
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Low-Rank Tensor Methods for High-Dimensional
Problems

Christoph Max STRÖSSNER

Thèse n° 10 111

2023

Présentée le 31 mars 2023

Prof. M. Colombo, présidente du jury
Prof. D. Kressner, directeur de thèse
Prof. H. Harbrecht, rapporteur
Prof. A. Uschmajew , rapporteur
Prof. F. Nobile, rapporteur

Faculté des sciences de base
Algorithmes numériques et calcul haute performance - Chaire CADMOS
Programme doctoral en mathématiques

Acknowledgements

First and foremost, I am genuinely grateful to my supervisor Daniel Kressner for his
advice, encouragement, and patience during the last years. Daniel provided me this great
opportunity to explore the fascinating world of tensors and their decompositions. Giving
me the freedom and flexibility to work on different problems and topics, encouraging
me to travel to various conferences and summer schools, trusting me to handle things
independently, and guiding me professionally through the unusual circumstances during
a global pandemic characterizes Daniel’s outstanding support and is far from standard.
I thank Helmut Harbrecht, André Uschmajew and Fabio Nobile for being part of my
jury and for taking the time to read my thesis. Special thanks go to Maria Colombo for
agreeing to preside over my private defense.
Over the last years, I had the pleasure to collaborate with Sergey Dolgov, Virginie
Ehrlacher, Jad Dabaghi and Bonan Sun who provided valuable insights and assistance.
I would like to particularly express my gratitude to Virginie Ehrlacher for introducing
me to self-diffusion matrices during my six-week stay at CIRM in Luminy as part of
CEMRACS 2021 and for inviting me to visit École des ponts ParisTech. I would like to
thank Nick Trefethen and the Chebfun team giving me the opportunity to contribute to
the official Chebfun package. I am grateful for the help of Behnam Hashemi, Nick Hale,
Yuji Nakatsukasa and Alex Townsend.
Moreover, I would like to thank my colleagues and those with whom I had many insightful
discussions at EPFL; namely Alice, Amal, Axel, Bonan, David, Francesco, Gianluca,
Haoze, Hysan, Ivana, Junli, Kathryn, Lana, Margherita, Minhong, Nico, Stefano, Tingting
and Yuxin. Special thanks go to Gianluca who helped proof-reading this thesis.
Last but not least, I would like to thank my friends, my girlfriend, and my family for
their immense support over the years.

Christoph Strössner

i

Abstract

In this thesis, we propose and analyze novel numerical algorithms for solving three different
high-dimensional problems involving tensors. The commonality of these problems is that
the tensors can potentially be well approximated in low-rank formats. Identifying and
exploiting this low-rank structure allows us to mitigate the curse of dimensionality.
The first problem considered in this thesis is the computation of functional low-rank
approximations of multivariate functions defined on tensor product domains. We develop
two novel algorithms to compute such approximations by combining tensorized Chebyshev
interpolation with low-rank approximations of the coefficient tensor. For most functions,
our numerical experiments demonstrate that our algorithms require a lower number of
function evaluations and achieve the same approximation error compared to existing
methods. In addition, we solve partial differential equations using a novel global spectral
method that can potentially be combined with functional low-rank approximations.
The second problem of interest is the solution of multi-marginal optimal transport
problems. After adding entropic regularization, these are equivalent to tensor scaling
problems that can be solved using the Sinkhorn algorithm. In literature, it has been
suggested to accelerate the Sinkhorn algorithm by exploiting either a graphical model
structure or a low-rank tensor approximation. We propose to combine these two approaches
to accelerate the solution of the tensor scaling problem even further.
The third problem of interest is the computation of the self-diffusion matrix of a tagged
particle process defined on a grid. We propose a novel approach based on computing the
matrix via solving a high-dimensional tensor-valued optimization problem. We observe
numerically that our approach is much less subject to statistical noise compared to classical
approaches based on estimating long-time averages of empirical means of deviations of
some stochastic processes.

Key words: low-rank approximation, high-dimensional problems, tensor methods, curse
of dimensionality, Chebyshev interpolation, functional low-rank approximation, multi-
marginal optimal transport, self-diffusion matrix, spectral method

iii

Zusammenfassung
Diese Arbeit befasst sich mit der Entwicklung und Analyse numerischer Algorithmen
zur Lösung dreier hochdimensionaler Probleme. Diese haben gemein, dass sie Tensoren
beinhalten, die möglicherweise gut in Niedrigrangformaten approximiert werden können.
Durch Ausnutzen dieser Niedrigrangstruktur kann der Fluch der Dimensionalität gelindert
werden.
Das erste Problem stellt die Approximation multivariater Funktionen, die auf Tensorpro-
duktmengen definiert sind, mithilfe funktionaler Niedrigrangapproximationen dar. Dafür
werden zwei neuartige Algorithmen entwickelt, die die gewünschte Approximation durch
Kombination von tensorisierter Tschebyscheff-Interpolation und Niedrigrangapproximati-
on des Koeffiziententensors berechnen. In numerischen Experimenten wird gezeigt, dass
die neuen Algorithmen für die meisten Funktionen weniger Funktionsauswertungen als
existierende Methoden benötigen und dennoch die gleiche Genauigkeit erzielen. Zudem
wird eine Spektralmethode zur Lösung partieller Differenzialgleichungen entwickelt, die
mit funktionalen Niedrigrangapproximationen kombiniert werden könnte.
Anschliessend befasst sich diese Arbeit mit dem optimalen Transport mehrerer Randvertei-
lungen. Das zugehörige mathematische Problem kann durch entropische Regularisierung
in ein Tensorskalierungsproblem umgewandelt werden, das wiederum mit dem Sinkhorn-
Algorithmus gelöst werden kann. In der Literatur existieren Ansätze, diesen Algorithms
entweder durch das Ausnutzen eines probabilistischen grafischen Modells oder durch
eine Niedrigrangapproximation zu beschleunigen. Diese beiden Ansätze werden in dieser
Arbeit kombiniert, um den Sinkhorn-Algorithmus noch stärker zu beschleunigen.
Zuletzt wird das Problem der Berechnung von Selbstdiffusionsmatrizen stochastischer
Prozesse mit markiertem Teilchen auf Gittern untersucht. In dieser Arbeit wird zur Lösung
dieses Problems ein neuartiger Ansatz basierend auf der Lösung eines hochdimensionalen
Minimierungsproblems präsentiert. Im Vergleich zu klassischen Algorithmen, die die
langfristige gemittelte Abweichung eines stochastischen Prozesses mit einer Monte-Carlo-
Simulation bestimmen, führt der neuartige Algorithmus in numerischen Experimenten zu
deutlich weniger statistischem Rauschen.

Stichwörter: Niedrigrangapproximation, hochdimensionale Probleme, Tensormethoden,
Fluch der Dimensionalität, Tschebyscheff-Interpolation, funktionale Niedrigrangapproxi-
mation, optimaler Transport mehrerer Randverteilungen, Selbstdiffusionsmatrix, Spek-
tralmethode

v

Contents
Acknowledgements i

Abstract iii

Zusammenfassung v

1 Introduction 1

2 Preliminaries 7
2.1 Low-rank approximation . 7

2.1.1 Low-rank approximation of matrices 7
2.1.2 Low-rank approximation of tensors 11
2.1.3 Low-rank tensor formats with additional structure 12
2.1.4 Approximation algorithms . 13

2.2 Functional low-rank approximation . 15
2.3 Chebyshev interpolation . 17

2.3.1 Chebyshev interpolation for univariate functions. 17
2.3.2 Tensorized Chebyshev interpolation for multivariate functions . . . 18
2.3.3 Coefficient approximation . 20
2.3.4 Connection to functional low-rank approximations 22
2.3.5 Proof of concept . 22

3 Functional Tucker approximation 25
3.1 Existing algorithm: Chebfun3 . 26

3.1.1 Phase 1: Block term decomposition 26
3.1.2 Phase 2: Refinement . 27
3.1.3 Phase 3: Compression . 27
3.1.4 Disadvantages . 28

3.2 Novel algorithm: Chebfun3F . 29
3.2.1 Phase 1: Fiber indices and factor matrices 29
3.2.2 Phase 2: Refinement of the factors 31
3.2.3 Phase 3: Reconstruction of the core tensor 31
3.2.4 Chebfun3F algorithm . 32
3.2.5 Existence of a quasi-optimal Chebfun3F approximation 34

vii

Contents

3.2.6 Comparison of the theoretical cost 35
3.3 Numerical results . 36

3.3.1 Chebfun3 vs. Chebfun3F . 36
3.3.2 Comparison to sparse grids . 39

3.4 Coefficient decay analysis . 41
3.4.1 Observations in a two-dimensional setting 42
3.4.2 Potential solutions in the two-dimensional setting 43
3.4.3 Incorporation of Chebfun3F in Chebfun 44

3.5 Additional insights . 45
3.5.1 Approximations in Lebesgue spaces 45
3.5.2 Further compression . 46

4 Extended functional tensor train approximation 51
4.1 Extended functional tensor train format 52
4.2 Approximation algorithm . 54
4.3 Numerical experiments . 56

4.3.1 Comparison to a direct TT approximation 57
4.3.2 Comparison to the FTT approximation algorithm 59

4.A Appendix . 63
4.A.1 Benchmark functions . 63
4.A.2 Genz functions . 65
4.A.3 Parametric PDE problem . 65

5 Multi-marginal optimal transport 67
5.1 Multi-marginal optimal transport and the Sinkhorn algorithm 68

5.1.1 Mathematical setting . 69
5.1.2 Multi-marginal Sinkhorn algorithm 69

5.2 Impact of approximating the Gibbs kernel 72
5.3 Tensor networks and graphical models . 76
5.4 Low-rank approximations in tensor networks 79
5.5 Numerical experiments . 80

5.5.1 Proof of concept . 80
5.5.2 Application: Color transfer from color barycenters 83
5.5.3 A tensor network with circles . 86

6 Self-diffusion matrix 91
6.1 Infinite-dimensional definition . 92

6.1.1 Definition as optimization problem 92
6.1.2 Definition as long time mean square deviation 93

6.2 Finite-dimensional approximation . 94
6.2.1 Discretized minimization problems 94
6.2.2 Combined minimization problem 95
6.2.3 Estimation of long-time mean square deviation 96

viii

Contents

6.3 Low-rank solutions for the optimization problem 97
6.3.1 Fast and stable evaluation . 98
6.3.2 Successive minimization . 99
6.3.3 Alternating least squares . 100
6.3.4 Monte Carlo methods . 102
6.3.5 Limitations of the approach . 102

6.4 Numerical Experiments . 104
6.4.1 Solving the optimization problem 104
6.4.2 Estimation of long-time mean square deviation 105
6.4.3 Comparison of algorithms . 107

6.5 Application: Cross-diffusion system . 109
6.5.1 Hydrodynamic limit of a lattice-based stochastic hopping model . . 109
6.5.2 Deterministic resolution of a simplified cross-diffusion system . . . 111
6.5.3 Numerical Experiment . 114

7 Fast global spectral method 117
7.1 Problem setting . 119

7.1.1 Structure of a linear differential operator 119
7.1.2 Approximation format . 119

7.2 Operator discretization . 119
7.2.1 One-dimensional differential operators 120
7.2.2 Three-dimensional differential operators 122
7.2.3 Generalization to non-constant coefficients 122

7.3 A spectral method for three-dimensional linear PDEs 125
7.3.1 Boundary condition discretization 126
7.3.2 Incorporating the boundary conditions 127
7.3.3 Solving tensor-valued linear systems 129

7.4 Numerical results . 130
7.4.1 Runtime comparison . 130
7.4.2 Stationary problems . 131
7.4.3 Time-dependent problems . 137
7.4.4 Eigenvalue problems . 138

8 Conclusions and outlook 141

Bibliography 145

Curriculum Vitae 167

ix

1 Introduction

This thesis is concerned with the solution of three different high-dimensional problems:
the approximation of multivariate functions using tensorized Chebyshev interpolation,
the solution of entropically regularized multi-marginal optimal transport problems, and
the computation of self-diffusion matrices via solving a high-dimensional optimization
problem.

At a first glace, the problems studied in this thesis might seem vastly different, but at
heart all of them involve a tensor T ∈ Rn1×n2×···×nd of order d, where d denotes the
dimension of the problem. Since the size of T increases exponentially with respect to
d, we can not store the tensor T any more for large values of d. To potentially mitigate
this so-called curse of dimensionality [33], we need to identify and exploit underlying
structures of T . For instance, when T is sparse, we only need to store the non-zero entries.
When T is a rank-1 tensor, i.e.

Ti1,i2,...,id = u
(1)
i1
u

(2)
i2
· · ·u(d)

id
, for i` = 1, . . . , n`, ` = 1, . . . , d, (1.1)

for some vectors u(`) ∈ Rn` , ` = 1, . . . , d, we only need to store these vectors. In applica-
tions, the tensor T rarely has rank-1 structure, but often T can be well approximated
by the sum of r rank-1 tensors, i.e. by a tensor of rank at most r [190]. The resulting
so-called low-rank tensor approximations [145, 198] have been applied to solve a plethora
of high-dimensional problems in various fields including but not limited to model or-
der reduction [243], uncertainty quantification [203], sensitivity analysis [201], machine
learning [179, 291], signal processing [72], the solution of partial differential [22, 188]
and time-dependent differential equations [63, 196], data science [302], optimization [73,
274], quantum physics [256, 331], plasma physics [109] and quantum chemistry [312]. In
certain applications, it is beneficial to impose additional structure to the sum of separable
functions, leading to the so-called Tucker format [327], the tensor train format [249] or
general tensor networks [247]. We would like to point out that it is even possible to apply
low-rank tensor approximations to low-dimensional problems by reshaping matrices and

1

Chapter 1: Introduction

vectors into tensors [187, 248].

Functional low-rank approximation

The basic ideas of low-rank approximations can be generalized from tensors in finite
dimensional tensor product spaces to multivariate functions defined on tensor product
domains [154]. Instead of sums of rank-1 tensors, we are now interested in sums of
separable functions. A function f : [−1, 1]d → R is called separable if it can be written in
terms of univariate functions g` : [−1, 1]→ R for ` = 1, . . . , d as

f(x1, x2, . . . , xd) = g1(x1)g2(x2) · · · gd(xd), for x` ∈ [−1, 1], ` = 1, . . . , d. (1.2)

For the sake of simplicity, we only consider the domain [−1, 1]d throughout this thesis.
Generalizations to arbitrary tensor product domains are possible via appropriate domain
transformations. Further extensions to spheres are also viable [43, 321]. It is again
possible to prescribe additional structure to the sum of separable functions to obtain
approximations in the so-called functional Tucker [100, 163] or functional tensor train
format [41, 141]. The structure of the functional low-rank approximation can then be
exploited in quite a few applications, including the solution of time-dependent partial
differential equations (PDEs) [91], uncertainty quantification [202], sensitivity analysis [25],
optimal control [142] and quantum dynamic simulations [298].

It is important to emphasize that not every function admits a good approximation in low-
rank formats with a moderate amount of terms, especially for larger d. Generally speaking,
smoothness and a restricted (e.g., nearest neighbor) interaction between variables are
helpful. Upper bounds for the number of terms needed to attain a certain accuracy
are derived in [41, 146] for functions in Sobolev spaces. The required number of terms
can change significantly when variables are transformed [324] or the order of variables
is permuted [92]. For functions in periodic and mixed Sobolev spaces approximation
rates can be found in [286] and [148], respectively. Much faster rates can be obtained
for functions with special structures such as compositional functions [21] and quantities
associated with certain parametric PDEs [20]. A more abstract analysis of functional
low-rank approximation can be found in [4, 5, 6].

In practice, we obtain a fully discrete approximation of f via discretizing each univariate
function in the approximation by, e.g. a truncated series expansion, which incurs an
additional truncation error [141]. The resulting approximations are intricately related to
approximations of f using a truncated expansion in terms of tensorized basis functions of
the form

f(x1, x2, . . . , xd) ≈
n1∑
i1=1

n2∑
i2=1

· · ·
nd∑
id=1

Ai1,i2,...,idb
(1)
i1

(x1)b
(2)
i2

(x2) · · · b(d)
id

(xd), (1.3)

2

Chapter 1: Introduction

with coefficient tensor A ∈ Rn1×n2×...nd of order d and univariate basis functions
b
(`)
i : [−1, 1] → R for i = 1, . . . , n`, ` = 1, . . . , d. Any low-rank approximation of A
can be seen as functional low-rank approximation of f . For instance, the Chebfun
package [104] for computing numerically on the level of functions [260] approximates
bi- and trivariate functions [163, 320] by computing low-rank approximations of the
coefficient tensor obtained via multivariate interpolation [209] with tensorized Chebyshev
polynomial basis functions [223]. The univariate functions in the resulting functional
low-rank approximation are internally represented in terms of univariate Chebyshev inter-
polants [38, 165]. Once the functional low-rank approximation is obtained, operations
such as computing derivatives are performed by manipulating the Chebyshev coefficients
of the univariate interpolants [27]. Note that the interpolation approach in Chebfun
requires that we have access to point evaluation on a grid. When only point evaluations
at unstructured points are available, we can use supervised learning to obtain functional
low-rank approximations [140].

Instead of computing low-rank approximations of A, we can also try to choose the basis
functions b`i in (1.3) such that most of the information about the function is stored in a
low number of entries of A, i.e. we can approximate A by a sparse tensor. This is the
idea of sparse girds [295, 345]. Especially for functions with bounded mixed derivatives,
the sparse grid approach offers the potential to mitigate the curse of dimensionality [50].

We briefly want to point out that there exist many other techniques that offer the
potential to mitigate or even overcome the curse of dimensionality when approximating
a high-dimensional function f : [−1, 1]d → R. For instance, we could decompose a
multivariate function using the ANOVA-decomposition [297], which represents f as
truncated sum of functions depending on small subsets of variables [296], or using
arithmetic circuit tensor networks [254], which describe the multivariate function as the
interaction of univariate functions in terms of a tensor network. Approximations of f
obtained using neural networks can implicitly exploit certain structures of f to overcome
the curse of dimensionality [19, 262]. Dimensionality reductions techniques such as active
subspaces [76], inverse regression [212] and autoencoders [167] can be used to identify
whether f actually depends on all variables or whether it is mostly determined by a low-
dimensional subspace of [−1, 1]d. In the latter case, we can replace the high-dimensional
f by a low-dimensional surrogate defined directly on the subspace. However, none of
these alternative approaches yields an approximations in terms of sums of univariate
functions, which would be highly beneficial for further numerical computations [39, 40].

Multi-marginal optimal transport

Classical optimal transport minimizes the transport cost between d = 2 probability mea-
sures [34, 333]. For discrete measures, this problem can be expressed as the minimization
of 〈C,P 〉 for a nonnegative cost matrix C. The so-called transport plan P is a nonnegative

3

Chapter 1: Introduction

matrix that has to satisfy marginal constraints, i.e. the column and row sums of P are
prescribed by discrete measures. The pioneering work of Cuturi [82] established a relation
between entropy regularized optimal transport and matrix scaling of exp(−C/η), where
exp denotes the elementwise exponential and η > 0 denotes the regularization parameter.
Scaling the rows and columns of exp(−C/η) such that marginal constraints are satisfied
can be achieved numerically using the Sinkhorn algorithm [294], whose convergence
speed can be accelerated using greedy coordinate descent [9, 216], overrelaxation [314]
or accelerated gradient descent [106]. This matrix scaling approach allows one to solve
much larger optimal transport problems compared to previous attempts based on solving
the original linear program, which in turn has impacted various fields including image
processing [121, 267], data science [258], engineering [235] and machine learning [134,
199].

The classical optimal transport problem can be generalized to a multi-marginal setting, in
which the transport cost between d ≥ 3 measures is minimized [253]. Such multi-marginal
problems arise in the areas of density functional theory [97], generalized incompressible
flow [36], neural networks [57], signal processing [110] and Wasserstein barycenters [59].
For discrete measures, the problem can be expressed as finding the nonnegative transport
plan tensor P of order d, which minimizes 〈C,P〉 subject to marginal constraints, where
C denotes a given nonnegative cost tensor of order d. In analogy to the matrix case,
after adding entropic regularization, the problem can equivalently be transformed into a
tensor scaling problem for the tensor exp(−C/η) [37]. The Sinkhorn algorithm can be
generalized to solve this multi-marginal problem [58]; acceleration techniques via greedy
coordinate descent are described in [127, 217].

The multi-marginal Sinkhorn algorithm crucially relies on the repeated evaluation of
marginals of the rescaled tensor exp(−C/η). The cost of computing such a marginal
increases exponentially with respect to d. There exist two different approaches in literature
to mitigate this curse of dimensionality by exploiting additional structure of exp(−C/η).
The first line of research is to exploit that, in many applications, the structure of exp(−C/η)

allows to specify the transport plan in terms of a graphical model. When this graphical
model does not contain circles, marginals can be computed efficiently using the belief
propagation algorithm [118, 150] and Fourier-based fast summation [17]. In particular,
this includes tree structured cost tensors [32, 151]. When the model contains circles, the
junction tree algorithm [173] can be used to evaluate the marginals, but it might still
incur a large computational cost. A second approach to possibly attain a complexity
reduction is to replace exp(−C/η) by a low-rank approximation, whose marginals can be
evaluated efficiently [8]. For the classical case d = 2, Altschuler et al. [10] analyze the
impact of the approximation error on the solution returned by the Sinkhorn algorithm.
For the case d ≥ 3, asymptotic complexity bounds are derived in [7] for the specific case
that C has low tensor rank [190] and is given explicitly in factored form. Let us point
out that low-rank approximations of exp(−C/η) should not be confused with low-rank
approximations of the desired transport plan, as proposed in [283, 284]. Further, we

4

Chapter 1: Introduction

would like to point out that it is also possible to exploit the structure of C [348] and
sparsity of the solution [129, 130] to efficiently compute solutions of the unregularized
multi-marginal optimal transport problem.

Self-diffusion matrix

The self-diffusion matrix of a tagged particle process on a grid [200] identifies the
hydrodynamic limit of multi-species symmetric exclusion processes [266]. It is traditionally
computed by approximating long-time averages of the mean-square displacement of the
tagged particle [42, 89, 193, 266]. In a first step, the computational domain is truncated
to a finite-size supercell with periodic boundary conditions. Then, a large number of
realisations of the trajectories of the tagged particle are sampled in order to approximate
the mean-square displacement by an empirical average computed with a standard Monte-
Carlo approach [158, 227]. Moreover, the value of a finite final time has to be chosen
beforehand to approximate the long-time limit. In [210], it is shown that the error linked
to the truncation of the computational domain decays exponentially with the size of the
supercell. In contrast, the statistical error of the approximation linked to the use of a
finite number of random samples of the trajectories of the tagged particle decays as the
inverse of the square root of the number of samples. As a consequence, the main source
of error in the practical computation of approximations of the self-diffusion matrix is due
to statistical noise; see e.g. [95, 120, 159, 279, 315, 317].

The self-diffusion matrix can equivalently be defined via the solution of a deterministic
high-dimensional optimization problem [42, 210, 266] of the form

min
T ∈R2×2×···×2

f(T),

where f : R2×2×···×2 → R denotes the objective function and the order d of T is equal to
the number of grid points in the finite-size supercell. Solving this minimization problem
potentially yields the self-diffusion matrix without incurring any statistical noise. In order
to solve this minimization problem numerically, we need to reduce the number of degrees
of freedom. This can be achieved by assuming that T can be well approximated by a
sum of rank-1 tensors. We can then iteratively optimize each of the terms in the low-rank
representation of T using a classical alternating linear scheme [171, 274]. Alternatively,
we could use Riemannian optimization [44, 205, 264] to solve the optimization problem
directly on the manifold of low-rank tensors directly.

Organisation of the thesis

Chapter 2. We recall the basic concepts of low-rank tensor approximations, low-rank
functions and tensorized Chebyshev interpolation and establish the notation for the
remainder of this thesis.

5

Chapter 1: Introduction

Chapters 3 and 4 (based on [100] and [306]). We develop two novel algorithms
for computing functional low-rank approximations by combining tensorized Chebyshev
interpolation with low-rank approximations of the coefficient tensor in the Tucker and
extended tensor train format. Compared to existing algorithms our novel approaches
require fewer function evaluations to achieve the same approximation accuracy.

Chapter 5 (based on [305]). We propose to combine graphical models and low-rank
approximations to further accelerate the computation of marginals for the Sinkhorn
algorithm. Our numerical experiments demonstrate that this combination offers the
potential to solve of entropically regularized optimal transport problems even faster.

Chapter 6 (based on [85] and [84]). We develop a novel approach to compute self-
diffusion matrices numerically by solving the high-dimensional minimization problem using
an alternating linear scheme instead of sampling long-time averages of the mean-square
displacement.

Chapter 7 (based on [304]). We develop a global spectral method to solve three-
dimensional PDEs using discretizations of the form (1.3).

Chapter 8. We conclude the thesis and provide an outlook on further research directions.
In particular, we discuss the potential to combine the spectral method presented in
Chapter 7 with the low-rank approximations of the coefficient tensor in Chapters 3 and 4.

6

2 Preliminaries

In this chapter, we recall the notation and basic results for low-rank approximations
of matrices, tensors and functions as well as the fundamental concepts for tensorized
Chebyshev interpolation.

In Section 2.1, we introduce low-rank matrices and tensors. We establish a notation for
low-rank approximations of matrices and tensors in various formats following the book
by Golub and Van Loan [137] and the article by Kolda and Bader [198].

In Section 2.2, we generalize the concept of low-rank approximations from tensors to
multivariate functions and introduce the corresponding functional low-rank approximation
formats.

In Section 2.3, we recall the fundamentals of Chebyshev interpolation for univariate
functions from the book by Mason and Handscomb [224] and the book by Trefethen [322].
We extend the concept to multivariate functions using tensorization. The resulting
interpolants are computed based on a tensor containing the evaluation of the function on
a tensor product grid. We study how approximating this tensor affects the interpolation
error and how such approximation are related to functional low-rank approximations.

2.1 Low-rank approximation

2.1.1 Low-rank approximation of matrices

A matrix A ∈ Rm×n is said to be rank-1, when it can be written as M = u ◦ v for vectors
u ∈ Rm, v ∈ Rn, where the outer product ◦ is defined as

(u ◦ v)i,j = uivj , for i = 1, . . . ,m, j = 1, . . . , n.

7

Chapter 2: Preliminaries

In general, the rank r of a matrix A ∈ Rm×n is defined as the minimum r ∈ N such
that A can be written as a sum of r rank-1 matrices. In the following, we focus on
the approximation of given matrix A ∈ Rn×m by a matrix B ∈ Rn×m subject to the
constraint that the rank of B is at most r for a fixed r ∈ N. The matrix B is called
low-rank approximation of A.

Since rank(B) ≤ r, there exist matrices U ∈ Rm×r, V ∈ Rn×r such that B = UV T .
Assume that r � min(n,m). We observe that storing the matrices U, V of the low-
rank approximation B requires only O(r(m + n)) storage, whereas the full matrix A
requires O(mn) storage. By replacing the matrix A by the low-rank approximation B in
subsequent computations, we can potentially accelerate these computations by exploiting
the structure of B. For instance, matrix vector products involving B can be performed in
O(r(m+ n)) operations when B is given in terms of the matrices U, V , whereas matrix
vector productions involving A require O(mn) operations. Note that this introduces an
error depending on how well A is approximated by B.

Let ‖·‖2 denote the spectral norm and let ‖·‖F denote the Frobenius norm. The Eckhart-
Young-Mirsky theorem [231] states that an optimal rank-r matrix B in the sense that
‖A−B‖2 or ‖A−B‖F is minimized can be computed by truncating the singular value
decomposition of A. Finding this so-called best approximation with respect to the
maximum norm ‖·‖∞ or the entrywise `1-norm ‖·‖1 is still subject to research [299,
343]. Note that we do not necessarily need to compute the best rank-r approximation to
accelerate subsequent computations. It suffices to find any matrices U ∈ Rm×r, V ∈ Rn×r

such that A ≈ UV T . In the following, we present how to compute such low-rank
approximations of A efficiently. The presented approximations can be computed faster
than the truncated singular value decomposition and can potentially be obtained without
evaluating every single entry of A. For a detailed overview of low-rank approximation
algorithms for matrices, we refer to the review [194]. Further, we would like to point out
that it is even possible to compute low-rank approximations when only selected entries of
A can be accessed [55, 350].

We now introduce so-called cross approximations [138]. These are rank-r approximations
of the form

A ≈ A(:, J)A(I, J)−1A(I, :), (2.1)

where I ⊂ {1, . . . ,m}, J ⊂ {1, . . . , n} denote index sets of cardinality r chosen such that
A(I, J) is invertible. This approximation format is visualized in Figure 2.1. Throughout
this thesis, we use adaptive cross approximation (ACA) [30] to determine suitable index
sets. Initially, ACA determines the index tuple (i, j) of the entry with maximal absolute
value of A and adds i to the initially empty index set I and j to J respectively. This
greedy approach is then repeated iteratively by determining the largest absolute value
of the residual of the current cross approximation. The algorithm is stopped once the

8

2.1. Low-rank approximation

≈ ·
−1
·

Figure 2.1 – Visualization of a cross approximation (2.1). The columns A(:, J) are marked
in blue. The rows A(I, :) are marked in red.

largest absolute value of the residual falls below a prescribed tolerance. This adaptively
determines the suitable rank-r. We formalize ACA in Algorithm 1. Note that ACA
corresponds to greedily maximizing the volume of A(I, J) [138] and comes with theoretical
guarantees [80]. An overview of alternative algorithms to determine the index sets is
given in [78].

Algorithm 1 Adaptive cross approximation

1: Input: matrix A ∈ Rm×n, tolerance ε
2: Output: index sets I and J s.t. A ≈ A(:, J)A(I, J)−1A(I, :)
3: I = [], J = []
4: while max |A| ≥ ε
5: (i, j) = arg max

(i,j)
|A(i, j)|

6: I = [I, i], J = [J, j]
7: A = A−A(:, j)A(i, :)/A(i, j)

Remark 2.1. In Algorithm 1, we present ACA with full pivoting, i.e. we determine the
next index tuple based on the largest absolute value in line 4. This requires the evaluation
of every single entry of A. In practice, we could use any entry with a large absolute
value to determine the next index tuple. A commonly used heuristic to determine entries
with large absolute value is partial pivoting [29]. An initially random index tuple (i, j) is
updated repeatedly by alternatingly setting i = arg maxi |A(i, j)| and j = arg maxj |A(i, j)|.
This process only requires the evaluation of several rows and columns instead of the whole
matrix.

Cross approximations can be generalized to so-called CUR-decompositions [45] by allowing
for an arbitrary matrix Ũ ∈ Rr×r instead of the inverse of A(I, J). This leads to an
approximation of the form

A ≈ A(:, J)ŨA(I, :). (2.2)

Given the matrix C = A(:, J) containing columns of A and the matrix R = A(I, :)

containing rows of A, we can project the columns of A onto the span of C and the rows of
A onto the span of R using orthogonal projections. This yields A ≈ CCTARTR, which
corresponds to the CUR decomposition (2.2) with Ũ = CTART . Note that computing
CTART requires the evaluation of the full matrix A.

9

Chapter 2: Preliminaries

In the following, we describe how we can replace the orthogonal projections by oblique
projections to obtain a low-rank approximation of A given C,R without fully evaluating
A. Let QC , QR denote the orthogonal matrices in the economic QR decomposition of C,R
respectively. If we use oblique projections [300] based on index sets Ĩ ⊂ {1, . . . ,m}, J̃ ⊂
{1, . . . , n} of cardinality r chosen such that QC(Ĩ , :) and QR(J̃ , :) are invertible, we obtain

A ≈ QC(ΦT
Ĩ
QC)−1ΦT

Ĩ
A(QR(ΦT

J̃
QR)−1ΦT

J̃
)T (2.3)

= QC(QC(Ĩ , :)−1A(Ĩ , J̃)(QR(J̃ , :)−TQR,

where ΦT
Ĩ
A = A(Ĩ , :). Note that (2.3) is a rank-r approximation of A, which given C,R

can be computed by only evaluating r2 entries of A. The following lemma summarizes
the statement of [66, Lemma 7.3], which plays a critical role in guiding the choice of the
indices Ĩ , J̃ .

Lemma 2.1. Let A ∈ Rm×n, m ≥ n, have orthonormal columns. Consider an index set
I ⊂ {1, . . . ,m} of cardinality n such that ΦT

I A is invertible. Then the oblique projection
A(ΦT

I A)−1ΦT
I satisfies

‖x−A(ΦT
I A)−1ΦT

I x‖2 ≤ ‖(ΦT
I A)−1‖2 · ‖(I −AAT)x‖2, ∀x ∈ Rn.

Lemma 2.1 exhibits the critical role played by the quantity ‖(ΦT
I QC)−1‖2 ≥ 1 for oblique

projections. Suitable index sets Ĩ , J̃ given QC , QR can be computed using the discrete
empirical interpolation method (DEIM) [65, 66], presented in Algorithm 2. In practice,
the computed index sets usually yield good approximations as ‖(ΦT

I QC)−1‖2 tends to
be small. Note that we could in principle apply oblique projections using C,R directly
instead of QC , QR, but (ΦT

I C)−1 is potentially ill-conditioned.

Algorithm 2 Discrete empirical interpolation method

1: Input: orthonormal matrix M ∈ Rm×n
2: Output: index set I
3: I = [argmax |A(:, 1)|]
4: for k = 2, . . . , n
5: c = A(I, 1 : k − 1) \A(I, k)
6: r = A(:, k)−A(:, 1 : k − 1)c
7: I = [I, argmax |r|]

Remark 2.2. Note that not all matrices can be well approximated by low-rank matri-
ces. It might, however, be possible to approximate their off-diagonal blocks by low-rank
matrices. Storing these approximations instead of the full blocks reduces the required
storage. The resulting so-called hierarchical matrices [31, 155] are, in particular, useful
for the approximation of invertible matrices, since solutions of linear systems involving
hierarchical matrices can be computed efficiently.

10

2.1. Low-rank approximation

2.1.2 Low-rank approximation of tensors

Let T ∈ Rn1×n2×···×nd denote a rank-1 tensor represented by vectors u(`) ∈ Rn` , ` =

1, . . . , n as in (1.1). Using the multiple outer product, we can write this tensor as
T = u(1) ◦ u(2) ◦ · · · ◦ u(d). In general, the tensor-rank r of the tensor T ∈ Rn1×n2×···×nd

is defined as the minimum r ∈ N such that T can be written as sum of r rank-1
tensors [168]. A tensor T ∈ Rn1×n2×...nd with rank at most r is said to be represented in
CANDECOMP/PARAFAC (CP)-format [190] if it is given in terms of vectors u(`,k) ∈ Rn`
for ` = 1, . . . , d, k = 1, . . . , r as

T =
r∑

k=1

u(1,k) ◦ u(2,k) ◦ · · · ◦ u(d,k). (2.4)

Note that storing these vectors only requires O(drn) storage, whereas storing the entries
of T directly requires O(nd) storage, where we assume that n1 = n2 = · · · = nd = n.

In this work, we are primarily interested in using low-rank approximations of tensors to
accelerate computations. As in the matrix case discussed in Section 2.1.1, we do not need
to solve the hard problem [252, 292] of finding the best rank-r approximation with respect
to a tensor norm such as the Frobenius norm ‖·‖F , the entrywise `1-norm ‖·‖1 or the
maximum norm ‖·‖∞. Instead any reasonably accurate low-rank approximation suffices.

The alternating least squares (ALS) algorithm [60, 161] is a commonly used alternating
linear scheme [39, 145, 250, 274] to compute approximations in the CP-format (2.4). Let
˜̀∈ {1, . . . , d}. We observe that the problem of minimizing the approximation error

‖T −
r∑

k=1

u(1,k) ◦ u(2,k) ◦ · · · ◦ u(d,k)‖F

is a linear least squares problem when we fix u(`,k) for k = 1, . . . , n, ` = 1, . . . , d, ` 6= ˜̀

and only optimize with respect to u(˜̀,1), . . . , u(˜̀,r). This allows us to improve a given
approximation by updating u(˜̀,1), . . . , u(˜̀,r) based on the solution of this least squares
problem. Performing such updates repeatedly for alternating values of ˜̀ leads to the ALS
algorithm. Note that applying ALS to a randomly initialized approximation might not
converge [198]. Still, this approach yields useful low-rank approximations in practice.

Remark 2.3. The ALS algorithm requires a priori knowledge of a suitable rank-r for the
CP approximation (2.4). Note that the sum of two tensors in CP-format can again be
represented in CP-format. This allows us to refine a given approximation by adding an
approximation of the residual of the current approximation in CP-format. Performing
this process successively leads to a rank-adaptive approximation algorithm [11, 145, 242].

Remark 2.4. We would like to point out that additional constraints can be imposed on
the vectors u(`,k) in (2.4). For smoothness, nonnegativity and sparseness constraints we
refer to [131]. For imposed linear dependencies we refer to the overview [119].

11

Chapter 2: Preliminaries

2.1.3 Low-rank tensor formats with additional structure

Prescribing additional structure to the sum (2.4) leads to different approximation formats.
In the following, we introduce two commonly used formats.

Let T ∈ Rn1×n2×···×nd . A vector v ∈ Rn` is called mode-` fiber of T if there exist indices
ik ∈ {1, . . . , nd} for k = 1, . . . , d, k 6= ` such that Ti1,...,i`,...,id = vi` for all i` = 1, . . . , n`.
We denote by T {`} ∈ Rn`×(n1···n`−1·n`+1···nd) the matrix containing all mode-` fibers of T
in its columns, i.e.

T {`}i`,i 6=`
= Ti1,i2,...,id , where i6=` = 1 +

d∑
j=1
j 6=`

(
(ij − 1)

j−1∏
k=1
k 6=`

nk

)
,

for all i` = 1, . . . , n`, ` = 1, . . . , d. This matrix is known as mode-` matricization of T .
The multilinear rank (r1, r2, . . . , rd) ∈ Nd of T is defined based on these matricizations
as r` = rank(T {`}) for ` = 1, . . . , d.

A tensor T ∈ Rn1×n2×···×nd with multilinear rank at most (r1, r2, . . . , rd) is said to
be represented in Tucker format [327] if it is given in terms of a so-called core tensor
C ∈ Rr1×r2×···×rd and so-called factor matrices U (`) ∈ Rn`×r` for ` = 1, . . . , d as

Ti1,i2,··· ,id =

r1∑
k1=1

r2∑
k2=1

. . .

rd∑
kd=1

Ck1,k2,...,kdU
(1)
i1,k1

U
(2)
i2,k2
· · ·U (d)

id,kd
,

for i` = 1, . . . , n`, ` = 1, . . . , d. This can be written as

T = C ×1 U
(1) ×2 U

(2) ×3 · · · ×d U (d), (2.5)

where ×` denotes the mode-` multiplication. For a tensor T ∈ Rn1×n2×···×nd and a matrix
M ∈ Rm×n` it is defined as the multiplication of every mode-` fiber of T with M , i.e.

(T ×`M)i1,...,id =

n∑̀
j`=0

Ti1,...,i`−1,j`,i`+1,··· ,idMi`,j` , for i` = 1, . . . , n`, ` = 1, . . . , d.

This is related to the matrizisation in the following way (T ×`M){`} = MT {`}. Storing
a tensor in Tucker format requires O(rd + dnr) storage under the assumption that
n1 = n2 = · · · = nd = n and r1 = r2 = · · · = rd = r.

Remark 2.5. A special type of Tucker decompositions are so-called tensor CUR decompo-
sitions [53], which generalize matrix CUR decompositions (2.2) to tensors by requiring that
the columns of the matrices U (`) contain mode-` fibers of the tensor T . It is also possible
to impose nonnegativity constraints on either the whole Tucker approximation [180, 309]
or the individual factor matrices [191, 349] when T is nonnegative.

12

2.1. Low-rank approximation

The second low-rank approximation format of interest are so-called tensor train (TT)
decompositions [249]. These are also known as matrix product states [256, 337] in the
Physics community.

Let T <`> denote the tensor obtained by reshaping T ∈ Rn1×n2×···×nd into
R(n1·n2···n`)×(n`+1···nd) for ` = 1, . . . , d − 1. The TT ranks (R1, . . . , Rd−1) ∈ Nd−1 of
T are defined as R` = rank(T <`>) for ` = 1, . . . , d− 1 [170]. A tensor T with TT ranks
at most (R1, . . . , Rd−1) is said to be represented in the TT format when it is given in
terms of so-called TT cores G(1) ∈ Rn1×R1 , G(d) ∈ RRd−1×nd and G(`) ∈ RR`−1×n`×R` for
` = 2, . . . , d− 1 as

Ti1,...,id =

R1∑
k1=1

R1∑
k1=1

. . .

Rd−1∑
kd−1=1

G(1)
i1,k1
G(2)
k1,i1,k2

· · · G(d−1)
kd−2,id−1,kd−1

G(d)
kd−1,id

, (2.6)

for i` = 1, . . . , n`, ` = 1, . . . , d. Storing the TT cores requires O((d−2)nR2+2nR) storage
under the assumption that n1 = n2 = · · · = nd = n and R1 = R2 = · · · = Rd−1 = R.
This results in linear (instead of exponential) growth with respect d under the (strong)
assumption that R remains constant as d increases.

Remark 2.6. Any tensor with multilinear ranks (r1, . . . , rn) can be represented in the
Tucker format (2.5). However, not every tensor that can be represented in Tucker
format (2.5) with core tensor C ∈ Rr1×···×rd has multilinear ranks (r1, . . . , rn). The same
applies for the TT ranks (R1, . . . , Rd−1) and the TT format (2.6).

Remark 2.7. There exist many other low-rank tensor formats in literature including the
hierarchical Tucker format [152], two-level approximations [186] and tensor networks [73,
247, 255]. For an in-depth overview we refer to the book by Hackbusch [154].

2.1.4 Approximation algorithms

A classical algorithm to compute approximations of a given tensor T in the Tucker
format (2.5) is the so-called higher order SVD (HOSVD) [88]. Its main idea is to compute
the truncated SVDs of the matricizations T (`) for ` = 1, . . . , d. The columns of the
factor matrices U (`) are set to the leading left singular vectors of the corresponding
SVD. Using orthogonal projections we obtain the core tensor analogous to the CUR
decomposition (2.2) as

C = T ×1 (U (1))T ×2 (U (2))T × · · · × (U (d))T . (2.7)

Approximations in the TT format (2.6) can be computed using the so-called TT-SVD [249]
by applying a several SVDs to T . However, both the HOSVD and TT-SVD require the
evaluation of the full tensor T to compute the approximation. This might not be feasible
for large tensors. We refer to the survey [145] for an overview of algorithms to compute
low-rank approximations of T . In the following, we introduce how TT approximations can

13

Chapter 2: Preliminaries

be computed efficiently using so-called TT-cross approximations [251] without evaluating
every single entry of T . For the efficient computation of Tucker approximations we refer
to Chapter 3.

Cross approximation (2.1) can be generalized to tensors T ∈ Rn1×n2×···×nd in the following
way. Let I≤` ⊂ {(i1, . . . , i`)|1 ≤ ik ≤ nk, 1 ≤ k ≤ `} and I>` ⊂ {(i`+1, . . . , id)|1 ≤ ik ≤
nk, `+ 1 ≤ k ≤ d} denote index sets of cardinality R` for ` = 1, . . . , d− 1. We obtain the
approximation

Ti1,...,id ≈
R1∑
s1=1

R1∑
t1=1

· · ·
Rd−1∑
sd−1=1

Rd−1∑
td−1=1

d∏
`=1

T (I≤`−1
s`−1

, i`, I>`t`)(T (I≤`s` , I
>`
t`

))−1, (2.8)

for i` = 1, . . . , n`, ` = 1, . . . , d, where we use I≤0 = I≤d = I>d = { }. Note that
Equation (2.8) is an approximation in TT format (2.6) [282]. Its cores can be computed
by evaluating O(dnR2) entries of T when n1 = · · · = nd = n, R1 = · · · = Rd−1 = R.

In order to derive suitable index sets, we present the rank-adaptive greedy restricted
cross interpolation algorithm developed by Savostyanov [282]. We initialize the index sets
I≤`, I>` randomly such that they each contain a single element and such that they are
nested in the sense that (i1, . . . , i`) ∈ I≤` ⇒ (i1, . . . , i`−1) ∈ I≤`−1 and (i`+1, . . . , id) ∈
I>` ⇒ (i`+2, . . . , id) ∈ I>`+1. We now update these index sets in alternating order
until the approximation (2.8) approximates T well. For this purpose so-called DMRG
supercores [281] are formed. These are defined as subtensors T (I≤`−1, :, :, I>`+1) which
are reshaped into tensors in RR`−1×n`×n`+1×R`+1 . The rank-adaptive algorithm proposed
by Savostyanov [282, Algorithm 2] computes cross approximations (2.1) of the supercores
of the form

T (I≤`−1, :, :, I>`+1) ≈
R∑̀
s`=1

R∑̀
t`=1

T (I≤`−1, :,J >`t`
)(T (J ≤`s`

,J >`t`
))−1T (J ≤`s`

, :, I>`+1),

where the index sets J ≤`,J ≥` of cardinality at most R` + 1 are constructed such that
I≤` ⊂ J ≤` and I>` ⊂ J >`. We can now enhance the approximation (2.8) by replacing
the index sets I≤`, I>` by J ≤`,J >`. In practice, this is achieved by determining the
entry with the largest absolute value of the matrix

(
T (I≤`−1, :, :, I>`+1)−

R∑̀
s`=1

R∑̀
t`=1

T (I≤`−1, :, I>`t`)(T (I≤`s` , I
>`
t`

))−1T (I≤`s` , :, I
>`+1)

)<2>

(2.9)

using sampling as described in Remark 2.1. When the absolute value of this entry is
above a prescribed tolerance, we obtain J ≤`,J ≥` by adding the index corresponding to
this entry to I≤`, I≥`. Note that this procedure adaptively increases the `th entry of the

14

2.2. Functional low-rank approximation

TT rank of the approximation (2.8). Otherwise we set J ≤`,J ≥` to I≤`, I≥`, i.e. we do
not change the approximation. This process is repeatedly performed for ` = 1, . . . , d− 1

and stopped once the error of the approximation (2.8) is sufficiently small at sample
points. We formalize this procedure in Algorithm 3.

Algorithm 3 TT-cross

1: Input: procedure to evaluate entries of the tensor T ∈ Rn1×···×nd , tolerance ε
2: Output: TT approximation (2.6) of T with core tensors H(`)

3: Initialize I≤`, I>` randomly with only one element each for ` = 1, . . . , d− 1
4: while Error of the approximation (2.8) of T is larger than ε at sample points.
5: for ` = 1, · · · , d− 1
6: Find a large entry of the matrix (2.9) and update I≤`, I>` as described in

Section 2.1.4.
7: Compute the TT cores G(`) corresponding to the approximation (2.8).

2.2 Functional low-rank approximation

The concept of low-rank approximations can be generalized from tensor products of finite
dimensional vector spaces to tensor products of infinite dimensional vector spaces [189].
Instead of matrices or tensors we are now interested in multivariate functions defined on the
tensor product domain [−1, 1]d. In this continuous setting, the pendant to rank-1 tensors
are separable functions; see Equation (1.2). The rank r of a function f : [−1, 1]d → R is
the minimal r ∈ N∪{∞} for which f can be written as a sum of separable functions, i.e.

f(x1, x2, . . . , xd) =

r∑
k=1

g
(1)
k (x1)g

(2)
k (x2) · · · g(d)

k (xd), for all x` ∈ [−1, 1], ` = 1, . . . , `,

(2.10)

where g(`)
k : [−1, 1]→ R for k = 1, . . . , r, ` = 1, . . . , d.

We are again interested in approximating f : [−1, 1]d → R by a function h : [−1, 1]d → R
subject to the constraint that the rank of h is at most r for a fixed r ∈ N. The function
h is called (functional) low-rank approximation of f . Note that the original problem
of finding separable decompositions of functions is intimately connected to low-rank
decompositions of matrices and tensors [154, Chapter 7]. Throughout this work we
typically measure the approximation error using the uniform norm || · ||∞ or the Lp-norm
|| · ||Lp defined on [−1, 1]d. We want to emphasize that it is reasonable to search for low-
rank approximations of f even when the rank of f is infinity. For example, truncating the
Schmidt decomposition [285] of an arbitrary function in the Lebesgue space L2([−1, 1]2)

yields the best rank-r approximation with respect to the L2-norm [147].

Analogous to Section 2.1.3, we can impose additional structure on the sum of separable

15

Chapter 2: Preliminaries

functions (2.10). In the following, we generalize the Tucker format (2.5) and the TT
format (2.6) from tensors to the continuous setting. This leads to functional low-rank
approximations in the so-called functional Tucker [100, 163, 221, 270] and functional TT
format [41, 139, 141].

Let f : [−1, 1]d → R. The multilinear rank (r1, . . . , rd) ∈ (N ∪ {∞})d of f is defined as
r` = rank{`}(f) for ` = 1, . . . , d, where rank{`}(f) denotes the minimum r ∈ N∪{∞} such
that f can be written as in terms of functions gk : [−1, 1]→ R and hk : [−1, 1]d−1 → R
for k = 1, . . . , r as

f(x1, . . . , xd) =
r∑

k=1

gk(x`)hk(x1, . . . , x`−1, x`+1, . . . , xd).

A function f : [−1, 1]d with multilinear rank at most (r1, . . . , rd) is said to be represented
in functional Tucker format when it is given in terms of a so-called a core tensor C ∈
Rr1×r2×···×rd and univariate functions u(`)

k : [−1, 1]→ R for k = 1, . . . , r`, ` = 1, . . . , d as

f(x1, . . . , xd) =

r1∑
k1=1

r2∑
k2=1

. . .

rd∑
kd=1

Ck1,k2,...,kdu
(1)
k1

(x1)u
(2)
k2

(x2) · · ·u(d)
kd

(xd). (2.11)

The TT rank (R1, . . . , Rd−1) ∈ (N ∪ {∞})d−1 of f is defined as R` = rank<`>(f) for
` = 1, . . . , d − 1, where rank<`>(f) denotes the minimum R ∈ N ∪ {∞} such that f
can be written as in terms of functions gk : [−1, 1]` → R and hk : [−1, 1]d−` → R for
k = 1, . . . , R as

f(x1, . . . , xd) =
R∑
k=1

gk(x1, . . . , x`)hk(x`+1, . . . , xd).

A function f : [−1, 1]d with TT ranks at most (r1, . . . , rd−1) is said to be represented in
functional TT format when it is given in terms of univariate functions g(1)

α1 : [−1, 1]→ R
for α1 = 1, . . . , R1, g

(d)
αd−1 : [−1, 1]→ R for αd−1 = 1, . . . , Rd−1 and g(`)

α`−1,α` : [−1, 1]→ R
for α` = 1, . . . , R`, ` = 2, . . . , d− 1 as

f(x1, . . . , xd) =

R1∑
α1=1

. . . ,

Rd−1∑
αd−1=1

g(1)
α1

(x1)g(2)
α1,α2

(x2) · · · g(d−1)
αd−2,αd−1

(xd−1)g(d)
αd−1

(xd). (2.12)

Remark 2.8. We want to emphasize that many other low-rank approximation formats
can be generalized analogously from tensors to functions. For instance, generalizations of
the hierarchical Tucker format are used in [21, 91, 117, 241, 242, 286].

16

2.3. Chebyshev interpolation

2.3 Chebyshev interpolation

2.3.1 Chebyshev interpolation for univariate functions.

In the following, we recall the fundamental ideas of Chebyshev interpolation.

Let f : [−1, 1] → R and n ∈ N. The Chebyshev interpolant p of f with degree n is
the unique polynomial of degree n that interpolates f in the Chebyshev points (of the
second kind) xk = cos(kπ/n), k = 0, . . . , n, i.e. p(xk) = f(xk) for k = 0, . . . , n. Using
Chebyshev polynomials Tk(x) = cos(k cos−1(x)), k = 0, . . . , n [67] as basis for the vector
space of polynomials of degree at most n, we can write the interpolant as

p(x) =

n∑
i=0

aiTi(x), (2.13)

where ai ∈ R, i = 0, . . . , n denotes the so-called Chebyshev coefficients. These coefficients
are uniquely determined by the interpolation property

f(xk) = a0T0(xk) + a1T1(xk) + · · ·+ anTn(xk), for k = 0, . . . , n.

These n+ 1 equations form a linear system, which can be inverted. By using the following
property of the Chebyshev polynomials

1

2

(
Ti(x0)Tj(x0)+Ti(xn)Tj(xn)

)
+
n−1∑
k=1

Ti(xk)Tj(xk) =


0 i 6= j,
n
2 0 < i = j < n,

n i = j = 0 or i = j = n,

we can construct the matrix F ∈ R(n+1)×(n+1) defined as

F =
2

n



1
4T0(x0) 1

2T0(x1) 1
2T0(x2) . . . 1

4T0(xn)
1
2T1(x0) T1(x1) T1(x2) . . . 1

2T1(xn)
1
2T2(x0) T2(x1) T2(x2) . . . 1

2T2(xn)
...

...
...

. . .
...

1
4Tn(x0) 1

2Tn(x1) 1
2Tn(x2) . . . 1

4Tn(xn)

 , (2.14)

which maps the vector of function evaluations (f(x0), f(x1), . . . , f(xn)) onto the vector
of Chebyshev coefficients (a0, a1, . . . , an).

The following theorem summarizes the error bounds in [322, Theorem 8.2] and [322,
Theorem 7.1]. Note that the error bound decays exponentially with respect to n in part
a) and geometrically in part b).

Theorem 2.1. a) Suppose that the continuous function f : [−1, 1]→ R can be extended
to an analytic function f∗ on Eρ with ρ > 1, where Eρ denotes the Bernstein ellipse,
i.e. the closed ellipse with foci at ±1 and the sum of major and minor semi-axes equal

17

Chapter 2: Preliminaries

to ρ. Then the Chebyshev interpolant p of f with degree n satisfies

‖f − p‖∞ ≤
4ρ−n

ρ− 1
max
z∈Eρ

|f∗(z)|,

b) Assume that the function f : [−1, 1]→ R has (k − 1) absolutely continuous derivatives
and assume that the total variation of its kth derivative is bounded by V . Then the
Chebyshev interpolant p of f with degree n > k satisfies

‖f − p‖∞ ≤
4V

πk(n− k)k
.

Remark 2.9. Throughout this work, we follow the standard notation established in [240],
where the Chebyshev points, polynomials and coefficients are indexed starting from 0.
Other vectors, matrices and tensors are indexed starting from 1.

Remark 2.10. Given a function f : [−1, 1] → R, the cosine transform computes the
values

ãk = f(x0)Tk(x0) + f(xn)Tk(xn) + 2
n−1∑
i=1

f(xi)T (xi), for k = 0, . . . , n.

This can be written equivalently in terms of a discrete Fourier transform [135] as

ãk =
2n−1∑
j=0

f(cos(
πj

n
)) exp(

2πijn

2n
), for k = 0, . . . , n,

where i denotes the imaginary unity. Note that a0 = 1/2 · ã0, an = 1/2 · ãn and ak = ãk for
k = 1, . . . , n− 1. Thus, we can use the fast Fourier transform to compute the coefficient
vector in a fast and stable way.

Remark 2.11. Let m ∈ N. Note that the Chebyshev points for n = m are nested within
the Chebyshev points for n = 2m. This implies, that given the function evaluations to
compute a degree m interpolant, we only need to evaluate the function at m additional
points to compute the degree 2m interpolant. Moreover, there exist heuristics such as
chop in Chebfun [16] to estimate whether a given Chebyshev interpolant is an accurate
approximation of f . We can efficiently determine a sufficiently large degree for an accurate
interpolant by initially starting with a small degree and by doubling the degree until the
heuristic states that the interpolation is accurate.

2.3.2 Tensorized Chebyshev interpolation for multivariate functions

Chebyshev interpolation can be extended to multivariate functions using tensoriza-
tion [237]. Let f : [−1, 1]d → R and (n1, n2, . . . , nd) ∈ Nd. The Chebyshev interpolant
p of f with degree (n1, n2, . . . , nd) is the unique multivariate polynomial of degree

18

2.3. Chebyshev interpolation

(n1, n2, . . . , nd), which satisfies

p(x
(1)
i1
, x

(2)
i2
, . . . , x

(d)
id

) = f(x
(1)
i1
, x

(2)
i2
, . . . , x

(d)
id

), for i` = 0, . . . , n`, ` = 1, . . . , d, (2.15)

where the Chebyshev points are denoted by x(`)
k = cos(kπ/n`), k = 0, . . . , n`. We can

write the interpolant using a basis containing tensorized Chebyshev polynomial as

p(x1, x2, . . . , xd) =

n1∑
i1=0

n2∑
i2=0

. . .

nd∑
id=0

Ai1,i2,...,idTi1(x1)Ti2(x2) . . . Tid(xd), (2.16)

where A ∈ R(n1+1)×(n2+1)×···×(nd+1) denotes the so-called coefficient tensor. Analogously
to the case of univariate interpolation, the coefficient tensor is uniquely determined by
the interpolation property (2.15), which can be written as

Tj1,j2,...,jd =

n1∑
i1=0

n2∑
i2=0

. . .

nd∑
id=0

Ai1,i2,...,idTi1(x
(1)
j1

)Ti2(x
(2)
j2

) . . . Tid(x
(d)
jd

), (2.17)

for all j` = 0, . . . , n`, ` = 1, . . . , d, where the evaluation tensor
T ∈ R(n1+1)×(n2+1)×···×(nd+1) is defined elementwise as

Tj1,j2,...,jd = f(x
(1)
j1
, x

(2)
j2
, . . . , x

(d)
jd

). (2.18)

Let F (`) ∈ R(n`+1)×(n`+1) denote the matrix F defined in (2.14) with n replaced by n`.
Multiplying the system (2.17) with F (1) in the first mode yields

n1∑
i1=0

F
(1)
j1,i1
Ti1,j2,...,jd =

n2∑
i2=0

n3∑
i3=0

. . .

nd∑
id=0

Aj1,i2...,idTi2(x
(2)
j2

)Ti3(x
(3)
j3

) . . . Tid(x
(d)
jd

)

for all j` = 0, . . . , n`, ` = 1, . . . , d. Repeating this procedure in each mode yields the
explicit expression for the coefficient tensor

A = T ×1 F
(1) ×2 F

(2) ×3 · · · ×d F (d). (2.19)

We would like to point out that the mode-` product of the matrix F (`) and T can be
computed efficiently by using the fast Fourier transform described in Remark 2.9. Note
that computation of the coefficient tensor (2.19) requires the evaluation of (n1 + 1) · (n2 +

1) · · · (nd + 1) points of f .

The following theorem restates the error bound in [280, Lemma 7.3.3.]. Note that the
approximation error (2.20) decays exponentially with respect to min{n1, . . . , nd} for
analytic functions f .

Theorem 2.2. Suppose that the continuous function f : [−1, 1]d → R can be extended
to an analytic function f∗ on Eρ = Eρ1 × Eρ2 × · · · × Eρd with ρ` > 1 for ` = 1, . . . , d,
where Eρ again denotes the Bernstein ellipse defined in Theorem 2.1. Then the Chebyshev

19

Chapter 2: Preliminaries

interpolant p of f with degree (n1, . . . , nd) satisfies

‖f − p‖∞ ≤ 21+d/2
√
dρ−nmin

min

(
1− ρ−2

min

)−d/2
max
z∈Eρ

|f∗(z)|, (2.20)

where ρmin = min{ρ1, ρ2, . . . , ρd} and nmin = min{n1, n2, . . . , nd}.

2.3.3 Coefficient approximation

Due to the curse of dimensionality, it might not be feasible to compute the coefficient
tensor (2.19) for large d. In the following lemma, we study how approximations of the
evaluation tensor (2.18) affect the interpolant (2.16). Similar results with respect to the
L2-norm can be found in [41].

Lemma 2.2. Let p be defined as in (2.16). For T̂ ∈ R(n1+1)×(n2+1)×···×(nd+1), we define
the polynomial

p̂(x1, . . . , xn) =

n1∑
i1=0

. . .

nd∑
id=0

Âi1,...,idTi1(x1) · · ·Tid(xd), (2.21)

where

Â = T̂ ×1 F
(1) ×2 F

(2) ×3 · · · ×d F (d). (2.22)

Then

‖f − p̂‖∞ ≤ ‖f − p‖∞ +
d∏
`=1

(2

π
log(n`) + 1

)
‖T − T̂ ‖∞. (2.23)

Proof. By applying the triangle inequality we obtain

‖f − p̂‖∞ ≤‖f − p‖∞ + ‖p− p̂‖∞.

The function p̃ = p− p̂ is the unique polynomial of degree n satisfying

p̃(x
(1)
i1
, x

(2)
i2
, . . . , x

(d)
id

) = (T − T̂)i1i2...id , for i` = 0, . . . , n`, ` = 1, . . . , n.

Let n ∈ N. The Lebesgue constant Λn bounds the ratio of the uniform norm approximation
error for univariate interpolation and the maximum absolute value at the n+1 interpolation
nodes. For univariate Chebyshev interpolation we have Λn ≤ (2/π) log(n) + 1 [322].
In [223], it is shown that the product of the Lebesgue constants for univariate interpolation
bounds this ratio for multivariate interpolation, i.e.

‖p− p̂‖∞ = ‖p̃‖∞ ≤ Λn1Λn2 · · ·Λnd‖T − T̂ ‖∞.

20

2.3. Chebyshev interpolation

Note that the term ‖f − p‖∞ in the error bound (2.23) does not depend on the approx-
imation T̂ . For analytic f , Theorem 2.2 states that we can choose a sufficiently large
degree (n1, n2, . . . , nd) such that ‖f − p‖∞ is arbitrarily small.

Remark 2.12. In Lemma 2.2, we bound the error of ‖p− p̂‖∞ in terms of the Lebesgue
constants and ‖T − T̂ ‖∞. In the following, we briefly discuss how ‖p− p̂‖L1 is related to
a weighted norm of T − T̂ .

The tensorized Clenshaw-Curtis quadrature formula [74, 86] yields

‖p− p̂‖L1 =

∫ 1

−1

∫ 1

−1
· · ·
∫ 1

−1
|p(x1, . . . , xd)− p̂(x1, . . . , xd)|dx1 . . . dxd

=

n1∑
i−1=0

n2∑
i2=0

· · ·
nd∑
id=0

Wi1,i2,...,id |Ti1,i2,...,id − T̂i1i2...id |,

where Wi1,i2,...,id = w
(1)
i1
w

(2)
i2
· · ·w(d)

id
with nonnegative weights w(`)

i`
are defined for i` =

0, . . . , n`, ` = 1, . . . , d as in [334]

w
(`)
i`

=
c

(`)
`

(n`)

(
1−

bn`/2c∑
j=1

b
(`)
j

4j2 − 1
cos
(2ji`π

n`

))
,

c
(`)
i`

=

{
1 i` = 0 or i` = n`,

2 otherwise,

b
(`)
i`

=

{
1 i` = n`

2 ,

2 otherwise.

Based on these weights, we define the weighted tensor seminorm

‖T ‖W =

n1∑
i−1=0

n2∑
i2=0

· · ·
nd∑
id=0

Wi1,i2,...,id |Ti1,i2,...,id |.

This yields the equality ‖p− p̂‖L1 = ‖T − T̂ ‖W . Note that best approximations T ∗W of T
with respect to the seminorm ‖·‖W are related to best approximations T ∗1 of W ∗ T in the
`1-norm, where ∗ denotes the elementwise/Hadamard product for tensors. It holds

(T ∗W)i1,...,id =

{
(T ∗1)i1,...,id/Wi1,...,id Wi1,...,id 6= 0

(T ∗1)i1,...,id Wi1,...,id = 0.

for i` = 0, . . . , n`, ` = 1, . . . , d.

21

Chapter 2: Preliminaries

2.3.4 Connection to functional low-rank approximations

Assume that T̂ in (2.21) is given in Tucker format (2.5) with multilinear rank (r1, . . . , rd)

as

T̂ = C ×1 U
(1) ×2 U

(2) ×3 · · · ×d U (d).

In this case the coefficient tensor Â defined in (2.22) can be represented in the same
low-rank format. This leads to a polynomial approximation (2.21) of the form

p̂(x1, . . . , xd) =

r1∑
i1=1

. . .

rd∑
id=1

Ci1,...,id
(n1∑
k1=0

n1∑
j1=0

F
(1)
k1,j1

U
(1)
j1,i1

Tk1(x1)
)
· · ·

(nd∑
kd=0

nd∑
jd=0

F
(d)
kd,jd

U
(d)
jd,id

Tkd(xd)
)
. (2.24)

Note that this is an approximation in the functional Tucker format (2.11) with univariate
functions

u
(`)
i (x`) =

n∑̀
k=0

n∑̀
j=0

F
(`)
k,jU

(`)
j,i Tk(x`), for i = 1, . . . , r`, ` = 1, . . . , d.

The function u(`)
i (x`) is the univariate Chebyshev interpolant based on the values stored

in the ith colum of U (`).

Analogously, we can transform a tensor train approximation (2.6) of T̂ with TT cores
G(`) into a functional tensor train approximation (2.12) of f by defining the univariate
functions

g(1)
α1

(x1) =

n1∑
j=0

n1∑
k=0

F
(1)
j,k G

(1)
k,α1

Tj(x1),

g(d)
αd−1

(xd) =

nd∑
j=0

nd∑
k=0

F
(d)
j,k G

(d)
αd−1,k

Tj(xd),

g(`)
α`−1,α`

(x`) =

n∑̀
j=0

n∑̀
k=0

F
(`)
j,kG

(`)
α`−1,k,α`

Tj(x`).

These can again be seen as univariate Chebyshev interpolants based on the values stored
in the TT cores.

2.3.5 Proof of concept

The error bound (2.23) indicates that we ideally choose a Tucker approximation T̂ such
that ‖T − T̂ ‖∞ is of the same order of magnitude as ‖f − p‖∞. In the following, we

22

2.3. Chebyshev interpolation

demonstrate that there exist functions for which we can balance the contributions of
these errors with r` � n` for ` = 1, . . . , d. In this case the approximation (2.24) is almost
as accurate as the interpolant (2.16), but it requires significantly less storage.

We consider the function

fε(x, y, z) =
1

x+ y + z + 3 + ε

on [−1, 1]3 with parameter ε > 0. Let τ ≥ 0. In the following paragraphs, we show
that the Chebyshev interpolant pε defined in (2.16) requires polynomial degrees n` − 1 =

O(1/ log(1 +
√
ε)) to achieve an accuracy of ‖pε − fε‖∞ ≤ τ . However, one can achieve

‖T − T̂ ‖∞ ≤ τ with multilinear ranks r` ≤ O(| log(ε)|), which grows much slower than
O(1/ log(1 +

√
ε)) ≈ O(ε−1/2) for ε→ 0. For small values of ε this implies that we can

balance the error contributions with r` � n` for ` = 1, . . . , d.

Polynomial Degree For the degree (n, n, n) Chebyshev interpolant pε defined in (2.16)
we require ‖pε − fε‖∞ ≤ τ , which is equivalent to ‖ε(pε − fε)‖∞ ≤ ετ . By Theorem 2.2,

‖ε(pε − fε)‖∞ ≤ O(ρ−nmin · max
(x,y,z)∈Eρ

|εf∗ε (x, y, z)|).

We set ρ1 = ρ2 = ρ3 = 1 + ε/6 +
√

(1 + ε/6)2 − 1 and extend εfε analytically to
εf∗ε (x, y, z) = ε (x+ y + z + 3 + ε)−1 on Eρ. By construction max

(x,y,z)∈Eρ
|εf∗ε (x, y, z)| = 2

is assumed for x = y = z = −1 − ε/6, where |x + y + z + 3 + ε| is minimized. Hence,
we can choose n = O(1/ log(1 +

√
ε)) to obtain the desired accuracy. Although this is

only an upper bound for the polynomial degree required, numerical experiments reported
below indicate that it is tight.

Multilinear Rank An a priori approximation with exponential sums is used to obtain
a bound on the multilinear rank for a tensor containing function values of fε; see [153].
Given R > 1 and r ∈ N, Braess and Hackbusch [47] showed that there exist coefficients
ai and bi such that∣∣∣∣1x −

r∑
i=1

ai exp(−bix)

∣∣∣∣ ≤ 16 exp

(
− rπ2

log(8R)

)
, ∀x ∈ [1, R]. (2.25)

Trivially, we have εfε(x, y, z) = 1/ω for the substitution ω = (x + y + z + 3 + ε)/ε

with ω ∈ [1, 1 + 6/ε]. Applying (2.25) yields that there exist ai and bi such that
|1/ω −∑r

i=1 ai exp(−biω)| ≤ τε or, equivalently,

||fε(x, y, z)− gε(x, y, z)||∞ ≤ τ (2.26)

23

Chapter 2: Preliminaries

for every x, y, z ∈ [−1, 1] when

r ≥ − log
(
8
(
1 + 6

ε

))
log
(
τ
16

)
π2

= O(| log(ε)|),

where

gε(x, y, z) =
r∑
i=1

ai
ε
· exp

(
−bi
ε
x

)
· exp

(
−bi
ε
y

)
· exp

(
−bi
ε
z

)
· exp

(
−bi
ε

(3 + ε)

)
.

The approximation gε in (2.26) has multilinear rank (r, r, r). In turn, the tensor T̂i,j,k =

gε(x
(1)
i , x

(2)
j , x

(3)
k) has multilinear rank at most (r, r, r) and satisfies ‖T − T̂ ‖∞ ≤ τ .

Comparison In Figure 2.2, we estimate the maximal polynomial degree required to
compute a Chebyshev interpolant with accuracy τ = 10−10 for selected fibers of fε,
which is a lower bound for the required polynomial degrees n`. It perfectly matches the
asymptotic behavior of the derived upper bound O(1/ log(1 +

√
ε)). In Figure 2.2, we

also plot the multilinear ranks from the truncated HOSVD [88] with tolerance τ applied
to the tensor containing the evaluation of fε on a 150× 150× 150 Chebyshev grid. This
estimate serves as a lower bound for the multilinear rank required to approximate fε.
Due to the limited grid size, this estimate does not fully match the asymptotic behavior
| log(ε)|, but nonetheless it clearly reflects that the multilinear ranks can be much smaller
than the polynomial degrees, as predicted by | log(ε)| � 1/ log(1 +

√
ε), for sufficiently

small ε.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Figure 2.2 – Comparison of the theoretical upper bounds O(| log(ε)|) for the multilin-
ear rank and O(1/ log(1 +

√
ε)) for the polynomial degree for varying ε, the maximal

polynomial degree, used by Chebfun to approximate selected functions fibers of fε up
to accuracy 10−10, and the maximal multilinear rank of the truncated HOSVD with
tolerance 10−10 of a sample tensor on a 150× 150× 150 Chebyshev grid. The constants
in the bounds are chosen to result in curves close to the data.

24

3 Functional Tucker approximation

In this chapter, we focus on developing an efficient algorithm to approximate trivariate
functions (that is, functions depending on three variables) defined on the tensor-product
domain [−1, 1]3 in the functional Tucker format (2.11). We proceed by combining ten-
sorized Chebyshev interpolation (2.16) with a Tucker decomposition (2.5) of the coefficient
tensor (2.19). This leads to a functional Tucker approximation of the form (2.24).

Hashemi and Trefethen followed this approach to develop an approximation algorithm
for Chebfun3 [163]. Their algorithm is adaptive in both the multilinear rank and
the polynomial degree of the computed approximation, but the construction of the
approximation proceeds indirectly, via a so-called slice-Tucker decomposition of the
evaluation tensor (2.18). As a consequence, Chebfun3 sometimes uses unnecessarily
many function evaluations and does not fully benefit from the potential of the Tucker
decomposition to reduce, sometimes dramatically, the computational cost.

We propose a novel algorithm that utilizes univariate fibers instead of bivariate slices
to construct a Tucker decomposition (2.5) of the evaluation tensor (2.18) directly. We
call our approach Chebfun3F to emphasize that it is based on selecting the Fibers of the
evaluation tensor to construct the initial factor matrices. In a second step, we replace
orthogonal projections (2.7) by oblique projections (2.3) based on DEIM to construct
the core tensor. We combine this approach with heuristics similar to the ones used in
Chebfun3 for choosing the polynomial degree and for the accuracy verification. Chebfun3F
reduces the cost for the approximation in terms of the number of function evaluations for
nearly all functions considered, typically by 75%, and sometimes by over 98%.

This chapter is based on the article [100]. Its remainder is structured as follows. In
Section 3.1, we briefly recall the approximation algorithm currently used in Chebfun3.
Section 3.2 introduces our novel algorithm Chebfun3F. In Section 3.3, we perform
numerical experiments to compare Chebfun3, Chebfun3F and sparse grid interpolation.
We then analyse the coefficient decay of the resulting approximations and discuss how
Chebfun3F can be incorporated into Chebfun in Section 3.4. In Section 3.5, we analyze

25

Chapter 3: Functional Tucker approximation

further properties of functional Tucker decompositions computed based on tensorized
Chebyshev interpolation.

3.1 Existing algorithm: Chebfun3

In this section, we recall how an approximation of the form (2.11) is computed in
Chebfun3 [163]. As discussed in Section 2.3.5, there are often situations in which
approximations (2.24) require a much smaller (r1, . . . , rd) compared to the polynomial
degree (n1, . . . , nd). Chebfun3 benefits from such a situation by first using a coarse
evaluation tensor Tc to identify the fibers needed for the low-rank approximation. This
allows to construct the actual approximation from a finer sample tensor Tf by only
evaluating these fibers instead of the whole tensor.

Chebfun3 consists of three phases: preparation of the approximation by identifying fibers
for a so-called block term decomposition [87] of Tc, refinement of the fibers, conversion
and compression of the refined block term decomposition of Tf into functional Tucker
format (2.11).

3.1.1 Phase 1: Block term decomposition

In Chebfun3, the coarse evaluation tensor Tc ∈ R(n
(c)
1 +1)×(n

(c)
2 +1)×(n

(c)
3 +1) is initially

obtained by sampling f on a 17 × 17 × 17 grid of Chebyshev points. A block term
decomposition of Tc is obtained by applying ACA (see Algorithm 1) recursively. In the
first step, ACA is applied to a matricization of Tc, say, the mode-1 matricization T {1}c .
This results in index sets I, J such that

T {1}c ≈ T {1}c (:, J)
(
T {1}c (I, J)

)−1
T {1}c (I, :), (3.1)

where T {1}c (:, J) contains mode-1 fibers of Tc and T {1}c (I, :) contains mode-(2, 3) slices
of Tc. For each i ∈ I, such a slice T {1}c (i, :) is reshaped into a matrix Si = Tc(i, :, :) ∈
R(n

(c)
2 +1)×(n

(c)
3 +1) and, in the second step, approximated by again applying ACA:

Si ≈ Si(:, Li) (Si(Ki, Li))
−1 Si(Ki, :), (3.2)

where Si(:, Li) and Si(Ki, :) contain mode-2 and mode-3 fibers of Tc, respectively. Com-
bining (3.1) and (3.2) yields the approximation

T {1}c ≈ T {1}c (:, J)
(
T {1}c (I, J)

)−1

vec(S1(:, L1) (S1(K1, L1))−1 S1(K1, :))

vec(S2(:, L2) (S2(K2, L2))−1 S2(K1, :))
...

 , (3.3)

26

3.1. Existing algorithm: Chebfun3

where vec denotes vectorization, i.e. the reshaping of a matrix into a vector. Reshaping
this approximation into a tensor can be viewed as a block term decomposition in the
sense of [87, Definition 2.2.]. This approximation scheme is visualized in Figure 3.1.

{1}

≈ −1· · vec

,

vec

T

slice S1 slice S2

for each slice Si : ≈ · −1·

Figure 3.1 – Visualization of a block term decomposition (3.3).

If the ratios of |I|/(n(c)
1 +1), |Ki|/(n(c)

2 +1) and |Li|/(n(c)
3 +1) are larger than the heuristic

threshold (2
√

2)−1 the coarse grid resolution (n
(c)
1 +1, n

(c)
2 +1, n

(c)
3 +1) is deemed insufficient

to identify fibers. If this is the case, n(c)
` is increased to

⌊√
2

⌊
2 log2(n

(c)
` +1)+1

⌋⌋
and Phase 1

is repeated.

3.1.2 Phase 2: Refinement

The block term decomposition (3.3) is composed of fibers of Tc. Such a fiber Tc(:, j, k)

corresponds to the evaluation of a univariate function f(·, y, z) for certain fixed y, z. We
apply the Chebfun heuristic described in Remark 2.11 to decide whether the function
values in Tc(:, j, k) suffice to yield an accurate interpolation of f(·, y, z) [16]. If this is not
the case, we add nested evaluations of f(·, y, z) to refine the approximation.

In Chebfun3 this heuristic is applied to all mode-` fibers contained in (3.3) simultaneously.
Let n(f)

` denote the polynomial degree for which the heuristic states that the interpolation
of is accurate. The refined mode-` fibers are now vectors of length n(f)

` + 1. Replacing
all fibers in (3.3) by their refined counterparts yields an approximation of the tensor Tf ,
which contains the evaluations of f on a (n

(f)
1 + 1)× (n

(f)
2 + 1)× (n

(f)
3 + 1) Chebyshev

grid. Note that Tf might be very large and is never computed explicitly. We visualize
the refinement idea in Figure 3.2.

3.1.3 Phase 3: Compression

In the third phase of the Chebfun3 constructor, the refined block term decomposition is
converted and compressed to the desired Tucker format (2.11), where the interpolants

27

Chapter 3: Functional Tucker approximation

Tc (: , j , 0) f (·, y , 1)

↔↔

Tf (: , j , 0)

Figure 3.2 – Visualization of the refinement step described in Section 3.1.2. In the
refinement step, we replace the initial fiber Tc(:, j, 0) by the fiber Tf (:, j, 0). Here we
depict tensors for (n

(c)
1 , n

(c)
2 , n

(c)
3) = (11, 11, 11) and (n

(f)
1 , n

(f)
2 , n

(f)
3) = (22, 11, 11).

ui(x) are stored as Chebfun objects [27]; see [163] for details. Lemma 2.2 guarantees a
good approximation f̂ when the polynomial degree (n

(f)
1 , n

(f)
2 , n

(f)
3) is sufficiently large

and when Tf is well approximated by the underlying Tucker approximation T̂ . Neither of
these properties can be guaranteed in Phases 1 and 2 alone. Therefore in a final step,
Chebfun3 verifies the accuracy by comparing f and the computed approximation at
Halton points [239]. If the estimated error is too large, the whole algorithm is restarted
on a finer coarse grid from Phase 1.

3.1.4 Disadvantages

The Chebfun3 algorithm often requires unnecessarily many function evaluations. As
we illustrate in the following, this is due to redundancy among the mode-2 and mode-3
fibers. For this purpose we collect all (refined) mode-2 fibers Si(:, Li) in the block term
decomposition (3.3) into the columns of a big matrix V BTD

m =
[
S1(:, L1) · · · Sm(:, Lm)

]
,

where m is the number of steps of the outer ACA (3.1). As will be demonstrated with an
example below, the matrix V BTD

m is often observed to have low numerical rank, which in
turn allows to represent its column space by much fewer columns, that is, much fewer
mode-2 fibers. As the accuracy of the column space determines the accuracy of the Tucker
decomposition after the compression, this implies that the other mode-2 fibers in V BTD

m

are redundant.

Let us now consider the block term decomposition∗ (3.3) for the function

f(x, y, z) =
1

1 + 25
√
x2 + y2 + z2

.

In Figure 3.3 the numerical rank and the number of columns of V BTD
m are compared. For

m = 10 the approximation of the slices Si1 to Si10 leads to a total of 153 mode-2 fibers,

∗Note that the accuracy verification in Phase 3 fails once for this function. Here we only consider to
block term decomposition obtained after restarting the procedure.

28

3.2. Novel algorithm: Chebfun3F

the sum of the corresponding red and blue bars in Figure 3.3. In contrast, their numerical
rank (blue bar) is only 19. Thus, the red bar can be interpreted as number of redundant
mode-2 fibers. This happens since nearby slices tend to be similar. The total block term

0 5 10 15

0

50

100

150

200

250

300

BTD

BTD

Figure 3.3 – Numerical rank and number of redundant columns (= total number of
columns - numerical rank) of the matrix V BTD

m , whose columns are given by the refined
version of the mode-2 fibers determined after m steps of the outer ACA (3.1) in Chebfun3.

decomposition contains 18 slices and is compressed into a Tucker decomposition with
multilinear rank (17, 19, 19). It contains 242 redundant fibers, the refinement requires
192 function evaluations for each of them. Note that the asymmetry in the rank of the
Tucker decomposition is caused by the asymmetry of the block term decomposition.

Another disadvantage is that Chebfun3 always requires the full evaluation of Tc in Phase 1.
This becomes expensive when a large size (n

(c)
1 + 1)× (n

(c)
2 + 1)× (n

(c)
3 + 1) is needed in

order to properly identify suitable fibers.

3.2 Novel algorithm: Chebfun3F

In this section, we describe our novel algorithm Chebfun3F to compute an approximation of
the form (2.11). The goal of Chebfun3F is to the avoid the redundant function evaluations
observed in Chebfun3. While the structure of Chebfun3F is similar to Chebfun3, consisting
of 3 phases to identify/refine fibers and compute a Tucker decomposition, there is a major
difference in Phase 1. Instead of proceeding via slices, we directly identify mode-` fibers
of Tc for building factor matrices. The core tensor is constructed in Phase 3.

3.2.1 Phase 1: Fiber indices and factor matrices

As in Chebfun3, the coarse tensor Tc ∈ R(n
(c)
1 +1)×(n

(c)
2 +1)×(n

(c)
3 +1) is initially defined as

evaluation tensor (2.18) with (n1, n2, n3) = (16, 16, 16). We seek to compute full rank

29

Chapter 3: Functional Tucker approximation

factor matrices Uc ∈ R(n
(c)
1 +1)×r1 , Vc ∈ R(n

(c)
2 +1)×r2 and Wc ∈ R(n

(c)
3 +1)×r3 such that

the orthogonal projection of Tc onto the span of the factor matrices is an accurate
approximation of Tc, i.e.

Tc ≈ Tc ×1 Uc(U
T
c Uc)

−1UTc ×2 Vc(V
T
c Vc)

−1V T
c ×3 Wc(W

T
c Wc)

−1W T
c . (3.4)

Additionally, we require that the columns in Uc, Vc,Wc contain fibers of Tc.

In the existing literature, algorithms to compute such factor matrices include the Higher
Order Interpolatory Decomposition [277], which is based on a rank revealing QR decom-
position, and the Fiber Sampling Tensor Decomposition [54], which is a generalization
of the CUR decomposition. We propose a novel algorithm, which in contrast to the
existing algorithms does not require the evaluation of the full tensor Tc. We follow the
ideas of TT-cross [251, 281] and its variants such as the Schur-Cross3D [271] and the
ALS-cross [101]. After the publication of [100] several algorithms for this purpose have
been suggested in [3]. The Tucker format with factor matrices containing fibers has been
called generalized tensor CUR decomposition in [157], mode-wise tensor decomposition
in [53] and tensor fiber CUR decomposition in [52].

Initially, we randomly choose index sets Ĩ , J̃ , K̃ by partitioning {0, . . . , 16} into 6 subsets
and sampling one index from each subset for each index set. In the first step, we apply
Algorithm 1 to (Tc(:, J̃ , K̃)){1}. Note that this needs only 36 · (n(c)

1 + 1) evaluations of
the function f , in contrast to (n

(c)
1 + 1)(n

(c)
2 + 1)(n

(c)
3 + 1) values in the whole tensor

Tc. The selected r1 columns serve as a first candidate for the factor matrix Uc. The
index set Ĩ is set to the row indices selected by Algorithm 1 (see Figure 3.4). We
use the updated index set and apply Algorithm 1 to (Tc(Ĩ , : K̃)){2} analogously, which
yields Vc and an updated J̃ . From (Tc(Ĩ , J̃ , :)){3} we obtain Wc and K̃. We repeat this
process in an alternating fashion with the updated index sets, which leads to potentially
improved factor matrices. Following the ideas of Chebfun3, we check after each iteration
whether the ratios r1/(n

(c)
1 + 1), r2/(n

(c)
2 + 1) and r3/(n

(c)
3 + 1) surpass the heuristic

threshold (2
√

2)−1. If this is the case, we increase the size of the coarse tensor n(c)
` to⌊√

2

⌊
2 log2(n

(c)
` +1)+1

⌋⌋
and restart the whole process by reinitializing Ĩ , J̃ , K̃ with r1, r2, r3

random indices respectively.

It is not clear a priori how many iterations are needed to attain an approximation (3.4)
that yields a Tucker approximation (2.11) which passes the accuracy verification in
Phase 3. In numerical experiments, it has usually proven to be sufficient to stop after
the second iteration, during which the coarse grid has not been refined, or when |Ĩ| ≤ 1,
|J̃ | ≤ 1 or |K̃| ≤ 1. This is formalized in Algorithm 4. Note that Uc, Vc,Wc are full rank
by construction, since Algorithm 1 stops based on the tolerance ε ≥ 0. In many cases, we
found that the numbers of columns in the factor matrices are equal to the multilinear
rank of the truncated HOSVD [88] of Tc with the same tolerance.

30

3.2. Novel algorithm: Chebfun3F

j̃1 j̃2 j̃3
k̃1
k̃2
k̃3

{1}

=Tc(:, J̃, K̃){1} = ≈
ACA

u
(c)
1 u

(c)
2

ĩ1
ĩ2

Figure 3.4 – Visualization of applying ACA (Algorithm 1) to a matricization of a subtensor.

Algorithm 4 Factor Matrix Computation

1: Input: f , (n
(c)
1 , n

(c)
2 , n

(c)
3), (r1, r2, r3)

2: Output: Uc, Vc,Wc, (n
(c)
1 , n

(c)
2 , n

(c)
3), (r1, r2, r3)

3: Let Tc(i, j, k) = f(x
(1)
i , x

(2)
j , x

(3)
k) be a function that evaluates the values of f on a

(n
(c)
1 + 1)× (n

(c)
2 + 1)× (n

(c)
3 + 1) Chebyshev grid on demand.

4: initialize J̃ , K̃ with r2, r3 randomly chosen indices in
{

0, . . . , n
(c)
1

}
,
{

0, . . . , n
(c)
2

}
5: for iterations = 1:2
6: compute ACA of Tc(:, J̃ , K̃){1} → Uc ∈ R(n

(c)
1 +1)×r1 = selected columns, Ĩ =

selected row indices
7: compute ACA of Tc(Ĩ , :, K̃){2} → Vc ∈ R(n

(c)
2 +1)×r2 = selected columns, J̃ =

selected row indices
8: compute ACA of Tc(Ĩ , J̃ , :){3} → Wc ∈ R(n

(c)
3 +1)×r3 = selected columns, K̃ =

selected row indices
9: if the multilinear ranks get too large → adjust (n

(c)
1 , n

(c)
2 , n

(c)
3) and go to line 3

10: if r1 ≤ 1 or r2 ≤ 1 or r3 ≤ 1 → return

3.2.2 Phase 2: Refinement of the factors

In Phase 2, the fibers in Uc, Vc,Wc are refined using the Chebfun heuristic [16] as in
Chebfun3 (see Section 3.1.2). This leads to full rank factor matrices Uf ∈ R(n

(f)
1 +1)×r1 ,

Vf ∈ R(n
(f)
2 +1)×r2 and Wf ∈ R(n

(f)
3 +1)×r3 containing the refined fibers of Tf , where Tf

denotes the evaluation tensor (2.18) of size (n
(f)
1 + 1)× (n

(f)
2 + 1)× (n

(f)
3 + 1). This phase

needs only O(
∑3

`=1(n
(f)
` + 1)r`) evaluations of f .

3.2.3 Phase 3: Reconstruction of the core tensor

In the final Phase of Chebfun3F, we compute the core tensor Ĉ to obtain the approximation
Tf ≈ Ĉ ×1 Uf ×2 Vf ×3 Wf .

In principle, the best approximation (with respect to the Frobenius norm) for fixed factor

31

Chapter 3: Functional Tucker approximation

matrices Uf , Vf ,Wf is obtained by orthogonal projections as in (2.7) by

Tf ≈ Tf ×1 Uf (UTf Uf)−1UTf ×2 Vf (V T
f Vf)−1V T

f ×3 Wf (W T
f Wf)−1W T

f .

Such an approach comes with the major disadvantage that the full evaluation of Tf
is required. This can be circumvented by instead using oblique projections. Applying
oblique projections in all three modes analogous to (2.3) yields

Tf ≈ T̂ =Tf ×1 Uf (ΦT
I Uf)−1ΦT

I ×2 Vf (ΦT
J Vf)−1ΦT

J ×3 Wf (ΦT
KWf)−1ΦT

K

=

(Tf ×1 ΦT
I ×2 ΦT

J ×3 ΦT
K)︸ ︷︷ ︸

=Tf (I,J,K)

×1 (ΦT
I Uf)−1 ×2 (ΦT

J Vf)−1 ×3 (ΦT
KWf)−1


︸ ︷︷ ︸

=Ĉ
×1 Uf ×2 Vf ×3 Wf ,

for index sets I, J,K and matrices ΦI ,ΦJ ,ΦK defined analogously as in (2.3). Note that
the computation of the Tf only requires r1 · r2 · r3 additional evaluations of f . To avoid
the potentially ill-conditioned matrices (ΦT

I Uf)−1, (ΦT
J Vf)−1,(ΦT

KWf)−1, we compute
the orthogonal matrices QU , QV , QW in the QR decompositions of Uf , Vf ,Wf . Note
that Uf (ΦT

I Uf)−1 = QU (ΦT
I QU)−1 and (Tf (I, J,K)×1 (ΦT

I Uf)−1)×1Uf = Tf (I, J,K)×1

Uf (ΦT
I Uf)−1. To determine the index sets I, J,K we apply DEIM [65], presented in

Algorithm 2, to the matrices QU , QV , QW . This leads to the Tucker decomposition used
in Chebfun3F

T̂ = Tf ×1 QU (ΦT
I QU)−1ΦT

I ×2 QV (ΦT
JQV)−1ΦT

J ×3 QW (ΦT
KQW)−1ΦT

K

= Tf (I, J,K)×1 QU (ΦT
I QU)−1 ×2 QV (ΦT

JQV)−1 ×3 QW (ΦT
KQW)−1. (3.5)

Note that in general neither QU nor QU (ΦT
I QU)−1 contain fibers of Tf . This issue will

be discussed in Section 3.4.

3.2.4 Chebfun3F algorithm

Having computed the Tucker factors Uf , Vf andWf in Phase 2, and the core Ĉ in Phase 3,
we obtain the approximation (2.24) of the form (2.11). Following Chebfun3, we compute
the Chebyshev interpolants of the columns of Uf , Vf ,Wf using Chebfun [27]. We also
perform an accuracy verification for f̂ by comparing its evaluations at Halton points
to the original f . If the difference of the evaluations is too large, we restart the whole
algorithm up to ten times using a finer coarse grid. Additionally, we modify the ranks
such that if r`1 ≤ 2 we set r`2 = max(6, 2r`2) and r`1 = 3 for `1 6= `2, and after the forth
restart we set r` = 2r` for ` = 1, 2, 3. This ensures that the multilinear ranks can grow in
Phase 1. The overall Chebfun3F algorithm is formalized in Algorithm 5.

32

3.2. Novel algorithm: Chebfun3F

Algorithm 5 Chebfun3F

1: Input: function f(x, y, z), a procedure Tf (i, j, k) = f(x
(1)
i , x

(2)
j , x

(3)
k) that evaluates

the values of f on a (n
(f)
1 + 1)× (n

(f)
2 + 1)× (n

(f)
3 + 1) Chebyshev grid on demand, a

stopping tolerance ε > 0.
2: Output: approximation f̂(x, y, z)=

∑r1
i=1

∑r2
j=1

∑r3
k=1 Cijkui(x)vj(y)wk(z)

3: Initialization: (n
(c)
1 , n

(c)
c , n

(c)
3) = (16, 16, 16), (r1, r2, r3) = (6, 6, 6)

4: Phase 1:
5: apply Algorithm 4 to compute the factor matrices Uc, Vc,Wc and to update

(n
(c)
1 , n

(c)
2 , n

(c)
3), (r1, r2, r3)

6: Phase 2:
7: (n

(f)
1 , n

(f)
2 , n

(f)
3) = (n

(c)
1 , n

(c)
2 , n

(c)
3), Uf = Uc, Vf = Vc, Wf = Wc

8: while Chebfun heuristic in [16] to decide if Uf contains a sufficient number of
entries is not satisfied

9: n
(f)
1 + 1 = 2n

(f)
1 , refine Uf such that its columns have length n(f)

1

10: proceed analogously to obtain Vf ,Wf

11: Phase 3:
12: [QU ,∼] = qr(Uf), I = DEIM(QU), U = QU ·QU (I, :)−1

13: [QV ,∼] = qr(Vf), J = DEIM(QV), V = QV ·QV (J, :)−1

14: [QW ,∼] = qr(Wf), K = DEIM(QW), W = QW ·QW (K, :)−1

15: compute the Chebyshev interpolants ui(x), vj(y), wk(z) based on U, V,W (see
Section 2.3.4)

16: C = Tf (I, J,K), f̂(x, y, z)=
∑r1

i=1

∑r2
j=1

∑r3
k=1 Cijkui(x)vj(y)wk(z)

17: if |f(x, y, z)− f̂(x, y, z)| > 10ε at Halton points (x, y, z) ∈ [−1, 1]3

18: modify the ranks r` if they are too small

19: restart from Phase 1 with n(c)
` =

⌊√
2

⌊
2 log2(n

(c)
` +1)+1

⌋⌋

33

Chapter 3: Functional Tucker approximation

Remark 3.1. In Chebfun3 upper bounds for the multilinear rank, polynomial degree and
grid sizes are prescribed. The tolerances in the accuracy verification and in the ACA
are initially set close to machine precision or provided by the user. Tolerance issues are
avoided by relaxing these tolerances adaptively based on the computed function evaluations.
In Chebfun3F, we handle these technicalities in the same manner.

3.2.5 Existence of a quasi-optimal Chebfun3F approximation

Due to the many heuristic ingredients in the Chebfun3F algorithm, it is difficult to
analyze the convergence of the whole algorithm. Instead, we discuss the existence and
error analysis of a specific Chebfun3F reconstruction. Lemma 2.2 shows how we can
bound the approximation error depending on ‖T − T̂ ‖∞. Theorem 3.1 provides a bound
for this error for a tensor approximation of the format (3.5) with specifically chosen fibers
and index sets. The best approximation in the format will be at least as good. Although
Chebfun3F is not guaranteed to return these specific fibers and index sets, it is hoped
that its error is not much larger.

Theorem 3.1. Consider T ∈ Rn1×n2×n3 of multilinear rank at least (r1, r2, r3). Let
QU , QV , QW denote orthonormal bases of r1, r2, r3 selected mode-1, 2, 3 fibers of T respec-
tively. Given index sets I, J,K we consider a Tucker decomposition of the form

T̂ = T ×1 QU (ΦT
I QU)−1ΦT

I ×2 QV (ΦT
JQV)−1ΦT

J ×3 QW (ΦT
KQW)−1ΦT

K .

There exists a choice of fibers and indices such that

‖T − T̂ ‖∞ ≤
(√

q(r1, n1)·(r1 + 1) +
√
q(r1, n1) · q(r2, n2)·(r2 + 1)

+
√
q(r1, n1) · q(r2, n2) · q(r3, n3)·(r3 + 1)

)
‖T − T̂best‖F ,

where q(r, n) =
√

1 + r(n− r), and T̂best is the best Tucker approximation of T with
multilinear rank at most (r1, r2, r3).

Proof. Using Frobenius norm properties and Lemma 2.1, we obtain

‖T − T̂ ‖∞ ≤‖T − T̂ ‖F ≤ ‖(ΦT
I QU)−1‖2‖(I −QUQTU)T {1}‖F

+ ‖(ΦT
I QU)−1‖2‖(ΦT

JQV)−1‖2‖(I −QVQTV)T {2}‖F
+ ‖(ΦT

I QU)−1‖2‖(ΦT
JQV)−1‖2‖(ΦT

KQW)−1‖2‖(I −QWQTW)T {3}‖F .
(3.6)

From [138, Lemma 2.1] it follows that there exists an index set I such that

‖(ΦT
I QU)−1‖2 ≤

√
1 + r1(n1 − r1). (3.7)

34

3.2. Novel algorithm: Chebfun3F

From [93, Theorem 8] with the role of rows and columns interchanged it follows that we
can select mode-1 fibers U of T such that

‖(I −QUQTU)T {1}‖F = ‖(I −U(UTU)−1UT)T {1}‖F ≤
√
r1 + 1‖T − T̂best‖F . (3.8)

Analogous bounds hold for ‖(ΦT
JQV)−1‖2, ‖(ΦT

KQW)−1‖2, ‖(I − QVQ
T
V)T {2}‖F and

‖(I −QWQTW)T {3}‖F . Applying the bounds (3.7) and (3.8) to the factors in (3.6) yields
the claimed result.

Remark 3.2. If one uses orthogonal instead of oblique projections in Phase 3, Corollary 6
in [79] yields a bound similar to Theorem 3.1. Whilst the index sets obtained from
DEIM [66] yield small errors in practice, their theoretical upper bounds for ‖(ΦT

I QU)−1‖2
grow exponentially in r. In contrast, the strong rank-revealing QR decomposition [149]
yields an index set for which a bound similar to inequality (3.7) is known [105, Lemma
2.1].

Remark 3.3. Note that the bound in Theorem 3.1 is the worst case bound for the optimal
choice of index sets. This does not present the whole picture as even suboptimal index
sets might yield a much better approximation in practice. To quantify the quality of
the approximation in practice, we computed Chebfun3F approximations for the functions
f(x, y, z) = log(1 + x2 + y2 + z2), f(x, y, z) = 1/(1 + x2 + y2 + z2), f(x, y, z) = exp(xyz)

and compared ‖Tf − T̂ ‖∞ and ‖Tf − THOSVD‖∞, where T̂ is computed using Chebfun3F
and THOSVD denotes the truncated HOSVD of Tf with multilinear ranks equal to those of
T̂ . We observed that both errors differ by at most a factor of 2. Even though the truncated
HOSVD does not focus on ‖·‖∞, it still can serve as a good proxy. Hence by Lemma 2.2,
the error in Chebfun3F is comparable to the error obtained from the truncated HOSVD.

3.2.6 Comparison of the theoretical cost

Assume f can be approximated accurately in Tucker format (2.11) with multilinear rank
(r, r, r) and polynomial degrees (n, n, n), n ≥ r. In a highly idealized setting Chebfun3
and Chebfun3F refine the coarse grid in Phase 1 until (n

(c)
` + 1) > (2

√
2)r and identify

fibers on this coarse grid. These fibers are refined until n(f)
` ≥ n and lead to Tucker

approximations which pass the accuracy check in Phase 3. Under these circumstances,
both Chebfun3 and Chebfun3F use O(r3) function evaluations in Phase 1 (see Section 2.2
in [163]). In total, Chebfun3 requires O(nr2) function evaluations [163, Proposition 2.1]),
whereas Chebfun3F only requires O(r3 +nr), since fewer fibers are refined in Phase 2. We
want to emphasize that, in general, it is not guaranteed that this n(c)

` suffices to identify
fibers leading to an accurate approximation. We summarize the breakdown of anticipated
costs in Table 3.1.

35

Chapter 3: Functional Tucker approximation

Chebfun3 Chebfun3F

Phase 1 O(r3) O(r3)

Phase 2 O(nr2) O(nr)

Phase 3 0 O(r3)

Total O(r3 + nr2) O(r3 + nr)

Table 3.1 – Anticipated numbers of functions evaluations in Chebfun3 and Chebfun3F.

3.3 Numerical results

In this section, we present numerical experiments† to compare Chebfun3F and Chebfun3.
The main focus lies on the number of function evaluations required to compute the
approximation in Tucker format (2.11). Unless mentioned otherwise the tolerance for the
ACA and the accuracy check are initially set close to machine precision.

3.3.1 Chebfun3 vs. Chebfun3F

In Section 3.1.4 we illustrated that the function

f(x, y, z) =
1

1 + 25
√
x2 + y2 + z2

,

leads to a lot of redundant fibers in Chebfun3. For this function, for both Chebfun3
and Chebfun3F, the accuracy check at the end of Phase 3 fails and the computation is
restarted on a finer coarse grid, which leads to an approximation that passes the test.
Overall 903 364 function evaluations are required by Chebfun3, 421 041 of them are used
before the restart. In comparison, Chebfun3F only needs 222 546 function evaluation in
total and 100 496 before the restart. In the final accuracy check, the estimated error for
Chebfun3 is 7.8 · 10−13 and 3.6 · 10−13 for Chebfun3F, i.e. both approximations achieve
around the same accuracy.

In Figure 3.5, the function evaluations per phase are juxtaposed. The figure shows, that
Chebfun3 requires a large number of function evaluations in Phase 2. This is caused by
the redundant fibers. In Phase 1, Chebfun3F requires fewer function evaluations, since
Tc is not evaluated completely. Whilst Chebfun3 only requires function evaluations in
Phase 3 for the accuracy check, Chebfun3F additionally needs to compute the core tensor,
which only leads to a small number of function evaluations compared to the other phases.

Remark 3.4. The number of function evaluations required by Chebfun3F depends on
the random initialization of the index sets Ĩ , J̃ , K̃ in Algorithm 4. We computed the
Chebfun3F approximation of f for 1 000 different random initializations and observed

†The MATLAB code to reproduce these results is available from https://github.com/cstroessner/
Chebfun3F.

36

https://github.com/cstroessner/Chebfun3F
https://github.com/cstroessner/Chebfun3F

3.3. Numerical results

Phase 1 Phase 2 Phase 3

0

0.5

1

1.5

2

2.5

3
10

5

(a) Before Restarting
Phase 1 Phase 2 Phase 3

0

0.5

1

1.5

2

2.5

3
10

5

(b) After Restarting

Figure 3.5 – Comparison of the function evaluations used by Chebfun3 and Chebfun3F
to approximate f(x, y, z) = (1 + 25

√
x2 + y2 + z2)−1. Both algorithms are restarted

due to failing the accuracy check once. Evaluations before the restart are depicted in
(a), evaluations after the restart in (b). The evaluations are subdivided into phases
corresponding to the phases in Section 3.1 and Section 3.2 respectively.

numbers of function evaluations ranging from 213 391 to 226 073 with mean 221 802.6 and
variance 4.96 · 106. Similarly mild fluctuations have been observed for all other functions
tested.

In Figure 3.6, the required function evaluations are depicted for four different functions.
The corresponding computing times are depicted in Table 3.2. Again both algorithms lead
to approximations of similar accuracy and Chebfun3F requires fewer function evaluations
than Chebfun3. For

f1(x, y, z) = exp(−
√

(x− 1)2 + (y − 1)2 + (z − 1)2) (3.9)

Chebfun3 requires the refinement of a huge number of redundant fibers in Phase 2. The
evaluations for

f2(x, y, z) = [cosh (3(x+ y + z))]−2 (3.10)

differ most in Phase 1, where Chebfun3F benefits from not evaluating Tc completely. No
additional refinement is required in Phase 2. For the function

f3(x, y, z) =
105

1 + 105(x2 + y2 + z2)
. (3.11)

Chebfun3F reduces the number of required function evaluations by more than 98% to
1 603 693 from 109 269 332 required by Chebfun3.

In certain cases Chebfun3 outperforms Chebfun3F. This can happen in degenerated
situations. For instance, the function f(x, y, z) = tanh(5(x+ z)) exp(y) requires a Tucker

37

Chapter 3: Functional Tucker approximation

Phase 1 Phase 2 Phase 3

0

2

4

6

8

10
10

6

(a)
Phase 1 Phase 2 Phase 3

0

2

4

6

8

10
10

6

(b)

Phase 1 Phase 2 Phase 3

0

2

4

6

8
10

7

(c)
Phase 1 Phase 2 Phase 3

0

1000

2000

3000

4000

5000

6000

(d)

Figure 3.6 – Total number of function evaluations per Phase in Chebfun3 and Chebfun3F
for the functions: (a) f1 (b) f2, (c) f3 as defined in (3.9)-(3.11) (d) the parametric PDE
model (3.12)-(3.13) with prescribed tolerance 10−9.

f1 f2 f3 PDE

Chebfun3 3.44 3.20 15.80 408.62

Chebfun3F 0.30 0.77 0.56 100.19

Table 3.2 – Computing times in MATLAB in seconds for Chebfun3 and Chebfun3F approx-
imations of f1, f2, f3 as defined in (3.9)-(3.11) and of the parametric PDE model (3.12)-
(3.13) with prescribed tolerance 10−9.

decomposition with rank r = [71, 1, 71]. In this case, Chebfun3F heavily relies on the
heuristic to increase (r1, r2, r3) when restarting and requires 1 641 712 function evaluations
compared to 1 128 061 in Chebfun3. Other functions that are difficult to approximate
with Chebfun3F include (numerically) locally supported functions, such as a trivariate
normal distribution with very small entries in the covariance matrix, for which identifying
non-zero fibers in Phase 1 without fully evaluating Tc might be difficult.

38

3.3. Numerical results

Application: Uncertainty quantification

Algorithms in uncertainty quantification, such as the Metropolis-Hastings method, often
require the repeated evaluations of a parameter depended quantity of interest [307]. In
many applications, the evaluation of this quantity requires the solution of a PDE depending
on the parameters. To speed up computations, the mapping from the parameters to
the quantity of interest is often replaced by a surrogate model [341]. In the context of
models with three parameters (or after a dimension reduction to three parameters [77]),
Chebfun3/Chebfun3F could be a suitable surrogate.

We consider the parametric elliptic PDE model problem on Ω = [1, 3]2

∇·((p1f1(x, y) + p2f2(x, y) + p3f3(x, y))∇u(x, y)) = 1 (x, y) ∈ Ω, (3.12)

u(x, y) = 0 ∈ ∂Ω, (3.13)

with parameters (p1, p2, p3) ∈ [1, 3]3 and functions f1(x, y) = cos(x)+sin(y)+2, f2(x, y) =

sin(x) + cos(y) + 2, and f3(x, y) = cos(x2 + y2) + 2. The quantity of interest is defined as
point evaluation u(1.5, 1.5). With Chebfun3F, we only need 3 217 PDE solves to compute
an approximation with prescribed accuracy 10−9, whereas Chebfun3 requires 7 626 as
depicted in Figure 3.6(d).

3.3.2 Comparison to sparse grids

Lastly, we study how efficient Chebfun3 approximations are compared to sparse grids
[50]. Sparse grids are a method to interpolate functions by projecting them onto a
particular space. This space is obtained by selecting the most beneficial elements from a
hierarchical basis. In the following, we use dimension-adaptive sparse grids based on a
Chebyshev-Gauss-Lobatto grid with polynomial basis functions as implemented in the
sparse grid interpolation toolbox [195].

We compare how the approximation error decays compared to the number of function
evaluations. Therefore, we prescribe varying tolerances to the algorithms. In Figure
3.7 the error decay is plotted for sparse grids, Chebfun3 and Chebfun3F. In (a), the
function already studied in section 3.1.4 is depicted. We observe that both Chebfun3F
and Chebfun3 require fewer function evaluations than sparse grids to achieve the same
accuracy. The sparse grids perform poorly, since the function is smooth, but the norms
of the second mixed derivatives are rather large. In contrast, the sum of 10 Gaussians
depicted in (b) is well suited for sparse grids. In this case sparse grids require fewer
function evaluations than Chebfun3F and Chebfun3 for the same accuracy. In (c) the
Chebfun3F and sparse grids perform about equally well for

f4(x, y, z) = log(x+ yz + exp(xyz) + cos(sin(exp(xyz)))). (3.14)

39

Chapter 3: Functional Tucker approximation

0 5 10 15

10
5

10
-10

10
-5

10
0

(a)

0 2 4 6

10
4

10
-10

10
-5

10
0

(b)

0 1 2 3 4 5

10
5

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(c)

Figure 3.7 – Comparison of the number of function evaluations required to compute a
Chebfun3, Chebfun3F and sparse grid approximation for the functions: (a) f(x, y, z) =
(1 + 25

√
x2 + y2 + z2)−1, (b) sum of 10 Gaussians, (c) f4 as defined in (3.14). The

algorithms are initialized with varying tolerances. Their L2 error is estimated at 1 000
sample points.

Note that the Chebfun3F heuristics only require a restart for a tolerance of around 10−7.
This leads to the outlier in the Chebfun3F graph. For an arbitrary, black-box function it
is not clear a priory whether a sparse grid interpolation or a Tucker decomposition (2.11)
is the more efficient type of approximation. Note that when the Tucker decomposition is
the better approximation format, we can expect that Chebfun3F requires fewer function
evaluations compared to Chebfun3.

We conclude that trivariate functions defined on tensor product domains can be approxi-
mated efficiently by combining tensorized Chebyshev interpolation and a low-rank Tucker
approximation of the evaluation tensor. Our numerical experiments demonstrate that
Chebfun3F typically requires fewer function evaluations to compute such an approximation

40

3.4. Coefficient decay analysis

of the same accuracy compared to Chebfun3.

3.4 Coefficient decay analysis

There is one major difference between the approximation computed using Chebfun3
and Chebfun3F as presented in Algorithm 5. The compression step in Phase 3 of
Chebfun3 ensures that the Tucker approximation of the coefficient tensor (2.22) contains
factor matrices with entries decaying to close to machine precision. This is not the
case of Chebfun3F, where the corresponding factor matrices are of the form F (1)QU or
F (1)QU (ΦT

I QU)−1 depending on if one treats the terms of the form (ΦT
I QU)−1 in (3.5)

as part of the factor matrix or as part of the core tensor. See Figure 3.8 for an example
of this discrepancy.

0 10 20 30 40 50

Degree of Chebyshev polynomial

10 -20

10 -15

10 -10

10 -5

10 0

M
a
g
n
it
u
d
e
 o

f
c
o
e
ff
ic

ie
n
t

Chebyshev coefficients

0 20 40 60 80

Degree of Chebyshev polynomial

10 -6

10 -4

10 -2

10 0

M
a
g
n
it
u
d
e
 o

f
c
o
e
ff
ic

ie
n
t

Chebyshev coefficients

Figure 3.8 – We plot the decay of the univariate Chebyshev interpolation coefficients (2.13)
of the functions u(1)

i in (2.24) for the approximations of f(x, y, z) = sin(exp(x+ y + z))
computed using Chebfun3 (left) and Chebfun3F (right). The different colors correspond
to different values of i ∈ {1, . . . , r1}.

Many functions to perform computations with univariate functions in the Chebfun package
assume that the function is represented in terms of coefficients (2.13) that decay until
reaching values close to machine precision. In Chebfun3F the coefficient tensor (2.19)
computed from (3.5) has decaying coefficients when studied as a whole, but the coefficients
stored in the factor matrices do not decay to machine precision when the core tensor is
not taken into account. This implies that applying operations such as e.g. computing a
derivative by a mode-` multiplication with a differentiation matrix (see Section7.2) are
working as expected when the whole coefficient tensor is taken into account. However,
when we only consider the multiplication of the `th factor matrix with the differentiation
matrix, heuristics [16] would state that the operation has not been performed accurately.
Note that it might not be feasible to analyse the coefficient decay of the whole coefficient
tensor in practice. In the following, we discuss how Chebfun3F approximations can be
modified to circumvent this issue. Note that we can not simply replace QU (ΦT

I QU)−1

41

Chapter 3: Functional Tucker approximation

in (3.5) by Uf (ΦT
I Uf)−1, since this would lead to very ill-conditioned matrices ΦT

I Uf .

3.4.1 Observations in a two-dimensional setting

To study the aforementioned issue, we first analyze the problem in a two-dimensional
setting using a fixed polynomial degree (n, n). Throughout this section, we denote the
evaluation matrix (2.18) by T and the transformation matrix (2.14) by F . All numerical
experiments are performed using the function f(x, y) = 1/(1 + 25(x2 + y2)) and n = 257.

Gaussian elimination In Chebfun2 [320], the matrix T is approximated using Gaussian
elimination. The approximation is constructed iteratively using ACA. Instead of storing
index sets I, J the approximation (2.1) is stored as sum of the rank-1 matrices subtracted
in each iteration in line 7 of Algorithm 1. This can be written as T ≈ UgCgV

T
g , where

norms of the columns in Ug, Vg decay rapidly and the matrix Cg ∈ Rr×r is a diagonal
matrix which contains the inverses of the pivot elements determined in line 5. It is
important to note that the columns in Ug are not directly fibers of the original function.
The matrix Cg is very ill-conditioned, but the large entries in Cg cancel out with the small
norms in the corresponding columns of Ug and Vg. The final approximation contains
univariate interpolants (2.13) with coefficients given by the columns of FUg, which decay
as depicted in Figure 3.9(a).

Adaptive cross approximation If we were to apply ACA as presented in Algorithm 1
to T , we would obtain an approximation of the form T ≈ T (:, J̃)T (Ĩ , J̃)−1T (Ĩ , :). Let
U = T (:, J̃), V = T (Ĩ , :)T . This leads to a final approximation containing Chebfuns with
coefficients given by the columns of FU , which decay as depicted in Figure 3.9(b). The
final approximation can be evaluated with an accuracy up to machine precision by using
the backslash operator of MATLAB to avoid inverting T (Ĩ , J̃)−1. However, we have to
point out that the inverse T (Ĩ , J̃)−1 (computed using MATLAB) is an ill-conditioned
matrix with condition number around 1015, which when used directly would lead to errors
of order 100 in point evaluation of the approximation. In fact, there we could not find
any matrix C ∈ Rr×r such that ||T − UCV T ||2F ≤ 10−8 in double precision.

Note that neither Gaussian eliminations of the form UgCgV
T
g nor the inversion using

backslash can be generalized directly to the three-dimensional setting.

Two-dimensional Chebfun3F The two-dimensional equivalent of Chebfun3F would
be to compute QR decompositions U = QURU , V = QVRR based on which we construct
a decomposition of the form T ≈ QU C̃QTV , where C̃ ∈ Rr×r. In contrast to the previous
paragraph, where it was not possible to find a suitable matrix C, we can now find
matrices C̃ that lead to accurate approximations of T . Using oblique projections based

42

3.4. Coefficient decay analysis

on DEIM (2.3) we obtain C̃ = QU (I, :)−1T (I, J)QV (J, :)−T , where I, J are index sets
obtained by applying DEIM to QU and QV . This is the only approach so far that can be
generalized to higher dimensions, but the interpolation coefficients in the columns of the
factor matrix FQU decay as depicted Figure 3.9(c) and would not be considered proper
approximations of univariate functions in Chebfun.

0 100 200 300

Degree of Chebyshev polynomial

10 -25

10 -20

10 -15

10 -10

10 -5

10 0

M
a
g
n
it
u
d
e
 o

f
c
o
e
ff
ic

ie
n
t

Chebyshev coefficients

(a) FUg

0 100 200 300

Degree of Chebyshev polynomial

10 -25

10 -20

10 -15

10 -10

10 -5

10 0

M
a
g
n
it
u
d
e
 o

f
c
o
e
ff
ic

ie
n
t

Chebyshev coefficients

(b) FU

0 100 200 300

Degree of Chebyshev polynomial

10 -25

10 -20

10 -15

10 -10

10 -5

10 0

M
a
g
n
it
u
d
e
 o

f
c
o
e
ff
ic

ie
n
t

Chebyshev coefficients

(c) FQU

0 100 200 300

Degree of Chebyshev polynomial

10 -25

10 -20

10 -15

10 -10

10 -5

10 0

M
a
g
n
it
u
d
e
 o

f
c
o
e
ff
ic

ie
n
t

Chebyshev coefficients

(d) FQ̄U

Figure 3.9 – Decay of the coefficients stored in the columns of FUg, FU , FQU , FQ̄U
defined in Sections 3.4.1 and 3.4.2.

3.4.2 Potential solutions in the two-dimensional setting

From the previous section, we conclude that we can not use the matrices U and V

directly as factor matrices. At the same time, we should not use the matrices QU and QV
directly due to the bad decay of the coefficients in the factor matrices. In the following,
we propose two possible approaches to solve this issue, which lead to approximations as
accurate as the approximation QU C̃QTV . Both approaches can be generalized to higher

43

Chapter 3: Functional Tucker approximation

dimensional settings.

Storing the R factors in addition to the core tensor The first approach is to
compute the approximation T ≈ QU C̃QTV . We now insert the matrices RU , RV to obtain
an approximation of the form T ≈ UR−1

U C̃R−TV V T , which contains the nicely decaying
factor matrices U, V . This can be seen as approximation with core matrix Ĉ = R−1

U C̃R−TV ,
but we can not compute Ĉ explicitly due to the issues described in Section 3.4.1. We
found that we can instead store RU , RV separately. This allows us to accurately evaluate
the approximation by using the following order of operations ((FU)R−1

U)C̃(R−TV (V TF T)).
At the same time, storing the additional terms RU , RV is the main disadvantage of the
approach since we can no longer explicitly form the approximation (2.24).

Rescaling of the Q factors Starting from the approximation of the form T ≈
QU C̃Q

T
V , we can modify the coefficient decay by introducing diagonal scaling ma-

trices DU , DV ∈ Rr×r. This leads to an approximation of the form T ≈ Q̄U C̄Q̄
T
V ,

where Q̄U = QUDU , Q̄V = QVDV and C̄ = D−1
U CD−1

V . We found that setting
(DU)k,k = ε/max(ε,min(|FQU (:, k)|)) and(DV)k,k = ε/max(ε,min(|FQV (:, k)|)) for
k = 1, . . . , r leads to a final approximation containing Chebfuns with coefficients FQ̄U
and FQ̄V , which satisfy the Chebfun heuristic [16] and can, thus, be considered proper
Chebfun objects; see Figure 3.9(d).

We would like to point out that this rescaling approach does not lead to a loss in accuracy
when evaluating the resulting approximation. As in Chebfun2, we obtain an evaluation
error of order 10−13. Also note that if we were to set all coefficients in Q̄U with absolute
value smaller than 10−13 to zero, we would still achieve an evaluation error of order 10−12.

3.4.3 Incorporation of Chebfun3F in Chebfun

In Chebfun3F we can avoid the issue, discussed in Section 3.4, that the coefficients of the
factor matrices do not decay by generalizing the idea of rescaling the Q factors described
in Section 3.4.2. For this purpose, we modify Phase 3 in Algorithm 5 in the following way.
We set U = DUQU , V = DVQV , W = DWQW and C = Tf (I, J,K)×1 DUQU (I, :)−1 ×2

DVQV (J, :)−1 ×3 DwQW (K, :)−1, where the diagonal matrices DU , DV , DW are defined
as (DU)i,i = ε/max(ε,min(|F (1)QU (:, i)|)), (DV)j,j = ε/max(ε,min(|F (2)QV (:, j)|)) and
(DW)k,k = ε/max(ε,min(|F (3)QW (:, k)|)) for i = 1, . . . , r1, j = 1, . . . , r2, k = 1, . . . , r3.
Repeating the experiment presented in Figure 3.8 with this modified version of Chebfun3F
yields the coefficient decay depicted in Figure 3.10. Observe that the coefficients now
decay to almost machine precision as desired.

In collaboration with Nick Trefethen, Nick Hale, Behnam Hashemi and Alex Townsend, we
incorporated this modified version of the Chebfun3F algorithm as alternative constructor

44

3.5. Additional insights

0 10 20 30 40 50

Degree of Chebyshev polynomial

10 -20

10 -15

10 -10

10 -5

10 0

M
a
g
n
it
u
d
e
 o

f
c
o
e
ff
ic

ie
n
t

Chebyshev coefficients

Figure 3.10 – We plot the decay of the univariate Chebyshev interpolation coefficients (2.13)
of the functions u(1)

i in (2.24) for the approximation of f(x, y, z) = sin(exp(x+ y + z))
computed using the modified version of Chebfun3F presented in Section 3.4.3.

for Chebfun3 objects into the official Chebfun package. Our alternative constructor can
be called using chebfun3(f,’chebfun3f’) and returns a standard Chebfun3 object.

Remark 3.5. As in Chebun3 [163], we included a coefficient truncation [16] in the
modified version of Chebfun3F. Such a truncation is not included in the original version
of Chebfun3F presented in Algorithm 5. This causes the difference in the polynomial
degrees in Figure 3.8 and 3.10.

3.5 Additional insights

3.5.1 Approximations in Lebesgue spaces

In Remark 2.12, we discuss how an approximation of the evaluation tensor (2.18) affects
the L1-norm of the corresponding interpolants. In the following, we study this relationship
for the L2-norm.

Let p : [−1, 1]3 → R be defined based on the evaluation tensor T ∈ R(n+1)×(n+1)×(n+1)

as in (2.16). Let p̂ be defined as in (2.21) based on the tensor T̂ ∈ R(n+1)×(n+1)×(n+1).
By using tensorized Clenshaw-Curtis quadrature as in Remark 2.12 we obtain

‖p− p̂‖2L2 =

∫ 1

−1

∫ 1

−1

∫ 1

−1
(p(x, y, z)− p̂(x, y, z))2dxdydz

=

n∑
i=0

n∑
j=0

n∑
k=0

Wi,j,k(Ti,j,k − T̂i,j,k)2 + εquad,

where εquad denotes the quadrature error. The quadrature error occurs, since (p− p̂)2 is
a polynomial of degree up to (2n, 2n, 2n), but Clenshaw-Curtis quadrature is only exact

45

Chapter 3: Functional Tucker approximation

up to degree (n, n, n) [325]. However, when the entries in the coefficients tensors A, Â
defined as in (2.19) based on T , T̂ decay sufficiently quickly, we can assume that εquad is
negligible [27]. Under this strong assumption, we have

‖p− p̂‖2L2 ≈
n∑
i=0

n∑
j=0

n∑
k=0

Wi,j,k((T − T̂)i,j,k)
2 = ‖

√
W ∗ (T − T̂)‖2F .

In order to obtain a good approximation of p in the format (2.24) with C ∈ Rr×r×r, we
try to minimize ‖

√
W ∗ (T − T̂)‖2F . Analogous to Remark 2.12, we can achieve this by

computing an approximation of
√
WT in Tucker format (2.5). Let T̃HOSVD be obtained

by applying a truncated HOSVD [88] to
√
WT . Let

(T̂HOSVD)i1,...,id =

{
(T̃HOSVD)i1,...,id/

√
Wi1,...,id Wi1,...,id 6= 0

(T̃HOSVD)i1,...,id Wi1,...,id = 0.

for i` = 0, . . . , n, ` = 1, . . . , d. Using the tensor T̂HOSVD to define p̂ yields a close to
optimal approximation of p in the L2-norm. Note that T̂HOSVD has multilinear rank at
most (r, r, r) and can thus be represented in Tucker format with with C ∈ Rr×r×r.

In Figure 3.11 we demonstrate that the singular values of (
√
WT){1} are closely related

to the error ‖p− p̂‖L2 . Surprisingly, both applying the HOSVD directly to T and using
the tensor T̂HOSVD yield polynomials with almost identical errors. However, it is not
possible to precisely determine the accuracy of ‖p− p̂‖L2 based on the singular values of
T̂ {1}. We conclude that the we can accurately estimate the multilinear rank required for
accurate approximations of the form (2.24) with respect to the L2-norm by truncating the
singular values of `-mode matricizations of

√
WT for sufficiently large n. For computing

an approximation with fixed multilinear rank it does not seem to be necessary to take
the weight tensor

√
W into account.

3.5.2 Further compression

In this section, we want to gain additional insight into the impact of the size of the
core tensor on approximations of the form (2.24). Moreover, we study if it is possible to
further compress the Tucker approximation (2.5) of the evaluation tensor (2.18). This
section is inspired by Rachel Minster’s talk [229] on the paper [278] at SIAM-ALA 2021.

We are interested in evaluating a kernel function k : R2 × R2 → R at all pairs (x(i), y(j))

for i = 1, . . . ,M, j = 1, . . . , N , where x(i) ∈ [a, b]2, y(j) ∈ [c, d]2, a, b, c, d ∈ R such that
[a, b]∩ [c, d] = ∅. Let K ∈ RM×N denote the matrix of evaluations, i.e. Ki,j = k(x(i), y(j)).
The direct computation of K requires M · N kernel evaluations. In the following, we
propose a method to approximate K using fewer kernel evaluations.

46

3.5. Additional insights

0 20 40 60
10

-15

10
-10

10
-5

10
0

10
5

Figure 3.11 – Let T denote the sample tensor of f(x, y, z) = cosh 3(x+ y + z)−1 on a
75×75×75 Chebyshev grid. We depict the singular value decay of T {1} and of (

√
WT){1}.

The interpolant (2.16) based on T is denoted by p. The interpolant based T̂HOSVD with
core tensor in Rr×r×r is denoted by p̂(

√
WT)

r and the interpolant obtained from a direct
HOSVD of T̂ with core tensor in Rr×r×r is denoted by p̂(T)

r . We plot estimations of
||p − p̂(

√
WT)

r ||L2 and ||p − p̂(T)
r ||L2 computed using 10 000 sample points for different

values of r. Note that the estimated L2-errors almost coincide for the same values of r.

We proceed by approximating k as a function using tensorized interpolation (2.16) and
approximations of the coefficient tensor (2.22) to obtain an approximation of the form

k(x1, x2, y1, y2) ≈ p(x1, x2, y1, y2) =

n1∑
i=0

n2∑
j=0

n3∑
k=0

n4∑
l=0

Âi,j,k,lTi(x1)Tj(x2)Tk(y1)Tl(y2).

where Â is derived from an approximation T̂ ∈ R(n1+1)×···×(n4+1) of the evaluation
tensor (2.18). Given T̂ we can compute the approximation

K̃ = Ex(F (2) ⊗ F (1))T̂ <2>(F (4) ⊗ F (3))ETy , (3.15)

of the kernel matrix K, where ⊗ denotes the Kronecker product, F (`) is defined as
in Equation (2.14), and Ex ∈ RM×(n1+1)(n2+1) and Ey ∈ RN×(n3+1)(n4+1) encode the
evaluations of the Chebyshev polynomials at the points of interest, i.e.

(Ex)i,j+k(n1+1) = Tj(x
(i)
1) · Tk(x(i)

2) for i = 1, . . . ,M, j = 0, . . . , n1, k = 0, . . . , n2,

(Ey)i,j+k(n1+1) = Tj(y
(i)
1) · Tk(y(i)

2) for i = 1, . . . , N, j = 0, . . . , n3, k = 0, . . . , n4.

Note that multiplying the kernel approximation (3.15) with a vector requires O((M +

47

Chapter 3: Functional Tucker approximation

N)n2 + n4) operations when n1 = n2 = n3 = n4 = n. This is cheaper than multiplying
K directly with a vector when (M +N)� n2.

Remark 3.6. Note that a generalization of these ideas to kernels k : Rd × Rd → R for
arbitrary d ∈ N is straightforward, but generalizing Equation (3.15) is only beneficial for
matrix vector products when (M +N)� nd.

In [229], it is suggested to obtain T̂ in Tucker format (2.5) using a non-adaptive approach
similar to Algorithm 5. First, the span of each matrizisation of T is approximated to obtain
the factor matrices. For this purpose the randomized row interpolatory decomposition
algorithm (RRID) [156] (see Algorithm 6) is applied to matricizations of subtensors of
T . The RRID algorithm immediately yields index sets that can be used to define the
core tensor of the Tucker approximation using oblique projections. The overall kernel
approximation algorithm is formalized in Algorithm 7.

Algorithm 6 Randomized row interpolatory decomposition

1: Input: matrix M ∈ Rm×n, target rank r, oversampling parameter p
2: Output: approximation M ≈ UM(J, :)
3: sample a Gaussian random matrix Ω ∈ Rn×(r+p)

4: compute a thin QR factorization QR = MΩ
5: Q = Q(:, 1 : r)
6: apply a pivoted thin QR factorization to QT and let J denote the set of pivot elements
7: U = Q(Q(J, :))−1

Algorithm 7 Kernel approximation

1: Input: kernel function k : [a, b]2 × [c, d]2 → R, polynomial degree (n1, n2, n3, n4),
size of the core tensor r1 × r2 × r3 × r4, index sets I` ⊆ {0, . . . , n`} for 1 ≤ ` ≤ 4

2: Output: approximation T̂ of the evaluation tensor (2.18) in Tucker format (2.5)
3: Let T denote the tensor containing the evaluations of k on a (n1 + 1)× (n2 + 1)×

(n3 + 1)× (n4 + 1) Chebyshev grid mapped onto the domain [a, b]2 × [c, d]2.
4: Let M1 = T (:, I2, I3, I4){1}, M2 = T (I1, :, I3, I4){2}, M3 = T (I1, I2, :, I4){3}, M4 =
T (I1, I2, I3, :)

{4}.
5: for ` = 1, . . . , 4
6: Apply RRID with target rank r` to obtain the approximation M` ≈ U`M`(J`, :) .
7: T̂ = T (J1, J2, J3, J4)×1 U1 ×2 U2 ×3 U3 ×4 U4

In the following numerical experiment, we consider the kernel function k(x, y) = 1
‖x−y‖2 .

We sample xi uniformly from [0, 1]2 for 1 ≤ i ≤ M = 200 and yj uniformly from
[2, 3]2 for 1 ≤ j ≤ N = 150. In Figure 3.12(a) we study the approximation error
‖K− K̃‖2 for approximations obtained using Equation (3.15), where T̂ is computed using
Algorithm 7 with different prescribed core tensor sizes. We observe that error of tensorized
interpolation (2.16) with polynomial degree (r, r, r, r) without any approximation of the
evaluation tensor yields the same approximation error as Algorithm 7 with core tensor in
Rr×r×r×r for any polynomial degree (n, n, n, n) with n > r. This implies that the error

48

3.5. Additional insights

is dominated by the chosen core tensor size for this kernel function. Figure 3.12(b) shows
that the matrix T̃ <2> used in (3.15) does not seem to be full rank. Truncating the SVD
of T̃ <2> with rank larger than 2r does not improve the approximation error when the core
tensor is in Rr×r×r×r. Thus, it is possible to further compress the approximation (3.15).
So far, we did not analyze the impact of the index sets I1, . . . , I4 in Algorithm 7. In
Figure 3.12(c), we observe that choosing m > 2 indices in each of the index sets I1, . . . , I4

does not improve the error for core tensors in R5×5×5×5, i.e. the m3 = 8 randomly
selected fibers in each mode suffice to find suitable factor matrices. For core tensors in
R10×10×10×10 and R15×15×15×15, the approximation error decreases for m increasing from
2 to 4 and stagnates afterwards. This demonstrates, that we only need slightly more than
r` fibers to identify good factor matrices for a given r`. At the same time, it confirms
that we do not need to fully evaluate T to compute suitable factor matrices.

We conclude this section by summarizing our observations for general functional Tucker
approximations of the form (2.24). Note that these findings also apply to Chebfun3
and Chebfun3F. While it can be beneficial to use a smaller core tensor compared to the
multilinear rank as demonstrated in Section 5.5.1, we showed that this is not necessarily the
case for all functions as demonstrated in Figure 3.12(a). A functional Tucker approximation
of the form (2.24) can potentially be compressed further to minimize the required
storage. This motivates the algorithms developed in Chapter 4, where we compress
approximations (2.24) further by computing TT approximations of the core tensor.
Lastly, we observe in Figure 3.12(c) that randomly selected subtensors (as used in
Algorithm 4) tend to be sufficient to compute factor matrices that lead to accurate Tucker
decompositions.

49

Chapter 3: Functional Tucker approximation

0 5 10 15 20
10

-15

10
-10

10
-5

10
0

(a)

0 5 10 15 20

SVD

10
-8

10
-6

10
-4

10
-2

10
0

10
2

(b)

2 4 6 8 10
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

(c)

Figure 3.12 – Comparison of ‖K − K̃‖2 for the setting in Section 3.5.2. Top Left: The
matrix K̃ (3.15) is computed based on T̃ obtained using Algorithm 7 with polynomial
degree (n, n, n, n) and core tensor in Rr1×r2×r3×r4 as shown in the legend. The index sets
in Algorithm 7 are set to I` = {0, . . . , n`} for ` = 1, . . . , 4. Additionally plot the error
when T̃ is computed using tensorized interpolation (2.16) without any approximation
of the evaluation tensor (full interpolation). Top Right: The tensor T̃ obtained using
Algorithm 7 with polynomial degree (20, 20, 20, 20) and core tensor in Rr1×r2×r3×r4 as
shown in the legend. The index sets in Algorithm 7 are set to I` = {0, . . . , 20} for
` = 1, . . . , 4. We then compute a truncated SVD of T̃ <2> with truncation rank rSVD. We
compute the matrix K̃ (3.15) based on this compressed version of T̃ <2>. Bottom: The
matrix K̃ is computed using Algorithm 7 with polynomial degree (20, 20, 20, 20) and core
tensor in Rr1×r2×r3×r4 as shown in the legend. The index sets I` each contain m indices
uniformly sampled from {0, . . . , 20}.

50

4 Extended functional tensor train
approximation

This chapter is concerned with the notoriously difficult task of approximating multivariate
functions on the tensor product domain [−1, 1]d for large values of d. In principle, we
could extend the algorithms presented in Chapter 3 to functions depending on more than
three variables. However, the functional Tucker format (2.11) is not well suited for the
high-order tensors arising from the evaluation of a function in many variables due to
the size of the core tensor scaling exponentially with respect to d. Other formats, such
as the functional tensor train (FTT) format (2.12) and the extended functional tensor
train (EFTT) format proposed in this chapter, are better suited for this purpose and will
require different construction algorithms.

As described in Section 2.3.4, approximations in the FTT format can be obtained by
combining tensorized Chebyshev interpolation (2.16) with Algorithm 3 to compute a
tensor train decomposition (2.6) of the coefficient tensor (2.19) [41]. A slightly different
approach to obtain FTT approximations is proposed in [141], where a continuous version
of the TT-cross algorithm [251] is applied directly to the function. All univariate functions
occurring in this process are discretized using parameterizations such as basis expansions.
In principle, every univariate function could be parameterized differently. In the special
case that univariate interpolation with the same basis functions is used to discretize all
univariate functions in the same mode, this approach is equivalent to a TT approximation
of the coefficient tensor for tensorized interpolation.

The FTT format (2.12) requires the storage of R`−1 · R` univariate functions for each
` = 1, . . . , d. These functions (or their parametrizations) will often be linearly dependent.
In this case, we can compress the format further by storing these functions in terms
of linear combinations of r` � R`−1 · R` basis functions. The resulting approximation
can be seen as a variant of the hierarchical Tucker format proposed in [152]. When the
approximation is constructed from a low-rank approximation of the coefficient tensor,
we can obtain such a compressed format by following the ideas of Khoromskij [186].
There a two-level Tucker format is proposed, which is obtained by first computing a

51

Chapter 4: Extended functional tensor train approximation

Tucker approximation [327] before approximating the core tensor in Rr1×···×rd further.
Computing a TT approximation of the core tensor leads to a so-called extended TT
format [99, 108, 286], from which we can derive a functional low-rank approximation
in the EFTT format. This EFTT approximation corresponds to a compressed FTT
approximation.

In this chapter, we propose a novel algorithm to efficiently compute functional low-rank
approximations using the EFTT format. Our algorithm is based on first obtaining
suitable factor matrices for a Tucker approximation (2.5) of the coefficient tensor. The
columns of these matrices are determined by applying a combination of adaptive cross
approximation [30] with randomized pivoting to matricizations of the coefficient tensor. We
then apply oblique projections based on discrete empirical interpolation as in Section 3.2 to
implicitly construct a suitable core tensor for the Tucker approximation. In a second step,
we compute a TT approximation of this core tensor using Algorithm 3. The combination
of the Tucker and TT approximation yields the desired functional low-rank approximation.
The main advantage of our approach compared to a direct TT approximation of the
coefficient tensor is that the approximated core tensor is potentially much smaller than
the coefficient tensor. This reduces the storage complexity of the approximation and it
significantly reduces the number of function evaluations needed in the computation of
the TT approximation, which we demonstrate in our numerical experiments.

This chapter is based on the article [306]. Its remainder is structured as follows. In
Section 4.1, we define the EFTT format. Our novel algorithm to compute approximations
in the EFTT format is presented in Section 4.2. Our numerical experiments in Section 4.3
demonstrate the advantages of our novel algorithm compared to a direct TT approximation
of the coefficient tensor as in [41] and to the FTT algorithm in [141]. The test functions
for our numerical experiments are defined in the Appendix 4.A.

4.1 Extended functional tensor train format

A function f : [−1, 1]d → R is said to be represented in EFTT format with TT representa-
tion ranks (R1, . . . , Rd−1) ∈ Nd−1 and multi-linear representation ranks (r1, . . . , rd) ∈ Nd

when it is given in terms of univariate functions u(`)
j : [−1, 1]→ R for j = 1, . . . , r`, ` =

1, . . . , d and TT cores H(`) ∈ RR`−1×r`×R` for ` = 1, . . . , d as

f(x1, . . . , xd) ≈
r1∑
j1=1

. . .

rd∑
jd=1

R1∑
α1=1

. . .

Rd−1∑
αd−1

H(1)
1,j1,α1

· · ·H(d)
αd−1,jd,1

u
(1)
j1

(x1) · · ·u(d)
jd

(xd), (4.1)

where we formally set R0 = Rd = 1 to simplify notation.

Following the construction in Section 2.3.4 we can derive approximations in the EFTT
format (4.1) from low-rank approximations of the evaluation tensor T (2.18). We first

52

4.1. Extended functional tensor train format

compute a Tucker decomposition (2.5) of T ∈ R(n1+1)×···×(nd+1) of the form

T ≈ C ×1 U
(1) ×2 · · · ×d U (d), (4.2)

with C ∈ Rr1×···×rd and U (`) ∈ R(n`+1)×r` . In a second step, the core tensor C is
approximated in TT format (2.6) by

Ĉi1,...,id =

R1∑
α1=1

· · ·
Rd−1∑
αd−1=1

H(1)
1,i1,α1

H(2)
α1,i1,α2

· · ·H(d−1)
αd−2,id−1,αd−1

H(d)
αd−1,id,1

(4.3)

for i` = 1, . . . , r`, ` = 1, . . . , d, with the TT cores H(`) ∈ RR`−1×r`×R` . Inserted into (4.2),
this yields an approximation of the evaluation tensor in the extended TT format [286] of
the form

T̂i1,...,id =

r1∑
j1=1

. . .

rd∑
jd=1

R1∑
α1=1

. . .

Rd−1∑
αd−1

H(1)
1,j1,α1

· · ·H(d)
αd−1,jd,1

U
(1)
i1,j1
· · ·U (d)

id,jd
, (4.4)

for i` = 0, . . . , n`, ` = 1, . . . , d. This only requires O(drR2 + dnr) storage, where
R = maxR`, r = max r`, n = maxn`, which compares favorably with the O(dnR2)

storage needed by a direct TT approximation (2.6) of T , especially when r � n. In
Figure 4.1, we visualize the corresponding approximation of the coefficient tensor (2.19)
given by

Âi1,...,id =

n1∑
k1=0

. . .

nd∑
kd=0

r1∑
j1=1

. . .

rd∑
jd=1

R1∑
α1=1

. . .

Rd−1∑
αd−1

Xk1,...,kd,j1,...,jd,α1,...,αd−1
, (4.5)

Xk1,...,kd,j1,...,jd,α1,...,αd−1
= H(1)

1,j1,α1
· · ·H(d)

αd−1,jd,1
U

(1)
i1,j1
· · ·U (d)

id,jd
F

(1)
k1,i1
· · ·F (d)

kd,id
,

for i` = 0, . . . , n`, ` = 1, . . . , d. Inserting Â into (2.21) yields the desired approxima-
tion (4.1) with TT cores H(`) and with

u
(`)
j (x) :=

n∑̀
i=0

n∑̀
k=0

F
(`)
k,iU

(`)
i,j Tk(x).

The resulting approximation error is bounded by Lemma 2.2. When we store the tensors
H(`) and the matrices (F (`)U (`)) ∈ R(n`+1)×r` separately, we can compute the point
evaluation of (4.1) at (x1, . . . , xd) ∈ [−1, 1]d by first contracting F (`)U (`) with the vectors
(T0(x`), . . . , Tn`(x`)) for ` = 1, . . . , d and by then contracting the resulting vectors with
the TT cores H(`) [247]. This requires O(drn + drR2) operations, where R = maxR`,
r = max r`, n = maxn`.

Remark 4.1. Note that EFTT approximations obtained from evaluation tensor ap-
proximations of the form (4.4) are closely related to FTT approximations. Given an
approximation (4.4), we can define the TT cores G(`) = H(`) ×2 U

(`). The TT approxima-

53

Chapter 4: Extended functional tensor train approximation

Figure 4.1 – Tensor network representation [247] of the coefficient tensor Â in (4.5) corre-
sponding to EFTT format (4.1). The colored boxes mark the subtensors corresponding to
the approximation of the evaluation tensor T̂ and the approximation of the core tensor Ĉ.

tion (2.6) given by the cores G(`) can be used to derive an equivalent FTT approximation
using the construction in Section 2.3.4. Conversely, EFTT approximations can be seen as
compression of such a FTT approximation, since the TT cores are stored in terms of H(`)

and U (`) requiring only O((n` + 1)r` +R`−1r`R`) storage instead of O(R`−1(n` + 1)R`)

for the uncompressed core G(`).

4.2 Approximation algorithm

In the following, we develop a novel algorithm for computing approximations in the EFTT
format (4.1). Our algorithm obtains the factor matrices U (1), . . . , U (d) for the Tucker
approximation (4.2) from fibers of the evaluation tensor T via a variant of column subset
selection [79, 93]. Following [100], the core tensor C is obtained as a subtensor of T by
applying discrete empirical interpolation. Thus, there is no need to form C explicitly and
we apply a variant of the TT-cross algorithm [251] to compute the TT cores H(1), . . . ,H(d)

for the TT approximation (4.3) from only some entries of C.

Fiber identification. Applying cross approximation (2.1) to T {`} yields index sets
Î`, Ĵ` that determine an approximation of the form

T {`} ≈ T {`}(:, Ĵ`)(T {`}(Î`, Ĵ`))−1T {`}(Î`, :). (4.6)

Note that the matrix T {`}(:, Ĵ`) contains mode-` fibers of T . If the approximation error
of (4.6) is small, we choose Û (`) = T {`}(:, Ĵ`) as an approximate basis of mode-` fibers.
Due to the large size of T (`), it might not be feasible to apply either ACA with full or
ACA with partial pivoting as described in Algorithm 1 and Remark 2.1. Inspired by the
success of randomization in numerical linear algebra [222, 339], we propose to determine
the next indices in line 5 of Algorithm 1 based on sampling. This leads to Algorithm 8,

54

4.2. Approximation algorithm

which samples a fixed number s of random entries and picks the entry of largest absolute
value. These random entries are also used for stopping the algorithm and to determine
r` adaptively. Note that the update in line 10 is only performed implicitly and the
subtraction is carried out each time an entry of B is evaluated. Overall, Algorithm 8
applied to T {`} determines the index sets Î`, Ĵ` using only O(r3

` + sr2
`) entries of T .

Afterwards, we explicitly compute Û (`) = T {`}(:, Ĵ`) by evaluating n`r` entries of T . We
perform the described procedure for every ` = 1, . . . , d to determine Û (1), . . . , Û (d); see
also lines 4 and 5 of Algorithm 9 below.

Algorithm 8 Adaptive cross approximation with randomized pivoting

1: Input: procedure to evaluate entries of A ∈ Rm×n, tolerance ε, number of samples s
2: Output: index sets I and J such that A ≈ A(:, J)A(I, J)−1A(I, :)
3: I = ∅, J = ∅
4: B = A
5: while true
6: Construct S ⊂ {1, . . . , n} × {1, . . . ,m} by uniformly sampling s index pairs (i, j).
7: if max

(i,j)∈S
|Bi,j | ≤ ε return I, J end

8: (i∗, j∗) = arg max
(i,j)∈S

|Bi,j |

9: I = I ∪ {i∗}, J = J ∪ {j∗}
10: B = A−A(:, J)A(I, J)−1A(I, :)

Tucker approximation To arrive at the Tucker approximation (4.2) we need to project
the fibers of T onto the spans of Û (1), . . . , Û (d). Analogous to Section 3.2.3, we first
compute economic QR decompositions Û (`) = Q(`)R(`) and apply DEIM (see Algorithm 2)
to identify index sets I`. We then apply oblique projections (2.3) to each mode of T to
compute the Tucker approximation

T ≈ (T ×1 ΦT
I1 ×2 · · · ×d ΦT

Id
)×1 Q

(1)(ΦT
I1Q

(1))−1 ×2 · · · ×d Q(d)(ΦT
Id
Q(d))−1

= C ×1 U1 ×2 · · · ×d Ud,

with factor matrices U (`) = Q(`)(ΦT
I`
Q(`))−1 and core tensor C = T (I1, . . . , Id). Note that

the subtensor C of T will not be explicitly formed; we only need to evaluate some its
entries when computing the TT approximation of C. The whole process of computing
U (`) and C from Û (`) is summarized in Algorithm 9. Alternative randomized algorithms
to compute Tucker approximations have been proposed in [228, 230].

Remark 4.2. For simplicity, we have assumed that the values of n1, . . . , nd, determining
the size of the expansion (2.16) and of T are given as input. In practice, these values
are usually not provided. To ensure that the approximation error of the final approxima-
tion (4.1) is small, we use the heuristic introduced in Remark 2.11 to determine n1, . . . , nd
adaptively. We initially set n1 = · · · = nd = 16. If applying the chopping heuristic [16] to

55

Chapter 4: Extended functional tensor train approximation

Algorithm 9 Tucker approximation

1: Input: procedure to evaluate entries of T ∈ R(n1+1)×···×(nd+1), tolerance ε, number
of samples s

2: Output: Matrices U ` ∈ R(n`+1)×r` and a procedure to evaluate entries of C ∈
Rr1×···×rd , defining a Tucker approximation (4.2)

3: for ` = 1, . . . , d
4: Ĵ` ← index set J returned by Algorithm 8 applied to T {`} with tolerance ε and s

samples.
5: Û (`) = T {`}(:, Ĵ`)
6: Compute economic QR decomposition Û (`) = Q(`)R(`).
7: I` = DEIM(Q(`)) (see Algorithm 2)
8: U (`) = Q(`)(Q(`)(I`, :))

−1

9: C = T (I1, . . . , Id)

Û (`) indicates that n` is not sufficiently large then one sets n` = 2n` + 1, updates T and
repeats the procedure from line 4 to compute a new index set Ĵ`.

TT cores It remains to compute a TT approximation of the core tensor (4.3) to
obtain the desired extended TT approximation (4.4). For this purpose, we use the TT
toolbox∗ implementation of Algorithm 3. This algorithm is rank-adaptive and requires
the evaluation of only O(drR2) entries of C where R = maxR`, r = max r`.

EFTT approximation algorithm We formalize the overall procedure for computing
approximations in the EFTT format (4.1) in Algorithm 10. Note that r1, . . . , rd and
R1, . . . , Rd−1 are determined adaptively in lines 5 and 6. Let R = maxR`, r = max r`, n =

maxn`. The total number of evaluations of f in Algorithm 10 isO(dr3+dnr+dsr2+drR2).
In contrast, applying Algorithm 3 directly to T requires O(dnR2) evaluations and yields
an approximation in FTT format (2.6).

4.3 Numerical experiments

In this section, we present numerical experiments† to study the performance of Al-
gorithm 10. Unless mentioned otherwise the sample size in Algorithm 1 is set to
s = min{n̄/2, 50}, where n̄ = ((n1 + 1)(n2 + 1) · · · (nd + 1))1/d, and all tolerances
are set to 10−10. The approximations error is measured via a Monte Carlo estimation of
the relative L2-error based on function evaluations at 10 000 sample points.

∗The TT toolbox is available from https://github.com/oseledets/TT-Toolbox.
†The MATLAB and Python code to reproduce these results is available from https://github.com/

cstroessner/EFTT.

56

https://github.com/oseledets/TT-Toolbox
https://github.com/cstroessner/EFTT
https://github.com/cstroessner/EFTT

4.3. Numerical experiments

Algorithm 10 EFTT approximation

1: Input: function f : [−1, 1]d → R, tolerance ε, number of samples s
2: Output: TT cores H(`) and procedures for evaluating univariate functions u(`)

j

defining an approximation of f in the EFTT format (4.1)
3: n1 = · · · = nd = 16
4: Define a procedure to evaluate entries of the evaluation tensor T defined in (2.18).
5: Apply Algorithm 9 with tolerance ε and s samples to T to determine Û (`). Simulta-

neously, we update n1, . . . , nd as well as T as described in Remark 4.2.
6: Compute the tensors H(`) by applying Algorithm 3 with tolerance ε to C.
7: Create procedures to evaluate univariate functions u

(`)
j (x) =∑n`

i=0

∑n`
k=0 F

(`)
k,iU

(`)
i,j Tk(x).

4.3.1 Comparison to a direct TT approximation

We first compare Algorithm 10 yielding an approximation in the EFTT format (4.1) to a
direct TT approximation of the evaluation tensor T ∈ R100×···×100 (2.18) using Algorithm 3
as in [41]. The latter approach yields an approximation in the FTT format (2.12).
Since a direct TT approximation is not adaptive with respect to the polynomial degree,
we fix the polynomial degree throughout this comparison, i.e., we replace line 3 by
n1 = · · · = nd = 100 and do not update adaptively in line 5 of Algorithm 10.

Benchmark functions. For the set of benchmark functions defined in Appendix 4.A.1,
we on average reduce the number of function evaluations required by 30.6% and the
required storage by 41.6% when using Algorithm 10 compared to the direct TT approxi-
mation of the coefficient tensor. For the Ackley function the reduction is 88.8% in terms
of function evaluations and 93% in terms of storage. For the Borehole function, we have
r` = R2

` , i.e. we can not compress the FTT approximation further. In this case, the
direct TT approximation is slightly more efficient. At the same time, this demonstrates
that all other test functions, taken from a wide range of applications, can be stored more
efficiently using our approach. Details can be found in Table 4.1.

Genz functions In order to quantify the impact of the dimension on the approximation
error, we study the Genz [136] functions defined in Appendix 4.A.2. Our numerical
results for the approximation using a fixed polynomial degree, displayed in Figure 4.2,
demonstrate that Algorithm 10 requires fewer function evaluation compared to a direct
TT-cross approximation. However, in very large dimensions (d > 300) the direct TT-cross
approach leads to slightly more accurate approximations. This might be caused by the
fact that, for Algorithm 10, the error of d projections needs to be taken into account
in addition to the TT-cross approximation error. Moreover, approximating the smaller
tensor C instead of T directly, might lead to slightly worse conditioned inverse matrices

57

Chapter 4: Extended functional tensor train approximation

Function Algorithm Error # evals # dofs max` R` max` r`

Ackley EFTT 1.84e-02 63168 15965 15 10
DirectTT 1.84e-02 570176 226555 18

Alpine EFTT 5.80e-03 4677 1448 2 2
DirectTT 5.80e-03 6860 2400 2

Dixon EFTT 5.72e-14 11879 3549 3 5
DirectTT 2.66e-14 13022 5100 3

Exponential EFTT 2.10e-14 2108 707 1 1
DirectTT 2.09e-14 2585 700 1

Griewank EFTT 1.69e-07 8091 2252 3 3
DirectTT 1.54e-07 13022 5100 3

Michalewicz EFTT 4.05e-02 4677 1448 2 2
DirectTT 4.05e-02 6860 2400 2

Piston EFTT 3.22e-09 202876 73978 24 11
DirectTT 3.02e-09 991669 412186 18

Qing EFTT 1.11e-13 5482 2172 2 3
DirectTT 2.29e-14 6860 2400 2

Rastrigin EFTT 2.29e-14 4677 1448 2 2
DirectTT 2.30e-14 6860 2400 2

Rosenbrock EFTT 3.02e-14 10970 2798 3 4
DirectTT 2.64e-14 13022 5100 3

Schaffer EFTT 6.76e-02 1063304 288006 39 40
DirectTT 6.73e-02 1510513 766565 30

Schwefel EFTT 6.58e-04 4677 1448 2 2
DirectTT 6.58e-04 6860 2400 2

Borehole EFTT 3.95e-02 14365 3270 2 4
DirectTT 3.95e-02 10178 2336 2

OTL Circuit EFTT 3.85e-11 16064 3277 5 5
DirectTT 8.31e-12 27764 8300 4

Robot Arm EFTT 6.65e-02 523301 113365 35 36
DirectTT 6.88e-02 752815 392234 32

Wing Weight EFTT 3.72e-14 6692 2072 2 2
DirectTT 8.11e-14 10439 3600 2

Friedman EFTT 5.49e-10 12312 2376 4 4
DirectTT 1.04e-11 14630 3136 3

G & L EFTT 2.52e-05 3278 1034 2 2
DirectTT 2.52e-05 6651 1800 2

G & P 8D EFTT 3.07e-11 39588 8121 7 7
DirectTT 2.68e-11 74693 30160 5

D & P Exp EFTT 1.56e-14 1990 616 2 2
DirectTT 1.55e-14 2087 800 2

Table 4.1 – We apply Algorithm 10 (EFTT) and an approximation of the evaluation tensor
using Algorithm 3 (DirectTT) to approximate the test functions defined in Appendix 4.A.1.
For each function, we display the estimated L2 error of the approximations, the number
of function evaluations required to construct the approximation, the degrees of freedom
in the approximation and the largest R` and r` of the resulting approximation. The
numbers displayed are the mean (geometric mean for the error and arithmetic mean for
all other quantities) after approximating each function 100 times.

in (2.8).

58

4.3. Numerical experiments

0 100 200 300 400 500

10
0

10
1

10
2

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1

Figure 4.2 – We apply Algorithm 10 (EFTT) and an approximation of the evaluation tensor
using Algorithm 3 (DirectTT) to approximate the Genz functions (see Appendix 4.A.2)
with fixed polynomial degree for dimension d ∈ {20, 50, 100, 200, 300, 400, 500}. Left:
We plot the ratio of L2 error for EFFT / DirectTT, i.e. for the function ’corner peak’
with d = 20 the EFTT approximation is around halve an order less accurate than the
DirectTT approximation. Right: We plot the ratio of the function evaluations required to
compute the approximation for EFFT / DirectTT, i.e. for the function ’corner peak’ with
d = 20 EFTT we use only around 20% of the number of evaluations required for DirectTT.
Throughout this figure, we sample 30 different parameters for the Genz functions as
in [41] and display the geometric mean of the error and the arithmetic mean for the
number of function evaluations.

4.3.2 Comparison to the FTT approximation algorithm

In this section, we compare the performance of our proposed Algorithm 10 based on the
EFTT format (4.1) to approximation algorithm proposed in [139, 141] and implemented
in the c3py package ‡. The c3py algorithm uses a continuous variant of the TT-cross
algorithm to compute approximations in the FTT format (2.12).

The c3py package is based on the Legendre polynomials P0(x) = 1, P1(x) = x, (k +

2)Pk+2(x) = (2k + 3)xPk+1(x)− (k + 1)Pk(x) for k = 0, . . . ,m− 2 [197] with degree at
most m ∈ N instead of Chebyshev polynomials. This leads to multivariate polynomial
approximations with degree at most (m1, . . . ,md) of the form

m1∑
i1=0

. . .

md∑
id=0

Bi1,...,idPi1(x1) · · ·Pid(xd), (4.7)

where B ∈ R(m1+1)×···×(md+1). Since the asymptotic convergence rates of Legendre
and Chebyshev interpolation are different [46], a fair comparison requires that we ad-
just our approximation algorithm to also return an approximation of the form (4.7).
An approximation of the form (4.7) can be obtained from the evaluation tensor T ∈

‡The c3py package is available from https://github.com/goroda/
Compressed-Continuous-Computation

59

https://github.com/goroda/Compressed-Continuous-Computation
https://github.com/goroda/Compressed-Continuous-Computation

Chapter 4: Extended functional tensor train approximation

R(n1+1)×···×(nd+1) (2.18) as B = T ×1 E
(1) ×2 · · · ×d E(d), where E(`) ∈ R(n`+1)×(m`+1) is

defined as

E(`) =



1
2w

(`)
0 P0(x

(`)
0) 1

2w
(`)
1 P0(x

(`)
1) . . . 1

2w
(`)
m`P0(x

(`)
m`)

3
2w

(`)
0 P1(x

(`)
0) 3

2w
(`)
1 P1(x

(`)
1) . . . 3

2w
(`)
m`P1(x

(`)
m`)

5
2w

(`)
0 P2(x

(`)
0) 5

2w
(`)
1 P2(x

(`)
1) . . . 5

2w
(`)
m`P2(x

(`)
m`)

...
...

. . .
...

2n`+1
2 w

(`)
0 Pn`(x

(`)
0) 2n`+1

2 w
(`)
1 Pn`(x

(`)
1) . . . 2n`+1

2 w
(`)
m`Pn`(x

(`)
m`)


,

with nonnegative weights w(`)
i`

defined as in Remark 2.12. The matrix E(`) encodes
Clenshaw-Curtis quadrature [74] in n`+1 nodes to (approximately) compute the Legendre
coefficients via L2-projections. Using analogous constructions as in Section 7.1, we can
transform an extended TT approximation of the evaluation tensor (4.4) into an EFTT
approximation with univariate functions represented in terms of linear combinations of
Legendre polynomials.

Remark 4.3. Gauss-Legendre quadrature in n + 1 points integrates a polynomials of
degree 2n+ 1 exactly, whereas Clenshaw-Curtis quadrature is only exact for polynomials
of degree n. We could define the evaluation tensor T and the matrices E` differently to
encode Gauss-Legendre quadrature instead of Clenshaw-Curtis quadrature. However, in
practice, both quadrature rules typically perform well as pointed out in [325].

In the following experiments we set n` = 2m` for ` = 1, . . . , d to ensure accurate
quadrature. To determine the polynomial degrees m` adaptively (see Remark 4.2), we
follow the fiber adaptation strategy of c3py (see [139, Section 3.6.1]): We progressively
increase the degrees until four sequential Legendre coefficients are smaller than the
tolerance 10−10 or until the maximum of m` = 105 has been reached. In the c3py
algorithm, we set all tolerances to 10−10.

Benchmark functions. We apply both the c3py algorithm from [141] and our novel
Algorithm 10 to approximate the benchmark functions defined in Appendix 4.A.1. Our
numerical results displayed in Table 4.2 demonstrate that our novel algorithm typically
requires fewer function evaluations and still achieves the same accuracy compared to
c3py. For the Ackley function, our approach reduces the number of required function
evaluations by more than 96% and the storage by more than 90%. At the same time, our
approach is slightly more accurate.

Integration of sin function In the following, we repeat the experiment from [139,
Figure 3-6]. The function f(x1, . . . , xd) = sin(x1 + x2 + · · ·+ xd) can be represented in
FTT format with TT ranks (2, 2, . . . , 2) and its integral over the domain [0, 1]d is known
analytically [139]. In Figure 4.3, we plot the error of the integral of the approximations

60

4.3. Numerical experiments

Function Algorithm Error # evals # dofs max`m` max` R` max` r`

Ackley EFTT 1.22e-02 67107 18465 105 15 9
c3py 1.81e-02 2232528 197760 105 16

Alpine EFTT 4.08e-03 5464 1518 105 2 2
c3py 6.43e-03 50656 2520 105 2

Dixon EFTT 3.21e-14 13756 3714 105 3 5
c3py 2.89e-14 13752 435 21 3

Exponential EFTT 4.82e-15 946 196 27 1 1
c3py 1.71e-14 10518 133 19 1

Griewank EFTT 8.21e-08 9139 2358 105 3 3
c3py 3.52e-06 51466 4459 105 3

Michalewicz EFTT 2.54e-02 5464 1518 105 2 2
c3py 1.45e-01 48745 2443 105 2

Piston EFTT 3.71e-09 174188 69019 33 23 11
c3py 3.85e-05 251760 66080 35 24

Qing EFTT 5.54e-13 6996 2277 105 2 3
c3py 2.86e-14 11776 136 21 2

Rastrigin EFTT 1.91e-14 5463 1518 105 2 2
c3py 1.86e-10 22288 1342 63 2

Rosenbrock EFTT 1.25e-14 4106 835 27 3 4
c3py 9.43e-14 11530 633 14 3

Schaffer EFTT 7.19e-02 173787 35016 105 16 17
c3py 1.22e-01 3465760 214200 105 20

Schwefel EFTT 4.00e-04 5463 1518 105 2 2
c3py 5.45e-04 50656 2496 104 2

Borehole EFTT 3.95e-02 6552 1116 32 2 4
c3py 2.08e-03 14346 577 70 2

OTL Circuit EFTT 7.93e-11 6670 1083 27 5 5
c3py 4.07e-08 15674 1782 28 5

Robot Arm EFTT 8.12e-02 499954 54760 94 12 27
c3py 3.85e-01 2018017 228439 105 20

Wing Weight EFTT 2.83e-14 2867 560 24 2 2
c3py 2.15e-13 12224 554 19 2

Friedman EFTT 2.16e-11 5238 404 19 3 4
c3py 8.08e-05 12142 710 15 4

G & L EFTT 4.95e-06 1547 356 29 2 2
c3py 3.51e-02 13928 374 105 2

G & P 8D EFTT 4.77e-11 19527 3902 24 6 7
c3py 9.54e-10 27336 5136 21 7

D & P Exp EFTT 1.13e-14 2404 646 105 2 2
c3py 4.78e-10 12162 336 49 2

Table 4.2 – We apply Algorithm 10 (EFTT) and the algorithm in the c3py package
to approximate the test functions defined in Appendix 4.A.1 by functional low-rank
approximation with Legendre polynomial basis functions (4.7). For each function, we
display the estimated L2-error of the approximations, the number of function evaluations
required to construct the approximation, the degrees of freedom in the approximation
and the largest m`, R` and r` of the resulting approximation.

computed via Algorithm 10 and the c3py algorithm. The figure shows, that our novel
approach achieves a similar level of accuracy. The difference in the number of function
evaluations is rather small, since the multilinear ranks and TT ranks of the function are
small.

61

Chapter 4: Extended functional tensor train approximation

0 100 200 300 400 500
10

-15

10
-14

10
-13

10
-12

10
-11

0 100 200 300 400 500

0

0.5

1

1.5

2

2.5
10

4

Figure 4.3 – We apply Algorithm 10 (EFTT) and the algorithm in the c3py package to
approximate f(x1, . . . , xd) = sin(x1 +x2 + · · ·+xd) by functional low-rank approximation
with Legendre polynomial basis functions (4.7) as in [139, Figure 3-6]. Left: We plot
the relative error of the integral of the approximations. Right: We plot the number of
function evaluations required to compute the approximation.

Application: Uncertainty quantification. A classical application of multivariate
function approximation is the computation of surrogates for uncertainty quantification [308,
341]. For the approximation of the quantity of interest mapping defined in Appendix 4.A.3,
we find in Table 4.3 that Algorithm 10 leads to approximations requiring less storage
compared to c3py.

error # evals # dofs

d = 4
c3py 4.21 · 10−5 360 168

EFTT 1.05 · 10−3 337 60

d = 9
c3py 9.79 · 10−5 960 448

EFTT 1.30 · 10−3 757 153

d = 16
c3py 1.73 · 10−4 1800 840

EFTT 7.62 · 10−4 1345 240

Table 4.3 – We apply Algorithm 10 (EFTT) and the algorithm in the c3py package to
approximate the quantity of interest map Q : [−1, 1]d → R defined in Appendix 4.A.3
for d ∈ {4, 9, 16}. All tolerances are set to 10−3. The table displays the L2-error, the
required number of evaluations (evals) and the number of degrees of freedom (dofs) for
both approximations.

62

4.A. Appendix

4.A Appendix

4.A.1 Benchmark functions

In Table 4.4 and Table 4.5, we define the benchmark functions for our numerical experi-
ments. Note that the functions are defined on different tensor product domains. In our
experiments, we map the domain of these functions onto [−1, 1]d using an affine linear
transformation.

Function d Domain References

fAckley(x) =− 20 exp
(
− 0.2

√√√√1

7

7∑
i=1

(xi)2
)

− exp
(1

7

7∑
i=1

cos(2π(xi))
)

+ 20 + e1

7 [−32.768, 32.768]7 [177, 310]

fAlpine(x) =
7∑
i=1

|xi sin(xi) + 0.1x1| 7 [−10, 10]7 [177, 269]

fDixon(x) = (x1 − 1)2 +
7∑
i=2

i · (2x2
i − xi−1)2 7 [−10, 10]7 [177, 310]

fExponential(x) = − exp
(
− 1

2

7∑
i=1

x2
i

)
7 [−1, 1]7 [177, 268]

fGriewank(x) =

7∑
i=1

x2
i

4000
−

d∏
i=1

cos
(xi√

i

)
+ 1 7 [−600, 600]7 [177, 310]

fMichalewicz(x) = −
7∑
i=1

sin
(
xi

)
sin20

(ix2
i

π

)
7 [0, π]7 [310, 329]

fPiston(x) 7 see text [310, 344]

fQing(x) =
7∑
i=1

(x2
i − i)2 7 [0, 500]7 [177, 265]

fRastrigin(x) = 70 +
7∑
i=1

(x2
i − 10 cos(2π · xi)) 7 [−5.12, 5.12]7 [98, 310]

fRosenbrock(x) =
6∑
i=1

(100 · (xi+1 − x2
i)

2 + (1− xi)2) 7 [−2.048, 2.048]7 [177, 310]

fSchaffer(x) =

6∑
i=1

(
0.5 +

sin2
(√

x2
i + x2

i+1

)
− 0.5(

1 + 0.001(x2
i + x2

i+1)
)2

)
7 [−100, 100]7 [177, 310]

fSchwefel(x) = 2932.8803−
7∑
i=1

xi · sin(
√
|xi|) 7 [−500, 500]7 [98, 310]

Table 4.4 – Test functions from [71, Table 1].

63

Chapter 4: Extended functional tensor train approximation

Function d Domain References

fBorehole(x) 8 see text [12, 310]
fOTL Circuit(x) 6 see text [233, 310]
fRobot Arm(x) 8 see text [12, 310]
fWing Weight(x) 10 see text [123, 310]
fFriedman(x) = 10 sin (πx1x2) + 20 (x3 − 0.5)2 + 10x4 + 5x5 5 [0, 1]5 [128, 310]
fG&L(x) = exp

[
sin
(

(0.9 (x1 + 0.48))10
)]

+ x2x3 + x4 6 [0, 1]6 [144, 310]

fD&P 8D(x) =4
(
x1 − 2 + 8x2 − 8x2

2

)2
+ (3− 4x2)2

+ 16
√
x3 + 1 (2x3 − 1)2 +

8∑
i=4

i ln

1 +
i∑

j=3

xj

 8 [0, 1]8 [94, 310]

fD&P Exp(x) = 100
(
e−2/x1.751 + e−2/x1.52 + e−2/x1.253

)
3 [0, 1]3 [94, 310]

Table 4.5 – Test functions from [139, Table 3.2].

Some of these functions do not fit into the format of the table. These are defined in the
following:

fPiston(M,S, V0, k, P0, Ta, T0) = 2π

√
M

k + S2 P0V0
T0

Ta
V 2

,

where

V =
S

2k

(√
A2 + 4k

P0V0

T0
Ta −A

)
and A = P0S + 19.62M − kV0

S
,

with M ∈ [30, 60], S ∈ [0.005, 0.02], V0 ∈ [0.002, 0.01], k = [1000, 5000], P0 ∈
[90000, 110000], Ta ∈ [290, 296], T0 ∈ [340, 360].

fBorehole(rw, r, Tu, Hu, Tl, Hl, L,Kw) =
2πTu(Hu −Hl)

log(r/rw)
(

1 + 2LTu
log(r/rw)r2wKw

+ Tu
Tl

)
,

with rw ∈ [0.05, 0.15], r ∈ [100, 50000], Tu ∈ [63070, 115600], Hu ∈ [990, 1110], Tl ∈
[63.1, 116], Hl ∈ [700, 820], L ∈ [1120, 1680], Kw ∈ [9855, 12045].

fOTL Circuit(b1, b2, f, c1, c2, β) =

(12b2
b1+b2

+ 0.74)β(c2 + 9)

β(c2 + 9) + f
+

11.35f

β(c2 + 9) + f
+

0.74fβ(c2 + 9)

(β(c2 + 9) + f)c1
,

with b1 ∈ [50, 150], b2 ∈ [25, 70], f ∈ [0.5, 3], c1 ∈ [1.2, 2.5], c2 ∈ [0.25, 1.2], β ∈ [50, 300].

fRobot Arm(θ1, θ2, θ3, θ4, L1, L2, L3, L4) =
√
u2 + v2,

64

4.A. Appendix

where u =
∑4

i=1 Li cos(
∑4

j=1 θi), v =
∑4

i=1 Li sin(
∑4

j=1 θi) and θi ∈ [0, 2π], Li ∈ [0, 1]

for i = 1, . . . , 4.

fWing Weight(Sw,Wf , A,∆, q, λ, tc, Nz,Wd,Wp) =

0.036S0.758
w W 0.0035

f

(A

cos2(∆)

)0.6
q0.006λ0.04

(100tc
cos(∆)

)−0.3
(NzWd)

0.49 + SwWp,

with Sw ∈ [150, 200],Wf ∈ [220, 300], A ∈ [6, 10], ∆ ∈ [−10, 10], q ∈ [16, 45], λ ∈
[0.5, 1], tc ∈ [0.08, 0.18], Nz ∈ [2.5, 6], Wd ∈ [1700, 2500], Wp ∈ [0.025, 0.08].

4.A.2 Genz functions

In the following, we define the Genz functions [136], which are frequently used to evaluate
function approximation and integration schemes. On the domain [−1, 1]d, we consider

f1(x) = cos

(
2πw1 +

d∑
i=1

ci
xi + 1

2

)
(oscillatory)

f2(x) =

(
1 +

d∑
i=1

ci
xi + 1

2

)−(d+1)

(corner peak)

f3(x) = exp

(
−

d∑
i=1

c2
i

∣∣∣∣xi + 1

2
− wi

∣∣∣∣
)

(continuous)

The parameters wi and ci are drawn uniformly from [0, 1], where wi act as a shift for the
functions while ci determines the approximation difficulty of the functions. We normalized
ci such that

d∑
i=1

|ci| =
b

dh
,

where the scaling constants h and b are defined for each function as in [41, Table 1]. Note
that f1 can be represented in FTT format (2.12) with maxR` = 2. The function f3 is
separable. For f2, we are not aware of any analytic FTT representation.

4.A.3 Parametric PDE problem

In the following, we recall the example from [207, Section 4]. Assume
√
d ∈ N. Let

Ω = [0, 1]2. We consider the parametric elliptic PDE

−∇ · (a(x, p)∇u(x, p)) = 1, x ∈ Ω (4.8)

65

Chapter 4: Extended functional tensor train approximation

with homogeneous Dirichlet boundary conditions and parameter p ∈ [−1, 1]d. We define
the piecewise constant coefficient a(x, p) : Ω× Rd as

a(x, p) =

{
1.25 + 0.75p√d(t−1)+s x ∈ Ωs,t

1 otherwise,

where we denote the disk with radius ρ = 1/(4
√
d+2) centered around (ρ(4s−1), ρ(4t−1))

by Ωs,t for s, t = 1, . . . ,
√
d. In our numerical experiments, we approximate the quantity

of interest Q : [−1, 1]d → R defined as

Q(p) =

∫ 1

0

∫ 1

0
u(x, p)∂x1∂x2,

where u(x, p) denotes the solution of the PDE (4.8) for the given parameter p ∈ [−1, 1]d.
For each value of p, we solve the resulting PDE using a discretization based on linear
finite elements [48].

66

5 Multi-marginal optimal transport

In this chapter, we study the solution of multi-marginal optimal transport problems, i.e.
we search the nonnegative transport plan tensor P of order d, which minimizes 〈C,P〉
subject to marginal constraints, where C denotes a given nonnegative cost tensor of
order d. After entropic regularization [82] the problem is equivalent to a tensor scaling
problem of exp(−C/η) [37] and can be solved using the Sinkhorn algorithm [58]. The
multi-marginal Sinkhorn algorithm crucially relies on the repeated evaluation of marginals
of the rescaled tensor exp(−C/η).

Using a novel approach, we combine the ideas of exploiting underlying graphical mod-
els [150] and using low-rank approximations [7, 10] to compute marginals more efficiently.
When the structure of transport plans is specified by a graphical model, we observe
that the dual of this model is a tensor network [273], which contains a tensor network
representation of exp(−C/η). At the same time low-rank approximations of exp(−C/η)

can also be represented as tensor networks [247]. Facilitating this point of view, marginals
can in both cases be computed by contracting [272] the tensor network and the scal-
ing parameters. Note that the belief propagation and the junction tree algorithm for
graphical models correspond to a particular order of contracting this network [273]. For
tensor networks derived from graphical models, we propose to potentially accelerate the
computation of marginals further by replacing tensors in the network by low-rank approx-
imations. This yields a modified tensor network and can be seen as an approximation of
exp(−C/η). In our numerical experiments, we provide an example illustrating that our
approach to introduce low-rank approximations in the tensor network is more efficient
than directly working with the graphical model and more accurate than a direct tensor
train approximation [249] of exp(−C/η). We also demonstrate that our approach offers
the potential to greatly speed up the computation of color transfer between several images
without altering the resulting image significantly.

Moreover, we provide theoretical bounds on the error caused by introducing such approx-
imations. In Theorem 5.2, we state a bound for the impact of using an approximation of

67

Chapter 5: Multi-marginal optimal transport

exp(−C/η) on the entropically regularized transport cost. This result is a generalization
of the bound in [10] for classical optimal transport problems. In contrast to the asymp-
totic bound in [7], our result contains explicit constants and does not assume that C is
low-rank. We also would like to point out that the bound in [7] relies on the fact the
rank of exp(−C/η) can be bounded based on the rank of C. The practical usefulness of
these results is impeded by the fact that the elementwise exponential tends to increase
(approximate) ranks drastically. For example, to obtain a reasonably good approximation
of the elementwise exponential of a random 1000 × 1000 rank-5 matrix by truncating
all singular values smaller than 10−10 one easily ends up with a matrix of rank 800 or
larger. In Theorem 5.3, we state how the parameters and tolerances need to be selected
to obtain an accurate approximation of the original problem without regularization. This
generalizes previous results in [217] from the case of using the tensor exp(−C/η) directly
to our case of using an approximation instead. In Lemma 5.2, we link approximations of
parts in the tensor network to approximations of exp(−C/η).

This chapter is based on the article [305]. Its remainder is structured as follows. In
Section 5.1, we define the multi-marginal optimal transport problem and summarize the
convergence results for the multi-marginal Sinkhorn algorithm in [127, 217]. The impact of
approximating exp(−C/η) is analyzed in Section 5.2. In Section 5.3, we derive the tensor
network structure of exp(−C/η) for transport plans represented by graphical models.
Approximations of parts of this network are connected to approximations of exp(−C/η)

in Section 5.4. Our numerical experiments in Section 5.5 demonstrate how the multi-
marginal Sinkhorn algorithm can be accelerated by introducing low-rank approximations
into the tensor network representation of exp(−C/η).

5.1 Multi-marginal optimal transport and the Sinkhorn al-
gorithm

Throughout this chapter, we let ∆n = {x ∈ Rn>0 : ‖x‖1 = 1} denote the set of strictly
positive probability vectors of length n, where R>0 denotes the strictly positive real
numbers. Further, we let R+ denote the nonnegative real numbers. For a tensor
X ∈ Rn1×···×nd

+ containing the joint probability distribution of d discrete random variables,
we denote the `th marginal (distribution) in ∆n` by

r`(X) = vec(X ×1 1
T
n1
· · · ×`−1 1

T
n`−1
×`+1 1

T
n`+1
· · · ×d 1Tnd),

where 1n ∈ Rn denotes the vector of all ones. Throughout this chapter, the operations
log and exp are always applied elementwise.

68

5.1. Multi-marginal optimal transport and the Sinkhorn algorithm

5.1.1 Mathematical setting

Given d ≥ 2 marginals r` ∈ ∆n` , ` = 1, . . . , d and a cost tensor C ∈ Rn1×n2×···×nd
+ , the

discrete multi-marginal optimal transport problem [238] is given by

min
P∈B(r1,...,rd)

〈P, C〉 = min
P∈B(r1,...,rd)

n1∑
i1=1

. . .

nd∑
id=1

Pi1,...,idCi1,...,id , (5.1)

where the set of feasible transport plans is given by

B(r1, . . . , rd) =
{
P ∈ Rn1×···×nd

+ |r`(P) = r` for ` = 1, . . . , d
}
.

Note that (5.1) is a linear optimization problem with n1 · n2 · · ·nd degrees of freedom.

To solve (5.1) efficiently, it is common to add entropic regularization [82]. In the multi-
marginal setting, the entropy takes the form

H(P) = −〈P, log(P)〉.

Given a regularization parameter η > 0, the regularized problem takes the form

min
P∈B(r1,...,rd)

V η
C (P), (5.2)

where

V η
C (P) := 〈P, C〉 − ηH(P)

is called entropic transport cost. It is known that the regularized problem (5.2) has a
unique minimizer [37], which takes the form

P∗η = K ×1 diag(exp(β1)) · · · ×d diag(exp(βd)), (5.3)

where K := exp(−C/η) is called Gibbs kernel [58] and diag(β`) denotes the diagonal
matrix containing the entries of the so-called scaling parameters β` ∈ Rn` on its diagonal.
The solution of the regularized problem (5.2) converges to a solution of (5.1) when η → 0;
see [35, 211].

5.1.2 Multi-marginal Sinkhorn algorithm

The multi-marginal Sinkhorn algorithm for solving (5.2) proceeds by iteratively updating
the scaling parameters in (5.3). Let

P(t)
η = K ×1 diag(exp(β

(t)
1)) · · · ×d diag(exp(β

(t)
d)) (5.4)

69

Chapter 5: Multi-marginal optimal transport

denote the scaled tensor obtained after t iterations. In each iteration one selects an index
` and updates the `th scaling parameter via β(t+1)

` = log(r`)− log(r`(P(t)
η)) + β

(t)
` , while

the other vectors remain unchanged. For the choice of indices it has been suggested to
traverse them cyclically [37] or use a greedy heuristics [127, 217]. The multi-marginal
Sinkhorn algorithm is terminated once the stopping criterion

d∑
`=1

‖r`(P(t)
η)− r`‖1 ≤ εstop (5.5)

is satisfied, where εstop > 0 denotes a prescribed tolerance. Algorithm 11 summarizes the
described procedure.

Algorithm 11 Multi-marginal Sinkhorn algorithm
1: Input: cost tensor C, marginals r1, . . . , rd, regularization parameter η
2: Output: transport plan P(t)

η

3: β
(0)
` = 0 ∈ Rni for ` = 1, . . . , d and K = exp(−C/η)

4: for t = 0, 1, . . . until stopping criterion (5.5) is satisfied
5: P(t)

η = K ×1 diag(exp(β
(t)
1)) · · · ×d diag(exp(β

(t)
d))

6: Let `next denote the index of the scaling parameter that should be updated next.

7: β
(t+1)
` =

{
log(r`)− log(r`(P(t)

η)) + β
(t)
` ` = `next

β
(t)
` ` 6= `next

When using cyclic order, it follows from an interpretation as Bregman projections [37]
that the multi-marginal Sinkhorn algorithm converges. For greedy strategies, Theorem 5.1
below summarizes the statements of [217, Theorem 4.3] and [127, Theorem 3.4], which
bound the number of iterations until the stopping criterion is reached. Note that the
bound in a) gives a better rate with respect to εstop, but the bound depends on r`, whereas
the bound in b) does not involve r`.

Theorem 5.1. Let C ∈ Rn1×···×nd
+ , r` ∈ ∆n` for ` = 1, . . . , d, 0 < η < 1

2 , and εstop > 0.

a) Suppose that Algorithm 11 selects the index of the scaling parameter in iteration t

according to

`next = arg max
`∈{1,...,d}

1T (r`(P(t)
η)− r`) + 1T

(
r` ∗ log

(
r`(P(t)

η) ∗ r−1
`

))
,

where ∗ denotes the elementwise product and r−1
` denotes the elementwise inverse.

Then the number of iterations to reach the stopping criterion (5.5) is bounded by

t ≤ 2 + 2d2ε−1
stop

(
η−1‖C‖∞ − log min

1≤`≤d
min

1≤i≤n`
(r`)i

)
. (5.6)

b) Assume that n = n1 = · · · = nd and suppose that Algorithm 11 normalizes P(0)
η to

70

5.1. Multi-marginal optimal transport and the Sinkhorn algorithm

have `1-norm 1 and selects the index of the scaling parameter in iteration t according
to

`next = arg max
`∈{1,...,d}

∥∥∥∥r`(P(t)
η)− 〈r`, r`(P

(t)
η)〉

‖r`‖22
r`

∥∥∥∥
1

. (5.7)

Then the number of iterations needed to reach the stopping criterion

max
`∈{1,...,d}

∥∥∥∥r`(P(t)
η)− 〈r`, r`(P

(t)
η)〉

‖r`‖22
r`

∥∥∥∥
1

<
εstop

2d
(5.8)

is bounded by

t ≤ 8d2(
√
n+ 1)2ε−2

stop log
(
η−1‖exp(−C/η)‖1

)
.

When the alternative stopping criterion (5.8) is satisfied, the stopping criterion (5.5)
is also satisfied.

A transport plan P̂ ∈ B(r1, . . . , rd) is called ε-approximate solution of the original
problem (5.1) if it satisfies

〈C, P̂〉 ≤ min
P∈B(r1,...,rd)

〈C,P〉+ ε.

The transport plan P(t)
η obtained from Algorithm 11 using either stopping criterion

from Theorem 5.1 is, in general, not in B(r1, . . . , rd) because the marginal constraints
r` = r`(P(t)

ε) are satisfied simultaneously only in the limit t → ∞. To fix this issue,
rounding [9] can be applied to enforce the marginal constraints on P

(t)
ε for finite t;

see Algorithm 12. Note that for a tensor of the form (5.4), the operation in line 5 of
Algorithm 12 can be phrased in terms of modifying β(t)

` . Line 6 is a rank-1 update.
In [127, Lemma 3.6] and in [217, Theorem 4.4], the following property of the resulting
tensor is proven.

Lemma 5.1. Let A ∈ Rn1×···×nd
>0 and r` ∈ ∆n` , ` = 1, . . . , d. Let B denote the output of

Algorithm 12 applied to A and r1, . . . , rd. Then B ∈ B(r1, . . . , rd) and

‖A − B‖1 ≤ 2

d∑
`=1

‖r` − r`(A)‖1.

71

Chapter 5: Multi-marginal optimal transport

Algorithm 12 Rounding

1: Input: tensor A ∈ Rn1×···×nd
>0 , vectors r` ∈ ∆n` for ` = 1, . . . , d

2: Output: tensor B ∈ Rn1×···×nd

3: for ` = 1, . . . , d

4: v = min(r`(A)−1 ∗ r`,1n`), where the min is taken elementwise
5: A = A×` diag(v)

6: B = A+ ‖r1 − r1(A)‖−(d−1)
1 ©d

`=1 (r` − r`(A)), where © denotes the outer product

By combining Algorithm 12 with Algorithm 11, using the index selection (5.7) and the
stopping criterion (5.5), it follows [127, Corollary 3.8] that an ε-approximate solution can
be computed in

O(ε−3d4nd+1 log(n)(max(C)−min(C))3)

operations, where n1 = · · · = nd = n. In practice, the computation can be accelerated by
using slightly modified marginals and tolerances in the Sinkhorn algorithm [217], which
ensure that the upper bound (5.6) for t is not dominated by small entries in r`.

5.2 Impact of approximating the Gibbs kernel

To accelerate the computation of marginals in the multi-marginal Sinkhorn algorithm,
we will replace the Gibbs kernel K by an approximation K̃; thus replacing Algorithm 11
by Algorithm 13. In this section, we will analyze the impact of this approximation on
the transport cost of the computed transport plan. For d = 2, such an analysis can
be found in [10, Theorem 5]. In the following theorem, we generalize this result to the
multi-marginal setting. Our proof closely follows the ideas in [10]. In contrast to the
asymptotic result in [7, Theorem 7.4], we provide explicit bounds.

Algorithm 13 Multi-marginal Sinkhorn algorithm for a Gibbs kernel approximation

1: Input: approximation K̃ ∈ Rn1×n2···×nd
>0 of Gibbs kernel K = exp(−C/η), marginals

r1, . . . , rd
2: Output: transport plan P̃(t)

3: β
(0)
` = 0 ∈ Rn` for ` = 1, . . . , d

4: for t = 0, 1, . . . until stopping criterion (5.5) is satisfied
5: P̃(t) = K̃ ×1 diag(exp(β

(t)
1)) · · · ×d diag(exp(β

(t)
d))

6: Let `next denote the index of the scaling parameter that should be updated next.

7: β
(t+1)
` =

{
log(r`)− log(r`(P̃(t))) + β

(t)
` ` = `next

β
(t)
` ` 6= `next

Theorem 5.2. Let K = exp(−C/η) and assume that K̃ ∈ Rn1×n2···×nd
>0 with n` ≥ 2 and

72

5.2. Impact of approximating the Gibbs kernel

d ≥ 2, satisfies ‖log(K)− log(K̃)‖∞ ≤ εlog ≤ 1. Let P̃ denote the transport plan returned
by Algorithm 13 with stopping criterion

∑d
`=1‖r`(P̃)− r`‖1 ≤ εstop. Then

|V η
C (P∗η)− V η

C (P̃)| ≤ εV ηC ,

where P∗η = arg minP∈B(r1,...,rd)V
η
C (P) and

εV ηC
=η
(
εlog

(
2 + log

(2

εlog

))
+
εlog

2
log
((d∏

`=1

n`

)
− 1
)

+ 2εstop log
(1

εstop

((d∏
`=1

n`

)
− 1
)))

+ (εlog + 2εstop)‖C‖∞. (5.9)

Proof. We denote by ΠS the operator mapping a given tensor T ∈ Rn1×···×nd
>0 to its

unique [126] tensor scaling U ∈ B(r1, . . . , rd) of the form U = T ×1 diag(γ1) ×2 · · · ×d
diag(γd) for some vectors γ` ∈ Rn`>0 for ` = 1, . . . , d. Observe that P∗η = ΠS(K). Using
the triangle inequality, we decompose the error into

|V η
C (P∗η)− V η

C (P̃)| ≤ |V η
C (ΠS(K))− V η

C (ΠS(K̃))| (5.10)

+ |V η
C (ΠS(K̃))− V η

C̃ (ΠS(K̃))| (5.11)

+ |V η

C̃ (ΠS(K̃))− V η

C̃ (P̃)| (5.12)

+ |V η

C̃ (P̃)− V η
C (P̃)| (5.13)

where C̃ = −η log(K̃). We derive bounds for each of these terms; their combination yields
inequality (5.9).

Bound for (5.10): By definition of V η
C , we have

|V η
C (ΠS(K))− V η

C (ΠS(K̃))| ≤
‖ΠS(K)−ΠS(K̃)‖1‖C‖∞ + η|H(ΠS(K))−H(ΠS(K̃))|.

Because of arg min
P∈B(r1,...,rd)

V η
C (P) = arg min

P∈B(r1,...,rd)
〈− log(K),P〉 −H(P), it follows that

‖ΠS(K)−ΠS(K̃)‖1 =∥∥∥ arg min
P∈B(r1,...,rd)

〈− log(K),P〉 −H(P)−
(

arg min
P̃∈B(r1,...,rd)

〈− log(K̃), P̃〉 −H(P̃)
)∥∥∥

1
.

Applying Lemma I in [10] to the right hand side of this expression yields ‖ΠS(K) −
ΠS(K̃)‖1 ≤ ‖logK − log K̃‖∞ ≤ εlog. From Theorem 6 in [169] and Lemma D in [10] we

73

Chapter 5: Multi-marginal optimal transport

obtain

|H(ΠS(K))−H(ΠS(K̃))| ≤ εlog log
(2

εlog

)
+
εlog

2
log
((d∏

`=1

n`

)
− 1
)
.

Bound for (5.11) and (5.13): Using that ‖ΠS(K̃)‖1 = ‖P̃‖1 = 1 we obtain

|V η
C (ΠS(K̃))− V η

C̃ (ΠS(K̃))| ≤ 〈C,ΠS(K̃)〉 − 〈C̃,ΠS(K̃)〉 ≤ ‖C − C̃‖∞ ≤ ηεlog,

|V η

C̃ (P̃)− V η
C (P̃)| ≤ 〈C, P̃〉 − 〈C̃, P̃〉 ≤ ‖C − C̃‖∞ ≤ ηεlog.

Bound for (5.12): Using that the tensor P̃ is the unique minimizer of
arg min

P∈B(r1(P̃),...,rd(P̃))

V η

C̃ (P), Lemma H in [10] yields

|V η

C̃ (ΠS(K̃))− V η

C̃ (P̃)| ≤ ω(dH(B(r1(P̃), . . . , rd(P̃)), B(r1, . . . , rd))),

where dH(·, ·) denotes the Hausdorff distance and

ω(x) = x‖C‖∞ + η
(
x log

(2

x

((d∏
`=1

n`

)
− 1
)))

.

We can bound dH(B(r1(P̃), . . . , rd(P̃)), B(r1, . . . , rd)) by 2εstop, since Algorithm 12 maps
any A ∈ B(r1(P̃), . . . , rd(P̃)) to B ∈ B(r1, . . . , rd) with ||A − B||1 ≤ 2εstop as stated in
Lemma 5.1. This implies

|V η

C̃ (ΠS(K̃))− V η

C̃ (P̃)| ≤ 2εstop‖C‖∞ + 2ηεstop log
(1

εstop

((d∏
`=1

n`

)
− 1
))
.

The following theorem demonstrates how the previous result can be combined with
Algorithm 12 to obtain ε-accurate solutions. The proof is inspired by [217, Theorem 4.5]
and [127, Theorem 3.7], which state how ε-accurate solutions can be computed using
Algorithm 11. Theorem 5.3 takes into account that we compute the transport plan using
Algorithm 13 based on a perturbed Gibbs kernel.

Theorem 5.3. Let P̂ be the tensor obtained by applying Algorithm 12 to P̃, where P̃
is obtained from Algorithm 13 with K̃ fulfilling the assumptions of Theorem 5.2. Let
P∗ = arg minP∈B(r1,...,rd)〈C,P〉. Then it holds

〈C, P̂〉 − 〈C,P∗〉 ≤ ε,

74

5.2. Impact of approximating the Gibbs kernel

where ε = 2ηεlog + 2η
∑d

`=1 log(n`) + 4‖C‖∞εstop.

Proof. From P∗ ∈ B(r1, . . . , rd) and P∗η = arg minP∈B(r1,...,rd)〈C,P〉 − ηH(P) follows
〈C,P∗η 〉 − ηH(P∗η) ≤ 〈C,P∗〉 − ηH(P∗). Thus,

〈C,P∗η 〉 − 〈C,P∗〉 ≤ ηH(P∗η)− ηH(P∗) ≤ η
d∑
`=1

log(n`), (5.14)

where we use that 0 ≤ H(X) ≤∑d
`=1 log(n`) for any tensor X ∈ Rn1···nd

+ with ||X ||1 =

1 [81, Theorem 2.6.4].

Note that the marginals of P̃ are, in general, not equal to r1, . . . , rd. In order to compare
P̃ and P∗η , we construct Q ∈ B(r1(P̃), . . . , rd(P̃)) by applying Algorithm 12 to P∗η
with marginals r1(P̃), . . . , rd(P̃). Since P∗η ∈ B(r1, . . . , rd), Lemma 5.1 implies that
||Q − P∗η ||1 ≤ 2εstop. Hence,

〈C, Q〉 − 〈C,P∗η 〉 ≤ ‖C‖∞‖Q − P∗η‖1 ≤ 2‖C‖∞εstop. (5.15)

The tensor P̃ is the unique scaling of K̃ with marginals r1(P̃), . . . , rd(P̃) [26]. It is thus the
unique minimizer [127] of arg minP∈B(r1(P̃),...,rd(P̃))〈C̃,P〉− ηH(P), where C̃ = −η log(K̃).
Following the same argument as in (5.14), we obtain

〈C̃, P̃〉 − 〈C̃,Q〉 ≤ ηH(P̃)− ηH(Q) ≤ η

d∑
`=1

log(n`). (5.16)

We further obtain

〈C̃,Q〉 − 〈C,Q〉 ≤ ‖C̃ − C‖∞‖Q‖1 = ‖C̃ − C‖∞ ≤ ηεlog, (5.17)

〈C, P̃〉 − 〈C̃, P̃〉 ≤ ‖C̃ − C‖∞‖P̃‖1 = ‖C̃ − C‖∞ ≤ ηεlog, (5.18)

where we use that ‖P̃‖1 = ‖Q‖1 = 1. Additionally, Lemma 5.1 yields

〈C, P̂〉 − 〈C, P̃〉 ≤ ‖C‖∞‖P̂ − P̃‖1 ≤ 2‖C‖∞εstop. (5.19)

By adding the inequalities (5.14)–(5.19) we obtain

〈C, P̂〉 − 〈C,P∗〉 ≤ 2ηεlog + 2η

d∑
`=1

log(n`) + 4‖C‖∞εstop.

Remark 5.1. Note that the ηεlog only converges to zero in the limit η → 0 when the
approximation K̃ is equal to the true Gibbs kernel K.

75

Chapter 5: Multi-marginal optimal transport

Remark 5.2. Note that for any ε > 0, we can find suitable η, εlog, εstop such that
combining Algorithm 13 and Algorithm 12 yields an ε-accurate solution for the multi-
marginal optimal transport problem (5.1). Analogously, we can find η, εlog, εstop such
that (5.9) is satisfied for any given εV ηC

> 0. In particular, we can first select εlog and
εstop based on ‖C‖∞. Afterwards, we can set η sufficiently small.

Remark 5.3. It might seem counter-intuitive that εlog and εstop needs to be chosen in-
versely proportional to ‖C‖∞ in the previous remark. This is caused by the chosen objective
function in (5.2). Let c = ‖C‖−1

∞ . Note that optimal solution of the regularized (5.2) and
the set of optimal solutions of the original optimal transport problem (5.1) do not change
when we replace both C by cC and η by cη. This normalization changes the optimal value
of the objective functions in (5.2) and (5.1) by c, but it does not change the Gibbs kernel
K. Thus, we can transform the error bounds in Theorem 5.2 and 5.3 into bounds for this
normalized problem, by multiplying εV ηC and ε by c. To obtain a certain cεV ηC respectively
cε, we can select εlog and εstop independently from ‖C‖∞ before determining a suitable η.

5.3 Tensor networks and graphical models

In applications, the cost tensor C ∈ Rn1×···×nd
+ usually carries additional structure. A

broad class of structures leads to transport plans defined via graphical models [150]. In
this case, the entries of C take the form

CI =
∑
α∈F
CαIα for every I = (i1, . . . , id), i` = 1, . . . , n`, ` = 1, . . . , d, (5.20)

where the summation index tuples α = (α1, . . . , αM) are contained in a fixed subset F of

d⋃
M=1

{(α1, . . . , αM) ∈ NM |1 ≤ α1 < · · · < αM ≤ d},

Iα := (iα1 , . . . , iαM) and Cα ∈ Rnα1×···×nαM+ . The corresponding Gibbs kernel is given by

KI =
∏
α∈F
KαIα for every I = (i1, . . . , id), i` = 1, . . . , n`, ` = 1, . . . , d, (5.21)

where Kα = exp(−Cα/η). This Gibbs kernel can be represented in terms of a tensor
network [247]. In general, a tensor network represents a high-order tensor that is
constructed by contracting several low-order tensors. By contraction we refer to the sum
over a joint index in two low-order tensors. A graph is used to describe precisely how the
low-order tensors should to be contracted. Its vertices correspond to the low-order tensors.
Each edge corresponds to a contraction of the two low-order tensors corresponding to the
vertices connected by the edge.

76

5.3. Tensor networks and graphical models

In the following, we describe how to construct the particular network for K. First, we
add each tensor Kα as a vertex. For every ` = 1, . . . , d, we add an additional tensor
D(`) as vertex. For every ` = 1, . . . , d and α ∈ F , we add edges from Kα to D(`) if ` is
contained in α. We then add one open edge to each D(`) that corresponds to the index in
the `th mode of K. The order d` of the tensors D(`) ∈ Rn`×···×n` is equal to the number
of connected edges. Their entries are given by D(`)

i1,...,id`
= δi1,i2δi2,i3 · · · δid`−1,id`

, where δ
denotes the Kronecker delta. Each edge in the tensor network corresponds to the sum
over the corresponding index in the connected vertices. See Figure 5.1 for an example.

D(2)

D(1)

D(4)

D(3) D(5)

K(1,2) K(1,4)

K(4,5)K(2,3,4)

(a) Direct construction

D(2)

D(1)

D(4)

K(1,2) K(1,4)

K(4,5)K(2,3,4)

(b) After simplification

Figure 5.1 – Tensor network representation of K for a cost tensor of the form (5.20)
constructed from C(1,2), C(1,4)C(2,3,4), C(4,5). In (b), we slightly simplified the network by
contracting the identity matrices D(3),D(5) with their connected open edges. Summing
over all internal edges yields the elementwise representation

Ki1,i2,i3,i4,i5 =
n1∑
j1=1

n1∑
j2=1

n2∑
j3=1

n2∑
j4=1

n4∑
j5=1

n4∑
j6=1

n4∑
j7=1

D(1)
i1,j1,j2

D(2)
i2,j3,j4

D(4)
i4,j5,j6,j7

K(1,2)
j1,j3
K(1,4)
j2,j5
K(2,3,4)
j4,i3,j6

K(4,5)
j7,i5

.

Remark 5.4. We want to emphasize that this tensor network is closely related to the
dual tensor network of the graphical model representing the transport plan [273]. In
the context of graphical models, the cost tensors C is given in the form of (5.20). The
resulting transport plan P(t)

η defined in (5.3) can be represented as tensor network by
attaching the matrices diag(exp(β`)) to the corresponding open modes of the tensor network
representation of K. At the same time, P(t)

η represents a discrete probability distribution,
which can be represented by a graphical model [150]. This graphical model and the tensor
network of P(t)

η are duals of each other [273].

We can compute K from the tensor network by contracting each of the internal edges
sequentially. The contraction of one internal edge corresponds to the merging the

77

Chapter 5: Multi-marginal optimal transport

connected vertices by evaluating of the sum over the index corresponding to the edge [247].
When the tensor network contains circles, multi-edges will occur, which can be contracted
by summing over all the corresponding indices simultaneously. The order of contracting
the internal edges determines the degree of the occurring intermediate vertices and the
computational complexity. In our constructed tensor network, we can exploit the special
structure of D(`) to contract all connected edges simultaneously. The book [272] discusses
several heuristics to optimize the order of contractions. Note that the optimal contraction
sequence might still incur a large computational cost.

In Algorithm 11, we need to evaluate the marginals of P(t)
η in each iteration. Let

γ
(t)
` = exp(β

(t)
`) for ` = 1, . . . , d. Given a tensor network representation of K, the mode-`

marginals can be written as a contraction of the network after connecting the matrix
diag(γ

(t)
`) to the open edge corresponding to mode `, and the vectors γ(t)

˜̀ for ˜̀ 6= ` to
their respective open edges. By contracting all inner edges of the resulting network, we
obtain r`(P(t)

η). We refer to Figure 5.2 for examples. The depicted networks will again be
used in the numerical experiments in Section 5.5.

K(1,2) K(2,3) K(3,4)

γ
(t)
1 γ

(t)
2 diag(γ(t)

3) γ
(t)
4

D(2) D(3)

(a)

K(1,4)

K(2,4)K(3,4)

γ
(t)
1

γ
(t)
2diag(γ(t)

3)

γ
(t)
4

D(4)

(b)

Figure 5.2 – Examples for the tensor network diagram representation of r3(P(t)
η) based

on different tensor network structures for the Gibbs kernel (5.21).

We give a brief example on how to efficiently contract the network depicted in Figure 5.2(a).
For the complexity analysis we assume n1 = n2 = n3 = n4 = n. We first compute
the vectors v(1)

j =
∑n

i=1(γ
(t)
1)iK(1,2)

i,j and v
(4)
j =

∑n
i=1K

(3,4)
j,i (γ

(t)
4)i for j = 1, . . . , n in

n(2n− 1) operations each, where operations refers to the required number of additions
and multiplications. This corresponds to contracting the edge between γ(t)

1 and K(1,2) as
well as the edge between K(3,4) and γ(t)

4 . In the next step, we contract the edges from
D(2) to v(1), γ

(t)
2 and K(2,3) simultaneously. This corresponds to computing the vector

v
(2)
j =

∑n
i=1(v(1) ∗ γ(t)

2)iK(2,3)
i,j for j = 1, . . . , n in n+ n(2n− 1) = 2n2 operations, where

we first compute the elementwise product before evaluating the matrix vector product.
Finally, we contract the remaining edges around D(3) to compute r3(P(t)

η) = v(2)∗γ(t)
3 ∗v(4)

in 2n operations. In total, we need 6n2 operations to compute the marginal r3(P(t)
η).

Note that this contraction strategy corresponds to the following reordering of the sums in

78

5.4. Low-rank approximations in tensor networks

the definition of the marginal

r3(P (t)
η)i3 =

n∑
i1=1

n∑
i2=1

n∑
i4=1

K(1,2)
i1,i2
K(2,3)
i2,i3
K(3,4)
i3,i4

(γ
(t)
1)i1(γ

(t)
2)i2(γ

(t)
3)i3(γ

(t)
4)i4

= (γ
(t)
3)i3

(n∑
i2=1

K(2,3)
i2,i3

(
(γ

(t)
2)i2

(n∑
i1=1

K(1,2)
i1,i2

(γ
(t)
1)i1

)))(n∑
i4=1

K(3,4)
i3,i4

(γ
(t)
4)i4

)
.

We can reuse the intermediate terms v(1), v(2), v(4) in the computation of the other
marginals. This allows us to compute all four marginals in 12n2 + 4n operations, whereas
computing the marginals based on the full tensor requires O(n4) operations.

Remark 5.5. Instead of the tensor network based on an ordinary graph with special
tensors D(`), we could consider a tensor network based on a hypergraph as in [273]. The
structure of D(`) can be modeled by a single hyperedge containing all vertices connected to
D(`). The contraction of these hypergraph based networks is studied in [174].

Remark 5.6. Note that the structure of K can also be exploited to compute marginals
when applying Algorithm 12 to P(t)

η . Storing the rank-1 update in line 6 separately in
terms of its factors offers the potential to avoid storing the transport plan explicitly as a
full tensor.

5.4 Low-rank approximations in tensor networks

Assuming that the Gibbs kernel is represented as in Equation (5.21), we obtain a tensor
network containing the coefficient tensors Kα. The following lemma bounds the impact
on the Gibbs kernel when replacing each Kα by an approximation K̃α.

Lemma 5.2. Let K be defined based on tensors Kα ∈ Rnα1×···×nαM>0 for α ∈ F as in (5.21).
Let K̃α ∈ Rnα1×···×nαM>0 for α ∈ F . We define K̃ ∈ Rn1×···×nd

>0 elementwise as

K̃I =
∏
α∈F
K̃αIα for every I = (i1, . . . , id), i` = 1, . . . , n`, ` = 1, . . . , d. (5.22)

Then

‖log(K)− log(K̃)‖∞ ≤
∑
α∈F
‖log(Kα)− log(K̃α)‖∞.

79

Chapter 5: Multi-marginal optimal transport

Proof.

‖log(K)− log(K̃)‖∞ = max
i1,...,id

|
∑
α∈F

log(KαIα)−
∑
α∈F

log(K̃αIα)|

≤ max
i1,...,id

∑
α∈F
| log(KαIα)− log(K̃αIα)|

≤
∑
α∈F
‖log(Kα)− log(K̃α)‖∞.

Combining Lemma 5.2 and Theorem 5.2 implies that Algorithm 13 with K̃ defined as
in (5.22) yields an accurate approximation of the optimal transport plan when ‖log(Kα)−
log(K̃α)‖∞ is sufficiently small for all α ∈ F . This allows one to replace each Kα by a
low-rank approximation K̃α, which in turn accelerates the computation of tensor network
contractions. For the example at the end of Section 5.3, the number of operations reduces
from O(n2) to O(nr) when every Kα is approximated by a rank-r matrix of the form
Kα = Uα(V α)T with Uα, V α ∈ Rn×r as depicted in Figure 5.3(a).

5.5 Numerical experiments

All numerical experiments∗ in this section were performed in MATLAB R2018b on
a Lenovo Thinkpad T480s with Intel Core i7-8650U CPU and 15.4 GiB RAM. In
Algorithms 11 and 13 we select the next index to be updated using index selection (5.7)
and we stop using stopping criterion (5.8) with εstop = 10−4.

5.5.1 Proof of concept

In the following, we study the impact of approximating the Gibbs kernel on the transport
cost. We define a multi-marginal optimal transport problem, whose cost tensor is of
the form studied in [110, Section 5.2]. Let n = 420. For ` = 1, . . . , 4, we generate
random point sets X(`) = {x(`)

1 , . . . , x
(`)
n } by sampling the points x(`)

i ∈ R2 independently
randomly from the uniform distribution on [0, 1]2 for i = 1, . . . , n. We define n × n
matrices C(1,2), C(2,3), C(3,4) with entries

C(1,2)
i,j = ‖x(1)

i −x
(2)
j ‖22, C

(2,3)
j,k = ‖x(2)

j −x
(3)
k ‖22, C

(3,4)
k,l = ‖x(3)

k −x
(4)
l ‖22 for 1 ≤ i, j, k, l ≤ n.

We construct the cost tensor

Ci,j,k,l = C(1,2)
i,j + C(2,3)

j,k + C(3,4)
k,l for 1 ≤ i, j, k, l ≤ n.

∗The MATLAB code to reproduce these results is available from https://github.com/cstroessner/
Optimal-Transport.git.

80

https://github.com/cstroessner/Optimal-Transport.git
https://github.com/cstroessner/Optimal-Transport.git

5.5. Numerical experiments

Let Kα = exp(−Cα) for α ∈ {(1, 2), (2, 3), (3, 4)}. The Gibbs kernel K = exp(−C) is
represented by the tensor network shown in Figure 5.2(a).

Let r ≤ n. We compare two different approximations of K. For the first one, we replace
the matrices Kα by their rank-r best approximations K̃α using truncated singular value
decompositions and define

(KSVDs)i,j,k,l = K̃(1,2)
i,j · K̃(2,3)

j,k · K̃
(3,4)
k,l for 1 ≤ i, j, k, l ≤ n.

For the second approximation KTT, we compute a TT approximation 2.6 of K with
TT rank (r, r, r) using the TT-DMRG-cross algorithm [281] ignoring the underlying
graph structure. The tensor network representation of KSVDs and KTT is depicted in
Figure 5.3. All four marginals can be computed in O(nr) operations for KSVDs and in
O(nr2) operations for KTT by contracting the tensor networks. In contrast, exploiting
the graph structure in K without low-rank approximations requires O(n2) operations.

U (1,2) V(1,2) D(2) U (2,3) V(2,3) D(3) U (3,4) V(3,4)

γ
(t)
1 γ

(t)
2 diag(γ(t)

3) γ
(t)
4

(a) Based on KSVDs

G1 G4

γ
(t)
1 γ

(t)
2 diag(γ(t)

3) γ
(t)
4

G2 G3

(b) Based on KTT

Figure 5.3 – Tensor networks for the computation of r3(P(t)
η) for the example in

Section 5.5.1. We express the truncated SVDs in KSVDs as K̃α = Uα(V α)T with
Uα, V α ∈ Rn×r. The TT cores in KTT are denoted by G1 ∈ Rn×r, G2,G3 ∈ Rr×n×r
and G4 ∈ Rr×n.

Based on the tensors K,KSVDs,KTT, we compute transport plans P,PSVDs,PTT by first
applying Algorithm 13 with marginals r` = 1

n · 1n and then rounding the resulting tensor
using Algorithm 12. In Figure 5.4, we compare the different transport plans. Note that we
can efficiently evaluate the transport cost 〈C,P〉 using tensor network contractions of Cα
and P without evaluating the full tensors. We observe that the difference in transport cost
of PSVDs,PTT and P is much smaller than the norm of the difference of the logarithms of
KSVDs,KTT and K. The approximation PSVDs that exploits the graph structure leads to
slightly better approximations compared to PTT. We want to emphasize that computing
PSVDs with r = 25 is faster than using the graph structure of K directly and only leads
to a difference in transport cost in the order of machine precision. Computing PTT is

81

Chapter 5: Multi-marginal optimal transport

faster than computing P for very small ranks. The different scaling in the number of
operations required to compute marginals leads to larger computation times for PTT

compared to PSVDs for increasing values of r. We want to emphasize that storing a tensor
in Rn×n×n×n explicitly would require more than 240GB of memory. Thus, it would not
be feasible to solve this problem without exploiting either the underlying structure of C
or the structure of the TT approximation.

5 10 15 20 25

10
-15

10
-10

10
-5

10
0

TT

SVDs

TT

SVDs

(a) Error analysis

10 20 30 40

2

3

4

5

6

7

ti
m

e
 i
n
 s

e
c
o
n
d
s

10
-3

TT

SVDs

(b) Computation time

Figure 5.4 – Difference in transport cost for the example in Section 5.5.1 for various
ranks r. Left: We depict the difference in transport cost for PSVDs,PTT and P and an
estimation of the norm of the difference of the logarithms of KSVDs,KTT and K based
on 1 000 sample points. Right: Measured computation times for applying Algorithm 13
and 12 to compute the transport plans exploiting the structures of K,KSVDs,KTT. Note
that this time does not include the computation of Kα,KSVDs,KTT.

Remark 5.7. Figure 5.4 shows that larger ranks lead to smaller approximation errors, but
at the same time larger ranks increase the computation time. This needs to be balanced in
practice. In particular, the rank needs to be sufficiently large such that the approximation
K̃ of the Gibbs kernel is strictly positive, which implies that ‖log(K)−log(K̃)‖∞ is bounded.
This can be achieved by choosing an approximation such that ‖K − K̃‖∞ is smaller than
the smallest entry of K.

Remark 5.8. The difference of the entropic cost for the tensors PSVDs,PTT and the
optimal transport plan P∗η is bounded by Theorem 5.2. We can assume that P is a good
approximation of P∗η . This would allow us to study the sharpness of the bound numerically.
However, the evaluation of the entropic cost requires the explicit computation of the full
tensors, which is not feasible for n = 420 without a Monte Carlo approximation. Instead,
we repeat the experiment in Section 5.5.1 with a smaller n. The results are depicted in
Figure 5.5. We find that the theoretical bound is much larger than the error observed in
practice.

82

5.5. Numerical experiments

2 4 6 8 10
10

-15

10
-10

10
-5

10
0

SVDs

TT

TT

SVDs

log SVDs

log TT

Figure 5.5 – We repeat the experiment described in Section 5.5.1 with n = 10 for various
ranks r. We depict the difference in the entropic transport cost (5.2) of PSVDs,PTT and P .
Further, we depict the norm of the difference of the elementwise logarithm of KSVDs,KTT
and K. Based on these values we compute the value of εV 1

C
as defined in (5.9).

5.5.2 Application: Color transfer from color barycenters

In the following, we apply our algorithms for color transfer as in [150]. We consider d = 4

images containing n = 1002 pixels each. Let 0 ≤ λ1, λ2, λ3 such that λ1 + λ2 + λ3 = 1. In
a first step, we compute an approximation of the Wasserstein barycenter [2] with weights
λ = (λ1, λ2, λ3) of the color of the first three images by solving the multi-marginal optimal
transport problem in [37, Section 4.2]. We then transfer the color from the approximation
of the barycenter onto the fourth image by solving a two-marginal optimal transport
problem [267].

Let x(`)
i ∈ [0, 1]3 denote the color of pixel i in image `, where we treat the RGB

values as element in R3 and rescale to [0, 1]3. Let x(B)
i = λ1x

(1)
i + λ2x

(2)
i + λ3x

(3)
i for

i = 1, . . . , n. We choose these points to define a reference template [335] for computing
an approximation of the barycenter as in [37]. Let C(`,4)

i,j = ‖x(`)
i − x

(B)
j ‖22 for 1 ≤ i, j ≤ n

and K(`,4) = exp(−C(`,4)/η) for 1 ≤ ` ≤ 3. We define the cost tensor

Ci,j,k,l = λ1C(1,4)
i,l + λ2C(2,4)

j,l + λ3C(3,4)
k,l for 1 ≤ i, j, k, l ≤ n,

and the Gibbs kernel tensor K = exp(−C/η) for a given regularization parameter η ≥ 0.
Following the ideas in [110, 150], we compute rB = r4(P∗η), where

P∗η = K ×1 diag(exp(β1))×2 diag(exp(β2))×3 diag(exp(β3))×4 diag(1n), (5.23)

with scaling parameters β1, β2, β3 ∈ Rn chosen such that r`(P∗η) = 1 for 1 ≤ ` ≤ 3.
To compute an approximation Pη of P∗η we run Algorithm 11 with cost tensor C and
marginals r1 = r2 = r3 = 1n and index selection (5.7), which we modify to use arg max

`∈{1,2,3}

83

Chapter 5: Multi-marginal optimal transport

instead of arg max
`∈{1,2,3,4}

. This modification ensures that we only update the first three scaling

parameters, which leads to an approximation of the form (5.23) [151, Theorem 3.5]. The
Gibbs kernel corresponds to a star shaped graph structure as in Figure 5.2(b). The
approximation of the color barycenter is now given by the points x(B) with masses rB.

Remark 5.9. Proposition 3.4 in [151] states that multi-marginal optimal transport
problems with star shaped graph structures can be decomposed into several independent
two-marginal problems when all marginals are prescribed. This does not apply for the
computation of (5.23), since r4(P∗η) is unknown.

We now want to transfer the color from the approximation of the barycenter to the fourth
image. We define the cost matrix Ci,j = ‖x(B)

i − x(4)
j ‖22 for 1 ≤ i, j ≤ n and Gibbs kernel

matrix K = exp(−C/η). Let the matrix P denote the approximate solution obtained
from Algorithm 11 with cost matrix C and marginals r1 = rB and r2 = 1n. The color
vector of the target image with transferred colors is now given by x∗j =

∑n
i=1 Pi,jx

(B)
i

for 1 ≤ j ≤ n. Note that we can transfer the color to several target images without
recomputing the barycenter approximation.

To accelerate the computation of marginals, we replace the Gibbs kernel tensor K by
an approximation K̃ obtained by replacing K(1,4),K(2,4),K(3,4) by rank-r approximations
using the randomized SVD [156]. We also replace the Gibbs kernel matrix K by a rank-r
approximation K̃. Marginals and the target color vector x∗ can now be computed in
O(nr) operations.

In the following numerical experiments, we set η = 1/10 and compute approximate
transport plans P̃, P̃ by applying Algorithm 13 to K̃ and K̃. In Figure 5.6, we study
the impact of λ and r onto the color transferred image for example images from the
COCO data set [218]. We observe that small values of r suffice to accurately approximate
the desired image. The computation including the assembling of the matrices and the
randomized SVD takes 0.25 seconds for r = 50, whereas using the full matrices in
R10000×10000 directly in the tensor network takes 7.65 seconds, i.e. our low-rank approach
reduces the computation time by over 96%.

Remark 5.10. When we are only interested in transferring the color onto a single
target image, we can alternatively solve the following multi-marginal optimal transport
problem without computing an approximation of the Barycenter. Based on the matrices
Ĉ(`,4)
i,j = ‖x(`)

i − x
(4)
j ‖22 for ` = 1, 2, 3, we define the cost tensor

Ĉi,j,k,l = λ1Ĉ(1,4)
i,l + λ2Ĉ(2,4)

j,l + λ3Ĉ(3,4)
k,l for 1 ≤ i, j, k, l ≤ n.

Let P̂ denote the transport plan obtained by solving the corresponding optimal transport
problem with marginals r` = 1n for ` = 1, . . . , 4. To accelerate the solution of this
problem, we can again replace the matrices exp(−Ĉ(1,4)/η), exp(−Ĉ(2,4)/η), exp(−Ĉ(3,4)/η)

84

5.5. Numerical experiments

(a) Impact of r

0 50
10

-6

10
-4

10
-2

10
0

(b) Error decay (c) Impact of λ

Figure 5.6 – Given the images displayed in the top row of (c), we use the method
described in Section 5.5.2 to transfer their color to the bottom right image in (c). For
fixed λ = (1/3, 1/3, 1/3), we plot the resulting images for ranks r = 3, r = 5, r = 10, r = 50
from left to right in (a). The rightmost picture is obtained by using the full matrices
Kα and K directly. In (b), we plot ||x̃r − x̃∗||∞ where x̃r denotes the resulting image
vector for a given rank r and x̃∗ is computed using the full matrices. Moreover, we
display the resulting image for different values of λ in (c): middle row left to right
λ = (1, 0, 0), λ = (0, 1, 0), λ = (0, 0, 1), bottom row left λ = (1/3, 2/3, 0), bottom row
middle λ = (1/5, 1/5, 3/5).

by rank-r approximations. Note that it would also be possible to decompose the problem
into several independent two-marginal problems using Proposition 3.4 in [151]. The
color vector of the target image with transferred colors can now be defined as x∗l =∑n

i=1

∑n
j=1

∑n
k=1 Pi,j,k,l(λ1x

(1)
i + λ2x

(2)
j + λ3x

(3)
k) for 1 ≤ l ≤ n. In Figure 5.7, it is

shown that the resulting target image seems to be similar to the image obtained after
solving the Barycenter problem (see Figure 5.6). However, we actually solve different

85

Chapter 5: Multi-marginal optimal transport

problems yielding different solutions. This is demonstrated in our experiments, where the
maximum norm of the difference of the color vector obtained using this approach to the
color vector obtained using the barycenter approach described in Section 5.5.2 is around 94.
Also note that the error introduced by using rank-r approximations using this alternative
approach is much smaller compared to using rank-r approximations using the barycenter
approach.

(a) Impact of r

0 50
10

-10

10
-5

10
0

(b) Error decay (c) Impact of λ

Figure 5.7 – We repeat the experiments used to generate Figure 5.6 using the alternative
approach described in Remark 5.10.

5.5.3 A tensor network with circles

In the following, we describe an optimal transport problem arising in the context of
Schrödinger bridges [96, 151]. Let m = 5 and n = 402. We denote by x(i) for 1 ≤ i ≤ n
the ith grid point on the grid {1, . . . , 40}2. Let Ci,j = ||x(i) − x(j)||22 for 1 ≤ i, j ≤ n and

86

5.5. Numerical experiments

K = exp(−C/η). We consider the Gibbs kernel

Ki1,i2,i3,i4,i5 =
∏
α∈F

KIα for 1 ≤ i1, i2, i3, i4, i5 ≤ n, (5.24)

where F = {(1, 2), (2, 3), (3, 4), (4, 5)}. Note that this corresponds to a tensor network
structure similar to Figure 5.2(a). Given r1, r5 ∈ ∆n, we now consider the problem of
finding scaling parameters β1, β5 ∈ Rn such that

P∗η = K×1 diag(exp(β1))×2 diag(1)×3 diag(1)×4 diag(1)×5 diag(exp(β5)) (5.25)

satisfies r1(P∗η) = r1 and r5(P∗η) = r5. In the context of Schrödinger bridges the marginals
r`(P∗η) for ` = 2, 3, 4 describe how the initial distribution r1 most likely evolved into
r5 [151]. As in Section 5.5.2, we can again compute approximations of P∗η by modifying
Algorithm 13 such that only β1 and β5 are updated based on the prescribed marginals
r1, r5; see [150, Section III.A].

D(1) D(5)D(4)D(3)D(2)K K K K

K K K

Figure 5.8 – Tensor network diagram representation of K as defined in (5.24).
The black network is obtained for F = {(1, 2), (2, 3), (3, 4), (4, 5)}. The blue
part depicts the additional nodes and vertices introduced by setting F =
{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}.

The Schrödinger bridge problem is based on a Markov chain model, in the sense that
each distribution only depends on the previous distribution. We now introduce ad-
ditional dependencies by setting F = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)} in
Equation (5.24). The tensor network structure of K is depicted in Figure 5.8. Note that
this results in a graphical model for P∗η with window graph structure as in [7, Figure 2]. In
Figure 5.9, we depict the corresponding tensor network after replacing each matrix K by a
rank-r approximation. Marginals of this network can be computed in O(nr4) operations.
For instance, to compute r3(P(t)

η) we first evaluate the colored tensors T [1], . . . , T [5] in
O(nr4) operations by contracting the colored edges simultaneously using the structure of
D(k). We then compute T [1,2] ∈ Rr×r×r in O(r4) operations by contracting T [1] and T [2]

along their common edge. Analogously we compute T [4,5]. We then contract T [1,2] and
T [4,5] along their common edge in O(r5) operations before contracting all edges of the
resulting tensor simultaneously with T [3] in O(nr4) operations. We want to emphasize
that contracting the network without replacing K by low-rank approximations would not
be feasible due to the required memory for storing the intermediate tensors.

In Figure 5.10, we study the impact of introducing these additional dependencies on the

87

Chapter 5: Multi-marginal optimal transport

D(1) D(5)D(4)D(3)D(2)U V U V U V U V

U V U V U V

γ
(t)
1 γ

(t)
2 diag(γ(t)

3) γ
(t)
4 γ

(t)
5

T [1]

T [2]

T [3]

T [4]

T [5]

Figure 5.9 – Tensor network diagram representation of r3(P(t)
η) corresponding to the graph

structure (5.24) with F = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}. Here, we replace
each matrix K by UV T with U, V ∈ Rn×r. The colors mark subtensors T [1], . . . T [5]

computed during the contraction.

0

1

2

10
-3

Figure 5.10 – We consider the scaling problem (5.25) for η = 0.1. We obtain an approxima-
tion K̃ of the Gibbs kernel by replacing K̂ in (5.24) by a rank-10 approximation computed
via the randomized SVD. We apply Algorithm 13 with index selection (5.7), where we take
arg max only over the set {1, 5}. Let P denote the resulting transport plan. In each row,
we depict the prescribed r1, r5 as well as r2(P), r3(P), r4(P) reshaped into R40×40. The
top row is obtained using F = {(1, 2), (2, 3), (3, 4), (4, 5)} as in the Schrödinger bridge set-
ting. The bottom row is obtained using F = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}
with additional dependencies.

marginals r`(P), where P denotes the computed approximation of (5.25). We observe
that the additional dependencies lead to a more concentrated r3(P), in the sense that the
mass is less spread out. Moreover, the additional dependencies lead to r2(P) and r4(P)

being concentrated slightly closer to the center of the images.

Remark 5.11. In this experiment, the graphical model of the transport plan contains
circles. Hence, we can not apply the belief propagation algorithm directly [118, 150]. There
exist generalizations such as the loopy belief propagation algorithm [181], which does not
always converge, and the junction tree algorithm [173], which applies the belief propagation
on a so-called junction tree. This junction tree encodes the connection structure of the
vertices. It can be used to determine the contraction order for the corresponding tensor
network representation of the Gibbs kernel [273, Section 4.2]. In particular, the minimal
cost to contract the tensor network is bounded from above by the cost of the junction tree

88

5.5. Numerical experiments

algorithm.

89

6 Self-diffusion matrix

This chapter is concerned with the computation of the self-diffusion matrix of a tagged
particle process on a grid. In contrast to classical methods based on estimating long-time
averages of empirical means of deviations of some stochastic processes on a finite-size
supercell, we propose a novel numerical method based on solving the equivalent high-
dimensional optimization problem formulated in [42, 210, 266] using an alternating linear
scheme [39, 171, 274]. Once we obtained an approximation of the optimal solution, we
use a carefully tuned variance reduction method to evaluate the desired entries of the
self-diffusion matrix. To illustrate the method, we compute the self-diffusion matrix of
a two-dimensional tagged particle process defined on a Cartesian grid. Our numerical
experiments demonstrate that our novel low-rank approach is much less subject to
statistical noise and that it yields a very accurate approximation of the self-diffusion
matrix.

In addition, we present so-called cross-diffusion systems [49, 51, 182, 183] as example
for applications, in which self-diffusion matrices play an important role. These systems
appear in various fields such as population dynamics [290], tumor growth in medical
biology [176], the modeling of biological systems [313] and lattice gases [13, 14, 111,
288], and the simulation of diffusion processes within mixtures of chemical compounds in
materials science [23, 225]. When these systems are derived as hydrodynamic limits of
lattice-based stochastic hopping models at the microscopic level [111, 266], they involve
self-diffusion matrices as coefficients. Computing these self-diffusion coefficients is a
major challenge that needs to be overcome before we can solve the cross-diffusion system
numerically using for instance finite volume [116] or finite element methods [48].

This chapter is based on the articles [84, 85]. Its remainder is structured as follows. In
Section 6.1, we recall the two equivalent definitions of the self-diffusion matrix of the
tagged particle process. In Section 6.2, we construct finite-dimensional approximations of
both definitions. The low-rank approach we propose here in order to compute a numerical
approximation is presented in Section 6.3. The efficiency of our approach is illustrated

91

Chapter 6: Self-diffusion matrix

through several numerical experiments presented in Section 6.4. Finally, in Section 6.5,
we develop a cell-centered finite volume method to simulate a cross-diffusion system
involving self-diffusion matrices as coefficients.

6.1 Infinite-dimensional definition

Let d = 1, 2, 3 denote the physical dimension of the problem. We consider a symmetric
tagged particle process [276] defined on the infinite grid Zd. Let K ∈ N denote the
number of possible jump directions for the particles. Let (vk)1≤k≤K ⊂ Zd \ {0} denote
the set of possible jump directions. For all 1 ≤ k ≤ K, the probability of jumping in the
direction vk is denoted by pk ∈]0, 1]. This jumping scheme is assumed to be symmetric
in the sense that if the jump in the direction vk occurs with probability pk, then the jump
in the direction −vk occurs with the same probability.

The self-diffusion matrix application

Ds :

{
[0, 1] → Rd×d

ρ 7→ Ds(ρ) := (Ds,ij(ρ))1≤i,j≤d

can be defined in the following two ways.

6.1.1 Definition as optimization problem

Let us first introduce some notation. Let S := Zd \ {0}. For all so-called environments
η := (ηs)s∈S ∈ {0, 1}S and all y 6= z ∈ S, we define by ηy,z := (ηy,zs)s∈S the element of
{0, 1}S such that

ηy,zs :=


ηs if s 6= y, z,

ηy if s = z,

ηz if s = y.

Furthermore, for all w ∈ S, we define by η0,w := (η0,ws)s∈S the element of {0, 1}S such
that

η0,ws :=

{
ηs+w if s 6= −w,
0 if s = −w.

For a mean particle density ρ ∈ [0, 1], we denote by ρ⊗ the Bernoulli product measure on
{0, 1}S with constant marginals equal to ρ in each mode. Let us also define the set of
functions Hρ := L2

ρ⊗

(
{0, 1}S

)
, where L2

ρ⊗ denotes the L2 Lebesgue space with measure
ρ⊗.

For a drift direction u ∈ Rd and mean particle density ρ ∈ [0, 1], the self-diffusion

92

6.1. Infinite-dimensional definition

coefficient uTDs (ρ)u is given by:

uTDs(ρ)u := 2 inf
Ψ∈Hρ

Eρ⊗
[K∑
k=1

pk

(
(1− ηvk)

(
u · vk + Ψ(η0,vk)−Ψ(η)

)2
+

1

2

∑
y∈S

y+vk 6=0

(
Ψ(ηy+vk,y)−Ψ(η)

)2)]
, (6.1)

where the notation Eρ⊗ refers to the fact that the expectation is taken over the product
measure ρ⊗ [200, 266], i.e. we need to consider the expectation over all possible environ-
ments η. Problem (6.1) thus reads as an infinite-dimensional optimization problem over
the set Hρ.

Remark 6.1. Naturally, for all ρ ∈ [0, 1], since Ds(ρ) is a symmetric matrix, one can
easily deduce the full matrix Ds(ρ) from the knowledge of uTDs(ρ)u for three vectors
u ∈ Rd.

6.1.2 Definition as long time mean square deviation

The quantity uTDs(ρ)u can be equivalently expressed as the long time limit of the
following expectation [266, Theorem 2.3]. Let us assume that, at time t = 0, the tagged
particle is located at position 0 and all other sites are occupied with probability ρ following
a Bernoulli distribution. The duration between two consecutive jumping events follows
an exponential law with parameter 1. The jumping directions (respectively rates) are
given by {v1, . . . , vK} (respectively p1, . . . , pK). Jumps are not allowed if the final site
of the jumping particle is already occupied. Let w(t) denote the position of the tagged
particle at time t ≥ 0. It then holds that, for a drift direction u ∈ Rd and mean particle
density ρ ∈ [0, 1], the quantity uTDs(ρ)u can be equivalently formulated as the long-time
limit mean square deviation of the tagged particle in the direction u ∈ Rd, i.e.

uTDs(ρ)u = 2 lim
t→∞

Eρ⊗ [〈u,w(t)〉2]

t
. (6.2)

Remark 6.2. Starting from a Bernoulli-product measure and symmetric transition rates,
it is a classical problem in probability theory to study the motion of a tagged particle on
Zd [192, 215, 276] and more recently also on trees [68, 132]. For d ≥ 2 and symmetric
nearest neighbor transition rates, the tagged particle is known to satisfy a central limit
theorem with non-degenerate limiting variance. However, to our best knowledge, a general
closed formula for the limiting variance is not available.

Notice that when starting from a Bernoulli-product measure with a tagged particle in the
origin, the resulting environment process is stationary with respect to the Bernoulli-product
measure conditioned to contain a particle in the origin, usually called the Palm measure.
This suggests that the limiting variance for the tagged particle can be described in terms of

93

Chapter 6: Self-diffusion matrix

the sum of separable functions, i.e. in terms of a low-rank function. In turn, this indicates
that the equivalent characterization of the limiting variance as in Equation (6.1) is also
related to low-rank functions.

6.2 Finite-dimensional approximation

The quantity uTDs(ρ)u can not be computed exactly in practice, neither using expression
(6.1) nor expression (6.2). On the one hand, (6.1) reads as an infinite-dimensional
optimization problem and has to be approximated by a finite-dimensional optimization
problem in practice [178, 210]. On the other hand, (6.2) requires the computation of
the long-time average of the stochastic process defined on the infinite lattice grid Zd.
Equivalently, it has to be approximated in a finite-dimensional setting, as long-time average
of the mean-square deviation of the tagged particle associated to a stochastic process
defined on a finite-size grid with periodic boundary conditions. Both finite-dimensional
approximations are presented in detail in the following.

6.2.1 Discretized minimization problems

Let M ∈ N denote a discretization parameter and introduce the finite grid SM :=

{−M, · · · ,M}d\{0}. For the sake of simplicity, we assume thatM ≥ maxk∈{1,...,K} ||vk||1.
For any η ∈ {0, 1}SM , we can construct by periodicity an extension η̃ := (η̃s)s∈S ∈ {0, 1}S
by assuming with a slight abuse of notation that the site 0 is occupied, i.e. η̃s = 1 for
s ∈ (2M + 1) · Zd \ {0}. Using this notation, for all η ∈ {0, 1}SM and all y, z, w ∈ S, we
define ηy,z ∈ {0, 1}SM and η0,w ∈ {0, 1}SM as

ηy,z := (η̃y,zs)s∈SM and η0,w :=
(
η̃0,ws

)
s∈SM .

Figure 6.1 shows an illustration of ηy,z and η0,w.

Let N := (2M + 1)d − 1 = Card(SM). For all ` ∈ {0, . . . , N}, let CM,` := {η ∈
{0, 1}SM |∑s∈SM ηs = `} denote the set of all possible configurations of the particles on
SM so that the total number of occupied sites is equal to `.

Let us define HM :=
{

Ψ : {0, 1}SM → R
}
. For every u ∈ Rd and l ∈ {0, . . . , N}, we

introduce the quadratic functional AuM,` : HM → R defined by

AuM,`(Ψ) :=
1

|CM,`|
∑

η∈CM,`

K∑
k=1

pk

[
(1− ηvk)

(
u · vk + Ψ(η0,vk)−Ψ(η)

)2

+
1

2

∑
y∈SM
y+vk 6=0

(
Ψ(ηy+vk,y)−Ψ(η)

)2]
. (6.3)

94

6.2. Finite-dimensional approximation

-1 0 1

-1

0

1

η0,(−1,0)

-1 0 1

-1

0

1

η

-1 0 1

-1

0

1

η(1,1)+(−1,0),(1,1)

Figure 6.1 – Middle: Visualization of one particular η ∈ S1 for d = 2 with three occupied
sites marked in blue, cyan and magenta. Additionally, we mark the tagged particle 0 in
red. Left: Visualization of the occupied sites of η0,(−1,0). This can be seen as a jump
of the imaginary red particle one step to the left, followed by immediately relabeling of
the sites such that red particle remains at 0. By exploiting the periodicity, we obtain
η0,(−1,0) ∈ S1. Right: Visualization of the occupied sites of η(1,1)+(−1,0),(1,1). This can be
seen as jump of the cyan particle one step to the left.

Then, for some ` ∈ {0, . . . , N}, one can define [42] for all u ∈ Rd,

uTDM
s

(
`

N

)
u := 2 min

Ψ∈HM
AuM,`(Ψ). (6.4)

For any ρ ∈ [0, 1], it is proved in [210] that lim
M → +∞
`
N → ρ

uTDM
s

(
`

N

)
u = uTDs(ρ)u.

6.2.2 Combined minimization problem

The collection of sets CM,0, . . . , CM,N forms a partition of the set {0, 1}SM . Observe
for a given Ψ ∈ HM , AuM,`(Ψ) only depends on the values of Ψ(η) for η ∈ CM,`, since
η ∈ CM,` implies that also η0,vk ∈ CM,` and ηy+vk,y ∈ CM,` for all k ∈ {1, . . . ,K}. As a
consequence, if ΨM,u

opt ∈ HM is a minimizer of

min
Ψ∈HM

AuM (Ψ), (6.5)

where

AuM (Ψ) :=
∑

η∈{0,1}SM

K∑
k=1

pk

[
(1− ηvk)

(
u · vk + Ψ(η0,vk)−Ψ(η)

)2
+

1

2

∑
y∈SM
y+vk 6=0

(
Ψ(ηy+vk,y)−Ψ(η)

)2]
, (6.6)

95

Chapter 6: Self-diffusion matrix

then it holds that AuM,`(Ψ
M,u
opt) = minΨ∈HM AuM,`(Ψ) for all ` ∈ {0, . . . , N}. The knowledge

of ΨM,u
opt then allows us to compute uTDM

s

(
`
N

)
u for all ` = 0, . . . , N as 2AuM,`(Ψ

M,u
opt).

Note that the minimization problem (6.5) is independent of `, in contrast to (6.4). Also
note that the minimization problem (6.5) has 2N degrees of freedom and is thus intractable
for large values of N .

Our main contribution is to propose the low-rank tensor approximation algorithm to
compute an approximation of ΨM,u

opt in order to mitigate this issue.

6.2.3 Estimation of long-time mean square deviation

The quantity uTDM
s

(
`
N

)
u can be equivalently approximated by discretizing the defini-

tion (6.2). This leads to the problem of computing the long-time mean square deviation
of a tagged particle evolving in the periodic environment SM [210]. The Monte Carlo
algorithm is the standard method of choice to compute an approximation of uTDM

s

(
`
N

)
u

by means of empirical averages. The quality of the obtained approximations then depends
on the choice of two numerical parameters, namely the number of Monte Carlo samples
(i.e. stochastic realizations of the periodized tagged particle process) and the value of the
chosen final time.

We want to compare the low-rank tensor approximation algorithm we propose in this
chapter with Monte Carlo estimations of the long-time mean square deviation. To this
aim, we detail our Monte Carlo algorithm in the following. Let ` ∈ {1, . . . , N}. An
initial environment η is obtained by sampling uniformly from CM,`. We sample from
exponential distributions to determine the next time a particle in the environment or
the tagged particle performs a jump. Whenever a jump is performed the environment
η is updated accordingly. Let w = 0 ∈ Zd denote the initial position of the tagged
particle. Throughout the simulation, we track the position of the tagged particle in Zd,
i.e. whenever the tagged particle successfully jumps in direction vk, we set w = w + vk.
To approximate the expectation of w, we repeat this simulation Ns times with different
samples. Each of these simulations is stopped at the same stopping time T at which we
compute the approximation of uTDs(ρ)u. This approach is formalized in Algorithm 14.

Remark 6.3. In Algorithm 14, we set Ns = dN̂s/(` + 1)e, where N̂s is a given input
parameter. This ensures that the expected runtime is approximately equal for all choices of
`. Additionally Figure 6.5 shows that the variance of the output is comparable independently
of `. If we were to use the same Ns for all `, we would observe a much larger variance
for smaller ` and the runtime would increase for larger `.

96

6.3. Low-rank solutions for the optimization problem

Algorithm 14 Long-term Monte Carlo estimation

1: Input: M ∈ N, u ∈ Rd, number of occupied sites 1 ≤ ` ≤ N with N = (2M +1)d−1,
final time T > 0, N̂s ∈ N

2: Output: approximation α ≈ 1
2u

TDM
s

(
`
N

)
u = AuM,`(Ψ

M,u
opt)

3: w = 0, α = 0, Ns = dN̂s/(`+ 1)e
4: for i = 1, 2, 3, . . . , Ns

5: randomly initialize η ∈ CM,` and set ttotal = 0,
6: while true
7: sample tnew from an exponential distribution with mean 1

`+1
8: set ttotal = ttotal + tnew
9: if ttotal > T

10: break
11: uniformly select either one occupied site y ∈ SM with ηy = 1 or the tagged

particle y = 0
12: select a jump direction vk with probability pk
13: if η̃y+vk = 0, i.e. the target location is not occupied
14: when y 6= 0 ⇒ set η = ηy+vk,y

15: when y = 0 ⇒ set η = η0,vk and update w = w + vk

16: update α = α+ 〈u,w〉2
17: α = α

TNs

6.3 Low-rank solutions for the optimization problem

The aim of this section is to present our novel low-rank method for the numerical resolution
of the high-dimensional optimization problem (6.5). Instead of solving the problem for
all functions in HM , we restrict the solution space to functions of rank at most r defined
analogous to (2.4), i.e. to functions of the form Ψ = R(1) + · · ·+R(r), with

R(η)(k) = Πs∈SMRs(ηs)
(k), ∀η = (ηs)s∈SM ∈ {0, 1}SM ,

for some R(k)
s : {0, 1} → R for s ∈ SM , k = 1, . . . , r. We denote by Hr

M ⊂ HM the set of
all rank at most r functions. For all r ∈ N, it holds

min
Ψ∈HM

AuM (Ψ) = min
Ψ∈H2N

M

AuM (Ψ) ≤ min
Ψ∈Hr+1

M

AuM (Ψ) ≤ min
Ψ∈Hr

M

AuM (Ψ).

In the next sections, we derive an algorithm to approximate arg minΨ∈Hr
M
AuM (Ψ). We

first introduce a fast and stable algorithm for the evaluation of AuM for functions in Hr
M .

We then develop a successive minimization scheme to compute low-rank solutions of (6.5).
Each minimization step is performed using an alternating linear scheme, which relies on
the fast and stable evaluations of AuM . Lastly, we discuss the evaluation of AuM,` for the
computation of the self-diffusion coefficient (6.4).

97

Chapter 6: Self-diffusion matrix

6.3.1 Fast and stable evaluation

In this section, we introduce a fast and stable method to evaluate AuM (Ψ) for Ψ ∈ Hr
M .

The naive direct evaluation would require to sum over 2N terms, which is intractable
for large values of N . In principle, the order of summation can be exchanged leading
to terms of the form

∑
η∈{0,1}SM Ψ(η)2, which can be evaluated efficiently for Ψ ∈ Hr

M .
However, subtracting these terms leads to a lot of numerical cancellation for M > 1. We
circumvent these issues by treating the evaluation of AuM (Ψ) as the computation of the
Frobenius norms of certain tensors. These Frobenius norms can then be evaluated in a
fast and stable way.

Reformulation as tensor norm

For Ψ ∈ HM , we consider the order N tensor T (Ψ) ∈ R2×···×2 with entries T (Ψ)
i1,...,iN

= Ψ(η),
where η = (ηs1 , . . . , ηsN) for some enumeration s1, . . . , sN of the sites in SM and ηsj = ij−1

for 1 ≤ j ≤ N . Note that Ψ ∈ Hr
M , as defined in Section 6.3, can be represented by a

rank-r tensor in CP-format (2.4) of the form

T (Ψ)
i1,...,iN

=
r∑

k=1

N∏
j=1

a
(j,k)
ij

, (6.7)

where a(j,k) ∈ R2 is defined as a(j,k) = (R
(k)
sj (0), R

(k)
sj (1)).

For v, y ∈ SM , we analogously define the order N tensor T (Ψ(0,v)) ∈ R2×···×2 with
entries T (Ψ(0,v))

i1,...,iN
= Ψ(η0,v). When y + v 6= 0 we additionally define the order N tensor

T (Ψ(y+v,y)) ∈ R2×···×2 with entries T (Ψ(y+v,y))
i1,...,iN

= Ψ(ηy+v,y). We observe that these again
are rank-r tensors when Ψ ∈ Hr

M . Lastly, we define the order N , rank-1 tensor T (u·v) ∈
R2×···×2 with entries T (u·v)

i1,...,iN
= u · v.

For an order N tensor T ∈ R2×···×2 and a site s we define the projection operators
Ps : R2×···×2 → R2×···×2 as

(Ps(T))i1,...,iN :=

{
Ti1,...,iN is = 1

0 otherwise
, for 1 ≤ i1, . . . , iN ≤ 2,

where is denotes to the index assigned to site s. We can now rewrite (6.6) as

AuM (Ψ) =
K∑
k=1

pk

[
‖Pvk

(
T (u·vk) + T (Ψ(0,vk)) − T (Ψ)

)
‖2F+

1

2

∑
y∈SM
y+vk 6=0

‖T (Ψ) − T (Ψ(y+vk,y))‖2F
]
. (6.8)

98

6.3. Low-rank solutions for the optimization problem

Efficient evaluation of Frobenius norms for sums of low-rank tensors

Let k ∈ {1, . . . ,K} and y ∈ SM such that y + vk 6= 0 be fixed. We derive an algorithm
inspired by TT orthogonalization [249] to evaluate ‖T (Ψ) − T (Ψ(y+vk,y))‖2F .

We start by rewriting Equation (6.7) in TT format (2.6) as

T
(Ψ)
i1,...,iN

=
r∑

k1=1

. . .
r∑

kN−1=1

C1
1,i1,k1C2

k1,i2,k2C3
k2,i3,k3 · · · CNkN−1,iN ,1

, (6.9)

with tensors C1 ∈ R1×2×r, CN ∈ Rr×2×1 and Cj ∈ Rr×2×r for 1 < j < N , whose entries
are given by

Cjk1,i,k2 =

{
aj,k1i k1 = k2

0 otherwise
, for 1 < j < N, 1 ≤ i ≤ 2, 1 ≤ k1, k2 ≤ N,

C1
1,i,k = a1,k

i for 1 ≤ i ≤ 2, 1 ≤ k ≤ N,
CNk,i,1 = aN,ki for 1 ≤ i ≤ 2, 1 ≤ k ≤ N.

The representation (6.9) can be generalized to other low-rank tensors. Let T (Ψ(y+vk,y))

be analogously represented by tensors Dj . The tensor T (Ψ) − T (Ψ(y+vk,y)) is at most
rank-2r. It’s representation in the form of (2.6) with tensors Ej can be constructed from
the tensors Cj ,Dj , i.e. the tensors E1 ∈ R1×2×2r, EN ∈ R2r×2×1 and Ej ∈ R2r×2×2r for
1 < j < N are defined as E1

1,:,1:r = C1, E1
1,:,r+1:2r = −D1, EN1:r,:,1 = CN , ENr+1:2r,:,1 = DN

and Ej1:r,:,1:r = Cj , Ejr+1:2r,:,r+1:2r = Dj . Note that for 1 < j < N these tensors are sparse
by construction.

We can compute the norm ‖T (Ψ) − T (Ψ(y+vk,y))‖2F directly form the tensors Ej in a
fast and stable way using TT orthogonalization [249] as defined in Algorithm 15. We
want to emphasize that the sparsity structure of Ej is preserved in Algorithm 15. The
evaluation of ‖EN‖2F in line 13 requires summing up 4r terms, whereas a naive evaluation
of ‖T (Ψ) − T (Ψ(y+vk,y))‖2F involves 2N terms.

Remark 6.4. The sum of several low-rank tensors can be represented in the format (2.6).
The representation of the sum can again be constructed from the representations of the
individual low-rank tensors. This allows us to apply TT orthogonalization to evaluate all
Frobenius-norms in Equation (6.8) in a fast and stable way.

6.3.2 Successive minimization

Let r ∈ N. In order to approximate arg min
Ψ∈Hr

M

AuM (Ψ), we decompose the problem into

a sequence of successive minimization problems following the idea of Remark 2.3. We
assume that Ψ ∈ Hr

M is of the form Ψ = R(1)+· · ·+R(r) with rank-1 functions R(k) ∈ H1
M .

99

Chapter 6: Self-diffusion matrix

Algorithm 15 Frobenius norm evaluation

1: Input: tensors E1 ∈ R1×2×2r, EN ∈ R2r×2×1 and Ej ∈ R2r×2×2r for 1 < j < N
2: Output: ‖T ‖2F , where T ∈ R2N has entries Ti1,...,iN =∑r

k1=1 . . .
∑r

kN−1=1 E1
1,i1,k1

E2
k1,i2,k2

· · · ENkN−1,iN ,1

3: Compute QR decomposition of E1 reshaped as element in R2×2r.
4: Set E1 to Q reshaped as element in R1×2×2r.
5: Update E2: reshape to R2r×2·2r, multiply with R from the left, reshape back to

R2r×2×2r.
6: for j = 2, . . . , N − 1
7: Compute QR decomposition of Ej reshaped as element in R2r·2×2r.
8: Set Ej to Q reshaped as element in R2r×2×2r.
9: if j < N − 1

10: Update Ej+1: reshape to R2r×2·2r, multiply with R from the left, reshape back
to R2r×2×2r.

11: else
12: Update EN : reshape to R2r×2, multiply with R from the left, reshape back to

R2r×2×1.
13: ‖T ‖2F = ‖EN‖2F

We first determine R(1) as solution of minR(1)∈H1
M
AuM (R(1)). In a successive step R(2) is

determined as solution of minR(2)∈H1
M
AuM (R(1) + R(2)). This is continued successively

until Ψ is determined. The idea is formalized in Algorithm 16.

Algorithm 16 Successive minimization
1: Input: rank r
2: Output: approximation Ψ ≈ arg minΨ∈Hr

M
AuM (Ψ)

3: Ψ = 0
4: for k = 1, . . . , r
5: R(k) = arg minR∈H1

M
AuM (Ψ +R)

6: Ψ =
∑k

i=1R
(i)

6.3.3 Alternating least squares

In Algorithm 16, we need to solve minimization problems of the form

min
R∈H1

M

AuM (Ψ +R) (6.10)

for given Ψ ∈ Hr
M . In the following, we introduce an ALS algorithm (see Section 2.1.2) to

solve such minimization problems. The main idea is to approximate the solution of (6.10)
by an iterative scheme which amounts to solving a sequence of small-dimensional linear
problems. We start from an initial R(η) := Πs∈SMRs(ηs). We first minimize Au(Ψ +R)

only with respect to a selected Rs0 : {0, 1} → R for some s0 ∈ SM leaving the other Rs,

100

6.3. Low-rank solutions for the optimization problem

s 6= s0 fixed. By partially evaluating Au(Ψ + R) for all terms not depending on Rs0 ,
we obtain that minRs0∈{{0,1}→R}Au(Ψ + R) with R(η) := Rs0(ηs0)Πs∈SM\{s0}Rs(ηs) is
equivalent to a quadratic optimization problem

min
Rs0∈{{0,1}→R}

α1Rs0(1)2+α2Rs0(0)2+α3Rs0(1)Rs0(0)+α4Rs0(1)+α5Rs0(0)+α6, (6.11)

with constants α1, . . . , α6 ∈ R depending on the fixed Rs, s 6= s0 and Ψ. This quadratic
optimization problem always admits a unique optimal Rs0 , which is given by Rs0(1) = a

and Rs0(0) = b, where a, b ∈ R are the solution of the linear system(
2α1 α3

α3 2α2

)(
a

b

)
=

(
−α4

−α5

)
. (6.12)

This allows us to optimize AuM (Ψ +R) with respect to individual Rs0 . By alternating the
selected s0 ∈ SM , we obtain the alternating least squares algorithm, which is formalized
in Algorithm 17.

Algorithm 17 Alternating least squares

1: Input: initial functions R0
s : {0, 1} → R for s ∈ SM , function Ψ ∈ Hr

M , vector u,
tolerance ε

2: Output: approximation Ropt(η) = Πs∈SMRs(ηs) of arg minR∈H1
M
AuM (Ψ +R)

3: vold =∞, vnew = AuM (Ψ +R0) with R0(η) := Πs∈SMR
0
s(ηs)

4: ∀s ∈ SM , Rs := R0
s.

5: while |vold − vnew| > ε|vnew|.
6: vold = vnew
7: for s0 ∈ SM
8: Rs0 = arg min

R̃s0 :{0,1}→RA
u(Ψ + R̃) where R̃(η) = R̃s0(ηs0)Πs∈SM\{s0}Rs(ηs)

for all η = (ηs)s∈SM
9: vnew = AuM (Ψ +R)

Remark 6.5. To compute the constants αi, we can either explicitly implement the partial
evaluations of AuM (Ψ+R). Alternatively, we can treat AuM (Ψ+R) as a function in R2 → R
depending on the values Rs0(0) and Rs0(1). We know that this function is a multivariate-
polynomial of the form α1Rs0(1)2+α2Rs0(0)2+α3Rs0(1)Rj(0)+α4Rs0(1)+α5Rs0(0)+α6.
The constants can be computed using multivariate-polynomial interpolation (2.16) in
six points. This interpolation has the advantages that it is non-intrusive and that the
evaluations of AuM (Ψ +R) can be performed efficiently using the ideas of Section 6.3.1.

Remark 6.6. Throughout this chapter, we use approximations in the CP-format. Note
that alternating algorithms can also be applied to TT tensors [145, 171, 312].

101

Chapter 6: Self-diffusion matrix

6.3.4 Monte Carlo methods

Let Ψ ∈ Hr
M denote an approximation of the solution of (6.5). In the following, we

discuss how to evaluate AuM,`(Ψ). In the definition (6.3) of AuM,` the function

f(η) :=

K∑
k=1

pk

[
(1− ηvk)

(
u · vk + Ψ(η0,vk)−Ψ(η)

)2
+

1

2

∑
y∈S\{0}
y+vk 6=0

(
Ψ(ηy+vk,y)−Ψ(η)

)2] (6.13)

is evaluated for all η ∈ CM,`. For larger N and most choices of `, evaluating |CM,`| =
(
N
`

)
terms is intractable. We thus propose to use a Monte Carlo method [227] to approximate
AuM,`(Ψ).

In a naive Monte Carlo method, we compute Ns samples η(i) ∈ CM,` for i = 1, . . . , Ns

and replace 1
|CM,`|

∑
η∈CM,` in (6.3) by 1

Ns

∑
η∈{η(1),...,η(Ns)}.

In Algorithm 18, we describe a Monte Carlo method with additional variance reduc-
tion [158], which as demonstrated in Section 6.4 reduces the number of samples needed
to obtain a given approximation accuracy. The main idea is to observe that the sites
v1, . . . , vK play a special role since they are the most relevant for jumps of the tagged
particle. Instead of sampling the η uniformly in CM,`, we now ensure that all possible
states of the sites v1, . . . , vK are occurring equally often in the set of sample points. We
obtain the environments used to approximate AuM,`(Ψ) using the following construction.
We first sample the states of all sites other than v1, . . . , vK randomly. We then combine
these states with all possible states of the sites v1, . . . , vK to obtain 2K different envi-
ronments. After evaluating f for each of these environments, we obtain the next set of
environments by randomly sampling the states of all sites other than v1, . . . , vK . This
procedure is repeated until desired the total number of evaluations of f has been reached.

Remark 6.7. In line 9 of Algorithm 18, we sample form the set set

{~w(2) ∈ {0, 1}SM\{v1,...,vk}| ||~w(2)||1 = n2}

which contains
(
N−K
n2

)
elements. When the number of elements in this set is smaller than

Ñs, we can compute S̃ based on all possible ~w(2) instead of sampling Ñs times. This
decreases the variance of the approximation further and reduces the number of required
evaluations of f .

6.3.5 Limitations of the approach

In this section, we briefly discuss the limitations of the proposed algorithm. These are

102

6.3. Low-rank solutions for the optimization problem

Algorithm 18 Monte Carlo method with variance reduction

1: Input: function f : CM,` → R, parameter Ñs

2: Output: approximation S of 1
|CM,`|

∑
η∈CM,` f(η)

3: S = 0
4: for ~w(1) ∈ {0, 1}K
5: n1 := ||~w||1, n2 := `− n1

6: if 0 ≤ n2 ≤ N − `
7: S̃ = 0
8: for i = 1, . . . , Ñs

9: Sample ~w(2) ∈ {0, 1}SM\{v1,...,vk} such that ||~w(2)||1 = n2.

10: Construct η ∈ CM,` such that η(s) =

{
~w

(1)
k s = vk

~w
(2)
s otherwise

.

11: S̃ = S̃ + f(η)

12: S = S +
(
N−K
n2

)
· S̃/Ñs

13: S = S

(N`)

primarily related to the following observation. Since AuM,`(Ψ
M,u
opt) defines the entries of

the self-diffusion coefficient (6.4), we know that AuM,`(Ψ
M,u
opt) ∈ [0, 1]. Note that AuM,`

contains the normalization constant |CM,`|−1. The objective function AuM (6.6) does not
include a normalization factor. This implies that the AuM (ΨM,u

opt) is of order 2N . Trying
to minimize this objective function numerically using floating point arithmetic leads to
issues caused by rounding errors for large N .

For larger values of the objective function, it becomes increasingly challenging to solve the
individual minimization problems in line 8 of Algorithm 17. In particular, our approach
of using polynomial interpolation to find the location of the minimum might encounter
numerical rounding issues. We find that the positive eigenvalues of the 2 × 2 matrix
in (6.12) tend to be many orders of magnitude smaller than the norm of the right hand side.
This implies that small rounding errors in the constants α1, . . . , α6 might lead to vastly
different solutions. For M > 2, we even find that rounding errors can lead to negative
eigenvalues in the system, i.e. we can not find the minimum of the polynomial (6.11)
at all. It might be necessary to use a different approach to solve the individual ALS
minimization problems for larger M . Alternatively, one could develop an algorithm to
minimize the function log(AuM).

Moreover, the number of ALS iterations needed to find a good rank-1 minimizer tends to
increase when increasing the size of the domain. This is especially true when a random
initialization is used in Algorithm 17. Note that it might be possible to circumvent this
issue by initializing Algorithm 17 based on the solution computed for a smaller value of
M . Overcoming these limitations will then require further investigation. A possible path
could be to combine domain decomposition approaches together with the tensor-based

103

Chapter 6: Self-diffusion matrix

optimization algorithm we propose here, in order to obtain a global optimization procedure
where only independent parallel local optimization problems on medium-sized cells are
solved.

6.4 Numerical Experiments

In the following numerical experiments∗, we consider a tagged particle process with K = 4

displacement vectors v1 = (1, 0), v2 = (−1, 0), v3 = (0, 1), and v4 = (0,−1) and with
associated probability pk = 1/4 for k = 1, 2, 3, 4. All computing times are measured
without parallelization in MATLAB R2018b on a Lenovo Thinkpad T480s with Intel
Core i7-8650U CPU and 15.4 GiB RAM. Note that both the sampling Algorithm 14 and
Algorithm 18 as well as the evaluation of the different Frobenius-norms in Equation (6.8)
can be parallelized to speed up computations.

6.4.1 Solving the optimization problem

In the following, we analyze the numerical approximation of the self-diffusion coefficient
by solving the optimization problem (6.4).

Low-rank approximation error First, we study how the rank r affects the value of
minΨ∈Hr

M
AuM (Ψ) for u = (1, 0). Let Ψr,u

ALS ∈ Hr
M denote the function obtained by using

Algorithm 16 with rank r, where the minimization problem in each iteration is solved
using Algorithm 17. The initial functions R0

s in Algorithm 17 are selected randomly by
assigning random values drawn form the uniform distribution on [0, 1] to R0

s(0) and R0
s(1).

In Algorithm 17, we set ε = 10−12 and additionally stop after line 8 has been executed
420 times.

We depict the error ‖Au1(Ψr,u
ALS)−Au1(Ψ10,u

ALS)‖/‖Au1(Ψ10,u
ALS)‖, evaluated using the ideas of

Section 6.3.1, of Ψr,u
ALS for various r in Figure 6.2. The computation with r = 10 takes 4

minutes for M = 1 and 82 minutes for M = 2. We observe that the error decays quickly
with increasing rank. In particular, for M = 1 an approximation with r = 1 is less than
0.1% away from a direct least squares solution of the minimization problem (6.5) (see
Remark 6.8).

Remark 6.8. Given the tensor T (Ψ) as defined in (6.7), we can equivalently write the
evaluation of AuM (Ψ) as sum of Q = NK · 2N−1 quadratic terms, which can be expressed
as ‖Bvec(T (Ψ)) + b‖22 for some matrix B ∈ RQ×2N and vector b ∈ RQ. Thus, (6.5) boils
down to solving the least squares problem

min
Ψ∈HM

‖Bvec(T (Ψ)) + b‖22. (6.14)

∗The code to reproduce these results is available from https://github.com/cstroessner/SelfDiffusion

104

https://github.com/cstroessner/SelfDiffusion

6.4. Numerical Experiments

2 4 6 8
10

-4

10
-3

10
-2

2 4 6 8
10

-4

10
-3

10
-2

Figure 6.2 – Algorithm 16 yields successive approximations Ψr,u
ALS ∈ Hr

M . For r ∈
{1, . . . , 9}, we plot the relative error of Ψk,u

ALS compared to Ψ10,u
ALS . We repeat this experiment

12 times with different random initial functions in Algorithm 17. The resulting relative
errors are displayed in different colors. Left: M = 1. Right: M = 2.

In our setting of d = 2, M = 1 and K = 4, it holds that N = 8 so that 2N = 256 and
Q = 4096. This is small enough to solve (6.14) up to a very high precision using lsqr
in MATLAB. For larger values of M it is no longer tractable to solve this least squares
problem.

Sampling-based evaluation Let M = 2 and u = (1, 0). For a given approximate
solution Ψ3,u

ALS, we want to evaluate Au2,`(Ψ
3,u
ALS). A single evaluation of (6.13) with Ψ

replaced by Ψ3,u
ALS requires on average around 5.1 · 10−4 seconds. Computing Au2,`(Ψ

3,u
ALS) for

0 ≤ ` ≤ N directly would require 224 ≈ 1.6·107 evaluations of (6.13), i.e. around 2.4 hours.
In Section 6.3.4, we proposed two Monte Carlo algorithms to obtain approximations of
Au2,`(Ψ

3,u
ALS). We visualize the variance in the approximation obtained by these algorithms

in Figure 6.3. The studied quantity 2
N+1

∑N
`=0 u

TDs(
`
N)u approximates

∫ 1
0 Tr(Ds(ρ))dρ,

where Tr denotes the trace operator. Algorithm 18 clearly leads to a variance reduction.
With only 105 samples, which can be evaluated in about one minute, we can already
reach a variance of 10−6.

6.4.2 Estimation of long-time mean square deviation

In the following, we study estimating the long-term limit using Algorithm 14.

Figure 6.4 motivates our choice of T = 300 and N̂s = 30 000 for the following numerical
experiments. The error caused by stopping with T = 300 is negligible compared to the
stochastic variance when stopping with N̂s = 30 000.

In Figure 6.5 we analyze how the parameter N̂s affects the approximation of the quantity

105

Chapter 6: Self-diffusion matrix

10
4

10
5

10
-6

10
-4

10
-2

Figure 6.3 – For M = 2 and u = (1, 0) we compute Ψ3,u
ALS using Algorithm 16. We then

approximate uTDs(
`
N)u = 2Au2,`(Ψ

3,u
ALS) for 0 ≤ ` ≤ N using sampling as in Section 6.3.4.

We sample η ∈ CM,` using two different approaches; from the uniform distribution (naive
Monte Carlo) and using Algorithm 18 (with variance reduction). We use a total of
460 800 evaluations of (6.13) for both sampling methods. After every 3 072 evaluations,
we evaluate 2

N+1

∑N
`=0 u

TDs(
`
N)u based on the already computed samples. The whole

experiment is repeated 250 times. Left: Evolution of 2
N+1

∑N
`=0 u

TDs(
`
N)u with increasing

number of samples. The shaded areas mark one standard deviation from the mean for
the respective algorithm. Right: Evolution of the variance of 2

N+1

∑N
`=0 u

TDs(
`
N)u with

increasing number of samples.

0 2000 4000 6000 8000 10000

0.9

0.95

1

0 200 400 600 800 1000

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Figure 6.4 – We run Algorithm 14 with M = 2, u = (1, 0), ` = 0 and different values
for T and N̂s. For each setting, we plot how the approximation of the value uTDs(0)u,
which is known to be equal to 1, evolves over time for 12 random initializations visualized
in different colors. Left: N̂s = 10 000, T = 10 0000. Right: N̂s = 100 000, T = 1 000.

2
N+1

∑N
`=0 u

TDs(
`
N)u. We observe that the quantity of interest converges to the same

value around 0.84 as in Figure 6.3. Note that a single run with N̂s = 30 000 requires
33 minutes and reaches a variance of 10−4. Compared to the results in Figure 6.3 the
computation time needed to achieve the same variance with Algorithm 14 compared to
Algorithm 18 is much higher. This is visualized in Figure 6.6.

106

6.4. Numerical Experiments

10
2

10
3

10
4

10
-6

10
-4

10
-2

Figure 6.5 – We run Algorithm 14 with T = 300, u = (1, 0) for ` = 0, . . . , 24 to
approximate Ds(

`
N). We use N̂s = 30 000 and store intermediate values for N̂s =

100, 200, 300, Based on these approximations we compute 2
N+1

∑N
`=0 u

TDs(
`
N)u. This

procedure is repeated 50 times with different random initializations. Left: Evolution of
2

N+1

∑N
`=0 u

TDs(
`
N)u with increasing values of N̂s. The shaded area marks one standard

deviation from the mean. Right: Evolution of the variance of 2
N+1

∑N
`=0 u

TDs(
`
N)u

with increasing values of N̂s. We additionally display the evolution of the variance of
uTDs(

`
N)u for individual values of `.

10
2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Figure 6.6 – We plot the variances displayed on the right of Figure 6.3 and Figure 6.5.
Instead of the number of samples, we display the computation time for evaluating the
corresponding number of samples on the x-axis. Left: Computation times only for
Algorithm 14, the naive Monte Carlo method and Algorithm 18. Right: We additionally
include the computation time of 736 seconds for computing Ψ3,u

ALS using Algorithm 16.

6.4.3 Comparison of algorithms

We now compare the two approaches of approximating the self-diffusion coefficient. We
evaluate uTDs(`/N)u for u ∈ {(1, 0), (0, 1), (1, 1)} to recover all entries of the symmetric
matrix Ds(`/N). Interpolation of the entries yields an approximation of Ds(ρ) for
ρ ∈ [0, 1]. Alternatively, interpolation in the space of symmetric positive definite matrices

107

Chapter 6: Self-diffusion matrix

could be used [232].

For the following experiments, we use Algorithm 14 with a slight modification to approxi-
mate uTDs(ρ)u for different values of u simultaneously. This is achieved by keeping track
of different α for different u in lines 16 and 17. The optimization problem (6.5) needs
to be solved for every u separately, but the solution can be evaluated for different `. In
contrast, the sampling in Algorithm 14 needs to be recomputed from scratch for every `.

In Figure 6.7, we display the trace of Ds(ρ) computed using different approaches. Com-
puting the whole matrix Ds(`/N) for all 0 ≤ ` ≤ N took 3 minutes (37 minutes) for the
approach based on solving the minimization problem, whereas using Algorithm 14 took 15

minutes (45 minutes) for M = 1 (M = 2). The much higher variance of Algorithm 14 for
approximating the long-term limit leads to clearly visible changes in the graph of trace at
the values ρ = `

N . The figure also contains results using a 6× 6 grid (N = 35) for which
the minimization based approach took 5 hours and 40 and the sampling of the long-term
limit took 9 hours and 24 minutes. The sampled solution of the minimization problem
changes less due to a smaller sampling variance in Algorithm 18. The variance for both
approaches is depicted in Figure 6.8 and listed in Table 6.1. We want to emphasize that
the approach based on solving the minimization problem is faster and simultaneously
yields a lower variance in the entries of the self-diffusion compared to the estimation of
the long-term limit.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

0.45 0.5 0.55

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 6.7 – For M = 1 (N = 8) and M = 2 (N = 24) we solve the minimization
problem (6.5) using Algorithm 16 with r = 3. We evaluate AuM,` directly for M = 1,
whereas for M = 2 we use Algorithm 18 with Ñs = 50. We compare to Algorithm 14
with N̂s = 30 000 and T = 300 for M = 1 and M = 2. Repeating this for u ∈
{(1, 0), (1, 1), (0, 1)} yields Ds(`/N). Element-wise linear interpolation allows us to
evaluate Ds(ρ) for ρ ∈ [0, 1]. We plot the trace of Ds(ρ). In addition, we run both
algorithms on a 4 × 4 and 6 × 6 periodic grid (N = 15 and N = 35). For N = 15 we
use the same parameters as for N = 24. For N = 35 we use rank 10, Ñs = 150 and
N̂s = 80 000, T = 600. Note that the 4× 4 grid lies in between the 3× 3 grid for M = 1
and the 5× 5 grid for M = 2. Right: Zoom on part of the graphs.

108

6.5. Application: Cross-diffusion system

Figure 6.8 – We repeat the experiment presented in Figure 6.7 100 times for N = 8,
N = 15 and N = 24. We plot a zoom on a part of the graphs. The shaded areas mark
one standard deviation from the mean for each of the methods.

max
`∈{0,...,N}

Var(Tr(Ds(`/N))) 1
N+1

∑N
`=0 Var(Tr(Ds(`/N)))

N = 8 long-term limit 2.313 · 10−4 1.072 · 10−4

minimization 8.791 · 10−9 4.231 · 10−9

N = 15 long-term limit 3.433 · 10−4 1.410 · 10−4

minimization 2.548 · 10−4 6.835 · 10−5

N=24 long-term limit 4.377 · 10−4 1.989 · 10−4

minimization 3.262 · 10−4 8.001 · 10−5

Table 6.1 – We display the mean and maximum of the variance for the 100 approximations
of the self-diffusion coefficient computed in Figure 6.8. Note that we do not need to
sample to evaluate AuM,` for N = 8. The variance for minimization with N = 8 is solely
caused by the random initializations of R0

s in Algorithm 17.

6.5 Application: Cross-diffusion system

In this section, we recall how self-diffusion matrices arise in the context of cross-diffusion
systems. We then use our novel low-rank approach described in Section 6.3 to approximate
the self-diffusion matrices needed to resolve a slightly simplified cross-diffusion system
with a cell-centered finite volume method.

6.5.1 Hydrodynamic limit of a lattice-based stochastic hopping model

Lattice-based stochastic hopping models [214, 266, 301] describe the evolution of a mixture
of multi-species particles, the positions of which are clamped on a (periodic) lattice Tn :=

{0, . . . , n−1
n }d, d = 1, 2, 3. After a certain amount of time, a single particle jumps to a

nearby node according to a given Markovian random walk. Let vk:= ((vk)i)1≤i≤d ∈ Zd\{0}
for k = 1, . . . ,K be the displacement vectors for all possible jumps that one particle can

109

Chapter 6: Self-diffusion matrix

0
5

1
5

2
5

3
5

4
5

0
5

1
5

2
5

3
5

4
5

initial state

particle at (1
5 ,

3
5)

jumps with
v = (1, 0)

0
5

1
5

2
5

3
5

4
5

0
5

1
5

2
5

3
5

4
5

after first jump

particle at (4
5 ,

1
5)

jumps with
v = (0,−2)

0
5

1
5

2
5

3
5

4
5

0
5

1
5

2
5

3
5

4
5

after second jump

Figure 6.9 – The evolution of state of the particles on a lattice with n = 5, d = 2. Left:
Initial state. Middle: After the blue particle at s = (1

5 ,
3
5) jumped with v = (1, 0) to

s+ 1
5v. Right: After the red particle at position (4

5 ,
1
5) jumped with v = (0,−2). Since

the lattice is periodic the particle ends up in position (4
5 ,

4
5).

make, i.e. a particle at position x ∈ Tn lands at position x + 1
nvk ∈ Tn. The rate of

jumping in the direction 1
nvk is given by pk ∈]0, 1]. We assume that the particles can be

of two possible species, either species blue or species red. We study how the distribution
of the particles belonging to each species evolves over time in the limit when the number
of lattice points and particles tends to infinity. See Figure 6.9 for a schematic illustration
of this lattice-hopping process.

We are interested in simulating the hydrodynamic limit of this lattice-based hopping
model, which was identified in [266]. In the limit n → +∞, this hydrodynamic limit
reads as a cross-diffusion system defined on the d-dimensional torus T d:= (R/Z)d. At this
scale, we consider densities ρred : T d × R+ → [0, 1] and ρblue : T d × R+ → [0, 1], where
ρred(x, t) (respectively ρblue(x, t)) denotes the local volumic fraction of red (respectively
blue) particles at point x ∈ T d and time t ≥ 0. The local volumic fractions ρred and
ρblue are shown to be solutions to the following cross-diffusion system [266]

∂

∂t

(
ρred
ρblue

)
=

1

2
∇ ·



ρblue
ρ

Ds(ρ) +
ρred
ρ
D

ρred
ρ

(D −Ds(ρ))

ρblue
ρ

(D −Ds(ρ))
ρred
ρ
Ds(ρ) +

ρblue
ρ

D

(∇ρred∇ρblue

) ,
(6.15)

in T d × R+, where ρ := ρred + ρblue. The matrix D ∈ Rd×d is defined such that
Dij :=

∑K
k=1 pk(vk)i(vk)j for all i, j = 1, . . . , d. The matrix Ds(ρ) denotes the self-

diffusion matrix application (6.1) of the tagged particle process with jump directions vk
and jump probabilities pk for k = 1, . . . ,K.

We complement system (6.15) by the initial conditions ρred(0, x) = ρ0
red(x), ρblue(0, x) =

ρ0
blue(x), where ρ0

red, ρ
0
blue ∈ L∞(T d) satisfy 0 ≤ ρ0

red + ρ0
blue ≤ 1 almost everywhere in

T d. In this case, it can be shown [266] that there exists a unique solution (ρred, ρblue) ∈
L∞(T d×R+)2 to system (6.15). In addition, it holds that for almost all t ≥ 0 and x ∈ T d,
0 ≤ ρred(x, t), 0 ≤ ρblue(x, t) and ρred(x, t) + ρblue(x, t) ≤ 1.

110

6.5. Application: Cross-diffusion system

6.5.2 Deterministic resolution of a simplified cross-diffusion system

Since, the design and numerical analysis of a numerical scheme for the resolution of the
cross-diffusion system (6.15) is still subject to future research, we present a numerical
scheme to resolve a simplified system. In this section, we develop a cell-centred finite
volume method [115, 116] to simulate this simplified cross-diffusion system, assuming
that a numerical approximation of the self-diffusion matrix Ds(ρ) can be computed for
any ρ ∈ [0, 1].

Simplified cross-diffusion system

Let Ω ⊂ Rd be a polyhedric bounded domain of Rd. The local volumic fractions of red and
blue particles are now given by functions ρred : Ω×R+ → [0, 1] and ρblue : Ω×R+ → [0, 1].
These functions are assumed to satisfy the following simplified cross-diffusion system:

∂

∂t

(
ρred
ρblue

)
=

1

2
∇ ·


Tr

[
ρblue
ρ

Ds(ρ) +
ρred
ρ
D

]
Tr

[
ρred
ρ

(D −Ds(ρ))

]
Tr

[
ρblue
ρ

(D −Ds(ρ))

]
Tr

[
ρred
ρ
Ds(ρ) +

ρblue
ρ

D

]

(
∇ρred
∇ρblue

) ,
(6.16)

in Ω× R+, where ρ := ρred + ρblue. We complement system (6.15) by the initial condi-
tions ρred(0, x) = ρ0

red(x), ρblue(0, x) = ρ0
blue(x), where ρ0

red, ρ
0
blue ∈ L∞(Ω) satisfying

0 ≤ ρ0
red + ρ0

blue ≤ 1 almost everywhere in Ω. We also assume that system (6.16) is com-
plemented with Neumann boundary conditions instead of periodic boundary conditions.

Time discretization

Let Tf > 0 denote some final time. For the time discretization, we introduce a division
of the interval [0, Tf] into subintervals Ip := [tp−1, tp], 1 ≤ p ≤ Pt for some Pt ∈ N such
that 0 = t0 < t1 < · · · < tPt = Tf . The time steps are denoted by ∆tp = tp − tp−1,
p = 1, . . . , Pt. For a given sequence of real numbers (vp)p∈N, we define the approximation
of the first-order time derivative thanks to the backward Euler scheme as follows:

∂tv
p :=

vp − vp−1

∆tp
∀ 1 ≤ p ≤ Pt.

111

Chapter 6: Self-diffusion matrix

Space discretization

For the space discretization, we consider a conforming simplicial mesh Th of the domain
Ω, i.e. Th is a set of elements K verifying

⋃
K∈Th

K = Ω, where the intersection of the

closure of two elements of Th is either an empty set, a vertex, or an l-dimensional
face, 0 ≤ l ≤ d − 1. Denote by hK the diameter of the generic element K ∈ Th and
h = maxK∈Th hK . We denote by Eh the set of mesh faces. Boundary faces are collected in
the set Eext

h = {σ ∈ Eh;σ ⊂ ∂Ω} and internal faces are collected in the set E int
h = Eh\Eext

h .
To each face σ ∈ Eh, we associate a unit normal vector nσ; for σ ∈ E int

h , σ = K ∩ L, nσ
points from K towards L and for σ ∈ Eext

h it coincides with the outward unit normal vector
nΩ of Ω. We also denote by Ne the number of elements in the mesh Th. Furthermore,
the notation nK,σ stands for the outward unit normal vector to the element K on σ. We
also assume that the family Th is superadmissible in the sense that for all cells K ∈ Th
there exists a point xK ∈ K (the cell center) and for all edges σ ∈ Eh there exists a
point xσ ∈ ∂K (the edge center) such that, for all edges σ ∈ EK , the line segment joining
xK with xσ is orthogonal to σ (see [116]). For an interior edge σ ∈ E int

h shared by two
elements K and L (denoted in the sequel by σ = K ∩ L), we define the distance between
these elements dKL := dist(xK , xL). Figure 6.10 provides a schematic illustration.

Figure 6.10 – Illustration of the notation for a mesh with two elements.

The cell-centered finite volume method

In the context of the cell-centered finite volume method, the unknowns of the model are
discretized using one value per cell: ∀1 ≤ p ≤ Pt we let

Up := (UpK)K∈Th ∈ R2Ne , with UpK := (ρpred,K , ρ
p
blue,K) ∈ R2

where ρpred,K and ρpblue,K are respectively the discrete elementwise unknowns approx-
imating the values of ρred(tp) and ρblue(tp) in the element K ∈ Th. More precisely,

ρpred,K ≈
1

|K|

∫
K
ρred(tp, x) dx and ρpblue,K ≈

1

|K|

∫
K
ρblue(tp, x) dx. Integrating (6.15)

over the element K ∈ Th, using next the Green formula and the Neumann boundary
conditions, the cell-centered finite volume scheme we solve is the following: for a given

112

6.5. Application: Cross-diffusion system

fixed value of Up−1, find Up ∈ R2Ne such that

H1,K(Up) = |K|∂tρpred,K −
1

2

∑
σ∈EK

F1,K,σ(Up) = 0 ∀K ∈ Th,

H2,K(Up) = |K|∂tρpblue,K −
1

2

∑
σ∈EK

F2,K,σ(Up) = 0 ∀K ∈ Th.
(6.17)

The numerical fluxes F1,K,σ(Up) and F2,K,σ(Up) are respectively approximations of

F1,K,σ(Up) ≈
(
S11(Up)∇ρpred + S12(Up)∇ρpblue

)
· nK,σ

F2,K,σ(Up) ≈
(
S21(Up)∇ρpred + S22(Up)∇ρpblue

)
· nK,σ,

where S11(Up) :=
(
S11
K (Up)

)
K∈Th , S

12(Up) :=
(
S12
K (Up)

)
K∈Th , S

21(Up) :=
(
S21
K (Up

)
)K∈Th ,

S22(Up) :=
(
S22
K (Up)

)
K∈Th are collections of real numbers defined on each cell of the

mesh as follows. For all K ∈ Th,

S11
K (Up) := Tr

[
ρpblue,K
ρpK

Ds(ρ
p
K) +

ρpred,K
ρpK

D

]
,

S12
K (Up) := Tr

[
ρpred,K
ρpK

(
D −Ds(ρ

p
K)
)]

S21
K (Up) := Tr

[
ρpblue,K
ρpK

(
D −Ds(ρ

p
K)
)]

S22
K (Up) := Tr

[
ρpred,K
ρpK

Ds(ρ
p
K) +

ρpblue,K
ρpK

D

]
,

where ρpK := ρpred,K + ρpblue,K . Now we are interested in computing an approximation of(
Sij(Up)∇ρp]

)
· nK,σ for all 1 ≤ i, j ≤ 2 and] ∈ {red, blue}.

For any edge σ ∈ E int
h , denoting by K,L ∈ Th the two cells sharing the edge σ, we employ

the following harmonic averaging formula for all 1 ≤ i, j ≤ 2,

(
Sij(Up)∇ρp]

)
· nK,σ ≈ |σ|

SijK(Up)SijL (Up)

dK,σSijL (Up) + dL,σSijK(Up)

(
ρp],L − ρ

p
],K

)
.

We refer to [1, 113, 114] for more details. This averaging formula enables then to obtain
the expression of the fluxes F1,K,σ(Up) and F2,K,σ(Up).

At each time step p, we thus have to solve the nonlinear problem: find Up ∈ R2Ne such
that Hp(Up) = 0, where Hp(Up) := (H1,K(Up), H2,K(Up))K∈Th ∈ R2Ne , where H1,K(Up)

and H2,K(Up) are defined by (6.17).

113

Chapter 6: Self-diffusion matrix

Resolution of the nonlinear problem by a Newton method

In this section, we present a Newton procedure for computing the approximate solution
Up at each time step p. For 1 ≤ p ≤ Pt and Up,0 ∈ R2Ne fixed (typically Up,0 = Up−1),
the Newton algorithm generates a sequence (Up,k)k≥1, with Up,k ∈ R2Ne given by the
system of linear algebraic equations:

Ap,k−1Up,k = Bp,k−1. (6.18)

Here, the Jacobian matrix Ap,k−1 ∈ R2Ne,2Ne and the right-hand side vector Bp,k−1 ∈ R2Ne

are defined by

Ap,k−1 := JHp(Up,k−1) and Bp,k−1 := JHp(Up,k−1)Up,k−1 −Hp(Up,k−1).

Note that JHp(Up,k−1) is the Jacobian matrix of the function Hp at point Up,k−1. A
classical stopping criterion for system (6.18) is for instance∥∥∥Hp(Up,k)∥∥∥

2
/
∥∥Hp(Up,0)

∥∥
2
< εlin (6.19)

where εlin > 0 is small enough. We refer to the book [185] for large descriptions on
linearization techniques.

6.5.3 Numerical Experiment

In the following numerical experiment†, we solve the PDE system (6.16) using the finite
volume scheme described in this section. A approximation of the self-diffusion coefficient
Ds(ρ) is obtained from Ψ1,u

ALS as in Section 6.4. We set the domain Ω := [0, 1] × [0, 1]

and consider a uniform spatial mesh (Ne = 312 elements). We use a constant time step
∆tp = ∆t = 10−3 seconds ∀1 ≤ p ≤ Pt. The final time of simulation is Tf = 10 seconds.
We employ at each time step 1 ≤ p ≤ Pt a Newton solver as described in Section 6.5.2
with εlin = 10−8. The initial values are defined by

ρ0
red(x, y) := 0.25+0.25 cos(πx) cos(πy) and ρ0

blue(x, y) := 0.5−0.5 cos(πx) cos(πy).

Figure 6.11 displays the shape of the numerical solutions ρred and ρblue for several time
steps. We observe that the local volumic fractions evolve over time to reach constant
profiles (around 0.25 for ρred and 0.5 for ρblue) in the long time limit. This indicates, that
our scheme is stable in the sense that the densities lie in their physical ranges. In every
time step, only 2 or 3 Newton iterations are required to reach the stopping criterion (6.19).

†The code to reproduce these results is available from https://github.com/cstroessner/
SelfDiffusionCoefficent.git

114

https://github.com/cstroessner/SelfDiffusionCoefficent.git
https://github.com/cstroessner/SelfDiffusionCoefficent.git

6.5. Application: Cross-diffusion system

Figure 6.11 – Solutions ρred and ρblue for several time steps. Top left p = 0, top middle
p = 10, top right p = 30, bottom left p = 50, bottom middle p = 110, bottom right
p = 250.

115

7 Fast global spectral method

Global spectral methods [122, 143, 319, 326] offer the potential to solve PDEs to very
high accuracy. These methods are based on studying the impact of the differential
operator when applied to a finite set of basis functions such as tensorized Chebyshev
polynomials with bounded degree (2.16). We then compute a linear combination of these
basis functions that (approximately) satisfies the PDE. For one- and two-dimensional
rectangular domains this approach led to the development of the solvers Chebop [102, 103,
246] and Chebop2 [319] contained in the Chebfun package [104]. Extensions to triangular
domains and to disks have been derived in [244, 245, 338]. In the three-dimensional
setting only specialised solvers for the Poissons’s equation have been developed so far [125,
321, 346].

This, chapter is concerned with the numerical solution of general linear PDEs on cubes of
the form

Lu = f on [−1, 1]3, (7.1)

complemented with linear boundary conditions. Note that even though the domains of
three-dimensional PDEs arising in medicine [166, 219, 311], engineering [28, 107, 263] and
geosciences [175, 226, 347] are rarely cubes, they can often be mapped onto cubes [124].
Following the idea of global spectral methods, we approximate both the solution u and
the right-hand side f by multivariate polynomials of the form (1.3). We approximate
the operator L by a mapping mimicking the impact of applying L on the level of the
coefficient tensors. In order to define this mapping, we express the three-dimensional
differential operator as a combination of one-dimensional linear differential operators,
which we determine using a CP decomposition (2.4). By representing u in a Chebyshev
basis (2.16) and f in an ultraspherical basis, we can express the action of each of these
one-dimensional operators on the coefficients in terms of sparse and well-conditioned
differentiation and multiplication matrices [246]. The combination of applying these
matrices yields the desired mapping. Solving the PDE corresponds to inverting this

117

Chapter 7: Fast global spectral method

mapping, which can be seen as solving a tensor-valued linear system. Discretizing the
boundary conditions provides additional linear constraints under which inverting the
linear system has a unique solution. Using substitution we obtain an unconstrained
tensor-valued linear system uniquely determining a subtensor, from which we recover the
full coefficient tensor of the solution. We would like to point out that our discretization
approach can be applied to a wide variety of PDEs, but it does not necessarily preserve
certain desirable properties of the differential operator.

It turns out that our discretization of the PDE (7.1) has a Kronecker structure that
can often be exploited. For instance, Poisson’s equation with homogeneous Dirichlet
boundary conditions leads to a Laplace-like equation [24, 70, 206, 236]. Laplace-like
equations can be solved efficiently using the blocked recursive algorithm in [69]. This
algorithm is asymptotically slower than the nested alternating direction implicit method
in [125], but our numerical experiments in Section 7.4 demonstrate that the recursive
blocked algorithm is significantly faster in practice. Even if the PDE of interest does
not immediately lead to a structure suitable for the fast solver, we can often apply the
blocked recursive algorithm as a preconditioner for GMRES.

The algorithmic ideas presented in this chapter, can be extended from solving stationary
linear PDEs, such as the Helmholtz equation and (convection) diffusion problems, to
solving time-dependent PDEs and PDE eigenvalue problems of the form

∂

∂t
u = Lu and Lu = λu,

which we solve using implicit Euler and inverse iteration methods, respectively. We expect
to obtain accurate approximations of the solution, when both the PDE coefficients and
the solution are sufficiently smooth to be well approximated by truncated expansions
with tensorized polynomial basis functions. For non-smooth solutions, our global spectral
method might lead to inaccurate approximations.

Remark 7.1. Our global spectral method can be used to compute solutions numerically to
very high accuracy. It is not to be confused with so-called spectral element methods [124,
164, 184] and p- and hp-finite element methods [18, 244, 342]. In those methods, u is not
approximated globally by a truncated series expansion. Instead, u is written as sum of
(locally supported) functions, each of which is approximated individually by a truncated
series expansion. There also exist solvers relying on using domain decompositions in
combination with truncated series expansions [160, 259]. We want to emphasize that the
methods presented in this work can be used as local solver, when the elements/subdomains
can be mapped to cubes.

This chapter is based on the article [304]. Its remainder is structured as follows. In
Section 7.1, we define the linear differential operator and the approximation format. In
Section 7.2, we derive the mapping on the level of the coefficient tensor. The discretization

118

7.1. Problem setting

of PDEs and the efficient solution of the resulting tensor-valued linear system is discussed
in Section 7.3. In Section 7.4, we apply our global spectral method to solve stationary
PDEs, parabolic PDEs and PDE eigenvalue problems numerically to very high accuracy.

7.1 Problem setting

7.1.1 Structure of a linear differential operator

A linear partial differential operator L on the domain [−1, 1]× [−1, 1]× [−1, 1] maps a
sufficiently smooth function u : [−1, 1]3 → R to

Lu(x, y, z) =

Nx∑
a=0

Ny∑
b=0

Nz∑
c=0

αabc(x, y, z)
∂a+b+c

∂xa∂yb∂zc
u(x, y, z), (7.2)

whereNx, Ny, Nz are called differential order and αabc(x, y, z) : [−1, 1]3 → R are coefficient
functions for 0 ≤ a ≤ Nx, 0 ≤ b ≤ Ny, 0 ≤ c ≤ Nz. For the differential operator L we
consider the linear PDE

Lu = f (7.3)

with right hand side f : [−1, 1]3 → R. The PDE can be solved uniquely when the system
is complemented with sufficient boundary conditions.

7.1.2 Approximation format

We approximate the solution u : [−1, 1]3 → R of the PDE (7.3) in the space Pn1,n2,n3 of
trivariate polynomials of degree at most (n1, n2, n3). We express u in terms of a tensorized
basis of Chebyshev polynomials (see Section 2.3), which leads to a representation of the
form

u(x, y, z) ≈
n1∑
i=0

n2∑
j=0

n3∑
k=0

UijkTi(x)Tj(y)Tk(z), (7.4)

with coefficient tensor U ∈ R(n1+1)×(n2+1)×(n3+1).

7.2 Operator discretization

In the following, we discretize the differential operator L for fixed coefficient functions
αabc by approximating L as mapping from Pn1,n2,n3 to Pn1,n2,n3 . This is particularly easy
for constant coefficients in the differential operator L, i.e., αabc(x, y, z) = αabc ∈ R in
Equation (7.2). Applying a linear differential operator with constant coefficients to a

119

Chapter 7: Fast global spectral method

polynomial does not increase the polynomial degree. For non-constant coefficients an
additional truncation is needed to obtain a polynomial in Pn1,n2,n3 . Thus, it is natural
to see the application of the operator as a transformation of the coefficient tensor. We
discuss the discretization for the constant case first before generalizing to the non-constant
case in Section 7.2.3.

7.2.1 One-dimensional differential operators

We briefly recapitulate how to obtain the mapping describing the transformation of
coefficients in a one-dimensional setting before returning to the three-dimensional setting.
Let u : [−1, 1] → R be a polynomial of degree n represented in the Chebyshev basis
by u(x) =

∑n
k=0 ukTk(x), with coefficients uk ∈ R. Applying a one-dimensional linear

differential operator L of order N with constant coefficients to u can be written as

Lu(x) =

N∑
a=0

αa
da

dxa
u(x), (7.5)

with coefficients αa ∈ R. This is a linear combination of (higher order) derivatives of u.
For every derivative of the polynomial u, there exists a so-called differentiation matrix
which maps the coefficient vector u = (u0, . . . , un) to the coefficients of the derivative.
The remainder of this section follows the ideas of [246] to represent the derivative using
an ultraspherical basis instead of a Chebyshev basis, which leads to better conditioned
and sparse differentiation matrices.

For the parameter λ> 0 and k = 0, 1, . . . , ultraspherical polynomials follow the recurrence
relation

4λ(k + λ+ 1)(1− x2)C
(λ+1)
k (x) =

− (k + 1)(k + 2)C
(λ)
k+2(x) + (k + 2λ)(k + 2λ+ 1)C

(λ)
k (x),

where C(1)
k (x) = (sin(k + 1) cos−1(x))/ sin(cos−1(x)) [240]. Let v(x) =

∑n
k=0 vkC

(λ)
k (x)

denote the λth derivative of u represented in C(λ) basis, then the coefficient vector v =

(v0, . . . , vn) satisfies v = Dλu, where the sparse differentiation matrix Dλ ∈ R(n+1)×(n+1)

120

7.2. Operator discretization

is defined as

Dλ = 2λ−1(λ− 1)!



λ times︷ ︸︸ ︷
0 . . . 0 λ

λ+ 1
. . .

n

0
...
0


.

Note that the ultraspherical basis is different for different λ. The sparse transformation ma-
trices S0 ∈ R(n+1)×(n+1), mapping Chebyshev to C(1) coefficients, and Sλ ∈ R(n+1)×(n+1),
mapping C(λ) to C(λ+1), are defined as

S0 =



1 0 −1
2

1
2 0 −1

2
1
2 0 −1

2
.

1
2 0 −1

2
1
2 0

1
2


,

Sλ =



1 0 − λ
λ+2

λ
λ+1 0 − λ

λ+3
λ
λ+2 0 − λ

λ+4
.

λ
λ+n−2 0 − λ

λ+n
λ

λ+n−1 0
λ

λ+n


.

Let Lu(x) =
∑n

k=0wkC
(N)
k (x) be represented in C(N) ultraspherical basis with coefficient

vector w = (w0, . . . , wn), then

w = (aNDN + aN−1SN−1DN−1 + · · ·+ a1SN−1 · · ·S1D1 + a0SN−1 · · ·S0︸ ︷︷ ︸
=L

)u. (7.6)

The matrix L ∈ R(n+1)×(n+1) describes how the one-dimensional differential operator L
acts on Chebyshev coefficients of the solution.

121

Chapter 7: Fast global spectral method

7.2.2 Three-dimensional differential operators

In Chebop2 [319] it is suggested to split two-dimensional differential operators via an
SVD into a sum of one-dimensional operators, for which the matrices L can be computed
as in Section 7.2.1. Such splittings can be generalized to higher dimensional settings via
CP decompositions (2.4).

Let A ∈ R(Nx+1)×(Ny+1)×(Nz+1) denote the tensor with entries Aa,b,c given by the coef-
ficients αabc in Equation (7.2) for 0 ≤ a ≤ Nx, 0 ≤ b ≤ Ny, 0 ≤ c ≤ Nz. Given a CP
decompositon (2.4) of the form A =

∑R
r=1 a

(r) ◦b(r) ◦ c(r), we can rewrite the application
of L to u as

Lu(x) =

R∑
r=1

Nx∑
a=0

a(r)
a

∂a

∂xa︸ ︷︷ ︸
=L(x)r

Ny∑
b=0

b
(r)
b

∂b

∂yb︸ ︷︷ ︸
=L(y)r

Nz∑
a=0

c(r)
c

∂c

∂zc︸ ︷︷ ︸
=L(z)r

u(x, y, z), (7.7)

in terms of one-dimensional differential operators L(x)
r ,L(y)

r ,L(z)
r .

Let L(x)
r ∈ R(n1+1)×(n1+1), L

(y)
r ∈ R(n2+1)×(n2+1), L

(z)
r ∈ R(n3+1)×(n3+1) denote the

matrices L associated with the operators L(x)
r ,L(y)

r ,L(z)
r as defined in Equation (7.6). Let u

be a polynomial with coefficient tensor U ∈ R(n1+1)×(n2+1)×(n3+1) satisfying Equation (7.4)
with equality. Then

Lu(x, y, z) =

n1∑
i=0

n2∑
j=0

n3∑
k=0

VijkC(Nx)
i (x)C

(Ny)
j (y)C

(Nz)
j (z),

with coefficient tensor

V =

R∑
r=1

U ×1 L
(x)
r ×2 L

(y)
r ×3 L

(z)
r . (7.8)

7.2.3 Generalization to non-constant coefficients

One-dimensional differential operators

We now consider the one-dimensional differential operator (7.5) with non-constant coeffi-
cients αa : [−1, 1]→ R. In this section, we define multiplication matrices to incorporate
these coefficients in the discretization.

Let u(x) be a polynomial of the form u(x) =
∑n

k=0 ukBk(x), with basis functions Bk(x)

chosen as Chebyshev polynomials Tk or ultraspherical polynomials C(λ)
k . To multiply u(x)

by a function v : [−1, 1]→ R, we approximate v(x) ≈ ṽ(x) =
∑n

k=0 vkBk(x) by a polyno-
mial in the same basis using Chebyshev interpolation [322] (and basis transformations).

122

7.2. Operator discretization

Further, we also approximate the product ṽ(x)u(x) ≈ z(x) =
∑n

k=0 zkBk(x) by a polyno-
mial in the same basis. There exist so-called multiplication matrices [124, 246] depending
on the coefficients v = (v0, . . . , vn), which map the coefficients u = (u0, . . . , un) to the
coefficients z = (z0, . . . , zn) such that z(x) approximates ṽ(x)u(x). In the following, we
summarize how these matrices are defined in [318] for both Chebyshev and ultraspherical
bases. For the Chebyshev basis, we define z = M [v]u and the multiplication matrix
M [v] ∈ R(n+1)×(n+1) given by

M [v] =
1

2



2v0 v1 v2 . . . vn−1 vn
v1 2v0 v1 . . . vn−2 vn−1

v2 v1 2v0 . . . vn−3 vn−2

...
...

...
. . .

...
...

vn−1 vn−2 vn−3 . . . 2v0 v1

vn vn−1 vn−2 . . . v1 2v0



+
1

2



0 0 0 . . . 0 0 0

v1 v2 v3 . . . vn−1 vn 0

v2 v3 v4 . . . vn 0 0
...

...
...

. . .
...

...
...

vn−1 vn 0 . . . 0 0 0

vn 0 0 . . . 0 0 0


.

For the C(λ) ultraspherical basis, we define z = M (λ)[v]u and the multiplication matrix
M (λ)[v] ∈ R(n+1)×(n+1) as M (λ)[v] =

∑n
i=0 viM

(λ)
i . The matrices M (λ)

i ∈ R(n+1)×(n+1)

are defined recursively for i = 0, 1, . . . by

(i+ 2)M
(λ)
i+2 = 2(i+ λ+1)N (λ)M

(λ)
i+1 − (i+ 2λ)M

(λ)
i ,

with M (λ)
0 = I, M (λ)

1 = 2λN (λ) and N (λ) ∈ R(n+1)×(n+1) defined as

N (λ) =



0 2λ
2(λ+1)

1
2λ 0 2λ+1

2(λ+2)

0 2
2(λ+1) 0 2λ+2

2(λ+3)
2

2(λ+2) 0 2λ+3
2(λ+4)

.
2

2(λ+n−2) 0 2λ+n−1
2(λ+n)

2
2(λ+n−1) 0


.

We now incorporate the non-constant coefficients αa(x) into the coefficient mapping. Let
aa ∈ R(n+1) denote coefficients of polynomial approximations of αa(x) in the Cheby-
shev basis for a = 0 and in C(a) ultraspherical basis for a = 1, 2, Analogous to

123

Chapter 7: Fast global spectral method

Equation (7.6), we approximate Lu ≈ ∑n
k=0wkTk(x) by computing the coefficients

w = (w0, . . . , wn) defined as

w = Lu :=(M (N)[aN]DN + SN−1M
(N−1)[aN−1]DN−1+ . . .

+ SN−1 · · ·S1M
(1)[a1]D1 + SN−1 · · ·S0M [a0])u.

Remark 7.2. The interpolation of v and the approximation of the product ṽu introduce
truncation errors. For sufficiently large n, these errors are close to machine precision.

Three-dimensional differential operators

We now consider the three-dimensional differential operator L as defined in Equation (7.2)
with non-constant coefficients. We proceed by splitting this operator into one-dimensional
operators with non-constant coefficients.

Let the polynomial degree (n1, n2, n3) be chosen sufficiently large to accurately approxi-
mate the coefficient functions αabc(x, y, z) using tensorized Chebyshev interpolation in
the form of Equation (7.4). Let B(abc) ∈ R(n1+1)×(n2+1)×(n3+1) denote the coefficient
tensors corresponding to αabc(x, y, z) for each multi-index abc. We define the tensor
A ∈ R(Nx+1)×(n1+1)×(Ny+1)×(n2+1)×(Nz+1)×(n3+1) with entries

Aaibjck = B(abc)
ijk

for 0 ≤ a ≤ Nx, 0 ≤ b ≤ Ny, 0 ≤ c ≤ Nz, 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, 0 ≤ k ≤ n3. This
approximates the differential operator in the sense that

Lu(x, y, z) ≈ L̃u(x, y, z) :=

Nx∑
a=0

n1∑
i=0

Ny∑
b=0

n2∑
j=0

Nz∑
c=0

n3∑
k=0

AaibjckTi(x)Tj(y)Tk(z)
∂a+b+c

∂xa∂yb∂zc
u(x, y, z).

We now reshape A into a tensor of order 3 in R(Nx+1)(n1+1)×(Ny+1)(n2+1)×(Nz+1)(n3+1)

and compute a CP decomposition of the form

A =
R∑
r=1

a(r) ◦ b(r) ◦ c(r),

where a(r) ∈ R(Nx+1)(n1+1), b(r) ∈ R(Ny+1)(n2+1), c(r) ∈ R(Nz+1)(n3+1). We reshape the
vectors ar,br, cr back into matrices in A(r) ∈ R(Nx+1)×(n1+1), B(r) ∈ R(Ny+1)×(n2+1)

and C(r) ∈ R(Nz+1)×(n3+1), respectively. Analogously to Equation (7.7), we now define

124

7.3. A spectral method for three-dimensional linear PDEs

one-dimensional differential operators

L(x)
r u(x) =

Nx∑
a=0

(n1∑
i=0

A
(r)
ai Ti(x)

)
∂a

∂xa
u(x),

L(y)
r u(y) =

Ny∑
b=0

(n2∑
j=0

B
(r)
bj Tj(y)

)
∂b

∂yb
u(y),

L(z)
r u(z) =

Nz∑
c=0

(n3∑
k=0

C
(r)
ck Tk(z)

)
∂c

∂zc
u(z),

which satisfy by construction

L̃u(x, y, z) =
R∑
r=1

(L(x)
r ⊗L(y)

r ⊗L(z)
r)u(x, y, z), (7.9)

where ⊗ denotes the tensor product for linear operators. Note that the terms of the form∑n1
i=0 A

(r)
ai Ti(x) are univaritate functions. So, each of the one-dimensional differential

operators fits into the setting of Section 7.2.3 and we can obtain matrices L(x)
r , L

(y)
r , L

(z)
r

as in Equation (7.8).

Remark 7.3. In our numerical experiments we use using tensorlab [332] to obtain the
CP decomposition from the full tensor A. Since A is potentially very large, it might
sometimes be necessary to rely on heuristic algorithms that do not explicitly require the
full tensor.

7.3 A spectral method for three-dimensional linear PDEs

In this section, we present how to compute approximate solutions for PDEs of the
form (7.3). We again discretize the differential operator L as in Section 7.2. Additionally,
we discretize the right hand side f using a truncated expansion with ultraspherical basis
functions of the form

f(x, y, z) ≈
n1∑
i=0

n2∑
j=0

n3∑
k=0

FijkC(Nx)
i (x)C

(Ny)
j (y)C

(Nz)
k (z),

with coefficient tensor F∈ R(n1+1)×(n2+1)×(n3+1). The tensor F can be computed by
applying suitable basis transformations to the coefficient tensor obtained from tensorized
Chebyshev interpolation. The discretized PDE reads as tensor-valued linear system of
the form

R∑
r=1

U ×1 L
(x)
r ×2 L

(y)
r ×3 L

(z)
r = F . (7.10)

125

Chapter 7: Fast global spectral method

It remains to incorporate the boundary conditions.

7.3.1 Boundary condition discretization

Following the ideas of [319], we can discretize commonly used boundary conditions for
three-dimensional PDEs on cubes as constraints of the form

U ×1 B1 = G1, U ×2 B2 = G2, U ×3 B3 = G3, (7.11)

where the matrices B1 ∈ RNx×(n1+1), B2 ∈ RNy×(n2+1), B3 ∈ RNz×(n3+1) have lin-
early independent rows and G1 ∈ RNx×(n2+1)×(n3+1),G2 ∈ R(n1+1)×Ny×(n3+1),G3 ∈
R(n1+1)×(n2+1)×Nz . We present two examples of how constraints of the form (7.11)
can be derived. We want to emphasize that the discretized boundary conditions need to
satisfy compatibility constraints as in [318, Section 6.4].

Dirichlet conditions

We consider the Dirichlet boundary condition u(1, y, z) = h(y, z) for a given function
h : [−1, 1]→ R. We approximate the function h using bivariate Chebyshev interpolation
in (n2+1)× (n3+1) points. Let H ∈ R(n2+1)×(n3+1) denote the corresponding coefficient
matrix of h. We can enforce that the solution u given in Chebyshev basis (7.4) coincides
with the interpolant of h by demanding that

u(1, y, z) =

n1∑
i=0

n2∑
j=0

n3∑
k=0

UijkTi(1)Tj(y)Tk(z) =

n2∑
j=0

n3∑
k=0

HjkTj(y)Tk(z). (7.12)

This can be equivalently written as U ×1 B1 = G1 with B1 = (T0(1), . . . , Tn1(1)) and
(G1)0,0:n2,0:n3 = H.

We now consider an additional Dirichlet boundary condition u(−1, y, z) = h̃. Again, we
compute the coefficient matrix H̃ corresponding to h̃. Analogously to Equation (7.12),
we enforce that u(−1, y, z) coincides with the interpolant of h̃. We can express both
conditions simultaneously in the form of (7.11) by defining

B1 =

(
T0(−1) T1(−1) . . . Tn(−1)

T0(1) T1(1) . . . Tn(1)

)
,

and (G1)0,0:n2,0:n3 = H̃, (G1)1,0:n2,0:n3 = H.

126

7.3. A spectral method for three-dimensional linear PDEs

Mixed Dirchlet and Neumann conditions

We consider one example of mixed boundary conditions with Neumann boundary
conditions on the right side of the cube [−1, 1]3 and Dirichlet boundary conditions on
all other sides. The Neumann boundary condition is given by ∂

∂xu(1, y, z) = h(y, z) for
a given function h and u ∈ Pn1,n2,n3 represented in Chebyshev basis (7.4). As in the
Dirichlet case, we use bivariate Chebyshev interpolation h to obtain the coefficient matrix
H ∈ R(n2+1)×(n3+1). We now demand that

∂

∂x
u(1, y, z) =

n1∑
i=0

n2∑
j=0

n3∑
k=0

UijkT ′i (1)Tj(y)Tk(z) =

n2∑
j=0

n3∑
k=0

HjkTj(y)Tk(z), (7.13)

where T ′i (1) = i2 for i = 0, . . . , n [322]. Equation (7.13) can be expressed in the form
of (7.11) with

B1 = (T ′0(1), . . . , T ′n1
(1)) and (G1)0,0:n2,0:n3 = H.

The Dirichlet boundary conditions on the left side can be included in B1,G1 as in
Section 7.3.1.

7.3.2 Incorporating the boundary conditions

We need to incorporate the discretized boundary conditions (7.11) into the discretized
PDE (7.10) to obtain the unique solution U . Following the ideas of [319, Section 6], we
compute U by substituting (7.11) into (7.10).

Since B1, B2, B3 have linearly independent rows, we can assume without loss of generality
that

(B1)0:(Nx−1),0:(Nx−1) = I, (B2)0:(Ny−1),0:(Ny−1) = I, (B3)(0:(Nz−1),0:(Nz−1) = I. (7.14)

For r = 1, . . . , R, we rewrite the boundary conditions as

−U ×1 (L(x)
r)0:n1,0:(Nx−1)B1= −G1 ×1 (L(x)

r)0:n1,0:(Nx−1),

−U ×2 (L(y)
r)0:n2,0:(Ny−1)B2= −G2 ×2 (L(y)

r)0:n2,0:(Ny−1),

−U ×3 (L(z)
r)0:n3,0:(Nz−1)B3= −G3 ×3 (L(z)

r)0:n3,0:(Nz−1).

127

Chapter 7: Fast global spectral method

U =

U221U121

U111 U211

U222U122

U112 U212

Nx n1 + 1 − Nx

n3 + 1 − Nz

Nz

n2 + 1 − Ny

Ny

n2 + 1

n1 + 1

n3 + 1

Figure 7.1 – Visualization of the block decomposition of U ∈ R(n1+1)×(n2+1)×(n3+1) with
block U111 ∈ RNx×Ny×Nz .

Substituting these modified boundary conditions into the discretized PDE (7.10) leads to

R∑
r=1

U ×1 (L(x)
r − (L(x)

r)0:n1,0:(Nx−1)B1)︸ ︷︷ ︸
=L̃

(x)
r

×2 (L(y)
r − (L(y)

r)0:n2,0:(Ny−1)B2)︸ ︷︷ ︸
=L̃

(y)
r

×3 (L(z)
r − (L(z)

r)0:n3,0:(Nz−1)B3)︸ ︷︷ ︸
=L̃

(z)
r

=

F −
R∑
r=1

G1 ×1 (L(x)
r)(0:n1,0:(Nx−1) ×2 L

(y)
r ×3 L

(z)
r

−
R∑
r=1

G2 ×1 (L(x)
r − (L(x)

r)0:n1,0:(Nx−1)B1)×2 (L(y)
r)0:n2,0: (Ny−1) ×3 L

(z)
r

−
R∑
r=1

G3 ×1 (L(x)
r − (L(x)

r)0:n1,0:(Nx−1)B1)×2 (L(y)
r − (L(y)

r)0:n2,0:(Ny−1)B2)

×3 (L(z)
r)0:n3,0:(Nz−1),

where we denote the right hand side by F̃ . Observe that the first Nx, Ny, Nz columns
of L̃(x)

r , L̃
(y)
r , L̃

(z)
r are zero due to assumption (7.14). Let U be decomposed into tensor

blocks as described in Figure 7.1. The system after substitution uniquely determines the
block U222 = UNx:n1,Ny :n2,Nz :n3 , which can be written as

R∑
r=1

U222 ×1 (L̃(x)
r)0:(n1−Nx),Nx:n1︸ ︷︷ ︸

=L̂
(x)
r

×2 (L̃(y)
r)0:(n2−Ny),Ny :n2︸ ︷︷ ︸

=L̂
(y)
r

×3 (L̃(z)
r)0:(n3−Nz),Nz :n3︸ ︷︷ ︸

=L̂
(z)
r

= F̃0:(n1−Nx),0:(n2−Ny),0:(n3−Nz)︸ ︷︷ ︸
=F̂

. (7.15)

128

7.3. A spectral method for three-dimensional linear PDEs

The remaining blocks can be reconstructed from the discretized boundary conditions (7.11)
as

U122 = G1 − U222 ×1 B1, U212 = G2 − U222 ×2 B2,

U221 = G3 − U222 ×3 B3, U112 = G1 − U212 ×1 B1,

U121 = G1 − U221 ×1 B1, U211 = G3 − U212 ×3 B3,

U111 = G1 − U211 ×1 B1.

7.3.3 Solving tensor-valued linear systems

The computation of U requires the solution of the unconstrained tensor-valued linear
system (7.15) of the form

R∑
r=1

U222 ×1 L̂
(x)
r ×2 L̂

(y)
r ×3 L̂

(z)
r = F̂ . (7.16)

This system can be solved by reshaping the tensor-valued linear system into a vector-valued
linear system of the form(R∑

r=1

L̂(z)
r ⊗ L̂(y)

r ⊗ L̂(x)
r

)
vec(U222) = vec(F̂). (7.17)

For certain PDEs we can transform the system (7.16) into a Laplace-like equation

U222 ×1 U + U222 ×2 V + U222 ×3 W = F̆ , (7.18)

with matrices U ∈ R(n1+1−Nx)×(n1+1−Nx), V ∈ R(n2+1−Ny)×(n2+1−Ny), W ∈
R(n3+1−Nz)×(n3+1−Nz) and tensor F̆ ∈ R(n1+1−Nx)×(n2+1−Ny)×(n3+1−Nz). For instance,
this can be achieved for Nx = Ny = Nz, n1 = n2 = n3 and B1 = B2 = B3, when
there exists a CP decomposition of the tensor A defined in Section 7.2 with symmetry
constraints [61] of the form

A = a ◦ v ◦w + u ◦ b ◦w + u ◦ v ◦ c. (7.19)

Then Equation (7.16) is equivalent to the Laplace-like equation (7.18) with

U = (L̂
(y)
1)−1L̂

(x)
1 , V = (L̂

(x)
2)−1L̂

(y)
2 , W = (L̂

(x)
3)−1L̂

(z)
3 ,

F̆ = F̂ ×1 (L̂
(y)
1)−1 ×2 (L̂

(x)
2)−1 ×3 (L̂

(x)
3)−1. (7.20)

To solve Laplace-like equations (7.18), we apply the recursive blocked algorithm developed

129

Chapter 7: Fast global spectral method

in [69]. It transforms the matrices U, V,W into quasi-triangular form by computing
Schur decompositions. Block decompositions for the quasi-triangular matrices reveal
an equivalent system of Laplace-like equations with smaller matrices. We apply this
observation recursively, until we can solve the small Laplace-like equations efficiently
by reshaping. This yields the blocked recursive algorithm. For n = n1 = n2 = n3 this
approach has a theoretical runtime of O(n4) operations. In Section 7.4.1, we demonstrate
that this recursive blocked algorithm is much faster than directly reshaping the tensor-
valued linear system.

Remark 7.4. For general PDEs with the same type of boundary conditions in each mode,
we can obtain a CP decomposition of the form (7.19) if the differential operator does
not contain mixed derivatives and if all coefficients αabc only depend on the variable
corresponding to the mode in which their corresponding derivative acts. This includes, for
instance, differential operators of the form

α1(x) + α2(x)
∂

∂x
+ α3(x)

∂2

∂x2
+ α4(y)

∂

∂y
+ α5(y)

∂2

∂y2
+ α6(z)

∂

∂z
+ α7(z)

∂2

∂z2
,

with univariate coefficient functions αi : [−1, 1]→ R.

Remark 7.5. So far, we introduced the global spectral method for fixed polynomial degrees
(n1, n2, n3). In order to heuristically determine if the solution is accurate, we can analyze
the residual of (7.10) and the decay of the coefficients in U [16]. This can be used to
adaptively increase (n1, n2, n3) until the solution is accurate.

Remark 7.6. In general, it is not recommended to explicitly invert the matrices in (7.20).
The inversion can be avoided completely by extending the recursive solver in [69] similar to
how recursive solvers for Sylvester equations can be extended to solve generalized Sylvester
equations.

7.4 Numerical results

All numerical experiments∗ in this section were performed in MATLAB R2018b on a
Lenovo Thinkpad T480s with Intel Core i7-8650U CPU and 15.4 GiB RAM.

7.4.1 Runtime comparison

We consider Poissons’s equation ∆u = f with homogeneous zero Dirichlet boundary
conditions. In Table 7.1, we compare our global spectral method to the nested alternating
direction implicit method (NADIM) proposed in [125, Section 5]. NADIM relies on
solving two-dimensional Sylvester equations recursively on three levels. On each level an
iterative algorithm is used, which leads to a large total number of iterations.

∗The MATLAB code to reproduce these results is available from https://github.com/cstroessner/
SpectralMethod3D.

130

https://github.com/cstroessner/SpectralMethod3D
https://github.com/cstroessner/SpectralMethod3D

7.4. Numerical results

n = 10 n = 30 n = 50 n = 150

Time Error Time Error Time Error Time Error

NADIM 21.8 1.47 · 10−5 742 2.80 · 10−8 - - - -
reshape 0.019 1.55 · 10−5 2.40 1.22 · 10−15 102 1.22 · 10−15 - -
recursive 0.054 1.55 · 10−5 0.10 3.12 · 10−13 0.41 8.20 · 10−13 10.9 1.15 · 10−10

Table 7.1 – Comparison of algorithms to solve Poisson’s equation with known solution
u∗(x, y, z) = sin(πx) sin(πy) sin(πz), from which the right hand side f is explicitly com-
puted. To compute solutions u ∈ Pn,n,n with our global spectral method, we compare
reshaping (7.15) and solving (7.17) with backslash in MATLAB (reshape) to transform-
ing (7.15) into a Laplace-like equation (7.18) and solving with the blocked recursive
solver [69] (recursive). Additionally, we compare to NADIM [125]. For various n, we
measure the runtime in seconds and we estimate ||u− u∗||∞ by sampling 1 000 random
points.

We observe that even though NADIM has an asymptotic runtime of O(n3(log(n))3) [125],
it is the slowest algorithm in our setting and can not handle n > 30 in a reasonable
amount of time. The asymptotic runtime of the recursive algorithm is slower with O(n4),
but in our experiments it is the fastest method and it can handle values of up to n = 150

in less than 11 seconds. For n = 50 solving the reshaped system (7.17) with backslash
leads to an error of order 10−15, whereas the recursive algorithm only achieves an error
of order 10−13. While the recursive approach is able to solve much larger systems, it is
slightly more sensitive to numerical rounding errors.

7.4.2 Stationary problems

Helmholtz problems

We consider the Helmholtz equation on [−1, 1]3 with non-homogeneous Dirichlet boundary
conditions as in [160, 319], which arises for instance in the context of three-dimensional
wave equations in acoustics [336] and seismic-imaging [261]. It is defined as

∆u(x, y, z) + κ2u(x, y, z) = f(x, y, z),

with coefficient κ ∈ R. For this differential operator, we define the tensor A as in
Section 7.2.2. We observe that a CP decomposition in the form (7.19) is given by

A =

κ2

0

1

 ◦
1

0

0

 ◦
1

0

0

+

1

0

0

 ◦
0

0

1

 ◦
1

0

0

+

1

0

0

 ◦
1

0

0

 ◦
0

0

1

 . (7.21)

Hence, we can derive a Laplace-like structure (7.18) for Equation (7.15) and employ the
recursive solver.

131

Chapter 7: Fast global spectral method

In the following, we employ the global spectral method for the Helmholtz equation in [56,
Section 5.3] given by

∆u(x, y, z) + κ(x)2u(x, y, z) = f(x, y, z), (7.22)

with function κ(x) = γ1 − γ2 cos(πγ3x/2) and scalar coefficients γ1, γ2, γ3 ∈ R. The right
hand side f and the Dirichlet boundary conditions are computed explicitly from the
solution

u∗(x, y, z) = exp(−κ(x)/γ3) cos(πγ1y/2) cos(πγ2z/2). (7.23)

In order to incorporate the coefficient function κ(x), we compute one-dimensional dif-
ferential operators as in Equation (7.7) from the CP-decomposition (7.21). We then set
L(x)

1 u(x) = κ(x)2u(x) + ∂2

∂x2
u(x) and discretize this operator as described in Section 7.2.3.

The resulting equation (7.15) can still be transformed into a Laplace-like equation (7.18)
by setting U, V,W, F̆ as defined in (7.20).

In Figure 7.2, we depict how well the solution u ∈ Pn,n,n of our global spectral method
approximates u∗. We compare to the trivariate Chebyshev interpolant ũ of u∗ that is close
to the best approximation of u in Pn,n,n and converges quickly [100, 322]. For n < 80,
the solution u and the interpolant ũ almost coincide. For n > 80, the error ||u− u∗||∞
stagnates, whilst the interpolation error ||ũ− u∗||∞ continues to decrease further before
reaching a plateau close to machine precision. This discrepancy is caused by the recursive
blocked solver.

20 40 60 80 100 120 140

n

10
-15

10
-10

10
-5

10
0

e
rr

o
r

Figure 7.2 – Left: We plot u∗(x, y, z) as defined in (7.23) for (γ1, γ2, γ3) = (5, 3, 5) and
fixed z = 1/4. Right: We solve the Helmholtz equation (7.22) for (γ1, γ2, γ3) = (5, 3, 5)
with known solution u∗ (7.23) via our global spectral method to obtain the solution
u ∈ Pn,n,n for various n. Further, we compute the trivariate Chebyshev interpolant
ũ ∈ Pn,n,n of u∗. For each n, we estimate ||u− u∗||∞ and ||ũ− u∗||∞ using 1 000 sample
points (evaluation error).

132

7.4. Numerical results

Remark 7.7. The derivation of the Laplace-like system from the CP decomposition can
be extended from the Helmholtz equation to convection diffusion problems of the form

−ν 4 u+ ξT 5 u = f,

with ν ∈ R and ξ ∈ R3 as studied in [24, 70, 340]. For these problems we define the
CP-decomposition

A =

 0

ξ1

−ν

 ◦
1

0

0

 ◦
1

0

0

+

1

0

0

 ◦
 0

ξ2

−ν

 ◦
1

0

0

+

1

0

0

 ◦
1

0

0

 ◦
 0

ξ3

−ν

 .

Diffusion problems with separable coefficient

Diffusion problems of the form

−5 ·(a(x, y, z)5 u(x, y, z)) = f(x, y, z), (7.24)

with a separable coefficient a(x, y, z) = a1(x)a2(y)a3(z) defined by univariate functions
a1, a2, a3 : [−1, 1]→ R, are not directly given as linear partial differential operator of the
form (7.2). We can, however, decompose the three-dimensional differential operator into
a sum of three differential operators similar to (7.7) as

5 ·(a(x, y, z)5 u(x, y, z)) =(
∂

∂x

(
a(x, y, z)

∂

∂x

)
︸ ︷︷ ︸

=L̃(x)1

+
∂

∂y

(
a(x, y, z)

∂

∂y

)
︸ ︷︷ ︸

=L̃(y)2

+
∂

∂z

(
a(x, y, z)

∂

∂z

)
︸ ︷︷ ︸

=L̃(z)3

)
u(x, y, z).

Applying the differential operator L̃(x)
1 to a polynomial u ∈ Pn,n,n can be written analo-

gously to (7.8) as

V = U ×1 S1D1S
−1
0 M (1)[a1]D1︸ ︷︷ ︸

=L
(x)
1

×2M
(2)[a2]S1S0︸ ︷︷ ︸

=L
(y)
1

×3M
(2)[a3]S1S0︸ ︷︷ ︸

=L
(y)
1

where a1 ∈ Rn1+1,a2 ∈ Rn2+1,a3 ∈ Rn3+1 denote the coefficients for univariate Cheby-
shev interpolation of a1, a2, a3 as in Section 7.2.3. The multiplication matrices M [a],
differentiation matricesD1 and transformation matrices S0, S1 are defined as in Section 7.2.
We obtain analogous discretizations for L̃(y)

2 and L̃(z)
3 . Observe that the discretization

has the same symmetric structure as the CP decomposition (7.19). Thus, we can trans-
form (7.15) to a Laplace-like equation (7.18) by defining U, V,W, F̆ as in (7.20) and use
the recursive solver.

133

Chapter 7: Fast global spectral method

Diffusion problems with higher rank coefficient

Most diffusion problems (7.24) arising in the study of groundwater flow and uncertainty
quantification [75, 133, 220, 287, 316, 328] do not have a rank-1 coefficient a(x, y, z). The
coefficient is often given by a truncated expansion as a sum of separable functions of the
form

a(x, y, z) =

Ra∑
r=1

a
(r)
1 (x)a

(r)
2 (y)a

(r)
3 (z),

with Ra > 1 and univariate functions a(r)
1 , a

(r)
2 , a

(r)
3 : [−1, 1]→ R. The PDE (7.24) can

now be written as

−
Ra∑
r=1

5 · (a(r)
1 (x)a

(r)
2 (y)a

(r)
3 (z)5 u(x, y, z)) = f(x, y, z). (7.25)

Following the ideas in Section 7.4.2, we can discretize (7.24) for each separable function
a

(r)
1 (x)a

(r)
2 (y)a

(r)
3 (z). Adding these discretizations yields a discretization of the form (7.10)

with R = 3Ra. Since R > 3, we can not find a Laplace-like formulation of (7.15) and we
can not use the recursive solver.

We can, however, use preconditioned GMRES [137] to compute solutions of (7.16) seen
as tensor-valued linear system. Throughout this work, we restart GMRES every 15
iterations. As preconditoner we employ the recursive solver to solve Equation (7.15) for a
discretization of the same diffusion problem (7.25) with the coefficient a(x, y, z) replaced
by a separable coefficient b(x, y, z). This can be seen as effectively solving the system

(3∑
r=1

L̂(z)
r [b]⊗ L̂(y)

r [b]⊗ L̂(x)
r [b]

)−1(R∑
r=1

L̂(z)
r [a]⊗ L̂(y)

r [a]⊗ L̂(x)
r [a]

)
vec(U222) =

(3∑
r=1

L̂(z)
r [b]⊗ L̂(y)

r [b]⊗ L̂(x)
r [b]

)−1

vec(F̂),

where L̂(x)
r [a], L̂

(y)
r [a], L̂

(z)
r [a] and L̂(x)

r [b], L̂
(y)
r [b], L̂

(z)
r [b] denote the matrices in (7.16) based

on discretizations of the PDE with coefficient a and b respectively. The application of
the inverse of

∑3
r=1 L̂

(z)
r [b]⊗ L̂(y)

r [b]⊗ L̂(x)
r [b] can be computed by solving a Laplace-like

equation (7.18).

From now on, we consider the rank-2 coefficient a(x, y, z) = (1 + x2)(1 + y2)(1 + z2) +

exp(x+ y + z). We use our global spectral method with n = n1 = n2 = n3 = 30 to solve
the diffusion problem (7.25) with known solution u∗(x, y, z) = sin(πx) sin(πy) sin(πz),
from which we explicitly compute the right hand side f and Dirichlet boundary conditions.
In Figure 7.3, we display the convergence rates for GMRES with preconditioners based
on the constant coefficient b1(x, y, z) = ||a||L2 and the separable coefficient b2(x, y, z) =

134

7.4. Numerical results

20 40 60 80 100

GMRES iteration

10
-15

10
-10

10
-5

10
0

re
s
id

u
a

l

Figure 7.3 – Convergence rate of preconditioned GMRES for solving Equation (7.15) for the
Diffusion problem (7.25) with coefficient a(x, y, z) = (1+x2)(1+y2)(1+z2)+exp(x+y+z).
We compare no preconditioning and preconditioning with a separable coefficient b(x, y, z)
as described in Section 7.4.2.

(1 + x2)(1 + y2)(1 + z2). Both preconditioners yield solutions u such that the error
||u − u∗||∞ is close to machine precision. Solving with b1 takes 4.87 seconds. For the
separable coefficient b2, fewer iterations are necessary and the computation only takes
2.14 seconds. For comparison, reshaping as in Section 7.4.1 would take 107 seconds.

Helmholtz equation with non-constant coefficients

Next, we study a variable coefficient Helmholtz equation as in [319, Example 2]. We
consider the PDE

∆u(x, y, z) + κ(x, y, z)u(x, y, z) = f(x, y, z), (7.26)

with function κ(x, y, z) =
√
x+ y + z + 42. For n = n1 = n2 = n3 = 30, we compute a

discretization (7.10) by computing an approximate CP decomposition of A with R = 10

as defined as in Section 7.2.3 using tensorlab [332]. In 2.08 seconds, we obtain a CP
decomposition with error 2.04 · 10−9 in the uniform norm. This leads to a discretized
PDE, for which we solve Equation (7.15) with preconditioned GMRES with restarting
as in Section (7.4.2). In the preconditioner we solve Equation (7.15) for the Helmholtz
equation (7.22) with constant coefficient ||κ||L2 .

When the right hand side and the Dirichlet boundary conditions are chosen to match the
known solution u∗(x, y, z) = sin(πx) sin(πy) sin(πz), solving with preconditioned GMRES
takes 1.04 seconds. The computed solution u satisfies ||u− u∗||∞ ≈ 2.38 · 10−10, where
we estimate the uniform norm using 1 000 sample points.

Remark 7.8. To obtain very high accuracy in the PDE solution, we would need a very
accurate CP decomposition. The efficient computation of accurate CP decompositions is

135

Chapter 7: Fast global spectral method

5 10 15 20 25 30 35 40

n

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 7.4 – Left: Let u[n] ∈ Pn,n,n denote the solution computed for the Helmholtz
equation described in Section 7.4.2. We plot u[45](x, y, 1/4). Right: For various n we plot
||u[n]− u[45]||∞ estimated at 1 000 sample points. Additionally, we plot the combined
residual defined as maximum of the residual of (7.10) and the residuals of (7.11) in the
uniform norm. Further, we plot the error of the CP approximation of A in the uniform
norm.

still subject to research [293]. Here, we could avoid computing a CP decompositoin of
A ∈ R93×93×93 by instead approximating the operators ∆ and κ(x, y, z)I separately, where
I denotes the identity operator. Discretizing κ(x, y, z)I only involves a CP decomposition
of a tensor in R31×31×31, which can be computed for R = 7 in only 0.09 seconds with error
1.93 · 10−11 in the uniform norm. The two resulting discretizations in the form of (7.9)
can be added to obtain a discretization of ∆ + κ(x, y, z)I.

Helmholtz equation with unknown solution

As a final stationary problem, we consider the Helmholtz equation (7.26) with non-
constant coefficient κ(x, y, z) =

√
x+ y + z + 42 and f(x, y, z) = 1. We use mixed

boundary conditions with zero Neumann boundary conditions on the right and zero
Dirichlet boundary conditions on all other sides as in Section 7.3.1. As in Section 7.4.2, we
compute a CP decomposition of A and solve using preconditioned GMRES. In Figure 7.4,
we display the computed solution and the error decay for different polynomial degrees.
We observe that the residual decays when the polynomial degree is increased, which
indicates that the solutions become more accurate.

136

7.4. Numerical results

7.4.3 Time-dependent problems

In this section, we introduce an implicit Euler scheme to solve parabolic PDEs of the
form

∂

∂t
u(x, y, z, t) + Lu(x, y, z, t) = 0,

where L is a linear partial differential operator acting only on the spatial variables x, y, z.
The system is complemented with boundary conditions. We are interested in the time
evolution starting from a given initial function u(x, y, z, 0) = u0(x, y, z). We discretize
the equation in time using the uniform step length h. For each τ = 1, 2, . . . , we compute
uτ (x, y, z) ≈ u(x, y, z, τh) as solution of the stationary linear PDE

(I − hL)uτ+1 = uτ , (7.27)

We approximate each function uτ by a polynomial of the form (7.4) represented by the
coefficient tensor Uτ . The initial U0 is computed via tensorized Chebyshev interpolation.
For τ = 1, 2, . . . , we obtain Uτ by applying our spectral method to solve Equation (7.27).
We discretize the operator (I − hL) directly like the Helmholtz equation in Section 7.4.2.
This allows us to employ the recursive solver. Note that the right hand side is represented
in terms of an ultraspherical basis. Hence, the computation of Uτ requires multiplying
Uτ−1 with appropriate basis transformation matrices.

We demonstrate this implicit Euler scheme for the parabolic PDE studied in [257,
Section 6.1]. The function u∗(x, y, z, t) = exp(−3π2t) sin(πx) sin(πy) sin(πz) satisfies the
parabolic PDE

∂

∂t
u+ ∆u = 0,

on the domain [−1, 1]3 with homogeneous Dirichlet boundary conditions. We use an
implicit Euler scheme for u0(x, y, z) = sin(πx) sin(πy) sin(πz) and compare our global
spectral method to a finite difference method [303]. In each timestep of the finite difference
method, we solve a linear system with a sparse Kronecker-structured finite difference
matrix using the backslash operator in MATLAB.

The time evolution of the errors is displayed in Figure 7.5. We observe that for n = 20

and h = 10−2 both approximations lead to very similar errors, but the computation time
for 50 implicit Euler steps decreases from 6.22 seconds for the finite difference method to
0.93 seconds for our global spectral method. In this case the error is dominated by the
implicit Euler scheme for both methods. In contrast, for n = 30 and h = 10−4, the errors
for the spectral method are smaller. For large τ the error of both approaches is dominated
by the time discretization via the implicit Euler scheme. However, in the initial 750 time
steps the error of the spatial discretization dominates for the finite difference scheme,

137

Chapter 7: Fast global spectral method

whereas the global spectral method is able to represent uτ accurately.

0 10 20 30 40 50
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(a) Results for n = 20 and h = 10−2.

0 500 1000 1500 2000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

(b) Results for n = 20 and h = 10−4.

Figure 7.5 – Error plots for the parabolic PDE example in Section 7.4.3. We apply an
implicit Euler scheme to compute approximations uτ (x, y, z) ≈ u(x, y, z, τh) and compare
the solutions for the global spectral method (GSM) with solutions in Pn,n,n and a finite
difference discretization (FD) on a regular (n+1)× (n+1)× (n+1) grid. The absolute
error ||u∗(·, ·, ·, τh)− uτ (·, ·, ·)||∞ is estimated in each timestep from evaluations at 100
sample points. The relative error is computed from the estimation of the absolute error.

Remark 7.9. Instead of using the implicit Euler scheme, we could generalize the ideas
from [83] to derive a tensor-oriented exponential Euler scheme.

Remark 7.10. The methods presented in this work can also be used to solve two-dimen-
sional parabolic PDEs on rectangles by treating time as third space variable in the dis-
cretization of the operator. We refer to [319] for more details on this approach.

7.4.4 Eigenvalue problems

The methods presented in this work can be extended to solve PDE eigenvalue problems,
in which we search eigenvalues λ and eigenfunctions u satisfying the equation Lu = λu

complemented with homogeneous Dirichlet boundary conditions. We are particularly
interested in finding the eigenvalue with minimal absolute value. For this purpose we
employ the inverse iteration algorithm [137]. Starting from an initial function u0 we
iteratively compute an approximation of the eigenfunction. For s = 1, 2, . . . , we compute
us as solution of the PDE

Lus =
us−1

||us−1||L2
. (7.28)

We approximate the eigenvalue using the Rayleigh quotient 1
λ ≈

〈us−1,us〉
〈us−1,us−1〉 , where 〈·, ·〉

denotes the standard L2 scalar product. We again proceed by discretizing the differential

138

7.4. Numerical results

operator and the function u to solve Equation (7.28) using the spectral method introduced
in Section 7.3.

Let the functions u, v ∈ Pn1,n2,n3 be given in the form of (7.4). We evaluate the norm
as ||u||2L2 = 〈u, u〉 and the scalar product 〈u, v〉 by interpolating the function uv using
tensorized Chebyshev polynomial basis functions as in [100, 224]. In a second step, we
integrate the approximation of uv using the exact values for the integrals of the basis
functions [322, Theorem 19.2].

We test our method for the elliptic PDE eigenvalue problem

−∆u(x, y, z) + v(x, y, z)u(x, y, z) = λu(x, y, z), (7.29)

with potential v(x, y, z) = sin(π/2(x + 1)) sin(π/2(y + 1)) sin(π/2(z + 1)) as in [154,
208]. Due to the potential v(x, y, z) the inverse iteration steps (7.28) are Helmholtz
equations (7.22) with non-constant separable coefficients. We discretize these by adding a
discretization of v(x, y, z)I with R = 1 to a discretization of the Laplacian. The resulting
discretized PDE (7.10) has R = 4 and we apply preconditioned GMRES with restarting
using a Helmholtz equation with constant coefficient ||v||L2 to compute solutions as in
Section 7.4.2. We compare our global spectral method to a finite difference scheme on a
regular grid for solving (7.28). In Figure 7.6 we observe that the eigenvalues computed as
Rayleigh coefficients converge at a faster rate for the global spectral method than the
finite difference approach. Already for n = 20 the global spectral method reaches an error
close to machine precision.

5 10 15 20 25 30 35 40

10
-15

10
-10

10
-5

10
0

Figure 7.6 – Eigenvalue convergence rate for the PDE eigenvalue problem (7.29) computed
as Rayleigh coefficients from u50 in the inverse iteration method, where the solutions
us are computed via the global spectral method with us ∈ Pn,n,n and a finite difference
method on a regular (n+1)× (n+1)× (n+1) grid. We denote the eigenvalue obtained
for n by λ[n]. Since the exact λ is not known, we plot |λ[n]− λ[45]| for both algorithms,
where λ[45] is computed with the respective algorithm.

Remark 7.11. We would like to point out that our approach can be used to compute a

139

Chapter 7: Fast global spectral method

basis for the (continuous) Krylov subspace, which is used in the Arnoldi method [15, 137]
and in the Least-squares spectral method in [162].

140

8 Conclusions and outlook

In this thesis, we demonstrated that three very different high-dimensional problems can
be solved efficiently by identifying and exploiting underlying low-rank tensor structures
to overcome the curse of dimensionality.

Functional low-rank approximation In Chapters 3 and 4, we developed two novel
algorithms to compute functional low-rank approximations of multivariate functions based
on selected function evaluations. The key point in deriving these algorithms has been
that low-rank approximations of the evaluation tensor for tensorized interpolation lead to
particular types of functional low-rank approximations. Compared to previously existing
algorithms, we managed to significantly reduce the number of function evaluations needed
to obtain an approximation with prescribed accuracy for most functions.

Throughout this thesis, our approximation algorithms have been derived based on expan-
sions in terms of tensorized polynomials. Extensions to other basis functions are possible
and might offer certain advantages. For example, Ballfun [43] avoids the introduction of
artificial boundaries when approximating functions on the ball by combining a mix of
Chebyshev and Fourier basis functions with additional symmetry constraints. So far, we
have focused on approximations in the functional Tucker or the (extended) functional TT
format. While we have demonstrated that many functions can be well approximated in
these formats, it might be possible to compress certain functions even more when using
other functional low-rank approximation formats [21]. To obtain such approximations
efficiently, we will need to develop specialized approximation algorithms. Those algo-
rithms potentially could reuse parts of the algorithms presented in this work, such as
first computing a Tucker approximation using Algorithm 9 before approximating the
core tensor in the desired format. Future work could additionally cover how to compute
numerically with functions [323] once they are compressed in functional low-rank formats.
For arithmetic operations, one could perform certain operations by directly manipulating
the low-rank approximation of the evaluation and the coefficient tensor. For instance,

141

Chapter 8: Conclusions and outlook

the multiplication of functions could be seen as Hadamard product of the corresponding
low-rank approximations of the evaluation tensor [204].

In Chapter 7, we derived a global spectral method for solving three-dimensional linear
PDEs on cubes with very high accuracy. Our numerical experiments demonstrated that
using the blocked recursive solver [69] to either solve the resulting equations directly or as
a preconditioner when the equations are not Laplace-like vastly outperforms all existing
methods. We additionally presented the versatility of our method by the extension to
eigenvalue and time-dependent problems.

In future work, additional features included in Chebop2 [319] such as adaptivity and input
parsing could be incorporated into the current implementation of our global spectral
method. Currently, the computational complexity of our approach is heavily influenced
by the storage needed to store the full coefficient tensors U , F and G` for representing
the solution, the right-hand side and the boundary conditions, respectively. Under the
assumption that both the solution of the PDE and the right-hand side can be well
approximated in functional low-rank formats, also these coefficient tensors can be well
approximated in the corresponding low-rank tensor formats. Such approximations have
the potential to drastically reduce the storage complexity. Exploiting this potential
requires determining suitable approximation formats and using a specialized solver for
the chosen formats. For instance, when choosing the Tucker or the TT format, we
can use the ideas from [289] to solve Laplace-like equations directly in these low-rank
formats. Alternatively, one could add the boundary conditions as penalty terms to
the discretized PDE as in [162] and apply standard techniques such as Riemannian
optimization [264] or alternating linear schemes [171] to solve the resulting system in the
TT format. The computational complexity of time-dependent problems could be reduced
using rank-adaptive dynamical low-rank approximations [62, 64, 90]. We also would like
to point out that extending our global spectral method to higher dimensional PDEs on
hypercubes is straightforward, but it might no longer be feasible to solve the resulting
system numerically without exploiting additional low-rank structure of the coefficient
tensors.

Multi-marginal optimal transport In Chapter 5, we analyzed the impact of approx-
imating the Gibbs kernel on the Sinkhorn algorithm for solving entropically regularized
multi-marginal optimal transport problems. We demonstrated that the introduction of
low-rank approximations offers the potential to reduce the computational complexity of
evaluating marginals by orders of magnitude. For transport plans defined via graphical
models, we showed that constructing the low-rank approximation based on the dual
graphical model can be faster and more accurate than the direct approximation of the
Gibbs kernel. An application of our method is presented by the drastic reduction of the
computation time for transferring colors from several images onto one target image.

142

Chapter 8: Conclusions and outlook

So far, we computed the approximation K̃ of the Gibbs kernel K using classical low-
rank approximation algorithms, which are designed to minimize ‖K − K̃‖∞ with respect
to the uniform or the Frobenius norm. However, our error bounds indicate that we
are actually interested in finding potentially very different approximations for which
‖log(K)− log(K̃)‖∞ is minimized. Efficient algorithms to compute such approximations
are still subject to future work. The design of these algorithms can potentially be
inspired by [172, 330], where approximations in the CP format are computed such that
non-standard objective functions are minimized. In [112], the related problem of finding
low-rank approximations of elementwise exponentials is studied in the context of log-
normal random fields. For multi-marginal optimal transport problems arising in the
context of density functional theory [35], several obstacles need to be overcome before
our approach can be put into practice. The Coulomb cost leads to zero entries on the
diagonal of the Gibbs kernel. Any suitable approximation of the Gibbs kernel would
need to approximate these entries exactly, which is usually not feasible without either
adding sparse correction terms to the low-rank approximation as for instance in [213,
275] or generalizing the idea of using hierarchical matrices [234] to tensors. Moreover, the
underlying graphical model leads to a fully connected tensor network that can not be
contracted efficiently.

Self-diffusion matrix In Chapter 6, we introduced a novel approach to compute
the self-diffusion matrix of a tagged particle process. We exploited the fact that the
latter quantity can be expressed via the solution of a high-dimensional deterministic
minimization problem to develop an alternating optimization scheme to build a low-rank
approximation of this solution. Our numerical experiments showed that the variance in the
computed self-diffusion matrix is much smaller when using our novel approach compared
to using standard sampling based methods with the same amount of computational
resources.

There still remain several interesting open questions that need to be investigated in
future work. As already described in Section 6.3.5, the current implementation of our
low-rank algorithm is limited in terms of the size of the computational domain for which
the algorithm can be run due to round-off errors. We still believe that our approach is
promising since the error linked to the truncation of the computational domain is small in
comparison to statistical errors. In this thesis, all our experiments have been concerned
with two-dimensional tagged particle systems. Extensions to higher dimensional-systems
are possible, but the rounding issues become more and more pressing. So far, we only
derived a finite volume scheme to solve a simplified cross-diffusion system involving
the computed self-diffusion matrices. It still remains to develop a convergent entropy
diminishing finite volume scheme for hydrodynamic limits of multi-species exclusion
processes.

143

Bibliography

[1] L. Agelas, R. Eymard, and R. Herbin. A nine-point finite volume scheme for
the simulation of diffusion in heterogeneous media. C. R. Math. Acad. Sci. Paris
347.11-12 (2009), pp. 673–676.

[2] M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM J. Math.
Anal. 43.2 (2011), pp. 904–924.

[3] S. Ahmadi-Asl et al. Cross tensor approximation methods for compression and
dimensionality reduction. IEEE Access 9 (2021), pp. 150809–150838.

[4] M. Ali and A. Nouy. Approximation with tensor networks. Part I: Approximation
spaces. arXiv e-prints (2020), arXiv:2007.00118.

[5] M. Ali and A. Nouy. Approximation with tensor networks. Part II: Approximation
rates for smoothness classes. arXiv e-prints (2020), arXiv:2007.00128.

[6] M. Ali and A. Nouy. Approximation with tensor networks. Part III: Multivariate
approximation. arXiv e-prints (2021), arXiv:2101.11932.

[7] J. M. Altschuler and E. Boix-Adsera. Polynomial-time algorithms for multi-
marginal optimal transport problems with structure. Math. Program. (2022), pp. 1–
72.

[8] J. M. Altschuler and E. Boix-Adserà. Hardness results for multimarginal
optimal transport problems. Discrete Optim. 42 (2021), Paper No. 100669, 21.

[9] J. Altschuler, J. Weed, and P. Rigollet. Near-linear time approximation
algorithms for optimal transport via Sinkhorn iteration. In: Adv. Neural Inf. Process.
Syst. 30. 2017, pp. 1964–1974.

[10] J. Altschuler et al. Massively scalable Sinkhorn distances via the Nyström
method. In: Adv. Neural Inf. Process. Syst. 32. 2019, pp. 4427–4437.

[11] A. Ammar et al. Proper generalized decomposition of time-multiscale models.
Internat. J. Numer. Methods Eng. 90.5 (2012), pp. 569–596.

[12] J. An and A. Owen. Quasi-regression. J. Complexity 17.4 (2001), pp. 588–607.

[13] C. Arita, P. L. Krapivsky, and K. Mallick. Bulk diffusion in a kinetically
constrained lattice gas. J. Phys. A 51 (2018), p. 125002.

145

Bibliography

[14] C. Arita, P. L. Krapivsky, and K. Mallick. Variational calculation of transport
coefficients in diffusive lattice gases. Phys. Rev. E 95 (2017), p. 032121.

[15] W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix
eigenvalue problem. Quart. Appl. Math. 9 (1951), pp. 17–29.

[16] J. L. Aurentz and L. N. Trefethen. Chopping a Chebyshev series. ACM Trans.
Math. Software 43.4 (2017), pp. 1–21.

[17] F. A. Ba and M. Quellmalz. Accelerating the Sinkhorn algorithm for sparse
multi-marginal optimal transport via fast Fourier transforms. Algorithms 15.9
(2022).

[18] I. Babuška and M. Suri. The p- and h-p versions of the finite element method,
an overview. Comput. Methods Appl. Mech. Eng. 80 (1990), pp. 5–26.

[19] F. Bach. Breaking the curse of dimensionality with convex neural networks. J.
Mach. Learn. Res. 18 (2017), pp. 1–53.

[20] M. Bachmayr and A. Cohen. Kolmogorov widths and low-rank approximations
of parametric elliptic PDEs. Math. Comp. 86.304 (2017), pp. 701–724.

[21] M. Bachmayr, A. Nouy, and R. Schneider. Approximation by tree tensor
networks in high dimensions: Sobolev and compositional functions. arXiv e-prints
(2021), arXiv:2112.01474.

[22] M. Bachmayr, R. Schneider, and A. Uschmajew. Tensor networks and hier-
archical tensors for the solution of high-dimensional partial differential equations.
Found. Comput. Math. 16.6 (2016), pp. 1423–1472.

[23] A. Bakhta and V. Ehrlacher. Cross-diffusion systems with non-zero flux and
moving boundary conditions. ESAIM Math. Model. Numer. Anal. 52.4 (2018),
pp. 1385–1415.

[24] J. Ballani and L. Grasedyck. A projection method to solve linear systems in
tensor format. Numer. Linear Algebra Appl. 20.1 (2013), pp. 27–43.

[25] R. Ballester-Ripoll, E. G. Paredes, and R. Pajarola. Sobol tensor trains
for global sensitivity analysis. Reliab. Eng. Syst. Saf. 183 (2019), pp. 311–322.

[26] R. Bapat. D1AD2 theorems for multidimensional matrices. Linear Algebra Appl.
48 (1982), pp. 437–442.

[27] Z. Battles and L. N. Trefethen. An extension of MATLAB to continuous
functions and operators. SIAM J. Sci. Comput. 25.5 (2004), pp. 1743–1770.

[28] Y. Bazilevs et al. 3D simulation of wind turbine rotors at full scale. Part II:
Fluid–structure interaction modeling with composite blades. Int. J. Numer. Meth.
Fluids 65.1-3 (2010), pp. 236–253.

[29] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation
matrices. Computing 70.1 (2003), pp. 1–24.

146

Bibliography

[30] M. Bebendorf. Approximation of boundary element matrices. Numer. Math. 86.4
(2000), pp. 565–589.

[31] M. Bebendorf. Hierarchical Matrices. Vol. 63. Lect. Notes Comput. Sci. Eng.
Springer, 2008.

[32] F. Beier et al. Unbalanced multi-marginal optimal transport. J. Math. Imaging
Vis. (2021), pp. 1–20.

[33] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[34] J.-D. Benamou. Optimal transportation, modelling and numerical simulation.
Acta Numer. 30 (2021), pp. 249–325.

[35] J.-D. Benamou, G. Carlier, and L. Nenna. A numerical method to solve multi-
marginal optimal transport problems with Coulomb cost. In: Splitting Methods in
Communication, Imaging, Science, and Engineering. Springer, 2016, pp. 577–601.

[36] J.-D. Benamou, G. Carlier, and L. Nenna. Generalized incompressible flows,
multi-marginal transport and Sinkhorn algorithm. Numer. Math. 142.1 (2019),
pp. 33–54.

[37] J.-D. Benamou et al. Iterative Bregman projections for regularized transportation
problems. SIAM J. Sci. Comput. 37.2 (2015), A1111–A1138.

[38] J.-P. Berrut and L. N. Trefethen. Barycentric Lagrange interpolation. SIAM
Rev. 46.3 (2004), pp. 501–517.

[39] G. Beylkin and M. J. Mohlenkamp. Algorithms for numerical analysis in high
dimensions. SIAM J. Sci. Comput. 26.6 (2005), pp. 2133–2159.

[40] G. Beylkin and M. J. Mohlenkamp. Numerical operator calculus in higher
dimensions. Proc. Natl. Acad. Sci. USA 99.16 (2002), pp. 10246–10251.

[41] D. Bigoni, A. P. Engsig-Karup, and Y. M. Marzouk. Spectral tensor-train
decomposition. SIAM J. Sci. Comput. 38.4 (2016), A2405–A2439.

[42] O. Blondel and C. Toninelli. Kinetically constrained lattice gases: Tagged
particle diffusion. Ann. Inst. Henri Poincaré Probab. Stat. 54.4 (2018), pp. 2335–
2348.

[43] N. Boullé and A. Townsend. Computing with functions in the ball. SIAM J.
Sci. Comput. 42.4 (2020), pp. C169–C191.

[44] N. Boumal. An Introduction to Optimization on Smooth Manifolds. Cambridge
University Press, 2023.

[45] C. Boutsidis and D. P. Woodruff. Optimal CUR matrix decompositions. SIAM
J. Comput. 46.2 (2017), pp. 543–589.

[46] J. P. Boyd and R. Petschek. The relationships between Chebyshev, Legendre
and Jacobi polynomials: The generic superiority of Chebyshev polynomials and
three important exceptions. J. Sci. Comput. 59.1 (2014), pp. 1–27.

147

Bibliography

[47] D. Braess and W. Hackbusch. Approximation of 1/x by exponential sums in
[1,∞). IMA J. Numer. Anal. 25.4 (2005), pp. 685–697.

[48] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element
Methods. 3rd. Vol. 15. Texts Appl. Math. Springer, 2008.

[49] M. Bruna and S. J. Chapman. Diffusion of multiple species with excluded-volume
effects. J. Chem. Phys. 137.20 (2012), p. 204116.

[50] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numer. 13 (2004), pp. 147–
269.

[51] M. Burger et al. Nonlinear cross-diffusion with size exclusion. SIAM J. Math.
Anal. 42.6 (2010), pp. 2842–2871.

[52] H. Cai et al. Fast robust tensor principal component analysis via fiber CUR
decomposition. In: IEEE/CVF Int. Conf. Comput. Vis. Workshop. 2021, pp. 189–
197.

[53] H. Cai et al. Mode-wise tensor decompositions: Multi-dimensional generalizations
of CUR decompositions. J. Mach. Learn. Res. 22 (2021), Paper No. 185, 36.

[54] C. F. Caiafa and A. Cichocki. Generalizing the column-row matrix decomposition
to multi-way arrays. Linear Algebra Appl. 433.3 (2010), pp. 557–573.

[55] E. J. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix
completion. IEEE Trans. Inform. Theory 56.5 (2010), pp. 2053–2080.

[56] L. F. Canino et al. Numerical solution of the Helmholtz equation in 2D and
3D using a high-order Nyström discretization. J. Comput. Phys. 146.2 (1998),
pp. 627–663.

[57] J. Cao et al. Multi-marginal wasserstein GAN. In: Adv. Neural Inf. Process. Syst.
32. 2019, pp. 1776–1786.

[58] G. Carlier. On the linear convergence of the multimarginal Sinkhorn algorithm.
SIAM J. Optim. 32.2 (2022), pp. 786–794.

[59] G. Carlier, A. Oberman, and E. Oudet. Numerical methods for matching
for teams and Wasserstein barycenters. ESAIM Math. Model. Numer. Anal. 49.6
(2015), pp. 1621–1642.

[60] J. D. Carroll and J.-J. Chang. Analysis of individual differences in multidi-
mensional scaling via an N-way generalization of “Eckart-Young” decomposition.
Psychometrika 35.3 (1970), pp. 283–319.

[61] J. D. Carroll, S. Pruzansky, and J. B. Kruskal. CANDELINC: A general
approach to multidimensional analysis of many-way arrays with linear constraints
on parameters. Psychometrika 45.1 (1980), pp. 3–24.

[62] G. Ceruti, J. Kusch, and C. Lubich. A rank-adaptive robust integrator for
dynamical low-rank approximation. BIT 62.4 (2022), pp. 1149–1174.

148

Bibliography

[63] G. Ceruti and C. Lubich. An unconventional robust integrator for dynamical
low-rank approximation. BIT 62.1 (2022), pp. 23–44.

[64] G. Ceruti, C. Lubich, and D. Sulz. Rank-adaptive time integration of tree tensor
networks. arXiv e-prints (2022), arXiv:2201.10291.

[65] S. Chaturantabut and D. C. Sorensen. Discrete empirical interpolation for
nonlinear model reduction. In: 48h IEEE Conf. Decis. Control and 28th Chin.
Control Conf. CCC. 2009, pp. 4316–4321.

[66] S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via discrete
empirical interpolation. SIAM J. Sci. Comput. 32.5 (2010), pp. 2737–2764.

[67] P. L. Chebyshev. Théorie des Mécanismes Connus sous le Nom de Parallélo-
grammes. Imprimerie de l’Académie impériale des sciences, 1853.

[68] D. Chen et al. Limit theorems for the tagged particle in exclusion processes on
regular trees. Electron. Commun. Probab. 24 (2019), Paper No. 2, 10.

[69] M. Chen and D. Kressner. Recursive blocked algorithms for linear systems with
Kronecker product structure. Numer. Algorithms 84.3 (2020), pp. 1199–1216.

[70] Z. Chen and L. Lu. A projection method and Kronecker product preconditioner for
solving Sylvester tensor equations. Sci. China Math. 55.6 (2012), pp. 1281–1292.

[71] A. Chertkov, G. Ryzhakov, and I. Oseledets. Black box approximation in
the tensor train format initialized by ANOVA decomposition. arXiv e-prints (2022),
arXiv:2208.03380.

[72] A. Cichocki et al. Tensor decompositions for signal processing applications: From
two-way to multiway component analysis. IEEE Signal Process. Mag. 32.2 (2015),
pp. 145–163.

[73] A. Cichocki et al. Tensor networks for dimensionality reduction and large-scale
optimization: Part 1 low-rank tensor decompositions. Found. Trends Mach. Learn.
9.4–5 (2016), pp. 249–429.

[74] C. W. Clenshaw and A. R. Curtis. A method for numerical integration on an
automatic computer. Numer. Math. 2 (1960), pp. 197–205.

[75] A. Cohen, R. Devore, and C. Schwab. Analytic regularity and polynomial
approximation of parametric and stochastic elliptic PDEs. Anal. Appl. (Singap.)
9.1 (2011), pp. 11–47.

[76] P. G. Constantine. Active Subspaces. Vol. 2. SIAM Spotlights. SIAM, 2015.

[77] P. G. Constantine, C. Kent, and T. Bui-Thanh. Accelerating Markov chain
Monte Carlo with active subspaces. SIAM J. Sci. Comput. 38.5 (2016), A2779–
A2805.

[78] A. Cortinovis. Fast deterministic and randomized algorithms for low-rank ap-
proximation, matrix functions, and trace estimation. PhD thesis. EPFL, 2022.

149

Bibliography

[79] A. Cortinovis and D. Kressner. Low-rank approximation in the Frobenius
norm by column and row subset selection. SIAM J. Matrix Anal. Appl. 41.4 (2020),
pp. 1651–1673.

[80] A. Cortinovis, D. Kressner, and S. Massei. On maximum volume submatrices
and cross approximation for symmetric semidefinite and diagonally dominant
matrices. Linear Algebra Appl. 593 (2020), pp. 251–268.

[81] T. M. Cover and J. A. Thomas. Elements of Information Theory. 2nd. Wiley-
Interscience, 2006.

[82] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In:
Adv. Neural Inf. Process. Syst. 26. 2013, pp. 2292–2300.

[83] M. C. D’Autilia, I. Sgura, and V. Simoncini. Matrix-oriented discretization
methods for reaction-diffusion PDEs: Comparisons and applications. Comput.
Math. Appl. 79.7 (2020), pp. 2067–2085.

[84] J. Dabaghi, V. Ehrlacher, and C. Strössner. Computation of the self-diffusion
coefficient with low-rank tensor methods: Application to the simulation of a cross-
diffusion system. arXiv e-prints (2021), 2111.11349. To appear in ESAIM Proc.
Surveys.

[85] J. Dabaghi, V. Ehrlacher, and C. Strössner. Tensor approximation of the self-
diffusion matrix of tagged particle processes. arXiv e-prints (2022), arXiv:2204.03943.
To appear in J. Comput. Phys..

[86] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. 2nd. Comput.
Sci. Appl. Math. Academic Press, 1984.

[87] L. De Lathauwer. Decompositions of a higher-order tensor in block terms. II.
Definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30.3 (2008), pp. 1033–
1066.

[88] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular
value decomposition. SIAM J. Matrix Anal. Appl. 21.4 (2000), pp. 1253–1278.

[89] A. De Masi and E. Presutti. Mathematical Methods for Hydrodynamic Limits.
Vol. 1501. Lecture Notes in Math. Springer, 1991.

[90] A. Dektor, A. Rodgers, and D. Venturi. Rank-adaptive tensor methods for
high-dimensional nonlinear PDEs. J. Sci. Comput. 88:36.36 (2021).

[91] A. Dektor and D. Venturi. Dynamically orthogonal tensor methods for high-
dimensional nonlinear PDEs. J. Comput. Phys. 404 (2020), p. 103501.

[92] A. Dektor and D. Venturi. Tensor rank reduction via coordinate flows. arXiv
e-prints (2022), arXiv:2207.11955.

[93] A. Deshpande and L. Rademacher. Efficient volume sampling for row/column
subset selection. In: 51st Annu. IEEE Symp. Found. Comput. Sci. FOCS. 2010,
pp. 329–338.

150

Bibliography

[94] H. Dette and A. Pepelyshev. Generalized Latin hypercube design for computer
experiments. Technometrics 52.4 (2010), pp. 421–429.

[95] H. P. Deutsch and K. Binder. Interdiffusion and self-diffusion in polymer
mixtures: A Monte Carlo study. J. Chem. Phys. 94.3 (1991), pp. 2294–2304.

[96] S. Di Marino and A. Gerolin. An optimal transport approach for the Schrödinger
bridge problem and convergence of Sinkhorn algorithm. J. Sci. Comput. 85.2 (2020),
pp. 1–28.

[97] S. Di Marino, A. Gerolin, and L. Nenna. Optimal transportation theory with
repulsive costs. In: Topological Optimization and Optimal Transport. Vol. 17.
Radon Ser. Comput. Appl. Math. De Gruyter, 2017, pp. 204–256.

[98] J. Dieterich and B. Hartke. Empirical review of standard benchmark functions
using evolutionary global optimization. Applied Math. 3.10 (2012).

[99] S. Dolgov and B. Khoromskij. Two-level QTT-Tucker format for optimized
tensor calculus. SIAM J. Matrix Anal. Appl. 34.2 (2013), pp. 593–623.

[100] S. Dolgov, D. Kressner, and C. Strössner. Functional Tucker approximation
using Chebyshev interpolation. SIAM J. Sci. Comput. 43.3 (2021), A2190–A2210.

[101] S. Dolgov and R. Scheichl. A hybrid alternating least squares-TT-cross algo-
rithm for parametric PDEs. SIAM/ASA J. Uncertain. Quantif. 7.1 (2019), pp. 260–
291.

[102] T. A. Driscoll, F. Bornemann, and L. N. Trefethen. The chebop system for
automatic solution of differential equations. BIT 48.4 (2008), pp. 701–723.

[103] T. A. Driscoll and N. Hale. Rectangular spectral collocation. IMA J. Numer.
Anal. 36.1 (2016), pp. 108–132.

[104] T. A. Driscoll, N. Hale, and L. N. Trefethen. Chebfun Guide. Pafnuty
Publications, 2014.

[105] Z. Drmač and A. K. Saibaba. The discrete empirical interpolation method:
canonical structure and formulation in weighted inner product spaces. SIAM J.
Matrix Anal. Appl. 39.3 (2018), pp. 1152–1180.

[106] P. Dvurechensky, A. Gasnikov, and A. Kroshnin. Computational optimal
transport: Complexity by accelerated gradient descent is better than by Sinkhorn’s
algorithm. In: 35th Int. Conf. Mach. Learn. 2018, pp. 1367–1376.

[107] D. Ebling et al. Multiphysics simulation of thermoelectric systems for comparison
with experimental device performance. J. Electron. Mater. 38.7 (2009), pp. 1456–
1461.

[108] M. Eigel, R. Gruhlke, and M. Marschall. Low-rank tensor reconstruction of
concentrated densities with application to Bayesian inversion. Stat. Comput. 32.2
(2022), Paper No. 27, 27.

151

Bibliography

[109] L. Einkemmer and C. Lubich. A low-rank projector-splitting integrator for the
Vlasov-Poisson equation. SIAM J. Sci. Comput. 40.5 (2018), B1330–B1360.

[110] F. Elvander et al. Multi-marginal optimal transport using partial information with
applications in robust localization and sensor fusion. Signal Process. 171 (2020),
p. 107474.

[111] C. Erignoux. Limite hydrodynamique pour un gaz sur réseau de particules actives.
PhD thesis. Université Paris Diderot, 2016.

[112] M. Espig et al. Efficient low-rank approximation of the stochastic Galerkin matrix
in tensor formats. Comput. Math. Appl. 67.4 (2014), pp. 818–829.

[113] R. Eymard, T. Gallouët, and R. Herbin. A finite volume scheme for anisotropic
diffusion problems. C. R. Math. Acad. Sci. Paris 339.4 (2004), pp. 299–302.

[114] R. Eymard, T. Gallouët, and R. Herbin. A new finite volume scheme for
anisotropic diffusion problems on general grids: Convergence analysis. C. R. Math.
Acad. Sci. Paris 344.6 (2007), pp. 403–406.

[115] R. Eymard, T. Gallouët, and R. Herbin. Convergence of finite volume schemes
for semilinear convection diffusion equations. Numer. Math. 82.1 (1999), pp. 91–
116.

[116] R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. In: Handbook
of Numerical Analysis, VII. North-Holland, 2000, pp. 713–1020.

[117] A. Falcó, W. Hackbusch, and A. Nouy. Tree-based tensor formats. SeMA
Journal (2018).

[118] J. Fan et al. On the complexity of the optimal transport problem with graph-
structured cost. In: 25th Int. Conf. Artif. Intell. Stat. 2022, pp. 9147–9165.

[119] G. Favier and A. L. de Almeida. Overview of constrained PARAFAC models.
EURASIP J. Adv. Signal Process. 142 (2014), pp. 1–25.

[120] R. Ferrando and E. Scalas. Self-diffusion in a 2D lattice gas with lateral
interactions. Surf. Sci. 281.1-2 (1993), pp. 178–190.

[121] J. Feydy et al. Optimal transport for diffeomorphic registration. In: MICCAI.
2017, pp. 291–299.

[122] B. Fornberg. A Practical Guide to Pseudospectral Methods. Vol. 1. Cambridge
Monogr. Appl. Comput. Math. Cambridge University Press, 1996.

[123] A. I. J. Forrester, A. Sóbester, and A. J. Keane. Engineering Design via
Surrogate Modelling: A Practical Guide. John Wiley & Sons, 2008.

[124] D. Fortunato, N. Hale, and A. Townsend. The ultraspherical spectral element
method. J. Comput. Phys. 436 (2021), p. 110087.

[125] D. Fortunato and A. Townsend. Fast Poisson solvers for spectral methods.
IMA J. Numer. Anal. 40.3 (2020), pp. 1994–2018.

152

Bibliography

[126] J. Franklin and J. Lorenz. On the scaling of multidimensional matrices. Linear
Algebra Appl. 114/115 (1989), pp. 717–735.

[127] S. Friedland. Tensor optimal transport, distance between sets of measures and
tensor scaling. arXiv e-prints (2020), arXiv:2005.00945.

[128] J. H. Friedman. Multivariate adaptive regression splines. Ann. Statist. 19.1 (1991),
pp. 1–141.

[129] G. Friesecke and M. Penka. The GenCol algorithm for high-dimensional optimal
transport: General formulation and application to barycenters and Wasserstein
splines. arXiv e-prints (2022), arXiv:2209.09081.

[130] G. Friesecke, A. S. Schulz, and D. Vögler. Genetic column generation: Fast
computation of high-dimensional multimarginal optimal transport problems. SIAM
J. Sci. Comput. 44.3 (2022), A1632–A1654.

[131] X. Fu et al. Computing large-scale matrix and tensor decomposition with structured
factors: A unified nonconvex optimization perspective. IEEE Signal Process. Mag.
37.5 (2020), pp. 78–94.

[132] N. Gantert and D. Schmid. The speed of the tagged particle in the exclusion
process on Galton-Watson trees. Electron. J. Probab. 25 (2020), Paper No. 71, 27.

[133] S. Garreis and M. Ulbrich. Constrained optimization with low-rank tensors
and applications to parametric problems with PDEs. SIAM J. Sci. Comput. 39.1
(2017), A25–A54.

[134] A. Genevay, G. Peyre, and M. Cuturi. Learning generative models with
Sinkhorn divergences. In: Int. Conf. Artif. Intell. Stat. 2018, pp. 1608–1617.

[135] W. M. Gentleman. Algorithm 424: Clenshaw-Curtis quadrature [D1]. Commun.
ACM 15.5 (1972), pp. 353–355.

[136] A. Genz. A package for testing multiple integration subroutines. In: Numerical
Integration. NATO ASI Series. Springer, 1987, pp. 337–340.

[137] G. H. Golub and C. F. Van Loan. Matrix Computations. 4th. Johns Hopkins
Stud. Math. Sci. Johns Hopkins University Press, 2013.

[138] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of
pseudoskeleton approximations. Linear Algebra Appl. 261 (1997), pp. 1–21.

[139] A. Gorodetsky. Continuous low-rank tensor decompositions, with applications
to stochastic optimal control and data assimilation. PhD thesis. MIT, 2017.

[140] A. A. Gorodetsky and J. D. Jakeman. Gradient-based optimization for regres-
sion in the functional tensor-train format. J. Comput. Phys. 374 (2018), pp. 1219–
1238.

[141] A. Gorodetsky, S. Karaman, and Y. Marzouk. A continuous analogue of
the tensor-train decomposition. Comput. Methods Appl. Mech. Eng. 347 (2019),
pp. 59–84.

153

Bibliography

[142] A. Gorodetsky, S. Karaman, and Y. Marzouk. High-dimensional stochastic
optimal control using continuous tensor decompositions. Int. J. Robot. Res. 37.2-3
(2018), pp. 340–377.

[143] D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods: Theory
and Applications. SIAM, 1977.

[144] R. B. Gramacy and H. K. H. Lee. Adaptive design and analysis of supercomputer
experiments. Technometrics 51.2 (2009), pp. 130–145.

[145] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank
tensor approximation techniques. GAMM-Mitt. 36.1 (2013), pp. 53–78.

[146] M. Griebel and H. Harbrecht. Analysis of tensor approximation schemes for
continuous functions. Found. Comput. Math. (2021), pp. 1–22.

[147] M. Griebel and H. Harbrecht. Approximation of bi-variate functions: Singular
value decomposition versus sparse grids. IMA J. Numer. Anal. 34.1 (2014), pp. 28–
54.

[148] M. Griebel, H. Harbrecht, and R. Schneider. Low-rank approximation of
continuous functions in Sobolev spaces with dominating mixed smoothness. arXiv
e-prints (2022), arXiv:2203.04100.

[149] M. Gu and S. C. Eisenstat. Efficient algorithms for computing a strong rank-
revealing QR factorization. SIAM J. Sci. Comput. 17.4 (1996), pp. 848–869.

[150] I. Haasler et al. Multi-marginal optimal transport and probabilistic graphical
models. IEEE Trans. Inf. Theory 67.7 (2021), pp. 4647–4668.

[151] I. Haasler et al. Multimarginal optimal transport with a tree-structured cost and
the Schrödinger bridge problem. SIAM J. Control Optim. 59.4 (2021), pp. 2428–
2453.

[152] W. Hackbusch and S. Kühn. A new scheme for the tensor representation. J.
Fourier Anal. Appl. 15.5 (2009), pp. 706–722.

[153] W. Hackbusch. Computation of best L∞ exponential sums for 1/x by Remez’
algorithm. Comput. Vis. Sci. 20.1-2 (2019), pp. 1–11.

[154] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Vol. 42. Springer
Ser. Comput. Math. Springer, 2012.

[155] W. Hackbusch, L. Grasedyck, and S. Börm. An introduction to hierarchical
matrices. In: EQUADIFF 10. Vol. 127. 2. 2002, pp. 229–241.

[156] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Rev. 53.2 (2011), pp. 217–288.

[157] K. Hamm. Generalized pseudoskeleton decompositions. arXiv e-prints (2022),
arXiv:2206.14905.

154

Bibliography

[158] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Monogr.
Statist. Appl. Probab. Springer, 1964.

[159] S. Hao and D. S. Sholl. Self-diffusion and macroscopic diffusion of hydrogen in
amorphous metals from first-principles calculations. J. Chem. Phys. 130.24 (2009),
p. 244705.

[160] S. Hao and P.-G. Martinsson. A direct solver for elliptic PDEs in three di-
mensions based on hierarchical merging of Poincaré-Steklov operators. J. Comput.
Appl. Math. 308 (2016), pp. 419–434.

[161] R. A. Harshman. Foundations of the PARAFAC Procedure: Models and Conditions
for an Explanatory Multimodal factor Analysis. Working Papers in Phonetics 16.
University of California at Los Angeles, 1970.

[162] B. Hashemi and Y. Nakatsukasa. Least-squares spectral methods for ODE
eigenvalue problems. SIAM J. Sci. Comput. 44.5 (2022), A3244–A3264.

[163] B. Hashemi and L. N. Trefethen. Chebfun in three dimensions. SIAM J. Sci.
Comput. 39.5 (2017), pp. C341–C363.

[164] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral Methods for Time-
Dependent Problems. Vol. 21. Cambridge Monogr. Appl. Comput. Math. Cambridge
University Press, 2007.

[165] N. J. Higham. The numerical stability of barycentric Lagrange interpolation. IMA
J. Numer. Anal. 24.4 (2004), pp. 547–556.

[166] T. Hillen and K. J. Painter. A user’s guide to PDE models for chemotaxis. J.
Math. Biol. 58.1-2 (2009), pp. 183–217.

[167] G. E. Hinton and R. Zemel. Autoencoders, minimum description length and
Helmholtz free energy. In: Adv. Neural Inf. Process. Syst. 6. Vol. 6. Morgan-
Kaufmann, 1993.

[168] F. L. Hitchcock. Multiple invariants and generalized rank of a p-way matrix or
tensor. J. Math. Phys. 7.1-4 (1928), pp. 39–79.

[169] S.-W. Ho and R. W. Yeung. The interplay between entropy and variational
distance. IEEE Trans. Inform. Theory 56.12 (2010), pp. 5906–5929.

[170] S. Holtz, T. Rohwedder, and R. Schneider. On manifolds of tensors of fixed
TT-rank. Numer. Math. 120.4 (2012), pp. 701–731.

[171] S. Holtz, T. Rohwedder, and R. Schneider. The alternating linear scheme for
tensor optimization in the tensor train format. SIAM J. Sci. Comput. 34.2 (2012),
A683–A713.

[172] D. Hong, T. G. Kolda, and J. A. Duersch. Generalized canonical polyadic
tensor decomposition. SIAM Rev. 62.1 (2020), pp. 133–163.

[173] C. Huang and A. Darwiche. Inference in belief networks: A procedural guide.
Internat. J. Approx. Reason. 15.3 (1996), pp. 225–263.

155

Bibliography

[174] C. Huang et al. Efficient parallelization of tensor network contraction for simu-
lating quantum computation. Nat. Comput. Sci. 1.9 (2021), pp. 578–587.

[175] H. Igel. Wave propagation in three-dimensional spherical sections by the Chebyshev
spectral method. Geophys. J. Int. 136.3 (1999), pp. 559–566.

[176] T. L. Jackson and H. M. Byrne. A mechanical model of tumor encapsulation
and transcapsular spread. Math. Biosci. 180 (2002), pp. 307–328.

[177] M. Jamil and X.-S. Yang. A literature survey of benchmark functions for global
optimisation problems. Int. J. Math. Model. Numer. Optim. 4.2 (2013), pp. 150–
194.

[178] M. Jara. Finite-dimensional approximation for the diffusion coefficient in the
simple exclusion process. Ann. Probab. 34.6 (2006), pp. 2365–2381.

[179] Y. Ji et al. A survey on tensor techniques and applications in machine learning.
IEEE Access 7 (2019), pp. 162950–162990.

[180] T.-X. Jiang et al. Nonnegative low rank tensor approximation and its application
to multi-dimensional images. Numer. Math. (2022), pp. 1–30.

[181] Y. W. Jonathan S Yedidia William Freeman. Generalized belief propagation.
In: Adv. Neural Inf. Process. Syst. 13. 2000, pp. 689–695.

[182] A. Jüngel. Entropy Methods for Diffusive Partial Differential Equations. Springer
Briefs Math. Springer, 2016.

[183] A. Jüngel. The boundedness-by-entropy method for cross-diffusion systems. Non-
linearity 28.6 (2015), pp. 1963–2001.

[184] G. E. Karniadakis and S. J. Sherwin. Spectral/hp Element Methods for Com-
putational Fluid Dynamics. 2nd. Numer. Math. Sci. Comput. Oxford University
Press, 2005.

[185] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Vol. 16.
Front. Appl. Math. SIAM, 1995.

[186] B. N. Khoromskij. Structured rank-(R1, . . . , RD) decomposition of function-
related tensors in RD. Comput. Methods Appl. Math. 6.2 (2006), pp. 194–220.

[187] B. N. Khoromskij. O(d logN)-quantics approximation of N -d tensors in high-
dimensional numerical modeling. Constr. Approx. 34.2 (2011), pp. 257–280.

[188] B. N. Khoromskij. Tensor numerical methods for multidimensional PDEs: Theo-
retical analysis and initial applications. ESAIM Proc. Surveys 48 (2015), pp. 1–
28.

[189] B. N. Khoromskij. Tensor Numerical Methods in Scientific Computing. Vol. 19.
Radon Ser. Comput. Appl. Math. De Gruyter, 2018.

[190] H. A. L. Kiers. Towards a standardized notation and terminology in multiway
analysis. J. Chemom. 14.3 (2000), pp. 105–122.

156

Bibliography

[191] Y. Kim and S. Choi. Nonnegative Tucker decomposition. In: IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit. 2007, pp. 1–8.

[192] C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals
of reversible Markov processes and applications to simple exclusions. Comm. Math.
Phys. 104.1 (1986), pp. 1–19.

[193] C. Kipnis, C. Landim, and S. Olla. Hydrodynamical limit for a nongradient
system: The generalized symmetric exclusion process. Commun. Pure Appl. Math.
47.11 (1994), pp. 1475–1545.

[194] N. Kishore Kumar and J. Schneider. Literature survey on low rank approxi-
mation of matrices. Linear Multilinear Algebra 65.11 (2017), pp. 2212–2244.

[195] A. Klimke. Sparse grid interpolation toolbox v5.1.1. 2008.

[196] O. Koch and C. Lubich. Dynamical tensor approximation. SIAM J. Matrix Anal.
Appl. 31.5 (2010), pp. 2360–2375.

[197] W. Koepf. Hypergeometric Summation. Adv. Lect. Math. Friedr. Vieweg & Sohn,
1998.

[198] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM
Rev. 51.3 (2009), pp. 455–500.

[199] S. Kolouri et al. Optimal mass transport: Signal processing and machine-learning
applications. IEEE Signal Process. Mag. 34.4 (2017), pp. 43–59.

[200] T. Komorowski, C. Landim, and S. Olla. Fluctuations in Markov Processes.
Vol. 345. Grundlehren Math. Wiss. Springer, 2012.

[201] K. Konakli and B. Sudret. Global sensitivity analysis using low-rank tensor
approximations. Reliab. Eng. Syst. Saf. 156 (2016), pp. 64–83.

[202] K. Konakli and B. Sudret. Polynomial meta-models with canonical low-rank
approximations: Numerical insights and comparison to sparse polynomial chaos
expansions. J. Comput. Phys. 321 (2016), pp. 1144–1169.

[203] K. Konakli and B. Sudret. Uncertainty quantification in high-dimensional
spaces with low-rank tensor approximations. In: 1st Int. Conf. Uncertain. Quantif.
Comput. Sci. Eng. 2015.

[204] D. Kressner and L. Periša. Recompression of Hadamard products of tensors in
Tucker format. SIAM J. Sci. Comput. 39.5 (2017), A1879–A1902.

[205] D. Kressner, M. Steinlechner, and B. Vandereycken. Low-rank tensor
completion by Riemannian optimization. BIT 54.2 (2014), pp. 447–468.

[206] D. Kressner and C. Tobler. Krylov subspace methods for linear systems with
tensor product structure. SIAM J. Matrix Anal. Appl. 31.4 (2009), pp. 1688–1714.

[207] D. Kressner and C. Tobler. Low-rank tensor Krylov subspace methods for
parametrized linear systems. SIAM J. Matrix Anal. Appl. 32.4 (2011), pp. 1288–
1316.

157

Bibliography

[208] D. Kressner and C. Tobler. Preconditioned low-rank methods for high-dimen-
sional elliptic PDE eigenvalue problems. Comput. Methods Appl. Math. 11.3
(2011), pp. 363–381.

[209] L. Kronecker. Über einige Interpolationsformeln für ganze Funktionen mehrerer
Variablen. In: Monatsberichte der Königlichen Preuß. Akademie der Wissenschaften
zu Berlin aus dem Jahre 1865. Buchdruckerei der Königl. Akademie der Wis-
senschaften, 1866, pp. 686–691.

[210] C. Landim, S. Olla, and S. R. S. Varadhan. Finite-dimensional approximation
of the self-diffusion coefficient for the exclusion process. Ann. Probab. 30.2 (2002),
pp. 483–508.

[211] C. Léonard. From the Schrödinger problem to the Monge-Kantorovich problem. J.
Funct. Anal. 262.4 (2012), pp. 1879–1920.

[212] K.-C. Li. Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc.
86.414 (1991), pp. 316–342.

[213] S. Li et al. Low-rank tensor decomposition based anomaly detection for hyperspectral
imagery. In: IEEE Int. Conf. Image Process. (ICIP). 2015, pp. 4525–4529.

[214] T. M. Liggett. Interacting Particle Systems. Vol. 276. Grundlehren Math. Wiss.
Springer, 1985.

[215] T. M. Liggett. Stochastic Interacting Systems: Contact, Voter and Exclusion
Processes. Vol. 324. Grundlehren Math. Wiss. Springer, 1999.

[216] T. Lin, N. Ho, and M. I. Jordan. On efficient optimal transport: An analysis of
greedy and accelerated mirror descent algorithms. In: 36th Int. Conf. Mach. Learn.
2019, pp. 3982–3991.

[217] T. Lin et al. On the complexity of approximating multimarginal optimal transport.
J. Mach. Learn. Res. 23.65 (2022), pp. 1–43.

[218] T.-Y. Lin et al. Microsoft COCO: Common objects in context. In: ECCV. 2014,
pp. 740–755.

[219] G. Liu et al. Module-based multiscale simulation of angiogenesis in skeletal muscle.
Theor. Biol. Med. Model. 8.6 (2011), pp. 1–21.

[220] G. J. Lord, C. E. Powell, and T. Shardlow. An Introduction to Computational
Stochastic PDEs. Cambridge Texts Appl. Math. Cambridge University Press, 2014.

[221] T. H. Luu et al. A new method for reconstruction of cross-sections using Tucker
decomposition. J. Comput. Phys. 345 (2017), pp. 189–206.

[222] P.-G. Martinsson and J. A. Tropp. Randomized numerical linear algebra:
Foundations and algorithms. Acta Numer. 29 (2020), pp. 403–572.

[223] J. C. Mason. Near-best multivariate approximation by Fourier series, Chebyshev
series and Chebyshev interpolation. J. Approx. Theory 28.4 (1980), pp. 349–358.

158

Bibliography

[224] J. C. Mason and D. C. Handscomb. Chebyshev Polynomials. Chapman and
Hall/CRC, 2002.

[225] D. M. Mattox. Handbook of Physical Vapor Deposition (PVD) Processing. 2nd.
William Andrew Publishing, 2010.

[226] D. McBride et al. Computational modelling of variably saturated flow in porous
media with complex three-dimensional geometries. Internat. J. Numer. Methods
Fluids 50.9 (2006), pp. 1085–1117.

[227] N. Metropolis and S. Ulam. The Monte Carlo method. J. Amer. Statist. Assoc.
44 (1949), pp. 335–341.

[228] R. Minster, Z. Li, and G. Ballard. Parallel randomized Tucker decomposition
algorithms. arXiv e-prints (2022), arXiv:2211.13028.

[229] R. Minster, A. K. Saibaba, and M. E. Kilmer. Efficient tensor-based approxi-
mations to kernel interactions. SIAM-ALA presentation. 2021.

[230] R. Minster, A. K. Saibaba, and M. E. Kilmer. Randomized algorithms for
low-rank tensor decompositions in the Tucker format. SIAM J. Math. Data Sci.
2.1 (2020), pp. 189–215.

[231] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart. J.
Math. Oxford Ser. (2) 11 (1960), pp. 50–59.

[232] M. Moakher and P. G. Batchelor. Symmetric positive-definite matrices: From
geometry to applications and visualization. In: Visualization and Processing of
Tensor Fields. Math. Vis. Springer, 2006, pp. 285–298, 452.

[233] H. Moon, A. M. Dean, and T. J. Santner. Two-stage sensitivity-based group
screening in computer experiments. Technometrics 54.4 (2012), pp. 376–387.

[234] M. Motamed. A hierarchically low-rank optimal transport dissimilarity measure
for structured data. BIT (2022).

[235] M. Mozaffari et al. Optimal transport theory for power-efficient deployment of
unmanned aerial vehicles. In: IEEE Int. Conf. Commun. 2016, pp. 1–6.

[236] E. A. Muravleva and I. V. Oseledets. Approximate solution of linear sys-
tems with Laplace-like operators via cross approximation in the frequency domain.
Comput. Methods Appl. Math. 19.1 (2019), pp. 137–145.

[237] S. Narumi. Some formulas in the theory of interpolation of many independent
variables. Tohoku Math. J. (1) 18 (1920), pp. 309–321.

[238] L. Nenna. Numerical methods for multi-marginal optimal transportation. PhD
thesis. PSL Research University, 2016.

[239] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods.
Vol. 63. CBMS-NSF Regional Conf. Ser. in Appl. Math. SIAM, 1992.

[240] NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.

159

Bibliography

[241] A. Nouy. Higher-order principal component analysis for the approximation of
tensors in tree-based low-rank formats. Numer. Math. 141.3 (2019), pp. 743–789.

[242] A. Nouy. Low-rank methods for high-dimensional approximation and model order
reduction. In: Model Reduction and Approximation. Vol. 15. Comput. Sci. Eng.
SIAM, 2017, pp. 171–226.

[243] A. Nouy. Low-rank tensor methods for model order reduction. In: Handbook of
Uncertainty Quantification. Springer, 2017, pp. 857–882.

[244] S. Olver, R. M. Slevinsky, and A. Townsend. Fast algorithms using orthogonal
polynomials. Acta Numer. 29 (2020), pp. 573–699.

[245] S. Olver, A. Townsend, and G. Vasil. A sparse spectral method on triangles.
SIAM J. Sci. Comput. 41.6 (2019), A3728–A3756.

[246] S. Olver and A. Townsend. A fast and well-conditioned spectral method. SIAM
Rev. 55.3 (2013), pp. 462–489.

[247] R. Orús. A practical introduction to tensor networks: Matrix product states and
projected entangled pair states. Ann. Physics 349 (2014), pp. 117–158.

[248] I. V. Oseledets. Approximation of matrices with logarithmic number of parame-
ters. Doklady Math. 428.1 (2009), pp. 23–24.

[249] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput. 33.5 (2011),
pp. 2295–2317.

[250] I. V. Oseledets, M. V. Rakhuba, and A. Uschmajew. Alternating least squares
as moving subspace correction. SIAM J. Numer. Anal. 56.6 (2018), pp. 3459–3479.

[251] I. Oseledets and E. Tyrtyshnikov. TT-cross approximation for multidimen-
sional arrays. Linear Algebra Appl. 432.1 (2010), pp. 70–88.

[252] P. Paatero. Construction and analysis of degenerate PARAFAC models. J.
Chemom. 14.3 (2000), pp. 285–299.

[253] B. Pass. Multi-marginal optimal transport: Theory and applications. ESAIM:
M2AN 49.6 (2015), pp. 1771–1790.

[254] R. Peng, J. Gray, and G. Kin-Lic Chan. Arithmetic circuit tensor networks,
multivariable function representation, and high-dimensional integration. arXiv
e-prints (2022), arXiv:2209.07410.

[255] R. Penrose. Applications of negative dimensional tensors. In: Combin. Math.
Appl. Academic Press, London, 1971, pp. 221–244.

[256] D. Perez-Garcia et al. Matrix product state representations. Quantum Info.
Comput. 7.5 (2007), pp. 401–430.

[257] T. von Petersdorff and C. Schwab. Numerical solution of parabolic equations
in high dimensions. M2AN Math. Model. Numer. Anal. 38.1 (2004), pp. 93–127.

[258] G. Peyré and M. Cuturi. Computational optimal transport: With applications
to data science. Found. Trends Mach. Learn. 11.5-6 (2019), pp. 355–607.

160

Bibliography

[259] H. P. Pfeiffer et al. A multidomain spectral method for solving elliptic equations.
Comput. Phys. Comm. 152.3 (2003), pp. 253–273.

[260] R. B. Platte and L. N. Trefethen. Chebfun: A new kind of numerical computing.
In: Progress in Industrial Mathematics at ECMI 2008. Vol. 15. Math. Ind. Springer,
2010, pp. 69–87.

[261] R.-E. Plessix. A Helmholtz iterative solver for 3D seismic-imaging problems.
Geophysics 72.5 (2007), SM185–SM194.

[262] T. Poggio et al. Why and when can deep-but not shallow-networks avoid the curse
of dimensionality: A review. Int. J. Autom. Comput. 14.5 (2017).

[263] A. Popov and N. Y. Zhu. Modeling radio wave propagation in tunnels with a
vectorial parabolic equation. IEEE Trans. Antennas Propag. 48.9 (2000), pp. 1403–
1412.

[264] M. Psenka and N. Boumal. Second-order optimization for tensors with fixed
tensor-train rank. arXiv e-prints (2020), arXiv:2011.13395.

[265] A. Qing. Dynamic differential evolution strategy and applications in electromag-
netic inverse scattering problems. IEEE Trans. Geosci. Remote Sens. 44.1 (2006),
pp. 116–125.

[266] J. Quastel. Diffusion of color in the simple exclusion process. Comm. Pure Appl.
Math. 45.6 (1992), pp. 623–679.

[267] J. Rabin, S. Ferradans, and N. Papadakis. Adaptive color transfer with relaxed
optimal transport. In: IEEE Int. Conf. Imag. Process. 2014, pp. 4852–4856.

[268] S. Rahnamayan, H. Tizhoosh, and M. Salama. Opposition-based differential
evolution (ODE) with variable jumping rate. In: IEEE Symp. Found. Comput.
Intell. 2007, pp. 81–88.

[269] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama. A novel population
initialization method for accelerating evolutionary algorithms. Comput. Math. Appl.
53.10 (2007), pp. 1605–1614.

[270] P. Rai et al. Randomized functional sparse Tucker tensor for compression and
fast visualization of scientific data. arXiv e-prints (2019), arXiv:1907.05884.

[271] M. V. Rakhuba and I. V. Oseledets. Fast multidimensional convolution in
low-rank tensor formats via cross approximation. SIAM J. Sci. Comput. 37.2 (2015),
A565–A582.

[272] S.-J. Ran et al. Tensor Network Contractions: Methods and Applications to
Quantum Many-Body Systems. Vol. 964. Lecture Notes in Phys. Springer, 2020.

[273] E. Robeva and A. Seigal. Duality of graphical models and tensor networks. Inf.
Inference 8.2 (2019), pp. 273–288.

161

Bibliography

[274] T. Rohwedder and A. Uschmajew. On local convergence of alternating schemes
for optimization of convex problems in the tensor train format. SIAM J. Numer.
Anal. 51.2 (2013), pp. 1134–1162.

[275] S. F. Roohi et al. Multi-dimensional low rank plus sparse decomposition for recon-
struction of under-sampled dynamic MRI. Pattern Recognit. 63 (2017), pp. 667–
679.

[276] E. Saada. A limit theorem for the position of a tagged particle in a simple exclusion
process. Ann. Probab. 15.1 (1987), pp. 375–381.

[277] A. K. Saibaba. HOID: Higher order interpolatory decomposition for tensors based
on Tucker representation. SIAM J. Matrix Anal. Appl. 37.3 (2016), pp. 1223–1249.

[278] A. K. Saibaba, R. Minster, and M. E. Kilmer. Efficient randomized tensor-
based algorithms for function approximation and low-rank kernel interactions. Adv.
Comput. Math. 48 (2022).

[279] E. Sanz and D. Marenduzzo. Dynamic Monte Carlo versus Brownian dynamics:
A comparison for self-diffusion and crystallization in colloidal fluids. J. Chem.
Phys. 132.19 (2010), p. 194102.

[280] S. A. Sauter and C. Schwab. Boundary Element Methods. Vol. 39. Springer Ser.
Comput. Math. Springer, 2011.

[281] D. Savostyanov and I. Oseledets. Fast adaptive interpolation of multi-dimen-
sional arrays in tensor train format. In: 7th Int. Workshop Multidimens. (nD)
Syst. 2011, pp. 1–8.

[282] D. V. Savostyanov. Quasioptimality of maximum-volume cross interpolation of
tensors. Linear Algebra Appl. 458 (2014), pp. 217–244.

[283] M. Scetbon and M. Cuturi. Low-rank optimal transport: Approximation, statis-
tics and debiasing. arXiv e-prints (2022), arXiv:2205.12365.

[284] M. Scetbon, M. Cuturi, and G. Peyré. Low-rank Sinkhorn factorization. In:
Proc. 38th Int. Conf. Mach. Learn. 2021, pp. 9344–9354.

[285] E. Schmidt. Zur Theorie der linearen und nicht linearen Integralgleichungen
Zweite Abhandlung. Math. Ann. 64.2 (1907), pp. 161–174.

[286] R. Schneider and A. Uschmajew. Approximation rates for the hierarchical
tensor format in periodic Sobolev spaces. J. Complexity 30.2 (2014), pp. 56–71.

[287] N. Schwenck et al. Dimensionally reduced flow models in fractured porous media:
Crossings and boundaries. Comput. Geosci. 19.6 (2015), pp. 1219–1230.

[288] A. Shapira. Hydrodynamic limit of the Kob-Andersen model. arXiv e-prints (2020),
arXiv:2003.08495.

[289] T. Shi and A. Townsend. On the compressibility of tensors. SIAM J. Matrix
Anal. Appl. 42.1 (2021), pp. 275–298.

162

Bibliography

[290] N. Shigesada, K. Kawasaki, and E. Teramoto. Spatial segregation of interact-
ing species. J. Theoret. Biol. 79.1 (1979), pp. 83–99.

[291] N. D. Sidiropoulos et al. Tensor decomposition for signal processing and machine
learning. IEEE Trans. Signal Process. 65.13 (2017), pp. 3551–3582.

[292] V. de Silva and L.-H. Lim. Tensor rank and the ill-posedness of the best low-rank
approximation problem. SIAM J. Matrix Anal. Appl. 30.3 (2008), pp. 1084–1127.

[293] N. Singh et al. Comparison of accuracy and scalability of Gauss-Newton and
alternating least squares for CANDECOMC/PARAFAC decomposition. SIAM J.
Sci. Comput. 43.4 (2021), pp. C290–C311.

[294] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochas-
tic matrices. Ann. Math. Statist. 35 (1964), pp. 876–879.

[295] S. A. Smolyak. Quadrature and interpolation formulas for tensor products of
certain classes of functions. Dokl. Akad. Nauk SSSR 148.5 (1963), pp. 1042–1045.

[296] I. M. Sobol’. Global sensitivity indices for nonlinear mathematical models and
their Monte Carlo estimates. Math. Comput. Simulation 55.1-3 (2001), pp. 271–
280.

[297] I. M. Sobol’. Sensitivity estimates for nonlinear mathematical models. Math.
Modeling Comput. Experiment 1.4 (1993), 407–414 (1995).

[298] M. B. Soley et al. Functional tensor-train Chebyshev method for multidimensional
quantum dynamics simulations. J. Chem. Theory Comput. 18 (2022), pp. 25–36.

[299] Z. Song, D. P. Woodruff, and P. Zhong. Low rank approximation with entrywise
`1-norm error. In: 49th Annu. ACM Symp. Theory Comput. ACM, New York,
2017, pp. 688–701.

[300] D. C. Sorensen and M. Embree. A DEIM induced CUR factorization. SIAM J.
Sci. Comput. 38.3 (2016), A1454–A1482.

[301] H. Spohn. Large Scale Dynamics of Interacting Particles. Texts Monogr. Phys.
Springer, 1991.

[302] M. Stoll. A literature survey of matrix methods for data science. GAMM-Mitt.
43.3 (2020), e202000013, 26.

[303] J. C. Strikwerda. Finite Difference Schemes and Partial Differential Equations.
2nd. SIAM, 2004.

[304] C. Strössner and D. Kressner. Fast global spectral methods for three-dimensional
partial differential equations. IMA J. Numer. Anal. (2022), pp. 1–24.

[305] C. Strössner and D. Kressner. Low-rank tensor approximations for solving
multimarginal optimal transport problems. SIAM J. Imaging Sci. 16.1 (2023),
pp. 169–191.

[306] C. Strössner, B. Sun, and D. Kressner. Approximation in the extended func-
tional tensor train format. arXiv e-prints (2022), arXiv:2211.11338.

163

Bibliography

[307] A. M. Stuart. Inverse problems: A Bayesian perspective. Acta Numer. 19 (2010),
pp. 451–559.

[308] B. Sudret, S. Marelli, and J. Wiart. Surrogate models for uncertainty quan-
tification: An overview. In: 17th Eur. Conf. Antennas Propag. 2017, pp. 793–
797.

[309] A. Sultonov, S. Matveev, and S. Budzinskiy. Low-rank nonnegative tensor
approximation via alternating projections and sketching. arXiv e-prints (2022),
arXiv:2209.02060.

[310] S. Surjanovic and D. Bingham. Virtual library of simulation experiments: Test
functions and datasets. Retrieved November 14, 2022, from https://www.sfu.ca/
~ssurjano/. 2013.

[311] K. R. Swanson et al. Virtual and real brain tumors: Using mathematical modeling
to quantify glioma growth and invasion. J. Neurol. Scie. 216.1 (2003), pp. 1–10.

[312] S. Szalay et al. Tensor product methods and entanglement optimization for ab
initio quantum chemistry. Int. J. Quantum Chem. 115.19 (2015), pp. 1342–1391.

[313] P. R. Taylor. Stochastic lattice-based models of diffusion in biological systems.
PhD thesis. University of Oxford, 2016.

[314] A. Thibault et al. Overrelaxed Sinkhorn-Knopp algorithm for regularized optimal
transport. Algorithms 14.5 (2021).

[315] A. L. Thorneywork et al. Effect of hydrodynamic interactions on self-diffusion
of quasi-two-dimensional colloidal hard spheres. Phys. Rev. Lett. 115 (26 2015),
p. 268301.

[316] R. A. Todor and C. Schwab. Convergence rates for sparse chaos approximations
of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27.2 (2007),
pp. 232–261.

[317] C. Toninelli, G. Biroli, and D. S. Fisher. Spatial structures and dynamics of
kinetically constrained models of glasses. Phys. Rev. Lett. 92 (18 2004), p. 185504.

[318] A. Townsend. Computing with functions in two dimensions. PhD thesis. Univer-
sity of Oxford, 2014.

[319] A. Townsend and S. Olver. The automatic solution of partial differential
equations using a global spectral method. J. Comput. Phys. 299 (2015), pp. 106–123.

[320] A. Townsend and L. N. Trefethen. An extension of Chebfun to two dimensions.
SIAM J. Sci. Comput. 35.6 (2013), pp. C495–C518.

[321] A. Townsend, H. Wilber, and G. B. Wright. Computing with functions in
spherical and polar geometries I. The sphere. SIAM J. Sci. Comput. 38.4 (2016),
pp. C403–C425.

[322] L. N. Trefethen. Approximation Theory and Approximation Practice. SIAM,
2013.

164

https://www.sfu.ca/~ssurjano/
https://www.sfu.ca/~ssurjano/

Bibliography

[323] L. N. Trefethen. Computing numerically with functions instead of numbers.
Math. Comput. Sci. 1.1 (2007), pp. 9–19.

[324] L. N. Trefethen. Cubature, approximation, and isotropy in the hypercube. SIAM
Rev. 59.3 (2017), pp. 469–491.

[325] L. N. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev.
50.1 (2008), pp. 67–87.

[326] L. N. Trefethen. Spectral Methods in MATLAB. Vol. 10. Software Environ.
Tools. SIAM, 2000.

[327] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychome-
trika 31 (1966), pp. 279–311.

[328] E. Ullmann, H. C. Elman, and O. G. Ernst. Efficient iterative solvers for
stochastic Galerkin discretizations of log-transformed random diffusion problems.
SIAM J. Sci. Comput. 34.2 (2012), A659–A682.

[329] C. Vanaret et al. Certified global minima for a benchmark of difficult optimization
problems. arXiv e-prints (2020), arXiv:2003.09867.

[330] M. Vandecappelle, N. Vervliet, and L. De Lathauwer. A second-order
method for fitting the canonical polyadic decomposition with non-least-squares cost.
IEEE Trans. Signal Process. 68 (2020), pp. 4454–4465.

[331] F. Verstraete, V. Murg, and J. Cirac. Matrix product states, projected entan-
gled pair states, and variational renormalization group methods for quantum spin
systems. Adv. Phys. 57.2 (2008), pp. 143–224.

[332] N. Vervliet et al. Tensorlab 3.0. 2016.

[333] C. Villani. Optimal Transport: Old and New. 1st. Grundlehren Math. Wiss.
Springer, 2009.

[334] J. Waldvogel. Fast construction of the Fejér and Clenshaw-Curtis quadrature
rules. BIT 46.1 (2006), pp. 195–202.

[335] W. Wang et al. A linear optimal transportation framework for quantifying and
visualizing variations in sets of images. Int. J. Comput. Vis. 101.2 (2013), pp. 254–
269.

[336] Z. Wang and S. F. Wu. Helmholtz equation–least-squares method for reconstructing
the acoustic pressure field. J. Acoust. Soc. Am. 102.4 (1997), pp. 2020–2032.

[337] S. R. White. Density matrix formulation for quantum renormalization groups.
Phys. Rev. Lett. 69 (19 1992), pp. 2863–2866.

[338] H. Wilber, A. Townsend, and G. B. Wright. Computing with functions in
spherical and polar geometries II. The disk. SIAM J. Sci. Comput. 39.3 (2017),
pp. C238–C262.

[339] D. P. Woodruff. Sketching as a tool for numerical linear algebra. Found. Trends
Theor. Comput. Sci. 10.1-2 (2014), pp. iv+157.

165

Bibliography

[340] H. Xiang and L. Grigori. Kronecker product approximation preconditioners for
convection-diffusion model problems. Numer. Linear Algebra Appl. 17.4 (2010),
pp. 691–712.

[341] D. Xiu. Stochastic collocation methods: A survey. In: Handbook of Uncertainty
Quantification. Springer, 2017, pp. 699–716.

[342] H. Xu et al. Spectral/hp element methods: Recent developments, applications, and
perspectives. J. Hydrodyn. 30.1 (2018), pp. 1–22.

[343] N. L. Zamarashkin, S. V. Morozov, and E. E. Tyrtyshnikov. On the best
approximation algorithm by low-rank matrices in Chebyshev’s norm. Comput. Math.
Math. Phys. 62.5 (2022), pp. 701–718.

[344] V. P. Zankin, G. V. Ryzhakov, and I. V. Oseledets. Gradient descent-based
D-optimal design for the least-squares polynomial approximation. arXiv e-prints
(2018), arXiv:1806.06631.

[345] C. Zenger. Sparse grids. In: Parallel Algorithms for Partial Differential Equations.
Vol. 31. Notes Numer. Fluid Mech. Friedr. Vieweg & Sohn, 1991, pp. 241–251.

[346] S. Zhao and M. J. Yedlin. A new iterative Chebyshev spectral method for solving
the elliptic equation ∇ · (σ∇u) = f . J. Comput. Phys. 113.2 (1994), pp. 215–223.

[347] M. S. Zhdanov, S. K. Lee, and K. Yoshioka. Integral equation method for
3D modeling of electromagnetic fields in complex structures with inhomogeneous
background conductivity. Geophysics 71.6 (2006), G333–G345.

[348] B. Zhou and M. Parno. Efficient and exact multimarginal optimal transport with
pairwise costs. arXiv e-prints (2022), arXiv:2208.03025.

[349] G. Zhou et al. Efficient nonnegative Tucker decompositions: Algorithms and
uniqueness. IEEE Trans. Image Process. 24.12 (2015), pp. 4990–5003.

[350] Y. Zhou et al. Large-scale parallel collaborative filtering for the Netflix prize. In:
Algorithmic Aspects in Information and Management. Springer, 2008, pp. 337–348.

166

Curriculum Vitae

Personal Details

Christoph Max Strößner
born 22.09.1995 in Hof/Germany

Education

École Polytechique Fédérale de Lausanne
PhD in Mathematics
Thesis: Low-Rank Tensor Methods for High-Dimensional Problems
Advisor: Prof. Daniel Kressner

Switzerland
since 01/2019

Technical University of Munich
Master of Science in Mathematics
Thesis: A Surrogate Model for Bayesian Inversion Based on Sparse Grids
Thesis advisor: Prof. Barbara Wohlmuth

Germany
10/2016-09/2018

Technical University of Munich
Bachelor of Science in Mathematics
Thesis: An Optimization Algorithm for Finding Invariant Sets
Thesis advisor: Prof. Oliver Junge

Germany
10/2013-09/2016

KAIST
Semester abroad

South-Korea
08/2015-12/2015

Professional Experience

École Polytechique Fédérale de Lausanne
Research Assistant

Switzerland
since 01/2019

Technical University of Munich
Student Assistant

Germany
09/2016-01/2018

ESG Elektroniksystem- und Logistik-GmbH
Research and Development Intern

Germany
01/2016-03/2016

Curriculum Vitae

Publications and Preprints

C. Strössner and D. Kressner, Low-rank tensor approximations for solving multimarginal optimal
transport problems. SIAM J. Imaging Sci. 2023 16:1, 169–191. DOI. GitHub.

C. Strössner and D. Kressner, Fast global spectral methods for three-dimensional partial differential
equations. IMA J. Numer. Anal. 2022. DOI. GitHub.

S. Dolgov, D. Kressner and C. Strössner, Functional Tucker approximation using Chebyshev
interpolation, SIAM J. Sci. Comput. 2021 43:3, A2190-A2210. DOI. GitHub.

J. Dabaghi, V. Ehrlacher and C. Strössner, Computation of the self-diffusion coefficient with
low-rank tensor methods: application to the simulation of a cross-diffusion system, To appear in
ESAIM Proc. Surveys. arXiv. GitHub.

J. Dabaghi, V. Ehrlacher and C. Strössner, Tensor approximation of the self-diffusion matrix of
tagged particle processes. To appear in J. Comput. Phys.. arXiv. GitHub.

C. Strössner, B. Sun and D.Kressner, Approximation in the extended functional tensor train
format. Submitted. arXiv. GitHub.

Awards

Dean’s Award for Excellence in Teaching 2021-22

Scholarships

Max Weber Program

KAIST Scholarship Award

Memberships

SIAM member since 2021

Conferences, Seminars, Summer Schools and Workshops

Workshop on Low-rank Models and Applications 22
Talk: Low-rank tensor approximations for solving multi-marginal optimal
transport problems

Mons
2022

Swiss Numerics Day 2022
Poster: Low-rank multi-marginal optimal transport

Zurich
2022

168

https://doi.org/10.1137/22m1478355
https://github.com/cstroessner/Optimal-Transport
https://doi.org/10.1093/imanum/drac030
https://github.com/cstroessner/SpectralMethod3D
https://doi.org/10.1137/20M1356944
https://github.com/cstroessner/Chebfun3F
https://arxiv.org/pdf/2111.11349.pdf
https://github.com/cstroessner/SelfDiffusionCoefficent
https://arxiv.org/pdf/2204.03943.pdf
https://github.com/cstroessner/SelfDiffusion
https://arxiv.org/pdf/2211.11338.pdf
https://github.com/cstroessner/EFTT

Curriculum Vitae

ApplMath22
Poster: Low-rank multi-marginal optimal transport

Brijuni
2022

MATHICSE Retreat
Talk: Functional low-rank approximations based on tensorized Chebyshev
interpolation

Villars-sur-Ollon
2022

CERMICS Applied Mathematics Seminar
Invited Talk: Functional low-rank approximations for trivariate functions
based on tensorized Chebyshev polynomials

Marne-la-Vallée
2021

Joint Group Day 2021
Talk: Functional Tucker approximations: Novel constructors and solvers

Lausanne
2021

Swiss Numerics Day 2021 Lausanne
2021

Matrix Equations and Tensor Techniques IX
Talk: Solving PDEs on hypercubes using Chebyshev interpolation

Perugia
2021

CEMRACS Research Project
Talk: Computation of the self-diffusion coefficient of a cross-diffusion system
with tensor methods.

Luminy
2021

CEMRACS 2021 Summer School Luminy
2021

SIAM Conference on Applied Linear Algebra (LA21) virtual
2021

GAMM 2020@21
Invited Talk: Functional Tucker approximation using Chebyshev interpolation

virtual
2021

Communications in NLA
Talk: Functional Tucker approximation using Chebyshev interpolation

virtual
2021

Low-Rank Models 2020
Poster: Chebychev interpolation in Tucker format

Villars-sur-Ollon
2020

Model Order Reduction Summer School Eindhoven
2019

8th Workshop on High-Dimensional Approximation Zürich
2019

MATHICSE Retreat
Talk: Interpolation based on low-rank tensors

Champéry
2019

169

Curriculum Vitae

Swiss Numerics Day 2019 Lugano
2019

Winter School on Hierarchical Matrices Kiel
2019

Teaching Assistantship at EPFL

Analyse IV Spring 2022
Analysis 1 Fall 2021
Numerical Analysis Spring 2021
Analysis 1 Fall 2020
Probabilities and Statistics II Spring 2020
Discrete Mathematics Fall 2019
Probabilités et Statistique Spring 2019

Co-supervised Semester Projects at EPFL

Algorithms for image deconvolution Spring 2022
Functional tensor train approximation using Chebyshev interpolation Fall 2021
Nonnegative low-rank matrix approximation for nonnegative matrices Spring 2021
Mixed precision algorithms for fast matrix factorizations Fall 2020
The Sinkhorn algorithm for optimal transport Fall 2020

170

	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	Preliminaries
	Low-rank approximation
	Low-rank approximation of matrices
	Low-rank approximation of tensors
	Low-rank tensor formats with additional structure
	Approximation algorithms

	Functional low-rank approximation
	Chebyshev interpolation
	Chebyshev interpolation for univariate functions.
	Tensorized Chebyshev interpolation for multivariate functions
	Coefficient approximation
	Connection to functional low-rank approximations
	Proof of concept

	Functional Tucker approximation
	Existing algorithm: Chebfun3
	Phase 1: Block term decomposition
	Phase 2: Refinement
	Phase 3: Compression
	Disadvantages

	Novel algorithm: Chebfun3F
	Phase 1: Fiber indices and factor matrices
	Phase 2: Refinement of the factors
	Phase 3: Reconstruction of the core tensor
	Chebfun3F algorithm
	Existence of a quasi-optimal Chebfun3F approximation
	Comparison of the theoretical cost

	Numerical results
	Chebfun3 vs. Chebfun3F
	Comparison to sparse grids

	Coefficient decay analysis
	Observations in a two-dimensional setting
	Potential solutions in the two-dimensional setting
	Incorporation of Chebfun3F in Chebfun

	Additional insights
	Approximations in Lebesgue spaces
	Further compression

	Extended functional tensor train approximation
	Extended functional tensor train format
	Approximation algorithm
	Numerical experiments
	Comparison to a direct TT approximation
	Comparison to the FTT approximation algorithm

	Appendix
	Benchmark functions
	Genz functions
	Parametric PDE problem

	Multi-marginal optimal transport
	Multi-marginal optimal transport and the Sinkhorn algorithm
	Mathematical setting
	Multi-marginal Sinkhorn algorithm

	Impact of approximating the Gibbs kernel
	Tensor networks and graphical models
	Low-rank approximations in tensor networks
	Numerical experiments
	Proof of concept
	Application: Color transfer from color barycenters
	A tensor network with circles

	Self-diffusion matrix
	Infinite-dimensional definition
	Definition as optimization problem
	Definition as long time mean square deviation

	Finite-dimensional approximation
	Discretized minimization problems
	Combined minimization problem
	Estimation of long-time mean square deviation

	Low-rank solutions for the optimization problem
	Fast and stable evaluation
	Successive minimization
	Alternating least squares
	Monte Carlo methods
	Limitations of the approach

	Numerical Experiments
	Solving the optimization problem
	Estimation of long-time mean square deviation
	Comparison of algorithms

	Application: Cross-diffusion system
	Hydrodynamic limit of a lattice-based stochastic hopping model
	Deterministic resolution of a simplified cross-diffusion system
	Numerical Experiment

	Fast global spectral method
	Problem setting
	Structure of a linear differential operator
	Approximation format

	Operator discretization
	One-dimensional differential operators
	Three-dimensional differential operators
	Generalization to non-constant coefficients

	A spectral method for three-dimensional linear PDEs
	Boundary condition discretization
	Incorporating the boundary conditions
	Solving tensor-valued linear systems

	Numerical results
	Runtime comparison
	Stationary problems
	Time-dependent problems
	Eigenvalue problems

	Conclusions and outlook
	Bibliography
	Curriculum Vitae

