
Page 1 | © 2012, Jasper Design Automation

Leveraging Formal Verification
Throughout the Entire Design Cycle

Verification Futures

Page 2 | © 2012, Jasper Design Automation

Objectives for This Presentation

 Highlight several areas where formal verification has been

successfully used throughout the design cycle

 Provide some insight for identifying good opportunities for

applying formal verification for maximal ROI

 Show some of the innovations in formal verification that

have enabled broader adoption and higher project benefits

Page 3 | © 2012, Jasper Design Automation

About Jasper

 Jasper Design Automation

• Leading provider of SoC design and verification solutions leveraging

advanced formal technologies

 Jasper Users

• Include system architects, logic designers, verification engineers,

and silicon bring-up teams

 Jasper’s Success

• Our year-to-year growth based on successful, proven technologies;

excellent AE support; and deployment-driven business model

Page 4 | © 2012, Jasper Design Automation

What Is the Perception of Formal Verification?

 It is a point tool

 One needs to have a PhD to use it

 Verifies only module/block-level RTL

• Can verify only small portions of the design (e.g., FIFO overflow)

 Need to write 100s/1000s of properties

• Need to learn a new language to do this

 Involves a deep learning curve on property languages

 Debugging failure traces is difficult and time consuming

This perception is not the reality!

Page 5 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

CSR Verification
 Automated register verification

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

X-Propagation Verification
 Unexpected X Detection

and debugging

… and many more

Page 6 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

CSR Verification
 Automated register verification

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

X-Propagation Verification
 Unexpected X Detection

and debugging

… and many more

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

Formal Property Verification

•Traditional application of formal

•More than just block-level checks

Page 7 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

CSR Verification
 Automated register verification

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

… and many more

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

X-Propagation Verification
 Unexpected X Detection

and debugging

Formal handles both x-optimism

and x-pessimism, when

simulation is not helping

Page 8 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

X-Propagation Verification
 Unexpected X Detection

and debugging

… and many more

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

CSR Verification
 Automated register verification

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Formal increases SoC integration

productivity

Page 9 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

CSR Verification
 Automated register verification

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

X-Propagation Verification
 Unexpected X Detection

and debugging

… and many more

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

Formal provides visibility into a

design, isolating relevant areas

effectively

Page 10 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

CSR Verification
 Automated register verification

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

X-Propagation Verification
 Unexpected X Detection

and debugging

… and many more

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Synergy from various sources of

properties at various abstraction

levels

Page 11 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

CSR Verification
 Automated register verification

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

X-Propagation Verification
 Unexpected X Detection

and debugging

RTL

Development

Functional

Verification

Formal Verification

throughout the Entire

Design Cycle

Post-Silicon

Debugging

Architecture

Modeling

SoC Integration

Page 12 | © 2012, Jasper Design Automation

X-PROPAGATION VERIFICATION
Formal Verification throughout the Entire Design Cycle

Page 13 | © 2012, Jasper Design Automation

Where Do Xs Come From?

Non-resettable flop

Z

X

Unknown

Values at Input
X

Explicit X-assignments in RTL

X

 Unknown values at design inputs

• Check input values and propagate Xs if needed

 Non-resettable memory elements

• Expensive to make all elements explicitly resettable

• RTL intent is that “write” occurs before any “read”

 Explicit X-assignments in RTL

• For optimization purposes (e.g., some address bits are “don’t care” under some conditions)

• To properly propagate Xs to upstream logic to catch Xs with proper checker in simulation

Outputs

RTL

Page 14 | © 2012, Jasper Design Automation

Detecting Unexpected X-Propagation

Non-resettable Flop

Z

X

Unknown

Values at Input
X

Explicit X-assignments In RTL

X
Outputs should
not be X

Important Data

should not be X

 Cannot rely on simulation to detect unexpected X propagation

• Simulation behavior of X does not accurately portray the behavior of the circuit

• Simulation is not exhaustive

 Formal can be used, if configured properly

• $isunknown construct in SystemVerilog Assertion language (SVA)

• Special formal engines with correct X semantics, not just Boolean formal engines

Page 15 | © 2012, Jasper Design Automation

X-Propagation Validation with Formal

 Exhaustively checks whether Xs can propagate to some target signals

• Formally optimized treatment of “X” with “smart-x-modeling”

– Avoids performance overhead of brute-force, 3-valued analysis

• Xs are treated as either 0 or 1, reflecting actual silicon behavior

– No missed bugs due to either X-optimism or X-pessimism

 Functional errors detected include:

• Unknown values propagating to output data buses for “valid” data

as indicated by the data enable signals

• Incorrect clock-gating not easily found in simulation

• Uninitialized registers affecting control logic

Page 16 | © 2012, Jasper Design Automation

SOC INTEGRATION
Formal Verification throughout the Entire Design Cycle

Page 17 | © 2012, Jasper Design Automation

SoC Integration Verification with Formal

 Automated register verification

• Prove data integrity of register fields and reset values

 Glitch verification

• Identify and verify possible clock glitches in the design

 Multi-cycle path verification

• Accurately verify multi-cycle path waivers

 Chip-level connectivity

• Exhaustively verify that RTL matches connectivity definition

 Other applications

Page 18 | © 2012, Jasper Design Automation

Register Verification with End-to-End Properties

RTL
InterfaceChecks/assertions on

programming

sequence behaviors
Registers

 Given a DUV with register space accessible by:

• Standard interface (AHB, OCP, etc.) or proprietary interface (parallel, serial)

 Automated flow provides better verification

• Saves project time and human time

 To prove end-to-end properties such as:

• Data integrity of register fields (exhaustive)

– I.e., data read from a register equals previously updated data (write, reset, etc.)

Page 19 | © 2012, Jasper Design Automation

Register Definition

May be captured in different formats:

• Spreadsheet/CSV

• IP-XACT

• Custom text format

• Etc.EGISTER “IDT_AD”

ADDRESS 0x0001C

ACCESS_TYPE RW

RESET_VALUE 0x00000000

--field

RESERVED31 BIT[31:21]

CONS_ID BIT[20:16]

RESERVED15 BIT[15:5]

PROD_ID BIT[4:0]

...

Let a tool or a script

translate this into formal-

friendly properties

Page 20 | © 2012, Jasper Design Automation

Comprehensive Ranges of Register Behaviors

 Access Types

• R: readonly

• RW: read write

• RS: read and set to 1

• RC: read and clear to 0

• RR: read and reset to reset value

• RO: read always see value ones

• RZ: read always see value zeros

• Etc.

 A single register (a single address) might

have numerous fields, and they can have

different attributes:

• Access types

• Widths

• Reset values

Properties
Interface

model

RTL

Registers

Page 21 | © 2012, Jasper Design Automation

Chip-Level Connectivity Verification Solution

 Exhaustively verifies that the RTL matches the connectivity definition

• Verify that point A is equivalent to point B (block or chip level)

as certain signals/modes can impact connections

• No other signals/modes/settings can impact connections

• Important aspect of system integration of many IP’s

 Types of connection

 Structural, Boolean condition, temporal condition, and temporal

connection with latency and delay

 Allow fast and exhaustive verification

 Quickly reconfirm results (regressions) as RTL is being modified

 Automated flow allows early and frequent verification

Page 22 | © 2012, Jasper Design Automation

Chip-Level Connectivity Verification Flow

Waveforms

with connectivity

conditions

Connectivity proofs
(assertions and covers)

Connectivity map

cond
A

RTL

Top-level of SoC

B

Page 23 | © 2012, Jasper Design Automation

SoC Integration Summary

 Identify areas where automation is desired

 Both verification time and verification resource savings

 Exhaustive

 Areas that have been automated

• CSR verification

 Accurately verify multi-cycle path waivers

 Detect glitches in the design and generate optimal set of assertions

that can be used in simulation

 Exhaustively prove that RTL matches with connectivity definition

Page 24 | © 2012, Jasper Design Automation

RTL DEVELOPMENT AND
EXECUTABLE SPECIFICATION

Formal Verification throughout the Entire Design Cycle

Page 25 | © 2012, Jasper Design Automation

Typical Designer-Based Verification

 Testbench and input stimulus are required to explore and verify design

behavior

• Usually unavailable at early design stage or smaller block levels

• Designer does not have time to create extensive tests

 No systematic method for confirming RTL functional scenarios as each

feature is added to the RTL code

• Usually done by eye-balling the RTL

 Inability to confidently customize an existing RTL block for multiple projects

This usually means designer-based

verification is not done

Page 26 | © 2012, Jasper Design Automation

Rethinking Designer Verification

 Simulation

• More of an “input driven” method, may not exercise desired behavior

• Wiggle the inputs to produce a desired behavior (trial and error)

 Visualize

• Specify the target and let the formal engines generate the stimulus (“output

driven” method)

• Interactively add constraints to construct desired waveform

Simulator

RTL

Testbench

Simulation

waveform

VisualizeTM

RTL

state == READ

ack = 1

Visualize

waveform

Target

state == READ

ack = 1

Page 27 | © 2012, Jasper Design Automation

Formal for RTL Development

 Designer-based verification w/o testbench

• Allows early RTL exploration without the need to generate input

stimulus

• Start with simple behaviors about the design

– cover line_eop

• Group simple behaviors together to build complex scenarios

• Write assertions about events that are always/never true

 Design trade-off analysis

• Behaviors and scenarios allow for easy incremental analysis and RTL

comparison tasks

 Higher quality RTL passed to other teams in the design/verification flow

Page 28 | © 2012, Jasper Design Automation

Complete Flow for RTL Designers

RTL

Database

Scenario A

Scenario B

Scenario C

Scenario D

Functional scenario A :

assertion 5 violation

Functional scenario B :

assertion 7 violation

Functional scenario C……

Functional scenario D…..

RTL’

What-if analysis

Debug failing

scenarios

Combine and save

multiple functional

scenarios

Modified RTL

Visualize design

behavior w/o testbench

Compare saved

scenarios

against modified

RTL

Page 29 | © 2012, Jasper Design Automation

RTL Development Summary

 Conduct early RTL exploration w/o a testbench

 Store expected functional scenarios and validate against

modified RTL

 Perform design trade-off analysis while RTL is being

developed

 Properties developed at this stage live with the RTL and

are leveraged throughout the verification flow

Page 30 | © 2012, Jasper Design Automation

PROPERTY SYNTHESIS
Formal Verification throughout the Entire Design Cycle

Page 31 | © 2012, Jasper Design Automation

Properties for Design and Verification

 Critical to improve verification coverage, expose functional coverage holes

 Assertions “firing” point to bugs, reduce debugging time

– Traditional checkers can miss bugs

– Saves 50% debugging time, closer to RTL than checkers

 Writing properties can be difficult: it’s an “art”

– White box: RTL designer writes

 RTL implementation specific

 Can overlap black box

– Black box: Verification engineer writes

 Integration issues for modules. Closer to Spec

 Engineer can typically only write 5-10 properties a day

– Written correctly? – only know if used in simulation/formal

Page 32 | © 2012, Jasper Design Automation

Property Synthesis

 Sources of properties

• Structural

– Extracted from RTL

– No testbench required

– Valuable during RTL development

• Behavioral

– Extracted from simulation (with/without knowledge of RTL)

– Quality of properties directly tied to maturity and quality of the simulation

results

– Usually used in later stages of verification

Page 33 | © 2012, Jasper Design Automation

Structural Property Synthesis

 Properties can be automatically extracted from the RTL for

common structures without simulation results:

• Non-synthesizable constructs

• Unintentional latches

• Out-of-range indexing

• Arithmetic overflow

• Full and parallel case issues (for SystemVerilog and Verilog)

• Dead code or unreachable blocks; Stuck at signals

• Finite state machines (FSM)

– Livelock/deadlock states

– Reachable FSM states/transitions

• …

Page 34 | © 2012, Jasper Design Automation

Behavioral Property Synthesis Flow

RTL • Intelligent

heuristics

• Advanced formal

analysis

• Data mining

engines

Obtain simulation results with:

• VCD/FSDB files

• Link PLI with simulator

SVA Properties

Asserts

Constraints

Reports

CoversSimulation

Output SVA properties for:

• Simulation / emulation

• Formal

Page 35 | © 2012, Jasper Design Automation

Behavioral Property Synthesis for Formal

 Module-interface properties:

• Extract assumptions about the interface

• Faster ramp-up time for the formal environment

 Multi-cycle properties (not limited to 1 or 2 cycles):

• High value assertions that may never fire in simulation

• Failing traces are significantly shorter and easier to debug with

formal

 Cross-hierarchical

• High-value assertions

• Formal can prove or disprove inter-block relationships

Page 36 | © 2012, Jasper Design Automation

Property Synthesis Summary

 Properties can be used as assumptions to quickly ramp up the

formal environment

 Covers provide confidence in design operation and can detect

overconstraints

 Formal can be leveraged during RTL design

• Prove properties before code check-in

• Remove common design errors before the start of validation cycle

 Should formally verify properties before including them in

simulation

• If a cover cannot be exercised with formal, then it will never be hit in simulation

• Failure traces for assertions are much shorter and easier to debug compared to

simulation

Page 37 | © 2012, Jasper Design Automation

Conclusion

 Formal has been expanded tremendously over the years

 Understanding the challenges in verification leads to great methodology

innovation in formal applications

 Integration of formal into mainstream verification flow causes many

innovations in the technology to enable wide use

 By focusing on the problems and challenges, formal can be applied

as part of the overall verification strategy

 Identify areas where stimulus and coverage is the main bottleneck

 Identify opportunity for automation to reduce project time and effort

 Focus on high-risk areas (critical and/or new functionalities) to maximize ROI

(return on investment)

 Working closely with formal vendors to solve new problems

Page 38 | © 2012, Jasper Design Automation

www.jasper-da.com

http://www.jasper-da.com
http://www.jasper-da.com
http://www.jasper-da.com

