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Abstract

Analytical workloads are evolving as the number of users surges and applications that submit

queries in batches become popular. However, traditional analytical databases that optimize-

then-execute each query individually struggle to provide timely responses under high concur-

rency even when tuning databases for the target data and workload: response time is increased

as a function of concurrency. Thus, high concurrency jeopardizes the interactivity, hence also

the usability, of real-time applications.

Work-sharing databases reduce the total processing time across queries. However, existing

planning, execution, and database-tuning strategies for work-sharing databases suffer from

redundant processing in their chosen operator orders, data access methods, and techniques

for handling recomputation. For real-time workloads that are ad-hoc, selective, or recurring,

redundant processing results in performance bottlenecks that put timeliness at risk.

This thesis addresses the inefficiency in choosing operator orders, accessing data, and reusing

materialized results in work-sharing databases. It introduces planning, execution, and database-

tuning strategies that reduce redundant processing by holistically optimizing plans for the

characteristics of the data, the query batches, and the workload patterns. Our goal is to enable

timeliness for processing highly concurrent workloads using work sharing.

To choose efficient operator orders, we propose RouLette, a specialized engine that optimizes

and processes Select-Project-Join queries using runtime adaptation. RouLette incrementally

explores alternative plans with different sharing opportunities by combining reinforcement

learning with feedback from monitoring the execution of explored plans. Also, RouLette

introduces optimizations that reduce the overhead of adaptive execution. Thus, it both

explores more candidate plans and evaluates them more accurately while maintaining low

overhead.

To reduce processing time for data access and filtering when processing a batch of queries, we

introduce SH2O. SH2O focuses on efficiency and scalability. First, it identifies multidimen-

sional data regions where filtering decisions are invariant and uses spatial indices to perform

shared access to the regions. Second, to mitigate overhead when the number of regions is

large, SH2O employs two optimization strategies that: i) choose which filters to replace in a

cost-based manner, ii) specialize for the different data properties and indices across partitions.
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Abstract

Finally, we propose ParCuR, a framework for effectively and efficiently reusing materialized

results in work-sharing databases. ParCuR optimizes reuse across three axes: i) to address

interference between work sharing and reuse, it introduces sharing-aware materialization and

reuse policies, ii) to reduce the overhead for reuse, it builds access methods that eliminate

frequent predicates, and iii) to maximize the usability of materialized results, it introduces a

hybrid partitioning-materialization scheme that enables partial reuse while making efficient

use of the available storage budget.

All in all, this thesis redesigns work-sharing databases by specializing shared execution for the

target data, query batches, and workload patterns. It significantly expands the applicability

of work-sharing databases, enabling them to provide timely responses to real-time, highly

concurrent applications that produce unpredictable, selective, and recurring workloads.

Keywords: database management systems, analytical query processing, access method, query

optimization, materialization, reuse, work sharing, concurrent query processing
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Résumé

Les charges de travail analytique évoluent, à mesure que le nombre d’utilisateurs augmente

et que les applications qui soumettent des requêtes par lots, deviennent de plus en plus

populaires. Cependant, les bases de données analytiques traditionnelles, qui optimisent-puis-

exécutent chaque requête individuellement, ont du mal à fournir des réponses rapides dans

des conditions de simultanéité élevée, même lors du réglage des bases de données pour les

données et la charge de travail cibles : le temps de réponse augmente comme une fonction de

la simultanéité. Ainsi, une concurrence élevée compromet l’interactivité, donc aussi la facilité

d’utilisation, des applications en temps réel.

Les bases de données de travail partagé réduisent le temps de traitement total à travers des

requêtes. Cependant, les stratégies de planification, d’exécution et de réglage de la base de

données existantes pour les bases de données de partage de travail souffrent d’un traitement

redondant dans leurs ordres d’opérateur choisis, les méthodes d’accès aux données et les

techniques de traitement du recalcul.

Cette thèse aborde l’inefficacité dans le choix des ordres des opérateurs, l’accès aux données

et la réutilisation des résultats matérialisés dans les bases de données de travail partagé. Il

introduit des stratégies de planification et d’exécution qui réduisent le traitement redondant

en optimisant de manière globale en tenant en compte les caractéristiques des données, les

lots de requêtes et les modèles de charge de travail. Notre objectif est de respecter les délais

tout en gérant plus de requêtes en utilisant le travail partagé.

Pour choisir des ordres d’opérateurs plus efficaces, nous proposons RouLette, un moteur

spécialisé qui optimise et traite les sous-requêtes Select-Project-Join en utilisant l’adaptation

à l’exécution. RouLette explore progressivement des plans alternatifs avec différentes oppor-

tunités de partage en combinant l’apprentissage par renforcement avec les commentaires de

la surveillance de l’exécution des plans explorés. Ainsi, il oriente l’exploration vers des plans

efficaces pour le lot de requêtes et les données cibles. De plus, RouLette introduit des optimi-

sations qui réduisent la surcharge de l’exécution adaptative. Ainsi, il explore à la fois plus de

plans candidats et les évalue plus précisément, tout en maintenant une faible surcharge.

Pour réduire le temps de traitement pour l’accès aux données et le filtrage lors du traitement

d’un lot de requêtes, nous introduisons SH2O. SH2O se concentre sur l’efficacité et la scalabi-
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lité. Tout d’abord, il identifie les régions de données multidimensionnelles où les décisions

de filtrage sont invariantes et utilise des indices spatiaux pour effectuer un accès partagé aux

régions. Deuxièment, pour atténuer la surcharge lorsque le nombre de régions est important,

SH2O utilise deux stratégies d’optimisation qui : i) choisissent les filtres à remplacer en fonc-

tion des coûts, ii) se spécialisent pour les différentes propriétés de données et les indices à

travers les partitions.

Enfin, nous proposons ParCuR, un cadre permettant de réutiliser efficacement et effectivement

les résultats matérialisés dans les bases de données de travail partagé. ParCuR optimise la

réutilisation sur trois axes : i) pour résoudre les interférences entre le travail partagé et la

réutilisation, il introduit des politiques de matérialisation et de réutilisation sensibles au

partage, ii) pour réduire la surcharge d’accès et de filtrage des données, il construit et utilise

des méthodes d’accès qui éliminent les prédicats fréquents, et iii) pour maximiser la facilité

d’utilisation des résultats matérialisés, il introduit un schéma hybride de partitionnement-

matérialisation qui permet une réutilisation partielle tout en utilisant efficacement le budget

de stockage disponible.

Dans l’ensemble, cette thèse reconçoit les bases de données de travail partagé en spécialisant

l’exécution partagée pour les données cibles, les lots de requêtes et les modèles de charge de

travail. Elle élargit considérablement l’applicabilité des bases de données de travail partagé,

leur permettant de fournir des réponses opportunes aux applications hautement simultanées

en temps réel qui produisent une charge de travail imprévisible, sélective et récurrente.
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1 Introduction

Real-time analytical workloads require processing a large number of queries at the same time

due to the widespread adoption of applications that inherently submit queries in batches and

the growing number of application users. On the one hand, applications, such as dashboards,

notebooks, and data pipelines, that have become popular among analysts for presenting and

automating analysis produce their output by processing multiple queries at once. Dashboards,

for instance, present insights using several, sometimes even hundreds, visualizations [120].

Populating these visualizations requires processing the corresponding analytical queries.

Similarly, in organizations such as cloud providers, pipelines process thousands of queries to

cover analytical needs [33]. On the other hand, with the number of users growing, workloads

become increasingly concurrent. Even for ad-hoc analysis, multiple users can jointly produce

tens of queries per second [14]. Thus, applications need to operate and remain usable under

high concurrency.

The onus of conserving the usability of real-time applications for highly concurrent workloads

falls on the analytical databases and the infrastructure that support them. To be usable, real-

time applications require timeliness. They are sensitive to wall clock response time, as it is

disruptive for users [77]. For example, in visual data exploration, even a response time longer

than 500 milliseconds impacts user productivity [68]. Meanwhile, concurrency needs to be

transparent to timeliness: real-time applications require that timeliness holds for their work-

load’s degree of concurrency. Applications in the industry commonly express requirements in

terms of both the timeliness and the degree of concurrency to sustain. Dashboards in Youtube

require responses within tens of milliseconds to tens of thousands of queries per second

[14]. Similarly, Uber’s use cases require processing thousands of queries per second with

subsecond response times [31]. Furthermore, Meta’s infrastructure for interactive analytics

is designed for processing tens of concurrent wall clock-sensitive queries within seconds or

minutes [107]. Hence, to effectively support such use cases, analytical databases need to use

query processing techniques that, given the available infrastructure, achieve fast responses

even when processing tens or hundreds of concurrent queries at any given time.
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1.1 Scaling Concurrent Processing

Over several decades, analytical databases have been optimized for query-at-a-time (QaT)

execution. QaT databases meet performance requirements by striving for maximum efficiency

for each individual query; they use execution strategies that minimize processing time when

evaluating each query. To this end, QaT databases are data and workload-conscious. They

optimize execution for the data and the queries at hand using techniques such as query

optimization, indexing, and materialization, which can drastically reduce the processing time

by orders of magnitude.

However, as the number of concurrent queries is increased, efficiency for individual queries is

insufficient for maintaining timeliness using fixed hardware resources. During concurrent

execution, queries compete for limited hardware resources, such as CPU time. Databases give

each query only a fraction of the total resources throughout its duration, e.g., by time-sharing

the CPU across concurrent queries [124]. The result of contention is that the response time for

individual queries deteriorates as concurrency is increased [93, 124]. Hence, reasoning about

timeliness requires a notion of efficiency as a function of concurrency – this notion subsumes

both the query processing time and the rate at which performance deteriorates.

The impact of concurrency on efficiency is critical for the timeliness and cost-efficiency of

processing analytical queries. After some degree of concurrency that depends on the database’s

efficiency for the given workload and the application’s requirements, response time becomes

prohibitively long. Even worse, when the database cannot sustain the incoming query rate

(i.e., queries arrive faster than they are processed), response time becomes unbounded. Under

such conditions, analytical databases fail to meet the requirements of real-time applications.

Then, to restore timeliness for applications, analytical databases need to scale up or out to

larger infrastructure. However, running and operating large clusters for processing a high

volume of analytical queries is expensive [51]. Furthermore, the demand for machine hours

of infrastructure grows as a function of the number of concurrent queries, thus resulting in

ever-increasing monetary costs.

Work sharing is an alternative to the QaT model that improves efficiency when processing

concurrent queries with commonalities in data and computation; overlapping computations

make up a substantial portion of the processing time in production workloads, e.g., in Mi-

crosoft’s analytics clusters [51]. By exploiting overlapping data and work between queries,

work sharing reduces extra processing for each additional query and, hence, blunts the surge in

response time as concurrency is increased. Then, work sharing results in significantly lower re-

sponse time and contributes towards cost-efficient real-time processing for highly concurrent

analytical workloads. However, as we discuss in the next section, existing techniques suffer

from redundant processing that introduces performance bottlenecks and puts timeliness at

risk. In this thesis, we focus on minimizing the redundant processing, hence maximizing the

efficiency of work-sharing databases in a scale-up in-memory execution environment.
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Dashboard Analytical Database
QaT case

Work-sharing case

Time

Time

Figure 1.1: Example use case: supporting batch processing for a dashboard

Example: Figure 1.1 presents the above concepts through an example of a dashboard use case.

To minimize response time, dashboards submit queries to the backend analytical databases

in parallel, e.g., using multiple connections at the same time [120]. Assume that a dashboard

with four visualizations refreshes its connection to the data source. Then, for each of the

four visualizations, it submits a separate query (represented with a square, a circle, a triangle,

and a diamond, respectively). We consider two cases: i) using a QaT database and ii) using

a work-sharing database. A QaT database optimizes and processes each query individually.

The concurrently executing queries share the available hardware resources, e.g., they alter-

nately time-share the CPU until they are finished (timeline in QaT case represents scheduling

slots, dashed lines above each query show the query’s duration) hence their response time

is increased compared to running in isolation. By contrast, a work-sharing database per-

forms a shared computation for the batch of queries (the shape that contains queries in the

work-sharing case). While work sharing’s processing time is longer compared to that of any

individual query running in isolation, it mitigates the effect of concurrency and thus results

in lower response time. However, when work-sharing databases suffer from redundant pro-

cessing, their ability to process the queries in a tight timeframe is undermined. Addressing

redundancy reduces query response time under high concurrency.

1.2 Limitations to Efficiency in Work Sharing

The key idea behind work sharing is to eliminate duplicate data access and computation

across queries. To do this, state-of-the-art work-sharing databases, such as SharedDB [35]

and DataPath [3], evaluate multiple concurrent queries using a common data flow graph of

operators, the global query plan. Each query is processed by a subplan in the global plan, and

queries with overlapping subplans share work at tuple granularity. Each intermediate tuple

belongs to one or more queries, which work sharing keeps track of. Each operator processes

its input tuples once for all the queries they belong to and produces the corresponding output.

Then, output tuples flow to consumer operators based on their own query-membership

metadata. Hence, to eliminate duplicate computation and improve efficiency, work sharing

exploits overlapping subplans and, also, overlapping tuples.
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Efficiency for a set of queries is defined by the corresponding global plan’s processing time.

The processing time depends on the global plan’s operators. For each set of queries, there are

multiple candidate global plans which differ in terms of the processing time that they require.

Furthermore, some candidate global plans are applicable only when databases have auxiliary

state such as indices and materialized results. Choosing global plans and the available auxiliary

state, thus, determines the efficiency of work-sharing databases and is essential for timely

responses.

Choosing the global plan and the auxiliary state that minimize processing time is challenging.

Global plans incur redundant processing as work-sharing databases i) fail to consider alter-

native global plans that require significantly less processing time than selected plans, ii) lack

operators that minimize their respective part of the processing for participating queries, and

iii) miss optimization opportunities due to the overhead that prospective optimizations incur

when applied in a work-sharing environment. We identify the above sources of redundancy in

plan selection, data access, and recomputation. The redundancy increases processing time

and thus jeopardizes timeliness.

1.2.1 Global Plan Selection

Each concurrent query corresponds to a different relational algebra expression that the

database needs to evaluate. Choosing an efficient global plan depends both on the cho-

sen subplans for each query and the work sharing between them. First, as in QaT databases,

choosing an efficient query plan for the target expression based on the data distribution and

the query’s predicates and computations is critical for processing time. For example, efficient

join orders require orders of magnitude lower processing time than inefficient ones [67, 85].

Second, operator orders across different queries determine overlaps, and thus work sharing,

in the global plan – overlaps eliminate duplicate work across queries. Hence, to choose an

efficient global plan, work-sharing databases require sharing-aware query optimization that

holistically reduces the total processing time for a batch of queries.

Challenge: Sharing-aware optimization either chooses inefficient plans or is time-consuming.

Exhaustive approaches [36, 88, 106, 110] choose a global plan that they estimate to be optimal.

They holistically consider alternative plans for different queries in terms of the processing time

of their operators and the overlap between plan combinations. However, such approaches

have a vast search space, and thus, they are best suited for optimizing queries that match

a small set of templates, offline. An alternative that enables fast planning decisions is to

choose plans by using heuristics [3, 12, 35, 44]. Nevertheless, heuristics suffer from inefficient

plans because they underutilize sharing opportunities or because they use operator orders

that are expensive for the given data and queries, e.g., they fail to exploit data correlations

that aggressively filter intermediate results in joins and minimize processing. In both cases,

heuristics choose plans that require high processing time.
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Implication: Ad-hoc workloads, such as queries in exploratory or interactive data analysis, are

unpredictable and only known at runtime. In the dashboard example, user actions result in one

or more queries, e.g., by adding a new visualization or by filtering a data source that is linked

to multiple visualizations, respectively. The set of submitted queries is ad-hoc, and, moreover,

it is combined with other queries running on the same backend database to form ad-hoc

batches. For ad-hoc workloads, exhaustive optimization is a poor fit as i) optimizing a-priori

is not an option because the workload is unknown in advance and ii) it is too time-consuming

to perform at runtime – it takes tens of seconds for a moderately-sized query batch [36]. The

viable solution is to choose the global plan using heuristics. However, heuristics choose

inefficient global plans that miss sharing and query optimization opportunities. Inefficient

plans significantly increase response time and put timeliness at risk.

1.2.2 Data Access

Different queries analyze different subsets of the data, which they specify using predicates on

relations. Efficiently accessing the data that each query requires is critical for low response

time. To selectively retrieve the data that satisfies the predicates of each query and prune

out redundant data, analytical databases use techniques that exploit data organization, such

as index accesses and data skipping [114]. Moreover, work sharing introduces an additional

dimension: sharing common accesses to amortize the respective cost. Hence, in a work-

sharing environment, efficient data access requires eliminating overfetching of both redundant

data and overlapping data across queries.

Challenge: Existing data access strategies suffer from redundant accesses. Selective access

methods have limited sharing opportunities, especially when queries use different access

methods. Then, as concurrent queries independently access the same data multiple times, the

total required processing is also increased. By contrast, scans over the full data enable work

sharing for data access and filters [94, 122] but access redundant tuples and eagerly process

the filters regardless of data organization. Eagerly processing the full data is time-consuming

and imposes a lower bound for response time. Kester et al. [59] argue for choosing between

indices and shared scans based on the workload’s selectivity and concurrency. However, a

binary selection between the two techniques only chooses the best between two inefficient

options. Hence, access path selection blunts but fails to address redundant processing during

data access.

Implication: Selective workloads comprise queries that process a small subset of the full

data each. The required subsets across different queries may overlap. For example, consider

the case where a user’s dashboard visualizes their dedicated data, e.g., sales in a specific

region. The data processed collectively during a refresh is a small fraction of the full data. Each

visualization can have various additional predicates hence data across visualizations overlaps

but is not identical. Data access is critical for the response time of selective queries. However,

under high concurrency, both shared scans and index accesses fail to retrieve the required
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subsets of data within a tight timeframe, e.g., a few milliseconds for interactive analysis. Hence,

data access becomes a performance bottleneck for real-time processing.

1.2.3 Reuse

Applications that generate queries using templates or SQL features, such as views, produce

workloads with recurring patterns. The same subqueries frequently recur with different

parameters. Recurring patterns enable databases to eliminate frequent computations by

precomputing and materializing the corresponding results in advance and then by using

the materialized results to answer queries. QaT databases exploit this opportunity using

techniques such as caching, recycling, and materialized views and subexpressions [48, 51,

100, 109, 136]. As global plans contain multiple time-consuming operators, exploiting reuse

opportunities is critical for timeliness.

Challenge: In a work-sharing environment, reuse is ineffective and inefficient. On the one

hand, reuse becomes ineffective because both its impact and its usability are decreased. The

impact of reuse depends on the computations that it eliminates. Work sharing hinders reuse

from eliminating shared operators, e.g., after answering one of their downstream computa-

tions in the global plan using a materialized result, as long as the results of the operators are

still required for other downstream processing. Also, work sharing competes with reuse for

eliminating overlapping work across concurrently executing queries and, thus, shrinks the

marginal benefit of reuse, which is the headroom for reuse-related overhead. Furthermore,

the usability of reuse depends on whether materialized results subsume the queries at hand

(i.e., a materialized result contains all the required data to answer the corresponding query).

Materialized results eliminate a shared operator only when they subsume all the queries that

participate in the operator. As the number of queries is increased, and especially during

workload shifts, the probability that materialized results subsume all of their corresponding

queries in the global plan is decreased, and thus reuse fails to eliminate the respective shared

operators for non-subsumed queries.

On the other hand, shared execution over materialized results is inefficient due to high filtering

overhead. Work-sharing databases need to evaluate the predicates from all the tables that

contribute to the view. However, in shared execution, the relative cost of filters is particularly

high compared to other operators [70]. Even worse, the processing time for filters on relatively

small tables, such as dimensions in a star schema, is amplified when materialized results

are significantly larger. Filtering overhead is such that it exceeds the processing time for full

recomputation using work sharing, hence reuse deteriorates performance.

Implication: Recurring workload is predominant in static dashboards, periodic reports, and

web applications but also occurs due to SQL constructs such as views. One such use case

in the dashboard example is iteratively refreshing multiple visualizations simultaneously,

using different parameters every time, e.g., changing their common data source’s filters in
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an exploratory manner. In QaT databases, materialized results are critical for optimizing

performance for recurring workloads. However, in a work-sharing environment, using out-

of-the-box techniques for materialization and reuse deteriorates performance and is a poor

option for processing queries. Thus, work-sharing databases opt for full recomputation, which

processes global plans with several heavyweight operators and suffers from long response

time.

1.3 Data and Workload-conscious Work Sharing

This thesis addresses the inefficiency of global plans in work-sharing databases. It introduces

planning, execution, and database-tuning strategies that holistically optimize each global plan

to reduce the total processing time rather than the processing time of any particular query. To

this end, the strategies exploit the characteristics of the data, the global plan’s queries, which

they view comprehensively as a batch, and the workload patterns across time. The end goal is

to enable work-sharing databases to provide timely responses for highly concurrent workloads

and to resolve the bottlenecks for scaling real-time applications that produce ad-hoc, selective,

and recurring workloads.

Thesis Statement

As the number of concurrent queries in real-time applications is increased, response time ex-

plodes. Existing work-sharing databases mitigate the effect of concurrency but incur substantial

redundant processing due to inefficient data access and reuse, and suboptimal global operator

orders. Holistic strategies for the optimization and execution of global plans, and database

tuning that adapt to the data and workload help minimize redundancy, hence also the response

time, for concurrent workloads.

1.3.1 Goal: Efficiency under High Concurrency

Increasing work sharing’s efficiency requires a paradigm shift. Work-sharing databases need

to use, across all processing steps, planning, execution, and database-tuning strategies that

holistically optimize processing for the data, the query batches, and workload patterns at

hand.

Sharing-aware optimization is, by definition, concerned with holistically reducing processing

time for the target data and query batch. However, commonly used heuristic approaches

forfeit holism and thus suffer either from inefficient operator orders or from missing sharing

opportunities. Work-sharing databases require planning strategies that restore the exploration

and evaluation of alternative global plans while maintaining the fast planning for hundreds of

queries that heuristics offer. At the same time, evaluation needs to be judicious and accurate
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based on the correlations that are present in the data and the query batch. Doing so enables

work-sharing databases to choose global orders that significantly reduce processing time,

especially for ad-hoc workloads.

Also, as both scans and indices overfetch data during shared execution, work-sharing databases

require an access strategy that selectively retrieves the necessary data for processing each

query batch and only once across queries. The predicates of participating queries collectively

define the required data. Efficiently accessing the necessary data requires an appropriate

data organization and a mechanism that exploits the organization to retrieve the necessary

data with minimum access and filtering overhead. By tuning data organization for the tar-

get workload and then, for each subsequent query batch, by adapting access to the batch’s

predicates and the data, work-sharing databases can address the data-access bottleneck and

enable timely processing for highly concurrent selective workloads.

Finally, addressing recomputation requires addressing the ineffectiveness and inefficiency

of reuse in work-sharing environments. Effective reuse requires i) strategically employing

materialization and reuse to maximize the cost of eliminated operators in each global plan and

hence minimize the plan’s total processing time and ii) relaxing subsumption requirements

so that shared execution benefits even when materialized results only partially cover queries.

Moreover, efficient reuse is tied to efficient data access to materialized results. Hence, materi-

alization and reuse techniques require an overhaul by adapting to the data, query batches, and

workload patterns so that they are harmonized with work-sharing databases. Harmonizing

reuse enables drastically reducing response time for recurring workloads.

1.3.2 Contributions: Adapting Work Sharing to the Data and Workload

Data and workload-conscious planning and execution strategies for work-sharing databases

require rethinking the query processing stack across three axes: i) logical optimization strate-

gies, ii) query processing and data access abstractions and iii) physical design optimization.

First, to make judicious and accurate cost-based decisions that reduce processing time, work-

sharing databases need to formulate and solve optimization problems for each planning

subproblem. Second, work-sharing databases need novel execution strategies and operators

that can efficiently actuate the decisions of optimization strategies (e.g., for implementing

novel access strategies). Third, work-sharing databases need to support auxiliary structures,

such as partitions, indices, and views, and a tuner that chooses which auxiliary structures

accelerate a target workload. We organize the contributions of this thesis in three building

blocks RouLette, SH2O and ParCuR, which address the challenges in global plan selection,

data access, and reuse, respectively.

Figure 1.2 shows how each building block affects the query processing stack. Each numbered

box corresponds to a contribution. Horizontal lines separate query processing in layers,

and each layer is affected by one or more contributions. We discuss each of the numbered

contributions in the text below.
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Figure 1.2: Challenges for efficient work sharing and the contributions of this thesis that
address the challenges. Each contribution is denoted as (X) such that we refer to it in the text

The thesis makes the following key contributions:

Scalable and accurate sharing-aware optimization: We introduce RouLette [111], a special-

ized intelligent engine for multi-query execution that addresses sharing-aware optimization

for Select-Project-Join (SPJ) subqueries. RouLette overcomes, through runtime adaptation,

the shortcomings of heuristic sharing-aware optimization. It focuses on three problems when

optimizing the global operator order: i) bounded optimization overhead, ii) accurate estimates

for the cost of shared execution and judicious planning decisions, and iii) low adaptation

overhead. RouLette mitigates the optimization overhead and accurately estimates the total

processing time across queries by using adaptive query processing (box (1)): it immediately

starts execution and iteratively reoptimizes the global plan by observing the outcome of exe-

cution and adapting the plan accordingly. Adaptive query processing incrementally explores

the search space of candidate plans and, to judiciously choose an efficient global plan that

minimizes total processing time, it makes operator ordering decisions using a novel reinforce-

ment learning algorithm based on Q-learning. Finally, RouLette introduces query processing

optimizations that minimize the overhead of adaptive query processing, making adaptation

viable in practice (box (2)). By choosing more efficient plans, RouLette significantly improves

response time compared to heuristic sharing-aware optimization.

Selective and efficient shared data-access: We propose SH2O, a novel data-access operator

that overcomes the limitations of both shared scans and index accesses. SH2O is based on

the insight that, for every set of filters, the data space comprises multidimensional regions

where filtering decisions are invariant across all tuples. Thus, shared access to the regions

that are required by at least one query amounts to i) avoiding data that all queries filter out,

ii) accessing data only once for all interested queries, and iii) eliminating the corresponding

9



Chapter 1. Introduction

filtering costs. SH2O efficiently and selectively performs the shared access to the regions,

regardless of their boundaries, by using range queries on spatial indices (box (3)). SH2O

accesses data by balancing between exploiting the regions and handling dimensionality (box

(4)). First, it selects a subset of the filters to replace with multidimensional accesses such that

it hits a sweet spot between the overhead for fine-grained index accesses and for post-filtering.

Second, if the data is partitioned and indexed at partition granularity, it adapts the access

strategy to each partition’s local data organization and predicate patterns. Based on the above

properties, we propose a partitioning and indexing scheme that minimizes SH2O’s processing

time for a target workload (box (5)). SH2O reduces the required processing time for shared

data access and filtering.

Effective and efficient reuse for work sharing: We propose ParCuR, a framework that harmo-

nizes reuse with work sharing in order to maximize the impact and applicability of material-

izations and minimize overheads. ParCuR adapts reuse to work sharing in three aspects: i)

To achieve a higher decrease in the processing time of global plans through materialization

(box (6)) and reuse (box (7)), ParCuR introduces novel materialization and reuse policies that

account for interference from work sharing. ii) To improve the usability of materialized results

and to avoid performance cliffs when queries are partially covered, especially during workload

shifts, ParCuR employs partial reuse. It implements partial reuse through partitioning and by

making materialization and reuse decisions at partition granularity. Thus, we introduce an

execution model that plans and processes each partition independently from other partitions

(box (8)). As partitioning creates a dependency with materialization, ParCuR introduces a

novel partitioning scheme that improves storage budget utilization (box (9)). iii) to reduce the

filtering overhead when reusing materialized results, ParCuR builds and uses access methods

to eliminate frequent filters (box (10)). ParCuR makes reuse beneficial instead of detrimental

for work sharing and drastically reduces response times for recurring workloads.

1.3.3 Thesis Outline

Chapter 2 provides an overview of the areas that we build upon: work sharing, data and

workload-conscious optimizations that QaT databases use, that is, query optimization, in-

dexing and reuse, and reinforcement learning. Next, Chapter 3 presents a sharing-aware

optimization paradigm for choosing global plans by learning which opportunities minimize

processing time from monitoring the execution of ongoing queries. After that, Chapter 4

presents a sharing-aware data access operator that retrieves required tuples by collectively

using the predicate of query batch along with existing spatial indices. Then, Chapter 5 presents

a sharing-aware materialization and reuse framework that co-optimizes the data layout, the

materializations, and reuse decisions to reduce recurring computations. Finally, Chapter 6

concludes the thesis and presents directions for future research.
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2 Background

This thesis introduces novel data and workload-conscious optimizations that improve the per-

formance of work sharing. In this chapter, we present a brief overview of the two overarching

areas that the thesis touches upon, work sharing data and workload-conscious optimizations,

and discuss reinforcement learning. First, we present the query processing stack for work-

sharing databases and outline related work. Next, we discuss techniques that take advantage

of data and workload characteristics to optimize individual queries, specifically query opti-

mization, access methods and reuse. Finally, we briefly present reinforcement learning, which

we later use in Chapter 3.

2.1 Work sharing

In this section, we present an overview of work sharing. The section is laid out as follows:

First, we present applications where sharing is typically used in Section 2.1.1. Then, from

Section 2.1.2 onward, we discuss the architecture of work-sharing databases and the main

mechanisms used in the literature.

2.1.1 Applications

Work sharing has been applied to use cases where data processing systems execute a large

number of concurrent queries. Such use cases include OLAP, OLTP, stream processing, sched-

uled queries, distributed frameworks, and machine learning workload. We briefly present the

related work for each use case:

OLAP: OLAP databases process several concurrent queries that come from different users

and applications. In such cases, databases can share common computation across queries to

reduce the total processing time and increase throughput. The opportunity for sharing has

motivated a significant body of work. Initial approaches focus on the problem of multi-query

optimization [88, 106, 110], which entails finding a global plan that minimizes processing

time. Nevertheless, multi-query optimization approaches cannot optimize a large number of

11



Chapter 2. Background

queries due to the high complexity of the problem and suffer from execution-layer overhead.

More recent efforts build work-sharing databases such as QPipe [44], CJOIN [12], DataPath

[3], SharedDB [35], and RouLette [111] that can support a large number of queries and use

execution strategies that maximize the benefit of work sharing. Subsequent sections analyze

work-sharing databases in more detail.

OLTP: Transactional workload is highly concurrent. As transactional workload usually contains

a small number of distinct statements [99], there is significant overlap; hence work sharing

is beneficial for improving OLTP throughput. SharedDB [35]’s batched execution model

supports OLTP workloads in addition to OLAP workloads. In OLTPShare, Rehrmann et al. [99]

merge batches of READ statements by using a statistics-driven batching policy that maximizes

throughput without introducing unnecessary delays. Follow-up work from Rehrmann et

al. [98] studies the mergeability of multi-statement READ/WRITE transactions in different

isolation levels.

Stream processing: To increase data throughput when processing a large number of streaming

queries, stream processing engines also use work sharing. Stream processing engines share

computation for various types of queries. TelegraphCQ [13, 69] and NiagaraCQ [17] use work

sharing for continuous queries, whereas AStream [56] and AJoin [55] use work sharing across

short-lived ad-hoc streaming queries. Stream processing engines use work-sharing techniques

similar to the ones used in work-sharing OLAP databases.

Scheduled queries: Scheduled queries are queries that need to produce results by a given

deadline. They are processed using an incremental execution model that is similar to stream

processing [118]. Scheduled queries often operate over the same data and thus have common

computation. iShare [119] judiciously shares work between queries with different deadlines:

even though it exploits work sharing, it avoids pushing the whole shared execution to meet

the tightest deadline. By doing so, iShare reduces resource consumption.

Distributed data analysis: Distributed frameworks such as MapReduce [22], Spark [134],

and DryadLINQ [133] express data processing as jobs. Different concurrent jobs can have

overlapping computations. Frameworks such as MRShare [86], PigReuse [11], Nectar [41] and

the work from Wang et al.[126] identify and exploit common computation between jobs to

reduce the total cost of processing.

Analytics and ML: Work sharing also accelerates analytics and ML workload. LMFAO [103]

addresses analytics, such as regression and data cubes, that result in batches of aggregates

over the same join. It uses a layered architecture that exploits work-sharing, parallelism, and

code specialization. Moreover, Derakhshan et al. [23, 24] targets common computation in

data science and ML workload. Specifically, they employ materialization and reuse to reduce

redundant computations in collaborative environments [23] and data science pipelines [24].

This thesis focuses on work sharing for OLAP applications. While the insights and contri-

butions have merit for work sharing in general, the design assumptions, implementation,
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Figure 2.1: Flow of queries through a work-sharing database

and evaluation are OLAP-specific. Hereupon, further discussion assumes an analytical query

processing scenario.

2.1.2 Architecture of Work-sharing Databases

We present an overview of the state-of-the-art in work sharing for OLAP workloads. By ex-

ploiting overlapping work across queries, work sharing reduces the total processing time and

increases throughput. To achieve this, work-sharing databases differ from QaT databases

on i) the admission policy, ii) the data-access methods, iii) the execution engine, and iv) the

optimizer.

Figure 2.1 shows the flow of incoming queries through the work-sharing database’s compo-

nents. We illustrate the architecture of work-sharing databases in abstract terms to fit the

description of diverse systems such as QPipe [44], CJOIN [12], DataPath [3], SharedDB [35],

and RouLette [111]; we stress differences between systems in subsequent sections. First,

queries are handled by the system’s admission policy which hands them over to the optimizer

individually or in batches. Second, the optimizer reacts to admitted queries by choosing a

global (query) plan, which processes all ongoing queries and expresses the sharing of common

operators. Third, the access methods read data from storage and forward it to the global

plan. Fourth, the executor processes the global plan by pushing data from the access methods

through the plan’s operators.

2.1.3 Admission Policy

Work sharing is applicable when databases process multiple queries concurrently. The con-

currency in a database depends on i) the application and ii) the database’s admission policy.

While applications such as dashboards submit queries in batches, other applications such as

ad-hoc analysis submit individual queries. As the application’s characteristics are beyond the

database’s control, to present the design space in work-sharing databases, we focus on the

admission policy.
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Work-sharing databases either start executing queries immediately as they arrive or delay them

and execute them in batches. On the one hand, immediate admission enables sharing data

and work with already running queries, and the waiting time it incurs is minimal. However, op-

portunities for sharing operators that belong to already running queries are limited for a wide

range of relational operators due to timing dependencies [44] and, in addition, overlap fully

depends on the workload’s query submission patterns. On the other hand, batched execution,

by eliminating timing dependencies, maximizes sharing opportunities between queries that

belong to the same batch. Moreover, by offering full knowledge of concurrently executing

queries, batching permits additional logical optimizations. Nevertheless, it introduces waiting

time for each query and precludes work sharing between queries in different batches.

The choice of admission policy presents a trade-off for the design of work sharing. QPipe

[44], CJOIN [12], and DataPath [3] use immediate admission to reduce processing time with

minimum waiting time for each query. SharedDB [35] introduces batched execution to max-

imize work sharing and minimize total processing time. It composes a batch of incoming

queries while the previous batch is running and then executes it as soon as the previous batch

is finished. Despite their differences, both approaches reduce total processing and follow

similar execution models.

2.1.4 Data Access

Existing work-sharing databases have used two different approaches to access data: i) shared

scans and ii) shared index probes. We present the two approaches and subsequently discuss

their limitations.

Shared scans: Sharing scan operators optimizes bandwidth utilization for the storage medium

where data resides. Traditionally, disk-based databases suffered from the I/O bottleneck, and

thus amortizing data access time across queries was critical. For this reason, several com-

mercial systems, such as Microsoft SQL Server, RedBrick and Teradata, support scan sharing

[44]. Cooperative scans [138] further extend disk-based scan sharing by both maximizing

bandwidth and minimizing average latency for queries requesting uneven data ranges. Also,

in addition to disk-based databases, in-memory databases use scan sharing to mitigate the

memory bandwidth bottleneck when processing queries using multi-core CPUs [94].

Work-sharing databases use scan sharing both for improving data-access bandwidth and

for providing input to downstream shared operators. Crescando [122] integrates shared

scans with efficient shared selections to achieve fast and predictable performance for Select-

Aggregate concurrent queries. Recent work-sharing databases either use Crescando [35, 70] or

implement shared scans and filters in a similar way [3, 111]. We discuss the implementation

of shared selections in detail in Section 2.1.5.

Shared index probe: Work-sharing databases can also share index probes, although only

SharedDB [35] implements this access method. It uses a technique that batches index probes
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to improve instruction and data cache locality and to produce a shared result set across partic-

ipating queries [34]. Outside the context of work sharing for OLAP, OLTPShare [99] also merges

OLTP read-only queries into bulk index lookups. Also, in the context of information filtering

applications, Fischer and Kossmann [30] propose a technique that includes merging identical

probes into one index lookup and avoiding overlapping accesses between consecutive probes.

Limitations: Both shared scans and indices result in time-consuming data access for highly

concurrent workloads. On the one hand, scans access the full data and, in addition, incur

high filtering overhead. On the other hand, using multiple index probes that serve different

queries, e.g., QaT probes or when using different indices for different sets of queries, results in

redundant accesses and restricts downstream work sharing. Furthermore, while shared index

probes reduce data access, they require post-filtering for the probe’s results, which incurs high

overhead in a work-sharing environment. Also, shared index probes depend on the properties

of each index structure; they have not been studied for workloads that use predicates on

multiple attributes, which complicate index traversal patterns hence the detection of overlaps.

In this Thesis: We introduce a novel data access operator, SH2O, that overcomes the limita-

tions of existing strategies: i) SH2O identifies a shared multidimensional access pattern that

replaces a shared scan followed by a set of shared filters. It actuates the access pattern using a

spatial index and thus avoids accessing redundant data and processing the replaced filters.

ii) Any spatial index that supports range queries can actuate the multidimensional access

pattern. SH2O exposes overlaps between queries regardless of index traversal patterns and

generalizes for workloads where different queries use filters on different attributes. iii) SH2O

handles the dimensionality problem that emerges when evaluating numerous predicates over

multiple attributes: it introduces a cost model-based optimization framework that decides

which filters to replace with the multidimensional access pattern and, for each partition, it

exploits local data organization and predicate patterns if available. We complete the frame-

work by proposing a data organization strategy that minimizes SH2O’s processing for a target

workload.

2.1.5 Shared Execution

Work-sharing databases accelerate query batches by exploiting overlapping computation

across queries. To do so, they rely on i) the global query plan and ii) the Data-Query model. In

this section, we present the two concepts. For ease of presentation, we use a simple example

in which the work-sharing database processes two queries:

Q1: SELECT SUM(X) FROM A,B,C
WHERE A.1=B.1 AND A.2=C.2 AND A.4 < 10 AND B.5 < 20

Q2: SELECT SUM(X) FROM A,B,D
WHERE A.1=B.1 AND A.3=D.3 AND A.4 < 20 AND B.5 < 10
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Figure 2.2: Global plan for Q1 and Q2 (example in text)

Global Plan

The global plan expresses sharing opportunities among different queries and is the common

denominator of work-sharing databases explicitly [3, 35, 70, 111] or implicitly [12, 44]. It is a

directed acyclic graph (DAG) of relational operators that process tuples for one or more queries

and multi-cast their results to one or more parent operators. In each of its roots, the global

plan produces the results of participating queries. Figure 2.2 shows the global plan for Q1

and Q2. For ease of reference, each operator is labeled with a number. Operators 1-3 process

σ(A) ▷◁ σ(B) for both queries. Then, operator 3 sends results to operators 2 and 3, which

serve Q1 and Q2, respectively. Different predicates between Q1 and Q2 are handled during

multi-casting using the Data-Query model (discussed in the next paragraph). Downstream

computation is independent for each query and at the two roots, the global plan produces the

results for Q1 and Q2. By processing each operator of the global plan only once, the database

shares work across queries (e.g., processing σ(A)▷◁σ(B) between Q1 and Q2) and reduces

the overall processing time.

Data-Query model

The Data-Query model enables efficient work sharing between queries with different selection

predicates. In such cases, using standard relational operators requires pushing down the union

of predicates – in our example, A.4 < 20 AN D B.5 < 20 – below common operators and post-

filtering after the queries branch off – A.4 < 10 AN D B.5 < 20 for Q1 and A.4 < 20 AN D B.5 < 10

for Q2. This rewrite is inefficient [62] as i) it produces and processes redundant tuples that do

not belong to any query and ii) it filters data several times within the plan. For example, it is
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possible that operator 1 joins a “probe” tuple that belongs only to Q1 with a “build” tuple that

belongs only to Q2 and filters it out afterwards.

The Data-Query model addresses these two inefficiencies by abstracting away predicates:

instead, it annotates each tuple with a query-set that indicates to which queries the tuple

contributes. Concretely, the model expresses tuples as

a = (a1, a2, . . . , an , aq )

where a1, a2, . . . , an are attributes and aq is the set of queries a belongs to. Query-sets can be

implemented in various ways such as lists of query-ids or bitsets [70].

Specialized shared operators exploit Data-Query model to eliminate redundant intermediates

and processing. They process both the actual input tuples and their query-sets, and produce

the union of output tuples across participating queries for the same operator, again in Data-

Query model. Each output tuple’s query-set correctly marks its membership to each query,

and if the tuple does not belong to any query, the operators drop it immediately.

We discuss how Data-Query model is used in global plans and present shared selections and

joins, the shared operators that are supported in all databases that use the Data-Query model.

SharedDB, due to its batched execution model, also supports Sort, TopN, and Group-By.

Data-Query model in global plans: Several work-sharing databases [3, 12, 35, 70] use global

plans that comprise shared operators and represent intermediates using the Data-Query

model. The difference in using shared operators lies in multi-casting their output to their

parent operators. For each tuple, they decide which parent operators require the tuple using

the query-set. Thus, the Data-Query model affects the flow of data through the global plan.

Shared Selection: Shared selection evaluates predicates for one or more queries and updates

the query-set accordingly. Let a be an input tuple, Q be the set of running queries, and Qsat (a)

the set of queries such that q ∈ Qsat (a) if and only if the predicate of q in the operator is

satisfied or q has no predicate in the operator. Shared selection excludes queries with false

predicates by updating aq to aq ∩Qsat (a). Figure 2.3 shows processing for a shared selection

for the running example. The input tuple satisfies the predicate of Q2 therefore the output

tuple’s query-set is {Q2}.

The performance of shared selections is critical because i) as selections are the first operators

after scans due to pushdown, they process a large fraction of the input, and ii) they need to

process potentially hundreds of predicates belonging to different queries. A naive implemen-

tation would update each tuple’s query-set by going over all the predicates of the concurrent

queries and checking which are satisfied and which are not. However, this algorithm is linear

to the number of concurrent queries and introduces significant overhead in highly concur-

rent processing. To make shared selections efficient, prior work [35, 69, 122] proposes using

predicate indices (PIs).
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Figure 2.3: Example of shared selection

Unlike conventional indices, which are preconstructed, PIs are built at runtime, and their

lifetime is the duration of the concurrent queries. Rather than index data, a PI indexes the

predicates of the queries on a specific set of attributes. Predicates that are not covered by any

PI are not indexed and are handled separately. To cover the selections of all queries, multiple

PIs may be used.

Global plans evaluate predicates on different attributes by using multiple PIs. For each tuple

they process, shared selections probe PIs, using the tuple’s corresponding attributes, to identify

satisfied predicates and set the tuple’s query-set accordingly. If the query-set becomes empty,

they discard the tuple. Figure 2.4 illustrates the process of probing a predicate index for the

above example; the probe identifies that A.4 ∈ (−∞,20) and the tuple belongs to Q2. After

passing through shared selections, tuples have query-sets that represent the results of the

predicates for all queries.

The implementation of PIs differs based on i) how they group predicates and merge probe

results and ii) the data structures they use. In terms of merging strategies, TelegraphCQ

and Crescando propose two different approaches. TelegraphCQ uses grouped filters. Each

grouped filter builds one index for all the predicates on a specific attribute [69]. Internally,

it uses a different data structure to organize each type of predicate (e.g. equality, less-than,

etc). Grouped filters evaluate conjunctions of predicates by finding unsatisfied predicates

from each attribute and removing them from the query-set. By contrast, Crescando indexes at

most one predicate per query and thus partitions queries across PIs. When probing each PI,

it retrieves a set of queries with at least one satisfied predicate; then, it evaluates the rest of

the predicates only for these queries. Then, it produces each tuple’s query-set by computing
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Figure 2.4: Example of probing a predicate index

satisfied queries across each PI and by merging the results. Thus, both approaches require

several probes to compute each tuple’s query-set.

Finally, in terms of data structures, different indices are used based on the type of indexed

predicates. For example, both TelegraphCQ and Crescando use hash-tables for equality

predicates, whereas for range predicates, they use binary trees and an R-tree, respectively.

Both systems use PIs that index predicates on one attribute each.

Shared Join: Shared join matches Data-Query model tuples from its inputs based on a predi-

cate. For each match between tuples a1 and a2, the join produces a new shared tuple a3 that

belongs to the intersection of the query-sets of the matching tuples, a1
q ∩a2

q . If the intersection

is empty, the join drops the match. Figure 2.5 shows a shared join between tuples in Data-

Query model. The match with a non-intersecting query-set is dropped, whereas for the other

match, the query-set is the intersection of query-sets ({Q2}.

Work-sharing databases can support different implementations for shared joins, such as hash-

join, sort-merge, and nested-loop joins. MQJoin [70] is a state-of-the-art dedicated shared

hash-join algorithm. By minimizing redundant work, and by using main-memory bandwidth

and multi-core CPUs efficiently, MQJoin maximizes its data processing rate and can efficiently

process hundreds of concurrent queries.
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2.1.6 Sharing-aware Optimization

In work-sharing databases, the optimizer chooses the global plan for processing the submitted

concurrent queries. To do this, work-sharing databases use different mechanisms to detect

sharing opportunities. We classify the optimizer mechanisms using the following taxonomy:

online sharing, which quickly detects opportunities at runtime, and offline sharing, which

uses exhaustive sharing-aware optimization. Figure 2.6 evaluates the mechanisms of existing

approaches on i) the efficiency they achieve based on the opportunities they detect and exploit

and ii) their ability to optimize (i.e., scale to) a large number of ad-hoc queries in real-time. We

focus on ad-hoc queries to factor out a-priori optimization for predictable workloads. The two

classes of mechanisms have complementary strengths and weaknesses. Online sharing scales

to large numbers of ad-hoc queries but misses opportunities. By contrast, offline sharing

maximizes the benefits of work sharing but has high complexity.

Online sharing: In order to make timely planning decisions at runtime, online sharing makes

heuristic sharing decisions that are locally optimal in some sense. Online sharing approaches

differ in terms of when and how they choose to exploit sharing opportunities. QPipe [44]

and DataPath [3] detect and choose opportunities to exploit every time a new query is ad-

mitted. QPipe detects common subplans between the QaT plans of incoming and ongoing

queries, whereas DataPath incorporates each incoming query into the global plan of already-

optimized concurrent queries such that additional cost is minimum. CJOIN [12] and CACQ

[12, 62] continuously evaluate and choose opportunities at operator level while the queries

are running. Both systems reorder operators at runtime based on selectivity in an effort to

minimize processing time. Finally, AJoin [55] sporadically triggers an approximate cost-based
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optimization algorithm inspired by Iterative Dynamic Programming [61] to produce a global

plan for ad-hoc stream queries.

Online sharing approaches can be suboptimal because they miss sharing opportunities or

make inefficient planning decisions. On the one hand, they explore a limited search space

of global plans. For example, QPipe’s global plan is determined by individual query plans,

whereas DataPath’s search space of global plan depends on the order of query arrivals. On the

other hand, they evaluate sharing opportunities inaccurately. For instance, operator-level tech-

niques evaluate the immediate effect of each operator hence they miss operator correlations

and the long-term effects of planning. Therefore, online sharing can choose an inefficient

global plan and hence result in a long response time. Furthermore, with the exception of

QPipe which does not use the Data-Query model and thus misses opportunities between

queries with different predicates, online sharing approaches miss different opportunities and

choose inefficient plans under different conditions hence they are incomparable in terms of

efficiency.

Offline sharing: Offline sharing uses exhaustive sharing-aware optimization to find a global

plan that minimizes processing time for a batch of queries. The problem was originally formu-

lated as Multi-query Optimization (MQO) [106]. MQO algorithms explore alternative plans for

the batch’s queries to choose an efficient global plan. However, they use standard relational

operators and hence process subexpressions that subsume all individual participating queries,

instead of using the Data-Query model. Shared Workload Optimization (SWO) [36] adapts the

problem formulation for work-sharing databases that support the Data-Query model. It opti-

mizes a batch of prepared statements, that lack specific predicates, and identifies shareable

operators between the statements rather than subexpressions that exactly match.
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Offline sharing is challenging due to its very high complexity; solving the optimization problem

can be prohibitively time-consuming. Exhaustive MQO algorithms [88, 106, 110] explore a

doubly exponential space. Even heuristic algorithms [101] require significant time to optimize

only tens of queries at once. The same holds for SWO, which requires tens of seconds to

optimize the queries of the TPC-H benchmark [36]. For this reason, exhaustive sharing-aware

optimization is a better fit for moderately-sized predictable workloads – then it can run offline,

and the result can be reused.

In this Thesis: Online sharing chooses suboptimal global plans, whereas offline sharing

depends on exhaustive sharing-aware optimization, which is prohibitively time-consuming to

perform at runtime. This thesis introduces RouLette, a novel approach that overcomes the

shortcomings of online sharing while maintaining scalability to highly concurrent ad-hoc

workloads. RouLette explores a wider search space of candidate plans compared to query-

oriented approaches such as QPipe and DataPath and uses a reinforcement learning-based

heuristic that chooses more efficient global plans than selectivity-based approaches.

2.2 Data and Workload-conscious Optimizations

This thesis proposes data and workload-conscious optimizations for work sharing in three

axes: query optimization, data access, and reuse. In this section, we summarize related work

for QaT execution in these areas. First, we present existing work in Query Optimization in

Section 2.2.1. Then, we provide an overview of work that optimizes data access in Section

2.2.2. Finally, we discuss work in materialization and reuse in Section 2.2.3.

2.2.1 Query Optimization

Relational query languages, such as SQL, express queries using a high-level declarative de-

scription. Query optimization plays the critical role of transforming the query’s declarative

description into a query plan, an efficient implementation that uses interconnected relational

operators. The challenge is that query optimizers choose between a large number of equiva-

lent query plans, all of which implement the query. This is a high-stakes decision because an

inefficient plan can be several orders of magnitude slower than the optimal one [67].

A broad body of work exists on query optimization. In this section, we briefly present two

critical components for query optimization i) search space enumeration and ii) estimates for

cardinalities and cost. Then, we discuss two of its subdomains that are relevant to this thesis i)

adaptive processing and ii) learned query optimizers.

Search space enumeration: Query optimization chooses between a large number of equiva-

lent query plans hence a significant body of work focuses on efficiently enumerating candidate

query plans. In their influential work, Selinger et al. [105] introduce a dynamic programming

algorithm for enumerating the plans for Select-Project-Join (SPJ) queries. More general frame-
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works such as Volcano [40] and Cascades [38] provide more general, extensible optimizer ar-

chitectures that combine algebraic transformations with dynamic programming. Still, despite

the use of techniques such as dynamic programming, the search space and the computational

complexity is exponential. Thus, query optimization scales poorly for query plans with many

operators. The scalability limitation has motivated enumeration strategies such as Iterative

Dynamic Programming [61] and the adaptive optimization from Neumann and Radke [85],

that produce efficient, but not necessarily optimal plans by pruning the search space and thus

reducing complexity.

Cardinality and cost estimates: To evaluate candidate plans during enumeration, optimizers

estimate the cost of each operator. As the cost depends on each operator’s input size, eval-

uation requires estimating the cardinality of intermediate results as well. For this purpose,

optimizers typically use statistics to estimate cardinalities [92] and sophisticated cost models

that, by processing cardinality estimates, compute metrics such as CPU, I/O, and commu-

nication costs [15]. However, accurately estimating cardinalities is challenging due to data

correlations, especially across joins [67], and often insufficient statistics [4]. Work on both

adaptive optimization and learned query optimizers strives to improve estimation.

Adaptive Query Processing: Adaptive processing targets unpredictable environments with lim-

ited statistics and highly correlated data, where the traditional query optimization paradigm

performs poorly [26]. It adapts planning by exploiting information collected at runtime in

a feedback loop. Based on the adaptation frequency and mechanism, there exist several

classes of adaptive processing. Continuous adaptation reorders the operators in query plans

at runtime. Often, continuous adaptation schemes are driven by a special operator, the

eddy [4], which monitors the input and output of operators, and optimizes operator order

accordingly. Symmetric joins [128] and SteMs [96] further enhance eddies-based adaptation

with additional reordering opportunities and increased adaptability. Another alternative is

progressive query optimization [75], which uses a special operator, CHECK, as a point for

validating cardinalities and reoptimizing queries. If CHECK detects significant misestimation,

it triggers reoptimization which then exploits both the actual measured cardinality and partial

results to speed up processing. An additional option is proactive reoptimization [5], which

focuses on detecting the need for adaptation early during execution. To do this, it accounts for

uncertainty using estimate intervals, uses the estimate intervals during query optimization,

and employs sampling-based statistics collection. Finally, LEO [113] introduces a paradigm

where optimizers improve their future estimates using information collected as a byproduct

of the execution of previous queries. In all approaches, optimizers make more informed,

judicious planning decisions.

We further discuss the adaptive techniques that are used in this thesis: symmetric hash joins,

eddies, and State Modules.

Symmetric Hash-join: Traditional hash-joins impede revisiting planning decisions at runtime

[26], as the choice of build relations and the execution order is static. First, adapting the choice
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Figure 2.7: Example for Symmetric Hash-join

of build relations is expensive because it requires changing the existing state. Second, they

impose scheduling constraints because build-side processing precedes probe-side and join

result processing. The symmetric hash-join (SHJ) operator [43, 128] addresses both issues by

treating inputs equally; it processes tuples from both inputs in any interleaved order.

To process tuples in any interleaved order, SHJ builds hashtables on both inputs. It inserts

every input tuple in the respective hashtable, then probes the other relation’s hashtable for

matches. SHJ produces each result tuple when the matching tuples from both sides have been

consumed. Figure 2.7 shows an example of matching two tuples. SHJ processes R’s tuple with

key 4, inserts it in R’s hashtable, and, without matches, probes S. Next, SHJ processes S’s tuple,

also with key 4, inserts it in S’s hashtable, and, to match with R’s preceding tuple, probes R.

Thus, SHJ enables out-of-order processing but increases materialization cost and footprint.

SHJ also generalizes to joins with n input relations. For each input tuple, it probes n-1

hashtables. It decides the probe order at runtime, and hence it seamlessly switches between

different left-deep plans. N-ary SHJ has been used in both stream processing [26, 123] and

robust query processing [10, 66].

Eddies: An eddy operator [4] plays the role of the query optimizer during runtime adaptation.

To do this, it chooses the order of the running query’s operators at tuple granularity at runtime.

It controls how tuples flow through operators by acting as a router at the center of the execution:

for each input tuple or intermediate tuple, it chooses an operator to consume the tuple, and

the consumer operator returns any produced tuples to the eddy for further processing. Hence,

eddy observes the input and the output of each operator and, by using a runtime policy, it

adapts its decisions and thus the effective operator order.
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Figure 2.8: Example of 3-way Symmetric Hash-join using SteMs

Eddies can adapt the operator order as long as the query plan comprises commutative and

symmetric operators, such as SHJ. However, even in that case, accumulated operator state

limits adaptability. For example, inserted tuples in an SHJ are immutable, and thus they remain

at the build side of the effective plan. These tuples cannot produce any new intermediate

tuples until they are probed. Hence, the state makes routing history-dependent [25].

State Modules (SteMs) [96] enhance the adaptability of eddies by guaranteeing history-independence.

A SteM is an index that stores tuples for each base relation. It exposes two operations, insert(a)

and probe(a): insert stores tuple a in the SteM and probe joins, based on a key, with previously

inserted tuples. When used with eddies, SteMs store tuples at the endpoints of a join and

avoid materializing intermediate tuples. Then, simplifying state management enables the

eddy to adapt access methods, join algorithms, and join spanning trees at runtime.

SteMs can implement n-ary SHJ [96]. Figure 2.8 shows a running example for a 3-way SHJ.

SteMs serve as hash tables, whereas the eddy dynamically reorders probes. The eddy first

inserts each input tuple to its relation’s SteM, e.g., R, producing an insertion timestamp. The

insert operation returns the tuple back to the eddy. Then, the eddy atomically probes other

SteMs e.g. SteMS , then SteMT , using the input tuple’s timestamp to ensure a total order

between tuples (atomicity). The sequence of probes produces the join between the input tuple

and any previously processed tuples from other relations.

In this Thesis: RouLette acts as a query optimizer for SPJ subqueries. It adopts an adaptive

processing paradigm based on eddies and SteMs. As the eddy produces global plans using

fast decisions, the planning cost is linear to the plans’ size hence scalable. However, existing

adaptive processing techniques are insufficient for reducing the total processing time because

i) eddy policies make inaccurate planning decisions, and ii) adaptive processing introduces

runtime overhead. RouLette enhances adaptive processing by improving planning using a
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learned policy and by introducing execution techniques that reduce overhead.

Learned Query Optimizers: Query optimization suffers from the limited accuracy of estimates,

inefficient search space exploration, and the need for significant hand-tuning. Learned query

optimizers, by training on the data and workload at hand, aim to achieve low-error estimates

and to identify efficient data and workload-specific heuristics. They learn to optimize both

individual components such as join order enumeration [63, 74, 132], cardinality and selectivity

estimates [28, 60, 84, 131], and full-blown rule-based optimizers [72, 73, 83]. The above

approaches are trained offline and can improve optimization across a sequence of queries. By

contrast, SkinnerDB [121] proposes an alternative approach that, to achieve regret-bounded

query evaluation, learns from query execution at runtime. It splits execution into slices and

tries different join orders across slices, thus evaluating progress and learning efficient plans.

Thus, SkinnerDB bridges ideas in reinforcement learning and adaptive processing.

In this Work: To match the plan quality of query optimization in RouLette, the eddy needs to

choose efficient operator orders. Existing selectivity-based techniques for reordering operators

are greedy hence often suboptimal. To refine operator ordering and minimize the total

processing time, RouLette uses reinforcement learning because it can model the correlations

and long-term effects of planning decisions.

RouLette uses reinforcement learning differently than learned query optimizers [63, 73, 74,

132] for QaT databases. Learned query optimizers are trained offline and improve planning

throughout a sequence of queries. By contrast, RouLette learns to order operators throughout

the lifetime of queries. Learning is completely online and discards information after queries

finish processing. We make this design choice for two reasons: i) planning decisions for a

query batch do not generalize for seemingly similar future batches because they depend on

the batch’s predicates, which are rarely the same, and ii) the exact same batch recurs less often

than the exact same subquery and thus learning has to rely on fewer offline samples.

RouLette is more similar to SkinnerDB [121], which bridges reinforcement learning and adap-

tive processing. However, it is different from SkinnerDB in that it targets sharing-aware

optimization. RouLette explores different candidate global plans at runtime and learns which

global plans reduce the total processing time by observing execution outcomes. Also, RouLette

introduces execution techniques that minimize the overhead of adaptive processing.

2.2.2 Access Methods

Efficient data access is a significant factor in providing fast responses to queries. To this end,

databases organize their data such that they provide access methods, that is, data structures

and algorithms that can reduce the retrieved data for a target workload. This thesis applies

two types of data organization, indexing, and partitioning.

Indices: An index is a data structure that enables queries to selectively access data based

on a predicate. Indices show significant diversity: they differ in terms of the predicates
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they support, their granularity, their performance characteristics, their storage overhead, the

overhead for building and updating them, etc. For example, hash-indices efficiently support

point queries (i.e., queries with an equality predicate), whereas B+-trees support both point

and range queries. Furthermore, both hash-indices and B+-trees map each value to one or

more positions in the data, whereas other indices such as zonemaps [39] store a synopsis of

a data region (e.g. min-max statistics) which allows pruning out the corresponding region

during scans. Finally, indices can be clustered when they determine the order of data or

unclustered otherwise.

Significant efforts on indexing focus on multidimensional data [32]. Such work includes spatial

indices, such as R-tree [42] and k-d tree [9], as well as space-filling curves [80], which enable

efficient range queries over multidimensional data. In Chapter 4, we draw a relationship

between data access for work sharing and multidimensional data.

When processing a query, a database can use either a full scan or one of the available indices.

Access method selection is a fundamental decades-long problem in query optimization [15,

105]. Databases typically make a decision based on the available statistics and the query’s

predicate. Kester et al. [59] demonstrated that choosing between a scan and an index depends

not only on statistics but also on concurrency due to the opportunity for scan sharing. This

result already exposes the friction between data and workload-conscious optimizations for

individual queries and work sharing.

Partitioning: Partitioning is an alternative to indices for accelerating selective queries. By

precomputing a compact set of aggregates [39, 78] per partition, analytical databases enable

data skipping [114], a technique that prunes out partitions that contain data that is redundant

for the query at hand. To minimize data access, state-of-the-art approaches partition the data

by formulating an optimization problem based on the workload’s predicates. This problem is

proven to be NP-hard, and common solutions involve approximate heuristics [114, 115], and

reinforcement learning [45, 130].

In this Thesis: SH2O addresses efficient data access for highly concurrent workloads. It applies

to work-sharing databases that use Data-Query model as a replacement for shared scans that

are followed by a chosen set of shared filters. SH2O outperforms shared scans because it offers

both selective access and sharing and amortizes downstream filtering costs. At the same time,

SH2O advances work on shared index probes in terms of optimizing for the Data-Query model,

handling predicates on multiple attributes at once regardless of index traversal patterns, and

handling dimensionality. Finally, SH2O is more efficient than data skipping-based approaches

for shared data access, as it avoids overfetching data when partition boundaries are misaligned

with query predicates and avoids excessive post-filtering.

SH2O takes a different view of selecting an access strategy compared to access path selection.

Instead of choosing the best available access path, it selects which filters to replace based on

the batch’s access patterns and the data organization. Thus, SH2O uses an optimizable strategy

that goes further at optimizing the access path based on both selectivity and concurrency.
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Also, this thesis introduces two partition-oriented execution techniques and two partitioning

algorithms. First, we identify the benefit of specializing SH2O for each data subspace when

accessing partitioned data and propose a partition/index selection algorithm that chooses a

data organization that minimizes SH2O’s processing time for a target workload. Second, to

improve the usability of materialized results in ParCuR, we implement partial reuse through

partitioning. Doing so introduces a dependency between materialization footprint and data

layout. Hence, we propose a novel partitioning scheme that improves storage budget utiliza-

tion. In ParCuR, we also use partitioning to eliminate the computation of frequent predicates

and reduce the overhead of reuse; however, the insights of SH2O also apply in this use case.

2.2.3 Materialization and Reuse

When processing a predictable set of queries, databases reduce their processing time and each

query’s response time using materialization. They precompute and store views and then use

each materialized view to answer one or more queries at runtime. Materialization poses an

optimization problem that involves three aspects: i) choosing views to materialize, ii) choosing

views to reuse, and iii) handling updates. We elaborate on each aspect of the problem and

then discuss a subarea related to the thesis, partial materialization and reuse.

Choosing materializations: This aspect requires strategically choosing materializations such

that they fit in an allocated storage budget. Thus, the choice needs to decide on a limited

number of views that brings the maximum benefit in processing time. The decision constitutes

an optimization problem that takes in workload information and results in a materialization

decision. The problem of selecting materializations occurs in multiple applications with

different constraints. Some common variants that make different assumptions about the

explored search space, the workload information, and the timing of the decision are:

• View selection: Given a budget of resources and a target workload, view selection

[53, 71, 100, 135] finds which set of views to materialize in order to minimize runtime

processing time. Candidate views include intermediate results both in each query’s

chosen plan as well as in alternative equivalent plans.

• Subexpression selection: Subexpression selection [51, 52, 136] is a constrained version

of view selection that improves optimization time. It restricts the search space by

considering materialization candidates only among the intermediate results that occur

in each query’s chosen plan.

• Recycling: Recycling [48, 81, 89, 117] is a variant of materialization selection that

chooses and actuates materializations online, as the queries arrive. Thus, recycling lifts

the assumption of a-priori knowledge of a target workload.

• Semantic caching: Semantic caching [16, 21, 27, 109] focuses on materializing the end-

results of queries. This is different from physical caching, which focuses on efficiently

using buffer pool pages to cache parts of the base data.
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Using materializations: This aspect involves deciding which available materializations mini-

mize each query’s cost. The mechanism for making this decision needs to determine i) if it is

possible to rewrite the query such that the materialization subsumes its intermediate results

and ii) the processing time after applying each rewrite. All in all, the mechanism chooses the

rewrite, if any, that minimizes processing time.

Handling updates: Another dimension is maintaining materializations when handling up-

dates. View maintenance introduces techniques that address the freshness-update cost trade-

off differently. The taxonomy [64] includes i) recomputation vs incremental view maintenance,

ii) immediate vs deferred maintenance, and iii) online vs offline maintenance. Another ap-

proach is to invalidate materializations that are affected by updates [48]. This thesis strictly

focuses on read-only OLAP workloads, and thus, this aspect is beyond the scope.

Partial materialization and reuse: A set of materialization and reuse techniques focus on

increasing reusability for shifting workloads. Partial materialization stores the most impactful

[21, 27, 129] or hottest subset of rows [37, 137]. Then, at runtime, reuse exploits overlaps with

materialized results and recomputes the rest. As a result, both the hit rate and the utilization

of storage are improved.

In this Thesis: Work-sharing databases exploit overlapping work between queries in order to

reduce the total cost of processing, but, for every query batch, incur full recomputation from

scratch. ParCuR redesigns materialization and reuse for work-sharing databases to eliminate

recurring computation more effectively and hence reduce response time.

ParCuR specifically addresses subexpression selection in the context of work-sharing environ-

ments; it makes decisions on which subexpressions to materialize and reuse based on which

shared operators they eliminate in the global plans of a target workload. Work-sharing affects

the impact of reuse, the usability of materialized subexpressions, and the reuse overhead;

hence ParCuR adapts the data layout, the materialization policy, and the reuse policy for

subexpression selection and introduces efficient reuse strategies. While extending semantic

caching, recycling, and view selection for shared execution is beyond the scope of this thesis,

the insights for optimizing materialization and reuse for work sharing hold across the different

variants of the materialization problem.

ParCuR also adopts partial reuse through partitioning in order to increase the usability of

materialized subexpressions during workload shifts. Similar approaches include chunk-based

semantic caching [21, 27], partially materialized views [137], partially-stateful dataflow [37],

and separable operators [129]. However, in QaT approaches, outstanding concurrent compu-

tation results in deteriorating response time as a function of concurrency. ParCuR both reuses

available materializations and uses work-sharing to mitigate the impact of concurrency on

response time.
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2.3 Reinforcement Learning

Reinforcement learning is a paradigm for optimizing decision-making in environments that

are modeled as Markov Decision Processes. In this section, we briefly present Markov Decision

Processes and Q-learning.

Markov Decision Processes: Reinforcement learning applies to problems that are expressed

as Markov Decision Processes (MDPs). An MDP models problems as multi-step processes. At

each step, an actor observes the current state s and chooses an action a ∈ A(s). The action’s

result is a reward R(s, a) and a change of state to s′. The state space, each state’s set of actions,

the reward, and state transitions define the MDP. Eventually, the actor observes a terminal

state, and the process finishes. Reinforcement learning algorithms find a decision-making

policy that maximizes the cumulative reward that the agent observes throughout the process.

Q-learning: Q-learning [127] is a reinforcement learning algorithm for finding optimal policies.

Q-learning has two desirable properties: i) it learns the optimal policy instead of evaluating

the currently used policy, i.e. a randomized policy that interweaves exploratory decisions

with the estimated best decisions. ii) to converge, it only requires that all state-action pairs

continue to be visited [116]. A randomized policy guarantees property ii).

Q-learning approximates a function Q : S × A →R that evaluates the quality of decision a at

state s, i.e., the expected cumulative reward in future steps. During decision-making, it uses

a policy to choose an action in each state. For example, an ϵ-greedy policy chooses, with

probability 1-ϵ, the action a that maximizes Q(s, a) and a random action otherwise. Q-learning

later uses the observed rewards to refine the approximation of Q. Given two hyper-parameters,

learning rate µ and discount rate γ, it updates:

Q(s, a) ←Q(s, a)+µ(rt +γ max
a′∈A(s′)

Q(s′, a′)−Q(s, a))

By repeating the MDP’s process multiple times, Q-learning iteratively refines the approxima-

tion of Q. Q-learning estimates the future cumulative reward for each action hence also the

action that maximizes rewards.

In this Thesis: RouLette uses Q-learning with an ϵ-greedy policy to choose efficient global

plans. Specifically, it uses the table-based implementation that stores the values of Q in a

sparse table instead of using a neural network. By exploiting two problem-specific properties

to reduce the state space, RouLette uses an optimized instance of Q-learning for sharing-aware

optimization.

30



3 Scalable and Efficient Sharing-aware
Optimization

The growing need to provide real-time insights to a rising number of stakeholders that operate

on the same infrastructure significantly increases the analytical query load. Even applications

such as interactive analysis result in tens to hundreds of concurrently executing ad-hoc queries

[14, 50, 107]. State-of-the-art analytical engines that follow a query-at-a-time execution model

are a poor fit for such high query-load scenarios because, as concurrency is increased, query

response time suffers. On the contrary, work-sharing databases [12, 35, 44] handle multi-query

processing more efficiently by taking advantage of shared data and work across queries to

reduce the amount of work to perform. In that case, the benefit depends on the sharing

opportunities that the database detects and exploits. Nevertheless, there is no silver bullet for

choosing opportunities that minimize processing.

Depending on the mechanism that chooses opportunities, sharing is either online [3, 12,

44] or offline [36]. Online sharing detects opportunities, such as common subexpressions,

between queries at runtime. Although the detection overhead is low (e.g., matching subplans

[35, 44]), online sharing finds only a subset of the opportunities in the workload. Figure 3.1

demonstrates this limitation. To minimize the processing time for each individual query, query

optimization produces query plans (1) and (3). The plans share the first join, R ▷◁ S. However,

there exist equivalent plans (2) and (4) with permuted join orders that can share R ▷◁ S ▷◁U ,

thus reducing the total processing time. The permutation constitutes a missed opportunity

⨝
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SELECT count(*) FROM R, S, T, U
WHERE R.a=S.a and R.b=T.b and S.c=U.c

SELECT count(*) FROM R, S, U, V
WHERE R.a=S.a and S.c=U.c and S.d=V.d
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Figure 3.1: Missed sharing opportunities
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for the online sharing mechanism that matches subplans. Offline sharing optimizes batches

of queries by using exhaustive sharing-aware optimization to form the global query plan

that minimizes the total processing time. Thus, offline sharing discovers opportunities that

online sharing misses. However, exhaustive sharing-aware optimization is a high-complexity

problem that takes several seconds to process batches as small as few tens of queries [36]. As it

lies in the critical path of execution, it obstructs offline sharing to scale to hundreds of queries,

especially in ad-hoc workloads. Therefore, depending on the use or absence of exhaustive

sharing-aware optimization, existing systems either forfeit support for highly concurrent

workloads or miss substantial sharing opportunities.

We preserve scalability and increase the benefit from opportunities compared to online

sharing. On the one hand, scalability requires avoiding the required time for exhaustive

sharing-aware optimization being paid in full. This requirement contradicts the optimize-

then-execute paradigm that most databases adopt. A continuously adaptive paradigm that,

by using fast heuristics, reoptimizes queries at runtime is a better fit for highly concurrent

workloads as it moves optimization out of the critical path by permitting execution to proceed

alongside plan refinement. On the other hand, to increase the benefit of work sharing, the

heuristics need to explore alternative candidate global plans which exploit opportunities that

online sharing fails to detect. By monitoring execution outcomes, intelligent heuristics can

steer exploratory decisions toward efficient global query plans and hence identify global plans

that increase benefit.

We present RouLette, a novel intelligent engine that detects and exploits shareable work

among Select-Project-Join (SPJ) subqueries through runtime adaptation. RouLette operates in

fine-grained episodes. During each episode, it performs work for multiple ongoing queries,

monitors the cardinalities of intermediate results, and adjusts the plan by using a learned

heuristic. The learned heuristic estimates, by using reinforcement learning, which planning

decisions decrease the total processing time, hence steering adaptation toward more efficient

plans compared to existing online sharing mechanisms. By continuously adapting the global

plan, RouLette reduces work while preserving scalability.

We make the following contributions:

• We present a work-sharing paradigm that both reduces the total processing time and

overcomes the scalability limitation of exhaustive sharing-aware optimization. By using

adaptive processing, RouLette explores and exploits opportunities at runtime, thus

addressing the drawbacks of online and offline sharing.

• Existing heuristics [6, 125] for runtime planning make greedy decisions that result in

suboptimal global plans. We design a sharing-aware learned heuristic that approximates,

by using reinforcement learning, the decisions that minimize total processing time, and

thus it overcomes the limitations of existing heuristics and produces efficient global

plans.
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• We identify performance bottlenecks inherited by i) adaptive processing, that is, ma-

terializing join state and intermediate tuples, and ii) shared operators, that is, filter

comparisons and routing. We propose novel optimizations, i.e., symmetric join pruning,

adaptive projections, and locality-conscious routers, that improve hardware utilization

and scalability.

3.1 Limitations in Sharing-aware Optimization

RouLette addresses two limitations in existing sharing-aware optimization mechanisms: i)

the coverage limitation in online sharing, i.e., missed sharing opportunities in alternative

global plans, and ii) the accuracy limitation, i.e., choosing suboptimal plans due to inaccurate

estimates for a global plan’s processing time. We discuss the two limitations in this section

and the mechanisms that they affect. The experiments in Section 3.5.1 show that RouLette

effectively addresses the presented cases.

3.1.1 Coverage Limitation

Online sharing mechanisms miss sharing opportunities that are absent from their candidate

global plans. Thus, mechanisms that explore limited opportunities for reordering operators,

such as finding matching subplans, used in QPipe [44], and incremental planning, used in

DataPath [3], suffer more from missing sharing opportunities. We demonstrate the coverage

limitation through an example. Consider n queries:

Q1: SELECT count(*) FROM R,S,T1 WHERE R.a=S.a and R.b=T1.b and T1.x < P1
Q2: SELECT count(*) FROM R,S,T2 WHERE R.a=S.a and R.b=T2.b and T2.x < P2

...

Qn: SELECT count(*) FROM R,S,Tn WHERE R.a=S.a and R.b=T1.b and Tn.x < Pn

For query Qi , the QaT plan first processes the join R ▷◁ Ti and then the join (R ▷◁ Ti ) ▷◁ S.

Both QPipe’s and DataPath’s mechanisms fail to detect any sharing opportunities between the

queries. QPipe stitches together the QaT plans and hence completely misses the opportunity

to share R ▷◁ S. DataPath considers alternative ways for incorporating each query Qi to

the global plan of queries {Q1, . . . , Qi−1}, but opts for the QaT operator order. As none of

the previous queries processes R ▷◁ S first, choosing the QaT operator order minimizes the

increase in the global plan’s cost. Thus, both mechanisms miss plans that share R ▷◁ S,

which can reduce the total processing time. Furthermore, the example also generalizes for

larger shared joins R ▷◁ S1 ▷◁ . . .▷◁ Sm , in which case reordering operators brings a higher

processing time decrease. By exploring alternative global plans, RouLette identifies operator

orders that expose beneficial sharing opportunities and increase work sharing.
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3.1.2 Accuracy Limitation

Choosing efficient plans requires making accurate planning decisions that reduce processing

time. On the contrary, online sharing mechanisms choose inefficient plans that are signifi-

cantly more time-consuming when they make suboptimal planning decisions due to i) greedy

heuristics that inaccurately capture processing time savings or ii) inaccurate statistics.

The online sharing mechanisms used in TelegraphCQ [69] and CJOIN [12] suffer from inaccu-

rate decisions due to their greedy nature. They both reorder operators based on selectivity;

hence, they use selectivity as a proxy for total processing time. However, when data has

correlations, choosing the join order based on selectivity can be orders of magnitude more

time-consuming [85]. Thus, greedy mechanisms result in inefficient global plans.

Also, inaccurate cardinality and query overlap estimation results in inefficient plans. The

input and output cardinalities of each shared operator range between being identical to the

cardinalities of participating queries (i.e., full overlap) and being the sum of the cardinalities

across the same queries (i.e., inputs and outputs of the queries are disjoint). Then, for both the

cost estimate and the actual processing time of each shared operator, the difference between

the extreme cases (i.e., full overlap and no overlap) is high. Hence, making assumptions

about query overlaps, such as statistical independence, can prompt planning decisions to

miss sharing opportunities that reduce execution time or, worse, to underestimate the cost of

time-consuming operator orders. Note that inaccurate estimates also affect offline sharing

approaches; however, improving offline estimates using approaches such as LEO [113] is

beyond the scope of this work.

RouLette addresses the accuracy limitation by i) estimating the total processing time, and

ii) by doing so based on execution outcomes. By using reinforcement learning, RouLette

learns which local reordering decisions reduce the cumulative cost for downstream operators.

Furthermore, it learns from execution outcomes; thus, its decisions consider both data corre-

lations and the actual overlaps between queries. As a result, RouLette chooses more efficient

operator orders.

3.2 RouLette Architecture

We introduce RouLette, a specialized intelligent engine for efficiently executing multiple SPJ

subqueries at once. By continuously adapting the global plan to sharing opportunities, it

reduces the required time for processing the subqueries. Thus, RouLette optimizes the global

operator order, without time-consuming offline sharing-aware optimization.

Figure 3.2 shows RouLette’s architecture. RouLette accelerates processing for a host analytical

engine. The host processes concurrent queries from different users and applications. It

delegates SPJ subqueries to RouLette for shared execution and then collects the results for

further processing. RouLette works separately alongside the host because i) it uses a different

34



3.2 RouLette Architecture

Query Parser & Optimizer
In

g
e

st
io

n

R

Q1
Q2

Q3

S
T

W
V

U

SELECT R.b, sum(R.c) 
FROM R,S,T
WHERE R.a=S.a and R.b=T.b

and R.d between -3 and 3
and S.g < 7

GROUP BY R.b
ORDER BY R.b

SELECT sum(R.d) 
FROM R,S,U,V
WHERE R.a=S.a and S.e=U.e

and S.f=V.f and S.g < 12

SELECT * 
FROM R,S,U,W
WHERE R.a=S.a and S.e=U.e

and U.h=W.h and R.c > 5
and R.d < 0 and S.g > 5

Q1 Q2 Q3

R S

σ σ

⨝

⨝

Τ

Γ

R S

σ σ

⨝

⨝

U

⨝

W

π

R

S

σ

⨝

⨝

U

⨝

V

Γsort

Query Executor
Γ πΓ

sort

RouLette RouLette RouLette

Storage Manager

Eddy

"#$%" "#$%&

"#$%' "#$%()*+*,

"#$%-)*,

Ad-hoc Queries

)..0 )..1 "#$%.

Selection Phase Insert Join Phase

"#$%"

"#$%&

"#$%'
"#$%( "#$%- Q3

Q2

Q1R.c
Q3: R.c > 5

R.d
Q1: -3 < R.d < 3

Q3: R.d < 0

S.g
Q1: S.g < 7

Q2: S.g < 12
Q3: S.g > 5

Executor

vid R.a R.b R.c R.d Query-set
15 1 1 8 -1 111
16 1 2 7 3 111
17 2 3 3 1 111
18 3 4 9 -2 111
19 4 6 6 5 111

Q1
Q2

Q3

Q1

Q2

Q3

Q2

Q3

Le
a

rn
e

d
 P

o
li

cy

RouLette Engine Host Engine

Selections SteMs

b

a

1

3

2 2

4

5
5

b

)..0 )..1

c

.
"

'
-

(

&

d

L Q op in out div
R 111 S 5 6 -
R,S 111 T 6 0 6
R,S 110 U 6 7 -
… … … … … …

a

c

d

1 2

10

3 4 5

6 7 8

9

2

2

2

Figure 3.2: RouLette operates as a special engine alongside a database. We present the
architecture through a three-query example.

processing paradigm (adaptive instead of optimize-then-execute), and ii) it controls its data

access, state, and execution. Hence, the interface between the host and RouLette consists of

the delegation of subqueries, the collection of results, and data access.

RouLette splits subquery processing into episodes. In each episode, RouLette plans-then-

processes the operators of ongoing subqueries for an input vector and analyzes execution

to refine planning in future episodes. Episodes are the quantum of planning; that is, plans

change only across episodes. They process shared work for all ongoing subqueries and map

1-1 to input vectors. Subqueries finish after RouLette processes all their input.

Numbered dotted lines in Figure 3.2 show the data flow between RouLette’s components in

each episode.

1. Ingestion pulls a vector from the host’s storage into RouLette.

2. An eddy within RouLette chooses the episode’s plans for selections and joins using a

learned policy.

3. The executor carries out, by processing the episode’s plans for the vector, the eddy’s

decisions and produces SPJ results.

4. The executor pipelines results to host-side operators (e.g., GROUP BY, outer queries) for

further processing.

5. The eddy uses execution metadata to refine the learned policy.
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We present RouLette’s components using the example of the three queries in Figure 3.2.

Query Optimizer: The optimizer processes incoming queries and produces plans. Then, it del-

egates one or more SPJ subqueries (blue boxes), which naturally occur at the bottom of plans,

to RouLette. In the host, by replacing subqueries with RouLette sources, delegation transforms

the original plans and assigns the transformed plans to the host’s executor. RouLette sources

represent intra-RouLette processing and pipeline SPJ results to their consumer (i.e., parent)

operator (red boxes). As RouLette does not preserve interesting orders, the optimizer, during

transformation, also adds any required operators, such as a sort, to the transformed plans.

On RouLette’s side, delegated subqueries are dispatched either online or in batches. Dispatch

updates the predicate list and the join list (at the top of RouLette in Figure 3.2) and notifies

ingestion about new queries. After dispatch, RouLette starts processing the subqueries. In the

example, the host delegates Q1, Q2, and Q3 one after the other.

Ingestion: Ingestion provides RouLette with input vectors from the host’s storage. It is de-

signed for two desirable properties: i) to ensure that all ongoing queries make progress, and

ii) to enable sharing between incoming and ongoing queries when using online dispatch. To

satisfy i), it concurrently scans relations that ongoing queries require in round-robin order,

whereas to satisfy ii), it uses circular scans [44, 138].

In each episode, ingestion chooses i) a relation to access and ii) the relation’s vector to access.

Hence, ingestion uses a relation iterator and a vector iterator for each relation. In the example,

it chooses R, then R’s 4th vector, and finally advances the two iterators. As scans are circular,

retrieving the last vector of a relation (e.g., R’s 6th vector) will move the iterator back to the

start (e.g., R’s 1st vector).

At any given moment, each ongoing query accesses data from one or more of the ingestion’s

scans. As we discuss in Section 3.4.2, RouLette’s join processing benefits from accessing

relations in a partial order. Ingestion enforces this partial order by attaching each query to a

scan only after it has finished all preceding circular scans.

Ingestion also transforms the input into Data-Query model. By recording the position of each

scan whenever a new query is attached to it, ingestion keeps track of each scan’s active queries,

i.e., queries that have not completed the circular scan. To translate the input to Data-Query

model, it annotates tuples with the set of active queries. RouLette represents query-sets using

bitsets. A set i th bit means that the tuple belongs to Qi e.g. if Q1, Q2, and Q3 are active, the

tuple is annotated with 111. Figure 3.2a shows the resulting vector. When a query’s circular

scans are all finished, it becomes inactive, and hence ingestion signals the consumer with

end-of-input.

SteMs: RouLette uses SteMs to enable operator reordering and out-of-order scans. They store

and index tuples, making them accessible across episodes without limiting future operator

orders. Thus, RouLette implements a history-independent multi-query n-ary symmetric join.
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To address performance and parallelization bottlenecks in SteMs, RouLette introduces novel

optimizations, i.e., symmetric join pruning, scalable versioning, and adaptive projections,

which we discuss in Sections 3.4.1 and 3.4.2.

Eddy and Learned Policy: The eddy handles planning within each episode and adaptation

across episodes. It produces global plans that process multiple subqueries for one episode

each and analyzes the plans’ execution to produce more efficient plans in future episodes.

Hence, the eddy uses batching-based policies [26] that produce plans at episode-granularity.

Compared to existing adaptation techniques, it produces more efficient plans because it uses

novel learned policies that can accurately model global plan costs.

RouLette uses selection push-down. As joins are much more time-consuming, to reduce

their input, plans process first the selections and then the joins. Hence, each episode has two

separate plans, the selection phase that processes shared selections and the join phase that

comprises SteM probes, routing selections, and output routers. Figure 3.2 shows the two plans

inside the executor.

To produce each phase’s plan, the eddy chooses an operator order using a multi-step optimiza-

tion algorithm. Multi-step optimization uses learned policies and ordering constraints (Figures

3.2b and 3.2c, presented in Section 3.3.1) to incrementally build the plan from unordered

operators. We discuss optimization in Section 3.3.1.

To continuously refine the learned policies used in multi-step optimization, the eddy uses

reinforcement learning. By monitoring the input and output of operators, it collects an

execution log that records the processed operator and queries, the operator history, and the

size of input and output (Figure 3.2d). At the episode’s end, to update the policies and improve

planning in future episodes, it processes the log using a tailor-made variant of Q-learning that

reduces the problem’s state space. We discuss learning in Sections 3.3.2 and 3.3.3.

Executor: The executor contains a thread pool of RouLette workers. Each worker concurrently

undertakes a different episode and synchronizes with other workers through shared SteMs. It

processes the episode’s plans for the ingested vector mapped to the episode as follows. First,

it processes the selection phase, thus filtering the tuples’ query-sets. Second, it inserts the

selection phase’s results into the base relation’s SteM (e.g. SteMR ) to make the join symmetric.

Third, it processes the join phase for the selection phase’s results to produce SPJ results. Fourth,

using routers, it sends SPJ results to respective RouLette sources, which pipeline tuples to host

operators. Each processed episode contributes to completing the subqueries.

In all steps, RouLette’s operators use the Data-Query model and serve one or more queries.

RouLette introduces novel algorithms for efficiently processing selections and routing at scale

and, to maximize sharing, adopts an MQJoin-like implementation [70] for SteM operations.

We defer discussing operator implementation until Section 3.4.

The worker processes the phases using vectorized execution. It processes each operator for an
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Figure 3.3: Multi-step optimization for join-phase

input vector and sends the output vector to one (σR.d ’s case) or two operators (SteMS ’s case).

When one operator follows, the worker executes it next. When two operators follow, to bound

the footprint of pending vectors, it executes all operators in the probe subplan first, then all

operators in the selection subplan, e.g. after SteMS probe, the data flow is i) SteMS → SteMT ,

ii) SteMT →Q1’s RouLette source, iii) SteMS →σQ2,Q3, e.t.c. In Figure 3.2, numbers next to

operators show the execution order. RouLette also implements multi-casting to more than

two operators by composing two-output operator patterns one after the other.

Our prototype targets in-memory analytics. It uses columnar data and late materialization.

Vectors consist of virtual ID (vID) tuples in PAX-layout [2], and operators reconstruct mini-

columns for required attributes on demand. Input vectors contain 1024 tuples, whereas

intermediate vectors can contain an arbitrary number of tuples by using a chunked array.

The design reduces the footprint of vectors and SteMs. As both data structures are in-memory,

their footprint imposes an upper bound to the dataset size that RouLette can process. This

thesis studies sharing in an in-memory environment and, as we discuss in Chapter 6, we leave

handling larger-than-memory shared data structures as future work.

3.3 Learned Adaptation Policy

We examine planning in RouLette. We present how a policy produces global plans in Section

3.3.1, express planning as an MDP in Section 3.3.2, and propose a novel learning algorithm in

Section 3.3.3.
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3.3.1 Policy-based Planning

The eddy optimizes plans using policy decisions. Starting from the plan’s input, each decision

chooses the operators that process an intermediate vector. One or two chosen operators

produce equally many new vectors. Eventually, the plan contains all operators for all queries.

The decision sequence is a multi-step optimization. It runs at each episode’s start and chooses

a plan until the episode’s end.

In this section, we present multi-step optimization. We follow the algorithm’s first four steps

for the running example in Figure 3.3.

Terminology

We first define the terms dependency graph, lineage, operator query-set, virtual vector, and

candidate operator,.

Definition 1. The dependency graph of a set of operators, O, is defined as the complete graph

K|O| if O comprises selections and as G = (V ,E) with (e1,e2) ∈ E if and only if e1 ▷◁ e2 ∈O if O

comprises joins.

Definition 2. Let O be a set of operators with dependency graph G(O). A subset L ⊂ O is

defined as a lineage if and only if the induced subgraph G(O) [L] is connected. The set of

lineages is L∗.

Definition 3. The query-set Qo of an operator o is defined as the set of queries that contain o.

Definition 4. A virtual vector is defined as a pair (L,Q).

Definition 5. Candidate operators for virtual vector (L,Q) are defined as

cand(L,Q) = {o ∈O−L|({o}∪L ∈L∗)∧ (Q∩Qo ̸= ;)}

Definition 6. A policy decision for virtual vector (L,Q) is a function π(L,Q) = o with o ∈
cand(L,Q) if cand(L,Q) ̸= ;, and o = null otherwise.

Figures 3.2b and 3.2c show graphs for R’s selections and joins. Dependency graphs express

ordering constraints between operators: selections can execute in any order, whereas probes

often need attributes from other relations to join without cross-products e.g. for S.e =U .e, R’s

tuples need to join with S before joining with U .

Virtual vectors (bold text Figure 3.3) represent shared subexpressions in the global plan. They

contain a lineage, i.e., a set of operators that can compose a plan that respects constraints,

and a query-set. {R,S} is a lineage, while {R,U } is a not lineage. Multi-step optimization uses

virtual vectors to identify, in incomplete global plans, subexpressions to expand, by adding

downstream operators, until they match the subqueries in their query-set.
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Candidates are operators that can extend the virtual vector’s subexpression. They need to

respect constraints and the new subexpression needs to be part of a query. Adding the

candidate operator to the lineage results in a new lineage. Dotted outlines (or ;) highlight

each step’s candidates. In step (1), S and T are the only candidates because they are adjacent

to R in the graph.

Policy decisions choose one of the candidates (blue outline), if any, as in steps (1), (2), and (4).

If there are no candidates, as in step (3), the vector stands for Q’s output and the policy returns

null. Policy decisions use an eager sharing heuristic; each chosen candidate o processes all

queries in Q−Qo . The eager sharing heuristic avoids exploring 2|Q−Qo | different sharing deci-

sions for each candidate hence reducing the search space. This design decision is consistent

with work sharing in adaptive processing, e.g., in TelegraphCQ [69] and similar to the sharing

heuristic hint in SWO [36].

In the next two sections, we define the effects of policy decisions on partial global plans.

Sharing

Sharing occurs when all queries of virtual vector (L,Q) contain the operator o chosen by

the policy, as in the example’s step (1). The eddy shares o across Q and a new virtual vector

(L∪ {o},Q) stands for the new shared subexpression.

Divergence

Divergence occurs when only a subset ofQ contains o. Then, the eddy shares o only across that

subset, Q∩Qo . Also, it shares a selection across the other queries, Q−Qo , to drop redundant

tuples. Hence, the decision results in two shared subexpressions with virtual vectors (L∪
{o},Q∩Qo) and (L,Q−Qo). Step (2)’s decision causes divergence. As only Q1 contains R ▷◁ T ,

the decision creates different subexpressions for Q1 and Q2-Q3. Step (3) shows the resulting

virtual vectors. Divergence routes subexpressions to two outputs. To model more than two

outputs, the eddy can make decisions that cause divergence consecutively, e.g., choosing V

instead of U in step (4).

Multi-step Optimization

To build a complete and correct global plan (i.e., implements delegated subqueries), the eddy

composes a sequence of inter-dependent policy decisions. We design multi-step optimization,

the eddy’s logic, which uses the policy to build the plan operator by operator and to identify

the next decisions to make. Multi-step optimization is applied independently for the two

phases, selection and join, to produce the two plans.

Algorithm 1 presents pseudocode for multi-step optimization. The algorithm recursively

builds the global plan. At each recursive step, starting from the plan’s input (lines 11-12), it
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Algorithm 1: Multi-step Optimization

1 Function MULTI_STEP_REC(node,L,Q) :
2 next = NEXT_OPERATOR(L,Q) ;
3 if next ̸= null then
4 mai n = node.addOper ator (next ,Q∩Qnext ) ;
5 MULTI_STEP_REC(mai n,L∪ {next },Q∩Qnext ) ;
6 if Q−Qnext ̸= ; then
7 di v = node.addRouti ng Select i on(Q−Qnext ) ;
8 MULTI_STEP_REC(di v,L,Q−Qnext ) ;

9 node.addRouter (Q) ;

10 Function MULTI_STEP(r el ati on,Q) :
11 i nput = Input Node(r el ati on,Q) ;
12 MULTI_STEP_REC(i nput , {r el ati on},Q) ;
13 return i nput ;

chooses operators to add after the last operator of a shared subexpression’s plan. By using

the policy, it first chooses a candidate of the subexpression’s virtual vector, o (line 2), and

appends it to the plan for Q∩Qo (line 4). Also, in case of divergence, it appends a selection

for Q−Qo (line 7). The new operators’ output corresponds to new subexpressions. Multi-step

optimization uses recursion to complete the downstream plans of new subexpressions for

Q∩Qo (line 5) and Q−Qo (line 8). Finally, null decisions indicate that the subexpression is its

query-set’s output, and a router to the host is added (line 9) When recursion finishes, the plan

is complete. Next, we discuss Algorithm 1’s correctness, complexity, and optimality.

Correctness: Due to the ordering constraints, Algorithm 1 only produces subexpressions that

serve at least one query. We also prove that it produces the output of each query exactly once.

Theorem 1. MULTI_STEP_REC (node,L,Q) produces a null decision, hence the query’s

output, for each q ∈Q exactly once.

Proof. Let OQ = {o ∈O|Qo ∩Q ̸= ;}. We use induction on |OQ−L|.

Base step: As L ⊂ OQ, |OQ−L| = 0 entails L = OQ. Then, cand(L,Q) = ; hence the policy

decides null once for each q ∈Q.

Induction step: If the proposition holds for |OQ−L| ≤ n, it also holds for |OQ−L| = n +1.

Let o = π(L,Q). o ∈ OQ∩Qo
and OQ ⊂ OQ∩Qo

hence |OQ∩Qo
− (L∪ {o})| ≤ n. Recursion for

(L∪ {o},Q∩Qo) decides null exactly once for each q ∈ (Q∩Qo).

If there is divergence, o ∉ OQ−Qo
hence |OQ−Qo

| < OQ and |OQ−Qo
−L| ≤ n. Recursion for

(L,Q−Qo) decides null exactly once for each q ∈ (Q−Qo). The two recursions produce null for

(Q−Qo)∪ (Q∩Qo) =Q and their query-sets do not overlap.
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Complexity: The number of decisions is the global plan’s size, which has at most Qo instances

of each operator o. Each decision inspects the candidates which are at most |O|. Hence, the

worst-case complexity of Algorithm 1 is O(|O| ∗∑
o∈O |Qo |). Algorithm 1 is invoked once for

every episode.

Optimality: Algorithm 1 is optimal for the search space that it explores if and only if, at each

step, the policy chooses the candidate that leads to the best possible downstream plan given

the decisions already made. Given an accurate estimate of the best possible downstream plan’s

processing time for each candidate, it suffices to choose the candidate with the minimum

estimate. The next section focuses on estimation.

3.3.2 Learning Policy Decisions

The response time of global plans depends on decision quality. To improve decision quality,

the eddy adapts the policy using the execution log. RouLette’s reinforcement learning-based

adaptation approximates the policy that minimizes response time. In this section, we present

i) the requirements for accurately estimating the runtime of global plans thus approximating

optimality, and ii) a reinforcement learning formulation that satisfies the requirements.

Cost estimation: The eddy optimizes the global plan’s response time. However, it can observe

only intermediate cardinalities in each episode’s plans. It estimates time from cardinalities

using a cost model. We refer to the estimate as cost. The cost model computes operator a’s

cost as a function of input and output sizes, ca(ni n ,nout ). The total cost is the sum of all

operator costs in a plan.

Requirements: Policies minimize the total cost, which includes the cost of downstream

operators later in the plan. Hence, they need to estimate the long-term effects of decisions,

which are caused by the cascading effect of operator selectivity across the plan. For example,

in Figure 3.2’s join-phase, the input size for probing SteMT is 6, whereas, if SteMT had been

probed before SteMS , the input size would have been 5. With 20% larger input, the probe’s

cost is likely to be higher.

Another long-term effect of decisions is on data distribution due to attribute and join-crossing

correlations. Data distribution affects operator selectivity. Assume that in Figure 3.2’s example,

only the first 60% of R’s vector has matches in SteMS , and only the last 40% has matches

in SteMT . Join selectivity is 120% for R ▷◁ S, 60% for R ▷◁ T , and 0% for both (R ▷◁ S) ▷◁

T and (R ▷◁ T ) ▷◁ T . Selectivity depends on the predicates of all queries that share the

operator’s input subexpression. The query-set, which is part of the virtual vector, summarizes

information about predicate satisfaction.

Also, the eddy optimizes tree-shaped global plans and hence policies affect costs across

multiple branches. Long-term cost estimation counts shared operators once for their whole

query-set and aggregates cascading costs across all branches, e.g., long-term costs for probing

S in Figure 3.2 include the cost of probing S, U, V, T and W, and the cost of routing selections.
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Then, the policy can choose candidates that minimize the global cost by exploiting work-

sharing, even when they are suboptimal for individual queries.

Thus, to accurately estimate the best candidate, the policy predicts cascading cardinalities

and correlations across all branches. Existing selectivity-based approaches fail the require-

ments and, as experiments show in Section 3.5.2, produce suboptimal and expensive plans.

RouLette’s policy satisfies all three requirements, by using reinforcement learning on the

following MDP.

Formulation: We model multi-step optimization as an MDP. The eddy is an agent that com-

poses plans by choosing one of the candidates at each step. In the following paragraphs, we

define the four components of an MDP that optimizes the global plan.

States: States contain the information required to model multi-step optimization. Decisions

process states to choose the best candidate.

To express actions, transitions, and rewards, the MDP requires the virtual vector and the input

size of the current recursive step. The virtual vector determines candidates and the recursive

steps that follow. The input size determines the output size given the chosen operator’s

selectivity, which the virtual vector also affects, and both determine cost estimation when

computing rewards. The input size and the virtual vector form an extended vector (n,L,Q).

Later, we show that the formulation can omit input size.

To express recursion, the MDP models all pending recursive steps as a stack of extended

vectors, with the current step at the top. The state is the stack and the state space is the

set of stacks with elements from R×L∗×2Q. Our notation represents a stack as top : t ai l

and an empty stack as ϵ. In Figure 3.3, the state is (5, {R}, {Q1,Q2,Q3}) : ϵ for step 1 and

(0,{R,S,T }, {Q1}) : (5, {R,S}, {Q2,Q3}) : ϵ for step 3.

Actions: An action chooses a candidate for the current vector i.e. the top of the state’s stack.

Hence, a state’s actions are:

A((n,L,Q) : st ai l ) = A((n,L,Q) : ϵ) = cand(L,Q)

Transitions: Choosing a candidate invokes one or two recursive steps, changing the state.

Transitions replace the top of the stack with vectors for the new recursive step(s). For example,

(5, {R}, {Q1,Q2,Q3}) : ϵ transitions to (0, {R,S,T }, {Q1}) : (5, {R,S}, {Q2,Q3}) : ϵ. Operators affect

the sizes of new vectors. To express output sizes, we use conditional selectivity pL,Q(o), which

models the output-to-input ratio for operator o and subexpression results with virtual vector

(L,Q). Candidate o’s output is pL,Q(o)∗n, whereas the routing selection’s is pL,Q(σQ−Qo
)∗n,

if any. Sharing pushes one new vector and transitions from (n,L,Q) : st ai l to:

(pL,Q(o)∗n, {o}∪L,Q) : st ai l
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Divergence pushes two vectors and transitions to:

(pL,Q(o)∗n, {o}∪L,Q∩Qo) : ((pL,Q(σQ−Qo
)∗n,L,Q−Qo) : st ai l )

If there are no more candidates, a null action pops the top of the stack, and the state transitions

to st ai l .

Rewards: An action’s reward represents the operator’s cost. As reinforcement learning max-

imizes rewards, operators incur negative rewards. Using the cost model, the reward when

sharing is:

R((n,L,Q) : st ai l ,o) =−co(n, pL,Q(o)∗n)

Divergence also includes the selection’s cost, hence the reward is:

R((n,L,Q) : st ai l ,o) =−co(n, pL,Q(o)∗n)− cσQ−Qo
(n, pL,Q(σQ−Qo

)∗n)

3.3.3 Specialized Q-learning Implementation

The formulation satisfies the requirements for modeling the cost of global plans but is dif-

ficult to use in practice. The state space is large due to the input-size parameter and the

stack representation. In this section, we present the design and implementation of a special-

ized Q-learning that, by exploiting two properties of cumulative rewards, independence and

proportionality, reduces the state space.

Independence: Vectors in the stack have disjoint query-sets and hence incur downstream

costs independently across different branches of the plan. The cumulative cost of the state is

the sum of cumulative costs for each vector in the stack. To minimize cumulative cost, the

eddy separately minimizes the cost of each vector e.g. in step 3, to optimize (0,{R,S,T }, {Q1})

: (5, {R,S}, {Q2,Q3}) : ϵ, it optimizes (0,{R,S,T }, {Q1}) : ϵ and (5,{R,S}, {Q2,Q3}) : ϵ. Also,

each vector’s downstream costs include only the cumulative costs of vectors created by the

corresponding step’s decision and recursion. Hence, other pending vectors in the stack do

not affect cost. We rewrite decisions and update rules to use only popped and pushed vectors,

thus hiding the stack’s tail.

Proportionality: Intuitively, operator cost is linear to input size i.e. doubling the input size will

roughly double the required computations. Hence, we define cost as a linear function:

ca(ni n ,nout ) = κa ∗ni n +λa ∗nout

By definition, nout = pL,Q(op)∗ni n , so the output size, the cost, and hence a vector’s cumula-

tive cost is linear to input size. Then, all decisions and updates can be reduced to singleton

states (1,L,Q) : ϵ. Normalizing the Q-values of candidates by input size results in the same deci-

sions e.g. the optimal decision for (5, {R}, {Q1,Q2,Q3}) : ϵ is the same as for (1, {R}, {Q1,Q2,Q3})

: ϵ. Also, to express downstream costs, updates scale Q-values by operator selectivity e.g. for

probing SteMS , the downstream cost is 1.2∗Q((1, {R,S}, {Q1,Q2,Q3}) : ϵ).
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By exploiting independence and proportionality, Q-learning interacts only with (1,L,Q) : ϵ

states, or simply (L,Q). We next discuss the implementation and integration of the algorithm.

Algorithm 2: Policy implementation

1 Function NEXT_OPERATOR(L,Q) :
2 cand = cand(L,Q) ;
3 if choose − r andom() == tr ue then
4 return r andom(cand) ;

5 return ar g maxa∈cand {Q(L,Q, a)} ;
6 Function UPDATE(L,Q,o,ni n ,nout ,ndi v ) :
7 r = 0 ;
8 q = max{Q(L∪ {o},Q∩Qo , a) | a ∈ cand(L∪ {o},Q∩Qo)} ;
9 r = r + (−κo ∗ni n −λo ∗nout +γ∗nout ∗q)/ni n ;

10 if ndi v ̸= null then
11 q = max{Q(L,Q−Qo , a) | a ∈ cand(L,Q−Qo)} ;
12 r = r + (−κσ∗ni n −λσ∗ndi v +γ∗ndi v ∗q)/ni n ;

13 Q(L,Q,o) = (1−µ)∗Q(L,Q,o)+µ∗ r ;

14 return output ;

Q-table: Q-learning learns Q((L,Q),o), which is the best-case cumulative cost at (L,Q) if the

policy decides o. The algorithm needs a method for inferring and updating Q((L,Q),o). We

use traditional map-based Q-learning. Deep learning is unsuitable for adaptive processing, as

training and inference are prohibitively expensive.

Map-based Q-learning stores the current Q((L,Q),o) estimates in a hash map indexed by

(L,Q),o) triplets. As both L and Q are sets with small domains, we store them as bitsets. Then,

concatenating the bytes of L, Q, and o forms a unique key for each state. Decisions and update

rules use the unique triplets to access the map.

To encourage exploration in early episodes and exploitation in later episodes, we use optimistic

initialization [116]. As rewards and Q-table values are negative, we initialize values to zero.

Moreover, the triplet space is only partially explored because some triplets are invalid while

others correspond to pruned parts of the search space. Hence, the Q-table is sparse. We set

the map to store only non-zero values and return 0 for failed lookups.

Decisions: Decisions choose one of the candidates. Algorithm 2’s NEXT_OPERATOR presents

decision-making. As −Q((L,Q),o) is the expected cumulative cost, deterministic decisions

choose the candidate with the maximum Q-value (line 4). This requires one Q-table access per

candidate. Sporadically, with probability ϵ, decisions choose at random to guarantee eventual

convergence (line 3).

Updates: By monitoring execution, the eddy generates a log entry for each processed operator

o in the following format:

(L,Q,o,ni n ,nout ,ndi v )
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ni n , nout , ndi v stand for the size of input, o’s output and σQ−Qo
’s output , if any (otherwise

null). By invoking the update rule for each entry, the eddy adapts the policy.

Algorithm 2’s UPDATE presents the update rule. The update rule propagates cumulative costs

from operators that were added by recursion at (L,Q). Due to independence, it estimates

cumulative rewards for each branch separately (lines 8-9 for Q∩Qo , lines 11-12 for Q−Qo).

Estimation for Q∩Qo works as follows: Line 8 estimates, by comparing all Q((L∪ {o},Q∩
Qo), a), a ∈ cand(L∪ {o},Q∩Qo), the best cumulative cost q that recursion can create at

(L∪ {o},Q∩Qo). Line 9 adds the cost of o to the estimate in three steps: i) it multiplies q by

nout to undo normalization. ii) it adds the direct costs of o, and iii) it normalizes the estimate

again by ni n . The same estimation method is applied forQ−Qo . r aggregates the total estimate.

Thus, Q-learning bootstraps from the current Q-value estimates for state (L∪ {o},Q∩Qo) and,

if required, state (L,Q−Qo). In the end, the Q-table value is updated to a weighted average

of its previous value and the total estimate. After several episodes, Q-learning approximates

Q((L,Q),o).

Tuning: Q-learning depends on three hyper-parameters that represent different trade-offs:

lowering µ trades off learning speed for smoothing noise due to local data distribution, lower-

ing ϵ trades off exploration for Q-table exploitation, and lowering γ reduces the relative weight

of downstream rewards. As downstream rewards are equally important, we set γ= 1. We tune

µ and ϵ by using grid search.

We also tune the cost model to emulate execution time. We assume that all operators of the

same type, e.g. all joins, have the same κ and λ. To tune the parameters, for each operator

type, we measure execution time in nanoseconds for various input and output sizes and apply

linear regression to estimate κ and λ. We get: (i) for selections κ= 9.32 and λ= 4.62, (ii) for

routing selections κ= 3.60 and λ= 0.92, and (iii) for joins κ= 38.57 and λ= 43.29.

3.4 Adaptive Multi-query Executor

On top of learned policies, RouLette owes its performance to efficient shared operators and low-

overhead adaptation. In this section, we describe i) the implementation of shared operators,

and ii) optimizations that mitigate adaptive processing’s bottlenecks.

3.4.1 Efficient Shared Operators

RouLette’s selection and join phases comprise shared operators. In this section, we present

the operators’ design and follow the running example’s selection phase in Figure 3.4 and join

phase in Figure 3.5.

Selections: Each selection-phase operator filters the query-sets of its input tuples by evaluating

one or more predicates. For each input tuple, it computes a predicate result bitset, shown

below Figure 3.4’s operators – a set i th bit means that Qi ’s predicates in the selection are
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!".$ !".%Rvid R.d Query-set
15 -1 111
16 3 111
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18 -2 111
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Q1: -3 < R.d < 3
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111
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011
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010
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15 8 111
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17 3 011
18 9 111
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Q1: true
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Q3: R.c > 5

Query-set
111
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011
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RvidQuery-set
15 111
16 010
17 011
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Range Query-set
(-∞,-2) 110
[-2,0) 111
[0,3) 011

[3,+∞) 010

Range Query-set
(-∞,6) 011
[6,+∞) 111

vector {R}1

2

3

Figure 3.4: Execution of selection-phase

satisfied. Filtering removes queries with zero bits from the tuple’s query-set by computing

the bitwise AND of the bitsets. The new bitset, which stands for query-set intersection, is the

output’s query-set. Selection drops tuples with empty query-sets.

To reduce shared selection costs, RouLette batches predicate evaluation on each attribute

using grouped filters, e.g., σR.d evaluates Q1’s and Q3’s predicates (and tr ue for Q2) at once.

Prior work [69] prunes comparisons by indexing predicates using structures such as search

trees. However, index-based implementations are inefficient because comparisons are still

linear to the satisfied predicates and, hence, in the worst case to the total number of queries.

RouLette uses an efficient evaluation method, whose cost is logarithmic to the number of

predicates. The method is similar to the indexed predicate evaluation of Marroquin et al. [76]

but uses binary search instead of hard-coded control flow statements. For each selection,

it constructs a lookup table that stores precomputed predicate results for a set of ranges

that partition the filter attribute’s domain. Figure 3.4 depicts the lookup tables above their

respective operators. The lookup table is the predicate index for the selection. For each input

tuple, predicate evaluation performs a binary search over the lookup table using the tuple’s

attribute value and retrieves the query-set for the matching range.

SteMs: RouLette uses a shared SteM for each relation across all queries and joins. The SteM

stores selection-phase result tuples and, on each join key, builds indices for joins, e.g., hash-

index for equijoins. To reduce footprint, we use unified SteM entries:

(index-vector, vID, timestamp, query-set)
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vector {R}

Figure 3.5: Execution of join-phase

SteMs stores entries as a contiguous cache-aligned memory block. The inserted tuple consists

of vID and query-set. Each SteM’s index uses one element of index-vector to build a self-

referential data structure, e.g., a list-based hash bucket for hash-indices. The index-vector also

stores the join key to avoid late materialization for SteM tuples’ attributes. Finally, SteM uses

timestamp to ensure insert-probe atomicity. Figure 3.5 shows SteMs above each probe. In our

example, S has equijoins on S.a, S.e, and S. f and builds hash-indices. Arrows are pointers to

tuples with the same key and * is the end of each list.

Probes search the SteM for matching tuples, inserted in previous episodes, and produce

concatenated probe-match pairs. Vector 2 in Figure 3.5 is the result of probing SteMS for R’s

vector. Probes use SteM indices to efficiently find matches. Then, they compare timestamps to

enforce insert-probe atomicity – only matches with older timestamps are considered. Finally,

they compute query-sets of probe-match pairs by intersecting the query-sets of the probing

and the probed tuples, i.e., bitwise AND of the bitsets, and discard pairs with empty query-sets,

such as R’s tuple 19 with S’s tuple 9.

Routing selections: Selections in the join-phase permit tuples of specified queries to pass,

e.g., in Figure 3.5, it retains tuples from Q2 and Q3. A bitwise AND with a filter mask clears

other queries from the bitset. Such selections reduce downstream processing.

Router: Routers send shared output to the host, by multicasting tuples to their query-set’s

RouLette sources. To increase output locality and reduce cache and TLB misses, they adapt

the design of two-pass partitioning to multicasting. Hence, routers increase cache hits hence

improving their processing rate.
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Selection phase

Figure 3.6: Symmetric join pruning

3.4.2 Optimizations for Adaptive Processing

Adaptive processing suffers from overhead due to SteM materialization and versioning, and

lack of projectivity. To match optimize-then-execute performance, RouLette uses novel opti-

mizations for adaptive processing.

Symmetric Join Pruning: Symmetric joins require that all relations be materialized and hence

incur materialization overhead. To reduce the overhead, RouLette materializes only tuples

that can form output tuples for their query-set. We call this symmetric join pruning. Figure 3.6

shows pruning for the symmetric join of Figure 3.2. In the example’s episode, the symmetric

join processes R’s vector. Tuple 18 has no matching entry in S. As all queries contain R ▷◁ S

and the SteMS is final, pruning infers that 18 cannot form any output tuple and drops 18

before insertion. Also, it infers that 19 cannot form output tuples for Q1 and Q2, hence it

adjusts the query-set. As the new query-set is empty, pruning drops 19. Pruning cannot use

SteMT , because T ’s scan is ongoing; future inserts can yield matches for 15-17. To drop tuples

and modify query-sets, pruning uses semi-joins with fully-ingested joinable SteMs. RouLette

integrates semi-joins into the selection phase as filters.

Pruning emulates filtering in non-left deep plans that use join results as inner relations. SteMs

store semi-join results hence probes and semi-joins with pruned SteMs return even fewer

matches. Filtering propagates across the plan, beyond direct joins, and SteMs store the results

of semi-join trees. Still, symmetric joins require extra probes to construct results. Caching

intermediate results [7] eliminates extra probes and is complementary to RouLette.

As pruning requires fully-ingested relations, to increase pruning opportunities, RouLette
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controls the order in which ingestion initiates circular scans. It chooses the order based on

three insights: i) Small relations that are on the build-side in all joins should be ingested first.

ii) Ingesting large relations should be postponed, as they are the targets of pruning. iii) M:N

semi-joins are avoided, as they are expensive. The insights apply to common schemas that

use dimension tables (e.g., star, snowflake, snowstorm).

To choose the order based on the above insights, RouLette ranks relations using a heuristic. The

heuristic, starting from rank 1, works as follows: i) it marks unranked relations that are smaller

than all other joinable unranked relations. ii) it assigns the current rank to marked relations

and increments the current rank. iii) it adjusts cardinality estimates, based on pruning, and

repeats the steps. Ranking produces a partial order of scans for each dispatched batch. Except

for having its left-most relation fixed, choosing the join order is orthogonal to the scan order.

Scalable versioning: RouLette parallelizes episode execution. Critical sections, such as inges-

tion and policy updates, are rare, and hence are lock-based. The main point of contention is

SteMs.

To reduce contention and scale up, RouLette’s SteMs use wait-free indexing and batch version-

ing. First, wait-free indices use atomics and hence reduce insert/probe contention. Second,

batch versioning reduces contention on the timestamp counter, as it requires only two atomics

per vector. For batch versioning, SteMs use both local and global versions. Inserts use the same

SteM-local timestamp for each vector’s tuples. Then, they map the SteM-local timestamp, by

default globally invalid, to a global timestamp. To check atomicity conditions, each probe

translates SteM-local to global timestamps before doing the timestamp comparison.

Adaptive projections: As adaptive processing lacks projections, probe results grow increasingly

wide hence materializing intermediate vectors becomes more expensive. To drop redundant

columns and reduce materialization, RouLette introduces adaptive projections. By identifying

columns used by downstream operators in the episode’s plans, it keeps a minimal set of vIDs

and sheds the rest.

3.5 Experimental Evaluation

We evaluate a prototype of RouLette. The experiments show

i) RouLette’s ability to reduce the response time for high concurrency,

ii) RouLette’s performance gains over online sharing and QaT databases,

iii) the benefit of learned policies over selectivity-based policies,

iv) the impact of timing dependencies on work sharing and learning,

v) the sensitivity of learning rate to workload characteristics,
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vi) the effect of executor optimizations, and

vii) RouLette’s scalability in multi-core CPUs.

Data & Workload: The experiments use data from TPC-DS [91] (scale factor 10, 8.65 GB in-

memory) and Join Order Benchmark, or JOB, [67] (1.79 GB in-memory). To evaluate RouLette

for a wide range of workloads, we generate a pool of thousands of queries on the TPC-DS

schema with different joins and predicates. To assess learned policies, we use JOB as it uses

real data that violates assumptions that oversimplify optimization. JOB comprises 113 SPJ

queries with 3-16 joins.

To generate the required workloads for TPC-DS data, we implement a query generator that

takes the conditions as parameters. The query generator uses a two-step process:

1. it chooses a subgraph of the schema as a join graph. It does not join fact tables from

different channels [82]; in the actual TPC-DS queries, such joins occur only in query 78.

2. it produces predicates to match a target selectivity. To precisely control selectivity, we

extend each TPC-DS table with a uniformly distributed column with values from 0 to

999 and produce BETWEEN predicates.

Hardware: The experiments run on a two-socket server with 12-core Intel Xeon E5-2650L

v3 CPUs running at 1.8 GHz and 256 GB of DRAM. The server uses Ubuntu 18.04 LTS and

GCC 7.4.0. RouLette affinitizes threads and memory to one NUMA node. With the exception

of Section 3.5.4, experiments use one worker. In all experiments, reported numbers are the

average of five runs.

Tuning: All experiments use the same Q-learning hyper-parameters. To tune µ and γ, we use

grid search to minimize the total response time for five batches of 64 JOB queries. We get

µ= 0.21 and ϵ= 0.014.

We assess RouLette’s ability to optimize any workload it is given. Thus, we use workload-

agnostic scheduling. By sampling queries, we produce batches that RouLette then processes.

3.5.1 Response Time Evaluation

This section shows RouLette’s performance improvement. We compare RouLette against two

QaT databases, a vectorized database (DBMS-V) and MonetDB. We also compare against

two online sharing techniques, Stitch& Share and Match& Share. Stitch& Share composes

global plans by sharing common subtrees between individual plans produced by PostgreSQL.

It represents the online sharing mechanism in QPipe [44], SharedDB [35]. Match& Share

adds each query to the global plan with minimum additional cost. It represents the online

sharing mechanism in DataPath [3]. To execute global plans in a common shared engine,

we implement a prototype that uses the batched execution model [35] and adopts all useful
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optimizations and operators from RouLette. Furthermore, we compare against Greedy, which

uses RouLette’s executor with the selectivity-based policy of CACQ [69] and CJOIN [12]. Finally,

we compare against SWO-based offline sharing [36]. As offline sharing cannot scale to batches

with numerous distinct queries, we only use it with a small batch.

To assess RouLette, the performance comparison unfolds in three steps: i) micro-benchmarks

which demonstrate that RouLette overcomes the coverage and accuracy limitations, ii) a

sensitivity analysis spanning large diverse multi-query workloads, iii) JOB workloads.

Work-sharing databases execute each workload’s queries as one batch, whereas QaT databases,

with the exception of the experiment in Figure 3.19, execute queries one after the other. The

compared metric is batch response time, i.e., the total processing time for each batch.

Micro-benchmarks: The experiments examine RouLette’s ability to overcome online sharing’s

coverage and accuracy limitations. We use TPC-DS data and generate tables for M:N joins

by repeating the d ate_di m relation multiple times. Each micro-benchmark uses a different

setup.

Coverage: The first micro-benchmark evaluates RouLette’s ability to detect and exploit sharing

opportunities by reordering operators. We generate 8 queries stor e_sal es ▷◁ d ate_di m ▷◁

i temi , where i temi is a different instance of the item table. Hence, stor e_sal es ▷◁ i temi

cannot be shared across queries. Each query has a predicate with 60% selectivity on i temi

hence Stitch&Share (and similarly Match&Share) fail to detect any sharing opportunities.

However, when processing more than one query in the same batch, sharing stor e_sal es ▷◁

d ate_di m improves performance. In this experiment, we simulate Stitch&Share by forcing

RouLette to process stor e_sal es ▷◁ i temi operators first.

Figure 3.7a shows that RouLette outperforms Stitch&Share, as it detects and exploits the

sharing opportunity. The experiment varies the batch size from 1 to 8. As the number of

queries is increased, RouLette’s speedup is also increased, reaching 2.23 for 8 queries.

Accuracy (vs Greedy): The second micro-benchmark demonstrates RouLette’s ability to learn

the operator orders that minimize downstream processing. We generate 3 relations by repeat-

ing d ate_di m, d1, d2 and d3. d1 repeats d ate_di m 3 times, whereas d2 and d3 repeat it 8

times. We use 1 query in this experiment, as the results also hold for QaT execution. d2 and d3

have a predicate on their join keys with 50% selectivity. Through the overlap of the filter ranges,

we control their join-crossing correlation. 0% overlap means that stor e_sal es ▷◁ d2 ▷◁ d3 has

no output tuples, whereas 100% increases cardinality by 4x.

Figure 3.7b shows that RouLette identifies the optimal plan for each correlation setting,

whereas Greedy fails to do so. For up to 40% overlap, processing stor e_sal es ▷◁ d2 ▷◁ d3 first

improves performance. However, Greedy chooses stor e_sal es ▷◁ d1 because its selectivity is

lower. As a result, achieves up to 3.3 speedup and similar performance when the correlation is

high; we observe a minor performance penalty due to exploration.
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Figure 3.7: Micro-benchmarks: a) coverage limitation, b) accuracy limitation, c) adaptivity
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Adaptivity: The third micro-benchmark shows the benefit of adaptive processing. We generate

2 batches of 8 stor e_sal es ▷◁ d1 ▷◁ d2 queries. Each query has a predicate with 5% selectivity

on d2. In the first batch, the predicates are independent, whereas, in the second batch, the

predicate is the same across all queries. Thus, for the first batch, the optimal global plan

processes stor e_sal es ▷◁ d1 first, whereas, for the second batch, the opposite is true. We

compare 2 cases: i) running the second batch as it, and ii) running the second batch using the

learned policy from the first batch (without runtime updates).

Figure 3.7c shows that using the policy for a similar batch with different correlations signifi-

cantly degrades performance. Response time is increased by 1.68x. This result motivates the

adaptive paradigm that learns the policy for each query batch at runtime during the batch’s

execution.

Sensitivity Analysis: The experiment examines RouLette’s batch execution performance under

varying workload conditions. The varying conditions are the batch size, the selectivity (i.e., the

percentage of fact table tuples that occur in each query’s result set) and the number of joins of

individual queries and the schema type.

Figures 3.8a-d show the response time for the workloads in the sensitivity analysis. In each

Figure, three parameters are constant, and the fourth varies. The default values are 10%

selectivity, 4 joins, Store snowflake subschema (which is similar to Star Schema and TPC-H),

and 512 queries. Each query has a predicate on 3 relations, chosen randomly. The predicates

have unequal selectivity. The query generator produces 4096 queries per configuration and

forms batches by sampling the queries without replacement.

Varying concurrency: Figure 3.8a shows that RouLette’s speedup scales with increasing batch

sizes. The available memory restricts the maximum batch size for each system. Shared ap-

proaches improve their speedup as a function of the batch size because sharing opportunities

are increased. RouLette’s response time grows more slowly as it discovers more opportunities

and, despite adaptation overhead, becomes faster than Stitch& Share and Match& Share after

16 and 32-query batches, respectively. RouLette’s maximum speedup is 10.70 over DBMS-V, the

faster of the two databases, whereas online sharing’s maximum speedup is 3.65. Thereupon,

RouLette’s speedup hits a plateau when query-set operations dominate execution time. As

the cost of query-set operations grows linearly to batch size, the plateau is a bottleneck of

the Data-Query model. Exceeding the plateau for larger batches requires optimizations that

reduce the cost of query-set operations.

Varying selectivity: Figure 3.8b shows that RouLette achieves lower response time for all

selectivities. As expected, response time is increased as a function of selectivity. In this

experiment, RouLette exploits more opportunities compared to online sharing approaches;

Stitch& Share misses opportunities as predicates produce different plans for the same join

set, whereas for low selectivity Match& Share fails to exploit subexpressions in the existing

global plan when planning each query. For queries without filters (100% selectivity), their

opportunity detection limitation is lifted. By contrast, RouLette chooses the global plan for
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Figure 3.9: Comparison with offline sharing for small batch

all queries at once and thus increases benefits from work sharing. Out of the QaT databases,

MonetDB performs better for low selectivity but suffers from intermediate materializations

for higher selectivity, unlike DBMS-V.

Varying number of joins: Figure 3.8c shows that work sharing is sensitive to the diversity of

joins. The number of distinct joins is maximum for 4-5 joins, whereas including few or almost

all joins increases homogeneity (e.g., all 8-join queries have the same join set). Each system’s

response time depends on whether work sharing can offset increasing join processing costs.

RouLette’s response time reflects the effect of homogeneity, increasing until 4-5 joins and then

decreasing. It outperforms online sharing when heterogeneity is high because it reorders joins

to discover opportunities between diverse joins and also benefits as homogeneity is again

increased. However, increasing homogeneity benefits Match & Share as well, as it can also

reorder joins to a smaller extent. Match & Share retakes the lead for 8-join queries, as it avoids

adaptation overhead.

Varying the schema: Figure 3.8d shows that RouLette works best for homogeneous workloads

but is still effective for diverse queries. The five workloads comprise queries whose set of joins

are:

i) stor e_sal es ▷◁ d ate_di m ▷◁ hdemo ▷◁ i tem ▷◁ customer (template)

ii) a subgraph of Store snowflake subschema (snowflake-store)

iii) a subgraph of any channel’s snowflake subschema (snowflake-all)

iv) a subgraph of Store snowstorm subschema (snowstorm-store)

v) a subgraph of any channel’s snowstorm subschema (snowstorm-all)
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RouLette’s speedup decreases with higher diversity of joins, as queries have little work in

common. For snowstorm-all, the most diverse case, RouLette overtakes DBMS-V after 32-

query batches. Eventually, batch size compensates for diversity. RouLette decreases response

time by 3.39x for snowstorm-store and by 1.96x for snowstorm-all, and it outperforms online

sharing, despite materializing fact tables.

Small Offline-optimized Batches: Figure 3.9 shows that RouLette chooses near-optimal plans,

unlike online sharing, which chooses suboptimal plans. SWO optimizes a batch of 11 queries

(4 joins, snowflake-store, 50% selectivity), taking 137 seconds. The chosen batch is the largest

SWO could optimize with a one-hour timeout (with the given characteristics). RouLette’s

response time is only 4% higher than SWO’s. By contrast, Match&Share’s response time is 7%

higher, and Stitch&Share’s is 20% higher. Small benefits are expected due to the small batch

size. As the batch size is increased, the gap with online sharing widens.

Large Queries with Correlated Data: Figure 3.10 shows that RouLette improves performance,

even for queries with many joins and data correlations that are challenging for optimizers.

The workload comprises 64-query batches produced by sampling JOB. RouLette outperforms

both QaT databases and online sharing. Speedup echoes the results of snowstorm-all. The

experiment excludes Match& Share, as its custom optimizer supports only uniform data, for

which it can estimate the intermediate result overlap between different queries.

Takeaway: RouLette outperforms QaT databases in all cases and online sharing when the

optimal plan is non-trivial. In workloads with diverse join sets and schemas, it exposes more

opportunities that online sharing misses. Still, as expected, diversity reduces opportunities

for all sharing techniques. Finally, RouLette improves scalability, as it increases speedup with

increasing query counts until Data-Query model dominates execution.
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Figure 3.11: Evaluation of learned policy for batches of JOB queries

3.5.2 Quality of Learned Planning

The experiment evaluates the ability of policies to exploit opportunities in both static work-

loads, processed in batches, and dynamic workloads, with runtime query admissions. It

focuses on stand-alone policies. To evaluate policies, it measures the number of intermediate

tuples in joins, which is an implementation-independent metric for cost. To compute the

metric, we add up the log’s output vector sizes. As joins dominate execution time, we exclude

selections.

Static Opportunities: The experiment compares the behavior of different policies. RouLette

processes workloads in batches. It schedules all queries at once hence fully sharing all scans

and common intermediate tuples. We generate 5 batches for each size among 1, 2, 4, 8, 16, 32,

64, and 113 by sampling JOB queries without replacement.

Figure 3.11 shows the cost for varying batch sizes. Each batch corresponds to a sequence

number based on the size. Size 1 maps to the range [1,5], size 2 to [6,10], . . . , size 113 to [36,40].

Batches 36-40 are identical to each other. The figure includes 4 different configurations.

RouLette is the learned policy. Greedy is the selectivity-based policy from CACQ and CJOIN.

By choosing plans independently for each query using the learned policy and then sharing

common subexpressions, Stitch&Share - Sim simulates Stitch&Share. Finally, RouLette QaT is

the cumulative cost of executing queries one after the other. RouLette reduces the cost in all

cases compared to RouLette QaT.

Learning vs Selectivity: The results show that learned policies choose superior plans. The

Greedy policy incurs comparable cost to the learned policy for small batches but suffers from

high-cost outliers. Outliers include ≈ 7% of single JOB queries. As the batch size is increased,

optimization hazards are increasingly likely to occur hence penalizing most batches. For

64-query batches, the learned policy produces 3.24x fewer intermediate tuples on average.

Learning scope: Results also show that a global learned policy (RouLette) outperforms a query-
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Figure 3.13: Synthetic schema for 4 chains and 9 relations in total

local policy (Stitch&Share – Sim), as it considers work sharing during planning and is preferable

to individual decisions. While the cost is similar up to 8-query batches, RouLette produces

1.71x fewer tuples for 113 queries.

Dynamic Opportunities: Figure 3.12 shows the interplay between work sharing and learning.

RouLette admits instances of JOB query 17a one at a time or in batches. We measure the

percentage of overlapping input between back-to-back admissions: 0% is query-at-a-time

execution, whereas 100% is single batch execution. The intermediate tuples are decreased as a

function of the overlap. For small overlaps, the cost is increased because work sharing does not

compensate for restarting learning. An overlap of 10% increases cost by 8% for single-query

admissions. Batching reduces the cost of processing, as it reduces interference and guarantees

opportunities. Admitting four-query batches for every 40% of the input produces 1.4x fewer

tuples compared to admitting single queries for every 10%.

Learning Rate: The next experiment evaluates the ability of the policy to learn plans for

workloads with varying complexity. To vary complexity, we modify TPC-DS data. Queries

join stor e_sal es with chains of synthetic relations. At each step, the policy considers one

candidate per chain. We generate synthetic relations by sampling d ate_di m with replacement

59



Chapter 3. Scalable and Efficient Sharing-aware Optimization

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Measured Cost
Estimated Cost

C=8, R=9

C=16, R=17

C=8, R=33

C=8, R=17

C=4, R=9

C=4, R=17

C=4, R=33 C=16, R=33

Episode Sequence Number Episode Sequence Number

Episode Sequence Number Episode Sequence Number Episode Sequence Number

Episode Sequence Number Episode Sequence NumberEpisode Sequence Number

Ep
iso

de
 C

os
t

Ep
iso

de
 C

os
t

Ep
iso

de
 C

os
t

Ep
iso

de
 C

os
t

Ep
iso

de
 C

os
t

Ep
iso

de
 C

os
t

5000   10000   15000 20000  25000   30000

5000   10000   15000 20000  25000   30000

5000   10000   15000 20000  25000   300005000   10000   15000 20000  25000   30000

5000   10000   15000 20000  25000   30000

5000   10000   15000 20000  25000   30000

5000   10000   15000 20000  25000   30000

5000   10000   15000 20000  25000   30000

3
2
1
0

0

0

4

2

00

4
2
0
0

2
1
0

0

1
0.5
0

3
1.5
0 0

0

0.8
0.4
0

Ep
iso

de
 C

os
t

0.8
0.4
0 0Ep

iso
de

 C
os

t

C=#Chains
R=#Relations
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Figure 3.15: Comparison of learned and selectivity-based policies for synthetic schema

at varying rates. To ensure a large difference between each query’s best and worst plan, rates

are 0.4-0.6 for half of the chains and 1.7-2.5 for the other half. Each query spans half of the join

graph and includes an equal number of high and low-selectivity joins. We generate workloads

with a varying number of chains and relations. Figure 3.13 shows the schema for workload

"Chains=4,Relations=9".

Figures 3.14a-3.14h show the policy’s convergence across the episode sequence for 64-query

batches from various workloads. Plots include each workload’s parameters. For each episode,

it plots a rolling average for the measured cost and the policy’s estimate of the minimum cost

over the last 100 episodes. As execution progresses and future costs are propagated, the policy’s

estimate is increased, and the measured cost is decreased; when they converge, the policy is

optimal. The experiment shows that convergence is slower when the state space is broader

(more candidates) and deeper (join size). Figures 3.14a-3.14c show that, when candidates are

few, the policy converges fast even for large joins. By contrast, Figures 3.14d-3.14h show that,

when candidates are many, the policy converges only for small joins.
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Figure 3.16: Impact of optimizations and profiling for batch of JOB queries
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Figure 3.17: Impact of optimizations and profiling for batch of sensitivity analysis queries

Figure 3.15 plots for the same experiment the intermediate join tuple ratio for RouLette over

the Greedy policy. As joins have no data correlations, Greedy is near-optimal. The comparison

shows that when convergence is slow, learned policies suffer from exploratory decisions. To

mitigate the effects of slow convergence and to choose plans for large schemas, heuristics

need to be used instead.

Takeaway: Sharing-aware learned policies substantially improve adaptive processing. They

produce fewer tuples compared to selectivity-based policies and to sharing-oblivious learned

policies. Learned policies permit query admissions at runtime but suffer from interference

when the overlap is low. Batching admissions reduces interference and increases work sharing.

Finally, learned policies typically converge within a few thousand episodes, but suffer from

slow convergence for workloads with large queries on large schemas.
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Figure 3.19: Comparison with concurrent query execution

3.5.3 Effect of Optimizations

Figures 3.16 and 3.17 show the benefit from individual optimizations, applied incrementally,

and the breakdown of the execution time after applying the optimizations. The experiment

analyzes two batches, a 64-query batch of JOB queries and a 512-query batch of generated

queries (default parameters). Joins dominate execution for both batches. For the JOB batch,

pruning is the most important optimization, giving 2.05 speedup. For the synthetic batch,

RouLette’s novel router and grouped filter algorithms are the most important optimizations:

together they result in 1.85 speedup. Note that the queries only use one filter attribute:

increasing the number of attributes also increase the cost of filtering.

3.5.4 Multi-core Execution

In this section, we evaluate RouLete’s performance when using multi-core CPUs. RouLette

scales up in one NUMA socket.

Figure 3.18 shows RouLette’s speedup as the number of workers is increased from 1 to 12. The

experiment uses the five batches of 64 JOB queries from Figure 3.10. Speedup is increased

monotonically for all batches and reaches 8.63-9.04 (71.9-75.3% efficiency).
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Figure 3.19 compares RouLette’s throughput to DBMS-V’s for concurrent execution. We

measure throughput as the number of processed queries over the end-to-end time. The

experiment processes 10240 queries in total from Figure 3.8a’s workload. We vary the degree

of concurrency from 1 to 1024. To do this, we submit queries to DBMS-V from 1 to 1024

clients concurrently and emulate concurrent execution in RouLette by submitting a sequence

of batches that contain one query per client. The experiment’s results show that DBMS-V’s

throughput suffers due to inter-query interference, whereas RouLette’s benefits. When using

one client, DBMS-V uses data parallelism. For more clients, it shares resources across queries.

Clients run isolated in the remote NUMA node. Concurrent execution initially improves

DBMS-V’s throughput up to 2.06x. However, after 64 clients, DBMS-V’s throughput is gradually

decreased due to interference. DBMS-V runs out of memory after 1024 queries. By contrast,

RouLette uses all cores for processing query batches. It shares work across all concurrent

queries hence RouLette’s speedup over DBMS-V is increased as a function of concurrency.

3.6 Summary

We have presented RouLette, an adaptive multi-query multi-way join operator that tackles

the limitations of online and offline sharing. Rather than follow an optimize-then-execute

approach, RouLette uses runtime adaptation to move sharing-aware optimization out of

the critical path, restoring scalability. It progressively explores sharing opportunities using a

heuristic based on reinforcement learning. RouLette also proposes optimizations that reduce

the adaptation overhead. The experiments show that RouLette scales to hundreds of complex

queries, unlike offline sharing, and improves throughput compared to query-at-a-time and

online sharing systems. Hence, it makes inroads on the long-standing problem of building

scalable high-throughput analytical systems.
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4 Efficient Shared Data-Access

When supporting interactive applications, analytical databases need to sustain highly con-

current workloads with stringent response time constraints. Then, the performance for

concurrent data accesses is critical for providing real-time responses, especially for selective

workloads. Consider the example of dashboards and reporting in Meta [107] and Youtube

[14]. Both data services require processing hundreds of queries concurrently, with each query

processing a small fraction of a large volume of data, and need to keep latency in the order of

tens of milliseconds. In such applications, inefficient time-consuming data access jeopardizes

latency requirements.

Data access techniques perform differently based on both selectivity and concurrency. When

access patterns are selective, indices help avoid costly full scans and filtering. However, the

processing time is then increased proportionally to the number of concurrent queries [59].

By contrast, a shared scan followed by filters incurs high processing time, as it is index- and

workload-oblivious, but scales better. Scalability comes from amortizing access costs and, in

addition, from permitting work-sharing for downstream operators, including filters, among a

batch of queries. Kester et al. [59] show that there is no clear winner between shared scans and

indices: databases should make a decision on the dilemma "to scan or to probe an index?"

based on both the selectivity and the concurrency of the workload. Nevertheless, both options

for access path selection fail to access the required data within a tight time window.

To showcase the shortcomings of existing data-access techniques, consider a workload of

"Select-Aggregate" queries of varying concurrency and low joint selectivity that are submitted

as batches. Figure 4.1 conceptually depicts the response time for the full batch for different

access methods. On the one hand, if we use an index and follow a query-at-a-time processing

paradigm, then response time is below the interactivity threshold only when the batch is

small (Figure 4.1, area A) and is increased as a function of concurrency. On the other hand,

shared scans pay the cost of at least one full scan. This is the lower bound for latency, and it

may be high enough to violate our latency constraints (Figure 4.1, area B). Moreover, scans

require processing filters over the scanned data; doing so also incurs a high cost, even when

using efficient techniques for evaluating the predicates, such as predicate indexing [122]. Still,
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Figure 4.1: Impact of concurrency on batch response time for batches of select-aggregate
queries. The results in Figure 4.8 corroborate the conceptual graph

sharing amortizes the high processing cost across multiple queries and becomes the better

option for a high degree of concurrency. By applying access path selection [59], we select the

best between indices and shared scans, but none of them provides interactivity under a highly

concurrent load (Figure 4.1, area C). Therefore, in highly concurrent workloads, the question

is not whether to scan or to probe. Interactivity requires combining efficiency in terms of i)

the volume of the accessed data, ii) the cost of filtering accessed data, and iii) scalability to the

number of queries.

We propose SH2O, a shared data-access operator that, by exploiting data organization and

the workload’s access patterns, achieves both efficiency and scalability in a work-sharing

environment (Figure 4.1, area D). SH2O is inspired by the following observation: for every

batch of queries, there exists a partition of data into multidimensional regions where filtering

decisions are the same for all contained tuples.

Example. Consider a dataset of (X ,Y ) tuples in [0,100]2 and the following batch of queries:

Q1: SELECT COUNT(*) FROM T WHERE X < 50
Q2: SELECT COUNT(*) FROM T WHERE Y < 50

Therefore:

• All tuples of [0,50)× [0,50) are processed by both Q1, Q2.

• All tuples of [0,50)× [50,100] are processed only by Q1.

• All tuples of [50,100]× [0,50) are processed only by Q2.

• Region [50,100]× [50,100] is not processed by any query.

where A×B denotes the cross product of sets A and B .
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Shared access to the required regions mitigates concurrency, reduces accessed data, and

renders filtering redundant. Still, to put this idea to use, there are two challenges to overcome:

i) accessing the required regions and ii) handling dimensionality. On the one hand, while data

skipping [114, 115, 130], a technique for accessing partitioned data, superficially resembles

access to the required regions, it is inefficient for the problem at hand. By using lightweight

metadata, data skipping scans only the partitions that contain required data. However, data

skipping operates over predetermined partitions that have been chosen based on historical

workload, whereas the regions are different for each batch. When processing tens to hundreds

of queries as a batch, it is likely that at least some queries have shifted filters that are misaligned

with the boundaries of any existing partitions; then, for each intersecting partition, data

skipping scans and filters the entire partition, even if only a single tuple is required. The high

cost of filters in in-memory work-sharing databases further aggravates the problem. On the

other hand, as the number of filtering predicates in the workload is increased, accessing the

regions suffers from the curse of dimensionality. An increase in the number of attributes has a

multiplicative effect on the number of regions. In turn, regions become too sparse, and the

number of contained tuples is insufficient to amortize the cost of accessing each region.

SH2O addresses the two challenges by adapting data access to the data organization and the

workload across three axes: i) on-demand access by region, ii) attribute selection, and iii)

subspace specialization. First, for the filters on a subset of the filtering attributes, it defines the

multidimensional regions where the filters make the same decisions for all tuples and then

accesses the regions using spatial indices. Spatial indices can efficiently and selectively retrieve

regions regardless of their boundaries. Thus, SH2O performs outperforms data skipping for a

wider range of applications that have volatile predicates. Second, SH2O selects the optimal

subset of the filtering attributes for accessing multidimensional regions. The intuition is that

there is a cross point where adding one more attribute introduces more overhead than the

shared filter that it strives to avoid. To estimate this optimal subset, we propose an analytical

cost model and an efficient enumeration algorithm that chooses the subset when planning

SH2O. Third, SH2O independently adapts to each data partition that corresponds to a different

subspace of the data: they can have different spatial indices and are accessed by different

queries, and hence using different predicates. To exploit SH2O’s per-partition adaptability, we

introduce a partitioning scheme that exploits correlations between predicates to reduce the

relevant predicates in each partition and hence i) to eliminate unnecessary fragmentation of

the space and ii) to choose a partition-specific index.

SH2O drastically accelerates workloads that are data-access-heavy, have correlated selective

accesses, or incur significant filtering costs. After all, its benefit is proportional to the access

and filtering costs it eliminates. However, as the experiments show, SH2O is adaptive and

improves performance in the whole spectrum defined by complexity, selectivity, dimension-

ality, and concurrency. While SH2O is most effective for data-access-heavy workloads, for

which it achieves up to an order of magnitude speedup compared to shared scans in our

experiments, it is beneficial even for join-heavy benchmarks such as SSBM and TPC-H; it

reduces end-to-end processing time by 37.5% and 15.3%, respectively.
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The contributions of this work are:

• Work-sharing databases use shared scans that are followed by shared filters. This access

method suffers from redundant data access and high filtering costs. We propose that

shared access to a set of multidimensional regions can replace shared scans and a set

of shared filters. We build SH2O, a novel operator that exploits this insight to provide

efficient data access.

• Scan-oriented analytical databases use data skipping to access data efficiently. However,

using data skipping to access multidimensional regions is inefficient because it results

in overfetching and, thus, causes excessive access and filtering costs. Instead, we show

that spatial indices can be used in a novel way to provide shared access to the regions

on-demand. Using spatial indices thus minimizes data access and filtering, and is more

robust when workload shifts occur.

• Choosing which shared filters to replace introduces a trade-off between cost savings and

access overhead. We propose an efficient optimization strategy that uses a dedicated

data and workload-aware cost model to hit a sweet spot between savings and overhead

by strategically selecting filters to replace.

• Having multiple predicates per query increases fragmentation to regions if handled

naively. However, we observe that predicate correlation can, in fact, isolate predicates

in specific subspaces of data. We propose that each subspace needs to be indexed

and accessed based on the local access patterns. Hence, we introduce a partitioning

scheme that takes advantage of predicate correlations to reduce fragmentation and,

thus, minimize the cost of shared access.

4.1 The Data-access Bottleneck

Problem: While using global plans is effective at mitigating the impact of concurrency, it also

hinders interactivity. With rigid steps such as the shared scans and the shared filters, processing

a global plan requires significant processing time that exceeds the stringent time constraints

of interactive queries.

More specifically, shared scans access the full table, which can be too large to read within

milliseconds. Also, as query-set operations are relatively expensive on their own, processing a

long sequence of shared filters during the filtering phase can be very time-consuming and the

corresponding cost increases with the batch size. Our experiments in Section 4.7.2 corroborate

both arguments.

Opportunity: For a range of applications, much of the processing time spent in rigid steps is

unnecessary: First, queries are often interested only in a few hot data, and thus, the majority

of data accesses are redundant. Second, even when tuples are filtered on multiple attributes,

similar tuples repeat the exact same PI searches and query-set updates; hence, computing the

same query-set multiple times is also redundant.
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We propose SH2O, a shared data-access operator that can be used as a stand-in for a shared

scan in a global plan to address the data-access bottleneck. To do so, it exploits both selective

and correlated access patterns and amortizes the cost of the filtering phase across groups of

similar tuples. While, naturally, SH2O has maximum benefit for workloads where data access

makes up most of the processing time and can be fully eliminated by SH2O, it also improves

performance for workloads with high selectivity, a high number of filtering attributes, and

even complex join-heavy workloads such as SSBM and TPC-H.

Applicability: To accelerate a workload, SH2O requires two assumptions: there should be i)

common table accesses and ii) filter column stability, i.e., filtering attributes should recur. Both

requirements are frequently met in production workloads. For example, Tableau’s dashboards

generate batches of queries to populate tens to hundreds of items [120]; hence, Tableau

optimizes for multiple queries on the same relation and exploits features in backends such

as shared scans. Similarly, Amadeus processes large numbers of decision-support queries

over the same denormalized table [122]. Moreover, prior analysis from Sun et al. [114] on

real-world data shows that filters are largely stable; only 10% of the unique filters is used in

90% of the queries. Thus, we expect SH2O to be widely applicable. In the worst case, when the

above two assumptions are violated, SH2O incurs the same costs as indices or shared scans.

As SH2O relies on emerging access patterns in the workload, we assume batched execution:

the work-sharing database enqueues a batch of queries before executing them with a single

global plan. However, we can also generalize SH2O for immediate admission i) by making

circular scans at a coarser-than-tuple granularity (e.g., partitions) and ii) by applying SH2O to

the coarser-than-tuple granularity.

4.2 Multidimensional Shared Access

Existing work-sharing databases process multiple shared filters over the entire data in a scan-

oriented way and thus miss opportunities that the data organization provides. As they access

and process every single tuple, they prevent interactive responses under high degrees of

concurrency. To improve interactivity, we propose multidimensional shared access (MSA),

a novel workload-driven data-access technique that SH2O uses to replace a shared scan

followed by a set of shared filters.

We assume a work-sharing database that works under the Data-Query model and processes

submitted queries one batch at a time. Thus, henceforth, with the term response time, we

refer to the end-to-end execution time of a query batch. Following common practice [35,

69, 111, 122], to facilitate filtering, for each filtered column, the system produces a set of

predicate indices. Moreover, to enforce dependencies imposed by the query plan, the system

also decides on a partial order for table accesses, i.e., which tables need to be processed before

others and which can be processed in parallel.
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Q1: SELECT sum(Y) FROM table WHERE X >= 20 and X < 40
Q2: SELECT sum(Y) FROM table WHERE X >= 30 and X < 50
Q3: SELECT sum(Y) FROM table WHERE X >= 10 and X < 60
Q4: SELECT sum(Y) FROM table (WHERE TRUE)

Domain of X

10 20 30 40 50 60Xmin Xmax

Predicate Index

[Xmin,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,Xmax+1)
1000 1100 1101 1111 1110 1100 1000

sorted

Figure 4.2: From queries to predicate index ranges

MSA identifies a set of multidimensional regions, which logically partition the data, where all

queries of the batch always make the same filtering decisions for the replaced filters. Then,

it uses these regions to access data. In these regions, the replaced filters produce the same

query-set for all tuples. Thus, by accessing each region’s data once and augmenting it with the

region’s query-set, MSA amortizes expensive query-set operations and filtering costs across

the entire region. Finally, the remaining filters that are not replaced by MSA process the data

from the accessed regions.

MSA accesses the tuples in each region using a preexisting spatial index without overfetching;

this is unlike partition-based data skipping, which suffers from overfetching when the regions

are not perfectly aligned with physical partitions. The spatial index itself has already been

built during an offline tuning phase and is reused across batches.

Realizing SH2O involves multiple components: i) choosing the filters to replace, ii) identifying

the multidimensional regions, iii) performing the index access, and iv) choosing the index

to build. In this section, we present MSA and place it in the context of the complete SH2O.

Here, we assume that the index and MSA cover all tuples in the table. We generalize SH2O for

independently-indexed partitions in Section 4.4. Furthermore, we address attribute selection,

i.e., the decision on which filters to replace in Section 4.3. Finally, we discuss choosing

partitions and indices in Section 4.5.

4.2.1 Computing Single Query-set Regions

Identifying MSA’s regions requires understanding under which conditions the filtering de-

cisions for a set of tuples remain invariant. In this section, we provide an analysis of these

conditions.

A PI on a specific attribute exhibits locality. It defines a function that maps each value in the

attribute’s domain to a set of queries for which the indexed predicates are satisfied. Figure 4.2

show an example of the PI of four queries. Adjacent values are then likely to map to the same
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query-set, e.g., X = 25 and X = 26 both produce the same query-set {Q1,Q3,Q4}. Thus, we can

represent each PI as a set of (r,Q) pairs, where r = [•,•) is a range in the corresponding attribute

and Q is a query-set that indicates which queries are satisfied in the specific range. The ranges

define a partitioning on the attribute’s domain. When building the PI, we compute the ranges

and their corresponding query-sets by partitioning the domain across the boundaries of

predicates values and statically computing the predicates in each partition. In the given

example, analyzing the predicates gives 7 range-query-set pairs.

To generalize locality to multiple attributes, we compose the ranges of one-dimensional PIs.

Let d be the number of attributes used for the filters that MSA replaces and PI1,PI2, . . . ,PId the

corresponding predicate indices. Each predicate index PIi corresponds to its representation

as a set of (r,Q) pairs. The computation of single query-set regions is given by the following

theorem:

Theorem 2. Let us assume d predicate indices PI1,PI2, . . . ,PId , and a random tuple (ri ,Qi )

from each index PIi . Then, all data in r1 × r2 ×·· ·× rd will share the same query-set Q∗.

Proof. By the definition of predicate indices, all tuples in ri share the same Qi . Thus, all tuples

in r1 ×·· ·× rd will have Q∗=Q1 ∩·· ·∩Qd .

This theorem motivates a hyperrectangle-oriented access strategy for two reasons: First, as all

tuples in the same hyperrectangle share the same query-set, we can perform the expensive

query-set operations only once per region and then just use the result to annotate each

tuple. Second, if Q∗=; for a hyperrectangle, we can skip its tuples altogether. Thus, using

hyperrectangles, we can significantly reduce the amount of data processed and the amortized

cost per tuple.

MSA enumerates the hyperrectangles by computing the set of r1 ×·· ·× rd . To avoid materializ-

ing the cross-product of PIs, we produce each hyperrectangle using an iterator that computes

the next (r1 ×·· ·× rd ,Q∗) pair on-the-fly.

4.2.2 Index-based Access to Regions

Each time the iterator produces a hyperrectangle with a non-empty query-set Q∗, we fetch

the corresponding tuples by issuing a range query to a preexisting spatial index that covers

MSA’s attributes. The query collects the tuples of interest and annotates them with the already

computed Q∗, so they can be processed using the Data-Query model by subsequent shared

operators (e.g., joins).

Our method is modular and does not stand for a specific spatial index. It is compatible with

any technique that enables efficient multidimensional range queries, such as Ub-tree[80], k-d

tree[9], R-tree[42], Hilbert- and Z-curve [65]. The performance characteristics of the employed

technique are expected to affect the absolute cost of index access but not the overall trends.
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Figure 4.3: Trie-based grid index

In our implementation, we use a grid index, as the one illustrated in Figure 4.3. We sort the

tuples based on the d-dimensional projection and organize the grid in a trie. Each level of

the trie corresponds to an attribute and each node corresponds to a distinct value in the

domain of its level’s attribute. Each level’s nodes are stored in the same array, and nodes with

the same parent are in contiguous positions and sorted among themselves; thus, a binary

search finds children nodes that fall within the range query. At the leaves of the trie, we

store contiguous sequences of tuples with the same projection. The only tuning knob for our

trie implementation is the permutation of indexed attributes, which is chosen offline when

building the index.

In each range query, we traverse the trie such that the prefix satisfies the range query’s predi-

cates. When the traversal reaches the leaves, it retrieves the corresponding ranges and reads

the individual tuples. Henceforth, when we mention an index probe during MSA, we refer to a

range query over the used spatial index.

Optimizing for data correlations. In some cases, such as when data is correlated, range

queries contain no results. For example, if columns A and B are correlated through the

constraint A − 10 ≤ B ≤ A + 10, then ranges (A,B ,C ) ∈ [50,70)× [0,20)× rC are empty. To

avoid redundant index probes, we eliminate empty hyperrectangles as follows: suppose that

r1, . . . ,rk is the shortest prefix of ranges that is not satisfied by any node in the k-th level.

Because all suffixes rk+1, . . . ,rd lead to empty hyperrectangles, the traversal abandons the

current range query and searches in PIk for the first non-empty range r∗
k after rk . The r∗

k

range has the property that r1, . . . ,r∗
k is satisfied by at least one node in the k-th level. If such a

range exists, the iterator of hyperrectangles jumps to the first region with the non-empty prefix.
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Q1: x > 20 AND y > 50 AND y < 80 AND z > 10
Q2: x < 20 AND w > 33
Q3: x > 80 AND y < 50 AND w < 5
Q4: x > 20 AND y > 50 AND y < 80 AND z < 50 AND w > 80
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Figure 4.4: Overview of SH2O

Otherwise, the iterator jumps to the first hyperrectangle with prefix: r1,r2, . . . ,r∗
k−1, where r∗

k−1

is the next range after rk−1. This way, large numbers of empty hyperrectangles are pruned

early, significantly reducing the index probing cost.

4.2.3 Hybrid Execution

The drawback of MSA is that it suffers from the curse of dimensionality because the number

of attributes has a multiplicative effect on the number of hyperrectangles. For this purpose,

SH2O uses a hybrid approach: it uses MSA to replace only on a subset of the shared filters

that exist in the workload and then uses the remaining shared filters to post-filter the tuples

that the spatial index retrieves. Post-filtering is necessary because the query-sets after probing

the index correspond only to the filters that MSA replaced. The choice of the subset is based

either on the attributes that the available index covers or, as we will see in Section 4.3, on the

attribute selection process that maximizes the benefit from eliminating filters.

Post-filtering applies filters one after the other in a vectorized manner. The order in which

filters are applied is determined by the query optimizer. For each filter, we probe the filter’s

predicate index and update the query-sets of retrieved tuples accordingly. We drop the tuples

with empty query-sets and forward the remaining tuples to the next filter in the pipeline.

This way, SH2O benefits from eliminating filters while keeping MSA overhead in check. Figure

4.4 shows an example. First, we apply MSA on attributes x and y . In the first step, we identify

the data regions that share the same query-set. Then, we fetch the corresponding tuples by

probing the spatial index for each region. Finally, we process the retrieved tuples using shared

filters on the remaining attributes z, w .
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4.2.4 Consolidation

Processing the results of each hyperrectangle separately can reduce the benefit of vectoriza-

tion. If a d-dimensional region contains very few tuples, interpretation overheads become

comparable to the ones in tuple-at-a-time execution. Moreover, the higher the dimensionality,

the sparser the data, and the more severe this effect becomes. Naturally, post-filtering further

aggravates the situation.

To prevent increasing the interpretation overheads, we place a lightweight consolidation

operator between post-filtering and other subsequent operators such as joins and aggregates.

Consolidation packs smaller intermediate vectors into larger vectors whose size exceeds

a threshold. Consequently, execution amortizes per-vector overheads across many more

rows and significantly improves performance. We also activate consolidation for non-index

workloads to equalize non-filtering costs across index-based and scan-based experimental

runs.

4.2.5 Supported Predicates and Extensions

MSA models predicate indices as sets of (r,Q) pairs. This representation supports predicates

on a single attribute with a totally-ordered domain (i.e., by having a different range for each

value in the worst-case). In practice, it is compact and efficient to use for: i) range predicates,

ii) equality predicates, iii) disjunction on the same attribute/IN operator, and iv) conjunction.

Although the current work focuses on reducing data-access cost, with sufficient optimizer

support, SH2O can also accelerate joins. Invisible joins [1] and data-induced predicates [54]

propagate filters across joining tables. Furthermore, including join keys in the index probes

enables batching probes with the same key and query-set, thus amortizing the query-set

overhead in joins.

4.3 Selecting Probing Attributes

MSA substitutes part of the shared full scan/filtering with a single query-set computation

and index lookup for each hyperrectangular region. However, an increase in the number of

either the probing attributes or of the ranges in the corresponding predicate indices has a

multiplicative effect on the number of the resulting hyperrectangles. Hence, there are cases

where it is beneficial to probe only a selected subset of the spatial index’s attributes. Adding

more attributes to this subset would increase overhead more than it would save cost. This way,

we reduce: i) the number of hyperrectangles, ii) the cost of multidimensional index lookups,

and iii) the hyperrectangle overheads per tuple. Nevertheless, identifying the optimal probing

attributes is still a problem. Ideally, the chosen subset of attributes hits a sweet spot between

the cost of probing the spatial index and the cost of the post-filtering.
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The attribute selection mechanism is triggered each time a table access starts and consists

of two parts: i) an analytical cost model that estimates the cost of index probing and shared

filtering for a given set of attributes and ii) a search-space algorithm that, given the cost model,

finds the optimal subset.

4.3.1 Cost Model

The proposed cost model considers several factors, such as: what indices are available, which

columns of the workload have filtering predicates, how many query-set ranges exist in each

column’s predicate index, what is the data distribution, and how many tuples are retrieved

with each index access. Our cost model partitions filtering attributes in two sets: i) a subset to

use for MSA and ii) a subset to use for post-filtering. Each of the subsets can be empty.

Our analytical model is easy to understand and tune using regression. It consists of two

components: the spatial index access cost (IC ) and the shared filter cost (FC ). While we

have motivated the general case, where a set of filtering attributes is used for probing and the

remaining for post-filtering, our model also inherently covers the trivial cases: i) use MSA for

all available attributes, or ii) avoid using MSA and do a full-scan instead.

Index Cost

The Index Cost (IC I) represents the cost of MSA when the index I is used. Given i) a dataset

of n tuples, ii) a set of filtering attributes F, which are used to probe the index, iii) a set of

predicate indices on F: PI = {PI1, . . . ,PI|F|}, and iv) a vector of dataset statistics D, IC I can be

expressed as:

IC I(n,F,PI,D) = N (PI ,F )∗CostH (n,F,PI,D)

With N (PI ,F ), we denote the number of non-empty hyperrectangles with non-empty query-

sets that MSA creates. To estimate the number of hyperrectangles, we assume the worst case

in which all hyperrectangles are not empty and have non-empty query-sets hence MSA cannot

exploit data correlations to skip hyperrectangles. Hence, we use the formula:

N (PI ,F ) = ∏
f ∈F

N (PI , { f })}}

N (PI ,F ) rapidly increases with more or larger predicate indices, and thus choosing strategi-

cally the set F is critical. Note also that the number of accessed ranges in a predicate index

N (PI , { f }) is directly affected by the workload access patterns. Intuitively, the more correlated

the queries, the smaller N (PI ,F ) would be. Thus, our cost model also captures latent workload

correlations.

The second term, CostH (n,F,PI,D), denotes the cost each hyperrectangle incurs. CostH is
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proportional to three quantities: i) the cost QC of query-set operations for computing the

query-set Q∗, that all tuples of the hyperrectangle share, ii) the lookup cost SIC on the spatial

index, and iii) the cost V C that the resulting tuples will incur on post-filtering. The latter is

practically how many vectors we will need to post-filter. This can be expressed as:

CostH (n,F,PI,D) = cq ∗QC + cs ∗SIC + cv ∗V C

where cq ,cs ,cv are constants. The value of these constants reflects latent variables such as the

underlying hardware, the query-set implementation, the spatial index implementation, etc.,

and thus should be tuned to match the specific deployment at hand. We tune the parameters

by running SH2O for generated sets of data and queries and then fitting the cost model results

to the measured response time using least-squares.

Now, we further discuss and expand the QC ,SIC , and V C quantities. The query-cost QC

depends on the implementation of query-set operations. Makreshanski et al. discuss the

trade-offs of different implementations [70]. Our implementation uses bitsets, and in that

case, QC = |B|, where |B| is the size of the submitted query batch.

The lookup cost SIC is a function of the available predicate indices and data distribution

(SIC = SIC (PI,D)). The exact formula of SIC depends on the spatial index implementation.

In our case, where a grid index is used, we observe that the cost depends on the number of

visited nodes at each level of the trie:

SIC (PI,D) =
dmax∑
d=1

vi sI(d ,PI ,D)

where dmax the dimensionality of the spatial index and vi sI(d ,PI ,D) the number of visited

nodes in level d . We estimate the number of visited nodes using the formula:

vi sI(d ,PI ,D) =
d∏

i=1
sel (PIIi

)∗D(Ii )

where sel (PIIi
) is the average selectivity across the accessed ranges of predicate index i ,

and D(Ii ) denotes the distinct values in attribute Ii . Also, Ii maps each index dimension to

the corresponding filter attribute; if the dimension does not correspond to a filter attribute,

we assume that sel (PIIi
) is 1. The formula assumes that the attributes follow independent

distributions and that the number of nodes is lower than the number of tuples: it estimates

that for each node of level i − 1, index traversal accesses sel (PIIi
)∗D(Ii ) nodes in level i .

Thus, the number of visited nodes per level is increased multiplicatively. The assumption of

independence is commonly used in query optimizers [67]. Estimating selectivity, especially

for predicates across multiple attributes, is an orthogonal and active research area [28, 131].

76



4.3 Selecting Probing Attributes

Finally, the V C cost represents the number of vectors retrieved with each index lookup. We

approximate this cost by assuming that all hyperrectangles contain the same number of tuples.

The formula used is:

V C = ⌈ n

v s ∗N (PI ,F )
⌉

where v s is the vector size used during processing. The ceiling shows that even when fewer

than v s tuples are retrieved from a hyperrectangle, we have to “pay” for the whole vector.

Putting it all together:

IC I(n,F,PI,D) = N (PI ,F )∗ (cq ∗|B|+

cs ∗
dmax∑
d=1

d∏
i=1

sel (PIIi
)∗D(Ii )+ cv ∗⌈ n

v s ∗∏
f ∈F N (PI f )

⌉)

Filter Cost

The filter cost models the cost of shared filters using the Data-Query model. For each tuple, if

there are m predicate indices available, the tuple’s query-set is produced as pr obe(PI1)∩·· ·∩
pr obe(PIm). Thus, the cost comprises the predicate index probe and the cost of query-set

operations. Again, the cost of query-set operations is proportional to the query batch size |B|.

Regarding the probing cost, our analysis indicates that it mostly depends on data locality. In

our implementation, predicate indices take the form of binary trees. If consecutive tuples

follow the same path in the predicate index’s binary search, the branch prediction mechanism

of modern processors significantly accelerates probing. Otherwise, if subsequent tuples follow

different paths, performance degrades. To quantify this effect, for each filtering attribute

f , we define a locality indicator L f that shows the expected number of consecutive tuples

that follow the same path when probing the corresponding predicate index. Then, using

regression, we train a monotonically increasing decay function that maps the lack of locality

to a factor of performance degradation: loc(L f ) → [1,∞]. In practice, we have observed that

loc(L f ) ∈ [1,2.5].

In contrast to the spatial index cost, in shared filters, the number of ranges in the predicate

index is less important. Finding the correct ranges, here, depends on a binary search, and thus

the cost is increasing logarithmically to the number of ranges. Summing up, the cost of shared

filters is:

FC (n,F,L) = n ∗ c f ∗
∑
f ∈F

|B|∗ l oc(L f )

where L = [L1, . . . ,L|F|] is a vector with the locality indicators for each filter attribute and c f is a

constant.

77



Chapter 4. Efficient Shared Data-Access

Total Cost

Overall, the cost of SH2O when probing the spatial index on attributes F is:

TC (n,F,PI,D,L,I) = IC I(n,F,PI,D)+FC (n,UF −F,L)

where UF is the set of all filter columns.

4.3.2 Enumerating Candidate Attribute Sets

The cost model can estimate whether a set of probed attributes is preferable to another. SH2O

takes advantage of these estimates to identify the attributes that minimize the total data

access cost: It enumerates candidate attribute sets, and for each candidate, it computes the

corresponding cost model’s estimate. The set that yields the lowest cost is finally selected.

However, candidate selections are, in the worst case, exponential to the number of attributes.

To render enumeration efficient, we build Algorithm 3 that explores the lattice of attribute-sets

in a bottom-up way, and prunes parts of the space by using Observation 4.3.2 (line 8). The

process terminates when no more candidates are available.

Observation. If adding an extra attribute to a candidate-set increases IC more than it de-

creases FC , then the resulting candidate-set and its super-sets can be safely pruned.

Algorithm 3: Enumerate Candidate Attribute-Sets

input :Tuple (n,UF ,PI ,D,L)
1 level = {;} ; best_set =; ; best_cost = SC (n,UF ,L) ;
2 while level .nonEmpt y() do
3 next_level =; ;
4 for F ∈ level do
5 for f ∈UF −F do
6 ICol d = IC I (n,F,PI ,D);SCol d = SC (n,UF −F,L)

ICnew = IC I (n,F ∪ { f },PI ,D) ;
7 SCnew = SC (n,UF −F − { f },L) ;
8 if ICnew − ICol d < SCol d −SCnew then
9 next_level = next_l evel ∪ {F ∪ { f }} ;

10 if TCnew < best_cost then
11 best_cost = TCnew ; best_set = F ∪ { f } ;

12 level = next_l evel ;

13 return best_set ;

4.4 Partition-oriented Access

In our discussion thus far, we have assumed that there is a single clustered index that spans

the whole dataset. However, this simplification ignores local patterns in the query predicates
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Figure 4.5: Applying SH2O at partition-granularity

that arise when the data is partitioned and each partition is indexed independently.

For instance, in cases where there are correlations in the workload, by directly applying SH2O

on the entire dataset, we process an unnecessarily large number of hyperrectangles. Consider

the example of Figure 4.5. The work-sharing database processes a batch of queries with

filters on attributes A,B ,C . Computing MSA’s hyperrectangles for the entire dataset results

in |PI A| ∗ |PIB | ∗ |PIC | = 8 probes. However, consider the case where the data is partitioned

on the predicate A > 40. In each partition, we need to consider only predicates from queries

that intersect with the partition. Then, we need to probe |PIB | = 2 hyperrectangles in the first

partition (A ≤ 40) and |PIC | = 2 in the second partition (A > 40). Moreover, the partitioned

case requires indices with fewer dimensions which translates to decreased probing cost.

To exploit local patterns within relevant partitions and reduce both the number of hyper-

rectangles and the dimensionality of index probes, SH2O adapts access to each partition. It

identifies which predicates are relevant in each partition, using a variant of data skipping, and

plans multidimensional shared accesses independently.

First, SH2O identifies the set of queries that process each partition. A query processes a

partition if the partition overlaps with the query’s predicates. To compute the query-set

of each partition, we combine zone maps [39] with predicate indices. For each predicate

index, SH2O finds the ranges that intersect with the zonemap’s min-max range, retrieves the

corresponding query-sets and computes their union. The union corresponds to the set of

queries that either have satisfied predicates or have no predicate on the attribute. Then, SH2O

finally computes the query-set of the partition by intersecting the results from all predicate

indices. If the query-set is empty, SH2O completely skips the partition.
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Next, SH2O optimizes multidimensional shared access for each partition. Filters that do not

belong to the partition’s query-set or filters that statically evaluate to TRUE are excluded from

the predicate indices and the attribute selection algorithm. Hence, SH2O eliminates a large

portion of the already reduced filtering costs.

4.5 SH2O-aware Data Organization

The effectiveness of SH2O depends on preexisting partitions and indices. To reduce data-

access and filtering costs, SH2O requires i) spatial indices that can replace shared filters in a

query batch arriving at runtime, thus enabling selective and efficient access, and ii) partitions

that exploit predicate correlations. In this section, we formulate and address the problem of

partitioning/indexing the data such that we minimize SH2O’s cost for a target batch.

We partition/index the data in an offline manner. As long as predicate patterns recur (i.e.

predicates on the same attributes and correlations between predicates) the partition/index-

building cost is an investment that is expected to be amortized with time. In this work, we do

not elaborate on the predicate monitoring process or on the details of how often partitions

should be updated, but we theoretically formulate and solve the joint partition-index selection

problem for SH2O. We assume that the workload is known in advance and we build partitions

and indices once in the beginning.

In the literature, there are several data-layout optimization techniques that partition a multi-

dimensional dataset in a way that captures query correlations and favors data skipping (e.g.,

[130]). However, existing partitioning approaches: i) do not account for shared access across a

batch of queries and ii) are index-oblivious. Here, we address both deficiencies at the same

time. More specifically, we take advantage of emerging access patterns in the workload and

partition the data space into a set of hyperrectangles. For each of these hyperrectangles,

partition-index selection uses the cost model of Section 4.3.1 to choose an index that best

fits the specific subspace. The goal is to minimize the aggregate data access time across all

partitions. At runtime, SH2O processes each resulting partition independently. Formally, we

define the Index-Aware Partitioning for Shared Access (IPSA) problem:
Problem (IPSA). — Given w query batches with predicate index sets PI 1,PI 2, . . . ,PI w , find a set

of partition-index pairs P = {(S1, I1), . . . , (Sm , Im)} such that

min
∑

(Si ,Ii )∈P

w∑
j=1

min
F

TC (|Si |,F,PIj|Si ,Si ,L, Ii )

with the constraint that S1, . . . ,Sm are hyperrectangles 1.

We observe that any partitioning can be generated by applying a series of recursive cuts, where

each cut corresponds to a predicate (e.g., Figure 4.5). The recursion starts by taking as input

1The notation PI|Si signifies the subset of each predicate index that is within the boundaries that define Si
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the entire dataset. Then, at each step, the current partition is either kept intact and returned

as part of the solution, or is bi-partitioned by a new cut. In the latter case, the two resulting

partitions are further processed recursively. This structure enables a Dynamic Programming

(DP) formulation. Let us denote the optimal data access cost for partition S as

OC (S) = min
I

w∑
j=1

min
F

TC (|S|,F,PIj|S,S,L, I )

Moreover, given a cut c , we use Vc (S) to denote the subspace of S that satisfies c . For example,

in Figure 4.5, Vc (Par ti t i on1) = [0,100)× [15,30)× [5,70). Then DP is expressed as:

P (S) = mi n{OC (S),mi nc {P (Vc (S))+P (S −Vc (S))}}

P (S) =OC (S) , if no other cut can be applied

4.5.1 Iterative Partitioning

Solving IPSA using DP is prohibitive as it requires tabulating and estimating access costs for all

the possible subspaces that the filtering attributes of a batch define. This number is expected

to be very high and much larger than the number of hyperrectangles that the predicate indices

define.

To efficiently approximate the optimal solution, we use an iterative greedy algorithm that

is inspired by Iterative Dynamic Programming [61]. The algorithm works in iterations and

starts from a single partition that contains all the data. At each iteration, it chooses a partition

and finds the optimal sequence of k recursive cuts (Algorithm 4, line 13) that minimize the

total cost across all new subpartitions. At the same time, it also selects the optimal index for

all the partitions that these cuts produce (line 15). If the cost reduction, after making the k

cuts, is more than a relative threshold t% (line 7), the cuts are actuated and the new partitions

become candidates for the next iteration (line 11). The iterations stop when k cuts cannot

significantly reduce the cost of any of the partitions. The algorithm’s behavior is tunable based

on the value of k. For small values of k, the algorithm is fast but can only discover simple

correlations. For larger values of k, the algorithm is more expensive but can discover more

complex correlations.

The cuts we select are always filter constants that appear in at least one batch of the target

workload. The idea is that if a cut does not correspond to a filter, then aligning it to an adjacent

filter would further reduce the cost. Thus, cuts derived from the workload’s filters reduce the

search space without jeopardizing the quality of the solution.
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Algorithm 4: Index-Aware Partitioning for Shared Access

1 Function MAKE_PARTITIONS(n,UF ,PI ,D,k, t ) :
2 out put =;; par ti t i ons = newQueue() ;
3 par ti t i ons.push(D) ;
4 while par ti t i ons.nonEmpt y() do
5 t ar g et = par ti t i ons.pop();
6 kcut s = BEST _KCU T S() ;
7 if kcut s.bestCost >= t ∗ t ar g et .cost then
8 out put .add(t ar g et ) ;
9 else

10 for p ∈ kcut s.r esul t s do
11 par ti t i ons.push(p) ;

12 return output ;
13 Function BEST_KCUTS(n,UF ,PI ,D,k) :
14 if k == 0 then
15 r et .bestCost =C HOOSE_I N DE X (n,UF ,PI ,D) ;
16 r et .r esul t s = {D}; return r et ;

17 cut s_i n_par ti t i on = { f ∈UF | f cut s D} ;
18 for cut ∈ cut s_i n_par ti t i on do
19 (lhs,r hs) = est i matePar ti t i on(n,D) ;
20 for i = 0 to k do
21 j = k − i −1 ;
22 r et1 = BEST _KCU T S(lhs.n,UF ,PI , lhs.D, i ) ;
23 r et2 = BEST _KCU T S(r hs.n,UF ,PI ,r hs.D, j ) ;
24 tot al_cost = r et1.bestCost + r et2.bestCost ;
25 if r et .bestCost > tot al_cost then
26 r et .bestCost = tot al_cost ;
27 r et .r esul t s = r et1.r esul t s ∪ r et2.r esul t s ;

28 return r et ;
29 Function CHOOSE_INDEX(n,UF ,PI ,D) :
30 for j = 0 to w −1 do
31 for i = 0 to d −1 do

32 PI j
i |D = {r ∈ PI j

i |r ∩Di ̸= ;} ;

33 U j
F = { f ∈UF ||PI j

f | > 1} ;

34 best_per m =; ; bestCost =∑w−1
j=0 FC (n,U j

F ,Lmax );

35 per mut ati ons = newQueue(); per mut ati ons.push(;) ;
36 while per mut ati ons.nonEmpt y() do
37 I = per mut ati ons.pop() ;

38 cost =∑w−1
j=0 M AX T C (n,U j

F ,PI j |D,D,L(I ), I ) ;

39 if cost < bestCost then
40 best_per m = I ; bestCost = cost ;
41 for f ∈UF −Set (cur r ent ) do
42 per mut ati ons.push(I ++ f ) ;

43 return bestCost ;
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4.5.2 Index Selection

The last component is to select the optimal index for each partition. The selection process i)

estimates the data access cost of accessing a partition as is, without further subpartitioning,

and thus is critical for IPSA and ii) chooses which index to build for the final partition.

The index selection algorithm is based on attribute selection. For each possible index, given a

set of filter attributes, it estimates the data access cost for the optimal attributes (lines 37-40).

The lowest estimate determines which index to build (lines 39-40).

In the general case, the number of indices is exponential to the number of attributes. Thus,

while this approach works for few attributes (less than 10), more efficient approximations

might be necessary for high-dimensional problems.

4.6 Implementation

Our implementation is based on RouLette. Our implementation for SH2O modifies the

ingestion and shared filter components: When scheduling a scan, the attribute selection

process of Section 4.3 estimates the best subset of columns on which to use MSA. If shared

scan followed by filters is estimated to perform better than any subset, then the original code

path is used. Otherwise, we modify RouLette to use MSA for the best subset and exclude the

corresponding columns from shared filtering. After filtering, we also consolidate results as

described in Section 4.2.4.

MSA can retrieve more than a vector’s worth of elements with each lookup. In this case, we

affinitize all the rows contained in the specific hyperrectangle to the worker performing lookup.

The worker caches the lookup results, and in subsequent calls to ingestion, it extracts a vector

of tuples directly from the cache. When all cached results are returned, the worker moves

to the next hyperrectangle. By doing so, each worker processes its own exclusively-owned

hyperrectangles, and synchronization overheads are reduced.

By default, Roulette assumes single-partition tables. To enable the partitioning of Section 4.5,

we modify ingestion. To minimize synchronization, initially, a different partition is assigned to

each worker. Once a worker finishes processing a partition, it requests another one. If there

are no more unassigned partitions, the worker is attached to the same partition that has been

assigned to another worker. All workers working on the same partition pull hyperrectangles

from the same iterator.

RouLette, and by extension SH2O, processes memory-resident data. As such, the current

implementation is optimized for in-memory processing. However, the approach is also

applicable to disk-based systems: First, selective access can significantly reduce I/O. Second,

with modern SSDs achieving several GB/s in read bandwidth, probing a sequence of predicate

indices is still too expensive to be masked by I/O. Nevertheless, a disk-based implementation

requires extra optimizations: i) to avoid spreading range queries across several disk pages,
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data needs to be organized on disk using space-filling curves, and ii) similar to cooperative

scans [138], to maximize bandwidth, we need to implement I/O scheduling. An extension for

disk-based systems is outside the scope of this work.

4.7 Experimental Evaluation

Our experiments evaluate SH2O across three axes:

i) We first analyze the cost of shared scans and filters and show how multidimensional shared

access can eliminate it.

ii) We discuss the introduced overhead by the number of hyperrectangles and demonstrate

the merits of attribute selection.

iii) We show that multidimensional partitioning significantly reduces the data access cost for

different workload families.

Access Methods. We evaluate the following methods: i) Scan: Shared full scan and filtering

using the Data-Query model, ii) MSA: Access data by exclusively using MSA, iii) SH2O: This is

our hybrid approach where we first use MSA and then apply shared post-filtering, iv) Qd-tree

[130]: This is a state-of-the-art data skipping approach that partitions the data based on the

workload, in a way that maximizes partition pruning, v) Zonemaps: This is standard data

skipping over horizontal partitioning. When we assess this technique, the dataset is always

sorted on the filtering attribute.

We also compare against well-known databases: MonetDB [46], and PostgreSQL, that we

use as baselines for query-at-a-time execution over indices. MonetDB is optimized for effi-

cient columnar data access, whereas PostgreSQL has a mature B+-tree design and supports

multidimensional indexing with GiST. We configure both databases to keep data and execu-

tion in-memory. Note that, as our workload is analytical (i.e., queries process hundreds of

thousands tuples), the bottleneck is data access and processing, not the index traversal itself.

Thus, we do not expect alternative indexing techniques to affect the showcased trends and

conclusions.

Data & Workload. We run both macro- and micro-benchmarks. First, we show how the

proposed technique can accelerate analytical applications such as the widely used SSBM [87]

and TPC-H benchmarks with scale factor 10. The order of the tuples is randomized. Then,

we perform an extensive sensitivity analysis. More specifically, we investigate the effect of: i)

concurrency (query batch size), ii) selectivity, iii) the number of filtering attributes, iv) data

correlations, v) the size of the resulting predicate indices, and iv) the predicate correlations.

To allow controlling the experiment variables, for the purpose of the micro-benchmarks, we

generate synthetic data. We use a single table of 256M rows and 4-byte integers. The number

of columns and their distribution is presented in each experiment.
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Figure 4.6: SSBM and TPC-H benchmarks with scale factor 10

Hardware. We run the evaluation on a two-socket machine with Intel Xeon Gold 5118 CPU

with 12 cores per socket, running at 2.30 GHz, and 378 GB of main-memory. We isolate

execution on one NUMA-node and run all our experiments with 12 threads. The threads and

memory are affinitized to the used NUMA node. We run all the experiments after the data has

been loaded in-memory in columnar format, and report the average of 3 runs.

4.7.1 End-to-end Performance for Analytics

We evaluate the effect of SH2O on analytical queries using the Star Schema Benchmark (SSBM)

[87] and TPC-H. Both SSBM and TPC-H measure the performance of databases for data

warehousing applications. SSBM defines four select-project-join-aggregate query templates

over a star schema. For each template, there are multiple variants with different selectivity.

In total, SSBM has thirteen queries. TPC-H defines twenty-two query templates that cover

more advanced SQL queries. We simplify TPC-H queries i) by replacing aggregates with CASE

WHEN, and ii) by focusing on their Select-Project-Join-Aggregate subqueries, similar to [36].

The experiment compares SH2O to Scan and to executing queries one at a time. All three

approaches are implemented in RouLette. We compare total response time for batches that

contain the full SSBM and the full TPC-H as well as a batch that consists of SSBM Q1.1, Q1.2,

and Q1.3 (SSBM 1.x). We single out these queries because they are the only ones that compute

filters directly on the fact table; all other queries only filter using dimension joins. The trie for

TPC-H takes 8.7 sec to build and requires 216MB, whereas the trie for SSBM takes 2.2 sec to

build and requires 53kB.

Figure 4.6a shows the results of the end-to-end comparison. Scan performs better than

query-at-a-time execution, and SH2O always performs better than Scan. For SSBM 1.x, which

aggressively filters the fact table, eliminating the shared filters makes a substantial difference

and SH2O results in 12.9× over Scan. For the full SSBM, which accesses all rows in the fact

table, SH2O still achieves a moderate 1.6×. Similarly, for the full TPC-H, the achieved speedup

is 1.18. SH2O accelerates the scan & filtering phase. SH2O moderately speeds up end-to-end

performance even though heavy joins partially mask significant speedup in data-access. To

prove this, Figure 4.6b compares, for the TPC-H case, the time that the Scan and SH2O spend

in data access. SH2O achieves a 2.69× over Scan.

85



Chapter 4. Efficient Shared Data-Access

Takeaway: SH2O reduces response times even for complex queries. The benefit of SH2O is

maximum for queries that filter large tables. However, by eliminating filter overhead, it still

reduces response times even when almost all data is accessed.

4.7.2 Efficient Multidimensional Data Access

In this section, we show the costs from which existing techniques suffer when we vary i) the

joint selectivity, ii) the size and iii) the filtering attributes of a query batch, and how MSA elimi-

nates these costs. Moreover, we show how MSA handles the high number of hyperrectangles

that data correlations produce.

Joint selectivity. We compare Scan, MSA, Qd-tree, Zonemaps, and the baseline databases

(MonetDB, PostgreSQL), to analyze the behavior of shared scans and index-based methods

under varying workload parameters. In this experiment, SH2O only uses MSA. We use a table

with two uniformly distributed columns. The first column, whose domain is [0,100k), is

indexed. Building the trie takes 7.98 sec and requires 781kB. MonetDB uses the ordered index,

and PostgreSQL uses B-trees. All queries filter the first column. For all the experiments of the

section, we use batches of 512 filter-aggregate queries. The filter is a range on the first column.

Figure 4.7 shows the impact of the amount of common accesses for varying query selectivities

(0.1%, 1% and 10%). We control the maximum joint selectivity, that is the fraction of the

table’s rows that can be accessed by one or more queries. When maximum joint selectivity is

1%, all queries of the batch are generated such that their predicates request a subset of the

selected fraction. When maximum joint selectivity is 100%, each query can access any possible

range. To demonstrate the robustness of MSA to workload shifts compared to partition-based

data-skipping approaches, the predicates of the query workload are shifted by 0.1% compared

to the tuning workload of the Qd-tree. In the absense of workload shift, Qd-tree has identical

performance with MSA.

The response time of all databases depends exclusively on the performance of individual

queries and is unaffected from changes to the maximum joint selectivity. However, for an

individual selectivity of 0.1% and a joint selectivity 100%, PostgreSQL is competitive to Qd-tree

and Zonemaps.

Scan always processes the entire dataset. Thus, redundant filtering overheads are introduced

and latency is high even when all queries access the same 0.2% of the data. Decreasing the

maximum joint selectivity only changes the cost of aggregation at the end, and moderately

affects the result.

By contrast, MSA significantly benefits from low maximum joint selectivity, and gradually

pays the cost of spreading accesses across the table. When the workload contains queries

with 0.1% selectivity and accesses less than 2% of the table, MSA gives a speedup of more

than an order of magnitude compared to Scan. Even in the worst case, where accesses are

completely uncorrelated, it achieves a lower response time by 45% as i) it still accesses fewer
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Figure 4.7: Effect of joint selectivity on data-access
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Figure 4.8: Effect of concurrency on response time

data, ii) incurs lower filtering overheads, and iii) achieves higher locality in the router before

aggregations.

Data-skipping approaches also benefit from low joint-selectivity. However, as data accesses

spread with increasing joint selectivity, they suffer from overfetching and filtering costs. Thus,

MSA achieves up to 3.68× over Qd-tree and 6.66× over Zonemaps.

We also compare the distribution of individual responses in PostgreSQL against the batch

response time of MSA. We use the same workload with 1% selectivity and 10% joint selectivity.

PostgreSQL finishes only 8.9% of the workload in less time than required by MSA, whereas, for

Scan, the percentage is 73.4%.

Takeaway: Techniques that combine selective and shared access drastically improve interac-

tivity in workloads that span a small portion of the table. Nevertheless, MSA is superior to

data-skipping approaches, which are susceptible to overfetching and filtering costs.

Batch Size. Figure 4.8 shows the impact of concurrency on Scan, MSA, the data-skipping

techniques and PostgreSQL by varying the query batch size. We use the same data, indices,

and workload as the scenario with 1% selectivity and 10% joint selectivity in Figure 4.7.

MSA exploits the fact that smaller batches effectively access a very small portion of the table.

As the batch size is increased, response time is also increased but does so sublinearly until

64 queries. Scan starts with almost two orders of magnitude higher response time. Cost

is increased along with the number of queries due to heavier query-set operations, larger

predicate indices, and more aggregations. When the query batch size exceeds the 64 queries,

query-set operations become particularly heavy and cause a sharp latency increase for both

methods. However, even for 512 queries, MSA is 7.2× faster than Scan and 1.8× faster than

Qd-tree.

Takeaway: MSA gradually spreads data access across the table. It outperforms both indices

and shared scans across the whole concurrency spectrum.
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Figure 4.9: Effect of the number of filter attributes on response time

Filter attributes.Figure 4.9 assesses the impact of the number of filtering attributes on a table

with 10 columns. The workload accesses the full table, which is the worst case for MSA. To

scale the number of filters without exploding the number of resulting hyperrectangles, which

we test in the next Section, we assume that 9 columns of the table contain boolean {0,1} values.

Each query contains two filters and has 5% selectivity: i) the first filter is on the same attribute

across all queries and has 10% selectivity, ii) the second filter is on one of the boolean columns

and has 50% selectivity. For all runs, we use the same spatial index, which is built taking into

account all 10 columns (first the common filter, and then the rest).

Scan shows a linear increase with the number of filters: more filters directly translate to

increased query-set operations per tuple.

MSA demonstrates near-constant performance; a slight decrease in execution time is due to

better load balancing between threads. The efficiency of MSA stems from the fact that filtering

costs are not spread to the whole dataset. Instead of the expensive query-set operations, MSA

only probes and computes the corresponding query-sets for up to 10240 hyperrectangles. By

amortizing the filtering overhead among all tuples of a hyperrectangle, it is 4.69× faster than

Scan, despite that they both access the whole table.

Takeaway: The benefit of amortizing query-set overhead across a hyperrectangle is propor-

tional to the number of filter attributes.

Data correlations. Figure 4.10 shows the effect of the early elimination optimization during

hyperrectangle iteration. We use a table with three columns, where the first, C1, is uniformly

distributed in [0,1k). We make the 2nd and 3r d correlated to C1 by adding uniform random

variables. The range of the variables determines the correlation. Therefore, we use [−500,500]

to achieve a correlation of 0.5, [−250,250] for 0.8 etc. Correlation 0 means that all columns are

generated independently. Each query has a filter on one of the three columns and retrieves

approximately 1% of the rows.

89



Chapter 4. Efficient Shared Data-Access

0
1
2
3
4
5
6
7
8

0 0.5 0.8 0.9

Ba
tc

h 
Re

sp
on

se
 T

im
e(

se
c)

Correlation

SH2O-BASELINE SH2O-OPT

Figure 4.10: Effect of data correlation on response time

Without the optimization of Section 4.2.2, MSA suffers from the high number of hyperrect-

angles. The observed variance is due to differences in the trie’s structure depending on the

degree of correlation. Enabling the optimization significantly reduces the number of probed

hyperrectangles and the benefit is increased as a function of correlation. When correlation

becomes 1, the optimization reduces response time by 21.2×.

Takeaway: The response time of MSA depends on the actual number of non-empty hyperrect-

angles. Eliminating them is critical when the data contains correlations.

4.7.3 Scaling using Attribute Selection

Next, we demonstrate the effect of scaling the hyperrectangles and the importance of attribute

selection. As this is a latent parameter that depends on the number of filter columns and the

size of the corresponding predicate indices, we design two experiments: in each of these, we

fix one parameter and vary the other.

First, we fix the size of each predicate index to 10 ranges and vary the number of filtering

columns. To scale the experiment to wider tables, we use 32 uniformly distributed columns in

[0,10). Due to the large number of attributes, we downsize the table to 100M rows. At each

run, we build the spatial index on all the columns that are used for SH2O. Each query has a

single filter column and different query groups access non-overlapping columns (uncorrelated

access pattern). We compare MSA, Scan, and SH2O. We also compare against the GiST index

of PostgreSQL, which is a generalized search tree. It provides support for multidimensional

point of type cube. However, SH2O achieves 14.1-73.4x faster response time hence we exclude

GiST from the plots.

Figure 4.11 shows how attribute selection improves scalability. For MSA, both the number of

hyperrectangles and the response time grow exponentially with the number of filter columns.

After a crossing point, MSA becomes significantly slower than Scan, whose response time

grows linearly.
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Figure 4.11: Scalability for wide tables
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Figure 4.12: Cost of building the spatial index

Attribute selection chooses to use a subset of the filter columns such that expanding it with

one more column would make the overhead higher than the savings from skipping the scan.

Our cost model detects such cases and we observe that in this experiment, it never probes

more than 6 columns (the remaining attributes are post-filtered). SH2O is more efficient than

both MSA and Scan, as it trades filters for some of the attributes for a small overhead. The

gains for the eliminated filters persist, and SH2O achieves 1.19× over Scan, even when the

total number of filters is thirty-two.

Figure 4.12 shows the index building cost. If we index all available columns, the cost is minimal

at first, but it sharply increases as the dimensionality is increased. The space overhead is also

increased, at first exponentially until 7 attributes (85MB) and then linearly as the trie’s leaves

degenerate to single tuples. However, as our cost model is never going to probe more than 6

attributes, we leverage this information and only index the attributes that SH2O would use
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Figure 4.13: Scalability with the number of predicate index’s ranges

based on the current batch. Thus, we guarantee that preprocessing cost is bounded and that it

pays off.

In Figure 4.13, we fix the number of filtering attributes to 4 and vary the size of the predicate

indices. More specifically, they have sizes: [X ,100,100,100],where X ∈ [0,100] is the size of the

PI whose respective attributes corresponds to the topmost level of the trie. The experiment

uses queries of individual selectivity 1%, but, collectively, the batch accesses the whole table.

Once again, attribute selection chooses to probe on an optimal subset of the filter columns.

By doing so, hybrid access achieves performance gains without sacrificing the robustness of

shared scans and filters.

Takeaway: For MSA, the data-access time is determined by the number of hyperrectangles.

For a large number of hyperrectangles, SH2O outperforms both pure scan- and index-based

techniques.

4.7.4 Decoupling Dimensions using Partitioning

In the next experiment, we evaluate the impact of partitioning on decorrelating filter dimen-

sions. In this experiment, we use three common correlations in data analysis:

1. 1D dependency: a query in the batch has a predicate in column Ci iff it also has a

predicate pi in column A. In this experiment, i ∈ {1,2,3,4} and each column Ci has 100

distinct predicates. Before partitioning, we index columns A,C1,C2,C3,C4, in this order.

After partitioning, we index in each partition only the Ci that is filtered.

2. 2D dependency: if a query in the batch has predicate pi in column A and predicate q j in

column B , it also has a predicate in column C(i+ j )%n+1. In this experiment, i , j ∈ {1,2,3,4}

and each column Ck has 100 distinct predicates. Before partitioning, we index columns

A,B ,C1,C2,C3,C4, in this order. After partitioning, we index in each partition only the

Ci that is filtered.
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Figure 4.14: Impact of partitioning on response time
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Figure 4.15: Preprocessing cost for partitioning

3. Linear correlations: if a query in the batch has a predicate t able.A bet ween X and Y ,

then it also has predicates t abl e.Ci bet ween X +E and Y +E where E ∈ [−10,10],

i ∈ {1, . . . ,5}. In this experiment, there are up to 100 distinct predicates in column

t able.A. We index columns A,B1, . . . ,B5, in this order, both before and after partitioning.

We run the iterative algorithm to partition the data based on the filters of the batch, actuate

the partition, and finally run the batch itself. We report the response times in Figure 4.14 and

the tuning time in Figure 4.15. Note that response time is in msec and presented in log-scale.

For all three workloads, the number of hyperrectangles is high. As such, in all cases, single-

partition MSA is orders of magnitude more expensive than Scan; 212× slower in the worst

case. By using the partitions chosen by our iterative algorithm, MSA reduces response time by

more than three orders of magnitude and outperforms Scan.

Takeaway: When filters occur in uncorrelated columns, data access time for MSA is prohibitive.

In high-dimensional workloads, partitioning is necessary for making MSA the best option.
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4.8 Summary

To provide interactivity for highly concurrent workloads, we propose SH2O, a novel data-

access method that combines efficient selective access with minimal filtering cost, and scala-

bility. SH2O amortizes filtering cost by exploiting multidimensional regions where filtering

decisions are invariant across all tuples. However, multidimensional data access suffers from

the curse of dimensionality. To avoid dimensionality pitfalls, SH2O employs two comple-

mentary mechanisms, attribute selection and partitioning. By probing only a select subset of

dimensions and taking advantage of query and data correlations, SH2O outperforms shared

scan and filters from 1.8× to 22.2×.
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5 Effective and Efficient Reuse in Work-
Sharing Environments

Reusability is a driving factor for many analytical tools, such as dashboards, notebooks, and

pipelines. Often, such reusable workloads consist of highly concurrent parameterized queries.

Dashboards, for example, produce visualizations by processing several canned queries that

are parameterized through UI interactions or other queries [29, 120]. Similarly, analysts rerun

data-science notebooks for reproducibility and exploration, often with different parameters

[8, 18, 58, 102]; hence, multiple queries that transform and analyze data recur. While such

applications process large numbers of queries, they are interactive in nature and require low

response times for all queries. However, under high concurrency, backend databases struggle

to produce responses within a tight timeframe.

Traditionally, there are two approaches to accelerate processing for large batches of recurring

queries. On the one hand, we can optimize individual queries. To do so, both commercial and

open-source databases can reuse materialized results; databases avoid full recomputation and

drastically reduce processing time. Often, optimizing for reuse opportunities is automated in

the form of caching, recycling, and materialized views and subexpressions [48, 51, 100, 109,

136]. Nevertheless, materialization is subject to a storage budget and thus leaves outstanding

computations. Moreover, as the outstanding computations for different queries are still

processed individually, response time is increased with concurrency.

On the other hand, we can optimize the scalability of batch processing using work sharing.

Work-sharing databases reduce the total processing time by exploiting overlapping computa-

tions across the queries in the batch. However, large numbers of heavyweight shared operators

and the fact that everything is recomputed from scratch can violate stringent response time

requirements.

Figure 5.1 depicts processing time for a large query batch1. Each bar represents an optimized

approach for processing the batch. Both query-at-a-time (QaT) reuse and work sharing fail to

provide fast responses. Reuse eliminates computations by precomputing joins, but suffers

from concurrent outstanding processing (i.e., filters on materialized results, non-materialized

1The setup corresponds to Figure 5.9a with 50% budget (presented in Section 5.5.2).
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Figure 5.1: ParCuR harmonizes reuse and work sharing to speed up recurring batches

joins). By contrast, work sharing mitigates the impact of concurrency and reduces the overall

response time but suffers from processing heavy shared joins at runtime.

Individually, both reuse and work sharing fail to process large workloads interactively but still

make complementary contributions. Thus, it is attractive to combine the two approaches

to exploit their cumulative benefit. However, naively reusing materialized results in a work-

sharing database as we would in a query-at-a-time database brings limited benefit and can

even degrade performance ("Work-sharing + Reuse" in Figure 5.1). Reuse in a work-sharing

environment is ineffective because i) it eliminates upstream shared operators only when their

results are not required by any downstream computation, ii) as it rewrites only queries that

the used materialized results subsume, mismatching (i.e., non-subsumed) queries may re-

compute, fully or partially, the reused results, hence decreasing benefit – mismatches become

increasingly likely as concurrency is increased, especially during workload shifts – and iii) it

severely amplifies processing for shared filters.

To enable interactive responses for large parameterized batches, we introduce ParCuR (Partition-

Cut-Reuse), a novel framework that harmonizes reuse with work sharing. To address the

limited effectiveness of reuse in work-sharing environments, ParCuR adapts materialization

and reuse techniques across three axes:

Cut: ParCuR addresses the subexpression selection problem [51, 136] in a work-sharing envi-

ronment. Work sharing violates the assumptions of traditional subexpression selection; thus,

existing solutions fail to minimize processing. To increase the impact of reuse, ParCuR intro-

duces novel materialization and reuse policies that make decisions based on the eliminated

shared operators in the work-sharing setup. As eliminating each shared operator depends

on downstream decisions, ParCuR introduces the concept of cuts. Cuts represent sets of

materialized subexpressions that act synergistically in eliminating more upstream operators.

The policies use cuts when evaluating which results to materialize or reuse. ParCuR proposes

approximation algorithms for materialization as well as a cost-based reuse algorithm that

maximizes net benefit (i.e., eliminated processing time minus filtering overhead).

Reuse: ParCuR focuses on making reuse efficient, and thus it is imperative to reduce the

high processing time for shared filters. To this end, it builds and uses access methods on

materialized subexpressions. By building, based on frequent predicates, access methods on
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materialized subexpressions and by using the access methods at runtime, ParCuR evaluates

frequent filters for one batch of tuples at a time, thus amortizing the required processing.

Partition: To increase the usability of materialized results in case of mismatches, e.g., during

workload shifts, ParCuR uses partial reuse. ParCuR uses the fragments of materialized results

that are relevant for each query batch at hand and performs any additional recomputation

only as needed, thus relaxing the subsumption constraint; it eliminates shared operators for all

queries for the data ranges that materialized results cover. To efficiently identify and access the

relevant fragments and the base data for the recomputation, ParCuR uses partitioning and de-

cides materialization and reuse at the granularity of partitions. Nevertheless, materializing at

partition-granularity creates a dependency between the storage footprint and the partitioning

scheme. Partition-granularity materializations contain tuples that are rarely useful because

they are filtered out by the predicates of the corresponding queries. Hence, to maximize reuse

while minimizing footprint, ParCuR introduces a novel partitioning algorithm that clusters

together data that are accessed by similar subexpressions and hence benefit from the same

materializations.

ParCuR incorporates the above techniques in a two-phase framework: i) an offline tuner that

optimizes ParCuR’s state (i.e., partitions, materialized results, access methods) for a target

workload and ii) an online executor that, by exploiting the available state, minimizes the

processing time for query batches arriving at runtime. On the one hand, the tuner chooses the

partitioning scheme, then chooses results to materialize and, finally, builds access paths over

the materialized results. On the other hand, the executor processes incoming query batches us-

ing a partition-oriented execution model. For each partition, it selects the materialized results

to reuse such that they minimize processing time and uses the available access methods to

reduce filtering overhead. By adapting and exploiting the available state, ParCuR makes reuse

efficient and effective in work-sharing environments. As Figure 5.1 demonstrates, ParCuR

drastically reduces batch response time. The experiments show that ParCuR outperforms

work sharing by 6.4× and 2× in the SSBM and TPC-H benchmarks, respectively.

We make the following contributions:

• Choosing intermediates to materialize using QaT heuristics is ineffective and uses the

storage budget suboptimally. We propose a family of materialization policies that, by

taking into account the workload’s sharing opportunities, improve time savings for the

same budget.

• Work-sharing decisions and access patterns affect the benefit of reusing materialized

results. We propose a cost-based optimization strategy that chooses when and which

results to inject into each batch’s global plan such that response time is minimized.

• Reusing materialized results in work-sharing databases is not straightforward; naive

injection into global plans can increase response time considerably. Instead, we propose

97



Chapter 5. Effective and Efficient Reuse in Work-Sharing Environments

that materialization should always be accompanied by access methods that enable data

skipping and filter skipping.

• Increasing the usability of materialized results and reducing the penalty from mis-

matches requires partial reuse. Partition-level materializations coupled with a partition-

oriented execution model enable efficient partial reuse at the expense of storage over-

head. Hence, we propose a novel partitioning scheme that maximizes reuse while

minimizing redundant materialization by aligning partition boundaries to workload

patterns.

5.1 Reuse in Shared Execution

We provide an overview of the challenges in reusing materializations during shared execution.

We first motivate reusing materializations to reduce recomputation in Section 5.1.1, then

highlight the performance pitfalls that materializations introduce when combined with work

sharing in Section 5.1.2, and finally outline the solutions that ParCuR proposes.

5.1.1 Recomputation Bottleneck

When using work sharing, processing more queries increases the response time sublinearly,

and thus, the total processing time is reduced compared to QaT execution. However, for each

submitted query batch, global plan execution always starts from a clean slate. Data flows from

the input tables to each query’s output, and all shared operators of the global plan are fully

processed from scratch.

Recomputation of previously “seen” expressions can be critical as the additional processing

for handling query-sets renders shared operators particularly time-consuming. For example,

shared filters and joins require one or more query-set intersections, the cost of which is

increased as a function of the number of queries. Furthermore, shared filters are not simple

comparisons but are implemented as joins with predicates using the predicate indices.

All in all, as global plans often consist of tens of operators, processing accumulates and

prevents providing results within a tight time window. Therefore, to offer interactivity, we need

to reduce the required computations for each batch.

5.1.2 Pitfalls of Combining Reuse and Work Sharing

Analytical databases often reduce runtime computations by reusing precomputed results.

However, we observe that using materializations in work-sharing environments exhibits a

set of properties that have not been studied before and which make data reuse inefficient.

Namely, these properties are: i) shared cost, ii) synergy, iii) filter amplification, and iv) risk of

miss.
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Figure 5.2: Motivational example: work sharing introduces novel challenges for reuse

We elaborate on each of these properties. For ease of presentation, we describe them using a

running example of a batch with the following two queries:

Q1: SELECT SUM(X) FROM A,B,C,D WHERE expr1
Q2: SELECT SUM(X) FROM A,B,E WHERE expr2

Figure 5.2 shows the global plan for Q1 and Q2. For ease of reference, each operator is labeled

with a number.

Shared cost: QaT cost models are inaccurate in work-sharing environments. Work sharing

affects both which operators reuse eliminates and their relative importance. On the one

hand, reuse eliminates upstream operators only as long as their results are not required

by other remaining downstream operators. For example, reusing the results of operator 4

eliminates operators 3 and 4, but operator 2 is still required for Q2. On the other hand, work

sharing across queries diminishes the importance of frequency of occurrence for operators;

the savings depend more on the total number of Data-Query tuples processed by the shared

operator rather than the number of participating queries. This is contrary to the assumptions

of traditional cost models for materializing intermediates, which assume that reuse eliminates

all upstream costs and which simply add up the benefit for each affected query.

Synergy: The benefit of individual materializations is amplified. Materialization decisions

affect each other’s results differently than they do in single-query plans. Reuse in single-query

plans results in diminishing returns. For example, reusing the results of operator 4 in the

original plan eliminates joins 3 and 4, whereas reusing the same results in a rewritten plan

that already uses operator 3 only eliminates join 4. This observation is critical for the design of

heuristic materialization algorithms that are based on submodularity. However, diminishing

returns are not necessarily the case in global plans. Consider the example where we reuse

results for operators 3 and 8. We observe a counter-intuitive effect: individually, they eliminate

one join each, but together the benefit is amplified, and they eliminate 3 joins. This effect,

which we refer to as synergy, marks a departure from traditional materialization and reuse.
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Filter amplification: Shared filters over materializations dominate the total processing time.

When injecting a materialization into a global plan, the work-sharing database needs to pro-

cess filters from all the tables participating in the computation. For example, if the database

reuses the results of the subquery corresponding to operator 4, the global plan needs to pro-

cess 4 shared filters from tables A, B , and C . Similarly, if it reuses the results corresponding to

operator 8, the global plan needs to process 2 shared filters from A and B . Then, the processing

time for filters is amplified for two reasons: i) materializations can have a significantly larger

cardinality than small dimension tables, and ii) filters must process every materialization

where the corresponding table participates (e.g., filters from A are processed on the mate-

rializations of both 4 and 8). In some cases, reuse deteriorates performance compared to

processing the batch from scratch using work sharing.

Risk of miss: The probability that the materialization covers all accessed data decreases with

the number of queries. Reuse typically requires that the materialization fully subsumes the

subquery that it eliminates. Similarly, the materialization needs to subsume all participating

queries to eliminate subplans in global plans. For example, eliminating operator 2 by reusing

its result requires that both Q1 and Q2 can be answered using the materialized subexpression.

Assume that the materialized subexpression only covers expr1 and expr1 defines a subset of

expr2: then, even if Q1 is answered using the materialized subexpression, Q2 fully recomputes

the shared operator’s result already and thus reuse brings no benefit compared to shared

execution. Requiring full subsumption for materialized subexpressions that are subject to

tight predicates has a high risk of mismatch, especially in case of workload shifts.

5.1.3 Harmonizing Reuse and Work Sharing

To significantly reduce their runtime computations, work-sharing databases need to address

inefficiency in reuse. In this work, we harmonize work sharing and reuse: we redesign,

based on the above-mentioned properties, the techniques for materializing and reusing

precomputed results such that we maximize eliminated computations and minimize reuse

overhead. Harmonization takes place across three axes: i) materialization and reuse policies

which address shared cost and synergy, ii) access methods for materializations which address

filter amplification, and iii) partial reuse, which addresses the risk of miss.

Materialization and reuse policies: Due to shared cost and synergy, algorithms for selecting

materializations or injecting materializations into plans make suboptimal decisions. Work

sharing renders their cost models inaccurate and violates assumptions that they make, such as

submodularity. Hence, harmonization requires novel materialization and reuse policies that,

by taking into account both shared cost and synergy, select materializations that bring higher

processing time reduction, given the same budget. In this work, we introduce a methodology

that evaluates cost reduction using i) the eliminated shared cost in global plans and ii) the

novel concept of cuts, that is, sets of materializations that exhibit synergy. We first formulate

the problem of choosing materializations for a target workload (Section 5.2.2). The formulation
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Materialization policy ✓ ✓
Access methods ✓

Partitioning ✓
Reuse policy ✓ ✓

Data & Filter skipping ✓
Partition-oriented execution ✓

Table 5.1: Mechanisms that ParCuR uses to harmonize reuse and work sharing. Each mecha-
nism in ParCuR is either offline (brown rows) or online (purple rows) and addresses challenges
for reuse in work-sharing environments (columns)

is a variant of the subexpression selection problem [51, 136]. We show that the materialization

problem can be reduced, using cuts, into a Submodular Cover Submodular Knapsack (SCSCK)

problem [49], for which there exists a family of approximation algorithms. Afterward, we

address the problem of selecting which materializations to reuse and when in shared exe-

cution (Section 5.3.3). We propose a reuse optimization pass that, at runtime, injects into a

global plan the materialized subexpressions that maximize the difference between eliminated

computation and the overhead of accessing and filtering the selected subexpressions.

Access methods: Filter amplification limits the applicability of reuse, as it shrinks the net

benefit and, when filtering overhead is high enough, it deteriorates performance. Efficient

reuse requires that the processing time for shared filters over materializations is decreased.

We reduce processing time for filters using suitable access methods for the workload at hand.

By building and using access methods, ParCuR enables shared execution to evaluate shared

filters over one block of tuples at a time instead of processing them on a tuple-by-tuple basis,

and thus to amortize the overhead. First, we discuss building access methods for the target

workload through partitioning (Section 5.2.3). Then, we discuss using the created access

methods to eliminate filters at runtime (Section 5.3.1). In this step, alternative techniques

such as SH2O are also applicable.

Partial reuse: The risk of a miss also limits the applicability of reuse under strict subsumption

requirements. For this reason, ParCuR opts for a different paradigm: to exploit available

materializations for the parts of the data that they cover. Hence, it uses partial reuse. During

execution, ParCuR can answer each query by combining computations from parts of different

materializations and even from parts of the base data. Computations on disjoint parts of

the data that consist of operators such as filters, projections, join probes, and aggregations

can be combined to produce the full result [129]. Our insight is that, to enable composable

computations from different parts of data, planning and execution need to take place at
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partition granularity. In addition, the reusability of materializations is maximum when they

fully cover the data for a set of partitions. Then, for the corresponding partitions, they always

subsume the partition-local computations for the matching queries and can eliminate the

shared operators in the corresponding data range. Hence, ParCuR performs materialization

and reuse at partition granularity. The materialization policy selects for each materialization a

set of partitions to fully cover and injects materializations into each partition’s global plan at

runtime. However, this scheme creates a dependency between partitioning and the storage

overhead for covering the target workload; storage overhead is minimum when partition

boundaries are aligned with the queries that the materializations subsume. Thus, due to

this dependency, data needs to be partitioned such that each partition’s tuples are required

by the same computations, which, in turn, require the same materializations. We propose

the metric of homogeneity to capture the similarity of computations across each partition’s

tuples. ParCuR introduces a partitioning scheme (Section 5.2.1) that, by splitting data such

that homogeneity is maximized, maps each computation to the data that it concerns and

reduces wasteful materialization. ParCuR uses the selected partitions at runtime in a partition-

oriented execution model (Section 5.3.2) to enable partial reuse and achieves cost savings that

are proportional to the overlap between the runtime and tuning workload.

Table 5.1 summarizes the above solutions. It maps each solution to the challenge that it

addresses. Furthermore, it classifies each solution based on when it takes place: offline

(highlighted in brown) or online (highlighted in purple). In the next section, we show how we

combine the above solutions into a comprehensive framework, ParCuR.

5.1.4 Putting It All Together

We present ParCuR (Partition-Cut-Reuse), a framework that enables shared execution to effec-

tively take advantage of materialized subexpressions. To do this, ParCuR adapts subexpression

selection [51] and reuse to work-sharing environments by combining the solutions in Table

5.1. In this section, we present ParCuR’s architecture and workflow.

ParCuR’s architecture comprises two parts: the tuner, and the executor. The tuner operates

offline. It analyzes a target workload made of historical query batches and adapts the frame-

work’s state by employing the ParCuR’s offline mechanisms: i) it partitions the data based on

the access patterns of the target workload’s queries, ii) it materializes a set of subexpressions

for the given partitions, and iii) it builds new access methods for the materialized subexpres-

sions using finer-grained partitioning. Then, given the available partitioning, materialized

subexpressions, and access methods, the executor processes each query batch arriving at run-

time: i) it performs shared execution at the level of the available partitions, ii) it decides when

and where to reuse materialized subexpressions for each partition, and iii) it uses the available

access methods to reduce filter costs using data and filter-skipping. Figure 5.3 illustrates the

end-to-end workflow for both the offline tuner and the online executor. Note that the query

batches processed at runtime can be arbitrarily different from historical batches both in terms
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Figure 5.3: ParCuR’s workflow in a) the offline tuner and b) the online executor

of access patterns and global plans. In all cases, ParCuR opportunistically uses the existing

state to reduce the response time of runtime batches.

Despite being decoupled, the tuner and the executor cooperate to address the challenges

of reusing materialized subexpressions in work-sharing environments. The solution to all

challenges requires mechanisms at both the tuner and the executor. First, both materialization

and reuse decisions take into account the shared cost and synergy. Second, the creation of

access methods is combined with a filter-skipping mechanism to reduce filter costs. Third,

workload-aware partitioning is coupled with the partition-granularity materialization and

a partition-oriented execution model to enable partial reuse, thus making the cost of miss

proportional to the mismatch. We elaborate on each mechanism in Sections 5.2 and 5.3.

5.1.5 ParCuR’s Scope

This work focuses on proposing mechanisms that, by harmonizing work sharing and reuse,

produce effective solutions to the offline tuning problem and efficiently process runtime

batches. It assumes that the target historical workload is known a-priori and that tuning takes

place only once during initialization. Building a fully adaptive framework, where the tuner

continuously or sporadically reconfigures the database’s state based on the current workload,

e.g., by physically reorganizing data using cracking [47, 57], choosing materializations online

using recycling [48, 81, 117] or running a tuning process in the background [104], is, on its

own, a rich topic that involves several design decisions that require additional assumptions

about the target application and lies beyond the scope of this work.

ParCuR specifically addresses the problem of subexpression selection in a work-sharing

environment. Therefore, only intermediate results that occur in the global plans of historical

batches are candidates for materialization. This approach is a generalization of semantic

caching and constitutes a constrained form of view selection, which considers intermediate

results that actually occur in plans as well as in alternative plans. ParCuR favors subexpression

selection over view selection due to scalability: view selection involves a significantly larger

search space of possible materializations, which it needs to evaluate for a very large search

space of alternative global plans due to the effect of shared costs and synergy.
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Figure 5.4: Two-query example for subquery vectors

5.2 Tuning ParCuR’s state

The tuner adapts ParCuR’s state. By analyzing a target workload that consists of a sequence of

query batches, the tuner repartitions the data, materializes a set of selected subexpressions,

and builds access methods on the materialized subexpressions. Tuning takes place offline,

before runtime. After tuning is done, the partitions, the materialized subexpressions, and

the access methods are exposed to the executor, which uses them to eliminate recurring

computation in subsequent query batches that arrive at runtime.

In this section, we present each of the steps in the tuner’s workflow. Each step’s output is

the input for the next step in line: partitioning chooses the boundaries for materializing

subexpressions, and the materialization policy selects the subexpressions on which to build

access methods. We first present the partitioning algorithm (Section 5.2.1), then introduce the

materialization policy (Section 5.2.2), and finally discuss access method construction (Section

5.2.3).

5.2.1 Workload-driven Partitioning

The first step of ParCuR’s tuner is to partition the data in a way that maximizes the utility of

subsequent materializations. To differentiate between this partitioning and any additional

data reorganization for building access methods, we name the first step’s partitioning as

1st-level partitioning and any further partitioning as 2nd-level partitioning.

Assuming a recurring workload, subqueries, and especially join subexpressions, are expected

to repeat across batches. This creates reuse opportunities that significantly reduce processing

costs: at some point, ParCuR decides to materialize subexpressions that it expects to reuse
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in subsequent batches at the granularity of data partitions; then, follow-up queries can di-

rectly reuse the subexpressions for the corresponding partitions without recomputing them.

However, for partition-granularity materialization to be budget-efficient, all tuples should be

processed by similar query patterns, i.e., most of their downstream computation should be

the same. Therefore, ParCuR employs a partitioning scheme that clusters tuples according to

query patterns and materializes subexpressions for each partition independently.

Such a partitioning scheme offers three benefits: i) if the query patterns remain the same,

materialized subexpressions are almost fully reused, and space budget is not wasted, ii)

materialization is specialized for the sharing decisions of each partition’s query pattern, and

iii) for the case of partial reuse during a workload shift, performance degradation becomes

proportional to the magnitude of the shift.

To cluster together data that is processed by similar query patterns, we keep track of processing

history for a sample of tuples by maintaining a subquery-vector for each tuple. We consider all

possible subqueries e1,e2, . . . ,em , that appear in a set of historical batches and mark to which

of them each tuple belongs. By subqueries, we mean all the join subexpressions (and their

reorderings) that exist in each batch and involve the fact table. For example, considering a

batch with two queries, A ▷◁ B ▷◁C , A ▷◁ B ▷◁ D and A as the fact table, leads to the sub-

queries depicted in Figure 5.4a. We represent subexpressions in different batches as separate

subqueries because they do not actually co-occur. Using subqueries is advantageous as it

exposes similarities that do not depend on a specific execution plan and naturally represents

co-occurrence in the same batch.

We then use the subquery-vectors in order to formulate a tuple-clustering problem based on

homogeneity. We assume a matrix W , where the ith row of it corresponds to the subquery-

vector of the ith tuple: If at least one query with subquery e j accesses the ith tuple, Wi , j =
w(e j ), where w(e j ) is a weight assigned to e j . Otherwise, Wi , j = 0. In our implementation,

to increase the relative importance of larger subqueries to homogeneity, we set w(e j ) = |e j |,
where |e j | is the number of tables participating in e j . Alternatives assignments can also

achieve a similar result.

Given a set of tuples T , we formally define homogeneity as:

H(T,W ) = ∑
t∈T

h(t ,T,W ) where h(t ,T,W ) =

m∑
j=1

Wt , j

max(
m∑

j=1
w(e j )×u(

∑
t∈T

Wt , j ),1)

where u(x) is the step function with u(x) = 1 when x > 0 and 0 otherwise. Homogeneity assigns

a score h(t ,T,W ) to each tuple in T , based on the subqueries that access the tuple, and is

defined as the sum of scores. The score h(t ,T,W ) is the sum of weights for the subqueries that

access tuple t over the sum of weights for the subqueries that access at least one tuple in T .
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The score is maximum (i.e., h(t ,T,W ) = 1) if all the subqueries that access at least one tuple

in T also access t . The intuition is that homogeneity is maximum when all tuples in T are

accessed by the exact same subqueries. In that case, the utilization of materializations is also

maximum; assuming that a subquery’s results are materialized and that the historical batches

recur as is, reuse exploits all the tuples in the materialization, and no tuple is redundant.

Homogeneity-based partitioning is defined as the problem of finding the partitions {p∗
1 , p∗

2 , . . . , p∗
n}

that maximize the aggregate homogeneity, i.e.:

{p∗
1 , p∗

2 , . . . , p∗
n} = argmax

{p1,...,pn }

n∑
i=1

H(pi ,W ) s.t . ∀pi |pi | ≥ PSmi n

where PSmi n is the minimum allowed partition size. Homogeneity-based partitioning finds

partitions such that, in each partition, the tuples are accessed by almost the same set of

subqueries, and thus, barring a workload shift, the utilization of materializations is high. The

partition size constraint ensures that the solution avoids the trivial optimal solution where

each tuple forms its own partition.

To efficiently compute a solution to homogeneity-based partitioning, both top-down and

bottom-up approaches are applicable. We use a space-cutting approach that, similar to [130],

forms a tree of cuts in the space of table attributes. Each internal node corresponds to a logical

subspace of the table and contains a predicate based on which this subspace is further split:

the left child corresponds to the data that satisfies the predicate, whereas the right child to

the data that does not. Finally, the leaves of the tree correspond to data partitions, which are

the quanta for materialization. The advantage of the space-cutting approach is that it enables

routing queries to required partitions based on the predicates of the splits and the queries.

To solve the partitioning problem, we use a greedy algorithm, which we show in Algorithm 5.

The algorithm runs on a uniform sample of the tuples to keep runtime monitoring overhead

low. ParCuR computes the sample’s query pattern matrix by monitoring data accesses across

batches and by recording the vector of subqueries for the sample’s tuples. When triggered, the

greedy algorithm computes the change in the objective function for each candidate cut, that is,

a predicate that intersects with the partition at hand (lines 5-9), and finds the locally optimal

cut that maximizes the aggregate homogeneity (lines 12-14). Then, the space is partitioned

based on the locally optimal cut, and the greedy algorithm is recursively invoked for the two

children subspaces and the respective sample tuples (lines 16-19). The greedy algorithm stops

when either the relative improvement from the locally optimal cut drops below a threshold,

which we set at 1% (lines 20-21), or all candidate cuts violate the minimum partition size for

resulting partitions (lines 9-10).

Homogeneity-based partitioning results in more efficient use of the storage budget compared

to data access-based partitioning schemes, such as Qd-tree [130]. Consider the following

example2. Let A ▷◁ B , A ▷◁ C take 10GB to materialize each. Also, let attribute A.X be

2Note that, with this example, we focus on the conceptual difference between homogeneity-based and data
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Algorithm 5: Homogeneity-based Partitioning

1 Function PARTITION(par ti t i on,W,cut s,PSmi n) :
2 out put = null ;
3 best = null ;
4 bestScor e = null ;
5 scor e = H(par ti t i on.sample,W ) ;
6 for cut ∈ cut s do
7 if i nter sect s(par ti t i on,cut ) then
8 t p, f p = g etPar ti t i ons(par ti t i on,cut ) ;
9 if t p.si ze < PSmi n or f p.si ze < PSmi n then

10 conti nue ;
11 cur r = H(t p.sample,W )+H( f p.sample,W ) ;
12 if best == null or cur r > bestScor e then
13 best = cut ;
14 bestScor e = cur r ;

15 if best == null and bestScor e > 1.01× scor e then
16 t p, f p = g etPar ti t i ons(par ti t i on,best ) ;
17 tr es = PART I T ION (t p,W,cut s,PSmi n) ;
18 f r es = PART I T ION ( f p,W,cut s,PSmi n) ;
19 out put = Node(best , tr es. f r es) ;

20 else
21 out put = Lea f () ;

22 return out put ;

uniformly distributed in {0, . . . ,99}. The input workload consists of a batch of three queries:

Q1: SELECT * FROM A,B WHERE A.Z=B.Z AND X < 60
Q2: SELECT * FROM A,C WHERE A.W=C.W AND X < 50
Q3: SELECT * FROM A,C WHERE A.W=C.W

Suppose that we run both homogeneity-based partitioning and Qd-tree with minimum parti-

tion size 0.2×|A|. Both algorithms perform one cut, either at X = 50 or at X = 60.

Qd-tree uses a cost function (lower is better) to choose a cut:

C ({p1, . . . , pn}) =
n∑

i=1
(|pi |×

∑
q∈Q

S(pi , q))

where Q is the set of queries and S(pi , q) = 1 if query q accesses partition pi and 0 otherwise.

Splitting at X = 50 results in cost |A| +0.5× |A| + |A| = 2.5× |A|, whereas splitting at X = 60

results in cost 0.6×|A|+ |A|+ |A| = 2.6×|A|. Hence, the optimal cut is at X = 50.

access-based partitioning. It is also possible to make QaT partitioning algorithms, such as Qd-tree, to choose
suboptimal partitioning by tweaking the number of occurrences, and hence the relative importance, of each query.
Furthermore, QaT partitioning algorithms are ill-defined for shared data access and can be ineffective if applied at
batch level e.g. a batch may access the full data even when each individual query requires a small fraction of the
data. However, the example shows that the partitioning is suboptimal even in the absence of such effects.
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Homogeneity-based partitioning uses the objective function above (higher is better). Splitting

at X = 50 results in a sum 5×0.5×|A|
5 + 5×0.1×|A|+3×0.4×|A|

5 = 0.84×|A|, whereas splitting at X = 60

results in a sum 5×0.6×|A|
5 + 3×0.4×|A|

3 = |A|. Hence, the optimal cut is at X = 60.

To choose partition-granularity materializations that completely cover the three queries, the

two splits require different storage budgets. If the data is partitioned at X = 50, A ▷◁ B and

A ▷◁C need to be materialized in both [0,49] and [50,99], which requires a budget of 20GB.

By contrast, if the data is partitioned at X = 60, A ▷◁B needs to be materialized only in both

[0,59] and A ▷◁C needs to be materialized in both partitions, which requires a budget of 16GB.

Hence, homogeneity-based partitioning results in more effective utilization of the budget.

5.2.2 Materialization Policy

1st-level partitioning assumes that query patterns represent the overall workload and thus

recur in future batches. To eliminate recomputation in such cases, ParCuR materializes

subexpressions in a per 1st-level partition basis.

Due to the interference between reuse and work sharing, a global plan-aware materialization

policy is required. Furthermore, in ParCuR the policy should address the existence of partitions

that process different query patterns. Therefore, ParCuR relies on a new formulation of the

subexpression selection problem, which is: i) sharing-aware, ii) works on partition-wise global

plans, and iii) where the optimal solution is expected to differ from the one of the classical

problem. We call this new problem Multi-Partition Subexpression Selection for Sharing (MS3).

We first define the Historical Workload Graph, which is the input of MS3, and subsequently

MS3 itself.

Definition 5.2.1 (Historical Workload Graph). — Given a fact table T , a partitioning {p1, p2, .., pn}

of T , and batches {Q1,Q2, . . . ,Qm}, the historical workload graph G is a graph composed of

connected components Gi , j , i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}, where Gi , j is the global plan for Q j

over pi . In the global plan, nodes represent operators (including a pseudo-operator for T ),

and edges represent producer-consumer relationships.

Definition 5.2.2 (MS3). — Let R(c) be the maximum cost reduction that reuse can incur

when executing the global plans of the historical workload graph G with an available set of

materialized subexpressions c, and B(c) the budget required for materializing c. If B is the

total memory budget, MS3 is defined as:

max
c

R(c),s.t.: B(c) ≤ B

MS3 is a hard problem, and hence it is time-consuming to compute a tractable exact solution.

To solve it, we first prove a reduction to Submodular Cover Submodular Knapsack (SCSK)

problem [49] and then show how we can use approximate algorithms for SCSK to choose

to materialize a set of expressions that achieve a high cost reduction with approximation

guarantees.
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Figure 5.5: Example showing the effect of reuse on a global plan

Reduction to SCSK

Let U be a set, and f , g : 2U →R be two submodular functions3, then SCSK is the optimization

problem

max
S⊂U

g (S), s.t . f (S) ≤ B

In order to reduce MS3 to SCSK, cost savings in MS3 should be submodular, i.e., adding

more materialized subexpressions should result in diminishing returns. While this is true in

QaT execution, where each materialization reduces the marginal benefit of other conflicting

materializations, it does not hold in shared execution. We observe that shared execution

benefits more from materializations in the same path of the global plan, where synergy

increases cost savings.

The key idea for reducing MS3 to a submodular optimization problem is to consider subex-

pressions to materialize in groups. We notice that computing cost savings for groups gives us

more accurate estimates for the eliminated upstream computations. In addition, the synergy

between groups is always captured by their super-group, that is, a group that contains their

union.

We formulate useful groups of materializations by introducing the concept of cuts. Intuitively,

in a given global plan, a cut is a set of subexpressions that, if materialized, eliminate all

upstream operators between (inclusive) the operators that produce them and a common

ancestor, the anchor. For example, in Figure 5.5, the cut composed of A ▷◁ B ▷◁ E ▷◁ F

and A ▷◁ B ▷◁ E ▷◁G eliminates the upstream node A ▷◁ B ▷◁ E , which is also the anchor.

Formally, we define cuts and anchors as follows:

3Submodularity formalizes diminishing returns. Specifically, a function h is defined as submodular if S ⊂ S′ ⇒
h(S ∪ {s})−h(S) ≥ h(S′∪ {s})−h(S′).
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Definition 5.2.3 (Cuts and anchors). — Let G be the historical workload graph. A set of nodes

c ⊂V is defined as a cut with respect to anchor a ∈V if:

• a is an ancestor for every v ∈ c.

• Every descendant of a is either i) an ancestor of at least one node v ∈ c, or ii) a descendant

of exactly one node v ∈ c.

We represent the set of all cuts in G as CU T S(G), and for all c ∈CU T S(G) we define BC (c, a) as

the nodes between (inclusive) the cut’s nodes and anchor a. The shorthand BC (c) implies using

the minimal anchor (i.e., an anchor whose predecessor is not an anchor for c).

Choosing cuts to materialize so as to maximize the eliminated cost in their BC sets is related to

but not identical to MS3. The cost in BC sets is not always equal to the cost reduction from the

same materializations in MS3 because MS3 implicitly includes the savings from super-cuts,

that is, the union of smaller materialized cuts. However, we prove that solutions in the cut

selection problem can be enriched such that they are both solutions to cut selection and MS3

with equal savings. Furthermore, we prove that cut selection is an SCSK problem, and thus

we can solve it using approximate algorithms. Based on these two properties, cut selection

gives a solution to MS3 with a better or equal approximation factor than the one given for

SCSK. In the following paragraphs, we formally define cut selection and prove the mentioned

properties.

First, we introduce some required notation:

Definition 5.2.4 (Domain and Enrichment). — Let S be a set of cuts to materialize. We define

the domain of S as the set

d(S) = {v.subquer y |v ∈ (
⋃
c∈S

c)}

and the enrichment of S as the set

e(S) = {c|c ∈CU T S(G) and ∀v ∈ c(v.subquer y ∈ d(S))}

The domain represents which results S materializes, and the enrichment represents all cuts that

are materialized by materializing S.

Definition 5.2.5 (Cost Reduction and Budget). — Let S be a set of cuts. Furthermore, let

cost (op) be the processing cost for an operator op in the global plan. Then, we model the cost

reduction due to materializing S as:

R̄(S) = ∑
op∈O

cost (op), wher e O = ⋃
c∈S

BC (c)

and the required materialization budget as

B̄(S) = ∑
v∈d(S)

B({v})
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R̄(S) is equal to the cost of operators O that are eliminated by materializing the cuts in S. Each

cut eliminates the shared operators between the cut and the minimal anchor, and, by definition,

computing O as the union of operators accounts for overlaps between the operators that are

eliminated by different cuts.

B̄(S) is equal to the total budget required for materializing the results of the cuts in S. d(S) is by

definition the results that S materializes.

Definition 5.2.6 (Reduced Workload Graph). — Let S be a set of cuts. We define the reduced

workload graph of S as

G(;) =<V (;),E(;) >=G

G(S) =<V (S),E(S) >=G[V − ⋃
c∈S

BC (c)]

where G[V ′] is the induced subgraph of G for vertices V ′.

The reduced workload graph represents the global plans for the historical query batches after

materializing and reusing the cuts in S.

We define cut selection problem as follows:

Definition 5.2.7 (Cut Selection). — Cut selection is defined as the optimization problem of

finding a set of cuts S such that:

maxR̄(S),s.t.: B̄(S) ≤ B

Using the above definitions, we prove the following theorems:

Theorem 3. Cut selection is an SCSK problem.

Proof. We prove that R̄ and B̄ are submodular. For a set of cuts S and a cut c, it holds that:

R̄(S ∪ {c})− R̄(S) = ∑
op∈O(S)

cost (op) s.t . O(S) = BC (c)∩V (S)

and

B̄(S ∪ {c})− B̄(S) = ∑
m∈M(S)

B({m}) s.t . M(S) = d({c})−d(S)

Let S, S’ be two sets of cuts such that S ⊂ S′. Then,

R̄(S ∪ {c})− R̄(S) = ∑
op∈O(S)

cost (op)

and

R̄(S′∪ {c})− R̄(S′) = ∑
op∈O(S′)

cost (op)
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However, V (S′) ⊂V (S) and thus O(S′) ⊂O(S). Therefore,

R̄(S ∪ {c})− R̄(S) ≥ R̄(S′∪ {c})− R̄(S′)

Similarly,

B̄(S ∪ {c})− B̄(S) = ∑
m∈M(S)

and

B̄(S′∪ {c})− B̄(S′) = ∑
m∈M(S′)

Then, d(S) ⊂ d(S′) and thus M(S′) ⊂ M(S). Therefore,

B̄(S ∪ {c})− B̄(S) ≥ B̄(S′∪ {c})− B̄(S′)

Therefore, both f and g are submodular.

Theorem 4. If S is a solution to cut selection, then e(S) is also a solution to cut selection with

R̄(e(S)) ≥ R̄(S).

Proof. By definition, S ⊂ e(S).

B̄(e(S)) = ∑
m∈d(S)

B({m}) = B̄(S)

Therefore B̄(e(S)) ≥ B and e(S) is a solution to cut selection.

Furthermore,

R̄(e(S)) = ∑
op∈(

⋃
c∈e(S) BC (c))

However, S ⊂ e(S) and thus
⋃
c∈S

BC (c) ⊂ ⋃
c∈e(S)

BC (c). So,

R̄(e(S)) ≥ R̄(S)

Theorem 5. For every e(S), it holds that R(d(S)) = R̄(e(S))

Proof. Let S be a set of cuts. We represent the eliminated operators in the original MS3

problem when S is materialized as t (S). Formally, t (S) is the set of all nodes whose operators

produce d(S) or all their successors belong to t (S). Then:
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R(d(S)) = ∑
op∈t (S)

cost (op)

We now prove that t (S) =⋃
c∈e(S) BC (c).

Let c ′ ∈ e(S). Then, c ′ ⊂ d(S), and ∀v ∈ BC (c ′) it holds v ∈ t (S) and thus BC (c ′) ⊂ t (S). It follows

that
⋃

c ′∈e(S)
BC (c ′) ⊂ t (S).

Also, let a ∈ t(S) and ca all the descendants of a that belong to d(S). Then, ca is a cut with

anchor a, as the two conditions in the definition of cuts are true: i) a is an ancestor for all

nodes in ca , and ii) assume there is a descendant of a, a′, that is not a descendant of any

node in ca . Then, a′ is an ancestor of at least one node in ca because a ∈ t (S) (otherwise, the

nodes in the path from a to a′ should not be in t(S)). Therefore, ca is a cut, a ∈ BC (ca) and

t (S) ⊂ ⋃
c ′∈e(S)

BC (c ′).

Thus t (S) = ⋃
c∈e(S)

BC (c) and:

R(d(S)) = ∑
op∈t (S)

cost (op) = ∑
op∈⋃

c∈e(S) BC (c)
cost (op) = R̄(e(S))

Approximating MS3

ParCuR’s tuner chooses subexpressions to materialize by solving cut selection for historical

batches. The selection process has two steps: i) the tuner constructs the workload graph and

computes the cuts and their corresponding BC sets, and ii) the tuner runs an algorithm for

solving the cut selection instance for the computed cuts. The subexpressions in the selected

cuts are then materialized and used in subsequent batches.

The tuner currently implements two approximate algorithms for solving SCSK, greedy (Gr)

and iterative submodular knapsack (ISK) [49]. We briefly present the properties of the two

algorithms as presented in the work of Iyer et al. [49].

Gr: Gr is a greedy algorithm. At each step, given an existing partial solution S, it chooses the

cut c with the highest marginal benefit R̄(S ∪ {c})− R̄(S) that can fit in the remaining budget

and adds it to the partial solution. The algorithm finishes when there are no more cuts that

fit in the budget. Thus, Gr’s worst-case complexity is O(|CU T S(G)|2). In our experiments, it

requires few msecs to find a solution.

Gr provides an approximation factor 1− (
K f −1

K f
)k f , where

K f = max
S⊂U

|S| s.t . f (S) ≤ B
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is the maximum solution size for the SCSK problem and

k f = min
S⊂U

|S| s.t . f (S) ≤ B ∧ f (S ∪ { j }) > B

is the minimum solution size that saturates the constraint (i.e., the solution cannot be ex-

panded by adding another element to S).

The bound suggests that Gr finds efficient solutions when the setup is such that saturating

the budget requires a large number of cuts. Conversely, if a single cut can saturate the budget,

the worst-case approximation factor is 1
K f

. This bound is consistent with the results of our

evaluation.

ISK: ISK is a fixed point algorithm. In each iteration, it solves a new Submodular Knapsack

problem that computes the required budget B̄(S) using a modular upper bound. The upper

bound function is parameterized using a set of cuts, for which it provides a tight bound. The

solution of each iteration parameterizes the upper bound function for the next iteration.

In each Submodular Knapsack problem, it combines partial enumeration with greedy ex-

pansion; it chooses between (|CU T S(G)|
3 ) candidate solutions, where each candidate solution

fixes the first three cuts and chooses the rest using a greedy algorithm. At each step, the

greedy algorithm chooses the cut with the highest ratio of marginal benefit to required budget
R̄(S∪{c})−R̄(S)

B̄({c})
.

ISK’s complexity is O(i t ×|CU T S(G)|5) where i t is the number of iterations until it converges.

Thus, for a few hundred of cuts, ISK can run for hundreds of seconds. Thus, it is significantly

more time-consuming than Gr.

As it uses the upper bound in each iteration, ISK solves a problem with a tighter budget

constraint. Thus, in its first iteration, it provides a constant approximation factor 1−e−1 for

the solution of the problem

max
S⊂U

R̄(S) s.t . B̄(S) ≤ b

K f

Subsequent iterations improve the solution and thus maintain the approximation guarantee.

Furthermore, it is possible to achieve a bicriterion guarantee: running ISK with a larger

budget constraint provides a constant approximation factor for problems with more relaxed

constraints; this approach, however, can lead to illegal solutions for the original budget.

5.2.3 Building Access Methods

At runtime, materialized subexpressions are accessed at a per-partition level. Nevertheless,

they still need to be scanned and filtered based on the predicates of the running queries. The

processing time for shared access and filtering of base and cached data can dominate the total

processing time. By reorganizing data within each partition, ParCuR further reduces both data

access- and filtering costs.

114



5.3 Reuse-aware Shared Execution

For creating a workload-aware layout, ParCuR can conceptually use different data organization

strategies as long as they mitigate access and filtering costs. For example, it can build a spatial

index and use SH2O, or partition the data using techniques such as Qd-tree [130] or the

algorithm from Sun et al. [114]. ParCuR’s implementation uses multidimensional range

partitioning. We refer to this finer-grained partitioning as 2nd-level partitioning.

Multidimensional range partitioning can enable efficient data access that reduces accesses

during scans, as it enables data skipping. Furthermore, by cutting data across values that are

frequently used in predicates, it can be used to statically evaluate frequent filters for a whole

partition. To build the partitions, we iteratively subpartition data across the predicates values

of one attribute at a time. The resulting subpartitions inherit query homogeneity from the

1st-level partitioning and also reduce data-access costs. From this point on, we differentiate

the partitions derived from the 2nd-level partitioning by calling them blocks.

5.3 Reuse-aware Shared Execution

At execution time, ParCuR takes advantage of the constructed partitions and materialized

subexpressions and optimizes query processing in three levels: First, it uses data and filter

skipping to identify the queries that access each partition and reduce filtering costs. Second,

it adopts a partition-oriented execution paradigm that plans and optimizes each partition

independently; thus, exposing different opportunities per partition. Third, ParCuR introduces

a cost-based optimization framework that chooses which materializations to inject into each

partition’s plan.

5.3.1 Data and Filter Skipping

ParCuR uses 2nd-level partitioning to reduce data access and filtering costs. To do so, for

each block, it identifies i) which queries process the block, and ii) which predicates have the

same value for all tuples in the block. Then, during execution, it skips 2nd-level partitions that

are not processed by any query and eliminates filters whose predicates are invariant across

the block. Both optimizations occur on both the fact table and the materializations, and can

drastically reduce batch response time.

As the data is organized by cutting the data space, each block’s boundaries are defined by

a range along each attribute. Then, if the range is known, the above analysis can be done

statically. Concretely, a query’s predicate is invariant when its value range either subsumes

(always true) or does not overlap (always false) with the block’s range. Moreover, a query skips

a block if at least one of its predicates always evaluates to false (no overlap). For example, the

query SELECT COUNT(*) FROM T WHERE x > 8 skips block 5 ≤ x < 7, as the two ranges do

not overlap. Similarly, for the same block, the predicate of query SELECT COUNT(*) FROM T
WHERE x > 4 is true across the whole block and, thus, it is redundant to evaluate it for every

tuple.
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The above logic is implemented by maintaining zonemaps [39]: a lightweight index that stores

min-max statistics for each attribute. During the table scan, for each block, ParCuR compares

the corresponding ranges against the shared filter predicates to identify which queries do

not overlap with this block (data skipping) and which are satisfied by the entire block (filter

skipping). The remaining ambivalent filters are processed using the global plan.

5.3.2 Partitioned Execution

ParCuR optimizes each 1-st level partition independently to i) exploit partition-specific mate-

rializations and ii) enable partial reuse by decoupling planning between partitions. To do so, it

introduces a two-phase partition-oriented execution model. First, it computes the shared state

between partitions such as hash tables on dimensions and data structures for aggregation.

Next, it executes each partition independently. For each partition, ParCuR identifies which

queries process the partition using the same data-skipping mechanism as above. Then, it

chooses a global plan that is specialized for the queries and materializations of the partition at

hand. Finally, partial results from each partition are merged together in the output operators

such as projections, aggregations, and GROUP-BYs. Since shared execution processes sub-

queries that comprise selection, projection, join probe, and potentially aggregation operators,

combining partial results produces the final output [129].

Partial reuse is feasible because the output operators are oblivious to each partition’s planning

decisions. When query patterns recur with minor shifts, they mostly process their designated

1-st level partitions and spill over only to few neighboring partitions. Then, ParCuR processes

the bulk of the processing using materializations and addresses spillovers with selective com-

putations. Hence, in case of a workload shift, performance degradation becomes proportional

to the magnitude of the shift, and thus ParCuR avoids suffering a performance cliff.

5.3.3 Injecting Materializations in Global Plans

For each partition, ParCuR optimizes and processes a global plan that exploits the available

materializations and access methods as well as sharing opportunities. However, making all

planning decisions in a unified optimization framework scales poorly. To this end, ParCuR

adopts a two-phase optimizer architecture that performs reuse as a post-processing phase.

Two-phase optimizer

Benefits from reuse and work sharing are interdependent: the marginal benefit from reuse, if

any, depends on available sharing opportunities and, also, the opportunities from downstream

work sharing between queries are contingent on answering them using the same material-

ization. Thus, it is tempting to formulate a unified optimization problem in order to find a

globally optimal plan. However, sharing-aware optimization already has a very large search

space, and thus enriching it with reuse planning decisions is prohibitive.
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To incorporate work sharing and reuse in a scalable and practical manner, the optimizer needs

to restrict the search space. ParCuR’s optimizer focuses on ensuring better performance than

pure work sharing and on avoiding performance regression. Thus, the optimizer uses two

phases. In the first phase, the optimizer chooses a baseline global plan that uses work sharing.

Then, in the second phase, the optimizer improves on the baseline plan by rewriting it to reuse

materializations. Finally, ParCuR processes the resulting plan, which combines reuse and

work sharing.

Reuse phase

The reuse phase is based on the observation that reuse replaces operators from the baseline

plan with filters on materializations. Hence, the goal is to find which subexpressions, if reused,

can maximize the difference between eliminated computations and filtering costs. For each

cut c, we can estimate this difference, which we call benefit, as:

bene f i t (c, a) = ∑
op∈BC (c,a)

cost (op)− ∑
v∈c

(c f ×|RF (v)|× v.si ze)

where cost (op) of operator op in the baseline plan, RF (v) are the runtime filters on subex-

pression v after filter-skipping in the current partition, v.si ze is the number of tuples for the

subexpression in the current partition and c f is a constant for estimating filtering costs per

tuple as a linear function of the number of runtime filters |RF (v)|. bene f i t (c, a) represents the

net benefit of reusing c with respect to anchor a as the different between the cost of eliminated

operators between c and a and the overhead for accessing and filtering c’s materializations.

The optimizer has all this information at the time of running the reuse phase.

In order to choose which subexpressions to reuse, the reuse phase, which we show in Algorithm

6, performs a post-order traversal of the baseline plan and transforms the plan. When visiting

a node, the traversal first processes the node’s successors and merges their rewrite decisions

(lines 9-11). Then, the algorithm finds the best cut (i.e., the cut with the highest benefit) that

can eliminate the current node. If all of the node’s successors are eliminated or are anchors for

cuts, then the algorithm computes the best cut of downstream subexpressions by merging

the cuts of the remaining successors (lines 12-16). If the node corresponds to a materialized

subexpression, the algorithm also considers the cut that consists of the node’s results (lines

17-19). Finally, if the best cut provides net gain, the rewrite is applied immediately (lines

20-22), and otherwise, the best cut is propagated to upstream nodes.

Theorem 6. Algorithm 6 makes the optimal injection decision for the given plan.

Proof. We prove, using induction on the plan size, that the algorithm computes: i) the optimal

reuse-enhanced plan and ii) the best cut that has not been injected already.

Base step: For a plan with one node, the algorithm minimizes the cost: if the node’s result is

materialized and reuse is beneficial (positive benefit), the algorithm rewrites the plan. Other-
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wise, the baseline plan is optimal and the algorithm leaves it as it. If there is a materialization

and the benefit is negative, it constitutes the only available cut.

Induction step: If the proposition holds for plan size ≤ k, it also holds for plan size k +1.

We focus on the case where there is only one node that is upstream to all other nodes (root). If

the plan consists of multiple connected components, i.e., subplans with different shared oper-

ators at the bottom, then independently applying the algorithm to each connected component

is trivially optimal.

The currently visited node is upstream to all other nodes (root). Each downstream subplan has

at most k nodes, so the algorithm computes the rewrites that minimize the cost. Let each node

have an attribute optPl an that represents the optimal downstream plan and let DC (pl an)

be a function that computes the downstream cost for an optimized plan (including filters).

Before line 20 (or if the branch in line 15 is not taken), the situation is as follows:

∆= DC (v.optPl an)−DC (v.bestPl an) ⇒

∆= ∑
s∈succ

(DC (s.optPl an)−DC (s.bestPl an))+ (x − y)cost (v)

where x, y ∈ {0,1} are binary values that represent if v is part of the plan. Then, we have the

following two cases:

• if x = 1 or y = 0, then ∆≥ 0. Thus, bestPl an is optimal.

• if x = 0 and y = 1, we prove that the algorithm eliminates v in line 20 and then ∆≥ 0 for

the new bestPl an. Since x = 0, there exists a cut c with anchor v .

– If bene f i t({v}, v) > 0, then the new bestPl an has ∆ ≥ 0, because either {v} or c

will be rewritten.

– Alternatively, REWRITE needs to occur with the downstream cut. Let s1, s2, . . . , sp

be v ’s successors and c1,c2, . . . ,cp the corresponding sub-cuts. Since optPl an is

optimal:

bene f i t (c, v) ≥ ∑
i∈{i |bene f i t (ci ,si )>0}

bene f i t (ci , si )

which implies ∑
i∈{i |bene f i t (ci ,si )<0}

bene f i t (ci , si )+ cost (v) ≥ 0

Thus, the merged cuts from the successors can eliminate v and the new bestPl an

is optimal.
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Algorithm 6: Reuse Optimization Phase

1 Function REUSE_OPT_REC(v) :
2 v.bestPl an =; ;
3 v.bestCut = (!v.succ.empt y())? ; : null ;
4 atLeastOne = (v.succ.empt y()) ;
5 for s ∈ v.succ do
6 REU SE_OPT _REC (s) ;
7 v.bestPl an = v.bestPl an ∪ s.bestPl an ;
8 if s.bestPl an.cont ai ns(s) then
9 atLeastOne = tr ue ;

10 if v.bestCut ! = null then
11 if s.bestCut == null then
12 v.bestCut = null ;
13 else
14 v.bestCut = v.bestCut ∪ s.bestCut ;

15 if atLeastOne then
16 v.bestPl an = v.bestPl an ∪ {v} ;
17 if v.mater i al i zed then
18 if v.bestCut == null or bene f i t (v.bestCut , v) < bene f i t ({v}, v) then
19 v.bestCut = {v} ;

20 if bene f i t (v.bestCut , v) > 0 then
21 v.bestPl an = REW RI T E(v.bestPl an, v.bestCut ) ;
22 v.bestCut = null ;

Handling adaptive optimization

We implement ParCuR by extending RouLette, which uses adaptive sharing-aware optimiza-

tion. RouLette splits batch execution into episodes, which last for the duration of processing

one small base table vector each, and potentially uses a different global plan in each episode.

RouLette learns the cost of different subplans across episodes and eventually converges into

an efficient global plan.

The episode-oriented design conflicts with two-phase optimization: the reuse phase chooses

which subexpressions to reuse based on the baseline plan at partition granularity, whereas

ParCuR switches between multiple baseline plans during a partition’s execution in order to

learn effectively. We reconcile the two using the concept of mini-partitions. Mini-partitions

are horizontal subpartitions of 1-st level partitions and are internally organized using 2-nd

level partitioning. ParCuR splits the base table’s 1-st level partitions into fixed-size mini-

partitions and then splits materializations such that tuples derived from the same base table

mini-partition are clustered together.

ParCuR makes reuse decisions at the mini-partition granularity. When accessing a mini-

partition for the first time, ParCuR chooses a baseline plan and makes two decisions: i) it

decides whether the baseline plan is stable, i.e., it checks whether it is still learning the cost of

the used subplans by tracking changes in cost estimates, and ii) if the plan is stable, it uses
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the reuse phase to choose materializations to use. Then, until the mini-partition is finished,

ParCuR retains the reuse decisions and optimizes the downstream computations for each

reused subexpression independently.

5.4 Implementation

We implement ParCuR on RouLette. Our implementation modifies two components, the policy

and the ingestion, implements a materialization operator that writes results to storage, and

introduces the tuner’s utilities. In this section, we highlight the details of our implementation.

5.4.1 Tuning the Cost Model

The presented techniques for materialization and reuse rely on RouLette’s cost models to

estimate the processing time and use the computed costs to make decisions. RouLette’s cost

models use constant factors to scale the cost estimates for different types of operators. This

work uses the same constant factors as RouLette. In addition, it introduces the new constant

factor c f in Section 5.3.3. By using regression to fit filtering cost estimates to processing time

measurements, using the same methodology as in Chapter 3, we find c f = 139.45.

5.4.2 Enforcing Reuse Decisions to Policy

For each mini-partition, ParCuR makes reuse decisions the first time it accesses it and retains

the decisions until the partition is finished. This means that the chosen materializations are

the starting point for the planning and execution of all the episodes that correspond to the

mini-partition. To do this, we create a mapping between each accessed subexpression (base

table or materialization) and a set of queries answered using the subexpression. We use each

pair as input to RouLette’s policy in order to plan downstream computation. The policy uses

prior cost estimates to produce a downstream plan, if available, and continuously refines both

the estimates and the downstream plan by monitoring execution.

5.4.3 Ingestion from Materializations

Ingestion retrieves data vectors from both the base table and materializations. However, it

only knows which materializations to access when starting to process each mini-partition of

the base table. For this reason, we additionally implement scans with mini-partition scope for

materialization tables: each such scan only retrieves the vectors that correspond to a specific

mini-partition and then finishes. Scans with mini-partition scopes attach themselves to the

base table’s scan, and the base table’s scan can proceed to the next mini-partition only after

the attached scans are finished. Consequently, the base table’s scan coordinates the accesses

to the required mini-partitions of materializations, thus enabling fine-grained access reuse

decisions. Note that the base table’s scan does not necessarily access a mini-partition’s data: it

can skip the partition and then coordinate the attached scans for materializations.
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5.4.4 Materializing Results

ParCuR extends RouLette with support for temporary tables that store materialized subexpres-

sions. To do this, it implements an interface for dynamically allocating and resizing tables in

RouLette’s storage manager and a materialization operator that writes the results of a query to

a target table. After materializing a subexpression, the corresponding table can be exploited

for reuse decisions that accelerate incoming query batches.

5.4.5 Tuner Utilities

ParCuR implements three utilities that constitute the tuner: i) homogeneity-based partitioning,

ii) materialization policy, and iii) the access method partitioning. To collect the input of these

utilities, ParCuR first processes a set of target batches that represent historical workload.

Specifically, it stores the subquery vectors for a predetermined sample of tuples, the set of used

global plans and their corresponding cost estimates, and the predicates in the query batches.

ParCuR then uses the collected metadata to run the utilities in the following order: First, it

runs the homogeneity-based partitioning to compute the partitioning scheme and actuates

the scheme to produce 1-st level partitions. Second, it reruns the target workload to compute

the historical workload graph, then runs one of the approximate algorithms for cut selection

to choose subexpressions to materialize, and finally actuates the materialization. Third, it

produces mini-partitions for the base table and the materializations and further partitions

each mini-partition to produce 2-nd level partitions. After this step, ParCuR state has finished

tuning for the target workload.

5.4.6 Tuning Partitioning

Choosing the parameters for the two levels of partitioning (homogeneity-based clustering

and access methods) affects the overhead for ParCuR’s executor. To tune the parameters,

we use the workload of Figure 5.6 and, out of the tested parameters, we find the minimum

values for mini-partition size and block size, and the maximum sampling rate, such that

overhead is less than 10% compared to the optimal value. We set the minimum size of mini-

partitions to 216 to maintain low overhead for the reuse phase. Thus, we also set PSmi n = 216

as homogeneity-based partitions need to contain at least one mini-partition. Then, we select

the size of mini-partitions such that ParCuR keeps the overhead for data and filter-skipping

low as well: it is selected to be greater or equal to 216 and at least large enough that the blocks

contain at least 256 tuples each on average. Finally, to avoid a significant overhead for tracking

historical accesses, we set the sampling rate to 1%.

5.4.7 Limitations

To combine reuse with adaptive optimization, ParCuR’s implementation over RouLette aligns

the mini-partitions of materializations with the mini-partitions of a base table. For this
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reason, tuning revolves around one main table that defines the partitioning schemes and the

materializations, and thus our implementation is applicable to common workloads such as

queries on star and snowflake schemas.

5.5 Experimental Evaluation

The experiments evaluate ParCuR and show how materialization and reuse enable it to signifi-

cantly outperform pure work sharing and achieve lower batch response times. Specifically,

they demonstrate the following:

i) Filtering costs when accessing materializations can deteriorate the performance of work

sharing, and thus building access methods for materializations is necessary.

ii) Query-at-a-time materialization policies make suboptimal materialization decisions. Cut

selection improves budget utilization by prioritizing materialization with higher marginal

benefits.

iii) Homogeneity-based partitioning reduces the required budget for workloads with selective

and correlated patterns.

iv) Even though filters and sharing decisions change, the reuse phase reduces work-sharing’s

response time when possible and falls back to vanilla work sharing otherwise.

v) Using partial reuse, the response time is proportional to the required computation and

performance degrades gracefully.

vi) End-to-end, ParCuR reduces the response time for the full SSBM and TPC-H by 6.4× and

2×, respectively.

Hardware. All experiments took place on a single server that features an Intel(R) Xeon(R) Gold

5118 CPU @ 2.30GHz with 2 sockets, 12(×2) threads per socket, 376GB of DR0AM, 32KB L1

cache, 1MB L2 cache, and 16MB L3 cache. All experiments took place in memory, in a single

NUMA node, and use 12 threads.

Data & Workload. We run both macro- and micro-benchmarks. First, we perform a sensitivity

analysis. We evaluate ParCuR by varying different workload properties: i) the number of

filtering attributes, ii) the selectivity of predicates, iii) the number of joins and the overlap

between queries, iv) the available budget, and v) the workload shift in filter attributes, join

overlap, and predicate correlations. To control the experiment variables, we generate synthetic

data in a star schema as well as appropriate queries. We use a fact table of 100M rows and

27 columns (24 are foreign keys), 8 dimensions with 10k rows and 9 columns each, and 16

dimensions with 10k rows and 2 columns each. All columns are 4-byte integers. We describe

the queries in the presentation of each micro-benchmark.

Next, we show that ParCuR accelerates the queries of the widely used SSBM [87] and TPC-H
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Figure 5.6: Impact of reuse for a varying number of filter attributes

benchmarks. We use scale factor 10 for both, which is the largest data size for which the

optimal materialization fits in the available memory. We randomize the order of tuples for

both datasets.

Methodology. The experiments measure batch response time, which is the end-to-end time

for processing the full batch. All measurements are the average of 10 runs.

5.5.1 Impact of Reuse in Global Plans

We evaluate the benefit of reuse to shared execution’s response time. We assume that the

tuner’s workload is the same as the runtime workload and that the materializations that

minimize response time are available (i.e., the top-level joins). Sections 5.5.2 and 5.5.3 lift the

two assumptions. We compare ParCuR against RouLette, naive reuse, which eagerly injects

materializations and has no access methods, and QaT execution using ParCuR, which is on

par with QaT performance of state-of-the-art in-memory databases.

Filter processing. We examine the impact of filters and the need for building and using access

methods for materializations. We use 64 queries generated from 4 different templates. The

templates have 4 dimension joins each, and all templates share 3 dimension joins. The queries

have 10% selectivity and filter on the non-shared dimension. We vary the number of filter

attributes (which is equal to the number of shared filter operators) from 1 to 8.

Figure 5.6 shows that access methods are necessary for accelerating work sharing. When using

access methods, ParCuR’s response time is 2.07-4.57× lower than RouLette’s, as it eliminates

join processing. RouLette is almost unaffected by increasing filter operators, as it processes

filters on the dimension. ParCuR and QaT are affected because they require more 2-nd level

partitions and hence both more zone-map operations as well as larger mini-partitions, and

thus longer time until ParCuR decides that the plan is stable. However, this effect just reduces

ParCuR’s benefit over RouLette. By contrast, the performance of naive reuse deteriorates
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Figure 5.7: Impact of reuse for a varying number of joins per query
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Figure 5.8: Impact of reuse for varying query selectivity

drastically: it computes filters over the materialization, and thus their processing time is

amplified. The response time is increased with the number of filters and is up to 3.34× than

RouLette’s.

Takeaway: Reuse drastically improves performance only if filtering cost is low, and can deteri-

orate performance otherwise. Building appropriate access methods is necessary for injecting

materializations into global plans.

Number of joins. We examine the impact of reuse in queries with different join costs. We use

two variants of the previous workload, one where all templates share all but one join (share

n-1) and another where all templates share all but three joins (share n-3). We vary the total

number of joins per query. All queries use 1 dimension filter.

Figure 5.7 shows larger benefits for global plans with more joins. Reuse-based approaches are
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insensitive to the number of joins, whereas RouLette’s response time is increased. ParCuR

achieves maximum speedup of 6.33 for share n-1 and 8.60 for share n-3. Also, there is a

cross-point in naive reuse, where processing filters becomes preferable to large joins.

Takeaway: The benefit from reuse is proportional to the eliminated computation. Hence, the

speedup is higher when eliminated computation is significant, such as in join-heavy queries.

Selectivity. We examine the impact of reuse for queries with different selectivity. We use the

same workload as in the first experiment, use one filter attribute, and vary the selectivity (1%,

2%, 5%, 10%, 20%, 50%). The experiment models the impact of downstream processing on the

speedup.

Figure 5.8 shows larger benefits when each query’s selectivity is low. As aggregations are not

affected by reuse, they close the gap between approaches for larger selectivity when they

are expensive. Also, it is noteworthy that when aggregations are heavy enough, QaT is more

expensive than RouLette due to concurrency.

Takeaway: Reuse has a higher benefit when it eliminates the most expensive part of the global

plan. Low selectivity keeps the cost of final aggregations low, and thus the relative benefit is

more pronounced.

5.5.2 Sharing-aware Materialization Policy

We demonstrate that cut selection solutions outperform sharing-oblivious and simple sharing-

aware policies. We compare four different algorithms: a) SCSK-Gr solves cut selection using Gr,

b) SCSK-ISK solves cut selection using ISK, c) Greedy Shared solves a submodular knapsack

problem for individual materializations, and d) Frequency solves the submodular knapsack

problem where benefits are weighted by frequency, which is commonly used for query-at-a-

time materialization. The evaluation uses four different workloads with 512 queries with 10%

selectivity each. The queries use filters in a column with domain [0,100).

• Workload A: Workload A shows the impact of frequency. It uses 8 query templates

(t1, . . . , t8). t1, . . . , t4 have 1 join each, whereas t5, . . . , t8 have 4 joins each. Template

ti shares its join with template ti+4. The workload contains 112 queries from each

of t1, . . . , t4 and 16 queries from each of t5, . . . , t8. In total, it requires at least 40GB to

minimize response time.

• Workload B: it uses 8 query templates (t5, . . . , t12). t9, . . . , t12 also have 4 joins each.

Template ti shares 2 joins with template ti+4. The workload contains 64 queries from

each of the templates. The workload shows the impact of synergy. In total, it requires at

least 32GB to minimize response time.

• Workload B-P1: it uses workload B’s templates. However, the filters for t5 and t6 are

subranges of [0,40), for t9 and t11 subranges of [20,60), for t7 and t8 subranges of [40,80),
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Figure 5.9: Impact of budget for workloads A and B

and for t10 and t12 subranges of [60,100). In total, it requires at least 14.9GB to minimize

response time.

• Workload B-P2: Similar to workload B-P1, but uses 2-D ranges. The filters for t5 and t6

are subranges of [0,66)× [0,66), for t9 and t11 subranges of [0,66)× [34,100), for t7 and

t8 subranges of [34,100)× [0,66), and for t10 and t12 subranges of [34,100)× [34,100). In

total, it requires at least 12.9GB to minimize response time.

In each experiment, we vary the storage budget to the minimum budget that can minimize

response time. We present the used budget normalized by the budget that minimizes response

time (i.e., this budget is 100%).

Sharing-awareness: Figure 5.9a shows that sharing-aware policies outperform Frequency in

workload A because they factor out the frequency of occurrence for subqueries, and decide
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Figure 5.10: Impact of budget for workloads B-P1 and B-P2

based on shared costs. Frequency results in up to 2.03× higher response time for the same

budget because it prioritizes templates t1, . . . , t4.

Synergy-awareness: Figure 5.9b shows that exploiting the synergy between materializations

that compose cuts in workload B improves the effectiveness of materializations. Both Greedy

Shared and Frequency preferentially materialize the shared subqueries because they miss the

synergy between the larger cuts. Thus, they both waste budget on materializing subexpressions

that are later covered by the larger cuts, and consequently, 100% is not sufficient for minimizing

response times. At 100%, they are slower by 1.87× and 1.68×, respectively.

Partition-awareness: For both workload B-P1 and B-P2, partiitioning reduces the required

budget for minimizing response times by 2.4× and 2.5× accordingly. Figure 5.10 shows that all

algorithms achieve comparable performance because partitioning simplifies the global plans

for each partition. The simplification mitigates the effect of synergy and frequency, and thus
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Figure 5.11: Impact of workload shift in the filtering attributes

all algorithms find comparable solutions.

Gr vs ISK: Across all experiments, ISK performs better than Gr as it enumerates more material-

izations and normalizes marginal benefit by the required budget. By contrast, Gr suffers from

suboptimal solutions when it uses up the budget on few materializations. Still, ISK requires

significant processing time to run, e.g., 217sec in workload B-P1, and thus Gr is preferable for

real-time analysis as it takes up to 4msec in all experiments.

Takeaway: Both sharing-awareness and partitioning improve budget utilization. Incorpo-

rating both shared costs and synergy permits spending the budget for materializing only

the subexpressions that actually reduce response times. Furthermore, partitioning enables

materializing results just for the data ranges where they are needed and thus reduces budget

requirements.

5.5.3 Effect of workload shift in reuse

We evaluate ParCuR under workload shift. We materialize subexpressions that minimize the

response time for the original workload. The experiments shift workload across three axes

( a) filtering attributes, b) query templates, and c) query pattern correlations). We compare

ParCuR against RouLette and naive reuse, for which we enable access methods, and QaT.

Filtering attributes. Figure 5.11 shows that the reuse phase judiciously chooses between

reuse and recomputation based on filtering costs. The experiment uses the same workload

as Figure 5.6. However, it only builds an access method for the first attribute. Naive reuse

improves response time when there is no shift and deteriorates performance otherwise. QaT’s

performance depends on the percentage of queries that use the materializations. Finally,

ParCuR improves performance when there is no shift and achieves the same performance as

work sharing when reuse is detrimental.
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Figure 5.12: Impact of workload shift in the query templates
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Figure 5.13: Impact of workload shift in the predicates of query patterns

Query templates. Figure 5.12 shows that the reuse phase also chooses judiciously when the

marginal benefit of reuse changes due to new workload opportunities. The original workload

uses two templates with 4 joins each. The workload shift adds two more templates with 4 joins

each, and each template differs by k joins from one of the original (i.e., shares 4-k joins). k

varies from 1 to 3. Furthermore, we change the filtering attribute for the original templates.

We use 16 queries per template. RouLette performs better when the shifted workload differs by

1 or 2 joins and work sharing is high, whereas reuse is better when work sharing is low. QaT is

unaffected since it makes per-query decisions. Finally, ParCuR’s cost model chooses correctly

between reuse and recomputation and matches the best option.

Query patterns’ predicates. Figure 5.13 shows that partial reuse enables response times

to degrade gracefully under workload shift. The experiment uses workload B-P1 to build

materializations. The shifted workload slides the ranges for the filters of each template; the
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Figure 5.14: Macro-benchmarks: a) SSBM b) TPC-H

slide controls the percentage of the shifted workload’s input that cannot reuse materializations

and is processed from base data (miss rate). ParCuR’s response time is increased proportionally

to the miss rate. Thus, when partitioning captures query patterns and isolates misses, partial

reuse improves performance against all-or-nothing approaches that fall back to full processing

(same performance as 100% miss rate).

Takeaway: The reuse phase, as well as partitioned execution, enable ParCuR to benefit from

materializations despite workload shifts. ParCuR exploits materializations for the partitions

where they are available and beneficial to reducing the global plan’s cost.
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5.5.4 Macro-benchmarks

We evaluate ParCuR using the SSBM and TPC-H benchmarks. For each benchmark, we

compare the four materialization algorithms and vary the storage budgets. We omit ISK for

TPC-H, because it takes a very long to choose a materialization. Also, we simplify TPC-H

queries similar to Chapter 4.

SSBM: Figure 5.14a shows that ParCuR achieves a maximum speedup of 6.4 over RouLette

and 5.4 over QaT, and requires around 1GB for the optimal materialization. The speedup is

high because queries are mostly selective, and thus aggregations make up a small percentage

of processing time; the vast majority is filters and joins. An interesting observation is that

even a small budget brings about a sharp decrease in response time because bottom joins are

significantly more expensive, whereas upper joins are more selective and less time-consuming.

TPC-H: Figure 5.14b shows that ParCuR achieves a maximum speedup of 2× over RouLette

and 1.37× over QaT, and requires 69GB for the optimal materialization. The speedup is

lower compared to SSB for two reasons: i) TPC-H contains less selective queries with heavier

aggregations. When using 100% budget, aggregation takes up around 40% of the time. ii)

TPC-H contains LIKE predicates that filter skipping cannot eliminate using zonemaps. Still,

despite the shortcomings in our implementation, ParCuR eliminates significant join costs.

Discussion: For the two benchmarks, ParCuR requires large materializations because, cur-

rently, homogeneity-based partitioning does not exploit filters on dimensions. This limitation

can be addressed by: i) partitioning using the denormalized table [130], or ii) partitioning

using data-induced predicates on the fact table’s foreign keys [54]. Both techniques are com-

plementary and straightforward to integrate with ParCuR.

Another limitation is that ParCuR cannot eliminate predicates such as LIKE, multi-attribute

expressions, or UDFs using zonemaps. To eliminate such predicates, partitions require addi-

tional metadata. Sun et al. [114] handle such predicates by maintaining a feature vector that

encodes whether complex predicates are satisfied.

5.6 Summary

To provide real-time responses for large recurring workloads, we propose ParCuR, a novel

paradigm that combines the reuse of materialized results with work sharing. ParCuR addresses

the performance pitfalls of incorporating materialized results into shared global plans i) by

proposing a multi-level partitioning design that improves at the same time the utilization of

the storage budget, partial reuse, and filtering costs, ii) by proposing a novel sharing-aware

caching policy that improves materialization decisions, and iii) by enhancing the sharing-

aware optimizer with a phase that performs reuse-oriented rewrites in order to minimize

runtime processing. In our experiments, ParCuR outperformed RouLette by 6.4× and 2× in

the widely-used SSB and TPC-H benchmarks respectively.
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6 Conclusion and Future Outlook

With novel applications rising to prominence and the number of users growing, analytical

databases struggle to provide timely responses to a high number of concurrently executing

queries. As the timeliness of traditional query-at-a-time databases deteriorates when pro-

cessing an increasing number of queries, work sharing becomes critical functionality for

databases so that they mitigate the effect of concurrency on response time. However, existing

work-sharing databases incur redundant processing and are inefficient for common classes

of ad-hoc, selective, and recurring workloads due to redundant processing. First, ad-hoc

queries are a poor fit for sharing-aware optimization because they are unpredictable and,

thus, planning can be both inaccurate and prohibitively time-consuming to perform online.

Second, selective queries either sacrifice sharing to use indices or suffer from excessive data

access and filtering. Third, recurring queries cannot exploit precomputed materialized results

because reuse is inefficient in shared execution and can be detrimental.

In this thesis, we have contributed towards building efficient work-sharing databases that

improve timeliness for highly concurrent workloads by holistically adapting to the character-

istics of the target data and workload. To this end, we optimize across the query processing

stack by introducing novel i) query processing abstractions, ii) optimization strategies, and iii)

physical design tuning. The building blocks we introduce reduce the required data access and

processing, and the efficiency of reuse, while maintaining the scalability of shared execution

to highly concurrent workloads.

In this chapter, we summarize the contributions of this thesis and then discuss research

directions that can expand the scope of the presented work.

6.1 Data and Workload-conscious Work Sharing: What we did

We have identified three subproblems in which work-sharing databases are inefficient: i)

join order optimization, ii) data access, and iii) subexpression reuse. Each part of the thesis

addresses inefficiency in each component by introducing novel optimizations.
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First, to choose join orders in a judicious and yet timely manner while exploring more and

potentially more promising candidate join orders compared to fast heuristics, we propose

RouLette. RouLette is a specialized engine that uses adaptive optimization to share work

across concurrent Select-Project-Join subqueries. It incrementally explores the search space of

shared join orders and, by using reinforcement learning on metrics collected while exploring

each plan, it learns an efficient plan for the target queries and data. To avoid incurring

significant adaptation overhead, RouLette also introduces query processing optimizations.

The evaluation shows that RouLette chooses more efficient plans than heuristics and, at the

same time, scales to thousands of queries.

Second, to reduce the required time for data access and filtering for concurrent queries, we

propose SH2O. SH2O is an access method that combines shared index accesses with shared

filters to achieve both efficiency and scalability. SH2O is based on the key insight that there

exist multidimensional data regions where filtering decisions are invariant. It then acts in

two phases: first, it uses a spatial index to access data by region for a subset of the filtering

attributes and then processes the rest of the filters in a post-filtering phase. Index accesses

are shared and eliminate the need for processing shared filters for the used attributes. SH2O

restricts the number of regions in case of high dimensionality by using two optimization

strategies: i) it reorganizes data by partitioning and then indexing each subspace based on

local access patterns and then optimizes access to each partition independently, and ii) it uses

an online algorithm that selects a subset of filter attributes for multidimensional access that

optimizes cost-benefit. Experimental results show significantly lower data access and filtering

time, especially for workloads with low joint selectivity or a high number of selected filtering

attributes.

Finally, to efficiently materialize and reuse precomputed results, we propose ParCuR. ParCuR

is a framework that addresses four challenges: i) choosing which subexpressions to materialize,

ii) choosing the data layout for materializing the selected subexpressions, iii) choosing when

and how to reuse existing materializations, and iv) exploiting partial overlaps between materi-

alized and requested results. ParCuR harmonizes reuse and shared execution by introducing

novel database tuning, planning, and execution strategies, and, hence, significantly reduces

response times by eliminating recurring computations.

Overall, this thesis redesigns planning and execution strategies for work-sharing databases

such that they adapt to the data and workload at hand. As a result, it improves total effi-

ciency in all workloads and makes work-sharing databases applicable in applications that

produce highly concurrent unpredictable, selective, or recurring workloads for which existing

approaches are inefficient.

6.2 Efficient Work-Sharing Databases: Next steps

This thesis introduces data and workload-conscious planning and execution strategies for

work-sharing databases in a scale-up in-memory setting. Extending the scope of data and
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workload-conscious optimizations for shared execution requires addressing additional chal-

lenges described below:

Complex analytical workload: Applications, such as data science notebooks and scripts,

require processing complex workloads that comprise a large number of inter-dependent

queries. For example, data scientists write imperative programs that interweave analytical

processing using embedded databases (e.g., SQLite, DuckDB [95]) or data manipulation

libraries (e.g., pandas) with tools for linear algebra, machine learning, and visualization.

The imperative constructs of the host programming language create complicated data and

control flow dependencies. Data pipelines also consist of up to thousands of queries with

producer-consumer relationships [33]. Moreover, even common SQL features such as views,

nested subqueries, and control flow produce query plans that contain several inter-dependent

subqueries. Complex workloads that contain multiple subqueries that process the same

data have significant inherent opportunities for data and work sharing. However, existing

work-sharing techniques fail to fully exploit sharing opportunities in complex workloads. First,

dependencies between subqueries serialize execution, thus reducing concurrency and limiting

work sharing to overlapping work between independent subqueries, if any. Second, subquery

boundaries, which are determined by algebraic transformations such as GROUPBY push-

down, can limit the available opportunities that Select-Project-Join-oriented work sharing can

exploit.

Novel optimizations that relax dependencies between subqueries and make algebraic plan

transformations in a holistic manner can increase sharing opportunities and enable the

techniques proposed in this thesis to accelerate complex workloads. Relaxing dependencies

enables more subqueries to run concurrently, hence permitting work sharing to reduce pro-

cessing. In previous work, for example, we propose using speculation to exploit parallelization

and work sharing between the inner and the outer part of nested queries [112]. Speculation

is also applicable for resolving control flow dependencies. Techniques from the domains of

programming languages and computer architecture, such as loop unroll and out-of-order

execution, further relax dependencies for the mixed imperative-analytical workload in data

science applications. Finally, by applying algebraic plan transformations that determine

the SPJ subqueries in the inter-dependent workload in a holistic way, opportunities can be

increased.

Distributed and heterogeneous infrastructure: Infrastructure for analytical processing

evolves to cope with the exponential growth of data and trends in modern hardware. Data

processing frameworks run queries over large datasets by scaling-out execution over multiple

nodes; thus, they parallelize query processing across many nodes to reduce response times. At

the same time, each node can be equipped with hardware accelerators, such as GPUs and FP-

GAs, that are connected to CPU sockets using interconnects. Analytical databases can offload

queries to accelerators or even parallelize queries across both the CPU and accelerators, to

decrease processing time. Distributed and heterogeneous environments pose additional chal-

lenges, such as expensive data movement over slow interconnects or the network, skew, and
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non-uniform processing capabilities across processing units. Analytical databases that target

distributed or heterogeneous infrastructure optimize for locality and introduce query process-

ing techniques such as predicate pushdown, bloom filters, data placement optimizations, and

load balancing strategies.

Sharing data and work presents opportunities for reducing processing time in distributed

and heterogeneous infrastructures. In previous work, we study the effect of sharing data

transfers to GPUs [97]. We show that sharing data transfers significantly reduces processing

time when using a slow interconnect (i.e., PCIe3) and even brings moderate benefits when

using fast interconnects (i.e., NVLink). Furthermore, our experiments demonstrate that it

is beneficial for queries to share some of the transferred data and to perform fine-grained

transfers for selectively accessed columns for each query individually, compared to eagerly

sharing all transfers. However, in that scenario, the overhead of selective accesses accumulates.

This scenario results in the same trade-off as SH2O: hence, studying SH2O’s applicability for

coordinating shared accesses to remote memory is promising.

At the same time, distributed and heterogeneous infrastructure affects the performance trade-

offs that work-sharing databases assume. Communication between operators is proportionally

more expensive and is sensitive to the attributes of the shared tuples and the size of the query-

sets. Second, predicate pushdown and bloom filters are additional options for planning that

can drastically reduce transfers in some workloads, e.g., low joint selectivity across queries.

Third, data has additional physical design properties such as partitioning across nodes and

even co-partitioning. Fourth, the straggler node determines end-to-end response time during

query processing. Addressing these differences requires extending RouLette, SH2O and Par-

CuR to account for transfer costs, to employ data transfer and locality-based optimizations,

and to introduce load balancing in the optimization process. Thus, work sharing needs to

additionally become hardware and locality-conscious.

Elastic resource allocation: The demand for data analysis fluctuates: analytical databases

need to process workloads with bursty or volatile concurrency. Handling fluctuating workloads

in a cost-effective manner requires elastic provisioning of resources. Elasticity has become

a critical requirement for analytical databases, especially in the cloud. The disaggregated

compute-storage architecture enables databases to scale the number of nodes used for query

processing; databases such as Snowflake [20], Presto [107], and Spark [134] implement the

disaggregated architecture. Also, Database-as-a-Service [19] requires elastic scaling in order

to sustain workloads that exceed the capacity of allocated resources. Finally, Query-as-a-

Service and Function-as-a-Service [79, 90] provision resources per query; thus, they offer a

pay-as-you-go pricing model that fits better sporadic unpredictable workload.

Shared execution presents an opportunity to significantly reduce resource consumption

for processing concurrent queries. Hence, to minimize resource consumption and avoid

over-provisioning, elastic scaling decisions need to take into account data and work sharing.

Auto-scaling work-sharing databases, for instance, requires estimating the resources that
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enable the databases to meet service-level agreements after detracting resource savings due

to sharing. Similar to our methodology for shared execution, choosing the resources for

elastic scaling is also a data and query-conscious process. Further research needs to use cost

models or adaptive techniques to extrapolate the required resources and scale the database

accordingly.

Heterogeneous performance requirements: Analytical databases process heterogeneous

queries that have different performance characteristics and come from applications with

different requirements. For example, the same analytical databases can process both short-

running queries coming from real-time applications and complex, long-running decision-

support queries. In such cases, the analytical databases are expected to offer predictability:

response times should degrade gracefully as the number of concurrent queries is increased,

and short-running queries should remain faster than long-running queries. In addition, differ-

ent applications can have different requirements. While many applications require minimizing

response times, other applications can require meeting specific deadlines and to prioritize

resource-efficiency [108]. Thus, analytical databases need to satisfy the different requirements

for different queries and respect properties such as predictability. For this purpose, they

provide performance isolation and sufficient resources to each query or application, using

techniques such as fair scheduling. However, work-sharing databases focus on minimizing

total processing time and thus violate isolation between queries and introduce unpredictabil-

ity. Choosing global plans that optimize various conflicting objectives and respect multiple

constraints is an open problem.

Meeting heterogeneous performance requirements demands extending data and query-

conscious work sharing for a multi-objective setup. Optimization strategies need to consider

multiple and potentially diverse and conflicting metrics for both each individual query and

shared execution as a whole. Naturally, the value of metrics for a given global plan depends on

the data and queries at hand. Accurately evaluating the metrics for a global plan can benefit

from monitoring runtime execution and learning from it, similar to RouLette. Therefore, the

required extensions are consistent with the data and query-conscious design paradigm.

Handling large-scale state: Memory is a bottleneck for the degree of concurrency that an

analytical database can sustain. As the number of queries is increased, the reserved memory

for all queries is also increased. After the reserved memory exceeds the memory capacity,

databases terminate queries or spill to disk; in both cases, analytical throughput drastically

drops. While work-sharing databases use common data structures across multiple queries and

thus reduce the pressure on memory, they still suffer from the same limitation. The state of

shared execution needs to cover all queries and thus is larger than the state of each individual

query and, in addition, is inflated by the growing size of query-sets. Hence, the size of the state

limits the number of participating queries in shared execution, thus risking reducing sharing

opportunities.
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Work-sharing databases can mitigate the memory capacity bottleneck across three interdepen-

dent axes: data model, tiering and batching. First, the Data-Query model has redundancy and

includes soft state. Each tuple contains attributes that remain unused due to partial overlaps

across queries. Also, query-sets have redundancy due to predicate correlations and can be

compressed to reduce the memory footprint. Moreover, query-sets constitute soft state that

the system can drop and reconstruct on demand. Thus, a specialized policy for encoding and

processing Data-Query model can reduce memory reservation. Second, given that query-sets

can be both reconstructed and compressed, work-sharing databases can benefit from spilling

strategies that optimize for the Data-Query model. Hence, planning and execution strategies

need to be enhanced with cost models that optimize encoding and spilling for each query

batch. Both decisions depend on data and workload characteristics. Thus, the paradigm

presented in this thesis extends beyond processing strategies, covering state management as

well.
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