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a b s t r a c t 

Kinetic information extracted from biochemical methane potential (BMP) tests is often reported but its value is 

unclear. Inter-laboratory reproducibility provides a useful indication of its value. Here we extracted estimates of 

the first-order rate constant 𝑘 from 1259 methane production curves collected in a large inter-laboratory study 

on BMP in order to quantify reproducibility. Reproducibility in 𝑘 was poor; relative standard deviation was 50–

140%. Substrate comparisons ( 𝑘 for one substrate compared to another) also had low reproducibility, regardless 

of low 𝑝 values from inferential statistical tests. The use of a shared inoculum did not improve reproducibility 

in 𝑘 . We conclude that 𝑘 estimates from BMP tests only partially reflect intrinsic substrate properties. Therefore, 

interpretation and application of batch kinetic results should be done cautiously. 
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. Introduction 

Batch biochemical methane potential (BMP) tests generate informa-

ion on the rate of methane production in addition to the potential quan-

ity that is available. This information is typically extracted by applica-

ion of a mathematical model, and reported as a rate constant, e.g., 𝑘

d −1 ) for a first-order model, and an “ultimate ” potential, often called 𝐵 0 
mL g −1 ). Despite some discussion on limitations of these values ( Brulé

t al., 2014; Da Silva et al., 2022; Donoso-Bravo et al., 2019; Guo et al.,

021; Koch et al., 2020 ), they are commonly reported in the literature,

nd occasionally applied. There are at least two common applications:

) to full-scale reactors or other systems for process design, efficiency

valuation, monitoring, or control ( García-Gen et al., 2015; Insel et al.,

022 ), and 2) to compare or rank substrates or evaluate pre-treatments

 El Gnaoui et al., 2022; Li et al., 2017 ). 

The focus of the present work is the value of the rate constant. Al-

hough both 𝑘 and 𝐵 0 influence any prediction of CH 4 production rate,

 is more difficult to precisely determine. In contrast, even the mea-

ured BMP (e.g., BMP 1%,3d ) provides a reasonable estimate of ultimate

MP without any model application (see Section 3.3 ). Although repro-

ucibility in BMP is a problem, the magnitude of variability is much
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maller than in 𝑘 , and procedures have been developed for improving

eproducibility ( Hafner et al., 2020 ). 

Few studies have compared batch and full-scale (or even lab-

cale batch and lab-scale continuous) kinetic estimates. Comparisons

ave shown similar estimates of first-order rates ( Chynoweth et al.,

993 ), slightly lower rates ( Jensen et al., 2009 ) or much lower rates

 Batstone et al., 2009 ). In general, these limited results suggest that re-

iability of batch kinetic measurements to describe full-scale processes

s low. 

The second application listed above may be assumed to be more

eliable, but reproducibility in these types of comparisons has not

een previously evaluated in a large inter-laboratory study. An in-

rease in conversion rate is a typical objective of pre-treatment

 Carrere et al., 2016 ), but exactly how reproducible rate effects are is not

lear. 

Accurate assessment of kinetic constants is important; assuming sub-

trate conversion follows first-order kinetics, a 10-fold change in 𝑘 re-

uires a proportional change in retention time to maintain conversion

fficiency in a continuous reactor. In general, time to a fixed conver-

ion efficiency or conversion at a fixed retention time is sensitive to rate

onstant magnitude. 
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Fig. 1. A graphical representation of the approach used for kinetic parameter 

extraction ( Section 2.2 ) based on a single SMP curve. Open circles show mea- 

surements within the “lag phase ”. 
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Some degree of reproducibility is required if batch rate constant es-

imates are to have any value. Reproducible differences between sub-

trates implies that batch results reflect intrinsic substrate characteris-

ics, but not that estimated rate constants are necessarily the same in

ull-scale systems. Conversely, very poor reproducibility in batch kinet-

cs precludes any possibility of batch results consistently reflecting full-

cale behavior or even intrinsic differences between substrates. There-

ore, an evaluation of reproducibility in 𝑘 determined in batch tests can

erve to assess the quality of these commonly reported values. 

The goal of this work was to assess the quality of kinetic informa-

ion from BMP tests, by quantifying reproducibility in rate constant es-

imates. To do this, the first-order rate constant 𝑘 was extracted from

ore than 1200 specific methane production (SMP) curves of four sub-

trates collected in a large inter-laboratory study. These estimates were

hen used to quantify inter-laboratory reproducibility and assess some

rospective approaches for improving it. 

. Methods 

.1. Experimental data 

1259 SMP curves (cumulative CH 4 yield and average interval

roduction rate) were taken from a large inter-laboratory study

 Hafner et al., 2020 ). Data are available at https://github.com/

ashahafner/BMP- kinetics- paper- 2022 and data collection is described

n ( Hafner et al., 2020 ). Measurements were made in laboratories in 14

ifferent countries, almost exclusively from Europe (see the acknowl-

dgments section in Hafner et al., 2020 ). Three sets of BMP tests were

arried out: two in a first period referred to as “study S1 ” and one in

study S2 ”. SMP values were calculated from raw data as net CH 4 pro-

uction from substrate per g added substrate volatile solids (VS). Sub-

trates were dried and finely ground, and varied in composition and

egradability (rate and extent). Three substrates were mixed animal feed

omponents (SA, SB, and SC), one was wheat straw (SD), and microcrys-

alline cellulose (CEL) was included as a positive control with known

hemical composition. Laboratories followed a general protocol based

n Holliger et al. (2016) , with inoculum-to-substrate ratio of 2:1 (or

igher in some cases) and mesophilic incubation (35–40 ◦C), but did

ot use identical methods for measuring biogas production and com-

osition. The most common measurement methods were the AMPTS II

ystem (BPC Instruments AB, Sweden) along with manual volumetric

nd manometric methods. A subset of laboratories in France, Germany,

nd Italy carried out tests with two inocula: from their typical source

nd a single shared source within each country. For more details see

afner et al. (2020) . 

.2. First-order model 

Extraction of kinetic information generally requires fitting a model.

ere, a first-order rate constant and ultimate BMP were extracted from

ach SMP curve using a simple approach: a first-order model applied

fter exclusion of any lag phase. Several factors were considered in se-

ecting the approach used for model fitting. Inspection of the measured

H 4 production rates showed that rates generally declined over time,

onsistent with a first-order model. But an early period of low and slowly

ncreasing production rate was common, although highly variable in du-

ation and CH 4 production rate. We assumed a priori that quantitative

haracteristics of this “lag phase ” contains minimal useful information

bout intrinsic substrate degradation rate ( Koch et al., 2019 ), as it is

ikely a product of the starving inoculum being exposed to a high sub-

trate availability at the beginning of the batch test. Instead of trying to

apture this complex behavior that may be unique for each individual

ottle, we excluded it and focused on the period during which CH 4 pro-

uction appears to be limited by substrate quantity. Note that our use

f the term “lag phase ” in this work (and other biogas applications) is

ifferent from the definition used in microbiology, where it refers to a
2 
eriod of no net increase in cell numbers ( Yates and Smotzer, 2007 ). By

esign, BMP tests have a large quantity of active microorganisms rela-

ive to the available substrate, to ensure that degradation is relatively

apid and complete. A first-order response is common in BMP tests, and

t has been proposed that significant deviation from this response may

ndicate a problem in the test ( Koch et al., 2019 ). 

In the approach used here, SMP or cumulative CH 4 yield is given by:

 ( 𝑡 ) = 𝐵 𝑓𝑜 (1 − 𝑒 − 𝑘 ( 𝑡 − 𝑡 𝑙𝑝 ) ) + 𝐵 𝑙𝑝 (1)

here 𝑦 ( 𝑡 ) = specific methane production (SMP) (mL g −1 , net standard-

zed CH 4 volume per g substrate VS), 𝐵 𝑓𝑜 = ultimate SMP in the first-

rder period after any lag phase (mL g −1 ), 𝑘 = first-order kinetic constant

d −1 ), 𝑡 = elapsed time of BMP test (d), 𝑡 𝑙𝑝 = duration of lag phase (d),

nd 𝐵 𝑙𝑝 = CH 4 production during lag phase (i.e. SMP at 𝑡 𝑙 ) (mL g −1 ).

MP at infinite time or “ultimate ” BMP 𝐵 0 = 𝐵 𝑓𝑜 + 𝐵 𝑙𝑝 . With Eq. (1) ,

he lag phase can be ignored (not excluded) by setting 𝑡 𝑙𝑝 and 𝐵 𝑙𝑝 to

ero. 

In practice, time 𝑡 is discrete; measurements are made at particular

imes at the end of each incubation interval. What is typically measured

s actually the average rate of change in cumulative SMP: 

̄ 𝑖 = 

Δ𝑦 
Δ𝑡 

= 

𝑦 𝑡 𝑖 
− 𝑦 𝑡 𝑖 −1 

𝑡 𝑖 − 𝑡 𝑖 −1 
(2)

This rate can be calculated from measured or model-calculated

 Eq. (1) ) SMP ( 𝑦 ) using Eq (2) . Or, substitution of Eq. (1) into

q. (2) gives a direct alternative for model calculations: 

̄ 𝑖 = 

𝐵 𝑓𝑜 𝑒 
𝑘𝑡 𝑙𝑝 ( 𝑒 − 𝑘𝑡 𝑖 −1 − 𝑒 − 𝑘𝑡 𝑖 ) 

𝑡 𝑖 − 𝑡 𝑖 −1 
(3) 

here 𝑟̄ 𝑖 = average methane production rate (mL d −1 g −1 , net standard-

zed CH 4 volume per g substrate VS over the period 𝑡 𝑖 −1 to 𝑡 𝑖 ). With long

ncubation intervals (difference of several days between 𝑡 𝑖 and 𝑡 𝑖 −1 ) this

verage rate may be substantially different from the instantaneous rate,

hich is given by the derivative of Eq. (1) , because the model is nonlin-

ar with respect to time (rate vs. time). 

The parameters 𝑡 𝑙𝑝 and 𝐵 𝑙𝑝 are determined directly from measure-

ents prior to model application ( Fig. 1 ). In this study, the lag phase is

efined as the period when 𝑡 < time of maximum average rate, i.e., 𝑡 𝑙𝑝 =
he end of the interval prior to the interval with the maximum measured

ate ( ̄𝑟 𝑖 ). 

This definition derives from the behavior of a first-order model (rate

ust always decrease over time), but also reflects the period in which

H 4 production may be limited by the microbial community and not

ubstrate quantity, and therefore not reflect any intrinsic rate of sub-

trate degradation. 

.3. Data analysis 

.3.1. Parameter estimation 

Least-squares estimates of the two model parameters 𝑘 and 𝐵 fo were

etermined for each separate SMP curve through nonlinear regression,

https://github.com/sashahafner/BMP-kinetics-paper-2022
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sing the fitFOM() function in the biogas package ( Hafner et al.,

018 ) (v1.40, https://github.com/sashahafner/biogas/releases/tag/v1.

0 ), which uses the Levenberg-Marquardt optimization algorithm im-

lemented in the R package minpack.lm ( Elzhov et al., 2016 ). The re-

ponse variable was 𝑟̄ , calculated separately for each measurement in-

erval for each individual bottle, and the objective function was the sum

f squares. Parameter values were log-transformed during estimation to

void negative values. 

For curves that showed graphical evidence of two phases in CH 4 pro-

uction, Eq. (2) was extended to include two kinetic fractions of slowly

nd rapidly degradable substrate components, i.e., a two-pool model,

o demonstrate limitations of the alternative. This approach was similar

o “Model C ” described in Brulé et al. (2014) . Variations in parameter

xtraction (combinations that included fitting to cumulative SMP, omit-

ing exclusion of lag phase observations, and forcing the model through

he last SMP value, for a total of six approaches) were explored as well.

.3.2. Analysis of rate constants 

The primary response variable was first-order rate constant 𝑘 , which

as log 10 -transformed to deal with high variability, approximately log-

ormal distributions, and correlation between variability and magni-

ude. This transformation makes all reported comparisons in 𝑘 magni-

ude relative. Median parameter values were calculated for each set of

 (occasionally 2) bottles for a single study (S1 and S2) × test (T1 and

2) × laboratory × substrate combination, and these values were used

s observations in the following analysis. Precision among replicates, a

easure of repeatability, was quantified as standard deviation among

hese values. 

Inter-laboratory reproducibility in extracted 𝑘 was quantified us-

ng standard deviation among laboratories, applied separately for each

tudy × test × substrate combination (as Hafner et al. (2020) did for

MP). To group estimated rate constants 𝑘 extreme “ultimate ” BMP val-

es 𝐵 0 were identified as those below 50% or above 120% of theoretical

aximum BMP. Theoretical maximum BMP was calculated from ele-

ental composition assuming complete conversion and no biomass pro-

uction using Eq. 13.6 in ( Rittmann and McCarty, 2001 ) as implemented

n the predBg() function in the biogas package in R ( Hafner et al.,

018 ). No estimates of uncertainty in individual parameter values for

ndividual bottles were made because interpretation is ambiguous for

onlinear regression in general ( Motulsky and Ransnas, 1987 ), and ques-

ions about both independence of observations and the accuracy of the

odel structure render them even less useful. Furthermore, such esti-

ates do not clearly add value beyond the assessment of repeatability

nd reproducibility carried out. 

The ratios of rate constants (each substrate compared to CEL, i.e.,

ormalized rate constants) were also used to assess the reproducibility

f relative differences and determine if normalization might improve

eproducibility ( Donoso-Bravo et al., 2019 ). The relationships between

eproducibility and BMP validation criteria and measurement method

as assessed graphically or by calculating standard deviation for sub-

ets as above. Boxplots were used to show variation within and among

ubstrates; they show the median, 25th and 75th percentiles (the box),

inimum and maximum (whiskers), and outliers (points, defined here

s values more than 1.5 time the interquartile range beyond the edge

f the range). Finally, the importance of substrate × laboratory inter-

ctions was explored by simple separate (for each BMP test or lab) hy-

othesis tests comparing CEL and SC, CEL and SD 𝑘 using 𝑡 -tests, as well

s analysis of variance (ANOVA) with test (lab) × substrate as predictor

ariables. 

. Results and discussion 

.1. Qualitative description of SMP curves 

Most SMP curves showed a similar pattern: an increase in average

H production rate over a few days (defined as the lag phase), followed
4 

3 
y a continual decline through the remainder of the incubation. Figure 2

hows representative curves for six individual bottles, and curves for all

ndividual bottles can be found in the data repository associated with

his work ( https://github.com/sashahafner/BMP- kinetics- paper- 2022 ).

he presence of a lag phase was ubiquitous; only for SA and SB did the

requency of a clear lag phase drop below 95% (70–90% for SA, 60%

or SB). Lag phases were not typically long. Median values were 3 d or

ower for all substrates, and highest for cellulose. However, these short

eriods still accounted for a substantial fraction of total CH 4 production:

5–30% of final cumulative SMP for SC, and less for other substrates. Di-

ectly addressing the lag phase problem by excluding it improved model

t and reduced inter-laboratory variability for both 𝑘 and 𝐵 0 . 

Model efficiency (ME) ( Nash and Sutcliffe, 1970 ) was generally

igh, suggesting that measurements approximately followed a single-

ool first-order model (excluding any lag phase). Median ME was > 0 . 90
or all substrates. Differences in ME reflect qualitative differences in the

hape of SMP curve. Some curves clearly deviated from a single-pool

rst-order model even after exclusion of the lag phase, as shown by part

 of Fig. 2 . This particular example, as well as some others, followed

 two-pool model. Bottle 1012 showed a response completely different

rom a first-order model, and is an example of a curve that should not

e used for parameter extraction, as shown in part F of Fig. 2 . Visual

xamination of this type of plot ( Fig. 2 ) can show a mismatch between

easurements and model structure as well as other types of problems,

nd is an important step in assessing the quality of parameter estimates

 Motulsky and Ransnas, 1987 ). The scale of the present work makes the

ask implausible here, but plots of rate and SMP curves from the data

epository associated with this work ( https://github.com/sashahafner/

MP- kinetics- paper- 2022 ) do show clear examples where parameter es-

imates should not be used, including bottles 160, 548, 1009, 1162, and

681. 

.2. Parameter value summary 

Estimates of 𝑘 and 𝐵 0 were weakly negatively correlated ( Fig. 3 ),

hich might be expected due to compensation between parameter esti-

ates for 𝑘 and 𝐵 0 . Correlation reflects some of the uncertainty in deter-

ining model parameters from indirect measurements, and implies that

mplausible 𝐵 0 estimates can signal a problem with 𝑘 estimates or the

verall model structure. In some cases, extreme 𝑘 values were associated

ith extreme ultimate BMP, and these values could readily be flagged

s inaccurate. Model ultimate BMP estimates were close to measured

% net 3 d BMP values in almost all cases, but were often slightly lower

median values ranged from 0.96 to 1.04 for all substrate × text combi-

ations). In many cases this difference was related to underestimation

f late low production rates (e.g., Fig. 2 , case C). Although the com-

ination of parameter estimates and the single-pool first-order model

 Section 2.2 ) would tend to underestimate ultimate BMP, this mismatch

etween reality and the model is not necessarily a major problem for ex-

raction of kinetic information. But this issue should serve as a reminder

hat batch kinetics often do not strictly follow first-order behavior, and

hat SMP curves from different laboratories can differ qualitatively, even

or the same substrate. 

.3. Rate constant precision 

Inter-laboratory reproducibility in 𝑘 was generally low (high vari-

bility) and somewhat substrate-dependent. Relative standard deviation

mong labs was 50 to 140% ( Table 1 ). Differences between extremes

ere > 10-fold for most substrates. Substrate SD, wheat straw, which

ad the slowest degradation rate, had the lowest variability. The posi-

ive control CEL was not different from complex substrates. 

In contrast to reproducibility among different labs, repeatability

ithin each lab, or precision of individual measurements ( 𝑛 = 3 or in

ome cases, 2) was generally high: median relative standard deviation

https://github.com/sashahafner/biogas/releases/tag/v1.40
https://github.com/sashahafner/BMP-kinetics-paper-2022
https://github.com/sashahafner/BMP-kinetics-paper-2022
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Fig. 2. Examples of methane production curves from six bot- 

tles, showing average rates (left column) and cumulative spe- 

cific methane production (right column). Plots display both 

measured values (gray points and lines) and model calcula- 

tions (solid blue: single fraction, dashed orange: 2-pool model 

(only in part C)). For rates (left), the position of plotted values 

on x axis is the end of each sampling interval, and average rate 

is shown on y axis. Selected examples show: A, short lag phase 

and first-order response; B, long lag phase and first-order re- 

sponse; C, 2-pool first-order response (and long lag pase); D, 

low resolution measurements; E, no clear lag phase and low 

degradation rate; F, low but increasing rate, not a first-order 

response. Integer plot labels show bottle ID code present in 

the measurement data. All curves are for substrate SC except 

E (SD) and F (CEL). The plots in the data repository (see data 

availability section) show even more diversity. Note that the y 

axis scales vary for the left but not right plots. (For interpreta- 

tion of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 3. Best-fit values of ultimate CH 4 yield 𝐵 0 vs. rate con- 

stant 𝑘 by substrate. Observations with extreme values of 𝐵 0 
( Section 2.3.2 ) were excluded from plots. Lines show robust 

regression results. 

4 
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Table 1 

Summary of best-fit 𝑘 values for all laboratories by test and study. 

Median Std. dev. Range 

𝑡 𝑙𝑝 𝑘 𝐵 0 𝑘 𝐵 0 𝑘 

Substrate Study Test 𝑛 (d) (d −1 ) (mL g −1 ) (%) (%) (-fold) 

CEL S1 T1 21 2.0 0.42 345 88 13 10 

CEL S1 T2 21 2.5 0.42 348 89 15 13 

CEL S2 T1 66 3.0 0.48 339 111 24 30 

SA S1 T1 21 0.7 0.46 352 113 14 14 

SA S1 T2 21 1.0 0.53 349 83 14 9 

SB S1 T1 19 0.5 0.46 355 142 19 33 

SB S1 T2 19 0.0 0.48 342 115 32 16 

SC S1 T1 20 1.0 0.43 458 79 22 9 

SC S1 T2 20 1.5 0.43 454 57 16 5 

SC S2 T1 60 2.0 0.41 453 96 20 47 

SD S2 T1 43 2.0 0.12 284 52 19 10 

Fig. 4. Inter-laboratory variability in best-fit first-order rate constant 𝑘 by sub- 

strate. Note the logarithmic scale (y axis); the interquartile range is 2- to 4-fold 

for most substrates. 
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Fig. 5. Best-fit rate constant 𝑘 plotted by substrate, study (S1, left, or S2, right), 

and measurement method (white = AMPTS II, light gray = manometric, dark 

gray = other volumetric). 
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mong replicates was only 6–18% depending on substrate (lowest for

A). 

Normalization to CEL 𝑘 slightly improved variability for most sub-

trates (standard deviation decreased by 0 to 46%, excluding SD and

 single SC combination) ( Fig. 4 ). But for the slowest degrading sub-

trate SD, variability in normalized 𝑘 was even higher (standard devi-

tion increased by a factor of 3), which is not surprising considering

hat variability in 𝑘 was lower for SD than CEL. This difference for SD

ay suggest that degradation rate of substrates with higher availability

f easily degradable components (SA, SB, SC were animal feeds after

ll) is more sensitive to inoculum properties, but this hypothesis needs

esting. 

As the normalization results hint, apparent laboratory × substrate

nteractions contributed to low reproducibility in intra-laboratory sub-

trate comparisons. This was shown by an F test result using all sub-

trates ( 𝑝 < 2 ⋅ 10 −16 for an interaction term) and comparisons made us-

ng individual t -tests applied by laboratory (test) to CEL and SC only.

early half of t -tests (56/118) had 𝑝 < 0 . 01 but of these, those with SC

 > CEL 𝑘 (24) were nearly as common as those with the opposite re-

ult (32). This is an important result: Not only is it difficult to compare

ubstrates analyzed in different laboratories, it cannot be assumed that

 difference between substrates observed in one laboratory is represen-

ative of the general response, regardless of statistical significance (the

owest observed p value was below 1 ⋅ 10 −7 , and relative differences in

ean k ranged from 0 . 13× to 4 . 1×). However, an overall large differ-

nce in mean k coupled with a low p value may still be meaningful, as

hown by a similar comparison between SD and CEL. Here, all tests with

 < 0 . 01 (48/59) showed lower 𝑘 for SD. 
5 
Application of current BMP validation criteria did not clearly im-

rove reproducibility, but did have some effects. Best-fit 𝑘 was higher

or BMP-validated results for at least some substrates ( +24% for overall

ffect of validation, 𝑝 = 0 . 002 ). Most lack of validation was caused by a

ow cellulose BMP. For some substrates, validation criteria were able to

liminate extreme 𝑘 values (2 of 3 for SC and 7 of 11 for SD eliminated)

nd improved reproducibility for SC, and SD (17 to 60% reduction). 

There were no consistent differences in variability among measure-

ent methods ( Fig. 5 ). All three popular methods were variable for

ome substrate × study combinations, and showed similar results for

D (gravimetric and absolute GC were excluded because they were used

y few labs and variability was low in most cases). In contrast, there

ere differences in 𝑘 magnitude: other volumetric methods provided

ower 𝑘 values than AMPTS II in both studies S1 (-52%) and S2 (-23%)

 𝑝 < 0 . 03 by 𝐹 -test) ( Fig. 5 ). Mechanical mixing and a high measurement

requency for the commercial AMPTS II system, compared to other (typ-

cally manual) volumetric methods both may have played a role. 

Use of a shared inoculum did not consistently reduce variability in

easurement of 𝑘 ( Fig. 6 ). Variability increased in as many cases as it

ecreased (4 of 8) (standard deviation calculated with mean values for

ach laboratory × substrate combination, i.e., points in Fig. 6 ). Even

ith an identical inoculum source, different laboratories measured dif-

erent rates (even exceeding a factor of 3) and curves showed different

evelopment of rate over time. Why inoculum sharing was not suffi-

ient is not clear, but disruption due to transport, transfer, and storage

s a possible source of error. An analysis of BMP measurements from

his same dataset showed no evidence of a general improvement in the

eproducibility of BMP by sharing inoculum either ( Hafner et al., 2020 ).

In general, results were not dependent on the exact approach used

or extracting parameters. Fitting through the lag phase tended to result
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Fig. 6. Best-fit 𝑘 values versus inoculum source. Lines connect 

points from the same laboratory and each individual labora- 

tory is represented by a unique color. Inoculum was shared 

within countries. Points show mean values (typically 𝑛 = 3 ) 
and vertical lines show standard deviation. 
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n lower 𝑘 estimates and more variability in 𝑘 and 𝐵 0 . Using cumula-

ive SMP ( 𝑦 instead of rate 𝑟̄ ) as the response variable decreased vari-

bility, but these observations are not independent and by definition

he approach presented here more accurately represents measured rates

 Sections 2.2 and 2.3.1 ). Details for a total of six different approaches ap-

lied can be found in the data repository that is associated with this pa-

er ( https://github.com/sashahafner/BMP- kinetics- paper- 2022 ). Fur-

hermore, because the SMP measurements used in this work are now

ublicly available through this repository, others are free to repeat this

nalysis using different approaches. 

.4. Can reproducibility be improved? 

The magnitude of 𝑘 was positively correlated with the quantity of

H 4 produced during the lag phase (Spearman’s rank correlation coeffi-

ient 𝜌 = 0 . 4 ) and weakly correlated with ME ( 𝜌 = 0 . 2 ). However, there

as no clear relationship between reproducibility and these character-

stics, i.e., neither shows strong potential for development of validation

riteria. The presence of consistent correlation undermines any assump-

ion that 𝑘 reflects only intrinsic properties of the substrate. 

Model fit and the ratio of 𝐵 0 to measured BMP (1% net 3 d) were

elated. For very high ME, 𝐵 0 must be larger than measured BMP, but

ypically only slightly larger. The value of 𝑘 was strongly negatively cor-

elated with the ratio 𝐵 0 :BMP ( 𝜌 = −0 . 66 ), which probably reflects true

ifferences in kinetics (not necessarily intrinsic). Values below unity in-

icate that the single-fraction first-order model used does not completely

escribe the observed response, and at least some extreme 𝑘 estimates

ould be eliminated by applying a 𝐵 0 :BMP cutoff. However, it is not rea-

onable to exclude all results with a ratio below 1.0, considering that all

arameter estimates will have error, and the estimates of 𝑘 do not qual-

tatively change below this value. 

Rate constants extracted from SMP curves clearly reflect more than

ntrinsic characteristics of substrates, probably including effects of in-

cula and other differences related to the BMP test protocol that are

vidently difficult to standardize (even with the use of the same in-

culum source). Although there has recently been significant success

n improving BMP reproducibility through application of validation cri-

eria, drastic improvement in the reproducibility of 𝑘 seems unlikely

iven these results. Kinetic results may simply be too sensitive to the

est environment or the initial state and development of the microbial
6 
ommunity, which in turn may respond to small differences in handling

nd other test procedures. Stated differently, results suggest that 𝑘 val-

es from batch tests depend on numerous factors, and intrinsic substrate

haracteristics is only one. 

Although no indicators show potential for a drastic improvement in

eproducibility as validation criteria, the most reproducible 𝑘 estimates

ikely come from cases where the applied first-order model accurately

escribes the measurements, i.e., cases which have high ME and a ratio

f 𝐵 0 (model ultimate BMP) to measured BMP near but slightly greater

han 1. Furthermore, low or no lag phase CH 4 production and a high

ampling resolution (possibly quantified by a small maximum value of

̄ ) indicate that extracted values are based on a high number of mea-

urements, and these might also serve as validation criteria. However,

efining quantitative validation criteria for 𝑘 is arbitrary, and select-

ng values that will be widely useful and not too restrictive is challeng-

ng and of dubious value at this time, at least for the present data set.

ith few exceptions, changes in 𝑘 with respect to potential indicators

re gradual. Further complicating this task is the issue with variability

mong substrate types. How representative are the five substrates used

ere? Substrates varied in composition and degradability ( Section 2.1 )

ut were all dried, finely ground, and primarily carbohydrate-based.

hile it is likely that other substrates may show different results, there

s no clear reason to expect that the low inter-laboratory reproducibility

uantified here is not generally representative. It is possible that less ho-

ogeneous or more complex materials may show even more variability.

egardless, the minimal step of applying current BMP validation crite-

ia ( Holliger et al., 2021 ) is recommended. A visual comparison of the

urve calculated by the model and measurements should also always be

arried out ( Motulsky and Ransnas, 1987 ). 

. Conclusions 

Inter-laboratory reproducibility in first-order rate constants from

atch tests was poor and not improved by sharing an inoculum. BMP

alidation criteria slightly improved rate constant reproducibility and is

ecommended, but normalization to a reference substrate did not con-

istently improve reproducibility and cannot be recommended. Results

how that rate constants from BMP tests should be taken only as ap-

roximate indicators of the substrate degradation rate and any applica-

ion of these types of results should account for associated uncertainty.

https://github.com/sashahafner/BMP-kinetics-paper-2022
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ow reproducibility also implies that substrate and treatment compar-

sons should be done in a single batch test within a single laboratory.

onetheless, due to laboratory effects that vary among substrates, dif-

erences in rate constants may not represent a general difference that

ould be observed in other laboratories, highlighting the importance of

epetition. 
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