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Abstract

Various forms of real-world data, such as social, financial, and biological networks, can be

represented using graphs. An efficient method of analysing this type of data is to extract

subgraph patterns, such as cliques, cycles, and motifs, from graphs. For instance, finding

cycles in financial graphs enables the detection of financial crimes such as money laundering

and circular stock trading. In addition, extracting cliques from social network graphs enables

the detection of communities and could help predict the spread of epidemics. However,

extracting such patterns can be time-consuming, especially in larger graphs, because the

number of patterns can grow exponentially with the graph size. Therefore, fast and scalable

parallel algorithms are required to make the enumeration of these subgraph patterns tractable

for real-world graphs.

This thesis presents fast parallel algorithms for the enumeration of maximal cliques and sim-

ple cycles. We focus on accelerating the asymptotically-optimal sequential algorithms for

enumerating the aforementioned patterns by parallelising them on manycore CPUs. To enable

scalable parallelisation of clique and cycle enumeration algorithms, the algorithms presented

in this thesis rely on fine-grained parallelisation, in which recursive calls are executed indepen-

dently of each other using several software threads. However, simply applying the fine-grained

parallelisation method to the aforementioned asymptotically-optimal algorithms leads to

suboptimal solutions. Parallelising maximal clique enumeration using this method results in

increased overhead caused by multithreaded memory management and task scheduling, as

well as increased dynamic memory usage. In addition, the asymptotically-optimal algorithms

for simple cycle enumeration rely on strict depth-first traversal of their recursion tree, making

the fine-grained parallelisation of these algorithms challenging. This thesis addresses these

problems and presents parallel algorithms that lead to an almost linear scaling of performance

with the number of CPU cores utilised. As a result, the parallel algorithms presented in this

thesis are able to achieve an order of magnitude speedup compared to the state-of-the-art

parallel algorithms when executed on manycore CPU systems.

To demonstrate the applicability of our accelerated algorithms, this thesis presents the Graph

Feature Preprocessor library, which can be used to detect financial crime. This library expands
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Abstract

the feature set of financial transactions by enumerating well-known money laundering and

financial fraud subgraph patterns, such as simple cycles, in financial transaction graphs. When

used in combination with gradient-boosting-based machine learning models, the expanded

feature set produced by the library enables significant improvements in prediction accuracy

for the problems of money laundering and phishing detection. Furthermore, the efficiency of

the subgraph pattern mining algorithms presented in this thesis enables this library to operate

in real time.

As financial fraud schemes become more complex, fast algorithms that can detect suspicious

behaviour are required. This thesis demonstrates that the parallel graph pattern mining algo-

rithms introduced here can be used to enable fast and accurate detection of such suspicious

behaviour.

Key words: Graph pattern mining, maximal clique enumeration, cycle enumeration, graph

feature extraction, scalable parallelisation, financial crime detection
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Zusammenfassung

Verschiedene Formen von realen Daten, beispielsweise soziale, finanzielle und biologische

Netzwerke, können mit Hilfe von Graphen dargestellt werden. Eine effiziente Methode zur

Analyse solcher Daten ist die Extraktion von Subgraph-Patterns (Muster), wie Cliquen, Zyklen

und Motiven, in Graphen. Das Erkennen von Zyklen in Finanzgraphen ermöglicht beispiel-

sweise die Aufdeckung von Finanzverbrechen wie Geldwäsche und zirkulärem Aktienhandel.

Darüber hinaus erlaubt die Extraktion von Cliquen aus Graphen sozialer Netzwerke die Erken-

nung von Gemeinschaften und könnte helfen, die Ausbreitung von Epidemien vorherzusagen.

Die Extraktion dieser Muster kann jedoch zeitaufwändig sein, insbesondere bei grösseren

Graphen, da die Anzahl der Muster mit der Grösse des Graphen exponentiell zunehmen kann.

Daher werden schnelle und skalierbare parallele Algorithmen benötigt, um die Aufzählung

dieser Subgraph-Muster für reale Graphen überschaubar zu machen.

In dieser Arbeit werden schnelle parallele Algorithmen für die Aufzählung von maximalen

Cliquen und einfachen Zyklen vorgestellt. Wir konzentrieren uns darauf, die asymptotisch

optimalen sequentiellen Algorithmen für die Aufzählung der oben genannten Muster zu

beschleunigen, indem wir sie auf Manycore-CPUs parallelisieren. Um eine skalierbare Paral-

lelisierung von Algorithmen zur Aufzählung von Cliquen und Zyklen zu ermöglichen, basieren

die in dieser Arbeit vorgestellten Algorithmen auf einer feinkörnigen Parallelisierung. Dabei

werden rekursive Aufrufe unabhängig voneinander über mehrere Software-Threads ausge-

führt. Die einfache Anwendung der feinkörnigen Parallelisierungsmethode auf die oben

beschriebenen asymptotisch optimalen Algorithmen führt jedoch zu suboptimalen Lösungen.

Die Parallelisierung der maximalen Cliquenaufzählung mit dieser Methode führt zu erhöhtem

Overhead durch die Multithread Speicherverwaltung und die Aufgabenplanung. Zusätzlich

wird auch der Verbrauch des dynamischen Speichers erhöht. Darüber hinaus beruhen die

asymptotisch optimalen Algorithmen für die einfache Zyklusaufzählung auf einer strikten

Depth-First Traversierung des Rekursionsbaums, was die feinkörnige Parallelisierung dieser

Algorithmen schwierig macht. Die vorliegende Arbeit befasst sich mit diesen Problemen und

stellt parallele Algorithmen vor, die zu einer nahezu linearen Skalierung der Leistung dieser

Algorithmen mit der Anzahl der genutzten CPU-Kerne führen. Infolgedessen sind die hier

vorgestellten parallelen Algorithmen bei der Ausführung auf Manycore-CPU-Systemen, im

iii



Zusammenfassung

Vergleich zu den modernsten parallelen Algorithmen, in der Lage, eine Beschleunigung von

einer Grössenordnung zu erzielen.

Um die Anwendbarkeit unserer beschleunigten Algorithmen zu demonstrieren, wird in

dieser Arbeit die Graph Feature Preprocessor-Bibliothek vorgestellt, die zur Erkennung

von Finanzkriminalität verwendet werden kann. Diese Bibliothek erweitert das Fea-

ture Set von Finanztransaktionen durch Aufzählung bekannter Geldwäsche- und Betrugs-

Subgraphenmuster, wie z. B. einfache Zyklen, in Finanztransaktionsgraphen. In Kombination

mit maschinellen Lernmodellen, welche auf Gradient-Boosting basieren, ermöglicht die von

der Bibliothek erzeugte erweiterte Merkmalsmenge eine erhebliche Verbesserung der Vorher-

sagegenauigkeit bei der Erkennung von Geldwäsche und Phishing. Darüber hinaus ermöglicht

die Effizienz der in hier vorgestellten Algorithmen den Einsatz dieser Bibliothek in Echtzeit.

Da Finanzbetrugsfälle immer komplexer werden, sind schnelle Algorithmen erforderlich,

welche verdächtiges Verhalten erkennen können. Diese Arbeit zeigt, dass die hier vorgestellten

parallelen Algorithmen zum Graph-Pattern-Mining eine schnelle und genaue Erkennung von

verdächtigem Verhalten ermöglichen können.

Stichwörter: Graph-Pattern-Mining, maximale Cliquenaufzählung, Zyklusaufzählung, Graph-

Feature-Extraktion, skalierbare Parallelisierung, Erkennung von Finanzkriminalität
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1 Introduction

The data-driven society in which we live today requires efficient mechanisms to manage,

integrate, and analyse large volumes of data. Graphs are a widely adopted tool for representing

various types of data and are used in many different domains [Mat17; Wan+20a; Noe+16;

Web21]. A graph consists of a set of vertices connected by edges, where an edge typically repre-

sents a relationship or an interaction between two vertices. For example, financial transaction

graphs represent a set of bank accounts and transactions, where each transaction connects

two accounts [Mat17]; social graphs contain individuals and their relationships [LRU14]; and

the WWW consists of web pages connected with hyperlinks. As graph data can be complex

and difficult to understand, we require algorithms that can efficiently extract useful informa-

tion from graphs. Detection of patterns and correlations, classification of graph objects, and

discovery of nontrivial new relationships between graph objects in a scalable manner are key

capabilities of modern data analytics platforms.

Graph pattern mining represents a set of methods used for analysing graph data by extracting

subgraphs with a given property from a graph [CH06; AW10]. Extracting such subgraphs

enables uncovering hidden relationships in a graph, which helps to better understand the

underlying data. Examples of subgraphs that could be extracted from a graph include clus-

ters [For10], motifs [Ahm+15; PBL17], the most frequent subgraph patterns that appear in

the graph [JCZ13; Els+14; Abd+16], or subgraphs that match a certain predefined pattern.

Predefined subgraph patterns include cliques (i.e., complete subgraphs) [BK73], cycles (i.e.,

closed paths) [MD76], bicliques (i.e., complete bipartite subgraphs) [Epp94], or arbitrary

user-defined patterns [HLL13; Cor+04; SL20]. Figure 1.1 depicts the three maximal cliques

that can be found in the graph shown. This thesis investigates the possibility of efficiently

executing algorithms for finding maximal cliques and simple cycles on modern manycore

CPUs and their potential applications in the financial domain.
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Chapter 1 Introduction

Figure 1.1: Mining all maximal cliques with more than two vertices. In this graph, three such
cliques exist and are annotated with different colours. In a social network, each such maximal
clique could indicate a community of individuals that all know and interact with each-other.

1.1 Graph Pattern Mining Applications

Graph pattern mining has applications in many domains, such as biology, social network

analysis, and finance. Maximal cliques can be used to detect communities in social net-

works [LWN18], as shown in Figure 1.1. Furthermore, maximal cliques can be used to predict

protein functions in protein interaction networks [YZT14; Yu+06] and to predict how epidemics

spread [Dan+11]. Finding simple cycles is useful in electronic design automation to detect

combinatorial loops, which are typically forbidden in electronic circuits [GS05; PD21]. In a

software bug tracking system, a dependency between two software bugs requires one bug to

be addressed before the other [SAS21]. Circular bug dependencies are undesirable and can be

detected by finding simple cycles. Other applications include detecting feedback loops in bio-

logical networks [KC07; KK09] and detecting unstable relationships in social networks [GRW17;

Zho+18]. Furthermore, subgraph patterns can be used to improve the accuracy of graph neural

netowrks by providing additional information about the graph [Bou+23; Bar+21].

This thesis focusses on the applications of subgraph pattern enumeration to the financial

domain, more specifically, to the detection of financial crime. The term “financial crime”

refers to unlawful acts committed for financial gain, such as money laundering, tax evasion,

and credit card fraud [NKL21]. In financial transaction graphs, where the vertices represent

accounts and the edges transactions, a cycle is a strong indicator of financial crime, such as

money laundering, tax avoidance [HK20; SK21], and credit card fraud [Qiu+18]. Finding cycles

also enables the detection of circular trading, which is a financial crime used to manipulate

stock prices. In circular trading, a group of traders tries to artificially increase the price of a

stock by circulating its shares among themselves [PA08; Isl+09; Jia+13]. As a result, it appears

that the market has increased interest in this stock, which raises the price of its shares. A

depiction of a cycle in a financial transaction network is given in Figure 1.2a.

The pump and dump scheme is another method used to manipulate stock prices and is

illustrated in Figure 1.2b. In this scheme, a group of malicious traders buy stocks in a company

and use social media or other publicity to attract other traders to invest in this company,

which increases (“pumps”) the stock price of this company. After the stock price increases

2
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Figure 1.2: Crime patterns in financial transaction graphs. Red nodes denote malicious
accounts performing financial crimes. Green and red dollar signs denote licit and illicit funds,
respectively.

sufficiently, malicious traders sell (“dump”) the stocks. Other traders realise that the value of

the stock is artificially inflated after its value drops and typically suffer financial losses [NKL21].

In financial transaction graphs, this scheme is characterised by a gather-scatter pattern in

which a vertex has high fan-in and fan-out. Similar patterns can be observed for the accounts

on the Ethereum blockchain that perform phishing scams [Che+19a].

Another type of money laundering is smurfing [KM11; Cor23; RT04; Lee+20; Li+20; Sta+21],

which is illustrated in Figure 1.2c. In this case, an entity, represented as a red node in Fig-

ure 1.2c, attempts to insert illicit funds obtained from illegal activities into the legal banking

system. To avoid raising suspicion, this entity uses multiple intermediaries (“smurfs”) to

deposit a portion of these illicit funds into a bank account. The amount of money that each

intermediary deposits is below the reporting threshold; therefore, banks will be less likely to

find such a transaction suspicious and investigate it. In financial transaction graphs, smurfing

manifests itself as a subgraph pattern shown in Figure 1.2c, which has a source vertex (red) con-

nected with several intermediate vertices (blue), and these intermediate vertices are connected

to a target vertex (green). We refer to this subgraph pattern as a scatter-gather [SK21].

A more complex subgraph pattern in a financial transaction graph that could indicate illegal

activities is a directed biclique [SK21; Web+18]. This pattern, illustrated in Figure 1.2d, is a

3



Chapter 1 Introduction

bipartite subgraph in which all the vertices of one partition are connected with all the vertices

of the other partition [LSL06; Pri00]. The existence of such a pattern in a financial transaction

graph could be associated with disguising the trail of money, where illicit funds (red dollar signs

in Figure 1.2d) are combined with legally obtained funds (green dollar signs in Figure 1.2d). As

a result, the source of illicit funds is obfuscated.

In cryptocurrency transaction networks, criminals use sophisticated mixing and shuffling

schemes to cover the trace of their activities [Liu+21a]. Such schemes can usually be formu-

lated in terms of subgraph structures, such as scatter-gather patterns and bicliques [Che+19b;

Ron+21; Wal21]. The discovery of such suspicious subgraph patterns enables the identification

of criminal activities and their perpetrators. Furthermore, other subgraph patterns, such as

temporal motifs [PBL17], can be used to detect these cryptocurrency mixing services [Wu+21].

In general, subgraph patterns in the financial graph can represent various schemes used in

financial crime. Therefore, timely detection of such fraudulent patterns helps minimise the

damage caused by criminals.

1.2 Challenges of Accelerating Graph Pattern Mining

One of the main drawbacks of algorithms for mining subgraph patterns is their high algo-

rithmic complexity. These algorithms usually have significantly higher algorithmic com-

plexity [JCZ13; AW10] compared to other types of graph processing algorithms [MWM15;

Bat+15; Cor09a]. Graph processing algorithms, such as Breadth-First Search [Cor09b], PageR-

ank [Pag+98], Single-Source Shortest Path [Dij59; Bel58; Joh77], and Strongly-Connected

Components [Tar72; FHP00], have a time complexity that is upper bound by a polynomial

of graph parameters with a low degree. On the other hand, the time complexity of graph

pattern mining algorithms is upper bound by an exponential of a graph parameter [TTT06;

BK73; HM20; Els+14; Car+18], such as the number of vertices n, maximum degree ∆max , or

degeneracy d , i.e., the smallest value such that each nonempty subgraph of a graph has a

vertex with at most d edges [LW70]. This exponential complexity of graph pattern mining

algorithms usually leads to long execution times.

The reason for the high algorithmic complexity of the graph pattern mining algorithms is the

large number of subgraph patterns that might exist in a graph. In theory, a graph with n vertices

may have up to 3n/3 maximal cliques [MM65], up to 1
31/3−1 3n/3 maximal bicliques [GKL12],

and up to
∑n

k=2

(n
k

)
(k−1)! simple cycles [All85] (e.g., in a complete directed graph). Even sparse

graphs, which have a low degeneracy value d , might have a high number of subgraph patterns.

Theoretically, it has been proven that the number of maximal cliques and maximal bicliques in

sparse graphs can be C d times higher than the number of vertices in a graph [ELS13; Epp94],

where C ≥ 31/3 is a constant. Furthermore, planar graphs, which have a degeneracy of at most

five [LW70], have been shown to have exponentially many simple cycles in terms of n [AT08;

AFK97; Buc+07]. Thus, fast algorithms and their parallel implementations are required to

make graph pattern mining algorithms tractable.
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Figure 1.3: The example graph (a) and the recursion trees (b),(c) generated during the search
for cycles starting from different vertices. Each recursion tree node is marked with a vertex
that the associated recursive call visits. A recursion tree node marked with green reports a
simple cycle. To prevent reporting duplicate cycles, the algorithm visits only the vertices with
indices greater than the index of the starting vertex. The recursion trees perform different
amounts of work, which results in an imbalanced workload across threads T0, . . . ,T6.

The most efficient sequential graph pattern mining algorithms that search for subgraph

patterns usually rely on recursive search and exploration [TTT06; ELS13; Joh75; LSL06; SL20;

Els+14; DBS18]. These algorithms maintain a subgraph that matches a part of a pattern

the algorithm is enumerating (e.g., cycle or clique). An algorithm updates this subgraph at

each recursive call by inserting a new vertex into that subgraph such that it still matches a

part of the pattern. Once this subgraph matches the entire pattern, the algorithm reports

it. For example, recursive algorithms for cycle enumeration [Joh75; Tie70] that search for

cycles in a graph shown in Figure 1.3a starting from vertex v0 would maintain a path that

starts with v0 as indicated in the recursion tree shown in Figure 1.3b. This path is recursively

updated until vertex v0 is inserted again and the path becomes a simple cycle (see green nodes

in Figure 1.3b). In addition, these recursive graph pattern mining algorithms usually start a

search for subgraph patterns from each vertex of a graph or a subset of its vertices, as illustrated

in Figures 1.3b and 1.3c. However, the unpredictable shape and size of these recursion trees

and their dynamic construction make these algorithms challenging to efficiently parallelise.

One method for parallelising the recursive graph pattern mining algorithms is to execute the

recursion trees for each starting vertex independently using several threads. This parallelisa-

tion method is illustrated in Figures 1.3b and 1.3c. This method can be implemented using

existing vertex-centric processing frameworks, such as Pregel [Mal+10], Giraph [Ave11], and

others [MWM15]. We refer to this method as coarse-grained parallelisation of graph pattern

mining algorithms. The main drawback of coarse-grained parallelisation is that the workload

across the recursion trees can be severely imbalanced. For instance, the thread T0 exploring

the recursion tree shown in Figure 1.3b performs significantly more work compared to the

other threads shown in Figure 1.3c. Furthermore, for real-world graphs, which often exhibit a

power-law or a log-normal distribution of vertex degrees [BP16; BC19], the execution time of
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Figure 1.4: Per-thread execution time of the coarse-grained parallel Johnson algorithm that
searches for simple cycles in in the wiki-talk-temporal [LK14] graph within a 12h time window.
A significant workload imbalance can be observed as the execution time of the longest-running
thread is several times higher than the execution time of the majority of other threads.

recursive graph pattern mining algorithms can be dominated by searches that start from a

small set of vertices. This behaviour leads to a workload imbalance, as shown in Figure 1.4,

and limits the scalability of parallel implementations.

This thesis focusses on the acceleration of subgraph pattern enumeration problems using

manycore CPUs for two types of subgraph patterns: maximal cliques and simple cycles. Even

though the state-of-the-art algorithms for enumerating these two types of patterns have a sim-

ilar structure, they present different acceleration opportunities and challenges. The maximal

clique enumeration algorithm by Eppstein et al. [ELS13] and the algorithms it extends [BK73;

TTT06] rely on recursive search and can be parallelised using the aforementioned coarse-

grained parallelisation, which has limited scalability. Additionally, the vertex-set intersections

that are performed in each recursive call of these algorithms dominate the execution time of

the algorithms. Similar challenges are also present in other sequential graph pattern mining

algorithms, such as subgraph isomorphism [Cor+04; HLL13; SL20; HZY18], frequent pattern

discovery [MW19], biclique enumeration [LSL06; Che+22], and k-clique listing [DBS18]. For

instance, vertex-set intersections are frequently used in graph pattern mining algorithms

to determine how a vertex is connected with other vertices from the subgraph, as shown

in Figure 1.5. Thus, the methods presented in this thesis for accelerating maximal clique

enumeration can also be used to accelerate these related graph pattern mining algorithms.

The limited scalability issue with coarse-grained parallelisation of the maximal clique enumer-

ation can be addressed by executing a single recursion tree using several threads. This solution

is possible because a recursion tree of the asymptotically-optimal algorithm for maximal

clique enumeration [ELS13; TTT06] can be executed in any order, making its recursive calls

independent. On the other hand, each recursion tree generated by the asymptotically-optimal

algorithm for simple cycle enumeration by Johnson [Joh75] is required to be executed in a

strict depth-first order, making it difficult to explore the recursion tree using several threads

without significant loss of efficiency. Similar behaviour can be observed in algorithms that

extend the Johnson algorithm [Joh75] to enable the enumeration of simple cycles under

temporal-ordering [KC18] and hop [Pen+19] constraints. Furthermore, in contrast to max-

imal clique enumeration algorithms, simple cycle enumeration algorithms do not require
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Figure 1.5: Example of how vertex-set intersections can be used in graph pattern mining.
When extending the current subgraph S from (a) with the vertex v4, set intersection is used to
check how v4 is connected with the rest of the vertices in the existing subgraph S, as shown in
(b). Based on the intersection result, we can determine the type of the extended subgraph, as
illustrated in (c).

vertex-set intersections because, when searching for simple cycles, the operation of extending

the subgraph with a new vertex, shown in Figure 1.5, is not required to check how that vertex

is connected with the rest of the subgraph. As a result, the recursive calls of simple cycle

enumeration algorithms are computationally lightweight, as they mostly perform pointer

chasing; hence, the opportunity to exploit data parallelism in these algorithms is limited.

In this thesis, we show how the aforementioned challenges have been addressed to enable

fast and scalable algorithms for maximal clique and simple cycle enumeration algorithms. We

focus on the acceleration of these algorithms using shared-memory manycore CPUs. Such

CPUs enable the concurrent execution of many software threads that can easily communicate

with each other thanks to the shared memory. As a result, dynamic load balancing tech-

niques [BL99] can be used to address the workload imbalance and the limited scalability of

the coarse-grained parallelisation approach. In addition, these CPUs often support vector

instructions that can be used to accelerate set intersection operations that occur in maximal

clique enumeration algorithms.

Another option for accelerating graph pattern mining is to use GPUs [CA22; Alm+22; Alm22;

Che+20a; JMV20; Guo+20]. A GPU commonly contains several streaming multiprocessors,

where each streaming multiprocessor consists of multiple lightweight cores and a memory

block shared by those cores. A collection of threads called the thread block is executed on a

single streaming multiprocessor, and each thread block is divided into warps consisting of

several threads. Threads of the same warp run the most efficiently when they are executing

the same instruction that is accessing consecutive memory locations. If that is not the case,

the performance of the GPU might be degraded [ROA13]. Even though this problem could be
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alleviated in maximal clique enumeration by using threads from the same warp to perform

a set intersection in parallel [Alm+22; Alm22], this problem would be more significant in

simple cycle enumeration algorithms because the data parallelism in these algorithms is

limited. Furthermore, workload imbalance is more prominent in GPUs compared to CPUs

because GPUs have significantly more cores. To address this problem, the workload of threads

executed on the same streaming multiprocessor can be dynamically balanced, but a workload

imbalance may still occur between different streaming multiprocessors [Alm22]. Another

method for alleviating the workload imbalance that occurs in GPUs when executing graph

pattern mining algorithms is to provide more parallelism by traversing the recursion trees of

these algorithms in a breadth-first-search order [JMV20; Che+20a]. However, this approach

significantly increases the memory required for storing the intermediate results of the graph

pattern mining algorithms, and thus might be limited to smaller graphs [CA22]. Therefore, we

do not consider using GPUs for this thesis.

1.3 Thesis Statement and Contributions

This thesis explores the possibility of accelerating graph pattern mining algorithms using mod-

ern manycore CPUs. It seeks to address the parallelisation challenges described in Section 1.2

and show that the state-of-the-art sequential algorithms for maximal clique and simple cycle

enumeration can be parallelised in a scalable manner. By addressing these challenges, the

thesis shows that parallel graph mining algorithms can be used to enable applications in

financial crime detection introduced in Section 1.1.

The statement of this thesis is formulated as follows.

Graph pattern mining algorithms can be effectively accelerated using the existing

manycore CPUs, which enables fast detection of financial crime.

To support this thesis, three major contributions are presented.

First, the thesis presents a fast parallel implementation of the state-of-the-art sequential maxi-

mal clique enumeration (MCE) algorithm [Bla+20a; Bla+20b]. As mentioned in Section 1.2,

this sequential MCE algorithm [BK73; ELS13] performs time-consuming set intersection oper-

ations in each recursive call and is challenging to parallelise in a scalable manner. We address

the former challenge by implementing hash-join-based and merge-join-based set intersec-

tions using vector instructions available in modern manycore CPUs. The comprehensive

theoretical analysis performed concluded that the MCE algorithm that uses hash-join-based

set intersections is either faster or uses less memory compared to the MCE algorithm that

uses merge-join-based set intersections. Thus, the fast MCE implementation presented in

this thesis accelerates set intersections by using a vectorised hash-join-based set intersection

implementation. To parallelise this algorithm in a scalable manner, each thread executes

a subset of recursion calls, enabling several threads to execute a single recursion tree, thus

addressing the problem of a load imbalance that exists when the algorithm is parallelised

8
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using the coarse-grained method (see Section 1.2). We implement such a fine-grained parallel

approach using a shared-memory parallel processing framework [VAR19] and address the

resulting performance overheads to further accelerate this algorithm and reduce its memory

footprint. The resulting parallel MCE implementation is capable of processing graphs with

tens of millions of vertices and up to two billion edges in just a few minutes on a single CPU.

Second, the thesis introduces scalable parallel simple cycle enumeration algorithms [BIA22;

BAI23] that are based on the asymptotically-optimal sequential algorithms by Johnson [Joh77]

and by Read and Tarjan [RT75]. Although the Johnson algorithm is faster than the Read-

Tarjan algorithm in practice [Gro16; MD76], it is also more challenging to parallelise due

to the requirement that its recursion trees have to be executed in a strict depth-first-search

order (see Section 1.2). To enable scalable parallelisation of the Johnson algorithm, we have

relaxed its strictly depth-first-search-based exploration, which enables a recursion tree of this

algorithm to be executed by several threads in parallel. In addition, we demonstrate that the

Read-Tarjan algorithm does not have the same limitations as the Johnson algorithm and is,

thus, easier to parallelise in a scalable manner. Furthermore, we show that our method for

scalable parallelisation of the Johnson algorithm can be adapted to parallelise state-of-the-

art algorithms for enumerating cycles under temporal [KC18] and hop constraints [Pen+19].

The proposed parallel algorithms for simple cycle enumeration are scalable in both theory

and practice and are an order of magnitude faster than the algorithms parallelised using the

coarse-grained parallelisation method discussed in Section 1.2.

Finally, the thesis presents a graph-based feature extraction library called Graph Feature

Preprocessor. This software library extracts the well-known money laundering and fraud

patterns in financial transaction graphs, which are used to enrich the feature set of the financial

transactions. In addition, it supports a dynamic in-memory multigraph data structure that

enables fast dynamic updates and efficient detection of suspicious subgraph patterns using

fine-grained parallelism. Furthermore, a graph machine learning pipeline is developed for

monitoring financial transaction graphs that uses the Graph Feature Preprocessor to expand

the feature set of the financial transactions and gradient-boosting machine learning models

to predict suspicious transactions. As a result, this pipeline enables up to 64% improvement in

the minority-class F1 score of money laundering detection tasks while achieving throughput

rates of up to 100′000 transactions per second using only 6 CPU cores.

1.4 Thesis Organisation

This thesis is organised as follows. Chapter 2 presents the background information required for

this thesis, including the notation, the parallel programming model used, and the state-of-the-

art sequential graph pattern mining algorithms. Fast parallel algorithms for the enumeration

of maximal cliques and simple cycles are introduced in Chapters 3 and 4, respectively. Chap-

ter 5 presents the graph-based feature extraction library called Graph Feature Preprocessor

that generates features based on graph patterns, such as cycles and scatter-gather patterns.

9
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This chapter also demonstrates that our library can enable fast and accurate detection of fi-

nancial transactions associated with financial crime, such as money laundering and phishing.

Conclusions and potential future research directions are discussed in Chapter 6.

10



2 Preliminaries and Background

This chapter introduces the main concepts and algorithms used throughout the thesis. First,

we define the graph notation and graph pattern mining problems addressed in this thesis.

Then, we describe the parallel programming model used throughout the thesis. Next, we

introduce the basic concepts that this thesis uses to analyse the parallel algorithms presented.

Finally, we introduce several sequential graph pattern mining algorithms on which this work

is based. The notation used is given in Table 2.1.

2.1 Graphs

A directed graph is denoted as G(V ,E) and is defined with a set of vertices V and a set of

directed edges E = {u → v | u, v ∈ V}. A directed edge u → v is defined by its source vertex u

and its target (destination) vertex v . An outgoing edge of a given vertex v is defined as v → w ,

and an incoming edge of v is defined as u → v , where v → w,u → v ∈ E . The set of outgoing

neighbours of a given vertex v in the graph G is defined as NG(v) =N+
G (v) = {∀w | v → w ∈ E},

and the set of incoming neighbours of a vertex v in the graph G is defined as N−
G (v) = {∀w |

w → v ∈ E}. A graph G is undirected if N+
G (v) =N−

G (v) for every v ∈V , in which case we simply

use NG(v) to denote the set of neighbours of a vertex v . In this thesis, we omit the subscript G
from N+

G (v), N−
G (v), and NG(v) if it is clear to which graph we are referring; for example, only

one graph is being considered. A temporal graph G(V ,E ,T ) is a directed graph that has its

edges annotated with timestamps [PBL17], where for each edge e ∈ E , there exists a timestamp

t(e) ∈ T . We refer to an edge annotated with a timestamp as a temporal edge. In this thesis,

a temporal edge with a source vertex u, a target vertex v , and a timestamp t is denoted as

(u → v, t ). Temporal graphs are often multigraphs [Bal97], i.e., graphs that may have several

edges with the same source and destination vertices. Such edges with the same source and

destination vertices are referred to as parallel edges.

In a directed graph, the out-degree and the in-degree of a vertex v are defined as the number

of outgoing and incoming edges of v , respectively. For instance, the out-degree of the vertex

v4 from the graph shown in Figure 1.3 is three, and its in-degree is one. In the case of an
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Table 2.1: Summary of the notation used in the thesis.

Symbol Description
General notation
G(V ,E) Graph with vertices V and edges E .
n, e Number of vertices and edges in a graph.
N (v), NG(v), N+

G (v) The set of (outgoing) neighbours of v .
N−(v), N−

G (v) The set of incoming neighbours of v .
u → v A directed edge from u to v .
(u → v, tuv ) A temporal directed edge from u to v with a timestamp tuv .
∆max,∆avg Maximum and average degree of a graph.
d ,h The degeneracy and an h-index of a graph.
c, s Number of simple cycles and maximal simple paths in a graph.
|X | Number of elements in the data structure X .
[tw1 : tw2] Time window between timestams tw1 and tw2.
δ Size of a time window.
Parallel algorithms
p Number of threads used by a parallel algorithm.
Ti for i = 0,1,2. . . The i -th thread executing a parallel algorithm.
Tp (n) Execution time of a parallel algorithm using p threads.
T∞(n) Depth of a parallel algorithm.
Wp (n) Amount of work a parallel algorithm performs using p threads.
XTi Data structure X is maintained by the thread Ti .
Maximal clique enumeration
R The current clique of the BK algorithm.
P, X The candidate vertex, and the exlcude set of the BK algorithm.
ρ,χ Sizes of sets P and X , respectively.
HP,X Subgraph created using P and X as shown in Eppstein et al [ELS13].
Cycle enumeration
Π Current simple path explored by cycle enumeration algorithm.
Blk Set of blocked vertices of cycle enumeration algorithm.
Blist Unblock list of the Johnson algorithm.
E Path extension of the Read-Tarjan algorithm.

undirected graph, the out-degree of a vertex v is equal to its in-degree and is commonly

referred to as the degree of v . In this thesis, the maximum degree of a vertex in a graph is

denoted as ∆max, and the average degree is denoted as ∆avg. The degeneracy of a graph

represents the smallest value d , such that each nonempty subgraph of a graph has a vertex

with a degree at most d [LW70]. An h-index of a graph h is a maximum value such that a

graph contains h vertices of degree at least h [ES12]. For example, for the undirected graph

shown in Figure 1.1, ∆max, ∆avg, d , and h are, respectively, 5, 3.83, 4, and 4. Note that the

aforementioned parameters ∆max, ∆avg, d , and h can be used to express the sparsity of a

graph.

The main subgraph patterns explored in this thesis are cliques, cycles, and scatter-gather

patterns. A clique is defined for an undirected graph G(V ,E) as a set of vertices W ⊂V such
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Figure 2.1: Two snapshots of a temporal graph associated with two different time windows of
size δ = 5. The solid arrows indicate the edges that belong to the respective time windows.

that there exists an edge in E between every pair of vertices in W . A maximal clique is a clique

that is not fully contained in another clique [BK73]. An example of 3 maximal cliques is given

in Figure 1.1. A path, defined for an undirected or directed graph, between the vertices v0

and vk , denoted as v0 → v1 . . . → vk , is a sequence of vertices such that there exists an edge

between every two consecutive vertices of the sequence. A simple path is a path without

repeated vertices. A simple path is maximal if the last vertex of the path has no neighbours or

all its neighbours are already in the path [EG59]. A cycle is a path of non-zero length from a

vertex v to the same vertex v . A simple cycle is a cycle without repeated vertices except for

the first and last vertices. For simplicity, the term “simple” is often omitted when referring

to simple cycles and simple paths in this thesis. The number of maximal simple paths and

the number of simple cycles in a graph are denoted as s and c, respectively (see Table 2.1).

Note that s can be exponentially larger than c [Tar73]. A path or a cycle is said to satisfy

hop-constraint L if the number of edges on that path or cycle is less than or equal to L. In

temporal graphs, a temporal cycle is a simple cycle in which the edges appear in increasing

order of their timestamps. A scatter-gather pattern, illustrated in Figure 1.2c, is defined for a

directed graph using a starting vertex, an end vertex, and a set of intermediate vertices such

that there exists an edge from the starting edge to each intermediate vertex and an edge from

each intermediate vertex to the end vertex.

A subgraph of a temporal graph occurs within a time window [tw1 : tw2] if every edge of that

subgraph has a timestamp ts such that tw1 ≤ ts ≤ tw2. Figure 2.1 shows the simple cycles of a

temporal graph that occur within two different time windows of size δ = 5. This graph contains

one simple cycle in the time window [2 : 7] (Figure 2.1a), which is also a temporal cycle, and

two simple cycles in the time window [10 : 15] (Figure 2.1b), neither of which is a temporal

cycle.

This thesis focusses on the following enumeration problems. Maximal clique enumeration

is the problem of finding all maximal cliques of an undirected graph G. Simple cycle enu-

meration is the problem that requires finding all simple cycles of a directed or undirected

graph G. The goal of temporal cycle enumeration is to find all temporal cycles of a temporal

graph G. Finally, if a hop constraint is imposed on simple cycles, the simple cycle enumeration

problem becomes hop-constrained simple cycle enumeration. This thesis focusses on cycle
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Figure 2.2: Parallel depth-first traversal of a recursion tree. Each thread is pinned to a CPU
core and executes a part of the recursion tree in a depth-first manner.

enumeration problems under the time-window constraint, in which it is required to find all

cycles that occur within a time window of a given size δ. Thus, we consider cycle enumeration

problems on temporal graphs.

2.2 Parallel Programming Model

To parallelise the graph pattern mining algorithms in a scalable manner, this thesis uses the

fork-join parallel model [Con63; MDR12]. In this model, fork divides the control flow of a

program into two or more flows that can be executed in parallel, and join combines these

control flows into a single sequential flow. This thesis assumes that fork and join commands

can be nested, which makes this model convenient for parallelising the recursive algorithms

explored in this thesis.

This thesis uses the modified Cilk notation [Blu+96a] to express nested fork-join parallelism

in algorithms. A task is a sequential part of a program that can be executed by a thread

independently of other tasks. The spawn command creates a new task with the given input

arguments and specifies that this task is ready to be executed by a thread. A parent task can

spawn several child tasks. The depth of a task represents the number of its direct ancestors. A

parent task can wait for its child tasks to finish their execution by executing the sync command.

The spawn and sync commands represent fork and join, respectively, in the fork-join model.

Another method to specify a fork is to use a parallel foreach loop, which enables each loop

iteration to be executed independently by a different thread. In the algorithms described in

this thesis, a task usually consists of a single recursive call of a graph pattern mining algorithm,
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and a parallel foreach is used to create the initial task for each vertex or edge of a graph in

parallel. The keywords task, spawn, sync, and parallel used in the algorithms presented in this

thesis to express nested fork-join parallelism are highlighted in orange.

Nested fork-join parallelism can be implemented using shared-memory parallel pro-

cessing frameworks, such as Threading Building Blocks (TBB) [Kuk07], Cilk [Blu+96a],

OpenMP [Qui04], and Java fork/join framework [Ora22]. In addition to dynamic task creation,

these frameworks also have a dynamic task management system that assigns the spawned

tasks to the task queues of the available threads. Furthermore, a work-stealing scheduler [BL99;

Kuk07; Blu+96a] enables a thread that is not executing a task to steal a task from the task queue

of another thread. Stealing tasks enables dynamic load balancing and ensures full utilisation

of the threads when there are sufficiently many tasks.

For this thesis, the algorithms were implemented mainly using TBB; however, the algorithms

presented in this thesis can also be implemented using the other frameworks mentioned. A

thread of this framework executes the task that it spawned the last [Kuk07]. If the task queue of

a thread is empty, this thread steals the oldest task from the task queue of another thread. As a

result, TBB enables parallel depth-first traversal of a recursion tree of a recursive algorithm

when a task consists of a recursive call. This parallel depth-first traversal of a recursion tree is

illustrated in Figure 2.2. Additionally, TBB offers a scalable memory allocator that reduces the

overhead of concurrent memory allocations.

2.3 Analysis of Parallel Algorithms

To analyse parallel algorithms, this thesis uses the work-depth model [BM10]. In this model, the

algorithms are described using work, which is the number of operations a parallel algorithm

performs, and depth, which is the length of the longest sequence of dependent operations. In

addition, we refer to the time to execute a parallel algorithm on a problem of size n using p

threads as Tp (n). The size of a graph is determined by the number of vertices n as well as the

number of edges m, but for simplicity, we will refer only to n. Assuming that each operation

takes unit time to complete, we define work and depth as follows.

Definition 1. (Work) The work Wp (n) of a parallel algorithm executed on a problem of size n

using p threads is Wp (n) =
∑p−1

k=0 Tp (n).

Definition 2. (Depth) The depth T∞(n) of a parallel algorithm executed on a problem of size n

is T∞(n) = lim
p→∞Tp (n).

In this thesis, we use the notions of work efficiency and scalability to analyse parallel algo-

rithms [BM10]. The work efficiency and the scalability are formally defined as follows.

Definition 3. (Work efficiency) A parallel algorithm is work-efficient if and only if Wp (n) ∈
O(T1(n)).
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Definition 4. (Scalability) A parallel algorithm is scalable if and only if lim
n→∞

(
lim

p→∞
Tp (n)

T1(n)

)
= 0.

Informally, a work-efficient parallel algorithm performs the same amount of work as its

serial version, within a constant factor. Scalability implies that, for sufficiently large inputs,

increasing the number of threads increases the speedup of the parallel algorithm with respect

to its serial version.

This thesis also uses the notion of strong scalability, which is defined as follows [JaJ92].

Definition 5. (Strong scalability) A parallel algorithm is strongly scalable if and only if
T1(n)

Tp (n)
=

Θ(p) for large enough n.

Whereas Definition 4 implies that the speedup T1(n)/Tp (n) achieved by a parallel algorithm

with respect to its serial execution is infinite when the number of threads p is infinite, Defini-

tion 5 implies that the speedup is always in the order of p. Another related concept is weak

scalability, which requires the speedup to be in the order of p when the input size per thread

is constant. Note that both strong scalability and weak scalability imply scalability.

Finally, to derive the worst-case time complexity of work-efficient parallel algorithms, we use

Brent’s theorem [Bre74].

Theorem 1. (Brent’s theorem) The time complexity of executing a work-efficient parallel algo-

rithm on p processors is Tp (n) ∈O

(
T1(n)

p
+T∞(n)

)
.

2.4 Sequential Graph Pattern Mining Algorithms

In this section, we describe the state-of-the-art sequential algorithms for maximal clique and

simple cycle enumeration. We use these algorithms as a starting point for the development of

our fast and scalable algorithms for the enumeration of these two types of patterns.

2.4.1 Maximal Clique Enumeration Algorithms

The Bron-Kerbosch (BK) algorithm is one of the most successful algorithms for listing all

maximal cliques of a graph [BK73]. It is a recursive algorithm that operates on three sets of

vertices during each recursive call: the set R stores the vertices that form the currently largest

clique; the candidate set P stores the vertices that may form a clique with the ones from R;

and the exclude set X stores the vertices that have already been considered and, therefore,

cannot participate in new cliques. The P and X sets contain vertices adjacent to the vertices of

R at each step, as illustrated in Figure 2.3, which is ensured by the set intersection. At each

recursive call, a vertex v from the set of possible vertices P is added to R, such that R still forms

a clique. We then recursively determine whether the extended set R is part of a larger clique or

not. After all the cliques that contain the vertex v have been enumerated, the vertex is moved
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Figure 2.3: A state of the BK algorithm’s recursive call showing vertices from R, P , and X , and
the edges between those vertices. Starting from the given state, the algorithm would eventually
report a clique {v0, v4, v5, v6}. However, a clique {v0, v1, v3} would not be reported because
v1 ∈ X , indicating that this clique has already been reported.

Algorithm 1: The BK algorithm w. pivoting by Tomita et al [TTT06]

Input: R - set of vertices representing the current clique
P - candidate vertex set
X - exclude vertex set
G - the input graph

1 Function BKPivot (R, P, X , G)
2 if P = ; then
3 if X = ; then Report R as a maximal clique;
4 return ;

5 pivot = getPivot(P, X ,G);
6 foreach v : P \NG(pivot) do
7 BKPivot(R + {v}, P ∩NG(v), X ∩NG(v), G);
8 P = P − {v};
9 X = X + {v};

10 Function getPivot (P, X , G)
Output: pivot - the pivot vertex

11 foreach v : P ∪X do
12 tv = |P ∩NG(v)|;
13 return argmaxv (tv );

to the set X. If sets P and X are both empty, R is reported as a maximal clique. At the beginning,

sets R and X are empty, and the set P contains all the vertices of the input graph.

Bron and Kerbosch also introduced the pivoting strategy to reduce the number of unnecessary

recursive calls. When expanding R, instead of considering all vertices of the set P, a pivot

vertex pivot from P is chosen, and vertices neighbouring the pivot vertex NG (pivot) are not

considered for expansion of R. This approach results in a reduction in the number of invoked

recursive calls and faster execution of the algorithm. Note that Bron and Kerbosch did not

derive the worst-case time complexity of this algorithm; however, it was empirically shown
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Algorithm 2: BKDegeneracy (G(V ,E)) [ELS13]

Input: G - the input graph with vertices V and edges E
1 Order vertices V in G using degeneracy ordering;
2 foreach vi : V do
3 P =NG(vi )∩ {vi+1, vi+2, ..., vn−1};
4 X =NG(vi )∩ {v0, v1, ..., vi−1};
5 R = {vi };
6 BKPivot(R, P , X , G) ; ▷ Invoke Algorithm 1

that the execution time of this algorithm is proportional to 3.14n/3 [BK73; TTT06].

Tomita et al. [TTT06] improved the BK algorithm by choosing the pivot vertex from P ∪ X

in a way that maximises the number of vertices from NG (pivot) that are excluded from the

expansion of R (i.e., |P ∩NG (pivot)| is maximised). For example, in Figure 2.3, the vertex v4

is selected as a pivot, and NG (v4) = {v3, v5, v6} are excluded from the expansion. Thus, the

vertex P \NG (v4) = v4 is the only vertex considered for the expansion of R. This approach

leads to minimising the number of generated recursive calls and results in a worst-case time

complexity of O(3n/3). This result is worst-case optimal, given that the worst-case number

of cliques in a graph is O(3n/3) [CK08; MM65; TTT06]. The BK algorithm with the pivoting

strategy introduced by Tomita et al. [TTT06] is shown in Algorithm 1.

Eppstein et al. [ELS10] presented the further improved BK algorithm by imposing the degen-

eracy ordering when starting the search for cycles. Degeneracy represents the smallest value d,

such that each nonempty subgraph of a graph has a vertex with at most d edges. If a graph has

degeneracy d, its largest clique can have at most d+1 vertices, and the vertices of the graph can

be ordered in such a way that each vertex has d or fewer neighbouring vertices that come later

in the ordering. The main idea used in the improved algorithm is to compute a degeneracy

ordering of the vertices before invoking the original BK algorithm with pivoting, as shown in

Algorithm 2. Each loop iteration of Algorithm 2 starts the search for cliques from each vertex vi

of V by assigning this vertex to the set R. For each vertex vi , sets P and X are computed as the

neighbours of vi that come later and before in the degeneracy ordering, respectively. For the

sets created as described, the BK algorithm with pivoting by Tomita et al. [TTT06] is invoked.

Due to degeneracy ordering, every set P generated in lgorithm 2 will have at most d vertices,

which limits the depth of each recursion tree. As a result, the worst-case time complexity of the

BK algorithm is reduced to O(dn3d/3). In the rest of this thesis, we will refer to this algorithm

as the BK algorithm with degeneracy ordering or simply the BK algorithm.

2.4.2 Simple Cycle Enumeration Algorithms

The following algorithms for simple cycle enumeration perform recursive searches to incre-

mentally update simple paths that can lead to cycles. Each algorithm iterates the vertices or

edges of the graph and independently constructs a recursion tree to enumerate all the cycles
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Figure 2.4: (a) An example graph and (b) the recursion tree constructed when searching for
cycles that start from v0. The nodes of the recursion tree represent the recursive calls of the
depth-first search. Whereas the Johnson algorithm would visit the vertices in red only once
during the exploration of the left subtree, the Read-Tarjan algorithm visits those vertices also
in the right subtree, as indicated using dotted lines.

starting from that vertex or edge. The difference between these algorithms is to what extent

they reduce the redundant work performed during the recursive search, which we discuss

next.

The Tiernan algorithm [Tie70] enumerates simple cycles using a brute-force search. It recur-

sively extends a simple path Π by appending a neighbour u of the last vertex v of Π, provided

that u is not already in Π, as shown in Algorithm 3. A clear downside of this algorithm is that it

can repeatedly visit vertices that can never lead to a cycle. When searching for cycles in the

graph shown in Figure 2.4a starting from the vertex v0, this algorithm would explore the path

that contains b1, . . . ,bk 2r times. From each vertex wi and ui , with i ∈ {1, . . . ,r }, the Tiernan

algorithm would explore this path only to discover that it cannot lead to a simple cycle. As

noted by Tarjan [Tar73], the Tiernan algorithm explores every simple path and, consequently,

all maximal simple paths of a graph. Exploring a maximal simple path takes O(e) time because

it requires visiting each edge of the graph in the worst case. Given a graph with s maximal

simple paths (see Table 2.1), the worst-case time complexity of the Tiernan algorithm is O(se).

The Johnson algorithm [Joh75] improves upon the Tiernan algorithm by avoiding the vertices

that cannot lead to simple cycles when appended to the current simple path Π. For this

purpose, the Johnson algorithm maintains a set of blocked vertices Blk that are avoided during

the search. In addition, a list of vertices Blist[w ] is stored for each blocked vertex w . Whenever

a vertex w is unblocked (i.e., removed from Blk) by the Johnson algorithm, the vertices in

Blist[w] are also unblocked. This unblocking process is performed recursively until no more

vertices can be unblocked, which we refer to as the recursive unblocking procedure. The

pseudocode of the Johnson algorithm is given in Algorithm 4, and the recursive unblocking

procedure is shown in lines 17–21 of that algorithm.
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Algorithm 3: TiernanBacktrack (v, Π, G) [Tie70]

Input: v - the current vertex
G - the input graph

InOut :Π - the current path

1 Π.push(v);
2 v0 =Π.front(); ▷ The starting vertex

3 foreach u : NG(v) s.t. u.id > v0.id do ▷ Recursively explore the neighbours of v

4 if u = v0 then
5 report cycle Π;
6 else if u ∉Π then ▷ Make sure the path is simple

7 TiernanBacktrack(u, Π, G); ▷ Create a child recursive call

8 Π.pop()

A vertex v is blocked (i.e., added to Blk) when visited by the algorithm. If a cycle is found

after recursively exploring every neighbour of v that is not blocked, the vertex v is unblocked.

However, v is not immediately unblocked if no cycles are found after exploring its neighbours.

Instead, the Blist data structure is updated to enable unblocking of v in a later step by adding

v to the list Blist[w] of every neighbour w of v . This delayed unblocking of the vertices

enables the Johnson algorithm to discover each cycle in O(e) time in the worst case. Because

this algorithm requires O(n + e) time to determine that there are no cycles, its worst-case

time complexity is O (n +e +ec) [SL76]. Note that because s can be exponentially larger than

c [Tar73], the Johnson algorithm is asymptotically faster than the Tiernan algorithm.

In the example shown in Figure 2.4a, every simple path Π that starts from v0 and contains

vertices b1, . . . ,bk is a maximal simple path, and, thus, it cannot lead to a simple cycle. The

Johnson algorithm would block b1, . . . ,bk immediately after visiting this sequence once and

then keep these vertices blocked until it finishes exploring the neighbours of v2. As a result,

the Johnson algorithm visits vertices b1, . . . ,bk only once, rather than 2r times the Tiernan al-

gorithm would visit them. Note that because these vertices get blocked during the exploration

of the left subtree of the recursion tree, they are not going to be visited again during the explo-

ration of the right subtree. Effectively, a portion of the right subtree is pruned (see the dotted

path in Figure 2.4b) based on the updates made on Blk and Blist during the exploration of the

left subtree. This strictly sequential depth-first exploration of the recursion tree is critically

important for achieving a high pruning efficiency, but it also makes scalable parallelisation of

the Johnson algorithm extremely challenging, which we are going to cover in Section 4.3.

The Johnson algorithm can be adapted to efficiently search for temporal cycles [KC18] and

hop-constrained simple cycles [Pen+19]. Adapting the Johnson algorithm to search for cycles

under different constraints is further explored in Section 4.5 of this thesis.

The Read-Tarjan algorithm [RT75] also has a worst-case time complexity of O (n +e +ec).

The pseudocode of this algorithm is shown in Algorithm 5. This algorithm maintains a current

path Π between a starting vertex and a frontier vertex. A recursive call of this algorithm iterates
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Algorithm 4: JohnsonBacktrack (v, G, Π, Blk) [Joh77]

Input: v - the current vertex; G - the input graph
InOut :Π - the current path; Blk - Blocked vertex set; Blist - Blocked list
Output: true if a cycle was found

1 v0 =Π.front(); ▷ The starting vertex

2 Π.push(v); Blk = Blk∪ {v};
3 found = false;
4 foreach u : NG(v) s.t. u.id > v0.id do ▷ Recursively explore the neighbours of v

5 if u = v0 then
6 report cycle Π;
7 found = true;

8 else if u ∉ Blk then
9 f = JohnsonBacktrack(u, G, Π, Blk) ; ▷ Create a child recursive call

10 found = found∨ f;

11 Π.pop();
12 if found then ▷ Unblock vertices if a cycle was found

13 RecursiveUnblock(v, Blk, Blist); ▷ Defined in lines 17–21

14 else
15 foreach u : NG(v) do Blist[u] = Blist[u]∪ {v};
16 return found;

17 Function RecursiveUnblock (u, Blk, Blist)
18 Blk = Blk/{u};
19 foreach w : Blist[u] do
20 Blist[u] = Blist[u]/{w};
21 RecursiveUnblock(w , Blk, Blist);

the neighbours of the current frontier vertex and performs a depth-first search (DFS). Assume

that v0 is the starting vertex and v1 is the frontier vertex of Π (see Figure 2.4a). From each

neighbour y ∈ {v0, v2} of v1, a DFS tries to find a path extension E back to v0 that would form

a simple cycle when appended to Π. In the example shown in Figure 2.4a, the algorithm

finds two path extensions, one indicated as E and one that consists of the edge v1 → v0. The

algorithm then explores each path extension by iteratively appending the vertices from it

to the path Π. For each vertex x added to Π, the algorithm also searches for an alternate

path extension from that vertex x to v0 using a DFS. In the example given in Figure 2.4a,

the algorithm iterates through the vertices of the path extension E and finds an alternate

path extension E ′ from the neighbour u1 of v2. If an alternate path extension is found, a

child recursive call is invoked with the updated current path Π, which is v0 → v1 → v2 in our

example. Otherwise, if all the vertices in E have already been added to the current path Π, Π

is reported as a simple cycle. In our example, the Read-Tarjan algorithm explores both E and

E ′ path extensions, and each leads to the discovery of a cycle.

The Read-Tarjan algorithm also maintains a set of blocked vertices Blk for recursion-tree

pruning. However, differently from the Johnson algorithm, Blk only keeps track of the vertices
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Algorithm 5: ReadTarjanBacktrack (Π, G) [RT75]

InOut :Π - the current path
Input: G - the input graph

1 v0 =Π.front(); v =Π.back(); ▷ The starting vertex and the last added vertex to Π

2 foreach w : NG(v) s.t. a path extension E from v to v0 exists do
3 E : w1 → w2 → . . . → wk = v0; ▷ E can be found using a DFS traversal

4 Blk = {Π};
5 flag = false;
6 foreach wi : E do ▷ Follow the extension E until an alternate path extension is

found

7 Π =Π.push(wi );
8 Blk = Blk∪ {wi };
9 foreach u : NG(wi ) s.t. u.id > v0.id do

10 if u ̸= wi+1 ∧u ∉ Blk then
11 flag = DFS(u, v0, G, Blk) ; ▷ Find an alternate path extension

12 if flag = true then goto line 13; ▷ If an alternate path extension was found

13 if flag = false then report cycle Π;
14 else ReadTarjanBacktrack(Π, G) ; ▷ Create a child recursive call

15 Delete the vertices appended to Π after v ;

16 Function DFS (u, v0, G, Blk) ▷ Find a simple path from u to v0 that avoids Blk
Input: u - the current vertex, v0 - the starting vertex, G - the input graph
InOut :Blk - blocked vertices
Output: true if a path was found

17 Blk = Blk∪ {u};
18 foreach w : NG(u) s.t. w.id > v0.id do
19 if w = v0 then return true;
20 else if w ∉ Blk then
21 found = DFS(w , v0, G, Blk);
22 if found then return true;

23 return false;

that cannot lead to new cycles when exploring the current path extension within the same

recursive call (see lines 6–12 of Algorithm 5). The vertices in Blk are avoided while searching

for additional path extensions that branch from the current path extension. For instance, the

left subtree of the recursion tree shown in Figure 2.4b demonstrates the exploration of the

path extension E shown in Figure 2.4a. During the exploration of E , the vertices b1, . . . ,bk are

added to Blk immediately after visiting w1, and they are not visited again while exploring E .

However, when exploring another path extension E ′ in the right subtree, the vertices b1, . . . ,bk

are visited once again (see the dotted path of the right subtree). As a result, the Read-Tarjan

algorithm visits b1, . . . ,bk twice instead of just once. As we are going to show in Section 4.4,

this drawback becomes an advantage when parallelising the Read-Tarjan algorithm because it

enables independent exploration of different subtrees of the recursion tree.
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3 Fast Enumeration of Maximal
Cliques on Manycore Platforms

The Bron-Kerbosch (BK) algorithm with degeneracy ordering [BK73; TTT06; ELS10] is one of

the most efficient and widely used algorithms for maximal clique enumeration (MCE) [Con+16;

CK08]. As shown in the previous chapter, the BK algorithm is a recursive algorithm that relies

heavily on set intersection operations. The data parallelism caused by these set intersection

operations can be exploited to accelerate this algorithm. In addition, a large amount of task

parallelism is available in the BK algorithm because different regions of the search space can

be traversed independently. However, parallelisation of this algorithm on modern computer

architectures, such as manycore CPUs, is not straightforward. Because a recursion tree is

constructed dynamically and its shape is not known in advance, distributing the work evenly

across processing resources poses challenges.

In this chapter, we focus on accelerating the BK algorithm by vectorising set intersection

operations that dominate the MCE algorithms and by exploiting task parallelism. First, we

prove that the use of hash-join-based set-intersection algorithms within the BK algorithm

leads to Pareto-optimal implementations in terms of runtime and memory space compared

to those based on merge joins. Then, we present a scalable parallel implementation of the

BK algorithm that exploits both data parallelism, by using SIMD-accelerated hash-join-based

set intersections, and fine-grained parallelism, by using a shared-memory parallel processing

framework that supports dynamic load balancing. Finally, we evaluate our scalable parallel

MCE imlementation on different manycore CPUs and demonstrate an order of magnitude

speedup compared with a state-of-the-art manycore MCE algorithm.

The rest of this chapter is organised as follows. Section 3.1 gives an overview of our solution

and discusses key ideas used for accelerating MCE. Section 3.2 offers a broad complexity

analysis of the improved BK algorithm by Eppstein et al. [ELS10], which focusses mainly on the

impact of the set-intersection algorithms. A practical implementation of SIMD-accelerated

This chapter is based on the pieces of work published at the 46th Internatonal Conference on Very Large Data
Bases (VLDB), 2020 [Bla+20a] and at the 2020 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW) [Bla+20b].

23



Chapter 3 Fast Enumeration of Maximal Cliques on Manycore Platforms

Time

Space

MJ w. subgraphs

Merge-JoinHash-Join

HJ w. subgraphs

𝑛 – no. vertices     ∆!"#	– avg. degree
𝑑 – degeneracy     ∆$!%– max. degree
𝑝 – no. threads

𝑂(𝑝𝑑∆!"#)

𝑂(𝑝𝑑$∆!"#)

𝑂 ∆"%&∆!"#𝑛3' (⁄𝑂 ∆"%&𝑛3' (⁄

Figure 3.1: Effect of different set-intersection methods on the time and space complexity of
the BK algorithm. MJ and HJ stand for merge-join and hash-join, respectively. The solution
based on hash joins is Pareto-optimal.

hash-join-based set-intersection implementation is described in Section 3.3. Section 3.4

describes our scalable manycore implementation of the BK algorithm. The experimental

evaluation of our solution is given in Section 3.5. The related work is discussed in Section 3.6,

and the chapter is concluded in Section 3.7.

3.1 Overview of the Solution

Set intersection operations dominate the execution time of the BK algorithm [HZY18]. These

operations are special cases of join operations because sets store only keys and no payloads.

When implementing set intersections, one can rely on the two main classes of join algorithms:

merge joins and hash joins. Merge joins require both sets to be sorted, while hash joins require

at least one of the sets to be hashed. In this chapter, we analyse how intersections based on

merge joins and hash joins affect the overall time and space complexity of the BK algorithm.

Intersections in the BK algorithm are performed between the adjacency lists of the input

graph and some dynamically-created sets. Because the adjacency lists are static, they can

be hashed or sorted in advance. As a result, the complexity of set intersections based on

hash joins does not depend on the size of the adjacency lists, which is not the case for set

intersections based on merge joins. Considering that the adjacency lists are asymptotically

larger than the dynamically created sets, using hash-join-based intersections leads to faster

BK implementations. We show that this result is valid both in theory and in practice. Yet,

the performance of merge-join-based approaches can be improved using the modified BK

algorithm of Eppstein et al. [ELS10]. We show that creating subgraphs at each recursive call,

as proposed by Eppstein et al. [ELS10], shrinks the adjacency lists used in the intersections,

leading to faster merge-join-based solutions, but at the cost of increased space complexity.

Our theoretical analysis results given in Figure 3.1 show that merge-join-based solutions

require either more space or more time compared to the hash-join-based solution. The results
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Figure 3.2: Illustration of our manycore setup: each core can execute several concurrent
threads and has a private cache in which the sets it creates can reside. The input graph is
stored in external memory in the form of hash tables.

given in Figure 3.1 motivate us to focus on BK implementations that use hash-join-based set

intersections.

Our manycore implementation exploits both data- and task-level parallelism of the BK al-

gorithm. We scale the algorithm across multiple hardware threads using a framework that

utilises dynamic load-balancing, and we exploit data-level parallelism using SIMD-accelerated

hash-join-based set intersections. In our manycore setup, illustrated in Figure 3.2, the input

graph resides in external memory and the adjacency list of each vertex is stored as a read-

only hash table. Hardware threads perform intersections between adjacency lists and local

sets, dynamically creating other sets as results. Our intelligent recursion tree exploration

approach guarantees that the dynamic memory usage increases only linearly with the num-

ber of threads, independently of the number of graph vertices. Thus, it is possible to fit the

dynamically-created data structures in the cache space of the CPUs. Lastly, we minimise the

task and memory management overheads, which can also constitute a significant part of the

execution time. As a result, we are able to run the BK algorithm on a graph with more than 60

million vertices and 1.8 billion edges on a single manycore CPU in only a few minutes. Overall,

our implementation is an order of magnitude faster than a state-of-the-art manycore MCE

algorithm.

3.2 A Broad Complexity Analysis

This section contributes a broad time and space complexity analysis of the BK algorithm, taking

into account both vertex ordering strategies and set intersection algorithms. In particular,

we show that whereas hash-join-based set-intersection algorithms lead to ideal complexity

bounds, merge-join-based set intersections can lead to a ∆max times higher worst-case time

complexity, where ∆max is the maximum node degree of the input graph. We also show that

the recursive subgraph-creation scheme given by Eppstein et al. [ELS10] enables the ideal

worst-case time complexity to be achieved even when using merge-join-based set intersection
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Table 3.1: Worst-case time complexity when using different vertex ordering strategies. SFG
stands for scale-free graphs.

Vertex ordering Time complexity
Arbitrary [TTT06] O(3n/3)
Degree [Xu+14] O(hn3h/3)
Degeneracy [ELS10] O(dn3d/3)

Arbitrary (this work) O(n3∆max /3)

Arbitrary - SFG (this work) O(3∆max /3)
Degeneracy (this work) O(∆av g n3d/3)

algorithms, but the cost of doing so is a d-times higher peak space complexity. These results

are summarised in Figure 3.1.

The order in which the vertices are processed when building the recursion tree has a significant

impact on the exponential factors of the worst-case complexity. These results are presented in

Table 3.1. Tomita et al. [TTT06] assumed an arbitrary ordering of vertices when building the

recursion tree and obtained a worst-case complexity of O(3n/3). On the other hand, Eppstein

et al. [ELS10] proved a worst-case complexity bound of O(dn3d/3). Similarly, Xu et al. [Xu+14]

focused on the degree-ordering of the vertices, and derived a worst-case complexity bound

of O(hn3d/3), where h is the h-index of the input graph. Note that in the case of the arbitrary

ordering we contribute improved complexity bounds for general and scale-free graphs. In the

case of the degeneracy ordering, our results are slightly different from those of Eppstein et

al. [ELS10] because we introduce the additional term ∆av g , which is the average node degree

of the input graph.

Examples of some real-world graph datasets with their parameters affecting the complexity

are given in Table 3.2. These graphs come from the Network Data Repository [RA15] and

SNAP [LK14]. In all of these cases ∆av g < d < h <∆max , which means that the algorithms

using the degeneracy ordering lead to significantly lower theoretical complexity bounds than

the ones with arbitrary and degree ordering. Therefore, we focus on the degeneracy ordering

in this work.

3.2.1 Effect of Set-Intersection Algorithms

Because set intersections are heavily used in the Bron-Kerbosch algorithm, it is important to

determine the effect of specific set-intersection algorithms on the overall complexity. In this

work, we focus on the two most commonly used methods: merge-join- and hash-join-based

algorithms.

Let ρ = |P | and χ = |X | the sizes of the sets P and X in one recursive call of BKPivot subroutine

of Algorithm 1. Lets assume that a graph has n vertices, m edges, and degeneracy d. The

maximum degree of a vertex is ∆max , and the average degree of the vertices is ∆av g . The
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Table 3.2: Graph properties. Graphs larger than 1 GB are considered large.

small graph abbrv. n ∆avg d h ∆max size [MB]
wiki-talk wt 2.4 M 3.9 131 1055 100 k 64
b-anon ba 2.9 M 14.3 63 722 4.4 k 80
as-skitter as 1.7 M 13.1 111 982 35 k 143
livejournal lj 4.0 M 13.9 213 558 2.6 k 393
topcats tc 1.8 M 28.4 99 1457 238 k 403
pokec pk 1.6 M 27.3 47 492 15 k 405
large graph abbrv. n ∆avg d h ∆max size [MB]
orkut or 3.1 M 76.3 253 1638 33 k 1740
sinaweibo sw 59 M 8.9 193 5902 278 k 3891
aff-orkut ao 8.7 M 74.9 471 6064 318 k 4915
clueweb cw 148 M 6.1 192 2783 308 k 7373
wiki-link wl 26 M 41.9 1120 5908 4.2 M 9728
friendster fr 66 M 54.5 304 2958 5.2 k 30720

following properties hold for ρ, χ, and d [SEF16]:

ρ ≤ d , ρ+χ≤∆max ,
∆av g

2
≤ d <∆max . (3.1)

The relationship between the intersection time and the execution time of the BKPivot function

is given as follows:

Lemma 1. The complexity of the BKPivot function without its child recursive calls is

O
((
ρ+χ

)
I
(
ρ,∆

)+ρ
(
I
(
ρ,∆

)+ I
(
χ,∆

)))
, (3.2)

where ∆ is size of the largest adjacency list accessed, and I (a,b) is the time to intersect a set with

a elements and an adjacency list with b elements.

Proof. To determine the pivot vertex, we perform ρ+χ intersections between the set P and

the adjacency list of a vertex from P ∪X (see getPivot function), which takes O
(
(ρ+χ)I (ρ,∆)

)
time. Then, the BKPivot function intersects sets P and X up to ρ times with the adjacency list

of vertices in P/N (u), which takes O
(
ρ(I (ρ,∆)+ I (χ,∆))

)
time. The total time is the sum of

these two results.

The next lemma offers the result for the time complexity of the overall algorithm for two

significant cases.

Lemma 2. Let D0 be the time to execute the BKPivot function without its recursive calls. Then,

the time it takes for the BK algorithm with degeneracy ordering to compute all maximal cliques

of a graph G is:

D(G) =

O(∆av g n3d/3), forD0 = O(ρ2χ)

O(∆av g∆max n3d/3), forD0 = O(ρ2χ∆max ).
(3.3)

27



Chapter 3 Fast Enumeration of Maximal Cliques on Manycore Platforms

Proof. Using Lemma 5 of Eppstein et al. [ELS10], execution time of the BKPivot function

including its child recursive calls is O(χ3ρ/3) when D0 = O(ρ2χ) and O(χ∆max 3ρ/3) when

D0 = O(ρ2χ∆max ). The total cost of all the invocations of BKPivot in the BKDegeneracy

function is∑
v

O(χ3ρ/3) ≤O(m3d/3) = O(∆av g n3d/3), (3.4)

when D0 = O(ρ2χ). Similarly, the total execution time is O(∆av g∆max n3d/3) when D0 =

O(ρ2χ∆max ).

Hash-join-based set intersections require a first set Sa to be hashed. The second set Sb is

traversed while performing lookups in Sa . Assuming each lookup takes O(1) time in the worst

case, the total time needed for the intersection is O(|Sb |). Constant worst-case lookup time can

be achieved using cuckoo hashing [PR01], hopscotch hashing [HST08], and several different

perfect hashing algorithms [FKS84; BBD09; BPZ13].

In the hash-join-based BK algorithm, the adjacency list of each vertex is stored in a dedicated

hash-table. Given a graph with n vertices and e edges, construction of the hash tables can

be achieved in O(n + e) expected time and space complexity, which can be approximated

as O(∆av g n) when ∆av g >= 1. This pre-processing overhead is significantly lower than the

complexity of the BK algorithm.

Theorem 2. The BK algorithm computes all maximal cliques of a graph G in O(∆av g n3d/3)

time using degeneracy ordering and hash-join-based set intersections.

Proof. Given that I (a,b) = O(a) when using hash joins with the second set hashed, the com-

plexity of the BKPivot function without its child recursive calls is O(ρ(ρ+χ)) using Lemma 1.

The total execution time of the algorithm is obtained by applying Lemma 2 with D0 = O(ρ2χ)

given that O(ρ(ρ+χ)) ⊂O(ρ2χ).

Note that Theorem 2 gives a tighter lower bound than O(dn3d/3) by Eppstein et al. [ELS10]

because O(∆av g ) ⊂ O(d). Other hashing algorithms, such as linear probing and double

hashing [Knu68], offer weaker bounds on the complexity of hash table lookups. While on

average each lookup takes constant time, in the worst-case a lookup can require a linear scan

of the hash table. As a result, performing |Sb | lookups in Sa takes O(|Sa ||Sb |) time in the worst

case, which increases the time complexity of the BK algorithm by ∆max times.

Merge-join-based set intersections require both sets to be sorted. We iterate through both sets

in a sequential fashion, looking for common elements. In the worst case, a merge-join-based

set intersection performs O(|Sa |+ |Sb |) comparisons. In the merge-join-based BK algorithm,

sorting the adjacency lists of the input graph is done as a preprocessing step. Because the

result of each intersection is also sorted, all the sets remain sorted during the execution of the

algorithm without any additional sorting overhead.
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Theorem 3. The BK algorithm computes all maximal cliques of a graph G in

O(∆av g∆max n3d/3) time using degeneracy ordering and merge-join-based set intersections.

Proof. Because the size of the largest adjacency list accessed can be as large as ∆max and

given that I (a,b) = O(a+b) in the merge-join case, the complexity of BKPivot without its child

recursive calls is O((ρ+χ)(ρ+∆max )) using Lemma 1. By applying the Lemma 2 for D0 =

O(ρ2χ∆max ) given that O((ρ+χ)(ρ+∆max )) ⊂ O(ρ2χ∆max ), we obtain the total execution

time of the algorithm.

In summary, merge-join-based set-intersections lead to a ∆max times higher asymptotic time

complexity than hash-join-based set-intersections.

3.2.2 Effect of Recursive Subgraph Creation

Eppstein et al. [ELS10] contributed a subgraph-based BK algorithm, which creates a new

subgraph denoted as HP,X before each recursive call. These calls then use their respective

subgraphs instead of the original graph G. HP,X is a subgraph of G induced by the vertex set

P ∪X . However, the edges that exist between the vertices in X in G are not included in HP,X .

Algorithm 6 shows the BKSubgraph function, which replaces the BKPivot function of the origi-

nal BK algorithm, wherein a new function called createHpxSubgraph is introduced to create

HP,X . Note that our formulation of the BKSubgraph function given in Algorithm 6 is slightly

different from the one given by Eppstein et al. We create only one subgraph per recursive

call whereas Eppstein et al.’s formulation [ELS10] creates O(p) subgraphs per call; thus our

formulation incurs a lower overhead per call. Note also that the BKDegeneracy function has to

invoke BKSubgraph instead of BKPivot when using recursive subgraph creation.

In this section, we evaluate the impact of recursive subgraph creation on the time complexity

of the BK algorithm. We evaluate this impact in combination with both merge-join-based and

hash-join-based set-intersection algorithms.

Merge join with recursive subgraph creation approach combines the subgraph-based BK

algorithm with merge-join-based set intersections. Because the subgraphs shrink with each

recursive call, using subgraphs that have smaller adjacency lists than the original graph leads

to faster execution of merge-join-based set intersections.

Lemma 3. createHpxSubgraph can be executed in O(ρ(ρ+χ)) time using merge-join-based set

intersections.

Proof. The createHpxSubgraph function iterates through all the vertices in P . For each vertex

u ∈ P , it determines the adjacency list NSG (u) of the subgraph SG by intersecting P ∪X with

the adjacency list NG (u) of the original graph G. Because the size of NG (u) is O(ρ+χ), the time

needed to create NSG (u) for each u ∈ P using merge-join-based set intersections is O(ρ+χ).
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Algorithm 6: Bron-Kerbosch with subgraph creation

Input: R - set of vertices representing the current clique
P - set of vertices that could form a clique with R
X - set of vertices that can not form a clique with R
G - the input graph

1 Function BKSubgraph(R, P, X , G)
2 if P = ; then
3 if X = ; then Report R as a maximal clique;
4 return ;

5 SG = createHpxSubgraph(P , X , G);
6 pivot = getPivot(P, X ,SG); ▷ See lines 10–13 of Algorithm 1

7 foreach v : P \NSG(pivot) do
8 BKSubgraph(R + {v}, P ∩NSG(v), X ∩NSG(v), SG);
9 P = P − {v};

10 X = X + {v};

11 Function createHpxSubgraph(P, X , G)
Output: HP,X subgraph of G

12 foreach u : P do
13 NSG(u) = (P ∪X )∩NG(u);

14 foreach v : NSG(u) do
15 if v ∈ X then
16 NSG(v) =NSG(v)+ {u};

17 return SG

The adjacency lists NSG (v) of v ∈ X are initially empty. Whenever we find a vertex v ∈ X in

the previously created adjacency list NSG (u), we update NSG (v) by inserting u into it. This

insertion can be done in O(1) time by appending the vertex u at the end of NSG (v) because

both the adjacency lists and the sets P are always stored in a sorted fashion and traversed as

such in merge-join-based implementations. There are O(ρ+χ) vertices to be examined in

NSG (u). Therefore, for each u ∈ P , the time needed to update the adjacency lists NSG (v) of

v ∈ X is O(ρ+χ). Since p iterations are performed in the outer loop of the createHpxSubgraph

function, the function executes in O(ρ(ρ+χ)) time.

Theorem 4. The BK algorithm computes all maximal cliques of a graph G in O(∆av g n3d/3)

time using degeneracy ordering and merge-join-based set intersections in combination with

recursive subgraph creation.

Proof. Since we use the HP,X subgraph instead of the original graph in the BKSubgraph func-

tion, the size of the largest adjacency list used in that function is ρ+χ. Therefore, the time

needed to execute BKSubgraph without the createHpxSubgraph function can be obtained

using Lemma 1, where ∆ = ρ+χ and I (a,b) = O(a +b), which results in O(ρ(ρ+χ)) time. Re-
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calling from Lemma 3 that subgraph creation takes O(ρ(ρ+χ)) time, the total time needed to

execute BKSubgraph without its recursive calls is O(ρ(ρ+χ)). Similar to the proof of Theorem 2,

the overall complexity can be obtained by using Lemma 2 with D0 = O(ρ2χ).

In summary, recursive subgraph creation enables the BK algorithm based on merge joins to

achieve the same time complexity bound as the hash-join-based BK algorithm.

Hash join with recursive subgraph creation method combines hash-join-based set inter-

sections with subgraph-based BK algorithm. Because the hash-join-based implementation

operates on hashed adjacency lists, creating a new subgraph requires construction of several

new hash tables that store the adjacency lists of the subgraph. Note that the worst-case com-

plexity of constructing a hash table is quadratic in its size given that the worst-case complexity

of inserting an element into a hash table is linear in the number of elements for most hashing

algorithms.

Theorem 5. The BK algorithm computes all maximal cliques of a graph G in

O(∆av g∆max n3d/3) time using degeneracy ordering and hash-join-based set intersections

in combination with recursive subgraph creation.

Proof. The intersections shown in the line 13 of Algorithm 6 can be performed in O(ρ+χ)

time using the hash-join approach. Therefore, computing all the adjacency lists of a subgraph

takes O(ρ(ρ+χ)) time. However, we also have to construct hash tables that store the adjacency

lists of the subgraph. Given that a HP,X subgraph has ρ adjacency lists with at most ρ+χ

elements and χ adjacency lists with at most ρ elements, constructing all the hash tables takes

O
(
ρ(ρ+χ)2 +χρ2

)
= O

(
ρ(ρ+χ)2

)
time because of the quadratic complexity of hash table

construction. The total time needed to execute createHpxSubgraph is O
(
p(ρ+χ)2

)
.

Using Lemma 1 with I (a,b) = O(a), the execution time of BKSubgraph without the createHpx-

Subgraph function is O(ρ(ρ+χ)). Adding it to the time to compute the createHpxSubgraph

function, the execution time of the BKSubgraph function becomes O
(
ρ(ρ+χ)2

)
. The total

execution time of the BK algorithm is obtained by applying Lemma 2 with D0 = O(ρ2χ∆max )

given that χ is at most ∆max and O(ρ(ρ+χ)2) ⊂O(ρ2χ∆max ).

Theorem 5 shows that recursive subgraph creation increases the worst-case time complex-

ity when using hash-join-based set intersections. However, there exist hashing algorithms

that support insertions in constant worst-case time complexity with high probability [DM90;

Goo+12; ANS10; ANS09; BE19], leading to a linear worst-case hash table construction com-

plexity. Using such algorithms would reduce the complexity of the BK algorithm with hash-

join-based set intersections and recursive subgraph creation to O(∆av g n3d/3).

3.2.3 Space Complexity

In this section, we perform a space complexity analysis of the BK algorithm assuming the

degeneracy ordering of the vertices. In particular, we analyse the impact of recursive subgraph
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creation on the peak dynamic memory usage.

At each recursive step, the BK algorithm computes new P, R, and X sets. After that, the BK

algorithm invokes a child recursive call and passes the new sets as its parameters. Note that the

maximum clique size is upper bounded by d +1. Therefore, storing these three sets requires

O(ρ+χ+d) = O(∆max ) space. When the recursion tree is explored in a depth-first-search (DFS)

order, the space used for storing the intermediate results is limited to the current execution

depth. In addition, when using the degeneracy ordering, the maximum recursion depth is d.

Thus, the peak memory consumption of the single-threaded execution of the BK algorithm

is O(d∆max ) without taking into account the space needed to store the input graph and the

cliques found.

Recursive subgraph creation increases the memory usage further. Each HP,X subgraph uses

O(ρ(ρ+χ)+χρ) = O(ρ(ρ+χ)) = O(d∆max ) space because it connects either two vertices of

P or one from P and one from X [ELS10]. Creating a new subgraph for each recursive call

increases the peak memory consumption to O(d ×d∆max ) = O(d 2∆max ). Therefore, recursive

subgraph creation can increase the dynamic memory usage by up to d times. In summary,

even though recursive subgraph creation reduces the time complexity of the BK algorithm

that uses merge-join-based set intersections, it increases its dynamic memory usage.

The results of our analysis are given in Figure 3.1. Note that when exploring the recursion

tree in the DFS order, the dynamic memory usage of the BK algorithm is independent of n. It

depends only on the recursion depth d and ∆max .

3.2.4 Parallel Time and Space Complexity

The BK algorithm can be parallelized by considering each recursive call as an independent unit

of work (i.e., task). Given N threads of execution, N DFS-based explorations of the recursion

tree can be performed concurrently. Based on Brent’s theorem, we have TN ≤ T1/N +T∞,

where T1 is the execution time using a single core, T∞ is the execution time using infinitely

many cores, and TN is the execution time using N cores [Bre74]. In the case of the BK algorithm

with degeneracy ordering, T1(n) = O(∆av g n3d/3) and T∞(n) = O(d) because d is the maximum

depth of the recursion tree. Thus, the execution time using p threads of execution is

Tp (n) = O

(
∆av g n

p
3d/3 +d

)
. (3.5)

As a result, we expect the performance of parallel implementations that take advantage

of dynamic task scheduling frameworks [Qui04; Blu+96b; Kuk07] to scale linearly with the

number of threads (strong scaling). In addition, when d is constant and the number of

hardware threads (p) is a linear function of n, the worst-case time complexity is also a constant.

Hence, a weak performance scaling can be achieved as well.

When we execute the BK algorithm on p threads, we explore N different DFS paths of the
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recursion tree in parallel. Because the memory consumption of each thread is equal to the

memory usage of a single DFS path, the space needed for executing the parallel algorithm is

up to p times larger than the single-threaded results given in Section 3.2.3. We conclude that

the peak memory consumption is O(N d∆max ) without subgraphs while it is O(N d 2∆max )

with subgraphs. Considering both hash-join-based and merge-join-based set intersections,

we summarise these results in Figure 3.1.

3.2.5 Arbitrary Vertex Orderings

In this section, we derive new complexity bounds for arbitrary vertex orderings. When using

arbitrary vertex orderings, the size of set P is no longer upper bounded by d but by the

maximum vertex degree ∆max . Based on this observation, the time complexity of the BK

algorithm that uses arbitrary vertex ordering is O(n3∆max /3), because each invocation of the

BKPivot function takes O(3∆max /3) time.

A better complexity bound can be derived for scale-free graphs. In scale-free graphs, the

probability of a vertex having degree ∆ is P(∆) ∼∆−γ, where the γ parameter is typically

between 2 and 3 [BP16]. Many real-world graphs are scale free, such as the World Wide Web,

protein-interaction, and email networks. These graphs have a limited number of highly-

connected vertices. When the BK algorithm is executed on scale-free graphs, most of its

execution time is spent when starting from those highly-connected vertices.

Theorem 6. The BK algorithm computes all maximal cliques of a scale-free graph in O(3∆max /3)

time using an arbitrary ordering of vertices when ∆
γ
max ≤ 3(∆max−1)/3.

Proof. Each invocation of BKPivot in the BKDegeneracy function takes O(3∆/3) time, for an

arbitrary vertex ordering. The sum of the cost of all invocations is

∑
v

O(3∆/3) = O

(
∆max∑
∆=1

N (∆)3∆/3

)
, (3.6)

where N (∆) is the number of vertices with degree ∆. In scale-free graphs, the degrees follow a

power-law distribution, i.e., the number of vertices with degree ∆ is proportional to n∆−γ.

For scale-free graphs, it also holds that n = O
(
∆

γ−1
max

)
[BP16]. By using these properties, we

obtain

O

(
∆max∑
∆=1

N (∆)3∆/3

)
= O

(
n
∆max∑
∆=1

3∆/3

∆γ

)

≤O

(
n

3∆max /3

∆
γ−1
max

)
≤O

(
3∆max /3

)
,

(3.7)

where 3∆/3/∆γ ≤ 3∆max /3/∆γ
max holds for every ∆max if 3(∆max−1)/3 ≥∆

γ
max .

33



Chapter 3 Fast Enumeration of Maximal Cliques on Manycore Platforms

In real-world graphs, the condition 3(∆max−1)/3 ≥∆
γ
max almost always holds. For example,

when γ = 3, the maximum node degree (i.e., ∆max ) needs to be larger than 29.

Theorem 6 shows that the worst-case complexity of the BK algorithm using an arbitrary vertex

ordering depends only on the time to process the vertex with the maximum degree. Note that

∆max is much smaller than n in real-world graphs even though ∆max = O(n) (see Table 3.2).

Effectively, we have derived a new bound that is significantly tighter than the O(3n/3) bound

reported in Tomita et al. [TTT06].

3.3 Vectorized Set Intersections

Set intersection operations are the dominant part of the BK algorithm [HZY18]. Performing

set intersections is required both when determining the pivot vertex (line 12 in Algorithm 1)

and when constructing the new sets P and X (line 7 in Algorithm 1). To improve performance,

it is crucial to reduce the time spent on these operations. In this section, we describe our

implementations of SIMD-accelerated set intersection. We show that our SIMD-accelerated

hash-join-based set intersection implementation outperforms state-of-the-art methods when

the sets involved in intersections have disproportionate sizes, which frequently occurs when

executing the BK algorithm.

3.3.1 Merge-Join-Based Set Intersection

Our SIMD-accelerated intersection implementation based on merge joins uses a cache-

friendly data structure called the cache-aligned list (CAlist), which reduces cache misses

and increases processing rates by using vector instructions. The sets are stored in lists of

cache-aligned buckets, where the size of each bucket is divisible by the L2 cache line size

and stores several vertex IDs as well as a pointer to the next bucket. Set intersections are

parallelised using vector instructions, which enable performing several comparisons in only a

few clock cycles. An intersection between two sets is executed by iterating through the smaller

set and checking whether the vertices of the smaller set also exist in the larger set. Figure 3.3

illustrates the process of merge-join-based set intersection. Whether the vertex 3 of the set A

exists in the first bucket of the set B can be determined using two SIMD instructions. The first

SIMD instruction replicates the vertex ID in a vector, whose size is the same as the number of

elements in the bucket. The second SIMD instruction compares this vector with the contents

of the bucket. As a result, we obtain a bit vector that indicates the position of the vertex 3

within the current bucket of the set B. If the resulting bit vector is nonzero, the vertex 3 belongs

to both sets. In this particular example, we see that the next element of the set A (i.e., vertex 5)

cannot exist in the first bucket of the set B because it has a value greater than the value of the

last element of the bucket. Therefore, we can simply skip to the next bucket of the set B and

repeat the same process for the next vertex 5 of the set A.
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1. Replicate the element using a SIMD instruction

Set A
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3. Copy the element if this bitset is not 0

3Result

Figure 3.3: Data-parallel set intersections using CAlist. Sets are represented as linked lists of
buckets containing several element. Two SIMD instructions are used to verify whether an
element of one set belongs to the bucked of the other set.

3.3.2 Hash-Join-Based Set Intersection

We have developed a hash-join-based set intersection algorithm, called SimpleHashSet, which

constructs hopscotch hash tables [HST08] and performs SIMD-accelerated table lookups. We

use hopscotch hash tables to achieve O(1) worst-case complexity for the lookups. Even though

the construction of hopscotch hash tables differs from the construction of the tables used by

linear probing implementations, the table lookups can be performed in exactly the same way.

Our SIMD implementation of table lookups is based on the SIMD-accelerated linear probing

implementation of Polychroniou et al. [PRR15]. However, we support only unique integer keys

without payloads. Thus, our design is much simpler than that of Polychroniou et al. [PRR15].

Note that the set difference operations used by the BK algorithm can also be implemented

using our SIMD-accelerated hash-table lookups.

We build a dedicated hopscotch hash table for each vertex of the input graph to store its adja-

cency list. Hopscotch hash tables are constructed in such a way that each key is found within

H entries of the address computed by the hash function [HST08]. In our implementation, H is

the number of integer keys that fit into one cache line. When computing the size of a hash

table, we multiply the size of the respective adjacency list by two and round it up to the nearest

power of two. Note that the hopscotch hash tables require a hash function from a universal

family. We take advantage of multiplicative universal hashing, which uses one multiplication,

one addition, and one bit-shift operation [Woe99; Die+97].

3.3.3 Comparison to Other Algorithms

We perform an experimental study of set intersection algorithms (i) to show the efficiency of

our algorithms in comparison to prior solutions and (ii) to understand when hash joins should

be preferred over merge joins. Our experiments in this section are performed on an IntelI Xeon

IIntel and Intel Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.
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Table 3.3: Hardware platforms used for for the experimental evaluations in Chapter 3.

platform Intel KNL [Sod15] Intel Xeon Skylake
no. cores 64 48
no. threads 256 96
SIMD instr. AVX-512 AVX-512
memory 110 GB 360 GB
L1d cache 32 KB per core 32 KB per core
L2 cache 1 MB per 2 cores 1 MB per core
L3 cache none 38.5 MB
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Figure 3.4: Speedup of SIMD-accelerated set intersection algorithms compared to scalar-
merge-based set intersections. The shaded regions represent the cases that often occur in the
BK algorithm. Our SimpleHashSet is faster than the other solutions in these shaded regions.

Phi 7210 - Knights Landing (KNL) processor [Sod15], described in Table 3.3. Intel KNL supports

the state-of-the-art AVX-512 instructions, where each vector register enables operations on

sixteen 32-bit integer operands in parallel. The following state-of-the-art implementations of

set intersection algorithms that use SIMD instructions were used in the comparison.

QFilter is a merge-join-based set intersection algorithm optimised for graph processing by

Han et al. [HZY18]. It uses a compressed bit-vector representation of graph vertices, called

BSR, and it accelerates the set-intersection operations using 128-bit vector registers and the

AVX2 instruction set. The main drawback of this method is that it requires a time-consuming

reordering of the input graph vertices in order to achieve high-performance intersections.

Galloping is a merge-join-based intersection algorithm that locates the members of the first

set in the second set using binary search, and it can be accelerated using SIMD instruc-

tions [LBK16]. Han et al. [HZY18] Optimised this approach to use their compressed bit-vector

representation. We refer to this implementation as SIMD Galloping with BSR.

CAlist is our SIMD-accelerated merge-join-based set-intersection implementation described

in Section 3.3.1. Because we use AVX-512 instructions, the size of each bucket of the cache-
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aligned linked list is equal to 512 bits. This approach can be easily adapted to take advantage

of even wider vector registers by increasing the bucket sizes.

Swiss Table is a highly-optimized open-source hash table library by Abseil adapted from

Google’s C++ codebase [Abs17].

We use a microbenchmarking approach in which we randomly generate and intersect two

sets S1 and S2 and vary their sizes. Within the BK algorithm, S1 is an adjacency list of the

graph, which is hashed in the hash-join-based case, and S2 is either the set P or the set X.

Figure 3.4 shows the speedup achieved by different set intersection strategies over a scalar

merge join strategy that is used as the baseline. We fix density of the sets (i.e., the ratio

between the larger set size and the range of elements in sets [HZY18]) to 0.5 in the case of

QFilter and SIMD Galloping with BSR, and to 0.1 in all other cases. The reason for using the

higher density in QFilter and SIMD Galloping with the BSR cases is that they benefit from

graph reordering [HZY18], which increases the densities of the sets and enables more efficient

intersections.

Figure 3.4a compares the performance of different set intersection implementations when

the ratio between the set sizes (i.e., skew) varies. We fix selectivity of the intersections (i.e.,

the ratio between the size of the result and the smaller set) to 0.3 because the BK algorithm

using scalar-merge-based set intersections spends 50−60% of its set intersection time on set

intersections with a selectivity lower than 0.3 on average across all the graphs from Table 3.2.

Then, we fix the size of the set S1 to 32000, which is in the order of the average size of the set S1

observed when processing the large graphs. Note that this average is much larger than ∆av g

because the vertices with higher degrees participate in intersections much more frequently.

We then vary the skew between 1 and 1024. We see that SimpleHashSet is preferable when the

set sizes are disproportionate (the shaded region) whereas QFilter is preferable when the skew

is small. (i.e., when S1 and S2 are similar in size).

When operating on large graphs, the BK algorithm that uses scalar-merge-based set intersec-

tions spends more than 80% of its intersection time on intersecting sets with a skew larger than

32. Thus, in Figure 3.4b, we fix the skew to |S1|/|S2| = 32 while keeping the selectivity at 0.3 and

we vary the size of both sets proportionally until |S1| = 64000. It is clear that SimpleHashSet

outperforms all other set intersections when |S2| is not extremely small. In Figure 3.4c, we

keep the skew at |S1|/|S2| = 32, fix the size of S1 to 32000, and vary the selectivity. Averaged

across the large graphs from Table 3.2, the BK algorithm that uses the scalar merge spends

almost 70% of its intersection time executing the intersections with a selectivity lower than 0.5.

Our SimpleHashSet is faster than the other set intersection algorithms exactly in that region.

In conclusion, hash-join-based set intersections are preferable to merge-join-based ones when

the set sizes involved in the intersections are highly skewed, which is often the case for the BK

algorithm. Furthermore, our SimpleHashSet method is competitive against state-of-the-art set

intersection methods such as QFilter without requiring compressed bit-vector representations

such as BSR.
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3.4 Manycore Implementation

In this section, we build on the theoretical results of Section 3.2 and develop a shared-memory

parallel implementation of the BK algorithm that exploits task-level parallelism and guarantees

a worst-case complexity of O(pd∆max ) on the peak dynamic memory consumption. The

pseudocode of our final parallel algorithm for maximal clique enumeration based on the BK

algorithm is given in Algorithm 7. In this pseudocode, the Vector_HJ_Intersection function

represents our vectorised hash-join-based set intersection implementation described in the

previous section. First, we describe our initial parallel implementation of the BK algorithm

that exploits task-level parallelism. Next, we discuss the optimisations that minimise the

dynamic memory usage and maximise the scalability of our software implementation.

The experiments presented in this section are performed on the Intel KNL platform (see

Table 3.3) using 256 hardware threads. We use the Intel VTune Amplifier version 2018.3 to

obtain the execution time breakdown. Tools such as Intel VTune and Valgrind Massif [Sew08]

can be used to perform dynamic memory usage profiling. However, they are extremely slow in

doing so. Therefore, we extract the dynamic memory usage profile by instrumenting our code.

We keep track of the dynamic memory allocations and deallocations performed by individual

threads on the relevant data structures, and periodically sample their sum. A new sample

is collected when a certain number of memory allocations have been performed, which is

tracked by an atomic counter.

3.4.1 Fine-Grained Parallelisation

As already explained in Section 1.2, simply parallelising the BK algorithm by executing its outer

loop shown in line 2 of Algorithm 2 in parallel does not result in a scalable algorithm. Because

iterations of this outer loop execute recursion trees of different sizes, each recursion tree

should be executed using several threads to achieve scalable execution of the BK algorithm.

Furthermore, to keep memory usage minimal, each thread should explore a portion of a

recursion tree in a depth-first manner, as shown in Figure 2.2. For this purpose, we use

the Intel Threading Building Blocks (TBB) software framework [Kuk07], which enables the

decomposition of a recursion tree into tasks that can be independently executed by the

available worker threads (see Section 2.2). Thus, several threads can explore the same recursion

tree. In addition, TBB implements a dynamic scheduler that can dispatch tasks to parallel

worker threads, where the load balance between these threads is achieved using the work-

stealing approach [BL99]. This scheduler forces each worker thread to execute the tasks it

generates in a depth-first fashion. Therefore, TBB enables exploring a recursion tree of the BK

algorithm in a parallel depth-first manner.

Our initial manycore implementation wraps each recursive call to the BKPivot function of

Algorithm 1 in a task. In each iteration of its foreach loop, memory for the new sets P ′ =

P ∩NG (v) and X ′ = X ∩NG (v) is allocated, and a new task is spawned with these sets as

parameters. We refer to the original task as the parent task, and to the spawned tasks as
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Algorithm 7: Our parallel BK algorithm

Input: R - set of vertices representing the current clique
P - candidate vertex set
X - exclude vertex set
G - the input graph

1 Task BKTask (R, P, X , G)
2 if |R| = 1 then ▷ Delay the creation of initial P and X sets

3 u = R.back() ; ▷ u is the only element of R

4 Iu = The index of u in V ; ▷ V is ordered in degeneracy ordering

5 foreach w : NG(u) do
6 Iw = The index of w in V ; ▷ V is ordered in degeneracy ordering

7 if Iw > Iu then P = P + {w} ; ▷ P and X sets are initially empty

8 else X = X + {w} ;

9 if P = ; then
10 if X = ; then Report R as a maximal clique;
11 return ;

12 foreach v : P ∪X do ▷ Find pivot vertex

13 tv =
∣∣Vector_HJ_Intersection

(
P, NG(v)

)∣∣ ; ▷ Returns |P ∩NG (v)|
14 pivot = argmaxv (tv );

15 foreach v : P \NG(pivot) do
16 P ′ = Vector_HJ_Intersection

(
P, NG(v)

)
; ▷ Returns P ∩NG (v)

17 X ′ = Vector_HJ_Intersection
(
X , NG(v)

)
; ▷ Returns X ∩NG (v)

18 if |P |+ |X | > tt then ▷ Task grouping

19 spawn BKTask(R + {v}, P ′, X ′, G); ▷ Create new task

20 else
21 BKTask(R + {v}, P ′, X ′, G); ▷ Execute this task as a function

22 P = P − {v};
23 X = X + {v};

24 sync; ▷ Wait for all spawned tasks

25 Function ParallelBK (G(V ,E))
26 Order vertices V in G using degeneracy ordering;
27 Hash the adjacency lists of G;
28 parallel foreach vi : V do
29 spawn BKPivot({vi }, ;, ;, G);

30 sync; ▷ Wait for all spawned tasks

child tasks. When the foreach loop completes, we wait for all the child tasks to complete

before destroying the parent task. Note that the BKDegeneracy function, which is the root

of the recursion tree, is also implemented as a task, and the iterations of its foreach loop

are executed in parallel using TBB’s parallel_for loop construct. When recursive subgraph

creation is enabled, each task creates a HP,X subgraph from the P and X sets as described in

Algorithm 6. Parallel DFS exploration of the recursion tree is enforced by the TBB scheduler by
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Figure 3.5: Impact of various optimizations on the total CPU time used by the manycore
BK implementation when processing the orkut graph. In (a), we use scalar-merge-based
intersections, while (b), (c), and (d) we use our SimpleHashSet. The use of our vectorised hash-
join-based set intersection reduces the execution time 6×. Task and memory management
overheads are practically non-existent after our manycore optimisations.

default. Each worker thread simply prioritises the task that it spawned most recently.

Figure 3.5 shows the execution time breakdown of our manycore BK implementation. In the

unoptimized case shown in Figure 3.5a, set intersections based on the scalar merge approach

dominate the execution time. However, using our SimpleHashSet, described in Section 3.3,

accelerates the set intersections by 22×, as shown in Figure 3.5b. This result matches the

results of Figure 3.4a, where SimpleHashSet is up to 128 times faster than the scalar merge

approach for the cases that frequently occur in the BK algorithm. However, once the set

intersection implementation is optimised, the task and memory management overheads can

constitute up to 50% of the total CPU time, as shown in Figure 3.5b. In addition, our initial

implementation does not achieve the ideal space complexity results reported in Section 3.2.4,

and uses more memory than necessary. In this section, we discuss these problems in detail

and offer our solutions.

3.4.2 Minimising Dynamic Memory Usage

The initial manycore implementation of the BK algorithm described in the previous section

uses more dynamic memory than what is predicted in Section 3.2.4. The main reason is that a

task executing on a TBB thread spawns all its child tasks and allocates memory for them while

it is still executing. After completion of the current task, the thread can switch to one of these

child tasks. However, the remaining child tasks occupy memory that is not yet being used,

causing two main problems: 1) Dynamic memory usage depends on the number of vertices n.

2) The memory used by the BKPivot task shown in Algorithm 1 can be up to d times larger

than necessary.

The first problem is caused by the parallel_for that implements the foreach loop of the

BKDegeneracy function. The default behaviour of TBB’s parallel_for loop is to heuristically

40



Fast Enumeration of Maximal Cliques on Manycore Platforms Chapter 3

Figure 3.6: Dynamic memory usage over time for the orkut graph. Our optimizations reduce
the peak dynamic memory usage by 80× while affecting the runtime only marginally.

group its iterations into chunks, and then a worker thread sequentially executes an entire

chunk before starting to work on another chunk [VAR19]. Each iteration of the main loop

of the BKDegeneracy function spawns a task with an initial pair of P and X sets (see Algo-

rithm 2). By default, TBB does not limit the chunk size, so the parallel_for loop might have

a chunk made of up to n loop iterations. A thread executing that chunk would then allocate

O (n(∆max +C )) memory, assuming that C is the memory used by the task context in addition

to the sets. The resulting memory allocations could easily become the dominant component

of dynamic memory usage when processing large graphs. Figure 3.6a shows that the initial

sets consume a significant amount of memory in the case of the orkut graph. One way to

solve this problem is to delay the creation of the initial sets until the start of the corresponding

BKPivot function, which ensures that each thread creates at most one pair of the initial sets.

This solution is shown in lines 2-8 of Algorithm 7. By doing so, we reduce the dynamic mem-

ory usage by 15× for the orkut graph, compared to the initial implementation (Figure 3.6b).

However, the task contexts created in the parallel_for loop of the BKDegeneracy function

still represent a large part of the execution time. This problem can be solved by limiting the

chunk size to one, which results in each chunk creating exactly one task. As Figure 3.6c shows,

this optimisation further reduces the dynamic memory usage to less than half. Note that now

the space complexity no longer depends on n.

The second problem occurs because each BKPivot task spawns O(|P |) ⊂O(d) child tasks after

creating the respective P and X sets, which leads to usage of O(d)-fold more dynamic memory

than necessary within recursive calls. Then, the space complexity becomes d times higher

than what is predicted in Section 3.2.4. To solve this issue, we enable different threads to

execute different iterations of the foreach loop shown in line 6 of Algorithm 1 (see Figure 3.7).
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Figure 3.7: Reducing dynamic memory usage by enabling different threads to execute different
loop iterations (circles). Thread 0 starts executing Task 1 immediately after the first loop itera-
tion of Task 0 instead of executing the entire Task 0 before Task 1. The creation of temporary
data structures in other loop iterations of Task 0 is delayed, which reduces dynamic memory
usage.

After executing a loop iteration, the worker thread can either switch to the next loop iteration or

to its child task. Using TBB’s scheduler bypass feature, we force the thread to switch to the child

task (Thread 0 of Figure 3.7) and return the context of the parent task to the scheduler. Another

thread can later continue executing the parent task by picking up its context from the scheduler

(Thread 1 of Figure 3.7). This approach is similar to continuation stealing introduced by Cilk-

5 [FLR98; Lee+10]. By executing the child task before the next loop iteration, each worker

thread spawns only one task at a time instead of spawning O(d) tasks at once. Figure 3.6d

shows that this optimisation further reduces dynamic memory usage by 50% when processing

the orkut graph.

As a result of the previous optimisations, our manycore implementation of the BK algorithm

uses O(pd∆max ) space for dynamic memory, as we predict in Section 3.2.4. Dynamic memory

usage is reduced by 80× in the case of the orkut graph (see Figure 3.6), and from 30× to 180×
when processing small graphs. The highest dynamic memory usage measured when process-

ing these seven graphs is around 10MB, which is significantly lower than the cumulative cache

capacity of the Intel KNL processors (see Table 3.3).

3.4.3 Task Grouping

If more time is spent on managing tasks rather than executing them, the manycore imple-

mentation will not scale well. As Figure 3.5b suggests, more than 25% of the time is spent on

task management. One way of reducing the task management overheads is to group several

recursive calls in a single task. However, grouping too many calls in a task can lead to load

imbalances, which increases the idle time of the worker threads. In this section, we describe

a task grouping heuristic that aims to marginalise the impact of task management on the

runtime without causing resource underutilisation. This goal is fulfilled by creating sufficiently
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Task 3

Task 1

Task 2 Task 4

Figure 3.8: Manycore optimisations: task grouping and memory allocation grouping. Circles
represent recursive calls, dashed ellipses the tasks, and dotted ellipses the recursive calls that
share the same pre-allocated memory region.

complex tasks.

Theorem 2 shows that the complexity of executing a recursive call without its child recursive

calls depends on the size of the sets P and X as O (|P |(|P |+ |X |)). Both sets typically become

smaller as we move deeper in the recursion tree. Therefore, we heuristically restrict task

grouping only to the recursive calls near the bottom of the recursion tree, as it is shown in

line 18 of Algorithm 7. We create the task groups implicitly by not spawning new tasks if the

cardinality of the corresponding P ∪X set is smaller than a task threshold tt , and execute the

following recursive call sequentially instead, as depicted in Figure 3.8. Figure 3.5c shows that

the task management overheads become negligible after the optimisation. In addition, the

memory management overheads are also indirectly reduced. We will study the choice of the

empirical parameter tt in Section 3.4.5 and show that it is not particularly critical.

This optimisation has no side effect on the peak space complexity because the recursive calls

within a task are implicitly executed in DFS order by our C++ implementation. Thus, the peak

space complexity bounds derived for DFS-based processing in Section 3.2.4 apply without any

changes.

3.4.4 Memory Allocation Grouping

Frequent memory allocations and deallocations by multiple threads can cause contention,

lead to performance overheads, and limit scalability. TBB’s scalable memory allocator allevi-

ates such problems, but it cannot eliminate them completely. The main reason is the frequent

dynamic allocations and deallocations of the P and X sets. Given that the majority of the

recursive calls are short-lived, especially towards the leaves of the recursion tree, memory allo-

cation can easily become a scalability bottleneck. Figure 3.5c shows that, after task grouping,

memory management overheads still take up to 25% of the total CPU time.
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Figure 3.9: Sensitivity of our manycore implementation to the parameters tt , tm and b. Graph
(a) shows the execution time relative to tt = 30. Graph (b) shows the execution time relative
to tm = 30 and the peak memory usage relative to tm = 0. Graph (c) shows the execution time
relative to b = 30KB and the peak memory usage relative to b = 100B.

We introduce a memory allocation grouping method to reduce the memory management

overheads of our implementation. To reduce the number of memory allocations, we create

a large block of memory, in which the sets created by several consecutive recursive calls are

placed. Considering that the sets become smaller and the memory allocations become more

frequent as we move deeper in the recursion tree, grouping the memory allocations that

originate near the bottom of the tree is a necessity. Similarly to our task grouping approach,

we introduce a memory threshold tm and group memory allocations of a recursive call and all

its child calls when |P |+ |X | ≤ tm . We constrain tm to be smaller than the task threshold tt to

ensure that memory blocks are not shared by different threads and that there is no need to

synchronise the accesses to these blocks.

We denote the size of a pre-allocated memory block as b. When b is not large enough to

accommodate all the sets, a singly-linked list of such blocks is created. Using a too large b

increases the memory usage whereas using a too small one increases the number of allocations

and negatively impacts the performance. Figure 3.5d shows that our memory allocation

grouping method using tm = 20 and b = 20KB virtually eliminates the memory management

overheads.

3.4.5 Sensitivity Analysis

This section evaluates the impact of the manycore implementation parameters tt , tm , and b

on execution time and memory usage. Experiments are performed on Intel KNL using 256

hardware threads and cover all small graphs and one large graph (i.e., orkut) from Table 3.2.

First, we evaluate the task-grouping optimisation in isolation. Figure 3.9a shows the impact of

the task threshold tt on the execution time. In all the cases evaluated, the best performance is
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achieved when tt is between 20 and 50. Note that tt does not influence the dynamic memory

usage. Next, we set tt = 30 and evaluate the memory-allocation-grouping optimisation. In

Figure 3.9b, we set b = 20KB and vary the memory threshold tm . Across all the graphs tested,

the lowest execution time and dynamic memory usage combinations are achieved when the

range of tm is between 10 and 20. In fact, the highest performance is achieved when tm = 30.

However, its dynamic memory usage can be up to 13× higher than that of the baseline (i.e.,

tm = 0), which disables the memory grouping optimisation. A good trade-off is achieved

when tm = 20. In this case, the execution time is within 5% of the optimal and the memory

usage is at most 3× higher than that of the baseline. Finally, in Figure 3.9c we set tm = 20 and

vary the block size b. The execution times decrease as we increase b and reach their optimal

values at b = 20KB. Note that the dynamic memory usage increases linearly with the block

size after a certain point. When b = 20KB, the memory usage can be up to 2× higher than that

of the baseline that does not use memory preallocation (i.e., b = 0), which is not a significant

overhead.

Thus, our experiments suggest that none of the empirical parameters is particularly critical:

i) the results are consistent across all the graphs we use and ii) for each parameter there

exists a reasonable range where the optimisations are similarly effective as with the very best

values. Therefore, we set tt = 30 for task grouping and b = 20 KB, tm = 20 for memory allocation

grouping. We use these values in all the experiments performed in the remainder of this

chapter.

3.5 Experimental Results

In this section, we first show the impact of our algorithmic and implementation choices as

well as our optimisations on execution time, memory consumption, and manycore scalability.

Then, we compare our optimised implementation with state-of-the-art references in terms of

both single-threaded and multi-threaded performance.

3.5.1 Experimental Setup

In the experiments, we use two platforms: Intel KNL and Intel Xeon Skylake. We developed

our code on Intel KNL and ran most of the analyses there; yet, for completeness, we ran the

scalability analysis and the comparisons to competing implementations also on Intel Xeon

Skylake processors available in Google Cloud’s Compute Engine. The properties of these

platforms are summarised in Table 3.3. We build our code using GCC v8.3.1 with the -O3

optimisation flag. To exploit task parallelism, we use the version 2019_U9 of the Intel TBB

framework.

As already mentioned, the graph datasets that we use are obtained from the Network Data

Repository [RA15] and SNAP [LK14] (see Table 3.2). The large graphs from the table represent a

subset of massive network data from the Network Data Repository. In our experiments, the
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Figure 3.10: Impact of various vertex ordering techniques on the single-threaded performance
of the BK algorithm when using Intel KNL. The experiments using the inverse degree ordering
did not succeed in under 48h for ao and wl graphs. Orkut results are omitted due to the
excessively long runtimes when using the inverse degree ordering of vertices.

input graph is preloaded into the main memory and interleaved across all NUMA regions. We

remove all self-loops from the graphs and transform all directed edges to undirected edges.

When evaluating the performance of the MCE implementations, we do not store the maximal

cliques found, but simply count them.

3.5.2 Evaluation of Vertex Ordering Strategies

Figure 3.10 shows the impact of different vertex ordering strategies on the single-threaded

execution time of the BK algorithm on Intel KNL. We evaluated three main strategies: i) degen-

eracy ordering [ELS10], ii) degree ordering (ascending order), and iii) inverse degree ordering

(descending order). The inverse degree ordering strategy provides us with a lower bound of

the worst-case behavior of arbitrary vertex orderings covered in Section 3.2.5. As expected,

this strategy leads to the worst performance results, resulting in an up to 16× slow-down with

respect to degeneracy ordering, this confirms the results of our theoretical analysis provided in

Table 3.1. However, despite the better worst-case complexity bound it achieves, the degeneracy

ordering does not always lead to a better practical performance than the degree ordering. We

believe that further theoretical analysis could shed more light on this empirical observation.

3.5.3 Hash Joins versus Merge Joins

In this section, we evaluate the impact of set intersection algorithms on the overall perfor-

mance and memory usage of the BK algorithm. The hash-join-based set intersections are

implemented using SimpleHashSet described in Section 3.3, and the merge-join-based set

intersections are implemented using CAlist described in Section 3.3.1. We also evaluate the

impact of using recursive subgraph creation described in Section 3.2.2. However, instead of

creating a subgraph per call, we create a subgraph per task to limit the overhead of subgraph

creation.
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Figure 3.11: Impact of (i) hash-join- vs. merge-join-based intersection algorithms and of (ii)
recursive subgraph creation on runtime and memory usage of the BK algorithm. The solution
based on hash joins is Pareto-optimal.

The experiments are performed on Intel KNL using all 256 hardware threads. In Figure 3.11, we

evaluate all six small graphs and one large graph from Table 3.2 and show the execution time

and the peak dynamic memory usage results of different set intersection methods. We repeat

these experiments both with and without recursive subgraph creation. The results given in

Figure 3.11 are relative to our hash-join-based BK implementation that does not use recursive

subgraph creation. Peak dynamic memory usage is measured as described in Section 3.4,

where we track dynamic memory allocations and deallocations of each thread and sample the

peak after a certain number of allocations. Note that these results do not include the memory

used by the input graphs.

We see that the merge-join-based approach benefits from creating subgraphs. Its execution

time is reduced as much as 44% for the tc graph, but at the cost of increased memory usage.

In all the cases, our hash-join-based BK implementation that does not create subgraphs is

Pareto-optimal as predicted by our theoretical analysis (see Figure 3.1). On the other hand,

also as predicted by our theoretical analysis, the hash-join-based BK implementation does

not benefit from recursive subgraph creation. Note that the subgraphs created by the hash-

join-based implementation use more memory than those created by the merge-join-based

implementation because the adjacency lists of the subgraphs are stored as hash tables in the

hash-join case, and our SimpleHashSet implementation sets the size of the hash tables to

twice the size of the adjacency lists to minimise hash conflicts.

3.5.4 Scalability Analysis

The scalability analysis is carried out on both hardware platforms shown in Table 3.3 using

the graphs from Table 3.2. Figure 3.12a shows the performance improvements we achieve

with respect to single-threaded execution when increasing the number of threads on the KNL

architecture. We observe an almost linear performance scaling up to 64 threads, which is
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observed.

the number of physical cores available. After 64 threads, the performance scales sublinearly

because the threads running on the same core start sharing hardware resources, e.g., SIMD

units. Using two hardware threads per core improves the performance by only 40%. Using all

256 hardware threads, we achieve up to 100× speedup compared to single-threaded execution.

Figure 3.12b shows the performance scaling when using Xeon Skylake processors. We observe

up to 60× speedup using 96 hardware threads.

3.5.5 Comparisons with the State of the Art

We compare our BK implementation with the following state-of-the-art MCE implementations:

i) QFilterMCE by Han et al. [HZY18] is an optimised single-threaded implementation that

uses QFilter and SIMD Galloping with BSR methods, described in Section 3.3, to accelerate set

intersections. QFilterMCE uses compressed bit-vectors for representing the graph vertices

and requires a preprocessing step that reorders the vertices in order to perform more efficient

set intersections. ii) ParMCE by Das et al. [DST20] is an optimised shared-memory parallel

C++ implementation that uses the Intel TBB library for parallelization. In the comparisons,

we use our BK implementation based on degree ordering because the performance of the BK

algorithm based on degree ordering is similar to the one that uses degeneracy ordering as

shown in Figure. 3.10. In addition, computing the degree order does not require any advanced

preprocessing.

We compare the single-threaded execution of our implementation with QFilterMCE. Fig-

ure 3.13a shows that our implementation, which uses the SimpleHashSet algorithm given in

Section 3.3 to accelerate set intersections, displays a competitive performance to that of QFil-

terMCE even though our solution does not require any preprocessing. On average, taking into

the account both the time to preprocess the graph and to execute QFilterMCE, our solution is

faster than QFilterMCE by 4.1× on KNL and by 2.7× on Xeon Skylake. In addition, the QFilter
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Figure 3.13: Performance of algorithms for maximal clique enumeration using (a) single thread
and (b) all available hardware threads. The top value shows the execution times on the Intel
KNL and the bottom value shows the execution times on the Intel Xeon Skylake. The missing
values show the data points that did not execute within the given time budget.

preprocessing did not finish under 48h on KNL for the ao and wl graphs, and under 24h on

Xeon Skylake for the wl graph. It also failed to execute for the fr graph on both platforms. Note

that we reused the preprocessing results computed by Xeon Skylake for the ao graph when

executing QFilterMCE on KNL.

Figure 3.13b compares the execution time of our manycore SimpleHashSet-based implemen-

tation with ParMCE using 256 hardware threads on KNL and 96 hardware threads on Xeon

Skylake. On average, we achieve 14.3× and 8.3× lower execution times than ParMCE on KNL

and Skylake, respectively. Note that ParMCE runs out of memory when executing the fr graph

on KNL and goes into swap space when executing the wl graph on KNL. The highest speedups

we achieve with respect to ParMCE on KNL and Skylake are 68× and 28×, respectively. The

primary reasons for the performance improvement are SIMD-accelerated set intersections

described in Section 3.3 and our manycore optimisations described in Section 3.4.

3.6 Related Work

Maximal clique enumeration (MCE) represents an important graph mining problem with

applications in various fields, such as bioinformatics [YZT14; Yu+06], social network anal-

ysis [LWN18], and electronic design automation [RA12; VBI10]. The most efficient class of

MCE algorithms are based on backtracking search, such as the algorithm from Bron and

Kerbosch [BK73], and its improvements by Tomita et al. [TTT06] and Eppstein et al. [ELS10],

which we discuss in more detail in Section 2.4.1. These algorithms do not analyze the effect of

using different intersection strategies on the overall time complexity. Our work analyzes the
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effect of using hash and merge joins for intersections on the time and space complexity of the

algorithm by Eppstein et al. [ELS10] and reaps the corresponding advantage.

SIMD-accelerated set-intersection algorithms can be used to improve the speed of

MCE [HZY18; SWL11; IOT14]. Schlegel et al. [SWL11] and Inoue et al. [IOT14] exploit STTNI

instructions in order to accelerate set intersections using merge joins. QFilter by Han et

al. [HZY18] further improves the performance of set intersections by using a compressed

bit-vector representation. QFilter is used for accelerating graph algorithms such as MCE.

However, it requires a preprocessing of the input graph in order to achieve high performance.

Our SimpleHashset approach uses hash joins rather than merge joins, and it does not involve

any significant preprocessing, yet it achieves a performance comparable to that of QFilter.

Of particular interest to our work are manycore implementations of MCE [DST20; Les+17;

Sch+09]. Schmidt et al. [Sch+09] present a parallel variant of the MCE algorithm by Bron and

Kerbosch [BK73], and describe a work-stealing method for load balancing. Das et al. [DST20]

present ParMCE, a shared-memory parallel algorithm for MCE, which uses Intel TBB library

for load balancing. ParMCE is based on the algorithm by Tomita et al. [TTT06], an improved

version of the algorithm by Bron and Kerbosch [BK73]. Our work further improves the per-

formance by addressing the task and memory management overheads that arise in our TBB-

based implementation of MCE. Lessley et al. [Les+17] describe a parallel algorithm based

on data-parallel primitives [Ble90] that can be executed on both manycore CPUs and GPUs

by generating the corresponding TBB or CUDA code. However, it explores the search space

of MCE in breadth-first order, which is memory inefficient compared to depth-first-based

solutions such as ours. As pointed out by Das et al. [DST20], the CPU implementation of

Lessley et al. [Les+17] fails to execute on even moderately sized graphs such as wiki-talk from

Table 3.2. Our work takes into account the dynamic memory usage of manycore MCE and

proposes methods to minimise it. Furthermore, a recent work by Almasri et al. [Alm+22;

Alm22] showed that a GPU implementation of MCE that explores the search space of MCE in

depth-first order instead of breadth-first order enables it to process larger graphs, such as the

ones from Table 3.2.

Distributed implementations of MCE have also been proposed [SMT15; Hou+16; Che+16].

Svendsen et al. [SMT15] use different vertex ordering strategies for statically balancing the load

across the computation nodes. Brighen et al. [Bri+19] propose using a vertex-centric frame-

work Giraph [Sak+16], which is based on the bulk synchronous parallel (BSP) model [Val90],

for distributed computation of MCE. However, our work uses a framework with dynamic

load balancing, which is designed to cope with load balancing and synchronization issues

better than the simpler static load balancing and the less specialized BSP on shared-memory

manycore processors. The work by Chen et al. [Che+16] uses the idea of recursive subgraph

partitioning in order to distribute the work across multiple computing nodes dynamically.

This technique aims at a coarser grain parallelism than the one we exploit in our manycore

implementation and is essentially orthogonal to our work.
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3.7 Conclusions

In this chapter, we explore the use of join algorithms for accelerating set intersections in the

MCE algorithm proposed by Eppstein et al. [ELS10]. We theoretically show that the use of

hash-join-based set intersections enables Pareto-optimal MCE implementations in terms

of time and space complexity compared to various possibilities that use merge-join-based

set intersections. Building on this result, we introduce a simple SIMD-accelerated hash-

join-based set intersection implementation and use it to accelerate MCE. Using this simple

approach, we match the single-threaded performance of an MCE implementation that uses

highly-optimised set intersections, which requires some time-consuming preprocessing; our

implementation does not suffer from such a requirement. In addition, we contribute a many-

core version of MCE that uses a shared-memory parallel processing framework for exploiting

task-level parallelism. When implemented in a naive way, the many-core implementation

suffers from scalability overheads and poor dynamic memory management. By address-

ing these issues, we achieve a maximum speedup of 100× compared to the single-threaded

case on a machine with 64 physical cores; we outperform a state-of-the-art manycore MCE

implementation by an order of magnitude.
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4 Fine-grained Parallelisation of
Cycle Enumeration Algorithms

The acceleration of simple cycle enumeration algorithms is a more challenging problem

compared to the task of accelerating maximal clique enumeration. As demonstrated in the

previous chapter, the prevalence of set intersection operations in the state-of-the-art sequen-

tial algorithm for maximal clique enumeration [ELS13] offers the opportunity for exploiting

data parallelism in this algorithm, thus enabling its acceleration using vector instructions. In

contrast, simple cycle enumeration algorithms have limited opportunities to take advantage

of data parallelism because their computation primarily entails pointer chasing [Tie70; Joh77;

SL76; RT75]. In addition, the method introduced in the previous chapter for the scalable paral-

lelisation of maximal clique enumeration cannot be applied to the state-of-the-art algorithm

for simple cycle enumeration by Johnson [Joh77] and its derived algorithms for enumerating

simple cycles under temporal [KC18] and hop [Pen+19] constraints without incurring sig-

nificant performance penalties. Furthermore, applying the straightforward coarse-grained

parallelisation method, introduced in Section 1.2, to the cycle enumeration algorithms can

lead to a workload imbalance across threads, as shown in Figures 1.3 and 1.4, thus limiting

their scalability.

The focus of this chapter is on addressing the aforementioned problems and enabling scalable

parallelisation of state-of-the-art sequential algorithms for enumerating simple, temporal,

and hop-constrained cycles. First, we focus on the simple cycle enumeration problem and

parallelise the algorithms by Johnson [Joh77] and by Read and Tarjan [RT75] in a fine-grained

manner. These algorithms were chosen because they achieve the lowest time complexity

bounds reported among the simple cycle enumeration algorithms for directed graphs [MD76;

Gro16]. We theoretically show that our resulting fine-grained parallel algorithms are scalable,

with the fine-grained parallel Read-Tarjan algorithm being strongly scalable. In contrast,

we theoretically prove that coarse-grained parallel versions of these simple cycle enumer-

ation algorithms are not scalable. Next, we adapt our fine-grained approach to enable the

This chapter is based on the work published at the 34th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA) [BIA22].
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Table 4.1: Our fine-grained parallel Read-Tarjan algorithm is the only solution that is both
work-efficient and scalable.

Parallel algorithm Work-efficient Scalable
Coarse-grained parallel algorithms ✓

Our fine-grained parallel Johnson ✓

Our fine-grained parallel Read-Tarjan ✓ ✓

enumeration of cycles under time-window, temporal, and hop constraints. Imposing such

constraints further reduces the execution time of the cycle enumeration algorithms by de-

creasing the number of simple cycles that are enumerated. Finally, we evaluate the parallel

cycle enumeration algorithms on a cluster with 256 CPU cores that can execute up to 1024

simultaneous threads, and demonstrate a near-linear scalability and an order of magnitude

speedup compared with the coarse-grained parallel versions of those algorithms.

The rest of this chapter is organised as follows. Section 4.1 gives an overview of the solution

introduced in this chapter. Section 4.2 presents the theoretical analysis of the coarse-grained

parallel versions of the Johnson and the Read-Tarjan algorithms. Section 4.3 and Section 4.4

introduce our fine-grained parallel versions of the Johnson and the Read-Tarjan algorithms,

respectively. Our general framework for parallelising temporal and hop-constrained cycle

enumeration algorithms is presented in Section 4.5. In Section 4.6, we provide an experimental

evaluation of our fine-grained parallel algorithms. The related work is presented in Section 4.7.

Section 4.8 concludes this chapter.

4.1 Overview of the Solution

To address the issues that arise from coarse-grained parallelisation of the simple cycle enu-

meration algorithms, we propose a fine-grained parallel version of the Johnson algorithm.

The proposed fine-grained parallelisation enables the scalable execution of the Johnson algo-

rithms by decomposing the long sequential searches into fine-grained tasks, which are then

dynamically scheduled across CPU cores. As explained in Section 1.2, the pruning efficiency of

the Johnson algorithm depends on the strict depth-first-search-based traversal of its recursion

trees, making it challenging to parallelise in a fine-grained manner. To decompose the Johnson

algorithm into fine-grained tasks, we propose the copy-on-steal mechanism that relaxes the

strictly depth-first-search-based exploration the Johnson algorithm performs, enabling this

algorithm to perform multiple independent depth-first searches in parallel. As a result, our

fine-grained parallel Johnson algorithm is able to achieve ideal load balancing and near-linear

performance scaling.

As an alternative approach for achieving fast and scalable simple cycle enumeration, we focus

on the fine-grained parallelisation of the lesser-known Read-Tarjan algorithm for simple cycle

enumeration. This algorithm has the same theoretical worst-case complexity as the Johnson

algorithm (see Section 2.4.2), which has the lowest complexity among the related algorithms
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Table 4.2: Capabilities of the related work versus our own. Competing algorithms either fail to
exploit fine-grained parallelism or do it on top of asymptotically inferior algorithms.

Related work [KC18] [Qiu+18] [Pen+19] [Qin+20] [GS21] Ours
Fine-grained parallelism ✓ ✓

Asymptotic optimality ✓ ✓ ✓ ✓

Temporal ordering constraints ✓ ✓

Time-window constraints ✓ ✓ ✓

Hop constraints ✓ ✓ ✓ ✓ ✓

for simple cycle enumeration [MD76; Gro16]. We demonstrate that the Read-Tarjan algorithm

is easier to decompose into fine-grained tasks compared to the Johnson algorithm because

the Read-Tarjan algorithm does not require the strict depth-first-search-based exploration

of its recursion trees. Similarly to our fine-grained parallel Johnson algorithm, the result-

ing fine-grained parallel Read-Tarjan algorithm is able to achieve an almost linear scaling

of performance with the number of CPU cores utilised. However, the Johnson algorithm is

faster than the Read-Tarjan algorithm in practice despite having the same theoretical time

complexity [Gro16; MD76], which can be observed when comparing the performance of our

fine-grained parallel versions of these algorithms. The reason for this behaviour is more aggres-

sive pruning technique employed by the Johnson algorithm, as demonstrated in Figure 2.4. To

make the Read-Tarjan algorithm competitive with the Johnson algorithm, we have introduced

several optimisations that enhance the pruning efficiency of the Read-Tarjan algorithm. These

optimisations reduce the number of unnecessary vertex visits that this algorithm performs

and enable up to 6.8× faster execution of the Read-Tarjan algorithm.

The theoretical analysis presented in this chapter shows that both of our fine-grained parallel

algorithms are scalable, which is not the case for the Johnson and the Read-Tarjan algorithms

parallelised in a coarse-grained manner. Moreover, it shows that our fine-grained parallel

Read-Tarjan algorithm performs asymptotically the same amount of work as its serial version,

whereas our fine-grained parallel Johnson algorithm does not. Therefore, our fine-grained

parallel Read-Tarjan algorithm is the only parallel algorithm based on an asymptotically-

optimal cycle enumeration algorithm that is both work-efficient and scalable, as shown in

Table 4.1. Interestingly, despite not being work-efficient, our fine-grained Johnson algorithm

outperforms our fine-grained parallel Read-Tarjan algorithm in most of our experiments.

To reduce the computational complexity of the cycle enumeration algorithms, different types

of constraints are often imposed during the search for simple cycles, as shown in Table 4.2.

Examples of these constraints are temporal ordering constraints, which reduce the search to

temporal cycles only [KC18], hop constraints [Pen+19; Qiu+18], which limit the length of paths

explored during the search for cycles, and time-window constraints [KC18], which restrict the

search to cycles that occur within a time window of a given size. Imposing these constraints

reduces the number of paths explored during the search for cycles, making the problem more

tractable. For this reason, all algorithms presented in this chapter are adapted to enable the

enumeration of cycles under time-window constraints. In addition, we show that our method
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Table 4.3: Work and depth of the coarse- and fine-grained parallel algorithms.

Parallel algorithm Work Depth
Coarse-grained algorithms O (n +e +ec) O (ec)
Fine-grained Johnson algorithm O

(
n +e +min{pce, se}

)
O (e)

Fine-grained Read-Tarjan algorithm O (n +e +ec) O (ne)

for parallelising the Johnson algorithm in a fine-grained manner can be adapted to paral-

lelise the state-of-the-art algorithms for temporal and hop-constrained cycle enumeration.

This adaptation is possible because these state-of-the-art algorithms, such as the 2SCENT

algorithm for temporal cycle enumeration [KC18] and the BC-DFS algorithm [Pen+19] for

hop-constrained cycle enumeration, are extensions of the Johnson algorithm. Regardless of

the type of constraint used, our fine-grained versions of the Johnson and the Read-Tarjan

algorithms are an order of magnitude faster than the straightforward coarse-grained parallel

versions of these algorithms when executed on a system that can execute up to a thousand

concurrent software threads.

4.2 Coarse-Grained Parallel Methods

The most straightforward way of parallelising the Johnson and the Read-Tarjan algorithms

is to search for cycles that start from different vertices in parallel. Each such search can

then be executed by a different thread that explores its own recursion tree. This approach is

beneficial because it is work-efficient and can be implemented using one of the existing graph

processing frameworks, such as Pregel [Mal+10], in a manner similar to the method used

by Rocha and Thatte [RT15]. We refer to this parallelisation approach as the coarse-grained

parallel approach.

The coarse-grained approach can express more parallelism if each thread performs a search

for cycles that start from a different edge rather than a different vertex. This assumption is

supported by the fact that graphs typically have more edges than vertices. Nevertheless, the

coarse-grained approach for parallelising the simple cycle enumeration algorithms is not

scalable, which we prove here.

Proposition 1. The coarse-grained parallel Johnson and Read-Tarjan algorithms are work-

efficient.

The proof of Proposition 1 is trivial, and we omit it for brevity.

Theorem 7. The coarse-grained parallel Johnson and Read-Tarjan algorithms are not scalable.

Proof. In this case, the depth T∞(n) represents the worst-case execution time of a search

for cycles that starts from a single vertex or edge, and it depends on the number of cycles

found during this search. In the worst case, a single recursive search can discover all cycles

of a graph. An example of such graph is given in Figure 4.1a, where each vertex vi , with
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(a) Example graph (b) Recursion tree

Figure 4.1: (a) A graph with an exponential number of simple cycles. (b) The recursion tree
of the Johnson algorithm for n = 6 constructed when the algorithm starts from v0. Whereas a
coarse-grained parallel algorithm explores the complete recursion tree using a single thread,
our fine-grained parallel algorithms can explore different regions of the recursion tree in
parallel using several threads.

i ∈ {1, . . . ,n −1}, is connected to v0 and to every vertex v j such that j > i . In that graph, any

subset of vertices v2, . . . , vn−1 defines a different cycle. Therefore, the total number of cycles in

this graph is equal to the number of all such subsets c = 2n−2. Before the search for cycles, both

the Johnson and the Read-Tarjan algorithm find all vertices that start a cycle, which is only v0

in this case. Therefore, the search for cycles will be performed only by one thread. Because

both the Johnson and the Read-Tarjan algorithms require O(e) time to find each cycle, the

depth of the coarse-grained algorithms is T∞(n) ∈O(ec). Because lim
n→∞T∞(n)/T1(n) ̸= 0, the

coarse-grained algorithms are not scalable based on Definition 4.

Theorem 7 shows that the main drawback of the coarse-grained parallel algorithms is their

limited scalability. This limitation is apparent for the graph shown in Figure 4.1a, which has

an exponential number of cycles in n. When using a coarse-grained parallel algorithm on this

graph, all the cycles will be discovered by a single thread, and, thus, the depth of this algorithm

grows linearly with c , as shown in Table 4.3. Because only one thread can be effectively utilised,

increasing the number of threads will not result in a reduction of the overall execution time

of the coarse-grained parallel algorithm. Figure 1.4 shows the workload imbalance exhibited

by the coarse-grained parallel algorithms in practice. Section 5.5 demonstrates the limited

scalability of coarse-grained parallel algorithms in further detail.

4.3 Fine-Grained Parallel Johnson Algorithm

To address the load imbalance issues that manifest themselves in the coarse-grained parallel

Johnson algorithm, we introduce the fine-grained parallel Johnson algorithm. The main goal of

our fine-grained algorithm is to enable several threads to explore a recursion tree concurrently,

as shown in Figure 4.1b, where each thread executes a subset of the recursive calls of this tree.

However, enabling concurrent exploration of a recursion tree is in conflict with the sequential
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Figure 4.2: (a) An example graph and (b) the recursion tree of our fine-grained Johnson
algorithm when enumerating cycles that start from v0. Each thread of our fine-grained
Johnson algorithm explores the vertices b1, . . . ,bk at most once.

depth-first exploration, required by the Johnson algorithm to achieve a high pruning efficiency.

In this section, we first discuss the challenges that arise when parallelising the exploration of a

recursion tree of the Johnson algorithm. Then, we introduce the copy-on-steal mechanism

used to address these challenges and present our fine-grained parallel Johnson algorithm.

Finally, we theoretically analyse our algorithm and show that it is scalable.

4.3.1 Fine-Grained Parallelisation Challenges

The requirement of the sequential depth-first exploration of the Johnson algorithm makes it

challenging to efficiently parallelise this algorithm in a fine-grained manner. This requirement

is enforced by maintaining a set of blocked vertices Blk throughout the exploration of a

recursion tree. If threads exploring the same recursion tree simply share the same set of

blocked vertices Blk, the parallel algorithm could produce incorrect results. For example,

considering the graph given in Figure 4.2a, a thread exploring the path Π = v0 → v1 → u1 → v2

visit and block the vertex u4 in this case because u4 cannot participate in a simple cycle that

begins with Π. Because the threads exploring this graph share the blocked vertices, another

thread attempting to discover the cycle v0 → v1 → u4 → v2 → v0 would fail to do so because

u4 is blocked. Therefore, this approach might not discover all cycles in a graph.

To enable several threads to correctly find all cycles while exploring the same recursion tree,

the algorithm could forward a new copy of the Blk and Blist data structures when invoking

each child recursive call. However, this approach would redundantly explore many paths

in a graph. The reason is that a recursive call would be unaware of the vertices visited and

blocked by other calls that precede it in the depth-first order except for its direct ancestors

in the recursion tree. When enumerating the simple cycles of the graph shown in Figure 4.2a
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Algorithm 8: FGJ_task (v, v0, G, d, T1)

Input: v - the current vertex, v0 - the starting vertex
G - the input graph
d - the depth of this task

InOut :T1 - the thread that created this task ▷ Maintains ΠT1, BlkT1, BlistT1, and MutexT1

Output: true if a cycle was found

1 T2 = the thread executing this task; ▷ Maintains ΠT2, BlkT2, BlistT2, and MutexT2

2 if T1 ̸= T2 then FGJ_copyOnSteal(d, T1, T2); ▷ Check if this task is stolen

3 MutexT2 .lock();
4 ΠT2 .push(v); BlkT2 = BlkT2 ∪ {v};
5 MutexT2 .unlock();

6 found = false;
7 foreach u : NG(v) s.t. u.id > v0.id do ▷ Recursively explore the neighbours of v

8 if u = v0 then
9 report cycle ΠT2 ;

10 found = true;

11 else if u ∉ BlkT2 then
12 f = spawn FGJ_task(u, v0, G, d+1, T2) ; ▷ Create a child task

13 found = found∨ f;

14 sync; ▷ Wait for the spawned tasks

15 MutexT2 .lock();
16 ΠT2 .pop();

17 if found then ▷ Unblock vertices if a cycle was found

18 RecursiveUnblock(v, BlkT2 , BlistT2 );
19 else
20 foreach u : NG(v) do BlistT2 [u] = BlistT2 [u]∪ {v};
21 MutexT2 .unlock();
22 return found;

starting from v0, this approach explores all 4×2k−1 +3 maximal simple paths instead of just

seven, that the Johnson algorithm would explore. Hence, this approach exhaustively explores

all maximal simple paths in the graph and is identical to the brute-force solution of Tiernan

(see Section 2.4.2). Next, we propose a fine-grained parallel algorithm that addresses the

aforementioned parallelisation challenges.

4.3.2 Copy-on-Steal

To enable different threads to concurrently explore the recursion tree in a depth-first fashion

while also taking advantage of the powerful pruning capabilities of the Johnson algorithm,

each thread executing our fine-grained parallel Johnson algorithm maintains its own copy of

the Π, Blk, and Blist data structures. These data structures are copied between threads only

when these threads attempt to explore the same recursion tree. To achieve this behaviour,
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Figure 4.3: (a) An example graph and (b) the recursion tree of our fine-grained Johnson
algorithm when enumerating simple cycles that start from v0. Here, XTi denotes a data
structure X of the thread Ti . The thread T2 can prune the dotted part of the tree by avoiding
v5 and v6 that the thread T1 has blocked after creating the task stolen by T2.

our fine-grained parallel Johnson algorithm implements each recursive call of the Johnson

algorithm as a separate task. The pseudocode of this task is given in Algorithm 8, where a

data structure X , maintained by the thread Ti , is denoted as XTi (see Table 2.1). If a child task

and its parent task are executed by the same thread Ti , the child task reuses the ΠTi , BlkTi ,

and BlistTi data structures of the parent task. However, if a child task has been stolen—i.e.,

it is executed by a thread other than the thread that created it, the child task will allocate

a new copy of these data structures (line 2 of Algorithm 8). We refer to this mechanism as

copy-on-steal.

The problem with copying data structures between different threads upon task stealing is

that the thread that has created the stolen task (i.e., the victim thread) can modify its data

structures before this task is stolen by another thread (i.e., the stealing thread). This problem

can be observed in the example shown in Figure 4.3. There, the victim thread T1 and the

stealing thread T2 explore the same recursion tree given in Figure 4.3b while searching for

cycles that start with P1 = v0 → v1 → v2 and P2 = v0 → v1 → v7, respectively. In this case, T2

steals a task created by T1 that explores v7, as indicated in Figure 4.3b, and receives a copy of

the blocked vertices BlkT1 = {v4, v5, v6} discovered by T1. The thread T1 blocked these vertices

because they cannot participate in any simple cycle that begins with P1. If T2 simply uses a

copy of these blocked vertices BlkT1 without modifications, T2 will be unable to find the cycle

v0 → v1 → v7 → v4 → v2 → v3 → v0 because v4 is blocked. Therefore, a method for unblocking

vertices after copy-on-steal is required to correctly find all cycles.

We explore two solutions for this problem:

(i) Copy-on-steal with complete unblocking. To enable the threads of our algorithm to find

cycles after performing copy-on-steal, the stealing thread could unblock all vertices that the
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Algorithm 9: FGJ_copyOnSteal (d, T1, T2)

Input: d - the depth of the task executing this function
InOut :T1 - the victim thread

T2 - the stealing thread
1 MutexT1 .lock();
2 {ΠT2 ,BlkT2 ,BlistT2 } = copy

(
{ΠT1 ,BlkT1 ,BlistT1 }

)
; ▷ Copy the data of T1 to T2

3 MutexT1 .unlock();
4 while

∣∣ΠT2

∣∣≥ d do ▷ Copy-on-steal with recursive unblocking

5 u =ΠT2 .pop();
6 RecursiveUnblock(u, BlkT2 , BlistT2 );

victim thread had blocked after creating the stolen task. In our example given in Figure 4.3, the

stealing thread T2 unblocks all vertices BlkT1 = {v4, v5, v6} it received from the victim thread T1.

Although this approach enables T2 to correctly find cycles, it also fails to take advantage of the

information collected by T1 to reduce the redundant work of T2. For instance, in Figure 4.3, T2

visits v5 and v6, even though T1 already concluded that these vertices cannot participate in

any simple cycle that begins with P = v0 → v1, where P is the largest common prefix of all the

paths explored by T1 and T2. As a result, T2 redundantly visits the dotted part of the recursion

tree given in Figure 4.3b.

(ii) Copy-on-steal with recursive unblocking. In this approach, the stealing thread capitalises

on the information already discovered by the victim thread. The stealing thread T2 can reuse a

subset B ⊂ BlkT1 of the blocked vertices discovered by T1 if the vertices in B cannot participate

in simple cycles that begin with P , where P is the largest common prefix of all the paths

explored by T1 and T2. Because any path discovered by T2 begins with P , T2 can avoid visiting

vertices from B . Thus, to correctly find simple cycles, it is sufficient for T2 to unblock the

vertices from BlkT1 \B . To achieve this behaviour, T2 invokes a recursive unblocking procedure

of the Johnson algorithm (see lines 17–21 Algorithm 4) for every vertex v ∈ΠT1 \P , as shown in

Algorithm 9, where ΠT1 is the path T1 is exploring during task stealing. The vertices in B can

only be unblocked by a recursive unblocking invoked for v ∈ P ; hence, the vertices in B remain

blocked. In the example given in Figure 4.3, T2 invokes a recursive unblocking procedure

for ΠT1 \ P = {v2}, which results in unblocking of v4. Thus, T2 is able to discover a cycle that

contains v4. The vertices B = {v5, v6} will not be unblocked because they cannot take part in

any simple cycle that begins with P = v0 → v1. Therefore, thread T2 avoids visiting the dotted

part of the recursion tree given in Figure 4.3b.

Without countermeasures, our algorithm can suffer from race conditions because its data

structures can be accessed concurrently by different threads. For instance, a stealing thread T2

can copy the data structures of a victim thread T1 while T1 performs a recursive unblocking, in

which case T2 could receive the vertex set BlkT1 that is partially unblocked. When using copy-

on-steal with recursive unblocking, T2 may not be able to continue the interrupted unblocking

of BlkT1 , causing the algorithm to miss certain cycles. To avoid this problem, we define critical

sections in lines 15–21 of Algorithm 8 and in lines 1–3 of Algorithm 9 using coarse-grained
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Algorithm 10: FGJ (G(V ,E))

Input: G - the input graph with vertices V and edges E
1 parallel foreach v0 → v : E do
2 T0 = the thread executing this iteration; ▷ Maintains ΠT0, BlkT0, BlistT0, and MutexT0

3 ΠT0 = v0; BlkT0 =∅;
4 foreach u : V do BlistT0 [u] =∅;
5 spawn FGJ_task(v , v0, G, 1, T0); ▷ Create a task

6 sync; ▷ Wait for all spawned tasks

locking by maintaining a mutex per thread. However, such a locking mechanism is not required

when using copy-on-steal with complete unblocking because T2 can correctly unblock vertices

in BlkT1 simply by removing all vertices from BlkT1 inserted after the stolen task was created.

Thus, it is sufficient to enable thread-safe operations on Π, Blk, and Blist using fine-grained

locking. As a result, the critical sections are shorter when the copy-on-steal with complete

unblocking approach is used.

Nevertheless, we opt to use the copy-on-steal with recursive unblocking approach in our fine-

grained parallel Johnson algorithm because this approach leads to less redundant work and

rarely suffers from synchronisation overheads. The pseudocode of our fine-grained parallel

Johnson algorithm is given in Algorithm 10.

4.3.3 Theoretical Analysis

We now show that the fine-grained parallel Johnson algorithm is scalable but not work-

efficient.

Theorem 8. The fine-grained parallel Johnson algorithm is not work-efficient.

Proof. According to Lemma 3 presented by Johnson [Joh75], a vertex cannot be unblocked

more than once unless a cycle is found, and once a vertex is visited, it can be visited again

only after being unblocked. Thus, the Johnson algorithm visits each vertex and edge at most c

times. In the fine-grained parallel Johnson algorithm executed using p threads, each thread

maintains a separate set of data structures used for managing blocked vertices. Because the

threads are unaware of each other’s blocked vertices, each edge is visited at most pc times,

c times by each thread. Additionally, an edge cannot be visited more than s times because

each maximal simple path of a graph is explored by a different thread in the worst case, and

during each simple path exploration, an edge is visited at most once. Therefore, the maximum

number of times an edge can be visited by the fine-grained parallel Johnson algorithm is

min
{

pc, s
}

. Because the algorithm executes in O(n +e) time if there does not exist a cycle or a

path in the input graph, the work performed by the fine-grained parallel Johnson algorithm is

Wp (n) ∈O
(
n +e +min{pce, se}

)
. (4.1)
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When c > 0, p > 1, and s > c, the work performed by the fine-grained parallel Johnson algo-

rithm Wp (n) is greater than the execution time T1(n) of the sequential Johnson algorithm.

Thus, this algorithm is not work-efficient.

The work inefficiency of our fine-grained parallel Johnson algorithm occurs if more than

one thread performs the work the sequential Johnson algorithm would perform between the

discovery of two cycles. This behaviour can be illustrated using the graph from Figure 4.2a,

which contains c = 4 cycles and s = c ×2k−1 +3 maximal simple paths, each starting from

vertex v0. When discovering each cycle, our fine-grained algorithm explores an infeasible

region of the recursion tree, as shown in Figure 4.2b, in which the vertices b1, . . . ,bk are visited.

If this infeasible region is explored using a single thread, each vertex bi , with i ∈ {1, . . . ,m},

will be visited exactly once. However, if p threads are exploring the same infeasible region

of the recursion tree, vertices b1, . . . ,bk will be visited up to p times because the threads

are unaware of each other’s blocked vertices. In this case, the fine-grained parallel Johnson

algorithm performs more work than necessary, and, thus, it is not work-efficient. Additionally,

each infeasible region of the recursion tree that visits vertices b1, . . . ,bk can be executed by at

most s/c = 2k−1 threads because there are 2k−1 maximal simple paths that can be explored in

each infeasible region. In this case, each vertex bi , with i ∈ {1, . . . ,k}, is visited up to s times,

and, thus, the fine-grained parallel Johnson algorithm behaves as the Tiernan algorithm (see

Section 2.4.2).

Lemma 4. The depth T∞(n) of the fine-grained parallel Johnson algorithm is in O(e).

Proof. The worst-case depth of this algorithm occurs when a thread performs copy-on-steal

and explores a maximal simple path. A thread explores such a path in O(e) time because it

visits at most e edges. As a result, Π and Blk contain at most n vertices, and Blist contains at

most e pairs of vertices. Therefore, copy-on-steal requires O(e) time to copy Π, Blk, and Blist,

and to unblock vertices in Blk. As a result, the depth of this algorithm is T∞(n) ∈O(e).

Theorem 9. The fine-grained parallel Johnson algorithm is scalable when lim
n→∞c = ∞.

Proof. For this algorithm, T1(n) ∈O(n +e +ec) and T∞(n) ∈O(e) (see Lemma 4). Given e < n2

and our assumption that lim
n→∞c = ∞, we have lim

n→∞
T∞(n)

T1(n)
= lim

n→∞
e

n +e +ec
= 0. Thus, this

algorithm is scalable based on Definition 4.

For the fine-grained parallel Johnson algorithm to be scalable, it is sufficient for c to increase

sublinearly with n. Even though this algorithm is scalable, a strong or weak scalability is not

guaranteed due to the work inefficiency of this algorithm. Nevertheless, our experiments show

that this algorithm is strongly scalable in practice (see Figure 4.13).
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Figure 4.4: (a) An example graph and (b) the recursion tree of our fine-grained parallel Read-
Tarjan algorithm when enumerating cycles that start from v0. The nodes of the recursion tree
represent the recursive calls of the depth-first search. Tasks shown in (b) can be executed
independently of each other.

4.3.4 Summary

Our relaxation of the strictly depth-first-search-based recursion-tree exploration reduces

the pruning efficiency of the Johnson algorithm. In the worst case, the fine-grained parallel

Johnson algorithm could perform as much work as the brute-force Tiernan algorithm does—

i.e., O(se). However, in practice, this worst-case scenario does not happen (see Section 5.5). In

addition, our fine-grained parallel Johnson algorithm can suffer from synchronisation issues

in some rare cases (see Section 5.5) because our copy-on-steal mechanism can lead to long

critical sections. In the next section, we introduce a fine-grained parallel algorithm that is

scalable, work-efficient, and less prone to synchronisation issues.

4.4 Fine-Grained Parallel Read-Tarjan Algorithm

In this section, we first introduce several optimisations that reduce the number of unnecessary

vertex visits performed by the sequential Read-Tarjan algorithm. Then, we present our fine-

grained parallel Read-Tarjan algorithm that includes these optimisations. Finally, we show

that our parallel algorithm is work-efficient and strongly-scalable.

4.4.1 Improvements to the Pruning Efficiency

To improve the pruning efficiency of the sequential Read-Tarjan algorithm, we include the

following optimisations:

(i) Blocked vertex set forwarding enables a recursive call of the Read-Tarjan algorithm to
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Algorithm 11: FGRT_DFS(u, v0, G, Blk, Vis)

Input: u - the current vertex, v0 - the starting vertex
G - the input graph

InOut :Blk - blocked vertices
Vis - vertices visited during the DFS

Output: E - the resulting path extension from u to v0

1 if u = v0 then return u;
2 Vis = Vis∪ {u};
3 block = true;
4 foreach w : NG(u) s.t. w.id > v0.id do
5 if w = v0 then
6 return u → w
7 else if w ∉ Blk∧w ∉ Vis then
8 E = FGRT_DFS(w, v0, G, Blk, Vis); ▷ Recursively search for the path extension E

9 if E ̸=∅ then
10 return E.push_front(u);

11 if w ∉ Blk then
12 block = false

13 if block then Blk = Blk∪ {u}; ▷ Blocking on a successful DFS

14 return ∅;

reuse vertices blocked by its parent call, resulting in fewer vertex visits. The original Read-

Tarjan algorithm discards blocked vertices after each recursive call [RT75], even though this

information could be reused later. In this optimisation, the algorithm forwards the blocked

vertices Blk of a recursive call to its child recursive calls, preventing those child calls from

unnecessarily visiting the vertices in Blk again. For example, in Figure 4.4, the vertex v8 is

blocked the first time the algorithm visits v8 while exploring the path extension E1. This opti-

misation prevents the algorithm from visiting v8 again when exploring the same extension E1

or another extension E3 that branches from E1. As a result of this optimisation, the algorithm

can avoid the dotted part of the recursion tree.

(ii) Path extension forwarding prevents recomputation of the path extension E found by a

parent recursive call by forwarding this path extension to its child recursive call. In this way,

each child recursive call performs one fewer DFS invocation than the original Read-Tarjan

algorithm [RT75].

(iii) Blocking on a successful DFS is another mechanism for discovering vertices to be blocked.

As a reminder, the Read-Tarjan algorithm searches for path extensions using a DFS. In the

original algorithm, a vertex is blocked only if it is visited during an unsuccessful DFS invocation,

which fails to discover a path extension. However, successful DFS invocations could also visit

some vertices that have all their neighbours blocked. Such vertices cannot lead to the discovery

of new cycles and, thus, can also be blocked. The pseudocode of the DFS function that includes

this optimisation is given in Algorithm 11. In our example given in Figure 4.4, a successful
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DFS invoked from v3 finds a path extension E3 and discovers that the only neighbour v8 of

v7 is blocked. The algorithm then blocks v7, which enables it to avoid visiting v7 again when

exploring E3. Therefore, fewer vertices are visited during the execution of the algorithm.

4.4.2 Fine-Grained Parallelisation

Although the optimisations presented in Section 4.4.1 eliminate some of the redundant work

performed by the Read-Tarjan algorithm, this algorithm typically performs more work than

the Johnson algorithm (see Section 2.4.2). However, this redundancy makes it possible to

parallelise the Read-Tarjan algorithm in a scalable and work-efficient manner.

Because the Read-Tarjan algorithm allocates a new Blk set for each path extension exploration,

a recursive call can explore different path extensions in an arbitrary order. In addition, discov-

ery of a new path extension E results in the invocation of a single recursive call, and these calls

can be executed in an arbitrary order. As a result, several threads can concurrently explore

different paths of the same recursion tree constructed by the Read-Tarjan algorithm for a given

starting edge. There are neither data dependencies nor ordering requirements between differ-

ent calls, apart from those that exist between a parent and a child. To exploit the parallelism

available during the recursion tree exploration, we execute each path extension exploration in

each recursive call as a separate task, all of which can be independently executed. Examples

of such tasks are shown in Figure 4.4. We refer to the resulting algorithm as the fine-grained

parallel Read-Tarjan algorithm.

Our implementation shown in Algorithm 12 performs only a single path extension exploration

in a recursive call and uses all the optimisations we introduced in Section 4.4.1. We execute

each such recursive call as a separate task using a dynamic thread scheduling framework (see

Section 2.2). To find all cycles of a graph, we execute a parallel for loop iteration for each

edge v0 → v that uses Algorithm 11 to search for a path extension E from v to v0, as shown in

Algorithm 13 If such E exists, a task is created using v , v0, and E as its input parameters. This

task then recursively creates new tasks, as shown in lines 14 and 19 of Algorithm 12, until all

cycles that start with the edge v0 → v have been discovered.

To prevent different threads from concurrently modifying Π and Blk, each task allocates and

maintains its own Π and Blk sets. A task can receive a copy of Π and Blk directly from its

parent task at the time of task creation. However, it is possible to minimise the copy overheads

by copying these sets only when a task is stolen. For this purpose, we use the copy-on-steal

with complete unblocking approach described in Section 4.3.2, which has shorter critical

sections than the copy-on-steal with recursive unblocking approach used by our fine-grained

parallel Johnson algorithm.
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Algorithm 12: FGRT_task(v, v0, G, E, d, T1)

Input: v - the current vertex, v0 - the starting vertex
G - the input graph
E - the path extension from v to v0

d - the depth of this task
InOut :T1 - the thread that created this task ▷ Maintains ΠT1 and BlkT1

1 T2 = the thread executing this task; ▷ Maintains ΠT2 and BlkT2

2 if T1 ̸= T2 then ▷ Check if this task is stolen

3 {ΠT2 ,BlkT2 } = copy
(
{ΠT1 ,BlkT1 }

)
; ▷ Operations on Π and Blk are thread-safe

4 while ΠT2 .back() ̸= v do ΠT2 .pop();
5 Remove vertices from BlkT2 inserted at depth d′ ≥ d;
6 found = false;
7 while E ̸=∅ do ▷ Exploration of the path extension E

8 v = E.pop_front();
9 ΠT2 =ΠT2 .push(v); BlkT2 = BlkT2 ∪ {v};

10 foreach u : NG(v) s.t. u.id > v0.id do
11 if u ̸= E.front()∧u ∉ BlkT2 then
12 E′ = FGRT_DFS(u, v0, BlkT2 , Vis =∅); ▷ Find an alternate path extension E′

13 if E′ ̸=∅ then
14 spawn FGRT_task(v, v0, G, E′, d+1, T2); ▷ Create a child task

15 found = true;

16 else BlkT2 = BlkT2 ∪Vis;

17 if found then break;

18 if E =∅ then report cycle ΠT2 ;
19 else spawn FGRT_task(v, v0, G, E, d+1, T2); ▷ Create a child task

20 sync; ▷ Wait for the spawned tasks

4.4.3 Theoretical Analysis

We now show that the fine-grained parallel Read-Tarjan algorithm is both work-efficient and

strongly scalable.

Theorem 10. The fine-grained parallel Read-Tarjan algorithm is work-efficient.

Proof. Because each task of our fine-grained parallel Read-Tarjan algorithm either discovers a

cycle or creates at least two child tasks, our algorithm is executed using O(c) tasks. Each task

performs several unsuccessful DFS invocations and one successful DFS per each child task it

creates. All unsuccessful DFS invocations explore at most e edges in total because they share

the same set of blocked vertices. In the worst case, each edge is visited twice per task, once by

a successful DFS and once by one of the unsuccessful DFS invocations. Thus, this algorithm

performs O(e) work per task. Because this algorithm performs O (n +e) work if there are no

cycles in the graph, the total amount of work this algorithm performs is Wp (n) = O (n +e +ec).

Hence, this algorithm is work-efficient based on Definition 3.
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Algorithm 13: FGRT (G(V ,E))

Input: G - the input graph with vertices V and edges E
1 parallel foreach v0 → v : E do
2 T0 = the thread executing this iteration; ▷ Maintains ΠT0 and BlkT0

3 ΠT0 = v0; BlkT0 =∅; ▷ Operations on Π and Blk are thread-safe

4 E = FGRT_DFS(v, v0, G, BlkT0 , Vis =∅);
5 if E ̸=∅ then spawn FGRT_task(v, v0, G, E, 1, T0); ▷ Create a task

6 sync; ▷ Wait for all spawned tasks

The work-efficiency of our fine-grained parallel Read-Tarjan algorithm can be demonstrated

using the example given in Figure 4.2a. In this example, the threads of this algorithm indepen-

dently explore four different path extensions Ei = v1 → ui → v2 → v0, with i ∈ {1 . . .4}. A thread

exploring a path extension Ei invokes a DFS from v2, which explores vertices b1, . . . ,bk at most

once and fails to find any other path extension. Therefore, the amount of work the fine-grained

parallel Read-Tarjan algorithm performs does not increase compared to its single-threaded

execution.

Lemma 5. The depth T∞(n) of the fine-grained parallel Read-Tarjan algorithm is in O(ne).

Proof. In the worst case, a thread executing this algorithm creates a task for each vertex of its

longest simple cycle, which has a length of at most n. Before invoking its first child task, a task

executes a sequence of unsuccessful DFS invocations in O(e) and a successful DFS invocation

also in O(e). Thus, the depth of this algorithm is O (ne).

The worst-case depth of our algorithm can be observed when this algorithm is executed on

the graph given in Figure 4.1a. This graph has c = 2n−2 cycles and the length of its longest cycle

v0 → . . . vn−1 → v0 is n. The algorithm creates a task for each vertex of the cycle and performs

a successful DFS in each such call, which leads to T∞ ∈O(ne).

Theorem 11. The fine-grained parallel Read-Tarjan algorithm is strongly scalable when

lim
n→∞c/n = ∞.

Proof. Because the fine-grained parallel Read-Tarjan algorithm is work-efficient, we can apply

Brent’s rule [Bre74]:

T1(n)

p
≤ Tp (n) ≤ T1(n)

p
+T∞(n). (4.2)

Substituting T1(n) with O(n + e + ec) and T∞(n) with O(ne) (see Lemma 5), for a positive

constant C0, it holds that

1

/(
1

p
+C0

n

c

)
< 1

/(
1

p
+ T∞(n)

T1(n)

)
≤ T1(n)

Tp (n)
≤ p. (4.3)

68



Fine-grained Parallelisation of Cycle Enumeration Algorithms Chapter 4

Given that lim
n→∞c/n = ∞, there exist n0 > 0,C1 > 0 such that if n > n0, then c/n >C1p. Thus, for

every n > n0, it holds that kp ≤ T1(n)
Tp (n) ≤ p, where k = C1/(C0 +C1) < 1. As a result, T1(n)

Tp (n) =Θ(p),

which, based on Definition 5, completes the proof.

As shown in Table 4.3, our fine-grained parallel Read-Tarjan algorithm has a higher depth

than our fine-grained parallel Johnson algorithm, introduced in Section 4.3. Nevertheless,

the former algorithm is strongly scalable when c grows superlinearly with n, whereas strong

scalability cannot be guaranteed for the latter algorithm.

4.4.4 Summary

The work of our fine-grained parallel Read-Tarjan algorithm does not increase after fine-

grained parallelisation. This parallel algorithm performs Wp (n) ∈O(n+e +ec) work: the same

as the work performed by its serial version. Our optimisations introduced in Section 4.4.1 do

not reduce the work Wp (n) performed by our parallel algorithm in the worst case. However,

these optimisations significantly improve its performance in practice (see Section 4.6.4). In

addition, the synchronisation overheads of the fine-grained parallel Read-Tarjan algorithm are

not as significant as those of the fine-grained Johnson algorithm because of its shorter critical

sections. Furthermore, this algorithm is the only asymptotically-optimal parallel algorithm for

cycle enumeration for which we are able to prove strong scalability.

4.5 Parallelising Constrained Cycle Search

This section describes the methods for adapting our parallel algorithms to search for simple

cycles under various constraints. Because state-of-the-art algorithms for temporal and hop-

constrained cycle enumeration are extensions of the Johnson algorithm [KC18; Pen+19], our

parallelisation approach described in Section 4.3 is also applicable to these algorithms. In this

section, we describe the changes to the fine-grained parallel Johnson algorithm needed for

enumeration of temporal and hop-constrained cycles. We also introduce modifications to the

cycle enumeration algorithms required for finding time-window-constrained cycles.

4.5.1 Time-Window Constraints

Cycle enumeration algorithms require minimal modifications to support time-window con-

straints. Such constraints restrict the search for simple, temporal, and hop-constrained cycles

to those that occur within a time window of a given size δ, as illustrated in Figure 2.1. To find

time-window-constrained cycles that start with an edge that has timestamp t0, only the edges

with timestamps that belong to the time window [t0 : t0 +δ] are visited. To avoid reporting the

same cycle several times, another edge with the same timestamp t0 is visited only if the source

vertex of that edge has an ID that is smaller than the ID of the vertex from which the search for

cycles was started. Overall, imposing time-window constraints reduces the number of cycles
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Algorithm 14: CFGJ_copyOnSteal(d, T1, T2)

Input: d - the depth of the task executing this function
InOut :T1 - the victim thread

T2 - the stealing thread
1 MutexT1 .lock();
2 {ΠT2 ,BlkT2 ,PrevLocksT2 } = copy

(
{ΠT1 ,BlkT1 ,PrevLocksT1 }

)
; ▷ Blk contains closing times

or barriers

3 {BlistT2 } = copy
(
{BlistT1 }

)
; ▷ Blist is not used for hop-constrained cycles

4 MutexT1 .unlock();
5 while

∣∣ΠT2

∣∣> d do ▷ Copy-on-steal with recursive unblocking

6 u =ΠT2 .pop();
7 lock = PrevLocksT2 .pop();
8 RecursiveUnblock(u, lock, BlkT2 , BlistT2 );

discovered, which results in a more tractable problem.

A strongly-connected component (SCC) can be used to reduce the number of vertices visited

during the search for time-window-constrained cycles. The search for cycles that start with

the edge ϵ can be limited to use only the vertices from the SCC that contains ϵ [Joh75]. In

the case of time-window-constrained cycles, we compute an SCC for ϵ using only the edges

with timestamps that belong to [t0 : t0 +δ], where t0 is the timestamp of ϵ. Because an SCC

can be computed independently for each edge in O(e) time [FHP00], our fine-grained parallel

algorithms remain scalable.

4.5.2 Temporal Ordering Constraints

To efficiently enumerate temporal cycles, the 2SCENT algorithm [KC18] replaces the set of

blocked vertices Blk in the Johnson algorithm with closing times. The closing time ct of a vertex

v indicates that the outgoing temporal edges of v with a timestamp greater than or equal to

ct cannot participate in a temporal cycle and are therefore blocked. Increasing the closing

time of v to a new value ct′ unblocks the blocked outgoing edges of v that have timestamps

smaller than ct′. This operation triggers the recursive unblocking procedure that unblocks

the incoming edges of v with a timestamp smaller than the maximal timestamp among the

unblocked outgoing edges of v . This process is repeated for every vertex with unblocked

outgoing edges.

Because the backtracking phase of 2SCENT is based on the Johnson algorithm, it can be

parallelised using our fine-grained approach described in Section 4.3. For this purpose, we

use our copy-on-steal mechanism with recursive unblocking, introduced in Section 4.3.2,

which enables a thread to maintain its own set of data structures used for recursion tree

pruning. However, this mechanism is not directly applicable in this case because the recursive

unblocking procedure of 2SCENT requires the new closing time for a vertex as a parameter

in addition to the vertex itself. For this reason, an additional data structure called PrevLocks
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avoid the dotted part of the tree by reusing the blocked edges v6 → v7 and v7 → v3 discovered
by T1.

is used alongside the current path Π that records the closing time that each vertex v had

before it was added to Π. Copy-on-steal then performs the recursive unblocking procedure for

each vertex v removed from Π using the original closing time of the vertex v obtained from

PrevLocks, as shown in Algorithm 14. We refer to the resulting algorithm as the fine-grained

parallel temporal Johnson algorithm.

The aforementioned modification to the copy-on-steal with recursive unblocking approach

also enables a thread of our fine-grained parallel algorithm to reuse the edges blocked by

another thread. This behaviour can be observed in the example shown in Figure 4.5, where the

thread T2 steals the task indicated in Figure 4.5b from the thread T1. Copy-on-steal executed

by T2 invokes recursive unblocking that restores the closing time of v3 to its original value

of 9 obtained from PrevLocks. Note that this original closing time of v3 was previously set by

T1 while exploring the path v0 → v1 → v3. The recursive unblocking that T2 invokes for v3

unblocks only the edge v6 → v3 because it is the only incoming edge of v3 with a timestamp

smaller than the closing time 9 of the vertex v3. Without recording the previous closing times,

T2 could instead unblock all incoming edges of v3 by invoking recursive unblocking for v3 with

a closing time ∞, which also unblocks the edges v6 → v7 and v7 → v3. However, because there

is no temporal cycle that contains these two edges and starts with v0, T2 would unnecessarily

visit them in this case. Thus, restoring the closing time of v3 to its original value 9 prevents T2

from performing this redundant work.

We also adapt the Read-Tarjan algorithm and its fine-grained and coarse-grained versions to

enumerate temporal cycles using closing times. The necessary changes to the algorithm are

trivial, and we omit discussing them for brevity.
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Figure 4.6: (a) An example graph and (b) the recursion tree of our fine-grained hop-constrained
Johnson algorithm when enumerating cycles of length L = 6 that start from v0. Barrier values
of unmarked vertices are 0. Copy-on-steal enables the thread T2 to reuse barriers discovered
by the thread T1 and to avoid exploring the dotted part of the tree.

To reduce the number of vertices visited during the search for temporal cycles, we use a method

similar to the SCC-based technique discussed in Section 4.5.1. Instead of computing an SCC for

each edge ϵ, we compute a cycle-union that represents an intersection of temporal ancestors

and temporal descendants of ϵ. The temporal descendants and the temporal ancestors of

ϵ are the vertices that belong to the temporal paths in which ϵ is the first edge and the last

edge, respectively. Defined as such, a cycle-union contains only the vertices that participate in

temporal cycles that have ϵ as their starting edge. Thus, the search for temporal cycles that

start with ϵ can be limited to only those vertices.

4.5.3 Hop Constraints

An efficient algorithm for enumerating hop-constrained cycles and paths, called BC-

DFS [Pen+19], replaces the set of blocked vertices Blk in the Johnson algorithm with barriers. A

barrier value bar of a vertex v indicates that the starting vertex v0 of a cycle cannot be reached

within bar hops from v . As a result, v is blocked if the length of the current path Π when the

algorithm attempts to visit v is greater than or equal to L−bar, where L is the hop constraint.

BC-DFS modifies the recursive unblocking of the Johnson algorithm to reduce the barrier bar

of v to a specified value bar′ < bar. This procedure also sets the barrier of any vertex u that can

reach v in k hops to bar′+k if the previous barrier of u was greater than bar′+k. Maintaining

barriers in such a way minimises redundant vertex visits when searching for hop-constrained

cycles.

To parallelise BC-DFS in a fine-grained manner, we use the same technique as that used for

fine-grained parallelisation of the Johnson algorithm (Section 4.3) and the 2SCENT algorithm

(Section 4.5.2). In this case, threads exploring a recursion tree of BC-DFS maintain separate
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Table 4.4: Hardware platforms used in the cycle enumeration experiments. Here, P, C/P, and
T/C represent the number of processors, the number of cores per processor, and the number
of hardware threads per core, respectively.

platform Intel KNL [Sod15] Intel Xeon Skylake [Goo22]
P×C/P×T/C 4×64×4 5×48×2
Total no. threads 1024 480
Frequency 1.3 GHz 2 GHz
Memory per proc. 110 GB 360 GB
L1d/L2/L3 cache 32 KB/512 KB/none 32 KB/1 MB/38.5 MB

data structures, such as the current path Π and barrier values for each vertex, and use the

copy-on-steal with the recursive unblocking approach to copy these data structures among

threads. Similarly to our algorithm from Section 4.5.2, each thread also maintains a data

structure PrevLocks that records the original barrier value of each vertex v from Π. When a

thread steals a task, it performs a recursive unblocking procedure for each vertex v removed

from Π using its original barrier value obtained from PrevLocks, as shown in Algorithm 14.

This procedure reduces the barrier value of the vertices that can reach v , enabling the stealing

thread to visit those vertices. We refer to the resulting algorithm as the fine-grained parallel

hop-constrained Johnson algorithm.

The modified copy-on-steal with recursive unblocking approach given in Algorithm 14 enables

a stealing thread of the aforementioned fine-grained parallel algorithm to reuse barriers

discovered by other threads. This behaviour can be observed in the example given in Figure 4.6.

In that example, the thread T1 first visits the vertices v2, v6, v7, v8 and sets the barrier value of

each visited vertex to L−|Π|+1 (values in red shown in Figure 4.6a) because it was not able

to find a cycle of length L = 6 [Pen+19]. Here, |Π| denotes the length of Π at the moment of

exploration of each vertex. When the thread T2 steals the task indicated in Figure 4.6b from T1,

the copy-on-steal mechanism executed by T2 performs a recursive unblocking of the vertex v1

using the original barrier value 0 of v1 obtained from PrevLocks. This recursive unblocking

reduces the barrier value of v2 from 4 to 1, which enables T2 to find the cycle that contains

v2. The barrier values of the vertices v6, v7, and v8 are not modified, and, thus, the thread T2

avoids visiting these vertices unnecessarily.

4.5.4 Summary

In this section, we described a method to adapt the cycle enumeration algorithms, such as

our fine-grained algorithms introduced in Sections 4.3 and 4.4, to search for cycles under

time window constraints. In addition, we introduced a modified version of our copy-on-steal

with recursive unblocking approach, introduced in Section 4.3, that supports fine-grained

parallelisation of temporal and hop-constrained cycle enumeration algorithms [KC18; Pen+19]

derived from the Johnson algorithm. As a result, our fine-grained parallel algorithms can

enumerate cycles under time-window, temporal, and hop constraints.
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Table 4.5: Temporal graphs used in the cycle enumeration experiments. Time span refers to
the difference between the maximum and minimum timestamps in a graph.

graph abbr. No. vertices No. edges Time span [days]
bitcoinalpha BA 3.3 k 24 k 1901
bitcoinotc BO 4.8 k 36 k 1903
CollegeMsg CO 1.3 k 60 k 193
email-Eu-core EM 824 332 k 803
mathoverflow MO 16 k 390 k 2350
transactions TR 83 k 530 k 1803
higgs-activity HG 278 k 555 k 6
askubuntu AU 102 k 727 k 2613
superuser SU 138 k 1.1 M 2773
wiki-talk WT 140 k 6.1 M 2277
friends2008 FR 481 k 12 M 1826
wiki-dynamic-nl NL 1 M 20 M 3602
messages MS 313 k 26 M 1880
AML-Data AML 10 M 34 M 30
stackoverflow SO 2.0 M 48 M 2774

4.6 Experimental Evaluation

This section evaluates the performance of our fine-grained parallel algorithms for simple,

temporal, and hop-constrained cycle enumeration. As Table 4.2 shows, we are the only ones

to offer fine-grained parallel versions of the asymptotically-optimal cycle enumeration algo-

rithms, such as the Johnson and the Read-Tarjan algorithms. However, the methods covered in

Table 4.2 can be parallelised using the coarse-grained approach covered in Section 4.2. Thus,

we use the coarse-grained approach as our main comparison point.

The experiments are performed using two different clusters: Intel KNL [Sod15] and Intel Xeon

Skylake [Goo22]. The details of these two clusters are given in Table 4.4. We developed our

code on the Intel KNL cluster and ran most of the analyses there; yet, for completeness, we

ran the comparisons to competing implementations also on the Intel Xeon Skylake cluster

available in Google Cloud’s Compute Engine [Goo22]. Scalability experiments are conducted

on the Intel KNL cluster. In these experiments, the data points that use 64 threads or less were

executed on a single Intel KNL processor; two processors were used to execute the data points

that use 128 threads; and all four processors were used otherwise. Furthermore, we use more

than one thread per core only if the number of threads used is greater than 256.

We use the Threading Building Blocks (TBB) [Kuk07] library to parallelise the algorithms on

a single processor. We distribute the execution of the algorithms across multiple processors

using the Message Passing Interface (MPI) [COR93]. When using distributed execution, each

processor stores a copy of the input graph in its main memory and searches for cycles starting

from a different set of graph edges. The starting edges are divided among the processors such

that when the edges are ordered in the ascending order of their timestamps, k consecutive

edges in that order are assigned to k different processors. Each processor then uses its own

dynamic scheduler to balance the workload across its hardware threads. In this setup, work-
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Figure 4.7: Performance of parallel algorithms for temporal cycle enumeration on (a) the Intel
KNL cluster using 1024 threads and (b) the Intel Xeon Skylake cluster using 480 threads. The
numbers above the bars show the execution time of each algorithm relative to that of our
fine-grained parallel temporal Johnson for the same benchmark.
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Figure 4.8: Larger time windows increase the performance gap between the algorithms. The
algorithms are executed on the Intel KNL cluster using 1024 threads. The numbers above
the bars show the execution times of the coarse-grained algorithm relative to that of the
fine-grained algorithm.

load imbalance across processors may still occur, but its impact is limited in our experiments

because we use at most five processors.

We perform the experiments using the graphs listed in Table 4.5. The TR, FR, and MS graphs

are from Harvard Dataverse [JMB17], the NL graph is from Konect [Kun13], the AML graph

is from the AML-Data repository [Alt21], and the rest are from SNAP [LK14]. To make cycle

enumeration problems tractable, we use time-window constraints in all of our experiments.

The time window sizes used in our experiments are given in the figures next to the graph

names. We stop the execution of an algorithm if it takes more than 24h on the Intel KNL cluster

or more than 6h on the Intel Xeon Skylake cluster.

4.6.1 Temporal Cycle Enumeration

The goal of a temporal cycle enumeration problem is to find all simple cycles with edges

ordered in time. Here, we evaluate the performance of our fine-grained parallel algorithms
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Figure 4.9: Scalability evaluation of parallel temporal cycle enumeration algorithms executed
on the Intel KNL cluster. The baseline is our fine-grained parallel temporal Johnson algorithm.
The relative performance of 2SCENT [KC18] is shown when it completes in 24 hours. Note
that the 2SCENT implementation is single-threaded and the single-threaded execution results
are not available for all graphs.

for this problem introduced in Section 4.5.2. Our main comparison points are the coarse-

grained parallel versions of the temporal Johnson and temporal Read-Tarjan algorithms. We

refer to the backtracking phase of the state-of-the-art 2SCENT algorithm [KC18] for temporal

cycle enumeration as the temporal Johnson algorithm and parallelise it in a coarse-grained

manner for the experiments. We do not parallelise the entire 2SCENT algorithm because the

preprocessing phase of 2SCENT is strictly sequential and has a time complexity in the order of

the complexity of its backtracking phase. We also provide direct comparisons with the 2SCENT

algorithm.

Figure 4.7 shows that our fine-grained parallel algorithms achieve an order of magnitude

speedup compared to the coarse-grained algorithms on the Intel KNL cluster. For the NL

graph, this speedup reaches up to 40×. Because the Intel Xeon Skylake cluster contains

fewer physical cores than the Intel KNL cluster, the speedup between our fine-grained and

the coarse-grained parallel Johnson algorithms is smaller on the former cluster. As can be

76



Fine-grained Parallelisation of Cycle Enumeration Algorithms Chapter 4

observed in Figure 4.8, this speedup increases as we increase the time window size used in the

algorithms. Note that enumerating cycles in larger time windows is more challenging because

larger time windows contain a larger number of cycles.

The scalability evaluation of the parallel temporal cycle enumeration algorithms is given in

Figure 4.9. We also report the performance of the sequential 2SCENT algorithm in the same

figure. The performance of our fine-grained parallel algorithms improves linearly until 256

threads, after which it becomes sublinear due to simultaneous multithreading. As a result,

our fine-grained versions of the Johnson and the Read-Tarjan algorithms reach 435× and

470× speedups, respectively, compared to their serial versions. Additionally, when using 1024

threads, our fine-grained Johnson algorithm is on average 260× faster than 2SCENT when

2SCENT completes in 24 hours. On the other hand, the coarse-grained Johnson algorithm

does not scale as well as the fine-grained algorithms. As a result, the performance gap between

the fine-grained and the coarse-grained algorithms increases as we increase the number of

threads.

Overall, the fastest algorithm for temporal cycle enumeration that we tested is our fine-

grained Johnson algorithm, which is, on average, 60% faster than our fine-grained Read-Tarjan

algorithm. When using 1024 threads, both fine-grained algorithms are an order of magnitude

faster than their coarse-grained counterparts. Moreover, our fine-grained parallel algorithms,

executed on the Intel KNL cluster using 1024 threads, are two orders of magnitude faster than

the state-of-the-art algorithm 2SCENT [KC18].

4.6.2 Hop-Constrained Cycle Enumeration

In hop-constrained cycle enumeration, we search for all simple cycles in a graph that are

shorter than the specified hop constraint. We here compare our fine-grained parallel hop-

constrained Johnson algorithm, introduced in Section 4.5.3, with the state-of-the-art algo-

rithms BC-DFS and JOIN [Pen+19] for this problem. For this evaluation, we parallelised

BC-DFS and JOIN in the coarse-grained manner. Because adapting the Read-Tarjan algorithm

to enumerate hop-constrained cycles is not trivial, we do not report the performance of the

fine-grained and coarse-grained versions of this algorithm. We also omit the performance

results for the MS graph because our fine-grained algorithm did not finish under 12h when

using the smallest time window size.

Figure 4.10 shows that our fine-grained parallel algorithm is, on average, more than 10× faster

than the coarse-grained parallel BC-DFS algorithm for the two largest hop constraints tested.

When using the hop-constraint that is less than or equal to ten, the coarse-grained parallelisa-

tion approach is able to achieve workload balance across cores, and, thus, the performance

of this approach is similar to that of our fine-grained approach in this case. As we increase

the hop constraint, the probability of encountering deeper recursion trees also increases.

Exploring such trees using the coarse-grained approach leads to workload imbalance (see

Section 4.2). Our fine-grained algorithm is designed to resolve this problem by exploring a
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Figure 4.10: Performance of parallel algorithms for hop-constrained simple cycle enumeration
on (a) the Intel KNL cluster using 1024 threads and (b) the Intel Xeon Skylake cluster using 480
threads. The numbers above the bars show the execution time of the coarse-grained parallel
algorithms relative to that of our fine-grained parallel algorithm. Larger hop constraints
increase the performance gap between the two algorithms.

recursion tree using several threads. Therefore, increasing the hop constraint increases the

speedup of our fine-grained algorithm with respect to the coarse-grained algorithm.

When the hop constraint is set to 20, our fine-grained parallel algorithm is, on average, 10×
faster than the coarse-grained parallel JOIN algorithm, as shown in Figure 4.10. Although the

latter algorithm can be competitive with our fine-grained algorithm, it can also suffer from

long execution times, such as in the cases of the AU, NL, and AML graphs. The reason for

these long execution times is the fact that the JOIN algorithm might temporarily construct

many non-simple cycles while searching for simple cycles. Because this algorithm constructs

cycles by combining simple paths, it is not guaranteed that each combination results in a

simple cycle. The overhead of combining paths can dominate the execution time of JOIN if

this algorithm constructs orders of magnitude more non-simple cycles than simple cycles.

For instance, this situation occurs in the case of AU and hop constraint of 20, where JOIN

discovers 600× more non-simple cycles than simple cycles. As a result, the speedup of our

fine-grained algorithm compared to the coarse-grained JOIN algorithm can reach up to three

orders of magnitude.

Figure 4.11 shows that the speedup of our fine-grained parallel Johnson algorithm with re-

spect to the coarse-grained parallel BC-DFS can be increased by using more threads. The

performance of our fine-grained parallel algorithm scales linearly with the number of threads,

whereas the scaling of the coarse-grained parallel BC-DFS eventually slows down. Thus, in

addition to being, on average, an order of magnitude faster than the coarse-grained parallel

BC-DFS, our fine-grained algorithm is also more scalable.
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Figure 4.11: Scalability evaluation of parallel hop-constrained cycle enumeration algorithms
executed on the Intel KNL cluster using the hop constraint of 15. The speedup values are
relative to the single-threaded execution of BC-DFS. Evaluation on other graphs is omitted for
brevity.
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Figure 4.12: Performance of parallel algorithms for simple cycle enumeration on (a) the Intel
KNL cluster using 1024 threads and (b) the Intel Xeon Skylake cluster using 480 threads. The
numbers above the bars show the execution time of each algorithm relative to that of our
fine-grained parallel Johnson algorithm for the same benchmark.

4.6.3 Simple Cycle Enumeration

Here, we evaluate our fine-grained parallel algorithms for simple cycle enumeration. The

computational complexity of simple cycle enumeration is higher than the complexity of

temporal and hop-constrained cycle enumeration because simple cycle enumeration does

not impose temporal ordering or hop constraints. The only constraint we impose is the

time-window constraint. Because the complexity of enumerating simple cycles is higher, we

use smaller time windows compared to the cases of temporal and hop-constrained cycle

enumeration. We use the coarse-grained parallel versions of the Johnson and the Read-Tarjan
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Figure 4.13: Scalability evaluation of parallel simple cycle enumeration algorithms executed
on the Intel KNL cluster. The speedup values are relative to the single-threaded execution of
the Johnson algorithm. Evaluation on other graphs is omitted for brevity.

algorithms as our main comparison points. We do not report the results for the MS graph

because our algorithms did not finish in 12h even if we set the time window to one second.

As we can see in Figure 4.12, our fine-grained parallel algorithms show an order of magnitude

average speedup compared to coarse-grained parallel algorithms on two different platforms.

The reason for this speedup is better scalability of our fine-grained algorithms, which we

demonstrate in Figure 4.13. Similarly to the cases of temporal and hop-constrained cycle

enumeration (see Figs. 4.9 and 4.11), our fine-grained parallel algorithms scale linearly with

the number of physical cores used whereas the coarse-grained parallel Johnson algorithm

does not scale as well. Thus, the speedup between the fine-grained and the coarse-grained

algorithms increases by utilising more threads.

The synchronisation overheads caused by recursive unblocking of our fine-grained parallel

Johnson algorithm (see Section 4.3.2) are visible only in the case of AML. In this case, the

fine-grained parallel Johnson algorithm performs 60% fewer edge visits than the fine-grained

parallel Read-Tarjan; however, it is 25% slower. These synchronisation overheads can be

explained by a very low cycle-to-vertex ratio. Because a vertex is blocked if it cannot take

part in a cycle, the probability of a vertex being blocked is higher when the cycle-to-vertex

ratio is lower. In consequence, more vertices are unblocked during the recursive unblocking

of the fine-grained parallel Johnson algorithm, leading to longer critical sections and more

contention on the locks. Nevertheless, our fine-grained parallel Johnson algorithm achieves a

good trade-off between pruning efficiency and lock contention in most cases.

Overall, our fine-grained parallel Johnson and fine-grained parallel Read-Tarjan algorithms

have comparable performance, as shown in Figure 4.12. Although the former algorithm is

slightly faster, it can suffer from synchronisation overheads in some cases. Nevertheless,

both parallel algorithms achieve almost linear scaling with the number of physical cores used

and achieve, on average, more than 10× speedup with respect to coarse-grained parallel
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Figure 4.14: Effect of the pruning improvements to our fine-grained parallel Read-Tarjan
algorithm for (a) simple and (b) temporal cycle enumeration. Execution times are normalised
to the case that includes all optimisations. Our optimisations accelerate this algorithm by up
to 6.8×.

versions of the algorithms. These conclusions also hold in the cases of temporal and hop-

constrained cycle enumeration.

4.6.4 Improvements to the Read-Tarjan Algorithm

Figure 4.14 shows the effect of our pruning improvements, introduced in Section 4.4.1, on

the performance of our fine-grained Read-Tarjan algorithm. The experiments are performed

using a single Intel KNL processor using 256 threads. Note that using one processor instead of

the entire cluster results in longer execution times, but it enables us to eliminate the effect

of workload imbalance across processors in this experiment. The execution time of the fine-

grained parallel Read-Tarjan algorithm decreases after activating each optimisation because

fewer redundant vertex and edge visits are performed during the execution of this algorithm.

When all optimisations are enabled, the average speedup of our algorithm for simple cycle

enumeration compared to its unoptimised version is 2×. In the case of temporal cycle enu-

meration, the average speedup increases to 3.4×. As a result, our pruning improvements

enable the fine-grained parallel Read-Tarjan algorithm to be competitive with the fine-grained

parallel Johnson algorithm.

4.7 Related Work

Simple cycle enumeration algorithms. Enumeration of simple cycles of graphs is a classical

computer science problem [Tie70; Tar73; Joh75; RT75; MD76; SL76; Gro16; Wei72; LT82; Bir+13;

AR16]. The backtracking-based algorithms by Johnson [Joh75], Read and Tarjan [RT75], and

Szwarcfiter and Lauer [SL76] achieve the lowest time complexity bounds for enumerating sim-

ple cycles in directed graphs. These algorithms implement advanced recursion tree pruning

techniques to improve on the brute-force Tiernan algorithm [Tie70]. Section 2.4.2 covers such

pruning techniques in further detail. A cycle enumeration algorithm that is asymptotically

faster than the aforementioned algorithms [Joh75; RT75; SL76] has been proposed in Birmelé

et al. [Bir+13], however, it is applicable only to undirected graphs. Simple cycles can also be

enumerated by computing the powers of the adjacency matrix [Dan68; Kam67; Pon66] or

by using circuit vector space algorithms [MD76; Gib69; Wel65], but the complexity of such
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approaches grows exponentially with the size of the cycles or the size of the input graphs.

Time-window, temporal ordering, and hop constraints. It is common to search for cycles

under some additional constraints. For instance, in temporal graphs, it is common to search

for cycles within a sliding time window, such as in Kumar and Calders [KC18] and Qiu et

al [Qiu+18]. In addition, temporal ordering constraints can be imposed when searching for

cycles in temporal graphs, such as in Kumar and Calders [KC18]. Furthermore, the maximum

number of hops in cycles or paths can be constrained, such as in Gupta and Suzumura [GS21]

and Peng et al. [Pen+19]. Note that hop-constrained simple cycles can also be enumerated

using incremental algorithms, such as in Qiu et al. [Qiu+18]. However, this algorithm is based

on the brute-force Tiernan algorithm [Tie70], which makes it slower than nonincremental

algorithms that use recursion tree pruning techniques [Pen+19]. Additionally, because incre-

mental algorithms maintain auxiliary data structures, such as paths, to be able to construct

cycles incrementally, they are not as memory-efficient as nonincremental algorithms [Pen+19].

Table 4.2 offers comparisons between the capabilities of these methods and ours.

Parallel and distributed algorithms for cycle enumeration. Cui et al. [Cui+17] proposed a

multi-threaded algorithm for detecting and removing simple cycles of a directed graph. The

algorithm divides the graph into its strongly-connected components and each thread performs

a depth-first search on a different component to find cycles. However, sizes of the strongly-

connected components in real-world graphs can vary significantly [Meu+14], which leads to a

workload imbalance. Rocha and Thatte [RT15] proposed a distributed algorithm for simple

cycle enumeration based on the bulk-synchronous parallel model [Val90], but it searches

for cycles in a brute-force manner. Qing et al. [Qin+20] introduced a parallel algorithm for

finding length-constrained simple cycles. It is the only other fine-grained parallel algorithm

we are aware of in the sense that it can search for cycles starting from the same vertex in

parallel. However, the way this algorithm searches for cycles is similar to the way the brute-

force Tiernan algorithm [Tie70] works. To our knowledge, we are the first ones to introduce

fine-grained parallel versions of asymptotically-optimal simple cycle enumeration algorithms,

which do not rely on a brute-force search, as we show in Table 4.2. Distributed algorithms for

detecting the presence of cycles in graphs readily exist [Bad99; Oli+18; FO19]. However, our

focus is on discovering all simple cycles of a graph rather than detecting whether a graph has a

cycle or not.

4.8 Conclusions

This work presented in this chapter has made three contributions to the area of parallel cycle

enumeration. First, we have introduced scalable fine-grained parallel versions of the state-

of-the-art Johnson and Read-Tarjan algorithms for enumerating simple cycles. In particular,

we have shown that the novel fine-grained parallel approach we contributed for parallelising

the Johnson algorithm can be adapted to support the enumeration of temporal and hop-

constrained cycles as well. Our fine-grained parallel algorithms for enumerating the afore-

82



Fine-grained Parallelisation of Cycle Enumeration Algorithms Chapter 4

mentioned types of cycles achieve a near-linear performance scaling on a compute cluster

with a total number of 256 CPU cores that can execute 1024 simultaneous software threads.

Secondly, we have shown that our fine-grained parallel cycle enumeration algorithms are scal-

able both in theory and in practice. In contrast, their coarse-grained parallel versions do not

share this property. When using 1024 software threads, our fine-grained parallel algorithms are

on average an order of magnitude faster than their coarse-grained counterparts. In addition,

the performance gap between the fine-grained and coarse-grained parallel algorithms widens

as we use more physical CPU cores. This performance gap also widens when increasing

the time window in the case of temporal cycle enumeration and when increasing the hop

constraint in the case of hop-constrained cycle enumeration.

Thirdly, we have shown that, whereas our fine-grained parallel Read-Tarjan algorithm is

work efficient, our fine-grained parallel Johnson algorithm is not. In general, the former is

competitive against the latter because of the new pruning methods we introduced, yet the

latter outperforms the former in most experiments. In some rare cases, our fine-grained

parallel Johnson algorithm can suffer from synchronisation overheads. In such cases, our

fine-grained parallel Read-Tarjan algorithm offers a more scalable alternative.
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5 Graph Feature Extraction for
Financial Crime Detection

In this chapter, we focus on analysing the financial transaction data with the goal of detect-

ing transactions associated with financial crime. In a typical banking use-case, financial

transactions take place dynamically, and a transaction processing system receives a list of

financial transactions as input, often in tabular format, as shown in Figure 5.1a, where each

transaction is represented by a row [IBM23c]. By treating each transaction as an edge and each

account as a vertex, this tabular data can be transformed into graph format, as illustrated in

Figure 5.1b. In such a financial transaction graph, the existence of various types of subgraph

pattern can be associated with financial crime, as discussed in Section 1.1. For instance,

cycles and scatter-gather patterns, illustrated in Figure 1.2, could indicate money laundering,

stock market manipulation, or another financial fraud scheme [NKL21]. Therefore, extracting

these subgraphs using fast enumeration algorithms, such as our parallel cycle enumeration

algorithm introduced in Chapter 4, could accelerate the detection of financial crime.

This chapter introduces Graph Feature Preprocessor, a software library for detecting well-

known money laundering and fraud patterns in financial transaction graphs, which we use to

produce a rich set of account and transaction features. Our library efficiently extracts subgraph

patterns using parallel algorithms, such as our parallel cycle enumeration algorithm presented

in Chapter 4, from the incoming transaction stream. These subgraph patterns are encoded

into the feature vectors of transactions that participate in those patterns, which can then

be used to improve the accuracy of machine learning models that perform financial crime

detection. In addition, to further enrich the feature set of transactions, our library computes

various statistical properties of the graph vertices involved in the transactions. Furthermore,

to enable real-time ingestion of transactions in small batches, our library maintains an in-

memory directed graph data structure that supports fast dynamic updates. Because, in

financial transaction graphs, several different transactions between the same two accounts

can take place at different times, as illustrated in Figure 5.1, our in-memory directed graph

data structure is implemented as a multigraph. Our Graph Feature Preprocessor is publicly

available on PyPI [IBM22a; IBM22c; IBM22b] and is offered as part of IBM Cloud Pak for Data

(CP4D 4.6.3) [IBM23a].
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Figure 5.1: Financial transactions in (a) tabular format and in (b) graph format. The highlighted
transactions form a money laundering cycle.

To evaluate our Graph Feature Preprocessor library, we have developed a graph machine

learning (Graph ML) pipeline for monitoring financial transaction graphs. The pipeline uses

our library to generate rich feature vectors for financial transactions and tree-based machine

learning models to predict suspicious transactions. The dynamic in-memory multigraph our

Graph Feature Preprocessor maintains enables the pipeline to dynamically process transac-

tions in small batches. We have evaluated our pipeline using highly imbalanced anti-money

laundering (AML) and phishing detection datasets, in which only a small fraction of the trans-

actions are illicit, making the learning extremely challenging. When using an AML dataset with

100 million transactions, our graph-based features increased the minority-class F1 score from

9% to 73% while achieving a latency of 1 ms for batches of 128 transactions, culminating in

throughput rates beyond 100′000 transactions per second using only 6 CPU cores. Additionally,

our experiments on a real-life phishing account detection dataset extracted from Ethereum

demonstrate the general applicability of our graph feature extraction library.

The rest of this chapter is organised as follows. The high-level overview of our solution for

the detection of financial transactions associated with financial crime is given in Section 5.1.

The details of our graph-based feature extraction library including its interface and feature

encoding are given in Section 5.2. Our dynamic in-memory directed multigraph data structure,

used by our feature extraction library, is introduced in Section 5.3. Section 5.4 describes

the details of our graph machine learning pipeline. Section 5.5 presents the experimental

evaluation of our solution. Section 5.6 discusses related work. This chapter is concluded in

Section 5.7.

5.1 Overview of the Solution

To process data in tabular format, such as the financial transactions shown in Figure 5.1a,

tree-based machine learning models [Ke+17; CG16] are often used [GOV22]. However, such

models cannot take into account the underlying graph structure and cannot discover complex

graph patterns in financial transaction graphs that could be associated with money laundering

(see Figure 1.2). Furthermore, financial transactions are usually associated with a limited set of

basic features (columns in Figure 5.1a) [IBM23c], which do not provide sufficient information
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Figure 5.2: The overview of our graph machine learning pipeline for the detection of suspicious
financial transactions. This setup uses our Graph Feature Preprocessor library to produce a
rich set of graph-based features and a pre-trained machine learning model that uses these
features to detect suspicious transactions.

to tree-based models for detecting transactions associated with financial crime. As a result, it

is challenging to detect transactions associated with financial crime using these models.

To overcome the aforementioned limitations, we propose a solution shown in Figure 5.2. In

this solution, we use our Graph Feature Preprocessor library to produce a rich set of graph-

based features for financial transactions. Our library searches for well-known financial crime

patterns, such as money laundering cycles and scatter-gather patterns (see Figure 1.2), and

encodes these graph patterns into additional columns of the financial transaction table. The

transaction table enriched with the graph-based features is then forwarded to a pre-trained

tree-based machine learning model that performs the classification of financial transactions.

As a result, the machine learning model is provided with additional transaction features

extracted from the financial transaction graph, which facilitates the detection of transactions

associated with financial crime.

Another benefit of our setup, shown in Figure 5.2, is that it can process transactions in small

batches with high throughput. Upon receiving a batch of transactions, our Graph Feature

Preprocessor library first updates an in-memory dynamic graph data structure with the edges

that represent the transactions from the input batch. Then, for each edge ϵ added to the graph,

our library searches for the graph patterns that contain that edge ϵ and encodes those graph

patterns into the features of the transaction associated with ϵ. Transaction processing can

be parallelised by adopting the coarse-grained parallel approach, in which a graph pattern

search for each edge ϵ of a batch is performed by a different thread. However, as illustrated in

Section 1.2 and Chapter 4, using the coarse-grained approach might result in a suboptimal

solution due to the potential workload imbalance across threads. Furthermore, the parallelism

of such approach is limited by the size of the batch.

To increase the amount of parallelism when processing batches of transactions, we parallelise

the search for graph patterns for input batch transactions using a fine-grained approach, as

illustrated in Figure 5.3. Because the search for graph patterns is usually performed using

a recursive function (see Section 1.2), our library explores a recursion tree for each edge ϵ

that represents a transaction from the input batch. As an example, our library can detect
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Figure 5.3: Fine-grained parallelism exploited by our Graph Feature Preprocessor library. The
library searches for graph patterns independently for each input transaction by recursively
exploring the transaction graph. The coarse-grained approach would use only four threads,
while the fine-grained approach uses eleven threads.

whether an edge ϵ belongs to a cycle by performing a recursive search starting from this edge

ϵ, as explained in Chapter 4. Our fine-grained algorithms presented in that chapter are able

to execute the same recursion tree using several threads, thereby increasing the parallelism.

Parallelising the search for graph patterns using a fine-grained approach enables us to process

the recursion trees shown in Figure 5.3 with more threads compared to the case that uses

a coarse-grained parallelisation approach. As a result, even if the input batch contains one

transaction, our library would be able to parallelise the search for graph patterns.

5.2 Feature Extraction Library

An overview of our library is given in Figure 5.4. This library operates in a streaming fashion,

receiving as input a batch of transactions with only basic features such as in Figure 5.1,

and producing additional graph-based features as output. The library stores past financial

transactions in an in-memory directed multigraph which is dynamically updated as new

transactions are received (see Section 5.3 for further details). The graph-based features are

computed by enumerating various subgraph patterns in the in-memory multigraph and by

generating statistical properties of the accounts stored in that multigraph. The library can

compute the graph-based features across several CPU cores in parallel, which, together with

the dynamic multigraph representation, enables real-time feature extraction, as demonstrated

in Section 5.5.

We have implemented our graph feature extraction library as a scikit-learn-compatible fit/-

transform interface used for preprocessing data [dev22a; dev22b] and made it publicly avail-
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Figure 5.4: Block diagram of our graph feature extraction library. It supports scikit-learn-
compatible fit/transform interface, which enables it to be integrated into existing scikit-learn
pipelines for model training and scoring.

able on PyPI as part of the Snap ML package [IBM22b; IBM22c; IBM22a]. The main functional-

ity of our library is implemented by the transform function, which is illustrated in Figure 5.4.

This function inserts a batch of input transactions into the in-memory multigraph and com-

putes graph-based features for these transactions (see below). Creating the initial in-memory

multigraph is performed by providing some past transactions as an input to the fit function.

The existing in-memory multigraph can be updated without computing any graph features by

using the partial_fit function. Other standard preprocessor functions supported by our library

are described in the publicly-available documentation [IBM22b].

Our library computes two main types of graph-based features: (i) graph-pattern-based features

and (ii) account-statistics-based features. These features are produced when the transform

function is called after setting the preprocessor parameters appropriately.

Graph-pattern-based features are computed for each transaction or account of the input

batch by enumerating a predefined set of subgraph patterns that contain this transaction

or account in the financial transaction graph. The patterns currently supported are fan-in,

fan-out, gather-scatter and scatter-gather patterns as well as simple and temporal cycles (see

Figure 5.5 for examples).

A fan-out pattern of vertex v is a subgraph pattern defined by the outgoing edges of v that

connect v to k ≥ 2 different vertices [SK21]. Analogously, in a fan-in pattern of vertex v is

connected to k ≥ 2 different vertices through the incoming edges of v . Examples of a fan-in

and a fan-out patterns are given in Figures 5.5a and 5.5b, respectively. A gather-scatter pattern

combines a fan-in pattern of the vertex v with a fan-out pattern of the same vertex v , as

illustrated in Figure 5.5c [Sta+21]. Our library implicitly enumerates gather-scatter patterns

by finding fan-in and fan-out patterns of the same vertex. There exists a vertex in each of the

aforementioned subgraph patterns that can reach every other vertex of the same pattern in a

single hop. Thus, we refer to these patterns as single-hop patterns.
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Figure 5.5: Examples of subgraph patterns that can be enumerated by our graph feature
extraction library. The single-hop patterns supported are shown in (a), (b), and (c), and the
multi-hop patterns supported are shown in (d), (e), and (f).

Currently, the multi-hop patterns that can be enumerated by our library are limited to scatter-

gather patterns, simple cycles, and temporal cycles. A fan-out pattern of a vertex v and a fan-in

pattern of a vertex u form a scatter-gather pattern if the fan-out and the fan-in patterns connect

vertices v and u, respectively, to the same set of intermediate vertices [Sta+21]. Figure 5.5d

shows an example of a scatter-gather pattern with four intermediate vertices. Examples of

non-temporal and temporal cycles are given in Figures 5.5e and 5.5f, respectively.

To reduce the complexity, our library enumerates patterns in shifting time windows, the size of

which can be specified by users. When the time-window size is δ for a pattern, the transform

function enumerates patterns that consist only of edges with timestamps in [tnow −δ : tnow],

where tnow is the minimum timestamp the transform function receives in the current batch of

transactions.

Account-statistics-based features are computed only for the accounts that appear in the input

batch of transactions. Note that each such account corresponds to a vertex of the dynamic

in-memory multigraph. For each such account, some pre-defined statistical features can be

computed for both its outgoing edges and its incoming edges. A selection of such features can

be enabled or disabled by setting the preprocessor parameters appropriately. The statistical

features currently supported by our library are: sum, mean, minimum, maximum, median,

variance, skew, and kurtosis [KZ00]. These additional features can be computed and reported

independently for each basic transaction feature. For instance, computation of the sum feature

for the account B shown in Figure 5.1 using the basic feature "Amount" of the transactions

that contain B as the source account, results in a feature value of 500. Combining different

statistical feature types with different user-specified basic features in this way extends the

feature space significantly.
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Figure 5.6: Feature encoding: scatter-gather patterns are binned according to the number
of intermediate vertices they have and cycles are binned according to their length. Basic
features used for the computation of account-statistics-based features are "Timestamp" and
"Amount".

The encoding of the features produced by the transform function is shown in Figure 5.6. As

with the input feature table in Figure 5.1, each row of the output feature table stores the feature

vector of a single transaction. Across different columns of a feature vector, there are basic

transaction features, graph-pattern-based transaction features, and the account features of

the source and the destination account of the transaction. The account features consist of

account-statistics-based features and features based on fan-in and fan-out patterns, both of

which are single-hop patterns. Features based on fan-in and fan-out patterns are computed for

each account v and represent the number of accounts connected to v in those patterns. Graph-

pattern-based transaction features are computed using multi-hop subgraph patterns. For

each transaction, our library reports the number of multi-hop subgraph patterns of different

sizes that this transaction is part of. Example features based on multi-hop subgraph patterns

are given in Figure 5.6, where the first transaction participates in 4 scatter-gather patterns

with 3 intermediate vertices and in 2 temporal cycles with 30 or more edges. Even though the

multi-hop subgraph patterns can also be used to compute account features, computing them

as transaction features provides more compact feature vectors.
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5.3 Dynamic Multigraph Support

To support real-time feature extraction in financial transaction graphs, we developed a dy-

namic in-memory temporal multigraph representation. Our representation enables fast

insertion of edges, fast identification and removal of the edge with the smallest timestamp, fast

access to the neighbours of a vertex, and support for maintaining parallel edges, i.e., edges with

the same source and destination vertices. Fast constant-time insertions are required to enable

real-time processing of input batches of transactions, and fast accesses to the neighbours of a

vertex are crucial for the performance of graph mining algorithms. Support for maintaining

parallel edges is required given that there could exist several transactions between the two

accounts in the financial transaction graphs.

To reduce the memory usage of our dynamic in-memory multigraph representation, the

outdated edges with timestamps outside the time window [tnow −δ : tnow] are removed, where

tnow is the timestamp of the last inserted edge, and δ is the user-specified time window size.

To remove these edges, a fast operation that removes the edge with the smallest timestamp in

the graph is required. The removal of edges outside of the time window [tnow −δ : tnow] also

reduces the number of edges visited during the execution of the graph mining algorithms,

resulting in their faster execution.

5.3.1 Data Structures

The overview of our dynamic multigraph representation is given in Figure 5.7. It consists of

two main parts: a transaction log (Figure 5.7a) and an index (Figure 5.7b). The transaction log

maintains a list of edges sorted in the ascending order of their timestamps. This data structure

only stores edges that have timestamps in the time window [tnow −δ : tnow]. Having a sorted

list helps facilitate removal of the edges that fall outside of this time window. To implement

the transaction log, we use a double-ended queue (i.e., deque), which enables constant-time

operations that insert edges to or remove edges from the front or back of the deque [Knu68;

ref23a]. Because the edges arrive ordered in time, the new edges are simply inserted into the

back of the deque. In addition, the edge with the smallest timestamp in the transaction log

can be removed from the front of the deque in constant time. As a result, the outdated edges

can then simply be removed by repeatedly removing the edge with the smallest timestamp

from the transaction log.

The index data structure uses an adjacency list representation to enable fast accesses to the

neighbours of a vertex [Cor09a], as illustrated in Figure 5.7b. This data structure is imple-

mented as a vector of hash maps [ref23b], where each entry in the vector represents a vertex

v and the hash map associated with that vertex v represents the adjacency lists of v . The

vertices are internally mapped to integers in the range of 0,1, . . . ,n −1, where n is the number

of vertices in the graph, and these integers are used to access the adjacency list of a vertex v

in this vector. Note that our dynamic in-memory multigraph maintains two different index

data structures, one in which the adjacency lists represent outgoing vertices and one in which
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Figure 5.7: Our in-memory dynamic multigraph. Transaction log from (a) maintains a sorted
edge list and the index in (b) represents an adjacency list for each vertex in the graph. Parallel
edges are represented as a list of edge IDs and their respective timestamps.

the adjacency list represents incoming vertices. Thus, accessing both outgoing and incoming

neighbours of a vertex can be performed in constant time.

To support maintaining parallel edges in the index, each entry in an adjacency list of the vertex

v that represents a neighbour u of the vertex v also contains a list of edges that connect v

with u. We refer to this data structure as parallel edge list (see Figure 5.7b). The edges of this

list are represented with their ID and timestamp and are sorted in ascending order of their

timestamps. The parallel edge list is implemented as a deque, which enables inserting an edge

to the back of the list and removing an edge from the front of the list, both in constant time.

Given that edges are inserted into the graph in the increasing order of their timestamps and

that the edges with the smallest timestamp are always removed first, the edges in parallel edge

lists stay sorted after updating the list. Because accessing the parallel edge list of the vertex u

in the adjacency list of a vertex v is performed in constant time, inserting and removing an

edge that connects v with u is also performed in constant time. Therefore, both insert and

remove operations of our dynamic multigraph are performed in O(1) time.

Our feature extraction library supports saving and loading the state of the dynamic in-memory

multigraph [doc23]. Because the index can be reconstructed from the transaction log, it is

sufficient to save the edges stored in the transaction log when saving the state of the library.

Upon loading the state, the saved edges are inserted into the transaction log and the index in

ascending order of their timestamps, as explained above. Note that the transaction log can be

mapped to a memory-mapped file to accelerate the process of saving and loading state, as

well as to reduce memory usage of our dynamic in-memory multigraph. However, our feature

extraction library does not yet support this option.
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Current batch
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Figure 5.8: Stream processing: after a batch of transactions is inserted into the dynamic
multigraph, our library extracts the graph-based features for those transactions and removes
transactions that fall outside of the sliding time window.

Algorithm 15: ScatterGatherStream (G(V ,E),batch,δ)

Input: G - the input graph with edges V and edges E
batch - vector containing the batch of input edges
δ - the time window

1 parallel foreach (u → v, tuv ) : batch do
2 TW = [tuv −δ : tuv ]; ▷ Time window of size δ

3 N+
u = {∀x | (u → x, ts) ∈ E ∧ ts ∈ TW}; ▷ The first phase

4 N+
v = {∀x | (v → x, ts) ∈ E ∧ ts ∈ TW};

5 parallel foreach w : N+
v do

6 N−
w = {∀x | (x → w, ts) ∈ E ∧ ts ∈ TW};

7 I = N+
u ∩N−

w ;
8 if |I | ≥ 2 then report scatter-gather pattern {u, I , w};

9 N−
u = {∀x | (x → u, ts) ∈ E ∧ ts ∈ TW}; ▷ The second phase

10 N−
v = {∀x | (x → v, ts) ∈ E ∧ ts ∈ TW};

11 parallel foreach w : N−
u do

12 N+
w = {∀x | (w → x, ts) ∈ E ∧ ts ∈ TW};

13 I = N−
v ∩N+

w ;
14 if |I | ≥ 2 then report scatter-gather pattern {w, I , v};

5.3.2 Stream Processing

This dynamic multigraph representation enables our feature extraction library to operate

in a streaming manner, as illustrated in Figure 5.8. In this setting, our library processes

transactions in batches by inserting each batch into the dynamic graph and extracting the

graph-based features for transactions in that batch using our dynamic in-memory multigraph.

After processing a batch, the time window [tnow −δ : tnow] is updated by setting the value tnow

to the largest timestamp among the transactions in that batch. As a result, the transactions of

the dynamic multigraph that have timestamps smaller than tnow −δ are removed.

To compute graph-pattern-based features in a streaming manner, our library enumerates new

patterns that are formed after inserting the input batch of edges into the graph. The fan-out

pattern feature of a vertex v that belongs to the input batch is determined by counting the
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Figure 5.9: Enumeraton of scatter-gather patterns that contain the edge u → v with v being an
intermediate vertex. Similarly to other algorithms for graph pattern mining, this approach
also uses set intersections to determine vertices that belong to a subgraph pattern.

number of the outgoing vertices of v . Similarly, the fan-in pattern feature of v is computed by

counting the number of the incoming vertices of v . Both fan-out and fan-in features can be

determined in O(1) time by simply querying the size of the hash maps that are implementing

the adjacency lists of the vertex v in our index data structure (see Section 5.3.1).

To enumerate simple and temporal cycles, we use fine-grained parallel algorithms introduced

in Chapter 4 of this thesis. These algorithms enable the search for cycles that start from a single

edge or a small batch of edges in parallel using several threads. This approach is illustrated in

Figure 5.3.

To compute scatter-gather pattern in a streaming manner, we use our algorithm illustrated in

Figure 5.9 and presented in Algorithm 15. This algorithm processes each edge (u → v, tuv ) in

the input batch by searching for all scatter-gather patterns that include the edge the (u → v, tuv )

and consist of edges that have a timestamp within the time window T W = [tuv −δ : tuv ], where

δ is a user-defined time window size. There are two phases of this algorithm: the first phase

that searches for scatter-gather patterns with v as an intermediate vertex, and the second

phase that searches for scatter-gather patterns with u as an intermediate vertex. In the

first phase, the algorithm first determines the outgoing neighbours of u and v , denoted as

N+
u and N+

v , respectively, as shown in Figure 5.9a. Then, for each neighbour w of v , the

algorithm searches for incoming neighbours N−
w of the vertex w , which are represented as

filled circles in Figure 5.9b. Only the edges that have timestamps within the time window T W

are considered when determining sets N+
u , N+

v , and N−
w . Afterwards, the algorithm performs a

set intersection between N+
u and N−

w , and the resulting vertices represent the intermediate

vertices I of a scatter gather pattern. Finally, the algorithm reports the resulting scatter-gather

pattern defined with vertices u, w , and I , as shown in Figure 5.9c. The second phase of this

algorithm, presented in lines 9–14 of Algorithm 15, is analogous to the first phase, and we omit

its description for brevity.

Our algorithm for enumerating scatter-gather patterns executes in O
(|batch|×∆2

max

)
time,

where ∆max is the maximum degree of a vertex in the graph and |batch| is the number of edges
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in the input batch. This time complexity bound can be derived by observing that the vertex

sets produced in the algorithm contain at most ∆max vertices and that the set intersection

between these sets can be performed in O(∆max ). This algorithm can be accelerated by

parallelising its loops, as shown in Algorithm 15. The iterations of inner loops, shown in lines 5

and 11 of Algorithm 15, are independent of each other and can be executed concurrently.

Thus, we can exploit fine-grained parallelism by processing a single edge from the input batch

using several threads. As a result, the depth of this algorithm, which is the time needed to

execute this algorithm using an infinite number of threads, is T∞ = O (∆max ).

Stream processing enables our library to incrementally compute account-statistics-based

features by updating the statistical properties of a vertex after an edge is inserted or removed.

For this purpose, our library maintains second, third, and fourth central moments for each

vertex of the graph and for each basic feature used for calculating account statistics (e.g.,

"Amount"). After inserting or removing an edge u → v , all central moments for u and v are

updated incrementally [Fin09; TK12]. These central moments are then used to compute the

following statistical features: sum, mean, variance, skew, and kurtosis [KZ00]. Note that the

computation of each aforementioned statistical feature can be computed in O(1) time. Other

statistical features, i.e., minimum, maximum, and median, are simply computed by iterating

through the incident edges of a vertex, which is executed in O(∆max ) time per each statistical

feature.

5.4 Graph Machine Learning Pipeline

This section describes how to train a machine learning model used in our graph machine

learning pipeline shown in Figure 5.2. In addition, we explain how the inference is performed

using the trained model and our Graph Feature Preprocessor library.

The training step of our graph machine learning pipeline is illustrated in Figure 5.10. First,

the transactions available for training are ordered in ascending order of their timestamps and

are split into train, validation, and test sets. This split is performed in such a way that the

transactions from the train set have the lowest timestamps and the transactions from the test

set have the highest. Then, the transactions from the train and validation sets are forwarded

to the Graph Feature Preprocessor to generate the enriched graph-based features for the

transactions from these two sets. To prevent any form of information leakage at training time,

the training set is processed before the validation set. In that case, graph-based features for the

transactions of the train set are computed on the graph created using only those transactions,

and thus no information from the validation set is used. Finally, the train and validation sets

with enriched features are then used to train the gradient boosting models [Ke+17; CG16]. The

test set is not processed at this step and is used for the pipeline evaluation.

Training a machine learning model often involves hyper-parameter tuning, which requires

both the train and validation sets. The train set is used to train ML models with different

hyper-parameters, which are evaluated on the validation set. The hyper-parameters that give
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Figure 5.10: The training step of our graph machine learning pipeline shown in Figure 5.2.
The model used in our pipeline is trained using graph-based features produced by our Graph
Feature Preprocessor library.
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Figure 5.11: The inference step of our graph machine learning pipeline shown in Figure 5.2.
The transactions are processed in small batches. The transactions with graph-based features
are forwarded to a model trained using the setup from Figure 5.10, which labels transactions
as licit or illicit.

the best accuracy on the validation set are chosen to train a model using both the train and the

validation sets. The resulting model is then used for inference in our graph machine learning

pipeline.

The inference step of our graph machine learning pipeline is shown in Figure 5.11. First, we

load the model trained using the setup shown in Figure 5.10. Then, we initialise the Graph

Feature Preprocessor library by loading past financial transactions using the fit function. These

past financial transactions are used to create the initial dynamic graph. Next, the transactions

from the test set are grouped into batches and forwarded to the Graph Feature Preprocessor

using the transform function. This function updates the existing dynamic graph using the

forwarded transactions and enriches those transactions with graph-based features of the

same type as those generated in the train setup (see Figure 5.10). Finally, the enriched test

transactions are sent to the pre-trained machine learning model for detection of transactions

associated with financial crime.
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Table 5.1: Datasets used in the experiments. Illicit rate refers to the percentage of illicit
transactions and time span refers to the difference between the maximum and minimum
timestamps in a dataset.

Dataset No. nodes No. edges Illicit rate Time span [days]
AML 100M 1.8 M 100 M 0.17% 180
AML HI Small 0.5 M 5 M 0.07% 10
AML HI Medium 2.1 M 32 M 0.11% 16
AML HI Large 2.1 M 180 M 0.11% 97
ETH Phishing 2.9 M 13 M 0.27% 1261

5.5 Experimental Evaluation

In this section, we evaluate the performance of our feature extraction library as well as the

accuracy of our graph machine learning pipeline.

5.5.1 Experimental Setup

Datasets. The datasets used in the evaluation are presented in Table 5.1. The AML HI datasets

are the publicly available synthetic AML datasets available on Kaggle [IBM23c] whereas the

AML 100M dataset is a proprietary synthetic AML dataset. The AML datasets contain trans-

actions labelled as laundering or not laundering, and, thus these datasets can be directly

used with our Graph ML pipeline that performs transaction classification. The ETH Phishing

dataset is a real-world Ethereum dataset [Che+19a] which contains 1,165 accounts labelled

phishing. To enable transaction classification using the ETH Phishing dataset, we label a

transaction of this dataset as phishing if at least one of its destination accounts is labelled as

phishing. As a result, 36,055 transactions out of 13M are labelled as phishing.

ML model parameter tuning. We use the aforementioned datasets to train LightGBM [Ke+17]

and XGBoost [CG16] boosting machines, which are widely used ML models for tabular data.

These models are defined by a large number of parameters that need to be carefully tuned,

especially when dealing with highly imbalanced datasets as is typically the case of AML fi-

nancial datasets. Evaluating many parameter combinations on large datasets can be time-

and resource-expensive. To address this challenge, here we employ a successive halving (SH)

model tuning approach [JN14] where the SH resource is defined as the number of examples.

SH is a multi-round algorithm that starts by randomly sampling x0 model parameter combi-

nations which are evaluated using a small percentage of the train examples, e.g., r0 = 0.1 (10%

of the training examples). The algorithm then finds the best η−1 × x0 configurations (η> 1).

These are used in the next SH round where each of the η−1 ×x0 configurations is trained on

η× r0 train examples. SH continues by decreasing the number of parameter configurations

and by increasing the number of train examples until the maximum number of train examples

has been reached. In our experiments, we used different SH configurations for different data

sets: x0 = 16, η = 2, r0 = 0.2 for the large AML data sets, and x0 = 1000, η = 2, r0 = 0.1, and

x0 = 100, η = 2, r0 = 0.2 for the smaller AML and ETH Phishing data sets. Details about the
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Table 5.2: Model parameter ranges used at tuning time.

LightGBM XGBoost
Parameter Range Parameter Range
num_round (10,1000) num_round (10,1000)
num_leaves (1,16384) max_depth (1,15)
learning_rate 10(−2.5,−1) learning_rate 10(−2.5,−1)

lambda_l2 10(−2,2) lambda 10(−2,2)

scale_pos_weight (1,10) scale_pos_weight (1,10)
lambda_l1 10(0.01,0.5) colsample_bytree (0.5,1.0)

subsample (0.5,1.0)
early_stopping_rounds = 20

model parameter ranges are shown in Table 5.2.

Train/Validation/Test split. To tune the parameters of the models and to test the model

generalization performance, we split the input data into train, validation, and test sets. The

train and validation sets are used by the SH scheme to tune the model, while the test set is

used for the final evaluation of the model. The splitting is performed in a temporal manner

using two timestamps T1 and T2, T1 < T2, such that the train set contains the transaction with

timestamps smaller than T1, the validation set contains the transactions with timestamps

with values between T1 and T2, and the test set contains the rest of the transactions. For the

AML datasets, we determine T1 and T2 such that the train, validation, and test sets contain

approximately 60%, 20%, and 20% of the data, respectively, and that any two transactions that

were created on the same day are placed in the same set. For the ETH Phishing dataset, we

define the timestamp of an account as the minimum timestamp among the transactions that

involve this account and determine T1 and T2 such that 65% of the accounts have timestamps

smaller than T1 and 15% of the accounts have timestamps with values between T1 and T2.

The transactions in the train, validation, and test sets are then determined using T1 and T2 as

indicated above.

Data leakage at train/tune time. We extract different sets of graph-based features from each

dataset using our feature extraction library. For each dataset, we sort the transactions in the

increasing order of their timestamp and send batches of transactions to the graph feature

extraction library. Data leakage is prevented by this ordering because only the past data is

used during feature extraction. Furthermore, for the ETH Phishing dataset, we temporally

split the accounts rather than the transactions to prevent data leakage that could occur if the

same phishing account is involved in the transactions from different sets.

Graph ML pipeline as an ML service setup. We evaluate the performance of the graph machine

learning inference pipeline deployed as an ML service using a client-server setup implemented

on an IBMI z16 system [IBM23b] that uses the IBM Telum processor [Lic+22]. The server is a

logical partition with Ubuntu 20.04, 6 dedicated IBM Integrated Facility for Linux processors

IIBM, the IBM logo, IBM Cloud Pak, and IBM Telum are trademarks or registered trademarks of International
Business Machines Corporation, in the United States and/or other countries.
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Figure 5.12: Precision-recall curves for LightGBM models performing money laundering
detection using AML 100M. For the prediction threshold of 0.5, our graph-based features
increase precision by 62% and recall by 60%, resulting in a 64% increase in the F1 score for this
problem.

Table 5.3: Performance of the client-server z16 setup using the AML 100M dataset.

Throughput [tps] Latency [ms]
Feature extraction 124,272 1.03 ms
Inference 185,507 0.69 ms
End-to-end 34,133 3.75 ms

(IFL) and 256 GB memory. The client is a separate logical partition with Ubuntu 21.04, 12

dedicated IFLs and 64 GB memory. The client and server images communicate via an internal

high-speed network. This setup is used in the experiments described in Section 5.5.2.

Setup for the evaluation on public datasets. We evaluate our graph ML pipeline, shown in

Figure 5.2, using the publicly available AML HI and Ethereum datasets introduced in Table 5.1.

The performance of our pipeline is evaluated using 16 cores of an Intel Xeon E5-2667 v2

processor. To evaluate performance, we first invoke the fit function (see Section 5.2) using

the transactions from the train and validation sets, which creates the initial graph. Then, we

invoke the transform function of the library using batches of transactions from the test set,

which are forwarded to a pre-trained ML model (see Figure 5.11). We measure the average

latency of performing the transform function together with the prediction of the ML model.

Finally, we compute the throughput of our pipeline as the transactions processed per second

(tps). This setup is used in the experiments described in Section 5.5.3.
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5.5.2 Graph ML Pipeline as a z16 Service

To detect fraudulent financial transactions in a production system, the Graph ML inference

pipeline described in Section 5.4 would be deployed as a service using an ML serving frame-

work, such as BentoML, KServe etc. A user of the service would send single or batches of

financial transactions in the form of, e.g., HTTP requests, to the inference service, which would

run the inference pipeline and return the predictions back to the user.

To test such a production-like scenario, we used the client-server z16 setup described in

Section 5.5.1. The client is a Python-based custom workload generator that simulates a

user that sequentially reads batches of transactions from memory and sends them to the

server for prediction using the REST API. The server runs BentoML [Ben22] as an ML serving

framework which exposes the Graph ML inference pipeline as a service. For each user request,

the BentoML serving logic implements two steps: graph feature extraction and transaction

classification. The latter is performed using a tuned LightGBM model. The client measures the

end-to-end latency of querying the ML service, which includes not only the feature extraction

and ML model classification latency, but also the network and the overheads associated with

the ML serving framework.

We evaluated the z16 client-server setup using the proprietary AML 100M dataset. When

extracting graph-based features from this dataset, we used a batch size of 128 and a time

window of 20 days. Scatter-gather patterns are searched in a five-day time window, simple

cycles in a 10-day time-window, and temporal cycles in a 20-day time window. We used the

"Amount" and "Timestamp" fields of the basic transaction features to generate the account

statistics.

Figure 5.12 compares the precision-recall curve of the LightGBM model that uses only basic

transaction features with that of the model that uses our graph-based features in addition to

the basic features. We observe that the features computed by our graph feature extraction

library improve the minority-class F1 score of LightGBM from 9% to 73%. The latency and the

throughput values we have measured are given in Table 5.3. Our library processes a batch of

128 transactions in around 1 ms, enabling our library to achieve a throughput rate exceeding

100,000tps. The inference latency of the LightGBM model that uses our graph-based feature

is 0.69 ms. The end-to-end latency of our client-server z16 setup, which also includes network

overheads, is 3.75 ms. Such a low end-to-end latency shows that our graph feature extraction

library can help detect laundering transactions in a real-time setting.

5.5.3 Experiments on Public Datasets

In this section, we evaluate the accuracy of the LightGBM and XGBoost models trained on

the publicly available datasets from Table 5.1 with and without our graph-based features. We

also report the performance of our graph-based feature extraction library when using the

publicly available AML HI datasets. The features are extracted from the AML HI datasets using
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Table 5.4: Minority class F1 scores of 1) the money laundering detection task using the AML
datasets and 2) of the phishing detection task using the ETH Phishing dataset, where bf and gf
stand for basic features and graph-based features, respectively. BS stands for batch size. NA
stands for not available.

BS
AML HI

BS ETH Phishing
Small Medium Large

LightGBM bf — 21.3±0.3% 18.6±0.1% 24.5±0.2% — 13.7±0.5%
LightGBM bf+gf 128 62.1±0.4% 54.8±0.5% 48.7±0.2% 128 40.2±0.2%
LightGBM bf+gf 2048 60.5±0.6% 56.1±0.4% 46.6±0.3% ∞ 51.0±1.0%
XGBoost bf — 19.7±0.8% 20.1±0.2% 10.6±6.7% — 15.5±0.1%
XGBoost bf+gf 128 63.9±0.2% 60.5±0.2% 50.2±0.6% 128 37.0±2.0%
XGBoost bf+gf 2048 64.7±0.4% 59.1±0.2% 56.8±0.2% ∞ 49.4±0.5%
GIN ∞ 24.4±4.6% 40.1±2.7% NA ∞ 35.1±4.1%
LaundroGraph ∞ 40.7±5.8% 56.0±1.5% NA ∞ 40.2±4.2%
PNA ∞ 51.9±4.6% 68.1±2.6% NA ∞ 51.5±4.3%
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Figure 5.13: Throughput of our graph ML pipeline and the GNN baselines, where bf and gf
stand for basic features and graph-based features, respectively. Our graph ML pipeline uses
LightGBM for inference. Our solution has higher throughput than the GNN-based approaches.

two different batch sizes: 128 and 2048. We use a time window of six hours for scatter-gather

patterns and a time window of one day for the rest of the graph-based features. We specify a

hop constraint of 10 for simple cycle enumeration. We use the "Amount" and "Timestamp"

fields of the basic transaction features to generate the account statistics. Feature extraction

from the ETH Phishing dataset is performed using two batch sizes: 128 and ∞. In addition,

a 20 day time window is used. When using a batch size of ∞, all transactions of the test

set are made available to the graph feature extraction library in a single batch. In addition,

we disable the generation of temporal cycles and specify a hop constraint of 5 for simple

cycle enumeration. We use the "Amount", "Timestamp", and "Block Nr." fields of the basic

transaction features to generate the account statistics. We selected these parameters after

some careful exploration aimed at finding the best trade-offs between the throughput of the

feature extraction library and the accuracy of the ML models used for scoring.

Using a batch size of ∞ essentially corresponds to an offline solution and, in principle, can

lead to better accuracy because, in this case, future transactions are also visible during feature

extraction. However, if a real-time processing capability is required by an application, the

batch size will have to be constrained.
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Table 5.5: Latency of processing a single batch of transactions. Our graph ML pipeline uses
LightGBM for inference and both basic features (bf) and graph-based features (gf). NA stands
for not available. Our graph ML pipeline that uses batch size of 128 has the lowest per-batch
latency.

GIN LaundroGraph PNA LightGBM bf+gf
batch size ∞ ∞ ∞ 128 2048
AML HI Small 33 s 38 s 189 s 7 ms 56 ms
AML HI Medium 488 s 726 s 5058 s 20 ms 122 ms
AML HI Large NA NA NA 16 ms 129 ms

Our baselines are the LightGBM and XGBoost models, as well as graph-neural-networks

(GNNs) such as GIN [Xu+18], LaundroGraph [CSB22], and PNA [Cor+20]. These baselines are

trained using only basic transaction features. Note that LaundroGraph is specifically designed

for anti-money laundering, and uses additional neural network layers that perform edge

updates in addition to node updates to derive better transaction embeddings. However, GIN,

LaundroGraph, and PNA require the entire dataset to be available at the time of testing, and,

thus, cannot operate in a streaming manner and are not suitable for real-time processing.

Effectively, they use a batch size of ∞.

Furthermore, when training our machine learning models, we remove the source and des-

tination account IDs from the feature vectors to prevent the models from learning which

transactions are laundering/phishing by simply memorising the account IDs. As our measure

of accuracy, we use the minority-class F1 score. The F1 scores reported are averaged across

five different runs. The standard deviation of the F1 score is also reported for each run.

The minority class F1 scores of the ML models that perform laundering detection using

publicly available AML HI datasets are shown in Table 5.4. Clearly, our graph-based features

lead to significant improvements in the F1 scores achieved by gradient boosting models.

Without our graph-based features, the maximum F1 score achieved by LightGBM and XGBoost

is 24.5%. The reason is that the labels in all datasets are highly imbalanced, and the number of

illicit transactions is at most 0.11% of the total number of transactions (see Table 5.1). The

LightGBM and XGBoost models that use our graph-based features in addition to basic features

achieve up to 43% higher F1 scores than the models that use only basic features. Furthermore,

given that the F1 scores of our graph ML pipeline using either LightGBM or XGBoost do not

change significantly when changing the batch size (see Table 5.4), choosing the appropriate

batch size depends on whether higher throughput or lower latency is preferred. As we can

see in Figure 5.13 and Table 5.5, the use of a larger batch size results in higher throughput of

our graph ML pipeline at the cost of increased latency of processing a single batch. Overall,

the latency of processing a batch of 128 transactions in AML HI datasets ranges from 7 ms to

20 ms, which enables our graph ML pipeline to be used in a setting that requires real-time

processing of transactions.

Compared with GNN baselines, our graph ML pipeline that uses LightGBM and XGBoost

achieves higher accuracy for AML HI Small and competitive accuracy for AML HI Medium. As
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shown in Table 5.4, our pipeline that uses XGBoost for inference and our graph-based features

consistently achieves higher F1 scores than GIN and LaundroGraph. Compared to PNA, our

graph ML pipeline achieves up to a 12% higher F1 score for AML HI Small but lower F1 scores

for AML HI Medium. However, as we can see in Figure 5.13, our graph ML pipeline has 8×
and 12× higher throughput than PNA for AML HI Small and AML HI Medium, respectively.

Furthermore, our graph ML pipeline is able to process transactions in a streaming manner

with low latency, as shown in Table 5.5, which is not the case for the GNN baselines. Note

that we were unable to obtain results for GIN, LaundroGraph, and PNA on the AML HI Large

dataset due to the excessively long training runtimes and high memory requirements of these

GNN-based approaches. Overall, our graph ML pipeline provides competitive accuracy with

the GNN baselines while having higher throughput and the ability to operate in a streaming

manner with low per-batch latency.

Table 5.4 also shows the minority class F1 scores achieved by the ML models we trained on

the ETH Phishing dataset to perform phishing detection. When using a batch size of 128, our

graph-based features enable F1-score improvements exceeding 20% for both LightGBM and

XGBoost. Setting the batch size to ∞ further improves the F1 score of LightGBM to 51%. In that

case, LightGBM with our graph-based features outperforms LaundroGraph by 10% and GIN by

16%. In addition, LightGBM with our graph-based features generated using batch size ∞ has

accuracy competitive with that of PNA while achieving 20× higher throughput than PNA. Note

that increasing the batch size from 128 to ∞ increases the per-batch processing latency of our

graph ML pipeline from 59 ms to 345 s, effectively making it an offline solution. In general, the

optimal configuration of the feature extraction library depends on the requirements of the

end application, and might require trading off the performance for accuracy.

5.6 Related Work

Graph machine learning has applications in many different fields, including financial trans-

action network analysis [NKL21; Liu+21a; CS20; Wan+21], fraud detection [Liu+21b; Zhu+20b;

Cao+19; Edd+22; Ama23; Cse+22], drug discovery [Gau+21], molecular property predic-

tion [Zha+21], genomics [Sch+21], recommender systems [Eks+18], social network analy-

sis [BGL16; Fan+19], and relation prediction in knowledge graphs [Qin+21]. Fraud detection

systems TitAnt [Cao+19] and Eddin et al. [Edd+22] are graph machine learning systems that

extract features from transaction graphs by generating node embeddings [PAS14] or by per-

forming random walks [Oli+21] in transaction graphs. These features are then used by machine

learning models to predict whether an incoming transaction is fraudulent or not.

Graph neural networks (GNNs) [Xu+18; Vel+18; Bou+23; KW17; HYL17; CSB22; Liu+21b;

Wan+21; Bar+21] are powerful tools that can be used for the purpose of financial crime de-

tection. Cardoso et al. [CSB22] and Weber et al. [Web+19] apply GNN to the anti-money

laundering problem, Kanezashi et al. [Kan+22] apply GNN to the phishing detection problem

on the Ethereum blockchain, and Rao et al. [Rao+21] uses a GNN to detect fraudulent transac-
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tions. Graph Substructure Network, proposed by Bouritsas et al. [Bou+23], takes advantage of

pre-calculated subgraph pattern counts to improve the expressivity of GNNs. GNNs could also

be used to count subgraph patterns, such as in Chen et al. [Che+20b], which could enable

detecting patterns associated with financial crime. In contrast to our work, GNNs cannot

straightforwardly operate in a streaming manner and require the entire dataset to be available

at the time of testing.

Dynamic graph management is often required for real-time processing of financial transac-

tions. Dynamic graph data structures, such as STINGER [Edi+12], GraphTinker [JS19], and

Sortledton [FMG22] enable dynamic insertions of edges into the graph as well as their removal

from the graph. However, STINGER and GraphTinker cannot be directly used for represent-

ing financial transaction graphs because they do not support the maintenance of parallel

edges. Furthermore, utilising hash maps to represent the adjacency list enables us to insert

an edge into our dynamic in-memory multigraph in O(1) time, whereas Sortedlon requires

O(log(∆max)) time to perform edge insertion, with ∆max being the maximum degree of a

vertex in the graph. In-memory graph databases [Zhu+20a; Bur+20; Car+19] can also be used

for dynamic graph management. Bing’s distributed in-memory graph database A1 [Bur+20]

leverages high-speed Remote Direct Memory Access to maintain an evolving graph containing

billions of vertices and edges. Linkedin’s in-memory graph database [Car+19] enables low

latency read and write operations to the graph and supports the representation of N-ary

relationships in the graphs. Our dynamic graph data structure does not require support for

N-ary relationships, and thus can be implemented in a simpler manner.

5.7 Conclusions

This chapter presented the Graph Feature Preprocessor, a software library for fast feature

extraction from dynamically changing transaction graphs. To achieve fast feature extraction,

our library leverages an in-memory dynamic multigraph representation as well as our fine-

grained parallel subgraph enumeration algorithms. When applied to a proprietary AML

dataset, our graph feature extraction library is capable of processing more than 100,000

transactions per second. Effectively, a batch of 128 transactions can be processed in only 1 ms,

enabling our library to be used in real-time settings.

This chapter also showed that the graph-based features generated by our library can signif-

icantly improve the accuracy of gradient-boosting-based machine learning models. Using

graph-based features extracted from a proprietary AML dataset, we improved the minority

class F1 score of LightGBM by 64%. In addition, our graph-based features improved minority

class F1 scores of gradient-boosting-based machine learning models by up to 43% on pub-

licly available AML datasets and by up to 35% on a real-world phishing detection dataset

extracted from Ethereum. Furthermore, our graph ML pipeline that uses LightGBM for infer-

ence achieves competitive accuracy with the graph-neural-network-based solutions while

achieving higher throughput and lower latency of processing a single batch of transactions.
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6.1 Conclusions

The use of graph pattern mining algorithms has become increasingly prevalent in recent years

due to their ability to extract hidden knowledge from graphs. This capability has facilitated

the development of a wide range of applications in various fields. The extraction of subgraph

patterns from graphs makes it possible to predict protein interactions [YZT14; Yu+06], predict

molecular properties [Bou+23; Che+20b], and, as shown in Chapter 5, detect financial crime.

The most efficient algorithms for extracting subgraph patterns from a graph perform recursive

search and exploration [Joh77; ELS13; SL20; LSL06]. However, even these algorithms could

suffer from long execution times because the number of potential patterns that exist in a graph

can grow exponentially with a graph parameter (see Section 1.2). To enable these and other

related applications, fast graph pattern mining algorithms are required.

Acceleration of graph pattern mining. In this thesis, we show that graph pattern mining

algorithms can be effectively accelerated using the existing manycore CPUs. To achieve fast

enumeration of graph patterns, we focus on scalable parallelisation of the state-of-the-art

sequential graph pattern mining algorithms. However, due to the irregular nature of the

graphs, it is challenging to predict how much work each software thread would perform,

which could cause workload imbalance (see Section 1.2). This thesis tackles this problem

for algorithms that enumerate two different types of patterns: maximal clique and simple

cycle. The algorithms for the enumeration of these patterns present different parallelisation

challenges and opportunities and we address in unique ways. Whereas maximal clique

enumeration algorithms [ELS13; TTT06] perform vertex-set intersection operations, simple

cycle enumeration algorithms [Joh77; RT75] do not perform such computationally intensive

operations. Furthermore, compared to simple cycle enumeration algorithms, the recursion

trees of maximal clique enumeration algorithms are easier to decompose into fine-grained

tasks, which facilitates their scalable parallelisation.

In Chapter 3, we address the challenges related to the acceleration of maximal clique enumera-

tion [ELS13; TTT06] and introduce our fast parallel algorithm for this problem. The problem of
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computationally intensive vertex-set intersection operations in that algorithm is investigated

from both theoretical and practical perspectives. We theoretically show that a hash-join-based

set intersection implementation leads to the maximal clique enumeration algorithm with

lower theoretical time complexity compared to the algorithm that uses merge-join-based set

intersections. For this reason, we implement a vectorised hash-join-based set intersection

algorithm using hopscotch hashing [HST08]. Our set intersection implementation is faster

than the alternatives when considering the cases that commonly occur in maximal clique

enumeration algorithms. To achieve a scalable parallel implementation of this maximal clique

enumeration algorithm that does not suffer from workload imbalance, we divide the execution

of this algorithm into fine-grained tasks and employ a parallel processing framework with

dynamic load balancing [VAR19]. As a result, our implementation scales almost linearly with

the number of CPU cores and is, on average, an order of magnitude faster than the prior

sequential and parallel maximal clique enumeration algorithms. Thus, we show that, by

accelerating set intersection operations and employing fine-grained parallelism, maximal

clique enumeration can be effectively accelerated using a manycore CPU.

Chapter 4 focusses on accelerating simple cycle enumeration [Joh77; RT75], which has a

different set of challenges compared to the maximal clique enumeration. Because of the

limited opportunities to exploit data parallelism, the main method used for acceleration is

scalable parallelisation achieved by decomposing the recursion trees of the algorithms into

fine-grained tasks. We demonstrate that such scalable parallelisation is possible even for the

asymptotically-optimal simple cycle enumeration algorithm by Johnson [Joh77], despite the

fact that the performance of this algorithm is strictly dependent on the order in which its

recursive calls are executed. Although our fine-grained parallelisation of the Johnson algorithm

performs more work in theory compared to the sequential execution of this algorithm, this

additional work is insignificant in practice. Thus, our fine-grained parallelisation of the

Johnson algorithm scales almost linearly in practice. However, if theoretical work-efficiency is

also required, our fine-grained parallelisation of the Read-Tarjan algorithm [RT75] is available,

which, thanks to our algorithmic optimisation, is able to achieve performance comparable to

that of our fine-grained parallel Johnson algorithm. As a result, when executed on a system

of four CPUs with 256 cores in total, both of our fine-grained parallel algorithms are able to

achieve, on average, an order of magnitude speedup compared to the algorithms that use

straightforward coarse-grained parallelisation method.

The acceleration methods presented in Chapters 3 and 4 are also applicable to other graph

pattern mining algorithms. Chapter 4 shows that our method for fine-grained parallelisation

of the Johnson algorithm can also be used to accelerate the search for temporal [KC18] and

hop-constrained cycles [Pen+19]. In addition, the methods presented in Chapter 3 can be used

to accelerate other graph pattern mining algorithms, such as biclique enumeration [LSL06],

k-clique listing [DBS18], subgraph matching [SL20], and motif counting [MW19]. These algo-

rithms rely on set operations, as illustrated in Figure 1.5, and can benefit from fast vectorised

hash-join-based set operations. Furthermore, these algorithms also rely on recursive search,

and their recursive calls can be executed in any order, which enables parallelising these algo-
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rithms in a scalable manner. Thus, our fast parallel algorithms for maximal clique and simple

cycle enumeration imply that other graph pattern mining algorithms can also be efficiently

accelerated using manycore CPUs.

Application to financial crime detection. In addition to the acceleration of graph pattern

mining algorithms, this thesis shows how these algorithms can be used for real-world ap-

plications, such as financial crime detection. The motivation for this part of the work is the

observation that financial crime, such as money laundering and stock market manipulation,

can manifest itself in the form of subgraph patterns within financial graphs, as illustrated

in Figure 1.2. To facilitate financial crime detection tasks, we develop the Graph Feature

Preprocessor library, presented in Chapter 4. This library is capable of enumerating known

financial crime patterns in dynamically changing transaction graphs using fast graph mining

algorithms, such as our parallel simple cycle enumeration algorithms introduced in Chapter 4.

Our Graph Feature Preprocessor library encodes the enumerated graph patterns and various

vertex statistics into the feature vector of incoming financial transactions. This enriched

feature vector can be used to significantly boost the accuracy of financial crime detection tasks.

We show that the graph-based features generated by our library increase the minority-class

F1 score of gradient-boosting-based machine learning models [Ke+17; CG16] by up to 64%

for the problem of money laundering detection and up to 35% for the problem of phishing

detection. Furthermore, our Graph Feature Preprocessor library is capable of processing a

batch of 128 transactions between 1 ms and 15 ms, enabling the applicability of our library in

real-time settings.

6.2 Future Work

Distributed execution of graph pattern mining algorithms. To further accelerate graph

pattern mining algorithms, the execution of these algorithms can be distributed across several

manycore CPUs. Such a distributed system would provide more computational power and

memory compared to a single CPU. In Section 4.6, we evaluated our cycle enumeration

algorithms on a system consisting of several CPUs (see Table 4.4). However, no method was

used for load balancing across CPUs, and the memory of each CPU contained a copy of the

input graph. As a result, this type of distributed execution would not scale with the size of

the graph or the number of CPUs used. To fully utilise the potential of a distributed system

consisting of several CPUs, both computational power and memory of each CPU have to be

efficiently used.

To enumerate subgraph patterns in larger graphs that could not fit in the memory of a single

CPU, a graph could be divided into several partitions, and each CPU could locally process

a partition assigned to it [KK98; Bad99; Che+16], as illustrated in Figure 6.1. However, if the

generated partitions do not overlap, subgraph patterns that span across multiple partitions

will not be found. Although this problem has been addressed in the case of clique enumer-

ation [Che+16], partitioning the graph for the purpose of scalable distributed enumeration
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Figure 6.1: Distributing the execution of the cycle enumeration shown in Figure 1.3 using two
CPUs with two cores per CPU. The graph from Figure 1.3a is divided into two partitions, and
each partition is assigned to a CPU. To balance the workload across the CPUs, a portion of
the workload indicated with a dashed line that CPU 0 executes can be forwarded to CPU 1.
However, in this distributed setting, graph partition 0 would also have to be forwarded to
CPU 1, which increases the network traffic.

of other patterns, such as simple cycles, is still an open research question. Furthermore, to

dynamically balance the workload across CPUs (e.g., using Ray [Mor+18]), the entire graph

partition would have to be moved between CPUs, as shown in Figure 6.1, resulting in increased

network traffic and limited scalability. Thus, more work is required to address the aforemen-

tioned challenges and enable a scalable execution of our fast algorithms for maximal clique

and simple cycle enumeration algorithms on distributed systems.

Custom hardware architecture for the acceleration of graph pattern mining. Another

method for the further acceleration of graph pattern mining algorithms is hardware accelera-

tion. For that purpose, one could use an existing platform, such as a GPU [Che+20a; CA22;

JMV20; Guo+20], or develop a custom hardware accelerator [Yao+20; Che+21; Tal+22]. Existing

GPU-based systems and custom hardware accelerators for graph pattern mining [Che+20a;

CA22; JMV20; Guo+20; Yao+20; Che+21; Tal+22] support the execution of various mining

algorithms, such as k-clique listing, motif counting, subgraph matching, and frequent sub-

graph mining. However, the abstraction used by these systems to make them user-friendly

and easy to program prevents the implementation of fast algorithms specialised for each

problem, such as the Bron-Kerbosch algorithm [ELS13; TTT06; BK73] for maximal clique

enumeration, the Johnson algorithm [Joh77] for simple cycle enumeration, the solution by

Sun and Luo [SL20] for subgraph matching, and the MineLMBC algorithm [LSL06] for biclique
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Algorithm 16: The common approach for fine-grained parallelisation of different graph
pattern mining algorithms [Joh77; LSL06; ELS13; SL20].

Input: SG - the current subgraph that mathces a portion of a pattern
D - auxiliary data structures
G - the input graph

InOut :T1 - the thread that created this task

1 Task RecursiveCall (SG, D, G, T1)
2 T2 = the thread executing this task;
3 if T1 ̸= T2 then
4 copy_on_steal(D, T1, T2); ▷ see Section 4.3.2

5 if SG matches the pattern then
6 output SG;
7 return ;

8 D = update_start(SG, D , G);
9 cand = get_candidates(SG, D , G); ▷ E.g., compute pivot for the BK algorithm

10 foreach c : cand do
11 if filter(c, SG, D, G) == true then
12 SG, D = update_spawn(c, SG, D , G); ▷ E.g., insert c into SG

13 spawn RecursiveCall(SG, D , G, T2);

14 sync;
15 D = update_sync(SG, D , G); ▷ E.g., update Blk and Blist of the Johnson algorithm

16 Function OuterLoop (G)
17 preprocessing(G); ▷ E.g., degeneracy ordering of V in G for the BK algorithm

18 cand = get_global_candidates(G); ▷ E.g., all vertices V of G
19 parallel foreach c : cand do
20 T0 = the thread executing this loop iteration;
21 D = init(c, G);
22 spawn RecursiveCall({c}, D , G, T0);

23 sync;

enumeration. Furthermore, because these systems usually focus on enumerating patterns

of fixed sizes, they cannot easily find patterns whose size can vary, such as maximal cliques,

maximal bicliques, scatter-gather patterns, and simple cycles.

Based on the observations made in this thesis, a custom hardware accelerator for graph

pattern mining should have the following properties: (i) support for fast set operations, (ii)

dynamic load balancing across execution cores, and (iii) a programming model that enables

the implementation of the existing state-of-the-art algorithms for graph pattern mining. The

first property is required, given that various graph pattern mining algorithms rely on set

operations [Cor+04; HLL13; SL20; MW19; LSL06; Che+22; DBS18; TTT06; ELS13; BK73], which

can be a dominant part of their execution time [HZY18], as shown in Chapter 3. The second

property is required to enable the scalable parallelisation of graph pattern algorithms using
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Figure 6.2: High-level overview of a manycore graph pattern mining accelerator. Each core
supports fast set intersection operations and executes a RecursionCall task from Algorithm 16.
The master core executes the OuterLoop function from the same algorithm, which generates
the initial set of tasks. The task-stealing network enables workload balance across cores using
work-stealing [BL99]. The memory hierarchy does not need to support hardware-managed
cache coherency.

the fine-grained approach discussed in Chapters 3 and 4. This technique enables speeding

up algorithms by designing a hardware accelerator with a higher number of execution cores.

The programming model required by the third property ensures that the fastest graph pattern

mining algorithms [Joh77; LSL06; ELS13; SL20] can be accelerated on such a custom hardware

platform. Such a programming model is possible because these algorithms can fit the common

structure shown in Algorithm 16, which can be parallelised in a fine-grained manner. Note

that our algorithms presented in Chapters 3 and 4, as well as other graph pattern mining

algorithms, such as MineLMBC [LSL06] and Sun and Luo [SL20], can be reformulated to fit

this structure by redefining the highlighted functions of Algorithm 16.

A high-level overview of a potential graph pattern mining accelerator that supports all three of

the aforementioned properties is shown in Figure 6.2a. In contrast to the out-of-order cores

used by modern CPUs, the cores of our accelerator can be designed in a lightweight manner

because they are only required to execute a fixed structure of the RecursiveCall task shown in

Algorithm 16. Thus, in theory, our accelerator can contain more cores in the same area, which

can further accelerate the execution of graph pattern mining algorithms. For this reason,

the task-stealing network and memory hierarchy of our accelerator should be designed in

such a way that their area scales with the number of cores. To achieve this behaviour, we

propose the use of a round-robin task-stealing network shown in Figure 6.2b. The area of

the round-robin task-stealing network scales better with the number of cores compared to a

crossbar task-stealing network [Che+18] because the round-robin network does not require

a direct connection between each pair of task queues. Additionally, it is challenging to scale

the performance and area of the memory hierarchy that supports hardware-managed cache
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coherency with the number of cores [Wan+20b; Fer+11; FNW15]. As a result, for our graph

pattern mining accelerator, a custom memory hierarchy that does not require hardware-

managed cache coherency, such as the one shown in Figure 6.2c, is preferable.

Our custom memory hierarchy illustrated in Figure 6.2c that does not require hardware-

managed cache coherency is motivated by the following observations: (i) the input graph in

the graph pattern mining algorithms [Joh77; RT75; ELS13; LSL06] is usually read-only; (ii)

once these algorithms discover a subgraph, this subgraph will not be used again; (iii) our

copy-on-steal mechanism, introduced in Section 4.3.2 and used by our programming model

shown in Algorithm 16, enables each thread that executes one of our fine-grained algorithms

presented in Chapter 4 to maintain its own set of data structures; (iv) the data structures of

one thread are accessed by another thread only when a task stealing occurs; and (v) these

data structures could fit in the on-chip memory of a processor (see Chapter 3). Observation

(i) enables our accelerator to access the input graph using a read-only L2 cache and to use

mechanisms for hiding cache-miss latencies [AI19b; AI19a; AI22] that could improve its

performance. Observation (ii) enables the accelerator to asynchronously write the results

to the main memory using a queue (see Figure 6.2c), which can then be directly written to

the disc to prevent thrashing the main memory. As a result of (iii), (iv), and (v), each core of

our accelerator can have a dedicated scratchpad that could fit all the auxiliary data structures

it requires, such as R, P , and X of the BK algorithm (see Algorithm 1) and Π, Blk, and Blist

of the Johnson algorithm (see Algorithm 4). These data structures are transferred between

scratchpads only when task stealing occurs, which can be accomplished by moving them

through the main memory. Thus, each core only accesses the data from its own scratchpad. As

a result, our custom memory hierarchy is not required to support a hardware-managed cache

coherence protocol, which could enable designing the graph pattern mining accelerator with

more cores.

Support for other subgraph patterns in the Graph Feature Preprocessor. In Chapter 5, we

introduced our Graph Feature Preprocessor library that can generate features for financial

transactions by extracting simple cycles, scatter-gather patterns, and fan-in/fan-out patterns,

which are used to improve the accuracy of financial crime detection tasks. The feature space

can be further increased by generating features based on other subgraph patterns, such

as cliques [BK73], bicliques [LSL06], and user-defined subgraph patterns [SL20]. For this

purpose, fast algorithms for the enumeration of these patterns are required, such as our

parallel algorithm for maximal cycle enumeration, introduced in Chapter 3. To enable the

integration of our parallel maximal cycle enumeration algorithm into the Graph Feature

Preprocessor library, the algorithm has to be modified to support the processing of directed

temporal multigraphs that are maintained by our library. The potential future research avenue

is the development of even faster algorithms for the enumeration of the aforementioned

patterns and the evaluation of their impact on the accuracy of financial crime detection tasks.

Automatic discovery of financial crime patterns. The Graph Feature Preprocessor presented

in Chapter 5 relies on extracting known financial crime patterns, such as those shown in Fig-
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ure 1.2. However, to avoid getting caught, criminals may develop more sophisticated financial

crime patterns that our Graph Feature Preprocessor library cannot detect. To counteract

this problem, a method that automatically learns new financial crime patterns is required.

Graph Neural Networks (GNNs) represent the perfect candidate for this purpose because of

their ability to operate on and learn from relational data. In addition, it has been shown that

GNNs can count certain subgraph patterns in graphs and detect which subgraph patterns are

relevant [Che+20b]. Further study is required to determine whether such an approach can be

tailored to automatically detect the existing financial crime patterns in temporal multigraphs

and discover new types of such patterns.

6.3 Final Remarks

The growth of data in recent years has necessitated the development of sophisticated algo-

rithms capable of processing and analysing this vast and diverse data. The complexity of

these algorithms is a consequence of the need to extract meaningful insights and patterns

from graphs representing this data. As a result of their complexity, these algorithms may

require a significant amount of time to execute and should thus be accelerated. This thesis

demonstrates the feasibility of accelerating a subset of such graph algorithms as well as their

the applicability to a real-world problem.

114



Bibliography

[Abd+16] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat, and Fuad

Jamour. “ScaleMine: Scalable Parallel Frequent Subgraph Mining in a Single

Large Graph”. In: SC16: International Conference for High Performance Comput-

ing, Networking, Storage and Analysis. Salt Lake City, UT, USA: IEEE, Nov. 2016,

pp. 716–727. ISBN: 978-1-4673-8815-3. DOI: 10.1109/SC.2016.60.

[Abs17] Abseil. Abseil Swiss Tables. 2017. URL: https : / / abseil . io / blog / 20180927 -

swisstables (visited on 05/08/2023).

[AFK97] Helmut Alt, Ulrich Fuchs, and Klaus Kriegel. “On the number of simple cycles

in planar graphs”. In: Graph-Theoretic Concepts in Computer Science. Ed. by

Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and Rolf H. Möhring. Vol. 1335.

Series Title: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1997, pp. 15–24. ISBN: 978-3-540-63757-8. DOI: 10 . 1007 /

BFb0024484. URL: http://link.springer.com/10.1007/BFb0024484 (visited on

10/06/2021).

[Ahm+15] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield. “Efficient

Graphlet Counting for Large Networks”. In: 2015 IEEE International Conference

on Data Mining. Atlantic City, NJ, USA: IEEE, Nov. 2015, pp. 1–10. ISBN: 978-1-

4673-9504-5. DOI: 10.1109/ICDM.2015.141.

[AI19a] Mikhail Asiatici and Paolo Ienne. “DynaBurst: Dynamically Assemblying DRAM

Bursts over a Multitude of Random Accesses”. In: 2019 29th International Con-

ference on Field Programmable Logic and Applications (FPL). Barcelona, Spain:

IEEE, Sept. 2019, pp. 254–262. ISBN: 978-1-72814-884-7. DOI: 10 . 1109 / FPL .

2019.00049. URL: https://ieeexplore.ieee.org/document/8892073/ (visited on

10/12/2020).

[AI19b] Mikhail Asiatici and Paolo Ienne. “Stop Crying Over Your Cache Miss Rate: Han-

dling Efficiently Thousands of Outstanding Misses in FPGAs”. en. In: Proceedings

of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays. Seaside CA USA: ACM, Feb. 2019, pp. 310–319. ISBN: 978-1-4503-6137-8.

DOI: 10.1145/3289602.3293901. URL: https://dl.acm.org/doi/10.1145/3289602.

3293901 (visited on 10/12/2020).

115

https://doi.org/10.1109/SC.2016.60
https://abseil.io/blog/20180927-swisstables
https://abseil.io/blog/20180927-swisstables
https://doi.org/10.1007/BFb0024484
https://doi.org/10.1007/BFb0024484
http://link.springer.com/10.1007/BFb0024484
https://doi.org/10.1109/ICDM.2015.141
https://doi.org/10.1109/FPL.2019.00049
https://doi.org/10.1109/FPL.2019.00049
https://ieeexplore.ieee.org/document/8892073/
https://doi.org/10.1145/3289602.3293901
https://dl.acm.org/doi/10.1145/3289602.3293901
https://dl.acm.org/doi/10.1145/3289602.3293901


BIBLIOGRAPHY

[AI22] Mikhail Asiatici and Paolo Ienne. “Request, Coalesce, Serve, and Forget: Miss-

Optimized Memory Systems for Bandwidth-Bound Cache-Unfriendly Applica-

tions on FPGAs”. en. In: ACM Trans. Reconfigurable Technol. Syst. 15.2 (June

2022), pp. 1–33. ISSN: 1936-7406, 1936-7414. DOI: 10.1145/3466823. URL: https:

//dl.acm.org/doi/10.1145/3466823 (visited on 05/08/2023).

[All85] Eric W. Allender. “On the number of cycles possible in digraphs with large

girth”. en. In: Discrete Applied Mathematics 10.3 (Mar. 1985), pp. 211–225. ISSN:

0166218X. DOI: 10.1016/0166-218X(85)90044-7. URL: https://linkinghub.elsevier.

com/retrieve/pii/0166218X85900447 (visited on 03/30/2023).

[Alm+22] Mohammad Almasri, Yen-Hsiang Chang, Izzat El Hajj, Rakesh Nagi, Jinjun

Xiong, and Wen-mei Hwu. Parallelizing Maximal Clique Enumeration on GPUs.

arXiv:2212.01473 [cs]. Dec. 2022. URL: http://arxiv.org/abs/2212.01473 (visited

on 12/08/2022).

[Alm22] Mohammad Almasri. “Accelerating graph pattern mining algorithms on mod-

ern graphics processing units”. PhD thesis. University of Illinois at Urbana-

Champaign, May 2022.

[Alt21] Erik Altman. AML-Data. 2021. URL: https://github.com/IBM/AML-Data (visited

on 05/30/2022).

[Ama23] Amazon. Amazon Fraud Detector. Accessed: 2023-01-10. 2023. URL: https://aws.

amazon.com/fraud-detector/.

[ANS09] Yuriy Arbitman, Moni Naor, and Gil Segev. “De-amortized Cuckoo Hashing:

Provable Worst-Case Performance and Experimental Results”. In: Automata,

Languages and Programming. Vol. 5555. Series Title: Lecture Notes in Computer

Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 107–118. ISBN:

978-3-642-02927-1. DOI: 10.1007/978- 3- 642- 02927- 1_11. URL: http://link.

springer.com/10.1007/978-3-642-02927-1_11 (visited on 06/02/2020).

[ANS10] Yuriy Arbitman, Moni Naor, and Gil Segev. “Backyard Cuckoo Hashing: Constant

Worst-Case Operations with a Succinct Representation”. In: 2010 IEEE 51st An-

nual Symposium on Foundations of Computer Science. Las Vegas, NV, USA: IEEE,

Oct. 2010, pp. 787–796. ISBN: 978-1-4244-8525-3. DOI: 10.1109/FOCS.2010.80.

URL: http://ieeexplore.ieee.org/document/5671351/ (visited on 06/05/2020).

[AR16] Udit Agarwal and Vijaya Ramachandran. “Finding k Simple Shortest Paths and

Cycles”. In: 27th International Symposium on Algorithms and Computation

(ISAAC 2016). Ed. by Seok-Hee Hong. Vol. 64. Leibniz International Proceedings

in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, 2016, 8:1–8:12. ISBN: 978-3-95977-026-2. DOI: 10.4230/LIPIcs.

ISAAC.2016.8. URL: http://drops.dagstuhl.de/opus/volltexte/2016/6783.

[AT08] R. E. L. Aldred and Carsten Thomassen. “On the maximum number of cycles

in a planar graph”. en. In: J. Graph Theory 57.3 (Mar. 2008), pp. 255–264. ISSN:

03649024, 10970118. DOI: 10.1002/jgt.20290.

116

https://doi.org/10.1145/3466823
https://dl.acm.org/doi/10.1145/3466823
https://dl.acm.org/doi/10.1145/3466823
https://doi.org/10.1016/0166-218X(85)90044-7
https://linkinghub.elsevier.com/retrieve/pii/0166218X85900447
https://linkinghub.elsevier.com/retrieve/pii/0166218X85900447
http://arxiv.org/abs/2212.01473
https://github.com/IBM/AML-Data
https://aws.amazon.com/fraud-detector/
https://aws.amazon.com/fraud-detector/
https://doi.org/10.1007/978-3-642-02927-1_11
http://link.springer.com/10.1007/978-3-642-02927-1_11
http://link.springer.com/10.1007/978-3-642-02927-1_11
https://doi.org/10.1109/FOCS.2010.80
http://ieeexplore.ieee.org/document/5671351/
https://doi.org/10.4230/LIPIcs.ISAAC.2016.8
https://doi.org/10.4230/LIPIcs.ISAAC.2016.8
http://drops.dagstuhl.de/opus/volltexte/2016/6783
https://doi.org/10.1002/jgt.20290


BIBLIOGRAPHY

[Ave11] Ching Avery. “Giraph: Large-scale graph processing infrastructure on Hadoop”.

In: Proceedings of the Hadoop Summit. Santa Clara 11.3 (2011), pp. 5–9.

[AW10] Charu C. Aggarwal and Haixun Wang, eds. Managing and Mining Graph Data.

en. Vol. 40. Advances in Database Systems. Boston, MA: Springer US, 2010. ISBN:

978-1-4419-6045-0. DOI: 10.1007/978-1-4419-6045-0.

[Bad99] David A. Bader. A Practical Parallel Algorithm for Cycle Detection in Partitioned

Digraphs. 1999. URL: https://digitalrepository.unm.edu/ece_rpts/45 (visited on

05/08/2023).

[BAI23] Jovan Blanuša, Kubilay Atasu, and Paolo Ienne. “Fast Parallel Algorithms for

Enumeration of Simple, Temporal, and Hop-Constrained Cycles”. en. In: ACM

Transactions on parallel computing (2023), to appear.

[Bal97] V K Balakrishnan. Graph Theory. New York, NY: McGraw-Hill Professional, Feb.

1997.

[Bar+21] Pablo Barceló, Floris Geerts, Juan L. Reutter, and Maksimilian Ryschkov. “Graph

Neural Networks with Local Graph Parameters”. In: Advances in Neural In-

formation Processing Systems 34: Annual Conference on Neural Information

Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. 2021,

pp. 25280–25293. URL: https://proceedings.neurips.cc/paper/2021/hash/

d4d8d1ac7e00e9105775a6b660dd3cbb-Abstract.html (visited on 05/05/2023).

[Bat+15] Omar Batarfi, Radwa El Shawi, Ayman G. Fayoumi, Reza Nouri, Seyed-Mehdi-

Reza Beheshti, Ahmed Barnawi, and Sherif Sakr. “Large scale graph processing

systems: survey and an experimental evaluation”. en. In: Cluster Comput 18.3

(Sept. 2015), pp. 1189–1213. ISSN: 1386-7857, 1573-7543. DOI: 10.1007/s10586-

015-0472-6. URL: http://link.springer.com/10.1007/s10586-015-0472-6 (visited

on 04/03/2023).

[BBD09] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. “Hash, Dis-

place, and Compress”. en. In: Algorithms - ESA 2009. Vol. 5757. Series Title: Lec-

ture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg,

2009, pp. 682–693. ISBN: 978-3-642-04127-3. DOI: 10.1007/978-3-642-04128-0_61.

URL: http://link.springer.com/10.1007/978- 3- 642- 04128- 0_61 (visited on

06/05/2020).

[BC19] Anna D. Broido and Aaron Clauset. “Scale-free networks are rare”. en. In: Nat

Commun 10.1 (Dec. 2019), p. 1017. ISSN: 2041-1723. DOI: 10.1038/s41467-019-

08746-5.

[BE19] Ioana O. Bercea and Guy Even. “Fully-Dynamic Space-Efficient Dictionaries and

Filters with Constant Number of Memory Accesses”. In: arXiv:1911.05060 [cs]

(Nov. 2019). arXiv: 1911.05060.

117

https://doi.org/10.1007/978-1-4419-6045-0
https://digitalrepository.unm.edu/ece_rpts/45
https://proceedings.neurips.cc/paper/2021/hash/d4d8d1ac7e00e9105775a6b660dd3cbb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d4d8d1ac7e00e9105775a6b660dd3cbb-Abstract.html
https://doi.org/10.1007/s10586-015-0472-6
https://doi.org/10.1007/s10586-015-0472-6
http://link.springer.com/10.1007/s10586-015-0472-6
https://doi.org/10.1007/978-3-642-04128-0_61
http://link.springer.com/10.1007/978-3-642-04128-0_61
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1038/s41467-019-08746-5


BIBLIOGRAPHY

[Bel58] Richard Bellman. “On a routing problem”. en. In: Quart. Appl. Math. 16.1 (1958),

pp. 87–90. ISSN: 0033-569X, 1552-4485. DOI: 10.1090/qam/102435. URL: https:

//www.ams.org/qam/1958-16-01/S0033-569X-1958-0102435-2/ (visited on

04/03/2023).

[Ben22] BentoML. A faster way to ship your models to production. 2022. URL: https :

//www.bentoml.com/ (visited on 03/03/2023).

[BGL16] Austin R. Benson, David F. Gleich, and Jure Leskovec. “Higher-order organization

of complex networks”. In: Science 353.6295 (2016), pp. 163–166. DOI: 10.1126/

science.aad9029. URL: https://www.science.org/doi/abs/10.1126/science.

aad9029.

[BIA22] Jovan Blanuša, Paolo Ienne, and Kubilay Atasu. “Scalable Fine-Grained Parallel

Cycle Enumeration Algorithms”. en. In: Proceedings of the 34th ACM Symposium

on Parallelism in Algorithms and Architectures. Philadelphia PA USA: ACM, July

2022, pp. 247–258. ISBN: 978-1-4503-9146-7. DOI: 10.1145/3490148.3538585.

(Visited on 07/18/2022).

[Bir+13] Etienne Birmelé, Rui Ferreira, Roberto Grossi, Andrea Marino, Nadia Pisanti,

Romeo Rizzi, and Gustavo Sacomoto. “Optimal Listing of Cycles and st-Paths in

Undirected Graphs”. en. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM

Symposium on Discrete Algorithms. Philadelphia, PA: SIAM, Jan. 2013, pp. 1884–

1896. DOI: 10.1137/1.9781611973105.134.

[BK73] Coen Bron and Joep Kerbosch. “Algorithm 457: finding all cliques of an undi-

rected graph”. In: Communications of the ACM 16.9 (Sept. 1973), pp. 575–577.

ISSN: 00010782. DOI: 10.1145/362342.362367.

[BL99] Robert D. Blumofe and Charles E. Leiserson. “Scheduling multithreaded com-

putations by work stealing”. In: J. ACM 46.5 (Sept. 1999), pp. 720–748. ISSN:

00045411. DOI: 10.1145/324133.324234.

[Bla+20a] Jovan Blanuša, Radu Stoica, Paolo Ienne, and Kubilay Atasu. “Manycore clique

enumeration with fast set intersections”. en. In: Proc. VLDB Endow. 13.12 (Aug.

2020), pp. 2676–2690. ISSN: 2150-8097. DOI: 10.14778/3407790.3407853.

[Bla+20b] Jovan Blanuša, Radu Stoica, Paolo Ienne, and Kubilay Atasu. “Parallelizing Max-

imal Clique Enumeration on Modern Manycore Processors”. In: IEEE Interna-

tional Parallel and Distributed Processing Symposium Workshops, IPDPSW 2020,

New Orleans, Louisiana, USA, May 18-22, 2020. IEEE, 2020, pp. 211–214. DOI:

10.1109/IPDPSW50202.2020.00047.

[Ble90] Guy E. Blelloch. Vector models for data-parallel computing. Artificial intelligence.

Cambridge, Mass: MIT Press, 1990. ISBN: 978-0-262-02313-9.

[Blu+96a] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiser-

son, Keith H. Randall, and Yuli Zhou. “Cilk: An Efficient Multithreaded Runtime

System”. en. In: Journal of Parallel and Distributed Computing 37.1 (Aug. 1996),

pp. 55–69. ISSN: 07437315. DOI: 10.1006/jpdc.1996.0107.

118

https://doi.org/10.1090/qam/102435
https://www.ams.org/qam/1958-16-01/S0033-569X-1958-0102435-2/
https://www.ams.org/qam/1958-16-01/S0033-569X-1958-0102435-2/
https://www.bentoml.com/
https://www.bentoml.com/
https://doi.org/10.1126/science.aad9029
https://doi.org/10.1126/science.aad9029
https://www.science.org/doi/abs/10.1126/science.aad9029
https://www.science.org/doi/abs/10.1126/science.aad9029
https://doi.org/10.1145/3490148.3538585
https://doi.org/10.1137/1.9781611973105.134
https://doi.org/10.1145/362342.362367
https://doi.org/10.1145/324133.324234
https://doi.org/10.14778/3407790.3407853
https://doi.org/10.1109/IPDPSW50202.2020.00047
https://doi.org/10.1006/jpdc.1996.0107


BIBLIOGRAPHY

[Blu+96b] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiser-

son, Keith H. Randall, and Yuli Zhou. “Cilk: An Efficient Multithreaded Runtime

System”. en. In: Journal of Parallel and Distributed Computing 37.1 (Aug. 1996),

pp. 55–69. ISSN: 07437315. DOI: 10.1006/jpdc.1996.0107. URL: https://linkinghub.

elsevier.com/retrieve/pii/S0743731596901070 (visited on 08/16/2019).

[BM10] Guy E. Blelloch and Bruce M. Maggs. “Parallel Algorithms”. In: Algorithms and

theory of computation handbook. Chapman & Hall/CRC Applied Algorithms and

Data Structures series. London, England: CRC Press, 2010. Chap. 25, pp. 25.1–

25.40.

[Bou+23] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bron-

stein. “Improving Graph Neural Network Expressivity via Subgraph Isomorphism

Counting”. In: IEEE Trans. Pattern Anal. Mach. Intell. 45.1 (Jan. 2023), pp. 657–668.

ISSN: 1939-3539. DOI: 10.1109/TPAMI.2022.3154319. (Visited on 01/10/2023).

[BP16] Albert-László Barabási and Márton Pósfai. “Network science”. In: Cambridge,

United Kingdom: Cambridge University Press, 2016. Chap. The scale-free prop-

erty. ISBN: 978-1-107-07626-6.

[BPZ13] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. “Practical perfect hashing

in nearly optimal space”. en. In: Information Systems 38.1 (Mar. 2013), pp. 108–

131. ISSN: 03064379. DOI: 10.1016/j.is.2012.06.002. URL: https://linkinghub.

elsevier.com/retrieve/pii/S0306437912000944 (visited on 06/05/2020).

[Bre74] Richard P. Brent. “The Parallel Evaluation of General Arithmetic Expressions”. In:

J. ACM 21.2 (Apr. 1974), pp. 201–206. ISSN: 00045411. DOI: 10.1145/321812.321815.

URL: http://portal .acm.org/citation.cfm?doid=321812.321815 (visited on

01/21/2020).

[Bri+19] Assia Brighen, Hachem Slimani, Abdelmounaam Rezgui, and Hamamache Khed-

douci. “Listing all maximal cliques in large graphs on vertex-centric model”. en.

In: The Journal of Supercomputing (Feb. 2019). ISSN: 0920-8542, 1573-0484. DOI:

10.1007/s11227-019-02770-4. URL: http://link.springer.com/10.1007/s11227-

019-02770-4 (visited on 03/27/2019).

[Buc+07] Kevin Buchin, Christian Knauer, Klaus Kriegel, André Schulz, and Raimund

Seidel. “On the Number of Cycles in Planar Graphs”. en. In: Computing and

Combinatorics. Ed. by Guohui Lin. Vol. 4598. ISSN: 0302-9743, 1611-3349 Series

Title: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2007, pp. 97–107. ISBN: 978-3-540-73544-1. DOI: 10.1007/978-3-540-

73545-8_12. URL: http://link.springer.com/10.1007/978-3-540-73545-8_12

(visited on 10/06/2021).

[Bur+20] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett, Miguel Castro, Wonhee

Cho, et al. “A1: A Distributed In-Memory Graph Database”. en. In: Proceedings

of the 2020 ACM SIGMOD International Conference on Management of Data.

119

https://doi.org/10.1006/jpdc.1996.0107
https://linkinghub.elsevier.com/retrieve/pii/S0743731596901070
https://linkinghub.elsevier.com/retrieve/pii/S0743731596901070
https://doi.org/10.1109/TPAMI.2022.3154319
https://doi.org/10.1016/j.is.2012.06.002
https://linkinghub.elsevier.com/retrieve/pii/S0306437912000944
https://linkinghub.elsevier.com/retrieve/pii/S0306437912000944
https://doi.org/10.1145/321812.321815
http://portal.acm.org/citation.cfm?doid=321812.321815
https://doi.org/10.1007/s11227-019-02770-4
http://link.springer.com/10.1007/s11227-019-02770-4
http://link.springer.com/10.1007/s11227-019-02770-4
https://doi.org/10.1007/978-3-540-73545-8_12
https://doi.org/10.1007/978-3-540-73545-8_12
http://link.springer.com/10.1007/978-3-540-73545-8_12


BIBLIOGRAPHY

Portland OR USA: ACM, June 2020, pp. 329–344. ISBN: 978-1-4503-6735-6. DOI:

10.1145/3318464.3386135. (Visited on 02/28/2023).

[CA22] Xuhao Chen and Arvind. “Efficient and Scalable Graph Pattern Mining on GPUs”.

In: 16th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 22). Carlsbad, CA: USENIX Association, July 2022, pp. 857–877. ISBN: 978-

1-939133-28-1. URL: https://www.usenix.org/conference/osdi22/presentation/

chen (visited on 05/03/2023).

[Cao+19] Shaosheng Cao, XinXing Yang, Cen Chen, Jun Zhou, Xiaolong Li, and Yuan

Qi. “TitAnt: online real-time transaction fraud detection in Ant Financial”. en.

In: Proc. VLDB Endow. 12.12 (Aug. 2019), pp. 2082–2093. ISSN: 2150-8097. DOI:

10.14778/3352063.3352126. (Visited on 01/10/2023).

[Car+18] Vincenzo Carletti, Pasquale Foggia, Alessia Saggese, and Mario Vento. “Challeng-

ing the Time Complexity of Exact Subgraph Isomorphism for Huge and Dense

Graphs with VF3”. In: IEEE Trans. Pattern Anal. Mach. Intell. 40.4 (Apr. 2018),

pp. 804–818. ISSN: 0162-8828, 2160-9292. DOI: 10.1109/TPAMI.2017.2696940.

URL: http://ieeexplore.ieee.org/document/7907163/ (visited on 08/05/2020).

[Car+19] Andrew Carter, Andrew Rodriguez, Yiming Yang, and Scott Meyer. “Nanosecond

Indexing of Graph Data With Hash Maps and VLists”. en. In: Proceedings of the

2019 International Conference on Management of Data. Amsterdam Netherlands:

ACM, June 2019, pp. 623–635. ISBN: 978-1-4503-5643-5. DOI: 10.1145/3299869.

3314044. URL: https://dl.acm.org/doi/10.1145/3299869.3314044 (visited on

02/20/2023).

[CG16] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”.

In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. KDD ’16. San Francisco, California, USA: ACM, 2016,

pp. 785–794. ISBN: 978-1-4503-4232-2. DOI: 10 .1145/2939672.2939785. URL:

http://doi.acm.org/10.1145/2939672.2939785.

[CH06] Diane J Cook and Lawrence B Holder, eds. Mining Graph Data. en. Nashville, TN:

John Wiley & Sons, Nov. 2006. ISBN: 9780471731900.

[Che+16] Qun Chen, Chao Fang, Zhuo Wang, Bo Suo, Zhanhuai Li, and Zachary G. Ives.

“Parallelizing Maximal Clique Enumeration Over Graph Data”. In: Database

Systems for Advanced Applications. Vol. 9643. Cham: Springer International

Publishing, 2016, pp. 249–264. ISBN: 978-3-319-32049-6. DOI: 10.1007/978-3-

319-32049-6_16. URL: http://link.springer.com/10.1007/978-3-319-32049-6_16

(visited on 03/20/2019).

[Che+18] Tao Chen, Shreesha Srinath, Christopher Batten, and G. Edward Suh. “An Archi-

tectural Framework for Accelerating Dynamic Parallel Algorithms on Reconfig-

urable Hardware”. In: 2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). Fukuoka: IEEE, Oct. 2018, pp. 55–67. ISBN: 978-1-

120

https://doi.org/10.1145/3318464.3386135
https://www.usenix.org/conference/osdi22/presentation/chen
https://www.usenix.org/conference/osdi22/presentation/chen
https://doi.org/10.14778/3352063.3352126
https://doi.org/10.1109/TPAMI.2017.2696940
http://ieeexplore.ieee.org/document/7907163/
https://doi.org/10.1145/3299869.3314044
https://doi.org/10.1145/3299869.3314044
https://dl.acm.org/doi/10.1145/3299869.3314044
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1007/978-3-319-32049-6_16
https://doi.org/10.1007/978-3-319-32049-6_16
http://link.springer.com/10.1007/978-3-319-32049-6_16


BIBLIOGRAPHY

5386-6240-3. DOI: 10.1109/MICRO.2018.00014. URL: https://ieeexplore.ieee.org/

document/8574531/ (visited on 09/09/2020).

[Che+19a] Liang Chen, Jiaying Peng, Yang Liu, Jintang Li, Fenfang Xie, and Zibin Zheng.

XBLOCK Blockchain Datasets: InPlusLab Ethereum Phishing Detection Datasets.

http://xblock.pro/ethereum/. 2019.

[Che+19b] Xucan Chen, Mohammad Al Hasan, Xintao Wu, Pavel Skums, Mohammad Javad

Feizollahi, Marie Ouellet, Eric L. Sevigny, David Maimon, and Yubao Wu. “Charac-

teristics of Bitcoin Transactions on Cryptomarkets”. en. In: Security, Privacy, and

Anonymity in Computation, Communication, and Storage. Ed. by Guojun Wang,

Jun Feng, Md Zakirul Alam Bhuiyan, and Rongxing Lu. Vol. 11611. Series Title:

Lecture Notes in Computer Science. Cham: Springer International Publishing,

2019, pp. 261–276. ISBN: 978-3-030-24906-9. DOI: 10.1007/978-3-030-24907-6_20.

URL: http://link.springer.com/10.1007/978- 3- 030- 24907- 6_20 (visited on

04/04/2023).

[Che+20a] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. “Pangolin:

an efficient and flexible graph mining system on CPU and GPU”. en. In: Proc.

VLDB Endow. 13.10 (June 2020), pp. 1190–1205. ISSN: 2150-8097. DOI: 10.14778/

3389133.3389137. URL: https://dl.acm.org/doi/10.14778/3389133.3389137

(visited on 08/29/2020).

[Che+20b] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. “Can Graph Neu-

ral Networks Count Substructures?” In: Advances in Neural Information Pro-

cessing Systems 33: Annual Conference on Neural Information Processing Sys-

tems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by Hugo Larochelle,

Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien

Lin. 2020. URL: https : / / proceedings . neurips . cc / paper / 2020 / hash /

75877cb75154206c4e65e76b88a12712-Abstract.html.

[Che+21] Xuhao Chen, Tianhao Huang, Shuotao Xu, Thomas Bourgeat, Chanwoo Chung,

and Arvind Arvind. “FlexMiner: A Pattern-Aware Accelerator for Graph Pattern

Mining”. In: 2021 ACM/IEEE 48th Annual International Symposium on Computer

Architecture (ISCA). Valencia, Spain: IEEE, June 2021, pp. 581–594. ISBN: 978-1-

66543-333-4. DOI: 10.1109/ISCA52012.2021.00052. URL: https://ieeexplore.ieee.

org/document/9499844/ (visited on 05/05/2023).

[Che+22] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, and Jianxin Li. “Efficient maximal bi-

clique enumeration for large sparse bipartite graphs”. en. In: Proc. VLDB Endow.

15.8 (Apr. 2022), pp. 1559–1571. ISSN: 2150-8097. DOI: 10.14778/3529337.3529341.

URL: https://dl.acm.org/doi/10.14778/3529337.3529341 (visited on 03/30/2023).

[CK08] F. Cazals and C. Karande. “A note on the problem of reporting maximal cliques”.

en. In: Theoretical Computer Science 407.1-3 (Nov. 2008), pp. 564–568. ISSN:

03043975. DOI: 10.1016/j.tcs.2008.05.010. URL: https://linkinghub.elsevier.com/

retrieve/pii/S0304397508003903 (visited on 07/02/2020).

121

https://doi.org/10.1109/MICRO.2018.00014
https://ieeexplore.ieee.org/document/8574531/
https://ieeexplore.ieee.org/document/8574531/
http://xblock.pro/ethereum/
https://doi.org/10.1007/978-3-030-24907-6_20
http://link.springer.com/10.1007/978-3-030-24907-6_20
https://doi.org/10.14778/3389133.3389137
https://doi.org/10.14778/3389133.3389137
https://dl.acm.org/doi/10.14778/3389133.3389137
https://proceedings.neurips.cc/paper/2020/hash/75877cb75154206c4e65e76b88a12712-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/75877cb75154206c4e65e76b88a12712-Abstract.html
https://doi.org/10.1109/ISCA52012.2021.00052
https://ieeexplore.ieee.org/document/9499844/
https://ieeexplore.ieee.org/document/9499844/
https://doi.org/10.14778/3529337.3529341
https://dl.acm.org/doi/10.14778/3529337.3529341
https://doi.org/10.1016/j.tcs.2008.05.010
https://linkinghub.elsevier.com/retrieve/pii/S0304397508003903
https://linkinghub.elsevier.com/retrieve/pii/S0304397508003903


BIBLIOGRAPHY

[Con+16] Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. “Sublinear-

Space Bounded-Delay Enumeration for Massive Network Analytics: Maximal

Cliques”. en. In: (2016), 15 pages. DOI: 10.4230/LIPICS.ICALP.2016.148. URL:

http://drops.dagstuhl.de/opus/volltexte/2016/6292/ (visited on 05/27/2020).

[Con63] Melvin E. Conway. “A multiprocessor system design”. en. In: Proceedings of the

November 12-14, 1963, fall joint computer conference on XX - AFIPS ’63 (Fall).

Las Vegas, Nevada: ACM Press, 1963, p. 139. DOI: 10.1145/1463822.1463838.

URL: http://portal.acm.org/citation.cfm?doid=1463822.1463838 (visited on

03/25/2023).

[Cor+04] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. “A (sub)graph isomorphism al-

gorithm for matching large graphs”. en. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 26.10 (Oct. 2004), pp. 1367–1372. ISSN: 0162-8828. DOI:

10.1109/TPAMI.2004.75. URL: http://ieeexplore.ieee.org/document/1323804/

(visited on 03/04/2019).

[Cor+20] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar
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