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Abstract: A new approach is presented in the paper for modelling uncertainty as an elliptical
set for robust controller synthesis. The method involves finding the best linear nominal model
and the corresponding elliptical uncertainty set that is consistent with a set of frequency
response functions of linear time-invariant (LTI) single-input single-output (SISO) systems. The
uncertainty set is then converted into an equivalent integral quadratic constraint (IQC) using
a novel split representation of uncertainty. Finally, the IQC is integrated into a data-driven
frequency-domain controller synthesis method through convex optimization. The simulation
and experimental results demonstrate that the proposed method yields a “tighter” uncertainty
set and improved stability margins compared to classical methods that use disk uncertainty.
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1. INTRODUCTION

With recent advancements in computational power and
sensor technologies, data-driven approaches for control
design are becoming more attractive for industrial ap-
plications compared to classical model-based approaches.
These data-driven techniques allow a control criterion to
be directly minimised based on measured input-output
data and are particularly advantageous when a parametric
plant model is not available. The frequency response data
can effectively be used for analysis and synthesis of linear
control systems. It can be easily computed from input-
output data as presented by (Pintelon and Schoukens,
2012) and is therefore widely used in industry as the
classical loop-shaping method. Since most of the control
performance and robust stability conditions can be repre-
sented in the frequency domain, new data-driven methods
using only frequency-domain data and optimization tech-
niques to compute robust controllers have been proposed
in literature.

The controller design using frequency-domain data leads
to a non-convex optimization problem. This optimization
problem is solved by a non-smooth optimisation technique
in Apkarian and Noll (2018) to compute fixed structure
H∞ controllers for systems represented by their frequency-
domain data. Several solutions using convex approxima-
tion are proposed as well. In Hast et al. (2013) and Saeki
(2014), the use of frequency-domain data for computing
SISO-PID controllers by convex optimisation is proposed
using the same type of linearization of the constraints as
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in the work of Karimi and Galdos (2010). The design of
MIMO-PID controllers is presented as a convex-concave
optimization problem in Boyd et al. (2016) and solved by
linearization of quadratic matrix inequalities. The same
linearization method is used in Saeki et al. (2010) for de-
signing linearly parametrized MIMO controllers. In Karimi
et al. (2018), a frequency-based data-driven control de-
sign methodology with an H∞ control objective based on
coprime factorization of the controller is proposed and
extended to systems with sector nonlinearity (Nicoletti
and Karimi, 2019). This method is also employed for
linear parameter varying controller design in Bloemers
et al. (2022a). Finally, a fixed-structure data-driven con-
troller design method for multivariable systems with mixed
H2/H∞ sensitivity performance is proposed in Karimi and
Kammer (2017) and applied to the distributed control
of microgrids (Madani et al., 2021) and passivity-based
controller design (Madani and Karimi, 2020). Although
the frequency-domain data-driven methods can take into
account multimodel uncertainty and have been extended
to some nonlinear systems, e.g. LPV systems, sector non-
linearity and passive nonlinearity, a general data-driven
framework for uncertainty representation and controller
design is missing.

Integral Quadratic Constraints (IQC), proposed by
Megretski and Rantzer (1997), is a very generic and flex-
ible formalism to represent and analyze various types of
uncertainties and nonlinearities such as parametric uncer-
tainties, rate-bounded uncertainties, time-delay uncertain-
ties and norm- and sector-bounded nonlinearities. One of
the key benefits of the IQC framework is the ability to
analyze systems affected by multiple types of uncertainty
through the use of a single composite IQC. Sufficient



conditions for closed-loop stability can be formulated in
time- and frequency-domain in this framework. A vari-
ety of model-based robust control analysis and synthesis
methods based on the IQC framework have also been
developed (Veenman et al., 2016; Michalowsky et al., 2021)
and there is even a MATLAB toolbox available called IQC-
Lab (Veenman et al., 2021). In a data-driven setting, the
available results are limited. However, Koch et al. (2021)
developed a necessary and sufficient condition for a linear
time-invariant (LTI) system to satisfy a given IQC using
only one input–output trajectory of finite length. Data-
driven methods combining robust stability with robust
performance analysis integrated in an LMI-based IQC
have been studied allowing for the direct design of MIMO
LPV controllers from frequency-domain data (Bloemers
et al., 2022b). An interesting problem in this context is
to identify the best LTI model and a measure of additive
uncertainty or nonlinearity from a set of input/output data
(Martin and Allgöwer, 2019). The problem becomes more
challenging when the best non-parametric LTI model and
corresponding IQC set in the frequency domain need to be
obtained for robust control synthesis.

In this paper, we consider that several sets of frequency-
domain data of an LTI system are available. These sets
may represent different noise realizations or operating
points. A common approach is to use an average model
or one of the models as the nominal model and find a
weighting filter by computing the smallest disk covering all
frequency responses for every frequency point. However, it
has been demonstrated in Hindi et al. (2002) that the un-
certainty in the nominal model can be significantly reduced
by performing a combined optimization of the nominal
model and the weighting filter. This optimization can be
formulated as a convex optimization problem with linear
matrix inequalities (LMIs). A weighting filter containing
the radii of the disks at every frequency point can be in-
corporated in an LMI-based constraint which can be used
for robust control design (Karimi and Kammer, 2017).
However, note that this disk uncertainty in the complex
plane will introduce some conservatism to the controller
design. If the uncertainties can be represented as ellipses
in the complex plane, this conservatism can be significantly
reduced depending on the distribution of the data points.
However, elliptical uncertainties in the frequency-domain
cannot be represented by the classical additive weighting
filters and a more general IQC uncertainty set is required.

The contributions of this paper are summarised as:

• Computation of the optimal elliptical uncertainty sets
and the best non-parametric linear frequency-domain
model based on multiple sets of frequency-domain
data.

• Representation of the optimal elliptical uncertainty
set in the form of a non-parametric IQC.

• Integration of the non-parametric IQC into a data-
driven robust controller design, which reduces con-
servatism compared to existing methods.

The paper is organised as follows: Section 2 presents the
notation and a brief introduction to IQC and data-driven
controller design using frequency-domain data. A method
for additive elliptical uncertainty modelling using a set of
frequency functions of the plant and converting it to a
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Fig. 1. Basic feedback configuration

set of IQC is proposed in Section 3. Then, the IQC is
integrated into the data-driven controller design in the
same section and a solution based on convex optimization
using LMIs is proposed. A simulation example of an active
suspension system subject to parametric uncertainties is
given in Section 4. It is shown that the parametric un-
certainty can be well approximated by ellipses in the fre-
quency domain and leads to a significant reduction of the
conservatism. Section 5 presents the experimental results
of a laboratory setup with multimodel uncertainty. It is
shown that, based only on the frequency-domain data at
different operating points, the optimal LTI non-parametric
model and IQC uncertainty set can be computed by convex
optimization and used to compute a robust controller.
Finally, the concluding remarks are given in Section 6.

2. PRELIMINARIES

Notation: M ≻ (⪰)N indicates that M −N is a positive
(semi-) definite matrix and M ≺ (⪯)N indicates M −N
is negative (semi-) definite. The zero and identity matrix
of appropriate size are denoted 0 and I respectively. The
transpose of a matrix M is denoted by MT and its
conjugate transpose by M∗. For continuous-time systems
Ω := R and for discrete-time systems Ω := [−π/Ts, π/Ts),
where Ts is the sampling time. G(jω) will be used to
denote the frequency response of the system G in both
cases.

2.1 Integral Quadratic Constraint

Two signals p and q are said to satisfy the IQC defined by
a multiplier Π, if∫

Ω

[
P (jω)
Q(jω)

]∗
Π(jω)

[
P (jω)
Q(jω)

]
dω ≥ 0 (1)

where P (jω) and Q(jω) are the Fourier transform of p
and q respectively. From Megretski and Rantzer (1997,
Theorem 1), the feedback connection between H, a stable
LTI system with bounded infinity norm, and a bounded
causal operator ∆ (see Fig. 1) is stable if,

(1) Interconnection of H and τ∆ is well-posed for all
τ ∈ [0, 1];

(2) τ∆ satisfies the IQC defined by Π for all τ ∈ [0, 1];
(3) ∃ ϵ > 0 such that[

H(jω)
I

]∗
Π(jω)

[
H(jω)

I

]
⪯ −ϵI ∀ω ∈ Ω. (2)

Remark 1. If the upper left corner of Π is positive semi-
definite and lower right corner is negative semi-definite,
then using Megretski and Rantzer (1997, Remark 2), τ∆
satisfies the IQC defined by Π for all τ ∈ [0, 1] if and only
if ∆ satisfies the IQC.

Remark 2. If ∆ is a linear operator such that Q(jω) =
∆(jω)P (jω), then ∆ satisfies the IQC defined by Π, if



[
I

∆(jω)

]∗
Π(jω)

[
I

∆(jω)

]
⪰ 0 ∀ω ∈ Ω. (3)

2.2 Data-driven frequency-domain controller synthesis

Given the frequency response of the plant G, the data-
driven approach presented in Karimi and Kammer (2017)
can be used to design a controller for a given control
performance criterion. The approach uses iterative convex
optimisation to compute a stabilising controller with the
desired performance specified by a set of weighting filters.

For example, consider the H∞ performance criterion,

min
K

∥WS∥∞ (4)

where S = (1 +GK)
−1

and W is an appropriate weighting
filter.

Under the closed-loop stability condition, this problem can
be converted to an optimisation problem on the spectral
norm,

min
K, γ

γ (5)

s.t. [W (jω)S(jω)] [W (jω)S(jω)]
∗ ≤ γ ∀ω ∈ Ω.

Note that the argument jω will be omitted for W (jω)
and S(jω) to simplify the notation. Using a controller
parametrization K = XY −1, where X and Y are polyno-
mials in z (z-transform variable) or s (Laplace transform
variable), we obtain:

S = Y (Y +GX)−1 = Y Φ−1.

with the evident definition of Φ. Therefore, the constraint
in (5) can be rewritten as,

(WY ) (Φ∗Φ)
−1

(WY )
∗ ≤ γ ∀ω ∈ Ω

Using the Schur complement lemma, an equivalent matrix
inequality can be found,[

Φ∗Φ (WY )
∗

(WY ) γ

]
(jω) ⪰ 0 ∀ω ∈ Ω. (6)

This inequality can be convexified around a known stabil-
ising initial controller Kc = XcY

−1
c , using a lower bound

on Φ∗Φ:

Φ∗Φ ⪰ Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc

where, Φc = Yc + GXc. This gives a convex optimisation
problem with LMIs,

min
X,Y, γ

γ (7)

s.t.

[
Φ∗Φc +Φ∗

cΦ− Φ∗
cΦc (WY )

∗

(WY ) γ

]
(jω) ⪰ 0 ∀ω ∈ Ω.

If the known initial controller Kc is stabilising, then using
Theorem 2 in Karimi and Kammer (2017), it can be
proven that the designed controller K is also stabilising.
The optimisation problem can be solved by gridding over
the frequencies and using the designed controller as the
initial stabilising controller for the next optimisation. This
sequence of convex optimisation problems will converge to
a local optimal solution of the original nonlinear problem.

For small discrete sets of models, this approach can deal
with the multimodel uncertainty by adding a set of con-
straints for each model with Φi = Y +GiX. However, if the
set of models is continuous or has a large number of mod-
els, the optimisation problem might become intractable.

2.3 Basic problem statement

This paper focuses on the computation of uncertainty
models that are not invalidated by the available data as
defined in Newlin and Smith (1998), and their use for
robust data-driven control design.

The frequency response function (FRF) for each mea-
surement i is denoted using Gi(jω). These measurements
could be several independent measurements of the plant
G, either at the same or different operating points, or of
multiple plants. The aim is to find a linear nominal model
Ĝ with the uncertainty set such that it is consistent with
(not invalidated by) the data. This uncertainty set should
be a “‘tight” elliptical area around the nominal model
to minimise the impact on the controller performance. In
this paper, “tight” is defined in the sense that the area of
uncertainty at all frequencies should be minimised.

For robust data-driven control design using the obtained
model, a robustness constraint for stability is to be found.
As traditional approaches are limited to disk uncertainties,
an IQC-based approach is presented which allows for
elliptical uncertainty. The final step is to integrate this
constraint with the approach in Section 2.2 to find a robust
controller that minimizes a performance objective.

3. MAIN RESULTS

First, a best linear nominal model Ĝ and its additive
elliptical uncertainty set, which is consistent with the data,
are found. Next, this uncertainty set is converted into an
equivalent IQC formulation. Finally, the IQC formulation
is converted into a robust stability constraint in frequency-
domain and added to the data-driven approach in Sec-
tion 2.2.

3.1 Optimal Additive Elliptical Uncertainty Set

In this section, an optimal nonparametric additive ellip-
tical uncertainty set is computed using tools from convex
optimisation. The system under consideration is a linear
time-invariant single-input single-output (LTI-SISO) plant
represented using FRF {Gi(jω)} which can be obtained
from a series of m experiments using the Fourier analysis
on the sampled input-output data as presented in Pintelon
and Schoukens (2012).

Recall that the set of points inside a rotated ellipse, in an
xy-plane can be represented as,[

x
y

]T
ATA

[
x
y

]
≤ 1 ⇔

∥∥∥∥A [
x
y

]∥∥∥∥2
2

≤ 1

and the area of the ellipse is given by π det
{
A−1

}
.

Definition: A model with additive elliptical uncertainty set
can be represented as,

M(Ĝ, A)(jω) ≜

{
Ĝ(jω) + ∆

∣∣∣∣ ∥∥∥∥A(ω)

[
Re{∆}
Im{∆}

]∥∥∥∥
2

≤ 1

}
(8)

where, Ĝ(jω) is the nominal FRF model and A(ω) ∈ R2×2

characterises the uncertainty elliptical set with an area of
π det

{
A−1(ω)

}
.



Given the dataset {Gi(jω)}, a model M(Ĝ, A)(jω) needs
to be found such that

Gi(jω) ∈ M(Ĝ, A)(jω) ∀i ∀ω ∈ Ω

and M(Ĝ, A)(jω) should have minimal area at all frequen-
cies. It can be easily shown that a measurement Gi(jω)
belongs to M(Ĝ, A)(jω) iff∥∥∥∥∥∥A(ω)

Re{Gi(jω)− Ĝ(jω)
}

Im
{
Gi(jω)− Ĝ(jω)

}∥∥∥∥∥∥
2

≤ 1. (9)

This can be equivalently defined as an optimisation prob-
lem at each frequency by,

min
Ĝ, A

areaM(Ĝ, A)(jω) (10)

s.t.

∥∥∥∥∥∥A(ω)

Re{Gi(jω)− Ĝ(jω)
}

Im
{
Gi(jω)− Ĝ(jω)

}∥∥∥∥∥∥
2

≤ 1 ∀i.

The objective function can be replaced by a convex func-
tion such that the optimisation remains equivalent,

min
Ĝ, A

areaM(Ĝ, A)(jω) ⇔ min
Ĝ, A

− log det{A(ω)}.

To convert the constraint into a convex constraint, a
change of variable can be performed,

b(ω) = A(ω)

Re{Ĝ(jω)
}

Im
{
Ĝ(jω)

}
such that∥∥∥∥A(ω)

[
Re{Gi(jω)}
Im{Gi(jω)}

]
− b(ω)

∥∥∥∥
2

≤ 1 ∀i.

Then, (10) can be converted to a convex optimisation
problem with a log-det objective and a conic constraint
for each measurement in the dataset at all frequencies. In
practice, this optimisation only needs to be solved at a
finite number of frequency points.

min
A,b

− log det{A(ωk)} (11)

s.t.

∥∥∥∥A(ωk)

[
Re{Gi(jωk)}
Im{Gi(jωk)}

]
− b(ωk)

∥∥∥∥
2

≤ 1 ∀i

The best linear nominal model Ĝ(jω) for the elliptical
uncertainty set can be found from the optimal solution
of the optimisation problem asRe{Ĝ(jωk)

}
Im

{
Ĝ(jωk)

} = A−1(ωk)b(ωk).

Note that, in general, this nominal model might not be
any of the models of the system or the average model.

Remark 3. In order for the matrix A(ω) to be finite, the
area of the elliptical uncertainty must be non-zero. This
implies that there should be at least three non-collinear
points at each frequency. In the real world, the presence of
noise will typically cause the points to shift, which ensures
that this assumption is satisfied.

3.2 Uncertainty set as IQC

In this section, the IQC multiplier Π is found such that
the uncertainty ∆ of M(Ĝ, A) satisfies the IQC defined by
Π.

+
−

K Ĝ
+

+

∆
p q

r y

Fig. 2. Feedback system with additive uncertainty block

Consider a transformation matrix

J =

[
1 0
0 j

]
with J∗J = I.

From the definition of M(Ĝ, A), the uncertainty ∆ satisfies∥∥∥∥A(ω)

[
Re{∆}
Im{∆}

]∥∥∥∥
2

≤ 1 ∀ω

⇔
∥∥∥∥A(ω)J∗

[
Re{∆}
j Im{∆}

]∥∥∥∥
2

≤ 1 ∀ω

⇔
[
Re{∆}
j Im{∆}

]∗
JAT (ω)A(ω)J∗

[
Re{∆}
j Im{∆}

]
≤ 1 ∀ω

which can be written as,[
1

Re{∆}
j Im{∆}

]T [
1 0
0 −JAT (ω)A(ω)J∗

][ 1
Re{∆}
j Im{∆}

]
≥ 0 ∀ω.

Taking ∆ as

[
Re{∆}
j Im{∆}

]
, the uncertainty of M(Ĝ, A) can

be shown to satisfy the IQC defined by

Π(jω) =

[
1 0
0 −Ā∗(jω)Ā(jω)

]
(12)

where Ā(jω) = A(ω)J∗. Note that Π(jω) is a dynamic
multiplier for the elliptical uncertainty set, in contrast to
the frequency-dependent static gain for the disk uncer-
tainty set. Since (12) satisfies the condition of Remark 1,
τ∆ also satisfies the IQC defined by Π for all τ ∈ [0, 1].

This split representation of ∆ as real and imaginary
part of the true uncertainty ∆ allows for an elliptical
uncertainty set as a quadratic constraint. As shown in
the next section, the stability condition arising from this
representation is related to a nonparametric multiplier
Π(jω) and hence, non-trivial to deal with using traditional
model-based approaches. Using the data-driven approach
in Section 2.2, this stability constraint can be integrated
straightforwardly in the LMIs of the convex optimisation
problem.

3.3 Design for Robust Stability

A robust controller K needs to be synthesised for the
systemM(Ĝ, A), which is graphically represented in Fig. 2.
Using the data-driven approach described in Section 2.2,
a stabilising controller for Ĝ can be designed while min-
imising the performance costs. To make the controller
robust, an additional robustness constraint is added at all
frequency points.

For the uncertainty models described by M(Ĝ, A), the
uncertainty block can be split into its real and imaginary
components and regrouped as shown in Fig. 3, where U
is the closed loop transfer function from the output to
the input of the uncertainty block. Using the controller
parametrization K = Y −1X,

U(jω) = (1 +K(jω)Ĝ(jω))−1K(jω) = Φ−1(jω)X(jω)
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Fig. 3. Feedback system with uncertainty block split into
its real and imaginary components

where, Φ(jω) = Y (jω) +X(jω)Ĝ(jω).

Since U is stable by design (refer Section 2.2),

H(jω) = [−U(jω) −U(jω)] = −Φ−1(jω)X̄(jω)

with X̄(jω) = [X(jω) X(jω)], is also stable. Then, using
Megretski and Rantzer (1997, Theorem 1), if([

H
I

]∗ [
1 0
0 −Ā∗Ā

] [
H
I

])
(jω) ≺ 0 ∀ω ∈ Ω (13)

then the feedback connection between system H and ∆ is
stable.

After simplification, (13) can be written as,(
X̄∗(ΦΦ∗)−1X̄ − Ā∗Ā

)
(jω) ≺ 0 ∀ω ∈ Ω.

Using the Schur complement lemma, an equivalent matrix
inequality can be found,[

ΦΦ∗ X̄
X̄∗ Ā∗Ā

]
(jω) ≻ 0 ∀ω ∈ Ω. (14)

This inequality can be convexified around a known con-
troller Kc = Yc

−1Xc (as presented in section 2.2),

ΦΦ∗ ⪰ ΦΦ∗
c +ΦcΦ

∗ − ΦcΦ
∗
c

where, Φc = Yc + ĜXc. This gives a sufficient condition
for robust stability as an LMI,[

ΦΦ∗
c +ΦcΦ

∗ − ΦcΦ
∗
c X̄

X̄∗ Ā∗Ā

]
(jω) ≻ 0 ∀ω ∈ Ω (15)

which can be added as an additional constraint in the data-
driven approach presented in Section 2.2. For example, for
H∞ performance, the new optimisation problem for robust
controller synthesis would be,

min
X,Y, γ

γ (16)

s.t.

[
Φ∗Φc +Φ∗

cΦ− Φ∗
cΦc (WY )

∗

(WY ) γ

]
(jω) ⪰ 0 ∀ω ∈ Ω[

ΦΦ∗
c +ΦcΦ

∗ − ΦcΦ
∗
c X̄

X̄∗ Ā∗Ā

]
(jω) ≻ 0 ∀ω ∈ Ω.

The optimisation problem can be solved by gridding over
the frequencies and using the synthesised controller as
the initial stabilizing controller for the next iteration (see
section 2.2).

4. SIMULATION EXAMPLE

For this section, the effect of actuation force on the
body acceleration is to be studied in an active suspension
system. An example from the MATLAB Robust Control
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Fig. 4. Nyquist plot of the estimated model using averag-
ing, the proposed method and the method by Hindi
et al. (2002). Dashed lines shows the uncertainty
boundary estimated by the respective methods.

Toolbox is taken, with a 10% uncertainty in all system
parameters, and converted to discrete time at a sampling
frequency of 400Hz.

G =



0 1 0 0 0
−ks

mb

−bs
mb

ks

mb

bs
mb

1000
mb

0 0 0 1 0
ks

mw

bs
mw

−ks−kt

mw

−bs
mw

−1000
mw

−ks

mb

−bs
mb

ks

mb

bs
mb

1000
mb


Table 1. Parameters and their uncertainty for

the active suspension system example

Nominal Uncertainty

mb 300 kg ±10%
mw 60 kg ±10%
bs 1000N sm−1 ±10%
ks 16 000Nm−1 ±10%
kt 190 000Nm−1 ±10%

Uncertainty modelling using the proposed method and the
method by Hindi et al. (2002) is performed for 10 different
measurements at 500 frequency points (see Fig. 4). It can

be observed that the estimated Ĝ is much closer to the
average model for the proposed method compared to the
method by Hindi et al. (2002).

From Fig. 5, it can be seen that a significant reduction
in the area of uncertainty can be achieved by using
the proposed method compared to the method by Hindi
et al. (2002). In frequencies with large uncertainties, this
reduction can be up to a factor of 2. It is easy to see
that the area of the elliptical uncertainty set will always
be smaller than the area of the disk uncertainty set, and
under the worst case scenario, it would be equal.

5. EXPERIMENTAL RESULTS

In this section, real data from a laboratory setup is used
to design a discrete-time controller sampled at 2ms, which
is then implemented on the real system. It is shown
how the proposed approach can deal with multimodel
uncertainty and measurement noise for model reference
control synthesis.
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Fig. 6. Quanser Servo-Qube with weights attached on top
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proposed method

This example focuses on the velocity control of a DC motor
with a flexible element attached on top, resulting in large
resonant modes at high frequencies. Different weights can
be attached to the flexible element at different positions,
resulting in different loadings and creating a multimodel
uncertainty (Fig. 6).

The frequency function is obtained from input-output
data at 6 positions of the weights, leading to different
models {G1(jω), · · · , G6(jω)}. The frequency responses

of {Gi(jω)} and the obtained nominal model Ĝ(jω)
are shown in Fig. 7. Note that the nominal model has
more modes than any single model, particularly between
300 rad s−1 to 400 rad s−1, there are 2 modes in the nomi-
nal model compared to a single mode in individual models.

Fig. 8 shows the nominal model and the respective uncer-
tainty set using the proposed method and the method by
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shows the uncertainty boundary estimated by the
respective methods.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

-3

-2

-1

0

1

2

3
M

a
g
n
it
u
d
e

[r
a
d
/
s]

Reference Signal
Reference Model

Fig. 9. Step closed-loop responses of the Servo-Qube with
different loadings

Hindi et al. (2002). The proposed approach gives “‘tighter”
uncertainty set compared to Hindi et al. (2002).

The design objective is formulated as minimisation of the
H2 error between the desired closed-loop performance Tr

and the true closed-loop performance T̂ = KĜ(1+KĜ)−1.

min
K

∥∥∥W (
Tr − T̂

)∥∥∥
2

where W (jω) = 1 + 1/jω is a weighting filter.

Using the approach in Section 2.2, this can be converted
into a convex optimisation problem and the additional
constraint (15) is added to each frequency for robustness.
Additionally, an integrator is fixed in the controller. The
problem is then sampled at 500 logarithmically spaced
points and solved.

The closed-loop tracking of a square waveform reference
is shown in Fig. 9, along with the desired output of the
reference model Tr. As it can be seen, the different closed-
loop outputs for different loadings follow the output of the
reference model.

The stability margin under the IQC description can be
defined as the minimum scaling factor of the uncertainty
set at which the feedback connection becomes unstable
(Hai-rong et al., 2002). Using the proposed approach, a
stability margin of 4.72 is obtained, while the approach by
Hindi et al. (2002) yields a margin of 3.44.



6. CONCLUSION

A convex optimization technique is used to find the best
linear nominal model and corresponding elliptical uncer-
tainty set that are consistent with a given set of frequency
response functions (FRFs) of LTI-SISO systems. Next, a
novel split representation of uncertainty is employed to
transform the uncertainty set into an equivalent IQC. The
resulting IQC is integrated with a data-driven frequency-
domain controller synthesis method by converting it into
a set of LMI constraints for robust stability.

The proposed method results in a “tighter” uncertainty
set compared to the disk uncertainty. Experimental results
show that using the elliptical uncertainty set, the area of
uncertainty can be reduced by up to a factor of 2 compared
to the disk uncertainty. Additionally, the stability margin
of the synthesized controller sees an improvement of up to
30% compared to the controller synthesized using the disk
uncertainty set.

For LTI-MIMO systems, uncertainty can be represented as
either elementwise additive uncertainty or matrix additive
uncertainty. While the proposed method can be applied to
the elementwise additive uncertainty representation with
some effort, extending it to the matrix additive uncertainty
case is of interest and is the focus of ongoing research.
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