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Abstract
In confidential computing, the view of the system software
is Manichean: the host operating system is untrusted and
the TEE runtime system is fully trusted. However, the run-
time system is often as complex as a full operating system,
and thus is not free from bugs and exploitable vulnerabili-
ties. Yet, it executes with complete system-level control over
the enclave application, in violation of the least privilege
principle. While the confidential computing research com-
munity has been striving to secure trusted software from
its untrusted counterpart, efforts fall short when it comes to
securing the enclave application from potentially bug-prone
and vulnerable trusted runtime systems.

This project describes the design of a simple RISC-V exten-
sion that prevents trusted runtime systems from accessing
the enclave application’s memory. We implement the hard-
ware extension in the QEMU functional simulator and extend
the Keystone TEE framework and its runtime system, Eyrie,
to enforce the least privilege principle, support unmodified
enclave applications, and prevent a class of Iago attacks that
leverage the runtime system’s unrestricted access to the en-
clave application’s memory.
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1 Introduction
The rise in popularity of trusted execution environments
(TEEs) has led to a variety of design proposals [1, 2, 7, 8,
10, 12, 14, 15]. TEEs provide strong confidentiality and in-
tegrity guarantees to sensitive user applications (or enclave
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Figure 1. Overview of a generic TEE framework.

applications) in a system where the privileged OS is poten-
tially malicious and is not a part of the trusted computing
base (TCB). Motivated by the need to support executing
unmodified user applications inside the TEE, several TEE
frameworks have directed efforts towards the development
of trusted runtime systems (TRTS).
Figure 1 shows a generic view of TEE frameworks [1, 2,

4, 7, 10–13], where the TRTS operates within the enclave
to provide familiar OS-like functionality (e.g., virtual mem-
ory management, syscalls) to the enclave application and
transparently secures interactions between the enclave ap-
plication and the untrusted OS. TEE frameworks rely on a
securitymonitor (SM) executing at the highest privilege layer
(e.g., machine mode in RISC-V [16] or EL3 in ARM [14]) to
enforce security guarantees by leveraging existing hardware
security primitives [12] or introducing new ones [1]. Inter-
actions between the enclave application and the untrusted
host trap into the SM to apply the necessary protection.

While these privileged TRTSs provide necessary function-
ality to the enclave application, Table 1 shows that they
inflate the TCB by tens of thousands of lines of code, and are
the cause of demonstrated exploits involving control-flow,
memory corruption, and memory leakage attacks. One rea-
son is that, unlike security monitors, TRTSs are typically
not designed with formal verification in mind but simply
presumed to be non-malicious system software libraries.
This motivates the need to go beyond a Manichean trust

model, where the OS is untrusted and yet the TRTS software
is fully trusted. We argue that placing trust in a significantly
large piece of software without any precautions increases
the chances of the enclave application data being vulnerable
in case the TRTS gets compromised.

https://doi.org/10.1145/3578359.3593040
https://doi.org/10.1145/3578359.3593040
https://doi.org/10.1145/3578359.3593040
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(a) RISC-V pmpcfg entry. Dash shows reserved
bits.
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Figure 2. RISC-V PMP enforcement during the memory
address translation process.

We propose to enforce the principle of least privilege on
TRTS to provide defense-in-depth by protecting enclave ap-
plication’s memory and consequently raising the standards
for breaching the TEE’s security guarantees. This thwarts
Iago attacks that leverage the TRTS’s unrestricted access to
the enclave application’s memory to leak or corrupt it. To
achieve this, we propose a lightweight extension to the RISC-
V hardware security primitive, physical memory protection
(PMP). We illustrate the impact of applying restrictions on a
TRTS for the open-source Keystone TEE framework [12].

In the rest of the paper, we provide relevant background
on RISC-V and the Keystone framework (§2); make a case
for enforcing the least privilege principle on TRTSs and dis-
cuss why existing RISC-V hardware security primitives make
it inefficient to enforce this (§3). Further, we describe the
hardware extensions we introduce to the RISC-V security
primitive (§4) and extend the Keystone TEE framework to
enforce the least privilege principle, thereby introducing
Keystone-LP (§5). Lastly, we discuss several classes of at-
tacks, whether Keystone-LP can prevent them, and how our
hardware mechanism can extend to ARM TrustZone. (§6)

2 Background
This section provides an overview of RISC-V PMP and the
Keystone framework built on top of it.

2.1 RISC-V PMP
RISC-V provides a hardware security primitive, Physical
Memory Protection (PMP), to protect physicalmemory ranges
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Figure 3. Privilege mode transitions and memory protection
in Keystone.

from lower privilege modes. PMP rules are configured by
the highest privilege mode in RISC-V i.e., machine mode
(M-mode), and enforced on all user mode (U-mode) and su-
pervisor mode (S-mode) memory accesses. Each PMP rule is
specified using a pair of registers - the address range requir-
ing protection in a pmpaddr register and a set of read, write,
and execute (RWX) permissions applicable for this memory re-
gion in a pmpcfg register (see Figure 2a) (which also specifies
an addressing mode (A) and the locked bit (L) 1). PMP uses a
priority mechanism; during each PMP check, the first PMP
entry matching the address is used to apply permissions.
For each memory access request by the processor, the

translation lookaside buffer (TLB) is probed to retrieve the
address translation (step 1 in Figure 2b). On a TLB miss, the
page table walker (PTW) performs the virtual to physical
address translation (step 2). On a successful address trans-
lation (step 3), the PMP is checked to validate the memory
access for the corresponding physical address (step 4). The
PMP computes TLB.RWX permissions as the logical AND of
the permissions from the page table entry, PTE.RWX, with
the pmpcfg.RWX permissions (step 4). If the requested RWX
permissions are a subset of TLB.RWX permissions, a TLB fill
occurs reflecting the TLB.RWX permissions (step 5). However,
if the requested access violates the PMP rules, an access fault
exception is raised [16] (alternative step 5). On a TLB hit, the
memory access proceeds without further PMP checks [5]
(alternative step 2). It is thus crucial to perform a TLB flush
on each PMP rule update.

On a TLB hit, the permissions cached in the TLB are still
applicable. In RISC-V, all user pages (PTE.U field is set in the
page table) are only accessible in U-mode; S-mode is prohib-
ited from accessing them. However, S-mode can set the SUM
(permit Supervisor User Memory access) bit in the super-
visor status (sstatus.SUM) register and gain read or write
access to all user pages [16]. The aim of this protection is to
prevent the OS from unintentionally affecting user pages.

1PMP checks can be applicable to M-mode using the locked bit, but this case
is not relevant for the purpose of this paper.
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2.2 Keystone
Keystone [12] leverages PMP to implement enclaves and iso-
late them from the rest of the system, including the untrusted
OS. As shown in Figure 3a, Keystone’s SM configures PMP
to protect its own physical memory region (PMP0), allows
the enclave (enclave application and TRTS) to access the en-
clave memory region (PMP1) but prevents the enclave from
accessing any other physical memory (PMPn). On a context
switch from the enclave to the untrusted OS, the SM updates
PMP to protect the memory region of the enclave (PMP1)
and allows the untrusted OS access to the rest of the memory
(PMPn). Thus, Keystone uses one PMP entry per enclave,
and two PMP entries for protecting the SM and allowing the
OS to access the rest of the memory; it can support (𝑛 − 2)
enclaves simultaneously with an n-entry PMP.
Keystone’s TRTS, called Eyrie, performs resource man-

agement for the enclave application, and provides an edge
call interface to enable interactions between the enclave ap-
plication and the untrusted OS. The TRTS securely shares
only the necessary data through a shared buffer with the
untrusted OS (further referred to as shared buffer with host).

Figure 3b shows the transitions in which the SM modifies
the PMP protections (dotted red transitions) i.e., transitions
between trusted enclaves and untrusted host. Whereas, there
is no PMP update in the rest of the transitions shown in the
figure including transitions between the TRTS and enclave
application (transition marked as green).
In the next section, we discuss why having distinct PMP

permissions for the TRTS and enclave application is impor-
tant for the enclave application’s security but impractical
with the current PMP design.

3 Motivation
This section argues that allowing the TRTS full access to
the enclave application’s memory violates the principle of
least privilege. As it increases the trusted code base (TCB),
it potentially introduces bugs that can be exploited to leak
enclave application’s sensitive data or to corrupt its memory.

3.1 The challenges with TRTS
Existing TEE frameworks offer flexibility in choosing a TRTS,
which presents an interesting trade-off between function-
ality and security. An enclave deployment gets to choose

Table 1. Table showing code base sizes of existing TRTS
(excluding libOS) and exploited vulnerabilities.
Runtime kLoC Discovered vulnerabilities
Keystone [12] 4.6 Iago attack [3]
GrapheneSGX [4] 22.0 Iago attack [3]

Integer overflow [3]
Overshadow [7] 13.1 Impersonation attack [18]
Haven LibOS [2] 23.1 Not open-source

whether to include a full operating system [1], a library
OS [2, 4] to provide most OS functionality, or a minimal
runtime for securing interactions with the untrusted OS and
performing resource management [12]. The larger the TRTS,
the less efforts needed to port existing applications to TEE
frameworks.

Indeed, Table 1 shows that including tens of thousands of
lines of code in the TCB increases the likelihood of introduc-
ing exploitable bugs and requires careful instrumentation to
protect against Iago attacks [1, 4, 6, 7, 12].
The alternative would be to follow the principle of least

privilege by restricting the TRTS from accessing application-
level sensitive data. This could potentially prevent TRTS vul-
nerabilities from compromising confidentiality or integrity
of the enclave application.

3.2 The limitations of RISC-V PMP
The design of RISC-V PMP aims to protect memory regions
from all execution modes except M-mode but makes no dis-
tinction between S-mode and U-mode while enforcing PMP
rules. The current PMP mechanism could be used to enforce
the least privilege principle on the TRTS but this would be
inefficient as it would require (1) a trap into M-mode for ev-
ery transition between the TRTS and the enclave application
during execution, (2) to reconfigure PMP entries as part of
the transition, which would further require (3) a TLB flush.
In effect, the transition between enclave application and the
TRTS would be as expensive as the transition between the
enclave and the host environment.

4 RISC-V Hardware Extensions
To avoid the PMP limitations discussed in §3.2, we propose
to add an additional bit in each pmpcfg entry to enforce
protection on U-mode memory from S-mode software, with
implications on the TLB design. We use this new feature
to enforce the principle of least privilege on the privileged
TRTS within the Keystone TEE framework (§5).

Figure 4a illustrates our extension to the pmpcfg entries
in RISC-V in the form of a new bit i.e., pmpcfg.AS (Allow Su-
pervisor access) that represents an M-mode-governed equiva-
lent of sstatus.SUM, which, unlike sstatus.SUM, cannot be
controlled by system software. The pmpcfg.RWX permissions
apply as usual on U-mode accesses. The new pmpcfg.AS bit
specifies whether the physical memory access granted by
PMP rules extends to S-mode. If this bit is clear, S-mode soft-
ware is not allowed to access the corresponding memory
region as per the PMP rule. We use one of the reserved bits
in the pmpcfg entry to implement pmpcfg.AS.

In §2, we discussed the role of a PMP check in the address
translation process and the sstatus.SUM bit in RISC-V, and
in particular that PMP checks are bypassed on TLB hits.
Whenever S-mode enables the sstatus.SUM bit, all trans-
lations cached in the TLB for user pages (i.e., PTE.U is set)
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(a) Proposed extension to RISC-V pmpcfg entry
i.e., Allow Supervisor bit (pmpcfg.AS).
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Figure 4. RISC-V PMP enforcement during the memory
address translation process with pmpcfg.AS.

can be used by S-mode to access user memory (potentially
enclave application’s memory) without going through PMP
validation. A straightforward, but architecturally expensive,
design to prevent such PMP rule violations could be to main-
tain separate U-mode and S-mode TLBs.
Figure 4b describes our proposed TLB extension, which

introduces a new Allow Supervisor bit in each TLB entry
to mirror the same bit from the pmpcfg entry. The TLB.AS
determines whether S-mode may access an entry marked
with PTE.U, based on PMP rules. During a PMP check, the
RWX permissions are computed as done in the original PMP
design (§2.1). In addition, the TLB.AS is set to the same
value as pmpcfg.AS (step 4). Figure 4b shows the sequence
of steps taken on a TLB hit (alternative step 2). On a TLB
hit from S-mode, the TLB.AS is checked in addition to the
sstatus.SUM bit to determine if the access is legitimate. If
the access is not legitimate, a clear TLB.AS leads to an access
fault. Whereas if the access fails due to a clear sstatus.SUM
bit, a page fault is raised. The TLB.AS is only relevant when
the current mode is S-mode and the PTE.U bit is set. The hard-
ware cost to implement our mechanism is an additional bit
per TLB entry (in the entire TLB hierarchy) and an additional
comparison on the critical path.

Keystone SDK
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Figure 5. Modifications to Keystone at various steps during
enclave setup and execution.

5 Keystone-LP
We have implemented the proposed RISC-V hardware ex-
tensions in QEMU and modified the open-source Keystone
framework to accommodate the proposed PMP design and
enforce the least privilege principle. This requires changes
to the TRTS, which previously assumes that it has direct and
unrestricted access to the enclave application’s memory.

We call the resulting framework Keystone-LP i.e., Keystone
with a least privileged TRTS. Keystone-LP works with un-
modified Keystone enclave applications enabling them to
successfully request services from the TRTS without grant-
ing it access to enclave application’s memory. Our imple-
mentation adds 310 LoC to the original Keystone framework,
out of which 234 LoC belongs to the TCB [9].
Note that our goal is not to remove the TRTS from the

enclave application’s TCB, but to enforce the least privilege
principle on the TRTS.
We propose three major amendments to Keystone to en-

able the TRTS to continue providing services to the enclave
application without accessing the enclave application’s mem-
ory directly, thereby enforcing the least privilege principle:
(1) segregating the TRTS’s and the enclave application’s
physical memory regions to enforce clear protection rules,
(2) offloading some of the TRTS’s crucial responsibilities to
the SM, and (3) creating a secure communication channel
between the TRTS and the enclave application to selectively
share data.
Figure 5 shows the chronological order of enclave (en-

clave application and the TRTS) setup and execution and
highlights the changes in Keystone-LP, in particular the SM,
the Eyrie RT, and Keystone’s SDK.

5.1 Initial enclave setup
During the initial enclave setup, the untrusted Keystone SDK
deploys the enclave, i.e., loads TRTS and enclave application
binaries into the contiguous physical memory region re-
served for the enclave, creates page table mappings, and sets
up a free memory region for the enclave. Figure 6 (left) shows
the enclave physical memory layout in Keystone. Since an
enclave is comprised of both the TRTS and the enclave appli-
cation, they have a combined free memory region, and the
page table is spread out across the entire memory region. The
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Figure 6. Enclave memory layout in Keystone (left) and
Keystone-LP (right).

miscellaneous nature of the enclave memory layout leads
to a lack of clear boundaries between the physical memory
regions used by the enclave application and the TRTS. Thus,
it becomes challenging to isolate the two memory regions
using PMP which protects one contiguous memory region
through each entry.
Figure 6 shows the physical memory segregation that

provides clear boundaries between the enclave application’s
memory region and the TRTS’s memory region, and thus
helps enforce least privilege principle in Keystone-LP. Each
enclave is therefore bifurcated into two regions: one that is
available to the TRTS and the enclave application, and one
that is protected from the TRTS.

Once, the enclave setup is complete, the SDK provides all
the necessary information regarding the enclave’s memory
layout to the SM through Keystone-LP’s kernel driver.

5.2 Enclave memory protection by the SM
During enclave creation and context switches between the
untrusted OS and the enclave, Keystone’s SM configures the
PMP to protect the enclave’s physical memory region.

Keystone-LP’s SM uses the PMP extension proposed in §4
to protect enclave application’s memory from the TRTS.
Figure 7 shows the pmpcfg.RWX bits along with the pro-

posed pmpcfg.AS configured by Keystone-LP’s SM. As is the
case in Keystone, in the highest priority entry, PMP0, the SM
protects its memory by clearing pmpcfg.RWX and pmpcfg.AS.
In PMP1, the SM protects the enclave application’s mem-
ory region from the TRTS, by clearing the pmpcfg.AS. In
PMP2, the SM configures the rest of the enclave memory
region to be accessible by both U-mode and S-mode by set-
ting pmpcfg.RWXand pmpcfg.AS. Based on pmpcfg.AS, the
TRTS which executes in S-mode is not allowed to access the
enclave application’s memory region, but is allowed to ac-
cess the rest of the enclave’s memory. Note that the TRTS’s
memory is protected from the enclave application through
virtual memory, and the shared buffer is the only part of en-
clave memory accessible by both the TRTS and the enclave
application.
Figure 7 also shows the state of PMP when there is a

context switch from the enclave to the untrusted OS.
Keystone-LP uses two PMP entries per enclave whereas

the original Keystone uses only one entry per enclave. With
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Figure 7. Memory protection using extended PMP. SB =
Shared Buffer.

recent RISC-V specifications that state the support for up to
64 PMP entries [16], Keystone-LP should be able to support
up to 31 concurrently running enclaves.

5.3 Enclave management by the TRTS
When a TRTS instance boots, it allocates a stack region for
the enclave application. Further, throughout the course of en-
clave execution, the TRTS services page faults and allocates
pages as necessary. In both of these instances, Keystone’s
TRTS accesses the pages being allocated. Firstly, it maintains
a free page linked list in the free pages i.e., each free page
has a pointer to the next one. Secondly, it zeroes out every
free page whenever it gets allocated.

Keystone-LP offloads the zeroing of free memory pages to
the SM; this is required as the TRTS no longer has access to
the enclave application’s memory. The SM clears the eapp’s
free memory region during enclave creation, so there is no
need for the TRTS to repeat it. Further, we implement using
an additional data structure in the TRTS to keep track of free
pages. We track the free page region in a bit-vector format to
denote which pages are free and which are used. The TRTS
must track two free page regions - one for itself and one
for the enclave application. In theory, the TRTS could use
Keystone’s free page list mechanism. However, to keep the
same code base for managing both free lists, we use the bit-
vector approach for the TRTS’s memory management too. In
addition, the TRTS also keeps track of a dirty list i.e., all the
deallocated pages of the enclave application. Keystone-LP’s
SM provides a service to clear these pages when there are
none available in the enclave application’s free list.
In Keystone, the TRTS is also responsible for page swap-

ping. This requires access to enclave application’s pages.
Future work could enable the SM to provide a page-swap
API and ensure confidentiality and integrity of the enclave
application’s pages [7].

5.4 Edge calls by the enclave application
After protecting the enclave application’s memory region
from the TRTS, any attempt by the TRTS to access enclave
application’s memory will cause an access fault (Figure 4a).
As a consequence, the enclave application’s attempts to re-
quest services from the TRTS via the edge call interface will
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raise access fault exceptions when the TRTS’s attempts to
access the enclave application’s memory (e.g., to read the
arguments of the edge call).
Keystone-LP implements an TRTS-oblivious mechanism

to enable edge calls via a shared buffer between the enclave
application and the TRTS (Figure 6) using a mechanism that
parallels the shared buffer with host already present in the
original Keystone. Whenever an enclave application wishes
to invoke an edge call, the arguments are first copied to the
shared buffer with TRTS, and the return value address is set
to a location in the shared buffer with TRTS. The TRTS copies
the arguments of the edge call to the shared buffer with host
as it would in Keystone. Though this mechanism results in
an additional copy of arguments and return values on every
edge call, it allows securely exposing data to the TRTS on
a need-to-know basis. For performance-sensitive enclave
applications that potentially invoke a large volume of edge
calls, a simple solution is to offer a choice between security
from the TRTS or performance, trading off the other.

6 Discussion
Enforcing the least privilege principle on the TRTS improves
confidentiality towards the enclave application and thwarts
several attacks where the TRTS is a confused deputy under
the control of amalicious OS. Keystone-LP’s use of an explicit
shared buffer with TRTS prevents a naive TRTS from leaking
data from the enclave application’s memory region.

Our mechanism does not remove the TRTS from the TCB.
Several Iago attacks, such as described in [3], would still
succeed even with Keystone-LP where a compromised TRTS
misleads the enclave application to expose confidential data
through the shared buffer with TRTS. Further, Keystone-
LP doesn’t prevent controlled-side channel attacks [17] or
control-flow hijacking attacks.

The hardware extension proposed for RISC-V PMP is also
applicable to ARM TrustZone [14] which follows a two-
world view: all accesses in the memory system are already
identified using an NS-bit as either secure or non-secure
world accesses. An additional bit similar to pmpcfg.AS can
further help distinguish between various privilege layers
inside the secure world to enforce least privilege.

7 Conclusion
In this paper, we proposed a simple extension to the RISC-V
hardware security primitive, PMP, to restrict memory ac-
cesses of system software. We further used the proposed ex-
tension to enforce the least privilege principle on Keystone’s
trusted runtime, Eyrie, and provided a proof-of-concept im-
plementation to support executing unmodified Keystone
enclave applications.
The authors thank the anonymous reviewers for their

feedback. This work is supported in part by the Microsoft-
EPFL Joint Research Center and a VMware faculty award.
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