
Momentum-Based Policy Gradient with Second-Order Information

Saber Salehkaleybar1 2, Sadegh Khorasani1, Negar Kiyavash2, Niao He3, Patrick Thiran1

1School of Computer and Communication Sciences, EPFL
2College of Management of Technology, EPFL

3Department of Computer Science, ETH Zurich

Abstract

Variance-reduced gradient estimators for policy gradient meth-
ods have been one of the main focus of research in the rein-
forcement learning in recent years as they allow acceleration of
the estimation process. We propose a variance-reduced policy-
gradient method, called SHARP, which incorporates second-
order information into stochastic gradient descent (SGD) using
momentum with a time-varying learning rate. SHARP algo-
rithm is parameter-free, achieving ε-approximate first-order
stationary point with O(ε−3) number of trajectories, while
using a batch size ofO(1) at each iteration. Unlike most previ-
ous work, our proposed algorithm does not require importance
sampling which can compromise the advantage of variance
reduction process. Moreover, the variance of estimation error
decays with the fast rate of O(1/t2/3) where t is the number
of iterations. Our extensive experimental evaluations show the
effectiveness of the proposed algorithm on various control
tasks and its advantage over the state of the art in practice.

1 Introduction
Reinforcement Learning (RL) has achieved remarkable suc-
cess in solving various complex tasks in games (Silver et al.
2017), autonomous driving (Shalev-Shwartz, Shammah, and
Shashua 2016), and robot manipulation (Deisenroth et al.
2013), among other fields. In RL setting, an agent tries to
learn the best actions by interacting with the environment and
evaluating its performance based on reward signals. More
specifically, in Markov Decision Processes (MDPs), the math-
ematical formalism for RL, after taking an action, the state
changes according to a transition probability model and a
reward signal is received based on the action taken and the
current state. The main goal of the learner is to find a policy
that maps the state space to the action space, maximizing the
expected cumulative rewards as the objective function.

Policy gradient methods (Sutton et al. 2000) are often
used for obtaining good policies in MDPs, especially for
high-dimensional continuous action space. In policy gradi-
ent methods, the policy is parameterized by an unknown
parameter θ and it is directly optimized using the stochastic
first-order gradient of cumulative rewards as it is infeasible
to compute the gradient exactly. REINFORCE (Williams
1992), PGT (Sutton et al. 2000), and GPOMDP (Baxter and
Bartlett 2001) are some classical methods that update the

Preprint.

policy by applying a stochastic gradient ascent step. These
methods generally require a large number of trajectories due
to the large variance of gradient estimates, stemming from
randomness of transitions over trajectories.

In the RL literature, several methods have been proposed
to reduce the variance in policy gradient methods. For in-
stance, (Sutton et al. 2000) proposed to consider a baseline
in order to reduce variance of gradient estimation. (Konda
and Tsitsiklis 2000) presented an actor-critic algorithm that
estimates the value function and uses it to mitigate the effect
of large variance. (Schulman et al. 2015b) proposed GAE
to control both bias and variance by exploiting a temporal
difference relation for the advantage function approximation.
More recent work such as TRPO (Schulman et al. 2015a)
considers a Kullback-Leibler (KL) divergence penalty term
in order to ensure that the updated policy remains close to
the current policy or PPO (Schulman et al. 2017) that uses
clipped surrogate objective function to achieve the same goal.
In practice, it has been shown that these algorithms have
better performance compared with vanilla policy gradient
method.

Most stochastic gradient based policy methods need
O(ε−4) trajectories in order to achieve ε-approximate first-
order stationary point (FOSP) of the objective function J(θ),
i.e., E[‖∇J(θ)‖] ≤ ε (Ghadimi and Lan 2013; Shani, Efroni,
and Mannor 2020). In recent years, there have been several
attempts to reduce the variance of policy gradient by adapting
variance reduction techniques proposed previously in super-
vised learning context (a list of previous work is given in
Section 4). These methods can achieve sample complexity
of O(ε−3) in RL setting and this rate is optimal in stochastic
optimization under some mild assumptions on the objective
function and stochastic gradients (Arjevani et al. 2020). In
supervised learning problems, the objective function is obliv-
ious, in the sense that the randomness that selects the loss
function does not depend on the parameters that are to be
optimized. On the other hand, in RL setting, the distribution
over trajectories is non-stationary and changes over time as
the parameters of policy are updated. To resolve this issue,
most previous work utilized importance sampling techniques,
which may degrade the effectiveness of the variance reduc-
tion process (Yang et al. 2019). Moreover, to analyze the
convergence rate of these methods, a strong assumption on
the variance of importance sampling weights is assumed,

ar
X

iv
:2

20
5.

08
25

3v
2

 [
cs

.L
G

]
 1

8
A

ug
 2

02
2

which may not hold in RL setting. Most importantly, these
methods often need huge batch sizes, which is highly unde-
sirable in practice.

In this paper, we propose Stochastic Hessian Aided Recur-
sive Policy gradient (SHARP) algorithm, which incorporates
second-order information into SGD with momentum. Our
main contributions are summarized as follows:

• Under some common regularity assumptions on the pa-
rameterized policy, SHARP reaches ε-FOSP with a sam-
ple complexity of O(ε−3). Moreover, our algorithm does
not use importance sampling techniques. As a result, we
can relax the strong additional assumptions on importance
sampling weights customary in the literature.

• The batch size of SHARP is O(1) and it does not require
checkpoints, thanks to the use of a second-order term in
the updates and time-varying learning rate and momentum
weight.

• SHARP is parameter-free in the sense that the initial learn-
ing rate and momentum weight do not depend on the pa-
rameters of the problem. Moreover, the variance of the
estimation error decays with the rate of O(1/t2/3), where
t is the number of iterations.

• Our experimental results show that SHARP outperforms
the state of the art on various control tasks, with remark-
able performance in more complex environments.

The rest of this paper is organized as follows: In Section 2,
we define the problem and provide some notations and back-
ground on variance reduction methods in supervised learning.
In Section 3, we describe the proposed algorithm and analyze
its convergence rate. In Section 4, we give a summary of pre-
vious work and discuss how our proposed algorithm differs
from them. In Section 5, we evaluate the performance of the
proposed algorithm against the related work experimentally.
Finally, we conclude the paper in Section 6.

2 Preliminaries
Notations and problem definition
Consider a discrete-time MDP M = {S,A, P,R, γ, ρ}
that models how an agent interacts with a given environ-
ment. S and A are state space and action space, respectively.
P (s′|s, a) denotes the probability of transiting to state s′
from s after taking action a. The reward function R returns
reward r(s, a) when action a is taken in state s. Parameter
γ ∈ (0, 1) denotes the discount factor and ρ is the distribution
of starting state. The actions are chosen according to policy π
where π(a|s) is the probability of taking action a for a given
state s. Here, we assume that the policy is parameterized with
a vector θ ∈ Rd and use shorthand notation πθ for πθ(a|s).

For a given time horizon H , according to policy πθ,
the agent observes a sequence of state-action pairs τ =
(s0, a0, · · · , sH−1, aH−1) called a trajectory. The probability
of observing a trajectory τ for a given policy πθ is:

p(τ |πθ) = ρ(s0)

H−1∏
h=0

P (sh+1|sh, ah)πθ(ah|sh). (1)

The discounted cumulative reward for a trajectory τ is defined
as R(τ) :=

∑H−1
h=0 γ

hr(sh, ah) and the expected return for
a policy πθ is:

J(θ) := Eτ∼πθ [R(τ)]. (2)

The main goal in policy-based RL is to find θ∗ =
arg maxθ J(θ). As in many applications, J(θ) is non-convex
and we settle instead for obtaining ε-FOSP, θ̂, such that
E[‖∇J(θ̂)‖] ≤ ε. It can be shown that:

∇J(θ) = E

[
H−1∑
h=0

Ψh(τ)∇ log πθ(ah|sh)

]
, (3)

where Ψh(τ) =
∑H−1
t=h γtr(st, at). Therefore, for any tra-

jectory τ , g(τ ; θ) :=
∑H−1
h=0 Ψh(τ)∇ log πθ(ah|sh) is an

unbiased estimator of ∇J(θ). The vanilla policy gradient
updates θ as follows:

θ ← θ + ηg(τ ; θ), (4)

where η is the learning rate.
The Hessian matrix of J(θ) can be written as follows (Shen

et al. 2019):

∇2J(θ) = E[∇Φ(θ; τ)∇ log p(τ |πθ)T +∇2Φ(θ; τ)], (5)

where Φ(θ; τ) =
∑H−1
h=0

∑H−1
t=h γtr(st, at)∇ log πθ(ah|sh).

For a given trajectory τ , B(τ ; θ) :=
∇Φ(θ; τ)∇ log p(τ |πθ)T + ∇2Φ(θ; τ) is an unbiased
estimator of the Hessian matrix.

Variance reduced methods for gradient estimation
Variance reduced methods for estimating the gradient vec-
tor were originally proposed for the stochastic optimization
setting:

min
θ∈Rd

Ez∼p(z)[f(θ, z)], (6)

where a sample z is drawn from distribution p(z) and f(., z)
is commonly assumed to be smooth and non-convex function
of θ. This setting is mainly considered in supervised learning
context where θ corresponds to the parameters of the training
model and z = (x, y) is the training sample, with x the
feature vector of the sample and y the corresponding label.
In this setting, the distribution p(z) is invariant with respect
to parameter θ.

The common approach for reducing the variance of gradi-
ent estimation is to reuse past gradient vectors. The pseudo-
code for this general framework for variance reduction is
given in Algorithm 1. After every pre-determined number of
iterations Q, there is a checkpoint to obtain an unbiased esti-
mate of the gradient, denoted by ht, at the current parameter
θt by taking a batch of samples Bcheck. Between any two
consecutive checkpoints, the gradient at the parameter θt is
estimated according to (8) by taking a batch of samples B
drawn from p(z). The above framework appeared in several
previous variance reduction methods in stochastic optimiza-
tion such as SARAH (Nguyen et al. 2017) and SPIDER (Fang
et al. 2018). (Zhang 2021) discusses how to choose the size
of batches and the parameters Q and η. In fact, there is a

Algorithm 1: Common framework in variance reduction methods

1: for t = 0, · · · , T − 1 do
2:

ht =


1

|Bcheck|
∑

z∈Bcheck

∇f(θt, z) if t ≡ 0 (mod Q), (7)

ht−1 +
1

|B|
∑
z∈B
∇f(θt, z)−∇f(θt−1, z), otherwise. (8)

3: θt+1 ← θt − ηht
4: end for
5: Return θt with t chosen randomly from {0, · · · , T − 1}

trade-off between η and |B|. If a small batch size is used,
then η is also required to be small. The two extremes are
SpiderBoost (Wang et al. 2019) (|B| = O(ε−1), η = O(1))
and SARAH (Nguyen et al. 2017) (|B| = O(1), η = O(ε)).
Very recently, (Li et al. 2021) proposed PAGE, where in each
iteration t, either a batch of samples is taken with probabil-
ity pt to update the gradient or the previous estimate of the
gradient is used with a small adjustment, with probability
1− pt.

In the context of RL, a sample z corresponds to a trajec-
tory τ . Unlike supervised learning, the distribution of these
trajectories depends on the parameters of policy generating
them. Therefore, in the second term in the sum in (8), namely
∇f(θt−1, z), z (or trajectory τ in RL context) is generated
according to policy πθt while θt−1 is the parameter of the
policy at the previous iteration. In RL setting, importance
sampling technique is commonly used to account for the
distribution shift as follows:

ht = ht−1 +
1

|B|
∑
τ∈B

g(θt; τ)− w(τ |θt, θt−1)g(θt−1; τ),

(9)
with the weights w(τ |θt, θt−1) =

∏H−1
h=0

πθt−1
(ah|sh)

πθt (ah|sh)
.

As we shall see in Section 4, nearly all variance reduc-
tion approaches in RL employing the general framework of
Algorithm 1, use an importance sampling technique. This
could significantly degrade the performance of the approach
as the gradient estimates depend heavily on these weights
(Yang et al. 2019). Besides, these variance reduction meth-
ods often need giant batch sizes at checkpoints, which is
not practical in RL setting. Finally, the hyper-parameters of
these approaches must be selected carefully as they often use
non-adaptive learning rates. To resolve the issue of requiring
huge batch-sizes, in the context of stochastic optimization, a
recent variance reduction method called STORM (Cutkosky
and Orabona 2019) was proposed with the following update
rule:

ht = (1− αt)ht−1 + αt∇f(θt, zt)

+ (1− αt)(∇f(θt, zt)−∇f(θt−1, zt)) (10)
θt+1 ← θt − ηtht, (11)

where zt is the sample drawn at iteration t and αt and ηt
are the adaptive momentum weight and learning rate, re-

spectively. Compared with SGD with momentum, the main
difference in STORM is the correction term ∇f(θt, zt) −
∇f(θt−1, zt) in (10). (Cutkosky and Orabona 2019) showed
that by adaptively updating αt and ηt based on the norm
of stochastic gradient in previous iterations, STORM can
achieve the same convergence rate as previous methods
without requiring checkpoints nor a huge batch size. Later,
a parameter-free version, called STORM+ (Levy, Kavis,
and Cevher 2021), has been introduced using new adap-
tive learning rate and momentum weight. However, to adapt
these methods in RL setting, we still need to use impor-
tance sampling techniques because of the term ∇f(θt−1, zt).
Recently, (Tran and Cutkosky 2021) showed that the cor-
rection term can be replaced with a second-order term
∇2f(θt, zt)(θt − θt−1) by considering additional assump-
tion that objective function is second-order smooth. Besides,
the above Hessian vector product can be computed in O(Hd)
(similar to the computational complexity of obtaining the
gradient vector) by executing Pearlmutter’s algorithm (Pearl-
mutter 1994).

3 The SHARP Algorithm
In this section, we propose the SHARP algorithm, which
incorporates second-order information into SGD with mo-
mentum and provide a convergence guarantee. SHARP al-
gorithm is presented in Algorithm 2. At each iteration t, we
draw sample bt from a uniform distribution in the interval
[0, 1] (line 5) and then obtain θbt as the linear combination of
θt−1 and θt with coefficients 1 − bt and bt (line 6). In line
7, we sample trajectories τt and τ bt according to policies πθt
and πθbt , respectively. Afterwards, we update the momentum
weight αt and the learning rate ηt (line 8) and then compute
the estimate of gradient at time t, i.e., vt, using the Hessian
vector product B(τ bt ; θbt)(θt − θt−1) and stochastic gradient
g(τt; θt) (line 9). Finally we update θt based on a normalized
version of vt in line 10.
Remark 1 By choosing a point uniformly at random on the
line between θt−1 and θt, we can ensure that B(τ bt ; θbt)(θt −
θt−1)) is an unbiased estimate of∇J(θt)−∇J(θt−1) (see
(23) in Appendix A). As we mentioned before, in the context of
stochastic optimization, (Tran and Cutkosky 2021) used the
second-order term ∇2f(θt, zt)(θt − θt−1), which is biased
as the Hessian vector product is evaluated at the point θt. As

Algorithm 2: The SHARP algorithm
Input: Initial point θ0, parameters α0, η0, and number of
iterations T

1: Sample trajectory τ0 with policy πθ0
2: v0 ← g(τ0; θ0)
3: θ1 ← θ0 + η0

v0
‖v0‖

4: for t = 1, · · · , T − 1 do
5: Sample bt ∼ U(0, 1)
6: θbt ← btθt + (1− bt)θt−1
7: Sample trajectories τt and τ bt with policies πθt and

πθbt , respectively
8: ηt ← η0

t2/3
, αt ← α0

t2/3

9: vt ← (1 − αt)(vt−1 + B(τ bt ; θbt)(θt − θt−1)) +
αtg(τt; θt)

10: θt+1 ← θt + ηt
vt
‖vt‖

11: end for
12: Return θt with t chosen randomly from {0, · · · , T − 1}

a result, in order to provide the convergence guarantee, it is
further assumed that the objective function is second-order
smooth in (Tran and Cutkosky 2021).

Remark 2 To give an intuition why the second-order term
is helpful in the update in line 9, consider the following error
term:

εt = vt −∇J(θt). (12)

We can rewrite the above error term as follows:

εt = (1− αt)(vt−1 −∇J(θt) +B(τ bt ; θbt)(θt − θt−1))

+ αt(g(τt; θt)−∇J(θt)).
(13)

Now, for a moment, suppose that E[vt−1] = E[∇J(θt−1)]
(with total expectation on both sides). Then,

E[vt−1 −∇J(θt) +B(τ bt ; θbt)(θt − θt−1)] = 0. (14)

As v0 is an unbiased estimate of gradient at θ0, we can easily
show by induction that according to above equation, E[vt] =
E[∇J(θt)] for any t ≥ 0.

In the next part, we provide a theoretical guarantee on the
convergence rate of SHARP algorithm.

Convergence Analysis
In this part, we analyze the convergence rate of Algorithm 2
under bounded reward function and some regularity assump-
tions on the policy πθ.

Assumption 1 (Bounded reward) For ∀s ∈ S,∀a ∈ A,
|R(s, a)| < R0 where R0 > 0 is some constant.

Assumption 2 (Parameterization regularity) There exist
constants G,L > 0 such that for any θ ∈ Rd and for any
s ∈ S, a ∈ A:
(a) ‖∇ log πθ(a|s)‖ ≤ G,
(b) ‖∇2 log πθ(a|s)‖ ≤ L.

Assumptions 1 and 2 are common in the RL literature (Pa-
pini et al. 2018; Shen et al. 2019) to analyze the conver-
gence of policy gradient methods. Under these assumptions,
the following upper bounds can be derived on E[‖g(τ ; θ)−
∇J(θ)‖2] and E[‖B(τ ; θ)−∇2J(θ)‖2].
Lemma 1 ((Shen et al. 2019)) Under Assumptions 1 and 2:

E[‖g(τ ; θ)−∇J(θ)‖2] ≤ σ2
g

E[‖B(τ ; θ)−∇2J(θ)‖2] ≤ σ2
B ,

(15)

where σ2
g =

G2R2
0

(1−γ)4 and σ2
B =

H2G4R2
0+L

2R2
0

(1−γ)4 .

Based on these bounds, we can provide the following
guarantee on the convergence rate of SHARP algorithm. All
proofs are provided in the appendix.
Theorem 1 Suppose that the initial momentum weight α0 ∈
(2/3, 1] and initial learning rate η0 > 0. Under Assumptions
1 and 2, Algorithm 2 guarantees that:

E

[
1

T

T∑
t=1

‖∇J(θt)‖

]
≤ 8
√
C + 9CJ/η0
T 1/3

+
6σBη0
T 2/3

, (16)

where C = 3α0(48σ2
Bη

2
0/α0 + (6α0 + 1/α0)σ2

g)/(3α0− 2)
and CJ = R0/(1− γ).
Corollary 1 The right hand side of (16) is dominated by
the first term. If we set η0 in the order of

√
CJ/σB , then

the number of trajectories for achieving ε-FOSP would be
O(1

(1−γ)2ε3), where we assume that the time horizon H is
set in the order of 1/(1− γ).

Remark 3 Along the iterations of the SHARP algorithm, it
can be shown that the following inequality holds for any
t ≥ 1 (see (21) in Appendix A):

E[‖εt‖2] ≤ (1− αt)E[‖εt−1‖2] +O(η2t). (17)
Therefore, the variance of the estimation error decays with
the rate of O(1/t2/3) (see Appendix B for the proof). To the
best of our knowledge, existing variance reduction methods
only guarantee the decay of accumulative variance. This
appealing property of SHARP is largely due to the use of
unbiased Hessian-aided gradient estimator and normalized
gradient descent. Moreover, as a byproduct of these desirable
properties, our convergence analysis turns out to be more
simple, compared to existing work (Cutkosky and Orabona
2019; Tran and Cutkosky 2021). This could be of independent
interest for better theory of variance-reduced methods.

Remark 4 The SHARP algorithm is parameter-free in the
sense that α0 and η0 are constants that do not depend on
other parameters in the problem. Therefore, for any choice of
2/3 < α0 ≤ 1 and η0 > 0, we can guarantee convergence
to ε-FOSP with the sample complexity of O(ε−3). However,
in practice, it is desirable to tune these constants to have
smaller constants in the numerators of convergence rates in
(16). For instance, σB might be large in some RL settings
and we control the constant in the first term on the right hand
side of (16) by tuning η0. It is noteworthy that STORM+ is
also parameter-free but it requires adaptive learning rate
and momentum weight that depend on stochastic gradients
in previous iterations.

Method SC |B| |Bcheck| Checkpoint IS Further Assump.

SVRPG (Xu, Gao, and Gu 2020) O(1
ε10/3

) O(1
ε4/3

) O(1
ε4/3

) Needed Needed Assump. in (18)

HAPG (Shen et al. 2019) O(1
ε3) O(1

ε) O(1
ε2) Needed Not needed -

VRMPO (Yang et al. 2019) O(1
ε3) O(1

ε) O(1
ε2) Needed Not needed -

SRVR-PG (Xu, Gao, and Gu 2019) O(1
ε3) O(1√

ε
) O(1

ε) Needed Needed Assump. in (18)

HSPGA (Pham et al. 2020) O(1
ε3) O(1) - Not needed Needed Assump. in (18)

MBPG (Huang et al. 2020) Õ(1
ε3) O(1) - Not needed Needed Assump. in (18)

PAGE-PG (Gargiani et al. 2022) O(1
ε3) O(1) O(1

ε2) Needed Needed Assump. in (18)

This paper O(1
ε3) O(1) - Not needed Not needed -

Table 1: Comparison of main variance-reduced policy gradient methods to achieve ε-FOSP based on sample complexity (SC),
batch size (|B|), batch size at checkpoints (|Bcheck|), and the need for checkpoints, importance sampling (IS), and additional
assumptions.

Remark 5 Regarding the dependency on ε, in the context of
stochastic optimization, (Arjevani et al. 2020) have shown
that under some mild assumptions on the objective function
and stochastic gradient, the rate of O(1/ε3) is optimal in or-
der to obtain ε-FOSP, and cannot be improved with stochastic
p-th order methods for p ≥ 2.

4 Related Work
In recent years, several variance-reduced methods have been
proposed in order to accelerate the existing PG methods. (Pap-
ini et al. 2018) and (Xu, Gao, and Gu 2020) proposed SVRPG
algorithm based on SVRG (Johnson and Zhang 2013), with
sample complexity of O(1/ε4) and O(1/ε10/3), respectively.
This algorithm requires importance sampling techniques as
well as the following further assumption for guaranteeing
convergence to ε-FOSP:

• Bounded variance of importance sampling weights: For
any trajectory τ , it is assumed that:

V ar

(
p(τ |πθ1)

p(τ |πθ2)

)
≤W, ∀θ1, θ2 ∈ Rd, (18)

where W <∞ is a constant.

The above assumption is fairly strong as the importance
sampling weight could grow exponentially with horizon
length H (Zhang et al. 2021). In order to remove impor-
tance sampling weights, (Shen et al. 2019) proposed HAPG
algorithm, which uses second-order information and achieves
better sample complexity of O(1/ε3). However, it still needs
checkpoints and large batch sizes of |B| = O(1/ε), and
|Bcheck| = O(1/ε2).

In Table 1, we compare the main variance-reduced policy
gradient methods achieving ε-FOSP in terms of sample com-

plexity and batch size1. In this table, after HAPG (Shen et al.
2019), all the proposed variance reduction methods achieve
a similar sample complexity. (Yang et al. 2019) proposed
the VRMPO method based on stochastic mirror descent, and
similarly to HAPG (Shen et al. 2019), they do not require
importance sampling weights in the variance reduction part.
The orders of batch sizes are also the same as in HAPG. (Xu,
Gao, and Gu 2019) proposed SRVR-PG, and used stochas-
tic path-integrated differential estimators for variance reduc-
tion. This algorithm uses important sampling weights and
the required batch sizes are in the order of |B| = O(1/

√
ε)

and |Bcheck| = O(1/ε). Later, (Pham et al. 2020) proposed
HSPGA by adapting the SARAH estimator for reducing the
variance of REINFORCE. HSPGA still needs importance
sampling weights, but the batch size is reduced to O(1).
(Huang et al. 2020) proposed three variants of momentum-
based policy gradient (called MBPG), which are based on
the STORM algorithm (Cutkosky and Orabona 2019). Thus,
the required batch size is in the order of O(1), similarly to
STORM. However, it still needs to use importance sampling
weights. (Zhang et al. 2021) proposed TSIVR-PG with a gra-
dient truncation mechanism in order to resolve some of issues
pertaining to the use of importance sampling weights. In their
convergence analysis, they are restricted to soft-max policy
with some specific assumptions on the parameterization func-
tions. Recently, based on PAGE (Li et al. 2021), (Gargiani
et al. 2022) proposed the PAGE-PG algorithm which takes a
batch of samples of O(ε−2) for updating the parameters with
probability pt or reuse the previous estimate gradient with
a small adjustment, with probability 1 − pt. The proposed
algorithm requires importance sampling weights and thus the

1Please note that the sample complexity also depends on the
other parameters such as horizon length H and discount factor γ.
Here, we just mention the dependency of sample complexity on ε.

additional assumption in (18) to guarantee convergence to
ε-FOSP with a sample complexity of O(ε−3).

There exist few recent work on the global convergence
of policy gradient methods. For instance, (Liu et al. 2020)
showed global convergence of policy gradient, natural pol-
icy gradient, and their variance reduced variants, in the case
of positive definite Fisher information matrix of the policy.
(Chung et al. 2021) studied the impact of baselines on the
learning dynamics of policy gradient methods and showed
that using a baseline minimizing the variance can converge
to a sub-optimal policy. Recently, (Ding, Zhang, and Lavaei
2022) studied the soft-max and the Fisher non-degenerate
policies, and showed that adding a momentum term improves
the global optimality sample complexities of vanilla PG meth-
ods by Õ(ε−1.5) and Õ(ε−1), respectively.

The aforementioned discussion for the main methods
are summarized in Table 1. For each method, we men-
tion whether it needs checkpoints and importance sampling
weights.2 All the discussed aforementioned methods require
Assumptions 1 and 2. In the last column, additional assump-
tions besides these two are listed for each method.

Comparing the sample complexity of our algorithm with
previous work, note that all the algorithms (including ours)
under SVRPG in Table 1 achieve the rate of O(1/ε3) or
Õ(1/ε3). Without any further assumption, our proposed
method is the only one that requires no checkpoints, no
importance sampling weights, and has a batch size of the
order of O(1). As we will see in the next section, besides
these algorithmic advantages, it has remarkable performance
compared to the state of the art in various control tasks.

5 Experiments
In this section, we evaluate the performance of the proposed
algorithm and compare it with two recent methods, HAPG
(Shen et al. 2019) and MBPG (Huang et al. 2020), which are
state-of-the-art representatives for variance reduced policy
gradient methods. HAPG uses second order information (Hes-
sian vector product) and does not need importance sampling
weights. In addition, MBPG is the recent work for variance
reduction based on STORM (Cutkosky and Orabona 2019).
Besides these two methods, we further considered very recent
work, PAGE-PG, which performs updates according to PAGE
(Li et al. 2021). We also considered REINFORCE (Williams
1992) as the baseline method.

Regarding MBPG algorithm, we selected the IS-MBPG
variant as its performance is superior to the other two vari-
ants of this algorithm. PAGE-PG was evaluated on just two
simple environments of Acrobate and Cartpole with discrete
actions in (Gargiani et al. 2022). Here, we compared SHARP
with PAGE-PG in the these two environments (see Appendix
D), showing that our method outperforms PAGE-PG in both.
There is no complete implementation of PAGE-PG for contin-
uous control tasks in (Gargiani et al. 2022). We extended their
implementation for these tasks but the performance was not

2To be more precise, although PAGE-PG, has no fixed check-
points, it takes a batch of O(ε−2) to get an unbiased estimate of
the gradient with probability pt. Therefore, in this sense, it requires
checkpoints.

comparable with other methods. As such we did not report
its performance on the control tasks.

We implemented SHARP in the Garage library (garage
contributors 2019) as it allows for maintaining and integrating
it in future versions of Garage library for easier dissemination.
We utilized a Linux server with Intel Xeon CPU E5-2680
v3 (24 cores) operating at 2.50GHz with 377 GB DDR4 of
memory, and Nvidia Titan X Pascal GPU. The computation
was distributed over 48 threads to ensure a relatively efficient
run time. The implementation of SHARP is available as the
supplementary material.

In our experiments, we used the MuJoCo simulator
(Todorov, Erez, and Tassa 2012) which is a physical engine,
suitable for simulating robotic tasks with a good accuracy
and speed in RL setting. We evaluated the following six con-
trol tasks with continuous action space: Reacher, Walker,
HalfCheeta, Humanoid, Hopper, and Swimmer. For each
task, we used a Gaussian multi-layer perceptron (MLP) pol-
icy whose mean and variance are parameterized by an MLP
with two hidden layers of 64 neurons. We used the default
implementation of the Gaussian MLP policy in the Garage li-
brary. For a fair comparison, we considered the same network
architecture for the other methods.

A baseline term b(s), which only depends on the current
state, can be subtracted from the discounted cumulative re-
ward Ψh(τ) in order to further reduce the variance as follows:

Ψh(τ) =

H−1∑
t=h

γtr(st, at)− b(sh), (19)

where b is trained based on the previous observed trajectories.
It is noteworthy that g(τ ; θ) and B(τ ; θ) remain unbiased
with the above modification. For all the methods, we trained
a linear feature baseline or Gaussian baseline in our experi-
ments which have been implemented in the Garage library
(the details of baselines are given in the appendix). We tuned
the hyper-parameters of the proposed algorithm using grid
search. We adjusted the hyper-parameters of the other meth-
ods by grid search if they were not explicitly specified.

We considered average episode return as the performance
measure versus system probes, i.e., the number of observed
state-action pairs. System probes provide a better measure of
sample complexity than the number of trajectories because of
the varying lengths of trajectories. For each task, we executed
the methods 10 times and reported the empirical estimation
of mean and 90% confidence interval of the episode return.

In Figure 1, the average episode return against system
probes is depicted for the six control tasks. In the following,
we will discuss the results for each task.

Reacher environment: In Reacher environment, there is
an arm with two degrees of freedom, aiming to reach a target
point in the two dimensional plane. As can be seen in Figure 1
(a), SHARP exceeds the average episode return of −20 after
about 2×106 system probes while for HAPG, REINFORCE,
and MBPG this happens after about 2.5 × 106, 3.8 × 106,
4× 106 system probes, respectively.

Walker2D environment: In this environment, a hu-
manoid walker tries to move forward in a two dimensional
space, i.e., it can only fall forward or backward. As shown

(b) Walker (a) Reacher (c) HalfCheetah

(d) Humanoid (f) Swimmer(e) Hopper

Figure 1: Comparison of SHARP with other variance reduction methods on six control tasks.

in Figure 1 (b), HAPG and MBPG have a similar perfor-
mance (average episode return of about 350) after 107 system
probes and MBPG is slightly better. On the other hand, our
proposed algorithm achieves much higher average episode
return (about 500).

HalfCheetah environment: In this environment, we con-
trol a two-dimensional cheetah robot and the goal is to make
it run as fast as possible in the forward direction. As depicted
in Figure 1 (c), the average episode return of HAPG and
REINFORCE is less than zero after 107 system probes while
MBPG, achieves 200. SHARP has the best performance with
average episode return of more than 400.

Humanoid environment: In this environment, we control
a three-dimensional bipedal robot to make it walk forward
as fast as possible, without falling over. The state space is
376-dimensional, containing the position and velocity of each
joint, the friction of actuator, and contact forces. The action
space is a 17-dimensional continuous space. As depicted in
Figure 1 (d), HAPG and REINFORCE have similar perfor-
mance (average episode return of about 250) after 107 sys-
tem probes and for MBPG, this value is about 370. However,
SHARP exceeds 400 for the same system probes.

Hopper environments: The hopper is a two-dimensional
one-legged agent, trying to make hops in the right direction.
As shown in Figure 1 (e), SHARP outperforms other algo-
rithms by reaching the average episode return of about 1000
after 1.5× 106 system probes.

Swimmer environment: In this environment, a swimmer
is in a two-dimensional pool and the goal is to move as fast

as possible towards the right direction. For this environment,
we could not reproduce the good performance for MBPG,
despite trying different hyper-parameters and random seeds.
Figure 1 (f) shows that SHARP has a remarkable performance
with respect to two other methods by achieving an average
episode return of about 160 after 3× 106 system probes.

In summary, the proposed algorithm outperforms the other
methods in all considered environments. The improvement is
even more drastic for some complex environments, such as
HalfCheetah, than for simple environments, such as Reacher.

We also investigated the effect of batch size on the perfor-
mance of SHARP. The experimental results show that the
impact of batch size is negligible. For more details, please
refer to Appendix D.

6 Conclusion
We proposed a variance-reduced policy-gradient method,
which incorporates second-order information, i.e., Hessian
vector product, into SGD with momentum. The Hessian vec-
tor product can be computed with an efficiency that is similar
to that of obtaining the gradient vector. Therefore, the com-
putational complexity of the proposed algorithm per iteration
remains in the same order as first-order methods. More im-
portantly, using the second-order correction term enables us
to obtain an estimate of the gradient, completely bypassing
importance sampling. Moreover, the batch size is O(1) and
there is no need for checkpoints, which makes the algorithm
appealing in practice. Under some regularity assumptions on

the parameterized policy, we showed that it achieves ε-FOSP
with sample complexity of O(ε−3). SHARP is parameter-
free in the sense that the initial learning rate and momentum
weight do not depend on the parameters of the problem. Ex-
perimental results show its remarkable performance in vari-
ous control tasks, especially in some complex environments,
such as HalfCheetah, compared to the state of the art.

References
Arjevani, Y.; Carmon, Y.; Duchi, J. C.; Foster, D. J.; Sekhari,
A.; and Sridharan, K. 2020. Second-order information in
non-convex stochastic optimization: Power and limitations.
In Conference on Learning Theory, 242–299. PMLR.

Baxter, J.; and Bartlett, P. L. 2001. Infinite-horizon policy-
gradient estimation. Journal of Artificial Intelligence Re-
search, 15: 319–350.

Chung, W.; Thomas, V.; Machado, M. C.; and Le Roux, N.
2021. Beyond variance reduction: Understanding the true
impact of baselines on policy optimization. In International
Conference on Machine Learning, 1999–2009. PMLR.

Cutkosky, A.; and Orabona, F. 2019. Momentum-Based
Variance Reduction in Non-Convex SGD. Advances in neural
information processing systems, 32.

Deisenroth, M. P.; Neumann, G.; Peters, J.; et al. 2013. A
survey on policy search for robotics. Foundations and trends
in Robotics, 2(1-2): 388–403.

Ding, Y.; Zhang, J.; and Lavaei, J. 2022. On the Global
Optimum Convergence of Momentum-based Policy Gradient.
In International Conference on Artificial Intelligence and
Statistics, 1910–1934. PMLR.

Fang, C.; Li, C. J.; Lin, Z.; and Zhang, T. 2018. Spi-
der: Near-optimal non-convex optimization via stochas-
tic path integrated differential estimator. arXiv preprint
arXiv:1807.01695.

garage contributors, T. 2019. Garage: A toolkit for repro-
ducible reinforcement learning research. https://github.com/
rlworkgroup/garage.

Gargiani, M.; Zanelli, A.; Martinelli, A.; Summers, T.; and
Lygeros, J. 2022. PAGE-PG: A Simple and Loopless
Variance-Reduced Policy Gradient Method with Probabilistic
Gradient Estimation. In International Conference on Ma-
chine Learning.

Ghadimi, S.; and Lan, G. 2013. Stochastic first-and zeroth-
order methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4): 2341–2368.

Huang, F.; Gao, S.; Pei, J.; and Huang, H. 2020. Momentum-
based policy gradient methods. In International Conference
on Machine Learning, 4422–4433. PMLR.

Johnson, R.; and Zhang, T. 2013. Accelerating stochastic gra-
dient descent using predictive variance reduction. Advances
in neural information processing systems, 26: 315–323.

Konda, V. R.; and Tsitsiklis, J. N. 2000. Actor-critic al-
gorithms. In Advances in neural information processing
systems, 1008–1014.

Levy, K.; Kavis, A.; and Cevher, V. 2021. STORM+: Fully
Adaptive SGD with Momentum for Nonconvex Optimiza-
tion. In 35th Conference on Neural Information Processing
Systems (NeurIPS 2021), CONF.
Li, Z.; Bao, H.; Zhang, X.; and Richtárik, P. 2021. PAGE:
A simple and optimal probabilistic gradient estimator for
nonconvex optimization. In International Conference on
Machine Learning, 6286–6295. PMLR.
Liu, Y.; Zhang, K.; Basar, T.; and Yin, W. 2020. An Improved
Analysis of (Variance-Reduced) Policy Gradient and Natural
Policy Gradient Methods. In NeurIPS.
Nguyen, L. M.; Liu, J.; Scheinberg, K.; and Takáč, M. 2017.
SARAH: A novel method for machine learning problems us-
ing stochastic recursive gradient. In International Conference
on Machine Learning, 2613–2621. PMLR.
Papini, M.; Binaghi, D.; Canonaco, G.; Pirotta, M.; and
Restelli, M. 2018. Stochastic variance-reduced policy gradi-
ent. In International conference on machine learning, 4026–
4035. PMLR.
Pearlmutter, B. A. 1994. Fast exact multiplication by the
Hessian. Neural computation, 6(1): 147–160.
Pham, N.; Nguyen, L.; Phan, D.; Nguyen, P. H.; Dijk, M.;
and Tran-Dinh, Q. 2020. A hybrid stochastic policy gradi-
ent algorithm for reinforcement learning. In International
Conference on Artificial Intelligence and Statistics, 374–385.
PMLR.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015a. Trust region policy optimization. In International
conference on machine learning, 1889–1897. PMLR.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and Abbeel,
P. 2015b. High-dimensional continuous control using general-
ized advantage estimation. arXiv preprint arXiv:1506.02438.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Shalev-Shwartz, S.; Shammah, S.; and Shashua, A. 2016.
Safe, multi-agent, reinforcement learning for autonomous
driving. arXiv preprint arXiv:1610.03295.
Shani, L.; Efroni, Y.; and Mannor, S. 2020. Adaptive trust
region policy optimization: Global convergence and faster
rates for regularized mdps. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, 5668–5675.
Shen, Z.; Ribeiro, A.; Hassani, H.; Qian, H.; and Mi, C. 2019.
Hessian aided policy gradient. In International conference
on machine learning, 5729–5738. PMLR.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. nature, 550(7676): 354–359.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 2000. Policy gradient methods for reinforcement learn-
ing with function approximation. In Advances in neural
information processing systems, 1057–1063.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 5026–
5033. IEEE.

https://github.com/rlworkgroup/garage
https://github.com/rlworkgroup/garage

Tran, H.; and Cutkosky, A. 2021. Better SGD using Second-
order Momentum. arXiv preprint arXiv:2103.03265.
Wang, Z.; Ji, K.; Zhou, Y.; Liang, Y.; and Tarokh, V. 2019.
Spiderboost and momentum: Faster variance reduction algo-
rithms. Advances in Neural Information Processing Systems,
32: 2406–2416.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Machine
learning, 8(3): 229–256.
Xu, P.; Gao, F.; and Gu, Q. 2019. Sample efficient policy
gradient methods with recursive variance reduction. arXiv
preprint arXiv:1909.08610.
Xu, P.; Gao, F.; and Gu, Q. 2020. An improved convergence
analysis of stochastic variance-reduced policy gradient. In
Uncertainty in Artificial Intelligence, 541–551. PMLR.
Yang, L.; Zheng, G.; Zhang, H.; Zhang, Y.; Zheng, Q.; Wen,
J.; and Pan, G. 2019. Policy optimization with stochastic
mirror descent. arXiv preprint arXiv:1906.10462.
Zhang, J.; Ni, C.; Yu, Z.; Szepesvari, C.; and Wang, M.
2021. On the convergence and sample efficiency of
variance-reduced policy gradient method. arXiv preprint
arXiv:2102.08607.
Zhang, L. 2021. Variance Reduction for Non-Convex Stochas-
tic Optimization: General Analysis and New Applications.
Master’s thesis, ETH Zurich.

A Proof of Theorem 1
Let us define εt := vt −∇J(θt). Then, based on the update in line 9 of Algorithm 1, we have:

εt = (1− αt)εt−1 + αtUt + (1− αt)Wt, (20)

where Ut = (g(τt; θt)−∇J(θt)) and Wt = B(τ bt ; θbt)(θt − θt−1)− (∇J(θt)−∇J(θt−1)). LetHt be the history up to time t,
i.e.,Ht := {θ0, τ0, τ1, b1, τ b1 , · · · , τt, bt, τ bt }.

By taking the square l2 norm of both sides of the above equation,

‖εt‖2 = (1− αt)2‖εt−1‖2 + α2
t ‖Ut‖2 + (1− αt)2‖Wt‖2+

2αt(1− αt)〈εt−1, Ut〉+ 2αt(1− αt)〈Ut,Wt〉+ 2(1− αt)2〈εt−1,Wt〉
≤ (1− αt)2‖εt−1‖2 + 2α2

t ‖Ut‖2 + 2(1− αt)2‖Wt‖2+

2αt(1− αt)〈εt−1, Ut〉+ 2(1− αt)2〈εt−1,Wt〉,

(21)

where we used Young’s inequality in the first inequality for the following term: 2αt(1 − αt)〈Ut,Wt〉 ≤ (1 − αt)2‖Wt‖2 +
α2
t ‖Ut‖2. Now, by taking expectations on both sides,

E[‖εt‖2] ≤ (1− αt)2E[‖εt−1‖2] + 2α2
tE[‖Ut‖2] + 2(1− αt)2E[‖Wt‖2]+

2αt(1− αt)E[〈εt−1, Ut〉] + 2(1− αt)2E[〈εt−1,Wt〉]
(a)

≤ (1− αt)E[‖εt−1‖2] + 2α2
tE[‖Ut‖2] + 2E[‖Wt‖2]+

2αt(1− αt)E[〈εt−1, Ut〉] + 2(1− αt)2E[〈εt−1,Wt〉]
(b)

≤ (1− αt)E[‖εt−1‖2] + 2α2
tE[‖Ut‖2] + 2E[‖Wt‖2],

(22)

(a) follows as αt ≤ 1 for all t ≥ 0.
(b) follows because the following two terms are zero. First, E[〈εt−1, Ut〉] = E[E[〈εt−1, Ut〉|Ht−1]] = 0 as εt−1 is deter-
mined given Ht−1 and E[Ut|Ht−1] = 0 since g(τt; θt) is an unbiased estimation of ∇J(θt). Second, E[〈εt−1,Wt〉] =
E[E[〈εt−1,Wt〉|Ht−1]] = 0 because

E[Wt|Ht−1] = E[B(τ bt ; θbt)(θt − θt−1)|Ht−1]− (∇J(θt)−∇J(θt−1))

= Ebt [Eτbt [B(τ bt ; θbt)(θt − θt−1)|Ht−1]]− (∇J(θt)−∇J(θt−1))

(c)
= Ebt [∇2J(θbt)(θt − θt−1)|Ht−1]− (∇J(θt)−∇J(θt−1))

(d)
=

∫ 1

0

∇2J(bθt + (1− b)θt−1)(θt − θt−1)db− (∇J(θt)−∇J(θt−1)) = 0,

(23)

(c) It is due to the fact that for a given θbt , B(τ bt ; θbt) is an unbiased estimation of∇2J(θbt).
(d) The integral follows since θbt = btθt+(1−bt)θt−1 with bt uniformly distributed in [0, 1], and its value is∇J(θt)−∇J(θt−1).

Now, from (22), we have:

E[‖εt−1‖2]
(a)

≤ 1

αt

(
E[‖εt−1‖2]− E[‖εt‖2]

)
+

2

αt
E[‖Wt‖2] + 2αtσ

2
g

(b)

≤ 1

αt

(
E[‖εt−1‖2]− E[‖εt‖2]

)
+ 8σ2

B

η2t−1
αt

+ 2αtσ
2
g ,

(24)

(a) We use the bound in Lemma 1, i.e., E[‖Ut‖2] ≤ σ2
g .

(b) It has been shown that ‖B(τ ; θ)‖ ≤ σB for any trajectory τ and θ ∈ Rd (Shen et al. 2019). Therefore, ‖∇2J(θ)‖ =
‖Eτ [B(τ ; θ)]‖ ≤ σB . Hence, ∇J(θ) is Lipschitz with constant σB and we have:

‖Wt‖ ≤ ‖B(τ bt ; θbt)(θt − θt−1)‖+ ‖∇J(θt)−∇J(θt−1)‖
≤ ‖B(τ bt ; θbt)‖‖θt − θt−1‖+ σB‖θt − θt−1‖
≤ 2σB‖θt − θt−1‖,

(25)

where the first inequality is due to the Lipschitzness of ∇J(θ), and the second inequality results from the bound on ‖B(τ bt ; θbt)‖.

Summing the both sides of (24) from t = 1 to t = T , we have:

E

[
T∑
t=1

‖εt−1‖2
]
≤ −E[‖εT ‖2]

αT
+

E[‖ε0‖2]

α1
+

T−1∑
t=1

(
1

αt+1
− 1

αt

)
E[‖εt‖2]︸ ︷︷ ︸

(I)

+8σ2
B

T∑
t=1

η2t−1
αt︸ ︷︷ ︸

(II)

+2σ2
g

T∑
t=1

αt︸ ︷︷ ︸
(III)

(26)

First note that E[‖ε0‖2]/α1 ≤ σ2
g/α0. Now, we bound the other terms in the right hand side of the above inequality:

(I): For the coefficient in the sum, we have: 1/αt+1−1/αt = ((t+1)2/3−t2/3)/α0 ≤ 2t−1/3/(3α0) ≤ 2/(3α0) where we used
the gradient inequality for the concave function f(z) = z2/3. Therefore, this term can be bounded by: (2/(3α0))

∑T−1
t=1 E[‖εt‖2].

(II):
∑T
t=1 η

2
t−1/αt = η20/α0(1 +

∑T−1
t=1 (t+ 1)2/3/t4/3) ≤ η20/α0(1 + 22/3

∑T−1
t=1 t−2/3) ≤ 6η20T

1/3/α0.
(III):

∑T
t=1 αt = α0

∑T
t=1 t

−2/3 ≤ 3α0T
1/3.

Plugging these bounds in (26), we get:

E

[
T−1∑
t=0

‖εt‖2
]
≤ CT 1/3, (27)

where C := 3α0((48σ2
Bη

2
0 + σ2

g)/α0 + 6α0σ
2
g)/(3α0 − 2).

The previous inequality yields that:

1

T

T−1∑
t=0

E[‖εt‖] ≤
1

T

T−1∑
t=0

√
E[‖εt‖2] ≤

√√√√ 1

T

T−1∑
t=0

E[‖εt‖2] ≤
√
C

T 1/3
, (28)

where we used Jensen’s inequality in the second inequality above.
Now, if we average from t = 0 to t = T − 1 in (33) in Lemma 2 and then take expectations, we have:

E

[
1

T

T−1∑
t=0

‖∇J(θt)‖

]
≤ 8

T

T−1∑
t=0

E[‖εt‖] +
3σB
2T

T−1∑
t=0

ηt +
3

T
E

[
T−1∑
t=0

J(θt+1)− J(θt)

ηt

]
(a)

≤ 8
√
C

T 1/3
+

6σBη0
T 2/3

+ E

[
3

T

T−1∑
t=0

J(θt+1)− J(θt)

ηt

]

≤ 8
√
C

T 1/3
+

6σBη0
T 2/3

+ E

[
3

T

(
J(θT)

ηT−1
− J(θ0)

η0
+

T−1∑
t=1

J(θt)

(
1

ηt−1
− 1

ηt

))]
(b)

≤ 8
√
C

T 1/3
+

6σBη0
T 2/3

+ E

[
3

T

(
CJ(T − 1)2/3

η0
+
CJ
η0

+

T−1∑
t=1

|J(θt)|
(

1

ηt
− 1

ηt−1

))]

≤ 8
√
C

T 1/3
+

6σBη0
T 2/3

+ E

[
3

T

(
CJ(T − 1)2/3

η0
+
CJ
η0

+

T−1∑
t=1

CJ

(
1

ηt
− 1

ηt−1

))]
(c)

≤ 8
√
C

T 1/3
+

6σBη0
T 2/3

+ E
[

3

T

(
CJ(T − 1)2/3

η0
+
CJ
η0

+
CJ(T − 1)2/3

η0

)]
≤ 8
√
C

T 1/3
+

6σBη0
T 2/3

+
9CJ
η0T 1/3

,

(29)

(a) We used the bound in (28) for the first term and
∑T−1
t=0 ηt ≤ 4η0T

1/3.
(b) |J(θ)| = |Eτ∼πθ [R(τ)]| = |Eτ∼πθ [

∑H−1
h=0 γ

hr(sh, ah)]| ≤ Eτ∼πθ [
∑H−1
h=0 γ

h|r(sh, ah)|] ≤ Eτ∼πθ [R0/(1−γ)] = R0/(1−
γ). Hence, we have: |J(θ)| ≤ CJ for all θ ∈ Rd where CJ := R0/(1− γ).
(c) Due to

∑T−1
t=1 1/ηt − 1/ηt−1 = 1/ηT−1 − 1/η0 ≤ (T − 1)2/3/η0.

B Proof of Remark 3
According to (22), we have:

E[‖εt‖2] ≤ (1− αt)E[‖εt−1‖2] + 8σ2
Bη

2
t−1 + 2α2

tσ
2
g . (30)

Let us define Zt := E[‖εt‖2]. Then, we can rewrite the above equation as follows:

Zt ≤ (1− αt)Zt−1 +
CZ
t4/3

, (31)

where Cz = 8× 24/3η20σ
2
B + 2α2

0σ
2
g . Now, by induction, we will show that: Zt ≤ C ′Z/t2/3 where C ′Z = CZ/(α0− 2/3). It can

be easily seen that for the base case Z1, this statement holds. Now, for the induction step, suppose that Zt−1 ≤ C ′Z/(t− 1)2/3

for some t ≥ 2. Then, from above equation, we have:

CZ
t4/3

(a)

≤ α0C
′
Z − 2C ′Z/3

t2/3(t− 1)2/3

=⇒ 2C ′z/3

(t− 1)t2/3
≤ α0C

′
Z

t2/3(t− 1)2/3
− CZ
t4/3

(b)
=⇒ C ′Z

(
1

(t− 1)2/3
− 1

t2/3

)
≤ α0C

′
Z

t2/3(t− 1)2/3
− CZ
t4/3

=⇒
(

1− α0

t2/3

) C ′Z
(t− 1)2/3

+
CZ
t4/3

≤ C ′Z
t2/3

(c)
=⇒ (1− αt)Zt−1 +

CZ
t4/3

≤ C ′Z
t2/3

(d)
=⇒ Zt ≤

C ′Z
t2/3

,

(32)

where (a) is due to definition of C ′Z , (b) is based on using gradient inequality for the concave function f(z) = z2/3, i.e.,
t2/3 − (t− 1)2/3 ≤ 2/3(t− 1)−1/3, (c) is according to induction hypothesis, and (d) is due to (31).

C Supplemental Lemma
Lemma 2 Suppose that θt’s are generated by executing Algorithm 2. Let εt := vt −∇J(θt). Then, at any time t, we have:

‖∇J(θt)‖ ≤ 8‖εt‖+
3σBηt

2
+

3

ηt
(J(θt+1)− J(θt)). (33)

From σB-smoothness of J(θt) (Shen et al. 2019), we have:

J(θt+1)− J(θt) ≥ 〈∇J(θt), θt+1 − θt〉 −
σB
2
‖θt+1 − θt‖2

= ηt

〈
∇J(θt),

vt
‖vt‖

〉
− σB

2
η2t .

(34)

Regarding the first term above, we consider two cases, whether ‖∇J(θt)‖ ≥ 2‖εt‖ or not. For the former case, we have:〈
∇J(θt),

vt
‖vt‖

〉
=
‖∇J(θt)‖2 + 〈∇J(θt), εt〉

‖∇J(θt) + εt‖

≥ ‖∇J(θt)‖2

2‖∇J(θt) + εt‖

≥ ‖∇J(θt)‖2

2(‖∇J(θt)‖+ ‖εt‖)

≥ ‖∇J(θt)‖
3

≥ ‖∇J(θt)‖
3

− 8

3
‖εt‖,

(35)

where in the first inequality, we used the bound 〈∇J(θt), εt〉 ≥ −‖∇J(θt)‖‖εt‖ ≥ −‖∇J(θt)‖2/2. For the latter case,〈
∇J(θt),

vt
‖vt‖

〉
≥ −‖∇J(θt)‖

=
‖∇J(θt)‖

3
− 4‖∇J(θt)‖

3

≥ ‖∇J(θt)‖
3

− 8‖εt‖
3

.

(36)

Plugging the bound on 〈∇J(θt), vt/‖vt‖〉 in (34), we get:

J(θt+1)− J(θt) ≥ ηt
(
‖∇J(θt)‖

3
− 8‖εt‖

3

)
− σB

2
η2t

=⇒ ‖∇J(θt)‖ ≤ 8‖εt‖+
3σBηt

2
+

3

ηt
(∇J(θt+1)−∇J(θt)).

(37)

D Additional Experimental Results
Experimental Results on Acrobat and Cartpole Environments
We compared SHARP with PAGE-PG (Gargiani et al. 2022) on two simple environments of Acrobat and Cartpole.

(a) Acrobat (b) Cartpole

Figure 2: Comparison of SHARP with PAGE-PG (Gargiani et al. 2022) on two simple environments of Acrobat and Cartpole.

Acrobat environment: The Acrobot has two links. The two links are connected linearly to form a chain. The goal is to swing
the free end of the linear chain to a given height. A reward of −1 is returned each time the goal is not achieved. An episode
terminates whenever the target height is reached or 500 steps are elapsed. The state space is continuous with dimension 6 and the
action space is discrete with 3 possible actions: applying a positive torque, or applying a negative torque, or do nothing.

As can be seen in Figure 2 (a), SHARP performs a little bit better than PAGE-PG on this environment.
Cartpole environment: The Cartpole comprises a pole attached by an un-actuated joint to a cart which moves along a

friction-less track. The pendulum is placed upright at the beginning, and the goal is to balance the pole. A reward of +1 is
returned for every step that the pole remains within 15 degrees from the upright position. An episode terminates whenever the
pole is more than 15 degrees from upright position, or the cart is moved more than 2.4 units from its initial position. The state
space is continuous with dimension 4 and the action space is discrete with 2 actions of pushing the cart left or right.

As can be seen in Figure 2 (b), SHARP outperforms PAGE-PG by achieving the average episode return of 200 after about
3000 episodes while PAGE-PG obtains the score of about 175 after 4000 episodes.

The effect of batch size on the performance
In Section 3, we provided a theoretical convergence guarantee for the proposed algorithm with a batch size equal to one for
computing stochastic gradient and Hessian vector product. However, in practice, we can use a batch size of O(1). Herein,
we study the impact of batch size on the performance of the proposed algorithm empirically. More specifically, in Reacher
environment, we executed SHARP with batch sizes of |B| = 1, 10, 20. The average episode return versus system probes for
different batch sizes is depicted in Figure 3; The impact of small batch size is negligible and the proposed algorithm still achieves
good performance with small batch size.

Figure 3: The performance of SHARP for different batch sizes in Reacher environment.

E Details of Baselines in Experiments
We used the default implementation of linear feature baseline and Gaussian MLP baseline from Garage library. The employed
linear feature baseline is a linear regression model which takes observations for each trajectory and extracts new features such as
different powers of their lengths from the observations. These extracted features are concatenated to the observations and used to
fit the parameters of the regression with least square loss function. The Gaussian MLP baseline is a two layer neural network
using 32 neurons per hidden layer with tanh(.) activation function.

In the experiments, we used linear baseline for all the environments and methods, except for HalfCheetah environment in our
algorithm, which we used Gaussian MLP baseline.

	1 Introduction
	2 Preliminaries
	Notations and problem definition
	Variance reduced methods for gradient estimation

	3 The SHARP Algorithm
	Convergence Analysis

	4 Related Work
	5 Experiments
	6 Conclusion
	A Proof of Theorem 1
	B Proof of Remark 3
	C Supplemental Lemma
	D Additional Experimental Results
	Experimental Results on Acrobat and Cartpole Environments
	 The effect of batch size on the performance

	E Details of Baselines in Experiments

