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Abstract

We present saft, the first attempt of a static analyzer that extracts the asymptotic function
complexity for the Polkadot/Substrate ecosystem, where the burden of accounting for computation
resource consumption is put on the developer. saft is a tool meant to be used in a complementary
way with pre-existing development tools to improve the Substrate-based blockchain security.

saft combines two techniques to analyze the MIR generated from the compilation of the
blockchain subsystems, the pallets: (i) abstract interpretation for the over-approximation of the
concrete semantics and extraction of complexity asymptotics and (ii) symbolic execution to track
the length of dynamically sized vectors, increasing the precision of (i). The developers can then
compare saft output with their resource consumption computation.

Our experimental evaluation showed that the tool scales well with arbitrary pallets, given some
manual specifications.
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1 Introduction
Major problems for permissionless blockchains are Denial-of-Service (DoS) attacks that con-

sume the computational resources available to the distributed system. Because a permissionless
blockchain allows anyone to submit transactions, a small group of users could execute transactions
whose computational cost is an overwhelming fraction of the resources available. To prevent this,
permissionless blockchains usually charge a fee proportional to the resources that a transaction
consumes. This leads to the technical problem of how to determine the resource usage of transac-
tions, so that appropriate fees can be charged. Failing to do so poses a significant security threat
to the blockchain.

A typical design is based on runtime metering. The execution engine monitors some metrics,
e.g. the execution time so far. If there is no sufficient fee to pay for further time, then the
execution stops. Otherwise, the execution eventually terminates, in which case the remaining fee
is refunded. While the approach is relatively straightforward it has two drawbacks. First, the extra
instrumentation needed for metering could be costly on conventional hardware. Second, neither
users nor system nodes know the precise fee in advance.

In an alternative approach, taken by the Substrate framework2, fees are pre-computed. Every
transaction in a Substrate-based blockchain must come with a function that, given the transaction’s
arguments, weighs the execution time needed. The transaction fee then includes a component based
on those computed weights. For this to work out, three conditions must be met. First, computing
the weights must be cheaper than the runtime monitoring it replaces. Second, the weights must be
sound, that is, they must overestimate the actual cost. Underestimation would enable malicious
users to trigger unaccounted worst-case executions leading to denial-of-service attacks. Third, the
weights must be relatively precise, that is, they should not overestimate too much. Overestimation
can make the fees too expensive, discouraging users from using the blockchain.

In this project, we provide a semi-formal approach to the worst-case resource analysis problem,
that is, a combination of automatic and manual analysis. We tried to automate the process as
much as possible but we found limits on what is possible to be done considering the implementation
choices we made.

1.1 Goal and Challenges
Goal of the thesis. Substrate-based blockchain developers bear the burden of providing a

suitable weight function. Coming up with one leads to at least two considerations. First, one needs
to determine a symbolic expression for the execution time of the transaction in terms of possibly
unknown constants and functions of the input. Second, one must fit the expression to actual
running times. The first point requires careful analysis of the source code and the algorithms that
are employed. The second point requires crafting benchmarks that test the source code in different
scenarios, worst-case execution times in particular.

We aim to design and implement a static analysis that derives symbolic expressions that es-
timate the wort-case execution time of transactions in Substrate pallets (the components of a
blockchain based on the Substrate framework). Since the actual execution time depends on a par-
ticular hardware and software configuration, there is a limitation of how far a purely static analysis
approach can go. But what the approach can ensure is soundness with respect to a reasonable
abstract cost model (e.g., source-level instruction count). Fitting the inferred symbolic expression
to actual execution times still needs to be based on concrete benchmarks. Therefore, the main
use of such an analysis is to assure developers that a transaction has a certain asymptotic behavior.

The main objective of this project is to increase the security of Substrate-based blockchains by
developing a static analysis tool that enables developers to check whether their system allows heavy
execution time for a cheap cost, or in other words whether the system is vulnerable to a cheap DoS.

Challenges. As well known, static analysis is generally unfeasible. Inferring execution time
bounds implies termination, i.e., the problem is at least as difficult as proving termination. The
best we can do is design algorithms that target specific classes of programs, and have a significant
precision penalty outside of that class. There have been many works that approach the problem
that may serve as a baseline for the analysis. Our starting point is an abstract interpretation-based
approach (cf., [3, 6]) that we selected after a careful consideration of existing Substrate pallets.
The selected baseline was implemented and tested on a representative set of pallets. The next
stage was to identify the shortcomings and improve the baseline.

2https://substrate.io/
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A major challenge was to decide on which of the program representations the analysis will
operate on: whether that would be the source code (Rust), in which pallets are written, or the
binary code (WebAssembly) that a pallet compiles down to. Source code has the advantage of
being at a higher level of abstraction, allowing the source program to be simpler and easier to
reason about. The drawback is that the source code is further away from the actual code executed.
Program transformations down the line might lead to unpredictable changes in the execution time,
compared to an abstract model on the source code. That is why the produced binary contains
more information about execution time. However, WebAssembly is typically an intermediate rep-
resentation itself, that is further just-in-time compiled, and therefore the unpredictability due to
program transformations still remains. Moreover, binary code is more difficult to analyze, which
leads to imprecision. Ideally, a source-level analysis (Rust) should suffice, with any mismatch with
the binary code incorporated into the cost model. But this is not guaranteed, and that is why the
Rust and WebAssembly code needed to be compared.

Other major challenges have been what subset of the input language to support, and what to
do with the inevitable imprecision loss. For this project we do not plan to support some language
features such as dynamic dispatch to unknown components (e.g., other pallets unknown at compile
time). There will be cases where the analysis will be too over-approximating. In these cases, user-
provided invariants could help derive precise execution time bounds. To know how useful such a
feature is would depend on the abstract domains used in the analysis and could possibly require
further research going outside of this thesis’ scope.

Due to the complex nature of the Rust programming language and its multistage compilation
process, it is important to understand the details of the language and the global compiler structure
in order to be able to efficiently work with the provided API. The Rust compiler is a huge project
that would take years to fully master so it is critical to be aware of what kind of relevant data
structures are used internally and how to work with them, as well as be able to quickly target
the relevant API functions and know what kind of information is available from the compilation
process.

The Substrate framework is also a big project of its own, initiated by Gavin Wood, on of the co-
founders of Ethereum. It has an intricate architecture that tries to ease the developing process for
blockchain developers by leveraging the powerful Rust’s macro system3, which allows the parsing
of a token stream and generating code from it at compile time, obfuscating a lot of code that
could be useful to someone trying to understand the general picture of the framework. As often,
simplicity for the user comes at the cost of a more complex underlying system and Substrate is
not an exception.

Writing a useful static analysis is hard and a deep understanding of both the compiler and
Substrate are a mandatory step to later be able to come up with a meaningful analysis.

After discussing the project with a team from Web3 Foundation4, we decided that the proof-
of-concept tool should aim to support the following five pallets: balances, identity, multisig,
utility, and vesting. Those pallets are interesting in their diversity and are likely to be ones of
the most used modules in the development of Substrate-based blockchains.

1.2 Related Work

Early notable work around static performance analysis has been in the wild since 1975 with
the work of Ben Wegbreit [1]. He describes a static analyzer for Lisp, called Metric, that is able to
output closed-form expressions describing the program’s execution behavior. Following the work
of Patrick and Radhia Cousot [2] on abstract interpretation in 1977, Mads Rosendahl used this
kind of analysis in the 80’s to develop a method that derives time upper bounds for a subset of
Lisp programs as a function of the input size [3].

Though abstract interpretation is a powerful tool for static analysis of bounds, other paths have
been explored. One of them is type-based analyses for inferring upper bound evaluation (worst-
case) costs. [5] did it by extending the type system to sized types that account for the sizes of the
function’s arguments, as well as the computational overhead of calling the function. In addition
to that, they also extend the type inference algorithm to gather recurrence relations in the form
of constraints that they can solve later. The combination of these two methods gives an inference
algorithm for the costs and sizes, that ultimately yields an upper bound on the execution cost.

3https://doc.rust-lang.org/book/ch19-06-macros.html
4https://web3.foundation/
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Another very interesting static analysis method in the one proposed by Zachary Kincaid et al.
(see [7] and [8]). The idea is to use an algebraic abstract interpretation framework to compute
regular expression that describe the paths going from the input to a particular node in the pro-
gram and then use a suitable semantic algebra to extract and solve recurrence relations from the
program’s control-flow graph.

Apart from worst-case complexity analysis, extensive research is also done on other kinds of
resource analysis, like amortized analysis (see [14]). This is a more precise type of analysis since it
considers the average cost over a sequence of operations instead of accounting for each statement
separately.

Static analysis has been used for several decades to ensure the properties of critical systems as
programs gain in complexity and the task of full execution paths testing becomes impossible. One
of the most successful industry examples is AbsInt5, who developed a product called aiT WCET
[4] that relies on abstract interpretation and formal hardware modeling to infer precise execution
time upper bounds for real-time embedded systems.

As permissionless blockchain technologies evolved from Bitcoin [21] to enable arbitrary program
execution, like Ethereum [29], some systems that are built in this environment are highly security-
critical as they could hold tokens (cryptocurrencies) valued at several billions of dollars. Such
programs, called smart contracts in the Ethereum ecosystem, may have some tendencies to get
hacked when they hold big amounts. An (in)famous and early hack is The DAO6, where the
attacker used an attack vector called re-entrancy, a bug that could have been uncovered by an
effective static analysis. Since then, a lot of effort has been put into making smart contracts safer.
The most known tools are slither [10] and manticore [11], the first one being a static analyzer
for Solidity7, the main language used for smart contracts development on Ethereum, that runs a
series of vulnerability detectors running on a custom Solidity internal intermediate representation
and the second one is a symbolic execution tool running on the Ethereum virtual machine’s (EVM)
bytecode, Linux ELF binaries and Wasm modules. Other interesting contributions to the Ethereum
on-chain security are VerX [13], a verifier that can infer and check functional properties of a bunch
of smart contracts, and Securify/Securify2 [9], one of the first Ethereum smart contracts static
analyzer, developed by the SRI8 laboratory at ETHZ and ChainSecurity9.

While Ethereum-based blockchains are currently the most widely used, some effort has been
put on other systems, like the Tezos platform and its Michelson10 language. In this context, V.
Pérez et al. [12] propose a parametric resource analysis for Michelson smart contracts, capable of
deriving bounds on the execution cost, based on some user-defined parameters like the function’s
arguments and the storage it has access to.

Some work has already been done around static analysis for Rust and the language’s Mid-level
Intermediate Representation, the currently most used tool being clippy [22], a linter with more
than 500 lints. It is also worth mentioning two interpreters for the MIR, miri [24] and mirai [19].
The first one is maintained by the Rust team itself and is designed to detect certain undefined
behaviors and raise warnings. The latter is developed by Meta Experimental, the research branch
of Meta, and is born from the will to increase the support for static analysis in Rust as they were
developing their own blockchain Diem (previously Libra). The tool supports annotations that
enable the users to verify some correctness properties of their code.

During the tool’s development, we stumbled upon a recent master’s thesis [16] that proposes a
taint analysis for Rust based on the MIR. Their code base11 was really helpful in understanding
how to use the compiler’s dataflow framework, described in Section 6.4.3.

At the time of writing, saft is the first known attempt to develop a static analysis tool for the
Polkadot/Substrate ecosystem.

5https://www.absint.com
6https://ogucluturk.medium.com/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562
7https://docs.soliditylang.org/en/latest/
8https://www.sri.inf.ethz.ch/
9https://chainsecurity.com/

10https://tezos.gitlab.io/active/michelson.html
11https://github.com/LiHRaM/taint
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2 Problem statement
The goal of the tool is to provide readable and reasonably precise upper bounds on the worst-

case consumption of various resources during execution. We shall provide an example with the
identity::add_registrar function of Substrate’s Identity pallet, displayed in Listing 1. The
function is rather simple: it reads from storage a vector (Registrars) with statically fixed maxi-
mum size, then it tries to push one element, and finally it emits an event if the push is successful.

Listing 1: The identity::add_registrar dispatchable function

1 /// # <weight>
2 /// - ‘O(R)‘ where ‘R‘ registrar-count (governance-bounded and code-bounded).
3 /// - One storage mutation (codec ‘O(R)‘).
4 /// - One event.
5 /// # </weight>
6 #[pallet::weight(T::WeightInfo::add_registrar(T::MaxRegistrars::get()))]
7 pub fn add_registrar(
8 origin: OriginFor<T>,
9 account: T::AccountId,

10 ) -> DispatchResultWithPostInfo {
11 T::RegistrarOrigin::ensure_origin(origin)?;
12
13 let (i, registrar_count) = <Registrars<T>>::try_mutate(
14 |registrars| -> Result<(RegistrarIndex, usize), DispatchError> {
15 registrars
16 .try_push(Some(RegistrarInfo {
17 account,
18 fee: Zero::zero(),
19 fields: Default::default(),
20 }))
21 .map_err(|_| Error::<T>::TooManyRegistrars)?;
22 Ok(((registrars.len() - 1) as RegistrarIndex, registrars.len()))
23 },
24 )?;
25
26 Self::deposit_event(Event::RegistrarAdded { registrar_index: i });
27
28 Ok(Some(T::WeightInfo::add_registrar(registrar_count as u32)).into())
29 }

Our analysis infers the following bounds on the worst-case behavior of add_registrar:

• bytes read from storage due to try_mutate:

(size of one Registrars element)× (maximum length of Registrars)

• bytes written to storage due to try_mutate:

(size of one Registrars element)× (maximum length of Registrars)

• bytes deposited by events:

(size of the RegistrarAdded event)

• computational steps (in big O notation):

O((maximum length of Registrars))

For comparison, the weight function derived by using the benchmark module is

16′649′000+241′000× r+ T::DbWeight::get().reads(1))+ T::DbWeight::get().writes(1))

where r = T::MaxRegistrars::get()

8



We find costs for two database accesses (a read and a write), a multiple of the the maximum vector
length (r), and some constant cost.

As a reminder, the weight function specified by the pallet developers determines how much one
needs to pay up-front for the execution of the dispatchable. The dispatchable itself can then refund
some part depending on the resources actually consumed. In this example, the actual execution
cost depends on the current number of registrars in storage. Weight functions should not depend
on storage, hence they need to over-approximate. We only target expressions that help with weight
functions, and we do not consider refunds.

2.1 The technical problem

The technical problem that the tool solves is to soundly approximate the worst-case resource
semantics of the given program. We now describe what this means in more detail.

The starting point is the operational semantics, which describes the sequence of states that a
program goes through from activation until termination. This sequence of states, called a trace,
explains what the program does but it does not explain what it costs, since it does not come with
a fixed notion of what a resource is. This is done by a resource semantics (a.k.a. a cost model)
(see, e.g., [3]). A resource semantics depends on the resource of interest. It can be as simple as the
number of steps executed in the trace, or something slightly more complicated, such as the peak
size of a state, as determined by an appropriate size metric, e.g., the length of a bit encoding of
the state. Let us illustrate both semantics on the implementation of a binary search in Listing 2.

Listing 2: Binary search over an array. The elements of the array are assumed to be ordered.

1 fn binary_search(key: i32, items: &[i32]) -> Option<usize> {
2 let mut l = 0;
3 let mut h = items.len();
4 while l < h {
5 let m = l + (h - l) / 2;
6 match key.cmp(items[m]) {
7 Equal => return Some(m),
8 Less => h = m - 1,
9 Greater => l = m + 1,

10 }
11 }
12 None
13 }

In this case, a state consists of a value for each of the variables occurring in the procedure:
the key, the array of items, and the low, high, and middle indices. In order to define the sequence
of states the program transitions through, the operational semantics specifies what the primitive
execution instructions are (triggering state transitions), and how control flows from one instruction
to another, that is, how instructions are scheduled. For example, a primitive instruction in the
binary search are all the arithmetical operations, and procedure call activations and returns, e.g.,
to and from cmp and key. The schedule depends on how the instructions are composed together:
the semicolon operator schedules one fragment to execute after another; the while operator first
schedules the test for execution, and then, if the test succeeds, it schedules the body, and then
it repeats; compound arithmetical expressions are broken down into primitives and scheduled
according to data dependencies. A simplified trace of the binary search is shown in Figure 1.

The figure also shows a simple resource semantics: the accumulated number of steps until the
completion of the current primitive, counted from the beginning of the call to binary_search.12
Here we assume that primitives can cost more than a single step to execute. For example, to call
the binary search procedure costs 1 + 1 + 1 = 3 steps: one for the call itself, and one per each of
its constant size arguments (the cost of initialization). Similarly, a return takes additional steps if
a return value is present, in order to make it accessible to the caller (e.g., by copying).

The form of resource semantics shown in the figure serves as the ground truth for resource
consumption, but it is not very useful in practice. The problem is that it captures how consumption

12Of course, such a resource is only a proxy for the real execution time on a specific processor. The reason is that
real execution time depends on many external factors beyond the operational semantics: the actual machine code
executed, the time sharing with other active processes, the actual real time guarantees of the processor.

9



Primitive instruction Result State Step
call binary_search(0, [0]) {key : 0, items : [0], l : , h : , m : } 3
l = 0 {key : 0, items : [0], l : 0, h : , m : } 4
call items.len() {key : 0, items : [0], l : 0, h : , m : } 5
return 1 {key : 0, items : [0], l : 0, h : , m : } 8
h = 1 {key : 0, items : [0], l : 0, h : 1, m : } 9
l < h true {key : 0, items : [0], l : 0, h : 1, m : } 10
h - l 1 {key : 0, items : [0], l : 0, h : 1, m : } 11
1/2 0 {key : 0, items : [0], l : 0, h : 1, m : } 12
l + 0 0 {key : 0, items : [0], l : 0, h : 1, m : } 13
m = 0 0 {key : 0, items : [0], l : 0, h : 1, m : 0} 14
items[m] 0 {key : 0, items : [0], l : 0, h : 1, m : 0} 15
call key.cmp(0) {key : 0, items : [0], l : 0, h : 1, m : 0} 17
return Equal {key : 0, items : [0], l : 0, h : 1, m : 0} 19
return Some(0) {key : 0, items : [0], l : 0, h : 1, m : 0} 21

Figure 1: An execution trace of the binary search procedure together with accumulated step
consumption. The steps of the nested function calls to items.len and key.cmp have been omitted.
It has been assumed that the bodies of these two functions take one step to execute.

depends on individual inputs, which is too fine-grained. We can express this schematically as

input operational semantics−−−−−−−−−−−−−−→ trace resource semantics−−−−−−−−−−−−→ resource-annotated trace.

Or if we abstract away intermediate computations and focus on the final state of a trace, that
is, if we focus on the output and the net resource cost, then the semantics are captured by the
mappings:

OpSemIO : ⟨program⟩ → Input→ Output

ResSemIO : ⟨program⟩ → Input→ Cost.

Instead of such an explicit dependence on the input, we are interested in how resource consumption
varies in relation to some metric ∥x∥ of the input x, such as its size. For that, we need an aggregate
resource semantics that specifies a cost aggregated across a class of inputs: worst-case, expected,
amortized, etc., costs. In this thesis we focus exclusively on the worst-case cost. For the net cost
at termination the worst-case semantics is the mapping:

WorstCaseResSemIO : ⟨program⟩ → Metric→ Cost

WorstCaseResSemIO(prog) = n 7→ max{ResSemIO(prog)(x) | x ∈ Input ∧ ∥x∥ ≤ n}.

The static analysis provides an abstract semantics, whose goal is to over-approximate with a
reasonable precision the worst-case resource semantics. To a first approximation, for the net cost
at termination that would be a mapping

WorstCaseResSem#
IO : ⟨program⟩ → Metric→ Cost

such that for all programs prog and all upper bounds on the input metric m ∈ Metric

WorstCaseResSemIO(prog)(m) ≤WorstCaseResSem#
IO(prog)(m).

Over-approximation, however, is not the only goal. The issue is that the usefulness of the
solution depends also on the form in which it is expressed, i.e., how WorstCaseResSem#

IO(prog) is
coded. Without extra constraints, the problem has a trivial and useless solution. More specifically,
if the analyzed program always terminates and only finitely many inputs are bounded by a finite
value of the metric, then we can simply repeat the definition of worst-case cost. For example,
we can express the worst-case number of steps that the binary search needs as a function on the
number of items in its input with the program in Listing 3, which is too complicated to be useful.

Listing 3: Encoding of the worst-case cost of the binary search in Listing 2 as a pro-
gram. The function enumerate_binary_search_args(n) enumerates all arguments key, items
with items.len() ≤ n (there are finitely many since i32 has only 32 bits). The function
res_sem_io_binary_search(key, items) counts the steps taken by binary search for the given
inputs, which can be automatically generated by simulating (instrumenting) the binary search.
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1 fn worst_case_res_sem_io_binary_search(usize n) -> usize {
2 let usize max = 0;
3 for (key, items) in enumerate_binary_search_args(n) {
4 max = cmp::max(max, res_sem_io_binary_search(key, items);
5 }
6 max
7 }

That is why, in addition to soundness, the analysis has to produce simple enough expressions.
For example, for the cost of binary search we normally expect an expression in the form

A · log(n) +B

where n is the number of items being searched and A and B are constants. In fact, we often want
to abstract the constants away too, for example, because they are irrelevant, or they depend on
some external unspecified component. That is why, we shall also permit big O notation, e.g.,

O(log(n)).

2.2 Feasibility and language fragment
The general problem of determining the resource usage of a program is undecidable. This is

very simple to establish by reducing the halting problem: the number of steps needed to execute a
program is finite iff the program terminates, hence a sound and precise static analysis for finding
this number would need to at least solve the halting problem. That is why, as standard, our focus is
to develop a sound static analysis that is precise only for a limited fragment of the source program-
ming language. In particular, we focus on Rust programs with no loops and no recursion, or at
best, where invariants for loops and recursive functions are provided manually. Our efforts target
features (present but not specific to Rust) such as mutability, higher-order functions and closures,
and parametric polymoprhism, which are heavily used by Substrate pallets. We believe this ap-
proach is still useful in cases where the pallets are relatively simple at the surface, with complexity
encapsulated in heavily reused library functions for which we provide manual specifications.
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3 The Substrate environment
This section presents the Substrate framework, the technologies and concepts revolving around

it, as well as the ecosystem it is intended to be integrated to: Polkadot.

3.1 Polkadot blockchain ecosystem
We can extract the building blocks of the Polkadot ecosystem as the Relay Chain [26], the

parachains, and the parathreads (Fig. 2).
The Relay Chain is the central entity. It implements nominated proof-of-stake (NPoS) and

enables only a minimal set of transactions because its primary goal is to ensure the coordination
of the whole system. The complete protocol specification can be found in [20].

If we consider the Relay Chain to be a computer, the parachains can be compared to always
running applications in physical memory and the parathreads are like applications that are stored
on the disk and loaded when needed. Parachains and parathreads are specialized subsystems, they
often implement their own blockchain, with their own tokens and consensus algorithm. Paraobjects
have no constraint except that they must be able to produce proofs that can be validated by the
validators assigned to the parachain/parathread.

From the Relay Chain point of view there are three actors:

• validators: validators usually have a lot of DOT at stake to have a chance to be elected
in the NPoS algorithm. They produce blocks for the Relay Chain if they are elected in the
current active validators set. They also collect proofs of state transition from the collators.

• nominators: any DOT owner can be a nominator, they will bind their tokens to a set of
validators they trust. They are responsible for slashing the validator if it behaves against the
protocol and are well rewarded if the validator behaves correctly.

• collators: they connect parachains to the Relay Chain. Collators are full nodes on the
Relay Chain and on the parachain, they are responsible for collecting parachain transactions
and producing state transition proofs for the validators. Collators are also responsible for
cross-chain message passing for interoperability.

Figure 2: Polkadot architecture

Source: https://polkadot.network/blog/parathreads-parathreads-pay-as-you-go-parachains/

3.2 Substrate framework and FRAME library
Substrate [27] is born from the development of the Polkadot Relay Chain, both maintained by

Parity Technologies13 (paritytech), it can be seen as a blockchain SDK. Substrate-based blockchains
can run as standalone systems or be included in the Polkadot ecosystem as parachains.

13https://www.parity.io/
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The Substrate framework is a complete modular blockchain builder as it provides all the needed
core components such as a database and network layers, a consensus engine, a transaction pool, as
well as some modules for runtime development. The runtime is the business logic of the blockchain,
a set of rules that define how the state can be modified. The Substrate client coordinates all
these components to run a blockchain node, Fig. 3. Developers can choose to implement their
blockchain from scratch with Substrate Core and use any language targeting WebAssembly since
the client will execute a Wasm blob as its runtime. Going for the Substrate Core way allows the
developer a lot of freedom when it comes down to implementation details but it is also quite tedious,
especially if the runtime is not compatible with the node’s abstract block creation logic. This is
where Substrate Framework for Runtime Aggregation of Modularized Entities (FRAME) comes
into play, it provides helper modules to interact with Substrate Core and greatly eases the task of
building the runtime. FRAME library provides plug-and-play runtime modules, called pallets, and
makes some macros available for developers to write custom pallets holding the logic they need
for their blockchain. Not only it is simple to integrate new business logic, FRAME also makes
it easy to choose between different database implementations (RocksDB, ParityDB), or different
block construction algorithms (Aura, BABE [18], proof-of-work).

Note that there are currently two runtimes, on-chain Wasm runtime, and native runtime. The
on-chain runtime is the "true" one since it is the one stored on the validated blockchain. The native
runtime, usually compiled in x86_64, is an optimization coming from the fact that Wasm code
execution is slower than native code execution, the Wasmi [28] execution (interpreter) is 10x slower
and the Wasmtime [17] execution (compiler) is 2x slower. It turned out that this optimization did
not deliver its promises for different reasons14 and at the time of writing, there is the will at
paritytech to get rid of the native runtime 15.

Figure 3: Substrate client architecture

Source: https://docs.substrate.io/v3/getting-started/architecture/

3.2.1 Substrate concepts and technicalities

Since Substrate comes with its own concepts and technical details, it is useful to define some
of them here:

14https://github.com/paritytech/substrate/issues/7288
15https://github.com/paritytech/substrate/issues/10579
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• proposer: a node authoring a new block, the node will propose this new block to the
network.

• extrinsics: piece of data coming from outside the chain and that will be included in a block.
Extrinsic can either be signed/unsigned transactions or inherents.

• inherents: special kind of extrinsics, piece of external data added by the block author
(proposer). A trivial example is block timestamp.

• structure of a block: as in other blockchains the block is composed of a header and the list
of what happened during the block execution, i.e. the list of transactions for Ethereum-like
chains, the list of extrinsics for Substrate chains.

• dispatchables: functions implemented by pallets that can be triggered by the execution of
extrinsics.

3.2.2 Building blocks of a pallet

Pallet development heavily relies on macros made available by the FRAME library 16. Based
on the code written by the developer, they will generate the necessary code that allows the pallet
to be integrated in the blockchain’s Runtime. The mandatory attribute macros are:

• #[frame_support::pallet] on the pallet module, allows the module to be used as a pallet
by the Runtime

• #[pallet::config] on the Config trait of the pallet, here the developer needs to define
generic types that are used in the pallet, like the Currency of the chain for example. Those
types will be made concrete upon Runtime construction

• #[pallet::pallet] on the Pallet<T>(_) struct of the pallet, the macro will implement all
the pallet information on top of this struct.

Other interesting and often used attribute macros are:

• #[pallet::call] on the impl block of the Pallet<T> struct, this indicate that all the func-
tions implemented in the block are dispatchables, i.e. they are entry points in the pallet’s
logic. Since nothing comes for free, every call to a dispatchable must have a cost that users
will have to pay in order to get their transactions executed. The cost of each dispatch-
able has to be known in advance and this is made possible by the use of so-called weights
and the #[pallet::weight(...)] macro. #[pallet::call] macro will also generate the
pallet-level enum Call, whose variants are the dispatchable functions of the pallet, and other
queryable information concerning the dispatchables.

• #[pallet::storage] on runtime’s storage abstractions like StorageValue17 or StorageMap18

do define them as storage fields.

• #[pallet::event] on the Event enum, events should be emitted when a notable action is
done on the pallet. They are stored in the storage and can be listened to from outside the
blockchain to trigger some other automated actions.

• #[pallet::error] on the Error enum, we can define custom errors in order to make the
reasons for a failed dispatchable call more explicit.

Once the pallet is implemented, developers must write a weight function that should be repre-
sentative of the dispatchable’s computational cost. A tool has been developed along the FRAME
library to help them in this task, the benchmarking module19. In order to use it, the developers
have to write some benchmarking code for each dispatchable that will be fed to the FRAME’s
benchmarking module. It will basically fuzz the dispatchables and record the number of read-
s/writes to the database, the number of emitted events and the time of execution. It will then
infer some weights from those values.

16https://paritytech.github.io/substrate/master/frame_support/attr.pallet.html
17https://paritytech.github.io/substrate/master/frame_support/storage/types/struct.StorageValue.

html
18https://paritytech.github.io/substrate/master/frame_support/storage/types/struct.StorageMap.html
19https://docs.substrate.io/main-docs/test/benchmark/
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The issue here is that the developers could have written bad benchmarks if the fuzzer did not
trigger the most expensive path. If this is the case, the inferred weights may be way undervalued,
allowing a cheap attack on the chain.

To sum up, the pallets are generic plug-and-play libraries. This property is very useful as we
can reuse the implemented logic across different configuration environments. We can construct a
small working toy example of a pallet, see Listing 4, where users can add numbers to the blockchain
storage via the add_number dispatchable function that accesses the StoredNumber storage field.
We can see the two generic types in the Config trait that will be made concrete when the Runtime
is built. This way, the pallet can be reused across different runtimes with different parameters.
Note that the pallet has not been benchmarked and the weights are random and do not represent
the true cost.

Listing 4: Minimalist working pallet example, users can store up to MaxSize numbers in the
storage.

1 #![cfg_attr(not(feature = "std"), no_std)]
2
3 pub use pallet::*;
4
5 #[frame_support::pallet]
6 pub mod pallet {
7 use super::*;
8 use frame_support::pallet_prelude::*;
9 use frame_system::pallet_prelude::*;

10
11 #[pallet::config]
12 pub trait Config: frame_system::Config {
13 type Event: From<Event<Self>> + IsType<<Self as frame_system::Config>::Event>;
14
15 #[pallet::constant]
16 type MaxSize: Get<u32>;
17 }
18
19 #[pallet::pallet]
20 #[pallet::generate_store(pub(super) trait Store)]
21 pub struct Pallet<T>(_);
22
23 #[pallet::storage]
24 pub(super) type StoredNumbers<T: Config> =
25 StorageValue<_, BoundedVec<u32, T::MaxSize>, ValueQuery>;
26
27 #[pallet::event]
28 #[pallet::generate_deposit(pub(super) fn deposit_event)]
29 pub enum Event<T: Config> {
30 NewNumberStored { who: T::AccountId, n: u32, new_length: u32 },
31 }
32
33 #[pallet::error]
34 pub enum Error<T> {
35 StorageFull,
36 }
37
38 #[pallet::call]
39 impl<T: Config> Pallet<T> {
40 #[pallet::weight(42 + T::DbWeight::get().reads_writes(1,1))]
41 pub fn add_number(origin: OriginFor<T>, n: u32) -> DispatchResult {
42 let who = ensure_signed(origin)?;
43
44 let new_length =
45 <StoredNumbers<T>>::try_mutate(|stored_numbers| -> Result<u32, DispatchError> {
46 stored_numbers.try_push(n).map_err(|_| Error::<T>::StorageFull)?;
47 Ok(stored_numbers.len() as u32)
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48 })?;
49
50 Self::deposit_event(Event::NewNumberStored { who, n, new_length });
51
52 Ok(())
53 }
54 }
55 }

3.3 Exploring the extrinsic’s execution callpath

In order to have an idea of the path the analysis must take, it is crucial to understand how the
calls are dispatched from the Substrate client to the final dispatchable function. In the following
section, we will study in details the callpath of one extrinsic during the construction of a block.
In a first step, we explore the callpath from the Substrate node’s client to the boundary of the
runtime. In a second step, we detail the callpath of the extrinsic execution from the runtime to
the target dispatchable, this is the part we considered during our analysis.

From the client to the runtime. As we can see in the basic_authorship.rs20 file when a
Client tries to author a block, it will spawn a new BlockBuilder21 instance, execute and push its
own list of inherents, request extrinsics from the transaction pool, execute and push them in the
block. The callpath for the extrinsics to reach the Wasm runtime during block construction with
default execution strategy22 is such as:

1. BlockBuilder::apply_extrinsic_with_context: this function is generated at compile
time by the decl_runtime_apis! macro in primitives::block-builder

2. RuntimeApiImpl::BlockBuilder_apply_extrinsic_runtime_api_impl: this function is gen-
erated at compile time by the impl_runtime_apis! macro in node::runtime

3. BlockBuilder::apply_extrinsic_call_api_at: this function is generated at compile time
by the decl_runtime_apis! macro in primitives::block-builder

4. Client::call_api_at

5. LocalCallExecutor::contextual_call with the following arguments:

• method: "BlockBuilder_apply_extrinsic"

• arguments: encoded extrinsic

• execution_manager: ExecutionStrategy::AlwaysWasm (default for block construc-
tion)

It will spawn a new StateMachine instance whose executor is a NativeElseWasmExecutor.

6. StateMachine::execute_using_consensus_failure_handler: will call the method
StateMachine::execute_aux with use_native set to false.

7. StateMachine::execute_aux

8. CodeExecutor::call: it will create a WasmInstance of the runtime, there are actually two
implementors of this trait: WasmiInstance (interpreter) and WasmtimeInstance (runtime).
Since only the first one is listed in the documentation, we will stick with it.

9. WasmiInstance::call_export

10. WasmiInstance::call with the argument
method = InvokeMethod::Export("BlockBuilder_apply_extrinsic")

20https://github.com/paritytech/substrate/blob/87052efd6be1bb07061a14dbb63a13ed7a81cfb2/client/
basic-authorship/src/basic_authorship.rs#L341

21https://github.com/paritytech/substrate/blob/93cf073d7caac85f4f8f1fb894d1abf05362b917/client/
block-builder/src/lib.rs

22https://docs.substrate.io/v3/advanced/executor/
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11. Wasmi::FunctionExecutor::call_in_wasm_module

12. ModuleRef::invoke_export, FuncInstance::invoke and then
Interpreter::start_execution will start executing the runtime by calling its
BlockBuilder_apply_extrinsic method with the encoded extrinsic as its arguments.

Note that the BlockBuilder_apply_extrinsic method does not exist as is in the Rust
source code. It is exported by the Wasm binary and is the result of the compilation of the
api::dispatch function generated by the impl_runtime_apis! macro. The runtime api’s
dispatch function does pattern matching on the method’s name and dispatches the calls
that way.

From the runtime to the dispatchable. We finally exited the client’s code and entered the
Wasm runtime, now it is time to dispatch the call. The entry target function is
BlockBuilder_apply_extrinsic with the encoded extrinsic as its argument. Let’s look at the
callpath inside the blockchain’s runtime:

1. api::dispatch: with the "BlockBuilder_apply_extrinsic" branch: this function is gen-
erated at compile time by the impl_runtime_apis! macro in node::runtime

2. Runtime::apply_extrinsic

3. Executive::apply_extrinsic

4. Executive::apply_extrinsic_with_length: At this point, the extrinsic is CheckExtrinsic
and it implements Applyable::apply. Its field function has type runtime::Call, here it
is the runtime-level enum runtime::Call generated by the construct_runtime! macro. It
contains every callable pallet of the runtime.

5. CheckedExtrinsic::apply

The two following functions are generated by construct_runtime! at compile time

6. runtime::Call::dispatch

7. runtime::Call::dispatch_bypass_filter: will pattern match on the runtime-level enum
Call variant to determine to which pallet it should dispatch the call

8. pallet::Call::dispatch_bypass_filter: will pattern match on the pallet-level enum Call
variant to determine which dispatchable function it should call. This function is generated
at compile time by the #[pallet::call] macro.

To sum up, once the call enters the runtime, it passes through a two-steps dispatch process,
the first one to the target pallet and the second one to the target dispatchable. We will use the
knowledge of pallet::Call::dispatch_bypass_filter to show the tool the functions it must
analyze.

17



4 Introduction to the Rust compiler

This section shows an overview of the Rust language and its native compiler, as well as how
we can leverage the compiler driver made available by the compiler team. We will also present the
Mid-level Intermediate Representation (MIR), an intermediate representation for Rust code which
is used in the compilation process.

4.1 Rust and the Rust compiler

Rust is a powerful general-purpose language that is meant to be primarily for low-level systems
programming, fast and memory safe. It achieves memory safety for references with the help of
reference lifetimes, an ownership model, and a borrow checker, but no garbage collector which
would add a resource overhead at runtime. For example, Rust will not allow the use of two
mutable references at the same time. We chose to develop our tool in Rust mainly for the reason
that Polkadot and Substrate are written in Rust, but also because the Rust compiler exposes an
API that allows to register some callbacks that can be called at different phases of the compilation,
see Fig 4. The different hooks are:

1. after_parsing: happens right after the parsing of token stream, but before macro expansion

2. after_expansion: happens right after macro expansion, Rust macros23 are pieces of code
that are able to write other code, and macro expansion is the generation of this new code

3. after_analysis: happens after MIR generation and optimization

The Rust compilation process works by incremental compilation and executes queries that are
then memoized in a huge structure called TyCtxt24. It is the entry point for accessing compilation
artifacts and for dealing with the AST, the HIR, the MIR, or the results of the typechecker for
example.

Source code

AST

HIR

THIR

MIR

LLVM IR

Machine code

Lexing, parsing

Desugaring

Type checking

Borrow checking

Optimization, monomorphization

Optimization

Figure 4: Phases of Rust compilation

The compiler is a huge and complex project that is still under active development25 and we
expect its API to be updated regularly to enable more features and be better documented with
time.

4.1.1 Compiler driver

The Rust compiler is built like a big Lego, it is separated in many smaller crates, each repre-
senting a specific part or data structure used in the compilation process, which makes the compiler
easier to understand and allows one to use part of it as libraries. One of the higher-level crates is
called rustc_driver, it is responsible for gluing all the subcomponents together and running the

23https://doc.rust-lang.org/book/ch19-06-macros.html
24https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/struct.TyCtxt.html
25https://github.com/rust-lang/rust
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compiler.

A Rust package is called a crate and the language has a convenient tool to manage the different
crates, that is cargo. This command will invoke the compiler for every crate dependency with
the correct arguments. It is also possible to override the default compiler to redirect the calls to a
custom compiler wrapper through the RUSTC_WORKSPACE_WRAPPER compilation flag.

In our case, the simplest way to interact with the compiler is to use the rustc_driver module.
It only needs some compilation arguments and the set of callbacks, then it will automatically
run the compilation as usual and invoke the given callbacks. To do so, we leveraged the power
of cargo-generated arguments and RUSTC_WORKSPACE_WRAPPER to redirect the compilation to a
custom compiler driver we wrote, which is responsible for invoking the compiler with the analysis
callbacks when needed.

4.2 Rust’s MIR
The (optimized) MIR [25] is a desugared representation of the Rust code that is way simpler to

work with than the raw AST. The MIR is also used to run some optimization while still having
some Rust-specific knowledge before the information is lost when the code is translated to LLVM-
IR, hence the optimized MIR. It is built between the type checking and the LLVM-IR codegen
compilation phases, it is generated per function and is based on the control-flow graph. Its building
blocks are:

• Locals: memory locations allocated on the stack. They can represent local variables, function
arguments or temporary variables. Locals are indexed from 0_ to n_. 0_ is always the Local
containing the return value, 1_ to p_ are the p function’s arguments, if any, and (p+1)_ to n_
are the function’s internal and temporary variables. It is important to mention that Locals
can have projections. A projected Local is called a Place, there can be different kinds of
projections, a good example is access to a struct’s field.

• Basic blocks: they are the nodes in the control-flow graph (CFG). Basic blocks are made
of zero or more statements and exactly one terminator.

- statements: actions with only one successor

- terminator: actions with one or more successors, it is always the last element of a basic
block

There are multiple kinds of Statements26 and Terminators27 implemented by the MIR. Some
of them are not relevant to our analysis, like StatementKind::StorageLive(_) which is useful
to the borrow checker, or TerminatorKind::SwitchInt(x) which, depending on the value of x
redirects the execution flow to a basic block or another. We are only interested in primitive
operations, type history and precision, and function calls. Table 1 lists the StatementKinds and
TerminatorKind relevant for our resource analysis and quickly describes their role.

The majority of the computational costs happen in the StatementKind::Assign(Place,Rvalue),
which has the form Place = Rvalue in the MIR, where Rvalue28 wraps different sorts of operations
that are listed in Table 2.

Apart from the Terminator and Statement structs, there are two other structs that we
used a lot during the analysis: DefId29 and Ty::ty30. DefIds are identifiers for definitions across
compilation artifacts, they can refer to types or functions definition for example. We used it to
redirect the analysis to a given function pointed by TerminatorKind::Call, by getting its MIR
from the function’s DefId, or to query the type of a DefId. Ty::ty is the internal representation
of the types in the MIR, after type checking and type inference.

Listing 5 illustrates the translation from Rust source code (Listing 5) to MIR. The program
starts with an accumulator accum, a mutable reference to this variable will be passed to the func-
tion loopy_add when it is called in the terminator of basic block 0. loopy_add will iterate through
the range of integers [1,10[ and add each value to the accumulator, updating the initial accum

26https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/syntax/enum.StatementKind.html
27https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.TerminatorKind.html
28https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.Rvalue.html
29https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/def_id/struct.DefId.html
30https://rustc-dev-guide.rust-lang.org/ty.html
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flow of value, may be responsible
for unary/binary operations

StatementKind::Assign(Place,Rvalue) depending on the Rvalue.
Also used for collecting more

precise type information
StatementKind::SetDiscriminant(Place,VariantIdx) Place has the type of an enum,

the statement sets the index of variant
TerminatorKind::Call a function call

TerminatorKind::Goto, TerminatorKind::SwitchInt Terminators used in the dataflow
TerminatorKind::Return, ... framework for joining the domains

Table 1: List of StatementKinds and TerminatorKind relevant to our analysis.

Use(Operand) yields the operand unchanged
Repeat(Operand, Const) creates an array of constant length where

each element is the value of the operand
Ref(Region, BorrowKind, Place) creates a reference to the place, of the

given BorrowKind (unique,
shared, mutable,...)

ThreadLocalRef(DefId) creates a reference to the given
thread local

AddressOf(Mutability, Place) creates a pointer to the place with the
given mutability (mutable or unmutable)

Len(Place) returns the length of the place, i.e. the
length of an array

Cast(CastKind, Operand, Ty) performs casting that can be done with
the use of the as keyword

BinaryOp(BinOp, (Operand, Operand)) binary operations: +,−,×,÷,%,⊕,∧,∨,
≪,≫,==, <,≤, ! =,≥, >,ptr.offset

CheckedBinaryOp(BinOp, (Operand, Operand)) same as BinaryOp but yields an
additional bool indicating
an error condition

NullaryOp(NullOp, Ty) computes either the size of a value, or
the minimum alignment of the type,
depending on NullOp

UnaryOp(UnOp, Operand) unary operations: !,−
Discriminant(Place) computes the discriminant of the place
Aggregate(AggregateKind, Vec<Operand>) creates an aggregated value like a tuple

or a struct
ShallowInitBox(Operand, Ty) transmutes *mut u8 into shallow-

initialized Box<T>
CopyForDeref(Place) equivalent to a read from a place at the

codegen level

Table 2: List of Rvalues with their description.
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since a mutable reference is passed.

Listing 5: Rust code snippet computing
∑9

i=1 i in an over-engineered
fashion.

1 fn loopy_add(accum: &mut usize) {
2 for i in 1..10 {
3 *accum += i;
4 }
5 }
6
7 fn main() {
8 let mut accum = 0;
9 loopy_add(&mut accum);

10 }

Note on closures in MIR. The language also supports closures, these are anonymous func-
tions that are able to capture their environment, see Fig. 17 and Section 6.4.4 for more details.
The point here is that as for more usual functions, each closure will have its own unique associated
MIR type, but it will also have an additional data structure that will hold information about the
captured environment.

Limitations due to monomorphization. An important note is that monomorphization
happens after MIR optimization, during code generation. Monomorphization is the process of
resolving types for generic traits and functions so the compiler can generate specific code for each
concrete type. This also means that in the MIR, when a generic function is called, the call resolves
to the generic definition and not to the concrete definition. Also, in the case where some types are
still generic, monomorphization and codegen will be delayed until all concrete types are known 31.

31https://users.rust-lang.org/t/trait-functions-implementation-in-mir/76002/6
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Figure 5: Generated MIR for the main and loopy_add functions of Listing 5.
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5 Static analysis

Following the problem statement from Section 2, we perform static analysis on the code of
Substrate pallets in order to infer resource bounds.

5.1 Static analysis background

Static program analysis is a field of the subtle art of program analysis. The most accurate way
to analyze a program, e.g., to check whether it satisfies a given property, would be to run it with
every possible input and check all the resulting behaviors. Of course, this is infeasible in general.
Not only that but it is actually uncomputable. Indeed, Rice’s theorem tells us that any nontrivial
semantic property is undecidable. (A semantic property [15] is a property of program behaviors. In
contrast, a syntactic property is a property of the code of the program, such as whether it contains
loops.) That is why for (infinitely) many programs, static analysis has to flag false alarms, or miss
true alarms, or both. Depending on this situation we distinguish:

• sound analysis: if the analysis concludes that a property P holds, then P indeed holds (the
analysis never misses true alarms, that is, failure to satisfy the property);

• complete analysis: if a property P holds, then the analysis will conclude that P holds (the
analysis never flags false alarms, that is, false claims that the property holds).

Ideally, we would like an analysis that is both sound and complete, but as we said, this is impossible
in general. That is why analyses usually focus on soundness or on completeness. Since we aim
for securing Substrate pallets against extreme worst-case behaviors, we design our analysis to be
sound. That is, the analysis should always provide an upper bound on the resource cost.

5.1.1 Abstract semantics

The method we shall employ to design sound static analyses is the abstract interpretation of
Cousot and Cousot developed in the late 70’s [2]. Abstract interpretation phrases the soundness of
the analysis as over-approximation of the operational semantics of a program: the static analysis
is supposed to compute a superset (seen as a property) of the actual program behaviors. This
over-approximation is called the abstract semantics, while the approximated operational semantics
is called the concrete semantics. The interpretation bit comes from the way the abstract semantics
is computed by mimicking the computation of the concrete semantics, both described next.

In Section 2 we already gave an example of concrete semantics: the set S of state sequences
traced by the program. The computation of S takes place in the space, call it D, of all possible sets
of state sequences, and proceeds inductively. The induction is formalized by partially ordering the
space D by subset inclusion, and defining S as the least fixed point of a monotone map f : D→ D
extracted from the program. Given an argument, this map returns the union of two sets: 1) the
set of all traces consisting of just a single initial state, and 2) the set of all single-step extensions of
traces in the argument. A step produces a new state by executing the next instruction scheduled by
the program relative to the last state of the trace being extended. The function that captures how
the instruction transforms this last state is called a concrete transfer function. For example, the
concrete transfer function for x = x ∗ z updates the value of x in the state it receives as argument
producing a new state. (Non-deterministic instructions have many-valued transfer functions.)

Abstract interpretation mimics this situation. Instead of applying the transformation in D, the
inductive computation proceeds in another partially ordered set D#, while the monotone map f
is replaced with another monotone map f# : D# → D#. Just as the map f is constructed from
applications of concrete transfer functions (corresponding to the instructions in the program), the
map f# is constructed from applications of abstract transfer functions. An abstract semantics is
then defined as any fixed point S# of f#, the least one being the most precise (but it could be
more difficult to compute).

In practice, D# (just like D) is constructed using simpler partially ordered sets. Consider, for
example, the simple code snippet in Listing 6 where the abstract semantics of interest is the sign
of each variable at the end of the simple function. In this case, D# is built by letting the program
variables range not in the integers but in the elements of sign abstract domain (shown in Fig. 6).
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Listing 6: Effects of the sign abstract transfer functions.

1 fn simple() { // x 7→ ⊥, y 7→ ⊥, z 7→ ⊥
2 let mut x = 3; // x 7→ ≥ 0, y 7→ ⊥, z 7→ ⊥
3 let y = 0; // x 7→ ≥ 0, y 7→ = 0, z 7→ ⊥
4 let mut z = -2; // x 7→ ≥ 0, y 7→ = 0, z 7→ ≤ 0
5 x = x * z; // x 7→ ≤ 0, y 7→ = 0, z 7→ ≤ 0
6 z = z * z; // x 7→ ≤ 0, y 7→ = 0, z 7→ ≥ 0
7 } // x 7→ ≤ 0, y 7→ = 0, z 7→ ≥ 0

⊤

[≥ 0] [≤ 0]

[= 0]

⊥

Figure 6: The sign domain.

The comments in the code show the effect of the abstract transfer function for each statement.
The parts relevant for our example of the sign abstract transfer function can be described as follows:

• if variable declaration or no-op (lhs = rhs): x for x← sign(rhs)

• if assignment (lhs = op(rhs)):

– if the operation is +:

0 if lhs→ 0 and lhs→ 0

[≥ 0] if lhs→ [≥ 0] and lhs→ [≥ 0]

or if one of {lhs, rhs} → [≥ 0] and the other→ 0

[≤ 0] if lhs→ [≤ 0] and lhs→ [≤ 0]

or if one of {lhs, rhs} → [≤ 0] and the other→ 0

⊤ otherwise

– if the operation is *:

0 if lhs→ 0 or rhs→ 0

[≥ 0] if lhs→ [≥ 0] and rhs→ [≥ 0]

or if lhs→ [≤ 0] and rhs→ [≤ 0]

[≤ 0] if one of {lhs, rhs} → [≤ 0] and the other→ [≥ 0]

⊤ otherwise

Now, in order to judge whether the abstract semantics over-approximates the concrete one, we
use a monotone concretization function that relates the concrete domain to the abstract domain:

γ : D# → D.

For example, the concretization function for the sign domain has the following definition

γ(⊥) = ∅ γ(⊥) = Z γ([= 0]) = {0} γ([≤ 0]) = {z ∈ Z | z ≤ 0} γ([≥ 0]) = {z ∈ Z | z ≥ 0}

The over-approximation criterion can then be stated as (⊑ denotes the respective ordering):

• concrete semantics: least S ∈ D such that f(S) ⊑ S;

• abstract semantics: any S# ∈ D# such that f#(S#) ⊑ S#;

• over-approximation: S ⊑ γ(S#).

24



Here, we used a more-general formulation with the so-called post fixed points (f(S) ⊑ S) instead
of fixed points. The least post fixed point (of a monotone f) is actually a fixed point, since by
monotonicity f(S) is a post fixed point too (f(f(S)) ⊑ f(S)), and therefore S ⊑ f(S). Thus,
compared to using fixed points, this is a generalization only of the abstract semantics. This
generalization is useful, because post fixed points are somewhat easier to find than fixed points.

It turns out that the over-approximation required by soundness is guaranteed if the abstract
monotone map f# over-approximates the concrete one f in the sense that, for all D# ∈ D#:

f ◦ γ(D#) ⊑ γ ◦ f#(D#)

This way, the soundness of the analysis is reduced to designing an f# that over-approximates f .
The partially ordered sets that appear in the various semantics are called domains. For our

purposes, we shall relax the partial ordering to a pre-ordering, and also insist on the presence of a
join operation. Hence, a domain is a structure L that consists of:

• a pre-ordering: ⊑ (reflexive and transitive relation)
• a top element: ⊤
• a bottom element: ⊥
• a join operator: join(x, y) = x ⊔ y, such that for all z ∈ L: x, y ⊑ z ⇐⇒ x ⊔ y ⊑ z.

5.1.2 Structuring the semantics

We need to express the maps f and f# using transfer functions for the primitive instructions
that appear in the program. In our case, the program is given by a control flow graph (CFG),
and the primitive instructions are the elements of the basic blocks in the graph. In order to easily
apply the transfer functions, it is useful to structure the elements of D/D# in a very specific way.
The idea is to factor a domain element into smaller pieces attached to each instruction in the CFG.
For example, the concrete semantics consists of a set of traces. We decompose this set of traces
into disjoint subsets, grouping them according to the next scheduled instruction as indicated by
the last state in a trace. (Every state carries extra control information, e.g., a program counter,
that determines the schedule in which instructions are executed.) This way, to apply the effect of
the transfer function corresponding to an instruction, we simply look up the group of traces for
that instruction, and extend them by applying the transfer function to the last state. The result
is then joined into the group attached to each successor instruction in the CFG.

Similarly, we structure D# as the domain of tuples (ordered pointwisely)

Λ→ D′#,

where the indices in Λ are called program points that correspond to the instruction occurrences
in the CFG, and D′# is some other domain. To express f#, let E be the set of pairs (λ, λ′) of
indices for which the CFG permits control to flow from λ to λ′. More specifically, the elements of
a basic block flow to their successor in the block, except for the terminator, which flows to the first
elements of the successor basic blocks. Now, we assume that a transfer function [[e]] : D′# → D′#

is given for each such pair e ∈ E. With this we can define f# : D# → D# as follows

f#(D#) = λ′ 7→
⊔

(λ,λ′)∈E

[[(λ, λ′)]](D#(λ)).

That is, each program point λ′ is updated with the join of all results of applying transfer functions
to predecessor program points. This generalizes the above scheme for the concrete domain D.

This way, f# is constructed uniformly from the CFG, and the domain D′# together with the
transfer functions D′# → D′# for every instruction. These transfer functions are usually defined at
once for all possible instructions and then reused. This allows us to reason about soundness on the
level of transfer functions: If f is expressed equivalently via a concrete counterpart D′ and concrete
transfer functions, and furthermore a concretization γ′ : D′# → D′ is given, then soundness follows
from the abstract transfer functions over-approximating the respective concrete transfer functions.

5.1.3 Computing the semantics

The concrete and the abstract semantics were defined as post fixed points of suitable monotone
functions. The existence of such post fixed points as well as their computation heavily depends on
the structure of the underlying domains (and any additional properties of the monotone functions).
The concrete domain is usually a complete lattice, in which case Tarski’s fixed-point theorem
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guarantees the existence of a least fixed point for every monotone map, hence the concrete semantics
is well defined. Unfortunately, even for such well-structured domains, computing the semantics is
impossible (i.e., it requires infinitely many computational steps).

If the domain D# has a finite height h, which bounds the length of all chains, then we can
compute the least (post) fixed point of f# as the last element of the (necessarily finite) chain

⊥ ⊑ f#(⊥) ⊑ f#2
(⊥) ⊑ f#3

(⊥) ⊑ · · · ⊑ f#h
(⊥).

However, this is not the case even for relatively simple domains. Consider for example, the domain
of integer intervals. Its elements are inequality constraints of the form

lx ≤ x ≤ hx,

where lx and hx ∈ Z∞
−∞. Intervals are ordered by inclusion. As evident from the picture in Fig. 7,

the interval domain is not of finite height:

⊥

[0, 0][−1,−1][−2,−2][−3,−3]... [1, 1] [2, 2] [3, 3] ...

[0, 1] [1, 2] [2, 3] ... ...[−1, 0][−2,−1][−3,−2]......

[−1, 1][−2, 0][−3,−1]...... [0, 2] [1, 3] ... ...

Figure 7: The domain of integer intervals.

The transfer function for addition of intervals can be defined as

[a, b] + [c, d] = [a+ c, b+ d].

If we try to compute the interval abstract semantics for the program in Fig. 8 using the above
scheme we will not reach a (post) fixed point.

1 fn loopy_simple(n: i32) {
2 let mut i = 0;
3 while i < n {
4 i = i + 1;
5 }
6 }

Figure 8: A function with an unbounded loop.

The reason for that is that: 1) there is no a priori bound on n, i.e., its value is [−∞,+∞], and
2) the interval bound for i while computing the semantics will always be [0, j] for j < +∞, hence
the sequence of reached abstract elements will be ever increasing.

To remedy such problems with convergence, one may introduce a widening operator [15]
∇ : D# × D# → D# that satisfies the following conditions:

1. over-approximation: x ⊔ y ⊑ x∇y for all x, y ∈ D#;
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2. termination: for any sequence (xi ∈ D#)∞0 , the sequence (x′) stabilizes in finite time:

x′
0 = x0 x′

n+1 = x′
n∇xn.

In case the original iteration does not converge, we can instead apply iteration with widening:

x0 = ⊥ xn+1 = xn∇f#(xn)

This sequence necessarily converges, and moreover it does so at a post fixed of f#.
However, we shall not rely on widening to cope with convergence. Instead, we limit the fragment

of programs which we analyze statically. We consider only programs without iterative constructs,
such as loops or recursion, which are guaranteed to converge in finite time even if the domain is
of infinite height. In case a part of the code contains such constructs, one can manually provide a
specialized transfer function only for this part, and still analyze the code.

5.1.4 Interprocedural analysis

So far we did not discuss how to deal with one very important construct, namely function
calls. There are multiple ways to do that, and we choose to handle them as closely as possible
to the concrete semantics (which in case of recursion introduces problems with convergence). We
consider a modified control flow graph obtained in the following way. We build this CFG given
an initial function call to be analyzed. We take a copy of the CFG of the called function, and
recursively apply the CFG construction procedure to all calls appearing there. Then we modify the
call and return sites by connecting them to the respective entry and exit nodes of the corresponding
recursively built CFG. This construction allows us to precisely analyze function calls, but of course,
if there is a loop in the call graph, the construction will not terminate. The transfer function of
calls and returns simply initializes the respective callee (for calls) and caller (for returns) variables.

Next we describe the various domains used that constitute our static resource analysis.

5.2 Event variants domain

During the analysis we will need to collect information about which variant of the enum Event
can be called from a given deposit_event call site. More details will be given later in Section
6.4.7.

We first define the set Variants, that is able to capture the property that on a given deposit_event
call site, the event’s variant is not fixed and can be decided based on a branching structure at run-
time.

We then define the following abstract domain E per function as a mapping from a Location32

(deposit_event call site) to a Variants, see Listing 12:

E : Location→ Variants

The join operator takes x, the domain we want to update, and y, the domain we want to join
into it, it is defined as follows:

join(x, y) = x ⊔ y | x, y ∈ E

with

x ⊔ y =

{
y[l] if x[l] does not exist
Or(x[l], y[l]) otherwise

∀l in y.keys

The bottom element ⊥E being an empty Location → Variants mapping. Since the number
of Location where deposit_event and the set of events available for a pallet are finite, the lattice
is trivially of finite height and its top element ⊤E is the disjunction of all the mappings where the
keys are Location is a deposit_event call site and their associated Variants is the set of events
in the pallet.

The soundness of this analysis is guaranteed here since we over-approximate the concrete run-
time behavior by keeping the set of all possible variants for each deposit_event call site.

32https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Location.html
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5.3 Cost language
Concrete domain. The cost language is an abstraction of the concrete cost semantics itself.
Since the cost can vary from 0 to∞ (e.g., the time cost of a non-terminating program) the domain
of costs consists of the natural numbers plus ∞, ordered as usual:

N∞ = {0 < 1 < 2 < · · · <∞}.

The concrete cost semantics is based on the cost of individual execution traces. Since we care for
the worst-case executions, which is a kind of aggregate semantics, the cost semantics domain (not
to be confused with the domain of costs above) is the function space

NCostParameter → N∞.

A function f in this space takes as argument a tuple of upper bounds on some pre-defined cost
parameters (such as the length of a function argument), and returns the worst-case cost of a
possibly partial execution that starts in a state in which the cost parameters satisfy the given
upper bounds. In the terms used in Section 2.1, we have

Metric = NCostParameter Cost = N∞.

The function space NCostParameter → N∞ is partially ordered pointwise:

f ⊑ g ⇐⇒ ∀ρ ∈ NCostParameter. f(ρ) ≤ g(ρ).

Abstract domain. Instead of working directly with the concrete functions, our abstract domain
represents them as expressions from a cost language. Going back to the example from Section 2,
we represent the net time cost of the binary search implementation with the expression

O(Log(items.len())),

where items.len() denotes the length of the items argument of the binary search function.
The first component of the cost language are program variables or symbols

⟨Variable⟩ ::= Id(id, span) | String

We represent them in two ways: i) as a Rustc id plus a span (the region of code where the variable
is defined),33 or ii) simply as a string that allows us to identify the symbol "MaxSize::get()".

From variables we can extract the various cost parameters

⟨CostParameter⟩ ::= ValueOf(Variable) | SizeOf(Variable) |
ReadsOf(Variable) | WritesOf(Variable) |
SizeDepositedOf(Variable) |
StepsOf(Variable) | LengthOf(Variable)

Each cost parameter is something we cannot compute in advance: ValueOf represents the value
returned by a function, e.g., ValueOf("MaxSize::get()")34, SizeOf stands for the size of a type
whose size is unknown. ReadsOf, WritesOf, SizeDepositedOf and StepsOf represent the bytes
that are read and written, the size of the events and the number of steps executed by some functions
that cannot be analyzed. It is important to note that StepsOf does not account for the sizes of
the function’s arguments and we assume uniform upper bounds for calling such a function.

Finally, a cost expression abstracts a function element in the concrete domain:

⟨CostExpr⟩ ::=

| Parameter(CostParameter)
| Infinity
| Scalar(u64)
| Add(Vec<CostExpr>)
| Max(Vec<CostExpr>)
| ScalarMul(u64,CostExpr)
| ParameterMul(CostParameter,CostExpr)
| Log(CostExpr)
| BigO(CostExpr’)

33https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/span_encoding/struct.Span.html
34https://paritytech.github.io/substrate/master/frame_support/traits/trait.Get.html#tymethod.get
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Cost expressions include constants from the domain of costs, parameters, and various combinations:
sum, multiplication by a scalar, multiplication by a cost parameter, maximum, and logarithm. We
also include the BigO operator that abstracts a function f to its class O(f). Here, CostExpr’
denotes the fragment of the language without BigO itself, i.e, BigO cannot be nested.

To define the meaning of cost expressions, we need to define how expressions concretize as
functions in the function space NCostParameter → N∞ (ordered pointwisely). However, because of
the BigO operator, an expression cannot concretize to just one function, but it needs to concretize
to a set of functions. Moreover, we also need to define how these subsets are compared. In total,
we need a domain C whose elements are sets of functions, and a concretization function

γCostExpr : CostExpr→ C.

The concretization function essentially extends the familiar operations in the cost language to
operate not on single functions but on sets of functions. This is easily done by interpreting such
sets as non-deterministic choices of values and extending the operations to all possible such choices.
For example, one intuitive way to define addition (which we will update slightly below) is

S1 + S2 = {f1 + f2 | f1 ∈ S1, f2 ∈ S2}.

Defining the partial ordering is more difficult. We know that expressions not containing BigO
stand for single functions. We would like to preserve the pointwise ordering on these functions, and
more generally, to embed the partially ordered set NCostParameter → N∞ into C, and even preserve
the top and bottom elements. For example, the top element of the function space is the constant
function returning ∞, which should concretize to the top element of C. Another constraint, which
comes from the BigO operation, is that C must include all sets in the form O(f).

These constraints can be satisfied by letting C equal the non-empty down-closed subsets:

C = {S ⊆ NCostParameter → N∞ | S ̸= ∅, (∀f. f ∈ S ⇐⇒ ∃g ∈ S. f ≤ g)}.

This becomes a lattice when ordered by subset inclusion, with join given by set union:

S1 ⊔C S2 = S1 ∪ S2.

The constraints are satisfied since every O(f) is down-closed, and the function space embeds via

g 7→ {f ∈ NCostParameter → N∞ | f ≤ g}.

Finally, the concretization function can readily be defined by structural induction as follows:

γCostExpr(Parameter(p)) = {f | ∀ρ. f(ρ) ≤ ρ[p]}
γCostExpr(Infinity) = {f | ∀ρ. f(ρ) ≤ ∞}
γCostExpr(Scalar(s)) = {f | ∀ρ. f(ρ) ≤ s}

γCostExpr(Add(e1, . . . , en)) = {f | ∃gi ∈ γCostExpr(ei).∀ρ. f(ρ) ≤
∑

i gi(ρ)}
γCostExpr(Max(e1, . . . , en)) = {f | ∃gi ∈ γCostExpr(ei).∀ρ. f(ρ) ≤ maxi gi(ρ)}
γCostExpr(ScalarMul(s, e)) = {f | ∃g ∈ γCostExpr(e).∀ρ. f(ρ) ≤ s · g(ρ)}

γCostExpr(ParameterMul(p, e)) = {f | ∃g ∈ γCostExpr(e).∀ρ. f(ρ) ≤ ρ[p] · g(ρ)}
γCostExpr(Log(e)) = {f | ∃g ∈ γCostExpr(e).∀ρ. f(ρ) ≤ log g(ρ)}

γCostExpr(BigO(e)) = {f | ∃g ∈ γCostExpr(e). f ∈ O(g)}.

One readily verifies that for every e ∈ CostExpr’ (an expression not containing BigO) the con-
cretization γCostExpr(e) has a maximum element and this element equals the expected interpretation
of e as an element of the function space NCostParameter → N∞. This follows by structural induction
from the monotonicity of the language operations w.r.t. to the pointwise ordering on the functions.

The domain of cost expression has a join operation defined trivially:

e1 ⊔CostExpr e2 = Max(e1, e2),

which gives rise to the pre-order (reflexive and transitive but not necessarily anti-symmetric):

e1 ⊑CostExpr e2 ⇐⇒ γCostExpr(Max(e1, e2)) = γCostExpr(e2).

As expected, the abstract join over-approximates the concrete join, i.e., for all e1, e2 ∈ CostExpr:

γCostExpr(e1) ∪ γCostExpr(e2) ⊆ γCostExpr(Max(e1, e2)),

which ensures that γCostExpr is monotone. Indeed, if e1 ⊑CostExpr e2, then

γCostExpr(e1) ⊆ γCostExpr(e1) ∪ γCostExpr(e2) ⊆ γCostExpr(Max(e1, e2)) = γCostExpr(e2).
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5.4 The analysis domain
The analysis domain is divided into two subdomains. The first one, the counting domain

C, is responsible for collecting the cost of a function. The second subdomain is here to help
the counting domain to provide a more precise analysis, it is responsible for tracking some type
information about each of the Local.

5.4.1 Local’s type information tracking

When analyzing a function call during interprocedural analysis, we need to know the type
context from which the function is called to have a more precise result. In order to achieve this
goal, we track the type of each Local throughout the analysis. To that end we use the mapping
LocalsInfo : Local→ LocalInfo. A LocalInfo contains:

• length_of: this is an optional field, it will hold the length of the LocalInfo if it is a
dynamically sized vector, we reuse the cost language and track it as a Cost. The length
of a vector is shared between its references so if it gets updated in a part of the code, the
change is reflected in the root vector. This may break the invariant that the input set of the
analysis should not change but since the tool does not support loops and recursion it is not
problematic,

• ty: a vector containing the history of Rust’s MIR type Ty::ty of the Local. We need this
type history because Rust contains generic types that are instantiated later during monomor-
phization. But since the MIR cannot be monomorphized for our analysis, we keep the history
of such instantiations, from the most imprecise to the most precise. For example, the first
type can be F: impl FnOnce and the second, most recent and precise type, will be the type
of a concrete closure, not only "something that is a closure".

• members: the list of its fields if it is a struct, or the list of its variants if it is an enum, for
simplicity "fields" and "variants" will be grouped under the term "members". Each member
is itself a LocalInfo.

Note on references and aliasing. For the sake of typing model simplicity, we chose to abstract
away the references so the analysis works directly with the underlying types. To do so, we peel the
references of the Ty::ty, e.g. we recursively inspect the ty field of TyKind::Ref(_, ty, _) and
extract it when we access the underlying type.This diverges from the concrete Rust semantics but
does not affect the correctness of the analysis since the only link we need to track between aliases
is the length of vectors, which is tracked with the length_of field.

Joining LocalsInfo. The joinLocalsInfo(x, y) operator is defined as the joinLocalInfo(xl, yl) op-
erator applied to each entry l of the LocalsInfo mapping. We then need to join each component
of the LocalInfo individually.

Joining length_of. If the LocalInfo does not represent a vector, then there is nothing to join.
For LocalInfo that are vectors, the operator that will join the length_of field is simply the
maximum and is trivially sound:

joinlength_of(x, y) = max(x, y)

From this definition we can infer the bottom and top values for length_of: ⊥length_of =
CostExpr::Scalar(0) and ⊤length_of = CostExpr::Infinity.

Joining ty. The second join operation, for the ty field, needs to take into account the history
of the type precision.

jointy(x, y) = longest_common_prefix(x, y)

The soundness argument for jointy is that if the two histories are the same there is nothing
to join, and we keep the common type history if they diverge. The bottom element for ty is the
MIR type at the start of the analysis, it is taken from the caller context if the Local is one of the
callee function parameters or taken from the MIR body’s Locals information otherwise. The top
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element is not defined but also not needed since the tool does not support loops and recursion so
the history has a finite length.

Joining members. Finally, the members are joined recursively one by one:

joinmembers(x, y) = joinLocalInfo(xm, ym) ∀m ∈ members

The soundness of this last join operator is guaranteed since the soundness of joinLocalInfo relies
on the soundness of joinlength_of and jointy which have been shown to be sound as well.

5.4.2 Counting domain

We want the pallet developer to be able to relate the tool’s output with the inferred weights
given by the FRAME’s benchmarking module. To do so we will track the same four metrics:

• size of reads/writes on the database. Substrate actually implements a cache layer between
the pallet’s execution and the database changes, so that if a field is accessed twice, only one
access is done on storage. We ignore this optimization during the analysis.

• size and variants of the emitted events

• algorithmic time complexity

This is why our abstract counting domain C consists of four cost expressions, accounting for
database reads and writes, size of the deposited events and the number of steps:

C : (CostExpr× CostExpr× CostExpr× CostExpr)

We define the join operator:

join(x, y) = maxC(x, y) | x, y ∈ C

where maxC is the pointwise maximum which is used to join the summaries of two basic blocks
during the intraprocedural analysis. When encountering function calls during the analysis we also
need to account for the cost of the called function and this is done through the composition of
individual cost of function call statements. In the concrete semantics the composition would be
the addition operation, and the symbolic addition in the abstract semantics:

composeinter(x, y) = addC(x, y) | x, y ∈ C

where composeinter is the pointwise addition that is used to join two function summaries, after a
function call analysis for example.

The bottom and top elements for C are trivially defined as:

⊥C = (CostExpr::Scalar(0), CostExpr::Scalar(0), CostExpr::Scalar(0), CostExpr::Scalar(0))

⊤C = (CostExpr::Infinity, CostExpr::Infinity, CostExpr::Infinity, CostExpr::Infinity)

Here again the analysis is sound because we over-approximate the concrete domain by using the
max operator during intra-procedural analysis and the add operator during the inter-procedural
analysis. The analysis running on this domain is sound provided that the transfer functions, or
transformers, are also sound. We will provide more details about transformers in Section 6.4.8.
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6 Implementation

In this chapter, we will describe the implementation details, the choices we made as well as
some technical challenges we overcame.

First of all, we chose to run the analysis on the pallet’s level because we wanted to access
information available in the HIR (High-level Intermediate Representation) and it is only generated
for the currently compiled crate35.

Secondly, the analysis is done on the generated optimized MIR. The choice of running the
analysis on the MIR was motivated by the following aspects:

• since some optimizations were already made, we are closer to the final behaviour than with
any other Rust intermediate representation,

• we carefully compared the different representations of the code, HIR, MIR, LLVM-IR and
WebAssembly. While LLVM-IR and WebAssembly are the closest to the real execution, a
lot of information is lost in the process because all the structures, field accesses or operations
on vectors for example are abstracted away and the output would not be very informative
for a developer. We also considered the HIR for the analysis since it is close to the initial
logic. The problem is that it is only available for the top-level crate being compiled. This
also means that type checking and inferring did not happen yet and we may lack information,
e.g. the size of some types,

• we can still easily map the MIR to the Rust source code if we need to understand more
precisely how a function works,

• the compiler also uses this intermediate representation to run some internal static analysis,

• type checking and inference were completed so we have more insight about the types we
encounter,

• there already exists a dataflow analysis framework embedded in the compiler that we can
use for static analysis.

The major drawback of using the MIR at the pallet level is that it is still a generic library
whose concrete types are set when the runtime is constructed. It means that, as mentioned in
Section 4.2, monomorphization cannot be done and we cannot use Instance36, which would have
allowed us to generate monomorphized MIR.

6.1 Cost Model

In this section, we show how the different operations encountered during the analysis are taken
into account into the cost expression.

6.1.1 Precise modeling with the MIR

When the MIR is available for a function, the cost model for each StatementKind::Assign(Place,
Rvalue) of a basic block is straightforward and we can assign a cost to the operations (Rvalues)
coming directly from the MIR, like addition, multiplication, division, and other binary operations
which are grouped in rustc_middle::mir::syntax::BinOp enum37, or the Repeat(element, X)
operator which is responsible for filling an array X times with element. The cost expression
associated to those basic statement operations are listed in Table 3, the description of the differ-
ent Rvalues are shown in Table 2. Function calls (TerminatorKind::Call) also have a cost of
Scalar(1) to account for the call computational overhead.

6.1.2 Approximation with specifications

Due to missing monomorphization, the reasons are explained in Section 6, the MIR may not
have been generated for some functions. If the MIR is not available for the function to be analyzed,
we need to write manual specifications. This is where the transformer is not guaranteed to be sound.
For some implementations, like storage access functions, it is possible to have sound and relatively

35https://rustc-dev-guide.rust-lang.org/hir.html#out-of-band-storage-and-the-crate-type
36https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/instance/struct.Instance.html
37https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/syntax/enum.BinOp.html
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Operation (Rvalue) Cost
Use(Operand) Scalar(1)
Repeat(Operand, times) Scalar(times)
Ref(Region, BorrowKind, Place) Scalar(1)
ThreadLocalRef(DefId) Scalar(1)
AddressOf(Mutability, Place) Scalar(1)
Len(Place) Scalar(1)
Cast(CastKind, Operand, Ty) Scalar(1)
BinaryOp(BinOp, (Operand, Operand)) Scalar(1)
CheckedBinaryOp(BinOp, (Operand, Operand)) Scalar(1)
NullaryOp(NullOp, Ty) Scalar(1)
UnaryOp(UnOp, Operand) Scalar(1)
Discriminant(Place) Scalar(1)
Aggregate(AggregateKind, operands) Scalar(operands.len())
ShallowInitBox(Operand, Ty) Scalar(1)
CopyForDeref(Place) Scalar(1)

Table 3: List of Rvalues their cost expression in our cost model.

precise specifications. But for other functions like std::ops::Mul::mul38 for example, we do not
have access to the concrete implementation and the actual cost heavily depends on it. For primitive
types like usize, we could account for it as a constant cost, but for more exotic types like vectors
or matrices, the cost of a multiplication relies on the concrete implementation. When such cases
occurred, we decided to account for them in the manner they would happen the most, usually by
a constant cost in the number of steps, hence the soundness caveats.

When specifying more complex functions, we tried to recreate their costs as best as possible.
While it is not possible to be as precise as if we had the MIR, it is still possible to make some sound
approximations, like for std::vec::Vec::<T, A>::push39 where we account for a possible growth
of the allocated memory region. The true implementation will double the allocated memory when
the maximal capacity is reached, so each push to the vector will have an amortized cost complexity,
but our over-approximation accounts for a complexity of O(L), where L is the current symbolic
length of the vector.

6.2 Internal representation of the types
In order to compute some costs, e.g. number of bytes read/written, we also need the size of

some types. We wrote an internal representation for such types, Type, to be able to easily query
their size. They are built from ty::Ty, the representation of types in the MIR.

We added special support for algebraic data types (ADT) that are often used in Substrate, these
are Option and BoundedVec. The latter is a vector along with a maximum size, which is often used
in storage fields. Since we want the worst case, its size is computed from the maximum number
of elements it can hold, multiplied by the size of one of these elements. For example, the storage
field defined at line 24 in our example will have a size expressed as VALUEOF(MaxSize::get()) *
4. One clear drawback of using the upper bound size for the BoundedVec used by storage fields is
the loss of precision compared to an analysis where we would have better modeling of the storage
fields and consider the on-chain state as an additional parameter to the function currently being
analyzed. Despite being not very precise, it still makes sense to consider the upper bound size
since we over-approximate. This is due to the refund mechanism implemented by Substrate, the
function’s weights should consider the worst-case storage accesses and refund the users at the end
of the dispatchable execution, so they only pay for what they used in the end.

The size of those types is expressed with the use of the Cost type, defined in Section 5.3, they
are computed in bytes where the concrete size is known at compile time, otherwise, we keep their
size symbolic.

6.3 Cost language
We now present the implementation of the cost language defined in Section 5.3, its implemen-

tation in Rust can be found in Listing 7. The smallest unit a Cost can have is either Scalar or
38https://doc.rust-lang.org/std/ops/trait.Mul.html#tymethod.mul
39https://doc.rust-lang.org/std/vec/struct.Vec.html#method.push
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CostParameter. To preserve soundness, i.e. we are over-approximating, the cost Scalar(1) rep-
resents the highest constant cost encountered during the analysis. Add, ScalarMul, ParameterMul
and Max are the operations we can use to build a more complex cost expression. BigO is used to
abstract away the constants and express the asymptotic complexity.

Listing 7: Semantics of the cost language.

1 pub(crate) struct Variable {
2 pub id: u32,
3 pub span: Option<Span>,
4 }
5
6 pub(crate) enum Cost {
7 Scalar(u64),
8 Parameter(CostParameter),
9 Add(Vec<Cost>),

10 ScalarMul(u64, Box<Cost>),
11 ParameterMul(CostParameter, Box<Cost>),
12 Max(Vec<Cost>),
13 BigO(Box<Cost>),
14 Log(Box<Cost>),
15 }
16
17 pub(crate) enum CostParameter {
18 ValueOf(String),
19 SizeOf(String),
20 ReadsOf(String),
21 WritesOf(String),
22 SizeDepositedOf(String),
23 StepsOf(String),
24 LengthOf(Variable),
25 }

Since some of the cost expressions can become quite cumbersome, we implemented the + and
max operation such that they reduce the length and complexity of the expression.

For the add operation, we pattern match on the left-hand (lhs) and right-end (rhs) sides to
check whether it is possible to merge them without adding a Add node as shown in the left part of
Listing 9. The optimizations are:

• if either lhs or rhs is Infinity, we return Infinity

• if either lhs or rhs is zero, we return the other element

• the addition of two Scalars, Scalar(a) + Scalar(b) will be Scalar(a+b)

• ScalarMul(x, a) are aggregated:

– ((x) ∗ a) + a => ((x+ 1) ∗ a)
– a+ ((x) ∗ a) => ((x+ 1) ∗ a)
– ((x) ∗ a) + ((y) ∗ a) => ((x+ y) ∗ a)

• when adding a Scalar to an already existing Add node, the Scalars are aggregated

• otherwise, we pack lhs and rhs in a new Add node and we flatten the whole vector. Flattening
the vector will open any nested Add node and expand the Scalars and ScalarMuls. Then,
we extract common elements, and recursively aggregate them.

For the max operation we flatten and reduce each side and try to extract out of the Max node
the elements with the same value on the left-hand and right-end sides as they will not play a role
in deciding which side represents the biggest value. Then we compare the remaining elements and
try to decide which is the max, otherwise we create a new Max node. An example is shown in the
right part of Listing 9. Some of the optimizations are:

• zeros are ignored
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• if either lhs or rhs is Infinity, we return Infinity

• if the element we want to add to the Max node is already present in the vector we do nothing
since max(a, a, b) = max(a, b)

• max(Max(v_1),Max(v_2)) will end up as maximum of the union of v_1 and v_2

• whenever possible, we try to "resolve" the max, i.e. the common elements are extracted
from the vector’s members and will be taken out of the Max node. If the remaining elements
are comparable, we take the biggest, otherwise we keep them in a smaller Max node, this is
demonstrated in the right-hand side example of Fig. 9.

1 Example 1:
2 ----------
3 Concrete(20)
4 +
5 Concrete(22)
6 => Concrete(41)
7 instead of
8 Add([
9 Concrete(20),

10 Concrete(2)
11 ])
12
13 Example 2:
14 ----------
15 ConcreteMul(
16 4,
17 Symbolic(
18 SizeOf("someADT")
19 )
20 )
21 +
22 Symbolic(
23 SizeOf("someADT")
24 )
25 => ConcreteMul(
26 5,
27 Symbolic(
28 SizeOf("someADT")
29 )
30 )
31 instead of
32 Add([
33 Symbolic(
34 SizeOf("someADT")
35 ),
36 ConcreteMul(
37 4,
38 Symbolic(
39 SizeOf("someADT")
40 )
41 )
42 ])

1 Example 1:
2 ----------
3 max([
4 Add([
5 Concrete(42),
6 Symbolic(
7 SizeOf("ADT1")
8 ),
9 Symbolic(

10 SizeOf("ADT2")
11 )
12 ]),
13 Add([
14 Concrete(42),
15 Symbolic(
16 SizeOf("ADT1")
17 ),
18 Symbolic(
19 SizeOf("ADT3")
20 )
21 ])
22 ])
23 => Add([
24 Concrete(42),
25 Symbolic(
26 SizeOf("ADT1")
27 ),
28 Max([
29 Symbolic(
30 SizeOf("ADT2")
31 ),
32 Symbolic(
33 SizeOf("ADT3")
34 )
35 ])
36 ])

Figure 9: Examples of simplification of the cost expression for addition (left) and max (right)
operations
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6.4 Pallet static resource analysis

The tool is open source and can be found on GitHub https://github.com/simon-perriard/
saft. It is named saft after "Static Analyzer for FRAME palleTs" and can be run as a cargo
subcommand40 with touch src/*.rs && cargo saft ––release from inside the pallet’s crate,
the touch command forces the pallet’s recompilation. The tool will output the static resource
analysis for each dispatchable of the pallet under analysis.

Note that saft does not support loops and recursion, yet. It will detect such patterns and
mark the analysis of the dispatchable as invalid.

Although there is no automatic support for loops, users can still write manual specifications
for the functions that contain such structures. They can simply add their specifications in the
try_custom_dispatch function and the tool will apply this custom transformer instead of trying
to analyze it, detect a loop and fail.

6.4.1 Hooking into the compiler

The cargo subcommand is mainly a wrapper around the command RUSTC_WORKSPACE_WRAPPER=
"/path/to/saft-driver" RUSTCFLAGS="-Z always-encode-mir" cargo check ––lib with the
remaining arguments generated by the cargo saft ––release command. The first environment
variable tells cargo to use saft-driver to compile the files that are in the workspace, the second
one asks rustc to make the MIR available whenever possible for every dependencies.

The compilation of the crate and its dependencies is then handed over to the usual cargo
pipeline and whenever it is the turn of our pallet’s crate of interest, it is compiled with saft-driver.
saft-driver is itself a wrapper around the Rust compiler. It will invoke and run a compiler
instance provided by rustc_driver::RunCompiler with empty callback by default, and with our
custom callback when the lib.rs implementing the pallet must be compiled.

As quickly explained in Section 4.1, rustc_driver allows us to hook into the compilation
process at multiple stages. Since we are interested in the optimized MIR, we only used the last
callback, after_analysis. We can then inject our saft::extract_juice in the callback.

At this point, our callback handler saft::extract_juice has access to all the memoized
compilation queries, up to MIR optimization, and will start the analysis.

6.4.2 Gathering of pallet information

We now need to collect the following information about the pallet:

• the storage fields, their types and sizes

• the DefIds of the dispatchables to analyze

We first construct a list of the fields’ names, for each storage field there is a struct named
_GeneratedPrefixForStorageFIELD_NAME so we iterate through the HIR Items41 and we store
the different FIELD_NAMEs.

Secondly, we iterate again through HIR Items to target the type definition where the storage
field is declared, line 24 in our example, and we compare their names with the ones of the list from
above. If the name matches, we then extract the type that is behind the type alias, i.e. we are
interested in StorageValue<_, BoundedVec<u32, T::MaxSize>, ValueQuery>; to compute its
size, not in the type alias StoredNumbers<T: Config>. From there we record the kind of storage
field (StorageValue, StorageMap,...), the type alias DefId, the type of the values that are stored
and type(s) of the key(s) if it is a kind of Map, both as one of our internal Type representation.

Finally, we need to collect the DefIds of the dispatchables. Like before, we start by getting a
list of the dispatchables names. We look for the pallet’s Call enumeration to retrieve the name
of its variants, which are the dispatchables names. From Section 3.3 we know that the calls are
dispatched to the target functions by pallet::Call::dispatch_bypass_filter, so the task is
now to symbolically execute the HIR body of that dispatch function for each of the dispatchable
name until we reach the call to the target dispatchable, from where we can get its DefId.

We now have our own representation of the pallet with the information that will be useful for
the analysis, i.e. what are the storage fields and what are the dispatchables.

40https://doc.rust-lang.org/book/ch14-05-extending-cargo.html
41https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.Item.html
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6.4.3 MIR’s data flow analysis

During compilation, the compiler already performs some data flow analysis [23] (the code that
is used to this end can be found in rustc_mir_dataflow), which makes it easy to run an analysis,
provided that we define a correct domain and transfer function. We will leverage this module as
it is included in the compiler and provides a good framework for our analysis.

Data flow analysis has been developed with the concepts of abstract interpretation in mind. We
first need to design an abstract domain that will represent the problem we want to solve, as well as
a transfer function. The analysis works by following the CFG, in a forward or backward manner.
The algorithm visits each basic block and applies the transfer function to each statement and
terminator in order. If a basic block has multiple predecessors, the transformed output domains
of those predecessors are joined (⊔) to create the input domain for the basic block to be visited.
The analysis iterates through the CFG until a fixpoint is reached. If the program contains loops
or recursion, termination with an unbounded complete lattice and monotonic transfer function is
not ensured. This is the reason why the abstract domain needs to be a join-semilattice, i.e. the
domain must implement JoinSemiLattice42, so the analysis may reach a fixpoint at some point,
f(⊤) = ⊤ at worse.

The data flow analysis implemented in the compiler uses a less naive algorithm, which is called
maximal fixpoint algorithm (MFP). It is similar to the one described above but tries to be smarter
about it. Instead of going through the whole set of successors of a block when its input have
changed, it keeps a list, called worklist, of the edges where data has changed. Let us consider a
basic block with successor(s), if for two different inputs the transfer function outputs the same
domain, the analysis will not revisit the successors since their input domain would not change.

To create a new analysis with this framework, it suffices to define a struct containing all the
information we will need during the process, the struct must then implement the following traits:
Analysis43 and AnalysisDomain44. Here we specify the actual domain we want to use, with the
condition that it must be a partially ordered set that has a least upper bound property for any arbi-
trary pair of elements of the set, in other words a join-semilattice. Several such domains are made
available by the compiler, but it is also possible to build custom ones. We also need to implement
the mandatory functions that will be called during the MIR analysis: apply_statement_effect,
apply_terminator_effect and apply_call_return_effect, basically this is where we will call
the transfer function. Then we call the provided functions into_engine, iterate_to_fixpoint
and into_result_cursor, resp. to instantiate the engine capable of solving the dataflow problem,
run the analysis until it stabilizes, and access the results of the analysis.

6.4.4 Analysis of closures

Closures45 are anonymous functions that can capture their environment in so-called upvars.
They are executed through the use of a data structure containing a pointer to the anonymous
function body and the upvars that are passed along the function’s parameters packed in a tuple to
one of the following: FnOnce::call_once, FnMut::call_mut or Fn::call, which are responsible
for calling and executing the closure with the correct parameters.

In the example snippet Listing 8, the closure stored in c will capture the captured variable
from its environment and this translates in its MIR assigning the captured variable in a similar
manner than we would access a field of a struct using a projection, see lines 51 and 19 of Listing
9. We can consider [closure@src/main.rs:9:13: 12:6] as an ADT carrying the environment
of the closure it is bound to. Still in Listing 9, when the closure is executed at line 10, this ADT
and the argument(s) of the closure are passed to call_once that will call and execute the closure’s
code, starting at line 17.

Note that closure_caller is not yet aware of the concrete type of its argument, this will be
inferred later during monomorphization, a similar function with the concrete type
[closure@src/main.rs:9:13: 12:6] will be generated. So if we want to analyze this closure in
good conditions at its call site we need to pass the calling context from main to closure_code
when we analyze it. We explain how the tools tracks the calling context in the next section.

42https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/lattice/trait.
JoinSemiLattice.html

43https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/framework/trait.Analysis.html
44https://doc.rust-lang.org/nightly/nightly-rustc/rustc_mir_dataflow/framework/trait.

AnalysisDomain.html
45https://doc.rust-lang.org/book/ch13-01-closures.html
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Listing 8: The closure stored in c captures a value from its environ-
ment and will multiply it by a factor provided only when the closure
is called.

1 fn closure_caller<F: FnOnce(usize) -> ()>(closure: F) {
2 closure(6);
3 }
4
5 fn main() {
6
7 let captured = 7;
8
9 let c = |mul_factor| {

10 let res = captured * mul_factor;
11 };
12
13 closure_caller(c);
14 }
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Listing 9: Generated MIR for Listing 8, the live ranges (StorageLive/StorageDead) of the Locals have
been removed for readability.

1 fn closure_caller(_1: F) -> () {
2 debug closure => _1;
3 let mut _0: ();
4 let _2: ();
5 let mut _3: F;
6 let mut _4: (usize,);
7 bb0: {
8 _3 = move _1;
9 (_4.0: usize) = const 6_usize;

10 _2 = <F as FnOnce<(usize,)>>::call_once(move _3, move _4) -> bb1;
11 }
12 bb1: {
13 return;
14 }
15 }
16
17 fn main::{closure#0}(_1: &[closure@src/main.rs:9:13: 12:6], _2: usize) -> () {
18 debug mul_factor => _2;
19 debug captured => (*((*_1).0: &usize));
20 let mut _0: ();
21 let _3: usize;
22 let mut _4: usize;
23 let mut _5: usize;
24 scope 1 {
25 debug res => _3;
26 }
27 bb0: {
28 _4 = (*((*_1).0: &usize));
29 _5 = _2;
30 _3 = Mul(move _4, move _5);
31 return;
32 }
33 }
34
35 fn main() -> () {
36 let mut _0: ();
37 let _1: usize;
38 let mut _3: &usize;
39 let _4: ();
40 let mut _5: [closure@src/main.rs:9:13: 12:6];
41 scope 1 {
42 debug captured => _1;
43 let _2: [closure@src/main.rs:9:13: 12:6];
44 scope 2 {
45 debug c => _2;
46 }
47 }
48 bb0: {
49 _1 = const 7_usize;
50 _3 = &_1;
51 (_2.0: &usize) = move _3;
52 _5 = _2;
53 _4 = closure_caller::<[closure@src/main.rs:9:13: 12:6]>(move _5) -> bb1;
54 }
55 bb1: {
56 return;
57 }
58 }
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Figure 10: Thanks to the length_of field, the cost expression can precisely refer to a symbolic
length.

6.4.5 Tracking the calling context

As mentioned before, since monomorphization did not happen yet and we are doing interpro-
cedural analysis, we need to pass the calling context from the caller to the callee function we
want to analyze. To do so, we maintain a mapping LocalsInfo : Local → LocalInfo and we
define a new recursive struct LocalInfo, see Listing 10, which represents the most precise type
information we can have for a Local at a given point in the analysis. Our internal representation
of type information for a Local has the ability to represent simple types by using only ty, but
also more complex types like struct or enum thanks to its members. If it is a dynamically sized
vector, its length can be shared through its references by means of the Rc<RefCell<_ > >, a shared
reference-counted pointer to a location in the heap.

For simplicity, the pointers, references, as well as mutability are abstracted away in LocalInfo
and we only keep the underlying type. This poses no issue for the soundness of the analysis be-
cause the elements listed above are not relevant for the types, but only for their concrete values.
One exception to this are the sizes of the dynamically sized vectors we keep track of. The base
vector and its references share the same reference to its size, so when one of them gets updated,
the change is reflected everywhere for this vector. If the vector is cloned, its length will be copied
too, but in a new Rc<RefCell<_ > >, so the new vector is now living independently from its source
vector. LocalInfo considers those vectors and references as mutable but this is sound thanks to
the fragment of the Rust we support, which will ensure that two mutable references to the same
object cannot exist at the same time. This is particularly useful when the complexity depends on
the length of some vector: we can point to which vector’s length we refer to, see Fig 10 for an
example, where the cost expression does not simply point to the length of a variable that has the
type Vec, we can precisely track it down to be related to the function’s argument’s length.

Whenever the analysis encounters a function call, we create a new CalleeInfo and we will in-
ject the LocalInfos we have from the current caller context’s LocalsInfo as the type arguments
of the callee function. The callee function analysis will first fill its own LocalInfo mapping as
described above, then the Locals representing the function’s arguments will be overridden by the
information coming from the caller. We can then analyze the called functions with the most pre-
cise calling context possible. Then, to update the type information, we apply symbolic store, i.e.
if considering Rust’s MIR basic operation, every time we encounter a StatementKind::Assign46

that has a Use or Ref as an Rvalue, we update the type information of the left-hand side operand
with the one of the right-hand side operand.

This technique is limited to the calling context for the arguments of a function and does not
replace monomorphization. It cannot infer concrete types for generic traits or functions and does

46https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.StatementKind.html#
variant.Assign
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not allow the tool to generate MIR for such functions.

Listing 10: LocalInfo encapsulates the most precise type and size information
the analysis can get at a given point in the program.

1 pub(crate) struct LocalInfo<’tcx> {
2 pub length_of: Rc<RefCell<Option<Cost>>>,
3 ty: Vec<Ty<’tcx>>,
4 members: Vec<LocalInfo<’tcx>>,
5 }

6.4.6 Wrapping the calling context

Since we aim to provide more precise results by leveraging the interprocedural analysis, we
need to extract the calling context out of each function’s call site so that the tool can pass it to
the transformer responsible to analyze the call. We encapsulate all the relevant information in a
struct called CalleeInfo, see Listing 11.

Listing 11: CalleeInfo captures information about the caller’s context at the
callee_def_id call site to pass it to the callee analysis.

1 pub(crate) struct CalleeInfo<’tcx> {
2 pub location: Option<Location>,
3 pub args_type_info: Vec<LocalInfo<’tcx>>,
4 pub caller_args_operands: Option<Vec<Operand<’tcx>>>,
5 pub destination: Option<Place<’tcx>>,
6 pub callee_def_id: DefId,
7 pub substs_ref: SubstsRef<’tcx>,
8 }

The location points to the call site of the callee in the caller’s MIR. Arguments type info is
an ordered list of LocalInfo copied from the caller, one per function argument, this is maybe
the most important element of the calling context. From caller_args_operands it is possible to
retrieve the caller’s Places that were used to call the function, the destination points to the caller’s
Place where the result of the call will be stored.

The optional fields are needed in cases where a closure cannot be analyzed directly at its call
site and we need to simulate the call out-of-context, more details will be given in Section 6.4.8.

6.4.7 Event variants analysis

We implement here the abstract domain defined earlier in Section 5.2. As shortly stated before,
the goal of this first pre-analysis is to collect information about which variant, also called discrimi-
nant, of the Event enum is called at which deposit_event call site. It is needed because we cannot
know when visiting the call site which variant will be deposited. From our study of a subset of
pallets, the events are usually instantiated in the same function where deposit_event is called
and are not passed as a parameter to any other function, so we considered that an intraprocedural
analysis should be sufficient to cover the vast majority of cases.

We implemented the Variants set as shown in Listing 12. The domain E is implemented as
a Hashmap<Location, Variants> and the join(x, y) operator will check whether x[k] is defined
∀k ∈ y.keys. If it is not defined, it will add y[k] as is, and it will wrap and insert it as Or(x[k], y[k])
otherwise.

Listing 12: The Variants enum captures the fact that the variant of the de-
posited event could be decided by a branching structure.

1 pub(crate) enum Variants {
2 Variant(VariantIdx),
3 Or(Box<Variants>, Box<Variants>),
4 }

During the analysis, we keep track of a mapping Local → VariantIdx that gets updated
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whenever a statement is of kind StatementKind::SetDiscriminant47, in a symbolic-store-like
style. The domain gets updated when the analysis encounters a call to deposit_event in a block
terminator.

We keep the analysis summary (E) of each function in a mapping DefId→ E as we will use it
in the cost analysis.

6.4.8 Cost analysis

Now that we have collected all the needed information about storage fields, dispatchables and
event variants, it is time to start the cost analysis. We perform intra- and inter- procedural analysis,
with calling context passing.

We define our CostAnalysis, Listing 13, which is fed with the information we gathered
during the pallet information gathering and event variants analysis phases. It implements the
rustc_mir_dataflow’s Analysis and AnalysisDomain, where the domain is the abstract count-
ing domain defined in Section 5.4.2.

Listing 13: The CostAnalysis data structure contains all the data and fields
needed for the analysis of a dispatchable.

1 pub(crate) struct CostAnalysis<’tcx, ’inter> {
2 tcx: TyCtxt<’tcx>,
3 pallet: &’inter Pallet,
4 events_variants: &’inter HashMap<DefId, EventVariantsDomain>,
5 def_id: DefId,
6 caller_context_args_type_info: Vec<LocalInfo<’tcx>>,
7 pub analysis_success_state: Rc<RefCell<AnalysisState>>,
8 fresh_var_id: FreshIdProvider,
9 }

We had to handle multiple situations when considering the analysis of the MIR. The simplest
cases are where we can directly infer the cost from the MIR statements, see Table 3, then there
are function calls which need to be accounted for. We want to analyze a function at its call site,
denoted by a TerminatorKind::Call MIR node, so we can provide it with its calling context.
Function call analysis is done following the pattern showed below:

1. we wrote specifications for the function,

2. we check whether some MIR is available for the function or not, to check for this property
we used the provided method TyCtxt::is_mir_available48. It is then possible to get the
MIR body through the API call to TyCtxt::optimized_mir49.

3. if none of the above applied, the tool will raise an error informing the user that no specifica-
tions nor MIR was found, along with some calling context information.

Accounting for functions with specifications . For functions whose MIR is unavailable or
functions we don’t want the tool to analyze by itself, like some standard library functions, generic
functions, storage access functions, or some custom functions containing loops, we dispatch the
analysis to manual specifications we wrote. We emphasize that the manual specifications may
introduce some soundness issues depending on the operation that had to be manually specified,
as explained in Section 6.1. Some of those functions may contain side effects that need to be con-
sidered when writing the specifications, like StorageValue::try_mutate (see Listing 14), which,
in addition to its own cost execution, calls a closure. This is why a careful inspection of ev-
ery function requiring manual specifications is needed in order to recreate its costs and effects as
precisely as possible. The list of manual specifications we implemented is displayed in Appendix A.

47https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.StatementKind.html#
variant.SetDiscriminant

48https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#
method.is_mir_available

49https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#
method.optimized_mir
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Accounting for functions with available MIR. Such functions are analyzed at their call site
with their calling context taken from the current caller’s LocalsInfo. We spawn a new instance
of CostAnalysis where we inject the calling context for the function parameters we get from
the corresponding CalleeInfo and we run the analysis. Once the analysis of the called function
reaches a fixpoint and terminates, the result of the analysis ∈ C is added (composeinter) to the
current abstract domain and the length_of of the LocalInfo corresponding to the return value
of the callee overwrites the one from the caller’s destination’s Place.

Accounting for closures cost. Closures costs can happen in two different ways:

1. closure can be analyzed at its call site: during the analysis of MIR’s terminator we can
encounter calls to either:
{FnOnce::call_once, FnMut::call_mut or Fn::call}(closure_struct,packed_args)

In such cases, the tool will handle the closure’s execution itself, where we will simulate the
action of the functions listed above. We create a new CalleeInfo to mimic the calling context
of the closure where we extract the function pointer and unpack the arguments. Then we run
the analysis on the closure’s body to compute its cost. Here we can replace the location and
destination by the ones of the call to one of the current calling context. In other words,
we treat the call as if it was a direct function call to the closure’s body and abstract away
the call to FnOnce::call_once, FnMut::call_mut or Fn::call.

2. closure is analyzed from the specifications: it may happen that we are aware that a closure
has to be executed in some specifications we are writing, and it can be that the closure will be
executed multiple times, think of a mapping or filtering of a vector for example. When such a
case arises, the specifications must run the closure’s analysis internally to get its cost. To this
end, a calling context CalleeInfo must be created in the specifications, see Listing 14 for an
example. The last argument of transfer_function.fn_call_analysis, a boolean variable
used, can be set to indicate whether the analysis must be run in isolation, i.e. whether the cost
of the closure must be accounted for at the end of its analysis (run_in_isolation=false)
or not (run_in_isolation=true). This is useful if we only need the standalone cost of the
closure, it then allows the tool to extract and modify it before adding the updated cost to
the analysis domain. E.g. when we need to multiply the closure’s cost with the length of a
vector for a mapping operation.

Example of manual specifications. Listing 14 shows the specifications for the
StorageValue::try_mutate storage access function. This function will query the storage field,
apply a closure and write back the modified data. In our specifications we first account for the
algorithmic complexity of the function, which will be proportional to the size of what is stored.
The cost mainly comes from the decoding and encoding of the data. Then we add the cost of
reading the database, mimic a calling context for the closure and run the analysis on it. Next we
account for the cost of the closure and finally, we add the cost of writing the field back to the
database.
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Listing 14: Manual specification for StorageValue::try_mutate. A less technical explanation of
the actions of this transformer is available in Section 6.4.8.

1 ...
2 "frame_support::pallet_prelude::StorageValue::<Prefix,␣Value,␣QueryKind,␣

OnEmpty>::try_mutate" => {
3
4 // decoding/encoding depends on the actual length of what is stored
5 transfer_function
6 .state
7 .add_steps(cost_to_big_o(storage_field.get_size(transfer_function.tcx)));
8
9 // storage access

10 transfer_function
11 .state
12 .add_reads(storage_field.get_size(transfer_function.tcx));
13
14 // Account for closure call
15 let closure_adt = callee_info.args_type_info[0].clone();
16 let (closure_fn_ptr, closure_substs_ref) =
17 if let TyKind::Closure(def_id, substs_ref) = closure_adt.get_ty().kind

() {
18 (*def_id, substs_ref)
19 } else if let TyKind::FnDef(def_id, substs_ref) = closure_adt.get_ty().

kind() {
20 (*def_id, substs_ref)
21 } else {
22 unreachable!();
23 };
24
25 // Closure accepts only one argument which is of type Value
26 // Rust was able to infer the type in the closure’s substs ref
27 // so no need to specialize more the args_type_info
28 let closure_call_simulation = CalleeInfo {
29 location: None,
30 args_type_info: Vec::new(),
31 caller_args_operands: None,
32 destination: None,
33 callee_def_id: closure_fn_ptr,
34 substs_ref: closure_substs_ref,
35 };
36
37 transfer_function.fn_call_analysis(closure_call_simulation, false);
38
39 // storage access
40 transfer_function
41 .state
42 .add_writes(storage_field.get_size(transfer_function.tcx));
43 Some((*transfer_function.state).clone())
44 }
45 ...

If no specification nor MIR is available for a function, the tool will mark the analysis as failed
and will output the name of the function that could not be analyzed, along other information like
the LocalInfo of its arguments to help the user write new manual specifications.

Finally, the analysis summary for a given dispatchable is displayed in the terminal as shown in
Fig. 11. In case of an unsuccessful analysis, either it met a loop or a recursion, the output will
inform the user about which of those issues it encountered and what is the function responsible for
it. Note that it may happen that some O(SIZEOF(symbolic_struct_name)) appear in the final
expression, this can be explained by the fact that some operations are done on structs whose
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size is only known symbolically, examples of such use cases are Substrate’s encoding/decoding of
a struct.

1 Extracting pallet information... Done
2 Extracting event variants... Done
3 The following dispatchables will be analyzed :
4 add_number
5
6 ********************************
7 Summary for dispatchable pallet::Pallet::<T>::add_number
8 == bytes read ==
9 VALUEOF(MaxSize::get()) * 4

10
11 == bytes written ==
12 VALUEOF(MaxSize::get()) * 4
13
14 == bytes deposited ==
15 SIZEOF(pallet::Event::NewNumberStored)
16
17 == steps executed ==
18 O(VALUEOF(MaxSize::get()))
19 + 52
20
21 ********************************

Figure 11: The tool’s output after analysis of the pallet defined in Listing 4.
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7 Results
Tests setup:

• Rust toolchain: nightly-2022-06-10

• Substrate:

https://github.com/paritytech/substrate/tree/64d77551cb9ae0a9572a955d8a678d0de41af4bf

7.1 Results from initial goal
We first tested saft on 5 pallets pointed to us by the Web3 Foundation, those are:

• balances pallet: manage the system’s default currency, allows to transfer tokens for example.

• identity pallet: naming system managed by so-called Registrars, users can ask for Registrars
to verify their identity, provided some fees.

• multisig pallet: submodule that can accept actions, as Extrinsincs, that need to be ap-
proved by a threshold number of signers to be dispatched.

• utility pallet: helper pallet enabling users to dispatch calls in batches or dispatch a call
with an origin that is derived from the original user address.

• vesting pallet: this module provides a way to implement a vesting mechanism following a
linear curve

We have run benchmarks of the tool for those pallets, see Table 4. The benchmark consisted of
100 runs of cost analysis on each dispatchable and measured the time it took. Then we averaged
those timing over the 100 runs to have a representative time for each dispatchable.

Fig. 11 shows that for simple dispatchables we can easily relate the code with the tool’s
output. This is good but in fact, we are interested in the relation between the Substrate’s
weight benchmarking output and the tool’s output. We can compare the weights specifications of
pallet::Identity::add_registrar with the tool’s output for the same dispatchable in Fig. 12.

We can observe that compared to saft output which gives bounds on the number of bytes that
are modified on storage as well as the general algorithmic complexity, the benchmark module only
considers the number of database accesses and number of deposited events, not their sizes.

However, the two tools are not in a competition and they need to be working together so that
the pallet developers can automatically get some concrete weights on one side, and check that
those complexities make sense compared to the worst case on the other side.

7.2 Results from extended goal
After having developed the tool with primarily the five pallets of Section 7.1, we considered

that it was interesting to know how the tool would scale with more pallets, for which we did not
write any targeted manual specifications. The results of this benchmark is shown in Table 5.

The tool is able to analyze a good quarter of the dispatchables contained in the pallets listed
above without adding more specifications. From these results, one can say that there are still quite
a lot of missing specifications but since they can be reused across different analysis, the burden of
writing specifications decreases exponentially, i.e. one added specifications can unlock the analysis
of multiple dispatchables.

The different source code for the pallets can be found on the Substrate’s GitHub repository :
https://github.com/paritytech/substrate/tree/master/frame.

Analysis results on other pallets of the FRAME library
Dispatchable Avg time over 100 runs

or reason for analysis failure
alliance::add_unscrupulous_items loop detected
alliance::announce 8ms
alliance::init_members loop detected
alliance::remove_announcement 12ms
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alliance::remove_unscrupulous_items loop detected
alliance::set_rule 2ms
other 9 dispatchables of the alliance pallet missing specs
assets::clear_metadata 9ms
assets::create 16ms
assets::destroy loop detected
assets::force_asset_status 22ms
assets::force_clear_metadata 7ms
assets::force_create 5ms
assets::force_set_metadata 22ms
assets::freeze_assets 4ms
assets::set_metadata 50ms
assets::set_team 12ms
assets::thaw_asset 4ms
assets::transfer_ownership 16ms
other 13 dispatchables of the assets pallet missing specs
all 3 dispatchables of the atomic-swap pallet missing specs
babe::plan_config_change 1ms
other 2 dispatchables of the babe pallet missing specs
all 2 dispatchables of the bags-list pallet missing specs
bounties::accept_curator 14ms
bounties::approve_bounty 9ms
bounties::extend_bounty_expiry 9ms
bounties::propose_bounty 21ms
bounties::propose_curator 11ms
other 4 dispatchables of the bounties pallet missing specs
all 7 dispatchables of the child-bounties pallet missing specs
contracts::remove_code 6ms
other 5 dispatchables of the countries pallet missing specs
all 6 dispatchables of the conviction-voting pallet missing specs
democracy::cancel_proposal loop detected
democracy::cancel_referendum <1ms
democracy::clear_public_proposals <1ms
democracy::emergency_cancel 7ms
democracy::external_propose 3ms
democracy::external_propose_default <1ms
democracy::external_propose_majority <1ms
democracy::fast_track 20ms
democracy::propose 20ms
democracy::veto_external 20ms
other 15 dispatchables of the democracy pallet missing specs
election-provider-multi-phase::set_emergency_election_result 4ms
election-provider-multi-phase::set_minimum_untrusted_score <1ms
other 3 dispatchables of the election-provider-multi-phase pallet missing specs
elections-phragmen::elections-phragmen 2ms
other 5 dispatchables of the elections-phragmen pallet missing specs
grandpa::note_stalled <1ms
other 2 dispatchables of the grandpa pallet missing specs
im-online::heartbeat missing specs
indices::claim 4ms
indices::force_transfer 1ms
indices::free 7ms
indices::freeze 8ms
indices::transfer 15ms
lottery::set_calls loop detected
lottery::stop_repeat <1ms
other 2 dispatchables of the lottery pallet missing specs
all 7 dispatchables of the membership pallet missing specs
nicks::clear_name 3ms
nicks::force_name 8ms
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nicks::kill_name missing specs
nicks::set_name 22ms
node-authorization::claim_node 7ms
node-authorization::transfer_node 15ms
other 7 dispatchables of the node-authorization pallet missing specs
all 13 dispatchables of the nomination-pools pallet missing specs
preimage::unnote_preimage 11ms
other 3 dispatchables of the preimage pallet missing specs
recovery::set_recovered 1ms
other 8 dispatchables of the recovery pallet missing specs
remark::store missing specs
all 6 dispatchables of the scheduler pallet missing specs
scored-pool::change_member_count <1ms
scored-pool::submit_candidacy 7ms
other 3 dispatchables of the scored-pool pallet missing specs
session::purge_keys loop detected
session::set_keys missing specs
state-trie-migration::continue_migrate missing specs
state-trie-migration::control_auto_migration <1ms
state-trie-migration::force_set_progress 2ms
state-trie-migration::set_signed_max_limits <1ms
other 2 dispatchables of the state-trie-migration pallet loop detected
sudo::set_key 7ms
sudo::sudo 15ms
sudo::sudo_as 21ms
sudo::sudo_unchecked_weight 15ms
system::fill_block 1ms
system::remark 1ms
system::kill_storage loop detected
system::set_storage loop detected
other 5 dispatchables of the system pallet missing specs
tips::retract_tip 7ms
other 5 dispatchables of the tips pallet missing specs
all 3 dispatchables of the transaction-storage pallet missing specs
treasury::approve_proposal 2ms
treasury::propose_send 7ms
treasury::spend 7ms
other 2 dispatchables of the treasury pallet missing specs
all 4 dispatchables of the whitelist pallet missing specs

Table 5: Results of the tool’s benchmarks on some of the other pallets of the FRAME library, the
timing average is done over 100 rounds.

48



Analysis results on the initial 5 pallets
Dispatchable Avg time over 100 runs

or reason for analysis failure
balances::force_transfer 9ms
balances::force_unreserve 1ms
balances::set_balance 22ms
balances::transfer 6ms
balances::transfer_all 6ms
balances::transfer_keep_alive 6ms
identity::add_registrar 8ms
identity::add_sub 18ms
identity::cancel_request 76ms
identity::clear_identity loop detected
identity::kill_identity loop detected
identity::provide_judgment 173ms
identity::quit_sub 8ms
identity::remove_sub 19ms
identity::rename_sub 9ms
identity::request_judgement 166ms
identity::set_account_id 11ms
identity::set_fee 8ms
identity::set_fields 9ms
identity::set_identity 109ms
identity::set_subs loop detected
multisig::approve_as_multi 555ms
multisig::as_multi 553ms
multisig::as_multi_threshold_1 30ms
multisig::cancel_as_multi 41ms
utility::as_derivative 15ms
utility::batch loop detected
utility::batch_all loop detected
utility::dispatch_as 15ms
utility::force_batch loop detected
vesting::force_vested_transfer 31ms
vesting::merge_schedules 55ms
vesting::vest 48ms
vesting::vested_other 50ms
vesting::vested_transfer 30ms

Table 4: Results of the tool’s benchmarks on the 5 initial goal pallets, the timing average is done
over 100 rounds.
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1 # <weight>
2 - ‘O(R)‘ where ‘R‘ registrar-count (governance-bounded and code-bounded).
3 - One storage mutation (codec ‘O(R)‘).
4 - One event.
5 # </weight>

1 ********************************
2 Summary for dispatchable pallet::Pallet::<T>::add_registrar
3 == bytes read ==
4 VALUEOF(MaxRegistrars::get()) * SIZEOF(RegistrarInfo)
5
6 == bytes written ==
7 VALUEOF(MaxRegistrars::get()) * SIZEOF(RegistrarInfo)
8
9 == bytes deposited ==

10 SIZEOF(pallet::Event::RegistrarAdded)
11
12 == steps executed ==
13 O(VALUEOF(MaxRegistrars::get()))
14 + 72
15
16 ********************************

Figure 12: Weights complexity computed by the benchmark module and the tool’s output for the
dispatchable pallet::Identity::add_registrar.

8 Conclusion

8.1 Objectives

We presented saft, the first static analysis tool in the Substrate ecosystem, dedicated to the
extraction of the worst case execution resource consumption out of arbitrary pallets. The tool uses
a semi-formal approach to tackle the problem, we automated the process with symbolic execution
and abstract interpretation as much as possible but some manual specifications were needed at
some point. The tool starts by building a minimal internal representation of the pallet and then
uses a combination of symbolic execution and abstract interpretation to build some cost expressions
that will represent the number of bytes that are read/written from/to the storage, the number of
bytes deposited by the event emitted by the dispatchable execution, as well as the algorithmic
worst case complexity of the execution.

It provides a useful side information to the developers so they can check that the weights they
assigned to their dispatchables take the worst case into account, and help them fine-tune their
benchmark if not.

Moreover, if a motivated developer finds any use for another static analysis The tool can also
be used as a base framework for implementing other kinds of pallet-level program analysis.

8.2 Discussion

In this section, we come back on some implementation choices we made.

Monomorphization. The initial choice that we made of running the analysis on the pallet level
was a good start for grasping the complexity of both Rust MIR and the Substrate architecture.
However, we stumbled on the fact that when the MIR is still generic, on the Runtime in our case,
monomorphization does not happen and some of the MIR cannot be made available. This lead
us to the need for manual specifications and with it, a loss of precision and sometimes dangling
soundness guarantees.

Even with those imperfections in mind, we were usually able to relate the tool’s output with the
weights benchmarking provided by Substrate, so the analyzer is still able to capture the complexity
of the different dispatchables in a meaningful manner and provide useful input to the developers

50



to help them fine-tune their benchmarks.

References abstraction. As mentioned in 6.4.5, references and pointers are replaced by their
underlying type for simplicity. This is fine in the context of our simple analysis but does not reflect
the concrete semantics of Rust. This would be problematic for more complex and precise analysis.
Ideally, the types and memory models should be as close as possible to the concrete semantics,
but due to the limited 6 months span of this project, we decided to stick to a simpler type modeling.

Loops and recursion support. Fully automatic loop and recursion support was not imple-
mented in the tool, mainly because of time constraints, but also because a lot of the dispatchables
from the five initially supported pallets do not use such control flow structures. We wanted to
put the main effort into providing a meaningful analysis that would work with the majority of the
pallets before adding more complex features to the tool, like loop invariants resolution. However,
partial support for loops is available through the use of manual specifications, where the user can
set a rather precise bound from the context.

Results. The initial goal of achieving the analysis of the five listed pallets in Section 7.1 was
reached. We decided not to write specifications for the 6 dispatchables still containing a loop
because it was detected in the entry function, so the result of the analysis would be directly the
specifications, which does not make much sense for (semi-)automatic analysis.

8.3 Future Development
We strongly believe that with more development, the tool can really contribute to the ecosystem.

The first development we have in mind would be to achieve more precise bounds, with a lesser need
for manual specification. This can be done through Runtime level analysis, with more symbolic
execution, or another way to allow the compiler to enable full monomorphization of the MIR.
Another optimization would be to consider the on-chain state as a function input parameter as
well, and use symbolic execution to track the changes.

In a second step, the tool could implement a generic support for loops and recursion. We can
imagine that it could allow the users to annotate the source code in order to help the analysis
resolve loops invariants.

Finally, more research can be done on the tool and the development of a formal execution cost
model and try to statically infer the weights, without using benchmarking. This could greatly
benefit the ecosystem by removing the burden of assigning weights to the developer, by relying on
a formal cost model.

Personal challenges. During the 6 months of this thesis I ran into multiple challenges of all
sorts. The biggest ones were to get a full picture of the extrinsics execution path and to get
familiar with the compiler. Substrate’s architecture is quite complex and heavily relies on macros
and polymorphic function calls that are not always trivial to follow. Of course, I could not explore
in details the whole compiler, but the MIR part is already big enough to be a challenge on its own.
A lot of time has been put into understanding the compiler’s API and the different data structures
that are used in the MIR in order to efficiently leverage them in the analysis.

On the more technical side, some other challenges were the cost language optimization, in
particular the optimization for the Max operation where we wanted to "resolve" it as much as
possible to lower the complexity of the final output. The implementation of the types and calling
contexts tracking was not trivial either as the underlying structure had to mimic the structure
of the types and the transformers had to be carefully designed. A last example of a challenge I
encountered was of course Rust itself, whose limitations references and lifetimes can give a hard
time if we are not careful.

I learned a lot during this thesis, it was a very interesting project where I had to discover and
understand different parts (Rust, Substrate, static analysis, ...) and make them work together. I
am glad to have reached the state in which the project currently is, since we can put the choices
we made in perspective and point to solutions to improve them. Moreover, the current state allows
interesting developments in the future.
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A List of implemented manual specifications

core::slice::
binary_search_by

binary_search_by_key
cmp::SliceContains::slice_contains

custom specifications
pallet_multisig::ensure_sorted_and_insert

frame_system::
ensure_none
ensure_root

ensure_signed
pallet::Pallet::block_number

pallet::Pallet::extrinsinc_index
pallet::Pallet::deposit_event

parity_scale_codec::
Encode::using_encoded

Decode::decode

sp_io::
hashing::blake2_256

sp_runtime::traits::
CheckedMul::checked_mul

Convert::convert
One::one

StaticLookup::lookup
StaticLookup::unlookup

Saturating::saturating_add
Saturating::saturating_mul
Saturating::saturating_sub

TrailingZeroInput::new
Zero::is_zero
Zero::zero
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frame_support::
BoundedVec::get_mut
BoundedVec::remove
BoundedVec::retain

BoundedVec::try_insert
BoundedVec::try_push

dispatch::Dispatchable::dispatch
dispatch::GetDispatchInfo::get_dispatch_info

dispatch::UnfilteredDispatchable::dispatch_bypass_filter
pallet_prelude::StorageDoubleMap::get

pallet_prelude::StorageDoubleMap::insert
pallet_prelude::StorageDoubleMap::remove
pallet_prelude::StorageDoubleMap::try_get
pallet_prelude::StorageMap::contains_key

pallet_prelude::StorageMap::get
pallet_prelude::StorageMap::insert
pallet_prelude::StorageMap::mutate
pallet_prelude::StorageMap::remove
pallet_prelude::StorageMap::take

pallet_prelude::StorageMap::try_get
pallet_prelude::StorageMap::try_mutate

pallet_prelude::StorageMap::try_mutate_exists
pallet_prelude::StorageValue::append

pallet_prelude::StorageValue::decode_len
pallet_prelude::StorageValue::exists
pallet_prelude::StorageValue::get
pallet_prelude::StorageValue::kill

pallet_prelude::StorageValue::mutate
pallet_prelude::StorageValue::put
pallet_prelude::StorageValue::set

pallet_prelude::StorageValue::try_append
pallet_prelude::StorageValue::try_get

pallet_prelude::StorageValue::try_mutate
StorageMap::get

StorageValue::get
traits::Currency::transfer

traits::EnsureOrigin::ensure_origin
traits::EnsureOrigin::try_origin

traits::fungible::Inspect::reducible_balance
traits::Get::get

traits::LockableCurrency::remove_lock
traits::LockableCurrency::set_lock

traits::OriginTrait::set_caller_from
traits::ReservableCurrency::can_reserve

traits::ReservableCurrency::repatriate_reserved
traits::ReservableCurrency::reserve

traits::ReservableCurrency::reserved_balance
traits::ReservableCurrency::slash_reserved

traits::ReservableCurrency::unreserve
traits::VestingSchedule::add_vesting_schedule

traits::VestingSchedule::can_add_vesting_schedule
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std::
alloc::Allocator::allocate

alloc::Allocator::deallocate
alloc::Allocator::exchange_malloc

alloc::handle_alloc_error
clone::Clone::clone

cmp::Ord::cmp
cmp::PartialEq::eq

cmp::PartialOrd::partial_cmp
convert::AsRef::as_ref
convert::From::from
convert::Into::into

convert::TryInto::try_into
default::Default::default

intrinsincs::add_with_overflow
intrinsincs::assert_inhabited

intrinsincs::assume
intrinsincs::min_align_of_val
intrinsincs::mul_with_overflow
intrinsincs::ptr_guaranteed_eq
intrinsincs::saturating_add
intrinsincs::size_of_val
intrinsincs::transmute
intrinsincs::unlikely

iter::IntoIterator::into_iter
iter::Iterator::collect

iter::Iterator::enumerate
iter::Iterator::filter

iter::Iterator::filter_map
ops::Add::add

ops::BitOr::bitor
ops::Deref::deref

ops::Div::div
ops::Fn::call

ops::FnMut::call_mut
ops::FnOnce::call_once

ops::FromResidual::from_residual
ops::Index::index

ops::Index::index_mut
ops::Mul::mul
ops::Rem::rem
ops::Sub::sub

ops::SubAssign::sub_assign
ops::Try::branch

result::unwrap_failed
slice::SliceIndex::get

slice::to_vec
vec::Vec::insert

vec::Vec::
vec::Vec::new
vec::Vec::push
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