
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Geometric Considerations in Lattice Programming

Moritz Andreas VENZIN

Thèse n° 9934

2023

Présentée le 24 février 2023

Prof. T. Mountford, président du jury
Prof. F. Eisenbrand, directeur de thèse
Prof. D. Dadush, rapporteur
Prof. N. Stephens-Davidowitz, rapporteur
Prof. M. Kapralov, rapporteur

Faculté des sciences de base
Chaire d’optimisation discrète
Programme doctoral en mathématiques

Acknowledgements

This thesis would not have been possible without the support of many people. I would like to

thank everyone who contributed, be it either through interesting (mathematical) discussions,

encouragement or for non thesis-related activities.

First of all, I would like thank Fritz Eisenbrand. It is still a mystery to me why he accepted me

as a PhD student four years ago; his optimism and constant encouragement were invaluable.

He also introduced me to the interplay of lattices and convex bodies, the main theme of this

thesis. I would like to thank my co-authors Márton Naszódi and Thomas Rothvoss (and Fritz)

for the fruitful collaboration. My gratitude goes to my colleagues (and friends) from the DisOpt

lab. In no particular order, these are Manuel, Igor, Christoph, Jana, Jonas, Martina, Matthieu,

Eleonore, Lukas, Kim, Georg, Matthias, Adam, Alex, Fritz, Pauline and Jocelyne. They all

contributed to a nice and stimulating work environment here at EPFL and went out of their

way to help me in any way possible. They made sure I had enough fun on (and off) the job

so that I would not finish this thesis too early. I would also like to thank all my friends from

before my journey at EPFL and those I have made along the way. Boardgame nights, late night

poker matches, long hikes, climbing trips, incredible ski touring, or fun evenings with great

food, lots of laughs and interesting discussions; I have always had a fantastic time! Finally, a

huge thank you goes to my parents and my sisters. They have always been there for me, for

this I am very grateful.

iii

Abstract

In this thesis we consider the shortest and the closest vector problem in general norms ‖ ·‖K .

For lattices of rank n, we show that both of these problems admit an O(1)-approximation

in O(20.802n) time. This contrasts recent lower bounds showing that these problems cannot

be approximated within a factor 1+ε0 for some constant ε0 > 0 in better-than-2n time. Our

approach is based on the following geometric consideration: How many scaled ellipsoids are

needed to cover K , the unit norm ball of ‖ · ‖K , but, conversely, each such ellipsoid can be

covered by few translates of K . This provides a geometric framework allowing us to convert

algorithms for the shortest and closest vector problem in general norms to their counterparts

in the Euclidean norm.

Keywords: shortest vector problem, closest vector problem, lattice, algorithm, fine-grained

reduction, convex bodies, translative covering numbers

iv

Zusammenfassung

In dieser Arbeit betrachten wir das Problem des nächsten und des kürzesten Vektors in belie-

bigen Normen ‖ · ‖K . Für Gitter mit Rang n stellen wir einen O(1)-Approximationsalgorithmus

mit einer Laufzeit von 20.802n vor. Das ergänzt untere Laufzeitschranken, die beweisen, dass

es keinen (1+ε0)-Approximationsalgorithmus für ein konstantes ε0 > 0 mit einer Laufzeit

schneller als 2n für diese Probleme geben kann. Unser Ansatz basiert auf der folgenden geo-

metrischen Aufgabe: Wie viele Ellipsoide braucht es um K , die Einheitskugel bezüglich der

Norm ‖ ·‖K , zu überdecken, wobei jedes dieser Ellipsoide von möglichst wenigen Translaten

von K überdeckt werden kann. Diese geometrische Überlegung erlaubt es uns, die Proble-

me des kürzesten und nächsten Vektors in beliebigen Normen auf deren Gegenstück in der

Euklidischen Norm zu überführen.

Keywords: Problem des kürzesten Vektors, Problem des nächsten Vektors, Gitter, Algorithmus,

Reduktion, konvexe Körper, Überdeckungszahlen

v

Contents

Acknowledgements iii

Abstract iv

Introduction 1

1 Introduction to Lattice Problems 3

1.1 Lattices and Convex Bodies . 3

1.2 Computational Model . 5

1.3 Algorithms for Lattice Problems . 7

1.3.1 Approximations in Polynomial Time . 8

1.3.2 Exponential Time Algorithms . 10

1.4 Complexity of Lattice Problems . 11

2 Reductions across various Norms 13

2.1 Lattice Sparsification . 14

2.2 Self-Reduction of the Shortest Vector Problem in various Norms 16

2.3 Self-Reduction of the Closest Vector Problem in various Norms 21

2.4 Approximate Shortest Vectors in Any Norm Reduces to the Closest Vector Problem 24

3 Algorithms in any Norm 31

3.1 Sieving for Shortest and Closest Vectors . 32

3.1.1 Sieving for the Shortest Vector Problem . 38

3.1.2 Sieving for the Closest Vector Problem . 38

3.2 Approximating the Closest Vector by Sieving in any Norm 42

3.3 Lattice Sparsification and the Closest Vector Problem 46

4 Covering Numbers and Ellipsoids 51

4.1 Volume Estimates and Coverings . 51

4.2 Computing the Linear Transformation . 55

Bibliography 65

Curriculum Vitae 71

vii

Introduction

We consider the following two lattice problems on integer points and convex bodies. For

some centrally symmetric convex body K ⊆Rn centered at 0, determine whether it contains

a nonzero integer point. If K is not centered at 0, determine whether it contains an integer

point at all. These problems are illustrated in Figure 1.

0

Figure 1 – The shortest and closest vector problem.

These two simple-to-state problems go by the name of shortest and closest vector problem

and go back to the likes of Gauss, Hermite, Lagrange and Minkowski and are central in the

geometry of numbers (Min10). In more recent years, the shortest and closest vector problem

have also gained prominence in many areas at the intersection of mathematics and theoretical

computer science such as discrete optimization, integer programming, cryptanalysis and

cryptography to name a few. Indeed, many theoretical or practical problems can be naturally

formulated in this geometric setting. For instance if K is given by the intersection of halfspaces,

the closest vector problem is equivalent to the integer programming problem and figures

among Karp’s classic NP-complete problems (Kar72).

Much work has been devoted to the complexity of the shortest and closest vector problem. The

currently best algorithms for the shortest and closest vector problem have a time complexity of

2O(n) and nO(n) respectively (AKS01; Kan87). Only when K is an ellipsoid, the time complexity

of the closest vector problem has been brought down to singly-exponential in n, 2n in fact; it

now exactly matches the time complexity of the currently best known algorithm for the shortest

vector problem (MV10a; ADRS15). It is a major open question whether the running time of

the closest vector problem for general convex bodies can be improved to 2O(n), matching the

complexity of the shortest vector problem for general convex bodies. Such an exponential

running time is needed even for small approximation factors, e.g. we are allowed to slightly

scale the convex body K . In this setting, the currently fastest algorithms for both problems

1

Introduction

still take 2O(n) time, or 2n time for ellipsoids, and there is compelling evidence that no better-

than-2n-time algorithm for the shortest and closest vector problem should exist for general

convex bodies as simple as parallelepipeds. These lower bounds even hold for some small, but

constant, approximation factor (BGS17). On the other hand, if the convex body is an ellipsoid,

one can compute a constant approximation in 20.802n time, and it is not known how to extend

these strong lower bounds to this setting.

In this thesis, we investigate the relationship between convex bodies and the complexity of

lattice problems. Exploring the connection between high-dimensional convex geometry and

lattices, we obtain the currently fastest algorithms for the approximate shortest and closest

vector problem. In particular, we obtain a 20.802n time algorithm to compute a constant

approximation to the shortest and closest vector problem for any convex body, contrasting the

corresponding 2n time complexity-theoretic lower bounds. The underlying geometric ideas

related to translative covering numbers can be generalized to a reduction from the shortest

or closest vector problem to lattice problems in the Euclidean norm, i.e. the convex body K

being an ellipsoid, or any other symmetric convex body. These results indicate that already for

constant approximation factors, the specific choice of the convex body K for the shortest and

closest vector problem does not seem to determine their respective complexity.

Overview and summary of results

The first chapter of this thesis introduces the necessary background and we review in more

detail the complexity and algorithmic landscape of lattice problems. The technical details in

this part are treated informally; a certain familiarity with complexity theory, linear algebra and

probability theory is assumed.

The second chapter provides reductions among lattice problems in various norms. This

is achieved through geometric covering techniques such as translative covering numbers

tailored to our setting. This is based on joint works with Friedrich Eisenbrand and Thomas

Rothvoss, respectively (EV22; RV22).

The third chapter provides approximation algorithms for the shortest and closest vector

problem in the near-exact setting and for large approximation factors. This is achieved

through the use of geometric covering techniques as used in the second part, combined with

certain technical properties of the currently fastest algorithms for lattice algorithms in the

Euclidean norm, e.g. when the convex body is an ellipsoid. This is based on joint works with

Thomas Rothvoss and Márton Naszódi respectively (RV22; NV22).

The fourth and final chapter presents the geometric constructions as used in the previous two

chapters. This is based on joint work with Thomas Rothvoss (RV22).

2

1 Introduction to Lattice Problems

This introductory chapter is divided into four parts. Section 1.1 defines lattices, convex

bodies and two central computational problems on lattices and convex bodies treated in this

thesis. Section 1.2 presents the computational model. Section 1.3 provides an overview on

the algorithmic landscape of lattice problems. Section 1.4 reviews the complexity of lattice

problems.

1.1 Lattices and Convex Bodies

Given a matrix B ∈Rd×n of full column rank, the lattice L (B) spanned by B is defined as

L (B) := {
B · z |z ∈Zn}

.

The rank of the lattice is n, its (ambient) dimension equals d .

Equivalently, a lattice L is a discrete and additive sub-group of Rd . For any such lattice L ,

there exists a suitable choice of B ∈Rd×n such that L =L (B). This matrix B is refered to as

the basis of the lattice, its columns {b1, · · · ,bn} ⊆Rd are the generators of the basis and are said

to span the lattice. Such a lattice basis is not unique: whenever there exists a unimodular

matrix U ∈ Zn×n such that B1 = B2 ·U , the columns of B1 and B2 span the same lattice, see

Figure 1.1. It should be noted that d ≥ n follows from the requirement that B is of full column

rank, i.e. det(BT ·B) 6= 0. Equivalently, this also follows from the requirement that L is discrete.

Whenever the lattice is rational, i.e. L (B) ⊆Qd , the requirement that B ∈Qd×n is of full column

rank only guarantees that the rank of the lattice equals n (and is not strictly smaller than n)

and is redundant otherwise. Throughout this thesis, we will assume that lattices are given by

their basis. Whenever clear, we omit the reference to the basis and simply write L . Finally, we

will use bold-faced letters to denote lattice vectors and matrices involving lattice vectors to

help distinguish from arbitrary vectors and matrices. Consequently, the all zero vector will be

denoted by 0.

Given some lattice, we will study important parameters such as the length of the shortest

nonzero vector or the distance from a given target vector to the closest lattice point. Here,

3

Chapter 1. Introduction to Lattice Problems

0

b1

b2

b̃1

b̃2

u

v

K

2 ·K

Figure 1.1 – A lattice spanned by (b1,b2) or, equivalently, (b̃1, b̃2). The lattice vectors u and v
have distance 2 with respect to ‖ ·‖K .

"short" and "close" will be measured with respect to a given norm. It will be convenient to

define a norm through the use of (symmetric) convex bodies. A set K ⊆Rd is said to be a convex

body, if it is compact and if for any x, y ∈ K and λ ∈ [0,1], λ · x + (1−λ) · y belongs to K as well.

Furthermore, K is symmetric if −K = K . The norm ‖·‖K :Rd →R≥0 associated with the convex

body K is then defined as

‖x‖K := min{s |x ∈ s ·K }.

See Figure 1.1 for an illustration.

Conversely, any norm ‖ ·‖ :Rd →R≥0, i.e. a function verifying the triangle inequality (‖x + y‖ ≤
‖x‖+‖y‖), homogeneity (‖r · x‖ = |r | · ‖x‖) and positive-definiteness (‖x‖ = 0 iff x = 0), is

induced by the symmetric and convex body K := {x ∈ Rd |‖x‖ ≤ 1}. For this reason and to

keep the discussion as geometric as possible, we always denote norms by ‖ · ‖K , where K

is the convex body inducing the norm. For the important cases of `p norms defined by

‖x‖`p
:= (

∑d
i=1 |xi |p)1/p , we simply write ‖ ·‖p .

In this thesis we will mostly consider the following two related computational problems on

lattices. The first is the shortest vector problem, abbreviated by SVP.

Shortest Vector Problem (SVP)

INPUT: B ∈Qd×n and a convex body K ⊆Rd .

OUTPUT: A shortest, nonzero lattice vector of v ∈L (B) \ {0} with respect to ‖ ·‖K .

The closest vector problem (CVP) is then defined as an inhomogeneous version of the shortest

vector problem. Note that unlike for the shortest vector problem, we do not insist on a nonzero

lattice vector.

4

1.2. Computational Model

Closest Vector Problem (CVP)

INPUT: B ∈Qd×n , a target t ∈Qd and a convex body K ⊆Rd .

OUTPUT: A lattice vector v ∈L (B) with ‖t −v‖K = minw∈L (B) ‖t −w‖K .

Whenever we emphasize the norm ‖ ·‖K under consideration, we denote these problems by

SVPK and CVPK , respectively. See Figure 1.2 for an illustration.

0 t

Figure 1.2 – SVP∞ and CVP1. The respective lattices are 3-dimensional and their rank equals 2.

We often consider approximations to the shortest and closest vector problem.

We denote by γ-SVPK a γ-approximation to the shortest vector problem, where we want to

find v ∈ L with ‖v‖K ≤ γ ·λ(K)
1 (L), where we define λ(K)

1 (L) := minw∈L \{0} ‖w‖K . Similarly

for γ-CVPK , where we care to find a lattice vector v ∈L with ‖t −v‖ = γ ·distK (L , t), where

distK (L , t) := minw∈L (B) ‖t −w‖K .

1.2 Computational Model

Throughout this thesis, we will assume that the lattice L (B) is rational, i.e. B ∈Qd×n . The

encoding size of B, denoted by size(B), is defined as the number of bits required to store the

matrix B. For a single rational number represented as p
q , p, q ∈Z, the encoding size equals

1+ log2(|p|+1)+ log2(|q|+1). For the matrix B, we can upper bound size(B) by d ·n times the

largest encoding size of its entries. It is clear that any algorithm A taking B as input will take

time proportional to the size of B before outputting an answer. In all lattice algorithms that we

will encounter in this thesis, the running times will depend polynomially on the input size

of the respective basis. For this reason, we will omit the encoding size in all statements of

algorithms and in all proofs: whenever we say that algorithm A runs in time T, what we really

mean is that algorithm A runs in time T times some polynomial in the input size of A . When

stating running times and space requirements, we omit all lower order terms.

5

Chapter 1. Introduction to Lattice Problems

As discussed in the first section, every norm ‖ ·‖K :Rd →R≥0 is induced by some convex body

K =−K ⊆ Rd and vice versa. Whenever K is given explicitly, e.g., by a set of inequalities, as

an intersection of some `p norm ball with some hyperplane, etc., we can directly calculate

the norm ‖ ·‖K . Specifically, in time polynomial in the encoding size of these inequalities and

log(1/ε), we can calculate the norm up to an additive error of ε. To avoid these numerical

technicalities altogether and to ensure that our algorithms work in the most general setting

possible, we will assume that we are given oracle access to K . For any x ∈Rd and any ε> 0, we

are allowed to make queries to the oracle of the form: "is x ∈ K ?". In the weak membership

oracle model, the oracle returns


YES if x ∈ K \ε ·B d

2 := {x ∈Rd | x +ε ·B n
2 ⊆ K }

NO, if x ∉ K +ε ·B d
2

YES or NO, else.

In the weak separation oracle model, in addition to a NO output (when x ∉ K +ε ·B d
2), the

oracle returns a separating hyperplane. This is an inequality of the form aT · y ≤ γ such

that aT · z ≤ γ for all z ∈ K and aT · x > γ. In this model, we treat the encoding size of the

separating hyperplane as being of unit cost. This model is stronger than a weak membership

oracle, but, whenever s + r ·B d
2 ⊆ K ⊆ R ·B d

2 for some radii r,R ∈R>0 and s ∈Rd , one call to a

weak separation oracle for K can be evaluated using a polynomial (in d , log(R), log(r) and

log(1/ε)) number of calls to a weak membership oracle for K , meaning these two models

are polynomially equivalent, see (GLS88). For these reasons, we will assume that any convex

body K inducing the norm ‖ ·‖K is given by a weak separation oracle. This simplifies matters

as it avoids having to consider the input size of K and will be sufficient for all algorithmic

applications of convex bodies and norms in the subsequent chapters.

Finally, we discuss the role of randomness. Indeed, most algorithms and reductions presented

in this thesis rely on it. For instance, we need to sample uniformly random integers within

some range, or sample points distributed uniformly within some convex body C ⊆Rd , (DFK91).

These tasks can be accomplished in polynomial time, up to some error. The error is measured

by some statistical distance. If the distribution is p(x) for x ∈ X and we are able to sample

according to some other distribution p̃(·), one such statistical distance is given by the total

variation, dT V (p, p̃) :=∑
x∈X |p(x)− p̃(x)|. For our purposes, the support of X is finite. Hence,

when we say that we sample a point uniformly within a convex body C ⊆Rn , what we really

mean is that for some δ> 0, we sample a point distributed uniformly within C ∩δ ·Zn . This

also takes care of any issues with the encoding size of the sampled point. If the total variation

is small enough, the resulting distribution can be thought of as follows: we flip a (biased) coin,

if it lands heads, the distribution p̃(·) is distributed exactly as p(·). Otherwise, if it lands tails,

we cannot conclude anything. The probability that the coin lands heads, i.e. the distribution

p̃(·) being distributed according to p(x), increases as the total variation decreases. To justify

this intuition, we can write the distribution p̃(·) as a convex combination of the distribution

6

1.3. Algorithms for Lattice Problems

p(·) and some other probability distribution perror(·). For some λ̄ ∈ [0,1], we write

p̃(·) = λ̄ ·p(·)+ (1− λ̄) · p̃(·)− λ̄ ·p(·)
1− λ̄︸ ︷︷ ︸

:=perror(·)

.

Provided λ̄ ∈ [0,1] is such that perror(x) is positive for each x ∈ X , this decomposition is well

defined. In particular, for X finite,

λ̄= max

{
0,1− dT V (p̃, p)

minx∈X , p(x)6=0 p(x)

}
∈ [0,1]

is a valid choice. Here, λ̄ corresponds to the probability that the coin lands heads, i.e. that

the distribution p̃(·) is distributed exactly as p(·). For the tasks considered in this thesis, such

as sampling points distributed uniformly within some convex body or sampling uniformly

random integers within some range, the time to obtain a sample x ∼ X̃ that is distributed

according to p̃(·) that is close to the uniform distribution p(·), i.e. dT V (p̃, p) < ε, depends

on a polynomial of the relevant parameters and of the logarithm of 1/ε. The logarithmic

dependence on 1/ε proves to be crucial in the subsequent chapters, where p(·) is the uniform

distribution on {0, . . . ,2Ω(n)} or on C∩δ·Zn , for some convex body C ⊆Rn and δ=O(1/poly(n)).

In these cases, minx∈X , p(x) 6=0 p(x) is of the order 2−poly(n). Nonetheless, in time polynomial

in n, i.e. the logarithm of 1/2−poly(n), one can sample from a distribution that is arbitrarily

close to the actual (uniform) distribution. Hence, for small enough statistical distance, we can

use the respective random variables X and X̃ interchangeably. In particular, probabilistic argu-

ments such as the Union Bound or Markov’s or Chebychev’s Inequality valid for X , see (MU05),

also hold for X̃ . For this reason, in the remainder of this thesis, we leave out all technicalities

involving randomness and just assume that we have access to samples that are distributed

exactly according to the respective distributions. For a thorough overview on the source of

randomness and its application in algorithms and complexity theory, we refer to (AB09). For a

more hands-on approach, see (ABB+55).

1.3 Algorithms for Lattice Problems

Both SVP and CVP and their respective approximations have found considerable applications,

both in theory and practice. These include integer programming (Len83; Kan87), factoring

polynomials over the rationals (LLL82) and cryptanalysis (Odl90). Since the seminal works

of Lenstra-Lenstra-Lovász and Lenstra, a wide range of algorithmic techniques have been

developed for lattice problems. Informally, these approaches can be loosely grouped into

two categories. Polynomial time algorithms based on basis-reduction that achieve slightly

sub-exponential approximations to the closest and shortest vector problem, and exponential

time algorithms based on sieving or enumeration that yield exact or near-exact solutions to

the closest and shortest vector problem.

7

Chapter 1. Introduction to Lattice Problems

1.3.1 Approximations in Polynomial Time

The shortest vector problem is a classic problem in mathematics, with the likes of Gauss,

Lagrange and Hermite working on the topic. Motivated by applications in number theory such

as quadratic reciprocity and the four-square-theorem, their works gave efficient algorithms for

computing reasonably short lattice vectors assuming the rank of the lattice is fixed, (Eis10). Its

importance was further accentuated, when in the late nineteen hundreds, Minkowski created

the geometry of numbers, (Min10). However, it was only in 1982 when in their seminal work,

Lenstra, Lenstra and Lovász (LLL) gave the first polynomial time algorithm that computes an

approximation to the shortest vector in a lattice.

Theorem 1.3.1 (Lenstra-Lenstra-Lovász, (LLL82)). Given is some lattice L with basis B ∈Qd×n .

In polynomial time, one can find a basis B̃ ∈Qd×n such that

‖b̃∗
i+k‖2 ≥ 2−k‖b̃∗

i ‖2 i +k ≤ n, i ,k ≥ 0,

where b̃∗
i is the Gram-Schmidt orthogonalization of b̃i (with respect to the order of b̃1, · · · , b̃n).

Consequently, ‖b̃1‖2 is at most 2n/2 ·λ(2)
1 (L), where λ(2)

1 (L) := minw∈L \{0} ‖w‖2.

Since its appearance, there has been tremendous work to find new, polynomial time algo-

rithms à la LLL with an improved approximation to the shortest vector. The currently best

approximation guarantees achievable in polynomial time are of the order 2O(n loglog(n)/ log(n)),

see (Sch87; GN08).

These algorithms do also yield a 2O(n loglog(n)/ log(n))-approximation to the shortest vector prob-

lem with respect to any norm ‖ · ‖K : Rd → R≥0 and for any rank n lattice. To do so, we will

invoke John’s theorem, that asserts that up to a linear transformation and a multiplicative

factor of d +1, the convex body K can be approximated by an Euclidean ball.

Theorem 1.3.2 (John’s Ellipsoid, (Joh48)). Let K = −K ⊆ Rd be compact. There exists some

linear transformation A ⊆Rd×d such that

A ·B n
2 ⊆ K ⊆

p
d · A ·B n

2 .

Given a (weak) separation oracle for K and in time polynomial in d and log(R/r +1) (where

r ·B n
2 ⊆ K ⊆ R ·B n

2), (GLS88), one can compute a linear transformation Ã ∈Qd×d such that

Ã ·B n
2 ⊆ K ⊆ (d +1) · Ã ·B n

2 .

For the shortest vector problem, we can always restrict the convex body K ⊆ Rd defining

the norm to be n-dimensional by considering K ∩ span(b1, · · · ,bn) instead of K . Formally,

one can rotate L and K onto Rn × {0}d−n and then project onto the first n coordinates. We

then compute the linear transformation Ã guaranteed by Theorem 1.3.2. We then consider

the lattice L̃ :=L (Ã−1 ·B), compute an α-approximation ṽ ∈ L̃ to the shortest vector with

8

1.3. Algorithms for Lattice Problems

respect to the `2 norm and return v := Ã · ṽ. We claim that this is a (n +1) ·α-approximation to

the shortest vector in L with respect to ‖ ·‖K .

s

K
0 0

s̃

B n
2

(d +1) ·B n
2

Ã−1 ·K

Figure 1.3 – Left: An instance of the shortest vector problem with lattice L (B). Right: Applying
Ã−1 to K and L (B). The resulting norm is Euclidean up to a multiplicative factor of d +1.

It is easy to see that for any v ∈L (B) and any (invertible) linear transformation Ã:

v ∈L (B), ‖v‖K =β if and only if A−1 ·v =: ṽ ∈L (Ã−1 ·B), ‖ṽ‖Ã−1·K =β.

Hence, since B n
2 ⊆ Ã−1·K ⊆ (n+1)·B n

2 , meaning 1
n+1 ·‖·‖2 ≤ ‖·‖Ã−1·K ≤ ‖·‖2, anyα-approximation

with respect to the `2 norm is automatically a (n+1)·α-approximation with respect to ‖·‖Ã−1·K .

See Figure 1.3 for an illustration.

These approximation algorithms for the shortest vector problem also yield an approximation

to the closest vector problem.

Theorem 1.3.3 (Babai’s Nearest Plane Algorithm, (Bab86)). Given a lattice L with basis B ∈
Qd×n , a target t ∈Qd and in polynomial time (in n and d), one can find an α-approximation

to the closest vector problem (with respect to `2), where

α≤ n ·max
i≥ j

‖b∗
j ‖2

‖b∗
i ‖2

,

where (b∗
1 , . . . ,b∗

n) is the Gram-Schmidt orthogonalisation of (b1, . . . ,bn) := B.

When instantiated with the block reduced basis from Schnorr, (Sch87), Babai’s Nearest Plane

Algorithm achieves an approximation guarantee of α≤ 2O(n loglog(n)/ log(n)).

Using John’s Theorem as outlined just above, this directly yields a (d +1) ·2O(n loglog(n)/ log(n)) ap-

proximation to the closest vector problem. This can be improved to O(n) ·2O(n loglog(n)/ log(n)) =
Ω(2O(n loglog(n)/ log(n))). We first project the target t onto the span of the lattice (with respect

to ‖ ·‖K) and consider the resulting instance where the norm is induced by K ∩ span(L) and

where we have restricted to d = n by eliminating d −n zero coordinates as for the shortest

vector problem. This argument is sketched in the next section in Lemma 3.1.3.

9

Chapter 1. Introduction to Lattice Problems

1.3.2 Exponential Time Algorithms

Using John’s theorem, tools from the geometry of numbers and the polynomial-time LLL

basis-reduction algorithm, Lenstra gave the first algorithm for CVP∞, or equivalently, the

integer programming problem, (Len83). His algorithm ran in time 2n3
. This was improved to

nO(n) by Kannan (Kan87). He presented a different type of basis reduction that, in nO(n) time

and polynomial space, finds a shortest vector. Using techniques similar to those of Lenstra,

his approach then yields nO(n) time algorithms for the closest and shortest vector problem

in any norm. In terms of time and space complexity, the algorithm of Kannan essentially

remains the state-of-the-art for the shortest and closest vector problem. For the shortest

vector problem, it remains a wide open question whether there is a 2O(n)-time algorithm, that,

using polynomial space only, computes a polynomial approximation to the shortest vector.

On the other hand, it is a major open problem whether there is an no(n)-time algorithm for the

(exact) closest vector problem, even when allowing exponential space and preprocessing of

the lattice, (KPV12; DB15; HRS20).

The first single-exponential time algorithm for the shortest vector problem was given by Ajtai,

Kumar and Sivakumar, (AKS01) and it computes a shortest vector in 2O(n) time and space.

Their approach is based on randomized sieving where an exponential number of (random)

lattice vectors are generated and subtracted from each other to yield shorter and shorter lattice

vectors. They later extended this approach to (1+ε)-CVP with a time and space complexity

of 2O(1+1/ε)n , (AKS02). In a sequence of works, this approach was then extended to arbitrary

norms with a time complexity of O(1+1/ε)n , (BN09; EHN11; Dad12b).

Since the randomized sieving approach, two new singly-exponential time algorithms for lattice

problems in the `2 have emerged.

The first such algorithm is from Micciancio and Voulgaris (MV10a) and is based on the Voronoi

cell of the lattice. Their algorithm walks along the segment [0, t], always keeping track in

which lattice vector’s Voronoi cell it lies in, see Figure 1.4. Their algorithm is deterministic and

computes an exact closest vector in the `2 norm in 22n time and 2n space. Their algorithm

was also the first to solve SVP2 in deterministic, singly-exponential time (as there is a efficient

reduction from SVP to CVP, (GMSS99)). Their algorithm has also been instrumental to give

deterministic algorithms for SVP and (1+ε)-CVP in general norms, (DPV11; DK16).

The second such algorithm is based on Discrete Gaussian Sampling and solves SVP2 and

(exact) CVP2 in time and space 2n , (ADRS15; ADS15; AS18b). Their algorithm is randomized

and can be seen as a version of randomized sieving: instead of taking pairwise differences

between v1 and v2 when the resulting lattice vector v1 −v2 becomes shorter, they take the

average v1+v2
2 whenever this lies in the lattice (which happens whenever v1 and v2 lie in the

same coset modulo 2 ·L). In expectation, the resulting lattice vector decreases by a factor ofp
2. This approach yields the currently fastest algorithm for SVP2 and CVP2 and even gives

a 2n/2 algorithm for approximate decisional SVP2 (we need to decide whether λ1(L) ≤λ, or

λ1(L) >α ·λ for some approximation factor α≥ 1.)

10

1.4. Complexity of Lattice Problems

0

t 0

v1

v2

v1+v2
2

w1

w2

w1+w2
2

Figure 1.4 – Walking to t along the Voronoi cells and Discrete Gaussian Sampling

Both of these approaches are tailored to the Euclidean norm and do not carry over to any

other norm. For general norms, only the randomized sieving approach or the enumeration

technique (essentially resorting to the `2 norm) due to Dadush et al. (DPV11; DK16) seem

available. For both of these approaches, the constants in the exponents of the running

times are rather large. Even for some (large) constant approximation factors, these running

times are nowhere close to 2n , (AM18; Muk21). The only exception is again the `2 norm.

Here, a careful analysis of the randomized sieving approach reveals that a constant factor

approximation to the shortest vector problem in the `2 norm can be achieved in 20.802n

time, (MV10b; PS09; LWXZ11). This result will be central as a subroutine for our improved

algorithms in general norms, and we will review this approach in more detail in Chapter 3.

1.4 Complexity of Lattice Problems

The study of the complexity of SVP and CVP was initiated by van Emde Boas, (vEB81). He

showed that CVPp and SVP∞ are NP-hard and raised the question if the same could be

said about SVP2. While the hardness of the shortest vector problem remained open for

quite some time, subsequent work proved hardness of approximation for the closest vector

problem up to almost-polynomial factors assuming P 6= NP, (Aro95; DKRS03). Parallel to

these results, it was shown that certain cryptographic schemes can be based on the worst-

case hardness of (approximations of) certain lattice problems related to the shortest and

closest vector problem, (Ajt96; Reg09; Gen09), renewing the interest in the complexity of

lattice problems. Finally, SVP2 was shown to be NP-hard which was soon thereafter extended

to show hardness of approximation of SVP in any norm and for almost polynomial factors

assuming RQP 6= NP, (Ajt98; Mic01; Kho05; RR06; HR07).

Despite these impressive results on the hardness of approximations of lattice problems,

the currently best polynomial-time algorithms only achieve exponential approximation fac-

tors (LLL82; Bab86; Sch87). This huge gap is further highlighted by the fact that these prob-

lems are in CO-NP and CO-AM for approximation factors of
p

n and
√

n/log(n), respec-

tively (GG00; AR05; Pei08), and are not believed to be NP-hard to approximate within small

polynomial factors. On the other hand, the only algorithms for SVP and CVP that achieve

11

Chapter 1. Introduction to Lattice Problems

reasonable approximation factors do run in time 2Ω(n), (Kan87; AKS01; MV10a; ADRS15), and

it is not clear whether there are fundamentally faster algorithms (say, of the order 2
p

n or even

20.1n) or if this is the end of the road. Clearly, the assumption P 6= NP is too coarse as to give

evidence to such questions.

Addressing this issue, recent work has focused on the quantitative hardness of exact and

approximation for SVP and CVP, (BGS17; AS18a; ABGS21). This more fine-grained viewpoint

on the hardness of lattice problems is based on the (strong) exponential time hypothesis

(SETH), (IP01). Informally, the (strong) exponential time hypothesis states that for any ε> 0

there exists some k(ε) ∈N such that there is no algorithm that solves k(ε)-SAT in time 2(1−ε)n .

Assuming the SETH, they have shown that exact CVPp , for p 6= 0 (mod 2), and SVP∞ cannot

be solved in time 2(1−ε)n for lattices of rank n.

Assuming the stronger GAP-SETH hypothesis asserting that approximately deciding the va-

lidity of a k(ε)-SAT formula takes 2(1−ε)n time (we are allowed to violate a small fraction of

clauses), see (Din16; MR17), these lower bounds also hold for the shortest vector and even

for some small, but constant, approximation factors. In the setting of arbitrary norms, these

results can be restated as follows. For any ε> 0, there exists some constant γε > 1 only depend-

ing on ε, some norm ‖ ·‖K and some lattice L ⊆Qn of rank and dimension n such that there

is no 2(1−ε)n time algorithm that solves γε-CVPK or γε-SVPK on L .

While this strong lower bound holds for a wide range of norms, we emphasize that these

hardness results do not hold for any norm. For the important case of the `2 norm, incidentally

the only norm for which a (large) constant approximation to the shortest vector problem was

known in better-than-2n time, these strong lower bounds are not known to hold. Assuming

the GAP-SETH, we can only rule out 2o(n) time algorithms for c-approximate SVP2 and CVP2,

for c > 1 some small constant.

12

2 Reductions across various Norms

This chapter presents reductions among the shortest and closest vector problem in various

norms. Intuitively, a reduction from Problem A to Problem B is a procedure that provides a

method to solve Problem A by making queries to an oracle for Problem B . This is a central

theme in computational complexity. It gives a clean way to relate the hardness of different

computational problems. For instance, if the number of queries to the oracle is restricted to a

polynomial and Problem A is NP-complete, then this allows us to conclude that Problem B is

no easier than Problem A, meaning Problem B is at least NP-complete, possibly even harder.

However, such polynomial-time reductions say very little in the context of exponential-time

problems. Indeed, if there is, say, a reduction from k-SAT on n variables to CVP on a lattice

of rank n3, assuming the SETH, this only allows to rule out 2o(n1/3)-time algorithms for CVP.

Considering that the fastest approximation algorithms for CVP run in time 2O(n) (or even 2O(d)

in the near exact setting, for any norm other than the `2 norm), such a hardness result is

unsatisfactory. Hence, for fine-grained reductions involving lattice problems, the rank n and

the ambient dimension d of the resulting lattices needs to be controlled. Ideally, the rank and

dimension are preserved during the reduction (or only increase by some additive constant).

This is a big restriction, but in this setting, it makes sense to allow for the reduction to take

exponential time. Indeed, for lattice problems requiring 2Ω(n) time under various assumptions,

it certainly makes sense to allow for an extra factor of the order, say, 20.01n . In this chapter, we

present three such exponential time reductions.

Section 2.2 provides a reduction from Oε(α)-SVPQ to 2εd calls to an oracle for α-SVPK , assum-

ing Q and K follow a certain covering property, see Theorem 2.2.1. This reductions preserves

the rank and the dimension of the lattice. As a consequence, this yields a reduction from

approximate SVPq to approximate SVPp , for p ≤ q . For the case of `p norms, the underlying

geometric ideas related to coverings were first introduced in an algorithm in (EV22), and were

subsequently turned into a randomized reduction in (ACK+21).

Section 2.3 provides a reduction from Oε(α)-CVPQ to 2εd calls to an oracle for α-approximate

CVPK , assuming Q and K follow the covering property from the previous reduction in reverse,

see Theorem 2.3.1. The reduction is randomized and preserves the rank and the dimension of

the lattice. In particular, this yields a randomized reduction from approximate CVPp to CVPq ,

13

Chapter 2. Reductions across various Norms

for p ≤ q . The latter first appeared in (EV22) (somewhat implicitly for q > 2), and was later

turned into a deterministic reduction in (ACK+21).

Section 2.4 provides a reduction from Oε(α)-SVPQ to 2εn calls to an oracle for α-CVPK . This

reduction works for any pair of norms Q and K and consequently, the rank of the lattice is

preserved and the dimension d can be taken equal to the rank n, see Theorem 2.4.2. Using

the currently fastest algorithm for approximate CVP with respect to the `2 norm, see Theo-

rem 3.1.5, this reduction yields a 20.802n time algorithm for approximate SVP in any norm.

This reduction is from (RV22) and is based on the following covering argument. For any pair

of convex bodies, Q,K ⊆Rn , one can compute a linear transformation T :Rn →Rn , such that

Q can be covered by fewer than 2εn translates of T (K) and vice versa. The existence of such a

transformation follows from (regular) M-ellipsoids, a key concept in high-dimensional convex

geometry. The construction of such a linear transformation is deferred to Chapter 4.

The first and third reduction rely on lattice sparsification and are randomized. Given a lattice

L and some prime number p as a parameter, lattice sparsification deletes in an almost

uniform manner a 1−1/p fraction of the lattice. This technique was first developed by Khot to

show (quasi-) NP-hardness of approximating the shortest vector problem to within almost

polynomial factors, (Kho05), and has since become an indispensable tool in the study of lattice

problems. Section 2.1 provides a high-level overview on lattice sparsification.

2.1 Lattice Sparsification

Let L (B), B ∈Qd×n , be the lattice under consideration and fix some prime number p. We sam-

ple a nonzero vector a ∼ {0,1, . . . , p −1}n uniformly at random and we consider the sublattice

L ′ ⊆L given by

L ′ := {
B · z | z ∈Zn and aT · z = 0 (mod p)

}
.

This is illustrated in Figure 2.1, with a ∈Zn
p selected deterministically for aesthetic reasons.

0 0

Figure 2.1 – Left: L spanned by
(
3
1

)
and

(
0
3

)
. Right: L sparsified with a =

(
1
2

)
and p = 5.

Since p ·L ⊆ L ′, the sparsified lattice L ′ is of full rank n. Its basis can be computed in

polynomial time. Up to switching the roles of a1 with that of a nonzero ai , i ∈ {2, . . . ,n}, we

14

2.1. Lattice Sparsification

define

S :=



p −a2 −a3 · · · −an

1

1
. . .

1

 .

The basis of L ′ is then given by B ·S. Indeed, it easily checked that any z̄ ∈Zn with aT · z̄ = 0

(mod p) belongs to the lattice spanned by S, i.e. z̄ = S · y , y ∈Zn .

We can now discuss the effect of sparsification on L . For this, let v1,v2 be any two lattice

vectors with λ1,λ2 ∈ Zn as their respective coefficients, i.e. v1 = B ·λ1 and v2 = B ·λ2. Now,

unless v1 ∈ p ·L (or λ1 ∈ p ·Zn), the probability that v1 belongs to the sparsified sublattice L ′

equals exactly 1
p . Here, the probability is over the randomness of a ∼ {0,1, . . . , p−1}n . Whenever

λ2 is a multiple of λ1 (i.e. there is a line passing through 0, v1 and v2) or λ2 −λ1 ∈ p ·Zn , then

v1 ∈L ′ implies that v2 ∈L ′ and vice versa. For all other cases, the event that v1 belongs to

the sparsified lattice is independent of v2 belonging to the sparsified lattice. This is formalized

in the following theorem.

Theorem 2.1.1 ((Kho05; Ste16)). Let p be any prime, L any lattice and fix any lattice vectors

w,v1, . . . ,vN ∈L \ {0} such that vi ∉ w+p ·L and vi 6=α ·w, α ∈R for all i ∈ {1, . . . , N }. Then, in

polynomial time, one can sample a random sublattice p ·L ⊆L ′ ⊆L such that

Pr[w ∈L ′ and v1, . . . ,vN ∉L ′] ≥ 1

p
− N

p2 .

The vector 0 always belongs to the sparsified lattice L ′. This is problematic when working

with an oracle for CVP which then might, on any (sparsified) sublattice, have the option to

return 0. Indeed, this issue arises in Section 2.4 from this chapter. This can be remedied by

sampling a shifted sublattice. This shifted sublattice will be of the form u+L ′, where u ∈L

and L ′ ⊆L . We proceed similarly to the preceding sparsification. For some prime number

p, we sample some nonzero a ∼ {0,1, . . . , p −1}n and c ∼ {0,1, . . . , p −1}. We then consider the

following shifted lattice,

L ′ := {
B · z | z ∈Zn and aT · z = c (mod p)

}
.

This is illustrated in Figure 2.2. To see that this is indeed a shifted sublattice of L , we can

calculate z̄ ∈Zn
p with aT z̄ =−c (mod p). Since p is prime, this equation has a solution and it

can be found with the Extended Euclidean Algorithm. For u := B · z̄, the shifted sublattice is

then given by

u+{
B · z | z ∈Zn and aT · z = 0 (mod p)

}
.

Theorem 2.1.2 ((Ste16)). Let p be any prime, L be any lattice of rank n and fix any lattice

vectors w,v1,v2, . . . ,vN ∈L with vi ∉ w+p ·L \ {0}. Then, in polynomial time, one can sample

15

Chapter 2. Reductions across various Norms

0 0

Figure 2.2 – Left: L spanned by
(
3
1

)
and

(
0
3

)
. Right: L sparsified with a =

(
1
2

)
, c = 1 and p = 5.

a shifted sublattice of the form u+L ′ where p ·L ⊆L ′ ⊆L and u ∈L such that:

Pr
[
w ∈ u+L ′ and v1, . . . ,vN ∉ u+L ′]≥ 1

p
− N

p2 − N

pn−1 .

2.2 Self-Reduction of the Shortest Vector Problem in various Norms

We now outline our first geometric idea in the setting of an algorithm for the shortest vector

problem with respect to `∞. Let us denote by s a shortest lattice vector and assume the

full-rank lattice L ⊆ Rn is scaled such that ‖s‖∞ = 1. The Euclidean norm of s, ‖s‖2, is

then bounded by
p

n. Imagine now there is a procedure (for instance Theorem 3.1.1) that

allows us to sample distinct lattice vectors v1, . . . ,vN ∈ L that are short with respect to `2,

e.g. ‖vi‖2 ≤α ·pn for all i ∈ {1, . . . , N }.

(α ·pn) ·B n
2

vi

v j γ/2

Figure 2.3 – The difference v j −vi is a γ-approximation to SVP∞.

How many distinct lattice vectors {v1, . . . ,vN } are needed to guarantee that there are two of

them, vi 6= v j , with

‖v j −vi‖∞ ≤ γ?

Here, γ is the approximation guarantee we want to achieve, see Figure 2.3.

Suppose that N is strictly larger than the number of boxes of side length γ required to cover

α
p

n ·B n
2 . Then, by the pigeon-hole principle, there must exist two lattice vectors vi ,v j lying in

16

2.2. Self-Reduction of the Shortest Vector Problem in various Norms

the same box. Hence, their difference is a γ-approximation to the shortest vector (with respect

to `∞).

Thus, we are interested in the translative covering number N (K ,L), which is the least number

of translates of L that are required to cover K . Formally,

N (K ,L) := min

∣∣∣∣{S ⊆Rn | K ⊆ ⋃
t∈S

t +L

}∣∣∣∣ .

In the setting as described above, whenever the number of distinct lattice vectors exceeds

N (α
p

n ·B n
2 ,γ/2 ·B n∞), we are guaranteed that two of them must be closer than γ with respect

to `∞, hence their difference is a γ-approximation to the shortest vector. For γε some constant

(only depending on ε), N (α
p

n ·B n
2 , (α ·γε/2) ·B n∞) ≤ 2εn . Hence, generating 2εn +1 distinct

lattice vectors that are shorter than α
p

n ·B n
2 in the `2 norm, by taking pairwise differences,

we are guaranteed to find an (α ·γε)-approximation to the shortest vector with respect to `∞.

This can be generalized to arbitrary pairs of norms. An unfortunate limitation of this technique

is the necessity to distinguish between the rank n and dimension d of the lattice. We discuss

this at the end of this chapter.

Theorem 2.2.1. Let K ,Q ⊆ Rd two origin-symmetric convex bodies such that Q ⊆ K and

N (K ,γε ·Q) ≤ 2εd for some γε > 0. Then, there is a reduction from (2 ·γε ·α)-approximate

SVPQ on any rank n lattice to 2εd calls to an oracle for α-approximate SVPK on rank n lattices.

The reduction is randomized and requires polynomial space.

Before we begin with the proof of the theorem, we need a small geometric lemma.

Lemma 2.2.2. Let Q ⊆ K ⊆Rn be two origin-symmetric convex bodies such that N (K ,Q) ≤ M.

Then ‖ ·‖K ≤ ‖·‖Q ≤ M · ‖ · ‖K .

Proof. Since Q ⊆ K , the first inequality is clear. For the second inequality we will show that

K ⊆ M ·Q: Assume by contradiction that there exists x,−x ∈ K such that x,−x ∉ M ·Q. Let

t ∈ Rn be such that the length of (t +Q)∩ [−x, x] is maximal. By symmetry, this equals the

length of (−t +Q)∩ [−x, x], and thus, by convexity, we can assume that t = 0. Hence, the

maximal length that a translate of Q covers of the segment of [−x, x] equals |Q ∩ [−x, x]|. Since

x,−x ∉ M ·Q, it is impossible to cover the segment [−x, x] by fewer than M +1 translates of Q,

contradicting the fact that N (K ,Q) ≤ M .

Proof of Theorem 2.2.1. Let us denote by s a shortest lattice vector with respect to ‖ · ‖Q . We

will use the sparsification procedure from Theorem 2.1.1. Recall that given any lattice vectors

w,v1, . . . ,vN ∈L , this procedure returns a sublattice p ·L ⊆L ′ ⊆L such that

Pr[w ∈L ′ and v1, . . . ,vN ∉L ′] ≥ 1

p
− N

p2 ,

17

Chapter 2. Reductions across various Norms

unless vi ∈ w+p ·L , vi ∈ p ·L , or w =α ·vi , for some i ∈ {1, . . . , N } and α ∈R.

The full reduction is described in Figure 2.4. For simplicity, we prove correctness for a slightly

modified reduction requiring 2εd space. We fix a prime p with 22εd ≤ p ≤ 2 ·22εd and com-

pute a list L of lattice vectors in the following way: Using the sparsification procedure from

Theorem 2.1.1 and p, we sample a sublattice L ′ ⊆L and call the oracle for α-approximate

SVPK on L ′. We store the resulting lattice vector in the list L. We repeat, but we only ever

store the 2εd +1 shortest, pairwise distinct lattice vectors. Let us see how many iterations

are necessary as to guarantee that with high probability, our final list contains at least 2εd +1

distinct lattice vectors shorter than α · ‖s‖K (or one vector being a multiple of s.). At time 0,

i.e. when the list is empty, the probability that s is contained in L ′ ⊆L equals 2−εd . Hence,

conditional on s ∈L ′ and since Q ⊆ K , the oracle must return a lattice vector v shorter than

α · ‖s‖K . Let us now assume that our list consists of distinct lattice vectors {v1, . . . ,vm} shorter

than α · ‖s‖K . When we sparsify and call the SVPK oracle, by Theorem 2.1.1, the probability

that s ∈L ′ and {v1, . . . ,vm} ∉L ′ is at least 1
p − m

p2 , unless vi ∈ s+p ·L , vi ∈ p ·L or vi =α · s

(α ∈Z) for some i ∈ {1, . . . ,m}. Hence, to add a new vector to our list, we need to exclude these

three possibilities.

Clearly, v ∉ p ·L since otherwise ‖v‖K ≥ p · ‖v/p‖K ≥ p ·λ(K)
1 (L) Àα ·λ(K)

1 (L). Here, we are

assuming α= 2o(d) = o(p). This is without loss of generality. Whenever α= 2Ω(d loglog(d)/ log(d)),

we can use the LLL-algorithm and its variants running in polynomial time.

Whenever v is a multiple of s, we are done anyways: if v =β · ṽ, β ∈N, consider ṽ instead of v.

The scalar β can be found with the Extended Euclidean algorithm.

Finally, by Lemma 2.2.2, we can also exclude the possibility that v ∈ s+p ·L \ {0}. Indeed, by

the triangle inequality, if v := p ·u+s, u ∈L \ {0},

‖v‖K ≥ ‖p ·u‖K −‖s‖K

≥ (p
γ2
ε·M −1) · ‖s‖K .

In the last line, we have used that 1
γε
·‖·‖K ≤ ‖·‖Q ≤ (M ·γε)·‖·‖K , this follows from Lemma 2.2.2.

Hence, since p ≈ 22εd , M ≤ 2εd and γε some constant, assuming that α= 2o(n), such a vector

is too large and cannot be returned by an oracle for α-approximate SVPK .

It follows that at any given time, i.e. when the list L contains lattice vectors v1, . . . ,vm , the

probability that we can add a new and distinct (from vectors in L) lattice vector to the list L

(or find s) is lower bounded by 2−εd −m ·2−2εd . Hence, with probability 1−2−d and after 23εd

iterations, the list L contains 2εd +1 distinct lattice vectors of ‖ ·‖K -norm at most α · ‖s‖K or

contains (a multiple of) s. In the latter case we are done, so suppose not. Since

N (K ,γε ·Q) = N ((α · ‖s‖K) ·K , (α ·γε · ‖s‖K) ·Q) ≤ 2εd ,

there must be two lattice vectors vi ,v j ∈ L such that

vi −v j ∈ (2 ·γε ·α · ‖s‖K) ·Q ⊆ (2 ·γε ·α · ‖s‖Q) ·Q.

18

2.2. Self-Reduction of the Shortest Vector Problem in various Norms

This means that v := vi −v j is a (2 ·γε ·α)-approximation to s with respect to ‖ ·‖Q .

As described, this reduction takes time and space 23εd . To bring the latter down to a polynomial,

we sample two random numbers i , j ∈ {1,2, . . . ,23εd } and only store the lattice vectors returned

in the i th and j th iteration. The numbers i and j are not disclosed to the oracle. Hence, with

probability at least 2−6εd , we pick the right pair (or the right index if a multiple of s is sampled)

and this modified procedure succeeds. The overall probability of success can then be boosted

to 1−2−d by repeating 27εd times.

Input: L ⊆Rd , ε> 0, ‖ ·‖Q ,‖ ·‖K :Rn →R≥0

Initialize v as any nonzero lattice vector;

Compute a prime p ∈Nwith 22εd ≤ p ≤ 2 ·22εd ;

for ` ∈ {1, . . . ,27εd } do
for k ∈ {1, . . . ,23εd } do

Sample i , j ∈ {1,2, . . . ,2εd };
Sample sparsified lattice L ′ ⊆L by Theorem 2.1.1 and p ;
Set u the lattice vector returned by oracle for γ-SVPK on L ′ ;
if k = i or k = j then

vk ← u;
else

Delete u;
end

end
v ← argmink1,k2∈Z:v1/k1,v2/k2∈L {‖v‖Q ,‖vi /k1‖Q ,‖v j /k2‖Q ,‖vi −v j‖Q };

end

Output: v

Figure 2.4 – Reducing approximate SVPQ to approximate SVPK .

The following corollary of Theorem 2.4 first appeared in (ACK+21) and combined the geometric

covering ideas from (EV22) together with lattice sparsification.

Corollary 2.2.3 ((ACK+21)). For any p ≤ q, any lattice L ⊆Rd of rank n and any ε> 0, there

is a randomized, 2εd time reduction from (α ·γε)-SVPq to α-SVPp . γε is a constant depending

only on ε.

Proof. We use Theorem 2.4.2 with Q := B d
q and K := d 1/p−1/q ·B d

p . We need to check two

things:

B d
q ⊆ d 1/p−1/q ·B d

p ,

and

N (d 1/p−1/q ·B d
p , γε2 ·B d

q) ≤ 2εd ,

for some γε > 0 only depending on ε.

19

Chapter 2. Reductions across various Norms

The first inclusion follows from Hölder’s inequality. For 1 ≤ p ≤ q ≤+∞, we have that(
d∑

k=1
|xk |p

)1/p

≤
(

d∑
k=1

|xk |q
)1/q

·d 1/p−1/q .

Whenever q =∞, 1/q is defined as 0 and
(∑d

k=1 |xk |q
)1/q

:= maxk=1,...,d |xk |. It follows that

∀x ∈Rd : ‖x‖p ≤ ‖x‖q ·d 1/p−1/q .

Hence, for any point x ∈ B d
q , we have that ‖x‖p ≤ d 1/p−1/q and (2.2) follows.

For the estimate on the covering number, we simplify matters by only considering B∞
1 and

B n∞. Indeed, by Hölder’s inequality,

d−1/q ·B d
∞ ⊆ B d

q and d 1/p−1/q ·B d
p ⊆ d 1−1/q ·B d

1 . (2.1)

Hence,

N (d 1/p−1/q ·B d
p ,γ ·B d

q) ≤ N (d 1−1/p ·B d
1 ,γ ·d−1/q ·B d

∞) = N (d ·B d
1 ,γ ·B d

∞),

and it is sufficient to find some γε > 0 such that

N (d ·B d
1 , γε2 ·B d

∞) ≤ 2εd . (2.2)

There are several ways to show this. In (EV22), this was proven through volume estimates,

passing through the `2 using intrinsic volumes. For any ε> 0, there exists some γ̃ε/2 such that

N (d ·B d
1 , γ̃ε/2

2 ·
p

d ·B d
2), N (

p
dB n

2 , γ̃ε/2

2 ·B d
∞) ≤ 2(ε/2)d .

This then directly yields (2.2) with γε := γ̃2
ε/2/2, by observing that for any convex bodies A,B ,C ,

N (A,C) ≤ N (A,B) ·N (B ,C).

This was improved in (ACK+21) using lattice point counting. Their approach yields a much

better dependency of the approximation guarantee γα,ε with respect to ε, they show that γε
can be taken of the order of Õ(ε−1/p) for the reduction from (α ·γε)-SVPq to α-SVPp , p ≤ q , as

well as for the reduction from (α ·γε)-CVPp to α-CVPq , p ≤ q , in the next section.

For completeness and nostalgic reasons, we include an elementary proof of (2.2) using volume

estimates. It can be found in Lemma 4.1.2 in Chapter 4.

In view of the next reductions in this chapter, we would like to note two limitations of Theo-

rem 2.2.1:

First, the reduction is only efficient (with respect to 2O(n) time algorithms) when d = O(n).

20

2.3. Self-Reduction of the Closest Vector Problem in various Norms

This is since the translative covering number of two d-dimensional convex bodies typically

depends exponentially on the dimension d . When we replace K and Q by K ∩ span(L) and

Q ∩ span(L) respectively, it is not clear whether this can be made to depend on n instead

of d . Even for `p norm balls, we do not know whether, say, inequality (2.2) implies N (d ·
B d

1 ∩ span(L),αε ·B d∞ ∩ span(L)) ≤ 2εn . Hence, already for `p norms and d of the order

Ω(n · log(n)), this approach breaks down.

Second, the approximation guarantee of the reduction depends on the number γε depending

on ε> 0 for which N (K ,γε ·Q) ≤ 2εd and Q ⊆ K . For some pair of norms, γε depends on d and

cannot be considered a constant for some fixed ε> 0. This is the case for Q := B d
1 and K = B d

2 ,

i.e. we want to reduce approximate SVP1 to (approximate) SVP2 - Corollary 2.2.3 in reverse.

Since Vol(B d
2) ≥ 2d ·log(d)/2+O(n) ·Vol(B d

1), for any constant ε ∈ R>0, γε will have to be of order

Ω(
p

d), (Joh48). Incidentally, in this case, we can reduce approximate CVP1 to approximate

CVP2 in 2εd time.

2.3 Self-Reduction of the Closest Vector Problem in various Norms

Let us illustrate our reduction in the setting of the closest vector problem with respect to `1.

We denote by t the target and by c ∈L the closest lattice vector to t . Finally, suppose that the

full-rank lattice L ⊆Rn is scaled such that ‖t −c‖1 = 1.

t

ct̃

γp
n

t̃ + α·γp
n
·B n

2

t +B n
1

t +O(α ·γ) ·B n
1

c̃

Figure 2.5 – Approximate CVP1 through approximate CVP2.

Suppose we have an algorithm for α-approximate CVP2 at hand and we are so lucky as to

know some point t̃ ∈Rn such that ‖t̃ −c‖2 ≤ γ/
p

n. We claim that in this case, we can find an

approximation to c using the algorithm for approximate CVP2. Indeed, if we run the α-CVP2

algorithm with target t̃ , this will return some vector c̃ with

‖c̃− t̃‖2 ≤α ·dist`2 (t̃ ,L) ≤α ·γ/
p

n.

21

Chapter 2. Reductions across various Norms

Since 1p
n
·B n

2 ⊆ B n
1 , or, equivalently, ‖ ·‖1 ≤

p
n · ‖ · ‖2, it follows that

‖c̃− t̃‖1 ≤α ·γ and ‖t̃ −c‖1 ≤ γ.

We can now invoke the triangle inequality to infer that c̃ is a good to the closest vector.

‖t − c̃‖ ≤ ‖t −c‖1 +‖c− t̃‖1 +‖t̃ − c̃‖1 ≤ (1+γ+α ·γ) =O(α ·γ).

This is illustrated in Figure 2.5.

In the situation as just described, it turns out that we do not need much luck, only 2εn time.

For any ε> 0, there exists some γε > 0 such that

Vol(B n
1 + γεp

n
·B n

2) ≤ 2εn ·Vol(γεp
n
·B n

2). (2.3)

We prove this below. Hence, for a uniformly random t̃ ∼ B n
1 + γεp

n
·B n

2 , the probability that t̃ is

such that c ∈ t̃ + γεp
n
·B n

2 is exactly the following ratio

Vol(γεp
n
·B n

2)

Vol(B n
1 + γεp

n
·B n

2)
.

By the volume inequality (2.3), this is at least 2−εn . Hence, if we repeat the above procedure

for 2O(ε)n randomly selected targets t̃ ∼ t +B n
1 + γεp

n
·B n

2 , we will obtain an approximation to c,

the closest vector to t , with overwhelming probability.

This idea is generalised in the following theorem.

Theorem 2.3.1. Let Q,K ⊆Rd two symmetric convex bodies such that K ⊆Q and Vol(Q +γε ·
K) ≤ 2εd ·Vol(γε ·K) for some γε > 0. Then, for any ε > 0 and any lattice L ⊆ Rd , there is a

reduction from O(α ·γε)-approximate CVPQ on L to 2εd calls to an oracle for α-approximate

CVPK on L . The reduction is randomized and requires polynomial space.

Proof. We assume that the lattice is scaled so that ‖t −c‖Q , the distance of the target to its

closest lattice vector with respect to ‖ · ‖Q , is between 1−1/n and 1. Up to estimating this

distance by Babai’s Nearest Plane Algorithm and binary search, the number of possibilities for

this distance can be restricted to a polynomial and we can try out all of them.

We now describe an iteration of the reduction that succeeds with probability at least 2−εd .

We begin by sampling a uniformly random point t̃ ∼ t+Q+γε ·K . With probability at least 2−εd ,

the point t̃ is such that c ∈ t̃+γε ·K . To see this, we observe that this holds whenever t̃ ∈ c+γε ·K .

Since this point is distributed uniformly in t +Q +γε ·K and since c+γε ·K ⊆ t +Q +γε ·K , we

have that

Pr
t̃∼t+Q+γε·K

[t̃ ∈ c+γε ·K] = Vol(γε ·K)

Vol(Q +γε ·K)
≥ 2−εd .

22

2.3. Self-Reduction of the Closest Vector Problem in various Norms

Input: L ⊆Qn , ε> 0, γε > 0, ‖ ·‖Q ,‖ ·‖K :Rd →R≥0

Guess (enumerate) k such that (1+1/n)k−1 ≤ ‖t −c‖Q < (1+1/n)k ;
Initialize w to 0;

for ` ∈ {1, . . . ,d ·22εd } do
Sample t̃ ∼ t + (1+1/n)k ·Q +γε · (1+1/n)k ·K uniformly;
Set v the lattice vector returned by the oracle for α-CVPK on t̃

and L ;
if ‖t −v‖Q < ‖t −w‖Q then

w ← v;
else

Delete v;
end

end

Output: w

Figure 2.6 – Reducing approximate CVP to approximate CVP.

We condition on this happening, i.e. t̃ being such that c ∈ t̃ +γε ·K .

We now run the oracle for α-approximate CVPK with target t̃ and L . Denote by c̃ its output.

By the triangle inequality,

‖t − c̃‖Q ≤ ‖t −c‖Q +‖c− t̃‖Q +‖t̃ − c̃‖Q

(∗)≤ 1+‖c− t̃‖K +‖t̃ − c̃‖K
(∗∗)≤ 1+γε+α ·γε.

In (∗) we have used that ‖ ·‖Q ≤ ‖·‖K (since K ⊆Q, by assumption). In (∗∗), we have used that

t̃ ∈ c+γε ·K and hence, the α-approximate oracle for CVPK on target t̃ returns a lattice vector

of distance no larger than α ·γε.

Since ‖t −c‖Q ≥ 1−1/n, this vector c̃ is a 3 · (1−1/n)−1 · (α ·γ)-approximation to the closest

vector.

One such iteration succeeds whenever t̃ ∈ c+γε ·K . This happens with probability at least 2−εd .

To boost the overall probability of success to 1−2−d , we repeat this procedure d ·2εd times

from where we sampled the random point t̃ +Q +γε ·K . The space requirement is polynomial

since we only need to store the lattice vector that is currently the closest to the target t .

The following corollary is very similar to Corollary 2.2.3, but the role of p and q are reversed.

Corollary 2.3.2 ((EV22; ACK+21)). For any p ≤ q, any lattice L ⊆Rd of rank n and any ε> 0,

there is a randomized reduction from (α ·γε)-CVPp on L to 2εd calls to an oracle for α-CVPq

on L . The number γε only depends on ε.

23

Chapter 2. Reductions across various Norms

Proof. For the correctness, we use Theorem 2.3.1 with Q := B d
p and K := d−1/p+1/q ·B d

q . By

Hölder’s inequality, see Inequality 2.1 from the previous section, it follows that K ⊆Q.

To sample the target t̃ , we proceed slightly different (though we still assume that (1−1/n) ≤
‖t −c‖Q ≤ 1). We set γε =Ω(ε−2) from Lemma 4.1.2. We sample a random point t̃ ∼ d 1−1/p ·
B d

1 +γε ·d−1/p ·B d∞. We claim that with probability at least 2−εd , this point t̃ is such that c ∈ t̃+K .

Indeed, by Hölder’s inequality, we have the following inclusions,

B d
p ⊆ d 1−1/p ·B d

1 and d−1/p ·B d
∞ ⊆ d−1/p+1/q ·B d

q .

Hence, if the vector t̃ ∼ t +d 1−1/p ·B n
1 +γε ·d−1/p ·B d∞ lands inside c+γε ·d−1/p ·B∞, then

t̃ ∈ c+γε ·d−1/p+1/q ·B d
q as well. By Lemma 4.1.2,

Vol(d 1−1/p ·B d
1 +γε ·d−1/p ·B d

∞) ≤ 2εn ·Vol(γε ·d−1/p ·B d
∞),

and the claim follows.

2.4 Approximate Shortest Vectors in Any Norm Reduces to the Clos-

est Vector Problem

We now show how for any pair of norms ‖ · ‖Q and ‖ · ‖K , we can unconditionally reduce

approximate SVPQ to approximate CVPK in 2εn time on any rank n lattice. This improves on

the previous self-reductions as it removes the exponential dependence on d , the dimension of

the lattice, and applies to any norm, not just certain pairs of `p norms. The drawback is that

we reduce from the shortest vector problem to the closest vector problem, a problem that is

potentially substantially harder than the shortest vector problem.

Our main idea will again involve coverings. As we will show, for any two convex bodies

Q,K ⊆ Rn and any ε > 0, we can compute a linear transformation Tε : Rn → Rn such that Q

can be covered by fewer than 2εn translates of cε ·T (K), and, conversely, Tε(K) can be covered

by fewer than 2εn translates of cε ·Q. Here, cε is a constant only depending on ε but not on n.

The respective coverings of Q by translates of cε ·T (K) and of T (K) by translates of cε ·Q are

constructive and can be computed with high probability in 2εn time. The exact properties of

these coverings are made precise in Theorem 2.4.1 below. We first illustrate how we use this

construction to reduce approximate SVPQ to 2εn calls to an oracle for approximate CVP2.

We assume that the lattice is scaled such that s, the shortest lattice vector with respect to ‖ ·‖Q ,

is of norm 1. For a given ε> 0, we compute the linear transformation Tε(·) with the properties

as described above, i.e. with K = B n
2 . Up to applying the linear transformation T −1

ε (·) to Q

and L , we might as well assume that Tε(·) = In , the identity. Now, compute a covering of Q

by 2εn translates of cε ·B n
2 with the properties as above. One of the 2εn translates of cε ·B n

2

covering Q must hold s. Hence, assume that s ∈ t + cε ·B n
2 , or, in other words, ‖t −s‖2 ≤ cε.

24

2.4. Approximate Shortest Vectors in Any Norm Reduces to the Closest Vector Problem

0

t

viv j

s

Q

(α · c2
ε) ·Q

cε ·B n
2

(α · cε) ·B n
2

Figure 2.7 – The difference v j −vi is a (α ·2 · c2
ε)-approximation to the shortest vector.

We can now use the oracle for α-approximate CVPK with target t in combination with lattice

sparsification to generate distinct vectors v1, . . . ,vN ∈ L such that ‖t − vi‖2 ≤ α · ‖t − s‖2.

Specifically, when we already have generated (distinct) lattice vectors v1, . . . ,vm , we sparsify the

lattice using the procedure from Theorem 2.1.2 with p ≈ 2εn and run the oracle for approximate

CVP2 on the resulting shifted sublattice. The reason for not applying the simpler sparsification

procedure from Theorem 2.1.1 is that, if 0 ∈ t +α ·cε ·B n
2 , the oracle can always return 0. But in

our setting and with probability roughly 2−Ω(ε)n , s ∈L ′ but v1, . . . ,vm ∉L ′. In this case, the

oracle must return a lattice vector inside t+α·cε ·B n
2 that is different from v1, . . . ,vm . Repeating

sufficiently many times, we can generate N = 2εn +1 distinct lattice vectors inside t +α ·cε ·B n
2

(unless we find s). Since N (α·cε ·B n
2 , (α·c2

ε)·K) ≤ 2εn , there must be two distinct lattice vectors,

vi and v j say, such that their pairwise difference must lie in some translate of (α ·c2
ε) ·K . Hence

their pairwise difference v j −vi is a (α ·2 ·c2
ε)-approximation to the shortest vector with respect

to ‖ ·‖K . See Figure 2.7 for an illustration.

We now state our main geometric construction.

Theorem 2.4.1. For any ε> 0, and for any two symmetric convex bodies Q,K ⊆Rn , there exists

an invertible linear transformation Tε(·) :Rn →Rn and some constant cε > 0 only depending

on ε such that

Vol(Q + cε ·Tε(K)) ≤ 2εn ·Vol(cε ·Tε(K)) (2.4)

and

Vol(Tε(K)+ cε ·Q) ≤ 2εn ·Vol(cε ·Q). (2.5)

In particular, N (Q,cε ·Tε(K)), N (Tε(K),cε ·Q) ≤ 2εn .

The linear transformation Tε(·) can be computed in nO(log(n)) time.

We defer the proof of Theorem 2.4.1 to Chapter 4.

25

Chapter 2. Reductions across various Norms

We note that the volume estimate Vol(Q + cεTε(K)) ≤ 2εn ·Vol(cε ·T (K)) in (2.4) implies that

N (Q,cε ·Tε(K)) ≤ 2εn . It makes the covering of Tε(K) by translates of B n
2 constructive. Indeed,

any point inside Q will be covered with probability at least 2−εn if we sample a random point

within Q +cε ·Tε(K) and place a copy of cε ·Tε(K) around it. Repeating this for O(n2 ·2εn) itera-

tions yields, with high probability, a full covering of Q by translates of cε ·Tε(K), see (Nas14).

Similarly for the volume inequality (2.5). For convenience, we prove this in Lemma 4.1.1 in the

last chapter.

We can now leverage Theorem 2.4.1 to show that for any two norms ‖ ·‖K ,‖ ·‖Q and any rank n

lattice, approximate SVPQ reduces to an oracle for approximate CVPK .

Theorem 2.4.2. Let ‖ ·‖K :Rd →R≥0,‖ ·‖Q :Rn →R≥0 be any two norms. For any ε> 0, there is

a constant γε, such that there is a reduction from (α ·γε)-approximate SVPK on any lattice of

rank n to 2εn calls to an oracle for α-approximate CVPQ on lattices of rank and dimension n.

The reduction is randomized and requires polynomial space.

The reduction is formally described in Figure 2.8.

Input: L ⊆Qn , ε> 0, ‖ ·‖Q ,‖ ·‖K :Rd →R≥0

Guess (enumerate) k such that (1+1/n)k−1 ≤λ(Q)
1 (L) < (1+1/n)k ;

Compute Tε(·) from Theorem 2.4.1;
Initialize w as any nonzero lattice vector;
Compute a prime p ∈Nwith 22εn ≤ p ≤ 2 ·22εn ;
for ` ∈ {1, . . . ,28εn} do

Sample t ∼ (1+1/n)k · (Q + cε ·Tε(K)) uniformly;
Sample i , j ∈ {1,2, . . . ,23εn};
for k ∈ {1, . . . ,23εn} do

Sample a shifted sublattice u+L ′ ⊆L by Theorem 2.1.2 and p;
Set v the lattice vector returned by oracle for α-CVPK on

T −1
ε (L ′) and T −1

ε (t −u) ;
if k = i or k = j then

vk ← Tε(v)+u;
else

Delete v;
end

end
w ← argmin{‖w‖Q ,‖vi −v j‖Q ,‖vi‖Q ,‖v j‖Q };
Delete vi and v j ;

end

Output: w

Figure 2.8 – Reducing approximate SVPQ to approximate CVPK .

Before embarking on the proof, we need two simple lemmas.

26

2.4. Approximate Shortest Vectors in Any Norm Reduces to the Closest Vector Problem

Lemma 2.4.3. Let T : Rn → Rn any (invertible) linear transformation, L some lattice and

x ∈ Rn some shift. Any oracle for α-approximate CVPK yields an oracle for α-approximate

CVPT (K) on x +L .

Proof. To solve an instance of the α-approximate CVPT (K) on the shifted lattice x +L with

target t , it is sufficient to solve α-approximate CVPT (K) on the shifted lattice L . Indeed, v+x

is a solution to α-approximate CVPT (K) on the shifted lattice x +L , where v ∈L is a solution

to α-approximate CVPT (K) on L with target t −x.

To solveα-approximate CVPT (K) with target t and lattice L using an oracle forα-approximate

CVPK , we proceed as follows. We run the oracle for α-CVPK with target T −1(t) and lattice

T −1(L) and obtain the lattice vector v. We then output T (v). We claim that this is a α-

approximation to the closest lattice vector c (with respect to ‖ ·‖T (K)) to t . Indeed, by linearity

of T (·),

∀w ∈L : ‖t −w‖T (K) = ‖T −1(t)−T −1(w)‖K .

Hence, for any vector v ∈ T −1(L) with ‖T −1(t)−v‖K ≤α · ‖T −1(t)−T −1(c)‖K , we must have

that ‖t −T (v)‖T (K) ≤α · ‖t −c‖T (K). Hence T (v) is an α-approximation to CVPT (K).

The following is a slight generalization of Lemma 2.2.2.

Lemma 2.4.4. Let L,T ⊆Rn symmetric and convex bodies such that N (L,β ·T), N (T,β ·L) ≤ M.

Then,
1

M ·β · ‖ · ‖T ≤ ‖·‖L ≤ (M ·β) · ‖ · ‖T .

Proof. We will show that 1
M ·β ·T ⊆ L ⊆ (M ·β) ·T , this implies the claim. To show that L ⊆

(M ·β)·T we proceed by contradiction: Assume there exists x,−x ∈ L such that x,−x ∉ (M ·β)·T .

Let t ∈ Rn be such that the length of (t +T)∩ [−x, x] is maximal. By symmetry, this equals

the length of (−t +T)∩ [−x, x], and thus, by convexity, we can assume that t = 0. Hence, the

maximal length that a translate of T covers of the segment of [−x, x] equals |T ∩ [−x, x]|. Since

x,−x ∉ (M ·β) ·T , it is impossible to cover the segment [−x, x] by fewer than M +1 translates

of β ·T , contradicting the fact that N (L,β ·T) ≤ M . By exchanging the role of L and T in the

argument above, it follows that T ⊆ (M ·β) ·L and we are done.

Proof of Theorem 2.4.2. For convenience, we may assume that the lattice is preprocessed such

that the lattice is of full rank (for instance by restricting to span(L) and rotating) and such

that the length of the shortest vector with respect to ‖ · ‖Q , s, has norm between (1+1/n)−1

and 1. We now prove the correctness of the reduction as described in Figure 2.7.

Given ε> 0, we find a prime p ∈ [22εn ,2 ·22εn] and compute the invertible linear transforma-

tions Tε(·) guaranteed by Theorem 2.4.1. We now describe one iteration of the reduction that

will succeed with probability 2−O(ε)n .

27

Chapter 2. Reductions across various Norms

We first sample a point t ∼ Q + cε ·Tε(K) uniformly at random. Since Vol(Q + cε ·Tε(K)) ≤
2εn ·Vol(cε ·Tε(K)), with probability at least 2−εn , t is such that s ∈ t +cε ·Tε(K). We condition

on this event. We are now going to "collect" different lattice vectors from t +α · cε ·Tε(K)

using an α-approximate oracle for CVPTε(K) on shifted sublattices of L . Such an oracle can

be constructed from the oracle for α-approximate CVPK , see Lemma 2.4.3. To do so, we will

use the sparsification procedure from Theorem 2.1.2 instantiated with the lattice L and the

prime number p. Recall that given any lattice vectors w,v1, . . . ,vN ∈L , this procedure returns

a shifted sublattice u+L ′, u,L ′ ⊆L such that

Pr[w ∈ u+L ′ and v1, . . . ,vN ∉ u+L ′] ≥ 1

p
− N

p2 − N

pn−1 ,

unless w ∈ vi+p·L for some i ∈ {1, . . . , N }. Using this procedure with w := s and by Lemma 2.4.4,

any such lattice vector vi is very far from t . Indeed, by the triangle inequality:

‖t −vi‖Tε(K) = ‖s−vi − (s− t)‖Tε(K)

≥ ‖s−vi‖Tε(K) −‖s− t‖Tε(K)

≥ p · ‖s−vi

p
‖Tε(K) − cε

(∗)≥ p ·λ(Tε(K))
1 (L)− cε

(∗∗)≥ p · (1+1/n)−1

2εn · cε
− cε.

In (∗) we have used that if s ∈ vi +p ·L , s−vi
p ∈L and is of ‖ ·‖K -norm at least 1.

In (∗∗) we use Lemma 2.4.4 to conclude that λ(Tε(K))
1 (L) ≥λ(Q)

1 (L)/(2εn · cε). Since we scaled

the lattice such that (1+1/n)−1 ≤ ‖s‖Q ≤ 1, the inequality follows.

Hence, by our choice of p and since cε is some constant, any lattice vector v with v ∈ s+p ·L
has ‖ · ‖Tε(K)-norm at least O(2εn). It follows that whenever s ∈ u+L ′, where u+L ′ is the

sparsified sublattice from Theorem 2.1.2, theα-approximate oracle for CVPTε(K) cannot return

a lattice vector v ∈ s+L ′. Here, we are assuming that α= 2o(n), otherwise, we could have used

the (polynomial-time) Nearest Plane Algorithm due to Babai in the first place. Thus, whenever

we have a list {v1, . . . ,vm} of distinct lattice vectors inside t +cε ·Tε(K), m ≤ 2εn +1, and sparsify

the lattice to obtain L ′, with probability at leastΩ(2−2εn), s ∈L ′ and v1, . . . ,vm ∉L ′. Hence,

running the α-approximate oracle for CVPTε(K) on u+L ′ yields a lattice vector vm+1 distinct

from v1, . . . ,vm with ‖t −vm+1‖Tε(K) ≤α · cε. By Chebychev’s inequality and with probability at

least 1/2, after 23εn iterations, the final list contains at least 2εn +1 distinct lattice vectors (or s)

inside t + cε ·Tε(K). We condition on this event as well.

If the final list contains s we are done. Assume not. Since N (cε ·Tε(K),c2
ε ·Q) ≤ 2εn , there are

two lattice vectors in the list, vi and v j say, such that they lie in the same translated copy of

α · c2
ε ·Q. Hence

vi −v j ∈ 2 ·α · c2
ε ·Q.

28

2.4. Approximate Shortest Vectors in Any Norm Reduces to the Closest Vector Problem

Since ‖s‖Q ≥ (1+1/n)−1 and setting γε = (1+1/n) ·2 · c2
ε , the lattice vector v1 −v2 is an (α ·γε)-

approximation to the shortest vector with respect to ‖ ·‖Q .

As described, one such an iteration requires space 2εn +1 and succeeds with constant proba-

bility (assuming t is such that s ∈ t + cε ·Tε(K)). To bring this down to polynomial space, we

guess the indices i , j ∈ {1, . . . ,23εn} for which vi −v j ∈ 2 ·α ·c2
ε ·Q (or for which vi or v j equals s)

and only store the two lattice vectors that we obtain at iterations i and j , respectively. This

succeeds with probability Ω(2−6εn). Hence, the resulting reduction, i.e. one iteration of the

outer for loop in Figure 2.7, succeeds with probability at leastΩ(2−7εn). Repeating 28εn times

boosts the probability of success to 1−2−n .

29

3 Algorithms in any Norm

This chapter presents approximation algorithms for the shortest and closest vector problem in

any norm. These algorithms combine geometric properties of convex bodies with the original

randomized sieving approach due to Ajtai, Kumar and Sivakumar (AKS01; AKS02) and with the

lattice sparsification and enumeration approach due to Dadush and Kun (DK16), respectively.

Section 3.1 provides a high-level overview on the randomized sieving approach for the shortest

and closest vector problem due to Ajtai et al. (AKS01; AKS02). Despite the emergence of newer

algorithmic techniques such as Discrete Gaussian Sampling (which can be seen as a version of

sieving) and enumeration through the Voronoi Cell that result in faster algorithms for SVP and

CVP in the `2 norm, the randomized sieving approach has remained very relevant. Indeed, for

cryptanalytic purposes, it is often sufficient to compute a (small) polynomial approximation to

the shortest or closest vector problem. In this setting, randomized sieving is the only approach

that provably achieves a constant factor approximation in 20.802n time. Any other algorithm

requires at least 2n time. Using block-wise reduction, randomized sieving can be leveraged to

an nc -approximation in 20.802/(c+1)n time, (GN08; ALNSD20; ALS21). Furthermore, random-

ized sieving is believed to perform much better. Under a believable (geometric) conjecture,

certain heuristics (e.g. unproven assumptions) on the behaviour of the algorithm for random

instances and the use of quantum computers, the running time of randomized sieving is

estimated to be of the order of 20.26n , (LMvdP15). This optimism is shared by cryptographers

(in their case, pessimism, rather), and the key-sizes of proposed post-quantum cryptographic

protocols are set in such a way as to achieve the desired security against lattice attacks based

on randomized sieving, see for instance (ABD+; DKL+). The main technical properties of the

randomized sieving procedure are resumed in Theorem 3.1.1. Following (EV22), Theorem 3.1.5

illustrates how this yields a constant factor approximation to the closest vector problem in the

`2 norm in 20.802n time.

Section 3.2 is based on (RV22) and provides a partial converse to the reduction from approx-

imate SVPQ to approximate CVPK . In Theorem 3.2.1 it is shown how 2εn calls to a sieving

algorithm for the shortest vector problem with respect to ‖ · ‖K yields a constant factor ap-

proximation to the closest vector problem in ‖ ·‖K , for any pair of norms ‖ ·‖Q and ‖ ·‖K . This

is achieved by combining the geometric considerations from the previous chapter with a

31

Chapter 3. Algorithms in any Norm

somewhat technical property of the randomized sieving property as outlined in Theorem 3.1.1.

When instantiated with K = B n
2 , this yields a 20.802n time algorithm to compute a constant

factor approximation to the shortest and closest vector problem in any norm.

Section 3.3 is concerned with the near-exact closest vector problem in any norm. Currently,

the state-of-the-art algorithm for this problem from (DK16) yields a (1+ε)-approximation to

the closest vector problem in any norm in O(1+1/ε)n time and 2n space. Their algorithm is

deterministic and is based on lattice sparsification combined with geometric considerations

quite similar to those of this thesis. But for various norms, this can be improved. It was

first realized by Eisenbrand, Hähnle and Niemeier (EHN11) that O(log(2+1/ε))d calls to an

oracle for 2-approximate CVP∞ yields a (1+ε)-approximation to CVP∞. This was achieved by

decomposing the cube B d∞ into O(log(2+1/ε))d parallelepipeds, each of which, when scaled

by a factor 2 around their respective centers, is contained inside (1+ε) ·K . This section is

based on (NV22), where this technique was extended to smooth norms, in particular, (sections

of) `p norms. For p ≥ 2, this yields an algorithm for (1+ ε)-CVPp with a running time of

O(1+1/ε)n/2. The main geometric observation could also be directly incorporated in the

algorithm of Dadush and Kun - essentially only changing a single parameter. This tweaked

algorithm is described in Theorem 3.3.6.

3.1 Sieving for Shortest and Closest Vectors

Let us describe the randomized list-sieving approach of (MV10b) for the case of the shortest

vector problem to a level that is necessary to understand our main result, Theorem 3.1.1. The

sampling procedure described in this theorem is implicit in all sieving algorithms for the

shortest vector problem. Our exposition follows closely the one given in (PS09).

Suppose we are given an instance of SVPK with lattice L (B) with d = n. Let us denote by

s ∈L some special lattice vector. Typically, s is a shortest nonzero lattice vector of L with

respect to ‖ ·‖K , i.e. ‖s‖K =λ(K)
1 (L), but it does not need to be. Assume that d = n (which can

be achieved by intersecting K with span(L)) and that the lattice is scaled such that

1−1/n ≤ ‖s‖K ≤ 1.

This assumes we have a bound on the length of s. When s is the shortest or closest vector, by

the LLL-algorithm or Babai’s Nearest Plane Algorithm, this is without loss of generality since

one can enumerate over a polynomial number of possibilities.

The list-sieve algorithm has two stages. In the first stage, the algorithm constructs a list L of

random lattice vectors. This list is then passed to the second stage of the algorithm.

32

3.1. Sieving for Shortest and Closest Vectors

The second stage of the algorithm proceeds by sampling points y1, . . . , yN independently from

O(1) ·K .

It then transforms these points via the algorithm ListRedL into lattice points

ListRedL(y1), . . . ,ListRedL(yN) ∈L (B).

The algorithm ListRedL is deterministic and straightforward. It subtracts lattice vectors in L

from the yi to obtain shorter and shorter vectors.

Input: A list L ⊆L , y ∈Rn and a parameter ε> 0

u′ ← y (mod B), u = u′− y ;
while ∃w ∈ L such that ‖u′−w‖K < (1−ε) · ‖u′‖K do

(u,u′) ← (u−w,u′−w)
end

Output: u

Figure 3.1 – The ListRedL procedure.

Two central questions are the following. First, how to construct a small list L of lattice vectors

so that ListRedL produces (approximately) short vectors. Second, how to set the distribution

so that this naïve procedure produces lattice vectors that are short and nonzero.

The first problem is of geometric nature. To address it, we first clarify how the procedure

ListRedL works, see Figure 3.1. Given y ∈ Rn , the procedure converts y into a tuple (u′,u),

where u′ ∈Rn and u ∈L . The way u′ and u are created, ensures that ‖u′−u‖K ≤ ‖y‖K . As we

will precise later, the vector y will be drawn uniformly from O(1) ·K , hence u′ and u are close.

However, crucially, we will base our decision on whether we subtract some lattice vector v ∈ L

from u according to whether ‖u′−v‖K decreases u′ in the ‖ ·‖K norm.

0K s

v1

v2

v3

u′ u

(u′,u)−v2

v4

(u′,u)−v2 −v4

Figure 3.2 – The pair (u′,u) is being reduced by ListRedL with the list L := {v1,v2,v3,v4}: First,
we subtract the lattice vector v2, then v4.

For now, let us pretend that we are given a list L of lattice vectors such that all vectors in L

inside a layer of the form {x ∈Rn | (1+ε)k < ‖x‖K ≤ (1+ε)k+1} form a maximum packing with

translates of (1+ε)k · 1
2 ·K . In other words, the list is such that for the (kth) layer of the form

33

Chapter 3. Algorithms in any Norm

{x ∈Rn | (1+ε)k < ‖x‖K ≤ (1+ε)k+1} and for any two distinct vectors v1,v2 ∈ L in this layer, we

have that

v1 + (1+ε)k · 1
2 ·K ∩v2 + (1+ε)k · 1

2 ·K =;,

but, for any x ∉ L in the kth layer, x + (1+ε)k · 1
2 ·K intersects some v+ (1+ε)k · 1

2 ·K for v ∈ L in

the kth layer. Whenever the list L forms such a maximum packing, any vector u′ falling into

the kth layer has distance at most (1+ε)k to at least one vector in L in the same layer and its

length can be reduced further.

The number of vectors required in each layer to form a maximum packing can be related

to (a variant of) the kissing number of K . We define k̃(K ,γ) to be the maximum number N

of non-overlapping translates of (1−γ
2) ·K with centers in K \ (1−γ) · int(K). Equivalently, it

is the maximum number of points x1, . . . , xN ∈ K \ (1−γ) ·K so that ‖xi − x j‖K ≥ 1−γ for all

i 6= j ∈ {1, . . . , N }. This generalizes the kissing number for K , which is defined as k̃(K ,0). We

note that for K = B n
2 and γ small enough, this number can be upper bounded by 20.401n , but

for arbitrary K such as B n∞, this is as high as 3n . From this definition and for a maximum

packing of vectors as described above, it follows that the maximum number of vectors in

each layer cannot exceed k̃(K ,ε). Since we only need to consider a polynomial number of

layers (we have that vi ∈ 2O(n) ·K), the total number of vectors in the list L is upper bounded

by poly(n) · k̃(K ,γ). The running time of ListRedL is of order poly(n) · k̃(K ,ε)2 and the space

requirement is of order poly(n) · k̃(K ,ε).

For the algorithm to work, it will not be necessary to construct a list consisting of a maximum

packing of lattice vectors in each layer. We can construct a list L in 2εn · k̃(K ,ε)2 time on the fly,

for which ListRedL(·) works with high probability. Before discussing this further, we discuss

the second point, how to generate the y ’s to be reduced by ListRedL .

For cε =O(1/ε), we sample y ∼ cε ·K uniformly at random and compute λ1, . . . ,λn ∈Rwith

y =
n∑

i=1
λi ·bi .

We then compute the remainder (modulo the lattice basis)

y (mod B) :=
n∑

i=1
{λi } ·bi ,

where {λi } ∈ [0,1[is the fractional part of λi , i.e.λi = bλi c+ {λi }, bλi c ∈Z. Consequently,

y (mod B)− y =
n∑

i=1
−bλi c ·bi ∈L .

The algorithm ListRedL takes as input y , computes y (mod B) and then subtracts lattice

vectors v1, . . . ,vk ∈ L from y (mod B) to decrease its length and obtain

y (mod B)−v1 − . . .−vk .

34

3.1. Sieving for Shortest and Closest Vectors

The final output of ListRedL(y) is

y (mod B)− y −v1 − . . .−vk ∈L .

Since y (mod B)− y is a lattice vector, so is the final output. When y (mod B)−v1 − . . .− vk

has norm `, y (mod B)−v1 − . . .−vk − y has norm (with respect to ‖ ·‖K) at most `+ cε.

It is crucial that we base our decision to subtract vectors from L on y (mod B) and not on y

directly. Indeed, since

y (mod B) = y −s (mod B),

the algorithm acts the same way for y (mod B) as it would for y −s (mod B). This is why we

can imagine that we defer the decision whether we initially started with y or y−s until the very

end of the algorithm. If y is being reduced to 0 by the list L, then, y −s would be reduced to s.

0

cε ·K

s+ cε ·K

s

y1
σ(y1)y2

σ(y2)
y3

σ(y3)

Figure 3.3 – The set cε ·K ∩ (s+ cε ·K) and the bijection σ(·).

It remains to argue why sampling y ∼ cε ·K such that y −s ∈ cε ·K is about as likely as sampling

y ∼ cε ·K . To see this, we consider the region cε ·K ∩ (s+ cε ·K) depicted in Figure 3.3. This is

commonly referred to as the lens and was introduced by Regev in a conceptual simplification

of the original sieving algorithm, (Reg04). After sampling y ∼ cε ·K , we apply the following

bijection σ : cε ·K → cε ·K and return σ(y) instead,

σ(y) =
y −s if y ∈ cε ·K ∩ (s+ cε ·K),

−y else.

The bijection σ(·) is measure preserving. In other words, if y is distributed uniformly within

cε ·K , so is σ(y). So the uniform distribution on cε ·K is equivalent to first sampling y ∼ cε ·K

uniformly, then, with probability 1/2, applying σ(·) to y . This is also illustrated in Figure 3.3.

The resulting distribution is uniform and we see that with probability (at least)

1
2 Pr

x∼cε·K
[x ∈ cε ·K ∩ (s+ cε ·K)] = Vol(cε ·K ∩ (s+ cε ·K))

2 ·Vol(cε ·K)
,

y is being replaced by y −s. By the choice of cε, this probability is at least 2−εn .

We rephrase these properties in the following theorem.

35

Chapter 3. Algorithms in any Norm

Theorem 3.1.1 ((EV22; RV22)). Given ε> 0, R > 0, N ∈N, a norm ‖ ·‖K :Rn →R≥0 and a lattice

L ⊆Rn , there is a randomized procedure that produces independent and identically distributed

samples u1, . . . ,uN ∼D, where the distribution D satisfies the following two properties:

1. Every sample u ∼D has u ∈L and, with probability at least 1/2, ‖u‖K ≤ aε ·R. Here, aε
is a constant only depending on ε.

2. For any s ∈L with ‖s‖K ≤ R, there are distributions Ds
0 and Ds

1 and some parameter ρs

with 2−εn ≤ ρs ≤ 1 such that the distribution D is equivalent to the following process:

(a) With probability ρs, sample u ∼Ds
0. Then, flip a fair coin and with probability 1/2,

return u, otherwise return u+s.

(b) With probability 1−ρs, sample u ∼Ds
1.

This procedure takes time 2εn · k̃(K ,ε)2+N · k̃(K ,ε), requires N +2εn · k̃(K ,ε) space and succeeds

with probability at least 1/2.

The time and space requirements of 2εn · k̃(K ,ε)2 and 2εn · k̃(K ,ε) stem from the construction

of the list, the first phase of the algorithm. The algorithm is given in Figure 3.4.

Input: ‖ ·‖K :Rn →R≥0, L (B) ⊆Rn with (1−1/n) ≤ ‖s‖K ≤ 1 and ε> 0, N ∈N
Pick M ∼ {1, . . . ,poly(n) ·2εn · k̃(K ,2 ·ε)};
L ←;;
for i in 1 to M do

Sample yi ∼ cε ·K ;
vi ← ListRedL(yi);
if ‖vi‖K ≥ c2

ε then
L ← L∪ {vi }

end
end
for j in 1 to N do

Sample y j ∼ cε ·K ;
u j ← ListRedL(y j)

end

Output: u1, . . . ,uN

Figure 3.4 – The ListSieve algorithm. With probability 1/2, it outputs N lattice vectors
that are distributed according to Property 1 and 2 of Theorem 3.1.1.

We now give a quick overview on the construction of such a list. The list is created by adding

one lattice vector to it at a time. Suppose we have a partial list L = {v1, . . . ,vm}. We sample

some vector y ∼ cε ·K uniformly and reduce the length of y (mod B) by subtracting vectors

v1, . . . ,vk from the partial list as in the second phase of the algorithm. We stop when the vector

y (mod B)−v1 − . . .−vk cannot be reduced any further and add y (mod B)−v1 − . . .−vk − y

36

3.1. Sieving for Shortest and Closest Vectors

to the list and repeat. Throughout the procedure, we throw out all lattice vectors of norm

smaller than c2
ε =O(1/ε2), i.e. do not add them to the list. This guarantees that we can use the

packing bound to upper bound the number of vectors in each layer. In particular, this small

technicality ensures that the list never holds more than nL · k̃(K ,2 ·ε) lattice vectors in total,

where nL =O(poly(n)) is the total number of layers we need to consider. Here, the factor 2 in

k̃(K , ·) appears since we subtract the respective y from the reduced y (mod B) right before

adding it to the list. To obtain the final list, we repeat this step M := 3 ·nL ·2εn · k̃(K ,2 ·ε) times,

obtain the list {v1, . . . ,vM }, sample a random integer N uniformly in the interval [0, M] and

pass the truncated list L := {v1, . . . ,vN } to the second stage. It is important to note that the list

is unchanged in the second stage, hence the lattice vectors that are outputted by the algorithm

ListSieve are independent and identically distributed.

We now argue that this list is good for the second stage with probability at least 1/2, i.e. verifies

Properties 1 and 2 in Theorem 3.1.1. Observe that out of the 3 ·nL ·2εn · k̃(K ,2 ·ε) samples

uniformly distributed within cε ·K , by Chebychev’s inequality and with high probability, at

least 2 ·nL · k̃(K ,2 · ε) samples come from the lens. During the creation of the list, half of

these samples must have been thrown out (since the list can only hold nL · k̃(K ,2 ·ε) points

in total), hence they must have been mapped to some point of ‖ ·‖K norm smaller than c2
ε . It

follows that for a uniform index N ∼ {1, . . . , M }, the partial list {v1, . . . ,vN } reduces a sample y

coming from the lens to some lattice vector of ‖ · ‖K norm at most c2
ε = O(1/ε2), possibly 0,

with probability at least 1/2. In fact, this also holds for samples y not coming for the lens

and shows Property 1. To show Property 2, we use the bijection σ(·). The list L is such that

ListRedL reduces some y sampled uniformly from the lens to a lattice vector of norm at

most c2
ε . For such a y , the list L reduces y − s = σ(y) in the exact same way as y . Hence, if

ListRedL maps y to some lattice vector w, then y −s would be mapped to w+s. To see that

this implies Property 2, we reinterpret the uniform distribution as follows. We first sample

z ∼ cε ·K , and, with probability 1/2, set y = σ(z) and y = z otherwise. Since σ(·) is measure

preserving, y is distributed exactly as z, meaning that the respective distributions ListRedL(y)

and ListRedL(z) are identical. Provided z came from the lens, the decision of applying σ(·)
can be deferred until the very end of the algorithm, at which point we can flip a coin to decide

the outcome. Since the probability of sampling from the lens is at least 2−εn , Property 2 follows.

We note that the formal proofs of these statements can be found in (PS09). While they are

stated for the `2 norm, it is straightforward to adapt it to the setting of general norms. In

the next two subsections, we show how to use the ListSieve procedure as described in

the previous section to obtain an approximation to the shortest and closest vector problem.

Even though there is an efficient reduction from the shortest vector problem to the closest

vector problem that preserves the approximation guarantee, see (GMSS99), we state the two

algorithms separately.

37

Chapter 3. Algorithms in any Norm

3.1.1 Sieving for the Shortest Vector Problem

We note that the following theorem is implicit in previous works on the shortest vector problem

in the `2 norm, (MV10b; PS09; LWXZ11).

Theorem 3.1.2. Given any instance of the shortest vector problem SVPK on a rank n lattice and

for any ε > 0, one can compute an αε-approximation to the shortest vector in (randomized)

time 2εn · k̃(K ,ε)2 and k̃(K ,ε) space.

Proof. Without loss of generality, we may assume that d = n. Let us denote by s a shortest

vector with respect to ‖·‖K . By the LLL-algorithm combined with John’s theorem (see Theorem

1.3.1 and Theorem 1.3.2), we can estimate ‖s‖K up to a factor of n · 2n . Then, guessing

(i.e. enumerating over the polynomial number of possibilities) the length of s up to a factor

(1+1/n) and up to scaling the lattice accordingly, we may assume 1−1/n ≤ ‖s‖K ≤ 1.

We now use the procedure from Theorem 3.1.1, initialized with R = 1 and with ε,‖ · ‖K and

L from this theorem, to generate N = n ·2εn lattice vectors. This procedure succeeds with

probability 1/2, meaning the distribution D satisfies Property 1 and Property 2.

Since the samples v1, . . . ,vN are independent and identically distributed, the number of sam-

ples from the distribution Ds
0 obeys a binomial distribution with parameter ρs. By Chebychev’s

inequality and with probability at least 1/2, one of the vi is drawn according to Ds
0. Hence, the

following event has probability at least 1/4:

E := {∃vi ∈ {v1, . . . ,vN } : vi ∼Ds
0 and ‖vi‖K ≤ aε}.

We now use Property 2. We split the event E into two disjoint events, E head and E tail, where we

distinguish whether the fair coin lands head (return vi) or tail (return vi +s) when sampling

vi ∼ Ds
0. The probability of the events E head and E tail are both 1/8. Since at least one of the

events E head or E tail returns a nonzero lattice vector, we can conclude that with probability

at least 1/8, the list {v1, . . . ,vN } contains a nonzero lattice vector v of length at most aε. Since

‖s‖K ≥ 1−1/n, setting αε := (1−1/n)−1 ·aε, v is an αε-approximation to s.

Thus, the above procedure yields an αε-approximation to s with probability at least 1/8. This

can be boosted to probability 1−2−n by repeating the procedure, starting where we sample

N = n·2εn lattice vectors from the randomized procedure given by Theorem 3.1.1, a polynomial

number of times.

3.1.2 Sieving for the Closest Vector Problem

The case of the closest vector problem is slightly more involved and there are two small issues

we would like to get out of the way.

38

3.1. Sieving for Shortest and Closest Vectors

First, unlike for the shortest vector problem, whenever t lies outside of the span of the lattice,

the norm on Rd induced by K (centered at t) does (generally) not induce a norm when

restricted to span(L). This can be seen by lifting t and the crosspolytope with it in Figure 1.2.

To invoke the procedure from Theorem 3.1.1 nonetheless, we show how to restrict to the case

d = n, albeit at a small loss in the approximation guarantee.

Lemma 3.1.3 ((RV22)). Consider an instance of the closest vector problem, CVPK (L , t), L ⊆Qd

of rank n. In polynomial time, one can find a lattice L̃ ⊆Qn of rank and dimension n, target

t̃ ∈Qn and norm ‖·‖K̃ so that anα-approximation to CVPK̃ on L̃ with target t̃ can be efficiently

transformed in a (2 ·α+1)-approximation to CVPK (L , t).

Proof. Let us define t ′ := argmin{‖t −x‖K , x ∈ span(L)}. Such a point may not be unique, for

instance for K = B n
1 or K = B n∞, but it suffices to consider any point t ′ realizing this minimum

or an approximation thereof. Given a (weak) separation oracle for K , this can be computed in

polynomial time. We now show that an α-approximation to CVPK (L , t ′) yields a (2 ·α+1)-

approximation to CVPK (L , t). Indeed, since ‖t − t ′‖K is smaller than distK (t ,L), the distance

of t to its closest lattice vector, we have that

distK (t ′,L) ≤ 2 ·distK (t ,L).

Denote by cα ∈ L an α-approximation to the closest lattice vector to t ′. By the triangle

inequality,

‖t −cα‖K ≤ ‖t − t ′‖K +‖t ′−cα‖K ≤ dist(t ,L)+α ·dist(t ′,L) ≤ (2 ·α+1) ·dist(t ,L).

This means that an α-approximation of the closest vector to t ′ is a (2 ·α+1)-approximation

to the closest vector to t . Whenever K = B n
2 (and, obviously, whenever t ∈ span(L)), by

orthogonality, this holds exactly, i.e. with 2 ·α+1 replaced by α.

For such a t ′ ∈ span(L), we can restrict to the case d = n: Let On :Rd →Rn be a linear transfor-

mation that first applies a rotation sending span(L) to Rn × {0}d−n and then restricts onto its

first n coordinates. The transformation On : span(L) →Rn is invertible. The n-dimensional

instance of the closest vector problem is then obtained by setting L̃ ← On(L), t̃ ← On(t ′)
and ‖ · ‖K̃ where K̃ ← On(K). Whenever c̃α ∈ L ′ is an α-approximation to CVPK̃ (L̃ , t̃), the

vector O−1
n (cα) ∈ L is a (2 ·α+1)-approximation to CVPK (L , t) (or an α-approximation to

CVPK (L , t), if t ∈ span(L) or K = B n
2).

Second, it will be convenient to view the closest vector problem on a lattice in Rn as a special

case of a shortest vector problem on a lattice in Rn+1, i.e. one dimension higher. This idea was

introduced by Kannan (Kan87) and goes by the name of Kannan’s embedding technique. The

norm under consideration must be adapted to account for this, for instance, it might only

be defined on Rn . For `p norms, this proves to be straightforward, simply pick the `p norm

on Rn+1. For general convex bodies, it is less clear how to extend the norm ‖ · ‖K : Rn → R≥0

39

Chapter 3. Algorithms in any Norm

to Rn+1 in a meaningful way. Before proposing an extension, let us first outline Kannan’s

embedding technique. Informally, we are going to slightly lift the target t and consider an

instance of the shortest vector problem on a lattice of one dimension higher by adding t to the

basis. Specifically, given an instance of the closest vector problem with basis B and for some

(small) constant 1 >µ> 0, we define a new lattice L ′ ⊆Rn+1 of rank n +1 with the following

basis:

B̃ =
(

B t

0 µ

)
∈Q(n+1)×(n+1).

If c is the closest lattice vector to t in L , then the vector s :=
(
t −c
µ

)
is a shortest lattice vector

in L ′ restricted to L ′∩ {x ∈ Rn+1 | xn+1 = µ}. Here, shortest is with respect to the point
(

0
µ

)
,

0 ∈L , which does not belong to the lattice unless t ∈L . This is depicted in Figure 3.5.

0 c t
K

t̃−c
t̃K +1

Figure 3.5 – The n +1 dimensional lattice after lifting t . c is the closest lattice vector to t . After

lifting t and adding it to the basis, the lattice vector t̃−
(c
0

)
=

(
t −c
µ

)
is the shortest vector on

the first layer.

This also holds for approximations to the closest vector problem. An α-approximate closest

lattice vector to t in L corresponds to an α-approximate shortest lattice vector restricted to

L ′∩ {x ∈Rn+1 | xn+1 =µ} and vice versa.

Going back to the issue at hand, we propose to extend ‖·‖K to Rn+1 by considering K +1 ⊆Rn+1

instead of K .

K +1 := {
(x, xn+1) ∈Rn ×R | x ∈ K , xn+1 ∈ [−1,1]

}
. (3.1)

The convex body K +1 is the n +1 dimensional cylinder obtained by taking K as its base. The

norm ‖ ·‖K +1 restricted to {x ∈Rn+1 |xn+1 =µ} is equivalent to ‖ ·‖K (centered at
(

0
µ

)
).

With the procedure from Theorem 3.1.1 in mind, it remains to check that the respective

numbers k̃(K , ·) and k̃(K +1, ·) remain comparable.

Lemma 3.1.4. Let Q ⊆Rn be an origin-symmetric convex body. Define Q+1 ⊆Rn+1 as in (3.1).

Then

k̃(Q+1,γ) ≤O(1
(1−γ) · k̃(Q,γ)).

40

3.1. Sieving for Shortest and Closest Vectors

Proof. Consider the maximum number of disjoint translates xi + 1−γ
2 ·Q+1, i ∈ {1, . . . , k̃(Q+1,γ)},

where the xi lie in Q+1 \ (1−γ) ·Q+1. Each such translate intersects at least one slice of the

form Q+1 ∩ {x ∈ Rn+1 | xn+1 = k · (1−γ)}, for some k ∈ {−d(1−γ)−1e, . . . ,d(1−γ)−1e}. Since the

translates are mutually disjoint, each such slice can intersect at most k̃(Q,γ) translates of
1−γ

2 ·Q+1. The bound follows.

We can now use the sampling procedure from Theorem 3.1.1 to obtain a constant factor

approximation to the closest vector problem.

Theorem 3.1.5 ((EV22)). Given any instance of the closest vector problem CVPK on a rank n

lattice and any ε > 0, one can compute an αε-approximation to the closest lattice vector in

(randomized) time 2εn · k̃(K ,ε)2 and 2εn · k̃(K ,ε) space.

The currently best bounds for k̃(K ,ε)2 are known for K = B n
2 . For some constant ε0 > 0, k̃(K ,ε0)

is of the order 20.401n , see (KL78). The constant in the exponent is in fact (slightly) smaller

than 0.401, hence Theorem 3.1.5 implies a 20.802n time, 20.401n space algorithm for constant

approximate closest vector problem in the `2 norm.

Proof of Theorem 3.1.5. By Lemma 3.1.3, up to a constant factor loss in the final approximation

guarantee, we may assume that the lattice is full dimensional, i.e. d = n. Furthermore, we

assume the lattice and target t are scaled so that the distance of the closest lattice vector c ∈L

to t is close to 1, i.e. 1−1/n ≤ ‖t −c‖K ≤ 1. Indeed, by Babai’s Nearest Plane Algorithm, see

Lemma 1.3.3, we can estimate ‖t −c‖K up to a factor 2n . We can then guess (enumerate over

all polynomial number of possibilities) the correct power of (1+1/n) of ‖t −c‖K and scale the

lattice and t accordingly.

We now use Kannan’s embedding technique. We define the lattice L ′ ⊆Rn+1 with the following

basis:

B̃ =
(

B t

0 1/n

)
∈Q(n+1)×(n+1).

On L ′ we consider the norm ‖ · ‖K +1 induced by K +1 ⊆ Rn+1, see Definition 3.1. We set

s :=
(t −c

1/n

)
∈Rn+1. Observe that 1−1/n ≤ ‖s‖K +1 ≤ 1.

We now use the procedure from Theorem 3.1.1 with R := 1, norm ‖·‖K + and ε from this theorem,

and sample N := 2 lattice vectors of length at most aε. With probability at least 1
2 ·2−2ε(n+1), this

succeeds and, in particular, both resulting lattice vectors, v1 and v2, are generated according

to the distribution Ds
0, see Property (2a). We condition on this event but defer the decision of

flipping the coins for v1 and v2. Since ‖v1‖K +1 ,‖v2‖K +1 ≤ aε, they must both lie on one of the

2 · baεc ·n +1 layers L ′∩ {x ∈Rn+1 |xn+1 = k/n} for k ∈ {−baεc ·n, . . . ,baεc ·n}. Hence, since v1

and v2 are identically and independently distributed, with probability at least 1/(2 · baεc ·n+1),

v1 and v2 both land on the same layer. We again condition on this event. It follows that

v1 −v2 ∈ (2 ·aε) ·K × {0}

41

Chapter 3. Algorithms in any Norm

holds with probability at least 1
(4·baεc·n+1) · 2−2ε(n+1). We can now use property (2a). With

probability at least 1/4, instead of returning v1 and v2, the procedure returns v1 + s and v2.

Their difference is then

(v1 +s)−v2 ∈ (2 ·aε) ·K × {0}+s.

We can rewrite this as

(v1 +s)−v2 =
(

u

0

)
+s =

(
u−c

0

)
+

(
t̃

1/n

)
,

for some u ∈L . Crucially,

‖u‖K =
∥∥∥∥∥
(

u

0

)∥∥∥∥∥
K +1

≤ 2 ·aε.

The lattice vector c−u is then the desired approximation. Indeed, by the triangle inequality,

‖t − (c−u)‖K ≤ ‖t −c‖K +‖u‖K ≤ 1+2 ·aε :=βε.

We set αε := (1−1/n)−1 · (2 ·βε+1) as we have used Lemma 3.1.3 and have scaled the lattice

such that ‖t −c‖K ≥ 1−1/n. The lattice vector c−u is then an αε-approximation to the closest

lattice vector to t .

As described, this procedure succeeds with probability 2−Ω(ε)n . To boost the probability of

success to 1−2−n , we repeat this procedure 2Ω(ε)n times starting from where we sampled the

two lattice vectors v1 and v2. Using Lemma 3.1.4, the time and space requirements follow from

those of the procedure from Theorem 3.1.1. This concludes the proof.

3.2 Approximating the Closest Vector by Sieving in any Norm

We now show how for any pair of norms, ‖·‖Q ,‖·‖K , we can solve constant factor approximate

CVPQ using a sieving algorithm with respect to ‖ · ‖K . We will make use of the geometric

construction from the previous section, Theorem 2.4.1, and are going to combine this with the

randomized procedure from Theorem 3.1.1.

Theorem 3.2.1. Let ε> 0 and K =−K ⊆Rn be such that k̃(K ,ε) ≤ 2βn . Then, for any norm ‖·‖Q

and in time 2(2β+ε)n and space 2(β+ε)n , one can compute an αε-approximation to CVPQ on any

lattice of rank n. In particular, a constant factor approximation to CVP in any norm can be

computed in 20.802n time.

The pseudocode is given in Figure 3.7.

Proof. We invoke Lemma 3.1.3 to restrict to a lattice of rank and dimension n. This increases

the final approximation factor by at most a factor 3. Using Babai’s algorithm, Theorem 1.3.3,

we scale the lattice such that the distance of the closest lattice lattice vector c ∈ L to t is

is between (1+ 1/n)−1 and 1, i.e. (1+ 1/n)−1 ≤ ‖t − c‖Q ≤ 1. We then compute the linear

42

3.2. Approximating the Closest Vector by Sieving in any Norm

transformation Tε(·) guaranteed by Theorem 2.4.1 with Q,K and ε from this theorem. We now

describe one iteration of the algorithm that succeeds with probability 2−Ω(ε)n .

We sample a point t̃ within t +Q + cε ·Tε(K) uniformly at random. By Lemma 2.4.1 and with

probability at least 2−εn , t̃ is such that c ∈ t̃ + cε ·Tε(K). We condition on this event. For this

vector t̃ , we define the lattice L ′ ⊆Rn+1 of rank n +1 with the following basis:

B̃ =
(

B t̃

0 1/n

)
∈Q(n+1)×(n+1).

We define the following two vectors in L ′:

t̃ :=
(

t̃

1/n

)
and s :=

(
t̃ −c

1/n

)
.

We consider the norm ‖ · ‖Tε(K)+1 , see Definition 3.1. Since c ∈ t̃ + cε ·Tε(K), it follows that

‖s‖Tε(K)+1 ≤ cε.

We now use the procedure from Theorem 3.1.1 with norm ‖ ·‖Tε(K)+1 , radius R := cε and ε from

this theorem and sample N := 2 lattice vectors of length at most aε · cε. With probability at

least 1
2 ·2−2εn this succeeds and both lattice vectors are generated according to the distribution

Ds
0, see (2a). We condition on this event and denote by v1,v2 the resulting lattice vectors.

Both v1 and v2 must both land in a layer of Tε(K)+1 of the form

L ′∩ {(x, xn+1) ∈Rn ×R | xn+1 = k
n }∩Tε(K)+1,

for some k ∈ {−daε ·cε/ne, . . . ,daε ·cε/ne}. Since N (Tε(K),cε ·Q) ≤ 2εn , each such layer can be

covered by at most 2εn translates of (aε · c2
ε) ·Q × {0}. Hence, v1 and v2 must land in one of at

most Ñ := (2 ·n · daε · cεe+1) ·2εn translates of (aε · c2
ε)×Q × {0}. Since v1,v2 are independently

and identically distributed, with probability at least Ñ−2, there is a translate of (aε ·c2
ε) ·Q × {0}

that holds both v1 and v2. In this case, it follows that

v1 −v2 ∈ (2 · c2
ε ·aε) ·Q × {0}.

We can now use Property (2a) of Theorem 3.1.1. With probability at least 1/4, instead of

returning v1 and v2, the procedure returns v1 +s instead of v1 and leaves v2 unchanged. We

condition on this event. Their difference is then

(v1 +s)−v2 ∈ (2 ·aε · c2
ε) ·Q × {0}+s.

This is depicted in Figure 3.6.

43

Chapter 3. Algorithms in any Norm

cε ·T (K)

0
c t

Q

t̃

(aε · cε) ·T (K)

t̃s
v1 −v2 +s

(aε · c2
ε) ·Qv2

v1

Figure 3.6 – One translate of (aε · c2
ε) ·Q × {0} holds v1 and v2. Sampling v1 + s instead of v1

results in a good approximation to the vector s.

We can rewrite this as

(v1 +s)−v2 =
(

u

0

)
+s,

for some u ∈L . It follows that

‖u‖Q =
∥∥∥∥∥
(

u

0

)∥∥∥∥∥
Q+1

≤ (2 · c2
ε ·aε).

Rewriting this again, we have that

(v1 +s)−v2 =
(

u−c

0

)
+

(
t̃

1/n

)
.

The lattice vector c−u is then the desired approximation. Indeed, by the triangle inequality,

‖t − (c−u)‖Q ≤ ‖t −c‖Q +‖u‖Q ≤ 1+ (2 · c2
ε ·aε) :=βε.

We set αε := (1+1/n)−1 · (2 ·βε+1) as we have used Lemma 3.1.3 and scaled the lattice so that

‖t −c‖K ≥ (1+1/n)−1. The lattice vector c−u is then anαε-approximation to the closest lattice

vector to t .

All in all, one such iteration succeeds with probability 2−Ω(ε)n . Hence, repeating this procedure

2Ω(ε)n times starting from where we sampled t̃ ∈ t +Q +cε ·Tε(K) boosts the overall probability

of success to 1−2−n . It remains to argue that each iteration of the procedure of Theorem 3.1.1

takes time O(k̃(K ,ε)2) ·2εn and takes space O(k̃(K ,ε)) ·2εn . By Lemma 3.1.4, we have that

k̃(Tε(K)+1,ε) ≤ O(1
1−γ · k̃(Tε(K),ε)). It is then easy to see that k̃(T (K),ε) = k̃(K ,ε) for any

linear transformation T , whence the bounds on the running time and space requirement are

proven.

Theorem 3.2.1 suggests two ways to improve the running time for constant factor approximate

CVP in any norm.

44

3.2. Approximating the Closest Vector by Sieving in any Norm

Input: L ⊆Qd of rank n, t ∈Qd , ε> 0, ‖ ·‖Q ,‖ ·‖K :Rd →R≥0

Use Lemma 3.1.3 to restrict to d = n;

Guess k ∈Z so that (1+1/n)k ≤ distQ (L , t) ≤ (1+1/n)k+1;
Compute Tε(·) from Theorem 2.4.1;
Initialize v as any nonzero lattice vector;
for ` ∈ {1, . . . ,26εn} do

Sample t̃ ∼ t +Q + cε ·T (K) uniformly;
Set L ′ :=L (B′), where B′ is as in (3.2);
Sample v1,v2 ∈L ′ with Theorem 3.1.1 with ‖ ·‖T (K), L ′, ε,

R := cε · (1+1/n)k+1;
if (v1 −v2)n+1 = 1/n then

u :=−(v1 −v2)≤n + t̃ ∈L ;
v ← argmin{‖v‖Q ,‖u‖Q };

end
end

Output: v

Figure 3.7 – Approximate CVPQ by sieving with respect to ‖ ·‖K .

The first is to look for convex bodies K such that k̃(K ,ε) is (provably) smaller than 20.401n ,

the currently best upper bound on k̃(B n
2 ,ε), (KL78). This would immediately imply faster

algorithms for constant factor approximate CVP in any norm. The best lower bound on

k̃(B n
2 ,ε) is of the order 20.21n , which is believed to be tight. Pushing this further, one might

even argue that there could be a convex body K =−K for which k̃(K ,ε) < k̃(B n
2 ,ε). While this

is a very optimistic conjecture, quite possibly too optimistic, we note that in this setting there

are also lower bounds. In (Tal98), it is shown that for any ε≥ 0 and any convex body K , there is

a universal constant c(ε) > 0 only depending on ε such that k̃(K ,ε) ≥ 2c(ε)n . Hence, it would

be interesting to explore the connection of the constant c(ε) for general convex bodies with

respect to that of the Euclidean Ball.

Second, we note that in Procedure 3.1.1, we did not use any efficient data-structures to find

a close pair of lattice vectors. For any new vector we reduce, we go over all vectors in the

list, resulting in an overall running time that is quadratic in the number of elements in the

list. Indeed, for the `2 norm, it is not known how to devise a data-structure that takes less

than quadratic time in this setting. However, for the `∞ norm, it is possible to devise a

data-structure that, in O(poly(n)) time, finds an approximately closest lattice vector, (AM18),

resulting in a running time for approximate SVP∞ that is linear in the number of elements

in the list. Unfortunately, k̃(B n∞,ε) = 3n −1, so this does not yield any improvement over our

approach. But it does raise the question whether there exists a convex body K =−K and a

sub-quadratic data-structure to find close pairs with respect to ‖·‖K so that the procedure from

Theorem 3.1.1 can be made to work in less than 20.802n time. Combined with our geometric

covering approach, this would imply faster algorithms for constant factor approximate CVP in

any norm.

45

Chapter 3. Algorithms in any Norm

3.3 Lattice Sparsification and the Closest Vector Problem

In this section, we are going to describe a simple connection between lattice sparsifiers, as

used by Dadush and Kun (DK16) for their (1+ε)-approximation algorithm for CVP in general

norms, and the modulus of smoothness of the norm ‖ ·‖K . Using this observation, we will be

able to improve the running time of O(1+1/ε)n for (1+ε)−CVPp to O(1+1/ε)n/2 for p ≥ 2

and O(1+1/ε)n/p for p ∈ [1,2[.

We first sketch Dadush and Kun’s approach. Let us denote by L ⊆ Rn , t ∈ Rn and K = −K

the lattice, target and norm under consideration. Without loss of generality, dK (L , t) :=
minv∈L ‖v− t‖K is between 1−1/n and 1. Their algorithm consists of two subprocedures,

Lattice-Enumerator and Lattice-Sparsifier, see Theorems 3.3.1 and 3.3.3. The algo-

rithm Lattice-Enumerator first computes a covering of K using 2O(n) M-ellipsoids. Each

such M-ellipsoid has the property that it can be covered using 2O(n) translates of K . For each

M-ellipsoid from this covering, Lattice-Enumerator enumerates over all lattice vectors

contained in it. Here, the issue is that the number of lattice vectors in such an ellipsoid

can be exponential in the encoding size, in particular much larger than, say, nO(n). Hence,

enumeration over all lattice vectors in such an ellipsoid is too costly. The solution is sparsi-

fication. For any ε> 0, there is a sparsified sublattice L ′ ⊆L such that the distance of t to

L ′ (compared to the distance t to L) only increases by a factor of 1+ε, and, any translate of

K only contains 2O(n)(1+1/ε)n lattice vectors of L ′. Since every M-ellipsoid covering K can

be covered by at most 2O(n) translates of K , this also implies that any M-ellipsoid contains at

most 2O(n)(1+1/ε)n lattice vectors of L ′. Remarkably, the algorithm Lattice-Sparsifier
finds such a sublattice in 2O(n) time and 2n space. For the final algorithm, Dadush and Kun

apply Lattice-Sparsifier to L and pass the resulting sublattice to Lattice-Enumerator.

Among the lattice vectors returned by Lattice-Enumerator, they output the closest lattice

vector to t . By the first property of Lattice-Sparsifier, this will be a (1+ε)-approximation

to the closest lattice vector in the original lattice. The running time is dominated by the enu-

meration over all lattice vectors contained in one of the 2O(n) M-ellipsoids covering K . By the

second property of Lattice-Sparsifier, each such ellipsoid contains at most O(1+1/ε)n

lattice vectors of the sparsified sublattice. The overall run time is thus of order 2O(n)(1+1/ε)n

and the space requirement of order 2n .

Theorem 3.3.1 (Lattice-Enumerator(K , t ,L), (DPV11; Dad12a)). Let L (A) be a lattice and

K ⊆Rn a convex body. There is a deterministic algorithm that outputs, one by one, all lattice

vectors contained inside t +K . This takes 2O(n) ·G(K ,L) time and 2n space.

Here, G(K ,L) denotes the maximal number of lattice vector any translate of K can contain,

G(K ,L) := max
x∈Rn

|(K +x)∩L |.

Definition 3.3.2 (Lattice sparsifier for origin-symmetric K , (DK16)). Let K ⊆Rn be an origin-

symmetric convex body, L be a n-dimensional lattice and δ≥ 0. A (K ,δ) sparsifier for L is a

sublattice L ′ ⊆L satisfying

46

3.3. Lattice Sparsification and the Closest Vector Problem

1. ∀x ∈Rn , dK (L ′, x) ≤ dK (L , x)+δ,

2. G(K ,L ′) ≤O(1+ 1
δ)n .

Theorem 3.3.3 (Lattice-Sparsifier(L (A),K ,δ), (DK16)). For any lattice L of rank n, any

convex K = −K ⊆ Rn and any δ ≥ 0, we can compute (a basis of) a (K ,δ)-sparsifier for L in

(deterministic) 2O(n) time and 2n space.

We now combine these two algorithms, Lattice-Enumerator and Lattice-Sparsifier,

with the notion of modulus of smoothness to yield improved running times for the approxi-

mate closest vector problem.

Definition 3.3.4. The modulus of smoothness of an origin-symmetric convex body K , ρK (τ) :

(0,1) → (0,1), is defined by

ρK (τ) := 1

2
sup

‖x‖K =1,‖y‖K =τ
(
∥∥x + y

∥∥
K +∥∥x − y

∥∥
K −2).

To see why the modulus of smoothness is relevant for the closest vector problem, denote by

c ∈L a closest vector to the target t and assume the lattice L is scaled such that ‖t −c‖K = 1.

Denote by L ′ ⊆L the lattice returned by Lattice−Sparsifier(L ,K ,ε). By the first prop-

erty of Definition 3.3.2, there is some vector u ∈L ′ with ‖u−c‖K ≤ ε. Since c is the closest

lattice vector to t :

‖t −c− (u−c)‖K , ‖t −c+ (u−c)‖K ≥ 1.

It follows that

‖t −c− (u−c)‖K ≤ 2−‖t −c+ (u−c)‖K +2 ·ρK (‖u−c‖K)

≤ 1+2 ·ρK (ε).

By subadditivity of the norm, ρK (τ) is at most linear in τ. Hence, ‖t −u‖K ≤ 1+2 ·ε.

However, whenever the (exponent of) the modulus of smoothness is larger than 1, this bound

is much stronger than subadditivity suggests. Hence, we can sparsify more aggressively

(hence enumerating over fewer lattice vectors) while retaining the metric information. These

properties are illustrated in Figure 3.8 and resumed in the following lemma.

Lemma 3.3.5 ((NV22)). Let K = −K be a convex body with ρK (τ) ≤ C ·τq , q ≥ 1 and assume

that t +K contains at least one lattice vector but t + (1−1/n) ·K is lattice-point-free. Then

L ′ := Lattice−Sparsifier(L ,K ,ε) ⊆L is a 2 · (1+1/n) ·C ·εq sparsifier and consequently

dK (L ′, t) ≤ (1+2 · (1−1/n)−1 ·C ·εq) ·dK (L , t).

The proof is a straight forward adaption of the argumentation given above. This then readily

yields the following theorem.

47

Chapter 3. Algorithms in any Norm

c

ε ·B n
2

0

t

B n
2

(1+2 ·ε2) ·B n
2

Figure 3.8 – The modulus of smoothness for the `2 norm, ρB n
2

(τ), is bounded by τ2.
Lattice−Sparsifier(L ,B n

2 ,ε) yields a (1+2 ·ε2)-approximation to the closest vector prob-
lem.

Theorem 3.3.6 ((NV22)). For any norm ‖ ·‖K :Rd →R≥0 with modulus of smoothness ρK (τ) ≤
C ·τq , any lattice L with t ∈ span(L) and any ε> 0, one can compute a (1+ε)-approximation

to the closest vector problem in 2O(n)(1+C /ε)n/q time and 2n space.

Proof. Let K̃ := K ∩ span(L). Since K̃ ⊆ K , ρK̃ (τ) ≤ ρK (τ). Also, it is trivial to check that the

modulus of smoothness does not change under linear transformations. Thus, without loss

of generality, we can assume that K ⊆Rn and B n
2 ⊆ K ⊆ (n +1) ·B n

2 . Thus, by Babai’s Nearest

Plane Algorithm, Theorem 1.3.3, we can approximate the distance of t to L up to a factor of

2n . Hence, up to enumerating over a polynomial number of possibilities, we can also assume

that 1−1/n ≤ dK (L , t) ≤ 1.

We set L ′ := Lattice−Sparsifier(L ,K , (ε/(2 · (1−1/n)−1C))1/q), this takes time 2O(n) and

2n space. By Lemma 3.3.5,

dK (L ′, t) ≤ (1+ε) ·dK (L , t).

We then call Lattice−Enumerator(K , t ,L) and return the closest lattice vector to t . This

takes 2O(n)(1+C /ε)n/q time and 2n space.

For the `p norm, concrete estimates on the modulus of smoothness are available.

Theorem 3.3.7 (Modulus of smoothness for `p spaces, (Lin63)). We have

ρ`p (τ) =
{

(((1+τ)p + (1−τ)p)/2)1/p −1, if 2 ≤ p <∞.

(1+τp)1/p −1, if 1 ≤ p ≤ 2.

These expressions are bounded by 2p ·τ2 and τp /p respectively. We thus obtain the following

corollary.

48

3.3. Lattice Sparsification and the Closest Vector Problem

Corollary 3.3.8 ((NV22)). Let L ⊆Rd a lattice of rank n and t ∈ span(L). One can compute

a (1+ ε)-approximation to CVPp in 2O(2p ·n) · (1+1/ε)n/p time and 2n space if p ≥ 2, and in

2O(n) · (1+1/ε)n/p time and 2n space if p ∈ [1,2[.

49

4 Covering Numbers and Ellipsoids

This final chapter gives an overview and proofs on the geometric results used in the two

previous chapters.

Section 4.1 presents a simple proof on the relationship of volume estimates and covering

numbers, see Lemma 4.1.1. The proof follows (Nas14), we include it here for completeness.

Combined with elementary polyhedral techniques, this is then used in Lemma 4.1.2 to derive

upper bounds on N (n1/p−1/q ·B d
p , t ·B d

q) for varying t , as used in Chapter 2.

Section 4.2 outlines the construction of the linear transformation from Theorem 2.4.1. This

linear transformation follows from the existence of certain ellipsoids associated to convex

bodies. For any convex body L = −L and any ε > 0, there exists an ellipsoid E such that L

can be covered by fewer than 2εn translates of L and, conversely, E can be covered by fewer

than 2εn translates of L. The linear transformation from Theorem 2.4.1 can be obtained

by first constructing such ellipsoids for K and Q and then composing the respective linear

transformations sending these ellipsoids to B n
2 , the unit norm ball. The construction of these

ellipsoids and that of the linear transformation is described in Theorem 4.2.1. To put this

into perspective, we note that these ellipsoids are a variation of Milman’s M-ellipsoids and

Pisier’s α-regular ellipsoids. Milman’s M-ellipsoids do guarantee a weaker covering property,

N (L,EM), N (EM ,L) ≤ 2O(n), where the constant in the exponent is universal, (Mil88). The

construction of these ellipsoids were subsequently made algorithmic by Dadush, Peikert

and Vempala (DPV11). On the other hand, Pisier showed that for any L =−L, there exists an

ellipsoid Eα such that, slightly oversimplified, N (L, t ·Eα), N (Eα, t ·L) ≤ 2Ω(t−1)n , (Pis89). Hence,

up to scaling, this ellipsoid fits the premise from Theorem 2.4.1 for any ε> 0.

4.1 Volume Estimates and Coverings

Lemma 4.1.1 ((Nas14)). Let K ,Q ⊆Rn be convex and origin-symmetric, and assume that

Vol(K +Q) ≤ M ·Vol(Q).

51

Chapter 4. Covering Numbers and Ellipsoids

Then, N (K ,Q) ≤ poly(n) ·M · ln(M). Such a covering can be constructed in poly(n) ·M · ln(M)

time with high probability.

Proof. To obtain the covering of K by translates of K we will proceed by random sampling.

Specifically, it will be sufficient to sample N := poly(n) ·M · ln(M) points x1, . . . , xN ∼ K +Q

uniformly at random and place translates of Q around them. With high probability, this will

cover any point inside K .

Already, we observe that the volume inequality is invariant under linear transformations,

i.e. Vol(T (K)+T (Q)) ≤ Vol(T (Q)). Hence, without loss of generality, we may assume that

B n
2 ⊆ K ⊆p

n ·B n
2 . It also follows from the volume inequality that K ⊆ M ·Q. Indeed, otherwise,

we could pack at least M disjoint translates of Q inside K +Q.

We now discretize K by a fine mesh of side length (n3/2 ·M)−1. We define the point set P by

P := {
p ∈ (n3/2 ·M)−1 ·Zn | p ∈ K

}
.

We will show that |P | =O(poly(n) ·M)n by a volume argument. Since

P + (2 ·n3/2 ·M)−1 ·B n
∞ ⊆ K +n−1 ·B n

2 ⊆ (1+1/n) ·K ,

the volume of P +(2·n3/2·M)−1·B n∞ is at most e ·Vol(K). On the other hand, for any p1 6= p2 ∈P ,

Vol(p1 + (2 ·n3/2 ·M)−1 ·B n
∞∩p2 + (2 ·n3/2 ·M)−1 ·B n

∞) = 0,

since these two sets can only intersect on the boundary. Hence

|P | ≤ Vol(P + (2 ·n3/2 ·M)−1 ·B n∞)

Vol((2 ·n3/2 ·M)−1 ·B n∞)
≤ e ·Vol(K)

(2 ·n2 ·M)−n ·Vol(K)
=O(n2 ·M)n ,

where in the last inequality we have used that (1/
p

n) ·B∞ ⊆ B n
2 ⊆ K .

Now, for any point p ∈P ,

Pr
t∼K+Q

[p ∈ t + (1−1/n) ·Q] = Pr
t∼K+Q

[t ∈ p + (1−1/n) ·Q] = Vol((1−1/n)−1 ·Q)

Vol(K +Q)
≥Ω(M−1).

On the other hand, every point x ∈ K has at most distance (n3/2 ·M)−1 from P (with respect to

‖ ·‖K). Since 1
M ·K ⊆Q, whenever we cover all points of P by N translates of (1−1/n) ·Q, then

enlarging all such translates by an additive factor of 1
n ·Q yields a full covering of K .

Hence, we have the classic SETCOVER Problem. The ground set consists of all points in P and,

for every t ∈ K +Q, the sets are of the form P ∩(t+(1−1/n)·Q). For any point p ⊆P is covered

with probabilityΩ(M−1) by a random set of the form t + (1−1/n) ·Q (where the randomness is

with respect to t ∼ K+Q). Hence, by the Union Bound, picking n·ln(|P |)·M = poly(n)·M ·ln(M)

many such sets covers all points of P with probability at least 1−2−n .

52

4.1. Volume Estimates and Coverings

Lemma 4.1.2. The following inequality holds

Vol(d ·B d
1 + t ·B d

∞) ≤ 2O(t−1/2d) ·Vol(t ·B d
∞).

Consequently, for any p ≤ q and for any ε> 0, there exists some γε =O(ε−2) such that

N (d 1/p−1/q B d
p ,γε ·B d

q) ≤ 2εd .

Proof. For the estimate on the covering number, we simplify matters by only considering B d
1

and B d∞. Indeed, by Hölder’s inequality,

d−1/q ·B d
∞ ⊆ B d

q and d 1/p−1/q ·B d
p ⊆ d 1−1/q ·B d

1 .

Hence, for any γ> 0,

N (d 1/p−1/q ·B d
p ,γ ·B d

q) ≤ N (d 1−1/q ·B d
1 ,γ ·d−1/q ·B d

∞) = N (d ·B d
1 ,γ ·B d

∞).

By the preceding lemma, Lemma 4.1.1, it is sufficient to show that for γε =O(ε−2) we have that

Vol(d ·B d
1 +γε ·B d

∞) ≤ 2εd ·Vol(γε ·B d
∞). (4.1)

We now derive a closed formula for the volume of d ·B d
1 + t ·B d∞, for some parameter t ∈R≥0.

This method was pointed out to us by Matthias Schymura. We first decompose the boundary

of d ·B d
1 + t ·B d∞ into ((d −1)-dimensional) facets F (d−1)

i . This decomposition of d ·B d
1 + t ·B d∞

overlaps only on the boundaries of these cones (on a set of measure 0), meaning

Vold (d ·B d
1 + t ·B d

∞) =∑
i

Vold (conv(0,F d−1
i)), (4.2)

where the right-hand side runs over all (d−1)-dimensional facets of d ·B d
1 +t ·B d∞, see Figure 4.1.

Figure 4.1 – The Minkowski sum t · B d∞ + B d
1 and part of its decomposition according to

Equation 4.2.

We recall the definition of a facet, and, more generally, a face of a polytope. For a (full-

dimensional) polytope P ⊆ Rd , the face (of P) with respect to the objective w ∈ Rd \ {0} is

53

Chapter 4. Covering Numbers and Ellipsoids

defined as Fw (P) := {y ∈ P | wT y ≥ wT x for all x ∈ P }. A facet is an inclusion-wise maximal

face. By definition, P is not a face. Hence, a facet is (d −1)-dimensional.

Let us now identify the facets of d ·B d
1 + t ·B d∞. For any w = (w1, . . . , wd) ∈ Rd , we define

sgn(w) := (sgn(w1), . . . , sgn(wd)) ∈ {−1,0,1}d . It is easily checked that for any w ∈Rd \ {0}:

Fw (d ·B d
1 + t ·B d

∞) ⊆ Fsgn(w)(d ·B d
1 + t ·B d

∞).

Since facets are maximal faces, every facet can be written of the form Fw (d ·B d
1 + t ·B d∞) for

some w ∈ {−1,0,1}d \ {0}. This simplifies (4.2) to

Vold (d ·B d
1 + t ·B d

∞) = ∑
w∈{−1,0,1}d \{0}

Vold (conv(0,Fw (d ·B d
1 + t ·B d

∞))). (4.3)

To simplify the terms on the right-hand side, we use that

Fw (d ·B d
1 + t ·B d

∞) = Fw (d ·B d
1)+Fw (t ·B d

∞).

This holds for arbitrary polytopes P and Q, see (BS18). Using this with wT
i := (1, . . . ,1︸ ︷︷ ︸

i times

,0, . . . ,0):

Fwi (d ·B d
1) = d ·conv(e1, . . . ,ei),

Fwi (t ·B d
∞) = (t , . . . , t︸ ︷︷ ︸

i times

,0, . . . ,0)+ [−t ·ei+1, t ·ei+1]+ . . .+ [−t ·ed , t ·ed].

Clearly, Fwi (d ·B d
1 + t ·B d∞) is (d −1)-dimensional, hence it is a facet. Since Fwi (d ·B d

1) and

Fwi (t ·B d∞) are orthogonal to each other, we obtain

Vold−1(Fwi (d ·B d
1 + t ·B d

∞)) = Voli−1(d ·B d
1) ·Vold−i ([−t ·ei+1, t ·ei+1]+ . . .+ [−t ·ed , t ·ed])

= d i

i ! · (2 · t)d−i .

We now compute the `2 distance of 0 to the affine hull of Fwi (d ·B d
1)+Fwi (t ·B d∞). The latter

belongs to the hyperplane {x ∈ Rd | wT
i · x = t · i +d}. Since ‖wi‖2 = p

i , the height formed

by the pyramid with base Fwi (d ·B d
1)+Fwi (t ·B d∞) and apex 0 equals t ·pi +d/

p
i . Since the

d-dimensional pyramid with ((d −1)-dimensional) A and height h has volume A ·h/d , we

obtain

Vold (conv(0,Fwi (d ·B d
1 + t ·B d

∞))) = d i · (2 · t)d−i

i !
· t ·pi +d/

p
i

d
.

Note that any w ∈ {−1,0,1}d with exactly i 1’s or −1’s defines a combinatorially equivalent

facet identical to the one above, with identical volumes. Hence, we can rewrite the right-hand

side of (4.3) as

Vold (d ·B d
1 + t ·B d

∞) =
d∑

i≥1
2i ·

(
d

i

)
· d i · (2 · t)d−i

i !
· t ·pi +d/

p
i

d
.

54

4.2. Computing the Linear Transformation

To show (4.1), we are only interested in upper bounding the ratio between Vold (d ·B d
1 + t ·B d∞)

and Vold (t ·B d∞) = (2t)d . Since t can be taken smaller than d , we see that

Vold (d ·B d
1 + t ·B d∞)

Vold (t ·B d∞)
=O(poly(d)) ·

d∑
i≥1

(
d

i

)
· d i

i ! · t i
.

By Stirling’s approximation, n! ≈poly(n) (n
e)n , and the estimate

(n
k

)≤ (n·e
k)k , we obtain

Vold (d ·B d
1 + t ·B d∞)

Vold (t ·B d∞)
≤ O(poly(d)) ·

d∑
i≥1

(
e ·d

i ·pt

)2i

.

Taking the derivative with respect to i for some fixed t , we see that the function inside the sum

is maximized when i = dp
t

. Plugging this back in, we obtain

Vold (d ·B d
1 + t ·B d∞)

Vold (t ·B n∞)
≤ O(poly(d)) ·2Θ(t−1/2·d).

Hence, setting t = γε =O(ε−2), (4.1) follows.

4.2 Computing the Linear Transformation

In this section we discuss the construction of the linear transformation Tε(·) from Theo-

rem 2.4.1. To prove it, we make a detour through the Euclidean norm ball. We will show

that for any given symmetric convex body K ⊆Rn and any fixed ε> 0, one can construct an

ellipsoid E such that K can be covered by fewer than 2εn translates of E , and, conversely, E

can be covered by fewer than 2εn translates of K . Up to a linear transformation sending E to

B n
2 , we resume these properties in the following theorem.

Theorem 4.2.1. For any symmetric convex body K ⊆ Rn and for any ε > 0, there exists an

(invertible) linear transformation Tε :Rn →Rn and some constant cε = Õ(ε−3) such that

1. Vol(Tε(K)+B n
2) ≤ 2εn ·Vol(B n

2), and,

2. Vol(B n
2 + cε ·Tε(K)) ≤ 2εn ·Vol(cε ·Tε(K)).

In particular, N (Tε(K),B n
2), N (B n

2 ,cε ·Tε(K)) ≤ 2εn .

Provided K is given by a weak separation oracle, the linear transformation Tε(·) can be computed

in (randomized) nO(log(n)) time.

We note that that the ellipsoid T −1
ε (B n

2) is a special case of an M-ellipsoid for K , a key concept

from convex geometry. In particular, this already yields Theorem 2.4.1 when K = B n
2 . To obtain

the full theorem for an arbitrary pair of conves bodies K and Q, we will use Theorem 4.2.1

twice, once with K and B n
2 and once with Q and B n

2 .

55

Chapter 4. Covering Numbers and Ellipsoids

Proof of Theorem 2.4.1 using Theorem 4.2.1. Let T Q
ε/2(·),T K

ε/2(·) : Rn → Rn be the linear trans-

formations guaranteed by Theorem 4.2.1 and cε/2 the corresponding constant. We will show

that we can set Tε(·) := (T Q
ε/2)−1 ◦T K

ε/2(·) and, slightly abusing notation, cε := cε/2. To see this,

set Q̃ := T Q
ε/2(Q) and K̃ := T K

ε/2(K). We use the properties provided by Theorem 4.2.1 to bound

Vol(Q̃ + cε/2 · K̃) ≤ N (Q̃ + cε/2 · K̃ ,B n
2 + cε/2 · K̃) ·Vol(B n

2 + cε/2 · K̃)
(∗)≤ N (Q̃,B n

2)︸ ︷︷ ︸
≤2ε/2n

·Vol(B n
2 + cε/2 · K̃)︸ ︷︷ ︸

≤2ε/2n ·Vol(cε/2·K̃)

≤ 2εn ·Vol(cε/2 · K̃).

In (∗) we use the fact that for any symmetric convex bodies A,B ,C one has N (A+C ,B +C) ≤
N (A,B) as any covering of A with translates of B implies a covering of A+C with translates of

B +C .

Applying (T Q
ε/2)−1 to both Q̃ + cε/2 · K̃ and cε/2 · K̃ , we obtain:

Vol(Q + cε/2 ·T (K)) = det(T Q
ε/2)−1 ·Vol(Q̃ + cε/2 · K̃)

≤ det(T Q
ε/2)−1 ·2εn ·Vol(cε/2 · K̃)

= 2εn ·Vol(cε/2 ·T (K)).

Slightly abusing notation by setting cε ← cε/2, we obtain the first volume inequality. The

other volume inequality, Vol(T (K)+cε/2 ·Q) ≤ 2εn ·Vol(cε/2 ·Q), is analogous, simply exchange

Q̃ and K̃ in the inequalities above. The translative covering inequalities are then a simple

consequence of these two volume inequalities. By Lemma 4.1.1 in the previous section, it

follows that N (Tε(K),B n
2), N (B n

2 ,cε ·Tε(K)) ≤ poly(n) ·2εn = 2εn+o(n).

We now discuss the construction of the ellipsoid / linear transformation from Theorem 4.2.1.

This construction is based on an iterative procedure called isomorphic symmetrization. It

is taken almost verbatim from the proof of existence of M-ellipsoids due to Milman (Mil88).

In particular, this technique has been made algorithmic by Dadush and Vempala (DV13) to

obtain (deterministic) algorithms for volume computation. Our contribution is largely the

observation that this procedure can be stopped earlier to yield the desired properties. For a

detailed overview on this procedure and on convex geometry in general, we refer to (AAGM15),

see also the wonderful lecture notes of Thomas Rothvoss (Rot21).

Proof of Theorem 4.2.1. We first introduce the polar (or dual) K ◦ of K . Given K ⊆Rn , we define

K ◦ := {
x ∈Rn | xT y ≤ 1, ∀y ∈ K

}
.

Whenever K = −K ⊆ Rn is full dimensional and with 0 in its interior, so is K ◦. Note that

applying a linear invertible transformation A to K transforms K ◦ by A−1, i.e. (A ·K)◦ = A−1 ·K ◦.

We can now define the M-values M(K) and M(K ◦) of K and K ◦ respectively.

M(K) = Ex∼Sn−1 [‖x‖K] and M(K ◦) = Ex∼Sn−1 [‖x‖K ◦].

56

4.2. Computing the Linear Transformation

Here Sn−1 := {x ∈Rn | ‖x‖2 = 1} is the sphere. These quantities can be estimated to arbitrary

precision using samples from K and K ◦ respectively.

We can now state the celebrated M M◦ estimate which follows from combining results of

Pisier (Pis80) and of Figiel and Tomczak-Jaegermann (FTJ79). For any symmetric convex body

K ⊆Rn , there is a linear transformation T :Rn →Rn and a universal constant C such that

M(T (K)) ·M((T (K))◦) ≤C · log(1+d(K ,B n
2)). (4.4)

Here, d(K ,B n
2) is the Banach-Mazur distance of K to the Euclidean ball. Specifically, it is the

smallest number s such that B n
2 ⊆ A ·K ⊆ s ·B n

2 for some affine map A :Rn →Rn . It is known

that for any symmetric convex body K ⊆Rn , one always has d(K ,B n
2) ≤p

n (Joh48).

The linear transformation T : Rn → Rn in (4.4) is obtained by solving the following convex

program:

maxdet(A)

Ex∈γn

[‖A(x)‖2
K

]1/2 ≤ 1 (4.5)

A ∈Rn×n symmetric positive-definite.

Here, γn denotes the Gaussian distribution onRn with density function given by 1
(2π)n/2 ·e−‖x‖2

2/2.

This program can be solved in (randomized) polynomial time within arbitrary precision. We

justify this after the description of the procedure. The linear transformation T (·) is then the

inverse of Ā, Ā−1, an (approximately) optimal solution to the convex program. This is justified

in detail in Lemma 3.2 of (DV13), we give a brief overview on their proof below.

We can now define an iterative procedure. To initialize it, we set K0 ← K and find the linear

transformation T0 (guaranteed by the M M◦ estimate) such that

M(T0(K0)) ·M((T0(K0))◦) ≤C · log(1+d(K0,B n
2)).

We now set α0 := max{d(K0,B n
2)1/4,ε−1/2}. It is sufficient to have a 2-approximation for α0

(and for α1, . . ., for later iterations). Such an approximation for α0 and the subsequent αi can

be guessed or enumerated, we briefly comment on this after the description of the procedure.

We now set Rout := (M((T0(K0))◦) ·α0, Rin := (M(T0(K0)) ·α0)−1, and define the next convex

body

K1 = conv
((

T0(K0)∩Rout ·B n
2

)∪Rin ·B n
2

)
.

This new body K1 is contained in the ball of radius Rout and contains the ball of radius Rin, see

Figure 4.2. In particular, its Banach-Mazur distance to the Euclidean ball has dropped to (at

most) Rout/Rin. Taking into account that we only know a 2-approximation for α0 and slightly

57

Chapter 4. Covering Numbers and Ellipsoids

T0(K0)

Rout ·B n
2

Rin ·B n
2

0

K1

Figure 4.2 – One iteration of the isomorphic symmetrization. The Banach-Mazur distance of
K1 to the Euclidean ball is at most Rout/Rin.

abusing notation, this can be bounded in terms of the Banach-Mazur distance d(K0,B n
2).

Rout/Rin = M(T0(K0)) ·M(T0(K ◦
0)) · (2 ·α0)2 ≤ C · log(1+α4

0) · (2 ·α0)2

= O(log(1+d(K0,B n
2)) ·d(K0,B n

2)1/2).

Crucially, we have the following volume estimate. For any symmetric convex body P ⊆Rn ,

2−C n/α2
0 ·Vol(K1 +P)

(∗)≤ Vol(T0(K0)+P)
(∗∗)≤ 2C n/α2

0 ·Vol(K1 +P). (4.6)

We briefly outline the proof for these volume estimates. For any symmetric convex bodies

L,T ⊆Rn and any r > 0 one has

Vol(conv(L∪ r ·B n
2)+T) · (6 ·β ·n ·N (r ·B n

2 ,L))−1 ≤ Vol(L+T),

where β≥ 1 is such that r ·B n
2 ⊆β ·L. We can now use the dual Sudakov inequality. For t > 0,

we have

N (B n
2 , t ·L) ≤ eC ·n·(M(L)

t)2

.

Setting L := T0(K0), T := P and r := Rin, we observe that

Vol(conv(T0(K0)∪Rin ·B n
2︸ ︷︷ ︸

⊇K1

)+P) · (6 ·β ·n ·eC ·n·α−2
0)−1 ≤ Vol(T0(K0)+P).

Since 1
M(K0)·pn

·B n
2 ⊆ K0 (this is implied by the definition of the M-value), we can set β=O(

p
n)

and the left-hand-side (∗) follows. For the right-hand side, we use the fact that that for any

58

4.2. Computing the Linear Transformation

symmetric convex bodies L,T ⊆Rn and r > 0, we have

Vol(L+T) ≤ N (L,r ·B n
2) ·Vol((L∩ r ·B n

2)+T).

By the Sudakov inequality we have that

N (L, t ·B n
2) ≤ eO(n)·(M(K ◦)

t)2

.

Setting r := Rout, L = T0(K0), T = P and observing that K1 ⊆ T0(K0)∩Rout ·B n
2 , (∗∗) follows.

We note that the constants in the exponents of the primal and dual Sudakov inequality are

universal, so we just denote them by C as well. For a proof, we refer to Chapter 8 of (AAGM15).

We now define K j , for j ≥ 2. Given K j−1, we first compute the linear transformation T j−1 given

by the M M◦ estimate (4.4), and, analogously to before with T0(K0) replaced by T j−1(K j−1),

α j−1 = max{d(K j−1,B n
2)1/4,ε−1/2}, R j−1

out := (M((T j−1(K j−1))◦)·α j−1 and R j−1
in := (M(T j−1(K j−1))·

α j−1)−1, we define

K j = conv
((

T j−1(K j−1)∩R j−1
out) ·B n

2

)∪R j−1
in ·B n

2

)
.

The volume estimate for K j and T j−1(K j−1) are as follows. For any symmetric convex body

P ⊆Rn ,

2−C n/α2
j−1 ·Vol(K j +P) ≤ Vol(T j−1(K j−1)+P) ≤ 2C n/α2

j−1 ·Vol(K j +P) (4.7)

In each iteration K j−1 → K j , the respective Banach Mazur distance to the Euclidean ball is

dropping. Specifically, if d(K j−1,B n
2) ≥ ε−1/2 (we may assume ε is small enough), we have

d(K j ,B n
2) ≤ R j−1

out /R j−1
in ≤O(C) ·d(K j−1,B n

2)1/2 · log(1+d(K j−1,B n
2)) ≤ 1

2
d(K j−1,B n

2).

Since B n
2 ⊆ K ⊆p

n ·B n
2 , after at most log(n) iterations, αt−1 = ε−1/2. Up to scaling the resulting

convex body Kt by (R t−1
in)−1, we have the following inclusions,

ε1/2 ·B n
2 ⊆ Kt ⊆C ·ε−1/2 · log(1+ε−2) ·B n

2 . (4.8)

For the right-hand side, we have used the M M◦ estimate (4.4) and that d(Kt−1,B n
2) ≤ ε−2.

Indeed, otherwise, αt−1 would be set to d(Kt−1,B n
2)1/4 > ε−1/2, contradicting the choice of t .

Since α j−1 ≤ 2 ·α j for j ≤ t −1 and αt−1 = ε−1/2, we have that 1
α2

0
+ . . .+ 1

α2
t−1

≤ ε ·O(1). Hence,

we can iteratively combine the volume estimates in (4.7) to arrive at

2−O(ε)n ·Vol(Kt +P) ≤ Vol(Tt−1 ◦ . . .◦T0(K)+P) ≤ 2O(ε)n ·Vol(Kt +P). (4.9)

We can now give bounds on N (Tt−1 ◦ . . .◦T0(K),ρ1 ·B n
2) and N (ρ2 ·B n

2 ,Tt−1 ◦ . . .◦T0(K)).

59

Chapter 4. Covering Numbers and Ellipsoids

For ρ1 := (C ·ε−3/2 · log(1+ε−2)), we obtain that,

Vol(Tt−1 ◦ . . .◦T0(K)+ρ1 ·B n
2)

(∗)≤ 2O(ε)n ·Vol(Kt +ρ1 ·B n
2)

(∗∗)≤ 2O(ε)n ·Vol(ρ1 ·B n
2). (4.10)

For (∗), we have used the rightmost inequality in (4.9), valid for any convex body −P = P , with

P = ρ1 ·B n
2 . For (∗∗), we use that Kt ⊆ (ε ·ρ1) ·B n

2 , given by the inclusion on the right-hand side

in (4.8), combined with Vol((1+ε) ·ρ1 ·B n
2) ≤ 2O(ε)n ·Vol(ρ1 ·B n

2).

For ρ2 := ε3/2, we proceed analogously. We first use the rightmost inequality in (4.9), followed

by the inclusion on the left-hand side in (4.8) combined with Vol((1+ε) ·Kt) ≤ 2O(ε)n ·Vol(Kt),

and finally, the leftmost inequality in (4.9) with P = 0, to arrive at

Vol(Tt−1 ◦ . . .◦T0(K)+ρ2 ·B n
2) ≤ 2O(ε)n ·Vol(Kt +ρ2 ·B n

2)

≤ 2O(ε)n ·Vol(Kt)

≤ 2O(ε)n ·Vol(Tt−1 ◦ . . .◦T0(K)). (4.11)

We set Tε(·) := ρ−1
1 ·Tt−1 ◦ . . .◦T0(·) and cε := ρ2/ρ1 =O(ε−3 · log(1/ε)). By (4.10) and (4.11), the

volume inequalities

Vol(Tε(K)+B n
2) ≤ 2εn ·Vol(B n

2)

and

Vol(B n
2 + cε ·Tε(K)) ≤ 2εn ·Vol(cε ·Tε(K))

immediately follow by replacing ε by a fraction of itself in the beginning. This concludes the

description of the procedure.

We now discuss several implementation details.

We have only assumed the existence of a (weak) separation oracle for the original body K0 := K .

This is sufficient to construct a separation oracle for all intermediate bodies K j appearing in

the description of the procedure above and to compute their respective linear transformations

guaranteed by the M M◦ estimate in quasi-polynomial time. Each such body is of the form

K j = conv((T j−1(K j−1)∩R j−1
out ·B n

2)∪R j−1
in ·B n

2). Indeed, for any convex bodies L,T ⊆Rn given

by a separation oracle, we can construct a weak separation oracle for L◦, conv(L∪T) and L∩T .

One call to such a weak separation oracle can be evaluated using a polynomial number (in n

and log(1/ε), the additive error) of calls to a weak separation oracle for L and T . This follows

from the ellipsoid method and the equivalence of optimization and separation, see (GLS88).

Hence, given a weak membership oracle for K j−1, we can solve the separation problem for

K j in polynomial time. Since there are at most log(n) iterations to consider, each call to a

separation oracle for K j can be evaluated by nO(log(n)) calls to the separation oracle for K0 and

results in an overall running time of nO(log(n)).

We do rely on (approximately) computing the M-values Ex∼Sn−1 [‖x‖L], Ex∼Sn−1 [‖x‖L◦] and

60

4.2. Computing the Linear Transformation

Ex∈γn

[‖T (x)‖2
L

]1/2. If the convex body is presented by a weak separation oracle, this can be

achieved in polynomial time to any desired accuracy. Let us illustrate this for computing M(L).

We first apply a linear transformation so that B n
2 ⊆ L ⊆ (n +1) ·B n

2 . We sample random points

x1, . . . , xm ∼ B n
2 , and compute

X̄ := 1

m

m∑
i=1

‖ x
‖x‖2

‖L .

If m = 1, i.e. we only consider one such sample, this equals the M-value of L, in expectation.

Since L ⊆ (n + 1) ·B n
2 , this is lower bounded by 1

n+1 . Since B n
2 ⊆ L, the variance in turn is

bounded by 1. Hence, by Chebychev’s inequality, for m =O(n3), the probability that

|X̄ −M(L)| > 1
n

is bounded by 1/n. This can be boosted by taking larger m or by applying the median trick.

For the M-value of its dual, we can proceed similarly, using the fact that a weak separation

oracle for L implies the existence of a weak separation oracle for L◦, see (GLS88). Finally, for

Ex∈γn

[‖T (x)‖2
L

]1/2, we observe that this equals
p

n ·Ex∼Sn−1 [‖T (x)‖2
L]1/2. This can be seen by

polar integration. Hence, this can be estimated similar to M(L) and M(L◦).

In each iteration K j → K j+1 we rely on guessing d(Ki ,B n
2) up to a factor of 2 and seem to

know the right iteration t at which to stop. This is without loss of generality. Indeed, since

1 ≤ d(Ki ,B n
2) ≤p

n and d(Ki ,B n
2) ≤ 1

2 ·d(Ki ,B n
2), there are at most log(n)log(n) possibilities in

total. We can either guess and succeed with probability log(n)− log(n), or we return log(n)log(n)

different convex bodies, one of which verifies the desired properties. Both of these options are

fine for our purpose.

Finally, let us outline how the convex program (4.5) can be (approximatively) solved using the

ellipsoid method and why such an approximation still implies the M M◦-inequality (4.4).

To approximately solve the convex program, we work directly in Rn·(n+1)/2 which can be iden-

tified with the space of symmetric n ×n matrices A = (Ai j) in the obvious way. We define

A ⊆Rn·(n+1)/2 as the set of all symmetric and positive-definite matrices that are feasible for

the convex program (4.5). Clearly, A is convex. We now build a weak separation oracle for

A . We recall that a weak membership oracle for A can be turned into a weak separation

oracle for A , provided there exist r,R > 0 and s ∈ Rn×n such that s + r ·B n
2 ⊆ A ⊆ R ·B n

2 .

This can be achieved in polynomial time in n, log(r) and log(R). It will be easier to work

with a weak membership oracle. Indeed, for any symmetric linear transformation A ∈ A ,

we can estimate Ex∈γn

[‖A(x)‖2
K

]1/2 to any desired accuracy using a polynomial number of

calls to a weak separation oracle. Hence, a weak membership oracle is trivial to imple-

ment. It remains to exhibit some s ∈ Rn·(n+1)/2 and r,R ∈ R>0 so that s + r ·B n·(n+1)/2
2 ⊆ A

and A ⊆ R · B n·(n+1)/2
2 , to turn this into a weak separation oracle. Note that we can as-

sume that K is in John’s position, i.e. B n
2 ⊆ K ⊆ (n + 1) · B n

2 . Using polar coordinates, we

rewrite Ex∈γn

[‖A(x)‖2
K

]1/2 = p
n · Ex∼Sn−1 [‖A(x)‖2

K]1/2. Since B n
2 ⊆ K , ‖ · ‖K ≤ ‖ · ‖2, and the

latter is bounded by
p

n · Ex∼Sn−1 [‖A(x)‖2
2]1/2. Thus, for A(s) = (2 · pn)−1 · In , we have that

61

Chapter 4. Covering Numbers and Ellipsoids

Ex∈γn

[‖A(s)(x)‖2
K

]1/2 ≤ 1/2. Hence, we can set s := A(s). By Gershgorin’s circle theorem, the

eigenvalues of A(s) only change slightly when we slightly perturb its entries, i.e. when we

consider A(s) + Ã, for ‖Ã‖∞ small. Furthermore, by Minkowski’s inequality, this changes the

constraint only very slightly:

Ex∼γn [‖(A(s) + Ã)(x)‖2
K]1/2 ≤ Ex∼γn [‖A(s)(x)‖2

K]1/2 +Ex∼γn [‖Ã(x)‖2
K]1/2

(∗)≤ 1/2+p
n ·Ex∼Sn−1 [‖Ã(x)‖2

2]1/2

(∗∗)≤ 1/2+p
n · ‖Ã‖F .

For (∗) we use polar integration combined with B n
2 ⊆ K , i.e. ‖ · ‖K ≤ ‖ · ‖2 as done earlier.

For (∗∗), we note that ‖Ã‖F is the Frobenius norm of Ã, i.e. the `2 norm of all coefficients of

the matrix Ã. Equivalently, the Frobenius norm of Ã is the `2 norm of all eigenvalues of Ã.

Hence, it is clear that this is an upper bound on ‖Ã(x)‖2
2, x ∈Sn−1, meaning that for r ≈ n−2,

A(s) + r ·B n·(n+1)/2
2 ⊆A . On the other hand, we observe that any matrix in A cannot have an

eigenvector of eigenvalue larger than n3. Indeed, if such an eigenvector v ∈Sn−1 were to exist,

we can lower bound the constraint as follows

Ex∼Sn−1 [‖A(x)‖2
K]1/2 > 1

n+1 Pr[x ∈Sn−1 | vT · x ≥ 1/n] · [‖T (v
n)‖2] ≥Ω(n).

Here, we have used the fact that probability of Pr[x ∈Sn−1 | vT ·x ≥ 1/n] is at least a constant

and that K ⊆ (n +1) ·B n
2 . Hence, the Frobenius norm of any matrix in A is bounded by n4,

and we can set R = n4. Hence, in time polynomial in n · (n + 1)/2 (the dimension of the

problem), log(1/r), log(R) and log(1/ε), we can turn a weak membership oracle for A into a

weak separation oracle for A . Here, ε> 0 is the additive error of the weak membership and

weak separation oracle. Hence, one call to a weak separation oracle for A can be evaluated

in time polynomial in n. Since the convex program (4.5) can be approximated to arbitrary

precision using a polynomial number of calls to a weak separation oracle for A , this implies

an overall running time polynomial in n and log(1/ε) to find a solution within a factor of (1−ε)

of the optimum.

It remains to argue why approximate solutions to the convex program (4.5) are sufficient for

our purpose, i.e. why their inverse satisfy the M M◦ estimate (4.4). To do so, it will be helpful

to work with the `-norm, which is defined as `K (A) = Ex∈γn [‖A(x)‖2
K]1/2. Here, K is supposed

to be fixed, hence this is a matrix norm. We note however that this norm is related to M(A(K)),

i.e. Θ(
p

n) ·M(A(K)) = `K (A−1), we justify this below. Since `K (·) is a matrix norm, one can

define a dual norm `∗K :Rn×n →R≥0 by

`∗K (A) = sup(tr(A ·S) | S ∈Rn×n ,`K (S) ≤ 1)

62

4.2. Computing the Linear Transformation

Using a variational argument, Lewis (Lew79) showed that there exists a linear transformation

Ā ∈Rn×n such that

`K (Ā) ·`∗K (Ā−1) ≤ n. (4.12)

In fact, this holds for any matrix normα :Rn×n →R≥0 (exchange `K (·) byα(·) in the definitions

above) and such a linear transformation Ā is given by

argmax det(A)

α(A) ≤ 1

A ∈Rn×n invertible.

For the special case of `K (·), by rotational symmetry of the Gaussian, one can restrict to linear

transformations A ∈Rn×n that are symmetric positive-definite. In particular, we recover (4.5).

For a near optimal optimizer Ã to this convex program, (e.g. det(Ã) ≥ (1− ε) ·det(Ā)), the

estimate 4.12 holds up to a small multiplicative factor,

`K (Ã) ·`∗K (Ã−1) ≤ n · (1+6 ·poly(n) ·pε). (4.13)

This was shown in detail by Dadush and Vempala in (DV13), in Lemma 3.2. Their proof

is stated for general matrix norms α(·), under the assumption that α(·) is such that α(A) ≤
‖A‖F ≤ poly(n) ·α(A) (which holds in our case). Hence, for a sufficiently small ε, the right-

hand-side of (4.13) can be taken to be equal to 2 ·n. This then implies the M M◦ estimate.

Indeed, results of Figiel, Tomczak-Jaegermann and Pisier (FTJ79; Pis80) show that `∗K (·) ≤
O(`K ◦(·) · log(1+d(K ,B n

2)). Hence, for such an Ã, one has

`K (Ã) ·`K ◦(Ã−1) ≤O(n) · log(1+d(K ,B n
2)) (4.14)

To relate this to the M M◦ estimate, we observe that

`K (Ã)
(∗)= p

n ·Ex∼Sn−1 [‖Ã(x)‖2
K]1/2 (∗∗)= Θ(

p
n) ·Ex∼Sn−1 [‖Ã(x)‖K]

(∗∗∗)= Θ(
p

n) ·M(Ã−1(K)),

where in (∗) we have used partial integration, in (∗∗) have used the Khintchine-Kahane

inequality, and in (∗∗∗) we have used that ‖Ã(x)‖K = ‖x‖Ã−1(K). Similarly, we see that

`K ◦(Ã−1) =p
n ·Ex∼Sn−1 [‖Ã−1(x)‖2

K ◦]1/2 =Θ(
p

n) ·Ex∼Sn−1 [‖Ã−1(x)‖K ◦]
(∗)= Θ(

p
n) ·M((Ã−1(K))◦),

where in (∗) we have used that ‖Ã−1(x)‖K = ‖x‖Ã(K ◦) and Ã(K ◦) = (Ã−1(K))◦. Hence, inequality

(4.14) yields the M M◦ estimate (4.4) by setting T (·) = Ã−1. This concludes the proof.

63

Bibliography

[AAGM15] Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali Milman, Asymptotic

geometric analysis, part i, AMS, 2015.

[AB09] Sanjeev Arora and Boaz Barak, Computational complexity: a modern approach,

Cambridge University Press, 2009.

[ABB+55] Paul Armer, E.C. Bower, Bernice Brown, G.W. Brown, Walter Frantz, J.J. Goodpas-

ture, W.F. Gunning, Cecil Hastings, Olaf Helmer, M.L Juncosa, J.D. Madden, A.M.

Mood, R.T. Nash, and J.D. Williams, A million random digits with 100,000 normal

deviates, RAND Corporation, 1955.

[ABD+] Erdem Alkim, Joppe W. Bos, Léo Ducas, Patrick Longa, Ilya Mironov, Michael

Naehrig, Valeria Nikolaenko, Chris Peikert, Ananth Raghunathan, and Douglas

Stebila, Frodokem - learning with errors key encapsulation (algorithm specifica-

tions and supporting documentation).

[ABGS21] Divesh Aggarwal, Huck Bennett, Alexander Golovnev, and Noah Stephens-

Davidowitz, Fine-grained hardness of CVP(P)– Everything that we can prove (and

nothing else), SODA, 2021.

[ACK+21] Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, Li, and Noah Stephens-

Davidowitz, Dimension-preserving reductions between SVP and CVP in different

p-norms, SODA, 2021.

[ADRS15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz,

Solving the shortest vector problem in 2n time using discrete gaussian sampling,

STOC, 2015.

[ADS15] Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz, Solving the

closest vector problem in 2n time – the discrete gaussian strikes again!, FOCS, 2015.

[Ajt96] Miklós Ajtai, Generating hard instances of lattice problems (extended abstract),

STOC, 1996.

[Ajt98] Miklós Ajtai, The shortest vector problem in `2 is NP-hard for randomized reduc-

tions (extended abstract), STOC, 1998.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar, A sieve algorithm for the shortest

lattice vector problem, STOC, 2001.

65

Bibliography

[AKS02] Miklós Ajtai, Ravi Kumar, and D. Sivakumar, Sampling short lattice vectors and the

closest lattice vector problem, CCC, 2002.

[ALNSD20] Divesh Aggarwal, Jianwei Li, Phong Q. Nguyen, and Noah Stephens-Davidowitz,

Slide reduction, revisited – filling the gaps in svp approximation, CRYPTO, 2020.

[ALS21] Divesh Aggarwal, Zeyong Li, and Noah Stephens-Davidowitz, A 2n/2-time algo-

rithm for
p

n-SVP and
p

n-hermite SVP, and an improved time-approximation

tradeoff for (H)SVP, EUROCRYPT, 2021.

[AM18] Divesh Aggarwal and Priyanka Mukhopadhyay, Improved algorithms for the short-

est vector problem and the closest vector problem in the infinity norm, ISAAC,

2018.

[AR05] Dorit Aharonov and Oded Regev, Lattice problems in NP ∩ coNP, J. ACM 52.5

(2005).

[Aro95] Sanjeev Arora, Probabilistic checking of proofs and hardness of approximation

problems, Ph.D. thesis, University of California at Berkeley, 1995.

[AS18a] Divesh Aggarwal and Noah Stephens-Davidowitz, (Gap/S)ETH hardness of SVP,

STOC, 2018.

[AS18b] Divesh Aggarwal and Noah Stephens-Davidowitz, Just take the average! an embar-

rassingly simple 2n-time algorithm for SVP (and CVP), SOSA, 2018.

[Bab86] László Babai, On lovász’ lattice reduction and the nearest lattice point problem,

Combinatorica 6 (1986).

[BGS17] Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz, On the quan-

titative hardness of CVP, FOCS, 2017.

[BN09] Johannes Blömer and Stefanie Naewe, Sampling methods for shortest vectors,

closest vectors and successive minima, Theor. Comput. Sci. 410.18 (2009).

[BS18] Matthias Beck and Raman Sanyan, Combinatorial reciprocity theorems, AMS,

2018.

[Dad12a] Daniel Dadush, Integer programming, lattice algorithms, and deterministic vol-

ume estimation, Ph.D. thesis, Georgia Institute of Technology, 2012.

[Dad12b] Daniel Dadush, A O(1/ε2)n time sieving algorithm for approximate integer pro-

gramming, LATIN, 2012.

[DB15] Daniel Dadush and Nicolas Bonifas, Short paths on the voronoi graph and closest

vector problem with preprocessing, SODA, 2015.

[DFK91] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan, A random polynomial time

algorithm for approximating the volume of convex bodies, J. ACM 38.1 (1991).

66

Bibliography

[Din16] Irit Dinur, Mildly exponential reduction from gap 3sat to polynomial-gap label-

cover, Electron. Colloquium Comput. Complex. 23 (2016).

[DK16] Daniel Dadush and Gábor Kun, Lattice sparsification and the approximate closest

vector problem, Theory of Computing 12.1 (2016).

[DKL+] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,

Gregor Seiler, and Damien Stehlé, Crystals-dilithium – algorithm specifications

and supporting documentation (version 3.1).

[DKRS03] Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra, Approximating CVP to within

almost-polynomial factors is NP-hard, Combinatorica 23.2 (2003).

[DPV11] Daniel Dadush, Chris Peikert, and Santosh S. Vempala, Enumerative lattice algo-

rithms in any norm via m-ellipsoid coverings, FOCS, 2011.

[DV13] Daniel Dadush and Santosh Vempala, Near-optimal deterministic algorithms for

volume computation via m-ellipsoids, Proceedings of the National Academy of

Sciences, 2013.

[EHN11] Friedrich Eisenbrand, Nicolai Hähnle, and Martin Niemeier, Covering cubes and

the closest vector problem, SoCG, 2011.

[Eis10] Friedrich Eisenbrand, Integer programming and algorithmic geometry of numbers,

Springer Berlin Heidelberg, 2010.

[EV22] Friedrich Eisenbrand and Moritz Venzin, Approximate CVPp in time 20.802n , J.

Comput. Syst. Sci. 124 (2022).

[FTJ79] Tadeusz Figiel and Nicole Tomczak-Jaegermann, Projections onto hilbertian sub-

spaces of banach spaces, Israel Journal of Mathematics 33.2 (1979).

[Gen09] Craig Gentry, Fully homomorphic encryption using ideal lattices, STOC, 2009.

[GG00] Oded Goldreich and Shafi Goldwasser, On the limits of nonapproximability of

lattice problems, Journal of Computer and System Sciences 60.3 (2000).

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver, Geometric algorithms

and combinatorial optimization, The Journal of the Operational Research Society,

1988.

[GMSS99] Oded Goldreich, Daniele Micciancio, Shmuel Safra, and Jean-Pierre Seifert, Ap-

proximating shortest lattice vectors is not harder than approximating closest lattice

vectors, Inf. Process. Lett. 71.2 (1999).

[GN08] Nicolas Gama and Phong Q. Nguyen, Finding short lattice vectors within mordell’s

inequality, STOC, 2008.

67

Bibliography

[HR07] Ishay Haviv and Oded Regev, Tensor-based hardness of the shortest vector problem

to within almost polynomial factors, STOC, 2007.

[HRS20] Christoph Hunkenschröder, Gina Reuland, and Matthias Schymura, On com-

pact representations of voronoi cells of lattices, Mathematical Programming 183.1

(2020).

[IP01] Russell Impagliazzo and Ramamohan Paturi, On the complexity of k-sat, J. Com-

put. Syst. Sci. 62.2 (2001).

[Joh48] Fritz John, Extremum problems with inequalities as subsidiary conditions, Stud-

ies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948,

Interscience Publishers, Inc., 1948.

[Kan87] Ravi Kannan, Minkowski’s convex body theorem and integer programming, Math.

Oper. Res. 12.3 (1987).

[Kar72] Richard M. Karp, Reducibility among combinatorial problems, Complexity of

Computer Computations, The IBM Research Symposia Series, 1972.

[Kho05] Subhash Khot, Hardness of approximating the shortest vector problem in lattices, J.

ACM 52.5 (2005).

[KL78] Grigorii Anatolevich Kabatiansky and Vladimir Iosifovich Levenshtein, On bounds

for packings on a sphere and in space, Problemy Peredachi Informatsii 14.1 (1978).

[KPV12] Subhash A. Khot, Preyas Popat, and Nisheeth K. Vishnoi, 2log1−ε(n) hardness for the

closest vector problem with preprocessing, STOC, 2012.

[Len83] Hendrik W. Lenstra, Integer programming with a fixed number of variables, Math.

Oper. Res. 8.4 (1983).

[Lew79] Daniel R. Lewis, Ellipsoids defined by banach ideal norms, Mathematika 26.1

(1979).

[Lin63] Joram Lindenstrauss, On the modulus of smoothness and divergent series in ba-

nach spaces., Michigan Math. J. 10.3 (1963).

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász, Factoring polynomials

with rational coefficients, Mathematische Annalen 261.4 (1982).

[LMvdP15] Thijs Laarhoven, Michele Mosca, and Joop van de Pol, Finding shortest lattice vec-

tors faster using quantum search, Designs, Codes and Cryptography 77.2 (2015).

[LWXZ11] Mingjie Liu, Xiaoyun Wang, Guangwu Xu, and Xuexin Zheng, Shortest lattice

vectors in the presence of gaps, IACR Cryptology ePrint Archive (2011).

[Mic01] Daniele Micciancio, The shortest vector in a lattice is hard to approximate to within

some constant, SIAM Journal on Computing 30.6 (2001).

68

Bibliography

[Mil88] V. D. Milman, Isomorphic symmetrization and geometric inequalities, Geometric

aspects of functional analysis (1986/87), Springer, Berlin, 1988.

[Min10] Hermann Minkowski, Geometrie der Zahlen, 1910.

[MR17] Pasin Manurangsi and Prasad Raghavendra, A birthday repetition theorem and

complexity of approximating dense CSPs, ICALP, 2017.

[MU05] Michael Mitzenmacher and Eli Upfal, Probability and computing: Randomized

algorithms and probabilistic analysis, Cambridge University Press, 2005.

[Muk21] Priyanka Mukhopadhyay, Faster provable sieving algorithms for the shortest vector

problem and the closest vector problem on lattices in `p norm, Algorithms 14.12

(2021).

[MV10a] Daniele Micciancio and Panagiotis Voulgaris, A deterministic single exponential

time algorithm for most lattice problems based on voronoi cell computations,

STOC, 2010.

[MV10b] Daniele Micciancio and Panagiotis Voulgaris, Faster exponential time algorithms

for the shortest vector problem, SODA, 2010.

[Nas14] Márton Naszódi, On some covering problems in geometry, Proceedings of the

American Mathematical Society 144 (2014).

[NV22] Márton Naszódi and Moritz Venzin, Covering convex bodies and the closest vector

problem, Discrete & Computational Geometry 67.4 (2022).

[Odl90] Andrew M. Odlyzko, The rise and fall of knapsack cryptosystems, In Cryptology

and Computational Number Theory, 1990.

[Pei08] Chris Peikert, Limits on the hardness of lattice problems in `p norms, Comput.

Complex. 17.2 (2008).

[Pis80] Gilles Pisier, Sur les espaces de banach k-convexes, Seminar on Functional Analysis,

1979–1980 (French), École Polytech., Palaiseau, 1980.

[Pis89] Gilles Pisier, A new approach to several results of V. Milman, J. Reine Angew. Math.

393 (1989).

[PS09] Xavier Pujol and Damien Stehlé, Solving the shortest lattice vector problem in time

22.465n , IACR Cryptology ePrint Archive (2009).

[Reg04] Oded Regev, Lattices in computer science, lecture 8: 2O(n) algorithm for svp, 2004.

[Reg09] Oded Regev, On lattices, learning with errors, random linear codes, and cryptogra-

phy, J. ACM 56.6 (2009).

[Rot21] Thomas Rothvoss, Asymptotic convex geometry, lecture notes, 2021.

69

Bibliography

[RR06] Oded Regev and Ricky Rosen, Lattice problems and norm embeddings, STOC,

2006.

[RV22] Thomas Rothvoss and Moritz Venzin, Approximate CVP in time 20.802n - now in

any norm!, IPCO, 2022.

[Sch87] Claus-Peter Schnorr, A hierarchy of polynomial time lattice basis reduction algo-

rithms, Theoretical computer science 53.2-3 (1987).

[Ste16] Noah Stephens-Davidowitz, Discrete gaussian sampling reduces to CVP and SVP,

SODA, 2016.

[Tal98] István Talata, Exponential lower bound for the translative kissing numbers of d

-dimensional convex bodies, Discrete & Computational Geometry 19.3 (1998).

[vEB81] Peter van Emde Boas, Another NP-complete problem and the complexity of com-

puting short vectors in a lattice, Technical Report 81-04, Mathematische Instituut,

University of Amsterdam (1981).

70

Moritz Venzin
Personal Data

Nationality and Date of Birth: Swiss | 20 Oktober 1993
Contact information: moritz.venzin@epfl.ch | +41 078 640 84 87

Education

2022 Sep PhD in Applied Mathematics
-2018 Sep École Polytechnique Fédérale de Lausanne (EPFL), Lausanne

Advisor: Prof. Friedrich Eisenbrand

2018 Feb Bachelor and Master’s Degree in Pure Mathematics
- 2013 Sep École Polytechnique Fédérale de Lausanne (EPFL), Lausanne

Publications

• ”Approximate CVP in time 20.802n - now in any norm!” with T. Rothvoss.
Integer Programming and Combinatorial Optimization (IPCO), 2022.

• ”A QPTAS for stabbing rectangles” with F. Eisenbrand, M. Gallato, O. Svensson.

• ”Efficient Sequential and Parallel Algorithms for Multistage Stochastic Integer Program-
ming Using Proximity” with J. Cslovjecsek, F. Eisenbrand, P. Pilipczuk, R. Weismantel.
29th Annual European Symposium on Algorithms (ESA), 2021.

• ”Approximate CVPp in time 20.802n” with F. Eisenbrand.
28th Annual European Symposium on Algorithms (ESA), 2020.
Winner of Best Paper Award.

• ”Covering Convex Bodies and the Closest Vector Problem” with M. Naszódi.
Discrete and Computational Geometry (DCG).

Awards
• Best Paper Award (ESA 2020)

• Doc.Mobility Fellowship SNF
I was awarded 25’000 CHF from the Swiss National Foundation to fund a 6 month research visit to the
University of Washington to work with Prof. Thomas Rothvoss.

71

	Acknowledgements
	Abstract
	Contents
	Introduction
	Introduction to Lattice Problems
	Lattices and Convex Bodies
	Computational Model
	Algorithms for Lattice Problems
	Complexity of Lattice Problems

	Reductions across various Norms
	Lattice Sparsification
	Self-Reduction of the Shortest Vector Problem in various Norms
	Self-Reduction of the Closest Vector Problem in various Norms
	Approximate Shortest Vectors in Any Norm Reduces to the Closest Vector Problem

	Algorithms in any Norm
	Sieving for Shortest and Closest Vectors
	Approximating the Closest Vector by Sieving in any Norm
	Lattice Sparsification and the Closest Vector Problem

	Covering Numbers and Ellipsoids
	Volume Estimates and Coverings
	Computing the Linear Transformation

	Bibliography
	Curriculum Vitae

