energies in a minor fashion [184]. In this way, we determine the energy
landscape as a function of the reaction coordinate Q.

For each transition, we determine the activation energy Ea as the difference
between the transition-state energy and the ground-state energy of the initial
state. For illustration, we show in Fig. 8.6 the hopping process between two OI

sites connected through a Ga atom. In this case, we find very good agreement

Figure 8.6 – Energy landscape of a polaron hopping between two neighboring OI sites
connected through a Ga atom in β-Ga2O3 (transition index #2 in Table 8.3), as obtained
with piecewise-linear (a) γDFT and (b) DFT+U functionals through the nudged-elastic-band
method. The activation energies Ea and the effective nuclear frequencies ν are indicated. In
green, we give the activation energies calculated with the piecewise-linear functional PBE0(α)
for the same nudged-elastic-band pathway.
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between the activation energies obtained with piecewise-linear γDFT and DFT+U
functionals. In particular, the activation energies in the two cases differ by only 58
meV. In Fig. 8.6, we also give the energy barriers calculated with the piecewise-
linear PBE0(α) functional for the nudged-elastic-band pathways obtained with
γDFT and DFT+U , finding a negligible difference of 7 meV between the two paths.
This further corroborates the reliability of piecewise functionals and their mutual
equivalence.

When considering all other hopping processes, we find overall a similar good
agreement between the activation energies obtained with γDFT and DFT+U , as
given in Table 8.1. In particular, the mean absolute error of activation energies
amounts to only 85 meV [cf. Fig. 8.7(a)]. The largest variations are observed for
the transitions OIII → OII (indexes #18 and #19), which can be related to the
discrepancy in the energy difference between final and initial states involved in
the nudged-elastic-band calculation (cf. Table 8.1). This can be related to the
Bell-Evans-Polanyi principle, which establishes a linear relationship between the
activation energy and the energy difference between final and initial states [261,
262].

Then, we focus on the determination of the hole transfer rates for all transitions.
First, we calculate the effective nuclear frequency ν through quadratic interpolation
of the energy profile around the initial state, as shown in Fig. 8.6. Then, we
determine the couplings J for all transitions as half the separation between occupied
and unoccupied defect energy levels at the transition state [116], as illustrated
in Fig. 8.8. Given the activation energies Ea, the effective nuclear frequencies
ν, and the couplings J , we calculate the probabilities P defined in Eq. (2.45) at
T = 300 K. We find that P = 1 in all cases, with the exception of the transition
#18 calculated with DFT+U for which P = 0.9. This indicates that essentially all
the transitions are adiabatic. We then calculate the hole transfer rates at T = 300 K
for all hopping processes using Eq. (2.42). The effective nuclear frequencies ν, the
couplings J , and the rates kt obtained for all the hoppings are given in Table 8.3.

As shown in Fig. 8.7(b), we also find good agreement for the hole transfer rates cal-
culated with γDFT and DFT+U , characterized by a mean value of | log10(kγkt /k

Uk
t )|

equal to 1.5, which represents the mean absolute error on the order of magnitude of
kt. This is quite satisfactory considering that even small variations of the activation
energy can affect the hole transfer rate by several orders of magnitude due to
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Figure 8.7 – (a) Activation energies and (b) hole transfer rates at 300 K for the hole polaron
hoppings in β-Ga2O3 listed in Table 8.3.

the exponential dependence of the transfer rate on the activation energy [cf. Eq.
(2.42)]. This analysis sets the overall accuracy of piecewise-linear functionals in
the determination of electron-transfer rates, and shows that the robustness of
the polaron properties obtained with piecewise-linear functionals also holds for
activation energies and hopping rates.

We remark that some of the activation barriers in Table 8.3 are higher than
the formation energies of the initial state. In such a case, the transition state
is less stable than the delocalized state in which the polaron charge delocalizes
uniformily over the entire system and the polaronic lattice distortions vanish. This
indicates that the hole polaron diffusion in β-Ga2O3 cannot be uniquely described
by polaron hopping, and that more complex scattering mechanisms combining
polaron hopping and polaron delocalization should be considered in the calculation
of polaron mobilities.
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Figure 8.8 – Occupied and unoccupied defect energy levels as a function of the reaction
coordinate for a polaron hopping between two neighboring OI sites in β-Ga2O3 (transition index
#1 in Table 8.3), as obtained with piecewise-linear (a) γDFT and (b) DFT+U functionals.
Defect energy levels are corrected by finite-size effects. Below, isodensity surfaces at 5% of
their maximum for the densities of the occupied and unoccupied defect states at the transition
state, as calculated with γDFT.

8.4 Discussion

In conclusion, we investigated the use of piecewise-linear functionals for the de-
termination of polaronic ground-state and transport properties. We showed that
enforcing the piecewise linearity condition leads to robust polaron properties upon
variation of the functional. Considered properties include electron densities, lattice
bonds, formation energies, activation energies, and transfer rates. Such a robustness
validates the accuracy and the reliability of the calculated polaron properties. This
is particularly relevant when considering formation energies, which are subject to
large variations upon varying the parameters of the functionals.

By consequence, our work demonstrates that semilocal functionals yield essentially
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Table 8.3 – Distance dξk between hopping sites (in Å), activation energy Eξka (in meV), phonon
frequencies hνξkn (in meV), and hole-transfer rate kξkt (in Hz) at 300 K for all first-nearest-
neighbor polaron hoppings in β-Ga2O3, as obtained with piecewise-linear γDFT and DFT+U
functionals.

γDFT DFT+U

Hopping index d Ea hν J kt d Ea hν J kt

OI→OI 1 3.16 674 74 198 8.4× 101 3.28 653 119 260 3.1× 102

2 3.09 408 113 647 3.8× 106 3.09 466 118 696 4.3× 105

OI→OII 3 2.88 404 77 607 3.0× 106 2.83 560 124 676 1.2× 104

4 2.98 673 45 171 7.6× 101 2.94 734 106 302 1.2× 101

OI→OIII 5 2.65 693 74 602 4.2× 101 2.67 647 82 680 2.6× 102

6 2.88 677 77 645 7.9× 101 2.90 554 271 790 3.2× 104

7 3.24 720 99 564 1.9× 101 3.23 692 97 623 5.7× 101

OII→OI 8 2.88 375 123 607 1.5× 107 2.83 372 168 676 2.3× 107

9 2.98 642 136 171 5.4× 102 2.94 547 174 302 2.7× 104

OII→OII 10 3.04 467 106 344 3.7× 105 3.06 477 168 350 4.0× 105

11 3.09 416 109 443 2.7× 106 3.09 441 164 490 1.6× 106

12 2.84 326 59 547 4.7× 107 2.82 267 146 725 1.2× 109

OII→OIII 13 2.94 703 90 479 3.3× 101 2.96 744 86 144 6.7× 100

14 2.99 637 96 589 4.6× 102 2.98 524 147 567 5.7× 104

OIII→OI 15 2.65 214 73 602 4.5× 109 2.67 334 140 680 8.4× 107

16 2.88 205 129 645 1.1× 1010 2.90 241 31 790 6.7× 108

17 3.24 246 106 564 1.9× 109 3.23 369 146 623 2.2× 107

OIII→OII 18 2.94 251 76 479 1.1× 109 2.96 617 165 144 1.6× 103

19 2.99 179 61 589 1.5× 1010 2.98 398 103 567 5.2× 106

OIII→OIII 20 2.69 497 77 428 8.3× 104 2.70 427 106 610 1.7× 106

21 3.09 511 76 349 4.9× 104 3.09 491 65 489 9.0× 104

the same polaron properties, thereby supporting their use for exploring polaronic
energy landscapes and for determining polaron transport properties. This becomes
important when considering anisotropic materials, which can be characterized by
numerous polaronic hopping pathways for which hybrid-functional calculations
would be computationally beyond reach.

In summary, our work provides a paradigm shift for the study of polaron transport
properties, through the use of piecewise-linear functionals as opposed to standard
functionals. This also lends justification to the use of efficient semilocal functionals,
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thus paving the way to accurate and systematic studies of polaronic transport
properties from first principles.
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9 Conclusion

In this thesis, we investigated the concept of many-body self-interaction in relation
to polarons in density functional theory, thereby enabling the use of semilocal
functionals for modelling polarons in a computationally-efficient way.

First, we developed a method for correcting energies and single-particle levels of
defects involving frozen lattice distortions, which is necessary for modelling isolated
polarons when using supercells. We highlighted the role of the ionic polarization
charge in the determination of such corrections. We showed that our scheme
yields accurate corrections through extrapolation to the limit of an infinitely large
supercell for various defects. As a further validation, we demonstrated that our
corrections for vertical transition energies satisfy a sum rule connecting them to
state-of-the-art corrections for structurally relaxed defects.

Then, we addressed the self-interaction of polarons using hybrid functionals. We
showed that the many-body self-interaction can be suppressed by selecting the
fraction of Fock exchange admixed to semilocal exchange such that the polaron
energy level is independent of its occupation. This yields a piecewise-linear energy
with respect to electron occupation, thereby recovering a property of the exact
energy functional. Then, we determined the electronic and structural properties of
polarons, including the formation energy. We emphasized that hybrid functionals
lead to an overall improvement of the electronic structure, including band gaps.

Within the family of hybrid functionals, by which both forms of self-interaction
can be addressed, we developed an analytical formulation for both many-body
and one-body descriptions of the self-interaction and showed that they are related
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through the dielectric constant. In particular, we demonstrated that correcting for
the many-body self-interaction accounts for additional electron screening effects,
which are missing when addressing the one-body self-interaction. Additionally, we
found that these two forms of self-interaction coincide in the absence of electron
screening. Hence, through this analysis, we demonstrated the superiority of the
many-body form of self-interaction over the one-body form of self-interaction.

Given the preeminence of the many-body self-interaction, we then introduced
an efficient methodology to obtain localized polarons free from many-body self-
interaction at the semilocal level of theory. The charge localization is achieved by
adding a weak local potential to the semilocal Hamiltonian. Possible resonances
involving the polaron state and the delocalized band states are addressed by
including to the Hamiltonian a scissor operator, which is constructed with the
self-consistent wave functions. This approach yields polarons with charge densities,
atomic structures, and formation energies in close agreement to those obtained with
piecewise-linear hybrid functionals but at the computational cost of a semilocal
calculation. This shows that electronic and structural properties of polarons
free from many-body self-interaction are robust upon variation of the functional
adopted.

Taking advantage of our findings, we introduced a selection criterion for the
Hubbard parameter U in Hubbard-corrected density functional theory based on
suppressing the many-body self-interaction of polaronic defect states. The resulting
polaron properties are in good agrement with results from piecewise-linear hybrid
functionals, thereby further corroborating the robustness of polaron properties
obtained with functionals free from many-body self-interaction. The resulting
energetics is accurate also for polaron hoppings, whereby the use of configurational-
dependent U values can be avoided. In this approach, the selection of U is based
on physical properties that are directly associated with the orbitals to which U is
applied, without involving more global properties, such as band gaps and density
of states.

Finally, we applied piecewise-linear functionals to study the ground-state and
transport properties of polarons in an anisotropic system, which can host multiple
polaronic states. We studied the energy landscape pertaining to all first-nearest-
neighbor polaron hoppings with semilocal functionals, and therefrom calculated
the corresponding polaron transfer rates. We demonstrated that the robustness of
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the polaron properties obtained with piecewise-linear functionals also extends to
hopping energy landscapes and transition rates. This further supports the use of
semilocal functionals for efficient calculations of polarons.

In conclusion, we introduced a theoretical formulation for the electron self-interaction
that solves the problem of polaron localization in density functional theory. This
leads to significant developments to the long-standing problem of self-interaction,
from both the conceptual and the methodological point of view. From the con-
ceptual point of view, we demonstrated that polaron calculations should account
for the many-body self-interaction rather than for the one-body self-interaction to
include all relevant screening effects. As a result, the polaron properties obtained
with piecewise-linear functionals are found to be robust upon variation of the
functional. From the methodological point of view, we introduced a semilocal
scheme for polaron localization and a selection criterion for Hubbard-corrected
functionals, which both address the many-body self-interaction. This gives access
to accurate polaron stabilities through computationally-efficient schemes, thus
carring several advantages. First, our methodology enables the study of polarons in
large systems, which are often inaccessible at the hybrid functional level of theory,
especially for plane-wave-based codes. Moreover, our scheme allows for systematic
studies of polarons involving large sets of materials, thus opening up the possibility
to perform high-throughput studies of polarons. Additionally, our approach enables
the accurate modelling of polarons in liquid phases in molecular dynamics evolving
over long time periods, which can be used for calculating polaron mobilities. Finally,
our method allows for the exploration of polaronic energy landscapes and for the
calculation of polaron transfer rates. To summarize, our study paves the way to
unprecedented calculations of polarons for various applications, opening up new
horizons in polaron physics.
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A Appendix: Scissor operator for
opening the band gap

We present a method for opening the band gap in semilocal density functional
theory through the use of a self-consistent scissor operator, which acts
separately on the valence and conduction manifolds. The shifts partaining
to valence and conduction bands are chosen in order to reproduce the band
levels obtained with a reference hybrid functional. We demonstrate that this
methodology allows one to obtain accurate electronic and atomic properties
of bulk systems when compared to reference hybrid functional calculations,
but at a significantly lower computational cost. As test cases, we consider
Ge, GaN, and GaAs.
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A.1 Introduction

One of the most notorious shortcomings of density functional theory due to the
electron self-interaction is the band gap problem [85, 263], which consists of incor-
rectly predicting the energy gap between the valence and conduction band manifold.
This is critical when modelling semiconductors, since it affects their optical and
photovoltaics properties. Several schemes have been proposed to address the band
gap problem. The state-of-the-art method for predicting band gaps is the GW
approximation [264], which gives very accurate results with respect to experiment
[122, 265]. At a lower computational cost, hybrid functionals have been successfully
applied to predict band gaps, with an accuracy comparable to that of GW calcula-
tions [172]. However, hybrid functionals are still computationally very expensive
for large systems in high-throughput screening of materials. Another method
for the band-gap problem consists in using the DFT+U functional, which has a
computational cost comparable to semilocal density functional theory. However, the
band edges are not guaranteed to accurately reproduce those obtained with state-
of-the-art GW calculations. Other attempts to solve the band gap problem involve
the use of an a-posteriori scissor operator [266–271], which however is not suitable
for defect levels close to the band edges [271]. Other strategies consist in using
cluster models [272], or in sampling the Brillouin zone at a single off-centered point
[273]. In this context, it is of interest to develop a computationally-advantageous
scheme to open the band gap at the semilocal level of theory.

A.2 Methodology

Taking advantage of our developments in Sec. 6.4, we include a scissor operator to
the semilocal Hamiltonian and solve the following set of Kohn-Sham equations

(H0
σ + Sσ)ψsiσ = εsiσψ

s
iσ, (A.1)

where H0
σ is the semilocal PBE Hamiltonian [10], Sσ the scissor operator acting

on the spin channel σ, ψsiσ are the wave functions, and εsiσ the corresponding
eigenvalues. We define the scissor operator Sσ as

Sσ = ∆v

∑
j∈Mv

σ

|ψsjσ〉〈ψsjσ|+ ∆c

∑
j∈Mc

σ

|ψsjσ〉〈ψsjσ| , (A.2)
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whereMv
σ andMc

σ denote the manifolds of valence and conduction band states,
respectively, and ∆v and ∆c are the corresponding energy shifts. The ψsjσ in Eq.
(A.2) are the self-consistent wave functions obtained in the optimization of the
Kohn-Sham equations. The expression in Eq. (A.2) has the effect of shifting the
energy levels pertaining to the valence (conduction) band manifold by ∆v (∆c).
Indeed, due to the orthonormality of the wave functions, Sσ applied to a wave
function ψiσ yields

Sσ |ψsiσ〉 =

∆v |ψsiσ〉 , if iσ ∈Mv
σ

∆c |ψsiσ〉 , if iσ ∈Mc
σ

. (A.3)

Generally, one takes ∆v < 0 and ∆c > 0, in order to reproduce the opening of
the band gap as obtained in hybrid functional calculations. The total energy
corresponding to Eq. (A.1) is given by

Es = E0 + ∆Es, (A.4)

where the energy contribution ∆Es is a constant shift given by

∆Es = N∆v, (A.5)

where N is the number of electrons in the system. We denote this scheme PBE+S.

A.3 Results

We perform the calculations using the quantum espresso suite of codes. As case
studies, we consider germanium (Ge), gallium nitride (GaN), and gallium arsenide
(GaAs). We model Ge with a 64-atom cubic supercell (a = 11.32 Å), wurtzite GaN
with a 96 atom orthorombic supercell (a = 9.57 Å, b = 11.05 Å, c = 10.37 Å),
GaAs with a 64-atom cubic supercell (a = 11.30 Å). The lattice parameters are
fixed to the experimental values [274–276]. The Brillouin zone is sampled with a
2×2×2 grid and the energy cutoff is set to 80 Ry in all cases.

As reference, we consider the band edges obtained with the hybrid functional
PBE0(αg), where αg is the fraction of Fock exchange that reproduces the experi-
mental band gap. Then, by comparing the bands levels obtained with PBE and
PBE0(αg), we determine the energy shifts ∆v and ∆c for each material, as given in
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Table A.1 – Experimental band gap Eexp
g , fraction αg of Fock exchange that reproduces Eexp

g ,
and shifts ∆v and ∆c in Ge, GaN, and GaAs. Energies in eV.

System Eexp
g αg ∆v ∆c

Ge 0.74 0.13 −0.46 0.26

GaN 3.50I 0.22 −0.94 0.62

GaAs 1.52II 0.17 −0.63 0.36

I Ref. [277], II Ref. [278].

Figure A.1 – (a) Band edges of Ge as a function of the fraction α of Fock exchange in PBE0(α)
calculations. The fraction αg of Fock exchange is chosen to reproduce the experimental band
gap. (b) Electronic bands of Ge as obtained with the semilocal functional PBE (in blue), with
the hybrid functional PBE0(αg) (in green), and with the functional PBE+S (in red).

Table A.1. This procedure is illustrated in Fig. A.1(a) in the case of Ge. This case
study is particularly interesting since a regular semilocal density functional such as
PBE would predict a vanishing band gap. At variance, in PBE0(α) calculations,
the band gap can be opened to reproduce the experimental result.

Next, we determine the accuracy of the electronic and atomic structure for the
various functionals considered in this work. In regards to the electronic structure,
we calculate the electronic bands along a k-point path determined with SeeK-Path
[279]. We find that the valence and conduction bands obtained with PBE+S are
very similar to the PBE electronic bands but shifted by the amounts ∆v and ∆c,
respectively, as illustrated in Fig. A.1(b) for Ge. To assess the accuracy of the
atomic structure, we calculate the equibrium lattice parameter a0 of the unit cell
and the bulk modulus B0. This is done by calculating the total energy versus
supercell size and by using a Murnaghan fit [280]. We find that the PBE and
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Table A.2 – Equilibrium lattice parameter a0 of the unit cell and bulk modulus B0 obtained
with PBE, PBE+S, and PBE0(αg) functionals in comparison with the experimental values.
The lattice parameters are in Å, the bulk moduli are in GPa. The mean percentage errors δ
with respect to the experimental values are given.

PBE PBE/PBE+S PBE0(αg) Expt.

System a0 B0 a0 B0 a0 B0

Ge 5.76 56.6 5.76 56.6 5.67 67.5 5.66a 74.9b

GaN 3.22 171.2 3.22 171.2 3.17 199.0 3.19c 207.0d

GaAs 5.74 59.2 5.74 59.2 5.64 73.6 5.65e 75.4f

δ 1.4% 21.1% 1.4% 21.1% 0.2% 5.4% − −

PBE+S results practically coincide and result in mean percentage errors of 1.4%
and 21.1% with respect to experiment for a0 and B0, respectively. The hybrid
functional PBE0(αg) improves this result with mean percentage errors with respect
to the experiment of 0.2% and 5.4% for a0 and B0, respectively. Overall, this
confirms the validity of our PBE+S method in relation to the electronic and atomic
structure.

A.4 Discussion

We introduced a method for opening the band gap based on adding a scissor
operator to the semilocal Hamiltonian. The scissor operator is constructed as a
sum of projectors, which are defined using the wave functions calculated in the
self-consistent optimization of the Kohn-Sham equations. The resulting electronic
and atomic properties of bulk systems are in good agreement with reference results
obtained with hybrid functionals.
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B Appendix: Code implementation
in Quantum Espresso

We discuss the implementation of the γDFT scheme and of the self-consistent
scissor operator in quantum espresso. In γDFT, we enhance the data
structure pertaining to electron densities by including the polaron distribution
in real and reciprocal space. At each step of the self-consistency, the polaron
density is calculated and mixed with results at previous steps using the same
subroutines as for the total electron density. The semilocal potential in γDFT
is then constructed and added to the total Hamiltonian. For the scissor
operator, we construct the projectors using the self-consistent wave functions
and then the scissor operator to the Hamiltonian. Relevant implementation
details for achieving fast convergence are discussed.
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B.1 Implementation of the γDFT scheme

We discuss the implementation details of the γDFT scheme in the code pw of
quantum espresso. The implementation follows the workflow illustrated in Fig.
B.1. In particular, the polaron density is calculated and mixed analogously to the
total electron density. Similarly, the γDFT potential is evaluated together with the
exchange-correlation potential. In the following, we show that the implementation
requires minimal changes to existing data structures and subroutines. We discuss
in detail the files that are modified for including the γDFT scheme.

In order to perform a γDFT calculation, we introduce the following input variables
in the &SYSTEM namecard of the pw input file:

&SYSTEM
...

sic_gamma = 1.40
sic_energy = .true.
pol_type = ’h’

\

calculate polaron density

Convergence?

YES

NO

diagonalize Hamiltonian

calculate total density

add extra potentialcalculate Hamiltonian

Figure B.1 – Implementation workflow of the γDFT scheme. In blue the existing subroutines,
in green the subroutines related to the γDFT scheme.
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where sic_gamma is a real number representing the strength γ of the localized
potential, sic_energy a logical variable enabling the calculation of the energy ∆Eγ ,
and pol_type a string specifying the type of polaron (’e’ for electron polarons, ’h’
for hole polarons). These input parameters are inlcuded through proper modifica-
tion of the files Modules/input_parameters.f90, Modules/control_flags.f90,
Modules/read_namelists.f90, and PW/src/input.f90.

As illustrated in Fig. B.1, one needs to construct the polaron density. The electron
density is stored in the data structure scf_type, which is used to represent densities
or potentials in a 3D grid in the real and in the reciprocal spaces, as defined in the
file PW/src/scf_mod.f90. Here, we enhance the scf_type structure by introducing
two equivalent features that represent the polaron density in real and reciprocal
space, namely

TYPE scf_type
REAL(DP), ALLOCATABLE :: of_r(:,:)
COMPLEX(DP), ALLOCATABLE :: of_g(:,:)
...
REAL(DP), ALLOCATABLE :: pol_r(:,:):
COMPLEX(DP), ALLOCATABLE :: pol_g(:,:)

END TYPE scf_type

where pol_r and pol_g refer to the representation of the polaron density in real
and reciprocal spaces, respectively. This is analogous to the features of_r and
of_g used for the total density. Consequently, all subroutines involving the data
structure scf_type in the file scf_mod.f90 are modified accordingly, including
all operations devoted to the mixing of the electron density. In this way, the
mixing of the polaron density is achieved consistently with the mixing of the total
electron density. The electron density is determined through subroutines in the
file sum_band.f90, where the densities of all orbitals are summed up. Similarly, in
sum_band.f90 we construct the polaron density using the same subroutines but
taking only the last occupied wave function in the spin up channel for electron
polarons, or the first unoccupied wave function in the spin down channel for hole
polarons.

For the calculation of the potential V γ
σ , we introduce a new module named sic_mod

in the file PW/src/sic.90, which makes use of existing exchange-correlation sub-
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routines. In particular, the total electron density is stored in the variable rho.
Then, following Eqs. (6.15) and (6.16), we construct an auxiliary density rho_aux,
which is equal to rho minus (plus) the density of the electron (hole) polaron in the
spin up (down) channel. Next, the potential V γ

σ is constructed as follows

CALL v_xc(rho, rho_core, rhog_core, etxc_aux, vtxc_aux, vxc)
CALL v_xc(rho_aux, rho_core, rhog_core, etxc_aux, vtxc_aux, vxc_aux)
v%of_r(:,:) = v%of_r(:,:) + sic_gamma*(vxc(:,:) - vxc_aux(:,:))

where v_xc is the subroutine that calculates the exchange-correlation potential, vxc
and vxc_aux are the exchange-correlation potentials pertaining to rho and rho_aux,
and v%of_r is the Kohn-Sham potential in real space. In addition, the module
sic_mod handles the allocation and deallocation of all quantities related with the
γDFT calculation. The inclusion of the potential is incorporated in the calculation
of the Kohn-Sham potential, as performed in the file PW/src/v_of_rho.f90. At
the first step of the self-consistency, the potential V γ

σ is initialized to zero, as
given in the file PW/src/potinit.f90. The extrapolation of the polaron density
in consecutive relaxation calculation is done in the file PW/src/update_pot.f90.

The calculation of the energy ∆Eγ , which is defined in the file PW/src/pwcom.f90,
is enabled when setting the input variable sic_energy = .true.. Following Eq.
(6.9), this requires carrying out two independent calculations at polaron charges
q = 0 and q = Q (Q = −1 for electron polarons, Q = +1 for hole polarons). The
subroutines for performing these two consecutive calculations are inserted in the
files PW/src/sic.f90, PW/src/setup.f90, and PW/src/electrons.f90. At the
end of the calculation with q = 0, the total electron density is stored in the variable
rho_n of the module sic_mod, and all buffers and other variables pertaining to the
neutral calculations are initialized to zero in the files PW/src/clean_pw.f90 and
PW/src/electrons.f90. The charged calculation is then performed and the energy
∆Eγ is evaluated at each step of the self-consistency in the file PW/src/sic.f90.

In order to guarantee robust convergence in structural relaxations, molecular dy-
namics calculations, or nudged elastic band calculations, it might be convenient
to initialize the density of the system from a superposition of atomic orbitals
at each restart. This is achieved by including the input variable pol_reset in
the &SYSTEM namecard. The presence of this input variable requires modifica-
tion of the files Modules/input_parameters.f90, Modules/control_flags.f90,
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Modules/read_namelists.f90, and PW/src/input.f90. The reset of the wave
functions is performed in the file PW/src/electrons.f90.

B.2 Implementation of the scissor operator

We now focus on the implementation of the self-consistent scissor operator in the
code pw of quantum espresso. In particular, we introduce two additional
variables in the &SYSTEM namecard of the pw input file, namely

&SYSTEM
...

sci_vb = -1.0
sci_cb = +1.0

\

where sci_vb and sci_cb are real numbers corresponding to the shift of the
valence and conduction bands, respectively. These input parameters are in-
cluded through the modification of the files Modules/input_parameters.f90,
Modules/control_flags.f90, Modules/read_namelists.f90, and PW/src/input.f90.

For the calculation of the scissor operator Sσ, we introduce a new module named
sci_mod in the file PW/src/scissor.90. In particular, Sσ is constructed with the
wave functions φiσ in input to the diagonalization of the Hamiltonian Hσ at each
step of the self-consistent cycle, as given in the file PW/src/c_bands.f90. The
wave functions are selected from either valence or conduction manifolds. In polaron
calculations, the manifold of valence electrons is identified as the set of occupied
wave functions excluding the electron polaron state. Similarly, the manifold of
conduction electrons is identified as the set of unoccupied wave functions excluding
the hole polaron state. Then, for given wave functions ψiσ, we calculate directly
the application of the scissor operator to the wave functions, namely

Sσ |ψiσ〉 = ∆
∑
i∈Mσ

〈φiσ|ψiσ〉 |φiσ〉 , (B.1)

where φiσ are the wave functions used for constructing the scissor operator, and φiσ
are the wave functions to which the scissor operator applies to. The evaluation of
Sσ |ψiσ〉 requires the evaluation of the overlaps 〈φiσ|ψiσ〉 and is performed in the file
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PW/src/scissor.90. This is then added toHσ |ψiσ〉 in the file h_psi.f90. The cor-
responding energy is then included through variables in the files PW/src/pwcom.f90
and PW/src/electrons.f90. The scissor operators for the valence and conduction
bands are decoupled and are activated through the keywords sci_vb and sci_cb,
respectively.
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