JASPER

design automation

Leveraging Formal Verification
Throughout the Entire Design Cycle

Verification Futures

Page 1 | © 2012, Jasper Design Automation

Objectives for This Presentation

= Highlight several areas where formal verification has been

successfully used throughout the design cycle

= Provide some insight for identifying good opportunities for

applying formal verification for maximal ROI

= Show some of the innovations in formal verification that

have enabled broader adoption and higher project benefits

Page 2 | © 2012, Jasper Design Automation

About Jasper

= Jasper Design Automation

- Leading provider of SoC design and verification solutions leveraging

advanced formal technologies

= Jasper Users

- Include system architects, logic designers, verification engineers,

and silicon bring-up teams

= Jasper's Success

- Our year-to-year growth based on successful, proven technologies;

excellent AE support; and deployment-driven business model

Page 3 | © 2012, Jasper Design Automation

What Is the Perception of Formal Verification?

= |tis a point tool
= One needs to have a PhD to use it

= Verifies only module/block-level RTL
- Can verify only small portions of the design (e.g., FIFO overflow)
= Need to write 100s/1000s of properties

- Need to learn a new language to do this

= Involves a deep learning curve on property languages

= Debugging failure traces is difficult and time consuming

This perception is not the reality!

Page 4 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

Property Synthesis (Structural / Behavioral)

* Automated assertion generation — Intelligent Proof Kits and Verification IPs

* Functional pre-defined property generation H , H = Certification of AMBA 4/ACE checkers

= Inference & synthesis of properties from RTL & simulation — = Popular standard protocols

= |dentification of coverage holes — = Configurable, illustrative, optimized for formal

- Formal Property Verification
= Protocol certification

= Executable Spec - RTL Development

. End doacket i . * Design IP documentation : » Waveform generation from intent
nd-to-end packet integrity » Cross references among » Designer-based verification w/o

= Asynchronous clocking effects document, waveform, testbench

. Assertlon—ba‘sgd ver|f|c§t|on‘ ' and RTL = Design trade-off analysis
= Proofs for critical functionalities

) i X . = Configurable waveforms
= Debug isolation and fix validation
Connectivity Verification == X-Propagation Verification

" Chip-level connectivity * Unexpected X Detection
= Conditional connection with latency and debugging

CSR Verification
= Automated register verification

- 4 Post-Silicon Debugging Other SoC-Related Applications
'-‘-J"?L_Iil = Executable spec = Failure signature matching » Glitch detection
== « Absence of dF:eadlock = * Root cause isolation * Multi-cycle path verification
= Candidate cause elimination * Low power verification
= Cache coherency

= Validation of fixes before re-spin

_ /
... and many more

Page 5 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

e Formal Property Verification
Property Synthesis (Structural / Behavioral) 'Tradltlonal apphca'[IOI’] Of fOI’ma|
= Automated assertion generation :
= Functional pre-defined property generation °More than JUSt bIOCk'IeveI CheCkS
= Inference & synthesis of properties from RTL & simula
* Identification of coverage holes = Configurable, illustrative, optimized for formal

i Formal Prolpert\'/errl'flcatlon - Executable Spec ~——— RTL Development
t | | b
2 . Er(;t(t)co sz lckatéc?nt it = Design IP documentation ' = Waveform generation from intent
nd-to-end packe |r1 eenty * Cross references among = Designer-based verification w/o
= Asynchronous clocking effects document, waveform, testbench
. Assertlon—ba.sgd verlflc'atlon‘ . and RTL = Design trade-off analysis
= Proofs for critical functionalities = Configurable waveforms

= Debugisolation and fix validatioy

Connectivity Verification = . X-Propagation Verification E CSR Verification

- Chip-!eyel connectiv.ity . * Unexpected X Detection » Automated register verification
= Conditional connection with latency and debugging

4 Post-Silicon Debugging
‘;]”EL_J = Failure signature matchin
=Wy U g g
=8 xecutable spec =~ = Root cause isolation

= Absence of deadlock
= Cache coherency

Other SoC-Related Applications
= Glitch detection

= Multi-cycle path verification
= Candidate cause elimination * Low power verification

= Validation of fixes before re-spin

_ /
... and many more

Page 6 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

e Formal handles both x-optimism

Property Synthesis (Structural / Behavioral) and X'peSS| mism y When

= Automated assertion generation

= Functional pre-defined property generation Simu |at|0n IS nOt hel pl ng

= Inference & synthesis of properties from RTL & simulation

* Identification of coverage holes ; = Configurable, illustrative, optimized for formal

- Formal Property Verification

. = Executable Spec
* Protocol certification

RTL Development

= . b S oacket _ = Design IP documentation : * Waveform generation from intent
nd-to-end packet integrity » Cross references among » Designer-based verification w/o
= Asynchronous clocking effects document, waveform, testbench
" Assertion-based verification and RTL » Design trade-off analysis

= Proofs for critical functionalities

) i X . = Configurable waveforms
= Debug isolation and fix validation

Connectivity Verification =~ X-Propagation Verification

" Chip-level connectivity * Unexpected X Detection
= Conditional connection with latency and debugging

4 Post-Silicon Debugging
'-‘—FEYL_I ‘ = Failure signature matching
=8 & Executable spec =~ = Root cause isolation

= Absence of deadlock
= Cache coherency

CSR Verification
= Automated register verification

Other SoC-Related Applications
= Glitch detection

= Multi-cycle path verification
= Candidate cause elimination * Low power verification

= Validation of fixes before re-spin

... and many more

Page 7 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

4 Formal increases SoC integration
' Property Synthesis (Structural / Behavioral) produc‘“vrty
= Automated assertion generation
= Functional pre-defined property generation .
= |nference & synthesis of properties from RTL & simulation = — L » Popular standard protocols
* Identification of coverage holes — = Configurable, illustrative, optimized for formal

=== Formal Property Verification

- | certificati = Executable Spec =7 RTLDevelopment
5 . Erc()jtoco czrtl |ckat|<?n . * Design IP documentation : » Waveform generation from intent
nd-to-end packet integrity * Cross references among » Designer-based verification w/o
= Asynchronous clocking effects document, waveform, testbench
= Assertion-based verification and RTL = Design trade-off analysis

= Proofs for critical functionalities

) i X . = Configurable waveforms
= Debug isolation and fix validation

Connectivity Verification = . X-Propagation Verification E CSR Verification

- Chip-!eyel connectiv.ity . * Unexpected X Detection » Automated register verification
= Conditional connection with latency and debugging

4 Post-Silicon Debugging
t;FEH ‘ = Failure signature matching
o~ == n
=8 & Executable spec =~ = Root cause isolation

= Absence of deadlock
= Cache coherency

Other SoC-Related Applications
= Glitch detection

= Multi-cycle path verification

= Validation of fixes before re-spin

_ /
... and many more

Page 8 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

Formal provides visibility into a

=,
= ____)_Liil * Executable spec

&

.

Property Synthesis (Structural / Behavioral)
= Automated assertion generation

= |dentification of coverage holes

design, isolating relevant areas

= Functional pre-defined property generation
= Inference & synthesis of properties from RTL & simulation

- Formal Property Verification
= Protocol certification
= End-to-end packet integrity
= Asynchronous clocking effects
= Assertion-based verification
= Proofs for critical functionalities
= Debug isolation and fix validation

Executable Spec

= Design IP documentation

= Cross references among
document, waveform,
and RTL

= Configurable waveforms

Connectivity Verification
= Chip-level connectivity
= Conditional connection with latency

X-Propagation Verification
= Unexpected X Detection
and debugging

effectively

= Absence of deadlock
= Cache coherency

Failure signature matching

af Post-Silicon Debugging
‘ = Root cause isolation

Candidate cause elimination
Validation of fixes before re-spin

Popular standard protocols
Configurable, illustrative, optimized for formal

RTL Development

= Waveform generation from intent

= Designer-based verification w/o
testbench

= Design trade-off analysis

CSR Verification
= Automated register verification

Other SoC-Related Applications
= Glitch detection

= Multi-cycle path verification
= Low power verification

... and many more

Page 9 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

Property Synthesis (Structural / Behavioral)

* Automated assertion generation — = Intelligent Proof Kits and Verification IPs
* Functional pre-defined property generation H EI » Certification of AMBA 4/ACE checkers
= |nference & synthesis of properties from RTL & simulation — » Popular standard protocols

* Identification of coverage holes = Configurable, illustrative, optimized for formal

=== Formal Property Verification

- | certificati Executable Spec =7 RTLDevelopment

. Erc()jtoco czrtl |ckat|<?n . * Design IP documentation : » Waveform generation from intent
nd-to-end packet integrity * Cross references among » Designer-based verification w/o

= Asynchronous clocking effects document, waveform, testbench

= Assertlon—ba‘sgd verlflcfa\tlon‘ ' and RTL
= Proofs for critical functionalities
= Debug isolation and fix validation

= Design trade-off analysis
= Configurable waveforms

Connectivity Verification == X-Propagation Verification

" Chip-level connectivity * Unexpected X Detection
= Conditional connection with latency and debugging

Post-Silicon Debugging P
IJ«E)-H:' . Exccutable spec ‘ = Failure signaturasmaatehiag l"-’;’h—.—.
- | o Beausblesper sk SYnergy from various sources of

= Cache coherency Candidate ca

gL properties at various abstraction

CSR Verification
= Automated register verification

Other SoC-Related Applications

levels

... and many more

Page 10 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

Architecture
M Ode | | ng f @) Intelligent Proof Kits and Verification IPs
nulation ;l : d

= Certification of AMBA 4/ACE checkers
= Popular standard protocols
= Configurable, illustrative, optimized for formal

y N\

RTL

—— Forn Development
= Py . pn . ntent
e Formal Verification /o
. Functional throughout the Entire
c ot Verification Design Cycle
onnectivit
= Chip-leve AT — AUtOMate
= Conditio . debugging]
SoC Integration .
pbn Debugging Other SoC-Related Applications
signature matching -tGIitchdetecttion S
ause isolatio‘n. ‘ ; . Multi—cyclepat.h‘ver‘iﬁcation
Post-Silicon |l ARt oot
\- Debugging /

Page 11 | © 2012, Jasper Design Automation

Formal Verification throughout the Entire Design Cycle

X-PROPAGATION VERIFICATION

Page 12 | © 2012, Jasper Design Automation

Where Do Xs Come From?

Non-resettable flop RTL
Unknown X
Values at Input
Outputs
——
——

Explicit X-assignments in RTL

= Unknown values at design inputs
Check input values and propagate Xs if needed
= Non-resettable memory elements
Expensive to make all elements explicitly resettable
RTL intent is that “write” occurs before any “read”
= Explicit X-assignments in RTL
For optimization purposes (e.g., some address bits are “don’t care” under some conditions)
To properly propagate Xs to upstream logic to catch Xs with proper checker in simulation

Page 13 | © 2012, Jasper Design Automation

Detecting Unexpected X-Propagation

Non-resettable Flop

Unknown l

Values at Input
/ l Outputs should
not be X

Important Data
should not be X

Explicit X-assignments In RTL

= Cannot rely on simulation to detect unexpected X propagation
Simulation behavior of X does not accurately portray the behavior of the circuit
Simulation is not exhaustive

= Formal can be used, if configured properly

Sisunknown construct in SystemVerilog Assertion language (SVA)

Special formal engines with correct X semantics, not just Boolean formal engines

Page 14 | © 2012, Jasper Design Automation

X-Propagation Validation with Formal

= Exhaustively checks whether Xs can propagate to some target signals
- Formally optimized treatment of “X” with “smart-x-modeling”
— Avoids performance overhead of brute-force, 3-valued analysis
- Xs are treated as either 0 or 1, reflecting actual silicon behavior

— No missed bugs due to either X-optimism or X-pessimism

= Functional errors detected include:

- Unknown values propagating to output data buses for “valid” data

as indicated by the data enable signals
- Incorrect clock-gating not easily found in simulation

- Uninitialized registers affecting control logic

Page 15 | © 2012, Jasper Design Automation

Formal Verification throughout the Entire Design Cycle

SOC INTEGRATION

SoC Integration Verification with Formal

= Automated register verification

- Prove data integrity of register fields and reset values

= Glitch verification

- ldentify and verify possible clock glitches in the design

= Multi-cycle path verification

- Accurately verify multi-cycle path waivers

Chip-level connectivity

- Exhaustively verify that RTL matches connectivity definition

= Other applications

Page 17 | © 2012, Jasper Design Automation

Register Verification with End-to-End Properties

= Given a DUV with register space accessible by:
- Standard interface (AHB, OCP, etc.) or proprietary interface (parallel, serial)
= Automated flow provides better verification
Saves project time and human time
= To prove end-to-end properties such as:

Data integrity of register fields (exhaustive)

— l.e., data read from a register equals previously updated data (write, reset, etc.)

Checks/assertions on Interface
programming
sequence behaviors

Page 18 | © 2012, Jasper Design Automation

Register Definition

May be captured in different formats:

« Spreadsheet/CSV
* IP-XACT Let a tool or a script
e Custom text format translate this into formal-

. FEtc. friendly properties

ADDRESS 0x0001C

ACCESS_TYPE RW

RESET VALUE (0)(0]0]0]0]0]0]0]0)

--field

RESERVED31 BIT[31:21]
CONS_ID BIT[20:16]
RESERVED15 BIT[15:5]
PROD _ID BIT[4:0]

Page 19 | © 2012, Jasper Design Automation

Comprehensive Ranges of Register Behaviors

= Asingle register (a single address) might ~ * ACCess Types
- R:readonly

RW: read write
RS: read and setto 1
Access types - RC: read and clear to O

_ RR: read and reset to reset value
Widths RO: read always see value ones
Reset values - RZ:read always see value zeros
Etc.

have numerous fields, and they can have
different attributes:

Interface
model

Properties

Page 20 | © 2012, Jasper Design Automation

Chip-Level Connectivity Verification Solution

= Exhaustively verifies that the RTL matches the connectivity definition

- Verify that point A is equivalent to point B (block or chip level)
as certain signals/modes can impact connections

- No other sighals/modes/settings can impact connections

- Important aspect of system integration of many IP’s

= Types of connection

« Structural, Boolean condition, temporal condition, and temporal
connection with latency and delay

= Allow fast and exhaustive verification

= Quickly reconfirm results (regressions) as RTL is being modified

« Automated flow allows early and frequent verification

Page 21 | © 2012, Jasper Design Automation

Chip-Level Connectivity Verification Flow

Top-level of SoC

T 1
1 1
1 1
} 1
1 }
1 1
1 1
1 1
1 1
} Cond 1 F v |aapd caten Halal - _lmradpoes
1 g e Dol Puedes o e
: | B BB G Connectivity proofs
1 1 Cavsiry | ATL Exoasion | %o Vet | 08 B e 2
1 1 e S e e [——
IR VUSRI A o i e (assertions and cove
1w bty ek e Fawmriry
W [sarmo| seraowm 1 O | pENT SN
pii_sinly e el e L ol ol o Al rrs by | b
o iy s o aLiy [y rerm—
iy, e Rp s s [ey i A Beyprd oy (-
L i -
conamou il ™ o e E
m"w :-';;: L K I.r“"_l' LR ET T
Compiou it el_rngm_oody L
il | " i “
] T -8 0 F Touien [
lria] | [ne [oo]
||||. :I] A bries] 1

Ele Eot view Tools Window Help
s$BE EacmBEEEE = ¢ > O |=FE -0

Waveforms
with connectivity
[conditions

Connectivity map ~

la nauRsTo [fine first cycle, and data is at
f second cycle
! HREADYID
HSELD
HTRANSD
HWRITED Visualization Constraints
& HWDATAD Hame [Data [=
P 3 1 Eme << Targal = Covar [(n_limé_gof_data b= 1 20
7 e et B fra it 4 = iz ronf 1 b laxat s (in line and A 20
¥ Data 10 data bridge from 703400 Rl |.
0 Adidress from addr bridge Addrass receivad from AHE urite 3t pon |5 e
0 15 converted info a 64 bit date, with 5] Al
3 Data from data bAdge |y g aing the address, and (63 32)
lbeing misc control date [H8 write 1s observed at port
haviar AddrEssl o ma e adaress s ot
Behavlor DSTata dine first cycle, and data is at
Benavior Data foftne secand cycle
Behavior Address from addr bridge 1
il 3!
Visualize trace Froofready | Taol ready

Page 22 | © 2012, Jasper Design Automation PER

mation

SoC Integration Summary

= |dentify areas where automation is desired
= Both verification time and verification resource savings

= Exhaustive

= Areas that have been automated

- CSR verification
= Accurately verify multi-cycle path waivers

= Detect glitches in the design and generate optimal set of assertions

that can be used in simulation

= Exhaustively prove that RTL matches with connectivity definition

Page 23 | © 2012, Jasper Design Automation

Formal Verification throughout the Entire Design Cycle

RTL DEVELOPMENT AND
EXECUTABLE SPECIFICATION

Typical Designer-Based Verification

= Testbench and input stimulus are required to explore and verify design

behavior

- Usually unavailable at early design stage or smaller block levels

- Designer does not have time to create extensive tests

= No systematic method for confirming RTL functional scenarios as each

feature is added to the RTL code

- Usually done by eye-balling the RTL

= |nability to confidently customize an existing RTL block for multiple projects

This usually means designer-based
verification is not done

Page 25 | © 2012, Jasper Design Automation

Rethinking Designer Verification

Simulation Visualize

RTL waveform RTL waveform
—-Ii | f._ %
— = e

Testbench l *
T state == READ
ack =1 state == READ
/I\ ? ack=1

. Target
= Simulation
More of an “input driven” method, may not exercise desired behavior
- Wiggle the inputs to produce a desired behavior (trial and error)
= Visualize

- Specify the target and let the formal engines generate the stimulus (“output
driven” method)

Interactively add constraints to construct desired waveform

Page 26 | © 2012, Jasper Design Automation

Formal for RTL Development

= Designer-based verification w/o testbench

- Allows early RTL exploration without the need to generate input

stimulus
. Start with simple behaviors about the design
— cover line_eop
- Group simple behaviors together to build complex scenarios
- Write assertions about events that are always/never true
= Design trade-off analysis

- Behaviors and scenarios allow for easy incremental analysis and RTL
comparison tasks

= Higher quality RTL passed to other teams in the design/verification flow

Page 27 | © 2012, Jasper Design Automation

Complete Flow for RTL Designers

What-if analysis

E) Tt [x

Visualize design
behav|0r W/O testbench ime paam EEEEE o ol anE

RTL)

Debug failing
scenarios

o e wl 1

|Visualize trace

Functional scenario A :
assertion 5 violation

Functional scenario B : !
assertion 7 violation Combine and save

Functional scenario C...... mu|tip|e functional
Functional scenario D..... .
scenarios

1

- Scenario A
Scenario B
_ Database Scenario C

Scenario D

Compare saved
scenarios
against modified
RTL

RT |

Modified RTL

Page 28 | © 2012, Jasper Design Automation PER

sign automation

RTL Development Summary

= Conduct early RTL exploration w/o a testbench

= Store expected functional scenarios and validate against
modified RTL

= Perform design trade-off analysis while RTL is being

developed

= Properties developed at this stage live with the RTL and

are leveraged throughout the verification flow

Page 29 | © 2012, Jasper Design Automation

Formal Verification throughout the Entire Design Cycle

PROPERTY SYNTHESIS

Page 30 | © 2012, Jasper Design Automation

Properties for Design and Verification

= Critical to improve verification coverage, expose functional coverage holes

= Assertions “firing” point to bugs, reduce debugging time
— Traditional checkers can miss bugs

— Saves 50% debugging time, closer to RTL than checkers

= Writing properties can be difficult: it's an “art”

— White box: RTL designer writes
RTL implementation specific

Can overlap black box
— Black box: Verification engineer writes
Integration issues for modules. Closer to Spec
= Engineer can typically only write 5-10 properties a day

— Written correctly? — only know if used in simulation/formal

Page 31 | © 2012, Jasper Design Automation

Property Synthesis

= Sources of properties

. Structural
— Extracted from RTL
— No testbench required

— Valuable during RTL development

. Behavioral

— Extracted from simulation (with/without knowledge of RTL)

— Quality of properties directly tied to maturity and quality of the simulation

results

— Usually used in later stages of verification

Page 32 | © 2012, Jasper Design Automation

Structural Property Synthesis

= Properties can be automatically extracted from the RTL for

common structures without simulation results:
Non-synthesizable constructs
Unintentional latches
Out-of-range indexing

- Arithmetic overflow
Full and parallel case issues (for SystemVerilog and Verilog)
Dead code or unreachable blocks; Stuck at signals

Finite state machines (FSM)
— Livelock/deadlock states

— Reachable FSM states/transitions

Page 33 | © 2012, Jasper Design Automation

Behavioral Property Synthesis Flow

SVA Properties

Intelligent :
heuristics Constraints
Advan(_:ed formal fop—

B = analysis

; ! ; - Data mining

_ Simulation engines Covers

{ Reports]

Obtain simulation results with: Output SVA properties for:
« VCD/FSDB files « Simulation / emulation
« Link PLI with simulator Formal

Page 34 | © 2012, Jasper Design Automation

Behavioral Property Synthesis for Formal

= Module-interface properties:

- Extract assumptions about the interface

- Faster ramp-up time for the formal environment

= Multi-cycle properties (not limited to 1 or 2 cycles):

- High value assertions that may never fire in simulation

- Failing traces are significantly shorter and easier to debug with
formal

= Cross-hierarchical

- High-value assertions

- Formal can prove or disprove inter-block relationships

Page 35 | © 2012, Jasper Design Automation

Property Synthesis Summary

= Properties can be used as assumptions to quickly ramp up the

formal environment

= Covers provide confidence in design operation and can detect

overconstraints

= Formal can be leveraged during RTL design

Prove properties before code check-in

Remove common design errors before the start of validation cycle
= Should formally verify properties before including them in
simulation

If a cover cannot be exercised with formal, then it will never be hit in simulation

Failure traces for assertions are much shorter and easier to debug compared to

simulation

Page 36 | © 2012, Jasper Design Automation

Conclusion

= Formal has been expanded tremendously over the years

= Understanding the challenges in verification leads to great methodology
innovation in formal applications

= Integration of formal into mainstream verification flow causes many
innovations in the technology to enable wide use
= By focusing on the problems and challenges, formal can be applied
as part of the overall verification strategy
= |dentify areas where stimulus and coverage is the main bottleneck
= |dentify opportunity for automation to reduce project time and effort

= Focus on high-risk areas (critical and/or new functionalities) to maximize ROI
(return on investment)

= Working closely with formal vendors to solve new problems

Page 37 | © 2012, Jasper Design Automation

WWwWWw.jasper-da.com

Page 38 | © 2012, Jasper Design Automation

http://www.jasper-da.com
http://www.jasper-da.com
http://www.jasper-da.com

