
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Results on Sparse Integer Programming and
Geometric Independent Sets

Jana Tabea CSLOVJECSEK

Thèse n° 10 125

2023

Présentée le 3 mars 2023

Prof. C. Hongler, président du jury
Prof. F. Eisenbrand, directeur de thèse
Prof. A. Sebo, rapporteur
Dr K.-M. Klein, rapporteur
Prof. M. Kapralov, rapporteur

Faculté des sciences de base
Chaire d’optimisation discrète
Programme doctoral en mathématiques

Planning is stupid and you should just

make it up as you go along.

— North of the Border

To my family and friends.

Abstract

An integer linear program is a problem of the form max{cᵀx : Ax = b, x ≥ 0, x ∈ Zn}, where

A ∈Zn×m , b ∈Zm , and c ∈Zn . Solving an integer linear program is NP-hard in general, but

there are several assumptions for which it becomes fixed parameter tractable. One example are

block-structured integer programs, which exhibits a (recursive) block structure: The problem

decomposes into independent and efficiently solvable sub-problems, if a small number of

rows or columns are deleted from the constraint matrix. Prominent examples are 2-stage

stochastic integer programs, n-fold integer programs and their generalizations. Previously

known algorithms for these problems were based on the augmentation framework, a variant

of local search tailored to integer programming. We propose a different approach. We provide

new proximity bounds, independent of the number of sub-problems, for both n-fold and

2-stage stochastic integer programming. Further, we show that the relaxation can be solved

efficiently via an adaptation of a parametric search framework.

We apply our techniques to n-fold and 2-stage integer programming, and integer programming

with bounded primal or dual treedepth. For these cases, we obtain strongly polynomial

algorithms, which are near-linear in the dimension of the problem. Moreover, unlike the

augmentation algorithms, our approach is highly parallelizable.

For the second part of this thesis, the focus is shifted to a different NP-hard problem, the

maximum (weight) independent set problem. We consider intersection graphs of axis-parallel

rectangles or segments, both in the weighted and unweighted case. Given a set of weighted

axis-parallel rectangles or segments, the task is to find a subset of pairwise non-intersecting

objects with the maximum possible total weight. For weighted rectangles, the best-known

polynomial-time approximation algorithm achieves an approximation factor of O(loglog(n)).

In the unweighted setting, constant factor approximation algorithms are known. It remains

open if there are also constant factor approximation algorithms for the weighted setting.

We give a parameterized approximation algorithm for finding a maximum weight independent

set of axis-parallel rectangles. Given a parameter k ∈N and ε> 0, the algorithm finds a set of

non-overlapping rectangles with weight at least (1−ε)optk in 2O(k log(k/ε))nO(1/ε) time, where

optk is the maximum weight of a solution of cardinality at most k. Note that, our algorithm

may return a solution consisting of more than k rectangles. To complement this, we also

propose a parameterized approximation algorithm for the case of axis-parallel segments. Here

the algorithm finds a solution with cardinality at most k and total weight at least (1−ε)optk in

time 2O(k2 log(k/ε))nO(1).

Lastly, we provide a nearly tight bound on the independence number of axis-parallel seg-

ments. More precisely, we prove that for any triangle-free intersection graph of n axis-parallel

segments in the plane, the independence number of this graph is at least n/4+Ω(
p

n). We

i

Abstract

complement this with a construction of a graph in this class, with an independence number

at most n/4+ c
p

n for an absolute constant c.

keywords: Integer Programming, n-fold IP, 2-stage stochastic IP, treedepth, Graver basis, fixed

parameter tractable, Independence Number, Maximum Weight Independent Set of Rectangles.

ii

Zusammenfassung

Ein ganzzahliges lineares Programm ist ein Problem der Form max{cᵀx : Ax = b, x ≥ 0, x ∈Zn},

wobei A ∈ Zn×m , b ∈ Zm , und c ∈ Zn . Das Lösen eines generellen, ganzzahligen linearen

Programms ist NP-schwer, aber es gibt Annahmen unter denen es parametrisierbar ist. Ein

Beispiel sind blockstrukturierte ganzzahlige Programme, mit einer (rekursiven) Blockstruktur:

Das Problem zerfällt in unabhängige und effizient lösbare Teilprobleme, wenn eine kleine

Anzahl von Zeilen oder Spalten aus der Matrize gelöscht werden. Beispiele sind 2-stufig

stochastische und n-fache ganzzahlige Programme, sowie ihre Verallgemeinerungen. Bisher

bekannte Algorithmen für diese Probleme basierten auf dem Augmentations-Framework,

einer Variante der lokalen Suche, spezialisiert auf ganzzahlige Programmierung. Wir bieten

neue Näherungsschranken, unabhängig von der Anzahl der Teilprobleme, sowohl für n-fache

als auch für 2-stufig stochastische ganzzahlige Programmierung. Wir zeigen auch, dass die

Relaxierung durch das Anapassen eines parametrischen Suchrahmens effizient gelöst werden

kann.

Wir wenden unsere Techniken auf n-fache und 2-stufig ganzzahlige Programmierung sowie

auf ganzzahlige Programmierung mit begrenzter primärer oder dualer Baumtiefe an. Für diese

Fälle erhalten wir stark polynomielle Algorithmen, die nahezu linear in der Dimension sind.

Im Gegensatz zu den Augmentierungsalgorithmen ist unser Ansatz ausserdem parallelisierbar.

Für den zweiten Teil dieser Arbeit wird der Fokus auf ein anderes NP-hartes Problem verla-

gert, nämlich das Problem der (gewichteten) maximalen unabhängigen Menge. Wir betrach-

ten Schnittgraphen von achsenparallelen Rechtecken oder Segmenten, sowohl gewichtet

als auch ungewichtet. Gegeben eine Menge von gewichteten achsenparallelen Rechtecken

oder Segmenten, besteht die Aufgabe darin, eine Teilmenge von sich paarweise nicht über-

schneidenden Objekten mit dem maximal möglichen Gesamtgewicht zu finden. Für gewich-

tete Rechtecke hat der beste bekannte Polynomialzeit-Approximationsalgorithmus einen

Approximationsfaktor von O(loglog(n)). Für ungewichtete Rechtecke sind Algorithmen zur

Annäherung mit konstantem Faktor bekannt. Es bleibt offen, ob es auch Algorithmen zur

Approximation mit konstantem Faktor für den gewichteten Fall gibt.

Wir geben einen parametrisierten Approximationsalgorithmus für die Suche nach einer unab-

hängigen Menge von achsenparallelen Rechtecken mit maxiamlem Gewicht. Für Parameter

k ∈N und ε> 0, findet der Algorithmus eine Menge nicht überlappender Rechtecke mit ei-

nem Gewicht von mindestens (1−ε)optk in 2O(k log(k/ε))nO(1/ε) Zeit, wobei optk das maximale

Gewicht einer Lösung von höchstens k Rechtecken ist. Unser Algorithmus kann aber auch

eine Lösung liefern, die aus mehr als k Rechtecken besteht. Wir präsentieren auch einen

parametrisierten Approximationsalgorithmus für den Fall achsenparalleler Segmente. Hier

findet der Algorithmus eine Lösung von höchstens k Segmenten und einem Gesamtgewicht

iii

Zusammenfassung

von mindestens (1−ε)optk in 2O(k2 log(k/ε))nO(1) Zeit.

Schliesslich liefern wir eine nahezu enge Schranke für die Unabhängikeitszahl achsparalleler

Segmente. Genauer gesagt beweisen wir, dass für jeden dreiecksfreien Schnittgraphen von n

achsenparallelen Segmenten die Unabhängigkeitszahl mindestens n/4+Ω(
p

n) beträgt. Wir

ergänzen dies durch eine Konstruktion eines Graphen dieser Klasse mit einer Unabhängig-

keitszahl von höchstens n/4+ c
p

n, für eine absolute Konstante c.

Schlüsselwörter: ganzzahlige Programmierung, n-faches IP, 2-stufig stochastisches IP, Baum-

tiefe, Graverbasis, parametrisierter Algorithmus, Unabhängigkeitszahl, maximal gewichtete

unabhängige Menge von Rechtecken.

iv

Contents

Abstract (English/Deutsch) i

Introduction 1

1 Preliminaries 9

1.1 Running Times, Parameters and Algorithms . 9

1.1.1 Fixed Parameter Tractability . 9

1.1.2 Approximation Algorithms . 10

1.1.3 Linear Algorithms . 10

1.2 (Integer) Linear Programming . 11

1.2.1 Block Structured Matrices . 11

1.2.2 Graver Basis . 14

1.3 Results in Graph Theory . 16

1.3.1 Graph Classes . 17

1.3.2 Grids . 18

I Block Structured Integer Programming 19

2 Treefold Integer Programming in Near Linear Time 21

2.1 Introduction . 21

2.2 Solving the LP by Parametric Search and Parallelization 25

2.2.1 The Technique of Norton et al. 26

2.2.2 Acceleration by Parallelization and Multidimensional Search 28

2.3 Proximity . 33

2.4 A Dynamic Program . 40

2.5 Applications . 41

3 Algorithms for Multistage Stochastic Integer Programming 47

3.1 Introduction . 47

3.2 Algorithms . 50

3.3 A stronger Klein Bound . 53

3.4 Proximity . 58

3.4.1 Proof of Theorem 3.11 . 63

3.5 Solving the Linear Relaxation . 65

v

Contents

II Geometric Independent Sets 71

4 Maximum Weight Independent Set of Rectangles and Segments 73

4.1 Introduction . 73

4.2 Axis-Parallel Rectangles . 76

4.2.1 Constructing a Grid . 77

4.2.2 Combinatorial Types . 78

4.2.3 Reduction to 2-VCSP . 79

4.2.4 Almost Planarity of the Gaifman Graph . 81

4.2.5 Proof of Theorem 4.1 . 84

4.3 Axis-Parallel Segments . 85

4.3.1 Reducing the Number of Distinct Weights 85

4.3.2 Constructing a Grid . 86

4.3.3 Constructing a Nice Grid . 88

4.3.4 Proof of Theorem 4.9 . 94

5 Independence Number of Axis-Parallel Segments 95

5.1 Introduction . 95

5.2 The Lower Bound: Proof of Theorem 5.1 . 98

5.3 The Upper Bound: Proof of Theorem 5.2 . 103

Bibliography 107

Curriculum Vitae 115

vi

Introduction

Discrete optimization considers problems in which discrete solutions are desirable. Some

examples are the traveling salesman problem, scheduling, and many more. Most of these

problems are considered hard to solve. Meaning, that there is no efficient algorithm solving

the problem. In our context, efficiency is measured by the time needed to solve the problem as

a function on the input size. An algorithm is considered to be efficient if it runs in polynomial

time on the input size. On the other hand, a problem is considered NP-hard if it is unlikely that

there exists such a polynomial time algorithm. Unlikely means that if there is a polynomial

time algorithm for one NP-hard problem, then all of them can be solved in polynomial time,

which is excluded by a broadly believed conjecture. This notion was introduced in 1972 by

Karp [Kar72] where he presented 21 NP-hard problems.

There are two main approaches to NP-hard problems. In the field of parameterized complexity,

the idea is to assume that certain parameters of the problem are small. This can lead to

algorithms running in polynomial time on the input size, as long as the parameter is fixed.

Ideally, for some parameter k of the problem, one seeks an algorithm with a running time of

the form f (k)poly(n), where n is the instance size and f a function only dependent on the

parameter k. Such an algorithm is also called fixed parameter tractable, parameterized by k.

In the field of approximation algorithms, NP-hard optimization problems are attacked from a

different angle. Here the goal is to design an efficient algorithm computing a solution which is

provably only slightly worse than the optimal solution. More precisely, given a parameter c , an

approximation algorithm returns a solution of cost at most c times the cost of the optimum

solution, or, when the objective is to maximize a profit, of gain at least 1/c times the gain of the

optimum solution. The parameter c is the approximation factor of the algorithm, a constant,

which is possibly dependent on the instance size. Naturally, these two concepts can also be

combined to try and design approximation algorithms running in parameterized time.

One of Karp’s classical NP-hard problems is the integer linear programming problem, an

instance of which is called an integer linear program. While there are several equivalent

descriptions of an integer linear program, in this thesis they are mainly considered to be given

in the form

max{cᵀx : Ax = b, x ≥ 0, x ∈Zm }, (♠)

where A ∈ Zn×m is the constraint matrix, b ∈ Zn the target vector, and c ∈ Zm the objective

function.

While solving an integer linear program is NP-hard in general, there are some natural as-

1

Introduction

sumptions on the constraint matrix A for which (♠) is solvable in polynomial time. Famous

examples include totally unimodular and bimodular integer programming [HK10, AWZ17]

or integer programs with a constant number of variables [LJ83, Kan87]. Another example are

block-structured integer programs in which the constraint matrix exhibits a (recursive) block

structure.

Intuitively, a matrix is block structured if, after removing a small number of rows or columns, it

decomposes into many small independent blocks. Two famous examples with polynomial

time algorithms are 2-stage stochastic integer programming [HS03] and its transposed version,

n-fold integer programming [LHOW08].

p q · · · q

s

...

s

q · · · q

r

s

...

s

Figure 1: A schematic view of a 2-stage stochastic matrix (left panel) and an n-fold matrix (right
panel). All non-zero entries are contained in the blocks depicted in green.

A 2-stage stochastic matrix decomposes into blocks with at most q columns each, after deleting

the first p columns (Figure 1, left panel). The terminology is borrowed from the field of

stochastic integer optimization, a model for discrete optimization under uncertainty. Here,

the first p variables, also called global variables, correspond to a decision made in the first

stage, whereas the n blocks involving q variables each represent a usually large number of

different scenarios arising in the second stage of stochastic optimization.

Similarly, an n-fold matrix decomposes into n blocks with at most s rows each, after deleting

the first r rows. Looking at the corresponding integer linear program, the n blocks can be seen

as “small” integer linear programs, each spanning over an independent subset of variables.

The only constraints spanning over all variables and thus linking the small programs, are given

by the first r rows, called linking constraints.

The two concepts can be generalized by allowing further recursive levels in the block structure,

leading to a multistage stochastic matrix (Figure 2, left panel), respectively, a tree-fold matrix

(Figure 2, right panel). In this generalization, the diagonal blocks are not necessary of small

2

Introduction

Figure 2: A schematic view of multistage stochastic matrix (left panel) and a tree-fold matrix
(right panel). All non-zero entries are contained in the blocks depicted in green.

dimension, but we assume that they admit the same block structure again, this time with

one recursion level fewer. One common way to explain this recursive structure is through the

notion of the primal, respectively, dual treedepth of a matrix.

In the first part of this thesis, we focus on such block structured integer linear programs,

providing some of the currently fastest algorithms for different types of block structures.

Traditionally, algorithms for block structured integer linear programming were based on an

augmentation framework. For this, the algorithm iteratively improves a solution, ultimately

converging to the optimum solution. Another important technique used, also in the augmen-

tation framework, are proximity bounds. This is a result stating that, for an optimal solution x?

of the relaxation, there is a optimal integral solution close by. Until recently, these proximity

bounds were dependent on the number of blocks n. We improve on this, by providing a

proximity bound independent of the number of blocks for both n-fold and 2-stage stochastic

integer programming. This renders the augmentation framework obsolete and provides a

different way to deal with block structured integer programming, leading to the currently

fastest algorithms. Another benefit of this new approach is that it yields parallel algorithms,

which was not possible with the augmentation framework since it is inherently sequential.

In the case of n-fold integer programming, the standard linear relaxation can not be used to

obtain a proximity bound independent on n. In this case, we introduce a stronger relaxation

by restricting the solution space of the n small linear programs to their integral hull. This

relaxation proves strong enough for a proximity bound independent of n, while not removing

any integral solution of the original linear program. Additionally to a proximity bound, we

also provide an algorithm solving this stronger relaxation in near linear time. Our main results

on block structured integer programming are:

3

Introduction

(i) We provide a new proximity bound for n-fold integer programming. For an optimal

vertex solution x? of our strengthened relaxation, there exists an optimal integral so-

lution x¦ such that the distance ‖x?− x¦‖1 is bounded by a function independent of

the number of variables (and thus the number of blocks n). More precisely, the bound

depends only on the maximum absolute value ‖A‖∞ in the constraint matrix A, the

number of linking constraints r and the structure of the n small blocks.

(ii) We show how to efficiently solve an n-fold linear program, even when considering the

strengthened relaxation introduced above. Let T be the running time needed to solve

any of the n small linear programs. We provide an algorithm solving the n-fold linear

program in parallel on n processors, where each processor carries out 2O(r 2)(T log(n))r+1

operations. This result can be further refined if the individual block problems can be

efficiently solved in parallel as well.

(iii) Combining the above results, we obtain an algorithm for n-fold integer programming

with a running time of

2O(r s2)(r s‖A‖∞)O(r 2s+s2)(nq)1+o(1).

This is the first parallel algorithm for n-fold integer programming.

(iv) In the case of 2-stage stochastic and multistage stochastic integer programming, we also

provide a new proximity bound, this time for the standard linear relaxation. For each

optimal solution x? to the linear relaxation, there exists an optimal integral solution x¦

such that ‖x?−x¦‖∞ is bounded by a function dependent on the maximum absolute

value ‖A‖∞ in the constraint matrix A, and the primal treedepth of A.

(v) Using this proximity bound, we give an algorithm for 2-stochastic integer programming

with a running time of

2((p+q)‖A‖∞)O(p(p+q)) · t 1+o(1),

where t is the number of variables.

(vi) Using a recursive application of our results, we obtain fixed parameter tractable al-

gorithms for integer linear programming, parameterized by the primal treedepth, or

respectively, parameterized by the dual treedepth. Both these algorithms are near linear

in the number of variables and run in parallel.

While most of our results are still state of the art, Klein and Reuter further investigated this

new approach for primal treedepth. They since found an algorithm for integer linear pro-

gramming parameterized by the primal treedepth, with an improved bound on the parameter

complexity [KR22].

For the second part of this thesis, the focus is shifted to a different famous NP-hard problem,

namely the Maximum Independent Set Problem. Most commonly, this problem is defined

4

Introduction

on graphs and given as follows. For a graph G = (V ,E) with vertex set V and edge set E , an

independent set is a subset of its vertices which are pairwise non-adjacent. Since a single vertex

is always an independent set, finding any independent set becomes trivial. However, the goal

is to find a large independent set. That is, a maximum size independent set, or alternatively

an independent set containing at least k vertices for some given constant k.

This problem is well studied over different classes of graphs. While it becomes polynomial time

solvable for certain classes like interval graphs or bipartite graphs, it remains NP-hard for many

other classes like planar graphs or intersection graphs. The Maximum Weight Independent Set

Problem is an important generalization, in which a weight function ω : V →R on the vertices

is provided, and the goal is to find an independent set of maximum weight. The classical

unweighted version corresponds to assigning weight 1 to all vertices.

We focus on the class of geometric intersection graphs, in which the vertices are geomet-

ric objects in the plane and two vertices are adjacent if they intersect. In this setting, an

independent set is a set of disjoint objects. More precisely, we study this class restricted

to axis-parallel rectangles, or respectively, axis-parallel segments, both in the weighted and

unweighted setting.

Finding a maximum independent set is NP-hard both for axis-parallel rectangles [FPT82]

and axis-parallel segments [KN90]. From the parameterized perspective, finding a maximum

independent set of axis-parallel rectangles is W[1]-hard when parameterized by k, the number

of rectangles in the solution. This still holds in the unweighted setting and when all rectangles

are squares [Mar05]. Therefore, it is unlikely that there is an exact algorithm with a running

time of the form f (k)nO(1), even in this restricted setting. However, the setting allows for

efficient approximation algorithms. For finding a maximum weight independent set of axis-

parallel rectangles, there exist a QPTAS [AW13], and the currently best approximation factor

with a polynomial time algorithm is O(loglog(n)) [CW21]. It remains an important open

question if there is a polynomial time algorithm with a constant approximation factor. In the

unweighted case however, there exist constant factor approximation algorithms for finding a

maximum independent set of axis-parallel rectangles [Mit21, GKM+22].

In the following, we outline one useful technique to find approximation algorithms for inde-

pendent sets of axis-parallel rectangles, which is also adapted in this thesis. The approach

is based on finding an appropriate grid, which is then used to locally restrict the possible

intersections. More precisely, the aim is a fixed size grid (parameterized by the solution size)

such that each rectangle of the optimum solution contains a grid point. In case this is not nec-

essarily possible, an approximation approach to this might be chosen. Then, each rectangle in

the optimal solution can be characterized by the grid points in its interior. Using the bounded

grid size, this allows to guess the positioning of the optimal solution, but without identifying

the exact rectangles. Since the rectangles are axis-parallel, knowing their position on the grid is

heavily restricting the possible intersections. This often results in a more manageable problem,

which can either be solved or at least approximated.

5

Introduction

We apply this technique to the maximum weight independent set problem of both axis-parallel

rectangles and axis-parallel segments. In doing so, we obtain the following results.

(vii) Given a set of n weighted, axis-parallel rectangles, a parameter k, and ε> 0. Let optk

be the maximum weight of an independent set of size k. We provide an algorithm

computing an independent set with weight at least (1−ε)optk in time

2O(k log(k/ε))nO(1/ε).

(viii) In the setting of axis-parallel segments, we give an approximation algorithm, which also

respects the cardinality of the optimal solution. Given a set of n weighted, axis-parallel

segments, a parameter k, ε> 0 and optk the maximum weight of an independent set of

size at most k. We provide an algorithm computing an independent set of cardinality at

most k and with weight at least (1−ε)optk in time

2O(k2 log(k/ε))nO(1).

Another approach to independent sets is to study structural results. Given a class of graphs,

we are interested in bounding the independence number, which is the maximum size of an

independent set, for any graph in the class. The size of an independent set is heavily influenced

by the instance size and by cliques, a set of pairwise adjacent vertices. For this reason, the

independence number is often bounded by a function of the instance size and the clique

covering number. The clique covering number is the minimal amount of cliques needed to

cover all vertices of the graph. Alternatively, the class of graphs can be restricted in order to

avoid handling the clique covering number. An example for such a restriction are triangle-free

graphs, for which the maximum clique size is bounded by 2.

In this line of thinking, we provide a nearly tight bound on the independence number of

axis-parallel segments, relying on a classical result of Erdős Szekeres [ES35].

(ix) Let G be a triangle-free intersection graph of n axis-parallel segments. Then the inde-

pendence number of G is at least n
4 + c1

p
n, for some absolute constant c1.

(x) On the other hand, for any n ∈N, we give a set of n axis-parallel segments with a triangle-

free intersection graph G , such that the independence number of G is at most n
4 + c2

p
n,

for some absolute constant c2.

Summarizing Overview and Sources

Basic notations, results and concepts used throughout this thesis are presented in Chapter 1.

This is not meant to be an introduction to the area, and a certain background on the topics is

assumed.

6

Introduction

In Part I, we focus on block structured integer linear programs, deriving algorithms for different

types of block structures. We propose a different approach to previously known algorithms,

which were based on the augmentation framework.

In Chapter 2, we consider n-fold and tree-fold integer programming. We use a strengthened

relaxation and derive an algorithm, which relies on parametric search and a new proximity

bound. This chapter is based on the results in the article [CEH+21].

In Chapter 3, we then consider 2-stage stochastic and multistage stochastic integer program-

ming. We derive a new proximity bound and use it to derive a new algorithm. This chapter is

based on the results in the article [CEP+21].

In Part II, we focus on independent sets of geometric intersection graphs.

In Chapter 4, we derive approximation algorithms for the maximum weight independent

set problem for intersection graphs of axis-parallel rectangles, or respectively, axis-parallel

segments. This chapter is based on the results in the arXiv preprint [CPW22].

In Chapter 5, we study the independence number of intersection graphs of axis-parallel

segments. We derive a nearly tight bound on the independence number. This chapter is based

on the results in the arXiv preprint [CCPW22].

7

1 Preliminaries

This chapter familiarizes the reader with basic notations, results and concepts used throughout

this thesis.

1.1 Running Times, Parameters and Algorithms

A real RAM model of computation is used to compute the running time of all algorithms in

this thesis. Meaning that each memory cell stores a real number of arbitrary bitlength and

precision; and arithmetic operations (including rounding) are assumed to be of unit cost.

Here, the encoding length of an instance includes the bitlength of each number stored. The

size of an instance on the other hand is the number of memory cells used to store the instance.

For the running time analysis of the parallel algorithms in this thesis, a PRAM model is used.

If an algorithm is independent of the encoding length and polynomial in the size of an instance,

we say that the algorithm is strongly polynomial. Note that this notion only makes sense in

a model where input numbers occupy single memory cells on which unit-cost arithmetic

operations are allowed. This also implies that the running time of a strongly polynomial

algorithm is not allowed to depend on the bitlength of the input numbers.

1.1.1 Fixed Parameter Tractability

Often, there are structural or other parameters of a problem which can be useful in the design

of efficient algorithms. In other words, assuming certain parameters to be bounded, the

problem admits a polynomial time algorithm. Such algorithms are called fixed parameter

tractable and can be understood in two ways.

Weak fixed parameter tractable algorithms have running time of the form

f (p1, . . . , pk) · |I |O(1),

where f is a computable function, p1, . . . , pk the parameters and |I | the total encoding length

of the input I . For strong fixed parameter tractable algorithms we require a time complexity of

9

Chapter 1. Preliminaries

the form

f (p1, . . . , pk) ·nO(1),

where f is a computable function, p1, . . . , pk the parameters, and n instance size.

1.1.2 Approximation Algorithms

An approximation algorithm returns a solution which is only slightly worse than the optimal

solution. Given a parameter ε> 0, an approximation algorithm returns a solution of cost at

most (1+ε) times the cost of the optimum solution, or, when the objective is to maximize a

profit, of gain at least (1−ε) times the gain of the optimum solution. If the running time is of

the order ng (ε), where n is the instance size and g (ε) a function only depending on ε, such an

algorithm is called a Polynomial Time Approximation Scheme (PTAS). If the algorithm runs in

time ng (ε)poly(log(n)) it is also called a Quasi Polynomial Time Approximation Scheme (QPTAS).

1.1.3 Linear Algorithms

The concept of accessing numbers in the input of an algorithm by linear queries only is a

common feature of many algorithms and crucial in Sections 2.2 and 3.5. Let λ1, . . . ,λk be

numbers in the input of an algorithm. The algorithm is linear in this part of the input if it does

not query the value of these numbers, but queries linear comparisons instead. This means

that the algorithm generates numbers a1, . . . , ak ∈R and β ∈R and queries whether

a1λ1 +·· ·+akλk ≤β (1.1)

holds. Such a query is to be understood as a call to an oracle not implemented in the algorithm

itself.

Many sorting algorithms such as quicksort or merge sort are linear in the input numbers

λ1, . . . ,λk to be sorted. Another example is the simplex algorithm for a linear program of the

form max{cᵀx : Ax ≤ b} which is linear in b and c. In fact, the only point where b and c are

used is to test the feasibility and optimality of a basis B ⊆ {1, . . . ,m}. To see that testing this

only needs linear queries on b and c, assume that A ∈Rn×m is of full column rank and recall

that a basis is a set of m indices corresponding to linearly independent rows of A. The basis is

feasible if A(A−1
B bB) ≤ b holds. These are n linear queries involving components of b. Similarly,

B is an optimal basis if cT A−1
B ≥ 0 holds. This can be checked with m linear queries involving

components of c.

We use the following notation. If an algorithm is linear in some part of the numbers in its

input λ, this part is denoted with a bar, i.e. by λ. In this case we say that λ is given symbolically,

implying that it can only be used through queries. In the case of the simplex algorithm, we

can write that it solves a linear program of the form max{cᵀx : Ax ≤ b} to indicate which input

numbers are given symbolically, i.e. only accessible via linear queries.

10

1.2. (Integer) Linear Programming

1.2 (Integer) Linear Programming

Consider an instance of the linear programming problem given as follows:

max cᵀx

Ax = b (♠)

x ≥ 0

where A ∈ Zn×m is the constraint matrix, b ∈ Zn the target vector and c ∈ Zm the objective

function. Such an instance of the linear programming problem is called a linear program (LP).

Formally, define a linear program in the form (♠) as the 4-tuple P = (x, A,b,c). In some cases

additionally an upper bound u ∈Z≥0 ∪ {∞} is used to describe the linear program. This allows

a more concise notion using less variables and constraints for the same program. In the

case where (♠) models an instance of the integer linear programming problem, an integrality

constraint x ∈Zm is added. Such an instance is called an integer linear program.

Note that there are several equivalent forms to describe an (integer) linear program. While

the above described is the main form considered during this thesis, other forms be used to

simplify certain arguments. The notations presented below are extended to these forms in the

obvious ways.

For a linear program P = (x, A,b,c) in the form (♠), denote by SolR(P) and SolZ(P) the sets of

fractional and integral solutions to P , respectively. That is, SolR(P) is the polytope consisting of

x ∈Rn
≥0 satisfying Ax = b, while SolZ(P) comprises all integer points in SolR(P). Further, define

optR(P) and optZ(P) as the optimum values of any fractional or, respectively, any integral

solutions to P . That is,

optR(P) = inf{cᵀx : x ∈ SolR(P) } and optZ(P) = inf{cᵀx : x ∈ SolZ(P) }.

A vector x ∈ SolR(P) is an optimal fractional solution to P if cᵀx = optR(P). Optimal integral

solutions are defined analogously.

Given two (integral) solutions x, y ∈ SolR(P) respectively SolZ(P), their difference x − y is an

(integral) solution to P ′ = (x, A,0,c), the linear program obtained by setting the target vector

to 0. This solution set is called the kernel of A and denoted by kerR(A). The integer kernel

of A, denoted kerZ(A), consists of all integer vectors in kerR(A). Note that the kernel is only

dependent on the matrix and consequently also used outside of linear programs.

1.2.1 Block Structured Matrices

A matrix A is block decomposable, if it can presented as

A =
(

A1

A2

)
,

11

Chapter 1. Preliminaries

where all non-zero entries are contained in the blocks A1 and A2. The block decomposition of

a matrix A is its unique presentation as

A =


D1

D2

. . .

Dn

 ,

where all non-zero entries are contained in the blocks D1, . . . ,Dn which are not block decom-

posable themselves.

For non-negative integers p and q , a matrix A is 2-stage stochastic or (p, q)-stochastic if, after

deleting the first p columns, the matrix admits a block decomposition such that each block

has at most q columns. In other words, a (p, q)-stochastic matrix can be written as

A =


C1 D1

C2 D2
...

. . .

Cn Dn

 , (♦)

where the blocks C1, . . . ,Cn have p columns and the blocks D1, . . . ,Dn have at most q columns

each. In general, a presentation of matrix A as in (♦) shall be called a stochastic decomposition

of A.

Similarly, for two non-negative integers r and s, a matrix A is an n-fold if Aᵀ is (r, s)-stochastic.

Meaning that an n-fold matrix can be written as

A =



B1 B2 . . . Bn

D1

D2

. . .

Dn

 , (1.2)

where the blocks B1, . . . ,Bn have r rows and the blocks D1, . . . ,Dn have at most s rows each.

Note that for an n-fold matrix A, the linear program P = (x, A,b,c) decomposes into n inde-

pendent linear programs Pi linked only by the first r constraints. This viewpoint also provides

a natural decomposition of the vectors x, b and c into small bricks. More precisely, parti-

tion x into the bricks x1, . . . , xn , so that xi corresponds to the columns of the matrix Di , for

each i ∈ {1, . . . ,n}. Partition c into the bricks c0,c1, . . . ,cn in the same fashion, and partition

b into the bricks b0,b1, . . . ,bn so that b0 corresponds to the rows of matrices Bi , while bi

corresponds to the rows of the matrix Di , for i = 1, . . . ,n Then, the linear program Pi is given

by Pi = (xi ,Di ,bi ,ci). Observe that, in a solution x of P , each brick xi is in the polyhedron

12

1.2. (Integer) Linear Programming

SolR(Pi), given by the solution set of Pi . This description can be generalized to

max cᵀ1 x1 +·· ·+cᵀn xn

B1x1 +·· ·+Bn xn = b0 (F)

xi ∈Qi i = 1, . . . ,n,

where the Qi ⊆ Rqi

≥0 are polyhedra. For a n-fold matrix, the Qi correspond to the polyhedra

SolR(Pi). In the general structure however, they could also be described differently. A linear

program P described as in (F) is referred to as linear program with an n-fold structure.

These two types of block structured matrices are often generalized by allowing further recursive

levels in the block structure leading to multistage stochastic and tree-fold matrices. This

recursive structure can be explained through the primal treedepth, or respectively, the dual

treedepth of a matrix. As the name already suggests, the two notions are in a certain sense dual

to each other.

There are multiple equivalent ways do define the primal and dual treedepth of a matrix. For

us, it will be most convenient to rely on a recursive approach. First, we recursively define the

primal depth of A, denoted depthP(A):

• if A has no columns, then its primal depth is 0;

• if A is block-decomposable, then its primal depth is equal to the maximum among the

primal depths of the blocks in its block decomposition;

• if A has at least one column and can not be decomposed into blocks, then the primal

depth of A is one larger than the depth of the matrix obtained from A by removing its

first column.

Observe that, by a straightforward induction, in a matrix of primal depth d , every row contains

at most d non-zero entries. The primal treedepth of A, denoted tdP(A), is the smallest integer d

such that the rows and columns of A can be permuted into a matrix with primal depth d .

Define the dual depth of A as depthD(A) = depthP(Aᵀ), and define the dual treedepth of A as

tdD(A) = tdP(Aᵀ). Note that, exchanging rows and columns in the definition of the primal

depth of A, gives a characterization of the dual depth of A. In particular, the dual treedepth of

A is the smallest integer d such that the rows and columns of A can be permuted into a matrix

with dual depth d .

For the sake of future application, we now observe that the block decomposition can be

computed efficiently. More precisely, we have the following lemma.

Lemma 1.1. For a matrix A with t rows and at most δ non-zero entries in each row the block

decomposition of A can be computed in time O(δ log(δt)) on t processors.

To see this, assume that A is given as a list of its non-zero entries specifying the row and

column index as well as the coefficient. Since A has at most δ non-zero entries in each row,

13

Chapter 1. Preliminaries

this list has a length of at most δt . After sorting the list, it can be split into blocks by comparing

consecutive entries in parallel.

Observe that using this result, checking whether the input matrix or its transposed is (p, q)-

stochastic can be done in time O((p +q) log((p +q)t)) on t processors. Similarly, a recursive

application on the blocks can be used to verify whether the matrix has primal or dual depth at

most d in time O(d 2 log(d t)) on t processors. Note that in the definition of primal and dual

treedepth, we allow the matrix to take the specified form after applying a permutation of the

rows and columns.

This permutation can be computed in linear fixed parameter tractable time without further

assumptions. We discuss this for the primal treedepth and (r, s)-stochastic matrices, since

working with the transposed matrix gives the same results for the dual treedepth and n-fold

matrices. The following definition will be useful for the computation: the primal graph

of a matrix A is the graph whose vertex set consists of the columns of A and two columns

are considered adjacent if they contain non-zero entries in the same row. As observed in

previous works (see e.g. [KLO18, EHK+19]), the primal treedepth of A coincides with the

(graph-theoretic) treedepth of its primal graph of A. For this graph problem and some fixed

parameter d , we can use an algorithm due to Reidl et al. [RRVS14] which either finds an

elimination forest of depth at most d , or asserts that no such permutation exists. From the

given elimination forest, one can then recover a column permutation of A with depth at

most d . This algorithm takes time 2O(d 2) · (d t), where d t is an upper bound on the number of

columns of A.

In the case of looking for a column permutation of A such that the resulting matrix is (p, q)-

stochastic, the problem boils down to the following: Given the primal graph of A, verify

whether there exists a set of r vertices such that after removing them, every connected compo-

nent of the resulting graph has at most s vertices. This problem has been studied under the

name Component Order Connectivity by Drange et al. [DDvtH16], who gave an algorithm with

running time 2O(p log q) ·d t .

Note that both of these algorithms are sequential. Therefore, all algorithms given in this thesis

assume that the matrix is already suitably organized, that is in one of the forms specified

above.

1.2.2 Graver Basis

The conformal (partial) order v onRn is the relation defined such that, for two vectors x, y ∈Rn ,

the relation x v y holds if the following conditions are satisfied for each i ∈ {1, . . . ,n}:

• |xi | ≤ |yi |
• xi yi ≥ 0

where xi and yi are the i th entries of x and y , respectively. The first condition implies that

14

1.2. (Integer) Linear Programming

x is component wise smaller than y . The second condition ensures that x and y are sign-

compatible, meaning that they lie in the same orthant.

The Graver Basis of a matrix A, denoted by G(A), is the set of v-minimal vectors in the

integer kernel kerZ(A) of A. These minimal elements are also called indecomposable in

kerZ(A), a notion coming from the fact that they can not be written as the sum of two sign-

compatible non-zero elements of kerZ(A). On one hand, a v-minimal vector in kerZ(A) is

clearly indecomposable. For the other direction, note that for x v y ∈ kerZ(A) it holds that

y −x v y which implies that y is decomposable.

It follows from Dickson’s Lemma, see [Dic13, HS03], that G(A) is always finite. However we are

interested in more precise bounds on the lengths of vectors in G(A) depending on different

norms. For p ∈ [1,∞], define the `p Graver measure of A as

gp (A) := max
v∈G(A)

‖v‖p .

In the case of block structured matrices, bounds on the `p Graver measure are usually obtained

by using the Steinitz Lemma, which holds for arbitrary norms.

Theorem 1.2 (Steinitz [Ste13], Grinberg and Sevast’yanov [GS80]).

Let x1, . . . , xn ∈Rr such that

n∑
i=1

xi = 0 and ‖xi‖ ≤ 1 for each i .

There exists a permutation π ∈ Sn such that all partial sums satisfy

‖
k∑

j=1
xπ(j)‖ ≤ r for all k = 1, . . . ,n.

The Steinitz Lemma proved itself not only useful in bounding the `p Graver measure of block-

structured matrices, but proving proximity results, more direct applications also turned out

useful.

Next, some important results bounding the `p Graver measure of different types of integer

matrices are presented.

Theorem 1.3 (Eisenbrand et al. [EHK18]). For every integer matrix A with n rows,

g∞(A) ≤ g1(A) ≤ (2n‖A‖∞+1)n .

Note that the Graver basis of a matrix A is completely described by ker(A), so without changing

G(A) the rows of A can be restricted to a maximal linearly independent subset. Then the

number of columns m is not smaller than the number of rows n. Hence, the following bound

15

Chapter 1. Preliminaries

independent of the number of rows in A can be derived.

Corollary 1.4. For every integer matrix A with m columns,

g∞(A) ≤ g1(A) ≤ (2m‖A‖∞+1)m .

In the case of matrices with bounded primal treedepth, the following result was known at the

time the results in Chapter 3 were derived.

Theorem 1.5 (Eisenbrand et al. [EHK+19]). There is a computable function f : N×N→N such

that for every integer matrix A,

g∞(A) ≤ f (tdP(A),‖A‖∞).

The proof of Theorem 1.5 given by Eisenbrand et al. [EHK+19] shows that, roughly speaking,

f (tdP(A),‖A‖∞) is a tdP(A)-fold exponential function of ‖A‖∞. Recently, this result was

substantially improved by Klein and Reuter to a triple exponential bound in tdP(A) [KR22].

More precisely, for d = tdP(A), they show that

g∞(A) ≤ 2(d ||A||∞)O(d3d+1)
.

On the other hand, bounding the Graver measure as a function of the dual treedepth yields a

better parameter dependence.

Theorem 1.6 (Knop [KPW20]). For any integer matrix A, one has

g1(A) ≤ (2‖A‖∞+1)2tdD(A)−1.

1.3 Results in Graph Theory

A graph G = (V ,E) is given by its vertex set V and its edge set E ⊆V ×V . A tree decomposition of

a graph G is a tree T together with a function bag: V (T) → 2V (G) mapping the nodes of T to

subsets of vertices of G , called bags. Further, the following conditions must be satisfied:

• for every vertex u of G , the nodes of T whose bags contain u must form a connected,

nonempty subtree of T , and

• for every edge uv of G , there must exist a node of T whose bag contains both u and v .

The width of a tree decomposition (T,bag) is defined as

max
x∈V (T)

|bag(x)|−1.

The treewidth of G is the minimum width of a tree decomposition of G .

16

1.3. Results in Graph Theory

1.3.1 Graph Classes

An important class of graphs are geometric intersection graphs. Given a family of geometric

objects S in the plane, the intersection graph of S , denoted G(S), is the graph with vertex

set S and where two objects are adjacent if and only if they intersect. The class of geometric

intersection graphs can be further specified by restricting to a certain type of geometric objects

like discs, rectangles or even axis-parallel rectangles. This thesis focuses on axis-parallel

rectangles and axis-parallel segments.

Another class of graphs we consider are graphs induced by Constraint Satisfaction Problems.

In the Constraint Satisfaction Problem (CSP) one seeks to assign labels to a set of variables

such that they fulfill given constraints. For an Arity-2 Valued Constraint Satisfaction Problem

(2-VCSP) an additional cost function is given for each of the constraints and each constraint is

restricted to 2 variables. The goal is to assign the labels in order to maximize the cost function.

More precisely, an instance of the 2-VCSP is given by

• a finite set of variables X ;

• a finite domain Dx for each variable x ∈ X . This is the set of possible labels for x;

• a finite set of constraints C . Each constraint c ∈C consists of an ordered pair of variables

xc = (x, y) ∈ X × X and a cost function fc : Dx ×D y → R. We assume that fc is given as

the set of all possible triples (dx ,dy , fc (x, y)) ∈ Dx ×D y ×R.

The goal is to compute the maximum value of the function

f (u) := ∑
c∈C

fc (u|xc),

over all valid label assignments u ∈∏
x∈X Dx to the variables of X . The value f (u) is called the

revenue of the label assignment u.

Each instance of 2-VCSP induces an undirected graph, called the Gaifman graph: the vertex

set is the set of variables X , and for every pair of distinct variables x, y ∈ X , there is an edge

x y if and only if there is a constraint c ∈ C such that xc = (x, y). Given a class H of graphs,

a restriction of 2-VCSP to H can be defined by focusing only on instances whose Gaifman

graph is in H. In this thesis, we focus only on instances of 2-VCSP where the Gaifman graph

has bounded treewidth. In this setting, it is well-known that standard dynamic programming

solves 2-VCSP efficiently [Fre90].

Theorem 1.7 (Freuder [Fre90]). 2-VCSP can be solved in time ∆O(t) · |X |O(1) when the Gaifman

graph has treewidth at most t and all domains are of size at most ∆.

Freuder [Fre90] actually only considered the unweighted 2-CSP, however, as pointed out in

e.g., [CRZ20, RWZ21], this dynamic-programming approach can be adapted to the weighted

setting. Also, Freuder assumes that a suitable tree decomposition is given on input. Such a

tree decomposition can be provided within the stated time complexity by, for instance, the

4-approximation algorithm of Robertson and Seymour [RS95].

17

Chapter 1. Preliminaries

In Section 4.3 we also use standard 2-CSPs. These can be modeled by 2-VCSPs where all the

constraints are hard: revenue functions fc only assign value 0 if the constraint is satisfied, or

−∞ if the constraint is not satisfied. The task is to find a variable assignment that satisfies all

constraints, that is, yields revenue 0.

1.3.2 Grids

An important property of axis-parallel rectangles is, that they can be described using only

horizontal and vertical lines. A useful tool to leverage this fact is provided by grids. A grid is a

finite set of horizontal and vertical lines in the plane, called grid lines. The size |G| of a grid G

is the total number of lines it contains. The intersection of a horizontal and a vertical line of a

grid G , is called a grid point of G . The set of grid points of G is denoted by points(G). The lines

of a grid G divide the plane into grid cells of G . Each such grid cell is a rectangle, possibly with

one or two sides extending to infinity, and has at most four corners: the grid points lying on its

boundary.

18

Part IBlock Structured Integer
Programming

19

2 Treefold Integer and Linear
Programming in Strongly Polynomial
and Near Linear Time

This chapter contains an overworked version of [CEH+21] which is joint work with Friedrich

Eisenbrand, Christoph Hunkenschröder, Lars Rohwedder and Robert Weismantel.

2.1 Introduction

We consider n-fold and treefold integer and linear programming problems (see Section 1.2.1).

In particular, we even consider integer linear programs in any n-fold structure (F). Recall that

such a linear program is given by

max cᵀ1 x1 +·· ·+cᵀn xn

B1x1 +·· ·+Bn xn = b0 (F)

xi ∈Qi i = 1, . . . ,n,

Here, the Qi ⊆Rqi

≥0, i = 1, . . . ,n are polyhedra, the Bi ∈Zr×qi , i = 1, . . . ,n integer matrices and

b0 ∈Zr is an integer vector. In the case where (F) is to model an integer linear program, we

also have the integrality constraint xi ∈Zqi , i = 1, . . . ,n. The r given by the Bi are the linking

constraints of (F) and, if they are removed, the problem decomposes into n independent

(integer) linear programs. This means that Qi is described by one of the following polyhedra

{xi : Di xi = bi , xi ≥ 0}, or

conv{xi : Di xi = bi , xi ≥ 0, x ∈Zqi },

where Di ∈Zs×qi is an integral matrix, bi ∈Zs an integral vector, and conv the convex hull of a

set of points. Most results and running times to solve a linear program in n-fold structure (F)

depend on parameters of the matrices Di . Recall that the notation c i is used to denote that

the vector ci is given symbolically, that is, it can only be accessed through linear queries. This

21

Chapter 2. Treefold Integer Programming in Near Linear Time

notion is used to describe that we seek an algorithm linear in c1, . . . ,cn , see Section 1.1.3 for a

definition. Throughout this chapter, we use

γ := max
1≤i≤n

g1(Di)

as a bound on the `1 Graver measure of all Di . Further,

∆ := max
1≤i≤n

{‖Bi‖∞,‖Di‖∞}

is an upper bound on each entry in the matrices Bi and Di for i = 1, . . . ,n.

Our contribution

We present two main results regarding linear programs in n-fold structure.

(i) We show how to efficiently solve a linear program with n-fold structure (F) by adapting

the framework of Norton et al. [NPT92] to the setting of linear programs with n-fold

structure. We leverage the inherent parallelism by using the multidimensional search

technique of Megiddo [Meg84, Dye86, Cla86] and obtain the following result (Theo-

rem 2.1): Let Tmax be an upper bound on the running time for solving a linear program-

ming problem max{cᵀi xi : xi ∈Qi }. Then (F) can be solved in parallel on n processors,

where each processor carries out 2O(r 2)(Tmax log(n))r+1 operations. For technical rea-

sons, we make the mild assumption that the algorithm is linear in the objective function

ci , see Section 1.1.3 for a definition. This result can be further refined if the individual

block problems max{cᵀi xi , xi ∈Qi } can be efficiently solved in parallel as well.

(ii) We furthermore provide a new proximity bound for the integer programming variant

of (F) (Theorem 2.5). If all polyhedra Qi are integral and x? a vertex solution of the

corresponding linear program (F), then there exists an optimal solution x¦ of the integer

programming problem such that

‖x?−x¦‖1 ≤ (2r∆γ+1)r+4. (2.1)

Here,∆ is an upper bound on the absolute value of each entry in matrices Bi and Di , and

γ a bound on the `1 Graver measure for all Di . Where for all i = 1, . . . ,n, we assume Di

to be the matrix describing Qi . Our new contribution is that this bound is independent

of n and q .

Using (i) and (ii) we also derive an algorithm for the integer programming problem (F). We

first solve the continuous relaxation of (F) using (i). Here we assume that for i = 1, . . . ,n, each

Qi is integral or otherwise we replace it by the convex hull of its integer solutions. Then we

find an optimal integer solution via dynamic programming using (ii) to restrict the search

space. All techniques above can also be applied recursively, e.g., to solve linear programs with

22

2.1. Introduction

n-fold structure, where the polytopes Qi , i = 1, . . . ,n, have a a n-fold structure as well.

We want to emphasize three main applications of the techniques described above. First,

we use them to derive a fixed parameter tractable algorithm for n-fold integer and linear

programming. Here, the polyhedra Qi are given by systems Di xi = bi , 0 ≤ xi ≤ u, with

Di ∈Zs×q all of the same dimension. Algorithms for n-fold integer programming have been

used, for example in [KK18, CMYZ17, JKMR21] to derive novel fixed parameter tractable

results in scheduling. Moreover, they have been successfully applied to derive fixed parameter

tractable results for string and social choice problems [KKM20b, KKM20a].

On the other hand, we use a recursive application of the techniques to get a fixed parameter

tractable algorithm for integer linear programming (♠) parameterized by the dual treedepth of

the constraint matrix.

(iii) We obtain a strongly polynomial and nearly linear time algorithm for n-fold integer

programming. Our algorithm requires

2O(r s2)(r s∆)O(r 2s+s2)(nq)1+o(1)

arithmetic operations, or alternatively 2O(r 2+r s2) logO(r s)(nq∆) parallel operations on

(r s∆)O(r 2s+s2)nq processors. Previous algorithms in the literature either had at least a

quadratic (and probably higher) dependence on nq or an additional factor of ϕ, which

is the encoding size of the largest integer in the input. Moreover, this is the first parallel

algorithm.

(iv) We present an algorithm for n-fold linear programming which requires

2O(r 2+r s2)(nq)1+o(1)

arithmetic operations, or alternatively 2O(r 2+r s2) logO(r s)(nq) parallel operations on nq

processors. This extends the class of linear programs known to be solvable in strongly

polynomial time and those known to be parallelizable.

(v) In terms of dual treedepth, we also obtain a strongly polynomial algorithm. More

precisely, our algorithm requires

dO(d 22d)‖A‖O(2d)
∞ t 1+o(1)

arithmetic operations, or alternatively logO(d2d)(d‖A‖∞t) parallel arithmetic operations

on dO(d 3)‖A‖O(2d)∞ t processors. Here t is the number of variables. Furthermore, we

present a running time analysis for the corresponding linear programming case.

23

Chapter 2. Treefold Integer Programming in Near Linear Time

Further related work

Closely related are dynamic programming approaches to integer linear programming [Pap81].

In [EW20a] it was shown that an integer linear program max{cᵀx : Ax = b, 0 ≤ x ≤ u, x ∈Zn}

with A ∈ Zs×t can be solved in time (s‖A‖∞)O(s2)t and in time (s‖A‖∞)O(s) if there are no

upper bounds on the variables. Jansen and Rohwedder [JR19] obtained better constants in

the exponent of the running time of integer programs without upper bounds. Assuming the

Exponential Time Hypothesis, a tight lower bound was presented by Knop et al. [KPW20].

The first fixed parameter tractable algorithm for n-fold integer programming is due to Hem-

mecke et al. [HOR13] and is with respect to parameters ‖A‖∞,r, s and q . Their running time is

O(n3ϕ)‖A‖O(q(r s+sq))
∞ where ϕ is the encoding size of the largest value of a component in the

input.

The exponential dependence on q was removed by Eisenbrand et al. [EHK18] and Koutecký

et al. [KLO18]. The first strongly polynomial algorithm for n-fold integer programs was given

by Koutecký et al. [KLO18]. The previously fastest algorithms for n-fold integer programming

were provided by Jansen, Lassota and Rohwedder [JLR20] and Eisenbrand et al. [EHK+19].

While the first work has a slightly better parameter dependency, the second work achieves a

better dependency on the number of variables and is strongly polynomial. The results above

are based on an augmentation framework, which differs significantly from our methods. In this

framework an algorithm iteratively augments an integral solution, ultimately converging to

the optimal integral solution. This requiresΩ(n) sequential iterations, making parallelization

hopeless.

Other variants of recursively defined block structured integer programming problems were

also considered in the literature. Notable cases include the tree-fold integer programming

problem introduced by Chen and Marx [CM18]. This case is closely related to dual treedepth

and can be analyzed in a similar way using our theorems. The currently best algorithms

parameterized by dual treedepth obtain a running time of ‖A‖O(tdD(A)2tdD(A))
∞ ϕ2n1+o(1), where

ϕ is the encoding size of the largest value of the input [EHK+19].

A crucial ingredient of our algorithms is the use of a relaxation of (F) where Qi is integral

for i = 1, . . . ,n. For many settings (e.g., for the n-fold case) this is stronger than using a naive

relaxation of (F) obtained by simply dropping the integrality constraints. This idea of using

a stronger relaxation was also used by Koutecký et al. in [KKL+19], where they consider a

high-multiplicity setting. Roughly speaking, they consider linear programs in n-fold structure

with only a few types of polyhedra Qi but possibly repeated several times. Using the stronger

relaxation, the authors also obtain a proximity result independent of the dimension. However,

their result still depends on the number of variables per block and the number of different

polyhedra types.

24

2.2. Solving the LP by Parametric Search and Parallelization

Structure of the chapter

Section 2.2 is dedicated to solving the linear relaxation, that is item (i). We give an adaptation of

the parametric search framework by Norton, Plotkin, and Tardos (Section 2.2.1) and combine it

with Megiddo’s multidimensional search technique in Section 2.2.2. In Section 2.3 we provide

a proximity result for the stronger relaxation, that is item (ii). Which is then used in Section 2.4

to establish a dynamic program. Applications of our techniques are discussed in Section 2.5.

2.2 Solving the LP by Parametric Search and Parallelization

We now describe how to solve a linear program given in n-fold structure (F) efficiently and

in parallel. The method that we lay out is based on a technique of Norton, Plotkin and

Tardos [NPT92]. The authors of this paper show the following. Suppose there is an algorithm

that solves a linear programming problem in time T (n), where n is some measure of the length

of the input and let us suppose that we change this linear program by adding r additional

constraints. Norton et al. show that this augmented linear program can be solved in time

(T (n))r+1. A straightforward application of this technique to our setting would yield the

following. Consider the starting linear program in n-fold structure (F). Removing the r

linking constraints, the n individual linear programs max{cᵀi x : x ∈Qi } can be solved a total

running time ofΩ(n). Using the result [NPT92] out of the box would then yield a running time

bound ofΩ(nr+1). The main result of this section is to improve this to:

Theorem 2.1. Suppose there are algorithms that solve max{cᵀi x : x ∈Qi } on Ri processors using

at most Tmax operations on each processor and suppose that these algorithms are linear in c i .

Then there is an algorithm solving a linear program in n-fold structure (F) on R = ∑
i Ri

processors, requiring 2O(r 2)(Tmax log(R))r+1 operations on each processor. This algorithm is

linear in c.

Remark 2.2. The problems max{cᵀi x : x ∈Qi } can be solved independently in parallel. If Tmax

is an upper bound on the running times of these algorithms, then Theorem 2.1 provides a

sequential running time of

2O(r 2)n · (Tmax log(n))r+1 = 2O(r 2)n1+o(1) ·T r+1
max

to solve the linear program in n-fold structure (F). Theorem 2.1 is stated in greater generality

in order to use the potential of parallel algorithms that solve the problems max{cᵀi x : x ∈Qi }

themselves. This makes way for a refined analysis of linear programming problems that are in

recursive block structure as demonstrated in our applications.

The novel elements of this chapter are the following. We leverage the parallelism exhibited in

the solution of the Lagrange dual in the framework of Norton et al. [NPT92]. Furthermore,

we present an analysis of the multidimensional search technique of Megiddo [Meg84] in

the framework of linear algorithms to clarify how this technique can be used in our setting.

25

Chapter 2. Treefold Integer Programming in Near Linear Time

Roughly speaking, multidimensional search deals with the following problem. Given m

hyperplanes aᵀ
i λ = fi , i = 1, . . . ,m and λ ∈ Rr , the task is to understand the orientation of λ

with respect to each hyperplane using only few linear queries on λ. Megiddo shows how to do

this in time 2O(r) ·m log2(m) while the total number of linear queries involving λ is bounded by

2O(r) log(m). This is crucial for us and implicit in his analysis, we make it explicit here. Finally,

the algorithm itself is linear in c . In [NPT92] it is not immediately obvious that linearity can be

preserved. However, this is important for linear programs with a recursive block structure.

2.2.1 The Technique of Norton et al.

We now explain the algorithm to solve a linear program in n-fold structure (F). In the following

we write

B = (B1 . . . Bn) ∈Rr×(q1+···+qn),

xᵀ = (xᵀ
1 . . . xᵀ

n) ∈Rq1+···+qn , and

cᵀ = (cᵀ1 . . . cᵀn) ∈Zq1+···+qn .

It is well known that a linear program can be solved via Lagrangian relaxation. We refer to

standard textbooks in optimization for further details, see, e.g. [BV14, Sch98]. By dualizing the

linking constraints of (F) the Lagrangian L(λ) with weight λ ∈Rr is the linear programming

problem

L(λ) = max cᵀx −λ(B x −b0)

xi ∈Qi i = 1, . . . ,n.
(2.2)

The Lagrangian dual is the task to solve the convex optimization problem

min
λ∈Rr

L(λ). (2.3)

For a given symbolic vector λ, the value of L(λ) can be found by solving the independent

optimization problems

Pi = max{(cᵀi −λ
ᵀ

Bi)xi : xi ∈Qi } (2.4)

with the corresponding algorithms which are linear in the objective function vector. The

objective function vector of (2.4) is c i −Bᵀ
i λ. A query on this objective function vector posed

by the algorithm solving (2.4) can be put in the form

aᵀλ≤ f . (2.5)

Here f is an affine function in the components of c i defined by the query.

26

2.2. Solving the LP by Parametric Search and Parallelization

We are now ready to describe the main idea of the framework by Norton et al. Assume that we

have an algorithm Ak solving the following restricted Lagrangian

min
λ∈S

L(λ), (2.6)

where S is any k-dimensional affine subspace of Rr defined by S = {λ ∈ Rr : Dλ = d} for a

matrix D ∈ R(r−k)×r of r −k linear independent rows and a symbolic vector d ∈ Rr−k . To be

precise, Ak is delivering the optimal solution λS of (2.6) (as an affine function in c and d)

as well as an optimal solution x? ∈ Q1 × ·· · ×Qn of the linear program L(λS). Assume the

algorithm Ak to be linear in c and d . Further, assume that in the symbolic vector d each

component is a linear function in c. It follows that the restricted Lagrangian (2.6) stems from

constraining the vectors λ to satisfy n −k linearly independent queries of the form (2.5) with

equality.

The algorithm A0 solves the restricted Lagrangian dual for a subspace consisting of a single

symbolic point S = {λ0}. In other words, the algorithm A0 simply returns λ0 = D−1d which is

an affine function in c, together with a corresponding optimal solution to (2.2) for λ0. Note

that, the algorithm Ar solves the unrestricted version of the Lagrangian dual (2.3).

Now, we describe how to construct the algorithm Ak+1 with the algorithm Ak at hand. To this

end, let S = {λ ∈Rr : Dλ= d} be of dimension k +1, i.e., we assume that D consists of r −k −1

linearly independent rows. Furthermore, let λS ∈ S be an optimal solution of the restricted

Lagrangian dual (2.6) which is unknown to us.

Let E by the algorithm evaluating the Lagrangian L(λ). The idea is to run E on L(λS). Even

though λS is unknown, this is possible if each linear query (2.5) occurring in E is answered as

if it was queried for λS ∈ S. The symbolic point λS is then any point satisfying all queries.

Let aᵀλ≤ f be a query (2.5) given by E . If a is in the span of rows of D , then the query can be

answered by a linear query on the right hand sides d . Since the components of d are linear

functions in c, the query is also linear in c. Thus, we may assume a is not in the span of the

rows of D . We next show that, by three calls on the algorithm Ak , we can decide whether

(i) aᵀλ? = f for some optimal solution λ? ∈ S,

(ii) aᵀλ? > f for each optimal solution λ? ∈ S, or

(iii) aᵀλ? < f for each optimal solution λ? ∈ S

which means that we can answer the query as if it was asked for λS . Let ε> 0 be an unspecified

small value. We use Ak to find optimal solutions λL ,λR and λ0 of the Lagrangian restricted to

SL = S ∩ {λ : aᵀλ= f −ε}

S0 = S ∩ {λ : aᵀλ= f }

SR = S ∩ {λ : aᵀλ= f +ε}

27

Chapter 2. Treefold Integer Programming in Near Linear Time

respectively. Since λL ,λR and λ0 are affine functions in c , we can compare their corresponding

values and since L(λ) is convex, these comparisons allow to decide whether (i), (ii) or (iii)

holds.

The value ε does not have to be provided explicitly but can be treated symbolically. For

instance, in the recursion on SL , the algorithm Ak produces a series of linear queries of the

form uᵀc + yε≤ z. If y is positive, this is the query uᵀc < z which can be answered by querying

uᵀc ≤ z and uᵀc ≥ z.

We have shown how to simulate an algorithm that computes L(λ) as if it was on input λS . It

remains to describe how to retrieve λS as a linear function in c . This is done as follows. Let x?

be an optimal solution of L(λS) found by the above simulation. Let Uλ= u be the system of

equations given by all those linear queries of Ak which were answered with (i). The value of

L(λS) is equal to

max

{
cᵀx?−λᵀ(Ax?−b) : λ ∈Rr ,

(
D

U

)
λ=

(
d

u

)}
.

If (Ax?−b)ᵀ can be expressed as a linear combination of the rows of D and U , then any point

in the subspace given is optimal and one can be found with Gaussian elimination. Otherwise,

the Lagrange dual restricted to S is unbounded.

It remains to analyze the running time of the algorithm Ak+1. Let T be the running time of the

algorithm E evaluating L(λ) if each linear query (2.5) counts as a single operation. Then, the

running time of Ak+1 is 3 ·T times the running time of the algorithm Ak . This shows that the

running time of Ar is bounded by (3 ·T)r+1.

2.2.2 Acceleration by Parallelization and Multidimensional Search

A linear program in n-fold structure (F) has the important feature that, for a given λ ∈Rr , the

value of L(λ) can be computed by solving the n linear programming problems P1, . . . ,Pn (2.4)

in parallel. We now explain how to exploit this and, in consequence, prove Theorem 2.1.

For the sake of a more accessible treatment, let us assume for now that each of these problems

can be solved in time Tmax on an individual processor. This means that the evaluation of L(λ)

can be carried out with algorithm E on n processors by algorithms which are linear in their

respective objective function vectors. We are now looking again at the construction of the

algorithm Ak+1 with the algorithms Ak and E at hand.

In a single step of the parallel algorithm E , there are at most n queries of the form (2.5) coming

from the individual sub-problems Pi , i = 1, . . . ,n. In the previous subsection, these queries

were answered one-by-one according to λS by calling Ak three times. This can be reduces

massively by using Megiddo’s multidimensional search technique and Clarkson and Dyer’s

improvement [Dye86, Cla86].

28

2.2. Solving the LP by Parametric Search and Parallelization

Theorem 2.3 (Megiddo). Let λ ∈Rr be a symbolic vector and consider a set of m hyperplanes

Hi = {λ ∈Rr : aᵀ
i λ= fi }, i = 1, . . . ,m.

There is an algorithm that determines for each hyperplane whether

(i) aᵀ
i λ= fi ,

(ii) aᵀ
i λ< fi , or

(iii) aᵀ
i λ> fi

in 2O(r) log2(m) operations on O(m) processors. Moreover, the total (sequential) number of

comparisons dependent on λ is at most 2O(r) log(m).

To get an intuition on why the number of queries involving λ is this low, we consider the

base-case r = 1. Assume that ai 6= 0 for all i and compute the median M of the numbers

fi /ai . Then, for each hyperplane Hi one checks whether f i /ai ≤ M and fi /ai ≥ M holds. The

standard median computation [BFP+72] requires O(log(m)) operations on O(m) processors.

Now, compare λ ≤ M and λ ≥ M . From the result, we can derive an answer for m/2 of the

hyperplanes. Thus, the total number of linear queries involving λ is bounded by O(log(m)).

Note that we stated Theorem 2.3 in the framework of algorithms linear inλ and fi , i ∈ {1, . . . ,m}.

This version is implicitly proven in the papers [Meg84, Dye86, Cla86], nevertheless we provide

a proof after discussing its consequences.

time aᵀ
1λS ≤ f1

P1

aᵀ
2λS ≤ f2

P2

aᵀ
nλS ≤ fn

Pn

Figure 2.1: The algorithm E running the optimization problems Pi in parallel.

To evaluate the Lagrangian at λS , the algorithm E runs the optimization problems P1, . . . ,Pn

in parallel. At each given step in time, these n algorithms can all make a single query of the

form (2.5)

aᵀ
1λS ≤ f1 , . . . , aᵀ

nλS ≤ fn ,

29

Chapter 2. Treefold Integer Programming in Near Linear Time

see Figure 2.1. Recall that each fi is an affine function of c. These n queries can now be

answered with Megiddo’s algorithm in time 2O(r) log2(n) operations on n processors and a

total number of 2O(r) log(n) linear comparisons on λS . As explained in the previous section,

these 2O(r) log(n) linear queries can be answered by 3 calls to the algorithm Ak . Say that the

parallel algorithms in E solving the linear programs Pi have a maximum running time of Tmax.

Then using n processors, the algorithm Ak+1 has a total running time of 2O(r) log2(n)Tmax

plus 2O(r) log(n)Tmax times the running time of Ak . This shows that the running time of Ar is

bounded by 2O(r 2)(Tmax log(n))r+1. For a complete proof of Theorem 2.1 it remains to show

how to leverage parallel algorithms for the Pi , and how to find an optimal solution x? of (F).

Proof of Theorem 2.1. We follow the lines of the argument above, assuming now that the linear

optimization problems Pi = max{(cᵀi −λ
ᵀ

Bi)xi : xi ∈Qi } are solved on Ri processors using at

most Tmax operations on each processor. In this case, we obtain that the algorithm Ar requires

2O(r 2)(Tmax log(R))r+1 operations on R = ∑n
i=1 Ri processors. The optimal solution λOPT of

the Lagrangian dual (2.3) can thus be found in this time bound. The remainder of the proof

is dedicated to show how to find an optimal solution x? of the linear program in n-fold

structure (F).

The algorithm Ar proceeds by evaluating L(λOPT) at the unknown point λOPT . To do so,

it recursively makes various calls to the algorithm E to find optimal solutions to different

restricted Lagrangian duals (2.6). These optimal solutions are vertices v1, . . . , v` of the polytope

Q1 × ·· · ×Qn . Note that replacing the condition of x ∈ Q1 × ·· · ×Qn by x ∈ conv{v1, . . . , vn}

in the Lagrangian (2.2) does not change the optimal solution of the Lagrangian dual (2.3).

Therefore, the optimal value of the primal linear program is also not affected by restricting x to

conv{v1, . . . , vn}. Thus, to find an optimal solution to a linear program in n-fold structure (F),

it is sufficient to solve the restricted linear program

max
∑̀
i=1

(cᵀvi)µi

B

(∑̀
i=1

µi vi

)
= b0

∑̀
i=1

µi = 1

µ≥ 0.

The dual of this linear program is a linear program in r +1 dimensions and with ` constraints.

This can be solved in time 2O(r 2) ·` with Megiddo’s algorithm [Meg84].

We now argue that the number ` of vertices is bounded by 2O(r 2)(Tmax logR)r which, in turn,

implies that this additional work can be done in the claimed running time bound on one

processor. The algorithm Ak+1 runs E and makes 2O(r)Tmax log(R) calls to the algorithm

Ak . This shows that the total number of calls incurred by the algorithm Ar is bounded by

30

2.2. Solving the LP by Parametric Search and Parallelization

2O(r 2)(Tmax logR)r . This in turn bounds the number of vertices as claimed and finishes the

proof of the main result of this section.

Let us now turn to the proof of Theorem 2.3, adapted to the formulation using algorithms linear

in λ and the fi . Note again that we closely follow the proofs provided in [Meg84, Cla86, Dye86],

with the difference that we pay attention to the fact that the algorithm is linear in λ and the fi .

Proof of Theorem 2.3. We show that in 2O(r) log(m) operations on O(m) processors with 2O(r)

comparisons dependent on λ, we can determine the location of λ with respect to half of the

hyperplanes. The claimed result then follows with O(log(m)) repetitions. The algorithm solves

the problem by recursively solving the same problem in smaller dimensions.

Consider the base case in dimension r = 1. We start by dealing with all hyperplanes Hi =
{λ ∈ Rr : aᵀ

i λ = fi } where ai = 0. For this, it is sufficient to check whether fi ≤ 0 and fi ≥ 0,

which can be done in parallel. Hence, assume now ai 6= 0 for all hyperplanes Hi . Next,

we compute the median M of the numbers f1/a1, . . . , fm/am and for each hyperplane Hi

whether fi /ai ≤ M and fi /ai ≥ M hold. The standard median computation [BFP+72] requires

O(log(m)) operations on O(m) processors. Now compare λ≤ M and λ≥ M . From the result

we can derive an answer for m/2 of the hyperplanes. The total number of linear queries

involving λ is bounded by O(log(m)).

Now consider the dimension r > 1. In this case, the following observation is crucial in reducing

the problem to a smaller dimension. Let Hi and H j be two hyperplanes with (ai)1/(ai)2 ≤ 0

and (a j)1/(a j)2 > 0. We can define two new hyperplanes, one parallel to the λ1-axis and one

parallel to theλ2-axis such that the location ofλwith respect to these new hyperplanes implies

its location with respect to either Hi or H j .With this in mind, we start by transforming the

coordinate system such that many pairs with this property exist.

Similar to the base case, we first consider all hyperplanes Hi with (ai)2 = 0 and solve half of

them recursively in dimension r −1. For the remainder we assume (ai)2 > 0 for all Hi by simply

swapping the signs on all other hyperplanes. Now compute the median M of (ai)1/(ai)2 and,

for each hyperplane Hi , determine whether (ai)1/(ai)2 ≤ M and (ai)1/(ai)2 ≥ M holds. This

takes O(log(m)) operations on O(m) processors.

Next, transform the coordinate system by using the automorphism given by F ∈Rr×r such that

(λ1,λ2,λ3, . . . ,λr)ᵀF = (λ1 −Mλ2,λ2,λ3, . . . ,λr)ᵀ.

For each Hi , define a new hyperplane H ′
i = {λ′ ∈Rr : a′ᵀ

i λ
′ = fi } with a′ = aF . Then, locating

λ′ = (Fᵀ)−1λ with respect to the hyperplanes H ′
i is equivalent to locating λ with respect to

the hyperplanes Hi . Hence, it suffices to construct an algorithm for the new hyperplanes

H ′
i . Then, running this algorithm with each comparison uᵀλ′ + vᵀ f ≤ w transformed to

(uᵀ(Fᵀ)−1)λ′+ vᵀ f ≤ w yields an algorithm for the original hyperplanes Hi .

31

Chapter 2. Treefold Integer Programming in Near Linear Time

We have established that for one half of the new hyperplanes (a′
i)1 ≤ 0 holds and for the other

half, (a′
i)1 ≥ 0 holds. Notice also that (a′

i)2 = (ai)2 > 0. Now, form a maximum number of pairs

of hyperplanes such that each pair (H ′
i , H ′

j) satisfies (a′
i)1 ≤ 0 and (a′

j)1 > 0. For all remaining

hyperplanes (a′
i)1 = 0 holds and we solve half of them recursively in dimension r −1. Hence,

we focus on the pairs and alter the hyperplanes once more. For each pair (H ′
i , H ′

j) define the

two hyperplanes

H ′′
i =

{
λ′ ∈Rr :

(
(a′

j)1a′
i − (a′

i)1a′
j︸ ︷︷ ︸

=:a′′
i

)ᵀ
λ′ = (a′

j)1 fi − (a′
i)1 f j︸ ︷︷ ︸

=: f ′′
i

}
,

H ′′
j =

{
λ′ ∈Rr :

(
(a′

j)2a′
i − (a′

i)2a′
j︸ ︷︷ ︸

=:a′′
i

)ᵀ
λ′ = (a′

j)2 fi − (a′
j)1 f j︸ ︷︷ ︸

=: f ′′
j

}
.

These hyperplanes are a combination of H ′
i and H ′

j which eliminates either the first or second

coordinate. Hence, locating λ′ with respect to the hyperplanes of the first kind (those where

λ1 is eliminated) is a problem in dimension r −1. We now recursively solve the problem for

half of these hyperplanes. For those pairs where the first kind of hyperplanes is solved, we

recurse again on the hyperplanes of the second kind. Thus, we located λ′ with respect to both

H ′′
i and H ′′

j for at least 1/4 of the pairs (H ′
i , H ′

j).

H ′
j

H ′
i

H ′′
j

H ′′
i

λ′

Figure 2.2: Megiddo’s multidimensional search algorithm illustrated in r = 2 dimensions.

It remains to derive the location with respect to one of H ′
i and H ′

j . In two dimensions this is

illustrated in Figure 2.2. Intuitively, if for example, λ′ is to the right of H ′′
i and above H ′′

j , then

32

2.3. Proximity

it is to the top-right of H ′
j . Notice that we can write

(
(a′

i)2(a′
j)1 − (a′

i)1(a′
j)2

)
︸ ︷︷ ︸

=:µi>0

a′
i = (a′

i)2︸ ︷︷ ︸
≥0

a′′
i − (a′

i)1︸ ︷︷ ︸
≤0

a′′
j , (a′

i)2 f ′′
1 − (a′

i)1 f ′′
j =µi fi

(
(a′

j)1(a′
i)2 − (a′

j)2(a′
i)1

)
︸ ︷︷ ︸

=:µ j<0

a′
j = (a′

j)2︸ ︷︷ ︸
≥0

a′′
i − (a′

j)1︸ ︷︷ ︸
>0

a′′
j , (a′

j)2 f ′′
i − (a′

j)1 f ′′
j =µ j f j .

From the coefficients above it follows that if the signs of the comparisons between a′′ᵀ
i λ′, f ′′

i

and a′′ᵀ
j λ′, f ′′

j are equal, this implies an answer for H ′
j , and if they differ, it implies an answer

for H ′
i .

This means that we know the location of λ with respect to at least 1/8 of the paired up

hyperplanes. After repeating the same procedure a constant number of times, we know the

location ofλwith respect to at least half of the hyperplanes. This procedure requiresO(log(m))

operations on O(m) processors and no comparisons, except for those made by recursions.

The number of recursive calls to dimension r −1 is also constant. Leading to a total running

time (including recursions) of 2O(r) log(m) on O(m) processors and 2O(r) comparisons on λ.

We note that the arithmetic operations on fi increase in the recursions, since each operation

is made on a linear function in fi . However, the cardinality of the support of these functions is

always bounded by 2O(r). Hence, this overhead is negligible.

2.3 Proximity

Our goal is to describe a relaxation of the integer program P = (x, A,b,c) in n-fold structure (F),

which can be solved efficiently with the techniques of Section 2.2 and whose `1 distance

between its optimal solution and an optimal integral solution is independent of n. The

following lemma shows that the standard relaxation, obtained by relaxing the integrality

constraints xi ∈Zqi to xi ∈Rqi for i = 1, . . . ,n, is not sufficient.

Lemma 2.4. There exists a family of block-structured integer programming problems such that

the `∞-distance of an optimal solution x? of the standard LP-relaxation to each integer optimal

solution x¦ is bounded from below by

‖x?−x¦‖∞ =Ω(n).

Proof. We construct a family of problems in which the number n of blocks is odd and each

block has two variables. Denote the variables by (xi)1 and (xi)2 for 1 ≤ i ≤ n. Consider the

linear program given by maximizing following objective function

n∑
i=1

(2+ε)(xi)1 + (3−ε)(xi)2

33

Chapter 2. Treefold Integer Programming in Near Linear Time

under the constraints given by the polyhedra

Qi = {xi : 2(xi)1 +3(xi)2 = 3, xi ≥ 0}, i = 1, . . . ,n −1,

Qn = {xn : 2(xn)1 +3(xn)2 = 6n}.

Notice that for these constraints, the unique optimal fractional solution is given by (x?i)1 = 3/2,

(x?i)2 = 0 for i = 1, . . . ,n −1 and (x?n)1 = 3n, (x?n)2 = 0. We now add the linking constraint

n−1∑
i=1

(
(xi)1 + (xi)2

)− (
(xn)1 + (xn)2

)= 3(n −1)

2
−3n

which is satisfied by the optimal fractional solution x?. It may be checked that the optimal

integral solution x¦ is defined by setting (x¦
i)1 = 0, (x¦

2)1 = 1 for i = 1, . . . ,n −1, and setting

(x¦
n)1 = 3n −3(n −1)/2, (x¦

n)2 = n −1. We obtain that (x¦
n)2 − (x?n)2 = n −1 giving the claimed

lower bound.

We are interested in a relaxation whose solution is closer to the optimal integer solution. Using

the n-fold structure (F) of the problem, we replace the polyhedra Qi by their integer hull (Qi)I ,

removing only fractional solutions but no integer solutions of the standard relaxation. Note

that this strengthened relaxation is still a linear program in n-fold structure as described

in (F). We now show that for a linear program in n-fold structure (F) with integral polyhedra

Qi , an optimal vertex solution is close to an optimal integer solution.

Before we state and prove the main result of this section, we will need some additional notation.

Suppose that P is a linear program in n-fold structure (F) with integral polyhedra Qi . Let

x1, . . . , xn be the partition of the vector of variables x so that xi corresponds to the columns

of Bi and variables of Qi , for each i ∈ {1, . . . ,n}. Partition c into c1, . . . ,cn in the same fashion.

For each i ∈ {1, . . . ,n}, suppose Qi is the integer hull of the polyhedron {xi : Di xi = bi , xi ≥ 0}

in dimension qi . Further, let

γ := max
1≤i≤n

g1(Di)

be a bound on the `1 Graver measure of the Di and

∆ := max
1≤i≤n

{‖Bi‖∞,‖Di‖∞}

an upper bound on each entry in the matrices Bi and Di for i = 1, . . . ,n.

Now we are ready to state our main result.

Theorem 2.5. Given a linear program P in n-fold structure (F) with integral polyhedra Qi and

an optimal vertex solution x? of P. Then there exists an optimal integer solution x¦ of P with

‖x?−x¦‖1 ≤ (r∆γ)O(r).

34

2.3. Proximity

Theorem 2.5 shows that the proximity bound for ‖x? − x¦‖1 does neither depend on the

number of blocks n nor on the ambient dimension of the block polyhedra Qi , using known

bounds on the Graver basis, see e.g. Theorem 1.3.

x?1
x1

z¦
1

x?2 = x2

x¦
2

x?n = xn

x¦
n

Figure 2.3: Overview of the proof of Theorem 2.5 with r = 2 linking constraints.

Next we present an overview of the proof, see Figure 2.3.

• Let xi be a nearest integer point to x?i with respect to the `1-norm that lies on the

minimal face of Qi containing x?i . In Lemma 2.7 we show that ‖x?i −xi ‖1 ≤ r 2γ.

• Let x¦ be an optimal integer solution such that ‖x −x¦‖1 is minimal. In Theorem 2.10

we show that ‖x −x¦‖1 ≤ (r∆γ)O(r).

• In Lemma 2.6 we show that at most r of the x?i are non-integral and in particular not

equal to xi . Theorem 2.5 then follows by applying the above bounds:

‖x?−x¦‖1 ≤ ‖x?−x ‖1 +‖x −x¦‖1

≤ r 3γ+ (r∆γ)O(r)

≤ (r∆γ)O(r).

Lemma 2.6. Let x? be a vertex solution of a linear program P in n-fold structure (F). All but r

of the x?i are vertices of the respective Qi . Thus if the Qi are integral polyhedra, all but r of the

x?i are integral.

Proof. For the sake of contradiction, suppose that x?1 , . . . , x?r+1 are not vertices of the respective

Qi . Then, for each i = 1, . . . ,r +1 there exists a non-zero vector di ∈Rqi such that x?i ±di ∈Qi .

Consider the r +1 vectors of the form Bi di ∈Rr . They have to be linearly dependent and thus,

there exist λ1, . . . ,λr+1 ∈R not all zero such that

r+1∑
i=1

λi Bi di = 0

By scaling the λi we can suppose that x?i ±λi di ∈Qi . Consider

d = (λ1d1, . . . ,λr+1dr+1,0, . . . ,0) ∈Rq1+···+qn \ {0}

Then x?+d and x?−d are both feasible solutions of P and x? = 1
2 (x?+d)+ 1

2 (x?−d). So x?

is a convex combination of two feasible points of P and thus not a vertex.

35

Chapter 2. Treefold Integer Programming in Near Linear Time

Lemma 2.7. Let Qi be an integer polyhedron of a linear program P in n-fold structure (F) and

x? an optimal solution to P. Further, let Fi be the minimal face of Qi containing x?i . Then there

exists an integer point xi ∈ Fi ∩Zqi with

‖x?i −xi ‖1 ≤ r 2γ.

The proof of this result uses standard arguments of polyhedral theory, see, e.g. [Sch98].

Proof. We show that for a k dimensional face Fi , the bound k2γ holds and prove the result by

induction. Because of Lemma 2.6 we can then conclude that the dimension k of Fi is bounded

by k ≤ r , leading to the wanted bound. If Fi is 0 dimensional, the assumption clearly holds,

henceforth we assume Fi to be k ≥ 1 dimensional. Let w ∈ Fi be an arbitrary vertex of Fi and

let Ci be the cone

Ci = {λ(f −w) : f ∈ Fi , λ≥ 0}.

The extreme rays of this cone are elements of the Graver basis Di representing Qi , see

e.g. [Onn10a, Lemma 3.15]. By Carathéodory’s Theorem [Sch98, p. 94] there exist k Graver

basis elements g1, . . . , gk such that

x?i = w +
k∑

j=1
λ j g j .

Consider the integer point z = w+∑k
j=1bλ j cg j ∈Zqi . There are two cases. If z ∈ Fi , then, by the

triangle inequality, the distance in `1-norm of x?i to the nearest integer point in Fi is bounded

by kγ. Otherwise, the line segment between x?i and z exits Fi in a lower dimensional face of

Qi contained in Fi . Call x̃i the intersection point. We apply an inductive argument now: there

is an integer point on this lower dimensional face that has `1-distance at most (k −1)2γ from

x̃i . The bound k2γ follows by applying the triangle inequality and the recursion.

In the following, we keep the notation of Lemma 2.7 and denote (x1 , . . . , xn) ∈Zq1+···+qn by x .

If x¦ ∈Zq1+···+qn is a feasible integer solution of P , the linear program in n-fold structure (F)

with integral Qi , then each x¦
i is in Qi . In particular xi −x¦

i is in the integer kernel of Di , the

matrix representing Qi . Therefore, there exists a multiset Li of Graver basis elements of this

matrix that are sign-compatible with xi −x¦
i such that

xi −x¦
i =

∑
g∈Li

g .

36

2.3. Proximity

Lemma 2.8. For each i = 1, . . . ,n and each submultiset Hi ⊆ Li one has

(i)

x¦
i +

∑
h∈Hi

h ∈Qi

xi − ∑
h∈Hi

h ∈Qi .

(ii) There exists an ε> 0 such that

x?−ε ∑
h∈Hi

h ∈Qi .

Proof. Assertion (i) follows from standard arguments (see e.g. [Onn10a]) as follows. Let Qi be

the integer hull of {xi : Di xi = bi , xi ≥ 0}. Then, one has

Di

(
z¦

i +
∑

h∈Hi

h

)
= bi ,

Di

(
xi − ∑

h∈Hi

h

)
= bi

and both x¦+∑
h∈Hi

h and xi −∑
h∈Hi

h are integral. Since the Graver basis elements of Hi are

sign-compatible with xi −x¦
i the non-negativity is satisfied by both points as well. Thus both

points are feasible integer points of the system Di xi = bi , xi ≥ 0 which implies that they lie

in Qi .

For the proof of Assertion (ii), let the polyhedron Qi be described by the inequalities

Qi = {x ∈Rqi : Ei xi ≤ pi }

for some integer matrix Ei ∈Zti×qi and integer vector pi ∈Zti . Let Ii ⊆ {1, . . . , ti } be the index

set corresponding to the inequalities of Ei xi ≤ pi satisfied by x?i with equality. The inequality

description of Fi is obtained from Ei xi ≤ pi by setting the inequalities indexed by Ii to equality.

Since xi ∈ Fi , all the inequalities indexed by Ii and possibly more are also tight at xi . However,

by subtracting
∑

h∈Hi
h from xi one obtains a point of Qi . Therefore, starting at x?i we can

move in the direction of −∑
h∈Hi

h for some positive amount without leaving Qi . This means

that Assertion (ii) holds.

Lemma 2.9. Given a linear program P in n-fold structure (F) with integral polyhedra Qi , and

a feasible integer solution x to P as provided by Theorem 2.10. Suppose that x¦ is an optimal

integer solution to P minimizing ‖x −x¦‖1. For each i = 1, . . . ,n, let Li be a multiset of Graver

37

Chapter 2. Treefold Integer Programming in Near Linear Time

basis elements of Di , the matrix representing Qi such that h v xi −x¦
i for each h ∈ Li and

xi −x¦
i =

∑
h∈Li

h

Then, each selection of sub-multisets H1 ⊆ L1, . . . , Hn ⊆ Ln satisfies

n∑
i=1

∑
h∈Hi

Bi h 6= 0.

Proof. For the sake of contradiction, let H1 ⊆ L1, . . . , Hn ⊆ Ln be a selection of sub-multisets

such that
n∑

i=1

∑
h∈Hi

Bi h = 0 (2.7)

holds. By Lemma 2.8 (i) one has x¦
i +

∑
h∈Hi

h ∈Qi for each i = 1, . . . ,n. Together, this implies

that

x¦+
(∑

h∈H1

h, . . . ,
∑

h∈Hn

h

)
∈ SolZ(P) (2.8)

is an integer solution of P . Similarly, Lemma 2.8 (ii) implies that there exists an ε> 0 such that

x?−ε
(∑

h∈H1

h, . . . ,
∑

h∈Hn

h

)
∈ SolR(P).

is a feasible solution of P . Since x¦ and x? were optimal integral and fractional solutions of P

respectively, this implies that
n∑

i=1
cᵀi

∑
h∈Hi

h = 0,

and thus the objective values of z¦ and (2.8) are the same. This however is a contradiction to

the minimality of ‖x −x¦‖1, as the optimal integer solution (2.8) is closer to x .

As in the proximity result presented in [EW20a] we make use of the Steinitz lemma (Theo-

rem 1.2) to bound, in this case ‖x − x¦‖1. The proof follows closely the ideas in [EHK18].

Theorem 2.10. Given a linear program P in liked block form (F) with integer polyhedra Qi and

a feasible integer solution x to P as provided by Theorem 2.10. Suppose that x¦ is an optimal

integer solution to P minimizing ‖x −x¦‖1. Then it holds that

‖x −x¦‖1 ≤ (2r∆γ+1)r+4.

Proof. We use the notation of the statement of Lemma 2.9. Denote the matrix (B1, . . . ,Bn) ∈

38

2.3. Proximity

Zr×(q1+···+qn) by B . For an optimal fractional solution x? of P , we have

0 = B(x?−x¦) = B(x?−x)+B(x −x¦)

= B(x?−x)+
n∑

i=1

∑
h∈Li

Bi h.

Since the `1-norm of each Graver basis element h ∈ Li is assumed to be bounded by γ, the

`∞-norm of each Bi h is bounded by ∆γ. The Steinitz Lemma (Theorem 1.2) implies that the

set

{Bi h : h ∈ Li , i = 1, . . . ,n} ⊆Zr

can be permuted in such a way such that the distance in the `∞-norm of each prefix sum to

the line-segment spanned by 0 and B(x?−x) is bounded by ∆γ times the dimension r , i.e.,

by R := r∆γ. Note that each such prefix sum is an integer point. The number of integer points

within `∞-distance R to the line segment spanned by 0 and B(x?−x) is at most

(‖B(x?−x)‖1 +1) · (2R +1)r .

Where

‖B(x?− y)‖1 ≤
n∑

i=1
‖Bi (x?i −xi)‖1

≤ r ·∆r 3γ.

The last inequality follows from Lemmas 2.6 and 2.7. Thus number of integer points is bounded

by

(r 4∆γ+1) · (2r∆γ+1)r

If
∑n

i=1 |Li | is larger than this bound, then there exist two equal prefix sums in the Steinitz

rearrangement of the vectors. This yields sub-multisets H1 ⊆ L1, . . . , Hn ⊆ Ln consisting of the

vectors in between these equal prefix sums, for which one has

n∑
i=1

∑
h∈Hi

Bi h = 0.

By Lemma 2.9 this is not possible, which implies that

‖x − z¦‖1 ≤ (r 4∆γ+1)(2r∆γ+1)r = (r∆γ)O(r).

Applying the triangle inequality ‖x?−x¦‖1 ≤ ‖x?−x ‖1 +‖x −x¦‖1 then proves Theorem 2.5.

39

Chapter 2. Treefold Integer Programming in Near Linear Time

2.4 A Dynamic Program

Let x? be an optimal vertex solution of a linear program P in n-fold structure (F) with integral

polyhedra Qi . We now describe a dynamic programming approach which computes an opti-

mal integer solution of P . Note that this approach closely resembles a method from [EHK+19].

First we observe that by Theorem 2.5 it is sufficient to search for an optimal integral solution

x¦ of P which satisfies ‖x?− x¦‖1 ≤ (r∆γ)O(r). For simplicity of presentation, assume n to

be a power of 2. We now construct a binary tree with n leaves. Let v j ,k be the (j + 1)-th

node on the (k −1)-th layer from the bottom. Each node v j ,k corresponds to the interval of

the form [j 2k +1,(j +1)2k]. In particular, the root node v0,log(n) corresponds to the interval

[1,n]. Starting from the leaves, we compute solutions z j 2k+1, . . . , z(j+1)2k for each v j ,k using the

solutions its two children.

An integer vector z with ‖x?− z‖1 ≤ (r∆γ)O(r) also satisfies∥∥∥∥∥ (j+1)2k∑
i= j 2k+1

Bi
(
x?i − zi

)∥∥∥∥∥
∞

≤ (r∆γ)O(r)

for each v j ,k . Which implies the following bounds

(j+1)2k∑
i= j 2k+1

Bi x?i − (r∆γ)O(r)1 ≤
(j+1)2k∑

i= j 2k+1

Bi zi ≤
(j+1)2k∑

i= j 2k+1

Bi x?i + (r∆γ)O(r)1,

where 1 is the all-ones vector. Let S j ,k ⊆Zr be the set of integer vectors d ∈Zr which satisfy

the above bounds, namely

(j+1)2k∑
i= j 2k+1

Bi x?i − (r∆γ)O(r)1 ≤ d ≤
(j+1)2k∑

i= j 2k+1

Bi x?i + (r∆γ)O(r)1,

Clearly, the cardinality of each S j ,k satisfies

|S j ,k | ≤ (r∆γ)O(r 2).

Now, we generate all these sets S j ,k and compute for each node v j ,k and each d ∈ S j ,k a

partial solution z j 2k+1, . . . , z(j+1)2k bottom-up. The optimal integral solution x¦ will satisfy the

following condition: If d is the the correct guess, that is to say,

(j+1)2k∑
i= j 2k+1

Bi x¦
i = d ,

40

2.5. Applications

then our computed partial solution z satisfies

(j+1)2k∑
i= j 2k+1

cᵀi zi ≥
(j+1)2k∑

i= j 2k+1

cᵀi x¦
i .

For the leaves, we solve the individual block using a presumed algorithm we have for them,

that is, we compute the optimal solution to

max
{
cᵀi zi : Bi zi = d , zi ∈Qi , zi ∈Zqi

≥0

}
. (2.9)

For an inner node v j ,k with children v2 j ,k−1 and v2 j+1,k−1 we consider all d ′ ∈ S2 j ,k−1 and

d ′′ ∈ S2 j+1,k−1 with d = d ′+d ′′ and take the best solution among all combinations. Indeed, if

d is the correct guess, then the correct guesses d ′ and d ′′ are among these candidates.

After computing all solutions for the root, we obtain an optimal solution by taking the solution

for b0 ∈ S0,log(n).

This algorithm leads to the following theorem.

Theorem 2.11. Given a linear program P in n-fold structure (F) with integral polyhedra Qi

and an optimal vertex solution x? to P. There is a linear algorithm rounding x? to an optimal

integral solution of P in

O
(
(r 2 log(r∆γ)+Tmax) log(n)

)
operations on each of (r∆γ)O(r 2)R processors. Here R = ∑

i Ri is the sum of the processor re-

quirements of the algorithms for the block problems (2.9) and Tmax is the maximum number of

operations used to solve any of them.

2.5 Applications

In this section, we derive running time bounds for concrete cases of integer linear programs

in n-fold structure (F) using the theorems from the earlier sections. All algorithms in this

section are linear algorithms in the sense of the definition Section 1.1.3.

Our base case is the trivial integer linear program

max{cx : Ax = b,0 ≤ x ≤ u, x ∈Z}, (2.10)

where c ∈ R, A ∈ Zs×1, b ∈ Zs , and u ∈ Z∪ {∞}. Clearly this problem can be solved in O(s)

operations.

Corollary 2.12. Let c ∈Rq , A ∈Zs×q , b ∈Zs . Consider the integer linear program P = (x, A,b,c)

in the form (♠) with upper bounds u ∈ Z≥0 ∪ {∞}. An optimal integral solution to P can be

found in

(s‖A‖∞)O(s2)q1+o(1)

41

Chapter 2. Treefold Integer Programming in Near Linear Time

arithmetic operations, or alternatively in 2O(s2) log(‖A‖∞) logs+1(q) arithmetic operations on

(s‖A‖∞)O(s2)q processors.

Proof. Using Theorem 2.1 with Qi =R for all i , we can solve the relaxation in 2O(s2) logs+1(q)

operations on q processors. Then, with an upper bound of O(‖A‖∞) on the `1-Graver

measure of (2.10), we can use Theorem 2.11 to derive an optimal integral solution to P in

O
(
(s2 log(s‖A‖∞)) log(q)

)
operations on (s‖A‖∞)O(s2)q processors. The sequential running

time follows with the fact that logk (n) ≤ k2k no(1).

Corollary 2.13. Consider the integer linear program P = (x, A,b,c) in the form (♠) with upper

bounds u ∈Z≥0 ∪ {∞}, where A is an n-fold matrix as in (1.2). An optimal integral solution to P

can be found in

2O(r s2)(r s‖A‖∞)O(r 2s+s2)(nq)1+o(1)

arithmetic operations, or alternatively in 2O(r 2+r s2) logO(r s)(nq‖A‖∞) arithmetic operations on

(r s‖A‖∞)O(r 2s+s2)nq processors.

Proof. We start by solving the relaxation of P given by the linear program in n-fold structure

(F) where each block constraint xi ∈ {xi : Di xi = bi } is replaced by its integral hull. Using

Theorem 2.1 we can solve this relaxation in 2O(r 2+r s2) logr+1(‖A‖∞) logO(r s)(q) logr+1(nq) op-

erations on (s‖A‖∞)O(s2)nq processors. From Theorem 1.3 we derive that the Graver measure

of Di is at most (2s‖A‖∞ + 1)s . Then using Theorem 2.11, we derive an optimal integer

solution to P in 2O(r+s)2
logr+s+1(q) log(r s‖A‖∞) log(n) operations on (r s‖A‖∞)O(r 2s+s2)nq

processors.

Another parameter under consideration for integer programming is the dual treedepth of

the constraint matrix A. Though sometimes the running time is analyzed in a more fine-

grained way by introducing additional parameters, the best running time in literature purely

dependent d = tdD(A) and ‖A‖∞ have a parameter dependency of ‖A‖O(d2d)∞ [KPW20].

Corollary 2.14. Let P = (x, A,b,c) be a linear program in the form (♠) on t variables. Suppose

A has dual depth depthD(A) = d. Then, an optimal integral solution to P can be found in

dO(d 22d)‖A‖O(2d)
∞ t 1+o(1)

arithmetic operations, or alternatively in logO(d2d)(d‖A‖∞t) parallel arithmetic operations on

dO(d 3)‖A‖O(2d)∞ t processors.

Proof. We show the result by induction on the dual depth for a slightly more general problem.

Split the constraint matrix into A = (B
D

)
such that B ∈Zr×t for some r ≥ 2 and D ∈Zh×t . The

requirement r ≥ 2 is to avoid some corner cases in the proof. Denote the dual depth of D by

d = depthD(D). The induction hypothesis is that in this setting, an optimal integral solution to

42

2.5. Applications

P can be found in

T (d ,r, t) := log(r+1)2d ∑d
i=0(3Mr+i)/2i

(r‖A‖∞t) = logO(r 22d)(‖A‖∞t)

arithmetic operations on

R(d ,r, t) := ‖A‖M2d ·∑∞
i=0(r+i)3/2i

∞ t = ‖A‖O(r 32d)
∞ t

processors. Here, M is a sufficiently large constant. In particular, we suppose that M is larger

than any hidden constant appearing in the O-notation of Theorems 2.1 and 2.11. To get the

wanted result for r = 0 we can simply solve the problem with r = 2 and B the trivial zero matrix.

As a base case, we consider
(B

D

)
with depthD(D) = 0. By Corollary 2.12 the induction hypothesis

holds for any r ≥ 1.

Now suppose that A is split into
(B

D

)
with d = depthD(D) ≥ 1. Compute the block decompo-

sition of D into the n ≥ 1 blocks D1, . . . ,Dn and split B into according blocks B1, . . . ,Bn . For

i = 1. . . ,n, say that qi is the number of columns in Di and Bi . Consider the linear program

P in n-fold structure (F) where the linking constraints are given by B x = b0 and the block

constraints xi ∈Qi by setting Qi to be the integer hull of {xi : Di xi = bi }. To find an optimal

integral solution of P we first use Theorem 2.1 to find an optimal fractional solution of P and

then derive an optimal integral solution with Theorem 2.11.

Note that for i = 1, . . . ,n the matrix
(Bi

Di

)
can also be seen as

(B ′
i

D ′
i

)
with B ′

i having r +1 rows and

depthD(D ′
i) ≤ d −1. Similarly, Di can be seen as D ′

i with an additional row on the top. First we

analyze the processor usage of these two steps. By Theorem 2.1, solving the relaxation requires

n∑
i=1

R(d −1,2, qi) ≤ ‖A‖M2d−1 ∑∞
i=0(2+i)3/2i

∞ (q1 +·· ·+qn) ≤ R(d ,2,h) ≤ R(d ,r,h)

processors. From Theorem 1.6 we have g1(Di) ≤ (2‖A‖∞+1)2d−1 for each i = 1, . . . ,n. This

implies that r‖A‖∞ max{g1(Di) : 1 ≤ i ≤ n} is bounded by ‖A‖r 2d

∞ . Then, by Theorem 2.11 for

deriving an optimal integral solution we require at most

(
r‖A‖∞ max

1≤i≤n
{g1(Di)}

)Mr 2 n∑
i=1

R(d −1,r +1, qi)

≤ ‖A‖M2d r 3

∞ · ‖A‖M2d−1 ∑∞
i=0(r+1+i)3/2i

∞ (q1 +·· ·+qn)

= ‖A‖M2d r 3

∞ · ‖A‖M2d ∑∞
i=1(r+i)3/2i

∞ t

= ‖A‖M2d ∑∞
i=0(r+i)2/2i

∞ t = R(d ,r, t).

processors. This proves the closed formula for the number of processors.

43

Chapter 2. Treefold Integer Programming in Near Linear Time

We now proceed to prove the number of arithmetic operations required. Since this depends

mildly on the processor usage, we will first upper bound the number of processors by

R(d ,2, t) = ‖A‖M2d ∑∞
i=0(2+i)3/2i

∞ t ≤ ‖A‖M 22d

∞ t ,

which holds for sufficiently large M . By Theorem 2.1, the number of arithmetic operations

required to solve the relaxation is at most

2Mr 2
(

max
1≤i≤n

{
T (d −1,2, qi)

} · log
(
R(d −1,1, t)

))r+1

≤ 1

2

(
2Mr ·T (d −1,r, t) · log

(
R(d −1,2, t)

))r+1

≤ 1

2

(
2Mr log2d ∑d−1

i=0 (3Mr+i)/2i
(‖A‖∞t) ·M 22d log(‖A‖∞t)

)r+1

≤ 1

2

(
log2d ∑d−1

i=0 (3Mr+i)/2i
(‖A‖∞t) · log3Mr+d (‖A‖∞t)

)r+1

≤ 1

2

(
log2d ∑d

i=0(3Mr+i)/2i
(‖A‖∞h)

)r+1

≤ 1

2
T (d ,r, t).

By Theorem 2.11 the number of arithmetic operations to deduce an integer solution is at most

M
(
r 2 log(r‖A‖∞ max

1≤i≤n
{g1(Di)})+ max

1≤1≤n
{T (d −1,r +1, qi)}

)
log(n)

≤ M
(
r 32d log(‖A‖∞)+ log(r+2)2d−1 ∑d−1

i=0 (3M(r+1)+i)/2i
(‖A‖∞t)

)
log(n)

≤ 1

2

(
log2Mr+d (‖A‖∞t)+ logM (‖A‖∞t) · log(r+1)2d ∑d−1

i=0 (3Mr+i)/2i
(‖A‖∞t)

)
≤ 1

2
log(r+1)2d ∑d

i=0(3Mr+i)/2i
(‖A‖∞t) = 1

2
T (d ,r, t),

where in the second inequality we use that (r +2)(r +1) ≤ 2(r +1)r since r ≥ 2.

Continuous variables

We now consider the continuous cases of linear programs in n-fold structure. Although linear

programming has polynomial algorithms, no strongly polynomial algorithm is known for the

general case and there is no PRAM algorithm running in polylogarithmic time on a polynomial

number of processors unless NC = P [GHR+95]. For the following corollaries, we only use

Theorem 2.1.

The continuous variant of the base case (2.10) is easily solvable in O(s) operations.

44

2.5. Applications

Corollary 2.15. Let c ∈Rq , A ∈Zs×q , b ∈Zs . Consider the linear program P = (x, A,b,c) in the

form (♠) with upper bounds u ∈Z≥0 ∪ {∞}. An optimal fractional solution to P can be found in

2O(s2)q1+o(1)

operations, or alternatively in 2O(s2) logs(q) operations on each of q processors.

Corollary 2.16. Consider the linear program P = (x, A,b,c) in the form (♠) with upper bounds

u ∈Z≥0 ∪ {∞}, where A is an n-fold matrix as in (1.2). An optimal fractional solution to P can

be found in

2O(r 2+r s2)(nq)1+o(1)

arithmetic operations, or alternatively in 2O(r 2+r s2) logO(r s)(nq) arithmetic operations on nq

processors.

Corollary 2.17. Let P = (x, A,b,c) be a linear program in the form (♠) on t variables. Suppose

A has dual depth depthD(A) = d. Then, an optimal fractional solution to P can be found in

2O(d2d)t 1+o(1)

arithmetic operations, or alternatively with 2O(2d) log(h)2d+1−2 arithmetic operations on t pro-

cessors.

Proof. We induct on the dual depth d = depthD(A). For d = 1, A consists of a single constraint

and Corollary 2.15 with s = 1 gives a running time of 2O(1) log(t) on each of t processors.

For depthD(A) = d ≥ 2, the matrix A is in n-fold structure with r = 1 and for all polyhedra

Qi = {xi : Di xi = bi } the dual depth of Di is at most d −1. Using the recursion hypothesis and

Theorem 2.1 we get the desired result.

45

3 Efficient Sequential and Parallel
Algorithms for Multistage Stochastic
Integer Programming using Proximity

This chapter contains a overworked version of [CEP+21] which is joint work with Friedrich

Eisenbrand, Michał Pilipczuk, Moritz Venzin and Robert Weismantel.

3.1 Introduction

We consider integer programming problems where the constraint matrix is 2-stage stochastic

or multistage stochastic (see Section 1.2.1). Our aim is to exploit specific structural properties

of the constraint matrix to develop efficient algorithms. Recall that A is two-stage stochastic or

(p, q)-stochastic if after deleting the first p columns the matrix can be decomposed into blocks

with at most q columns each. Multistage stochastic integer programming is a generalization of

the two-stage variant obtained by allowing further recursive levels in the block structure. This

recursive structure can be explained by the primal treedepth of a matrix.

The goal is to get a fixed parameter tractable algorithms for integer programming parame-

terized by tdP(A) and ‖A‖∞. A weak fixed parameter tractable algorithm for the considered

parameterization follows implicitly from the work of Aschenbrenner and Hemmecke [AH07].

The first to explicitly observe the applicability of primal treedepth to the design of fpt algo-

rithms for integer programming were Ganian and Ordyniak [GO18], although their algorithm

also treats ‖b‖∞ as a parameter besides tdP(A) and ‖A‖∞. A major development was brought

by Koutecký et al. [KLO18], who gave the first strong fixed parameter tractable algorithm, with

running time f (tdP(A),‖A‖∞) · t 3 log2(t), where t is the number of columns of A. We refer

the reader to the joint manuscript of Eisenbrand et al. [EHK+19], which comprehensively

presents the recent developments in the theory of block-structured integer programming.

Corollaries 93 and 96 there discuss the cases of 2-stage stochastic and multistage stochastic

integer programming.

47

Chapter 3. Algorithms for Multistage Stochastic Integer Programming

Our contribution

We advance the state-of-the-art of fixed parameter tractable algorithms for 2-stage stochastic

and multistage stochastic integer programming problems by proving the following. The

number of rows of the constraint matrix A is denoted by d , and the primal treedepth of A is

denoted by t .

(i) We give an f (d ,‖A‖∞)·t logO(2d)(t)-time algorithm for integer programmingin the strong

sense, where f is a computable function (Theorem 3.5). This improves upon the cur-

rently fastest strong fixed parameter tractable algorithm by Koutecký et al. [KLO18] that

is nearly cubic in n.

(ii) We provide a 2((p+q)‖A‖∞)O(p(p+q)) ·t logO(pq)(t)-time algorithm for (p, q)-stochastic integer

programming. This improves upon the currently fastest algorithm that runs in time

2(2‖A‖∞)O(p2 q+pq2) · tO(1) [EHK+19, Kle22], both in terms of the parametric dependence

and in terms of the polynomial factor in the running time.

The algorithmic contributions (i) and (ii) rely on the following proximity result for integer

programs with low primal treedepth. This result can be regarded as the core contribution of

this chapter, and we believe that it uncovers an important connection between the primal

treedepth of A and the solution space of (♠).

(iii) (Proximity) For each optimal solution x? to the linear relaxation of (♠), there is an

optimal integral solution x¦ such that ‖x¦−x?‖∞ is bounded by a computable function

of tdP(A) and ‖A‖∞. This is proved in Lemma 3.1.

This proximity result provides a very simple template for designing fixed parameter tractable

algorithms for multistage stochastic integer linear programming. Let us explain it for the case

of (p, q)-stochastic integer linear programming. After one has found an optimal fractional

solution x? of the linear relaxation of (♠), one only has to enumerate the (2 · f (d ,‖A‖∞)+1)p

many possible integer assignments for the p stage 1 variables that are within the allowed

distance, where f (d ,‖A‖∞) is the proximity bound provided by (iii). For each of these as-

signments, the integer program (♠) decomposes into O(t) independent sub-problems, each

with at most s variables. This results in a f (p, q,‖A‖∞) · t-time algorithm (excluding the time

needed for solving the linear relaxation). For multistage stochastic integer programming, this

argument has to be applied recursively.

As for solving the linear relaxation, note that to obtain results (i) and (ii) we need to be able

to solve linear programs with low primal treedepth in near-linear fixed parameter tractable

time. This is a non-trivial task. We rely on a result of Chapter 2 which shows that the dual

of (♠) can be solved in time t logO(2d)(t). By linear programming duality, this provides an

algorithm for finding the optimum value of the linear relaxation of (♠) within the required

48

3.1. Introduction

complexity, but for applying the approach presented above, we need to actually compute an

optimum fractional solution to (♠). While it is likely that the approach in Chapter 2 can be

modified so that it outputs such a solution as well, we give a self-contained argument using

complementary slackness that applies the results in Chapter 2 only as a black-box.

The approach in Chapter 2 is parallelizable, in the sense that the algorithm for solving the

linear relaxation of (♠) can be implemented on t processors so that the running time is

logO(2d)(t), assuming the constraint matrix A is suitably organized on input. As the simple

enumeration technique sketched above also can be easily applied in parallel, we obtain the

following counterpart of (i) and (ii).

(iv) In both cases (i) and (ii), we provide algorithms running in time f (d ,‖A‖∞) · logO(2d)(t)

and 2((p+q)‖A‖∞)O(p(p+q)) · logO(pq)(t), respectively, on t processors. For (i) we assume that

the constraint matrix is suitably organized on input. .

The proof of (iii) relies on a structural lemma of Klein [Kle22], which allows us to bound the

`∞-norm of the projections of Graver basis elements to the space of stage 1 variables. In the

language of convex geometry, the lemma says the following: if the intersection of integer cones

C1, . . . ,Cm ⊆Zd is non-empty and for i = 1, . . . ,m each generator of Ci has `∞-norm at most ∆,

then there is an integer vector b ∈⋂m
i=1 Ci satisfying ‖b‖∞ ≤ 2O(d∆)d

. In fact, the original bound

of Klein [Kle22] is doubly exponential in d 2. We provide a new proof improving this to a doubly

exponential dependence on d logd only. A direct implication of this is the improvement in the

parametric factor reported in (ii). We also consider some further relaxations of the statement

which are important in the proof of (iii).

Further related work

The algorithm proposed by Koutecký et al. [KLO18] for multistage stochastic programming

relies on iterative augmentation using elements of the Graver basis, see also [LHOW08, Onn10b,

HOR13]. The idea of the augmentation framework is to iteratively improve the current solution

along directions given by Graver basis elements. For multistage stochastic programs, the `∞-

norm of a Graver basis element of the constraint matrix A is bounded by g (tdP(A),‖A‖∞) for

some computable function g . This makes the iterative augmentation applicable in this setting.

However, this framework is inherently sequential.

Let us note that Koutecký et al. [KLO18] relied on bounds on the function g above due to

Aschenbrenner and Hemmecke [AH07], which only guaranteed computability. Better and

explicit bounds on g were later given by Klein [Kle22] and further improved by Klein and

Reuter [KR22]. Roughly speaking, the first proof of Klein [Kle22] shows that g (d , a) is at most

d-fold exponential, which was then improved to 2(d ||A||∞)O(d3d+1)
by Klein and Reuter [KR22].

On a related note, Jansen et al. [JKL21] gave a 22o(s) · tO(1) lower bound for (1, s)-stochastic

IPs in which all coefficients of the constraint matrix are bounded by a constant in absolute

49

Chapter 3. Algorithms for Multistage Stochastic Integer Programming

values. This is assuming the Exponential Time Hypothesis. Thus, for (1, s)-stochastic integer

programming with bounded coefficients, our result (ii) is almost tight.

While robust and elegant, iterative augmentation requires further arguments to accelerate the

convergence to an optimal solution in order to guarantee a good running time. As presented

in [EHK+19], to overcome this issue one can either involve the bitlength of the input numbers

in measuring the complexity, thus resorting to weak fixed parameter tractable algorithms, or

reduce this bitlength using technical arguments. For instance, an integer program (♠) can be

solved in time f (d ,‖A‖∞) · t 1+o(1) · logd (‖c‖∞), where d = tdP(A). However, to the best of our

knowledge, before this work there was no strong fixed parameter tractable algorithm achieving

sub-quadratic running time dependence on t , even in the setting of two-stage stochastic

integer programming.

We would also like to note that, Dong et al. [DLY21] proposed a sophisticated interior-point

algorithm to approximately solve linear programs whose constraint matrices have primal

treewidth d in time Õ(td 2 · log(1/ε)), where ε is an accuracy parameter. Note here that the

primal treewidth is bounded by the primal treedepth, so this algorithm in principle could

be applied to the linear relaxation of (♠). There are two caveats: the algorithm of [DLY21]

provides only an approximate solution, and it is unclear whether it can be parallelized. For

these reasons we rely on the algorithm in Chapter 2 through dualization, but exploring the

applicability of the work of Dong et al. [DLY21] in our context is an exciting perspective for

future work.

Structure of the chapter

We outline our algorithms in Section 3.2, deferring the implementation of the necessary

ingredients to the later sections. In Section 3.3 we present the new, stronger proof of the

structural result of Klein [Kle22], while in Section 3.4 we use it to establish the proximity result,

that is item (iii). Solving the linear relaxation is discussed in Section 3.5.

3.2 Algorithms

As discussed, our algorithms for stochastic integer programming follow from a combination of

two ingredients: proximity results for stochastic integer programs, and algorithms for solving

their linear relaxations. These ingredients will be proven in the subsequent sections, while in

this section, we state them formally and argue how the claimed results follow.

As for proximity, we show that in stochastic integer linear programs, for every optimal fractional

solution there is always an optimal integral solution that is close, with respect to the `∞-norm.

Precisely, the following results are proven in Section 3.4.

Lemma 3.1. There exists a computable function f : N×N→ N with the following property.

Suppose P = (x, A,b,c) is a linear program in the form (♠). Then, for every optimal fractional

50

3.2. Algorithms

solution x? ∈ SolR(P), there exists an optimal integral solution x¦ ∈ SolZ(P) satisfying

‖x¦−x?‖∞ ≤ f (depthP(A),‖A‖∞).

Lemma 3.2. Suppose that P = (x, A,b,c) is a linear program in the form (♠), where A is (p, q)-

stochastic for some positive integers p and q. Then, for every optimal fractional solution

x? ∈ SolR(P), there exists an optimal integral solution x¦ ∈ SolZ(P) satisfying

‖x¦−x?‖∞ ≤ 2O(p(p+q)‖A‖∞)p(p+q)
.

Note that an (p, q)-stochastic matrix has primal depth at most p +q , so Lemma 3.2 could be

seen as a special case of Lemma 3.1. However, Lemma 3.2 provides a better upper bound on

the proximity of (p, q)-stochastic matrices.

As for solving linear relaxations, in Section 3.5 we show the following.

Lemma 3.3. Suppose we are given a linear program P = (x, A,b,c) in the form (♠). Let t be the

number of rows of A. Then, one can using t processors and requiring logO(2depthP(A)) t operations

on each processor, compute an optimal fractional solution to P.

Lemma 3.4. Suppose we are given a (p, q)-stochastic linear program P = (x, A,b,c) in the

form (♠). Let t be the number of rows of A. Then, one can using t processors and requiring

2O(p2+pq2) · logO(pq) t operations on each processor, compute an optimal fractional solution

to P.

Again, Lemma 3.4 differs from Lemma 3.3 by considering a more restricted class of matrices,

i.e. (p, q)-stochastic, but providing better complexity bounds.

We now combine the tools presented above to show the following theorems.

Theorem 3.5. There is a computable function f : N×N→ N such that the following holds.

Suppose we are given a linear program P = (x, A,b,c) in the form (♠). Let t be the number of

rows of A. Then, one can using t processors and requiring f (depthP(A),‖A‖∞) · logO(2depthP(A)) t

operations on each processor, compute an optimal integral solution to P.

Proof. Consider the following recursive algorithm.

Each recursive step of the algorithm depends on whether the constraint matrix A is block de-

composable or not. By Lemma 1.1, this can be checked in time O
(
depthP(A) log(depthP(A)t)

)
.

Suppose first that A is block decomposable. Say that it decomposes into the blocks D1, . . . ,Dn

(n ≥ 2) which are computed while checking for the block decomposition. Then, P can be

decomposed into independent integer linear programs P1, . . . ,Pn with constraint matrices

D1, . . . ,Dn so that an optimal integral solution to P can be obtained by concatenating optimal

51

Chapter 3. Algorithms for Multistage Stochastic Integer Programming

integral solutions to P1, . . . ,Pt . Therefore, it suffices to solve programs P1, . . . ,Pn recursively

and in parallel, by assigning si processors to program Pi , where si is the number of rows of Di .

Suppose now that A is not block-decomposable. Using Lemma 3.3, we find an optimal

fractional solution x? ∈ SolR(P) in time logO(2depthP(A)) t . By Lemma 3.1, there exists an optimal

integral solution x¦ ∈ SolZ(P) such that ‖x¦−x?‖∞ ≤ ρ, where ρ is a constant that depends in

a computable manner on depthP(A) and ‖A‖∞. In particular, if we denote the first variable of

x by x1, then there exists an optimal integral solution x¦ ∈ SolZ(P) satisfying |x¦
1 −x?1 | ≤ ρ.

Since A is not block-decomposable, we can write A = (a1 A′), where a1 is the first column of A

and A′ is a matrix with depthP(A′) < depthP(A). For every ξ ∈ [x?1 −ρ, x?1 +ρ]∩Z≥0, consider

the linear program P ′(ξ) defined as

max (c ′)ᵀx ′

A′x ′ = b −ξ ·a1

x ′ ≥ 0

where c ′ and x ′ are c and x with the first entry removed, respectively. From the observation of

the previous paragraph it follows that the set of optimal integral solutions to P is

optZ(P) = max{c1ξ+optZ(P ′(ξ)) : ξ ∈ [x?1 −ρ, x?1 +ρ]∩Z≥0 },

where c1 is the first entry of c. Therefore, this allows to first solve all programs P ′(ξ) for

ξ ∈ [x?1 −ρ, x?1 +ρ]∩Z≥0 recursively one by one to obtain respective optimal solutions x ′(ξ).

Then we may output the solution minimizing cᵀx among all solutions of the form x = (ξ
x ′(ξ)

)
with ξ ∈ [x?1 −ρ, x?1 +ρ]∩Z≥0.

The correctness of the algorithm follows directly from Lemma 3.1. As for the running time,

observe that when treating a linear program with a block decomposable constraint matrix, we

recursively and in parallel solve programs with constraint matrices that are not block decom-

posable. On the other hand, when treating a linear program with a non block decomposable

constraint matrix, we recursively solve at most 2ρ+1 programs in a sequential manner, each

with a strictly smaller depth. Hence, if by T [t ,∆,d] we denote the (parallel) running time for

programs with t rows, depth at most d , and all coefficients bounded in absolute value by ∆,

then T [t ,∆,d] satisfies the recursive inequality:

T [t ,∆,d] ≤ logO(2d) t + (2ρ+1) ·T [t ,∆,d −1].

This recursion solves to

T [t ,∆,d] ≤ (2ρ+1)d · logO(2d) t .

Since ρ is bounded by a computable function of depthP(A) and ‖A‖∞, the claimed running

time bound follows.

52

3.3. A stronger Klein Bound

Theorem 3.6. Suppose we are given an (p, q)-stochastic linear program P = (x, A,b,c) in the

form (♠). Let t be the number of rows of A. Then, one can, using t processors and requiring

2((p+q)‖A‖∞)O(p(p+q)) · logO(pq) t on each processor, compute an optimal integral solution to P.

Proof. Here the same algorithm as in the proof of Theorem 3.5 is applied, except that the

usage of Lemma 3.3 is replaced with Lemma 3.4, and the proximity bounds are provided by

Lemma 3.2 instead of Lemma 3.1. Since a (p, q)-stochastic matrix has primal depth at most

p +q , the same time complexity analysis shows that the running time is bounded by

T [t ,‖A‖∞, p, q] ≤ (2ρ+1)p+q ·2O(p2+pq2) · logO(pq) t ,

where ρ ≤ 2O(p(p+q)‖A‖∞)p(p+q)
is the proximity bound provided by Lemma 3.2. Thus, the total

running time is bounded by 2((p+q)‖A‖∞)O(p(p+q)) · logO(pq) t , as claimed.

3.3 A stronger Klein Bound

In this section, we recall a structural result of Klein [Kle22] and prove a stronger variant,

which we need for our proximity bounds in the next section. Formally, we prove the following

theorem.

Theorem 3.7 (Stronger Klein Bound). Let T1, . . . ,Tn ⊆Zd be multisets of integer vectors with

`∞-norm at most ∆ such that their respective sums are almost the same in the following sense:

there is some b ∈Zd and a positive integer ε such that∥∥∥ ∑
v∈Ti

v −b
∥∥∥∞ < ε for all i ∈ {1, . . . ,n}.

There exists a function f (d ,∆) ∈ 2O(d∆)d
such that the following property holds. Assuming

‖b‖∞ > ε · f (d ,∆), one can find nonempty sub-multisets Si ⊆ Ti for all i ∈ {1, . . . ,n}, and a vector

b′ ∈Zd satisfying ‖b′‖∞ ≤ f (d ,∆), such that∑
v∈Si

v = b′ for all i ∈ {1, . . . ,n}.

Before proceeding to the proof, let us discuss the aspects in which Theorem 3.7 strengthens

the original formulation of Klein [Kle22, Lemma 2]. First, the formulation of Klein required all

the vectors to be non-negative. Second, we allow the sums of respective multisets to differ

slightly, which is governed by the slack parameter ε. In the original setting of Klein all sums

need to be exactly equal. In our setting this corresponds to ε to be equal to 1. Finally, the

argument of Klein yields a bound on the function f (d ,∆) that is doubly exponential in d 2, our

proof improves this dependence to doubly exponential in d log(d). The second aspect will be

essential in the proof of the proximity bound, while the last is primarily used for improving

the parametric factor in the running time of our algorithms.

53

Chapter 3. Algorithms for Multistage Stochastic Integer Programming

Note that by now, Theorem 3.7 is further generalized by Klein and Reuter in [KR22]. Intuitively,

they expand the theorem to deal with multiple stages of a stochastic linear program at once

instead of a single stage at a time. This allows for better running times for multistage stochastic

linear programs.

The remainder of this section is devoted to the proof of Theorem 3.7. We need a few definitions

at this point. The cone spanned by vectors u1, . . . ,uk ∈Qd is the set of all non-negative linear

combinations of u1, . . . ,uk . In other words,

cone(u1, . . . ,uk) :=
{

k∑
i=1

λi vi : λi ≥ 0, i = 1, . . . ,k

}
.

The integer cone spanned by these vectors is the set of all non-negative integer linear combina-

tions of u1, . . . ,uk and is described by

int.cone(u1, . . . ,uk) :=
{

k∑
i=1

λi vi : λi ∈Z≥0, i = 1, . . . ,k

}
.

We also use the corresponding matrix notation given by

cone(A) = {Ax : x ∈Rk
≥0} and int.cone(A) = {Ax : x ∈Zk

≥0},

for a matrix A ∈Qd×k . The following lemma is the crucial observation behind our proof of the

improved Klein bound.

Lemma 3.8. Let A1, . . . , A` ∈Zd×d be invertible integer matrices such that ‖Ai‖∞ ≤∆ for each

i ∈ {1, . . . ,`} and

C := ⋂̀
i=1

cone(Ai) 6= ;. (3.1)

Then the following assertions hold

(L1) Let M be the least common multiple of the determinants of matrices Ai . Then M ≤ 3(d∆)d
.

(L2) For each integer vector v ∈ C∩Zd one has M v ∈ I , where

I = ⋂̀
i=1

int.cone(Ai).

(L3) There exist integer vectors v1, . . . , vt ∈ I such that ‖v j‖∞ ≤ 2O(d∆)d
for each j ∈ {1, . . . , t }

and

cone(v1, . . . , vt) = C.

54

3.3. A stronger Klein Bound

Proof. By the Hadamard bound, |det(Ai)| ≤ (d∆)d for each i ∈ {1, . . . ,`}. Hence, the least

common multiple of the determinants of matrices Ai is bounded by the least common multiple

of all the integers in the range {1, . . . , (d∆)d }, which in turn is bounded by 3(d∆)d
[Han72,

Theorem 1]. This implies (L1).

We now move to assertion (L2). Consider any i ∈ {1, . . . ,`}. Since v ∈ cone(Ai)∩Zd , there exists

xi ∈Qd
≥0 with v = Ai xi . In fact, one has xi = Ai

−1v . Then Cramer’s rule implies that

xi = yi /|det(Ai)| for some yi ∈Zd
≥0.

This shows that if we denote

M := lcm({|det(Ai)| : i ∈ {1, . . . ,`}}) ,

then it holds that

M · v ∈ int.cone(Ai) for each i ∈ {1, . . . ,`}.

Which establishes (L2).

By standard arguments, there exist integer vectors w1, . . . , wt ∈ C∩Zd with `∞-norm bounded

by (d∆)d 2
generating the cone C. This is a simple consequence of the Farkas-Minkowski-Weyl

Theorem and its proof in [Sch98, Corollary 7.1a]. We briefly sketch the argument. The cones

cone(Ai) are finitely generated and admit an inequality description of the form {cᵀj x ≥ 0} j∈I .

Note that c j ∈Zd , due to the Hadamard bound, we may assume that ‖c j‖∞ ≤ (d∆)d/2. Cone C
can then be obtained by conjunction of all the inequalities describing the cones cone(Ai). It

follows that C is polyhedral, and thus finitely generated. A generator w of C satisfies d −1 of

the inequalities of the form cᵀi x ≥ 0 with equality, i.e., w is orthogonal to d −1 vectors ck . This

implies that, w is in the kernel of some matrix with d −1 rows consisting of vectors cᵀk ∈Z1×d .

Take an integral generator w . Using the Hadamard bound and the fact that ‖ck‖∞ ≤ (d∆)d/2,

the `∞-norm of w is bounded by

‖w‖∞ ≤
(
d(d∆)d/2

)d/2 ≤ (d∆)d 2
.

.

Finally, by (L1) and (L2), we see that the vectors

v1 := M w1, v2 := M w2, . . . vt := M wt

satisfy (L3).

With Lemma 3.8 established, we may proceed to the main part of the proof.

55

Chapter 3. Algorithms for Multistage Stochastic Integer Programming

Proof of Theorem 3.7. The proof follows the lines of Klein [Kle22]. But instead of using the

Steinitz Lemma (see Theorem 1.2), we apply Lemma 3.8 and use the Minkowski-Weyl Theo-

rem [Sch98, Theorem 8.5] to deal with non negative entries. In matrix notation, Theorem 3.7

can be restated as follows.

Let D := (2∆+1)d and let B ∈ Zd×D be a matrix whose columns are all possible

integer vectors of `∞-norm at most ∆. Let m1, . . . ,mn ∈ZD
≥0 be non negative integer

vectors such that the vectors Bmi are almost equal, that is, one has

‖Bmi −b‖∞ < ε for each i ∈ {1, . . . ,n},

for some integer vector b ∈Zd and a positive integer ε. Then supposing ‖b‖∞ > ε ·
2O(d∆)d

, there exist nonzero vectors m′
1, . . . ,m′

n ∈ZD
≥0 and b′ ∈Zd such that for each

i ∈ {1, . . . ,n},

(K1) 0 ≤ m′
i ≤ mi ,

(K2) Bm′
i = b′, and

(K3) ‖b′‖∞ ≤ 2O(d∆)d
.

We focus on proving this formulation. To this end, for each i ∈ {1, . . . ,n} we choose some vector

ri ∈ZD
≥0 such that

B(mi + ri) = b.

We may assume ‖ri‖∞ ≤ ε, for instance by putting nonzero values in ri only at entries corre-

sponding to the columns {±e1, . . . ,±ed } of B , where {e1, . . . ,ed } is the standard base of Zd .

Now, set zi := mi + ri . Then the vectors zi belong to the following (unbounded) polyhedron

Q := {x ∈RD | B x = b and x ≥ 0}.

By the Minkowski-Weyl Theorem [Sch98, Theorem 8.5], it follows that Q can be written as

Q = conv
(
{u1, . . . ,uk }

)+cone
(
{c1, . . . ,c`}

)
(3.2)

for some vectors u1, . . . ,uk ,c1, . . . ,c` ∈ZD . Note that since Q ⊆RD
≥0, the vectors u1, . . . ,uk and

c1, . . . ,c` are all non-negative. Further, it holds that Bu j = b for all j ∈ {1, . . . ,k} and Bch = 0 for

all h ∈ {1, . . . ,`}. Observe also that we may assume the vectors u j to be vertex solutions to the

linear program defining Q. Hence, each vector u j has at most d nonzero entries, and there is

an invertible submatrix B j ∈Zd×d (the basis of u j) consisting of d columns of B such that all

nonzero entries of u j are at the coordinates corresponding to the columns of B j . In particular

ũ j = B−1
j b, where ũ j is u j projected onto the coordinates corresponding to the columns of B j .

56

3.3. A stronger Klein Bound

Fix i ∈ {1, . . . ,n}. By (3.2) vector zi can be written as

zi =
k∑

j=1
λ j u j +

∑̀
h=1

µhch , where
k∑

j=1
λ j = 1 and λ j ,µh ∈R≥0. (3.3)

From Carathéodory’s theorem, see [Sch98, Corollary 7.1i], it follows that the coefficients

λ1, . . . ,λk can be chosen in a way that there exists an index j ∈ {1, . . . ,k} with λ j ≥ 1/(d +1).

Denote this index by j (i). Since all involved vectors and scalars in (3.3) are non-negative, we

conclude that

0 ≤ u j (i)

(d +1)
≤ zi . (3.4)

Now, we will argue that there exists a vector c ∈Zd and nonzero vectors u′
1, . . .u′

k ∈ZD
≥0 such

that

Bu′
j = c for all j ∈ {1, . . . ,k} (3.5)

and

u′
j (i) ≤ mi for all i ∈ {1, . . . ,n} (3.6)

and

‖c‖∞ ≤ 2O(d∆)d
. (3.7)

We remark here that at the end of the proof we will set m′
i := u′

j (i) for all i ∈ {1, . . . ,n} and b′ := c .

Observe that then, assertions (K1), (K2) and (K3) will immediately follow from (3.5), (3.6)

and (3.7) respectively.

Since Bu j = B j ũ j = b, it follows that C := ⋂k
j=1 cone(B j) 6= ;. By Lemma 3.8, assertion (L3),

there exist nonzero integer vectors v1, . . . , vt ∈ ⋂k
j=1 int.cone(B j) of `∞-norm bounded by

2O(d∆)d
such that

cone(v1, . . . , vt) = C.

Since b/(d +1) ∈ C, by Carathéodory’s theorem, we can pick at most d vectors of {v1, . . . , vt },

say v1, . . . , vd , such that

b

d +1
=

d∑
j=1

α j v j for some α j ≥ 0, j ∈ {1, . . . ,d}.

Now use the assumption on ‖b‖∞. Specifically, assume that

‖b‖∞ > (d +1)d ·2ε ·max
i

‖vi‖∞ = ε ·2O(d∆)d

.

Observe that there exists an index j ∈ {1, . . . ,d} such that α j > 2ε. Without loss of generality

57

Chapter 3. Algorithms for Multistage Stochastic Integer Programming

suppose j = 1. Then we can write

b

d +1
= 2εv1 +

(
(α1 −2ε)v1 +

d∑
j=2

α j v j

)
︸ ︷︷ ︸

=:q

.

Since v1 ∈ int.cone(B j), for each j ∈ {1, . . . ,k} there exists a vector y j ∈Zd
≥0 such that B j y j = v1.

Also, since q is in the cone C, there exist vectors x j ∈Rd
≥0 such that B j x j = q . Thus, for each

j ∈ {1, . . . ,k} we have

B j ũ j

d +1
= b

d +1
= 2εv1 +q = B j (2εy j +x j)

Since the matrices B j are invertible, this implies that

ũ j

d +1
= 2εy j +x j . (3.8)

Now, set c = v1 and for j ∈ {1, . . . ,k} define u′
j ∈ZD

≥0 as follows

• each entry of u′
j that corresponds to a column of B j is set to the corresponding entry

of y j ;

• every other entry of u′
j is set to 0.

Note that thus, the vectors u′
j are nonzero, because v1 = B j y j and v1 is nonzero. We also

have Bu′
j = B j y j = v1, which implies that (3.5) holds. Finally, since c = v1, it follows that

‖c‖∞ ≤ 2O(d∆)d
, which is (3.7).

It remains to prove (3.6). Note that by (3.4) and (3.8) for all i ∈ {1, . . . ,n} we have

0 ≤ 2εy j (i) ≤ 2εy j (i) +x j (i) =
ũ j (i)

d +1

and

u j (i)

d +1
≤ zi = mi + ri .

Since ‖ri‖∞ ≤ ε and y j (i) is nonzero, from the above inequalities it follows that u′
j (i) ≤ mi . This

establishes (3.6) and concludes the proof.

3.4 Proximity

The goal of this section is to prove Lemma 3.1 and Lemma 3.2. Specifically, we bound the

distance between an optimal fractional solution and an optimal integral solution in the case

where the constraint matrix has bounded primal treedepth or is (p, q)-stochastic. To facilitate

the discussion of proximity, let us introduce the following definition.

58

3.4. Proximity

Definition 3.9. Let P = (x, A,b,c) be a linear program in the form (♠). The proximity of P ,

denoted proximity∞(P), is the infimum of reals ρ ≥ 0 satisfying the following: for every frac-

tional solution x? ∈ SolR(P) and integral solution x ∈ SolZ(P), there is an integral solution

x¦ ∈ SolZ(P) such that

‖x¦−x?‖∞ ≤ ρ and x¦−x? v x −x?.

We remind that v is the conformal partial order defined in Section 1.2.2. The condition

x¦−x? v x −x? is equivalent to saying that x¦ is contained in the axis parallel box spanned

by x? and x , see Figure 3.1. Intuitively, x¦ is an integral solution that is close to x? in the

`∞-distance while being placed “in the same direction” as x .

x¦

x

x?

x•

Figure 3.1: Example of vector x¦ with the property x¦− x? v x − x?. Shifting x? by x − x¦

gives an other vector x• with the same property.

Previously, the notion of proximity was mostly defined as the maximum distance of any

optimal fractional solutions to its closest optimal integral solutions, see for instance [CGST86,

EW20b]. Our notion of proximity does not depend on the optimization goal, it is a geometric

quantity associated only with the polytope SolR(P). However, this new notion can also be used

to bound the distance of optimal fractional solutions to optimal integral solutions, as the next

lemma explains.

Lemma 3.10. Suppose P = (x, A,b,c) is a linear program in the form (♠). Then for every optimal

fractional solution x? to P there exists an optimal integral solution x¦ to P satisfying

‖x¦−x?‖∞ ≤ proximity∞(P).

Proof. Consider any optimal integral solution x to P . By the definition of proximity, there is

an integral solution x¦ to P such that ‖x¦−x?‖∞ ≤ proximity∞(P) and x¦−x? v x −x?. From

59

Chapter 3. Algorithms for Multistage Stochastic Integer Programming

the optimality of x we get that

cᵀ(x −x¦) ≥ 0.

Let x• := x?+x −x¦. This is a fractional solution to P , because Ax• = A(x?+x −x¦) = b and

a straightforward coordinate-wise verification shows that

x? ≥ 0, x ≥ 0, x¦−x? v x −x? implies that x• ≥ 0.

The optimality of x? then gives that

cᵀ(x −x¦) = cᵀ((x?+x −x¦)−x?) = cᵀ(x•−x?) ≤ 0.

This implies that cᵀx = cᵀx¦, hence x¦ is also optimal.

For our main technical result, we need some additional notation. Suppose that A is a matrix

admitting the stochastic decomposition (♦). Let x0, x1, . . . , xn be the partition of the vector of

variables x so that x0 corresponds to the columns of matrices C1, . . . ,Cn , while xi corresponds

to the columns of Di , for each i ∈ {1, . . . ,n}. Partition c into c0,c1, . . . ,cn in the same fashion, and

partition b into b1, . . . ,bn so that bi corresponds to the rows of Ci and Di . In this representation,

the program P takes the form:

max
n∑

i=0
cᵀi xi

Ci x0 +Di xi = bi for all i ∈ {1, . . . ,n},

xi ≥ 0 for all i ∈ {0,1, . . . ,n}.

For each i ∈ {1, . . . ,n}, let Ei := (Ci Di) and consider the linear program

Pi =
((

x0

xi

)
,Ei ,bi ,0

)
,

that is, the linear program

max 0

Ai x0 +Bi xi = bi ,

x0 ≥ 0, xi ≥ 0.

Note that 
x0

x1
...

xt

 ∈ SolR(P) if and only if

(
x0

xi

)
∈ SolR(Pi) for all i ∈ {1, . . . ,n}.

60

3.4. Proximity

We are now ready to state the main technical result of this section. Intuitively, it provides a

single inductive step in the proof of Lemma 3.1 and reduces Lemma 3.2 to the case of matrices

with a bounded number of columns.

Theorem 3.11 (Composition Theorem). Suppose P = (x, A,b,c) is a linear program in the

form (♠), where A admits a stochastic decomposition (♦). Adopt the notation presented above

and let k be the number of columns of each of the matrices C1, . . . ,Cn . Further, let

γ := max
1≤i≤n

g∞(Ei) and ρ := max
1≤i≤n

proximity∞(Pi).

Then

proximity∞(P) ≤ 3kγρ · f (k,γ)

where f (k,γ) is the bound provided by Theorem 3.7.

Note that by substituting f (k,γ) with the bound provided by Theorem 3.7, we obtain that

proximity∞(P) ≤ ρ ·2O(kγ)k
.

Before we prove Theorem 3.11, let us observe the following two consequences of it. As a base

case, we give a bound on the proximity of a standard integer program defined by an integer

matrix with m columns. This is then first used to bound the proximity of an integer program

defined by an (p, q)-stochastic matrix. The second consequence is a bound on the proximity

of a integer program depending on the primal treedepth of the matrix defining it.

Lemma 3.12. Let P = (x, A,b,c) be a linear program in the form (♠) where A has m columns.

Then

proximity∞(P) ≤ (m‖A‖∞)m+1.

Proof. We apply a classical theorem of Cook et al. [CGST86] to our notion of proximity. Let

x? be a fractional solution and x an integral solution to P . Consider the following (integer)

linear program:

max cᵀx

Ax = b

x −x? v x −x?.

The constraint x −x? v x −x? can be expressed as a conjunction of constraints of the form

x?i ≤ xi ≤ xi or xi ≤ xi ≤ x? for i ∈ {1, . . . ,m}, depending on whether x?i ≤ xi or xi ≤ x?i . Thus,

the constraint matrix still has m columns and its coefficients are bounded by ‖A‖∞. By the

Hadamard bound it follows that its largest sub-determinant is bounded by (m‖A‖∞)m . By

[CGST86, Theorem 1] we conclude that there is an integral solution x¦ such that ‖x¦−x?‖∞ ≤
m(m‖A‖∞)m and x¦−x? v x −x?.

61

Chapter 3. Algorithms for Multistage Stochastic Integer Programming

Corollary 3.13. Let P = (x, A,b,c) be a linear program in the form (♠), where A is (p, q)-

stochastic. Then

proximity∞(P) ≤ 2O(p(p+q)‖A‖∞)p(p+q)
.

Proof. By assumption, matrix A admits a decomposition of the form (♦), where each block Ci

has p columns and each block Di has at most q columns. Adopting the notation introduced

before Theorem 3.11, we see that each matrix Ei = (Ci Di) has at most p+q columns. Applying

Lemma 3.12 to Pi , we get

proximity∞(Pi) ≤ ((p +q)‖A‖∞)p+q+1.

Further, by Corollary 1.4 we have

g∞(Ei) ≤ (2(p +q)‖A‖∞+1)p+q .

Combine these two bounds using Theorem 3.11 to get the claimed bound on proximity∞(A).

Corollary 3.14. There is a computable function h : N×N→N such that for every linear program

P = (x, A,b,c) in the form (♠), we have

proximity∞(P) ≤ h(tdP(A),‖A‖∞).

Proof. We use induction on a more general problem. Suppose P = (x, A,b,c) is a linear pro-

gram in the form (♠), where A has the following property: removing the first k columns turns

A into a matrix of primal depth at most `. We would like to prove that

proximity∞(A) ≤ ĥ(k,`,‖A‖∞)

for some computable function ĥ. The corollary then follows by considering the case k = 0,

that is, setting h(d ,‖A‖∞) = ĥ(0,d ,‖A‖∞).

To prove the general statement we proceed by induction on `, starting with `= 0. Then A is a

matrix with k columns, and, as discussed in Lemma 3.12, we can fix a function

ĥ(k,0,‖A‖∞) ∈O(k‖A‖∞)k+1.

Let us proceed to the induction step for ` > 0. Since removing the first k columns turns A

into a matrix of primal depth at most `, it follows that A has a stochastic decomposition (♦),

where the matrices Ci have k columns each and the matrices Di have primal depth at most `.

We may further assume that matrices Di are not block-decomposable, hence each matrix Di

becomes a matrix of primal depth at most `−1 after removing its first column. This implies

that each matrix Ei = (Ci Di) has the following property: removing the first k +1 columns

62

3.4. Proximity

turns it into a matrix of primal depth at most `−1. Theorem 1.5 implies that

g∞(Ei) ≤ f (depthP(Ei),‖Ei‖∞) ≤ f (k +`,‖A‖∞)

for a computable function f , while the induction assumption gives

proximity∞(Pi) ≤ ĥ(k +1,`−1,‖A‖∞),

where the programs Pi are defined as in the paragraph before Theorem 3.11. We may now

combine these two bounds using Theorem 3.11 to get a bound on ĥ(k,`,‖A‖∞), expressed in

terms of f (k +`,‖A‖∞) and ĥ(k +1,`−1,‖A‖∞).

Now, Lemmas 3.1 and 3.2 follow by combining Lemma 3.10 with Corollaries 3.13 and 3.14,

respectively.

3.4.1 Proof of Theorem 3.11

As mentioned before, the proof of Theorem 3.11 relies heavily on Theorem 3.7: the strengthen-

ing of the structural lemma of Klein [Kle22] that was discussed in Section 3.3.

Proof of Theorem 3.11. Consider any x? ∈ SolR(P) and x ∈ SolZ(P). Let x¦ ∈ SolZ(P) be an

integral solution such that x¦ − x? v x − x? and subject to the conditions ‖x¦ − x?‖1 is

minimized. Our goal is to show that then ‖x¦ − x?‖∞ ≤ 3kγρ · f (k,γ), where f (·, ·) is the

function given by Theorem 3.7.

Observe that if there existed a non-zero vector u ∈ kerZ(A) such that u v x?− x¦, then we

would have that x¦+u ∈ SolZ(P), (x¦+u)−x? v x¦−x? v x −x?, and the `1 distance from x?

to x¦+u would be strictly smaller than to x¦. This would contradict the choice of x¦. Therefore,

it is sufficient to show the following: if ‖x¦−x?‖∞ is larger than 3kγρ · f (k,γ), then there exists

a non-zero vector u ∈ kerZ(A) such that u v x?−x¦.

Consider any i ∈ {1, . . . ,n} and denote the restrictions of x? and x¦ to the variables of Pi as

follows:

x̃?i :=
(

x?0
x?i

)
∈ SolR(Pi) and x̃¦

i :=
(

x¦
0

x¦
i

)
∈ SolZ(Pi).

By the definition of proximity, there is an integral solution

x̃i ∈ SolZ(Pi)

such that

‖x̃i − x̃?i ‖∞ ≤ proximity∞(Pi) ≤ ρ and x̃i − x̃?i v x̃¦
i − x̃?i .

Since x̃i and x̃¦
i are both integral solutions to Pi , we have x̃i − x̃¦

i ∈ kerZ(Ci Di) and we can

decompose this vector into a multiset Gi of Graver elements. That is, Gi is a multiset consisting

63

Chapter 3. Algorithms for Multistage Stochastic Integer Programming

of sign compatible (i.e., belong to the same orthant) elements of G(Ei) with

x̃i − x̃¦
i =

∑
g∈Gi

g .

Note that the first k entries of vectors x̃1, . . . , x̃n correspond to the same k variables of P , but

they may differ for different i ∈ {1, . . . ,n}.

For a vector w , let π(w) be the projection onto the first k entries of w . Let π(Gi) be the

multiset that includes a copy of π(g) for each g ∈Gi . By the definition of x̃?i and x̃¦
i , we have

π(x̃?i) =π(x̃?j) and π(x̃¦
i) =π(x̃¦

j) for all i , j ∈ {1, . . . ,n}. From this we get∥∥∥ ∑
x∈π(Gi)

x −π(x̃?1 − x̃¦
1)

∥∥∥∞ = ‖π(x̃i)−π(x̃¦
i)−π(x̃?1)+π(x̃¦

1)‖∞

= ‖π(x̃i)−π(x̃?i)‖∞
= ‖x̃i − x̃?i ‖∞
≤ ρ,

for each i ∈ {1, . . . ,n}. Thus, Theorem 3.7 is applicable for d = k, ∆= γ, and ε= ρ. Note here

that for each i ∈ {1, . . . ,n} and g ∈Gi , we have ‖g‖∞ ≤ γ. In the following we distinguish two

cases.

Suppose first that

‖π(x̃?1 − x̃¦
1)‖∞ > ρ · f (k,γ).

By Theorem 3.7, there exist nonempty submultisets S1 ⊆π(G1), . . . ,Sn ⊆π(Gn) such that∑
x∈Si

x = ∑
x∈S j

x for all i , j ∈ {1, . . . ,n}.

Define a vector u in the following way. For all i ∈ {1, . . . ,n}, let Ĝ i ⊆Gi be submultisets with

π(Ĝ i) = Si and set

ũi := ∑
g∈Ĝ i

g ∈ kerZ(Ei).

Observe that vectors π(ũi) are equal for all i ∈ {1, . . . ,n}. This allows us to define u as the vector

obtained by combining all the ũi , so that projecting u to the variables of Pi yields ũi , for

each i ∈ {1, . . . ,n}. Note that since multisets Ĝ i are nonempty, u is a non-zero vector. Also

u ∈ kerZ(A), since ũi ∈ kerZ(Ei) for all i ∈ {1, . . . ,n}. Further, we have u v x?−x¦, because for

all i ∈ {1, . . . ,n},

ũi =
∑

g∈Ĝ i

g v x̃i − x̃¦
i v x̃?i − x̃¦

i .

Thus, u satisfies all the requested properties.

64

3.5. Solving the Linear Relaxation

We move to the second case: suppose that

‖π(x̃?1 − x̃¦
1)‖∞ ≤ ρ · f (k,γ).

Since we have ‖π(x̃i − x̃¦
i)−π(x̃?1 − x̃¦

1)‖∞ ≤ ρ for all i ∈ {1, . . . ,n}, we have

‖π(x̃i − x̃¦
i)‖∞ ≤ ρ · f (k,γ)+ρ ≤ 2ρ · f (k,γ) for all i ∈ {1, . . . ,n}.

Suppose for a moment that for some i ∈ {1, . . . ,n}, there exists an element g ∈Gi with π(g) = 0.

Then by putting zeros on all the other coordinates, we can extend g to a vector u ∈ kerZ(A)

which satisfies u v x? − x¦. As g is non-zero, so is u, hence u satisfies all the requested

properties. Hence, from now on we may assume that no multiset Gi contains an element g

with π(g) = 0.

Thus, we have that for all i ∈ {1, . . . ,n}, the multiset π(Gi) consists of non-zero, sign compatible,

integral vectors. It follows that

|Gi | = |π(Gi)| ≤
∥∥∥ ∑

x∈π(Gi)
x

∥∥∥
1
≤ k

∥∥∥ ∑
x∈π(Gi)

x
∥∥∥∞ = k‖π(x̃i − x̃¦

i)‖∞ ≤ 2kρ · f (k,γ).

Since ‖g‖∞ ≤ γ for every element g ∈Gi , we infer that

‖x̃i − x̃¦
i ‖∞ ≤

∥∥∥ ∑
g∈Gi

g
∥∥∥∞ ≤ γ|Gi | ≤ 2kγρ · f (k,γ).

By combining this with ‖x̃i − x̃?i ‖∞ ≤ ρ, we get

‖x̃¦
i − x̃?i ‖∞ ≤ ‖x̃¦

i − x̃i‖∞+‖x̃i − x̃?i ‖∞ ≤ 2kγρ · f (k,γ)+ρ ≤ 3kγρ · f (k,γ).

This implies that ‖x¦−x?‖ ≤ 3kγρ · f (k,γ).

3.5 Solving the Linear Relaxation

In this section we prove Lemmas 3.3 and 3.4. For this we rely on results from Section 2.2, where

the dual problem was considered.

In the following, we focus on the proof of Lemma 3.3. The proof of Lemma 3.4 follows from

the same line of reasoning, so we only discuss necessary differences at the end. Throughout

this section, we only work with linear programming without any integrality constraints, so for

brevity we drop adjectives “fractional” in the notation.

65

Chapter 3. Algorithms for Multistage Stochastic Integer Programming

For convenience, we work with linear programs in the following form:

max cᵀx

Ax ≤ b (♣)

x ≥ 0

Note that every linear program in the form (♠) can be reduced to a linear program in the

form (♣) by replacing each equality with two inequalities. This reduction preserves the primal

depth of the constraint matrix, as well as being (p, q)-stochastic.

Thus, from now on let us fix a linear program P = (x, A,b,c) in the form (♣). Our goal is to

compute an optimal solution to P . Let t be the number of rows of A and d := depthP(A). We

may assume that A has no columns with only zero entries, hence A has at most d t columns.

The reason for using form (♣) is that P admits a simple formulation of the dual linear program.

Namely, the dual of P is the following linear program Pᵀ:

max bᵀy

Aᵀy ≤ c

y ≤ 0

We observe that with the help of Corollary 2.17, we can efficiently solve Pᵀ.

Lemma 3.15. One can compute an optimal solution y? to Pᵀ in time logO(2d) t , using t proces-

sors.

Proof. By negating the variables and introducing a vector of slack variables z, one for every

constraint in Pᵀ, solving Pᵀ is equivalent to solving the following linear program P
ᵀ

min bᵀy

−Aᵀy + I z = c

y ≥ 0, z ≥ 0

More precisely, optimal solutions of Pᵀ can be obtained from optimal solutions of P
ᵀ

by

dropping the z variables and negating the y variables. Note that

depthD
(
−Aᵀ I

)
= depthP(A) = d .

Since P
ᵀ

is in the form (♠) and its constraint matrix has at most t +d t columns, we may use

Corollary 2.17 to find an optimal solution to P
ᵀ

in time log2O(d)
(t). Consequently, within the

same asymptotic running time we can find an optimal solution y? to Pᵀ.

66

3.5. Solving the Linear Relaxation

By applying the algorithm of Lemma 3.15, we may assume that we have an optimal solution y?

to the dual program Pᵀ. Classic linear programming duality tells us that the optimum values

of the programs P and Pᵀ are equal. In other words, if we denote

λ := bᵀy?,

then λ= optR(P) = optR(Pᵀ). Note that λ can be computed from y? in time O(log t). However,

we are interested in computing not only the optimum value of a solution to P — which is λ —

but we would like to actually find some optimal solution.

To this end, we will exploit the knowledge of y? trough the complementary slackness condi-

tions. Let us denote the consecutive variables of x as x1, . . . , xm , where m is the number of

columns of A, and similarly enumerate the entries of y , b, and c. Also, let the consecutive

columns of A be a◦,1, . . . , a◦,m and the consecutive rows of A be aᵀ
1,◦, . . . , aᵀ

t ,◦. The following

claim captures the assertions that can be inferred from the complementary slackness condi-

tions.

Claim 3.16. There exists an optimal solution x? to P satisfying the following properties:

(S1) For every i ∈ {1, . . . , t } such that y?i < 0, we have aᵀ
i ,◦x? = bi .

(S2) For every j ∈ {1, . . . ,m} such that aᵀ
◦, j y? < c j , we have x?j = 0.

Let

X := {i : y?i < 0} ⊆ {1, . . . , t } and Y := { j : aᵀ
j y? < c j } ⊆ {1, . . . ,m}

be the sets of indices to which the implications of Claim 3.16 apply. Before we continue, let

us discuss computing X and Y in the PRAM model using t processors. Obviously, X can be

computed in timeO(1). As for Y , we claim that it can be computed in time dO(1) ·log t . Observe

that computing the inner products aᵀ
◦, j y? for all j ∈ {1, . . . ,m} boils down to computing m

sums, where the j th sum ranges over the list of non-zero entries in column a◦, j . Such lists can

be computed in time dO(1) · log t by sorting the list of non-zero entries of A in lexicographic

order (first by the column index and then by the row index), and then splitting it appropriately.

Since the total length of the lists is at most d t , their sums can be computed in time dO(1) · log t

on t processors by assigning to each list a number of processors proportional to its length.

Thus, we may assume that the sets X and Y are computed. Let X = {1, . . . , t } \ X . We introduce

the following notation.

• Let x̃, c̃, ỹ , b̃ be obtained from x, c, y , b by removing all the entries with indices in Y , Y ,

X , and X , respectively.

• Let ˜̃x be the vector of the remaining variables of x, i.e., those with indices in Y .

• Let Ã be the matrix obtained from A by removing all rows with indices in X and all

columns with indices in Y .

The notation is extended naturally to solutions x?, y?, etc. Note that all these objects can be

67

Chapter 3. Algorithms for Multistage Stochastic Integer Programming

computed in time dO(1) using t processors.

Observe that

Ã
ᵀ

ỹ? = c̃, (3.9)

as in the solution y? to Pᵀ, all constraints with indices outside of Y are tight by the definition of

Y , while the entries of y? outside of ỹ? are zeros anyway. Further, Claim 3.16 can be rewritten

as follows.

Claim 3.17. There exists an optimal solution x? to P such that

Ãx̃? = b̃ and ˜̃x? = 0. (3.10)

The next lemma explains the main gain provided by the complementary slackness conditions:

if a solution to P satisfies the equations given in Claim 3.17, then it automatically is an optimal

solution.

Lemma 3.18. Suppose a vector x? ∈Rm
≥0 satisfies (3.10). Then cᵀx? =λ.

Proof. Observe that

cᵀx? = c̃ᵀx̃? by ˜̃x? = 0

= (
Ã
ᵀ

ỹ?
)ᵀ

x̃? by (3.9)

= (ỹ?)ᵀ Ãx̃?

= (ỹ?)ᵀb̃ by Ãx̃? = b̃

= b̃
ᵀ

ỹ? =λ, as the value is a scalar

as claimed.

Now, consider the following linear program P̂ and recall that x1 denotes the first variable of x.

min x1

Ax ≤ b, Ãx̃ = b̃,

x ≥ 0, ˜̃x = 0.

By Claim 3.17, there exists an optimal solution to P which is also a feasible solution to P̂ . On

the other hand, by Lemma 3.18, every feasible solution to P̂ is actually an optimal solution to

P . Therefore, there exists an optimal solution x? to P that satisfies x?1 = optR(P̂).

Now observe that the value optR(P̂) can be computed in time logO(2d)(t) using the same

approach as the one used in Lemma 3.15. Namely, we eliminate all the variables of ˜̃x from

P̂ by just substituting them with zeroes, and replace each equality from Ãx̃ = b̃ with two

inequalities. In this way, we obtain an equivalent linear program in the form (♣) with at most

68

3.5. Solving the Linear Relaxation

3n constraints and whose constraint matrix has primal depth at most d . Using the approach

from Lemma 3.15 we compute an optimal solution to the dual of this program, whose value

coincides with optR(P̂).

To summarize, we established the following claim.

Claim 3.19. In time logO(2d)(t) we may compute the value ξ = optR(P̂), with the following

property: there exists an optimal solution x? to P such that x?1 = ξ.

We now use Claim 3.19 in the following recursive algorithm for finding an optimal solution

to P :

• If the constraint matrix A is block decomposable, say D1, . . . ,Dn (n ≥ 2) are the blocks

of the block decomposition of A, then decompose P into n independent programs

P1, . . . ,Pn with constraint matrices D1, . . . ,Dn , respectively. Solve these programs recur-

sively in parallel, by assigning to each program Pi the number of processors equal to the

number of rows of Di . Then combine the obtained optimal solutions to P1, . . . ,Pn into

an optimal solution to P .

• If the constraint matrix A is not block decomposable, then it can be written as (a◦,1 A′),

where a◦,1 is the first column of A and A′ is a matrix such that depthP(A′) < depthP(A).

Use Claim 3.19 to find, in time logO(2d)(t), a value ξ such that there exists an optimal

solution to P setting the first variable to ξ. Now, consider the linear program P ′ defined

as

min c ′ᵀx ′

A′x ′ ≤ b −ξ ·a◦,1

x ′ ≥ 0

where c ′ and x ′ are c and x with the first entry removed, respectively. Apply the algorithm

recursively to P ′, noting that its constraint matrix A′ has a strictly smaller primal depth

than A. Finally, an optimal solution to P can be obtained from the computed optimal

solution to P ′ by assigning value ξ to the first variable.

The correctness of this algorithm follows from Claim 3.19 in a straightforward manner. As

for the running time, observe that when the algorithm considers a linear program with a

constraint matrix which is not block decomposable, it recurses on a linear program with

a strictly smaller primal depth. On the other hand, when the algorithm considers a linear

program with a block decomposable constraint matrix, it recurses on several linear programs

whose constraint matrices are not block decomposable. It follows that if the initial linear

program P has primal depth d , then the recursion has depth at most 2d . As each level of the

recursion is done in parallel in time logO(2d)(t), the total running time of logO(2d)(t) follows.

69

Chapter 3. Algorithms for Multistage Stochastic Integer Programming

This concludes the proof of Lemma 3.3. The proof of Lemma 3.4 is done in exactly the same

manner, except that the usage of Corollary 2.17 is replaced with Corollary 2.16, noting that

the linear programs in question are (p, q)-stochastic. Also, the recursion has depth 2(p +q)

instead of 2d .

70

Part IIGeometric Independent Sets

71

4 Parameterized Approximation for
Maximum Weight Independent Set of
Axis-Parallel Rectangles and Segments

This chapter contains a overworked version of [CPW22], which is joint work with Michał

Pilipczuk and Karol Węgrzycki.

4.1 Introduction

In the Maximum Weight Independent Set of Rectangles (MWISR) problem, we are given a set

D consisting of n axis-parallel rectangles in the plane, and a weight function ω : D → R. A

feasible solution S ⊆D to the MWISR problem consists of a set of multiple disjoint rectangles,

i.e., for any two different rectangles R,R ′ ∈S in the solution, we have R ∩R ′ =;; we also call

such a solution an independent set. The objective is to find a feasible solution of maximum

total weight. In this chapter, we consider a parameterized setting of the problem. We use

parameter k ∈N to denote the cardinality of the solution. The maximum possible weight of

an independent set in D whose cardinality is at most k, is denoted by optk (D).

MWISR is a fundamental problem in geometric optimization. It naturally arises in various

applications, such as map labeling [AvKS98, DF92], data mining [FMMT01], routing [LNO02],

or unsplittable flow routing [BSW14]. MWISR is well-known to be NP-hard [FPT82], and it

admits a QPTAS [AW13]. The currently best approximation factor achievable in polynomial

time is O(loglog(n)) [CW21]. From the parameterized perspective, it is known that the prob-

lem is W[1]-hard when parameterized by k, the number of rectangles in the solution, even

in the unweighted setting and when all the rectangles are squares [Mar05]. Therefore, it is

unlikely that there is an exact algorithm with a running time of the form f (k)nO(1) for some

computable function f , even in this restricted setting. In particular, this also excludes any

(1−ε)-approximation algorithm running in f (ε)nO(1) time [Baz95, CT97]. We note that in the

case of weighted squares, there is a PTAS with a running time of the form ng (ε) [EJS05], where

g is a computable function.

73

Chapter 4. Maximum Weight Independent Set of Rectangles and Segments

Approximating MWISR becomes easier in the unweighted setting (i.e. all costs are set to 1).

With this restriction, constant factor approximation algorithms for MWISR are known [Mit21,

GKM+22], and there is a QPTAS with a better running time [CE16]. Grandoni et al. [GKW19]

were the first to consider parameterized approximation for the MWISR problem, although in

the unweighted setting. They gave a parameterized approximation scheme for unweighted

MWISR running in kO(k/ε8)nO(1/ε8) time. As an open problem, they asked if one can also design

a parameterized approximation scheme in the weighted setting. The question therefore is:

Does Maximum Independent Set of Rectangles admit a parameterized approximation scheme

in the weighted setting?

Our contribution

In this chapter we partially answer the open question of Grandoni et al. [GKW19] by proving

the following result:

Theorem 4.1. Suppose D is a set of axis-parallel rectangles in the plane with positive weights.

Then given k ∈N and ε> 0, one can in time

2O(k log(k/ε))|D|O(1/ε)

find an independent set in D of weight at least (1−ε)optk (D).

Note that there is a caveat in Theorem 4.1: the returned solution may actually be of cardinality

larger than k, but there is a guarantee that it will be an independent set. This is what we

mean by a partial resolution of the question of Grandoni et al. [GKW19]: ideally, we would

like the algorithm to return a solution of weight at least (1− ε)optk (D) and of cardinality

at most k. At this point we are able to give such an algorithm only in the restricted case of

axis-parallel segments (see Theorem 4.2 below), but we postpone this discussion and focus

now on Theorem 4.1. Observe here that the issue of solutions with cardinality larger than k

becomes immaterial in the unweighted case. Hence Theorem 4.1 applied to the unweighted

setting solves the problem considered by Grandoni et al. [GKW19] and actually improves their

running time.

We briefly describe the technical ideas behind the proof of Theorem 4.1. Similarly to Grandoni

et al. [GKW19], the starting point is a polynomial-time construction of a grid such that each

rectangle inD contains at least one gridpoint. However, in order to take care of the weights, our

grid is of size (2k2/ε)× (2k2/ε). Moreover, already in this step, we may return an independent

set with weight at least (1−ε)optk consisting of more than k rectangles. This is the only step

where the algorithm may return more than k rectangles.

After this step, the similarities to the algorithm of Grandoni et al. [GKW19] end. We introduce

the notion of the combinatorial type of a solution. This is simply a mapping from each

rectangle in the solution to the set of all gridpoints contained in it. Observe that since the size

of the grid is bounded by a function of k and ε, we can afford to guess (by branching into all

74

4.1. Introduction

possibilities) the combinatorial type of an optimum solution in f (k,ε) time. Note that there

may be many different rectangles matching the type of a rectangle from the optimum solution.

However, it is possible that such a rectangle overlaps with the neighboring rectangles (and

violates independence). Therefore, we need to define constraints preventing rectangles from

overlapping. For this, we construct an instance of the Arity-2 Valued Constraint Satisfaction

Problem (2-VCSP) based on the guessed combinatorial type (see Section 1.3.1 for a definition

of 2-VCSP).

Next, we observe that this instance induces a graph that is almost planar, hence we may

apply a variant of Baker’s shifting technique [Bak94]. This allows us to divide the instance

into many independent instances of 2-VCSP while removing only ε ·optk weight from the

optimum solution. Moreover, each of these independent instances induces a graph of bounded

treewidth, and hence can be solved exactly in |D|O(1/ε) time. This concludes a short sketch of

our approach.

Let us return to the apparent issue that our algorithm may return a solution with cardinality

larger than k. This may happen in the very first step of the procedure, during the construction

of the grid. By employing a completely different technique, we can circumvent this problem

in the restricted setting of axis-parallel segments and prove the following result.

Theorem 4.2. Suppose D is a set of axis-parallel segments in the plane with positive weights.

Then given k and ε> 0, one can in time

2O(k2 log(k/ε))|D|O(1)

find an independent set in D of cardinality at most k and weight at least (1−ε)optk (D).

Kára and Kratochvíl [KK06] and Marx [Mar06] independently observed that the problem of

finding a maximum cardinality independent set of axis-parallel segments admits an fpt algo-

rithm. However, their approach heavily relies on the fact that the problem is unweighted. In

this setting our approach is different: In fact, we show that finding a maximum weight inde-

pendent set of axis-parallel segments admits an algorithm with running time W O(k2)|D|O(1),

where W is the number of distinct weights present among the segments.

We proceed with an outline of the proof of Theorem 4.2 and highlight some technical ideas.

First, we modify the instance such that the number of different weights is bounded. This is

done through guessing the largest weight of a rectangle in an optimum solution and rounding

the weights down. This is the only place where we lose accuracy on the optimal solution.

In other words, the algorithm is fixed-parameter tractable in k and the number of distinct

weights W = (k/ε)O(1).

With this assumption, we then construct a grid with O(k2) lines hitting every segment of

the instance. We say that the grid is nice with respect to a segment I , if I contains a grid

point; equivalently, I is nice if it is hit by two orthogonal lines of the grid. Observe that

the constructed grid is not necessarily nice for every segment of the instance. We adapt

75

Chapter 4. Maximum Weight Independent Set of Rectangles and Segments

the previously introduced notion of the combinatorial type in order to also accommodate

segments which do not contain a grid point. This is done by mapping the segment to its four

neighboring grid lines instead of the grid points contained inside the segment. Further, the

weight of the segment is added to its combinatorial type. Similarly to before, the combinatorial

type of a segment only depends on the grid size and the number of distinct weights. This

allows to guess (by branching into all possibilities) the combinatorial type of the optimum

solution S in kO(1) ·W time.

The goal is to construct a grid which is nice with respect to all segments of an optimal solution

S . For this, we start by guessing the combinatorial type of all nice segments of an optimal

solution S . Then, we incrementally guess the combinatorial type of the next heaviest segment

in S for which the grid is not yet nice. For each such combinatorial type, we find all possible

candidate segments and add at most k lines to the grid G . This ensures that a correct candidate

segments is hit both directions. Repeating this procedure at most k times we end up with a

grid which is nice with respect to all the segments of S .

Given such a grid, it remains to guess the combinatorial type of all segments in S and solve

resulting instance. This can be done either greedily or by observing that the problem can be

modeled as a 2-CSP instance whose constraint graph is a union of paths. Both these cases

work due to the fact that the segments only interact with each other when they lie on the same

grid line.

Structure of the chapter

Section 4.2 discusses the case of weighted axis-parallel rectangles. That is, we proof The-

orem 4.1. We then consider the case of axis-parallel segments and prove Theorem 4.2, in

Section 4.3.

4.2 Axis-Parallel Rectangles

In this section we prove Theorem 4.1. For this, letD be a set of weighted axis-parallel rectangles

and ω : D→R a weight function on the rectangles in D. Note that we can assume all weights

to be positive, since we can always drop rectangles with negative weight from the solution.

Thus only improving the found solution. By optk (D) we denote the maximum possible weight

of a set consisting of at most k disjoint rectangles in D. An optimal solution S is a set S ⊆D of

cardinality at most k satisfying ω(S) = optk (D).

We start with a simple preprocessing on D. First, we guess a rectangle Rmax ∈S with maximum

weight among all rectangles of S . This can be done with an extra overhead of O(n) in the

running time. Observe that ω(Rmax) ≥ optk (D)/k. Further, we remove from D every rectangle

of weight larger than ω(Rmax) and every rectangle of weight not exceeding εω(Rmax)/k; denote

the resulting instance by D′. Observe that this operation does not decrease the optimum

76

4.2. Axis-Parallel Rectangles

significantly, as none of the former rectangles and at most k of the latter rectangles could be

used in S . More precisely, we have

optk (D′) ≥ optk (D)−k · ε ·ω(Rmax)

k
≥ (1−ε)optk (D).

After this preprocessing, the optimum value decreased by at most ε ·optk (D). This concludes

the description of preprocessing. Hence, without loss of generality, we assume our instance

is D :=D′.

4.2.1 Constructing a Grid

Recall that a grid is a set of horizontal and vertical grid lines. Such a grid G is good for a set of

axis-parallel rectangles D, if for every rectangle R ∈D there is a grid point of G contained in R .

As mentioned in Section 4.1, our search for an optimal solution pivots around a bounded size

grid which is good for the optimum solution Sopt. The construction of this grid is encapsulated

in the following lemma.

Lemma 4.3. Suppose we are given set D of axis-parallel rectangles with weight function ω and

an integer k ∈N. Let ∆(D) be the ratio between lowest and highest weight in D and suppose

∆(D) ≥ ε/k for some ε> 0. Then, in polynomial time, one can either

• compute a grid G of size |G| ≤ 2k2

ε that is good for S ⊆D, or

• return an independent set I ⊆D with ω(I) ≥ optk (D).

Proof. We construct the grid G by first constructing the vertical lines of G , and then with

basically the same procedure we add the horizontal lines of G . For the construction of the

vertical lines, we iteratively pick vertically disjoint rectangles in a greedy fashion. For every

rectangle R ∈D, select a point pR ∈ R very close to the top-right corner of R. We start with

D1 :=D. In iteration i ∈N, we select a rectangle Rver
i ∈Di for which pi := pRver

i
is the leftmost

among rectangles of Di . In case of ties, select any of the tying rectangles. Then, add the vertical

line `ver
i which contains pi to the grid. Next, delete every rectangle from Di intersecting `ver

i ,

thus obtaining the next set Di+1. We repeat this procedure until no more rectangles are left

in Di . To finish the construction of G , repeat the above algorithm in the orthogonal direction,

thus selecting vertically disjoint rectangles Rhor
i and adding to G horizontal lines `hor

i . This

concludes the construction of G ; see Figure 4.1 for an illustration.

Trivially, the above algorithm runs in polynomial time. Moreover, it returns a good grid since

every rectangle in D is intersected by some horizontal and some vertical line from G . So if

|G| ≤ 2k2

ε , we can just return G as the output of the algorithm.

It remains to show that if |G| > 2k2

ε , then we can find an independent set of weight at least

optk (D). Assuming that |G| > 2k2

ε , either the vertical or the horizontal run of the greedy

algorithm returned more than k2

ε lines. Without loss of generality assume that the vertical run

77

Chapter 4. Maximum Weight Independent Set of Rectangles and Segments

Figure 4.1: The grid constructed after applying the greedy procedure. Rectangles Rver
i are

green-filled, and rectangles Rhor
i are orange-filled. Observe that every rectangle is hit by at

least one grid point.

constructed rectangles Rver
1 , . . . ,Rver

m for some m > k2

ε . Observe that these rectangles form an

independent set, because after iteration i ∈ {1, . . . ,m} all rectangles with left side to the left

of `i are removed. Since we assumed that the ratio between lowest and highest weight of a

rectangle in D is at least ε/k, we may estimate the weight of {Rver
1 , . . . ,Rver

m } as follows:

m∑
i=1

ω(Rver
i) ≥ m · ε ·ω(Rmax)

k
≥ k ·ω(Rmax) ≥ optk (D),

where Rmax is the rectangle of highest weight in D. Therefore, the rectangles Rver
1 , . . . ,Rver

m form

a feasible output for the second point of the lemma statement.

The first step of the algorithm is to run the procedure of Lemma 4.3. If this procedure returns

an independent set of weight at least optk (D), we just return it as a valid output and terminate

the algorithm. Otherwise, from now on we may assume that we have constructed a grid G of

size at most 2k2/ε and that this grid is good for S .

4.2.2 Combinatorial Types

Next, we define the notion of the combinatorial type of a rectangle with respect to a grid. This

can be understood as a rough description of the position of the rectangle with respect to the

grid.

78

4.2. Axis-Parallel Rectangles

Let G be a grid. For an axis-parallel rectangle R, we define the combinatorial type T (R) of R

with respect to G as

TG (R) := R ∩points(G).

In other words, TG (R) is the set of grid points of G contained in R. For a set S of axis-parallel

rectangles, the combinatorial type of S is TG (S), that is, the image of S under TG . By ΛG
k we

denote the set of all possible combinatorial types with respect to G of sets S consisting of at

most k axis-parallel rectangles. Observe that if a grid is small, there are only few combinatorial

types on it.

Lemma 4.4. For every grid G and positive integer k, we have |ΛG
k | ≤ 2O(k log |G|). Moreover, given

G and k,ΛG
k can be constructed in time 2O(k log |G|).

Proof. The combinatorial type of any axis-parallel rectangle R can be completely character-

ized by four lines (or lack thereof) in G : the left-most and the right-most vertical line of G

intersecting R, and the top-most and the bottom-most horizontal line of G intersecting R.

Hence, there are at most (|G|+1)4 candidates for the combinatorial type of a single rectangle.

It follows that the number of combinatorial types coming from sets of at most k rectangles is

bounded by

1+ (|G|+1)4 + (|G|+1)8 +·· ·+ (|G|+1)8k ∈ 2O(k log |G|).

To constructΛG
k in time 2O(k log |G|), just enumerate all possibilities as above.

The next step of the algorithm is as follows. Recall that we work with a grid G of size at most

2k2/ε that is good for S . By Lemma 4.4, we can computeΛG
k in time 2O(k log(k/ε)) and we have

|ΛG
k | ≤ 2O(k log(k/ε)). Hence, by paying a 2O(k log(k/ε)) overhead in the time complexity, we can

guess T := TG (optk (G)), that is, the combinatorial type of the optimum solution. From now

on assume that the combinatorial type T is fixed. Since S is an independent set and G is good

for S , we may assume that sets in T are pairwise disjoint and nonempty.

4.2.3 Reduction to 2-VCSP

We say that a rectangle R ∈D matches a subset of grid points A ⊆ points(G) if TG (R) = A, that

is, R ∩points(G) = A. By DA ⊆D we denote the set of rectangles from D matching A.

Based on the combinatorial type T we define an instance IT of 2-VCSP as follows. The set

of variables is T . For every A ∈ T , the domain of A is DA ∪ {⊥}. That is, the set of rectangles

from D matching A plus a special symbol ⊥ denoting that non of the rectangle matching A are

taken to the solution. Also, for every A ∈ T we add a unary constraint cA on A with associated

revenue function fcA : DA ∪ {⊥} →R defined as fcA (R) =ω(R) for each R ∈DA and fcA (⊥) = 0.

In the definition of 2-VCSP only binary constraints are allowed, but a unary constraint can be

modeled by a binary constraint which binds a variable with itself.

79

Chapter 4. Maximum Weight Independent Set of Rectangles and Segments

Figure 4.2: The instance after guessing the combinatorial type T . Rectangles matching the
same type A ∈ T are filled with the same color. Each variable A ∈ T corresponds to a different
rectangle in the optimum solution. In this figure, the variables are shown as different colors.
The domain DA of a variable A ∈ T consists of all rectangles in the corresponding color.

It remains to define binary constraints binding pairs of distinct variables in IT . Two distinct

grid points of G are adjacent if they lie on the same or on consecutive horizontal lines of G ,

and on the same or on consecutive vertical lines of G . We put a binary constraint cA,B binding

variables A,B ∈ T if there exist adjacent grid points p ∈ A and q ∈ B . The revenue function

for cA,B is defined as follows: for RA ∈DA ∪ {⊥} and RB ∈ TB ∪ {⊥}, we set

fcA,B (RA ,RB) =
−∞ if RA ∈DA and RB ∈DB intersect;

0 otherwise.
.

In other words, cA,B is a hard constraint: we require that the rectangles assigned to A and B

are disjoint (or one of them is nonexistent), as otherwise the revenue is −∞. This concludes

the construction of the instance of IT ; clearly, it can be done in polynomial time.

The instance IT is constructed so that it corresponds to the problem of selecting disjoint

rectangles from D which match the combinatorial type T . This is formalized in the following

statement.

Claim 4.5. If S ⊆D is an independent set of rectangles with combinatorial type T , then there

exists a solution to IT with revenue equal to ω(S). Conversely, if there exists a solution to IT
with revenue r ≥ 0, then there exists an independent set S ⊆D of weight r and cardinality at

most k.

80

4.2. Axis-Parallel Rectangles

Proof. For the first implication, we construct an assignment u : T →D. For each A ∈ T , set

u(A) to be the unique rectangle R ∈ S for which TG (R) = A. To see that the revenue of u is

equal to ω(S), note that for every A ∈ T the unary constraint cA yields revenue ω(u(A)), while

all binary constraints yield revenue 0, because the rectangles are pairwise disjoint.

For the second implication, let S ⊆D be the image of the optimal assignment u, where ⊥ is

removed. Clearly, |S| ≤ |T | ≤ k. Since u yields a non-negative revenue, all binary constraints

must give revenue 0, hence ω(S) is equal to the revenue r of u. It remains to argue that S is

an independent set. For this, take any distinct A,B ∈ T ; we need to argue that in case when

rectangles RA := u(A) and RB := u(B) are both not equal to ⊥, they are disjoint. For the sake of

contradiction, suppose that RA and RB have some common point x. Let Q be the cell of the

grid G containing x. Since x ∈ RA and A is nonempty, A must contain at least one corner of Q,

say p. Recall that A is nonempty by the assumption of G being good for optk (D). Similarly, B

contains a corner of Q, say q . Note that p and q are adjacent grid points, hence in IT there is a

constraint cA,B which yields a revenue of −∞ in the case when the rectangles assigned to A

and B intersect. By assumption, this is the case in u and we obtain a contradiction with the

assumption r ≥ 0.

4.2.4 Almost Planarity of the Gaifman Graph

Let H be the Gaifman graph of IT ; see Figure 4.3 for an example. Recall that the vertex set of

H is T , and distinct A,B ∈ T are considered adjacent in H if and only if there is a grid cell Q of

G such that both A and B contain a corner of Q. Without loss of generality assume that H is

connected, as otherwise we solve a IT by treating each connected component separately and

joining the solutions.

Note that the graph H is not necessarily planar, as there might be crossings within cells; this

happens when all four corners belong to different elements of T . However, the intuition is

that the crossings within cells are the only problem, hence H is almost planar. We would like

to apply Baker’s technique [Bak94] on H , which is only possible directly applicable to planar

graphs. In this setting we still apply the technique with the caveat that we need to be careful

about the aforementioned crossings. For this, the following construction will be useful.

Call a grid cell Q a cross if Q has four corners and all those four corners belong to pairwise

different elements of T . Note that these elements form a 4-clique in H . Construct a graph H•

from H as follows: For every cross Q, add Q to the vertex set and make it adjacent to all four

elements of T containing the corners of Q. Further, remove the two diagonal edges, that is the

edge between the two elements of T containing the top-left, respectively the bottom-right

corner of Q and the edge between the two elements of T containing the top-right respectively

bottom-left corner of Q.

81

Chapter 4. Maximum Weight Independent Set of Rectangles and Segments

Figure 4.3: The Gaifman graph H of the constructed 2-VCSP instance IT . The vertices are de-
picted by green rectangles and the edges by thick blue segments. The graph H• is constructed
from H by introducing a new vertex at the intersection of every crossing. Hence, we add the
vertices depicted by a red circle in the figure.

The reader may imagine H• as obtained from H by introducing a new vertex at the intersection

of diagonals within every cross Q; this new vertex is identified with Q. See Figure 4.3. We have

the following simple observation.

Claim 4.6. The graph H• is planar.

Proof. Let H•
0 be the graph consisting of the grid points of G where two grid points are adjacent

if they are consecutive on the same line of G , additionally, a new vertex is added for every

cell of G which it adjacent to all the corners of this cell. Clearly, H•
0 is planar. Now, H• can be

obtained from H•
0 as follows:

• contract every A ∈ T to a single vertex;

• remove every element of points(G) \
⋃T ; and

• for every grid cell Q of G that is not a cross, either contract the vertex corresponding to

Q onto any of its neighbors, or remove it if it has no neighbors.

So H• is a minor of a planar graph, hence it is planar as well.

For a graph G , we denote the distance between two vertices u, v of G by distG (u, v). We also

have the following simple claim on the distances in H• in relation to H .

Claim 4.7. For all A,B ∈ T , distH•(A,B) ≤ 2 ·distH (A,B).

82

4.2. Axis-Parallel Rectangles

Proof. By repeated use of triangle inequality along a shortest path connecting A and B , it

suffices to argue the following: if A and B are adjacent in H , then they are at distance at most

2 in H•. For this, observe that either A and B are still adjacent in H•, or they contain two

opposite corners of some cross Q, which becomes their common neighbor in H•.

We now apply Baker’s technique. Select any A ∈ T and partition T into layers according to the

distance in H from A: for a non-negative integer t , layer Lt consists of all those vertices B ∈ T
for which distH (A,B) = t . Note that layers Lt form a partition of T due to the assumption that

H is connected. The following observation is crucial.

Lemma 4.8. For all integers 0 ≤ i < j , the treewidth of the sub-graph H [Li ∪Li+1 ∪·· ·∪L j] is

bounded by O(j − i).

Proof. Assume i > 0, at the end we will quickly comment on how the case i = 0 is resolved

in essentially the same way. Let W ⊆V (H•) be the union of all layers Lt with i ≤ t ≤ j , plus

all crosses Q which are adjacent in H• to any element of those layers. Further, let K⊆V (H•)

be the union of all layers Lt with 0 ≤ t < i , plus all crosses Q which are adjacent in H• to any

element of those layers, except those are already included in W . In this way, K and W are

disjoint. Further, observe that from the definition of the sets Lt as distance layers from A it

follows that both H•[K] and H•[K∪W] are connected.

Let H ′ be the graph obtained from H•[K∪W] by contracting the sub-graph H•[K] into a single

vertex; call it A′. As a minor of a planar graph, H ′ is again planar. By the definition of the layers,

for every B ∈Li ∪·· ·∪L j there exists a C ∈Li−1 such that distH (C ,B) ≤ j − i +1. By Claim 4.7,

we have distH•(C ,B) ≤ 2(j − i +1), implying that distH ′(A′,B) ≤ 2(j − i +1). Since every cross

included in W is adjacent to some B as above, we conclude that H ′ is a connected planar

graph of radius at most 2(j − i +1)+1 = 2(j − i)+3. By standard bounds linking treewidth with

radius in planar graphs (see for instance [RS84, 2.7]), we conclude that H ′ has treewidth at

most 6(j − i)+10.

It remains to connect the treewidth of H ′ with the treewidth of H ′′ := H [Li ∪Li+1 ∪·· ·∪L j].

For this, let (T,bag) be a tree decomposition of H ′ of width at most 6(j − i)+10. We turn

(T,bag) into a tree decomposition (T,bag′) of H ′′ as follows. For every cross Q ∈W , let NQ

be the set of at most four neighbors of Q in H ′. Then (T,bag′) is obtained by first removing

A′ from all bags, and then, for every cross Q ∈W , replacing Q with NQ in all bags of (T,bag)

containing Q. With the following observation, it is straight forward to verify that (T,bag′) is

a tree decomposition of H ′′. Every pair B ,B ′ ∈W which is adjacent in H ′′ but not in H ′ has

a cross Q ∈W as a common neighbor. Observe that B and B ′ are elements of NQ and for

every Q ∈W , all elements of NQ are adjacent to Q and thus replace Q in its bag. Finally, in the

transformation described above the cardinalities of bags grow by a multiplicative factor of at

most 4, hence the width of (T,bag′) is at most 24(j − i)+43 ∈O(j − i).

83

Chapter 4. Maximum Weight Independent Set of Rectangles and Segments

This finishes the proof for the case i > 0. If i = 0, we perform the same reasoning except that

we do not contract K (which now is empty). Thus, we simply work with H ′ = H•[W], and

this graph has radius at most 2(j − i) = 2 j by Claim 4.7. The rest of the reasoning applies

verbatim.

4.2.5 Proof of Theorem 4.1

We are now ready to finish the proof of Theorem 4.1. Recall that the steps performed so far

were as follows:

• We guessed a rectangle Rmax ∈ S of maximum weight from the optimal solution and

removed all rectangles of weight larger than ω(Rmax) or smaller than ε ·ω(Rmax)/k. This

incurred a loss of at most ε ·optk (D) on the optimum.

• We applied the algorithm of Lemma 4.3. This way, we either find an independent set

with a suitably large weight, or construct a grid G of size |G| ≤ 2k2/ε.

• We used Lemma 4.4 to guess the combinatorial type T of an optimum solution, by

branching into 2O(k log(k/ε)) possibilities.

• We constructed a 2-VCSP instance IT corresponding to the combinatorial type T .

By Claim 4.5, it remains to find a solution to IT which yields a revenue of at least (1−ε)opt(IT),

where opt(IT) is the maximum possible revenue in IT . Note that by retracing previous steps,

this will result in finding a solution to the original instance of MWISR with weight at least

(1−2ε)optk (D), so at the end we need to apply the reasoning to ε scaled by a factor of 1/2.

As argued before, we may assume that the Gaifman graph H of IT is connected. We partition

T into layers {Lt : t = 0,1,2, . . .} as in the previous section. Let ` := d1/εe, and define

Mr := ⋃
t≡r mod `

Lt for all r ∈ {0,1, . . . ,`−1}.

Note that {Mr : r ∈ {0,1, . . . ,`−1}} is a partition of T .

Let u be an optimal solution of IT . Since it is always possible to assign ⊥ to every element

of T , we have f (u) ≥ 0, in particular all binary constraints are satisfied under f . Therefore,

f (u) =∑`−1
r=0 f (u|Mr). Since `≥ 1/ε, there exists r0 ∈ {0,1, . . . ,`−1} such that f (u|Mr0

) ≤ ε· f (u).

The algorithm guesses the value of r0 by branching into ` possibilities.

Let I ′T be the 2-VCSP instance obtained from IT by deleting all variables contained in Mr0 .

Observe that we have opt(I ′T) ≥ (1−ε) ·opt(IT), since u restricted to the variables of I ′T yields

revenue at least (1−ε) ·opt(IT). Further, every solution to I ′T can be lifted to a solution of

IT with the same revenue by mapping all variables of Mr0 to ⊥. Hence, it suffices to find an

optimal solution of the instance I ′T .

For this, observe that the Gaifman graph of I ′T is equal to H −Mr0 . This graph is the disjoint

union of several sub-graphs, each contained in the union of at most `−1 consecutive layers Lt .

84

4.3. Axis-Parallel Segments

By Lemma 4.8 we infer that the treewidth of H −Mr0 is bounded by O(`) =O(1/ε). Now, we

apply Theorem 1.7 to find an optimal solution of I ′T in time |D|O(1/ε) ·kO(1). Together with the

previous guessing steps, this gives a total time complexity of 2O(k log(k/ε)) · |D|O(1/ε), as wanted.

This concludes the proof of Theorem 4.1.

4.3 Axis-Parallel Segments

In this section we prove Theorem 4.1. We use the same notation as in Section 4.2: D is the

given set of axis-parallel segments, ω : D→ is the weight function on D, and optk (D,ω) is the

maximum possibleω-weight of a set of at most k disjoint segments in D; we may dropω in the

notation if the weight function is clear from the context. Also, whenever D, ω, and k are clear

from the context, then by an optimum solution we mean a set of pairwise disjoint segments

S ⊆D such that |S| ≤ k and ω(S) = optk (D).

4.3.1 Reducing the Number of Distinct Weights

We first apply the same preprocessing as in Section 4.2: we guess a segment Rmax ∈ S of

maximum weight and remove from D all segments of weight larger than ω(Rmax) or smaller

than ε ·ω(Rmax)/k. Let D′ ⊆D be the obtained set of segments. As argued in Section 4.2, we

have

optk (D′,ω) ≥ (1−ε) ·optk (D,ω).

As the next preprocessing step, we round all weights down to the set

M := {ω(Rmax)(1−ε)i : i ∈ {0,1, . . . ,dlog1−ε(ε/k)e}}.

That is, we define the new weight function ω′ : D′ → by setting ω′(R) to be the largest element

of M not exceeding ω(R). Since the weight of every segment is scaled down by a multiplicative

factor of at most 1−ε, we have

optk (D′,ω′) ≥ (1−ε) ·optk (D′,ω) ≥ (1−ε)2 ·optk (D,ω) ≥ (1−2ε) ·optk (D,ω).

Thus, the two preprocessing steps above reduce solving the instance (D,ω) to solving the

instance (D′,ω′), at the cost of losing 2ε ·optk (D) on the optimum and a |D|O(1) overhead in

the time complexity. Observe that in (D′,ω′), the number of distinct weights of rectangles is

bounded by |M | ≤O(ε log(k/ε)). We show in the sequel, that the MWISR problem for axis-

parallel segments can be solved in fixed-parameter time when parameterized by both k and

the number of distinct weights.

Theorem 4.9. Suppose D is a set of axis-parallel segments in the plane and ω is a positive

weight function on D. Let W be the number of distinct weights assigned by ω. Then given k, in

time (kW)O(k2) · |D|O(1) one can find an optimum solution.

85

Chapter 4. Maximum Weight Independent Set of Rectangles and Segments

Note that Theorem 4.2 follows from combining Theorem 4.9 with the preprocessing described

above applied to ε scaled by a factor of 1/2. Therefore, from now on we focus on proving

Theorem 4.9.

4.3.2 Constructing a Grid

Let ¹ be any total order on D ordering the segments by non-decreasing weights, that is,

ω(R) <ω(R ′) entails R ≺ R ′. Extend ¹ to subsets of D in a lexicographic manner: S ≺S ′ if S is

lexicographically smaller than S ′ where both sets are sorted according to ¹. Let Smax be the

¹-maximum optimum solution.

The next step is to guess the ¹-minimum segment Rmin of Smax, by branching into |D| options.

Having this done, we safely remove from D all segments R satisfying R ≺ Rmin. Since Smax

is the ¹-maximum optimum solution, we achieve the following property: every optimum

solution contains the ¹-smallest segment of D. We proceed further with this assumption.

We show that under this assumption, there exist a grid of size at most k which hits every

segment from D. Here and later on, a segment is hit by a line if they intersect, and a segment

is hit by a grid if it is hit by a line of this grid.

Claim 4.10. Suppose every optimum solution contains the ¹-minimum segment of D. Then

there exists a grid G of size at most k such that every segment in D is hit by G.

Proof. Let R0 be the ¹-minimum segment of D and let S be any optimum solution. Let G

be the grid comprising of, for every segment R ∈ S , the line containing R. Clearly, we have

|G| ≤ |S| ≤ k. Suppose for the sake of contradiction, that there is a segment R ∈D which is not

hit by G . Clearly R 6= R0, because R0 ∈S by assumption. Consider S ′ :=S− {R0}∪ {R} and note

that S ′ is an independent set, because all segments of S are contained in lines of G , while R is

disjoint with all those lines. Since R0 ≺ R, we have ω(R0) ≤ω(R), hence ω(S ′) ≥ω(S). So S ′ is

an optimum solution that does not contain R0, a contradiction.

Note that the proof of Claim 4.10 is non-constructive, as the definition of the grid depends on

an unknown optimum solutionS . However, we can give a polynomial-timeO(k)-approximation

algorithm for finding a grid which hits all segments in D.

Lemma 4.11. There exists a polynomial time algorithm which, given a set D of axis-parallel

segments in the plane and an integer k, either correctly concludes that there is no grid of size at

most k hitting all segments of D, or finds such a grid of size O(k2).

Proof. We construct a grid G as follows. Swipe a vertical line from left to right across D until

the first moment when the segments lying entirely to the left of the line can not be hit by k

horizontal lines anymore. Let x1 be the position of the line at this moment; in other words,

x1 is the least real such that the segments of D entirely contained in (−∞, x1]×R cannot be

86

4.3. Axis-Parallel Segments

hit with k horizontal lines. We set x1 =∞ in case the whole D can be covered with at most k

horizontal lines. By minimality of x1, the segments entirely contained in (−∞, x1]×R can be

covered by k +1 lines: the k horizontal lines required to cover segments in (−∞, x1), plus one

vertical line at x1 in case x1 6=∞. We add all those k +1 lines to G , delete from D all segments

hit by those lines, and repeat the procedure until no more segments are left in D. This way we

obtain numbers x1 ≤ x2 ≤ ·· · ≤ x` and a grid G of size at most (k +1)`, where ` is the number

of iterations of the procedure. See Figure 4.4 for an illustration.

Figure 4.4: Example of the grid construction for k = 3. Subsequently, green, orange and then
blue segments are removed in consecutive iterations. In each iteration we scan the segments
from left to right until k +1 horizontal lines are needed to cover the already seen segments. In
the last iteration at most k horizontal lines are selected. Lines added to G are dashed.

Clearly, G hits all segments in D. So if `≤ k +1, then |G| ≤ (k +1)2 =O(k2) and the algorithm

can provide G as a valid output. We now argue that if `> k +1, then the algorithm may safely

conclude that there is no grid of size at most k which hits all segments of D. For the sake of a

contradiction, suppose there is such a grid G ′. For i ∈ {1, . . . ,`}, let Di be the set of all segments

entirely contained in (xi−1, xi]×R, where we set x0 =−∞. It is easy to see that Di is precisely

the set of segments for which the algorithm in iteration i decided that it cannot be hit by at

most k horizontal lines. Hence, for each i ∈ {1, . . . ,`}, G ′ must contain at least one vertical

line hitting at least one segment in Di . The x-coordinate of this vertical line must belong

to the interval (xi−1, xi], so these vertical lines must be pairwise different. We conclude that

|G ′| ≥ `> k, a contradiction.

It remains to argue how to implement the algorithm such that it runs in polynomial time.

Observe that for a set of segments D′ ⊆D, the minimum number of horizontal lines needed to

hit all the segments of D′ can be computed as follows: Project all segments of D′ on the vertical

87

Chapter 4. Maximum Weight Independent Set of Rectangles and Segments

axis, and find the minimum number of points hitting the obtained set of intervals. Some of

the intervals are single points; these are projected horizontal segments. This, in turn, can be

done in time O(|D′| log |D′|) using a standard greedy strategy. It is now straightforward to use

this sub-procedure to execute the construction of G described above in polynomial time.

We now combine Claim 4.10 and Lemma 4.11 as follows. Run the algorithm of Lemma 4.11 on

D with parameter k. If the algorithm concludes that there is no grid of size at most k hitting all

segments of D, then by Claim 4.10 we can terminate the current branch, as clearly one of the

previous guesses was incorrect. Otherwise, we obtain a grid G of size O(k2) which hits every

segment of D. With this grid we proceed to the next steps.

For brevity of presentation, by adding four lines to G we may assume that all segments of D
are contained in the interior of the rectangle delimited by the left-most and the right-most

vertical line of G and the top-most and the bottom-most horizontal line of G . We will also say

that a grid with this property encloses D.

4.3.3 Constructing a Nice Grid

We use the same notion of niceness as in Section 4.2. That is, a grid G is nice with respect to a

segment R , if R contains at least one grid point of G ; in other words, R is intersected by both a

horizontal and a vertical line in G . We will also say that R respects the grid G . The ugliness of a

grid G with respect to some optimum solution S is the number of segments in S which do not

respect G . Then the ugliness of G is the minimum over all optimum solutions S of the ugliness

of G with respect to S . This way, a grid is nice if its ugliness is 0, or equivalently, there exists an

optimum solution S such that G is nice with respect to all the segments in S .

We first observe that if we manage to construct a grid of ugliness 0, then finding an optimum

solution reduces to solving an instance of 2-CSP. For this, it will be convenient to again rely on

a suitably defined notion of a combinatorial type of a segment with respect to a grid.

Consider a grid G enclosing D. For a segment R ∈D, the combinatorial type of R with respect

to G is the 6-tuple consisting of:

• The boolean value indicating whether R is horizontal or vertical.

• The weight ω(R).

• The right-most line `← of G such that R entirely lies strictly to the right of `←.

• The left-most line `→ of G such that R entirely lies strictly to the left of `→.

• The bottom-most line `↑ of G such that R entirely lies strictly below `↑.

• The top-most line `↓ of G such that R entirely lies strictly above `↓.

In other words, (`←,`→,`↑,`↓) contain the sides of the inclusion-wise minimal rectangle R ′

delimited by the lines from G whose interior contains R. Note that the set of grid points of G

contained in R is equal to the set of grid points contained in the interior of R ′. Assuming G is

88

4.3. Axis-Parallel Segments

clear from the context, for a type t we will denote this set of grid points by points(t). Observe

that the number of different combinatorial types with respect to G is bounded by 2W |G|4,

where W is the number of distinct weights assigned by ω.

Lemma 4.12. Given a finite set D of axis-parallel segments in the plane, a positive weight

functionω onD, a positive integer k, and a grid G enclosingD with a guarantee that the ugliness

of G is 0. Then an optimum solution for (D,ω,k) can be found in time (W · |G|)O(k) · |D|O(1).

Proof. Fix any optimum solution S such that G is nice with respect to S . We guess, by branch-

ing into all possibilities, the combinatorial types with respect to G , of all the segments in S .

Since there are at most 2W |G|4 different combinatorial types, this results in (W · |G|)O(k)

branches. Let the guessed set of combinatorial types be T . Since G is supposed to be nice

with respect to S , we may assume the sets in {points(t) : t ∈ T } to be nonempty and pairwise

disjoint; otherwise the branch can be discarded.

We construct an auxiliary 2-CSP instance IT which models the choice of segments in S . The

set of variables is T . For every type t ∈ T , the domain Dt consists of all segments from D
whose combinatorial type is t . The constraints are as follows:

• If t , t ′ ∈ T are distinct types of horizontal segments, and points(t) and points(t ′) are

two adjacent intervals of grid points on the same horizontal line of G , then we put a

constraint between t and t ′ which amongDt ×Dt ′ , only allows pairs of disjoint segments.

• Analogous constraints are put for distinct types t , t ′ ∈ T of vertical segments for which

points(t) and points(t ′) are adjacent intervals on the same vertical line.

It is straightforward to verify that solutions to IT correspond in a one-to-one fashion to the

independent sets in D for which the set of combinatorial types is T . Moreover, observe that

the Gaifman graph of IT is a disjoint union of paths. Every path t1 −·· ·− tp corresponds to

a sequence points(t1), . . . ,points(tp) of intervals on the same grid line such that points(ti) is

adjacent to points(ti+1) for i ∈ {1, . . . , p −1}. Therefore, it suffices to solve IT optimally, which

can be done in time |D|O(1) using, for instance, Theorem 1.7.

Lemma 4.12 suggests that we should aim to construct a grid with zero ugliness. So far, the grid

G constructed in the previous section may have positive ugliness: some segments of D may be

intersected by just one, and not two orthogonal lines, and there is no reason why an optimum

solution should not contain any such segments. Our goal is to reduce the ugliness of the grid

by further branching steps. The branching strategy is captured in the following lemma.

Lemma 4.13. Given a finite set D of axis-parallel segments in the plane, a positive weight

function ω on D, a positive integer k, and a grid G which hits all segments of D and encloses

D. Let W be the number of different weights assigned by ω. Then one can construct, in time

(|G| ·W)O(k) · |D|O(1), a family G of grids with the following properties:

89

Chapter 4. Maximum Weight Independent Set of Rectangles and Segments

(i) |G| ≤ (|G| ·W)O(k);

(ii) for each G ′ ∈G, we have G ′ ⊇G and |G ′ \G| ≤ k; and

(iii) if the ugliness of G is positive, then there exists G ′ ∈ G whose ugliness is strictly smaller

than the ugliness of G.

Proof. Fix an optimum solution S such that the ugliness of G with respect to S is minimum

possible. Assume that this ugliness is positive, since otherwise (iii) always holds and any family

G satisfying (i) and (ii) is a valid output. We construct G by a branching algorithm which,

intuitively, guesses a bounded amount of information about S and augments G according to

the guess, such that the augmented grid is nice with respect to at least one more segment of S .

Thus, different members of G correspond to different guesses on the structure of S .

Let N be the set of all segments in S which respect G . As the ugliness of G is positive, S \N is

nonempty. Let Rmax be a maximum weight segment of S \N ; in case there are several with the

same maximum weight, pick any of them.

The algorithm guesses, by branching into all possibilities, the combinatorial types of all

segments in N ∪ {Rmax}; this results in at most (1+2W |G|4)k ≤ (|G| ·W)O(k) branches. For

every guess we shall construct one grid G ′ ⊇G included in G. Therefore, we fix one guess and

proceed to the description of G ′.

By symmetry assume that Rmax is vertical. Let T be the (already guessed) set of combinatorial

types of segments from N , and let tmax = (vertical, w,`←,`→,`↑,`↓) be the (already guessed)

combinatorial type of Rmax. Similar to the proof of Lemma 4.12, we assume that the sets

{points(t) : t ∈ T } are nonempty and pairwise disjoint, as otherwise the guess can be safely

discarded as incorrect. Note that each set points(t) is an interval consisting of consecutive

grid points on a single line of G .

Let B be the rectangle delimited by (`←,`→,`↑,`↓). Since G is not nice with respect to Rmax,

the interior of B does not contain any grid point of G . There are two cases to consider:

Case 1: `← and `→ are consecutive vertical lines of G . This is equivalent to Rmax lying in the

interior of the vertical strip between `← and `→. In particular Rmax is not contained in any

line of G . Note that since Rmax is hit by G , which is true about every segment of D, the two

horizontal lines `↑ and `↓ are non-consecutive in G . So B is the union of two or more vertically

adjacent grid cells of G .

Case 2: `← and `→ are non-consecutive vertical lines of G . Since Rmax is vertical, there must

exist exactly one line of G between `← and `→, say `, and `must contain Rmax. Note that since

Rmax contains no grid point of G , `↑ and `↓ must be two consecutive horizontal lines of G . So

B is the union of two horizontally adjacent grid cells of G .

We consider these two cases separately. See Figure 4.5 for an illustration.

90

4.3. Axis-Parallel Segments

Figure 4.5: Illustration of Case 1 and Case 2 in the proof of Lemma 4.13. The green segments
depict the segments in N , so they already contain at least one grid-point. The orange segment
is the candidate segment Rmax, it has maximum weight among all those segments in the
optimal solution which do not contain a grid-point. The box B is represented by a blue region.
We greedily find a maximum size region inside B containing candidate segments, depicted
in red, with the same combinatorial type as Rmax. If there are more than k independent
candidates, we can return an optimal solution, since Rmax has maximum weight. Otherwise
we can add fewer than k grid-lines to the current grid, such that all possible candidates are hit
by a newly added grid-line.

Case 1: The segment Rmax does not lie on a grid line. We construct an auxiliary 2-CSP instance

IT corresponding to the choice of segments in N , exactly as in the proof of Lemma 4.12. That

is, the set of variables is T , and the constraints are as described in the proof of Lemma 4.12.

Again, solutions to IT are in a one-to-one correspondence to those independent sets in D
whose set of combinatorial types is T . Also, the Gaifman graph H of IT is a disjoint union

of paths, where each path corresponds to a sequence of adjacent intervals of grid-points

contained in a single grid-line of G .

The idea is to compute a solution u to IT which leaves “the most space” for the placement

of Rmax. For every connected component C of H , we do the following. Recall that C is a path.

Enumerate the consecutive variables on C as t1, . . . , tp . Let points(C) :=⋃p
i=1 points(ti); then

points(C) is an interval of grid points on one line of G , say `. We again consider two cases.

First, if ` is vertical, or points(C) does not contain any grid point lying in the interior of a side

of B ; compute any solution within C , say using the algorithm of Theorem 1.7.

Second, we consider the case where ` is horizontal and points(C) contains some grid point

lying in the interior of a side of B . Note that the intersection of ` with B is a segment. Let

x← ∈ `← and x→ ∈ `→ be the endpoints of this segment. Then x← and x→ are two horizontally

91

Chapter 4. Maximum Weight Independent Set of Rectangles and Segments

adjacent grid points of G which lie in the interior of the left and right side of B , respectively.

The set points(C) contains one or both of x← and x→. For concreteness, assume for now that

points(C) contains both x← and x→; the other cases are simpler and will be discussed later.

Assume that there is no i ∈ {1, . . . , p} such that points(ti) contains both x← and x→, because

then the corresponding segment of N would necessarily intersect Rmax. So if this occurs, we

can discard the branch as incorrect. Up to reversing indexing if necessary, there exists an index

i ∈ {1, . . . , p −1} such that x← ∈ points(ti) and x→ ∈ points(ti+1). We compute a solution within

C greedily as follows:

• First, process the variables t1, . . . , ti in this order. When considering t j , assign the segment

whose right endpoint is the leftmost possible among the available segments of Dt j , that

is, disjoint with the segment assigned to t j−1, for j > 1.

• Second, apply a symmetric greedy procedure to the variables tp , tp−1, . . . , ti+1 in this

order, picking the available segment with the rightmost possible left endpoint.

In case any of x← or x→ does not belong to points(C), only one of the above greedy procedures

is applied.

If IT has a solution, the algorithm described above clearly succeeds in finding some solution u

to IT . Since we assume IT to have a solution, witnessed by N , we may terminate the branch as

incorrect in case no solution to IT is found. Let N ′ = u(T) be the independent set of segments

found by the algorithm above. It is straightforward to see that the greedy choice of solutions

within the components of H justifies the following claim.

Claim 4.14. It holds that int(B)∩N ′ ⊆ int(B)∩N , where int(B) denotes the interior of B.

Consequently, Rmax is disjoint with every segment in N ′.

Now, let R⊆D be the set of all segments in D whose combinatorial type is tmax and which are

disjoint with all segments in N ′. By Claim 4.14, we necessarily have Rmax ∈R. Let L be the set

comprising of all vertical lines containing some segment R ∈R.

• If |L| < k −|N |, then we add the grid G ′ :=G ∪L to G.

• If |L| ≥ k−|N |, then we add the grid G ′ :=G ∪L′ to G, where L′ is any subset of L with size

k −|N |.
It remains to argue that in both cases, the ugliness of G ′ is strictly smaller than the ugliness of

of G .

In the case |L| < k −|N |, it suffices to note that since Rmax is contained on some line of L, the

grid G ′ =G ∪L is nice with respect to Rmax, while by assumption, G is not nice with respect

to Rmax.

Consider now the case |L| ≥ k −|N |. For every line ` ∈ L′, pick any segment R` ∈R which lies

on `. Let L := {R` : ` ∈ L′}. Note that the segments of L are pairwise disjoint due to lying on

different vertical lines, and they are also disjoint from all the segments of N ′ by the definition

of R. So N ′∪L is an independent set of segments, and has size k. Furthermore, since the

combinatorial type also features the weight of a segment, and Rmax was chosen to be the

heaviest segment within S \N , we have ω(N ′) =ω(N) and ω(L) ≥ω(S \N). It follows that

92

4.3. Axis-Parallel Segments

ω(N ′∪L) ≥ ω(S), hence N ′∪L is also an optimum solution. But G ′ = G ∪L′ is nice with

respect to all the segments of N ′∪L, so the ugliness of G ′ is 0.

Case 2: The segment Rmax lies on a grid line. This case works in a very similar fashion as the

previous one, hence we only outline the differences here.

Recall that here B consists of two horizontally adjacent cells of G . Let S be the common side of

those cells; then our guess on the combinatorial type tmax of Rmax says that Rmax should be

contained in the interior of S.

We construct an instance IT of 2-CSP in exactly the same manner as in Case 1. We solve it

using a similar greedy procedure, so that the space left for placing Rmax within the interior of s

is maximized. Here, there will be at most one connected component of the Gaifman graph H

of IT where a greedy strategy is applied; this is the vertical component C such that points(C)

contains one or both endpoints of S. Let N ′ be the obtained solution to IT . The analogue of

Claim 4.14 now says the following:

Claim 4.15. It holds that int(S)∩N ′ ⊆ int(S)∩N , hence Rmax is disjoint with every segment

in N ′.

Consequently, if we denote S′ := int(S) \N ′, then S′ is an open segment which contains Rmax.

Now let R be the set of all segments from D contained in S′ and whose weight is equal to the

guessed weight of Rmax. Since all segments of R lie on the same line, using a polynomial-time

top-to-bottom greedy sweep we may find a maximum independent set of segments within

R; call it L. Let L be the set horizontal lines passing through the lower endpoints of the

segments in L. Note that by construction of L, L hits all segments in R. We again consider

two sub-cases:

• If |L| = |L| < k −|N |, then we add the grid G ′ =G ∪L to G.

• If |L| = |L| ≥ k − |N |, then we add the grid G ′ = G ∪L′ to G, where L′ is any, arbitrarily

chosen, subset of L with size k −|N |.
A reasoning analogous to Case 1 shows the following. In the first sub-case, G ′ is nice with

respect to Rmax, hence the ugliness of G ′ is strictly smaller than that of G . In the second case,

N ′∪L is an optimum solution and G ′ is nice with respect to N ′∪L, hence the ugliness of G ′

is 0.

In both Case 1 and Case 2 we constructed a grid G ′ ⊇ G with |G ′ \ G| ≤ k whose ugliness is

strictly smaller than the ugliness of G . We conclude the proof by taking G to be the set of all

grids G ′ constructed in this manner.

Finally, Lemma 4.13 can be applied in a recursive manner to obtain a nice grid.

Lemma 4.16. Given a finite set D of axis-parallel segments in the plane, a positive weight

function ω on D, a positive integer k, and a grid G hitting all segments of D enclosing D. Let W

be the number of different weights assigned by ω. Then one can in time (k ·W · |G|)O(k2) · |D|O(1)

construct a family G of grids such that:

93

Chapter 4. Maximum Weight Independent Set of Rectangles and Segments

(i) |G| ≤ (k ·W · |G|)O(k2);

(ii) for each G ′ ∈G, we have G ′ ⊇G and |G ′ \G| ≤ k2; and

(iii) G contains at least one grid of ugliness 0.

Proof. Starting with G0 := {G}, we iteratively construct families of grids G1,G2, . . . ,Gk as follows:

to construct Gi from Gi−1, replace each grid G ∈ Gi−1 with the family of grids G(G) obtained

by applying Lemma 4.13 to G . A straightforward induction using properties (i) and (ii) of

Lemma 4.13 shows that:

• |Gi | ≤ (k ·W · |G|)O(i k),

• for each G ′ ∈ Gi it holds that G ′ ⊇G and |G ′ \G| ≤ i k, and the construction of Gi takes

(k ·W · |G|)O(i k) · |D|O(1) time.

Moreover, by property (iii) of Lemma 4.13, if the minimum ugliness among grids in Gi−1 is

positive, then the minimum ugliness among the grids in Gi is strictly smaller than that in

Gi−1. Since the ugliness of G is at most k, it follows that G := Gk satisfies all the required

properties.

4.3.4 Proof of Theorem 4.9

We are now ready to assemble all the tools and prove Theorem 4.9. As discussed in Section 4.3.2,

by preprocessing the instance and branching into O(|D|) possibilities, we construct a grid

of size O(k2) such that every segment in D is hit by G . Adding four lines to G ensures that G

encloses D. Then we apply Lemma 4.16 to G , and construct a family of grids G which contains

at least one grid with ugliness 0. It now remains to apply Lemma 4.12 to each grid in G and

output the heaviest of the obtained solutions.

Following directly from the guarantees provided by Lemmas 4.12 and 4.16, this algorithm runs

in time (kW)O(k2) · |D|O(1).

94

5 Independence Number of Intersection
Graphs of Axis-Parallel Segments

This chapter contains a overworked version of [CCPW22], which is joint work with Marco

Caoduro, Michał Pilipczuk and Karol Węgrzycki.

5.1 Introduction

For a graph G , the independence number α(G) is the maximum size of an independent set in G .

An independent set of a graph G is a subset of pairwise non-adjacent vertices. Both lower and

upper bounds on the independence number were intensively studied in various graph classes,

including interval graphs [GLL82], planar graphs [ALMM08], and triangle-free graphs [She91].

In this chapter, we study the independence number in classes of geometric intersection graphs.

For a set S of geometric objects, the independence number α(S) is naturally defined as the

maximum size of a subset of pairwise disjoint objects in S .

The chromatic number χ(G) is the minimum number of colors needed to color the vertices of

G in a way that no two adjacent vertices have the same color. A simple lower bound on the

independence number can be often obtained by studying the chromatic number and using

the obvious inequality α(G) ≥ n/χ(G), where n is the number of vertices in G . This strategy

does not always provide optimum lower bounds, which is also the case in the geometric setting

we consider in this chapter.

Specifically, we consider intersection graphs of axis-parallel segments in the plane where no

three segments intersect at a single point. For simplicity, we will denote this class of graphs

by Gseg. Observe that we have χ(G) ≤ 4 for every G ∈ Gseg, because we can use two colors to

properly color the horizontal segments, and another two for the vertical segments. Hence, if

G ∈Gseg has n vertices, then α(G) ≥ n/4.

95

Chapter 5. Independence Number of Axis-Parallel Segments

Our contribution

Our two main results, presented below, prove that the simple lower bound α(G) ≥ n/4 can be

improved by an additive term of the order
p

n, but no further improvement is possible.

Theorem 5.1. Let G be a graph in Gseg with n vertices. Then the independence number of G is

at least

α(G) ≥ n

4
+ c1

p
n,

for some absolute constant c1.

Theorem 5.2. For any n ∈ N there exists a graph G in Gseg on n vertices with independence

number

α(G) ≤ n

4
+ c2

p
n,

for some absolute constant c2.

The independence number is often studied in relation to the clique covering number. A clique

in a graph is a set of pairwise adjacent vertices, and the clique covering number θ(G) of a graph

G is defined as the minimum size of a partition of the vertex set of G into cliques. For any graph

G , the clique covering number θ(G) is a natural upper bound on the independence number

α(G). Indeed, an independent set contains at most one vertex from each clique. This implies

that for any graph G , the ratio θ(G)/α(G) is at least one. Giving an upper bound on this ratio is

a question that was studied for several classes of intersection graphs, e.g. [GL85], [KN08]. In

this topic, the main open question concerns the relation between the independence number

and the clique covering number in intersection graphs of axis-parallel rectangles.

Conjecture 5.3 (Wegner 1965,[Weg65]). Let G be the intersection graph of a set of axis-parallel

rectangles in the plane. Then

θ(G) ≤ 2α(G)−1.

For an intersection graph G of axis-parallel rectangles the best known bound on the clique

covering number is θ(G) =O
(
α(G) log2(log(α(G)))

)
by Correa et. al. [CFPS15]. In particular,

no linear upper bounds are known. Even, obtaining good lower bounds on the maximum

ratio θ/α was wide open problem until very recently. For nearly thirty years after Wegner

formulated his conjecture, the largest known ratio remained 3/2, obtained by taking five

axis-parallel rectangles forming a cycle. In 1993, Fon-Der-Flaass and Kostochka presented

a family of axis-parallel rectangles with clique cover number 5 and independence number

3 [FK93]. Only in 2015, Jelínek constructed families of rectangles with ratio θ/α arbitrarily

close to 2, showing that the constant of 2 in Wegner’s conjecture cannot be improved1.

One consequence of our results is that the bound in Wegner’s conjecture can be slightly

improved for triangle-free intersection graphs of axis-parallel segments. More precisely, we

have the following corollary of Theorem 5.1.

1The former construction is attributed to Jelínek in [CFPS15, Acknowledgment].

96

5.1. Introduction

Corollary 5.4. Let G be a triangle-free intersection graph of axis-parallel segments in the plane.

Then

θ(G) ≤ 2α(G)− c1
p

n.

We point out that the families of axis-parallel rectangles constructed by Jelínek also have a

triangle-free intersection graph [CFPS15, Acknowledgment]. An analysis of the construction

yields that they in fact satisfy θ(G) = 2α(G)−4. Thus Corollary 5.4 provides a nice separa-

tion of triangle-free intersection graphs of axis-parallel segments from those of axis-parallel

rectangles.

On the other hand, our results also give a proof that the ratio of 2 in Wegner’s conjecture,

cannot be improved even in this highly restricted case of axis-parallel segments, even with

the assumption of triangle-freeness. More precisely, we have the following corollary of the full

version of Theorem 5.2 (see Section 5.3).

Corollary 5.5. For any ε> 0, there exists a graph G in Gseg such that

θ(G) ≥ (2−ε)α(G).

Corollary 5.5 can be further strengthened to the fractional setting, implying a lower bound

on the integrality gap of the standard linear programming relaxation of the independent set

problem. Namely, consider the fractional independence number of a graph G , denoted α?(G),

which is defined similarly to α(G). The difference being that every vertex u can be included

in the solution with a fractional multiplicity xu ∈ [0,1], and the constraints are xu +xv ≤ 1 for

every edge uv of G . Similarly, in the fractional clique cover number θ?(G) every clique K in G

can be included in the cover with a fractional multiplicity yK ∈ [0,1], and the constraints are∑
K : v∈K yK ≥ 1 for every vertex v . In triangle-free graphs the linear programs defining α?(G)

and θ?(G) are dual to each other, hence

α(G) ≤α?(G) = θ?(G) ≤ θ(G) for every triangle-free graph G .

The proof of Corollary 5.5, based on the full version of Theorem 5.2, yields the following result.

Corollary 5.6. For any ε> 0, there exists a graph G in Gseg such that

α?(G) ≥ (2−ε)α(G).

Consequently, the integrality gap of the standard linear programming relaxation of the maxi-

mum independent set problem in graphs from Gseg is not smaller than 2.

We note that recently, Gálvez et al. gave a polynomial-time (2+ε)-approximation algorithm

for the maximum independent set problem in intersection graphs of axis-parallel rectan-

gles [GKM+22]. Thus, Corollary 5.6 shows that one cannot improve upon the approximation

ratio of 2 by only relying on the standard linear programming relaxation, even in the case of

97

Chapter 5. Independence Number of Axis-Parallel Segments

axis-parallel segments. Note that in this case, obtaining a 2-approximation algorithm is very

easy: restricting attention to either horizontal or vertical segments reduces the problem to the

setting of interval graphs, where it is polynomial-time solvable.

Structure of the chapter

In Section 5.2 we give the constructions of independent sets for any graph in the class of

graphs Gseg used to prove Theorem 5.1. In Section 5.3 we then construct a family of graphs

to prove Theorem 5.2. This construction is based on a classical result of Erdős and Szekeres

[ES35].

5.2 The Lower Bound: Proof of Theorem 5.1

The goal of this section is to prove Theorem 5.1. For this, we examine a graph G ∈ Gseg, and

exhibit three different independent sets in G by constructing three different subsets of disjoint

segments. A trade-off between these three independent sets then results in a lower bound.

The set of geometric objects S is called a representation of its intersection graph G(S) Note

that a graph can have multiple representations. Our proof starts with some observations on

possible sets of segments representing a graph in the class Gseg. Let G be a graph in Gseg with

n vertices and let S be a representation of G . Thus, S consists of axis-parallel segments, no

three of which meet at one point. We may assume that in S every two parallel segments which

intersect meet at a single point, called the meeting point. If two segments do not meet at a

single point, we can choose any common point and shorten both segments up to this common

point. Since no three segments of S meet at one point, all intersections are preserved and

the modified set of segments is still a representation of G . Further, we may assume that if two

orthogonal segments intersect, their intersection point lies in the interior of both of them.

Indeed, otherwise we could slightly extend one or both of these segments around the meeting

point. Finally, we may assume that the segments of S lie on a grid of size `hor ×`ver such that

the segments lying on the same grid line induce a path in the intersection graph. Indeed, if

on a single grid line the segments induce a disjoint union of several paths, then we can move

these paths slightly such that they are realized on separate grid lines. A representation S of G

with the properties described above is called favorable.

To give constructions for the different subsets of pairwise disjoint segments in a favorable

representation S , we first need some notation. Say the grid associated with S is of size

`hor ×`ver. We partition the grid lines into lines of even type and lines of odd type depending

if there is a even or odd number of segments lying on them. Let `even be the number of grid

lines of even type and `odd the number of grid lines of odd type. This is naturally extended

to the set S by partitioning the segments according to which type of grid line they lie on. Let

seven be the total number of segments which lie on a grid line of even type and sodd the total

number of segments which lie on a grid line of odd type. Further, we denote the maximum

98

5.2. The Lower Bound: Proof of Theorem 5.1

number of segments on a single grid line by t .

The following three lemmas correspond each to a different set of pairwise disjoint segments

in S . In all three lemmas, we assume S to be a favorable representation of a graph in Gseg with

n vertices.

Lemma 5.7. There exists a subset of S consisting of n
4 + `odd

4 pairwise disjoint segments.

Lemma 5.8. There exists a subset of S consisting of n
4 + t

4 pairwise disjoint segments.

Lemma 5.9. There exists a subset of S consisting of n
4 +

p
2seven

4 − `odd
4 pairwise disjoint segments.

Before proving these lemmas, we use them to conclude Theorem 5.1.

Proof of Theorem 5.1. Let G be a graph in the class Gseg with n vertices and let S be a favorable

representation of G . A subset of pairwise disjoint segments in S corresponds to an indepen-

dent set in G of the same size. We distinguish three cases. If `odd ≥p
n/c for some constant c,

by Lemma 5.7 G has an independent set of size at least

n

4
+ 1

4c
·pn.

If `odd ≤p
n/c and seven ≥ 2n/c2, by Lemma 5.9 G has an independent set of size at least

n

4
+
p

2seven

4
− `odd

4
≥ n

4
+
p

4n

4c
−
p

n

4c

≥ n

4
+ 1

4c
·pn.

If `odd ≤ p
n/c and seven ≤ 2n/c2, we get sodd ≥ n(1−2/c2) using seven + sodd = n. Then the

maximum number of segments t lying on a single line is at least

t ≥ sodd

`odd
≥ n(1−2/c2)p

n/c
= c2 −2

c
·pn.

By Lemma 5.8 we get an independent set of G of size at least

n

4
+ c2 −2

4c
·pn.

Setting c = p
3 gives the desired result: there is always an independent set of size at least

n
4 + 1

4
p

3
·pn.

Before proving the three lemmas, we quickly discuss how to prove Corollary 5.4 with Theo-

rem 5.1.

Proof of Corollary 5.4. Consider a graph G ∈Gseg minimizing the difference 2α(G)−θ(G) and

whose sub-graphs all have a strictly larger difference. Note that removing by a vertex x from

99

Chapter 5. Independence Number of Axis-Parallel Segments

G , the independence number and the clique covering number of G −x either equals that of

G or decreases by 1. Since G − x is a sub-graph of G , by assumption, 2α(G − x)−θ(G − x) >
2α(G)−θ(G). This implies that for all vertices x of G , the clique covering number decreases

by 1. Since a clique of G is either an edge or a single vertex, a clique covering consists of a

maximum matching of G and a set of singletons. So removing a vertex x only decreases the

clique covering number if there exists a maximum matching of G , that does not match x. Thus

by Gallai’s Lemma [LP09], for any vertex x, the graph G −x has a perfect matching. This means

that θ(G −x) = (n −1)/2, where n is the number of vertices of G . Using Theorem 5.1, we get

2α(G)−θ(G) ≥ n

2
+2c1

p
n − n +1

2
≥ c1

p
n.

The remainder of this section is dedicated to proof the three lemmas.

Proof of Lemma 5.7. This construction exploits grid lines of odd type, so those with an odd

number of segments on them. For each grid line, select every second segment lying on that

line, starting from the leftmost for horizontal lines, and the topmost for vertical lines. If the

grid line is of even type, exactly half of the segments are selected. If the grid line is of odd type,

the selected number of segments is half rounded up. This corresponds to selecting exactly

half of all segments and adding 1/2 for each grid line of odd type. So in total,

n

2
+ `odd

2

segments are selected.

By construction of this subset, two segments are only intersecting if one is horizontal and the

other one is vertical. Thus, the set can be partitioned into horizontal and vertical segments

with both parts only containing pairwise disjoint segments. By the pigeonhole principle, one

of the two parts contains at least half of the selected segments.

Proof of Lemma 5.8. This construction exploits a single grid line with many segments on it.

Let ghor be a horizontal grid line with the maximum number of segments thor lying on it, and

let sver be the total number of vertical segments. Consider the subset Shor ⊆S consisting of all

segments lying on ghor and all vertical segments. Analogously define gver, tver, shor, and Sver.

Now we choose the larger set among Sver and Shor. The size of this set is

max{shor + tver, sver + thor} ≥ shor + tver + sver + thor

2

≥ n + t

2

For the second inequality, we use assertions shor + sver = n and t = max{thor, tver}.

We now observe that the intersection graphs of both sets Sver and Shor are bipartite. Indeed,

100

5.2. The Lower Bound: Proof of Theorem 5.1

any cycle in the intersection graph has to contain at least two horizontal segments lying on

two different horizontal grid lines, and two vertical segments lying on two different vertical

grid lines. But Sver contains horizontal segments from only one horizontal grid line, while Shor

contains vertical segments from only one vertical grid line. In a bipartite graph the vertices

can be partitioned into two independent sets A and B , one of which contains at least half of

the vertices. Hence, the larger of the two sets Sver and Shor contains an independent set of size

at least n+t
4 .

The proof of Lemma 5.9 heavily depends on the following classic theorem of Erdős and

Szekeres, here rephrased in the plane setting. We say that a sequence of points in the plane

is non-decreasing if both their first and second coordinates are non-decreasing along the

sequence; it is non-increasing if the first coordinate is non-decreasing along the sequence

while the second coordinate is non-increasing.

Theorem 5.10 (Erdős, Szekeres [ES35]). Given n distinct points in the plane, it is always

possible to choose at least
p

n of those points and arrange them into a sequence which is either

non-increasing or non-decreasing.

Proof of Lemma 5.9. This construction exploits grid lines of even type, so those with an even

number of segments on them. With the help of Theorem 5.10 we first construct a poly-line

cutting through the segments. Then we use this poly-line to define two sets of pairwise disjoint

segments in S , one of which has the desired size.

Recall that meeting points are the points in which two parallel segments of S intersect. A

meeting point on a grid line naturally partitions the segments lying on this line into two parts:

those to the left of it and to the right of it (for horizontal lines), or those above it and below

it (for vertical lines). Call a meeting point a candidate point if both those parts have odd

cardinalities. Note that thus, candidate points only occur on grid lines with an even number

of segments. Further, in total there are seven/2 candidate points.

By Theorem 5.10, there exists either a non-increasing or a non-decreasing sequence ofp
seven/2 candidate points. Suppose without loss of generality that the sequence is non-

increasing and of maximum possible length. We call cutting points those candidate points

which occur in the sequence and denote the number of cutting points by C . Observe that

C ≥p
seven/2. For every two consecutive cutting points, connect them with a segment. Then

consider two half-lines with negative inclinations, one ending at the first cutting point and

one starting at the last cutting point. This gives a poly-line intersecting all grid lines. We call

this path the cut.

Using the cut, we construct two sets of segments Sblue and Sorange; see Figure 5.1.

101

Chapter 5. Independence Number of Axis-Parallel Segments

Figure 5.1: Selection of the two independent sets in the proof of Lemma 5.9. The endpoints of
each segment, and in consequence all meeting points, are indicated by a perpendicular dash.
Candidate points are highlighted by a green circle, where the circle is filled on cutting points.
The red dashed line is the cut. Blue and orange segments are those chosen in one of the sets
Sblue and Sorange, respectively.

Construction of Sblue: The set Sblue is constructed as follows. For each vertical grid line, start

from the segment with the lowest endpoint and choose every second segment with the upper

endpoint on the cut or below. Next, for each horizontal grid line, start from the segment with

the right-most endpoint and choose every second segment with the left endpoint on the cut

or to the right.

Construction of Sorange: The set Sorange is defined symmetrically to Sblue. Namely, for each

vertical grid line, start from the segment with the highest endpoint and choose every second

segment with the lower endpoint on the cut or above. For each horizontal grid line, start from

the segment with the left-most endpoint and choose every second segment with the right

endpoint on the cut or to the left.

If the sequence would be non-decreasing, the choice strategy for horizontal segments would

be inverted between Sblue and Sorange.

We argue that the segments of Sblue are pairwise disjoint. Note that the segments lying on

the bottom-left side of the cut are vertical and pairwise disjoint by the construction. Those

segments lying on the top-right side of the cut are horizontal and also pairwise disjoint.

It remains to argue that there is no pair consisting of a vertical segment and a horizontal

from Sblue which intersect at a point lying on the cut. Recall that since the representation

is favorable, such an intersection point would lie in the interiors of both segments. This

102

5.3. The Upper Bound: Proof of Theorem 5.2

would imply that either the vertical segment would have the top endpoint strictly above the

cut, or the horizontal segment would have the left endpoint strictly to the left of the cut. A

contradiction with the construction of Sblue. A symmetric argument applied to Sorange shows

that the segments of Sorange are also pairwise disjoint.

It remains to show that Sblue ∪Sorange has at least n
2 +

p
2seven

2 − `odd
2 segments.

Consider a grid line of even type, thus with an even number of segments on it. For each

candidate point on this line which is not a cutting point, exactly one segment containing

this candidate point is in Sblue ∪Sorange. However, for each cutting point on this line, both

segments meeting at this cutting point are included in Sblue ∪Sorange, as there is an odd

number of segments on either side of the cutting point. This means that on each grid line

of even type, the total number of segments included in Sblue ∪Sorange is exactly half of all

segments, plus one segment for each cutting point on the grid line.

Consider now a grid line of odd type, thus with an odd number of segments on it. The sets

Sblue and Sorange contain every second segment starting from the outermost ones. Without

the cut, this would include half of the segments lying on the line rounded up. Since there is an

odd number of segments on the grid line, the cut crosses it at a single point. Due to this, at

most one segment is removed from Sblue ∪Sorange. Meaning that among the segments lying a

grid line of odd type, at least half rounded down are included in Sblue ∪Sorange. Thus, we lose

at most 1/2 for each grid line of odd type.

Together, this gives that Sblue ∪Sorange contains at least

seven

2
+C + sodd

2
− `odd

2
≥ n

2
+
p

2seven

2
− `odd

2

segments. By choosing the larger of the two sets, we obtain an independent set of the desired

size.

5.3 The Upper Bound: Proof of Theorem 5.2

In this section, we construct families of axis-parallel segments whose intersection graphs

satisfying the requirements of Theorem 5.2. In fact, we prove the following stronger statement.

Theorem 5.11 (Full version of Theorem 5.2). For any integer k ≥ 1, there exists a graph Gk in

Gseg on 4k2 vertices with clique covering number θ(Gk) = 2k2, fractional independence number

α?(Gk) = 2k2, and independence number

α(Gk) = k2 +3k −2.

103

Chapter 5. Independence Number of Axis-Parallel Segments

Note that Corollaries 5.5 and 5.6 follow from Theorem 5.11 by considering G = Gk for k

large enough depending on 1/ε. The remainder of this section is devoted to the proof of

Theorem 5.11.

Fix an integer k ≥ 1. We construct a set of 4k2 axis-parallel segments Mk . The set Mk is

constructed using k sets with 4k segments each; these sets will be called k-boxes. A k-box is a

set of 4k axis-parallel segments distributed on k horizontal and k vertical grid lines, each with

exactly two segments lying on it. For every grid line, the two segments intersect in a single

point, which we call meeting point. In the construction of a k-box, the meeting points are

arranged in a diagonal from the top left to the bottom right, see the case k = 6 in Figure 5.2.

The up segments (respectively down segments) of a k-box are the segments lying vertically

above (respectively below) a meeting point. Similarly, define the left and right segments of a

k-box.

u1 uk

d1 dk

r1

rk

l1

lk

Figure 5.2: A 6-box. The meeting points are represented by a perpendicular dash. Thus, every
line contains two segments of the box, whose only intersection is the meeting point on this
line.

To construct Mk , consider a large square and place k different k-boxes {Bi }k
i=1 along its

diagonal from the bottom left to the top right. Then, prolong each segment away from the

meeting point until it touches a side of the square, see Figure 5.3. The construction results in

the set Mk consisting of 4k2 segments. We note that Mk is a favorable representation of its

intersection graph in the sense introduced in Section 5.2. Also, perhaps not surprisingly, the

construction is inspired by a tight example for the Erdős-Szekeres Theorem (Theorem 5.10).

Note that it also proves tightness of the bound provided by Lemma 5.9.

We are left with verifying the asserted properties of Mk . For this, we introduce some notation

and definitions. Let I be a set of pairwise disjoint segments in Mk . A k-box Bi of Mk is

said to be interesting for I if Bi ∩I contains either at least one down segment and one right

104

5.3. The Upper Bound: Proof of Theorem 5.2

B1

B2

B3

Figure 5.3: The set M3. The meeting points are represented by perpendicular dashes. The
dashed green lines indicate bounds of the large square and the three 3-boxes.

segment, or at least one up segment and one left segment. Otherwise, the k-box is boring for

I . Distinguishing between interesting and boring boxes allows more precise estimates on the

maximum possible cardinality of I .

In the next two lemmas, we consider I to be a set of pairwise disjoint segments in Mk .

Lemma 5.12. For any k-box B in Mk , it holds that |B∩I| ≤ 2k. Moreover, if B is boring for I ,

then |B∩I| ≤ k +1.

Proof. The first statement holds because I contains at most one segment per line, and there

are 2k lines in a box: k vertical and k horizontal lines.

Assume now that B is a box which is boring for I . Enumerate the up and down segments of B
from left to right as U = {u1, . . . ,uk } and D = {d1, . . . ,dk }, respectively; further, enumerate the

right and left segments from top to bottom as R = {r1, . . . ,rk } and L = {l1, . . . , lk }, respectively;

see Figure 5.2. If all segments of B∩I are pairwise parallel (that is, they are either all vertical

or all horizontal), then |B∩I| ≤ k since I can contain only one segment per line. There are

two cases left to check: B either contains only up and right segments, or only down and

left segments. Observe that U ∪R can be partitioned into k +1 parts as follows: u1 and rk

are singleton parts, the remaining segments are partitioned into k −1 pairs of intersecting

segments given by {ui+1,ri }k−1
i=1 . Similarly, D ∪L can be partitioned into k pairs of intersecting

105

Chapter 5. Independence Number of Axis-Parallel Segments

segments {di , li }k
i=1. The independent set I can contain at most one segment from each part

of these partitions. Hence, |B∩I| ≤ k +1 in both cases.

Lemma 5.13. There are at most two boxes which are interesting for I .

Proof. We show that there is at most one interesting box with at least one up and one left

segment included in I . A symmetric argument then shows that there is at most one interesting

box with at least one down and one right segment included in I, implying that there are at

most two interesting boxes in total.

For the sake of contradiction, assume Mk has two distinct interesting boxes B,B′ of the first

kind. Then, either an up segment of B∩I intersects a left segment of B′∩I, or vice-versa.

This contradicts the fact that all segments of I are pairwise disjoint.

With Lemmas 5.12 and 5.13 in place, we are in position to finish the proof of Theorem 5.11. Let

Gk be the intersection graph of Mk . By construction, the set Mk consists of 4k2 axis-parallel

segments and Gk is in Gseg.

First, we compute the clique covering number and the fractional independence number of

Gk . Observe that Gk is triangle-free, hence every clique in Gk is of size at most 2. It follows

that every clique covering of Gk is of size at least |Mk |
2 = 2k2, that is, θ(Gk) ≤ 2k2. On the other

hand, taking every vertex of Gk with multiplicity 1/2 gives a fractional independent set of size
|Mk |

2 = 2k2, implying that α?(Gk) ≥ 2k2. Since θ(H) ≥α?(H) for every triangle-free graph H ,

we conclude that

θ(Gk) =α?(Gk) = 2k2.

It remains to prove that α(Gk) = k2 +3k −2. We give a set of pairwise disjoint segments in Mk ,

corresponding to an independent set in Gk . This shows that α(Gk) ≥ k2 +3k −2. The set of

segments in Mk consists of:

(i) the left and up segments of B1,

(ii) the right and down segments of B2, and

(iii) the right segments and the topmost up segment of Bi , for each 3 ≤ i ≤ k.

This is a set of pairwise disjoint segments inMk and it contains 2·(2k)+(k−2)(k+1) = k2+3k−2

segments.

To show that α(Gk) ≤ k2 +3k −2 we apply Lemma 5.12 and Lemma 5.13 to obtain that, for any

set I of pairwise disjoint segments in Mk ,

|I| = |Mk ∩I| =
k∑

i=1
|Bi ∩I| ≤ 2 · (2k)+ (k −2)(k +1) = k2 +3k −2.

Which concludes the proof of Theorem 5.11.

106

Bibliography

[AH07] Matthias Aschenbrenner and Raymond Hemmecke. Finiteness theorems in

stochastic integer programming. Foundations of Computational Mathematics,

7(2):183–227, 2007.

[ALMM08] Vladimir Alekseev, Vadim Lozin, Dmitriy Malyshev, and Martin Milanič. The

maximum independent set problem in planar graphs. In Proceedings of the 33rd

International Symposium on Mathematical Foundations of Computer Science,

volume 5162, pages 96–107. Springer, 2008.

[AvKS98] Pankaj K. Agarwal, Marc J. van Kreveld, and Subhash Suri. Label placement by

maximum independent set in rectangles. Computational Geometry, 11(3-4):209–

218, 1998.

[AW13] Anna Adamaszek and Andreas Wiese. Approximation Schemes for Maximum

Weight Independent Set of Rectangles. In Proceedings of the 54th Annual Sympo-

sium on Foundations of Computer Science, pages 400–409. IEEE Computer Society,

2013.

[AWZ17] Stephan Artmann, Robert Weismantel, and Rico Zenklusen. A strongly polynomial

algorithm for bimodular integer linear programming. In Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory of Computing, page 1206–1219. ACM,

2017.

[Bak94] Brenda S. Baker. Approximation algorithms for NP-complete problems on planar

graphs. J. ACM, 41(1):153–180, 1994.

[Baz95] Cristina Bazgan. Schémas d’approximation et complexité paramétrée. Rapport de

stage de DEA d’Informatiquea Orsay, 300, 1995. In French.

[BFP+72] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert En-

dre Tarjan. Linear time bounds for median computations. In Proceedings of the

fourth annual ACM symposium on Theory of computing, pages 119–124. ACM,

1972.

[BSW14] Paul S. Bonsma, Jens Schulz, and Andreas Wiese. A constant-factor approximation

algorithm for unsplittable flow on paths. SIAM J. Comput., 43(2):767–799, 2014.

[BV14] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge

University Press, 2014.

107

Bibliography

[CCPW22] Marco Caoduro, Jana Cslovjecsek, Michał Pilipczuk, and Karol Węgrzycki. In-

dependence number of intersection graphs of axis-parallel segments. CoRR,

abs/2205.15189, 2022. (Submitted to Journal of Combinatorial Geometry).

[CE16] Julia Chuzhoy and Alina Ene. On Approximating Maximum Independent Set

of Rectangles. In Proceedings of the 57th Annual Symposium on Foundations of

Computer Science, pages 820–829. IEEE Computer Society, 2016.

[CEH+21] Jana Cslovjecsek, Friedrich Eisenbrand, Christoph Hunkenschröder, Lars Rohwed-

der, and Robert Weismantel. Block-structured integer and linear programming in

strongly polynomial and near linear time. In Proceedings of the 2021 Symposium

on Discrete Algorithms, pages 1666–1681. SIAM, 2021.

[CEP+21] Jana Cslovjecsek, Friedrich Eisenbrand, Michał Pilipczuk, Moritz Venzin, and

Robert Weismantel. Efficient sequential and parallel algorithms for multistage

stochastic integer programming using proximity. In Proceedings of the 29th An-

nual European Symposium on Algorithms, volume 204, pages 33:1–33:14. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[CFPS15] José R. Correa, Laurent Feuilloley, Pablo Pérez-Lantero, and José A. Soto. Indepen-

dent and hitting sets of rectangles intersecting a diagonal line: algorithms and

complexity. Discrete & Computational Geometry, 53(2):344–365, 2015.

[CGST86] William J. Cook, A. M. H. Gerards, Alexander Schrijver, and Éva Tardos. Sensitivity

theorems in integer linear programming. Math. Program., 34(3):251–264, 1986.

[Cla86] Kenneth L. Clarkson. Linear programming in O(n ×3d 2
) time. Inf. Process. Lett.,

22(1):21–24, 1986.

[CM18] Lin Chen and Dániel Marx. Covering a tree with rooted subtrees - parameter-

ized and approximation algorithms. In Proceedings of the Twenty-Ninth Annual

Symposium on Discrete Algorithms, pages 2801–2820. SIAM, 2018.

[CMYZ17] Lin Chen, Dániel Marx, Deshi Ye, and Guochuan Zhang. Parameterized and

approximation results for scheduling with a low rank processing time matrix. In

Proceedings of the 34th Symposium on Theoretical Aspects of Computer Science,

volume 66, pages 22:1–22:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2017.

[CPW22] Jana Cslovjecsek, Michał Pilipczuk, and Karol Węgrzycki. Parameterized approxi-

mation for maximum weight independent set of rectangles and segments. (Sub-

mitted to Symposium on Computational Geometry), 2022.

[CRZ20] Clément Carbonnel, Miguel Romero, and Stanislav Zivný. Point-Width and Max-

CSPs. ACM Trans. Algorithms, 16(4):54:1–54:28, 2020.

108

Bibliography

[CT97] Marco Cesati and Luca Trevisan. On the efficiency of polynomial time approxima-

tion schemes. Information Processing Letters, 64(4):165–171, 1997.

[CW21] Parinya Chalermsook and Bartosz Walczak. Coloring and maximum weight in-

dependent set of rectangles. In Proceedings of the 2021 Symposium on Discrete

Algorithms, pages 860–868. SIAM, 2021.

[DDvtH16] Pål Grønås Drange, Markus S. Dregi, and Pim van ’t Hof. On the computational

complexity of vertex integrity and component order connectivity. Algorithmica,

76(4):1181–1202, 2016.

[DF92] Jeffrey S. Doerschler and Herbert Freeman. A rule-based system for dense-map

name placement. Commun. ACM, 35(1):68–79, 1992.

[Dic13] Leonard Eugene Dickson. Finiteness of the odd perfect and primitive abun-

dant numbers with n distinct prime factors. American Journal of Mathematics,

35(4):413–422, 1913.

[DLY21] Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear time algorithm for linear

programs with small treewidth: A multiscale representation of robust central path.

In Proceedings of the 53rd Annual Symposium on Theory of Computing, pages

1784–1797. ACM, 2021.

[Dye86] Martin E. Dyer. On a multidimensional search technique and its application to the

euclidean one-centre problem. SIAM J. Comput., 15(3):725–738, 1986.

[EHK18] Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein. Faster

algorithms for integer programs with block structure. In Proceedings of the 45th

International Colloquium on Automata, Languages, and Programming, volume

107, pages 49:1–49:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[EHK+19] Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin

Koutecký, Asaf Levin, and Shmuel Onn. An algorithmic theory of integer program-

ming. CoRR, abs/1904.01361, 2019.

[EJS05] Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-Time Approximation

Schemes for Geometric Intersection Graphs. SIAM J. Comput., 34(6):1302–1323,

2005.

[ES35] Paul Erdös and George Szekeres. A combinatorial problem in geometry. Compositio

mathematica, 2:463–470, 1935.

[EW20a] Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algo-

rithms for integer programming using the steinitz lemma. ACM Trans. Algorithms,

16(1):5:1–5:14, 2020.

109

Bibliography

[EW20b] Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algo-

rithms for integer programming using the steinitz lemma. ACM Trans. Algorithms,

16(1):5:1–5:14, 2020.

[FK93] Dmitry Fon-Der-Flaass and Alexandr V. Kostochka. Covering boxes by points.

Discret. Math., 120(1-3):269–275, 1993.

[FMMT01] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama.

Data mining with optimized two-dimensional association rules. ACM Trans.

Database Syst., 26(2):179–213, 2001.

[FPT82] Robert J. Fowler, Mike Paterson, and Steven L. Tanimoto. Optimal packing and

covering in the plane are NP-complete. Networks, 12(4):459–467, 1982.

[Fre90] Eugene C. Freuder. Complexity of k-tree structured constraint satisfaction prob-

lems. In Proceedings of the 8th National Conference on Artificial Intelligence, pages

4–9. AAAI Press / The MIT Press, 1990.

[GHR+95] Raymond Greenlaw, H Hoover, Walter Ruzzo, et al. Limits to parallel computation:

P-completeness theory. Oxford University Press on Demand, 1995.

[GKM+22] Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy

Pittu, and Andreas Wiese. A 3-approximation algorithm for Maximum Indepen-

dent Set of Rectangles. In Proceedings of the 2022 Symposium on Discrete Algo-

rithms, pages 894–905. SIAM, 2022.

[GKW19] Fabrizio Grandoni, Stefan Kratsch, and Andreas Wiese. Parameterized approxi-

mation schemes for Independent Set of Rectangles and Geometric Knapsack. In

Proceedings of the 27th Annual European Symposium on Algorithms, volume 144,

pages 53:1–53:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[GL85] András Gyárfás and Jenö Lehel. Covering and coloring problems for relatives of

intervals. Discret. Math., 55(2):167–180, 1985.

[GLL82] Udaiprakash I. Gupta, D. T. Lee, and Joseph Y.-T. Leung. Efficient algorithms for

interval graphs and circular-arc graphs. Networks, 12(4):459–467, 1982.

[GO18] Robert Ganian and Sebastian Ordyniak. The complexity landscape of decomposi-

tional parameters for ILP. Artif. Intell., 257:61–71, 2018.

[GS80] Victor S Grinberg and Sergey V Sevast’yanov. Value of the steinitz constant. Func-

tional Analysis and Its Applications, 14(2):125–126, 1980.

[Han72] Denis Hanson. On the product of the primes. Canadian Mathematical Bulletin,

15(1):33–37, 1972.

110

Bibliography

[HK10] Alan J. Hoffman and Joseph B. Kruskal. Integral boundary points of convex poly-

hedra. In 50 Years of Integer Programming 1958-2008 - From the Early Years to the

State-of-the-Art, pages 49–76. Springer, 2010.

[HOR13] Raymond Hemmecke, Shmuel Onn, and Lyubov Romanchuk. N -fold integer

programming in cubic time. Math. Program., 137(1-2):325–341, 2013.

[HS03] Raymond Hemmecke and Rüdiger Schultz. Decomposition of test sets in stochastic

integer programming. Math. Program., 94(2-3):323–341, 2003.

[JKL21] Klaus Jansen, Kim-Manuel Klein, and Alexandra Lassota. The double exponential

runtime is tight for 2-stage stochastic ILPs. In Proceedings of the 22nd International

Conference on Integer Programming and Combinatorial Optimization, volume

12707, pages 297–310. Springer, 2021.

[JKMR21] Klaus Jansen, Kim-Manuel Klein, Marten Maack, and Malin Rau. Empowering the

configuration-ip: new PTAS results for scheduling with setup times. Mathematical

Programming, pages 1–35, 2021.

[JLR20] Klaus Jansen, Alexandra Lassota, and Lars Rohwedder. Near-linear time algorithm

for n-fold ilps via color coding. SIAM J. Discret. Math., 34(4):2282–2299, 2020.

[JR19] Klaus Jansen and Lars Rohwedder. On integer programming and convolution. In

Proceedings of the 10th Innovations in Theoretical Computer Science Conference,

volume 124, pages 43:1–43:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2019.

[Kan87] Ravi Kannan. Minkowskiś convex body theorem and integer programming. Math.

Oper. Res., 12(3):415–440, 1987.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a

symposium on the Complexity of Computer Computations, pages 85–103, Boston,

MA, 1972. Plenum Press, New York.

[KK06] Jan Kára and Jan Kratochvíl. Fixed parameter tractability of independent set in

segment intersection graphs. In Proceedings of the Second International Workshop

on Parameterized and Exact Computation, volume 4169, pages 166–174. Springer,

2006.

[KK18] Dusan Knop and Martin Koutecký. Scheduling meets n-fold integer programming.

Journal of Scheduling, 21(5):493–503, 2018.

[KKL+19] Dusan Knop, Martin Koutecký, Asaf Levin, Matthias Mnich, and Shmuel Onn.

Multitype integer monoid optimization and applications. CoRR, abs/1909.07326,

2019.

[KKM20a] Dusan Knop, Martin Koutecký, and Matthias Mnich. Combinatorial n-fold integer

programming and applications. Math. Program., 184(1):1–34, 2020.

111

Bibliography

[KKM20b] Dusan Knop, Martin Koutecký, and Matthias Mnich. Voting and bribing in single-

exponential time. ACM Trans. Economics and Comput., 8(3):12:1–12:28, 2020.

[Kle22] Kim-Manuel Klein. About the complexity of two-stage stochastic IPs. Math.

Program., 192(1):319–337, 2022.

[KLO18] Martin Koutecký, Asaf Levin, and Shmuel Onn. A parameterized strongly polyno-

mial algorithm for block structured integer programs. In Proceedings of the 45th

International Colloquium on Automata, Languages, and Programming, volume

107, pages 85:1–85:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[KN90] Jan Kratochvíl and Jaroslav Nešetřil. Independent set and clique problems

intersection-defined classes of graphs. Commentationes Mathematicae Universi-

tatis Carolinae, 31(1):85–93, 1990.

[KN08] Seog-Jin Kim and Kittikorn Nakprasit. Coloring the complements of intersection

graphs of geometric figures. Discret. Math., 308(20):4589–4594, 2008.

[KPW20] Dusan Knop, Michał Pilipczuk, and Marcin Wrochna. Tight complexity lower

bounds for integer linear programming with few constraints. ACM Trans. Comput.

Theory, 12(3):19:1–19:19, 2020.

[KR22] Kim-Manuel Klein and Janina Reuter. Collapsing the tower - on the complexity

of multistage stochastic ips. In Proceedings of the 2022 Symposium on Discrete

Algorithms, pages 348–358. SIAM, 2022.

[LHOW08] Jesús A. De Loera, Raymond Hemmecke, Shmuel Onn, and Robert Weismantel.

N-fold integer programming. Discret. Optim., 5(2):231–241, 2008.

[LJ83] Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables.

Math. Oper. Res., 8(4):538–548, 1983.

[LNO02] Liane Lewin-Eytan, Joseph Naor, and Ariel Orda. Routing and admission control

in networks with advance reservations. In Proceedings of the 5th International

Workshop on Approximation Algorithms for Combinatorial Optimization, volume

2462, pages 215–228. Springer, 2002.

[LP09] László Lovász and Michael D Plummer. Matching theory, volume 367. American

Mathematical Soc., 2009.

[Mar05] Dániel Marx. Efficient approximation schemes for geometric problems? In Pro-

ceedings of the 13th Annual European Symposium on Algorithms, volume 3669,

pages 448–459. Springer, 2005.

[Mar06] Dániel Marx. Parameterized Complexity of Independence and Domination on

Geometric Graphs. In Proceedings of the Second International Workshop on Param-

eterized and Exact Computation, Second International Workshop, volume 4169,

pages 154–165. Springer, 2006.

112

Bibliography

[Meg84] Nimrod Megiddo. Linear programming in linear time when the dimension is fixed.

J. ACM, 31(1):114–127, 1984.

[Mit21] Joseph S. B. Mitchell. Approximating maximum independent set for rectangles

in the plane. In Proceedings of the 62nd Annual Symposium on Foundations of

Computer Science, pages 339–350. IEEE, 2021.

[NPT92] Carolyn Haibt Norton, Serge A. Plotkin, and Éva Tardos. Using separation algo-

rithms in fixed dimension. J. Algorithms, 13(1):79–98, 1992.

[Onn10a] Shmuel Onn. Nonlinear discrete optimization. Zurich Lectures in Advanced

Mathematics, European Mathematical Society, page 75, 2010.

[Onn10b] Shmuel Onn. Nonlinear Discrete Optimization: An Algorithmic Theory. European

Mathematical Society Publishing House, 2010.

[Pap81] Christos H. Papadimitriou. On the complexity of integer programming. J. ACM,

28(4):765–768, 1981.

[RRVS14] Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar.

A faster parameterized algorithm for treedepth. In Proceedings of the 41st Inter-

national Colloquium on Automata, Languages, and Programming, volume 8572,

pages 931–942. Springer, 2014.

[RS84] Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J. Comb.

Theory, Ser. B, 36(1):49–64, 1984.

[RS95] Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths

problem. J. Comb. Theory, Ser. B, 63(1):65–110, 1995.

[RWZ21] Miguel Romero, Marcin Wrochna, and Stanislav Zivný. Treewidth-pliability and

ptas for max-csps. In Proceedings of the 2021 Symposium on Discrete Algorithms,

pages 473–483. SIAM, 2021.

[Sch98] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley &

Sons, 1998.

[She91] James Shearer. A note on the independence number of triangle-free graphs, II.

Journal of Combinatorial Theory, Series B, 53(2):300–307, 1991.

[Ste13] Ernst Steinitz. Bedingt konvergente reihen und konvexe systeme. Journal der

Reine und Angewandte Mathematik, 143:128–175, 1913.

[Weg65] G Wegner. Über eine kombinatorisch-geometrische frage von hadwiger und de-

brunner. Israel Journal of mathematics, 3(4):187–198, 1965.

113

Jana Cslovjecsek

disopt.epfl.ch/jana-cslovjecsek

jana.cslovjecsek@ep�.ch
ORCID: 0000-0002-4214-8842

Discrete Optimization Group
EPFL MA B1 533
CH-1015 Lausanne

Research Interests

Sparse Integer Programming
Combinatorial and Discrete Optimization
Computational Geometry

Education

since 2018 PhD student
École Polytechnique Fédérale de Lausanne,
Supervisor: Friedrich Eisenbrand

2018 Master of Science in Mathematics
École Polytechnique Fédérale de Lausanne

Thesis Titel: Popularity meets Pareto optimality in two sided matchings
Supervisors: Friedrich Eisenbrand, Yuri Faenza
Written at Columbia University in the City of New York

2016 Bachelor of Science in Mathematics,
École Polytechnique Fédérale de Lausanne,

Thesis Titel: Knots and their relation to braids
Supervisor: Senja Dominique, Kathryn Hess Bellwald

Teaching

2016, 2020,
2021

Algèbre Linéaire Avancée II, Prof. Friedrich Eisenbrand, teaching assistant

2019, 2020 Discrete Optimization, Prof. Friedrich Eisenbrand/Prof. Adam Marcus, main assistant

2019, 2020 Graph Theory, Prof. Friedrich Eisenbrand/Dr. Riccardo Ma�ucci, main assistant

115

Languages

German, native
English, �uent
French, �uent

Publications and Work in Progress

[1] Marco Caoduro, Jana Cslovjecsek, Michal Pilipczuk, and Karol Wegrzycki. Independence
number of intersection graphs of axis-parallel segments. CoRR, abs/2205.15189, 2022.

[2] Jana Cslovjecsek, Friedrich Eisenbrand, Christoph Hunkenschröder, Lars Rohwedder,
and Robert Weismantel. Block-structured integer and linear programming in strongly
polynomial and near linear time. In Proceedings of the 2021 Symposium on Discrete Algo-
rithms, pages 1666–1681. SIAM, 2021.

[3] Jana Cslovjecsek, Friedrich Eisenbrand, Michal Pilipczuk, Moritz Venzin, and Robert
Weismantel. E�cient sequential and parallel algorithms for multistage stochastic integer
programming using proximity. In Proceedings of the 29th Annual European Symposium on
Algorithms, volume 204 of LIPIcs, pages 33:1–33:14, 2021.

[4] Jana Cslovjecsek, Friedrich Eisenbrand, Michal Pilipczuk, Moritz Venzin, and Robert
Weismantel. E�cient sequential and parallel algorithms for multistage stochastic integer
programming using proximity. In Proceedings of the 29th Annual European Symposium on
Algorithms, volume 204 of LIPIcs, pages 33:1–33:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

[5] Jana Cslovjecsek, Romanos-Diogenes Malikiosis, Márton Naszódi, and Matthias Schy-
mura. Computing the covering radius of a polytope with an application to lonely runners.
Comb., 42(4):463–490, 2022.

[6] Jana Cslovjecsek, Michal Pilipczuk, and Karol Wegrzycki. nε-approximation for indepen-
dent set of objects. (in write up), 2022.

[7] Jana Cslovjecsek, Michal Pilipczuk, and Karol Wegrzycki. Parameterized approximation
for maximum weight independent set of rectangles and segments. (in write up), 2022.

116

	Abstract (English/Deutsch)
	Contents
	Introduction
	Preliminaries
	Running Times, Parameters and Algorithms
	(Integer) Linear Programming
	Results in Graph Theory

	I Block Structured Integer Programming
	Treefold Integer Programming in Near Linear Time
	Introduction
	Solving the LP by Parametric Search and Parallelization
	Proximity
	A Dynamic Program
	Applications

	Algorithms for Multistage Stochastic Integer Programming
	Introduction
	Algorithms
	A stronger Klein Bound
	Proximity
	Solving the Linear Relaxation

	II Geometric Independent Sets
	Maximum Weight Independent Set of Rectangles and Segments
	Introduction
	Axis-Parallel Rectangles
	Axis-Parallel Segments

	Independence Number of Axis-Parallel Segments
	Introduction
	The Lower Bound: Proof of ply2:thm:lower bound
	The Upper Bound: Proof of ply2:thm:upperbound

	Bibliography
	Curriculum Vitae

