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Abstract

In this paper, we set the mathematical foundations of the Dynamical Low Rank Approxi-
mation (DLRA) method for high-dimensional stochastic differential equations. DLRA aims
at approximating the solution as a linear combination of a small number of basis vectors
with random coefficients (low rank format) with the peculiarity that both the basis vectors
and the random coefficients vary in time.

While the formulation and properties of DLRA are now well understood for ran-
dom/parametric equations, the same cannot be said for SDEs and this work aims to fill
this gap. We start by rigorously formulating a Dynamically Orthogonal (DO) approxi-
mation (an instance of DLRA successfully used in applications) for SDEs, which we then
generalize to define a parametrization independent DLRA for SDEs. We show local well-
posedness of the DO equations and their equivalence with the DLRA formulation. We also
characterize the explosion time of the DO solution by a loss of linear independence of the
random coefficients defining the solution expansion and give sufficient conditions for global
existence.

1 Introduction

This paper is concerned with the theoretical foundation of dynamical low-rank methods for
stochastic differential equations (SDEs). Low-rank methods aim to approximate solutions of
high-dimensional differential equations in a well chosen low dimensional subspace. Such methods
are widely used in computational science and industrial applications [2, 22, 30, 36]. Our focus
here is on low-rank methods for high-dimensional SDEs, which is a case of primary interest, for
instance in finance [32, 31], or in various applications such as biology [1] or machine learning [28]
where SDEs often appear as discretizations of Stochastic Partial Differential Equations (SPDEs).

Among such low-rank methods, of particular interest in this paper is the Dynamically Orthog-
onal (DO) approximation [33], which is known to be an equivalent formulation of the so-called
Dynamical Low Rank Approximation (DLRA)[18] when applied to random PDEs (see [27, 24]).
Given a high-dimensional matrix differential equation, the main idea of DLRA is to constrain
the dynamics to the manifold of matrices of fixed (small) rank; this corresponds to projecting
the right-hand side, defining the time derivative of the studied dynamics, onto the tangent space
of the low-rank manifold at every instant of time. This procedure requires the differentiability
in time of the solution, needed to recover the system of equations that describe the DLRA.

Concerning specifically the DO method, this strategy approximates random or stochastic
time-dependent equations by using a sum of a small number of products between spatial and
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stochastic basis functions, thus leading to a low-rank approximation with explicit parametriza-
tion of the low-rank factors. This implies that, unlike DLRA, the DO strategy is parametrization
dependent. A crucial distinction from classical reduced order models is that, in the DO frame-
work, both the spatial and stochastic basis functions depend on time; see for example [27, 9] for
more details. The DO/DLRA methodology has been successfully applied in several fields; vari-
ous promising computational results are available for applications to random partial differential
equations (RPDEs) [8, 6, 7, 9, 27, 25, 26, 15, 33], to SDEs [33, 34, 35, 38], and to measure-valued
equations associated with SDEs in [33, 4].

The DO approximation is given by the solution of a system of equations, which provide the
evolution of the deterministic and stochastic basis functions. This system is however highly
nonlinear, even if the original dynamics was linear. In addition, its well-posedness is not obvious
due to the presence of the inverse of a Gramian, which is not guaranteed to exist at all times.
Moreover, in the specific case of SDEs, the DO solution depends on the law of the whole process
at every instant of time. These features make the well-posedness study challenging and not-
standard, questioning also whether the existence of solutions is global or only local and, in the
latter case, what happens to the solution at the explosion time. Besides being of interest per
se, a well-posedness study of the DO equations is also important to derive consistent and stable
time discretization schemes, which are eventually needed to apply these techniques in real-life
problems.

For RPDEs, theoretical results on the existence and uniqueness of the solution of the DO
equations [14], as well as stability and error estimates of time discretization schemes [15, 27, 40]
are available. An existence and uniqueness result is also available for the DLR approximation
of two-dimensional deterministic PDEs [3], where the sum involves products of basis functions
for the different spatial variables. In contrast, for SDEs well-posedness results remain largely
unexplored. This lack of theory for SDEs is unfortunate, since DO approximations are very
appealing and have been widely used in several problems modeled by SDEs (see e.g. [33, 34, 35,
38]). This paper aims at filling this gap between application and theory by:

• (Re-)deriving the DO equations for SDEs. We also derive the corresponding parametriza-
tion independent DLRA equation for SDEs.

• Showing the equivalence between DO approximation and DLRA. By exploiting this equiv-
alence, we show that the DO equations and the DLRA equation are well-posed.

• Characterising the finite explosion time in terms of the linear independence of the stochastic
DO basis.

• Discussing the extension of DLRA beyond the explosion time. We also provide a sufficient
condition under which the DO/DLRA solution exists globally.

More precisely, we start by revisiting the DO equations for SDEs, which were originally
derived in [33] relying on the formal assumption that the DO solution is time differentiable,
a property that SDE solutions do not possess. Deriving DO equations without using the time
derivatives is a fundamental challenge, since the essence of the usual DLRA methodology consists
in projecting the time derivative onto the tangent space of the low-rank manifold. We overcome
this challenge by pushing the differentiability to the spatial basis, while the stochastic basis
remains non-differentiable. It turns out that this alternative approach leads to the same DO
equations as in [33], supporting their validity as a correct dynamical low-rank approximation.

In the DLRA literature [18, 16], it is well known by now that, when applied to RPDEs,
the DO formulation is just a specific parametrisation of the DLRA, the parameters being the
deterministic and stochastic time-dependent bases defining the DO solution [27, 14]. In this
paper, we derive an analogous result for SDEs. In particular, starting from the DO equations,
we derive a parameter independent low-rank approximation which we name DLRA for SDEs,
and show its equivalence with the DO formulation. The main result of this work is to prove local
existence and uniqueness to both DO and DLRA equations. As a part of our existence result, we
give a characterisation of the interval [0, Te) on which the solution exists. More specifically, we
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show that, if the explosion time Te is finite, then the stochastic DO basis must become linearly
dependent at Te.

Although the characterisation of the explosion time provides us a valuable insight into the
DO solution, it is not satisfactory from the practical point of view; if the true solution still exists
at Te and beyond, we expect any sensible approximation to exist as well. Under some mild
integrability condition on the initial datum, we show that, while the DO solution ceases to exist
at the explosion time Te, the DLRA can be continuously extended up to Te and beyond. Thus,
our findings offer insights on how to continue a DO approximation beyond the explosion time
Te. As a final result, we show that a sufficient condition for global existence of a DO solution
(i.e. Te = +∞) is that the noise in the SDE is non-degenerate.

The rest of the paper is organised as follows. Section 2 introduces the DO equations, together
with theoretical justifications for why they are sensible. Furthermore, it introduces a DLRA
formulation that does not depend on the parametrisation. Section 3 concerns the local well-
posedness of the DO equations, where we also show the continuity of the solution with respect
to the initial data. In Section 4, we study the behaviour of the solution up to and beyond the
explosion time Te. In Section 5 we draw some conclusions and perspectives.

2 The DO equations

Let (Ω,F ,P; (Ft)t≥0) be a filtered complete probability space with the usual conditions; see for
example [37, Remark 6.24]. Consider the stochastic differential equation (SDE)

Xtrue(t) = Xtrue
0 +

∫ t

0

a(s,Xtrue(s)) ds+

∫ t

0

b(s,Xtrue(s)) dWs, (2.1)

where Wt = (W 1
t , . . . ,W

m
t )⊤ is a standard m-dimensional (Ft)-Brownian motion. Here, we

used the notation Xtrue(t, ω) = (Xtrue
1 (t, ω), . . . , Xtrue

d (t, ω))⊤ ∈ R
d for t ≥ 0 and ω ∈ Ω. Let | · |

and ‖ · ‖F denote the Euclidean norm and the Frobenius norm, respectively. We work with the
following assumptions.

Assumption 1. The drift coefficient a : [0,∞)×R
d → R

d and the diffusion coefficient b : [0,∞)×
R

d → R
d×m are Lipschitz continuous with respect to the second variable, uniformly in time:

{

|a(s, x)− a(s, y)| ≤ CLip|x− y|
‖b(s, x)− b(s, y)‖F ≤ CLip|x− y|,

(2.2)

for some constant CLip > 0. Moreover, a and b are jointly measurable.

Assumption 2. The drift a and the diffusion b satisfy the following linear-growth bound con-
dition

|a(s, x)|2 + ‖b(s, x)‖2F ≤ Clgb(1 + |x|2) (2.3)

for some constant Clgb > 0.

Furthermore, we assume that the initial condition Xtrue
0 in (2.1) satisfies the following:

Assumption 3.

Xtrue
0 is F0-measurable and satisfies E[|Xtrue

0 |2] < +∞. (2.4)

Under these assumptions, equation (2.1) has a unique strong solution; see for example [37,
Theorem 21.13].

Let us consider a positive integer R such that R ≤ d. To numerically approximate (2.1), in
this work we consider dynamically orthogonal approximations of the form

Xtrue ≈ X := U⊤Y :=

R∑

j=1

U jY j ∈ R
d, (2.5)
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where U = (U t)t∈[0,T ] is a deterministic absolutely continuous matrix-valued function that

gives an orthogonal matrix in R
R×d for all t, whereas Y = (Y t)t∈[0,T ] is an Itô process with

values in R
R with linearly independent components for all t. It is worth pointing out that

for all t ∈ [0, T ] and ω ∈ Ω, the approximate process Xt(ω) belongs to an R dimensional
vector space span{U1

t , . . . , U
R
t } spanned by the rows U1

t , . . . , U
R
t of U t, whereas each component

Xj
t , j = 1, . . . d, belongs to span{Y 1

t , . . . , Y
R
t }.

Approximations of the form (2.5) for SDEs have been considered already in [33], where the
following evolution equations, hereafter called DO equations were derived for the factors (U ,Y )
by formal calculations, treating the process Y t as differentiable:

CY t
U̇ t = E[Y ta(t,U

⊤
t Y t)

⊤](Id×d − P row
U t

), (2.6)

dY t = U ta(t,U
⊤
t Y t) dt+U tb(t,U

⊤
t Y t)dWt. (2.7)

Here, we let CY t
:= E[Y tY t

⊤] whereas P row
U t

∈ R
d×d denotes the projection-matrix onto the row

space span{U1
t , . . . , U

R
t } ⊂ R

d of U t; when U t has orthonormal rows, one has P row
U t

= U⊤
t U t.

In Section 2.1, we will give a rigorous justification for (2.6) and (2.7).
Having stated these equations, we now define the strong DO solution and DO approximation

for an SDE problem of the type (2.1).

Definition 2.1 (Strong DO solution). A function (U ,Y ) : [0, T ] → R
R×d ×L2(Ω;RR) is called

a strong DO solution for (2.1) if the following conditions are satisfied:

1. (U0,Y 0) = (ϕ, ξ), for some ϕ ∈ R
R×d matrix with orthonormal rows and ξ ∈ L2(Ω;RR)

with linearly independent components;

2. the curve t → U t ∈ R
R×d is absolutely continuous on [0, T ]. Moreover,U t has orthonormal

rows for all t ∈ [0, T ], and U tU̇
⊤

t = 0 ∈ R
R×R for a.e. t ∈ [0, T ];

3. the curve t → Y t(ω) ∈ R
R has almost surely continuous paths on [0, T ] and it is Ft-

measurable for all t ∈ [0, T ]. Moreover, for any t ∈ [0, T ] the components Y 1
t , . . . , Y

R
t are

linearly independent in L2(Ω);

4. U satisfies equation (2.6) for a.e. t ∈ [0, T ] and Y is a strong solution of (2.7) on [0, T ].

For convenience, given a DO solution (U ,Y ) we call the product U⊤Y a DO approximation.

Definition 2.2 (DO approximation). We call a process X : [0, T ] → L2(Ω;Rd) a DO approx-
imation of (2.1) if there exists a strong DO solution (U ,Y ) such that Xt := U⊤

t Y t for all
t ∈ [0, T ].

Given a DO approximation X , the corresponding DO solution (U ,Y ) is determined only up
to a (process of) rotation matrix. Indeed, let (U ,Y ) and (Ũ , Ỹ ) be two strong DO solutions

such that U⊤
t Y t = Ũ

⊤

t Ỹ t = Xt for all t ≥ 0. Then the orthogonality of U t implies Ỹ t = OtY t

with Ot = Ũ tU
⊤
t . The matrix Ot is orthogonal for every t ∈ [0, T ], but not necessarily an

identity. See Section 2.3, in particular Proposition 2.9, for more details.

2.1 Consistency of the DO equations

In this section, we rigorously show the consistency of the DO equations (2.6) and (2.7) in
the sense described hereafter. Assume that the exact solution of (2.1) is of the form X =
∑R

j=1 U
jY j with deterministic function U t = (U1

t , . . . , U
R
t )⊤ ∈ R

R×d and an Itô process Y t(ω) =

(Y 1
t (ω), . . . , Y

R
t (ω))⊤ ∈ [L2(Ω)]R for some R ≤ d that fulfil the following properties:

1. the function [0, T ] ∋ t 7→ U t ∈ R
R×d, d ≥ R, is absolutely continuous on [0, T ] and satisfies

U tU̇
⊤

t = 0 ∈ R
R×R for almost every t ∈ [0, T ]; moreover, U tU

⊤
t = I ∈ R

R×R for almost
every t ∈ [0, T ], where I is the identity matrix;
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2. Y = (Y t)t∈[0,T ] is an Itô process

dY t = αtdt+ βtdWt, (2.8)

with coefficients αt ∈ R
R and βt ∈ R

R×m, where αt and βt are progressively measurable
and have a continuous path almost surely.

Then (U t,Y t) must satisfy equations (2.6) and (2.7).
Indeed, since αt and βt in (2.8) are progressively measurable, by applying Itô’s formula [10,

20] we have

dXt = (dU⊤
t )Y t +U⊤

t dY t +

R∑

j=1

d〈U j , Y j〉(t) (2.9)

= U̇
⊤

t Y t dt+U⊤
t

(
αtdt+ βtdWt

)
+ 0 · βtdt (2.10)

=
(
U̇

⊤

t Y t +U⊤
t αt

)
dt+U⊤

t βt dWt, (2.11)

where 〈U j , Y j〉, j = 1, . . . , R is the quadratic covariation of U j and Y j . Since X is assumed to
satisfy (2.1), the uniqueness of the representation of Itô processes implies

U̇ t
⊤Y t +U⊤

t αt = a(t,U⊤
t Y t) (2.12)

U⊤
t βt = b(t,U⊤

t Y t). (2.13)

Now, using U tU̇
⊤

t = 0 ∈ R
R×R and U tU

⊤
t = I ∈ R

R×R for almost every t ∈ [0, T ], these
equalities imply

αt = U ta(t,U
⊤
t Y t) and βt = U tb(t,U

⊤
t Y t). (2.14)

Moreover, U t is absolutely continuous and by assumption Y t is a.s. continuous. This implies
that αt and βt have a continuous path almost surely, and hence (2.7) follows. In turn, from
(2.12) we find

CY t
U̇ t = E[Y ta(t,U

⊤
t Y t)

⊤]− E[Y ta(t,U
⊤
t Y t)

⊤]U⊤
t U t

= E[Y ta(t,U
⊤
t Y t)

⊤](Id×d −U⊤
t U t),

with CY t
:= E[Y tY t

⊤]. Hence, from the orthogonality assumption of U we have

CY t
U̇ t = E[Y ta(t,U

⊤
t Y t)

⊤](Id×d − P row
Ut

).

This completes our consistency argument.

2.2 DO equations interpreted as a projected dynamics

The DO equations (2.6)–(2.7) are posed as a system of equations for the separate factors U

and Y . We now discuss what equation the DO approximation X =
∑R

j=1 U
jY j should satisfy.

In other words, we aim to derive an equation for X in the ambient space, independent of the
parametrisation (U ,Y ).

For this purpose, we substitute (2.6) and (2.7) into (2.9); we obtain

dXt =
((
Id×d − P row

U t

)
E[a(t,U⊤

t Y t)Y
⊤
t ]C

−1
Y t

Y t + P row
U t

a(t,U⊤
t Y t)

)
dt+ P row

Ut
b(t,U⊤

t Y t) dWt

=
((
Id×d − P row

U t

)
[PY t

a(t,U⊤
t Y t)] + P row

U t
a(t,U⊤

t Y t)
)
dt+ P row

U t
b(t,U⊤

t Y t) dWt,
(2.15)

where PY t
a(t,Xt) ∈ R

d is the application of the L2(Ω)-orthogonal projection PY t
: L2(Ω) →

span{Y 1
t , . . . , Y

R
t } to each component of a(t,Xt) ∈ R

d. To derive a parameter-independent
equation, we seek a parameter-free expression of the projections PU t

and PY t
.
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Given Xt ∈ L2(Ω;Rd), t ∈ [0, T ], let PU(Xt) : R
d → Im(E[Xt · ]) ⊂ R

d be the orthogonal

projection matrix to the image of the mapping E[Xt · ] : L2(Ω) → R
d, and let PY(Xt) : L

2(Ω) →
Im
(
(X⊤

t · )
)
⊂ L2(Ω) be the L2(Ω)-orthogonal projection to the image of the mapping X⊤

t : Rd →
L2(Ω). In Lemma 2.3 we will show dim(Im

(
(X⊤

t · )) = dim(Im(E[Xt · ])), i.e., Im
(
(X⊤

t · ) is a finite-
dimensional linear subspace of L2(Ω), and thus PY(Xt) is well defined.

In the case of DO approximation Xt = U⊤
t Y t, we have Im(E[Xt · ]) = span{U1

t , . . . , U
R
t } and

Im
(
(X⊤

t · )
)
= span{Y 1

t , . . . , Y
R
t }, we conclude that PU(Xt)v = U⊤

t U tv = P row
Ut

v, v ∈ R
d and

PY(Xt)w = E[wY ⊤
t ]C

−1
Y t

Y t = PY t
w, w ∈ L2(Ω), so that (2.15) can be rewritten as

dXt =
((
Id×d−PU(Xt)

)
[PY(Xt)a(t,U

⊤
t Y t)]+PU(Xt)a(t,U

⊤
t Y t)

)
dt+PU(Xt)b(t,U

⊤
t Y t) dWt.

(2.16)
This equation, derived from (2.6) and (2.7), does not depend on the parametrisation of the pair
(U ,Y ) and could be taken as an alternative definition of DO approximation. More precisely,
given any process X = (Xt)t∈[0,T ] with Xt ∈ L2(Ω;Rd) for t ∈ [0, T ], we can define the following
stochastic process:

dXt =
((
Id×d − PU(Xt)

)
[PY(Xt)a(t,Xt)] + PU(Xt)a(t,Xt)

)
dt+ PU(Xt)b(t,Xt) dWt. (2.17)

It is worth noticing that (2.17) is a McKean-Vlasov-type SDE since the evolution of Xt depends
on the law of the process.

Finally, to speak of the rank of the solution X to (2.17) we note the following. Given
X̃ ∈ L2(Ω;Rd) the mapping KX̃ : Rd → L2(Ω) defined by KX̃v := X̃⊤v for v ∈ R

d is by

definition finite rank. Moreover, the operator K∗

X̃
:= E[X̃ ·] : L2(Ω) → R

d is the adjoint of KX̃ :

E[y(KX̃v)] = E[y(X̃⊤v)] = E[v⊤X̃y] = v⊤K∗

X̃
y, ∀y ∈ L2(Ω), ∀v ∈ R

d

The operator K∗

X̃
KX̃ : Rd → R

d is given by K∗

X̃
KX̃v = E[X̃ X̃⊤]v for v ∈ R

d. The following
lemma characterises the rank of these operators.

Lemma 2.3. Given X̃ ∈ L2(Ω;Rd), we have rank(K∗

X̃
KX̃ ) = rank(KX̃ ) = rank(K∗

X̃
).

Proof. First, notice that we have ker(K∗

X̃
) = Im(KX̃ )⊥, where ⊥ is the orthogonal complement

with respect to the Euclidean inner product. Hence, we have ker(K∗

X̃
|Im(K

X̃
)) = {0}. Thus, the

rank-nullity theorem implies

dim(Im(K∗

X̃
|Im(K

X̃
))) = dim(Im(KX̃ )).

Therefore rank(K∗

X̃
KX̃ ) = rank(KX̃ ). Moreover, from rank(KX̃ ) = rank(K∗

X̃
) (see for example

[12, Theorem III.4.13]), the proof is complete.

In view of the lemma above, we call dim(Im(E[Xt · ])), equivalently dim(Im((X⊤
t · ))) and

rank(E[XtX⊤
t ]]), rank of Xt.

Definition 2.4 (DLR solution of rank R). A process X : [0, T ] → L2(Ω;Rd) is called a
DLR solution of rank R to (2.1) for an initial datum X0 ∈ L2(Ω;Rd) if it satisfies (2.17),
dim(Im(E[Xt · ])) = R for some R ∈ N for all t ∈ [0, T ], and X has almost surely continuous
paths.

The parameter-independent formulation (2.17) corresponds to the projected dynamics in the
DLRA literature; see [18], also [15, Proposition2]. Notice however that in our formulation, only
the projector PU(Xt) is applied to the diffusion term b(t,Xt) dWt, instead of the full projector

PU(Xt) + PY(Xt) − PU(Xt)PY(Xt).

If we naively wrote the projected dynamics following the standard DLRA approach, we would
end up with the alternative formal expression

dXt =
(
PU(Xt) + PY(Xt) − PU(Xt)PY(Xt)

)
[a(t,Xt) dt+ b(t,Xt) dWt] , (2.18)
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which would coincide with (2.17) if one could prove that “PY(Xt)[b(t,Xt) dWt] = 0” for a.e. t > 0.
However, it is not obvious how to give a rigorous meaning to the term PY(Xt)[b(t,Xt) dWt] as
an Itô integral and for this reason we do not pursue the formulation (2.18) further.

To confirm that (2.17) is nevertheless a sensible projected dynamics, let us ask ourselves the
following question: if the solution X of (2.17) satisfies

dim(Im((X⊤
t · ))) = dim(Im(E[Xt · ])) = R around t,

is the right hand side of (2.17) consistent with this structure of X ? In the following, we will see
that the answer is affirmative, which supports the validity of (2.17), and thus (2.6) and (2.7), as
a correct DLRA formulation for SDEs.

In view of Lemma 2.3, we study the rank of the matrix E[XtX⊤
t ], where Xt is given by (2.17).

To do this, we will show that d
dt

(
E[XtX⊤

t ]
)
is in a tangent space of the rank-R manifold, i.e., the

manifold of d × d matrices with rank equal to R, at E[XtX⊤
t ]. For j, k = 1, . . . , d, Itô’s formula

implies

d(X j
t X k

t ) =X j
t

[
µk
t dt+

m∑

ℓ=1

Σkℓ
t dW ℓ

t

]

+
[
µj
t dt+

m∑

ℓ=1

Σjℓ
t dW ℓ

t

]
X k

t +

m∑

ℓ=1

Σjℓ
t Σkℓ

t dt,

where µk
t := [(Id×d − PU(Xt))[PY(Xt)a(t,Xt)] + PU(Xt)a(t,Xt)]k and Σkℓ

t := [PU(Xt)b(t,Xt)]kℓ.
Thus, we have

d

dt

(

E[XtX⊤
t ]
)

= E
[
Xtµ

⊤
t + µtX⊤

t +ΣtΣ
⊤
t

]
for almost every t ∈ [0, T ], (2.19)

with µt := [µk
t ]k=1,...,d ∈ R

d and Σt :=
[
Σkℓ

t

]

k=1,...,d
ℓ=1,...m

∈ R
d×m.

On the other hand, from [39, Proposition 2.1] we know that the tangent space of a rank R
manifold at E[XX⊤] = Qdiag(γ1, . . . , γR)Q

⊤ can be characterized as

TE[XX⊤]M :=






QV1

⊤ + V2Q
⊤ +QAQ⊤

∣
∣
∣
∣
∣
∣

V ⊤
1 Q = 0, V1 ∈ R

d×R,
V ⊤
2 Q = 0, V2 ∈ R

d×R,
and A ∈ R

d×d






.

To conclude d
dt(E[XtX⊤

t ]) ∈ TE[XtX
⊤

t ]M we will use the following result.

Lemma 2.5. Let the singular value decomposition E[XX⊤] = Qdiag(γ1, . . . , γR)Q
⊤, with

γ1, . . . , γR > 0 be given, where Q ∈ R
d×R is a matrix consisting of R orthogonal columns

q1, . . . , qR ∈ R
d. Then, the canonical expansion of the finite rank operator E[X · ] : L2(Ω) → R

d

is given by

E[Xy] =

R∑

k=1

γ
1/2
k E

[
y ϕk

]
qk = Q







γ
1/2
1 E[y ϕ1]

...

γ
1/2
R E[y ϕR]






, for y ∈ L2(Ω),

where ϕk := γ
−1/2
k X⊤

t qk, k = 1, . . . , R is an orthonormal basis of Im
(
(X⊤· )

)
⊂ L2(Ω).

Proof. From
E[XX⊤γ−1

k qk] = γ−1
k Qdiag(γ1, . . . , γR)Q

⊤qk = qk,

we have {qk}Rk=1 ⊂ Im(E[X · ]), and thus {qk}Rk=1 is an orthonormal basis of Im(E[X · ]) ⊂
R

d. Thus, with some coefficients {ck}Rk=1 ⊂ R we have for any y ∈ L2(Ω) a representation
∑R

k=1 ckqk = E[Xy], which implies

ck = q⊤
k E[Xy] = E[X⊤qky] = γ

1/2
k E[γ

−1/2
k X⊤qky] = γ

1/2
k E[X⊤qk].

The functions ϕk = γ
−1/2
k X⊤qk, k = 1, . . . , R are orthonormal in L2(Ω), and thus form an

orthonormal basis in the R-dimensional subspace Im
(
(X⊤· )

)
.
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The equation (2.19) together with this lemma shows d
dt(E[XtX⊤

t ]) ∈ TE[XtX
⊤

t ]M. Indeed, the
first term of the right hand side of (2.19) can be written as

E
[
Xtµ

⊤
t

]
= E

[
Xt(PY(Xt)a(t,Xt))

⊤
]
(Id×d − PU(Xt)) + E

[
Xta(t,Xt)

⊤
]
PU(Xt)

= QtBt(Id×d −QtQ
⊤
t ) +QtCtQtQ

⊤
t ,

where, using Lemma 2.5, we may write QtBt := E
[
Xt(PY(Xt)a(t,Xt))

⊤
]

and QtCt :=

E
[
Xta(t,Xt)

⊤
]
with some Bt, Ct ∈ R

d×d. Then, with Ṽt := (Bt(Id×d−QtQ
⊤
t ))

⊤ and Ãt := CtQt

we have
E
[
Xtµ

⊤
t

]
= QtṼ

⊤
t +QtÃtQ

⊤
t .

Similarly, we have E[µtX⊤
t ] = ṼtQ

⊤
t +QtÃ

⊤
t Q

⊤
t and E[ΣtΣ

⊤
t ] = QtQ

⊤
t E[b(t,Xt)b(t,Xt)

⊤]QtQ
⊤
t .

Hence, if E[XtX⊤
t ] is of rank R around t, then its derivative (2.19), which was derived from the

projected dynamics (2.17), lies indeed in TE[XtX
⊤

t ]M. This consistency supports the validity of
the formulation (2.17), and in turn that of the DO equations (2.6) and (2.7).

2.3 Equivalence of DO and DLR formulations

In the previous section, we showed that if there exists a strong DO solution (U t,Y t) to (2.1),
then the corresponding DO approximation Xt = U⊤

t Y t satisfies (2.17). We now investigate the
reverse question: if Xt is a rank-R solution of (2.17) (DLR solution of rank R of (2.1)) does there
exist a DO solution (U ,Y ) such that X = U⊤Y ?

First, we need the following bound for the DLR solution.

Lemma 2.6. Let a rank-R DLR solution Xt, t ∈ [0, T ], to (2.1) with X0 ∈ L2(Ω;Rd) be given.
For all t ∈ [0, T ], Xt satisfies

E[|Xt|2] ≤ 3
(
E[|X0|2] + ClgbT (T + 1)

)
exp
(
3ClgbT (T + 1)

)
=: M(T ) (2.20)

Proof. Taking the squared L2(Ω)-norm of Xt and using (2.17) in integral form, together with
Itô’s isometry, Jensen’s inequality, and Assumption 2, we have

E[|Xt|2] =E[|X0 +

∫ t

0

((
Id×d − PU(Xs)

)
[PY(Xs)a(s,Xs)] + PU(Xs)a(s,Xs)

)
ds

+ PU(Xs)b(s,Xs) dWs|2]

≤3E[|X0|2] + 3E[|
∫ t

0

(
Id×d − PU(Xs)

)
PY(Xs)a(s,Xs) + PU(Xs)a(s,Xs) ds|2]

+ 3E[|
∫ t

0

PU(Xs)b(s,Xs) dWs|2]

≤3E[|X0|2] + 3T

∫ t

0

E[|
(
Id×d − PU(Xs)

)
PY(Xs)a(s,Xs) + PU(Xs)a(s,Xs) |2]ds

+ 3

∫ t

0

E[|PU(Xs)b(s,Xs) |2]ds

≤3E[|X0|2] + 3Clgb(T + 1)

∫ t

0

(1 + E[|Xs|2])ds.

Hence, Gronwall’s lemma implies the statement.

The following theorem gives the uniqueness of the DLR solution.

Theorem 2.7. Let X0 ∈ L2(Ω;Rd) be such that dim(Im(E[X0 · ])) = R. Suppose that two DLR
solutions Xt and Zt of rank R to (2.1) with initial datum X0 exist on [0, T ]. Then X and Z are
indistinguishable.
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Proof. The processes Xt and Zt are assumed to satisfy

dXt =
((
Id×d − PU(Xt)

)
[PY(Xt)a(t,Xt)] + PU(Xt)a(t,Xt)

)

︸ ︷︷ ︸

=:PXt
a(t,Xt)

dt+ PU(Xt)b(t,Xt) dWt

and

dZt =
((
Id×d − PU(Zt)

)
[PY(Zt)a(t,Zt)] + PU(Zt)a(t,Zt)

)

︸ ︷︷ ︸

=:PZt
a(t,Zt)

dt+ PU(Zt)b(t,Zt) dWt,

respectively, for the same initial datum X0. This implies that

E[|Xt −Zt|2] ≤ E[|
∫ t

0

((
Id×d − PU(Xs)

)
PY(Xs) + PU(Xs)

)
a(s,Xs)

−
((
Id×d − PU(Zs)

)
PY(Zs) + PU(Zs)

)
a(s,Zs)ds

+

∫ t

0

PU(Xs)b(s,Xs)− PU(Zs)b(s,Zs)dWs|2]

≤ 4E[|
∫ t

0

(
PXs

−PZs

)
a(s,Xs)ds|2] + 4E[|

∫ t

0

PZs

(
a(s,Zs)− a(s,Xs)

)
ds|2]

+ 4E[|
∫ t

0

(
PU(Xs) − PU(Zs)

)
b(s,Xs)dWs|2]

+ 4E[|
∫ t

0

PU(Zs)

(
b(s,Xs)− b(s,Zs)

)
dWs|2]

(2.21)
Denote by γ := inft∈[0,T ] σR

(
E[XtX⊤

t ]
)
the infimum over time of the R-th singular value of the

matrix E[XtX⊤
t ] ∈ R

R×R, where for all t we are considering the singular values in a decreasing
order. We have γ > 0. To see this, first note that, from Lemma 2.3 the rank of E[XtX⊤

t ] is the
same as the rank of Xt. But from the definition of DLR solution, Xt has always rank R, and
moreover, the continuity of Xt implies continuity of σR

(
E[XtX⊤

t ]) on [0, T ]. Hence γ > 0 follows;
see also [14, Lemma 2.1].

Using Assumptions 1–2, Lemma 2.6, Itô’s isometry and Jensen’s inequality to (2.21), we can
take t′ ∈ (0, T ] such that

E[|Xt′ −Zt′ |2] ≤ 4Clgb(1 +M(T ))T

∫ t′

0

E[|PXt
−PZt

|2]ds

+ 4Clgb(1 +M(T ))

∫ t′

0

E[|
(
PU(Xs) − PU(Zs)

)
|2]ds

+ 4(T + 1)CLip

∫ t′

0

E[|Zs −Xs|2]ds

≤ 8(T + 1) [Clgb(1 +M(T )) + 2CLipM(T )] t′

<
γ2

R2

where we used M(T ) as defined in Lemma 2.6. Then, Proposition A.2 is applicable for all
s ∈ (0, t′], and for such s we have

E[|
(
PXs

−PZs

)
v|2] ≤

(
3R

γ

)2

E[|Xs − Zs|2]‖v‖2[L2(Ω)]d for any v ∈ L2(Ω,Rd)

|
(
PU(Xs) − PU(Zs)

)
|2 ≤

(
R

γ

)2

E[|Xs −Zs|2],
(2.22)
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and hence (2.21), Itô’s isometry and Jensen’s inequality lead to

E[|Xt′ −Zt′ |2] ≤ 4T

∫ t′

0

E[|
(
PXs

−PZs

)
a(s,Xs)|2]ds+ 4T

∫ t′

0

E[|PZs

(
a(s,Zs)− a(s,Xs)

)
|2]ds

+ 4

∫ t′

0

E[|
(
PU(Xs) − PU(Zs)

)
b(s,Xs)|2]ds

+ 4

∫ t′

0

E[|PU(Zs)

(
b(s,Xs)− b(s,Zs)

)
|2]ds

≤ 4
(
(9T + 1)R2γ−2Clgb(1 +M(T )) + CLip(T + 1)

)

︸ ︷︷ ︸

=:C

∫ t′

0

E[|Xs −Zs|2]ds.

(2.23)
Gronwall’s lemma yields E[|Xt−Zt|2] = 0 for all t ∈ [0, t′] and therefore (Zt)t∈[0,t′] and (Xt)t∈[0,t′]

are versions of each other.
Since the choice of t′ and the positive constant constant C depend only on M(T ), Clgb, and

CLip and independent of t, we can use the same argument on the interval [t′,min{2t′, T }] with
initial datum Xt′ . Repeating this argument up to T , we see that (Zt)t∈[0,T ] and (Xt)t∈[0,T ]

are versions of each other. Moreover, because they both have a.s. continuous paths, they are
indistinguishable; see for example [29, Theorem 2].

Given a strong DO solution (U ,Y ) to (2.1), the corresponding DO approximationXt satisfies
the equation (2.16), and thus (2.17). Hence, Theorem 2.7 gives the sought equivalence between
the DLR equation (2.17) and the DO equation (2.6)–(2.7), which we state as a corollary.

Corollary 2.8. Let X0 ∈ L2(Ω;Rd) with dim(Im(E[X0 · ])) = R. Suppose that a DLR solution
Xt of rank R to (2.1) and a strong DO solution (U ,Y ) exist on [0, T ], both with initial datum
X0. Then, Xt and the DO approximation Xt = U⊤

t Y t are indistinguishable on [0, T ].

Moreover, the DO solution giving the same DLR solution is unique up to a rotation matrix.
See also [14, Section 2.2] for a similar result.

Proposition 2.9. Assume that a DLR solution Xt of rank R to (2.1) with initial datum
X0 ∈ [L2(Ω)]d exists for all t ∈ [0, T ]. Suppose there exist two strong DO solutions (U t,Y t)
and (V t,Zt). Then there exists a unique orthogonal matrix Θ ∈ R

R×R such that (V t,Zt) =
(ΘU t,ΘY t).

Proof. The proof follows closely the arguments in [14, Lemma 2.3, Corollary 2.4, and Lemma 2.5].
We will show that there exists a unique absolutely continuous curve t → Θ(t) with orthogonal
matrix Θ(t) ∈ R

R×R for all t such that (V t,Zt) = (Θ(t)U t,Θ(t)Y t), and that such Θ(t)
is a constant in t. First, we will derive an equation that Θ(t) must satisfy. Suppose that
sought Θ(t) exists. Note that, since both U⊤

t Y t and V ⊤
t Zt satisfy (2.16), Theorem 2.7 implies

Xt = U⊤
t Y t = V ⊤

t Zt for all t and a.s. Then since (V t,Zt) is a strong DO solution, one must
have

U̇ t = ˙(Θ(t)V t) = Θ̇⊤(t)V t +Θ⊤(t)V̇ t for a.e. t ∈ [0, T ]. (2.24)

As U tU̇
⊤

t = 0 and U tU
⊤
t = IR×R, from U t = Θ⊤(t)V t it follows

0 = Θ⊤(t)V t

(

Θ̇⊤(t)V t +Θ⊤(t)V̇ t

)⊤

= Θ⊤(t)
(

Θ̇(t) + V tV̇
⊤

t Θ(t)
)

. (2.25)

Using orthogonality of Θ(t) and V tV̇
⊤

t = 0, we obtain the following differential equation that
Θ(t) has to satisfy:

Θ̇(t) = 0 for a.e. t ∈ [0, T ] with Θ(0) = Θ∗, (2.26)

where Θ∗ is an orthogonal matrix. But this equation has a unique solution Θ(t) ≡ Θ∗, which is
an orthogonal matrix. Hence, going back the argument above, Θ satisfies (2.24). The absolute
continuity of U and ΘV yields U t = Θ(t)V t+C for all t ∈ [0, T ], with some matrix C ∈ R

R×R.
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Such Θ∗ that makes C = 0 can be constructed explicitly. Since U t, V t are deterministic,
from U⊤

0 Y 0 = V ⊤
0 Z0 we must have

U⊤
0 = V ⊤

0 E[Z0Y
T
0 ]C

−1
Y 0

.

Take Θ∗ = E[Z0Y
T
0 ]C

−1
Y 0

. Then, from the argument above U t = ΘV t holds for all t ∈ [0, T ].
We conclude the proof by noting the orthogonality of Θ∗:

IR×R = U0U
⊤
0 = Θ⊤

∗ V 0V
⊤
0 Θ∗ = Θ⊤

∗ Θ∗.

Remark 2.10. In Section 3, under Assumptions 1–3 we will show that there exists a unique
strong DO solution (U ,Y ) in a certain interval [0, T ]. Hence, in view of Theorem 2.7 and
Corollary 2.8, a unique DLR solution Xt exists on [0, T ] and moreover, given Xt, we can always
find a strong DO solution (U ,Y ) such that Xt = U⊤

t Y t.

3 Local existence and uniqueness

The equations (2.6) and (2.7) define a non-standard system of stochastic differential equations.
Notice that in (2.6), the matrix-valued function [L2(Ω)]R ∋ Y t 7→ C−1

Y t
∈ R

R×R is not defined

everywhere in [L2(Ω)]R. Moreover, the vector field E[Y t a(t,Xt)
⊤] requires taking the expecta-

tion, and thus depends on the knowledge of all the paths of Y t. Hence, the vector fields that
define the DO equation are not defined path-wise a priori. This setting makes the existence and
uniqueness result of DLR solutions non-trivial.

To establish existence and uniqueness of solutions of (2.6) and (2.7) given initial datum
(U0,Y 0), we follow a fixed-point argument. We will define a sequence of Picard iterates, which
belongs to a specific set of functions, where the first element of the sequence is made of a pair of
constant-in-time functions (U0,Y 0). Then we will show that this sequence converges in this set.

LetU ∈ C([0, t];RR×d) be such that the rows U1
s , . . . , U

R
s ∈ R

d ofU s are linearly independent
for every s ∈ [0, t], and let Y ∈ L2(Ω;C([0, t];RR)) be an (Ft)-adapted process such that
Y s = (Y 1(s), . . . , Y R(s)) ∈ [L2(Ω)]R has linearly independent components for every s ∈ [0, t].
For ϕ ∈ R

R×d with d ≥ R and ξ ∈ [L2(Ω)]R, define

F1(U ,Y )(t) := ϕ+

∫ t

0

C−1
Y s

E[Y sa(s,U
⊤
s Y s)

⊤](Id×d − P row
Us

) ds ∈ R
R×d, (3.1)

F2(U ,Y )(t) := ξ +

∫ t

0

U sa(s,U
⊤
s Y s) ds+

∫ t

0

Usb(s,U
⊤
s Y s)dWs ∈ [L2(Ω)]R, (3.2)

where we recall that P row
Us

is the projection-matrix onto the row space span{U1
s , . . . , U

R
s } ⊂

R
d of U s. Note that the stochastic integral

∫ t

0 U sb(s,U
⊤
s Y s)dWs is well defined, since Y ∈

L2(Ω;C([0, t];RR)) is (indistinguishable from) a progressively measurable process.
We will construct a unique fixed point of F1 and F2. Because of the aforementioned difficulties,

defining a suitable sequence of Picard iterates requires some care. Let us consider ϕ ∈ R
R×d

with d ≥ R having orthogonal row vectors, and ξ = (ξ1, . . . , ξR) ∈ [L2(Ω)]R, having linearly
independent components, F0-measurable with ρ2 := ‖ξ‖2[L2(Ω)]R and γ := ‖C−1

ξ ‖F. We force

iterations to belong to balls in R
R×d and [L2(Ω)]R around ϕ and ξ, respectively, of a suitable

radius η.
For the ball in R

R×d, to invoke Proposition A.1 in the appendix, we equip R
R×d = [Rd]R with

the norm ‖U‖2[Rd]R =
∑R

j=1 |U j |2. For ϕ = (ϕ1, . . . , ϕR)⊤ orthogonal, we have ‖ϕ‖[Rd]R =
√
R,

and
Zϕ := (ϕj(ϕk)⊤)j,k=1,...,R = ϕϕ⊤ = IR×R,
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so with η1 := η(
√
R,

√
R) as in (A.1), v ∈ Bη1(ϕ) implies ‖(vv⊤)−1‖F ≤ 2. Hence, the projection

(Id×d − P row
Ut

) is Lipschitz continuous on Bη1(ϕ); see Lemma A.3.

For the ball in [L2(Ω)]R, first note that, since [L2(Ω)]R ∋ Z 7→ E[ZZ⊤]−1 ∈ R
R×R is

continuous in the open set Γ = {Z ∈ [L2(Ω)]R | det(E[ZZ⊤]) 6= 0} (cf. [14, Proof of Lemma 3.5]),
and ξ ∈ Γ, via Proposition A.1 there exists a ball Bη2(ξ) in [L2(Ω)]R around ξ with radius η2 :=
η(ρ, γ) > 0 such that any w ∈ Bη2(ξ) has linearly independent components and ‖C−1

w ‖F ≤ 2γ.
Abusing the notation slightly, we let

η = η(R, ρ, γ) := min{η(
√
R,

√
R), η(ρ, γ)}.

Proposition A.1 tells us that η is non-increasing in both variables ρ and γ.

We want to define sequences Y
(n)
t ∈ Bη(ξ) and U

(n)
t ∈ Bη(ϕ) for t ∈ [0, δ] with a suitable δ =

δ(ϕ, ξ) > 0. To this extent, let (U
(0)
t ,Y

(0)
t ) := (ϕ, ξ), U

(n+1)
t := F1(U

(n),Y (n))(t), Y
(n+1)
t :=

F2(U
(n),Y (n))(t), and X

(n)
t :=

(
U

(n)
t

)⊤
Y

(n)
t , n = 0, 1, . . . for t ∈ [0, δ] with

δ := min{1, min{1, η2}
36RClgb(1 + 3R(3ρ2 + 1))

,
min{η2, R}

8γ2(3ρ2 + 1)Clgb(1 + 3R(3ρ2 + 1))(
√
d+

√
R)2

}. (3.3)

Moreover, let

Ddet :=

{

V ∈ C([0, δ];RR×d)

∣
∣
∣
∣
∣

sup
0≤t≤δ

‖V t‖2F ≤ 3R, and

V t ∈ Bη(ϕ) for t ∈ [0, δ]

}

and

Dsto :=







Z ∈ L2(Ω;C([0, δ];RR))

∣
∣
∣
∣
∣
∣
∣

Z is Ft-adapted,
E
[
sup

0≤t≤δ
|Zt|2

]
≤ 3ρ2 + 1, and

Zt ∈ Bη(ξ) for t ∈ [0, δ]







.

The following lemma shows that our Picard sequence takes value in Ddet × Dsto.

Lemma 3.1. Under Assumptions 2-3, the sequence
(
(U (n),Y (n))

)

n≥0
defined above satisfies

(U (n),Y (n)) ∈ Ddet × Dsto for all n ∈ N,

where δ = δ(Clgb, d, η, R, ρ) is defined in (3.3).

Proof. We have ‖ϕ‖2F = R, ‖ξ‖2[L2(Ω)]R = ρ2, and trivially ξ ∈ Bη(ξ) and ϕ ∈ Bη(ϕ), where

η = η(ρ, γ) is built as in Proposition A.1. Moreover, ξ is Ft-adapted thanks to Assumption 3.

Thus, (U (0),Y (0)) ∈ Ddet × Dsto. Assume (U (n),Y (n)) ∈ Ddet × Dsto for n ∈ N. Then, from

Assumption 2, we see that U (n+1) and Y (n+1) are well defined, and that Y (n+1) is Ft-adapted.

Moreover, from E
[
sup

0≤t≤δ
|Y (n)

t |2
]
< ∞, Doob’s martingale inequality, Itô’s isometry, and the

inequality ‖AB‖F ≤ ‖A‖2‖B‖F for A ∈ R
n×m, B ∈ R

m×p imply

E

[

sup
0≤t≤δ

|Y (n+1)
t |2

]

≤ 3E
[
|ξ|2
]
+ 3E

[

sup
0≤t≤δ

t

∫ t

0

‖U (n)
s ‖22|a(s,X(n)

s )|2 ds+ sup
0≤t≤δ

∣
∣
∣

∫ t

0

U (n)
s b(s,X(n)

s )dWs

∣
∣
∣

2
]

≤ 3ρ2 + 3E

[

3δR

∫ δ

0

|a(s,X(n)
s )|2 ds

]

+ 12E
[∫ δ

0

‖U (n)
s b(s,X(n)

s )‖2F ds
]

≤ 3ρ2 + 36RClgb(1 + E[ sup
0≤s≤δ

|X(n)
s |2])δ

≤ 3ρ2 + 36RClgb(1 + 3R(3ρ2 + 1))δ ≤ 3ρ2 + 1,
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where in the penultimate line we used δ ≤ 1, and in the last line |a(s, x)|2 + ‖b(s, x)‖2F ≤
Clgb(1 + |x|2) together with the definition of δ. Similarly, we have

E

[

sup
0≤t≤δ

|Y (n+1)
t − ξ|2

]

≤ 2E

[

sup
0≤t≤δ

t

∫ t

0

‖U (n)
s ‖22|a(s,X(n)

s )|2 ds+ sup
0≤t≤δ

∣
∣
∣

∫ t

0

U (n)
s b(s,X(n)

s )dWs

∣
∣
∣

2
]

≤ 24ClgbR(1 + 3R(3ρ2 + 1))δ ≤ η2.

We readily have Y (n+1) ∈ L2(Ω;C([0, δ];RR)) and hence Y (n+1) ∈ Dsto. Likewise, we have

U (n+1) ∈ Ddet, since

sup
0≤t≤δ

‖U (n+1)
t ‖2F ≤ 2R+ 2 sup

0≤t≤δ
t

∫ t

0

‖C−1

Y
(n)
s

E[Y (n)
s a(s,X(n)

s )⊤](Id×d − P row

U
(n)
s

)‖2F ds

≤ 2R+ 8δγ2

∫ δ

0

E[ sup
0≤s≤δ

|Y (n)
s |2]E[ sup

0≤s≤δ
|a(s,X(n)

s )|2](
√
d+

√
R)2 ds

≤ 2R+ 8δγ2(3ρ2 + 1)Clgb(1 + 3R(3ρ2 + 1))(
√
d+

√
R)2.

≤ 3R,

where in the second inequality we have used the fact that P row

U
(n)
s

is an orthogonal projector, hence

‖P row

U
(n)
s

‖F =
√
R. Finally,

sup
0≤t≤δ

‖U (n+1)
t −ϕ‖2F ≤ 4γ2(3ρ2 + 1)Clgb(1 + 3R(3ρ2 + 1))(

√
d+

√
R)2δ ≤ η2.

Thus, by induction we conclude (U (n),Y (n)) ∈ Ddet × Dsto for n ∈ N.

We now establish a Lipschitz continuity for F1 and F2 on Ddet × Dsto.

Lemma 3.2. Take δ > 0 as in (3.3). There exists a constant C̃ := C̃a,b,R,ρ,δ,γ > 0 such that for

any (V ,Z), (Ṽ , Z̃) ∈ Ddet × Dsto it holds

sup
t∈[0,δ]

‖F1(V ,Z)(t)− F1(Ṽ , Z̃)(t)‖2F + E

[

sup
t∈[0,δ]

|F2(V ,Z)(t)− F2(Ṽ , Z̃)(t)|2
]

≤ C̃

∫ δ

0

(

sup
t∈[0,s]

‖V t − Ṽ t‖2F + E[ sup
t∈[0,s]

|Zt − Z̃t|2]
)

ds

(3.4)

Proof. For any (V ,Z), (Ṽ , Z̃) ∈ Ddet ×Dsto, from Doob’s martingale inequality and Itô’s isom-
etry we have

E

[

sup
t∈[0,δ]

|F2(V ,Z)(t)− F2(Ṽ , Z̃)(t)|2
]

≤ 2E

[

sup
t∈[0,δ]

|
∫ t

0

V sa(s,V
⊤
s Zs) ds−

∫ t

0

Ṽ sa(s, Ṽ
⊤

s Z̃s) ds|2
]

+ 2E

[

sup
t∈[0,δ]

∣
∣
∣

∫ t

0

(
V sb(s,V

⊤
s Zs)− Ṽ sb(s, Ṽ

⊤

s Z̃s)
)
dWs

∣
∣
∣

2
]

≤ 2E

[

sup
t∈[0,δ]

∫ t

0

|V sa(s,V
⊤
s Zs)− Ṽ sa(s, Ṽ

⊤

s Z̃s)|2 ds
]

+ 8E

[∫ δ

0

‖V sb(s,V
⊤
s Zs)− Ṽ sb(s, Ṽ

⊤

s Z̃s)‖2F ds

]

≤ Ca,b,R,ρ,δ

∫ δ

0

(
‖V s − Ṽ s‖2F + E[|Zs − Z̃s|2]

)
ds

≤ Ca,b,R,ρ,δ

∫ δ

0

( sup
r∈[0,s]

‖V r − Ṽ r‖2F + E[ sup
r∈[0,s]

|Zr − Z̃r|2])ds,
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where Ca,b,R,ρ,δ is a positive constant. Similarly, we have for a constant Ca,b,R,ρ,δ,γ > 0 that

sup
t∈[0,δ]

‖F1(V ,Z)(t)−F1(Ṽ , Z̃)(t)‖2F ≤ Ca,b,R,ρ,δ,γ

∫ δ

0

( sup
r∈[0,s]

‖V r−Ṽ r‖2F+E[ sup
r∈[0,s]

|Zr−Z̃r|2])ds,

where we used the Lipschitz continuity of C−1
Y s

and P row
Us

; see [14, Lemma 3.5] and Lemma A.3.

Thanks to the previous results, we have that sequences (U (n))n and (Y (n))n not only live in
Ddet and Dsto, respectively, but also converge therein.

Lemma 3.3. The sequence (U (n))n admits a limit U ∈ Ddet ⊂ C([0, δ];RR×d), and the se-

quence (Y (n))n admits a limit Y ∈ Dsto ⊂ C([0, δ];RR) almost surely. Moreover, Y is also an
L2(Ω;C([0, δ];RR))-limit.

Proof. From Lemma 3.1 we have (U (n),Y (n)) ∈ Ddet × Dsto for all n ∈ N. Let ∆
(n)
U (s) :=

sup
0≤r≤s

‖U (n)
r − U (n−1)

r ‖2F. Then, since ‖U (n) − U (n−1)‖2F is continuous on [0, δ], so is ∆
(n)
U , and

thus ∆
(n)
U is measurable. Similarly, ∆

(n)
Y (s) := sup

0≤r≤s
|Y (n)

r −Y (n−1)
r |2 is a.s. continuous on [0, δ].

Noting that Y (n) ∈ Dsto implies ‖C−1

Y
(n)
t

‖2F ≤ 2γ, from Lemma 3.2 we have

∆
(n)
U (δ) + E[∆

(n)
Y (δ)] ≤ C̃

∫ δ

0

(∆
(n−1)
U (s) + E[∆

(n−1)
Y (s)]) ds

≤ C̃n−1

∫ δ

0

∫ sn−1

0

· · ·
∫ s2

0

(∆
(1)
U (s1) + E[∆

(1)
Y (s1)]) ds1 · · · dsn−1

=
(C̃δ)n−1

(n− 1)!
(∆

(1)
U (δ) + E[∆

(1)
Y (δ)]). (3.5)

Chebyshev’s inequality then implies

∞∑

n=1

P

(

∆
(n)
U (δ) + ∆

(n)
Y (δ) ≥ 1

2n

)

≤
(

∆
(1)
U (δ) + E[∆

(1)
Y (δ)]

)

2

∞∑

n=1

(2C̃δ)n−1

(n− 1)!
< ∞,

and thus from the Borel-Cantelli lemma we have

P

({

∃k = k(ω) s.t. n ≥ k =⇒ ∆
(n)
U (δ) + ∆

(n)
Y (δ) <

1

2n

})

= 1.

Hence, (Y (n)(ω))n has a limit Y (ω) ∈ C([0, δ];RR), where the convergence is uniformly in t
on [0, δ], a.s. Moreover, from the completeness of the underlying probability space, Y is (Ft)-

adapted. Also, from Y (n) ∈ Dsto, n ∈ N, Fatou’s lemma implies

E

[

sup
0≤t≤δ

|Y t|2
]

≤ lim inf
n→∞

E

[

sup
0≤t≤δ

|Y (n)
t |2

]

≤ 4ρ, (3.6)

E

[

sup
0≤t≤δ

|Y t − ξ|2
]

≤ η2, (3.7)

and thus Y ∈ Dsto. An analogous argument applies to see that (U (n))n has a limit U in
C([0, δ];RR×d) with U ∈ Ddet.

The sequences Y (n) converge in L2(Ω;C([0, δ];RR)) as well. Indeed, from (3.5), for j > n we
have

√

E

[

sup
0≤t≤δ

|Y (j)
t − Y

(n)
t |2

]

≤
j−1
∑

k=n

√

E

[

sup
0≤t≤δ

|Y (k+1)
t − Y

(k)
t |2

]

≤
√

∆
(1)
U (δ) + E[∆

(1)
Y (δ)]

j−1
∑

k=n

√

(C̃δ)k−1

(k − 1)!

14



and thus Fatou’s lemma implies

E

[

sup
0≤t≤δ

|Y t − Y
(n)
t |2

]

≤ (∆
(1)
U (δ) + E[∆

(1)
Y (δ)])

( ∞∑

k=n

√

(C̃δ)k−1

(k − 1)!

)2

< ∞,

hence lim
n→∞

E

[

sup
0≤t≤δ

|Y t − Y
(n)
t |2

]

= 0.

We are now ready to establish an existence result for the DO solution.

Theorem 3.4 (Existence of a DO solution). For any (U0,Y 0), with ‖Y 0‖[L2(Ω)]R = ρ > 0 and

‖C−1
Y 0

‖F = γ > 0 the DO equations (2.6) and (2.7) have a local (in time) strong DO solution
(U ,Y ) ∈ Ddet × Dsto with δ given by (3.3).

Proof. We show that the limit (U ,Y ) in Lemma 3.3 satisfies U = F1(U ,Y ) and Y = F2(U ,Y ),
hence it is a DO solution. From Lemma 3.2, F1 and F2 are (Lipschitz) continuous on Ddet×Dsto:

max

{

sup
t∈[0,δ]

‖F1(V ,Z)(t) − F1(Ṽ , Z̃)(t)‖2F , E

[

sup
t∈[0,δ]

|F2(V ,Z)(t)− F2(Ṽ , Z̃)(t)|2
]}

≤ C̃

∫ δ

0

(

sup
t∈[0,s]

‖V t − Ṽ t‖2F + E[ sup
t∈[0,s]

|Zt − Z̃t|2]
)

ds

≤ C̃δ

(

sup
t∈[0,δ]

‖V t − Ṽ t‖2F + E[ sup
t∈[0,δ]

|Zt − Z̃t|2]
)

.

Thus, we have

E

[

sup
t∈[0,δ]

|Y t − F2(U ,Y )(t)|2
]

= lim
n→∞

E

[

sup
t∈[0,δ]

|Y (n)
t − F2(U

(n),Y (n))(t)|2
]

= lim
n→∞

E

[

sup
t∈[0,δ]

|Y (n)
t − Y

(n+1)
t |2

]

= 0,

and hence Y t = F2(U ,Y )(t) for t ∈ [0, δ], a.s. We see U t = F1(U ,Y )(t) analogously.

To establish uniqueness, first we will show the following norm bound analogous to Lemma 2.6.

Lemma 3.5. For T > 0, suppose that U ∈ C([0, T ];RR×d), with U0 having orthonormal rows,
and Y ∈ L2(Ω;C([0, T ];RR)), with Y 0 having linearly independent components, satisfy U t =
F1(U ,Y )(t) and Y t = F2(U ,Y )(t) for all t ∈ [0, T ]. Then, for all t ∈ [0, T ] we have

‖U t‖F =
√
R; (3.8)

E
[
|Y t|2

]
≤ 3(E[|Y 0|2] + (1 + T )TClgb)exp

(
3(1 + T )TClgb

)
=: M(T ). (3.9)

Proof. First, from U t = F1(U ,Y )(t), the function U is absolutely continuous on [0, T ], and thus
differentiable almost everywhere. The derivative U̇ t satisfies

U̇ tU
⊤
t = C−1

Y t
E[Y ta(t,U

⊤
t Y )⊤](Id×d − P row

U t
)U⊤

t = 0,

and thus d
dt (U tU

⊤
t ) = 0 a.e. on [0, T ]. Therefore, from the orthonormality of the initial condition

ϕϕ⊤ = IR×R, for all t ∈ [0, T ] we have

(
U tU

⊤
t

)

jk
= ǫjk +

∫ t

0

0 ds = ǫjk,

where ǫjk = 1 only if j = k, and 0 otherwise. This shows the identity (3.8).
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For Y , Itô’s isometry implies

E
[
|Y t|2

]
≤ 3E

[

|Y 0|2 + t

∫ t

0

‖U s‖22|a(s,U⊤
s Y s)|2 ds

]

+ 3E
[∫ t

0

‖Usb(s,U
⊤
s Y s)‖2F ds

]

≤ 3E[|Y 0|2] + 3(1 + T )Clgb

∫ t

0

(1 + E[|Y s|2]) ds,

where we used Assumption 2 |a(s, x)|2 + ‖b(s, x)‖2F ≤ Clgb(1 + |x|2). Thus, Gronwall’s lemma
implies (3.9).

Now the following uniqueness result follows.

Theorem 3.6 (Uniqueness of DO solutions). Let the assumptions of Lemma 3.5 hold. For T > 0,
suppose that U , Ũ ∈ C([0, T ];RR×d) and Y , Ỹ ∈ L2(Ω;C([0, T ];RR) satisfy U t = F1(U ,Y )(t)
and Ũ t = F1(Ũ , Ỹ )(t); Y t = F2(U ,Y )(t) and Ỹ t = F2(Ũ , Ỹ )(t) for t ∈ [0, T ]. Then, we have

P

(

sup
0≤t≤T

‖U t − Ũ t‖2F + sup
0≤t≤T

|Y t − Ỹ t| > 0
)

= 0.

Proof. By hypothesis, the solutions U , Ũ and Y , Ỹ satisfy the stability estimates shown in
Lemma 3.5. Moreover, from the continuity of t → E[Y tY

⊤
t ]

−1, we have

max
{

max
s∈[0,T ]

‖E[Y sY
⊤
s ]

−1‖F, max
s∈[0,T ]

‖E[Ỹ sỸ
⊤

s ]
−1‖F

}

= γ̃ < ∞

for some γ̃ > 0. Then, noting the norm bounds (3.8) and (3.9), by an argument similar to the
proof of Lemma 3.2 (see also [14, Lemma 3.5] and Lemma A.3), with a constant C̃ = C̃(γ̃) > 0
we have

sup
0≤s≤t

‖U s −U ′
s‖2F + E

[
sup

0≤s≤t
|Y s − Y ′

s|2
]
≤ C̃

∫ t

0

(

sup
0≤s≤r

‖Us −U ′
s‖2F + E

[
sup

0≤s≤r
|Y s − Y ′

s|2
]
)

dr

(3.10)

for t ∈ [0, T ]. Thus, applying the Gronwall’s lemma yields

sup
0≤s≤t

‖U s −U ′
s‖2F + E

[
sup

0≤s≤t
|Y s − Y ′

s|2
]
= 0.

Now the proof is complete.

Remark 3.7. The uniqueness of the DO solution can be also deduced from the proof of Propo-
sition 2.9. To see this, let (U ,Y ) and (Ũ , Ỹ ) be two strong DO solutions with the same initial
datum (U0,Y 0). Then, following the proof of Proposition 2.9, we have (U ,Y ) = (ΘU t,ΘY t)
with Θ = IR×R.

We conclude this section by showing the continuity of the solution with respect to the initial
datum.

Lemma 3.8. Let us consider two DO solutions (U t,Y t), (Ũ t, Ỹ t) on [0, T ] with initial data
(U0,Y 0), (Ũ 0, Ỹ 0), respectively. Then, under Assumptions 1 and 2,

E[ sup
t∈[0,T ]

|Y t − Ỹ t|2] + sup
t∈[0,T ]

‖U t − Ũ t‖2F ≤ Ca,b,R,ρ,T,γ

(

E[|Y 0 − Ỹ 0|2] + ‖U0 − Ũ0‖2F
)

holds. Moreover, consider Xt and X̃t be the DO approximations with initial data X0 and X̃0

defined on [0, T ], and denote
γ̃ := inf

t∈[0,T ]
σR

(
E[XtX

⊤
t ]
)
,
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where σR(A) is the smallest singular value of a rank-R matrix A ∈ R
R×R. If E[|X0 − X̃0|2] <

(
γ̃
2R

)2

, then, for every T̃ > 0 such that

(T + 1) [Clgb(1 +M(T )) + 2CLipM(T )] T̃ ≤
(

γ̃

2R

)2

,

there exists a positive constant C > 0 satisfying

sup
t∈[0,T̃ ]

E[|Xt − X̃t|2] ≤ CE[|X0 − X̃0|2]. (3.11)

Proof. Following an argument similar to the proof of Lemma 3.2 and Lipschitz continuity result
of Lemma A.3, for the stochastic basis it holds

E[ sup
t∈[0,T ]

|Y t − Ỹ t|2] ≤ 2E[|Y 0 − Ỹ 0|2] + Ca,b,R,ρ,T

∫ T

0

( sup
r∈[0,t]

‖Ur − Ũ r‖2F + E[ sup
r∈[0,t]

|Y r − Ỹ r|2])dt,

and, similarly, noting the Lipschitz continuity of the inverse Gram matrix [14, Lemma 3.5], for
the deterministic basis we have

‖U t − Ũ t‖2F ≤ 2‖U0 − Ũ0‖2F + Ca,b,R,ρ,T,γ

∫ T

0

( sup
r∈[0,t]

‖U r − Ũ r‖2F + E[ sup
r∈[0,t]

|Y r − Ỹ r|2])dt.

Then, the Gronwall’s lemma yields the first part of statement. Finally, to prove (3.11), we
proceed as above and as done in Theorem 2.7. Via triangular inequality, one gets

√

E[|XT̃ − X̃T̃ |2] ≤
√

E[|X0 − X̃0|2] +
√

(T + 1) [Clgb(1 +M(T )) + 2CLipM(T )] T̃

<
γ̃

2R
+

γ̃

2R
=

γ̃

R

(3.12)

and, hence, Lemma A.2 holds. Therefore, for all t ∈ [0, T̃ ] we have for a positive constant C such
that it holds

E[|Xt − X̃t|2] ≤ 2E[|X0 − X̃0|2] + 2Ca,b,R,T,γ̃

∫ t′

0

E[|Xs − X̃s|2]ds,

≤ CE[|X0 − X̃0|2],

where in the last line we use the Gronwall’s lemma.

4 Maximality

In the previous section, we established the existence and uniqueness of strong DO solutions
locally in time on an interval [0, T ]. In this section, we investigate how much such an interval
can be extended.

We give a characterisation of the maximal interval of existence of the strong DO solution in
terms of ‖C−1

Y t
‖F. It turns out that the DO solution can be extended until ‖C−1

Y t
‖F explodes. If

‖C−1
Y t

‖F stays bounded for all t > 0, then the DO solution exists globally. If ‖C−1
Y t

‖F explodes
at a finite explosion time Te, the couple (U ,Y ) inevitably ceases to exist at Te; we will show
nevertheless that the DO approximation X = U⊤Y can be extended beyond Te.

4.1 Explosion time of the DO solution

Theorem 3.4 guarantees the (unique) existence of a strong DO solution, albeit up to possibly
a short time T . In this section, we show that the solution can be extended until C−1

Y t
becomes

singular.
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Analogous maximality results have been considered in the DLRA literature for deterministic
and random PDEs [19, 14]. For the SDE case of this paper, we need to proceed with caution.
Indeed, adhering to the definition of SDEs, we need the DO solution to be path-wise continuous
a.s. As such, we consider extension with countable number of operations, which we describe in
the following.

Let [0, T ] be the interval on which the DO solution (U ,Y ) exists; such existence is guaranteed
by Theorem 3.4. Let us choose n ∈ N such that the following two bounds are satisfied

E[‖Y T ‖2] ≤ E[‖Y 0‖2] + n := ρ2n;

‖C−1
Y T

‖2F ≤ ‖C−1
Y 0

‖2F + n := γ2
n.

(4.1)

We will show that the solution can be extended at least until E[‖Y t‖2] or ‖C−1
Y t

‖2F hits the bound

ρ2n or γ2
n. Define δ(n) by

δ(n) := min

{

1 ,
min{1, η2n}

36RClgb(1 + 3R(3ρ2n + 1))
,

min{η2n, R}
8γ2

n(3ρ
2
n + 1)Clgb(1 + 3R(3ρ2n + 1))(

√
d+

√
R)2

}

,

(4.2)
where ηn := min{η(ρn, γn), η(

√
R,

√
R)}, with η(·, ·) defined in (A.1). Then from the proofs of

Lemmata 3.1 and 3.3, and Theorem 3.4, we can construct a convergent Picard-iteration for the
interval [T, T + δ(n)], which yields the extension of the DO solution up to [0, T + δ(n)]. Set
T := T + δ(n). By construction δ(n) is independent of T , and with the same δ(n) we can repeat
the same argument as long as the bound (4.1) is satisfied. Hence, the solution can be extended
until either E[‖Y T+δ(n)‖2] ≤ ρ2n or ‖C−1

Y T+δ(n)
‖2F ≤ γ2

n gets violated.

From the argument above, the following quantities are well defined for any n ∈ N:

τ1n := inf{t > 0 | ‖C−1
Y t

‖F = ‖C−1
Y 0

‖F + n},
τ2n := inf{t > 0 | ‖Y t‖[L2(Ω)]R = ‖Y 0‖[L2(Ω)]R + n}

with a convention inf ∅ = ∞. With these, we define the sequence

τn := τn(U0,Y 0) := min{τ1n, τ2n}, n ∈ N, (4.3)

which is a sequence of stopping times. By continuity of the paths, (τn)n∈N is a non-decreasing
sequence, which allows us to define Te := lim

n→∞
τn.

Now we will show that if Te < ∞, then the norm of the inverse of the Gram matrix must
blow up.

Proposition 4.1. We have either Te = lim
n→∞

τn = ∞ or Te < ∞, where τn is defined in (4.3).

If Te < ∞, we necessarily have lim
t↑Te

‖C−1
Y t

‖F = ∞.

Proof. From the norm bound (3.9), for sufficiently large n we must have ‖Y t‖[L2(Ω)]R <
‖Y 0‖[L2(Ω)]R + n for any t ∈ (0, Te), and thus without loss of generality we assume

τn = τ1n = inf{t > 0 | ‖C−1
Y t

‖F = ‖C−1
Y 0

‖F + n}, n ∈ N.

We will first show that Te < ∞ implies lim sup
t↑Te

‖C−1
Y t

‖F = ∞. We argue by contradiction,

and assume Te < ∞ and lim sup
t↑Te

‖C−1
Y t

‖F < ∞. Then, we have sup
t∈[Te−δ,Te)

‖C−1
Y t

‖F < K < ∞ for

some K > 0 and δ > 0. But then since Te < ∞, the continuity of t 7→ Y t implies ‖C−1
Y τn

‖F =

‖C−1
Y 0

‖F + n and thus for any n sufficiently large we have

‖C−1
Y τn

‖F = ‖C−1
Y 0

‖F + n < K,

which is absurd. Hence, Te < ∞ implies lim sup
t↑Te

‖C−1
Y t

‖F = ∞.
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To conclude the proof we will show

lim
t↑Te

‖C−1
Y t

‖F = ∞.

If this is false, then there exist a sequence tm ↑ Te and γ > 0 such that ‖C−1
Y tm

‖F ≤ γ for all

m ≥ 0. But since lim sup
t↑Te

‖C−1
Y t

‖F = ∞ there is a sequence sk ↑ e such that ‖C−1
Y sk

‖F ≥ γ + 1 for

all k ≥ 0. We take a subsequence (skm
)m so that tm < skm

for all m. From the continuity of
t 7→ ‖C−1

Y t
‖F on [tm, skm

], there exists hm ∈ [0, skm
− tm] such that ‖C−1

Y tm+hm
‖F = γ + 1. Now,

from (3.9) and [14, Lemma 3.5] we have for any m ≥ 0

1 ≤ ‖C−1
Y tm+hm

‖F − ‖C−1
Y tm

‖F ≤ CTe,R,γ‖Y tm+hm
− Y tm‖[L2(Ω)]R ,

which is absurd since hm → 0 as m → ∞ and Y is continuous on [0, Te). Hence, the proof is
complete.

4.2 Extension up to the explosion time

Even when the explosion time Te for the DO solution is finite, and thus U and Y cease to exist
at Te, we will show that the product X = U⊤Y nevertheless admits a continuous extension up
to [0, Te], and beyond Te, under suitable assumptions.

For any t′ < t < Te, from (2.17) we have

Xt −Xt′ =

∫ t

t′

(
PU(Xs) + PY(Xs) − PU(Xs)PY(Xs)

)
a(s,Xs) ds+

∫ t

t′
PU(Xs)b(s,Xs) dWs,

(4.4)
and, hence, the Itô’s isometry implies

E[|Xt −Xt′ |2] ≤ 2Te

∫ t

t′
|a(s,Xs)|2 ds+ 2

∫ t

t′
‖b(s,Xs)‖2F ds.

From Assumption 2, the orthogonality of U t and the norm bound (3.9) of Y t it follows that

E[|Xt −Xt′ |2] ≤ C(t− t′)

with C := 4max{1, Te}Clgb

(
1+M(Te)

)
. Therefore, (Xt)0≤t<Te

admits a unique extensionXTe
:=

limt↑Te
Xt ∈ L2(Ω;Rd).

Thus obtained (Xt)0≤t≤Te
is continuous from [0, Te] to L2(Ω;Rd), but not necessarily path-

wise a.s. continuous on [0, Te]. It turns out that for initial data with suitable integrability, the
DO approximation Xt actually admits a.s. Hölder continuous paths. Namely, we assume the
following P-integrability condition.

Assumption 4. The initial condition X0 satisfies

E[|X0|2k] < +∞, for some k ∈ N. (4.5)

Notice that this condition is equivalent to

E[|Y 0|2k] < ∞, for some k ∈ N, (4.6)

where Y 0 ∈ [L2(Ω)]R is arbitrary such that X0 = U⊤
0 Y 0 for U0 ∈ R

R×d orthonormal. Indeed,
for any DO initial condition U⊤

0 Y 0 = X0, the orthogonality of U0 implies

E[|Y 0|2k] ≤ E[
(

‖U⊤
0 ‖22|U⊤

0 Y 0|2
)k

] ≤ E[|X0|2k] ≤ E[
(

‖U⊤
0 ‖22|Y 0|2

)k

] = E[|Y 0|2k] < +∞,
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provided that the 2k-th moment of either Y 0 or X0 (hence both) exists. Thus, E[|X0|2k] =
E[|Y 0|2k]. Similarly, for any other DO initial condition Ũ

⊤

0 Ỹ 0 = X0 we have

E[|Ỹ 0|2k] = E[|X0|2k] = E[|Y 0|2k].

Hence, Assumption 4 is equivalent to (4.6), with an arbitrarily fixed stochastic basis.
Analogously, for all t > 0 we have

E[|Xt|2k] = E[|Y t|2k] < +∞. (4.7)

The DO solution preserves the P-integrability of the initial datum.

Lemma 4.2 (Even order moments of the solution). Let a and b satisfy Assumptions 1 and 2.
Suppose that the DO solution for (2.1) exists on [0, T ]. Suppose that Assumption 4 is fulfilled
for some k ∈ N. Then, for any t ∈ [0, T ] we have

E[|Y t|2k] ≤
(
E[|Y 0|2k] +K1(T )

)
K2(T ),

with K1(T ) :=
(

3k2
Clgb T

(1+1/Clgb)k−1

)

and K2(T ) := exp{6k2Clgb(1 + 1/Clgb)T }.

Proof. From the Itô formula, |Y t|2k satisfies the following SDE (see also [17, Theorem 4.5.4]):

|Y t|2k = |Y 0|2k +

∫ t

0

2k|Y s|2k−2
(

U sa(s,U
⊤
s Y s)

)⊤

Y s+

+ k|Y s|2k−2Tr

((

U sb(s,U
⊤
s Y s)

)(

U sb(s,U
⊤
s Y s)

)⊤
)

+ k(2k − 1)|Y s|2k−4|Y ⊤
s U sb(s,U

⊤
s Y s)|2ds

+

∫ t

0

2k|Y s|2k−2 (Y s)
⊤
U sb(s,U

⊤
s Y s)dWs.

We take the expectation of both sides, and, noting the progressive measurability of Y t,
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a(t,U⊤
t Y t), and b(t,U⊤

t Y t), use Fubini’s theorem to obtain

E[|Y t|2k] ≤ E[|Y 0|2k] +
∫ t

0

E[2k|Y s|2k−2
(

U sa(s,U
⊤
s Y s)

)⊤

Y s]ds+

+

∫ t

0

E[2k2|Y s|2k−2Tr

((

U sb(s,U
⊤
s Y s)

)(

U sb(s,U
⊤
s Y s)

)⊤
)

]ds

≤ E[|Y 0|2k] +
∫ t

0

E[k|Y s|2k−2
(

|a(s,U⊤
s Y s)|2 + |Y s|2

)

]ds

+

∫ t

0

E[2k2|Y s|2k−2‖b(s,U⊤
s Y s)‖2Fds

≤ E[|Y 0|2k] +
∫ t

0

E[k|Y s|2k−2Clgb

(
1 + (1 + 1/Clgb)|Y s|2

)
]ds

+

∫ t

0

E[2k2|Y s|2k−2Clgb(1 + |Y s|2)]ds

≤ E[|Y 0|2k] +
∫ t

0

E[k|Y s|2k−2Clgb

(
1 + (1 + 1/Clgb)|Y s|2

)
]ds

+

∫ t

0

E[2k2|Y s|2k−2Clgb

(
1 + (1 + 1/Clgb)|Y s|2

)
]ds

≤ E[|Y 0|2k] +
∫ t

0

E[3k2|Y s|2k−2Clgb

(
1 + (1 + 1/Clgb)|Y s|2

)
]ds

≤ E[|Y 0|2k] + 3k2
Clgb

(√
(1 + 1/Clgb)

)2k−2

·
∫ t

0

E[

(√

(1 + 1/Clgb)

)2k−2

|Y s|2k−2

(

1 +

(√

(1 + 1/Clgb)

)2

|Y s|2
)

]ds

Then, by using the relation (1 + r2)r2k−2 ≤ 1 + 2r2k for r ∈ R+, the statement follows by
Gronwall’s lemma:

E[|Y t|2k] ≤ E[|Y 0|2k] + 3k2
Clgb

(√
(1 + 1/Clgb)

)2k−2

∫ t

0

E[(1 + 2(
√

(1 + 1/Clgb))
2k|Y s|2k]ds

≤ E[|Y 0|2k] + 3k2
Clgb

(√

(1 + 1/Clgb)
)2k−2

T + 6k2Clgb(1 + 1/Clgb)

∫ t

0

E[|Y s|2k]ds

With Lemma 4.2, we can now establish a “Hölder” type bound on E[|Xt − Xt′ |2k] for 0 ≤
t′ < t < Te, which by Kolmogorov-Chenstov theorem, implies the existence of an a.s. continuous
version of Xt.

Proposition 4.3. Suppose that the DO approximation Xt of (2.1) exists on [0, Te). Suppose
that Assumption 4 holds for some k ∈ N. If a and b satisfy Assumption 2, then there exists a
constant C := C(X0, R, k, Te, Clgb) > 0 such that

E[|Xt −Xt′ |2k] ≤ C(t− t′)k, 0 ≤ t′ < t < Te. (4.8)

Proof. The proof follows closely the one in [17, Theorem 4.5.4]. First, notice that, in the view
of (4.7), Lemma 4.2 gives an estimate of the 2k-moments of the DO approximation X for some

k ∈ N. Now we use the inequality |r1 + · · ·+ rm|p ≤ mp−1
m∑

i=1

|ri|p for r ∈ R twice and Jensen’s
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inequality to (4.4) to obtain

E[|Xt −Xt′ |2k] = E[|
∫ t

t′

(
PU(Xs) + PY(Xs) − PU(Xs)PY(Xs)

)
a(s,Xs) ds

+

∫ t

t′
PU(Xs)b(s,Xs)dWs|2k]

≤ 22k−1
E[|
∫ t

t′

(
PU(Xs) + PY(Xs) − PU(Xs)PY(Xs)

)
a(s,Xs) ds|2k]

+ 22k−1
E[|
∫ t

t′
PU(Xs)b(s,Xs)dWs|2k]

≤ 22k−1(t− t′)2k−1
E[

∫ t

t′

(
‖PU(Xs) + PY(Xs) − PU(Xs)PY(Xs)‖22|a(s,Xs)|2

)k
ds]

+ 22k−1
E[|
∫ t

t′
PU(Xs)b(s,Xs)dWs|2k]

≤ 22k−1(t− t′)2k−1
E[

∫ t

t′
|a(s,Xs)|2kds] + 22k−1

E[|
∫ t

t′
PU(Xs)b(s,Xs)dWs|2k]

For the first term in the last inequality above, using the inequality (1 + r2)k ≤ 2k−1(1 + r2k)
for r ∈ R+, Assumption 2 and Lemma 4.2, we get

E[

∫ t

t′
|a(s,Xs)|2kds] ≤ E[

∫ t

t′
Ck

lgb(1 + |Xs|2)kds]

≤ Ck
lgb2

k−1

∫ t

t′
(1 + E[|U⊤

s Y s|2k])ds

≤ Ck
lgb2

k−1

∫ t

t′
(1 + E[|Y s|2k])ds

≤ Ck
lgb2

k−1

∫ t

t′

(
1 +

(
E[|Y 0|2k] +K1(Te)

)
K2(Te)

)
ds

= Ck
lgb2

k−1
(
1 +

(
E[|X0|2k] +K1(Te)

)
K2(Te)

)
(t− t′).

(4.9)

For the second term, we will show

E[|
∫ t

t′
PU(Xs)b(s,Xs)dWs|2k] ≤ (t− t′)k−1[k(2k − 1)]k

∫ t

t′
E[‖b(s,Xs)‖2kF ]ds. (4.10)

To see this, let It :=
∫ t

t′ PU(Xs)b(s,Xs)dWs. Then the Itô formula implies

d|It|2k = 2k|It|2k−1sgn(It)PU(Xt)b(t,Xt)dWt+
1

2
2k(2k−1)|It|2k−2‖PU(Xt)b(t,Xt)‖2Fdt. (4.11)

Taking the expectation of both sides, by Hölder’s inequality we get

E[|
∫ t

t′
PU(Xs)b(s,Xs)dWs|2k] = E[|It|2k] = 0 + k(2k − 1)

∫ t

t′
E[|Is|2k−2‖PU(Xs)b(s,Xs)‖2F]ds

≤ k(2k − 1)

∫ t

t′
E[|Is|2k]1−

1
kE[‖b(s,Xs)‖2kF ]

1
k ds

By Lemma 4.2, we have
∫ t

t′
E|Xs|2kds =

∫ t

t′
E|Y s|2kds < ∞ and, hence, by ‖AB‖F ≤

‖A‖2‖B‖F and (2.3), it holds E[|
∫ t

t′ PU(Xs)b(s,Xs)dWs|2k] < ∞. This implies that |I·|2k =

|
∫ ·

t′
PU(Xs)b(s,Xs)dWs|2k is a submartingale. Therefore, it follows

E[|
∫ t

t′
PU(Xs)b(s,Xs)dWs|2k] ≤ k(2k − 1)E[|It|2k]1−

1
k

∫ t

t′
E[‖b(s,Xs)‖2kF ]

1
k ds.

22



Raising both sides to the k-th power and dividing them by E[|It|2k]k−1, we get

E[|
∫ t

t′
PU(Xs)b(s,Xs)dWs|2k] ≤ [k(2k − 1)]k

(∫ t

t′
E[‖b(s,Xs)‖2kF ]

1
k ds

)k

,

and thus (4.10) follows by Jensen’s inequality. Therefore, bounding
∫ t

t′
E[‖b(s,Xs)‖2kF ]ds similarly

to (4.9) we obtain

E[|
∫ t

t′
PU(Xs)b(s,Xs)dWs|2k] ≤ (t−t′)k[k(2k−1)]kCk

lgb2
2k−1

(
1 +

(
E[|X0|2k] +K1(Te)

)
K2(Te)

)
.

Putting all together, (4.8) follows:

E[|Xt −Xt′ |2k] ≤ 22k−1(t− t′)2k−1
E[

∫ t

t′
|a(s,Xs)|2kds] + 22k−1

E[|
∫ t

t′
PU(Xs)b(s,Xs)dWs|2k]

≤ 24k−2(t− t′)2kCk
lgb

(
1 +

(
E[|X0|2k] +K1(Te)

)
K2(Te)

)

+ 24k−2(t− t′)k[k(2k − 1)]kCk
lgb

(
1 +

(
E[|X0|2k] +K1(Te)

)
K2(Te)

)

≤ (t− t′)k
(
T k
e + [k(2k − 1)]k

) [
24k−2Ck

lgb

(
1 +

(
E[|X0|2k] +K1(Te)

)
K2(Te)

)]
.

(4.12)

Having proved these results concerning boundness of 2k-moments of the DO solution, we are
now ready to extend it up to the explosion time Te with a.s. continuous paths.

Theorem 4.4. Let a and b satisfy Assumptions 1 and 2. Let an DO approximation X on [0, Te)
be given. If X0 satisfies Assumption 4 for some integer k > 1, then X admits a unique continuous
extension to [0, Te], almost surely. This extension is Hölder continuous on [0, Te], and satisfies
E[|Xt|2k] < ∞ for all t ∈ [0, Te].

Proof. By Assumption 4, Proposition 4.3 holds and (Xt)0≤t<Te
admits an extension XTe

:=
limt↑Te

Xt ∈ L2k(Ω;Rd) that is unique in L2k(Ω;Rd). From ‖Xt − Xt′‖L2(Ω;Rd) ≤ ‖Xt −
Xt′‖L2k(Ω;Rd) for 0 ≤ t′ < t < Te, the extension is unique in Lp(Ω;Rd) for p ∈ [2, 2k]. By
construction of XTe

, we have

E[|Xt −Xt′ |2k] ≤ C(t− t′)k, 0 ≤ t′ < t ≤ Te. (4.13)

Therefore, by Kolmogorov-Chenstov Theorem (see for example [11]) there exists a version
(X̃t)t∈[0,Te] of the DO approximation that is q-Hölder continuous for all 0 < q < k−1

2k . By

construction, (X̃t)t∈[0,Te] is a process with bounded 2k-moments.

Finally, let us see that (Xt)t∈[0,Te] and (X̃t)t∈[0,Te] are indistinguishable. Indeed, by con-

struction of X̃ we have XTe
= X̃Te

a.s. Moreover, (Xt)t∈[0,Te) and (X̃t)t∈[0,Te) have a.s. contin-
uous paths and are versions of each other, and thus indistinguishable. Hence, (Xt)t∈[0,Te] and

(X̃t)t∈[0,Te] are indistinguishable. This completes the proof.

Together with Proposition 4.1, Theorem 4.4 gives us an insight into how to continue a DO
approximation beyond the explosion time Te. Let a DO approximation X of (2.1) with explosion
time Te that satisfies (4.5) be given. Suppose dim (Im(E[Xt · ])) = R for all t ∈ [0, Te), with
a positive integer R. By Theorem 4.4, X can be continuously extended up to Te, while from
Proposition 4.1 we know lim

t↑Te

‖C−1
Y t

‖F = ∞. This implies that dim (Im(E[XTe
· ])) = R′ < R.

Therefore, one can extend our DO approximation X continuously in t beyond Te by considering
the DO system (2.6)–(2.7) with initial datum XTe

. The corresponding DO solution satisfies
U t ∈ R

R′×d and Y t ∈ [L2(Ω)]R
′

for t ∈ [Te, Te + T ′
e), where T ′

e is the new explosion time for
(U t,Y t).
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4.3 The case of uniformly positive-definite diffusion

In the previous section, we have shown that by assuming the boundedness of the 2k moments of
the initial condition of the DO approximation for k > 1, the DO approximation can be extended
up to the explosion time Te. It turns out that, under the condition that we will introduce in the
following, the explosion time Te is never finite; as a result, rank-R DO solution exists globally.

A sufficient condition is that the diffusion matrix b(t, x)b(t, x)⊤ is positive definite with a
lower bound on the smallest eigenvalue, where the bound is uniform in t and x. This condition
turns out to ensure that the smallest eigenvalue of the Gram matrix E[Y tY

⊤
t ] remains bounded

below uniformly in t and x, which in turn guarantees the global existence of the DO solution.
In the following, we use the notation A ≻ B (respectively A � B) with A,B square matrices to
indicate that A−B is positive definite (respectively positive semidefinite).

Proposition 4.5. Suppose the rank R DO solution (U ,Y ) exists on [0, T ]. Assume moreover
that there exist σY 0

, σB > 0 such that

CY 0
:= E[Y 0Y

⊤
0 ] � σY 0

IR×R; (4.14)

b(t, x)b(t, x)⊤ � σB Id×d, for any t ∈ [0, T ] and for any x ∈ R
d. (4.15)

Then for all t ∈ [0, T ] we have

CY t
� min{σY 0

;
σ2
B

4Clgb(1 +M)
} IR×R, (4.16)

where M = M(T ) is defined in Lemma 3.5.

Proof. By introducing the shorthand notation at = a(t,Xt) ∈ R
d and bt = b(t,Xt) ∈ R

d×m, the
k-th component Y k

t of Y t ∈ [L2(Ω)]R satisfies

dY k
t =

d∑

i=1

Uki
t aitdt+

m∑

l=1

d∑

r=1

Ukr
t brlt dW

l
t

Hence, using Itô’s formula for 1 ≤ j, k ≤ R, we have

d(Y j
t Y

k
t ) = d(Y j

t )Y
k
t + Y j

t d(Y
k
t ) +

m∑

l=1

d∑

i=1

U ji
t bilt

d∑

r=1

Ukr
t brlt dt

= (
d∑

i=1

U ji
t aitdt+

m∑

l=1

d∑

i=1

U ji
t bilt dW

l
t )Y

k
t + Y j

t (
d∑

i=1

Uki
t aitdt+

m∑

l=1

d∑

i=1

Ukr
t brlt dW

l
t )

+

m∑

l=1

d∑

i=1

U ji
t bilt

d∑

r=1

Ukr
t brlt

Hence,
d(Y tY

⊤
t ) = (dY t)Y

⊤
t + Y t(dY t)

⊤ +U tbt(U tbt)
⊤dt

and taking the expectation of both sides yields

dE[(Y tY
⊤
t )]

dt
= E[U tat(Y

⊤
t )] + E[Y t(U tat)

⊤] + E[U tbtb
⊤
t U

⊤
t ].

We now aim at analyzing the smallest eigenvalue of CY t
:= E[(Y tY

⊤
t )] through the Rayleigh

quotient. For any unit vector v ∈ R
R, we have

v⊤
dE[(Y tY

⊤
t )]

dt
v = 2v⊤E[U tat(Y

⊤
t )]v + v⊤E[U tbtb

⊤
t U

⊤
t ]v. (4.17)
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Thanks to (4.15), the last term can be bounded below as

v⊤E[U tbtb
⊤
t U

⊤
t ]v = v⊤U tE[btb

⊤
t ]U

⊤
t v ≥ v⊤U tσBIR×RU

⊤
t v ≥ σB.

The first term can be bounded above as

|v⊤E[Y t(U tat)
⊤]v| = |E[v⊤Y ta

⊤
t ]U

⊤
t v| ≤ |E[v⊤Y ta

⊤
t ]|

≤ 1

2ε
E[|v⊤Y t|2] +

ε

2
E[|at|2]

≤ 1

2ε
E[v⊤Y tY

⊤
t v] +

ε

2
Clgb(1 + E[|Y t|2])

≤ 1

2ε
v⊤E[Y tY

⊤
t ]v +

ε

2
Clgb(1 +M) for any ε > 0.

Taking ε = σB

2Clgb(1+M) leads to the following estimate on the derivative of At := v⊤CY t
v =

v⊤E[(Y tY
⊤
t )]v:

d

dt
At ≥ −1

ε
At +

σB

2
, (4.18)

from which we deduce
At ≥

εσB

2
(e

t
ε − 1)e−

t
ε +A0e

− t
ε .

Noting that (4.14) implies A0 ≥ σY 0
, we conclude

v⊤E[Y tY
⊤
t ]v ≥ εσB

2
+ (σY 0

− εσB

2
)e−

t
ε

≥ min{σY 0
,

σ2
B

4Clgb(1 +M)
} > 0 for any t ∈ [0, T ].

As a consequence of the proposition above, the following global existence result is obtained.

Theorem 4.6 (Global Existence of DO solution). Let Assumptions 1− 3 hold. Suppose that the
assumptions of Proposition 4.5 hold. Then, the DO solution exists for all t ≥ 0.

Proof. From Theorems 3.4 and 3.6, the rank R solution uniquely exists up to a certain time
T > 0. Denote by Te its explosion time and suppose, to obtain a contradiction, Te < +∞. Then,
from Proposition 4.1 we have lim

t↑Te

‖C−1
Y t

‖F = +∞. But by Proposition 4.5 the Rayleigh quotient

At = v⊤CY t
v with v ∈ R

R satisfies

At ≥ min{σY 0
;

σ2
B

4Clgb(1 +M(Te))
} > 0,

and, hence, for some constant k̄ > 0 we have ‖C−1
Y t

‖F ≤ k̄ for all t ∈ [0, Te). This contradicts

lim
t↑Te

‖C−1
Y t

‖F = +∞. Therefore, Te = +∞.

Remark 4.7. It is worth noticing that (4.15) is satisfied in the case of additive non-degenerate
noise.

5 Conclusion

In this work, we achieved to set a rigorous DO setting for SDEs under the conditions that the
studied drift and diffusion satisfy a Lipschitz condition and a linear-growth bound. First, we (re-
)derived the equations which characterize the evolution of the deterministic and stochastic modes,
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in a DO formulation, and showed how these can be re-interpreted as a projected dynamics leading
to a DLRA formulation. Our derivation makes use of the Itô’s formula and avoids the direct
use of time derivatives. We proved local-existence and uniqueness of the DO formulation and
analyzed the possibility of extending the solution up to and beyond the explosion time. Finally,
we gave a sufficient condition that assures the global existence of the DLR approximation.

One natural development of this work would be to extend this DO framework and well-
posedness results to accommodate weaker assumptions on the drift and diffusion (e.g. local
lipschitzianity and/or weak monotonicity).

Furthermore, it would be interesting to build a DLR formulation as a fully projecting dy-
namics as in (2.18) by giving a rigorous meaning to the term PY(Xt)[b(t,Xt) dWt], possibly in a
distributional sense. In case one manages to achieve this goal, the direct connection to the stan-
dard DLRA formulation for deterministic or random equations would allow us to apply numerical
projector splitting schemes, which have been shown to perform very well in those contexts [5,
23].
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A Appendix

For a Hilbert space (H, 〈·, ·〉), denote by [H ]R the product Hilbert space equipped with the norm

‖Y ‖[H]R =
√
∑R

j=1 ‖Y j‖2H for Y = (Y j) ∈ [H ]R. For Y ∈ [H ]R let ZY be the Gram matrix

ZY :=
(
〈Y j , Y k〉

)

j,k=1,...R
∈ R

R×R.

If ZY 0
is invertible, then for Y close to Y 0, ZY is also invertible. The following result makes

this intuition precise.

Proposition A.1. Suppose that Y 0 ∈ [H ]R has linearly independent components Y j
0 , j =

1, . . . , R in H, and that ‖Y 0‖H ≤ ρ and ‖Z−1
Y 0

‖F ≤ γ hold for ρ, γ > 0. Then, there exists
η := η(ρ, γ) > 0 such that we have

‖Z−1
Y ‖F ≤ 2γ, for any Y ∈ Bη(Y 0),

and η(ρ, γ) is decreasing in both ρ and γ. Here, Bη(Y 0) is the open ball in [H ]R of radius η
around Y 0.

Proof. Any Y ∈ Bη(Y 0) may be written as Y = Y 0 + rδ with r < η and ‖δ‖[H]R = 1. We will

derive an upper bound η on r that guarantees ‖Z−1
Y ‖F ≤ 2γ.

Define Y (s) := Y 0 + sδ and let f(s) := Z−1
Y (s). Then, we have

d

ds
f(s) = −f(s)




(〈δj , Y (s)

k〉)j,k=1,...R
︸ ︷︷ ︸

:=Zδ,Y (s)

+(〈Y (s)
j
, δk〉)j,k=1,...R

︸ ︷︷ ︸

:=ZY (s),δ




 f(s).
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Therefore, it holds

d

ds
‖f(s)‖2F =

d

ds
Tr(f(s)f⊤(s))

= −Tr
(
f(s)(Zδ,Y (s) + ZY (s),δ)f(s)f

⊤(s)
)
− Ts

(
f(s)f⊤(s)(ZY (s),δ + Zδ,Y (s))f

⊤(s)
)

≤ 2‖Zδ,Y (s) + ZY (s),δ‖F‖f3(s)‖F
≤ 2(‖Zδ,Y (s)‖F + ‖ZY (s),δ‖F)‖f3(s)‖F
≤ 4(‖δ‖[H]R‖Y (s)‖[H]R)‖f(s)‖3F
≤ 4(ρ+ s)‖f(s)‖3F.

Let Es = ‖f(s)‖2F so that E
− 3

2
s

dEs

ds ≤ 4(ρ+ s) and

∫ r

0

2
d(−E

−1/2
s )

ds
ds =

∫ r

0

E
− 3

2
s

dEs

ds
ds ≤ 4ρr + 2r2,

which implies −2E
− 1

2
r + 2E

− 1
2

0 ≤ 4ρr + 2r2. Now we use E0 ≤ γ2 to obtain the bound γ−1 −
2ρr− r2 ≤ E

− 1
2

r . For any 0 < r < −ρ+
√

ρ2 + 1
γ , we have

1
γ − 2ρr− r2 > 0 and thus this bound

yields

‖Z−1
Y r

‖F ≤ 1
1
γ − 2ρr − r2

=
1

1
γ + ρ2 − (ρ+ r)2

.

Then, ‖Z−1
Y r

‖2F ≤ 4γ2 is guaranteed by the condition 0 < r ≤ −ρ+
√

ρ2 + 1
2γ , which also implies

1
γ − 2ρr − r2 > 0 above. Finally,

η(ρ, γ) := −ρ+

√

ρ2 +
1

2γ
(A.1)

is decreasing in ρ and γ:

∂η

∂ρ
=

ρ
√

ρ2 + 1
2γ

− 1 < 0, ∀ρ, γ > 0;

∂η

∂γ
= − 1

4γ2

1
√

ρ2 + 1
2γ

< 0, ∀ρ, γ > 0.

Recall that a finite rank functions as in Definition 2.4 admits a representation reminiscent of
the singular value decomposition as in (A.2) below; see [14, Lemma 2.1]. For such functions that
are close enough, the following Lipschitz bounds hold for the projector-valued mappings. The
proof of this statement follows closely [3, Proof of Lemma A.2]; see also [41, Lemmata 4.1 and
4.2] for a finite dimensional version.

Proposition A.2. Suppose that X, X̂ ∈ L2(Ω;H) have the following representations

X =

R∑

j=1

σjUjVj , X̂ =

R∑

j=1

σ̂j Ûj V̂j , (A.2)

with σj , σ̂j > 0, and Uj , Ûj ∈ H, Vj , V̂j ∈ L2(Ω) all orthonormal in their respective Hilbert spaces,
for j = 1, . . . , R. Here, σj and σ̂j , j = 1, . . . , R, are ordered in the descending order. Suppose
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further that ‖X − X̂‖L2(Ω;H) < σR/R holds. Then, the projections PU =
∑R

j=1〈Uj , ·〉HUj and

PV =
∑R

j=1 E[Vj · ]Vj satisfy

‖PU−PÛ‖H→H ≤ R

σR
‖X−X̂‖L2(Ω,H) and ‖PV −PV̂ ‖L2(Ω)→L2(Ω) ≤

R

σR
‖X−X̂‖L2(Ω,H). (A.3)

Moreover, we also have

‖PU + PV − PUPV − (PÛ + PV̂ − PÛPV̂ )‖L2(Ω,H)→L2(Ω,H) ≤ 3
R

σR
‖X − X̂‖L2(Ω,H). (A.4)

Proof. For any f ∈ L2(Ω;H), one has

‖PV f − PV̂ PV f‖L2(Ω;H) = ‖(id− PV̂ )PV f‖L2(Ω;H) = ‖(id− PV̂ )

R∑

j=1

E[Vjf ]Vj‖L2(Ω;H),

and using 〈Uj , X〉H = σjVj it follows

‖PV f − PV̂ PV f‖L2(Ω;H) = ‖(id− PV̂ )
R∑

j=1

1

σj
E[Vjf ]〈Uj, X〉H‖L2(Ω;H).

From (id− PV̂ )X̂ = 0, we have

0 = 〈Uj , (id− PV̂ )X̂〉H = 〈Uj , X̂〉H − 〈Uj , PV̂ X̂〉H

but [21, Theorem 8.13] implies

〈Uj , PV̂ X̂〉H =
R∑

j=1

〈Uj ,E[VjX̂ ]〉HVj

=

R∑

j=1

E[〈Uj , VjX̂〉H ]Vj =

R∑

j=1

E[Vj〈Uj , X̂〉H ]Vj = PV̂ (〈Uj , X̂〉H),

and thus (id−PV̂ )(〈Uj , X̂〉H) = 0 for j ∈ 1, . . . , R. Therefore, σ−1
j E[Vjf ](id−PV̂ )(〈Uj , X̂〉H) = 0

for j ∈ 1, . . . , R. Hence, the Cauchy–Schwarz inequality and orthonormality assumptions on Uj

and Vj imply

‖PV f − PV̂ PV f‖L2(Ω;H) = ‖(id− PV̂ )

R∑

j=1

1

σj
E[Vjf ]〈Uj, (X − X̂)〉H‖L2(Ω;H)

≤ ‖(id− PV̂ )‖L2(Ω;H)→L2(Ω;H)

R∑

j=1

1

σj
‖Vj‖L2(Ω;H)‖f‖L2(Ω;H)‖Uj‖H‖X − X̂‖L2(Ω;H)

≤ R

σR
‖f‖L2(Ω;H)‖X − X̂‖L2(Ω;H),

(A.5)
and thus the assumption ‖X − X̂‖L2(Ω;H) < σR/R yields ‖PV − PV̂ PV ‖L2(Ω;H)→L2(Ω;H) < 1.
Hence, following the same argument as in [14, Proof of Lemma 3.4], we invoke [13, Lemma 221]
(see also [12, Theorem I.6.34]) to obtain

‖PV − PV̂ PV ‖L2(Ω;H)→L2(Ω;H) = ‖PV − PV̂ ‖L2(Ω;H)→L2(Ω;H).

Therefore, from (A.5) it follows

‖PV − PV̂ ‖L2(Ω;H)→L2(Ω;H) ≤
R

σR
‖X − X̂‖L2(Ω,H).
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By similar arguments, we can obtain the analogous bound for the projections PU =
∑R

j=1〈Uj , ·〉HUj and PÛ =
∑R

j=1〈Ûj , ·〉H Ûj onto the span of {Uj}j and {Ûj}j, respectively:

‖PU − PÛ‖H→H ≤ R

σR
‖X − X̂‖L2(Ω,H).

Finally, to show (A.4), notice ‖PU − PÛ‖H→H = ‖PU − PÛ‖L2(Ω;H)→L2(Ω;H).
Then it follows that

‖PU + PV − PUPV − (PÛ + PV̂ − PÛPV̂ )‖L2(Ω,H)→L2(Ω,H)

=‖(PU − PÛ ) + (id− PU )PV − (id− PÛ )PV̂ ‖L2(Ω,H)→L2(Ω,H)

=‖(PU − PÛ ) + (id− PU )PV − (id− PU )PV̂

+ (id− PU )PV̂ − (id− PÛ )PV̂ ‖L2(Ω,H)→L2(Ω,H)

≤‖(PU − PÛ )‖L2(Ω,H)→L2(Ω,H) + ‖(id− PU )(PV − PV̂ )‖L2(Ω,H)→L2(Ω,H)

+ ‖(PU − PÛ )PV̂ ‖L2(Ω,H)→L2(Ω,H)

≤3R

σR
‖X − X̂‖L2(Ω,H).

(A.6)

We conclude this section giving another useful result inherent to orthogonal projections.

Lemma A.3. Given γ,R > 0 two positive constants, let

Bγ,R := {t ∈ [0, T ] → U t ∈ R
R×d | sup

s∈[0,T ]

‖(U tU
⊤
t )

−1‖F ≤ γ and sup
s∈[0,T ]

‖Us‖F <
√
R},

where the invertibility of U tU
⊤
t is implicitly assumed. Define the orthogonal projectors P row

U t
:=

U t
⊤(U tU

⊤
t )

−1U t, P
row
Ũt

:= Ũ t
⊤(Ũ tŨ t

⊤
)−1Ũ t onto the rows of U t and U ′

t, respectively. Then

there exists a constant C1 > 0 such that the following holds

sup
t∈[0,T ]

‖P row
Ut

− P row
Ũt

‖F ≤ C1 sup
t∈[0,T ]

‖U t − Ũ t‖F.

Further given γ̃,M > 0 two positive constants, let

Bγ̃,M := {t ∈ [0, T ] → Y t ∈ [L2(Ω)]R | sup
s∈[0,T ]

‖E[Y sY
⊤
s ]

−1‖F ≤ γ̃ and E
[
sup

s∈[0,T ]

|Y s|2
]
< M}.

Given Y , Ỹ ∈ Bγ,M , let PY t
[·] := Y ⊤

t E[Y tY
⊤
t ]

−1
E[Y t·], PỸ t

[·] := Ỹ
⊤

t E[Ỹ tỸ
⊤

t ]
−1

E[Ỹ t·] be the

orthogonal projectors onto the subspace spanned by the components of Y t and Ỹ t, respectively.
Then there exists a constant C2 > 0 such that the following holds

E[ sup
t∈[0,T ]

‖PY t
− PỸ t

‖2L2(Ω)→L2(Ω)]
1
2 ≤ C2E[ sup

t∈[0,T ]

|Y t − Ỹ t|2]
1
2

Proof. For Y t, Ỹ t ∈ [L2(Ω)]R we have

Y ⊤
t E[Y tY

⊤
t ]

−1
E[Y tg]− Ỹ

⊤

t E[Ỹ tỸ
⊤

t ]
−1

E[Ỹ tg]

=(Y ⊤
t − Ỹ

⊤

t )E[Y tY
⊤
t ]

−1
E[Y tg]

+ Ỹ
⊤

t (E[Y tY
⊤
t ]

−1 − E[Ỹ tỸ
⊤

t ]
−1)E[Y tg]

+ Ỹ
⊤

t E[Ỹ tỸ
⊤

t ]
−1(E[Y tg]− E[Ỹ tg]).
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Let Y , Ỹ ∈ Bγ,M . From [14, Lemma 3.5], there exists a constant C(R,M) > 0 such that

‖E[Y tY
⊤
t ]

−1 − E[Ỹ tỸ
⊤

t ]
−1‖F ≤ γ̃C(R,M)E[|Y t − Ỹ t|2]

1
2

≤ γ̃C(R,M)E[ sup
t∈[0,T ]

|Y t − Ỹ t|2]
1
2 ,

and thus

sup
t∈[0,T ]

|(PY t
− PỸ t

)g| ≤ γ̃ sup
t∈[0,T ]

|Y t − Ỹ t|E[ sup
t∈[0,T ]

|Y t||g|]

+ γ̃C(R,M)
(

sup
t∈[0,T ]

|Ỹ t|
)(

E[ sup
t∈[0,T ]

|Y t − Ỹ t|2]
1
2 )
)

E[ sup
t∈[0,T ]

|Y t||g|]

+
(

sup
t∈[0,T ]

|Ỹ t|
)

γ̃(E[ sup
t∈[0,T ]

|Y t − Ỹ t||g|]).

Then, using the Cauchy–Schwarz inequality to E[supt∈[0,T ] |Y t||g|] and E[supt∈[0,T ] |Y t− Ỹ t||g|],
taking the square of both sides and taking the expectation yields the result. The result for P row

U t

can be analogously shown.
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dynamical low-rank approximations to parabolic problems”. In: Mathematics of Computa-
tion 90.330 (2021), pp. 1799–1830.

[4] Yu Cao and Jianfeng Lu. “Stochastic dynamical low-rank approximation method”. In:
Journal of Computational Physics 372 (2018), pp. 564–586.

[5] Gianluca Ceruti and Christian Lubich. “An unconventional robust integrator for dynamical
low-rank approximation”. In: BIT Numerical Mathematics 62.1 (2022), pp. 23–44.

[6] Mulin Cheng, Thomas Y Hou, and Zhiwen Zhang. “A dynamically bi-orthogonal method
for time-dependent stochastic partial differential equations I: Derivation and algorithms”.
In: Journal of Computational Physics 242 (2013), pp. 843–868.

[7] Mulin Cheng, Thomas Y Hou, and Zhiwen Zhang. “A dynamically bi-orthogonal method for
time-dependent stochastic partial differential equations II: Adaptivity and generalizations”.
In: Journal of Computational Physics 242 (2013), pp. 753–776.

[8] Minseok Choi, Themistoklis P Sapsis, and George Em Karniadakis. “On the equivalence of
dynamically orthogonal and bi-orthogonal methods: Theory and numerical simulations”.
In: Journal of Computational Physics 270 (2014), pp. 1–20.

[9] Florian Feppon and Pierre FJ Lermusiaux. “Dynamically orthogonal numerical schemes
for efficient stochastic advection and Lagrangian transport”. In: Siam Review 60.3 (2018),
pp. 595–625.
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