
PRECONDITIONING TECHNIQUES FOR GENERALIZED
SYLVESTER MATRIX EQUATIONS

YANNIS VOET∗

Abstract. Sylvester matrix equations are ubiquitous in scientific computing. However, few
solution techniques exist for their generalized multiterm version, as they now arise in an increasingly
large number of applications. In this work, we consider algebraic parameter-free preconditioning
techniques for the iterative solution of generalized multiterm Sylvester equations. They consist in
constructing low Kronecker rank approximations of either the operator itself or its inverse. While the
former requires solving standard Sylvester equations in each iteration, the latter only requires matrix-
matrix multiplications, which are highly optimized on modern computer architectures. Moreover,
low Kronecker rank approximate inverses can be easily combined with sparse approximate inverse
techniques, thereby enhancing their performance with little or no damage to their effectiveness.

Key words. Multiterm Sylvester equations, Low Kronecker rank, Nearest Kronecker product,
Alternating least squares, Sparse approximate inverse

MSC codes. 65F08, 65F45, 65F50

1. Introduction. We consider the numerical solution of generalized multiterm
Sylvester matrix equations

(1.1)

r∑
k=1

BkXA
T
k = E

where Ak ∈ Rn×n, Bk ∈ Rm×m for all k = 1, . . . , r and X,E ∈ Rm×n. Generalized
Sylvester equations are at the forefront of many applications in scientific computing.
The single-term equation (r = 1) is its simplest instance and appears for tensorized
finite element discretizations of certain time dependent partial differential equations
(PDEs) [22, 23, 48]. If A1 and B1 are invertible, the solution is particularly simple
since X = B−1

1 EA−T
1 only requires solving n linear systems with B1 and m linear

systems with A1. If A1 = In, the equation reduces to a standard linear system with
multiple right-hand sides.

The two-term equation (r = 2) includes in particular the (standard) Sylvester,
Lyapunov and Stein equations. They appear in various applications, including block-
diagonalization of block triangular matrices [31, 65], finite difference [27, 41] and finite
element [24, 58] discretizations of certain PDEs, eigenvalue problems [65, 64, 11],
stability and control theory [20] and the stage equations of implicit Runge-Kutta
methods [21]. Sylvester equations are also the main building block for iteratively
solving more complicated multiterm [14, 3, 52] or nonlinear matrix equations, such as
the Riccati equation [65, 4].

While originally considered of theoretical interest, the generalized multiterm Sylvester
equation with r > 2 now arises in an increasingly large number of applications includ-
ing finite difference [52] and finite element [18, 66, 49, 59] discretizations of (stochastic)
PDEs, model reduction [3, 14, 60], eigenvalue problems [54] and computational neuro-
science [43]. In model reduction of control systems, the equation often takes a special
form consisting of a standard Lyapunov part and additional positive low-rank terms

∗MNS, Institute of Mathematics, École polytechnique fédérale de Lausanne, Station 8, CH-1015
Lausanne, Switzerland (yannis.voet@epfl.ch)

1

mailto:yannis.voet@epfl.ch

[3, 4, 14, 60], e.g.

(1.2) AX +XAT +

r∑
k=1

NkXN
T
k = E.

Such equations are sometimes referred to as Lyapunov-plus-positive equations [4].
In tensorized finite element discretizations (e.g. isogeometric analysis and the spec-
tral element method), the equation arises in its full generality and typically features
sparse banded coefficient matrices [49, 59, 33]. In a similar spirit, discretizations of
integro-differential equations may lead to (1.1) with both sparse and dense (low-rank)
coefficient matrices [50]. The growing number of applications is driving interest for
solution techniques capable of handling (1.1) in its full generality. It is well-known
that solving (1.1) is equivalent to solving the linear system (see e.g. [34, Lemma 4.3.1]
for a derivation and [44] for an early mention)

(1.3)

(
r∑

k=1

Ak ⊗Bk

)
x = e

with x = vec(X) and e = vec(E), where the vectorization of a matrix A, denoted
vec(A), stacks the columns of A on top of each other. The coefficient matrix in (1.3)
is the sum of r Kronecker products. Such a matrix is said to have Kronecker rank r
if r is the smallest number of terms in the sum [27, Definition 4]. However, due to
the humongous size of this matrix, solution strategies preferably avoid the Kronecker
formulation, unless excellent preconditioners are available.

Strategies for solving (1.1) instead most critically depend on the number of terms
r of the equation. While the case r = 1 is straightforward, the case r = 2 is already
significantly more challenging and is the object of a rich literature, encompassing both
direct and iterative methods. Early developments mostly focused on direct methods
such as the Bartels and Stewart algorithm [2] and variants thereof, such as Hammar-
ling’s method [29]. They were later extended to the two-sided version of the same
equation in [12, 25]. More recently, advanced recursive block splitting strategies were
devised in [38, 39] that take advantage of modern computer architecture capabilities.

Since the early 1990s, the focus has drifted towards iterative methods and in
particular data-sparse methods that exploit some favorable structure of the solution
matrix, including low-rank [55, 3, 41], rank structured (e.g. quasi-separable) [27,
50] and sparse [53] formats as well as combinations thereof [53]. Such methods are
necessary for large scale problems (with n,m ≥ 105), when storing the solution matrix
becomes impossible. Data-sparse methods represent the solution implicitly; e.g. by
storing its low-rank factors. A vast number of methods have been proposed for this
purpose, including projection techniques [55, 61], tensorized Krylov subspaces [41]
and quadrature schemes based on integral formula [50] to name just a few. For
applications related to PDEs, the alternating direction implicit (ADI) method was
among the first iterative methods proposed [71, 72]. However, the performance of
the method critically depends on a set of parameters whose computation is generally
nontrivial and may be as expensive as the iterations themselves. The method has
largely been superseded as a standalone solver and is instead commonly used as a
preconditioner within specialized versions of well-know Krylov subspace methods such
as CG [30, 56], GMRES [57] or Bi-CGSTAB [67]. These methods are based on
the equivalent Kronecker formulation (1.3) but cleverly exploit the structure of the
operator [32, 37].

2

In practice, several of the aforementioned methods are combined to produce very
efficient solvers that exploit the structure of the equation and its solution, including
the sparsity and (relative) size of the coefficient matrices [62]. An exhaustive list
of methods is beyond the scope of this article and we instead refer to [62] and the
references therein for an overview.

Unfortunately, the picture changes dramatically for r > 2, especially regarding
direct methods. The main reason is that direct solution techniques for r = 2 rely
on joint diagonalization (or triangularization) of matrix pairs such as generalized
eigendecompositions (or Schur decompositions), which are also the basis for existence
and uniqueness results [12]. These techniques generally do not extend to sequences of
matrices {Ak}rk=1 and {Bk}rk=1 (with r > 2), unless the elements of these sequences
are related in some special way (e.g. they are powers of one same matrix [44] or are
a commuting family of symmetric matrices). So far, (1.1) can only be solved directly
in very special cases, e.g. for the so-called Lyapunov-plus-positive equation (1.2) with
low-rank matrices Nk, via the Sherman-Morrison-Woodbury formula [14]. However,
the method becomes excessively expensive as the rank of Nk grows. To date, the
question remains whether the general equation can be solved directly with a target
complexity of O(n3+m3), without assuming any favorable structure on the coefficient
matrices and right-hand side.

In contract, some iterative methods (e.g. projection techniques) extend quite
naturally to the generalized multiterm version, although constructing an approximat-
ing subspace is nontrivial. Interestingly, such methods sometimes lead to solving a
small-size version of the same equation and typically features small dense coefficient
matrices [3, 40]. The lack of general solution techniques even in the small scale case
has compelled several authors to explicitly use the Kronecker form for the reduced
equation, thereby constraining the rank of the approximate solution to very small
integers [40, Remark 3.1]. As a matter of fact, solving the reduced equation is even
identified as one of the main computational bottlenecks in [40] and is another ar-
gument for considering (1.1) in its full generality, without assuming any favorable
structure on the coefficient matrices.

In this article, we will focus on devising algebraic parameter-free preconditioning
techniques for the iterative solution of (1.3) as a way of solving the generalized mul-
titerm Sylvester equation in (1.1). The methods described herein are applicable as
standalone solvers for small to medium size equations and may supplement low-rank
solvers for larger ones. Our methods do not assume any specific structure on the
coefficient matrices and nearly achieve a target complexity of O(n3 +m3) for dense
unstructured matrices.

The rest of the article is structured as follows: In section 2 we first recall some
matrix-oriented Krylov subspace methods for solving (1.1). Similarly to iterative
methods for linear systems, these methods may converge very slowly when the associ-
ated system matrix in (1.3) is ill-conditioned, creating a formidable strain on computer
resources. Therefore, in sections 3 and 4, we exploit the underlying Kronecker struc-
ture of the system matrix to design efficient and robust preconditioning strategies.
These strategies aim at finding low Kronecker rank approximations of the operator
itself (section 3) or its inverse (section 4). Furthermore, if the inverse admits a good
sparse approximation, we propose to combine our strategies with sparse approximate
inverse techniques to construct low Kronecker rank sparse approximate inverses. Sec-
tion 5 illustrates the effectiveness of our preconditioning strategies by comparing them
to tailored preconditioners from various applications, including model order reduction,
isogeometric analysis and convection-diffusion equations. Finally, section 6 summa-

3

rizes our findings and draws conclusions.

2. Krylov subspace methods for matrix equations. Since direct solution
methods for (1.1) are generally not feasible, we investigate its iterative solution. For
this purpose, we denote M : Rm×n → Rm×n the linear operator defined as

(2.1) M(X) =

r∑
k=1

BkXA
T
k .

This operator has a Kronecker structured matrix representation given by

(2.2) M =

r∑
k=1

Ak ⊗Bk.

We will generally use curly letters for linear operators and straight letters for their
associated matrix. Krylov subspace methods based on the Kronecker formulation
exploit the fact that

(2.3) Y = M(X) ⇐⇒ y =Mx

with x = vec(X), y = vec(Y) and never explicitly deal with the Kronecker form in
(2.2). The original idea was laid out in [32] and revisited several years later in [37].
In essence, these so-called “global” Krylov methods are merely specialized implemen-
tations of well-known Krylov methods (e.g. CG, GMRES, Bi-CGSTAB,...) applied
to the Kronecker formulation. Nevertheless, the computational savings are readily
appreciated: if all factor matrices Ak and Bk are dense for k = 1, . . . , r, storing
them requires O(r(n2 +m2)) while applying M(X) requires O(r(n2m+ nm2)) oper-
ations. In comparison, forming M explicitly already requires O(n2m2) of storage and
O(n2m2) for matrix-vector multiplications, thereby constraining n and m to small
integers. Matrix-oriented Krylov subspace methods also typically form the backbone
of low-rank solvers, where the low-rank structure of the iterates further reduces the
computational cost and truncation operators limit the rank growth (see e.g. [42, 3]
and in particular [63] for a recent convergence analysis for CG). Moreover, as already
highlighted in [32], preconditioning techniques are straightforwardly incorporated by
adapting existing preconditioned Krylov subspace methods for linear systems. In
the context of matrix equations, they take the form of a preconditioning operator
P : Rm×n → Rm×n. Early preconditioning strategies for r = 2 were based on ADI,
symmetric successive overrelaxation (SSOR) and incomplete LU type precondition-
ing [32, 8]. While ADI remains an important component for preconditioning certain
Lyapunov-plus-positive equations [3, 4, 14], more general techniques are still lacking.
The next few sections address this shortcoming.

3. Nearest Kronecker product preconditioner. In section 1, we had noted
that the solution of a generalized Sylvester equation can be computed (relatively)
easily when r ≤ 2. Indeed, for r = 2 the equation may often be reformulated as a
standard Sylvester equation for which there exists dedicated solvers while for r = 1
the equation reduces to a very simple matrix equation, which can be solved straight-
forwardly. Therefore, a first preconditioning strategy could rely on finding the best
Kronecker rank 1 or 2 approximation of M =

∑r
k=1Ak ⊗Bk and use it as a precon-

ditioning operator. Kronecker rank 1 preconditioners have already been proposed for
many different applications including image processing [51], Markov chains [45, 47, 46],

4

stochastic Galerkin [66] and tensorized [22, 23, 70] finite element methods. Exten-
sions to Kronecker rank 2 preconditioners have been considered in [58, 24] and also for
multiterm Sylvester equations in very specific applications [14, 3, 52]. Finding more
general, application-independent preconditioners is desirable. The problem of finding
the best Kronecker product approximation of a matrix (not necessarily expressed as a
sum of Kronecker products) was first investigated by Van Loan and Pitsianis [68]. A
more modern presentation followed in [26]. We adopt the same general framework for
the time being and later specialize it to our problem. For the best Kronecker rank 1
approximation of a matrix M ∈ Rnm×nm, factor matrices Y ∈ Rn×n and Z ∈ Rm×m

are sought such that ϕM (Y,Z) = ∥M−Y ⊗Z∥F is minimized. Van Loan and Pitsianis
observed that both the Kronecker product Y ⊗ Z and vec(Y) vec(Z)T form all the
products yijzkl for i, j = 1, . . . , n and k, l = 1, . . . ,m but at different locations. Thus,

there exists a linear mapping R : Rnm×nm → Rn2×m2

(which they called rearrange-
ment) such that R(Y ⊗ Z) = vec(Y) vec(Z)T . This mapping is defined explicitly
by considering a block matrix A where Aij ∈ Rm×m for i, j = 1, . . . , n. Then, by
definition

A =

A11 · · · A1n

...
. . .

...
An1 · · · Ann

 R(A) =

vec(A11)

T

vec(A21)
T

...
vec(Ann)

T

 .

By construction, for a matrix A = Y ⊗ Z,

Y ⊗ Z =

y11Z · · · y1nZ
...

. . .
...

yn1Z · · · ynnZ

 R(Y ⊗ Z) =

y11 vec(Z)

T

y21 vec(Z)
T

...
ynn vec(Z)

T

 = vec(Y) vec(Z)T .

More generally, since the vectorization operator is linear,

R

(
r∑

s=1

Ys ⊗ Zs

)
=

r∑
s=1

vec(Ys) vec(Zs)
T .

Therefore, R transforms a Kronecker rank r matrix into a rank r matrix. Since rear-
ranging the entries of a matrix does not change its Frobenius norm, the minimization
problem becomes

(3.1) minϕM (Y,Z) = min ∥M − Y ⊗ Z∥F = min ∥R(M)− vec(Y) vec(Z)T ∥F .

Thus, finding the best factor matrices Y and Z is equivalent to finding the best rank
1 approximation of R(M). More generally, finding the best factor matrices Ys and
Zs for s = 1, . . . , q defining the best Kronecker rank q approximation is equivalent to
finding the best rank q approximation of R(M) and may be conveniently computed
with a truncated singular value decomposition (SVD). Computing it is particularly
cheap in our context given that R(M) is already in low-rank format. Note that
applying the inverse operator R−1 to the SVD of R(M) enables to express M as

(3.2) M =

r∑
k=1

σk(Uk ⊗ Vk)

5

where Uk and Vk are reshapings of the kth left and right singular vectors of R(M),
respectively, and σk are the singular values for k = 1, . . . , r. The orthogonality of
the left and right singular vectors ensures that ⟨Ui, Uj⟩F = δij , ⟨Vj , Vj⟩F = δij and
⟨M, (Ui ⊗ Vi)⟩F = σi, where ⟨., .⟩F denotes the Frobenius inner product. The best
Kronecker rank q approximation P then simply consists in truncating the sum in (3.2)
by retaining its first q leading terms. The approximation error is then given by the
tail of the singular values

(3.3) ∥M − P∥2F =

r∑
k=q+1

σ2
k.

The procedure is summarized in Algorithm 3.1 and is referred to as the SVD approach.
We emphasize that we only consider q ≤ 2 for constructing a practical preconditioner
since q > 2 would generally be as difficult as solving the original multiterm equa-
tion. For q = 1, the resulting preconditioner is commonly referred to as the nearest
Kronecker product preconditioner (NKP) [45, 70]. We will abusively use the same
terminology for q = 2.

Algorithm 3.1 Best Kronecker rank q approximation

Input:
Factor matrices {Ak}rk=1 ⊂ Rn×n and {Bk}rk=1 ⊂ Rm×m

Kronecker rank q ≤ r
Output:
Factor matrices Ys and Zs for s = 1, . . . , q such that

∑q
s=1 Ys⊗Zs ≈

∑r
k=1Ak⊗Bk

1: Set VA = [vec(A1), . . . , vec(Ar)]
2: Set VB = [vec(B1), . . . , vec(Br)]
3: Compute the thin QR factorization VA = QARA

4: Compute the thin QR factorization VB = QBRB

5: Compute the SVD RAR
T
B = ŨΣṼ T ▷ Σ = diag(σ1, . . . , σr)

6: Set VY = QAŨΣ1/2 ▷ VY = [vec(Y1), . . . , vec(Yr)]
7: Set VZ = QBṼ Σ1/2 ▷ VZ = [vec(Z1), . . . , vec(Zr)]
8: Return and reshape the first q columns of VY and VZ .

The SVD approach to the best Kronecker product approximation in the Frobenius
norm is well established in the numerical linear algebra community. However, Van
Loan and Pitsianis also proposed an alternating least squares (ALS) approach, which
in our context might be cheaper. We both specialize their strategy to Kronecker rank
r matrices and extend it to Kronecker rank q approximations. Adopting the same
notations as in Algorithm 3.1 and employing the reordering R, we obtain∥∥∥∥∥

r∑
k=1

Ak ⊗Bk −
q∑

s=1

Ys ⊗ Zs

∥∥∥∥∥
F

=

∥∥∥∥∥
r∑

k=1

vec(Ak) vec(Bk)−
q∑

s=1

vec(Ys) vec(Zs)

∥∥∥∥∥
F

= ∥VAV T
B − VY V

T
Z ∥F(3.4)

If the matrices Zs are fixed for s = 1, . . . , q, the optimal solution of the least squares
problem (3.4) is given by

(3.5) VY = VAV
T
B VZ(V

T
Z VZ)

−1.

6

If instead all matrices Ys are fixed for s = 1, . . . , q, the optimal solution of (3.4) is
given by the similar looking expression

(3.6) VZ = VBV
T
A VY (V

T
Y VY)

−1.

The inverse in (3.5) (resp. (3.6)) exists provided the matrices Zs (resp. Ys) are
linearly independent. Equations (3.5) and (3.6) reveal that all factor matrices Ys and
Zs for s = 1, . . . , q are linear combinations of Ak and Bk, respectively, which could
already be inferred from the SVD approach. This finding was already stated in [68]
and proved in [45, Theorem 4.1] for q = 1 and [70, Theorem 4.2] for arbitrary q. In
particular, for q = 1, after some reshaping, equations (3.5) and (3.6) reduce to

Y =

r∑
k=1

⟨Bk, Z⟩F
⟨Z,Z⟩F

Ak and Z =

r∑
k=1

⟨Ak, Y ⟩F
⟨Y, Y ⟩F

Bk,

respectively, which can also be deduced from [68, Theorem 4.1]. Our derivations are
summarized in Algorithm 3.2. The norm of the residual is used as stopping criterion in
the alternating least squares algorithm. It can be cheaply evaluated without forming
the Kronecker products explicitly since

∥VAV T
B − VY V

T
Z ∥2F = ∥VAV T

B ∥2F − 2⟨VAV T
B , VY V

T
Z ⟩F + ∥VY V T

Z ∥2F
= ⟨V T

A VA, V
T
B VB⟩F − 2⟨V T

A VY , V
T
B VZ⟩F + ⟨V T

Y VY , V
T
Z VZ⟩F .

A more explicit expression already appeared in [45, Theorem 4.2] for r = 2 and q = 1.
Our expression generalizes it to arbitrary r and q.

Algorithm 3.2 ALS for Kronecker rank q approximation

Input:
Factor matrices {Ak}rk=1 ⊂ Rn×n and {Bk}rk=1 ⊂ Rm×m

Linearly independent factor matrices Zs ∈ Rm×m for s = 1, . . . , q
Tolerance ϵ > 0 and maximum number of iterations N ∈ N
Output:
Factor matrices Ys and Zs for s = 1, . . . , q such that

∑q
s=1 Ys⊗Zs ≈

∑r
k=1Ak⊗Bk

1: Set VA = [vec(A1), . . . , vec(Ar)], ▷ Initialization
2: Set VB = [vec(B1), . . . , vec(Br)],
3: Set VZ = [vec(Z1), . . . , vec(Zq)],
4: Set r = ∞, j = 0
5: while

√
r > ϵ and j ≤ N do

6: Compute VY = VAV
T
B VZ(V

T
Z VZ)

−1 ▷ Optimizing for Y
7: Compute VZ = VBV

T
A VY (V

T
Y VY)

−1 ▷ Optimizing for Z

8: Compute r = ⟨V T
A VA, V

T
B VB⟩F − 2⟨V T

A VY , V
T
B VZ⟩F + ⟨V T

Y VY , V
T
Z VZ⟩F

9: Update j = j + 1
10: end while
11: Return Ys and Zs for s = 1, . . . , q.

3.1. Complexity analysis. We briefly compare the complexity of both algo-
rithms. For Algorithm 3.1, the QR factorizations in lines 3 and 4 require about

7

O(r2(n2 +m2)) flops (if r ≪ n,m) [26, 16]. Computing the SVD in line 5 only re-
quires O(r3) while the matrix-matrix products in lines 6 and 7 require O(r2(n2+m2)).

For Algorithm 3.2, if r ≪ n,m, lines 6 and 7 require about O(rq(n2+m2)) opera-
tions. Naively recomputing the residual at each iteration in line 8 may be quite costly.
Therefore, we suggest computing ⟨V T

A VA, V
T
B VB⟩F once for O(r2(n2 +m2)) flops and

storing the result. The last two terms of the residual can be cheaply evaluated if
intermediate computations necessary in lines 6 and 7 are stored. Therefore, for N
iterations, the total cost amounts to O((r2 +Nrq)(n2 +m2)) and is quite similar to
the SVD framework if N and q remain small.

3.2. Theoretical results. The approximation problem in the Frobenius norm is
mainly motivated for computational reasons. However, it also offers some theoretical
guarantees, which are summarized in this section. The next theorem first recalls a
very useful result for Kronecker rank 1 approximations.

Theorem 3.1 ([68, Theorems 5.1, 5.3 and 5.8]). Let M ∈ Rnm×nm be a block-
banded, nonnegative and symmetric positive definite matrix. Then, there exists banded,
nonnegative and symmetric positive definite factor matrices Y and Z such that ϕM (Y,Z)
in (3.1) is minimized.

Thus, the properties of M are inherited by its approximation Y ⊗ Z. However,
not all properties of Theorem 3.1 extend to Kronecker rank q ≥ 2. Clearly, due to
the orthogonality relations ⟨Ui, Uj⟩F = δij , ⟨Vj , Vj⟩F = δij deduced from the SVD
approach, only Y1 and Z1 are nonnegative if M is. However, other useful properties
such as sparsity and symmetry are preserved. We formalize it through the following
definition.

Definition 3.2 (Sparsity pattern). The sparsity pattern of a matrix A ∈ Rn×n

is the set

sp(A) = {(i, j) : aij ̸= 0, 1 ≤ i, j ≤ n}

The following lemma summarizes some useful properties shared by the SVD and
alternating least squares solutions. Its proof is an obvious consequence of Algo-
rithms 3.1 and 3.2.

Lemma 3.3. Let
∑q

s=1 Ys ⊗ Zs be the Kronecker rank q approximation computed
with Algorithm 3.1 or Algorithm 3.2. Then,

• If all Ak and Bk are symmetric, then all Ys and Zs also are.
• The sparsity patterns of Ys and Zs are contained in those of Ak and Bk; i.e.

sp(Ys) ⊆
r⋃

k=1

sp(Ak), sp(Zs) ⊆
r⋃

k=1

sp(Bk) s = 1, . . . , q.

Note that the properties listed in Lemma 3.3 do not depend on the initial guesses.
In this work, we are interested in computing Kronecker product approximations as

a means of constructing efficient preconditioners. Therefore, we would like to connect
the approximation quality to the preconditioning effectiveness. Several authors have
attempted to obtain estimates for the condition number of the preconditioned system
or some related measure [66, 70]. We present hereafter a general result, which is only
satisfactory for small or moderate condition numbers of M .

8

Lemma 3.4. Let M,M̃ ∈ Rn×n be symmetric positive definite matrices. Then,

1

κ(M)

∥M − M̃∥F
∥M∥F

≤

√√√√ 1

n

n∑
i=1

(
1− 1

λi(M, M̃)

)2

≤ κ(M)
∥M − M̃∥F

∥M∥F

where κ(M) = λn(M)
λ1(M) is the spectral condition number of M .

Proof. Consider the matrix pair (M,M̃). Since M and M̃ are symmetric positive
definite, there exists an invertible matrix U ∈ Rn×n of M̃ -orthonormal eigenvectors
such that UTMU = D and UT M̃U = I, where D = diag(λ1, . . . , λn) is the diagonal
matrix of positive eigenvalues [64, Theorem VI.1.15]. Now note that√√√√ 1

n

n∑
i=1

(
1− λi(M,M̃)

)2
=

∥I −D∥F
∥I∥F

=
∥UT (M − M̃)U∥F

∥UT M̃U∥F
.

Moreover,

∥U∥−2
2 ∥U−1∥−2

2

∥M − M̃∥F
∥M̃∥F

≤ ∥UT (M − M̃)U∥F
∥UT M̃U∥F

≤ ∥U∥22∥U−1∥22
∥M − M̃∥F

∥M̃∥F
.

The quantity κ(U)2 = ∥U∥22∥U−1∥22 appearing in the bounds is nothing more than
the condition number of M̃ . Indeed, thanks to the normalization of the eigenvectors
M̃ = U−TU−1 and M̃−1 = UUT . Consequently, ∥U−1∥22 = ∥U−TU−1∥2 = ∥M̃∥2 and
∥U∥22 = ∥UUT ∥2 = ∥M̃−1∥2. Finally, we obtain the bounds

(3.7)
1

κ(M̃)

∥M − M̃∥F
∥M̃∥F

≤

√√√√ 1

n

n∑
i=1

(
1− λi(M,M̃)

)2
≤ κ(M̃)

∥M − M̃∥F
∥M̃∥F

.

Since the eigenvalues of (M̃,M) are the reciprocal of the eigenvalues of (M,M̃), we
conclude by swapping the roles of M and M̃ .

Remark 3.5. If M̃ is the best Kronecker rank q approximation, then, following
(3.3), we obtain the more explicit upper bound√√√√ 1

n

n∑
i=1

(
1− 1

λi(M,M̃)

)2

≤ κ(M)

√√√√ r∑
k=q+1

(
σk
σ1

)2

.

The upper bound in particular depends on the ratio of singular values, which was
already suspected by some authors [46, 70] but to our knowledge never formally
proved. Lemma 3.4 indicates that the nearest Kronecker product preconditioners
might be very effective if R(M) features fast decaying singular values.

4. Low Kronecker rank approximate inverse. Instead of finding an ap-
proximation of the operator itself, we will now find an approximation of its inverse.
Clearly, since (A ⊗ B)−1 = A−1 ⊗ B−1 for invertible matrices A,B [34, Corollary
4.2.11], (invertible) Kronecker rank 1 matrices have a Kronecker rank 1 inverse. How-
ever, the relation between the Kronecker rank of a matrix and the Kronecker rank of
its inverse is not obvious for r ≥ 2. Although the latter could be much larger than
the former, the inverse might still be very well approximated by low Kronecker rank

9

matrices. Indeed, it was shown in [27] that the inverse of sums of Kronecker products
obtained by finite difference and finite element discretizations of some model problems
can be well approximated by Kronecker products of matrix exponentials (exponential
sums). Unfortunately, due to the special tensor product structure, these results are
limited to idealized problems rarely met in practice. Nevertheless, these insightful
results suggest the possibility of generally approximating the inverse of an arbitrary
sum of Kronecker products by a low Kronecker rank matrix. We will describe in this
section a general and algebraic way of constructing such an approximation without
ever forming the Kronecker product matrix explicitly. We first consider the rank 1
case and later extend it to rank q ≥ 2.

4.1. Kronecker rank 1 approximate inverse. We set at finding factor ma-

trices C ∈ Rn×n and D ∈ Rm×m such that C⊗D ≈ (
∑r

k=1Ak ⊗Bk)
−1

and therefore
consider the minimization problem

(4.1) min
C,D

∥I −
r∑

k=1

AkC ⊗BkD∥F

where we have used the mixed-product property of the Kronecker product (see e.g.
[34, Lemma 4.2.10]). The minimization problem is nonlinear when optimizing for
(C,D) simultaneously, but is linear when optimizing for C or D individually. This
observation motivates an alternating optimization approach and is based on solving a
sequence of linear least squares problems. Assume for the time being that C is fixed
and D must be computed. Since any permutation or matrix reshaping is an isometry
in the Frobenius norm, the block matrices

(4.2) M =

M11 . . . M1n

...
. . .

...
Mn1 . . . Mnn

 and M̃ =

M11

M21

...
Mnn

have the same Frobenius norm. Applying this transformation to (4.1), we obtain

(4.3) ∥I −
r∑

k=1

AkC ⊗BkD∥F = ∥Ĩ −
r∑

k=1

vec(AkC)⊗BkD∥F = ∥Ĩ − (U ⊗ Im)BD∥F

where

(4.4) Ĩ = [Im; 0; . . . ; 0; Im], B = [B1;B2; . . . ;Br],

and we have defined U = [vec(A1C), . . . , vec(ArC)] ∈ Rn2×r. The semi-colon in
(4.4) means that the factor matrices are stacked one above the other. Minimizing
the Frobenius norm in (4.3) for the matrix D is indeed equivalent to solving a linear
least squares problem for each column of D with coefficient matrix B = (U ⊗ Im)B =∑r

k=1 vec(AkC) ⊗ Bk of size mn2 × m. For obvious storage reasons, we will never
form this matrix explicitly (which would be as bad as forming the Kronecker product
explicitly). The QR factorization is very efficient for solving least squares problems
involving Kronecker products [19] but unfortunately, B is the product of two matrices
and only one of them is a Kronecker product. It is unclear how this structure may
be leveraged. Fortunately, forming and solving the normal equations instead is very

10

appealing because of its ability to compress large least squares problems into much
smaller linear systems. Indeed,

BTB = BT (UTU ⊗ Im)B =

r∑
k,l=1

vec(AkC)
T vec(AlC)B

T
k Bl =

r∑
k,l=1

βklB
T
k Bl

with βkl = vec(AkC)
T vec(AlC) ∈ R for k, l = 1, . . . , r. Therefore, BTB has size m,

independently of the Kronecker rank r. The right-hand side of the normal equations
is BT Ĩ. Thanks to the structure of Ĩ, the computation of this term can be drastically
simplified. For a general matrix M̃ , as defined in (4.2), we have

(4.5) BT M̃ =

(
r∑

k=1

vec(AkC)
T ⊗BT

k

)
M̃ =

r∑
k=1

n∑
i,j=1

(AkC)ijB
T
k Mij .

However, for M̃ = Ĩ, we have Mii = Im for i = 1, . . . , n and Mij = 0 for all i ̸= j.
Thus, (4.5) reduces to

BT Ĩ =

r∑
k=1

BT
k

n∑
i=1

(AkC)ii =

r∑
k=1

trace(AkC)B
T
k =

r∑
k=1

δkB
T
k .

with coefficients δk = trace(AkC). Note that the coefficients βkl can also be expressed
as

βkl = vec(AkC)
T vec(AlC) = ⟨AkC,AlC⟩F = ⟨AT

kAl, CC
T ⟩F ,

while the coefficients δk are given by

δk = trace(AkC) = ⟨AT
k , C⟩F .

Although the factors βkl and δk may seem related, it must be emphasized that βkl ̸=
δkδl. Indeed, βkl involves all entries of AkC and AlC whereas δkδl only involves their
diagonal entries. As a matter of fact,

trace(AkC ⊗AlC) = trace(AkC) trace(AlC) = δkδl,

trace(R(AkC ⊗AlC)) = trace(vec(AkC) vec(AlC)
T) = vec(AkC)

T vec(AlC) = βkl.

Since the factor matrices Ak and Bk for k = 1, . . . , r do not change during the course of
the iterations, if r is relatively small it might be worthwhile precomputing the products
AT

kAl and B
T
k Bl for k, l = 1, . . . , r at the beginning of the algorithm. Storing these

matrices will require O(r2(n2+m2)) of memory. Provided r is small with respect to n
and m, the memory footprint is still significantly smaller than the O(n2m2) required
for storing the Kronecker product matrix explicitly.

We now assume that D is fixed and C must be computed. For this purpose,
we recall that there exists a perfect shuffle permutation matrix Sn,m [34, Corollary
4.3.10] such that

Sn,m(A⊗B)ST
n,m = B ⊗A.

Since permutation matrices are orthogonal and the Frobenius norm is unitarily in-
variant,

∥I−
r∑

k=1

AkC⊗BkD∥F = ∥Sn,m(I−
r∑

k=1

AkC⊗BkD)ST
n,m∥F = ∥I−

r∑
k=1

BkD⊗AkC∥F .

11

Therefore, the expressions when optimizing for C are completely analogous, with Bk

swapped for Ak and C swapped for D. We define

ATA =

r∑
k,l=1

αklA
T
kAl, αkl = ⟨BT

k Bl, DD
T ⟩F ,

AT Ĩ =

r∑
k=1

γkA
T
k , γk = ⟨BT

k , D⟩F .

Note that Ĩ is here defined by applying the transformation (4.2) to Im ⊗ In (and not
In ⊗ Im as in (4.4)). Its size is m2n × n and its only nontrivial blocks are identity
matrices of size n. With a slight abuse of notation, we will not distinguish the two
reshaped identity matrices since it will always be clear from the context which one is
used.

The stopping criterion of the alternating least squares algorithm relies on eval-
uating the residual at each iteration. If this operation is done naively, much of the
computational saving is lost in addition to prohibitive memory requirements. For-
tunately, the residual may be evaluated at negligible additional cost by recycling
quantities that were previously computed:

∥I −
r∑

k=1

AkC ⊗BkD∥2F = nm− 2⟨I,
r∑

k=1

AkC ⊗BkD⟩F +

∥∥∥∥∥
r∑

k=1

AkC ⊗BkD

∥∥∥∥∥
2

F

= nm− 2 trace

(
r∑

k=1

AkC ⊗BkD

)
+ trace

 r∑
k,l=1

AkCC
TAT

l ⊗BkDD
TBT

l

= nm− 2

r∑
k=1

trace(AkC) trace(BkD) +

r∑
k,l=1

trace(AkCC
TAT

l) trace(BkDD
TBT

l)

= nm− 2

r∑
k=1

γkδk +

r∑
k,l=1

αklβkl.

(4.6)

Since the scalars αkl, βkl, γk and δk have already been computed, evaluating (4.6)
nearly comes for free as a byproduct of the ALS iterations. The entire procedure is
summarized in Algorithm 4.1.

4.1.1. Complexity analysis. When presenting Algorithm 4.1, we have favored
clarity over efficiency. A practical implementation might look very different and we
now describe in detail the tricks that are deployed to reduce its complexity. Since
the algorithmic steps for C and D are similar, we only discuss those for D and later
adapt them to C. For simplicity, we will assume that all factor matrices Ak

and Bk are dense.
• In line 3, an alternative expression for βkl

βkl = ⟨AT
kAl, CC

T ⟩F = ⟨AkC,AlC⟩F

immediately reveals the symmetry (βkl = βlk). Thus, only
r
2 (r+1) coefficients

must be computed, instead of r2. Moreover, their computation only requires

12

Algorithm 4.1 ALS for Kronecker rank 1 approximate inverse

Input:
Factor matrices {Ak}rk=1 ⊂ Rn×n and {Bk}rk=1 ⊂ Rm×m

Initial guess for the factor matrix C ∈ Rn×n

Tolerance ϵ > 0 and maximum number of iterations N ∈ N
Output:

Factor matrices C and D such that C ⊗D ≈ (
∑r

k=1Ak ⊗Bk)
−1

1: Set r = ∞, j = 0 ▷ Initialization
2: while

√
r > ϵ and j ≤ N do

▷ Optimizing for D
3: Compute βkl = ⟨AT

kAl, CC
T ⟩F for k, l = 1, . . . , r ▷ O(rn3 + r2n2)

4: Compute δk = ⟨AT
k , C⟩F for k = 1, . . . , r ▷ O(rn2)

5: Form BTB =
∑r

k,l=1 βklB
T
k Bl ▷ O(rm3 + r2m2)

6: Form BT Ĩ =
∑r

k=1 δkB
T
k ▷ O(rm2)

7: Solve BTBD = BT Ĩ ▷ O(m3)
▷ Optimizing for C

8: Compute αkl = ⟨BT
k Bl, DD

T ⟩F for k, l = 1, . . . , r ▷ O(rm3 + r2m2)
9: Compute γk = ⟨BT

k , D⟩F for k = 1, . . . , r ▷ O(rm2)
10: Form ATA =

∑r
k,l=1 αklA

T
kAl ▷ O(rn3 + r2n2)

11: Form AT Ĩ =
∑r

k=1 γkA
T
k ▷ O(rn2)

12: Solve ATAC = AT Ĩ ▷ O(n3)

13: Update βkl and δk following lines 3 and 4, respectively ▷ Residual
14: Compute r = nm− 2

∑r
k=1 γkδk +

∑r
k,l=1 αklβkl ▷ O(r2)

15: Update j = j + 1
16: end while
17: Return C and D

r matrix-matrix products AkC for k = 1, . . . , r and then a few Frobenius
inner products, which in total amount to O(rn3 + r2n2) operations.

• A naive implementation of line 5 would require r2 matrix-matrix products.
This number can be reduced significantly thanks to the sum factorization
technique. After rewriting the equation as

BTB =

r∑
k,l=1

βklB
T
k Bl =

r∑
k=1

BT
k

r∑
l=1

βklBl,

we notice that only r matrix-matrix products are needed once all matrices∑r
l=1 βklBl for k = 1, . . . , r have been computed. This technique trades some

matrix-matrix products for a few additional (but cheaper) matrix sums. The
workload in this step amounts to O(rm3 + r2m2) operations.

• Since all coefficients are independent, the algorithm is well suited for parallel
computations and a suitable sequencing of operations avoids updating βkl
and δk before evaluating the residual.

Computing the coefficients δk and forming BT Ĩ is significantly cheaper and only leads
to low order terms, which are neglected. Finally, solving the normal equations in
line 7 with a standard direct solver will require O(m3) operations. After performing

13

a similar analysis for the optimization of C and assuming that N iterations of the
algorithm were necessary, the final cost amounts to O(Nr(n3+m3)+Nr2(n2+m2)).
The cost for evaluating the residual is negligible and does not enter our analysis.
For the sake of completeness, the cost of each step is summarized in Algorithm 4.1.
It may often be reduced if the factor matrices are sparse. Note in particular that
the sparsity pattern of the system matrix of the normal equations does not change
during the course of the iterations. Therefore, sparse direct solvers only require a
single symbolic factorization. Moreover, forming the normal equations benefits from
highly optimized matrix-matrix multiplication algorithms (level 3 BLAS) available in
common scientific computing environments.

4.2. Kronecker rank q approximate inverse. If the inverse does not admit a
good Kronecker product approximation, the result of Algorithm 4.1 may be practically
useless. To circumvent this issue, it might be worthwhile looking for approximations
having Kronecker rank q ≥ 2. We will see in this section how our strategies developed
for rank 1 approximations may be extended to rank q ≥ 2. We therefore consider the
problem of finding Cs ∈ Rn×n and Ds ∈ Rm×m for s = 1, . . . , q that minimize

∥I −
q∑

s=1

r∑
k=1

AkCs ⊗BkDs∥F .

For the rank 1 case, we had first transformed the problem to an equivalent one by
stacking all the blocks of the matrix one above the other in reverse lexicographical
order. In order to use the same transformation for the rank q case, we must first
find an expression for the (i, j)th block of

∑q
s=1

∑r
k=1AkCs ⊗ BkDs. This can be

conveniently done by applying the same strategy adopted earlier. Indeed, the (i, j)th
block of the matrix is

q∑
s=1

r∑
k=1

(AkCs)ijBkDs =

[
r∑

k=1

(AkC1)ijBk, . . . ,

r∑
k=1

(AkCq)ijBk

]
D

where D = [D1; . . . ;Dq]. After stacking all the blocks (i, j) for i, j = 1, . . . , n on top
of each other, we deduce the coefficient matrix for the least squares problem

(4.7) B = [(U1 ⊗ Im)B, . . . , (Uq ⊗ Im)B] ∈ Rn2m×qm

where Us = [vec(A1Cs), . . . , vec(ArCs)] ∈ Rn2×r for s = 1, . . . , q and B is the same
as defined in (4.4) for the rank 1 approximation. Once again, the matrix B will never
be formed explicitly and we will instead rely on the normal equations. Although the
size of the problem is larger, its structure is very similar to the rank 1 case. Indeed
BTB ∈ Rqm×qm is a q×q block matrix consisting of blocks of size m×m. The (s, t)th
block is given by

(BTB)st = BT (UT
s Ut ⊗ Im)B =

r∑
k,l=1

vec(AkCs)
T vec(AlCt)B

T
k Bl =

r∑
k,l=1

βst
klB

T
k Bl

where we have defined βst
kl = vec(AkCs)

T vec(AlCt) = ⟨AT
kAl, CsC

T
t ⟩F . The steps for

the right-hand side are analogous: BT Ĩ ∈ Rqm×m is a q × 1 block matrix and its sth
block is given by

BT (UT
s ⊗ Im)Ĩ =

r∑
k=1

BT
k

n∑
i=1

(AkCs)ii =

r∑
k=1

trace(AkCs)B
T
k =

r∑
k=1

δskB
T
k .

14

with δsk = ⟨AT
k , Cs⟩F . We further note that BTB and BT Ĩ can be expressed as

BTB =

r∑
k,l=1

bkl ⊗BT
k Bl, BT Ĩ =

r∑
k=1

dk ⊗BT
k

with

(4.8) bkl =

β
11
kl . . . β1q

kl
...

. . .
...

βq1
kl . . . βqq

kl

 and dk =

δ
1
k
...
δqk

 .

Resorting to perfect shuffle permutations allows to write a similar least squares prob-
lem for C = [C1; . . . ;Cq] once the coefficient matrices Ds for s = 1, . . . , q have been
computed. It leads to defining the quantities

ATA =

r∑
k,l=1

akl ⊗AT
kAl, AT Ĩ =

r∑
k=1

ck ⊗AT
k

with

(4.9) akl =

α
11
kl . . . α1q

kl
...

. . .
...

αq1
kl . . . αqq

kl

 , ck =

γ
1
k
...
γqk

and

αst
kl = ⟨BT

k Bl, DsD
T
t ⟩F and γsk = ⟨BT

k , Ds⟩F .

We will prefer those latter expressions due to their analogy with the rank 1 case.
Moreover, similarly to the rank 1 case, the residual may be cheaply evaluated without
forming the Kronecker products explicitly. Indeed, similarly to (4.6), we obtain

∥I −
q∑

s=1

r∑
k=1

AkCs ⊗BkDs∥2F = nm− 2

r∑
k=1

q∑
s=1

γskδ
s
k +

r∑
k,l=1

q∑
s,t=1

αst
klβ

st
kl

= nm− 2

r∑
k=1

ck · dk +
r∑

k,l=1

⟨akl, bkl⟩F .

Thus, apart from the proliferation of indices, the rank q case does not lead to any
major additional difficulty. In practice, ATA and BTB are formed one block at a time
using Algorithm 4.1. The final algorithm is structurally similar to Algorithm 4.1 and
is omitted. It is however important to note that the initial factor matrices Cs must
be linearly independent for BTB to be invertible.

The complexity analysis for the Kronecker rank q approximation is more involved
but essentially follows the same lines as the Kronecker rank 1 case. If all factor
matrices Ak and Bk are dense and N iterations of the algorithm are necessary,
the final cost amounts to O(Nrq2(n3 +m3) +Nr2q2(n2 +m2)). Although this cost
might seem significant at a first glance, we must recall that the total number of
iterations N and the rank q are controlled by the user and take small integer values.

15

Contrary to approximations of the operator, our approximations of the inverse
are generally not symmetric, even if the operator is. This problem is reminiscent of
sparse approximate inverse techniques [28]. Fortunately, symmetry of the factor ma-
trices can be easily restored by retaining their symmetric part, which experimentally
did not seem to have any detrimental effect on the preconditioning quality. More im-
portantly, the algorithm may deliver an exceedingly good data sparse representation
of the inverse. Moreover, applying the preconditioning operator

(4.10) P(X) =

q∑
s=1

DsXC
T
s

only requires computing a few matrix-matrix products, which is generally much
cheaper than solving standard Sylvester equations.

Since we are directly approximating the inverse, bounds on the eigenvalues of
the preconditioned matrix can be obtained straightforwardly. The theory was al-
ready established in the context of sparse approximate inverse preconditioning [28].
Thanks to [28, Theorem 3.2], the quality of the clustering of the eigenvalues of the
preconditioned matrix is monitored since ∥I −MP∥2F is evaluated at each iteration
and coincides with the stopping criterion of the alternating least squares algorithm.
Following the arguments presented in [28, Theorem 3.1, Corollary 3.1, Theorem 3.2],
it is also possible to state sufficient conditions guaranteeing invertibility of the pre-
conditioning matrix and derive estimates for the iterative condition number of the
preconditioned matrix.

Remark 4.1. The minimization problem in the spectral norm was recently con-
sidered in [17] and could have interesting applications for preconditioning. However,
computational methods are still in their infancy and not yet suited for large scale
applications.

4.3. Kronecker rank q sparse approximate inverse. It is well-known that
the entries of the inverse of a banded matrix are decaying in magnitude (although non-
monotonically) away from the diagonal [15, 5]. In the case of block-banded matrices
with banded blocks, the inverse features two distinctive decaying patterns: a global
decay on the block level as well as a local decay within each individual block [9, 6].
Similarly to approximating the inverse of a banded matrix by a banded matrix, the
inverse of Kronecker products of banded matrices could also be approximated by
Kronecker products of banded matrices. Before explaining how to obtain such an
approximation, we must first recall the construction of sparse approximate inverses.

4.3.1. Sparse approximate inverse techniques. We begin by recalling some
of the basic ideas behind sparse approximate inverse techniques, as they were outlined
in [28, 10, 7]. Given a sparse matrix M ∈ Rn×n, the problem consists in finding
a sparse approximate inverse of M with a prescribed sparsity pattern. Let S ⊆
{(i, j) : 1 ≤ i, j ≤ n} be a set of pairs of indices defining a sparsity pattern and
S = {P ∈ Rn×n : pij = 0, (i, j) /∈ S} be the associated set of sparse matrices. We
then consider the constrained minimization problem

min
P∈S

∥I −MP∥2F

where the approximate inverse now satisfies a prescribed sparsity. Noticing that ∥I −
MP∥2F =

∑n
j=1 ∥ej − Mpj∥22, each column of P can be computed separately by

solving a sequence of independent least squares problems. Since all columns are

16

treated similarly, we restrict the discussion to a single one, denoted pj . Let J be
the set of indices of nonzero entries in pj . Since the multiplication Mpj only involves
the columns of M associated to indices in J , only the submatrix M(:,J) must be
retained, thereby drastically reducing the size of the least squares problem. The
problem can be further reduced by eliminating the rows of the submatrix M(:,J)
that are identically zero (as they will not affect the least squares solution). Denoting
I the set of indices of nonzero rows, the constrained minimization problem turns into
a (much smaller) unconstrained problem

min
p̂j

∥êj − M̂p̂j∥22

where M̂ = M(I,J), p̂j = pj(J) and êj = ej(I). The greater the sparsity of the
matrices, the smaller the size of the least squares problem, which is usually solved
exactly using a QR factorization. The procedure is then repeated for each column of
P . Instead of prescribing the sparsity pattern, several authors have proposed adap-
tive strategies to iteratively augment it until a prescribed tolerance is reached. For
simplicity, we will not consider such techniques here and instead refer to the original
articles [28, 10, 7] for further details. It goes without saying that sparse approximate
inverse techniques can only be successful if the inverse can be well approximated by
a sparse matrix. Although it might seem as a rather restrictive condition, it is fre-
quently met in applications. In the next section, we will combine low Kronecker rank
approximations with sparse approximate inverse techniques. In effect, it will allow
us to compute low Kronecker rank approximations of the inverse with sparse factor
matrices.

4.3.2. Low Kronecker rank sparse approximate inverse. We first consider
again the Kronecker rank 1 approximation. We seek factor matrices C ∈ SC and
D ∈ SD where SC and SD are sets of sparse matrices with prescribed sparsity defined
analogously as in subsection 4.3.1. Recalling Equation (4.3) from subsection 4.1, we
have

∥I −
r∑

k=1

AkC ⊗BkD∥2F = ∥Ĩ − BD∥2F =

m∑
j=1

∥ẽj − Bdj∥22.

We now proceed analogously to subsection 4.3.1 and solve a sequence of independent
least squares problems for each column ofD. Let J be the set of indices corresponding
to nonzero entries of dj and I be the set of indices for nonzero rows in B(:,J). We
then solve the unconstrained problem

(4.11) min
d̂j

∥êj − B̂d̂j∥22

where B̂ = B(I,J), d̂j = dj(J) and êj = ẽj(I). Contrary to standard sparse ap-

proximate inverse techniques, we will not rely on a QR factorization of B̂ but on the
normal equations. The solution of the least squares problem in (4.11) is the solution

of the linear system B̂T B̂d̂j = B̂T êj . Furthermore, we notice that

B̂T B̂ = B(I,J)TB(I,J) = (BTB)(J ,J),

B̂T êj = B(I,J)T ẽj(I) = (BT ẽj)(J).

17

Therefore, the required system matrix and right-hand side vector are simply subma-
trices of BTB and BT Ĩ, respectively. These quantities are formed only once at each
iteration and appropriate submatrices are extracted for computing each column of D.
This strategy is very advantageous given that forming BTB is rather expensive. The
strategy for computing C is again analogous. Overall, computing sparse factors only
requires minor adjustments to Algorithm 4.1. The case of a Kronecker rank q sparse
approximate inverse is not much more difficult. As we have seen in subsection 4.2,

∥I −
q∑

s=1

r∑
k=1

AkCs ⊗BkDs∥2F = ∥Ĩ − BD∥2F

where D = [D1; . . . ;Dq] and B is defined in (4.7). We then apply exactly the same
strategy as for the Kronecker rank 1 approximation. The only minor difficulty lies in
defining suitable sparsity patterns. In our context, we consider powers of

∑r
k=1Ak

and
∑r

k=1Bk or variations thereof by adapting well-established strategies for sparse
approximate inverses [35]. Our method inherits many other key properties of sparse
approximate inverses, including the possibility to compute columns in parallel.

Apart from obvious storage savings, sparse approximate inverses further speed
up the application of the preconditioning operator P and may even maintain some
sparsity in the iterates for sparse input data. This fact was already recognized in [53]
but the construction of such an operator has remained unattended. We formalize the
result for the general multiterm equation. Let βM denote the bandwidth of a matrix
M . For a starting matrix X0 = 0, the next lemma provides an upper bound on the
growth of the bandwidth for the iterates of Bi-CGSTAB.

Lemma 4.2. The Bi-CGSTAB method applied to (2.1) and preconditioned with
(4.10) with starting matrix X0 = 0 produces iterates Xj (for a full iteration j ≥ 1)
with bandwidth

βXj ≤ (2j − 1)(βM + βP) + βP + βE

where βM = maxk{βAk
+ βBk

} and βP = maxs{βCs
+ βDs

}.
Proof. The proof is a straightforward adaptation and generalization of [53, Propo-

sition 2.4 and Proposition 4.1].

5. Numerical experiments. We now test our preconditioning strategies on a
few benchmark problems. All algorithms1 are implemented in MATLAB R2023a and
run on MacOS with an M1 chip and 32 GB of RAM. The experiments are meant to
test our preconditioning techniques for a variety of problems. In the sequel, Kronecker
rank q preconditioners given by the nearest Kronecker product and (sparse) Kronecker
product approximations of the inverse are referred to as NKP(q) and KINV(q), re-
spectively.

5.1. RC circuit simulation. Our next example stems from a second order
Carleman bilinearization of a nonlinear control system encountered for RC circuit
simulations [1]. It is a prototypical example of a Lyapunov-plus-positive equation and
has become over the years a classical benchmark for low-rank solvers [3, 60, 40]. It
reads

(5.1) AX +XAT +NXNT = E

1 The algorithms and code for reproducing the experiments are freely available at:
https://github.com/YannisVoet/Sylvester/tree/main

18

https://github.com/YannisVoet/Sylvester/tree/main

where A, N and E are of size n = n20 + n0 and are given by

A =

(
A1 A2

0 A1 ⊗ I + I ⊗A1

)
, N =

(
0 0

b⊗ I + I ⊗ b 0

)
, E = −

(
b
0

)(
bT 0

)
where A1 ∈ Rn0×n0 , A2 ∈ Rn0×n2

0 and b ∈ Rn0 . We refer to [1] for the explicit
construction of the various blocks. Since we do not exploit any low-rank structure of
the solution matrix, we restrict our experiments to small or medium size versions of
the equation. Common preconditioning strategies for this problem are based on the
Lyapunov part of the equation; i.e. AX +XAT . Although it is usually replaced by a
few steps of ADI for computational efficiency, we use it as such in our experiments.
For solving (5.1), we set n0 = 30 (n = 930) and test our algebraic preconditioners with
a restarted GMRES method (with a relative tolerance of 10−8 and restarted every 50
iterations). The sparsity pattern for the factor matrices of the approximate inverse
is defined based on small powers (2 or 4) of the factor matrices of the operator. The
convergence history is shown in Figure 5.1 for the first 100 iterations and timings are
reported in Table 5.1. Interestingly, we notice that the Lyapunov preconditioner and
the NKP(2) preconditioner give exactly the same results. As a matter of fact, the
two preconditioners are exactly the same, which is a consequence of the orthogonality
⟨A,N⟩F = ⟨I,N⟩F = 0. Indeed, going through the steps of Algorithm 3.1, it turns out
that VY = VAWA and VZ = VBWB , where WA := R−1

A ŨΣ1/2 and WB := R−1
B Ṽ Σ1/2

have the following form ∗ ∗ 0
∗ ∗ 0
0 0 1

where ∗ denotes a nonzero entry. It follows that the coefficient matrices for the NKP(2)
preconditioner are merely linear combinations of A and I and do not involve N . Thus,
P = AX +XAT is equal to the Lyapunov part, which better explains the success of
this preconditioner in [3]. This observation extends to other settings in [3, 14, 60],
where the coefficient matrices of the Lyapunov part are “weakly correlated” to the
additional terms, although non-orthogonal. From a timewise perspective, precondi-
tioners based on solving small-size Lyapunov equations directly are too expensive,
despite the small iteration count and problem size. In all our experiments, we have
used an in-house implementation of the advanced block splitting strategy of [39] cou-
pled with the method in [25] for solving small-size Sylvester equations. Although
replacing it with a few steps of ADI is a natural alternative for this problem, the
choice of inner solver is generally not so obvious and such investigations fall outside
the scope of this article. Although the KINV preconditioners are much less effective
in terms of iteration count, their low application cost makes up the difference and
their setup leverages MATLAB’s parallel computing capabilities.

5.2. Isogeometric analysis. Our next experiment arises from applications in
isogeometric analysis, a tensorized finite element method [36, 13]. It is well-know that
discretizations of the Laplacian on simple 2D geometries with separable coefficients
lead to a Kronecker rank 2 stiffness matrix [58]. Unfortunately, this pleasant struc-
ture only holds for idealized problems. For nontrivial (single-patch) geometries, the
stiffness matrix is nevertheless well approximated by low Kronecker rank matrices;
a property at the heart of several fast assembly algorithms [49, 59, 33]. The same
holds true for the mass matrix. In this experiment, we consider a quarter of a plate

19

10 20 30 40 50 60 70 80 90 100
Iteration number

10-10

10-8

10-6

10-4

10-2

100

R
el
at
iv
e
re
si
d
u
a
l

GMRES
Lyapunov part
NKP(1)
NKP(2)
KINV(2)
KINV(4)

Fig. 5.1: Convergence history for solving (5.1) using the (right-preconditioned) GM-
RES method. The non-preconditioned method converged after 630 iterations.

Preconditioner Setup GMRES
None − 26.0 (630)
Lyapunov −/6.0 12.2 (8)
NKP(1) 0.06/0.02 15.0 (203)
NKP(2) 0.06/5.9 12.2 (8)
KINV(2) 1.4 5.8 (97)
KINV(4) 2.4 5.2 (58)

Table 5.1: Timing (in seconds). When writing x/y, x represents the time for comput-
ing the SVD representation of the operator (with Algorithm 3.1) and y is the time
for computing matrix factorizations (e.g. QZ or LU). The total number of iterations
is shown in parenthesis.

with a hole commonly used for benchmarking purposes in isogeometric analysis (see
e.g. [36, Figure 16]). For this experiment, we have used GeoPDEs [69], a MATLAB-
Octave software package for isogeometric analysis. The geometry is discretized with
cubic splines and 200 subdivisions in each spatial direction. For this problem, the
mass matrix is approximated up to machine precision by a Kronecker rank 10 matrix
independently of the discretization parameters, such that

(5.2) M(X) =

10∑
k=1

BkXA
T
k .

where all the Ak and Bk for k = 1, . . . , 10 are banded matrices of size n = 201
and m = 403 with small bandwidth. Although suggested in [59], few attempts have
successfully exploited this structure and instead practitioners often explicitly form
the system matrices. Nevertheless, several very efficient preconditioning strategies
have been developed [22, 23, 48]. To the best of our knowledge, the preconditioner of
Loli et al. [48] is the state-of-the-art preconditioner for the isogeometric mass matrix
and provides a good comparison for our methods. Although originally formulated for
the explicitly assembled mass matrix, the preconditioner may be recast as a linear

20

operator

P(X) = S ∗ (P−1
2 (S ∗X)P−1

1)

where P1, P2 are banded matrices, S is a dense low-rank matrix and ∗ denotes the
Hadamard (elementwise) product. We refer to the original article [48] for its explicit
construction. We compare the performance of this preconditioner against the alge-
braic NKP(q) and KINV(q) preconditioners for q = 1, 2. Small powers (e.g. 3 or 4)
of the coefficient matrices define the sparsity pattern of the coefficients for the ap-
proximate inverse. Although the mass matrix is symmetric positive definite, not all
preconditioners are. We use the Bi-CGSTAB method for all cases to provide a valid
comparison. The right-hand side is a rectangular matrix consisting of the identity in
its upper block and all zeros in its lower block. We choose X0 = 0 as starting matrix,
set a tolerance of 10−8 on the relative residual and gap the number of iterations at
100. Figure 5.2 shows the convergence history for the first 50 iterations. All our pre-
conditioning techniques compare favorably with the preconditioner of Loli et al. in
terms of iteration count. The NKP(1) and KINV(1) preconditioners behave similarly
while the KINV(2) preconditioner is slightly better than NKP(2). Computing times
were all within one second, except in the non-preconditioned case. The KINV(2)
preconditioner was the fastest within Bi-CGSTAB but did not outperform the pre-
conditioner of Loli et al. when also considering its setup cost. However, contrary to
the preconditioner of Loli et al., the KINV preconditioner maintains a certain level
of sparsity throughout the iterations and we could verify that the upper bound of
Lemma 4.2 was attained. This becomes a major advantage of our method for large
scale problems. Although the NKP(2) preconditioner leads to small iteration counts,
it was the most expensive of all. The cost of repeatedly solving standard Sylvester
equations explains the difference, which we clearly noticed when comparing the Kron-
ecker rank 1 and 2 versions of the preconditioner. The prohibitive cost of repeatedly
solving such equations was already stressed in [14] and alternative methods should be
considered. However, it pertains to standard Sylvester equations and falls outside the
scope of this contribution.

5 10 15 20 25 30 35 40 45 50
Iteration number

10-10

10-8

10-6

10-4

10-2

100

102

R
el
at
iv
e
re
si
d
u
al

Bi-CGSTAB
Loli et al. 2022
NKP(1)
NKP(2)
KINV(1)
KINV(2)

Fig. 5.2: Convergence history for solving (5.2) using the (right-preconditioned) Bi-
CGSTAB method

21

5.3. Convection-diffusion equation. We now consider the finite difference
discretization of the convection-diffusion equation

−ϵ∆u+w · ∇u = f

on the unit square Ω = (0, 1)2 with a convection vector whose components are sep-
arable functions (i.e. wk(x, y) = ϕk(x)ψk(y), k = 1, 2). Under these assumptions,
Palitta and Simoncini [52, Proposition 1] showed that the discrete solution on a finite
difference grid {xi}ni=1 × {yj}nj=1 satisfies the matrix equation

(5.3) TX +XTT + (Φ1B)XΨ1 +Φ2X(BTΨ2) = F

where Φk = diag(ϕk(x1), . . . , ϕk(xn)), Ψk = diag(ψk(y1), . . . , ψk(yn)) for k = 1, 2 and
B and T stem from centered finite difference discretizations of the first and second
order derivatives (with diffusion coefficient), respectively, and F accounts for the right-
hand side and boundary conditions; see [52] for the details. Our experiment closely
follows Example 4 in [52]. We set f = 0,

w =

(
y(1− (2x+ 1)2)

−2(2x+ 1)(1− y2)

)
and prescribe homogeneous Dirichlet boundary conditions on the entire boundary,
except for y = 0, where

u(x, 0) =

{
1 + tanh(10 + 20(2x− 1)) 0 ≤ x ≤ 0.5,

2 0.5 < x ≤ 1.

These boundary conditions are built in the right-hand side F following the procedure
described in [52, Section 3]. Preconditioning (5.3) becomes challenging for convection
dominated problems (for ∥w∥ ≫ ϵ), where preconditioners based on the Lyapunov
part are ineffective. For this type of problem, the authors constructed a Kronecker
rank 2 preconditioner given by

P(X) := (T + ψ̄1Φ1B)X +X(T + ϕ̄2Ψ2B)T

where ψ̄1 and ϕ̄2 are the mean of {ψ1(xi)}ni=1 and {ϕ2(yj)}nj=1, respectively. We solve

(5.3) for n = 1000 using GMRES with a relative tolerance of 10−6 and a maximum
number of 200 iterations. In [52], one-sided standard Sylvester equations with the
preconditioning operator are solved using with a projection technique based on an
extended Krylov subspace method (KPIK) [61]. However, the NKP(2) precondition-
ing operator is generally two-sided. In order to provide a fair comparison, small-size
Sylvester equations are solved in both cases using our in-house implementation of
the block recursive splitting algorithm described in [39]. Sparse KINV precondition-
ers are constructed from the sparsity pattern of (|A|T |A|)p where A is the sum of all
right-sided (or left-sided) coefficient matrices and p ≤ 19. Their setup was accelerated
using MATLAB’s parallel computing toolbox. The convergence history is shown in
Figure 5.3 for the largest and smallest diffusion coefficients. For ϵ = 1/10, the NKP(2)
preconditioner is nearly as good as the one of Palitta and Simoncini but shows early
signs of instabilities for ϵ = 1/30. Actually, both operators become increasingly ill-
conditioned as ϵ → 0 and eventually break down. The KINV preconditioners were
far more robust and actually improve as ϵ→ 0. Timings for GMRES are reported in

22

Table 5.2 for various diffusion coefficients. The timings for the NKP(2) preconditioner
and the one of Palitta and Simoncini are rather pessimistic due to our choice of inner
solver. It could essentially be replaced with any state-of-the-art method known for
this specific problem. Much better timings are reported in [52, Table 4] with KPIK
and compete with our KINV preconditioner for a problem of comparable size.

0 50 100 150 200 250
Iteration number

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el
a
ti
v
e
re
si
d
u
a
l

GMRES
Palitta and Simoncini, 2016
NKP(1)
NKP(2)
KINV(2)
KINV(4)

(a) ϵ = 1/10

0 20 40 60 80 100 120 140 160 180
Iteration number

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el
a
ti
v
e
re
si
d
u
a
l

GMRES
Palitta and Simoncini, 2016
NKP(1)
NKP(2)
KINV(2)
KINV(4)

(b) ϵ = 1/30

Fig. 5.3: Convergence history for solving (5.3) using the (right-preconditioned) GM-
RES method

Preconditioner Setup ϵ = 1/10 ϵ = 1/20 ϵ = 1/30
None − 103.9 (200∗) 105.1 (200∗) 73.25 (170)
Palitta and Simoncini −/10.3 10.8 (6) 14.2 (8) 24.4 (9)
NKP(1) 0.04/0.01 94.9 (180) 28.9 (104) 13.8 (76)
NKP(2) 0.04/8.95 13.4 (7) 20.7 (12) 51.1 (20)
KINV(2) 1.04 9.38 (57) 4.41 (35) 2.95 (27)
KINV(4) 1.86 2.04 (17) 1.40 (12) 1.17 (10)

Table 5.2: Timing (in seconds). When writing x/y, x represents the time for comput-
ing the SVD representation of the operator (with Algorithm 3.1) and y is the time
for computing matrix factorizations (e.g. QZ or LU). The total number of iterations
is shown in parenthesis, where ∗ indicates that the method did not converge within
the maximum number of iterations.

6. Conclusion. In this article, we have proposed general algebraic parameter-
free preconditioning techniques for the iterative solution of generalized multiterm
Sylvester matrix equations. Our strategies rely on low Kronecker rank approxima-
tions of either the operator or its inverse. While the former requires solving standard
Sylvester equations at each iteration, the latter only requires matrix-matrix products
and provides an inexpensive alternative. Moreover, we have shown how sparse approx-
imate inverse techniques could be combined with low Kronecker rank approximations,
thereby speeding up the application of the preconditioning operator and potentially
preserving some sparsity in the iterates. Such approximations may also be valuable
for other applications seeking data-sparse representations of the inverse.

23

Numerical experiments revealed the robustness and effectiveness of our techniques
for preconditioning multiterm matrix equations arising in a variety of disciplines, in-
cluding control systems, isogeometric analysis and finite difference discretizations of
convection-dominated problems. For all three experiments, the nearest Kronecker
product preconditioner favorably competes with state-of-the-art preconditioners tai-
lored to those specific applications. Nevertheless, the preconditioner must be supple-
mented with efficient solvers for standard Sylvester equations, which must be assessed
on a case by case basis. In contrast, sparse low Kronecker rank approximations of the
inverse only require a suitable sparsity pattern and may provide cheap alternatives,
despite the often larger iteration count.

Acknowledgments. I thank Daniel Kressner for valuable discussions and point-
ers to relevant literature and Espen Sande for carefully reading through this manu-
script.

REFERENCES

[1] Z. Bai and D. Skoogh, A projection method for model reduction of bilinear dynamical systems,
Linear algebra and its applications, 415 (2006), pp. 406–425.

[2] R. H. Bartels and G. W. Stewart, Solution of the matrix equation AX+ XB= C [F4],
Communications of the ACM, 15 (1972), pp. 820–826.

[3] P. Benner and T. Breiten, Low rank methods for a class of generalized Lyapunov equations
and related issues, Numerische Mathematik, 124 (2013), pp. 441–470.

[4] P. Benner and J. Saak, Numerical solution of large and sparse continuous time algebraic
matrix Riccati and Lyapunov equations: a state of the art survey, GAMM-Mitteilungen,
36 (2013), pp. 32–52.

[5] M. Benzi and G. H. Golub, Bounds for the entries of matrix functions with applications to
preconditioning, BIT Numerical Mathematics, 39 (1999), pp. 417–438.

[6] M. Benzi and V. Simoncini, Decay bounds for functions of Hermitian matrices with banded
or Kronecker structure, SIAM Journal on Matrix Analysis and Applications, 36 (2015),
pp. 1263–1282.

[7] M. Benzi and M. Tuma, A comparative study of sparse approximate inverse preconditioners,
Applied Numerical Mathematics, 30 (1999), pp. 305–340.

[8] A. Bouhamidi and K. Jbilou, A note on the numerical approximate solutions for generalized
Sylvester matrix equations with applications, Applied Mathematics and Computation, 206
(2008), pp. 687–694.

[9] C. Canuto, V. Simoncini, and M. Verani, On the decay of the inverse of matrices that are
sum of Kronecker products, Linear Algebra and its Applications, 452 (2014), pp. 21–39.

[10] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations,
SIAM Journal on Scientific Computing, 19 (1998), pp. 995–1023.

[11] K.-W. E. Chu, Exclusion theorems and the perturbation analysis of the generalized eigenvalue
problem, SIAM journal on numerical analysis, 24 (1987), pp. 1114–1125.

[12] K.-w. E. Chu, The solution of the matrix equations AXB - CXD = E AND (YA - DZ, YC -
BZ)=(E, F), Linear Algebra and its Applications, 93 (1987), pp. 93–105.

[13] J. A. Cottrell, T. J. Hughes, and Y. Bazilevs, Isogeometric analysis: toward integration
of CAD and FEA, John Wiley & Sons, 2009.

[14] T. Damm, Direct methods and ADI-preconditioned Krylov subspace methods for generalized
Lyapunov equations, Numerical Linear Algebra with Applications, 15 (2008), pp. 853–871.

[15] S. Demko, W. F. Moss, and P. W. Smith, Decay rates for inverses of band matrices, Math-
ematics of computation, 43 (1984), pp. 491–499.

[16] J. W. Demmel, Applied numerical linear algebra, SIAM, 1997.
[17] M. Dressler, A. Uschmajew, and V. Chandrasekaran, Kronecker product approximation

of operators in spectral norm via alternating SDP, SIAM Journal on Matrix Analysis and
Applications, 44 (2023), pp. 1693–1708.

[18] O. G. Ernst, C. E. Powell, D. J. Silvester, and E. Ullmann, Efficient solvers for a lin-
ear stochastic Galerkin mixed formulation of diffusion problems with random data, SIAM
Journal on Scientific Computing, 31 (2009), pp. 1424–1447.

[19] D. W. Fausett and C. T. Fulton, Large least squares problems involving Kronecker products,
SIAM Journal on Matrix Analysis and Applications, 15 (1994), pp. 219–227.

24

[20] Z. Gajic and M. T. J. Qureshi, Lyapunov matrix equation in system stability and control,
Courier Corporation, 2008.

[21] M. J. Gander and M. Outrata, Spectral analysis of implicit 2 stage block Runge-Kutta
preconditioners, HAL open science, (2023).

[22] L. Gao, Kronecker products on preconditioning, PhD thesis, King Abdullah University of
Science and Technology, 2013.

[23] L. Gao and V. M. Calo, Fast isogeometric solvers for explicit dynamics, Computer Methods
in Applied Mechanics and Engineering, 274 (2014), pp. 19–41.

[24] L. Gao and V. M. Calo, Preconditioners based on the Alternating-Direction-Implicit algo-
rithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients,
Journal of Computational and Applied Mathematics, 273 (2015), pp. 274–295.

[25] J. D. Gardiner, A. J. Laub, J. J. Amato, and C. B. Moler, Solution of the Sylvester matrix
equation AXB T + CXD T = E, ACM Transactions on Mathematical Software (TOMS),
18 (1992), pp. 223–231.

[26] G. H. Golub and C. F. Van Loan, Matrix computations, JHU press, 2013.
[27] L. Grasedyck, Existence and computation of low Kronecker-rank approximations for large

linear systems of tensor product structure, Computing, 72 (2004), pp. 247–265.
[28] M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM

Journal on Scientific Computing, 18 (1997), pp. 838–853.
[29] S. J. Hammarling, Numerical solution of the stable, non-negative definite Lyapunov equation,

IMA Journal of Numerical Analysis, 2 (1982), pp. 303–323.
[30] M. R. Hestenes, E. Stiefel, et al., Methods of conjugate gradients for solving linear systems,

Journal of research of the National Bureau of Standards, 49 (1952), pp. 409–436.
[31] N. J. Higham, Accuracy and stability of numerical algorithms, SIAM, 2002.
[32] M. Hochbruck and G. Starke, Preconditioned Krylov subspace methods for Lyapunov matrix

equations, SIAM Journal on Matrix Analysis and Applications, 16 (1995), pp. 156–171.
[33] C. Hofreither, A black-box low-rank approximation algorithm for fast matrix assembly in iso-

geometric analysis, Computer Methods in Applied Mechanics and Engineering, 333 (2018),
pp. 311–330.

[34] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,
1991.

[35] T. Huckle, Approximate sparsity patterns for the inverse of a matrix and preconditioning,
Applied numerical mathematics, 30 (1999), pp. 291–303.

[36] T. J. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement, Computer methods in applied mechanics
and engineering, 194 (2005), pp. 4135–4195.

[37] K. Jbilou, A. Messaoudi, and H. Sadok, Global FOM and GMRES algorithms for matrix
equations, Applied Numerical Mathematics, 31 (1999), pp. 49–63.

[38] I. Jonsson and B. Kågström, Recursive blocked algorithms for solving triangular systems—
Part I: One-sided and coupled Sylvester-type matrix equations, ACM Transactions on
Mathematical Software (TOMS), 28 (2002), pp. 392–415.

[39] I. Jonsson and B. Kågström, Recursive blocked algorithms for solving triangular systems—
Part II: Two-sided and generalized Sylvester and Lyapunov matrix equations, ACM Trans-
actions on Mathematical Software (TOMS), 28 (2002), pp. 416–435.

[40] D. Kressner and P. Sirković, Truncated low-rank methods for solving general linear matrix
equations, Numerical Linear Algebra with Applications, 22 (2015), pp. 564–583.

[41] D. Kressner and C. Tobler, Krylov subspace methods for linear systems with tensor product
structure, SIAM journal on matrix analysis and applications, 31 (2010), pp. 1688–1714.

[42] D. Kressner and C. Tobler, Low-rank tensor Krylov subspace methods for parametrized
linear systems, SIAM Journal on Matrix Analysis and Applications, 32 (2011), pp. 1288–
1316.

[43] P. Kürschner, S. Dolgov, K. D. Harris, and P. Benner, Greedy low-rank algorithm for
spatial connectome regression, The Journal of Mathematical Neuroscience, 9 (2019), pp. 1–
22.

[44] P. Lancaster, Explicit solutions of linear matrix equations, SIAM review, 12 (1970), pp. 544–
566.

[45] A. N. Langville and W. J. Stewart, A Kronecker product approximate preconditioner for
SANs, Numerical Linear Algebra with Applications, 11 (2004), pp. 723–752.

[46] A. N. Langville and W. J. Stewart, Testing the nearest Kronecker product preconditioner
on Markov chains and stochastic automata networks, INFORMS Journal on Computing,
16 (2004), pp. 300–315.

[47] A. N. Langville and W. J. Stewart, The Kronecker product and stochastic automata net-

25

works, Journal of computational and applied mathematics, 167 (2004), pp. 429–447.
[48] G. Loli, G. Sangalli, and M. Tani, Easy and efficient preconditioning of the isogeometric

mass matrix, Computers & Mathematics with Applications, (2021).
[49] A. Mantzaflaris, B. Jüttler, B. N. Khoromskij, and U. Langer, Low rank tensor methods

in Galerkin-based isogeometric analysis, Computer Methods in Applied Mechanics and
Engineering, 316 (2017), pp. 1062–1085.

[50] S. Massei, D. Palitta, and L. Robol, Solving rank-structured Sylvester and Lyapunov equa-
tions, SIAM journal on matrix analysis and applications, 39 (2018), pp. 1564–1590.

[51] J. G. Nagy and M. E. Kilmer, Kronecker product approximation for preconditioning in three-
dimensional imaging applications, IEEE Transactions on Image Processing, 15 (2006),
pp. 604–613.

[52] D. Palitta and V. Simoncini, Matrix-equation-based strategies for convection–diffusion equa-
tions, BIT Numerical Mathematics, 56 (2016), pp. 751–776.

[53] D. Palitta and V. Simoncini, Numerical methods for large-scale Lyapunov equations with
symmetric banded data, SIAM Journal on Scientific Computing, 40 (2018), pp. A3581–
A3608.

[54] E. Ringh, G. Mele, J. Karlsson, and E. Jarlebring, Sylvester-based preconditioning for the
waveguide eigenvalue problem, Linear Algebra and its Applications, 542 (2018), pp. 441–
463.

[55] Y. Saad, Numerical solution of large Lyapunov equations, tech. report, NASA Ames Research
Center, 1989.

[56] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.
[57] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM Journal on scientific and statistical computing, 7
(1986), pp. 856–869.

[58] G. Sangalli and M. Tani, Isogeometric preconditioners based on fast solvers for the Sylvester
equation, SIAM Journal on Scientific Computing, 38 (2016), pp. A3644–A3671.

[59] F. Scholz, A. Mantzaflaris, and B. Jüttler, Partial tensor decomposition for decoupling
isogeometric Galerkin discretizations, Computer Methods in Applied Mechanics and En-
gineering, 336 (2018), pp. 485–506.

[60] S. D. Shank, V. Simoncini, and D. B. Szyld, Efficient low-rank solution of generalized Lya-
punov equations, Numerische Mathematik, 134 (2016), pp. 327–342.

[61] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations, SIAM
Journal on Scientific Computing, 29 (2007), pp. 1268–1288.

[62] V. Simoncini, Computational methods for linear matrix equations, SIAM Review, 58 (2016),
pp. 377–441.

[63] V. Simoncini and Y. Hao, Analysis of the truncated conjugate gradient method for linear
matrix equations, SIAM Journal on Matrix Analysis and Applications, 44 (2023), pp. 359–
381.

[64] G. Stewart and J. Sun, Matrix Perturbation Theory, Computer Science and Scientific Com-
puting, ACADEMIC Press, INC, 1990.

[65] G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigen-
value problems, SIAM review, 15 (1973), pp. 727–764.

[66] E. Ullmann, A Kronecker product preconditioner for stochastic Galerkin finite element dis-
cretizations, SIAM Journal on Scientific Computing, 32 (2010), pp. 923–946.

[67] H. A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM Journal on scientific and Statistical
Computing, 13 (1992), pp. 631–644.

[68] C. F. Van Loan and N. Pitsianis, Approximation with Kronecker products, in Linear algebra
for large scale and real-time applications, Springer, 1993, pp. 293–314.

[69] R. Vázquez, A new design for the implementation of isogeometric analysis in Octave and
Matlab: GeoPDEs 3.0, Computers & Mathematics with Applications, 72 (2016), pp. 523–
554.

[70] Y. Voet, E. Sande, and A. Buffa, A mathematical theory for mass lumping and its general-
ization with applications to isogeometric analysis, Computer Methods in Applied Mechan-
ics and Engineering, 410 (2023), p. 116033.

[71] E. L. Wachspress, Optimum alternating-direction-implicit iteration parameters for a model
problem, Journal of the Society for Industrial and Applied Mathematics, 10 (1962), pp. 339–
350.

[72] E. L. Wachspress, Iterative solution of the Lyapunov matrix equation, Applied Mathematics
Letters, 1 (1988), pp. 87–90.

26

	Introduction
	Krylov subspace methods for matrix equations
	Nearest Kronecker product preconditioner
	Complexity analysis
	Theoretical results

	Low Kronecker rank approximate inverse
	Kronecker rank 1 approximate inverse
	Complexity analysis

	Kronecker rank q approximate inverse
	Kronecker rank q sparse approximate inverse
	Sparse approximate inverse techniques
	Low Kronecker rank sparse approximate inverse

	Numerical experiments
	RC circuit simulation
	Isogeometric analysis
	Convection-diffusion equation

	Conclusion
	References

