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We show that plane Cremona groups over finite fields embed as dense subgroups into

Neretin groups, that is, groups of almost automorphisms of rooted trees. We also show

that if the finite base field has even characteristic and contains at least four elements,

then the permutations induced by birational transformations on rational points of

regular projective surfaces are even. In a second part, we construct explicit locally

compact CAT(0) cube complexes, on which Neretin groups act properly. This allows us

to recover in a unified way various results on Neretin groups such as that they are of

type F∞. We also prove a new fixed-point theorem for CAT(0) cube complexes without

infinite cubes and use it to deduce a regularization theorem for plane Cremona groups

over finite fields.

1 Introduction

In this article, our goal is to bring together two a priori quite distinct families of groups.

Namely, Cremona groups, that is, the groups of birational transformations of projective

planes, and Neretin groups, that is, the (totally disconnected locally compact) groups

of almost automorphisms AAut(T ) of regular rooted trees T . While the first come from
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2 A. Genevois et al.

algebraic geometry, the second appear in low-dimensional topology and belong to the

more general family of Thompson-like groups. Neretin groups can be thought of as

p-adic analogues of the diffeomorphism group of the circle.

At first glance, these families of groups seem quite different, and they are

from several perspectives. For instance, algebraically speaking, Neretin groups are

(uniformly) simple [12, 19] while Cremona groups are very far from being simple, since

they are acylindrically hyperbolic, which allows us to construct many different normal

subgroups ([5], [28]). Nevertheless, they both arise as groups of transformations that

only partially preserve certain geometric structures. Our goal is to exploit this analogy

by transferring techniques from one family of groups to the other, giving new insights

for both types of groups.

Neretin groups. Our main contribution to Neretin groups Nd := AAut(Td), where Td

is the regular rooted tree of degree d ≥ 2, is the construction of locally compact CAT(0)

cube complexes on which they act properly (as topological groups). Even if the existence

of proper actions on (a priori not locally compact) CAT(0) cube complexes was already

known (see [24, Section 3.3.3]), transferring the cubulation of Cremona groups from

[29, 30] into the world of Neretin groups allows us to construct explicit cube complexes,

whose geometric structures are tightly connected to the algebraic structures of Neretin

groups.

Theorem 1.1. For every d ≥ 2, the Neretin group Nd acts properly on a locally compact

CAT(0) cube complex. Moreover, every vertex-stabilizer equals the automorphism group

of some cofinite subforest and, conversely, for each cofinite subforest, there exists a

vertex-stabilizer that is its automorphism group.

This construction allows us to recover several results proved separately in

the literature in a unified way. Namely, we deduce from Theorem 1.1 that Neretin

groups are a-T-menable; that their subgroups satisfying Kazhdan’s property (T) (or

more generally the fixed-point property (FWlocfin), see Section 4.2) lie in automorphism

groups of cofinite rooted subforests; and that they are of type F∞ (a finiteness property

stronger than being compactly presented, see Section 4.2). The local finiteness of our

cube complexes can also be exploited, allowing us to recover the following result

from [26]:

Theorem 1.2. Let H ≤ Nd be a finitely generated subgroup. If each element of

H induces an automorphism of some cofinite subforest, then H entirely lies in the

automorphism group of a cofinite subforest.
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Cremona and Neretin Groups 3

Theorem 1.2 is proved by combining Theorem 1.1 together with the following

fixed-point theorem from cubical geometry, which is of independent interest.

Theorem 1.3. Let G be a finitely generated group acting on a CAT(0) cube complex X

by elliptic isometries. If X has no infinite cube, then G has a global fixed point.

Here, an infinite cube refers to the union of an infinite increasing sequence

C0 ⊂ C1 ⊂ · · · of cubes, where each cube Cn is a combinatorial unit cube with 2n vertices.

Theorem 1.3 extends the fixed-point theorem from [37] for finite-dimensional

CAT(0) cube complexes to a large class of infinite-dimensional CAT(0) cube complexes.

The conclusion of Theorem 1.3 does not always hold if we drop the assumption

that there is no infinite cube. Indeed, there exist finitely generated infinite torsion

groups acting without global fixed points on CAT(0) cube complexes (such as the Grig-

orchuk group [16, 37], Burnside groups [34], or just wreath products of torsion groups

[10, 14, 27]).

Cremona groups. Although most of our constructions make sense over arbitrary

fields, their main applications concern Cremona groups over finite fields k denoted

by Birk(P2) instead of Bir(P2) for readers’ convenience. This is a subject that has

attracted substantial interest recently, also because of its connections to cryptography

(see for instance [11], [42], [40], [41], [1], [22]). In this work, we construct a rooted forest

F P
2(k), called the rational blow-up forest, whose vertices are the k-rational points

of P
2 and of all the surfaces obtained by blowing up k-rational points. One of the

reasons why birational transformations of surfaces are well understood is the fact

that they can be factorized into a sequence of blow-ups of points and contractions

of curves. This property allows us to construct a natural injective morphism from

Birk(P2) to the group of almost automorphisms of F P
2(k). If the field k is finite with

q elements, then the rooted forest F P
2(k) turns out to be almost isomorphic to the

(q + 1)-regular rooted tree. This will lead to a proof of the following result, which

displays the close relationship between Cremona groups over finite fields and Neretin

groups:

Theorem 1.4. If k is a finite field with q elements, then Birk(P2) is isomorphic to a

dense subgroup of the Neretin group Nd, where d = q + 1.

Note that, even if recently the use of tools from geometric group theory in the

study of groups of birational transformations of surfaces has been really fruitful, this
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4 A. Genevois et al.

is the first time that these groups appear as almost automorphism groups of trees or

forests.

The topology on AAut(Td) induces a non-discrete topology on Birk(P2) that turns

it into a Hausdorff topological group (which is not locally compact). In fact, Theorem 1.4

can also be seen as an analogue to a theorem of Kollár and Mangolte, which states

that the group of birational transformations of the real projective plane without real

indeterminacy points is a dense subgroup of the diffeomorphism group of P
2(R) ([20]).

In Remark 3.7, we give a description of sequences of elements in f ∈ Birk(P2) converging

to the identity.

Our point of view provides a transparent picture about how Birk(P2) acts on k-

rational points on surfaces, which is displayed in the following application to birational

geometry of surfaces. Let X and Y be varieties over k, by which we mean integral and

separated schemes of finite type. Let f : X ��� Y be a birational transformation and

assume that the indeterminacy loci of f and of f −1 do not contain any k-rational point.

Then f induces a bijection between the sets of k-rational points X(k) and Y(k). We

will call such a map a birational map that is bijective on k-rational points. We denote

by Bir(X) the group of birational transformations of X and by BBir(X) the group of

birational transformations that are bijective on k-rational points. The group BBirk(P2)

for finite fields k has first been considered by Cantat in [3], where he showed that in

odd characteristic and in the case k = F2, every permutation on the k-rational points

P
2(k) is induced by an element from BBirk(P2). We will prove the following result:

Theorem 1.5. Let k be a finite field of even characteristic and assume that k �= F2.

If S is a regular projective rational surface over k and f ∈ BBir(S), then the induced

permutation on the k-rational points S(k) is even.

The strategy of our proof consists in using the action of Birk(P2) by almost

automorphisms on F P
2(k) to extend the notion of parity from BBirk(P2) to all of

Birk(P2). We can then deduce the theorem for P
2 from a recent result by Lamy and

Schneider (Theorem 3.17) and finally generalize it to arbitrary S.

We would like to highlight the fact that over finite fields, there exist non-trivial

homomorphisms from Birk(P2) to Z /2Z ([23]), so Theorem 1.5 is not a plain consequence

of the abstract group structure of Birk(P2).

Remark 1.6. The fact that if |k| = 2n ≥ 4, then the permutations on the k-rational

points P
2(k) induced by elements from BBirk(P2) are all even, was conjectured in the
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Cremona and Neretin Groups 5

preprint [1] . We learned that in parallel to our work, Asgarli, Lai, Nakahara, and

Zimmermann came up independently of us with a proof of this conjecture, which they

include in the published version of their manuscript [1]. Their methods are different

from ours: they study the group BBirk(P2) in detail, provide an explicit generating set,

and show by hand that every element in the generating set induces an even permutation.

In our paper, we use a result (Theorem 3.16) from [1]. However, our main strategy for the

proof of Theorem 1.5 is different and our result is more general, since it shows that the

permutations of S(k) induced by BBir(S) are even for arbitrary regular rational projective

surfaces S.

In [30], the second and third authors constructed for every surface S over

any field k, the blow-up complex—a CAT(0) cube complex, on which Bir(S) acts by

isometries—and used it to deduce various dynamical and group theoretical properties.

However, one of the drawbacks of this construction is that these cube complexes are

never locally compact. If we work over a finite field, we can now use the locally compact

cube complexes constructed for the Neretin groups to obtain a locally compact CAT(0)

cube complex on which Bir(S) acts by isometries.

In [30], we asked the following question: assume that in a finitely generated

subgroup � ⊂ Bir(S) every element is conjugate to an automorphism of a projective

surface, does this imply that � itself is conjugate to a subgroup of automorphisms

of a projective surface? This question seems to be subtle and difficult in general.

However, in the case, where k is a finite field, we obtain a positive answer, by applying

Theorem 1.3 to the action of Bir(S) on the locally compact complex given by the Neretin

groups.

Theorem 1.7. Let k be a finite field, S a surface over k, and � ⊂ Bir(S) a finitely

generated subgroup such that every element in � is conjugate to an automorphism of

a projective surface, then � itself is conjugate to a subgroup of automorphisms of a

projective surface.

In a very similar spirit, we also prove that if S is a regular projective sur-

face over a finite field k and if � ⊂ Bir(S) is a finitely generated subgroup such

that for every element γ ∈ �, there exists a regular projective surface S′ over

k such that γ is conjugate to an element in BBir(S′), then there exists a regular

projective surface T over k such that � is conjugate to a subgroup of BBir(T) (see

Proposition 4.25).
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6 A. Genevois et al.

Outline of the article

After recalling some preliminaries, we will construct in Section 3 the rational blow-

up forest, which is the key construction in order to embed plane Cremona groups over

a finite field into Neretin groups. The embedding and density of Cremona groups in

Neretin groups (Theorem 1.4) is then proved in Section 3.2, and the result about the

parity of Cremona transformations (Theorem 1.5) in Section 3.3. Section 4 is devoted to

the construction of the CAT(0) cube complex and its applications. The proof of the fixed

point Theorem 1.3 finally is done in Section 4.3.

2 Preliminaries

In this section, we briefly recall some definitions and some results about Cremona

groups and Neretin groups.

2.1 Cremona groups

In this section, we recall some results from the birational geometry of surfaces, we refer

to [4] or [21] and the references therein for details about Cremona groups, and to [35] for

details about rational points on varieties. In this article, a variety over a field k is always

an integral and separated scheme of finite type. When speaking about a morphism or

a birational map between varieties over a field k, we always mean a k-morphism, or a

k-birational map (unless stated otherwise).

Let X be a variety over a field k. Recall that a k-rational point, or just rational

point, is a morphism Spec k → X. The set of all rational points of X is denoted by X(k).

A morphism between k-varieties X → Y induces a map X(k) → Y(k).

Let S be a regular surface over k and let p be a closed point on S. The blow-up

of the surface S in p is a variety Blp together with a morphism π : Blp → S such that

the inverse image of p is a Cartier divisor, which is called the exceptional divisor of π ,

and such that the following universal property is satisfied: for a morphism π ′ : S′ → S

such that the inverse image of p is a Cartier divisor, there always exists a unique

morphism f : S′ → Blp that satisfies π ′ = πf . Blow-ups always exist and, moreover,

if S is a regular projective surface, then Blp is a regular projective surface. The

exceptional divisor is isomorphic to P
1
L, where L = k(p) is the function field of p. In

particular, if p is a rational point, then the exceptional divisor is isomorphic to P
1
k. Let

us also note that the exceptional divisor contains rational points if and only if p is

rational.
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Cremona and Neretin Groups 7

Let S be a regular projective surface over k. The bubble space BS of the surface

S is, roughly speaking, the set of all closed points that belong to S or are infinitely near

to S, that is, contained on a surface dominating S. More precisely, BS is the set of all

triples (y, T, π), where T is a regular projective surface over k, y is a closed point in T

and π : T → S is a birational morphism, modulo the following equivalence relation: a

triple (y, T, π) is equivalent to (y′, T ′, π ′) if the birational map π ′−1π : T ��� T ′ induces an

isomorphism in a neighbourhood of y and maps y to y′. A point p ∈ BS that is equivalent

to some (x, S, id) is called a proper point of S. All points in BS that are not proper are

called infinitely near. If there is no ambiguity, we will sometimes denote a point in the

bubble space by y instead of (y, T, π). A point p ∈ BS is a rational point, if p can be

represented by a triple (y, T, π) such that y is a rational point on T. We denote the set of

rational points in BS by BS(k).

Any birational transformation between projective surfaces can be factored into

blow-ups of closed points:

Theorem 2.1. ([43, Tag 0C5Q,Tag 0C5J]). Let S and S′ be regular projective surfaces over

a field k, and let f : S ��� S′ be a birational transformation. Then there exists a projective

surface S̃ over k together with two morphisms η : S̃ → S, ρ : S̃ → S′ satisfying f = ρη−1,

such that we can factorize η : S̃ → Sn → · · · → S1 → S0 = S and ρ : S̃ → S′m → · · · →
S′1 → S′0 = S′, where each of the arrows is a blow-up in a closed point.

Moreover, S̃ can be chosen minimal in the following sense: for any other

projective regular surface S̃′ giving rise to such a factorization, there exists a surjective

morphism π : S̃′ → S̃. This implies in particular that S̃ and S̃′ are respectively obtained

from S by blowing up a unique sequence of points in the bubble space BS.

As a particular instance of Theorem 2.1, we have that if π : S′ → S is a morphism

between regular projective surfaces, then π is a blow-up of some points in BS. In this

case, we say that S′ lies above S.

Theorem 2.1 allows us to define the notion of base-points:

Definition 2.2. Let f : S ��� S′ be a birational transformation between two regular

projective surfaces. The base-points of f are the points in BS that are blown up by η in

the minimal resolution of f . The set of base-points of f will be denoted by B(f ).

A birational morphism π : S → T of regular projective surfaces S and T induces

a bijection BS → BT \ B(π−1) by mapping a point represented by (x, S′, ϕ) to the
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8 A. Genevois et al.

point represented by (x, S′, π ◦ ϕ). By abuse of notation, we will denote this map by

π as well. Note that π maps rational points to rational points. By Theorem 2.1, a

birational transformation of regular projective surfaces f : S ��� T induces a bijection

f : BS \ B(f ) → BT \ B(f −1) by f := ρ ◦ η−1, where η and ρ are given by Theorem 2.1 for

a minimal resolution. In particular, f maps rational points that are not base-points of f

bijectively to rational points that are not base-points of f −1.

2.2 Neretin groups

In this section, we recall the construction of the Neretin groups as almost automor-

phism groups of rooted trees, as well as their topologies. For details, we refer to

[13, 19, 26, 32].

Almost isomorphisms of graphs. Given two (not necessarily connected) graphs X

and Y, an almost isomorphism (f , R, S) is the data of two finite subgraphs R ⊂ X,

S ⊂ Y and a graph isomorphism f : X\R → Y\S. In order to shorten the notation,

one might write f : X ��� Y without referring to R, S. Two almost isomorphisms are

considered as equal if they agree on some cofinite subset of vertices. We denote by

AAut(X) the almost automorphism group of the graph X. Observe that modifying X

in a finite subset does not modify its almost automorphism group. More precisely, if

f : X ��� Y is an almost isomorphism, then the map g �→ fgf −1 induces an isomorphism

AAut(X) → AAut(Y).

Definition 2.3. Given two integers d ≥ 2 and r ≥ 1, the Neretin group Nd,r is the almost

automorphism group AAut(Td,r) of the rooted tree Td,r whose root has degree r and all

of whose other vertices have degree d + 1.

Observe that, as a consequence of the previous remark, Nd,r also coincides with

the almost automorphism group of the disjoint union of r rooted d-regular trees. For

simplicity, we note Td := Td,1 and Nd := Nd,1.

Almost automorphisms of rooted forests. In this article, we are mainly concerned with

almost automorphisms of rooted trees or forests, which can be described in a more

convenient way for our purpose.

So let F be a rooted forest. We denote by λ(F) the set of roots of the forest F .

A rooted subforest F ⊂ F is admissible if its roots are contained in the roots of F and

if it is finite (possibly empty). The cofinite subforest FC := F \ F of F is obtained from

F by removing the vertices that are in F and the edges that have a least an endpoint in
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Cremona and Neretin Groups 9

F. Notice that the cofinite subforest FC is rooted in a natural way, where the roots are

given by roots of F and leaves of F.

Then an almost automorphism of the forest F can be represented as an

equivalence class of triples (ψ , F, F ′), where F and F ′ are admissible rooted subforests of

F , and where ψ : FC → F ′C is a rooted forest isomorphism, that is, a forest isomorphism

sending bijectively λ(FC) to λ(F ′C). Two such triples (ψ1, F1, F ′
1) and (ψ2, F2, F ′

2) are

equivalent if there exist admissible rooted subforests F ⊃ F1, F2 and F ′ ⊃ F ′
1, F ′

2 such

that ψ1 and ψ2 induce the same rooted forest isomorphism FC → F ′C.

Following [26], we call an almost automorphism g of a forest F elliptic, if there

exists an admissible subforest F such that g can be represented by a triple (ψ , F, F).

Topologies on the Neretin groups. Let T be a rooted tree. A ray departing from the

root v0 of T is a sequence of distinct vertices (v0, v1, . . . ) such that vi and vi+1 are

connected by an edge for all i ≥ 0. The visual boundary ∂T is the space of all rays

departing from v0 equipped with the visual metric, that is, for η1, η2 ∈ ∂T , we define

d(η1, η2) = e−δ(η1,η2), where δ(η1, η2) denotes the length of the common initial path of

the rays η1 and η2. The visual metric defines an ultrametric on ∂T , which turns it into

a compact and second countable space that is totally disconnected. Let us note that a

closed ball in ∂T corresponds exactly to the rays passing through a given vertex in T .

The homeomorphism group Homeo(∂Td,r) can be equipped with the compact-

open topology, that is, the topology induced by the following metric: for all f , g ∈
Homeo(∂Td,r), we define

d(f , g) := max
η∈∂Td,r

d(f (η), g(η)).

We now equip Aut(Td,r) with the restriction of this topology. Similarly, we could consider

AAut(Td,r) with the induced compact-open topology. However, with this choice, the

group AAut(Td,r) would not be locally compact, since AAut(Td,r) ⊂ Homeo(∂Td,r) is

not closed. For this reason, AAut(Td,r) is usually equipped with the unique topology

that turns it into a topological group such that the injection Aut(Td,r) → AAut(Td,r) is

continuous and open. With respect to this topology, AAut(Td,r) is a totally disconnected

locally compact group (see [13] for details and proofs).

Remark 2.4. Let S1, S2 ⊂ Td be two admissible subtrees. Then the set of all elements

g ∈ AAut(Td) that have a representative of the form (ϕ, S1, S2) is open. Moreover, the open

sets of this type form a basis for the Neretin group.
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10 A. Genevois et al.

For a more topological interpretation of almost automorphisms of Td,r, let us

observe that an almost automorphism induces a homeomorphism of the visual bound-

ary ∂Td,r. The subgroup Aut(Td,r) ⊂ AAut(Td,r) of automorphisms of the rooted tree

Td,r corresponds exactly to the isometries of ∂Td,r. Almost automorphisms correspond

exactly to the homeomorphisms ϕ of ∂Td,r such that there exists a partition of ∂Td,r into

disjoint closed balls B1, . . . , Bn and the restriction of ϕ to Bi is a homothety for all 1≤ i≤n.

This justifies the common term spheromorphism for elements in the Neretin group.

3 Cremona Groups in Neretin Groups

3.1 The blow-up forest

Let k be an arbitrary field. We can equip the bubble space of a regular projective surface

S with the structure of a forest, the blow-up forest FS. The vertices of FS are the points

in the bubble space BS, and two distinct vertices p and q are connected by an edge if

we can write p = (x, T, ϕ) and q = (y, T ′, ψ) such that ϕ−1ψ : T ′ → T is the blow-up

in the point x and y is contained in the exceptional divisor of this blow-up. We define

the rational blow-up forest FS(k) as the subforest induced by the vertices belonging to

BS(k). To every blow-up π : S′ → S, we can associate the rooted subforests F(π) ⊂ FS

and F(π)(k) ⊂ FS(k) induced by the (rational) base-points of π−1. Note that the closed

points of S′ are the roots of F(π)C and the rational points of S′ are the roots of F(π)(k)C.

Conversely, to an admissible rooted subforest F ⊂ FS, we can associate a blow-

up πF : SF → S, where πF blows up the points in the bubble space corresponding to the

vertices of F.

Let f ∈ Bir(S) be a birational transformation. We observe that the induced

bijection f : BS \ B(f ) → BS \ B(f −1) constructed in Section 2.1 preserves the forest

structure and hence induces an almost automorphism of the blow-up forest FS,

which we denote by f̃ . Since f preserves rational points, it also induces an almost

automorphism of the rational blow-up forest FS(k), which will be denoted by f̃ as well.

This proves the following proposition:

Proposition 3.1. Let k be a field and S a regular projective surface over k. Then Bir(S)

acts by almost automorphisms on the blow-up forest FS, as well as on the rational

blow-up forest FS(k). That is, there exist homorphisms from Bir(S) to AAut(FS) and to

AAut(FS(k)).

In what follows, we will give a description of f̃ and introduce some vocabulary

needed in the sequel. We focus on the rational blow-up forest, but everything can be
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Cremona and Neretin Groups 11

defined analogously for the blow-up forest. To a birational transformation f ∈ Bir(S),

we associate the (rational) base-point forest Ff respectively Ff (k), which we define to

be the admissible rooted subforest of FS (respectively FS(k)) induced by the (rational)

base-points B(f ) of f .

For an f ∈ Bir(S), consider the rational base-point forests F := Ff (k) and F ′ :=
Ff −1(k) and let πF : SF → S and πF ′ : SF ′ → S be blow-ups of the corresponding points in

the bubble space BS(k). Then

π−1
F ′ f πF : SF ��� SF ′

is bijective on k-points, so it induces a rooted forest isomorphism FSF(k) → FSF ′(k).

If we identify FSF(k) with FC through πF and FSF ′(k) with F ′C through πF ′ respectively,

this yields a rooted forest isomorphism

ψf : FC → F ′C,

and we can write f̃ = (
ψf , F, F ′). Note that ψf does not depend on the choice of the

blow-ups πF and πF ′ .

Remark 3.2. Although we can represent f ∈ Bir(S) by the triple (ψf ,Ff (k),Ff −1(k)),

the admissible forests Ff −1(k) and Ff (k) are not necessarily the minimal forests that

appear in a representative of f̃ . For instance, assume that k is finite. Let π : S′ → P
2

be a blow-up of sufficiently many rational points and let f ∈ Birk(P2) be an element

that is conjugate to an automorphism of S′ of infinite order. Up to iterating f , we may

assume that this automorphism fixes all the rational points S′(k), and as a consequence

the almost automorphism f̃ is in fact an automorphism of F P
2. However, having infinite

order, f is not conjugate to an automorphism of P2, in particular, Ff (k) and Ff −1(k) are

non-empty.

Lemma 3.3. Let S be a regular projective surface over k. If f ∈ Bir(S) induces an almost

automorphism f̃ on FS(k) that has a representative of the form (ϕ, F, F ′) such that the

vertices in the outer boundary of F do not contain any base-point of f and the vertices

in the outer boundary of F ′ do not contain any base-points of f −1, then f induces a

birational map SF ��� SF ′ that is bijective on k-points.

Proof. The rational base-point forests Ff (k) and Ff −1(k) have to be contained in F

and F ′, respectively. If F contains one more vertex than Ff (k), then we obtain SF by
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12 A. Genevois et al.

blowing up a point p in SFf (k). Correspondingly, SF ′ is obtained by blowing up the point

ψf (p) in SFf −1(k). Therefore, the induced birational map SF ��� SF ′ maps the exceptional

divisor of the blow-up of p isomorphically to the exceptional divisor of the blow-up

of ψf (p). It is therefore bijective on k-points. We proceed inductively to obtain the

general case. �

In a next step, let us observe that over finite fields, birational transformations

that are conjugate to an element in BBir(S′) for some regular projective S′ correspond

exactly to the birational transformations inducing elliptic almost automorphisms:

Lemma 3.4. Let k be finite and S a regular projective surface over k. Let � ⊂ Bir(S) be a

finitely generated subgroup. Then there exists an admissible rooted subforest F ⊂ FS(k)

such that every element in � can be represented by a triple of the form (ψ , F, F) if and

only if � is conjugate to a subgroup of BBir(S′) for some regular projective surface S′

over k.

Proof. First assume that there exists an admissible rooted subforest F ⊂ FS(k), such

that every g ∈ � can be represented by a triple of the form (ψ , F, F) for some rooted

forest isomorphism ψ : FC → FC. Let Fn be the rooted admissible subforest obtained

from F by adding all vertices of FC at distance at most n − 1 of the set of roots of λ(FC).

Observe that every element in � can be represented by the triple (ψ |(Fn)C , Fn, Fn). For

n large enough, Fn contains all the vertices corresponding to rational base-points of

elements of a symmetric generating set {γ1, . . . , γm} of �. As a consequence, Lemma 3.3

implies that � is conjugate to a subgroup of BBir(SFn).

On the other hand, assume that � is conjugate to a subgroup of BBir(S′) for

some regular projective surface S′ over k. After blowing up enough rational points, we

may assume that S′ lies above S and that � is conjugate to a subgroup of BBir(S′) by a

blow-up π : S′ → S of rational points. Let F⊂ FS(k) be the admissible rooted subforest

induced by the points blown up by π . Then every element f ∈ � induces the almost

automorphism represented by the triple (ψf , F, F), where ψf is the forest isomorphism

induced by π−1f π ∈ BBir(S′). �

3.2 Embedding and density

In this section, our base-field Fq is the field with q = pr elements. We will consider the

Cremona group Bir
Fq

(P2) over Fq. Note that a birational map ϕ : P
2 ��� S to a regular

projective surface S over Fq induces an isomorphism between Bir
Fq

(P2) and Bir(S) by
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Cremona and Neretin Groups 13

conjugation. Also, recall that a geometrically rational regular projective surface S over

k is birationally equivalent to P
2 if and only if S admits at least one rational point.

Lemma 3.5. The morphisms from Bir
Fq

(P2) to AAut(F P
2(Fq)) and to AAut(F P

2) given

by Proposition 3.1 are injective.

Proof. It is sufficient to show that the morphism from Bir
Fq

(P2) to AAut(F P
2(Fq)) is

injective. Let f ∈ Bir
Fq

(P2) be a transformation that induces the identity, as almost

automorphism, on F P
2(Fq), that is, f fixes all but finitely many rational points in the

bubble space B P
2(Fq). We show that f is the identity. After blowing up all the rational

base-points of f , we obtain a regular projective surface S such that f ∈ BBir(S). We will

work now over the algebraic closure of Fq. Observe that, as f is a local isomorphism

around each point p ∈ S(Fq), f induces an automorphism on the exceptional divisor Ep

of the blow-up of p, which is the identity, since Ep contains q+1 ≥ 3 rational points. Let

p ∈ S(Fq), and let U ⊂ S be a neighbourhood of p isomorphic to A
2 with local coordinates

(x, y) such that p = (0, 0). Consider the curve C given by {x = 0} and denote by f (C) the

strict transform of C.

Let πp : S̃ → S be the blow-up of p and f̃ the birational transformation on S̃

induced by f . Locally, πp is given by (x′, y′) → (x′y′, y′). The strict transform C̃ of C under

πp is given by {x′ = 0}. Assume that f (C) is given by the local equation p(x, y) = pm(x, y)+
r(x, y) = 0, where pm is a homogeneous polynomial of degree m and r(x, y) ∈ (x, y)m+1.

The total transform of f (C) under πp is therefore given by y′m(pm(x′, 1) + s(x′, y′)) for

some s(x′, y′) divisible by y′, and the strict transform f̃ (C̃) of f (C) under πp is given by

pm(x′, 1) + s(x′, y′) = 0. Since f̃ is a local isomorphism around Ep and fixes every point

on Ep, the strict transform f̃ (C) intersects Ep only in the point (0, 0), hence pm(x, y) =
xm. Since f (C) and hence f̃ (C) are irreducible, we have that either m = 1 and r(x, y) =
0, or that r(x, y) contains a term of the form yl for some l ≥ m + 1. Assume that the

second assertion is true. In this case, the polynomial s(x′, y′) contains a term of the form

y′l−m. We now blow up again the origin in the chart given by the coordinates (x′, y′)
and consider the strict transform of f̃ (C). If we iterate this process finitely many times,

we eventually obtain a strict transform that intersects the exceptional divisor not just

in the origin. But this is not possible, since the lifts of f induce a local isomorphism

around all the exceptional divisors and restricts to the identity map on the exceptional

divisors. We conclude that f (C) is given by {x = 0}. By choosing different coordinates,

we obtain with the same reasoning that f preserves each line in U passing through p.
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14 A. Genevois et al.

We complete U to P
2 and observe that f induces an automorphism on P

2, which has to

be the identity. �

Remark 3.6. Given two integers r ≥ 1 d ≥ 2, let Td,r denote the rooted tree whose

root has degree r and all of whose other vertices have degree d + 1. If r = n(d − 1) + 1

for some integer n ≥ 1, then the two groups AAut(Td,r) and AAut(Td) are isomorphic as

topological groups (since there exists an almost isomorphism from Td,r to Td).

Hence, when working over the finite field Fq, since the action is faithful, we

obtain an embedding of Bir
Fq

(P2) into AAut(F P
2(Fq)) � AAut(Td,r), for d = q + 1 and

r = (q + 1)q + 1, and hence we can consider Bir
Fq

(P2) as a subgroup of Nd.

Remark 3.7. Let us observe that a sequence of birational transformations {fn} in

Bir
Fq

(P2) converges towards the identity with respect to this topology if there exists

a sequence of regular projective surfaces Sn above P
2 of increasing height, such that,

for n large enough, fn induces a birational transformation on Sn fixing all the rational

points.

It is a natural question to ask, which permutations of the rational points S(Fq)

of a surface S over Fq can be induced by elements in BBir(S(Fq)). In general, not all

permutations of S(Fq) are induced by elements in BBir(S(Fq)). However, Cantat showed

the following:

Proposition 3.8. ([3, Theorem 2.1.]). Let Fq be a finite field with q elements. If q is odd

or q = 2, then every permutation of P2(Fq) can be realized by an element in BBir
Fq

(P2).

If q is even, then every even permutation of P2(Fq) can be realized by an element

in BBir
Fq

(P2).

Let us start with the following partial generalization of Proposition 3.8:

Proposition 3.9. Let X and Y be rational projective surfaces over a finite field Fq with q

elements. Assume moreover that X and Y lie above P
2, that is, that there exist birational

morphisms π : X → P
2 and ρ : Y → P

2.

1. If |X(Fq)| = |Y(Fq)| then there exists a birational map ϕ : X ��� Y that is

bijective on rational points.

2. Every even permutation of X(Fq) is induced by an element f ∈ BBir(X).
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Cremona and Neretin Groups 15

Proof. By considering only rational base-points we may assume that π and ρ are blow-

ups in rational points. The height of X is the number of base-points of π−1. Let us

observe that |X(Fq)| = |Y(Fq)| is equivalent to X and Y having the same height h. We will

prove the proposition by induction:

Fact 3.10. Claim (1) and (2) hold for h = 0, and Claim (2) holds for h = 1.

For h = 0, Claim (1) is trivially true and Proposition 3.8 states that Claim (2) is true

as well. As a next step, we assume h = 1 and we will show that Claim (2) holds.

In this case, π : X → P
2 is the blow-up of a single rational point a ∈ P

2 (Fq) with

exceptional divisor E. Let now b ∈ P
2 be a point of degree 2, in other words, over

the algebraic closure, b corresponds to two points b1, b2 that form a Galois orbit.

Consider now the standard quadratic transformation σa,b of P
2 given by the linear

system of conics passing through a and b. In other words, over the algebraic closure

of Fq, σa,b corresponds to the quadratic transformation given by blowing up a, b1, and

b2 and contracting the line defined over Fq passing through b1 and b2 as well as the

two lines passing through a and bi for i = 1, 2. We now observe that σa,b ∈ BBir(X)

and that σa,b maps the rational points on E to the rational points on a line L disjoint

from E.

Denote by BBir(X)E ⊂ BBir(X) the subgroup of elements preserving the set E(Fq)

(and hence also X(Fq) \ E(Fq)). Observe that the elements in BBir
Fq

(P2) fixing a lift to a

subgroup of BBir(X)E . By Proposition 3.8, we therefore get that by restriction BBir(X)E

induces a surjective homomorphism ρ : BBir(X)E → Sym(X(Fq) \ E(Fq)). In particular,

the image of ρ contains all even permutations. Consider now the homomorphism

η : BBir(X)E → Sym(E(Fq)) given by restriction. Then ρ(ker η) ⊂ Sym(X(Fq) \ E(Fq)) is

a normal subgroup. Note that ρ(kerη) is non-trivial, since otherwise we would obtain a

surjection BBir(X)E/ ker η → BBir(X)E/ ker ρ, but no subgroup of Sym(E(Fq)) surjects to

the image of ρ. Since X(Fq) \ E(Fq) ≥ 6, the only non-trivial proper normal subgroup of

Sym(X(Fq) \ E(Fq)) is the subgroup of even permutations Sym+(X(Fq) \ E(Fq)), therefore,

Sym+(X(Fq) \ E(Fq)) ⊂ ρ(ker(η)). In other words, we can realize every even permutation

on X(Fq) \ E(Fq) by an element in BBir(X) fixing E(Fq) pointwise. Together with σa,b, we

can therefore realize every even permutation on X(Fq) that fixes X(Fq)\E(Fq) pointwise,

and, in a second step, every even permutation of X(Fq) (by using the fact that the even

permutations are generated by three-cycles and the fact that we have enough points

in X(Fq) that are neither contained in E(Fq) nor in σa,b(E(Fq))). So Claim (2) holds

for h = 1.
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16 A. Genevois et al.

Fact 3.11. If Claims (1) and (2) hold for all X and Y of height ≤ h, then Claim (1) also

holds for all X and Y of height h + 1.

Assume that X is obtained from P
2 by blowing up rational points p1, . . . ph+1 and Y is

obtained by blowing up rational points q1, . . . , qh+1. Up to reordering the pi and qi, we

may assume that X is the blow-up of ph+1 on the surface X ′ of height h and Y is the

blow-up of qh+1 on the surface Y ′ of height h. Using (1) and (2), we know that there

exists a birational map ϕ′ : X ′ ��� Y ′ bijective on rational points that maps ph+1 to qh+1.

In particular, ϕ′ is a local isomorphism at ph+1, so it lifts to a birational map ϕ : X ��� Y

that is bijective on the rational points.

Fact 3.12. If Claim (2) holds for all X of height ≤ h and Claim (1) holds for all surfaces

X and Y of height ≤ h + 1, where h ≥ 1, then Claim (2) holds for all surfaces X of

height h + 1.

Let X be a surface of height h+1. By using Claim (1), we may assume that X is the

blow-up of two proper rational points p and s on a surface X ′ of height h−1. Denote by Ep

and Es the exceptional divisors on X corresponding to p and s, respectively. Let Xp and

Xs be the surface obtained from X ′ by blowing up respectively p and s. By using Claim

(2), every even permutation on Xp(Fq) can be realized by an element in BBir(Xp) and

every even permutation on Xs(Fq) can be realized by an element in BBir(Xs). Moreover,

since X ′(Fq) contains more than four points, there exists an element τ in BBir(X ′)
that exchanges p and s and hence lifts to an element in BBir(X) exchanging the sets

Ep(Fq) and Es(Fq) with each other. With the same reasoning as in the proof of Fact 3.10

(where τ takes the role of σa,b), this implies that BBir(X) induces all even permutations

on X(Fq).

Let f ∈ AAut(F P
2(Fq)) be represented by (ϕ, F, F). Note that Proposition 3.9

implies in particular that there exists an element g ∈ Bir
Fq

(P2) that can be represented

by (ψ , F, F) such that ϕ and ψ induce the same permutation on the roots of FC. Indeed,

let F ′ be the rooted forest obtained by adding all the descendants to the roots of FC.

Proposition 3.9 implies that every even permutation of XF ′(Fq) can be realized by some

element in BBir(XF ′). In particular, every even permutation on the roots of F ′C is induced

by an element (ψ , F ′, F ′) given by an element from BBir(XF ′). This implies that every

permutation (even if it is not even) on the roots of FC is induced by some (ψ , F, F) given

by an element in BBir(XF ′) and hence by an element g ∈ Bir
Fq

(P2). (This g however, is not

always conjugate to an element in BBir(XF), by Theorem 1.5.) �
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Cremona and Neretin Groups 17

Lemma 3.13. Consider Bir
Fq

(P2) over Fq as a subgroup of AAut(F P
2(Fq)). Then the

intersection Bir
Fq

(P2) ∩ Aut(F P
2(Fq)) is dense in Aut(F P

2(Fq)).

Proof. We need to show that for every rooted forest automorphism f ∈ Aut(F P
2(Fq))

and for every ε > 0, there exists a g ∈ Bir
Fq

(P2)∩ Aut(F P
2(Fq)) such that d(f , g) < ε. Let

Fr ⊂ F P
2(Fq) be the admissible subforest containing all the vertices of distance at most

r from the roots. Then f (Fr) = Fr. By Proposition 3.9, every even permutation of the roots

of FC
r is induced by an element of Bir

Fq
(P2). This implies, as explained above, that every

permutation of the roots of FC
r is induced by an element of Bir

Fq
(P2). In particular, there

exists a g ∈ Bir
Fq

(P2) such that g induces the same permutation on the roots of FC
r as f .

This implies, by the definition of the topology on Aut(F P
2(Fq)), that d(g, f ) ≤ e−r. �

The following result together with Lemma 3.5 and Remark 3.6 proves

Theorem 1.4.

Proposition 3.14. When working over the finite field Fq, the subgroup Bir
Fq

(P2) ⊂
AAut(F P

2(Fq)) is dense.

Proof. We will show that every coset of Aut(F P
2(Fq)) in AAut(F P

2(Fq)) can be

represented by an element in Bir
Fq

(P2). Let f ∈ AAut(F P
2(Fq)) be an element represented

by (ϕ, F, R). After possibly enlarging F, we may assume that F = Fr for some r, where

Fr ⊂ F P
2(Fq) is the admissible subforest containing all the vertices of distance at most

r from the roots.

Consider two blow-ups πF : SF → P
2 and πR : SR → P

2 corresponding to F and R,

respectively. Since FC and RC have the same number of roots, |SF(Fq)| = |SR(Fq)|, hence

by Proposition 3.9, there exists a birational map g : SF ��� SR that is bijective on rational

points. The element πRgπ−1
F ∈ Bir

Fq
(P2) therefore induces an almost automorphism of

the form (ψ , F, R) for a suitable ψ . By Proposition 3.9, there exists an element in Bir
Fq

(P2)

that induces the same map on the roots of RC as the map (ψ , F, R)(ϕ, F, R)−1 = (ψ ◦
ϕ−1, R, R). Hence, up to composing with another element from Bir

Fq
(P2), we may assume

that (ψ , F, R)(ϕ, F, R)−1 is in Aut(F P
2(Fq)). �

3.3 Parity

The goal of this section is to prove that if q = 2n, where n ≥ 2, and S is a regular

projective rational surface over Fq, then the permutation on S(Fq) induced by an element

f ∈ BBir(S) is always even. The result will essentially follow from our point of view of
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18 A. Genevois et al.

looking at Bir
Fq

(P2) over Fq as the group of almost automorphisms of the blow-up forest,

and the following three results (Lemma 3.15, Theorem 3.16, and Theorem 3.17). The first

lemma is not hard to prove (see for instance [1, Theorem 2.1]). Note that the statement

does no longer hold if q = 2 or if q is odd (see Proposition 3.8).

Lemma 3.15. Let Fq be a finite field of even characteristic with q ≥ 4 elements. Then

the permutations on P
1(Fq) induced by PGL2(Fq) are even.

The following result is more difficult to show:

Theorem 3.16. ([1]). Let q = 2n ≥ 4, and let f ∈ Bir
Fq

(P2) over Fq be of finite order. Then

there exists a regular projective surface S over Fq such that f is conjugate by a birational

map to an automorphism of S and the permutation on S(Fq) induced by f is even.

Theorem 3.16 is proven in [1, Corollary 3.17], which states that every automor-

phism of a del Pezzo surface S induces an even permutation on S(Fq), [1, Theorem 3.18],

which states that every automorphism of a conic bundle C over P
1 induces an even

permutation on C(Fq), and [1, Lemma 3.13], which states that over Fq every element

of finite order in Bir
Fq

(P2) is conjugate to an automorphism of a del Pezzo surface or an

automorphism of a conic bundle over P
1.

The last crucial ingredient for our proof is the following very recent result by

Lamy and Schneider:

Theorem 3.17. ([22]). The Cremona group Bir
Fq

(P2) over a finite field Fq is generated

by involutions.

In the remaining part of this section, we assume that q is even and that q �= 2.

Given a rational regular projective surface S, let us fix an embedding of our

rational blow-up forest FS(Fq) into the plane R
2. We may assume that the roots lie on

the line y = 0 and that all the vertices on level n lie on the line y = n. Let F ⊂ FS(Fq) be

a rooted subforest. Then the set of roots of FC inherits the ordering from left to right.

If X is a surface above S, then this embedding induces in particular an order on the

points X(Fq). In that way, we can define a notion of parity for every birational map

f : X ��� Y bijective on rational points, where X and Y are surfaces above S: we identify

both sets X(Fq) and Y(Fq) with {1, . . . , n} by the left to right order, and we call the map

f even, if the corresponding permutation of {1, . . . , n} is even. Let us make the following

observation:
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Cremona and Neretin Groups 19

Lemma 3.18. Given a rational regular projective surface S, we can choose the embed-

ding of FS(Fq) into R
2 in such a way that the following property is satisfied:

(A) For all regular projective surfaces X and Y above S, for all birational maps

f : X ��� Y bijective on rational points, and for all p ∈ X(Fq) such that f is a

local isomorphism around p the following holds: let X ′ be the blow-up of X

in p and Y ′ the blow-up of Y in f (p), with exceptional divisors Ep and Ef (p).

We identify Ep(Fq) and Ef (p)(Fq) with the set {1, . . . , q+1} by virtue of the left

to right order. Then the bijection between Ep(Fq) and Ef (p)(Fq) induced by f

is even.

Proof. Choosing an embedding of FS(Fq) into R
2 amounts to choosing a left to right

order on the points on each height that is compatible with the forest structure. We

define these orders inductively. First, choose any order on the points S(Fq). Next, choose

a point p′ ∈ S(Fq) and let Ep′ be the exceptional divisor obtained by blowing up p′ and

fix an order on the points Ep′(Fq). Assume now that we have defined an embedding of

the blow-up forest up to height n. Let now p′′ = (p′′, S′′, π) be a point in the bubble

space of height n. We now need to define an order on the rational points Ep′′(Fq),

where Ep′′ is the exceptional divisor obtained by blowing up S′′ in p′′. For this, we

choose a representative (p′′, S′′, π). There exists a birational map ϕp′′ : S ��� S′′ that

is a local isomorphism around p′ such that ϕp′′(p′) = p′′. We choose such a local

isomorphism. Being a local isomorphism, ϕp′′ induces a bijective map Ep′(Fq) → Ep′′(Fq).

We now equip Ep′′(Fq) with the order induced by Ep′(Fq) through this bijection. We

continue in that way until we have an embedding of the vertices up to height n and

then continue inductively. Of course, this order on the points Ep′′(Fq) depends on the

choice of ϕp′′ .

Let us now show that the embedding we obtain in that way (no matter which

choices we make) satisfies the desired property (A). Let X, Y, f , and p be as stated, and

assume that we identify the rational blow-up forests FX(Fq) and FY(Fq) to subforests

of FS(Fq) through the rational morphisms π : X → S and ρ : Y → S. So if we consider

p and f (p) as elements of BS(Fq), we can represent them by (p, X, π) and (f (p), Y, ρ),

respectively. Let (r, X ′, π ′) and (r′, Y ′, ρ′) be the representatives of p and f (p) that we

chose when defining the order on Ep and Ef (p), and let ϕr : S ��� X ′, ϕr′ : S ��� Y ′

be the chosen local isomorphisms around p′. We can now observe that the birational

transformation � := (ϕ−1
r′ ρ′−1ρ)f (π−1π ′ϕr) : S ��� S is a local isomorphism around p′

and �(p′) = p′. Therefore, � induces a morphism from Ep′ to itself, which is given by an
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20 A. Genevois et al.

Fig. 1. The order on the rational points on the blow-ups.

element from PGL2 and hence, by Lemma 3.15, induces an even permutation on Ep′(Fq).

Since, by construction, ϕr and ϕr′ induce order preserving maps from Ep′(Fq) to Ep(Fq)

and Ef (p)(Fq), respectively, this implies that the bijection Ep(Fq) → Ef (p)(Fq) induced by

f is even. �

From now on, we will always assume that FS(Fq) is embedded in R
2 in such a

way that property (A) is satisfied.

Lemma 3.19. Let X and Y be regular projective surfaces above a rational regular

projective surface S, let f : X ��� Y be a birational map bijective on rational points, and

let ε be the parity of the induced map f : X(Fq) → Y(Fq), if we identify X(Fq) and Y(Fq)

with {1, . . . , n}. Then for every p ∈ X(Fq) the induced bijective map f̃ : Xp(Fq) → Yf (p)(Fq)

has also parity ε, where Xp and Yf (p) are the surfaces obtained by blowing up p and f (p),

respectively.

Proof. Assume that p is on position s and p′ = f (p) is on position r. The

rational points Ep(Fq) on the exceptional divisor of the blow-up of p correspond

to the numbers {s, . . . , s + q} under the identification of Xp(Fq) with {1, . . . , n + q}
and the rational points Ep′(Fq) on the exceptional divisor of the blow-up of p′

correspond to the numbers {r, . . . , r + q}. The situation is illustrated in Figures 1a

and 1b.
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Cremona and Neretin Groups 21

Let τ be the permutation of {1, . . . , n} induced by f and let τ̃ be the permutation

of {1, . . . , n + q} induced by f̃ . Hence, we have the following commutative diagram:

where α maps {s, . . . , s + q} to s and is bijective and order preserving on {1, . . . , s − 1, s +
q + 1, . . . , n + q}, and β maps {r, . . . , r + q} to r and is bijective and order preserving on

{1, . . . , r − 1, r + q + 1, . . . , n + q}. Since the embedding of FS(Fq) satisfies property (A),

we may assume—up to composing τ̃ by an even permutation—that the restriction of τ̃

to {s, . . . , s + q} preserves the order.

Let σ be the permutation of {1, . . . , n} that maps r to s and that is order preserving

on {1, . . . , r, . . . n}, and let σ̃ be the permutation of {1, . . . , n+q} such that σ̃ ({r, . . . , r+q}) =
{s, . . . , s + q} and such that the restriction to {1, . . . , r − 1, r + 1, . . . , n + q} as well as to

{r, . . . , r + q} is order preserving. Then στ fixes s and σ̃ τ̃ fixes {s, . . . , s + q} pointwise. We

obtain the following commutative diagram:

Let us now observe that σ̃ τ̃ and στ have the same parity. Moreover, the parity of

σ is (−1)r−s and the parity of σ̃ is (−1)(r−s)(q+1). By assumption, q is even and hence σ

and σ̃ have the same parity. We obtain that τ and τ̃ have the same parity, which proves

the lemma. �

To an almost automorphism of FS(Fq) represented by a triple (ψ , F, F ′), we would

like to associate a notion of parity by saying that ψ is even, if the induced bijection on

the roots of the complements λ(FC) → λ(F ′C) is even for all F and F ′ large enough, with

respect to the above defined ordering, and odd, if the the bijection is odd. If q is odd or

q = 2, this notion is not well defined, since it depends on the choice of the representative

(ψ , F, F ′). However, the next lemma shows with the help of Lemma 3.15 that the notion

is well defined for almost automorphisms induced by birational maps Bir
Fq

(P2) over Fq,

if q is even and q �= 2.
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22 A. Genevois et al.

Lemma 3.20. Assume that q is even and q �= 2, and let S be a rational regular projective

surface over Fq. Then for all triples (ψ , F, F ′) representing the almost automorphism

on FS(Fq) given by an f ∈ Bir(S), such that F contains the vertices corresponding to

the rational base-points of f and F ′ contains the vertices corresponding to the rational

base-points of f −1, the parity of the induced map λ(FC) → λ(F ′C) is the same.

This will be called the parity of f .

Proof. Let (ψ , F, F ′) be a triple representing f and denote by πF : SF → S and πF ′ : SF ′ → S

the blow-ups corresponding to F and F ′, respectively. Since F and F ′ contain the base-

points of f and f −1 respectively, we can assume that ψ corresponds to the bijection

SF(Fq) → SF ′(Fq) induced by the birational map π−1
F ′ f πF that is bijective on the rational

points. Let (ψ̃ , F̃, F̃ ′) be another triple representing f such that F ⊂ F̃ and F ′ ⊂ F̃ ′. We

will now show that the parity of the induced map on λ(F̃C) → λ(F̃ ′C) is the same as

the parity of the induced map λ(FC) → λ(F ′C). We proceed inductively on the number

of interior vertices of F. To do so, assume that F̃ has one interior vertex more than F.

Again, we denote by πF̃ : SF̃ → S and πF̃ ′ : SF̃ ′ → S the blow-ups corresponding to F̃ and

F̃ ′. As F̃ has one interior vertex more than F, there exists a point p ∈ SF such that SF̃

is obtained from SF by blowing up p. Similarly, SF̃ ′ is obtained from SF ′ by blowing up

the point π−1
F ′ f ψF(p). It follows now from Lemma 3.19 that the map SF̃(Fq) → SF̃ ′(Fq)

induced by π−1
F̃ ′ f πF̃ has the same parity as the map SF(Fq) → SF ′(Fq) induced by π−1

F ′ f πF

and consequently that the map

λ(F̃C) → λ(F̃ ′C)

induced by ψ̃ has the same parity as the map λ(FC) → λ(F ′C) induced by ψ . This

completes the proof. �

Lemma 3.21. Let f ∈ Bir
Fq

(P2) be a birational transformation over Fq that is conjugate

by a birational map to an element f̃ ∈ BBir(S), for some regular projective surface S.

Then the parity of f coincides with the parity of the induced map S(Fq) → S(Fq).

Proof. Let S′ be the surface obtained by iteratively blowing up all the rational points

on S(Fq) so that it dominates P
2. Then f is conjugate to an element f ′ ∈ BBir(S′), since

in particular, the rational base-points of f and f −1 have been blown up to obtain S′.
Consequently, by Lemma 3.20, the parity of f is given by the parity of the map f ′. By

applying Lemma 3.20, we see that the parity of f ′ is the same as the parity of the map

S(Fq) → S(Fq) induced by f̃ . �
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Lemma 3.22. Let f , g ∈ Bir
Fq

(P2) over Fq, where q is even and q �= 2. Then the parity of

fg is the product of the parities of f and g.

Proof. This follows directly from the definition of the parity. Let (ϕ, R, F) be the almost

automorphism of F P
2(Fq) induced by f and (ψ , U, R) the one induced by g. Then, for all

large enough R, the map λ(RC) → λ(FC) induced by ϕ has the parity of g and the map

λ(UC) → λ(RC) induced by ψ has the parity of f . Therefore, the parity of the almost

automorphism (ϕψ , U, F) induced by fg is the product of the parities of f and g. �

We have now all the ingredients to show Theorem 1.5:

Proof of Theorem 1.5. Firstly, by Theorem 3.16, an involution on Bir
Fq

(P2) is always

conjugate to an element in BBir(S) for some regular projective surface S and the

corresponding permutation on S(Fq) is even. Secondly, by Lemma 3.21, this implies that

involutions are even. Finally, by Theorem 3.17, Bir
Fq

(P2) is generated by involutions, so

we conclude with Lemma 3.22 that all birational transformations in Bir
Fq

(P2) are even.

By applying again Lemma 3.21, we obtain that for a rational regular projective

surface S, all elements in BBir(S) induce even permutations on S(Fq). �

Remark 3.23. In [6] and [25], the subgroup AAutD(Td,n) ⊂ AAut(Td,n) is defined and

studied for a subgroup D ⊂ Sd in the following way: fix an embedding of Td,n into the

plane. Denote by W(D) the subgroup of automorphisms of the d-regular rooted tree Td

that act on the vertices on the first level by D1 := D and by Dn+1 := D � Dn on the vertices

on the n-th level for n > 1. A quasi-automorphism f ∈ AAut(Td,n) is now defined to

be contained in AAutD(Td,n) if f can be represented by a triple (ϕ, T, T ′) such that the

forest isomorphism ϕ : TC → T ′C belongs to W(D) on each connected component after

identifying each connected component of the forest with Td through its embedding into

the plane. If D = Ad is the group of even permutations, one can show similarly as above

that there exists a notion of parity for elements in AAutD(Td,n).

4 Cubulation of Neretin Groups

In this section, we assume the reader familiar with the notion of CAT(0) cube complexes,

which are simply connected (and connected) non-positively curved cube complexes, see

for instance [38].
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24 A. Genevois et al.

4.1 Main construction

Let T be a locally finite rooted tree and let N := AAut(T ) denote its almost automor-

phism group. Recall that a subtree A ⊂ T is admissible if it contains the root and is

finite, and we denote by λ(AC) the set of the roots of the complementary forest AC.

Observe that λ(AC) can also be described as the set of the children of A.

In the sequel, we will often refer to a forest isomorphism RC → SC as given

by an element ϕ ∈ N . Formally, this is not correct since ϕ is a class and not a

single transformation. By this abuse of language, we mean that there exists a forest

isomorphism RC → SC defining the same element as ϕ in N .

Definition 4.1. Let C = C (T ) denote the cube complex

• whose vertices are the classes [A, ϕ] of pairs (A, ϕ), where A ⊂ T is non-empty

admissible subtree and ϕ ∈ N , up to the equivalence: (R, μ) ∼ (S, ν) if μ−1ν is

a forest isomorphism SC → RC that sends λ(SC) to λ(RC);

• whose edges connect any two vertices of the form [A, ϕ] and [A ∪ b, ϕ] with

b ∈ λ(AC), where A∪b denotes the subtree given by A and the edge connecting

b to A;

• and whose k-cubes are spanned by subgraphs of the form

{[
A ∪

⋃
i∈I

bi, ϕ

]
| I ⊂ {1, . . . , k}

}
,

where b1, . . . , bk are pairwise distinct vertices in λ(AC).

The complex C is naturally endowed with a height function h : C (0) → N.

Namely, for every vertex [A, ϕ] ∈ C , the height h([A, ϕ]) is the cardinality of λ(AC); observe

that this number does not depend on the representative we choose.

It is straightforward that

ψ · [A, ϕ] := [A, ψ ◦ ϕ], [A, ϕ] ∈ C , ψ ∈ N

defines an action of N on C by automorphisms preserving the height function.

The rest of the section is dedicated to the proof of Theorem 1.1. In fact, we are

going to prove a slightly more general result: instead of focusing on a regular tree Td,
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Cremona and Neretin Groups 25

we consider a tree Td,r whose root has r children and all of whose other vertices have d

children.

Theorem 4.2. If T = Td,r for some d ≥ 2 and r ≤ d, then the complex C is a locally

finite CAT(0) cube complex on which the Neretin group N acts with compact-open

stabilizers. Moreover, every vertex-stabilizer equals the automorphism group of some

cofinite rooted subforest and, conversely, for each cofinite rooted subforest, there exists

a vertex-stabilizer that is its automorphism group.

Observe that the condition r ≤ d is not restrictive: indeed, if r ≥ d, then the trees

Td,r and Td,r−d+1 are almost isomorphic, so the corresponding almost automorphism

groups are isomorphic. Even though our main statement only deals with regular trees,

we emphasize that several of our intermediate results hold for arbitrary locally finite

trees. More precisely, Propositions 4.3 and 4.5 show that our cube complex C is always

locally finite and simply connected (see also Remark 4.14).

Local finiteness. Let T be a locally finite rooted tree. We begin by proving the following

observation:

Proposition 4.3. The cube complex C is locally finite.

The next lemma, which characterizes how to pass from a vertex to one of its

neighbours with higher height, will be useful in the sequel.

Lemma 4.4. Let x, y ∈ C be two adjacent vertices such that h(y) > h(x). If (R, ϕ) is a

representative of x, then there exists a vertex b ∈ λ(RC) such that y = [R ∪ b, ϕ].

Proof. By construction of C , we can write x and y respectively as [A, ψ ] and [A ∪ c, ψ ].

From the equality [A, ψ ] = [R, ϕ], we know that ϕ−1ψ defines a forest isomorphism

AC → RC sending λ(AC) to λ(RC). Set b := ϕ−1ψ(c) ∈ λ(RC). Because ϕ−1ψ defines a

forest isomorphism (A ∪ c)C → (R ∪ b)C, we conclude as desired that y = [A ∪ c, ψ ] =
[R ∪ b, ϕ]. �

Proof of Proposition 4.3. Let x = [R, ϕ] ∈ C be a vertex. According to Lemma 4.4, x

has exactly h(x) neighbours of higher height. So, in order to conclude, it is sufficient

to bound the size of any collection {yi | i ∈ I} of neighbours of lower height. For every

i ∈ I, fix a representative (Ai, ψi) of yi. We know from Lemma 4.4 that there exists some
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26 A. Genevois et al.

ai ∈ λ(AC
i ) such that (Ai ∪ ai, ψi) represents x. From the equality [R, ϕ] = [Ai ∪ ai, ψi], we

know that ϕ−1ψi induces a forest isomorphism (Ai ∪ ai)
C → RC sending λ((Ai ∪ ai)

C) to

λ(RC); let ci ⊂ λ(RC) denote the images of the children of ai under ϕψ−1
i . If |I| > 2#λ(RC),

then there exist two distinct indices i, j ∈ I such that ci = cj. Thus, (ϕ−1ψj)
−1 ◦ ϕ−1ψi =

ψ−1
j ψi induces a forest isomorphism (Ai ∪ ai)

C → (Aj ∪ aj)
C sending λ((Ai ∪ ai)

C) to

λ((Aj∪aj)
C) and the children of ai to the children of aj, which implies that ψjψ

−1
i induces

a forest isomorphism AC
i → AC

j sending λ(AC
i ) to λ(AC), hence yi = [Ai, ψi] = [Aj, ψj] = yj.

Therefore, we have proved that x has only finitely many neighbours of lower height, as

desired. �

Simple connectivity. The next step towards nonpositive curvature is to show that our

cube complex is simply connected when T is a locally finite rooted tree. The subsection

is dedicated to the proof of this assertion.

Proposition 4.5. The cube complex C is connected and simply connected.

Proof. Given two vertices x, y ∈ C , we say that y dominates x if there exists an

increasing path from x to y in C , that is, a path along which the next vertex has higher

height than the previous one. We begin by observing:

Claim 4.6. For every finite set of vertices S ⊂ C , there exists a vertex z ∈ C that

dominates all the vertices in S.

Let (R1, ϕ1), . . . , (Rk, ϕk) be representatives of the vertices in S. For every 1 ≤ i ≤
k, fix two admissible subtrees Ui, Vi ⊂ T such that ϕi defines a forest isomorphism

UC
i → VC

i sending λ(UC
i ) to λ(VC

i ); without loss of generality, we can assume that Ri ⊂ Ui.

Now, fix a subtree A ⊂ T that contains all the Vi. We claim that [A, id] dominates all the

vertices in S.

Indeed, given an index 1 ≤ i ≤ k, there clearly exists an increasing path from

[Ri, ϕi] to [Ui, ϕi] since Ui contains Ri. But [Ui, ϕi] = [Vi, id], by definition of Ui and Vi. And

there clearly exists an increasing path from [Vi, id] to [A, id] since A contains Vi. Thus,

[A, id] dominates [Ri, ϕi]. This concludes the proof of Claim 4.6.

Observe that Claim 4.6 implies that C is connected. Now, we want to prove that

C is simply connected. Given an arbitrary combinatorial loop α in the one-skeleton of

C , we define its height h(α) as the sum of the heights of its vertices and its complexity

by χ(α) := (lg(α), −h(α)) (ordered by lexicographic order), where lg(α) denotes the length

of the path α.
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Cremona and Neretin Groups 27

Let γ be a combinatorial loop in C and [A, ψ ] be a vertex that dominates all the

vertices in γ (as given by Claim 4.6). If γ is not reduced to a single vertex, we define a

new combinatorial loop γ ′ as follows. Fix a vertex x ∈ γ that has minimal height. Its

neighbours y and z in γ necessarily have higher heights, so it follows from Lemma 4.4

that we can write x as [R, ϕ] and y, z respectively as [R∪a, ϕ], [R∪b, ϕ] where a, b ∈ λ(RC).

If y = z, define γ ′ from γ by removing this backtrack; otherwise, define γ ′ by replacing x

with x′ := [R∪a∪b, ϕ]. Clearly, γ ′ is homotopically equivalent to γ and χ(γ ′) < χ(γ ). Also,

observe that x′ is also dominated by [A, ψ ]. Indeed, because y is dominated by [A, ψ ], it

follows from Lemma 4.4 that [A, ψ ] can also be written as [R∪a∪x1∪· · ·∪xr, ϕ]; similarly,

it can also be written as [R ∪ b ∪ y1 ∪ · · · ∪ ys, ϕ]. But:

Fact 4.7. For all subtrees U, V ⊂ T and element ξ ∈ N , if [U, ξ ] = [V, ξ ], then U = V.

So there must exist some index 1 ≤ i ≤ r such that xi = b, which implies that

there exists an increasing path from y = [R ∪ a, ϕ] to [A, ψ ] passing through x′ = [R ∪ a ∪
b, ϕ] (it suffices to add the xj in a well-chosen order).

Thus, we have constructed a new loop γ ′ that is homotopically equivalent to

γ , which has smaller complexity and all of whose vertices are dominated by [A, ψ ]. By

iterating the process, we get a sequence of combinatorial loops γ , γ ′, γ ′′, . . . that are

pairwise homotopically equivalent. Observe that the height of each loop is bounded

above by lg(γ )h([A, ψ ]), a constant that does not depend on the loop under consideration.

Consequently, the process has to stop eventually, which is only possible if one of the

loops is reduced to a single vertex. We conclude that γ is homotopically trivial. �

Descending links. So far, we have only assumed that T is a locally finite rooted tree.

From now on, and for the rest of the section, we assume that T = Td,r for some d ≥ 2

and r ≤ d.

Given a vertex x ∈ C , we distinguish the ascending part link↑(x) of link(x)

from its descending part link↓(x). More precisely, link↑(x) (resp. link↓(x)) denotes the

subcomplex of link(x) generated by the neighbours of x of higher (resp. lower) height.

In this section, we focus on the descending part of the link. This is the most interesting

part, since we will see later that the ascending link of a vertex is always a simplex. The

following proposition is the main result of the subsection. It states that descending

links of vertices belong to the following families of simplicial complexes. For all

p, q ≥ 0, I(p, q) denotes the simplicial complex whose vertices are the subsets of size

p in {1, . . . , q} and whose simplices are spanned by vertices given by pairwise disjoint

subsets.
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In order to state our proposition, we need to introduction some notation. First,

given a vertex v in our rooted tree T , we denote by c(v) the set of all the children of

v. Next, given an admissible subtree R ⊂ T , a rigid permutation of the children of R

is a forest isomorphism RC → RC that preserves the left-right order on each connected

component (thinking of T drawn on the plane so that the children of each vertex are

naturally ordered from left to right). We denote by Rig(R) the (finite) subgroup of N
given by the rigid permutations of the children of R. Observe that Rig(R) is isomorphic

to the symmetric group Sk where k denotes the number of children of R.

Proposition 4.8. Let x ∈ C be a vertex. Assume that x admits a representative of the

form (R, id), and fix a leaf u of R. Then the map

� : [R\u, σ ] �→ σ(c(u)), σ ∈ Rig(R)

induces an isomorphism from link↓(x) to I(|c(u)|, h(x)).

Proof. First of all, we need to justify that � is well-defined, that is, every neighbour of

x of lower height can be written as [R\u, σ ] for some σ ∈ Rig(R) and the choice of such a

σ does not modify the value of σ(c(u)). This is done by our first two claims.

Claim 4.9. For every neighbour y of x of lower height, there exists some σ ∈ Rig(R)

such that y = [R\u, σ ].

Let (S, ϕ) be a representative of y. There must exist some � ∈ λ(SC) such that

x = [S ∪ �, ϕ]. The equality [R, id] = [S ∪ �, ϕ] means that ϕ induces a forest isomorphism

(S ∪ �)C → RC sending λ((S ∪ �)C) to λ(RC). Since ϕ(c(�)) lies in λ(RC) and since u is a

leaf of R, there exists some σ ∈ Rig(R) such that σ(ϕ(c(�))) = c(u). Then σϕ extends to

a forest isomorphism SC → (R\u)C sending λ(SC) to λ((R\u)C), which precisely means

that y = [S, ϕ] = [R\u, σ−1].

Claim 4.10. For all μ, ν ∈ Rig(R), [R\u, μ] = [R\u, ν] if and only if μ(c(u)) = ν(c(u)).

First, assume that [R\u, μ] = [R\u, ν]. We know that ν−1μ defines both a rigid

permutation of the children of R and a forest isomorphism (R\u)C → (R\u)C preserving

λ((R\u)C). Observe that ν−1μ has to fix u, since otherwise it would send some children

of u in λ(RC) to a children of a children of R, contradicting the fact that ν−1μ permutes

the children of R. Hence ν(c(u)) = μ(c(u)) as desired.
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Conversely, assume that ν(c(u)) = μ(c(u)). Then the isomorphism ν−1μ : RC →
RC extends to (R\u)C → (R\u)C by sending u to itself. Hence, [R\u, μ] = [R\u, ν]. This

concludes the proof of Claim 4.10.

Observe that Claim 4.10 shows that � is well-defined and injective. Since it is

clearly surjective, it follows that � defines a bijection from the vertices of link↓(x) to the

vertices of I(|c(u)|, h(x)). In order to conclude the proof of our proposition, it remains

to show that � preserves the simplicial structure, which is a consequence of our next

observation:

Claim 4.11. For all k ≥ 2 and σ1, . . . , σk ∈ Rig(R), the vertex x and its neighbours

[R\u, σ1], . . . , [R\u, σk] span a k-cube if and only if σ1(c(u)), . . . , σk(c(u)) are pairwise

disjoint.

First, assume that x and its neighbours [R\u, σ1], . . . , [R\u, σk] span a k-cube. By

construction of C , there exists an admissible subtree A ⊂ T , k pairwise distinct vertices

a1, . . . , ak ∈ λ(AC), and an element ϕ ∈ N such that

[A ∪ a1 ∪ · · · ∪ ai−1 ∪ ai+1 ∪ · · · ∪ ak, ϕ] = [R\u, σi]

for every 1 ≤ i ≤ k and [A ∪ a1 ∪ · · · ∪ ak, ϕ] = [R, id]. Given an index 1 ≤ i ≤ k, σ−1
i ϕ

defines an isomorphism

(A ∪ a1 ∪ · · · ∪ ai−1 ∪ ai+1 ∪ · · · ∪ ak)C → (R\u)C

sending λ((A∪a1 ∪· · ·∪ai−1 ∪ai+1 ∪· · ·∪ak)C) to λ((R\u)C). If σ−1
i ϕ(ai) is distinct from u,

then it has to be a children of R. Because σi permutes the children of R, a fortiori ϕ(ai) is

also a children of R, which implies that ϕ sends the children of ai to children of children

of R, contradicting the fact that ϕ defines an isomorphism (A ∪ a1 ∪ · · · ∪ ak)C → RC

sending λ((A∪a1 ∪· · ·∪ak)C) to λ(RC). So we must have σ−1
i ϕ(ai) = u, which implies that

ϕ(c(ai)) = σi(c(u)). Consequently, the σj(c(u)) are pairwise disjoint if and only if so are

the c(aj), which is clear since the aj are pairwise distinct.

Conversely, assume that σ1(c(u)), . . . , σk(c(u)) are pairwise disjoint. As a conse-

quence, λ(RC) must have cardinality ≥ kd. On the other hand,

|λ(RC)| ≤ |∂−R\{root}|d + #{neighbours of the root not in R}
< (|∂−R\{root}| + 1)d,
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where ∂−A, for a non-empty admissible subtree A, is the set of vertices in A but adjacent

to vertices not in A. So ∂−R must contain at least k vertices distinct from the root. Let

u1, . . . , uk ∈ R be k such vertices. Because σ1(c(u)), . . . , σk(c(u)) are pairwise disjoint, we

can find a permutation ϕ ∈ Rig(R) of the children of R such that ϕ(c(ui)) = σi(c(u))

for every 1 ≤ i ≤ k. Observe that, for every 1 ≤ i ≤ k, σ−1
i ϕ defines an isomorphism

(R\ui)
C → (R\u)C sending λ((R\ui)

C) to λ((R\u)C), so [R\ui, ϕ] = [R\u, σi]. Also, [R, ϕ] =
[R, id]. Therefore, x and its neighbours [R\u, σ1], . . . , [R\u, σk] span the cube

{[
S ∪

⋃
i∈I

ui, ϕ

]
| I ⊂ {1, . . . , k}

}
, where S := R\

k⋃
i=1

ui.

This concludes the proof of Claim 4.11, and of our proposition. �

Proof of the CAT(0) property. We are now ready to prove our main result in the case of

T = Td,r for some d ≥ 2 and r ≤ d.

Proof of Theorem 4.2. We already know from Proposition 4.5 that C is simply

connected. But it remains to show that links of vertices in C are simplicial flag

complexes in order to conclude that C is CAT(0). First, observe that:

Claim 4.12. For every vertex x ∈ C , link(x) decomposes as the join of link↓(x) and

link↑(x).

Let a1, . . . , ar (resp. b1, . . . , bs) be neighbours of x defining a simplex in link↑(x)

(resp. link↓(x)). By definition of cubes in C , there exist an admissible subtree R ⊂ T ,

vertices �1, . . . , �s of λ(RC), and an element ϕ ∈ N such that

{[
R ∪

⋃
i∈I

�i, ϕ

]
| I ⊂ {1, . . . , s}

}

is the cube spanned by x and its neighbours b1, . . . , bs, namely [R∪�1 ∪· · ·∪�s, ϕ] = x and

[R ∪ �1 ∪ · · · ∪ �i−1 ∪ �i+1 ∪ · · · ∪ �s, ϕ] = bi

for every 1 ≤ i ≤ s. As a consequence of Lemma 4.4, we also know that, for every 1 ≤ i ≤
r, there exist vertices u1, . . . , ur of λ((R ∪ �1 ∪ · · · ∪ �s)

C) such that

[R ∪ �1 ∪ · · · ∪ �s ∪ ui, ϕ] = ai.
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Then x and its neighbours a1, . . . , ar, b1, . . . , bs span the cube

⎧⎨
⎩

⎡
⎣R ∪

⋃
i∈I

�i ∪
⋃
j∈J

uj, ϕ

⎤
⎦ | I ⊂ {1, . . . , s}, J ⊂ {1, . . . , r}

⎫⎬
⎭

in C . In other words, a1, . . . , ar, b1, . . . , bs span a simplex in link(x). This concludes the

proof of Claim 4.12.

Given a vertex x ∈ C , one easily sees that link↑(x) is a simplex. Indeed, if

x1, . . . , xr denote its neighbours of higher height, then fix a representative (R, ϕ) of x

and let u1, . . . , ur be vertices of λ(RC) such that xi = [R ∪ ui, ϕ] for every 1 ≤ i ≤ r (as

given by Lemma 4.4). Then

{[
R ∪

⋃
i∈I

ui, ϕ

]
| I ⊂ {1, . . . , r}

}

is a cube in C spanned by x and its neighbours x1, . . . , xr. This proves that link↑(x) is a

simplex. Therefore, Claim 4.12 shows that link(x) decomposes as the join of a simplex

together with a copy of I(d, h(x)) and I(d, h(x)) as given by Proposition 4.8. Such a

complex being clearly simplicial and flag, we conclude that C is CAT(0).

We know from Proposition 4.3 that C is locally finite, so it remains to show that

vertex-stabilisers in C are compact. This follows from our final observation:

Claim 4.13. For all admissible subtree R ⊂ T and element ϕ ∈ N , the stabilizer of the

vertex [R, ϕ] in N is ϕ ·Aut(RC, λ(RC)) ·ϕ−1, where Aut(RC, λ(RC)) denotes the group of the

forest automorphisms RC → RC stabilizing λ(RC).

If ψ ∈ N fixes [R, ϕ], then [R, ϕ] = ψ · [R, ϕ] = [R, ψϕ], so ϕ−1ψϕ induces an

automorphism RC → RC preserving λ(RC). In other words, ψ belongs to ϕ ·Aut(RC, λ(RC))·
ϕ−1. Conversely, it is clear that ϕ · Aut(RC, λ(RC)) · ϕ−1 fixes [R, ϕ]. �

Remark 4.14. Our cube complex C (T ) is defined for any locally finite rooted tree T ,

but we only proved that it is CAT(0) when T is some Td,r with d ≥ 2 and r ≤ d. Actually,

the cube complex may not be CAT(0): for instance, by transferring [15, Section 3.3] in our

setting, one can show that C (T ) is not CAT(0) when T is the union of n ≥ 3 infinite rays

sharing a common origin. Nevertheless, by adapting the arguments from [15, Theorem

3.3], one can show that C (T ) is always contractible.
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4.2 First applications

In this section, we record a few direct consequences of Theorem 4.2. Most of them are

already available in the literature, but our approach allows us to prove them in a unified

(and, sometimes, simpler) way.

Remark 4.15. In our construction from Section 4.1 and the applications below, we

focused on full almost automorphism groups of regular trees. But our arguments apply

almost word for word to specific subgroups of Neretin groups. For instance, fix a

subgroup D ≤ Sym(d), let W(D) ≤ Aut(Td) denote the infinite iterated wreath product of

D, and consider the subgroup AAutD(Td) of AAut(Td) given by the forest isomorphisms

Td\A → Td\B that restrict to elements of W(D) on each connected component (once

identified with a copy of Td). As particular cases, AAutD(Td) coincides with AAut(Td)

if D = Sym(d) and with Thompson’s group Vd if D = {1}. These groups have been

introduced and studied in [6]. Our arguments apply to all the groups in this family,

whatever D is.

A-T-menabiliy. A topological group is a-T-menable if it admits a continuous and proper

action by affine isometries on a Hilbert space. Because groups acting properly on

CAT(0) cube complexes are automatically a-T-menable [33], it immediately follows from

Theorem 4.2 that:

Theorem 4.16. The Neretin groups Nd,r are a-T-menable.

Here, Nd,r refers to the almost automorphism group of the tree Td,r previously

defined, that is, the rooted tree whose root has degree r and all of whose other

vertices have d children. Although not explicitly stated, Theorem 4.16 can also be found

in [24, Section 3.3.3]. There, proper commensurating actions of Neretin groups are

constructed. Formally, admitting such an action amounts to admitting a proper action

on a CAT(0) cube complex [10], so again we can conclude thanks to [33] that Neretin

groups are a-T-menable.

Subgroups with fixed-point properties. It is proved in [31] that, if a subgroup

of a Neretin group satisfies Kazhdan’s property (T), then it has to lie inside the

automorphism group of a subforest. Theorem 4.2 (combined with Claim 4.13) leads to

the following improvement of this observation:

Theorem 4.17. Every subgroup of Nd,r satisfying the property (FWLocFin) lies in the

automorphism group of a cofinite rooted subforest.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad015/7091390 by U

niversité de Lausanne user on 04 M
ay 2023



Cremona and Neretin Groups 33

Here, we say that a group satisfies the property (FWLocFin) if all its actions

on locally finite CAT(0) cube complexes admit global fixed points. Because Kazhdan’s

property (T) can be characterized as a fixed-point property on (complete) median spaces

[8], and since CAT(0) cube complexes can be thought of as median graphs [9, 36], the

property (FWLocFin) can be thought of as a discrete and locally finite version of the

property (T).

Finiteness properties. From [25], we know that Neretin groups are compactly pre-

sented, that is, they admit presentations with compact generating sets and relations

of uniformly bounded length. More generally, it was proved in [39] that they are of type

F∞, that is, they act on contractible CW-complexes with compact-open stabilizers and

with finitely many cell-orbits in each dimension. It turns out that our cube complexes

also provide such CW-complexes, so we recover these two statements.

Theorem 4.18. Neretin groups Nd,r are of type F∞. In particular, they are compactly

presented.

The key point is to show that descending links in our cube complex become more

and more connected as the height increases. As a consequence of Proposition 4.8, this

assertion follows from the next lemma.

Lemma 4.19. Let p, q ≥ 1 be two integers. For every n ≥ 0, I(p, q) is n-connected as

soon as q ≥ (3 + 2n)p.

In the proof, for all a, b, c ≥ 1 such that b ≤ c, we identify I(a, b) with the

subcomplex of I(a, c) spanned by the vertices given by the subsets in {1, . . . , b} ⊂
{1, . . . , c}.

Proof of Lemma 4.19. It is clear that I(p, q) is connected if q ≥ 3p. (In fact, any two

vertices admit a common neighbour.) Assume that our statement holds for some n. First,

observe that:

• Given a, b ≥ 1, I(a, b + 1) is obtained from I(a, b) by gluing cones over copies

of I(a, b + 1 − a). Indeed, no two vertices given by subsets of {1, . . . , b + 1}
containing b + 1 are adjacent and the link of every such vertex is isomorphic

to I(a, b + 1 − a). It follows that the inclusion I(a, b) ↪→ I(a, b + 1) is πn+1-

surjective if b ≥ (4+2n)a, since we know from our assumption that the latter

inequality implies that I(a, b + 1 − a) is n-connected.
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• Given a, b ≥ 1, I(a, b) is homotopically trivial in I(a, c) if c ≥ b + a, since it

lies in the link of the vertex {c, c − 1, . . . , c − a + 1}.
By combining these two observations, it follows that I(p, q) is (n + 1)-connected

if q ≥ (3 + 2(n + 1))p, as desired. �

Proof of Theorem 4.18. For every n ≥ 1, let C (n) denote the subcomplex of C spanned

by the vertices of height ≤ n. We already know that Nd,r acts on each C (r) with compact-

open stabilizers. Thanks to our next two claims, [7, Corollary 4.11] applies and shows

that Nd,r is of type F∞.

Claim 4.20. For every n ≥ 1, Nd,r acts on C (n) with only finitely many orbits of cells.

Let Q be a cube in C (n). There exist an integer m ≥ 0, an admissible subtree R,

vertices �1, . . . , �m ∈ λ(RC), and an element ϕ ∈ Nd,r such that

Q =
{[

R ∪
⋃
i∈I

�i, ϕ

]
| I ⊂ {1, . . . , m}

}
.

Up to translating by ϕ−1, we can assume that ϕ = id. Because R ∪ �1 ∪ · · · ∪ �m must lie

in the first n levels of Td,r, there exists a constant depending only on n, d, r that bounds

the number of possible choices for m, R, and �1, . . . , �m.

Claim 4.21. For all k, n ≥ 1, C (n) is k-connected if n ≥ (3 + 2k)d − 1.

Because C is contractible (as a consequence of the CAT(0) property), it follows

from Morse theory that it suffices to show that the descending link of a vertex of height

≥ (3 + 2k)d is k-connected. But this claims is a direct consequence of Proposition 4.8

and Lemma 4.19. �

4.3 A fixed-point theorem and its applications

In this section, our goal is to prove the following fixed-point theorem and to apply it to

Neretin and Cremona groups.

Theorem 4.22. Let G be a finitely generated group acting on a CAT(0) cube complex X

by elliptic isometries. If X has no infinite cube, then G has a global fixed point.
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We postpone the proof of the theorem and first explain its applications.

Application to Neretin groups. By combining Theorem 4.2 (and Claim 4.13) with

Theorem 4.22, one immediately obtains:

Theorem 4.23. Let H ≤ Nd,r be a finitely generated subgroup. If each element of H

induces an automorphism of some cofinite rooted subforest, then H entirely lies in the

automorphism group of a cofinite rooted subforest.

The statement also follows from [26, Corollary 3.6].

Remark 4.24. As pointed out to us by the referee, Theorem 4.23 can be generalized

to arbitrary rooted trees of bounded degree. Indeed, if T is a rooted tree of bounded

degree, we can complete it to a regular rooted tree T ′ by adding the missing vertices.

The embedding of T into T ′ gives an embedding of AAut(T) into AAut(T ′). We can then

apply Theorem 4.23 to AAut(T ′).

Application to Cremona groups. We can now prove our regularization theorem for

finitely generated groups of birational transformations:

Proof of Theorem 1.7. We can identify AAut(F P
2(Fq)) with Nq+1 by conjugating with

an almost isomorphism between Tq+1 and F P
2(Fq). In that way, we see Bir

Fq
(P2) as a

subgroup of Nq+1, and we obtain an isometric action on the CAT(0) cube complex C .

Clearly, being elliptic is preserved by this identification. Note that a subgroup

G ⊂ Bir
Fq

(P2) fixes a vertex in C if and only if there exists a finite subforest F ⊂ F P
2(Fq)

of the blow-up forest such that every element in G can be represented by a triple of the

form (ψ , F, F). If we assume G to be finitely generated, then Lemma 3.4 implies that G is

conjugate to a subgroup of BBir(S) for some regular projective surface S.

Let L be the finite field extension of Fq such that all the base-points of the

generators in �, and hence the base-points of all elements in � are defined over L. We

now consider the action of Bir(SL) on the CAT(0) cube complex C . By Lemma 3.4, every

element in � is elliptic. Theorem 4.22 implies that � fixes a vertex in C . By Lemma 3.4,

there exists a regular projective surface S′
L defined over L such that � is conjugate by

a birational map defined over L to a subgroup of BBir(S′
L). Since all the base-points of

� are defined over L, this implies that � is conjugate to a subgroup of Aut(S′
L). By [30,

Theorem 1.3] there exists a regular projective surface S̃ defined over Fq such that � is

conjugate (by a birational map defined over Fq) to a subgroup of Aut(S̃). �
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Note that the above proof of Theorem 1.7 implicitly contains the following

analogue of Theorem 1.7 for birational transformations that are bijective on Fq-points.

Proposition 4.25. Let k be a finite field, S a surface over k, and � ⊂ Bir(S) a finitely

generated subgroup such that for every element in γ ∈ �, there exists a regular

projective surface S′ over k such that γ is conjugate to an element in BBir(S′), then there

exists a regular projective surface T over k such that � is conjugate to a subgroup of

BBir(T).

Proof. Again, we consider the action of � on the CAT(0) cube complex C . Our

assumption implies that every element in � acts by an elliptic isometry on C , so by

Theorem 4.22, � fixes a vertex in C (S). Hence, by Lemma 3.4, there exists a regular

projective surface T such that � is conjugate to a subgroup of BBir(T). �

Remark 4.26. Let S be a surface over a finite field k. By considering the action of

Bir(S) by almost automorphisms on its rational blow-up forest FS(k), we obtain an

isometric action on the CAT(0) cube complex C associated to FS(k). The cube complex

C has the advantage of being locally compact. However, the subset of elements in Bir(S)

fixing a vertex in C is very large: it consists exactly of the elements that are conjugate

to a birational transformation that is bijective on k-points on some regular projective

surface.

In [30], two other CAT(0) cube complexes are constructed with an isometric

action of Bir(S). Most importantly, the blow-up complex, whose vertex stabilizers

correspond exactly to projectively regularizable elements in Bir(S). Therefore, the subset

of elements in Bir(S) that induce loxodromic elements on the blow-up complex is strictly

larger than the subset of elements in Bir(S) inducing loxodromic elements on C .

Another weakening of the blow-up complex is the CAT(0) cube complex C0

constructed in [30]. The elements in Bir(S) fixing a vertex in C0 are exactly the (not

necessarily projectively) regularizable elements in Bir(S). Hence, also the subset of

elements in Bir(S) that induce loxodromic elements on the blow-up complex is strictly

larger than the subset of elements in Bir(S) inducing loxodromic elements on C0. The

main advantage of C0 is that it can be constructed for varieties of arbitrary dimension.

Proof of the fixed-point theorem. From now on, we assume that the reader is

familiar with the geometry of CAT(0) cube complexes. Before turning to the proof

of Theorem 4.22, we need two preliminary lemmas. The first one is well-known and

contained in the proof [37, Theorem 5.1]. We include a proof for the reader’s convenience.
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Lemma 4.27. Let G be a finitely generated group acting on a CAT(0) cube complex X. For

every vertex x0 ∈ X, the convex hull of the orbit G·x0 is a G-invariant convex subcomplex

on which G acts with finitely many orbits of hyperplanes.

Proof. Fix a finite and symmetric generating set S ⊂ G. Let Y denote the convex hull

of G · x0, and let J be a hyperplane crossing Y. There must exist g1, g2 ∈ G such that

J separates g1x0 and g2x0. Write g−1
1 g2 as a product s1 · · · sr where s1, . . . , sr ∈ S. As

a consequence of the convexity of halfspaces [37], J must separate g1s1 · · · si−1x0 and

g1s1 · · · six0 for some 1 ≤ i ≤ r, which implies that J admits a G-translate that separate

x0 and six0. Thus, we have proved that every hyperplane of Y admits a G-translate in

⋃
s∈S

{
hyperplanes separating x0 and sx0

}
,

which is finite since there exist only finitely many hyperplanes separating two given

vertices [37]. This proves our lemma. �

For our next lemma, we use the following notation. Given a CAT(0) cube complex

X and two vertices x, y ∈ X, we denote by d∞(x, y) the maximal number of pairwise non-

transverse hyperplanes that separate x and y. Although this observation is not used in

the sequel, d∞ turns out to be a metric and to coincide with the standard extension

of the �∞-metrics defined on each cube of X [2, Corollary 2.5]. To a given hyperplane J

of a CAT(0) cube complex, we denote by N(J) the carrier of J, that is, the subcomplex

spanned by the edges crossed by J.

Lemma 4.28. Let X be a CAT(0) cube complex and ρ a geodesic ray. If X does not contain

an infinite cube, then ρ has infinite diameter with respect to d∞.

Proof. Assume that ρ has finite diameter with respect to d∞. For every i ≥ 0, set

Hi := {
hyperplanes J crossing ρ and satisfying d∞(ρ(0), N(J)) = i

}
.

Because a geodesic cannot cross a hyperplane twice [37], there must exist infinitely

many hyperplanes crossing ρ, so some of the Hi must be infinite. Let m denote the

smallest index such that Hm is infinite. Because H1, . . . ,Hm−1 are all finite, we can fix

a vertex x ∈ ρ sufficiently far away so that all the hyperplanes in H1, . . . ,Hm−1 separate
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ρ(0) and x. Finally, let H denote the collection of the hyperplanes in Hm that do not

separate ρ(0) and x.

Fact 4.29. The hyperplanes in H are pairwise transverse.

Assume for contradiction that J1, J2 ∈ H are distinct and non-transverse. Up to

reindexing our hyperplanes, assume that J1 separates ρ(0) from J2. Then

d∞(ρ(0), N(J2)) ≥ d∞(ρ(0), N(J1)) + 1 > m,

contradicting the fact that J2 belongs to Hm.

Fact 4.30. For every J ∈ H, x ∈ N(J).

Assume for contradiction that there exists some J ∈ H such that x /∈ N(J). As a

consequence, there must exist a hyperplane H separating x from N(J) [17, Proposition

2.17]. Because x belongs to ρ and that J crosses ρ, this new hyperplane must also cross

ρ. A fortiori, H cannot cross ρ between ρ(0) and x, which implies that H does not belong

to H1, . . . ,Hm−1, that is, d(ρ(0), N(H)) ≥ k. But H separates x from J, so

d∞(ρ(0), N(J)) ≥ d∞(ρ(0), N(H)) + 1 ≥ m + 1,

contradicting the fact that J belongs to Hm.

The combination of the two facts shows that the edges starting from x and

crossing the hyperplanes in H span an infinite cube. �

Proof of Theorem 4.22. As a consequence of Lemma 4.27, we can assume without loss

of generality that X coincides with the convex hull of the orbit G ·x0 for some x0 ∈ X. We

distinguish two cases, depending on whether X is bounded or unbounded with respect

to d∞.

Case 1: X is unbounded with respect to d∞.

Let M denote the number of G-orbits of hyperplanes. We know that there exist

two vertices x, y ∈ X that are separated by more than 3M pairwise non-transverse

hyperplanes. In this collection, we can find three hyperplanes that belong to the same

G-orbit. In other words, there exist two elements g, h ∈ G and one hyperplane J such

that gJ separates J and hJ. Let J+ denote the halfspace delimited by J that contains
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hJ. If gJ+ ⊂ J+, then {gnJ+ | n ≥ 0} defines a decreasing sequence of halfspaces,

implying that g has unbounded orbits. Similarly, if hJ+ ⊂ J+ then h has unbounded

orbits. Otherwise, if the inclusions gJ+ ⊂ J+ and hJ+ ⊂ J+ do not hold, then we must

have gh−1 ·hJ+ ⊂ hJ+, proving that gh−1 has unbounded orbits. Because G only contains

elements with bounded orbits, we conclude that this first case cannot happen.

Case 2: X is bounded with respect to d∞.

As a consequence, given a halfspace D delimited by a hyperplane J, we can define

the depth of D by

p(D) := max
{
d∞(x, N(J)) | x ∈ D

}
.

A hyperplane is balanced if the two halfspaces it delimits have the same depth, and

it is unbalanced otherwise. If J is an unbalanced hyperplane, we denote by J+ the

hyperplane it delimits that has the larger depth; and if it is balanced, we denote by

p(J) the common depth of the two halfspaces it delimits.

Fact 4.31. If J1, J2 are two unbalanced hyperplanes, then J+
1 ∩ J+

2 �= ∅.

Assume for contradiction that J+
1 ∩ J+

2 = ∅. Up to reindexing our hyperplanes,

assume that p(J+
1 ) ≥ p(J+

2 ) and fix a vertex x ∈ J+
1 satisfying d∞(x, N(J1)) = p(J+

1 ).

Because J1 separates x from J2, we must have

p(J−
2 ) ≥ d∞(x, N(J2)) > d∞(x, N(J1)) = p(J+

1 ) ≥ p(J+
2 ),

where J−
2 denotes the complement of J+

2 . Thus, we obtain a contradiction with the

definition of J+
2 .

Fact 4.32. Any two balanced hyperplanes are transverse.

Assume for contradiction that there exist two balanced hyperplanes J1, J2 that

are not transverse. Up to reindexing our hyperplanes, assume that p(J1) ≥ p(J2). Fix a

vertex x in the halfspace delimited by J1 disjoint from J2 that satisfies d∞(x, N(J1)) =
p(J1). Because J1 separates x from J2, we must have

p(J2) ≥ d∞(x, N(J2)) > d∞(x, N(J1)) = p(J1) ≥ p(J2),

a contradiction.
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If the intersection

⋂
J unbalanced

J+

is non-empty, then it defines a G-invariant convex subcomplex as a consequence of

the convexity of halfspaces [37]. Moreover, according to Fact 4.24, its hyperplanes are

pairwise transverse, so (as a consequence of [38, Proposition 2.1] for instance) it must

be a cube, possibly infinite-dimensional. But we know by assumption that X does not

contain an infinite-dimensional cube, so we conclude that G stabilizes a finite cube. A

fortiori, its orbits are bounded, as desired.

Next, we assume that the previous intersection is empty and we want to find a

contradiction. This will conclude the proof of our theorem. We construct a sequence of

vertices (xi)i≥0 and a sequence of unbalanced hyperplanes (Ji)i≥1 in the following way.

• We fix an arbitrary vertex x0 ∈ X.

• If x0, . . . , xi and J1, . . . , Ji are defined, we fix a, unbalanced hyperplane Ji+1

satisfying xi /∈ J+
i+1 and we define the vertex xi+1 as the projection of xi onto

J+
1 ∩ · · · ∩ J+

i+1. (Here, the projection refers to the nearest-point projection; it

is well-defined according to [18, Lemma 13.8] as soon as our intersection is

non-empty, which follows from the Helly property on convex subcomplexes

[17, Corollary 2.22].)

Observe that, by construction, we have xi ∈
i⋂

k=1
J+

k \J+
i+1 for every i ≥ 0. For every

i ≥ 0, fix a geodesic [xi, xi+1] between xi, xi+1, and notice that the concatenation [x0, x1] ∪
[x1, x2]∪· · · defines a geodesic ray. Indeed, let J be hyperplane crossing this infinite path.

Let k denote the smallest index such that J crosses [xk, xk+1]. Because xk+1 is defined

as the projection of xk onto J+
1 ∩ · · · ∩ J+

k+1, J must be disjoint from this intersection

[18, Lemma 13.8]. But we know that [xk+1, xk+2]∪[xk+2, xk+3]∪· · · lies in this intersection.

Consequently, J cannot cross the path [x0, x1]∪ [x1, x2]∪· · · twice, proving that it defines

a geodesic [37]. As a consequence of Lemma 4.28, X must have infinite diameter with

respect to d∞, which contradicts our assumption. �
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