Abstract

We report an intrinsic strain engineering, akin to thin filmlike approaches, via irreversible hightemperature plastic deformation of a tetragonal ferroelectric single-crystal BaTiO3. Dislocations wellaligned along the [001] axis and associated strain fields in plane defined by the [110]/[1 over bar 10] plane are introduced into the volume, thus nucleating only in-plane domain variants. By combining direct experimental observations and theoretical analyses, we reveal that domain instability and extrinsic degradation processes can both be mitigated during the aging and fatigue processes, and demonstrate that this requires careful strain tuning of the ratio of in-plane and out-of-plane domain variants. Our findings advance the understanding of structural defects that drive domain nucleation and instabilities in ferroic materials and are essential for mitigating device degradation.

Details