
eScholarship
Combinatorial Theory

Title
Generalised Howe duality and injectivity of induction: the symplectic case

Permalink
https://escholarship.org/uc/item/79s5h3hd

Journal
Combinatorial Theory, 2(2)

ISSN
2766-1334

Authors
Gerber, Thomas
Guilhot, Jérémie
Lecouvey, Cédric

Publication Date
2022

DOI
10.5070/C62257878

Supplemental Material
https://escholarship.org/uc/item/79s5h3hd#supplemental

Copyright Information
Copyright 2022 by the author(s).This work is made available under the terms of a 
Creative Commons Attribution License, available at 
https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/79s5h3hd
https://escholarship.org/uc/item/79s5h3hd#supplemental
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


combinatorial theory 2 (2) (2022), #12 combinatorial-theory.org

Generalised Howe duality and injectivity
of induction: the symplectic case
Thomas Gerber∗1, Jérémie Guilhot†2, and Cédric Lecouvey†3

1École Polytechnique Fédérale de Lausanne, Route cantonale, 1015 Lausanne, Switzerland
thomas.gerber@epfl.ch

2,3Institut Denis Poisson, Université de Tours, Parc de Grandmont, 37200 Tours, France
jeremie.guilhot@lmpt.univ-tours.fr , cedric.lecouvey@lmpt.univ-tours.fr

Submitted: Oct 23, 2021; Accepted: May 24, 2022; Published: Jun 30, 2022
©The authors. Released under the CC BY license (International 4.0).

Abstract. We study the symplectic Howe duality using two new and independent combi-
natorial methods: via determinantal formulae on the one hand, and via (bi)crystals on the
other hand. The first approach allows us to establish a generalised version where weight
multiplicities are replaced by branching coefficients. In turn, this generalised Howe duality
is used to prove the injectivity of induction for Levi branchings as previously conjectured
by the last two authors.
Keywords. Lie algebras, representation theory, Schur–Weyl duality, Howe duality, crystals,
Schur functions, induced modules
Mathematics Subject Classifications. 17B10, 17B37, 05E05, 05E10

1. Introduction

Let n andm be two positive integers and let µ be a partition whose Young diagram is contained
in the rectangle n×m with n rows andm columns. Then the conjugate partition µ′ of µ can be
written µ′ = (µ′1, . . . , µ

′
m). A classical result in the representation theory of linear Lie algebras

states that

The multiplicity of the irreducible gln(C)-module V (λ) in the tensor product

Λµ
′

n,m = Λµ
′
1(Cn)⊗ . . .⊗ Λµ

′
m(Cn) (1.1)

equals the dimension of the µ′-weight space in the irreducible glm(C)-modules
V (λ′).

∗Supported by the SNSF Ambizione grant PZ00P2_180120.
†Supported by the ANR Grant CORTIPOM 21-CE40-001.

https://www.combinatorial-theory.org
mailto:thomas.gerber@epfl.ch
mailto: jeremie.guilhot@lmpt.univ-tours.fr
mailto:cedric.lecouvey@lmpt.univ-tours.fr


2 Thomas Gerber et al.

There exist numerous proofs of this identity. For instance, it is a direct consequence of
the Howe duality [How95, Theorem 4.1.1], which can itself be deduced from the well-known
Schur–Weyl duality. Most proofs are based on computations on Schur functions or on purely
combinatorial arguments using semistandard tableaux [FH91].

For the other classical Lie algebras (or classical Lie groups), there exist similar constructions
due to Howe [How95]. In this paper, we restrict ourselves to the symplectic case (i.e. to the root
systems of type C). Then, the symplectic Howe duality implies that

The multiplicity of the irreducible sp2n(C)-module V (λ) in the tensor product

Λµ
′

2n,m = Λµ
′
1(C2n)⊗ · · · ⊗ Λµ

′
m(C2n) (1.2)

equals the dimension of the µ̂-weight space in the irreducible sp2m(C)-moduleV (λ̂).

In contrast with the type A case, the conjugate partitions µ′ and λ′ are here replaced by the
partitions µ̂ and λ̂ defined as the conjugates of the complements of µ and λ in the rectangle n×m.

The goal of this paper is three-fold. Firstly, we give a simple combinatorial proof of (1.2)
based on the determinantal formulae for Weyl characters (analogue to the Jacobi–Trudi formu-
lae for the Schur polynomials). This approach is essential for establishing the generalisation
of (1.2) in Section 7. More precisely, the tools and computations that we use in our proof gen-
eralise those developed in [Lec06a] and extend naturally to the case where the fundamental
gl2n(C)-modules appearing in the tensor products (1.2) are replaced by tensor products of simple
gl2n(C)-modules (restricted to sp2n(C)) or simple sp2n(C)- modules. We prove in Theorem 7.5
that the corresponding tensor product multiplicities are equal this time to branching coefficients
corresponding to the restriction of the simple sp2m(C)-modules to a block diagonal subalgebras
s of sp2m(C). This means that we need to consider restrictions to subalgebras s ' g1⊕ · · ·⊕ gr
where each gi is a Lie algebra isomorphic to sp2mi or glmi with m1 + · · · + mr = m. This
generalises (1.2) which corresponds to the case r = m andmi = 1 for all i.

Secondly, the previous identities (1.1) and (1.2) can be generalised when µ′ is replaced by
anym-tuple β of nonnegative integers. Then the spaces

ΛAn,m =
⊕

β=(β1,...,βm)∈Zm>0

max(β)6n

Λβn,m and ΛC2n,m =
⊕

β=(β1,...,βm)∈Zm>0

max(β)62n

Λβ2n,m

admit a structure of gln × glm-bimodule and of sp2n × sp2m-bimodule respectively. It is well
known that a lot of information about simple modules associated to a simple Lie algebras is
encoded by particular combinatorial structures studied by Lusztig, Kashiwara and Littelmann:
their crystal graph. It then makes sense to look for bicrystal structures associated to ΛAn,m
and ΛC2n,m. The second main result of the paper is Theorem 5.11. It uses the combinatorial
duality techniques developed in [GL20] to get a simple bijection between the highest weight
vertices in the sp2n-crystal B(ΛC2n,m) associated to ΛC2n,m and the King tableaux (a particular
model of tableaux counting the weight multiplicities in type Cm, see [Kin76]). This is reminis-
cent of results by Lee [Lee19] and Heo and Kwon [HK22] expressed in a different combinatorial
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language. In contrast to [Lee19], where a type sp2n × sp2m-bicrystal structure is proposed, we
then study the action of the type A2m−1-crystal operators on B(ΛC2n,m). These are indeed the
operators which are in connection with the charge statistics defined in [LL20]. In particular,
the actions of the A2m−1-crystal operators associated to nodes with unbarred label correspond
to contraction operations on columns of type Cn in ΛC2n,m whereas the action corresponding to
nodes with barred label yield jeu de taquin operations on the positive or negative part of these
columns. This leads to an intriguing statistics on tensor products of typeCn columns which does
not coincide with the intrinsic energy defined from their affine crystal structure.

Finally, our third objective is to use the generalised identity Theorem 7.5 to prove a conjecture
by the last two authors [GL16]. Consider a Levi subalgebra l of sp2m(C) and ν(1), ν(2) two dom-
inant weights for l. The conjecture claims that the two sp2m(C)-modules obtained by induction
from ν(1) and ν(2) are isomorphic if and only if ν(1) and ν(2) coincide up to an automorphism of
the Dynkin diagram associated to l (or equivalently up to permutation of the components in ν(1)
and ν(2) associated to isomorphic simple subalgebras). It was proved in [GL16] under restrictive
conditions on ν(1) and ν(2). Here we prove this conjecture in full generality and obtain in fact a
more general result in which l can also be replaced by any direct sum s of subalgebras of type C.
This is Theorem 8.10. Its proof uses Theorem 7.5 and some elegant results by Rajan [Raj14] on
the irreducibility of Weyl characters.

Most of the techniques and results developed in this paper can be extended to the orthogo-
nal types. There are nevertheless complications due to the existence of the spin representations
and the lack of a natural analogue of King tableaux in the duality context which is relevant for
the paper. This will be addressed in future work. We also tried to make the paper more acces-
sible by starting with proofs of some known results using methods that will be central for the
generalisations that we propose here and in later work.

The paper is organised as follows. In Section 2, we review some well-known results on
the combinatorics of root systems and Lie algebras, mainly to set up the notations that we will
use. In Section 3, we use the Jacobi–Trudi formula for Schur functions to (re)prove the type A
identity (1.1). This allows us to introduce the main tools and methods which will be reinvested
in Section 4 where the typeC identity (1.2) is derived similarly from determinantal identities for
theWeyl characters of typeCn. We have tried to make Sections 2 to 4 easily readable with only a
combinatorial background on symmetric functions and determinantal identities. In Section 5, we
use crystals to define a natural combinatorial duality between highest weight vertices inB(ΛC2n,m)
and King tableaux, thereby giving a bijective proof of (1.1). We then study in Section 6 the
behavior of B(ΛC2n,m) under some crystal operators of type A2m−1. Section 7 is devoted to
establishing the the generalised version of (1.2) in Theorem 7.5 using determinantal techniques
similar to that of Section 4. Finally, we prove the generalised version of the conjecture of [GL16]
in Section 8.
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2. Generalities and settings

Let g be the complex Lie algebra gln(C) (type A) or sp2n(C) (type C) with triangular decom-
position

g =
⊕
α∈R+

gα ⊕ h⊕
⊕
α∈R+

g−α.

The Cartan subalgebra h is of dimension n with basis the family of n × n elementary ma-
trices Ei,i for 1 6 i 6 n when g = gln(C) and the family of 2n × 2n matrices Ei,i − En+i,n+i
for 1 6 i 6 n when g = sp2n(C). Let (εi)16i6n be the dual basis of the basis of h described
above and let V be the real Euclidean space ⊕Rεi with inner product denoted by 〈·, ·〉. For all
k ∈ {1, . . . , n} let ωk =

∑k
i=1 εi be the k-th fundamental weight. The weight lattice of g is

P =
n⊕
i=1

Zεi =
n⊕
i=1

Zωi.

The positive root system R+ of gln(C) is of type An−1 and is given by

R+ = {εi − εj | i, j ∈ {1, . . . , n}, i < j}.

The positive root system R+ of sp2n(C) is of type Cn and is given by

R+ = {εi − εj | i, j ∈ {1, . . . , n}, i < j} ∪ {2εi | i = 1, . . . , n}.

For i ∈ {1, . . . , n − 1} we set αi = εi − εi+1 and αn = 2εn. Then ∆ = {α1, . . . , αn−1}
and ∆ = {α1, . . . , αn} are simple systems in R+ in type A and C, respectively. We denote by
R = R+ ∪ (−R+) the full root system.

For α ∈ R, let α∨ =
2α

〈α, α〉
be the coroot associated to α. We then have

〈α∨i , ωj〉 = δi,j for all i, j ∈ {1, . . . , n}.

The Weyl group W of R is the group generated by the orthogonal reflections (sα)α∈R with
respect to the hyperplanes

Hα := {x ∈ V | 〈x, α∨〉 = 0}.

The groupW is a finite Coxeter group with distinguished set of generators S = {sα | α ∈ ∆}.
The reflection sεi−εj acts on V by permuting the i-th and j-th coordinates. In type C, the reflec-
tion s2εi changes the sign of the i-th coordinate.

The closure of the connected components of the set V \ ∪α∈RHα are called the Weyl cham-
bers. The fundamental Weyl chamber is defined by

C0 = {x ∈ V | 〈x, α〉 > 0 for all α ∈ R+}.

The Weyl groupW acts simply transitively on the set of Weyl chambers.
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Let P+ = P ∩C0 be the set of dominant weights. Note that for all λ ∈ P , there existsw ∈ W
such that w(λ) ∈ C0. In type A, we have

P+ = {(λ1, . . . , λn) ∈ Zn | λi − λi+1 > 0 for all i = 1, . . . , n− 1}

and any partition of length at most n can be seen as an element of P+. In type C, we have

P+ = {(λ1, . . . , λn) ∈ Zn | λi − λi+1 > 0 for all i and λn > 0} =
⊕

Nωi

and there is a bijection between the set of partitions of length at most n and P+.
We now turn to the representation theory of g. The representation ring of g is the ring with

basis indexed by the isomorphism classes [V ] of irreducible representations V of g over C. The
addition is defined such that [V ] + [V ′] = [V ′′] whenever V ′′ ' V ⊕ V ′ and the multiplication
is defined by [V ]× [W ] = [V ⊗W ]. We will denote it byR(g).

Let Z[P ] be the integral group ring on the abelian group P . We will write xλ for the el-
ement associated to λ ∈ P so that we have xλ · xλ

′
= xλ+λ

′ . The Weyl group W of R acts
naturally on Z[P ] by setting w · xλ = xw(λ). Let xi = xεi so that xβ = xβ11 · · · xβnn where
β = (β1, . . . , βn) ∈ P . Then Z[P ] can be seen as the ring of symmetric Laurent polynomials in
n variables. We denote by Z[P ]W the set of fix points:

Z[P ]W = {f ∈ Z[P ] | w · f = f}.

Let char be the injective ring homomorphism from the representation ring of g to Z[P ] defined
by

char([V ]) =
∑

dim(Vµ)xµ

where Vµ is the µ-weight space in V . For λ ∈ P+, let V (λ) be the irreducible module of highest
weight λ in g.

Remark 2.1. In this paper, we will deal with modules for linear Lie algebras (type A) and
symplectic Lie algebras (type C) of various rank. When necessary, we will add a superscript to
the notation V (λ) to indicate the type and the rank of the Lie algebra we are working with. For
instance, we will write V C(λ) for the irreducible module of highest weight λ in a Lie algebra of
type C and V Cm(λ) if we further want to indicate the rankm of the Lie algebra.

Theorem 2.2 ([FH91, Theorem 23.24]). The homomorphism char : R(g) → Z[P ]W is an
isomorphism.

Let ρ be the half sum of positive roots. Then the Weyl character formula asserts that,
for λ ∈ P+, the character of V (λ) is

sλ =
aλ+ρ
aρ

where aλ =
∑
w∈W

ε(w)xwλ.

The set {sλ | λ ∈ P+} is a basis of Z[P ]W . The Kostant partition function P is defined by the
formula

1∏
α∈R+(1− xα)

=
∑
β∈Zm

P(β)xβ.
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The dot action of the Weyl group on P is defined by

w ◦ λ = w(λ+ ρ)− ρ = t−ρwtρ(λ),

where, for all γ ∈ P , tγ denotes the translation by γ.

Theorem 2.3 (Kostant mutliplicity formula). Let λ, µ ∈ P+. Let Kλ,µ be the dimension of the
µ-weight space in the irreducible representation V (λ) of highest weight λ. We have

Kλ,µ =
∑
w∈W

ε(w)P(w ◦ λ− µ).

Example 2.4. Assume that g = gln(C). Then we have W = Sn and w · xi = xw(i) for
all w ∈ W . As a consequence, we have

Z[P ]W ' Z[x±11 , . . . , x±1n ]Sn

where Z[x±11 , . . . , x±1n ]Sn is the ring of symmetric Laurent polynomials in n variables. The
representations V (ωk) for k = 1, . . . , n are isomorphic to Λk(Cn), the k-th exterior power of the
natural representation Cn of g. Then we have char(V (ωk)) = ek(x1, . . . , xn) ∈ Z[P ]W where
ek is k-th elementary symmetric function in n variables:

ei(x1, . . . , xn) =
∑

16i1<i2<...<ik6n

xi1 · · ·xik .

The polynomial representations of gln(C) are the representations V such that
char(V ) ∈ Z[x1, . . . , xn]W is a polynomial in the xi’s (and not a Laurent polynomial).
The set of weights λ ∈ P+ such that V (λ) is polynomial is exactly the set Pn of partitions with
at most n parts and {sλ | λ ∈ Pn} forms a basis of the Z[x1, . . . , xn]W .

3. The duality in type A

In this section, we prove (Equation (1.1)) using the same methods that we will use to prove the
(Equation (1.2)). The root system associated to gln(C) is described in the previous section.

For all integers n,m ∈ Z>1, we denote by Pn the set of partitions with at most n parts and
by Pn,m the set of partitions in Pn such that λ1 6 m (i.e. the Young diagram of a partition
in Pn,m is included in a rectangle with sides n ×m). For any partition λ ∈ Pn, we denote by
(λ1, . . . , λn) the parts of λ and by λ′ the conjugate partition. Note that λ ∈ Pn,m if and only
if λ′ ∈ Pm,n. Recall that any partition λ ∈ Pn is a dominant weight of gln(C).

For N ∈ Z>1 and γ, λ ∈ PN , let KAN−1

λ,γ be the dimension of the γ-weight space in the irre-
ducible glN(C)-module V (λ) of highest weight λ. For any glN(C)-moduleM , let [M : V (λ)]
be the multiplicity of V (λ) inM .

Theorem 3.1. Let µ ∈ Pn,m and let µ′ = (µ′1, . . . , µ
′
m). For all λ ∈ Pn,m, we have[

Λµ
′
1(Cn)⊗ · · · ⊗ Λµ

′
m(Cn) : V (λ)

]
= K

Am−1

λ′,µ′

where Λk(Cn) is the k-th exterior power of the natural representation Cn of gln(C).
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The character of Λk(Cn) is ek(x1, . . . , xn) and so the character of the tensor product
Λµ
′
1(Cn)⊗ . . .⊗ Λµ

′
m(Cn) is eµ′1 . . . eµ′m . If we define uλ,µ′ by the relation

eµ′1 . . . eµ′m =
∑

λ∈Pn,m

uλ,µ′sλ

the theorem states that uλ,µ′ = K
Am−1

λ′,µ′ for all λ ∈ Pn,m.
For β = (β1, . . . , βm) ∈ Zm we define the matrix V(β) by

[V(β)]i,j = eβi+j−i

where ek = 0 whenever k /∈ {0, . . . , n}. We set vβ = det(V(β)). More explicitely we have:

vβ =

∣∣∣∣∣∣∣∣∣
eβ1 eβ1+1 . . . eβ1+m−1

eβ2−1 eβ2 . . . eβ2+m−2
... ... . . . ...

eβm−m+1 eβm−m+2 . . . eβm

∣∣∣∣∣∣∣∣∣ .
The well-known Jacobi–Trudi formula [FH91, Appendix A] tells us that for all λ ∈ Pn, we
have sλ = vλ′ .

Given β ∈ Zm we set xβ = xβ11 · · ·xβmm and eβ = eβ1 · · · eβm . We define E to be the linear
map

E : Z[P ] → Z[P ]W

xβ 7→ eβ

where P is the weight lattice of glm(C). This map can be extended to the set of formal se-
ries Z[[P ]]. Indeed, there are only finitely many β ∈ Zm such that eβ 6= 0. The map E satisfies
the following useful lemma.

Lemma 3.2. Let β and γ in Zm be such that there exists an integer 1 6 s 6 m with βi = 0
for s+ 1 6 i 6 m and γi = 0 for 1 6 i 6 s. Then 1

E(xβ+γ) = E(xβ · xγ) = E(xβ) · E(xγ).

Proof. The equality E(xβ+γ) = E(xβ · xγ) is clear since we have xβ+γ = xβ · xγ . On the one
hand, we have

E(xβ+γ) = eβ1 · · · eβs · eγs+1 · · · eγm
by the hypothesis on β and γ. On the other hand, the same hypothesis implies that

E(xβ) = eβ1 · · · eβs and E(xγ) = eγs+1 · · · eγm

since eβi = 1 for any s + 1 6 i 6 m and eγi = 1 for any 1 6 i 6 s. This yields the desired
equality.

1The map E is not a morphism of algebras, the equality only holds when the variables are separated in a given
monomial.
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We set
∆A
m =

∏
α∈R+

(1− xα) =
∏

16i<j6m

(1− xi
xj

).

Proposition 3.3. For all β ∈ Zm we have E(∆A
m · xβ) = vβ .

Proof. Let β = (β1, . . . , βm). We have∣∣∣∣∣∣∣∣∣
xβ11 xβ1+1

1 . . . xβ1+m−11

xβ2−12 xβ22 . . . xβ2+m−22
... ... . . . ...

xβm−m+1
m xβm−m+2

m . . . xβmm

∣∣∣∣∣∣∣∣∣ = xβ11 . . . xβm−m+1
m ·

∣∣∣∣∣∣∣∣∣
1 x1 . . . xm−11

1 x2 . . . xm−12
... ... . . . ...
1 xm . . . xm−1m

∣∣∣∣∣∣∣∣∣
= xβ11 . . . xβm−m+1

m ·
∏

16i<j6m

(xj − xi)

= xβ11 . . . xβmm ·
∏

16i<j6m

(1− xi
xj

)

= ∆A
m · xβ.

By expanding the determinant, we get

E(∆A
m · xβ) = E

(∑
σ∈Sm

ε(σ)x
β1−(1−σ(1))
1 . . . xβm−(1−σ(m))

m

)
=
∑
σ∈Sm

ε(σ)E(x
β1−(1−σ(1))
1 ) . . .E(xβm−(m−σ(m))

m )

=
∑
σ∈Sm

ε(σ)eβ1−(1−σ(1)) . . . eβm−(m−σ(m))

= vβ

as required.

Recall the definition of the dot action in Section 2.

Proposition 3.4. Let β ∈ Zm. For all w ∈ W , we have vw◦β = ε(w)vβ . Further either vβ = 0
or there exists a partition γ ∈ Pm,n and w ∈ W such that vβ = ε(w)vγ .

Proof. Weprove the first assertion. To do so, it is enough to show that for all i ∈ {1, . . . ,m− 1},
we have vsi◦β = −vβ . The matrix V(si ◦ β) only differs from V(β) on rows i and i + 1.
Let β = (β1, . . . , βm). We have

[V(si ◦ β)]i,j = e(si◦β)i−i+j

= eβi+1−1−i+j

= eβi+1−(i+1)+j

= [V(β)]i+1,j

[V(si ◦ β)]i+1,j = e(si◦β)i+1−(i+1)+j

= eβi+1−(i+1)+j

= eβi+1−i+j

= [V(β)]i,j
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It follows that
vsi◦β = det(V(si ◦ β)) = − det(V(β)) = −vβ.

as required for the first assertion.
We prove the second assertion. Let β ∈ Zm be such that vβ 6= 0. Using the first relation

and the fact that the dot action is simply the action of the Weyl group translated by −ρ, we see
that there exists w ∈ W such that γ = w ◦ β lies in the chamber t−ρ(C0). This means that for
all αi = εi − εi+1 ∈ ∆, we have

〈γ, αi〉 > 〈−ρ, αi〉 = −1.

If there exists αi such that 〈γ, αi〉 = −1, then si ◦γ = γ and this forces vγ and vβ to be 0. This is
impossible since we assumed that vβ 6= 0 hence we must have 〈γ, αi〉 > 0 for all i, i.e. γi > γi+1.
Next we must have γ1 6 n otherwise the first row of V(γ) is 0 and γm > 0 otherwise the last
row of V(γ) is 0. Finally we have γ ∈ Pm,n and vβ = ±vγ , as required.

We are now ready to prove the Schur duality.

Proof of Theorem 3.1. Let µ ∈ Pn,m. We have

E(xµ
′
) = E(∆A

m ·
1

∆A
m

· xµ′)

= E(∆A
m ·

∑
β∈Zm

P(β)xβ+µ
′
) (by definition of P)

=
∑
β∈Zm

P(β)E(∆A
m · xβ+µ

′
)

=
∑
β∈Zm

P(β)vβ+µ′ (by Proposition 3.3)

=
∑

γ∈Pm,n

∑
w∈W

ε(w)P(w ◦ γ − µ′)vγ (by Proposition 3.4)

=
∑

γ∈Pm,n

K
Am−1

γ,µ′ sγ′ (by Theorem 2.3)

=
∑

λ∈Pn,m

K
Am−1

λ′,µ′ sλ.

Since E(xµ
′
) = eµ′ we get the result.

4. The duality in type C

The root system associated to sp2n(C) is of typeCn and we keep the notation of Section 2. Recall
that the set of dominant weights of sp2n(C) is in bijection with Pn. We will freely identify those
two sets.

Let V be the Euclidean space of dimension m with basis (ε1, . . . , εm). We define the invo-
lution I on V by

I(β1, . . . , βm) = (−βm, . . . ,−β1).
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Definition 4.1. Let β ∈ Pn,m. We define the partition β̂ ∈ Pm,n by

β̂ := I(β′) + n · (1, . . . , 1).

The partition β̂ is obtained by taking the conjugate of the complement of β in the rectan-
gle n×m. Note that the map ·̂ depends on the integers n and m. It sends a weight of Cn to a
weight of Cm.

Example 4.2. Let β = (5, 4, 2, 1) ∈ 4× 5. Then we have β′ = (4, 3, 2, 2, 1) and

β̂ = I(β′) + 4 · (1, 1, 1, 1, 1) = (3, 2, 2, 1, 0).

In the figure below, we represent the partition β̂ (in green) as the conjugate complement of the
partition β (in white) in the rectangle 4× 5:

The map ·̂ will play a role analogue to the conjugation in Section 3. For N ∈ Z>1

and γ, λ ∈ PN , we writeKCN
λ,γ for the dimension of the γ-weight space in the irreducible repre-

sentation V (λ) ∈ sp2N(C) of highest weight λ.
The following result (stated as (1.2) in the introduction) is a consequence of the symplectic

Howe duality [How95, Theorem 3.8.9.3]. We prove it using similar arguments to the proof of
Theorem 3.1. This determinantal approach is crucial in our context, because we will see that
it can easily be extended to Levi branchings (Theorem 7.5) without using any sophisticated
algebraic construction.

Theorem 4.3. Let µ ∈ Pn,m and let µ′ = (µ′1, . . . , µ
′
m). For all λ ∈ Pn,m, we have[

Λµ
′
1(C2n)⊗ . . .⊗ Λµ

′
m(C2n) : V (λ)

]
= KCm

λ̂,µ̂

where Λk(C2n) is the k-th exterior power of the natural representation C2n of sp2n(C).

Following [FH91, Section 24.2], the character of Λk(C2n) is ek(x1, . . . , xn, x
−1
1 , . . . , x−1n ).

If we define the coefficients u by setting (we omit the variables)

eµ′1 . . . eµ′m =
∑

λ∈Pn,m

uλ,µ′sλ

then the theorem states that uλ,µ′ = KCm
λ̂,µ̂

for all λ ∈ Pn,m.
For β = (β1, . . . , βm) ∈ Zm we define the matrix V(β) by

[V(β)]i,j = eβi−(i−j) − eβi−(i+j)



combinatorial theory 2 (2) (2022), #12 11

where ek = 0 whenever k /∈ {0, . . . , 2n}. We set vβ = det(V(β)). More explicitely we have

vβ =

∣∣∣∣∣∣∣∣∣
eβ1 − eβ1−2 eβ1+1 − eβ1−3 . . . eβ1+m−1 − eβ1−m−1

eβ2−1 − eβ2−3 eβ2 − eβ2−4 . . . eβ2+m−2 − eβ2−m−2
... ... . . . ...

eβm−m+1 − eβm−m−1 eβm−m+2 − eβm−m−2 . . . eβm − eβm−2m

∣∣∣∣∣∣∣∣∣ .
The Jacobi–Trudi formula in typeCn [Mac95, Section I, Identity 3.5] states that for all λ ∈ Pn,m,
we have sλ = vλ′ .

Given β ∈ Zm we set xβ = xβ11 . . . xβmm and eβ = eβ1 . . . eβm . We then define E to be the
linear application:

E : Z[P ] → Z[P ]W

xβ 7→ eβ

where P is the weight lattice of sp2m(C). It is not hard to check that the map E can be extended
to Z[[P ]] and that it satisfies Lemma 3.2.

The involution I on V induces a ring involution Z[P ] that maps xβ to xI(β) for all β ∈ P . In
particular it maps xi = xεi to x−1m−i = x−εm−i . We will still denote this involution by I. We set

∆C
m = I

( ∏
α∈R+

(1− xα)

)
=

∏
16i<j6m

(
1− xi

xj

) ∏
16i6j6m

(
1− 1

xixj

)
.

Proposition 4.4. For all β ∈ Zm, we have E(∆C
m · xβ) = vβ .

Proof. Let β = (β1, . . . , βm). We have

det(xβi−i+ji − xβi−i−ji ) =
m∏
i=1

(xβi−i+1
i − xβi−i−1i )

∣∣∣∣∣∣∣∣∣
1 x1 + x−11 . . . xm−11 + x−m+1

1

1 x2 + x−12 . . . xm−12 + x−m+1
2

... ... . . . ...
1 xm + x−1m . . . xm−1m + x−m+1

m

∣∣∣∣∣∣∣∣∣
=

m∏
i=1

(xβi−i+1
i − xβi−i−1i )

∣∣∣∣∣∣∣∣∣
1 x1 + x−11 . . . (x1 + x−11 )m−1

1 x2 + x−12 . . . (x2 + x−12 )m−1

... ... . . . ...
1 xm + x−1m . . . (xm + x−1m )m−1

∣∣∣∣∣∣∣∣∣
=

m∏
i=1

(xβi−i+1
i − xβi−i−1i )

∏
16i<j6m

(xj + x−1j − xi − x−1i )

=
m∏
i=1

(xβi−i+1
i − xβi−i−1i )

∏
16i<j6m

xj(1−
xi
xj

)(1− 1

xixj
)

=
m∏
i=1

(xβi−i+1
i − xβi−i−1i )x2 . . . x

m−1
m

∏
16i<j6m

(1− xi
xj

)(1− 1

xixj
)
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=
m∏
i=1

(xβii − x
βi−2
i )

∏
16i<j6m

(1− xi
xj

)(1− 1

xixj
)

= xβ
m∏
i=1

(1− 1

x2i
)
∏

16i<j6m

(1− xi
xj

)(1− 1

xixj
)

= ∆C
m · xβ

as required. By expanding the determinant, we get

E(∆C
m · xβ) = E

(∑
σ∈Sm

ε(σ)
m∏
i=1

x
βi−(i−σ(i))
i − xβi−(i−σ(i))−2i

)

=
∑
σ∈Sm

ε(σ)E

(
m∏
i=1

x
βi−(i−σ(i))
i − xβi−(i−σ(i))−2i

)

=
∑
σ∈Sm

ε(σ)
m∏
i=1

E
(
x
βi−(i−σ(i))
i − xβi−(i−σ(i))−2i

)
(by Lemma 3.2)

=
∑
σ∈Sm

ε(σ)
m∏
i=1

eβi−(i−σ(i)) − eβi−(i−σ(i))−2

= vβ.

In the proof of Theorem 3.1, we used the trick

E(xµ
′
) = E(∆A

m ·
1

∆A
m

xµ
′
)

and we expanded the inverse of ∆A
m with the Kostant partition function. Using the same idea

here involves some twisted Kostant partition function.

Definition 4.5. ([Lec06a, Lemma 3.3.1]) The element ∆C
m is invertible in the ring of formal

Laurent series in the variables (x±1i )16i6m and we can define a partition function associated to
∆C
m by setting

1

∆C
m

=
∑
β∈Zm

P̃(β)xβ.

Lemma 4.6. We have P̃(β) = P(I(β)) where P is the usual Kostant partition function.

Proof. Using the fact that I is an involution we get

1

∆C
m

= I

 1∏
α∈R+

(1− xα))

 = I(
∑
β∈Zm

P(β)xβ) =
∑
β∈Zm

P(β)xI(β) =
∑
β∈Zm

P(I(β))xβ

hence the result.
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The next step in our proof of Theorem 3.1 was to show that the determinant vβ satisfied the
relation vw◦β = ε(w)vβ for all w ∈ Sm. In type Cm, we need to modify the dot action to obtain
such a relation. More precisely, we are looking for δ ∈ P such that we have for all w ∈ W :

vw◦β = ε(w)vβ where w ◦ β = w(β + δ)− δ.

It will turn out that there is a unique δ satisfying this relation. The proof is based on the following
symmetry.

Proposition 4.7. We have en+k = en−k for all k ∈ Z where ek = 0 if k /∈ {1, . . . , 2n}.

Recall that the m-th fundamental weight in the root system of type Cm is ωm = (1, . . . , 1)
and that the half sum of positive roots is ρm = (m, . . . , 1).

Theorem 4.8. Let δ = I(ρm)− n · ωm ∈ Zm and define a “dot action” ofW on Zm by setting

w ◦ β = w(β + δ)− δ.

We have

(1) For all β ∈ Zm, we have vw◦β = ε(w)vβ .

(2) If vβ 6= 0, there exists a partition γ ∈ Pm,n and w ∈ W such that w ◦ β = γ and
vβ = ε(w)vγ .

Proof. We have δ = (−n− 1, . . . ,−n−m). Recall that the Weyl groupW is generated by the
set {s1, . . . , sm−1, sm} where si acts on V by permuting the i and the i + 1-th coordinates and
sm acts by changing the sign of them-th coordinate.

(1) To prove this assertion, it is enough to show that

vsi◦β = −vβ for all 1 6 i 6 m− 1 and vsm◦β = −vβ.

Let β = (β1, . . . , βm) ∈ Zm and i ∈ {1, . . . ,m− 1}. We have

si ◦ β = si(β + δ)− δ
= (β1 + δ1, . . . , βi+1 + δi+1, βi + δi, . . . , βm + δm)− (δ1, . . . , δm)

= (β1, . . . , βi+1 + δi+1 − δi, βi + δi − δi+1, . . . , βm)

= (β1, . . . , βi+1 − 1, βi + 1, . . . , βm).

The matrix V(si ◦ β) only differs from the matrix V(β) on rows i and i+ 1. We have

[V(si ◦ β)]i,j = e[si◦β]i−(i+j) − e[si◦β]i−(i−j)

= eβi+1−1−(i+j) − eβi+1−1−(i−j)

= eβi+1−((i+1)+j) − eβi+1−((i+1)−j)

= [V(β)]i+1,j
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[V(si ◦ β)]i+1,j = e[si◦β]i+1−(i+1+j) − e[si◦β]i+1−(i+1−j)

= eβi+1−(i+1+j) − eβi+1−(i+1−j)

= eβi−(i+j) − eβi−(i−j)

= [V(β)]i,j

Hence the result on the determinant.
Next we have

sm ◦ β = sm(β + δ)− δ
= (β1 + δ1, . . . , βm−1 + δm−1,−βm − δm)− (δ1, . . . , δm)

= (β1, . . . , βm−1,−βm − 2δm)

= (β1, . . . , βm−1,−βm + 2n+ 2m).

The matrix V(sn ◦ β) only differs from the matrix V(β) on rowsm and we have

[V(sm ◦ β)]m,j = e[sn◦β]m−(m+j) − e[si◦β]m−(m−j)

= e−βm+2n+2m−(m+j) − e−βm+2n+2m−(m−j)

= en+(n−βm+m−j) − en+(n−βm+m+j)

= en−(n−βm+m−j) − en−(n−βm+m+j) (by the previous proposition)
= eβm−m+j − eβm−m−j

= −[V(β)]m,j

hence the result on the determinant.

(2) Let β ∈ Zm be such that vβ 6= 0. The “dot action” is simply the action of W translated
by−δ. This action is transitive on the set of Weyl chambers centered at δ. The set of Weyl
chambers centered at−δ is the set of Weyl chambers centered at 0 translated by−δ. Now
the set of Weyl chambers centered at 0 is parametrised by the set of simple system of the
form w∆ where w ∈ W . More precisely, the Weyl chamber w(C0) is

w(C0) = {x ∈ V | 〈x, α〉 > 0 for all α ∈ w(∆)}.

We have I ∈ W and

I(∆) = {I(α1), . . . , I(αm−1), I(2εm)} = {α1, . . . , αm−1,−2ε1}.

As a consequence the Weyl chamber t−δ(I(C0)) is defined by

x ∈ t−δ(I(C0))⇔ 〈x, α∨〉 > 〈−δ, α∨〉 for all α ∈ I(∆).

By transitivity of the dot action, there exists w ∈ W such that γ = w ◦ β ∈ t−δ(I(C0)).
Further, since we assumed that vβ 6= 0, γ cannot lie on the wall of the chamber t−δ(I(C0)).
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The equations above for the root αi ∈ I(∆) and −2ε1 ∈ I(∆) yield (using α∨i = αi
and (−2ε1)

∨ = −ε1)

〈γ, αi〉 > 〈−δ, αi〉 = −δi + δi+1 = −1 and 〈γ,−ε1〉 > 〈−δ,−ε1〉 = −(n+ 1)

in other words
γi − γi+1 > 0 and γ1 6 n

which was what we were looking for, since vβ = ε(w)vγ .

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Let µ ∈ Pn,m. First we have

E(xµ
′
) = E

(
∆C
m ·

1

∆C
m

· xµ′
)

= E

(
∆C
m

∑
β∈Zm

P̃(β)xβ+µ
′

)
=
∑
β∈Zm

P̃(β)E
(

∆C
mxβ+µ

′
)

=
∑
β∈Zm

P̃(β)vβ+µ′

=
∑

γ∈Pm,n

∑
w∈W

ε(w)P̃(w ◦ γ − µ′)vγ

=
∑

γ∈Pn,m

∑
w∈W

ε(w)P̃(w ◦ λ′ − µ′)sλ.

This shows that
uλ,µ′ =

∑
w∈W

ε(w)P̃(w ◦ λ′ − µ′).

Next, using the fact that I(δm,n) = ρm + n · ωm and the equality P̃(β) = P(I(β)) we get∑
w∈W

ε(w)P̃(w ◦ λ′ − µ′) =
∑
w∈W

ε(w)P(I(w ◦ λ′)− I(µ′))

=
∑
w∈W

ε(w)P(I(w(λ′ + δm,n)− δm,n)− I(µ′))

=
∑
w∈W

ε(w)P(w(I(λ′) + I(δm,n))− I(δm,n)− I(µ′))

=
∑
w∈W

ε(w)P(w(I(λ′) + ρ+ n · ωm)− ρ− n · ωm − I(µ′))
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=
∑
w∈W

ε(w)P(w(I(λ′) + n · ωm + ρ)− (I(µ′) + n · ωm)− ρ)

=
∑
w∈W

ε(w)P(w(λ̂+ ρ)− µ̂− ρ)

= KCm
λ̂,µ̂

as desired.

5. The combinatorial duality

The goal of this section is to give a bijective proof of Theorem 4.3. This is achieved by es-
tablishing in Theorem 5.11 a combinatorial duality between a certain set of tensor products of
type Cn columns on the one hand, and a set of type Cm tableaux called King tableaux on the
other hand. To make this duality consistent with the usual convention on the combinatorial ob-
jects that we shall need (tensor products of crystals and King tableaux) it will be convenient to
use the following realisation of the root system of type Cn.

Let n ∈ Z>1 and consider the type Cn alphabet

Cn =
{
n < · · · < 1 < 1 < · · · < n

}
.

This enables us to realise the root system of type Cn by setting{
αi = εi − εi+1 for i = 1, . . . , n− 1
α0 = 2ε1.

for the simple roots, where εi = −εi for all i = 1, . . . , n, and

ωi = εn + · · ·+ εi+1 for i = 0, . . . , n− 1.

A column of height k on Cn (also called a column of type Cn) is a subset c of Cn of cardinal-
ity k, which we represent by the Young tableau of shape (1k) filled by the elements of c, increas-
ing from top to bottom. We will write |c| = k. For any column c on Cn, and for all i = 1, . . . , n
let

Ni(c) =
∣∣{x ∈ c | x 6 i or x > i}

∣∣ .
Definition 5.1. A column c onCn is called n-admissible ifNi(c) 6 n−i+1 for all i = 1, . . . , n.

Example 5.2. The set c = {2, 1, 1, 3} =

2

1

1

3

is a column on Cn for all n > 3, and we have

|c| = 4. It is not 3-admissible since N1(c) =
∣∣{3, 2, 1, 1}∣∣ = 4 > 3 − 1 + 1. However, c is

n-admissible for n > 4.

Let us recall the crystal structure on the set of columns of a given height due to [KN94,
Section 4.3]. First, columns of height 1 realise the crystal of the vector representation of type
Cn as follows:
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n · · · 1 1 · · · n
n− 1 1 0 1 n− 1

where the arrow labeled by i denotes the action of the Kashiwara crystal operator fi. In other
terms, since

wt
(
x
)

=
n∑
i=1

aiεi where ai =

 1 if x = i
−1 if x = i

0 otherwise,

this realises the crystal B(ωn−1) of the fundamental representation V (ωn−1). To get the crystal
structure on any tensor power B(ωn−1)

⊗`, we use Kashiwara’s tensor product rule. It works
as follows. Each vertex b = x1 ⊗ x2 ⊗ · · · ⊗ x` ∈ B(ωn−1)

⊗` can be identified with its word
w = x1 · · ·x` of length ` onCn. Now, label each letter ofw in {i+ 1, i} (resp. in {i, i+ 1}) with
a symbol + (resp. −) and ignore the others. Let wi be the word in the symbols + and − so ob-
tained. Bracket recursively all possible +− in wi (forgetting the previously bracketed symbols).
Then fiw (resp. eiw) is obtained by applying fi (resp. ei) to the letter of w which contributes as
the leftmost unbracketed + (resp. the rightmost unbracketed −). If this symbol does not exist,
we set fiw = 0 (resp. eiw = 0). To compute f0w (resp. e0w), one proceeds similarly but this
time by encoding only the letters n in w by a + and the letters n by a −.

Example 5.3. Let n = 2 and w = 1̄22̄12211̄2̄. Then w1 = −−+ +−−+−+ and we get the
bracketing w1 = −− (+(+−)−)(+−)+. This gives f1w = 1̄22̄12211̄1̄ and e1w = 1̄12̄12211̄2̄.

One can now interpret any column c =
x1

x`

of height ` as the element x1 ⊗ · · · ⊗ x` ∈

B(ωn−1)
⊗` In particular, for all i = 0, . . . , n−1, the column c =

n

n-i

is a highest weight vertex of

weight ωn−i−1, and therefore generates the crystal B(ωn−i−1) of the fundamental representation
V (ωn−i−1). Note that the shape of c is given by the partition (1i+1), that is, the coordinates of
wt(c) = ωn−i−1 in the basis (εn, . . . , ε1). The following result is due to [KN94, Section 4.5], see
also [Lec07, Proposition 4.2.1] for the reformulation using Definition 5.1.

Theorem 5.4. The vertices of B(ωn−i−1) are the n-admissible columns.

Example 5.5. Take n = 3 and i = 1. We realise the fundamental crystalB(ω1) by n-admissible
columns of height 2 as follows. Note that only 3

3
is not n-admissible.
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3

2

3

1

3

1

3

2

2

1

2

1

2

2

1

1

2

3

1

2

1

3

1

2

1

3

2

3

1 0 1

2 2 2

0

1 2

1 1

0 0

2

2

1

Let us now fix n,m ∈ Z>1. In the spirit of [GL20, Section 2.2], we define a “combinatorial
Fock space” which will naturally be endowed with a type Cn crystal structure.

Definition 5.6. The Kashiwara–Nakashima (KN) Fock space is the set

Fn,m = {c1 ⊗ · · · ⊗ cm | cj is a column on Cn for all j = 1, . . . ,m} .

We will be interested in a particular subset of the KN Fock space. Denote by Cm,2n the set
of compositions µ′ = (µ′1, . . . , µ

′
m) such that max

{
µ′j ; 1 6 j 6 m

}
6 2n. For µ′ ∈ Cm,2n,

consider the set

Bµ′ =
{
c1 ⊗ · · · ⊗ cm ∈ Fn,m | |cj| = µ′j for all j = 1, . . . ,m

}
.

By choosing to read them columns of any vertex of Bµ′ first from left to right and next from top
bottom, we get an embedding of crystals Bµ′ ↪→ B(ωn−1)

⊗|µ|, and Bµ′ realises the crystal of the
representation

Λµ
′

2n,m = Λµ
′
1(C2n)⊗ · · · ⊗ Λµ

′
m(C2n)

of sp2n(C) (which we have encountered in Section 4). Moreover, we have the decomposition as
direct sum of crystals

Fn,m =
⊕

µ′∈Cm,2n

Bµ′ .
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Note that in the basis (εn, . . . , ε1), we have wt(b) = (an, . . . , a1) where, for all i = 1, . . . , n,

ai = # entries i in b−# entries i in b.

Inside Bµ′ , we consider the following two subsets

Bhw
µ′ = {b ∈ Bµ′ | ei(b) = 0 for all i = 0, . . . , n− 1} and Bhw

µ′,λ =
{
b ∈ Bhw

µ′ | wt(b) = λ
}

for any λ ∈ Pn,m. In other terms, Bhw
µ′ is the set of highest weight vertices in Bµ′ .

Let us recall briefly how to check that an element b ∈ Bµ′ is in Bhw
µ′ . Let w be the word

obtained by reading b (as explained above). Define similarly the weight of a word on Cn to be
the n-tuple whose i-th coordinate is the difference between the number of i’s and the number of
i’s. Then b is a highest weight vertex if and only if the weight of each prefix of w is a partition.

Example 5.7. Let n = 4, m = 3, µ′ = (2, 3, 1) and b =
4

3
⊗

2

1

1

⊗ 4 ∈ Bµ′ ,

so that w = 4̄3̄2̄1̄14̄. The prefixes of w are 4̄, 4̄3̄, 4̄3̄2̄, 4̄3̄2̄1̄, 4̄3̄2̄1̄1, 4̄3̄2̄1̄14̄ with respective
weights (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1), (1, 1, 1, 0), (2, 1, 1, 0), which are all parti-
tions, therefore b is a highest weight vertex. More precisely, b ∈ Bhw

(2,3,1),(2,1,1,0).

Consider now the alternative alphabet C ∗m =
{

1 < 1 < · · · < m < m
}
. Similarly to Defi-

nition 5.6, we can consider columns on C ∗m and construct another combinatorial Fock space.

Definition 5.8. The King Fock space is the set

Ḟm,n = {d1 ⊗ · · · ⊗ dn | di is a column on C ∗m for all i = 1, . . . , n} .

Remark 5.9. Unlike Fn,m, there is no simple Cm-crystal structure on Ḟm,n. This will be dis-
cussed in more detail in Section 6.

We are ready to define a duality

Fn,m −→ Ḟm,n
b 7−→ b∗.

Let µ′ be a composition as before and b = c1 ⊗ · · · ⊗ cm ∈ Bµ′ . For each j = 1, . . . ,m, let

c̃j = {1 6 x 6 n | x /∈ cj} and
c̃j = {1 6 x 6 n | x ∈ cj} = {1, . . . , n} ∩ cj,

and set
b̃ = c̃1 ⊗ c̃1 ⊗ · · · ⊗ c̃m ⊗ c̃m.

Then b̃ is a tensor product of 2m columns of type An−1. We can now apply the duality ∗ of
[GL20] to the element b̃ to get an element b∗ ∈ Ḟm,n. More precisely, we set

b∗ = d1 ⊗ · · · ⊗ dn where di = {x ∈ C ∗m | i ∈ c̃x} for all i = 1, . . . , n.
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Example 5.10. Let n = 5 and b = c1⊗c2 =

3

2

4

5

⊗

5

2

1

1

2

4

. Then we have c̃1 =
1

4

5

, c̃1 =
4

5
, c̃2 =

3

4

and c̃2 =
1

2

4

. We obtain the following product of columns of type A4:

b̃ = c̃1 ⊗ c̃1 ⊗ c̃2 ⊗ c̃2 =
1

4

5

⊗ 4

5
⊗ 3

4
⊗

1

2

4

.

Finally, we find

b∗ =
1

2
⊗ 2 ⊗ 2 ⊗

1

1

2

2

⊗ 1

1
.

In particular, [GL20, Proposition 2.17] ensures that if b ∈ Bhw
µ′ , then b∗ is a semistandard

tableau (on the alphabet C ∗m), where we identify a tableau with the tensor product of its columns
(from left to right with our convention). In fact, we have more. In order to state the following
theorem, recall that a tableau with entries in C ∗m is called a King tableau if

(1) it is semistandard, and

(2) if each entry in row j is greater than or equal to j for every index j.

The weight of a tableau t with entries in C ∗m is the sequence wt(t) = (am, . . . , a1) where, for all
j = 1, . . . ,m,

aj = # entries j in b−# entries j in b.

In order to state the main result of this section, recall the involutive map β′ 7→ β̂ defined in
Section 4. Moreover, let us denote by Kλ̂,µ̂ the set of King tableaux of shape λ̂ and weight µ̂.

Theorem 5.11. We have a bijection

Bhw
µ′,λ −→ Kλ̂,µ̂
b 7−→ b∗.

By general crystal theory, the cardinality of Bhw
µ′,λ equals the multiplicity of V (λ) in Λµ

′

2n,m.
Moreover, it is known that the cardinality of Kλ̂,µ̂ equals the weight multiplicity KCm

λ̂,µ̂
, see

[Kin76]. Therefore, the bijection of Theorem 5.11 permits to recover (Theorem 4.3). In fact, we
directly obtain the more general version where the heights of the columns in the tensor product
are not necessarily decreasing (that is, using compositions instead of partitions).
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Example 5.12. Let us go back to Example 5.7, where we had b ∈ Bhw
µ′,λ with µ′ = (2, 3, 1) and

λ = (2, 1, 1, 0). We compute b̃ =
1

2
⊗∅⊗ 3

4
⊗ 1 ⊗

1

2

3

⊗∅, which yields b∗ =
1

2

3

⊗ 1

3
⊗ 2

3
⊗ 3 ,

represented by the tableau
1 1 2 3

2 3 3

3

,

which is a King tableau of shape (4, 3, 1) = λ̂ and weight (3, 1, 2) = µ̂.

Proof. Let us start by proving that the duality ∗ intertwines shape and weight as claimed. Write
wt(b∗) = µ = (µm, . . . , µ1). From the definition of ∗, we see that, for all j = 1, . . . ,m,

µj = |c̃j| − |c̃j|
= # unbarred entries in cj − (n−# barred entries in cj)
= n− |cj|
= n− µ′j.

Therefore, we have µ = µ̂. Similarly, if we write b∗ = d1 ⊗ · · · ⊗ dn and sh(b∗) = λ =
(λ1, . . . , λm), we have, for all i = 1, . . . , n,

λ
′
i = |di|

=
m∑
j=1

((
1− 1cj(i)

)
+ 1cj(i)

)
= m−

m∑
j=1

(
1cj(i)− 1cj(i)

)
= m−

(
# entries i in b−# entries i in b

)
= m− λi,

and taking the transpose yields λ = λ̂.
In particular, if b ∈ Bhw

µ′ then λ̂ is a partition. In fact, b ∈ Bhw
µ′ is a highest weight vertex for

the parabolic An−1-action if and only if b∗ is semistandard on C ∗n by [GL20, Proposition 2.17].
The only thing that remains to be proved is that e0(b) = 0 if and only if b∗ satisfies the Condition
(2) defining King tableaux. We prove this by induction on |µ|.

If |µ| = 1 then the only element of Bhw
µ′ is b = n . We have b∗ = 1 ⊗ · · · ⊗ 1 ⊗∅, which

is the only King tableau of weight µ̂ = (n− 1).
Fix r ∈ Z>1 and assume that the claim holds for all a ∈ Bν with |ν| = r. Let b ∈ Bµ′

with |µ| = r + 1. Let x be the bottommost entry of the rightmost column of b, and let a be
the element obtained by deleting x from b. Assume first that a and b have the same number of
non-trivial columns, say k. If x = j > 1, then by definition, b∗ is obtained by adding a k in
the j-th column of a∗. By the induction hypothesis applied to a = a1 ⊗ · · · ⊗ an, one sees that
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Condition (2) holds for b∗ unless j = 1 and a1 = {1, 2, . . . , k}. This is equivalent to saying that
the contribution in ε1 in wt(b) is negative. If x = j 6 1, then b∗ is obtained by adding a k in the
j-th column of a∗. One sees that Condition (2) holds for b∗ if and only if it holds for a∗, and that
e0(b) = 0 if and only if e0(a) = 0, and we conclude using the induction hypothesis applied to a.

Finally, if a has k non-trivial columns and b has k + 1 non-trivial columns, one uses similar
arguments to validate the induction step in this case too.

Remark 5.13. We conclude this section by mentioning two related recent results.

(1) In [Lee19, Theorem 2.7], Lee constructed a weight-preserving bijection between certain
semistandard oscillating tableaux on the one hand and certain King tableaux on the other
hand. In fact, the highest weight vertices of Theorem 5.11 correspond to certain semis-
tandard oscillating tableaux (as illustrated in Example 5.7). Therefore, Theorem 4.3 gives
a simple proof of [Lee19, Theorem 2.7] just based on the combinatorics of the columns
of type Cn.

(2) Theorem 5.11 enables us to parametrise the highest weight vertices in the KN Fock space,
and hence the connected components of the crystal, by appropriate King tableaux. On the
other hand, it is well-known that the position of an element of the KN Fock space within
its connected component is determined by its corresponding Kashiwara–Nakashima (KN)
tableau, obtained by applying the symplectic jeu de taquin [Lec05]. This induces a bijec-
tion between Fn,m and pairs (P,Q) where P is a KN tableau and Q is a King tableau,
with the property that λ is the shape of P if and only if λ̂ is the shape of Q (here, λ is
the weight of the corresponding highest weight vertex). This is reminiscent of the crystal
RSK correspondence in type A [GL20, Theorem 2.25]. In type C, Heo and Kwon intro-
duced another analogue of the RSK correspondence (also thought of as a combinatorial
symplectic Howe duality) [HK22]. They established a bijection which maps elements of
the KN Fock space to pairs (P,Q) where P is an element of the so-called spinor model
and Q is a King tableau [HK22, Theorem 7.7]. It turns out that P can be identified with
a KN tableau via the bijection of [HK22, Proposition 4.7]; and λ is the shape of P if and
only if λ̂ is the shape of Q. In particular, restricting to highest weight vertices in the KN
Fock space yields the bijection in Theorem 5.11. Finally, it is natural to ask whether these
symplectic RSK correspondences arise from a bicrystal structure on the KN Fock space
in the spirit of [GL20, Theorem 2.25]. This will be briefly discussed in Remark 6.15(1)
of the upcoming section.

6. Bicrystals and charge

As mentioned in Remark 5.9, Ḟm,n does not come with a natural type Cm crystal structure.
In fact, even on the subset of King tableaux, finding such a crystal structure is a challenging
problem, see Remark 6.15. However, there is a natural type A2m−1 crystal structure on Ḟm,n
induced from the crystal of the vector representation below

1 1 2 2 · · · m m .1 1 2 2 m− 1 m
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To compute the A2m−1-crystal structure on Ḟm,n, we use a different reading than the one
used in Section 5. More precisely, we choose this time to read the columns of b ∈ Ḟm,n first
from right to left and next from top to bottom. The action of the crystal operators, denoted by
ḟj , 1 6 j 6 m, and ḟj , 1 6 j 6 m − 1 (resp. ėj and ėj) on the resulting word is computed
by using the same bracketing procedure as in Section 5 (illustrated in Example 5.3), where we
encode this time j by + and j by− for ḟj, ėj , and j by + and j+1 by− for ḟj, ėj (and we ignore
the other letters). This is illustrated in the example below.

Example 6.1. Take n = 3,m = 2 and b∗ =
1

2
⊗

1

1

2

⊗ 1

2
. Let us detail the computation of

ḟ1b
∗. Reading b∗ yields the word w1 = 1211̄2̄1̄2. Looking only at 1 and 2, we get w1 = −+ +−

and the bracketing yields w1 = − + (+−). Thus we get ḟ1b∗ =
1

2
⊗

1

2

2

⊗ 1

2
. Similarly, one

checks that ė1b∗ =
1

2
⊗

1

1

2

⊗ 1

1
, ḟ2b∗ =

1

2
⊗

1

1

2

⊗ 1

2
and that ė1b∗ = ė2b

∗ = ḟ1b
∗ = 0.

In the casem = 1, the duality ∗ intertwines the following two important properties.

Proposition 6.2. Let c be a column on Cn. Then c is n-admissible if and only if c∗ is a highest
weight vertex in the A1-crystal.

Proof. By definition of the A1-crystal structure on Ḟm,n, the element c∗ = c∗1 ⊗ · · · ⊗ c∗n is a
highest weight vertex if and only if for all i = 1, . . . , n, c∗i ⊗· · ·⊗ c∗n has at least as many entries
1 as 1. Now, recall that c is n-admissible if and only if Ni(c) 6 n − i + 1 for all i = 1, . . . , n
(Definition 5.1). We can compute Ni(c) on c∗ by using the definition of the duality: we get

Ni(c) =
(
# entries 1 in c∗i ⊗ · · · ⊗ c∗n

)
+ (n− i+ 1)− (# entries 1 in c∗i ⊗ · · · ⊗ c∗n ) .

Since Ni(c) 6 n− i+ 1 we get the desired characterisation.

Example 6.3. Let n = 6 and c =

3

1

1

3

4

6

, which is n-admissible. Now, we can compute c∗ =

1 ⊗ 1 ⊗ 1 ⊗ 1

1
⊗ 1 ⊗ 1

1
, and we see that c∗ verifies the expected property.

Remark 6.4. Similarly, there is a notion of coadmissibility for columns, which is easily charac-
terised on the dual. More precisely, given a column c of type Cn, set, for all i = 1, . . . , n,

Mi(c) =
∣∣{x ∈ c | i 6 x 6 i

}∣∣ .
Then c is called n-coadmissible if Mi(c) 6 i for all i = 1, . . . , n. As in Proposition 6.2, we
can prove that c is n-coadmissible if and only if c∗ is a highest weight vertex with respect to the
alternative A1-crystal structure where we choose to read the n factors from left to right.
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In general, we will now show some interesting relationships between theCn-crystal structure
on Fn,m and the A2m−1-crystal structure on Ḟm,n.

For the next result, recall the type Cn plactic relation called contraction of a column defined
in [Lec05, Remark (ii) p. 213], which is given by removing a certain pair (k, k) appearing in the
column. It is easy to see that contraction has an inverse, which we call dilatation. Moreover, for
1 6 j 6 m define κj : Fn,m → Fn,m by setting a = κjb if and only if a∗ = ėjb

∗ (i.e. there is an
arrow a∗

j−→ b∗).

Theorem 6.5. For all 1 6 j 6 m, κj is the contraction of the j-th column.

Proof. Let b = c1 ⊗ · · · ⊗ cm ∈ Bµ′ for some µ′ ∈ Cm,2n. If a∗ = ėjb
∗, then a∗ is obtained

from b∗ by changing a j into a j, say in column k. That is, a is obtained from b by removing
the pair (k, k) in column j. In fact, by construction, the contraction of the j-th column is the
only Cn-crystal isomorphism which removes such a pair. Therefore, it suffices to prove that κj
is a Cn-crystal isomorphism to deduce that κj is the contraction of the j-th column. So we will
prove that

κjeib = eiκjb for all 0 6 i 6 n− 1. (6.1)

First of all, it is clear that (6.1) holds in the following two cases:

• ei does not act on the j-th column of b,

• i /∈ {k, k − 1}.

Let us look at the remaining cases, that is, ei acts on the j-th column of b and

(1) i = k − 1. In this case, since we already know that k, k ∈ cj , we are ensured that ei acts
non trivially on b if and only if k − 1 ∈ cj and k − 1 /∈ cj . This means that we have the
configuration

cj =
k

k-1

k

.

One checks that applying κjei amounts to

(a) changing k into k − 1, followed by
(b) removing the pair (k − 1, k − 1)

On the other hand, applying eiκj amounts to

(a) removing the pair (k, k), followed by
(b) changing k − 1 into k
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Both of these procedures yield the same result, namely, we get the j-th column

cj =
k

(where k − 1 and k have been deleted), and we have (6.1) as expected.

(2) i = k. Similarly, ei acts non trivially on b if and only if k + 1 /∈ cj and k + 1 ∈ cj , and
this means that we have the configuration

cj =
k

k

k+1

.

In this case, one checks that (6.1) holds and that the resulting column is

cj =
k
.

Example 6.6. We illustrate Case (1) of the previous proof by taking n = 4, m = 1 and b =

c1 =

4

3

2

3

. We have j = 1, we check that k = 3 and

4

3

2

3

4

3

2

2

4

2

4

3

e2

κ1

e2

κ1

Therefore, we shall consider theA1×· · ·×A1-crystal structure (m factors) on Ḟm,n induced
by keeping only arrows of the form j

j−→ j . Theorem 6.5 directly implies the following
corollary, which can be rephrased by saying that the combinatorial Fock space is endowed with
a (Cm × Am1 )-bicrystal structure.
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Corollary 6.7. The duality ∗ intertwines the Cn-crystal on Fn,m and the A1 × · · · ×A1-crystal
on Ḟm,n.

Remark 6.8. Observe that Point (2) of [HK22, Lemma 4.9] is equivalent to Proposition 6.2,
where the operator E coincides with κ1.

We complete Theorem 6.5 by giving a characterisation of the dual κj of the Kashiwara oper-
ators ej (corresponding to the arrows j

j−→ j+1 ) in terms of jeu de taquin operators on Fn,m.
More precisely, if b = c1 ⊗ · · · ⊗ cm ∈ Bµ′ , set for all 1 6 j 6 m,

cj = {n 6 x 6 1 | x ∈ cj} = {n, . . . , 1} ∩ cj and
cj = {n 6 x 6 1 | x /∈ cj},

so that each cj is the complement of the column c̃j defined in Section 5. Also, we set

b = c1 ⊗ c1 ⊗ · · · ⊗ cm ⊗ cm.

On elements of the form b, consider for 1 6 j 6 m− 1 the jeu de taquin operator Jj acting on
columns j and j + 1 as illustrated in Example 6.9 below.

Example 6.9. Let n = 5,m = 2 and b =
3

1

5

⊗

5

1

2

4

5

so that b = c1 ⊗ c1 ⊗ c2 ⊗ c2 =

3 ⊗
4

3

2

⊗ 5

1
⊗ 3

1
. Let us perform one jeu de taquin operation between c1 =

4

3

2

and c2 =
5

1
.

We want to slide a box from c1 to c2, so we reverse the order of the two columns, which yields
the following jeu de taquin operation

4

• 3

5 2

1

→
4

5 3

• 2

1

→
4

5 3

2 •
1

.

Finally, we get

Jj(b) = 3 ⊗ 4

3
⊗

5

2

1

⊗ 3

1
.

We extend the definition of Jj to Fn,m by setting Jj(b) = Jj(b). We are ready to state the
desired result, which is a symplectic analogue of [GL20, Theorem 2.9].

Theorem 6.10. For all 1 6 j 6 m− 1, we have κj = Jj .

Proof. We use a similar argument to the proof of Theorem 6.5. Namely, we first notice that if
a∗ = ejb

∗, then a∗ is obtained from b∗ by changing a j+1 into a j, say in column k. By definition
of ∗, this means that. a is obtained from b by moving an entry k from column j to column j+ 1.
Then we use the fact that Jj is the only map that verifies this property and that commutes with
the Cn-crystal operators e1, . . . , en−1, and show by case analysis that this also holds for κj .
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Remark 6.11. Unlike the operators κj , we do not have that κj commute with the typeCn Kashi-
wara operator e0. For instance, if n = 1,m = 2, and b = ∅ ⊗ 1 , one checks that κ1e0b = 0

but e0κ1b = 1 ⊗ 1

1
. Therefore, we do not get an analogue of Corollary 6.7.

Example 6.12. Let n = 5,m = 2, j = 1 and

b∗ =
1

1

2

⊗ 2 ⊗ 1

2
⊗ 1

2
⊗ 1

1
so that b =

4

2

1

4

5

⊗
5

1

1

.

We get

e1b
∗ =

1

1

2

⊗ 1 ⊗ 1

2
⊗ 1

2
⊗ 1

1
, so k = 2 and κ1b =

4

2

1

2

4

5

⊗
5

2

1

1

.

On the other hand, we have

b =
4

2
⊗ 3

2
⊗ 5

1
⊗

5

4

3

2

.

The jeu de taquin operation corresponding to J1 is

• 3

5 2

1

→
5 3

• 2

1

→
5 3

2 •
1

,

and we check that this yields J1(b) = κ1(b).

At this point, we make a small digression and explain briefly the relationship with the charge
statistic defined in [LL20, Theorem 6.13] to compute q-weight zero multiplicities.

Let b ∈ Bhw
µ′ such that b∗ is a King tableau (Theorem 5.11) of weight µ̂ = 0. In particular,

we have µ′ = (mn), that is all the columns in µ have height n. Denote b∗low the lowest weight
vertex corresponding to b∗ in the A1× · · · ×A1-crystal. In other terms, b∗low is obtained from b∗

by applying all possible ḟj to b∗ recursively (they commute).

Definition 6.13. The charge of b∗ is the nonnegative integer

ch(b∗) =
m∑
j=1

(2(m− j) + 1)
εj(b

∗
low)

2
+

m−1∑
j=1

2(m− j)
⌈
εj(b

∗
low)

2

⌉
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We can in fact construct a statistic D directly on Bµ′ such that

D(b) = ch(b∗).

To do this, starting from b = c1 ⊗ · · · ⊗ cm ∈ Bµ′ . let bdil = d1 ⊗ · · · ⊗ dm where, for all
j = 1, . . . ,m, dj is the type Cn column obtained by dilating cj recursively as much as possible.
Then dj can be contracted a certain number of times, say δj , until it becomes admissible. At this
point, we have by Theorem 6.5

(bdil)
∗ = b∗low,

and
εj(b

∗
low) = δj.

In fact, we can easily compute δj . Let h denote the height of the admissible column correspond-
ing to cj (i.e. obtained from cj by applying recursively as many contractions as possible).

Proposition 6.14. We have then δj = n− h. Moreover, δj is even.

Proof. Note that since |cj| = n, the difference of the sizes n− h is even (since each contraction
deletes 2 entries). Therefore, it suffices to show that δj = n − h. Denote cadmj the admissible
columns corresponding to cj , so that h = |cadmj |. Since contraction is aCn-crystal isomorphism,
we can compute δj by considering the highest weight column associated to cadmj in theCn-crystal.
Obviously, this column also has height h and is admissible (since cadmj is admissible), so it must
be the column {n, n− 1, . . . , n− h+ 1}. It is straightforward to see that it can be dilated at
most n−h times, resulting in the column {n, n− 1, . . . , n− h+ 1, n− h, . . . , 1, 1, . . . , n−h}
of height 2n− h (which is the highest weight column associated to dj), that is, δj = n− h.

It remains to express εj(b∗low) directly on bdil. By Theorem 6.10, this equals the number γj of
successive possible application of Jj to the pair (dj, dj+1). In other terms, if the minimal skew
tableau associated to (dj, dj+1) has skew shape ν/(1`), we have γj = `. To sum up, we set

D(b) =
m∑
j=1

(2(m− j) + 1)
δj
2

+
m−1∑
j=1

2(m− j)
⌈γj

2

⌉
.

This can be seen as an analogue of the energy statistic for type C, naturally generalising [GL20,
Theorem 2.51].

We end this section by three important remarks.

Remark 6.15.

(1) As mentioned in Remark 6.11, since the operators κj do not commute with e0, we cannot
establish a (Cn × A2m−1)-bicrystal structure on Bµ′ . In another direction, we expect to
obtain a (Cn×Cm)-bicrystal structure by considering appropriate jeu de taquin operations
and contraction on columns. In this case, it would be interesting to compare the resulting
bicrystal structure to that obtained by Lee in [Lee19].
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(2) Let us consider elements of Bhw
µ′ that are products of admissible columns. Combining

Theorem 5.11 and Proposition 6.2, these are in duality with King tableaux of weight µ̂
which are highest weight vertices in the Am1 -crystal. This can be seen as a combinatorial
version the new duality which will be proved in Theorem 7.5, in the special case r = m,
m = (1, . . . , 1),X = (A, . . . , A) and µ = ((1µ

′
1), . . . , (1µ

′
m)) (columns of height µ′j).

(3) The energy functionD defined previously does not coincide with the intrinsic energy func-
tion on type C(1)

n tensor products of column Kirillov–Reshetikhin crystals. This reflects
the fact that the q-weight multiplicities do not coincide with the one-dimensional sums
beyond type A. Nevertheless, this suggests that other interesting statistics could exist on
these particular affine crystals.

7. Branching coefficients and a new duality

The aim of this section is to extend the results of Section 4 to the case where the fundamen-
tal gl2n(C)-modules appearing in the tensor products in Theorem 4.3 are replaced by tensor
products of simple gl2n(C) or simple sp2n(C)-modules. More precisely, let X be a sequence
(X1, . . . , Xr) of symbols in {A,C}r and let µ = (µ(1), . . . , µ(r)) be a sequence of partitions
such that µ(j) ∈ Pn×mj . Then one can associate to (X,µ) the tensor product

V X1(µ(1))⊗ V X2(µ(2))⊗ · · · ⊗ V Xr(µ(r))

where V C(δ) (δ ∈ Pn) denotes the irreducible sp2n(C)-module of highest weight δ and V A(δ)
denotes the restriction to sp2n(C) of the irreducible gl2n(C)-module of highest weight δ. We
show that the mutliplicity of the highest weight module of weight λ in the tensor product above
is a branching coefficient of the form [V Cm(λ̂) : V X

∗

m∗ (µ̂)] where m =
∑
mj and V X

∗

m∗ (µ̂) is
an irreducible highest weight module for a block diagonal subalgebra of sp2m(C) that depends
onX , µ andm.

Remark 7.1. The weights of gl2n(C) are in bijection with non-increasing sequences of integers
in Zn. If two such sequences δ, δ′ differ by a multiple of (1, . . . , 1) ∈ Zn, then the corresponding
Schur functions sδ and sδ′ will differ by a power of x1 · · ·x2n. Since the characters of V A(δ)
and V A(δ′) are the specialisation of sδ and sδ′ at (x1, . . . , xn, x

−1
1 , . . . , x−1n ), these two characters

will be equal. As a consequence, it is enough in the tensor products defined above to restrict
ourself to partitions.

Our first task in this section is to defined the module V X∗m∗ (µ̂). We start by extending the
definition of the map ·̂ to r-tuples of partitions. Let µ = (µ(1), . . . , µ(r)) be a sequence of
partitions such that µ(j) ∈ Pn×mj . We set

µ̂ =
(
µ̂(r), . . . , µ̂(1)

)
where for each 1 6 j 6 r, the partition µ̂(j) is defined with respect to the pair (n×mj) and lies
in Pmj×n. Note that the definition of this map depends on the pair (n,m).
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Remark 7.2. (1) Let µ ∈ Pn,m and write µ′ = (µ′1, . . . , µ
′
m). Letm = (m1, . . . ,mr) be such

that
∑
mj = m. If we see µ as an r-tuple of partitions µ = (µ(1), . . . , µ(r)) as follows(

µ′1, . . . , µ
′
m1︸ ︷︷ ︸

µ(1)

, µ′m1+1, . . . , µ
′
m2︸ ︷︷ ︸

µ(2)

, . . . , µ′m−mr+1, . . . , µ
′
mr︸ ︷︷ ︸

µ(r)

)
then the partition µ̂ computed with respect to the pair (n,m) is equal, as an element of
Zm, to the partition µ̂ computed with respect to the pair (n,m).

(2) Let µ = (µ(1), . . . , µ(r)) be such that µ(j) ∈ Pn,mj and let µ′ = (µ(1)′, . . . , µ(r)′). Let
m = (m1, . . . ,mr) andm =

∑
mj . We have

µ̂ = I(µ′) + n · ωm

where ωm = (1, . . . , 1) and the equality is an equality in Zm.

Example 7.3. Consider the sequence of partitions

µ = (µ(1), µ(2), µ(3)) =

(
, ,

)
∈ P3,2 × P3,2 × P3,3.

Let n = 3 andm = (2, 2, 3). We compute the image ofµ under the map ·̂ associated to (n,m)
by first taking the complement of the partitions ofµ (in their respective rectangles), which yields(

, ,

)
∈ P3,2 × P3,2 × P3,3,

and then by taking the conjugate of each green partition and reversing the order of the triple,
which yields

µ̂ =

(
, ,

)
∈ P3,3 × P2,3 × P2,3.

Finally, note thatm = 7 and that

I(µ′) + 3 · ω7 = I(3, 1, 1, 1, 2, 2, 1) + 3 · ω7

= (−1,−2,−2,−1,−1,−1,−3) + 3 · ω7

= (2, 1, 1, 2, 2, 2, 0)

which is indeed equal to µ̂ as an element of Z7.

Next we need to define the module V X∗m∗ (µ̂). To simplify the exposition, we will explain how
to construct the module V Xk (ν) associated to

• a sequence k = (k1, . . . , kr) of positive integers;

• a sequenceX = (X1, . . . , Xr) of symbols in {A,C};

• a sequence ν = (ν(1), . . . , ν(r)) of partitions such that ν(j) ∈ Pkj .
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We setm =
∑
ki and we define the integers K0, . . . , Kr by setting

K0 = 0 and Kj =

j∑
i=1

ki.

The algebra g(X,k) is defined to be the subalgebra of sp2k associated to the root system

R(X,k) =
r⊔
j=1

R
Xj
[Kj−1+1,Kj ]

where we have set for any pair of integers (a, b):

RA
[a,b] = {εi − εj | a 6 i < j 6 b} and

RC
[a,b] = {εi − εj | a 6 i < j 6 b} ∪ {εi + εj | a 6 i < j 6 b} ∪ {2εi | a 6 i 6 b}.

In other words, we have

g(X,k) = g1 ⊕ · · · ⊕ gr where gj =

{
glkj(C) if Xj = A

sp2kj(C) if Xj = C

Let P (X,k)
+ be the set of dominant weights of g(X,k). A weight ν in P (X,k)

+ is a sequence ν =
(ν(1), . . . , ν(r)) of partitions such that ν(j) ∈ Pkj . We define V Xk (ν) to be the g(X,k)-module of
highest weight ν.

Let us now recall how to compute the branching coefficient [V (κ) : V Xk (ν)] where κ ∈ Pm.
To do so, we need the partition function P(X,k) defined by the expansion∏

α∈R+\R(X,k)

1

1− xα
=
∑
β∈Zm

P(X,k)(β)xβ.

The following proposition is a consequence of the Weyl character formula. LetWm be the Weyl
group of type Cm and ρm be the half sum of positive roots, that is ρm = (m, . . . , 1).

Proposition 7.4 ([GW98, Theorem 8.2.1]). With the previous notation, we have[
V (κ) : V Xk (ν)

]
=
∑
w∈Wm

ε(w)P(X,k)(w(κ+ ρm)− (ν + ρm)).

We are now ready to state the main theorem of this section. For any tuple a = (a1, . . . , ak)
we write a∗ for the inverse tuple (ak, . . . , a1).

Theorem 7.5. Let µ = (µ(1), . . . , µ(r)) be a sequence of partitions such that µ(j) ∈ Pn×mj . Let
X = (X1, . . . , Xr) be a sequence of symbols in {A,C} andm = (m1, . . . ,mr) ∈ Zr>1. For
all λ ∈ Pn, we have[

V X1(µ(1))⊗ · · · ⊗ V Xr(µ(r)) : V (λ)
]

=
[
V (λ̂) : V X

∗

m∗ (µ̂)
]
.
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The rest of this section is devoted to the proof of the theorem. From now on and until the
end of the section, we fix µ, X andm as in the theorem. Further, we set m =

∑
mi and we

define the integersM0, . . . ,Mr by the relations

M0 = 0 and Mj =

j∑
i=1

Mi.

For any j = 1, . . . , r, and any partition δ ∈ Pn write

• sCδ for the character of the irreducible module V (δ) of highest weight δ in sp2n(C)

• sAδ for the function sδ(x1, . . . , xn,
1
xn
, . . . , 1

x1
) where sδ is the Schur function of type A in

2n variables.

The character of V X1(µ(1))⊗ · · · ⊗ V Xr(µ(r)) is

s(X,m)
µ :=

r∏
j=1

s
Xj
µ(j)
∈ char(sp2n).

Thus, if we define the coefficients m(X,m)
λ,µ by decomposing the above character in the basis of

irreducible characters in type C

s(X,m)
µ =

∑
λ∈Pn

m
(X,m)
λ,µ sCnλ

then the theorem states that

m
(X,m)
λ,µ =

[
V (λ̂) : V X

∗

m∗ (µ̂)
]

for all λ ∈ Pn.

Let

4(X,m) =
∏

α∈R(X,m)

(1− x[α]) where x[α] =

{
xi
xj

if α = εi − εj where i < j
1

xixj
if α = εi + εj where i 6 j

Let β = (β(1), . . . , β(r)) be an r-tuple of partitions such that β(j) = (β
(j)
1 , . . . , β

(j)
mj) ∈ Pmj .

Then since
∑
mi = m, β can be seen as an element of Zm. We can then define xβ and the map

E that sends xβ to eβ as in Section 4.

Lemma 7.6. We have s
(X,m)
µ = E(4(X,m)x

µ′).

Proof. We have

R(X,m) =
r⊔
j=1

R
Xj
[Mj−1+1,Mj ]
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and

4(X,m)x
µ′ =

r∏
j=1

 ∏
α∈R

Xj
[Mj−1+1,Mj ]

(1− x[α])

 xµ
′
.

Let µ′ = (µ(1)′, . . . , µ(r)′) and µ(j)′ = (µ
(j)
1

′
, . . . , µ

(j)
mj

′
) ∈ Pmj . For all j = 1, . . . , r, we set

xµ
(j)′

= x
µ
(j)
1

′

Mj−1+1 · · ·x
µ
(j)
mj

′

Mj

Then we obtain

4(X,m)x
µ′ =

r∏
j=1

 ∏
α∈R

Xj
[Mj−1+1,Mj ]

(1− x[α])xµ
(j)′

 .

Observe that the variables appearing in each parenthesised expression are separated. Therefore,
we can apply Lemma 3.2 recursively and get

E(4(X,m)x
µ′) =

r∏
j=1

E

 ∏
α∈R

Xj
[Mj−1+1,Mj ]

(1− x[α])xµ
(j)′

 .

But for any j = 1, . . . , r, we have by Propositon 4.4 and its analogue for the ordinary Jacobi–
Trudi formula

sCµ(j) = E

 ∏
α∈R

Xj
[Mj−1+1,Mj ]

(1− x[α])xµ
(j)′

 when Xj = C

and

sAµ(j) = E

 ∏
α∈R

Xj
[Mj−1+1,Mj ]

(1− x[α])xµ
(j)′

 when Xj = A.

Finally, we get s
(X,m)
µ = E(4(X,m)x

µ′) as desired.

Define the partition function P̃(X,m) by∏
α∈R+\R(X,m)

1

1− x[α]
=
∑
β∈Zm

P̃(X,m)(β)xβ.
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Lemma 7.7. We have

P̃(X,m)(β) = P(X∗,m∗)(I(β)) for any β ∈ Zm.

Proof. The involution I sends the set R(X,m) to R(X∗,m∗). Therefore we have

I

 ∏
α∈R+\R(X,m)

1

1− x[α]

 =
∏

α∈R+\R(X∗,m∗)

1

1− xα
=
∑
β∈Zm

P(X∗,m∗)(β)xβ

which gives ∑
β∈Zm

P̃(X,m)(β)xβ =
∏

α∈R+\R(X,m)

1

1− x[α]
=
∑
β∈Zm

P(X∗,m∗)(I(β))xβ

hence the result.

Proposition 7.8. For all λ ∈ Pn, we have

m
(X,m)
λ,µ =

∑
w∈Wm

ε(w)P̃(X,m)(w(λ′ + δm,n)− (µ′ + δm,n).

Proof. By definition of ∆C
m (see Section 4) we have

4(X,m)

∆C
m

=
∏

α∈R+\R(X,m)

1

1− x[α]
.

We obtain

s(X,m)
µ = E(4(X,m)x

µ′) (Lemma 7.6)

= E(∆C
m ·

1

∆C
m

4(X,m) xµ
′
)

= E(∆C
m

∑
β∈Zm

P̃(X,m)(β)xβ+µ
′
)

=
∑
β∈Zm

P̃(X,m)(β)E(∆mxβ+µ
′
)

=
∑
β∈Zm

P̃(X,m)(β)vβ+µ′ .

We conclude using Theorem 4.8.

We are now ready to complete the proof of the main theorem.
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Proof of Theorem 7.5. We have

m
(X,m)
λ,µ =

∑
w∈Wm

ε(w)P̃(X,m) (w(λ′ + δm,n)− (µ′ + δm,n))

=
∑
w∈Wm

ε(w)P(X∗,m∗) (I(w(λ′ + δm,n))− I(µ′ + δm,n))

=
∑
w∈Wm

ε(w)P(X∗,m∗) (I(w(λ′ + δm,n))− I(µ′)− n · ωm − ρm) .

By setting w′ = IwI in the last sum and using Proposition 7.4, this yields

m
(X,a)
λ,µ =

∑
w′∈Wm

ε(w′)P(X∗,m∗) (w′(I(λ′) + nωm) + ρm)− (I(µ′) + nωm)− ρm)

=
∑

w′∈Wm

ε(w′)P(X∗,m∗)

(
w′(λ̂+ ρm)− (µ̂− ρm)

)
=
[
V (λ̂) : V X

∗

m∗ (µ)
]

as required.

8. Injectivity of the induction functor

Theorem 7.5 permits to express tensor multiplicities of sp2n(C)-modules in terms of branch-
ing coefficients in irreducible sp2m-modules. We started from the tensor product of sp2n(C)-
modules

V X1(µ(1))⊗ V X2(µ(2))⊗ · · · ⊗ V Xr(µ(r))

associated to the sequence µ = (µ(1), . . . , µ(r)) of partitions such that µ(j) ∈ Pn×mj and to the
sequenceX = (X1, . . . , Xr) of symbols in {A,C}. This determined the dominant weight µ̂ =
I(µ′)+n ·ωm of the subalgebra g(X∗,m∗) of sp2m(C) wherem =

∑
mi andm = (m1, . . . ,mr).

Conversely, we can start from a dominant weight µ̂ of g(X∗,m∗) ⊂ sp2m(C) and realise
the associated branching coefficient as a tensor product multiplicity for sp2n(C)-modules. But
here, one has to keep in mind that the datum of µ̂ and g(X∗,m∗) does not determine the integer
n. One can only say that n is at least nµ̂, the greatest part in the partitions µ̂(j) where µ̂ =
(µ̂(1), . . . , µ̂(r)). This means that for any integer n > nµ̂, we have an r-tuple of partitions
µ[n] = (µ(1)[n], . . . , µ(r)[n]) such that µ̂[n] = µ̂ (where the map ·̂ is defined with respect to
the pair (n,m)). Observe in particular that for any j = 1, . . . , r, we have

µ(j)[a+ nµ̂] =
(
mj, . . . ,mj←−−−−−−→

a times

, µ(j)[nµ̂]
)
for any integer a > 0 (8.1)

or equivalently, µ(j)[n+ 1] is obtained by adding a partmj to µ(j)[n] for any n > nµ̂.
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Example 8.1. Consider the following sequence of partition:

µ̂ =

(
, ,

)

so that nµ̂ = 3. We have seen in Example 7.3 that

µ[3] =

(
, ,

)
.

Now setting n = 5 and adding 2 parts of respective size 2, 2 and 3 to µ[3] we get

µ[5] =

(
, ,

)
.

Then taking the complements in the rectangles of respective size 3×5, 2×5 and 2×5 we obtain(
, ,

)
,

and taking the conjugate of each green partition and reversing, we see that we obtain µ̂[5] = µ̂

(here µ̂[5] is computed with respect to the pair (5, (2, 2, 3))).

Then, one can apply Theorem 7.5 and get for all n > nµ̂ and all partitions λ ∈ Pn the
equality

m
(X,m)
λ,µ[n] = [V (λ̂) : V X

∗

m∗ (µ̂)].

In the relation above, the partition λ̂ is defined from the action of the map ·̂ corresponding to
the pair (n,m) and the r-partition µ̂ is defined similarly with respect to the pair (n,m) (in both
cases, the same n as in µ[n]).

In the following, we fix two dominant weights µ̂, ν̂ of the algebra g(X∗,m∗) ⊂ sp2m. From
the definition, we see that µ̂ and ν̂ are sequences of partitions in which the j-th components lies
in Pmr−j+1

. We set

µ̂ = (µ̂(1), . . . , µ̂(r)) and ν̂ = (ν̂(1), . . . , ν̂(r)).

Recall that V X∗m∗ (µ̂) and V X∗m∗ (ν̂) are the associated highest weight g(X∗,m∗)-modules. We con-
sider the following problem.

Problem 8.1. Assume that the induction of V X∗m∗ (µ̂) and V X∗m∗ (ν̂) to sp2m are isomorphic. What
can we say about µ̂ and ν̂?
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We are going to prove that in the case where all the components inX∗ = (Xr, . . . , X1) are of
type C or whenX∗ is a parabolic Dynkin subdiagram (i.e. X1 is the unique component of type
C) then the sequences µ̂ and ν̂ coincide up to permutations of their parts. Further, in the second
case we will show that µ̂(r) = ν̂(r). In particular, this proves the main conjecture of [GL16] in
type C: in the parabolic case, the two previous induced modules are isomorphic if and only if
the dominant weights µ̂, ν̂ coincide up to an automorphism of the underlying parabolic Dynkin
diagram. In [GL16], this conjecture was proved in any finite types but only when µ̂ and ν̂ are
far enough from the walls of Weyl chambers.

To do this, recall first that the character ring of type Cn can be regarded as the ring
ZWn [x±11 , . . . , x±1n ] of Laurent polynomials fixed by permutations of the variables xi and the
inversions xi 7→ 1

xi
. Also, we have a total order on the monomials in Z[x±11 , . . . , x±1n ] defined

by, for all β, γ ∈ Zn,
xβ 6 xγ ⇐⇒ β 6lex γ

where 6lex is the lexicographic order on Zn. This enables us to define, for any P ∈
Z[x±11 , . . . , x±1n ] the monomial max(P ) as the maximal monomial appearing in P . Given A
and B in ZWn [x±11 , . . . , x±1n ], we have max(AB) = max(A) × max(B). This implies the fol-
lowing useful lemma.

Lemma 8.2. Consider P and Q in Z[x±11 , . . . , x±1n ] such that Q divides P . Then max(Q) 6
max(P ).

For any β = (β1, . . . , βn) ∈ Zn, set |β| = β1 + · · ·+ βn. Given P =
∑

β∈Zn cβx
β (all but a

finite number of coefficients cβ are equal to zero) in ZWn [x±11 , . . . , x±1n ], define

head(P ) =
∑
β∈Zn

|β|=|max(P )|

cβxβ .

We have the following easy lemma.

Lemma 8.3. Let P1, . . . , Pr be a sequence of polynomials in Z[x±11 , . . . , x±1n ]. Then

head(P1 × · · · × Pr) = head(P1)× · · · × head(Pr).

Now we need a result by Rajan [Raj14] on the irreducibility of the characters for sp2n. In
fact, we do not need Rajan’s result in its full generality and we will only state a weaker version,
sufficient for our purposes. Recall that ρn = (n, n−1, . . . , 1) and set ρ̃n = (2n−1, 2n−3, . . . , 1).

For any partition δ ∈ Pn, let

• sCδ be the character of the irreducible module V (δ) of highest weight δ in sp2n,

• sδ(X) be the usual Schur function associated to δ (i.e. the character of the irreducible
module V (δ) of highest weight δ in gln) thus a symmetric polynomial in the set of variables
x1, . . . , xn,

• sδ(X
±1) be the Schur function sδ(X

±1) = sδ(x1, . . . , xn,
1
xn
, . . . , 1

x1
) where sδ is the Schur

function in 2n variables.
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Theorem 8.4. Let δ ∈ Pn be a dominant weight for sp2n regarded as an element of Zn. Assume
that the coordinates of δ + ρn are relatively prime (i.e. they have no trivial common divisor).
Then the character sCδ is irreducible in CWn [x±11 , . . . , x±1n ].

Remark 8.5. In fact the irreducibility property proved in [Raj14] is more general. Let d(δ) be
the greatest common divisor for the coordinates of δ+ρn on the basis of the fundamental weights
ω1, . . . , ωn−1, ωn. Equivalently, d(δ) is the gcd of the coordinates of δ+ ρn in the usual basis of
Zn2. Define also d̃(δ) as the greatest common divisor for the coordinates of δ+ρn on the weight
Q-basis 2ω1, . . . , 2ωn−1, ωn (with the convention d̃(δ) = 1 as soon as we have a non integer
coordinate). For any weight β, recall that aβ =

∑
w∈W ε(w)xw(β+ρn). Then set

D(δ) = gcd(ad(δ)ρn , ad̃(δ)ρn)

where the greatest common divisor is here considered in CWn [x±11 , . . . , x±1n ]. It is proved in
[Raj14] that

SCδ :=
aδ+ρn
D(δ)

is irreducible as soon as δ + ρn is not a multiple of ρn or ρ̃n. By our assumption in the previous
theorem, the coordinates of δ + ρn are relatively prime, therefore d(δ) = 1 and δ + ρn is not a
multiple of ρn. Now, observe that aρn divides akρn for any integer k > 1 because akρn

aρn
= sC(k−1)ρn .

This implies that D(δ) = gcd(aρn , ad̃(δ)ρn) = aρn and sCδ = SCδ is irreducible, as claimed.

Rajan’s irreducibility result [Raj14] holds for any finite root systems. It can be used to prove
the second result by Rajan that we shall need. Again, it holds for any root system but we shall
only need it for the Schur functions.

Theorem 8.6. Let λ(1), . . . , λ(r) and µ(1), . . . , µ(r) be two sequences of partitions inPn such that

sλ(1)(X)× · · · × sλ(r)(X) = sµ(1)(X)× · · · × sµ(r)(X).

Then we have the multiset equality {λ(1), . . . , λ(r)} = {µ(1), . . . , µ(r)}.

One can observe that this result on Schur functions easily implies its analogue on Weyl char-
acters thanks to Lemma 8.3 and the simple observation

head(sCν ) = sν(X) for all ν ∈ Pn.

Corollary 8.7. Consider λ(1), . . . , λ(r) and µ(1), . . . , µ(r) two sequences of partitions in Pn such
that

sCλ(1) × · · · × sCλ(r) = sCµ(1) × · · · × sCµ(r) .

Then we have the multiset equality {λ(1), . . . , λ(r)} = {µ(1), . . . , µ(r)}.

Now recall the branching formula for the decomposition of a Schur function sν(X
±1) on the

basis of the irreducible characters for sp2n.
2For any β = (β1, . . . , βn) ∈ Z, we indeed have β =

∑n
i=1 aiωi where ai = βi − βi+1 for 1 6 i 6 n− 1 and

βn = an.
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Theorem 8.8 ([FH91, Appendix A]). Let ν ∈ Pn. We have

sν(X
±1) =

∑
λ∈Pn,δ∈P(1,1)

n

cνλ,δs
C
λ .

where P(1,1)
n is the subset of Pn of partitions which can be tiled in vertical dominoes and cνλ,δ is

the usual Littlewood–Richardson coefficient.

Remark 8.9. Observe that sν(X
±1) 6= sCν as soon as ν has at least two rows since cνλ,(1,1) > 0 for

any λ obtained from ν by removing one box in two different rows. The previous decomposition
can then be written

sν(X
±1) = sCν +

∑
λCν

aν,λsCλ

where the coefficients aν,λ belong to N and E is the dominant order on partitions. Assume
that sCν divides sν(X

±1) in Z[X±1]. Then sCν divides
∑

λCν aν,λsCλ . But max(sCν ) = xν and
max(

∑
λCν aν,λsCλ ) = xν

[ where ν[ is the partition obtained by decreasing by 1 the two lowest
nonzero parts of ν. Since xν > xν

[ , this contradicts Lemma 8.2. This shows that sCν divides
sν(X

±1) in Z[X±1] if and only if sCν = sν(X
±1).

Now let us come back to Problem 8.1 and assume that the induction of V X∗m∗ (µ̂) and V X∗m∗ (ν̂)
to sp2m are isomorphic. This can be rewritten, thanks to our main theorem in the last section as:

sX,m
µ[n] = s

(X,m)
ν[n] for all n > max(nµ̂, nν̂).

Assume first that all the components ofX are of type C. We get

sCµ(1)[n] × · · · × sCµ(r)[n] = sCν(1)[n] × · · · × sCν(r)[n] (8.2)

where for any j = 1, . . . , r, the partitions µ(j)[n] and ν(j)[n] have at most mj-columns.
Here we can apply Corollary 8.7 and deduce the multiset equality {µ(1)[n], . . . , µ(r)[n]} =
{ν(1)[n], . . . , ν(r)[n]}.

Alternatively, we can choose n so that each partition µ(j)[n] and ν(j)[n] starts with two
parts equal to mj . Then, the two first components in µ(j)[n] + ρn or ν(j)[n] + ρn are equal
to mj + n and mj + n − 1, respectively. In particular, this implies that the coordinates of
µ(j)[n]+ρn and ν(j)[n]+ρn are relatively prime. We thus get by Theorem 8.4 that each character
sC
µ(j)[n]

or sC
ν(j)[n]

are irreducible. Thus we recover the multiset equality {µ(1)[n], . . . , µ(r)[n]} =

{ν(1)[n], . . . , ν(r)[n]}. It implies that the r-partitions µ̂ and ν̂ coincide up to permutation of their
partitions.

Next, assumeX = (C,A, . . . , A). This time we get

sCµ(1)[n]×sµ(2)[n](X
±1)×· · ·×sµ(r)[n](X

±1) = sCν(1)[n]×sν(2)[n](X
±1)×· · ·×sν(r)[n](X

±1). (8.3)

Write N =
∣∣µ(1)[n]

∣∣ + · · · +
∣∣µ(r)[n]

∣∣ the sum of all parts in the partitions µ(j)[n], j = 1, . . . , r
(that is the rank of the r-partition µ[n]). For any partition κ ∈ Pn, we have

max(sCκ ) = max(sκ(X)) = xκ and head(sCκ ) = sκ(X).
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Then Lemma 8.3 implies that for any partition ν of rank N , the coordinates of

sCµ(1)(n) × sµ(2)(n)(X
±1)× · · · × sµ(r)(n)(X

±1)

on the irreducible character sCν coincides with the coordinates of

sµ(1)(n)(X)× sµ(2)(n)(X)× · · · × sµ(r)(n)(X)

on the Schur function sν(X). Equation (8.3) then gives

sµ(1)(n)(X)× sµ(2)(n)(X)× · · · × sµ(r)(n)(X) = sν(1)(n)(X)× sν(2)(n)(X)× · · · × sν(r)(n)(X)

and we obtain {µ(1)[n], . . . , µ(r)[n]} = {ν(1)[n], . . . , ν(r)[n]} by Theorem 8.6.
Having in hand the multiset equality {µ(1)[n], . . . , µ(r)[n]} = {ν(1)[n], . . . , ν(r)[n]} and

equation (8.3), we deduce that

(1) Either µ(1)[n] = ν(1)[n] and {µ(2)[n], . . . , µ(r)[n]} = {ν(2)[n], . . . , ν(r)[n]},

(2) or µ(1)[n] = ν(p)[n], µ(q)[n] = ν(1)[n] with p > 1 and q > 1 and

{µ(2)[n], . . . , µ(r)[n]}\{µ(q)[n]} = {ν(2)[n], . . . , ν(r)[n]} \ {ν(p)[n]}.

In Case (1), since

µ̂[n] = µ̂ and

{
µ̂[n] = (µ̂(r)[n], . . . , µ̂(1)[n])

µ̂ = (µ̂(1), . . . , µ̂(r))

we get that µ̂(r) = ν̂(r) and {µ̂(1), . . . , µ̂(r−1)} = {ν̂(1), . . . , ν̂(r−1)}.
In Case (2), by simplifying the identical factors in (8.3), we get

sCµ(1)[n] × sµ(q)[n](X
±1) = sCµ(q)[n] × sµ(1)[n](X

±1).

As before, we can choose the integer n so that sC
µ(1)[n]

and sC
ν(1)[n]

= sC
µ(q)[n]

are irreducible poly-
nomials, and the partitions µ(1)[n] and ν(1)[n] have their two first parts equal to m1. This im-
plies that sC

µ(1)[n]
divides sµ(1)[n](X

±1). But, by using Remak 8.9, this is only possible when
sC
µ(1)[n]

= sµ(1)[n](X
±1), that is when µ(1)[n] is a row. We thus get a contradiction since µ(1)[n]

has at least two parts equal tom1.
Finally, we have proved the following theorem.

Theorem 8.10. Assume that the induction of V X∗m∗ (µ̂) and V X∗m∗ (ν̂) to sp2m are isomorphic.
Then the following holds.

(1) The r-partitions µ̂ and ν̂ coincide up to permutation of their partitions when all the com-
ponents inX are of type C

(2) We have µ̂(r) = ν̂(r) and µ̂ and ν̂ coincide up to permutation of their other partitions when
X is a parabolic Dynkin subdiagram (i.e. X1 is the unique component equal to C)
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