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Abstract
Higher-order asymptotics provide accurate approximations for use in parametric

statistical modelling. In this thesis, we investigate using higher-order approximations

in two specific settings, with a particular emphasis on the tangent exponential model.

The first chapter introduces first-order asymptotic theory and reviews key concepts

such as sufficiency, significance, and exponential families. We then discuss higher-

order approximations, which have been studied by many authors. The literature is

rich with examples demonstrating the limitations of first-order methods when applied

to models with many nuisance parameters and showcasing the increased accuracy of

higher-order approximations.

The second chapter concerns collision assessment of space objects. Satellite conjunc-

tions involving ‘near misses’ are becoming increasingly likely. A common approach

to risk analysis involves the computation of the collision probability, but this has

been regarded as having some counter-intuitive properties, and its interpretation has

been debated. We formulate an approach to satellite conjunction based on a simple

statistical model and discuss inference on the miss distance between the two objects,

for linear and non-linear motion. We point out that the usual collision probability

estimate can be badly biased, but highly accurate inference on the miss distance is

possible using the tangent exponential model. The ideas are illustrated with case

studies and Monte Carlo results that show its excellent performance.

In the third chapter we study statistics used to test hypotheses concerning parameters

on the boundary of their domain. These often have non-standard limiting distribu-

tions, which may be poor finite-sample approximations even when the sample size

is very large. We distinguish soft and hard boundary problems, discuss elementary

approached to both and describe an approach to small-sample approximation based

on the tangent exponential model. Numerical results show that the approach can give

much improved approximations, even in small samples.

We finish the thesis with ideas for future research in the field of particle physics,

including some preliminary results.

Keywords: boundary problems, higher-order asymptotics, hypothesis testing, likeli-

hood, satellite conjunction assessment, tangent exponential model
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Résumé

Les asymptotiques d’ordre supérieur fournissent des approximations précises dans

le cadre du traitement statistique de modèles paramétriques. Dans cette thèse, nous

étudions l’utilisation des approximations d’ordre supérieur dans deux contextes spé-

cifiques, en mettant particulièrement l’accent sur le modèle exponentiel tangent.

Le premier chapitre présente la théorie asymptotique du premier ordre et passe en

revue les concepts clés tels que la suffisance, la signification et les familles exponen-

tielles. Nous discutons ensuite des approximations d’ordre supérieur, qui ont été

étudiées par de nombreux auteurs. La littérature est riche d’exemples démontrant les

limites des méthodes de premier ordre appliquées à des modèles avec plusieurs para-

mètres de nuisance et mettant en évidence la précision améliorée des approximations

d’ordre supérieur.

Le deuxième chapitre concerne l’évaluation des collisions d’objets spatiaux. Les

conjonctions de satellites impliquant des “rencontres rapprochées" sont de plus

en plus probables. Une approche courante de l’analyse des risques implique le calcul

de la probabilité de collision, mais celle-ci a été considérée comme ayant des pro-

priétés contre-intuitives, et son interprétation a été débattue. Nous formulons une

approche de la conjonction des satellites basée sur un modèle statistique simple et

discutons l’inférence sur la distance critique entre les deux objets, pour des trajec-

toires linéaires et non linéaires. Nous soulignons que l’estimation habituelle de la

probabilité de collision peut être fortement biaisée, mais qu’une inférence très précise

de cette distance est possible en utilisant le modèle exponentiel tangent. Les idées

sont illustrées par des études de cas et des résultats de Monte Carlo qui montrent

d’excellentes performances.

Dans le troisième chapitre, nous étudions les statistiques utilisées pour tester les hy-

pothèses concernant des paramètres à la limite de leur domaine. Ceux-ci ont souvent

des distributions limites non standard, qui peuvent être de mauvaises approximations

d’échantillon fini même lorsque la taille de l’échantillon est très grande. Nous distin-

guons les problèmes de limites souples et dures, discutons des approches élémentaires

pour les deux et décrivons une approche de l’approximation à petit échantillon ba-

sée sur le modèle exponentiel tangent. Les résultats numériques montrent que cette

approche peut donner des approximations bien meilleures, même pour de petits
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Résumé

échantillons.

Nous concluons avec des idées de recherches futures dans le domaine de la physique

des particules, en incluant quelques résultats préliminaires.

Keywords : valeur limite de l’espace de paramètre, asymptotique d’ordre supérieur,

tests d’hypothèse, vraisemblance, évaluation de la conjonction de satellites, modèle

exponentiel tangent
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1
An Introduction to Likelihood-Based
Inference

“What has now appeared is that the mathematical concept of probability is inadequate

to express our mental confidence or diffidence in making inferences, and that the

mathematical quantity which usually appears to be appropriate for measuring our

order of preference among different possible populations does not in fact obey the

laws of probability. To distinguish it from probability, I have used the term “Likelihood"

to designate this quantity; since both the words “likelihood" and “probability" are

loosely used in common speech to cover both kinds of relationship."

R. A. Fisher, Statistical Methods for Research Workers, 1925.

1.1 Introduction

The idea of likelihood has been around for centuries, with early suggestions dating

back to Lambert in 1790. However, it was formally introduced and developed by Fisher

in 1922 (Fisher, 1922). Since then, the concept of likelihood has become the basis

of the most widely used method of statistical estimation and has been applied to a

vast range of problems in various scientific fields. It plays a crucial role in statistical

theory, methodology, and applications (Barndorff-Nielsen and Cox, 1989; Berger and

Wolpert, 1988; Severini, 2000). Throughout its development, the focus of statistical

inference shifted from simply summarizing the data to treating decision problems,

using concepts such as hypothesis testing and point and interval estimation. To ensure

the clarity and reproducibility of the mathematical formulation, it was necessary to

identify optimal methods for making inferences even before the observations were

collected, following the principle of repeated sampling. This approach, known as

the frequency-decision paradigm, aims to minimize ambiguity in interpretation and

ensure the reliability of the results. Many of the concepts and methods in these

1



Chapter 1. An Introduction to Likelihood-Based Inference

developments were influenced by pioneers such as Neyman (Neyman, 1937; Neyman

and Scott, 1948), Egon Pearson (Neyman and Pearson, 1928; Pearson, 1936), Wald

(Wald, 1949), Lehmann (Lehmann, 1983, 1986) and others who were inspired by

Fisher’s earlier major contributions.

Over the past century, numerous contributions have furthered the development of

likelihood-based theory. This evolution has often involved the use of asymptotic math-

ematics and arguments, which are common in both frequency-based and Bayesian

theory. The purpose of this chapter is to introduce some basic concepts of likelihood-

based inference and to review the approximations that will play a central role in the

subsequent chapters. We also introduce some notation and terminology that will later

be taken as prerequisites.

First order asymptotics involves linearizing the log likelihood and using the central

limit theorem to obtain results related to maximum likelihood estimates, score tests,

likelihood ratio tests, etc. In this context, a variety of statistics for testing a null hypoth-

esis θ = θ0 are available, differing by Op (n−1/2). In regular parametric models when

there is an arbitrarily large amount of data, these statistics produce similar results,

at least in theory. This is not always the case in practical use, and some statistics

give qualitatively more sensible results than others. In choosing between them, one

should pay special attention to the parametrization, as invariance considerations

seem compelling for confidence regions (Barndorff-Nielsen and Cox, 1994, Chapter 4).

First-order approximations will be discussed in Section 1.2.

In many models, the parameter vector can be divided into two parts: the parameter of

interest,ψ, and the nuisance parameter, λ. The parameter of interest,ψ, is the primary

focus of the study, while the nuisance parameter, λ, represents aspects of the model

that are necessary for accurate modeling but not the main focus. Typically, ψ has a

small number of dimensions, and often is scalar, while λ may be a high dimensional

vector. In this type of setting, it is desirable to base inference on a function of the data

and ψ that has properties similar to a likelihood function when there is no nuisance

parameter. A natural candidate for this is the profile likelihood function, whose

properties are illustrated in Severini (1998) and Pace and Salvan (1997, Chapter 4).

The profile likelihood provides a first-order approximation, but its inferential accuracy

may be unsatisfactory, especially when the number of nuisance parameters is large

and the sample size is small, so modifications have been proposed in an effort to

improve its accuracy. One particular modification was proposed by Barndorff-Nielsen

(1980, 1983, 1988), and involves the use of higher-order asymptotic methods. This

approach is discussed in Section 1.5. Before that, in Section 1.3 , we briefly review

exponential families and elaborate the idea of reduction to a marginal model and

2



1.2. General concepts

reduction to a conditional model, given a distribution-constant statistic; these are

formally unified under the factorization theorem (J/orgensen, 1994). Higher-order

asymptotics are often obtained using a combination of techniques, such as Taylor

series expansion of the log likelihood, asymptotic expansions for cumulants, and the

Laplace expansion for evaluating integrals. These techniques and their connections

to other fundamental approximations are discussed in Section 1.4.

In Section 1.6, we present a simplified version of the Barndorff-Nielsen approximation

that was developed by Fraser and his colleagues in a series of articles (Fraser and

Reid, 1993, 1995; Fraser et al., 1999a) called the tangent exponential model . This

section is largely inspired by the work of Davison and Reid (2022), which provides a

clear understanding of the model and illustrates the concept using straightforward

examples. In addition to the refinements proposed in Cox and Reid (1987), Cox (1975),

and Owen (2001), several other enhancements to the profile likelihood have been

suggested in the literature and will be mentioned throughout the chapter.

1.2 General concepts

In this section, we discuss first-order asymptotic theory for likelihood-based meth-

ods, which forms the foundation for the higher-order approximations described in

Section 1.5 and 1.6. These approximations hold as the sample size n becomes large;

here n is used as an index of the amount of information provided by the data, and the

assumption of n going to infinity allows us to obtain an approximation that can be

used for finite sample size.

1.2.1 First-order theory

We consider a vector Y = (Y1, . . . ,Yn)T of continuous responses and a statistical model

for Y with joint density function f (y ;θ) that depends on a parameter θ ∈ R. The

likelihood function is proportional to the density evaluated at the observed data y◦

and regarded as a function of the unknown parameter θ, i.e.,

L(θ) = L
(
θ; y◦)= c(y◦) f

(
y◦;θ

)
,

with c(·) an arbitrary function, we use y to denote a generic response vector and y◦

its observed value, and θ̂ is the maximum likelihood estimator and θ̂◦ the maximum

likelihood estimate computed from y◦. Fisher (1956, Chapter 3) suggested using

likelihood ratios to declare regions of the parameter space that are “very plausible”,

“somewhat plausible”, and “highly implausible” according to a specified threshold. The
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Chapter 1. An Introduction to Likelihood-Based Inference

maximum likelihood estimator θ̂ is often used as a reference point in this assessment.

It is defined as the solution to the score equation, ∂`(θ)/∂θ = 0, and under mild

regularity conditions, which we discuss later, it has an asymptotic normal distribution,

as n → ∞. Under these conditions, the approximate normal distribution of θ̂ is

centered at the true parameter θ with variance 1/ (θ̂), where (θ) =−∂2`(θ)/∂θ2 is

the observed information. This allows calibration of θ using the score statistic

s(θ) = 
(
θ̂
)−1/2 ∂`(θ)

∂θ
,

corresponding to a linear expansion of the score function, the Wald statistic

w(θ) = 
(
θ̂
)1/2 (

θ̂−θ)
,

or the likelihood root

r (θ) = sign
(
θ̂−θ){

2`(θ̂)−2`(θ)
}1/2

,

corresponding to a quadratic approximation to the log likelihood function.

The quantities s(θ), r (θ) and w(θ) are approximate pivots: they are functions of

the data and parameter and have approximate standard normal distributions under

repeated sampling if θ equals its true value. The approximations introduce so-called

first-order error, of size O(n−1/2). For more details, see, for example, Chapter 9 of Cox

and Hinkley (1974). For details on using the likelihood function directly for inference

see for example Royall (1997) or Burnham and Anderson (2002).

1.2.2 Several parameters

Suppose now that the density function f (y ;θ) depends on an unknown d-dimensional

parameter θ, which comprises a scalar interest parameterψ and a nuisance parameter

λ; ψ and λ are supposed to be variation independent. As λ is unknown, it must be

replaced by an estimate, and this introduces errors. In this situation the maximum

likelihood estimate θ̂o = (ψ̂o, λ̂o) maximises the log likelihood `(θ) = log f (yo;θ) with

respect to θ, and the partial maximum likelihood estimate θ̂o
ψ = (ψ, λ̂o

ψ) maximizes `(θ)

with respect to λ for fixed ψ. The large-sample properties of the maximum likelihood

estimator θ̂ under repeated sampling are well-established (Cox and Hinkley, 1974,

Chapter 9): as the sample size n → ∞ and under the regularity conditions given

below, θ̂ has an approximate d-dimensional normal distribution with mean the true

parameter θ and covariance matrix (θ̂)−1, where (θ) =−∂2`(θ)/∂θ∂θT is the d ×d

observed information matrix and θT denotes the transpose of the d ×1 vector θ.
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1.2. General concepts

The usual regularity conditions are

- C1: the true value θo of θ is interior to its parameter spaceΘ, which has finite

dimension and is compact;

- C2: the densities defined by any two different values of θ are distinct;

- C3: there is a neighbourhood δ of θo within which the first three derivatives of

the log likelihood with respect to θ exist almost surely, and for r, s, t = 1, . . . ,d ,

n−1E
{∣∣∂3`(θ)/∂θr∂θs∂θt

∣∣} is uniformly bounded for θ ∈ δ;

- C4: the Fisher information matrix i (θ) = E[ (θ)] is finite and positive definite

within δ, and its elements satisfy

i (θ)r s = E

{
∂`(θ)

∂θr

∂`(θ)

∂θs

}
= E

{
− ∂2`(θ)

∂θr∂θs

}
, r, s = 1, . . . ,d .

In practice, conditions C1−C4 can be violated in various ways. Chapter 3 of the thesis

will delve into boundary problems, which occur when condition C1 is not satisfied,

and examine certain non-regular models in more detail. Under the above conditions,

the error committed by replacing parameters in (1.4) by their estimates is O(n−1/2),

giving first-order approximations, and the same error is committed by treating

the likelihood root r (ψ) = sign(ψ̂−ψ)
[
2
{
`(θ̂)−`(θ̂ψ)

}]1/2
, (1.1)

the Wald statistic w(ψ) = p(ψ̂)1/2(ψ̂−ψ), (1.2)

the score statistic s(ψ) = p(ψ̂)−1/2∂`(θ̂ψ)

∂ψ
, (1.3)

as standard normal; here p is the observed information function for the profile

likelihood which can be expressed in terms of the observed information as

p(ψ) = ψψ
(
θ̂ψ

)− ψλ
(
θ̂ψ

)
λλ

(
θ̂ψ

)
λψ

(
θ̂ψ

)
=

∣∣  (θ̂ψ)∣∣∣∣ λλ (
θ̂ψ

)∣∣ ,

where | · | indicates the determinant. The last identity holds for scalar ψ using the

partition of the observed information matrix and its inverse into the (ψ,λ) blocks, i.e.,

(θ) =
(
ψψ(θ) ψλ(θ)

λψ(θ) λλ(θ)

)
, (θ)−1 =

(
ψψ(θ) ψλ(θ)

λψ(θ) λλ(θ)

)
.
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Chapter 1. An Introduction to Likelihood-Based Inference

1.2.3 Significance, sufficiency and ancillarity

A key tool for statistical inference on a scalar parameter θ is the significance function

po(θ) = Pr(θ̂ ≤ θ̂o;θ), (1.4)

which can be used for inference about θ based on observed data yo. It can be used to

determine the limits of a confidence interval for θ, and compare the relative strength

of evidence for different hypotheses (Fraser, 2019). The pivots w(θ) , s(θ) and r (θ) can

be used for inference on θ since they have approximate standard normal distributions.

The corresponding approximate significance functions based on observed data yo are

Φ{w o(θ)},Φ{so(θ)} andΦ{r o(θ)}. In Section 2.4, the significance function is discussed

in greater detail and expressed in terms of an equivalent “evidence function", which

allows us to asses the plausibility of different values of θ in light of yo and make

informed decisions based on the available data.

A different way of defining the significance function is through the notion of sufficiency.

Let s be a sufficient statistic, i.e., a function of y such that the conditional density of Y

given S = s(Y ) does not depend on θ for all s. That is

fY |S(y | s;θ) = g (y, s), θ ∈Θ. (1.5)

Then, s is “sufficient” for the parameter θ, in the sense that no other statistic that

can be calculated from the data provides any additional information about θ. The

definition of a sufficient statistic in (1.5) does not uniquely determine S, because it

is possible to augment S with aspects of the data that are not already included. To

avoid this ambiguity, we typically consider the minimal sufficient statistic, which is

the lowest-dimensional statistic for which (1.5) holds.

Now, suppose that there exists a one-to-one transformation from a sufficient statistic

s(Y ) to a pair (M , A), where the distribution of A is independent of θ and there is

no further information in Y regarding θ beyond that in M . We call A an “ancillary"

statistic; the term ancillary implies that A is auxiliary or supplementary in nature.

Even though it does not contain any information about the parameter θ, the observed

value ao of A is still used to make inferences about the parameter. A more thorough

and precise explanation of minimal sufficiency and the related Fisher–Neyman factor-

ization theorem can be found in Barndorff-Nielsen (1978, section 4.2). Formulated

otherwise using this decomposition, the significance function in (1.4) can be defined

conditional on the observed value of A = ao, leading to a significance function of the

form

po(θ) = Pr
(
M ≤ mo | A = ao;θ

)
.
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In simpler terms, the above arguments suggest that it can be useful to focus on the

distribution of the (minimal) sufficient statistic when making inferences about θ

(Cox, 1958). This process of using the sufficient statistic to make inferences is called

reduction by sufficiency (Barndorff-Nielsen and Cox, 1989, 1994), and is especially

useful when the likelihood function is complex or the sample size is large, as it allows

us to avoid the computational burden of computing the full likelihood.

Example 1

Let (Y1,Y2) be independent Poisson random variables with means µ1 = (1−θ)p, and

µ2 = θp, where p is a known constant. The log likelihood function is

`(θ; y1, y2) = log

{
µ

y1
1 exp(−µ1)

y1!

µ
y2
2 exp(−µ2)

y2!

}
,

= (y1 + y2) log p −p − log
{
(y1 + y2)!

}
+ log

(
y1 + y2

y1

)
+ y1 log(1−θ)+ (y2 + y1 − y1) logθ,

where the minimal sufficient statistic is (Y1,Y2). By setting S = Y1 and A = Y1 +Y2 , we

can write the likelihood as

`(θ; y) = `Pois(p; a)+`B(θ; s|a),

where `Pois is the log likelihood based on the random variable A = Y1 +Y2, which is

distribution constant, having a Poisson distribution of mean p, and hence is ancillary,

and the likelihood `B corresponds to the contribution of Y1 given A = a, which is

binomial with denominator a and parameter θ. One way to understand the role

of conditioning in this example is to note that the total count, a, does not provide

any information on its own to estimate θ. However, by conditioning on A = a, the

observed information is

B(θ) = s(2θ−1)+a(1−θ)2

θ2(1−θ)2
, 0 < θ < 1,

the same as in the original Poisson likelihood function, so we can retrieve complete

information about θ. This is the case in contingency tables, where the total num-

ber of counts per row is fixed, and we use a multinomial variable to represent the

corresponding row.
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Chapter 1. An Introduction to Likelihood-Based Inference

1.3 Exponential family models

Exponential family distributions have several desirable statistical and computational

properties. These properties are often attributed to the natural parameter space

F =
{
θ ∈Rd : κ(θ) = log

∫
e s(y)Tθ f0(y)dy <∞

}
,

constructed for a baseline density function f0(y) with support Y , which may be either

continuous or discrete. The natural observation s(y) = (
s1(y), . . . , sd (y)

)T consists

of functions of y such that the set
{
1, s1(y), . . . , sd (y)

}
is linearly independent. In

general, θ = (θ1, . . . ,θd )T may depend on a parameter φ taking values inΩ⊂Rd , where

θ(Ω) ⊆F . Under these assumptions, an exponential family of order d is

f (y ;φ) = f0(y)exp
[
s(y)Tθ(φ)−κ{

θ(φ)
}]

, y ∈Y ,φ ∈Ω, (1.6)

and θ is called the canonical parameter. The density (1.6) is called a minimal repre-

sentation and it can be demonstrated that s(Y ) forms a minimal sufficient statistic

for the canonical parameter θ(φ) (Fraser, 1963). If there exists a one-to-one mapping

between F and Ω, the dependence on φ can be omitted, and the family is called a

natural exponential family.

Using Hölder’s inequality, it can be shown that F is convex and that κ(θ) is strictly

convex on F (Davison, 2003, §5.2). Under (1.6), the cumulant generating function of

s(Y ) is K (t ) = κ(θ+ t )−κ(θ), so

Eθ{s(Y )} = ∂κ(θ)/∂θ, varθ{s(Y )} = ∂2κ(θ)/∂θ∂θT.

The convexity of κ(θ) allows an exponential family to be parameterized not only

by the canonical parameter θ, but also by the mean parameter µ= Eθ{s(Y )}. Many

distributions that are typically parameterized using the mean parameterization can

also be parameterized using the canonical parameterization. This property forms the

basis for generalized linear models (Nelder and Wedderburn, 1972; McCulloch and

Searle, 2001).
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1.3. Exponential family models

Example 2

The normal distribution with mean µ and variance σ2 has density

f (y ;φ) = 1p
2πσ2

exp
{−(y −µ)2/

(
2σ2)}

= 1p
2π

exp

[
µ

σ2
y − 1

2σ2
y2 −

(
µ2

2σ2
+ logσ

)]
,

where φ= (
µ,σ2

)
. This is a two-parameter exponential family with s1(y) = y, s2(y) =

y2, θ1(φ) = µ/σ2, θ2(φ) =−1/
(
2σ2

)
, κ(φ) = µ2/

(
2σ2

)+ logσ, arising from tilting the

standard normal density f0(y) = exp
(−y2/2

)
/(2π).

Curved exponential families may arise when the setΩ is a subset of Rr and r < d . In

this situation, two potential scenarios can occur:

i) The canonical parameter is a linear function of φ, giving an r -parameter expo-

nential family for some r < d . The statistic s(Y ) is sufficient, but not minimal

sufficient.

ii) There is no linear constraint linking θ to φ, giving a curved exponential family.

The statistic s(Y ) is minimal sufficient, but may not be complete; for the notion

of completeness see e.g., Moser (1996, Chapter 6).

Example 2 (ctd)

In the previous example, if the mean µ and variance σ2 are equal, then we have

a normal distribution with mean µ and variance µ, where µ > 0. The canonical

parameter θ(φ) = {
1,−1/(2µ)

}T satisfies the linear constraint θ1 = 1. The density is

then a one-parameter exponential family with s(y) = y2 as a complete sufficient

statistic (Keener, 2010).

Inference in exponential families is a key setting in which the concepts of sufficiency,

ancillarity, and model reduction, discussed in Section 1.2.3, can be applied. Consider

an exponential family with a minimal representation of the form

f (y ;ψ,λ) = f0(y)exp
{
ψs1(y)+λs2(y)−κ(ψ,λ)

}
, y ∈Y .

Suppose that we want to make inferences about the parameter ψ. It can be shown

that a partition of the natural observations (S1,S2) = {s1(Y ), s2(Y )} is sufficient for

(ψ,λ) in the sense of Basu (1978). In particular, the conditional distribution of S2

given S1 = s1 and the marginal distribution of S2 are natural exponential families of
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Chapter 1. An Introduction to Likelihood-Based Inference

orders k and d −k, the sizes of the partition. Techniques for making inferences about

the parameter of interest while eliminating the nuisance parameter are discussed in

Barndorff-Nielsen and Pedersen (1968), J/orgensen and Labouriau (1995), and Pace

and Salvan (1997).

1.4 Fundamental approximations

Two common density approximations used in statistical analysis are Laplace and sad-

dlepoint approximations, typically used in Bayesian and frequentist inference. These

approximations have been thoroughly studied and have well-established properties.

In this section, we provide a brief overview of them in order to better understand

Sections 1.5 and 1.6.

1.4.1 Laplace approximation

Suppose that g (u) is a smooth convex function of u with a minimum at u = û. We

denote partial derivatives of g evaluated at û as g2 = d 2g (û)/du2, g3 = d 3g (û)/du3,

and so forth. Using a Taylor series expansion of g (u) around û, we have∫ +∞

−∞
exp

{−ng (u)
}

du =
(

2π

ng2

)1/2

exp
{−ng (û)

}{
1+O

(
n−1)} . (1.7)

The leading term on the right-hand side of (1.7), called the Laplace approximation,

replaces the integral using the value and the second derivative of the exponent, i.e.,

g (û) and g2, with a relative error of O(n−1). The remainder term is

1+ 1

n

(
5

24
κ̂2

3 −
1

8
κ̂4

)
+O

(
n−2) ,

where κ̂3 = g3/g 3/2
2 and κ̂4 = g4/g 2

2 . The right-hand side of (1.7) is an asymptotic series

meaning that the partial sums may not converge and the accuracy of the approxima-

tion may not be improve by adding more terms.

The Laplace approximation is often written with an additional factor a(u). For in-

stance, consider the expression

Jn (u0) =
( n

2π

)1/2
∫ u0

−∞
a(u)exp

{−ng (u)
}{

1+O
(
n−1)}du, (1.8)

where u is a scalar, a(u) > 0, and g (u) has the same properties as in (1.7). Using two
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1.4. Fundamental approximations

changes of variables, we obtain

Jn (u0) =
( n

2π

)1/2
∫ +∞

r∗
0

exp−nr∗2/2 {
1+O

(
n−1)}dr ∗,

= 1−Φ(
n1/2r ∗

0

)+O
(
n−1) ,

=Φ(−n1/2r ∗
0

)+O
(
n−1) ,

where r ∗
0 = r0 + (r0n)−1 log

(
q0

r0

)
, r0 = sign(û −u0)

{
2g (u0)

}1/2 , and q0 =−g ′ (u0)

a (u0)
.

Further details can be found in Davison (2003, §11.3), with some slight variations, as r

defined there has the opposite sign to that defined in equation (1.1).

1.4.2 Saddlepoint approximation

The saddlepoint approximation is widely used in asymptotic analysis and has close

ties to the Laplace approximation. In this section, we will provide a concise summary

of the former, which is used to approximate density and distribution functions and is

the basis for numerous small-sample procedures.

Let X̄ denote the average of a random sample of continuous scalar random variables

X1, . . . , Xn , each having cumulant generating function κ(u). By definition, the cumu-

lant generating function of nX̄ can be expressed as integral involving f (x̄), the density

of X̄ ,

exp{nκ(u)} =
∫ ∞

−∞
exp

{
unx̄ + log f (x̄)

}
d x̄

=
∫ ∞

−∞
exp

{−g (u, x̄)
}

d x̄,

where g (u, x̄) = −unx̄ − log f (x̄). Using the Laplace approximation (1.7) to the last

integral yields

exp{nκ(u)} =
(

2π

g2(u, x̄u)

)1/2

exp(nux̄u) f (x̄u)
{
1+O

(
n−1)} ,

where x̄u minimises g (u, x̄) over x̄ for fixed u. It can be shown that

x̄u = κ′(u), g2(u, x̄u) = n
{
κ′′(u)

}−1 .

11



Chapter 1. An Introduction to Likelihood-Based Inference

Hence, the saddlepoint approximation to the density of X̄ at x is

f X̄ (x) =
{

n

2πκ′′(u)

}1/2

exp{nκ(u)−nux}
{
1+O

(
n−1)} . (1.9)

Some aspects of the derivation outlined above are not explained; for details see for

example Butler (2007, Chapter 12) or Davison (2003, Section 13.2).

The saddlepoint approximation in (1.9) and the corresponding approximation to

the cumulative distribution function of X̄ involve using the cumulant generating

function, κ(u), and finding the value of ũ for each x of interest. The approximation’s

accuracy depends on the distribution’s shape and the proximity of the maximum of

the cumulant generating function to the origin.

The saddlepoint approximation has been widely applied and has proven to be a pow-

erful tool. Many techniques for accurately approximating densities and distributions

using this method have been developed since its introduction in a seminal article by

Daniels (1954); see Lugannani and Rice (1980), Skovgaard (1987), Srivastava and Yau

(1989), and Pierce and Peters (1992). Reid provided a comprehensive review of its

applications and the relevant literature in Reid (1988, 1991).

Example 3

Assume that a random variable X has a noncentral chi-squared density, which can be

written as an infinite mixture of central chi-squared densities, where the weights are

Poisson probabilities,

f (x;θ) =
∞∑

k=0

xp/2+k−1e−x/2

Γ(p/2+k)2p/2+k

θk e−θ

k !
, x > 0, θ, p > 0;

here p is the degrees of freedom, θ is the noncentrality parameter, and Γ(p) is the

gamma function (Goutis and Casella, 1999). The cumulant generating function is

κ(u) = 2θu

1−2u
− p

2
log(1−2u) , u < 1/2.

The equation κ′(u)−x = 0 yields a second order polynomial in u, and the saddlepoint

is

ũ(x) = −p +2x −√
p2 +8θx

4x
, x > 0.

The left panel of Figure 1.1 shows the saddlepoint and exact densities for p = 7 and

θ = 4. We also plot a normalized version of (1.9) in which the density is divided
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1.4. Fundamental approximations

by its integral, approximated numerically using Simpson’s rule. The saddlepoint

approximation appears to be highly accurate in this case.

If the analytic form of κ(u) is not available or it cannot be calculated, then we can

estimate κ(u) using the estimator proposed by Davison and Hinkley (1988), i.e.,

κ̂n(u) = log

(
1

n

n∑
i=1

expuxi

)
.

Derivative estimates of κ̂n(u) are then used to produce an empirical saddlepoint

approximation f̂ X̄ . The empirical saddlepoint approximation has been shown to

perform well in the central region of a distribution, as demonstrated in Feuerverger

(1989) and Wang (1992). However, it has a limitation in that the solution to the

equation κ̂′(u) = x does not exist outside the convex hull of x1, . . . , xn . This issue was

addressed in Fasiolo et al. (2018) with the introduction of the extended empirical

saddlepoint approximation.

Example 3 (ctd)

For noncentral chi-squared density in Example 3, we plot the empirical saddlepoint

and exact densities using 103 samples for p = 7 and θ = 4 in the right panel of Figure 1.1.

The empirical density and its standardized version provide good approximations for

the true density in the center of the range of the data, with slightly less accuracy in

the right tail. This example suggests that the empirical approach may be viable for

approximating densities when the cumulant generating function is unknown.

1.4.3 Bayesian asymptotics

In the Bayesian setting with parameter vector θ = (ψ,λT)T, assume we have a prior

density π(ψ,λ). The posterior density of the scalar interest parameter ψ is

π(ψ | y) =

∫
f (y |ψ,λ)π(ψ,λ)dλ∫

f (y |ψ,λ)π(ψ,λ)dλdψ
.

If both integrals are approximated using the multivariate Laplace approximation in
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Figure 1.1 – Illustration of the saddlepoint density approximation for the non-central
chi-square density with p = 7 and θ = 4. Left panel: true density (black), saddlepoint
density (blue), standardized saddlepoint (dashed red). Right panel: same densities
using the empirical approximation based on 103 xi ; the rug of tickmarks shows the xi

themselves.

(1.7), the resulting approximation can be expressed as

π(ψ | y) =
( n

2π

)1/2


∣∣∣−∂2`m (ψ̃,λ̂)

∂θ∂θT

∣∣∣∣∣∣∣−∂2`m
(
ψ,λ̂ψ

)
∂λ∂λT

∣∣∣∣


1/2

f
(
y |ψ, λ̃ψ

)
π

(
ψ, λ̃ψ

)
f (y | ψ̃, λ̃)π(ψ̃, λ̃)

{
1+O

(
n−1)} . (1.10)

where λ̃ψ is the maximum a posteriori estimate of λ for a fixed value ofψ, and `m(θ) =
log f (y | θ)+ logπ(θ) is the log likelihood modified by the log prior. The posterior

marginal cumulative distribution for ψ is obtained by integrating equation (1.10),

which can be approximated using equation (1.8) by setting

g (ψ) = log f (y | ψ̃, λ̃)− log f
(
y |ψ, λ̃ψ

)
, a(ψ) =


∣∣∣∣−∂2`m (ψ̃,λ̃)

∂∂∂θT

∣∣∣∣∣∣∣∣∣−∂2`m
(
ψ,λ̃ψ

)
∂λ∂λT

∣∣∣∣∣


1/2

π
(
ψ, λ̃ψ

)
π(ψ̃, λ̃)

,

In this variant, the ratio of priors is included in the positive coefficient a(u) of the

integral instead of appearing in the exponent of (1.8). In this case, `m becomes simply

the log likelihood, θ̃ and θ̃ψ are maximum likelihood estimates, the Hessians are
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1.4. Fundamental approximations

observed information matrices. The posterior marginal cumulative distribution for ψ

is

Pr(ψ≤ψ0 | yo) =Φ{−r ∗o
B (ψ0)

}{
1+O(n−1)

}
, (1.11)

where

r ∗o
B (ψ) = r o(ψ)+ 1

r o
log

{
qo

B (ψ)

r o(ψ)

}
,

r o(ψ) = sign
(
ψ̂−ψ0

)[
2
{
`

(
θ̂
)−`(

θ̂ψ
)}1/2

]
,

is the likelihood root, and

qo
B (ψ) = d`(ψ, λ̂ψ)

dψ


∣∣∣∣−∂2`

(
ψ,λ̂ψ

)
∂λ∂λT

∣∣∣∣∣∣∣−∂2`(ψ̂,λ̂)
∂θ∂θT

∣∣∣


1/2

π(θ̂)

π(θ̂ψ)

= d`(θ̂ψ)

dψ

{
| λλ(θ̂ψ)|
| (θ̂)|

}1/2
π(θ̂)

π(θ̂ψ)

= `′p(ψ) jp(ψ̂)−1/2

{∣∣ λλ (
θ̂ψ

)∣∣∣∣ λλ(θ̂)
∣∣

}1/2
π(θ̂)

π
(
θ̂ψ

) .

Each of these quantities is evaluated at the observed data y = yo and the correspond-

ing estimates θ̂ = θ̂o and θ̂ψ = θ̂o
ψ0

. The proof can be found in Brazzale et al. (2007,

Section 8.7), although there is a typo in this reference, where q and r incorrectly have

opposite signs.

Using an appropriate choice of the prior, there is a close parallel between frequentist

and the Bayesian approximations. The appropriate priors are called “matching priors”

and have been suggested as noninformative priors in Bayesian inference. Originally

proposed by Jeffreys (1946), a constant information prior of the form

π(θ)dθ∝|i (θ)|1/2 dθ

is invariant under reparameterization and has some special properties (Jeffreys, 1946).

In the presence of nuisance parameter λ, Peers (1965), Welch and Peers (1963), and

Tibshirani (1989) proposed an extension of the form

π(ψ,λ)dψdλ∝ iψψ(ψ,λ)1/2g (λ)dψdλ,

where λ and ψ are orthogonal and g (λ) is an arbitrary positive function that satisfies

mild regularity conditions.
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Reid et al. (2002) provide an overview of the pioneering work of Welch and Peers (1963)

on matching priors, and discuss subsequent developments. Fraser and Reid (2002)

introduce the concept of strong matching priors and provide insights into techniques

for examining them, with a focus on location models. In Chapter 2 of the thesis, we

use first-order matching priors for a curved exponential model and show the coverage

of confidence intervals based on the approximate Bayesian solution is not as good as

the corresponding frequentist intervals.

1.5 The p∗ approximation

One of the primary higher-order asymptotic results in likelihood-based inference

is the p∗ approximation for the density of the maximum likelihood estimator. This

transformation is exact for transformation models when properly normalized, and it

coincides with the saddlepoint approximation for exponential models. In the following

section, we will review it using the mathematical tools outlined in Section 1.4.

1.5.1 Definitions

Barndorff-Nielsen (1980, 1983, 1988) proposed the following approximation to the

conditional density of the maximum likelihood estimator,

p∗(θ̂;θ, a) = c (θ, a)

(2π)d/2

∣∣ (θ̂)
∣∣1/2

exp
{
` (θ)−`(

θ̂
)}

, (1.12)

where a is an ancillary statistic , c = c(θ, a) is a renormalizing constant, (θ̂) is the

observed Fisher information and 2{`(θ̂)−`(θ)} is the log-likelihood ratio statistic.

In the p∗ approximation, the data vector is transformed into (θ̂, a), which is assumed

to be a one-to-one mapping. Transforming y into (θ̂, a) allows us to view the right-

hand side of (1.12) as a d-dimensional density for θ̂ even though the sample space is

n-dimensional. This dimension reduction is achieved by conditioning on the ancillary

statistic a. The p∗ approximation is invariant under one-to-one transformation

of the data y , and is parametrization-invariant. The last property also applies to

the normalization constant c(θ, a) (Barndorff-Nielsen and Cox, 1994, Section 6.2).

For many models, including transformation models, the pair (θ̂, a) forms a minimal

sufficient statistic, and the p∗ approximation is equal to the exact conditional density

p(θ̂;θ, a).

In the special case when θ is a scalar, integrating the p∗ approximation gives the
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1.5. The p∗ approximation

following approximation to the conditional cumulative distribution function of r ,

Φ(r ∗) =Φ
(
r + 1

r
log

q

r

)
. (1.13)

The pivot in (1.13), known as the modified likelihood root, is

r ∗(θ) = r (θ)+ 1

r (θ)
log

q(θ)

r (θ)
. (1.14)

It is derived, under regularity conditions, using a change of variable from θ̂ to r in the

exponent of equation (1.8) and the saddlepoint method discussed in Section 1.4.2.

The correction term in (1.14) is

q =
{
`;θ̂(θ)−`;θ̂

(
θ̂
)}{


(
θ̂
)}−1/2

(1.15)

and in general it depends on the sample space and mixed derivatives

`;θ̂(θ; θ̂, a) = ∂`(θ; θ̂, a)

∂θ̂
, `θ;θ̂(θ; θ̂, a) = ∂2`(θ; θ̂, a)

∂θ∂θ̂T
.

Expression (1.13), known as the Barndorff-Nielsen’s r ∗ approximation, was introduced

by Barndorff-Nielsen (1986) and discussed further in Barndorff-Nielsen and Cox

(1994), Fraser et al. (1999a), and Reid (2003). An alternative approximation to (1.13)

with the same order of asymptotic error is the Lugannani and Rice approximation

Φ∗ (r ) =Φ(r )+
(

1

r
− 1

q

)
ϕ (r ) . (1.16)

The term `;θ̂ appears in the correction term (1.15) due to the transformation from

θ̂ to the likelihood root, r (θ). This term reflects the effect that changes in the data

have on the likelihood function. However, these changes only occur in certain direc-

tions, namely those that maintain the value of the ancillary statistic a constant. More

information about this derivation and discussion can be found in Skovgaard (1990),

Fraser and Reid (1993), Fraser and Reid (1995), and Brazzale et al. (2007). In a detailed

analysis, Barndorff-Nielsen and Cox (1994, Chapter 6) derived the p∗ approximation

using statistics other than r to measure the departure of θ̂ from θ, such as the like-

lihood ratio statistic and Bartlett adjustments of this. They also derived asymptotic

expansions of p∗ that resemble Edgeworth expansions, but with coefficients that are

determined by mixed derivatives of the log model function rather than cumulants.

If θ is a vector, the argument becomes more complex. In this case, we need to trans-
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Chapter 1. An Introduction to Likelihood-Based Inference

form θ into r and d − 1 additional variables, say θ̂ψ. The Jacobian matrix for the

transformation from
(
r, θ̂ψ

)
to (ψ̂, λ̂) is based on likelihood differentiation. After this

transformation, we integrate out the additional variables, resulting in

q =
∣∣∣`;θ̂(θ̂)−`;θ̂

(
θ̂ψ

)
`λ;θ̂

(
θ̂ψ

)∣∣∣{∣∣ λλ (
θ̂ψ

)∣∣ ∣∣ (θ̂)
∣∣}−1/2

. (1.17)

The first factor on the right-hand side of (1.17) is the determinant of a d ×d matrix

whose first column is given by the difference of sample-space derivatives `;θ̂(θ̂)−
`;θ̂

(
θ̂ψ

)
and whose other columns are given by the d × (d −1) matrix of mixed deriva-

tives `λ;θ̂

(
θ̂ψ

)
. Barndorff-Nielsen and Cox (1994, Chapter 8) offer a comprehensive

proof.

1.5.2 Decomposition of the correction term

Pierce and Peters (1992) examined the modified directed likelihood when the param-

eter of interest is a one-dimensional component of the canonical parameter in an

exponential model. They suggested breaking down the adjustment term into two

parts: one that addresses the potential influence of nuisance parameters and another

that addresses the deviation from standard normality of the modified likelihood root.

Barndorff-Nielsen and Cox (1994, Chapter 6) extend their decomposition of r ∗ to the

general setting, obtaining

r ∗ = r + rNP + rINF,

rNP = r−1 logC , (1.18)

rINF = r−1 log(ũ/r ). (1.19)

where

C =
∣∣∣`λ;λ̂

(
θ̂ψ

)∣∣∣{∣∣ λλ (
θ̂ψ

)∣∣ ∣∣ λλ(θ̂)
∣∣}−1/2

,

and

ũ =
∣∣∣`;θ̂(θ̂)−`;θ̂

(
θ̂ψ

)
`λ;θ̂

(
θ̂ψ

)∣∣∣{ p(ψ̂)−1/2
∣∣∣`λ;λ̂

(
θ̂ψ

)∣∣∣}−1
,

p(ψ̂) is the observed profile information on evaluated at ψ̂, and C is a score-type

statistic based on the profile log likelihood function.

Tang and Reid (2020) studied the order of the terms in equations (1.18) and (1.19) in

settings with increasing numbers of nuisance parameters, focusing on linear expo-

nential families and location-scale families.
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1.5. The p∗ approximation

1.5.3 Further remarks

The approximation of (1.13) by (1.16) suggests that r is approximately normally dis-

tributed. The accuracy of this approximation can be quantified using a Taylor series

expansion, of the form

r = q + Ap
n

q2 + B

n
q3 +O(n−3/2), (1.20)

where A and B are constants, and the expansion follows from differentiation of the

normed profile likelihood `
(
θ̂ψ

)−`(θ̂); see in Reid (2003) and Brazzale et al. (2007,

Chapter 8).

This expansion is a way to address the singularity at θ̂ as both r and q approach

zero when θ approaches θ̂. Li (2001) and Fraser et al. (2003) developed third- and

second-order bridges for the p-value around the maximum likelihood singularity

for scalar and vector parameters, respectively. The resulting pivots can be viewed as

Bartlett-type corrections to the likelihood ratio that are derived from the observed

likelihood. In practice, the pivots are usually evaluated on a fine grid of points around

θ̂ and interpolated using smoothing splines (Fraser et al., 2003).

It follows from (1.20) that

1

r
log

q

r
= Ap

n
+ B −3A2/2

n
q +O(n−3/2), (1.21)

1

r
− 1

q
= Ap

n
− B − A2

n
q +O(n−3/2), (1.22)

r ∗ = r − A/n1/2

{1+ (2B −3A2/n)}1/2
+O

(
n−3/2) , (1.23)

and

E(r ) = Ap
n
+O(n−3/2), var(r ) = 1+ 1

n
(2B −3A2)+O(n−2).

The expansions in equations (1.21) and (1.22) demonstrate that both approximations

in (1.16) and (1.13) are equivalent to O(n−1). Renormalizing the density results in

a normal density with an error of O(n−3/2), as the 1/n term cancels out with the

normalizing constant (Davison and Reid, 2022). Hence, an approximation that treats

the modified likelihood root (1.23) as standard normal has a relative error of order

O(n−3/2).

The difficulty of constructing an exact or approximate ancillary statistic a for the

p∗ formula has limited its practical usefulness, as it is often not straightforward to
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Chapter 1. An Introduction to Likelihood-Based Inference

construct such a statistic, and it is uncommon to have an explicit formula for it in

general models (Reid, 2003). Fraser (1990, 1991) has proposed alternative versions of

the adjusted likelihood root that do not involve the transformation from y to (θ̂, a).

Several other approximations have also been suggested in the literature, including

those by Barndorff-Nielsen and Chamberlin (1991), DiCiccio and Martin (1993), with

the approximation proposed in Skovgaard (1996, 2001) being particularly useful for

both theoretical and applied purposes.

1.6 The tangent exponential model

The tangent exponential model proposed by Fraser and co-authors e.g., (Fraser and

Reid, 1993, 1995; Fraser et al., 1999a) simplifies the construction of (1.14), by noting

that it is not necessary to consider the full dependence of the log likelihood function on

(θ̂, a). It is sufficient to examine the first derivative of the log likelihood at the observed

data to understand how the log likelihood changes as θ̂ changes but a is fixed. This

approach is similar to the scalar parameter setting, where the full dependence of the

log likelihood on the transformation is not needed. For this model, the approximation

to (1.12) is

fTEM(s | a;θ) = exp
[
sTϕ(θ)+`{

θ(ϕ); y◦}]h(s). (1.24)

This can be seen as a linear exponential family model with a constructed suffi-

cient statistic s = s(y) ∈ Rd and constructed canonical parameter ϕ(θ) ∈ Rd , where

−`(
θ; y◦)=−`(

ϕ(θ); y◦) is the cumulant generating function. If the underlying den-

sity of y belongs to the exponential family, thenϕ(θ) is simply the canonical parameter.

In more general models, the canonical parameter may depend on the data yo (Davison

and Reid, 2022).

1.6.1 Sufficient directions

We are interested in performing inference based on the conditional density f (s | a◦;θ),

where a◦ is the observed value of the ancillary statistic A. To do so, we define the

reference set A ◦ = {
y ∈Rn : a(y) = a◦}, as the d-dimensional manifold of the sample

space on which the ancillary statistic equals its observed value a◦. The reference set

A ◦ can be parameterized in terms of s, at which point its tangent plane, denoted by

Ts , is determined by the columns of the n ×d matrix ∂y (s, ao)/∂sT. This allows us

to perform inference based on the conditional density f (s | a◦;θ) while taking into

account the observed value of the ancillary statistic a◦. In particular, the tangent plane

T◦ to A ◦ at y◦ is determined by the sufficient directions, i.e, the space spanned by the

20



1.6. The tangent exponential model

columns of the matrix

V = ∂y (s, a◦)

∂sT

∣∣∣∣
y=y◦

.

Constructing V does not require the knowledge of the mapping y 7→ (s, a), as

V = ∂y

∂sT

∣∣∣∣
y=y◦

= ∂y

∂θT

∣∣∣∣
y=yo,θ=θ̂o

×
(
∂s

∂θT

)−1∣∣∣∣
y=yo,θ=θ̂o

, (1.25)

and we typically take V to be ∂y/∂θT, evaluated at y = y◦ and θ = θ̂◦ since the second

matrix on the right has dimension d ×d and is invertible; thus the column space of V

is also the column space of the first matrix on the right-hand side of (1.25) . Both span

the sufficient directions, but the columns of the matrix ∂y/∂θT do not require y to be

expressed in terms of (s, a).

The term ancillary directions has been used to refer to the columns of V , which are

obtained from the ancillary manifold A ◦ at s = s◦. However, Davison and Reid (2022)

argued that this term is misleading because the d columns of V show how y changes

in the direction of s locally at s◦. Therefore, referring to them as sufficient directions is

more accurate. The ancillary statistic itself varies locally at a◦ in the n −d directions

that are perpendicular to the columns of V .

In Fraser and Reid (1995), it was demonstrated that the vector V can be constructed us-

ing a vector of pivot statistics z(y ;θ) = {
z1(y1,θ), . . . , zn(yn ,θ)

}T. Each element zi (yi ,θ)

of this vector has a fixed distribution under the specified model. This construction of

V relies on the assumption that the components of y are independent, and gives

V = ∂y

∂θT

∣∣∣∣
y=yo,θ=θ̂o

=−
(
∂z

∂y T

)−1∣∣∣∣
y=yo,θ=θ̂o

× ∂z

∂θT

∣∣∣∣
y=yo,θ=θ̂o

, (1.26)

these are tangent to the surface in the sample space on which the ancillary statistic is

held constant.

Example 4

Suppose that Y1/θ and Y2θ are independent gamma variables with unit scale and

shape parameter n. The joint density function of Y1 and Y2 is

f (y1, y2;θ) = (y1 y2)n−1

Γ(n)2 exp
(
− y1

θ
− y2θ

)
, y1, y2 > 0,θ > 0.

If we set S = (Y1/Y2)1/2 and A = (Y1Y2)1/2, then Y1 = AS and Y2 = A/S, and A is ancillary

for θ. The log likelihood for this model can be expressed using the conditional density
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of S given that A = a,

`(θ; s | a) =−a

(
s

θ
+ θ

s

)
, θ > 0.

The maximum likelihood estimator for θ is θ̂ = s, and the variance of this estimator,

var(θ̂) = (θ̂)−1 = s2/a, decreases as the ancillary statistic a increases, leading to more

precise inference for θ. As yT = (y1, y2) = (as, a/s), the sufficient directions are given

by

V = ∂y(s, a)

∂s
= (

a,−a/s2)T
∣∣∣∣

y=y◦
.

This vector represents the change in the minimal sufficient statistic (y1, y2) as s

changes, holding the ancillary statistic a constant. In Figure 1.2, we plot the joint

density f (y1, y2;θ) for a◦ = 3, s◦ = 1, and θ = 1. The dashed red curve represents the

reference set A ◦, i.e., the values of the sufficient statistics y1 and y2 when the ancillary

statistic is fixed at a◦ = 3, and the dashed blue curve represents tangent space T ◦ at

y◦ = (3,3). Similar illustrations for various scalar parameter models can be found in

Reid (2003).

1.6.2 Canonical parameter

Now, let us consider the canonical parameter ϕ(θ) defined in (1.24) using the sample

space derivatives discussed earlier,

ϕ
(
θ; yo)= `;V

(
θ; yo)

.

Previously, we introduced the n ×d matrix V of sufficient directions, which is used in

the sample space derivative as follows

`;V
(
θ; yo)= d

d t
`

(
θ; yo +V t

)∣∣∣∣
t=0

= V T∂`(θ; y)

∂y

∣∣∣∣
y=y◦

=
n∑

j=1
V T

j

∂`
(
θ; yo

j

)
∂y j

,

where t = (t1, . . . , td )T, and y j , . . . , yn have independent contributions `
(
θ; y j

)
to the

log likelihood function; this will be used to build the pivot q(ψ).

In general, q should be based on how far θ̂ differs from θ̂ψ, or, alternatively, how far

ϕ̂ differs from ϕ̂ψ. If the density has linear exponential form, q can be expressed as

a modified version of the Wald pivot defined in (1.2). But in general the Wald-type
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1.6. The tangent exponential model

Figure 1.2 – Joint density for Example 4 with θ = 1, y◦ = (3,3), giving a◦ = 3 and s◦ = 1.
The dashed red line represents the reference set A ◦, and the solid red line represents
the density f (y ;θ) on A ◦. The tangent plane T ◦ is shown by the dashed blue line.
The blue bullet represents the point y◦, and the red bullet represents f (y◦;θ).

measure has the following form

q(ψ) = sign(ψ̂−ψ)
∣∣χ(θ̂)−χ(

θ̂ψ
)∣∣{ | (ϕ̂)|∣∣ λλ (

ϕ̂ψ
)∣∣

}1/2

,

where the constructed parameter is given by

χ(θ) = uTϕ(θ), u = ∂ψ
(
θ̂ψ

)
/∂ϕ∥∥∂ψ(

θ̂ψ
)

/∂ϕ
∥∥ ,

i.e., the orthogonal projection of ϕ(θ) onto a unit vector u parallel to ∂ψ
(
θ̂ψ

)
/∂ϕ.

This form of q is an extension to the expression of (1.17) upon noting that partial

derivatives of the log likelihood satisfy

`θ(θ̂; θ̂, a) = 0, `θ;θ̂(θ̂; θ̂, a) = (θ̂),

and computing the determinant using blocks corresponding to a partition of the
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Chapter 1. An Introduction to Likelihood-Based Inference

partial derivatives into (ψ,λ) components. Further details can be found in Brazzale

et al. (2007, Section 8.5), Barndorff-Nielsen and Cox (1994, Chapter 6), and a guide to

the literature may be found in Davison and Reid (2022). The resulting correction term

can be written as

q(ψ) =
∣∣ϕ(θ̂)−ϕ(θ̂ψ) ϕλ(θ̂ψ)

∣∣∣∣ϕθ(θ̂)
∣∣

∣∣ (θ̂)
∣∣1/2∣∣ λλ(θ̂ψ)

∣∣1/2
. (1.27)

Here ϕθ(θ) = ∂ϕ(θ)/∂θT and ϕλ(θ) = ∂ϕ(θ)/∂λT are respectively d ×d and d × (d −1)

matrices. The numerator of the first term of q is the determinant of a d ×d matrix

whose first column isϕ(θ̂)−ϕ(θ̂ψ) and whose remaining columns areϕλ(θ̂ψ). In (1.27),

the observed information associated with the canonical parameter ϕ is expressed

as function of θ = (ψ,λ), and the derivative of the parameter of interest ∂ψ/∂ϕ is a

column of the inverse of ϕθ.

Example 5

To illustrate this discussion, assume that we have a single observation from the

Rayleigh distribution, which arises as the length y of a bivariate normal vector whose

components are independent N (0,ψ2) variables. Exact computations are possible

in this case, so the quality of the approximations can be assessed. The probability

density function for y is

f (y ;ψ) = y

ψ2
e−y2/(2ψ2), y > 0, ψ> 0,

and one can readily check that ψ̂= y/
p

2, (ψ̂) = 4/ψ̂2 and

w(ψ) = 2

(
1− ψ

ψ̂

)
,

r (ψ) = sign(ψ̂−ψ)

[
2

{
2log(

ψ

ψ̂
)+

(
ψ̂

ψ

)2

−1

}]1/2

,

q(ψ) = 1−
(
ψ̂

ψ

)2

.

The left-hand panel of Fig 1.3 shows Φ
{

w o(ψ)
}
, Φ

{
r o(ψ)

}
, and Φ

{
r ∗o(ψ)

}
when y

equals the observed value yo =p
2, so ψ̂ has observed value ψ̂o = 1. The functions

are decreasing in ψ and the maximum likelihood estimate and the limits of the 90%

confidence interval are the values ofψ for which the functions equal 0.5 and 0.05,0.95,

respectively. The right-hand panel of Fig 1.3, which shows how w o(ψ), r o(ψ) and
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r ∗o(ψ) themselves depend on ψ, makes it easier to read off confidence intervals.

In this example ψ̂/ψ has a known distribution, so the left-hand side of (1.4) provides

an exact significance function. The 95% confidence interval for ψ based on r is

(0.4765,4.186), but using r ∗ yields a confidence interval of (0.519,6.133), which is

very close to the interval obtained using the exact significance function (0.520,6.103).

The p-values for testing a null hypothesis ψ = ψ0 = 0.3 versus an alternative ψ >
ψ0 using the Wald statistic and the likelihood root are Φ

{−w o(ψ0)
} = 0.0808, and

Φ
{−r o(ψ0)

} = 4.33× 10−5. So these pivots give quite different evidence about ψ0.

The exact significance probability for testing ψ0 = 0.3 is 1.49×10−5. The significance

probability based on r ∗ is 1.55×10−5, giving a relative error of 3.9%. The sample size

here is n = 1, so it is no surprise that the exact function differs greatly from the large-

sample approximations based on w o(ψ) or r o(ψ). Nevertheless, the approximation

based on r ∗ yields near-perfect inferences: it is indistinguishable from the exact

quantities.

The Rayleigh example is chosen because it allows for exact inferences to be made,

demonstrating the advantage of using higher-order approximations over classical

ones, which can sometimes produce poor results. In this specific example, it is straight-

forward to determine q , but generally, it can be more challenging, as we will see later

in the thesis.

1.6.3 Discrete settings

The local canonical parameter for discrete random variables is constructed differently

than for continuous distributions (Frydenberg and Jensen, 1989; Davison et al., 2006).

If the random variable (Y1, . . . ,Yn) has a discrete distribution with Yi following a curved

exponential family model of the form

fi
(
yi ;θ

)= f0
(
yi

)
exp

{
αi (θ)yi −κi (θ)

}
,

and mean µi (θ) = E
(
yi ;θ

)
, then the vectors Vi can be derived by considering the effect

of θ on yi through its mean µi (θ) i.e.,

Vi = ∂E(Yi ;θ)

∂θ

∣∣∣∣
θ̂o

= ∂µi (θ)

∂θ

∣∣∣∣
θ̂o

(1.28)

and the canonical parameter from the i th observation is

ϕi (θ) =αi (θ)Vi .
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Figure 1.3 – Left: Significance functions based on likelihood root r o(ψ) (solid black),
Wald statistic w(ψ) (dotted blue), exact (wide cyan) and modified likelihood root
r ∗o(ψ) (red dashes). The horizontal lines correspond to probabilities 10−6,10−5, 10−4,
10−3, 10−2, 0.025, 0.05, 0.5, 0.95, 0.975, 0.999, 0.9999, 0.99999 and 0.999999. Right:
functions from (a) transformed to the standard normal scale.

In this context, yi is considered to be the score variable for αi in the full exponential

family model (Fraser and Reid, 2001). We can extend this approach to more general

settings by replacing yi with a locally defined score variable in the construction of

ϕ(θ) and with Vi defined through

si = ∂

∂θ
`

(
y i ;θ

)∣∣∣∣
θ=θ̂0

and

Vi = ∂

∂θ
E(si ;θ)

∣∣∣∣
θ=θ̂o

. (1.29)

The score variable si is a d ×1 vector, so Vi is a d ×d matrix that represents the contri-

bution of yi to the expected information matrix, evaluated at θ̂◦. The contribution of

the i -th observation to the local reparameterization is

ϕi (θ) = ∂`i
(
θ; yi

)
∂si

∣∣∣∣
yo

i

Vi .

Partial derivatives of the log likelihood function can be obtained as

∂`
(
θ; yi

)
∂si

= ∂`
(
θ; yi

)
∂yi

×
(
∂si

∂yi

)−1

.
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1.7. Summary

Equations (1.28–1.29) will be used in Chapter 3 for a discrete example, but similar

results can also be found in Brazzale et al. (2007, Chapter 4), Davison and Sartori

(2008) and Davison et al. (2006).

Other approximations proposed for use with discrete data include those of Skovgaard

(1996) and Severini (1999). Severini’s approximation involves moment estimators of

expected values, while Skovgaard’s correction term is based on cumulants of the log

likelihood and produces the same approximation as in curved exponential families

(Davison et al., 2006; Reid and Fraser, 2010). These approximations have a relative

error that is of order O(n−1) instead of O(n−3/2) in continuous setting.

1.7 Summary

The literature contains many ways to approach higher-order approximations, depend-

ing on the model in question and the methods used for inference. The likelihood

function is often central to these methods, allowing for higher-order adjustments to

classical first-order statistics that can minimize the impact of nuisance parameters.

One higher-order approximation is the p∗ formula, which provides third-order re-

finements for likelihood-based statistics. This approximation is based on ancillary

statistics and evaluated at the observed quantities. The formula is generally accurate

to order O(n−3/2), and it is, in fact, exact for many important models. The modi-

fied likelihood root r ∗ is another important higher-order asymptotic quantity for

likelihood-based inference. It has better inferential properties than the ordinary likeli-

hood root, and has been extensively studied, revised, and applied to many models

since its introduction by Barndorff-Nielsen in 1986.

An approach that unfolded later to simplify the p∗ formula is the tangent exponential

model, which improves asymptotic normal approximation with the same relative

error of O(n−3/2). This is based on similar concepts: conditioning, sufficiency, and

ancillarity, but only requires computation of the observed likelihood and its first

sample-space derivative. The tangent exponential model has contributed greatly to

the literature on higher-order asymptotics by making it more accessible and applicable

to biology, sociology, and other applied areas, due to its relatively simple and familiar

quantities. A variety of model classes have been studied by Brazzale et al. (2007), and

a more detailed version of similar computations can be found in Fraser et al. (1999b).

A literature guide can be found in Davison and Reid (2022).

In Chapter 2 of the thesis, we extend the list of applications of higher order approxima-

tion to include satellite conjunction assessment, where highly accurate estimation of

confidence limits and tail probabilities is of crucial importance. In Chapter 3, we study
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the performance of first-order approximations when the parameter of interest is on

the boundary of the parameter space and discuss techniques such as bias correction

for the profile score and Edgeworth expansion for its distribution. We also examine

the improvement of third-order pivots for such irregular problems.
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2
Statistical Formulation of Conjunc-
tion Assessment

2.1 Introduction

The expansion of the aerospace industry and the increasing number of space objects,

especially in Low Earth Orbit (LEO), where most spacecraft operate, means that

risk assessment and collision avoidance manoeuvres are vital to ensure their safety.

According to the European Space Agency (ESA) (ESA, 2022), in more than 60 years

of space activity, more than 6250 launches have resulted in 13630 satellites being

placed into Earth Orbit. Of these satellites, 65% are still in orbit, but only 48% are

functional. The active satellites face navigating through tons of accumulated space

debris recorded in the US Space Surveillance Network (SSN) (Chatters et al., 2009,

Chapter 19). The SSN only tracks objects larger than 5–10 cm in low Earth orbit (LEO)

and 30 cm to 1 m in geostationary (GEO) orbit. However, it is estimated that there are

more than 132 million fragments of debris ranging in size from 1 mm to 10 cm that are

not included in the SSN’s catalogue (ESA, 2022). These smaller pieces can still pose a

threat to active satellites.

The increasing rate at which new objects are added to space justifies the concerns

that specialists raise about the overall safety of existing spacecraft and the long-term

sustainability of space activities (Union of Concerned Scientistis, 2022). According

to the Satellite Industry Association (SIA)(SIA, 2022), the number of commercial

satellites launched during 2021 and the first semester of 2022 increased by more than

40% as compared to 2020. The current race between private space companies and

governments will add to this.

Although these numbers are alarming, there is an emerging effort to raise awareness

of space safety and global debris mitigation in parallel to a growing industry work-

ing on sustainable satellite activities (Virgili, 2016; Letizia et al., 2019; International

29



Chapter 2. Statistical Formulation of Conjunction Assessment

Standards Organisation, 2016; Lewis, 2020). Among many other initiatives (Braun

et al., 2013; Inter-Agency Space Debris Coordination Committee, 2007; International

Standards Organisation, 2016, 2019), the United Nations Committee on the Peaceful

Uses of Outer Space (UNCOPUOS) released guidelines to provide an overview of space

activities and to quantify internationally endorsed mitigation measures (Committee

on the Peaceful Uses of Outer Space, 2019). While the development of such voluntary

guidelines is promising, the lack of both communication and collaboration on an

international level and the absence of legislation make space sustainability out of

reach.

Before addressing conjunction assessment, one must formally define the notion of

conjunction. According to ESA (2022), a conjunction is a close geometric approach

between two objects, irrespective of their activity status, triggering an operator analy-

sis but not necessarily an avoidance manoeuvre or implying a collision. The motion

between these two bodies is described based on relative motion theory in contrast

to absolute motion, two controversial interpretations of motion philosophically de-

bated since antiquity (Armstrong, 1963; Vallado, 2013). The use of relative motion

is fundamental in space missions such as spacecraft formation flying (Inalhan et al.,

2002), space rendezvous and proximity (Curtis, 2010, Chapter 7) (Burnett and Schaub,

2022), relative orbital navigation problems (Alfriend et al., 2010, Chapter 12), and

space object surveillance (Terui and ichiro Nishida, 2007; Kenneth, 2015).

Relative motion models are divided into two categories: algebraic and geometrical.

Both have been successfully applied to many space missions (Klinkrad, 2006). Al-

gebraic models for relative errors were proposed by Hill (1878) and Clohessy and

Wiltshire (1960) and extensively explored in Yamanaka and Ankersen (2002). These

models are based on the dynamical equations describing each object’s position and

velocity vectors expressed in a relative frame. Geometrical models, on the other hand,

illustrate the evolution of an equivalent 6-dimensional vector that contains the orbital

elements; the scalar magnitude, and the angular representations of the two orbits

(Schaub and Alfriend, 2002; Schaub, 2004). Either model specifies the two-body orbit

and provides a complete set of initial conditions for solving an initial value problem

for a set of differential equations. Depending on the model’s complexity and the orbit

type, the solution of this system, when evaluated at the time of the closest approach,

provides a prediction for the relative state vector and the associated covariance matrix.

Conjunction assessment for orbiting objects is generally done by representing the two

objects as ellipsoids and attempting to estimate the probability that they will collide,

as in Vallado (2013, Section 11.7) or Chen et al. (2017, Chapter 5). This is calculated

at the time of the closest approach using the estimated position and velocity vectors
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for the two objects and the associated error covariances. In short-term conjunction,

it can be expressed as an integral of a two-dimensional Gaussian probability density

function over the collision cross-sectional area. Although unavailable in explicit form,

this integral can readily be evaluated semi-analytically using different approaches

with comparable accuracy (Foster and Estes, 1992; Chan, 1997; Alfriend et al., 1999;

Alfano, 2005a, 2006b; Patera, 2005; Garcia-Pelayo and Hernando-Ayuso, 2016).

The simplified calculation of the collision probability offered in short-term encounters

is not valid in long-term conjunction: the motion is not linear, the relative velocity is

not constant, and its uncertainty is not negligible. In this case, one needs to compute

the integral of the probability density through the volume swept out by the combined

hard body sphere, which is generally expressed as an integral over time of a time-

dependent collision probability. Although this integration is complicated due to the

changing direction of the hard body sphere and the combined position-error ellipsoid

throughout the encounter, most of the methods proposed for the two-dimensional

integral have been revised and extended to cover nonlinear motion (Patera, 2003,

2006; Alfano, 2006a; Kenneth, 2015). Breaking the collision tube into sufficiently

small cylinders makes the motion nearly linear in each section. The total integral

is then the sum over individual two-dimensional integrals in each section. Hall

(2021) summarises the literature on probability calculation for nonlinear and repeated

conjunctions.

The probability of collision, if computed as described above, has a perplexing behav-

ior in which both more precise and less precise measurements typically reduce the

collision probability, a ‘dilution’ property that has been seen as paradoxical, and its

interpretation is not seen as clear-cut (Balch, 2016; Balch et al., 2019). Hejduk et al.

(2019) gives an insight into this phenomenon by graphically illustrating what happens

in both the dilution and robust regions and explaining how risk assessment analysts

proceed when presented with suspiciously low collision probability values. Similar

works have also been pursued by other authors to discuss how to use the probabil-

ity of collision operationally (Alfano, 2005a; Alfano and Oltrogge, 2018; Hejduk and

Snow, 2019; Siminski et al., 2021). However, the mere fact that such a dilution effect

exists makes the use of collision probability as a conjunction assessment metric less

straightforward.

Another criterion for risk assessment is the closest approach, or miss distance, as a

miss distance that is likely to be lower than a specified safety threshold indicates a

situation that requires close inspection. To have an idea about both criteria, we use

conjunction data for 1100 pairs of space objects tracked over one week in October

2022. The data is published by Space-Track.org as part of Conjunction Data Messages
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Figure 2.1 – Conjunction probabilities and miss distances from CDMs published by
Space-Track.org during the second week of October 2022.

(CDMs). In the left panel of Figure 2.1, we plot conjunction probabilities versus miss

distances. In general, as the miss distance increases, the conjunction probability

decreases. However, this depends on the uncertainty of the observed relative state

vector. In the plot shown, the miss distances are less than 1 km and the conjunction

probabilities are greater than 10−4. The likelihood of a collision is relatively high for

such conjunctions . The right panel of Figure 2.1 shows the accumulated number of

expected conjunctions over this period and highlights the frequency of such events.

The miss distance is usually estimated repeatedly over the approach to conjunction,

and the collision probability is updated accordingly. There are many algorithms to

compute the miss distance, often as the root of a polynomial equation (Alfano and

Negron, 1993; Gronchi, 2005; Armellin et al., 2010) that depends on the relative path

of the objects, which may be highly nonlinear when they are far apart.

Most early studies on conjunction assessment, as well as current ones, focus on

improving the use of the probability of collision. Over time, an extensive literature has

developed covering a wide range of conjunction configurations, but little is established

on the use of the miss distance. Chan (2011) derived the distribution of the squared

miss distance, which has a generalized non-central chi-square distribution under a

standard probability model. A recent addition to the literature uses characteristic

function inversion to evaluate the distribution of the squared miss distance and to

estimate collision probabilities (Bernstein et al., 2021). There has been relatively little

research on the connection between the miss distance and the collision probability,

despite the fact that these two metrics are the main tools used in practice to assess

the risk of a collision. While Modenini et al. (2022) showed that the Mahalanobis

miss distance (McLachlan, 1999), is well connected to the estimating the collision

probability, more work is needed to fully understand the connection and to develop
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more accurate and reliable methods for assessing the risk of a collision.

In this work, we formulate a statistical model for conjunction assessment that resolves

the apparent difficulties with the collision probability and suggest that the miss dis-

tance is a more appropriate focus of interest. We discuss inference for this distance

based on standard likelihood theory (Cox and Hinkley, 1974, chapter 9), and show

that improved theory, presented in Chapter 1, is both highly accurate and should

give results similar to a Bayesian formulation (Brazzale et al., 2007). Our approach

is based on significance functions (Cunen et al., 2020) and provides both point and

interval estimates for the miss distance, with the intervals containing the true miss

distance with a specified probability under the model. We can also test whether the

true distance is higher than the safety threshold in order to make decisions about

avoidance manoeuvres (Neyman, 1937).

This chapter is organized as follows. In Section 2.3 we formulate conjunction as-

sessment in statistical terms and discuss the choice of the parametrization. We also

discuss the relationship between the collision probability and miss distance. After

the brief review of methods for computing the probability of collision in Section 2.2,

we point out that despite the success of this metric, it still suffers from some issues.

We explain its downward bias and elucidate the ‘dilution paradox’ in Section 2.5. In

Section 2.4, we discuss decision-making in the context of conjunction assessment,

and we show in Section 2.6 how significance functions provide calibrated frequentist

inference and link likelihood inference to the Bayesian approach. Then, we apply

these ideas to satellite conjunction, and in Section 2.7, study their numerical prop-

erties based on four case studies and comment on limitations. In Appendix 2.9, we

present possible extensions of the approach and provide details of our numerical

implementation.
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2.2 Probability of collision

The precise position of the two space objects is usually unavailable due to inevitable

errors in orbit determination. Uncertainty in observing the relative position vector is

then described using a three-dimensional probability density function with a covari-

ance matrixΩ−1. The covariance of the position of the objects is often dominated by

systematic errors, such as errors in the orbit determination process or errors in the

models used to predict the motion of the objects. It is common for practitioners to

assume thatΩ−1 is known, and below we follow this assumption. A collision probabil-

ity is defined as the three-dimensional integral of this density over a collision region

that we call C . The core of most methods for computing collision probabilities is to

perform this integration.

In practice, random errors in tracking data are typically assumed to follow a Gaussian

distribution (Alfano, 2005a), but in reality this assumption may not hold. Errors in

the model used to track the data can be difficult to quantify and may not necessarily

follow a Gaussian distribution (Alfriend et al., 1999). Under the normality assumption,

the collision probability is conveniently represented as

pc = 1√
(2π)3 det(Ω−1)

∫
C

exp
{−1

2

(
x −µ)T

Ω
(
x −µ)}

dx, (2.1)

where µ denotes coordinates of the nominal position vector, x is the relative position

vector, andΩ−1 is the associated 3×3 covariance matrix.

The direction of the axes depends on the choice of the coordinate system used to

describe the relative motion. The RSW (radial, along-track, and cross-track) and NTW

(tangential, normal, and cross-track) systems are two of the most common types of

satellite-based coordinates; see Vallado (2013) for an exhaustive description of the

existing coordinate systems. In short-term encounters, the relative motion satisfies

the following assumptions:

(i) the trajectory of the second object relative to the primary object is linear;

(ii) the relative position vector has a Gaussian distribution; and

(iii) the relative velocity is sufficiently large that its uncertainty can be ignored.

The last assumption ensures a brief encounter time and a constant covariance, and

the probability of collision can be reduced to two-dimensional integral, as we shall

see below.

34



2.2. Probability of collision

	

Probability	of	
collision	

Monte	Carlo	
methods		 Numerical	methods	 Analytical	methods	

Short-term	 Short-term	Long-term	 Long-term	

Gaussian	data	Non-Gaussian	
data	

Figure 2.2 – Diagram summarising different collision probability methods.

In the process of reviewing the methods that have been developed for calculating the

probability of a collision, we have organized these methods according to the diagram

shown in Figure 2.2. We will briefly cover the highlighted categories in the following

sections.

2.2.1 Monte Carlo methods

A wide variety of Monte Carlo (MC)-based methods are available to compute the

probability of collision (Alfano, 2006b). In such methods, the state vector of each

object is first sampled according to its distribution at the initial time t0. Then, for each

sampled state, the relative position and velocity are propagated to the time at which

the distance between the two objects is at a minimum, called the Time of Closest

Approach (TCA). There are various models for orbit propagation (Chen et al., 2017),

each with its strengths and limitations, and the choice of which to use depends on

the specific requirements of the conjunction assessment. At the point of the closest

approach, a collision is deemed to occur if the relative distance is less than a small

threshold. An estimate of the probability of collision is

p̂c = Nc

Nt
,
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where Nc is the number of counted collision samples out of a total of Nt samples .

This method is not well-suited to dealing with small probabilities, since the number

of samples required to guarantee a good estimate is inversely proportional to the

actual probability. For example, to attain a 1% relative accuracy for a true probability

of 10−4 with a 95% confidence level, at least 109 independent random simulations

are required (Dagum et al., 2000). The effort spent generating these trajectories is

wasted since most of the trajectories will not contribute to the probability estimate.

Another shortcoming of the MC method is that it fails to take advantage of possible

dimension reduction by projecting quantities into the encounter plan; instead, it uses

the 6-dimensional state vectors and the associated covariance matrix.

Advanced Monte Carlo techniques, such as Importance Sampling (IS)(Pastel, 2011),

Subset Simulation (SS), Line Sampling (LS), and Brute Force Monte Carlo (BFMC) have

been developed, aiming at increasing precision for a given computational effort and

concentrating on the most valuable parts of the sample space. These techniques have

been explored within the collision assessment community, and different MC-based

methods have been proposed (Losacco et al., 2019; Hall, 2021; Hall et al., 2018; Li et al.,

2022).

2.2.2 Numerical methods

In the last three decades, several numerical methods for computing (2.1) have been

proposed. These methods rotate around the ideas of (i) ignoring the marginal com-

ponent of the density in the direction of the relative velocity, (ii) reducing the two-

dimensional integral to one dimension, and (iii) approximating it numerically. The

main challenge in approximating (2.1) numerically is to propose an approach with

acceptable precision and a realistic computational cost. Below, we present one of

the earliest methods introduced by Foster and Estes (1992) and currently used by

the National Aeronautics and Space Administration (NASA) as one of the methods to

assess on-orbit risk.

This method is based on rotating the relative quantities to the UVW frame, defined as

U = (
νp ×νs

)
/
∥∥νp ×νs

∥∥ , V = (νs −νp )/
∥∥νs −νp

∥∥ , W =U ×V.

where µp , µs , νp and νs are the current positions and velocities of the primary and

secondary objects; all are 3×1 vectors. The displacement vector in the encounter

plane, which is spanned by {U ,W }, has a bivariate normal distribution with mean

(µU ,µW ) and variance (σ2
U ,σ2

W ). To obtain these uncertainties, one needs to transform
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each covariance,Ω−1
i (i = 1,2), from the UVW frame of the corresponding object to

the encounter plane using a rotation matrix of the form

T (θ) =

1 0 0

0 cosθ −sinθ

0 −sinθ cosθ

 .

The projected position vector has a covariance matrix of the formΩ−1
j = T (θr )Ω̃−1

j T (θr )T,

where Ω̃−1
j = diag(σ2

j 1,σ2
j 3,σ2

j 3) for j = {s, p} and θr is the angle between the ν axis

and the primary object. The combined covariance matrix of the relative position is

Ω−1
UVW =Ω−1

s +Ω−1
p = diag(σ2

U ,σ2
V ,σ2

W ), where

σ2
U =σ2

s1 +σ2
p1, σ2

W =σ2
s2 sin2θr +σ2

s3 cos2θr +σ2
p2 sin2θr +σ2

s3 cos2θr .

After integrating out the component along the V axis, the density function is

f (u, w) = 1

2πσUσV
exp

[
−1

2

{
(u−µU )2

σ2
U

+ (w−µW )2

σ2
W

}]
.

Expressing u, w,µU , and µW in polar coordinates, we obtain

u = r sinθ, w = r cosθ, µU =ψsinφ, µW =ψcosφ,

where

r =
√

u2 +w 2, ψ=
√
µ2

U +µ2
W .

The probability of collision is then defined as

pc = 1

2πσUσW

∫ HBR

r=0

∫ 2π

θ=0
exp

[
−1

2

{(
r cosθ−ψcosφ

)2

σ2
W

+
(
sinθ−ψsinφ

)2

σ2
U

}]
r dr dθ,

where the combined hard-body radius, denoted by HBR, is a minimum safety thresh-

old.

This method is implemented using a numerical discretization scheme, sufficiently

accurate, but slower than other available algorithms if small steps of r and θ are used

(Alfano, 2007).

In the same line of work, we find the method developed by Alfano (2005a), where

(2.1) is expressed as series combinations of error functions and an exponential term.

This series is then divided into odd and even components and approximated using

Simpson’s one-third rule. Patera (2001, 2005) simplifies the probability of collision to
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a one-dimensional closed path integral about the perimeter of the hard-body circle.

Patera’s method does not require the space objects to be spherically shaped, so objects

of an irregular shape can be taken into account. Comparisons of these methods and

their performance can be found in Chan (2008), Alfano (2007) and Serra et al. (2016).

In Section 2.7, we use the methods of Patera (2001) and Foster and Estes (1992). These

give very similar results for the scenarios we study, with the difference between them

being noticeable only in the 6th decimal place.

For cases where the uncertainty in the relative state vector is not Gaussian, most of

the methods available for computing the probability of collision rely on numerical

solutions. The techniques proposed in such studies vary from the use of Gaussian

mixture models (GMM) as in Zhang et al. (2020), the reconstruction probability density

function through the principle of maximum entropy (Adurthi and Singla, 2015) or MC-

based techniques as in Jones and Doostan (2013). A brief comparison of numerical

methods for computing the collision probability in short and long-term encounters is

presented in Li et al. (2022).

2.2.3 Analytical methods

The methods previously described are based on numerical discretization of the inte-

gral rather than on analytical formulae. Chan (2008) was the first successful attempt

to provide a closed-form expression for pc under a set of simplifications. Chan’s

formulation is based on a scale transformation that reshapes the circular collision

cross-section centered at (µx ,µy ) to an equivalent elliptic one and transforms the

two-dimensional Gaussian density to an isotropic Gaussian density function with

symmetrized position standard deviation σ. Again expressing x = (x1, x2) in terms of

the polar coordinate system, we have

x1 = r cosθ, x2 = r sinθ, µ1 =ψcosφ, µ2 =ψsinφ

Expression (2.1) becomes

pc = 1

2πσ2

∫ HBR

0
r exp

(
−r 2 +ψ2

2σ2

){∫ 2π

0
exp

(
rψcos

(
θ−φ)

σ2

)
dθ

}
dr.

The inner integrand can be expressed using Taylor series expansion as

exp

(
ψr cos

(
θ−φ)

σ2

)
=

∞∑
k=0

1

k !

ψk r k

σ2k
cosk (

θ−φ)
,
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and integrating this function with respect to θ gives∫ 2π

0
exp

{
ψr cos

(
θ−φ)

σ2

)
dθ =

∞∑
k=0

1

k !

ψk r k

σ2k

∫ 2π

0
cosk (

θ−φ)
dθ. (2.2)

As ∫ 2π

0
cosk (

θ−φ)
dθ =

2π
(k −1)!!

k !!
, for even k,

0, for odd k,

where k !! denotes the double factorial of k, (2.2) becomes∫ 2π

0
exp

(
ψr cos

(
θ−φ)

σ2

)
dθ = 2π

∞∑
k=0

1

(k !)2

( ψr

2σ2

)2k
= 2πI0

(ψr

σ2

)
,

where

I0(x) =
∞∑

k=0

1

(k !)2

(x

2

)2k
,

is the zero-order modified Bessel function of the first kind.

Plugging this one-dimensional integral into the expression for the collision probability,

we have

pc =
∫ HBR

0

r

σ2
exp

(
−r 2 +ψ2

2σ2

)
I0

(ψr

σ2

)
dr

=
∫ HBR

0

r

σ2
exp

(
−r 2 +ψ2

2σ2

)( ∞∑
k=0

I (k)
0

)
dr

=
∞∑

k=0

∫ HBR

0

r

σ2
exp

(
−r 2 +ψ2

2σ2

)
I (k)

0 dr,

where I (k)
0 = 1

(k !)2

( ψr

2σ2

)2k
. The probability of collision is then given by the infinite

sum

pc =
∞∑

k=0
pk ,

with pk =
∫ HBR

0

r

σ2
exp

(
−r 2 +ψ2

2σ2

)
I (k)

0 dr . The first term of this infinite series can be

shown to be

p0 = e−v (
1−e−u)

,

where u = 1
2 (HBR/σ)2 and v = 1

2

(
ψ/σ

)2 are dimensionless quantities, and pk satisfies

the recursive relationship

pk = ak pk−1 −bk , k = 1,2, . . .
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where

ak = v

k
, bk = uk vk

k !k !
e−(v+u).

This method gives an upper bound for the truncation error Sn =
∞∑

i=n+1
pi , viz

Sn < 1

n!(n +1)!
un+1vne−v euv .

This allows users to choose the number of terms to include in the expansion based

on the specific geometry of the conjunction and by comparing the results with other

methods. For example, retaining the first term in this sum yields a one-dimensional

Rice density function, which is easy to evaluate. The relative error of this one-term ap-

proximation is of order 10−5, generally considered to be negligible for most encounters

between space objects.

Another analytical method for satellite conjunction assessment proposed by Chan

(2008) involves inverting the moment-generating function of the squared-miss dis-

tance. Serra et al. (2016) used the Laplace transform and D-finite functions to provide

an analytic expression for the integral in (2.1). The formula is a product of an exponen-

tial term and a convergent power series with positive coefficients. Analytic bounds

on the truncation error are also derived and are used to obtain accurate results. A

closely-related method based on characteristic function inversion (CFI) is proposed by

Bernstein et al. (2021). The approach uses CFI to evaluate the generalized chi-square

distribution of the squared miss distance.

2.3 Statistical modeling of conjunction assessment

2.3.1 Statistical formulation of space conjunction

A parametric statistical model treats the available data y as the realisation of a ran-

dom variable whose probability density function f (y ;ϑ) is determined by unknown

parameters ϑ, and the usual goal is to use y for inference about the value of a scalar

parameter ψ=ψ(ϑ). Below, we follow Elkantassi and Davison (2022), and take ψ to

be the miss distance and suppose, as before, that a collision occurs if the two objects

come closer than a minimum distance ψmin = HBR. We assume that the conjunction

is sufficiently close that the relative motion can be taken to be linear. Suppose initially

that the current positions µp and µs and velocities νp and νs of the two objects are

known exactly. Define µ=µs −µp and ν= νs −νp , so the second object is considered

relative to an origin at the primary object. In this frame of reference and under relative
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linear motion, the second object traverses the line µ+ tν, where t ∈ R. Its distance

from the origin, (µ+ tν)T(µ+ tν), is minimised by choosing t =−νTµ/νTν, at which

point the minimum squared distance is ψ2 =µTµ− (
µTν

)2 /νTν. In terms of spherical

polar coordinates, we have

µ = ‖µ‖(
sinθ1 cosφ1, sinθ1 sinφ1,cosθ1

)T , (2.3)

ν = ‖ν‖(
sinθ2 cosφ2, sinθ2 sinφ2,cosθ2

)T , (2.4)

where ‖ ·‖ denotes the Euclidean norm and 0 ≤ θ1,θ2 ≤π and 0 ≤φ1,φ2 < 2π are the

polar and azimuthal angles for µ,ν. The minimum distance between the two objects,

the miss distance, is

ψ= ‖µ‖(1−cos2β)1/2 = ‖µ‖|sinβ|, (2.5)

where β, the angle between the location and velocity vectors µ and ν, satisfies

cosβ= sinθ1 cosφ1 sinθ2 cosφ2 + sinθ1 sinφ1 sinθ2 sinφ2 +cosθ1 cosθ2. (2.6)

When β= 0, we distinguish two cases: if µTν< 0 the second object will pass through

the origin, leading to a collision, whereas if µTν > 0 the second object is heading

away from the origin, so its current position is the closest it will come to the first

object. More generally, ψ< ‖µ‖ only if cosβ< 0, i.e., π/2 <β< 3π/2. For µ and ν to be

collinear but pointing in opposite directions we need φ2 =π+φ1 and θ2 =π−θ1, and

then cosβ= cos(θ1 +θ2) =−1, so β=π and hence ψ= 0, as expected. To lighten the

notation below we write ϑ= (ψ,λ) where

λ= (θ1,φ1,‖ν‖,θ2,φ2). (2.7)

In parametrizing the relative state vector as a six-dimensional parameter vector (ψ,λ),

it is important to ensure that the transformation preserves the parameter space of ϑ.

In particular, whenΘ=Ψ×Λ, whereΨ andΛ are the parameter spaces for ψ and λ,

we say that the parametrization is variation independent. If the allowable values of

ψ were to depend on λ, this would introduce irregularities into the model, and the

usual asymptotic theory might not apply. We show below that this is the case when

the minimum distance ψ is expressed in Cartesian coordinates.

Assume that the relative position and relative velocity vectors in the Cartesian coordi-

nate system are (µ,ν) = (µ1,µ2,µ3,ν1,ν2,ν3). We would like to express one component,
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for example, µ1, in terms of ψ and the other parameters. We proceed as follows

ψ2 =µTµ− (
µTν

)2
/νTν,

=µ2
1 +µ2

2 +µ2
3 −

(
µ1ν1 +µ2ν2 +µ3ν3

)2 /
(
ν2

1 +ν2
2 +ν2

3

)
,

=µ2
1

(
ν2

2 +ν2
3

ν2
1 +ν2

2 +ν2
3

)
+µ2

2

(
ν2

1 +ν2
3

ν1 +ν2
2 +ν2

3

)
+µ2

3

(
ν2

1 +ν2
2

ν2
1 +ν2

2 +ν2
3

)

−2µ1
ν1(ν2µ2 +ν3µ3)

ν2
1 +ν2

2 +ν2
3

− 2µ2ν2µ3ν3

ν2
1 +ν2

2 +ν2
3

,

= Aµ2
1 −2Bµ1 +C ,

where

A = ν2
2 +ν2

3

ν2
1 +ν2

2 +ν2
3

, B = ν1(ν2µ2 +ν3µ3)

ν2
1 +ν2

2 +ν2
3

, C = ν2
1(µ2

2 +µ2
3)+ (µ2ν3 −µ3ν2)2

ν2
1 +ν2

2 +ν2
3

.

This implies that µ1 solves the quadratic equation Aµ2
1 +2Bµ1 + (C −ψ2) = 0, i.e.,

µ1 = B ±p
D

A
, D = B 2 + A(ψ2 −C ),

which can be simplified to

µ1 = ν1(ν2µ2 +ν3µ3)±p
∆

ν2
2 +ν2

3

,

where

∆ = ν2
1(ν2µ2 +ν3µ3)2 + [ψ2(ν2

1 +ν2
2 +ν2

3)− {ν2
1(µ2

2 +µ2
3)+ (µ2ν3 −µ3ν2)2}](ν2

2 +ν2
3)

= νTν
{
ψ2(ν2

2 +ν2
3)− (µ2ν3 −µ3ν2)2} ,

which will give an expression for µ1 in terms of the interest parameter ψ and the

nuisance parameter λ= (µ2,µ3,ν1,ν2,ν3). Note, however, that we require that ∆> 0,

which implies that we must have ψ2 > (µ2ν3 −µ3ν2)2/(ν2
2 +ν2

3), and this is only zero

if (µ2,µ3) and (ν2,ν3) are collinear, in which case the satellite can pass through the

origin. To see this another way, (µ2ν3 −µ3ν2)/(ν2
2 +ν2

3)1/2 is the projection of (µ2,µ3)

onto a unit vector (−ν3,ν2)/(ν2
2 +ν2

3)1/2 orthogonal to (ν2,ν3).

The above expressions give two possible values for µ1, but the geometry implies that

we must choose the solution for which µTν< 0, as otherwise, the satellite is heading

away from the origin. For any specified distance ψ greater than the shortest distance,

for which ∆= 0, it is clear from the geometry that if ν1 > 0, then we should take the
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2.3. Statistical modeling of conjunction assessment

root with the minus sign, giving

µ1(ψ,λ) = ν1(ν2µ2 +ν3µ3)− [
νTν

{
ψ2(ν2

2 +ν2
3)− (µ2ν3 −µ3ν2)2

}]1/2

ν2
2 +ν2

3

.

The argument is that if ν1 > 0 and we denote the two roots by µ−
1 and µ+

1 =µ−
1 +2∆′,

where ∆′ > 0, then

µ+
1 ν1 +µ2ν2 +µ3ν3 =µ−

1 ν1 +µ2ν2 +µ3ν3 +2ν1∆
′ >µ−

1 ν1 +µ2ν2 +µ3ν3.

This implies that the root for µTν< 0 must be given by µ−
1 . Likewise, we should choose

µ+
1 if ν1 < 0.

The constraint onψ implies that it is not variation independent of λ. This might cause

problems when eliminating λ from the log-likelihood function, which is why we prefer

the polar-based parametrization given in (2.5-2.7).

In the above deterministic setting, the collision probability p ≡ p(ϑ) takes two possible

values,

p(ϑ) =
0, ψ>ψmin,

1, 0 ≤ψ≤ψmin,
(2.8)

so a decision-maker can make an ideal decision. In reality, of course, both µ and ν

are observed with error. In the next section we follow the literature and assume that

the available observations on the positions and velocities of the two objects have a

multivariate normal distribution with a known covariance matrix.

2.3.2 Short-term encounters

In short-term encounters, a simplified version of the problem treats the relative

velocity vector ν as known. In this case, the last three components of y and η(ϑ)

corresponding to the relative velocity can be dropped, and only the 3×3 corner of

Ω−1 pertaining to the relative position need be retained. The conjunction can then be

visualised in the encounter plane, which is normal to ν and passes through the origin.

To understand how the projection is performed, assume for now the random data

consist of a 3× 1 vector y containing the estimated position of the second object

relative to the first, and it is assumed that y ∼ N3(µ,Ω−1), where µ and Ω are of

respective dimensions 3×1 and 3×3. Let A be a 3×3 orthogonal matrix whose final

column is ν/‖ν‖ and whose other columns are chosen so that the upper left 2×2 corner

of ATΩ−1 A is diagonal, say, D = diag(d 2
1 ,d 2

2 ). If so, then x ′ = AT y ∼N3(ATµ, ATΩ−1 A),
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and the first two components of x ′ are independent, with distribution N2(ξ,D), say.

Hence ξ is the projection of the true position of the second object along its velocity

vector onto the encounter plane, and thus ψ= ‖ξ‖ is the miss distance. In terms of

the coordinates in the encounter plane defined by A we can write ξ= (ψcosλ,ψsinλ)

and x = (x1, x2), whereψ> 0 is the parameter of interest and λ ∈ [0,2π) is the nuisance

parameter. We describe how to obtain A later in this section.

The transformation from y to x ′ is invertible and depends only on the known quanti-

ties ν andΩ, so no statistical information is lost in using x ′ instead of y . As discussed

before, in satellite conjunction analysis, it is customary to ignore the coordinate x3

of y in the direction orthogonal to the encounter plane, which in statistical terms

amounts to basing inference on the joint density of x1 and x2, leading to the log

likelihood (2.11).

To obtain a suitable 3×3 projection matrix A, note that if we define

B = (b1,b2,ν) =

 0 ν2
2 +ν2

3 ν1

ν3 −ν1ν2 ν2

−ν2 −ν1ν3 ν3

 , N =

‖b1‖−1 0 0

0 ‖b2‖−1 0

0 0 ‖ν‖−1

 ,

then the first two columns of the orthonormal matrix B N span the encounter plane.

If C denotes the 3×2 matrix containing these columns, then C T y is the orthogonal

projection of y onto the encounter plane. If V DV T is the spectral decomposition

of C TΩ−1C , then (CV )TΩ−1(CV ) = V TC TΩ−1CV = D = diag(d 2
1 ,d 2

2 ). Thus (CV )T y is

bivariate normal with mean ξ = (CV )Tµ and covariance matrix D. Hence if we let

A = (CV ,ν/‖ν‖), then the first two elements of x ′ = AT y are independent and satisfy

x1 ∼N (ξ1,d 2
1 ) and x2 ∼N (ξ2,d 2

2 ).

2.3.3 Inference for the miss distance

In Sections 2.3 and 2.3.2, we developed a statistical model and identified a suitable

set of parameters for the conjunction assessment problem. The next step is to make

inferences about the miss distance. However, the reader may wonder why we have

chosen to focus on the miss distance rather than the probability of collision presented

in Section 2.2. This is an important point, as we believe that the miss distance is a more

appropriate metric for satellite conjunction assessment for specific reasons, which we

will discuss in detail in Section 2.5. Before doing so, it is practical to introduce some

basic tools and clarify the notation while discussing inference for the miss distance.

Assume that vector y containing the observed position and velocity of the second
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object relative to the first has a six-dimensional normal distribution with mean vector

η(ϑ) = {
µ(ψ,λ)T, v(λ)T

}T
given by equations (2.3)-(2.6) and known 6×6 covariance

matrixΩ−1, whose inverseΩ is known as the dispersion matrix.

After dropping irrelevant additive constants, the log-likelihood function is

`(ϑ) =−1
2 {y −η(ϑ)}TΩ{y −η(ϑ)}, (2.9)

where ϑ= (ψ,λ) contains the miss distance ψ for which inference is required and the

five-dimensional nuisance parameter vector λ= (θ1,φ1,‖ν‖,θ2,φ2). The maximum

likelihood estimator ϑ̂ based on the observed relative distance and velocity contained

in the 6×1 vector y satisfies η(ϑ̂) = y , and the observed information matrix is

(ϑ̂) = ∂ηT(ϑ)

∂ϑ
Ω
∂η(ϑ)

∂ϑT

∣∣∣∣
ϑ=ϑ̂

, (2.10)

where ∂ηT(ϑ)/∂ϑ is a 6×6 matrix. Hence `(ϑ̂) = 0, ϑ̂ is simply a transformation of y ,

and ϑ̂ψ = (ψ, λ̂ψ) minimises the weighted sum of squares in (2.9) for fixed ψ. These

quantities allow inference on ψ based on the likelihood root (1.1) and the Wald statis-

tic (1.3), while the more accurate modified likelihood root (1.14) also requires (1.27).

Here there are six parameters and a single six-dimensional observation y , so the sam-

ple size is n = 1, and it appears that we cannot expect large-sample approximations

to apply. However, the covariance matrix for an average of n independent observa-

tions would be (nΩ)−1, so a large sample size n is equivalent to a small variance for

the observations or equivalently largeΩ, which is the correct gauge of accuracy; c.f.

Secetion 2.5.1

As we saw in Section 2.3.2, the model simplifies greatly when the velocity vector ν

is known. In this case, y and η(ϑ) are replaced by the projections of the observed

position vector and the true position of the second object into the encounter plane. To

do so, the first two elements of y are scaled by C , and rotated by V to obtain a vector

with diagonal covariance matrix D . The projected three-dimensional vector x ′ has a

Gaussian distribution x ′ = AT y ∼ N3(ξ′,Σ) where

ξ′ = ATµ=

ξ1

ξ2

ξ3

 , Σ= ATΩ−1 A =

 D
(CV )TΩ−1ν

||ν||
νTΩ−1(CV )

||ν||
νTΩ−1ν

||ν||2

 .

The structure of Σ shows that (x1, x2), and x3 are correlated since the local frame

naturally depends on the direction ν. In practice, uncertainty in the direction of ν
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can be integrated out by simply dropping x3 ∼ N (ξ3,νTΩ−1ν/||ν||2). However, we can

instead base inference about ϑ using the full likelihood of the 3-dimensional state

vector. This can be written as

`F (ϑ) = `(ϑ)+`⊥(ϑ),

where `(ϑ) is the likelihood for (x1, x2) in the encounter plane described in (2.11) and

`⊥(ϑ) is the contribution of x3|(x1, x2) = (a1, a2), which follows a Gaussian distribution

N (ξ̄, σ̄2), with

ξ̄= ξ3 + νTΩ−1(CV )

||ν|| Ω−1D−1

(
a1 −ξ1

a2 −ξ2

)
, σ̄2 = νTΩ−1νT

||ν|| − νTΩ−1(CV )

||ν|| D−1 (CV )TΩ−1ν

||ν|| .

The observed information using the full likelihood is jF(ϑ) = j (ϑ)+ j⊥(ϑ). By com-

paring the information contained in the full likelihood function with the marginal

likelihood, and determine whether the knowledge of x3 provides additional informa-

tion about the parameters ϑ.

Consider now the log likelihood based on the joint density of x = (x1, x2) with mean

ξ= (ξ1,ξ2) = (ψcosλ,ψsinλ), and a diagonal covariance matrix D ,

`(ψ,λ) =−1

2

{
(x1 −ψcosλ)2

d 2
1

+ (x2 −ψsinλ)2

d 2
2

}
, ψ> 0,0 ≤λ< 2π. (2.11)

The detailed calculations for inference based on this model may be found in Sec-

tion 2.6.1, where insight into the general problem can be gained by considering the

case d1 = d2.

The approach advocated by Carpenter (2019) is related to the discussion above, but

the confidence statements therein are based on the marginal quantiles of the miss

distance distribution rather than on likelihood theory. That approach does not allow

for uncertainty about the nuisance parameter and appears to be equivalent to basing

inference on the Wald statistic, which can perform very poorly in nonlinear settings.

2.4 Calibration, decisions and evidence

Statistical inference involves statements about the properties of a probability distribu-

tion that is assumed to have given rise to observed data yo. In the simplest setting the

distribution depends only on a scalar parameter ψ, which is the focus of interest, and

the likelihood function L(ψ) = f (yo;ψ) is used to compare the plausibility of different

values ofψ as explanations for yo. The best-fitting model is provided by the maximum
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2.4. Calibration, decisions and evidence

likelihood estimate based on yo , ψ̂o, and the relative likelihood function L(ψ)/L(ψ̂o),

which has maximum value 1, allows values of ψ to be compared. A ‘pure likelihood’

approach (e.g., Edwards, 1972, Chapter 3) treats any ψ for which L(ψ) ≥ c L(ψ̂o) as

plausible, but with c chosen essentially arbitrarily. In practice further information is

typically used to choose c.

Bayesian inference treats ψ as a random variable and is based on a density π(ψ) that

weights values of ψ according to their plausibility prior to seeing the data. This is

updated in light of the observed data yo using Bayes’ formula, resulting in the posterior

distribution function

Pr(ψ≤ψ0 | yo) =

∫ ψ0

−∞
L(ψ)π(ψ)dψ∫ ∞

−∞
L(ψ)π(ψ)dψ

. (2.12)

Clearly this calculation depends on the prior density π(ψ); if this is badly chosen

then (2.12) may have poor properties when used repeatedly. The most obvious choice

of prior in the satellite conjunction setting is uniform on the position of the secondary

space object, but this has the undesirable properties mentioned in Section 2.5.1.

When the losses due to possible evasive actions can be specified, the data can be used

to choose the action that minimises the expected posterior loss. For the simplest

possible formulation in the collision avoidance context, suppose that ψ represents

the unknown miss distance, that the two actions a = 0 and a = 1 correspond to ‘do

nothing’ and ‘take evasive action’, and that the loss lae when action a is taken and

event e occurs is as given in Table 2.1; the loss in doing nothing in the case of no

collision is zero. If ψ≤ψ0 results in a collision, then the posterior expected loss due to

taking action a ∈ {0,1} is

la0 Pr(ψ>ψ0 | yo)+ la1 Pr(ψ≤ψ0 | yo) = la0(1−p)+ la1p,

say, which is minimised by doing nothing if l01p < l10(1− p)+ l11p. Equivalently,

evasive action should be taken if Pr(ψ≤ψ0 | yo) ≥ l10/(l10+l01−l11). Thus if the losses

are known explicitly, they provide a threshold for action, and the use of a decision

rule such as “take evasive action if the posterior probability of collision exceeds 10−4”

corresponds to an implicit ratio of losses. This decision setup could be made more

realistic, and in any case would only be regarded as guidance in a practical setting;

our point is that it provides a rational basis for considering action when (2.12) exceeds

a threshold, and explicitly links that threshold to potential losses.

47



Chapter 2. Statistical Formulation of Conjunction Assessment

Table 2.1 – Basic decision analysis for satellite conjunction, with losses lae correspond-
ing to action a and event e.

Action Event
No collision Collision

Do nothing, a = 0 l00 = 0 l01

Evasive action, a = 1 l10 l11

Bayesian inference has some appeal, but nevertheless other approaches to calibrating

the likelihood are often preferred. Repeated sampling inference invokes hypothetical

repetition of the random experiment that is presumed to have led to the observed

data (Fisher, 1973, pp. 33–38). In the simplest case ψ̂o is regarded as a realization

of a random variable ψ̂ that has a normal distribution, N (ψ,λ2), under repeated

sampling, with λ known. This implies that

Pr(ψ̂≤ ψ̂o ;ψ) =Φ{
(ψ̂o −ψ)/λ

}
, (2.13)

whereΦ denotes the standard normal cumulative distribution function. The signif-

icance function (2.13), also called the confidence distribution or P-value function

(Fraser, 2017, 2019; Schweder and Hjort, 2016), is then used for inference on ψ, as

discussed in Section 1.2.3 of Chapter 1. Our later discussion simplifies if framed in

terms of the equivalent ‘evidence function’

po(ψ) = Pr(ψ̂≥ ψ̂o;ψ) = 1−Φ{
(ψ̂o −ψ)/λ

}=Φ{
(ψ− ψ̂o)/λ

}
, (2.14)

and we use this henceforth. For example, the null hypothesis that ψ = ψ0 can be

tested against the alternative that ψ>ψ0 by computing the significance probability

pobs = po(ψ0), (2.15)

small values of which are regarded as evidence against the null hypothesis in favour

of the alternative. Likewise a two-sided (1−2α)×100% confidence interval I1−2α

for the value of ψ underlying the data, the so-called ‘true value’, has as its lower and

upper limits Lα and Uα the solutions to the equations po(Lα) =α and po(Uα) = 1−α,

and this yields I1−2α = (Lα,Uα) = (ψ̂o −λz1−α,ψ̂o −λzα), where zp , the p quantile

of the standard normal distribution, satisfies Φ(zp ) = p and 0 < p < 1. The limits of

I1−2α simplify to the familiar ψ̂o ±λz1−α on recalling that z1−α = −zα. In this ideal

case the inferences are perfectly calibrated: under repeated sampling with ψ=ψ0 the

significance probability pobs has an exact uniform distribution and I1−2α contains
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ψ0 with probability exactly 1− 2α, for any α in the interval [0,0.5]. When ψ = ψ0,

therefore, there is a probability pobs that a decision to reject this hypothesis in favor of

the alternative based on a significance probability pobs will be incorrect.

The evidence function po(ψ) is increasing in ψ and has the properties of a cumulative

distribution function, so its derivative

∂po(ψ)

∂ψ
, (2.16)

has the formal properties of a probability density function for ψ. It can be regarded

as a frequentist summary of the information about ψ based on the observed data;

see Schweder and Hjort (2016), where it is called a confidence density. Unlike the

posterior density obtained from (2.12), no prior information is involved, and despite

the use of the word ‘density’ for (2.16), ψ is regarded as an unknown constant rather

than as the value of a random variable.

2.5 Conjunction probability or miss distance ?

2.5.1 Limitations of collision probability

As discussed in Section 2.3.2, a simplified version of the problem treats the relative

velocity vector ν as known in short-term encounters. In this case, the observed

position y of the second object, its actual position µ, and the density of y , can be

projected orthogonally in the direction of ν into the encounter plane, leading to

the projected observed position x having a bivariate normal density f (x;ξ) that is

centred at the projected true position ξ with known diagonal covariance matrix D =
diag(d 2

1 ,d 2
2 ).

As shown in the left-hand panel of Figure 2.3, ξ and x are two-dimensional vectors: the

unknown point at which the second object will actually pass through the encounter

plane, ξ, is at a distance ψ = ‖ξ‖ from the origin. Using this notation, the collision

probability is zero unless ψ≤ψmin, and the observed x is a realisation of a bivariate

normal variable with mean ξ. The right-hand panel of Figure 2.3 shows how the

collision probability is being computed: the density is assumed to be centered at x

and the estimator p̂c is the integral of this density over the disk of radius ψmin around

the origin. Thus we can write p̂c = pc (x), where

pc (ξ) =
∫

{x ′:‖x ′‖≤ψmin}
f (x ′;ξ)dx ′. (2.17)
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O
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ξ

ψ

ψmin

λ
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ψ
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λ

Figure 2.3 – Statistical formulation of satellite conjunction in the encounter plane.
The primary object is at the origin O and the solid circle around it has radius ψmin,
the combined hard-body radius. The true position at which the second object will
cross the encounter plane, ξ, can be expressed in terms of the polar coordinates ψ
and λ. The noisy observation of the second object will cross the encounter plane at x.
Left panel: the ellipses indicate the true density of x, with mean at ξ. Right panel: the
ellipses indicate the assumed density of x when computing the collision probability
estimate p̂c .

One might regard pc (x) as an estimate of pc (ξ), since the unknown ξ is replaced with

the known x in computing the integral. Seen through the lens of the statistical model,

however, it is not immediately obvious why pc (ξ) is of interest, as it is the probability

that the noisy observation x will appear to pass within the hard-body radius, rather

than the probability (2.17) that the second object itself will do so. Moreover the form

of the contours of f (x;ξ) implies that there is more probability outside the circle

of radius ψ than inside it, so x will tend to be further away from the origin than ξ.

Another way to see this is to note that the Euclidean norm of x, ‖x‖, satisfies

E(‖x‖2) = E(x2
1 +x2

2) = ξ2
1 +ξ2

2 +d 2
1 +d 2

2 =ψ2 {
1+ (d 2

1 +d 2
2 )/ψ2} , (2.18)

and hence E{‖x‖} ≈ψ
{
1+ (d 2

1 +d 2
2 )/ψ2

}1/2
for large ψ, i.e., the mean length of x ex-

ceeds ψ by an amount that depends on ξ and D. Hence p̂c = pc (x) will tend to be

smaller than pc (ξ). Figure 2.4 shows the effect of this in a test case described thor-

oughly in Section 2.7.4, in which ξ = (11.84,−1.36)Tm, so ψ = 11.92m. Each panel

compares the values of pc (ξ) with boxplots of the values of pc (x) for 20,000 values of

x generated as bivariate normal, N2{ξ,c2diag(d 2
1 ,d 2

2 )}, with d1 = 25.1m, d2 = 11.61m

and various values of c2. The collision probability is computed using a contour inte-
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gral transformation (Patera, 2005), which is then approximated numerically using the

trapezoidal rule. The values of pc (x) vary over many orders of magnitude and can be

much lower than pc (ξ). For example, the boxplot for c2 = 10−2 and hard body radius

5m shows that although pc (ξ) ≈ 10−3, around 25% of the values of pc (x) are below

10−4. The panels of Figure 2.5, which show the probabilities pc (x) for a subset of the

simulated observations x contributing to Figure 2.4, also illustrate the potential for

the occurrence of extremely small values of pc (x), both when collision is certain and

when it will not occur.

Despite these comments, one reason to use p̂c is that it is a Bayesian estimator. If a

prior density π(ξ) for ξ is placed on the encounter plane, then the posterior probability

that ξ lies within the hard-body radius is given in terms of the posterior density of ξ,

i.e.,

f (ξ | x) = f (x;ξ)π(ξ)∫
f (x;ξ)π(ξ)dξ

,

by

Pr(ψ≤ψmin | x) = Pr(‖ξ‖ ≤ψmin | x) =
∫

{ξ:‖ξ‖≤ψmin}
f (ξ | x)dξ, (2.19)

and if π(ξ) is constant and f (x;ξ) is bivariate normal, then f (ξ | x) = f (x;ξ) and (2.19)

equals p̂c = pc (x). This explains why p̂c is a plausible estimator of (2.8), but does

not alter its downward bias. Moreover a constant prior for ξ is improper, with the

undesirable property that the ratio of the probability inside any disk around the origin

is zero relative to the probability outside that disk, thus expressing a prior belief that ξ

is infinitely far from the origin, i.e., the second object will traverse the encounter plane

infinitely far from the first. This provides an alternative explanation of the behaviour

illustrated in Figure 2.4.

Another practical problem that arises using the probability of collision as a risk assess-

ment tool is a likely sense of false security. In general, the lower the quality of the data,

the less confidence one has in the findings. However, using (2.17), we notice that the

more uncertain we are about the true location of the two space objects, the less likely

they will collide. This counter-intuitive phenomenon is referred to as "probability dilu-

tion" (Balch et al., 2019). Take for example the test case we described before, in which

ξ= (11.84,−1.36)Tm, so ψ= 11.92m. In left panel of Figure 2.6, we choose HBR = 5m,

and for ease of illustration, we set d = d1 = d2 to vary from 0.01 to 200. Reading this

panel from left to right, we see that the probability of collision increases as the relative

uncertainty grows. However, at d = 1.6 the probability of collision eventually reaches

a maximum pcmax = 6.485×10−2, and past that point, as relative uncertainty rises, the

probability of collision declines. The decreasing region corresponds to the probability
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Figure 2.4 – Behaviour of p̂c = pc (x) for hard-body radius ψmin = 5,10,20 and
30m in Case Study C, with ψ = 11.92m, as a function of the variance of x ∼
N2{ξ,c2diag(d 2

1 ,d 2
2 )}. For each c2 in 0.005,0.01, . . . ,10 we computed pc (ξ) (blue seg-

ments) and pc (x) (boxplots) for 20,000 simulated values of x. The average values of
pc (x) are shown by the red segments. In the top panels ψ > ψmin, so pc (ξ) → 0 as
c → 0, whereas in the bottom two panels ψ<ψmin, then pc (ξ) → 1 as c → 0.
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Figure 2.5 – Encounter plane for Case Study C, with hard body radius (HBR, 5m in
the left-hand panels and 20m in the right-hand panels) shown as the dashed circle,
and the true point ξ at which a second object will traverse the plane (at the end of the
dashed red line). The point ξ lies inside the HBR in the right-hand panels, resulting
in a collision, but outside the HBR in the left-hand panels. In each panel the blue
points show 1000 simulated points x, where x ∼N2(ξ,c2D), with c2 = 10−2,1, and 2
(top to bottom). The dashed ellipses show the shape of the matrix D = diag(d 2

1 ,d 2
2 ).

The estimated collision probability pc (x) corresponding to each x is indicated by the
size and shade of its blue point.
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Figure 2.6 – Left panel: Collision probability as a function of the relative uncertainty for
case study C with HBR = 5m and ψ= 11.93m. Right panel: Collision probability as a
function of the relative uncertainty (semi-log scale) whenψ= k×HBR, for k = 0,1,2,3.

dilution, in which we have a false assurance of safe conjunction. In the right panel

of Figure 2.6, we show that the overall maximum conjunction probability and the

dilution region depend on the true miss distance. ψ= 0 yields the overall maximum

computable collision probability, then the peak per curve will decrease as the ratio ψ

gets bigger since the satellite is deemed safer, and the dilution region is shifted to the

right.

This behavior of the probability of collision has been discussed in previous works such

as Balch et al. (2019) and Hejduk et al. (2019). The “dilution effect", as it is sometimes

referred to, results from a shrinkage of the integration region as the relative uncertainty

increases. The maximum probability of collision, denoted by pcmax , corresponds to

the maximum projected area of the covariance within the disk of radius HBR. If the

uncertainty is increased or decreased from this point, the probability of collision will

decrease.

In practice, the Conjunction Assessment Risk Analysis (CARA) group based at NASA

assumes that all conjunctions with a probability of collision greater than a threshold,

ε≈ 10−4, are of high risk. Alfano (2005b) proposed a technique that does not addresses

the fundamental problem of probability dilution, but assesses the maximum probabil-

ity for various satellite sizes, encounter geometries, and covariance sizes and shapes.

This value is compared with ε to decide if a mitigation is needed. Depending on

the size of this maximum probability and the updated states, the remediation action

needed might be fairly large or urgent. In Balch (2016), an alternative approach is

proposed for addressing the limitations of the probability of collision when the un-
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2.5. Conjunction probability or miss distance ?

certainty is large. This approach involves using a“random-to-fuzzy transformation",

as proposed by Zadeh (1965), to represent the collision risk in a more appropriate

way. According to Balch, this transformation is particularly useful for dealing with

large uncertainty. The confidence distribution approach, which has been discussed by

Schweder and Hjort (2002), Balch (2012), Singh et al. (2007) and Cunen et al. (2020), is

another method suggested for addressing the dilution effect. This approach involves

expressing the probability of collision in terms of a confidence interval, rather than a

point estimate. Both of these proposals aim to provide a more accurate representation

of the collision risk in cases where the uncertainty is large.

2.5.2 Why miss distance?

Two further points are immediately clear from the discussion in Section 2.5.1 and the

statistical model for satellite conjunction in Section 2.3.

First, the conventional target of inference, the true collision probability (2.8), depends

on the unknown relative position and velocity of the two objects, but not on the

covariance matrixΩ−1 or the data y . The collision probability is generally estimated

by p̂c , which depends on both Ω−1 and y . The ‘paradoxical’ behaviour whereby p̂c

is very tiny when the data have a very large variance and then increases when that

variance decreases is the behaviour of an estimator, not of a parameter of the model.

The estimator p̂c depends onΩ−1, and as the variance decreases we expect that either

p̂c → 1, if a collision will occur, or p̂c → 0, otherwise; in both cases p̂c → p(ϑ), as

we should expect when the data become noiseless. Thus probability dilution is the

natural behaviour of an estimator in response to changes in the variability of the

underlying data, not a probability paradox.

Second, the fact that p(ϑ) takes just two values, whereas the miss distance ψ takes

values in a continuum suggests that ψ is a preferable target of inference. For example,

the maximum likelihood estimator of p(ϑ) is I (ψ̂≤ψmin), where I (·) and ψ̂ denote

the indicator function and the maximum likelihood estimator of ψ, and clearly ψ̂

is more informative. Moreover, in a Bayesian framework, the unknown parameters

are regarded as random variables and the posterior probability of collision given the

data is obtained by integrating over the posterior density of ψ given y ; c.f. (2.19) when

ν is known. In this setting, the collision probability is also based on the available

knowledge about the miss distance ψ, which is the more fundamental of the two. In

Section 2.6.1, we show how inference on ψ provides a significance probability with an

interpretation akin to that of p̂c and in Section 2.6.2, we discuss Bayesian inference in

more detail.
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Motivated by these considerations, we turn to inference on ψ based on the observed

value of y . If the data suggest that ψ is lower than a safety threshold ψ0, possibly with

ψ0 >ψmin for a safety margin, then action to avert a collision should be considered.

Our goal below is therefore inference on the unknown miss distance ψ, allowing

for the fact that λ is also unknown and must be estimated; in the six-dimensional

case we can write the relative distance vector using (2.3) but with ‖µ‖ replaced by

ψ/|sinβ|, for β 6=π. In statistical terms the scalar ψ is the primary object of inference,

the so-called interest parameter, whereas the 5×1 vector λ of nuisance parameters,

while essential for realistic modelling, is of only secondary concern. In the special

case with known velocity vector ν and considering only the encounter plane, the miss

distance ψ remains the parameter of interest and its interpretation is unchanged, but

the nuisance parameter λ is scalar. This simplifies the problem, but the statistical

issue remains the same.

2.6 Improved inference for the miss distance

2.6.1 Tangent exponential model

The normal model in (2.9) is a curved exponential family (Davison, 2003, Section 5.2)

in terms of ϑ, so we can take ϕ(ϑ) = η(ϑ), and the computation of r ∗(ψ) only involves

η(ϑ) and its derivatives. In order to obtain the matrix V when the velocity vector

ν is unknown, we define the vector of pivots as z(y,ϑ) = Ω1/2{y −η(ϑ)}; these are

independent and standard normal under the model. Partial differentiation yields

V = ∂η(ϑ)

∂ϑT
= ηϑ(ϑ),

evaluated at the maximum likelihood estimate ϑ̂o corresponding to yo. The log-

likelihood (2.9) has derivativeΩ(η−y) with respect to y , so the the canonical parameter

of the tangent exponential model may be written in the form ϕ(ϑ) =Gη(ϑ)+a, where

G = −ηT
ϑ

(ϑ̂o)Ω and a = ηT
ϑ

(ϑ̂o)Ωyo are both constant with respect to ϑ and G is full-

rank. Any canonical parameter that is an affine transformation of η gives the same

expression for q(ψ), because∣∣ϕ(ϑ̂)−ϕ(
ϑ̂ψ

)
ϕλ

(
ϑ̂ψ

)∣∣∣∣ϕϑ(ϑ̂)
∣∣ =

∣∣G {
η(ϑ̂)−η(ϑ̂ψ)

}
Gηλ(ϑ̂ψ)

∣∣∣∣Gηϑ(ϑ̂)
∣∣ =

∣∣η(ϑ̂)−η(ϑ̂ψ) ηλ(ϑ̂ψ)
∣∣∣∣ηϑ(ϑ̂)

∣∣ ,

(2.20)

where ηλ(ϑ) = ∂η(ϑ)/∂λT. Hence we can take the constructed parameter ϕ to be the

state vector, ϕ(ϑ) = η(ϑ). To compute (2.20), we need the 6×6 Jacobian ηϑ and the
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second derivatives ηϑϑ, a 6×6×6 tensor containing the second derivatives of η, needed

to compute λλ(ϑ̂ψ). The score equation and the observed Fisher information can

respectively be given as

∂ηT(ϑ)

∂ϑ
Ω{y −η(ϑ)} = 0,

∂ηT(ϑ)

∂ϑ
Ω
∂η(ϑ)

∂ϑr
− ∂2ηT(ϑ)

∂ϑ∂ϑr
Ω{y −η(ϑ)}, r = 1, . . . ,6. (2.21)

The observed information matrix evaluated at the maximum likelihood estimate

for the full model equals (ϑ̂) = ηT
ϑ

(ϑ̂)Ωηϑ(ϑ̂), because the score equation for the full

model implies that η(ϑ̂) = y . A fuller version of a similar computation is given by Fraser

et al. (1999b).

In the simplified problem with known ν there are just two parameters, ψ > 0 and

λ ∈ [0,2π), the log likelihood reduces to (2.11) and ϕ(ψ,λ) = ξ= (ψcosλ,ψsinλ)T. But

ξ̂= (x1, x2)T, so

ψ̂= (x2
1 +x2

2)1/2, λ̂= arctan(x2/x1). (2.22)

If ψ is fixed, then λ̂ψ is readily found as the unique minimum of the sum of squares

in (2.11); a good starting value should be λ̂. Then the likelihood root reduces to

r (ψ) = sign(ψ̂−ψ)
1

d1d2

{
d 2

2

(
x1 −ψcos λ̂ψ

)2 +d 2
1

(
x2 −ψsin λ̂ψ

)2
}1/2

.

To obtain q , we use (2.10) to simplify the ratio

| j (ϑ̂)|1/2

|ϕϑ(ϑ̂)| =
∣∣ηϑ(ϑ̂)Ωηϑ(ϑ̂)

∣∣1/2

|ηϑ(ϑ̂)| = |Ω|1/2 = 1

d1d2
.

The determinant involving the canonical parameter and its derivatives is

∣∣ϕ(θ̂)−ϕ(θ̂ψ) ϕ(θ̂λ)
∣∣= ∣∣∣∣∣x1 −ψcos λ̂ψ −ψsin λ̂ψ

x2 −ψsin λ̂ψ ψcos λ̂ψ

∣∣∣∣∣=ψ(
x1 cos λ̂ψ+x2 sin λ̂ψ

)−ψ2.

The information component associated with the nuisance parameter is

jλλ =
1

d 2
1 d 2

2

{
d 2

2ψsinλ
(
x1 −ψcosλ

)+d 2
1ψcosλ

(
x2 −ψsinλ

)+ψ2 (
d 2

2 sin2λ+d 2
1 cos2)},
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so

q(ψ) =
∣∣ϕ(θ̂)−ϕ(θ̂ψ) ϕ(θ̂λ)

∣∣
| jλλ(ϑ̂)|

|Ω|1/2 ,

=ψ1/2 x1 cos λ̂ψ+x2 sin λ̂ψ−ψ{
d 2

2 (x1 cos λ̂ψ−ψcos2λ̂ψ)+d 2
1 (x2 sin λ̂ψ+ψcos2λ̂ψ)

}1/2
.

When d1 = d2 = d , say, then λ̂ψ ≡ λ̂ does not depend on ψ and after simplification we

obtain

r (ψ) = w(ψ) = (ψ̂−ψ)/d ,

q(ψ) = r (ψ)(ψ/ψ̂)1/2,

r ∗(ψ) = ψ̂−ψ
d

+ d

2(ψ̂−ψ)
log(ψ/ψ̂), ψ> 0. (2.23)

Note that r ∗(ψ) →−d/(2ψ̂) when ψ→ ψ̂. The fact that r ∗(ψ) < r (ψ) for all ψ in this

setting implies that confidence intervals for ψ based on r ∗(ψ) will be closer to the

origin than those based on r (ψ), and significance levels for fixed ψ will be higher,

leading to more conservative inferences; this is illustrated in Figure 2.7. We should

consider evasive action based on r (ψ) when Φ{−r o(ψ0)} > ε, i.e., when ψ̂o −d zε is

smaller than the hard-body radius ψ0; if ε= 10−4 for example, then zε =−3.72. Notice

that this rule relates the observed distance of the second object from the origin, ψ̂o, to

the measurement uncertainty, d . Use of r ∗o(ψ) will lead to very similar conclusions in

most cases, though it is not monotone in ψ when ψ→ 0.

2.6.2 Bayesian approximation

As discussed in Section 1.4.3, the Bayesian analog of q is

qB = `′p(ψ) jp(ψ̂)−1/2

{∣∣ jλλ
(
ϑ̂ψ

)∣∣∣∣ jλλ(ϑ̂)
∣∣

}1/2
π(ϑ̂)

π
(
ϑ̂ψ

) . (2.24)

For ϑ̂T = (ψ, λ̂T
ψ), we write

d`(ϑ̂ψ)

dψ
= `ψ(ϑ̂ψ)+

∂λ̂T
ψ

∂ψ
`λ(ϑ̂ψ) = `ψ(ϑ̂ψ)−`ψλ(ϑ̂ψ)`−1

λλ(ϑ̂ψ)`λ(ϑ̂ψ),
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Figure 2.7 – Illustration of the two-dimensional setting described in (2.23) for x1 = 10,
x2 = 5, and d = 5. Left panel: Evidence function based on likelihood root r o(ψ)
(solid black), and modified likelihood root r ∗o(ψ) (red dashes). The horizontal lines
correspond to probabilities 10−6,10−5, 10−4, 10−3, 10−2, 0.025, 0.05, 0.5, 0.95, 0.975,
0.999, 0.9999, 0.99999 and 0.999999. Right panel: the same quantities transformed to
the standard normal scale.

where the second equality follows from noting that differentiating the equation

`λ(ϑ̂ψ) = 0 that defines λ̂ψ yields

`ψλ(ϑ̂ψ)+
∂λ̂T

ψ

∂ψ
`λλ(ϑ̂ψ) = 0,

with the matrix `λλ(ϑ̂ψ) invertible because it is the Hessian corresponding to the

maximum of ` in the λ direction for fixed ψ. A standard identity for the determinant

of a partitioned matrix gives

∣∣∣`ϑ(ϑ̂ψ) `ϑλ(ϑ̂ψ)
∣∣∣= ∣∣∣∣∣`ψ(ϑ̂ψ) `ψλ(ϑ̂ψ)

`λ(ϑ̂ψ) `λλ(ϑ̂ψ)

∣∣∣∣∣= {
`ψ(ϑ̂ψ)−`ψλ(ϑ̂ψ)`−1

λλ(ϑ̂ψ)`λ(ϑ̂ψ)
}×∣∣`λλ(ϑ̂ψ)

∣∣ ,

(2.25)

and the expression for the observed information in (2.21) implies that we can write

−`ϑλr (ϑ) = ηT
ϑ(ϑ)Ωηλr (ϑ)+ Ar (ϑ){y −η(ϑ)}, r = 1, . . . ,d −1, (2.26)

where A(ϑ) involves second derivatives of η. Now y = η(ϑ̂), so if ψ̂−ψ is of order n−1/2,

then y −η(ϑ̂ψ) = η(ϑ̂)−η(ϑ̂ψ) is also O(n−1/2), and so too is the second term on the
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right of (2.26). Thus (2.25) equals∣∣∣`ϑ(ϑ̂ψ) `ϑλ(ϑ̂ψ)
∣∣∣ = (−1)d−1

∣∣∣`ϑ(ϑ̂ψ) −`ϑλ(ϑ̂ψ)
∣∣∣

= (−1)d−1
∣∣∣ηϑ(ϑ̂ψ)Ω{y −η(ϑ̂ψ)} ηT

ϑ
(ϑ̂ψ)Ωηλ(ϑ̂ψ)

∣∣∣+O(n−1/2)

= (−1)d−1
∣∣ηϑ(ϑ̂ψ)

∣∣×|Ω|×
∣∣∣η(ϑ̂)−η(ϑ̂ψ) ηλ(ϑ̂ψ)

∣∣∣+O(n−1/2).

As ϑ is of dimension d and | (ϑ̂)| = ∣∣ηT
ϑ

(ϑ̂)
∣∣2 |Ω|, equation (2.24) equals

qB (ψ) =

∣∣∣`ϑ(ϑ̂ψ) `ϑλ(ϑ̂ψ)
∣∣∣

|`λλ(ϑ̂ψ)| × | λλ(ϑ̂ψ)|1/2

| (ϑ̂)|1/2

π(ϑ̂)

π(ϑ̂ψ)

=

∣∣∣`ϑ(ϑ̂ψ) −`ϑλ(ϑ̂ψ)
∣∣∣

| λλ(ϑ̂ψ)|1/2| (ϑ̂)|1/2
× π(ϑ̂)

π(ϑ̂ψ)

=
∣∣ηϑ(ϑ̂ψ)

∣∣ |Ω| ∣∣∣η(ϑ̂)−η(ϑ̂ψ) ηλ(ϑ̂ψ)
∣∣∣

| λλ(ϑ̂ψ)|1/2
∣∣ηT
ϑ

(ϑ̂)
∣∣ |Ω|1/2

× π(ϑ̂)

π(ϑ̂ψ)
+O(n−1/2)

= q(ψ)×
∣∣ηT
ϑ

(ϑ̂ψ)
∣∣∣∣ηT

ϑ
(ϑ̂)

∣∣ × π(ϑ̂)

π(ϑ̂ψ)
+O(n−1/2), (2.27)

where q(ψ) is given in equation (1.27).

The Jeffreys prior is the root of the determinant of the Fisher information matrix,

π(ϑ) ∝ ∣∣ηT
ϑ(ϑ)Ωηϑ(ϑ)

∣∣1/2 ∝ ∣∣ηϑ(ϑ)
∣∣ ,

as the constant |Ω| can be ignored. If this prior is used then (2.27) simplifies to

equation (2.20), plus a term of O(n−1/2). Hence

rB (ψ) =−r ∗(ψ)+O(n−1),

and inferences from both pivots will be the same to this order of error. Hence Bayesian

and frequentist confidence intervals for ψ0 differ by only O
(
n−1

)
.

The Jeffreys prior gives inferences invariant to 1−1 transformation of ϑ and thus is

often regarded as a natural choice, though it is criticized by Fraser et al. (2016a). In the

conjunction problem, this prior has the undesirable property mentioned at the end of

Section 2.5.1 of attributing zero probability to any sphere around the origin, relative

to outside that region. In a similar context Davison and Sartori (2008) compare the

performances of r ∗o
B (ψ) and r ∗o(ψ) and find that the former performs rather worse.

This same behavior is also observed in the present setting, owing to the downward bias
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of p̂c ; see case study C in Section 2.7. The Bayesian confidence intervals are slightly

shorter and tend to contain the true parameter less often. Bayesian approximations

are not our primary focus in this work; rather, we find it reassuring that Bayesian and

frequentist inferences can be approached in the same way. If reliable prior information

was available, then a Bayesian approach would be appropriate.

2.6.3 Evidence and decisions

In Section 2.4 we argued that functions such as (2.15) allow inference on the true miss

distance ψ, either by constructing confidence intervals or as an assessment of the

evidence that ψ equals some particular value ψ0. In the present context ψ0 might

be a safety threshold, and then one approach to inference on ψ is to test the null

hypothesis H0 :ψ=ψ0 against the alternative hypothesis H+ :ψ>ψ0, with evasive

action to be considered if (c.f. equation (2.15))

pobs = po(ψ0) =Φ{−r ∗o(ψ0)
}> ε,

i.e., H0 cannot be rejected at level ε. If the significance probability is correctly cal-

ibrated and the true miss distance is ψ0, then the false positive probability, that of

considering action unnecessarily, would be 1−ε, whatever ε is chosen. In practice

ε is often taken to be 10−4. The choice of H+ as alternative hypothesis ensures that

pobs is small when the estimated collision probability p̂c and the Bayesian posterior

probability Pr(ψ≤ψ0 | y) would also be small, despite their different interpretations

and properties. Hejduk et al. (2019) argue that the null hypothesisψ≤ψ0 is unnatural,

since it implies that the ‘null’ situation is to anticipate a collision, but it appears more

important to us to ensure that small values of pobs correspond to small collision prob-

abilities. Our approach is supported by regarding hypothesis testing as attempting

‘proof by stochastic contradiction’: the null hypothesis represents an assumption

that is regarded as absurd (disproved) when the corresponding significance level is

sufficiently small. If so, it makes sense to take ψ=ψ0 as the null hypothesis, as we

hope that this will be contradicted by the data and no evasive action will need be

considered.

The interpretation of the threshold ε in terms of an elementary decision analysis

was described in Section 2.4, and since conjunction analysis is intended to assist

decision-making, consideration of losses seems an appropriate basis for choosing ε.

Although our earlier discussion suggested considering evasive action when the poste-

rior probability Pr(ψ≤ψ0 | y) exceeds ε, it seems better to replace it by a significance

probability pobs computed asΦ
{−r o(ψ0)

}
orΦ

{−r ∗o(ψ0)
}
, which are approximately

uniformly distributed under H0.
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The abuse of hypothesis tests has been much discussed (e.g., Carpenter et al., 2017),

and it is often suggested that they be systematically replaced by confidence intervals.

Plotting Φ
{−r ∗o(ψ)

}
as a function of ψ, as in Figure 2.9, allows the construction of

confidence intervals for ψ, the form of which expresses the uncertainty and suggests

what power is available: a narrow interval corresponds to more precise estimation

and hence higher power for rejecting hypotheses such as H0 above. Unlike a two-

sided (1−2α) confidence interval [Lα,Uα], one-sided intervals such as [Lα,+∞) or

[0,Uα) give no information about the accuracy of the estimate, so a two-sided interval

provides a better basis for risk assessment. A one-sided confidence interval (Lε,∞)

that does not containψ0 leads to the same decision as observing pobs < ε, and it seems

partly a matter of taste which is preferred: computing pobs alone is quicker but is less

informative than a plot ofΦ
{−r ∗o(ψ)

}
. In navigating the literature, it is enlightening

to recognize that hypothesis testing has a variety of distinct uses (Cox, 2020), one of

which is to flag situations that merit more detailed scrutiny. In conjunction analysis,

one might therefore plot evidence functions only when pobs > ε, thereby focusing on

those conjunctions requiring careful consideration.

2.7 Numerical results

2.7.1 General setup

Below we investigate the accuracy of the normal approximations to the Wald statistic,

the likelihood root and the modified likelihood root in four case studies. We do so

in terms of one-sided error rates for confidence intervals (Lα,Uα) for the true miss

distance ψ0 and use Pr0 to indicate probability computed when ψ = ψ0. An ideal

two-sided equi-tailed confidence interval with coverage probability 1−2α should

satisfy Pr0(Lα ≤ψ0 ≤Uα) = 1−2α and have one-sided left-tail and right-tail error rates

Pr0(ψ0 < Lα) and Pr0(Uα <ψ0) both equal to α, for any α ∈ (0,0.5). Departures from

this will indicate deficiencies of the confidence intervals and the corresponding tests,

whereas close agreement will indicate that the inferences are well-calibrated. As w(ψ),

r (ψ) and r ∗(ψ) are decreasing in ψ and should ideally have standard normal distribu-

tions, inaccurate left-tail error rates correspond to departures from normality in the

upper tail w(ψ), r (ψ) and r ∗(ψ). In the present setting, accurate left-tail error rates are

most important, since they correspond to well-calibrated significance probabilities

and confidence intervals of form (Lα,∞).

As mentioned in Section 2.2, the form of the covariance matrix depends on the type of

the conjunction (Chen et al., 2017, Chapter 5). In short-term conjunctions, uncertainty

on the velocity is negligible compared to uncertainty on the position. In long-term
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conjunctions, the motion is nonlinear and the computations are more involved. In

both cases, the quality of risk assessment depends heavily on the covariance matrix,

which is usually intentionally inflated to improve the fidelity of the error modeling.

Below we suppose that the error covariance matrix for the relative distance and velocity

of the second satellite relative to the first is given by

Ω−1 =
[

P1 P12

P12 P2

]
,

where P1, P2, and P12 are the position, the velocity and the cross-correlation covari-

ance matrices, of units km2, km2 s−2 and km2 s−1 respectively. The six eigenvalues of

Ω−1 are difficult to interpret physically, and can vary greatly.

In our first two case studies, we assume that P12 = 03×3, and choose P1 = τσ2I3 and

P2 = σ2I3. This choice implies that the standard deviation of position errors along

each axis direction is
p
τσ (km) and the standard deviation of velocity errors is σ

(km/s). Uncertainty on the position is typically larger than that on the velocity, and

then τ > 1. In the last two case studies, we consider quantities projected into the

encounter plane, so the covariance matrix is a two-dimensional diagonal matrix with

standard deviation of position errors in km.

2.7.2 Case study A: Simulated data

The relative quantities and spherical coordinates of two satellites in this case study

are given in column A of Table 2.2. The relative distance and speed are around 102 km

and around 11.7 km/s, the value of σ2 varies from 10−3 km2 to 2 km2, and that of τ

varies from 1 to 3.

Table 2.4 shows the error rates for the Wald statistic, the likelihood root and the

modified likelihood root based on 104 datasets simulated for various combinations

of values of σ and τ. For very small σ2, i.e., high-precision measurement of position

and velocity, all three sets of error rates are close to the nominal values. However,

problems with the Wald statistic and, to a lesser extent, the likelihood root start to

appear when σ2 ≥ 0.1, with the left-tail error systematically too high and the right-tail

error systematically too low. The modified root behaves much better overall, though

its right-tail error also rises as σ2 increases. As mentioned in Section 2.7.1, tests of H+
require accuracy in the left tail, so right-tail error is less important.

These remarks are confirmed by the Gaussian QQ-plots of simulated values of the three

quantities in Figure 2.8. If the distribution is exactly Gaussian, then the confidence
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Table 2.2 – Conjunction geometry of case studies: A, a simulated example; B, the U.S.
and Russian satellite collision event; C, an event with high probability of conjunction;
and D an event with minimum miss distance.

Variable Case study
A B C D

Miss distance (m) 103 ×35.267 698.011 11.917 3.345
∆X (m) −103 ×100 −258.909 −7.678 2.875
∆Y (m) −103 ×20 −635.813 −9.152 −2.382
∆Z (m) 0 126.229 0.564 −1.074

∆Vx (km/s) 10 10.580 9.926 −1.099
∆Vy (km/s) 6 −3.733 −9.653 −11.840
∆Vz (km/s) 1 3.126 −4.110 1.313

θ1 1.570 1.389 1.618 1.850
θ2 1.485 1.299 1.860 -0.691
φ1 −2.944 1.957 −2.269 1.460
φ2 −2.944 −0.339 − 0.772 -1.663

Table 2.3 – Position and velocity coordinates of the primary (O1) and the secondary
(O2) objects for case studies B, C and D.

B C D
O1 O2 O1 O2 O1 O2

X (km) −1457.273 −1457.532 −1818.269 −1818.277 1935.852 1935.849
Y (km) 1589.568 1588.932 1040.564 1040.555 562.737 562.740
Z (km) 6814.189 6814.316 −6772.707 −6772.708 6779.432 6779.433

Vx (km/s) −7.001 3.578 -3.610 6.317 −4.907 −3.808
Vy (km/s) −2.439 −6.172 6.269 −3.384 −5.371 6.469
Vz (km/s) −0.9262 2.200 1.933 −2.177 1.843 0.530

intervals are exactly calibrated, so a departure from the line of unit slope through the

origin implies a lack of calibration. For small σ2, all three statistics have standard

normal distributions and give comparable results, but for larger σ2, the Wald statistic

and the likelihood root are shifted to the right and right-skewed, more strikingly for

larger values of τ. This reflects the upward bias of the estimated distance, discussed

in Section 2.5.1, and explains the asymmetric error rates in Table 2.4, with lower

probabilities for the right than for the left. The asymmetry increases with larger

uncertainties on the relative distance and velocity and with smaller nominal error

rates.

Figure 2.8 shows that the modified likelihood root r ∗ corrects the departure from

normality in the upper tail even for σ2 = 5, and its error rates are closer to the nominal
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rates in all cases considered. For σ2 > 2 and for 1% nominal levels, the Wald statistic

and the likelihood root show extreme overcoverage on the right and undercoverage on

the left; although the modified likelihood root provides a considerable improvement,

its right-tail error is somewhat smaller than the nominal value.

2.7.3 Case study B: US and Russian collision event

Our second example is the 10 February 2009 collision of the U.S. operational com-

munications satellite Iridium 33 and the decommissioned Russian communications

satellite Cosmos 2251, whose relative configuration is given in Table 2.2 and abso-

lute coordinates in Earth-centered inertial (ECI) coordinates are given in Table 2.3.

Figure 2.9 shows the evidence functions for this conjunction for (σ,τ) = (10−1,5),

which suggest that evasive action would be essential if the safety threshold is 20m, i.e.,

ψ0 = 0.02km (the dashed vertical line). On the other hand, the probability of collision,

1.14687×10−5, is lower than the conventional ε= 10−4, implying that such action is

unnecessary. The Wald statistic and the likelihood root are indistinguishable, but the

modified likelihood root is shifted slightly to the left, increasing the evidence that the

true miss distance is belowψ0. The significance probabilities for testingψ=ψ0 = 20m

against H+ :ψ>ψ0 are 1.2×10−3 for the Wald statistic and the likelihood root, and

7.2×10−3 for the modified likelihood root, so the same conclusions would be drawn

using any of these quantities if ε = 10−4. Clearly, however, the conclusions might

disagree in other circumstances. The posterior probability Pr(ψ ≤ ψ0 | yo) can be

expected to be similar toΦ{−r ∗o(ψ0)}.

Table 2.5 gives left and right error rates for different values of σ2 and τ for this con-

junction. Its first row corresponds to the case where the standard deviation of the

position error along each axis is 10m and the standard deviation of the velocity errors

is 10m/s, giving (σ,τ) = (10−2,1). In the lower rows we first increase uncertainty on

the position while keeping that on the velocity fixed by increasing τ, and then increase

both velocity and position errors by increasing σ2. For these simulations the true miss

distance and relative velocity are ψ= 698m and ‖ν‖ = 11.648×103m/s.

The error rates for the Wald statistic and the likelihood root are almost identical,

implying that the corresponding pivots are indistinguishable. For small velocity errors,

withσ2 < 10−3, there is no significant difference in the error rates for the three statistics.

For larger velocity variance, the overall error rates found by summing the left and the

right error rates equal the nominal values, but left-tail error dominates the sum. In

these cases the modified likelihood root is more symmetric and shows fewer extreme

values, especially for large τ, so interval estimates based on r ∗ are more reliable.
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Table 2.4 – Empirical left- and right-tail error rates (%) at nominal levels 10%,5%, and
1% for case study A, estimated from 104 Monte Carlo samples. The standard errors
(SE) appear in the last line.

Left tail (%) Right tail (%)
Uncertainty Statistic 5 2.5 0.5 5 2.5 0.5

(σ2,τ) = (10−3,1) w 5.22 2.58 0.54 5.03 2.49 0.49
r 5.20 2.56 0.53 5.04 2.51 0.50

r ∗ 5.15 2.54 0.53 5.13 2.54 0.51
(σ2,τ) = (10−3,2) w 5.43 2.61 0.43 4.96 2.61 0.59

r 5.43 2.61 0.43 4.98 2.61 0.61
r ∗ 5.40 2.58 0.43 5.02 2.62 0.62

(σ2,τ) = (10−3,3) w 4.93 2.48 0.53 4.83 2.46 0.54
r 4.91 2.47 0.52 4.88 2.46 0.55

r ∗ 4.85 2.40 0.50 4.90 2.49 0.55
(σ2,τ) = (10−1,1) w 5.45 2.88 0.64 4.15 2.09 0.37

r 5.26 2.78 0.59 4.27 2.15 0.37
r ∗ 4.89 2.53 0.54 4.65 2.37 0.42

(σ2,τ) = (10−1,2) w 5.62 2.98 0.67 4.60 2.28 0.50
r 5.48 2.75 0.61 4.70 2.32 0.54

r ∗ 5.06 2.48 0.54 5.06 2.56 0.64
(σ2,τ) = (10−1,3) w 5.66 2.86 0.65 4.49 2.26 0.49

r 5.54 2.70 0.63 4.58 2.35 0.50
r ∗ 5.06 2.50 0.59 4.92 2.57 0.53

(σ2,τ) = (1,1) w 7.21 4.10 1.04 3.18 1.37 0.16
r 6.45 3.36 0.68 3.35 1.53 0.21

r ∗ 5.39 2.64 0.55 4.56 2.37 0.31
(σ2,τ) = (1,2) w 6.58 3.72 0.92 3.64 1.50 0.24

r 5.92 3.16 0.57 3.80 1.62 0.29
r ∗ 4.81 2.40 0.41 5.32 2.59 0.48

(σ2,τ) = (1,3) w 6.40 3.50 0.96 3.73 1.64 0.25
r 5.74 3.03 0.64 3.94 1.76 0.25

r ∗ 4.74 2.49 0.54 5.19 2.72 0.46
(σ2,τ) = (2,1) w 7.78 4.57 1.41 2.12 0.69 0.03

r 6.52 3.56 0.78 2.27 0.75 0.03
r ∗ 5.19 2.64 0.58 4.46 1.85 0.10

(σ2,τ) = (2,2) w 7.94 4.59 1.33 2.30 0.71 0.05
r 6.77 3.49 0.71 2.43 0.88 0.05

r ∗ 5.18 2.60 0.54 4.62 2.09 0.18
(σ2,τ) = (2,3) w 7.67 4.07 1.15 2.19 0.73 0

r 6.49 3.24 0.65 2.39 0.86 0
r ∗ 4.71 2.34 0.49 4.48 1.98 0.11

SE 0.22 0.16 0.07 0.22 0.16 0.07
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Figure 2.8 – Case study A: normal QQ-plots of w(ψo) (left), r (ψo) (middle) and
r ∗(ψo) (right) based on 104 Monte Carlo sample quantiles, with (σ2,τ) equal to
(10−3,1), (1,1), (5,2), (5,5) (top to bottom).
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Table 2.5 – Empirical left- and right-tail error rates (%) at nominal levels 10%,5%, and
1% confidence intervals for the parameter ψ for case study B, based on 104 Monte
Carlo replications. The standard errors (SE) appear in the last line.

Left tail (%) Right tail (%)
Uncertainty Statistic 5 2.5 0.5 5 2.5 0.5

(σ2,τ) = (10−4,1) w 5.06 2.54 0.42 5.00 2.53 0.64
r 5.06 2.54 0.42 5.00 2.53 0.64

r ∗ 4.98 2.46 0.41 5.05 2.62 0.65
(σ2,τ) = (10−4,2) w 5.27 2.73 0.60 4.66 2.29 0.52

r 5.27 2.73 0.60 4.66 2.290 0.52
r ∗ 5.17 2.67 0.56 4.78 2.33 0.53

(σ2,τ) = (10−4,4) w 4.67 2.29 0.49 4.53 2.34 0.43
r 4.67 2.29 0.49 4.53 2.34 0.43

r ∗ 4.58 2.21 0.47 4.67 2.40 0.47
(σ2,τ) = (10−4,102) w 5.89 2.98 0.74 4.33 2.05 0.47

r 5.89 2.98 0.74 4.33 2.05 0.47
r ∗ 5.18 2.73 0.65 5.14 2.59 0.61

(σ2,τ) = (10−3,1) w 5.17 2.66 0.50 4.60 2.16 0.40
r 5.17 2.66 0.50 4.60 2.16 0.40

r ∗ 4.96 2.55 0.45 4.88 2.37 0.44
(σ2,τ) = (10−3,2) w 5.00 2.50 0.48 4.93 2.35 0.37

r 5.00 2.50 0.48 4.93 2.35 0.37
r ∗ 4.76 2.34 0.45 5.31 2.54 0.42

(σ2,τ) = (10−3,4) w 5.25 2.73 0.61 4.54 2.23 0.38
r 5.25 2.73 0.61 4.54 2.23 0.38

r ∗ 4.74 2.52 0.52 5.00 2.45 0.43
(σ2,τ) = (10−2,1) w 5.75 2.96 0.54 4.53 2.06 0.31

r 5.75 2.96 0.54 4.54 2.07 0.32
r ∗ 5.09 2.56 0.44 5.33 2.70 0.43

(σ2,τ) = (10−2,2) w 5.96 2.94 0.51 3.69 1.92 0.30
r 5.96 2.94 0.51 3.69 1.92 0.30

r∗ 4.89 2.39 0.38 4.87 2.53 0.49
(σ2,τ) = (10−2,4) w 6.20 3.26 0.57 2.73 1.14 0

r 6.20 3.26 0.57 2.73 1.14 0
r∗ 4.78 2.45 0.41 4.96 2.30 0.31

SE 0.22 0.16 0.07 0.22 0.16 0.07
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Figure 2.9 – Summaries for case study B. Left: evidence functions based on likelihood
root r o(ψ) (solid black), Wald statistic w(ψ) (dotted blue), and modified likelihood
root r ∗o(ψ) (red dashes). Right: the same quantities transformed to the standard
normal scale. The likelihood root and Wald statistic are almost indistinguishable.

2.7.4 Case study C: High pc event

Our third case study is based on a NASA test case1 as part of their publicly-released

Conjunction Assessment Risk Analysis (CARA) tool. Each published test case contains

data that can be readily converted to the ECI reference frame for both objects. The

test cases also include state covariance data, originally expressed in the UVW refer-

ence frame. The UVW covariance matrices can be transformed to the 6×6 ECI state

covariance matricesΩ−1
p andΩ−1

s for the two objects. These transformed quantities

are then used to define the relative ECI state at close approach, η, and the associated

combined covariance,Ω−1 =Ω−1
p +Ω−1

s .

Column C of Table 2.2 and Table 2.3 show the conjunction elements for this example.

Since the motion is linear and uncertainty on the velocity can be ignored, we use the

reduced two-dimensional model representing conjunction in the encounter plane.

The projected quantities in this plane, as described in Section 2.3.2 are given by

A = (CV , v/‖v‖) =

0.72 0.11 −0.69

0.68 −0.30 0.67

0.13 0.95 0.28

 ,

1https://github.com/nasa/CARA_Analysis_Tools/tree/master/two-dimension_Pc/UnitTest/
InputFiles
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xo = AT yo =
[

11.84

−1.36

]
, D = diag

(
d 2

1 ,d 2
2

)= [
25.12 0.00

0.00 11.612

]
,

so ψ̂o = ‖xo‖ = 11.92m. The evidence functions plotted in Figure 2.10 show that with

ψ0 = 10 m the significance probabilities pobs are all of order 0.5, though that for the

modified likelihood root is closer to 0.6; clearly evasive action would be essential in

this case.

Table 2.6 shows empirical error rates for the three approximate pivots based on 106

values of x simulated from the bivariate normal distribution with ξ= xo and covari-

ance matrix c2D, with c2 varying from 0.005 to 4, as in Figure 2.4. In order to study

the error rates for very rare events, we took α from 2.5% down to 0.005%, the latter

corresponding to two-sided 99.99% confidence intervals; the one-sided error rates for

α= 0.05% and α= 0.005% span the level ε= 0.01% above which evasive action might

be considered. Under the real conditions of this event, c2 = 1, the left-tail error is sys-

tematically high and the right-tail error is exactly zero. This is unsurprising, because in

this setting the pivots can be close to zero, and with increasing uncertainty the upper

confidence limit is almost invariably larger than ψ0. As c2 decreases, the uncertainty

becomes unrealistically small and the properties of all three pivots improve. When c2

increases, the error rates for r and w remain poor, but r ∗ behaves better, particularly

in the left tail, which is of the most interest. Although the errors for r ∗ are closer to the

nominal level, it should be jointly interpreted with the other pivots, especially when

the uncertainties are large relative to the miss distance.

The coverage properties of the noninformative Bayesian version of r ∗, r ∗
B are different

and not as satisfactory as those of r ∗ itself. This is evident from the simulation results

reported in Table 2.7, which show that for large uncertainties, the right-tail error is

smaller than the nominal value, while the more critical left-tail error is significantly

larger than the nominal value. This suggests that confidence intervals based on r ∗
B

are shifted to the right and may give a false indication of a safe conjunction. This is

certainly due to the undesirable properties of the noninformative prior, which suffers

from the same“dilution effect" as the probability of collision. In other words, using a

noninformative prior may lead to confidence intervals that are shifted upward, and

therefore may not accurately reflect the actual risk of a collision.

In a second experiment, we fixed D to the real uncertainty matrix but increased ξ to

c ′ξ, for c ′ > 1 to give a situation in which we expect E(‖x‖) ≈ψ0 for large c ′, hence

reducing the bias of the collision probability p̂c . Table 2.8 shows the resulting error

rates, again based on 106 simulated values of x. All the error rates approach their

nominal values as c ′ increases, but r ∗ again performs best overall, particularly in the

left tail.
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Table 2.6 – Empirical left- and right-tail error rates (%) at nominal levels α =
2.5%,0.5%,0.05% and 0.005% for case study C, with variance matrix c2D , based on 106

Monte Carlo samples. The standard errors (SE) appear in the last line.

Left tail (%) Right tail (%)
c2 Statistic 2.5 0.5 0.05 0.005 2.5 0.5 0.05 0.005

w 2.5986 0.5229 0.0504 0.0062 2.4616 0.4985 0.0542 0.0062
0.005 r 2.6115 0.5275 0.0507 0.0062 2.4274 0.4817 0.0494 0.0047

r ∗ 2.5206 0.5059 0.0490 0.0060 2.5256 0.5031 0.0524 0.0048
w 2.6242 0.5278 0.0531 0.0054 2.4530 0.5194 0.0665 0.0117

0.01 r 2.6411 0.5347 0.0548 0.0057 2.3701 0.4644 0.0433 0.0039
r ∗ 2.5064 0.5044 0.0500 0.0053 2.5087 0.5008 0.0476 0.0042
w 2.7484 0.5611 0.0538 0.0051 3.1974 1.3743 0.4281 0.0616

0.05 r 2.8128 0.5804 0.0570 0.0055 0.8226 0.0000 0.0000 0.0000
r ∗ 2.5127 0.5070 0.0474 0.0047 1.3042 0.0000 0.0000 0.0000
w 2.7974 0.5681 0.0556 0.0057 2.0243 0.3167 0.0000 0.0000

0.1 r 2.9171 0.6048 0.0623 0.0062 0.0000 0.0000 0.0000 0.0000
r ∗ 2.4808 0.5020 0.0481 0.0048 0.0041 0.0004 0.0001 0.0000
w 2.8968 0.5855 0.0602 0.0061 0.1192 0.0000 0.0000 0.0000

0.2 r 3.1142 0.6499 0.0680 0.0071 0.0000 0.0000 0.0000 0.0000
r ∗ 2.4780 0.4964 0.0497 0.0050 0.0414 0.0079 0.0013 0.0004
w 3.1192 0.6139 0.0650 0.0082 0.0000 0.0000 0.0000 0.0000

0.5 r 3.6289 0.7466 0.0807 0.0104 0.0000 0.0000 0.0000 0.0000
r ∗ 2.4578 0.4864 0.0510 0.0070 0.3016 0.0862 0.0212 0.0080
w 3.3729 0.6352 0.0666 0.0088 0.0000 0.0000 0.0000 0.0000

0.8 r 4.1558 0.8421 0.0891 0.0110 0.0000 0.0000 0.0000 0.0000
r ∗ 2.4974 0.4877 0.0508 0.0066 0.6050 0.2070 0.0618 0.0264
w 3.5192 0.6687 0.0619 0.0050 0.0000 0.0000 0.0000 0.0000

1 r 4.4715 0.9130 0.0920 0.0075 0.0000 0.0000 0.0000 0.0000
r ∗ 2.5252 0.5021 0.0475 0.0036 0.7748 0.2829 0.0899 0.0380
w 4.1574 0.7724 0.0737 0.0081 0.0000 0.0000 0.0000 0.0000

2 r 5.7200 1.1922 0.1211 0.0129 0.0000 0.0000 0.0000 0.0000
r ∗ 2.6649 0.5265 0.0512 0.0052 1.5817 0.6505 0.2498 0.1222
w 4.6041 0.8318 0.0761 0.0070 0.0000 0.0000 0.0000 0.0000

3 r 6.5660 1.3730 0.1428 0.0131 0.0000 0.0000 0.0000 0.0000
r ∗ 2.7466 0.5273 0.0516 0.0052 2.2104 0.9820 0.4040 0.2065
w 4.9401 0.8807 0.0772 0.0070 0.0000 0.0000 0.0000 0.0000

4 r 7.2084 1.5009 0.1495 0.0147 0.0000 0.0000 0.0000 0.0000
r ∗ 2.8042 0.5438 0.0520 0.0057 2.8894 1.3420 0.5913 0.3171
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Figure 2.10 – Summaries for case study C. Left: evidence functions based on likelihood
root r o(ψ) (solid black), Wald statistic w(ψ) (dotted blue), and modified likelihood
root r ∗o(ψ) (red dashes), Right: the same quantities transformed to the standard
normal scale. The likelihood root and Wald statistic are almost indistinguishable.

Table 2.7 – Empirical left- and right-tail error rates (%) at nominal levels α =
2.5%,0.5%,0.05% and 0.005% of r ∗

B for case study C, with variance matrix c2D , based
on 106 Monte Carlo samples.

Left tail (%) Right tail (%)
c2 2.5 0.5 0.05 0.005 2.5 0.5 0.05 0.005
0.005 2.3931 0.4768 0.0454 0.0049 2.5914 0.5330 0.0526 0.0051
0.01 2.3400 0.4635 0.0460 0.0040 2.6760 0.5473 0.0532 0.0056
0.05 2.1672 0.4256 0.0448 0.0046 2.9490 0.5843 0.0547 0.0057
0.1 2.0850 0.3938 0.0377 0.0046 2.8930 0.5094 0.0151 0.0034
0.2 1.8713 0.3509 0.0306 0.0028 2.7698 0.4252 0.1253 0.0522
0.5 1.6067 0.3066 0.0284 0.0031 4.8841 2.1380 0.8695 0.4446
0.8 1.4546 0.2765 0.0266 0.0020 6.8234 3.4632 1.6459 0.9044
1 1.3936 0.2628 0.0265 0.0024 7.8495 4.1776 2.0854 1.2062
2 1.2198 0.2325 0.0227 0.0024 12.8030 7.4818 4.1114 2.5450
3 1.1145 0.2027 0.0187 0.0023 15.6118 9.5435 5.4722 3.5047
4 1.0595 0.1863 0.0176 0.0017 17.7259 11.0861 6.5343 4.2717
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Table 2.8 – Empirical left- and right-tail error rates (%) at nominal levels α =
2.5%,0.5%,0.05% and 0.005% for case study C, with true position vector c ′ξ in the
encounter plane, based on 106 Monte Carlo samples. The standard errors (SE) appear
in the last line.

Left tail (%) Right tail (%)
c ′ Statistic 2.5 0.5 0.05 0.005 2.5 0.5 0.05 0.005

w 2.9354 0.5837 0.0570 0.0066 0.0045 0.0000 0.0000 0.0000
2 r 3.2085 0.6631 0.0677 0.0079 0.0000 0.0000 0.0000 0.0000

r ∗ 2.4625 0.4821 0.0478 0.0055 0.0749 0.0157 0.0027 0.0007
w 2.8360 0.5736 0.0620 0.0063 1.6491 0.1615 0.0000 0.0000

3 r 2.9632 0.6124 0.0675 0.0070 0.0000 0.0000 0.0000 0.0000
r ∗ 2.5088 0.5057 0.0530 0.0048 0.0052 0.0005 0.0000 0.0000
w 2.7575 0.5586 0.0580 0.0053 3.0591 1.2037 0.1975 0.0077

4 r 2.8315 0.5846 0.0615 0.0058 0.0000 0.0000 0.0000 0.0000
r ∗ 2.4990 0.4999 0.0506 0.0046 0.0052 0.0000 0.0000 0.0000
w 2.7127 0.5559 0.0523 0.0048 3.1485 1.3268 0.5772 0.2385

5 r 2.7627 0.5703 0.0554 0.0052 2.1960 0.4215 0.0380 0.0027
r ∗ 2.5079 0.5045 0.0475 0.0040 2.5059 0.4962 0.0480 0.0037
w 2.6819 0.5358 0.0523 0.0047 2.7548 0.9488 0.4112 0.2252

6 r 2.7249 0.5494 0.0537 0.0049 2.2379 0.4364 0.0428 0.0051
r ∗ 2.4966 0.4969 0.0483 0.0044 2.4794 0.4978 0.0508 0.0060
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2.7.5 Case study D: Minimum miss distance event

The motivation behind trying different examples is to expand the evaluation of our

approach against real or nearly real conjunction data, using values for risk assessment

thresholds that are much closer to what is employed operationally. In particular, we

are interested in testing how the proposed approach performs overall for conjunctions

with small miss distances and similarly small HBR thresholds. For that, we consider

another example from the limited set of conjunction data released by the CARA group

of NASA described in column D of Table 2.2 and Table 2.3. The other released data

are the subject of discussion in Alfano (2006b, 2007). These scenarios are not entirely

appropriate to give our approach a reasonable exercise, because they are meant to

stress the two-dimensional pc , test the linearity of the relative motion, deal with

situations in which the covariance matrix in not positive definite, or situations in

which only one covariance of the relative motion is available.

After converting coordinates to the ECI reference frame and defining the relative state

vector for the chosen case study, we have ψ= 3.34m and

xo = AT yo =
[

3.31

0.46

]
, D = diag

(
d 2

1 ,d 2
2

)= [
2245.552 0.00

0.00 51.342

]
,

where

A = (CV , v/‖v‖) =

 0.96 −0.26 −0.09

−0.12 −0.08 −0.99

−0.25 −0.96 0.11

 ,

The probability of collision for this test case using different uncertainties c2D where

c2 = 10−3,10−2,10−1,1,5, and an HBR between 1 and 30m is given in the left panel

of Figure 2.11. The large diagonal elements of D indicate little certainty about the

observed state vector and the corresponding miss distance. Using the real covariance,

c2 = 1, and an HBR that is shorter than 3m, we obtain collision probabilities smaller

than 3.90×10−5, values that indicate the satellite is safe. Shrinking the uncertainty,

i.e., c2 < 1, increases the collision risk, and the probabilities become larger than the

operational threshold (horizontal dashed line) for most HBR values; this implies that

the situation requires a close inspection and remediation might be necessary. Upon

consideration, the low value of pc lies in the dilution region of the probability of

collision, and so do the low values obtained by growing the uncertainty for c2 > 1.

In this example, we study the coverage of one-sided right-tail confidence intervals of

the form [Lα,+∞), and we estimate the empirical left-tail error forα from 5% to 0.01%.

This choice is not only driven by the fact that calibrated left-tail errors are more crucial
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for conjunction assessment but also due to the unusually short miss distance and

the large uncertainties, which result in point estimates of ψ bigger than ψ0 for most

values of c2 considered. The right panel of Figure 2.11 shows histograms of ψ̂ based

on 106 sampled data used in Table 2.9. This plot shows that even for small values of

c2, the estimated miss distance is larger than the observed value of 3.14m, and when

using the real covariance, ψ̂ can reach 6km. Since point estimates of ψ are always

bigger than ψ0, the likelihood root and the Wald statistics, under the null hypothesis,

are consistently positive. Therefore, we focus on the postive quantiles in the QQ-plots

shown in Figure 2.13.

Unlike in the case study C, the diagonal elements of the covariance matrix D and the

scaled covariance c2D have different magnitudes; the condition number of D is 1912.

This implies that the bivariate normal distribution has a covariance error ellipse with

an eccentricity that is almost one, i.e., a high degree of ovalness. So, shrinking the

covariance, although it results in a smaller ellipse, preserves the asymmetry in the

uncertainty along the two axes defining the encounter plane.

While the right-tail error is systematically zero because the upper confidence bound

is consistently greater than ψ0 = 3.14m, the left-tail error is bigger than the nominal

values for most of the scenarios examined in Table 2.9. We consider values of c2

varying from 10−6 to 0.2, then d1 varies from 2.245m to 1.004km, and d2 from 0.051m

to 22.961m. As we can see, for small uncertainty, all statistics have similar error

rates, but as c2 increases, the Wald statistic behaves better than the likelihood root,

even though both are far from the nominal values. The distribution of the modified

likelihood root under the null hypothesis is closer to standard normal and produces

left-tail errors that are much closer to the nominal value; see Table 2.9 and the third

column of Figure 2.13.
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Figure 2.11 – Case study D: Top: probability of collision with uncertainty in the en-
counter plane set to c2D and HBR(m) varying from 1m to 30m, the dashed blue
vertical line is ψo = 3.34m, and the dashed blue horizontal line is the operational
threshold 10−4. Bottom: histograms of the estimated miss distance based on 106 data
sampled from the bivariate normal distribution with variance c2D .
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Table 2.9 – Empirical left- and right-tail error rates (%) at nominal levels α =
5%,1%,0.1% and 0.01% for case study D based on 106 Monte Carlo samples. The
standard errors (SE) appear in the last line.

Left tail (%)
c2 Statistic 5.00 1 0.10 0.01

w 4.9817 0.9956 0.0961 0.0084
10−6 r 5.0218 1.0100 0.0978 0.0087

r ∗ 5.0203 1.0098 0.0976 0.0087
w 5.0057 0.9984 0.1014 0.0108

2 ·10−6 r 5.0457 1.0120 0.1041 0.0109
r ∗ 5.0429 1.0115 0.1040 0.0109
w 7.6229 1.4427 0.1383 0.0125

10−4 r 7.6684 1.4535 0.1391 0.0126
r ∗ 7.6386 1.4461 0.1383 0.0125
w 8.1552 1.5569 0.1437 0.0173

2 ·10−4 r 8.2105 1.5732 0.1453 0.0175
r ∗ 8.1608 1.5592 0.1436 0.0172
w 9.079 1.767 0.169 0.020

10−3 r 9.358 1.827 0.176 0.021
r ∗ 8.740 1.700 0.162 0.020
w 9.3951 1.8701 0.1829 0.0158

2 ·10−3 r 10.2440 2.0462 0.2036 0.0171
r ∗ 8.2992 1.6536 0.1622 0.0148
w 9.715 1.911 0.194 0.017

10−2 r 14.406 3.021 0.314 0.028
r ∗ 5.732 1.135 0.118 0.010
w 9.715 1.911 0.194 0.017

2 ·10−2 r 14.406 3.021 0.314 0.028
r ∗ 5.732 1.135 0.118 0.010
w 9.8856 1.9698 0.1993 0.0215

10−1 r 20.9553 4.9731 0.5711 0.0632
r ∗ 2.9182 0.5928 0.0643 0.0062
w 9.950 1.988 0.203 0.021

2 ·10−1 r 22.307 5.425 0.641 0.069
r ∗ 2.446 0.501 0.055 0.006

SE (×10−3) 21.79 9.94 3.16 0.99
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Figure 2.13 – Case study D: normal QQ-plots of w(ψo) (left), r (ψo) (middle) and r ∗(ψo)
(right) based on 106 Monte Carlo sample quantiles with variance c2D where c2 equals
10−3,10−2,10−1,2 ·10−1 (top to bottom).
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2.8 Conclusion

In this chapter, we reviewed the main methods for determining the collision probabil-

ity of space objects in relative linear motion. We formulated conjunction assessment

in statistical terms and discussed likelihood inference on the miss distance, both

when the relative velocity can be taken as known and when its uncertainty must be

taken into account. If a constant prior density is placed on the encounter plane, the

posterior probability that the second object lies within the hard-body radius equals

the usual collision probability. This immediate interpretation of the probability of

collision as a Bayesian formulation is not further explored since any other plausible

prior would need to reflect the underlying risk of collision due to orbital crowding. As

currently practiced, no such prior is available in conjunction analysis.

We studied the repeated-sampling properties of likelihood statistics in this setting.

Viewed in our framework, the collision probability estimator has a downward bias

that seems not to have been noticed previously, and the so-called probability dilution

paradox vanishes, since it refers to the properties of an estimator of the collision

probability rather than to the probability itself.

Examples illustrate inference on the miss distance, suggest that standard likelihood

confidence intervals may need improvement when uncertainty on the relative dis-

tance and velocity is large. The numerical results show that an improved approxima-

tion gives appreciably better inferences. However, the previously highlighted Bayesian

interpretation of the collision probability does not alter its downward bias and the use

of noninformative priors such as the Jeffreys prior does not improve coverage prop-

erties of our approach, so one should not be optimistic about the effect of Bayesian

correction in the context of conjunction assessment. In our setup, the estimated

collision probability is replaced by a significance probability for testing whether the

true miss distance is larger than a safety threshold. If the model is correctly specified

then this probability is calibrated in a repeated-sampling sense and thus provides a

statistically well-founded basis for avoidance decisions.
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2.9 Appendices of Chapter 2

Appendix A: Implementation details

The main steps for the numerical implementation of higher-order quantities are

given in Table 2.11. Numerical experiments were performed with an Intel® Xeon(R)

CPU E5-1650 v3 @3.50GHz × 12 processor with 64GB ram. To obtain coverage of the

confidence intervals for a specific case study, the R code is designed to use parallel

loops for speed-up purposes. It takes roughly 8 seconds to run 103 simulations in the

two-dimensional settings and 15 seconds for six-dimensional model.

Appendix B: Successive observations

In some cases successive six-dimensional observation vectors y1, . . . , yn and corre-

sponding 6×6 variance matricesΩ−1
1 , . . . ,Ω−1

n are available, with the variance matrices

increasingly concentrated as information accrues on a conjunction. If the observa-

tions can be regarded as independent, then the corresponding log likelihood is

`(ψ,λ1, . . . ,λn) =−1

2

n∑
j=1

{
y j −η

(
ϑ j

)
}TΩ j {y j −η

(
ϑ j

)}
,

where ϑ j = (ψ,λ j ), with ψ representing the miss distance common to all the observa-

tions and λ1, . . . ,λn representing 5×1 vectors of nuisance parameters corresponding

to y1, . . . , yn . The more precise y j are automatically given higher weight, since the

corresponding dispersion matricesΩ j are larger. In this case the overall parameter

vector is ϑ= (ψ,λ1, . . . ,λn), and the approach of Section 2.6 can be applied with minor

changes. A similar but more complex generalisation should be feasible when the

observations are dependent due to batch updates.

More complicated geometric discussion leading to a different form for η(ϑ j ) would be

needed if the relative motions could not be considered to be rectilinear.

Likelihood methods rest on distributional assumptions, and one might query whether

it is appropriate to assume normality of the observation vector. Provided suitable data

are available, standard methods could be used to check model adequacy and used

to modify the model if this was found to be necessary. For example, the multivariate

Student t or Laplace distributions might be used, though the numerical details would

be more complex.

In a Bayesian set-up, the incorporation of reliable prior information would be valuable,
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Numerical details

Input: 6×1 state vector y containing the observed 3×1 relative position and velocity vectors
µ̂ and ν̂, 6×6 covariance matrixΩ−1 for y , and a nominal confidence level α.

1. Compute the overall maximum likelihood estimates θ̂: (i) in the six-dimensional setting, ψ̂ and
λ̂= (θ̂1, φ̂1, ‖̂ν‖, θ̂2, φ̂2) are obtained from (µ̂, ν̂) using equations (2.3)–(2.6); and (ii) in the
simplified two-dimensional setting, we first need to project relative quantities into the
encounter plane using the matrix A (see Section 2.3.2), then ψ̂ and λ̂ are given in equation
(2.22).

2. Compute the observed information matrix (ϑ̂) given by (2.10) (a 6×6 or 2× 2 matrix), the
estimated variance of each ϑ̂r is the (r,r ) element of (ϑ̂)−1. Let se(ψ̂) denote the square root of
the estimated variance for ψ̂.

3. Define a grid G = {ψ′
1, . . . ,ψ′

nψ
} of values of ψ that includes the maximum likelihood estimate ψ̂.

We use a non-uniform grid in the interval
[
max

(
ψ̂− z1−αse(ψ̂),0

)
,ψ̂+ zαse(ψ̂)

]
, such that the

mesh is finer for small ψ and coarser for larger ψ.

4. For each ψ ∈G , obtain the constrained estimates λ̂ψ subject to 0 ≤ θ1,θ2 ≤π, −π≤φ1,φ2 ≤π
and 0 < ||ν||, by minimising the sum of squares in (2.9), and store the corresponding values of
ϑ̂ψ = (ψ, λ̂ψ). We have found that

• it may help to transform the components of ϑ to take values in the real line, for example
removing the restrictions by maximizing in terms of log ||ν||, log{θi /(θi −π)}, and
tan(φi /2), for i = 1,2, and

• constrained optimisation using the ‘Rvmmin’ or ‘nlminb’ solvers in the optimx() function
of the R package optimx leads to an algorithm that is overall robust, fast, and generally
insensitive to perturbations in initial values.

5. Use partial derivatives of the log-likelihood and the mean vector η to evaluate `(ϑ̂ψ), λλ(ϑ̂ψ),
η(ϑ̂ψ) and ηλ(ϑ̂) and then use expressions (1.1), (1.3) and (1.27) to obtain the values of r (ψ),
w(ψ), q(ψ) and r∗(ψ) on G .

6. Interpolate r (ψ) and r∗(ψ) on G by (for example) a cubic smoothing spline in which the values
of ψ are treated as functions of those of r (ψ) and r∗(ψ). Very large values of r∗ arising in a few
cases due to numerical instabilities when |r | < 0.1 are excluded.

7. If required, obtain the point estimate ψ̂∗ of ψ by using the interpolating spline for r∗(ψ) = 0.
This is not needed for the Wald or the likelihood root, as ψ̂ is already known.

8. Obtain a (1−2α) confidence interval (ψα,ψ1−α) based on r (ψ) as the solutions of r (ψ) =±zα. If
the equation r (ψ) =−zα cannot be solved, then the lower limit of the confidence interval is
ψα = 0. Confidence intervals based on r∗(ψ) are obtained likewise.

Output: Point estimates ψ̂ and ψ̂∗ of the miss distance and corresponding two-sided (1−2α)
confidence intervals.

Table 2.11 – Algorithm for likelihood inference on the miss distance
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and might for example be based on the output of a filtering approach to tracking.

One might then treat conjunction analysis as a prediction problem rather than an

estimation problem, and then the Bayesian formalism would be attractive.

For the satellite problem, we use a Bayesian formulation and let η0 and y0 respectively

denote the state vector and its observed value at time t = 0, where

η0 ∼N
(
η′0,Σ−1

0

)
, y0 | η0 ∼N

(
η0,Ω−1

0

)
Here η′0 and Σ−1

0 represent prior knowledge about η0. The posterior distribution of η0

given y0 is then

η0 | y0 ∼N
{
(Ω0 +Σ0)−1 (

Ω0 y0 +Σ0η
′
0

)
, (Ω0 +Σ0)−1}

which reduces to

η0 | y0 ∼N
(
y0,Ω−1

0

)
when Σ0 → 0, reflecting prior ignorance of the initial state vector. This posterior

distribution is then updated in later steps of the Kalman filter when subsequent

observations y1, . . . , yn are seen at respective times t1, . . . , tn . Let H j =
{

y0, . . . , y j
}

denote the observations seen up to and including time t j , write η j = ηt j , and let m j

and S j respectively denote the posterior mean and variance matrix for η j conditional

on H j . Note that m j is a linear function of y0, . . . , y j . We suppose that

η j+1 =Φ j+1η j +u j+1,

whereΦ j+1 is a known transition matrix for the evolution of the state vector between

times t j and t j+1, and u j+1 ∼N
(
0,Σ−1

j+1

)
represents random influences on the state

vector between these times. This implies that

η j+1

∣∣∣H j ∼N
(
Φ j+1m j ,Φ j+1S jΦ

T
j+1 +Σ−1

j+1

)
, y j+1

∣∣∣η j+1 ∼N
(
η j+1,Ω−1

j+1

)
,

and standard calculations with the normal distribution then show that

η j |H j−1, y j ∼N
(
m j+1,S j+1

)

83



Chapter 2. Statistical Formulation of Conjunction Assessment

where
{
H j−1, y j

}≡H j+1 and, setting A j+1 =Φ j+1S jΦ
T
j+1 +Σ−1

j+1,

m j+1 =Φ j+1m j + A j+1

(
A j+1 +Ω−1

j+1

)−1 (
y j+1 −Φ j+1m j

)
=

(
A j+1 +Ω−1

j+1

)−1 (
A j+1 y j+1 +Ω−1

j+1Φ j+1m j

)
,

S j+1 = A j+1 − A j+1

(
A j+1 +Ω−1

j+1

)−1
A j+1.

Both of these expressions make sense: the posterior mean for η j+1 is a weighted

average between the new estimate y j+1 and the updated previous estimate,Φ j+1m j ;

and if Ω−1
j+1 = 0 then y j+1 provides precise information about the state at time t j+1,

so S j+1 = 0, whereas ifΩ−1
j+1 =∞, then no additional information is provided by y j+1

and then S j+1 = A j+1 is entirely based on H j plus information about the subsequent

evolution of the state, but not the next observation. Hence, if observations are avail-

able at times 0, t1, . . . , tn , leading to conditional mean and variance matrix mn and Sn

at time tn , Bayesian inference can then be performed, approximating the posterior

distribution for the minimal distance ψ between the two space objects using the

previous computations.
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3
Accurate Inference in Boundary Prob-
lems

3.1 Introduction

Inference procedures based on likelihood theory form the backbone of many statistical

methods owing to the appeal of likelihood as a measure of plausibility, the generality

of the likelihood paradigm, the flexibility with which new problems can be addressed,

and close links to Bayesian ideas. The original notion now encompasses a wide range

of related ideas, including conditional and marginal likelihoods, partial likelihoods,

empirical likelihoods, quasi- and pseudo-likelihoods, and composite likelihoods; see

for example Pawitan (2001). An appealing aspect is that the standard theory leads to

a few well-understood, simple and widely applicable approximations for inference.

These typically rely on normal and chi-squared distributions and have been easy to

apply since well before the computer age. Over the past few decades this classical

theory has developed further, and as we saw in earlier chapters in its modern form it

can yield highly accurate inferences based on parametric models even for very small

samples.

Much less attention has been paid to so-called non-regular cases, under which the

standard conditions for validity of these classical approximations do not hold. These

conditions, which are typically of Cramér type (Cramér, 1946, §33.3), include differ-

entiability of the underlying joint probability or density function up to a suitable

order and finiteness of the Fisher information matrix. Unfortunately they fail for

models that are commonly used in applications of much practical interest in genetics,

reliability, econometrics and many other fields. One example is so-called endpoint

problems, in which the support of the observations must be estimated; in this case the

shape of the density function at the limits of its support determines the accuracy with

which the endpoint, and possibly other parameters, can be estimated (Smith, 1985).

Non-regularity can arise in many other ways. A highly cited review of nonregular
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problems is Smith (1989); see also Cheng and Traylor (1995). Further examples can be

found in Barndorff-Nielsen and Cox (1994, §3.8), Davison (2003, §4.6) and Cox (2006,

Chapter 7). Brazzale and Mameli (2022) group non-regular problems into three broad

classes. One broad class consists of change-point problems, and a related class is

situations in which one or more components of the parameter vanishes when another

component is set to a particular value. In both cases approximate distributions for

likelihood-based statistics can be complex and their usefulness may be limited in

realistic settings. A third class of non-regular problems comprises so-called boundary

cases, where it is desired to test the hypothesis that some interest parameter ψ equals

a null value ψ0 against the alternative that ψ >ψ0, and ψ0 lies on the boundary of

its domain. Informally, the methodological difficulties in likelihood-based inference

occur because the maximum likelihood estimate can only fall on the ‘right-hand’

side of ψ0. If the maximum occurs on the boundary, ψ0, the score function need not

be zero and the distributions of related likelihood statistics will not converge to the

typical normal or chi-squared distributions. Because of the difficulties inherent to the

derivation of the limiting distribution of the likelihood ratio statistic, practitioners

tend to ignore the boundary problem and to proceed as if ψ0 was an interior point of

its parameter space. This naïve approach may lead to highly inaccurate inferences

especially for complex models.

In this work, we study finite-sample approximations for certain boundary problems

and show how they may be greatly improved using higher-order likelihood procedures.

As discussed in Chapter 1, an extensive literature on higher-order likelihood inference

for regular models, in both classical and Bayesian frameworks, is available (Brazzale

et al., 2007). Severini (2000) and Barndorff-Nielsen and Cox (1994) show how highly

accurate approximations to the distributions of test statistics and pivots may be

obtained for a variety of parametric statistical models. However, the only precursor

paper for higher-order inference for boundary problems of which we are aware is

Castillo and López-Ratera (2006), who demonstrate the validity of an improved signed

likelihood ratio statistic when testing a boundary hypothesis on a scalar parameter in

an exponential family.

One problem we tackle is testing for a null component of variance in a mixed-effects

model. This includes as a special case comparison of parametric regression mod-

els with semiparametric alternatives, under the now-standard formulation of spline

regression as a linear mixed model (Laird and Ware, 1982; Ruppert et al., 2003; McCul-

loch and Searle, 2001; Wood, 2017). The asymptotic distribution of the likelihood ratio

statistic in such cases is typically a χ̄2, that is, a mixture of chi-squared variables with

known probabilities and degrees of freedom (Self and Liang, 1987), though other limit-

ing distributions are found as well (Sinha et al., 2012). The second problem we address
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is infinite mixtures, which embrace models such as the Student t with continuous

ψ−1 = ν degrees of freedom, the negative binomial with overdispersion parameter

ψ−1 = ν, and the generalized Pareto distribution with shape parameter ψ. These

distributions become identical to the Normal, Poisson and exponential, respectively,

if ψ→ 0. Here, the limiting distribution of the likelihood ratio statistic puts mass 1
2 at

ψ= 0, with the remaining probability spread as a χ2
1 distribution, though we shall see

that finite-sample results are unreliable even with large sample sizes.

As we will discuss in Section 3.2, this is because this type of problem places a hard

boundary, which cannot be crossed, on the domain of ψ. However, this is not the

case for a soft boundary, where ψ = ψ0 lies on the edge of the ‘statistical’ parame-

ter space, but can be an interior point of the ‘mathematical’ parameter space for

which the density function is well-defined. Because of the existence of this ‘enlarged’

parameter space, no difficulties with the existence of derivatives arise on the statisti-

cal boundary, which may justify the better, though still unsatisfactory performance,

of large-sample likelihood pivots. A distinction hence needs be made according to

whether the boundary is soft or hard.

As we shall see in Sections 3.4 and 3.5, no difficulties with the standard higher-order

methods will be observed for the former. Research for the latter case is incomplete as

hard boundary problems are more difficult. Likelihood pivots on the boundary need

be calculated as left limits for ψ→ψ0, but, the required derivatives may not exist on

the boundary or may be numerically unstable. Depending on the shape of the log

likelihood function at the boundary, the score function may be heavily skewed, and

the limiting distribution far from normal or chi-squared, even for very large sample

sizes. They may not even have the classical n1/2 asymptotic order at the boundary but

for example,
(
n logn

)1/2, as seen in Ledford and Tawn (1996).

This chapter is organized as follows: Section 3.2 reviews the literature on boundary

problems and motivates our work with two examples illustrating the poor perfor-

mance of first-order pivots regardless of the boundary type. Section 3.3 presents

direct methods for improving finite-sample approximation of the mixing probabilities,

notably using the profile score and Edgeworth expansion for its distribution. We

also propose a rough-and-ready remedy using a “shadow” estimator. However, this

approximation can only be applied when boundary probabilities can be computed

or approximated and presupposes that the shadow estimator has an approximately

normal distribution. In Section 3.4, we examine the direct improvements presented

in Section 3.3 for some soft and hard boundary examples. Numerical results for the

tangent exponential model using Monte Carlo simulations and real datasets are shown

in Sections 3.5 and 3.6.
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3.2 Boundary problems

3.2.1 Background

Let `(ψ,λ) denote the log likelihood for a parametric statistical model for data with

sample size n, possibly notional, with scalar parameter of interest ψ and nuisance

parameter λ, where ψ ∈Ψ = [ψ0,∞) and the value of λ that generated the data is

interior to an open set Λ. Suppose we wish to test the boundary null hypothesis

H0 :ψ=ψ0. If ψ0 were interior toΨ, then under mild regularity conditions the signed

likelihood ratio statistic

r (ψ0) = sign(ψ̂−ψ0)
[
2
{
`(ψ̂, λ̂)−`(ψ0, λ̂0)

}]1/2
, (3.1)

would have a standard normal distribution in large samples, and its square r (ψ0)2

would follow a chi-squared distribution with 1 degree of freedom. Here λ̂0 denotes

the maximum likelihood estimator of λ when ψ=ψ0. In the present setting, ψ=ψ0

under the null hypothesis, a boundary problem arises.

Research on boundary problems was initiated by Chernoff (1954) who derived the

asymptotic null distribution of the likelihood ratio statistic for testing whether ψ lies

on one or the other side of a smooth (d −1)-dimensional surface in a d-dimensional

space when the true parameter value lies on the surface. Using geometrical argu-

ments, Chernoff established that this distribution is equivalent to the distribution of

the likelihood ratio statistic for testing suitable restrictions on the mean of a multi-

variate normal distribution with covariance matrix given by the inverse of the Fisher

information matrix using a single observation. A later cornerstone contribution which

inspired many researchers and fuelled an enormous literature is the highly-cited ar-

ticle by Self and Liang (1987). This time, ψ0 no longer need be an interior point of

the parameter space, but can fall onto the boundary. However, the parameter space

must be regular enough to be asymptotically approximated by a cone with vertex at

ψ0. A further major step forward in likelihood asymptotics for boundary problems

was marked by Kopylev and Sinha (2011) and Sinha et al. (2012), who derived the null

distribution of the likelihood ratio statistic by algebraic arguments. From a technical

point of view, the derivation of a closed-form expression for the limiting distribution

of the likelihood ratio becomes more difficult the more nuisance parameters lie on the

boundary of the parameter space. All these contributions are summarized in Chow

et al. (2012), with some interesting examples and an account of the areas of interest in

genetics and biology. In general terms, the asymptotic distribution turns out to be a
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chi-bar squared distribution (Kudo, 1963) with cumulative distribution function

Pr(χ̄2 ≤ c) =
d∑
ν=0

ωνPr(χ2
ν ≤ c),

that is, a mixture of chi-squared distributions with degrees of freedom ν, and prob-

abilities ων, where ν varies from 0 to d , and χ2
0 is a point mass in zero. This mixture

depends on the number and type of parameters, and on the geometry of the tangent

cone at the null hypothesis.

Later we consider testing for a null component of variance in a mixed effects model.

As mathematically the likelihood function will be defined also on a suitable exten-

sion of the parameter space, we call this type of problem a soft boundary problem.

Crainiceanu et al. (2002) and Crainiceanu and Ruppert (2004a) derived the finite

sample distributions of the likelihood ratio and the restricted likelihood ratio tests

if there is a single variance component. They showed that asymptotic results give

very poor approximations in analysis of variance and penalized spline models. One

reason for this is that the asymptotic mixing proportions may be wildly inaccurate

even in relatively large samples. Susko (2013) showed that likelihood ratio tests using

data-dependent degrees of freedom give conservative asymptotic type I error.

A further common example of a boundary problem is a mixture model, in which the

data y follow the densityψ f (y ;ξ)+(1−ψ)g (y ;λ), andψ0 = 0 represents the possibility

that the data originate from the density g (y ;λ). The parameters ξ disappear under

the null hypothesis (Davies, 1987; Ritz and Skovgaard, 2005), and the distribution of

the likelihood ratio statistic for testing ψ=ψ0 may typically be approximated by the

supremum of some function of a Gaussian process. We do not address this situation

in this work, which is concerned with the simpler setting in which all nuisance pa-

rameters are present under the null hypothesis, but the limiting distribution of the

likelihood ratio statistic is still not chi-squared. When ψ cannot go below ψ0, we call

this a hard boundary problem, under which mathematical and numerical difficulties

arise in obtaining the maximum likelihood estimate, i.e.,in obtaining a solution that

satisfies the score equations and has nonsingular information matrix.

Ross (1990) called models with soft boundaries pseudomodels and listed some inter-

esting cases, such as the double-exponential regression models. This interpretation of

boundary problems is inspired by the work of Chant (1974). Another example of soft

boundaries is the generalization of the Weibull model to include negative powers and

its extended form, the Generalized Extreme Value (GEV) distribution. This example

is discussed in Hosking (1984),Smith (1985), and Cheng and Traylor (1995), and con-

nected to the Generalized Pareto (GP) distribution we study in Section 3.4. A limited
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number of hard boundary examples are well-studied. Dannemann and Holzmann

(2008) examined the finite-sample distribution of the likelihood ratio when testing

for zero entries of the transition matrix in hidden Markov models. This is related to

testing the parameters of the stationary distribution of the underlying Markov chain.

Bartolucci (2006) also studied boundary problems for latent Markov models, for a

combination of joint boundary null hypotheses. Further examples include testing

for the mixture properties in finite mixtures when the distributions belong to several

families (Chen and Kalbfleisch, 2005). To handle models with hard boundaries, some

researchers have proposed using techniques such as reparameterization or penal-

ization of the original model to transform the model into one with a non-singular

information matrix (Lee, 1993; Rotnitzky et al., 2000). In this work, we offer alternative

approaches for dealing with these types of irregular models.

3.2.2 Soft boundaries

Consider the one-way random effects model

Yi j =µ+bi +εi j , i = 1, . . . ,k, j = 1, . . . ,m, (3.2)

where µ is the overall mean and the bi and the εi j are mutually independent normal

random variates having zero means and variances σ2
b and σ2. This corresponds

to a sample of independent observations divided into k groups each of size m, so

n = mk. Let ψ=σ2
b/σ2 and set λ= (µ,σ2), so that a test of the boundary hypothesis

H0 :ψ=ψ0 = 0 corresponds to testing b1 = ·· · = bk = 0. In this case, an exact test is

available using the F distribution of the ratio of between- and within-group mean

squares, but it is instructive to apply the large-sample approximation nonetheless.

The work of Chernoff (1956) implies that the likelihood root has large-sample distri-

bution

Pr0{r (ψ0) ≤ x} = 1
2 H(x)+ 1

2 {2Φ(x)−1} I (x > 0), x ∈R, (3.3)

where Pr0(·) denotes a probability computed under the null hypothesis H0, H(x)

denotes the Heaviside function,Φ(x) is the standard normal distribution function, and

I (·) is the indicator function. The p-value for a test of H0 is pobs = Pr0{r (ψ0) ≥ robs},

where robs is the observed value of r (ψ0). If ψ̂ = ψ0, i.e., the maximum likelihood

estimate of ψ lies on the boundary, then robs = 0 and (3.3) yields pobs = 1, whereas if

robs > 0, i.e., ψ̂>ψ0, then (3.3) yields pobs =Φ(−robs).
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Apart from additive constants the log likelihood may be written as

`(µ,σ2,ψ) =−1
2

{
mk logσ2 + C2

σ2
+k log(1+mψ)+ C1

σ2(1+mψ)
+ km(ȳ··−µ)2

σ2(1+mψ)

}
,

(3.4)

where the grand mean ȳ·· and the sums of squares C1 and C2 between groups and

within groups are mutually independent and satisfy

C1 = m
k∑

i=1

(
ȳi ·− ȳ··

)2 ∼σ2(1+mψ)χ2
k−1, C2 =

k∑
i=1

m∑
j=1

(
yi j − ȳi ·

)2 ∼σ2χ2
k(m−1),

where ȳ·· and ȳi · are respectively the overall average and that for the i th group. It is

easily checked that the profile log likelihood for ψ may be written as

`p(ψ) ≡−k

2

{
m log

(
C2 + C1

1+mψ

)
+ log(1+mψ)

}
, ψ≥ 0.

The log likelihood function in (3.4) is defined for values of ψ ≥ 0. However, we can

extend the range of ψ to include values down to −1/m, so ψ0 = 0 is a soft boundary.

Using the likelihood root defined in (3.1) we have Pr0
{
r (ψ0) > 0

}= Pr(B > m−1), where

B has the beta distribution with parameters (k −1)/2 and k(m −1)/2. There are two

aspects to the asymptotic approximation (3.3), namely the limiting probabilities

and the half-normal approximation that applies for positive x. In some cases the

probabilities are very far from 1/2, even in very large samples. Indeed, Table 3.1 shows

that this probability is far from the asymptotic value of 1/2 for any values of k and m

likely to arise in practice. In this case, the limiting probability of 1/2 appears as k →∞,

and the asymptotic approximation degrades slightly as m increases for fixed k.

It is natural to try and improve the approximation by using the restricted log likelihood

(Harville, 1977), which amounts to dropping the last term in (3.4) and replacing the

coefficients mk and k for the logarithmic terms by mk −1 and k −1 respectively. The

resulting probability of a positive gradient, Pr{B > (k −1)/(km −1)}, is also shown in

Table 3.1. This does provide an improvement, but the the power loss remains large.

3.2.3 Hard boundaries

We now consider an example discussed in Wasserman et al. (2020) and Tse and Davi-

son (2022), which concerns testing for the mixing proportion in a two-component

Gaussian mixture model. Suppose we have independent random variables (Y1, . . . ,Yn),
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Table 3.1 – Probability (%) of positive maximum likelihood estimator of the variance
ratio in a variance components model (3.2).

k m = 5 m = 10 m = 20 m = 30
Usual REML Usual REML Usual REML Usual REML

5 32.2 43.0 30.3 41.7 29.5 41.1 29.2 40.9
10 37.7 45.5 36.3 44.6 35.6 44.1 35.4 44.0
20 41.4 47.0 40.4 46.3 39.9 45.9 39.7 45.8
30 43.0 47.6 42.1 47.0 41.7 46.7 41.6 46.6
50 44.6 48.1 43.9 47.7 43.6 47.5 43.5 47.4

100 46.2 48.7 45.7 48.4 45.5 48.2 45.4 48.2

where

Yi∼1
2Np

(
µ1, Ip

)+ 1
2Np

(
µ2, Ip

)
, (3.5)

µ1 =λ−ψ1p , µ2 =λ+ψ1p , λ is a p-dimensional vector of nuisance parameters and

ψ is the scalar parameter of interest. Homogeneity can be imposed on the model by

setting µ1 =µ2, or equivalently ψ= 0. The squared Euclidean distance between the

two component means is ∣∣∣∣µ2 −µ1
∣∣∣∣2

2 =
∣∣∣∣2ψ1p

∣∣∣∣2
2 = 4pψ2.

To account for the increased distance between samples in high-dimensional spaces,

we consider the standardized distance ψ= δ/(2
p

p). This standardized distance helps

to balance the effect of increasing dimensionality on the distance between samples;

see the two-dimensional illustration in Figure 3.1.

Gaussian mixture models are useful for model-based clustering, as they can effectively

capture complex patterns in the data. For a comprehensive overview of Gaussian

mixture models and their applications, see Lindsay (1995), McLachlan and Peel (2000),

Fraley and Raftery (2002), and Hennig (2010). Testing for homogeneity against a two-

component Gaussian mixture has been addressed in many works concentrating on the

distribution of the likelihood ratio statistic. Much of the early work centers around the

univariate normal mixture. See McLachlan (1987) and Thode et al. (1988) for results on

unknown but common variances. For a mixture with different means and variances,

results are in McLachlan (1987), Feng and McCulloch (1996), Hathaway (1985). These

rely on Monte Carlo simulations and concern finite-sample distributions. Ghosh and

Sen (1984) was the first successful attempt to develop an asymptotic distribution of

the likelihood ratio for a two-component mixture of arbitrary densities. Hartigan

(1985) and Bickel and Chernoff (1993) refined the original proof and showed that

the mean parameters for Gaussian mixtures need to be bounded, as otherwise the
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Figure 3.1 – Level plots for two-component Gaussian mixture when λ = (0,1)T and
ψ= 3/2.

likelihood ratio diverges to infinity.

In Equation (3.5), we consider a multivariate example of a Gaussian mixture model.

The key parameter of the mixture model is the scalar ψ, which simplifies the asymp-

totic distributions under the null hypothesis. However, if the mixture model were to

depend on both the means and variances of the populations, the asymptotic distribu-

tion of the likelihood ratio would be related to a Gaussian random field, making the

computation more complex (Donoho and Jin, 2004).

For the mixture in (3.5), under the null hypothesis ψ= 0, the likelihood ratio is

{r (0)}2 = 2
{
`

(
y ; θ̂

)−`(
y ; θ̂ψ0

)}
,

where θ̂ is the maximum likelihood estimator of θ, usually obtained via the EM algo-

rithm, and θ̂ψ0 =
(
0, Ȳ0

)
is the restricted maximum likelihood estimator of λ under H0.

The probability of a positive estimate of ψ for combinations of p, the dimension of

the nuisance parameter and the sample size n, is given in Table 3.2; they are smaller

than 1/2 even for n tending to ∞. So wrong conclusion might be drawn if we test the

null hypothesis H0 using the asymptotic distribution of the likelihood root in (3.3).

To accurately compute the boundary probability in small and moderate-sized samples,
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Table 3.2 – Probability (%) of positive maximum likelihood estimate of the distance
between the means of two-component Gaussian mixture.

n p = 2 p = 5 p = 10 p = 20

30 41.23 42.02 41.60 41.05
50 44.33 43.38 43.67 43.46

100 45.22 45.30 45.92 45.55
200 46.82 46.76 47.76 47.86
500 48.92 47.75 48.05 49.18

for models with soft or hard boundaries, it may be necessary to use an alternative

method. The examples provided illustrate some of the difficulties that need to be

addressed and solutions will be sought in the following sections.

3.3 Direct improvement on first-order approximations

The profile likelihood is a primary tool for inference on the parameter of interest ψ.

However, treating `p(ψ) as an ordinary log likelihood can give poor results, especially

if the dimension of the nuisance parameter λ is high and the sample size n is small.

The modified likelihood root presented in Chapter 1 alleviates some of these problems.

Below, we investigate other methods for improving the finite-sample approximation

to the distribution of the likelihood root in (3.3).

3.3.1 Simple solution

Feng and McCulloch (1992) suggest enlarging the parameter space to guarantee that

the likelihood ratio maintains the common limiting distribution, but this approach

works only when the null hypothesis is uniquely identified. A counterexample for

finite mixtures is given by Böhning et al. (1994) in their discussion of Cheng and Traylor

(1995). Furthermore, this approach is only applicable to soft boundary problems, and

is not suitable for addressing hard boundary problems, where the limit of the statistic

must be computed as ψ approaches ψ0.

Another natural way to improve the approximation is to visualise a “shadow" max-

imum likelihood estimator ψ̃ that equals the true estimator ψ̂ when the latter is

positive, but can take negative values; imagine that ψ̃ ·∼ N (δ,τ2) and ψ̂= max(ψ̃,0).

Maximum likelihood estimators of on boundaries are typically downwardly biased, so

δ< 0 for a shadow estimator, and thus Pr(ψ̂> 0) = Pr(ψ̃> 0) = 1−Φ(δ/τ) < 1/2, and
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correspondingly the score ∂`p(ψ)/∂ψ on the boundary has a negative bias.

This argument suggests that the p-valueΦ(−robs) that is computed directly from (3.3)

will be too large, thus leading to a loss of power for testing the boundary hypothesis,

but also suggests a rough-and-ready remedy when the shadow estimator is approxi-

mately normal and its variance is known. This is the case for the shadow likelihood

root r̃ (ψ0), for which τ= 1 to first order. If Pr{r̃ (ψ0) > 0} ≈ p+, then δ≈Φ−1(p+), and

an improved p-value when robs is positive equals

Pr0{r (ψ0) > robs} = Pr0{r̃ (ψ0) > robs}

≈ 1−Φ(robs −δ)

= Φ(δ− robs)

≈ Φ
{
Φ−1(p+)− robs

}
. (3.6)

This approximation will typically be smaller thanΦ(−robs), becauseΦ−1(p+) < 0, but

it can only be applied when p+ can be computed or approximated and presupposes

that the shadow estimator has an approximately a normal distribution.

3.3.2 Profile score

Below, we explore two ways of improving the finite-sample approximation of (3.3) by

using the distribution of the profile score under the null hypothesis. McCullagh and

Tibshirani (1990) suggest using an adjusted profile likelihood to address some of the

inherent issues of the profile likelihood, such as its bias and overly optimistic variance

estimates.

Under mild conditions, the log likelihood will have a local maximum on the boundary

if the profile log likelihood `p(ψ) for ψ has a negative gradient there; put another

way, ψ̂ > ψ0 if and only if ∂`p(ψ)/∂ψ > 0 when evaluated at ψ = ψ0, see Figure 3.2.

This suggests that the profile score is a natural starting point for the finite-sample

approximation

p+ = Pr0(ψ̂>ψ0) = Pr0

{
∂`p(ψ)

∂ψ

∣∣∣∣
ψ=ψ0

> 0

}
. (3.7)

Unlike the distribution of the maximum likelihood estimator, that of the profile score

statistic is continuous, without a point mass at the origin. McCullagh and Tibshirani

(1990) studied the behavior of the profile score statistic in finite samples, and proposed

an adjustment for it at each parameter value. This correction was later further studied

and extended to semiparametric models (Kauermann, 2002; Bellio et al., 2008). Below,
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Figure 3.2 – Profile log likelihoods for data simulated from a one-way classification
model (3.2) where k = 5 and m = 5; Left panel: the ordinary profile log likelihood.
Right panel: the restricted profile log likelihood. Grey curves have a positive gradient at
the origin, i.e., ψ̂> 0, and black curves correspond to likelihood functions maximised
at the origin.

we describe the original version in more detail.

Let us write the derivatives of the log likelihood ` with respect to ψ and the compo-

nents λi ,λ j , . . ., of λ as

Uψ = ∂`

∂ψ
, Ui = ∂`

∂λi
, Ui j = ∂2`

∂λi∂λ j
, Uψi = ∂2`

∂ψ∂λi
,

and so fourth. Note that Uψ and Ui are Op(n1/2), whereas Uψi and Ui j are in general

Op(n). Using Taylor series expansion of the profile score, McCullagh and Tibshirani

(1990) show that

∂`p

∂ψ
=Uψ+Uψi

{
κi , jU j +κi , jκk,l (

U j k −κ j k
)
Ul +

1

2
κi j kUkUl

}
+ 1

2
Uψi jκ

i ,kκ j ,lUkUl +Op
(
n−1/2) , (3.8)

where Einstein’s summation convention implies that we sum over repeated sub- and

superscripts (McCullagh, 1987), the indices i , j ,k, l refer to components of the nui-

sance parameter λ, κi , j is the (i , j ) component of the Fisher information matrix for λ,

κi , j is a component of the corresponding inverse matrix, and κψ,i is a component of

the Fisher information corresponding to ψ and λi and κi j k = κi ,i ′κ j , j ′κk,k ′
κi ′ j ′k ′ .
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The expectation of (3.8) is

E

{
∂`p(ψ)

∂ψ

}
=−1

2 (κψ,i , j −κψ,kκ
k,lκl ,i , j )κi , j − 1

2 (κψ,i j −κψ,kκ
k,lκl ,i j )κi , j +O(n−1/2),

(3.9)

where

κψ,i , j = E
{
UψUiU j

}
, κψ,i j = E

{
UψUi j

}
.

The terms κi , j , κψ,i , j and so on are O(n), and κi , j is O(n−1), so the expected profile

score is O(1). Moreover a standard computation gives

var

{
∂`p(ψ)

∂ψ

}
= κψ,ψ−κψ,rκs,ψκ

r,s +O(n1/2), (3.10)

The approximate moments can be used in a normal approximation of (3.7), i.e., with-

out adjustment we have

Pr0

{
∂`p(ψ)

∂ψ

∣∣∣∣
ψ=ψ0

> 0

}
.= 1−Φ(0) = 1

2
.

Bias adjustment gives

pa
+ =Pr0

{
∂`p(ψ)

∂ψ

∣∣∣∣
ψ=ψ0

> 0

}
.=1−Φ

(
−µp

σp

)
=Φ

(
µp

σp

)
,

where

µp
.= E0

(
∂`p(ψ)

∂ψ

)
, σ2

p
.= var0

(
∂`p(ψ)

∂ψ

)
.

It is common for the profile score to have a negative bias on the boundary. This

suggests that µp is likely to be negative and pa+ is expected to be smaller than the

asymptotic value of 1/2. Later, we will compare pa+ to the probability obtained via

numerical simulations to see how well the two agree.

3.3.3 Edgeworth expansion

The asymptotic normal distribution resulting from the central limit theorem is the

foundation of many statistical approximations. Edgeworth expansion is another
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classical technique that provides an expansion of the distribution of standardized sum

offering corrections, usually of order O(n−1/2) and O(n−1). Unlike the saddlepoint

approximation, the Edgeworth series requires only the first few cumulants and these

can often be computed without knowing the generating function.

Let U∗
n denote the standardized version of Un = ∑n

i Ui , where U1, . . . ,Un are inde-

pendent replicates of a continuous random variable with finite cumulants κr , and

standardized cumulants ρr = κr /κr /2
2 . The Edgeworth expansion for the distribution

of U∗
n =

n∑
i=1

(Ui −κ1)/κ1/2
2 is

F∗
n (u) =Φ(u)−ϕ(u)

[
ρ3

6n1/2
H2(u)+ 1

n

{
ρ4

24
H3(u)+ ρ2

3

72
H5(u)

}
+O

(
n−3/2)] , (3.11)

where ϕ(·) is the standard normal density and Hr denotes the rth-order Hermite

polynomial, given by

H1(u) = u, H2(u) = u2 −1, H3(u) = u3 −3u,

H4(u) = u4 −6u2 +3, H5(u) = u5 −10u3 +15u.

The leading term of the Edgeworth expansion (3.11) gives the standard normal ap-

proximation for U∗
n . Terms beyond the normal approximation can be expressed as

the product of the normal density, Hermite polynomials in u, and the skewness and

kurtosis of U∗
n (Pace and Salvan, 1997).

The Edgeworth expansion has been extensively used for theoretical work, for example

by Hall (1987, 1991, 1992), Barndorff-Nielsen and Cox (1979), and van der Vaart (1998).

For a discussion of Edgeworth series in the discrete case, see Esseen (1945) and Kolassa

and McCullagh (1990). Applications are widely reported in Ferrari et al. (1997, 2001),

and Gerlovina et al. (2017).

Below, we consider an expansion for the distribution of the profile score with a cor-

rection that involves the skewness. The truncation after ρ3 provides an approximate

distribution F∗
n with a remainder of order O(n−1). To obtain the third cumulant, we

start by noting that the profile score as written in (3.8) is the sum of

∂`p

∂ψ
= An +Bn +Op

(
n−1/2) ,
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where

An =Uψ+Uψiκ
i , jU j =Op

(
n1/2) ,

Bn =Uψi

{
κi , jκk,l (

U j k −κ j k
)
Ul + 1

2κ
i j kU jUk

}
+ 1

2Uψi jκ
i ,kκ j ,lUkU1 =Op (1) .

Rewriting An and Bn in terms of the centred variables Ui j −κi j , and Ui j k −κi j k gives

An
.=Uψ+κψiκ

i , jU j ,

Bn
.=(

Uψi −κψi
)

k i , jU j +κψi

{
κi , jκk,l (

U j k −κ j k
)
Ul + 1

2κ
i j kU jUk

}
+ 1

2κψi jκ
i ,kκ j ,lUkUl .

We then have (
∂`p

∂ψ

)3

= A3
n +3A2

nBn +Op
(
n1/2) . (3.12)

Expanding each term in (3.12) and applying the expectation, we have

E
(

A3
n

)= κψ,ψ,ψ+3κψiκψ,ψ, jκ
i , j +3κψiκψkκ

i , jκk,lκψ, j ,l +κψiκψ jκψkκ
i ,rκ j ,sκk,tκr,s,t ,

and

E
(

A2
2Bn

)=κψ,ψ,ψk,lκ
k,l +κψ,ψ,r n,pκψmκ

m,rκn,p

+ 1
2κψ,ψ,r,nκψmκ

mr n + 1
2κψ,ψ,m,rκψklκ

k,mκl ,r

+2κψ,ψk, j ,lκψiκ
i , jκk,l +2κψ, j ,r n,pκψiκψmκ

i , jκm,rκn,p

+κψ, j ,r,nκψiκψmκ
i , jκmr n +κψ, j ,m,rκψiκψklκ

i , jκk,mκl ,r

+κψk,n,z,lκψiκψsκ
i ,nκs,zκk,l +κn,z,r t ,pκψiκψsκψmκ

i ,nκs,zκm,rκt ,p

+ 1
2κn,z,r,pκψiκψsκψmκ

i ,nκs,zκmr p + 1
2κn,z,m,rκψiκψsκψklκ

i ,nκs,zκk,mκl ,r .

Terms appearing in the third-order moment of the score are functions of x centered

variables of orders O(nx/2) if x is even and O(n(x−1)/2) if x is odd, so E
(

A3
n

)
is O(n)

whereas E
(

A2
2Bn

) = O(1); see Pace and Salvan (1997, Chapter 3). We then use the

following relations between central moments and cumulants, where we ignore the

contributions of order O(n).

E
(
UiU jUk Huv

)=κi ,uvκ j ,k [3]+O(n),

E
(
UiU jUkUl

)=κi , jκk,l [3]+O(n).

[3] refers to the sum over permutations of the indices i , j and k, and the moments
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satisfy the second Bartlett identity (Bartlett, 1953).

The third-order cumulant of the profile score is

κ3 ≈ E
{(

Up
)3

}
−3E

(
Up

)
E

{(
Up

)2
}

= E
{(

Up
)3

}
−3E(Up)

[
var

(
Up

)+E
{(

Up
)2

}]
,

Moments in this expression are given in (3.9), (3.10) and the expectation of (3.12).

κ3 is then standardized by κ3/2
2 , and serves as a correction term of order O(n−1/2) in

(3.11).

The probability of a positive gradient at the origin obtained using the Edgeworth

expansion is for the distribution of the profile score is then

pe
+ =Pr0

{
∂`p(ψ)

∂ψ

∣∣∣∣
ψ=ψ0

> 0

}
.=1−F∗

n

(
−µp

σp

)
,

where F∗
n is in (3.11).

To summarize, we defined two probabilities: pa+ and pe+ using the distribution of the

profile score and Edgeworth expansion for its cumulative distribution function. These

probabilities are used to approximate (3.7) and will be compared to simulation-based

probabilities and the asymptotic value of 1/2 in the next section.

3.4 Applications

In Section 3.2, we distinguished between soft and hard boundaries. This section

illustrates the limitations of standard methods through examples falling under these

two varieties of boundary problems, and explores the improved approximations

proposed in Section 3.3.

3.4.1 Soft boundaries

Mixed effects models

The variance components example presented in Section 3.2.2 is paradigmatic of

several widely-used models that can be brought under the single umbrella of linear
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3.4. Applications

mixed models. These are models of the form

y = Xβ+Z b +ε, (3.13)

where the response vector y is n-dimensional, β is a p-dimensional vector of fixed-

effect parameters, b is a k-dimensional vector of random-effect coefficients with a

known symmetric positive definite variance matrix σ2
bΣ and ε is an n-dimensional

vector of uncorrelated random errors with varianceσ2. The n×p matrix X and the n×k

matrix Z indicate how y depends on the fixed parameters β and the random variables

b. If (b,ε) has a normal distribution with mean zero and the given covariance matrices,

the marginal distribution of Y is normal with E(Y ) = Xβ and cov(Y ) = σ2∆(ψ)−1,

where ψ = σ2
b/σ2, and ∆(ψ)−1 =ψZ Z T + In . For this model, a test on the boundary

H0 :ψ=ψ0 = 0 corresponds to testing for constant means b1 = ·· · = bk = 0.

The log likelihood based on the marginal distribution of y is

`(ψ,β,σ2) ≡−1

2

{
n logσ2 − log |∆(ψ)|+ 1

σ2
(y −Xβ)T∆(ψ)(y −Xβ)

}
, ψ≥ 0. (3.14)

For fixed ψ, the maximum likelihood estimates of σ2 and β are

σ̂2
ψ = 1

n

(
y −X β̂ψ

)T
∆(ψ)

(
y −X β̂ψ

)
, β̂ψ = {

X T∆(ψ)X
}−1 X T∆(ψ)y, (3.15)

and the profile log likelihood for the variance ratio ψ is

`p(ψ) ≡−1

2

{
n log σ̂2

ψ− log |∆(ψ)|
}

, ψ≥ 0 . (3.16)

Under the null hypothesis H0, the probability that ψ̂> 0 corresponds to a positive log

likelihood gradient at ψ=ψ0, which is

Pr0

{
∂`p(ψ)

∂ψ

∣∣∣∣
ψ=ψ0

> 0

}
= Pr0

(
eTQe > 0

)
, (3.17)

where e has a standard multivariate normal distribution, Q = n(I −H)Z Z T(I −H)−
tr

(
Z TZ

)
(I −H), and H = X (X TX )−1X T. If λ1 ≥ ·· · ≥λn denote the eigenvalues of the

matrix Q, (3.17) equals

Pr0

(
n∑

i=1
λi e2

i > 0

)
.

For the linear mixed effects model described in (3.13), the log restricted likelihood
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(Harville, 1977) is

`R(ψ,σ2) ≡−1

2

{
`(ψ, β̂ψ,σ2)−p logσ2 + log |X T∆(ψ)X |} . (3.18)

where β̂ψ is defined in (3.15). The probability of positive estimates using the profile

log restricted likelihood is

Pr0

 ∂`R

(
ψ, σ̂2

ψ,R

)
∂ψ

∣∣∣∣∣∣
ψ=ψ0

> 0

= Pr0
(
eTQRe > 0

)
, (3.19)

where σ̂2
ψ,R = (y −X β̂ψ)T∆(ψ)(y −X β̂ψ)/(n −p) is the restricted likelihood estimator

of σ2, and QR = (n −p)(I −H)Z Z T(I −H)− tr
{

Z Z T(I −H)
}
. Details of the partial log

likelihood derivatives in (3.17) and (3.19) are provided in Appendix 3.8.1.

One way to compute (3.17) is to use the saddlepoint approximation (Barndorff-Nielsen

and Cox, 1979)

Pr
(
eTQe > q

)= 1−F (q) '


1−Φ

{
w + 1

w
log

( v

w

)}
, q 6= E

{
Q(e)

}
,

1

2
− κ′′′(0)

6
p

2πκ′′(0)3/2
, q = E

{
Q(e)

}
,

(3.20)

where κ(·) is the cumulant generating function of Q(e) = eTQe, i.e.,

κ(ξ) =−1

2

n∑
i=1

log(1−2ξλi ), ξ< 1

2 min
i=1,...,n

2λi
,

and

w = sign(ξ̂)
[
2
{
ξ̂q −κ(

ξ̂
)}]1/2

, v = ξ̂{
κ′′(ξ̂)

}1/2
;

where ξ̂ is the saddlepoint.

The saddlepoint approximation, when applied to the models in (3.13), provides a

efficient way to calculate the boundary probability. Kuonen (1999) demonstrated that

using (3.20) is comparable in speed to exact methods, almost as accurate, and much

easier to implement. Another approximation for the distribution of quadratic forms

in normal variates was first suggested by Pearson (1959) and later by Imhof (1961)

pr
(
eTQe > q

)' pr
(
χ2

b > r
)

,

where χ2
b denotes a chi-squared variable with b = c3

2/c2
3 degrees of freedom, r =

q− c1 (b/c2)1/2 +b, and cs = tr(Q s), for s = 1,2,3. If eTQe is non-positive, the same
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approximation holds but one must assume c3 > 0.

Penalized splines

Nonparametric regression using natural cubic splines is equivalent to a particular

linear mixed effects model, so testing for a linear regression versus a general smooth

alternative can be viewed as testing for a zero variance component.

Consider a set of points (x1, y1), . . . , (xn , yn), where a < x1 < ·· · < xn < b and assume

that

yi =µ(xi )+εi , εi
iid∼ N (0,σ2), (3.21)

where µ is differentiable on [a,b] with absolutely continuous first derivative µ′. To

choose µ to balance fidelity to the data and smoothness, we take µ to minimize the

penalized sum of squares

n∑
j=1

{
y j −µ(x j )

}2 + 1

ψ

∫ b

a
µ′′(x)2 dx,

where ψ> 0 is a dimensionless parameter, usually denoted 1/λ in the literature. The

integral is a roughness penalty on µ′′. When ψ → ∞, no penalty is applied, and

there are n degrees of freedom, corresponding to the unconstrained variation of each

element of the vector µ. As ψ→ 0, the penalty becomes so large that µ(x) is forced to

become a straight line, i.e., a curve with two degrees of freedom. Intermediate values

of ψ give curves lying between these two extremes. Green and Silverman (1994) show

that the resulting µ is a natural cubic spline and that the penalty can be written as∫
µ′′(x)2 dx =µTKµ,

where µT = (µ(x1), . . . ,µ(xn)) and K is an n ×n matrix of rank n − 2. The kernel of

K is spanned by {1n , x} and the penalty matrix can be written as K = AD AT, where

A = (a1, . . . , an) is an orthogonal matrix, the columns of which are the eigenvectors of

K , while D is a diagonal matrix of the corresponding eigenvalues d1 = d2 = 0 < d3 ≤
·· · ≤ dn . The eigenvalue decomposition of K implies that

K =
n∑

j=1
d j a j aT

j , K −1
+ =

n∑
j=3

d−1
j a j aT

j , K K −1
+ = diag(0,0, In−2).

Then we can write (3.21) as

y =µ+ε= Xβ+Z b +ε, (3.22)
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where Xn×2 = (a1, a2), Zn×(n−2) = (d−1/2
3 a3, . . . ,d−1/2

n an), b ∼ Nn−2(0,σ2
b I ) indepen-

dent of ε∼ Nn(0,σ2I ). The distribution of µ is Nn(Xβ,ψσ2Z Z T), where ψ= σ2
b/σ2.

The penalty equals

µTKµ= (Xβ+Z b)TK (Xβ+Z b) = bT

(
02×(n−2)

D−1/2+

)T

AT AD AT A

(
02×(n−2)

D−1/2+

)
b = bTb.

The usual and the restricted log likelihoods for this model are given in equations (3.14)

and (3.18) respectively. So testing for a linear fit against a smooth curve is equivalent

to testing H0 :ψ= 0 (σ2
b = 0) against HA :ψ> 0 (σ2

b > 0).

Generalized Pareto distribution

The generalized Pareto (GP) distribution function with scale σ> 0 and shape ξ ∈R is

G(x) =

1−
(
1+ξ x

σ

)−1/ξ

+
, ξ 6= 0,

1−exp
(
− x

σ

)
, ξ= 0,

(3.23)

where x+ = max(0, x). A generalized Pareto random variable has support [0,−σ/ξ)

if ξ < 0 and R+ otherwise. The distribution in (3.23) has three basic shapes, corre-

sponding to a limiting distribution of exceedances from different classes of underlying

distributions (Embrechts et al., 1997).

Consider a null hypothesis H0 : ξ = ξ0 = 0, under which we test whether the data

have an exponential distribution. The distribution under the null can be regarded

as an infinite mixture of exponential variables. Assume that a random variable X is

exponentially distributed with rate λ∼ Γ (ν,1/s). Then, the marginal distribution of X

is GP{ξ= 1/ν,σ= 1/(νs)}, because

Pr(X > x) =
∫ +∞

0
exp(−λx)

λν−1 exp
(
−λ

s

)
Γ(ν)sν

dλ

= 1

Γ(ν)sν

∫ +∞

0
λν−1 exp

{
−λ

(
x + 1

s

)}
dλ

= (1+ sx)−ν, x > 0, σ,ν> 0.

Table 3.3 shows probabilities of positive estimator for the shape parameter based

on 104 samples of exponential variables for different sample sizes. The simulations

suggest that the probability of positive estimates, denoted pn+, is smaller than 1/2.
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Table 3.3 – Probability (%) of positive maximum likelihood estimator of the shape
parameter in GP(ξ = 0,σ) described in (3.23). The probabilities pn+, pa+ and pe+ are
obtained using (i) 104 simulations from GP(ξ= 0,σ), (ii) the distribution of the profile
score, and (iii) Edgeworth expansion for the distribution of the profile score, respec-
tively.

prob n = 20 n = 40 n = 60 n = 80 n = 100 n = 200

pn+ 32.9 36.0 38.3 40.5 40.5 43.1
pa+ 41.1 43.7 44.8 45.5 46.0 47.2
pe+ 41.0 43.6 44.8 45.5 46.0 47.2

Similar work was pursued by Hosking (1984), who considered whether the shape

parameter is zero in the generalized extreme value distribution. This is equivalent

to testing whether the data follow a Gumbel distribution rather than a type II or III

generalized extreme value distribution. Results therein show poor agreement between

finite-sample and asymptotic distributions and authors do not recommend using the

likelihood ratio or Wald statistics for hypothesis testing.

The moments of the profile score for the GP distribution are µp = −1, σ2
p = n and

κ3 = 13n; see Appendix 3.8.2 for details. Table 3.3 shows that the resulting adjusted

probability pa+ is closer to the simulated ‘true’ probability pn+ than to the asymptotic

value of 1/2, though it is still appreciably larger than pn+. The further adjustment

provided by the Edgeworth expansion goes in the right direction but pe+ is essentially

equal to pa+.

3.4.2 Hard boundaries: Mixture models

Infinite mixtures

One model for heavy-tailed data is the Student t distribution, which we write as in

Davison (2003, §4.6) , as

f (y ;ψ,µ,σ) = Γ{(ψ−1 +1)/2}ψ1/2

(σ2π)1/2Γ{1/(2ψ)}

{
1+ψ(y −µ)2/σ2}−(ψ−1+1)/2

, (3.24)

whereψ,σ> 0 and −∞<µ, y <∞. This generalizes the Student t density withψ−1 = ν
degrees of freedom to continuous ψ, with ψ=ψ0 = 0 corresponding to the normal

density. It furthermore allows us to interpret the Student t distribution as an infinite

mixture of normal variates. Let X ∼ N (0, s2) be a centered Gaussian variable with
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Table 3.4 – Probability (%) of positive maximum likelihood estimator of the reciprocal
of the degrees of freedom in a Student t density described in (3.24). The probabilities
pn+, pa+ and pe+ are obtained using (i) 104 standard normal samples, (ii) the distribution
of the profile score, and (iii) Edgeworth expansion for the distribution of the profile
score, respectively.

prob n = 10 n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

pn+ 21.1 26.3 33.5 36.3 39.7 42.7 44.0
pa+ 34.9 39.2 43.1 45.1 46.5 47.8 48.4
pe+ 33.6 38.8 43.0 45.1 46.5 47.8 48.4

variance s2. If s−2 ∼ Γ(ν/2,ν/2), then the marginal distribution of X is Student t with ν

degrees of freedom. So testing for Gaussianity of the data can also be viewed as testing

for a zero variance component.

Simulations based on 104 normal samples show that the probability of positive r (ψ0)

for a sample of size n is smaller than 1/2, as shown in Table 3.4. For n = 10, only

21% of the estimates are positive. Large-sample results are still unreliable since the

probability of a point mass at zero is more than 50% even for n > 200. These results

suggest that the null tail probability is substantially over-estimated, and the likelihood

root rejects H0 too rarely especially for small n.

In this example, tedious calculations involving moments of the Gaussian distribution

(see Appendix 3.8.2), yield µp =−3/2, σ2
p = 3n/2 and κ3 = 369n/8 for the profile score.

The corrected probabilities are overall closer to pn+. Although the correction goes in

the right direction, it is not wholly efficacious.

Testing for overdispersion

Suppose that count data Y follow a Poisson distribution but the rate has a gamma

distribution with mean ξ and shape parameter ν. The resulting density is the negative

binomial,

f (y ;θ) = Γ(ν+ y)

Γ(ν)y !

ννξy

(ν+ξ)ν+y
, y = 0,1, . . . ,ξ,ν> 0. (3.25)

The variance of a negative binomial random variable is ξ+ξ2/ν, so ξ2/ν is the addi-

tional variance compared to that of a Poisson variable with mean ξ. The overdispersion

is controlled by 1/ν, scaled by the square of the mean ξ2. Under the above model, we

consider the null hypothesis H0 :ψ= 1/ν= 0 against the alternative that ψ> 0, to test
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Table 3.5 – Probability (%) of positive maximum likelihood estimator of the dispersion
parameter in a negative binomial distribution defined in (3.25). The probabilities
pn+, pa+ and pe+ are obtained using (i) 104 simulations from Poisson variables, (ii) the
distribution of the profile score, and (iii) Edgeworth expansion for the distribution of
the profile score, respectively.

prob n = 10 n = 20 n = 50 n = 100 n = 200

pn+ 33.5 37.1 41.5 44.3 45.9
pa+ 41.1 43.7 46.0 47.2 48.0
pe+ 40.9 43.6 46.0 47.2 48.0

whether the data are consistent with a Poisson distribution. Table 3.5 gives results

based on 104 Poisson samples with rate ξ and size n. The probabilities are consistent

with the previous findings, as all frequencies are smaller than 1/2.

The profile score in this example has the following moments µp = −ξ/2, and σ2
p =

nξ2/2; see Appendix 3.8.2. The corrected probabilities are close to pn+ but are not

by any means perfect. Given the extra effort required to compute the third-order

cumulant for the profile score, computing pe+ does not seem worthwhile.

3.5 Results for the tangent exponential model

The tangent exponential model derivation for the examples discussed in Section 3.4 is

outlined in detail in Appendix 3.8.3. Additional computational information relevant

to these examples can be found in Appendices 3.8.4 and 3.8.5. While the technical

details of the derivations have been included in the appendices to allow for a greater

focus on the interpretation of the results, it is important to note that these derivations

were the tools we used to obtain the results below.

3.5.1 Example: Variance components

For the one-way classification example in (3.2), th ordinary profile likelihood has

µp =−(m−1)/2 and σ2
p = m(m−1)k/2, see Appendix 3.8.2 for details of the usual and

restricted profile scores. We have

pa
+ =Φ

(
−

√
m −1

2mk

)
, m,k > 1.
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Table 3.6 – Probability (%) of non-zero estimates in variance components model
(3.2) using the distribution of the profile score, and Edgeworth expansion for the
distribution of the profile score, denoted as pa+ and pe+, respectively.

k m = 5 m = 10 m = 20 m = 30
pa+ pe+ pa+ pe+ pa+ pe+ pa+ pe+

5 38.86 38.85 38.29 38.20 37.90 37.89 37.80 37.79
10 42.07 42.07 41.60 41.60 41.37 41.37 41.30 41.30
20 44.37 44.37 44.03 44.03 43.87 43.87 43.82 43.82
30 45.40 45.40 45.12 45.12 45.00 45.00 44.95 44.95
50 46.43 46.43 46.22 46.22 46.11 46.11 46.08 46.08

100 47.47 47.47 47.32 47.32 47.25 47.25 47.22 47.22

which converges to the asymptotic value 1/2 for large k, (m −1)/m ≈ 1 unless m is

small. The corresponding probabilities, shown in Table 3.6, show an improvement

compared to the column “Usual" of Table 3.1 obtained using the beta distribution due

to the bias correction. As previously noted, the Edgeworth expansion does not offer a

significant improvement relative to the amount of effort required. While adding the

kurtosis term to the expansion may improve the probability, it is more practical to use

simulations for these examples.

The one-way classification model is a soft boundary problem. We consider ψ such

that ψ>−1/m as an extended parameter space for numerical purposes but restrict

the interpretation of the results to ψ ≥ 0. For this particular example, closed-form

expressions are available for the maximum likelihood estimates θ̂, θ̂ψ and the pivots

r (ψ), q(ψ). So to obtain the pivot r ∗(ψ), no numerical optimization or differentiation

is needed; see expressions (3.29–3.30) and further details in Appendix 3.8.3. Table 3.7

gives probabilities of positive ψ̂ and ψ̂∗ based on 104 simulated observations using

the ordinary and the restricted likelihoods. Results for r ∗ are much better than those

for r , as all probabilities are closer to the asymptotic value of 1/2, even for small values

of k and m.

In addition to the incorrect use of the asymptotic mixing probability of 1/2, another

problem from using the asymptotic distribution of the likelihood root is the assump-

tion that the non-zero part is standard normal. Figure 3.3 shows Gaussian QQ-plots

of simulated values of the ordinary and the restricted likelihood roots, and the corre-

sponding modified pivots. For small k, the likelihood root tends to be smaller than

standard normal quantiles, especially for fixed k and larger m. Sample quantiles of

the restricted likelihood root, displayed in the right panels of Figure 3.3, show a minor

departure from unit slope, implying that the corresponding distribution is closer to

standard normal than is that of the ordinary-based likelihood root. The modified

108



3.5. Results for the tangent exponential model

Table 3.7 – Probability (%) of non-zero estimates in variance components model (3.2)
using 104 simulations of r and r ∗ for the usual likelihood “Usual" and the restricted
likelihood “REML". The dataset consists of k groups each of size m. Figures in bold
equal 50% up to simulation error.

m = 5 m = 10 m = 20 m = 30
k pivot Usual REML Usual REML Usual REML Usual REML

5 r 32.8 43.5 29.8 41.1 30.2 41.2 29.6 41.3
r ∗ 48.7 50.3 47.6 49.0 48.5 49.7 49.2 50.5

10 r 37.1 44.9 36.2 44.5 36.7 45.0 35.6 44.0
r ∗ 49.3 49.7 49.5 49.8 50.3 50.6 49.5 49.9

20 r 40.6 46.1 39.9 45.8 39.9 46.1 40.2 46.5
r ∗ 49.0 49.1 49.3 49.5 49.7 49.9 50.5 50.6

30 r 42.0 46.7 42.8 47.5 42.4 47.7 41.6 46.4
r ∗ 49.3 49.4 50.5 50.6 51.0 51.0 49.5 49.7

50 r 44.7 48.2 43.2 47.5 43.7 47.4 43.5 47.5
r ∗ 50.2 50.3 49.5 49.5 49.7 49.7 49.7 49.8

100 r 46.3 49.0 44.9 47.7 45.3 48.3 45.7 48.4
r ∗ 50.3 50.3 49.2 49.2 50.0 50.0 50.2 50.2

likelihood root efficiently corrects the departure from normality and produces bet-

ter results overall, except for small k where both pivots have light upper tails. In

this setting, the corrected likelihood root produces almost identical results to the

REML-based version, as shown in Figure 3.4. The correction terms, log(q/r )/r , are

of different magnitudes. However, in unbalanced settings and with additional fixed

effects, REML-based solutions may perform better (Chatterjee and Das, 1983; Corbeil

and Searle, 1976; Brown and Kempton, 1994).

In Table 3.8, we study the coverage of one-sided confidence intervals of the form

[Lα,+∞) for α< 0.4. Lower-bound intervals correspond to the upper tail of the pivots

in the QQ-plots of Figure 3.3, and are better suited for testing ψ = 0 against ψ > 0.

Table 3.8 shows that empirical coverage based on r ∗ is excellent, as the left-tail error

is equal to the nominal value for all values of α and considered sample sizes.

A natural extension of the previous model is the balanced two-way crossed random

model with one observation per cell

yi j =µ+ai +b j +εi j , i = 1, . . . ,k, j = 1, . . . ,m, (3.26)

where ai ,b j and εi j are independently normally distributed with mean zero and

variances σ2
a ,σ2

b and σ2 respectively. This model can be written as y = Xβ+ Z1b1 +
Z2b2 +ε, where X is an mk ×1 vector of ones, b1 contains the ai ’s, b2 the b j ’s, and
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Figure 3.3 – Left panels: Gaussian QQ-plots based on 104 Monte Carlo samples of
r (ψ0) (black) and r ∗(ψ0) (blue) in one-way classification model with (k,m) = (5,5),
(5,30), (50,30) (top to bottom). Right panels: the corresponding REML solutions.

110



3.5. Results for the tangent exponential model

-4 -2 0 2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

r0

lo
g
(q

r)
r

-6 -4 -2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

r0

lo
g
(q

r)
r

Figure 3.4 – Correction term for the usual likelihood (black +) and restricted likelihood
(green *) plotted against the likelihood root for 104 simulated data with (k,m) = (5,5)
(left) and (k,m) = (5,30) (right).

ε the εi j ’s. If we add an interaction term ci j , for experiments with more than one

observation per cell, then the model is a two-way crossed effects with interaction, and

the Z ’s may be written using the Kronecker product of matrices and vectors of ones

of appropriate dimension as in Miller (1977) or the squared sum representation as in

Sahai and Ojeda (2004, Chapter 4).

Define ψ1 =σ2
a/σ2, ψ2 =σ2

b/σ2, and consider the null hypothesis H0 :ψ1 = 0, under

which we test the significance of the first factor. Under the null hypothesis, the true

value of ψ2 is large enough to ensure that that second factor is consistently positive

even for small values of k and m; Figure 3.5 shows the proportion of positive variance

components in such a setting. Simulations in Susko (2013) show that the proportions

of positive variance components in a model where one parameter is zero depend

on how far the parameters are from their null hypothesis values, and suggest that a

conditional chi-square test is more powerful than the classical chi-bar test.

In our example, the probabilities of a positive estimate for different m and k when

ψ2 = 1 and σ2 = 1 using 104 simulations of r and r ∗ based on the restricted likeli-

hood are given in Table 3.9. It is interesting to note the similarities between the two

variance component examples: most probabilities based on the likelihood root are

not very far from 1/2, but improvement is possible. When computed based on the

modified likelihood root, these probabilities equal 1/2, and the distribution of the

corresponding sample quantiles is closer to the standard normal, as shown in Figure

3.6. These results support the conclusion of Stein et al. (2014), who studied the effec-

tiveness of the standard likelihood ratio test in mixed linear models with small sample
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Table 3.8 – Empirical coverage probabilities of the right-tail confidence intervals in
the one-way classification model based on 104 simulations for k groups each of size
m. Figures in bold equal the nominal values up to simulation error.

(k,m) = (5,5) (k,m) = (5,30) (k,m) = (50,30)
α r r ∗ r r ∗ r r ∗

0.005 0.001 0.004 0.001 0.004 0.004 0.004
0.010 0.003 0.008 0.003 0.009 0.006 0.009
0.025 0.009 0.022 0.008 0.024 0.017 0.024
0.050 0.022 0.046 0.018 0.048 0.036 0.050
0.100 0.047 0.098 0.039 0.097 0.076 0.100
0.200 0.110 0.195 0.092 0.196 0.160 0.198
0.300 0.175 0.293 0.153 0.292 0.247 0.292
0.400 0.247 0.391 0.220 0.391 0.335 0.393

sizes. They demonstrated that other methods, such as the bootstrap-based test, the

Bartlett-corrected usual test, and the adjusted profile likelihood ratio test, produce

better results for two specific mixed linear models.

Example: Penalized splines

Testing for polynomial regression versus a non-parametric alternative has often been

addressed using spline fits. The choice of the basis function and the penalty usually

depends on the complexity of the problem at hand and the structure of the underlying

data (de Boor, 1978; Green and Silverman, 1994; Hastie and Tibshirani, 1990; Wahba,

1990; Wood, 2017). Under the null hypothesis, this is a soft boundary problem as

ψ>− 1

max{eigen(Z Z T)}
,

where the lower bound in this inequality is negative.

A convenient property of smoothing splines in (3.4.1) is that the penalty is written

as µTKµ with a suitably defined penalty matrix K . Crainiceanu and Ruppert (2004b)

and Berry et al. (2002) considered non-parametric regression using a truncated power

basis of order p

µ(x) =β0 +β1x +·· ·+βp xp +
n∑

k=1
(x −τk )p

+, (3.27)

where τ1, . . . ,τn are the knots. They investigated the use of the likelihood ratio as a

statistic for hypothesis testing when p = 0, corresponding to a constant mean β0,
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Figure 3.5 – Proportion of positive variance components in model (3.26), where
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Figure 3.6 – Gaussian QQ-plots based on 104 Monte Carlo samples of r (ψ0) (black)
and r ∗(ψ0) (blue) in two-way classification model (3.26), with (k,m)(5,5); (5,30); (50,5)
(left to right).
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Table 3.9 – Probability (%) of non-zero estimates of the variance of factor I in a two-way
classification model (3.26) using 104 simulations of r and r ∗ for k groups each of size
m. Figures in bold equal 50% up to simulation error.

k m = 5 m = 10 m = 20 m = 30

5 r 44.0 42.5 41.9 41.0
r ∗ 50.1 50.4 50.5 49.7

10 r 45.7 44.5 43.3 43.0
r ∗ 50.1 49.9 49.5 49.0

20 r 47.4 46.9 46.0 46.7
r∗ 50.4 50.4 49.8 50.6

30 r 47.4 46.4 46.9 46.9
r ∗ 49.8 49.6 50.3 50.4

50 r 49.0 48.1 47.0 47.8
r ∗ 50.7 50.4 49.3 50.3

and p = 1, corresponding to a linear polynomial. The percentage of zero variance

components in these cases, for moderate numbers of equally spaced knots, was found

to be greater than 90%. The restricted likelihood ratio was found to be more effective,

for example using n = 20 knots the asymptotic probability mass at zero is 0.65 for

restricted likelihood ratio and 0.95 for the usual likelihood. So the usual likelihood

ratio is essentially useless for hypothesis testing and also for higher-order correction.

Natural cubic splines generally have the desirable properties of being very stable and

numerically efficient. However, for other choices of regression functions, for instance

B-splines, the penalty matrix can be obtained using an invertible change of basis (Rup-

pert et al., 2003). In addition to their numerical appeal, we favor natural cubic splines

because of the structure of the covariance matrix under the alternative hypothesis.

For the truncated power basis in the example of Crainiceanu and Ruppert (2004b),

when ψ> 0, the variance of the data increases as x increases. This implies that the

variance increases in a way that is often statistically unnatural, as a broadly constant

variance is typically observed in most applications, see the panels of Figure 3.7. This

may explain the large point mass at zero obtained in Ruppert et al. (2003) where the

spread of all data points suggest that H0 is more plausible than H1.

Consider testing for a linear regression versus a general alternative modeled as natural

cubic splines. We follow Ruppert et al. (2003), and take x to be equally spaced on

[0,1], and n equally-spaced knots. Table 3.10 presents the probability of a positive

gradient at the origin based on the saddlepoint approximation (3.20), and 104 samples

of r and r ∗ from the equivalent linear mixed effects model described in (3.22) . In

more than two-thirds of the simulations, the likelihood is maximized at ψ = 0. On
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Figure 3.7 – Covariance matrix In +ψZ Z T for ψ= 0.5 in penalized splines model. Top
panels: natural cubic splines with n = 20 (left) and n = 50 (right). Bottom panels:
constant and linear truncated power basis with 20 knots for n = 50 (left to right).

the other hand, the probabilities based on r ∗ are closer to 1/2 even for n = 10 knots.

QQ-plots in Figure 3.8 compare positive sample quantiles of the two pivots to those of

the standard normal distribution. The likelihood root has a negative intercept in both

plots and is particularly right-skewed for small n, in alignment with the proportion of

boundary estimates shown in Table 3.10. The modified likelihood root corrects the

departure from normality.

Example: Generalized Pareto

Testing for a zero-shape parameter in generalized Pareto distribution can be regarded

as a soft boundary problem since ξ can be negative, but we limit our interpretation to

the positive values. When the parameter ξ< 0, the upper endpoint of the distribution

depends on ξ, and the model is irregular when ξ<−1/2.
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Table 3.10 – Probability (%) of positive estimates in a penalized spline model with n
knots using the saddlepoint approximation “sp" described in (3.20), and the pivots r
and r ∗, based on 104 replicate samples. Figures in bold equal 50% up to simulation
error.

n = 10 n = 20 n = 30 n = 50 n = 100 n = 200 n = 300

sp 42.73 36.94 35.28 34.03 33.14 33.14 32.72
r 42.79 39.03 36.67 35.42 34.55 34.35 34.02

r ∗ 49.01 50.93 50.77 50.41 50.55 50.41 50.80
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Figure 3.8 – Gaussian QQ-plots of the non-zero components of the likelihood root
(black) and modified likelihood root (blue) in penalized splines for n = 20 (left) and
n = 50 (right).

The log likelihood for a random sample x = (x1, . . . , xn) from GP(σ,ξ) is

`(σ,ξ) =−n log(σ)−
(
1+ 1

ξ

) n∑
i=1

log

(
1+ ξxi

σ

)
, ξ 6= 0,σ> max(0,−ξx(n)). (3.28)

Under the full model, there is no closed-form expression for the maximum likelihood

estimators of (3.28). Grimshaw (1993) reduced the two-dimensional numerical search

for the zeros of the log likelihood gradient vector to a one-dimensional numerical

search in a transformed parametrization as in Davison (1984). In this example, nu-

merical optimization of the generalized Pareto distribution is carried out using the

function “fit.gpd" from the R “mev" package (Belzile et al., 2022).
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3.5. Results for the tangent exponential model

Table 3.11 – Probability (%) of positive maximum likelihood estimator of the shape pa-
rameter in a generalized Pareto distribution (3.23) based on 104 Monte Carlo samples.
Figures in bold equal 50% up to simulation error.

n 40 60 80 100 200 400

r 36.01 38.26 40.52 40.51 43.10 46.04
r ∗ 49.96 50.21 50.83 50.37 49.66 50.76
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Figure 3.9 – Gaussian QQ-plots of the non-zero components of the likelihood root
(black) and modified likelihood root (blue) in generalized Pareto distribution with
shape ξ= 0 based on 104 simulations for n = 40 (left) and n = 60 (right).

Fitting the generalized Pareto distribution to 104 samples of exponential variables

with size n gives the probabilities in Table 3.11. The finite-sample distribution of r ∗

appears to be almost identical to the asymptotic distribution for all chosen n: the

proportion of positive estimates of the shape parameter is 50%, and the distribution

of the positive components of the corrected likelihood root follows a standard normal

distribution as shown in Figure 3.9.

In Table 3.12, we show the empirical coverage of the right-tail intervals for n =
40,60,100. For small nominal values, intervals based on r tend to contain ψ0 less

often, especially for small sample sizes. This is due to the left-shifted distribution of

the pivots, but r ∗ provides better coverage with left-tail errors equal to the nominal

values. The results of this study are consistent with those reported by Hosking (1984),

who examined the two-sided alternative ξ 6= 0 in order to determine the direction of

any deviation from the null hypothesis ξ= 0.
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Table 3.12 – Empirical coverage probabilities for the generalized Pareto distribution
where ξ= 0, based on 104 simulations with n = 40,60 and 100. Figures in bold equal
the nominal values up to simulation error.

n = 40 n = 60 n = 100
α r r ∗ r r ∗ r r ∗

0.005 0.002 0.005 0.003 0.006 0.003 0.005
0.010 0.004 0.009 0.005 0.012 0.006 0.011
0.025 0.012 0.026 0.015 0.028 0.014 0.024
0.050 0.026 0.050 0.031 0.053 0.030 0.048
0.100 0.053 0.098 0.063 0.105 0.065 0.098
0.200 0.117 0.199 0.134 0.205 0.143 0.203
0.300 0.191 0.302 0.212 0.306 0.227 0.306
0.400 0.273 0.400 0.295 0.404 0.318 0.403

3.5.2 Example: Student t

The usual calculations in Davison (2003, Chapter 7) show that in conventional asymp-

totics, the power for testing H0 :ψ=ψ0 when in fact ψ=ψ1 depends on

δ̃= n1/2ψ1 −ψ0

b
,

so if ψ1 =ψ0 + c/na , then the power is asymptotically zero if a > 1/2. Hence ψ0 and

ψ1 are statistically indistinguishable, but as ψ1 > 0, calculations of r and q can be

performed at ψ1, though not at ψ0. Of course, one has to choose a and c so that the

value of ψ1 is close to the true null. This supports a possible framework for examining

how higher-order approximation performs for hard-boundary problems such as with

the Student t distribution and other examples.

For hard-boundary problems, we only seek to improve the p-values for H0 by cor-

recting the distribution of the non-zero part of the likelihood root. We consider a

null hypothesis H0 under which we test that the reciprocal of the degrees of freedom

ψ0 = 1/ν0 = b/n(1+ε)/2, for c = 1, and ε = 0.2,0.4,1. The smaller ψ0, the higher the

degrees of freedom, and then the Student t distribution approximates the normal

distribution for both small and large sample sizes, as illustrated in Figure 3.10. In prin-

ciple, smaller values of ε and c could be used, but simulations near the boundary show

that the observed information matrix is often not positive definite, and higher-order

correction might be more prone to failure. Maximum likelihood estimates under the

full model are obtained using the EM algorithm (Liu and Rubin, 1995);(Davison, 2003,

Chapter 5); details are in Appendix 3.8.4.
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Figure 3.10 – Standard normal density (red) vs Student t with ν = n(1+ε)/2 degrees
of freedom for ε= 0.2 (blue) and ε= 1 (black) and sample size n = 20 (left) and 100
(right).

Figure 3.11 shows QQ-plots for r and r ∗ under H0, in which r ∗ has sample quantiles

closer to unit slope and the flat segment around the origin corresponds to the extra

point mass at zero. The shadow likelihood root r̃ (ψ0) discussed in Section 3.3.1 is a

quick fix to the finite sample-distribution of the likelihood root, and in this case, shifts

the sample quantiles to the right, but more is needed.

Table 3.13 shows that the modified likelihood root performs better in terms of empiri-

cal coverage for small sample sizes. But both pivots tend to undercover the true value,

particularly for large nominal values, as the estimated lower bounds of the confidence

intervals approach the origin. This is especially evident for ε> 0.4, n ≥ 100 andα> 0.2,

where the modified likelihood root, r ∗, does not perform well but it is still better than

r . Figure 3.12 shows that p-values using the modified root r ∗ have a smaller relative

error than those for r . This confirms that first-order pivots, such as the likelihood root,

produce large p-values that fail to reject the null hypothesis as often as needed. The

corrected p-values are less conservative, with a relative error closer to zero.
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Table 3.13 – Empirical coverage probabilities of the right-tail confidence intervals
based on 104 simulations from the Student t distribution ν = n−(1+ε)/2 degrees of
freedom, for n = 20,50 and 100 and ε = 0.2,0.4 and 1. Figures in bold equal the
nominal values up to simulation error.

n = 20 n = 50 n = 100
α r r ∗ r r ∗ r r ∗

0.005 0.002 0.004 0.003 0.005 0.002 0.004
0.010 0.005 0.009 0.007 0.010 0.006 0.009
0.025 0.015 0.024 0.015 0.024 0.015 0.023
0.050 0.031 0.050 0.033 0.050 0.032 0.049

ε= 0.2 0.100 0.064 0.103 0.067 0.101 0.067 0.099
0.200 0.129 0.202 0.140 0.204 0.147 0.200
0.300 0.194 0.299 0.212 0.298 0.222 0.303
0.400 0.262 0.304 0.288 0.338 0.306 0.352

0.005 0.003 0.006 0.002 0.005 0.003 0.007
0.010 0.008 0.011 0.005 0.010 0.006 0.011
0.025 0.017 0.026 0.014 0.023 0.016 0.028
0.050 0.032 0.051 0.029 0.048 0.033 0.051

ε= 0.4 0.100 0.060 0.100 0.061 0.101 0.068 0.102
0.200 0.121 0.208 0.127 0.195 0.142 0.213
0.300 0.182 0.286 0.196 0.303 0.219 0.313
0.400 0.251 0.286 0.274 0.323 0.298 0.339

0.005 0.003 0.005 0.003 0.006 0.004 0.009
0.010 0.005 0.010 0.005 0.010 0.007 0.014
0.025 0.013 0.024 0.012 0.026 0.014 0.028
0.050 0.025 0.049 0.026 0.053 0.030 0.054

ε= 1 0.100 0.050 0.105 0.056 0.104 0.060 0.113
0.200 0.110 0.221 0.120 0.220 0.133 0.225
0.300 0.169 0.260 0.192 0.288 0.201 0.320
0.400 0.226 0.262 0.260 0.299 0.283 0.329
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Figure 3.11 – Gaussian QQ-plots of the non-zero components of the likelihood root
(black) and modified likelihood root (blue) based on 104 simulations in the Student t
with ν= n(1+ε)/2 degrees of freedom for ε= 0.2 where n = 20 (left) and n = 100 (right).

3.5.3 Example: Negative binomial

The log likelihood function based on a single observation from the negative binomial

density in (3.25) is

`(ξ,ν) = A(y +ν)− A(ν)+ν log(ν)+ y log(ξ)− (ν+ y) log(ν+ξ), ξ,ν> 0,

where A(ν) = logΓ(ν) is the log-gamma function, with derivative the digamma func-

tion.

Results based on 104 simulated data from the Poisson distribution with ξ= 2 show that

r (ψ0) is far from its asymptotic standard normal distribution. For this example, two

versions of r ∗ are implemented; the second one is based on Skovgard’s approximation

to the sample space derivative (Skovgaard, 1996). Both versions yield similar results,

so we report those computed using the tangent exponential model formulation.

The discrepancy from the standard normal distribution is corrected by r ∗, which does

a satisfactory job but tends to over-correct large quantiles, resulting in a right-skewed

tail for large n. The length of the flat segment around the origin shrinks as the point

mass at zero converges to 1/2 for larger sample sizes. As shown in Figure 3.14, the

relative error of the p-values based on the likelihood root decreases by half when

the sample size n increases from 20 to 50. However, the p-values obtained from the

modified likelihood root are less conservative. If the sample size is large (e.g., n > 200),

both relative errors tend to be small, and the likelihood root may be preferred.
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Figure 3.12 – Relative error of the normal approximation to the p-value using r (black)
and r ∗ (red) as a function of Pr0(r > robs) approximated using 105 Monte Carlo samples
for the Student t distribution with ν= n(1+ε)/2 degrees of freedom for ε= 0.2, n = 20
(right) and n = 100 (left).
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Figure 3.13 – Gaussian QQ-plots of the non-zero components of the likelihood root
(black) and modified likelihood root (blue) based on 104 simulations in the negative
binomial example for n = 20 (left) and n = 100 (right).

3.5.4 Example: Gaussian mixture

In our last example, we revisit the hard boundary problem mentioned in the motiva-

tional section. Under the null hypothesis H0 :ψ= 0, we are testing whether the data is

from a single normal distribution Np (λ, Ip ), rather than a Gaussian mixture. We set

λ= (1, . . . , p)T, and the parameters are estimated using the EM algorithm (see details

in Appendix 3.8.4).

Figure 3.15 shows sample quantiles of r (ψ0) under the null hypothesis for two different

dimensions of the nuisance parameter vector, p = 5 and p = 10. The sample quantiles
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3.5. Results for the tangent exponential model

Table 3.14 – Empirical coverage probabilities of the right-tail confidence intervals
based on 104 simulations for the negative binomial distribution for n = 20, 50 and 100.
Figures in bold equal the nominal values up to simulation error.

n = 20 n = 50 n = 100
α r r ∗ r r ∗ r r ∗

0.005 0.003 0.005 0.004 0.005 0.003 0.005
0.010 0.005 0.010 0.006 0.011 0.006 0.010
0.025 0.012 0.025 0.018 0.027 0.018 0.027
0.050 0.028 0.054 0.036 0.054 0.041 0.053
0.100 0.064 0.104 0.076 0.103 0.081 0.102
0.200 0.132 0.210 0.158 0.211 0.164 0.196
0.300 0.212 0.314 0.246 0.312 0.249 0.297
0.400 0.298 0.375 0.338 0.414 0.349 0.401
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Figure 3.14 – Relative error of the normal approximation to the p-value using r (black)
and r ∗ (red) as a function of Pr0(r > robs) approximated using 105 Monte Carlo samples
for the negative binomial with ξ= 2 and sample size n = 20 (right) and n = 50 (left).

of the likelihood root are smaller than the standard normal quantiles. The QQ-plots of

r ∗ are closer to the asymptotic distribution, with a slight deviation in the upper tail

for fixed sample size n and large p. Table 3.15 shows the empirical coverage of the

confidence intervals and demonstrates that r ∗ is vastly preferable to r for testing H0,

in line with previous results on the use of r ∗ in hard boundary problems.
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Figure 3.15 – Gaussian QQ-plots of the non-zero components of the likelihood root
(black) and modified likelihood root (blue) based on 104 simulations in two-Gaussian
mixture for n = 30, p = 5 (left) and p = 10 (right).

3.6 Data illustrations

Below we illustrate the use of the tangent exponential model for three datasets denoted

Di , i = 1,2,3. These data are assumed to be observations from distributions discussed

in Section 3.4, namely the variance components model (3.26), the penalized splines

model (3.21), and the generalized Pareto distribution model (3.23). For these examples,

third-order results are different from the first-order ones, and show that higher-order

approximations can confirm that we have a boundary estimate for the parameter of

interest or lead to a different conclusion. A good number of data illustrations in the

literature of third-order approximations for non-boundary problems can be found

in Severini (2000, Chapter 7), Davison (2003), Brazzale et al. (2007), and Butler (2007,

Chapter 1,2).

Chimpanzee data

Consider a dataset that we denote D1, which represents the times (min) for four chim-

panzees to learn each of ten words shown in Table 3.16. The data are discussed in

Davison (2003, Chapter 10) and taken from Brown and Hollander (1977). A possible

model for log time is the variance components model in (3.26) where yi j describes

the linguistic capacity of chimpanzee i to learn the word j , for i = 1, . . . ,4, j = 1, . . . ,10.

Under these assumptions, we assume that the response is sampled from a larger

population whose variation is of interest. However, we can consider a variance com-

ponent model where one factor is treated as a fixed effect and design further tests for

a particular word or chimpanzee.
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3.6. Data illustrations

Table 3.15 – Empirical coverage probabilities of the right-tail confidence intervals
based on 104 simulations for the two-Gaussian mixture for n = 30, and p = 5,10,20.
Figures in bold equal the nominal values up to simulation error.

p = 5 p = 10 p = 20
α r r ∗ r r ∗ r r ∗

0.005 0.002 0.004 0.003 0.005 0.003 0.005
0.010 0.005 0.009 0.006 0.009 0.006 0.009
0.025 0.015 0.025 0.016 0.023 0.016 0.025
0.050 0.035 0.050 0.034 0.052 0.035 0.051
0.100 0.069 0.099 0.072 0.102 0.073 0.103
0.200 0.151 0.208 0.145 0.200 0.152 0.207
0.300 0.238 0.309 0.228 0.302 0.238 0.307
0.400 0.324 0.381 0.318 0.376 0.330 0.382

Table 3.16 – Time (min) for four chimpanzees to learn each of ten words.

Chimpanzee Word
1 2 3 4 5 6 7 8 9 10

1 178 60 177 36 225 345 40 2 287 14
2 78 14 80 15 10 115 10 12 129 80
3 99 18 20 25 15 54 25 10 476 55
4 297 20 195 18 24 420 40 15 372 190

Analysis of variance gives the sums of squares Cc = 5.33, Cw = 45.69, and Ce = 17.65,

where the degrees of freedom for chimps is c −1 = 3, for words w −1 = 9, and for

the residual (c −1)(w −1). Estimates of the variance components and their standard

deviations are σ̂2
c = 0.112 (0.335), σ̂2

w = 1.105 (1.051), σ̂2 = 0.654 (0.808).

One aspect of interest is testing if chimp should be treated as a random effect since

the corresponding variance is rather small. The null hypothesis, in this case, is ψ=
σ2

c /σ2 = 0. The maximum likelihood estimate ofψ, the 95% confidence intervals using

the Wald statistic, the likelihood root, and the analogous modified likelihood root are

given in column D1 of Table 3.17. The lower bounds of the confidence intervals include

negative values for ψ, although only the positive values are meaningful for these

examples. The third-order approximation shifts the pivots to the right and lengthens

the confidence intervals based on the first-order pivot, especially the inappropriate

short interval based on the Wald statistic; see Figure 3.16 for a full summary. For

small degrees of freedom, such as c = 4, representing chimp as a random effect seems

unnecessary; the higher-order approximation confirms this conclusion.
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Table 3.17 – Summaries of the chimpanzee data D1, the Venice sea-level data D2, and
the precipitation data D3.

D1 D2 D3

ψ
Ratio of variances
σ2

c /σ2
Ratio of variances
σ2

b/σ2
shape parameter of
GP

Point es-
timate

w 0.171 0.270 −0.052

r 0.171 0.271 −0.052
r ∗ 0.235 0.516 0.002

95% CI w (−0.286, 0.630) (−0.729, 1.272) (−0.339, 0.233)
r (−0.033, 2.385) (−0.020, 4.612) (−0.294, 0.336)

r ∗ (−0.025, 3.752) (−0.016, 6.790) (−0.246, 0.418)
pivots(H0) w o 0.734 0.531 −0.361

r o 1.325 1.065 −0.336
r ∗o 1.514 1.469 0.0134

Venice sea level

In a second example we test whether a natural cubic spline is needed to fit the average

of Venice’s first 10-largest sea levels (cm) from 1887 to 2019. The available data D2

consist of the ten highest observations per year except for 1935, for which only the

largest six observations are available (Davison, 2003, Chapter 10). In Figure 3.17, we

plot the ten maximum sea levels and their average; the highest level ever recorded

was 198 cm in the historic floods of 1966.

The null hypothesis being tested is ψ= s2
b/σ2 = 0, and further details can be found in

Section 3.4.1. The fit summary in column D2 of Table 3.17 shows that the p-values

using r and r ∗ are 0.14 and 0.07, respectively. As expected, the inference based on r ∗

is more stringent, though it does not alter the conclusion in this case. However, this

example illustrates that higher-order approximations can lead to different conclusion

when the exact p-value is close to a critical value such as α= 0.1. When the alternative

hypothesis is considered, i.e., using smoothing splines in the mixed model represen-

tation, the fitted model plotted in blue in Figure 3.17 is different from the linear fit

shown in black dashes.
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Figure 3.16 – Summaries for the chimpanzee data D1. Left: evidence function based
on likelihood root r (ψ) (black), Wald statistic w(ψ) (dashed blue), and modified
likelihood root r ∗(ψ) (dashed red ). Right: pivots on standard normal scale.
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Figure 3.17 – Largest 10 annual sea-levels (cm) in Venice for each year from 1887 to
2019 (grey bullets), their average (red bullets), linear fit (dashed black) and spline fit
(blue).
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Figure 3.18 – Summaries for the Venice sea level data D2. Left: evidence function based
on likelihood root r (ψ) (black), Wald statistic w(ψ) (blue), and modified likelihood
root r ∗(ψ) (red dashed). Right: pivots on standard normal scale.

Precipitation data

Consider a third dataset D3, which consists of monthly precipitation (mm) data in

the Czech Republic from 1981 to 2020. The data are publicly available in the R pack-

age “pRecipe". A detailed record of this dataset and other variables describing the

global atmosphere, land surface and ocean waves based on atmospheric reanalysis

is discussed in Hersbach et al. (2020). In the left panel of Figure 3.19, we plot the

precipitation levels and, in the right panel, the corresponding seasonal boxplots.

Out of a total of 491 observations, 42 observations had values above a threshold of

115 mm. The maximum likelihood estimates of the generalized Pareto distribution,

fitted to the standardized data, are ξ̂=−0.052 (0.1502) and σ= 0.693 (0.1493). The

threshold was chosen using a mean residual life plot, but less subjective methods

have been proposed (Dupuis, 1998; Northrop and Coleman, 2014). The right panel

of Figure 3.20 gives the profile plot for the shape parameter. Point estimates and the

corresponding 95% confidence intervals are given in the column D3 of Table 3.17.

Confidence intervals based on the Wald statistic are likely to be biased and too short,

as in the previous two examples. The modified likelihood root offers a considerable

correction to the first-order pivot, especially for the upper bound of the confidence

interval and the point estimate of the shape, which becomes positive. Nevertheless,

p-values based on the three pivots are too large to reject the null hypothesis H : ξ= 0.
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Figure 3.19 – Left: Monthly precipitation data (mm) in the Czech Republic from 1981
to 2020. Right: Seasonal boxplots of the precipitation levels.

-0.4 -0.2 0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ψ

E
vi

de
nc

e 
fu

nc
tio

n

-0.4 -0.2 0.0 0.2 0.4 0.6

-4
-2

0
2

4

ψ

P
iv
ot
s

Figure 3.20 – Summaries for the precipitation data D3. Left: evidence function based
on likelihood root r (ψ) (black), Wald statistic w(ψ) (dashed blue), and modified
likelihood root r ∗(ψ) (dashed red). Right: pivots on standard normal scale.
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3.7 Conclusion

In this chapter we discussed the finite-sample distribution of the likelihood root

statistic for testing a null hypothesis when the parameter of interest is on the boundary

of its domain. In dealing with boundary problems, we distinguished between soft

and hard boundaries, where the latter are, as their name implies, more challenging to

handle. Our numerical results suggest that first-order approximations perform poorly

even when the sample size is very large. This is consistent with conclusions drawn

from previous works such as Hosking (1984), Davison (2003), and Crainiceanu and

Ruppert (2004a).

Then we considered approximating the distribution of the profile score under the

null hypothesis. The reason for deriving analytic expressions for its moments is

that these expressions can often reveal which aspects of the model have the greatest

impact on the poor reliability of the zeroth-order approximation. These corrections

give probabilities close to simulation-based results for the examples we considered.

However, the Edgeworth expansion is not fully effective in this context.

Under such nonstandard settings, we applied the tangent exponential model, which

is known to produce good results even in small samples (Guedes et al., 2020; Brazzale

et al., 2007; Severini, 2000; Fraser, 2017). The results demonstrate the adequacy

of the approach, especially for soft boundary problems such as testing for a zero

variance component in a normal model. This is equivalent to testing whether a

spline expansion is needed in semi-parametric regression using the mixed-model

representation. In these cases, the proportion of positive estimates is closer to 1/2,

the finite-sample approximation to the distribution of the non-zero part of r ∗ is

closer to the standard normal distribution, and the error of one-sided confidence

intervals is close to the nominal value. While the extension from one to multiple-

classification models seems straightforward for independent random effects, it is

more complex with random coefficients. For example, testing a null random slope

would imply setting two parameters at zero, and the mixture distribution of the

likelihood root becomes more complex. In this case, it is adequate to use a higher order

approximation for a vector-valued parameter of interest such as Bartlet or Skovgaard

corrections to the likelihood ratio statistic (Skovgaard, 2001) which have been studied

for different classes of models; see Skovgaard (1996), Ferrari and Cysneiros (2008)

and Melo et al. (2009). Exploring directional inference as in Fraser et al. (2016b) for

boundary problems can be a future extension of this work. Generalized linear mixed

models seem out of reach at the moment for multiple reasons (Breslow and Clayton,

1993; Bonat and Ribeiro Jr, 2016). First, the calculation of higher-order solutions

requires numerical differentiation of the pivotal quantities and relies heavily on the
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eigenvalues of the design matrices; the output is not always stable. Also, this can be

time-consuming if the model contains several parameters and the matrices are large.

The choice of the link function and its effect on the distribution of interest still need

to be addressed.

When the parameter space is not expandable, the tangent exponential model still

improves first-order results. As ψ→ψ0, the distribution of the non-zero part is closer

to the standard normal for all studied examples. However, the inflated point mass at

ψ0 is a limitation, as r ∗ has a singularity at zero. In this case, we seek to improve the

finite -sample approximations using different approaches.

Studying higher-order adjustments for boundary problems for various models with

different fields of applications is a step toward better understanding a broad class of

irregular models. One such application is testing that the miss distance equals a safety

threshold for the conjunction assessment presented in Chapter 2. It was shown that

this is a boundary problem for large relative uncertainties. Further work to improve

these new developments will be very valuable.
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3.8 Appendices of Chapter 3

3.8.1 Appendix A: Score of linear mixed model

Partial derivative of the restricted log likelihood defined in (3.18) with respect to ψ is

∂`R

(
ψ, σ̂2

ψ,R

)
∂ψ

=−1

2

{
(n −p)

∂log σ̂2
ψ,R

∂ψ
− ∂log |∆(ψ)|

∂ψ
+ ∂log |X T∆(ψ)X |

∂ψ

}
.

Using matrix derivatives that involve the log determinant, we have

∂log σ̂2
ψ,R

∂ψ
=− 1

σ̂2
ψ,R

(y −X β̂ψ)TM(ψ)(y −X β̂ψ),

∂ log |∆(ψ)|
∂ψ

=−
n∑

j=1

λ j

1+ψλ j
,

∂log |X T∆(ψ)X |
∂ψ

=− tr
{
(X T∆(ψ)X )−1X T∆(ψ)Z Z T∆(ψ)X

}
,

where σ̂2
ψ,R = (y −X β̂ψ)T∆(ψ)(y −X β̂ψ)/(n −p), λ j is the j-th eigenvalue of the matrix

Z Z T, and M(ψ) =
{
−2∆(ψ)X

(
X T∆(ψ)X

)−1 X T + In

}
∆(ψ)Z Z T∆(ψ).

The score of the profile restricted log likelihood evaluated at ψ= 0 is

∂`R

(
ψ, σ̂2

ψ,R

)
∂ψ

∣∣∣∣∣∣
ψ=0

=−1

2

{
−(n −p)

y T(I −H)T (−2H + In) Z Z T(I −H)y

y T(I −H)y
+ tr

{
(I −H)Z Z T

}}

=−1

2

[
−(n −p)

y T(I −H)Z Z T(I −H)y

y T(I −H)y
+ tr

{
(I −H)Z Z T

}]
,

where β̂0 = (X TX )−1X T y and H = X (X TX )−1X T is usual hat matrix in a linear fit. Simi-

lar calculations are performed when we consider the score based on the ordinary log

likelihood.

3.8.2 Appendix B: Moments of the profile score

Below, we give calculations for the score in the examples presented in Section 3.4.
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Variance components

For the one-way classification model, using the ordinary likelihood in (3.4), we take

θ = (λT,ψ)T where λ= (µ,σ2). First and second-order derivatives of the ordinary log

likelihood are

`µ =
km

(
ȳ.. −µ

)
σ2

(
1+mψ

) , `σ2 =−1

2

{
mk

σ2
− C2

σ4
− C1

σ4
(
1+mψ

) − mk
(
ȳ.. −µ

)2

σ4
(
1+mψ

) }
,

`ψ =− 1

2

{
mk

1+mψ
− C1 m

σ2
(
1+mψ

)2 − m2k
(
ȳ.. −µ

)2

σ2
(
1+mψ

)2

}
,

`µµ =− mk

σ2
(
1+mψ

) , `µσ2 =− mk
(
ȳ.. −µ

)
σ4

(
1+mψ

) , `µψ =− m2k
(
ȳ.. −µ

)
σ2

(
1+mψ

)2 ,

`σ2σ2 = mk

2σ4
− C2

σ6
− C1

σ6
(
1+mψ

) − mk
(
ȳ.. −µ

)2

σ6
(
1+mψ

) ,

`σ2ψ =− 1
2

{
mC1

σ4
(
1+mψ

)2 + m2k
(
ȳ.. −µ

)2

σ4
(
1+mψ

)2

}
,

`ψψ = m2k

2
(
1+mψ

)2 − m2C1

σ2
(
1+mψ

)3 − m3k
(
ȳ.. −µ

)2

σ2
(
1+mψ

)3 .

The expected information matrix is

i (θ) = 1

2σ4(1+mψ)2

2mkσ2
(
1+mψ

)
0 0

0 mk(1+mψ)2 mkσ2(1+mψ)

0 mkσ2(1+mψ) m2kσ4

 .

The inverse of the (λ,λ) block is

iλ(θ)−1 =


σ2(1+mψ)

mk
0

0
2σ4

mk

 .

The moments of the profile score Up = ∂`p/∂ψ are

E
(
Up

)=− m −1

2
, var

(
Up

)= mk(m −1)

2
,

E
{(

Up
)3

}
=mk(m2 −3m +2)

4
, ρ3 = m3(8k +3)−m2(18k +9)+m(10k +9)−3

2
p

2
√

m3k3(m −1)
.
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In the restricted model, λ=ψ, and partial derivatives of the restricted log likelihood

θ = (σ2,ψ)T are

`σ2 =−mk −1

2σ2
+ C2

2σ4
+ C1

2σ4
(
1+mψ

) ,

`ψ =− (k −1)m

2(1+mψ)
+ C1 m

2σ2
(
1+mψ

)2 ,

`σ2σ2 =mk −1

2σ4
− C2

σ6
− C1

σ6
(
1+mψ

) ,

`σ2ψ =− C1 m

2σ4
(
1+mψ

)2 ,

`ψψ = (k −1)m2

2
(
1+mψ

)2 − C1 m2

σ2
(
1+mψ

)3 .

The expected information matrix is

i (θ) = 1

2σ4(1+mψ)2

 (mk −1)
(
1+mψ

)2 m (k −1)σ2(1+mψ)

m (k −1)σ2(1+mψ) m2(k −1)σ4

 ,

from which we obtain

κσ
2,σ2 = 2

σ4

mk −1
.

Moments of the profile score under the null hypothesis

E
(
Up

)=0, var
(
Up

)= (k −1)m2 {k (m −2)+1}

k(m −1)
,

E
{(

Up
)3

}
=m3(k −1)

(
4k2m2 −27k2m −19k2 +19mk +65k −42

)
4(mk −1)2

,

ρ3 =
(
4m2 −27m −19

)
k2 + (19m +65)k −42

2
√

k3(m −1)3(mk −1)(k −1)
.

Generalized Pareto distribution

Using an expansion of the log likelihood function (3.28) around small ξ, we have

`ξ =
y(y −2σ)

2σ2
, `σ = y −σ

σ2
,

`ξξ =
y2(3σ−2y)

3σ3
, `σσ = y(σ− y)

σ3
, `ξσ = y(σ− y)

σ3
.
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The expected information matrix for θ = (ξ,σ) at (0,σ) is

i (θ) =
[

2 σ−1

σ−1 σ−2

]
.

Under the null hypothesis, the profile score has the following moments

E
(
Up

)=−1, var
(
Up

)= n, E
{(

Up
)3

}
= 7n, ρ3 = 13p

n
.

Student t distribution

Partial derivatives of the log likelihood using a Taylor series expansion of log f (θ)

defined in (3.24) for θ = (µ,σ2,ψ) around ψ= 0 gives

`µ = z

σ
, `σ2 = z2 −1

2σ2
, `ψ = z4 −2z2 −1

4
,

`µµ =− 1

σ2
, `σ2σ2 =−2z2 −1

2σ4
, `ψψ = z4

2
− z6

3
,

`µψ =z − z3

σ
, `σ2ψ = z2 − z4

2σ2
, `µσ2 =− z

σ3
.

where z = (y −µ)/σ∼N (0,1). The m-th moment of a standard normal variable is

µm = E
(
Z m)=

0, m odd ,

2−m/2 m!

(m/2)!
, m even ,

giving

µ2 = 1, µ4 = 3, µ6 = 15, µ8 = 105, µ10 = 945, µ12 = 10395.

The expected information matrix and its inverse at ψ= 0 are

i (θ) =


1

σ2
0 0

0
1

2σ4

1

σ2

0
1

σ2

7

2

 , iλ(θ)−1 =
[
σ2 0

0 2σ4

]
.

Under the null hypothesis, the profile score satisfies

E
(
Up

)=−3

2
, var

(
Up

)= 3

2
n, E

{(
Up

)3
}
= 117n

4
, ρ3 = 41

4

√
6

n
.
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Negative binomial distribution

A Taylor series expansion of the negative binomial density in (3.25) around the origin

ψ= 1/ν gives

`ψ =1
2

(
ξ2 −2ξy + (−1+ y)y

)
, `ξ =−1+ y

ξ
,

`ψψ =1

6

(−4ξ3 +6ξ2 y + y
(−1+3y −2y2)) ,

`ξξ =− y

ξ2
, `ψξ = ξ−y.

The expected information matrix for θ = (ψ,ξ) is

i (θ) =


ξ2

2
0

0
ξ2ψ2 −ξψ+1

ξ

 ,

The profile score has the following moments

E
(
Up

)=−ξ
2

, var
(
Up

)= nξ2

2
, E

{(
Up

)3
}
= 1

4
nξ2(ξ+2), ρ3 = 11ξ+4

2
p

2nξ
.

3.8.3 Appendix C: Components of the tangent exponential model

Variance components

For the one-way classification model, using the restricted likelihood, the parameter

vector is θ = (ψ,σ2), the data is y = (y1, y2) = (C1,C2). We consider the following pivots

to define the sufficient directions

z1(θ, y) = C1

σ2(1+mψ)
, z2(θ, y) = C2

σ2
,

which gives

vψ =
{

m

m −1

k −1

k
C2,k(m −1)

C1

C2

}
, vσ2 = {0,k(m −1)} .

The likelihood derivatives with respect to the data are

∂`R

∂y1
=− 1

2σ2(1+mψ)
,

∂`R

∂y2
=− 1

2σ2
,
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which are weighted by the columns of V in order to produce the canonical parameter

ϕ(θ) = (ϕ1(θ),ϕ2(θ))T , where

ϕ1(θ) =− 1

2σ2

m

m −1

k −1

k

C2

1+mψ
,

ϕ2(θ) =− 1

2σ2
k(m −1)

(
1+ 1

1+mψ

C1

C2

)
.

The observed information matrix evaluated at the MLE is

j (θ̂) = 1

2


m2

(m −1)2

(k −1)3

k2

(
C2

C1

)2 m(k −1)2

C1
m(k −1)2

C1

k2(m −1)2(km −1)

C 2
2

 .

The other quantity needed to compute to compute q(ψ) is the matrix

ϕθ(θ) = 1

2σ2


m2

m −1

k −1

k

C2

(1+mψ)2

1

σ2

m

m −1

k −1

k

C2

(1+mψ)
mk(m −1)

(1+mψ)2

C1

C2

k(m −1)

σ2

(
1+ C1

C2(1+mψ)

)
 ,

the second column of which contains ϕλ(θ) and should be evaluated at

σ̂2
ψ = 1

km −1

(
C2 + C1

1+mψ

)
.

Plugging in all expressions, we obtain

r (ψ) ≡sign(ψ̂−ψ)
[
(km −1)log

{
C1 +C2

(
1+mψ

)}−k(m −1)log(1+mψ)
]1/2 ,

q(ψ) =k(m −1)C1 − (k −1)(1+mψ)C2

C1 +C2(1+mψ)

{
1

2

(km −1)

k(k −1)(m −1)

}1/2

. (3.29)

If instead, we consider the ordinary likelihood, we use the extra pivot

z3(θ, y) = km
(ȳ.. −µ)2

σ2(1+mψ)
.

In this case, we obtain

r (ψ) ≡sign(ψ̂−ψ)
[
mk log

{
C1 +C2(1+mψ)

}−k(m −1)log(1+mψ)
]1/2 , (3.30)

q(ψ) =m
{
(m −1)C1 −C2

(
1+mψ

)}[
k

2(m −1)

C1{
C1 +C2(1+mψ)

}3

]1/2

,
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so, we have closed-form expressions for the quantities needed to compute r ∗(ψ) when

using the usual or the restricted likelihoods.

A straightforward extension of the previous model is a two-way classification model

with no interaction for which θ = (ψ1,ψ2,σ2)T and y = (C1,C2,C3). We consider the

following three pivots,

z1(θ, y) = C1

σ2(1+mψ1)
, z2(θ, y) = C2

σ2(1+kψ2)
, z3(θ, y) = C3

σ2
.

This gives

vψ1 =
{

m

m −1
C3,0, (k −1)(m −1)

C1

C3

}
,

vψ2 =
{

0,
k

k −1
C2, (k −1)(m −1)

C2

C3

}
,

vσ2 = {0,0, (k −1)(m −1)} .

The corresponding log likelihood derivatives with respect to the data are

∂`R

∂y1
=− 1

2σ2(1+mψ1)
,

∂`R

∂y2
=− 1

2σ2(1+kψ2)
,

∂`R

∂y3
=− 1

2σ2
.

Components of the three-dimensional canonical parameter are

ϕ1(θ) =− 1

2

m

m −1

C3

σ2(1+mψ1)
,

ϕ2(θ) =− 1

2

k

k −1

C3

σ2(1+kψ2)
,

ϕ3(θ) =− 1

2

(m −1)(k −1)

σ2

{
C1

1+mψ1
+ C2

1+kψ2
+1

}
.

These expressions give

r (ψ1) ≡sign(ψ̂1 −ψ1)
[
m(k −1)log

{(
1+mψ1

)
C3 +C1+

}− (k −1)(m −1)log
(
mψ1 +1

)]1/2 ,

q(ψ1) =
{

m(k −1)

2(m −1)

}1/2 (m −1)C1 − (1+mψ1)C3

C3(1+mψ1)+C1
. (3.31)

Linear mixed models

In the previous section, we showed that for one- and two-way classification models,

closed-form expressions of r (θ), q(ψ), and r ∗(ψ) are available. In a more general

context, as in model (3.13), for θ = (ψ,β,σ2), we take the pivots to be the elements of
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the n ×1 vector of scaled martingale differences z(y ;θ) =∆(ψ)1/2(y −Xβ)/σ, which

have independent standard normal distributions. Derivatives of the pivotal quantities

give

vβ = X , vσ2 = (y −Xβ)

2σ2

∣∣∣∣
(yo,θ̂o)

.

To obtain the column vector associated with ψ, we consider the eigenvalue decom-

position of ∆(ψ)−1 = PΛ(ψ)P T, where P is independent of ψ, and Λ(ψ) is diagonal

matrix with elements 1+ψλ j . Using this decomposition, we have

∂z

∂ψ
= PΛ̃(ψ)P T,

where Λ̃(ψ) is a diagonal with elements λ j /{2(1+ψλ)3/2}. This gives

vψ = PΛ(ψ)1/2Λ̃(ψ)P (y −Xβ)
∣∣
(yo,θ̂o) .

The partial derivative of the ordinary log likelihood with respect to the data is

∂`(θ)

∂y

∣∣∣∣
(y=yo)

=− 1

2σ2
(yo −Xβ)T∆(ψ),

We then have all that is needed to obtain a local parametrization ϕ(θ).

For the restricted likelihood model described in (3.18), we can take the pivotal quanti-

ties to be σ−1Σ(ψ)−1/2e ∼Nn(0, In), where e is the residual vector e = y −X B̂ = H (ψ)y ,

H(ψ) = In −X {X T∆(ψ)X }−1X T∆(ψ), and Σ(ψ) = H(ψ)∆(ψ)−1H(ψ)T. We then proceed

as under the ordinary likelihood.

Generalized Pareto distribution

Suppose that
{

yi
}n

i=1 are samples of GP(ξ,σ). For θ = (ψ,λ) where ψ= ξ and λ=σ, let

the CDF of yi be the pivot zi (θ) =GP (yi ;θ), then we have

vξ =
yi

σ

∣∣∣
(yo ,θ̂o )

, vσ = 1

ξ

yi

σ+ξyi
− 1

ξ2
log

(
1+ξ yi

σ

)∣∣∣∣
(yo ,θ̂o )

.

while the derivative of the log likelihood with respect to yi is

∂`

∂yi

∣∣∣∣
(yi=yo

i )
= 1+ξ
σ+ξyo

i

.

These expressions can be substituted into ϕ(θ) to obtain the modified likelihood root.
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Student t distribution

For the Student t example, we use the cumulative distribution function F (yi ,θ) as

pivotal statistics for yi , where θT = (ψ,λ) and λ= (µ,σ2). The CDF can be written as

F (y ;ψ,µ,σ2) =
Γ

(
ψ+1
2ψ

)p
ψ

Γ
(

1
2ψ

)p
π

∫ y−µ
σ

−∞

(
1+ψx

)−ψ+1
2ψ dx

=
p
ψ

B( 1
2 , 1

2ψ )

∫ y−µ
σ

−∞

(
1+ψx

)−ψ+1
2ψ dx

=A(ψ)C (z,ψ,µ,σ),

where z = (y −µ)/σ, A(ψ) is a normalization constant depending only on ψ, and

C (y,ψ,µ,σ) is the integral term. For small ψ, 1/ψ→∞, we use the Stirling approxi-

mate to give an asymptotic formula for the Beta function. Then

A(ψ) =
p
ψ

B(
1

2
,

1

2ψ
)

.=
p
ψ

Γ
(1

2

)√
2ψ

= 1p
2π

.

On the other hand

C (z,θ) =
∫ z

−∞

(
1+ψx

)−ψ+1
2ψ dx

=
∫ z

−∞
exp

{
−1+ψ

2ψ
log(1+ψx2)

}
dx

=
∫ z

−∞
exp

[
−1+ψ

2ψ

{
ψx2 − ψ2x4

2
+o

(
ψ2)}]

dx

=
∫ z

−∞
exp

{
−x2

2
+ ψ

2

(
x4

2
−x2

)
+o

(
ψ2)}dx

.= p
2πΦ

( y −µ
σ

)
+
p

2πψ

2

∫ z

−∞
φ(x)

(
x4

2
−x2

)
dx

=p
2πΦ (z)+

p
2πψ

4

{−z3φ(z)− zφ(z)+Φ(z)
}

.
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Using the approximation for the density and its integral around the boundary, partial

derivatives of the pivots are

∂F

∂ψ
=1

4

{−z3φ(z)− zφ(z)+Φ(z)
}

,

∂F

∂µ
=− f (y ;ψ,µ,σ2),

∂F

∂σ2
=− y −µ

2σ2
f (y ;ψ,µ,σ2).

This yields the following columns for the matrix V ,

vψ = 1

4

{
z3 + z − Φ(z)

φ(z)

}∣∣∣∣
(zo,θ̂o)

, vµ = 1n , vσ2 = z

2σ

∣∣∣
(zo,θ̂o)

.

For larger values of ψ, i.e., far from the boundary, we directly differentiate the CDF

with respect to the parameter of interest, and the expression for vψ becomes

vψ =−σ−1+ψ
ψ (y −µ)

[
ψσ

1+ψ
ψ +{

σ2 +ψ(y −µ)2}1+ψ
2ψ

{
2F1

[ 1
2 , 1+ψ

2ψ

3
2

;−ψ(y−µ)2

σ2

]{
ζ
(

1
2ψ

)
−ζ

(
1+ψ
ψ

)}
− 2F b

1

[ 1
2 , 1+ψ

2ψ

3
2

;−ψ(y−µ)2

σ2

]}]∣∣∣∣∣
(yo,θ̂o)

,

where ζ(·) is the digamma function, 2F1

[
a b

b ; x

]
and 2F b

1

[
a b

c ; x

]
denote respectively

the hypergeometric function with parameter (a,b,c) and its derivative with respect to

b, both evaluated at x. To define the canonical parameter ϕ(θ), we also require the

derivative of log likelihood with respect to the data.

∂`

∂yi

∣∣∣∣
yi=yo

i

= (1+ψ)(µ− yo
i )

ψ(y −µ)2 +σ2
.

Negative binomial distribution

A complete account of higher-order approximations for discrete data, particularly

count and contingency table data is given in Davison et al. (2006). Recall that the log

likelihood function for a single observation of a negative binomial variable is

`(θ) = A(y +ν)− A(ν)+ν log(ν)+ y log(ξ)− (ν+ y) log(ν+ξ),
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where A(ν) = log{Γ(ν)} is the log-gamma function. Differentiating the log likelihood

with respect to ξ and ν at
(
ξ̂o, ν̂o

)
gives s = (s1, s2) where

s1 = ∂l

∂ξ

∣∣∣∣
θ̂o

= y

ξ̂o
−

(
ν̂o + y

)(
ν̂o + ξ̂o

) ,

s2 = ∂l

∂ν

∣∣∣∣
θ̂o

= ζ(
ν̂o + y

)−ζ(
ν̂o)+1+ log

(
ν̂o)− log

(
ν̂o + ξ̂o)− (

ν̂o + y
)(

ν̂o + ξ̂o
) .

The si is affinely equivalent to the simpler form

(
yi , ζ

(
ν̂o + yi

)− yi + ν̂o

ξ̂o + ν̂o

)T

, where ζ(ν)

is the digamma function.

For the i -th observation in a sample of size n, the columns of Vi are

v i
ξ =

{
ν̂o

ξ̂o
(
ξ̂o + ν̂o

) , 0

}
, v i

ν =
[

0, ζ′
(
ν̂o)− 1

ν̂o −E
{
ζ′

(
ν̂o + yi

)}+ 1

ν̂o + ξ̂o

]
.

The matrix V i is diagonal since the parameters ν and ξ are orthogonal. Partial deriva-

tives of the log likelihood are

∂`(θ)

∂s j
i

=
{
∂`(θ)

∂yi

}(
∂s j

i

∂yi

)−1

, j = 1,2.

The two-dimensional canonical parameter ϕ(θ) is

ϕ1(θ) =
n∑

i=1

{
ζ
(
ν+ yo

i

)+ log

(
ξ

ν+ξ
)}

,

ϕ2(θ) =
n∑

i=1

ζ
(
ν+ yo

i

)+ log{ξ/(ν+ξ)}

ζ′
(
ν̂o + yo

i

)−1/
(
ν̂o + ξ̂o

) v i
ν.

Two-component Gaussian mixture

Assume the pivot for yi is

zi (θ, yi ) = 1
2ϕn

(
yi −ψ1p +λ)+ 1

2ϕn
(
yi −ψ1p −λ)

.
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Then V i is a p × (p +1) matrix with columns

v i
ψ =

(
yi −ψ1p −λ)T 1pϕ

(
yi −ψ1p +λ)− (

yi +ψ1p −λ)T 1pϕ
(
yi +ψ1p +λ)

ϕ
(
yi −ψ1p +λ)+ϕ(

yi −ψ1p −λ) ,

v i
λ =Ip .

To obtain the (p +1)-dimensional canonical parameter ϕ(θ), we need partial deriva-

tives of the the log likelihood`(θ) =
n∑

i=1
log

{1
2ϕ

(
yi −ψ1p +λ)+ 1

2ϕ
(
yi −ψ1p −λ)}

given

by

∂`

∂yi
=−

(
yi +ψ1p −λ)T Ipϕ

(
yi +ψ1p +λ)+ (

yi −ψ1p −λ)T Ipϕ
(
yi −ψ1p +λ)

ϕ
(
yi −ψ1p +λ)+ϕ(

yi −ψ1p −λ) .

3.8.4 Appendix D: EM algorithm

EM algorithm for Student t

Assume that Y ∼ N (µ,σ2/η), where η is the unobserved variable which follows

Γ(ν/2,ν/2). Then the marginal distribution of Y can be viewed as an infinite mix-

ture of gamma variables as briefly discussed in Section 3.4.2. For θ = (ν,µ,σ), the

complete-data log likelihood based on a random sample (y1,η1), . . . , (yn ,ηn) is

n∑
i=1

log f (yi ,ηi ,θ) =
n∑

i=1
−1

2
log2πσ2 + 1

2
logηi − ηi

2

( yi −µ
σ

)2

− logΓ
(ν

2

)
+ ν

2
log

ν

2
+

(ν
2
−1

)
logηi − ν

2
ηi .

The conditional density f (η|y,θ) follows upon noting that the gamma distribution is

the conjugate prior to a normal distribution with shape and scale parameters given

respectively by

α= ν+1

2
, β= ν

2
+

( y −µ
σ

)2
,

So, taking the expectation of the complete log likelihood with respect to f (η | y,θ0)

gives

Q(θ,θ0) =− n

2
log2πσ2 + 1

2

n∑
i=1

E
(
logηi

)− 1
2

n∑
i=1

( yi −µ
σ

)2
E

(
ηi

)
−n logΓ

(ν
2

)
+ nν

2 log ν
2 +

(
ν
2 −1

) n∑
i=1

E
(
logηi

)− ν
2

n∑
i=1

E
(
ηi

)
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where E(ηi ) = α0
i /β0

i , and E(logηi ) = ζ(α0
i )− logβ0

i , ζ is the digamma function. The

superscript (·)0 indicates that the expectations are evaluated with respect to θ0.

The M-step involves maximizing Q(θ,θ0) where we solve the following equations for

θ,

∂Q

∂µ
=

n∑
i=1

yi −µ
σ2

E
(
ηi

)
,

∂Q

∂σ
=−n

σ
+ 1

σ

n∑
i=1

( yi −µ
σ

)2
E

(
ηi

)
,

∂Q

∂ν
=−n

2
ζ
(ν

2

)
+ n

2
log

ν

2
+ n

2
+ 1

2

n∑
i=1

E
(
logηi

)− 1

2

n∑
i=1

E
(
ηi

)
.

This yields the closed-form solutions

µ̂=
∑n

i=1 yi E
(
ηi

)∑n
i=1 E

(
ηi

) , σ̂2 = 1

n

n∑
i=1

(
yi −µ

)2 E
(
ηi

)
,

where we require update of µ̂ in order to update σ̂2, and ν̂ has to be found numerically

by solving

ζ
(ν

2

)
− log

ν

2
= 1+ 1

n

n∑
i=1

E
(
logηi

)− 1

n

n∑
i=1

E
(
ηi

)
.

Given values of θ0 =
(
ν0,µ0,σ0

)
, the EM algorithm finds ν numerically, and updates

to θ† = (
ν†,µ†,σ†

)
. In each iteration, we check for convergence using |θ† − θ0|. If

convergence is not yet attained, θ0 is replaced by θ† and the cycle is repeated.

EM algorithm for the two-Gaussian mixture

The derivation of the EM algorithm for the two-Gaussian mixture is a special case of

the mixture models discussed in Davison (2003, Example 5.36) and has been derived

in Tse and Davison (2022). We have

Q (θ;θ0) =
c∑

r=1

{
n∑

j=1
wr

(
y j ;θ0

)}
logπr +

c∑
r=1

n∑
j=1

wr
(
y j ;θ0

)
log fr

(
y j ;θ

)
,

where θ = (ψ,λ), c is the number of components, πr is the probability that a random

variable Y comes from the r -th population with a density fr (y ;θ), and wr
(
y;θ0

) =
π′

rfr
(
y;θ0

)
/
∑c

s=1π
′
sfr

(
y;θ0

)
. In our case, we have a mixture of two-Gaussian compo-
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nents and known probabilities πr ≡ 1/2, so

Q (θ;θ0) =−1

2

n∑
j=1

{
w1

(
y j ;θ0

) p∑
k=1

[
y j ,k −

(
λk −ψ

)]2 +w2
(
y j ;θ0

) p∑
k=1

[
y j ,k −

(
λk +ψ

)]2

}
.

Differentiation yields

∂

∂ψ
Q (θ;θ0) =

n∑
j=1

w1
(
y j ;θ0

)(− p∑
k=1

y j ,k +
p∑

k=1
λk −pψ

)
+

n∑
j=1

w2
(
y j ;θ0

)( p∑
k=1

y j ,k −
p∑

k=1
λk −pψ

)
,

∂

∂λi
Q (θ;θ0) =

n∑
j=1

w1
(
y j ;θ0

)
y j ,i −λi

n∑
j=1

w1
(
y j ;θ0

)+ψ n∑
j=1

w1
(
y j ;θ0

)
+

n∑
j=1

w2
(
y j ;θ0

)
y j ,i −λi

n∑
j=1

w2
(
y j ;θ0

)−ψ n∑
j=1

w2
(
y j ;θ0

)
.

For a compact solution, we write

ψ̂= 1

2p

(
B

D
− A

C

)
,

λ̂i = Ei +Fi

C +D
+ BC − AD

2pD(C +D)
+ AD −BC

2pC (C +D)
, i = 1, . . . , p,

where

A =
p∑

k=1

n∑
j=1

w1
(
y j ;θ0

)
y j ,k , B =

p∑
k=1

n∑
j=1

w2
(
y j ;θ0

)
y j ,k , C =

n∑
j=1

w1
(
y j ;θ0

)
,

D :=
n∑

j=1
w2

(
y j ;θ0

)
,Ei =

n∑
j=1

w1
(
y j ;θ0

)
y j ,i , Fi =

n∑
j=1

w2
(
y j ;θ0

)
y j ,i

Given values of θ0, the EM algorithm simply involves computing the weights wr
(
yj,θ0

)
for these values, updating to θ† = (

ψ†,λ†
)
, and checking for convergence at each step.
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3.8.5 Appendix E: Details of computations

Algorithm 1: Probability of positive estimate

1. Input: R replications of the data which is sampled from a specific model.

2. For i = 1 to R:

(a) Find the maximum likelihood estimate θ̂, the restricted estimates θ̂ψ, and

evaluate j (θ̂)−1.

(b) Define a grid of points for the parameter of interest G = {lb, . . . ,ub}, where

lb ≤ 0. We use a transformation of the grid G that is finer around the

boundary and coarser on the right of the boundary of the parameter

space, G ′ =G + c

π
sin(πG +π), where 0 ≤ c ≤ 1 is a tuning parameter

(c) If closed-form expressions are unavailable, parameter estimation is

performed numerically by maximizing the log likelihood function using

either a quasi-Newton optimization algorithm with analytic first

derivatives and second derivatives or the EM algorithm (linear

convergence but more stable).

(d) At each point of G ′ evaluate ϕ, q and then r ∗.

(e) Estimate ψ̂ and ψ̂∗ as solutions of r (ψ) = 0 and r ∗(ψ) = 0.

(f) Evaluate the pivots r0 and r ∗
0 under the null hypothesis to obtain p-values

for the null hypothesis H0. .

3. Output: Estimated probabilities of positive estimates are
1

R

R∑
i=1

I (ψ̂i > 0) and

1

R

R∑
i=1

I (ψ̂∗
i > 0).
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4.1 Motivation and preliminary results

High-energy physics experiments, such as those conducted in the Large Hadron

Collider at CERN, involve nonnegative parameters that are small, maybe zero, to

detect small signals in the presence of background noise. The main challenge in such

experiments is to decide, given a particular observation, whether it originated from

the background noise alone or from a noisy signal.

We follow the model in Davison and Sartori (2008), and assume that for a single

channel, the available data y1, y2, y3 are assumed to be realizations of independent

Poisson random variables with means γψ+β, βt and γu. The detectability of the

signal in this model depends, amongst other factors, on the background rate at which

the event occurs, β> 0, the efficiency of the measurement device, 1 ≥ γ> 0, and the

length of the subsidiary experiments to estimate these parameters, t > 0 and u > 0.

The goal is to summarize the evidence concerning ψ, large estimates of which suggest

the presence of the signal. However, for small ψ, which is the case when the particle

mass is either equal to zero or comparable to the experimental precision, the param-

eter of interest is on the boundary of its parameter space. The distribution of the

maximum likelihood estimator for the signal has a mixture distribution as empha-

sized in Mandelkern (2002), with similar interpretations to the examples discussed

in Chapter 3. In principle, the nuisance parameters are positive and ψ ≥ 0, but it

is mathematically reasonable to consider negative values for ψ, provided ψ>−β/γ.

Testing for H0 :ψ= 0, using this extended parameter space, is a soft boundary prob-

lem, though we restrict the interpretation of the results to the physically meaningful

values ψ≥ 0.

The statistical model described above was discussed in Davison and Sartori (2008)
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with a focus on inference for the signal using higher-order approximations in both

frequentist and noninformative Bayesian setups. Mandelkern (2002) was the first

to bring attention to the central issues in high-energy physics. This led to further

discussions within the statistics community (Fraser et al., 2004; Ermini Leaf and Liu,

2012; Martin et al., 2012; Plante, 2020; Bickel, 2022). Analogous representations of the

statistical model using a Gaussian model with lower bounds for the mean parameter

or an equivalent multinomial model are used for signal detection (Davison and Sartori,

2008; Mandelkern, 2002).

The model easily extends to multiple channels, where the nuisance parametersβk and

γk are channel-specific. We now consider K realizations yk = (y1k , y2k , y3k ), where the

three components are assumed to be independent Poisson variables with respective

means (γkψ+βk ,βk tk ,γk uk ). The log likelihood function for θ = (ψ,γ1,β1, . . . ,γK ,βK )

is

`(θ) =
K∑

k=1
y1k log(γkψ+βk )−(γkψ+βk )+y2k log(βk tk )−(βk tk )+y3k log(γk uk )−(γk uk ).

(4.1)

The MLEs satisfy the equations

K∑
k
γ̂k ck = 0, ck = tk − y2k

β̂k
, ψ̂ck = uk − y3k

γ̂k
, k = 1, . . . ,K ,

where ck =
(

y1k

γ̂kψ̂+ β̂k

−1

)
.

The expected information matrix is

i (θ) =



A d1 e1 d2 · · · dN eN

d1 a1 c1 0 · · · 0 0

e1 c1 b1 0 · · · 0 0
...

...
...

...
. . .

...
...

dN 0 0 0 · · · aN cN

eN 0 0 0 · · · cN bN


,
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where the non-zero coefficients are

A =−E

[
∂2`(θ)

∂ψ2

]
=

K∑
k=1

γ2
k

γkψ+βk
,

ak = E

[
−∂

2`(θ)

∂γ2
k

]
= ψ2

(γkψ+βk )
+ uk

γk
,

bk = E

[
−∂

2`(θ)

∂β2
k

]
= 1

(γkψ+βk )
+ tk

βk
,

ck = E

[
− ∂2`(θ)

∂βk∂γk

]
= ψ

(γkψ+βk )
,

dk = E

[
− ∂

2`(θ)

∂ψ∂γk

]
= 1− βk

(γkψ+βk )
,

ek = E

[
− ∂2`(θ)

∂ψ∂βk

]
= γk

(γkψ+βk )
.

Tedious calculation gives the following approximation for the variance of the MLE of

the signal ψ

var(ψ̂)
.=

{
K∑
k

γ2
k uk tk

ψ2tkγk +βk uk +uk tk (γkψ+βk )

}−1

.

The question of interest is whether inference on ψ is best improved by increasing the

uk and the tk , or the number of channels K . These are two different schemes since

increasing uk and tk increases the information on the individual nuisance parameters

while increasing K also increases the number of nuisance parameters.

Define the precision function f (ψ) = var(ψ̂)−1. First-order Taylor series expansion of

f for small ψ gives

f (ψ) ≈
K∑

k=1

γ2
k

βk

tk

1+ tk

(
1−ψγk

βk

tk

1+ tk

)
,

where

f (0) =
K∑

k=1

γ2
k

βk

tk

1+ tk
, f ′(0) =−

K∑
k=1

γ3
k

β2
k

(
tk

1+ tk

)2

,

In general, the tk ’s have little effect since tk /(1+ tk ) are bounded. If we consider a

second-order expansion

f
′′
(0) = 2

K∑
k=1

(
γk

βk

)3 (
tk

1+ tk

)2 {(
γk tk

1+ tk

)
− βk

uk

}
,
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then both the uk ’s and tk ’s affect the precision function, although the γk ’s are bounded.

Assume the βk ,γk ,uk and tk ’s are the same for all k = 1, . . . ,K . Then the asymptotic

precision approximation is

f (ψ̂) = Kγ2ut{
ψ2γt +βu +ut (γψ+β)

} ,

which converges to
Kγ2

γψ+β for u, t →∞, that is, to the amount of information from K

replicates of one channel with rate µ=ψγ+β.

To sum up, under these simplifications, the variance reduces if K increases (more

channels), γ approaches one (efficiency of the measurements increases) orβdecreases

(background noise drops). In Figure 4.1, we plot the standard deviation for ψ= 1 and

increasing number of channels K as a function of β,γ, u and t .

4.2 Constrained problem

In practice increasing the number of channels might be constrained to some maxi-

mum allocated cost M . Consider the following constrained optimization problem

in which we maximize the precision function, i.e., minimize the variance, with a

constraint on the total cost

max
K ,u,t

f (ψ̂)

s.t. K (c1 + c2u + c3t ) ≤M ,
(4.2)

where c1 is the cost of adding a channel, c2 and c3 are the costs of observing a channel

for a single unit of time while estimating β and γ, respectively. We refer to Nocedal

and Wright (2006) for solutions of constrained optimization problems.

The Lagrangian function corresponding to the constrained optimization problem is

L (K ,u, t ,α) = var(ψ̂)+α {K (c1 + c2u + c3t )−M } .

If there exists a local solution of the constrained problem, then there exists a La-

grange multiplier α∗ such that Karush–Kuhn–Tucker (KKT) conditions are satisfied
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Figure 4.1 – Standard deviation of the signal for ψ = 1 and increasing number of
channels K as a function of β,γ, u and t .

for (K ∗,u∗, t∗,α∗),

∂L

∂K
= 0 ⇔−

{
ψ2 γ

u
+ β

t
+ (γψ+β)

}
K 2γ2

+α (c1 + c2u + c3t ) = 0, (4.3)

∂L

∂u
= 0 ⇔− ψ2

Kγu2
+αK c2 = 0, (4.4)

∂L

∂t
= 0 ⇔− β

Kγ2t 2
+αK c3 = 0, (4.5)
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where α≥ 0, and α {K (c1 + c2u + c3t )−M } = 0 for a feasible solution. Equating the α’s

obtained from (4.4) and (4.5) yields

ψ2γ

c2u2
= β

c3t 2
,

which implies that

t

u
=

√
β

γ

c2

c3
ψ−1.

Multiplying equations (4.4) and (4.5) respectively by u, and t , and substituting the

corresponding quantities in equation (4.3), we obtain the Lagrange multiplier

α∗ = γψ+β
Kγ2(M −K c2u −K c3t )

= γψ+β
K 2c1γ2

= γψ+β
Kγ2

1

K c1
.

The optimal values of u and t are obtained by plugging α∗ into (4.4) and (4.5), and are

u∗ =ψ
√

c1

c2

√
γ

ψγ+β , (4.6)

t∗ =
√

c1

c3

β

ψγ+β . (4.7)

The optimal number of channels is, thus,

K ∗ = M

c1 + c2u∗+ c3t∗
= M

√
ψγ+β

p
c1c1

√
ψγ+β+p

c1c2γψ+√
c1c3β

. (4.8)

The optimal trade-off between K , u and t based on the relative costs c1,c2,c3 and

the total cost M is given in equations (4.6), (4.7) and (4.8), respectively. First-order

asymptotics suggests that to improve the precision of the estimated ψ, one should

primarily increase the number of channels K . Since the ratio of t∗/u∗ is constant, one

is not interested in increasing the time allocated to estimate β and γ. If ψ= 0, then

u∗ = 0, which makes sense as there is no signal to be detected.

4.3 Improved inference for the signal

A future extension of this work is intended to explore what values for u and t are

admissible from a physical point of view. We may also include the maximum number

of installed channels Kmax within the facility to the constrained optimization problem

in (4.2). Another point that may change the perception of this problem is which of
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Figure 4.2 – Boxplots of std(ψ̂) (left), r NP (middle), and r INF (right) in a one-channel
where where ψ= 1, γ= 1,β= exp(1.1), for c = 0.05, . . . ,4. The average is in red bullets.

the parameters in λ or the data (uk , tk ) can be easily changed during an experiment,

especially when the background noise sources produce events indistinguishable from

signal events.

Figure 4.2 and 4.3 show boxplots of the standard deviation of the signal and the

components of the modified likelihood root r NP and r INF in one- and multi-channel

experiments. Since the variables have Poisson distributions, considering c × (uk , tk ) in

instead of (uk , tk ) for every channel where c > 0 is effectively the same as changing the

corresponding γk and βk . However, it makes more sense to think of the parameters

as being fixed, and the observation scheme is enhanced by increasing the allocated

times tk and uk . In a one-channel experiment, for large c, r INF has fairly more weight

than r NP as we only have two nuisance parameters, but in a multi-channel setup,

r NP increases with increasing K and the magnitude of the correction decreases with

increasing allocated time c . These results align with the study of the precision function

in (4.1).

Future directions of this work include writing the model in (4.1) to satisfy the re-

quirements by Sartori (2003) and Tang and Reid (2020), which applies to models for

stratified data in a two-index asymptotics setting. In particular, we could explore

under which asymptotic setting the modified likelihood root gives improvements to

the usual asymptotic distribution in a multi-channel experiment. As shown in the

previous section, first-order approximation using the inverse of the Fisher information

matrix suggests increasing the number of channels. However, this implies that for

(4.1), a curved exponential model with 3K observations, the 2K -dimensional nuisance

parameter inevitably increases as well. These results not only have the potential to

give improved inference for the signal parameter, as shown in Sartori (2003) but also

increase the precision of the detected signal, which is critical for experiments with a

weak signal.
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Figure 4.3 – Boxplots of the standard deviation std(ψ̂) (left), r NP (middle), and r INF

(right) in a multiple-channel experiment where γk = 0.5, . . . ,0.9, βk = 0.5+ 0.1k,
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