
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Interactive-time Exploration, Querying, and Analysis of
Large High-dimensional Datasets

Sachin BASIL JOHN

Thèse n° 9017

2023

Présentée le 5 septembre 2023

Prof. B. Falsafi, président du jury
Prof. C. Koch, directeur de thèse
Prof. D. Suciu, rapporteur
Dr M. Nikolic, rapporteur
Prof. K. Aberer, rapporteur

Faculté informatique et communications
Laboratoire de théorie et applications d’analyse de données
Programme doctoral en informatique et communications

The important thing is not to stop questioning.

Curiosity has its own reason for existence.

— Albert Einstein

To my family. . .

Acknowledgements

I would like to express my deepest gratitude to my advisor, Prof. Christoph Koch, for his

continuous support throughout my doctoral study. His wisdom, patience, and dedication to

ensuring my academic progress are incomparable. His guidance helped me navigate through

the toughest times of my research journey. The lessons I’ve learned from him have shaped my

scholarly development and will undoubtedly serve me throughout my future career.

I would also like to thank the rest of my thesis committee: Prof. Babak Falsafi, Prof. Karl Aberer,

Prof. Dan Suciu, and Dr. Milos Nikolic for their insightful comments, thought-provoking

questions, and encouragement.

My sincere appreciation goes to my colleagues and fellow researchers in DATA lab at EPFL,

Peter and Zilu, for their helpful discussions, shared knowledge, and academic camaraderie.

The stimulating environment of our lab has been a driving force behind my motivation to

explore and create. I am also deeply grateful to my former colleagues Mohammad, Amir and

Daniel for their guidance whenever I needed it.

I am deeply grateful to the administrative assistants of our lab, Simone and Catherine, for their

valuable support, without which this journey would have been much more difficult.

I am deeply thankful to my friends for their endless cheerleading and understanding. I would

like to particularly thank Aswin and Tom, who embarked on their respective PhD journeys

around the same time I did, and with whom I shared several moments of joy and stress together.

All of you have made this journey less solitary and far more enjoyable.

The love, encouragement, and support of my wife, Anupa, has been my beacon of hope ever

since she became part of my life. Her belief in my abilities, even in times of doubt, provided the

strength I needed to continue. Her sacrifices and understanding have made this achievement

possible. Her unyielding love has been my fortress and my comfort.

Lastly, and most importantly, I am forever indebted to my other family members. My parents,

Laju and Surekha, brother Sharath, and grandparents have showered me with unconditional

love, always believed in my abilities, and constantly reminded me of what truly matters in life.

Your support has been my stronghold from the moment I was born. This achievement is as

much yours as it is mine.

In the grand tapestry of life, this doctoral journey is but one thread, yet it has been deeply

impactful. To everyone who has touched this part of my life, thank you.

Lausanne, 29 May 2023 S.B.J.

i

Abstract
In the current era of big data, aggregation queries on high-dimensional datasets are frequently

utilized to uncover hidden patterns, trends, and correlations critical for effective business

decision-making. Data cubes facilitate such queries by employing pre-computation, but

traditional data cube techniques struggle when managing hundreds of dimensions due to

exponential increases in storage and time requirements for the pre-computation.

This thesis presents Sudokube, an innovative data cube system, designed to facilitate efficient

querying on high-dimensional data. Sudokube introduces an approach that supports high-

dimensional data cubes with interactive query speeds and moderate storage costs. It is based

on judiciously partially materialized binary-domain data cubes, and quickly reconstructing

missing cuboids using statistical or linear programming techniques.

Detailing Sudokube’s functionality, this thesis explores the processes of data loading, cuboid

selection for materialization, and efficient storage formats for optimizing space and projection

time. It investigates the solvers used to reconstruct non-materialized cuboids, offering an

in-depth comparison concerning speed, accuracy, and resource requirements. It also elabo-

rates on Sudokube’s supported queries and aggregation functions, underpinned by extensive

experiments on real-world and synthetic datasets to demonstrate Sudokube’s capabilities.

In conclusion, this thesis provides a comprehensive examination of Sudokube, positing it as

an effective solution to the inherent complexities of high-dimensional data exploration. The

research signifies a substantial advancement in the high-dimensional data domain, empow-

ering users to undertake exploratory data analysis for feature engineering, eliminating the

necessity for compromise while loading data into a data cube, and enhancing the performance

of queries with hierarchical dimensions. The insights from this work underline Sudokube’s

potential to foster advancements in data science methodologies and to open up new avenues

in the field of big data analysis.

Key words: data cubes, approximate query processing, online aggregation, online analytical

processing, data exploration, data visualization, linear programming, moments, iterative

proportional fitting, view materialization.

iii

Résumé
Dans l’ère actuelle des mégadonnées, les requêtes d’agrégation sur des jeux de données à

haute dimension sont fréquemment utilisées pour découvrir des modèles, des tendances

et des corrélations cachées essentielles pour une prise de décision commerciale efficace.

Les cubes de données facilitent ces requêtes en employant une pré-computation, mais les

techniques traditionnelles de cubes de données rencontrent des difficultés lors de la gestion

de centaines de dimensions en raison des augmentations exponentielles des exigences de

stockage et de temps de pré-computation.

Cette thèse présente Sudokube, un système de cube de données innovant, conçu pour faciliter

l’interrogation efficace sur des données à haute dimension. Sudokube propose une approche

qui prend en charge les cubes de données à haute dimension avec des vitesses de requête

interactives et des coûts de stockage modérés. Il est basé sur des cubes de données à domaine

binaire judicieusement partiellement matérialisés et la reconstruction rapide des cuboïdes

manquants en utilisant des techniques statistiques ou de programmation linéaire.

En détaillant la fonctionnalité de Sudokube, cette thèse explore les processus de chargement

des données, la sélection des cuboïdes à matérialiser et les formats de stockage efficaces

pour optimiser l’espace et le temps de projection. Elle étudie les solveurs utilisés pour recons-

truire les cuboïdes non matérialisés, en offrant une comparaison approfondie en termes de

vitesse, de précision et d’exigences en ressources. La thèse détaille les requêtes et les fonctions

d’agrégation prises en charge par Sudokube, étayées par des expériences étendues sur des

ensembles de données réels et synthétiques pour démontrer les capacités de Sudokube.

En conclusion, cette thèse fournit un examen complet de Sudokube, le présentant comme une

solution efficace aux complexités inhérentes à l’exploration de données à haute dimension.

La recherche représente une avancée substantielle dans le domaine des données à haute

dimension, permettant aux utilisateurs d’entreprendre une analyse de données exploratoire

pour l’ingénierie des caractéristiques, éliminant la nécessité de compromis lors du chargement

des données dans un cube de données, et améliorant les performances des requêtes avec des

dimensions hiérarchiques. Les perspectives de ce travail soulignent le potentiel de Sudokube

pour favoriser les avancées dans les méthodologies de science des données et pour ouvrir de

nouvelles voies dans le domaine de l’analyse des mégadonnées.

Mots-clés : cubes de données, traitement de requêtes approximatif, agrégation en ligne, traite-

ment analytique en ligne, exploration de données, visualisation de données, programmation

linéaire, moments, ajustement proportionnel itératif, matérialisation de vues.

v

Chapter 0 CONTENTS

Contents

Acknowledgements i

Abstract (English/Français) iii

List of figures ix

List of algorithms xiii

List of experiments xv

1 Introduction 1

1.1 Research Questions . 2

1.2 Contributions . 3

1.3 Thesis Outline . 4

2 Background 5

2.1 Sets, Functions, and Vectors . 5

2.2 Multivariate Bernoulli Distributions . 7

2.3 Kronecker Product of Matrices . 10

2.4 Data Cube . 10

3 Motivation 15

3.1 Classical Implementation of Data Cubes . 15

3.2 Advantages of High Dimensional Cubes . 16

3.2.1 Off-the-shelf OLAP . 16

3.2.2 Exploration of High-dimensional Data . 17

3.2.3 Avoiding Snowflake Schema . 18

3.2.4 More Powerful Queries . 18

3.3 The Infeasibility of High-dimensional Data Cubes 19

3.4 Related Work . 22

3.4.1 Fully Materialized Data Cubes . 22

3.4.2 Partially Materialized Data Cubes . 22

3.4.3 Iceberg Cubes . 23

3.4.4 Compressed Cubes . 23

3.4.5 Inverted Indexes . 24

3.4.6 Sampling . 24

vi

CONTENTS Chapter 0

3.4.7 Synopses . 26

4 Sudokube System 27

4.1 Sudokube Ideas . 27

4.1.1 Materialization and Querying . 27

4.1.2 Binary Cuboids . 29

4.2 System Architecture . 31

4.2.1 Cube Specification and Querying . 32

4.2.2 Frontend . 33

4.2.3 Backend . 34

4.2.4 Materialization Strategy . 34

4.2.5 Query Approximation . 35

4.3 Experimental Setup . 36

4.3.1 Dataset Description . 36

5 Data Loading and Querying 39

5.1 Data Loading . 39

5.1.1 Static Schema . 40

5.1.2 Dynamic Schema . 41

5.2 Building the Data Cube . 42

5.3 Querying . 43

5.4 Finding Materialized Cuboids Relevant to Queries 44

5.5 Output Post-processing . 46

6 Sudokube Solvers 49

6.1 Answering Queries Exactly . 51

6.2 Solving Queries Using Linear Programming . 55

6.3 Solving Queries Using Moments . 75

6.3.1 Moments of a Cuboid . 75

6.3.2 Cuboid Transformations . 77

6.3.3 Cuboid Approximation from Projections 80

6.3.4 Improved Moment Extrapolation Algorithm 87

6.4 Iterative Proportional Fitting . 94

6.4.1 The Base Algorithm . 95

6.4.2 Convergence and Maximum Entropy . 96

6.4.3 Graphical Models . 96

6.4.4 Junction Tree IPF . 97

6.4.5 Moment-based IPF . 99

6.5 Comparing Different Solvers . 106

6.6 Related Work . 109

7 Materialization Strategy 111

7.1 Number of Materializable Cuboids . 111

vii

Chapter 0 CONTENTS

7.2 Score Functions . 113

7.2.1 Score Function for Naive Solver . 114

7.2.2 Score Function for Approximating from Projections 116

8 Sudokube Backend 123

8.1 Cuboid Layout . 123

8.1.1 Dense Format . 123

8.1.2 Sparse Format . 123

8.2 Projection . 125

8.2.1 Dense and Sparse Row . 127

8.2.2 Sparse Column . 129

8.3 Alternative Storage Layout . 133

8.3.1 Moment Store . 134

9 Conclusion and Future Work 139

Bibliography 148

Curriculum Vitae 149

viii

List of Figures

2.1 An example of a 5-dimensional Bernoulli distribution 7

2.2 An example data cube for sales data . 11

2.3 A snowflake schema for sales data with a central fact table and additional dimen-

sion tables for location, product, and time. 12

2.4 The lattice of cuboids for the sales data cube . 13

2.5 An overview of the high-level operations that can be applied on a data cube . . 13

3.1 Simulation results for the density of a random d-dimensional projection of a

n-dimensional cuboid. Each curve starts at n = d for various d values between 6

and 23. 21

3.2 Relative size and density of a random k-dimensional projection of an n-dimensional

cuboid with m = 2, n = 64, and d = 20 . 21

4.1 Comparison of the classical idea of projecting smallest subsuming cuboid to an-

swer query vs. Sudokube idea of approximating queries using all of its available

projections . 28

4.2 Encoding Item, Quarter and City keys using two binary dimensions each. 29

4.3 Encoding of sales data using binary dimensions in Sudokube 30

4.4 Architecture of the Sudokube system and the workflows for building (1©- 6©) and

querying (1©- 5©) data cubes in the Sudokube system 31

4.5 The Sudokube user interface for querying. Users specify dimensions on the

horizontal axis as well as for series and apply filters. They also choose the

measure, the aggregation function, and the solver for answering queries. 33

5.1 An example DAG of encoders for the sales data schema. The root node is a

product of its children, suggesting that queries are to be constructed by taking

any combination of queries of its children. The intermediate nodes are sums

of their respective children, suggesting that queries are constructed by taking

the union of queries of their children. The leaf nodes represent the individual

encoders for each column. 41

6.1 Lattice of cuboids containing binary dimensions 0. . .3 from the sales data cube 50

6.2 Values in the materialized cuboids for the example sales data cube 50

6.3 Fraction of queries answered by the naive solver by projecting cuboids of various

dimensionality for different query dimensionality 52

ix

Chapter 0 LIST OF FIGURES

6.4 Average time spent by the naive solver in every phase of query execution in batch

mode for different query dimensionality . 52

6.5 Fraction of queries answered by the naive solver by projecting cuboids of various

dimensionality for different number of materialized cuboids 54

6.6 Average time spent by the naive solver in every phase of query execution in batch

mode for different number of materialized cuboids 54

6.7 Fraction of queries answered by the naive solver by projecting cuboids of various

dimensionality for different values of minimum dimensionality of materialized

cuboids . 56

6.8 Average time spent by the naive solver in every phase of query execution in batch

mode for different values of minimum dimensionality of materialized cuboids 56

6.9 The 12 equations obtained from the three relevant materialized cuboids of the

sales data cube for the query Q = {3,1,0}. Among these, at most 7 are linearly

independent. 57

6.10 Average frequency count for cuboid dimensionality in Sudokube approach when

the query dimensionality is varied. Histograms for both the original dimension-

ality of the materialized cuboid and the dimensionality after it is projected to a

subset of the query dimensions are shown. 65

6.11 Average values for execution time, degrees of freedom, and error for the linear

programming solver run in batch mode when the query dimensionality is varied 66

6.12 Average frequency count for cuboid dimensionality in Sudokube approach when

the number of materialized cuboids is varied. Histograms for both the original

dimensionality of the materialized cuboid and the dimensionality after it is

projected to a subset of the query dimensions are shown. 69

6.13 Average values for execution time, degrees of freedom, and error for the lin-

ear programming solver run in batch mode when the number of materialized

cuboids is varied . 70

6.14 Average frequency count for cuboid dimensionality in Sudokube approach when

the minimum dimensionality of materialized cuboids is varied. Histograms for

both the original dimensionality of the materialized cuboid and the dimension-

ality after it is projected to a subset of the query dimensions are shown. 72

6.15 Average values for execution time, degrees of freedom, and error for the linear

programming solver run in batch mode when the minimum dimensionality of

materialized cuboids is varied . 73

6.16 Improvement of error over time for linear programming solver in online mode

for various query dimensionality . 74

6.17 Data flow on array A in Algorithm 7, innermost loop, shown for I = {1, . . . ,m}

and M = (M11 M12M21 M22) . 78

6.18 Computations involved in Algorithm 7 when applied to transform μQ back to CQ 79

6.19 Computing seven out of eight moments μQ of the query cuboid CQ from its three

projections. The last moment is not known and has to be extrapolated from the

others. 81

x

LIST OF FIGURES Chapter 0

6.20 Average error for different moment extrapolation techniques run in batch mode

for various query dimensionality when no heuristics are applied to improve the

error . 85

6.21 Average error for different moment extrapolation techniques run in batch mode

for various query dimensionality after applying heuristic bounds to improve the

error . 87

6.22 Approximating query result from projections using the improved moment solver.

The improved moment solver extracts central moments directly from projections

and approximates query results assuming unknown central moments to be

zero. Instead of transforming extrapolated central moments directly to the

query cuboid, it first transforms the central moments to raw moments and

then transforms raw moments to the query cuboid while applying the heuristic

bounds to improve the error. 88

6.23 Average time spent by the original and the improved moment solvers in each

phase of query execution in batch mode while varying the query dimensional-

ity, the number of materialized cuboids and the minimum dimensionality of

materialized cuboids . 90

6.24 Average error for the improved moment solver run in batch mode with and

without applying the heuristic bounds for improving the error while varying the

query dimensionality, the number of materialized cuboids, and the minimum

dimensionality of materialized cuboids . 91

6.25 Improvement of error over time for the improved moment solver in online mode

for various query dimensionality . 93

6.26 Junction tree for Example 20 . 96

6.27 Average time spent by each IPF solver in each phase of query execution in

batch mode while varying the query dimensionality, the number of materialized

cuboids and the minimum dimensionality of materialized cuboids 101

6.28 Average error for each IPF solver run in batch mode while varying the query

dimensionality, the number of materialized cuboids, and the minimum dimen-

sionality of materialized cuboids . 102

6.29 Improvement of error over time for moment-based IPF solver in online mode

for various query dimensionality . 105

6.30 Average execution time in batch mode for each solving technique for various

query dimensionality . 106

6.31 Average approximation error in batch mode for each solving technique for vari-

ous query dimensionality . 106

6.32 Average error at various times for each solver in online mode 108

7.1 Expected relative size and density of a random k-dimensional projection of a

base cuboid with support size 2d . 112

7.2 Expected support size vs. actual size for cuboids of different dimensionality

whose dimensions are chosen following the prefix and random strategy 112

xi

Chapter 0 LIST OF FIGURES

7.3 The number of materializable cuboids for each cuboid dimensionality for differ-

ent budget factors for NYC and SSB datasets . 113

7.4 Expected utility of a materialization strategy for various cuboid dimensionality

for the naive solver . 115

7.5 Comparing error, score, and utility for moment solver for various dimensionality

of materialized cuboids . 119

7.6 Expected utility for moment solver for various values of total dimensionality n 120

7.7 Expected utility for moment solver for various budget factors given by 2b 120

7.8 Expected utility for moment solver for various support sizes of the base cuboid

given by 2d . 120

7.9 Expected utility for moment solver for various query dimensionality q 121

8.1 Cuboid C{A,B ,C } stored in dense, sparse row and sparse column formats 124

8.2 Projection times for each algorithm for various dimensionality of input cuboids 132

8.3 Projection times for each algorithm for various dimensionality of output cuboids133

8.4 Projection times for each algorithm for various support sizes of input cuboids . 133

8.5 Comparison of storage between data cubes and moment store 137

8.6 Average execution time for the improved moment solver in batch mode for

various query dimensionality when using each backend 138

8.7 Average error for the improved moment solver in batch mode for various query

dimensionality when using each backend . 138

xii

List of Algorithms
1 Algorithm to select cuboids for materialization following the random or prefix

strategy . 43

2 Algorithm that computes a simple plan to build cuboids by projecting the smallest

subsuming cuboids materialized so far . 44

3 Algorithm for finding projections of queries relevant for answering it 45

4 Algorithm to construct a basis from the equations yielded by projections of query

cuboid CQ . 61

5 Simple algorithm to improve bounds of variables in an equation using existing

bounds on other variables . 62

6 Using linear programming to find bounds on query variables 63

7 Efficient implementation of the transformation algorithm 78

8 Transformation of C I into μI . 79

9 Algorithm for reconstructing CQ from moments of its projections 80

10 Algorithm for reconstructing CQ by assuming unknown central moments are zero 83

11 Transformation algorithm that also applies bounds locally 86

12 Reverse Transform . 86

13 Improved algorithm to approximate query cuboid from projections using moments 89

14 Iterative Proportional Fitting (IPF) . 95

15 Junction Tree IPF . 98

16 Moment-based IPF . 100

17 Minimum Spanning Tree Moment-Based IPF . 103

18 High-level algorithm for projecting a cuboid . 125

19 Aggregating duplicate keys in sparse row cuboids using sorting 126

20 Algorithm for the projection loop for a sparse row or dense cuboid 127

21 Simple algorithm for projecting keys . 128

22 Algorithm to generate the projection masks to compress bit vectors 129

23 Algorithm for the projection loop for a sparse column cuboid 130

24 Algorithm to transpose 64×64 bit matrix in place 131

25 Algorithm for inserting a set to a set-trie . 135

26 Algorithm to retrieve values associated with every subset of a given set from a

set-trie . 136

xiii

List of Experiments

6.1 Varying Query Dimensionality on Naive Solver . 51

6.2 Varying Number of Materialized Cuboids in Naive Solver 53

6.3 Varying Minimum Dimensionality of Materialized Cuboids on Naive Solver 53

6.4 Varying Query Dimensionality on Linear Programming Solver in Batch Mode 64

6.5 Varying Number of Materialized Cuboids on Linear Programming Solver 68

6.6 Varying Minimum Dimensionality of Materialized Cuboids on Linear Programming

Solver in Batch Mode . 68

6.7 Studying Improvement of Error over Time for Linear Programming Solver in Online

Mode While Varying Query Dimensionality . 71

6.8 Comparing Moment Extrapolation Techniques in Batch Mode 85

6.9 Comparing Moment Extrapolation Techniques With Bounds in Batch Mode 86

6.10 Varying Query Dimensionality on Improved Moment Solver in Batch Mode 89

6.11 Varying Number of Materialized Cuboids on Improved Moment Solver in Batch Mode 92

6.12 Varying Minimum Dimensionality of Materialized Cuboids on Improved Moment

Solver in Batch Mode . 92

6.13 Studying Improvement of Error over Time for Improved Moment Solver in Online

mode while Varying Query Dimensionality . 93

6.14 Varying Query Dimensionality on IPF Solvers in Batch Mode 100

6.15 Varying Number of Materialized Cuboids on IPF Solvers in Batch Mode 103

6.16 Varying Minimum Dimensionality of Materialized Cuboids on IPF Solvers in Batch

Mode . 104

6.17 Online Experiment for IPF Solver Varying Query Dimensionality 105

6.18 Varying Query Dimensionality on all Solvers in Batch Mode 106

6.19 Online Experiments Varying Query Dimensionality 107

7.1 Finding Cuboid Dimensionality for Maximizing Utility for Naive Solver 115

7.2 Comparing Error, Score, and Utility for Moment Solver 118

7.3 Finding Cuboid Dimensionality for Maximizing Utility for Moment Solver 119

8.1 Varying Dimensionality of Input Cuboid for Projection Algorithms 131

8.2 Varying Dimensionality of Output Cuboid for Projection Algorithms 132

8.3 Varying Support Size of Input Cuboid for Projection Algorithms 132

8.4 Varying Query Dimensionality for Moment Solver in Batch Mode with Different

Backends . 136

xv

1 Introduction

Data has become one of the most valuable assets for organizations in today’s data-driven

world. However, extracting meaningful insights from data is often challenging, particularly

when dealing with large multidimensional datasets. In this regard, data cubes have emerged

as powerful data analysis and visualization tools, enabling users to perform multidimensional

data analysis (MDA) and online analytical processing (OLAP) tasks efficiently.

A data cube is a multidimensional representation of data that allows users to analyze and

explore complex datasets along different dimensions, providing a more intuitive and flexible

approach to data analysis. Data cubes organize data into a grid-like structure, with each

cell representing a unique combination of dimensions and containing a measure value. The

dimensions in a data cube represent the different attributes or characteristics of the data,

while the measures represent the numeric values or metrics associated with the data.

Data cubes have been widely adopted in various fields, including business, finance, healthcare,

and scientific research. They are useful whenever there is a need to analyze data from multiple

dimensions, such as in the case of exploratory data analysis, trend analysis, and decision

support systems. In addition, data cubes have been integrated into various software tools,

such as database management systems and business intelligence platforms, making it easier

for users to interact with and analyze data.

Instead of writing complex SQL queries, users interact with data cubes using simple, and often

visual, query languages. These languages include basic operations such as aggregation, slicing,

dicing, and drilling down or rolling up on dimensions, which can be combined and applied in

various ways to analyze and summarize data in a data cube.

One of the main advantages of using data cubes is their ability to handle large volumes of

data efficiently. By precomputing and storing the results of complex queries, data cubes can

provide near-instantaneous response times to user queries, even for large datasets. Data is

stored at different levels of detail, and users can analyze data from different perspectives and

at varying levels of granularity.

1

Chapter 1 Introduction

Despite their advantages, data cubes have limitations, especially for high-dimensional data.

1. Storage Requirements: Data cubes can be huge, especially when dealing with high-

dimensional data, requiring a significant amount of storage space, making them costly.

2. Data Preprocessing: Building a data cube requires preprocessing the data to aggregate it

at different levels of granularity. This can be time-consuming, especially if the data is

complex and requires significant transformations before it can be aggregated.

3. Data Sparsity: When working with high-dimensional data, it is common for many

possible combinations of dimensions to have no data. This results in sparse data cubes,

which can be challenging to work with.

4. Limited Flexibility: Data cubes are designed to support specific types of queries and are

not always flexible enough to support more complex queries or ad-hoc analysis.

In this thesis, I describe Sudokube, a novel data cube system that allows fast querying of

high-dimensional data. I motivate the need for high-dimensional data cubes and explore

the challenges arising from high-dimensionality, such as scalability issues and their impact

on query performance. I describe the architecture of Sudokube and how it overcomes these

challenges and evaluate different storage models, indexing techniques, and query processing

algorithms both from a theoretical and an experimental point of view. Finally, I investigate the

applications of Sudokube in real-world scenarios.

1.1 Research Questions

This thesis aims to answer the following research questions.

1. What are the storage and computing requirements for materializing high-dimensional

data cubes?

2. What are the existing approaches for data cubes and, in general, answering queries

quickly? How do they fall short for high-dimensional data?

3. What are the motivations for high-dimensional data cubes?

4. How can we overcome the challenges for high-dimensional data cubes?

5. How do we select which cuboids to materialize in a high-dimensional data cube?

6. How do we store and project cuboids efficiently?

7. How can we reconstruct non-materialized cuboids at query time quickly and accurately

from the materialized cuboids?

8. What kind of operations and aggregations are supported in this approach?

2

Introduction Chapter 1

1.2 Contributions

This thesis presents my substantial contributions to the field of high-dimensional data cube

processing. However, I also acknowledge the collaborative nature of this research, which

involved various contributors.

In collaboration with my advisor, Prof. Christoph Koch, I explored and experimentally demon-

strated the storage costs linked to high-dimensional data cubes. We observed the imprac-

ticality of maintaining fully materialized data cubes, which led to the design of Sudokube,

an innovative data cube system supporting interactive querying on high-dimensional data.

Sudokube is founded on two pivotal ideas: selectively materializing a subset of cuboids to

manage storage costs and leveraging smaller cuboid projections for quick approximate query

responses. The initial prototype of the system was built by Christoph, which I used as a

foundation for my work.

A significant part of my work is centered around developing and implementing three distinct

solving techniques for approximating query results from projections. These techniques employ

linear programming, statistical moments, and iterative proportional fitting. I proved the

correctness of these techniques and ran extensive experiments to profile their performance

in terms of speed and accuracy. I optimized the initial version of the linear programming

solver developed by Christoph, designed and implemented the moment solver from scratch,

and refined it in collaboration with Dr. Peter Lindner. Further, Peter, Zhekai Jiang, and I

co-developed the solver using the iterative proportional fitting method, and I built enhanced

versions of the same.

Beyond approximation techniques, my work delved into strategies for materializing cuboids,

deriving their expected utility analytically for different solving techniques, and validating

these deductions experimentally. Peter and I worked with Fabian Jogl and Thomas Depian to

establish the preliminary analysis for the utility of various materialization strategies, which I

have refined in this thesis.

Christoph first proposed the idea of binary dimensions for data encoding to simplify both the

theoretical groundwork and practical implementation of solving techniques. I introduced en-

hancements to the encoding process for increased speed, suggested alternative data encoding

strategies, and examined various formats for storing cuboids to pinpoint the optimal design

for superior performance. Tarindu Jayatilaka assisted me in designing a columnar layout for

binary cuboids.

Moreover, I implemented various data structures and algorithms, enabling efficient indexing,

selection, and projection of binary cuboids in the Sudokube system.

This comprehensive research resulted in three research papers, with two already published

and one under review:

3

Chapter 1 Introduction

1. High-dimensional Data Cubes [13]: Sachin Basil John and Christoph Koch. VLDB 2022.

2. Aggregation and Exploration of High-Dimensional Data Using the Sudokube Data Cube

Engine [14]: Sachin Basil John, Peter Lindner, Zhekai Jiang, and Christoph Koch. SIG-

MOD 2023.

3. Fast Approximate Reconstruction of Joint Distributions from Low-Dimensional Projec-

tions [15]: Sachin Basil John, Peter Lindner, Zhekai Jiang, and Christoph Koch. Submitted

for review to VLDB 2023.

1.3 Thesis Outline

The organization of this thesis is as follows. Chapter 2 provides relevant background infor-

mation and establishes the notations used throughout the thesis. In Chapter 3, the necessity

for high-dimensional data cubes is explained, the current methodologies are discussed, and

their shortcomings are brought to light. Chapter 4 introduces the Sudokube system, thor-

oughly elucidating its architecture and the fundamental ideas that underpin its design and

functionality. The user-facing component of Sudokube, with a focus on data loading and

querying processes, is described in Chapter 5. The focus then shifts in Chapter 6 to the diverse

solving methods employed within Sudokube, along with proof of their correctness and results

from their experimental evaluations. In Chapter 7, various strategies for selecting cuboids

for materialization are examined, and their strengths and weaknesses are compared. Chap-

ter 8 contains a detailed exposition of the backend implementation, describing the storage

formats for cuboids and evaluating different projection algorithms. The thesis concludes with

a summary of key findings and a discussion of potential avenues for future research.

4

2 Background

In this chapter, we go over some mathematical notations and essential background for various

aspects of Sudokube described throughout the rest of this thesis.

2.1 Sets, Functions, and Vectors

Sets, vectors, and functions involving them are used frequently in this thesis. For some natural

number n, let [n] denote the set {1, . . . ,n}. For any set I , 2I denotes the powerset of I containing

all of its subsets. Moreover, {0,1}I denotes the set of functions j : I → {0,1} that map elements

of the set I to either 0 or 1. The subset of I that is mapped by j to 1 is denoted using 1 j .

Example 1. Let n = 4 and I = {1,3,4}. The function j : {1 �→ 1,3 �→ 1,4 �→ 0} ∈ {0,1}I maps

elements of I to either 0 and 1. The elements of I mapped to 1 by j is given by 1 j = {1,3}.

Throughout this thesis, sometimes, it is more convenient to concisely represent such functions

using bit vectors. Formally, the elements of {0,1}I are treated as row vectors that are indexed

by elements of I as follows. Suppose I = {i1, . . . , im} ⊆ [n] with i1 < i2 < ·· · < im . Then for some

function x ∈ {0,1}I , we can construct the m-dimensional vector x by gathering x(i) for every

i ∈ I as the i th entry xi of the vector, i.e., x = (xi)i∈I . This vectorized representation of the

function x is the one being referred to while writing x ∈ {0,1}I .

While explicitly specifying elements of vectors, the reverse order representation is used –

x = (xim , . . . , xi1) or simply x = xim . . . xi1 . This format allows us to easily visualize these bit

vectors as binary encodings of some natural number. The most significant bit representing the

mapping xim for the largest element im appears first on the left, and successive bits represent

the mapping for the other elements in decreasing order.

Example 1 (continued). The function j from above example can be concisely represented using

the vector j = (0,1,1) or simply 011. Note that the domain I has to be understood from context.

We order the set {0,1}I lexicographically in the explicit representation: If x = (xim , . . . , xi1) and

y = (yim , . . . , yi1), then we let x ≺ y if and only if there exists k ∈ I such that xi = yi for all

5

Chapter 2 Background

i ∈ I with i > k, and xk < yk . We use this order when we define vectorized version f of some

function f with the set {0,1}I as its domain. f has 2|I | entries, one for each element in {0,1}I .

Example 1 (continued). Consider I = {1,3,4} as before. Then, the eight vectors from {0,1}I are

ordered as

000 ≺ 001 ≺ 010 ≺ 011 ≺ 100 ≺ 101 ≺ 110 ≺ 111

Consider some function f : {0,1}I →R, defined for each of these eight vectors. Then the vector-

ized version f is given by

f = (f (000), f (001), f (010), f (011), f (100), f (101), f (110), f (111)
)ᵀ ∈R8.

For any vector x ∈ {0,1}I , we define the restriction x↓J to some set J ⊆ I as the restriction of

the function to J . Conversely, for any vector y ∈ {0,1}J and I ⊇ J , we define the extension y↑J

to I by extending the domain of the function represented by y . The additional elements in

the domain are always mapped to zero. Note that restriction and extension are not inverse

operations of each other. For vectors with disjoint domains, we also define their addition
 as

the disjoint union of their mappings. For some J ⊆ I , x ∈ {0,1}I , and y ∈ {0,1}J , we have the

following formulas where 0 refers to the zero vector that maps all elements in I \ J to zero.

x = x↓J
x↓I \J (2.1)

y↑I = y
0 (2.2)

When explicitly specifying vectors from multiple domains, we implicitly extend them to some

common domain for better clarity, padding the missing bits using ∗.

Example 1 (continued). Consider I = {1,3,4} and vector x = 011 ∈ {0,1}I . Then, for J = {1,4},

the restriction of x is given by

y = x↓J = 01 ∈ {0,1}J .

The extension of y is given by

y↑I = 001 ∈ {0,1}I .

Suppose we are additionally interested in restrictions and extensions involving another set

K = {3}, then we explicitly denote the position of missing bits using ∗ as shown below.

y = x↓J = 0∗1 y↑I = 001

z = x↓K =∗1∗ z↑I = 010

Finally, since J and K are disjoint and I = J ∪K , we have x = y
 z .

6

Background Chapter 2

X5 X4 X3 X2 X1 Pr
0 0 0 1 1 0.25
0 1 1 0 1 0.3
0 1 1 1 0 0.1
1 0 0 0 1 0.35

(a) Joint distribution

X4 X1 Pr
0 1 0.6
1 0 0.1
1 1 0.3

(b) Marginal distribution (X4, X1)

X1 Pr
0 0.1
1 0.9

(c) Marginal distribution X1

Figure 2.1: An example of a 5-dimensional Bernoulli distribution

Given two sets I , J ⊆ [n], another set K ⊆ I ∩ J common to both I and J , and any two vectors

x ∈ {0,1}I and y ∈ {0,1}J , we say x is consistent with y on the elements in K if and only if

x↓K = y↓K .

2.2 Multivariate Bernoulli Distributions

Let X = (Xn , . . . , X1) be a vector of n random variables Xi , each taking values in {0,1}. Then

the range of values X can take is exactly {0,1}[n]. The joint distribution of the Xi , i ∈ [n] is the

function p mapping every x ∈ {0,1}[n] to the probability

p(x) = p(xn , . . . , x1) = Pr(Xn = xn , . . . , X1 = x1) = Pr(X = x).

Such distributions are called multivariate Bernoulli or n-dimensional Bernoulli distributions.

For all I ⊆ [n], we write X I for the random vector (Xi)i∈I (ordered in the natural way). By pI

we denote the marginal distribution of X I , i.e. pI (x) = Pr(X I = x) for all x ∈ {0,1}I . Formally,

for some x ∈ {0,1}I ,

pI (x) = ∑
y∈{0,1}[n]

y↓I =x

p(y). (2.3)

The vectorizations p and p I are obtained as described in the previous subsection.

Example 2. Figure 2.1a shows an example of the joint distribution of five Bernoulli random

variables (X5, . . . , X1). All missing entries have a probability of zero. For this example, n = 5,

p(00011) = 0.25, p(10001) = 0.35, and p(10101) = 0.0. Then, the marginal distribution of

(X4, X1) is obtained as shown in Figure 2.1b by summing up the probabilities of entries having

the same values for X4 and X1 in the joint distribution. Then, we write p{4,1}(01) = 0.6 and

p{4,1}(10) = 0.3. Similarly, we write p{1}(0) = 0.1 and p{1}(1) = 0.9 from the marginal distribution

of X1 from Figure 2.1c.

For every i ∈ [n], we define θi as the expected value of the random variable Xi and θi as its

complement.

θi = E [Xi] = Pr(Xi = 1) θi = 1−θi = Pr(Xi = 0) (2.4)

7

Chapter 2 Background

For any x ∈ {0,1}[n], we define the raw moment μ(x) and the central moment σ(x) as follows.

μ(x) =E

[∏
i∈1x

Xi

]
(2.5)

σ(x) =E

[∏
i∈1x

(Xi −θi)

]
(2.6)

These moments capture inter-dependencies between random variables and constitute alter-

nate representations of the probability distribution. It is clear from the definitions that both

μ(0) and σ(0) are equal to 1, where 0 ∈ {0,1}[n] is the zero vector with all elements mapped to 0.

Furthermore, for some x ∈ {0,1}[n] that maps exactly a single element i ∈ [n] to 1 and the rest

to 0, μ(x) = θi and σ(x) = 0.

In addition to the joint distribution, moments can also be defined on marginal distributions.

For some I ⊆ [n] and y ∈ {0,1}I , we define the moments of the marginal distribution for I as

shown below. These expressions are closely related to those in Equations (2.5) and (2.6) as

stated in Proposition 1.

μI (y) =E

[∏
i∈1y

Xi

]
σI (y) =E

[∏
i∈1y

(Xi −θi)

]

Proposition 1. For any sets J ⊆ I ⊆ [n] and x ∈ {0,1}J ,

(i) μJ (x) =μI (x↑I) =μ(x↑[n]), and

(ii) σJ (x) =σI (x↑I) =σ(x↑[n]).

Proof. The proof follows immediately from 1x = 1x↑I = 1x↑[n] since the new dimensions are

mapped to 0.

Example 2 (continued). For the probability distribution shown in Figure 2.1, θ1 = 0.9, θ1 = 0.1,

θ4 = 0.4, and θ4 = 0.6. The raw moment μ(01001) is computed as

μ(01001) =E [X4 · X1] = Pr(X4 = 1, X1 = 1) = 0.3

Similarly, the central moment σ(01001), which is the covariance of X4 and X1, is computed as

σ(01001) =E [(X4 −θ4) · (X1 −θ1)]

= θ4 ·θ1 ·Pr(X4 = 0, X1 = 0)−θ4 ·θ1 ·Pr(X4 = 0, X1 = 1)

−θ4 ·θ1 ·Pr(X4 = 1, X1 = 0)+θ4 ·θ1 ·Pr(X4 = 1, X1 = 1)

= 0.4 ·0.9 ·0−0.4 ·0.1 ·0.6−0.6 ·0.9 ·0.1+0.6 ·0.1 ·0.3

= 0−0.024−0.054+0.018 =−0.06

Note that from Proposition 1, we have μ{4,1}(11) =μ(01001) and σ{4,1}(11) =σ(01001).

8

Background Chapter 2

We now establish a relationship between μI and σI for some set I ⊆ [n] in the following lemma.

Lemma 2. For any set I ⊆ [n] and vector x , y ∈ {0,1}I , we have

μI (x) =
∑

1y⊆1x

σI (y)
∏

i∈1x \1y

θi

Proof. To establish this relationship, we start with the definition of μI (x), and we rewrite the

term Xi as (Xi +θi)−θi . Then, multi-binomial expansion is used to express the product of the

difference as a sum of products. Each term in the sum corresponds to a partition of the set

1x into K and 1x \ K . Using linearity of expectation, we turn the expectation of the sum into a

sum of expectation scaled by a factor. By interpreting the subset K as 1y for some y ∈ {0,1}I ,

the expectation is equal to σI (y), thus establishing the relationship between μI (x) and σI (y).

μI (x) =E

[∏
i∈1x

(
(Xi −θi)+θi

)]

=E

[∑
K⊆1x

∏
k∈K

(
Xk −θk

) · ∏
�∈1x \K

θ�

]
(using multi-binomial expansion)

= ∑
K⊆1x

E

[∏
k∈K

(
Xk −θk

)] · ∏
�∈1x \K

θ�

= ∑
1y⊆1x

σI (y) · ∏
�∈1x \1y

θ� (iterate over y such that K = 1y)

One can easily vectorize θ, μ, μI , σ and σI following the approach in the previous subsection

to obtain θ, μ, μI , σ and σI . Furthermore, Proposition 1 guarantees that, for any I ⊆ [n], μI is

a subvector of μ and σI a subvector of σ.

We close this section by introducing a metric for probability distributions. The (joint) entropy

of X = (Xn , . . . , X1) with joint distribution p is given by

H(p) =−∑
x : p(x)�=0

p(x) · log
(
p(x)

)
(2.7)

where we use the base 2 logarithm. For n-dimensional Bernoulli distributions, H(p) takes

values between 0 (when X has one outcome with probability 1) and n (when X is distributed

uniformly). Intuitively, entropy is a measure of non-uniformity.

Example 2 (continued). The entropy of the joint distribution in Figure 2.1 is given by

H(p) =−(0.25log(0.25)+0.3log(0.3)+0.1log(0.1)+0.35log(0.35)
)≈ 1.883

Details and additional background on the above notions can be found in the appendix of [63].

9

Chapter 2 Background

2.3 Kronecker Product of Matrices

The Kronecker product of two matrices A ∈Rm×n and B ∈Rk×� is the mk ×n� block matrix

A ⊗B =
(

a11B ... a1n B
...

. . .
...

am1B ··· amn B

)
.

We write A⊗m for A ⊗·· ·⊗ A (m times).

Proposition 3. If M1, . . . , Mm are 2×2 matrices and I2 is the 2×2 identity matrix, then

M1 ⊗ . . .⊗Mm =
m∏

i=1

(
I⊗(i−1)

2 ⊗Mi ⊗ I⊗(m−i)
2

)
, (2.8)

where the right-hand involves matrix products. These products fully commute with each other.

This follows from the well-known properties of the Kronecker product. The proof is included

for completeness.

Proof. We use the following particular identities [109], where all A and Ai are r × r matrices,

and all B and Bi are s × s matrices:(∏m
i=1 Ai

)⊗ (∏m
i=1 Bi

)=∏m
i=1

(
Ai ⊗Bi

)
(2.9)

(A1 ⊗B1) · (A2 ⊗B2) = (A1 A2)⊗ (B1B2) (2.10)

(A ⊗ Is) · (Ir ⊗B) = (Ir ⊗B) · (A ⊗ Is). (2.11)

Furthermore, we note that I⊗k
2 = I2k is the 2k ×2k identity matrix. For m = 1, there is nothing to

show. We prove the general case by induction on m > 1. Letting Ni = I⊗(i−1)
2 ⊗Mi ⊗ I⊗(m−i−1)

2 ,

and starting from the right-hand side of (2.8), we have(∏m−1
i=1 (Ni ⊗ I2)

) · (I⊗(m−1)
2 ⊗Mm

)
=
((∏m−1

i=1 Ni
)⊗ I m−1

2

)
· (I⊗(m−1)

2 ⊗Mm
)

(using (2.9))

= ((M1 ⊗·· ·⊗Mm−1)⊗ I2
) · (I⊗(m−1)

2 ⊗Mm
)

(using Induction Hypothesis)

= M1 ⊗ . . .⊗Mm ,

using (2.10). Commutativity on the right-hand side of (2.8) follows directly by inspecting the

factors i and i +1 and applying (2.11).

2.4 Data Cube

The basic idea behind a data cube [39] is to represent data in a multi-dimensional space, where

each axis represents a different dimension or attribute of the data. The data is then aggregated

over each combination of attribute values, resulting in a multi-dimensional array, or cube. We

10

Background Chapter 2

Figure 2.2: An example data cube for sales data

refer to the values in dimension as keys, the combination of keys from different dimensions as

cells, and the aggregate value associated with each cell as measures. The primary aggregation

operator is typically the summation operator, but other aggregations such as count, average,

minimum, maximum, variance, and standard deviation are also commonly used.

Example 3. Consider a data cube for storing the sales data for a retail corporation. It might

have dimensions such as product, time, and region, and the cells in the cube would represent

aggregated measures such as total sales, average price, or number of units sold. Figure 2.2 shows

an instance of such a data cube. The product dimension has keys representing different items —

tea, coffee, banana, and apple. Similarly, each key of the location dimension represents a city,

and that of the time dimension represents a fiscal quarter. Note that only the measures for tea

are shown in the figure for brevity.

It is very common for dimensions in a data cube to be hierarchical. The dimensions are

arranged in levels, with the highest level representing the most general category and the

lower levels representing increasingly specific subcategories. By enabling querying of data at

different levels of granularity, data cubes allow users to gain insights into trends and patterns

quickly.

Due to limitations that restrict the number of supported dimensions that we will go into later

in this thesis, data cubes typically organize data using a star or snowflake schema. In a star

schema, a central fact table stores the measure values and the combination of keys at the

lowest level of the dimensional hierarchy. The data cube would be built on this central fact

table, storing data at the finest granularity. Then, separate dimension tables store additional

attributes of each dimension and are linked to the central fact table through foreign-key

11

Chapter 2 Background

constraints. The term "star schema" comes from the visual representation of the database

schema. The fact table is in the center of the schema, surrounded by several dimension

tables, which resemble the points of a star. A snowflake schema further normalizes data in the

dimension tables into a set of related tables, each representing a specific level of hierarchy

within a dimension. All these tables are related through foreign keys, forming a hierarchical

structure that can be navigated while querying.

Sales

Date

StoreID

ItemID

Amount

Store

StoreID

CityID

...

City

CityID

RegionID

...

Region

RegionID

...
Date

Date

MonthYear

...

Month

MonthYear

Year

...

Year

Year

...

Item

ItemID

SubcategoryID

...

Subcategory

SubcategoryID

CategoryID

...

Category

CategoryID

...

Figure 2.3: A snowflake schema for sales data with a central fact table and additional dimension
tables for location, product, and time.

Example 3 (continued). In the example sales data cube, the time dimension could have levels

for year, quarter, month, and day, as shown in Figure 2.3. Similarly, the product dimension could

have levels for the category, subcategory, and individual product, and the location dimension

could have levels for region, city, and individual stores.

Data cubes are built by defining views that aggregate measures grouped by the subsets of

dimensions and materializing these views. We refer to these views as cuboids. The base cuboid

contains all the dimensions, and all other cuboids are its projections. All these cuboids form

a lattice based on their projection hierarchy. When we speak of data cubes, we refer to the

lattices of all their cuboids. Given a n-dimensional data cube, for each 0 ≤ k ≤ n, there are
(n

k

)
many k-dimensional projections.

Example 3 (continued). The sales data cube has three dimensions – product, location, and

time. So, the base cuboid is three-dimensional, with three two-dimensional cuboids, three

one-dimensional cuboids, and one zero-dimensional cuboid as its projections as shown in

Figure 2.4.

Users query the data cube using simple operations shown in Figure 2.5. The basic operations

that can be performed on a data cube include pivoting, slicing, dicing, and drilling down or

rolling up on dimensions. These operations can be performed on one or more dimensions of

the data cube and can be combined to provide more complex views of the data. Slicing selects

12

Background Chapter 2

{Location, Product, Time}

{Location, Time} {Product, Time} {Location, Product}

{Time} {Location} {Product}

{ }

Figure 2.4: The lattice of cuboids for the sales data cube

roll up roll up

drill down drill down

pivot

dice

slice

Figure 2.5: An overview of the high-level operations that can be applied on a data cube

a subset of the data cube by fixing the keys of one or more dimensions. Dicing is similar to

slicing, but instead of fixing the keys of one or more dimensions, we select a subset of the

keys for those dimensions. Drilling down or rolling up involves navigating the hierarchy of

dimensions to either add or remove levels of granularity. Finally, pivoting rotates the data cube

to change the dimensions displayed along the horizontal and vertical axis in the output table.

Example 3 (continued). For the sales data cube, users may be interested in the total sales for a

particular product in a specific region over a certain period. They could use a slice operation to

filter the data for particular products and regions and a dice operation to narrow down the time

period to the range they are interested in. By rolling up on the location dimension, they can get

the total sales for that product across all regions in the specified time period. Alternatively, they

can drill down on the location dimension to get the total sales for that product for individual

cities in that region. Pivoting the data cube allows the user to change the orientation of the

output to have each row denoting different quarters and each column different cities.

13

3 Motivation

Data cubes are important tools for data analysis, and in the previous chapter, we covered basic

terminology and operations. In this chapter, we shall discuss the techniques that allow data

cubes to answer queries quickly. We will then explore several scenarios that motivated my

research where having a data cube built with a high number of dimensions could be beneficial.

We will also cover why the existing approaches for data cubes struggle in these scenarios.

3.1 Classical Implementation of Data Cubes

A data cube traditionally achieves fast response times for queries by precomputing all cuboids

in its lattice by projecting other cuboids, starting from the base cuboid. Then, when users

interact with the data cube, the sequence of query operations applied by the user so far can be

interpreted as a single aggregation query with the following format.

1 select dimension1 , dimension2 , ..., sum(measure) as aggregated_measure
2 from facttable
3 where condition1 and condition2 and ...
4 group by dimension1 , dimension2 , ...

The where clause contains conditions formed from slice and dice operations. Dimensions

are added to the group by clause when they are drilled down on and removed when they are

rolled up on. Any such query can be answered from the precomputed cuboid that contains

all the dimensions in the group by and where clauses without performing any aggregation.

Rolling up on a hierarchical dimension to aggregate on a coarser level of that dimension does

involve joins and additional aggregations. These operations are slower in general, as we shall

see later in this chapter.

In general, the number of dimensions n in a data cube is usually kept low to avoid the astro-

nomical storage and compute costs for precomputing all 2n cuboids when n is large. However,

there are several scenarios where having a high-dimensional data cube would be useful.

15

Chapter 3 Motivation

3.2 Advantages of High Dimensional Cubes

While classical data cubes typically encompass a limited number of dimensions, there exist

numerous scenarios in which a high-dimensional data cube – one that facilitates querying

across a much larger set of dimensions – could deliver substantial advantages to users.

3.2.1 Off-the-shelf OLAP

Data cubes are widely used in Online Analytical Processing (OLAP), where large volumes of

multidimensional data are analyzed from different perspectives to gain insights and make

informed decisions. Data cubes offer a user-friendly interface that allows users to interact

with data, explore it quickly and easily, and identify patterns and trends.

Data is often stored in different formats and different locations. Furthermore, the data quality

may be poor, and the data may contain duplicates or inconsistencies. Before the data can be

queried, it goes through an Extract-Transform-Load (ETL) pipeline [62] with three steps. The

first step is extracting data from various sources such as databases, flat files, and web services.

The extraction phase involves identifying the data that needs to be extracted and pulling it

from the source systems into a staging area. This step is followed by the transformation phase,

where the extracted data is transformed into a suitable format for analysis. This may involve

cleaning the data, removing duplicates, and resolving inconsistencies. The transformation

phase may also include aggregating or summarizing the data and creating derived datasets

that are useful for analysis. Finally, in the loading phase, the transformed data is loaded into a

data cube by mapping the data to the appropriate dimensions.

Designing an ETL pipeline is a complex and time-consuming task. As the number of dimen-

sions supported by the data cube is limited, data needs to be reduced to a minimal number of

dimensions during the transformation phase before it can be loaded into a data cube. This

means that ETL designers need to anticipate what queries will be asked and carefully select

the dimensions to be loaded into the data cube. The whole data cube must be rebuilt if the

ETL designers change their minds and want to modify some dimensions. Building a data cube

can take anywhere from a few hours to several days, depending on the data size [23]. Faulty

ETL scripts can also necessitate rebuilding data cubes. A bug in the script that incorrectly

transforms the data and maps it to the wrong dimensions can go unnoticed during the cube

construction time. It may only be discovered after a series of queries to analyze the data.

Schema change is another issue in ETL pipeline design. Columns could be renamed without

notice while loading data from a relational update stream into a data cube. This is common in

large-scale event logging systems, such as those used in data center operation management,

where many software packages produce events and frequently get updated. Suppose some

column gets renamed in the log stream, for example, due to some software update, and the

ETL pipeline is not updated. In that case, the renamed column will be ignored, and the

corresponding data not loaded into the data cube.

16

Motivation Chapter 3

However, an OLAP engine that supports high-dimensional data cubes can come ready to use

right after installation, with a universal loader that reads all enterprise data into the data cube,

whether clean or not, without discarding anything. Design regret can largely be eliminated

as the ETL designers no longer have to distill the data to a minimal number of dimensions.

Schema change is no longer a problem, as old and new columns can be loaded as independent

dimensions in a high-dimensional data cube. Once the data is loaded into the data cube,

users can use its interactive data exploration features to explore transformations on the data

that make it easier to analyze. Data cubes excel in aggregation queries that routinely form

part of such exploration. Once these transformations have been identified, users can define a

view that applies these transformations on the existing data cube or build a new one with the

refined ETL scripts. This saves a lot of time and effort for the designers.

3.2.2 Exploration of High-dimensional Data

Several applications with natively high-dimensional data can profit from analytical querying

in a data-cube-style system. One class of such scenarios is exploring feature-rich data to be

fed into machine learning pipelines as part of feature engineering.

Feature engineering is a crucial step in the machine learning pipeline that significantly impacts

the performance of the final model. It improves the accuracy and efficiency of machine

learning algorithms by extracting the most relevant features from data. These are often

identified by exploring the data to find patterns, trends, and insights that are most predictive

of the target variable. Some standard techniques used during data exploration include data

visualization (such as scatter plots, heat maps, and histograms), summary statistics (such

as mean, median, and standard deviation), and dimensionality reduction (such as principal

component analysis or t-SNE).

Exploratory data analysis is a complex and iterative process; the person doing that is usually

the bottleneck of the loop. Humans have a significant cognitive load while analyzing high-

dimensional data, especially without specialized tools. Data cube systems are known for

their easy-to-use visual interfaces that have successfully reduced the perceived complexity

of massive datasets. They excel at computing summary statistics over different subsets of

data and features and would be an excellent tool for data scientists if they could support

high-dimensional data. Further motivation for using data cubes for feature engineering can be

found in prior work [22], [59], [60] that proposes a similar interface for evaluating the accuracy

of different models on subsets of data.

Exploratory data analysis can be applied to find trends and insights even in datasets not

used for machine learning. For example, New York City Parking Violations [31] is a dataset

that contains information regarding parking violations issued in New York between 2014 and

2021. This is an example of a dataset that humans in law enforcement would need to explore

and analyze. It inherently contains more than three or four dimensions typically present in

classical data cubes. Such datasets are most likely explored with rudimentary tools currently

17

Chapter 3 Motivation

due to the lack of a better alternative. However, high-dimensional data cubes, capable of

loading all the data dimensions, enable analysts to quickly discover trends and patterns in

these datasets.

3.2.3 Avoiding Snowflake Schema

Due to a limited number of supported dimensions, data cubes typically organize data as a

star or snowflake schema for representing hierarchical dimensions. A central fact table stores

data for every dimension combination in such a schema, but only at the finest granularity.

The dimensional tables store the relationship between keys at different levels of the hierarchy

and are linked to each other through foreign-key constraints. To coarsen the aggregation for

some dimension, the aggregation is first computed at the finest granularity from the data cube

built on the fact table. Then the dimension is coarsened level by level by successively joining

the current result with a dimension table that coarsen keys to the next higher level and then

aggregating the result grouped by the coarsened key. Performing the joins and aggregations at

query time can slow down queries significantly.

Without practical limitations on the dimensionality of data cubes, it would be possible to con-

struct high-dimensional cubes that can perform aggregations across hierarchical dimensions

without the need for joins. Instead of limiting the users to what is traditionally represented

by a single dimension, we can generously grant dimension status to attributes that otherwise

would not be considered dimensions. Every dimension attribute can be turned into individual

dimensions, and all the dimension tables would be collapsed into the fact table. For instance,

instead of a single time dimension, one can have individual dimensions for week, month,

quarter, and year attributes. High-dimensional data cubes would have no difficulty loading

the data from the denormalized table despite it having all the additional dimensions. Coarse-

grained aggregations can be performed on such data cubes without joins, as each level of the

hierarchy is a dimension of its own in the data cube.

3.2.4 More Powerful Queries

High-dimensional cubes enable users to run more powerful queries than those supported by

classical data cubes. If there is no restriction on the number of supported dimensions in the

data cube, users can break up what is traditionally a single dimension into multiple dimensions.

For instance, a Name dimension can be split into FirstName and LastName dimensions, or

even one dimension for every character position in the string. This allows pattern-matching

queries on the original dimension to be expressed using roll-up and slice operations on the

new dimensions. For example, in the case name was split into two dimensions for first and last

names, rolling up on the dimension for first names aggregates the measure values grouped by

last names. Alternatively, if every character position in the name is a queryable dimension, one

can filter the names to only those starting with some character by slicing on that dimension.

18

Motivation Chapter 3

The idea of splitting dimensions into smaller components can be taken further to enable even

more powerful pattern-matching queries. Consider a dimension with a domain containing

m keys. Any key in this domain can be represented using �log2 m� bits without any loss of

information. In a high-dimensional data cube, each bit of the binary representation of keys

can be turned into a queryable dimension. This allows aggregations to be performed according

to specific groupings of the keys. For example, suppose there exists a Year dimension with

10 keys. This dimension can be replaced by 4 binary dimensions, say y3, y2, y1, and y0, in

a high-dimensional data cube. Querying all 4 binary dimensions is equivalent to querying

the Year dimension. However, one can query a subset of these dimensions to group years

according to some pattern. For example, querying y3 and y2 groups 4 years together, and

querying y0 splits years into those at odd and even positions.

Splitting dimensions into binary dimensions also helps encode the structure and hierarchy

among dimensions more efficiently. Binary dimensions encoding different levels of hierarchi-

cal dimensions can overlap, reducing the overall number of dimensions required. Consider

a dimension for time with hierarchy Year > Quarter > Month. Suppose the domain consists

of 10 years, each with 4 quarters, which in turn, comprises 3 months for a total of 120 entries

at the granularity of months, 40 entries at the granularity of quarters, and 10 entries at the

granularity of years. Instead of splitting Year, Quarter, and Month into 4, 6, and 7 disjoint

binary dimensions totaling 17 if the binary dimensions are reused, the total would only be 8

binary dimensions to represent the entire hierarchy. The four binary dimensions identifying

the year can be shared between all levels, the quarter can be identified with two additional

dimensions, and finally, the month can be identified with two more additional dimensions.

Encoding hierarchical dimensions this way yields a continuous extension of the hierarchy

in the form of prefixes of these binary dimensions. The first four binary dimensions repre-

sent years, and the first six represent quarters, but additionally, the first five dimensions now

represent half-years.

3.3 The Infeasibility of High-dimensional Data Cubes

Despite all the advantages of having high-dimensional data cubes, they are not available in

practice due to several challenges.

The first challenge is the storage costs associated with high-dimensional data cubes. For

simplicity of analysis, let us assume that there are n dimensions, and every dimension has m

distinct keys in its domain. The overall storage cost of a data cube is the cost of materializing

all of its cuboids. While analyzing the storage costs of the cuboids, it is important to consider

two storage formats separately.

First, let us examine the dense format where cuboids are stored as multidimensional arrays.

Storing a k-dimensional projection of the n-dimensional data in the dense format requires

storing mk cells and there are
(n

k

)
as many such projections. When the value of n is in the

range of hundreds, even for a moderate value of m, say 10, storing even a single k-dimensional

19

Chapter 3 Motivation

cuboid is infeasible for k ≥ 20. All cells take up space even though entries in most of the cells

are likely to be zero in such high-dimensional setting due to the curse of dimensionality.

Next, we examine the sparse format that is more suitable for high-dimensional cuboids. This

format stores only the cells with non-zero entries and is therefore more efficient for storing

sparse cuboids where most entries are zero. The number of cells with non-zero entries and

therefore, the storage cost of sparse cuboids depend significantly on data distributions.

Without loss of generality, let the number of non-zero entries in the base cuboid be md .

Consider a scenario where these md entries are spread uniformly and randomly among the

mn cells of the base cuboid. What is the expected size of a random k-dimensional projection

in this case? This cuboid has mk cells whose entries are obtained by aggregating the entries of

mn−k cells from the base cuboid. Pick one of these mk cells. This cell has a zero entry if and

only if all the corresponding mn−k cells contain zero entries. Let X be a random variable that

denotes the number of cells that contain non-zero entries among those mn−k cells. Then

Pr(cell is non-zero in cuboid) = 1−Pr(cell is zero in cuboid) = 1−Pr(X = 0)

The random variable X follows a hyper-geometric distribution describing the number of

successes when sampling mn−k values without replacement from a population of mn among

which only md values result in a success. Therefore,

Pr(X = 0) =
(md

0

) (mn−md

mn−k

)(mn

mn−k

)
When k is sufficiently large that the sample size mn−k is much smaller than the population

size of mn , replacement does not really have an impact and the hyper-geometric distribution

can be approximated using a binomial distribution with the probability of success calculated

from the number of success values in the population.

Pr(X = 0) ≈
(

mn−k

0

)(
md

mn

)0 (
1− md

mn

)mn−k

=
(

1− md−k

mn−k

)mn−k

For very large values of n, applying the limit n →∞, we get

lim
n→∞Pr(X = 0) = e−md−k

.

From this, the expected size of the k-dimensional projection relative to the base cuboid and

its limit are given by

lim
n→∞E(relative size of cuboid) = mk

md
lim

n→∞Pr(cell is non-zero in cuboid)

= mk−d (1−e−md−k
)

20

Motivation Chapter 3

6 8 10 12 14 16 18 20 22 24 26 28 30
Total number of dimensions n

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

D
en

si
ty

Figure 3.1: Simulation results for the density of a random d-dimensional projection of a
n-dimensional cuboid. Each curve starts at n = d for various d values between 6 and 23.

0 5 10 15 20 25 30
Cuboid dimensionality

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

simulated relative size
estimated relative size
simulated density
estimated density

Figure 3.2: Relative size and density of a random k-dimensional projection of an n-
dimensional cuboid with m = 2, n = 64, and d = 20

Plugging in k = d in the equation above, we get that a single random d-dimensional projection

of an n-dimensional base cuboid with md non-zero entries is expected to have a size that is

1−e−1 ≈ 0.63 times the size of the base cuboid. For k > d , the ratio is very close to 1.

We also experimentally verified this claim. Figure 3.1 shows the result after running extensive

simulations for m = 2, projecting a randomly generated n-dimensional base cuboid with 2d

non-zero entries to a random set of d dimensions. The graph plots the relative size of the

projection compared to that of the base cuboid for different values of n and d . For a fixed

value of d , we observe that the density is 1.0 when n equals d and approaches 0.63 when n

becomes much larger.

The expected size of a random k-dimensional projection derived above also matches the

results we obtain in experiments as shown in Figure 3.2. In the figure, the density is close to 1

for k � d , it is 0.63 for k = d then quickly drops to 0 as k � d . The figure also shows that the

relative size of the projection compared to the base cuboid is also close to 1 for k > d .

In other words, big projections of a sparse high-dimensional base cuboid are expected to have

the same size as the base cuboid, with no significant reduction in size due to the projection.

But, there are
(n

k

)
such k-dimensional cuboids, and storing all of them is not possible when n

is very large. Of course, such a random data cube does not model all practical scenarios well,

but one has to assume an extraordinary scenario (such as the pervasive presence of functional

dependencies between dimensions) for it to fare much better than the random case. So fully

materialized data cubes, whether sparse or dense, with large n really cannot be built.

21

Chapter 3 Motivation

3.4 Related Work

The problem of using materialized views to answer queries efficiently has been extensively

studied [43], [70], [97]. However, in this thesis, we focus on a narrow class of queries that do

not have joins or multiple relations as in the general setting that prior work looks into. Without

joins or multiple relations, figuring which views can answer which queries is straightforward

– for any given query, any view that aggregates values grouped by a superset of its group-by

dimensions and filters based on a subset of its filter conditions can be used to answer it. We

will, therefore, not go into a detailed discussion of the related work in the general setting, and

focus only on techniques for data cubes and similar approaches. Much research has gone

into optimizing data cubes due to their importance in analytical processing and business

intelligence. An overview of the research can be found in [20] and [79].

3.4.1 Fully Materialized Data Cubes

There has been prior work on efficient algorithms to speed up the construction of the entire

cuboid lattice. The general idea is to generate a spanning tree rooted at the base cuboid from

the cuboid lattice and construct the data cube top-down starting from the root. All cuboids

along some path in the spanning tree share computation to reduce the overall costs of building

the data cube. [6] introduces two algorithms, PipeSort and PipeHash, that smartly share

sorting and partitioning costs, respectively, across multiple cuboids. Overlap [6] is very similar

to PipeSort and tries to overlap as much sorting as possible while building multiple cuboids.

PartitionCube [87] is a divide-and-conquer algorithm that recursively partitions the data cube

on one of the dimensions until it fits entirely in memory and uses a variant to the PipeSort

algorithm that minimizes the number of sorting passes required. MultiWay Array Cube [110]

partitions the base cuboid into multidimensional array chunks and aggregates dimensions

away in an order that ensures the minimum number of chunks to be kept in memory. While all

these approaches do reduce the cost of building the data cube, they don’t scale to data cubes

with hundreds of dimensions, and the storage costs alone would be prohibitive as described

in Section 3.3.

3.4.2 Partially Materialized Data Cubes

The expensive storage and computing costs associated with fully materialized data cubes have

led researchers to work on partially materialized data cubes. In these data cubes, only a subset

of the cuboids is precomputed and materialized following some materialization strategy. Since

all cuboids are not materialized, if a query is mapped to a cuboid that is not materialized,

it has to be computed at run time from the smallest subsuming cuboid that contains all

the dimensions of the query. The Greedy Algorithm [45] aims to minimize the average time

taken to evaluate a lattice node on the fly while maintaining a limited number of materialized

nodes. The algorithm iteratively selects nodes to be materialized based on their benefit

relative to the current set of materialized nodes. The benefit is calculated as the improvement

22

Motivation Chapter 3

materializing a node offers in the cost of computing itself and its descendants. There exist

variants that consider the absolute benefit as well as the benefit per unit space. PickBySize [91]

proposes a much simpler heuristic that starts with the base cuboid and iteratively adds the

smallest remaining cuboid until some space constraint is reached. The Greedy-Interchange

[41] starts with the solution of the Greedy Algorithm and iteratively exchanges selected and

non-selected cuboids to improve the total benefit. MDred-lattice [10] focuses on optimizing

the average response time for a specific query workload rather than the overall average query,

which significantly reduces the solution space. Some commercial data warehouse systems

materialize all small dimensionality cuboids (cube shell) [72]. Most of these algorithms cannot

be scaled to deal with exponentially large numbers of cuboids present in a high-dimensional

data cube. Given a storage budget, these algorithms are also likely to prefer low-dimensional

cuboids due to their lower storage costs. Due to the curse of dimensionality, except for

extremely low-dimensional queries, the smallest subsuming materialized cuboid is most likely

the base cuboid for most queries, making the idea of precomputing the projections moot.

3.4.3 Iceberg Cubes

Instead of selecting which cuboids are materialized, other approaches save storage space

by pruning computations that they deem insignificant. Iceberg cubes focus on storing only

those cells that meet certain criteria post-aggregation as in HAVING clauses, such as having a

minimum support or its measure value meeting a specified threshold. BUC [16] proposes a

bottom-up approach for building Iceberg cubes, where the cells of low-dimensional cuboids

are ancestors of the cells of high-dimensional cuboids. Under this strategy, if a cell does

not meet the iceberg condition, all of its descendants are pruned, and their values are not

computed. It relies on the anti-monotonic property of aggregates such as sum and count that

guarantees that the value of an aggregate function for a larger subset of data will never be

smaller than the value for a smaller subset of the same data. [44] extends the idea to cover

average, which does not satisfy the anti-monotonic property, by using a weaker condition

called top-k average that does satisfy it while also proposing H-tree, a hypertree data structure

for sharing computation. Star-Cubing [107] extends the data structure further to combine

iceberg pruning with simultaneous aggregations of MultiWay Array Cube [110]. Despite all

these algorithms, due to the exponential growth of the number of cells with an increase in the

number of dimensions, it is unrealistic to compute even an iceberg cube for high-dimensional

data. Iceberg cubes also suffer some drawbacks, such as having to determine a threshold

appropriate for the use case and being sensitive to data skew. For these reasons, we don’t

explore them further in this thesis.

3.4.4 Compressed Cubes

Researchers have also focused on identifying redundancies in data cubes and using special

data structures to store data cubes compactly by removing these redundancies without any

loss of information. Condensed cubes [103] identify special tuples called Base Single Tuples

23

Chapter 3 Motivation

(BST) that are the only tuples in some partition of the base cuboid over any subset of the

dimensions. This tuple is the only one that contributes to some cells in several cuboids.

All these cells have the same value, and can therefore be condensed together to save space.

Quotient Cubes [66] extends this idea by taking cells from multiple cuboids whose values are

aggregations of the same set of base cuboid cell values and assigning them into an equivalence

class of cells with identical aggregate values. This is similar to the suffix coalescing used in

Dwarf Cubes [95]. Cure [78] extends the idea to also cover hierarchical dimensions and applies

further compression to save space. While these frameworks successfully compute and store

the full cube lattice at a fraction of its total unoptimized size, their size grows polynomially with

respect to dimensionality [96] and may require a storage space several orders of magnitude

larger than the base cuboid [29]. This makes them impractical for large datasets.

3.4.5 Inverted Indexes

There has also been prior work on high-dimensional data cubes. Frag-Cubing [72] proposes

partitioning the dimensions into small sets called fragments and fully materializing all cuboids

of every fragment. A query with dimensions from multiple fragments is evaluated using joins

on either inverted indices built on the cuboids of each fragment. These inverted indexes

register a list of tuple ids associated with each attribute value in every dimension. Compressed

Bitmap Index Based Method [69] improves the storage cost by using compressed bitmap

indexes instead of inverted indexes that store tuple ids using integers. qCube [94] discusses

how to use inverted indexes to answer range queries on data cubes. bCubing [93] proposes

a hybrid memory solution employing two-level indexes for big data cubes. The first level

index stores in RAM, for every attribute value, block ids and the number of tuples where that

attribute value occurs. The second level index stores information about individual tuple ids

for each block that contain some attribute value as well as the measure values associated

with each tuple in external storage. 3iCubing [30] proposes using interval inverted indexes

that represent back-to-back tuple ids in an inverted index using intervals to reduce memory

space. All of these approaches have to join and aggregate tuples on-the-fly for dimensions

spanning multiple fragments and cannot support interactive-time query results for large

datasets. Commercial data warehouse solutions such as Vertica [67] and Amazon Redshift [40]

that rely on indexes also have the same drawback.

3.4.6 Sampling

Sampling techniques have been well studied in the database community [4], [21], [50], [83],

[102]. There are two main classes of techniques that use sampling to answer queries – on-the-

fly samples and precomputed samples.

Online aggregation uses on-the-fly samples to approximate answers to database queries

quickly and efficiently. This technique was pioneered by [48] and [42], where samples are

continuously drawn from the database, refining the results as more samples are retrieved.

24

Motivation Chapter 3

This enables users to view preliminary results swiftly and decide whether to proceed with the

query, depending on the precision of these initial outcomes.

However, the implementation of online aggregation requires special operator designs to

facilitate progressive execution [42], [54], [55], [71], [74]. A notable example is the Ripple

Join operator proposed by [42], designed specifically for the progressive computation of joins.

However, this algorithm demands inputs to the join operation to reside in memory for peak

performance, which may pose limitations when dealing with substantial datasets. Addressing

this issue, [56] introduced the Sort-Merge-Shrink (SMS) join. This approach divides the overall

join operation into a union of numerous Ripple Joins, each of which handles a portion of the

input guaranteed to fit within memory. This strategy makes join operations more scalable and

manageable. Building upon this, the Database Online (DBO) system proposed by [54] further

enhances join operator efficiency, demonstrating how to effectively utilize indices on input

data to achieve this improvement.

There have also been substantial advancements in extending online aggregation to distributed

and parallel environments [84]–[86], [105], [108]. [106] suggests a strategy to stream samples

that can be concurrently used by multiple queries, potentially reducing the amount of data

processed for each query and increasing overall system efficiency.

The uniform sampling used in online aggregation comes with several challenges when there is

data skew or there are too few entries in certain groups. The second class of systems that use

precomputed samples for Approximate Query Processing (AQP) employs stratified sampling

to mitigate these issues.

Some systems assign strata purely based on the schema and statistics of the table. Approximate

Query Answering (AQUA) [2], [3] is one such system that considers all possible combinations

of grouping columns and adopts a different sampling fraction for each combination. However,

as the number of combinations increases exponentially with the number of columns, this

approach does not scale well to high-dimensional data with many potential grouping columns.

In a different vein, [7] propose small group sampling, a stratified sampling technique that

constructs both a global uniform sample and separate tables for single grouping columns

containing only a few rows. Coupled with outlier indexes [18], this method is capable of

handling skewed data distribution. However, it does not include samples to cover cases where

small groups may arise when more than one grouping column is used in the query.

An alternative line of research depends on historical workloads to determine sampling weights,

premised on the assumption that future workloads will resemble past ones. Ganti et al. [36]

apply this concept by sampling tuples with weights proportional to the number of queries in

the workload that include it in their results. Similarly, STRAT [19] selects tuples in a manner

that minimizes the relative error of the expected query workload. SciBORQ [92] also employs

a similar strategy, using special structures called impressions where tuples are selected based

on past query results. BlinkDB [5] expands on the idea proposed by [7] to address small groups

from multiple columns that frequently appear in the workload. However, this strategy is

25

Chapter 3 Motivation

limited by storage constraints, which may restrict the number of such groups of columns that

can be efficiently supported, hampering the system in a high-dimensional setting.

While stratified sampling techniques can significantly improve the quality of approximate

query answers in the face of skewed data and outliers, further research is needed to develop

techniques that can handle high-dimensional data and adapt to changes in the workload.

3.4.7 Synopses

Several AQP systems use synopses to have interactive response times while querying big data.

These synopses capture statistical properties of the data, usually with loss of information, while

occupying much less space. By running queries on these much smaller synopses instead of

the actual data, AQP systems trade accuracy for speed. We covered sampling-based synopses

in the previous section and focus on other types of synopses in this section.

[11] converts values of 2-D cuboids into probability matrices and computes linear regression

models that compute any entry of these matrices. This idea is further refined in [12], where

they model dense regions of the base cuboid using log-linear models. A similar approach

is suggested in [90], where a Gaussian kernel that explains the data distribution is obtained.

Alternatively, [100] proposes approximating cuboids by applying a wavelet transformation on

the logarithm of partial sums of values. These approaches require a large number of summary

information to approximate high-dimensional data accurately. Due to the sparsity of high-

dimensional data, the space required for storing the summary information may far exceed the

space needed for storing the base cuboid.

The advantages of high-dimensional data cubes and the challenges faced by current ap-

proaches in supporting interactive-time querying on high-dimensional data led me to explore

new approaches for selecting the cuboids to be materialized, how these cuboids are stored as

part of the data cube and how they are used in answering queries.

26

4 Sudokube System

Addressing the challenges of high-dimensional data cubes requires a solution that strikes

a balance between pre-computation storage requirements and swift query response times.

With this in mind, this chapter presents Sudokube, a novel data cube system that permits

fast querying of high-dimensional data and provides a broad spectrum of functionalities for

Online Analytical Processing (OLAP) tasks.

Sudokube judiciously selects a subset of cuboids for materialization, keeping storage costs

low. Utilizing these materialized cuboids, it swiftly approximates queries under certain sta-

tistical assumptions. Detailed techniques for efficient approximation and their performance

assessment in terms of speed and accuracy will be discussed in Chapter 6.

In this chapter, we will discuss the key concepts and the overall architecture of Sudokube.

This discussion provides a foundation for understanding Sudokube’s innovative approach to

high-dimensional data cube processing.

4.1 Sudokube Ideas

4.1.1 Materialization and Querying

The number of possible cuboids in a high-dimensional data cube is astronomical, and we

have already discussed the infeasibility of materializing the entire cuboid lattice for these data

cubes. Sudokube takes an approach following well-established methods [10], [41], [45], [91]

that only materialize a subset of the cuboids that form the data cube. However, the fraction

of the cuboids that can be materialized while keeping the storage costs feasible is extremely

small, given the high dimensionality. The classical approach [45] for computing some query

cuboid by projecting the smallest materialized cuboid that subsumes it cannot guarantee

interactive time for answering the query. In most cases, this approach ends up projecting the

base cuboid or some high-dimensional cuboid containing nearly all the dimensions, which

can take a long time.

27

Chapter 4 Sudokube System

∅
2 3 4

1,4 2,4 1,30,1

0,1,2,3,4 1,3,6,8,9 2,4,6,7,90,1,7,8,9

0,1,2,
5,...,99

0,...,3,
6,...,99

0,...,4,
7,...,99

0,1,
4,...,99

0,1,
3,...,99

0,1,2,
4,...,99

0,...,3
5,...,99

0,...,99

∅
2 3 4

1,4 2,4 1,30,1

0,1,2,3,4 1,3,6,8,9 2,4,6,7,90,1,7,8,9

0,1,2,
5,...,99

0,...,3,
6,...,99

0,...,4,
7,...,99

0,1,
4,...,99

0,1,
3,...,99

0,1,2,
4,...,99

0,...,3,
5,...,99

0,...,99

D
im

en
si

on
al

ity

Project Smallest Subsuming Cuboid Approximate Using Projections of Query

Figure 4.1: Comparison of the classical idea of projecting smallest subsuming cuboid to answer
query vs. Sudokube idea of approximating queries using all of its available projections

Sudokube takes an alternative approach by which, the materialized cuboids are used to

efficiently approximate or reconstruct missing query cuboids that were not selected for ma-

terialization. While a query cuboid may not be computed precisely from its projections, the

projections still hold information that can be harnessed to approximately reconstruct it. The

system operates under the assumption that queries are relatively low-dimensional as their

results need to be displayed and comprehended by humans. Consequently, their projections

are also few and low-dimensional. The approximation of a query from its projections can be

accomplished interactively through an online approach [48], processing all available query

projections in ascending order of dimensionality. Sudokube quickly generates approximate re-

sults after processing low-dimensional projections, and refines the results as more projections

are processed. Eventually, the exact result is obtained after processing a cuboid containing all

query dimensions.

Example 4. Imagine a data cube with 100 dimensions labeled 0 to 99. As explained in Sec-

tion 3.3, fully materializing all the cuboids in the lattice is not feasible, so only a subset of them

can be materialized. Let us assume that during cube construction, only the orange-colored

cuboids shown in Figure 4.1 were chosen for precomputation based on a particular material-

ization strategy. Now, consider a query that corresponds to the cuboid containing dimensions

{0, . . .,4} which is not materialized. Classical data cube approaches would answer the query

precisely by projecting the smallest subsuming cuboid containing all query dimensions, in this

case, the 98-D cuboid with all dimensions except 5 and 6. Projecting this cuboid to answer the

query 0, . . .,4 takes nearly as much time as projecting the base cuboid with all 100 dimensions.

Sudokube can use any of the 32 projections of the cuboid {0, . . .,4} to approximate it to some

degree. However, not all of them are used. The materialized 2-D cuboid {2,4} contains more

28

Sudokube System Chapter 4

Figure 4.2: Encoding Item, Quarter and City keys using two binary dimensions each.

information than both the 1-D cuboids {2} and {4} combined, while also being low-dimensional

enough for quick processing. Therefore, Sudokube processes the {2,4} cuboid but not {2} or {4}

individually. Similarly, it uses the information from the 2-D cuboids {1,4} and {1,3} to approxi-

mate the cuboid {0, . . . ,4}. All query projections need not have been precomputed either. The

cuboid {0,1}, though not materialized, can be obtained by projecting the {0,1,7,8,9} cuboid and

used to approximate the query {0, . . . ,4}. Finally, after processing the cuboid {0, . . . ,4,7, . . .,99},

the query projection itself is processed, and the exact answer is obtained.

This approach is best suited for scenarios where the number of dimensions requested in a

single query is small, but not too small. The number of dimensions has to be low enough so

that a human user is capable of interpreting the displayed result [72]. The low-dimensionality

of the query has an added benefit – it guarantees that the projections are even more low-

dimensional, and therefore, cheaper to process and have a greater likelihood of being chosen

for materialization.

4.1.2 Binary Cuboids

Sudokube exclusively operates with binary data cubes consisting of binary dimensions with

domains containing only 0 and 1. While real-world data does not solely comprise such binary

dimensions, this model does not limit applicability. Any classical dimension with a domain

of m values can be encoded using �log2 m� bits, and Sudokube converts each of those bits

into binary dimensions. To maintain data semantics and create the appearance of non-binary

domains, Sudokube groups these �log2 m� binary dimensions into a cosmetic dimension. Users

interact with cosmetic dimensions, and the binary encoding remains transparent to them.

Throughout this thesis, we will use bi to denote the value of the binary dimension labeled i .

Example 5. Consider the sales data from Example 3. Each of the Time, Product, and Location

dimensions have 4 keys in their domain, which can be encoded using 2 bits each. Figure 4.2

shows the relationship between 6 binary dimensions 0. . .5 and the cosmetic dimensions obtained

by grouping them. Figure 4.3b shows a part of the binary base cuboid containing these binary

dimensions constructed from the sales fact table, which is shown in Figure 4.3a.

29

Chapter 4 Sudokube System

(a) Fact table (b) Binary base cuboid

Figure 4.3: Encoding of sales data using binary dimensions in Sudokube

Utilizing binary data cubes in high-dimensional settings provides several advantages that

Sudokube capitalizes on. First, the mathematics and algorithms for several operations such

as selection, projection, storage, and approximation of cuboids become much cleaner and

simpler when every dimension is binary. Second, the finer granularity of dimensions in a

binary data cube enables encoding structure and hierarchy within the relationships among

dimensions themselves, eliminating the need for star or snowflake schemas and joins.

Example 5 (continued). In the binary data cube for the sales data, the binary dimensions 5

and 4 together encode the item. However, the binary dimension 5 by itself encodes the product

category. b5 = 0 indicates fruits and b5 = 1 indicates beverages. Similarly, binary dimensions

3 and 1 encode half-years and regions, respectively. If a query asks to break down sales by

product category instead of individual items, there is no need to do joins with dimension tables

to coarsen the dimension granularity. This query is mapped to some binary cuboid that contains

only dimension 5 instead of both 5 and 4 as would have been the case if the query asked to group

by individual items. This cuboid may have been materialized and the result of the query directly

available; otherwise, Sudokube uses its reconstruction techniques to answer it.

Let n be the number of such binary dimensions in the data cube. Then, there are 2n cells in

the base cuboid corresponding to every combination of keys from these binary dimensions.

Each cell is identified by some mapping x ∈ {0,1}[n], concisely represented using a vector x

as described in Section 2.1. We denote the measure value associated with the cell x in the

base cuboid by C (x). In general, for some I ⊆ [n] and y ∈ {0,1}I , we denote the measure value

associated with the cell y in the projection of the base cuboid to I as CI (y). The cuboid CI

can be obtained by projecting the base cuboid or any other cuboid C J with I ⊂ J ⊆ [n]. The

computation of the projection for the sum aggregation is given by

CI (y) = ∑
z∈{0,1}J

z↓I =y

C J (z). (4.1)

This formula is similar to that for the marginalization of probability distributions described

in Equation (2.3). If all the measure values in a data cube are non-negative, then the binary

30

Sudokube System Chapter 4

Schema Base
Cuboid

Data Loader

Input Data

Cuboid
Metadata

Cube Builder

Fetched
Cuboids

Cuboid Storage

Build
Plan

Materialization
Strategy

Prepare
Request

Fetch
Request

Cuboid Index

Query Result

Solver

Output Handler

Query

Schema Encoding, Binary Translation

FRONTEND

CORE

BACKEND

RAM Disk Network

1 1

2

3

4

5

Table Plot

Query Interpreter

2 3

4

5 6

Figure 4.4: Architecture of the Sudokube system and the workflows for building (1©- 6©) and
querying (1©- 5©) data cubes in the Sudokube system

base cuboid can be considered an unnormalized joint probability distribution, and its cuboids

could be the marginal distributions. Let total denote the total sum of the measure values for

every cell in the base cuboid. Then, for any I ⊆ [n] and x ∈ {0,1}I , the marginal probability

distribution and the cuboid corresponding to dimensions in I are related to each other by

pI (x) = CI (x)

total
(4.2)

We will assume throughout this thesis that the measure values are non-negative. If that is

not the case, the data cube can be split into two data cubes, one containing all the positive

measures and the other containing (the absolute value of) all the negative measures. Any

query on the original data cube can be calculated as the difference between the results of the

same query on these data cubes.

4.2 System Architecture

Sudokube comprises three components – frontend, core query execution engine, and backend.

The frontend offers a basic user interface for data loading, querying, and displaying the results.

It also provides schema support and handles the binary encoding of keys. The rest of the

31

Chapter 4 Sudokube System

Sudokube system sees only the binary dimensions representing the individual bits of these

keys. The core engine decides what cuboids to materialize during cube construction time

and what cuboids to fetch and process during query time. It allows users to choose from

several solvers to extrapolate query results from the fetched cuboids. Finally, the backend is

responsible for storing, projecting, and retrieving materialized cuboids.

The workflow for using Sudokube is shown in Figure 4.4. First, a preconfigured loader reads

data 1© from a source and produces a schema 2© that encodes the data to form the (binary)

base cuboid 3©, which is then stored in the backend. Next, the cube builder selects which

cuboids will be materialized based on a given materialization strategy 4©. The backend is

then provided with a build plan 5© that describes which cuboids need to be materialized by

projecting other cuboids. After constructing the data cube, the core engine indexes references

to the cuboids 6© returned by the backend.

When the user submits a query 1©, the frontend converts it into a query on the binary dimen-

sions and forwards it to the core engine. The core then queries the cuboid index 2© to find

the materialized cuboids relevant to the query. After this, the core instructs the backend to

fetch (possibly projections of) those cuboids 3©. The fetched cuboids are fed into the solvers

4©, which use them to extrapolate the query results 5©. Finally, the output handler displays

the result in the requested format.

4.2.1 Cube Specification and Querying

Sudokube supports all the fundamental data cube operations. Before a cube is constructed,

Sudokube requires all measures of interest to be specified so they can be precomputed. Users

can designate individual columns as measures or specify functions that produce measure

values from multiple columns. After the cube has been built, users can query one or more of

these measures. Sudokube allows users to specify a variety of aggregation operations such

as sum, count, average, variance, correlation, and linear regression coefficient. Users can

pivot dimensions across both the horizontal and vertical axes. In addition to traditional

dimensional hierarchies, Sudokube allows fine-grained virtual hierarchies for each dimension

where the consecutive values are grouped together in sizes of powers of two. For example, users

can specify a hierarchy for the time dimensions such as Year - Month - Day, and Sudokube

additionally offers virtual dimensions such as Year/4 or Day/2 where four consecutive years

or two consecutive days are grouped together, respectively. Users can then drill down on the

result by either going down one level on the hierarchy for some dimension or adding a new

one to some axis. Conversely, the user can roll up going up the hierarchy for some dimension

or removing one. Finally, users can slice and dice on multiple dimensions to filter the keys in

the result. We provide users with a visual interface (inspired by existing visualization tools

such as [77]) as shown in Figure 4.5 for easily specifying such queries.

Sudokube contains a library that implements other operations through post-processing. These

operations include window-based aggregations, user-defined grouping of values, and defining

32

Sudokube System Chapter 4

2014Q1 2014Q2 2014Q3 2014Q4 2015Q1 2015Q2 2015Q3 2015Q4

0

100

200

300

400

500

600

700

800

900

1000

South America

North America

Europe

Africa

Figure 4.5: The Sudokube user interface for querying. Users specify dimensions on the
horizontal axis as well as for series and apply filters. They also choose the measure, the
aggregation function, and the solver for answering queries.

views that transform data cubes to add, remove, or modify dimensions in some way. High-

level operations for data exploration that wrap several basic operations are also included. For

example, users can load arbitrary semi-structured data into a data cube and analyze possible

schema changes or functional dependencies. We will go into more detail concerning all the

types of queries and aggregation functions later in Chapter 5.

4.2.2 Frontend

The Sudokube frontend interacts with users through a graphical interface. It handles data

loading, query interpretation, and output, and converts data between human-readable and

binary values. Sudokube supports two types of schema — static and dynamic. In a static

schema, the columns in the input data are known beforehand, and the functions mapping

them to dimensions in the data cube and all hierarchical structures are programmed into the

data loader. However, in a dynamic schema, the schema need not be known (or even fixed)

before data loading. New bits are assigned automatically whenever Sudokube discovers a

new column or when an existing column requires a larger domain. The downside of dynamic

schema is that the bits for a dimension need not be next to each other, which slows down the

binary encoding process. Sudokube can load data from CSV or other fixed format files using a

static schema and data from JSON files using a dynamic schema.

Sudokube uses multiple encoders to encode values to binary. The dictionary encoder encodes

a value using its position in a dictionary. For a static schema, the values are sorted and added

to the dictionary before data loading, whereas, in a dynamic schema, Sudokube adds them

when discovered during data loading. Sudokube encodes integer and fixed-point numbers

using their offset from the minimum value in the domain for static schemas, but encodes

them using their absolute values and sign bits for dynamic schemas. More details concerning

data loading and binary encoding are described in Chapter 5.

33

Chapter 4 Sudokube System

4.2.3 Backend

The Sudokube backend uses multiple formats for storing cuboids – dense, sparse row, and

sparse column. A cuboid stored in dense format is a collection of multi-dimensional arrays,

one for each measure. In each array, the position encodes the values of the binary keys, and

the entry at that position is the associated measure. This format does not require additional

space to store keys and is mainly used to store low-dimensional cuboids where most keys

have associated measure values. However, it is infeasible for high-dimensional cuboids where

the support (the number of keys with a non-zero measure value) is small compared to the

domain size. In such cases, Sudokube opts to use the sparse format where both the key and

the measure values are stored, but only for the keys where at least one associated measure

value is non-zero. Sudokube always stores base cuboids in the sparse format. There are two

variants of the sparse format as well. In the sparse row format, a cuboid is stored as a collection

of records containing a binary key and the associated measures. This format is used as an

intermediate representation for the base cuboid during data loading. Once data loading is

completed, Sudokube converts the base cuboid to the sparse column format. In this format,

a cuboid is a collection of arrays, one array for each key bit and each measure. The sparse

column is better suited for materialization as the projection operation is faster and more

efficient for this format compared to the sparse row format. While projecting a materialized

cuboid during querying, only the relevant dimensions need to be processed, improving cache

efficiency. Sudokube deploys different techniques for duplicate elimination during projection

depending on the projection size. If the projection is sufficiently low-dimensional and fits in

memory, hashing is used for duplicate elimination; otherwise, sorting is used. We will cover

all of this in more detail in Chapter 8.

4.2.4 Materialization Strategy

Given a base cuboid containing hundreds of binary dimensions, precomputing and material-

izing all its projections is infeasible in terms of time and space. Sudokube, therefore, employs

multiple random partial materialization strategies that randomly select which projections are

materialized. Each of these strategies selects cuboids of different dimensionality following

some probability distribution. For a given dimensionality distribution, Sudokube supports

two ways to specify how the binary dimensions are selected for a cuboid of some particular

dimensionality. The binary dimensions could be chosen either uniformly at random or by pick-

ing prefixes of binary dimensions that encode some cosmetic dimension. The latter approach

yields better results as the selected cuboids closely match queries involving hierarchical di-

mensions. Moreover, Sudokube has heuristics to predict the storage cost of these strategies

and can suggest a preferred strategy for a given storage budget. We will analyze different

materialization strategies and their utility for different solving techniques in Chapter 7.

34

Sudokube System Chapter 4

4.2.5 Query Approximation

While executing a query, Sudokube goes through three phases — prepare, fetch, and solve.

During the prepare phase, Sudokube processes the cube meta-data to produce a fetch plan.

The cuboids relevant to a query are found by grouping the cuboids by their intersection

with the query and choosing the cheapest cuboid in each group. We use a cuboid’s original

dimensionality (before the intersection with the query) as a heuristic for its cost. Finally, any

cuboid that contains only a subset of dimensions from another relevant cuboid is eliminated.

At the end of the prepare phase, the core engine produces a fetch plan that lists the remaining

cuboids and what projection needs to be obtained from each.

During the fetch phase, the specified cuboids are projected by the backend and fetched as

described by the plan. Finally, the fetched cuboids are fed into the solver during the solve phase.

Depending on their needs, users can choose from several solvers offered by Sudokube. First,

the naive solver gives the exact result for any query by projecting the smallest materialized

cuboid that subsumes it. However, in practice, this subsuming cuboid is almost always the

base cuboid for which projection may take a long time. Next, we have the linear programming

solver that constructs linear equations [49] on query result variables from the fetched cuboids

and outputs lower and upper bounds for each variable. While these bounds are guaranteed

to be correct, they can be quite lax, and their computation does not scale well to higher-

dimensional queries. Finally, we have two approximate query solvers. The moment solver

[13] extracts (stochastic) moments [99] that capture inter-dependencies between the query

dimensions from the fetched cuboids using a process similar to the Fourier transform. It

then extrapolates them by assuming uncorrelatedness for query dimensions with unknown

interaction. Additional heuristics are employed to counteract cases where the assumption

is infeasible. This solver yields query results very quickly but is less accurate, particularly

for high-dimensional queries. The graphical model solver uses iterative proportional fitting

[28], [98] to find the maximum entropy query result subject to the constraints imposed by the

fetched cuboids. It starts with a uniform distribution of data and iteratively scales the data to

fit the fetched cuboids until convergence. This yields more accurate results but takes more

time than the moment solver.

Example 6. Consider a query that sums the measure values grouped by three binary dimensions.

Each of the three 2-D projections of this query yields four linear constraints with sums of two

measure values for fixed keys of the dimension pair. The linear programming solver finds the

upper and lower bounds for each entry in the query result by maximizing and minimizing an

objective function comprising that entry subject to the constraints. Alternatively, the three 2-D

projections capture dependencies between any two dimensions, treated as random variables,

in the form of moments [99] – three covariances, three means, and the total sum. The moment

solver makes use of the fact that the query result can be exactly reconstructed from eight moments,

out of which seven are known from the available projections. It fills in known seven moments

and assumes that unknown moments are zero, such as the “generalized covariance” of all three

dimensions in this example. The graphical model solver initially assigns a uniform value to all

35

Chapter 4 Sudokube System

eight entries in the query result. These values are scaled up so that projecting the query result

matches the given projections, successively, until convergence.

Furthermore, Sudokube supports both online and batch modes for querying. In batch mode,

the base cuboid is never fetched, and the solve phase starts after the fetch phase ends. The

final (approximate) query result is then returned to the frontend for decoding and displaying

to the user. In online mode, however, the fetch and the solve phases are concurrent, and the

query result is updated and displayed periodically using a callback function as more and more

cuboids are fetched. Chapter 6 discusses each of these solvers in more detail and evaluates

their performance on multiple metrics such as speed and accuracy.

4.3 Experimental Setup

In the following chapters, we will experimentally demonstrate the performance of the Su-

dokube system on various aspects. These experiments are conducted on a prototype of the

Sudokube system that we have implemented. This prototype operates on a single node with its

backend implemented in C++. The other system components are developed in Scala. The C++

backend is accessed via the Java Native Interface, which allows data storage and processing to

be handled outside of the Java Virtual Machine (JVM). We chose this hybrid design to exploit

the computational efficiency of C++ while utilizing the ease of prototyping in Scala.

In the backend, multithreading is utilized to concurrently fetch and project multiple cuboids.

However, cuboids are not sharded; a single thread always processes a given cuboid. To main-

tain a fair comparison in the experimental tests, all solvers refrain from fetching cuboids in

parallel, even though many of them have the capacity to do so. This restriction was imple-

mented because the naive solver operates on a single cuboid using a single thread.

Parallelism is, however, employed in data cube construction. The frontend and the core engine

are executed on separate threads to facilitate the online query mode. Although the query

engine is designed to execute different queries in parallel, this is not done in the experiments.

All data cubes utilized in the experiments are constructed offline and saved to disk. Before

starting any experiment, any data cube used in that experiment is loaded into RAM. Accord-

ingly, all experiments in this thesis measure the time to fetch cuboids from RAM, most of which

is spent projecting the cuboid to the specified dimensions. All experiments are conducted

on a server with 2 × 12-core Intel® Xeon® E5-2680 v3 (Haswell) CPUs, 30 MB cache, 256 GB

DDR4-2133 RAM, and 200 GB SATA3 SSD.

4.3.1 Dataset Description

The experimental setup uses two datasets for evaluation — one real-world and one synthetic.

The first dataset, referred to as NYC, contains actual data concerning parking violations issued

36

Sudokube System Chapter 4

in New York City between the years 2014 and 2021 [31]. This dataset comprises 43 columns

that detail specifics about the vehicles involved, the violation, and so on. The dataset contains

nearly 93 million rows, with data distributed fairly evenly across the eight-year span.

The second dataset used is the Star Schema Benchmark (SSB) dataset [82][88]. This dataset

provides synthetic business-related data modeled using a star schema. The fact table, lineorder,
includes various details about order items, such as quantity and price, while supplementary

information is stored in the customer, part, supplier, and date dimension tables. Scale factor

100 is used to populate the tables, yielding 600 million rows of lineorder data.

Prior to loading into Sudokube, both datasets underwent minor preprocessing. The SSB

dataset was flattened by joining the lineorder table with all dimension tables using the respec-

tive keys. Dimensions not contributing to meaningful aggregations were discarded, including

those such as name, address, or customer_id. The majority of dimensions in both datasets are

categorical and were encoded to binary dimensions using a dictionary encoder. Numerical

dimensions like tax or revenue were directly encoded as fixed-width integers. Date and time

columns were encoded by breaking them down into components, such as year or hour, each

of which was then individually encoded as integers. This encoding strategy resulted in a total

of 188 binary dimensions for the SSB dataset and 429 binary dimensions for the NYC dataset.

Tables 4.1 and 4.2 show the original columns as well as the number of binary dimensions

assigned to each of them by Sudokube for SSB and NYC datasets.

As the measure value to be aggregated, the contribution of each line item toward the total

order price is used for the SSB dataset and for the NYC dataset, the number of rows for each

combination of keys is used. Sudokube assigns one 8-byte word for storing each of these

measure values. We use the sparse column format to store the base cuboids for these datasets.

The rows are arranged in groups of 64 and each group is assigned one word per dimension for

storing the keys plus 64 words for storing the measure values. Consequently, the base cuboid

size is approximately 18.9 GB for the SSB dataset, calculated as
⌈

600·106

64

⌉
· (188+64) ·8 bytes

and approximately 5.73 GB for the NYC dataset, calculated as
⌈

93·106

64

⌉
· (429+64) ·8 bytes.

For our experiments, we build several data cubes using Prefix and Random strategies on

both datasets with a variety of values for the parameters N specifying the total number

of materialized cuboids and dmin specifying the minimum dimensionality of materialized

cuboids. The storage costs for various data cubes are summarized in Table 4.3. Note that the

figure shows the additional storage costs for each data cube after excluding the cost for the

base cuboid in gigabytes and as a fraction of the base cuboid size.

In most of our experiments, we select 100 queries of some specified dimensionality following

the same strategy as the data cube they would run on.

37

Chapter 4 Sudokube System

Table 4.1: The schema for the SSB dataset. The original columns in the dataset are listed along
with the number of binary dimensions that are assigned to encode it as a cosmetic dimension.

Column #bits Column #bits Column #bits Column #bits
order_date 14 sup_cost 17 cust_nation 5 mfgr 2
ord_priority 2 container 6 cust_region 2 category 5
ship_priority 0 tax 4 cust_mkt_segment 2 brand 10
quantity 6 commit_date 14 supp_city 8 color 7
extended_price 24 ship_mode 3 supp_nation 5 type 8
discount 4 cust_city 8 supp_region 2 size 6
revenue 24

Table 4.2: The schema for the NYC dataset. The original columns in the dataset are listed along
with the number of binary dimensions that are assigned to encode it as a cosmetic dimension.

Column #bits Column #bits Column #bits Column #bits
Plate ID 24 Issuer Precinct 10 Violation Time 12 House Number 17
Registration State 7 Issuer Code 17 Violation Code 7 Street Name 19
Plate Type 7 Issuer Command 14 Violation County 6 Intersecting Street 20
Vehicle Make 15 Issuer Squad 6 Violation Front/Opposite 4 Street Code1 13
Vehicle Expiration Date 24 Issuing Agency 5 Violation Legal Code 3 Street Code2 13
Vehicle Color 13 Issue Date 18 Violation Location 10 Street Code3 13
Unregistered Vehicle? 3 Date First Observed 17 Violation Precinct 10 Meter Number 17
Vehicle Year 12 Time First Observed 12 Law Section 4 Feet From Curb 6
Vehicle Body Type 13 From Hours In Effect 11 Sub Division 8 To Hours In Effect 11
Days Parking In Effect 8

Table 4.3: Additional storage costs for various data cubes excluding the base cuboid cost.

N dmin
Storage

(GB)
Fraction

215 6 0.091 0.016
215 10 1.01 0.176
215 14 8.833 1.542
215 18 57.198 9.982
212 18 7.222 1.26
29 18 0.857 0.15
26 18 0.08 0.014

(a) NYC Random

N dmin
Storage

(GB)
Fraction

215 6 0.053 0.009
215 10 0.447 0.078
215 14 3.267 0.57
215 18 17.757 3.099
212 18 2.317 0.404
29 18 0.278 0.049
26 18 0.025 0.004

(b) NYC Prefix

N dmin
Storage

(GB)
Fraction

215 6 0.126 0.007
215 10 2.013 0.107
215 14 31.345 1.658
212 14 3.221 0.17
29 14 0.302 0.016
26 14 0.025 0.001

(c) SSB Random

N dmin
Storage

(GB)
Fraction

215 6 0.096 0.005
215 10 1.364 0.072
215 14 17.259 0.913
212 14 2.012 0.106
29 14 0.212 0.011
26 14 0.015 0.001

(d) SSB Prefix

38

5 Data Loading and Querying

The user-facing component of any system plays a pivotal role in its utility and acceptance. As

the bridge between the user and the intricate computational processes within the system, the

frontend has a critical mandate. In the context of Sudokube, the frontend affords an intuitive,

powerful interface that empowers users to load data, specify queries, and interpret results.

This chapter explores the frontend of Sudokube in depth, elucidating its capabilities, architec-

tural choices, and functionalities. We initiate the discussion with how users first interact with

the system, specifically, the data loading process. The complexities of handling both static

and dynamic schemas are considered, including the trade-offs associated with each. Data

transformation and binary encoding mechanisms also form an integral part of this discussion.

We illuminate the various encoders utilized within Sudokube and how they encode different

types of data to binary dimensions, allowing the remainder of the system to operate with

uniform, standardized data cubes comprising only binary dimensions.

Subsequently, we delve into the diverse types of queries Sudokube supports. This chapter

explains how the frontend converts basic OLAP operations into queries on cuboids and how

more complex operations are implemented via post-processing.

This exploration offers a comprehensive understanding of the frontend’s integral role in

Sudokube’s functionality. It paves the way for further discussions on solution strategies and

backend operations in subsequent chapters.

5.1 Data Loading

Before querying, data is first loaded into Sudokube. The Sudokube data loader accepts CSV or

JSON files, dividing them into chunks to process each one in parallel for increased efficiency.

This process results in the creation of the base cuboid and the corresponding schema.

The schema plays a crucial role in converting input tuples into keys for binary dimensions

that form the data cube in Sudokube. It consists of a collection of encoders, each assigned to a

39

Chapter 5 Data Loading and Querying

specific column in the input data. Each encoder, in turn, is assigned a unique set of binary

dimensions. These encoders map arbitrary values to integers and then permute the bits of the

integer to form keys in their assigned binary dimensions. When combined, the binary keys

from all encoders form a binary key for the tuple. In reverse operation, these encoders can

decode a binary key back into a combination of keys in each column.

The collection of binary dimensions assigned to a column encoder forms a cosmetic dimension

in Sudokube that can be queried with the semantics of the original column in the data.

Furthermore, for every cosmetic dimension, we define prefixes, assuming an ordering of

binary dimensions from least significant to most significant. Each prefix encodes a range of

keys in the domain, and together all these prefixes constitute a virtual hierarchy of dimensions

for querying. Consider a cosmetic dimension Year comprising three binary dimensions y2,

y1, and y0 in decreasing order of significance. This cosmetic dimension can encode up to 8

unique years. We examine two prefixes of this cosmetic dimension: y2 y1 and y2. The prefix y2

encodes two periods of four consecutive years each. Extending the prefix to y3 y2 gives us four

periods of two consecutive years each. In essence, prefixes allow us to seamlessly transition

between grouping all years together (using a prefix of zero binary dimensions) and grouping

years individually (using all three binary dimensions). Users can adjust their queries to focus

on broader or narrower time periods, depending on the granularity they need for data analysis.

There are two types of schemas employed in Sudokube: static and dynamic.

5.1.1 Static Schema

A static schema presupposes that the schema is known and fixed ahead of time. The data

loader is programmed with a template for the static schema for each data source, which is

used to create new instances when needed. Encoders are organized hierarchically, represented

as a Directed Acyclic Graph (DAG). In this graph, leaf nodes are encoders, and non-leaf nodes

represent a combination of multiple encoders. Each non-leaf node can be tagged with either a
′+′ or ′×′ attribute, indicating the semantics of how its children should be combined.

Nodes with ′+′ attribute: The ′+′ attribute represents a union of its children. It implies that, at

most, one of its children can be selected in a query. In terms of the semantic hierarchy, this

relationship is often used to represent different levels of the same dimension. For example,

in Figure 5.1, there are two leaf nodes with encoders for City and State that are children of

a node tagged with ′+′ for Location. This structure signifies that City and State are different

granularities of the Location dimension and would not be selected simultaneously in a query.

Nodes with ′×′ attribute: The ′×′ attribute represents a product of its children. It signifies that

any combination of its children can be selected in a query. These nodes are typically used to

represent dimensions that are independent of each other. In Figure 5.1, Product, Location,

and Time are children of a root node tagged with ′×′, suggesting that users may want to query

any combination of these three dimensions.

40

Data Loading and Querying Chapter 5

All
×

Time
+

YearQuarter

Location
+

StateCity

Product
+

CategoryItem

Figure 5.1: An example DAG of encoders for the sales data schema. The root node is a product
of its children, suggesting that queries are to be constructed by taking any combination
of queries of its children. The intermediate nodes are sums of their respective children,
suggesting that queries are constructed by taking the union of queries of their children. The
leaf nodes represent the individual encoders for each column.

This DAG-based hierarchy is not just a logical representation but is also used during querying

and materialization. It allows the system to understand the relationships between various

dimensions, aiding in the efficient choice of cuboids to materialize. It’s important to note that

the order of nodes in this hierarchy can impact the efficiency of Sudokube’s query operations.

Therefore careful consideration should be given to the design of this schema hierarchy.

Several types of encoders are implemented in Sudokube for a static schema. For instance,

DictionaryEncoder uses the index of a value in a dictionary to represent it as an integer.

The IntegerOffsetEncoder encodes integer values as offsets from a minimum value. The

DateEncoder encodes dates as a combination of year, month, and day and timestamps as

a combination of hours, minutes, and seconds. Custom transformations can be defined for

each value, such as multiplying a number by 10k to get k decimal digits before truncating it to

an integer.

Once these encoders represent values using integers, the bits in the binary encoding of these

integers are permuted to form keys of the binary dimensions. The permutation of integers to

binary dimensions is significantly faster when the binary dimensions form a range. Hence,

encoders for static schemas pre-allocate binary dimensions for each column. To achieve

this, we pre-process the data to find unique values in each column and store these values

in a file. These values are also sorted for columns encoded using DictionaryEncoder. The

IntegerOffsetEncoder uses the unique value stored in the file to determine the minimum

value for defining offsets. The loading process can be fully programmed, allowing for dropping

columns, rearranging them, and defining custom columns. The users can designate any of the

columns as the measure value or specify a function that computes it from the values of one or

more columns.

5.1.2 Dynamic Schema

In contrast to a static schema, a dynamic schema is not programmed into the loader. The

schema doesn’t even need to be fixed throughout the data-loading process. In fact, every

41

Chapter 5 Data Loading and Querying

tuple could potentially have its own schema. Whenever a new column is encountered, a new

encoder is assigned to it with a single binary dimension that encodes whether the key for

this column is NULL or not. As more tuples are processed, encoders may request additional

binary dimensions from a central coordinator to expand their domain. A DAG of nodes still

represents this schema, but it is simply a tree with all the encoders as children of the root node.

Unlike static schemas, binary dimensions assigned to an encoder in a dynamic schema need

not be adjacent to each other. While this results in slower encoding times, it eliminates the

need for pre-processing. Without pre-processing, integers are encoded directly to binary using

the IntegerDirectEncoder. An additional sign bit is requested when negative values are

encountered. DictionaryEncoder, on the other hand, can be used with dynamic schema,

but it adds entries to the dictionary in the order they appear first and not according to specified

sort order.

Similar to the case of a static schema, users can specify user-defined functions to produce

measure values from a tuple. In the absence of any such function, the constant 1 is used as the

default measure value for all tuples in the data.

During data loading, the created schema instance encodes tuples to form pairs of binary

keys and measure values. This collection of binary keys and measure values is sent to the

backend for storage as the binary base cuboid. Dynamic schemas are serialized to disk after

data loading so that they can be loaded back in the future for decoding the binary keys. Static

schemas need not be serialized; a new one can be instantiated from the programmed template

when required.

5.2 Building the Data Cube

After the binary base cuboid is stored in the backend, the next step is to select cuboids for

materialization and build the data cube. Sudokube implements two strategies that randomly

pick cuboids for materialization based on two parameters. The first parameter is the total

number of cuboids to be materialized N ; the second parameter is the minimum dimensionality

for the materialized cuboids dmin. Algorithm 1 describes the procedure followed by Sudokube

for selecting cuboids to materialize. It picks a total of N cuboids for materialization randomly,

starting with N /2 cuboids of dimensionality dmin, N /4 cuboids of dimensionality dmin +1,

and so on until the required number of cuboids are selected. The two strategies differ in how

they select cuboids of a given dimensionality. The Random strategy picks binary dimensions

uniformly at random without replacement, whereas the Prefix strategy picks only prefixes of

cosmetic dimensions while selecting binary dimensions for the cuboids.

Once the list of cuboids to be materialized is finalized by Algorithm 1, a build plan must be

created describing how these cuboids will be computed by projecting which other cuboids.

Algorithm 2 describes the procedure to construct a simple but efficient plan to build cuboids

from the smallest subsuming cuboid among the already materialized cuboids. In practice, our

42

Data Loading and Querying Chapter 5

Algorithm 1: Algorithm to select cuboids for materialization following the random or
prefix strategy

[1] def ApplyStrategy(strategy, schema, N , dmin):
[2] n ← number of binary dimensions in schema
[3] N ← N /2 ; k ← dmin ; M ←�
[4] while N ≥ 1 do
[5] N0 ← min

(
N ,
(n

k

))
[6] while N0 > 0 do
[7] if strategy is Prefix then
[8] I ←PrefixCuboid(root node of DAG in schema,k)
[9] else

[10] I ← random subset of [n] of size k
[11] if I �∈ M then
[12] M ← M ∪ {I }; N0 ← N0 −1

[13] k ← k +1
[14] N ← N /2

[15] return M

[16]

[17] def PrefixCuboid(node, k):
[18] if node is a leaf node then
[19] return prefix of length k of cosmetic dimension in node
[20] else if node is intermediate node with ′+′ attribute then
[21] child ← random child of node with at least k binary dimensions in subtree
[22] return PrefixCuboid(child, k)

[23] else
[24] Randomly partition k into k1, . . . ,kc for each child child1 . . .child c such that ki is

not more than the number of binary dimensions in the subtree of child i

[25] return
c⋃

i=1
PrefixCuboid(childi , ki)

experiments show that the smallest subsuming cuboid always tends to be the base cuboid in

high-dimensional scenarios, and we are better off using a plan that computes all cuboids to

be materialized by projecting the base cuboid.

5.3 Querying

At its core, Sudokube is an analytical processing system that provides answers to complex

queries across vast datasets. Users can leverage its querying capabilities to extract valuable

insights once data is loaded, encoded, and stored in Sudokube. The system supports a wide

variety of queries, making it flexible and robust for diverse analytical needs.

In the Sudokube query interface, users select a data cube to query, specifying dimensions to be

shown on the horizontal and vertical axes. In a static schema, any level within the dimension

43

Chapter 5 Data Loading and Querying

Algorithm 2: Algorithm that computes a simple plan to build cuboids by projecting
the smallest subsuming cuboids materialized so far

input :set M containing dimensions I of cuboids CI to be materialized, total number
of dimensions n, base cuboid C[n]

output :a build plan comprising sets of pairs of dimensions of input and output
cuboids

[1] def BuildPlan(M, n, C[n]):
[2] Sort M in descending order to form list L = {I1, . . . , IN }
[3] Add dimensions [n] as I0 in the list L
[4] P ←�
[5] foreach i ∈ 1. . . N do
[6] j ← largest index such that I j ⊇ Ii

[7] P ← P ∪ (I j , Ii
)

[8] return P

hierarchy can be selected for querying. Both static and dynamic schemas support querying

on prefixes of cosmetic dimensions, which bridge various levels of a hierarchy and enable

aggregations at intermediate granularities. Users can add multiple dimensions to either axis,

and the order of dimensions specified directly influences the order of the displayed results.

Filters can be applied to one or more dimensions at any level of the hierarchy. Applying filters

to prefixes of cosmetic dimensions results in filtering ranges of keys. Users can select multiple

values for any dimension level, with these combined using OR logic, while separate filters are

combined using AND logic.

The query is completed by selecting a measure from the data cube to aggregate and by deter-

mining the function to aggregate measure values. The primary aggregation function is SUM,

but other sum-based aggregations like COUNT and AVG are also supported. The user specifies

the solver used to answer the query and decides whether it is run in batch or online mode.

The Sudokube query interpreter uses the data cube’s schema to translate queries on cosmetic

dimensions and their prefixes into queries on binary dimensions. The translated query

includes binary dimensions for the horizontal and vertical axes and filters and binary encoding

of user-selected filter keys. The query is then mapped to a cuboid in the data cube’s lattice and

relayed to the core engine. The core engine reconstructs the cuboid using the specified solver

and returns the aggregate value in each cell, either as exact, approximate, or bounds, either

once for batch mode or through a callback function for online mode.

5.4 Finding Materialized Cuboids Relevant to Queries

Given a query and a set of materialized cuboids, the first step in answering the query is to

determine the set of relevant cuboids. We refer to this phase in processing the query as

the prepare phase. Different techniques for answering queries differ in which cuboids they

44

Data Loading and Querying Chapter 5

consider relevant for answering a query. We characterize the requirements of these solvers

during the prepare phase using two parameters dmax and dcheap. dmax sets an upper bound

on the dimensionality of the cuboids Sudokube processes during the prepare phase. Any

materialized cuboid with a dimensionality greater than the specified value of dmax is ignored

by Sudokube while preparing for the given query. The other parameter dcheap specifies the

dimensionality below which Sudokube considers the cost of projecting cuboids insignificant.

There are two steps in the prepare phase as described in Algorithm 3. In the first step, the

intersection of the query dimensions with the dimensions of each materialized cuboid is

carried out. Multiple materialized cuboids may yield the same cuboid after projecting down

to dimensions shared with the query. We keep only the cheapest such cuboid and discard the

others. The dimensionality of the cuboid before projection is used as an estimate for the cost

of projecting it. Thus, at the end of the first step, we have a set of subsets of the query along

with an associated cost for computing that projection of the query cuboid.

In the second step of the prepare phase, any redundant intersection is removed. We call an

intersection K redundant if there exists another intersection J such that J ⊇ K and either the

cost of obtaining J is at least as cheap as the cost for obtaining K or the cost of obtaining J is

within the specified threshold dcheap.

Algorithm 3: Algorithm for finding projections of queries relevant for answering it

input :Query Q, set of dimensions of materialized cuboids M , number of binary
dimensions n, parameters dmax and dcheap indicating maximum dimensionality
to consider and the maximum dimensionality for which the projection is
considered cheap

output :Fetch plan P specifying which materialized cuboids are to be projected
[1] def Prepare(Q, M, n, dmax, dcheap):
[2] P ← empty map with default value [n]
[3] foreach I ∈ M with |I | ≤ dmax do
[4] J ← P (I ∩Q) // Cheapest cuboid with same intersection

[5] if |I | < |J | then
[6] P (I ∩Q) ← I

[7] foreach K ∈ keys(P) do
[8] Remove entry with key K from P if there exists another key J such that J ⊃ K

and (|P (J)| < |P (K)| or |P (J)| < dcheap)
[9] return P

To find the smallest subsuming cuboid of Q that is materialized in M , we set the parameters

dmax = d cheap = n. Setting dmax = n allows the base cuboid to be included, and setting

dcheap = n ensures that any projection containing only a subset of the query dimensions is

eliminated in the second round. The other solvers in Sudokube that aim to approximate query

results from their projections set the parameters dmax = dcheap = n −1 while preparing for

batch mode and dmax = n, dcheap = 2 while preparing for online mode. These parameters

ensure that, in the batch mode, only maximal projections are processed, and the base cuboid

45

Chapter 5 Data Loading and Querying

Table 5.1: Implementation of other aggregations

Operation Implementation

COUNT(X) SUM(1)

AVG(X)
SUM(X)

SUM(1)

VAR(X)
SUM(1)SUM(X 2)− (SUM(X))2

(SUM(1))2

COR(X ,Y)
SUM(1)SUM(X ·Y)−SUM(X)SUM(Y)√

SUM(1)SUM(X 2)− (SUM(X))2
√
SUM(1)SUM(Y 2)− (SUM(Y))2

REG(X ,Y)
SUM(1)SUM(X ·Y)−SUM(X)SUM(Y)

SUM(1)SUM(X 2)− (SUM(X))2

is never projected. But, in the online mode, the base cuboid can be fetched, and all query

projections, no matter how small, are processed. Throughout the rest of this thesis, we shall

refer to the set of cuboids prepared for answering query Q as I (Q).

Algorithm 3 returns the map containing both the relevant projections I (Q) and the materi-

alized cuboids that must be projected to obtain them. This constitutes the fetch plan that is

given to the backend to execute. We shall cover algorithms for projecting cuboids in detail

later in Chapter 8. The projected cuboids are sent to the solvers, which use them to answer

queries. We will go into more detail about the solving techniques in Chapter 6.

5.5 Output Post-processing

Once the solver produces some query result, the output handler applies post-processing

operations: it decodes the binary keys to ranges of original column keys, permutes the results

to match the user-specified order, and displays the results in table or chart form. If a chart

format is selected, each row of the tabular query result is mapped to a different data series in

the chart.

The current version of the Sudokube core engine reconstructs cuboids in their entirety and

cannot construct only slices specified by the filters. Therefore, the cuboid mapped from the

query contains all the binary dimensions specified in the query, including those of the filters.

The output handler applies the filters by slicing the results to include only the specified keys

for the filter dimensions. The result is projected to contain only binary dimensions for the

horizontal and vertical axes, aggregating multiple keys selected for filters together.

While the current solving techniques support SUM as the primary aggregation, related aggre-

gations are achieved through post-processing. Table 5.1 illustrates how other aggregations

46

Data Loading and Querying Chapter 5

can be computed on some measures X and Y using sums of measures that are functions of X

and Y . To use these aggregations, the specified functions on X and Y must be computed as

measures during cube construction.

Other operations that could be performed by post-processing query results include window-

based aggregations and aggregations based on any user-defined grouping. In these cases, the

interpreter maps the query to a cuboid that includes all the binary dimensions required to

specify the custom grouping. The output handler performs the aggregation with the custom

grouping during post-processing. Queries on data cube views that transform the dimensions

in some way are also handled in a similar way.

47

6 Sudokube Solvers

Sudokube chooses only a subset of the cuboid lattice to materialize during data cube construc-

tion and relies on one of several solvers that use these materialized cuboids to answer queries

quickly. In this chapter, we perform a comprehensive exploration and comparative analysis of

these solvers, shedding light on their distinctive features, advantages, and trade-offs.

We begin our journey by introducing the solvers available in Sudokube. We explore how these

solvers leverage various algorithms, techniques, and approximation methods to derive query

results from the subset of materialized cuboids. Furthermore, we explore the implementation

aspects of integrating these solvers into Sudokube, discussing the technical considerations,

optimizations, and design choices that enhance their efficiency and effectiveness.

To validate and benchmark the solvers’ performance, we conduct extensive experiments using

diverse datasets and query workloads. The experimental evaluations provide valuable insights

into the solvers’ behavior in real-world scenarios, enabling us to make informed comparisons

and draw meaningful conclusions.

Throughout this chapter, we shall use a running example that describes how the same query is

evaluated by different solvers in Sudokube. This example contains a low-dimensional query

on a low-dimensional dataset for the sake of showing all the different computations, but they

generalize to higher-dimensional data and queries as well.

Example 7. Consider the binary sales data cube described in Example 5. For simplicity, let us

ignore the binary dimensions 5 and 4 encoding items and focus on the remaining dimensions.

Figure 6.1 shows the lattice of all cuboids. Suppose only the orange-colored cuboids are picked

for materialization. Figure 6.2 shows the contents of these cuboids.

Suppose we want to find the total sales grouped by city and half-year. In this data cube, the

city is encoded by a cosmetic dimension formed by grouping binary dimensions 1 and 0, and

the half-year is encoded by binary dimension 3, a prefix of the binary dimensions forming the

cosmetic dimension for quarters. The query is mapped to the binary cuboid C{3,1,0} containing

the total sales for every combination of these binary dimensions, but it is not materialized.

49

Chapter 6 Sudokube Solvers

C{3,2,1,0}

C{3,2,0} C{3,1,0}C{3,2,1} C{2,1,0}

C{2,1} C{3,0}C{3,1} C{2,0} C{1,0}C{3,2}

C{2} C{1}C{3} C{0}

C∅
Figure 6.1: Lattice of cuboids containing binary dimensions 0. . .3 from the sales data cube

3 2 1 0 Sales
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 1 0 2
1 0 0 0 3
1 0 1 0 2
1 1 0 0 4
1 1 0 1 2
1 1 1 0 1

3 2 0 Sales
0 0 0 1
0 0 1 2
0 1 0 2
1 0 0 5
1 1 0 5
1 1 1 2

Sales
17

3 1 Sales
0 0 1
0 1 4
1 0 9
1 1 3

1 0 Sales
0 0 7
0 1 3
1 0 6
1 1 1

3 Sales
0 5
1 12

2 Sales
0 8
1 9

1 Sales
0 10
1 7

0 Sales
0 13
1 4

Figure 6.2: Values in the materialized cuboids for the example sales data cube

50

Sudokube Solvers Chapter 6

6.1 Answering Queries Exactly

The first solver we examine in Sudokube is the naive solver. This solver follows the approach

described in [45] and aims to provide exact query answers using the subset of cuboids that

are materialized in the data cube. The query can be answered exactly only by projecting a

subsuming cuboid that encompasses all the dimensions of the query. The naive solver selects

the smallest subsuming cuboid for the projection, as this cuboid typically has the lowest

projection cost. It then processes only this single cuboid to obtain the query result, without

requesting or processing any other cuboid.

Example 8. The smallest subsuming cuboid for the query cuboid C{3,1,0} is the cuboid C{3,2,1,0}.

The naive solver projects this 4-D cuboid to obtain the query result.

As long as the base cuboid is materialized in a data cube, the naive solver can always answer

any query exactly by projecting this base cuboid in the worst case. However, as discussed

in Section 3.4.2, the expected size of the smallest subsuming cuboid for a query with more

than 3 or 4 dimensions is comparable to that of the base cuboid in a high-dimensional data

cube. Consequently, projecting these large cuboids can be time-consuming for big datasets,

resulting in slower query processing. We can observe this behavior in the experiment results

that we examine next.

Experiment 6.1 Varying Query Dimensionality on Naive Solver

We evaluate 100 random queries each for various levels of dimensionality, using the naive

solver on two data cubes each, on either dataset, one following the Random and the other

following the Prefix materialization strategies. For the NYC dataset, we pick both data cubes

with the total number of cuboids N = 215 and minimum dimensionality dmin = 18, whereas

for the SSB dataset, we pick data cubes materialized with parameters N = 215 and dmin = 14.

Figure 6.3 shows the histogram describing the fraction of queries answered by projecting a

cuboid of a particular dimensionality.

Our observations reveal a consistent pattern regarding the dimensionality of cuboids utilized

in responding to queries by the naive solver. Specifically, data cubes built on the NYC dataset

have more binary dimensions compared to those built on the SSB dataset. This implies that

for any non-zero cuboid dimensionality, the space encompassing all cuboids is smaller for SSB

compared to NYC. In parallel, due to imposed constraints, the Prefix strategy chooses from a

considerably smaller space of cuboids in contrast to the Random strategy. In both scenarios,

a reduced space of cuboids to choose from amplifies the likelihood that a particular cuboid

is materialized given the same number of materialized cuboids. Consequently, for the same

query dimensionality, the naive solver is more likely to answer queries from smaller cuboids

successfully. This success rate is observed to be higher for data cubes based on SSB compared

to those based on NYC, and similarly for cubes utilizing the Prefix strategy in contrast to the

Random strategy.

51

Chapter 6 Sudokube Solvers

Figure 6.3: Fraction of queries answered by the naive solver by projecting cuboids of various
dimensionality for different query dimensionality

Figure 6.4: Average time spent by the naive solver in every phase of query execution in batch
mode for different query dimensionality

52

Sudokube Solvers Chapter 6

Across all four data cubes, all 2-dimensional queries are answered from the lowest dimension-

ality materialized cuboids. As the query dimensionality increases, fewer queries are answered

from lower-dimensional cuboids, and more queries are answered by projecting the base

cuboid. Nearly all queries are answered by projecting the base cuboid of the Random strategy

data cubes when the query dimensionality is 6 or higher. The fraction of 6-dimensional queries

answered by projecting the base cuboid is 12% for NYC Prefix and 2% for SSB Prefix data cubes,

which increases to 47% and 53% when the query dimensionality is increased to 12.

Figure 6.4 presents the average time spent on prepare and fetch for the same set of queries

and data cubes. We observe that the average fetch time begins quite low, then rises as higher-

dimensional cuboids are projected more frequently, and finally, plateaus when all queries are

answered from the base cuboid. The maximum fetch time is greater for SSB because it has

more rows, which significantly influence the fetch time in sparse storage layouts. Conversely,

the prepare time only experiences a marginal increase with the query dimensionality. �

Experiment 6.2 Varying Number of Materialized Cuboids in Naive Solver

We fix query dimensionality and the minimum dimensionality dmin and run 100 queries on

data cubes that differ in the number of materialized cuboids. We repeat the experiments for

NYC and SSB datasets following both prefix and random strategies. We select random queries

of dimensionality 4 and prefix queries of dimensionality 6 for this experiment. The minimum

dimensionality of materialized cuboids was selected to be 18 for NYC and 14 for SSB.

Figure 6.5 shows, for each cuboid dimensionality, the fraction of queries answered by project-

ing some cuboid of that dimensionality, when run on data cubes with different numbers of

cuboids materialized. By increasing the total number of materialized cuboids, we increase

the probability of finding a materialized subsuming cuboid among the smaller cuboids. For

instance, in the NYC Prefix data cube, the fraction of queries answered by projecting one of

the 18-dimensional cuboids increases from 13% when a total of 26 cuboids are materialized to

83% when 215 cuboids are materialized.

Figure 6.6 shows the average prepare and fetch time for the same set of queries. The prepare

time increases linearly with the number of materialized cuboids as more of them need to be

processed to find the cuboid used for answering the query. However, the average fetch time

decreases in tandem with the increased rate of projecting low-dimensional cuboids to answer

queries. We observe that increasing the number of materialized cuboids generally leads to an

overall decrease in the execution time for the query for the range of parameters we examine in

this experiment. But, this trend will continue only as long as fetch time dominates the prepare

time, after which the total time increases due to a more significant prepare time. �

Experiment 6.3 Varying Minimum Dimensionality of Materialized Cuboids on Naive Solver

In another experiment, we maintain the total number of materialized cuboids at 215 and run

100 queries on data cubes with varying minimum dimensionality of the materialized cuboids.

53

Chapter 6 Sudokube Solvers

Figure 6.5: Fraction of queries answered by the naive solver by projecting cuboids of various
dimensionality for different number of materialized cuboids

Figure 6.6: Average time spent by the naive solver in every phase of query execution in batch
mode for different number of materialized cuboids

54

Sudokube Solvers Chapter 6

The dimensionality of the queries is set to 4 for the data cubes built using the Random strategy

and 6 for those built using the Prefix strategy.

Figure 6.7 presents the average fraction of queries answered by projecting cuboids of various

dimensionality for different minimum dimensionality of materialization. As we increase

dmin, which also signifies the dimensionality with the most number of materialized cuboids,

more queries are answered by projecting cuboids of this dimensionality. Consequently, fewer

queries are answered by projecting the base cuboid.

Figure 6.8 depicts the average prepare and fetch times for the same experiment. As dmin rises,

the prepare phase takes slightly more time. While an increase in dmin does lengthen the time

required to project those cuboids, the reduction in the more time-consuming base cuboid

projections results in an overall decrease in the average fetch time and, thus, the total time. �

The results of these experiments show that nearly 100% of queries are answered by the naive

solver by projecting the base cuboid beyond query dimensionality 6 in the case of the Random

cubes. In the case of the Prefix cubes, about 50% of the 12-D queries are answered by projecting

the base cuboid. Projecting the base cuboid takes about 1 second in the case of NYC cubes

and around 7 seconds for the SSB dataset, and would take longer for bigger datasets. Thus, the

naive solver would not be ideal for answering queries on large datasets.

We explore more interesting solvers in the following sections of this chapter. These alter-

native solvers employ a different approach, reconstructing the query from its materialized

projections. This allows them to provide approximate results quickly after processing a few

low-dimensional projections. As more projections are processed, the results are continuously

updated until the smallest subsuming cuboid of the query cuboid is projected, and the exact

query answer is obtained. We use the naive solver as the baseline to compare the performance

and accuracy of these other solvers.

6.2 Solving Queries Using Linear Programming

The linear programming solver in Sudokube offers an alternative approach to answer queries

by constructing a system of linear equations from its projections. These linear equations

describe how the unknown values in the query cuboid are aggregated to form values in its

projections and capture the constraints imposed by these projections. By solving this system,

the solver is able to provide lower and upper bounds for each variable, representing the values

in the query result.

For a given query Q, the query result, represented by the cuboid CQ , consists of 2|Q| cells

identified by the vector version q of a function q ∈ {0,1}Q . To simplify the notation, we use the

variable vq to represent the unknown value CQ (q). For a cuboid C J where J ⊆Q, Equation (4.1)

yields a system of 2|J | linear equations constraining variables vq , one for each cell in the cuboid

55

Chapter 6 Sudokube Solvers

Figure 6.7: Fraction of queries answered by the naive solver by projecting cuboids of various
dimensionality for different values of minimum dimensionality of materialized cuboids

Figure 6.8: Average time spent by the naive solver in every phase of query execution in batch
mode for different values of minimum dimensionality of materialized cuboids

56

Sudokube Solvers Chapter 6

C J . The equation er for a cell r ∈ {0,1}J sums up all variables vq such that q is consistent with

r on J and is given by:

er :
∑

q∈{0,1}Q

{
vq | q↓J = r

} = C J (r)

We use the notation of cuboid C J to also refer to the set of equations given by the cuboid. In

scenarios where multiple projections of the cuboid CQ are available to constrain its values,

we can combine the linear equations from each cuboid. However, this system of equations is

generally not linearly independent. To optimize the solving time, we aim to obtain a maximal

set of linearly independent equations that capture all the constraints from the fetched cuboids

while using as few equations as possible.

v000 v001 v010 v011 v100 v101 v110 v111
C{1,0} e∗00 1© 1 7

e∗01 1© 1 3
e∗10 1© 1 6
e∗11 1© 1 1

C{3,1} e00∗ 1 1 1
e01∗ 1 1 4
e10∗ 1© 1 9
e11∗ 1© 1 3

C{3,0} e0∗0 1 1 3
e0∗1 1 1 2
e1∗0 1 1 10
e1∗1 1© 1 2

Figure 6.9: The 12 equations obtained from the three relevant materialized cuboids of the
sales data cube for the query Q = {3,1,0}. Among these, at most 7 are linearly independent.

Example 9. For the query Q = {3,1,0} in the sales data cube, the materialized projections of

the cuboid CQ include C{1,0} and C{3,1}. Additionally, the projection C{3,0} can be obtained

by projecting C{3,2,0} at query time. All other proper projections are subsumed by these three

projections and, therefore, need not be processed. The system of linear equations defined by

these three projections is shown in Figure 6.9. Each row in the table denotes one equation, and

each column contains the coefficients for some variable vq or the total sum for that equation.

Each equation represents a constraint on the values of cells in the cuboid CQ . For example, the

equation e∗00 represents the constraint v000 + v100 = 7. It is worth noting that the mappings are

explicitly shown for all dimensions of Q, with missing dimensions indicated by ∗. Out of the 12

equations, at most 7 are linearly independent. The other 5 equations do not add any additional

constraint and are colored gray.

Given the non-homogeneous system of linear equations Av = b, the row vectors of A define

a vector space [49], a subspace of the 2|Q|-dimensional space spanned by all the vq . We can

find a maximal set of linearly independent equations by constructing a basis [49] for this

57

Chapter 6 Sudokube Solvers

vector space. We are also interested in the kernel of A, which represents the independent

solutions for the homogeneous system of equations Av = 0. The solutions to the original

non-homogeneous system of equations can be expressed as the sum of a fixed solution u and

an arbitrary element of the kernel [68]. A zero-dimensional kernel means that there is only

one solution and we can reconstruct CQ precisely. The existence of at least one solution is

guaranteed by construction.

A basis for the row space of A can be constructed by grouping equations into equivalence

classes and picking one from each. One way to group the equations is to use their first variable

when ordered lexicographically according to the order ≺ for q , as described in Section 2.1.

Formally, we define v̂e to be the minimal variable that occurs in the equation e and write

e1 ≡ e2 for two equations e1 and e2 when v̂e1 = v̂e2 . Of course, ≡ forms an equivalence relation.

Example 9 (continued). The equivalence classes of equations w.r.t. ≡ are S000 = {e∗00, e00∗,

e0∗0}, S001 = {e∗01, e0∗1}, S010 = {e∗10, e01∗}, S011 = {e∗11}, S100 = {e10∗, e1∗0}, S101 = {e1∗1}, S110 =

{e11∗} and S111 = �. We pick the equations with circled ones to form a basis.

Before we prove the correctness of our claim regarding the construction of a basis, we need to

introduce some additional notations and lemmas. Given two sets J and L such that L ⊆ J ⊆Q,

and a mapping � ∈ {0,1}L , we define the equations for the slice � of the cuboid C J that are

consistent with � as

C J |� := {e j ∈C J | j = {0,1}J and j↓L =�
}
.

Lemma 4. Given any two sets L1,L2 ⊆Q, and a slice � ∈ {0,1}L1∩L2 present in both CL1 and CL2 ,∑
CL1|� =CL1∩L2 (�) =∑CL2|�.

Proof. From its definition, we know that the set CL1|� contains equations er from cuboid CL1

that are consistent with � on L1 ∩L2. The equations er themselves are sums of variables vq for

q ∈ {0,1}Q that are consistent with r on L1. Combining them, we have∑
CL1|� = ∑

r∈{0,1}L1

{
er | er ∈CL1 and r↓L1∩L2 =�

}
= ∑

r∈{0,1}L1

∑
q∈{0,1}Q

{
vq | q↓L1 = r and r↓L1∩L2 =�

}
= ∑

q∈{0,1}Q

{
vq | q↓L1∩L2 =�

}
=CL1∩L2 (�)

A similar derivation exists for CL2|� as well, proving the lemma.

58

Sudokube Solvers Chapter 6

Example 10. Let u ∈ {0,1}{0}, v ∈ {0,1}{1} and w ∈ {0,1}{3} be zero vectors on dimensions 0, 1 and

3 respectively. Continuing our running example of the sales data cube, we have the following set

of equations from different slices of the projections C{1,0}, C{3,1} and C{3,0} :

C{1,0}|u = {e∗00,e∗10} C{1,0}|v = {e∗00,e∗01}

C{3,1}|v = {e00∗,e10∗} C{3,1}|w = {e00∗,e01∗}

C{3,0}|u = {e0∗0,e1∗0} C{3,0}|w = {e0∗0,e0∗1}

Then, from Lemma 4, we have the following linear dependencies.

e0∗0 = e∗00 +e∗10 −e1∗0 from C{1,0}|u and C{3,0}|u
e00∗ = e∗00 +e∗01 −e10∗ from C{1,0}|v and C{3,1}|v
e0∗0 = e00∗ +e01∗ −e0∗1 from C{3,1}|w and C{3,0}|w

Next, we establish two auxiliary results. We say that a variable v dominates an equation e if it is

the same as or appears before (according to order ≺) the minimal variable v̂e of the equation.

A variable v dominates a set of equations if it dominates each of its members.

Lemma 5. Given an equation e j ∈ C J and a slice � ∈ {0,1}L for some L ⊆ J such that j = �↑J ,

then v̂e j dominates C J |�.

Proof. C J |� is defined as the set of equations er ∈ C J such that r is consistent with �. These

equations consist of variables vq such that any such q is consistent with � on dimensions in L.

The vector j extends � by mapping all other dimensions in J \ L to zero. The minimal variable

v̂e j in equation e j maps all other dimensions in Q \ J to zero as well. No other variable vq

whose index q is consistent with � can come before v̂e j in the lexicographic order ≺. Obviously,

v̂e j dominates all the er .

Lemma 6. Given two equations es ∈CS and et ∈CT such that v̂es = v̂et , then

(1) s↓S∩T = t↓S∩T , and (2) s =�↑S and t =�↑T for �= s↓S∩T .

Proof. Let vq be the minimal variable in equations es and et . Therefore, q ∈ {0,1}Q is consis-

tent with s on dimensions in S and t on dimensions in T .

Since q and s are consistent on dimensions in S, they are consistent on its subset S ∩ T .

Similarly, q and t are consistent on S ∩T as well. Therefore, we have s↓S∩T = q↓S∩T = t↓S∩T ,

proving (1).

59

Chapter 6 Sudokube Solvers

From Equations (2.1) and (2.2) we have, s = s↓S∩T
 s↓S\T , and �↑S =�
0. Since �= s↓S∩T ,

for (2), we only need to prove that s↓S\T = 0. In other words, we need to prove that s maps all

dimensions in S \ T to zero. We prove this by contradiction. Assume that some dimension

j ∈ S \ T exists that is mapped by s to 1. Since q is consistent with s on S, q maps dimension

j to 1 as well. Let r ∈ {0,1}Q be another vector that is identical to q except for dimension j ,

which it maps to 0. Since q is consistent with t on dimensions in T and j �∈ T , r is consistent

with t on dimensions in T as well. Therefore, in addition to vq , the variable vr is part of the

equation et . But this violates our assumption that vq is the minimal variable in equation et

since vr ≺ vq . Therefore, s must map all dimensions in S \ T to zero and s =�↑S . A symmetric

argument can be made for t =�↑T as well.

Example 11. Consider again our running example, and equations e∗01 ∈C{1,0} and e0∗1 ∈C{3,0}

with v̂e∗01 = v̂e0∗1 = v001. Then, for the slice � = ∗∗1 ∈ {0,1}{0}, we have C{1,0}|� = {e∗01,e∗11},

and C{3,0}|� = {e0∗1,e1∗1}. Variable v001 dominates both C{1,0}|� and C{3,0}|�, as required by the

combination of Lemmas 5 and 6.

Theorem 7. Given the system of linear equations yielded by a set of projections of a cuboid, any

subset that contains exactly one equation from each equivalence class of ≡ is a basis of the vector

space spanned by the equations.

Proof. Let E be an arbitrary set of linear equations constructed by picking one equation from

each equivalence class of ≡. This set is clearly linearly independent. Each row vector e has the

leftmost nonzero element v̂e , and, by picking exactly one row vector from each equivalence

class of ≡, no two distinct row vectors have the same leftmost nonzero element (see Figure 6.9

for an illustration of this).

All that is left to be shown is that this set of linearly independent equations is also maximal. To

prove this, we explicitly construct a basis and show that it has the same rank. Let C J1 , . . . ,C Jm

be the projections. The algorithm for the construction of the basis B works as follows. Initially,

let B contain all equations from C J1 . During step i , for each equation e ∈ C Ji , processed in

the order of increasing v̂e , do the following - if no element d ∈ B exists with d ≡ e, add e to B ;

otherwise, do not.

We prove the correctness of this algorithm by induction, with the induction hypothesis that

after each step, all equations processed so far are linearly dependent with B , and the elements

of B are linearly independent. The equations of a single projection are linearly independent,

so by initially setting B to all of C J1 , we satisfy the induction hypothesis initially.

Let B be a basis for C J1 ∪ ·· ·∪C Ji after i steps. During step i +1, we process the equations

e of C Ji+1 in the reverse order of v̂e . We maintain the invariant that all equations e0 of C Ji+1

previously processed (i.e., with x̂e ≺ x̂e0) are linearly dependent with B . At the start of step

i +1, this is true from the induction hypothesis. All equations of C J1 ∪·· ·∪C Ji can be obtained

as linear combinations of the equations of B . If there is no d ∈ B with d ≡ e, e is linearly

60

Sudokube Solvers Chapter 6

independent of B , and we (may) add e to B . Otherwise, we do not add e, because it is linearly

dependent with the existing equations in B .

Now, we prove that e is linearly dependent on B when there exists some d ∈ B such that

d ≡ e. Let C Jh (h ≤ i) be the projection that contributed d . Let the equation e be indexed by

r ∈ {0,1}Ji+1 in the cuboid C Ji+1 , the equation d be indexed by s ∈ {0,1}Jh in the cuboid C Jh . Also

let L = Jh ∩ Ji+1. Then, from Lemma 6 we have �= r↓L = s↓L and �↑Ji+1 = r . From the definition

of the slice of equations, we have d ∈ C Jh |� and e ∈ C Ji+1|�. By Lemma 5, all the equations in

C Ji+1|� \ {e} are dominated by v̂e and thus have been previously processed by the algorithm.

By Lemma 4, e is linearly dependent with equations in C Jh |�∪C Ji+1|� \ {e}, which is a subset of

equations processed so far and, by the induction hypothesis, linearly dependent with B .

Example 12. If we execute the algorithm of the proof of Theorem 7 on the sales data cube,

the first equation we encounter that is not added to B is e01∗ (r = 01∗) after step i = 1 for

Ji+1 = {3,1}. At this stage, B is equal to {e∗11, e∗10, e∗01, e∗00, e11∗, e10∗}. Here, d = e∗11,

v̂d = v011, and Jh = {1,0}. We also have Jh ∩ Ji+1 = {1}, and we construct � = r↓{0} = ∗1∗.

Therefore, C Jh |� = {e∗10,e∗11} and C Ji+1|� = {e01∗,e11∗}. Indeed, v̂e01∗ = v010 dominates C Ji+1|�.

C Jh |�∪ (C Ji+1|� \ {e}) is a subset of B and therefore linearly dependent with it.

Algorithm 4: Algorithm to construct a basis from the equations yielded by projections
of query cuboid CQ

input : Query Q, cuboids C I for every I ∈I (Q)
output :Matrix A and vector b containing the coefficients of equations that form a basis

for the system of equations Av = b
[1] A ← empty 2|Q| ×2|Q| matrix
[2] b ← empty 2|Q| column vector
[3] foreach I ∈I (Q) do
[4] foreach i ∈ {0,1}I do
[5] Construct equation ei from CI

[6] vs ← minimal variable v̂ei

[7] if row indexed by s is empty in A then
[8] cs ← coefficients of 2|Q| variables in ei

[9] bs ←CI (i)
[10] add cs as row vector indexed by s in A
[11] add bs to the component indexed by s in b
[12] return A and b

Picking a set of linear equations according to Theorem 7 immediately yields a coefficient

matrix in row echelon form – for each column, there is exactly one row that has a 1 in this

column, and only zeroes to its left. The degree of freedom of the system of equations is the

number of variables for which no equation has it as its minimal variable. If at least one such

variable exists, we cannot answer the query without further constraints. These constraints

could be obtained from additional cuboids or some other restriction, such as that the facts

61

Chapter 6 Sudokube Solvers

must be non-negative. In the following example, even though there is initially one degree of

freedom, applying non-negativity constraints restricts the solution to be unique.

Example 13. In Figure 6.9, we have marked the chosen witness of every equivalence class with a

circle. According to Theorem 7, {e∗00, e∗01, e∗10, e∗11, e10∗, e11∗, e1∗1} is a basis for the vector

space spanned by the equations of the cuboids C{1,0}, C{3,1} and C{3,0}. Since there are eight

variables and only seven independent equations, we have a single degree of freedom, and the

query cannot be fully answered without further constraints. After Gaussian elimination on

the coefficient matrix, we get the equation e∗00 + e1∗1 − e10∗ = v000 + v111 = 0. If we impose a

non-negativity constraint on all the v values, this equation gives us v000 = v111 = 0, and so we

obtain the query result (v000, v001, . . . , v111) = (0,1,3,1,7,2,3,0).

Algorithm 5: Simple algorithm to improve bounds of variables in an equation using
existing bounds on other variables

input :Basis M for the system of equations, query Q
output :Bounds for variables in the result for query Q
[1] Initialize lower bound LB(v) for every variable v in the result of query Q as 0
[2] Initialize upper bound U B(v) for every variable v in the result of query Q as ∞
[3] repeat
[4] foreach equation e in the basis M do
[5] foreach variable v with a non-zero coefficient s in e do

[6] Rearrange e as e ′ in the form v =
(

b
c +∑ −ci

c vi

)
[7] P ← indexes i of variables in e ′ with positive values for coefficient −ci

c
[8] N ← indexes i of variables in e ′ with negative values for coefficient −ci

c

[9] lower ← b
c + ∑

i∈P

−ci
c LB(vi)+ ∑

j∈N

−c j

c U B(v j)

[10] upper ← b
c + ∑

i∈P

−ci
c U B(vi)+ ∑

j∈N

−c j

c LB(v j)

[11] LB(v) ← max(LB(v), lower)
[12] U B(v) ← min(U B(v), upper)

[13] until a fixed point is reached or a specified number of rounds is over

Even with the non-negativity restriction, queries may still have several degrees of freedom,

and we cannot compute exact results. In such cases, we find the upper and lower bounds

of every variable vq . Algorithm 5 shows a simple algorithm for improving the bounds on

a particular variable using the tightest bounds on other variables with which it shares an

equation. While the algorithm performs some cheap calculations in every iteration, there

is no guarantee that it converges within a small number of steps. Furthermore, the bounds

returned by this algorithm are not always tight, as it assumes that all variables in any given

equation can simultaneously have their respective maximum or minimum values.

The correct method to obtain the tightest bounds on the values of any single variable is through

linear programming [37]. We can construct linear programming problems for maximizing and

minimizing objective functions comprising each query variable one at a time, subject to the

62

Sudokube Solvers Chapter 6

set of linear equations obtained from the projections of the query. In fact, Algorithm 5 can be

considered an incorrect version of the simplex algorithm that pivots on every variable without

any regard to maintaining feasibility. Algorithm 6 sketches the high-level algorithm for using

linear programming and the simplex algorithm for determining tight bounds on individual

query variables.

However, the tight bounds for the values of the query variables given by the simplex algorithm

do not come for free. There are no guarantees on the number of iterations required by

simplex to reach the optimum value for the objective function, and running the simplex

algorithm is expensive, especially when there are several degrees of freedom. Furthermore,

any computation done by the simplex algorithm would have to be discarded after fetching

another projection of the query that yields new equations that makes the previously optimum

solution infeasible. For this reason, the linear programming solver in Sudokube uses the

simple algorithm to quickly compute some bounds for the query variables initially when the

degrees of freedom for the system of equation is high. As more projections of the query are

processed and the degrees of freedom are few, the solver switches to the simplex algorithm to

find tighter bounds.

Algorithm 6: Using linear programming to find bounds on query variables

input :Basis for the system of equations for query Q
output :Bounds for every variable in the result of Q
[1] A ← coefficients of equations that form basis
[2] foreach variable vq for q ∈ {0,1}Q do
[3] T1 ← simplex tableau from A with objective function to maximize vq

[4] run simplex algorithm on T1 until termination to find upper bound on vq

[5] T2 ← simplex tableau from A with objective function to minimize vq

[6] run simplex algorithm on T2 until termination to find lower bound on vq

The linear programming solver spends more time finding tighter bounds when the degree

of freedom is low so that it can identify variables that have the same lower and upper bound

imposed on them by the non-negativity restriction on all the variables. In such cases, the

variable is marked as solved, and its value is finalized. These scenarios lower the degrees of

freedom even further, potentially all the way down to zero, in which case only a single solution

satisfies all the constraints, and the query result can be answered exactly. Furthermore, when

the degree of freedom is low, the simplex algorithm itself may not require a lot of iterations

until it finds the optimum solution and could be cheap.

Our experiments show that this hybrid approach quickly yields tight bounds on query results

for low-dimensional queries but does not scale well with query dimensionality. We use two

different metrics to represent the quality of the bounds returned by the linear programming

solver. The first metric, which we refer to as the normalized cumulative interval span, captures

the precision by computing the total span of the bounds treated as intervals and then dividing

it by the total aggregate for normalization. Formally, the normalized cumulative interval span

63

Chapter 6 Sudokube Solvers

for bounds �(vq) and u(vq) for all variables in the query result indexed by q ∈ {0,1}Q is given

by the following equation

∑
q∈{0,1}Q

u(vq)−�(vq)

total
.

The second metric captures the accuracy by computing the sum of absolute values of deviation

of the true value of variable vq from the average value of the upper and lower bounds and

then dividing it by the total sum for normalization. Formally, we define the midpoint error as

∑
q∈{0,1}Q

|vq − �(vq)+u(vq)
2 |

total
.

Experiment 6.4 Varying Query Dimensionality on Linear Programming Solver in Batch Mode

We submit 100 queries with various levels of dimensionality to the linear programming solver

to run in batch mode, targeting data cubes constructed from NYC and SSB datasets using

both Random and Prefix strategies. Each data cube contains 215 materialized cuboids with a

minimum dimensionality of 14 for SSB and 18 for NYC.

We first analyze the dimensionality of the cuboids employed by the linear programming solver

to establish query result boundaries. We are interested in two different dimensionalities – the

original dimensionality of the materialized cuboid and its dimensionality after projection

to the dimensions present in the query. The original dimensionality of the cuboids impacts

fetch time, while the dimensionality after projection affects the solver, both in terms of solving

time as well as the uncertainty of the results. Figure 6.10 presents the average frequency

count of dimensionality, accounting for both the original dimensionality prior to and the final

dimensionality following the projection to the dimensions present in the query. We observe

that only a few cuboids are selected for Prefix data cubes, and they have considerable overlap

with queries. On the other hand, in the case of Random data cubes, at least 10 times more

cuboids are selected, which have a very small overlap with queries.

As the query dimensionality increases, the total number of projections of its result increases

exponentially. There is a corresponding increase in the number of cuboids fetched to answer

the query, and more higher-dimensional cuboids are fetched. In the case of Prefix cubes, the

rise in both the dimensionality of the query and that of the projected cuboids translates into

an increase in the dimensionality after projection. However, even though higher dimensional

cuboids are projected for data cubes using the Random strategy, there is minimal overlap with

the query, keeping the dimensionality after projection relatively low.

Figure 6.11a displays the average prepare, fetch, and solve times when using the linear pro-

gramming solver to answer queries of varying dimensionality. The prepare time experiences a

slight increase as the query dimensionality grows. The escalation in both the quantity and

64

Sudokube Solvers Chapter 6

(a) Dimensionality before projection

(b) Dimensionality after projection

Figure 6.10: Average frequency count for cuboid dimensionality in Sudokube approach when
the query dimensionality is varied. Histograms for both the original dimensionality of the
materialized cuboid and the dimensionality after it is projected to a subset of the query
dimensions are shown.

65

Chapter 6 Sudokube Solvers

(a) Execution time

(b) Degrees of freedom

(c) Error

Figure 6.11: Average values for execution time, degrees of freedom, and error for the linear
programming solver run in batch mode when the query dimensionality is varied

66

Sudokube Solvers Chapter 6

dimensionality of fetched cuboids results in an exponential boost in fetch time. The fetch time

for Prefix cubes is lower compared to Random cubes due to fewer projected cuboids. Contrary

to what we see with the naive solver, there is barely any difference between the fetch times for

the NYC and SSB datasets, as the base cuboid is not being projected, and low-dimensional

cuboids in both datasets have comparable sizes.

In general, the solve time increases with query dimensionality, as more instances of linear

programming problems are needed to find bounds for the exponentially increasing variables

associated with the rising query dimensionality, but this is not always the case. The linear

programming solver utilizes a hybrid approach, employing the more computationally inten-

sive simplex algorithm when the degrees of freedom are low, and a simple bound algorithm

when the degrees of freedom are high. We set the threshold for the degrees of freedom at

30, which results in significantly higher solve times for cases where degrees of freedom are

slightly below 30, compared to those slightly above 30. This explains why 6-dimensional

queries have a longer solving time compared to 8-dimensional queries in the case of data

cubes with the Random strategy. In the case of Prefix cubes, for most queries, there is at least

one materialized cuboid that yields the entire query as its projection. Therefore, no simplex

algorithm is required, and the solve time is lower.

The high value for the solve time, particularly beyond query dimensionality 8, makes this

approach impractical for interactive-speed querying. One reason for the slow solve is the use

of high-precision rational numbers to represent the coefficients of the variables in the linear

equations. Without this, we observed that the simplex algorithm incorrectly concluded that

the system of equations is infeasible even when our problem setup guarantees that there exists

atleast one feasible solution.

Figure 6.11b shows how the degrees of freedom of the system of equations obtained from

the projections of a query vary with the query dimensionality. The total number of variables,

which is the maximum possible value for the degrees of freedom, increases exponentially with

query dimensionality. The calculated degrees of freedom in the figure is the size of the basis

for the system of equations obtained from the projections of the query. The true degree of

freedom is lower than the calculated one when the non-negativity constraint restricts the size

of the feasible space for some variables to contain just one value. This happens much more

frequently for Prefix cubes, for which the cuboids are more sparse and contain zero as the

aggregated measure for several cells compared to Random cubes.

Figure 6.11c shows the average cumulative span of the feasible interval for every variable in

the query result, along with the average error comparing the midpoint of every interval with

the true value. We observe that the error and the interval span are much smaller for the Prefix

data cubes than the Random ones. Both metrics increase in response to an increase in the

query dimensionality, reflecting the additional degrees of freedom. �

67

Chapter 6 Sudokube Solvers

Experiment 6.5 Varying Number of Materialized Cuboids on Linear Programming Solver

Next, we examine the impact of the number of materialized cuboids on the histogram of

cuboid dimensionality and how it affects the execution time as well as the accuracy of the

bounds produced by the linear programming solver when run in batch mode. We run 100

queries of dimensionality 10 on four data cubes: NYC Random, NYC Prefix, SSB Random, and

SSB Prefix. The minimum dimensionality parameter for selecting the cuboids to materialize is

set to 14 for SSB and 18 for NYC.

Figure 6.12 shows the histogram for the cuboid dimensionality, both before and after the

projection to dimensions present in the query. We observe that in the case of Random data

cubes, the increase in the number of materialized cuboids leads to an increase in the cuboids

selected during the prepare phase. On the other hand, we observe a different trend for Prefix

data cubes – the number of prepared cuboids first increases with an increase in the total

number of materialized cuboids up to 212, then it starts decreasing. The reason is clear from

the histogram of dimensionality after projection in Figure 6.12b and degrees of freedom in

Figure 6.13b. In the case of Random cubes, the overlap with the query is so low that little

information is known about the query, and the degree of freedom is very high. On the other

hand, in the case of Prefix cubes, there is significant overlap with the query that the additional

materialized cuboids increased the number of projections with dimensionality close to the

query, so there is no need to fetch the low-dimensional projections.

Figure 6.13a shows how the time spent by the linear programming solver on prepare, fetch and

solve is affected by the number of materialized cuboids. The prepare time increases linearly

with the number of materialized cuboids, as in the case of the naive solver. The fetch time

increases in response to the greater number as well as the larger dimensionality of cuboids

being fetched. The solve time is largely unaffected as it mostly depends on the number of

variables in the query result, which is constant in this experiment.

With the additional information from the greater number of cuboids being fetched, the degree

of freedom for the solution space comes down, as shown in Figure 6.13b. The reduction of the

degrees of freedom is more significant in the Prefix cubes because the additional cuboids yield

relatively high-dimensional projections compared of the query.

Finally, Figure 6.13c shows how the cumulative interval span and the error for the midpoints

of the interval of feasible values for the query result compared to the true result. Both metrics

reduce with an increase in the number of materialized cuboids in all four data cubes. �

Experiment 6.6 Varying Minimum Dimensionality of Materialized Cuboids on Linear Pro-

gramming Solver in Batch Mode

We run experiments to study the impact of the minimum dimensionality parameter for materi-

alizing cuboids on the linear programming solver in batch mode. We run 100 10-dimensional

queries on data cubes built on NYC and SSB datasets with Prefix and Random strategies. The

68

Sudokube Solvers Chapter 6

(a) Dimensionality before projection

(b) Dimensionality after projection

Figure 6.12: Average frequency count for cuboid dimensionality in Sudokube approach when
the number of materialized cuboids is varied. Histograms for both the original dimensionality
of the materialized cuboid and the dimensionality after it is projected to a subset of the query
dimensions are shown.

69

Chapter 6 Sudokube Solvers

(a) Execution time

(b) Degrees of freedom

(c) Error

Figure 6.13: Average values for execution time, degrees of freedom, and error for the linear
programming solver run in batch mode when the number of materialized cuboids is varied

70

Sudokube Solvers Chapter 6

data cubes are built with the total number of cuboids set to 215 and the experiment is run for

different values of the minimum dimensionality dmin.

In Figure 6.14a, we observe that the histogram of dimensionality of the source cuboid is shifted

whenever the minimum dimensionality is increased. The maximum number of cuboids are

fetched from cuboids with dimensionality equal to dmin because this is also the dimensionality

where the most number of cuboids are materialized. The number of fetched cuboids increases

in the case of data cubes with the Random strategy and it decreases for data cubes with the

Prefix strategy. The frequency of cuboids of some dimensionality k fetched for answering

queries decreases following the same pattern as the total number of cuboids materialized with

dimensionality k. The increased value of the minimum dimensionality translates to an in-

crease in the dimensionality after projection due to the increased overlap in the Prefix strategy,

eliminating the need for fetching lower-dimensional projections. Figure 6.14b confirms the

increase in the dimensionality after the intersection with the query when the dimensionality

of materialized cuboids increases.

We observe the impact of minimum dimensionality of materialized cuboids on the execution

time for linear programming solver in Figure 6.15a. The minimum dimensionality hardly

affects the prepare time, but the fetch time increases as larger cuboids are fetched. The solve

time also is largely unaffected except for the SSB Prefix data cube, where the average solve

time increases due to some outlier queries with a long running time for the simplex algorithm.

Increasing the minimum dimensionality reduces the degrees of freedom, as can be seen in

Figure 6.15b. The increased dimensionality of the materialized cuboids leads to an increase in

the size of the intersection of their dimensions with the query, which yields more equations

that contribute to the increase in the size of the basis.

The impact of increasing the dimensionality of materialized cuboids on the accuracy of the

result can be seen in Figure 6.15c. The reduced degree of freedom reduces the span of the

feasible interval for each query variable and also reduces the error of the midpoint compared

to the true solution. �

Experiment 6.7 Studying Improvement of Error over Time for Linear Programming Solver in

Online Mode While Varying Query Dimensionality

Finally, we study how the approximation quality improves over time when queries are an-

swered using the linear programming solver in the online mode. We pick 100 queries each

of various dimensionality and run them on data cubes built on NYC and SSB data sets using

Random and Prefix strategies. We use data cubes with 215 materialized cuboids with minimum

dimensionality 14 for SSB and 18 for NYC. For each query, we note down the time and the most

up-to-date bounds returned by the linear programming solver after processing every fetched

cuboid. We use the cumulative span for the bounds returned by the solver for assessing the

quality of the approximation.

71

Chapter 6 Sudokube Solvers

(a) Dimensionality before projection

(b) Dimensionality after projection

Figure 6.14: Average frequency count for cuboid dimensionality in Sudokube approach when
the minimum dimensionality of materialized cuboids is varied. Histograms for both the
original dimensionality of the materialized cuboid and the dimensionality after it is projected
to a subset of the query dimensions are shown.

72

Sudokube Solvers Chapter 6

(a) Execution time

(b) Degrees of freedom

(c) Error

Figure 6.15: Average values for execution time, degrees of freedom, and error for the linear
programming solver run in batch mode when the minimum dimensionality of materialized
cuboids is varied

73

Chapter 6 Sudokube Solvers

Figure 6.16: Improvement of error over time for linear programming solver in online mode for
various query dimensionality

We plot the average error at various times during the execution for various query dimensional-

ity in Figure 6.16. First of all, we observe that the total execution time is much more in online

mode compared to the batch mode for the same query dimensionality. Unlike the batch mode,

in online mode, the solving algorithm is invoked after every cuboid is fetched instead of just

once at the end. When solve time is the dominating cost, as is the case here, invoking solve

multiple times will increase the total execution time proportionally as well. The figure also

shows there is really no point in running queries in online mode as it is currently implemented

when solve time is the dominant cost. It is much cheaper to wait until more cuboids are

fetched before solving the query. As a consequence, the linear programming solver in the

online mode is interactive only for queries up to dimensionality 4. �

To encapsulate, the performance of the linear programming solver has been comprehensively

examined in four distinct experiments. The first three experiments delve into the influence of

query dimensionality, the quantity of materialized cuboids, and the minimum dimensionality

of these materialized cuboids on the solver’s execution time and the accuracy of its result,

when operated in batch mode. Another experiment provides insight into the solver’s online

mode operation, illustrating the evolving accuracy over time for varied query dimensionality.

Across all experiments, we observe the solver’s superior performance in terms of speed and

precision for the Prefix cubes. In contrast, the solver exhibited longer execution times and re-

duced accuracy for Random cubes, due to a smaller fraction of materialized cuboids compared

to the space of all possible query cuboids.

The solver effectively leveraged the non-negativity constraints in multiple instances, reducing

degrees of freedom and subsequently enhancing the accuracy of the results, particularly in

the case of Prefix cubes. When the number of materialized cuboids increased, the results

displayed enhanced precision without significantly impacting the total execution time. This

74

Sudokube Solvers Chapter 6

was largely due to the fact that the increased cuboid count primarily affected the prepare time,

which only constitutes a minor portion of the total execution time.

Similarly, increasing the minimum dimensionality of the materialized cuboids led to improved

result accuracy without substantially affecting the overall execution time, as this primarily

influenced the fetch time. Notably, except for queries of very low dimensionality, the solve

time remained the most dominant factor contributing to the total execution time.

Nonetheless, the combination of the high computational complexity of the simplex algorithm

and the requirement for high-precision numerical operations hinders the solver’s practicality

for queries with dimensionality beyond 8. Overall, the linear programming solver demon-

strates promise in certain scenarios, but faces challenges for general applicability.

6.3 Solving Queries Using Moments

The linear programming approach discussed in the previous section gives tight bounds for

values of the query cuboid from its projections. However, when the number of degrees of

freedom of the solution is high, the intervals are usually large and may not provide helpful

insights for the given query. We now discuss an alternative approach that returns the most

likely values for the cuboid even when we have numerous degrees of freedom. This approach

assumes that the extreme values allowed by the many degrees of freedom are possible but

highly unlikely.

In this approach, we characterize a cuboid C by its moments. We define a moment for

every projection of C , and the complete set of moments uniquely determines the cuboid. In

particular, for some query Q, when only some projections of the query result CQ are known, we

can only compute the moments for those projections, and the cuboid CQ cannot be precisely

reconstructed. We approximate the cuboid instead by extrapolating unknown moments from

the known ones.

6.3.1 Moments of a Cuboid

In Section 4.1.2, we saw how the binary cuboids in Sudokube resemble probability distribu-

tions. The main difference between cuboids and probability distributions is that the entries

in a probability distribution are always non-negative and sum up to 1, whereas the entries

in cuboids don’t necessarily satisfy these properties. However, in this thesis, we are focusing

only on non-negative measure values, and the other difference exists only as a normalization

factor. Therefore, we generalize Equation (2.5) to define raw moments for binary cuboids by

scaling them up by the total measure value total, as shown below.

μ(x) = total ·E
[∏

i∈1x

Xi

]
(6.1)

75

Chapter 6 Sudokube Solvers

The generalized moment associated with the zero vector μ(0) is equal to the total sum of

all entries total, and we shall use them interchangeably. These moments are related to the

measure values in cuboids, as the following proposition states.

Proposition 8. For any x ∈ {0,1}I , μI (x) =C J (x↓J), where J = 1x .

Proof. From its definition, μI (x) is the expected value of a product of some random variables

multiplied by a scaling factor, which translates to a sum over measure values of cells that map

all the dimensions in J to 1. All these vectors are consistent with each other on dimensions in

J , and the sum of their measure values forms the measure value of a cell in the cuboid C J , as

shown below.

μI (x) = total ·E
[∏

i∈1x

Xi

]

= total · ∑
y∈{0,1}I

(∏
i∈1x

yi

)
pI (y)

= ∑
y∈{0,1}I

(∏
i∈1x

yi

)
CI (y)

=
∑

1y⊇1x

CI (y)

= ∑
y↓J=x↓J

CI (y) =C J (x↓J)

Proposition 8 allows us to compute moments of some cuboid from its projections. All moments

of a cuboid can also be efficiently computed directly from the cuboid as established in the

following proposition.

Proposition 9. For any I ⊆ [n], the vectorized cuboid C I and its moments μI are related to each

other by the following two equations, where ⊗ denotes the Kronecker product (applied |I | times

in the equations) and M = [1 1
0 1

]
and W = M−1 = [1 −1

0 1

]
:

(1) μI = M⊗|I |C I and (2) C I = W ⊗|I |μI

Proof. Statement (2) immediately follows from Statement (1) because of the properties of

Kronecker product given that W = M−1. We only need to prove Statement (1), which we do by

induction on the size of the cuboid |I |. Let the elements of I in step k with |I | = k be labeled

i1, . . . , ik .

Base Case : For |I | = 1 from the definition of moments, we know that μI (0) = CI (0)+CI (1) and

μI (1) = CI (1). Thus, μI = M C I .

Inductive Case : We assume that the statements are true for |I | = k −1 and prove them for

|I | = k. The k-dimensional cuboid can be sliced along the last dimension ik into two (k −1)

76

Sudokube Solvers Chapter 6

dimensional cuboids. Let C I |i denote the two slices and μI |i their respective moments for

i = 0,1 ∈ {0,1}{ik }. For some x , y ∈ {0,1}I \{ik }, we have

CI |i (y) =CI (y
 i), and

μI |i (x) =
∑

1y⊇1x

CI |i (y) =
∑

1y⊇1x

CI (y
 i).

Furthermore, let μ(i)
I and C (i)

I denote the first and second halves of the moments and values of

the k-dimensional cuboid for i = 0 and i = 1 respectively. Because of the ordering of entries in

the vectors C I and μI , for some x , y ∈ {0,1}I \{ik } and j ∈ {0,1}{ik }, we have

C (i)
I (y) =CI (y
 i), and

μ(i)
I (x) =μI (x
 i) =

∑
1y⊇1x
1 j ⊇1i

CI (y
 j).

Clearly, C I |i =C (i)
I . Furthermore, μ(0)

I = μI |0+μI |1 and μ(1)
I = μI |1. Using the inductive property,

we have μI |i = M⊗(k−1)C I |i . Combining them all together, we have

μI =
[
μ(0)

I

μ(1)
I

]
=
[

M⊗(k−1) M⊗(k−1)

0 M⊗(k−1)

][
C (0)

I

C (1)
I

]

=
([

1 1

0 1

]
⊗M⊗(k−1)

)[
C (0)

I

C (1)
I

]
= M⊗kC I .

Example 14. The moments of the query cuboid CQ for the query Q = {3,1,0} with CQ =
(CQ (000) . . .CQ (111)) on the sales data cube are shown below. For every x ∈ {0,1}Q , the mo-

ment μ(x) equal to the last entry in the cuboid from Figure 6.2 containing only the dimensions

mapped to 1 by x , as stated in Proposition 8.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μQ (000)

μQ (001)

μQ (010)

μQ (011)

μQ (100)

μQ (101)

μQ (110)

μQ (111)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

3

1

7

2

3

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17

4

7

1

12

2

3

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C�(∗∗∗)

C{0}(∗∗1)

C{1}(∗1∗)

C{1,0}(∗11)

C{3}(1∗∗)

C{3,0}(1∗1)

C{3,1}(11∗)

C{3,1,0}(111)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6.3.2 Cuboid Transformations

Proposition 9 establishes a 1-to-1 correspondence between the cuboid C I and its moments μI

using transformation matrices M⊗|I | and W ⊗|I |. Specifically, μI can be taken as an alternative

representation of the cuboid. In the general case, we are interested in transformations repre-

sented by matrices that have a very convenient structure in the form of Kronecker products

77

Chapter 6 Sudokube Solvers

(xm , . . . , xh+1,0, yh−1, . . . , y1)

...
...

(xm , . . . , xh+1,1, yh−1, . . . , y1)

·M11
·M

21

·M 12

·M22

+2h

Figure 6.17: Data flow on array A in Algorithm 7, innermost loop, shown for I = {1, . . . ,m} and

M =
(

M11 M12
M21 M22

)

of 2×2 matrices, one for each dimension in I . This is key to being able to carry out such

transformations in an efficient way.

As established in Proposition 3, a Kronecker product of several matrices can be expressed as a

product of expressions involving each matrix separately. We can use this result to split some

linear transformation between two representations having the above-mentioned structure

into a series of linear transformations for each dimension in I . This property allows us to

implement fast versions of these transformations, much like the Fast Fourier Transform [24]

and similar transformations [32], [33]. Furthermore, because of the commutativity for the

product of expressions for each dimension, the transformations for all the dimensions can be

performed in any order.

Algorithm 7 shows the algorithm for the Transform function that applies a 2×2 linear trans-

formation for some generic matrix M with respect to some dimension h (with ordinal position

k within the set I) on an array A. This corresponds to the transformation of A by the k-th term

of the matrix product on the right-hand side of (2.8). In the algorithm, we iterate over pairs

of elements in the array partitioned along dimension h. For efficient implementation of this

algorithm using integer encodings of the binary vectors indexing the array A, we describe the

iteration in terms of two loops iterating over contiguous ranges of vectors x and y whose sum

indexes the first half of the pair of elements being considered. The second half of the pair is

obtained by adding the unit vector in dimension h to the sum of x and y .

Algorithm 7: Efficient implementation of the transformation algorithm

input :Array A indexed over {0,1}I on which transformation M ∈R2×2 is to be applied
corresponding to dimension h ∈ I .

output :Same array A after in-place transformation
[1] def Transform(A, M , h):
[2] Let eh ∈ {0,1}I be the unit vector along h
[3] foreach x ∈ {0,1}I with xi = 0 for all i ≥ h do
[4] foreach y ∈ {0,1}I with yi = 0 for all i ≤ h do

[5]

(
A[x+y]

A[x+y+eh]

)
← M ·

(
A[x+y]

A[x+y+eh]

)
[6] return A

78

Sudokube Solvers Chapter 6

17

4

7

1

12

2

3

0

13

4

6

1

10

2

3

0

7

3

6

1

7

2

3

0

0

1

3

1

7

2

3

0

+

– +

+

+

+

+

+

+

–

–

–

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

–

–

–

–

–

–

–

–

–

–

–

–

μ{3,1,0}(000)

μ{3,1,0}(001)

μ{3,1,0}(010)

μ{3,1,0}(011)

μ{3,1,0}(100)

μ{3,1,0}(101)

μ{3,1,0}(110)

μ{3,1,0}(111)

C{3,1,0}(000)

C{3,1,0}(001)

C{3,1,0}(010)

C{3,1,0}(011)

C{3,1,0}(100)

C{3,1,0}(101)

C{3,1,0}(110)

C{3,1,0}(111)

Figure 6.18: Computations involved in Algorithm 7 when applied to transform μQ back to CQ

The execution of Algorithm 7 for the set I = {1, . . . ,m} is simulated in Figure 6.17. For this set

I , the ordinal position of any dimension h is h. The figure also illustrates how Algorithm 7

implements the expression I⊗(h−1)
2 ⊗M ⊗ I⊗(m−h)

2 for the transformation matrix M .

Algorithm 8 shows a function CuboidToRawMoments that uses the Transform function to effi-

ciently convert a cuboid C I to its representation using raw moments μI following Proposition 9.

A similar function RawMomentsToCuboid can be obtained for transforming the moments μI

back to cuboid C I by passing W instead of M as the argument to the Transform function.

Algorithm 8: Transformation of C I into μI

input :Cuboid C I

output :Array A containing the values of the vector μI

[1] def CuboidToRawMoments(I , C I):
[2] Initialize array A with the contents of C I

[3] M ← (
1 1
0 1

)
[4] foreach h ∈ I do
[5] A← Transform(A, M , h)
[6] return A as μI

Example 15. Given the vector μQ comprising all 8 moments of the query Q = {3,1,0}, Figure 6.18

shows the computations involved in applying the fast transform algorithm to transform μQ to

obtain the result CQ .

Proposition 10. The run-time complexity of either transformation in Proposition 9 using the

fast transformation algorithm from Algorithm 7, for some set I ⊆ [n] of size m, is O (m ·2m).

Proof. A single invocation of Transform has a run-time complexity that is linear in the size

of the array, i.e., O (2m). This can be inferred from Algorithm 7 where each element of the

array is read twice and written once. The transformations described in Proposition 9 invokes

Transform once per dimension in I as shown in Algorithm 8. Thus, the overall run-time

complexity is O (m ·2m).

79

Chapter 6 Sudokube Solvers

6.3.3 Cuboid Approximation from Projections

Given a query Q and a set of known projections CI for several I ∈ I (Q) of the query cuboid

CQ , we shall now see how CQ can be reconstructed from its projections using their moments.

The moment solver approximates the result CQ from the moments of the available projections.

It makes statistical assumptions about the underlying data and extrapolates the missing

moments of CQ from the known ones. Algorithm 9 describes a high-level algorithm for the

same. Each available projection C I is first transformed into its moments μI in Line 3. These

moments are copied into the appropriate slot among the moments of the query result μQ

following Proposition 1 in Line 5. After all the projections are processed, any missing slot in

μQ is filled using some extrapolation technique in Line 8. Finally, the approximate query result

C̃Q is obtained by applying the reverse transformation on the extrapolated moments in Line 9.

Algorithm 9: Algorithm for reconstructing CQ from moments of its projections

input :Query Q, cuboids C I for every I ∈I (Q)
output :Reconstructed cuboid C̃Q

[1] A← new array of size 2|Q| // for μQ

[2] foreach I ∈I (Q) do
[3] μI ← CuboidToRawMoments(I , C I)

[4] foreach y ∈ {0,1}I do
[5] A[y↑Q] ←μI (y) // from Proposition 1

[6] mark index y↑Q as known

[7] foreach q ∈ {0,1}Q that is not marked as known do
[8] A[q] ← extrapolated value of μQ (q) using some method

[9] C̃Q ←RawMomentsToCuboid(Q, A)

[10] return C̃Q

Example 16. 7 moments of the query Q = {3,1,0} can be computed from its projections {1,0},

{3,0} and {3,1} as shown in Figure 6.19 following Proposition 1. The moment μQ (111) is un-

known and has to be extrapolated from the other moments by some means.

Let us now examine some methods for extrapolating moments of the query cuboid that cannot

be computed from any of the materialized cuboids. We denote the extrapolated moment

indexed by some vector q ∈ {0,1}Q using μ̃Q (q). If this value is computable from the available

projections of the query, then we set it to its exact value μ̃Q (q) =μQ (q) and otherwise, we set

it using one of the following approaches.

ZeroRawMoment

In this approach, we simply set the extrapolated value of the unknown raw moments μQ (q) as

zero. This is the simplest extrapolation method, and produces an approximate query result

with all cells C̃Q (r) with 1r ⊇ 1q set to zero.

μ̃Q (q) = 0

80

Sudokube Solvers Chapter 6

17

4

7

1

12

2

3

?

17

4

12

2

17

7

12

3

17

4

7

1

5

2

12

2

5

4

12

3

10

3

7

1

3

2

10

2

1

4

9

3

7

3

6

1

C{1,0}(∗00)
C{1,0}(∗01)
C{1,0}(∗10)
C{1,0}(∗11)
C{3,0}(0∗0)
C{3,0}(0∗1)
C{3,0}(1∗0)
C{3,0}(1∗1)
C{3,1}(00∗)
C{3,1}(01∗)
C{3,1}(10∗)
C{3,1}(11∗)

μ{1,0}(∗00)
μ{1,0}(∗01)
μ{1,0}(∗10)
μ{1,0}(∗11)
μ{3,0}(0∗0)
μ{3,0}(0∗1)
μ{3,0}(1∗0)
μ{3,0}(1∗1)
μ{3,1}(00∗)
μ{3,1}(01∗)
μ{3,1}(10∗)
μ{3,1}(11∗)

μ{3,1,0}(000)

μ{3,1,0}(001)

μ{3,1,0}(010)

μ{3,1,0}(011)

μ{3,1,0}(100)

μ{3,1,0}(101)

μ{3,1,0}(110)

μ{3,1,0}(111)

Figure 6.19: Computing seven out of eight moments μQ of the query cuboid CQ from its three
projections. The last moment is not known and has to be extrapolated from the others.

HalfPowerK

This approach sets the extrapolated values of unknown moments to be equal to the corre-

sponding moments in a uniformly distributed cuboid. In this approach, for any unknown

moment indexed by q ∈ {0,1}Q , we set

μ̃Q (q) = total

2|1q |

ParentAverage

In this approach, we process the unknown moments in ascending order of q . We set the value

of any unknown μ(q) to be half of the average values of moments μ(r) such that r ∈ {0,1}Q has

exactly one less dimension mapping to 1 compared to r as shown below

μ̃Q (q) = 1

|1q |
∑

1r ⊂1q
|1r |=|1q |−1

μ̃Q (r)

2

81

Chapter 6 Sudokube Solvers

AncestorAverage

This follows a similar approach to ParentAverage, but takes a weighted average of all preceding

moments for any unknown moment indexed by q ∈ {0,1}Q .

μ̃Q (q) = 1

2|1q | −1

|1q |∑
k=1

∑
1r ⊂1q

|1r |=|1q |−k

μ̃Q (r)

2k

ParentMin

This approach is similar to ParentAverage, but takes the minimum value of all the moments

instead of half the average value. This is the upper bound for the possible values of any

unknown μ(q) based on Fréchet’s inequality [35].

μ̃Q (q) = min
1r ⊂1q

|1r |=|1q |−1

μ̃Q (r)

FrechetMid

In this approach, we set the value of any unknown moment as the average of its Fréchet upper

and lower bounds.

μ̃Q (q) = 1

2

⎛⎜⎜⎝ min
1r ⊂1q

|1r |=|1q |−1

μ̃Q (r) + max

⎧⎪⎪⎨⎪⎪⎩0,
(
1−|1q |)total+ ∑

1r ⊂1q
|1r |=|1q |−1

μ̃Q (r)

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

ZeroCentralMoment

We extrapolate the value of any unknown raw moment μ(q) by assuming that the correspond-

ing central moment σ(q) is zero. The central moments for probability distributions defined in

Equation (2.6) can be generalized to cuboids in the same way raw moments were generalized

in Equation (6.1). The relationship between μI and σI as proposed in Lemma 2 holds for the

generalized moments as well. We extrapolate unknown moments in ascending order of q by

setting all unknown central moments to zero based on Lemma 2 as

μ̃Q (q) = ∑
1r ⊆1q

1r ∈I (Q)

σQ (r)
∏

i∈1q \1r

θi (6.2)

Algorithm 10 shows an algorithm for extrapolating the moments by setting unknown central

moments to zero. It starts with the state where the 0-D moment that is equal to the total sum

and all the 1-D moments equal to each θi , are known. It computes the products of various

82

Sudokube Solvers Chapter 6

combinations of θi in the array P and initializes A(q), which stores μQ (q), as total ·P(q).

Then for each known projection CI , the moments μI (y) are processed in order ≺ for y . From

Proposition 1, this is the true value for the moment μQ (s), where s = y↑Q . The value of σQ (s)

is then computed as the difference between the true value and the current value of μQ (s),

which is then used to update the values of moments μQ (q) with 1q ⊇ 1s . The correctness of

this algorithm is given by the following theorem.

Algorithm 10: Algorithm for reconstructing CQ by assuming unknown central mo-
ments are zero
input :Query Q, cuboids C I for every I ∈I (Q)
output :Reconstructed cuboid C̃Q

[1] A← new array of size 2|Q| // for μ̃Q

[2] P ← new array of size 2|Q|

[3] mark 0 and unit vectors eh ∈ {0,1}Q as known
[4] foreach q ∈ {0,1}Q do
[5] P[q] ← ∏

i∈1q

θi

[6] A[q] ← total ·P[q]

[7] foreach I ∈I (Q) do
[8] μI ← CuboidToRawMoments(I , C I)

[9] foreach y ∈ {0,1}I in ascending order of ≺ do
[10] s ← y↑Q

[11] μ←μI (y) // true value of μQ (s)
[12] if s is not marked as known then
[13] σ←μ−A[s] // difference of true and current value of μQ (s)
[14] foreach q ∈ {0,1}Q such that 1q ⊇ 1s do
[15] A[q] ← A[q] + σ· P[q - s]
[16] mark index s as known

[17] C̃Q ←RawMomentsToCuboid(Q, A)

[18] return C̃Q

Theorem 11. Algorithm 10 computes the extrapolated moments μ̃Q (q) of cuboid CQ represent-

ing the result of the query Q according to Equation (6.2) as more moments of CQ are computed

from its projections.

Proof. We use induction on the number of moments of CQ that become known to prove the

correctness of Algorithm 10.

Base Case : Initially, only the total sum referenced by μQ (0) and the 1-D marginals referenced

by μ(eh) for each h ∈Q are known. From its definition, σQ (0) =μQ (0) and σQ (eh) = 0 for any

h ∈Q. Plugging these values into Equation (6.2) gives the following equation for every moment

indexed by q ∈ {0,1}Q .

μ̃Q (q) = total∗ ∏
i∈1q

θi

83

Chapter 6 Sudokube Solvers

Inductive Case: We assume that the algorithm is correct after processing a certain number of

cuboids and prove that it remains correct after one more step. Let the new moment that is

now being added be indexed by s. Consider some arbitrary index q ∈ {0,1}Q . In Equation (6.2),

the moment μQ (q) depends only on the central moments r such that 1r ⊆ 1q . Therefore, after

computing a new moment μQ (s), the only moments that need to be updated to maintain

Equation (6.2) are those indexed by specific q such that 1s ⊆ 1q . For one such μ̃Q (q), the

incremental change to it upon computing the new moment μQ (s) is given by

σQ (s)
∏

i∈1q \1s

θi .

The only thing left to be proved is the correctness of the value of μQ (s) computed in Line 13.

Since we process moments in ascending order of the indices, all moments μQ (r) with 1r � s

have been computed and processed before. Therefore, the latest extrapolated value μ̃Q (s)

before computing the true value is given by Equation (6.3), according to the induction hypoth-

esis. We also have Equation (6.4) that separates the term for s from the other terms in the

summation in the formula for μQ (s) in Lemma 2.

μ̃Q (s) = ∑
1r �1s

σQ (r) · ∏
i∈1s \1r

θi (6.3)

μQ (s) =σQ (s) ·1+ ∑
1r �1s

σQ (r) · ∏
i∈1s \1r

θi (6.4)

Combining these equations, we get σQ (s) =μQ (s)− μ̃Q (s), thus completing the proof.

Example 17. Consider the query Q = {3,1,0} on the sales data cube. Initially only values of

total = 17, θ0 = 4
17 , θ1 = 7

17 and θ2 = 12
17 . The initial values of the extrapolated moments μ̃Q (011)

and μ̃Q (111) are given by

μ̃Q (011) = total ·θ0θ1 = 28
17 , and μ̃Q (111) = total ·θ0θ1θ2 = 336

289 .

Once the cuboid C{1,0} is fetched, we set μ̃Q (011) to its true value μQ (011), which is same as

μ{1,0}(∗11). The updated moments are

μ̃Q (011) = 1, and μ̃Q (111) = 336
289 + (1− 28

17

) · 12
17 = 12

17 .

After processing all three projections C{1,0}, C{3,1} and C{3,0},

μ̃Q (111) = 336
289 + (1− 28

17

)· 12
17 + (3− 84

17

)· 4
17 + (2− 48

17

)· 7
17 = −26

289 .

From this point on, we ignore the distinction between the true and extrapolated moments of a

cuboid and simply refer to them as moments. Once the moment vector is computed through

extrapolation, the values of the cuboid can be obtained using the equation using a procedure

RawMomentsToCuboid that is similar to the procedure CuboidToRawMoments described in

Algorithm 8. We estimate the quality of the approximated result in terms of an error. For

84

Sudokube Solvers Chapter 6

any approximate result C̃Q of some query Q with true result CQ , we define the error in the

approximation as the sum of the absolute values of the deviation between the true and the

approximated value for each cell divided by the total sum as shown below.

er r or =
∑

q∈{0,1}Q

|C̃Q (q)−CQ (q)|
total

(6.5)

Experiment 6.8 Comparing Moment Extrapolation Techniques in Batch Mode

We run 100 queries each of varying dimensionality in batch mode on the four data cubes – NYC

Random, NYC Prefix, SSB Random, and SSB Prefix, and compare the performance of various

techniques to extrapolate the moments we have discussed so far. We fix the total number of

materialized cuboids to be 215 and set the minimum dimensionality dmin to be 14 for SSB and

18 for NYC. Figure 6.20 shows the average error for each solving technique for various query

dimensionality. The figure shows that the approach setting the unknown moments to match

that of a uniformly distributed cuboid yields the worst approximation, while the approach

that sets the central moment to zero appears to be the best approach. Furthermore, the error

for many of these extrapolation techniques is very high, which we investigate next. �

Figure 6.20: Average error for different moment extrapolation techniques run in batch mode
for various query dimensionality when no heuristics are applied to improve the error

There are constraints on the feasible values for all moments based on the values of other mo-

ments so that the measures in the cuboid they represent are non-negative. Our extrapolation

methods may result in extrapolated moments that do not respect these constraints. Since

our measure values are all assumed to be non-negative, having negative measure values in

an approximated query result lowers its accuracy. Computing exact bounds on the unknown

moments to mitigate this problem can be expensive as it would involve solving linear program-

ming problems, as was the case with our linear programming solver in Section 6.2. Instead, a

simple approach would be to set the negative values in an approximated cuboid to zero after

85

Chapter 6 Sudokube Solvers

the reverse transformation from its moments. This can only improve the error as the true

values are all assumed to be non-negative.

Another method to improve the error is to apply some simple bounds locally during the

transformation from the extrapolated moments to obtain the approximate cuboid. We know

from Fréchet’s inequality that a moment cannot be greater than another moment that is

indexed by a vector containing fewer dimensions mapped to 1, and the moments them-

selves are non-negative. We, therefore, implemented a function TransformWithBounds that

is similar to Transform, but applies these bounds first. Algorithm 11 shows the function

TransformWithBounds that is used by RawMomentsToCuboid in Algorithm 12 to transform

extrapolated moments into values.

Algorithm 11: Transformation algorithm that also applies bounds locally

input :Array A indexed over {0,1}I on which transformation M ∈R2×2 is to be applied
corresponding to dimension h ∈ I .

output :Same array A after in-place transformation
[1] def TransformWithBounds(A, M , h):
[2] Let eh ∈ {0,1}I be the unit vector along h
[3] foreach x ∈ {0,1}I with xi = 0 for all i ≥ h do
[4] foreach y ∈ {0,1}I with yi = 0 for all i ≤ h do
[5] A[x + y +eh] ← max(0,min(A[x + y +eh],A[x + y]))

[6]

(
A[x+y]

A[x+y+eh]

)
← M ·

(
A[x+y]

A[x+y+eh]

)
[7] return A

Algorithm 12: Reverse Transform

input :Array A containing the values of the vector μ̃I

output :Approximated Cuboid C̃ I

[1] def RawMomentsToCuboid(I , A):
[2] W ← (

1 −1
0 1

)
[3] foreach h ∈ I do
[4] A← TransformWithBounds(A, W , h)
[5] return A as μI

Experiment 6.9 Comparing Moment Extrapolation Techniques With Bounds in Batch Mode

We repeat the same experiment with 100 queries and four data cubes and investigate the error

for different moment extrapolation techniques when the local bound is applied during the

reverse transformation of moments to construct the query cuboid. Figure 6.21 shows the

improved error for each extrapolation technique. Applying the bounds significantly reduces

the error for every extrapolation technique, and extrapolating moments so that the central

moment is zero is still the best approach by far. �

Among all the approaches we have considered in these experiments, the best approach for

extrapolating raw moments is to set the corresponding central moments to zero.

86

Sudokube Solvers Chapter 6

Figure 6.21: Average error for different moment extrapolation techniques run in batch mode
for various query dimensionality after applying heuristic bounds to improve the error

6.3.4 Improved Moment Extrapolation Algorithm

In the previous section, an algorithm was described for extrapolating the moments of a cuboid

based on the assumption that the corresponding central moments are zero. But the main

drawback of the algorithm is that it extrapolates each unknown moment individually, with

the worst case complexity of O (2|Q|) for each unknown moment, and there can be O (2|Q|)
unknown moments, bringing the overall complexity to O (4|Q|). A more efficient algorithm that

extrapolates all unknown moments together in O (|Q|) steps is described next. Before going

into the details of the algorithm, we will establish the relationship between μI , σI and C I ,

where μI and σI are the generalized raw and central moments of the vectorized cuboid C I .

The following theorem extends Proposition 9 and is a modified version of [99, Theorem 1].

Theorem 12. For any I ⊆ [n] with I = {i1, . . . , im}, the vectors μI , σI and C I are related to each

other by the following equations:

(1) μI = (1 1
0 1

)⊗mC I

(2) σI =
((

1 0
−θim 1

)
⊗ . . .⊗

(
1 0

−θi1 1

))
μI

(3) σI =
((

1 1
−θim θim

))
⊗ . . .⊗

(
1 1

−θi1 θi1

))
C I

(4) C I = (1 −1
0 1

)⊗m
μI

(5) μI =
((

1 0
θim 1

)
⊗ . . .⊗

(
1 0
θi1 1

))
σI

(6) C I =
((

θim −1
θim 1

)
⊗ . . .⊗

(
θi1 −1
θi1 1

))
σI

This theorem establishes that the vectorized cuboid C I , the vector for raw moments μI , and

the vector for central moments σI all represent the same information in different formats

and can be interchanged using the fast transformation algorithm described in Algorithm 7.

Algorithm 13 describes our new implementation of moment extrapolation to reconstruct the

approximate joint distribution C̃Q for query Q given projection cuboids for some sets I ∈I (Q).

87

Chapter 6 Sudokube Solvers

17

0

0

-11/17

0

-14/17

-33/17

0

17

0

0

-14/17

17

0

0

-33/17

17

0

0

-11/17

5

14/17

12

-14/17

5

33/17

12

-33/17

10

11/17

7

-11/17

3

2

10

2

1

4

9

3

7

3

6

1

C{1,0}(∗00)
C{1,0}(∗01)
C{1,0}(∗10)
C{1,0}(∗11)
C{3,0}(0∗0)
C{3,0}(0∗1)
C{3,0}(1∗0)
C{3,0}(1∗1)
C{3,1}(00∗)
C{3,1}(01∗)
C{3,1}(10∗)
C{3,1}(11∗)

σ{1,0}(∗00)
σ{1,0}(∗01)
σ{1,0}(∗10)
σ{1,0}(∗11)
σ{3,0}(0∗0)
σ{3,0}(0∗1)
σ{3,0}(1∗0)
σ{3,0}(1∗1)
σ{3,1}(00∗)
σ{3,1}(01∗)
σ{3,1}(10∗)
σ{3,1}(11∗)

σ{3,1,0}(000)

σ{3,1,0}(001)

σ{3,1,0}(010)

σ{3,1,0}(011)

σ{3,1,0}(100)

σ{3,1,0}(101)

σ{3,1,0}(110)

σ{3,1,0}(111)

13/17

13/17

13/17

13/17

10/17

10/17

-4/17

-4/17

-4/17

-4/17

-7/17

-7/17

10/17

10/17

-7/17

-7/17

-12/17

-12/17

-12/17

-12/17

5/17

5/17

5/17

5/17

(a) Extracting central moments from projections

17

0

0

-11/17

0

-14/17

-33/17

0

σ{3,1,0}(000)

σ{3,1,0}(001)

σ{3,1,0}(010)

σ{3,1,0}(011)

σ{3,1,0}(100)

σ{3,1,0}(101)

σ{3,1,0}(110)

σ{3,1,0}(111)

17

4

0

-11/17

0

-14/17

-33/17

-132/289

17

4

7

1

0

-14/17

-33/17

-230/289

17

4

7

1

12

2

3

-26/289

4/17

4/17

4/17

4/17

7/17

7/17

7/17

7/17

12/17

12/17

12/17

12/17

μ{3,1,0}(000)

μ{3,1,0}(001)

μ{3,1,0}(010)

μ{3,1,0}(011)

μ{3,1,0}(100)

μ{3,1,0}(101)

μ{3,1,0}(110)

μ{3,1,0}(111)

(b) Transforming central moments to raw moments

Figure 6.22: Approximating query result from projections using the improved moment solver.
The improved moment solver extracts central moments directly from projections and approxi-
mates query results assuming unknown central moments to be zero. Instead of transforming
extrapolated central moments directly to the query cuboid, it first transforms the central
moments to raw moments and then transforms raw moments to the query cuboid while
applying the heuristic bounds to improve the error.

88

Sudokube Solvers Chapter 6

Algorithm 13: Improved algorithm to approximate query cuboid from projections
using moments

input :Query Q for which joint distribution is to be approximated, cuboids C I for several
I ∈I (Q), 1-D marginals θ = (θh)h∈I

output :Approximated query cuboid C̃Q

[1] Initialize array A of size 2|Q| with zeroes to represent σQ .
[2] foreach I ∈I (Q) do
[3] σI ← ExtractCentralMoments(I , p I , θ)
[4] foreach y ∈ {0,1}I do
[5] A[y↑Q] ←σI (y) // using Proposition 1

// Transform σ to μ first

[6] foreach h ∈Q do
[7] M ← (1 0

θh 1

)
[8] A← Transform(A, M , h)

// Transform μ to p while applying bounds

[9] foreach h ∈Q do
[10] M ← (

1 −1
0 1

)
[11] A← TransformWithBounds(A, M , h)

[12] return A as C̃Q

We first extract the central moments σI (y) from each projection CI and copy their values into

the appropriate slot for σQ (y↑Q), using Proposition 1. We set all remaining unknown central

moments in σQ to zero and perform the reverse transformation to obtain the (approximate)

cuboid CQ from the (extended) central moments σQ . In order to apply the heuristics we

describe in the previous section, we don’t transform central moments σQ directly into cuboid

CQ . We first transform the central moments σQ into raw moments μQ . Then, the raw moments

μQ are transformed into the cuboid CQ while applying the local bounds, similar to how it was

done in Algorithm 12.

Example 18. Consider the query Q = {3,1,0} again. Figure 6.22a shows how the improved

moment solver extracts the central moments σI instead of raw moments μI from cuboid C I and

fills the central moments of the query σQ . The sole unknown moment σQ (111) is set to 0. Then,

Figure 6.22b shows the transformation converting σQ to μQ . After this step, μQ is transformed

to CQ using the transformation with bounds. When the lower bound is applied, μQ (111) is set

as 0, and the computation proceeds as in Figure 6.18.

We now run some experiments evaluating the performance of the improved moment algorithm

in Algorithm 13 vis-à-vis the original moment algorithm described in Algorithm 10.

Experiment 6.10 Varying Query Dimensionality on Improved Moment Solver in Batch Mode

To study the impact of query dimensionality, we run 100 queries each of various dimen-

sionality in batch mode on data cubes built on NYC and SSB datasets using Random and

Prefix strategies. We fix parameters N = 215 for all four data cubes and dmin = 14 for SSB and

89

Chapter 6 Sudokube Solvers

(a) Varying query dimensionality

(b) Varying number of materialized cuboids

(c) Varying minimum dimensionality

Figure 6.23: Average time spent by the original and the improved moment solvers in each
phase of query execution in batch mode while varying the query dimensionality, the number
of materialized cuboids and the minimum dimensionality of materialized cuboids

90

Sudokube Solvers Chapter 6

(a) Varying query dimensionality

(b) Varying number of materialized cuboids

(c) Varying minimum dimensionality

Figure 6.24: Average error for the improved moment solver run in batch mode with and without
applying the heuristic bounds for improving the error while varying the query dimensionality,
the number of materialized cuboids, and the minimum dimensionality of materialized cuboids

91

Chapter 6 Sudokube Solvers

dmin = 18 for NYC. Figure 6.23a shows the average time spent on solving for both techniques

along with the prepare and fetch time. It is clear from the figure that the improved algorithm

solves asymptotically faster compared to the original algorithm. The distribution for the

dimensionality of cuboids before and after projection was shown in Figure 6.10, and their

impact on prepare and fetch time was discussed in Experiment 6.4.

We also study the impact of query dimensionality on the error. Note that both the original and

improved moment solver yield identical results as they both approximate query results from

their projections with the assumption that all unknown central moments are zero. We show

the average error when extrapolating moments by setting unknown central moments to zero

for various query dimensionality in Figure 6.24a. We plot errors for both cases when the local

bounds are applied during the reverse transformation to cuboids and when they are not. We

observe that the error increases exponentially with query dimensionality. We also observe that

the error is very low for prefix queries, especially when the bounds are applied. �

Experiment 6.11 Varying Number of Materialized Cuboids on Improved Moment Solver in

Batch Mode

We fix the query dimensionality to 10 and run 100 queries in batch mode on data cubes with

varying the number of materialized cuboids. We build data cubes NYC Random and NYC

Prefix with minimum dimensionality set to 18, and SSB Random and SSB Prefix data cubes

with minimum dimensionality set to 14.

We show the histogram for the cuboid dimensionality before and after projection in Figure 6.12

and discuss its impact on prepare and fetch times in Experiment 6.5. Figure 6.23b shows the

average prepare, fetch and solve times using both the original and the improved algorithms

for various numbers of materialized cuboids. The solve time increases with the number of

materialized cuboids for both versions of the moment solver due to an increase in the number

of cuboids to process in the case of the Random data cubes and due to an increase in the

dimensionality of the projected cuboid in the case of Prefix data cubes.

Figure 6.24b shows the impact of the number of materialized cuboids on error before and after

applying the bounds for the improved moment solver. The additional information available

to the solver due to the increased number of materialized cuboids leads to a decrease in the

errors for both variants of the solving algorithm in all four data cubes. �

Experiment 6.12 Varying Minimum Dimensionality of Materialized Cuboids on Improved

Moment Solver in Batch Mode

In this experiment, we fix the query dimensionality to 10 and run 100 queries on data cubes

built on NYC and SSB datasets with Random and Prefix strategies with a total number of

cuboids 215. The histogram for the dimensionality of cuboids for this experiment is shown

in Figure 6.14, and its impact on prepare and fetch times is discussed in Experiment 6.6. The

solve time for the Random data cubes increases slightly as more cuboids are processed, as

92

Sudokube Solvers Chapter 6

shown in Figure 6.23b. On the other hand, the solve time increases for Prefix cubes at a lower

rate as the increase in dimensionality is counterbalanced by a decrease in the number of

cuboids to be processed.

Figure 6.24c shows the impact of the dimensionality of cuboids on the error for the improved

moment solver. The increased dimensionality of the projected cuboids yields many more

moments and reduces the error of the approximated result. �

Figure 6.25: Improvement of error over time for the improved moment solver in online mode
for various query dimensionality

Experiment 6.13 Studying Improvement of Error over Time for Improved Moment Solver in

Online mode while Varying Query Dimensionality

Finally, we run queries on the moment solver in online mode and study how the error drops

with time. We run 100 queries each of various dimensionality on the NYC Random, NYC

Prefix, SSB Random, and SSB Prefix data cubes with 215 cuboids materialized. The minimum

dimensionality of the materialized cuboids is set to 18 for NYC cubes and 14 for SSB cubes.

The approximate solution calculated by the moment solver after processing each fetched

cuboid is stored along with the cumulative time elapsed since the submission of the query.

The average error for the solutions returned at various times for various query dimensionality

is shown in Figure 6.25.

We observe that the error drops very quickly when the moment solver approximates the

query results from small low-dimensional projections, and then the error remains steady. At

this stage, all projections of the query that can be obtained from materialized cuboids other

than the base cuboid have been processed, and the moment solver returns its most accurate

approximation, equivalent to the one returned in batch mode. Then, if the query has not yet

been answered exactly by some other cuboid, the base cuboid is projected to answer the query,

and the error drops to zero.

93

Chapter 6 Sudokube Solvers

In the case of the NYC Random data cube, the average error after 1 second of execution time is

nearly 0 for query dimensionality 9 and below, and it is around 13% for query dimensionality

12 and 38% for query dimensionality 15. In all other cuboids, the average error is less than or

close to 1% for query dimensionality up to 15. �

In summary, we explored techniques to approximate query results that extract several of its

moments from its projections and extrapolate unknown moments from known ones. The most

effective approach resulted in corresponding central moments being set to zero, leading to low

error rates. The moment solver demonstrated its capacity to deliver precise approximations

swiftly, given sufficient information from the projections.

However, there were some limitations to the moment solver. Setting the unknown central

moments to zero is not always feasible and can result in negative values for approximated

cuboid measures, contrary to our assumption of non-negative measure values. The application

of heuristic bounds locally, however, has been discussed as a potential countermeasure to

these drawbacks, showing a significant decrease in error without any detrimental impact on

runtime.

Furthermore, we studied an enhanced version of the moment solver that maintains the zero

assumption for unknown central moments while performing the extrapolation more rapidly.

Its performance was rigorously evaluated under varying parameters, including query dimen-

sionality, the number of materialized cuboids, and minimum dimensionality of materialized

cuboids in a batch mode setting. Moreover, its online mode implementation exhibited remark-

able results: for three out of four data cubes, the average error plummeted to less than 1% in

under a second, highlighting its efficacy.

6.4 Iterative Proportional Fitting

Iterative proportional fitting (IPF) is an algorithm with a long history. Starting from [28], there

has been a lot of work on the properties of the algorithm [25], [52], on optimizations [58], [75],

[98], generalizations [26] and on using it in a wide range of applications (see [73], for example).

The algorithm was initially described in [28] for fitting contingency tables. Contingency tables

[17] contain cross-tabulated data with respect to different variables. The cells of such tables

contain count data. Thus, contingency tables can essentially be seen as a particular kind

of data cube. The original application was to estimate the joint count distribution over all

variables by taking into consideration smaller known tables that are available from sampling

and surveying. This is the data synthesis scenario mentioned in our introduction. Later on,

IPF was also picked up specifically for the reconstruction of probability distributions [65].

94

Sudokube Solvers Chapter 6

6.4.1 The Base Algorithm

We use a modified version of the IPF algorithm to reconstruct a cuboid CQ from its known

projections CI for I ∈I (Q). Algorithm 14 shows the base version of IPF. Starting from a cuboid

that uniformly distributes the total aggregate among all cells, the algorithm iterates through the

known projections of the target query cuboid. Whenever a projection of the query cuboid is

fetched, the current values are fitted to satisfy the corresponding constraints by a proportional

adjustment simultaneously.

Algorithm 14: Iterative Proportional Fitting (IPF)

input :Cuboids CI for I ∈I (Q)
output :Approximated query cuboid C̃Q

[1] Initialize C̃Q with total
2|Q| for all cells CQ (q) with q ∈ {0,1}Q

[2] repeat
[3] foreach I ∈I (Q) do
[4] C̃I ← projection of C̃Q down to I
[5] foreach x ∈ {0,1}Q do
[6] y ← x↓I

[7] C̃Q (x) ← C̃Q (x) · CI (y)
C̃I (y)

[8] until convergence criterion reached
[9] return C̃Q

The innermost loop in the algorithm contains the IPF update for fitting the cuboid CI . The

convergence condition in Algorithm 14 requires (for example) that the sum of all perturbations

made by the updates is at most ε.

Example 19. Consider the example query Q = {3,1,0} on the sales data cube. When we run

IPF, initially, we set all values of approximated cuboid C̃Q to 17/8. Suppose the first cuboid to

fetched is CI with I = {1,0}. By projecting C̃Q to I , we have C̃I with all values equal to 17/4 Then,

we update values in C̃Q as shown below.

C̃Q (000) ← 17/8 · 7
17/4

= 7/2 C̃Q (100) ← 17/8 · 7
17/4

= 7/2

C̃Q (001) ← 17/8 · 3
17/4

= 3/2 C̃Q (101) ← 17/8 · 3
17/4

= 3/2

C̃Q (010) ← 17/8 · 6
17/4

= 6/2 C̃Q (110) ← 17/8 · 6
17/4

= 6/2

C̃Q (011) ← 17/8 · 1
17/4

= 1/2 C̃Q (111) ← 17/8 · 1
17/4

= 1/2

Remark 1. The only situation in which the IPF update could attempt to divide by zero is when

the value C̃I (x↓I) is zero, which is possible only when C̃Q (x) is already zero to begin with. In this

case C̃Q (x) = 0 is left unchanged [57].

95

Chapter 6 Sudokube Solvers

5

1 2

3

4

6

7

8

(a) Triangulation and cliques

{2,3,5}

{3,4,5}

{3,6,7}

{1,2,5}

{6,7,8}
{3,5}

{2,5}

{3} {6,7}

(b) A junction tree

Figure 6.26: Junction tree for Example 20

6.4.2 Convergence and Maximum Entropy

If the IPF update is executed on a cuboid C̃Q that already agrees with CI when projected to

dimensions I , the update has no effect. Otherwise, the update causes the updated values in

the cuboid to satisfy the projection constraint for I . In general, fitting a cuboid CI may cause

previously satisfied projection constraints to be violated again.

Call a cuboid C̃Q a fixed point of IPF, if for all I ∈I (Q), applying the IPF update does not change

C̃Q . Note that C̃Q is a fixed point of IPF if and only if it satisfies all projection constraints. Since

the IPF update can violate other constraints again, it can happen that the algorithm runs

forever without reaching a fixed point. Yet, it is well-known that, as long there exists a solution,

IPF not only always converges, but converges pointwise to the cuboid that maximizes entropy

among all cuboids that satisfy all the constraints [25, Theorem 3.2].

When multiple solutions to the query cuboid are possible, picking the one having maximum

entropy is guided by the principle of maximum entropy [53].

In IPF, for fitting any projection, the entire query cuboid C̃Q needs to be updated, entailing

high time and space consumption. For this reason, a number of approaches for making IPF

less resource-intensive have been proposed [8], [58], [75], [98].

6.4.3 Graphical Models

We will later discuss, and experiment with an optimization of IPF that uses machinery from the

field of probabilistic graphical models [63], [101]. Such an algorithm has first been described

in [58]. To the best of our knowledge, the state-of-the-art version of this algorithm is the

one presented in [98]. In order to describe the algorithm, let us introduce some background,

following [101].

A Markov random field (MRF) for X = (Xn , . . . , X1) is an undirected graph G with vertices

[n], where edges indicate interactions between the corresponding random variables. More

precisely, an MRF G for X models that the joint distribution of X can be written as a normalized

product of real-valued functions, called factors, defined on the (maximal) cliques of G .

96

Sudokube Solvers Chapter 6

Example 20. Suppose Q = [8] and we know the following projection cuboids:

I (Q) = {{1,2,5}, {2,3}, {3,4}, {3,6}, {3,7}, {4,5}, {6,8}, {7,8}
}
.

We construct the graph on vertices Q where every I ∈ I (Q) has been turned into a clique

(Figure 6.26a). Adding the dotted edges makes the graph triangulated. The shaded areas indicate

the resulting cliques. These cliques “become” the vertices of the junction tree Figure 6.26b.

Tentatively, two vertices v, w get connected by an edge e = {v, w} if sep(e) = cliq(v)∩cliq(w) �= �.

Every such edge is weighted by |sep(e)|. In the resulting edge-weighted graph, we find a spanning

tree of maximum weight. Figure 6.26b is the traditional depiction of a possible resulting junction

tree, with the subsets of Q corresponding to cliques and separators highlighted.

Junction trees provide a representation of graphical models that is used, for example, for

performing inference on MRFs. In order to build a junction tree for graph G with vertex set [n]

we first triangulate the graph, by adding edges if necessary (see Figure 6.26a). For a triangulated

graph G , a junction tree is an undirected tree T = (V ,E) whose vertices correspond to the

maximal cliques of G . That is, every v ∈ V is associated with a maximal clique cliq(v) ⊆ [n] in G .

Every edge e = {v, w} can be associated with the intersection sep(e) = cliq(v)∩cliq(w) called

separators. Valid junction trees additionally need to satisfy the running intersection property,

that is, for all v, w ∈ V , whenever u is a vertex on the path from v to w , then cliq(v)∩cliq(w) ⊆
cliq(u). In terms of factors, every original factor needs to be associated with one of the cliques

of the junction tree. Amongst others, the construction of a junction tree is illustrated in the

next section.

6.4.4 Junction Tree IPF

The main idea we take away from [58], [98] is to represent the cuboid CQ of some query Q by

a junction tree, where the known projections (CI)I∈I (Q) take the role of the factors. Treating

(CI) this way comes down to considering the graph with a vertex set Q in which every I ∈I (Q)

forms a clique. We show the preparation of the junction tree for this graph in a bigger example.

Assume, that a junction tree of I (Q) has already been constructed, and that we have associated

every I ∈ I (Q) with a vertex vI such that I ⊆ C (vI). In a nutshell, the algorithm of [98] now

consists of a repeated sequence of IPF updates within a clique, followed by a propagation to a

neighboring clique.

In order to describe the algorithm, we need some more notation. We work with cuboids

projected to the sets belonging to the cliques and separators: For every vertex v and every edge

e, we let C̃v and C̃e be the corresponding distributions with dimensions cliq(v) and sep(e).

Accordingly, we use xv and xe to denote the projections of a vector x to these sets. Unlike the

case when cuboids are exact, projecting approximations of different cuboids down to the same

set of dimensions shared by all of them need not yield the same result. For this reason, we

explicitly denote which (approximated) cuboid is projected using “↓” notation: For example,

97

Chapter 6 Sudokube Solvers

C̃v↓e is the cuboid obtained by projecting the approximated cuboid C̃v associated with clique

cliq(v) down to dimensions in the separator sep(e).

With this setup, Junction Tree IPF is given by Algorithm 15. The starting vertex may be chosen

arbitrarily. The first for-loop contains the IPF updates for a clique. Subsequently, the update

is propagated to the next vertex w over the connecting edge. The choice of the next vertex

to go to is only required to be fair, meaning that every vertex is treated periodically. In our

implementation, we follow the proposal of [98] and use a depth-first search traversal.

Algorithm 15: Junction Tree IPF

input :Junction tree (V ,E) for I (Q), cuboid CI for all I ∈I (Q)
output :Approximated query cuboid C̃Q

[1] Initialize all C̃v , C̃e to uniform distributions.
[2] v ← some initial vertex from V
[3] repeat
[4] foreach I ∈I (Q) with vI = v do // IPF updates

[5] foreach x ∈ {0,1}cliq(v) do
[6] C̃v (x) ← C̃v (x) · CI (xI)

C̃v↓I (xI)

[7] e ← an edge {v, w} to a neighboring vertex w

[8] foreach x ∈ {0,1}cliq(w) do // Clique prop.

[9] C̃w (x) ← C̃w (x) · C̃v↓e (xe)

C̃e (xe)

[10] foreach x ∈ {0,1}sep(e) do // Separator prop.

[11] C̃e (x) ← C̃v↓e (xe)
[12] v ← w

[13] until convergence criterion reached
[14] foreach x ∈ {0,1}Q do

[15] C̃Q (x) ←
∏

v∈V C̃v (xv)∏
e∈E C̃e (xe)

[16] return C̃Q

Example 21. In Figure 6.26b, the association of sets I ∈ I (Q) is uniquely determined. For

example, I = {3,6} has to be associated with the clique {3,6,7}. The algorithm could start with

the top left vertex and traverse the graph in the way of a depth-first search, where for each vertex,

the IPF update is made for all relevant I ∈ I (Q), followed by a propagation to an outgoing

separator and a next clique. The propagation (interpreted as message passing) is illustrated in

[98] for the junction tree of Figure 6.26b.

The correctness of Algorithm 15 in particular relies on the fact that for a junction tree, the

maximum entropy distribution decomposes precisely as in the last step of the algorithm [57,

Theorem 1].

98

Sudokube Solvers Chapter 6

6.4.5 Moment-based IPF

The Junction Tree IPF presented in the previous section speeds up the iterative update process

by partitioning the query dimensions into smaller sets, running iterative updates separately

on each partition, and then combining the results. If we cannot split the query dimensions

into several small partitions satisfying the requirements for the junction tree, then there would

be no speed-up for the iterative update. In this section, we explore a more efficient imple-

mentation for the vanilla IPF algorithm taking advantage of our knowledge of the moment

transformations from Section 6.3.2.

The most expensive part of the algorithms for Vanilla and Junction Tree IPF described earlier

in this section is the projection of the current approximation of the query cuboid C̃Q to scale

it to the cuboid currently being processed. There are several optimizations we can apply to

make the projection more efficient. First, instead of iterating over all x ∈ {0,1}Q , projecting

each x to x↓I , and computing the value of projection C̃ I (x↓I), we could split the iteration into

two loops. We could first iterate over y ∈ {0,1}I , compute the scale factor for C I (y) divided by

C̃ I (y), then loop over all z ∈ {0,1}Q\I to update the value of C̃Q (x) with x constructed as y
 z .

Secondly, the entire projection C̃ I can be computed simultaneously, not just for individual

entries in the projection. This allows us to reuse some of the computation involved in finding

cells in C̃Q for which the measures should be aggregated to compute the measure for which

cell in C̃ I . Moreover, we can formulate the projection of the array by applying the moment

transformation partially, as the following theorem states.

Theorem 13. Given a cuboid CQ for some Q ⊆ [n], projecting CQ to dimensions in set I ⊆Q is

equivalent to applying the moment transform partially on dimensions Q \ I and then slicing

the result for any x ∈ {0,1}I as CI (x) = DQ|0(x), where 0 is the zero vector from {0,1}Q\I and

DQ =
(

M⊗|Q\I | ⊗ I⊗|I |
2

)
CQ

Algorithm 16 describes the algorithm that applies the optimizations described above to the

Vanilla IPF algorithm described in Algorithm 14. While processing cuboid CI for any I ∈I (Q),

the algorithm transforms C̃Q to another representation that contains entries of C̃ I by applying

the moment transform on dimensions Q \ I , scales that representation to fit CI and then

transforms it back to C̃Q by applying the reverse moment transformation on dimensions Q \ I .

There is still scope for improvement here. When processing two successive sets I , J ∈I (Q), we

apply the reverse transformation at the end of the iteration on Q \ I only to apply the forward

moment transform on Q \ J at the beginning of the next iteration. If the sets I and J have

considerable overlap in dimensions, so too would Q \ I and Q \ J , and we can speed up the

computation by not doing the reverse transformation at the end of processing I and forward

transformation at the start of processing J for the dimensions common to both sets I and J .

We can process the sets in the order that maximizes the overlap between two successive sets

and minimizes their difference.

99

Chapter 6 Sudokube Solvers

We formalize this optimal ordering problem on a graph. Given the set of dimension sets

I (Q) relevant to answering queries, we construct a graph G with each set I ∈I (Q) forming

a vertex. Every pair of vertices I and J share an edge which is weighted by the size of their

symmetric difference |I � J |. Then an optimal ordering of sets I from I (Q) is given by any

minimum weight tour yielded as a solution to the traveling-salesman problem [38] on this

graph. Computing an optimal tour is computationally hard, but an approximation can be

obtained by constructing a minimum spanning tree [64] of the graph [46], [47]. A preorder

traversal of this minimum spanning tree yields an order that is guaranteed to have a cost at

most twice that of the minimum weight tour. Algorithm 17 describes an algorithm that uses

this order for processing sets from I (Q) and avoids forward and backward transformations

on dimensions shared between successive sets that cancel each other.

Algorithm 16: Moment-based IPF

input :Query Q, Cuboid CI for all I ∈I (Q)
output :Approximate query cuboid C̃Q

[1] Initialize A of size 2|Q| with every value total
2|Q|

[2] M ← (
1 1
0 1

)
W ← (

1 −1
0 1

)
[3] foreach I ∈I (Q) do
[4] foreach h ∈Q \ I do
[5] A← Transform(A, M , h)
[6] foreach i ∈ {0,1}I do
[7] factor ← CI (i)

A[i
0]

[8] foreach j ∈ {0,1}Q\I do
[9] A[i
 j] ← factor ·A[i
 j]

[10] foreach h ∈Q \ I do
[11] A← Transform(A, W , h)

[12] return A as C̃Q

We run several experiments to compare the performance of the various IPF solvers. We use

the error metric defined in Equation (6.5) for moment solvers to measure the quality of the

approximations provided by the various IPF solvers as well.

Experiment 6.14 Varying Query Dimensionality on IPF Solvers in Batch Mode

We study the impact of varying the query dimensionality on the execution time as well as the

error for the approximate query answers returned by various IPF solvers. We run 100 queries

each of various dimensionality on NYC Random, NYC Prefix, SSB Random, and SSB Prefix data

cubes. The total number of materialized cuboids is set to 215 in all four data cubes and the

minimum dimensionality is set to 14 for SSB and 18 for NYC.

Figure 6.27a shows the average solve time for various IPF solvers in addition to prepare and

fetch time for various query dimensionality. We observe that the Junction Tree variant of

the IPF algorithm does not significantly reduce solve time, but increases it due to the initial

100

Sudokube Solvers Chapter 6

(a) Varying query dimensionality

(b) Varying number of materialized cuboids

(c) Varying minimum dimensionality

Figure 6.27: Average time spent by each IPF solver in each phase of query execution in batch
mode while varying the query dimensionality, the number of materialized cuboids and the
minimum dimensionality of materialized cuboids

101

Chapter 6 Sudokube Solvers

(a) Varying query dimensionality

(b) Varying number of materialized cuboids

(c) Varying minimum dimensionality

Figure 6.28: Average error for each IPF solver run in batch mode while varying the query
dimensionality, the number of materialized cuboids, and the minimum dimensionality of
materialized cuboids

102

Sudokube Solvers Chapter 6

Algorithm 17: Minimum Spanning Tree Moment-Based IPF

input :Query Q, Cuboid CI for all I ∈I (Q)
output :Approximate query cuboid C̃Q

[1] Initialize A of size 2|Q| with every value total
2|Q|

[2] M ← (
1 1
0 1

)
W ← (

1 −1
0 1

)
[3] Construct undirected graph G with I (Q) forming the vertex set and every edge (I , J) is

weighted by the symmetric difference |I � J |
[4] T ← minimum spanning tree of G
[5] S ←Q
[6] foreach I ∈ preorder traversal of T do
[7] foreach h ∈ S \ I do
[8] A← Transform(A, M , h)
[9] foreach h ∈ I \ S do

[10] A← Transform(A, W , h)
[11] S ← I
[12] foreach i ∈ {0,1}I do
[13] factor ← CI (i)

A[i
0]

[14] foreach j ∈ {0,1}Q\I do
[15] A[i
 j] ← factor ·A[i
 j]

[16] foreach h ∈Q \ S do
[17] A← Transform(A, W , h)

[18] return A as C̃Q

preprocessing cost for constructing the junction tree. The impact of the optimizations for

efficient iterations can be seen in the reduced solving time for the moment-based IPF solver.

The MST IPF solver reduces it even further by optimizing the cuboid processing order. The

impact of the ordering can be seen more in the case of prefix queries on data cubes built using

the Prefix strategy as there is significant overlap between various cuboids, which can be verified

from Figure 6.10b. The solve time increases exponentially with the query dimensionality for

all solvers due to the greater number of projections in the case of Random data cubes and

larger projection sizes in the case of Prefix data cubes.

Figure 6.28a shows the average error for various IPF solvers changes when the query di-

mensionality is increased. All the different IPF solvers produce nearly identical results, and

therefore the errors are similar to each other. We also observe that the errors are lower for

Prefix cubes compared to Random cubes, in agreement with the reduced degrees of freedom

and larger projection sizes. We also observe that lower error for SSB cubes compared to NYC

cubes, as the latter consists of randomly generated data with higher entropy, and, therefore,

closely matches the maximum entropy solution returned by the IPF solvers. �

Experiment 6.15 Varying Number of Materialized Cuboids on IPF Solvers in Batch Mode

We fix the query dimensionality to 10 and run 100 queries on NYC and SSB data cubes built

using Random and Prefix strategies with varying the number of materialized cuboids. These

103

Chapter 6 Sudokube Solvers

cuboids are selected with minimum dimensionality set to 14 for the SSB dataset and 18 for the

NYC dataset.

Figure 6.27b shows the impact of the number of materialized cuboids on the average solve time

for various IPF solvers run in batch mode. The fetch and prepare time increases as described

in Experiment 6.5 affected by the change in the distribution of cuboid dimensionality shown

in Figure 6.12. We observe that the solve time increases following an increase in the number of

fetched cuboids as a consequence of the increased number of materialized cuboids in Random

cubes. In the case of Prefix cubes, the total number of fetched cuboids does not change

significantly when the number of materialized cuboids is increased; only the dimensionality

of projection increases, as can be seen in Figure 6.12b. The dimensionality of the projections

does not significantly impact the solve time of IPF solvers, and therefore, we don’t observe a

significant impact on solve times in the case of Prefix cubes.

Figure 6.28b shows the impact of the number of materialized cuboids on the approximation

quality of the result represented by the error. As before, all IPF solvers produce nearly identical

results; therefore, the errors are also nearly identical. The error decreases with an increase in

the total number of materialized cuboids due to the additional information available from

the increased number of fetched cuboids in the case of Random cubes and the increased

dimensionality of projections in the case of Prefix cubes. �

Experiment 6.16 Varying Minimum Dimensionality of Materialized Cuboids on IPF Solvers in

Batch Mode

We now study the impact of the dimensionality of materialized cuboids on the execution

time as well as the approximation quality of the IPF solvers run in batch mode. We fix query

dimensionality to 10 and run 100 queries on four data cubes – NYC Random, NYC Prefix,

SSB Random, and SSB Prefix. The total number of materialized cuboids is set to 215, and the

minimum dimensionality of the materialized cuboids is varied.

Figure 6.27c plots the average solve time for various IPF solvers in batch mode for differ-

ent values of minimum dimensionality of materialized cuboids. The histogram for cuboid

dimensionality for this experiment is shown in Figure 6.14, and its impact on prepare and

fetch time is discussed in Experiment 6.6. We also observe in Figure 6.14b that there is only a

slight increase in the number of fetched cuboids as the minimum dimensionality is increased.

Consequently, the solve time too increases only slightly, and the increased dimensionality of

the projections has a negligible impact on them.

The impact of the dimensionality of materialized cuboids on the batch mode error of various

IPF solvers is shown in Figure 6.28c. The increased projection sizes available for the solvers to

approximate the query as a result of increased minimum dimensionality of the materialized

cuboids leads to a decrease in the error for all four data cubes. �

104

Sudokube Solvers Chapter 6

Figure 6.29: Improvement of error over time for moment-based IPF solver in online mode for
various query dimensionality

Experiment 6.17 Online Experiment for IPF Solver Varying Query Dimensionality

Finally, we study how the error changes with time when queries are run on the IPF solver

in online mode. For this experiment, we choose the moment-based IPF solver without the

optimization that uses a minimum spanning tree to find the optimal cuboid processing order.

The cuboids are simply processed in the order in which they are fetched. We run 100 queries

each of various dimensionality on NYC Random, NYC Prefix, SSB Random, and SSB Prefix data

cubes. These data cubes are built with parameters 215 for the number of materialized cuboids

and 14 and 18, respectively, for the minimum dimensionality of materialized cuboids for SSB

and NYC data sets. After each cuboid is fetched, the iterative update is performed to scale

the approximate query result using all cuboids fetched until that point. Once convergence is

achieved, the cumulative time since the start of the experiment and a copy of the approximate

query result is stored.

Figure 6.29 shows the average errors of the approximate answers yielded by the IPF solver at

various times throughout the experiment. The results are comparable to those from running

these queries on the moment solver in online mode for the Prefix data cubes. The average

error is less than 1% in under a second for query dimensionality as high as 15. However, for

the Random data cubes, the IPF solvers take longer and also produce poorer approximations.

The order in which cuboids are processed plays a very significant role in determining both

the total execution time as well as the error for IPF solvers. Because the expected size of the

intersection of dimensions of the fetched cuboids with the query is very low, it is possible

that some dimensions are never seen among the first few cuboids. This causes a very poor

initial approximation for the queries on Random data cubes. For query dimensionality 15, the

expected average error is worse than 100% for the NYC Random cube and around 8% for the

SSB Random cube after 1 second of execution. �

105

Chapter 6 Sudokube Solvers

6.5 Comparing Different Solvers

In this chapter so far, we have seen four different classes of solving techniques. We will now

compare and contrast the best variant from each class of solving techniques. Among the

linear programming solvers, we choose the hybrid technique that uses the simplex solver

(Algorithm 6) when the degree of freedom is low and the simple bounds solver (Algorithm 5)

when it is high. We choose the improved moment solver from the class of solvers that use

moment extrapolation (Algorithm 13). Finally, among the IPF solvers, we choose the one that

constructs a minimum spanning tree (Algorithm 17).

Figure 6.30: Average execution time in batch mode for each solving technique for various
query dimensionality

Figure 6.31: Average approximation error in batch mode for each solving technique for various
query dimensionality

106

Sudokube Solvers Chapter 6

Experiment 6.18 Varying Query Dimensionality on all Solvers in Batch Mode

We will compare execution time and the approximation error for the chosen solvers for various

query dimensionality. We run 100 queries of different dimensionality on the four data cubes

we have used throughout this chapter. For the NYC data set, we run queries on data cubes

constructed with both Prefix and Random strategy with minimum dimensionality set to 18

and the total number of cuboids set to 215. Similarly, for the SSB data set, we run queries on

data cubes constructed using both strategies with minimum dimensionality 14 and the total

number of cuboids 215. We limit the linear programming solver to run on only queries with

dimensionality up to 10, beyond which it simply takes too much time.

Figure 6.30 shows the average execution time that includes prepare, fetch, and solve times

for each solver. In the data cubes built using the Random strategy, the total time for the naive

solver increases with the query dimensionality first and then plateaus as the base cuboid

is projected to answer every single query. The linear programming solver is able to find

bounds for the query results before the naive solver can answer queries exactly for query

dimensionality near 4−6 but is futile for queries with greater dimensionality. Both moment

and IPF solvers take a similar amount of time much lower than the time the naive solver

takes. In the case of the NYC Random data cube, the average execution times for these solvers

become comparable to that for the naive solver around query dimensionality 18, but for the

SSB Prefix data cube, they both are nearly two orders of magnitude lower than the naive solver

time even for query dimensionality 18.

Figure 6.31 shows the approximation errors for the chosen solvers. The naive solver answers

queries exactly and always has error 0. In the case of the linear programming solver, we

use the normalized cumulative span of the intervals for each query variable as the stand-in

for error. The figure shows that the linear programming solver is very good at finding tight

bounds for the query variables when the query dimensionality is lower than 4 for Random

cubes and 6 for Prefix cubes, but the bounds become very wide very quickly as the query

dimensionality increases. Both moment and IPF solvers approximate query results extremely

well, with the IPF solver being the better one, even producing results with one magnitude

lower error compared to the moment solver in the case of NYC Prefix cubes. �

Experiment 6.19 Online Experiments Varying Query Dimensionality

Next, we compare the performance of the solvers in online mode. We skip the linear pro-

gramming solver and use the moment-based IPF solver without the minimum spanning tree

optimization for the online experiments. We fix query dimensionality to 12 and run 100

queries in the online mode of various solvers on NYC Random, NYC Prefix, SSB Random, and

SSB Prefix data cubes. The number of materialized cuboids in each data cube is set to 215 and

the minimum dimensionality is set to 14 for SSB and 18 for NYC data cubes. After fetching any

cuboid, the solution returned by each solver and the time are recorded for each query.

107

Chapter 6 Sudokube Solvers

Figure 6.32: Average error at various times for each solver in online mode

Figure 6.31 shows the average error for each solver at various times throughout the experiment.

We observe that the moment and IPF solvers behave nearly identically in all cases except the

NYC Random data cube. For this data cube, the IPF solver performs very poorly initially due

to no information on some of the dimensions of the query. This problem does not arise for the

moment solver as it includes the information from all 1-D marginals in its transformations.

The naive solver yielded answers by projecting the base cuboid nearly always in the case of

Random cubes. The average time for answering a query using the naive solver is around 1

second for NYC cubes and 7 seconds for SSB cubes. In the case of NYC Random, within the

average time the naive solver takes to return an exact answer, the other solvers have an average

error between 10% and 20%. On the other hand, in the case of SSB Random, the other solvers

have an average error very close to zero within a few hundred milliseconds.

In Prefix cubes, the naive solver can answer a few queries by projecting a cuboid other than

the base cuboid. This means that, for some queries, the naive solver error goes down to zero

very quickly, and the average error goes down as well. The other two solvers have their average

errors go down to nearly zero within the first few hundred milliseconds, which is two orders of

magnitude faster than the time it takes for the naive solver in the case of the SSB Prefix cube,

and nearly one order of magnitude faster in case of NYC Prefix cube. �

This chapter described and evaluated four classes of solving techniques implemented in

Sudokube. The experiments show that both the naive and linear programming solvers cannot

answer queries within an interactive response time for queries with more than 4−6 dimensions,

but the moment and IPF solvers can give very accurate approximations from the materialized

projections very quickly. We also observe that the approximation quality is better for SSB

data cubes than NYC data cubes, as the former has a higher budget for materialization while

having fewer dimensions in total. Similarly, the approximations are better for queries run on

Prefix data cubes compared to those run on Random data cubes owing to the smaller space of

cuboids and queries to choose from.

108

Sudokube Solvers Chapter 6

6.6 Related Work

This section explores previous studies that are connected to the solving techniques discussed

in this chapter.

In the context of probability distributions, the characterization of all joint distributions that

satisfy some specified moments is studied by Fontana et al. in [34]. They construct a set of

linear equations similar to ours and propose a characterization of the solution space using the

extremal rays of a cone representing this space. While this characterization is more elegant

from a theoretical perspective compared to our approach for finding maximum and minimum

values for each query variable individually, it is not feasible for interactive-time querying.

Computing extremal rays is computationally expensive [1], [27] and would not scale well to

queries more than a few dimensions as our experience with linear programming solver shows.

Our characterization of cuboids in terms of their moments and the relationship between them

and the aggregated values were first established in the context of probability distributions in

[99]. Bahadur [9] proposed a similar representation for joint probability distributions in terms

of generalized correlations that are normalized versions of central moments. Specifically,

the central moment σ(x) and the corresponding Bahadur coefficient differ only by a factor

involving products of variances θiθi of Bernoulli random variables Xi for i ∈ 1x . Similarly, the

central moments are closely related to Fourier coefficients of boolean functions [80], [81] as

well. Therefore, setting unknown higher-order central moments of a cuboid to zero produces

the same effect as ignoring the corresponding coefficients in these alternative representations.

Concerning graphical models, [76] solves a similar problem, but they rely on low-treewidth

properties that we typically do not have in our scenario. Notably, there also exist methods

beyond graphical models and moment-based reconstructions. For example, [51], [61] describe

a method for reconstructing joint distributions from only two- or three-dimensional marginals

based on tensor decompositions.

109

7 Materialization Strategy

Given a base cuboid containing hundreds, if not thousands, of binary dimensions, precomput-

ing and materializing all its projections is infeasible in terms of time and space. The purpose

of a materialization strategy is to decide, given a storage budget, what cuboids are ideal for

materialization. Sudokube relies on having a good materialization strategy that yields the best

information to approximate queries of some expected pattern quickly and accurately. In this

chapter, we explore what a good materialization strategy is.

7.1 Number of Materializable Cuboids

We will now examine how many cuboids of various levels of dimensionality can be materialized

when given a storage budget.

To quantify the storage budget, we introduce the concept of a budget factor. Given a budget

factor b and a base cuboid containing 2d non-zero cells, we are interested in the number of

cuboids we can materialize so that the total storage cost does not exceed that for 2d+b cells. As

we shall see in the next chapter, all cells do not have the same storage cost. In dense storage

formats, we store only measure values for every cell, whereas, in sparse storage formats, we

store the keys along with the measure values for every cell. We ignore this difference in this

chapter to simplify the analysis.

We established in Section 3.3 that the expected support size for a random k-dimensional

projection of an n-dimensional binary cuboid with 2d non-zero cells is 2k (1 − e2d−k
). In

Figure 3.2, we compare the expected size with the actual value from experiments for d = 20

and n = 64. Figure 7.1 plots the expected values for relative size and density of a random

k-dimensional projection for different values of d . This figure shows that the phenomenon

where a k-dimensional projection is dense for k < d and really sparse for k > d occurs for

other values of d as well.

We repeat the experiments on the datasets NYC (n = 429, d ≈ 27) and SSB (n = 188, d ≈ 29).

Figure 7.2 plots the expected size of a random k-dimensional projection derived analytically

111

Chapter 7 Materialization Strategy

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Cuboid dimensionality

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

d=5 relative size

d=10 relative size

d=15 relative size

d=20 relative size

d=25 relative size

d=5 density

d=10 density

d=15 density

d=20 density

d=25 density

Figure 7.1: Expected relative size and density of a random k-dimensional projection of a base
cuboid with support size 2d

against the average size of 100 randomly selected cuboids from the dataset. We compare

against the average sizes for the case when k dimensions are chosen uniformly at random

and when k dimensions are selected among prefixes of binary dimensions encoding some

columns. We observe that the size of random cuboids matches closely with the expected value,

while the prefix cuboids are sparser than anticipated. Nevertheless, we will continue to use the

analytically derived formula for computing the storage costs in further analysis. Emboldened

by the experiment results, we can approximate the expression for the size of a k-dimensional

cuboid as 2k for k < d and 2d for k ≥ d .

Given the simplified cost for storing a random k-dimensional cuboid, the expected number of

cuboids that we can materialize subject to a budget factor of b is given by

N (k,n,d ,b) =
⎧⎨⎩min

((n
k

)
,2d+b−k

)
, if k < d

min
((n

k

)
,2b
)

, otherwise
(7.1)

0 5 10 15 20 25 30
Cuboid dimensionality

20
22
24
26
28

210
212
214
216
218
220
222
224
226

Cu
bo

id
 su

pp
or

t s
ize

NYC

0 5 10 15 20 25 30
Cuboid dimensionality

20

23

26

29

212

215

218

221

224

227

Cu
bo

id
 su

pp
or

t s
ize

SSB

prefix

random

estimated

Figure 7.2: Expected support size vs. actual size for cuboids of different dimensionality whose
dimensions are chosen following the prefix and random strategy

112

Materialization Strategy Chapter 7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Cuboid dimensionality

20

24

28

212

216

220

224

228

232

236

240

244

248
Nu

m
be

r o
f c

ub
oi

ds
n=420 d=27

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Cuboid dimensionality

20

24

28

212

216

220

224

228

232

236

240

244

248

Nu
m

be
r o

f c
ub

oi
ds

n=188 d=29

total

b= ¡ 10

b= ¡ 8

b= ¡ 6

b= ¡ 4

b= ¡ 2

b=0

Figure 7.3: The number of materializable cuboids for each cuboid dimensionality for different
budget factors for NYC and SSB datasets

Figure 7.3 shows the number of cuboids we can expect to materialize when the entire budget

is allocated to materializing cuboids of a single dimensionality when parameters n and d are

similar to those in NYC and SSB datasets. The total number of cuboids in the space from which

one can pick cuboids for materialization is also shown in the figure. It is clear that we can

materialize all cuboids only up to dimensionality around 4 while restricting the total storage

cost to be comparable to that of the base cuboid (b ≈ 0). For k > 5, only a tiny fraction of the

cuboids can be materialized.

7.2 Score Functions

Now that we have examined the storage costs for cuboids of varying dimensionality and

estimated the number of cuboids one can materialize given a storage budget, we analyze

different strategies for picking which cuboids to materialize. We associate a materialization

strategy M with the space of all possible sets of materialized cuboids M that this strategy

can produce. We evaluate the utility of a given materialization strategy over a workload Q

defined as the space of all possible queries Q. Each materialization strategy has different

utility for different solvers. Ideally, the best materialization strategy for a solver picks cuboids

that it would find most useful to answer queries in a given query workload Q. The utility of a

cuboid is very complex to analyze, so we assign simple score functions to any set of cuboids

produced by some materialization strategy. For a given solver S, we assign solver-specific

score ScoreS{M ,Q} for every set of materialized cuboids M and query Q that reflects what S

considers to be useful to answering Q. Then, we define the expected utility of a materialization

strategy over the query workload Q as

UtilityS{M ,Q} = E
Q∈Q

[
E

M∈M

[
ScoreS{M ,Q}

]]
113

Chapter 7 Materialization Strategy

A potential candidate for the score function for solver S is the negative error of the result of

query Q produced by S using the cuboids in M . The materialization strategy with the lowest

error yields the maximum score for this score function. But the error is too complex to be

analyzed directly, so we use scoring functions that loosely model the negative of the error.

To reduce the scope of our analysis, we only analyze materialization strategies that pick

cuboids of some fixed dimensionality m and workloads containing queries of some fixed

dimensionality q . We also apply approximations from the previous section. We approximate

the number of cuboids N that we can materialize among cuboids of dimensionality m us-

ing Equation (7.1). We will analyze the strategies with m > m0, where m0 is the maximum

dimensionality for which the storage budget allows the materialization of all possible cuboids

of that dimensionality. For m ≤ m0, the materialization strategy is clear – select all cuboids

for materialization. Based on Figure 7.3, we also assume that the number of cuboids that we

choose for materialization is much smaller compared to the total number of possible cuboids

that we do not need to differentiate between strategies that select cuboids with replacement

from those that do it without replacement. In reality, they pick cuboids without replacement,

but for the sake of analysis, we assume they pick cuboids with replacement.

Throughout this chapter, we will use the notation P! to represent value 1 when some predicate

P is true and 0 otherwise.

7.2.1 Score Function for Naive Solver

A cuboid CI is relevant to the naive solver to answer a query Q only if I ⊇ Q. For a fixed

dimensionality, several such cuboids may answer a given query, but having more than one

such cuboid yields no additional benefit to answering this query. Therefore, we define the

score function for the naive solver as the following expression which evaluates to 1 when some

dimension set I ∈ M is a superset of query Q, and 0 otherwise.

Scorenaive{M ,Q} = max
I∈M

.
I ⊇Q

/
(7.2)

We will now estimate the expected utility of the materialization strategy M that picks cuboids

of dimensionality m uniformly at random to answer queries of dimensionality q using the

naive solver using this score function. Let Z be a random variable that denotes the number of

cuboids in M that are supersets of Q.

Z :=
∣∣∣∣{I | I ∈ M and I ⊇Q

}∣∣∣∣
Then, the score function can be rewritten as

Scorenaive{M ,Q} = (Z > 0)!

114

Materialization Strategy Chapter 7

The number of cuboids of dimensionality m that are supersets of query Q does not depend on

Q itself, only its size q . This number equals
(n−q

m−q

)
, the number of different ways of choosing

m−q dimensions after fixing q dimensions of the query from the remaining n−q dimensions.

Therefore, we can say that the random variable Znaive follows a hypergeometric distribution

with population size
(n

m

)
, the number of events that lead to success equal to

(n−q
m−q

)
and number

of trials equal to the number of cuboids we pick for materialization N . Based on our assump-

tions, we approximate it using a binomial distribution with success probability obtained by

dividing the number of successful events by the size of the population.

Pr(Z = k) = pk (̇1−p)k , where p =
(n−q

m−q

)
(n

m

)
The expected utility of the materialization strategy for the naive solver is given by

Utilitynaive{M ,Q} =EQ∈Q

[
EM∈M

[(Z > 0)!]]
= ∑

Q∈Q

∑
M∈M

((Z > 0)! ·Pr(M)
) ·Pr(Q)

= ∑
Q∈Q

Pr(Z > 0) ·Pr(Q)

= ∑
Q∈Q

(1−Pr(Z = 0)) ·Pr(Q)

= ∑
Q∈Q

⎛⎝1−
(

1−
(n−q

m−q

)
(n

m

))N
⎞⎠ ·Pr(Q)

=
⎛⎝1−

(
1−
(n−q

m−q

)
(n

m

))N
⎞⎠

Figure 7.4: Expected utility of a materialization strategy for various cuboid dimensionality for
the naive solver

115

Chapter 7 Materialization Strategy

Experiment 7.1 Finding Cuboid Dimensionality for Maximizing Utility for Naive Solver

Figure 7.4 shows the expected utility for the naive solver when the cuboid dimensionality m

picked by the materialization strategy is varied. The utility for some specific dimensionality

m depends on four parameters, the total dimensionality n, the support size of base cuboid

2d , the budget factor 2b , and the query dimensionality q . Each subfigure plots the utility

varying one of these parameters keeping the other three fixed. It can be observed that for

a particular query dimensionality q , the utility is maximum for m = 2q , suggesting that the

best materialization strategy for picking cuboids with a fixed dimensionality is the one with

dimensionality twice that of the query. We also observe that even the maximum utility is very

low within the range of dimensionality we analyze, indicating that the naive solver has nearly

no chance of answering queries when any such materialization strategy is applied. �

7.2.2 Score Function for Approximating from Projections

Next, we look into score functions for the solvers that approximate query cuboids from their

projections, with a focus on the moment solver as the representative for this class of techniques.

Like the case for the naive solver, we will design the score function Scoremoment{M ,Q} to be

negatively correlated to the error produced by the moment solver while approximating Q

using the materialized cuboids in M .

One of the metrics we know that affects the error of the moment solver is the number of

projections of Q that are available from M . Let us define the set S(M ,Q) as

S(M ,Q) = {I ∩Q | I ∈ M }

We will define several score functions based on S(M ,Q), examine their effectiveness in model-

ing the error, and estimate the expected utility for different materialization strategies M on

different query workloads Q. The power, weighted, multiset and union score functions are

defined as

Scorepower{M ,Q} = ∑
J∈S

2|J | Scoreweighted{M ,Q} =∑
J∈S

|J | ·2|J |

Scoremultiset{M ,Q} = ∑
I∈M

2|I∩Q| Scoreunion{M ,Q} =
∣∣∣∣∣⋃J∈S

2J

∣∣∣∣∣

Before we analyze these scores functions to derive their expected values, let us define two

random variables YJ and ZJ for every J ⊆Q as follows

ZJ = ∣∣{I | I ∈ M and I ∩Q = J
}∣∣

YJ = ∣∣{I | I ∈ M and I ⊆ J
}∣∣

116

Materialization Strategy Chapter 7

All of these scores defined above can be expressed in terms of YJ and ZJ as follows

Scorepower{M ,Q} = ∑
J⊆Q

2|J | ·.(ZJ > 0)
/

Scoreweighted{M ,Q} =
∑

J⊆Q
|J | ·2|J | ·.(ZJ > 0)

/
Scoremultiset{M ,Q} = ∑

J⊆Q
2|J | · ZJ Scoreunion{M ,Q} =

∑
J⊆Q

.
(YJ > 0)

/

We will now define success events associated with random variables ZJ and YJ and estimate

their count. First, we shall estimate, for any given set J , the number of possible sets I such that

|I | = m and I ∩Q = J . Picking such a set I constitutes a success event for the random variable

ZJ . Such sets can be constructed by picking m −|J | elements to be added to J from a pool that

avoids all elements of Q. Therefore, the number of such sets is given by
(n−q

m−|J |
)
. The random

variable ZJ follows a hypergeometric distribution with population size
(n

m

)
, number of events

that lead to success
(n−q

m−|J |
)

and number of trials equal to the number of cuboids picked for

materialization N . We will approximate it using a binomial distribution as before.

Pr(ZJ = k) = pk · (1−p)N−k , where p =
(n−q

m−|J |
)(n

m

)
Similarly, the success even for the random YJ for any given J is when some m-dimensional

set I is a superset of J . The number of such supersets is given by
(n−|J |

m−|J |
)
. The probability

distribution for variable YJ can be approximated using a binomial distribution as

Pr(YJ = k) = pk · (1−p)N−k , where p =
(n−|J |

m−|J |
)(n

m

)
We will now derive the expected utility of any score function f that only depends on the

size of J , the dimensionality m of cuboids being materialized by the strategy M and the

dimensionality q of queries in the workload Q as follows

Utilityf{M ,Q} =EQ∈Q

[
EM∈M

[∑
J⊆Q

f (|J |,m, q)
.

(ZJ > 0)
/]]

= ∑
Q∈Q

∑
M∈M

∑
J⊆Q

(
f (|J |,m, q) ·.(ZJ > 0)

/) ·Pr(M) ·Pr(Q)

= ∑
Q∈Q

∑
J⊆Q

f (|J |,m, q)Pr(ZJ > 0) ·Pr(Q)

= ∑
Q∈Q

∑
J⊆Q

f (|J |,m, q)(1−Pr(ZJ = 0)) ·Pr(Q)

= ∑
Q∈Q

∑
J⊆Q

f (|J |,m, q)

⎛⎝1−
(

1−
(n−q

m−|J |
)(n

m

))N
⎞⎠ ·Pr(Q)

117

Chapter 7 Materialization Strategy

=
∑

Q∈Q

q∑
j=0

(
q

j

)
f (j ,m, q)

⎛⎝1−
(

1−
(n−q

m− j

)
(n

m

))N⎞⎠ ·Pr(Q)

=
q∑

j=0
f (j ,m, q)

(
q

j

)⎛⎝1−
(

1−
(n−q

m− j

)
(n

m

))N⎞⎠

Replacing f with the correct function for the power and weighted score gives their expected

utility as

Utilityweighted{M ,Q} =
q∑

j=0
j · 2 j ·

(
q

j

)
·
⎛⎝1−

(
1−
(n−q

m− j

)
(n

m

))N⎞⎠
Utilitypower{M ,Q} =

q∑
j=0

2 j ·
(

q

j

)
·
⎛⎝1−

(
1−
(n−q

m− j

)
(n

m

))N⎞⎠

A similar analysis can be used to derive the expected utility according to the union score by

replacing Pr(ZJ = 0) with Pr(YJ = 0) and and the same according to multiset score by replacing

Pr(ZJ = 0) by E(ZJ) as follows

Utilityunion{M ,Q} =
q∑

j=0

(
q

j

)
·

⎛⎜⎝1−
⎛⎝1−

(n− j
m− j

)
(n

m

)
⎞⎠N
⎞⎟⎠

Utilitymultiset{M ,Q} =
q∑

j=0
2 j ·

(
q

j

)
·N ·

(n−q
m− j

)
(n

m

)

Experiment 7.2 Comparing Error, Score, and Utility for Moment Solver

In this experiment, we pick 100 queries comprising 10 dimensions chosen uniformly randomly

from the NYC and SSB data sets. Because many cuboids have to be computed for small

dimensions, we build data cubes on a sample of size 220 from the SSB dataset. We run them

on data cubes built on these datasets with various dimensionality of materialized cuboids

with budget factor 20 for the SSB dataset and 2−13 for the NYC dataset. Figure 7.5 plots the

average error for these queries along with the average score and utility for each of the score

functions against the materialized cuboid dimensionality. We observe that the multiset score

overcounts the cuboids and has no direct correlation with the error, while the other three are

reasonably similar to the error. �

118

Materialization Strategy Chapter 7

(a) NYC dataset

(b) SSB dataset

Figure 7.5: Comparing error, score, and utility for moment solver for various dimensionality of
materialized cuboids

Experiment 7.3 Finding Cuboid Dimensionality for Maximizing Utility for Moment Solver

For each score function, we plot its expected utility for different materialized cuboid di-

mensionality in an attempt to find the optimum dimensionality that maximizes the utility.

Figure 7.6 shows the expected utility for various values of the total dimensionality of the base

cuboid n. Figure 7.7 shows the expected utility for various budget factors 2b . Figure 7.8 shows

the expected utility for various support sizes of the base cuboid 2d . Finally, Figure 7.9 shows

the expected utility for various query dimensionality q . From the experiment results, we

observe that the optimum dimensionality for materialization does not seem to depend on the

query dimensionality and is likely to be the dimensionality m0 where every possible cuboid of

that dimensionality can be materialized while staying within budget. �

119

Chapter 7 Materialization Strategy

Figure 7.6: Expected utility for moment solver for various values of total dimensionality n

Figure 7.7: Expected utility for moment solver for various budget factors given by 2b

Figure 7.8: Expected utility for moment solver for various support sizes of the base cuboid
given by 2d

120

Materialization Strategy Chapter 7

Figure 7.9: Expected utility for moment solver for various query dimensionality q

In this chapter, we studied the problem of finding the best materialization strategy for a

given query workload for different solving techniques presented in Chapter 6. We derived an

expression for approximating how many different cuboids we could materialize for various

cuboid dimensionality given a storage budget.

We formulated a score metric to assess the performance of the naive solver considering a

particular query and a set of materialized cuboids. Further, our analysis unveiled that when

the materialization strategy selected cuboids of a singular dimensionality for a query workload

comprising queries of fixed dimensionality, the optimal approach was to choose cuboids of

dimensionality that was twice that of the query.

Extending our exploration, we conceived comparable scoring systems to evaluate the perfor-

mance of the moment solver given a specific query and a set of materialized cuboids. Upon

analyzing their expected utility for varying materialization strategies that target specific di-

mensionalities for cuboid materialization, we found that the optimal strategy appeared to

be independent of the query dimensionality. The preference consistently leaned towards the

dimensionality that allowed for the maximum number of cuboid materializations.

The scoring methods discussed in this chapter were designed to loosely model the inverse

of the error, such that the materialization strategy scoring the highest would be anticipated

to yield the lowest error for a particular query workload. Nonetheless, attaining the lowest

error might not be a crucial factor if the solver requires prolonged query execution times when

operating on data cubes constructed with that specific materialization strategy. Consequently,

a more comprehensive scoring function that also encapsulates the execution time for queries

is warranted.

121

8 Sudokube Backend

The Sudokube backend is responsible for storing the materialized cuboids as well as projecting

those cuboids to other cuboids on demand. In this chapter, we explore various choices that go

into designing a good backend for the system.

8.1 Cuboid Layout

The layout is an essential consideration when designing a backend for storing cuboids. It can

affect the scalability of the system and the performance of projection operations. We discuss

three different formats for storing cuboids in this section.

8.1.1 Dense Format

The dense format stores cuboids as an array of measure values, with the binary key for each cell

encoded into the index of the corresponding element in the array. This format is highly space-

efficient for low-dimensional cuboids because it does not store the keys separately, resulting

in minimal storage requirements. Figure 8.1b shows how the cuboid shown in Figure 8.1a is

stored in the dense format.

However, as the dimensionality of the cuboid increases, the storage space required by the

dense format grows exponentially. This is because the format allocates space for each cell,

regardless of its measure value. As a result, the dense format is unsuitable for high-dimensional

cuboids in a system with a limited storage budget.

8.1.2 Sparse Format

The sparse format offers a more efficient method of storing high-dimensional cuboids com-

pared to the dense format. In realistic scenarios, many cells in a cuboid have a measure value

of zero, leading to significant space savings when using the sparse format to store only the cells

with non-zero measure values. However, the sparse format requires that the keys be explicitly

123

Chapter 8 Sudokube Backend

0 2

4 0

A
0 1

B
0

1

C=1

1 5

0 3

A
0 1

B
0

1

C=0

(a) Cuboid C{A,B ,C }

CBA

0001
0015
0100
0113
1000
1012
1104
1110

(b) Dense

ABC

0001

1005

1103

1012

0114

(c) Sparse row

CBA

0001

0015

0113

1012

1104

(d) Sparse column

Figure 8.1: Cuboid C{A,B ,C } stored in dense, sparse row and sparse column formats

stored along with the measure values, which could result in higher storage requirements for

low-dimensional cuboids compared to the dense format. Despite this drawback, the space

savings usually outweigh the additional cost of storing the keys for high-dimensional cuboids.

In Sudokube, two variants of the sparse format are used - the sparse row format and the

sparse column format. The sparse row format stores keys and measure values in contiguous

blocks of memory, one for every cell with a non-zero measure value. The sparse row format is

particularly useful for storing cuboids that are in the process of being constructed. This format

allows for the efficient insertion of new keys with non-zero measure values as well as updating

the measure value for existing keys. Figure 8.1c shows how the cuboid shown in Figure 8.1a is

stored in the sparse row format.

However, it’s important to note that the sparse row format is not ideal for applying projections

on the cuboid. During projection, the entire key needs to be loaded before the required bits

are kept and the rest discarded. This can lead to performance issues due to poor locality,

particularly for high-dimensional cuboids. Therefore, switching to an alternative format once

the cuboid is fully built to optimize further projections is better.

In contrast, the sparse column format stores bits of keys from the same dimension as well as

the measure values in contiguous blocks of memory. The format first stores all the non-zero

measure values of the cuboid, followed by the first bit of the corresponding keys, then the

second bit, and so on for every dimension in the cuboid. Unlike the sparse row format, during

projection, only the bits that are required need to be loaded, making it an ideal format for

cuboids being projected. However, after projecting the keys, the duplicate keys need to be

aggregated, which is better done in either dense or sparse row formats. Figure 8.1d shows how

the cuboid shown in Figure 8.1a is stored in the sparse column format.

The choice of the storage format for a cuboid depends on the specific use case and the proper-

ties of the data. In Sudokube, the base cuboid is initially stored in a sparse row format while

it is being constructed from the raw data. Once the cuboid is fully built, it is converted into

124

Sudokube Backend Chapter 8

a sparse column format, which is more suitable for applying projections. During projection,

the output cuboid is typically converted into a dense or sparse row format depending on

the cuboid size for aggregating duplicate keys. If the resulting cuboid is sufficiently sparse,

it is converted back to sparse column format for long-term storage. By carefully selecting

the appropriate format for each use case, Sudokube can effectively store and manage large

amounts of data while providing users with efficient access and processing capabilities.

8.2 Projection

One of the most common operations performed on a cuboid is projection, which involves re-

ducing the number of dimensions in the keys and aggregating the measure values of duplicate

keys. Projection can occur at two different times: during data cube construction and during

query time. During data cube construction, materialized cuboids are projected to create other

cuboids, starting from the base cuboid. During query time, some of the materialized cuboids

are projected to only the dimensions that are relevant to the query. An optimized projection

algorithm is crucial to ensure optimal performance during both data cube construction and

query time. The algorithm should be designed to efficiently project the cuboid to the desired

dimensions while minimizing the amount of data that needs to be accessed and processed.

Algorithm 18: High-level algorithm for projecting a cuboid

input :Cuboid C with dimensions S to be projected to dimensions T
output :Cuboid D that is a projection of C to T
[1] def ProjectCuboidMain(C , S, T):
[2] m ← GenerateMask(S, T)

[3] if C is dense then
[4] D ← ProjectCuboid(C , m, hashing) // dense format

[5] else if |T | < 32 then
[6] D ← ProjectCuboid(C , m, hashing) // dense format

[7] ssi ze ← size of D if stored in sparse format
[8] d si ze ← size of D if stored in dense format
[9] convert D to sparse format if ssi ze < 0.5∗d si ze

[10] else
[11] D ← ProjectCuboid(C , m, sorting) // sparse format

[12] return D

The high-level overview of the projection algorithm used by Sudokube is described in Algo-

rithm 18. The first step in the projection algorithm is preprocessing the dimensions of the

input and output cuboids to generate projection masks. Projection masks are data structures

that efficiently encode the positions of the dimensions of the output cuboid among the di-

mensions of the input cuboid. Various projection algorithms presented in this chapter have

different implementations of the projection masks based on their needs. By precomputing

these masks, these projection algorithms can significantly speed up the projection of individ-

ual cells of the cuboid that happens next. Depending on the storage format, Sudokube iterates

125

Chapter 8 Sudokube Backend

over the entries of the input cuboid and projects each key to the desired dimensions using the

precomputed masks. We will discuss the projection loop for each storage format later.

Once the keys are projected, the next step is to aggregate the measure values of the duplicate

keys. Sudokube incorporates two approaches for aggregating duplicate keys, namely hashing

and sorting. The hashing approach is used if the output cuboid has a low dimensionality. The

dense format is used to store the output cuboid where the keys are hashed using their integer

values and the measure values are aggregated in place. If the input cuboid is also dense, the

output dense cuboid is returned without additional processing. However, if the input cuboid

is in a sparse format, Sudokube calculates the number of cells with a non-zero measure value

after the projection and computes the expected size of the resulting cuboid when stored in

sparse format. If the size of the resulting sparse cuboid is sufficiently smaller than the size of

the dense cuboid, Sudokube converts the cuboid to a sparse format and outputs that instead.

Algorithm 19: Aggregating duplicate keys in sparse row cuboids using sorting

input :Sparse cuboid D which contains duplicates
output :Sparse cuboid D after merging duplicates
[1] def AggregateBySorting(D):
[2] sort D according to its keys
[3] (rIt, wIt) ← two iterators over D one for reading and other for writing
[4] advance(rIt)
[5] while rIt has not finished do
[6] (kr , vr) ← peek(rIt)
[7] (kw , vw) ← peek(wIt)
[8] if kr is same as kw then
[9] vw ← vw + vr // modify in place

[10] else
[11] advance(wIt)
[12] if wIt and rIt are at different positions then
[13] copy values (kr , vr) into current position of wIt
[14] advance(rIt)

[15] truncate D at position indicated by wIt

Aggregation using hashing as described above is not feasible if the output cuboid has a high

dimensionality because the dense format is not suited for storing such cuboids. Furthermore,

using a generic hash table is not optimal due to poor cache locality and weak hash functions

for high-dimensional binary keys. Therefore, Sudokube uses the sparse row format to store the

output cuboid and resorts to sorting for aggregating duplicate keys. In this approach, for every

entry in the input cuboid, after the key is projected to the desired dimensions, it is appended

to the output cuboid along with the measure value. Subsequently, the output cuboid is sorted

based on the keys. Sorting the cuboid ensures that duplicate keys are adjacent to one another,

making it easier to aggregate them together. The aggregated cuboid is then returned in the

sparse format as the output cuboid. The algorithm for aggregating a projected sparse cuboid

using sorting is described in Algorithm 19.

126

Sudokube Backend Chapter 8

Next, we examine the main projection loop and the masks in detail for each storage format.

Algorithm 20: Algorithm for the projection loop for a sparse row or dense cuboid

input :Input cuboid C , projection mask m, projection mode
output :Output cuboid D obtained by projecting C using m
[1] def ProjectCuboid(C , m, mode):
[2] if mode=sorting then
[3] D ← new empty cuboid in sparse row format
[4] else
[5] D ← new empty cuboid in dense format
[6] foreach (k, v) ∈C do
[7] j ← ProjectKey(k, m)

[8] if mode=sorting then
[9] append (j , v) to D

[10] else
[11] D[j] ← D[j] +v

[12] if mode=sorting then
[13] AggregateBySorting(D)

[14] return D

8.2.1 Dense and Sparse Row

The main projection loop for a cuboid stored in a dense or sparse row follows the same

procedure described in Algorithm 20. The procedure differs for the two formats only in how

the cells of the cuboid are iterated. If the cuboid is dense, the main projection loop iterates

over the measure values of every cell in the cuboid, along with the implicit keys encoded by

their positions. On the other hand, if the cuboid is stored in the sparse row format, all non-zero

measure values and their keys are iterated over. In either case, the algorithm projects the keys

to the desired dimensions for each cell and then uses the hashing or the sorting approach to

aggregate duplicate keys. In the case of the hashing approach, the measure value is updated

in place within the output cuboid stored in dense format. Whereas in the case of the sorting

approach, the projected key and the measure value is appended to the output cuboid. Then,

the cuboid is sorted and the duplicate keys are aggregated.

Projecting Individual Keys

The most critical step in the projection algorithm for both dense and sparse row cuboids is

projecting the individual keys to the desired dimensions. As described earlier, a projection

mask is used to encode the relationship between the input and the output dimensions to speed

up the process. One efficient way to encode this mask is to store the positions of the output

dimensions among the input dimensions. By encoding the mask as a list of bit positions, the

projection algorithm can run in linear time with respect to the number of output dimensions

127

Chapter 8 Sudokube Backend

Algorithm 21: Simple algorithm for projecting keys

input :Input dimensions S; Output dimensions T
output :projection mask represented by bit positions P
[1] def GenerateMask(S, T):
[2] P ←�
[3] foreach t ∈ T do
[4] r ← rank of t in S
[5] P ← P ∪ {r }

[6] return P
input :Input key i , list of sorted bit positions P = {p0, . . . , pn}
output :Projected key j
[7] def ProjectKey(i , P):
[8] j ← 0; b ← 0
[9] foreach k ← 0 to n do

[10] p ← pk

[11] if pth bit of i is set then
[12] set kth bit of j

[13] return j

instead of the input dimensions. Algorithm 21 describes a straightforward algorithm for

projecting the keys using such a mask. For every input key, the algorithm checks the bit

positions specified by the mask and sets the corresponding bits in the output key.

The aforementioned projection algorithm for keys can be further optimized to reduce the

number of operations. The operation of projecting keys is similar to the compression operation

on bit vectors that moves the specified bits to one end. Instead of checking and setting

individual bits, moving entire blocks of bits at once is possible. An efficient algorithm for the

compress operation is described in [104] that can be adapted to project binary keys. The input

keys are divided into 64-bit words, and the compression algorithm is applied separately to

each word. The resulting words are then combined to form the output keys.

Algorithm 22 describes the procedures to generate the masks and do the projection when the

input key contains at most 64 bits. The compress algorithm works as follows for a single 64-bit

word. First, the number of positions to shift each bit right in the input key to form the output

key is computed. Then, these positions are encoded into 6 additional masks mv0, . . . ,mv5 that

indicate the bits that have to be shifted by 20, . . . ,25 positions, respectively. Finally, during the

projection, the shifting of bits is performed in at most 6 steps, one per mask. This approach

significantly reduces the number of operations required to project the keys compared to the

simple approach.

Example 22. For example, if the 23r d bit of the input key becomes the 6th bit of the output key,

then it has to be shifted right by 17 (= 24 +20) positions. The 23r d bit is shifted once to the 22nd

bit in the first step, and then the 22nd bit is shifted 16 positions to the 6th bit. This two-step

process is captured by setting the 23r d bit of mv0 and the 22nd bit of mv4 to 1.

128

Sudokube Backend Chapter 8

Algorithm 22: Algorithm to generate the projection masks to compress bit vectors

input :Input dimensions S, output dimensions T
output :Projection mask m and 6 additional masks mv0, . . . ,mv5 denoting positions of

bits that need to be shifted by 20, . . . ,25

[1] def GenerateMask(S, T):
[2] m ←|S|-bit number where a bit is 1 only if the corresponding element is in T
[3] mk ←∼m � 1 // bits that have 0 immediately to right

[4] for i ← 0 to 5 do
[5] mp ←mk ⊕ (mk � 1)
[6] for j ← 1 to 5 do
[7] mp ←mp ⊕ (mp � 2 j)
[8] mv i ←mp & m // bits that need to be shifted by 2i

[9] m ← (m ⊕mv i) | (mv i � 2i) // shift the bits in the mask

[10] mk ← (mk & ∼mp)

[11] return (m, mv0, . . . ,mv5)

[12] def ProjectKey(i , (m, mv0, . . . ,mv5)):
[13] j ← 0 ; x ← i & m
[14] for k ← 0 to 5 do
[15] t ← x & mvk // only bits that need to be shifted by 2k

[16] x ← (x ⊕ t) | (t � 2k) // shift bits by 2k

[17] return j

If the input key contains more than 64 bits, then the algorithm can be modified to use an array

of masks, one for every 64-bit word in the input key. In such a case, the number of output bits

from each word is also calculated, which will later serve as offsets while merging the results

from multiple words into a single output key.

8.2.2 Sparse Column

The main loop for projecting a cuboid stored in the sparse column format is described in

Algorithm 23. The sparse column format stores bits from different keys corresponding to the

same dimension in a continuous block of memory, making it impossible to iterate over whole

keys directly. Therefore, this procedure iterates over groups of 64 rows together so that the bits

for any dimension constitute a single 64-bit word. Once the rows have been grouped in this

way, projecting the keys to the desired dimensions is a matter of selecting the right word from

the bits representing those dimensions. This procedure uses the simple projection mask from

Algorithm 21, represented as a list of bit positions to identify the dimensions to be kept.

If the number of output dimensions is greater than 64, the bit positions are split into groups

of 64, and the procedure is repeated for each group separately. Once a 64-bit word has been

obtained from at most 64 output dimensions, the next step is to aggregate duplicate keys.

Before duplicate keys can be identified, the projected keys need to be converted into the row

format. This is done by arranging the bits of 64 rows in a 64×64 matrix and transposing it.

129

Chapter 8 Sudokube Backend

Algorithm 23: Algorithm for the projection loop for a sparse column cuboid

input :Input cuboid C , projection mask m as a list of bit positions, aggregation mode
output :Output cuboid D
[1] def ProjectCuboid(C , m, mode):
[2] numWords ← number of rows grouped into 64-bit words
[3] A ← new array of size 64 containing 64-bit integers
[4] colGroups ← split bit positions in m into groups of 64
[5] if mode=sorting then
[6] D ← new empty cuboid in sparse row format
[7] else
[8] D ← new empty cuboid in dense format
[9] for rw← 0 to numWords−1 do

[10] foreach (cwIdx,colGroup) ∈ enumerate(colGroups) do
[11] set all entries in A to 0
[12] for (c0,col) ∈ enumerate(colGroup) do
[13] copy rw th word of col th dimension into slot A[63− c0]
[14] Transpose64(A)
[15] if mode=sorting then
[16] for r 0 ← 0 to 63 do
[17] j ← A[63− r 0]
[18] r ← (rw � 6)+ r 0

[19] copy j into the cwIdx th word of the key of r th row of D

[20] for r 0 ← 0 to 63 do
[21] r ← (rw � 6)+ r 0

[22] v ← r th measure value
[23] if mode=sorting then
[24] copy v into the measure value of r th row of D
[25] else
[26] j ← A[63− r 0]
[27] D[j] ← D[j]+ v

[28] if mode=sorting then
[29] AggregateBySorting(D)

[30] return D

130

Sudokube Backend Chapter 8

To transpose the 64×64 bit-matrix, Sudokube uses Algorithm 24 derived from [104]. It takes

an array of words where each word represents 64 rows of some dimension and transforms it

such that each word now represents 64 bits of some key. If the number of output dimensions

is small enough, Sudokube uses the hashing approach for aggregation. For every word in the

array, the 64-bit key is hashed using its integer value to identify its position in the dense output

cuboid. The associated value for that row is looked up from the input cuboid and is aggregated

with the existing value at the identified index within the output cuboid.

Algorithm 24: Algorithm to transpose 64×64 bit matrix in place

input :Input matrix A as an array of 64-bit unsigned integers
[1] def Transpose64(A):
[2] m ← 232 −1 ; j ← 32
[3] while j �= 0 do
[4] k ← 0
[5] while k < 64 do
[6] t ← (A[k] ⊕ (A[k + j] � j)) & m
[7] A[k] ← A[k] ⊕ t
[8] A[k + j] ← A[k + j] ⊕ (t � j)
[9] k ← (k + j +1) & ∼j

[10] j ← j � 1; m ← m ⊕ (m � j)

On the other hand, if the number of output dimensions is high, Sudokube cannot use the

hashing approach and must instead use the sorting approach. For each row in the input

cuboid, the projected key is copied in groups of 64 bits to the row at the same position in the

output cuboid. Then the process is repeated for the measure values. Finally, the output cuboid

is sorted and aggregated using the procedure described in Algorithm 19.

We will now evaluate the performance of five projection algorithms in a variety of experiments.

SparseRow Simple and Dense Simple uses Algorithm 21 to project individual keys as part of

projecting cuboids stored in the sparse row and dense formats using Algorithm 20. SparseRow

Optimized and Dense Optimized uses Algorithm 22 to project keys using the same algorithm

for projection. Finally, SparseCol Optimized uses Algorithm 23 to project cuboids stored in

sparse column format. We omit evaluating the algorithms on cuboids stored in dense formats

for high-dimensional cuboids for obvious reasons. We will also set the output dimensionality

low enough so that hash-based projections are used in all cases for a fair comparison.

Experiment 8.1 Varying Dimensionality of Input Cuboid for Projection Algorithms

We study the impact of the dimensionality of the input cuboid on the running time of each

of the five algorithms. We run the experiment for two scenarios, one where the input cuboid

is low-dimensional and the other where it is high-dimensional. We generate cuboids with

support size 212 for the low-dimensional scenario and 220 for the high-dimensional scenario.

We fix the output dimensionality to 10 for both cases. We repeat the experiment 100 times

each for different input dimensionality for randomly generated data and output dimensions.

131

Chapter 8 Sudokube Backend

Figure 8.2 shows the average projection time for each algorithm for various input dimension-

ality. We observe that for the low-dimensional scenario, initially, the dense format yields the

fastest projection when the support size matches the number of cells. However, the time

to project the cuboids in dense format increases exponentially with the input size, while it

remains the same for the cuboids in sparse format. The optimized algorithms are better than

the simple algorithm, and there is not much difference in time between projecting cuboids

in the sparse row and sparse column formats. However, in the high-dimensional scenario,

as the masks are generated for each group of 64 bits in the input cuboid, the time to project

the sparse row format increases linearly with the number of such groups. On the other hand,

transpose is done in groups of 64 bits of the output cuboid, and the projection time for sparse

column format does not change. �

Figure 8.2: Projection times for each algorithm for various dimensionality of input cuboids

Experiment 8.2 Varying Dimensionality of Output Cuboid for Projection Algorithms

We now study the impact of the output cuboid dimensionality on the running times of the

projection algorithms. We run the experiment for low-dimensional and high-dimensional

input cuboids separately. We set the dimensionality of the input cuboid to be 200 for the

high-dimensional case and 20 for the low-dimensional case. We set the support size in both

cases to 220. We repeat the experiment 100 each for randomly generated data and output

dimensions while varying the output dimensionality.

Figure 8.3 shows the average projection time for each algorithm for various output dimen-

sionality. The projection time increases nearly linearly with the dimensionality of the output

cuboids, both in low-dimensional as well as high-dimensional scenarios. �

Experiment 8.3 Varying Support Size of Input Cuboid for Projection Algorithms

Finally, we study the impact of the sparsity of the input cuboid on the running times. We run

separate experiments for low and high-dimensional input cuboids. We set the dimensionality

of the input cuboid to be 200 for the high-dimensional case and 20 for the low-dimensional

case. We fix the output dimensionality to 10 in both cases. We repeat the experiment 100 times

each for randomly generated data and output dimensions while varying the support size of

the input cuboids and average the results.

132

Sudokube Backend Chapter 8

Figure 8.3: Projection times for each algorithm for various dimensionality of output cuboids

Figure 8.4 shows the average projection time for each algorithm for various sizes of the input

cuboid support. Clearly, the projection times for the cuboids in dense formats are unaffected

by the support sizes, as all cells have to be processed regardless of the value they contain. In

both high-dimensional and low-dimensional scenarios, the projection times for cuboids in

the sparse format increase linearly with the support size. We also observe again that the sparse

formats are better when the data is sparse and the dense format is better when it is not. �

Figure 8.4: Projection times for each algorithm for various support sizes of input cuboids

8.3 Alternative Storage Layout

In this chapter, we have explored various formats for storing cuboids and algorithms for

performing projection operations on them. Typically, a data cube is stored as a collection

of cuboids that includes the base cuboid and several projections. This approach is most

suitable for the traditional method of answering data cube queries by projecting the smallest

subsuming cuboid.

However, Sudokube’s alternate approach, which involves approximating queries from available

projections, calls for a re-evaluation of the data cube storage strategy. Instead of using a single

cuboid, Sudokube uses multiple cuboids to answer queries. However, multiple cuboids from

the same data cube store redundant information, resulting in several issues.

133

Chapter 8 Sudokube Backend

Firstly, storing redundant information wastes storage space from a finite storage budget that

could have been used to store additional information. Additionally, processing redundant

information leads to slower query processing time. During query processing time, cuboids are

processed to extract information from them that is suitable for the particular solver. However,

since multiple cuboids contain redundant information, time spent extracting information

from cuboids that will later be discarded is wasted.

To address these issues, alternative data cube storage approaches that minimize redundant

information storage and reduce processing time should be considered. Such approaches

enable Sudokube to provide faster and more accurate responses to data cube queries. For

instance, a different approach involves a data cube storing several chosen moments along

with the base cuboid instead of projections of the base cuboid.

8.3.1 Moment Store

A moment store backend stores selected moments of a data cube instead of storing cuboids. It

uses a set-trie data structure[89] to store moments indexed by sets. A set-trie is a variant of

the trie data structure modified for indexing subsets of a totally ordered set (D,≺) instead of

strings. Each node represents a subset of the domain D in a set-trie. The root node represents

the empty set and the children of each node extend the set it represents by a single element.

The children are sorted according to the element they store in the order specified by ≺.

We apply some restrictions and modify the data structure proposed in [89] to best suit our

case. Firstly, we store a moment value associated with the set in each node instead of a single

bit that indicates the presence or absence of the set. Secondly, we assume that before some

set S is inserted into the trie along with some value v , all subsets of S have been previously

inserted. Finally, we implement the trie using the first child-next sibling representation in an

array. Our set-trie is simply an array of nodes, with each node storing the index of its first child

and the next sibling. We use index value −1 to denote the absence of a child or a sibling.

Algorithm 25 describes the procedure to insert a set S and an associated value v into a set-trie.

The set is broken up into its constituent elements and each element is used to traverse the trie

in the order specified by ≺. Because of the restriction that all subsets of S must be inserted

before S, only the last node in the path that represents the set S can be missing. This node is

created and its value is set to v .

Given a query Q, the moment store returns 2|Q| moments, with the stored moments retrieved

efficiently from the set-trie and the other moments set to 0. Algorithm 26 describes an efficient

algorithm to retrieve the values associated with all stored subsets of a given set from a set-trie.

It takes as input a query Q and a zero-initialized array R of size 2|Q| to store the results, the index

q of the element from Q being processed, and the integer encoding r of the set represented by

the path from the root to the current node. r has |Q| bits, each of which indicates the presence

of one element of Q in the set. Both q and r are initially 0, and node starts with the root of

134

Sudokube Backend Chapter 8

Algorithm 25: Algorithm for inserting a set to a set-trie

input :set S to be inserted into trie T with value v
[1] def TrieInsert(T , S, v):
[2] if T is empty then
[3] node ← new node in T
[4] Initialize node with key ← -1, value ← v , firstChild ← -1, nextSibling ← -1

[5] else
[6] node ← node at index 0 in T
[7] foreach k ∈ S do
[8] node ← GetOrAddNode(T , node, k)
[9] node.value ← v

[10]

[11] def GetOrAddNode(T , node, k):
[12] prevChild ← null; curChildID ← node.firstChild
[13] curChild ← node at index curChildID in T
[14] while curChildID �= −1 and curChild.key < k do
[15] prevChild ← curChild ; curChildID ← curChild .nextSibling
[16] curChild ← node at index curChildID in T

[17] if curChildID �= −1 and curChild.key = key then
[18] return curChild // return existing child

[19] else
[20] (newChild , newID) ← new node at the end of T
[21] Initialize newChild with key ← k, firstChild ← -1, nextSibling ← curChildID
[22] if prevChild is null then node.firstChild ← newID
[23] else prevChild .nextSibling ← newID
[24] return newChild

set-trie. The procedure is recursive, and the first step is to store the current node’s value in

the result array at the position for the set represented by this node. Then every child node is

processed one after the other. If a child node stores a key that is less than the current element

of Q being processed, then the entire subtree of those nodes is ignored because they cannot

contain any subset of Q. If a child node is found storing a key that is equal to the current

element from Q, then the procedure is recursively called on that node to process its subtree.

Before invoking the recursive procedure, q is advanced to process the rest of the query, and r is

updated to include the q th element of the query in the set. Finally, if the key of the child node

is greater than the current element of the query, the element being processed is advanced until

one of the other two cases becomes true or the end of the query is reached. After the procedure

terminates, the array R contains all the moments from the set-trie at the right positions.

The array of moments produced by the moment store can directly be fed into the moment

solver without any additional transformations to identify and remove redundant information.

Next, we investigate the effect of using this alternative backend on the approximation of query

results in Sudokube. Ideally, an effective materialization strategy should guide the selection

135

Chapter 8 Sudokube Backend

Algorithm 26: Algorithm to retrieve values associated with every subset of a given set
from a set-trie
input :Trie T , Query Q, array R for storing results, position in query q , integer r

representing path from root to current node node
[1] def TrieQuery(T , Q, R, q, r , node):
[2] R[r] ← node.value
[3] childID ← node.firstChild
[4] while childID �= −1 and q < |Q| do
[5] childNode ← node at index childID in T

[6] k ← q th element of Q
[7] if childNode.key = k then
[8] TrieQuery(T , Q, R, q +1, r +2q , childNode)
[9] childID ← childNode.nextSibling

[10] else if childNode.key < k then
[11] childID ← childNode.nextSibling
[12] else
[13] q ← q +1

of moments for storage. However, in the current implementation, we construct the moment

store by extracting moments from existing data cubes and inserting them into a set-trie. We

limit the moments to dimensionality up to 6 and discard the rest. This decision was motivated

by the assumption that lower-dimensional moments are more likely to be useful for query

results and more likely to exhibit larger values than their higher-dimensional equivalents.

Figure 8.5 lists the storage space for the largest data cubes we built on NYC and SSB datasets

using Random and Prefix strategies, along with the storage cost of the moment store built

using the aforementioned strategy. Given the imposed cut-off for moment dimensionality, the

moment store contains strictly less information than the cuboids. Nevertheless, there might be

instances where the moment store requires more storage than the cuboids, as demonstrated

by the NYC Prefix case.

The primary reason behind this phenomenon lies in the data sparsity within the Prefix cubes.

When a substantial number of cells possess a measure value of zero, storing cuboids in the

sparse format leads to substantial space conservation. However, moments do not benefit from

such sparsity and consequently may occupy more storage space compared to sparse cuboids.

In the following experiments, we will compare the execution time and the accuracy of the

results when using the moment store against those obtained when using the cuboids directly.

Experiment 8.4 Varying Query Dimensionality for Moment Solver in Batch Mode with Different

Backends

We pick 100 queries each of various dimensionality and run them on the improved moment

solver in batch mode for NYC Random, NYC Prefix, SSB Random, and SSB Prefix data cubes

136

Sudokube Backend Chapter 8

Dataset Strategy N dmin

Cuboid
Storage

(GB)

Trie
Storage

(GB)
NYC Random 215 18 57.198 34.359
NYC Prefix 215 18 17.757 18.265
SSB Random 215 14 31.345 10.428
SSB Prefix 215 14 17.259 3.005

Figure 8.5: Comparison of storage between data cubes and moment store

and the corresponding moment stores built from them. For this experiment, we choose the

data cubes and moment stores built with the parameters listed in Figure 8.5.

Figure 8.6 shows the average times spent by the moment solver in various phases of the

query execution. We observe that the combined prepare and fetch of the moment store

following Algorithm 26 is much faster than both the prepare as well as fetch for the cuboid

store. Furthermore, the solve times are lower when using the moment store compared to the

cuboid store, even though the same solving algorithm is used in both cases. The reduction

in the solving time can be explained by not having to transform cuboids to moments after

fetching them.

Figure 8.7 shows the average error for the approximate answer returned by the moment solver

when using the moment and cuboid stores as backends. We observe that there is a significant

difference in errors in the case of Prefix cubes, but the errors are similar in the case of Random

cubes. We know from the results of our previous experiments in Figure 6.10 that the expected

size of the intersection of dimensions of the query and the fetched cuboids is roughly between

3 and 4 for Random cubes, but it is higher for Prefix cubes. Thus, there is nearly no loss of

information for the query when we prune the moments above order 6 in the case of Random

cubes, but some information is lost in the case of Prefix cubes. Regardless of the loss of

information due to pruned moments, a sufficient number of moments are stored to still yield

approximations with errors less than 0.02 for SSB Prefix cubes and 0.1 for NYC Prefix cubes. �

In this chapter, we studied different storage layouts and projection algorithms for cuboids and

evaluated their performance in various scenarios. The best storage format for projection is

the sparse column format when the support size is small compared to the number of cells

in the cuboid and the dense format when it is reversed. We also saw how alternate storage

representations, such as the moment store, can outperform even these optimized cuboid

representations in terms of execution time. However, further research is needed in choosing

the moments to be stored to minimize the error.

137

Chapter 8 Sudokube Backend

Figure 8.6: Average execution time for the improved moment solver in batch mode for various
query dimensionality when using each backend

Figure 8.7: Average error for the improved moment solver in batch mode for various query
dimensionality when using each backend

138

9 Conclusion and Future Work

This thesis explores how interactive-time queries can be made possible on large high-dimensi-

onal datasets. We explored various use cases where having high-dimensional data cubes

would be very useful and studied the challenges faced by existing approaches both in terms of

storage costs and query running time. We discussed how these challenges are mitigated in our

system, Sudokube, and ventured into the system’s architecture, the concepts behind its data

representation, querying capabilities, and impressive ability to quickly approximate a query

result from its projections.

We studied the limitations of current approaches in terms of both storage costs and running

time of queries and discussed steps taken by Sudokube to allay these limitations. In particular,

Sudokube avoids aggregating all the tuples at query time by precomputing some aggregations

in data cubes and offloading the cost from query time to data cube construction time. Exces-

sive storage costs were avoided by precomputing only some cuboids from the data cube and

using efficient techniques to extrapolate missing cuboids from the precomputed ones.

Throughout this thesis, we saw how Sudokube effectively encodes data with its binary di-

mensions approach, simplifying the theory and implementation for storing, projecting, and

extrapolating cuboids. The exposed binary dimensions allow users to run richer aggregate

queries by defining groups based not just on the values of some columns but patterns of values

as well. Additionally, we highlighted Sudokube’s adaptability and flexibility in supporting basic

query operations across static and dynamic schemas and its ability to handle hierarchical

dimensions. Furthermore, we discussed the advanced query features supported in Sudokube

through post-processing.

We analyzed the utility of various materialization strategies for answering queries using dif-

ferent solvers. Among the strategies that pick cuboids of a single dimensionality for materi-

alization, we observed that choosing the maximum dimensionality where we can afford to

materialize all the possible cuboids is likely the best choice to reduce error. Nevertheless, it

remains uncertain whether this approach is the most suitable for optimizing a comprehensive

metric that encompasses prepare, fetch, and solve times in addition to the error.

139

Chapter 9 Conclusion and Future Work

This thesis has shed light on the potential of Sudokube as a promising tool in the world of data

analytics. Nonetheless, like any other tool, it is not without areas for possible enhancement

and future development. For instance, the Sudokube core engine reconstructs entire cuboids

and applies filters only during post-processing, which is wasteful. Also, expanding the range

of solving techniques and supporting more query features natively in the core engine would

allow Sudokube to answer a bigger class of queries with interactive speeds.

We observed in the experimental results that the moment extrapolation techniques lead to

very low-quality approximations of the query result when applied directly. Perturbing the

extrapolated moments to satisfy some heuristic bounds is observed to have significantly

boosted the accuracy of the query results. Studying this heuristic in more detail and examining

why it works could lead to discovering methods that improve the error even further.

An extension of our utility analysis to accommodate materialization strategies that select

cuboids with varying dimensionality, for mixed query workloads with different levels of di-

mensionality, would provide insights into choosing the optimal set of cuboids to materialize

in a broader range of scenarios.

An additional avenue for future research involves investigating the potential for enhancing the

accuracy of the approximated query results by integrating online sampling with our current

solving techniques.

On the system side, there is a significant benefit in scaling the backend to be distributed across

multiple machines and leveraging multithreading to parallelize the solving algorithms. This

would enable Sudokube to achieve fast response times even for larger datasets and bigger

queries. Another compelling area for further research would be runtime code generation for

efficient projection algorithms.

Looking forward, it would be worthwhile to explore these enhancements and other potential

improvements to further refine and extend Sudokube’s capabilities. It would also be interesting

to test the system’s performance with different types of data and queries, particularly in real-

world, industry-specific applications. This could provide valuable insights into how Sudokube

can be fine-tuned for optimum performance in diverse analytical scenarios.

In conclusion, Sudokube represents a significant step forward in analytical processing systems.

Its robust querying capabilities, combined with its ability to efficiently handle massive datasets,

position it as a highly promising tool in the field of data analytics. As we move into an era of

ever-growing data, the importance of efficient, flexible, and powerful analytical tools such as

Sudokube cannot be overstated.

140

Bibliography

[1] 4ti2 team, 4ti2—A software package for algebraic, geometric and combinatorial prob-

lems on linear spaces. [Online]. Available: https://4ti2.github.io.

[2] S. Acharya, P. B. Gibbons, and V. Poosala, “Congressional samples for approximate

answering of group-by queries”, in Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, ACM, May 16, 2000, pp. 487–498.

[3] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy, “The aqua approximate query

answering system”, in Proceedings of the 1999 ACM SIGMOD International Conference

on Management of Data, 1999, pp. 574–576.

[4] P. Afshani and J. M. Phillips, “Independent range sampling, revisited again”, 2019. arXiv:

1903.08014.

[5] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica, “BlinkDB: queries

with bounded errors and bounded response times on very large data”, in Proceedings of

the 8th ACM European Conference on Computer Systems (EuroSys ’13), 2013, pp. 29–42.

[6] S. Agarwal, R. Agrawal, P. Deshpande, et al., “On the Computation of Multidimensional

Aggregates”, in Proceedings of the 22nd International Conference on Very Large Data

Bases (VLDB ’96), 1996, pp. 506–521.

[7] B. Babcock, S. Chaudhuri, and G. Das, “Dynamic sample selection for approximate

query processing”, in Proceedings of the 2003 ACM SIGMOD International Conference

on Management of Data, 2003, pp. 539–550.

[8] J. H. Badsberg and F. M. Malvestuto, “An Implementation of the Iterative Proportional

Fitting Procedure by Propagation Trees”, Computational Statistics & Data Analysis,

vol. 37, no. 3, pp. 297–322, Sep. 2001.

[9] R. R. Bahadur, “A representation of the joint distribution of responses to n dichotomous

items”, 1961, pp. 158–168.

[10] E. Baralis, S. Paraboschi, and E. Teniente, “Materialized Views Selection in a Multi-

dimensional Database”, in Proceedings of the 23rd International Conference on Very

Large Data Bases (VLDB ’97), 1997, pp. 156–165.

[11] D. Barbará and M. Sullivan, “Quasi-Cubes: Exploiting Approximations in Multidimen-

sional Databases”, SIGMOD Record, vol. 26, no. 3, pp. 12–17, 1997.

141

Chapter 9 BIBLIOGRAPHY

[12] D. Barbará and X. Wu, “Using Loglinear Models to Compress Datacubes”, in Proceed-

ings of the 1st International Conference on Web-Age Information Management (WAIM

’00), 2000, pp. 311–323.

[13] S. Basil John and C. Koch, “High-dimensional Data Cubes”, in Proceedings of the VLDB

Endowment, vol. 15, 2022, pp. 3828–3840.

[14] S. Basil John, P. Lindner, Z. Jiang, and C. Koch, “Aggregation and Exploration of High-

Dimensional Data Using the Sudokube Data Cube Engine”, in Companion of the 2023

International Conference on Management of Data (SIGMOD-Companion ’23), Seattle,

WA, USA: ACM, 2023.

[15] S. Basil John, P. Lindner, Z. Jiang, and C. Koch, “Fast Approximate Reconstruction of

Joint Distributions from Low-Dimensional Projections”.

[16] K. S. Beyer and R. Ramakrishnan, “Bottom-Up Computation of Sparse and Iceberg

CUBEs”, in Proceedings of 1999 ACM SIGMOD International Conference on Manage-

ment of Data (SIGMOD ’99), 1999, pp. 359–370.

[17] Y. M. Bishop, S. E. Fienberg, and P. W. Holland, Discrete Multivariate Analysis: Theory

and Practice. Springer Science & Business Media, 2007.

[18] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V. Narasayya, “Overcoming limitations

of sampling for aggregation queries”, in Proceedings 17th International Conference on

Data Engineering, IEEE Comput. Soc, 2001, pp. 534–542.

[19] S. Chaudhuri, G. Das, and V. Narasayya, “Optimized Stratified Sampling for Approxi-

mate Query Processing”, ACM Transactions on Database Systems, vol. 32, no. 2, p. 9,

Jun. 2007.

[20] S. Chaudhuri and U. Dayal, “An Overview of Data Warehousing and OLAP Technology”,

SIGMOD Record, vol. 26, no. 1, pp. 65–74, 1997.

[21] S. Chaudhuri, R. Motwani, and V. Narasayya, “On random sampling over joins”, ACM

SIGMOD Record, vol. 28, no. 2, pp. 263–274, 1999.

[22] B.-C. Chen, L. Chen, Y. Lin, and R. Ramakrishnan, “Prediction cubes”, in Proceedings

of the 31st International Conference on Very Large Data Bases, 2005, pp. 982–993.

[23] Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin, “Building large ROLAP data cubes in

parallel”, in Proceedings. International Database Engineering and Applications Sympo-

sium, 2004. IDEAS ’04., Jul. 2004, pp. 367–377.

[24] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Complex

Fourier Series”, Mathematics of Computation, vol. 19, no. 90, pp. 297–301, 1965.

[25] I. Csiszár, “I-Divergence Geometry of Probability Distributions and Minimization

Problems”, The Annals of Probability, vol. 3, no. 1, pp. 146–158, 1975.

[26] J. N. Darroch and D. Ratcliff, “Generalized Iterative Scaling for Log-Linear Models”,

The Annals of Mathematical Statistics, vol. 43, no. 5, pp. 1470–1480, 1972.

142

BIBLIOGRAPHY Chapter 9

[27] J. A. De Loera, R. Hemmecke, and M. Köppe, Algebraic and Geometric Ideas in the

Theory of Discrete Optimization. SIAM, 2012.

[28] W. E. Deming and F. F. Stephan, “On a least squares adjustment of a sampled frequency

table when the expected marginal totals are known”, The Annals of Mathematical

Statistics, vol. 11, no. 4, pp. 427–444, 1940.

[29] J. Dittrich, L. Blunschi, and M. A. V. Salles, “Dwarfs in the rearview mirror: how big are

they really?”, Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1586–1597, Aug. 1,

2008.

[30] M. Domingues, R. Rocha Silva, and J. Bernardino, “3iCubing: An Interval Inverted

Index Approach to Data Cubes”, IEEE Access, vol. 10, pp. 8449–8461, 2022.

[31] N. Y. C. D. of Finance. “Parking Violations Issued - Fiscal Year 2021”. (2021), [Online].

Available: https://data.cityofnewyork.us/City- Government/Parking- Violations-

Issued-Fiscal-Year-2021/kvfd-bves.

[32] B. J. Fino and V. R. Algazi, “A unified treatment of discrete fast unitary transforms”,

SIAM Journal on Computing, vol. 6, no. 4, pp. 700–717, 1977.

[33] B. J. Fino and V. R. Algazi, “Unified matrix treatment of the fast Walsh-Hadamard

transform”, IEEE Transactions on Computers, vol. 25, no. 11, pp. 1142–1146, 1976.

[34] R. Fontana and P. Semeraro, “Representation of multivariate Bernoulli distributions

with a given set of specified moments”, Journal of Multivariate Analysis, vol. 168,

pp. 290–303, 2018.

[35] M. Fréchet, “Généralisation du théorème des probabilités totales”, Fundamenta Math-

ematicae, vol. 25, no. 1, pp. 379–387, 1935.

[36] V. Ganti, M.-L. Lee, and R. Ramakrishnan, “Icicles: Self-tuning samples for approximate

query answering”, in VLDB, vol. 176, 2000.

[37] S. I. Gass, Linear Programming: Methods and Applications. Courier Corporation, 2003.

[38] B. Gavish and S. C. Graves, “The Travelling Salesman Problem and Related Problems”,

Massachusetts Institute of Technology, Operations Research Center, Working Paper,

Jul. 1978. [Online]. Available: https://dspace.mit.edu/handle/1721.1/5363.

[39] J. Gray, S. Chaudhuri, A. Bosworth, et al., “Data cube: A relational aggregation oper-

ator generalizing group-by, cross-tab, and sub-totals”, Data mining and knowledge

discovery, vol. 1, no. 1, pp. 29–53, 1997.

[40] A. Gupta, D. Agarwal, D. Tan, et al., “Amazon Redshift and the Case for Simpler Data

Warehouses”, in Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data (SIGMOD ’15), 2015, pp. 1917–1923.

[41] H. Gupta and I. S. Mumick, “Selection of Views to Materialize in a Data Warehouse”,

IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 1, pp. 24–43, 2005.

[42] P. J. Haas and J. M. Hellerstein, “Ripple Joins for Online Aggregation”, ACM SIGMOD

Record, vol. 28, no. 2, pp. 287–298, 1999.

143

Chapter 9 BIBLIOGRAPHY

[43] A. Y. Halevy, “Answering queries using views: A survey”, The VLDB Journal, vol. 10,

no. 4, pp. 270–294, Dec. 1, 2001.

[44] J. Han, J. Pei, G. Dong, and K. Wang, “Efficient Computation of Iceberg Cubes with

Complex Measures”, in Proceedings of the 2001 ACM SIGMOD International Conference

on Management of Data (SIGMOD ’01), 2001, pp. 1–12.

[45] V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Implementing Data Cubes Efficiently”,

in Proceedings of the 1996 ACM SIGMOD International Conference on Management of

Data (SIGMOD ’96), 1996, pp. 205–216.

[46] M. Held and R. M. Karp, “The Traveling-Salesman Problem and Minimum Spanning

Trees”, Operations Research, vol. 18, no. 6, pp. 1138–1162, 1970. JSTOR: 169411.

[47] M. Held and R. M. Karp, “The traveling-salesman problem and minimum spanning

trees: Part II”, Mathematical Programming, vol. 1, no. 1, pp. 6–25, Dec. 1, 1971.

[48] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online Aggregation”, in Proceedings of the

1997 ACM SIGMOD International Conference on Management of Data (SIGMOD ’97),

ser. SIGMOD ’97, ACM, Jun. 1, 1997, pp. 171–182.

[49] K. Hoffman, Linear Algebra. Englewood Cliffs, NJ, Prentice-Hall, 1971.

[50] X. Hu, M. Qiao, and Y. Tao, “Independent range sampling”, in Proceedings of the 33rd

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, 2014,

pp. 246–255.

[51] S. Ibrahim and X. Fu, “Recovering Joint Probability of Discrete Random Variables From

Pairwise Marginals”, IEEE Transactions on Signal Processing, vol. 69, pp. 4116–4131,

2021.

[52] C. T. Ireland and S. Kullback, “Contingency Tables with Given Marginals”, Biometrika,

vol. 55, no. 1, pp. 179–188, 1968.

[53] T. E. Jaynes, “Information Theory and Statistical Mechanics”, The Physical Review,

vol. 106, no. 4, pp. 620–630, 1957.

[54] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra, “Scalable approximate query pro-

cessing with the DBO engine”, ACM Transactions on Database Systems, vol. 33, no. 4,

23:1–23:54, 2008.

[55] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, and A. Pol, “A disk-based join with proba-

bilistic guarantees”, in Proceedings of the 2005 ACM SIGMOD International Conference

on Management of Data, 2005, pp. 563–574.

[56] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, and A. Pol, “The sort-merge-shrink join”,

ACM Transactions on Database Systems (TODS), vol. 31, no. 4, pp. 1382–1416, 2006.

[57] R. Jiroušek, “Solution of the Marginal Problem and Decomposable Distributions”,

Kybernetika, vol. 27, no. 5, pp. 403–412, 1991.

144

BIBLIOGRAPHY Chapter 9

[58] R. Jiroušek and S. Přeučil, “On the Effective Implementation of the Iterative Propor-

tional Fitting Procedure”, Computational Statistics & Data Analysis, vol. 19, no. 2,

pp. 177–189, Feb. 1995.

[59] M. Kahng, D. Fang, and D. H. (Chau, “Visual exploration of machine learning results

using data cube analysis”, in Proceedings of the Workshop on Human-In-the-Loop Data

Analytics (HILDA ’16), 2016, pp. 1–6.

[60] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi, “Distributed and interactive cube

exploration”, in IEEE 30th International Conference on Data Engineering (ICDE ’14),

2014, pp. 472–483.

[61] N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, Learning, and “Kolmogorov Exten-

sion” for Finite-alphabet Random Vectors”, IEEE Transactions on Signal Processing,

vol. 66, no. 18, pp. 4854–4868, Sep. 2018.

[62] R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit: Practical Techniques for

Extracting, Cleaning, Conforming, and Delivering Data. John Wiley & Sons, Apr. 2011.

[63] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques

(Adaptive Computation and Machine Learning). Cambridge, MA: MIT Press, 2009.

[64] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman

problem”, Proceedings of the American Mathematical Society, vol. 7, no. 1, pp. 48–50,

1956.

[65] H. Ku and S. Kullback, “Approximating discrete probability distributions”, IEEE Trans-

actions on Information Theory, vol. 15, no. 4, pp. 444–447, Jul. 1969.

[66] L. V. S. Lakshmanan, J. Pei, and J. Han, “Quotient Cube: How to Summarize the Seman-

tics of a Data Cube”, in Proceedings of the 28th International Conference on Very Large

Data Bases (VLDB ’02), 2002, pp. 778–789.

[67] A. Lamb, M. Fuller, R. Varadarajan, et al., “The Vertica Analytic Database: C-Store 7

Years Later”, Proceedings of the VLDB Endowment 2012, vol. 5, no. 12, pp. 1790–1801,

Aug. 2012.

[68] D. C. Lay, “Linear Algebra and its Applications 4th edition”,

[69] F. Leng, Y. Bao, G. Yu, D. Wang, and Y. Liu, “An Efficient Indexing Technique for Comput-

ing High Dimensional Data Cubes”, in Proceedings of the 7th International Conference

on Advances in Web-Age Information Management (WAIM ’06), 2006, pp. 557–568.

[70] A. Y. Levy, A. O. Mendelzon, and Y. Sagiv, “Answering Queries Using Views”, in Proceed-

ings of the 14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems (PODS ’95), 1995, pp. 95–104.

[71] F. Li, B. Wu, K. Yi, and Z. Zhao, “Wander join: Online aggregation via random walks”,

in Proceedings of the 2016 International Conference on Management of Data, 2016,

pp. 615–629.

145

Chapter 9 BIBLIOGRAPHY

[72] X. Li, J. Han, and H. Gonzalez, “High-Dimensional OLAP: A Minimal Cubing Approach”,

in Proceedings of the 30th International Conference on Very Large Data Bases (VLDB

’04), 2004, pp. 528–539.

[73] N. Lomax and P. Norman, “Estimating Population Attribute Values in a Table: “Get Me

Started in” Iterative Proportional Fitting”, The Professional Geographer, vol. 68, no. 3,

pp. 451–461, Jul. 2016.

[74] G. Luo, C. J. Ellmann, P. J. Haas, and J. F. Naughton, “A scalable hash ripple join algo-

rithm”, in Proceedings of the 2002 ACM SIGMOD International Conference on Manage-

ment of Data, 2002, pp. 252–262.

[75] F. Malvestuto, “Computing the maximum-entropy extension of given discrete probabil-

ity distributions”, Computational Statistics & Data Analysis, vol. 8, no. 3, pp. 299–311,

1989.

[76] R. McKenna, D. Sheldon, and G. Miklau, “Graphical-model based estimation and

inference for differential privacy”, in Proceedings of the 36th International Confer-

ence on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,

ser. Proceedings of Machine Learning Research, vol. 97, PMLR, 2019, pp. 4435–4444.

[77] J. J. Montes. “CubesViewer - Data exploration and visualization”. (), [Online]. Available:

http://www.cubesviewer.com/ (visited on 05/08/2023).

[78] K. Morfonios and Y. E. Ioannidis, “CURE for Cubes: Cubing Using a ROLAP Engine”, in

Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB ’06),

2006, pp. 379–390.

[79] K. Morfonios, S. Konakas, Y. Ioannidis, and N. Kotsis, “ROLAP implementations of the

data cube”, ACM Computing Surveys, vol. 39, no. 4, p. 12, Nov. 2, 2007.

[80] R. O’Donnell, Analysis of Boolean Functions. Cambridge University Press, 2014.

[81] R. O’Donnell, “Analysis of boolean functions”, 2021. arXiv: 2105.10386.

[82] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak, “The Star Schema Benchmark and Aug-

mented Fact Table Indexing”, in Performance Evaluation and Benchmarking, R. Nam-

biar and M. Poess, Eds., ser. Lecture Notes in Computer Science, Springer, 2009,

pp. 237–252.

[83] F. Olken, “Random sampling from databases”, Ph.D. dissertation, University of Califor-

nia at Berkley, 1993.

[84] N. Pansare, V. Borkar, C. Jermaine, and T. Condie, “Online aggregation for large mapre-

duce jobs”, Proceedings of the VLDB Endowment, vol. 4, no. 11, pp. 1135–1145, 2011.

[85] C. Qin and F. Rusu, “Parallel online aggregation in action”, in Proceedings of the 25th

International Conference on Scientific and Statistical Database Management, 2013,

pp. 1–4.

[86] C. Qin and F. Rusu, “PF-OLA: a high-performance framework for parallel online aggre-

gation”, Distributed and Parallel Databases, vol. 32, no. 3, pp. 337–375, Sep. 1, 2014.

146

BIBLIOGRAPHY Chapter 9

[87] K. A. Ross and D. Srivastava, “Fast Computation of Sparse Datacubes”, in Proceedings of

the 23rd International Conference on Very Large Data Bases (VLDB ’97), 1997, pp. 116–

125.

[88] E. Rozenberg, Star Schema Benchmark data set generator (ssb-dbgen), 2020. [Online].

Available: https://github.com/eyalroz/ssb-dbgen.

[89] I. Savnik, “Index Data Structure for Fast Subset and Superset Queries”, in Availability,

Reliability, and Security in Information Systems and HCI, Springer, 2013, pp. 134–148.

[90] J. Shanmugasundaram, U. M. Fayyad, and P. S. Bradley, “Compressed Data Cubes for

OLAP Aggregate Query Approximation on Continuous Dimensions”, in Proceedings

of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (SIGKDD ’99), 1999, pp. 223–232.

[91] A. Shukla, P. Deshpande, and J. F. Naughton, “Materialized View Selection for Multidi-

mensional Datasets”, in Proceedings of the 24th International Conference on Very Large

Data Bases (VLDB ’98), 1998, pp. 488–499.

[92] L. Sidirourgos, M. L. Kersten, and P. A. Boncz, “SciBORQ: Scientific data management

with Bounds On Runtime and Quality.”, in CIDR, vol. 11, 2011, pp. 296–301.

[93] R. R. Silva, C. M. Hirata, and J. d. C. Lima, “Big high-dimension data cube designs

for hybrid memory systems”, Knowledge and Information Systems, vol. 62, no. 12,

pp. 4717–4746, 2020.

[94] R. R. Silva, J. d. C. Lima, and C. M. Hirata, “qCube: Efficient integration of range

query operators over a high dimension data cube”, Journal of Information and Data

Management, vol. 4, no. 3, pp. 469–469, Sep. 13, 2013.

[95] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis, “Dwarf: shrinking the

PetaCube”, in Proceedings of the 2002 ACM SIGMOD International Conference on

Management of Data (SIGMOD ’02), 2002, pp. 464–475.

[96] Y. Sismanis and N. Roussopoulos, “The complexity of fully materialized coalesced

cubes.”, VLDB, vol. 4, pp. 540–551, 2004.

[97] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy, “Answering Queries with Aggregation

Using Views”, in Proceedings of the 22nd International Conference on Very Large Data

Bases (VLDB ’96), 1996, pp. 318–329.

[98] Y. W. Teh and M. Welling, “On Improving the Efficiency of the Iterative Proportional

Fitting Procedure”, in International Workshop on Artificial Intelligence and Statistics,

PMLR, Jan. 2003, pp. 262–269.

[99] J. L. Teugels, “Some representations of the multivariate Bernoulli and binomial distri-

butions”, Journal of Multivariate Analysis, vol. 32, no. 2, pp. 256–268, 1990.

[100] J. S. Vitter, M. Wang, and B. R. Iyer, “Data Cube Approximation and Histograms via

Wavelets”, in Proceedings of the 1998 ACM CIKM International Conference on Informa-

tion and Knowledge Management (CIKM ’98), 1998, pp. 96–104.

147

Chapter 9 BIBLIOGRAPHY

[101] M. J. Wainwright and M. I. Jordan, “Graphical Models, Exponential Families, and

Variational Inference”, Foundations and Trends® in Machine Learning, vol. 1, no. 1–2,

pp. 1–305, 2007.

[102] L. Wang, R. Christensen, F. Li, and K. Yi, “Spatial online sampling and aggregation”,

Proceedings of the VLDB Endowment, vol. 9, no. 3, pp. 84–95, Nov. 1, 2015.

[103] W. Wang, H. Lu, J. Feng, and J. X. Yu, “Condensed Cube: An Efficient Approach to

Reducing Data Cube Size”, in Proceedings of the 18th International Conference on Data

Engineering (ICDE ’02), 2002, pp. 155–165.

[104] H. S. Warren, Hacker’s Delight. Pearson Education, 2013.

[105] S. Wu, S. Jiang, B. C. Ooi, and K.-L. Tan, “Distributed online aggregations”, Proceedings

of the VLDB Endowment, vol. 2, no. 1, pp. 443–454, 2009.

[106] S. Wu, B. C. Ooi, and K.-L. Tan, “Continuous sampling for online aggregation over

multiple queries”, in Proceedings of the 2010 ACM SIGMOD International Conference

on Management of Data, 2010, pp. 651–662.

[107] D. Xin, J. Han, X. Li, and B. W. Wah, “Star-Cubing: Computing Iceberg Cubes by Top-

Down and Bottom-Up Integration”, in Proceedings of 29th International Conference on

Very Large Data Bases (VLDB ’03), 2003, pp. 476–487.

[108] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Stoica, “G-ola: Generalized on-

line aggregation for interactive analysis on big data”, in Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data, 2015, pp. 913–918.

[109] H. Zhang and F. Ding, “On the Kronecker products and their applications”, Journal of

Applied Mathematics, vol. 2013, 2013.

[110] Y. Zhao, P. Deshpande, and J. F. Naughton, “An Array-Based Algorithm for Simultaneous

Multidimensional Aggregates”, in Proceedings of the 1997 ACM SIGMOD International

Conference on Management of Data (SIGMOD ’97), 1997, pp. 159–170.

148

SACHIN
BASIL JOHN

sachin.basiljohn@epfl.ch
+41 76 640 86 15

Office BC 214, EPFL/IC/IINFCOM/DATA

EXPERIENCE

PUBLICATIONS

Sachin Basil John, Zhekai Jiang, Peter Lindner and Christoph Koch. 2023. Aggregation and
Exploration of High-Dimensional Data Using the Sudokube Data Cube Engine. In Companion of
the 2023 International Conference on Management of Data (SIGMOD 2023).

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, SWITZERLAND
Doctoral Student, Data Analysis Theory and Application Lab09/2017 - present

09/2016 - 08/2017

linkedin.com/in/sachinbjohn

Scientist, Data Analysis Theory and Application Lab
09/2015 - 02/2016 Student Research Assistant, Data Analysis Theory and Application Lab

07/2015 - 09/2015 Software Intern
RESEARCH AND TECHNOLOGY CENTER, SIEMENS AG, MUNICH, GERMANY

05/2013 - 07/2013
UMIC RESEARCH CENTRE, RWTH AACHEN UNIVERSITY, GERMANY

Research Intern

TATA INSTITUTE OF FUNDAMENTAL RESEARCH, MUMBAI, INDIA
05/2012 - 07/2012 Research Intern

EDUCATION

2017 - present ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, SWITZERLAND

GPA 5.70/ 6

Ph.D. in Computer Science

014 - 2016 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, SWITZERLAND
M.S. in Computer Science

2010 - 2014 INDIAN INSTITUTE OF TECHNOLOGY, PATNA
B.Tech. in Computer Science

GPA 9.79/10

DOI: https://doi.org/10.1145/3555041.3589729

Sachin Basil John and Christoph Koch. 2022. High-dimensional Data Cubes. In Proceedings of
48th International Conference on Very Large Databases (VLDB 2022).
DOI: https://doi.org/10.14778/3565838.3565839

Mohammad Dashti, Sachin Basil John, Amir Shaikhha and Christoph Koch. 2017. Transaction
Repair for Multi-Version Concurrency Control. In Proceedings of the 2017 ACM International
Conference on Management of Data (SIGMOD 2017).
DOI: https://doi.org/10.1145/3035918.3035919

GPA 5.74/ 6

Mohammad Dashti, Sachin Basil John, Thierry Coppey, Amir Shaikhha, Vojin Jovanovic and
Christoph Koch. Compiling Database Application Programs. preprint arXiv:1807.09887 (2018).
DOI: https://doi.org/10.48550/arXiv.1807.09887

149

HONORS AND AWARDS

ACM SIGMOD 2018 Comprehensive Reproducibility Award for paper titled “Transaction Repair
for Multi-Version Concurrency Control” published in SIGMOD 2017.
EPFL Graduate Fellowship (2017) in recognition of academic excellence.
President of India Gold medal for securing highest GPA among all undergraduate courses in the
2010-2014 batch of Indian Institute of Technology, Patna.
Best B.Tech. project in Computer Science department in 2010-2014 batch of Indian Institute of
Technology, Patna.
All India Rank 42 in Graduate Aptitude Test in Engineering (GATE) 2014 in Computer Science
Paper.
DAAD scholarship for research project in May -July 2013.
Scholarship from the Indian Academy of Science for summer research project at Tata Institute
of Fundamental Research, Mumbai in 2012.
Director's congratulation letter for securing perfect Semester Point Index (10/10) in three
semesters at Indian Institute of Technology, Patna.
All India Rank of 4173 in IITJEE 2010 among 4,50,000 students.
Rank 29 in the Kerala State Engineering Entrance Examination 2010.
Best Outgoing Student in Grade 12.

PROJECTS

Sudokube, Data Analysis Theory and Applications Lab, EPFL
Under supervision of Prof. Christoph Koch.
System to support high-dimensional data cubes at interactive query speeds and moderate storage
cost through judicious partial materialization of binary data cubes and quick reconstruction of
missing information using statistical or linear programming techniques.

Θ-DB, Data Analysis Theory and Applications Lab, EPFL
Under supervision of Prof. Christoph Koch.
A database system that implements θ-joins with inequality predicates efficiently by identifying
rewrite rules for pushing aggregations past the join, resulting in the pre-computation of partial
aggregates based on the join predicate before performing the join operation.

Beta, Data Analysis Theory and Applications Lab, EPFL
Under supervision of Prof. Christoph Koch and Dr. Mohammad Dashti.
Transaction Repair for Multi-Version Concurrency Control - a new optimistic concurrency control
algorithm that reuses the computations performed before a conflict to increase transaction
throughput.
Compiling Transaction Programs - applying domain specific optimizations during compilation to
increase performance of database application programs.

Efficient Distributed Causal Memory, Distributed Computing Lab , EPFL
Under supervision of Prof. Rachid Guerraoui
Develop an algorithm for better throughput of causally consistent systems.

Parallel Software Development, Summer Internship, Siemens AG, Munich.
Parallelize tasks on an embedded multicore system using a parallel library developed at Siemens.

150

Android Ecosystem Analysis, Dependable Systems lab, EPFL
Gather statistics on how apps use the system API provided by Android by decompiling and analyzing
around 88,000 apps.

Transactional Key-Value Store over YARN, Big Data Project, EPFL
Design a platform to evaluate concurrency control algorithms on a classical distributed NoSQL
system, a key-value store.

Design of Improved Algorithms for STMs, IIT Patna
Under supervision of Prof. Sathya Peri
Analyze the two categories of concurrency algorithms (Single Conflict Abort, Serialization Graph
Testing) used in Software Transactional Memory (STMs) and design an algorithm that combines the
good properties of the both while still keeping it efficient.

Design, Fabrication and Programming of Unmanned Ground Vehicle, Mobile Robotics, IIT Patna
Build an unmanned ground vehicle with differential drive that can navigate on its own to a given
destination using GPS when a map of the environment is already known.

Co-Processor Design for Automatic Speech Recognition, UMIC Lab, RWTH Aachen
Under supervision of Prof. Anupam Chattopadhyay
Extend an existing architectural design written in LISA to suit speech recognition in Sphinx system
and implement feature extraction efficiently using layered Course Grained Reconfigurable
Architecture (CGRA) design.

Static Analysis for Malware Detection, Tata Institute of Fundamental Research, Mumbai
Under supervision of Prof. R.K. Shyamasundar
Semantic signature extraction using static analysis of source code replacing ineffective traditional
syntactic signatures to model malware behavior and enhance detection capabilities.

151

