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Abstract

In the past decade, optical diffraction tomography has gained a lot of attention for its ability

to create label-free three-dimensional (3D) images of the refractive index distribution of

biological samples using scattered fields measured through holography from multiple angles.

Although many experimental and computational methods have been conducted to produce

decent 3D refractive index tomograms, some theoretical aspects of this technique have not

been studied thoroughly, limiting its use to imaging the linear refractive index of a single or a

few isotropic cells in the homogeneous background.

In the techniques proposed so far, the intensity and phase of the scattered field are exploited

to reconstruct a 3D sample. However, polarization, as an important feature of light, is not dis-

cussed in optical diffraction tomography in order to image anisotropic samples. Nevertheless,

many biological samples, especially those with fibrous structures, such as skin or muscle tis-

sues have intrinsic or form birefringence. As a result, polarization-sensitive optical diffraction

tomography can provide a 3D reconstruction of novel modalities showing interesting features

in the sample which can not be observed in the scalar refractive index distribution.

Similarly, samples containing nonlinear optical susceptibility can generate light in other

frequencies such as harmonic generation. The nonlinear optical susceptibility can reveal

features that are not observable in the linear refractive index distribution. For biological

examples, fibrous proteins such as myosin or collagen possess second-order nonlinear optical

susceptibility and can show second-harmonic or sum frequency generation. However, the

generalization of the optical diffraction tomography approaches to nonlinear processes is

not studied yet. A similar approach to optical diffraction tomography can be presented by

inversion of the nonlinear wave equations governing the frequency mixing processes and

reconstructing the 3D distribution of the nonlinear susceptibility using 2D complex images of

the generated frequencies.

In this thesis, I generalize conventional optical diffraction tomography to polarization-sensitive

and nonlinear media. The proposed methods in this thesis provide novel modalities for opti-

cal diffraction tomography which can be used for 3D imaging of anisotropic and nonlinear

samples. I present numerical and experimental results for various examples to investigate

the viability of the proposed modalities. Another aspect of this thesis is to present an iterative

solution for optical diffraction tomography based on a forward model which is as accurate
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as full-wave electromagnetics simulation and can include different scenarios, such as depo-

larization, anisotropicity, and nonlinearity. As full-wave solutions cannot be easily used in

the gradient-based iterative optimization approaches for optical diffraction tomography, a

physics-informed neural network is presented and used as the forward model in an iterative

reconstruction of optical diffraction tomography.

The methods that are studied in this thesis have a significant impact on optical diffraction

tomography and 3D imaging. Through an in-depth theoretical, numerical, and experimental

analysis, this research aims to investigate the possibilities of utilizing these techniques in the

development of label-free 3D imaging modalities.

Keywords: optical diffraction tomography, three-dimensional imaging, optical scattering, in-

verse scattering, polarization-sensitive imaging, nonlinear imaging, iterative reconstruction,

physics-informed deep learning.
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Résumé

Au cours de la dernière décennie, la tomographie par diffraction optique a attiré beaucoup

d’attention pour sa capacité à créer des images tridimensionnelles (3D) sans marquage de la

distribution de l’indice de réfraction d’échantillons biologiques à l’aide de champs dispersés

mesurés par holographie sous plusieurs angles. Bien que de nombreuses méthodes expéri-

mentales et informatiques aient été menées pour produire des tomogrammes d’indice de

réfraction 3D décents, certains aspects théoriques de cette technique n’ont pas été étudiés à

fond, limitant son utilisation à l’imagerie de l’indice de réfraction linéaire d’une seule ou de

quelques cellules isotropes dans l’espace libre.

Dans les techniques proposées jusqu’à présent, l’intensité et la phase du champ diffusé

sont exploitées pour reconstruire un échantillon 3D. Cependant, la polarisation, en tant

que caractéristique importante de la lumière, n’est pas discutée dans la tomographie par

diffraction optique afin d’imager des échantillons anisotropes. Néanmoins, de nombreux

échantillons biologiques, en particulier ceux avec des structures fibreuses, telles que la peau

ou les tissus musculaires, ont une biréfringence intrinsèque ou de forme. En conséquence, la

tomographie par diffraction optique sensible à la polarisation peut fournir une reconstruction

3D de nouvelles modalités montrant des caractéristiques intéressantes dans l’échantillon qui

ne peuvent pas être observées dans la distribution scalaire de l’indice de réfraction.

De même, les échantillons contenant une susceptibilité optique non linéaire peuvent générer

de la lumière dans d’autres fréquences telles que la génération d’harmoniques. La susceptibi-

lité optique non linéaire peut révéler des caractéristiques qui ne sont pas observables dans la

distribution linéaire de l’indice de réfraction. Pour des exemples biologiques, les protéines fi-

breuses telles que la myosine ou le collagène possèdent une susceptibilité optique non linéaire

de second ordre et peuvent montrer une génération de fréquence de seconde harmonique

ou de somme. Cependant, la généralisation des approches de tomographie par diffraction

optique aux processus non linéaires n’est pas encore étudiée. Une approche similaire à la to-

mographie par diffraction optique peut être présentée par inversion des équations d’onde non

linéaires régissant les processus de mélange de fréquences et reconstruisant la distribution

3D de la susceptibilité non linéaire à l’aide d’images complexes 2D des fréquences générées.

Dans cette thèse, je généralise la tomographie par diffraction optique conventionnelle aux

milieux sensibles à la polarisation et non linéaires. Les méthodes proposées dans cette thèse
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fournissent de nouvelles modalités de tomographie par diffraction optique qui peuvent être

utilisées pour l’imagerie 3D d’échantillons anisotropes et non linéaires. Je présente des ré-

sultats numériques et expérimentaux pour divers exemples afin d’étudier la viabilité des

modalités proposées. Un autre aspect de cette thèse est de présenter une solution itérative

pour la tomographie par diffraction optique basée sur un modèle direct précis qui est aussi

précis que la simulation électromagnétique pleine onde et peut inclure différents scénarios,

tels que la dépolarisation, l’anisotropie et la non-linéarité. Comme les solutions pleine onde

ne peuvent pas être facilement utilisées dans les approches d’optimisation itérative basées sur

le gradient pour la tomographie par diffraction optique, un réseau neuronal informé par la

physique est présenté et utilisé comme modèle avant dans une reconstruction itérative de la

tomographie par diffraction optique.

Les méthodes étudiées dans cette thèse ont un impact significatif sur la tomographie par dif-

fraction optique et l’imagerie 3D. Grâce à une analyse théorique, numérique et expérimentale

approfondie, cette recherche vise à étudier les possibilités d’utilisation de ces techniques dans

le développement de modalités d’imagerie 3D et sans marquage.

Mots clés : tomographie par diffraction optique, imagerie tridimensionnelle, diffusion optique,

diffusion inverse, imagerie sensible à la polarisation, imagerie non linéaire, reconstruction

itérative, apprentissage profond basé sur la physique.

vi



Contents
Acknowledgements i

Abstract (English/Français) iii

List of figures xi

List of tables xvii

1 Introduction 1

1.1 Optical Diffraction Tomography: a 3D imaging technique . . . . . . . . . . . . . 1

1.2 New modalities for ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical background 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Optical scattering in inhomogeneous media . . . . . . . . . . . . . . . . . . . . . 9

2.3 From 2D QPI to 3D ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Optical projection tomography: ray-optics approximation . . . . . . . . 13

2.3.2 Fourier diffraction theorem using Born approximation . . . . . . . . . . . 13

2.3.3 Fourier diffraction theorem using Rytov approximation . . . . . . . . . . 15

2.3.4 Iterative approaches for ODT . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Polarization of light and birefringence . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Optical nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Polarization-sensitive ODT 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Approximation of the 3×3 scattering potential tensor with a 2×2 tensor . 30

3.2.3 Relationship between reconstructions performed in different polarization

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Numerical Phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



Chapter 0 CONTENTS

3.3.3 Coordinate-invariant polarization-sensitive contrast metrics . . . . . . . 39

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Follow-up works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Second-harmonic ODT 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Mathematical formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 3D χ(2) reconstruction based on synthetic data . . . . . . . . . . . . . . . 47

4.3.2 Explanation of the experimental setup . . . . . . . . . . . . . . . . . . . . 49

4.3.3 Experimental results on muscle tissue . . . . . . . . . . . . . . . . . . . . . 50

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Iterative ODT using physics-informed deep learning 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Forward Model: MaxwellNet . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Optical diffraction tomography using MaxwellNet . . . . . . . . . . . . . 61

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 MaxwellNet results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.2 Tomographic reconstruction results . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Nonlinear MaxwellNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Conclusion and future work 73

6.1 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A Appendix: Polarization-sensitive ODT 77

A.1 Light Propagation in anisotropic inhomogeneous media and vectorial inverse

scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.2 Vectorial Beam Propagation method . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3 Effect of a tilted polarizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.5 Denoising and Iterative reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 85

A.6 Muscle tissue Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B Appendix: Second-harmonic ODT 91

B.1 Wave propagation in nonlinear inhomogeneous media . . . . . . . . . . . . . . 91

B.2 Fourier diffraction theorem for SHG . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.3 Fourier diffraction theorem with corrected-field Born approximation . . . . . . 94

B.4 Muscle tissue experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

viii



CONTENTS Chapter 0

C Appendix: Iterative ODT using physics-informed deep learning 97

C.1 Calculation of Physics-informed Loss . . . . . . . . . . . . . . . . . . . . . . . . . 97

C.2 Training and Fine-tuning of MaxwellNet . . . . . . . . . . . . . . . . . . . . . . . 98

C.3 Experimental Setup for ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 109

Curriculum Vitae 111

ix





List of Figures

1.1 Quantitative phase imaging of a 30µm liver tissue using off-axis digital hologra-

phy. (a) The hologram with a zoomed-in inset presents interference fringes more

clearly. (b) Fourier transform of the hologram showing the +1 and -1 orders. (c)

The reconstructed phase profile. The phase profile is unwrapped. . . . . . . . . 3

2.1 ODT using Fourier diffraction theorem for a biological cancer cell, MDA-MB-231.

(a) Schematic of ODT. (b) 2D QPI Phase images for two projections were mea-

sured holographically with a wavelength of 633nm. (c) Filling the Fourier domain

of the scattering potential using Ewald’s spheres of the measured projections

using Rytov approximation. (d) 3D rendering of the reconstructed refractive

index distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 3D ODT reconstruction for a digital phantom using different methods. The 3D

refractive index reconstruction is shown in 3 different Y X , X Z , and Y Z planes

indicated in the last row with dashed lines. Each row shows the ODT reconstruc-

tion using Born approximation, Rytov approximation, iterative reconstruction

using TV regularize, and the ground-truth image, respectively. . . . . . . . . . . 15

2.3 Wide-field SH generation from Barium Titanate nano-particles illuminated with

a polarized 280 femtosecond light source. . . . . . . . . . . . . . . . . . . . . . . 23

3.1 YX profiles of the conventional Rytov ODT reconstructions. On the top, we have

the reconstruction of the corn starch kernel and multiple scattered fields were

measured in the X-polarization when the illumination beam was (a) +45◦, and

(b) −45◦-polarized. (c) The difference between the two reconstructions of corn

starch. Then, we have the reconstruction for an isotropic polystyrene bead when

the illumination beam was (d) +45◦, and (e) −45◦-polarized. (f) The difference

between the two reconstructions of the polystyrene bead. All the colorbars show

the refractive index and are unitless. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 (a) Rotational Matrix described in Eq. 3.5, for polarization conversion of an

oblique illumination. (b) Definition of the coordinate system. . . . . . . . . . . 29

xi



Chapter 0 LIST OF FIGURES

3.3 (a) Schematic of the polarization-sensitive holography setup has been used to

get vectorial scattered fields for different illumination angles. (b) Cross-polarized

light can be measured from a corn starch granule when illuminated with a Y-

polarized light. (c) Illumination pattern in the k-space: Circles are the desired

pattern, and crosses are the experimental pattern which is measured using

Fourier analysis of the holograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 (a) Values of f11(θ,ϕ), f12(θ,ϕ), f21(θ,ϕ), and f22(θ,ϕ) for 90 projections with

a conical pattern. (b) Calculated V appr o
x y , (c) V tr ue

x y , and (d) their difference

regarding Eq. 3.13. (e) Histogram diagram of the true scattering potential values,

and (f) the difference regarding Eq. 3.13. . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Complex Jones matrix calculated for a birefringent digital phantom with an

illumination angle of θ = 25◦ and φ = 0◦. The synthetic measurements were

generated using the V-BPM. In order to visualize the complex values, brightness

shows the amplitude and color-code shows the phase of each Jones matrix

component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Reconstruction of the digital birefringent phantom using the Rytov approxima-

tion. The first and second rows show YX, YZ, and XZ profiles of the ground-truth,

and reconstruction of nxx , respectively. The third and fourth rows show the same

profiles for ny x . Full tensor ground truth and reconstructions are presented in

section 4 of Appendix A. The colorbars show the refractive index contrast and

are unitless. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 YX, XZ, and YZ profiles of the 3D RI tensor reconstruction of corn starch granule.

The colorbars show the refractive index contrast and are unitless. . . . . . . . . 38

3.8 YX profiles of the 3D reconstructions of the RI tensor components, nxx and nx y ,

for a 20µm thick muscle tissue in three different depths. The inset shows a 2.5X

magnified section of nx y YX profile which clarifies the sarcomere structure with

A-bands and I-bands in one muscle fiber. The colorbars show the refractive

index contrast and are unitless. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9 A comparison between the YX profiles of the 3D reconstructions of (a) nx y and

(b) phase retardation for corn starch granule. (c) A 3D rotating rendering of the

phase retardation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 3D reconstruction of second-order susceptibility tensor using synthetic data.

The 6 elements of the second-order susceptibility tensor achieved using Eq. 4.3

are presented in (a) χ(2)
11 , (b) χ(2)

12 , (c) χ(2)
16 , (d) χ(2)

21 , (e) χ(2)
22 , and (f) χ(2)

26 , respectively.

Each figure presents the 3D reconstruction in YX, YZ, and XZ planes. . . . . . . 47

4.2 TV-based iterative reconstruction of second-order susceptibility tensor using

synthetic data. The 6 elements of the second-order susceptibility tensor achieved

using Eq. 4.5 are presented in (a) χ(2)
11 , (b) χ(2)

12 , (c) χ(2)
16 , (d) χ(2)

21 , (e) χ(2)
22 , and (f)

χ(2)
26 , respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xii



LIST OF FIGURES Chapter 0

4.3 (a) Experimental setup for multi-angle SH-holography. (b) Fourier transform

of the SH hologram from muscle fiber. (c-d) Holographic extraction of the

amplitude and phase of the SH-generated field from the muscle fiber as the

sample illuminated with a tilted fundamental Gaussian wave. The amplitude

values are normalized and the phase map is shown in the color code of (d) as the

brightness is modulated with the amplitude. (e) The 1D profile of the amplitude

(blue) and phase (orange) of the SH-generated field along the dashed line is

shown in (c). We can see the periodic amplitude and phase variation, amplitude

dips between myosin crystals, and ±π jumps in phase. (f) Structure of the muscle

tissue sarcomere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 SH Tomographic reconstruction. (a) 2D YX profile of the 3D reconstruction of

χ(2) distribution in three different Z planes. The values are normalized to the

[-1,1] range. (b) 2D YX profile the 3D refractive index reconstruction in three

different Z planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 (a) 3D rendering of the χ(2) reconstruction using SH-ODT. (b) 3D rendering of

the refractive index reconstruction using linear ODT. . . . . . . . . . . . . . . . . 53

5.1 Schematic description of MaxwellNet, with U-Net architecture, and its applica-

tion for tomographic reconstruction. The input is a refractive index distribution

and the output is the envelope of the scattered field. The output is modulated by

the fast-oscillating term e j k0n0z to compute the physics-informed loss for tuning

the weights. To perform tomographic reconstruction, we employ MaxwellNet

to minimize a data-driven loss that quantifies the disparity between measured

and predicted projections. The addition of a regularization term can improve

the reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Results of MaxwellNet and its comparison with COMSOL. (a,b) Two test cases

from the digital phantom dataset and the prediction of the real and imaginary

of the envelope of the scattered fields using MaxwellNet, COMSOL, and their

difference. (c) Scattered field predictions from the network trained in (a,b) for the

case of an experimentally measured RI of HCT-116 cancer cell and comparison

with COMSOL. The difference between the two is no longer negligible. (d)

Comparison between MaxwellNet and COMSOL after fine-tuning the former for

a set of HCT-116 cells. MaxwellNet predictions reproduce much more accurate

results after fine-tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Results of MaxwellNet3D and its comparison with COMSOL. The RI distribution

is shown in (a). The real part of the envelope of the scattered field calculated by

MaxwellNet3D is shown in (b), calculated by COMSOL in (c), and their difference

in (d). The imaginary part of the envelope of the scattered field calculated by

MaxwellNet3D, COMSOL, and their difference are presented in (e-g), respectively. 65

xiii



Chapter 0 LIST OF FIGURES

5.4 Tomographic reconstruction of RI using MaxwellNet. (a) The RI reconstruction

was achieved by Rytov, MaxwellNet, and the ground-truth. (b) 1D RI profile

at z = 0 (plane of best focus), for Rytov (green), MaxwellNet (blue), and the

ground-truth (orange). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Tomographic RI reconstruction of 3D sample using MaxwellNet. The RI re-

construction is achieved by Rytov, MaxwellNet, Learning tomography, and the

ground-truth in different rows at YX, YZ, and XZ planes in the center of the sample. 68

5.6 Tomographic RI reconstruction of a polystyrene micro-sphere immersed in water.

The projections are measured with off-axis holography for different angles. The

RI reconstruction achieved by Rytov, MaxwellNet, and Learning tomography are

presented at YX, YZ, and XZ planes in the center of the sample. . . . . . . . . . . 69

A.1 Comparison of the scattered vectorial fields for the birefringent digital phantom

based on the vectorial single scattering and V-BPM. Four rows represent the

components of the Jones matrix. First and second columns show the imaginary

part of Jones components based on the single scattering and V-BPM model,

respectively. Third and fourth columns show the real parts of them, and the last

column shows the absolute value of the difference between the single scattering

model and V-BPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2 Error of the single scattering forward model with respect to V-BPM for different

digital phantoms as the degree of birefringence increases. . . . . . . . . . . . . . 82

A.3 Verification of V-BPM using FEM: calculated |Ey |/|E i n
x | by FEM (COMSOL) for

(a) normal incidence and (b) oblique incidence with θ = 25◦ and using V-BPM

for (c) normal and (d) oblique incidence with θ = 25◦. . . . . . . . . . . . . . . . . 83

A.4 The off-diagonal component of the Jones matrix of an ideal polarized as it is

illuminated with a tilted beam as we scan ϕ. . . . . . . . . . . . . . . . . . . . . . 84

A.5 The Jones matrix of the digital phantom calculated with the V-BPM for 3 different

projections. Same data for 180 projections are used to reconstruct the 3D phantom. 85

A.6 Polarization-sensitive reconstruction of the digital phantom using the Rytov

approximation. For each component of the tensor, we show the ground-truth

and the reconstruction in YX, YZ, and XZ planes. Dashed lines show the lines

that we show the profile of the index along them. . . . . . . . . . . . . . . . . . . 86

A.7 Eigen-value characterization of the refractive index tensor of the digital phantom:

(a) Profile of the 3D Slow-axis direction at z = 0µm for the ground-truth, (b)

Profile of the 3D Slow-axis direction at z = 0µm for the 3D reconstruction, (c)

Profile of the 3D Birefringence (µ1
n −µ2

n) of the ground-truth, (d) Profile of the

3D Birefringence (µ1
n −µ2

n) of the 3D reconstruction. . . . . . . . . . . . . . . . . 87

A.8 Iterative reconstruction of the digital phantom: 1st row: ground-truth, 2nd

row: direct iterative reconstructions, 3rd row: iterative reconstruction using TV

regularization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.9 The cross-polarized light amplitude |U s
x y |2 which is measured for the muscle

tissue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xiv



LIST OF FIGURES Chapter 0

A.10 The phase of the scattered field. (a) for U s
x y and (b) for U s

xa . The background

phase is random due to the zero intensity in the cross-polarized light. By contrast,

in (b) the background phase can be easily calibrated and unwrapped. . . . . . . 89

B.1 (a) Bright-field microscopy of the muscle fiber tissue using green light. (b) Wide-

field SH image of the muscle fiber in the same region. . . . . . . . . . . . . . . . 95

C.1 Training and fine-tuning of MaxwellNet. (a) Training (blue) and validation (or-

ange) loss of MaxwellNet for Digital cell phantoms dataset. (b) Fine-tuning

the pretrained MaxwellNet for a dataset of HCT-116 cells for 1000 epochs. (c)

Examples of the HCT-116 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

C.2 Experimental setup for multiple illumination angle off-axis holography. HW:

Half-wave plate, P: Polarizer, BS: Beam splitter, L:Lens, Obj: microscope objec-

tive, M: Mirror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xv





List of Tables
5.1 MaxwellNet computation time comparison . . . . . . . . . . . . . . . . . . . . . 66

xvii





1 Introduction

1.1 Optical Diffraction Tomography: a 3D imaging technique

Optical imaging is a powerful tool that uses visible light to study a wide range of biological

and non-biological phenomena, from the structure of cells and tissues to the dynamics of

molecular interactions. It has been used to study a variety of topics including cell division [1],

neuron imaging [2], drug delivery systems [3], cancer detection [4], and tissue engineering [5],

to name a few. The development of new optical imaging techniques has enabled researchers

to gain insight into complex biological phenomena at the molecular level with minimal

invasiveness, high resolution, and high repeatability.

In an optical imaging system, the illumination part specifies how the sample is illuminated

with white light or a coherent laser source, and the measurement part and the interaction of

light with the sample specify the characteristics of the image and the contrast mechanism to

form that image. The final optical image is formed on the camera or human eye and these last

components in the optical imaging setups are normally only able to measure and quantify the

intensity of the light. This is the main reason that the introduction of contrast mechanisms

gets important in an optical imaging system.

The transmittance of a thin 2-dimensional (2D) phase-only object can be expressed with a

phase term as exp{ jφ(x, y)}. When the sample is illuminated with Ui , the intensity of the

total field which will be detected on the camera is ∥Ut∥2 = ∥exp{2 jφ(x, y)}×U 2
i ∥ = ∥Ui∥2. As a

result, the intensity of the image can only show features that are visible in the absorption of

the sample, and not the phase or the real part of the refractive index. In order to introduce

a contrast mechanism to detect features in the sample, there are two general methods: (i)

Fluorescence microscopy which uses fluorescent dyes or proteins to label specific molecules

or structures within a sample. These dyes get excited in a specific wavelength and emit light in

a slightly different wavelength, allowing us to visualize features of interest in the sample with

high contrast in the intensity image. (ii) A phase measurement system that allows the use of

the refractive index of the sample as a contrast agent in the image. Fluorescence microscopy

requires labeling the sample with fluorophores, a high intensity to have enough fluorescence
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emission, and it suffers from photobleaching and environmental sensitivity, especially for live

imaging [6], [7]. Therefore, label-free imaging modalities based on phase measurements that

utilize the refractive index of the sample as the contrast agent are very useful in the study of

biological samples.

For an approximately 2D thin transparent object, the accumulated phase of the total field with

respect to the background will be φ(x, y) = k0L
(
n(x, y)−n0

)
, in which k0 = 2π/λ is the vacuum

wavenumber, λ is the illumination wavelength, n0 is the refractive index of the background, L

is the thickness of the thin object, and n(x, y) is the refractive index of the inhomogeneous

object. Therefore, a measurement of the phase distribution can provide us with information

about the refractive index contrast of the sample. As mentioned earlier, the camera or the

human eye as the detector in the imaging system is only able to measure the intensity of light

and the phase distribution should be transformed to the intensity, in order to be measured.

There are two main methods for this transformation: applying a phase mask to the scattered

light, and digital holography. In the earlier mechanism, which was originally proposed by

Zernike phase mask [8], a phase mask will add a π/2 phase to the illumination field while

keeping the phase of the scattered field Us = Ut −Ui . As a result, the detected intensity will be

∥e jπ/2Ui +
(
e jφ(x,y) −1

)
Ui∥2 ≈ [

1+2φ(x, y)
]∥Ui∥2.

Zernike’s approach for phase contrast imaging provides an approximated and qualitative

phase measurement. However, in order to measure the amplitude and phase of the optical

image simultaneously and accurately, an interference-based technique, such as holography,

should be used. The principle of holography, which was originally invented by Gabor [9], is

based on the interference pattern of a signal and reference optical beams. We can write the

complex signal beam whose amplitude and phase are of interest as S(x, y), and the complex

reference beam as R(x, y). The measured intensity pattern will be,

I (x, y) = ∥S(x, y)+R(x, y)∥2 = ∥S(x, y)∥2+∥R(x, y)∥2+S(x, y)R∗(x, y)+S∗(x, y)R(x, y) (1.1)

if we consider the off-axis configuration in which the reference beam is a tilted plane wave

of R(x, y) = 1e j (kR
x x+kR

y y), and the signal beam has the phase of φ(x, y), the measured intensity

pattern is,

I (x, y) = ∥S(x, y)+R(x, y)∥2 = 1+∥S(x, y)∥2 +∥S(x, y)∥cos(φ(x, y)−kR
x x −kR

y y) (1.2)

The phase and amplitude of the signal beam can be retrieved from such a hologram using

Fourier domain holography. An example hologram of liver tissue is shown in Fig. 1(a) which is

measured with the setup that I will discuss in section 3. We can see the +1 and −1 orders in

the Fourier transform of the hologram, which are generated because of the interference with

the off-axis reference beam. By filtering the +1 order, shifting it to the center of the Fourier

domain, and taking the inverse Fourier transformation, one can reconstruct the complex

signal beam, S(x, y), and its corresponding phase and amplitude. The Fourier transform of the

hologram of the liver tissue and the unwrapped reconstructed phase are presented in Fig. 1(b-
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Figure 1.1: Quantitative phase imaging of a 30µm liver tissue using off-axis digital holography.
(a) The hologram with a zoomed-in inset presents interference fringes more clearly. (b) Fourier
transform of the hologram showing the +1 and -1 orders. (c) The reconstructed phase profile.
The phase profile is unwrapped.

c). We can see that off-axis holography can provide useful morphological information about

the biological sample of interest by reconstructing a 2D phase profile of light in a label-free

mechanism.

For a thin 2D sample, the phase profile will be proportional to the refractive index contrast

of the sample with respect to the background medium. However, a single phase profile can-

not provide complete and quantitative information about the refractive index distribution

of a three-dimensional (3D) sample which should be represented as n(x, y, z). Developing

3D imaging modalities was always of interest to present more structural information about

biological and non-biological samples. Three main categories of 3D optical imaging include

confocal microscopy [10], light-sheet microscopy [11], and optical coherence tomography

(OCT) [12]. The first two approaches usually use Fluorescence labeling as the contrast mecha-

nism and can provide a reasonable resolution for biological applications. OCT, which suffers

from a low resolution, reconstructs the tomograms of the sample by light scattering due to the

inhomogeneous refractive index distribution using a low-coherence interferometry technique.

As a result, label-free high-resolution techniques are desirable for 3D optical imaging.

Optical diffraction tomography (ODT) is a useful technique to incorporate digital hologra-

phy and quantitative phase imaging into a 3D microscopy modality. In ODT, the sample

is illuminated from multiple angles and phase and amplitude measurements are collected

holographically for each illumination angle. We call these 2D images different projections.

Then, a reconstruction algorithm is used to combine the 2D projections into a 3D tomogram

of the refractive index distribution of the sample. The first idea of ODT was proposed by Emil

Wolf in 1969 [13] by establishing the Fourier diffraction theorem using the Born approximation.

Subsequently, ODT has undergone intensive research in terms of experimental and algorith-

mic viewpoints [14]–[16]. For example, Wolf’s method was used with the Rytov approximation
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to improve reconstructions [17]. Experimental aspects such as illumination rotation [18],

[19], sample rotation [20], and wavelength scanning [21] have been thoroughly investigated.

Phase-contrast tomography of cells inside the microfluidic channels is also presented [22],

[23].

We can consider ODT as an inverse scattering problem. In ODT, we use the 2D scattered field

projections from the 3D object and reconstruct the 3D refractive index of the inhomogeneous

object. In the forward scattering problem, the known 3D object is illuminated from differ-

ent angles and we can calculate 2D projections with an approximative analytical model or

full-wave simulation. The forward model from the refractive index distribution to the 2D

projections is nonlinear due to the multiple scattering [24]. If we approximatively linearize the

forward model, an inversion is possible to reconstruct the 3D refractive index distribution (as

the input of the forward model) from 2D projections (as the output of the forward model). The

linearization can be achieved using first-order Born or Rytov approximations [13], [25] and can

provide a direct reconstruction scheme for ODT. I explain the theory of these direct approaches

in chapter 2. The approximated direct reconstruction can suffer from low axial resolution, due

to the missing frequencies known as the missing-cone problem [26], and multiple scattering.

Alternatively, if a more accurate 3D ODT reconstruction with a nonlinear forward model is

of interest, an iterative reconstruction approach should be used [27]–[29]. These iterative

approaches are based on three steps: a nonlinear forward model which calculates the 2D

projections for an estimate of the refractive index distribution, a loss function based on the

difference between the calculated projections and the measurements, and a prior knowledge

about the sample, and minimization of this loss function iteratively to improve the estimation

of the 3D refractive index distribution. All of these recent studies on ODT provide useful

reconstruction methods for various biological and non-biological applications.

1.2 New modalities for ODT

All of the recent studies on ODT concentrate on developing experimental or computational

methods that require simpler experimental setups, use fewer illumination angles, or improve

the 3D reconstruction of the refractive index distribution. However, all of the previously

studied ODT approaches were based on a scalar formalism for light scattering. The Helmholtz

equation which governs the light scattering in inhomogeneous media is originally a vectorial

formalism. For a sample with scalar refractive index distribution of n(r ), we can write the

Helmholtz equation as ∇×∇×Ut (r )−k2
0n2(r )Ut (r ) = 0 which can be rewritten as ∇2Ut (r )+

k2
0n2(r )Ut (r ) = −∇[

Ut ·∇log (n2(r ))
]
. The gradient of the refractive index on the right side of

this equation can be considered a vectorial source term that can change or create different

vectorial components of the field. On the other hand, there are many biological and non-

biological samples that are anisotropic, meaning that the polarization of light is important

in the interaction of light with such samples. The refractive index of these samples cannot

be represented with a scalar value, should be formulated with a tensor, ¯̄n(r ), and a vectorial

Helmholtz equation is required to describe light scattering from these samples. This issue
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limits the use of scalar ODT techniques for such birefringent samples but also it can provide

the possibility to utilize polarization-sensitive ODT to uncover features that are not visible in

the scalar refractive index distribution.

A vectorial formalism for the Fourier diffraction theorem and ODT can reconstruct the 3D

distribution of different components of the refractive index tensor. These components can

be considered new modalities for ODT and provide new information that is not visible in

the scalar refractive index reconstruction. Additionally, an eigenvalue decomposition of the

reconstructed refractive index tensor can provide new contrast agents for ODT such as 3D

phase retardation and 3D slow-axis/fast-axis orientation. For such purpose, polarization-

sensitive holographic measurements are required to retrieve the phase and amplitude of

different components of the electric field vector for each illumination angle and a vectorial

formalism for Fourier diffraction theorem can map these multi-angle polarization-sensitive

holographic measurements to the refractive index tensor. This is what we aim for in chapter 3

of this thesis.

On the other hand, the previous studies on ODT were based on the linear optical interaction

of the illumination with the sample. To be clearer, even though that optical scattering is

nonlinear with respect to the refractive index distribution due to the multiple scattering, it can

be considered linear with respect to the illumination field, when considering low-intensity

illumination. However, in the high-intensity illumination regime, the interaction of light with

the sample can become nonlinear, leading to many phenomena such as second harmonic

generation, sum frequency generation, self-focusing, and spectral broadening. This is the

basis of the field of Nonlinear Optics [30] which was historically observed in 1961 shortly after

the construction of the laser [31]. The linear refractive index which is correlated with the

first-order susceptibility distribution, χ(1), is not a sufficient distribution to describe the light

interaction in the case of optical nonlinearity. In these scenarios, the electric polarizability

should be represented with a nonlinear series of the electric field,

P = ϵ0χ
(1)E +ϵ0χ

(2)E 2 +ϵ0χ
(3)E 3 +·· · (1.3)

where ϵ0 is the vacuum permittivity. The higher-order susceptibility terms can reveal new in-

formation in the material which cannot be seen in the first-order susceptibility, or equivalently

refractive index distribution. The existence of these higher-order susceptibility terms in the

material leads to frequency mixing phenomena such as harmonic generation. These higher-

order susceptibility terms or higher-order harmonics generated by them can be considered

new modalities for optical imaging and microscopy [32]. This is the idea of nonlinear ODT that

I studied in this thesis for second-order susceptibility. We can generalize quantitative phase

imaging to nonlinear optical harmonic generation to measure the phase and amplitude of the

generated harmonic signal. If we have a single-frequency pump signal and a second-order

material, we can observe second-harmonic generation (SHG) from the sample which can be

measured holographically. Then, the generalization of ODT to the nonlinear regime will be

collecting multi-angle harmonic holography images and reconstructing the 3D distribution of
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the nonlinear susceptibility. The 3D tomographic reconstruction of nonlinear susceptibility

can provide morphological information about the sample which is not visible in the linear

refractive index.

1.3 Organization of the thesis

As mentioned in the previous subsection, the main idea of this thesis is to investigate novel

modalities for ODT, and further analyze how we can use the same techniques and approaches

of conventional ODT to other modalities such as birefringence and optical nonlinear suscepti-

bilities.

In Chapter 2, I present an overview of the theoretical framework that serves as the foundation

for the remainder of the thesis. A description of the optical scattering in inhomogeneous media

is presented starting from Maxwell’s equations to the time-independent Helmholtz equation.

Then, I present solutions for the forward optical scattering problem based on the Helmholtz

equation. I discuss a recursive solution for optical scattering, beam propagation method, and

Lippmann–Schwinger solution. Afterward, I discuss direct approaches for 3D reconstruction

of the refractive index based on ray-optics approximation, first-order Born approximation, and

first-order Rytov approximation. Additionally, a brief discussion about the iterative methods

for ODT will be discussed and lastly, I will provide the theoretical basis necessary to study

polarization-sensitive inhomogeneous media and nonlinear optical interaction.

In chapter 3, I present polarization-sensitive ODT for 3D tomographic reconstruction of

the refractive index tensor of a birefringent sample using multi-angle polarization-sensitive

holographic images. Methodology and theoretical formalism as well as the experimental setup

will be explained, and then synthetic and experimental results will be presented. To validate

our theoretical framework, we present synthetic results for a digital birefringent phantom

whose refractive index tensor is known. Additionally, we present experimental results to

demonstrate the viability of this new modality for ODT. Finally, we discuss coordinate-invariant

contrast agents for polarization-sensitive ODT.

In chapter 4, we report the tomographic reconstruction of the three-dimensional second-order

susceptibility tensor using two-dimensional measurements of the second-harmonic- (SH-)

generated fields at the double frequency for different illumination angles and polarization

states. The method is inspired by conventional linear optical diffraction tomography (ODT)

and is generalized for the nonlinear second-harmonic scenario. The SH-generated complex

fields are measured using a harmonic holography setup. As a group of centro-asymmetric

features is required for the sample to have second-order susceptibility and generate SH light,

the SH tomographic reconstruction can provide a background-free imaging technique showing

features of interest that possess asymmetry at the molecular level. We present synthetic and

experimental results for barium-titanate nano-particles and muscle tissue fibers to show the

viability of our theoretical formalism and 3D reconstruction methods. Our results demonstrate

a new modality for ODT which can be potentially used to acquire morphological information
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for biological optical imaging. The second-order susceptibility distribution can be considered

a nonlinear modality for ODT.

In chapter 5, we discuss an iterative approach for ODT using a physics-informed neural

network as the forward model for tomographic reconstructions of biological samples. We

demonstrate that we can accurately predict the scattered field by training this network with

the Helmholtz equation as a physical loss. It will be shown that a pre-trained network can be

fine-tuned for different samples and used for solving the scattering problem much faster than

other numerical solutions. We evaluate our methodology with numerical and experimental

results. Our physics-informed neural networks can be generalized for any forward and inverse

scattering problem.

In Chapter 6, I will summarize the thesis, provide a conclusion, and discuss the future work

that can be conducted based on the material of this thesis.
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2 Theoretical background

2.1 Introduction

An inhomogeneous isotropic sample can be represented with refractive index distribution,

n(r ) =
p
ϵr , and the light interacting with the sample is an electromagnetic wave which can

be described with the electric field E(r, t). Maxwell’s equations can describe the interaction

of light with the sample. In this chapter, I present an overview of the required theoretical

background for light scattering and inverse scattering from inhomogeneous samples. Starting

from Maxwell’s equations I will reach the frequency domain wave equation to describe light

interaction with the sample. Then, I will discuss direct and iterative approaches for the inverse

scattering problem. At the end of this chapter, the theoretical background for polarization-

sensitive light scattering and nonlinear optical harmonic generation will be presented.

2.2 Optical scattering in inhomogeneous media

The propagation of the electromagnetic wave E(r, t) in an inhomogeneous non-magnetic

media can be formulated using a wave equation derived from Maxwell’s formalism [33],

∇×∇×E(r, t )+ 1

c2

∂2E(r, t )

∂t 2 = −µ0
∂2P (r, t )

∂t 2 (2.1)

where c is the speed of light, µ0 is the vacuum permeability, and P (r, t ) = ϵ0 (ϵr (r, t )−1)E (r, t ) is

the polarizability of the medium with the relative permittivity of ϵr (r ) = n2(r ) in the linear and

scalar optics regime. Considering the monochromatic and coherent light with the frequency

of ω, and also a time-invariant medium with ∂ϵr (r,t )
∂t

= 0, the time dependence of the electric

field can be assumed as e− jωt . For this case, we can simplify Eq. 2.1 in the frequency domain

as,

∇×∇×E(r,ω)−k2
0n2(r )E(r,ω) = 0 (2.2)
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where k0 =ω/c = 2π/λ is the free space wave number, and λ is the wavelength. According to

the relationship ∇×∇×E = ∇ (∇·E)−∇2E and the fact that ∇· (ϵr E) = 0, we can rewrite Eq. 2.2

as,

∇2E(r,ω)+k2
0n2(r )E(r,ω)+2∇ [E(r,ω) ·∇ln(n(r))] = 0 (2.3)

if we assume that n(r ) is varying slowly with respect to the spatial domain r , we can neglect

the third term in Eq. 2.3. As a result, different components of the electric field vector will be

decoupled from each other and we can consider a scalar field U (r ) instead of the electric field

vector. We can rewrite Eq. 2.3 by defining the scattering potential V (r ) = k2
0/4π

(
n2(r )−n2

0

)
as,

∇2U (r )+k2
0n2

0(r )U (r ) = −4πV (r )U (r ) (2.4)

We can decompose the total scalar field to the scattered and incident fields as U (r ) = Ui (r )+
Us(r ). As the background medium, n0 is homogeneous, we have ∇2Ui (r )+k2

0n2
0(r )Ui (r ) = 0

and we can rewrite Eq. 2.4 as follows,(∇2 +k2
0n2

0(r )
)
Us(r ) = −4πV (r )U (r ) (2.5)

In order to present an integral form, we can consider the Green’s function of Eq. 2.5 as the

solution of its left side to a delta function source,

G(r,r ′) =
e j k0n0|r−r ′|

|r − r ′| (2.6)

which is valid in the case of the Sommerfeld boundary condition. Using this Green’s function,

the integral form of Eq. 2.5 will be,

Us(r ) =
∫
D ′

G(r,r ′)V (r ′)U (r ′)dr ′ (2.7)

The integration is in the computational domain of D′, however since V (r ′) is zero elsewhere

of the scatterer, it will be automatically integrated with the region of the non-zero scattering

potential. The nonlinearity of optical scattering with respect to the scattering potential V (r )

is clear in Eq. 2.7 as we have U (r ′) = Us(r ′)+Ui (r ′) on the right side. It should be noted that

this is just an integral form, and not a solution, for the optical scattering problem since Us(r )

exists on both sides of Eq. 2.7 and we cannot simply find it using this equation. In order to

solve this integral equation we need to propose approximative or semi-numerical solutions.

Hereby, I discuss 4 different solutions for Eq. 2.7.

The simplest way to solve Eq. 2.7 for the optical scattering problem is to use first-order Born

approximation and linearize this equation for weakly scattering objects. According to the

first-order Born approximation, we can neglect the scattered field in comparison with the

incident field, Us(r ) << Ui (r ), on the right side of Eq. 2.7. Using this approximation, the
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scattered field can be easily computed by taking the following integral,

Us(r ) =
∫
D ′

G(r,r ′)V (r ′)Ui (r ′)dr ′ (2.8)

This solution is valid only for weakly scattering objects with a very low refractive index contrast

and small size [34]. We can propose a better recursive solution for Eq. 2.7. To do so, we can

have a perturbative expansion of the scattered field as Us =
∑

q U (q)
s = U (0)

s +U (1)
s +U (2)

s +·· · in

which U (0)
s = 0, U (1)

s =
∫
D ′ G(r,r ′)V (r ′)Ui (r ′)dr ′, and

U (q)
s (r ) =

∫
D ′

G(r,r ′)V (r ′)U (q−1)
s (r ′)dr ′ for q > 2 (2.9)

This recursive solution can provide a more accurate solution for optical scattering, especially if

the scattered field is not negligible in comparison with the incident field. However, considering

a large number for the order of the perturbation series will increase the computation time

and complexity of this forward solution. Additionally, there is no clear way to know how

many orders are required to get an accurate solution and if the scattered field orders are not

degrading with an increase in q , convergence can not be guaranteed.

Another solution to Eq. 2.7 is using Lippmann–Schwinger equation [35]. We can write Eq. 2.7

in an operator notation,

−→
U s = G̃ Ṽ

−→
U (2.10)

where considering N voxels in the computational domain D, we have
−→
U s ∈CN , and

−→
U ∈CN ,

G̃ ∈CN×N , and Ṽ ∈RN×N . Based on the definition of the scattered field,
−→
U s =

−→
U −−→

U i , we can

rewrite Eq. 2.10 as
[
I− G̃ Ṽ

]−→
U =

−→
U i with I ∈RN×N being the identity matrix, which leads to

−→
U =

[
I− G̃ Ṽ

]−1−→
U (2.11)

Looking more carefully at Eq. 2.10, the G̃ operator is responsible for free propagation in the

homogeneous background media, and the Ṽ operator is responsible for the light scattering

from the scattering potential. Although this solution is computationally heavy as it requires a

matrix inversion in a domain bigger than the actual computational domain, it can provide

more accurate solutions than the first-order Born approximation in the case of multiple

scattering [35].

The Beam Propagation Method (BPM) is the final technique to be discussed for resolving

scalar optical scattering. BPM is a semi-analytical split-step solution for light scattering and

propagation in inhomogeneous media which is based on two approximations: neglecting

the reflection, and slowly-varying envelope approximation. The idea of BPM is to replace the

scalar field U (r ) in Eq. 2.4 with A(r )e j k0n0z and approximate V (r ) ≈ k2
0n0/2πδn(r ) for small

11
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δn(r ) = n(r )−n0. As a result, we can write,

∂2 (
A(r )e j k0n0z

)
∂z2 +∇2

t A(r )e j k0n0z +k2
0n2

0 A(r )e j k0n0z +2k2
0n0δn(r )A(r )e j k0n0z

=

[
∇2

t +
∂2

∂z2 +2 j k0n0
∂

∂z
+2k2

0n0δn(r )

]
A(r )e j k0n0z = 0 (2.12)

where ∇2
t is the Laplacian in the transverse direction. We can remove the ∂2/∂z2 term if we

assume the slowly varying envelope approximation. In this case, the envelope of the field A(r )

can be found using the following simplified differential equation,

∂A(r )

∂z
=

(
j∇2

t

2k0n0
+ j k0δn(r )

)
A(r ) (2.13)

we can write Eq. 2.13 in the operator form as,

∂A(r )

∂z
= D̃ A(r )+ P̃ A(r ) (2.14)

D̃ = j∇2
t /2k0n0 is the diffraction operator which is responsible for the propagation of the beam

in the homogeneous n0 medium, and P̃ = j k0δn(r ) is the phase modulation term which is

responsible for the accumulated phase due to the refractive index contrast of δn(r ). The

solution of Eq. 2.14 is,

A(x, y, z +d z) = e(D̃+P̃)d z A(x, y, z) ≈ e P̃d z eD̃d z A(x, y, z) (2.15)

The approximation is due to the fact that exp
((

D̃ + P̃
)

d z
)

≠ exp
(
D̃d z

)× exp
(
P̃d z

)
as the

operators D̃ and P̃ do not commute. However, for small step size d z we can have this approxi-

mation [36]. Eq. 2.15 can be represented in a clear form by writing the diffraction operator in

the Fourier domain,

A(x, y, z +d z) = e j k0δn(r )d zF−1
2D

{
e− j

k2
x+k2

y
2k0n0

d z ×F2D
{

A(x, y, z)
}}

(2.16)

where F2D represents the 2D Fourier transform in the x, and y directions, and kx , and ky

are the Fourier spatial frequencies. Eq. 2.16 is the paraxial BPM solution for the optical

scattering in inhomogeneous media. BPM can be computationally implemented by splitting

the computational domain D into multiple slices in the z direction and use Eq. 2.16 to calculate

the envelope of the field at each slice based on the envelope in the previous slice. BPM can

provide more accurate solutions in comparison with Born approximation [27], [36].

2.3 From 2D QPI to 3D ODT

In the previous section, we discussed different solutions for forward optical scattering from

inhomogeneous media. The solutions of section 2.2 can calculate 2D complex scattered light

12



Theoretical background Chapter 2

as a 3D inhomogeneous sample is illuminated. In this section, we discuss the inverse problem

known as optical tomography to find the 3D object from 2D quantitative phase images (QPI).

We can formulate the optical tomography problem as follows: The unknown 3D object with the

scattering potential distribution V (x, y, z) is illuminated with a plane wave U l
i from different

angles. The index l defines the projection. The total complex field is measured on a 2D plane

for this projection, U l = U l
s +U l

i . The tomography problem is to use the complex projections

U l (x ′, y ′, z ′ = z0 measured on the 2D imaging plane of z ′ = z0 for multiple illumination angles

of l = 1,2, · · ·L and reconstruct the 3D distribution of the scattering potential V (x, y, z). A

schematic of this process can be found in Fig. 2.1. In the rest of this section, we will discuss

different approximations and methods for tomographic reconstruction.

2.3.1 Optical projection tomography: ray-optics approximation

The first approximation I discuss for optical tomography is ray optics. In the ray-optics regime,

we assume that the wavelength of the object is much shorter than the correlation size of the

inhomogeneity variations in the object. We can represent this approximation by neglecting

the diffraction operator in BPM and considering only the phase modulation operator. By

defining the phase of the measured 2D projection, φ(x ′, y ′) as U (r ′) = Ui e jφ(r ′), Eq. 2.16 can be

written as,

φ
(
x ′, y ′, z ′ = z0

)
= k0

∫
D ′
δn(x ′, y ′, z ′)d z ′ (2.17)

Eq. 2.17 shows that the accumulated phase is a line integral of the refractive index contrast

along the projection direction. This line integral is referred to as the Radon transform [37]. As

a result, the accumulated phase is proportional to the Radon transform of the refractive index

contrast. At this step, we can use inverse Radon transform based on filtered back projection

to reconstruct the 3D refractive index contrast, δn(r ) with 2D phase profiles achieved by

illuminating the sample from multiple different angles [14], [15].

2.3.2 Fourier diffraction theorem using Born approximation

In order to invert the forward scattering problem with diffraction, we use linearization based

on the first-order Born approximation in Eq. 2.8. This equation represents a linear integral

relationship between the scattering potential, V (r ), and the scattered field. To invert this

equation, we can write the Green’s function as,

G(r,r ′) =
e j k0n0|r−r ′|

|r − r ′| =
j

2π

Ï ∞

−∞
1

kz
e j[kx (x−x ′)+ky (y−y ′)+kz (z−z ′)]dkx dky (2.18)
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Figure 2.1: ODT using Fourier diffraction theorem for a biological cancer cell, MDA-MB-
231. (a) Schematic of ODT. (b) 2D QPI Phase images for two projections were measured
holographically with a wavelength of 633nm. (c) Filling the Fourier domain of the scattering
potential using Ewald’s spheres of the measured projections using Rytov approximation. (d)
3D rendering of the reconstructed refractive index distribution.

in which kx , ky , and kz are the spatial frequencies satisfying kz =
√

k2
0n2

0 −k2
x −k2

y . By putting

Eq. 2.18 into Eq. 2.8 and taking a 2D Fourier transform from both sides, we can reach,

kz

2 jπ
e− j kz z0

Ï ∞

−∞
Us(x, y)e− j[kx x+ky y]d xd y =

∫
D ′

V (r ′)e− j
−→
k ·−→r ′

Ui (r ′)dr ′ (2.19)

This equation relates the 2D Fourier transform of the scattered field projection to some spatial

frequency components of the 3D Fourier transform of the scattering potential. For a plane

wave illumination, Ui (r ) = e j
−→
k i n ·−→r , we will have,

Ṽ
(
kx −k i n

x ,ky −k i n
y ,kz −k i n

z

)
=

kz e− j kz z0

2 jπ
F2D {Us}

(
kx ,ky

)
(2.20)

Eq. 2.20 is known as Fourier Diffraction Theorem or Wolf’s transform which was proposed

by Emil Wolf in 1969 [13]. According to Eq. 2.20, the 2D Fourier transform of the complex

scattered field which is measured at z0 as the sample is illuminated with an angle defined by

the illumination wave vector
−→
k i n can be mapped on the surface of a hemisphere, referred

to as the Ewald’s sphere on the 3D Fourier domain of the scattering potential. The Ewald’s

sphere is centered at −−→k i n and satisfies the relation of k2
x +k2

y +k2
z = (k0n0)2. This process is

shown in Fig. 1.1 for 2 illumination angles. Using the Fourier Diffraction Theorem, the 3D

scattering potential can be found within the first-order Born approximation. One example

is shown in the first row of Fig. 2.2. In this example, a digital phantom with the maximum

refractive index contrast of δn(r )max = 0.07 is illuminated with 180 projections in a circular

pattern with a maximum angle of θ = 35◦, and the scattered fields are calculated using BPM.

The synthetic projections are used for the Fourier diffraction theorem using first-order Born
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Figure 2.2: 3D ODT reconstruction for a digital phantom using different methods. The 3D
refractive index reconstruction is shown in 3 different Y X , X Z , and Y Z planes indicated in the
last row with dashed lines. Each row shows the ODT reconstruction using Born approximation,
Rytov approximation, iterative reconstruction using TV regularize, and the ground-truth image,
respectively.

approximation and we can compare the reconstruction with the ground truth in the last row.

Due to the limited range of validity of Born approximation, the quality of ODT based on this

approximation is compromised.

2.3.3 Fourier diffraction theorem using Rytov approximation

In 1981, Devaney presented the Fourier diffraction theorem based on the Rytov approximation

[25]. In this regard, we define the complex phase, φ(r ), of the total field as U (r ) = eφ(r )Ui (r )

and put it in Eq. 2.4,

∇2 [
Ui (r )eφ(r )]+k2

0n2
0(r )Ui (r )eφ(r ) = −4πV (r )Ui (r )eφ(r )

⇒ eφ(r )∇2Ui (r )+eφ(r )Ui (r )
[
∇2φ(r )+ (∇φ)2

]
+k2

0n2
0eφ(r )Ui (r )+2eφ(r )∇φ(r ) ·∇Ui (r )

= eφ(r )∇2 [
Ui (r )φ(r )

]+eφ(r )k2
0n2

0

[
Ui (r )φ(r )

]
+ eφ(r )Ui (r )∇φ(r ) ·∇φ(r ) = −4πV (r )Ui (r )eφ(r ) (2.21)
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By clearing up Eq. 2.21 we can end up to,

⇒ (∇2 +k2
0n2

0(r )
)[

Ui (r )φ(r )
]

= −4πUi (r )V (r )−Ui (r )∇φ(r ) ·∇φ(r ) (2.22)

By reforming the wave equation to Eq. 2.22, we can use the Rytov approximation. According to

the first-order Rytov approximation, we neglect the second term on the right side of Eq. 2.22.

In another word, the first-order Rytov approximation assumes that the gradient of the phase,

∇φ(r ) is negligible with respect to the scattering potential, V (r ). Considering this approxima-

tion, we will have a similar form to Eq. 2.5 and can represent an integral solution to the optical

scattering problem using Green’s function,

Ui (r )φ(r ) =
∫
D ′

G(r,r ′)V (r ′)Ui (r ′)dr ′ (2.23)

Eq. 2.23 is very similar to Eq. 2.8 which was achieved using the first-order Born approximation,

with the only difference that we should use Ui (r )log[U (r )/Ui (r )] instead of the Us(r ) on the

left side of the equation. As a result, the Fourier diffraction theorem which was presented

in Eq. 2.20 can be applied to have a 3D reconstruction of scattering potential. Therefore, we

presented the Fourier diffraction theorem using the first-order Rytov approximation,

Ṽ
(
kx −k i n

x ,ky −k i n
y ,kz −k i n

z

)
=

kz e− j kz z0

2 jπ
F2D

{
Ui log[U /Ui ]

}(
kx ,ky

)
(2.24)

ODT using the Fourier diffraction theorem based on the first-order Rytov approximation can

present better reconstructions in comparison with Born approximation. For the example of

the digital phantom with BPM-based synthetic projections, we reconstructed the 3D refractive

index using the Fourier diffraction theorem based on the first-order Rytov approximation and

it is shown in the second row of Fig. 2.2. In comparison with the ground truth refractive index

distribution, we can see that the Rytov approximation provides a much more accurate recon-

struction than the first-order Born approximation. A comparison of the Fourier diffraction

theorem based on the Born and Rytov approximations and also the range of their validity is

studied in [34].

2.3.4 Iterative approaches for ODT

The application of the Fourier diffraction theorem in ODT is hindered by two primary issues.

Firstly, the forward scattering problem is linearized through either the Born or Rytov approxi-

mations in order to be invertible. Consequently, 3D ODT reconstructions will be inaccurate

for objects with strong or multiple scattering. Secondly, the limited number of projections

and/or the limited numerical aperture of the imaging optics restricts our access to all of the

spatial frequencies of the 3D object. These missing spatial frequencies will cause inaccuracies

or artifacts in the 3D ODT reconstruction such as underestimation of the refractive index

or elongation along the optical axis [26], [38]. In order to solve these two issues iterative

approaches for ODT were proposed. The basis of these iterative approaches is on using a
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forward model for optical scattering, M to calculate the projections and compare them with

the measurements, and also on using priors about the 3D refractive index distribution. Ac-

cordingly, the 3D scattering potential can be found iteratively by minimization of an error

function consisting of a data term and a prior regularization term,

V̂ (r ) = argmin
V

{
1

L

L∑
l=1

∥∥∥M
{

V (r ),U l
i (r )

}
−U l

∥∥∥2

2
+τR (V (r ))

}
(2.25)

where L is the number of projections, U l is the measured total field for the illumination angle

of l , M
{
V (r ),U l

i (r )
}

is the calculated projection for the illumination l for the current estimate

of the scattering potential, τ is the regularizer parameter, and R(v(r )) is the regularizer to

be applied during the iterative solution based on the prior knowledge for the sample. Two

examples of such priors can be non-negativity and smoothness of the sample which can be

implemented with a Total-variation regularizer function [26]. What was presented in Eq. 2.25

is a general form for the iterative approaches for ODT. Different research studies presented

iterative solutions for ODT based on different forms of the forward model M . In [26], the

forward model is a linear optical scattering based on the first-order Rytov approximation,

Eq. 2.23. In [27], [36], the forward model is based on BPM which was presented in Eq. 2.16. I

will also present an iterative solution for ODT based on a physics-informed neural network as

the forward model M in chapter 6.

We compared the improvement in 3D ODT reconstruction with the Fourier diffraction theorem

by reconstructing our digital phantom iteratively using a linear forward model based on

Eq. 2.23 and a Total-variation regularizer. The FISTA algorithm was employed for the iterative

optimization, as outlined in [26], and it was found that the reconstructed refractive index

was much closer to the ground truth than before. We can see the results in the third row of

Fig. 2.2. Comparing the Rytov reconstruction and the iterative reconstruction reveals two

improvements. Firstly, the elongation and underestimation of the reconstructed refractive

index are drastically improved. Secondly, Total-variation regularization enabled a smoother

result for the 3D refractive index.

2.4 Polarization of light and birefringence

The light which is propagating in a medium has several properties: amplitude or intensity,

color or wavelength, phase, and polarization. As discussed in section 2.2, the electric and

magnetic fields representing the light are vectors and the study of the polarization state of

light will define what is the direction of these field vectors and how they are evolving over time

and space. Based on Maxwell’s equations, we know that ∇· (µ
−→
H ) = 0, and ∇· (ϵr

−→
E ) = 0. These

two equations imply that a planar light that is propagating in a uniform medium should have

the electric and magnetic fields perpendicular to the wave vector direction,
−→
k ·−→E =

−→
k ·−→H = 0.

As a result, the polarization state of such a wave is in the plane perpendicular to the wave

vector. We can define two arbitrary orthogonal vectors defining this transverse plane as û, and
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v̂ . Any arbitrary polarization state can be defined by decomposing the electric field in these

two vectors,

−→
E = Eue j k·r û +Ev e j (k·r+ϕuv )v̂ (2.26)

Four different scenarios can be considered for the polarization state of light. If ϕuv is zero

or ±2mπ, the two orthogonal vectors will be in phase and the polarization of light is linear.

If ϕuv is ±π/2±2mπ, and Eu = Ev , the light is circularly polarized. If Eu ̸= Ev or ϕuv ̸= mπ/2,

the polarization state of the light is elliptical. The last scenario is an unpolarized light which

consists of a randomly and rapidly varying succession of different polarization states. However,

it should be mentioned that a perfectly monochromatic wave is always polarized since the

time dependence of the wave is ωt and the relative phase ϕuv should be constant.

Once the polarization has been defined, we can study Maxwell’s equations to observe how

the polarization of light is changed in the scattering process and the light interaction with

materials. In optical scattering from inhomogeneous scalars samples whose permittivity

and refractive index are scalar distributions, the light propagation follows Eq. 2.3. The depo-

larization term 2∇ [E(r,ω) ·∇ln(n(r ))] on the right side of this equation will couple different

components of the field vector and leads to the polarization change as the light is propagating

in an inhomogeneous media in which ∇n(r ) ̸= 0. Another way to consider depolarization

is that in the light scattering process, the scattered light can be decomposed into different

plane waves in the Fourier domain [39], and the polarization vector of each of them should be

perpendicular to its
−→
k vector. As a result, the scattered field with multiple spatial frequencies

cannot preserve the polarization state of the illumination beam. In other words, the depolar-

ization term in Eq. 2.3 will guarantee that the divergence of the electric displacement field is

zero.

Another way leading to polarization coupling and polarization sensitivity in the interaction of

light with the sample is the anisotropicity or birefringence of the sample. In some structures,

the speed of the light, and as a result, the refractive index and the permittivity depend on the

polarization state of the electric field, and should be represented with a tensor in Eq. 2.2. The

refractive index tensor of an inhomogeneous sample in an arbitrary coordinate is,

¯̄n(r ) =

nxx (r ) nx y (r ) nxz (r )

ny x (r ) ny y (r ) ny z (r )

nzx (r ) nz y (r ) nzz (r )

 (2.27)

For homogeneous crystals, the refractive index tensor does not vary spatially and can be

diagonalized using a spatially-invariant unitary matrix ¯̄n = ¯̄C−1 ¯̄nD
¯̄C . The ¯̄C matrix defines the

crystalline orientation and the diagonal ¯̄nD matrix has the refractive index values of the sample

for each eigen polarization state. The crystalline orientation provides important information

about the molecular structure of the material [40]. However, for an inhomogeneous sample,

the crystalline coordinate can also vary spatially and there is not a universal ¯̄C matrix that

diagonalizes the refractive index tensor.
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To describe the polarization of light and its alteration when passing through a polarization-

sensitive structure, two mathematical frameworks are available: the Stokes–Mueller formalism

and the Jones formalism [41]. In these formalisms, the polarization state of the light is de-

scribed with a vector and the system is defined with a matrix that maps the polarization

vector before the structure to the polarization vector after the structure. In the Stokes–Mueller

formalism, the polarization state of the light is described with a 4×1 Stokes vector, S, whose

components show the total intensity of light, the intensity of the linearly polarized light, the

intensity of the ±45◦ polarized light, and the intensity of the circularly polarized light, respec-

tively. A 4×4 Mueller matrix of a sample, M , will map the input Stokes vector to the output

Stokes vector, Sout = MSi n . The Mueller matrix is a real-valued matrix and is particularly of

interest for incoherent or unpolarized light where the phase of the light cannot be measured.

Alternatively, Jones formalism can be used for the examples that the phase of the light is

important. Jones formalism is based on the complex Jones vector which represents the electric

field vector. This Jones vector is,

−→
E =

Ex

Ey

Ez

 ,
−→
E out = ¯̄J

−→
E i n (2.28)

and the polarization-sensitive media is defined with the Jones matrix ¯̄J . The elements of the

Jones vectors and Jones matrix are complex and include phase information. It is important to

note that Jones vectors and Jones matrices can be a function of the spatial coordinate, r , for

inhomogeneous samples. For homogeneous samples, the polarization vector is perpendicular

to the propagation direction and only two components are needed to describe it, which is why

Jones vectors are traditionally represented with only two components [40]. However, when

studying the polarization of light in inhomogeneous anisotropic media, three components are

required to describe the Jones formalism.

The 2D QPI images acquired by illuminating the sample with a plane wave can be generalized

to anisotropic samples using Jones formalism. This mathematical framework allows us to

represent each component of the Jones matrix with a 2D complex QPI, and measure the

birefringent inhomogeneous sample using a polarization-sensitive off-axis holography setup.

As a result, we can extrapolate QPI and holography to anisotropic samples, which is the main

focus of chapter 3 in our study of polarization-sensitive ODT.

2.5 Optical nonlinearity

I discussed the interaction of light with the sample based on Maxwell’s equations in Eq. 2.1. For

high intensities of light and strong fields, the constitutive equation, defining the relationship of

the polarizability of the medium, P (r, t ) with the electric field, E (r, t ) is not linear anymore. In

this case, in addition to the linear permittivity, ϵr , nonlinear and higher order susceptibilities
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are required to write the electric field constitutive equation,

P (r, t ) = ϵ0 (ϵr −1)E(r, t )+ϵ0χ
(2)E 2(r, t )+ϵ0χ

(3)E 3(r, t )+·· · (2.29)

where χ(2), and χ(3) are the second-order and third-order nonlinear susceptibilities. The

nonlinear interaction of light with such materials can introduce interesting phenomena such

as harmonic generation, frequency mixing, self-phase modulation, and self-focusing [30].

At the molecular level, the nonlinear polarizability can be explained by extending the Lorentz

model for the atoms to anharmonic oscillators [30]. The origin of nonlinearity in this classical

model is the form of the restoring force exerted on the electrons. In the Lorentz model, the

restoring force is linear with respect to the coordinate of the electron, and as a result, the atom

can be modeled as a harmonic oscillator. However, if the potential energy function of the

medium is not parabolic, the restoring force can be written in the form of a Taylor series with

nonlinear coefficients of the electron coordinate.

There are several important properties of nonlinear susceptibilities. A very important property

is the vanishing of the second-order susceptibility, χ(2), for centrosymmetric materials. For

a centrosymmetric material, we have the same structure if we flip the coordinate system

around the symmetry plane. In this case, if we have the electric field of E and polarizability

of P in the initial coordinate system, we will have the electric field and polarizability of −E

and −P in the flipped coordinate system. Additionally, the χ(2) remains unchanged as the

structure is symmetric. Therefore, we will have P = ϵ0χ
(2)E 2 in the initial coordinate system

and −P = ϵ0χ
(2)(−E)2 for the flipped coordinate systems. These two equations imply that

χ(2) = −χ(2) which is possible if and only if χ(2) = 0. Most of the materials are centrosymmetric

and the vanishing of the second-order susceptibility in these materials is a very useful property

for background-free microscopy. Based on this property, if an inhomogeneous sample is illu-

minated with a high-intensity coherent light, only non-centrosymmetric features will generate

second-order phenomena and can be easily distinguished from the rest of the sample. Another

important property of the nonlinear susceptibilities is Miler’s rule [42] which can provide

an estimate of the order of magnitude of the nonlinear susceptibilities. According to Miler’s

rule, the order of magnitude of the nonlinear susceptibility is proportional to the nonlinear

susceptibility of the lower order with a coefficient known as Miller’s coefficient. As a result, the

nonlinear susceptibilities get orders of magnitude weaker as the order increases. Respectively,

higher optical intensity is required to achieve higher-order nonlinear phenomena.

We can study the second-order nonlinear polarizability in the presence of a monochromatic

field. For the sake of simplicity, we first consider a scalar formalism and a single polarized

input light,

P (2) = ϵ0χ
(2) (E(t ))2 = ϵ0χ

(2)
(
Ee jωt +c.c.

)2
= ϵ0χ

(2)|E |2 +ϵ0χ
(2)

(
E 2e2 jωt +c.c.

)
(2.30)

The c.c. is the complex conjugate term. Eq. 2.30 shows that by illuminating a second-order

nonlinear medium we can generate a D.C. polarizability, ϵ0χ
(2)|E |2, which is responsible for
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a phenomenon known as optical rectification, and polarizability at the double frequency,

2ω which is responsible for the generation of light at double frequency, known as second-

harmonic generation (SHG). SHG and utilizing it for ODT is the main topic of chapter 4. If we

illuminate the second-order material with two beams at frequencies ω1 and ω2, we can even

generate more frequencies,

P (2) = ϵ0χ
(2) (E1(t )+E2(t ))2 = ϵ0χ

(2)
(
E1e jω1t +E2e jω2t +c.c.

)2
=

ϵ0χ
(2)

(
|E1|2 +|E2|2 +E 2

1 e2 jω1t +E 2
2 e2 jω2t +2E1E2e j (ω1+ω2)t +2E1E∗

2 e j (ω1−ω2)t +c.c.
)

(2.31)

in which E1 and E2 are the amplitudes of two beams at frequencies ω1 and ω2, respectively.

Eq. 2.31 shows that illuminating the second-order nonlinear medium with two frequencies

can generate nonlinear polarizability at P (2ω1), and P (2ω2) as harmonic generations, P (ω1 +
ω2) as sum frequency generation, and P (ω1 −ω2) as difference frequency generation. If we

consider a third-order nonlinear medium, we can generate third-order polarizabilities at triple

frequencies, known as third-harmonic generation (THG), and four-wave mixing phenomena.

After introducing the nonlinear polarizability, we can discuss the optical wave propagation in

nonlinear media using the nonlinear Helmholtz equation. In Eq. 2.1 we have the general form

of the space- and time-varying wave equation in the presence of the electric polarizability,

P (r, t ). We showed that if we assume a non-centrosymmetric second-order media (neglecting

the higher-order terms) is illuminated with a monochromatic wave at frequency ω, optical

rectification, and SHG can be achieved. As a result, we should be able to write the electric field

in such a media as E (r, t ) = E0(r )+EF (r )e jωt +ESH (r )e2 jωt +c.c. with E0(r ) showing D.C. field,

EF showing the field at the fundamental frequency ω, and ESH showing the field at the SH

frequency, 2ω. As a result, we can write Eq. 2.1 in the frequency domain at two fundamental

and SH frequencies,

∇×∇×EF (r,ω)− ω2

c2 EF (r,ω) = +ω
2

c2 χ
(1)(r )EF (r,ω)+ 2ω2

c2 χ(2)(r )E∗
F (r,ω)ESH (r,2ω)

∇×∇×ESH (r,2ω)− 4ω2

c2 ESH (r,2ω) = +4ω2

c2 χ(1)(r )ESH (r,2ω)+ 4ω2

c2 χ(2)(r )E 2
F (r,ω)

(2.32)

Eq. 2.32 presents the wave propagation in second-order media considering monochromatic

fundamental and SH waves. This equation is the second-order Helmholtz equation including

two coupled equations governing the propagation of EF (r,ω) and ESH (r,2ω) that can be

solved using a numerical technique such as finite element method (FEM), or BPM. Providing

solutions for a set of coupled equations can simply get complicated. A simple approximation

to decouple the equations of Eq. 2.32 is based on neglecting the depletion of the fundamental

field, EF (r,ω). This approximation is valid when |ESH | << |EF | and we can neglect the last

term of the right side of the Helmholtz equation governing the propagation of the fundamental
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field, i.e. 2ω2

c2 χ
(2)(r )E∗

F (r,ω)ESH (r,2ω). In fact, this is a valid approximation in most of the cases

as χ(2) of the materials is very small and the SH field is orders of magnitude smaller than the

fundamental field. Using the undepleted fundamental approximation and also neglecting the

depolarization term we can write,

∇2EF (r,ω)+k2
0n2(r,ω)EF (r,ω) = 0

∇2ESH (r,2ω)+4k2
0n2(r,2ω)ESH (r,2ω) = −4k2

0χ
(2)(r )E 2

F (r,ω) (2.33)

where k0 is the free-space wave number at the fundamental frequency. Eqs. 2.33 solve the SH

generation and scattering from an inhomogeneous χ(2) material. Undepleted pump approxi-

mation easily decoupled two equations from each other. In this regard, first, the Helmholtz

equation for the fundamental field, EF (r,ω), can be solved and when the fundamental field is

known, it can be replaced in the second equation to find the SH field, ESH (r,2ω).

Eqs. 2.33 present the SH generation and scattering in a scalar formalism. In reality, all of the

second-order materials are anisotropic and their χ(2) can not be represented with a scalar

distribution. We mentioned in section 2.3 that the general form for the linear refractive index

tensor of anisotropic materials is a 3×3 matrices. For the second-order susceptibility, a higher

rank tensor is required as two fields are contributed to the second-order polarizability. For

SHG, we can rewrite Eq. 2.30 for anisotropic materials as,

Pi (r,2ω) = ϵ0
∑

j

∑
k
χ(2)

i j k (r )E j (r,ω)Ek (r,ω) (2.34)

where i , j , k ∈ {
x, y, z

}
are indices corresponding to each element of the field and polarizability

vectors. Eq. 2.34 shows the polarizability for the SH process. Considering Kleinman’s symmetry

condition applies that χ(2)
i j k =χ(2)

i k j if j ̸= k. This symmetry helps to have a contracted notation

to represent χ(2) with a 3×6 matrix,

Px (2ω)

Py (2ω)

Pz (2ω)

 = ϵ0

χ
(2)
11 χ(2)

12 χ(2)
13 χ(2)

14 χ(2)
15 χ(2)

16

χ(2)
21 χ(2)

22 χ(2)
23 χ(2)

24 χ(2)
25 χ(2)

26

χ(2)
31 χ(2)

32 χ(2)
33 χ(2)

34 χ(2)
35 χ(2)

36





Ex (ω)2

Ey (ω)2

Ez (ω)2

2Ey (ω)Ez (ω)

2Ex (ω)Ez (ω)

2Ex (ω)Ey (ω)


(2.35)

Eq. 2.35 is the general form for the nonlinear polarizability in the SHG process which shows

that there are 18 elements in the χ(2) tensor contributed to the SHG. The 18 elements of

the second-order susceptibility tensor can be reduced in the presence of spatial symmetry

in the material’s crystalline structure. Eq. 2.35 is written in an arbitrary coordinate system.

However, many of the elements of the χ(2) tensor can be zero in a special crystalline coordinate

system thanks to the spatial symmetries. The study of the symmetry groups in crystals and

their effect on the nonlinear optical susceptibility tensor was an important research topic

in the earliest days of nonlinear optics as it can provide useful information on an efficient
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Figure 2.3: Wide-field SH generation from Barium Titanate nano-particles illuminated with a
polarized 280 femtosecond light source.

nonlinear frequency conversion process [43]. For example, Barium Titanate, BaTiO3, which is

a Tetragonal crystal with the point group of 4mm has a second-order susceptibility tensor in

the form of,

ϵ0 ¯̄χ(2) =

 0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0

 (2.36)

The spatial symmetry information about the second-order susceptibility tensor provides useful

prior knowledge in order to efficiently generate SH, and also for SH imaging applications.

We wrote the nonlinear polarizability in Eq. 2.35 for the SHG process. Third-order nonlinear

processes should be described in a general form with a fourth-rank tensor χ(3)
i j kl as there are 4

waves participating in the nonlinear process. Consequently, if more waves are included in the

process, more components of the nonlinear susceptibility tensor will be affected by spatial

symmetries, potentially causing some of them to become zero.

Fig. 2.3 represents the wide-field SH emission of Barium Titanate nano-particles with a diame-

ter of 200nm. The imaging system is based on the experimental setup presented in chapter 4

where the particles are imaged with a 0.85-numerical aperture objective and the fundamental

beam is filtered with a series of three filters providing an optical density of 19 at the funda-

mental wavelength, 1030nm. The illumination beam and the detection signal are X-polarized,

and as it is clear from the particles indicated with arrows, the SH signal can change depending

on the crystalline orientation of the nano-particles.

In summary, we presented a general theoretical background on nonlinear optical processes

such as SHG and how the nonlinear susceptibility tensor of the material contributes to these
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processes. We specifically discussed the SHG, the second-order polarizability χ(2) tensor for

SHG, and wave propagation and the Helmholtz equation for this process. SHG can be used as

a background-free process for ODT. The idea of SH-ODT is to collect complex SHG fields as

the sample is illuminated with different angles and reconstruct the 3D χ(2) distribution. This

can be achieved by inversion of Eqs. 2.33 and will be discussed in detail in chapter 4.
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3 Polarization-sensitive ODT

This work has been published in the following paper:

• A. Saba, J. Lim, AB. Ayoub, EE. Antoine, and D. Psaltis (2021). "Polarization-sensitive

optical diffraction tomography". Optica, 8(3), 402-408.

A. Saba carried out the theory of polarization-sensitive ODT, algorithm implementation, BPM

simulations, building experimental setup, and getting numerical and experimental results.

3.1 Introduction

Polarization microscopy [44] is an imaging technique that exploits the birefringence contrast

of the samples and has been extensively used in the pathology and diagnosis of some diseases,

such as squamous cell carcinoma [45]. Over the course of many years, there has been extensive

research and development in this microscopy [46]. Polarization microscopy modality has

been applied to the study of a variety of biological samples containing fibrous structures, such

as collagen, muscle tissue, tendon, retina nerve, fibroblast, and starch, where birefringence

can be observed. Nonlinear microscopy methods such as CARS [47] and second harmonic

microscopy [48] have also been studied from the polarization-sensitive viewpoint.

Several studies have explored polarization-sensitive holography for birefringent samples

in the context of quantitative two-dimensional (2D) polarization imaging [49]–[54]. The

Oldenbourg group has developed the LC-polariscope method [55], [56] presenting 2D images

of birefringence distribution. Regarding 3D imaging techniques, polarization-sensitive optical

coherence tomography has been thoroughly investigated for imaging birefringent samples

[57]–[59]. Confocal fluorescence polarization microscopy has also been reported [60] and the

LC-polariscope has been used together with a multi-focus grating to provide 2D birefringence

images in different focal planes [61]. Despite the variety of existing methods for polarization

microscopy, none of them provide a quantitative reconstruction of birefringence in 3D. As

of now, a quantitative, label-free, and three-dimensional imaging method for polarization
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microscopy has yet to be developed.

Optical diffraction tomography (ODT), on the other hand, is a quantitative, label-free, and

3D imaging method which reconstructs the distribution of the refractive index (RI) values

of a sample using multiple-angle-measured scattered fields [13]. Previous studies on ODT

reconstruction have been constrained by the scalar Helmholtz equation, which limits its

application to isotropic samples. While the scalar refractive index (RI) distribution provides

significant morphological and biological insights into a sample, it fails to capture the RI tensor

for birefringent samples. To address this limitation, this chapter investigates polarization-

sensitive ODT techniques for birefringent samples and their ability to reconstruct the 3D

distribution of the RI tensor. The Jones formalism [62] is used throughout this chapter. The

Jones matrix of the sample has been measured holographically for multiple illumination angles.

We then derive the tensorized version of Wolf’s method and use it for direct tomographic

reconstructions. Synthetic data are generated using the vectorial beam propagation method

(V-BPM) and they are used to guide the experiments in polarization-sensitive ODT. Lastly, we

will explore a 3D polarization-based contrast metric that will be presented as a map of the

sample highlighting its inherent birefringence distribution.

3.2 Methodology

3.2.1 Theory

Fig. 3.1 highlights the importance of considering polarization for ODT. We applied conven-

tional ODT reconstruction using the Rytov approximation for a corn starch granule which is

a birefringent sample [63]. In two experiments, the illumination beam had +45◦ and −45◦

linear polarization states with respect to the X-axis in the XY coordinate. We measured the

X-polarized light of the scattered light using a conical scan at 180 equally spaced illumination

angles with a 30◦ angle with respect to the Z-axis. In Fig. 3.1(a-c), we show the YX profiles

of the 3D reconstructions for the two different illumination cases (+45◦ and −45◦ linear po-

larizations) followed by the difference between them. This figure clearly demonstrates the

importance of considering polarization in ODT. The Y components of the two incident po-

larizations are both coupled to the measured X polarization only for an anisotropic sample

such as the corn kernel used in this experiment. The opposite sign of the Y components in the

incident light are responsible for the difference between the reconstructions in Fig. 3.1 (a) and

(b). On the other hand, when the sample is isotropic, there is no light coupling between the X

and Y polarizations. As a result, independently of the sign of the Y-polarized light in the +45◦

and −45◦ states, the reconstructions will be same. This has been shown in Fig. 3.1(d-f) for a

4.5µm diameter polystyrene bead which is immersed in silicon oil.

The Jones vectors and Jones matrix can be used to illustrate the connection between the input

and output field vectors,
−→
E out = J

−→
E i n , in which

−→
E out and

−→
E i n are the fields after and before

the sample (Jones vectors) and the linear transformation between two vectors is represented
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+45 -polarized illumination -45 -polarized illumination

10µm

1.45 1.46 1.47 1.48 1.49 1.5 -0.02 -0.01 0 0.01 0.02

-0.02 -0.01 0 0.01 0.02

+45 -polarized illumination -45 -polarized illumination

10µm

1.46 1.481.5 1.52

(a) (b) (c)

(d) (e) (f)

Figure 3.1: YX profiles of the conventional Rytov ODT reconstructions. On the top, we have
the reconstruction of the corn starch kernel and multiple scattered fields were measured in
the X-polarization when the illumination beam was (a) +45◦, and (b) −45◦-polarized. (c) The
difference between the two reconstructions of corn starch. Then, we have the reconstruction
for an isotropic polystyrene bead when the illumination beam was (d) +45◦, and (e) −45◦-
polarized. (f) The difference between the two reconstructions of the polystyrene bead. All the
colorbars show the refractive index and are unitless.

by the Jones matrix, J . The Jones formalism represents a relationship between the complex

fields and its components are also complex values. As a result, holography or iterative phase

retrieval methods are necessary to reconstruct the complex scattered fields.

We formulate the vectorized version of the Helmholtz equation to investigate how light inter-

acts with the sample. Additionally, we introduce the "scattering potential tensor" as a quantity

that extends the scalar scattering potential and serves as a contrast metric for creating the 3D

image of the birefringent sample. The integral solution of the vectorial Helmholtz equation

can be obtained under the Born approximation (see section 1 of Appendix A). We consider a

case that the sample is illuminated with the illumination beam vector
−→
E i l l um and consider

the corresponding holographically recorded scattered field vector
−→
E s ,

−→
E

s
(r ) =

∫
G

(
r,r ′)×V (r ′)×−→

E
i l l um(

r ′)d 3r ′ (3.1)
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where ¯̄G is the Green’s function (tensor) and ¯̄V = n0k2
0

¯̄δn/2π is the scattering potential (tensor)

which is defined in terms of the quantity δ̄n which we refer to as the RI tensor. The RI tensor is

defined in Appendix A and it is discussed further in section 3. Since the sample is assumed to

be immersed in a liquid, the background is isotropic and homogeneous. Therefore, Green’s

function is a diagonal tensor, with the diagonal elements of the scalar case.

The RI tensor, and correspondingly the scattering potential tensor, and Jones matrix, are, in

general, 3×3 tensors. As a result, we need three independent polarization states for
−→
E i l l um to

reconstruct the full 3×3 Jones matrix for each projection. However, since the polarization state

of the incident light is perpendicular to its wave vector, we can only have two independent

polarization states for each illumination angle. Therefore, we calculate the scattering potential

using 2×2 tensors by neglecting the Z component. The validity of this approximation and the

resulting error is discussed in subsection 3.2.2.

Now, each element of the scattering potential tensor can be calculated with Wolf’s method,

considering that E i l l um(r ′) = Ẽ i l l um ×e j
−→
k i n ·r ′

:

V (kx −k i n
x ,ky −k i n

y ,kz −k i n
z ) =

kz

2π j
F2D

{(
E s

x1 E s
x2

E s
y1 E s

y2

)(
Ẽ i l l um

x1 Ẽ i l l um
x2

Ẽ i l l um
y1 Ẽ i l l um

y2

)−1}(
kx ,ky

) (3.2)

Eq. 3.2 is derived in Appendix A. After taking the 2D Fourier transform from the scattered

fields, we shift them in the Fourier domain based on k⃗ i n , and then fill the Fourier domain

of the scattering potential by adding the spectra for all the incident angles. At the end, we

take the inverse 3D Fourier transform to reconstruct the scattering potential tensor in the

spatial domain. All of these operators are linear and can be considered equivalent to the Wolf

transform [13] operating on each of 4 elements of the tensor independently using the Born

approximation (see also section 1 of Appendix A). Alternatively, the Rytov approximation can

be used, where we consider
−→
E

t
as [eϕ]×−→

E
i l l um

. In this case, we will have,(
E s

xx E s
x y

E s
y x E s

y y

)
=

(
[eϕ]− 1

)
×

(
E i l l um

x1 E i l l um
x2

E i l l um
y1 E i l l um

y2

)
(3.3)

which leads to

ϕ = logm

(
1+

(
E s

x1 E s
x2

E s
y1 E s

y2

)(
E i l l um

x1 E i l l um
x2

E i l l um
y1 E i l l um

y2

)−1)
(3.4)

logm is the matrix logarithm and ϕ is the complex phase tensor which its imaginary part

should be unwrapped [64]. Same as the scalar case, Rytov approximation is based on the

first order Taylor expansion, where E
s
/E

i l l um
≈ logm

(
1+E

s
/E

i l l um
)
. The reconstructed

scattering potential ¯̄V can be found by applying the Wolf transform, separately on each of the

components of ϕe j k i n ·r .
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Figure 3.2: (a) Rotational Matrix described in Eq. 3.5, for polarization conversion of an oblique
illumination. (b) Definition of the coordinate system.

The formulation described above is based on the scattered E s and illumination E i l l um fields

immediately before and after the sample. However, in ODT, we illuminate the sample with

different projections, from different angles (experimentally implemented using a galvomirror,

as explained in the next subsection). As a result, with fixed input polarization of light in a

fixed coordinate frame (here, XYZ experiment coordinates) changing the illumination angle

changes the polarization of the illumination field. In this situation, by tilting the beam, the

polarization of light will remained unchanged in the meridional plane (the plane containing

the ray, and the optical axis, here z), and can be expressed in the XYZ Cartesian coordinate,

using a rotational matrix [65]:E i l l um
x

E i l l um
y

E i l l um
z

 = R ×

E i n
x

E i n
y

E i n
z

 (3.5a)

R =

sin2φ (1−cosθ)+cosθ −sinφcosφ (1−cosθ) cosφsinθ

−sinφcosφ (1−cosθ) cos2φ (1−cosθ)+cosθ sinφsinθ

−cosφsinθ −sinφsinθ cosθ

 (3.5b)

The parameters, θ, and φ are indicated in Fig. 3.2(b). The absolute value of the 9 components

of the rotational matrix is shown in Fig. 3.2(a). The same matrix maps the complex measured

fields to the complex scattered field, right after the sample, to compensate for the angular

demagnification in the 4F system from the sample to CCD, including the water-dipping

objective and the lens L4,

−→
E

s
= R ×−→

E
m

(3.6)
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Here,
−→
E m is the field vector, whose last component is always zero, as the perpendicular com-

ponent to the camera cannot be measured. There are other contributions to the polarization

change of the light, such as light refraction in the air-glass, and glass-water interface, and also

oblique illumination to the polarizer. These are discussed in Appendix A.

In Eq. 3.2 and Eq. 3.4, we are working with the cross-polarized light, E s
y x /E i l l um

x . We have

zero intensity values in these terms when there is no scattering and/or birefringence, which

leads to random background phase values. As an example, the phase of this cross-polarized

term is shown in Appendix A (Fig. A10) for one illumination angle. The random background

phase values make the unwrapping and calibration challenging. To overcome this issue we

can note the fact that Eq. 3.1 is linear with respect to E
i l l um

. As a result, we can get scattered

fields in XY coordinate, if we illuminate with any pair of perpendicular polarization states,

such as 45 degrees ab coordinate system as shown in Fig. 3.2(b). This way, when the input

and output polarization states are not aligned, we don’t have the intensity singularity problem.

For instance, we present the phase of E s
xa in section 6 of Appendix A in comparison with the

phase of cross-polarized light (Fig. A10). On this subject, based on the linearity of Eq. 3.1, 3D

reconstructions can be performed using E s
xa , E s

xb , E s
y a , and E s

yb , and then converted to the XY

RI tensor using the procedure discussed in subsection 3.2.3.

3.2.2 Approximation of the 3×3 scattering potential tensor with a 2×2 tensor

As discussed in section A.1, the refractive index and the scattering potential tensor are 3×
3 tensors in the general case. However, considering Eq. A.8, we need three independent

illumination polarization states to make the illumination field tensor an invertible matrix.

We can explain this issue using Jones formalism, in which the Jones matrix of the sample for

each illumination angle can be defined as
−→
E t =

−→
E s +−→

E i l l um = J
−→
E i l l um . We can rewrite Eq. A.9

using Jones formalism as,(
J 3×3(r )− 13×3

)
e j

−→
ki .r =

[∫
G

(
r,r ′)×V (r ′)e j

−→
ki .r ′

d 3r ′
]

(3.7)

Reconstruction of full 3×3 scattering potential tensor is possible using the Fourier diffraction

theorem (similar to Eq. A.12), if we had the full 3×3 Jones matrix for each illumination angle.

However, retrieval of such a Jones matrix is not feasible with 3×2 field tensors that we have in

Eq. A.8.

In this regard we substitute the 3×3 Jones matrix and scattering potential tensor in Eq. 3.7

with 2×2 tensors and discuss the justification and validity range of this approximation. Using

the Jones formalism, we can write the following matrix representation,E out
x1 E out

x2

E out
y1 E out

y2

E out
z1 E out

z2

 =

Jxx Jx y Jxz

Jy x Jy y Jy z

Jzx Jz y Jzz


E i l l um

x1 E i l l um
x2

E i l l um
y1 E i l l um

y2

E i l l um
z1 E i l l um

z2

 (3.8)
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Cross-polarized light

10µm

Lc

L1

L2

(a) (b)

(c)

Figure 3.3: (a) Schematic of the polarization-sensitive holography setup has been used to get
vectorial scattered fields for different illumination angles. (b) Cross-polarized light can be
measured from a corn starch granule when illuminated with a Y-polarized light. (c) Illumina-
tion pattern in the k-space: Circles are the desired pattern, and crosses are the experimental
pattern which is measured using Fourier analysis of the holograms.

Clearly, we do not have enough equations to find a 3×3 Jones matrix from these fields. We can

rewrite this equation using block-matrices:

(
E

out

2×2

E out
z1 E out

z2

)
=

 J 2×2
Jxz

Jy z

Jzx Jz y Jzz

(
E

i l l um

2×2

E i l l um
z1 E i l l um

z2

)
(3.9)

as a result we will have,

E
out

2×2 = J 2×2 ×E
i l l um

2×2 +
(

Jxz E i l l um
z1 Jxz E i l l um

z2

Jy z E i l l um
z1 Jy z E i l l um

z2

)
(3.10)
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Using the rotational matrix which is described in Eq. 3.5, we can find the components of

E i l l um . In the case of left-handed and right-handed input polarizations we have E i l l um
z1 =

−sinθcos
(
π/4−ϕ)

and E i l l um
z2 = sinθcos

(
π/4+ϕ)

. So, we will have,

J 2×2 = E
out

2×2 ×
(
E

i l l um

2×2

)−1

−sinθ

(
−Jxz cos

(
π/4−ϕ)

Jxz cos
(
π/4+ϕ)

−Jy z cos
(
π/4−ϕ)

Jy z cos
(
π/4+ϕ))(

E
i l l um

2×2

)−1

(3.11)

The first term of Eq. 3.11 is what we use in Eq. A.12 to reconstruct 2×2 scattering potential. We

call it as the approximated Jones matrix, J
appr o

2×2 . On the other hand, we call the Jones matrix

including the right term in Eq. 3.11 as the true Jones matrix, J
tr ue

2×2 .

We can rewrite Eq. 3.11 as follows,

J
tr ue

2×2 = J
appr o

2×2 −
(

f11(θ,ϕ)Jxz f12(θ,ϕ)Jxz

f21(θ,ϕ)Jy z f22(θ,ϕ)Jy z

)
(3.12)

where f11(θ,ϕ), f12(θ,ϕ), f21(θ,ϕ), and f22(θ,ϕ) can be found using Eq. 3.11 after inversion of

E
i l l um

2×2 .

We show the values of f11(θ,ϕ), f12(θ,ϕ), f21(θ,ϕ), and f22(θ,ϕ), in Fig. 3.4(a) for illuminations

with a conical pattern. We can see that the maximum of these values is sinθ, which relates

to the NA of the objectives. In our case, sinθ = 0.4 and the method is more accurate for

illumination angles with smaller θ. For many cases like tissues that are placed on a coverslip

(in XY-plane), the Jxz and Jy z terms are negligible as the tissue fibers are in XY-plane. However,

even for the cases with Jxz and Jy z comparable to Jx y and Jy x , almost 50 % of projections have

f (θ,ϕ) valuse smaller than 0.3.

However, the main reason that this is a good approximation can be justified by applying the

Fourier diffraction theorem on Eq. 3.12. Wolf’s method is a linear transform and as a result,

V
tr ue

2×2 (kx −k i n
x ,ky −k i n

y ,kz −k i n
z ) = V

appr o

2×2 (kx −k i n
x ,ky −k i n

y ,kz −k i n
z )−

kz

2π j
F2D

{(
f11(θ,ϕ)Jxz f12(θ,ϕ)Jxz

f21(θ,ϕ)Jy z f22(θ,ϕ)Jy z

)
e j k⃗i n ·r⃗

}(
kx ,ky

) (3.13)

the second term in Eq. 3.13 is the 3D tensorial reconstruction which is achieved by applying

Wolf’s method on 2D components of the tensor. It can be seen in Fig. A.5 that Jones matrix

components change slightly for different illumination angles, and especially for the case of

a thin-transparency, Jones matrix components such as Jxz or Jy z remain exactly similar for

different illumination angles. In this situation, different projections with opposite signs of

f (θ,ϕ) will cancel each other during the averaging process in the Fourier diffraction theorem

over different illumination angles. For our numerical phantom, as we can calculate all of the

3×3 Jones matrix components, we can evaluate the accuracy of this approximation. In this

regard, the x y component of the approximated scattering potential, V appr o
x y , and the true
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Figure 3.4: (a) Values of f11(θ,ϕ), f12(θ,ϕ), f21(θ,ϕ), and f22(θ,ϕ) for 90 projections with a
conical pattern. (b) Calculated V appr o

x y , (c) V tr ue
x y , and (d) their difference regarding Eq. 3.13.

(e) Histogram diagram of the true scattering potential values, and (f) the difference regarding
Eq. 3.13.

scattering potential, V tr ue
x y , as well as the 3D reconstruction of the second term in Eq. 3.13

are shown in Fig. 3.4. We calculated the mean squared error (MSE) for this approximation as

7%. Additionally, for a better comparison of the true scattering potential and the error, Figs.

3.4(e-f) show the histogram diagrams of these 3D reconstructions in the plane of best focus.

According to these figures, most of the values for the error is concentrated on zero or near zero,

while the true reconstruction is very well distributed.

3.2.3 Relationship between reconstructions performed in different polarization
states

As discussed earlier, the cross-polarized light shows zero intensities, especially at the back-

ground regions, and it results in random phase values. This makes the calibration of the

off-set phase (which is necessary due to the phase fluctuations in the holography setups),

and unwrapping challenging. To overcome this issue, we use the idea to make the input and

measured polarization states differ by 45◦. So, we illuminate a sample with +45◦ and −45◦

polarization states (a and b) with respect to the XY coordinate, and measure X-polarized and
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Y-polarized lights. This configuration guarantees to have the background light intensity in all

the measurements and avoid random phases. Now we explain how to convert these 4 tomo-

graphic reconstructions of the scattering potential, Vxa , Vy a , Vxb , and Vyb to the components

of the scattering potential tensor, Vxx , Vy x , Vx y , and Vy y . At first, we find the relationship for

the case with Born approximation. According to Eq. A.12, for two experiments of illumination

with a-polarized and b-polarized light, we have:

V (kx −k i n
x ,ky −k i n

y ,kz −k i n
z ) =

kz

2π j
F2D

{(
E s

xa E s
xb

E s
y a E s

yb

)(
Ẽ I xa Ẽ I xb

Ẽ I y a Ẽ I yb

)−1}(
kx ,ky

)
(3.14)

where Ẽ I i j is the amplitude of the input field component along i polarization when input field

is j = a,b polarized. Since, the input polarization is ±45◦, we have Ẽ I xa = Ẽ I y a = Ẽ I xb = −Ẽ I yb .

By rewriting Eq. 3.14,we can get:

V (kx −k i n
x ,ky −k i n

y ,kz −k i n
z ) =

kz

2π j
F2D

{
1

2Ẽ I xa

(
E s

xa E s
xb

E s
y a E s

yb

)(
1 1

1 −1

)}(
kx ,ky

)
=

kz

2π j
F2D

{
1

2

(
E s

xa/Ẽ I xa +E s
xb/Ẽ I xb E s

xa/Ẽ I xa −E s
xb/Ẽ I xb

E s
y a/Ẽ I y a −E s

yb/Ẽ I yb E s
y a/Ẽ I y a +E s

yb/Ẽ I yb

)}(
kx ,ky

) (3.15)

we can consider Vi j , i ∈ x, y , and j ∈ a,b, as the 3D scalar scattering potential which is

reconstructed by applying the Wolf transform on E s
i j /Ẽ I i j . As a result, we will have:

V =

(
Vxx Vx y

Vy x Vy y

)
=

1

2

(
Vxa +Vxb Vxa −Vxb

Vy a −Vyb Vy a +Vyb

)
(3.16)

In the case of the Rytov approximation, we can replace E s
i j /Ẽ I i j with log(1+E s

i j /Ẽ I i j ) in Eq.

3.15. This gives us the same result as Eq. 3.16 to convert the reconstructed Rytov-based scalar

scattering potentials to the elements of V .

As a result, based on the linear functionality of the scattering potential with scattered fields,

achieved thanks to the single-scattering assumption, we can use Eq. 3.16 to calculate the

scattering potential tensor elements using the ±45◦-polarized data.

3.2.4 Experimental setup

The polarization-sensitive holographic tomography system used to acquire experimental

data is shown in Fig. 3.3(a). The signal and reference arms are combined in an off-axis

configuration to record holograms at different illumination angles. The source is a 488 nm

CW fiber coupled laser diode, which is collimated and split into the signal and reference arms

with a beamsplitter. The polarization of the signal arm is controlled with a half wave-plate

(HW1) and a polarizer (P1). The illumination angle is scanned with a double-axis galvomirror.

We consider two arbitrary polarization states for our illuminations, +45◦ and −45◦, namely a,

and b, according to Fig. 3.2(b). Thanks to a 4F system consisting of a lens, L1, and a 60X dry
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Figure 3.5: Complex Jones matrix calculated for a birefringent digital phantom with an il-
lumination angle of θ = 25◦ and φ = 0◦. The synthetic measurements were generated using
the V-BPM. In order to visualize the complex values, brightness shows the amplitude and
color-code shows the phase of each Jones matrix component.

objective as the condenser, the position of the beam is fixed on the sample while scanning

the angle. The imaging of the sample on a CCD camera is done using another 4F system with

a water-dipping 60X objective and a tube lens (L2). The polarization of the reference arm

is aligned at 45 degrees with respect to X and Y axis to get the same intensity of reference

light for interference with both polarizations. The signal beam for which the polarization is

chosen using an analyzer, in two states of X, and Y is combined with the reference arm by a

beamsplitter. We measure 4 holograms totally and reconstruct the complex fields Exa , Ey a ,

Exb , and Eyb where in Ei j , j indicates the incident polarization and i indicates the output

polarization. For calibration purposes (as the illumination fields are not perfect plane-waves),

we measure E i l l um
i j in the absence of the sample. In Fig. 3.3(b), the cross-polarized light due

to the birefringence of the sample is shown in the absence of the reference beam, for the

corn starch granule. Fig. 3.3(c), shows the illumination pattern in the k-space. The desired

pattern is shown with circles. The experimental pattern is achieved using the Fourier map

of the hologram, and is shown with crosses. For some angles, it is slightly different from the

desired pattern, due to the imperfections of the galvo mirror. When we find the illumination

pattern using our holograms, the R matrix of Eq. 3.5(a) is calculated by sampling the pattern

in Fig. 3.2(a) with the points in Fig. 3.3(c).
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3.3 Results and discussion

3.3.1 Numerical Phantom

To evaluate the proposed 3D reconstruction method, we employed a numerical forward model,

specifically the split-step V-BPM, to generate synthetic data and obtain 2D projections. The

accuracy of the reconstruction method was evaluated by comparing it to the known index

tensor distribution of the digital phantom. The derivation of the V-BPM forward model can be

found in section 2 of Appendix A. The basic idea of this model is to propagate light slice-by-slice

by dividing a 3D sample into multiple 2D slices. The relationship between two subsequent

slices can be described by Eq. 3.17. To be specific, we can calculate the vector field,
−→
E (z +d z),

by propagating the field from the previous slice,
−→
E (z), followed by the phase and amplitude

modulation caused by the inhomogeneity and the birefringence of the medium, δn(x, y, z):

−→
E (z +d z) = expm

 j k0δn(z)d z

cosθ

×F−1
{

e− j
k2

x+k2
y

k+kz
d z ×F

{−→
E (z)

}}
(3.17)

where d z is the step size, expm is the matrix exponential applied on the RI tensor, δn, F is the

2D Fourier transform, and kx , ky , kz =
√

k2 −k2
x −k2

y represent the spatial frequencies in each

direction.

The scattered vector fields are calculated for a digital phantom with +45◦, and −45◦-polarized

input fields using the V-BPM. The rotational matrix described in Eq. 3.5 and Eq. 3.6 is also

considered. Four complex calculated fields, normalized to the input vector fields to give the

Jones matrix are shown in Fig. 3.5, for illumination with θ = 25◦, and φ = 0◦ where θ and

φ are defined in Fig. 3.2(b). 90 projections are calculated keeping θ but varying φ. Then,

we use these data for our reconstruction. The reconstruction process is similar to what

we use for the experimental data. We reconstruct based on the Rytov approximation and

then convert the reconstructions to get nxx , ny x , nx y , and ny y . In Fig. 3.6, we present the

reconstruction of nxx and ny x , and compare them with the ground truth. We can see the

underestimation and elongation along the optical axis, which is due to the missing spatial

frequencies, similar to the scalar ODT [26]. The full reconstruction of the tensor is shown in

section 4 of Appendix A and discussed in detail. We define the mean squared error (MSE) as

MSE = ||nreconstruction −nground−truth||2/||nground−truth||2 to perform a quantitative evaluation

on the 3D reconstruction of the RI tensor with respect to the ground-truth. This MSE metric is

calculated separately for each component of the tensor. Based on our calculation of the data

of Fig. 3.6, for nxx , the MSE of the reconstruction at the plane of focus (z = 0µm) is 0.104 and

the total MSE is 0.381. On the other hand, for ny x , the MSE of the reconstruction at the plane

of focus is 0.317 and the total MSE is 0.451. The larger value of the total MSE is due to the fact

that the Rytov reconstruction is always better in the plane of best focus.
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Figure 3.6: Reconstruction of the digital birefringent phantom using the Rytov approximation.
The first and second rows show YX, YZ, and XZ profiles of the ground-truth, and reconstruction
of nxx , respectively. The third and fourth rows show the same profiles for ny x . Full tensor
ground truth and reconstructions are presented in section 4 of Appendix A. The colorbars
show the refractive index contrast and are unitless.

3.3.2 Experiment

As proof of concept of our method, we first demonstrate our experimental setup by recon-

structing the 3D RI tensor of a cornstarch granule. Cornstarch granules, which exhibit a simple

birefringent structure, were suspended in silicone oil (n0 = 1.43) and placed between two #1

glass coverslips for imaging. Here, in order to overcome the phase unwrapping problem in the

presence of experimental noise, we use the idea of nonaligned input and output polarization.

As a result, the sample is illuminated from different angles with +45◦, and −45◦-polarized

light and we measure X, and Y components of the output field. Then, the reconstructions are

processed to get RI tensor in the XY coordinate system. A 3D total-variation (TV) denoising

algorithm as defined in Eq. A23 of Appendix A with a regularization parameter of λ = 2×10−3

is used on the final reconstructions to diminish the coherent noise due to the unwanted

reflections on the final reconstructions [66]. This TV algorithm is only for denoising purposes,

directly applied to the final images, and does not compensate for the missing-cone problem.
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Figure 3.7: YX, XZ, and YZ profiles of the 3D RI tensor reconstruction of corn starch granule.
The colorbars show the refractive index contrast and are unitless.

This issue is elaborated in section 5 of Appendix A. Results are shown in Fig. 3.7, where we can

see four different components of the RI tensor, nxx , nx y , ny x , and ny y , in 3D. As it can be seen

in the off-diagonal terms of the RI tensor, there are some azimuthally varying structures that

came from the amylopectin crystalline structures growing radially in corn, from its hilum. The

diagonal RI components are bereft of this information, the same as the conventional scalar

ODT.

Next, we investigate the viability of using our method for more complex anisotropic samples.

We present a case study using ex vivo mouse muscle tissue, a well-studied example of a

naturally birefringent tissue [67]. Striated muscle fiber cells in mammals contain repeated

longitudinally connected units known as sarcomeres, which are periodically organized into

substructures including A-bands (anisotropic) and I-bands (isotropic). As the characteristic

length scale of A- and I- bands is on the order of 1µm muscle tissue is well suited for a

demonstration of our method. Fresh ex vivo mouse muscle was cryo-embedded, sectioned
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Figure 3.8: YX profiles of the 3D reconstructions of the RI tensor components, nxx and nx y ,
for a 20µm thick muscle tissue in three different depths. The inset shows a 2.5X magnified
section of nx y YX profile which clarifies the sarcomere structure with A-bands and I-bands in
one muscle fiber. The colorbars show the refractive index contrast and are unitless.

into 20µm slices, mounted on a coverslip with water immersion, and imaged under the same

conditions as the previous experiment. The cross-polarized image is shown in Fig. A9 of

Appendix A. The regularization parameter in the 3D TV denoising algorithm for this muscle

tissue is λ = 0.8×10−3 and is applied directly on the final 3D RI tensor reconstructions. Fig.

3.8 shows YX slices from the 3D reconstruction of the RI tensor at three different depths. The

section of the tissue sample shown here consists of two en face muscle fiber cells which are

separated by a thin layer of connective tissue. The inset in Fig. 3.8 providing a closer look at

nx y term, indicates that this measurement could be used to extract quantitative morphological

data about the sarcomere structure. Some evidence of these structures is also visible in the

images of nxx , which can be attributed to the fact that both quantities are related to the local

mass density.

3.3.3 Coordinate-invariant polarization-sensitive contrast metrics

The RI tensor which contains nxx , nx y , ny x , and ny y components, depends on the coordinate

system which has been chosen arbitrarily. One can change the coordinate system and get a

new RI tensor. For example, when the coordinate system matches with the optical axes of the

sample, we will have a diagonal RI tensor. As a result, the values of off-diagonal components

in the RI tensor do not directly indicate the inherent birefringence of the sample. A sample
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Figure 3.9: A comparison between the YX profiles of the 3D reconstructions of (a) nx y and (b)
phase retardation for corn starch granule. (c) A 3D rotating rendering of the phase retardation.

with a larger value of ny x in a particular location may be less birefringent than another sample

with a smaller ny x depending on the orientation of the local optical axis with respect to the

laboratory coordinates.

To solve this issue, we can study the eigenvalue decomposition of the RI tensor. The eigen-

values of a matrix are invariant under any unitary transformation, such as the coordinate

rotation. We can consider the local phase modulation tensor in Eq. 3.17, expm
(

j k0d zδn
)
,

that the electric field vector experiences by propagation through a step d z. This step is a linear

operator and its eigenvectors and eigenvalues can be readily calculated. We use the difference

in the phases of these eigenvalues, (δ1 and δ2) as the contrast metric since they convey the

local retardation, independently of orientation. It has been shown in section 2 of Appendix A

that δ is directly related to the eigenvalues of the RI tensor µ1,2
n :

δ = δ1 −δ2 = k0d z
(
µ1

n −µ2
n

)
(3.18)

The phase retardation, δ(x, y, z), is a 3D scalar quantity which is invariant under any rotation of

the coordinate system in the XY plane. In Fig. 3.9 we present the calculated 3D phase retarda-
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tion for the corn starch granule. The YX profiles of the reconstructed nx y and phase retardation

are compared in Fig. 3.9(a) and (b). We can see that these two contrast metrics can show

different shapes depending on the local orientation of the optical axis. A 3D rotating rendering

of the phase retardation rendered with Icy platform [68] is shown in Fig. 3.9(c). It should be

mentioned that eigen-value and eigen-vector characterization of the RI tensor is the key point

to quantify the parameters of anisotropicity with a physical meaning. Each component of

the RI tensor, by itself, does not convey information about the local birefringence or the local

direction of the fibrous structures of the sample. However, the birefringence can be calculated

as the difference in the eigen-values of the RI tensor
(
µ1

n −µ2
n

)
, and the slow-axis orientation

of the sample can be calculated by eigen-vectors of the RI tensor. These parameters (that have

been shown and discussed in section 4 of Appendix A) are inherent properties of the sample

and do not get affected by the orientation of the experimental coordinate.

3.4 Conclusion

To summarize, our study examined optical diffraction tomography in anisotropic settings and

highlighted the impact of input polarization on conventional ODT reconstruction for birefrin-

gent samples. We developed a linear ODT model for refractive index (RI) tensors, utilizing the

Rytov approximation, and demonstrated its efficacy through numerical simulations using the

V-BPM forward model. Furthermore, we employed a polarization-sensitive holography setup

to reconstruct 3D RI tensors using vectorial scattered fields from multiple angles.

Our direct reconstruction method can be further improved by incorporating iterative recon-

struction schemes along with nonlinear forward models, such as our V-BPM, and we expect to

extend the previously developed learning tomography approaches for isotropic samples to

general anisotropic samples [27]. Polarization-sensitive ODT, should be important for biologi-

cal samples with fibrous structures, to provide information about the biological details related

with the birefringence of the sample and can be resolved in the off-diagonal components of

the RI tensor or the 3D phase retardation.

3.5 Follow-up works

Our results on polarization-sensitive ODT opened up a new research line in ODT and quanti-

tative phase microscopy. We showed the first experimental reconstruction of the refractive

index tensor based on several approximations that we discussed in this chapter. There have

been several papers recently published based on our results. As we discussed in section 3.2.2,

the ambiguity due to the inaccessible z-polarization component causes inaccuracies in the

tensor reconstruction. Recently Ref.[69] presented a method to solve this issue. The idea of

this work is to retrieve the z-component of the tensor by slightly tilting the illumination angle

and using the Fourier differentiation theorem. This is based on the approximation that the

Fourier transform of the scattering potential tensor does not change much with the small
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tilt in the illumination angle. Later, they also presented a regularized reconstruction of the

refractive index tensor using an iterative optimization algorithm [70]. Our reconstruction

technique was based on the holographic measurements of the Jones matrix. It has been shown

that by using an iterative reconstruction method, an intensity-based polarization-sensitive

ODT can be achieved [71].
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This chapter is a pre-print version of the following paper:

• A. Saba, C. Gigli, Y. Pu, and D. Psaltis (2023). "Second-harmonic optical diffraction

tomography". to be submitted.

4.1 Introduction

Second-harmonic (SH) microscopy is a nonlinear optical imaging technique that illuminates

the sample with a high-power coherent source and images the generated light at a double

frequency. This microscopy technique is based on the second-harmonic generation (SHG)

process due to the interaction of light with the second-order susceptibility of the material,

χ(2) [30]. In SHG, two photons at the fundamental frequency interact with the second-order

susceptibility, and a photon at the double frequency is generated. Owing to the fact that the

second-order susceptibility is vanishing in the case of centro-symmetric molecular structure,

SHG can present a microscopy modality that reveals non-centro-symmetric features in a

background-free image. Additionally, the SHG process is a parametric conversion in which

there is no optical energy deposition upon the sample, in other words, the energy of the

SH-emitted photon is the same as the energy of the two annihilated photons. These two

features make SH imaging an interesting microscopy modality for biological applications

which was under intensive research study in the previous years in both wide-field and confocal

configurations [72], [73].

In comparison with other background-free imaging modalities such as fluorescent microscopy,

SH microscopy has several advantages. The first advantage is its stability, SHG does not

experience blinking or photobleaching. The SHG is a narrow-band signal and is spectrally

far from the fundamental beam, making it appropriate for the background-free imaging

modality. SH emission is spectrally tunable with the fundamental beam wavelength and its

emission wavelength does not depend on a specific dye. The other important feature is the

temporal coherence of SHG which provides the possibility of interference-based imaging and
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holography. As a result, Pu, et al. [74] presented harmonic holography where we can measure

the amplitude and phase of the SH-generated beam using off-axis holography. This approach

was used for focusing SH light in a turbid medium using Second Harmonic Radiation Imaging

Probes [75], [76] and SH-holographic imaging of biological samples [77].

In this chapter, we present second-harmonic optical diffraction tomography (SH-ODT) to

reconstruct the 3D distribution of the χ(2) of the sample as a new modality or contrast agent

for ODT. The 3D tomographic reconstruction is based on the 2D complex SH-generated fields

by the sample, which are measured using harmonic holography as the sample is illuminated

with a high-power pulsed laser from different angles. We call these SH projections. The

tomographic reconstruction of SH was shown in [78], not in the ODT configuration, but using

short-coherent-gated 3D sectioning which has a limited axial resolution. Very recently, the

theoretical formalism for SH-ODT was proposed in [79], a concurrent work with ours. However,

Ref. [79] does not provide any experiments or validation of the proposed method which is

the main challenge in SH-ODT. SH-ODT requires very sophisticated experiments which we

will discuss in this chapter. We provide synthetic data for digital χ(2) phantoms to validate

the formalism and we demonstrate our methodology by reconstructing the muscle tissue,

experimentally.

4.2 Mathematical formalism

In this section, we present the mathematical description of the SHG by a sample with an inho-

mogeneous linear refractive index, n(r ), and an inhomogeneous second-order susceptibility,

χ2(r ), and also the inverse SHG problem by applying the Fourier diffraction theorem [13] for

the SH Helmholtz equation. As discussed in the introduction, second-order susceptibility

exists where the sample is not centrosymmetric. During the SHG process, two photons at the

fundamental wavelength, λ f interact with the sample, and a photon at the SH wavelength,

λSH =λ f /2 is generated. The nonlinear Helmholtz equation at fundamental and SH frequen-

cies can describe the scattering and the depletion of the fundamental beam at λ f , as well

as the generation and scattering of the SH beam at λSH [30]. It should be noted that the

second-order susceptibility of the samples is usually anisotropic and a vectorial formalism

should be presented to consider the polarization of light in the nonlinear Helmholtz equation.

However, we assume that the linear refractive index of the sample, n(r ) is a scalar distribution,

and also, we assume that the inhomogeneity correlation length of the sample is much longer

than the wavelength, and as a result, we can neglect the depolarization term, ∇∇·E , in the

vectorial nonlinear Helmholtz equation [80].

It has been shown in Appendix B that if we neglect the re-scattering of the SH-generated field,

and also consider the Born approximation (neglecting the linear scattering) it can be written

that,

−→
E SH (r ) =

∫
GSH (r− r′) ·E 2

0 e2 j k⃗i n ·r′ · ¯̄V SH (r′)
−→
Q i l l umdr′ (4.1)
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where
−→
E SH (r ) is the SH field vector in the location r, GSH (r− r′) = e j kSH n0|r−r ′|/|r− r′| is the

Green’s function of the SH Helmholtz equation with kSH = 2π/λSH , ¯̄V SH (r′) =
k2

SH
4π

¯̄χ(2)(r′) is

the SH scattering potential tensor with the size 3×6, and we define the second-order vector−→
Q i l l um = [p2

x , p2
y , p2

z ,2py pz ,2px pz ,2px py ]T . The vector p⃗i l l um = [px , py , pz ]T shows the polar-

ization state of the incident beam as
−→
E I (r′) = e j k⃗i n ·r′ p⃗i l l um and is always perpendicular to the

illumination wave-vector, p⃗i l l um · k⃗i n = 0.

Next, we can invert Eq. 4.1 for the plane wave illumination beam E⃗ I (r′) = e j k⃗i n ·r′ p⃗i l l um using

the Fourier diffraction theorem. We have discussed in section 2 of Appendix B the details of

the Fourier domain inversion. In the simplest case, we can consider the scalar SH scattering

potential and discard the vectorial formalism. In this case, the SH scattering potential can be

found as,

V SH (Kx −2k i n
x ,Ky −2k i n

y ,Kz −2k i n
z ) =

Kz

2π j E 2
0

F2D
{
E SH }(

Kx ,Ky
)

(4.2)

in which, F2D is the 2D Fourier transform, Kx and Ky are the Fourier components in the

transverse direction, and Kz =
√

(kSH n2ω
0 )2 −K 2

x −K 2
y . Eq. 4.2 shows a relationship in order

to fill the 3D Fourier domain of the SH scattering potential with the 2D Fourier transform of

the complex SH-generated fields. It is clear based on this equation that Ewald’s spheres are

two-folded bigger and the shift should be 2k⃗i n .

Eq. 4.2 is valid for a scalar χ(2) distribution. It is also applicable if we assume that the illu-

mination angle is small and the polarization vector p⃗i l l um is not changing a lot by angle

change. In this case, it can provide an effective distribution of χ(2)
e f f which can qualitatively

show interesting features in the 3D reconstruction. However, it will be not physically clear how

this effective second-order susceptibility distribution will be related to the elements of χ(2)

tensor as long as we do not know the crystalline orientation of the sample. In order to present

a polarization-sensitive approach and a quantitative reconstruction of the elements of the SH

scattering potential tensor, we can use the methodology that we presented in [80] which is also

proposed recently in [79]. For this purpose, we illuminate the sample for each illumination

angle with different input polarization states and measure the complex SH-generated field

for each input polarization state. Since the χ(2) is a rank-3 tensor, we can have 3 indepen-

dent experiments or polarization states for each illumination angle, in contrast to the linear

case in which we can only have two independent states [80]. The theoretical details of the

polarization-sensitive SH-ODT are presented in section 2 of Appendix B. We can see that a

2×3 section of the SH scattering potential tensor can be approximately found as,

¯̄V SH
2×3(Kx −2k i n

x ,Ky −2k i n
y ,Kz −2k i n

z ) =

Kz

2π j E 2
0

F2D

{[
E SH

x1 E SH
x2 E SH

x3

E SH
y1 E SH

y2 E SH
y3

][
s⃗1, s⃗2, s⃗3

]−1

}(
Kx ,Ky

)
(4.3)
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in which E SH
i j is the complex 2D SH field at the imaging plane polarized along i ∈ {

x, y
}

for

the input polarization state of j ∈ {1,2,3}, s⃗ j = [p2
x , p2

y ,2px py ]T is a part of the vector q⃗i l l um for

the input polarization state of j , and the ¯̄V SH
2×3 is a matrix containing 6 elements of the full SH

scattering potential tensor as,

¯̄V SH
2×3 =

k2
SH

4π

[
χ(2)

11 χ(2)
12 χ(2)

16

χ(2)
21 χ(2)

22 χ(2)
26

]
(4.4)

Eq. 4.3 shows how the complex SH-generated fields for 3 different independent input polar-

ization states can be combined to create the Ewald’s spheres and fill the 3D Fourier domain

of the elements of the SH scattering potential tensor. This process is shown in Fig. (b). After

measuring the complex SH fields holographically, we can use Eq. 4.3 to fill the 3D Fourier

domain of each element of the tensor, and we can take the inverse 3D Fourier transform

for each element to calculate its 3D spatial distribution. We have presented numerical and

experimental results in section 4.3 to validate this formalism.

The inversion of the SHG in Eq. 4.2 is based on the zeroth-order Born approximation which

completely neglects the linear scattering of the sample at the fundamental wavelength. How-

ever, if we have the viability to measure the complex fundamental scattered field, we can

slightly improve the zeroth-order Born approximation by replacing
{
E SH

}
with {E SH

(
E F /E I

)−2
}

in Eq. 4.2 where E F and E I are the complex 2D fields with and without the sample, respectively.

We call this approach corrected-field-Born approximation and the mathematical details for

this approximation are presented in section 3 of Appendix B.

Due to the limited numerical aperture of the imaging optics, the limited number of projec-

tions, and also having the transmission configuration, we cannot retrieve all the 3D spatial

frequencies of the SH scattering potential tensor elements. This issue is the same as the linear

ODT, known as the missing cone problem, which was under intensive research study in the

previous years [26]. Missing cone problem causes the 3D reconstructed scattering potential

to be underestimated and also elongated along the optical axis, here z-axis. One way to fix

this issue is to use a piece of prior information on the reconstruction elements of the SH

scattering potential tensor. Here, we use a Total-Variation (TV) sparsity condition to regularize

the reconstruction of the SH inverse problem. For this purpose, after reconstructing the 3D

Fourier domain of the SH scattering potential tensor using Eq. 4.2 in the scalar case, and Eq. 4.3

in the vectorial case, which we call the mn element of its tensor as Ṽ SH ,r econ
mn

(
Kx ,Ky ,Kz

)
, we

optimize the following minimization task to find the V SH ,opt
mn ,

V SH ,opt
mn = argmin

x

[∥F3D {x}− Ṽ SH ,r econ
mn ∥2

2 +RT V {x}
]

(4.5)

in which RT V {x} is the gradient-based TV regularization on the 3D distribution of x. We will

see in the next section how this iterative approach can help in facing the missing cone problem

for the 3D reconstruction of the SH scattering potential tensor.
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Figure 4.1: 3D reconstruction of second-order susceptibility tensor using synthetic data. The
6 elements of the second-order susceptibility tensor achieved using Eq. 4.3 are presented in
(a) χ(2)

11 , (b) χ(2)
12 , (c) χ(2)

16 , (d) χ(2)
21 , (e) χ(2)

22 , and (f) χ(2)
26 , respectively. Each figure presents the 3D

reconstruction in YX, YZ, and XZ planes.

4.3 Results

In this section, we present 3D reconstructions of χ(2) distribution using the presented formal-

ism in section 4.2. To evaluate the mathematical formalism, we first reconstruct a sample

with a known ground-truth χ(2) distribution using a set of synthetic measurements. In the

second subsection, we present our experimental reconstruction of muscle tissue using an

SH-holographic setup which we will discuss.

4.3.1 3D χ(2) reconstruction based on synthetic data

We consider a 3D distribution of Barium titanate (BTO) nano-particles immersed in a back-

ground medium with the refractive index of n0 = 1.7. BTO nano-particles have a 4mm group

symmetry with non-zero χ(2)
15 , χ(2)

24 = χ(2)
15 , χ(2)

31 , χ(2)
32 = χ(2)

31 , and χ(2)
33 elements in their second-

order susceptibility tensor. We generate complex fields at fundamental, λ = 1030nm, and

SH, λ = 515nm simulated with two frequency-domain Finite-element-method (FEM) simula-

tions, at each of these wavelengths, coupled to each other. The simulations are done using a

commercial FEM solver (COMSOL Multiphysics 5.4). We illuminate the sample with different

angles and collect the complex fields at the fundamental and SH wavelengths. We use these
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Figure 4.2: TV-based iterative reconstruction of second-order susceptibility tensor using
synthetic data. The 6 elements of the second-order susceptibility tensor achieved using Eq. 4.5
are presented in (a) χ(2)

11 , (b) χ(2)
12 , (c) χ(2)

16 , (d) χ(2)
21 , (e) χ(2)

22 , and (f) χ(2)
26 , respectively.

data for the 3D reconstruction of our sample. The simulated sample consists of two BTO

nano-particles with a diameter of 200nm. aligned with the same crystalline orientation. The

sample is illuminated with a circular pattern with the maximum angle of 10◦. We have 3

input polarization states. X-polarized input, Y-polarized input, and diagonally-polarized (45◦)

input. The SH-generated light is calculated for all the angles and input polarization states.

The cz-axis of two BTO particles is oriented along the X-axis of the experimental coordinate

system. As a result, the second-order susceptibility tensor of these particles is as follows,

¯̄χ(2) =

χ
(2)
33 χ(2)

31 χ(2)
31 0 0 0

0 0 0 0 0 χ(2)
15

0 0 0 0 χ(2)
15 0

 (4.6)

We use the synthetic data for different input polarization states and different illumination

angles calculated using FEM, and use first-order Born approximation and Eq. 4.3 to calculate

the 3D distribution of the SH susceptibility. We present the results in Fig. 4.1. The 6 elements

of the ¯̄χ(2) tensor is reconstructed and presented in this figure. The reconstruction is underes-

timated and elongated along the optical axis due to the missing-cone problem, but it matches

with the ground-truth knowledge of the sample, as the χ(2)
16 , χ(2)

21 , and χ(2)
22 elements are zero,

matching with Eq. 4.6, and the ratio of the other 3 non-zero elements are matching with the
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ground-truth values.

In Fig. 4.2, the iterative reconstruction of the second-order susceptibility tensor using a

TV-regularization is presented, as explained in Eq. 4.5. All 6 elements of the tensor are

shown. A comparison of this figure with Fig. 4.1 clarifies how iterative reconstruction and

TV-regularization help to solve the underestimation of the reconstruction and elongation

along the optical axis. The values of the TV-based iterative reconstruction are much closer to

the ground-truth values and χ(2)
16 , χ(2)

21 , and χ(2)
22 elements are zero, as the crystalline orientation

implies.

4.3.2 Explanation of the experimental setup

We discussed the 3D reconstruction of the SH scattering potential tensor in the scalar and

polarization-sensitive scenarios based on the 2D measurement of the SH-generated fields

for each illumination angle. In this subsection, we present a summary of the experimental

setup in order to measure the complex SH fields holographically and the 3D reconstruction of

biological samples having endogenous second-order susceptibility.

The first experiments for digital harmonic holography were presented in [74]. We use the

same principles to build a polarization-sensitive and multi-angle SH-holography setup. The

polarization-sensitive holographic SH-ODT system we use to acquire our experimental SH

complex fields for different samples of interest is shown in Fig 4.3(a). The light source is a

yttrium-doped fiber laser (Amplitude Laser Satsuma) with a wavelength of λF = 1030nm, 280fs

pulses, and a repetition rate of 125kHz, which leads to the pulse energy of 40µJ. The power of

the source beam is controlled with a Half-waveplate (HW1) and a polarizer (P1) which sets

its polarization to the horizontal direction (x-axis). The source beam is split into the signal

and the reference arms using a beam splitter (BS1). The polarization of the signal arm is

controlled with another half-waveplate (HW2) and we can set it to 3 independent states of

horizontal, vertical, and 45-deg input polarization states. Using a galvo mirror (GM-V), we

change the illumination angle in the vertical direction. GM-V is then imaged on a secondary

galvo mirror (GM-H) using a 4F system (L1 and L2 lenses). GM-H controls the illumination

beam angle in the horizontal direction and is imaged on the sample using another 4F system

consisting of L3 and L4 lenses. This 4F system has a demagnification of 8 which makes an

angular magnification with the same amount. The sample generates the SH light (green

beam in Fig. 4.3(a)) which is imaged using a microscope objective and L5 on the Scientific

CMOS camera (Andor Neo 5). On the reference side, an SH Gaussian beam is generated with a

lithium-niobate LiNbO3 uniform crystal. Due to the extremely short coherent length of the

light source corresponding to 280fs, the optical paths between the reference and signal arms

should match. To have that, we use a delay path in the reference arm on a motorized stage to

control the optical path of the reference arm. The polarization of the reference SH arm is set to

45-deg in the x y lab system with HW3 to be able to get the interference with both polarization

components of the SH signal beam. The reference and signal arms are combined in an off-axis
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configuration and their polarization is filtered with P2 in order to get the hologram of the

desired output polarization. We consider two output polarization of x and y orientations.

Filtering the SH light is an important issue in the SH holographic setup. In order to completely

block the high-power fundamental beam we use a set of spectral filters with the total optical

density of OD19. On the reference side, filter F1 drops the intensity of the fundamental

beam and also gives us the ability to have some part of the fundamental beam in the case of

measurement of E F and E I which is possible by removing F3. On the signal side, we have two

filters, F2 and F3 which reduce the intensity of the fundamental beam. For the imaging, we use

a 60X dry objective (Nikon 60X-PF Plan Fluorite, 0.85 NA, 0.31-40mm WD). The objective is

dry but the sample is immersed in water. This issue causes aberrations which can be corrected

numerically as we have access to the complex fields holographically.

The desired sample of the study is illuminated with a conical illumination pattern with a

maximum angle of θ ≈ 12◦ and the phase and the amplitude of the light at the SH and

fundamental wavelengths are collected for different pairs of input and output polarization.

We use this data for the tomographic 3D reconstruction of χ(2) distribution which we discuss

in the next section.

4.3.3 Experimental results on muscle tissue

As mentioned in the introduction, SH-microscopy is a useful label-free and background-

free imaging modality for biological samples that include fibrous proteins with endogenous

second-order susceptibility, such as collagen and myosin. In this regard, the study of the

structure of the muscle fibers, and useful microscopic morphological information about the

supramolecular structures of myosin can be accomplished using an SH imaging modality

[81]–[83]. As a result, we investigate the viability of our 3D SH-ODT technique for muscle tissue

fiber. The sample is a Fresh ex vivo cryo-embedded mouse muscle with a 20 µm thickness,

fixed with paraformaldehyde (PFA), immersed in water as the background medium, and

sandwiched between two #1 cover-slips.

We can see in Fig. 4.3(b-d) the holographic results achieved from SHG by a skeletal muscle fiber.

The endogenous χ(2) distribution of muscle fiber generates the SH field at the λSH = 515nm

which is combined with an SH reference beam on the detector to form the SH-hologram. The

2D Fourier transform of the SH hologram is shown in Fig. 4.3(b). We use Fourier-domain

holographic extraction to achieve the amplitude and phase of the SH emission from the

muscle fiber as illuminated with a tilted fundamental beam. The amplitude and phase of the

complex SH field are shown in Fig. 4.3(c-d). The muscle fiber has been composed of repeating

connective units, known as sarcomeres, shown in Fig. 4.3(f), which are arranged periodically

along the fiber direction. The periodic structure of sarcomeres can be clearly seen in the

amplitude of the SH-emission in Fig. 4.3(c). We take a closer look at this periodic structure

of sarcomeres by plotting the profile of the amplitude and phase of the SH emission on the

dashed line shown in Fig. 4.3(c). The phase and amplitude plots are presented in Fig. 4.3(e). We
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Figure 4.3: (a) Experimental setup for multi-angle SH-holography. (b) Fourier transform
of the SH hologram from muscle fiber. (c-d) Holographic extraction of the amplitude and
phase of the SH-generated field from the muscle fiber as the sample illuminated with a tilted
fundamental Gaussian wave. The amplitude values are normalized and the phase map is
shown in the color code of (d) as the brightness is modulated with the amplitude. (e) The 1D
profile of the amplitude (blue) and phase (orange) of the SH-generated field along the dashed
line is shown in (c). We can see the periodic amplitude and phase variation, amplitude dips
between myosin crystals, and ±π jumps in phase. (f) Structure of the muscle tissue sarcomere.

see that the phase of the SH emission has ±π jumps in the dips of the amplitude. This is due to

the fact that within a period of the sarcomere, the myosin filaments are mirrored with respect

to the H-zone, as clearly demonstrated in Fig. 4.3(f). When a crystal gets mirrored, the χ(2)

values change their sign, which will lead to a π shift in the SH phase profile. This is previously

studied by interferometric SH-microscopy [84]. It should be noted that the centro-symmetry

implies that the amplitude of the SH emission vanishes at the ends of the sarcomere unit,

known as z-disks, and also at the middle of these periodic units. This can be clearly observed

in the dips of the amplitude profile of Fig. 4.3(e).

We collect the fundamental and SH holograms by illuminating the sample from 180 different

angles and extracting the phase and amplitude of the SH emission and fundamental scattering

for each projection. As the target muscle fiber is mainly oriented along the y-direction, the
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Figure 4.4: SH Tomographic reconstruction. (a) 2D YX profile of the 3D reconstruction of χ(2)

distribution in three different Z planes. The values are normalized to the [-1,1] range. (b) 2D
YX profile the 3D refractive index reconstruction in three different Z planes.

dominant component in the first column of its χ(2)-tensor is χ(2)
y1 [82]. As a result, we consider

the x-polarized illumination and measure the y-polarized complex SH-emission to reconstruct

the 3D distribution of the −21− element of the tensor.

The 3D reconstruction of the sample is presented in Fig. 4.4. Fig. 4.4(a) shows the yx profile

of the χ(2) reconstruction in three different z-planes. This figure clearly demonstrates the

structure of myosin proteins which are periodically arranged. A 3D reconstruction of the

linear refractive index distribution is presented in Fig. 4.4(b) using Rytov approximation [25]

with the holographic measurements of the linear scattering at the fundamental wavelength. A

visualization of the 3D renderings of the reconstructed χ(2) and refractive distributions are

shown in Fig. 4.5(a-b).

4.4 Discussion

We showed the tomographic reconstruction of the BTO nano-particles with synthetic data

and muscle tissue with experimental data in secion 4.3. We can observe several aspects in

the reconstructions achieved using SH-ODT. The SH-holographic measurements in Fig. 4.3

show very interesting features in the amplitude and phase of the SH signal emitted from the

muscle tissue. The ±π phase jumps present details about the morphology of the myosin

proteins. Additionally, the strength of the SH emission informs about the thickness of the
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Refractive index(a) (b)

Figure 4.5: (a) 3D rendering of the χ(2) reconstruction using SH-ODT. (b) 3D rendering of the
refractive index reconstruction using linear ODT.

myosin proteins. On the other hand, SH-ODT presents a 3D quantitative reconstruction

of χ(2) of the sample. This imaging modality provides a label-free and background-free 3D

image. Comparison of the reconstructed second-order susceptibility and refractive index

distributions in Fig. 4.4 shows SH-ODT provides important and interesting features which

cannot be seen in the linear ODT. The periodic arrangement of the sarcomeres units can be

hardly seen in the linear refractive index reconstruction but with a low resolution and contrast.

However, the second-order susceptibility reconstruction presents a detailed image of the

muscle tissue fibers.

There are several advantages for SH-ODT in comparison with confocal SH-microscopy. First of

all, ODT requires angle scanning and is faster than 3D spatial scanning in confocal microscopy.

More specifically about the SHG, SH-ODT can provide a better signal-to-noise ratio due to

the presence of the reference beam in the SH-holography. Additionally, the reconstruction is

quantitative and shows the 3D distribution of χ(2). The ±π phase jumps in the SH field and

the positive and negative distributions of χ(2) can be shown in SH-ODT.

Due to the shorter wavelength for the SH signal, the resolution of the SH-ODT is twice better

than the conventional ODT, both in the transverse and axial directions. The resolution can

be further improved by sample rotation or wavelength scanning. This improved resolution

and contrast makes SH-ODT a very useful technique for the reconstruction of biological and

non-biological samples containing non-centrosymmetric materials. All of these advantages

of SH-ODT are at the expense of a complicated experimental setup and the high-power

illumination beam. In the case of our experimental setup presented in Fig. 4.3, we use a light

source with 3.5µJ pulse energy and use 50% of this power to illuminate the sample. Increasing

the intensity of the illumination more than in our case could cause several problems such

as bubble generation and damaging the imaging objective lens. The required exposure time

to capture a high signal-to-noise ratio SH image with our illumination intensity was about

100ms. Nevertheless, the development of high-power lasers and cameras with high quantum
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efficiency facilitates the implementation of SH-holography and SH-ODT setups.

We can generalize the methodology of this chapter to other optical nonlinear processes rather

than SHG. For non-centrosymmetric materials, we can observe sum-frequency generation

if we have two high power sources. In sum-frequency generation, two coherent sources at

frequencies ω1 and ω2 combine and generate a third frequency, ω1 +ω2 →ω3. The nonlinear

polarizability for this process will be,

Pi (r,ω3) = ϵ0χ
(2)(r )E1(r,ω1)E2(r,ω2) (4.7)

where E(r,ω1), and E(r,ω2) represent the electric field in two pump frequencies. Considering

the scalar regime, the electric field of the sum-frequency generation will be,

E SFG (r,ω1 +ω2) =
∫

GSH (r− r′) ·E1e j k⃗i n,1·r′ ·E2e j k⃗i n,2·r′ ·V SF (r′)dr′ (4.8)

by inverting Eq. 4.8 using the Fourier diffraction theorem, we can find the sum-frequency

scattering potential,

V SF (Kx−k i n,1
x −k i n,2

x ,Ky −k i n,1
y −k i n,2

y ,Kz−k i n,1
z −k i n,2

z ) =
Kz

2π j E1E2
F2D

{
E SF }(

Kx ,Ky
)

(4.9)

in which Kx and Ky are the Fourier components in the transverse direction, E1 and E2 are

the amplitude of the fields at frequencies ω1, and ω2, and Kz =
√

(kSF nω3
0 )2 −K 2

x −K 2
y . Eq. 4.9

shows how the spatial frequency domain of the scattering potential should be filled based

on the 2D Fourier transform of the generated nonlinear signal. According to this equation,

the phase matching condition is the key point in understanding how different frequencies of

the scattering potential contribute to the 2D Fourier transform of the generated signal. If we

decompose the generated signal into plane waves in the Fourier domain, the phase-matching

condition should be satisfied for the plane wave of E SF
(
Kx ,Ky

)
. The phase-matching con-

dition applies that
−→
K =

[
Kx ,Ky ,Kz

]
=
−→
K g +

−→
k i n,1 +−→

k i n,2 where
−→
K g is the frequency vector of

the corresponding grating in the scattering potential which generates this plane wave of E SF .

Considering Eq. 4.9, we can clearly see this phase-matching condition in the way that the

frequency components of the scattering potential are filled. As a result, we can simply rewrite

this equation for any parametric nonlinear conversion, such as third-harmonic generation

or four-wave mixing by taking the phase-matching condition into account for that nonlinear

conversion process.

4.5 Conclusion and future work

Concluding, we presented ODT for the second-harmonic parametric conversion and showed

3D reconstructions of the second-order susceptibility of the sample using multiple-angle

holographic measurements of SHG. The presented formalism was based on applying the

Fourier diffraction theorem for the SH Helmholtz equation. We developed SH-ODT for recon-

54



Second-harmonic ODT Chapter 4

structing the second-order susceptibility based on the first-order Born approximation. The

proposed methodology is tested with synthetic examples achieved using FEM. We applied our

methodology to a biological example, a muscle tissue fiber, and reconstructed its second-order

susceptibility showing various features such as myosin crystals in the sarcomere units of the

tissue. The presented SH-ODT shows high-resolution label- and background-free 3D images

of details that cannot be revealed in linear ODT or QPI.

The presented work in this chapter has a significant impact on the theory and experiments

of ODT and can contribute to developing new modalities for digital-holography-based 3D

imaging. There are 3 aspects for SH-ODT to be conducted in the future. Firstly, studying

more biological and non-biological samples using SH-ODT. Secondly, developing iterative

approaches for SH-ODT based on different forward models such as the nonlinear beam

propagation method in order to improve the reconstruction fidelity and avoid artifacts due

to the missing-cone problem or multiple scattering, and lastly, generalizing nonlinear ODT

to other nonlinear optical processes such as sum-frequency generation, third-harmonic

generation, and Coherent Anti-stokes Raman scattering.
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5 Iterative ODT using physics-informed
deep learning

This work has been published in the following paper [85]:

• A. Saba, C. Gigli, A. B. Ayoub, and D. Psaltis (2022). Physics-informed neural networks

for diffraction tomography. Advanced Photonics, 4(6), 066001.

A. Saba carried out the algorithm implementation and obtained the results and reconstruc-

tions.

5.1 Introduction

In the last years, many different iterative methods have been proposed to reconstruct accurate

refractive indices from ill-posed measurements [26]–[28], [35], [86]. The main idea driving

iterative approaches is to utilize a forward model that forecasts the potential projections for

the current estimation of the refractive index in each iteration. Then, the 2D prediction is

compared with the experimental measurements of the projection as a loss function, and

the refractive index estimation is adjusted through the minimization of this loss function,

incorporating any additional prior knowledge, such as sparsity conditions. Importantly, such

an iterative scheme requires an analytical/semi-analytical model in order to backpropagate

the computed loss and update the estimation of the refractive index. This precludes the use of

common mesh-based numerical solvers like finite difference and finite element methods. In

Ref. [26] the authors use a linear (single-scattering) forward model, in the approach proposed

in Refs. [27], [28], [86], referred as learning tomography, the forward model is beam propaga-

tion method (BPM), and in Ref. [35] the authors resort to the Lippmann–Schwinger equation.

In the case of high-contrast samples or multiple-scattering, the forward models employed in

these iterative solutions can either be computationally demanding or prone to inaccuracies.

As a result, presenting a fast, accurate, and differentiable forward model is necessary to be

used in iterative ODT. Physics-informed neural networks (PINNs), can be a good candidate for

solving forward scattering problem and being used in iterative tomographic reconstruction.
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PINNs have recently gotten intensive research attention for solving different complex problems

in physics [87], [88]. These networks use physics laws as the loss function instead of the data-

driven loss functions. In conventional supervised deep learning, a large dataset of labeled

examples is used for the training process: by comparing the known ground truth with the

predictions from a deep multi-layer neural network, one can construct a loss function and

tune the parameters of the network in order to solve complex physical problems. Different

examples of these data-driven neural networks are proposed for optical applications such as

resolution enhancement [89], imaging through multi-mode fibers [90], [91], phase retrieval

[92], ODT [29], and digital holography [93], [94]. In these networks, the knowledge acquired

by the network strongly depends on the statistical information provided in the dataset, and

training such a network requires access to a large dataset. In contrast, PINNs directly minimize

the physical residual from the corresponding partial differential equation (PDE) that governs

the problem instead of extrapolating physical laws after going through a large amount of

examples. In the pioneering approach proposed by Lagaris et al. [95], the neural network

maps independent variables, such as spatial and time coordinates, to a surrogate solution of a

PDE. By applying the chain rule, for example through auto-differentiation integrated in many

deep-learning packages, one can easily extract the derivatives of the output fields with respect

to the input coordinates and consequently construct a physics based loss [96]. The correct

prediction can be therefore retrieved by minimizing the loss with respect to the network

weights. This approach has been used to solve nonlinear differential equations [97]–[100], to

realize the forward model in the inverse design of optical components [101], and to extract

material parameters in near field microscopy [102].

Having the independent variables of PDE as the input of the neural network limits the use

of PINNs when fast inference is required. For the example of optical scattering, the neural

network should be trained for each refractive index distribution separately. A different idea

was proposed recently in Ref. [103] to solve Maxwell’s equations for microlenses with different

permittivity distributions. The calculation of physical loss, in this case, is based on the finite

difference scheme, and in contrast to the previous approach which is trained for a single

example, this model proved to be well-suited for cases in which fast inference is required.

However, such a PINN was only demonstrated to work for homogeneous 2D samples.

In this chapter, we extend this idea for inhomogeneous and 3D cases and present a MaxwellNet

which is able to solve different forward scattering problems, such as light scattering from

biological cells. In the first part of the work, we train MaxwellNet for 2D digital phantoms and

show how this pretrained network can be fine-tuned to predict light scattering from more

complex and experimentally relevant samples, in our case HCT-116 cells. We benchmark the

performance of MaxwellNet in solving scattering problems for 2D and 3D objects. Next, we

demonstrate that such PINN can be efficiently used to invert the scattering problem through

an iterative scheme and improve the results of conventional ODT. We first demonstrate the

reconstruction of the refractive index distribution from synthetic data and then we validate

the technique with experimental measurements of scattering from polystyrene microspheres.
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5.2 Methodology

In recent years, it has been observed that Artificial Intelligence (AI) can perform tasks in

image processing, vision, and natural language processing more effectively than humans.

Deep neural networks are a subset of AI algorithms that are built based on the large and deep

arrangements of nodes, allowing them to learn based on the statistics provided by the data and

extract important features in performing a specific task. In supervised learning, a dataset of

input and output pairs is given to the deep neural network, allowing it to learn its parameters

in order to predict the output examples as close as possible to the given ground-truth outputs

in the dataset. Physics-informed deep neural networks have been proposed as a solution when

the output dataset is not directly known but is known to conform to a differential equation. As

an example, if we desire to implement a deep neural network that predicts optical scattering,

in the data-driven approach we can create a dataset of input topology and output scattered

lights using a numerical optical solution and train the neural network with this dataset. On

the other hand, we know that optical scattering follows Maxwell’s equations which can be

used as a physics-informed loss function to train the deep neural network. This is the idea of a

physics-informed neural network for optical scattering.

Fig. 5.1 summarizes the main concept of our work, which consists of two blocks. The first,

MaxwellNet, is a neural network that takes as an input the refractive index distribution n(r)

and predicts the scattered field U s . Its structure is based on the U-Net architecture [104], and

the training is performed on a large dataset of digital phantoms using a physics-defined loss

function. Then, this network is used as a forward model in a second optimization task which

compares the fields predicted by MaxwellNet for a candidate RI distribution with the ground-

truth projections, e.g. computed numerically or evaluated experimentally, and updates n(r)

up to convergence.

5.2.1 Forward Model: MaxwellNet

This subsection explains the implementation of a PINN that predicts the scattered field given a

known input RI distribution. Initially, we present the method for the 2D scenario for simplicity;

however, we will elaborate on the extension to 3D in the following section. In this case,

MaxwellNet takes as an input the RI distribution as a discrete array of shape Nx×Nz×1 and

we do expect an output with size Nx×Nz×2, where the two channels correspond to the real

and imaginary parts of the complex field. Among all the available architectures, the choice of

U-Net appears favorable as we do expect to embed the latent features of the RI distributions

in a lower dimensional space through consecutive 2D convolutions and then retrieve the

complex electromagnetic field in the same spatial points through the decoding step. A similar

architecture was also proven to provide good accuracy for the computation of the scattered

field from microlenses [103]. We implement the present network in TensorFlow 2.6.0. For each

step in the encoder, we use two Conv2D layers, each followed by batch-normalization and elu

activation function. A total number of five layers is adopted to encode the information and
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Figure 5.1: Schematic description of MaxwellNet, with U-Net architecture, and its application
for tomographic reconstruction. The input is a refractive index distribution and the output
is the envelope of the scattered field. The output is modulated by the fast-oscillating term
e j k0n0z to compute the physics-informed loss for tuning the weights. To perform tomographic
reconstruction, we employ MaxwellNet to minimize a data-driven loss that quantifies the
disparity between measured and predicted projections. The addition of a regularization term
can improve the reconstruction.

each one is terminated with average pooling to reduce the dimension. The maximum number

of channels that we get in the latent space is 512. On the decoder side, we used transposed

convolutional layers to the output with the size Nx×Nz×2 (or Nx×Ny×Nz×2 in the 3D case).

It should be noted that we also use residual skip connections from the encoder branch. In

common data-driven training, we would tune the weights of this network by minimizing the

difference between predictions and ground-truth data computed with numerical solvers, in

turn requiring a large database of simulations and consequently a massive computational cost.

Here we do not provide input-output pairs, instead, we train the network by requiring that the

Helmholtz equation is satisfied on the predicted field. In order to speed up the training and

improve performance, we require the network to predict the slowly varying envelope of the

scattered field U s
env being the scattered field obtained after demodulated by the fast-oscillating

component along propagation direction U s = U s
env e j k0n0z . The physics-informed loss function

to be minimized by updating the weights of the network is as follows:

LPh =
∑

r

1

N

∥∥∥{∇2 +k2
0n2(r )}U s +k2

0(n2(r )−n2
0)U i

∥∥∥2
(5.1)

where, k0 is the wave-number which is k0 = 2π/λ and λ = 1.030µm is the wavelength. n(r ) is

the RI distribution and n0 is the RI of the background medium. The summation in Eq. (5.1)

is done over the pixels of the computational domain and N is the number of pixels. In order

to implement the Laplacian in Eq. (5.1), we follow the Yee grid finite difference scheme,

computing the derivative of variables by 2D convolutions with a 5×5 kernel [105]. Additionally,
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light scattering is by definition an open boundary problem. In order to satisfy the Sommerfeld

radiation condition and confine the problem in a finite space we use a stretched-coordinate

perfectly-matched layer (PML) [106] at the edges of the simulation domain by introducing a

complex coordinates transformation (x → x + i f (x)) when calculating the derivatives inside

the PML region. We use the gradient of the so-computed physical loss function to update the

weights of the neural network, w through the Adam optimizer:

w → w −γPh
∂LPh

∂w
(5.2)

When we train MaxwellNet for a class of samples, it can accurately calculate the field for

unseen samples from the same class. However, the key point to mention is that if we want

to use MaxwellNet for a different set of RI distributions, we can fix some of the weights, and

adjust only a part of the network for the new dataset, instead of re-starting the training from

scratch. This process, referred to in the following as fine-tuning, is much faster than the

original training of MaxwellNet. We will elaborate on and discuss this interesting feature in

section 5.3.

It should be mentioned that we train MaxwellNet based on the Helmholtz equation with scalar

field approximation, as described in Eq. 5.1. The scalar approximation allows us to have a

network with 2-channel output, representing the real and imaginary of the scalar field. We

can also consider the full-vectorial Helmholtz equation where we need a larger network with

6-channel output to represent the real and imaginary of the three components of the field

vector. However, the depolarization term can be neglected for samples with low refractive

index gradients[80], [107], allowing us to have a MaxwellNet with fewer parameters and the

scalar Helmholtz equation as the loss function.

5.2.2 Optical diffraction tomography using MaxwellNet

Once MaxwellNet has been trained on a class of RI distributions, it can be used to rapidly

backpropagate reconstruction errors with an approach similar to learning tomography [27].

Let us assume that we measure L projections U m
i , with i = 0, ...,L, from an unknown RI

distribution n̄(x, z) for different rotational angles. From these data, we can reconstruct a

first inaccurate candidate n(x, z) through Wolf’s transform using Rytov approximation. Then,

we need to calculate the projections by MaxwellNet for different illumination angles. To

implement illumination angle rotation, we can geometrically rotate n(x, z) based on the

corresponding illumination angle and calculate the scattered field for the rotated refractive

index. By feeding MaxwellNet with ni (x, z) = Ri {n(x, z)}, where Ri is the image rotation

operator corresponds to the i -th projection, we predict the complex scattered fields U s
i for

the same L angles. Consequently, we can construct a data-driven loss function LD given

by the difference ∥U s
i −U m

i ∥2 plus any additional regularizer, compute its gradient through

auto-differentiation, update n(x, z) and iterate up to convergence:
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LD =
L∑

i =1

1

L

∥∥U s (Ri {n})−U m
i

∥∥2 +Reg{n,U s(n)} (5.3)

n → n −γD
∂LD

∂n
(5.4)

Also in this case, we use Adam optimizer for updating RI values. The regularizer in Eq. (5.3)

consists of three parts, a total-variation (TV), a non-negativity and a physics-informed terms,

Reg{n,U s
l (n)} = λT V RT V (n) + λN N RN N (n) + λPhLPh(n,U s). The TV regularizer helps

smoothing the RI reconstruction and the non-negativity regularizer adds the prior information

that n(x, z) should be larger than the background refractive index:

RT V (n) =
∑

r

√
|∇x n(r ))|2 + ∣∣∇y n(r ))

∣∣2 +|∇z n(r ))|2 (5.5a)

RN N (n) =
∑

r
min(n(r )−n0,0)2 (5.5b)

Importantly, we have to remark that MaxwellNet is trained for a specific dataset and accurately

predicts the scattered field for RI distributions that are not too far from this set. To take

into account this effect we add the physics-informed loss to the regularizer. This further

correction term helps to find RI values in a way that MaxwellNet can predict the scattered

field for them correctly. In contrast to TV and non-negativity constraints that are used due

to the ill-posedness of the ODT problem, the physics-informed regularizer is necessary in

our methodology to ensure that the index distributions remain within the domain in which

MaxwellNet has been trained.

The key advantages of using MaxwellNet with respect to other forward models are three

folds: differently from BPM, it can accurately calculate field scattering, considering reflection,

multiple-scattering, or any other electromagnetic effects [26]–[28], [86]; once trained, the

field computations are performed in milliseconds, much faster than Lipmann-Schwinger

model; and finally, the data-driven error in Eq. (5.3) can be easily backpropagated differently

from commercially available full-vectorial solvers. We discuss the reconstruction results and

compare them with other methods in subsection 5.3.2.
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5.3 Results and Discussion

5.3.1 MaxwellNet results

In this subsection, we evaluate the performance of MaxwellNet for the prediction of the

scattered field from RI structures such as biological cells. At first, we check the performance

on a 2D sample assuming that the system is invariant along the y axis. The number of pixels

for our model are Nx = Nz = 256 for both the x and z directions, and their size is d x = 100nm.

We also use PML with the thickness of 1.6µm at the edges of our computational domain.

We create a dataset of digital cell phantoms and divide it into the training and testing sets.

MaxwellNet has ∼ 5.9M parameters to train and we use the Adam optimizer with a learning

rate of 1×10−4 and batch training. The details about the dataset and training and validation

losses are discussed in Appendix C.2. We train and test MaxwellNet in Tensorflow 2.6.0 on a

desktop computer (Intel Core i7-9700K CPU, 3.6GHz, 64GB RAM, GPU GeForce RTX 2080Ti).

In Fig. 5.2(a) and Fig. 5.2(b), we choose two random examples of the digital phantoms in

the test set (which is not seen by the network during the training). For each test case, in

the second and third rows, we present the prediction of the envelope of the scattered field

by the network, and we compare it with the result achieved by the finite element method

(FEM) using COMSOL Multiphysics 5.4. We can see a very small difference between the

results of MaxwellNet and COMSOL, which we attribute to discretization error. There are

different schemes of discretization in two methods that can cause such differences. In order

to quantitatively evaluate the performance of MaxwellNet, we define the relative error of

MaxwellNet with respect to COMSOL as,

er r or =

∫ ∥UM axwell Net (r )−UCOMSOL(r )∥2 dr∫ ∥UCOMSOL(r )∥2 dr
(5.6)

where UM axwell Net and UCOMSOL are the total fields calculated with MaxwellNet and COMSOL.

The integration is done excluding the PML regions. The calculated relative errors for the test

case 1 and the test case 2 in Fig. 5.2 are 4.1×10−2 and 4.6×10−2, respectively.

It should be noted that once MaxwellNet is trained, the scattered field calculation is much

faster than numerical techniques such as FEM. We present a time comparison in Table 5.1.

For the test phantoms in Fig. 5.2, it took 17ms for MaxwellNet in comparison with 13s for

COMSOL meaning three orders of magnitude acceleration.

Furthermore, performing physics-based instead of direct data-driven training holds promises

for exploiting the advantages of Transfer learning[108]. Maxwell equations are general but

having a neural network that predicts the scattered field for any class of RI distribution in

milliseconds with a negligible physical loss is usually unfeasible. Most of the previous PINN

studies for solving partial differential equations are trained for one example, and they will

work for that specific example. In our case, U-Net architecture proved to be expressive enough
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Figure 5.2: Results of MaxwellNet and its comparison with COMSOL. (a,b) Two test cases
from the digital phantom dataset and the prediction of the real and imaginary of the envelope
of the scattered fields using MaxwellNet, COMSOL, and their difference. (c) Scattered field
predictions from the network trained in (a,b) for the case of an experimentally measured RI of
HCT-116 cancer cell and comparison with COMSOL. The difference between the two is no
longer negligible. (d) Comparison between MaxwellNet and COMSOL after fine-tuning the
former for a set of HCT-116 cells. MaxwellNet predictions reproduce much more accurate
results after fine-tuning.

to predict the field for a class of samples. However, if we use MaxwellNet for inference on a

RI distribution completely uncorrelated with the training set, the accuracy drops. In order to

evaluate MaxwellNet extrapolation capability, we considered the model trained on phantoms

samples in Fig. 5.2 and use it for inference on HCT-116 cancer cells. The comparison between

MaxwellNet and COMSOL is shown in Fig. 5.2(c). The input of the network is a 2D slice

of the experimentally-measured HCT-116 cell in the plane of best focus. The discrepancy

between MaxwellNet and COMSOL is due to the fact that the former does not see examples

of such RI distributions during the training. As a result, if we require accurate results for a

new set of samples with different features, we have to re-train MaxwellNet for the new dataset,

which would take a long time as reported in Table 5.1. However, it turns out that learning

a physical law, as Maxwell equations, even though on a finite dataset is better suited than
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Figure 5.3: Results of MaxwellNet3D and its comparison with COMSOL. The RI distribution is
shown in (a). The real part of the envelope of the scattered field calculated by MaxwellNet3D
is shown in (b), calculated by COMSOL in (c), and their difference in (d). The imaginary part of
the envelope of the scattered field calculated by MaxwellNet3D, COMSOL, and their difference
are presented in (e-g), respectively.

data-driven training for transfer learning on new batches. Indeed, we can use the pretrained

MaxwellNet on digital phantoms and fine-tune some parts of the network for HCT cells to

achieve good convergence in a few epochs. In this example, we create a dataset of 136 RI

distributions of HCT-116 cancer cells and divide them into training and validation sets. Some

examples of HCT-116 refractive index dataset are shown in Appendix C.2. A wide range of cells

with different shapes is included in the dataset. We have single cancer cells, like Fig. 5.2(c),

examples of cells in the mitosis process, or examples with multiple cells. In this case, we freeze

the weights of the encoder part and fine-tune the decoder with the new dataset. We can see in

Fig. 5.2(d) that after this correction step, the calculated field is much more accurate. As it can

be seen in Table 5.1, the fine-tuning process is two orders of magnitude faster than complete

training from scratch.

The 2D case is helpful for demonstrating the method and rapidly evaluating performance.
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Nevertheless, full 3D fields are required for many practical applications. We can straightfor-

wardly recast MaxwellNet in 3D using arrays of size Nx ×Ny ×Nz ×1 as inputs of the network

and requiring a Nx ×Ny ×Nz ×2 output, with the two channels corresponding to the real and

imaginary of the envelope of the scattered field. In this case, the network consists of Conv3D,

AveragePool3D, and Conv3DTranspose layers instead of 2D counterparts. As a benchmark

test, we created a dataset of 3D phantoms with 200 examples (180 for training and 20 for

testing). The computational domain is defined with Nx = Ny = Nz = 64, d x = 100nm, and PML

thickness of 0.8µm. In order to show the proof of concept of 3D MaxwellNet with limited

computational resources, we used a lower number of pixels per dimension with respect to the

2D case, keeping the pixel size, d x, the same to have an accurate finite difference calculation.

As a result, we have a limited computational domain size, which can be improved using more

powerful resources.

The 3D version of MaxwellNet has ∼ 17.2M parameters. We use Adam optimizer (learning

rate = 1 × 10−4), and a batch size of 10. The results of the predicted field for an unseen

example and its comparison with COMSOL are shown in Fig. 5.3. We can see that MaxwellNet

performs as good as COMSOL in field calculation. The quantitative error described in Eq. 5.6 is

3.4×10−3 for the 3D example of Fig. 5.3. There are some marginal differences due to different

discretization schemes. However, we can see in Table 5.1 that MaxwellNet is about 50000

faster than COMSOL in predicting fields (44.9 milliseconds versus 41.2 minutes). This result

and the significant efficiency in the computation time highlight MaxwellNet potential for the

calculation of the field in different applications. In the next subsection, we demonstrate how

this method can be applied for improving ODT reconstruction fidelity.

5.3.2 Tomographic reconstruction results

To show the ability of MaxwellNet to be used for different imaging applications, we implement

an optimization task with MaxwellNet as the forward model for ODT as explained in subsection

5.2.2. In this example, we consider one of the digital phantoms in the test set of Fig. 5.2 and

we use 2D MaxwellNet as the forward model to compute the 1D scattered field along the

transverse direction x for N = 81 different rotation angles θ. We restrict ourselves to the range

Table 5.1: MaxwellNet computation time comparison

Dataset
2D Phantoms

(Training)
2D HCT-116

(Fine-tuning)
3D Phantoms

(Training)

Training details
2700 samples

5000 epochs

122 samples

600 epochs

180 samples

5000 epochs

MaxwellNet training/fine-tuning 30.5h 0.18h 15.5h
MaxwellNet inference 17.0ms 17.0ms 44.9ms

COMSOL 13s 13s 2472s
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Figure 5.4: Tomographic reconstruction of RI using MaxwellNet. (a) The RI reconstruction was
achieved by Rytov, MaxwellNet, and the ground-truth. (b) 1D RI profile at z = 0 (plane of best
focus), for Rytov (green), MaxwellNet (blue), and the ground-truth (orange).

θ ∈ [−40◦,40◦] as this is consistent with the typical conditions in common tomographic setups.

As is shown in Fig. 5.4(a), the Rytov reconstruction obtained from these field projections is

elongated along z-axis and underestimated due to missing frequencies. We then minimize

the loss function (5.3) to improve the RI reconstruction choosing as regularizer parameters

λT V = 3.1×10−7, λN N = 1×10−1, λPh = 5×10−2 and Adam optimizer with initial learning rate

of 3×10−4. We also scheduled the learning rate, halving it every 1000 epochs to speed-up

convergence. The resulting RI distribution after 3000 epochs is shown in Fig. 5.4. It can be

seen that the reconstructed RI is not anymore underestimated nor elongated along the z-axis.

This is a significant improvement in comparison with Rytov prediction. The missing details

in the reconstructed RI, which can be better visible in the 1D cutline in Fig. 5.4(b), can be

due to the missing information in 1D fields that the optimization of RI could not retrieve this

information.

Next, we try a 3D digital phantom from the test set and we use 3D MaxwellNet as the forward

model in our tomographic reconstruction method. Since generating synthetic data with

COMSOL is time-consuming for multiple angles, we create synthetic scattered fields from the

phantom with the Lippmann–Schwinger equation [35]. We will show later an experimental

example, where we illuminate the sample with a circular illumination pattern with an angle

≈ 10◦. As a result, in this numerical example, we rotate the sample for 181 angles (including 1

normal incidence), equivalently to an illumination rotation with a fixed illumination angle

of 10◦. We keep the experimental conditions, λ = 1.030µm, and n0 = 1.33. Then, we use

these synthetic measurements for our optimization task along with TV, non-negativity, and

physics-informed regularization. The reconstruction is achieved after 6000 epochs with

λT V = 1.2×10−8, λN N = 2×101, and λPh started with 5×10−1 and divided by two every 500

epochs. The reconstructions are shown in Fig. 5.5 in YX, YZ, and XZ planes. The first row shows

the Rytov reconstruction where we can see a significant underestimation and elongation along

z-axis which is due to the small illumination angle (10◦). The details in the reconstruction

achieved using MaxwellNet are slightly blurred in comparison with the ground-truth as a

result of low resolution with λ = 1.030µm.
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Figure 5.5: Tomographic RI reconstruction of 3D sample using MaxwellNet. The RI recon-
struction is achieved by Rytov, MaxwellNet, Learning tomography, and the ground-truth in
different rows at YX, YZ, and XZ planes in the center of the sample.

Additionally, we performed Learning tomography[27] for the synthetic measurements using

181 projections. The 3D tomographic reconstruction using Learning tomography is shown

in the third row of Fig. 5.5. In comparison with MaxwellNet, Learning tomography has some

elongated artifacts which can be due to the fact that reflection is neglected in its forward

model. However, the reconstruction with Learning tomography is smoother in comparison

with the reconstruction of MaxwellNet which is slightly pixelated. The problem arises due to

the fact that the beam propagation method, which serves as the forward model in Learning

tomography, is a smooth forward model with respect to the voxels of the refractive index

distribution. However, this is not the case for deep neural networks like MaxwellNet. However,

the reconstructions are quantitatively comparable. If we assume the reconstruction error of

ε(nr econ ,ntr uth) = ∥nr econ −ntr uth∥2
2 /∥ntr uth −n0∥2

2, we get the error of 0.613 for Rytov, the

error of 0.146 for Learning tomography, and the error of 0.116 for MaxwellNet reconstructions,

shown in Fig. 5.5. In terms of computation time with the desktop specifications we mentioned
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Figure 5.6: Tomographic RI reconstruction of a polystyrene micro-sphere immersed in water.
The projections are measured with off-axis holography for different angles. The RI reconstruc-
tion achieved by Rytov, MaxwellNet, and Learning tomography are presented at YX, YZ, and
XZ planes in the center of the sample.

earlier, we used 3000 epochs for iterative optimization with MaxwellNet, each epoch taking

570ms and 600 epochs for Learning tomography, each epoch taking 710ms, which means a

four-fold factor for MaxwellNet in the computation time.

We conducted experimental evaluations of our methodology. As mentioned earlier, Maxwell-

Net handles reflection as a forward model, making our reconstruction technique suitable for

samples with high contrast. In our experimental analysis, we try a polystyrene micro-sphere

immersed in water, where we expect to have a ∼ 0.25 refractive index contrast. Polystyrene

micro-spheres (Polybead® Polystyrene 2.0 Micron) are immersed in water and placed between

two #1 glass coverslips. We have an off-axis holographic setup where we use a yttrium-doped

fiber laser (Amplitude Laser Satsuma) with λ = 1.030µm and we change the illumination angle

with two Galvo mirrors. Using a delay path, the optical length of the reference and signal arms

are matched. We measure holograms for 181 illumination angles and extract the phase and

amplitude of the complex scattered fields using Fourier holography. More details about the

experimental setup are discussed in Appendix C.3. Then, we use the extracted scattered fields

for different projections for our optimization task to reconstruct the 3D RI distribution of the
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sample. The experimental projections are 2D complex fields that are imaged in the center of

the sample using a microscope objective lens and we can propagate them in the background

medium to calculate the scattered field in any other plane, perpendicular to z-axis, after

the sample. This 2D field can be compared with the output of MaxwellNet in that plane, as

described in Eq. 5.3. Additionally, the experimental projections are based on illumination

rotation and we interpolate them to achieve the equivalent sample rotation projections. We

iteratively optimize the loss function in Eq. 5.3 for 2000 epochs where we use the regularization

parameters of λT V = 3.8×10−9, λN N = 5×101, and λPh started with 1.5×10−1 and divided by

two in every 500 epochs. The reconstruction is shown in Fig. 5.6 using Rytov, MaxwellNet, and

Learning tomography. It can be seen that the underestimation and z-axis elongation in the

Rytov reconstruction is remarkably improved. The reconstruction using Learning tomography

in Fig. 5.6 has artifacts due to the high refractive index contrast of the polystyrene bead and

reflections that cannot be considered in the beam propagation method.

5.4 Nonlinear MaxwellNet

Recently, our group had another extension of MaxwellNet to consider the nonlinear polarizabil-

ity [109]. The idea of this work is to add the nonlinear polarizability based on the third-order

Kerr nonlinearity into the Helmholtz equation and minimized the nonlinear Helmholtz equa-

tion as the physical loss function of the PINN. In this regard, the refractive index in the physical

loss (Helmholtz equation) is modulated with the input intensity and the input intensity is

entered into the deep neural network using a fully-connected layer. This way, a tunable U-Net

is predicting the optical scattering in the presence of the Kerr nonlinearity.

Although the presented nonlinear MaxwellNet predicts the optical scattering for the intensity-

dependent refractive index based on third-order optical nonlinearity, a similar approach can

be implemented for other nonlinear processes such as SHG. Such an approach can be used

for inverse SHG problems such as SH-ODT which was discussed in chapter 4. For this case,

a deep neural network is given with the 3D refractive index and second-order susceptibility

distributions as well as the illumination intensity and polarization state as inputs and predicts

the fundamental and SH fields in the computational domain using two nonlinear Helmholtz

equations at the fundamental and SH wavelengths as the physics-informed loss function. Such

an SH-MaxwellNet can be used as a surrogate forward model in an iterative reconstruction

of SH-ODT. The power of PINNs is that they can calculate the forward physics rapidly in any

scenario and can be used in an iterative approach for any linear or nonlinear inverse problem

due to the availability of the gradients of the output values with respect to the input variables.

5.5 Conclusion

In summary, we have introduced a PINN that can efficiently calculate the scattered field

from inhomogeneous RI distributions, such as those found in biological cells. Our network is
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trained by minimizing a loss function based on Maxwell equations. We have demonstrated

that the network can be trained on a set of samples and used to predict the scattered field for

unseen examples within the same class. Since our PINN is not a data-driven neural network, it

can be trained for various examples under different conditions. Although the network may

not extrapolate efficiently to classes that differ significantly from the training dataset, we

have shown that freezing the encoder weights and fine-tuning the decoder branch can yield

a new predictive model in a few minutes. We believe this approach could also be used for

modification of other physical parameters such as wavelength, or boundary condition.

To recover the RI distribution from scattered fields obtained by illuminating a sample from

different illumination angles, an imaging method known as optical diffraction tomography, we

employed our PINN as a forward model in an optimization loop. This example highlights the

ability of MaxwellNet to be used as a forward model for inverse scattering or inverse design

problems using iterative approaches.
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6.1 Summary of the results

This thesis explores new modalities for optical diffraction tomography and how we can use

other linear and nonlinear optical contrast agents such as birefringence and nonlinear suscep-

tibility for ODT.

In chapter 2, we presented the theoretical background and principles of light scattering in

inhomogeneous media, in anisotropic media, and in nonlinear media. The mathematical

formalism for light scattering in inhomogeneous media was proposed using first-order Born

and Rytov approximation, and the inverse scattering is analyzed based on these approxima-

tions using the Fourier diffraction theorem. We also discussed polarization of light and light

interaction in polarization-sensitive media and nonlinear optical processes such as frequency

mixing and harmonic generation.

Chapter 3 studies polarization-sensitive ODT. The focus of this chapter is on vectorial ODT

which is based on the inversion of the vectorial light scattering from inhomogeneous samples,

specifically for birefringent samples. The proposed method utilizes vectorial scattered fields

for multiple illumination angles to reconstruct the 3D refractive index tensor. These vectorial

fields are obtained through holographic measurements under varying polarization states of

the illumination. To validate the theoretical concepts discussed, a numerical example based on

vectorial-BPM is presented. The numerical example presented in this chapter demonstrates

the feasibility and effectiveness of the proposed method for polarization-sensitive ODT. The

experimental methodology is also described in detail. Finally, the 3D refractive index tensor

is reconstructed for mouse muscle tissue. The reconstruction of the 3D refractive index

tensor using vectorial scattered fields for multiple illumination angles has several advantages.

Firstly, the technique provides a more accurate representation of the sample by considering its

anisotropic properties. Secondly, the 3D reconstruction of the refractive index tensor reveals

features that are not highlighted in the scalar refractive index distribution. The reconstructed

3D refractive index tensor for the muscle tissue fibers provides valuable insights into the

tissue’s microstructure. Additionally, we discuss contrast agents that are calculated based on
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the eigenvalue analysis of the reconstructed refractive index tensor in order to present 3D

reconstructions that are inherently dependent on the sample. The proposed technique has

potential applications in biomedical imaging and can aid in the diagnosis and treatment of

various biological issues.

In Chapter 4, we provided a detailed analysis of SH-ODT, from both theoretical and experimen-

tal viewpoints. This chapter presents the tomographic reconstruction of the 3D second-order

susceptibility tensor using 2D measurements of SH-generated fields at the double frequency

for different illumination angles and polarization states. This novel method is inspired by

conventional linear ODT and has been generalized for the nonlinear SH scenario. The math-

ematical formalism is based on the nonlinear Helmholtz equation and uses the same tricks

of chapter 3 to handle the tensorial reconstruction. To measure the SH-generated complex

fields, we used a multi-angle harmonic holography setup. Our technique is particularly useful

for samples with Centro-asymmetric features, which is necessary for the sample to have a

second-order susceptibility and generate the SH light. By retrieving the SH-generated complex

fields with Fourier holography, and reconstructing the 3D distribution of the second-order

susceptibility we can provide a background-free imaging technique that highlights features

of interest possessing asymmetry at the molecular level. We presented synthetic and experi-

mental results for BTO nanoparticles and muscle tissue fibers to demonstrate the viability of

our theoretical formalism and 3D reconstruction methods. Our results demonstrate a new

modality for ODT that can potentially be used in various applications. This technique can

acquire high-resolution and high-contrast 3D images of biological samples, revealing their

structural and morphological characteristics.

Chapter 5 investigates physics-informed neural networks for optical scattering from inhomo-

geneous samples and uses them as forward models for the inverse scattering problem in ODT.

Accurately predicting optical scattering in a non-uniform 3D refractive index distribution is

crucial for using the forward model in the iterative reconstruction process of ODT. Iterative

methods used in ODT begin with an initial estimation of the 3D refractive index. The forward

model is then utilized to compute the scattered fields for each illumination angle, which

are compared with the actual measurements to derive a loss function. This loss function is

minimized iteratively by modifying and updating the 3D refractive index distribution until the

correct 3D refractive index distribution is achieved. This chapter introduced a PINN named

MaxwellNet, designed to solve 3D optical scattering, and used it as a forward model in an

iterative reconstruction for ODT. The proposed PINN is a deep convolutional neural network

that takes the 3D refractive index array as the input array and provides the 3D scattered light

at the output array. Using synthetic examples, we trained and tested MaxwellNet and provided

numerical examples to validate the forward scattering problem. Synthetic results achieved

using Lippmann–Schwinger equation and experimental results measured using off-axis holog-

raphy are exploited to investigate the ability of MaxwellNet for the inverse scattering problem

of ODT. The results of chapter 5 show how PINNs can be powerful in inverse problems.

Both polarization-sensitive and SH ODT techniques provide 3D distribution of the quantitative
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modalities that cannot be imaged using other imaging methods. These modalities for ODT

enable label-free 3D imaging of biological and non-biological samples. Both of these methods

are based on the inversion of the vectorial or nonlinear variations of the Helmholtz equation

and it can be challenging to be fully studied or be generalized. This is where PINNs or

other deep neural networks can play a role in accurately and quantitatively inverting optical

scattering and frequency generation.

6.2 Future work

In this thesis, several aspects of optical diffraction tomography were studied which could be

the topic of future work.

The polarization-sensitive chapter should be continued in the biology direction in order to

explore more interesting biological features that can be revealed in this 3D imaging modality.

On the other hand, it is desirable to present new ideas in the physical and algorithm directions.

As described in chapter 3, there were several approximations that will degrade the accuracy

of the presented technique to provide a quantitatively accurate reconstruction of the 3D

refractive index tensor. Better physical models to evaluate light propagation in anisotropic

inhomogeneous media and iterative approaches for reconstructing the full 3×3 inhomoge-

neous refractive index tensor should be studied. Moreover, building polarization-sensitive

multi-angle holographic setups can be challenging, and intensity-based iterative techniques

are helpful to reconstruct the complete refractive index tensor using cross-polarized intensity

or Mueller matrix measurements.

SH-ODT has many different directions to be addressed in the future. The first direction is to

investigate more biological and non-biological samples using SH-ODT to broaden its appli-

cation scope. The background-free property of this ODT modality can elaborate important

features in biological studies. The second direction is to improve the accuracy of the recon-

struction and eliminate artifacts caused by the missing-cone problem or multiple scattering by

developing iterative approaches for SH-ODT. This can enhance the reliability and efficacy of

the SH-ODT technique. Lastly, SH-ODT can be extended to other nonlinear optical processes

such as sum-frequency generation, and third-harmonic generation to potentially open up

new areas of research and applications in inverse nonlinear frequency mixing. By addressing

these three directions, the SH-ODT technique can be further improved and utilized in a wider

range of applications, leading to more discoveries in the field of nonlinear ODT.

The studies of this thesis can be generalized to further explore more optical modalities for

3D imaging. Some of these optical modalities in the materials can interact with light in a

physically complicated way. Deep learning approaches such as PINNs can be utilized to assist

in modeling physical problems in the examination of different optical imaging modalities.
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A Appendix: Polarization-sensitive ODT

This part has been reported in the supplementary document of the following paper:

• A. Saba, J. Lim, AB. Ayoub, EE. Antoine, and D. Psaltis (2021). "Polarization-sensitive

optical diffraction tomography". Optica, 8(3), 402-408.

A.1 Light Propagation in anisotropic inhomogeneous media and

vectorial inverse scattering

Here, we discuss the propagation of light and scattering problem for a weak anisotropic

scatterer placed in a homogeneous and isotropic background medium. Starting from Maxwell’s

equations for a monochromatic wave,

∇×−→
E = jω

−→
B (A.1a)

∇×−→
B = − jω/c2εr

−→
E (A.1b)

where, εr is the relative permittivity tensor, ω is the temporal frequency, and c is the speed of

light in vacuum, we can get the following equation,

∇×∇×−→
E = −∇2−→E +∇∇·−→E =ω2/c2εr

−→
E (A.2)

We can define the refractive index tensor of the birefringent sample as,

εr =
(
n01+δn

)2
≈ n2

01+2n0δn = n2
01+δε (A.3)
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where, n0 is the refractive index of the isotropic background medium, and δn and δε are the

refractive index and permittivity tensors of the anisotropic scatterer relative to the background.

1 is the identity matrix. Diagonalization of the refractive index tensor we defined in Eq. A.3

yields the phase velocity of the polarization eigenstates. The term of ∇∇ ·−→E can lead to

polarization coupling even in the absence of birefringence, i.e. for a sample with scalar

permittivity. This term can be neglected if the scale of the variation of the permittivity (or

the envelope of the field) is much larger than the wavelength (the slowly varying envelope

approximation), λ≪ ξ(δε) I [107] , which is equivalent to the paraxiality [110]. We assume that

the only reason for polarization coupling is the birefringence of the sample since the sample

varies slowly with respect to the wavelength. The total field vector,
−→
E , can be represented as

the summation of the incident,
−→
E

i
, and scattered,

−→
E

s
, field vectors. By considering the fact

that
(∇2 +k2

0n2
0

)−→
E

i
= 0, we have,

(∇2 +k2
0n2

0

)−→
E

s
= −k2

0δε
−→
E (A.4)

k0 is the light wave-vector in the free-space. The right hand side of this equation is a vector

that functions as a scattering source, and we look for the solution of vector
−→
E s that satisfies

Eq. A.4. The left hand side of this equation is related to the background medium, n0 which is

isotropic and homogenous. This makes each component of these vectors (left and right side)

uncoupled from each other. So, the Green’s function of this equation can be represented by a

diagonal tensor with same components for each polarization,

G =

 g (r,r ′) 0 0

0 g (r,r ′) 0

0 0 g (r,r ′)

 (A.5)

in which, g
(
r,r ′) = e j k0n0(r−r ′)/

∣∣r − r ′∣∣ , same as the scalar case. Now, we assume the first-order

Born approximation, and replace the field vector in the right hand side of Eq. A.4 with the

input unperturbed beam. Defining the scattering potential tensor as V = k2
0δε/4π, we can

represent the scattered field vector as,

−→
E

s
(r ) =

∫
G

(
r,r ′)×V (r ′)×−→

E
i l l um(

r ′)d 3r ′ (A.6)

There is an important point regarding Eq. A.6. In Eq. (15) of [111], the scattered field under the

Born approximation is derived as,

−→
E

s
(|r | û) =

∫
G

(
r,r ′)×V (r ′)×

(−→
E

i l l um (
r ′)− û ·−→E i l l um (

r ′))d 3r ′ (A.7)

û is the unit vector along the scattered field component. Unlike Eq. A.6, Eq. A.7 has the

û · −→E i l l um
term. It can be followed in [111] that this term is coming from ∇∇ · −→E in the

Iξ(δε) is the correlation length of the inhomogeneity of the sample, which can be defined as
〈
δε (r ) |δε(

r ′
)〉≈

e−(r−r ′)/ξ.
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vectorial Helmholtz equation which we neglected. In the topic of paraxiality, we can say that

the scattered field has the spatial frequency components that are very close to the incident

illumination,
−→
ki , and as a result, we will have û·−→E i l l um ≈ 0 which will lead to the same equation

as ours. This shows the equivalence of the slowly varying approximation, paraxiality, and the

approximation that the light does not depolarize due to the inhomogeneity of the sample.

It should be noted that in the scalar case, the relationship between the scattered field and

the scattering potential becomes linear, under the Born approximation. However, if we do

not neglect the ∇∇·−→E term, due to the presence of the spatial frequency component of the

scattered field, û, on the right side of Eq. A.7, the relationship remains nonlinear even under

the Born approximation. This is the reason why we actually neglect this term, which is valid

for slowly-varying samples.

In the general case, the scattering potential tensor in Eq. A.6 as well as the refractive index

tensor are 3×3 tensors. However, the polarization state of the illumination beam
−→
E i l l um should

be perpendicular to its wave-vector, and as a result, can only have two independent states.

Lets us consider two separate experiments with two different and independent polarization

states for E i l l um . We can put these two experiments in the same framework by representing

the incident field in two different columns of a 3×2 matrix. We assume that the measured

fields are in XY coordinate system: E s
x1 (r ) E s

x2 (r )

E s
y1 (r ) E s

y2 (r )

E s
z1 (r ) E s

z2 (r )

 =
∫

G
(
r,r ′)×V (r ′)×

 E i l l um
x1

(
r ′) E i l l um

x2

(
r ′)

E i l l um
y1

(
r ′) E i l l um

y2

(
r ′)

E i l l um
z1

(
r ′) E i l l um

z2

(
r ′)

d 3r ′ (A.8)

By assuming a plane wave illumination,
−→
E

i l l um (
r ′) = Ẽ i l l ume j k⃗i ·r ′

(Ẽ i l l um is the illumination

field amplitude, and k⃗i is its wave-vetor), Eq. A.8 can be written as: E s
x1 (r ) E s

x2 (r )

E s
y1 (r ) E s

y2 (r )

E s
z1 (r ) E s

z2 (r )

 =

[∫
G

(
r,r ′)×V (r ′)e j

−→
ki .r ′

d 3r ′
]
×

 Ẽ i l l um
x1 Ẽ i l l um

x2

Ẽ i l l um
y1 Ẽ i l l um

y2

Ẽ i l l um
z1 Ẽ i l l um

z2

 (A.9)

It can be seen from Eq. A.9 that all the 9 components of the 3×3 scattering potential tensor

cannot be retrieved using only two independent input polarization states. We can approximate

this equation with a 2×2 representation of the fields and the scattering potential tensors,(
E s

x1 (r ) E s
x2 (r )

E s
y1 (r ) E s

y2 (r )

)
≈

[∫
G

(
r,r ′)×V 2×2(r ′)e j

−→
ki .r ′

d 3r ′
]
×

(
Ẽ i l l um

x1 Ẽ i l l um
x2

Ẽ i l l um
y1 Ẽ i l l um

y2

)
(A.10)

V 2×2 is the 2×2 block matrix of the full scattering potential tensor whose definition can be
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Figure A.1: Comparison of the scattered vectorial fields for the birefringent digital phantom
based on the vectorial single scattering and V-BPM. Four rows represent the components of
the Jones matrix. First and second columns show the imaginary part of Jones components
based on the single scattering and V-BPM model, respectively. Third and fourth columns show
the real parts of them, and the last column shows the absolute value of the difference between
the single scattering model and V-BPM.

clarified as,

V =

 V 2×2
Vxz

Vy z

Vzx Vz y Vzz

 (A.11)

From now, the 2×2 scattering potential tensor is refereed as V and we drop the 2×2 index.

More details about this approximation and accuracy of that is further discussed in section

3.2.2 of this document.

Writing Eq. A.10 in the Fourier domain and using the Fourier diffraction theorem [13], we

arrive at the vectorial version of the Wolf transform as follows:

V (kx−k i n
x ,ky−k i n

y ,kz−k i n
z ) =

kz

2π j
F2D

{(
E s

x1 E s
x2

E s
y1 E s

y2

)(
Ẽ i l l um

x1 Ẽ i l l um
x2

Ẽ i l l um
y1 Ẽ i l l um

y2

)−1}(
kx ,ky

)
(A.12)

where, kz =
√

k2 −k2
x −k2

y , and F2D is the 2D Fourier transform. This equation maps the

2D Fourier components of the Jones matrix to the 3D Fourier components of the scattering

potential tensor. The Fourier transforms should be applied independently for each term of

the matrices.
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A.2 Vectorial Beam Propagation method

We start from the vectorial Helmholtz equation:(
∇2 +k2

0εr ·
)−→

E = 0 (A.13)

We can define the complex vector envelope of −→ψ(r ) as,

−→
E (r ) = −→

ψ(r )e j k0n0z (A.14)

By assuming the slowly varying envelope approximation and neglecting ∂2/∂z2−→ψ(r ), we can

rewrite Eq. A.13 as follows,

∂

∂z
−→
ψ (r ) =

j

2k

(
1∇2

t +k2
0εr

)−→
ψ (r ) = M1

{−→
ψ (r )

}+M2
{−→
ψ (r )

}
(A.15)

where the diffraction operator, M1, is a diagonal operator, and M2 is the phase and amplitude

modulation operator. Like the scalar BPM, the solution of this equation can be approximated

as,

−→
ψ

(
x, y, z +d z

)≈ eM2d z eM1d z−→ψ (
x, y, z

)
(A.16)

This approximation comes from the fact that operators M1 and M2 do not necessarily com-

mute with each other and as a result we have e(M 2+M1)d z ≠ eM1d z eM2d z . However, based on

the Baker-Campbell-Hausdorff formula [112], we can make this approximation for a small d z.

Then, the diffraction operator, M1, is a diagonal operator which we can be implemented in

the Fourier domain:

eM1d z−→ψ (
x, y, z

)
= F−1

{
1e− j

k2
x+k2

y
2k d z ×F

{−→
ψ

(
x, y, z

)}}
(A.17)

A more accurate way of implementing the diffraction operator with a nonparaxial version is

presented in [113] where we replace the multiplier in Eq. A.17 with exp(− j (k2
x+k2

y )/(k+kz )d z).

The role of operator M2 is the phase modulation of the complex vector of −→ψ (
x, y, z

)
, during

the propagation through the step, d z, with the refractive index tensor. This is an operator with

off-diagonal components which leads to the polarization coupling as light propagates through

the birefringence sample. Using Eq. A.3, we can write it as,

eM2d z−→ψ (
x, y, z

)
= expm( j k0δn(x, y, z)d z)×−→

ψ
(
x, y, z

)
(A.18)

operator expm is the matrix exponential. For a matrix, A, the matrix exponential can be

defined as,

expm(A) =
∞∑

k=0

Ak

k !
(A.19)
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Figure A.2: Error of the single scattering forward model with respect to V-BPM for different
digital phantoms as the degree of birefringence increases.

If we diagonalize the matrix A = U DU−1, where D is a diagonal matrix with the eigenvalues of

A, the exponential of that can be written as expm(A) = U eDU−1. This way, the eigenvalues of

the phase modulation matrix in Eq. A.18 will be e j k0µ
1
n and e j k0µ

2
n whereµ1,2

n are the eigenvalues

of the refractive index tensor [114].

It should be noted that both amplitudes and phases of each element of the field will change

while the overall amplitude of the vector remains unchanged. In [115], it has been shown

that we can get more accurate results if we replace d z with d z/cosθ, owing to the fact that the

length of propagation will scale with the illumination angle. Finally, we can write the following

equation to summarize V-BPM:

−→
ψ

(
x, y, z +d z

)
= expm

(
j k0δnd z/cosθ

)
×F−1

2D

{
e− j

k2
x+k2

y
k+kz

d z ×F2D
{−→
ψ(x, y, z)

}}
(A.20)

As the reconstruction method is based on the single-scattering model (Rytov approximation),

the accuracy of the reconstruction is directly related to the validity of the single-scattering ap-

proximation. In order to test this validity, we generated synthetic scattered field measurements

using V-BPM and compared them with the ones generated using the single scattering model

(Eq. A.8). For a digital birefringent phantom (same as the one which is shown in section A.4),

we compare the complex fields achieved after the scattering from the phantom. We show this

comparison in Fig. A.1. Imaginary and real parts of the complex Jones matrix components are

presented. Each row shows one of the 4 components of the Jones matrix, columns show the

imaginary and real parts of it, acquired using the single scattering forward model and V-BPM.

The last column shows the absolute value of their differences. You can see the pronounced

differences around the edges where we have strong scattering. In Fig. A.2, we tried 4 different

phantoms by increasing the degree of their birefringence (off diagonal refractive index), and

we calculated the error between the single scattering model and V-BPM. We can see that
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Figure A.3: Verification of V-BPM using FEM: calculated |Ey |/|E i n
x | by FEM (COMSOL) for (a)

normal incidence and (b) oblique incidence with θ = 25◦ and using V-BPM for (c) normal and
(d) oblique incidence with θ = 25◦.

the stronger the birefringence, we have the larger value of error. This is independent of the

fact that how much the sample is scattering, while in these 4 phantoms, the strength of the

scatterer is relaxed by keeping the diagonal components of the refractive index fixed.

In order to verify the accuracy of our V-BPM, we did a full-wave 3D simulation with the

finite element method (FEM). This simulation has been done using a commercial FEM solver,

COMSOL Multiphysics 5.4. In this simulation, we illuminate a birefringent sphere with a

refractive index tensor of

n = n01+

0.09 0.02 0.02

0.02 0.09 0.02

0.02 0.02 0.09

 (A.21)

which is placed in the background homogeneous medium with refractive index n0. We study

two cases of a normal illumination with input X-polarized light and an oblique illumination

with X-polarization state with θ = 25◦ in the YZ-plane. Results are presented in Fig. A.3. We

show the YZ field profiles and compare them with V-BPM. We can see a good agreement

between these two methods even in the case of oblique illumination. It should be noted that

due to computational reasons we use a Tetrahedral meshing in the FEM simulation and a

rectangular meshing in the V-BPM.
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Figure A.4: The off-diagonal component of the Jones matrix of an ideal polarized as it is
illuminated with a tilted beam as we scan ϕ.

A.3 Effect of a tilted polarizer

According to the experimental setup in Fig. 3.3(a) of chapter 3, we put a polarizer after the

imaging system to measure the desired output polarizer. However, this polarizer is illuminated

obliquely while scanning the illumination angle. Therefore, the Jones matrix of a tilted polar-

izer changes depending on its angle and is different from when it is illuminated normally. To

analyze the effect of tilted polarization, we use the Fainman-Shamir model [116]. According to

this model which is for an ideal polarizer, the Jones matrix of a polarizer can be achieved as,

J P =

(
P̂ A − P̂ A .k̂i n

)(
P̂ A − P̂ A .k̂i n

)†

1− (P̂ A .k̂i n)
2 (A.22)

in which, P̂ A is the unitary vector along which the polarizer/analyzer are aligned (in the plane

of the polarizer), and k̂i n is the unitary vector of the incident wave-vector. In our setup, we use

a 60X imaging system which means a 60X angular demagnification. This way, the polarizer is

illuminated with a 0.5◦ angle (∼ 30◦/60). The off-diagonal term, Jx y , of the Jones matrix, JP , is

shown in Fig. A.4. According to this figure, we can see that this term is very small, compared to

Jxx and we can completely neglect this effect. Especially, a calibration step, which measures

both co and cross-polarizations without the sample will handle these inaccuracies. Moreover,

the most important issue to be considered for the tilted illumination is the rotational matrix

described as Eq.3.5 of chapter 3.

A.4 Numerical Results

Here, we present more figures about the numerical results partly presented in chapter 3. For

the digital phantom which we discussed in chapter 3, we show the Jones matrix calculated

for 3 different illumination angles, ϕ = 0◦, ϕ = 120◦, ϕ = 240◦ in Fig. A.5. The complex values

are coded using the brightness and color (amplitude and phase, respectively) in the figure.

The circular diffraction pattern along the illumination direction is clear in the amplitude of
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Figure A.5: The Jones matrix of the digital phantom calculated with the V-BPM for 3 different
projections. Same data for 180 projections are used to reconstruct the 3D phantom.

the total field. In the absence of the sample, the off-diagonal terms of the Jones matrix are

zero, which means that there is no cross-polarization coupling. In Fig. A.6, we show the full

reconstruction of the refractive index tensor, which we showed only two of them, nxx , and

ny x in Fig. 3.6 of chapter 3. For each component of the refractive index tensor, the first row

shows the ground truth and the second row shows the reconstruction using the polarization-

sensitive ODT with Rytov approximation. Here, we show the YX, XZ, and YZ profiles of the 3D

reconstruction.

An important issue regarding the refractive index tensor is the fact that the off-diagonal

components of this tensor do not present any inherent information, by their own value,

regarding the birefringence, or orientation of the slow-axis (or fast axis) of the sample. In fact,

the latest parameters have a physical meaning about the anisotropy of the sample and the

tensorial representation of the refractive index is the consequence of an unknown rotation

of the sample with respect to its axis and the experiment coordinate system. It has been

discussed in chapter 3 that how the eigen-value characterization of the refractive index tensor

can help to find some 3D parameters correlated with physical and inherent meanings. In

fact, eigenvalues and eigen-vectors of a tensor are invariant under any unitary transformation

such as coordinate rotation. In each voxel of the sample, the difference between the eigen-

values of the 3D refractive index tensor can represent the birefringence of the sample and

the orientation of the eigen-vector corresponding to the bigger (smaller) eigen-value can

represent the direction of the slow-(fast-)axis of the sample. In Fig. A.7 you can see the 3D

birefringence and also the orientation of the slow-axis that are extracted from the eigen-value

characterization of the refractive index tensor for the numerical phantom.

A.5 Denoising and Iterative reconstruction

Due to the coherent noise which exists in the holography technique, we used a denoising

technique based on a 3D total-variation (TV) to a bit smooth-out our final reconstruction.

In the denoising problem, we minimize the following cost function, to calculate the image x̂
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Figure A.6: Polarization-sensitive reconstruction of the digital phantom using the Rytov approx-
imation. For each component of the tensor, we show the ground-truth and the reconstruction
in YX, YZ, and XZ planes. Dashed lines show the lines that we show the profile of the index
along them.

from the noisy image x:

min
x̂

{∥x̂ −x∥2 +λRT V (x̂)
}

(A.23)

in which, RT V (x̂) is the TV regularization and λ is the regularization parameter which de-

termines how strongly this TV denoising regularization applies. However, a very important

issue is that this denoising should not be confused with iterative techniques that are used to

compensate for the missing-cone problem. In the missing-information problem, on the other

hand, we have an under-determined problem that we use a total variation or a set of sparsity

constraints to overcome. This has to be done using the minimization of such a cost function:

min
x̂

{∥A {x̂}−b∥2 +λRT V (x̂)
}

(A.24)

for which A is some linear map which is usually the Fourier transform in the case of missing-

cone problem for ODT [26]. A clearer discussion on this topic is presented in a work by A. Beck

and M. Teboulle [117] where they clarify the difference between the two problems of denoising

and deblurring (which solves missing frequencies similar to the missing cone problem in

ODT).

As a result, in our work, we just used TV regularization to denoise the final reconstructions

and we should not expect that the missing cone problem gets fixed. However, we also did an

iterative reconstruction using TV regularization to solve the missing cone problem that we

wish to extend in another work later. This method is based on the tensorial version of [26]. We

use Eq. A.24 where,
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Slow-axis direction of Ground-Truth at z  = 0µm Slow-axis direction of Reconstruction at z  = 0µm

(a) (b)
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Figure A.7: Eigen-value characterization of the refractive index tensor of the digital phantom:
(a) Profile of the 3D Slow-axis direction at z = 0µm for the ground-truth, (b) Profile of the 3D
Slow-axis direction at z = 0µm for the 3D reconstruction, (c) Profile of the 3D Birefringence
(µ1

n −µ2
n) of the ground-truth, (d) Profile of the 3D Birefringence (µ1

n −µ2
n) of the 3D recon-

struction.

A
{

V
}

= V
(
kx −k i n

x ,ky −k i n
y ,kz −k i n

z

)
(A.25a)

b =
k i n

z

2π j
F2D

{(
E s

x1 E s
x2

E s
y1 E s

y2

)(
E i

x1 E i
x2

E i
y1 E i

y2

)−1}
(A.25b)

with the parameters similar to what is defined in chapter 3. The iterative reconstruction is

presented in Fig. A.8. In the first row, we show the ground-truth, in the second row we show

the direct Rytov-based reconstructions as presented in chapter 3, and in the third row, we show

the iterative reconstruction using TV regularization. As is clear from this figure, the third-row

reconstructions do not include any elongation along z-axis in contrast to the second row. This

shows that similar to the scalar ODT, iterative techniques with a linear forward model, or even

a nonlinear forward model can be used for polarization-sensitive ODT.

A.6 Muscle tissue Experiment

To show the importance of the PS-ODT for biological samples, we did the experiment for

muscle tissue. Muscle tissue is birefringent due to its fibrous structures and A-bands (thick

filaments) inside the sarcomere of the muscle fiber. The fresh frozen muscle section is em-
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Figure A.8: Iterative reconstruction of the digital phantom: 1st row: ground-truth, 2nd row:
direct iterative reconstructions, 3rd row: iterative reconstruction using TV regularization.

50um

Figure A.9: The cross-polarized light amplitude |U s
x y |2 which is measured for the muscle tissue.

bedded in cryo medium and cut with 20µm thickness. This thickness is enough to get a nice

and strong cross-polarized light and at the same time keep the single-scattering condition

satisfied. In Fig. A.9, we present the cross-polarized light (U s
x y ) intensity. In Fig. A.10, the

extracted holographical phase of one of the projections is shown for the muscle tissue. In

Fig. A.10(a), the phase of the cross-polarized light is presented (U s
x y ) while in Fig. A.10(b) we

show the phase of (U s
xa). In Fig. A.10(a), due to the zero background intensity, the background

phase is random which makes the calibration (because of the ambiguity of the phase of the

reference beam) and phase unwrapping difficult. On the other hand, using 45◦ polarization

idea, the background phase of the complex field (U s
xa) is smooth and nearly uniform since

the input and output polarizations have only 45◦ of miss-alignment and as a result we have

a background intensity. This helps to unwrap and calibrate the phase of the complex fields

easily and then convert the reconstructions to the XY coordinate system.
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Figure A.10: The phase of the scattered field. (a) for U s
x y and (b) for U s

xa . The background
phase is random due to the zero intensity in the cross-polarized light. By contrast, in (b) the
background phase can be easily calibrated and unwrapped.
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B.1 Wave propagation in nonlinear inhomogeneous media

The nonlinear polarizability for SHG process is as,

Px (2ω)

Py (2ω)

Pz (2ω)

 = ϵ0 ¯̄χ(2)



Ex (ω)2

Ey (ω)2

Ez (ω)2

2Ey (ω)Ez (ω)

2Ex (ω)Ez (ω)

2Ex (ω)Ey (ω)


(B.1)

where Ex (ω), Ey (ω), and Ez (ω) are the field components for the fundamental light. We write

the 6 × 1 squared field vector as
(−→

E F⋆
−→
E F

)
notation. Considering the undepleted pump

approximation, and neglecting the depolarization of light due to the high-gradient variations

in the refractive index distribution, we can write two Helmholtz equations at fundamental and

SH wavelengths,

∇2−→E F (r,ω)+k2
0n2(r,ω)

−→
E F (r,ω) = 0

∇2−→E SH (r,2ω)+4k2
0n2(r,2ω)

−→
E SH (r,2ω) = −4k2

0
¯̄χ(2)(r )·

(−→
E F (r,ω)⋆

−→
E F (r,ω)

)
(B.2)

where
−→
E F (r,ω) and

−→
E SH (r,2ω) are the field vectors at the fundamental and SH wavelengths,

k0 = 2π/λF is the fundamental wave number, and n(r,ω) and n(r,ω) are the refractive index

distributions at the fundamental and SH wavelengths that will be equal in the case of no

dispersion. The first equation of Eq. B.2 provides the linear scattering of the fundamental light.

We can rewrite the right side of the second equation using the first-order Born approximation

by replacing
−→
E F (r ) with the incident field

−→
E i (r ). The incident field is a plane wave that is

propagating unchanged through the background medium, and as a result, its amplitude

and polarization state will be fixed. If we consider this incident plane wave as the electric
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field vector of
−→
E i (r ) = E0e j

−→
k i n ·r [

px , py , pz
]T , we can write the Helmholtz equation at the SH

wavelength as,

∇2−→E SH (r,2ω)+4k2
0n2(r,2ω)

−→
E SH (r,2ω) = 4πE 2

0 e2 j
−→
k i n ·r ¯̄V (SH)(r ) ·−→Q i l l um (B.3)

where
−→
Q i l l um =

[
px , py , pz

]T
⋆
[
px , py , pz

]T =
[

p2
x , p2

y , p2
z ,2py pz ,2px pz ,2px py

]T
is the 6× 1

squared polarization vector, and ¯̄V (SH) = k2
0/π ¯̄χ(2)(r ) is the SH scattering potential. Eq. B.3 is

the vectorial Helmholtz equation governing the generation of the SH field in the second-order

nonlinear media. This equation is achieved with 3 approximations so far: (i) only ω and 2ω

frequencies are involved in the interaction, (ii) Neglecting the depletion of the fundamental

beam, and (iii) the first-order Born approximation in the scattering of the fundamental beam.

The inhomogeneity of the sample in the refractive index distribution, n2(r,2ω) controls the

scattering of the generated SH field in the sample. A fourth approximation to further simplify

Eq. B.3 is to neglect the rescattering of the SHG due to the inhomogeneity of the sample. This

approximation implies to replace n(r,2ω) with n0(2ω) in the left side of Eq. B.3. Using this

approximation, we can write the integral solution of Eq. B.3 using Green’s function of this

equation,

−→
E SH (r ) =

∫
GSH (r− r′) ·E 2

0 e2 j
−→
k i n ·r′ · ¯̄V SH (r′)

−→
Q i l l umdr′ (B.4)

in which GSH (r−r′) = e2 j k0n0(2ω)|r−r ′|/|r− r′| is the Green’s function at SH wavelength. Eq. B.4

is the simplest way to calculate the SHG from an anisotropic sample with inhomogeneous

second-order susceptibility illuminated with a plane wave fundamental beam.

B.2 Fourier diffraction theorem for SHG

Next, we try to invert Eq. B.4 in order to present the Fourier diffraction theorem for SHG

and a reconstruction method for the scattering potential using multiple-angle SH-generated

fields. We use the Fourier diffraction theorem which was presented in section 2.3 on the

wave equation for SHG. By taking the Fourier transform of Eq. B.4 and applying the Fourier

diffraction theorem which was presented in Eq. 2.20, we have,

¯̄V SH (Kx −2k i n
x ,Ky −2k i n

y ,Kz −2k i n
z )

−→
Q i l l um(k i n

x ,k i n
y ,k i n

z ) =
Kz e− j Kz z0

2π j E 2
0

F2D

{−→
E SH

}(
Kx ,Ky

)
(B.5)

where Kx , Ky , and Kz are the spatial frequencies. It should be noted that ¯̄V SH is a 3×6 tensor

and
−→
Q i l l um is a 6×1 vector. As a result, their matrix product will be a 3×1 vector which is

coherent with the size of the SH field vector.

In the scalar field approximation, we completely neglect the tensorial form of Eq. B.5 and

reconstruct the scalar SH scattering potential, V SH using the scalar SH-generated field. As a
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result, we have,

V SH (Kx −2k i n
x ,Ky −2k i n

y ,Kz −2k i n
z ) =

Kz e− j Kz z0

2π j E 2
0

F2D
{
E SH }(

Kx ,Ky
)

(B.6)

However, the inversion is more complicated for the tensorial second-order susceptibility.

The SH scattering potential is a 3×6 matrix. As a result, we need to measure 3 components

of the complex SH field vector for 6 independent states of
−→
Q i l l um to be able to find all of

the 18 elements of the SH scattering potential tensor. Nevertheless, measurement of E SH
z

is impossible as the polarization vector is perpendicular to the cameras. Additionally, there

can be only 3 independent states for the
−→
Q i l l um of the plane wave. We consider these 3

independent states as generated by the input field polarized along x-axis, y-axis, and +45◦

in the xy plane. Considering the approximation that the incident illumination angle with

respect to the optical axis, z, is small, we can use the same approximation in Appendix ??.

As a result, we completely remove the z-term in Eq. B.5 by considering pz as zero in this

equation and removing the last row of this equation which is responsible for E SH
z . Regarding

this approximation, we can write,

¯̄V SH
2×6(Kx−2k i n

x ,Ky−2k i n
y ,Kz−2k i n

z )



p2
x (
−→
k i n)

p2
y (
−→
k i n)

0

0

0

2px (
−→
k i n)py (

−→
k i n)


=

Kz e− j Kz z0

2π j E 2
0

F2D

{(
E SH

x

E SH
y

)}(
Kx ,Ky

)

(B.7)

where ¯̄V SH
2×6 contains only the first two rows of the SH scattering potential tensor. We can see

that there are three zeros in the
−→
Q i l l um which makes the third, fourth, and fifth columns of

the SH scattering potential tensor impossible to be retrieved. Thus, we remove these columns

and rewrite Eq. B.7 with a 2×3 scattering potential,

¯̄V SH
2×3(Kx −2k i n

x ,Ky −2k i n
y ,Kz −2k i n

z ) ·−→s =
Kz e− j Kz z0

2π j E 2
0

F2D

{−→
E SH

}(
Kx ,Ky

)
(B.8)

in which −→s = [p2
x , p2

y ,2px py ]T . As mentioned earlier, we can invert Eq. B.8 with 3 states for the

vector −→s . Considering the 3 states of −→s for x-polarized, x-polarized, and 45◦-polarized input

field as s⃗1, s⃗2, and s⃗3. Therefore, we can invert Eq. B.8 as follows,

¯̄V SH
2×3(Kx −2k i n

x ,Ky −2k i n
y ,Kz −2k i n

z ) =

Kz e− j Kz z0

2π j E 2
0

F2D

{[
E SH

x1 E SH
x2 E SH

x3

E SH
y1 E SH

y2 E SH
y3

][
s⃗1, s⃗2, s⃗3

]−1

}(
Kx ,Ky

)
(B.9)
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in which E SH
i j is the complex 2D SH field at the imaging plane polarized along i ∈ {

x, y
}

for the

input polarization state of j ∈ {1,2,3}.

B.3 Fourier diffraction theorem with corrected-field Born approxi-

mation

We can improve the calculation of the SH field by modifying the first-order Born approximation

in Eq. B.2. For the sake of simplicity, we write this section in the scalar field regime but it can

be easily written in the tensorial form. We can rewrite Eq. B.2 as follows,

∇2E SH (r )+4k2
0n2(r )E SH (r ) = −4πV SH (r )

(
E F (r )/E i (r )

)2 (
E i (r )

)2
(B.10)

if we defineψ(r ) = (EF (r )/Ei (r ))−2 and use the relationship of ∇2( f g ) = f ∇2g+2∇ f ·∇g+g∇2 f ,

we can write,

∇2 (
ψ(r )E SH (r )

)−2∇ψ(r ) ·∇E SH +(
4k2

0n2(r )ψ(r )−∇2ψ(r )
)

E SH (r ) = −4πV SH (r )
(
E i (r )

)2

(B.11)

Using the slowly varying approximation we can assume that ψ(r ) and E SH are varying slowly.

As a result, we can neglect the second term of the left side and replace 4k2
0n2(r )ψ(r )−∇2ψ(r )

with 4k2
0n2

0(r )ψ(r ) in the third term of the left side in Eq. B.11. This way, we will have,{∇2 +4k2
0n2(r )

}(
ESH (r )ψ(r )

)
= −4πV SH (r ) (Ei (r ))2 (B.12)

Comparing Eq. B.12 with Eq. B.2, we can simply apply the Fourier diffraction theorem and

write a similar equation to Eq. B.6 as,

V SH (Kx −2k i n
x ,Ky −2k i n

y ,Kz −2k i n
z ) =

Kz e− j Kz z0

2π j E 2
0

F2D

{
E SH (r )

(
Ei (r )

EF (r )

)2}(
Kx ,Ky

)
(B.13)

Eq. B.13 corrects the SH field with the fundamental field scattering and can slightly improve

the first-order Born approximation considering the scattering of the fundamental beam due

to the inhomogeneity of the refractive index distribution.

B.4 Muscle tissue experiment

We placed a muscle tissue sample containing several fibers in the experimental setup shown

in chapter 4. In order to have an SH bright-field imaging mode, we block the SH reference

beam. Additionally, a bright field image of the sample is measured using a green LED source.

We can see many interesting details of the sample in the SH image which cannot be revealed

in the bright-field image, such as the periodic arrangement of the sarcomeres units.
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White-Light SH(a) (b)

Figure B.1: (a) Bright-field microscopy of the muscle fiber tissue using green light. (b) Wide-
field SH image of the muscle fiber in the same region.
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C Appendix: Iterative ODT using
physics-informed deep learning

This part has been taken from the appendices of the following paper:

• A. Saba, C. Gigli, A. B. Ayoub, and D. Psaltis (2022). Physics-informed neural networks

for diffraction tomography. Advanced Photonics, 4(6), 066001.

C.1 Calculation of Physics-informed Loss

During the training of MaxwellNet, we calculate at each epoch the loss function in Eq. 5.1

for the network output. In order to evaluate the Helmholtz equation residual, we should

numerically compute the term ∂2
U s

∂x2
+ ∂2

U s

∂y2
+ ∂2

U s

∂z2
. In the previous PINN papers for solving

PDEs [95]–[97], [99]–[102], the inputs of the network are the spatial coordinates x, y , z, and

the derivatives with respect to these variables can be calculated using the chain rule. In this

implementation, the weights of the network can be trained to minimize the loss function

for a single refractive index distribution, n(r ) in Eq. 5.1. In our approach, the PINN gets the

refractive index, n(r ), on a uniform grid as the input and finds the field on the same grid which

minimizes the loss function for that refractive index. The output of the network is the 3D

array of the scattered field envelope, and we use a finite difference scheme to calculate the

derivative of the field with respect to the coordinates:

∂U s

∂x
=

U s((i +1)∆x, j∆y,k∆z)−U s((i −1)∆x, j∆y,k∆z)

2∆x
(C.1)

in which (i , j ,k) are the pixel indices and ∆x, ∆y , ∆z, are the pixel sizes along the x, y , and z

axes. This way, we can calculate ∂U s

∂x
by convolving U s with a kernel of [−1/2,0,1/2] along the

x axis. When computing electromagnetic fields, since the curl of the electric field gives the

magnetic field and vice versa, a smart technique to improve accuracy is to use two staggered

grids for discretizing fields, commonly referred to as Yee scheme [105]. In practice, this can be

easily implemented through two shifted convolutional kernels for the two grids, [−1/2,1/2,0]

and [0,−1/2,1/2].
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(a) (b) (c)TRAINING FINE-TUNING

5μm

Figure C.1: Training and fine-tuning of MaxwellNet. (a) Training (blue) and validation (or-
ange) loss of MaxwellNet for Digital cell phantoms dataset. (b) Fine-tuning the pretrained
MaxwellNet for a dataset of HCT-116 cells for 1000 epochs. (c) Examples of the HCT-116
dataset.

In order to minimize the discretization error, one can use a smaller pixel size, ∆x or higher or-

der approximations. Here, we use the fourth-order finite difference scheme [118] in which con-

volutional kernels of [0,+1/24,−9/8,+9/8,−1/24] and [+1/24,−9/8,+9/8,−1/24,0] are used

for the calculation of the derivatives in Eq. 5.1.

C.2 Training and Fine-tuning of MaxwellNet

As mentioned in Section 5.3, we create a dataset of digital cell phantoms to train and validate

MaxwellNet. The dataset for 2D MaxwellNet includes 3000 phantoms with elliptical shapes

oriented in different directions. The size of these phantoms is in the range of 5−10µm, their

refractive index varies in the range of (1.38,1.45), and the background refractive index is

n0 = 1.33. Two examples of these phantoms are shown in Fig. 5.2. We divide this dataset into

2700 phantoms for training and 300 phantoms for testing. We use batch training with a batch

size of 10 for 5000 epochs. This training took 30.5 hours and after 5000 epochs, no significant

decrease in the validation loss could be observed. The training and validation curves of the

physical loss are presented in Fig. C.1(a). This figure shows that MaxwellNet performs very

well for out-of-sample cases.

We discussed in Section 5.3 using MaxwellNet which was trained for cell phantoms to predict

the scattered field for real cells. A dataset of HCT-116 cancer cells is used for this purpose. The

3D refractive index of these cells is reconstructed using Rytov approximation with projections

achieved with an experimental setup utilizing spatial light modulator as described in [28].

Then, a 2D slice of the refractive index is chosen in the plane of best focus. A total number of 8

cells are used and we rotated and shifted these cells to create a dataset of 136 inhomogeneous

cells whose refractive index range is (1.33,1.41). We use 122 of these images for training and 14

for validation. Some examples of HCT-116 refractive index dataset are shown in Fig. C.1(c). We

freeze the encoder of MaxwellNet and fine-tune its decoder for this new dataset. The training

and validation losses are presented in Fig. C.1(b).
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Figure C.2: Experimental setup for multiple illumination angle off-axis holography. HW:
Half-wave plate, P: Polarizer, BS: Beam splitter, L:Lens, Obj: microscope objective, M: Mirror.

For 3D MaxwellNet, a dataset of 200 phantoms is created. These 3D phantoms have a spherical

shape with some details inside them and the range of their diameter is 1.8−2.4µm. We ran-

domly choose 180 phantoms for training and 20 phantoms for testing. We train 3D MaxwellNet

with the training dataset with batch size of 10. The example of Fig. 5.3 and Fig. 5.5 is one of the

phantoms in the testing dataset.

C.3 Experimental Setup for ODT

For ODT, we require complex scattered fields from multiple illumination angles. The off-axis

holographic setup to accomplish that is shown in Fig. C.2. It relies on a ytterbium-doped fiber

laser at λ = 1.030µm whose power is controlled with a half-wave plate and a polarizing beam

splitter. The optical beam is divided into the signal and reference arms using a beam splitter

(BS1). In the signal arm, we use two galvo mirrors, GM-V and GM-H to control the illumination

angle in the vertical and horizontal directions. Using two 4F systems (L1-L4), we image these

galvo mirrors on the sample plane, so the position of the beam remains fixed while changing

the illumination angle. This way, we can illuminate the sample with a condensed plane wave.

The sample is then imaged on the camera (Andor sCMOS Neo 5.5) using another 4F system

consisting of a 60X water dipping objective (Obj1) and a tube lens L5. The signal and reference

arms are then combined with another beam splitter, BS2 to create the off-axis hologram on

the camera. A motorized delay line controls the optical path of the reference arm to match the

optical path of the signal arm.
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