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Abstract: We propose nonparametric estimators for the second-order cen-
tral moments of possibly anisotropic spherical random fields, within a func-
tional data analysis context. We consider a measurement framework where
each random field among an identically distributed collection of spherical
random fields is sampled at a few random directions, possibly subject to
measurement error. The collection of random fields could be i.i.d. or se-
rially dependent. Though similar setups have already been explored for
random functions defined on the unit interval, the nonparametric estima-
tors proposed in the literature often rely on local polynomials, which do not
readily extend to the (product) spherical setting. We therefore formulate
our estimation procedure as a variational problem involving a generalized
Tikhonov regularization term. The latter favours smooth covariance/auto-
covariance functions, where the smoothness is specified by means of suit-
able Sobolev-like pseudo-differential operators. Using the machinery of re-
producing kernel Hilbert spaces, we establish representer theorems that
fully characterize the form of our estimators. We determine their uniform
rates of convergence as the number of random fields diverges, both for the
dense (increasing number of spatial samples) and sparse (bounded number
of spatial samples) regimes. We moreover demonstrate the computational
feasibility and practical merits of our estimation procedure in a simulation
setting, assuming a fixed number of samples per random field. Our numeri-
cal estimation procedure leverages the sparsity and second-order Kronecker
structure of our setup to reduce the computational and memory require-
ments by approximately three orders of magnitude compared to a naive
implementation would require.
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1. Introduction

Functional Data Analysis (FDA) comprises a wide class of statistical meth-
ods for the analysis of collections of data modelled as functions. In a classical
FDA setting (see [39, 21]), we typically assume that we have access to a collec-
tion of fully observed realizations of continuous-domain random processes, say
X1(·), . . . , Xn(·), which can be modelled as random elements of some separable
Hilbert space. Depending on the context, these realizations can be either inde-
pendent and identically distributed (i.i.d. functional data) or exhibit some form
of serial dependence (functional time series). In many practical setups however,
this “fully observed” context is not suitable. For example, environmental sci-
entists monitor temperature, salinity and currents in the Earth’s oceans from
spatial samples of such indicators collected by drifting floats, such as the ones
of the Argo fleet [2]. While originating from a latent continuous-domain pro-
cess, the data in this context are not observed in their fully functional form,
but rather come in the form of noisy and sparse spatial samples irregularly dis-
tributed on the surface of the Earth (see Figure 1). This suggests to consider
the following measurement scheme

Wij = Xi(Uij) + εij , i = 1, . . . , n, j = 1, . . . , ri, (1)

where Uij are the sampling locations, εij are noise disturbances. In this paper, we
focus specifically on latent processes Xi’s that constitute random fields over the
2D sphere S2 and address the functional data analysis problem of estimating
their first and second-order moment structure. This problem will be studied
for Xi’s that are independent replicates of some second-order process X =
{X(u), u ∈ S

2} as well as for Xi’s that constitute a finite stretch of some
stationary sequence X = {Xt(·), t ∈ Z}. In either case, we will not assume
the process to be either strongly or weakly isotropic, hence our reference to an
anisotropic setting.

Related work in FDA The model presented in Equation (1), in the case
of i.i.d. functional data {Xi} on the domain [0, 1], has been treated in several
works, as for instance in [62] with the aim of building a bridge between FDA
and longitudinal studies, and also in [19, 27, 63, 8, 7]. In this setting, it is not
possible to recover a priori the entire signals by a pre-smoothing step, and
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Fig 1. Sea surface temperature anomalies recorded by Argo floats in January 2011. Float
locations are marked by dots coloured according to the recorded anomaly (red=warmer tem-
peratures, blue=colder temperatures).

hence the statistical estimators and procedures cannot be based on the intrinsi-
cally infinite dimensional inputs and techniques as in the classical FDA setting.
However, having access to n (partial) replications still makes inference possible,
even if the number of points per replicate is small. The core point is that all
the information coming from the measurements can be shared to estimate the
main features of the underlying process, such as the mean and the covariance
kernel. This idea of borrowing information leads naturally to the implementa-
tion of smoothing techniques. In the key paper [62], the authors propose to
estimate the covariance kernel of the latent functional process by a local poly-
nomial smoother, which is well defined in a 2-dimensional planar domain, and
for such estimator they obtain rates of convergence. In the subsequent work
[41], similar results for the lag-h autocovariances and spectral density kernels
have been established in the serially dependent setting. However, when the do-
main is the product sphere, standard local polynomial smoothing techniques do
not straightforwardly extend. Indeed, the covariance estimation task consists in
estimating a function on a 4-dimensional curved surface (i.e., S2 × S

2) and ide-
ally the selected smoothing procedure would naturally incorporate the manifold
geometry of the product sphere.

There exists a vast literature on (usually time-dependent) sequences of spher-
ical random fields aimed at the characterization and parametric estimation of
covariance/autocovariance functions (see [5, 15, 23, 24, 35, 36, 60, 49] and in
particular [38] for a comprehensive review). The great majority of such works
have focused on isotropic (in space) and stationary (in time) processes. However,
in particular for the analysis of climate data, there is an attempt to move from
the assumption of isotropy to that of axial symmetry (i.e., heterogeneous spatial
dependence across latitudes), but always in a purely parametric framework (see,
for instance, [12, 37] and the references therein).
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Very recently, the problem of investigating (isotropic and stationary) serially-
dependent spherical random fields and their second-order structure has been
tackled from a FDA perspective by [11, 10, 9] when fully observed functional
time series are available.

Our aim is to bridge the gap between the idealised setting of these previous
works and the many practical experiments which intrinsically feature irregu-
lar and/or sparse measurements of non-isotropic random fields on the sphere,
such as the Argo data from Figure 1. Hence, we focus on both the i.i.d. and
serially-dependent setting, specifically for functional data measured as defined
in Equation (1), without assuming any form of isotropy in space. We provide
a methodology which intrinsically incorporates the structure of the (product)
spherical domain and also allows to estimate the mean, the covariance, and the
autocovariance functions in a completely nonparametric manner. This in partic-
ular has many advantages, such as the possibility of performing spatial kriging
without any parametric restrictions.

In the following, we summarize the proposed strategy and the main contri-
butions of our work.

Variational methods for mean and covariance estimation Following
the general approach of [8, 7], our strategy for estimating the mean, covariance,
and autocovariances of the spherical random fields Xi is to define the respective
estimators as solutions of regularized quadratic variational problems of the form

min
f∈H

L(y,Φ(f)) + λ‖f‖2
H. (2)

In this setting, the loss functional L(y,Φ(f)) constraints the measurement vec-
tor Φ(f) to be close to the data y – in our case, the data are the noisy sampled
values Wij in (1) for the mean estimation, or pairwise products WijWi′j′ be-
tween these quantities for the covariance estimation. The choice of the Hilbert
space H and therefore the regularization ‖f‖H determines the smoothness of
the estimators as functions over S2 or S2 × S2. The parameter λ > 0 balances
the role of the data-fidelity and the regularization.

Optimization problems of the form (2) have a rich history far beyond covari-
ance estimation. The underlying Hilbert space H can be made of vectors or func-
tions. They are known as Tikhonov regularization in inverse problems [52, 22, 54]
and ridge-regression in statistics [20, 42]. Quadratic regularized optimized prob-
lems over Hilbert function spaces are well-known to be connected to splines since
the pioneering works of Wahba in the 1970’s [25]; see also [58]. The specification
of the form of the solutions of problems such as (2) is known as a representer
theorem [43, 44]. Quadratic representer theorems for sequences [54], continu-
ous functions [18] and periodic functions [4] have been proposed. The case of
spherical functions is covered [46, 31]. For the mean and covariance estimation
of random fields over [0, 1], we refer to [8, 7]. To the best of our knowledge, this
setting has never been proposed for spherical random fields. It is worth noting
that, even if we restricted our attention to the sampling regression problem (1),
we can easily generalize the approach to generalized linear measurements, as
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detailed for instance in [4, 46, 31]. Estimation of spherical random fields from
generalized measurements is typically relevant in radio interferometric or acous-
tic imaging [49, 48, 50].

Contributions The specificity of our work is to apply quadratic regular-
ized optimization problems to mean, covariance, and autocovariance estimation
of spatially spherical – hence non Euclidean – and serially-dependent random
fields. To the best of our knowledge, these ideas have not been applied in these
contexts. Our method appears, in fact, to be the first and only thus far to tackle
non-parametric and non-isotropic covariance estimation with sparsely sampled
functional data on the sphere. Our main contributions are as follows.

• Representer theorems for the estimators: We introduce a family of
regularization-based estimators for the estimation of the mean, covariance,
and autocovariance functions of spatially spherical and temporally station-
ary Gaussian random fields. The regularizations for the first and second
moments are given by f �→ ‖Df‖2

L2(S2) and g �→ ‖(D ⊗ D)g‖2
L2(S2×S2),

where D is a smoothness-inducing pseudo-differential operator. For such
regularizations, we obtain the general form of the mean and covariance
estimators, expressed in terms of the regression data and the Green’s func-
tions of the regularizing pseudo-differential operators.

• Asymptotic Theory: Our main result is to provide an asymptotic analysis
of the performance of the mean, covariance, and autocovariance estimators
obtained via the representer theorems. The performance is expressed in
terms of the smoothness properties of both the Xi and their second-order
structure. By distinguishing between the regularity of the random fields
and that of their second-order structure, we provide a refined analysis rel-
ative to existing results on [0, 1]2, which for important classes of spherical
random fields results in improved rates.

• Serially Dependent Setting: We extend our methods and theory to also
cover the case of serially correlated random fields on S2, a.k.a. spherical
functional time series. To the best of our knowledge, in the context of
functional time series, variational methods for estimating the mean and,
especially, the sequence of lag h autocovariance kernels have not been
considered before.

• Computation: We develop a practically feasible implementation of our
estimation methodology, circumventing the computational and memory
challenges raised by the high dimensionality of the estimation task. More
specifically, leveraging our theoretical results as well as sparse/second-
order structure, we develop a computationally tractable and memory-thrifty
implementation. The latter allows us to reduce the computational/mem-
ory requirements by two to three orders of magnitude approximately. We
propose moreover a K-fold cross-validation procedure, both for evaluating
the finite-sample performance of our estimator but also to optimally select
the regularization parameter λ in (2). The simulation code is openly avail-
able and fully-reproducible, and is released in the form of a standalone
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Python 3 Jupyter notebook hosted on GitHub: https://github.com/
matthieumeo/sphericov/blob/main/companion_nb.ipynb. Instructions
for installing the required dependencies and running the notebook are
available at: https://github.com/matthieumeo/sphericov#readme.

Outline The rest of the paper is organized as follows. In Section 2, we in-
troduce some preliminary concepts on spherical and tensorial Sobolev spaces
and related pseudo-differential operators. In Section 3, we formally present the
model and the proposed estimators for the mean and covariance functions in the
i.i.d. setting. For such estimators we provide representer theorems in Section 4
and the asymptotic analysis in Section 5. Our procedure is then implemented
in Section 6 for a simulated experiment. In Section 7 the case of serially depen-
dent spherical random fields is examined and rates of convergence are provided
for the lag-h autocovariance kernels. The proofs of all formal statements are
collected in Section 8.

2. Mathematical background

We denote by L2(S2) the space of real-valued square-integrable functions over
the 2D sphere. It is well-known that any function f ∈ L2(S2) can be expanded
as

f =
∞∑
�=0

�∑
m=−�

f�,mY�,m, (3)

where {Y�,m}�∈N,−�≤m≤� is a standard orthonormal basis of real spherical har-
monics and the spherical Fourier coefficients f�,m = 〈f, Y�,m〉L2(S2) ∈ R of
f are such that ‖f‖2

L2(S2) :=
∑∞

�=0
∑�

m=−� f
2
�,m < ∞ – see for instance [30,

Chapter 3]. We also consider functions over the domain S
2 × S

2, which is re-
quired to deal with the second-order moments of spherical random fields. The
family {Y�,m ⊗ Y�′,m′}�,�′∈N,−�≤m≤�,−�′≤m′≤�′ is then an orthonormal basis of
L2(S2 × S

2) = L2(S2) ⊗ L2(S2), where (Y�,m ⊗ Y�′,m′)(u, v) = Y�,m(u)Y�′,m′(v)
for any (u, v) ∈ S2 × S2.

2.1. Sobolev spaces on S
2 and S

2 × S
2

We characterize the smoothness properties of the random fields, means, and
covariance functions in terms of Sobolev spaces, defined in Definition 1.

Definition 1. Let p ≥ 0. The spherical Sobolev space of order p on S
2 is defined

as

Hp=Hp(S2)=
{
f ∈L2(S2), ‖f‖2

Hp
:=

∞∑
�=0

(1 + �(� + 1))p
�∑

m=−�

〈f, Y�,m〉2 < ∞
}
.

(4)

https://github.com/matthieumeo/sphericov/blob/main/companion_nb.ipynb
https://github.com/matthieumeo/sphericov/blob/main/companion_nb.ipynb
https://github.com/matthieumeo/sphericov#readme
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The tensorial Sobolev space of order p on S
2 × S

2 is

Hp = Hp(S2 × S
2) = Hp ⊗Hp ⊂ L2(S2 × S

2). (5)

The spaces Hp and Hp are Hilbert spaces for their respective Hilbert norms
‖ · ‖Hp and ‖ · ‖Hp inherited from the inner products

〈f1, f2〉Hp :=
∞∑
�=0

(1 + �(� + 1))p
�∑

m=−�

〈f1, Y�,m〉L2(S2)〈f2, Y�,m〉L2(S2), (6)

〈g1, g2〉Hp :=
∞∑

�,�′=0

(1 + �(� + 1))p(1 + �′(�′ + 1))p

×
�∑

m=−�

�′∑
m′=−�′

〈g1, Y�,m ⊗ Y�′,m′〉L2(S2)〈g2, Y�,m ⊗ Y�′,m′〉L2(S2) (7)

for f1, f2 ∈ Hp and g1, g2 ∈ Hp. Note that the norm ‖ · ‖Hp is such that ‖f1 ⊗
f2‖Hp = ‖f1‖Hp‖f2‖Hp for any f1, f2 ∈ Hp.

The parameter p in Definition 1 quantifies the regularity: the higher p, the
smoother the functions f ∈ Hp and g ∈ Hp. We also define the spaces S(S2) and
S(S2 × S

2) = S(S2) ⊗ S(S2) of infinitely smooth functions on S
2 and S

2 × S
2,

respectively. We then have that

S(S2) =
⋂
p≥0

Hp and S(S2 × S
2) =

⋂
p≥0

Hp. (8)

The topological duals of S ′(S2) and S ′(S2 × S
2) are respectively the space of

distributions S(S2) and S(S2 × S
2) and are such that

S ′(S2) =
⋃
p≥0

Hp
′ and S ′(S2 × S

2) =
⋃
p≥0

Hp
′. (9)

Among Sobolev spaces, we are specifically interested in the ones on which
the evaluation functionals f �→ f(x) are continuous for any x in the domain (S2

or S
2 × S

2). In other terms, we shall only consider Sobolev spaces Hp and Hp

that are Reproducing Kernel Hilbert Spaces (RKHS) [3]. We characterize this
property in Proposition 1, whose proof is provided in Section 8.1.

Proposition 1. Let p ≥ 0. Then, we have the equivalences

Hp is a RKHS ⇐⇒ Hp is a RKHS ⇐⇒ p > 1. (10)

The RKHS properties allow us to provide uniform control functions on Hp

and Hp, as will be used for instance in Lemma 1 in Section 8.3. This implies in
particular the uniform convergence of Fourier series; e.g., for any f ∈ Hp,

sup
u∈S2

∣∣∣∣∣f(u) −
L∑

�=0

�∑
m=−�

〈f, Y�,m〉L2(S2)Y�,m(u)

∣∣∣∣∣→ 0, L → ∞.
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2.2. Spherical and tensorial admissible operators

The Tikhonov regularization used in our estimation strategy relies on linear
operators that will impact the smoothness of the estimators. We now introduce
the class of linear operators that are relevant for our work.

Definition 2 (Admissible Operators). An admissible operator will be any linear
operator of the form

D :

⎧⎪⎪⎨⎪⎪⎩
S(S2) → S(S2)

f �→ Df =
∞∑
�=0

D�

�∑
m=−�

f�,mY�,m

where {f�,m = 〈f, Y�,m〉L2(S2)}�∈N,−�≤m≤� are the spherical Fourier coefficients
of f and {D�}�∈N is a sequence of non-zero real numbers such that

C1(1 + �)p ≤ |D�| ≤ C2(1 + �)p, (11)

for some real number p ≥ 0, some positive constants C1, C2 > 0 and every � ∈ N.
We call the D�, � ∈ N, the spherical Fourier coefficients and p the spectral growth
order of D .

The condition (11) implies that D is invertible from S(S2) to itself. The in-
verse of D is given by D−1f =

∑∞
�=0

1
D�

∑�
m=−� f�,mY�,m. Note that Definition 2

excludes some classical pseudo-differential operators such as the Laplacian op-
erator D = ΔS2 itself, which is not invertible. Indeed, we have in this case that
D� = −�(�+1), hence D0 = 0 and the condition (11) is not fulfilled. It is however
possible to generalize Definition 2 above to include the Laplacian and more gen-
erally spherical pseudo-differential operators with finite-dimensional null space
– see for example [47, Definition 4].

Example 1. We consider the family of Sobolev operators, i.e., operators of the
form D := (Id−ΔS2)p/2 for some p ≥ 0. The spherical Fourier coefficients of
(Id−ΔS2)p/2 are given by

D� = (1 + �(� + 1))p/2, � ∈ N.

We easily see that (Id−ΔS2)p/2 satisfies the conditions of Definition 2 with
spectral growth order p.

We can use the admissible operators in Definition 2 to construct operators
acting on functions over S

2 × S
2 as follows. Let D be an admissible operator.

Then, D ⊗D is a linear operator from S(S2 × S
2) to itself characterized by the

relations
(D ⊗ D)(f1 ⊗ f2) = (Df1) ⊗ (Df2)

for any f1, f2 ∈ S(S2). The invertibility of D then implies the invertibility of
D ⊗ D from S(S2 × S

2) to itself.
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The Sobolev operator D = (Id−ΔS2)p/2 of order p ≥ 0 is such that

‖f‖Hp = ‖Df‖L2(S2) and ‖g‖Hp = ‖(D ⊗ D)g‖L2(S2×S2) (12)

for any f ∈ Hp and g ∈ Hp. More generally, any admissible operator D specifies
a continuous bijection D : Hp → L2(S2) (see Proposition 4 in Section 8.1 for a
formal statement). This implies that f �→ ‖Df‖L2(S2) specifies a norm on Hp

which is equivalent to ‖ · ‖Hp . Similarly, g �→ ‖(D ⊗D)g‖L2(S2) specifies a norm
on Hp which is equivalent to ‖ · ‖Hp .

Remark 1. For any admissible operator D , the family {Y�,m/D�}�∈N,−�≤m≤�

is orthonormal in (Hp, ‖D · ‖L2(S2)) This simply follows from the fact that, as
easily seen from Definition 2, DY�,m = D�Y�,m and therefore,

〈DY�,m,DY�′,m′〉L2(S2) = D�D
∗
�′〈Y�,m, Y�′,m′〉L2(S2) = D2

� δ
�′

� δ
m′

m . (13)

In particular,
{
Y�,m/(1 + �(� + 1))p/2

}
�∈N,−�≤m≤�

is an orthonormal basis of
(Hp, ‖ · ‖Hp). The relation (13) moreover implies, for any f ∈ Hp, we have the
useful relation

〈Df,DY�,m〉L2(S2) = D2
� 〈f, Y�,m〉L2(S2). (14)

We now introduce the Green’s functions and the zonal Green kernel of ad-
missible operators in Definition 3.

Definition 3. Let D be an admissible operator. For any u ∈ S
2, we denote

by ΨD
u = D−1δu. Then, we call ΨD

u the Green’s function of the operator D at
position u. Moreover, there exists a function ψD : [−1, 1] → R such that, for
any u, v ∈ S

2,
ΨD

u (v) = ψD(〈u, v〉), (15)
where 〈u, v〉 is the usual inner product between points in S2 ⊂ R3. The function
ψD is called the zonal Green’s kernel of D .

It is known that the Green’s functions of admissible operators are continuous
as soon as the spectral growth order p satisfies p > 1 [47, Proposition 4]. The
existence of the zonal Green’s kernel is for instance proved in [47, Proposition
3]; it can be expressed in terms of the spherical Fourier coefficients {D�} and
the 2-dimensional ultraspherical polynomials (see [47, Eq. (16)]). The existence
of the zonal Green’s kernel has important practical consequences. It means in
particular that the Green’s functions at any positions can be easily computed
from ψD , as will be exploited in Section 6.

3. Model and estimation methodology

In this section, we present the theoretical setting in which we develop our
methodology. From a purely functional data analysis perspective, we consider a
second-order stochastic process X = {X(u), u ∈ S

2} that is a random element
of Hq, for some q > 1, with

E[X(u)] = μ(u), E[X(u)X(v)] = R(u, v),
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and covariance function

C(u, v) = R(u, v) − μ(u)μ(v),

for u, v ∈ S
2. Recall from Proposition 1 that Hq with q > 1 is a RKHS, hence the

process X inherits all the properties of a RKHS valued process, see [21, Section
7.5]. Moreover, since q > 1, the realizations of X are almost surely continuous
on S2.

Now suppose we have X1, . . . , Xn independent replicates of X and that for
the i-th replicate we make measurements at ri random locations on S

2. Formally,
we consider the following regression problem

Wij = Xi(Uij) + εij , i = 1, . . . , n, j = 1, . . . , ri,

where the Uij ’s are independently drawn from a common distribution on S
2,

and the εij ’s are independent and identically distributed measurement errors
of mean 0 and variance 0 < σ2 < ∞. Furthermore, the Xi’s, the measurement
locations, and the measurement errors are assumed to be mutually independent.
Then,

E[Wij |Uij = uij ] = μ(uij), (16)
and

E[WijWlk|Uij = uij , Ulk = ulk] =
{
μ(uij)μ(ulk) if i �= l

R(uij , uik) + σ2δkj if i = l.
(17)

Moreover,

Cov[Wij ,Wlk|Uij = uij , Ulk = ulk] =
{

0 if i �= l

C(uij , uik) + σ2δkj if i = l.

Below, expectations will be sometimes computed conditionally on/with respect
to the whole set of Uij ’s, which will be denoted by U .

It appears evident from Equations (16) and (17) that the measurements them-
selves and the off-diagonal products can be seen as unbiased estimators for the
mean and second-order moment functions, respectively, computed at fixed lo-
cations. In particular, we can recover the covariance by performing smoothing
on the pooled measurements (to first recover the mean) and then on the pooled
product observations (to recover the second-order moment function). Note that
it is important in this second step to discard the “diagonal” elements (not easy
to visualize on S2×S2 as opposed to [0, 1]×[0, 1]) so that potential biases arising
from the noise are neglected (as in [62]). We then use the previously introduce
machinery to build smoothing techniques that takes into account the geometry
of S2.

Specifically, for a given p ≥ q and η, λ > 0, we can define the following
estimators for the mean function

μλ := arg min
g∈Hp

4π
n

n∑
i=1

1
ri

ri∑
j=1

(Wij − g(Uij))2 + λ‖Dg‖2
L2(S2), (18)
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and for the second-order moment function

Rη := arg min
g∈Hp

(4π)2

n

n∑
i=1

1
ri(ri − 1)

∑
1≤j �=k≤ri

(WijWik − g(Uij , Uik))2

+ η‖(D ⊗ D)g‖2
L2(S2×S2), (19)

where D is any admissible operator with spectral growth order p (see Defini-
tion 2 in Section 2.2). An estimate of the complete covariance kernel C(u, v) =
R(u, v) − μ(u)μ(v) is then given by

Cη,λ(u, v) = Rη(u, v) − μλ(u)μλ(v). (20)

Remark 2. In order to simplify the notation, from now on, we will not differen-
tiate between the two penalty parameters η, λ. In particular, for the covariance
estimator, we will consider η = λ and write directly Cη. This will not affect in
any way our asymptotic results.

We remark that our estimators are genuinely nonparametric and anisotropies
in space are allowed. Moreover, the class of admissible operators is very large
and, hence, this implementation gives the possibility to be flexible with respect
to particular practical problems (non-asymptotic regimes).

4. Representer theorems for mean and covariance estimation

In this section, we specify the form of the solutions of the optimization problems
which are the cornerstones of our estimation strategy. More precisely, represen-
ter theorems for the mean estimator (18) and the second-order moment estima-
tor (19) are stated in Sections 4.1 and 4.2 respectively. In both cases, the form of
the solution is deduced from general principles for optimization problems over
Hilbert spaces, that are presented in Section 8.2.

4.1. Representer theorem for mean estimation

As we have seen in (18) and (19), our strategy for the mean and covariance
estimations relies on the minimization of quadratic cost functionals with two
components: (i) a data-fidelity term which constraint the solution to be consis-
tent with the sampled observations and (ii) a regularization term which enforces
some smoothness condition via the admissible operator D . Our goal in this sec-
tion and the next one is to reveal the form of the solution of the optimization
problem together with their main properties. We start with the mean estimation
in Theorem 1.

Theorem 1. Let D be an admissible operator with spectral growth p > 1. Let
n ≥ 1, ri ≥ 1 for i = 1, . . . n. We consider weights wij ∈ R and pairwise distinct
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positions uij ∈ S
2 for i = 1, . . . , n and j = 1, . . . , ri. We fix η > 0. Then, the

optimization problem

min
f∈Hp

4π
n

n∑
i=1

1
ri

ri∑
j=1

(wij − f(uij))2 + η‖Df‖2
L2(S2) (21)

has a unique solution μη ∈ Hp which is given by

μη =
n∑

i=1

1√
ri

ri∑
j=1

αijψD∗D(〈·, uij〉) (22)

for some (αij)1≤i≤n, 1≤j≤ri , where ψD∗D is the zonal Green’s kernel of D∗D
(see Definition 3).

Moreover, the coefficients αij are computed as follows. Let L =
∑n

i=1 ri be
the total number of measurements. We set α ∈ R

L the vectorized version of
(αij)1≤i≤n, 1≤j≤ri , y ∈ R

L the vectorized version of the normalized observations(
wij√
ri

)
1≤i≤n, 1≤j≤ri

, and G ∈ R
L×L the matrix whose entries are given by

G�1�2 = ψD∗D(〈ui1j1 , ui2j2〉)√
ri1ri2

. (23)

where the index �1 (resp. �2) corresponds to the couple (i1, j1) (resp. (i2, j2)) in
the vectorization. Then, we have that

α =
(
G + ηn

4π IL
)−1

y (24)

where IL ∈ R
L×L is the identity matrix.

As far as the mean is concerned, the representer theorem can be deduced
from known results in the literature. In particular, the general form (22) of
the solution μη in Theorem 1 can be seen as a particular case of [46, Theorem
5.3]. The specification of the weights αij is then a finite-dimensional quadratic
optimization problem (see for instance [18, Section V.A] and [4, Proposition 4]
for similar results on the discretization of quadratic optimization problems over
function spaces). Theorem 1 is also a special case of the general Representer
Theorem over Hilbert spaces that we recall in Section 8.2 (see Theorem 7). This
specification is similar – and simpler – to the one we detail in Theorem 2 for
the second-order estimator, hence we do not detail it.

Remark 3. The estimator μη of (21) depends linearly on α via (22), which
depends itself linearly on the observations (wij)1≤i≤n, 1≤j≤ri

. Hence, μη is a
linear estimator of the mean μ. We moreover observe that μη is a (D∗D)-spline
in the sense that [46, Definition 7]

(D∗D){μη} =
n∑

i=1

1√
ri

ri∑
j=1

αijδuij (25)
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is a sum of Dirac impulses. The estimator μη is therefore the optimal (D∗D)-
spline with knots at the sampling locations. This is the adaptation in our context
of a well-known fact for Tikhonov-type regularization [46, 25, 6, 4].

This reveals that the choice of the admissible operator D is crucial. First,
the spectral growth order determines the smoothness of the estimated mean,
which is in Hp. Since p > 1, we deduce that μη is continuous over the sphere
S

2. Second, the shape of the zonal Green’s kernel ψD∗D determines the general
form of the reconstruction. Distinct admissible operators with identical spectral
growth order will have identical asymptotic performances (see Section 5) but
can lead to distinct practical performances in the non-asymptotic regime, what
will be exploited in Section 6.

4.2. Representer theorem for second-order estimation

We now present a representer theorem which gives the form of the estimator
for the second-order moment function as the solution of (19). The proof of
Theorem 2 is provided in Section 8.2.

Theorem 2. Let D be an admissible operator with spectral growth p > 1. Let
n ≥ 1, ri ≥ 1 for i = 1, . . . n. We consider weights wij ∈ R and pairwise distinct
positions uij ∈ S

2 for i = 1, . . . , n and j = 1, . . . , ri. We fix η > 0. Then, the
optimization problem

min
g∈Hp

(4π)2

n

n∑
i=1

1
ri(ri − 1)

∑
1≤j �=k≤ri

(wijwik−g(uij , uik))2 +η‖(D⊗D)g‖2
L2(S2×S2)

(26)
has a unique solution Rη ∈ Hp which is given by

Rη =
n∑

i=1

1√
ri(ri − 1)

∑
1≤j �=k≤ri

βijkψD∗D(〈·, uij〉) ⊗ ψD∗D(〈·, uik〉) (27)

for some (βijk)1≤i≤n, 1≤j �=k≤ri , where ψD∗D is the zonal Green’s kernel of D∗D .
The coefficients βijk are computed as follows. Let L =

∑n
i=1 ri(ri−1). We set

β ∈ RL the vectorized version of (βijk)1≤i≤n, 1≤j �=k≤ri , z ∈ RL the vectorized

version of the normalized observations
(

wijwik√
ri(ri−1)

)
1≤i≤n, 1≤j �=k≤ri

, and H ∈

R
L×L the matrix whose entries are given by

H�1�2 = ψD∗D(〈ui1j1 , ui2j2〉) × ψD∗D(〈ui1k1 , ui2k2〉)√
ri1(ri1 − 1)ri2(ri2 − 1)

(28)

where the index �1 (resp. �2) corresponds to the triplet (i1, j1, k1) (resp. (i2, j2, k2))
in the vectorization. Then, we have that

β =
(
H + ηn

(4π)2 IL
)−1

z. (29)



Covariance and autocovariance operators on the sphere 5093

Moreover, the estimator Rη is symmetric in the sense that Rη(u, v) = Rη(v, u)
for any u, v ∈ S

2.

The practical vectorization of the optimization problem (26) for the specifi-
cation of the βijk, which is only implicit in Theorem 2, is detailed in Section 6;
see in particular (46).

Remark 4. The estimator Rη is symmetric. This is due to the use of a tensorial
admissible operator D ⊗D in the regularization and is consistent with the fact
that the second-order moment R is symmetric by construction.

Moreover, Rη is linear with respect to the pairwise products wijwik, and it
is a (D∗D) ⊗ (D∗D)-spline, in the sense that

(D∗D) ⊗ (D∗D){Rη} =
n∑

i=1

1√
ri(ri − 1)

∑
1≤j �=k≤ri

βijkδ(uij ,uik), (30)

with knots determined by the sampling locations uij . As an element of Hp for
p > 1, the estimated second-order moment function Rη is also continuous on
S

2 × S
2.

Finally, we estimate the covariance function C given by C(u, v) = R(u, v) −
μ(u)μ(v) = (R− μ⊗ μ)(u, v) using the estimators Rη and μη via

Cη = Rη − μη ⊗ μη. (31)

The estimator Cη is continuous and symmetric on S
2×S

2, is a (D∗D)⊗ (D∗D)-
spline in Hp (due to (25) and (30)), and is linear with respect to the pairwise
products wijwik.

Remark 5. We remark that our nonparametric estimators Rη and Cη are
not necessarily positive semi-definite in general. This is a standard occurrence
in functional data analysis, not specific to our estimator, but common to all
smoothing-based nonparametric methods (e.g. the PACE estimator [62], see also
[27], the RKHS estimator [7], or their extensions to time series [41]). In practice,
however, this has negligible effects: asymptotically positive semi-definiteness is
recovered, as is proved in Section 5, whereas in finite-sample setups it can be
recovered via a projection (which does not affect the rate) on the semi-definite
cone, as is explained in Section 6. Indeed the asymptotic theory guarantees that
negative eigenvalues will typically only be encountered at the tail end of the
spectrum.

5. Asymptotic theory

This section contains the main results of our paper, that is, uniform rates of
convergence for the mean and covariance estimators. In the following, we define
the class of probability measures for which our rates are achieved.
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Definition 4. Consider p > 2, 1 < q ≤ p. Let Π1(p, q) be the collection of prob-
ability measures for Hq-valued processes such that for any X with probability
law PX ∈ Π1(p, q)

E‖X‖2
Hq

≤ M, ‖μ‖2
Hp

≤ K,

for some constants M,K > 0. By extension, we say that X ∈ Π1(p, q) if it’s
probability law does.

Definition 5. Consider p > 2, 1 < q ≤ p. Let Π2(p, q) be the collection of prob-
ability measures for Hq-valued processes, such that for any X with probability
law PX ∈ Π2(p, q)

E‖X‖4
Hq

≤ L, ‖R‖2
Hp

≤ K1, ‖μ‖2
Hp

≤ K2,

for some constants L,K1,K2 > 0. By extension, we say that X ∈ Π2(p, q) if it’s
probability law does.

The realizations of the process X are presumed to lie in Hq, for some 1 < q ≤
p. This entails that they are allowed to be “rougher” than the mean and covari-
ance functions; indeed, q can be strictly smaller than p. As a result, the class
of processes considered in [8] is a special case of that considered in Definition 4
for the mean estimation, i.e., when p = q. Note indeed that, if p = q,

‖μ‖2
Hp

≤ E‖X‖2
Hp

≤ M,

and the covariance kernel (as well as the second-order moment) belongs to the
direct product Hilbert space Hp = Hp ⊗Hp, since

‖C‖2
Hp

≤
(
E‖X − μ‖2

Hp

)2
≤
(
E‖X‖2

Hp

)2
< ∞.

Moreover, if p = q in Definition 5, we have that

‖C‖2
Hp

≤ E‖X‖4
Hp

≤ L,

which yields to the class of processes considered in [7] for covariance estimation.
These considerations will be discussed in more detail in Section 5.3.

Remark 6. The requirements in Definitions 4 and 5 are smoothness condi-
tions, which form the basis for any nonparametric procedure. Their specific form
amounts to classical Sobolev ellipsoid conditions (see, e.g., [59, Chapter 7]).

Our rates will be expressed in terms of the number of replicates n and the
average number of measurement locations

r :=
(

1
n

n∑
i=1

1
ri

)−1

,

defined as the harmonic mean of the ri’s. The results can thus be interpreted
in both the dense and sparse sampling regimes. In a dense design, r = r(n)
is required to diverge with n and it is larger than some order of n; on the
other hand, in a sparse design, the sampling frequency r is bounded and can be
arbitrary small (as small as two).



Covariance and autocovariance operators on the sphere 5095

5.1. Mean estimation

This section is devoted to the estimation of the mean μ(·). In the following
theorem we provide a (uniform) rate of convergence for the estimator given in
Equation (18), under a suitable condition on the decay of the penalty parame-
ter η. The proof is provided in Section 8.3.

Theorem 3. Assume that the Uij , i = 1, . . . , n, j = 1, . . . , ri, are independent
copies of U ∼ Unif(S2). Let p > 2 and 1 < q ≤ p, and consider the estimation
problem in Equation (18) for an admissible operator D of spectral growth order
p. If η � (nr)−p/(p+1), then

lim
D→∞

lim sup
n→∞

sup
PX∈Π1(p,q)

P(‖μη − μ‖2
L2(S2) > D((nr)−p/(p+1) + n−1)) = 0.

Corollary 1. Let X be such that PX ∈ Π1(p, q). Under the same assumptions
of Theorem 3,

‖μη − μ‖2
L2(S2) = OP

(
(nr)−p/(p+1) + n−1

)
.

Theorem 3 tells us that the estimator μη achieves the rate (nr)−p/(p+1)+n−1

uniformly over the class Π1(p, q) and hence such rate is called achievable for that
class (see [51]).

It is important to remark that we can observe a phase transition phenomenon
with a boundary at r = n1/p, which allows to discriminate between sparse and
dense sampling regimes. Indeed, when the sampling frequency r is small, that
is, r = O(n1/p), we have

‖μη − μ‖2
L2(S2) = OP

(
(nr)−p/(p+1)

)
,

which is equivalent to the rate of a smoothing spline estimator in nonparametric
regression based on nr independent observations. In other words, the conver-
gence rate is not affected by the spatial dependence. In the case of high sampling
frequency with r � n1/p, we have a parametric rate

‖μη − μ‖2
L2(S2) = OP

(
n−1) ,

that does not depend on r, as in a classical FDA approach where one can observe
X1, . . . , Xn continuously on S

2.
All the previous definitions and results apply also to hypersphere S

d, d > 2.
In particular, hyperspherical harmonics (see for instance [46, Chapter 3]) can be
used to prove the rate, that is (nr)−2p/(2p+d) + n−1, for p > d and d/2 < q ≤ p.

Remark 7 (On the distribution of the measurement locations). Theorem 3 is
stated and proved for independent measurament locations Uij , i = 1, . . . , n, j =
1, . . . , ri, uniformly distributed over the sphere. It will be clear in the proofs be-
low that, for this specific case, one can work directly with the L2- and Hp- norms
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introduced in Section 2, i.e., ‖·‖L2(S2) and ‖D ·‖L2(S2), and the corresponding in-
termediate spaces (see [32, Chapter 4] for further details on intermediate norms
and spaces). The set of spherical harmonics {Y�,m} also plays a crucial role, as it
forms an orthonormal basis for L2(S2) and an orthogonal basis for Hp. However,
the results can be generalized to any other (common) probability density pU (·)
supported on S

2 and bounded away from 0 and infinity, that is,

0 < inf
u∈S2

pU (u) ≤ sup
u∈S2

pU (u) < ∞.

Therefore, we can define two new inner products

(f, g) �→ 4π
∫
S2
f(u)g(u)pU (u)du, (32)

(f, g) �→ 4π
∫
S2
f(u)g(u)pU (u)du + 〈Df,Dg〉L2(S2), (33)

and their corresponding norms which are respectively equivalent to ‖ · ‖L2(S2)
and ‖D · ‖L2(S2). Such equivalence allows to establish results parallel to those
in the uniform case. Indeed, it is possible to show that there exists a set of
functions {ψj} that forms an orthonormal basis for L2(S2) endowed with (32)
and an orthogonal basis for Hp endowed with (33). We are also able to define
intermediate norms and associated intermediate spaces. The reader is referred
in particular to [28, Section 2.4] and the references therein. It is clear the the set
{ψj} plays the same role as the set of spherical harmonics and we want to stress
that (apart from orthonormality/orthogonality) no other specific properties of
spherical harmonics have been used to prove our results. Hence, the generaliza-
tion can be obtained by following exactly the same steps; see also [29] for an
application.

5.2. Covariance estimation

In this section, we present our main result, which concerns the estimation of
the covariance function C(·, ·). The following theorem gives a (uniform) rate of
convergence for the estimator given in Equation (20), under a suitable condition
on the decay of the penalty parameter η. The proof is provided in Section 8.3.

Theorem 4. Assume that E[ε411] < ∞ and the Uij , i = 1, . . . , n, j = 1, . . . , ri,
are independent copies of U ∼ Unif(S2). Let p > 2 and 1 < q ≤ p, and consider
the estimation problem in Equation (20) for an admissible operator D of spectral
growth order p. If η � (nr/ logn)−p/(p+1), then

lim
D→∞

lim sup
n→∞

sup
PX∈Π2(p,q)

P

(
‖Cη − C‖2

L2(S2×S2) > D

((
logn
nr

)p/(p+1)

+ 1
n

))
= 0.
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Corollary 2. Let X be such that PX ∈ Π2(p, q). Under the same assumptions
of Theorem 4,

‖Cη − C‖2
L2(S2×S2) = OP

((
logn
nr

)p/(p+1)
+ 1

n

)
.

Remark 8. A careful inspection of the proof reveals that any estimator μ̂(·) of
the mean function that satisfies

lim
D→∞

lim sup
n→∞

sup
PX∈Π2(p,q)

P

(
‖μ̂− μ‖2

L2(S2) > D

((
logn
nr

)p/(p+1)

+ 1
n

))
= 0

can be used. The estimator μη(·) proposed in Section 5.1 satisfies this condition
both when η � (nr)−p/(p+1) (see Theorem 3) or when η � (nr/ logn)−p/(p+1)

(see Proof of Theorem 4).

In Theorem 4 we show that the estimator Cη achieves a uniform rate
(logn/nr)p/(p+1) + n−1 on the class Π2(p, q). As was the case for the mean,
we have a phase transition, this time at r = n1/p logn. Indeed, when the func-
tions are densely sampled, i.e., r � n1/p logn, the sampling frequency has no
impact and the rate is

‖Cη − C‖2
L2(S2×S2) = OP

(
n−1) ,

which suggests that, with a sufficient number of measurement locations per
surface, the covariance function can be estimated as well as if the X1, . . . , Xn

can be observed on the whole domain S
2. On the other hand, when the functions

are sparsely sampled, the rate is jointly determined by n and r, namely,

‖Cη − C‖2
L2(S2×S2) = OP

((
logn
nr

)p/(p+1)
)
.

We can observe that, the estimator is based on a total of nr(r − 1) paired
observations. However, the rate is expressed in terms of just nr. This can be
explained by the fact that we are actually observing nr Wij ’s and hence there
is a significant redundancy among the off-diagonal products.

As was the case for the mean, the result can be extended to the hypersphere
S
d, d > 2, with rate (logn/(nr))2p/(2p+d) + n−1, for p > d and d/2 < q ≤ p.

Remark 9. A similar reasoning to that expressed in Remark 7 can be applied
to the covariance estimator. Indeed, if the measurement locations are indepen-
dently drawn from a common distribution with probability density pU (·) sup-
ported on S2 and bounded away from 0 and infinity, we can define the inner
products

(f, g) �→(4π)2
∫
S2

∫
S2
f(u, v)g(u, v)pU (u)pU (v)dudv, (34)



5098 A. Caponera et al.

(f, g) �→(4π)2
∫
S2

∫
S2
f(u, v)g(u, v)pU (u)pU (v)dudv

+ 〈(D ⊗ D)f, (D ⊗ D)g〉L2(S2×S2), (35)

and their corresponding norms which are respectively equivalent to ‖·‖L2(S2×S2)
and ‖(D ⊗D) · ‖L2(S2×S2). Accordingly, the set {ψj ⊗ψj′} forms an orthonormal
basis for L2(S2×S

2) endowed with (34) and an orthogonal basis for Hp endowed
with (35). All the results can be then extended.

5.3. Examples

In this section, we exemplify the previous results for two classes of spherical
Gaussian random fields. This will reveal the interest of considering the classes
Π2(p, q) with distinct values for p and q for the asymptotic analysis of the
performance of our estimation strategy.

For β > 1, we say that the spherical random field X is in the class Aβ if

X = D−1W (36)

where D is an admissible operator with spectral growth order β and W is a
Gaussian white noise such that E[〈W, f〉L2(S2)〈W, g〉L2(S2)] = σ2〈f, g〉L2(S2) for
any f, g ∈ L2(S2). In the next proposition, we quantify the rate of conver-
gence of our estimation strategy for spherical random fields in Aβ . The proof of
Proposition 2 is given in Section 8.3.

Proposition 2. Let β > 5/2. Then, we have that Aβ ⊂ Π2(p, q) for any 1 ≤
q ≤ p such that p < β − 1/2 and q < β − 1. Moreover, if X ∈ Aβ is a spherical
random field with covariance C, then for any ε > 0, there exists an estimator
Cη given by (31) such that

‖Cη − C‖2
L2(S2×S2) = OP

⎛⎝( logn
nr

) β−1/2
β+1/2−ε

+ 1
n

⎞⎠ . (37)

The second class of spherical random fields that we consider is as follows. For
β > 1, we say that X ∈ Bβ if

X = D−1

{
Q∑

k=1

ξkδuk

}
=

Q∑
k=1

ξkψD(〈·, uk〉) (38)

with D an admissible operator of order β and with zonal Green’s kernel ψD , Q ≥
1, u1, . . . , uQ ∈ S

2 distinct, and ξ = (ξ1, . . . , ξQ) ∼ N (0, σ2Id) an i.i.d. Gaussian
vector. Note that X is simply a random D-spline with Gaussian weights. In
particular, X is located in the finite-dimensional space of splines with Q knots at
locations u1, . . . , uQ. The asymptotic performance for the estimation of random
fields in Bβ is quantified in Proposition 3, whose proof is in Section 8.3.
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Proposition 3. Let β > 2. Then, we have that Bβ ⊂ Π2(p, q) for any 1 ≤ q ≤
p < β − 1. Moreover, if X ∈ Bβ is a spherical random field with covariance C,
then for any ε > 0, there exists an estimator Cη given by (31) such that

‖Cη − C‖2
L2(S2×S2) = OP

((
logn
nr

) β−1
β −ε

+ 1
n

)
. (39)

Remark 10. The spherical random fields in Aβ and Bβ are both in the Sobolev
spaces Hq for any q < β − 1. However, as seen in the proofs of Propositions 2
and 3, their covariances have distinct Sobolev regularities, measured in the ten-
sorial spaces Hp. We see in Theorem 4 that the Sobolev regularity of the co-
variance is crucial for the convergence rate of our estimation strategy. For this
reason, the distinction between the regularity of the random field (parameter q
in X ∈ Π2(p, q)) and its covariance (parameter p in X ∈ Π2(p, q)) is crucial to
obtain the best possible convergence rate.

In particular, Propositions 2 and 3 reveal that we can approach the critical
bounds β−1/2

β+1/2 for X ∈ Aβ and β−1
β for X ∈ Bβ . If we achieve the state-of-the-art

results of [7] for the latter, we are able to improve existing rates for the former
class Aβ .

Finally, it is worth noting that we cannot achieve the rates β−1/2
β+1/2 (for X ∈

Aβ) and β−1
β (for X ∈ Bβ) with our technique. Indeed, this reflects the fact

that the covariances of these random fields do not reach their critical Sobolev
smoothness (see the proofs in Section 8.3), hence requiring to lose ε > 0 arbi-
trarily small in the rates (37) and (39). This is consistent with existing works [7].

6. Simulations and computational aspects

In this section, we investigate the practical feasibility of our estimation method-
ology. We use simulated sparse samples of an anisotropic Gaussian spherical
field as a test case study. Since this appears to be the first and only numeri-
cal procedure for nonparametric estimation of anisotropic spherical covariance
operators from sparse functional data, we do not offer a comparison. Rather,
our main focus is on demonstrating the practical feasibility of our estimation
methodology. Since the estimation procedure described in Section 3 decouples
the estimation of the first- and second-order moments, we assume without loss of
generality a zero-mean Gaussian random field and focus exclusively on the (com-
putationally more challenging) second-order moment estimate (19), for which
we propose, leveraging Theorem 2 and sparse/second-order structure, a compu-
tationally tractable and memory-thrifty implementation. For details regarding
the implementation of the mean estimate (18) we refer to the literature on
smoothing splines, of which (18) is a specific instance (see Remark 3). Smooth-
ing spline estimates are standard practice in non-parametric regression [17], and
their use in the spherical setting was already proposed in the literature – see for
example [31, Section 6.4.2] and the references therein as well as [46, Chapter 9]
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where smoothing splines are considered for the estimation of global temperature
anomaly maps from sparse recordings collected by the Argo fleet [2, 26].

The simulation code is openly available and fully-reproducible, and is re-
leased in the form of a standalone Python 3 Jupyter notebook hosted on GitHub:
https://github.com/matthieumeo/sphericov/blob/main/companion_nb.ipynb.
Instructions for installing the required dependencies and running the notebook
are available at: https://github.com/matthieumeo/sphericov#readme.

Simulation setup Our simulation setup is as follows. Consider a spherical
point set V0 = {v1, . . . , vQ} ⊂ S

2 and let Sε
ν : R+ → R+ denote the Matérn

function with smoothness parameter ν > 0 and scale parameter ε > 0 [61, Eq.
4.16]. Define moreover the spherical Matérn function ψε

ν : [−1, 1] → R+ as [47,
Section 5.3]

ψε
ν(t) = Sε

ν(
√

2 − 2t), ∀t ∈ [−1, 1]. (40)
It is possible to show that ψε

ν in (40) is the zonal Green’s kernel of a certain
admissible spherical pseudo-differential operator1 Dε

ν with spectral growth p =
2(ν + 1) [47, Section 5.3.1]. Following the nomenclature of [47, Section 5.3.1],
we refer to Dε

ν as a Matérn operator.
We consider an underlying spherical random field X = {X(u), u ∈ S

2} taking
the form of a Dε

ν -sparse random field [55]:

Dε
νX =

Q∑
q=1

ξqδvq ⇔ X(u) =
Q∑

q=1
ξqψ

ε
ν(〈u, vq〉) ∀u ∈ S

2, (41)

where ξ = [ξ1, . . . , ξQ] ∼ NQ(0,R) for some covariance matrix R ∈ R
Q×Q –

see also Section 5.3. Roughly speaking, the random field (41) is the primitive
with respect to the pseudo-differential operator Dε

ν of a random discrete measure
composed of finitely many Dirac measures. It is easy to see that X is a Gaussian
random field, with mean zero and second-order moment given by:

R(u, v) =
Q∑

p,q=1
Rpqψ

ε
ν(〈u, vp〉)ψε

ν(〈v, vq〉), (u, v) ∈ S
2 × S

2. (42)

Note that since X has zero mean, the bivariate function R coincides in this
case with the covariance function of the field. As described in Section 3, our
input data consists in simulated realizations of noisy random samples of i.i.d.
replicates X1, . . . , Xn of the random field X:

Wij = Xi(Uij) + εij , i = 1, . . . , n, j = 1, . . . , ri,

where the random sampling locations are distributed uniformly over the sphere
Uij

i.i.d.∼ Unif(S2), and the measurement errors are distributed as εij
i.i.d.∼ N (0, σ2)

for some σ > 0. Moreover, the random fields, sampling locations, and measure-
ment errors are all assumed mutually independent. Realizations of the random
variables Wij and Uij are denoted in lower-case notation, i.e., wij and uij re-
spectively.

1In the sense of Definition 2.

https://github.com/matthieumeo/sphericov/blob/main/companion_nb.ipynb
https://github.com/matthieumeo/sphericov#readme
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Fig 2. Mollweide projections of covariance kernel slices R : S2 × S2 → R of the Gaussian
random field X (41) used in our simulations.

Simulation parameters In our simulations, we set the various parameters
listed above to the following values:

• Matérn Function: The smoothing parameter is set to ν = 5/2. For such
a value of ν, the Matérn function admits the following simple closed-form
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expression:

Sε
5/2(t) =

(
1 +

√
5t
ε

+ 5t2

3ε2

)
exp

(
−
√

5t
ε

)
, ∀t ≥ 0.

The scale parameter is set to an arbitrary value of ε = 0.4.
• Random Field: We set the number of sources to Q = 5, draw the spher-

ical point set V0 uniformly at random, and choose the covariance matrix
R in (41) as:

R =

⎡⎢⎢⎢⎢⎣
0.812 −0.013 −0.209 −0.416 −0.028
−0.013 0.974 −0.008 −0.632 −0.372
−0.209 −0.008 0.909 −0.095 −0.588
−0.416 −0.632 −0.095 1.000 0.235
−0.028 −0.372 −0.588 0.235 0.929

⎤⎥⎥⎥⎥⎦ .

We plot in Figure 2 slices of the second-order moment kernel R of the
random field X obtained this way.

• Data Simulation: We set the number of replicates of X to n = 64 and
consider a fixed number ri = r = 12 of spatial samples per replicates.
The noise level is chosen as σ = 0.1, yielding a peak signal-to-noise ratio
(PSNR) of 10 dB.

Numerical estimation procedure We consider the following estimator for
R:

Rη = arg min
g∈Hp

4π2

L

n∑
i=1

∑
1≤j �=k≤r

(wijwik − g(uij , uik))2 + η‖(Dε
ξ ⊗Dε

ξ )g‖2
L2(S2×S2),

(43)
for L = nr(r − 1) and some regularization parameter η > 0 (the selection of
this regularization parameter is addressed in the next section). The smoothing
parameter ξ of the Matérn factors Dε

ξ in (43) is set to ξ = (ν−1)/2, which is the
minimal value so that the unknown second-order moment function R defined
in (42) belongs to the search space Hp with p = 2(ν+1). Note that (43) coincides
indeed with the second-order moment estimator (19) discussed in Section 3 when
the number of random spatial samples ri per replicate Xi is constant and equal
to r (as assumed in this simulation setup). In which case indeed, the normalising
constants involved in the least-square term of (19) reduce to a single factor
4π2/L, hence yielding the simpler expression (43) above. Theorem 2 applied
to (43) reveals that Rη is given by:

Rη(u, v) =
n∑

i=1

∑
1≤j �=k≤r

βijkψ
ε
ν(〈u, uij〉)ψε

ν(〈v, uik〉), ∀(u, v) ∈ S
2×S

2. (44)

for some coefficients (βijk)1≤i≤n, 1≤j �=k≤r. The latter are moreover obtained as
solutions of the following linear system of size L:(

H + ηL

4π2 IL
)
β = z, (45)
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where β ∈ R
L and z ∈ R

L are vectorized versions of the coefficients
(βijk)1≤i≤n, 1≤j �=k≤r and data (wijwik)1≤i≤n, 1≤j �=k≤r respectively. In practice,
this vectorization is performed by mapping the multi-index triplet (i, j, k) to a
single index � as follows:

� = (i− 1)r(r − 1) + (k − 1)(r − 1) + j − 1{j > k}, (46)

for i ∈ �1, n�, k ∈ �1, r�, j ∈ �1, r�\{k}, where �1, n� = {1, . . . , n} ∀n ∈ N

and 1{j > k} = 1 if j > k and 0 otherwise. This vectorization can easily be
performed in practice by filling the off-diagonal terms of n matrices with size
r× r with the coefficients/data (e.g., βijk is put in the i-th r× r matrix, at row
j and column k), and then considering the vector formed by stacking vertically
flattened versions of the matrices, obtained by stacking for each matrix the r
columns on top of one another and skipping the diagonal terms. This process is
of course reversible, and the map to obtain the multi-index triplets (i, j, k) from
the index � can be shown to be given by:⎧⎪⎪⎪⎨⎪⎪⎪⎩

i = 1 + (� � (r(r − 1)))
k = 1 + (� % (r(r − 1))) � (r − 1)
h = (� % (r(r − 1))) % (r − 1)
j = h + 1{h ≥ k}

, � ∈ �1, L�, (47)

where � and % are the floor-divide and remainder operators defined as:

n � m = �n/m� , n % m = n− �n/m� , ∀(n,m) ∈ N× N.

With the vectorization scheme (46) and (47), it is possible to show that the
matrix H ∈ R

L×L is given by

H = S

⎡⎢⎣ J11 ⊗ J11 · · · J1n ⊗ J1n
...

. . .
...

Jn1 ⊗ Jn1 · · · Jnn ⊗ Jnn

⎤⎥⎦ST = S (J ∗ J)ST , (48)

where ⊗ and ∗ denote the Kronecker and block Kronecker or Khatri-Rao prod-
ucts respectively, and:

• S ∈ R
L×nr2 is a subsampled nr2 identity matrix, where the rows with

indices given by m = (i − 1)r2 + (k − 1)r + k, i ∈ �1, n�, k ∈ �1, r� have
been removed.

• {Jpq ∈ R
r×r, (p, q) ∈ �1, n�2} are Gram matrices, with entries given by:

(Jpq)gh = ψε
ν(〈upg, uqh〉), ∀(g, h) ∈ �1, r�2. (49)

• J ∈ R
nr×nr is a block matrix given by:

J =

⎡⎢⎣ J11 · · · J1n
...

. . .
...

Jn1 · · · Jnn

⎤⎥⎦ .
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Notice moreover that the submatrices Jpq defined in (49) are sparse2. Indeed, the
Matérn zonal function ψε

ν is such that ψε
ν(cos θ) � 0 when |θ| ≥ 3 arccos ε [47,

Section 5.3.1], and hence the entries of the submatrices Jpq are zero whenever the
angle θpg,qh = arccos 〈upg, uqh〉 is sufficiently large, i.e., the sampling locations
upg, uqh are sufficiently far apart on the sphere. In practice, we can leverage
this sparsity and the block-Kronecker structure to compute (48) efficiently and
represent it as a sparse matrix with a relatively low memory footprint. Our
procedure is as follows:

1. Compute the submatrices defined in (49) and sparsify them by setting to
zeros all the entries smaller than 0.01 × ψε

ν(1).
2. Build J and store it as a sparse matrix [45].
3. Compute in a multi-threaded fashion the sparse block Kronecker product

J ∗ J.
4. Form H by multiplying the sparse output of the block Kronecker product

by S and ST from the left and right respectively.

These steps are performed in practice by leveraging the sparse [1] and dask
[40] Python libraries, used respectively for sparse and distributed computations.
Note that without this memory- and compute-efficient procedure, computing H
in practice could quickly become intractable, due to its high dimensionality. For
n = 128 and r = 64 already, the matrix H with size 524′288 × 524′288 would
require TFlops/TBytes of computation/memory to be computed/stored as a
dense matrix. Leveraging the sparse and block Kronecker structure allows us to
bring down this computation/memory footprint by two to three orders of mag-
nitude approximately, i.e., GFlops/GBytes of computation/memory required.

Upon calculation of the matrix H, we solve (45) by means of conjugate gradi-
ent descent. Our implementation leverages the routine cg() from Scipy’s module
scipy.sparse.linalg [57], which is compatible with sparse matrices. For the
simulation setup under consideration, solving (45) numerically took on the order
of a few dozen seconds.

Accuracy and selection of the penalty parameter We assess the ac-
curacy of our estimator by means of 4-fold cross-validation. More specifically,
we shuffle the data vector z by applying a random permutation to the latter,
split it in 4 groups of equal size, train the model on three of these groups and
compute the out-of-sample mean squared error (MSE) on the last group. We
moreover loop (in parallel) through every combination of training/test configu-
rations and consider the average MSE score over all configurations, yielding the
final cross-validation score. We investigate different values of penalty parameters
in the range [1, 6] and select the one yielding an estimator with minimal cross-
validation score, that is η̃ � 2.363. The cross-validation scores of the various
estimators are plotted in Figure 3.

2In practice we observe that fewer than 9 % of the entries of J are significantly different
from zero.
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Fig 3. 4-fold Cross-validation score of various estimates Rη for η ∈ [1, 6].

Results and discussion We plot in Figure 4 slices of the second-order mo-
ment estimator Rη̃ corresponding to the optimal penalty parameter value η̃ �
2.363 determined by cross-validation. A comparison of Figures 2 and 4 reveals
that the estimate Rη̃ approximates fairly well the actual second-order func-
tion R. Indeed, most of the main features of the variance/covariance maps in
Figure 2 are still clearly visible in Figure 4, although slightly blurred and/or
less contrasted. One issue with the estimator however is that it is not positive
definite, which can be problematic if the latter is used in a kriging context. As a
matter of fact, the diagonal Rη̃(u, u) is not even always positive, as can be seen
in Figure 4a where negative values in the field are marked by a semi-transparent
overlay. This phenomenon is likely to arise in practical setups with finite sample
sizes, since the positive definiteness of our estimator is only guaranteed asymp-
totically (see Theorems 2 and 4). One potential remedy consists in projecting
the estimator Rη̃ on the positive semi-definite cone. This can be achieved ap-
proximately in practice by discretizing Rη̃ on a fine (quasi-)uniform spherical
grid [46] (e.g., the HEALPix grid [16]), and setting the negative eigenvalues of
the discretized operator to zero. This however, requires computing the eigen-
value decomposition of a potentially very high dimensional operator, which can
reveal very computationally and memory intensive. Figure 5 shows the projec-
tion R+

η̃ of the estimator Rη̃ onto the positive semi-definite cone. The effect of
the projection onto the estimate is mostly visible onto the variance map, which
no longer exhibits negative regions and aligns slightly better with the underlying
sources.

7. Extension to the serially dependent case

This section provides an extension of the previous results in the presence of
serial dependence. We thus relax the assumption of independence among the
X1, . . . , Xn and we introduce serial dependence, assuming that the indices rep-
resent time. In doing so, we assume that the resulting temporal sequence is
time-stationary (i.e., a stationary functional time series).

Consider the collection of second order processes Xt = {Xt(u), u ∈ S
2},
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Fig 4. Mollweide projections of second-order moment estimator slices Rη̃ : S2 × S2 → R.

t ∈ Z, which are also random elements of Hq, q > 1. Throughout, we assume
that the sequence X = {Xt, t ∈ Z} is strictly stationary: for any finite set of
indices I ⊂ Z and any h ∈ Z, the joint law of {Xt, t ∈ I} coincides with that of
{Xt+h, t ∈ I}. Then, the first and second order properties of X are summarized
by

E[Xt(u)] = μ(u), E[Xt+h(u)Xt(v)] = Rh(u, v),
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Fig 5. Mollweide projections of the projected second-order moment estimator slices R+
η̃ :

S2 × S2 → R.

Ch(u, v) = Rh(u, v) − μ(u)μ(v),

for u, v ∈ S
2, respectively the mean function, the second-order moment function

at lag h ∈ Z and autocovariance function at lag h ∈ Z.
If E‖X0‖kL2(S2) < ∞ (or E‖X0‖kHq

< ∞) for k ≥ 1, the k-th order cumulant
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kernel is well defined in a L2 sense (or pointwise)

Cum[Xh1(u1), . . . , Xhk
(uk)] =

∑
π

(−1)|π|−1(|π| − 1)!
∏
B∈π

E

⎡⎣∏
j∈B

Xhj (uj)

⎤⎦ ,

where the first sum is taken over the list of all unordered partitions of {1, . . . , k},
and |π| is the cardinality of the partition π. For k ≥ 1, we can also define the
2k-th order cumulant operator Ch1,...,h2k−1 : L2((S2)k) → L2((S2)k) as

(Ch1,...,h2k−1f)(u1, . . . , uk) =
∫

(S2)k
Cum[Xh1(u1), . . . , Xh2k−1(u2k−1), X0(u2k)]

× f(uk+1, . . . , u2k)duk+1 · · · du2k,

and the (2k+1)-th order cumulant operator Ch1,...,h2k : L2((S2)k+1) → L2((S2)k)
as

(Ch1,...,h2kf)(u1, . . . , uk) =
∫

(S2)k+1
Cum[Xh1(u1), . . . , Xh2k(u2k), X0(u2k+1)]

× f(uk+1, . . . , u2k+1)duk+1 · · · du2k+1.

Cumulant kernels and operators in L2 spaces were first introduced in [33] for
even orders. We extended the definition to odd-order cumulants and we also
give an alternative definition in the Sobolev spaces described in Section 2.

Denote with ⊗kHq the tensor product space of k copies of Hq. Clearly,
⊗1Hq = Hq and ⊗2Hq = Hq. The inner product 〈·, ·〉⊗kHq

and the norm ‖·‖⊗kHq

are defined as natural extension of (6) and (7).
If K is the reproducing kernel of Hq, we can define Ch1,...,h2k−1 : ⊗kHq →

⊗kHq as the operator such that

Cum[Xh1(u1), . . . , Xh2k−1(u2k−1), X0(u2k)]
=〈Ch1,...,h2k−1K(·, uk+1) ⊗ · · · ⊗K(·, u2k),K(·, u1) ⊗ · · · ⊗K(·, uk)〉⊗kHq

,

and Ch1,...,h2k : ⊗k+1Hq → ⊗kHq such that

Cum[Xh1(u1), . . . , Xh2k(u2k), X0(u2k+1)]
=〈Ch1,...,h2kK(·, uk+1) ⊗ · · · ⊗K(·, u2k+1),K(·, u1) ⊗ · · · ⊗K(·, uk)〉⊗kHq

.

This mapping can be extended to every f1, . . . , f2k+1 ∈ Hq, so that

Cum[〈Xh1 , f1〉Hq , . . . , 〈Xh2k−1 , f2k−1〉Hq , 〈X0, f2k〉Hq ]
=〈Ch1,...,h2k−1fk+1 ⊗ · · · ⊗ f2k, f1 ⊗ · · · ⊗ fk〉⊗kHq

,

and

Cum[〈Xh1 , f1〉Hq , . . . , 〈Xh2k , f2k〉Hq , 〈X0, f2k+1〉Hq ]
=〈Ch1,...,h2kfk+1 ⊗ · · · ⊗ f2k+1, f1 ⊗ · · · ⊗ fk〉⊗kHq

.
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We can define the Hilbert-Schmidt and trace norms of Ch1,...,h2k−1 and
Ch1,...,h2k as usual for operators defined in Hilbert spaces, considering the fact
that the set{

Y�1,m1

(1 + �1(�1 + 1))q/2
⊗ · · · ⊗ Y�k,mk

(1 + �k(�k + 1))q/2

}
�1,...,�k,m1,...,mk

forms an orthonormal basis for (⊗kHq, ‖ ·‖⊗kHq
). In particular, the trace norms

will be denoted by ‖Ch1,...,h2k−1‖TR,⊗kHq
and ‖Ch1,...,h2k‖TR,⊗k+1Hq

.
There is a link between the operators defined in L2 and the operators defined

in Hq. For instance, for the 2k-th order cumulants we have

〈Ch1,...,h2k−1Y�k+1,mk+1 ⊗ · · · ⊗ Y�2k,m2k , Y�1,m1 ⊗ · · · ⊗ Y�k,mk
〉L2((S2)k)

= 1∏k
i=1(1 + �i(�i + 1))2q

×〈Ch1,...,h2k−1Y�k+1,mk+1 ⊗ · · · ⊗ Y�2k,m2k , Y�1,m1 ⊗ · · · ⊗ Y�k,mk
〉⊗kHq

. (50)

Analogous property holds if we equip ⊗kHp with ‖ ⊗k D · ‖L2((S2)k).
Consider now the regression problem

Wtj = Xt(Utj) + εtj , j = 1, . . . , rt, t = 1, . . . , n,

where the the Utj ’s are independently drawn from a common distribution on S
2,

and the εtj ’s are independent and identically distributed measurement errors of
mean 0 and variance 0 < σ2 < ∞. As before, the process X = {Xt, t ∈ Z}, the
measurement locations and the measurement errors are assumed to be mutually
independent. Then,

E[Wtj |Utj = utj ] = μ(utj),
and

E[Wt+h,jWtk|Ut+h,j = ut+h,j , Utk = utk] =
{
Rh(ut+h,j , utk) if h �= 0
R0(utj , utk) + σ2δkj if h = 0.

The estimators for μ and R0 are defined as in Equations (18) and (19), re-
spectively. In addition here, we define the estimators of the lag-h autocovariance
kernels for h > 0, as follows. For h = 1, . . . , n− 1, we first compute

Rh;η := arg min
g∈Hp

(4π)2

n− h

n−h∑
t=1

1
r2
t

rt∑
j=1

rt∑
k=1

(Wt+h,jWtk − g(Ut+h,j , Utk))2

+ η‖(D ⊗ D)g‖2
L2(S2×S2), (51)

and then we obtain

Ch;η(u, v) = Rh;η(u, v) − μη(u)μη(v). (52)

For h < 0, we set Ch;η : (u, v) �→ C−h;η(v, u). Observe that the diagonal terms
are not removed when h �= 0. Similarly to Theorem 2, we can obtain a representer
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theorem for the unique solution of (51). In particular, Rh;η is a continuous
function in S

2 × S
2 and is a (D ⊗ D)-spline.

Differently from the i.i.d. case, consistency and rates of convergence for the
mean and autocovariance estimators can be proved with additional conditions
in the time-domain. For the mean, a form of functional weak dependence is
assumed, i.e., summability of the autocovariance operators (in trace norm).
For the autocovariance kernels this concept is extended up to the fourth-order
cumulant operators. Note that cumulants mixing conditions arise naturally in
this context, since we are essentially dealing with moment-based estimators. See
for instance [34, 41].

Definition 6. Consider p > 2, 1 < q ≤ p. Let Πs
1(p, q) be the collection of

probability measures for stationary sequences of Hq-valued processes such that
for any X = {Xt, t ∈ Z} with probability law PX ∈ Πs

1(p, q)∑
h∈Z

‖Ch‖TR,Hq ≤ M, ‖μ‖2
Hp

≤ K,

for some constants M,K > 0.

Note that, for any t ∈ Z,

E‖Xt − μ‖2
Hq

= ‖C0‖TR,Hq .

Definition 7. Consider p > 2, 1 < q ≤ p. Let Πs
2(p, q) be the collection of

probability measures for stationary sequences of Hq-valued processes such that
for any X = {Xt, t ∈ Z} with probability law PX ∈ Πs

2(p, q)∑
h1∈Z

∑
h2∈Z

∑
h3∈Z

‖Ch1,h2,h3‖TR,Hq ≤ L1,
∑
h1∈Z

∑
h2∈Z

‖Ch1,h2‖TR,Hq ≤ L2,

∑
h∈Z

‖Ch‖TR,Hq ≤ M, sup
h∈Z

‖Rh‖2
Hp

≤ K1, ‖μ‖2
Hp

≤ K2,

for some constants L1, L2,M,K1,K2 > 0.

Remark 11. A weaker but less interpretable condition for the autocovariances
is to replace the summability of Ch,Ch1,h2 ,Ch1,h2,h3 with the summability of
the operator associated with the kernel Cov[Xh1(u)Xh2(v), Xh3(w)X0(z)]. Note
also that, when the mean is zero, conditions on odd-order cumulants can be
discarded.

Now we are able to state the analogue of Theorem 3 and Theorem 4 in the
time-dependent setting. Proofs are provided in Section 8.4.

Theorem 5. Assume that the Uij , i = 1, . . . , n, j = 1, . . . , ri, are independent
copies of U ∼ Unif(S2). Let p > 2 and 1 < q ≤ p, and consider the estimation
problem in Equation (18) for an admissible operator D of spectral growth order
p. If η � (nr)−p/(p+1), then

lim
D→∞

lim sup
n→∞

sup
PX∈Πs

1(p,q)
P(‖μη − μ‖2

L2(S2) > D((nr)−p/(p+1) + n−1)) = 0.
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Theorem 6. Assume that E[ε411] < ∞ and the Uij , i = 1, . . . , n, j = 1, . . . , ri,
are independent copies of U ∼ Unif(S2). Let p > 2 and 1 < q ≤ p, and consider
the estimation problem in Equation (52) for an admissible operator D of spectral
growth order p. If η � (nr/ logn)−p/(p+1), then

lim
D→∞

lim sup
n→∞

sup
PX∈Πs

2(p,q)
P

(
‖Ch;η − Ch‖2

L2(S2×S2) > D

((
logn
nr

)p/(p+1)

+ 1
n

))
= 0,

for any h ∈ Z.

Remark 12. The previous result gives a rate of convergence which holds for
any fixed lag h ∈ Z. However, its dependence on the lag order h can be made
explicit. Write nh = n− h. If η � (nhr/ lognh)−p/(p+1), then

‖Ch;η − Ch‖2
L2(S2×S2) = OP

((
lognh

nhr

)p/(p+1)

+ 1
nh

)
,

provided that nh → ∞. This informs us on how many lags we can estimate
uniformly with high level of precision.

8. Proofs of formal statements

8.1. Proofs of Section 2

Proof of Proposition 1. The fact that Hp is a RKHS if and only if p > 1 is
classical; it is for instance a particular case of [46, Lemma 5.5]. We therefore
simply have to prove that Hp is a RKHS if and only if Hp is.

Let Hp
′ be the topological dual of Hp. It is itself a Hilbert space for the norm

‖g‖Hp
′ :=

∞∑
�,�′=0

�∑
m=−�

�′∑
m′=−�′

〈g, Y�,m ⊗ Y�′,m′〉2
(1 + �(� + 1))p(1 + �′(�′ + 1))p , g ∈ S ′(S2 × S

2).

Then, Hp is a RKHS if and only if the evaluation functionals g �→ g(u, v) are
continuous from Hp to R for any (u, v) ∈ S

2 ×S
2. This is therefore equivalent to

δ(u,v) ∈ Hp
′, i.e., ‖δ(u,v)‖Hp

′ < ∞ for any (u, v) ∈ S
2 × S

2. Since 〈δ(u,v), Y�,m ⊗
Y�′,m′〉L2(S2) = Y�,m(u)Y�′,m′(v), we have that

‖δ(u,v)‖2
Hp

′ =
( ∞∑

�=0

�∑
m=−�

Y�,m(u)2

(1 + �(� + 1))p

)⎛⎝ ∞∑
�′=0

�′∑
m′=−�′

Y�′,m′(v)2

(1 + �′(�′ + 1))p

⎞⎠
= ‖δx‖Hp

′‖δy‖Hp
′ (53)

where ‖ · ‖Hp
′ is the dual norm on the topological dual Hp

′ of Hp.
The relation (53) then shows that ‖δ(u,v)‖Hp

′ < ∞ for any (u, v) ∈ S
2 × S

2 if
and only if ‖δx‖Hp

′ < ∞ for any x ∈ S
2, i.e., Hp is a RKHS if and only if Hp

is.
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In Proposition 4, we formalize the invertibility properties of admissible op-
erators. This allows us to deduce that f �→ ‖Df‖L2(S2) is a norm equivalent to
f �→ ‖f‖Hp on Hp, as was used in Sections 2.2 and 4.

Proposition 4. Let D be an admissible operator with spectral growth order
p ≥ 0. Then, D can be uniquely extended as a diffeomorphism D : Hp → L2(S2)
and there exist constants 0 < A1 ≤ A2 such that, for any f ∈ Hp,

A1‖f‖Hp ≤ ‖Df‖L2(S2) ≤ A2‖f‖Hp . (54)

Similarly, D ⊗ D can be uniquely extended as a diffeomorphism D ⊗ D : Hp →
L2(S2 × S

2) and there exists 0 < B1 ≤ B2 such that, for any g ∈ Hp,

B1‖g‖Hp ≤ ‖(D ⊗ D)g‖L2(S2) ≤ B2‖g‖Hp . (55)

Proof. Let f ∈ S(S2). We have that

‖Df‖2
L2(S2) =

∞∑
�=0

|D�|2
�∑

m=−�

|f�,m|2.

Then, the existence of A1, A2 in (54) for any f ∈ S(S2) easily follows from the
condition (11) and the definition of Hp. The space S(S2) being dense in the
Hilbert space Hp, this means in particular that D can be extended in Hp and
that D : Hp → L2(S2) linearly and continuously. Finally, (54) also implies that
D is a continuous bijection with continuous inverse D−1 : L2(S2) → Hp. The
arguments for tensorial operators D ⊗ D are similar.

8.2. Proofs of Section 4

Both Theorem 1 and Theorem 2 can be deduced from general principles on
regularized cost functionals over Hilbert spaces, as recalled in the next theorem.

Theorem 7 (Representer Theorem on Hilbert Spaces). Let H be a Hilbert space
with inner product 〈·, ·〉H and norm ‖ ·‖H, λ > 0, L ≥ 1, y = (y1, . . . , yL) ∈ R

L,
and ν1, . . . , νL be linearly independent elements in H. Then, the optimization
problem

min
f∈H

L∑
�=1

(y� − 〈ν�, f〉H)2 + λ‖f‖2
H (56)

has a unique solution f̂ such that

f̂ =
L∑

�=1

α�ν� where α = (G + λIL)−1
y (57)

where α = (α1, . . . , αL) ∈ R
L and G ∈ R

L×L is such that G�1,�2 = 〈ν�1 , ν�2〉H
for 1 ≤ �1, �2 ≤ L.
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Remark 13 (On Theorem 7). The existence and uniqueness of the solution
of (56) can be deduced from the Hilbert projection theorem. The exact form (56)
of the solution is classical. It is for instance proved in [53, Section 3.2] in two
steps. First, the optimization problem (56) is shown to admit a unique solution
of the form f̂ =

∑L
�=1 α�ν�. Second, injecting the form of this solution in (56),

we observe that ‖f̂‖H = 〈α,Gα〉 and 〈ν�, f̂〉 = (Gα)�. Hence, α is solution of
the optimization problem

min
α∈RL

‖y − Gα‖2
2 + λ〈α,Gα〉. (58)

Then, we easily show that the optimizer of the finite-dimensional quadratic
optimization problem (58) is α = (G + λIL)−1

y. Note that this requires the
invertibility of G, which is true because the ν� are assumed to be linearly inde-
pendent.

Proof of Theorem 2. The proof is divided in two steps. We first prove that the
unique solution is given by (27) and then show that Rη is symmetric.

Form of the solution. We show that Theorem 2 is a particular case of Theo-
rem 7. According to Proposition 4, the norms ‖(D ⊗ D) · ‖L2(S2×S2) and ‖ · ‖Hp

being equivalent, (Hp, ‖(D ⊗ D) · ‖L2(S2×S2)) is a Hilbert space.
Let ψD∗D the zonal Green’s kernel of D∗D (see (15)). For any 1 ≤ i ≤ n,

1 ≤ j �= k ≤ ri, we set νijk = ψD∗D(〈·, uij〉) ⊗ ψD∗D(〈·, uik〉) and we observe
that

(D ⊗ D)∗(D ⊗ D){νijk} = (D∗D{ψD∗D(〈·, uij〉)}) ⊗ (D∗D{ψD∗D(〈·, uik〉)})
= δuij ⊗ δuik

.

This implies that, for any g ∈ H = Hp,

〈g, νijk〉H = 〈(D ⊗ D){g}, (D ⊗ D){νijk})〉L2(S2×S2) = g(uij , uik).

We deduce that (26) can be recast as

min
g∈H

n∑
i=1

∑
1≤j �=k≤ri

(
wijwik√
ri(ri − 1)

−
〈
g,

νijk√
ri(ri − 1)

〉
H

)2

+ λ‖g‖H (59)

with λ = nη
(4π)2 .

The optimization problem (59) corresponds to (56) where, for any 1 ≤ � ≤
L =

∑n
i=1 ri(ri − 1) and its corresponding (i, j, k) in the vectorization, we set

ν� = νijk/
√

ri(ri − 1). Note that the ν� are linearly independent since the Dirac
impulses δuij ⊗ δuik

= (D∗D ⊗ D∗D)νijk are. We moreover observe that

〈νi1j1k1 , νi2j2k2〉H = 〈νi1j1k1 , (D ⊗ D)∗(D ⊗ D)νi2j2k2〉L2(S2×S2)

= 〈νi1j1k1 , δui2j2
⊗ δui2k2

〉L2(S2×S2)

= νi1j1k1(ui2j2 , ui2k2)
= ψD∗D(〈ui1j1 , ui2j2〉) × ψD∗D(〈ui1k1 , ui2k2〉),
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which implies that

H�1,�2 = 〈ν�1 , ν�2〉H = 〈νi1j1k1 , νi2j2k2〉H√
ri1(ri1 − 1)ri2(ri2 − 1)

= ψD∗D(〈ui1j1 , ui1k1〉) × ψD∗D(〈ui2j2 , ui2k2〉)√
ri1(ri1 − 1)ri2(ri2 − 1)

where �1 (resp. �2) corresponds to (i1, j1, k1) (resp. (i2, j2, k2)) in the vectoriza-
tion. With these identifications, Theorem 7 gives (27) and (29).

Symmetry of Rη. Any g ∈ Hp can be uniquely decomposed as

g(u, v) = gs(u, v) + ga(u, v) =
(
g(u, v) + g(v, u)

2

)
+
(
g(u, v) − g(v, u)

2

)
(60)

where gs is symmetric (gs(u, v) = gs(v, u)) and ga is antisymmetric (ga(u, v) =
−ga(v, u)). Then, we have that (D ⊗ D)gs (resp. (D ⊗ D)ga) is symmetric
(resp. antisymmetric). Indeed, the operator (D ⊗ D) maps symmetric (resp.
antisymmetric) functions to symmetric (resp. antisymmetric) ones. This fact is
obvious for functions g = f1 ⊗ f2 since (D ⊗D)g = Df1 ⊗Df2 and extended to
any function by density of the span of separable functions in Hp. Therefore

‖(D ⊗ D)g‖2
L2(S2×S2) = ‖(D ⊗ D)ga‖2

L2(S2×S2) + ‖(D ⊗ D)gs‖2
L2(S2×S2) (61)

due to the fact that the inner product between symmetric and antisymmetric
bivariate functions is 0, hence 〈(D ⊗ D)gs, (D ⊗ D)ga〉L2(S2×S2) = 0.

For i = 1, . . . , n, let Σi ∈ R
ri×ri be the matrix such that Σi[j, k] = wijwikδ

k
j .

We also define the operator Φi : Hp → R
ri×ri such that Φi(g)[j, k]=g(uij , uik)δkj .

Then, the data fidelity term in (26) can be rewritten as
n∑

i=1

1
ri(ri − 1)

∑
1≤j �=k≤ri

(WijWik − g(Uij , Uik))2 =
n∑

i=1

1
ri(ri − 1)‖Σi − Φi(g)‖2

2.

(62)
Then, the matrix Σi−Φi(gs) (resp. Φi(ga)) is symmetric (resp. antisymmetric),
which implies that, for any i = 1, . . . , n,

‖Σi−Φi(g)‖2
2 = ‖(Σi−Φi(gs))−Φi(ga)‖2

2 = ‖(Σi−Φi(gs))‖2
2+‖Φi(ga)‖2

2, (63)

the inner product between one symmetric and one antisymmetric matrix being
0.

If we denote by J(g) the cost functional to be optimized in (26), we deduce
from (61) and (63) that

J(g) = J(gs) + (4π)2

n

n∑
i=1

‖Φi(ga)‖2
2

ri(ri − 1) + η‖(D ⊗ D)ga‖2
L2(S2×S2) ≥ J(gs). (64)

In other term, for any g ∈ Hp, there exists gs ∈ Hp symmetric such that J(gs) ≤
J(g). This ensures that the unique minimizer of (26) is symmetric, as expected.
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8.3. Proofs of Section 5

The following lemma will be used extensively for proving the rates of the mean
and covariance estimators.

Lemma 1. Let p > 1. There exists B1 > 0 such that, for any f ∈ Hp,

sup
u∈S2

|f(u)| ≤ B1‖f‖Hp . (65)

Similarly, there exists B2 > 0 such that, for any g ∈ Hp,

sup
(u,v)∈S2×S2

|g(u, v)| ≤ B2‖g‖Hp . (66)

Proof. According to Proposition 1, the condition p > 1 ensures that Hp is a
RKHS. For any u ∈ S

2, we denote by K : S2 × S
2 → R the reproducing kernel

such that f(u) = 〈K(·, u), f〉Hp . Then, the Cauchy-Schwarz inequality implies
that

|f(u)| = |〈K(·, u), f〉Hp | ≤ ‖K(·, u)‖Hp‖f‖Hp . (67)
The norm of Hp is isotropic in the sense that ‖Rf‖Hp = ‖f‖Hp for any rotation
R. This implies that ‖K(·, u)‖Hp does not depend on u ∈ S

2. Hence, (67)
implies (65). The proof for Equation (66) is similar.

Proof of Theorem 3. Without loss of generality, we will prove the theorem for
D� = (1 + �(� + 1))p/2, which leads to a penalization term in the Hp norm.
However, all the following steps can be generalized to every admissible operator
with spectral growth order p in Definition 2.

Define

Fη(g) := 4π
n

n∑
i=1

1
ri

ri∑
j=1

(Wij − g(Uij))2 + η‖g‖2
Hp

,

F̄η(g) := E[Fη(g)] = 4πE|W11 − μ(U11)|2 + ‖μ− g‖2
L2(S2) + η‖g‖2

Hp
,

and let
μ̄η := arg min

g∈Hp

F̄η(g).

Also, define
μ̃η = μ̄η − (F̄ ′′

η )−1F ′
η(μ̄η). (68)

The definitions of F ′
η and F̄ ′′

η will be given in Lemma 2, while the existence of
(F̄ ′′

η )−1 will be discussed in Lemma 3.
Now, write μη − μ = μη − μ̃η + μ̃η − μ̄η + μ̄η − μ. We shall prove that

1. ‖μ̄η − μ‖2
L2(S2) ≤ M1

(
(nr)−p/(p+1) + n−1),

2. E‖μ̃η − μ̄η‖2
L2(S2) ≤ M2

(
(nr)−p/(p+1) + n−1),

3. ∀ε > 0,

lim
n→∞

sup
PX∈Π1(p,q)

P

(
‖μη − μ̃η‖2

L2(S2) > ε
(
(nr)−p/(p+1) + n−1

))
= 0
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whenever η � (nr)−p/(p+1), for any choice of the sampling distribution in
Π1(p, q).

Note that, for t > 0,

P(‖μη − μ‖2
L2(S2) > t) = P(‖μη − μ‖L2(S2) >

√
t)

≤ P(‖μη − μ̃η‖L2(S2) >
√
t/2)

+ P(‖μ̃η − μ‖L2(S2) >
√
t/2).

The second term satisfies

P(‖μ̃η−μ‖L2(S2) > t′) ≤
E‖μ̃η − μ‖L2(S2)

t′
≤

E‖μ̃η − μ̄η‖L2(S2)

t′
+
‖μ̄η − μ‖L2(S2)

t′

where t′ =
√
t/2. By choosing t = D

(
(nr)−p/(p+1) + n−1), then

P(‖μ̃η − μ‖L2(S2) > t′) ≤ c0√
D
,

where c0 is a positive constant not depending on the choice of PX ∈ Π1(p, q).
Moreover, from 3, ∀ε > 0,

lim
n→∞

sup
PX∈Π1(p,q)

P(‖μη − μ̃η‖2
L2(S2) > ε

(
(nr)−p/(p+1) + n−1

)
) = 0.

Hence, by taking ε = D/4 and t = D
(
(nr)−p/(p+1) + n−1),

lim
n→∞

sup
PX∈Π1(p,q)

P(‖μη − μ̃η‖L2(S2) >
√
t/2)

= lim
n→∞

sup
PX∈Π1(p,q)

P(‖μη − μ̃η‖2
L2(S2) > t/4) = 0.

For the rest of the proof, it is useful to define an intermediate norm ‖ · ‖α,
α ∈ [0, 1], between ‖ · ‖L2(S2) and ‖ · ‖Hp . Let g ∈ L2(S2),

‖g‖2
α :=

∞∑
�=0

�∑
m=−�

D2α
� 〈g, Y�,m〉2L2(S2).

Since |D�| ≥ 1, for all � ∈ N,

‖g‖L2(S2) = ‖g‖0 ≤ ‖g‖α ≤ ‖g‖1 = ‖g‖Hp ;

moreover, g �→ ‖g‖α specifies a norm on Hpα which is equivalent to ‖ · ‖Hpα .
Note that, since we are considering D� = (1 + �(�+ 1))p/2, the two norms ‖ · ‖α
and ‖ · ‖Hpα are actually identical; however, for generality purposes, we will
maintain such distinction in our notation.

Proof of 1 follows immediately from the fact that, for α ∈ [0, 1],

‖μ− μ̄η‖2
α ≤ η1−α‖μ‖2

Hp
. (69)
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Indeed, for g ∈ Hp,

‖μ− g‖2
L2(S2) + η‖g‖2

Hp
=

∞∑
�=0

�∑
m=−�

|μ�,m − g�,m|2 + η

∞∑
�=0

�∑
m=−�

D2
� |g�,m|2,

where μ�,m = 〈μ, Y�,m〉L2(S2) and g�,m = 〈g, Y�,m〉L2(S2). The minimizer is then
given by

μ̄η =
∞∑
�=0

�∑
m=−�

μ�,m

1 + ηD2
�

Y�,m.

Hence,

‖μ− μ̄η‖2
α =

∞∑
�=0

�∑
m=−�

D2α
�

∣∣μ�,m − μ�,m(1 + ηD2
� )−1∣∣2

≤ η1−α
∞∑
�=0

�∑
m=−�

D2
� |μ�,m|2(ηD2

� )1+α(1 + ηD2
� )−2

≤ η1−α‖μ‖2
Hp

.

and, setting α = 0,

‖μ− μ̄η‖2
L2(S2) ≤ η‖μ‖2

Hp
≤ Kη,

which gives the claimed result under the assumptions on η.
In order to prove 2, we first show that

‖μ̃η − μ̄η‖2
α = 1

4

∞∑
�=0

�∑
m=−�

D2α
�

(1 + ηD2
� )2

(F ′
η(μ̄η)Y�,m)2. (70)

By the definitions of μ̃η and ‖ · ‖α,

‖μ̃η − μ̄η‖2
α = ‖(F̄ ′′

η )−1F ′
η(μ̄η)‖2

α

=
∞∑
�=0

�∑
m=−�

D2α
� 〈(F̄ ′′

η )−1F ′
η(μ̄η), Y�,m〉2L2(S2).

However,

〈(F̄ ′′
η )−1F ′

η(μ̄η), Y�,m〉L2(S2) = 1
D2

�

〈(F̄ ′′
η )−1F ′

η(μ̄η), Y�,m〉Hp

= 1
D2

�

〈QF ′
η(μ̄η), (F̃ ′′

η )−1Y�,m〉Hp ,

since QF ′
η(μ̄η) is the representer of F ′

η(μ̄η) and (F̃ ′′
η )−1 is self-adjoint. From

Lemma 3,

(F̃ ′′
η )−1Y�,m = 1

2
D2

�

1 + ηD2
�

Y�,m;



5118 A. Caponera et al.

thus,

〈(F̄ ′′
η )−1F ′

η(μ̄η), Y�,m〉L2(S2) = 1
2(1 + ηD2

� )
〈QF ′

η(μ̄η), Y�,m〉Hp

= 1
2(1 + ηD2

� )
F ′
η(μ̄η)Y�,m.

Now observe that F̄ ′
η(μ̄η) = 0 (see [21, Theorem 3.6.3]). Then, an application of

Lemma 2 reveals that, for any g ∈ Hp,

F ′
η(μ̄η)g = F ′

η(μ̄η)g − F̄ ′
η(μ̄η)g

= −8π
n

n∑
i=1

1
ri

ri∑
j=1

(Wij − μ̄η(Uij))g(Uij) + 2〈μ− μ̄η, g〉L2(S2). (71)

Consequently,
E[F ′

η(μ̄η)Y�,m] = EUE[F ′
η(μ̄η)Y�,m|U ] = 0

and

E|F ′
η(μ̄η)Y�,m|2 = Var[F ′

η(μ̄η)Y�,m]

=(8π)2

n2

n∑
i=1

1
r2
i

Var

⎡⎣ ri∑
j=1

(Wij − μ̄η(Uij))Y�,m(Uij)

⎤⎦ .

Using the law of total variance, for a generic i we can write

Var

⎡⎣ ri∑
j=1

(Wij − μ̄η(Uij))Y�,m(Uij)

⎤⎦
=Var

⎡⎣ ri∑
j=1

(μ(Uij) − μ̄η(Uij))Y�,m(Uij)

⎤⎦
+EU

⎡⎣Var

⎡⎣ ri∑
j=1

(Wij − μ̄η(Uij))Y�,m(Uij)

∣∣∣∣∣U
⎤⎦⎤⎦ .

For the first term on the right hand side of this expression, we have

Var

⎡⎣ ri∑
j=1

(μ(Uij) − μ̄η(Uij))Y�,m(Uij)

⎤⎦
=ri Var [(μ(Uii) − μ̄η(Uii))Y�,m(Uii)]

≤ ri
4π

∫
S2
|μ(u) − μ̄η(u)|2|Y�,m(u)|2du

≤Bri
4π ‖μ− μ̄η‖2

Hp
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≤BKri
4π ,

where the last two inequalities are justified by Lemma 1, for some B > 0, and
Equation (69) with α = 1. Then, for the second term,

EU

⎡⎣Var

⎡⎣ ri∑
j=1

(Wij − μ̄η(Uij))Y�,m(Uij)

∣∣∣∣∣U
⎤⎦⎤⎦

≤
ri∑
j=1

ri∑
j′=1

EU [Y�,m(Uij)Y�,m(Uij′)E[WijWij′ |U ]]

= ri(ri − 1)
(4π)2 E〈X,Y�,m〉2L2(S2)

+ ri
4π

∫
S2
R(u, u)|Y�,m(u)|2du + ri

4πσ
2

≤ ri(ri − 1)
(4π)2 E〈X,Y�,m〉2L2(S2)

+ B′ri
4π E‖X‖2

Hq
+ ri

4πσ
2,

again by applying Lemma 1, for some B′ > 0. Hence, combining all the bounds,

E|F ′
η(μ̄η)Y�,m|2 ≤ 4

n
E〈X,Y�,m〉2L2(S2) + O

(
1
nr

)
,

and

E‖μ̃η − μ̄η‖2
α ≤ 1

n

∞∑
�=0

�∑
m=−�

D2α
�

(1 + ηD2
� )2

E〈X,Y�,m〉2L2(S2)

+ O

(
1
nr

) ∞∑
�=0

D2α
�

(1 + ηD2
� )2

(2� + 1),

where r is the harmonic mean of r1, . . . , rn. Now, for α ≤ q/p,

∑
�,m

D2α
�

(1 + ηD2
� )2

E〈X,Y�,m〉2L2(S2) ≤ E

⎡⎣∑
�,m

D2α
� 〈X,Y�,m〉2L2(S2)

⎤⎦ ≤ E‖X‖2
q/p,

which is bounded (possibly up to an arbitrary constant) by E‖X‖2
Hq

. Moreover,
from [29],

∞∑
�=0

D2α
�

(1 + ηD2
� )2

(2� + 1) = O
(
1 + η−(α+1/p)

)
.

Thus, we have that

E‖μ̃η − μ̄η‖2
α ≤ M2

(
(nr)−1η−(α+1/p) + n−1

)
,
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where M2 is a positive constant not depending on the choice of PX ∈ Π1(p, q).
By choosing α = 0, we obtain the claimed rate.

Now, let us prove 3. The first step is to obtain a useful analytic form for
μη − μ̃η, by observing that

μη − μ̃η = μη − μ̄η + (F̄ ′′
η )−1F ′

η(μ̄η)
= (F̄ ′′

η )−1 [F̄ ′′
η (μη − μ̄η) + F ′

η(μ̄η)
]
.

Since μη minimizes F ′
η, it holds F ′

η(μη) = 0 (see [21, Theorem 3.6.3]). Then, for
any g ∈ Hp, [

F̄ ′′
η (μη − μ̄η) + F ′

η(μ̄η)
]
g

=
[
F̄ ′′
η (μη − μ̄η) + F ′

η(μ̄η) − F ′
η(μη)

]
g

=
[
F̄ ′′

0 (μη − μ̄η) − F ′′
0 (μη − μ̄η)

]
g.

where we used Lemma 2; in other words,

μη − μ̃η = (F̄ ′′
η )−1 [F̄ ′′

0 (μη − μ̄η) − F ′′
0 (μη − μ̄η)

]
.

Now, the same argument that leads to (70) gives us

‖μη − μ̃η‖2
α = 1

4

∞∑
�=0

�∑
m=−�

D2α
�

(1 + ηD2
� )2

([
F̄ ′′

0 (μη − μ̄η) − F ′′
0 (μη − μ̄η)

]
Y�,m

)2
,

with [
F̄ ′′

0 (μη − μ̄η) − F ′′
0 (μη − μ̄η)

]
Y�,m

=2〈μη − μ̄η, Y�,m〉L2(S2) −
8π
n

n∑
i=1

1
ri

ri∑
j=1

(μη(Uij) − μ̄η(Uij))Y�,m(Uij).

Now since μη − μ̄η ∈ Hp, we can write μη − μ̄η =
∑

�′,m′ h�′,m′Y�′,m′ , where the
convergence is both in L2(S2) and pointwise. Then,

‖μη − μ̃η‖2
α =

∑
�,m

D2α
�

(1 + ηD2
� )2

⎛⎝∑
�′,m′

h�′,m′V�,�′,m,m′

⎞⎠2

,

where

V�,�′,m,m′ = δ�
′

� δ
m′

m − 4π
n

n∑
i=1

1
ri

ri∑
j=1

Y�,m(Uij)Y�′,m′(Uij).

By applying the Cauchy–Schwarz inequality for arbitrary θ ∈ (1/p, 1], we obtain

‖μη − μ̃η‖2
α ≤ ‖μη − μ̄η‖2

θ

∑
�,m

D2α
�

(1 + ηD2
� )2

∑
�′,m′

D−2θ
�′ V 2

�,�′,m,m′ .
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It is readily seen that E[V�,�′,m,m′ ] = 0 and

E[V 2
�,�′,m,m′ ] = Var[V�,�′,m,m′ ] = (4π)2

nr
Var[Y�,m(Uii)Y�′,m′(Uii)]

≤ 4π
nr

∫
S2
|Y�,m(u)|2|Y�′,m′(u)|2du

≤ D2θ
� O

(
1
nr

)
,

by Lemma 1, since Y�,m ∈ Hpθ, and pθ > 1. Hence, we obtain

∑
�,m

D2α
�

(1 + ηD2
� )2

∑
�′,m′

D−2θ
�′ E[V 2

�,�′,m,m′ ] ≤ M3

nrηα+θ+1/p .

Let us define

An :=
∑
�,m

D2α
�

(1 + ηD2
� )2

∑
�′,m′

D−2θ
�′ V 2

�,�′,m,m′ ,

an := 1
nrηα+θ+1/p and γn := 1

nrηα+1/p + 1
n . Note that An = supPX∈Π1(p,q) An and

An = oP(1). Then, ‖μη − μ̃η‖2
α ≤ An ‖μη − μ̄η‖2

θ and therefore

P
(
‖μη − μ̃η‖2

α > εγn
)
≤ P

(
An ‖μη − μ̄η‖2

θ > εγn
)

= P
(
An ‖μη − μ̄η‖2

θ > εγn, An < 1
)

+ P
(
An ‖μη − μ̄η‖2

θ > εγn, An ≥ 1
)

≤ P
(
An ‖μη − μ̄η‖2

θ > εγn, An < 1
)

+ P (An ≥ 1) .

If An < 1,

‖μ̃η − μ̄η‖θ ≥ ‖μη − μ̄η‖θ − ‖μη − μ̃η‖θ
≥ (1 −

√
An)‖μη − μ̄η‖θ,

which allows to write

P
(
An ‖μη − μ̄η‖2

θ > εγn, An < 1
)

≤P

(
An|1 −

√
An|−2‖μ̃η − μ̄η‖2

θ > εγn, An < 1
)

≤P

(
An|1 −

√
An|−2‖μ̃η − μ̄η‖2

θ > εγn

)
.

Let us now define Bn := ‖μ̃η − μ̄η‖2
θ and bn := 1

nrηθ+1/p + 1
n . Recall that

E[Bn] ≤ M2bn, for θ ≤ q/p. Moreover, |1 −
√
An|−2 = OP(1). We can observe

that

anbn = 1
nrη2θ+1/p

(
1

nrηα+1/p + ηθ−α

n

)
,
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so that cn := anbn/γn → 0, assuming θ < 1/2 (recall that p > 2) and α ∈ [0, θ].
Then,

P

(
An|1 −

√
An|−2Bn > εγn

)
= P

(
An|1 −

√
An|−2Bn

anbn
>

ε

cn

)
≤ P

(
Bn

bn
>

ε1/3

c
1/3
n

)
+ P

(
An

an
>

ε1/3

c
1/3
n

)
+ P

(
|1 −

√
An|−2 >

ε1/3

c
1/3
n

)
≤ M2

c
1/3
n

ε1/3 + M3
c
1/3
n

ε1/3

+ P

(
|1 −

√
An|−2 >

ε1/3

c
1/3
n

)
.

Clearly c
1/3
n |1 −

√
An|−2 = oP(1), hence

lim
n→∞

sup
PX∈Π1(p,q)

P
(
‖μη − μ̃η‖2

α > εγn
)

= 0.

By taking α = 0 we obtain the claimed result.

The next two lemmas refer to

Fη(g) := 4π
n

n∑
i=1

1
ri

ri∑
j=1

(Wij − g(Uij))2 + η‖Dg‖2
L2(S2),

F̄η(g) := E[Fη(g)] = 4πE|W11 − μ(U11)|2 + ‖μ− g‖2
L2(S2) + η‖Dg‖2

L2(S2).

Let X1 and X2 be normed spaces. We will use B(X1,X2) to denote the set of
all linear and bounded operators from X1 to X2. Here, we consider Hp endowed
with ‖D · ‖L2(S2).

Lemma 2. Let f, g, g1, g2 be arbitrary elements of Hp.

1. The Fréchet derivative of Fη at f is the element F ′
η(f) of B(Hp,R) char-

acterized by

F ′
η(f)g = −8π

nr

n∑
i=1

r∑
j=1

(Wij − f(Uij))g(Uij) + 2η〈Df,Dg〉L2(S2)

The second Fréchet derivative F ′′
η ∈ B(Hp,B(Hp,R)) is characterized by

F ′′
η g1g2 = 8π

nr

n∑
i=1

r∑
j=1

g1(Uij)g2(Uij) + 2η〈Dg1,Dg2〉L2(S2).
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2. The Fréchet derivative of F̄η at f is the element F̄ ′
η(f) of B(Hp,R) char-

acterized by

F̄ ′
η(f)g = −2〈μ− f, g〉L2(S2) + 2η〈Df,Dg〉L2(S2)

The second Fréchet derivative F̄ ′′
η ∈ B(Hp,B(Hp,R)) is characterized by

F̄ ′′
η g1g2 = 2〈g1, g2〉L2(S2) + 2η〈Dg1,Dg2〉L2(S2). (72)

Proof. The proof is a direct application of Theorem 3.6.4 in [21]. See also Lemma
8.3.3.

The evaluation of μ̃η, given in Equation (68), involves the inverse of the
operator F̄ ′′

η . To this purpose, it is convenient to invoke the Riesz representation
theorem (see [21, Theorem 3.2.1]), which tells us that there is an invertible norm-
preserving mapping Q such that QB(Hp,R) = Hp. Thus,

F̃ ′′
η := QF̄ ′′

η (73)

is an element of B(Hp,Hp) and it is invertible if and only if F̄ ′′
η is invertible.

Lemma 3. The operator F̃ ′′
η in (73) is an invertible element of B(Hp,Hp) and,

for any g ∈ Hp,

(F̃ ′′
η )−1g = 1

2

�∑
�=0

�∑
m=−�

D2
�

1 + ηD2
�

〈g, Y�,m〉L2(S2)Y�,m.

Notice that (F̃ ′′
η )−1 is a self-adjoint operator.

Proof. Take g1 ∈ Hp, so that F̄ ′′
η g1 belongs to B(Hp,R), with representer F̃ ′′

η g1 ∈
Hp. Then, for any g2 ∈ Hp,

F̄ ′′
η g1g2 = 〈DF̃ ′′

η g1,Dg2〉L2(S2) = 2〈g1, g2〉L2(S2) + 2η〈Dg1,Dg2〉L2(S2),

where the last equality comes from (72). We can hence write the expansion in
Hp

F̃ ′′
η g1 = 2

∞∑
�=0

�∑
m=−�

1 + ηD2
�

D2
�

〈g1, Y�,m〉L2(S2)Y�,m,

which suggests that F̃ ′′
η is invertible and

(F̃ ′′
η )−1g1 = 1

2

�∑
�=0

�∑
m=−�

D2
�

1 + ηD2
�

〈g1, Y�,m〉L2(S2)Y�,m.

Proof of Theorem 4. As for Theorem 3, without loss of generality, we will con-
sider D� = (1 + �(� + 1))p/2, which leads to a penalization term in the Hp

norm. However, all the following steps can be generalized to every spherical
pseudo-differential operator in Definition 2.
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In keeping with the notation that was used for proving Theorem 3, we first
define

Fη(g) := (4π)2

n

n∑
i=1

1
ri(ri − 1)

∑
1≤j �=k≤ri

(WijWik − g(Uij , Uik))2 + η‖g‖2
Hp

,

F̄η(g) := E[Fη(g)] = (4π)2 Var[W11W12] + ‖R− g‖2
L2(S2×S2) + η‖g‖2

Hp
,

and we let
R̄η := arg min

g∈Hp

F̄η(g).

We also define
R̃η = R̄η − (F̄ ′′

η )−1F ′
η(R̄η). (74)

The definitions of F ′
η and F̄ ′′

η will be given in Lemma 4, while the existence of
(F̄ ′′

η )−1 will be discussed in Lemma 5.
Now, we can write Rη − R = Rη − R̃η + R̃η − R̄η + R̄η − R. In parallel to

Proof of Theorem 3, we must show the following

1. ‖R̄η −R‖2
L2(S2×S2) ≤ M1

(
(nr/ logn)−p/(p+1) + n−1),

2. E‖R̃η − R̄η‖2
L2(S2×S2) ≤ M2

(
(nr/ logn)−p/(p+1) + n−1),

3. ∀ε > 0,

lim
n→∞

sup
PX∈Π2(p,q)

P

(
‖Rη − R̃η‖2

L2(S2×S2) > ε

((
logn
nr

)p/(p+1)

+ 1
n

))
= 0,

whenever η � (nr/ logn)−p/(p+1), for any choice of the sampling distribution in
Π2(p, q).

At this point, we define the intermediate norm ‖ · ‖α, α ∈ [0, 1], between
‖ · ‖L2(S2×S2) and ‖ · ‖Hp . Let g ∈ L2(S2 × S

2), then

‖g‖2
α :=

∞∑
�=0

�∑
m=−�

∞∑
�′=0

�′∑
m′=−�′

D2α
� D2α

�′ 〈g, Y�,m ⊗ Y�′,m′〉2L2(S2×S2),

which satisfies

‖g‖L2(S2×S2) = ‖g‖0 ≤ ‖g‖α ≤ ‖g‖1 = ‖g‖Hp .

Similarly as in Proof of Theorem 3, g �→ ‖g‖α specifies a norm on Hpα which is
equivalent to ‖ · ‖Hpα .

An argument analogous to that used for proving Equation (69) shows that,
for α ∈ [0, 1],

‖R− R̄η‖2
α ≤ η1−α‖R‖2

Hp
. (75)

Hence, setting α = 0,

‖R− R̄η‖2
L2(S2×S2) ≤ η‖R‖2

Hp
≤ K1η,
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which gives the claimed result under the assumptions on η.
We now prove 2, by first showing that

‖R̃η − R̄η‖2
α = 1

4
∑
�,m

∑
�′,m′

D2α
� D2α

�′

(1 + ηD2
�D

2
�′)2

(F ′
η(R̄η)Y�,m ⊗ Y�′,m′)2. (76)

By the definitions of R̃η and ‖ · ‖α,

‖R̃η − R̄η‖2
α = ‖(F̄ ′′

η )−1F ′
η(R̄η)‖2

α

=
∑
�,m

∑
�′,m′

D2α
� D2α

�′ 〈(F̄ ′′
η )−1F ′

η(R̄η), Y�,m ⊗ Y�′,m′〉2L2(S2×S2).

However,

〈(F̄ ′′
η )−1F ′

η(R̄η), Y�,m ⊗ Y�′,m′〉L2(S2×S2)

= 1
D2

�D
2
�′
〈(F̄ ′′

η )−1F ′
η(R̄η), Y�,m ⊗ Y�′,m′〉Hp

= 1
D2

�D
2
�′
〈QF ′

η(R̄η), (F̃ ′′
η )−1Y�,m ⊗ Y�′,m′〉Hp ,

since QF ′
η(R̄η) is the representer of F ′

η(R̄η) and (F̃ ′′
η )−1 is self-adjoint. From

Lemma 5,

(F̃ ′′
η )−1Y�,m ⊗ Y�′,m′ = 1

2
D2

�D
2
�′

1 + ηD2
�D

2
�′
Y�,m ⊗ Y�′,m′ ;

thus,

〈(F̄ ′′
η )−1F ′

η(R̄η), Y�,m ⊗ Y�′,m′〉L2(S2×S2)

= 1
2(1 + ηD2

�D
2
�′)

〈QF ′
η(R̄η), Y�,m ⊗ Y�′,m′〉Hp

= 1
2(1 + ηD2

�D
2
�′)

F ′
η(R̄η)Y�,m ⊗ Y�′,m′ .

Now observe that F̄ ′
η(R̄η) = 0 (see [21, Theorem 3.6.3]). Then, an application

of Lemma 4 reveals that, for any g ∈ Hp,

F ′
η(R̄η)g = F ′

η(R̄η)g − F̄ ′
η(R̄η)g

= − 2(4π)2

n

n∑
i=1

1
ri(ri − 1)

∑
1≤j �=k≤ri

(WijWik − R̄η(Uij , Uik))g(Uij , Uik)

+ 2〈R− R̄η, g〉L2(S2×S2).

Consequently,

E[F ′
η(R̄η)Y�,m ⊗ Y�′,m′ ] = EUE[F ′

η(R̄η)Y�,m ⊗ Y�′,m′ |U ] = 0
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and

E|F ′
η(R̄η)Y�,m ⊗ Y�′,m′ |2 = Var[F ′

η(R̄η)Y�,m ⊗ Y�′,m′ ] = 4(4π)4

n2

n∑
i=1

1
r2
i (ri − 1)2

×Var

⎡⎣ ∑
1≤j �=k≤ri

(WijWik − R̄η(Uij , Uik))Y�,m(Uij)Y�′,m′(Uik)

⎤⎦ .

Using the law of total variance, for a generic i we can write

Var

⎡⎣ ∑
1≤j �=k≤ri

(WijWik − R̄η(Uij , Uik))Y�,m(Uij)Y�′,m′(Uik)

⎤⎦
= Var

⎡⎣ ∑
1≤j �=k≤ri

(R(Uij , Uik) − R̄η(Uij , Uik))Y�,m(Uij)Y�′,m′(Uik)

⎤⎦
+EU

⎡⎣Var

⎡⎣ ∑
1≤j �=k≤ri

WijWikY�,m(Uij)Y�′,m′(Uik)

∣∣∣∣∣U
⎤⎦⎤⎦ . (77)

In what follows, we will handle sums over four indices j, k, j′, k′. It is then
useful to identify the distinct cases which lead to terms of different orders. Recall
that j �= k, j′ �= k′, then we have

1. terms of order ri(ri − 1):
(a) j = j′, k = k′

(b) j = k′, j′ = k

2. terms of order ri(ri − 1)(ri − 2):
(a) j = j′, k �= k′

(b) j �= j′, k = k′

(c) j �= j′, k �= k′, j = k′, j′ �= k

(d) j �= j′, k �= k′, j �= k′, j′ = k

3. terms of order ri(ri − 1)(ri − 2)(ri − 3):
(a) j �= j′, k �= k′, j �= k′, j′ �= k

Now, for the first term on the right hand side of Equation (77), we obtain

Var

⎡⎣ ∑
1≤j �=k≤ri

(R(Uij , Uik) − R̄η(Uij , Uik))Y�,m(Uij)Y�′,m′(Uik)

⎤⎦
=E

⎛⎝ ∑
1≤j �=k≤ri

(R(Uij , Uik) − R̄η(Uij , Uik))Y�,m(Uij)Y�′,m′(Uik)

⎞⎠2
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−r2
i (ri − 1)2

(4π)4 〈R− R̄η, Y�,m ⊗ Y�′,m′〉2L2(S2×S2)

≤B
2ri(ri − 1) + 4ri(ri − 1)(ri − 2)

(4π)2 ‖R− R̄η‖2
Hp

+ri(ri − 1)(ri − 2)(ri − 3) − r2
i (ri − 1)2

(4π)4 〈R− R̄η, Y�,m ⊗ Y�′,m′〉2L2(S2×S2)

≤BK1
2ri(ri − 1) + 4ri(ri − 1)(ri − 2)

(4π)2 ,

where the last two inequalities are justified by Lemma 1, for some B > 0, and
Equation (75) with α = 1. For the second term, write∑

1≤j �=k≤ri

WijWikY�,m(Uij)Y�′,m′(Uik)

=
∑

1≤j �=k≤ri

Xi(Uij)Xi(Uik)Y�,m(Uij)Y�′,m′(Uik)

+
∑

1≤j �=k≤ri

εijXi(Uik)Y�,m(Uij)Y�′,m′(Uik)

+
∑

1≤j �=k≤ri

Xi(Uij)εikY�,m(Uij)Y�′,m′(Uik)

+
∑

1≤j �=k≤ri

εijεikY�,m(Uij)Y�′,m′(Uik).

Denote the four terms in this last expression by S1, S2, S3, and S4 with in-
dices corresponding to their location in the sum. Then, by an application of the
Cauchy-Schwartz inequality,

EU [Var [S1 + S2 + S3 + S4|U ]] ≤ 4
(
E|S1|2 + E|S2|2 + E|S3|2 + E|S4|2

)
.

We will illustrate how to derive the bound for S1, since the other three are
somewhat simpler to handle and of order at most r3

i . Thus, following the scheme
previously described, we obtain

E

⎛⎝ ∑
1≤j �=k≤ri

Xi(Uij)Xi(Uik)Y�,m(Uij)Y�′,m′(Uik)

⎞⎠2

=
∑

1≤j �=k≤ri

∑
1≤j′ �=k′≤ri

EU [Y�,m(Uij)Y�′,m′(Uik)Y�,m(Uij′)Y�′,m′(Uik′)

×E[Xi(Uij)Xi(Uik)Xi(Uij′)Xi(Uik′)|U ] ]

≤ri(ri − 1)(ri − 2)(ri − 3)
(4π)4 E〈X,Y�,m〉2L2(S2)〈X,Y�′,m′〉2L2(S2)

+B′ 2ri(ri − 1) + 4ri(ri − 1)(ri − 2)
(4π)2 E‖X‖4

Hq
,
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for some B′ > 0. Indeed, for instance, when we consider cases 2.c-2.d,∣∣∣∣∫
S2

∫
S2

∫
S2
E
[
X(u)X(v)|X(w)|2

]
Y�,m(w)Y�′,m′(u)Y�,m(v)Y�′,m′(w)dudvdw

∣∣∣∣
≤B′

E‖X‖2
Hq

∫
S2
|Y�′,m′(u)|du

∫
S2
|Y�,m(v)|dv

∫
S2
|Y�,m(w)||Y�′,m′(w)|dw

≤B′(4π)E‖X‖4
Hq

,

where again we have used Lemma 1. Hence, combining all the bounds,

E|F ′
η(R̄η)Y�,m ⊗ Y�′,m′ |2 ≤ 4

n
E〈X,Y�,m〉2L2(S2)〈X,Y�′,m′〉2L2(S2)

+ O

(
1
nr

)
,

and

E‖R̃η − R̄η‖2
α ≤ 1

n

∑
�,m

∑
�′,m′

D2α
� D2α

�′

(1 + ηD2
�D

2
�′)2

E〈X,Y�,m〉2L2(S2)〈X,Y�′,m′〉2L2(S2)

+ O

(
1
nr

)∑
�,�′

D2α
� D2α

�′

(1 + ηD2
�D

2
�′)2

(2� + 1)(2�′ + 1),

where again r is the harmonic mean of r1, . . . , rn. Now, for α ≤ q/p,∑
�,m

∑
�′,m′

D2α
� D2α

�′

(1 + ηD2
�D

2
�′)2

E〈X,Y�,m〉2L2(S2)〈X,Y�′,m′〉2L2(S2)

≤E

⎛⎝∑
�,m

D2α
� 〈X,Y�,m〉2L2(S2)

⎞⎠2

≤E‖X‖4
p/q,

which is bounded (possibly up to an arbitrary constant) by E‖X‖4
Hq

. Moreover,
from [29],

∞∑
�=0

∞∑
�′=0

D2α
� D2α

�′

(1 + ηD2
�D

2
�′)2

(2� + 1)(2�′ + 1) = O
(
η−(α+1/p) log(1/η) + 1

)
.

Thus, we have that

E‖R̃η − R̄η‖2
α ≤ M2

(
(nr)−1η−(α+1/p) log(1/η) + n−1

)
,

where M2 is a positive constant not depending on the choice of PX ∈ Π2(p, q).
By choosing α = 0, we obtain the claimed rate.

Now, let us prove 3. The first step is to obtain a useful analytic form for
Rη − R̃η, by observing that

Rη − R̃η = Rη − R̄η + (F̄ ′′
η )−1F ′

η(R̄η)
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= (F̄ ′′
η )−1 [F̄ ′′

η (Rη − R̄η) + F ′
η(R̄η)

]
.

Since Rη minimizes F ′
η, it holds F ′

η(Rη) = 0 (see [21, Theorem 3.6.3]). Then,
for any g ∈ Hp, [

F̄ ′′
η (Rη − R̄η) + F ′

η(R̄η)
]
g

=
[
F̄ ′′
η (Rη − R̄η) + F ′

η(R̄η) − F ′
η(Rη)

]
g

=
[
F̄ ′′

0 (Rη − R̄η) − F ′′
0 (Rη − R̄η)

]
g.

where we used Lemma 4; in other words,

Rη − R̃η = (F̄ ′′
η )−1 [F̄ ′′

0 (Rη − R̄η) − F ′′
0 (Rη − R̄η)

]
.

Now, the same argument that leads to (76) gives us

‖Rη − R̃η‖2
α = 1

4
∑
�,m

∑
�′,m′

D2α
� D2α

�′

(1 + ηD2
�D

2
�′)2

×
([
F̄ ′′

0 (Rη − R̄η) − F ′′
0 (Rη − R̄η)

]
Y�,m ⊗ Y�′,m′

)2
,

with [
F̄ ′′

0 (Rη − R̄η) − F ′′
0 (Rη − R̄η)

]
Y�,m ⊗ Y�′,m′

=2〈Rη − R̄η, Y�,m ⊗ Y�′,m′〉L2(S2×S2) −
2(4π)2

n

n∑
i=1

1
ri(ri − 1)

×
∑

1≤j �=k≤ri

(Rη(Uij , Uik) − R̄η(Uij , Uik))Y�,m(Uij)Y�′,m′(Uik).

Now, Rη − R̄η =
∑

�,m

∑
�′,m′ h�,�′,m,m′Y�,mY�′,m′ . Then,

‖Rη − R̃η‖2
α =

∑
�1,m1

∑
�2,m2

D2α
�1
D2α

�2

(1 + ηD2
�1
D2

�2
)2

⎛⎝∑
�3,m3

∑
�4,m4

h�3,�4,m3,m4V�1:4,m1:4

⎞⎠2

,

where

V�1:4,m1:4 = δ�3�1 δ
m3
m1

δ�4�2 δ
m4
m2

− (4π)2

n

n∑
i=1

1
ri(ri − 1)

×
∑

1≤j �=k≤ri

Y�1,m1(Uij)Y�2,m2(Uik)Y�3,m3(Uij)Y�4,m4(Uik).

By applying the Cauchy–Schwarz inequality for arbitrary θ ∈ (1/p, 1], we obtain

‖Rη − R̃η‖2
α ≤ ‖Rη − R̄η‖2

θ

∑
�1,m1

∑
�2,m2

D2α
�1
D2α

�2

(1 + ηD2
�1
D2

�2
)2
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×
∑
�3,m3

∑
�4,m4

D−2θ
�3

D−2θ
�4

V 2
�1:4,m1:4

.

It is readily seen that E[V�1:4,m1:4 ] = 0 and

E[V 2
�1:4,m1:4

] = −δ�3�1 δ
m3
m1

δ�4�2 δ
m4
m2

+ (4π)4

n2

n∑
i=1

1
r2
i (ri − 1)2

× E

⎛⎝ ∑
1≤j �=k≤ri

Y�1,m1(Uij)Y�2,m2(Uik)Y�3,m3(Uij)Y�4,m4(Uik)

⎞⎠2

.

Thus, it is possible to show that

E[V 2
�1:4,m1:4

] ≤ D2θ
�1 D

2θ
�2 O

(
1
nr

)
,

and hence ∑
�1,m1

∑
�2,m2

D2α
�1
D2α

�2

(1 + ηD2
�1
D2

�2
)2

∑
�3,m3

∑
�4,m4

D−2θ
�3

D−2θ
�4

E[V 2
�1:4,m1:4

]

=O

(
log(1/η)

nrηα+θ+1/p

)
.

Let us define

An :=
∑
�1,m1

∑
�2,m2

D2α
�1
D2α

�2

(1 + ηD2
�1
D2

�2
)2

∑
�3,m3

∑
�4,m4

D−2θ
�3

D−2θ
�4

V 2
�1:4,m1:4

,

an := log(1/η)
nrηα+θ+1/p and γn := log(1/η)

nrηα+1/p + 1
n . Note that An = supPX∈Π2(p,q) An and

An = oP(1).
Then, ‖Rη − R̃η‖2

α ≤ An ‖Rη − R̄η‖2
θ and therefore

P
(
‖Rη − R̃η‖2

α > εγn
)
≤ P

(
An ‖Rη − R̄η‖2

θ > εγn
)

= P
(
An ‖Rη − R̄η‖2

θ > εγn, An < 1
)

+ P
(
An ‖Rη − R̄η‖2

θ > εγn, An ≥ 1
)

≤ P
(
An ‖Rη − R̄η‖2

θ > εγn, An < 1
)

+ P (An ≥ 1) .

If An < 1,

‖R̃η − R̄η‖θ ≥ ‖Rη − R̄η‖θ − ‖Rη − R̃η‖θ
≥ (1 −

√
An)‖Rη − R̄η‖θ,

which allows to write

P
(
An ‖Rη − R̄η‖2

θ > εγn, An < 1
)
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≤P

(
An|1 −

√
An|−2‖R̃η − R̄η‖2

θ > εγn, An < 1
)

≤P

(
An|1 −

√
An|−2‖R̃η − R̄η‖2

θ > εγn

)
.

Let us now define Bn := ‖R̃η − R̄η‖2
θ and bn := log(1/η)

nrηθ+1/p + 1
n . Recall that

E[Bn] ≤ M2bn, for θ ≤ q/p. Moreover, |1 −
√
An|−2 = OP(1). We can observe

that
anbn = log(1/η)

nrη2θ+1/p

(
log(1/η)
nrηα+1/p + ηθ−α

n

)
,

so that cn := anbn/γn → 0, assuming θ < 1/2 (recall that p > 2) and α ∈ [0, θ].
Then,

P

(
An|1 −

√
An|−2Bn > εγn

)
= P

(
An|1 −

√
An|−2Bn

anbn
>

ε

cn

)
≤ P

(
Bn

bn
>

ε1/3

c
1/3
n

)
+ P

(
An

an
>

ε1/3

c
1/3
n

)
+ P

(
|1 −

√
An|−2 >

ε1/3

c
1/3
n

)
≤ M2

c
1/3
n

ε1/3 + M3
c
1/3
n

ε1/3

+ P

(
|1 −

√
An|−2 >

ε1/3

c
1/3
n

)
.

Clearly c
1/3
n |1 −

√
An|−2 = oP(1), hence

lim
n→∞

sup
PX∈Π2(p,q)

P
(
‖Rη − R̃η‖2

α > εγn
)

= 0.

By taking α = 0 we obtain the claimed result.
Recall now that, when the mean is μ �= 0, an estimate of the complete

covariance kernel C(u, v) = R(u, v) − μ(u)μ(v) is given by

Cη(u, v) = Rη(u, v) − μη(u)μη(v).

Moreover, observe that

‖Cη − C‖L2(S2×S2) ≤ ‖Rη −R‖L2(S2×S2) + ‖μη ⊗ μη − μ⊗ μ‖L2(S2×S2),

by the triangle inequality; hence,

P

(
‖Cη − C‖2

L2(S2×S2) > t
)
≤ P

(
‖Rη −R‖2

L2(S2×S2) > t
)

+ P

(
‖μη ⊗ μη − μ⊗ μ‖2

L2(S2×S2) > t
)
.

For the second term on the right-hand side, we have

‖μη ⊗ μη − μ⊗ μ‖L2(S2×S2) = ‖μη ⊗ μη ± μη ⊗ μ− μ⊗ μ‖L2(S2×S2)
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≤ ‖μη‖L2(S2)‖μη − μ‖L2(S2)

+ ‖μη − μ‖L2(S2)‖μ‖L2(S2)

≤ ‖μη − μ‖2
L2(S2) + 2‖μη − μ‖L2(S2)‖μ‖L2(S2)

= OP

(
‖μη − μ‖L2(S2)

)
.

If we repeat the same steps in Proof of Theorem 3, but this time with η �
(nr/ logn)−p/(p+1), we see that the (uniform) rate for μη is exactly
(nr/ logn)−p/(p+1) + n−1, which concludes the proof.

The next two lemmas are referred to

Fη(g) : = (4π)2

n

n∑
i=1

1
ri(ri − 1)

∑
1≤j �=k≤ri

(WijWik − g(Uij , Uik))2

+ η‖(D ⊗ D)g‖2
L2(S2×S2),

F̄η(g) : = E[Fη(g)] = (4π)2 Var[W11W12] + ‖R− g‖2
L2(S2×S2)

+ η‖(D ⊗ D)g‖2
L2(S2×S2).

Recall that B(X1,X2) denote the set of all linear and bounded operators from
X1 to X2, being normed spaces. Here, we consider Hp endowed with ‖(D ⊗D) ·
‖L2(S2×S2).

Lemma 4. Let f, g, g1, g2 be arbitrary elements of Hp.

1. The Fréchet derivative of Fη at f is the element F ′
η(f) of B(Hp,R) char-

acterized by

F ′
η(f)g = −2(4π)2

n

n∑
i=1

1
ri(ri − 1)

∑
1≤j �=k≤ri

(WijWik−f(Uij , Uik))g(Uij , Uik)

+ 2η〈(D ⊗ D)f, (D ⊗ D)g〉L2(S2×S2)

The second Fréchet derivative F ′′
η ∈ B(Hp,B(Hp,R)) is characterized by

F ′′
η g1g2 = 2(4π)2

n

n∑
i=1

1
ri(ri − 1)

∑
1≤j �=k≤ri

g1(Uij , Uik)g2(Uij , Uik)

+ 2η〈(D ⊗ D)g1, (D ⊗ D)g2〉L2(S2×S2).

2. The Fréchet derivative of F̄η at f is the element F̄ ′
η(f) of B(Hp,R) char-

acterized by

F̄ ′
η(f)g = −2〈R− f, g〉L2(S2×S2) + 2η〈(D ⊗ D)f, (D ⊗ D)g〉L2(S2×S2)

The second Fréchet derivative F̄ ′′
η ∈ B(Hp,B(Hp,R)) is characterized by

F̄ ′′
η g1g2 = 2〈g1, g2〉L2(S2×S2) + 2η〈(D ⊗ D)g1, (D ⊗ D)g2〉L2(S2×S2). (78)
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Proof. The proof is a direct application of Theorem 3.6.4 in [21]. See also Lemma
8.3.3.

The evaluation of R̃η involves the inverse of the operator F̄ ′′
η . To this purpose,

it is convenient to invoke the Riesz representation theorem (see [21, Theorem
3.2.1]), which tells us that there is an invertible norm-preserving mapping Q
such that QB(Hp,R) = Hp. Thus,

F̃ ′′
η := QF̄ ′′

η (79)

is an element of B(Hp,Hp) and it is invertible if and only if F̄ ′′
η is invertible.

Lemma 5. The operator F̃ ′′
η in (79) is an invertible element of B(Hp,Hp) and,

for any g ∈ Hp,

(F̃ ′′
η )−1g = 1

2

∞∑
�,�′=0

�∑
m=−�

�′∑
m′=−�′

D2
�D

2
�′

1 + ηD2
�D

2
�′
〈g, Y�,m ⊗ Y�′,m′〉L2(S2×S2)Y�,mY�′m′ .

Notice that (F̃ ′′
η )−1 is a self-adjoint operator.

Proof. Take g1 ∈ Hp, so that F̄ ′′
η g1 belongs to B(Hp,R), with representer F̃ ′′

η g1 ∈
Hp. Then, for any g2 ∈ Hp,

F̄ ′′
η g1g2 = 〈(D ⊗ D)F̃ ′′

η g1, (D ⊗ D)g2〉L2(S2×S2)

= 2〈g1, g2〉L2(S2×S2) + 2η〈(D ⊗ D)g1, (D ⊗ D)g2〉L2(S2×S2),

where the last equality comes from (78). We can hence write the expansion in Hp

F̃ ′′
η g1 = 2

∞∑
�,�′=0

�∑
m=−�

�′∑
m′=−�′

1 + ηD2
�D

2
�′

D2
�D

2
�′

〈g1, Y�,m ⊗ Y�′,m′〉L2(S2×S2)Y�,mY�′m′ ,

which suggests that F̃ ′′
η is invertible and

(F̃ ′′
η )−1g1 = 1

2

∞∑
�,�′=0

�∑
m=−�

�′∑
m′=−�′

D2
�D

2
�′

1 + ηD2
�D

2
�′
〈g1, Y�,m⊗Y�′,m′〉L2(S2×S2)Y�,mY�′m′ .

We now obtain the asymptotic performance for the two classes of spherical
random fields introduced in Section 5.3.

Proof of Proposition 2. We fix q ≤ p such that 2 < p < β − 1/2 and 1 < q <
β − 1. Note that p and q exist due to the assumption that β > 5/2. The proof
is divided in two parts.

1. Aβ ⊂ Π2(p, q). Let X ∈ Aβ . The Gaussian white noise over the d-
dimensional hypersphere is almost surely in the Sobolev space with negative
smoothness W ∈ H−d/2−ε for any ε > 0. This result is well-known for Gaussian
white noises over S1 or more generally the d-dimensional torus Td = S

1×· · ·×S
1;
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see for instance [56, Theorem 3.4] or [14, Theorem 5]. More generally, it is
true for the Gaussian white noise over a compact Riemannian manifold with
no boundary, as is demonstrated for instance in the proof of Proposition 3.8
in [13]. In our setting, we deduce that W ∈ H−1−ε almost surely for any ε > 0.
Moreover, any admissible operator D with spectral growth order β is such that
D−1H−1−ε = Hβ−1−ε, hence X ∈ Hβ−1−ε almost surely. For ε > 0 small
enough, we have that β− 1− ε ≥ q, hence Hβ−1−ε ⊂ Hq. In particular, X ∈ Hq

almost surely.
Our goal is now to prove that the covariance C of X is in Hp. We first

prove that C(u, v) = K(u, v), for any u, v ∈ S
2, where K : S

2 × S
2 → R

is the reproducing kernel of (Hβ , ‖D · ‖L2(S2)). Using that X = D−1W and
X(u) = 〈X, δu〉L2(S2), we have that, for u, v ∈ S

2,

E[X(u)X(v)] = E[〈D−1W, δu〉L2(S2)〈D−1W, δv〉L2(S2)]
= E[〈W, (D−1)∗δu〉L2(S2)〈W, (D−1)∗δv〉L2(S2)]
= 〈(D−1)∗δu, (D−1)∗δv〉L2(S2)

= 〈DD−1(D−1)∗δu,DD−1(D−1)∗δv〉L2(S2)

= 〈(D∗D)−1δu, (D∗D)−1δv〉Hβ
.

We then observe that (D∗D)−1δu = K(·, u), u ∈ S
2 since it satisfy the repro-

ducing property

〈(D∗D)−1δu, f〉Hβ
= 〈D(D∗D)−1δu,Df〉L2(S2) = 〈δu, f〉L2(S2) = f(u),

for every f ∈ Hβ . Thus we have that

C(u, v) = E[X(u)X(v)] = 〈K(·, u),K(·, v)〉Hβ
= K(u, v).

We therefore deduce that, since the Fourier coefficients of K are given by K�,m =
1/|D�|2, we have that

‖C‖2
Hp

= ‖K‖2
Hp

=
∞∑
�=0

�∑
m=−�

(1+�(�+1))2p|K�,m|2 =
∞∑
�=0

(2�+1)(1+�(�+1))2pD−4
� ,

Finally, using that the D� satisfies (11) (with p = β), the previous sum is finite if
and only if 4β−4p−1 > 1, which is true due to the assumption that p < β−1/2.
Finally, we have shown that X ∈ Π2(p, q).

2. Existence of Cη. Let D be an admissible operator of order p such that
2 < p < β−1/2. Then, we have seen that, for such p and for q ≤ p, 1 < q < β−1,
X ∈ Π2(p, q). Then, the estimator Cη = Rη associated to the operator D verifies
the assumptions of Theorem 4 and the bound of Corollary 2 is achieved. This is
true for p < β−1/2 arbitrarily close to β−1/2. For such p, using that x �→ x

x+1
is increasing, we have that β−1/2

β+1/2 − p
p+1 > 0. By setting

ε = β − 1/2
β + 1/2 − p

p + 1 > 0 (80)

we obtain (37) and concludes the proof.
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Proof of Proposition 3. Let p < β−1 Then, for any u ∈ S
2, the Green’s function

ψD
u of D is in Hβ−1−ε. This follows from that, δu ∈ H−1−ε and the fact that,

as we have seen in the proof of Proposition 2, ψD
u = D−1δu ∈ Hβ−1−ε ⊂ Hp for

ε > 0 small enough. In particular, X ∈ Hp as a (random) linear combination of
Green’s functions of D . We moreover easily see that the covariance C of X is a
linear combinations of tensorial functions ψD

u ⊗ψD
v for u, v ∈ S

2 and is therefore
in Hp. This shows that X ∈ Π2(p, p) ⊂ Π2(p, q) for any 1 ≤ q ≤ p and concludes
the first part of Proposition 3. The existence of Cη is then obtained in same
way as for the proof of Proposition 2, except that p < β − 1 and therefore (39)
follows with ε = β−1

β − p
p+1 .

8.4. Proofs of Section 7

Proof of Theorem 5. For simplicity, we consider the case r1 = r2 = · · · = rn.
This proof follows the same lines of Proof of Theorem 3 in Section 8.3. The

only different part is the one referred to Point 2. Starting from Equation (71),
we have that

E[F ′
η(μ̄η)Y�,m] = EUE[F ′

η(μ̄η)Y�,m|U ] = 0

and

E|F ′
η(μ̄η)Y�,m|2 = Var[F ′

η(μ̄η)Y�,m]

=(8π)2

(nr)2 Var

⎡⎣ n∑
t=1

r∑
j=1

(Wtj − μ̄η(Utj))Y�,m(Utj)

⎤⎦ .

Using the law of total variance, we can write

Var

⎡⎣ n∑
t=1

r∑
j=1

(Wtj − μ̄η(Utj))Y�,m(Utj)

⎤⎦
= Var

⎡⎣ n∑
t=1

r∑
j=1

(μ(Utj) − μ̄η(Utj))Y�,m(Utj)

⎤⎦
+EU

⎡⎣Var

⎡⎣ n∑
t=1

r∑
j=1

(Wtj − μ̄η(Utj))Y�,m(Utj)

∣∣∣∣∣U
⎤⎦⎤⎦ .

For the first term on the right hand side of this expression, we have

Var

⎡⎣ n∑
t=1

r∑
j=1

(μ(Utj) − μ̄η(Utj))Y�,m(Utj)

⎤⎦
=nrVar [(μ(U11) − μ̄η(U11))Y�,m(U11)]

≤nr

4π

∫
S2
|μ(u) − μ̄η(u)|2|Y�,m(u)|2du
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≤Bnr

4π ‖μ− μ̄η‖2
Hp

≤BKnr

4π ,

where the last two inequalities are justified by Lemma 1, for some B > 0, and
Equation (69) with α = 1. Then, for the second term,

EU

⎡⎣Var

⎡⎣ n∑
t=1

r∑
j=1

(Wtj − μ̄η(Utj))Y�,m(Utj)

∣∣∣∣∣U
⎤⎦⎤⎦

=
n∑

t=1

n∑
t′=1

r∑
j=1

r∑
j′=1

EU [Y�,m(Utj)Y�,m(Ut′j′)Cov[Wtj ,Wt′j′ |U ]]

= r(r − 1)
(4π)2

n∑
t=1

Var[〈Xt, Y�,m〉L2(S2)]

+ r2

(4π)2
∑
t�=t′

Cov[〈Xt, Y�,m〉L2(S2), 〈Xt′ , Y�,m〉L2(S2)]

+ nr

4π

∫
S2
C0(u, u)|Y�,m(u)|2du + nr

4πσ
2

≤ r2

(4π)2
n∑

t=1

n∑
t′=1

Cov[〈Xt, Y�,m〉L2(S2), 〈Xt′ , Y�,m〉L2(S2)]

+ B′nr

4π E‖X0‖2
Hq

+ nr

4πσ
2,

again by applying Lemma 1, for some B′ > 0. Now, observe that, by stationarity,

1
n

n∑
t=1

n∑
t′=1

|Cov[〈Xt, Y�,m〉L2(S2), 〈Xt′ , Y�,m〉L2(S2)]|

= 1
n

n∑
t=1

n∑
t′=1

|〈Ct−t′Y�,m, Y�,m〉L2(S2)|

=
∑
|ξ|<n

(
1 − |ξ|

n

)
|〈CξY�,m, Y�,m〉L2(S2)|

≤
∑
ξ∈Z

|〈CξY�,m, Y�,m〉L2(S2)|.

Hence, combining all the bounds,

E|F ′
η(μ̄η)Y�,m|2 ≤ 4

n

∑
ξ∈Z

|〈CξY�,m, Y�,m〉L2(S2)| + O

(
1
nr

)
,

and

E‖μ̃η − μ̄η‖2
α ≤ 1

n

∞∑
�=0

�∑
m=−�

D2α
�

(1 + ηD2
� )2

∑
ξ∈Z

|〈CξY�,m, Y�,m〉L2(S2)|
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+ O

(
1
nr

) ∞∑
�=0

D2α
�

(1 + ηD2
� )2

(2� + 1)

≤ 1
n

∞∑
�=0

�∑
m=−�

D2α
�

∑
ξ∈Z

|〈CξY�,m, Y�,m〉L2(S2)|

+ O

(
1
nr

) ∞∑
�=0

D2α
�

(1 + ηD2
� )2

(2� + 1).

Then, for α ≤ q/p and using the property in Equation (50), we obtain

∑
ξ∈Z

∞∑
�=0

D2α
�

�∑
m=−�

|〈CξY�,m, Y�,m〉L2(S2)| =
∑
ξ∈Z

∞∑
�=0

1
D2α

�

�∑
m=−�

|〈CξY�,m, Y�,m〉Hq |

≤
∑
ξ∈Z

‖Cξ‖TR,Hq

(possibly up to an arbitrary constant). The rest of the proof follows exactly as
in Proof of Theorem 3 in Section 8.3.

Proof of Theorem 6. For simplicity, we consider the case r1 = r2 = · · · = rn
and we define

Nh =
{
nr(r − 1) h = 0
(n− h)r2 h �= 0

.

Recall that the estimator for Rh at fixed lag h ∈ {0, 1, . . . , n− 1} is given by

Rh;η := arg min
g∈Hp

Fh;η(g),

Fh;η(g) := (4π)2

Nh

n−h∑
t=1

r∑
j=1

r∑
k=1

(Wt+h,jWtk − g(Ut+h,j , Utk))2 + η‖g‖2
Hp

.

In keeping with the notation that was used in the previous proof, we first
define

F̄h;η(g) := E[Fh;η(g)] = (4π)2 Var[Wh+1,1W12] + ‖Rh − g‖2
L2(S2×S2) + η‖g‖2

Hp

and we let
R̄h;η := arg min

g∈Hp

F̄h;η(g).

Also, define R̃h;η = R̄h;η − (F̄ ′′
h;η)−1F ′

h;η(R̄h;η). Then, write

Rh;η −Rh = Rh;η − R̃h;η + R̃h;η − R̄h;η + R̄h;η −Rh.

The first part of the proof follows the same lines of Proof of Theorem 4 in
Section 8.3. We first define the intermediate norm ‖ · ‖α, α ∈ [0, 1]. We then
show that

‖Rh − R̄h;η‖2
α ≤ η1−α‖Rh‖2

Hp
, (81)



5138 A. Caponera et al.

and hence that

‖Rh − R̄hη‖2
L2(S2×S2) ≤ η‖Rh‖2

Hp
≤ K1η,

which proves the analogous of Point 1. t Afterwards, we show that

‖R̃h;η − R̄h;η‖2
α = 1

4
∑
�,m

∑
�′,m′

D2α
� D2α

�′

(1 + ηD2
�D

2
�′)2

(F ′
h;η(R̄h;η)Y�,m ⊗ Y�′,m′)2. (82)

Now, we consider the following quantity

F ′
h;η(R̄h;η)g = F ′

h;η(R̄h;η)g − F̄ ′
h;η(R̄h;η)g

= − 2(4π)2

Nh

n−h∑
t=1

r∑
j=1

r∑
k=1

j �=k if h=0

(Wt+h,jWtk − R̄h;η(Ut+h,j , Utk))g(Ut+h,j , Utk)

+ 2〈Rh − R̄h;η, g〉L2(S2×S2),

g ∈ Hp. When g = Y�,m ⊗ Y�′,m′ , we have

E[F ′
h;η(R̄h;η)Y�,m ⊗ Y�′,m′ ] = EUE[F ′

h;η(R̄h;η)Y�,m ⊗ Y�′,m′ |U ] = 0

and

E|F ′
h;η(R̄h;η)Y�,m ⊗ Y�′,m′ |2 = Var[F ′

h;η(R̄h;η)Y�,m ⊗ Y�′,m′ ] = 4(4π)4

Nh
2

×Var

⎡⎢⎢⎣n−h∑
t=1

r∑
j=1

r∑
k=1

j �=k if h=0

(Wt+h,jWtk − R̄h;η(Ut+h,j , Utk))Y�,m(Ut+h,j)Y�′,m′(Utk)

⎤⎥⎥⎦ .

Similarly to Equation (77), we use the law of total variance by conditioning on
U .

In what follows, we will handle sums over four indices j, k, j′, k′. It is then
useful to identify the distinct cases which lead to terms of different orders, that
is,

1. terms of order r:
(a) j = j′ = k = k′

2. terms of order r(r − 1):
(a) j = j′ �= k = k′

(b) j = k′ �= j′ = k

(c) j = k �= j′ = k′

(d) j = k = j′ �= k′

(e) j = k = k′ �= j′
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(f) j′ = k′ = j �= k

(g) j′ = k′ = k �= j

3. terms of order r(r − 1)(r − 2):
(a) j = j′, k �= k′, j �= k, j′ �= k′

(b) j �= j′, k = k′, j �= k, j′ �= k′

(c) j �= j′, k �= k′, j = k′, j′ �= k, j �= k, j′ �= k′

(d) j �= j′, k �= k′, j �= k′, j′ = k, j �= k, j′ �= k′

(e) j �= j′, k �= k′, j �= k′, j′ �= k, j = k, j′ �= k′

(f) j �= j′, k �= k′, j �= k′, j′ �= k, j �= k, j′ = k′

4. terms of order r(r − 1)(r − 2)(r − 3):
(a) j �= j′, k �= k′, j �= k′, j′ �= k, j �= k, j′ �= k′

Recall that, when h = 0, we have j �= k, j′ �= k′. Thus, cases 1.a, 2.c–2.g, 3.e
and 3.f have not to be considered.

Variance of the conditional expectation. When h = 0, the sum over i is com-
posed of independent terms, hence it follows exactly as in Theorem 4 that

Var

⎡⎣ n∑
t=1

∑
1≤j �=k≤r

(R0(Utj , Utk) − R̄0;η(Utj , Utk))Y�,m(Utj)Y�′,m′(Utk)

⎤⎦
=nVar

⎡⎣ ∑
1≤j �=k≤r

(R0(Uij , Uik) − R̄0;η(Uij , Uik))Y�,m(Uij)Y�′,m′(Uik)

⎤⎦
≤O(nr3).

When h �= 0, for the last case 4.a, we have

〈Rh − R̄h;η, Y�,m ⊗ Y�′,m′〉2L2(S2×S2),

regardless of t and t′ (cardinality (n− h)2). The same for the other cases when
jointly t �= t′, t �= t′ + h, t′ �= t+ h (cardinality (n− h)2 − (n− h)− 2(n− 2h) ≤
(n− h)2). Moreover, we have

• terms of order (n−h)r, (n−h)r(r−1), (n−h)r(r−1)(r−2), when t = t′

• terms of order (n− 2h)r, (n− 2h)r(r− 1), (n− 2h)r(r− 1)(r− 2), when
t = t′ + h

• terms of order (n− 2h)r, (n− 2h)r(r− 1), (n− 2h)r(r− 1)(r− 2), when
t′ = t + h

Hence,

Var

⎡⎣n−h∑
t=1

r∑
j=1

r∑
k=1

(Rh(Ut+h,j , Utk)−R̄h;η(Ut+h,j , Utk))Y�,m(Ut+h,j)Y�′,m′(Utk)

⎤⎦
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=E

⎛⎝n−h∑
t=1

r∑
j=1

r∑
k=1

(Rh(Ut+h,j , Utk)−R̄h;η(Ut+h,j , Utk))Y�,m(Ut+h,j)Y�′,m′(Utk)

⎞⎠2

− (n− h)2r4

(4π)4 〈Rh − R̄h;η, Y�,m ⊗ Y�′,m′〉2L2(S2×S2)

≤B
3(n− h)(r + 7r(r − 1) + 6r(r − 1)(r − 2))

(4π)2 ‖Rh − R̄h;η‖2
Hp

+(n− h)2r(r − 1)(r − 2)(r − 3)
(4π)4 〈Rh − R̄h;η, Y�,m ⊗ Y�′,m′〉2L2(S2×S2)

+(n− h)2(r + 7r(r − 1) + 6r(r − 1)(r − 2))
(4π)4 〈Rh − R̄h;η, Y�,m ⊗ Y�′,m′〉2L2(S2×S2)

− (n− h)2r4

(4π)4 〈Rh − R̄h;η, Y�,m ⊗ Y�′,m′〉2L2(S2×S2)

≤O(nr3),

where the last two inequalities are justified by Lemma 1, for some B > 0, and
Equation (81) with α = 1.

Expectation of the conditional variance. Write

n−h∑
t=1

r∑
j=1

r∑
k=1

j �=k if h=0

Wt+h,jWtkY�,m(Ut+h,j)Y�′,m′(Utk)

=
n−h∑
t=1

r∑
j=1

r∑
k=1

j �=k if h=0

Xt+h(Ut+h,j)Xt(Utk)Y�,m(Ut+h,j)Y�′,m′(Utk)

+
n−h∑
t=1

r∑
j=1

r∑
k=1

j �=k if h=0

εt+h,jXt(Utk)Y�,m(Ut+h,j)Y�′,m′(Utk)

+
n−h∑
t=1

r∑
j=1

r∑
k=1

j �=k if h=0

Xt+h(Ut+h,j)εtkY�,m(Ut+h,j)Y�′,m′(Utk)

+
n−h∑
t=1

r∑
j=1

r∑
k=1

j �=k if h=0

εt+h,jεtkY�,m(Ut+h,j)Y�′,m′(Utk).

Denote the four terms in this last expression by S1, S2, S3, and S4 with indices
corresponding to their location in the sum. Then,

EU [Var [S1 + S2 + S3 + S4|U ]]
≤4 (EU [Var[S1|U ]] + EU [Var[S2|U ]] + EU [Var[S3|U ]] + EU [Var[S4|U ]]) .
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We will illustrate how to derive the bound for S1, since the other three are
somewhat simpler to handle and of order at most nr3. We start by looking at

EU [Y�,m(Ui+h,j)Y�′,m′(Uik)Y�,m(Ui′+h,j′)Y�′,m′(Ui′k′)
×Cov[Xi+h(Ui+h,j)Xi(Uik), Xi′+h(Ui′+h,j′)Xi′(Ui′k′)|U ]],

for different configurations of the indices t, t′, j, j′, k, k′

For 4.a, regardless of t and t′, and for 1-2-3 when jointly t �= t′, t �= t′ + h,
t′ �= t + h, we have

EU [Y�,m(Ut+h,j)Y�′,m′(Utk)Y�,m(Ut′+h,j′)Y�′,m′(Ut′k′)
×Cov [Xt+h(Ut+h,j)Xt(Utk), Xt′+h(Ut′+h,j′)Xt′(Ut′k′)|U ]]
= Cov[〈Xt+h, Y�,m〉L2(S2)〈Xt, Y�′,m′〉L2(S2), 〈Xt′+h, Y�,m〉L2(S2)〈Xt′ , Y�′,m′〉L2(S2)].

It is possible to show that for non-centered (real-valued) random variables
X1, X2, X3, X4, with means μ1, μ2, μ3, μ4, the following holds

Cov[X1X2, X3X4] = Cum[X1, X2, X3, X4]
+ μ4 Cum[X3, X1, X2] + μ3 Cum[X4, X1, X2]
+ μ2 Cum[X1, X3, X4] + μ1 Cum[X2, X3, X4]
+ Cov[X1, X3] Cov[X2, X4]
+ Cov[X1, X4] Cov[X2, X3]
+ μ2μ4 Cov[X1, X3] + μ1μ3 Cov[X2, X4]
+ μ2μ3 Cov[X1, X4] + μ1μ4 Cov[X2, X3].

In the following, we show how to bound one of the terms where third-order
cumulant appears. We can observe that, by stationarity,

1
n− h

n−h∑
t=1

n−h∑
t′=1

|〈μ, Y�′,m′〉L2(S2)

×Cum[〈Xt+h, Y�,m〉L2(S2), 〈Xt′+h, Y�,m〉L2(S2), 〈Xt′ , Y�′,m′〉L2(S2)]|

=|〈μ, Y�′,m′〉L2(S2)|
∑

|ξ|<n−h

(
1 − |ξ|

n− h

)
|〈Cξ+h,hY�,m ⊗ Y�′,m′ , Y�,m〉L2(S2)|

≤|〈μ, Y�′,m′〉L2(S2)|
∑
ξ∈Z

|〈Cξ+h,hY�,m ⊗ Y�′,m′ , Y�,m〉L2(S2)|.

Then, for α ≤ p/q and using the property in Equation (50), we obtain

∑
ξ∈Z

∑
�,m

∑
�′,m′

D2α
� D2α

�′

(1 + ηD2
�D

2
�′)2

|〈μ, Y�′,m′〉L2(S2)||〈Cξ+h,hY�,m ⊗ Y�′,m′ , Y�,m〉L2(S2)|

≤
∑
ξ∈Z

∑
�,m

∑
�′,m′

D2α
� D2α

�′ |〈μ, Y�′,m′〉L2(S2)||〈Cξ+h,hY�,m ⊗ Y�′,m′ , Y�,m〉L2(S2)|
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≤‖μ‖Hq

∑
ξ∈Z

‖Cξ+h,h‖TR,Hq

(possibly up to an arbitrary constant). The last inequality is justified by the
fact that, if Ch1,h2 is trace class (and hence compact), it has singular value
decomposition

Ch1,h2g =
∑
j

λj〈g, f1j〉Hqf2j , g ∈ Hq,

see [21, Theorem 4.3.1]. Then,∑
�,m

∑
�′,m′

|〈μ, Y�′m′〉Hq ||〈Ch1,h2Y�,m ⊗ Y�′,m′ , Y�,m〉Hq |

=
∑
j

λj

∑
�,m

∑
�′,m′

|〈μ, Y�′m′〉Hq ||〈Y�,m ⊗ Y�′,m′ , f1j〉Hq ||〈f2j , Y�,m〉Hq |

≤
∑
j

λj

⎛⎝∑
�,m

∑
�′,m′

|〈μ, Y�′m′〉Hq |2|〈f2j , Y�,m〉Hq |2
⎞⎠1/2

‖f1j‖Hq

=‖μ‖Hq

∑
j

λj‖f2j‖Hq‖f1j‖Hq .

Since {f1j} and {f2j} are orthonormal, we have∑
�,m

∑
�′,m′

|〈μ, Y�′m′〉Hq ||〈Ch1,h2Y�,m ⊗ Y�′,m′ , Y�,m〉Hq | ≤ ‖μ‖Hq‖Ch1,h2‖TR,Hq .

Similarly it holds for the other terms in the sum.
Now, following Proof of Theorem 4 in Section 8.3, we can bound the terms

corresponding to cases 1-2-3 when t = t′, t = t′ + h, t′ = t + h. Indeed, for
instance, when t = t′ + h for h �= 0 and j′ = k, we have∫

S2

∫
S2

∫
S2
Y�,m(u)Y�′,m′(w)Y�,m(w)Y�′,m′(v)

× Cov [Xt+h(u)Xt(w), Xt(w)Xt−h(v)] dudvdw, (83)

and

|Cov[Xt+h(u)Xt(w), Xt(w)Xt−h(v)]|
≤ (Var [Xt+h(u)Xt(w)])1/2 (Var [Xt(w)Xt−h(v)])1/2

≤
(
E[|Xt+h(u)|2|Xt(w)|2]

)1/2 (
E[|Xt(w)|2|Xt−h(u)|2]

)1/2
≤
(
E|Xt+h(u)|4

)1/4 (
E|Xt(w)|4

)1/2 (
E|Xt−h(v)|4

)1/4
.

Thus, the expression in Equation (83) can be bounded by B′(4π)E‖X0‖4
Hq

, for
all t ∈ Z, again by applying Lemma 1, for some B′ > 0.
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In conclusion, we have

E‖R̃h;η − R̄h;η‖2
α ≤ 1

n− h

{ ∑
ξ1,ξ2,ξ3∈Z

‖Cξ1,ξ2,ξ3‖TR,Hq

+ 4‖μ‖Hq

∑
ξ1,ξ2∈Z

‖Cξ1,ξ2‖TR,Hq

+ 2

⎛⎝∑
ξ∈Z

‖Cξ‖TR,Hq

⎞⎠2

+ 4‖μ‖2
Hq

∑
ξ∈Z

‖Cξ‖TR,Hq

}

+ O

(
1
nr

)
O
(
η−(α+1/p) log(1/η) + 1

)
,

which gives the result.
Now, let us prove 3. The first step is to obtain a useful analytic form for

Rh;η − R̃h;η, by observing that

Rh;η − R̃h;η = Rh;η − R̄h;η + (F̄ ′′
h;η)−1F ′

h;η(R̄h;η)
= (F̄ ′′

h;η)−1 [F̄ ′′
h;η(Rh;η − R̄h;η) + F ′

h;η(R̄h;η)
]
.

Since Rh;η minimizes F ′
h;η, it holds F ′

h;η(Rh;η) = 0 (see [21, Theorem 3.6.3]).
Then, for any g ∈ Hp,[

F̄ ′′
h;η(Rh;η − R̄h;η) + F ′

h;η(R̄h;η)
]
g

=
[
F̄ ′′
h;η(Rh;η − R̄h;η) + F ′

h;η(R̄h;η) − F ′
h;η(Rh;η)

]
g

=
[
F̄ ′′
h;0(Rh;η − R̄h;η) − F ′′

h;0(Rh;η − R̄h;η)
]
g.

where we used Lemma 4; in other words,

Rh;η − R̃h;η = (F̄ ′′
h;η)−1 [F̄ ′′

h;0(Rh;η − R̄h;η) − F ′′
h;0(Rh;η − R̄h;η)

]
.

Now, the same argument that leads to (82) gives us

‖Rh;η − R̃h;η‖2
α = 1

4
∑
�,m

∑
�′,m′

D2α
� D2α

�′

(1 + ηD2
�D

2
�′)2

×
([
F̄ ′′
h;0(Rh;η − R̄h;η) − F ′′

h;0(Rh;η − R̄h;η)
]
Y�,m ⊗ Y�′,m′

)2
,

with[
F̄ ′′
h;0(Rh;η − R̄h;η) − F ′′

h;0(Rh;η − R̄h;η)
]
Y�,m ⊗ Y�′,m′

=2〈Rh;η − R̄h;η, Y�,m ⊗ Y�′,m′〉L2(S2×S2) −
2(4π)2

Nh

×
n−h∑
t=1

r∑
j=1

r∑
k=1

j �=k if h=0

(Rh;η(Ut+h,j , Utk) − R̄h;η(Ut+h,j , Utk))Y�,m(Ut+h,j)Y�′,m′(Utk).
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Now, Rh;η − R̄h;η =
∑

�,m

∑
�′,m′ h�,�′,m,m′Y�,mY�′,m′ . Then,

‖Rh;η − R̃h;η‖2
α =

∑
�1,m1

∑
�2,m2

D2α
�1
D2α

�2

(1 + ηD2
�1
D2

�2
)2

×

⎛⎝∑
�3,m3

∑
�4,m4

h�3,�4,m3,m4V�1:4,m1:4

⎞⎠2

,

where

V�1:4,m1:4 = δ�3�1 δ
m3
m1

δ�4�2 δ
m4
m2

− (4π)2

Nh

×
n−h∑
t=1

r∑
j=1

r∑
k=1

j �=k if h=0

Y�1,m1(Ut+h,j)Y�2,m2(Utk)Y�3,m3(Ut+h,j)Y�4,m4(Utk).

By applying the Cauchy–Schwarz inequality for arbitrary θ ∈ (1/p, 1], we obtain

‖Rh;η − R̃h;η‖2
α ≤ ‖Rη − R̄η‖2

θ

∑
�1,m1

∑
�2,m2

D2α
�1
D2α

�2

(1 + ηD2
�1
D2

�2
)2

×
∑
�3,m3

∑
�4,m4

D−2θ
�3

D−2θ
�4

V 2
�1:4,m1:4

.

It is readily seen that E[V�1:4,m1:4 ] = 0 and

E[V 2
�1:4,m1:4

] = −δ�3�1 δ
m3
m1

δ�4�2 δ
m4
m2

+ (4π)4

Nh
2

×E

⎛⎜⎜⎝n−h∑
t=1

r∑
j=1

r∑
k=1

j �=k if h=0

Y�1,m1(Ut+h,j)Y�2,m2(Utk)Y�3,m3(Ut+h,j)Y�4,m4(Utk)

⎞⎟⎟⎠
2

.

Thus, it is possible to show that

E[V 2
�1:4,m1:4

] ≤ D2θ
�1 D

2θ
�2 O

(
1
nr

)
,

and hence ∑
�1,m1

∑
�2,m2

D2α
�1
D2α

�2

(1 + ηD2
�1
D2

�2
)2

∑
�3,m3

∑
�4,m4

D−2θ
�3

D−2θ
�4

E[V 2
�1:4,m1:4

]

=O

(
log(1/η)

nrηα+θ+1/p

)
.

The rest of the proof follows exactly as in Proof of Theorem 4 in Section 8.3.
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