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Abstract
We study the limit behaviour of sequences of non-convex, vectorial, random integral func-
tionals, defined on W 1,1, whose integrands are ergodic and satisfy degenerate linear growth
conditions. The latter involve suitable random, scale-dependentweight-functions.Undermin-
imal assumptions on the integrand and on the weight-functions, we show that the sequence
of functionals homogenizes to a non-degenerate deterministic functional defined on BV .

Mathematics Subject Classification 49J45 · 49J55 · 60G10

1 Introduction

The stochastic homogenization of non-degenerate integral functionals is by now well-
understood. The first result in the nonlinear Sobolev setting dates back to [13, 14], where,
using the language of �-convergence, Dal Maso and Modica analyse the limit behaviour of
sequences of random integral functionals depending on a small parameter ε > 0 and sat-
isfying standard growth conditions of order p > 1. More precisely, for a given a complete
probability space (�,F,P), Dal Maso and Modica consider functionals of the type

Fε(ω)(u) =
∫
A
f (ω, x

ε
,∇u) dx, (1.1)

where A ⊂ R
d is an open, bounded, Lipschitz set, f : �×R

d×R
d → [0,+∞) ismeasurable

in (ω, x), convex in the gradient-variable, and for every (ω, x, ξ) ∈ �× R
d × R

d satisfies

α|ξ |p ≤ f (ω, x, ξ) ≤ β(|ξ |p + 1), (1.2)
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for p > 1 and α, β > 0. In (1.1) the functionals Fε depend on the random parameter ω ∈ �

through f , which is then to be interpreted as an ensemble of integrands. This means that in
this setting only the statistical specification of f is known.

For homogenization to take place f needs to be stationary or periodic in law, which
amounts to saying that the statistics of f are translation invariant. The stationarity of f can
be quantified in terms of a measure-preserving group-action {τz}z∈Rd defined on (�,F,P),
by requiring that

f (ω, x + z, ξ) = f (τzω, x, ξ), (1.3)

for every z ∈ R
d , and for every (ω, x, ξ) ∈ � × R

d × R
d . We notice that periodicity is a

particular instance of stationarity. Indeed choosing � = [0, 1)d and P = Ld |[0,1)d , we have
that τzω = ω + z (mod 1) defines a P-preserving group-action on � (cf. Definition 2.1).
Then any (0, 1)d -periodic function g : �× R

d → [0,+∞) corresponds to the stationary f
given by

f (ω, x, ξ) = g(ω + x, ξ).

It is easy to check that quasi-periodicity is a special case of stationarity as well (see e.g. [20]).
Under the assumptions as above, Dal Maso and Modica [14] prove that the random func-

tionals Fε(ω) �-converge almost surely to a random functional of the form

Fhom(ω)(u) =
∫
A
fhom(ω,∇u) dx, (1.4)

where, P-a.s., fhom satisfies (1.2) (with the same constants α, β) and is given by

fhom(ω, ξ) = lim
t→+∞

1

td
inf

{∫
Qt (0)

f (ω, x,∇u + ξ) dx : u ∈ W 1,p
0 (Qt (0))

}
, (1.5)

where Qt (0) is the open cube of Rd centred at zero and with side-length t > 0. Moreover,
under the additional assumption of ergodicity, which loosely speakingmeans that the statistics
of f decorrelate over large distances, the integrand fhom is actually deterministic and is given
by the expected value of the random variable fhom(·, ξ).

Although the formula defining fhom is formally analogous to the asymptotic cell-formula
of periodic homogenization (cf. [6]), the reason why the limit in (1.5) exists (almost surely)
and defines a spatially homogeneous quantity is nontrivial, contrary to the deterministic
periodic case. In fact, as observed for the first time by Dal Maso and Modica in their seminal
work [14], the well-posedness and x-homogeneity of (1.5) in this case is obtained by showing
that, for fixed ξ ∈ R

d , the map

(ω, A) �→ inf

{∫
A
f (ω, x,∇u + ξ) dx : u ∈ W 1,p

0 (A)

}
,

defines a so-called subadditive processon�×A (cf.Definition2.3),whereAdenotes the class
of open, bounded, Lipschitz subsets ofRd , and then invoking the pointwise ergodic Theorem
of Akcoglu and Krengel [2]. Once the existence of fhom is established, the homogenization
result for Fε(ω) can be proven either appealing to the integral representation result in [12]
or using a more modern approach based on the Fonseca and Müller blow-up method [19].

The Dal Maso and Modica proof-strategy is flexible enough to be adapted to the vectorial
setting both in the case of superlinear (p > 1) [24] and of linear (p = 1) [1] standard growth
conditions in the gradient variable. However, we notice here that when f grows linearly in the
gradient variable, the homogenized functional Fhom has a different structure with respect to
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the functional in (1.4) (see [1]). In fact, in the linear case sequences (uε) ⊂ W 1,1(A)with equi-
bounded energy Fε(ω) are precompact only in BV (A), the space of functions of bounded
variation and therefore in this case homogenization and relaxation occur simultaneously.
Then, the limit functional is of the form

Fhom(ω)(u) =
∫
A
fhom(ω,∇u) dx +

∫
A
f∞hom

(
ω,

dDsu

d|Dsu|
)

d|Dsu|, (1.6)

where fhom is given by (1.5) choosing p = 1 and f∞hom denotes the recession function of
fhom, that is, the slope of fhom at infinity. Moreover, we recall that∇u dx and Dsu represent,
respectively, the absolutely continuous and the singular part of the (finite) measure Du with
respect to the Lebesgue measure in R

d . Loosely speaking, (1.6) shows that in the linear
setting the homogenization can be performed before the relaxation takes place. We also refer
to [8] for analogous effects when the heterogeneous random functionals Fε(ω) are defined
on the space of special functions of bounded variation, SBV , instead of W 1,1.

Recently, the homogenization theory of random integral functionals of type (1.1) has
been extended to the case of degenerate integrands. By degenerate integrands we mean that
f satisfies growth conditions where the gradient variable is weighted by a non-homogeneous,
random coefficient which is not necessarily bounded. This then leads to “nonstandard” upper
and lower bounds of the form

α|ξ
(ω, x)|p ≤ f (ω, x, ξ) ≤ |ξ
(ω, x)|p + λ(ω, x), (1.7)

where 
 is a diagonal matrix-valued function, and both 
 and λ are stationary.
The case p > 1 has been firstly studied in [25] where the authors establish a homogeniza-

tion result for discrete functionals of the form

Fε(ω)(u) =
∑

z∈εZd∩A

∑
b∈E0

fb
(
ω, z

ε
, ∂ε

bu(z)
)
,

where the variableu takes values inRm ,E0 is a finite set of interaction-edges, and ∂ε
b represents

a discrete derivative along the scaled edge (z, z + εb). The stationary, ergodic interaction
potentials fb are assumed to satisfy an estimate as in (1.7), but with a different scalar-valued
weight-function 
b for each edge b ∈ E0 (which corresponds to a diagonal matrix 
 if one
considers edge-derivatives as partial derivatives) satisfying the moment condition

E[|
b(·, 0)|p] + E[|
−1
b (·, 0)|−p/(p−1)] < +∞. (1.8)

Moreover, in the scalar casem = 1 an additional convexity assumption at infinity is imposed,
while in the vectorial case m > 1 the proof relies on the integrability assumption

E[|
b(·, 0)|rp] + E[|
−1
b (·, 0)|−sp] < +∞ for some r > 1 andssuch that

1

r
+ 1

s
≤ p

d
,

(1.9)

which is strictly stronger than (1.8). Under these assumptions the �-limit of Fε(ω) is also
of type (1.4) (and deterministic due to ergodicity) and the homogenized integrand satisfies
standard p-growth conditions, similarly as in the non-degenerate case.

In the more recent [27] the �-convergence of Fε(ω) as in (1.1), with integrand satisfying
(1.7), is proven under the sole integrability condition (1.8). In this case the �-limit is a non-
degenerate homogeneous functional of the form (1.4), moreover condition (1.8) is shown to
be the optimal one to obtain a non-degenerate limit integrand. To avoid the more restrictive
condition in (1.9), in [27] the authors rely on a vectorial truncation-argument combined with
an ad hoc variant of the Birkhoff additive Ergodic Theorem (cf. Theorem 2.2 in Sect. 2). In
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the proof of the vectorial truncation-result, it is of crucial importance that the matrix-valued
coefficient 
 has a diagonal structure. We observe that this choice still allows to cover the
case of anisotropically degenerate integrands.

Finally, in [16] the �-convergence of general integral functionals defined on scale-
dependent weighted Sobolev Spaces is analysed without requiring any stationarity of the
integrands. In this case, under suitable uniform integrability assumptions on the (scalar)
weight functions 
ε , which also need to belong to a Muckenhoupt class, the functionals are
shown to �-converge (up to subsequences) to a degenerate integral functional defined on a
“limit” weighted Sobolev space.

In the present paper we consider random integral functionals Fε(ω) of type (1.1) with
integrand f satisfying degenerate linear growth conditions of type

α|ξ
(ω, x)| ≤ f (ω, x, ξ) ≤ |ξ
(ω, x)| + λ(ω, x), (1.10)

where the stationary functions 
 and λ satisfy the moment conditions

|
(·, 0)|, λ(·, 0) ∈ L1(�) and |
(·, 0)−1| ∈ L∞(�), (1.11)

with 
 being a diagonal matrix-valued function.
Apart from joint measurability, we make no further regularity assumption on the realiza-

tions of the random integrand f . Then, under stationarity of f and of the coefficient-functions

,λ (cf. Assumption 1) in Theorem 3.1 we prove that, almost surely, the functionals Fε(ω)

homogenize to a random functional Fhom(ω) which is spatially homogeneous and determin-
istic if ergodicity is additionally assumed. Similarly as in [1], the limit functional is finite on
BV (A,Rm) where it is of the same form as (1.6) with fhom given by

fhom(ω, ξ) = lim
t→+∞

1

td
inf

{∫
Qt (0)

f (ω, x,∇u + ξ) dx : u ∈ W 1,1
0 (Qt (0),R

m)

}
.

(1.12)

Moreover, in the ergodic case there holds

fhom(ξ) = E[ fhom(·, ξ)]
= lim

t→+∞
1

td
E

[
inf

{∫
Qt (0)

f (·, x,∇u + ξ) dx : u ∈ W 1,1
0 (Qt (0),R

m)

}]
,

with fhom satisfying the following standard linear growth conditions

α c0|ξ | ≤ fhom(ξ) ≤ C0|ξ | + C1, (1.13)

with constants

c0 := ‖|
(·, 0)−1|‖−1L∞(�), C0 := sup
η∈Rm×d ,|η|=1

E[|η
(·, 0)|], andC1 := E[λ(·, 0)].

It is worth noticing already here that the integrability conditions in (1.11) are the optimal
ones for (1.13) to hold true. Namely, in Remark 3.3 we show that in general the upper bound
in (1.13) implies the finite first moment condition |
(·, 0)| ∈ L1(�), while the bound from
below in (1.13) is violated if |
(·, 0)−1| /∈ L∞(�). In fact, in our example there is a loss
of BV -compactness which makes it possible to approximate some non-BV -functions at no
cost.

The proof of the stochastic homogenization result, Theorem 3.1, follows the general strat-
egy of DalMaso andModica [14]. Namely, the asymptotic homogenization formula in (1.12)
is established by applying a suitable variant of the Akcoglu and Krengel pointwise ergodic
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Theorem (cf. [2, Theorem2.7]). Then, the almost sure�-convergence of the random function-
als Fε(ω) is proven in twomain steps. In the first stepwe show that the upper-bound inequality
for the �-limit holds true. The proof of this inequality combines an explicit construction of
a recovery sequence for W 1,1-target functions with a relaxation argument. Although the
construction of the recovery sequence is rather classical, in this degenerate setting a new
argument is needed to construct sequences (uε) matching the right linear boundary condi-
tions, in order to determine the limit functional on BV starting from its knowledge on W 1,1.
This argument is based on a standard vectorial-truncation result (cf. Lemma 5.2) and a new,
ad hoc, fundamental estimate for random degenerate integral functionals (see Lemma 5.3
and Remark 5.4).

The proof of the lower bound inequality for the �-limit is more delicate and is based on
an adaptation to the BV -setting (cf. [3]) of the Fonseca and Müller blow-up method [19].
In this case for any sequence (uε) ⊂ W 1,1(A,Rm) with equi-bounded energy and such that
uε → u in L1(A,Rm), the set function νε(ω, ·) := Fε(ω)(uε, ·) is interpreted as a (random)
Radon measure onA. By assumption, up to subsequences, νε → ν, for some limit (random)
Radon measure ν. Then, if we write

ν(ω, A) =
∫
A
f̃ (ω, x) dx + νs(ω, A),

with νs singular with respect to the Lebesgue measure, the idea of the blow-up method is to
perform a local analysis to establish that, almost surely, the following two inequalities hold
true

f̃ (ω, x) ≥ fhom(ω,∇u(x)) for a.e.x ∈ A, (1.14)
dνs(ω, x)

dDu
≥ f∞hom

(
ω,

dDu

d|Du| (x)
)

for |Dsu|-a.e. x ∈ A. (1.15)

Eventually the lower-bound inequality for the�-limit follows by integrating (1.14) and (1.15).
Structure of the paper. This paper is organised as follows. In Sect. 2 we introduce some

notation, collect some useful facts on BV -functions, and recall some basic Ergodic Theory.
In Sect. 3 we state themain result of this paper, Theorem 3.1, which establishes an almost sure
homogenization result for the functionals Fε(ω) under linear degenerate growth conditions.
In this sectionwe also discuss the optimality of our assumptions (seeRemark 3.3). Eventually,
in Sect. 3, a homogenization theorem for the functionals Fε(ω) subject to Dirichlet boundary
conditions is also stated (see Theorem 3.4).

Then, Sect. 4 is entirely devoted to the proof of the existence of the homogenized integrand
fhom and of its main properties (see Lemma 4.1).
Section 5 contains the proof of Theorem 3.1. This proof is based on the preliminary

technical results Lemma 5.2 and Lemma 5.3 and then achieved in two main steps carried out
in Proposition 5.5 and Proposition 5.6.

Eventually, in Sect. 6 the case of Dirichlet boundary conditions is considered and Theo-
rem 3.4 is proven, while in the short Appendix some measurability issues are addressed (see
Lemma A.1).
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2 Notation and preliminaries

2.1 General notation

Throughout the paper d,m ∈ N are fixed with d,m ≥ 2. Given a measurable set A ⊂ R
d ,

|A| denotes its d-dimensional Lebesgue measure. The Euclidean norm of x ∈ R
d is denoted

by |x | and Bρ(x0) := {x ∈ R
d : |x − x0| < ρ} denotes the open ball with radius ρ > 0

centred at x0. Given x0 ∈ R
d and ρ > 0 we set Qρ(x0) := x0 + (−ρ/2, ρ/2)d .

For ξ ∈ R
m×d fixed, �ξ denotes the linear function with gradient ξ , that is �ξ (x) := ξ x .

We define Dd to be the set of diagonal matrices in R
d×d . For a measurable set A with

positive measure, we define −
∫
A := 1

|A|
∫
A. We use standard notation for L p-spaces and

Sobolev spacesW 1,p . The Borel σ -algebra on Rd is denoted by Bd , while we use Ld for the
σ -algebra of Lebesgue-measurable sets.

Throughout the paper, the parameter ε > 0 varies in a strictly decreasing sequence of
positive real numbers converging to zero.

The letterC stands for a generic positive constant which may vary from line to line, within
the same expression.

2.2 BV-functions

In this section we recall some basic facts and notation concerning the space of functions
of bounded variation. For a systematic treatment of this subject we refer the reader to the
monograph [4].

Let A ⊂ R
d be an open set. A function u ∈ L1(A,Rm) is a function of bounded variation

if its distributional derivative Du is a finite matrix-valued Radon measure on A; in this case
we write u ∈ BV (A,Rm). The space BV (A,Rm) is a Banach space when endowed with
the norm ‖u‖BV (A,Rm ) := ‖u‖L1(A,Rm ) + |Du|(A), where |Du| denotes the total variation
measure of Du. If A is a bounded Lipschitz domain, then BV (A,Rm) is compactly embedded
in Lq(A,Rm) for q < 1∗ := d/(d − 1). We say that a sequence (uk) converges weakly∗ in
BV (A,Rm) to u if uk → u in L1(A,Rm) and Dun

�
⇀Du in the sense of measures.

If u ∈ BV (A,Rm) the structure of Du can be characterised. To this end, we need to recall
some further concepts and notation. A function u ∈ L1(A,Rm) has an approximate limit at
x ∈ A whenever there exists z ∈ R

d such that

lim
ρ→0+

1

ρd

∫
Bρ(x)

|u(y)− z| dy = 0.

Next we introduce the so-called approximate jump points of u. Given x ∈ A and n ∈ S
d−1

we set

B±ρ (x, n) := {y ∈ Bρ(x) : ±(y − x) · n > 0}.
We say that x ∈ A is an approximate jump-point of u if there exist a = b ∈ R

m and n ∈ S
d−1

such that

lim
ρ→0+

1

ρd

∫
B+ρ (x,n)

|u(y)− a| dy = lim
ρ→0+

1

ρd

∫
B−ρ (x,n)

|u(y)− b| dy = 0 .

The triplet (a, b, n) is unique up to the change to (b, a,−n) and is denoted by
(u+(x), u−(x), nu(x)), moreover we let Ju be the set of approximate jump-points of u. The
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triplet (u+, u−, nu) can be chosen as a Borel function on the Borel set Ju . Then, denoting
by ∇u the approximate gradient of u, we can decompose the measure Du as

Du(B) =
∫
B
∇u dx +

∫
Ju∩B

(u+ − u−)⊗ nu dHd−1 + D(c)u(B) ,

for every B ∈ Bd , where D(c)u is the Cantor part of Du and D( j)u := (u+ − u−) ⊗
nuHd−1 Ju is its jump-part, withHd−1 being the (d−1)-dimensional Hausdorff measure.
The total variation |Du| can then be decomposed as

|Du|(B) =
∫
B
|∇u| dx +

∫
Ju∩B

|u+ − u−| dHd−1 +
∫
B

dD(c)u

d|D(c)u| d|D
(c)u|.

In this paper we mostly use the simpler decomposition Du(B) = ∫B ∇u(x) dx + Dsu(B),
where Dsu denotes the part of the measure Du which is singular with respect to the Lebesgue
measure, thus Dsu = D( j)u + D(c)u.

2.3 Ergodic theory

Let (�,F,P) be a complete probability space. As it is customary in probability theory, we
use the shorthand “almost surely” (also a.s.) for “P-almost everywhere”.

Below we recall some basic definitions and some useful results from ergodic theory.

Definition 2.1 (Measure-preserving group-action) A measure-preserving group-action on
(�,F,P) is a family τ := {τz}z∈Rd of measurable mappings τz : � → � satisfying
the following properties:

(1) (joint measurability) the map (ω, z) �→ τz(ω) is (F ⊗ Ld ,F)-measurable for every
z ∈ R

d ;
(2) (invariance) P(τz E) = P(E), for every E ∈ F and every z ∈ R

d ;
(3) (group property) τ0 = id¨ and τz1+z2 = τz2 ◦ τz1 for every z1, z2 ∈ R

d .

If, in addition, {τz}z∈Rd satisfies the implication

P(τz E�E) = 0 ∀ z ∈ R
d �⇒ P(E) ∈ {0, 1},

then τ it is called ergodic.

Throughout the paper we frequently use a variant of the Birkhoff Ergodic Theorem which is
useful for our purposes. Before stating it, we need to fix some additional notation.

Let g be a measurable function on (�,F,P); E[g] denotes the expected value of g, that
is

E[g] :=
∫

�

g(ω)dP.

For every g ∈ L1(�) and for everyσ -algebraF ′ ⊂ F ,wedenotewithE[g|F ′] the conditional
expectation of g with respect to F ′. We recall that E[g|F ′] is the unique L1(�)-function
satisfying ∫

E
E[g|F ′](ω)dP =

∫
E
g(ω)dP

for every E ∈ F ′.
We recall the following version of the Additive Ergodic Theorem which can be found in

[27, Lemma 4.1].
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Theorem 2.2 (Additive ergodic theorem) Let g ∈ L1(�), let τ be a measure-preserving
group-action on (�,F, P), and let Fτ denote the σ -algebra of τ -invariant sets. Then there
exists a set �′ ∈ F with P(�′) = 1 such that for every ω ∈ �′ and for every measurable
bounded set B ⊂ R

d with |B| > 0 there holds

lim
t→+∞−

∫
t B

g(τzω) dz = E[g|Fτ ](ω). (2.1)

If moreover τ is ergodic, then Fτ reduces to the trivial σ -algebra, therefore (2.1) becomes

lim
t→+∞−

∫
t B

g(τzω) dz = E[g].

For later purposes we also need to recall the definition of subadditive process.
In all that follows A denotes the collection of all open and bounded subsets of Rd with

Lipschitz boundary.

Definition 2.3 (Subadditive process) Let τ be a measure-preserving group-action on
(�,F, P). A subadditive process is a function μ : � × A → [0,+∞) satisfying the
following properties:

(1) for every A ∈ A, μ(·, A) belongs to L1(�);
(2) for every ω ∈ �, A ∈ A, and z ∈ R

d

μ(ω, A + z) = μ(τzω, A);
(3) for every ω ∈ �, for every A ∈ A, and for every finite family (Ai )i∈I ⊂ A of pairwise

disjoint sets such that Ai ⊂ A for every i ∈ I and |A\ ∪i∈I Ai | = 0, there holds

μ(ω, A) ≤
∑
i∈I

μ(ω, Ai ).

Moreover, if τ is ergodic then μ is called a subadditive ergodic process.

We now state a version of the Subadditive Theorem proven by Akcoglu and Krengel [2,
Theorem 2.7].

Theorem 2.4 Let μ : � × A → [0,+∞) be a subadditive process. Then there exist a
F-measurable function φ : � → [0,+∞) and a set �′ ∈ F with P(�′) = 1 such that

lim
n∈N, n→+∞

μ(ω, nQ)

|nQ| = φ(ω),

for every ω ∈ �′ and for every cube Q := Qk(x0) with x0 ∈ Z
d and k ∈ N.

3 Setting of the problem and statements of themain results

In this section we introduce the family of random functionals we are going to study and state
the main results of the paper.

Below we define the class of admissible random integrands we consider throughout.

Assumption 1 (Admissible integrands) The function f : � × R
d × R

m×d → [0,+∞) is
(F ⊗ Ld ⊗ Bm×d)-measurable and satisfies the following assumptions:
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(A1) (degenerate growth conditions) There exist α > 0 and (F ⊗ Ld)-measurable functions

 : � × R

d → Dd , λ : � × R
d → [0,+∞) with |
(·, 0)|, λ(·, 0) ∈ L1(�) and

|
(·, 0)−1| ∈ L∞(�), such that for every ω ∈ �, x ∈ R
d , and every ξ ∈ R

m×d there
holds

α |ξ
(ω, x)| ≤ f (ω, x, ξ) ≤ |ξ
(ω, x)| + λ(ω, x). (3.1)

(A2) (ergodicity) There exists a measure-preserving, ergodic group-action τ = {τz}z∈Rd such
that

f (τzω, x, ξ) = f (ω, x + z, ξ),


(τzω, x) = 
(ω, x + z),

λ(τzω, x) = λ(ω, x + z),

for every z ∈ R
d and every (ω, x, ξ) ∈ �× R

d × R
m×d .

For ε > 0 andω ∈ �, we consider the integral functionals Fε(ω) : L1
loc(R

d ,Rm)×A −→
[0,+∞] defined as

Fε(ω)(u, A) :=
⎧⎨
⎩
∫
A
f (ω, x

ε
,∇u) dx ifu ∈ W 1,1(A,Rm),

+∞ otherwise,
(3.2)

with f satisfying Assumption 1.
The following theorem establishes a homogenization result for the random functionals Fε

and is the main result of this paper.

Theorem 3.1 (Stochastic homogenization) Let f satisfy Assumption 1; for every ε > 0 and
every ω ∈ � let Fε(ω) be as in (3.2). Then, there exists �̃ ∈ F with P(�̃) = 1 such that:

i. (Existence of the homogenized integrand) For every ω ∈ �̃, x0 ∈ R
d , ρ > 0, and every

ξ ∈ R
m×d the following limit exists, is spatially homogeneous, and deterministic

lim
t→+∞

1

|t Qρ(x0)| inf
{∫

t Qρ(x0)
f (ω, x,∇u) dx : u ∈ �ξ +W 1,1

0 (t Qρ(x0),R
m)

}
.

(3.3)

ii. (Properties of the homogenized integrand) For every ξ ∈ R
m×d set

fhom(ξ) := lim
t→+∞

1

td
E

[
inf

{∫
Qt (0)

f (·, x,∇u) dx : u ∈ �ξ +W 1,1
0 (Qt (0),R

m)

}]
;

(3.4)

then fhom is continuous, quasiconvex, and for every ξ ∈ R
m×d it satisfies the following

standard linear growth conditions

α c0|ξ | ≤ fhom(ξ) ≤ C0|ξ | + C1,

with

c0 := ‖|
(·, 0)−1|‖−1L∞(�), C0 := sup
η∈Rm×d ,|η|=1

E[|η
(·, 0)|], andC1 := E[λ(·, 0)].

(3.5)
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iii. (Almost sure �-convergence) For every ω ∈ �̃ and every A ∈ A the functionals
Fε(ω)(·, A) �-converge in L1

loc(R
d ,Rm) to Fhom(·, A) with Fhom : L1

loc(R
d ;Rm) ×

A −→ [0,+∞] given by

Fhom(u) =
⎧⎨
⎩
∫
A
fhom(∇u) dx +

∫
A
f∞hom

(
dDsu

d|Dsu|
)

d|Dsu| if u ∈ BV (A,Rm),

+∞ otherwise,
(3.6)

where f∞hom denotes the recession function of fhom i.e., for every ξ ∈ R
m×d

f∞hom(ξ) := lim sup
t→+∞

1

t
fhom(tξ).

The two following remarks are in order.

Remark 3.2 (Assumptions on f ) Below we comment on the requirements on the integrand
f as in Assumption 1.

a) The growth condition in (3.1) can be replaced by the weaker condition

α|ξ
(ω, x)| − λ(ω, x) ≤ f (ω, x, ξ) ≤ |ξ
(ω, x)| + λ(ω, x),

for every ω ∈ �, x ∈ R
d , and ξ ∈ R

m×d . Indeed the integrand f̃ (ω, x, ξ) :=
f (ω, x, ξ) + λ(ω, x) satisfies Assumption 1 with λ replaced by 2λ. Therefore for such
an integrand Theorem 3.1 gives the same �-limit as in (3.6) up to the additive constant
E[λ(·, 0)]|A|.

b) The integrability assumptions on λ(·, 0) and
(·, 0) together with (A2) and Fubini’s The-
orem imply that almost surely there holds: |
(ω, ·)|, λ(ω, ·) ∈ L1

loc(R
d). Furthermore

the L∞(�)-bound on |
(·, 0)|−1 combined with [20, Lemma 7.1] gives that, for P-a.e.
ω ∈ �, |
(ω, ·)−1| ∈ L∞(Rd) with a bound uniform with respect to ω. Therefore,
in particular, for P-a.e. ω ∈ � the following holds true: there exists a (deterministic)
constant C > 0 such that for a.e. x ∈ R

d and for every ξ ∈ R
m×d we have

|ξ | ≤ |ξ
(ω, x)||
(ω, x)−1| ≤ C |ξ
(ω, x)| ≤ C

α
f (ω, x, ξ). (3.7)

c) In (A2) the ergodicity assumption on τ can be dropped. In fact if f , λ, and 
 are only
stationary, that is, they satisfy (A2) with respect to a measure-preserving group-action τ

which is not necessarily ergodic, then an almost sure homogenization result for Fε(ω) can
still be established. However in this case the homogenization is not “effective” meaning
that fhom is still a random variable. Namely, we have

fhom(ω, ξ) := lim
t→+∞

1

td
inf

{∫
Qt (0)

f (ω, x,∇u) dx : u ∈ �ξ +W 1,1
0 (Qt (0),R

m)

}
;

moreover, in this case fhom satisfies the following bounds

α c0|ξ | ≤ fhom(ξ) ≤ C0(ω)|ξ | + C1(ω),

with c0 as in (3.5) and

C0(ω) := sup
η∈Rm×d ,|η|=1

E[|η
(·, 0)||Fτ ], C1(ω) := E[λ(·, 0)|Fτ ].

123



Stochastic homogenization of degenerate integral functionals… Page 11 of 36   138 

Remark 3.3 (Optimality of the assumptions on 
(·, 0)) Both the assumption |
(·, 0)| ∈
L1(�) and |
(·, 0)−1| ∈ L∞(�) are optimal in the sense that if we drop one of the two
we can either get fhom(ξ) = +∞ on a subspace of Rm×d or a loss of compactness in BV ,
meaning that even some non-BV-functions can be approximated at zero cost.

Both these effects can be shown by adapting an example in [25, Remark 3.7] of a discrete
laminate-like structure to our setting. For the sake of the exposition we treat here the case
m = 1 and consider a sequence (ak)k∈Z : � → (0,+∞) of i.i.d. random variables. For
every x ∈ R

d we define the piecewise constant interpolation corresponding to (ak)k∈Z as

a(ω, x) := ak(ω) if x ∈ [k, k + 1), k ∈ Z.

On the product space�Z one can define a stationary, ergodic group-actionwhich turns a into a
Z-stationary, ergodic function. (If one is interested in anRd -stationary, ergodic example, one
can turn a into a stationary and ergodic functionwith respect to all translations on the extended
probability space T×�, where T is the torus in Rd , by setting a((z, ω), x) := a(ω, z + x),
thus preserving the piecewise-constant structure. See [20, p. 236] for more details.)

For x := (x1, x ′) ∈ R
d define f (ω, x, ξ) = |a(ω, x1)ξ |, so that 
(ω, x) = a(ω, x1)Id ,

where Id is the identity matrix in R
d×d . Assume that E[a(·, 0)] = +∞ so that |
(·, 0)| /∈

L1(�) and for k ∈ N let u ∈ W 1,1
0 (kQ), with Q := (−1/2, 1/2)d . Defining the lower

dimensional cube Q′ := (−1/2, 1/2)d−1, for a.e. x1 ∈ (−k/2, k/2) it holds that u(x1, ·) ∈
W 1,1

0 (kQ′) and

−
∫
kQ
|a(ω, x1)(∇u(x)+ ξ)| dx ≥ −

∫ k/2

−k/2
a(ω, x1)−

∫
kQ′

|∇x ′u(x1, x
′)+ (ξ2, . . . , ξd)|dx ′ dx1.

The inner integral on the right-hand side isminimal foru(x1, ·) ≡ 0 due to Jensen’s Inequality.
Hence

inf

{
−
∫
kQ
|a(ω, x)(∇u(x)+ ξ)| dx : u ∈ W 1,1

0 (kQ)

}
≥ |(ξ2, . . . , ξd)|−

∫ k/2

−k/2
a(ω, x1) dx1.

Combining a truncation of the weight a with the Ergodic Theorem 2.2, for ξ /∈ Re1 it follows
that a.s.

fhom(ξ) := lim
k→+∞ inf

{
−
∫
kQ
|a(ω, x)(∇u(x)+ ξ)| dx : u ∈ W 1,1

0 (kQ)

}
= +∞. (3.8)

Next we consider the case when a(·, 0)−1 /∈ L∞(�) and show that we can approximate a
function which is not in BV paying zero energy. By assumption, for every δ > 0 there exists
a set �δ with positive probability such that |a0(ω)| < δ for all ω ∈ �δ . In particular, by
stationarity this implies thatP(|ak | < δ) = pδ > 0 for all k ∈ N.Moreover, the independence
yields

+∞∑
n=0

P

({
min
0≤k≤n |ak | ≥ δ

})
=

+∞∑
n=0

P ({|ak | ≥ δ for all 0 ≤ k ≤ n}) =
+∞∑
n=0

(1− pδ)
n+1 < +∞.

Hence theBorel-Cantelli Lemma implies that a.s. there exists kδ = kδ(ω) such that |akδ (ω)| <
δ. For ε > 0 we define the piecewise affine function uε(x) := max{0,min{1, ε−1x1 − kδ}}
(this sequence has to be slightly shifted if we work on the extended probability space).
Clearly, uε(x) = 0 for x1 ≤ εkδ and uε(x) = 1 for x1 > (kδ + 1)ε. Hence uε → χ{x1<0} in
L1
loc(R

d) and ∇uε is concentrated on the stripe {x ∈ R
d : kδε ≤ x1 ≤ (kδ + 1)ε}, where the
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weight-function is smaller than δ by construction. Therefore we have

Fε(ω)(uε, Q) ≤
∫ ε(kδ+1)

εkδ

δε−1 dx1 = δ,

thus by the arbitrariness of δ > 0 we deduce that

�- lim
ε→0+

Fε(ω)(χ{x1<0}, Q) = 0.

Since Fε(ω)(·, Q) is positively one-homogeneous and translation invariant, we get that

�- lim
ε→0+

Fε(ω)(u, Q) = 0 (3.9)

for all u of the form u = aχ{x1<0} + bχ{x1>0} with a, b ∈ R.
To deal with the case where u jumps on hyperplanes of type x1 = r with r ∈ Q, we can

invoke again a Borel-Cantelli-type argument now applied to the events{
min
0≤k≤n |a� rε �+k | ≥ δ

}
,

whose probabilities do not depend on r thanks to stationarity. Since the constructions are local,
we easily obtain that (3.9) holds for all functions of the form u(x) =∑N

i=1 ciχ(ai ,ai+1)(x1),
for some N ∈ N and ai , ci ∈ Q for all i = 1, . . . , N + 1.

Eventually, by a standard density and lower semicontinuity argument, we get that (3.9)
holds for all functions u of the form u(x) = g(x1) with g ∈ L1(−1/2, 1/2). If now
g ∈ L1(−1/2, 1/2)\BV (−1/2, 1/2) the corresponding u does not belong to BV (Q); since
however (3.9) is satisfied, the BV -compactness of energy-bounded sequences fails.

3.1 Dirichlet boundary conditions

In this subsection we state a homogenization result for the functionals Fε(ω) subject to
Dirichlet boundary conditions. To this end, we need to define a class of admissible boundary
data. Since the weight function 
(ω, ·) only belongs to L1

loc(R
d), we need to consider

sufficiently regular boundary data.

Assumption 2 (Admissible boundary data) The function u0 belongs toW 1,1(Rd ,Rm).More-
over there exists �̂ ∈ F with P(�̂) = 1 such that for every ω ∈ �̂ the sequence of functions
(Mε(ω))ε defined as

Mε(ω)(x) := |∇u0(x)
(ω, x
ε
)| + |u0(x)||
(ω, x

ε
)| (3.10)

is locally equi-integrable on R
d .

We notice that in view of Theorem 2.2 Lipschitz-functions with compact support satisfy
(3.10) and hence are admissible boundary data. However, fixing a bounded, open set A with
Lipschitz boundary, this restricts the boundary value u0|∂A also to Lipschitz-functions.

Since |
(ω, ·)| only belongs to L1
loc(R

d), the request in (3.10) is necessary in order to
have at least one competitor for the minimization problem with Dirichlet boundary condition
u0.

On the other hand, (3.10) can be relaxed when |
(·, 0)| has higher stochastic moments.
In fact, Hölder’s Inequality ensures that Mε(ω) is always locally equi-integrable onRd when
u0 ∈ W 1,p(Rd ,Rm) and |
(·, 0)| ∈ L p/(p−1)(�) for some p ∈ [1,+∞).
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Let A ∈ A and consider the functionals defined as

Fu0
ε (ω)(u, A) :=

⎧⎨
⎩
∫
A
f (ω, x

ε
,∇u) dx ifu ∈ u0 +W 1,1

0 (A,Rm),

+∞ otherwise inL1(A,Rm),

(3.11)

where f satisfies Assumption 1 and u0 satisfies Assumption 2. The following�-convergence
result holds true.

Theorem 3.4 (Stochastic homogenization with Dirichlet boundary conditions) Let f sat-
isfy Assumption 1 and let u0 satisfy Assumption 2. Then, almost surely, the functionals
Fu0

ε (ω)(·, A) defined in (3.11) �-converge in L1(A,Rm) to the deterministic functional
Fu0
hom(·, A) given by

Fu0
hom(u, A)

:=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
A
fhom(∇u) dx +

∫
A
f∞hom

(
dDsu

d|Dsu|
)

d|Dsu| +
∫

∂A
f∞hom

(
(u+0 − u−)⊗ n∂A

)
dHd−1

if u ∈ BV (A,Rm),

+∞ otherwise inL1(A,Rm),

for every A ∈ A.

We observe that in the statement of Theorem 3.4 the boundary integral∫
∂A

f∞hom
(
(u+0 − u−)⊗ n∂A

)
dHd−1

represents the energy contribution of the function uχA + u0(1 − χA) restricted to ∂A and
penalises the violation of the boundary constraint u = u0 on ∂A, meant in the sense of traces.

Remark 3.5 (Linear forcing terms) Let q > d and let (gε) ⊂ Lq
loc(R

d ,Rm) be such that
gε⇀g weakly in Lq

loc(R
d ,Rm), for some g ∈ Lq

loc(R
d ,Rm). Consider the linear functionals

Gε(u, A) :=
∫
A
gεu dx and G(u, A) :=

∫
A
gu dx

and the perturbed functionals Fε(ω)(·, A)+Gε(·, A). By assumption Gε can be regarded as
a continuously converging perturbation, therefore it is immediate to check that Theorem 3.1
also yields the almost sure�-convergence of Fε(ω)(·, A)+Gε(·, A) to Fhom(·, A)+G(·, A),
for every A ∈ A. An analogous result can be proven for the functionals Fu0

ε (ω)(·, A) +
Gε(·, A).

4 Existence of fhom

This section is devoted to proving the existence of the spatially homogeneous and determin-
istic integrand fhom. The proof of this result will be achieved by following a classical strategy
introduced in [14] and based on the Subadditive Ergodic Theorem [2, Theorem 2.7].

Lemma 4.1 (Homogenization formula) Let f satisfy Assumption 1; then, there exists�′ ∈ F
with P(�′) = 1 such that for every ω ∈ �′, x0 ∈ R

d , ρ > 0, and every ξ ∈ R
m×d there

exists
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lim
t→+∞

1

|t Qρ(x0)| inf
{∫

t Qρ(x0)
f (ω, x,∇u) dx : u ∈ �ξ +W 1,1

0 (t Qρ(x0),R
m)

}

= lim
t→+∞

1

td
E

[
inf

{∫
Qt (0)

f (·, x,∇u) dx : u ∈ �ξ +W 1,1
0 (Qt (0),R

m)

}]
=: fhom(ξ).

(4.1)

The homogeneous and deterministic function fhom is continuous and for every ξ ∈ R
m×d it

satisfies the following standard linear growth conditions

α c0|ξ | ≤ fhom(ξ) ≤ C0|ξ | + C1,

with

c0 := ‖|
(·, 0)−1|‖−1L∞(�), C0 := sup
η∈Rm×d ,|η|=1

E[|η
(·, 0)|], and C1 := E[λ(·, 0)].

Proof Let ξ ∈ R
m×d be fixed. For every ω ∈ � and A ∈ A set

μξ (ω, A) := inf

{∫
A
f (ω, x,∇u) dx : u ∈ �ξ +W 1,1

0 (A,Rm)

}
. (4.2)

We claim thatμξ is a subadditive process, i.e.,μξ satisfies properties (1)-(3) inDefinition 2.3.
We start observing that for every A ∈ A the F-measurability of μξ (·, A) follows by

LemmaA.1 in the appendix. By the non-negativity of f , to prove the integrability ofμξ (·, A)

it suffices to bound E[μξ (·, A)] from above. To this end, let ω ∈ � and A ∈ A be fixed and
arbitrary; choosing u = �ξ as a test function in the definition ofμξ (ω, A), by (3.1) we readily
deduce that

μξ (ω, A) ≤
∫
A
f (ω, x, ξ) dx ≤

∫
A

(|ξ
(ω, x)| + λ(ω, x)
)
dx . (4.3)

Therefore Tonelli’s Theorem gives

E
[
μξ (·, A)

] ≤
∫
A
E[|ξ
(·, x)|] + E[λ(·, x)] dx

= (E[|ξ
(·, 0)|]| + E[λ(·, 0)])|A|
≤
(
sup
|η|=1

E[|η
(·, 0)|]|ξ | + E[λ(·, 0)]
)
|A|, (4.4)

where the equality follows from a change of variables in � and the stationarity of 
 and λ.
Next, we check that for every ω ∈ �, A ∈ A, and z ∈ R

d

μξ (ω, A + z) = μξ (τzω, A). (4.5)

Indeed, given v ∈ �ξ + W 1,1
0 (A,Rm), the function ṽ(x) := v(x − z) + �ξ (z) belongs to

�ξ +W 1,1
0 (A + z,Rm) and by (A2) and the translation invariance in v we get
∫
A+z

f (ω, x,∇ṽ) dx =
∫
A
f (ω, x + z,∇v) dx =

∫
A
f (τzω, x,∇v) dx,

then (4.5) follows by taking the inf in the above equality.
We now prove the subadditivity of μξ as a set function. Let ω ∈ � and A ∈ A be fixed

and let (Ai )i∈I ⊂ A be a finite family of pairwise disjoint sets such that Ai ⊂ A for every
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i ∈ I and |A \ ∪i∈I Ai | = 0. Let η > 0; for every i ∈ I let vi ∈ �ξ +W 1,1
0 (Ai ,R

m) be such
that ∫

Ai

f (ω, x,∇vi ) dx ≤ μξ (ω, Ai )+ η. (4.6)

Define v :=∑i∈I viχAi ; clearly v ∈ �ξ +W 1,1
0 (A,Rm), therefore by additivity and locality

we get

μξ (ω, A) ≤
∫
A
f (ω, x,∇v) dx =

∑
i∈I

∫
Ai

f (ω, x,∇vi ) dx,

thus the subadditivity is an immediate consequence of (4.6). Thus, for every fixed ξ ∈ R
d×m ,

μξ is a subadditive process as claimed.
Hence we can appeal to Theorem 2.4 to deduce the existence of �ξ ⊂ � with �ξ ∈ F ,

P(�ξ ) = 1 and of a F-measurable function φξ such that for every ω ∈ �ξ there holds

lim
n∈N, n→+∞

μξ (ω, nQk(x0))

|nQk(x0)| = lim
n∈N, n→+∞

μξ (ω, Qn(0))

nd
=: φξ (ω),

for every x0 ∈ Z
d and every k ∈ N. Then the existence of this limit for cubes Qρ(x0) with

non-integer centres x0 ∈ R
d and side-lengths ρ > 0, and along positive diverging sequences

(tn), follows by a standard approximation argument as in the proof of [27, Lemma 4.3].
Therefore, we eventually get

lim
t→+∞

μξ (ω, t Qρ(x0))

|t Qρ(x0)| = φξ (ω), (4.7)

for every ω ∈ �ξ , every x0 ∈ R
d , and every ρ > 0.

Now set

�′ :=
⋂

ξ∈Qm×d

�ξ ;

clearly P(�′) = 1 and in view of (4.7), for every ω ∈ �′ the function φξ is well defined for
ξ ∈ Q

m×d .
We now claim that for every ω ∈ �′ the limit in (4.7) exists for every ξ ∈ R

m×d . We
introduce the auxiliary functions φ+ρ , φ−ρ : �′ × R

d × R
m×d → [0,+∞) defined as

φ+ρ (ω, x, ξ) := lim sup
t→+∞

μξ (ω, Qρt (t x))

ρd td
, φ−ρ (ω, x, ξ) := lim inf

t→+∞
μξ (ω, Qρt (t x))

ρd td
.

By definition we have that

φ+ρ (ω, x, ξ) = φ−ρ (ω, x, ξ) = φξ (ω), (4.8)

for every ω ∈ �′, x ∈ R
d , ξ ∈ Q

m×d , and ρ > 0.
Let δ ∈ (0, 1) be fixed; we then have

Qρ(1−δ)t (t x) ⊂⊂ Qρt (t x) ⊂⊂ Qρ(1+δ)t (t x).

Moreover let ξ ∈ R
m×d and (ξ j ) ⊂ Q

m×d be such that ξ j → ξ , as j → +∞. Consider
v ∈ �ξ +W 1,1

0 (Qρt (t x),Rm) arbitrary and extend it toRd by setting v = �ξ inRd\Qρt (t x).
Let ϕ ∈ C∞

c (Rd , [0, 1]) be a cut-off function such that

ϕ ≡ 1 on Qρt (t x), ϕ ≡ 0 on R
d \ Qρ(1+δ)t (t x), ‖∇ϕ‖L∞(Rd ) ≤

2

ρδt
.
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Define ṽ := ϕv + (1− ϕ)�ξ j ; clearly, ṽ ∈ �ξ j +W 1,1
0 (Qρ(1+δ)t (t x),Rm).

By definition of ṽ and (3.1), setting κ := |
| + λ we have

μξ j (ω, Qρ(1+δ)t (t x)) ≤
∫
Qρ(1+δ)t (t x)

f (ω, y,∇ṽ) dy

≤
∫
Qρt (t x)

f (ω, y,∇v) dy +
∫
Qρ(1+δ)t (t x)\Qρt (t x)

(|∇ṽ||
(ω, y)| + λ(ω, y)
)
dy

≤
∫
Qρt (t x)

f (ω, x,∇v) dx + C
∫
Qρ(1+δ)t (t x)\Qρt (t x)

κ(ω, y)(|∇ϕ||ξ − ξ j ||y| + |ξ | + |ξ j | + 1) dy

≤
∫
Qρt (t x)

f (ω, y,∇v) dy + C
∫
Qρ(1+δ)t (t x)\Qρt (t x)

κ(ω, y)
(
|ξ − ξ j | |y|

ρδt
+ |ξ | + |ξ j | + 1

)
dy.

Since δ < 1, we have that |y| ≤ √
d(ρ + |x |)t in Qρ(1+δ)t (t x). Then, we can pass to the inf

over v to deduce that

μξ j (ω, Qρ(1+δ)t (t x)) ≤ μξ (ω, Qρt (t x))

+C
(

ρ + |x |
ρδ

|ξ − ξ j | + |ξ | + |ξ j | + 1

)∫
Qρ(1+δ)t (t x)\Qρt (t x)

κ(ω, y) dy.

Then, dividing both sides of the expression above by (ρt)d , passing to the liminf as t →+∞,
and invoking Theorem 2.2 we get

(1+ δ)dφ−ρ
(
ω,

x

1+ δ
, ξ j

)
≤ φ−ρ (ω, x, ξ)

+C
(

ρ + |x |
ρδ

|ξ − ξ j | + |ξ | + |ξ j | + 1

)(
(1+ δ)d − 1

)
E[κ(·, 0)] (4.9)

(we notice here that in principle Theorem 2.2 holds in a set of probability one, say�′′, which
can be smaller than �′. However since clearly P(�′ ∩�′′) = 1 with a little abuse of notation
we still denote with �′ this intersection). Analogously we can prove that

φ+ρ (ω, x, ξ) ≤ (1− δ)dφ+ρ
(
ω,

x

1− δ
, ξ j

)

+C
(

ρ + |x |
ρδ

|ξ − ξ j | + |ξ | + |ξ j | + 1

)(
1− (1− δ)d

)
E[κ(·, 0)]. (4.10)

Hence since (ξ j ) ⊂ Q
m×d , thanks to (4.8) we have

φ−ρ
(
ω,

x

1+ δ
, ξ j

)
= φ+ρ

(
ω,

x

1− δ
, ξ j

)
= φξ j (ω), (4.11)

for every ω ∈ �′, x ∈ R
d , j ∈ N, and ρ > 0. Therefore, gathering (4.9)-(4.11), passing to

the liminf as j →+∞ and as δ → 0+ we get

lim inf
j→+∞ φξ j (ω) ≤ φ+ρ (ω, x, ξ) ≤ φ−ρ (ω, x, ξ) ≤ lim inf

j→+∞ φξ j (ω),

hence

φ+ρ (ω, x, ξ) = φ−ρ (ω, x, ξ) = lim inf
j→+∞ φξ j (ω),

for every ω ∈ �′, x ∈ R
d , ξ ∈ R

m×d , and ρ > 0. Note that in particular all the terms in the
above equalities do not depend on x and ρ. Then, by the definition of φ±ρ we have that for
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every ω ∈ �′ and every ξ ∈ R
m×d the following limit exists and does not depend on x and

on ρ > 0

lim
t→+∞

μξ (ω, t Qρ(x))

|t Qρ(x)| .

We then set

φξ (ω) := φ+ρ (ω, x, ξ) = φ−ρ (ω, x, ξ) = lim
t→+∞

μξ (ω, t Qρ(x))

|t Qρ(x)| = lim
t→+∞

μξ (ω, Qt (0))

td
.

(4.12)

Then, for every ξ ∈ R
m×d the function ω �→ φξ (ω) is F-measurable on �′ while by (4.9),

(4.10), and (4.12) the function ξ �→ φξ (ω) is continuous for every ω ∈ �′.
We now prove that φξ is actually deterministic. By the ergodicity of {τz}z∈Rd , this is

equivalent to proving that

φξ (ω) = φξ (τzω), (4.13)

for every ξ ∈ R
m×d and z ∈ R

d (cf. [10, Corollary 6.3]). Let ω ∈ �, ξ ∈ R
m×d , and z ∈ R

d

be fixed. By stationarity we have

μξ (τzω, t Q) = μξ (ω, t(Q + z/t)), (4.14)

for every t > 0, where Q := Qρ(x0). Given Q′ and Q′′ open cubes with Q′ ⊂⊂ Q ⊂⊂ Q′′,
for t > 0 large enough we have

Q′ ⊂ Q + z/t ⊂ Q′′.

By the subadditivity of μξ and (4.3) we get

μξ (ω, t(Q + z/t))

|t Q| ≤ μξ (ω, t Q′)
|t Q′| + 1

|t Q|
∫
t(Q+z/t)\t Q′

(|ξ
(ω, x)| + λ(ω, x)
)
dx

≤ μξ (ω, t Q′)
|t Q′| + (|ξ | + 1)

|t Q|
∫
t Q′′\t Q′

κ(ω, x) dx .

In view of (4.14), passing to the limsup as t → +∞, and invoking Theorem 2.2 we infer
that

lim sup
t→+∞

μξ (τzω, t Q)

|t Q| ≤ φξ (ω)+ (|ξ | + 1)E[κ(·, 0)] |Q
′′| − |Q′|
|Q| .

Then, letting Q′ ↗ Q and Q′′ ↘ Q gives

lim sup
t→+∞

μξ (τzω, t Q)

|t Q| ≤ φξ (ω).

Analogously it can be proven that

φξ (ω) ≤ lim inf
t→+∞

μξ (τzω, t Q)

|t Q| .

which allows us to conclude both that τzω ∈ �′ and that (4.13) holds true, so that φξ is
deterministic as claimed. Eventually, we define fhom(ξ) := φξ , for every ξ ∈ R

m×d .
We now show that fhom satisfies the desired bounds.
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Thanks to the Fatou Lemma we have that

fhom(ξ) = E[ fhom(ξ)] ≤ lim inf
t→+∞

1

|t Q|E[μξ (·, t Q)] ≤ sup
|η|=1

E[|η
(·, 0)|] |ξ | + E[λ(·, 0)],

where to establish the last inequality we have used (4.4). Hence, the upper bound on fhom is
achieved.

To prove the lower bound, we observe that for any v ∈ �ξ +W 1,1
0 (Q,Rm) we have

|t Q||ξ | =
∣∣∣∣
∫
t Q
∇v dx

∣∣∣∣ ≤
∫
t Q
|∇v| dx ≤ ‖|
(·, 0)−1|‖L∞(�)

α

∫
t Q

f (ω, x,∇v) dx,

where in the last estimate we used (3.7) with the actual constant C = ‖|
(·, 0)−1|‖L∞(�).
Therefore by the arbitrariness of v, dividing by |t Q| and passing to the limit as t →+∞ we
get

α‖|
(·, 0)−1|‖−1L∞(�)|ξ | ≤ fhom(ξ),

thus the desired lower bound.
Eventually, (4.1) follows by [21, Theorem 2.3], hence the proof is accomplished. ��

5 0-convergence

In this section we prove the �-convergence statement in Theorem 3.1. To do so, we start by
establishing a compactness result for sequences (uε) with equi-bounded energy Fε.

Lemma 5.1 (Domain of the �-limit) Let A ∈ A and let (uε) ⊂ L1
loc(R

d ,Rm) be such that

sup
ε>0

(‖uε‖L1(A,Rm ) + Fε(ω)(uε, A)
)

< +∞.

Then there exists u ∈ BV (A,Rm) such that, up to subsequences, uε
∗
⇀u in BV (A,Rm).

Proof In view of (3.7) the sequence (uε) is equi-bounded in the W 1,1(A,Rm)-norm. There-
fore the claim follows by well-known compactness properties of BV -functions. ��

Below we prove two technical results which will be needed in what follows. The first one
is a classical vectorial truncation result.

Lemma 5.2 (Vectorial truncation) Let A ∈ A and let uε ∈ L1
loc(R

d ,Rm) ∩W 1,1(A,Rm) be
such that uε → u in L1

loc(R
d ,Rm), as ε → 0+. Then for every η > 0 there exists a constant

Cη > 0 and a function uε,η ∈ L1
loc(R

d ,Rm) ∩ W 1,1(A,Rm) such that uε,η = uε a.e. in
{|uε| ≤ η−1}, and

|uε,η| ≤ |uε|, |uε,η| ≤ Cη for a.e.x ∈ R
d .

Moreover, there holds

Fε(ω)(uε,η, A) ≤ (1+ η)Fε(ω)(uε, A)+ η,

for every ε > 0 small enough.

Proof The proof is identical to that of [27, Lemma 4.6] up to replacing the exponent p with
1 and noting that the energy bound in [27, Lemma 4.6] can be obtained simultaneously for
all open sets A ∈ A. ��
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Next we show that the functionals Fε satisfy a so-called fundamental estimate, uniformly in
ε.

Lemma 5.3 (Fundamental estimate) Let Fε be as in (3.2). Let A, A′, A′′, B ∈ A with A′ ⊂⊂
A′′ ⊂ A and let u, v ∈ W 1,1(A,Rm). For every δ > 0 there exists ϕ ∈ C∞

c (A′′, [0, 1])
(depending on δ, A′ and A′′) with ϕ = 1 in a neighbourhood of A′ such that for every ε > 0
there holds

Fε(ω)(ϕu + (1− ϕ)v, A′ ∪ B) ≤ (1+ δ)
(
Fε(ω)(u, A′′)+ Fε(ω)(v, B)

)

+ 4

dist(A′, ∂A′′)

∫
S
|u − v||
(ω, x

ε
)|dx + δ

∫
S
λ(ω, x

ε
) dx, (5.1)

where S := (A′′ \ A′) ∩ B.

Proof Let δ > 0 and let A, A′, A′′, B and S be as in the statement. Let N = N (δ) ∈ N be
such that

1

N
max

{ 1
α

, 1
}
≤ δ. (5.2)

Set R := 1
2dist(A

′, ∂A′′) > 0. For i = 0, . . . , N define

Ai :=
{
x ∈ A′′ : dist(x, A′) <

i

N
R
}
,

we have

A′ =: A0 ⊂⊂ A1 ⊂⊂ . . . ⊂⊂ AN ⊂⊂ A′′.

and for i = 0, . . . , N − 1 let ϕi ∈ C∞
c (A, [0, 1]) be such that suppϕi ⊂ Ai+1 and ϕi = 1 in

a neighbourhood of Ai . We notice that ϕ can be chosen in a way such that ‖∇ϕi‖∞ ≤ 2N/R.
By virtue of the nonnegativity of f , for every ε > 0 and for i = 0, . . . , N − 1 we have

Fε(ω)(ϕi u + (1− ϕi )v, A′ ∪ B)

= F∗ε (ω)(u, (A′′ ∪ B) ∩ Ai )+ F∗ε (ω)(v, B \ Ai+1)
+ Fε(ω)(ϕi u + (1− ϕi )v, (Ai+1 \ Ai ) ∩ B)

≤ Fε(ω)(u, A′′)++Fε(ω)(v, B)+ Fε(ω)(ϕi u + (1− ϕi )v, Si ), (5.3)

where F∗ε denotes the extension of Fε to the Borel subsets of Rd and Si := (Ai+1 \ Ai )∩ B.
We now estimate the last term in (5.3). Since

∇(ϕi u + (1− ϕi )v
) = ∇ϕi ⊗ (u − v)+ ϕi∇u + (1− ϕi )∇v,

by the upper bound in (3.1) we get

Fε(ω)(ϕi u + (1− ϕi )v, Si ) ≤
∫
Si

(
|∇(ϕi u + (1− ϕi )v

)

(ω, x

ε
)| + λ(ω, x

ε
)
)
dx

≤
∫
Si

(2N
R
|u − v||
(ω, x

ε
)| + |∇u
(ω, x

ε
)| + |∇v
(ω, x

ε
)| + λ(ω, x

ε
)
)
dx .

Now appealing to the lower bound in (3.1) we obtain

Fε(ω)(ϕi u + (1− ϕi )v, Si ) ≤ 1

α

(
Fε(ω)(u, Si )+ Fε(ω)(v, Si )

)

+
∫
Si

(2N
R
|u − v||
(ω, x

ε
)| + λ(ω, x

ε
)
)
dx, (5.4)
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for every ε > 0 and for every i = 0, . . . , N−1.Hence by (5.4) there exists i� ∈ {0, . . . , N−1}
such that

Fε(ω)(ϕi�u + (1− ϕi� )v, Si� ) ≤ 1

N

N−1∑
i=0

Fε(ω)(ϕi u + (1− ϕi )v, Si )

≤ 1

Nα

(
Fε(ω)(u, S)+ Fε(ω)(v, S)

)
+ 2

R

∫
S
|u − v||
(ω, x

ε
)| dx + 1

N

∫
S
λ(ω, x

ε
) dx .

Finally, thanks to (5.2), the definition of R, and (5.3) the desired estimate follows by choosing
ϕ = ϕi� . ��
Remark 5.4 Let A, A′, A′′, B ∈ A be as in the statement of Lemma 5.3. Let (uε), (vε) ⊂
W 1,1(A,Rm) be such that (uε, vε) → (u, v) in L1(A,Rm)× L1(A,Rm). Assume moreover
that (uε), (vε) are uniformly bounded in the L∞(A,Rm)-norm. Then, there exists a set
�′′ ∈ F with P(�′′) = 1 such that for every ω ∈ �′′ and for every δ > 0 there exists a
sequence (wε,δ) ⊂ W 1,1(A,Rm) with wε,δ = uε in A′ and wε,δ = vε on ∂A′′ such that

lim inf
ε→0+

Fε(ω)(wε,δ, A
′ ∪ B) ≤ (1+ δ) lim inf

ε→0+

(
Fε(ω)(uε, A

′′)+ Fε(ω)(vε, B)
)

+ 4E[|
(·, 0)|]
dist(A′, ∂A′′)

∫
(A′′\A′)∩B

|u − v| dx + δE[λ(·, 0)]||(A′′ \ A′) ∩ B|, (5.5)

Moreover, the same estimate holds true if we replace lim inf by lim sup.
In fact, up to a subsequence, |uε−vε| converges a.e. to |u−v| and is uniformly bounded in

the L∞(A,Rm)-norm.Moreover, due to Theorem 2.2 we know that, almost surely, |
(ω, x
ε
)|

and λ(ω, x
ε
) converge weakly in L1(A) to E[|
(·, 0)|] and E[λ(·, 0)], respectively. By [18,

Proposition 2.61] we then have that, almost surely,

|uε − vε||
(ω, ·
ε
)|⇀E[|
(·, 0)|]|u − v|,

weakly in L1(A). Therefore (5.5) follows by Lemma 5.3 setting wε,δ := ϕuε + (1− ϕ)vε.

We are now in a position to establish the �-convergence result for the functionals Fε. This
is done by proving the liminf and limsup inequalities separately. We start with the limsup-
inequality whose proof relies on a density and relaxation argument.

Proposition 5.5 Let Fε and Fhom be as in (3.2) and (3.6), respectively. Then, there exists
�̃ ∈ F with P(�̃) = 1 such that for every ω ∈ �̃, every u ∈ L1

loc(R
d ,Rm), there exists a

sequence (uε) ⊂ L1
loc(R

d ,Rm) with uε → u in L1
loc(R

d ,Rm) satisfying

lim sup
ε→0+

Fε(ω)(uε, A) ≤ Fhom(u, A), (5.6)

for every A ∈ A.

Proof Let u ∈ L1
loc(R

d ,Rm) and A ∈ A, moreover assume that u ∈ BV (A,Rm), otherwise
there is nothing to prove.

We recall that (5.6) is equivalent to proving that for every u ∈ BV (A,Rm) and every
A ∈ A there holds

F ′′(ω)(u, A) ≤ Fhom(u, A), (5.7)

where F ′′(ω) : L1
loc(R

n,Rm)×A −→ [0,+∞] is defined as
F ′′(ω)(u, A) := inf{lim sup

ε→0+
Fε(ω)(uε, A) : uε → u in L1

loc(R
d ,Rm)}. (5.8)
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Moreover, it is well-known that F ′′(ω)(·, A) is L1
loc(R

d ,Rm)-lower semicontinuous.
Let�′,�′′ ∈ F be the sets of full probabilitywhose existence is established byLemma 4.1

and Remark 5.4, respectively. Set �̃ := �′ ∩�′′; clearly P(�̃) = 1. Throughout the proof ω

is arbitrarily fixed in �̃.
We achieve the proof of (5.7) in three steps.
Step 1: Proof of (5.7) for u ∈ W 1,1(A,Rm).
Let A ∈ A be fixed; in this step we show that

F ′′(ω)(u, A) ≤
∫
A
fhom(∇u) dx, (5.9)

for all u ∈ W 1,1(A,Rm). Since A has Lipschitz boundary, it is not restrictive to assume that
u ∈ W 1,1(Rd ,Rm).

We observe that by the continuity and the linear growth of fhom (cf. Lemma 4.1) the
functional in the right-hand side of (5.9) is continuous with respect to strong W 1,1(A,Rm)-
convergence. Then, by standard density arguments it suffices to prove (5.9) for (continuous)
piecewise affine functions. That is, we can assume that u is continuous and that there exists a
locally finite triangulation {Ti }i∈N of Rd in non-degenerate (d + 1)-simplices such that u|Ti
is affine for every i ∈ N.

To construct a recovery sequence (uε) for such a u we first construct it locally, in each Ti ,
in a way so that uiε := uε|Ti ∈ u+W 1,1

0 (Ti ,Rm), for all i ∈ N. Then, thanks to the continuity
of u, the locally defined sequences (uiε) can be “glued” together to obtain a recovery sequence
(uε) defined on the whole Rd .

To this end, we first focus on a single simplex Ti and write u|Ti = �ξi + bi , for some
ξi ∈ R

m×d and bi ∈ R
m . For δ > 0 small, we consider the family of pairwise disjoint open

cubes of side-length δ contained in Ti defined as

Qδ
i := {Qδ := Qδ(δz) : z ∈ Z

d , Qδ ⊂ Ti }

and the inner approximation of Ti defined as T δ
i := ⋃

Qδ∈Qδ
i
Qδ . We define the sequence

(uiε) separately in each cube in Qδ
i . Then, for ε > 0 and Qδ ∈ Qδ

i fixed let vi
ε,Qδ ∈ �ξi +

W 1,1
0 (ε−1Qδ,Rm) satisfy

∫
ε−1Qδ

f (ω, x,∇vi
ε,Qδ ) dx ≤ μξi (ω, ε−1Qδ)+ ε,

where μξi is as in (4.2) with ξ replaced by ξi . Set uiε,Qδ := vi
ε,Qδ − �ξi , thus ui

ε,Qδ ∈
W 1,1

0 (ε−1Qδ,Rm). We then define uiε on Ti as

uiε(x) := u|Ti +
∑

Qδ∈Qδ
i

εui
ε,Qδ (x/ε)χQδ (x);

we notice that uiε depends also on δ.
Thanks to the boundary conditions satisfied by ui

ε,Qδ we clearly have that uiε ∈ u +
W 1,1

0 (Ti ,Rm).
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By the upper bound in (3.1), we can estimate the energy of uiε on the simplex Ti as follows

Fε(ω)(uiε, Ti ) =
∑

Qδ∈Qδ
i

∫
Qδ

f (ω, x
ε
,∇ui

ε,Qδ (
x
ε
)+ ξi ) dx +

∫
Ti\T δ

i

f (ω, x
ε
, ξi ) dx

≤
∑

Qδ∈Qδ
i

εd
∫

ε−1Qδ

f (ω, y,∇vi
ε,Qδ ) dy + εd

∫
ε−1(Ti\T δ

i )

(|ξi ||
(ω, y)| + λ(ω, y)
)
dy

≤
∑

Qδ∈Qδ
i

|Qδ| μξi (ω, ε−1Qδ)

ε−d |Qδ| + εd
∫

ε−1(Ti\T δ
i )

(|ξi ||
(ω, y)| + λ(ω, y)
)
dy + o(1),

as ε → 0+, where to establish the last inequality we have used the definition of vi
ε,Qδ .

Since ω ∈ �̃, Lemma 4.1 ensures that

lim
ε→0+

μξi (ω, ε−1Qδ)

ε−d |Qδ| = fhom(ξi ),

while Theorem 2.2 applied to |
| + λ yields

lim
ε→0+

εd
∫

ε−1(Ti\T δ
i )

|
(ω, y)| + λ(ω, y) dy = |Ti \ T δ
i |E[|
(·, 0)| + λ(·, 0)].

Therefore we get

lim sup
ε→0+

Fε(ω)(uiε, Ti ) ≤
∑

Qδ∈Qδ
i

|Qδ| fhom(ξi )+ (|ξi | + 1)|Ti \ T δ
i |E[|
(·, 0)| + λ(·, 0)]

≤
∫
Ti

fhom(∇u) dy + o(1), (5.10)

as δ → 0+. Set

uε :=
{
uiε inTi , ifTi ∩ A = ∅
u otherwise inRd ;

appealing to (5.10) we have that

lim sup
ε→0+

Fε(ω)(uε, A) ≤
∑

i : Ti∩A =∅
lim sup
ε→0+

Fε(ω)(uiε, Ti ) ≤
∑

i : Ti∩A =∅

∫
Ti

fhom(∇u) dx + o(1)

≤
∫
A
fhom(∇u) dx +

∑
i : Ti∩∂A =∅

∫
Ti

fhom(∇u) dx + o(1), (5.11)

as δ → 0+.
We now analyse the asymptotic behaviour of uε; to this end we recall that uε also depends

on δ. In view of (5.11) we can combine Poincaré’s Inequality and Lemma 5.1 to infer that uε

is bounded inW 1,1(A,Rm), uniformly in ε. Hence, also taking into account the definition of
uε up to a subsequences (not relabelled) uε → uδ in L1

loc(R
d ,Rm), with uδ ∈ W 1,1(A,Rm).

We now estimate the difference between uδ and the target function u in L1(Ti ,Rm), for every
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i such that Ti ∩ A = ∅. By the Poincaré Inequality on the cubes Qδ ∈ Qδ
i , we have

‖uδ − u‖L1(Ti ) = lim
ε→0+

∑
Qδ∈Qδ

i

∫
Qδ

|εui
ε,Qδ (

x
ε
)| dx ≤ Cδ lim inf

ε→0+

∑
Qδ∈Qδ

i

∫
Qδ

|∇ui
ε,Qδ (

x
ε
)| dx

≤ Cδ

⎛
⎜⎝|ξi ||Ti | + lim inf

ε→0+

∑
Qδ∈Qδ

i

∫
Qδ

|ξi + ∇ui
ε,Qδ (

x
ε
)| dx

⎞
⎟⎠

≤ Cδ

(
|ξi ||Ti | + lim inf

ε→0+

∫
Ti
|∇uiε| dx

)
.

Using (3.7) we then have

‖uδ − u‖L1(Ti ) ≤ Cδ

(
|ξi ||Ti | + lim sup

ε→0+
Fε(ω)(uiε, Ti )

)
.

Thanks to (5.10) the term inside the parenthesis above is finite, and therefore we conclude
that uδ → u in L1(Ti ,Rm) as δ → 0 and analogously, also taking into account the definition
of uε we have that uδ → u in L1

loc(R
d ,Rm).

Eventually, by the L1
loc(R

d ,Rm)-lower semicontinuity of F ′′(ω)(·, A) and by (5.11) we
obtain

F ′′(ω)(u), A ≤ lim inf
δ→0+

F ′′(ω)(uδ, A) ≤ lim sup
δ→0+

lim sup
ε→0+

Fε(ω)(uε, A)

≤
∫
A
fhom(∇u) dx +

∑
i : Ti∩∂A =∅

∫
Ti

fhom(∇u) dx,

hence the claim follows by a standard diagonal argument also refining the triangulation
{Ti }i∈N by choosing simplices of arbitrarily small diameter.

Step 2: Quasiconvexity of fhom.
In this step we prove that the function fhom is quasiconvex, that is, we show that

|Q| fhom(ξ) ≤
∫
Q

fhom(ξ + ∇u) dx, (5.12)

for every ξ ∈ R
m×d and every u ∈ C1

0(Q,Rm), where Q := Qρ(x0) ⊂ R
d is an open cube.

Since �ξ + u ∈ L∞(Q,Rm), Lemma 5.2 together with Step 1 ensure that for η > 0
small enough there exists (uε,η) ⊂ W 1,1(Q,Rm), with |uε,η| ≤ Cη a.e. in Q, such that
uε,η → �ξ + u in L1(Q,Rm), and

lim sup
ε→0+

Fε(ω)(uε,η, Q) ≤ (1+ η)

∫
Q

fhom(ξ + ∇u) dx + η.

Set Q1−η := Q(1−η)ρ(x0); we notice that since u ∈ C∞
0 (Q,Rm), then u = 0 on Q\Q1−η,

for η > 0 small enough. We now invoke Remark 5.4 to modify uε,η in a neighbourhood of
∂Q. Namely, choosing uε = uε,η, vε = �ξ , A′ = Q1−η, A′′ = Q, and B = Q\Q1−η for
every δ > 0 we get a sequencewε,η,δ ∈ �ξ +W 1,1

0 (Q,Rm) such thatwε,η,δ = uε,η on Q1−η,
whereas by (5.5) there holds

lim sup
ε→0+

Fε(ω)(wε,η,δ, Q) ≤ (1+ δ) lim sup
ε→0+

(
Fε(ω)(uε,η, Q)+ Fε(ω)(�ξ , Q \ Q1−η)

)

+Cδ|Q \ Q1−η|. (5.13)
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Since ω ∈ �̃ by combining (3.1) and Theorem 2.2 we get

lim sup
ε→0+

Fε(ω)(�ξ , Q \ Q1−η) ≤ lim sup
ε→0+

(|ξ | + 1)
∫
Q\Q1−η

|
(ω, x
ε
)| + λ(ω, x

ε
) dx

= (|ξ | + 1)E[|
(·, 0)| + λ(·, 0)] |Q \ Q1−η|, (5.14)

moreover, by a change of variables and Lemma 4.1 we have

|Q| fhom(ξ) = lim
ε→0+

εdμξ (ω, ε−1Q) ≤ lim sup
ε→0+

Fε(ω)(wε,η,δ, Q). (5.15)

Finally, gathering (5.13)-(5.15) gives

|Q| fhom(ξ)

≤ (1+ δ)

(
(1+ η)

∫
Q

fhom(ξ +∇u) dx + η + (|ξ | + 1)E[|
(·, 0)| + λ(·, 0)] |Q \ Q1−η|
)

+ Cδ|Q \ Q1−η|.
Therefore (5.12) follows by letting δ → 0+ and η → 0+.

Step 3: Proof of (5.7) by relaxation.
Since fhom is non-negative, quasiconvex, and satisfies the upper bound fhom(ξ) ≤ C0|ξ |+

C1 we can invoke [3, Theorem 4.1] to deduce that for A ∈ A the L1
loc(R

d ,Rm)-lower
semicontinuous envelope of

W 1,1(A,Rm)  u �→
∫
A
fhom(∇u) dx

on BV (A,Rm) is given by

Fhom(u, A) =
∫
A
fhom(∇u) dx +

∫
A
f∞hom

(
dDsu

d|Dsu|
)

d|Dsu|.

Therefore (5.7) follows by taking the L1
loc(R

d ,Rm)-lower-semicontinuous envelope of both
sides in (5.9). ��

We now show that the liminf inequality holds true. In this case the proof is achieved by
resorting to the Fonseca and Müller blow-up method [19] (see also [3]).

Proposition 5.6 Let Fε and Fhom be as in (3.2) and (3.6), respectively. Then, there exists
�̃ ∈ F with P(�̃) = 1 such that for every ω ∈ �̃, every u ∈ L1

loc(R
d ,Rm), and every

sequence (uε) ⊂ L1
loc(R

d ,Rm) with uε → u in L1
loc(R

d ,Rm) there holds

Fhom(u, A) ≤ lim inf
ε→0+

Fε(ω)(uε, A), (5.16)

for every A ∈ A.

Proof Let �′,�′′ ∈ F be the sets of probability one whose existence is established by
Lemma 4.1 and Remark 5.4, respectively. Set �̃ := �′ ∩�′′; clearly P(�̃) = 1. Throughout
the proof ω is arbitrary, fixed, and belongs to �̃.

Let u ∈ L1
loc(R

d ,Rm) and let (uε) ⊂ L1
loc(R

d ,Rm) be such that uε → u in L1
loc(R

d ,Rm).
Let A ∈ A and suppose that

lim inf
ε→0+

Fε(ω)(uε, A) < +∞ (5.17)
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(otherwise there is nothing to prove). Moreover, up to subsequences, we can also assume
that the liminf in (5.17) is actually a limit. Thanks to (5.17), we immediately deduce that
(uε) ⊂ W 1,1(A,Rm), moreover by Lemma 5.1 we know that u ∈ BV (A,Rm).

The proof of (5.16) is carried out in two main steps.
Step 1: Proof of (5.16) for sequences (uε) equi-bounded in L∞(A,Rm).
Assume that there exists M < +∞ such that for every ε > 0

‖uε‖L∞(A,Rm ) ≤ M . (5.18)

For ω ∈ � fixed and for every Borel subset B of A we define the finite Radon-measures νε

as

νε(ω, B) :=
∫
B
f (ω, x

ε
,∇uε) dx .

By (5.17) the total variation of the sequence (νε) is equi-bounded, therefore, up to subse-

quences, we have that νε
�

⇀ν, for some nonnegative finite Radon measure ν. By the Lebesgue
Decomposition Theorem, we can write ν = νa+νs , where νa and νs are, respectively, abso-
lutely continuous and singular with respect to the Lebesgue measure. We then have

νa = f̃ (ω, x) dx,

for some nonnegative integrable function f̃ .
Since A is open, the weak� convergence of νε to ν implies that

lim inf
ε→0+

Fε(ω)(uε, A) = lim inf
ε→0+

νε(ω, A) ≥ ν(ω, A) =
∫
A
f̃ (ω, x) dx + νs(ω, A).

We now separately estimate from below the integrand f̃ and the measure νs . Since Du
|Du| =

Dsu
|Dsu| for |Dsu|-a.e. x0 ∈ A, to prove (5.16) it suffices to show that for every ω ∈ �̃

f̃ (ω, x0) ≥ fhom(∇u(x0)) for a.e. x0 ∈ A, (5.19)

dνs

d|Du| (ω, x0) ≥ f∞hom
( dDu

d|Du| (x0)
)

for |Dsu|-a.e. x0 ∈ A, (5.20)

where fhom is as in Lemma 4.1 and f∞hom denotes its recession function.

Substep 1.1: Proof of (5.19).

Let x0 ∈ A and let r > 0 be so small that Qr (x0) ⊂ A. Since ν is a finite Radon
measure, it follows that ν(ω, ∂Qr (x0)) = 0 except for a countable number of radii. Then,
the Besicovitch Differentiation Theorem [18, Theorem 1.153] and the Portmanteau Theorem
imply that for a.e. x0 ∈ A (along a suitable sequence r → 0+) we have

f̃ (ω, x0) = lim
r→0+

ν(ω, Qr (x0))

rd
= lim

r→0+
lim

ε→0+
νε(ω, Qr (x0))

rd
.

Therefore to prove (5.19) it suffices to show that for a.e. x0 ∈ A we have

lim inf
r→0+

lim inf
ε→0+

−
∫
Qr (x0)

fε(ω, x
ε
,∇uε) dx ≥ fhom(∇u(x0)). (5.21)

Let x0 be a Lebesgue point of u and ∇u and set Lu,x0(x) := u(x0)+ ∇u(x0)(x − x0).
Due to (5.18) we can invoke Remark 5.4 to modify uε close to ∂Qr (x0). Namely,

Remark 5.4 applied to the sequences uε and vε = Lu,x0 ∈ L∞(A,Rm) and to the open sets
A′ = Qsr (x0), with s ∈ (0, 1), A′′ = Qr (x0), and B = Qr (x0)\Qsr (x0), for every δ > 0
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provides us with wε,δ ∈ W 1,1(A,Rm) satisfying wε,δ = uε on Qsr (x0) and wε,δ = Lu,x0 on
∂Qr (x0). Moreover, (5.5) now reads as

lim inf
ε→0+

Fε(ω)(wε,δ, Qr (x0)) ≤ (1+ δ) lim inf
ε→0+(

Fε(ω)(uε, Qr (x0))+ Fε(ω)(Lu,x0 , Qr (x0) \ Qsr (x0))
)

+ C

(1− s)r

∫
Qr (x0)\Qsr (x0)

|u(x)− Lu,x0(x)| dx + Cδ|Qr (x0) \ Qsr (x0)|, (5.22)

where used that dist(Qsr (x0), ∂Qr (x0)) = 1
2 (1− s)r .

Since wε,δ is admissible as test function in the minimisation problem defining the ergodic
process μ∇u(x0) and ω ∈ �̃, invoking Lemma 4.1 gives

lim inf
ε→0+

Fε(ω)(wε,δ, Qr (x0)) ≥ lim
ε→0+

εdμ∇u(x0)(ω, ε−1Qr (x0)) = fhom(∇u(x0))r
d .

(5.23)

Moreover by (3.1), appealing to Theorem 2.2 we get

lim sup
ε→0+

Fε(ω)(Lu,x0 , Qr (x0) \ Qsr (x0)) ≤ lim
ε→0+

(|∇u(x0)+ 1)
∫
Qr (x0)\Qsr (x0)

(|
(ω, x
ε
)| + λ(ω, x

ε
)
)
dx

= (|∇u(x0)| + 1)E[|
(·, 0)| + λ(·, 0)]|Qr (x0) \ Qsr (x0)|. (5.24)

Gathering (5.22)-(5.24) yields

rd

1+ δ
fhom(∇u(x0)) ≤ lim inf

ε→0
Fε(ω)(uε, Qr (x0))+ Cδ|Qr (x0) \ Qsr (x0)|

+ C

(1− s)r

∫
Qr (x0)

|u(x)− Lu,x0(x)| dx .

We now divide the above inequality by rd ; then recalling that due to [17, Theorem 1, p. 228]

lim
r→0+

1

rd+1

∫
Qr (x0)

|u(x)− Lu,x0(x)| dx = 0,

for a.e. x0 ∈ A, we first let δ → 0+, then r → 0+, and eventually s → 1− thus getting for
a.e. x0 ∈ A

fhom(∇u(x0)) ≤ lim inf
r→0+

lim inf
ε→0+

1

rd
Fε(ω)(uε, Qr (x0)),

and thus the claim.
Substep 1.2: Proof of (5.20).

Thanks to [3, Theorem 2.3], for |Dsu|-a.e. x0 ∈ A the following properties hold true:
(i) dDu

d|Du| (x0) = η(x0) ⊗ n(x0) for some η(x0) ∈ R
m and n(x0) ∈ R

d with |η(x0)| =
|n(x0)| = 1;

(i i) setting Cr (x0) = x0 + rC , for r > 0 and C a bounded, convex, open set with 0 ∈ C ,
there holds

lim
r→0+

Du(Cr (x0))

|Du|(Cr (x0))
= η(x0)⊗ n(x0), lim

r→0+
|Du|(Cr (x0))

rd
= +∞; (5.25)
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(i i i) defining wr ∈ BV (C,Rm) as

wr (y) := rd

|Du|(Cr (x0))
r−1

(
u(x0 + ry)−−

∫
C
u(x0 + r x) dx

)
, (5.26)

there exist a subsequence rh → 0+, as h →+∞, and a function w ∈ BV (C,Rm) such that
wrh → w in L1(C,Rm). Moreover, w can be represented as

w(y) = ψ(〈y, n(x0)〉)η(x0),

where ψ : (a, b) → R is a non-decreasing function with

a := inf{〈y, n(x0)〉 : y ∈ C}, b := sup{〈y, n(x0)〉 : y ∈ C}.
We notice that in the proof of (i i i) the passage to subsequences is only needed when

using the compactness properties of bounded sequences in BV and of bounded measures.
Therefore, we can apply (i i i) along a further subsequence of radii which we choose below,
to invoke Portmanteau’s Theorem.

Let x0 ∈ A be fixed and such that properties (i)-(i i i) hold true.
Set n := n(x0) ∈ S

d−1; we complete the vector n to an orthonormal basis n1, . . . , nd−1, n
of Rd . In the same spirit as in the proof of [5, Lemma 3.9], we choose the convex set C to
be:

Ck := {x ∈ R
d : |〈x, n〉| < 1/2, |〈x, ni 〉| < k/2 for all 1 ≤ i ≤ d − 1},

for k ∈ N. With this choice there holds that a = − 1
2 and b = 1

2 . Moreover set Ck
r (x0) :=

rCk(x0) = x0 + rCk and let wk
r be as in (5.26) with C replaced by Ck .

Again invoking the Besicovitch Differentiation Theorem [18, Theorem 1.153], also using
(5.25), and the Portmanteau Theorem we can assume that along a sequence rh → 0+

dνs

d|Du| (ω, x0) = lim
h→+∞

ν(ω,Ck
rh (x0))

|Du|(Ck
rh (x0))

= lim
h→+∞ lim

ε→0+
νε(ω,Ck

rh (x0))

|Du|(Ck
rh (x0))

.

Hence, in view of (i) to get (5.20) it suffices to show that

lim sup
k→+∞

lim sup
h→+∞

lim inf
ε→0+

1

|Du|(Ck
rh (x0))

∫
Ck
rh

(x0)
f (ω, x

ε
,∇uε(x)) dx ≥ f∞hom(η ⊗ n).

(5.27)

Up to refining the subsequence rh → 0+, by (iii) we find a function wk ∈ BV (Ck,Rm)

such that wk
rh → wk in L1(C ,

R
m); furthermore wk can be represented as

wk(y) = ψk(〈y, n(x0)〉)η(x0),

for some non-decreasing function ψk : (− 1
2 ,

1
2 ) → R. Since |η(x0)⊗ n(x0)| = 1, by slicing

we have

|Dwk |(Ck(x0)) = kd−1
(
ψk( 12

−
)− ψk(− 1

2
+
)
)

. (5.28)

As shown in the proof of [3, Theorem 2.3], the measure |Dwk | coincides with the weak∗-limit
of the measures |Dwk

rh |. Thanks to [23, Lemma 5.1] we get |Dwk |(Ck(x0)) = 1, which by
(5.28) yields (

ψk( 12
−
)− ψk(− 1

2
+
)
)
= k1−d . (5.29)
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Moreover, since wk
r has zero mean-value we get that

∫ 1/2

−1/2
ψk(t) dt = 0. (5.30)

Set tkh :=
|Du|(Ck

rh
(x0))

rdh
. By (5.25) we have that

lim
r→+∞ tkh = +∞. (5.31)

Moreover, thanks to (5.18), we can apply (5.5) choosing the functions uε,

vk(x) := tkh

(
k1−dη〈n, x − x0〉 + rhη

ψk( 12
−
)+ ψk(− 1

2
+
)

2

)
+−
∫
Ck
rh

(x0)
u(y) dy,

where η := η(x0), and the sets

A′′ = Ck
rh (x0), B = Ck

rh ,s(x0), A′ = Ck
rh (x0) \ Ck

rh ,s(x0),

where for s ∈ (0, 1) we define the anisotropic annular set

Ck
r ,s(x0) := x0

+
(
{x ∈ Ck

r : max
1≤i≤d−1{|〈x, ni 〉|} > (k − s)r/2} ∪ {x ∈ Ck

r : |〈x, n〉| > (1− s)r/2}
)

.

Since ω ∈ �̃ and ∇vk = tkh k
1−dη ⊗ n, from Lemma 4.1 we deduce that for any δ > 0

|Ck
rh (x0)| fhom(tkh k

1−dη ⊗ n) ≤ (1+ δ) lim inf
ε→0+

(
Fε(ω)(uε,C

k
rh (x0))+ Fε(ω)(vk ,C

k
rh ,s(x0))

)

+ C

sr

∫
Ck
rh ,s (x0)

|u − vk | dx + C δ. (5.32)

Furthermore, (3.1) and Theorem 2.2 give

lim sup
ε→0+

Fε(ω)(vk,C
k
rh ,s(x0)) ≤ C(tkh k

1−d |η ⊗ n| + 1)|Ck
rh ,s(x0)|

≤ Ctkh k
1−ds|Ck

rh (x0)|,
where we also used that tkh k

1−d ≥ 1 for h = h(k) large enough.
By the arbitrariness of δ > 0 in (5.32), appealing to the rank-one convexity of fhom (see

Step 2 in the proof of Proposition 5.5) and to (5.31) we deduce

f∞hom(η ⊗ n) = lim
h→+∞

fhom(tkh k
1−dη ⊗ n)

tkh k
1−d

≤ lim sup
h→+∞

lim inf
ε→0+

1

tkh k
1−d |Ck

rh (x0)|
Fε(ω)(uε,C

k
rh (x0))+ Cs

+ lim inf
h→+∞

C

tkrh k
1−d |Ck

rh (x0)|sr
∫
Ck
rh ,s (x0)

|u − vk | dx .

By definition of tkh there holds

tkh k
1−d |Ck

rh (x0)| = |Du|(Ck
rh (x0))k

1−d |Ck(x0)| = |Du|(Ck
rh (x0)),
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therefore (5.27) follows if we show that

lim sup
k→+∞

lim sup
s→0+

lim inf
h→+∞

1

|Du|(Ck
rh (x0))srh

∫
Ck
rh ,s (x0)

|u − vk | dx = 0. (5.33)

To prove (5.33) we start observing that Ck
r ,s = rCk

1,s , hence by a change of variables we get

1

|Du|(Ck
r (x0))sr

∫
Ck
r,s (x0)

|u − vk | dx = rd

|Du|(Ck
r (x0))s

∫
Ck
1,s

∣∣∣∣u(x0 + ry)− vk(x0 + ry)

r

∣∣∣∣ dy.
Moreover, in view of the definition of vk we have

rd

|Du|(Ck
r (x0))

u(x0 + ry)− vk(x0 + ry)

r

= rd

|Du|(Ck
r (x0))

r−1
(
u(x0 + ry)−−

∫
Ck
1

u(x0 + r x) dx
)

−
(
k1−dη〈n, y〉 + η

ψk( 12
−
)+ ψk(− 1

2
+
)

2

)

= wr (y)−
(
k1−dη〈n, y〉 + η

ψk( 12
−
)+ ψk(− 1

2
+
)

2

)
.

Then, if we replace r with the sequence (rh) chosen as above, we obtain that

lim inf
h→+∞

1

tkh s

∫
Ck
1,s

∣∣∣∣u(x0 + rh y)− vk(x0 + rh y)

rh

∣∣∣∣ dy

= 1

s

∫
Ck
1,s

∣∣∣∣∣ψk(〈n, y〉)η −
(
k1−dη〈n, y〉 + η

ψk( 12
−
)+ ψk(− 1

2
+
)

2

)∣∣∣∣∣ dy

= 1

s

∫
Ck
1,s

∣∣∣∣∣ψk(〈n, y〉)−
(
k1−d〈n, y〉 + ψk( 12

−
)+ ψk(− 1

2
+
)

2

)∣∣∣∣∣ dy, (5.34)

where we also used that |η| = 1.
We now estimate (5.34). To do so we split the domain of integration in two (non-disjoint)

subsets by writing Ck
1,s = Ak

1,s ∪ Bk
1,s with

Ak
1,s = {y ∈ Ck : max

1≤i≤d−1 |〈y, ni 〉| > (k − s)/2},
Bk
1,s = {y ∈ Ck : |〈y, n〉| > (1− s)/2}.

Then, the idea to conclude is as follows: the measure of Ak
1,s is of order (d − 1)skd−2 while

the integrand decays like k1−d ; on the other hand, in Bk
1,s the quantity 〈n, y〉 is close to±1/2

and, by construction, the integrand vanishes at these points.
Rigorously, since

Ak
1,s =

d−1⋃
i=1

Ck ∩ {y : |〈y, ni 〉| ≥ (k − s)/2}

we get that |Ak
1,s | ≤ (d − 1)skd−2, where we have used the fact that the vectors (ni )

d−1
i=1 and

n form an orthonormal basis. Moreover, (5.29), the monotonicity of ψk , and (5.30) imply

123



  138 Page 30 of 36 M. Ruf, C. I. Zeppieri

that |ψk(t)| ≤ k1−d for all t ∈ (−1/2, 1/2). Hence
1

s

∫
Ak
1,s

∣∣∣∣∣ψk(〈n, y〉)−
(
k1−d〈n, y〉 + ψk( 12

−
)+ ψk(− 1

2
+
)

2

)∣∣∣∣∣ dy ≤
C

s
|Ak

1,s |k1−d ≤
C

k
,

(5.35)

uniformly for s ∈ (0, 1). We now estimate the contribution coming from the integration on
Bk
1,s . By an orthogonal change of variables we get

1

s

∫
Bk
1,s

∣∣∣∣∣ψk(〈n, y〉)−
(
k1−d〈n, y〉 + ψk( 12

−
)+ ψk(− 1

2
+
)

2

)∣∣∣∣∣ dy

=kd−1

s

∫ − 1−s
2

− 1
2

∣∣∣∣∣ψk(t)−
(
k1−d t + ψk( 12

−
)+ ψk(− 1

2
+
)

2

)∣∣∣∣∣ dt

+ kd−1

s

∫ 1
2

1−s
2

∣∣∣∣∣ψk(t)−
(
k1−d t + ψk( 12

−
)+ ψk(− 1

2
+
)

2

)∣∣∣∣∣ dt =: I−k,s + I+k,s .

Due the monotonicity of ψ we find a sequence of positive numbers (γ k
s )s>0 with

lims→0+ γ k
s = 0 such that

∣∣∣ψk(t)− ψk(− 1
2
+
)

∣∣∣ ≤ γ k
s for all − 1

2 < t < − 1−s
2 ,∣∣∣ψk(t)− ψk( 12

−
)

∣∣∣ ≤ γ k
s for all 1−s

2 < t < 1
2 .

Hence we can estimate the last two integrals as follows:

I−k,s + I+k,s ≤ kd−1γ k
s +

s

2
+ kd−1

2

∣∣∣∣∣ψk(− 1
2
+
)−
(
−k1−d

2
+ ψk( 12

−
)+ ψk(− 1

2
+
)

2

)∣∣∣∣∣

+ kd−1

2

∣∣∣∣∣ψk( 12
−
)−
(
k1−d

2
+ ψk( 12

−
)+ ψk(− 1

2
+
)

2

)∣∣∣∣∣ .

By (5.29) the last two terms equal zero and we obtain

lim sup
s→0+

(
I−k,s + I+k,s

)
≤ lim sup

s→0+

(
kd−1γ k

s +
s

2

)
= 0.

By combining the latter with (5.35) and (5.34) we get (5.33) and hence the claim.
Step 2: Proof of (5.16) for general sequences (uε).
Let (uε) ⊂ W 1,1(A,Rm) be as in (5.17). For ε > 0 and η > 0 fixed let uε,η ∈

W 1,1(A,Rm) be the function given by Lemma 5.2; therefore

lim inf
ε→0+

Fε(ω)(uε, A) ≥ 1

1+ η
lim inf
ε→0+

Fε(ω)(uε,η, A)− η. (5.36)

Since |uε,η| < Cη a.e. in A, thanks to (5.36)we can invoke Lemma 5.1 to deduce the existence
of a subsequence (not relabelled) such that uε,η → uη in L1(A,Rm), as ε → 0+, for some
uη ∈ BV (A,Rm). Moreover, Step 1 implies that

lim inf
ε→0+

Fε(ω)(uε, A) ≥ 1

1+ η
Fhom(uη, A)− η. (5.37)
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Thanks to [3, Theorem 4.1] the functional Fhom(·, A) is L1(A,Rm)-lower semicontinuous
on BV (A,Rm). Therefore, in view of (5.37), to conclude it suffices to show that uη → u in
L1(A,Rm).

By Lemma 5.2 and the L1-convergence of uε,η to uη it follows that |uη| ≤ |u| a.e. on A;
moreover by construction uη = u a.e. on {|u| ≤ η−1}. Hence the Dominated Convergence
Theorem yields uη → u as η → 0+ and thus the claim. ��

By combining the results proven in this section together with those in Sect. 4 we are now
able to prove Theorem 3.1.

Proof of Theorem 3.1 Lemma 5.1 shows that the domain of the �-limit of Fε(ω)(·, A) is
BV (A,Rm). Then, statements in i . and i i . are proven in Lemma 4.1 and in Proposition 5.5,
Step 2. Eventually, the almost sure �-convergence of the functionals Fε(ω)(·, A), statement
i i i ., follows by Propositions 5.5 and 5.6. ��

6 0-convergence with Dirichlet boundary conditions

This short section is devoted to the proof of Theorem 3.4.

Proof of Theorem 3.4 Let �̃ ∈ F be as in Theorem 3.1 and �̂ be such that the sequence
of functions (Mε(ω))ε defined in (3.10) is locally equi-integrable in R

d , for every ω ∈ �̂.
Throughout the proof ω is arbitrarily fixed in �̃ ∩ �̂.

We start by proving the liminf-inequality. To this end, fix A ∈ A and let (uε) ⊂ L1(A,Rm)

and u ∈ L1(A,Rm) be such that uε → u in L1(A,Rm). Without loss of generality, we can
assume that

sup
ε>0

Fu0
ε (ω)(uε, A) < +∞,

therefore (uε) ⊂ u0+W 1,1
0 (A,Rm). We then extend uε to the whole Rd by setting uε := u0

on R
d \ A.

For r ∈ (0, 1) given, consider the sets Ar := {x ∈ R
d\A : dist(x, A) < r}. By (3.1) we

get

Fε(ω)(uε, A ∪ Ar ) ≤ Fu0
ε (ω)(uε, A)+ Fu0

ε (ω)(u0, Ar ) ≤ Fu0
ε (ω)(uε, A)

+
∫
Ar

(
Mε(ω)(x)+ λ(ω, x

ε
)
)
dx .

By virtue of the equi-integrability of Mε(ω) and λ(ω, ·/ε) (cf. Theorem 2.2), given δ > 0,
there exists rδ > 0 such that for every r ∈ (0, rδ)∫

Ar

(
Mε(ω)(x)+ λ(ω, x

ε
)
)
dx ≤ δ,

for every ε > 0. Then, setting ũ := χAu+ (1−χA)u0, by applying Theorem 3.1 in the open
set A ∪ Ar (notice that A ∪ Ar ∈ A, for r small) we obtain∫

A∪Ar
fhom(∇ũ) dx +

∫
A∪Ar

f∞hom
(

dDsũ

d|Dsũ|
)

d|Dsũ| ≤ lim inf
ε→0+

Fu0
ε (ω)(uε, A)+ δ,

for every r ∈ (0, rδ). Therefore letting first r → 0+ and then δ → 0+, we infer that∫
A
fhom(∇u) dx +

∫
A
f∞hom

(
dDsũ

d|Dsũ|
)

d|Dsũ| ≤ lim inf
ε→0+

Fu0
ε (ω)(uε, A),
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hence the claim follows by the one-homogeneity of the recessions function f∞hom and by [4,
Corollary 3.89].

We now turn to the proof of the limsup-inequality.
We start observing that it is not restrictive to assume that target function u ∈ BV (A,Rm)

satisfies u = u0 in a neighbourhood of ∂A. Indeed, this can be achieved by the following
approximation argument. For u ∈ BV (A,Rm) fixed, define ũ := χAu+ (1−χA)u0; then by
combining [26, Theorem 1.2] and [22, Theorem 3] we can deduce the existence of a sequence
(un) ⊂ u0 + C∞

c (A,Rm) such that un → ũ in L1(Rd ,Rm) and

lim
n→+∞ Fhom(un, A

′) = Fhom(ũ, A′),

for every A′ ∈ A with A ⊂ A′. Now assume that the �-limsup inequality holds true for un ,
that is

(Fu0)′′(ω)(un, A) ≤ Fu0
hom(un, A),

for every n ∈ N, where (Fu0)′′ denotes the �-limsup of Fu0
ε (cf. (5.8)). Then by the lower

semicontinuity of (Fu0)′′(ω) we get

(Fu0)′′(ω)(u, A) ≤ lim inf
n→+∞(Fu0)′′(ω)(un, A) ≤ lim inf

n→+∞ Fu0
hom(un, A)

≤ lim
n→+∞ Fu0

hom(un, A
′) = Fu0

hom(ũ, A′).

Then, the claim follows by letting A′ ↘ A, again using the one-homogeneity of f∞hom and
[4, Corollary 3.89].

Hence we only need to prove the upper bound inequality for those target functions u
belonging to u0 + C∞

c (A,Rm). To do so, we need to modify a recovery sequence given by
Theorem 3.1 close to ∂A, in order to satisfy the correct trace-constraint.

Let η > 0, Lemma 5.2 applied to a recovery sequence (uε) for u yields a sequence (uε,η)

which is bounded in L∞(Rd ,Rm) uniformly in ε and such that uε,η = uε on {|uε| ≤ η−1}.
Moreover, it satisfies

lim sup
ε→0+

Fε(ω)(uε,η, A) ≤ (1+ η)Fhom(u, A)+ η, (6.1)

where we have also used the limsup-inequality in Theorem 3.1. Next we apply Lemma 5.3
with u = uε,η, v = u0, A′′ = A and B = A\A′, where A′ ∈ A is such that u = u0 in A \ A′.
Hence, for any δ > 0 we obtain a sequence (wε,η,δ) such thatwε,η,δ = u0 in a neighbourhood
of ∂A, wε,η,δ = uε,η in A′, and

lim sup
ε→0+

Fu0
ε (ω)(wε,η,δ, A) = lim sup

ε→0+
Fε(ω)(wε,η,δ, A)

≤ (1+ δ)
(
(1+ η)Fhom(u, A)+ η + lim sup

ε→0+
Fε(ω)(u0, A \ A′)

)

+ lim sup
ε→0

C

dist(A′, ∂A)

∫
A\A′

|uε,η − u0||
(ω, x
ε
)| dx

+ Cδ|A \ A′|. (6.2)

where we tacitly used that |∂A′| = 0. Since

lim sup
ε→0+

Fε(ω)(u0, A \ A′) ≤ lim sup
ε→0+

∫
A\A′

(
Mε(ω)(x)+ λ(ω, x

ε
)
)
dx,
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the equi-integrability of Mε(ω) + λ(ω, ·
ε
) again implies that the term above becomes arbi-

trarily small when A′ ↗ A, independently of η and δ.
We now estimate the integral in (6.2). Choosing a subsequence which realises the lim sup,

Lemma 5.1 together with (6.1) implies that (up to a further subsequence) there holds uε,η →
uη in L1(A,Rm) and a.e. in A, for some uη ∈ L∞(A,Rm) satisfying uη = u = u0 a.e. on
{|u0| < η−1} ∩ A \ A′. We claim that Assumption 2 implies that (along that subsequence)

|uε,η − u0||
(ω, x
ε
)|⇀E[|
(·, 0)]|uη − u0|, (6.3)

in L1(A). Indeed, for k ∈ N set Lk := {|u0| ≤ k}; then the sequence |uε,η − u0| is bounded
in L∞(A∩Lk) and converges a.e. to |uη−u0|, while by Theorem 2.2 the sequence |
(ω, ·

ε
)|

converges weakly in L1(A∩ Lk) to E[|
(·, 0)|]. Hence from [18, Proposition 2.61] we infer
that

|uε,η − u0||
(ω, ·
ε
)|⇀E[|
(·, 0)]|uη − u0| in L1(A ∩ Lk).

Moreover, since

|uε,η − u0||
(ω, x
ε
)| ≤ sup

ε
‖uε,η‖L∞(A)|
(ω, x

ε
)| + Mε(ω)(x),

Assumption 2 and Theorem 2.2 imply that |uε,η − u0||
(ω, x
ε
)| is bounded in L1(A) and

equi-integrable.
Therefore, since by definition of Lk we have that |A\Lk | → 0 when k → +∞, we can

easily deduce (6.3). Hence, we obtain that

lim sup
ε→0+

1

dist(A′, ∂A)

∫
A\A′

|uε,η − u0||
(ω, x
ε
)| dx ≤ C

dist(A′, ∂A)

∫
A\A′

|uη − u0| dx .

Recalling that on A \ A′ we have |uη| ≤ |u| = |u0|, the Dominated Convergence Theorem
ensures that the right-hand side in the expression above vanishes as η → 0+.

Eventually, letting first δ → 0+, then η → 0+, and finally A′ ↗ A in (6.2), we obtain

lim sup
η→0

lim sup
δ→0

lim sup
ε→0

Fu0
ε (ω)(wε,η,δ, A) ≤ Fhom(u, A) = Fu0

hom(u, A).

In order to conclude we need to estimate the difference between u and wε,η,δ . To this
end, we recall that wε,η,δ is given by a convex combination of uε,η and u0 with a cut-off
function and that wε,η,δ = uε,η in A′. Then, arguing as above it can be easily shown that
limη→0+ lim supε→0+ ‖uε,η − u‖L1(A) = 0. Hence we have

lim sup
η→0+

lim sup
ε→0+

‖u − wε,η,δ‖L1(A) ≤ lim sup
η→0+

lim sup
ε→0+

‖uε,η − wε,η,δ‖L1(A)

≤ lim sup
η→0+

lim sup
ε→0+

‖uε,η − u0‖L1(A\A′) = ‖u − u0‖L1(A\A′) = 0.

Hence by a standard diagonal argument we get

(Fu0)′′(ω)(u, A) ≤ Fu0
hom(u, A),

and hence the limsup-inequality. ��
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Appendix A: Measurability

Let ξ ∈ R
m×d and A ∈ A be fixed; this last section is devoted to the proof of the F-

measurability of ω �→ μξ (ω, A), defined as in (4.2).

Lemma A.1 Let f satisfy Assumption 1 and for ξ ∈ R
m×d let μξ be defined as in (4.2). Then

ω �→ μξ (ω, A) is F-measurable for every ξ ∈ R
m×d and for every A ∈ A.

Proof Let h : �×R
d ×R

m×d → R be F ⊗Ld ⊗Bm×d -measurable; assume moreover that
it is bounded and continuous in its last variable. For every ξ ∈ R

m×d consider the functional
Hξ : �×W 1,1

0 (A,Rm) → R defined as

(ω, ϕ) �→
∫
A
h(ω, x, ξ + ∇ϕ) dx .

Let B(W 1,1
0 (A,Rm)) denote the Borel σ -algebra on W 1,1

0 (A,Rm). We claim that Hξ is

F ⊗B(W 1,1
0 (A,Rm))-measurable, for every ξ ∈ R

m×d . Indeed, for fixed ϕ ∈ W 1,1
0 (A,Rm)

the measurability of ω �→ Hξ (ω, ϕ) is a consequence of Fubini’s Theorem. On the other
hand, due to the continuity and boundedness of h, for fixed ω ∈ � the map ϕ �→ Hξ (ω, ϕ)

is continuous with respect to the strong convergence of W 1,1
0 (A,Rm). Hence the joint mea-

surability follows by the separability of W 1,1
0 (A,Rm).

We now appeal to a Monotone Class Theorem for functions in order to remove the conti-
nuity assumption on h. To this end consider the classes of functions defined as

C :={h : �× R
d × R

m×d → R, h(ω, x, ξ) = h1(ω)h2(x)g(ξ), h1, h2, g bounded,

h1 F -measurable, h2 Ld -measurable, g continuous}
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and

R :={h : �× R
d × R

m×d → R, h bounded and F ⊗ Ld ⊗ Bm×d -measurable,

such that Hξ isF ⊗ B(W 1,1
0 (A,Rm))-measurable}.

We notice that if h ∈ C then h is F ⊗ Ld ⊗ Bm×d -measurable, thus the argument above
shows that C ⊂ R. We also observe that R contains the constant functions, it is a vector
space of bounded functions, and it is closed under uniformly bounded, increasing limits;
moreover, C is closed under multiplication. Then [15, Chapter I, Theorem 21] ensures thatR
contains all bounded functions that are measurable with respect to the σ -algebra generated
by C. On its turn, the very definition of C ensures that this σ -algebra coincides with F ⊗
Ld ⊗ Bm×d . Eventually, we can deduce the F ⊗ B(W 1,1

0 (A,Rm))-measurability of the map
(ω, ϕ) �→ H f ,ξ (ω, ϕ) = ∫A f (ω, x, ξ + ∇ϕ) dx by a simple truncation argument applied
to the integrand f which allows us to obtain H f ,ξ as the pointwise limit of a sequence of
measurable functions.

Having the joint measurability of H f ,ξ at hand, we can prove the measurability of the
infimum problem defining μξ via the measurable Projection Theorem. Indeed, we observe
that for ξ ∈ R

m×d fixed and for every t > 0{
(ω, ϕ) ∈ �×W 1,1

0 (A,Rm) : H f ,ξ (ω, ϕ) < t
}
∈ F ⊗ B(W 1,1

0 (A,Rm)). (6.4)

We recall that by assumption (�,F,P) is a complete probability space; then, since
W 1,1

0 (A,Rm) is a complete, separable, metric space, the Projection Theorem [18, Theorem
1.136] allows us to deduce the F-measurability of the projection of (6.4) onto �. Therefore
we have {

ω ∈ � : inf
u∈W 1,1

0 (A,Rm )

H f ,ξ (ω, u) = μξ (ω, A) < t

}
∈ F,

which proves the F-measurability of μξ (·, A) and hence the claim. ��
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