Abstract

This article presents a calibration transfer methodology that can be used between radars of the same or dif-ferent frequency bands. This method enables the absolute calibration of a cloud radar by transferring it from another collocated instrument with known calibration, by simultaneously measuring vertical ice cloud reflectivity profiles. The advantage is that the added uncertainty in the newly calibrated instrument can converge to the magnitude of the reference instrument calibration. This is achieved by carefully selecting comparable data, including the identification of the reflectiv-ity range that avoids the disparities introduced by differences in sensitivity or scattering regime. The result is a correction coefficient used to compensate measurement bias in the uncalibrated instrument. Calibration transfer uncertainty can be reduced by increasing the number of sampling periods. The methodology was applied between collocated W-band radars deployed during the ICE-GENESIS campaign (Switzerland 2020/21). A difference of 2.2 dB was found in their reflectivity measurements, with an uncertainty of 0.7 dB. The calibration transfer was also applied to radars of different frequency, an X-band radar with unknown calibration and a W-band radar with manufacturer calibration; the difference found was 216.7 dB with an uncertainty of 1.2 dB. The method was validated through closure, by transferring calibration between three different radars in two different case studies. For the first case, involving three W-band radars, the bias found was of 0.2 dB. In the second case, involving two W-band and one X-band radar, the bias found was of 0.3 dB. These results imply that the biases introduced by performing the calibration transfer with this method are negligible.

Details