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Abstract

The goal of this thesis is the development and the analysis of numerical methods for prob-

lems where the unknown is a curve on a smooth manifold. In particular, the thesis is

structured around the three following problems: homotopy continuation, curve interpo-

lation and integration of ordinary di�erential equations. To accommodate the manifold

constraint, all the proposed methods feature as a central ingredient the concept of retrac-

tions, as extensively developed in the context of Riemannian optimization methods. A

retraction can be thought as a generic device for crafting portions of manifold-constrained

curves which are in general computationally cheaper to evaluate than the geodesics de�n-

ing the Riemannian exponential map. Yet, the axiomatic de�nition of a retraction reveals

to be rich enough for algorithms originally de�ned on Euclidean spaces to be adapted to

the manifold setting using retractions while maintaining properties that are analogous to

their Euclidean ancestor. We provide this type of analysis for the methods proposed in

the thesis and we showcase the performance of the algorithms with experiments involving

matrix manifolds, notably the �xed-rank matrix manifold.

First, we consider a generalization of numerical continuation methods for their applica-

tion to Riemannian optimization problems. In practice, we propose a retraction-based

path-following numerical continuation algorithm for e�ciently solving a sequence of Rie-

mannian optimization problems of which the last is the actual problem of interest. Then,

we address the problem of Hermite interpolation, whereby a sequence of manifold points

are interpolated by a manifold curve whose velocity is prescribed at each interpolation

point. For this, we introduce a generalization of the de Casteljau algorithm where suit-

ably chosen retraction curves replace the straight lines of the original algorithm. Lastly,

we tackle numerical integration of manifold-constrained ordinary di�erential equations,

in particular for equations evolving on low-rank matrix manifolds encountered in the �eld

of dynamical low-rank approximation. We derive two methods de�ned using retractions

which exhibit second-order convergence of the approximation error with respect to the

time integration step.

Keywords. Retraction, numerical continuation, Riemannian optimization, manifold

interpolation, �xed-rank manifold.
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Résumé

L'objectif de cette thèse est le développement et l'analyse de méthodes numériques pour

des problèmes où l'inconnue est une courbe sur une variété di�érentiable. En particulier,

la thèse se structure autour des trois problèmes suivants : la continuation par homotopie,

l'interpolation de courbe et l'intégration d'équations di�érentielles ordinaires. A�n d'ac-

commoder la contrainte de variété, les méthodes proposées se basent sur le concept de

rétraction, tel qu'amplement développé dans le contexte des méthodes numériques pour

l'optimisation riemannienne. Une rétraction peut être interprétée comme un dispositif gé-

nérique permettant la construction de portions de courbes sur une variété dont le calcul

est en général computationnellement moins coûteux que celui pour les géodésiques dé-

�nissant l'application exponentielle riemannienne. Néanmoins, la dé�nition axiomatique

d'une rétraction se révèle su�samment riche pour adapter des algorithmes initialement

conçus sur des espaces euclidiens aux cas d'une variété di�érentiable en utilisant des ré-

tractions, tout en préservant des propriétés analogues à l'algorithme euclidien d'origine.

Ce type d'analyse est fourni pour les méthodes proposées dans cette thèse et les perfor-

mances des algorithmes sont illustrées avec des expériences sur des variétés matricielles,

en particulier la variété des matrices de rang �xé.

En premier lieu, nous généralisons une méthode de continuation numérique pour son

application à l'optimisation riemannienne. Concrètement, nous élaborons un algorithme

dit de traçage de courbe basé sur une rétraction pour résoudre de manière e�cace une

suite de problèmes d'optimisation riemannienne dont le dernier est celui d'intérêt prin-

cipal. Par la suite, nous a�rontons le problème d'interpolation de Hermite, dans lequel

une suite de points sur une variété est interpolée avec une courbe lisse incluse dans la

variété et dont la vitesse est prescrite à chaque point d'interpolation. Dans ce but, nous

introduisons une généralisation de l'algorithme inventé par de Casteljau, où des segments

de courbe de rétraction bien choisis remplacent les segment de droites de l'algorithme ori-

ginal. En�n, nous traitons l'intégration numérique d'équations di�érentielles ordinaires

contraintes à une variété, en particulier les équations décrivant des dynamiques sur des

variétés de matrices de rang bas, telles que considérées dans le cadre de l'approximation

dynamique de rang bas. Nous proposons deux méthodes exprimées en termes de rétrac-

tions qui exhibent une convergence d'ordre deux par rapport au pas d'intégration.

Mots-clés. Rétraction, continuation numérique, optimisation riemannienne, interpo-

lation sur variété di�érentiable, variété des matrices de rang �xé.
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Compendio

L'obiettivo della seguente tesi è lo sviluppo e l'analisi di metodi numerici per la risolu-

zione di problemi in cui l'incognita è una curva contenuta in una varietà di�erenziabile.

Nello speci�co, la tesi si articola intorno ai tre seguenti problemi: la continuazione per

omotopia, l'interpolazione di una curva e l'integrazione di equazioni di�erenziali ordina-

rie. Per soddisfare il vincolo di varietà, tutti i metodi proposti si avvalgono centralmente

del concetto di retrazione, come ampiamente usato nel contesto dei metodi numerici per

l'ottimizzazione riemanniana. Una retrazione può essere interpretata come un generico

dispositivo per costruire porzioni di curve su una varietà, il cui calcolo è in generale

computazionalmente meno oneroso di quello per le geodetiche che de�niscono la mappa

esponenziale riemanniana. Ciò nonostante, la de�nizione assiomatica di una retrazione

risulta su�cientemente ricca per permettere di adattare algoritmi concepiti su spazi eu-

clidei al caso di una varietà di�erenziabile facendo uso di retrazioni, sempre mantenendo

proprietà analoghe all'algoritmo euclideo di origine. Questo tipo di analisi viene fornito

per i metodi proposti in questa tesi e le prestazioni degli algoritmi vengono illustrate con

esperimenti su varietà matriciali, in particolare la varietà delle matrici di rango �sso.

In primo luogo, viene considerata una generalizzazione di un metodo di continuazione

numerica per la sua applicazione all'ottimizzazione riemanniana. In concreto, viene ela-

borato un algoritmo detto di tracciamento di curva basato su una retrazione per risolvere

e�cacemente una sequenza di problemi di ottimizzazione riemanniana di cui l'ultimo è

l'e�ettivo problema di interesse. In seguito, viene a�rontato il problema dell'interpola-

zione di Hermite, nel quale è richiesto di interpolare una sequenza di punti su una varietà

di�erenziabile con una curva liscia inclusa nella varietà e la cui velocità è prescritta ad

ogni punto di interpolazione. A questo scopo, introduciamo una generalizzazione dell'al-

goritmo di de Casteljau in cui opportuni segmenti di curva di retrazione sostituiscono i

segmenti lineari dell'algoritmo d'origine. In�ne, viene trattata l'integrazione numerica

di equazioni di�erenziali ordinarie vincolate ad una varietà di�erenziabile, in particolare

equazioni che descrivono dinamiche su varietà di matrici di rango basso come considerate

nell'ambito dell'approssimazione dinamica di rango basso. Vengono proposti due metodi

espressi con retrazioni che esibiscono convergenza dell'errore di ordine due rispetto al

passo di integrazione.

Parole chiave. Retrazione, continuazione numerica, ottimizzazione riemanniana, in-

terpolazione su varietà di�erenziabile, varietà delle matrici di rango �sso.
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Introduction

One of the de�ning features of the human mind is its capacity to conceive abstrac-

tions. Abstractions are general ideas that do not relate to a speci�c object or situation

but rather unify from a certain viewpoint a collection of objects or situations. The

construction of insightful abstractions is at the very essence of the scienti�c endeavor.

Mathematics is a method by which abstractions can be rigorously manipulated and built

upon. Then, logical deductions and algorithmic procedure operated at an abstract level

can �nd concrete expression in a multitude of situations of the physical world. This ex-

traordinary compression of reality enabled by well-chosen abstractions certainly carries

pragmatic advantages, in addition to a purely aesthetic value to the eyes of some.

The context of the present thesis is the collection of abstractions forming the theory

of di�erential geometry, more speci�cally the theory of smooth manifolds. This branch

of mathematics initiated by Gauss and Riemann in the eighteenth century applies to a

multitude of surprisingly diverse mathematical objects, which themselves concretize in

a even greater variety of real world entities, as diverse as the leading vibrational modes

of a guitar string, the position in three-dimensional space of a robotic manipulator, or a

table of numbers representing the preferences of a human population. All these objects

share a common feature: they can interpreted as points on a particular di�erentiable

manifold. This enables to consider them all at once from the abstract lens of di�erential

geometry.

Riemannian optimization and retractions

The theory of di�erentiable manifolds appeared in recent years in many �elds of ap-

plied mathematics. A prominent example is Riemannian optimization [AMS08, Bou23].

Indeed, mathematical models encountered in contemporary science and engineering fre-

quently involve the minimization of an objective function over an admissible set which

admits the structure of a smooth manifold. Riemannian optimization is the now well-

established �eld of research dealing with the development of numerical methods to speci�-

cally solve manifold-constrained optimization problems. Riemannian optimization meth-

ods are constructed and analyzed for a general Riemannian manifold in terms of precisely

de�ned abstract objects, such as Riemannian metrics and retractions, that materialize

di�erently for each manifold. Providing concrete instances of these objects for the par-

ticular manifold at hand is su�cient to automatically bene�t the e�ectiveness of the

1



Introduction

Riemannian optimization algorithms granted by the general analyses.

The modularity of Riemannian optimization methods as initiated by [AMS08] follows a

pattern where algorithmic constructs are decoupled from the particular entities involved

in such algorithms and linked by a clear interface. This structure is recurrent in ap-

plied mathematics and may be recognized in the language of software engineering as

generic programming, a popular programming paradigm allowed by many functional and

object-oriented programming languages, such as in C++ under the name of templates.

Riemannian optimization methods are generic in that they are de�ned for a generic ob-

ject (a manifold) for which a set of operations or abstract methods used in the algorithm

are available (metric, retractions,...). This is precisely the design pattern employed in

Manopt, the MATLAB library for Riemannian optimization [BMAS14]. As also put

forth in the celebrated book Design Patterns: Elements of Reusable Object-Oriented

Software1, this design pattern reduces code duplication. In mathematical theories this

translates into reduction of proof duplication. Furthermore, genericity o�ers a simpli�ed

perspective on the algorithmic or mathematical problem at hand, distilled from all the

particular details which may hinder understanding and intuition.

An important characterization of Riemannian manifolds prescribes that around each

point they can be locally approximated by an Euclidean space. On the other hand,

most iterative methods for minimizing a target function on an Euclidean space involve

an update rule that is only local. Hence, Riemannian optimization methods are usually

derived from pre-existing Euclidean optimization methods based on the above intuition

suggesting that the generalization should maintain at least part of the favorable prop-

erties of the original method. Generalizing local constructs of �at spaces to manifolds

has been a driving force for the development of di�erential geometry itself, Riemannian

optimization, and also the present thesis.

Retractions are the operative tool Riemannian optimization algorithms use to link the

local geometry of the manifold to a �at local representation. A retraction is a type of map

de�ned at each point of the manifold from a subset of the tangent space containing the

origin to a neighborhood of the point on the manifold. Given any point on the manifold,

the de�ning properties of retractions are su�cient to construct a portion of manifold

curve passing through the given point with any prescribed direction. The update rule of

most Riemannian optimization algorithms involves traveling along such curves for a short

distance. On the one hand, this guarantees the iterates of the method remain constrained

to the admissible set of the optimization problem of interest. On the other hand, the

de�nition of retraction proved to be su�cient for establishing convergence guarantees for

the Riemannian optimization analogously to their Euclidean ancestor. In this thesis we

take advantage of these two aspects and consider retractions as a general manifold curve

1Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (1994)
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Introduction

generating device to numerically solve manifold-constrained mathematical problems.

The possibility to reproduce standard results of Euclidean algorithms for their retraction-

based Riemannian counterpart seems to have motivated its de�nition in the �rst place. In

fact, a de�nition containing the de�ning feature of what we now call a retraction appeared

in the context of numerical integration of ordinary di�erential equations on manifolds in

the work of Shub [Shu86]. In this work, the de�nition only quali�es a particular type

of local chart which can replace to the Riemannian exponential map to generalize the

forward Euler method, while still enabling to prove the convergence of the numerical

scheme. From a computational perspective, the possibility to use retractions instead of

the Riemannian exponential map o�ers another great bene�t which also contributed to

the success of retractions in Riemannian optimization. There exist retractions which

are much cheaper to compute than the solution to the di�erential initial value problem

that de�nes an evaluation of the exponential map. As a �nal historical note, the term

retraction seems to have been �rst employed in [ADM+02] and now earned its place in

the vocabulary of applied mathematics, despite a unfortunate naming collision with the

much older concept of retraction in topology.

Contributions and structure of the thesis

The present thesis explores possibilities o�ered by the abstraction of retractions, as pop-

ularized and extensively developed in the Riemannian optimization literature, but in a

broader context of numerical methods for manifold-constrained problems. Summarizing

the preceding discussion, the motivations can be declined as:

� practical : the availability of retractions for numerous manifolds of interest makes

retraction-based algorithms broadly applicable;

� computational : retractions are in general much cheaper to compute than the Rie-

mannian exponential map;

� theoretical : the de�ning properties of retractions are minimal yet rich enough to

analyze the Riemannian retraction-based algorithms analogously to their Euclidean

counterpart.

From a global perspective, the thesis is constructed around three di�erent manifold-

constrained problems for which we propose and analyze retraction-based algorithms.

The methods are then tested experimentally on problems where the constraint manifold

is a matrix manifold, notably the manifold of �xed-rank matrices.

Numerical continuation. We start by extending with the use of retractions a nu-

merical continuation algorithm that can be applied to Riemannian optimization problems

that depend on one scalar parameter. The goal of the algorithm is to track the evolution

of a critical point of the optimization problem as the scalar parameter changes. The

Riemannian Newton Continuation method, as we denominate it, is a generalization of

a predictor-corrector continuation algorithm developed originally for nonlinear equation.

In analogy with its Euclidean counterpart, a retraction step produces an estimate for the
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solution at the new parameter value and a Riemannian optimization algorithm is invoked

to correct the estimate. From a theoretical perspective, we extend the analysis inspired

from the Euclidean setting which guarantees the well-posedness of the continuation prob-

lem. For illustrating the performance of the algorithm, the central example application

is the low-rank matrix-completion problem, tackled from its Riemannian optimization

perspective. The developments on this �rst topic are based on [SK22a].

Interpolation. The second problem of the thesis concerns interpolation on manifolds.

In particular, we address the Hermite interpolation problem on a manifold which aims at

constructing a smooth manifold curve passing through a set of given interpolation points

with a prescribed velocity. We derive a retraction-based interpolation algorithm produc-

ing a piecewise solution to the problem that is globally continuously di�erentiable. The

method relies on a generalization of the de Casteljau algorithm where the linear segments

are replaced by retraction curves. The building blocks of the algorithm are suitably se-

lected from a novel parametric family of retraction-based curves of which endpoint can

be prescribed. Whenever a retraction whose local inverse can be computed e�ciently

is available, the endpoint retraction curves and, in turn, the retraction-based Hermite

interpolation algorithm can be used. This is the case for the �xed-rank manifold, for

which the orthographic retraction is available and admits an inverse that is very easy

to compute. The well-posedness of the method is proved thanks to the new concept

of retraction-convex sets, a generalized notion of convexity for a subset of a manifold

involving retraction curves. Furthermore, the classic result characterizing the conver-

gence of the approximation error for polynomial Hermite interpolation is extended to the

retraction-based scheme. This work is based on the following submitted preprint [SK22b].

Integration of ODEs. At last, we turn to manifold-constrained ordinary di�erential

equation. We propose two numerical integration methods entirely expressed in terms

of retractions which can achieve second-order global error convergence. The �rst is the

accelerated forward Euler scheme, based on incorporating the acceleration of the solution

in the update rule thanks to a second-order retraction and a suitable tangent vector.

The second algorithm is a two step method echoing an explicit Runge-Kutta method

known as the Ralston method. The second step of the method uses the retraction-

based Hermite interpolant previously introduced. Hence, we denominate this method

the Ralston-Hermite method. The application part focuses on di�erential equations

evolving on the �xed-rank matrix manifold encountered in the context of dynamical low-

rank approximation (DLRA). The accuracy and the stability to small-singular values of

the solution is assessed via numerical experiments on classical instances of the DLRA

literature. A preprint on the contents of this chapter is in preparation [SCK23].

Outline of the thesis.

The �rst two chapters lay the foundations for the subsequent developments. We report a

selection of well-known textbook material in the interest of a self-contained exposition and
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with the intent to �x notations. Chapter 1 introduces the fundamentals of di�erentiable

manifolds and Riemannian manifolds while the necessary background on Riemannian

optimization tools and in particular retractions is the object of Chapter 2.

In Chapter 3, we delve into retractions by reporting known theoretical results as well

as new practical and theoretical possibilities o�ered by the concept of retraction. The

original contributions include a class of retraction curves with prescribed endpoint, the

analysis of their well-posedness with the de�nition of retraction-convexity, and the proof

of the existence of retraction-convex set. A digression on the Lipschitz continuity of

retractions and the approximating properties of basic retraction curves concludes the

chapter.

Chapters 4, 5 and 6 are respectively dedicated to the new retraction-based numerical

methods for the three previously announced manifold-constrained problems: continua-

tion, interpolation and numerical integration of ODEs.
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1 Manifolds

This chapter is a brief introduction to the basic concepts of di�erential geometry needed

throughout the thesis. We �rst discuss smooth manifolds, then specialize to Riemannian

manifolds. A particular emphasis is given to the case of manifolds embedded into a vector

space. The exposition is inspired from the Riemannian optimization references [AMS08,

Bou23] and the classic textbooks [Lee13, Lee18]. We conclude the chapter by illustrating

these concepts for particular matrix manifolds, thereby collecting well-known material

that is used in the following chapters.

1.1 Smooth manifolds

At the most fundamental level, manifolds are topological spaces which can be locally

mapped to subsets of Rd. This is achieved with local charts.

De�nition 1.1. A local chart of a topological space M is a pair (U , φ), where U ⊆ M
is an open subset and φ : U → Rd is a homeomorphism, for some d ≥ 1.

The local chart is said to contain a point x ∈M if x ∈ U . Given two local charts (Uα, φα)
and (Uβ, φβ) such that Uα ∩ Uβ ̸= ∅, if the transition map φα ◦ φ−1β is a di�eomorphism

from φβ(Uα∩Uβ) to φα(Uα∩Uβ), then the local charts are said to be smoothly overlapping.

Figure 1.1: Smoothly overlapping local charts and their transition maps.
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Two local chart are compatible if they are smoothly overlapping or if Uα ∩ Uβ = ∅.
A set of compatible local charts A = {(Uα, φα)} constitutes a smooth atlas provided

that
⋃
α Uα = M. It is called maximal if it is not properly contained in any other

smooth atlas. Throughout the whole thesis, unless otherwise stated, we use the term

smooth to indicate in�nitely di�erentiable. For instance, a di�eomorphism is an in�nitely

di�erentiable bijection with an in�nitely di�erentiable inverse.

De�nition 1.2 ([AMS08, �3.1.1]). A d-dimensional smooth manifold is a topological

space M equipped with a maximal smooth atlas A onto Rd inducing a second-countable

Hausdor� topology.

The Hausdor� property in De�nition 1.2 implies the uniqueness of limit points and, com-

bined with the second-countability, grants the existence of Riemannian metrics [Lee13,

Proposition 2.4] and a�ne connections [Lee13, Proposition 4.12].

Example 1.3 (Linear manifolds). Any �nite dimensional vector space E such as Rn or

Rm×n can be endowed with a smooth manifold structure. For any choice of basis of E
denoted {ei}, the maps φ : E → Rn : v =

∑d
i=1 viei → (v1, . . . , vn) de�ne smoothly

overlapping local charts that constitute the linear manifold structure of E .

1.1.1 Smooth maps

One key feature of the de�nition of a smooth manifold is that it allows the extension of

calculus to mappings between manifolds.

De�nition 1.4. A map F :M→ N between manifolds M and N is a smooth map if

for every x ∈M there exist local charts (U , φ) containing x and (V, ψ) containing F (x)
such that F̂ := ψ ◦ F ◦ φ−1 is smooth.

Figure 1.2: Coordinate representation of a map between manifolds.

The function F̂ is referred to as the coordinate representation of F . We adopt the

convention of denoting it with a hat decorating the original symbol. De�nition 1.4 gives
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1.1 Smooth manifolds

meaning to two important type of smooth maps. A smooth manifold curve is a smooth

map γ : J ⊂ R→M and a smooth scalar �eld is a smooth map f :M→ R. The set of
all smooth scalar �elds onM is denoted F(M).

In this work, for any smooth scalar function g : R→ R the symbol d
dt indicates the usual

derivative, i.e. the limit of the incremental ratio limh→0
g(t+h)−g(t)

h =: dg(t)
dt , also denoted

g′(t). The same notation and de�nition apply for smooth curves γ : R→ E mapping to

a vector space E . For the directional derivative of a smooth function F : E → E ′ between
linear spaces, we employ the notation Df(x) [v] := d

dtF (x+ tv)
∣∣
t=0

, for any x, v ∈ E ,
and the linear operator Df(x) : E → E ′ is the di�erential of F at x.

1.1.2 The tangent space

The notion of directional derivative for a smooth scalar �eld onM is introduced jointly

with the notion of direction on a manifold, i.e. tangent vectors.

De�nition 1.5 ([AMS08, �3.5.1]). For any smooth manifold curve γ : (−ε, ε)→M, the

tangent vector to the curve in t = 0 is the linear map γ̇(0) : F(M) → R de�ned by

γ̇(0)f := df(γ(t))
dt

∣∣
t=0

for any f ∈ F(M).

Figure 1.3: A smooth manifold curve γ realizing a tangent vector v ∈ TxM.

When it is clear from context that γ is a manifold curve, we also employ the symbol
dγ(t)
dt

∣∣
t=0

to indicate γ̇(0). With this de�nition, two manifold curves γ1 and γ2 may share

the same tangent vector. In fact, given their coordinate representation γ̂1 and γ̂2 it holds

that γ̇1(0) = γ̇2(0) if and only if γ̂′1(0) = γ̂′2(0) [AMS08, Proposition 3.5.2]. We say γ1
and γ2 realize the same tangent vector.

De�nition 1.6 ([AMS08, De�nition 3.5.1]). A tangent vector v to a manifold M at x

is a linear map v : F(M) → R such that there exists a smooth manifold curve realizing

v, i.e. γ(0) = x an γ̇(0) = v.

The collection of all tangent vectors at x ∈ M is called the tangent space at x and it

is denoted TxM. The tangent space is a vector space of dimension dim(M) [Lee13,

Proposition 3.10].
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Figure 1.4: The di�erential of a smooth map F between manifoldsM and N .

Example 1.7 (Tangent space for linear manifolds). For any linear space E and some

x ∈ E , a tangent vector v ∈ TxE acts on f ∈ F(E) as vf = df(γ(t))
dt

∣∣
t=0

= Df(x)[γ′(0)],

for some curve γ in E . Since Df(x)[γ′(0)] depends only on γ′(0) =: v̄ ∈ E , and not on

the particular choice of γ, there is a one-to-one correspondence between any v ∈ TxE
and v̄ ∈ E . Therefore, we may identify TxE ≃ E for any vector space E . In particular,

for any manifoldM we con�ate TvTxM≃ TxM for any v ∈ TxM and x ∈M.

For any smooth map between manifolds, the di�erential is de�ned as follows.

De�nition 1.8. The di�erential of a smooth map F : M → N at x ∈ M between

manifoldsM and N is the linear map DF (x) : TxM→ TF (x)N de�ned by

DF (x)[v] := ˙γF (0), v ∈ TxM,

where γ is any smooth curve realizing v and γF = F ◦ γ is a smooth manifold curve on

N passing through F (x) in t = 0.

1.1.3 The tangent bundle and smooth vector �elds

The disjoint union of tangent spaces is denoted

TM =
∐
x∈M

TxM := {(x, v) : x ∈M, v ∈ TxM}

and is known as the tangent bundle. It admits a natural smooth manifold structure of

dimension 2 dim(M) with respect to which the projection π1 : TM →M : (x, v) 7→ x

is a smooth map [Lee13, Proposition 3.18]. This projection returns the so called foot or

anchor point of the tangent vector.

De�nition 1.9. A smooth vector �eld onM is a smooth map V :M→ TM such that

π1(V (x)) = x for all x ∈M. The set of all smooth vector �elds is denoted X(M).

A similar de�nition hold for a smooth vector �eld Z along a smooth manifold curve

γ : J ⊂ R →M. It is a smooth map Z : J → TM such that π1(Z(t)) = γ(t), ∀ t ∈ J .
The set of smooth vector �elds along γ is denoted X(γ).
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1.2 Embedded submanifolds

1.1.4 Smooth tensor �elds

Generalizing the notion of vector �eld, a tensor �eld of order k associates at each point of

the manifold a tensor of order k, viewed here as a scalar valued map depending linearly

on k tangent vectors. The tensor �eld is considered smooth when it maps any collection

of k smooth vector �elds to a smooth scalar �eld.

De�nition 1.10 ([Bou23, De�nition 10.76]). A smooth tensor �eld T of order k on a

manifoldM is a map

T : X(M)k 7→ F(M),

that is F(M)-linear in all its arguments.

The property of F(M)-linearity means that a tensor �eld is a pointwise object, in the

sense that its value at a given x ∈M depends only on the value of the input vector �elds

at x. In the same way smooth vector �eld are maps fromM to the tangent bundle TM
that are smooth in the sense of De�nition 1.4, a smooth tensor �eld is equivalently [Lee13,

Proposition 12.19] a smooth map fromM to a tensor bundle of order k de�ned by,

T kTM :=
{
(x, L) : x ∈M, L : (TxM)k → R linear

}
. (1.1)

A tensor bundle is a particular type of vector bundle [Lee03, �10], in that it associates at

each point of the manifold a linear space. Vector bundles, in particular tensor bundles of

the form (1.1), can be endowed with a smooth manifold structure [Lee13, Lemma 10.6].

By convention, scalar �elds are order zero tensor �elds. The di�erential of a smooth

scalar �eld f ∈ F(M) introduced in De�nition 1.8 can be interpreted as a smooth order

1 tensor �eld as

U ∈ X(M) 7→ Df(U) := Uf ∈ F(M).

An example of tensor �eld of order 2 is the Riemannian metric that we introduce in

Section 1.3.

1.2 Embedded submanifolds

All manifolds considered in this thesis are subsets of some �nite dimensional vector space

E , which we call the ambient space or embedding space. In this setting, one can de�ne a

smooth manifold structure inherited from the linear manifold structure of E introduced

in Example 1.3. This notion is made precise with the concept of embedded submanifold,

of which we omit the general de�nition [Lee13, �5] in favor of a de�nition well-suited for

the particular caseM⊂ E .

De�nition 1.11 ([Bou23, De�nition 3.10]). A nonempty subsetM of a N -dimensional

vector space E is an embedded submanifold of E of dimension d if either

1. d = N andM is open in E; or
2. d = N −K, for some K ≥ 1 and for every x ∈ M there exists a neighborhood U

of x in E and a smooth function h : U → RK such that
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(a) y ∈M∩ U if and only if h(y) = 0,

(b) rank (Dh(x)) = K. The integer K is the codimension ofM.

An embedded manifold is also a manifold in the sense of De�nition 1.2 [Bou23, Propo-

sition 8.32].

A point of the submanifold can be viewed as a point of the ambient space via the inclusion

map ι :M→ E : x→ x. Under the conditions of De�nition 1.11,M admits a manifold

structure whose local charts guarantee that ι is a smooth map fromM to E .

Example 1.12 (Stiefel manifold). The set of real column orthogonal matrices of size

n × k, is de�ned as St(n, k) :=
{
X ∈ Rn×k : X⊤X = Ik

}
and is often called the Stiefel

manifold. It is indeed a manifold as it can be seen as an embedded submanifold of Rn×k.
It is equal to the zero level set of the smooth function h : Rn×k → Sk : X → X⊤X − Ik,
mapping to the vector space of k×k symmetric matrices Sk, isomorphic to Rdim(Sk) with

dim(Sk) = k(k + 1)/2. The directional derivative of h at X ∈ Rn×k along V ∈ Rn×k

is Dh(X) [V ] = X⊤V + V ⊤X. As expected, Dh(X)[V ] is always symmetric and, for

any X ∈ St(n, k) and V = 1
2XS for any given S ∈ Sk, then Dh(X)

[
1
2XS

]
= S . This

shows that for X ∈ St(n, k), Dh(X) has constant rank k(k + 1)/2. Hence, owing to

De�nition 1.11 the set St(n, k) is indeed an embedded submanifold of Rn×k of dimension
nk − 1

2k(k + 1).

1.2.1 Smooth maps on embedded submanifolds

A useful characterization of F (M) when M is an embedded submanifold of E is that

smooth scalar �elds can be smoothly extended to a neighborhood of M in the ambi-

ent space. This is possible as consequence of a more general result given in [Bou23,

Proposition 8.79].

Proposition 1.13. There exists a neighborhood U ofM in E such that for any f ∈ F (M)

there exists a smooth function f̄ : U → R such that f̄
∣∣
M = f .

Any such f̄ is called a smooth extension of f . Likewise, smooth vector �elds also admit

smooth extensions [Lee13, Exercise 8.15].

Proposition 1.14. For every V ∈ X(M) there exists a neighborhood V of M and a

smooth vector �eld V ∈ X(V) such that V
∣∣
M = V .

1.2.2 Tangent space on embedded submanifolds

Every smooth manifold curve γ on an embedded submanifold can be interpreted as a

smooth curve ι ◦ γ in the ambient space E via the inclusion map ι. The tangent vector

to the ambient curve is obtained by ordinary di�erentiation as γ′(t) = d
dt ι(γ(t)). If for

instance γ(0) = x, the notion of tangent vector γ̇(0) ∈ TxM as derivation over F (M) can

be reconciled with the usual notion of derivative γ′(0) for a curve in E . Letting f̄ denote

a smooth extension of any f ∈ F(M), then it holds that γ̇(0)f = Df̄(x)[γ′(0)] [AMS08,
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1.3 Riemannian manifolds

�3.5.7]. This creates a link between a tangent vector ofM and a vector of E that leads

to the identi�cation of the tangent space of an embedded submanifolds with a subspace

of E , as summarized in Theorem 1.15 below.

Theorem 1.15 ([Bou23, Theorem 3.15]). LetM be an embedded submanifold of E and

x ∈ M. IfM is an open subset of E then TxM = E. Otherwise, TxM = kerDh(x), for

any locally de�ning function h at x as in De�nition 1.11.

Example 1.16 (Tangent space of the Stiefel manifold). For the de�ning function of

the Stiefel manifold introduced in Example 1.12, we aim at describing its kernel at

X ∈ St(n, k), i.e. all the matrices V ∈ Rn×k such that Dh(X)[V ] = X⊤V + V ⊤X = 0.

Observe that this directional derivative vanishes along anyXΩ for some Ω ∈ S⊥k , the set of
skew-symmetric matrices. Indeed Dh(X)[XΩ] = Ω+Ω⊤ = 0. Furthermore, introducing

any matrix X⊥ ∈ Rn×(n−k) whose columns span the complement of span(X), for any

K ∈ R(n−k)×k we have Dh(X)[X⊥K] = 0. This shows the kernel of Dh(X) contains

a subspace of Rn×k of dimension 1
2(k − 1)k = dim

(
S⊥k
)
, and a subspace of dimension

k(n− k). Summing the dimensions gives nk − 1
2k(k + 1) = dim(St(n, k)) and allows us

to conclude

TXSt(n, k) :=
{
XΩ+X⊥K : Ω ∈ S⊥k , K ∈ R(n−k)×k

}
. (1.2)

1.3 Riemannian manifolds

The objective of de�ning a notion of distance on a manifold is one motivation for the

development of Riemannian manifolds. The starting point is to endow smooth manifolds

with an additional structure to measure lengths and angles on each the tangent space.

De�nition 1.17. A Riemannian metric on a smooth manifold M is an inner-product

⟨·, ·⟩x de�ned on TxM for each x ∈M that varies smoothly with x, in the sense that for

any smooth vector �elds V andW , the function ⟨U, V ⟩ to be intended as x→ ⟨V (x),W (x)⟩x
de�nes a smooth scalar �eld onM.

The above de�nition makes of the Riemannian metric a smooth tensor �eld of order 2

in the sense of De�nition 1.10. The Riemannian metric induces on each tangent space a

norm ∥v∥x =
√
⟨v, v⟩x, ∀ v ∈ TxM. A metric is the only additional structure needed to

qualify a manifold of Riemannian.

De�nition 1.18. A Riemannian manifold is a smooth manifold equipped with a Rie-

mannian metric.

Example 1.19 (Euclidean space of matrices). A vector space E endowed with an inner-

product ⟨·, ·⟩ can be turned into a Riemannian manifold by de�ning on TxE ≃ E the

inner-product of E . With this Riemannian structure, E is called an Euclidean space. For

example, the Euclidean space Rm×n is endowed with the metric ⟨V,W ⟩X = ⟨V,W ⟩ :=
Tr(V ⊤W ) for all X ∈ Rm×n and V,W ∈ TXRm×n ≃ Rm×n.
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Chapter 1. Manifolds

Length and distance

The length of a manifold curves is de�ned next. The de�nition applies to any piecewise

smooth manifold curve [Bou23, De�nition 10.2], i.e. a continuous map γ : [a, b] → M
for which there exists a partition a = a0 < · · · < aN = b diving the curve into segments

γ
∣∣
[ai−1,ai]

which are smooth manifold curves, ∀ i = 1, . . . , N . For such curve, the tangent

vector γ̇(t) is well-de�ned for all t ∈ [a, b] provided t ̸= ai. This is su�cient for the

following de�nition.

De�nition 1.20. The length of a piecewise smooth manifold curve γ : [a, b]→M is

L(γ) :=

∫ b

a
∥γ̇(τ)∥γ(τ) dτ.

Then, in analogy to Euclidean spaces, the Riemannian distance between to points is the

length of the shortest (piecewise smooth) path joining the point. But in contrast, to the

Euclidean case, the minimizing path may not be unique. The de�nition of Riemannian

distance is restricted to a connected Riemannian manifoldM, for which any two points

x, y ∈ M can be connected by a piecewise smooth manifold curve [Lee13, Proposition

2.50]. Let Γxy denote the set of all piecewise smooth manifold curves connecting x and

y.

De�nition 1.21. For a connected Riemannian manifold M, the Riemannian distance

between x and y is given by d(x, y) = inf
γ∈Γxy

{L(γ)}.

An important consequence of this de�nition is that any connected Riemannian manifolds

equipped with this distance function becomes a metric spaces [Lee13, Theorem 2.55]. As

for any metric space, we can de�ne the metric ball centered in x ∈ M of radius r > 0

by B(x, r) := {y ∈M : d(x, y) < r}. Likewise, a Riemannian manifold is said to be

complete if it is complete as a metric space.

1.3.1 Connections and covariant di�erentiation

Another central construction of Riemannian geometry is a generalization for the notion of

directional derivative of smooth vectors �elds de�ned on a manifold. The generalization

is not immediate as measuring the variation of a vector �eld along a certain direction

implies comparing tangent vectors belonging to di�erent tangent spaces. A priori, there

is no canonical way for doing this and it needs to be speci�ed. Indirectly, this is the

purpose of a connection.

De�nition 1.22. A connection on a smooth manifoldM is a mapping

∇ : X(M)× X(M)→ X(M)

(U, V ) 7→ ∇UV

satisfying the following properties for any U, V,W ∈ X(M), f, g ∈ F(M) and a, b ∈ R:
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1.3 Riemannian manifolds

1. F(M)-linearity in the �rst argument: ∇fU+gVW = f∇UW + g∇VW ,

2. R-linearity in the second argument: ∇U (aV + bW ) = a∇UW + b∇VW ,

3. Leibniz' product rule: ∇U (fV ) = Uf + f∇UV .

The vector �eld ∇UV is called the covariant derivative of V along U . Its value at

x ∈ M, that we denote (∇UV )(x), depends only on U(x) = u [Lee18, Proposition 4.5].

Hence, the notation∇uV is legitimate and to be understood as (∇UV )(x) for any smooth

vector �eld such that U(x) = u. We allow ourselves to use the notation ∇uV also when

u ∈ TxM to actually refer to the derivative along (x, u) ∈ TM.

For a smooth manifoldM, there exist in�nitely many connections satisfying the proper-

ties of De�nition 1.22 [Lee18, Lemma 4.10]. IfM is a Riemannian manifold, the following

theorem shows how to �lter out a unique connection.

Theorem 1.23 ([AMS08, Theorem 5.3.1]). On a Riemannian manifold M there exists

a unique connection ∇ known as the Riemannian connection which veri�es, for any

U, V,W ∈ X(M):

1. Symmetry: ∇UV −∇V U = [U, V ], the Lie-Bracket1 of the vector �elds,

2. Compatibility with the metric: U ⟨V,W ⟩ = ⟨∇UV,W ⟩+ ⟨V,∇UW ⟩.

Example 1.24 (the Euclidean connection). In an Euclidean space E , the Riemannian
connection is called the Euclidean connection and coincides with the usual directional

derivative of vector �elds [Lee18, Proposition 5.12]. It is denoted DUV and it is given by

(DUV )(x) := DV (x) [U(x)] =
d

dt
V (x+ tU(x))

∣∣∣∣
t=0

, ∀U, V ∈ X(E).

For the derivative of smooth vector �elds along a manifold curve, a separate construction

has to be given. In fact, for example, curves that self-intersect admit smooth vector �elds

which are not the restriction of a manifold vector �eld to the curve. Nevertheless, every

connection induces a natural way to de�ne derivative of vector �elds along curves. For

conciseness the following de�nition, is restricted to the case of the Riemannian connec-

tion.

Theorem 1.25 ([Bou23, Theorem 8.67]). Let γ : J ⊂ R → M be smooth curve on a

manifoldM equipped with the Riemannian connection ∇. There exists a unique mapping
D
dt : X(γ) → X(γ) called the induced covariant derivative which satis�es the following

properties for all Y, Z ∈ X(γ), U ∈ X (M), g ∈ F(J) and a, b ∈ R:
1. R-linearity: D

dt (aY + bZ) = aD
dtY + bDdtZ;

2. Leibniz product rule: D
dt (gZ) = g′Z + g D

dtZ;

3. Chain rule: D
dt (U ◦ γ) (t) = (∇γ̇(t)U)(γ(t)), for all t ∈ J ;

4. Compatibility with the metric: d
dt ⟨Y,Z⟩ =

〈
D
dtY,Z

〉
+
〈
Y, DdtZ

〉
.

For a su�ciently smooth vector �eld, induced covariant di�erentiation may be repeated

several times. We use Dk

dtk
to indicate the covariant di�erentiation of order k.

1The Lie-Bracket of U, V ∈ X (M) is a vector �eld de�ned as [U, V ]f = U(V f)−V (Uf), ∀ f ∈ F(M)
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Chapter 1. Manifolds

For any smooth manifold curve γ, the map t → γ̇(t) de�nes a smooth vector �eld

along the curve called the velocity �eld. Hence, the acceleration of γ is de�ned as

γ̈ := D
dt γ̇ ∈ X(γ). A vector �eld along a curve is said to be parallel if the induced

covariant derivative vanishes identically. Those curves whose velocity �eld is parallel are

of particular interest and they are the object of the next section.

A connection on a manifold M not only determines the covariant di�erentiation of

smooth vector �elds but also of general smooth tensor �elds as introduced with De�-

nition 1.10.

De�nition 1.26 ([Bou23, De�nition 10.77]). On a manifoldM equipped with a connec-

tion ∇, the covariant derivative of a smooth tensor �eld T of order k is a tensor �eld of

order k + 1 de�ned by

∇T (U1, . . . , Uk,W ) =WT (U1, . . . Uk)−
k∑
j=1

T (U1, . . . ,∇WUj , . . . , Uk).

for any U1, . . . , Uk,W ∈ X(M).

Just as covariant derivative of manifold vector �elds induces a unique induced covariant

derivative of vector �elds along curves, the so-de�ned covariant derivative of tensor �elds

determines a unique induced covariant derivative for tensor �elds along curves [Bou23,

Theorem 10.80]. Induced covariant di�erentiation of tensor �elds is also denoted D
dt as

it admits properties that are analogous to those stated for the vector �elds counterpart

in Theorem 1.25, except for the compatibility with the metric which does not apply.

Concerning the chain rule, the notation ∇γ̇(t)T for a smooth order-k tensor �eld T

restricted on a smooth curve γ is to be intended as follows. For any smooth vector �elds

U1, . . . , Uk ∈ X (γ), we denote

∇γ̇(t)T
(
U1(γ(t)), . . . , Uk(γ(t))

)
:= ∇T

(
U1(γ(t)), . . . , Uk(γ(t)), γ̇(t)

)
, ∀ t ∈ J.

As a consequence of De�nition 1.26, we can compute the derivative along the curve γ of

the tensor �eld with input vector �elds U1, . . . , Uk, for every t ∈ J , as

d

dt
T
(
U1(t), . . . , Uk(t)

)
= γ̇(t)T (U1(t), . . . , Uk(t))

= ∇T
(
U1(γ(t)), . . . , Uk(γ(t)), γ̇(t)

)
+

k∑
j=1

T
(
U1

(
γ(t)

)
, . . . ,

D

dt
Uj
(
γ(t)

)
, . . . , Uk

(
γ(t)

))
.

(1.3)

1.3.2 Geodesics and the exponential map

In an Euclidean space, linear segments are the unique curves with zero acceleration. This

observation motivates generalizing the concept of straight lines on a manifold using the

de�nition of acceleration for a manifold curve de�ned in the previous section.
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1.3 Riemannian manifolds

De�nition 1.27. A geodesic on M is a smooth manifold curve γ : J ⊂ R → M with

identically zero covariant acceleration, i.e. γ̈(t) = 0, ∀ t ∈ J .

Via the solution of an initial value problem associated to the zero acceleration condition,

it is always possible to obtain a geodesic γx,v passing at time t = 0 through a given x ∈M
with prescribed velocity v ∈ TxM on an interval J containing zero [Lee13, Corollary

4.28]. It is unique by Picard-Lindelöf theorem, up to the extent of the parametrization

interval J . We let γx,v denote the maximal geodesic, i.e. when J is taken as large as

possible. This means that there does not exist a geodesic γ̃x,v de�ned on J̃ such that

J ⊊ J̃ and γ̃x,v
∣∣
J
= γx,v. We denote by

O := {(x, v) ∈ TM : γx,v is de�ned on an interval containing [0, 1]}

the subset of the tangent bundle for which the associated maximal geodesic is de�ned at

least up to t = 1.

De�nition 1.28 ([Bou23, De�nition 10.16]). The exponential map of Riemannian man-

ifoldM equipped with the connection ∇ is the map Exp : O →M de�ned

Exp(x, v) = Expx(v) = γx,v(1),

where Expx denotes the restriction on TxM, also called the exponential map at x.

Figure 1.5: The Riemannian exponential map.

The exponential map can be used to parametrize the geodesic γx,v as it holds that

γx,v(t) = Exp(tv), for all t ∈ [0, 1]. For later reference, we collect properties of the

exponential map in the following proposition.

Proposition 1.29 ([Lee18, Proposition 5.19]). The exponential map of a Riemannian

manifoldM satis�es the following properties.

1. O is an open subset of TM which contains (x, 0) for all x ∈M.

2. The exponential map is a smooth map from TM toM.

3. For a geodesic γx,v such that (x, v) ∈ O, it holds that γx,v(t) = Exp(tv), ∀ t ∈ [0, 1].

4. The di�erential of Expx in 0 ∈ TxM denoted DExpx(0) is the identity map on

TxM under the identi�cation T0TxM≃ TxM.
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Chapter 1. Manifolds

Example 1.30 (Stiefel manifold exponential map). The exponential map for the Stiefel

manifold with the embedded metric (1.5) de�ned in Section 1.4 and the associated

Riemannian connection admits an expression involving the matrix exponential2. For

X ∈ St(n, k) and V = XΩ+X⊥K ∈ TXSt(n, k) as in (1.2), denote S = V ⊤V . Then the

exponential map is given by [EAS99, �2.2.2]

ExpX (V ) =
(
X V

)
exp

(
t

(
Ω −S
Ik×k Ω

))(
Ik×k
0k×k

)
e−tΩ, (1.4)

By the properties of the exponential map stated in Proposition 1.29, the inverse function

theorem guarantees the exponential map at any x is locally invertible. A quantitative

indication on the size of the domain for which Expx always admits an inverse is given by

the notion of injectivity radius at x.

De�nition 1.31 ([Bou23, De�nition 10.19]). For a Riemannian manifoldM, the injec-

tivity radius at x ∈M is

inj(x) := sup (r > 0 : Expx is a di�eomorphism on BT (0, r)) ,

where BT (0, r) ⊂ TxM denote that open ball of radius r centered at the origin of the

tangent space at x.

By the inverse function theorem, inj(x) > 0 for every x ∈ M. Restricting the domain

of exponential at x to the ball BT (0, inj(x)) guarantees by construction that Expx is a

bijection onto Expx(BT (0, inj(x))). With this restriction of the domain, the inverse of

the exponential map is known as the logarithmic map. The following de�nition com-

bines [Bou23, De�nition 10.20] with [Bou23, Corollary 10.25].

De�nition 1.32. On a Riemannian manifold M, the Riemannian logarithm or loga-

rithmic map at x ∈ M is de�ned for every y ∈ Expx(BT (0, inj(x))) as Logx(y) = v,

where v is the unique tangent vector in BT (0, inj(x)) ⊂ TxM such that Expx(v) = y.

The so-de�ned logarithm is a map Log :M×M→ TM that is smooth on the following

set [Bou23, Corollary 10.25]

{(x, y) ∈M×M : d(x, y) < inj(x)} .

A very useful property of the logarithmic map is its connections to the Riemannian

distance function.

Proposition 1.33 ([Bou23, Proposition 10.22]). For any x, y ∈ M such that d(x, y) <

inj(x), a geodesic joining x and y is parametrized as γ(t) = Expx(tLogx(y)) for t ∈ [0, 1]

and it is the unique curve such that d(x, y) = L(γ). In particular, d(x, y) = ∥Logx(y)∥x.

2The matrix exponential is de�ned for any A ∈ Rn×n by exp(A) = eA :=
∑+∞

k=0 A
k/k!.
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1.4 Riemannian submanifolds

The geodesic γ in Proposition 1.33 is unique up to reparametrization and is called the

length-minimizing geodesic. These length-minimizing geodesics generalize to Rieman-

nian manifolds the Euclidean notion of linear segments from the perspective of length-

minimizing paths between two points.

1.3.3 Parallel transport

In the same way as the zero-acceleration condition of geodesics coupled with an initial

condition leads to the de�nition of the exponential map, parallel vector �elds Z along

any smooth curve γ can be constructed by integrating the vanishing induced covariant

derivative condition D
dtZ(t) = 0, ∀ t ∈ J . This construction is always possible. In fact,

for any t0 ∈ J and Z0 ∈ Tγ(t0)M there exists a unique parallel vector �eld Z ∈ X(γ)

such that Z(t0) = Z0 [Lee18, Theorem 4.32]. In turn, this leads to the de�nition of a

map to transport tangent vectors along the curve.

De�nition 1.34 ([Bou23, De�nition 10.35]). Given a smooth curve γ onM, the parallel

transport along γ from t0 to t1 is the linear map

Pγt1←t0 : Tγ(t0)M→ Tγ(t1)M

de�ned for any v ∈ Tγ(t0)M by Pγt1←t0v = Z(t1), where Z ∈ X(M) is the only parallel

vector �eld along γ such that Z(t0) = v.

Figure 1.6: Parallel transport along a smooth manifold curve γ.

With the Riemannian connection, parallel transport is an isometry between tangent

spaces [Bou23, Proposition 10.36].

1.4 Riemannian submanifolds

Let us now specialize to the case whereM is an embedded submanifold of an Euclidean

space E , a vector space whose inner-product ⟨·, ·⟩ is used as Riemannian metric, see

Example 1.19. In light of Theorem 1.15, we can interpret tangent vectors of TxM as

elements of TxE ≃ E . This allows the de�nition of a natural Riemannian metric forM
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Chapter 1. Manifolds

by restricting the inner-product of E to each TxM, i.e. ⟨u, v⟩x = ⟨u, v⟩, ∀u, v ∈ TxM,

x ∈M. This is the so-called induced metric onM.

De�nition 1.35. A Riemannian submanifold is an embedded manifold M of an Eu-

clidean space E endowed with the induced metric.

Example 1.36 (Stiefel manifold embedded metric). The embedded metric on the Stiefel

manifold is the restriction of the Euclidean metric of Rn×k introduced in Example 1.19

on each tangent space of St(n, k). For every X ∈ St(n, k) and V1, V2 ∈ TXSt(n, k) written
as in (1.2), i.e. Vi = XΩi +X⊥Ki, for i = 1, 2, we have

⟨V1, V2⟩ = Tr(V ⊤1 V2) = Tr(Ω⊤1 Ω2) + Tr(K⊤1 K2). (1.5)

Note that this metric weighs the subspace associated to the anti-symmetric part Ωi twice

as much as the other directions. For this reason, the embedded metric is often replaced

by the so-called canonical metric [EAS99, �2.4.1] which is a non-induced metric de�ned

by ⟨V1, V2⟩X = 1
2 Tr(Ω

⊤
1 Ω2) + Tr(K⊤1 K2).

1.4.1 Projections on Riemannian submanifolds

For each x ∈ M, the identi�cation of TxM with a vector subspace of E allows the

de�nition of the orthogonal projection from E to TxM that we denote Π(x). Then, at

every x, we can write any v ∈ E as the sum of a tangential component Π(x)v ∈ TxM
and normal component (I − Π(x))v =: Π(x)⊥v ∈ TxM⊥. The orthogonal complement

of TxM as a subspace in E is called the normal space at x denoted NxM.

Example 1.37 (Stiefel manifold tangent space projection). For any X ∈ St(n, k), the

orthogonal projection onto TXSt(n, k) is given by

Π(X)V = XSkew(X⊤V ) + (I −XX⊤)V

where Skew(A) := 1
2

(
A−A⊤

)
for any square matrix A. In fact, it is a linear idempotent

and self-adjoint map whose image spans TXSt(n, k).

The tangent space projection at Π(x) returns the closest tangent vector in TxM to a

given ambient vector. The closest manifold point to an ambient space point is provided

by the metric projection from E toM, which is de�ned as

ΠM(y) := argmin
x∈M

∥y − x∥.

When M is closed in E , this mapping is single-valued on a dense subset of E [Bou23,

Theorem 5.53] or ifM is the boundary of a convex set. For embedded manifolds which

are not closed subsets of the ambient space, the metric projection can still be de�ned,

but it is single-valued only in a neighborhood ofM [AM12, Lemma 3.1].
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1.5 Manifolds of interest

1.4.2 The tangential connection

For a Riemannian submanifold M of an Euclidean space E , it is possible to de�ne a

connection by projecting onto the tangent space the ambient space Euclidean connection

de�ned in Example 1.24. This is the so-called tangential connection that is denoted ∇⊤

and de�ned by

(∇⊤UV )(x) = Π(x)(DUV )(x), ∀x ∈M, U, V ∈ X(M),

where V is any smooth extensions of V . The tangential connection is the Riemannian

connection of a Riemannian submanifold [Lee13, Proposition 5.12]. Since this is the only

connection we consider for Riemannian submanifold, from now on we simply denote it

∇. For any smooth curve γ : J ⊂ R → M, the induced covariant derivative uniquely

determined by the tangential connection is given for any Z ∈ X(γ) by [Bou23, Proposition

5.31]
D

dt
Z(t) = Π(γ(t))Z ′(t), ∀ t ∈ J,

where Z ′(t) is obtained from interpreting Z as a curve in E . Hence, we may write the

acceleration of curve on a Riemannian submanifold as

γ̈(t) = Π(γ(t))γ′′(t).

It is customary to the refer to γ̈ as the intrinsic acceleration, obtained as the tangential

part of the extrinsic or Euclidean acceleration γ′′(t). Therefore, on a Riemannian sub-

manifolds equipped with the Riemannian connection, geodesics are the manifold curve

whose extrinsic acceleration is orthogonal to the manifold.

1.5 Manifolds of interest

In the following sections we gather de�nitions and well-known results about some Rie-

mannian manifolds considered in the applications sections of the thesis.

1.5.1 The sphere

In order to have the possibility to visually appreciate the output of some algorithm

presented in the thesis, we apply them to a very simple manifold: the sphere. While

illustrative example restrict to the case of the sphere in R3, let us introduce the mani-

folds structure of the sphere in Rn. For a complete presentation, the reader is referred

to [Bou23, �7.2].

Let us consider Rn with it Euclidean structure given by the inner-product ⟨u, v⟩ = u⊤v,

∀u, v ∈ Rn. The sphere in Rn is de�ned as

Sn−1 := {x ∈ Rn : ⟨x, x⟩ = 1} .
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Chapter 1. Manifolds

Figure 1.7: Stereographic projection through the north pole N of a northern hemisphere
point x ∈ S2 and of a southern hemisphere point y ∈ S2.

The function h(x) = ⟨x, x⟩ − 1 is smooth and the sphere coincides with the zero level

set. The di�erential of the de�ning function is Dh(x) [v] = 2 ⟨x, v⟩ and is surjective on

R for any x ∈ Sn−1. This shows Sn−1 is an embedded submanifold of Rn of dimension

n− 1 in the sense of De�nition 1.11.

Alternatively, Sn−1 can be argued to be a smooth manifold in the sense of De�nition 1.2

by constructing explicitly a smooth atlas [Lee13, Exercise 1-7]. Let us indicate by N =

(0, . . . , 0, 1) ∈ Sn−1 the north pole of the sphere. The stereographic projection through

the north pole of Sn−1 is σN : Sn−1 \ {N} → Rn−1 de�ned by

σN
(
(x1, . . . , xn)

)
=

(x1, . . . , xn−1)

1− xn
.

This mapping associates to any point of x ∈ Sn−1 \ {N} the intersection between the

plane xn = 0 and the line joining N and x, see Figure 1.7. Analogously, the south pole of

the sphere is S := −N , and the associated stereographic projection is σS(x) = −σN (−x),
de�ned for any x ∈ Sn−1 \ {S}. Both σN and σS are bijective and the transition map

σS ◦σ−1N is smooth. Since Sn−1 \ {N} and Sn−1 \ {S} form an open cover for Sn−1, then

{σN , σS} is a smooth atlas. The manifold structure which properly contains this atlas is

the same manifold structure implied by De�nition 1.11 and the above de�ning function

h.

Following Proposition 1.15, the tangent space at x ∈ Sn−1 can be expressed as

TxS
n−1 = kerDh(x) = {v ∈ Rn : ⟨x, v⟩ = 0} .

Hence, the projection onto the tangent space is Π(x)w = w−⟨x,w⟩x, for every w ∈ Rn.
The sphere is the boundary of a closed convex subset of Rn, so the closest point projection
is always uniquely de�ned. It coincides with the normalization

ΠSn−1(y) :=
y

∥y∥
. (1.6)

The sphere is endowed with the embedded metric of Rn and the associated Rieman-

nian metric. This yields a Riemannian submanifold structure for Sn−1 which admits an
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expression for the exponential map involving trigonometric functions [Bou23, Example

5.37] which is a constant-speed parametrization of a great circle of the sphere

Expx(v) = cos(t ∥v∥)x+
sin(t ∥v∥)
∥v∥

v. (1.7)

For any x ∈ Sn−1, by appropriately restricting the domain of the exponential map on the
open disk of radius π around the origin of the tangent space, the exponential map is bijec-

tive and its inverse coincides with the logarithmic map. It is de�ned for any every point

on the sphere except the antipodal point and admits the following expression [Bou23,

Example 10.21]

Logx(y) = arccos(y⊤x)
Π(x)y

∥Π(x)y∥
, ∀ y ∈ Sn−1 \ {−x} . (1.8)

1.5.2 Symmetric positive de�nite matrices

Symmetric positive de�nite matrices often arise in applications, notably as covariance

matrices. Here, we present a commonly encountered manifold structure for this set

of matrices which yields favorable properties, notably completeness of the manifold.

The material in this section can be found in the reference textbook on positive de�nite

matrices [Bha07, �6] and in [Moa05, �2.3].

The set of symmetric positive de�nite matrices are a subset of the vector space of sym-

metric matrices Sn de�ned by

S+n :=
{
X ∈ Sn : v⊤Xv > 0, ∀ v ∈ Rn if v ̸= 0

}
.

In particular, it is a convex cone in the sense αX+βY ∈ S+n for any X,Y ∈ S+n provided

α, β > 0. Furthermore, it can be characterized by the inequalities det(X1:k,1:k) > 0, for

all k = 1, . . . , n. By continuity of the functions X → det(X1:k,1:k), we obtain S+n as the

�nite intersection of such open subsets. Hence, S+n is open in Sn and therefore it is an

embedded submanifold of Sn of dimension n(n+ 1)/2 = dim(Sn). The tangent space at
X ∈ S+n can be identi�ed with the ambient vector space:

TXS+n ≃ Sn.

Under the embedded metric, S+n would not be a complete metric space since it is open

in Sn. An alternative metric can be de�ned with the intent to preserve lengths under

congruence transformations. In fact, consider any n × n invertible matrix X, the con-

gruent matrix X⊤Y X ∈ S+n if Y ∈ S+n . Therefore, it is required that for any smooth

curve γ on S+n the metric implies length-invariance under congruence transformation, i.e.

L(t→ γ(t)) = L(t→ X⊤γ(t)X). This is the case for any metric such that〈
X⊤V X,X⊤WX

〉
X⊤Y X

= ⟨V,W ⟩Y , ∀ V,W ∈ Sn. (1.9)
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A frequently used Riemannian metric verifying this property has the following expression

⟨V,W ⟩X = Tr
(
X−1V X−1W

)
. (1.10)

Due to property (1.9), this metric is often called the bi-invariant metric of S+n . The

induced norm ∥V ∥X , by cyclic permutation of the trace operator, can be written as

∥V ∥X =
∥∥∥X−1/2V X−1/2∥∥∥

F
.

With the bi-invariant metric (1.10) and the associated Riemannian connection, any

X,Y ∈ S+n can be joined by a unique geodesic which can be parametrized by [Bha07,

Theorem 6.1.6]

γXY (t) = X1/2 exp(t log(X−1/2Y X−1/2))X1/2, (1.11)

where exp and log are the matrix exponential and logarithm3. Di�erentiating (1.11)

in t = 0 tell us the Riemannian logarithmic map and exponential map on S+n with the

bi-invariant metric are, ∀X,Y ∈ S+n and V ∈ TXS+n .

LogX(Y ) :=X1/2 log(X−1/2Y X−1/2)X1/2,

ExpX(V ) :=X1/2 exp(X−1/2V X−1/2))X1/2.
(1.12)

In turn, the Riemannian distance function reads as

d(X,Y ) = ∥ log(X−
1
2Y X−

1
2 )∥F . (1.13)

The completeness of S+n as metric space with this distance follows from the Hopf-Rinow

Theorem [Lee13, Theorem 6.19] by observing the exponential map is well-de�ned on the

whole tangent bundle.

With this geometry, the parallel transport along a geodesic γ from γ(0) = X to γ(1) = Y

has the following expression [SH15, Equation 3.4] for every V ∈ Sn

Pγ1←0V = EV E⊤, with E = (Y X−1)1/2. (1.14)

1.5.3 Fixed-rank matrices

The set of m× n matrices of rank k ≤ min {m,n} is de�ned as

Mk :=
{
X ∈ Rm×n : dim(span(X)) = k

}
.

It is an embedded submanifold of Rm×n of dimension (m+n−k)k [Lee03, Example 8.14].
It is often encountered in applications to approximate numerically low-rank matrices.

Among many equivalent parametrizations of this manifold, in this work we adopt the

3The (principal) matrix logarithm is uniquely de�ned for any non-singular B ∈ Rn×n with no eigen-
values on the negative real axis. Then log(B) =: A is the unique matrix such that eA = B and whose
eigenvalues lie in the strip {z ∈ C : −π < Im(z) < π}, see [Hig08, Theorem 1.31].
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conventions used in the MATLAB Riemannian optimization library Manopt [BMAS14]

to represent rank-k matrices and tangent vectors. The reader is referred to [Van13, UV20]

for an extensive overview. Any point X ∈Mk is associated with its economy-sized SVD

X = UΣV ⊤ (1.15)

where U ∈ St(m, k), V ∈ St(n, k) and Σ = diag(σi) is the diagonal matrix with the

non-zero singular values in descending order σ1 ≥ · · · ≥ σk > 0. The tangent space at X

is parametrized as

TXMk =

UMV ⊤ + UpV
⊤ + UV ⊤p ∈ Rm×n :

M ∈ Rk×k,
Up ∈ Rm×k, U⊤p U = 0,

Vp ∈ Rn×k, V ⊤p V = 0

 . (1.16)

The manifold of rank-k matrices is endowed with the Riemannian submanifold struc-

ture of Rm×n, i.e. with the metric ⟨Z,W ⟩ = Tr(Z⊤W ), ∀W,Z ∈ TXMk. Then, the

orthogonal projection onto the tangent space at X has the following expression

Π(X)W = PUWPV + PUWP⊥V + P⊥UWPV . (1.17)

where PU = UU⊤, PV = V V ⊤, P⊥U = I − PU , P⊥V = I − PV are orthogonal projections

onto the spaces spanned by the columns of U and V , and their orthogonal complements,

respectively.

A notable property ofMk under this Riemannian submanifold structure is that it is not

complete. This is because it is not closed in Rm×n. For instance, consider the sequence
of matrices of rank-k de�ned by

Ai = Udiag(σ1, . . . , σk−1, σk/i)V
⊤, ∀ i ∈ N

for any column orthogonal U and V and σ1, . . . , σk > 0. This de�nes a Cauchy sequence

containedMk but whose limit lies inMk−1. Nevertheless, under the Euclidean structure

of Rm×n, the closest point projection onto Mk of a given A ∈ Rm×n can be uniquely

de�ned provided σk(A) > σk+1(A). In fact, it is the solution to the problem

argmin
Y ∈Mk

∥A− Y ∥F

which notoriously can be computed with the rank-k truncated SVD of the matrixA [HJ13,

�7.4.2]

ΠMr(A) :=

k∑
i=1

σiuiv
⊤
i , (1.18)

where σi are the k largest singular values and ui, vi the associated singular vectors.

To mitigate storage requirements when m and n are large and k ≪ min {m,n}, it
is convenient to store elements of Mk with the triplet (U,Σ, V ). Likewise, tangent
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Chapter 1. Manifolds

vectors can be identi�ed with the triplet (M,Up, Vp) and the triplet of the anchor point.

Metric projection, tangent space projection and Riemannian metric can be e�ciently

implemented to operate with these formats.

A part from numerically integrating the geodesic equation in De�nition 1.27 on the �xed-

rank manifold by some standard procedure, to the best of our knowledge, there is no

speci�cally tailored strategy to compute the exponential map ofMk under this embedded

geometry. However, a di�erent Riemannian structure on Mk enables to leverage the

exponential map (1.4) obtained for the Stiefel manifold to construct the exponential

map forMk under this alternative geometry [AAM14, �6].
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2 Retractions for Riemannian opti-

mization

In this chapter, we introduce the basics of Riemannian optimization with particular

emphasis on retractions. As an illustrative example and for later reference, we describe

some standard Riemannian optimization algorithms as well as some retractions for the

manifolds introduced in the previous chapter that are relevant for the thesis. The reader

is referred to [AMS08, Bou23] for a complete overview.

2.1 Riemannian optimization fundamentals

Given a smooth manifoldM and a smooth scalar �eld f ∈ F(M), consider the following

constrained optimization problem

min
x∈M

f(x). (2.1)

WhenM is an embedded submanifold of an Euclidean space E that can be conveniently

described using de�ning functions, the problem could be addressed with methods from

general constrained optimization, e.g., the method of Lagrange multipliers. For certain

M however, this approach cannot be pursued due to the complexity of the de�ning

functions. Additionally, the smoothness of the constraint set o�ers some simpli�cations

which can be leveraged to develop more speci�c methods. For instance, a necessary

optimality condition for (2.1) can be formulated as follows.

Proposition 2.1 ([Bou23, Proposition 4.5]). If x ∈ M is a local minimizer of a scalar

�eld f ∈M, then x is a critical point of f , i.e. a point for which

vf = Df(x)[v] = 0, ∀ v ∈ TxM. (2.2)

2.1.1 The Riemannian gradient

When the manifold is endowed with a Riemannian metric, the criticality condition (2.2)

can be made even more explicit. By Riesz representation theorem, the inner-product on

each tangent space grants the existence of the Riemannian gradient.

De�nition 2.2 ([Bou23, De�nition 3.58]). Let M denote a Riemannian manifold with

a metric ⟨·, ·⟩x for every x ∈ M. The Riemannian gradient of a scalar �eld f ∈ F(M)
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at x is the unique vector gradf(x) ∈ TxM which satis�es

Df(x) [v] = ⟨gradf(x), v⟩x , ∀ v ∈ TxM.

The Riemannian gradient of a smooth function is a smooth vector �eld on M [Bou23,

Proposition 3.70]. This same de�nition holds whenM = E an Euclidean space endowed

the standard inner-product. The so-de�ned Riemannian gradient of f ∈ F(E) coincides
with the usual gradient of f de�ned as the vector of partial derivatives. For this particular

case, we reserve the term Euclidean gradient and use the symbol ∇f .
The necessary optimality condition stated in Proposition 2.1 can now be expressed in

terms of the Riemannian gradient, recovering the usual notion of critical point for a

scalar �eld on an Euclidean space.

Proposition 2.3 ([Bou23, Proposition 4.5]). For a smooth scalar �eld f ∈ F(M) on a

Riemannian manifoldM, the point x is a critical point if and only if gradf(x) = 0.

In the case whereM is a Riemannian submanifold of an Euclidean space E , the possibility
to smoothly extend scalar �elds to the ambient space stated in Proposition 1.13 allows us

to relate the Riemannian gradient with the Euclidean gradient of any smooth extension.

Letting f̄ denote any smooth extension for f ∈ F(M), then for x ∈M and any v ∈ TxM

Df(x) [v] = Df̄(x) [v] ,

where the v on the right-hand side is interpreted as an element of TxE ≃ E . Hence,

since the Riemannian metric is the induced metric, from the de�nition of Riemannian

and Euclidean gradient it must hold that for all v ∈ TxM

⟨gradf(x), v⟩ =
〈
∇f̄(x), v

〉
,

=
〈
Π(x)∇f̄(x), v

〉
+
〈
Π(x)⊥∇f̄(x), v

〉
=
〈
Π(x)∇f̄(x), v

〉
,

where Π(x) and Π(x)⊥ are respectively the orthogonal projection from E to TxM and

its complement. This shows that the Riemannian gradient is the tangential component

of the Euclidean gradient of a smooth extension. This is independent of the choice of

smooth extension as summarized by the following.

Proposition 2.4 ([Bou23, Proposition 3.61]). For a Riemannian submanifoldM to an

Euclidean space E, the Riemannian gradient of a scalar �eld f ∈ F(M) is given by

gradf(x) = Π(x)∇f̄(x),

for any smooth extension f̄ of f in a neighborhood ofM in E.

In turn, Proposition 2.4 yields a practical way of computing Riemannian gradients on

Riemannian submanifolds: choose any smooth extension of the scalar �eld, compute the

Euclidean gradient and project it to the tangent space.
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2.1 Riemannian optimization fundamentals

Figure 2.1: The Riemannian gradient as orthogonal projection of the Euclidean gradient.

2.1.2 The Riemannian Hessian

Having identi�ed a critical point of a scalar �eld f ∈ F(M) is not su�cient to claim local

optimality for problem (2.1). To distinguish locally minimizing critical points from local

maxima and saddle points, it can be su�cient to consider the second-order variation of

the objective function. The extension of this concept for manifold scalar �elds can be

done endowing the manifold with a Riemannian structure.

De�nition 2.5 ([Bou23, De�nition 5.14]). For a Riemannian manifoldM endowed with

its Riemannian connection, the Riemannian Hessian at x ∈ M of a smooth scalar �eld

f ∈ F(M) is the linear operator Hessf(x) : TxM→ TxM de�ned by

Hessf(x) [v] := ∇v gradf(x), ∀ v ∈ TxM.

The Riemannian Hessian is smoothly varying in x in the sense that for any smooth vector

�eld V ∈ X(M), the map x 7→ (x,Hessf(x) [V (x)]) is a smooth vector �eld. Alterna-

tively, the smoothness can be understood in the sense the map U, V 7→ ⟨U,Hess(f) [V ]⟩
for every U, V ∈ X(M) de�nes a smooth tensor �eld as per De�nition 1.10. The Rie-

mannian Hessian is de�ned with the Riemannian connection so that the compatibility

with the Riemannian metric implies the Riemannian Hessian is a self-adjoint operator

with respect to the metric [Bou23, Proposition 5.15]. This guarantees that the positive

semi-de�niteness of the Riemannian Hessian translates into a condition on its eigenvalues.

Proposition 2.6 ([Bou23, Proposition 6.3]). A local minimizer x ∈M of a scalar �eld

f ∈ F(M) satis�es gradf(x) = 0 and Hessf(x) ⪰ 0.

This condition is still not su�cient for local optimality: if the Hessian is not full rank,

the critical point may be a local maxima or a saddle point of order greater than two. A

su�cient condition reads as follows.

Proposition 2.7 ([Bou23, Proposition 6.5]). If x ∈ M is a critical point of the scalar

�eld f ∈ F(M) and Hessf(x) ≻ 0 then x is a strict local minimizer.

29



Chapter 2. Retractions for Riemannian optimization

Analogously to Proposition 2.4 concerning the Riemannian gradient, let us discuss one

way of computing the Riemannian Hessian of a given objective function for the case of

a Riemannian submanifoldM in an Euclidean space E . On the one hand, as detailed in

Section 1.4.2, the Riemannian connection consists of projecting onto the tangent space

the Euclidean derivative of the vector �eld smoothly extended in the ambient space. On

the other hand, according to Proposition 2.4, the Riemannian gradient will coincide with

the tangential projection of the Euclidean gradient. Hence, for a Riemannian submanifold

the covariant derivative of the Riemannian gradient features the di�erential of tangent

space projection. From every x ∈ M, the di�erential of the tangent space projection is

a linear map from TxM to TxE and we denote it DΠ(x)[v].

Proposition 2.8 ([AMT13, �3]). The Riemannian Hessian of a scalar �eld f de�ned

on a Riemannian submanifoldM of an Euclidean space can be computed as

Hessf(x)[v] = Π(x)∇2f̄(x) [v] + Π(x)DΠ(x)[v]Π(x)⊥∇f̄(x), ∀ x ∈M, v ∈ TxM,

where f̄ is any smooth extension of f to E and ∇f̄ and ∇2f̄ indicate respectively its

Euclidean gradient and Hessian.

2.1.3 Gradient descent along geodesics

Analogously to the Euclidean case, when gradf(x) ̸= 0 the Riemannian gradient produces

the direction of steepest ascent for the function f in the sense

gradf(x)

∥gradf(x)∥x
= argmax
∥v∥x=1

Df(x) [v] .

Therefore, following the opposite direction along a geodesic produces a greedy minimiza-

tion algorithm for problem (2.1). In fact, provided the objective function is continuously

di�erentiable, a su�ciently small step along the geodesic passing trough the current it-

erate in the direction of the negated Riemannian gradient is guaranteed to decrease the

objective function without leaving the constraint manifold [RW12, Proposition 1]. With

the tools introduced so far, the iteration can be written using the exponential map ofM
as

xk+1 = Expxk(−αk gradf(xk)), ∀ k ≥ 0, (2.3)

for some suitably chosen step sizes αk > 0 and an initial guess x0 ∈ M. This �rst

appearance of this kind of algorithm dates back to [Lue72, Gab82].

The exponential map (see De�nition 1.28) is the solution to an initial value problem

which can be a demanding problem to solve in general. Although sometimes an analytical

expression is available, see Example 1.30, it may still be too onerous to compute when it

involves matrix functions for matrices of large dimension. The objective to alleviate the

cost of computing the Riemannian exponential map in a procedure like (2.3) motivates

the developments of retractions.
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2.2 Retractions

2.2 Retractions

The de�ning properties of retractions mirror essential features of the exponential map.

De�nition 2.9 ([AMS08, De�nition 4.4.1]). A retraction is a smooth map

(x, v) ∈ TM 7→ R(x, v) ∈M

de�ned in a neighborhood of {(x, 0) ∈ TM : x ∈M}. Denoting Rx the restriction of R

onto TxM for some x ∈M, retractions satisfy

1. Rx(0x) = x, where 0x is the zero vector of TxM,

2. DRx(0x) = ITxM, the identity map on the tangent space at x.

Concrete examples of retractions for the manifolds considered in the thesis are provided in

Section 2.4. As expected from the intent in de�ning the retraction, the exponential map

on a Riemannian manifold is indeed a retraction, owing to Proposition 1.29. The second

property of De�nition 2.9 is referred to as local rigidity and has several implications.

First and foremost, it guarantees that for any x ∈M and v ∈ TxM, we have

d

dt
Rx(tv)

∣∣
t=0

= v =
d

dt
Expx(tv)

∣∣
t=0

.

This justi�es replacing the exponential map in (2.3) with any retraction while main-

taining the guarantee to reduce the objective function at each step for su�ciently small

steps [RW12, Proposition 1]. The algorithm so-obtained is called Riemannian gradient

descent, see Section 2.3.

Note that the de�nition of retraction does not requireM to be endowed with a Rieman-

nian structure. Yet, on Riemannian manifolds some retractions may satisfy a property

related to the acceleration of certain curves de�ned using retractions.

De�nition 2.10. A retraction on a Riemannian manifold M is said to be a second-

order retraction if for any x ∈M and v ∈ TxM the manifold curve σx,v(t) = Rx(tv) has

zero covariant acceleration in t = 0, that is σ̈x,v(0) = 0.

Two general ways of constructing second-order retractions are discussed in Section 2.2.2

and provided explicitly for speci�c manifolds in Section 2.4. WhenM is a Riemannian

submanifold, the second-order condition for a retraction can be interpreted as requiring

the extrinsic acceleration σ′′x,v(0) to be normal to the manifold at x.

Furthermore, when the curve σx,v is interpreted as a curve in E it can be compared

with the geodesic γx,v(t) = Expx(tv), also interpreted in the ambient space. Then, the

local rigidity condition and the second-order condition imply that the retraction curve

matches the Taylor expansion of the geodesic up to �rst and second order respectively,

as summarized by the following result. This is a particular case of [AM12, Proposition

2.2-2.3] in the setting like ours where both the manifold and the retraction are assumed

to be in�nitely di�erentiable.
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Chapter 2. Retractions for Riemannian optimization

Figure 2.2: Pictorial comparison between a (�rst-order) retraction R(1), a second-order
retraction R(2) and the Riemannian exponential map Exp.

Proposition 2.11. For M an embedded submanifold of an Euclidean space E, let R
denote a smooth map from an open neighborhood of {(x, 0) ∈ TM : x ∈M} to M. For

any (x, v) ∈ TM, consider the geodesic curve γx,v(t) = Expx(tv) and the smooth curve

σx,v(t) = Rx(tv), which can always be both de�ned around t = 0. Then:

1. R is a retraction if and only if

σx,v(t) = γx,v(t) +O(t2), as t→ 0,

2. R is a second-order retraction if and only if

σx,v(t) = γx,v(t) +O(t3), as t→ 0.

A useful consequence of this result is that it provides a way to recognize retractions on

Riemannian submanifolds based on how close retraction curve approximate geodesics.

Vice-versa, retractions may be constructed by truncating the Taylor series of the expo-

nential map, provided this leads to a point on the manifold.

2.2.1 Inverse retraction

Another important consequence of the local rigidity condition in the de�nition of retrac-

tion is that retractions are locally invertible. The following property [Bou23, Corollary

10.27] conveniently characterizes the subset of the retraction's domain over which the

inverse retraction can be de�ned.

Proposition 2.12. For any retraction R there exists a continuous function ∆ :M →
(0,∞] de�ning an open subset D := {(x, v) ∈ TM : ∥v∥x < ∆(x)} of the tangent bundle
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2.2 Retractions

such that
E : D ⊂ TM→M×M

(x, v) 7→ (x,Rx(v))

is a di�eomorphism.

Accordingly, if v ∈ TxM is such that ∥v∥x < ∆(x), then the retraction is well-de�ned.

Likewise, whenever x, y ∈ M are such that (x, y) ∈ E(D), we say that the inverse

retraction R−1x (y) is well-de�ned and is equal to the unique v ∈ TxM such that E(x, v) =

(x, y). Moreover, with this de�nition the inverse retraction is smooth jointly in x and y.

This de�nition of inverse retraction is analogous to the one given for the Riemannian

logarithm, a particular inverse of the exponential map, see Section 1.3.2. In fact, the

inverse retraction for the exponential retraction coincides with the Riemannian loga-

rithm. In this case, the function ∆(x) can be taken to be the injectivity radius given by

De�nition 1.31.

2.2.2 Projective retractions for embedded submanifolds

We now turn to the case of a Riemannian manifold M embedded into an Euclidean

space E to present two general constructions leading to a well-de�ned retraction. In both
approaches, the retraction in (x, v) ∈ TM is computed by �rst perturbing the point x

into ambient space as x+ v ∈ E and then suitably projecting this ambient point back to

the manifold. This class of retractions goes by the name of projective-like retractions as

introduced in [AM12].

The projective retraction, that we denote Rπ, maps the ambient point x+v to the closest

point on the manifold via the closest-point projection ΠM:

Rπx(v) := ΠM(x+ v) = argmin
y∈M

∥x+ v − y∥ . (2.4)

The smoothness and well-posedness of the metric projection ΠM in a neighborhood of the

manifold [AM12, Lemma 3.1] guarantees the projective retraction ful�lls De�nition 2.9.

The orthographic retraction Ro projects the perturbed point x+v back onto the manifold

along vectors from the normal space of the starting point, see Figure 2.3. Formally this

reads:

Rox(v) := argmin
y∈(x+v+NxM)∩M

∥x+ v − y∥ . (2.5)

A convenient strategy to compute the solution of this optimization is available for the

the sphere, the �xed-rank manifold and the Stiefel manifold, see Section 2.4. The major

advantage of the orthographic retraction is that the inverse retraction is trivial. As

illustrated by Figure 2.3, it is su�cient to project the ambient space di�erence onto the

tangent space as

(Rox)
−1(y) = Π(x)(y − x). (2.6)

Owing to a general result about projection-like retraction [AM12, Theorem 4.9], ifM is a
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Figure 2.3: The projective retraction Rπ, the orthographic retraction Ro and the inverse
orthographic retraction (Ro)−1.

Riemannian submanifold, both the projective retraction and the orthographic retraction

are second-order retractions.

2.3 Riemannian optimization algorithms

Let us brie�y introduce some standard Riemannian optimization algorithms used through-

out the thesis.

2.3.1 Retraction-based line search methods

Most optimization methods considered in this work are part of the class of retraction-

based line search methods. The recurrent iterative procedure consists in identifying a

direction along which the objective function decreases and performing a step along this

direction using a retraction. The gradient descent method along geodesics mentioned in

Section 2.1.3 is one such method, the one that chooses the steepest descent direction and

the most natural retraction, the exponential map. More in general, at each iteration a

certain descent direction vk ∈ TxkM, i.e. satisfying ⟨gradf(xk), vk⟩xk < 0, is scaled by

a step size αk > 0 and is followed using a retraction R to produce xk+1 = Rxk(αkvk).

Provided the so-called Armijo-Goldstein su�cient decrease condition

f(Rxk(αkvk)) < f(xk) + αkβ ⟨gradf(xk), vk⟩xk (2.7)

can be guaranteed at each step and the objective function is lower bounded onM and

with compact level-sets, the so-de�ned general descent method is guaranteed to converge

to a critical point of the objective function for any initial condition [AMS08, Corollary

4.3.2]. When this is the case, the method is said to be globally convergent. The speed at

which the iterates approach the limit is characterized by the order of local convergence.

We say the method has local convergence of order one if a measure of distance to the

local minimizer at iteration k, denoted ∆k, is reduced asymptotically in a geometric way,

i.e.

∆k+1 = c∆k, ∀ k ≥ K,
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2.3 Riemannian optimization algorithms

for some c ∈ (0, 1) and an integer K > 0. Commonly used measures of distance include

the Riemannian distance, the gap of objective function values or the norm of the gradient.

Superlinear convergence refers to the case where the constant c can be taken arbitrarily

small asymptotically. Equivalently, a method is superlinearly convergent if there exist

θ > 0 such that

∆k+1 = c∆1+θ
k , ∀ k ≥ K.

If θ = 1 the method is said to be quadratically convergent or of second-order.

The simplest example of line search method is the Riemannian gradient descent (RGD)

method, outlined in Algorithm 2.1. It is a globally convergent method [AMS08, Corol-

lary 4.3.2] and under suitable assumption on the objective function exhibits �rst-order

convergence in terms of objective function values [AMS08, Theorem 4.5.6].

Algorithm 2.1 Riemannian gradient descent (RGD)

Input: x0 ∈M, f ∈ F(M), εtol > 0, kmax ∈ N, β ∈ (0, 1).

1: k = 0;
2: while ∥ gradf(xk)∥xk > εtol & k < kmax do

3: vk = − gradf(xk);
4: Choose step size αk so that (2.7) is veri�ed;
5: xk+1 = Rxk(αkvk);
6: k ← k + 1;
7: end while

8: return xk;

One practical way to meet the su�cient decrease requirement is via the so-called back-

tracking line search. An initial step size is reduced geometrically until the condition (2.7)

is veri�ed, as detailed in Algorithm 2.2. The procedure is guaranteed to terminate at each

step under the assumption the objective function is such that the pullback f̂ = f ◦R−1x
has Lipschitz continuous gradient, uniformly for all x ∈M [Bou23, Proposition 4.8].

Algorithm 2.2 Backtracking line search

Input: x ∈M, f ∈ F(M), v ∈ TxM, α0 > 0, β ∈ (0, 1), τ ∈ (0, 1).

1: if ⟨gradf(x), v⟩ ≥ 0 then
2: return error;
3: end if

4: while f(Rx(αmv)) ≥ f(x) + αmβ ⟨gradf(x), v⟩x do
5: αm+1 = ταm;
6: m← m+ 1;
7: end while

8: return αm;
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2.3.2 Riemannian Newton and Riemannian trust-region

The enhanced local information about the objective function provided by the Riemannian

Hessian function allows for the the generalization of second-order optimization schemes

to manifolds. Let us �rst introduce the generalization of the Newton method for scalar

optimization. The procedure is outlined in Algorithm 2.3. The update direction vk at

iteration k is taken as the solution of the following generalization of the Newton equation

Hessf(x) [vk] = − gradf(xk).

The direction vk is of descent only when the Riemannian Hessian is positive de�nite,

i.e. when the objective function is convex. Therefore, in general the Newton method is

not guaranteed to converge to a critical point. However, if initialized su�ciently close

to a local minimizer with a positive de�nite Riemannian Hessian, the Newton method

converges to it at least quadratically in terms of Riemannian distance [AMS08, Theorem

6.3.2].

Algorithm 2.3 Riemannian Newton (RN)

Input: x0 ∈M, f ∈ F(M), εtol > 0, kmax ∈ N.
1: k = 0;
2: while ∥ gradf(xk)∥xk > εtol & k < kmax do

3: Solve Hessf(xk) [vk] = − gradf(xk) for vk ∈ TxkM;
4: xk+1 = Rxk(vk);
5: k = k + 1;
6: end while

7: return xk;

The trust-region method provides remedy to the unreliable global convergence properties

of the Newton method in the general non-convex case, while maintaining the second-order

local convergence. As detailed in Algorithm 2.4, the mechanism allowing this best-of-

both-worlds behavior involves a varying size radius indicating the size of the region

around the current iterate where the approximation of the objective function provided

by the Hessian is considered valid. The next iterate is sought inside this trust-region with

the goal to reduce a second-order model of the objective function. For this reason, the

trust-region algorithm is not a line search method. Together with an acceptance-rejection

criterion for the next candidate iterate, which also adjusts the size of the trust-region,

the method is guaranteed to reach a critical point [AMS08, Theorem 7.4.2]. Asymp-

totically, if the critical point is a local minimizer, the trust-region method mimics the

Newton method and so converges quadratically in terms of Riemannian distance [AMS08,

Theorem 7.4.11].
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Algorithm 2.4 Riemannian trust-region (RTR)

Input: x0 ∈M, f ∈ F(M), εtol > 0, kmax ∈ N, ∆̄ > 0, ∆0 ∈
(
0, ∆̄

)
, ρ′ ∈ [0, 1/4).

1: k = 0;
2: while ∥ gradf(xk)∥xk > εtol & k < kmax do

3: Choose vk as an approximate solution of

min
v∈TxkM

mxk(v) := f(xk) + ⟨gradf(xk), v⟩xk +
1

2
⟨v,Hessf(xk)[v]⟩xk

subject to ∥v∥xk ≤ ∆k;

4: ρk =
f(xk)−f(Rxk

(vk))

mxk
(0)−mxk

(vk)
;

5: if ρk < 1/4 then
6: ∆k+1 =

1
4∆k;

7: else if ρk > 3/4 and ∥vk∥xk = ∆k then

8: ∆k+1 = min(2∆k, ∆̄);
9: else

10: ∆k+1 = ∆k;
11: end if

12: k = k + 1;
13: if ρk > ρ′ then
14: xk+1 = Rxk(vk);
15: else

16: xk+1 = xk;
17: end if

18: end while

19: return xk;

37



Chapter 2. Retractions for Riemannian optimization

2.3.3 Riemannian Conjugate Gradient and Riemannian BFGS

Classical optimization methods such as the conjugate gradient descent or quasi-Newton

methods, combine the gradients and the update directions of the previous iterates to

craft improved descent directions. When generalizing such optimization methods to

the manifold setting, one must be careful to move vectors to a common tangent space

before performing the combinations. The notion of parallel transport introduced in

De�nition 1.34 would serve the purpose. However, as the exponential map and the

weaker de�nition of retraction, the essential features of parallel transport can be collected

into the more general notion of vector transport. It is speci�cally crafted to operate in

combination with a retraction.

De�nition 2.13 ([AMS08, De�nition 8.1.1]). On a di�erentiable manifoldM, a vector

transport T associated to a retraction R is a mapping

T : TM⊕ TM→ TM
(u, v) 7→ Tu(v)

where TM⊕ TM = {(u, v) : u, v ∈ TxM, x ∈M)} such that

1. (Associated retraction) Tu(v) ∈ TRx(u)M,

2. (Consistency) T0x(v) = v,

3. (Linearity) Tu(av + bw) = aTu(v) + bTu(w).

If furthermore, the manifold is equipped with a Riemannian metric, the vector transport

is said to be isometric if it preserves the metric, that is,

⟨v, w⟩x = ⟨Tu(v), Tu(w)⟩Rx(u)
, ∀ v, u, w ∈ TxM.

As expected from the intent of de�ning vector transport, parallel transport along a

retraction curve t → Rx(tv) from t = 0 to t = 1, provided the retraction curve itself

is well-de�ned, is always a vector transport for any retraction. In particular, parallel

transport along a retraction curve is an isometric vector transport. A general construction

for a vector transport on an embedded submanifoldM to an Euclidean space E leverages
the usual identi�cation of tangent vectors of M with vectors in E . Given a retraction

R onM, projecting a tangent vector w ∈ TxM to the tangent space of Rx(v) de�nes a

vector transport:

T πv (w) = Π(Rx(v))w, ∀ v, w ∈ TxM. (2.8)

Another commonly used vector transport is the so-called di�erentiated retraction vector

transport, given by

T δv (w) = DRx(v)[w], ∀ v, w ∈ TxM.

With this concept of vector transport at hand, the Riemannian conjugate gradient (RCG)

and the Riemannian BFGS (RBFGS) methods generalizing their Euclidean counterpart

to a manifold setting are given in Algorithm 2.5 and Algorithm 2.6. Note that that

38



2.3 Riemannian optimization algorithms

choice of βk+1 at line 6 of RCG must be consistent throughout an execution and the vec-

tor transport used in the RBFGS method needs to be invertible. Regarding convergence

properties, the RCG method is a globally convergent method [RW12, Proposition 15].

The RBFGS scheme is also globally convergent if the objective function is convex [RW12,

Proposition 10] and locally superlinearly convergent [RW12, Corollary 13]. For a general

objective function, the method can be modi�ed to update the linear operator Hk at iter-

ation k only if ⟨yk, sk⟩ > 0. This guarantees updated Hk+1 is positive de�nite if Hk also

is [RW12, Lemma 9]. With this modi�cation, the algorithm goes by the name of cau-

tious RBFGS and is globally convergent [HAG18, Theorem 4.2] and locally superlinearly

convergent [HAG18, Corollary 5.2].

Algorithm 2.5 Riemannian conjugate gradient (CG)

Input: x0 ∈M, f ∈ F(M), εtol > 0, kmax ∈ N, β ∈ (0, 1).

1: k = 0;
2: v0 = − gradf(xk)
3: while ∥ gradf(xk)∥xk > εtol & k < kmax do

4: Choose step size αk so that (2.7) is veri�ed;
5: xk+1 = Rxk(αkvk);
6: Compute βk+1 as

βFRk+1 =
⟨gradf(xk+1), gradf(xk+1)⟩xk+1

⟨gradf(xk), gradf(xk)⟩xk
(Fletcher-Reeves)

or

βPRk+1 =
⟨gradf(xk+1), gradf(xk+1)− Tαkvk(gradf(xk))⟩xk+1

⟨gradf(xk), gradf(xk)⟩xk
; (Polak�Ribière)

7: vk+1 = − gradf(xk+1) + βk+1Tαkvk(vk)
8: k ← k + 1;
9: end while

10: return xk;
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Algorithm 2.6 Riemannian BFGS (RBFGS)

Input: x0 ∈M, f ∈ F(M), εtol > 0, kmax ∈ N, H0 : Tx0M→ Tx0M linear.

1: k = 0;
2: while ∥ gradf(xk)∥xk > εtol & k < kmax do

3: Solve Hkvk = − gradf(xk) for vk ∈ TxkM;
4: Choose step size αk so that (2.7) is veri�ed;
5: xk+1 = Rxk(αkvk);
6: yk = ∇f(xk+1)− Tαkvk∇f(xk);
7: sk = Tαkvk(αkvk);
8: De�ne the linear operator Hk+1 : Txk+1

M 7−→ Txk+1
M by

Hk+1w = H̃kw −
⟨sk, H̃kw⟩xk+1

⟨sk, H̃ksk⟩xk+1

H̃ksk +
⟨yk, w⟩xk+1

⟨yk, sk⟩xk+1

yk, ∀w ∈ Txk+1
M,

where H̃k = Tαkvk ◦Hk ◦ (Tαkvk)
−1;

9: k = k + 1;
10: end while

11: return xk

2.4 Retractions for manifolds of interest

The following section reviews the de�nition of well-known retractions for the manifolds

of interest considered in the thesis.

2.4.1 Sphere

Before introducing retractions on the sphere Sn−1 presented in Section 1.5.1, we point

out that for the sphere the analytical expression for the exponential map (1.7) under the

embedded geometry is simple enough to lend itself as a valid candidate for a retraction in

practical algorithms. With the expression for the associated Riemannian logarithm (1.8),

the inverse retraction of the exponential retraction can be computed easily.

The metric projection retraction (2.4) is the most frequently used retraction on the

sphere. From the expression of the metric projection (1.6) we get that for every x ∈ Sn−1

it is de�ned as

Rπx(v) =
x+ v

∥x+ v∥
, ∀ v ∈ TxSn−1. (2.9)

This retraction is de�ned on the whole tangent space since the metric projection on

Sn−1 is always uniquely de�ned, but from the point x, only the open half sphere H+
x :={

y ∈ Sn−1 : y⊤x > 0
}
can be reached. Yet, on this hemisphere the retraction is bijective

and admits the following inverse

(Rπx)
−1(y) =

y

x⊤y
− x, ∀ y ∈ H+

x .
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The derivation of the orthographic retraction (2.4) in the case of the sphere uses that the

normal space at x ∈ Sn−1 only contains scalar multiples of x. Then, for some v ∈ TxSn−1,
we impose Rox(v) = x+ v − αx, where α > 0 is the smallest real root of

∥x+ v − αx∥2 = 1 ⇔ α = 1±
√
1− v⊤v

We evince that the orthographic retraction at x ∈ Sn−1 is well-de�ned only if ∥v∥ ≤ 1

and has the expression

Rox(v) = x
√
1− v⊤v + v.

The restriction on the domain of the orthographic retraction makes it less appealing

than the metric projection retraction, although the orthographic retraction at x maps

to a slightly larger region as it is able to reach the closed half hemisphere H+
x =:{

y ∈ Sn−1 : x⊤y ≥ 0
}
. The formula for the inverse orthographic retraction (2.6) is gen-

eral and holds as such on the sphere; its domain is restricted to the closed hemisphere

H+
x .

2.4.2 Stiefel manifold

For the Stiefel manifold presented throughout Chapter 1, we introduce two most com-

monly used retractions based on polar and QR decompositions respectively. As shown

in [KFT13], both these retractions admit a procedure for which the inverse retraction

can be conveniently computed. In the following, let X ∈ St(n, k) and V ∈ TXSt(n, k).
The P-factor retraction is the metric projection retraction for the Stiefel manifold [AM12,

Proposition 3.4] and is given by

RπX(V ) = pf(X + V ),

where for any A ∈ Rn×k we de�ne pf(A) = P such that A = PS is the polar decompo-

sition of the matrix A with P ∈ St(n, k) and S ∈ S+k . This decomposition is uniquely

de�ned provided the matrix A has full rank. This is always the case for X + V . In fact,

from the condition given in Example 1.16 satis�ed by any tangent vector V at X, we

have that (X+V )⊤(X+V ) = Ik+V
⊤V , which is a positive de�nite matrix. Thus X+V

is always of full rank and the P-factor retraction is de�ned on the whole tangent space.

The polar factor P can be obtained from the SVD of the matrix A =
∑k

i=1 σiuiv
⊤
i as

pf(A) =
∑k

i=1 uiv
⊤
i or with the matrix square root RπX(V ) = (X +V )(I +V ⊤V )1/2. An

algorithm to compute the inverse P-factor retraction is proposed in [KFT13, Algorithm

2] and requires solving a Lyapunov matrix equation.

The so-called Q-factor retraction is de�ned as [Bou23, �7.3]:

RQ
X = qf(X + V )

where qf(A) = Q ∈ Rn×k such that A = QR is the unique (thin) QR decomposition of a

matrix A ∈ Rn×k. TheQR decomposition is made unique for any full rank A by enforcing
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the diagonal entries of R to be positive. Hence, analogously to the P -factor retraction,

the Q-factor retraction is also de�ned on the whole tangent space. Contrarily to the

P -factor retraction, the Q-factor retraction does not meet the second-order condition. A

procedure to compute the Q-factor inverse retraction is proposed in [KFT13, Algorithm

1] and consists of solving a linear matrix equation for an upper triangular matrix which

is required to have positive diagonal entries.

For completeness, we point out the orthographic retraction for the Stiefel manifold has

been experimented with in [KFT13, Algorithm 3]. The procedure requires solving a

quadratic Lyapunov matrix equation through a potentially lengthy iterative process,

and is not considered any further.

2.4.3 Symmetric positive de�nite matrices

The Riemannian geometry of the set of n×n symmetric positive de�nite matrices S+n as

presented in Section 1.5.2 is not inherited from the Euclidean geometry of the vector space

of symmetric matrices Sn. Nevertheless, the metric projection retraction can be de�ned

on S+n . Since S+n is an open subset of Sn it is only locally de�ned. If V ∈ TXS+n ≃ Sn
has a su�ciently small norm, then X + V is symmetric positive de�nite, meaning the

metric projection of X + V onto Sn is the identity. Hence, we have RπX(V ) = X + V

and is well-de�ned for any V such that X +V is positive de�nite. The restriction on the

domain makes this retraction inconvenient.

The analytical expression provided in Section 1.5.2 for the exponential map of S+n under

its bi-invariant metric makes it a valid candidate as a retraction, although potentially

expensive to compute. A cheaper alternative is found by approximating the matrix

exponential in (1.12) with its truncated Taylor series up to order 2. For every X ∈ S+n ,
this de�nes a retraction with the following expression [JVV12, �4.1.3]

RX(V ) = X + V +
1

2
V X−1V, ∀V ∈ TxS+n . (2.10)

2.4.4 Fixed-rank matrices

A substantial number of retractions are known for the �xed-rank manifold presented

in Section 1.5.3. The overview paper by Absil and Oseledets [AO15] provides an ex-

tensive list, and we refer the reader to that reference for a complete overview, in-

cluding implementation details and complexity analyses. We here introduce only the

two projective retractions. In the following we consider any X = UΣV ⊤ ∈ Mk and

Z = (M,Up, Vp) ∈ TXMk as in (1.15) and (1.16).

Although the �xed-rank matrix manifold is not a closed subset of Rm×n, the closest-point
projection is always uniquely de�ned in a neighborhood ofMk as a consequence of the

general result [AM12, Lemma 3.1]. Hence, for su�ciently small Z, the rank-k truncated
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SVD denoted ΠMk
given by (1.18) de�nes that metric projection retraction forMk

RπX(Z) := argmin
Y ∈Mk

∥X + Z − Y ∥F = ΠMr(X + V ) . (2.11)

More speci�cally, this retraction is well-de�ned provided σk(X +Z) > σk+1(X +Z). By

stability of singular values, we evince that ∥Z∥op := σ1(Z) < σk(X)/2 guarantees the

well-posedness of the retraction. From the structure of Z ∈ TXMk seen in (1.16), the

matrix X + Z is of rank at most 2k, in fact in can be written with block matrices as

X + Z =
[
U Up

] [Σ+M Ik
Ik 0

][
V ⊤

V ⊤p

]

This allows for an e�cient implementation of the projective retraction, as detailed in

Algorithm 2.7: the rank-k truncation can be carried out with two orthonormalizations

of sizes m × k and n × k and the computation of an SVD of size 2k × 2k. Note that

the thin QR decompositions at line 1 and 2 could be replaced by a polar decompositions

without changing the output of the algorithm. As advocated in [Van13] and as formerly

implemented in the library Manopt [BMAS14], an arti�cial machine precision value εmach

(= 2−52 ≃ 10−16 in double precision) can be added at line 4 to all newly computed

singular values as a safeguard from falling ontoMk−1 in the unfortunate occurrence of

zero singular values.

Algorithm 2.7 Metric projection retraction onMk.

Input: X = U0Σ0V
⊤
0 ∈Mk, Z = (M,Up, Vp) ∈ TXMk

1: [Qu, Ru] = qr(Up, 0); ▷ thin QR decomposition

2: [Qv, Rv] = qr(Vp, 0);

3: [Us,Σs, Vs] = SVD

([
Σ+M R⊤v
Ru 0

])
;

4: Σ1 = Σs(1 : k, 1 : k); ▷ optional: Σ1 = Σ1 + εmach

5: U1 =
[
U0 Qu

]
Us(:, 1 : k);

6: V1 =
[
V0 Qv

]
Vs(:, 1 : k);

7: return : U1Σ1V
⊤
1 =: RπX(V );

For the �xed-rank manifold, a closed-form expression for the solution of the optimization

problem (2.5) de�ning the orthographic retraction is given in [AM12, Proposition 4.11]

and its implementation detailed in [AO15, �3.2]. We report the computation of this

orthographic retraction as the output of Algorithm 2.8. As for the case of the metric

projection retraction, the orthonormalizations in the �rst two lines of Algorithm 2.8 could

be performed by polar decomposition.
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Algorithm 2.8 Orthographic retraction onMk.

Input: X = U0Σ0V
⊤
0 ∈Mk, Z = (M,Up, Vp) ∈ TXMk

1: [Ũ1, Su] = qr(U0(Σ0 +M) + Up, 0); ▷ thin QR decomposition

2: [Ṽ1, Sv] = qr(V0(Σ0 +M⊤) + Vp, 0);

3: Σ̃1 = Su(Σ0 +M)−1S⊤v
4: [Us,Σs, Vs] = SVD(Σ̃1);

5: U1 ← Ũ1Us, Σ1 ← Σs, V1 ← Ṽ1Vs;

6: return : U1Σ1V
⊤
1 =: RoX(V );
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device

The developments of the present thesis leverage the tool of retractions as presented in

Chapter 2 by viewing it as a device capable of generating portions of smooth manifold

curves. This chapter is speci�cally dedicated to this viewpoint on retractions. We start

by discussing the well-known fact that suitable tangent space curves can be used to

generate manifold curves with prescribed initial position, velocity and acceleration. Then

we introduce r-endpoint retraction curves: a new class of curves built using a retraction

and its inverse of which the endpoint can be prescribed. This chapter also gathers

some tools used in the thesis to analyze these curves and the algorithms that use them.

Notably, we introduce the novel concept of retraction-convex sets, a generalization of

geodesically convex sets where retraction curves replace geodesics in the de�nition. We

then state and analyze Lipschitz continuity properties of the retraction and, in turn, of

the retraction curves previously introduced. A detailed discussion on the de�nition and

the properties of the inverse retraction high-order di�erentials is included next. Finally,

we prove a result quantifying how accurately suitable retractions curves with prescribed

velocity and acceleration can approximate a given smooth manifold curve.

3.1 Retractions on tangent space curves

While very general, the de�nition of a retraction (see De�nition 2.9) determines a device

that can be used to generate manifold curves with prescribed initial position, velocity

and, provided the retraction is second-order, also acceleration. More in general, curves

de�ned on a tangent space of the manifold can be mapped by means of a retraction to

the manifold. The resulting manifold curve retains derivative information of the tangent

space curve, as speci�ed by the following proposition.

Proposition 3.1 ([Bou23, Exercise 5.46]). Let M denote a smooth manifold and R a

retraction on M. For any x ∈ M consider a smooth tangent space curve w : J ⊂ R →
TxM de�ned in a neighborhood of zero such that w(0) = 0. For su�ciently small |t| the
retraction curve c(t) = Rx(w(t)) is well-de�ned and satis�es{

c(0) = x,

ċ(0) = w′(0).
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Figure 3.1: Mapping a tangent space curve w to manifold curve γ with a retraction R.

If additionallyM is Riemannian and R is a second-order retraction then we also have

c̈(0) = w′′(0).

Before dedicating the rest of this section to the proof of Proposition 3.1, let us state two

useful application of this result. The �rst describes a simple way of generating retraction

curves with prescribed initial velocity and acceleration. The second one can be seen

as the converse of Proposition 3.1, in that it speci�es when derivative information of a

manifold curve is maintained when mapped through an inverse retraction.

Corollary 3.2. For every x ∈M and v, a ∈ TxM the curve

σ(t) = Rx

(
tv +

t2

2
a

)
is well-de�ned for all |t| su�ciently small and satis�es

1. σ(0) = x and σ̇(0) = v for any retraction R,

2. σ̈(0) = a if R is a second-order retraction.

Corollary 3.3. Given a smooth manifold curve γ : J ⊂ R→M and a retraction R, for

any t ∈ J the tangent space curve h 7→ γ̂(h) := R−1γ(t)(γ(t + h)) is well-de�ned for every

|h| su�ciently small and satis�es

1. γ̂(0) = 0 and γ̂′(0) = γ̇(t) for any retraction R,

2. γ̂′′(0) = γ̈(t) if R is a second-order retraction.

Proof. For any t ∈ J , the well-posedness of the curve γ̂ in an open interval containing

h = 0 follows from the smoothness of the curve γ and the well-posedness of the inverse

retraction in an open neighborhood of γ(t). The de�nition of retractions immediately

implies γ̂(0) = R−1γ(t)(γ(t)) = 0. The other requirements are shown by contradiction.

Assume that γ̂′(0) ̸= γ̇(t). By Proposition 3.1, it holds that for σ(h) := Rγ(t)(γ̂(h))

we have σ̇(0) = γ̂′(0). But by construction σ(h) = γ(t + h) for every su�ciently small

h, hence σ̇(0) = γ̇(t), a contradiction. The same argument holds for the acceleration

condition by invoking Proposition 3.1 with a second-order retraction.
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Proof of Proposition 3.1

The proof of the acceleration condition in Proposition 3.1 makes use of a smooth local

frame around x, i.e. a collection of d = dim(M) smooth vector �elds Ei, i = 1, . . . , d,

de�ned in a neighborhood U of x such that {Ei(y)}di=1 forms a basis of TyM for all y ∈ U .
A smooth local frame can be de�ned around any x ∈ M [Lee13, Example 8.10-(b)] and

ifM is endowed with a Riemannian metric it is always possible [Lee18, Proposition 2.8]

to make it orthonormal with respect to the metric, i.e. to satisfy

⟨Ei(y), Ej(y)⟩y =

{
1 if i = j,

0 if i ̸= j,
∀ y ∈ U ,

by applying the Gram-Schmidt algorithm. The resulting orthonormal local frame is also

smooth by the smoothness of the Riemannian metric and of the Gram-Schmidt process.

Proof of Proposition 3.1. By the de�nition of retractions, we know Rx is de�ned in an

open neighborhood of 0 ∈ TxM. The tangent vector w(t) is contained in that open

neighborhood for su�ciently small |t| since w is smooth and w(0) = 0. This grants the

well-posedness of the curve c(t) = Rx(w(t)) in a neighborhood of zero. The �rst de�ning

property of retractions, yields c(0) = Rx(w(0)) = Rx(0) = x. Where de�ned, the tangent

vector to the retraction curve at t is given by chain rule as

ċ(t) = DRx(w(t))[w
′(t)].

Using the local rigidity property of retractions, we �nd ċ(0) = DRx(0)[w
′(0)] = w′(0).

Assume now M has a Riemannian metric and let {Ei}di=1 for d = dim(M) denote an

orthonormal smooth local frame in a neighborhood U of x. For any v ∈ TxM and

u ∈ TvTxM≃ TxM, from the de�nition of di�erential we know that DRx(v)[u] belongs

to TRx(v)M and can be decomposed as

DRx(v)[u] =
d∑
i=1

DRx(v)[uiEi(x)] =
d∑
i=1

ui

d∑
j=1

rij(v)Ej(Rx(v)),

where ui = ⟨u,Ei(x)⟩x is the component of u along Ei(x) and

rij(v) = ⟨DRx(v)[Ei(x)], Ej(Rx(v))⟩Rx(v)

is a well-de�ned scalar for any su�ciently small v ∈ TxM, for each i, j = 1, . . . , d. More

speci�cally, by smoothness of Rx, the functions rij are de�ned and smooth on an open

neighborhood V ⊂ TxM containing the origin such that Rx(v) ∈ U . Hence, for any |t|
su�ciently small so that w(t) ∈ V , we may rewrite ċ(t) as

ċ(t) =

d∑
i,j=1

wi(t)rij(w(t))Ej(c(t)),
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where we have introduced the components functions wi(t) = ⟨w(t), Ej(c(t))⟩c(t), for all
i = 1, . . . , d. The smoothness of w implies the smoothness of the component functions

wi(t) and the functions rij are smooth on the set V by the smoothness of the retraction,

the local frame and the Riemannian metric. Then, by R-linearity and the product-rule

for induced covariant di�erentiation (see Theorem 1.25) we have that

c̈(t) =
d∑

i,j=1

D

dt

(
w′i(t)rij(w(t))Ej(c(t))

)
=

d∑
i,j=1

w′′i (t)rij(w(t))Ej(c(t)) + w′i(t)

(
drij(w(t))

dt

∣∣∣∣
t=0

Ej(c(t)) + rij(w(t))
D

dt
Ej(c(t))

)
.

The derivative of rij ◦ w can be written as the di�erential of rij at w(t) along w
′(t) as

drij(w(t))

dt

∣∣∣∣
t=0

= Drij(w(t))[w
′(t)].

Since Ej is a smooth vector �eld, its covariant derivative along c can be expressed by

chain rule with the connection

D

dt
Ej(c(t)) = ∇ċ(t)Ej(c(t)),

and depends on the pointwise value of ċ(t). Note that by local rigidity of retractions we

have rij(0) = ⟨Ei(x), Ej(x)⟩x = δij . Hence, in t = 0 reordering terms gives

c̈(0) =
d∑
i

w′′i (0)Ei(x) + w′i(0)∇w′(0)Ei(x) + w′i(0)
d∑
j=1

Drij(w(0))[w
′(0)]Ej(x). (3.1)

Let us now consider the tangent space line w̃(t) = tw′(0). If R is a second-order re-

traction, we know that c̃(t) := Rx(tw̃
′(0)) has zero acceleration in t = 0. But since

w̃(0) = w(0), w̃′(0) = w′(0) and w̃′′(0) = 0, writing equation (3.1) for c̃ with this

replacement tells us that

0 = w′i(0)∇w′(0)Ej(x) + w′i(0)
d∑
j=1

Drij(w(0))[w
′(0)]Ej(x), ∀ i = 1, . . . , d.

Therefore, if R is a second-order retraction then the second and third term of equa-

tion (3.1) vanish and we can conclude

c̈(0) =

d∑
i

w′′i (0)Ei(x) = w′′(0).
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3.2 A family of endpoint retraction curves

The local rigidity property of retractions leads to formulating a precise de�nition for a

local inverse of the retraction, see Section 2.2.1. Other than being a convenient theo-

retical tool, inverse retractions can also be e�ciently computed, as in the case of the

orthographic retraction presented in Section 2.2.2. This opens the way to using inverse

retractions also in numerical algorithms. In the following, we introduce a new procedure

that combines a retraction and its inverse to de�ne a one-parameter family of curves

that share some prescribed endpoints. Throughout this section, we assume that any

use of the retraction and its inverse is well-de�ned and we postpone the discussion on

well-posedness to Section 3.3.

Figure 3.2: r-endpoint retraction curve.

De�nition 3.4. Given x, y ∈ M and r ∈ [0, 1], the r-endpoint retraction curve joining

x and y is de�ned as

cr(t;x, y) = Rq(r)

(
(1− t)R−1q(r)(x) + tR−1q(r)(y)

)
, ∀ t ∈ [0, 1] ,

where q(r) = Rx(rR
−1
x (y)).

Whenever x and y are su�ciently close, the r-endpoint retraction curve can be de�ned for

any r ∈ [0, 1]. A more precise statement on the well-posedness of r-endpoint retraction

curves is provided in the next section by Proposition 3.8. The fundamental endpoint

property for all r-endpoint curves in the family is stated next, together with a property

concerning the initial and �nal velocities for the cases r = 0 and r = 1 respectively.

Proposition 3.5. The r-endpoint retraction curve family satis�es the following proper-

ties:

(i) cr(0;x, y) = x and cr(1;x, y) = y for every r ∈ [0, 1];

(ii) ċ0(0;x, y) = R−1x (y) and ċ1(1;x, y) = −R−1y (x).

Proof. For any r ∈ [0, 1], the de�nition of cr directly implies (i) by invoking the �rst
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property of retractions:

cr(0;x, y) = Rq(r)

(
R−1q(r)(x)

)
= x,

cr(1;x, y) = Rq(r)

(
R−1q(r)(y)

)
= y.

To show (ii), �rst note that

ċr(t;x, y) = DRq(r)

(
(1− t)R−1q(r)(x) + tR−1q(r)(y)

) [
R−1q(r)(y)−R

−1
q(r)(x)

]
.

Because we have q(0) = x and q(1) = y, noting that R−1x (x) = 0 and R−1y (y) = 0 allows

concluding, by local rigidity of the retraction:

ċ0(0;x, y) = DRx(0)
[
R−1x (y)

]
= R−1x (y),

ċ1(1;x, y) = DRy(0)
[
−R−1y (x)

]
= −R−1y (x).

The choice of r ∈ [0, 1] in the r-endpoint retraction curve determines the anchor point

for the retraction that de�nes cr. For values of r ∈ (0, 1), taking the anchor point on

the image of the curve q(r) = Rx(rR
−1
x (y)) is an arbitrary choice. One could have, for

example, taken it on the curve q̃(r) = Ry(rR
−1
y (x)). This curve is in general di�erent

from q and leads to a di�erent curve family. Nevertheless, this alternative curve family

obtained from replacing q with q̃ is included in our De�nition 3.4 by considering the curves

cr(·; y, x). In other words, the image of the curve cr is not invariant under permutation

of the endpoints, or also, cr(t;x, y) does not coincide with cr(1− t; y, x) in general. Only

extreme members of the family are related in this way, as c0(t;x, y) = c1(1− t; y, x).

3.3 Retraction-convex sets

To guarantee that the retraction and the inverse retractions involved in the de�nition of

r-endpoint retraction curve cr and, in turn, cr itself are well-de�ned, we introduce the

notion of a retraction-convex set. Retraction-convex sets can be seen as a generaliza-

tion for geodesically convex sets. Among di�erent possible notions of geodesic convexity,

its strongest form goes by the name of strongly geodesic convexity in [Bou23, De�ni-

tion 11.17] and is de�ned as follows. It uses the notion of length-minimizing geodesic

introduced along with Proposition 1.33.

De�nition 3.6 ([Lee18, �6]). A subset V ⊂ M is a geodesically convex set if for every

x, y ∈ U there exists a unique length-minimizing geodesic γ : [0, 1] → M such that

γ(0) = x, γ(1) = y and γ(t) ∈ V for all t ∈ [0, 1].

In contrast with this de�nition, since endpoint retraction curves are not unique, the

de�nition of retraction-convexity replaces the unique length-minimizing geodesic by a
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3.3 Retraction-convex sets

Figure 3.3: Retraction-convex set.

collection of endpoint retraction curves. The requirement then becomes that all their

images remain in the set, for every pair of endpoints taken in the set.

De�nition 3.7. A set U ⊂M is said to be retraction-convex if for any x, y, z ∈ U
(i) the inverse retraction R−1x (y) is well-de�ned,

(ii) Rx((1− t)R−1x (y) + tR−1x (z)) is well-de�ned for every t ∈ [0, 1] and belongs to U .

An equivalent characterization of retraction-convexity of U is that the inverse retraction

R−1x is well-de�ned on U and the image of U through the inverse retraction is a convex

subset of TxM for every x ∈ U .
Note that in the case where the retraction is the exponential map, retraction-convexity

is not necessarily equivalent to geodesic convexity. On the one hand, for a geodesically

convex set V and any x ∈ V, the inverse retraction Exp−1x = Logx is indeed well-de�ned

on V. On the other hand, Logx(V) is only required to be star-shaped: for every t ∈ [0, 1]

the point Expx(tLogx(y)) belongs to V, hence tLogx(y) belongs to Logx(V) for every
t ∈ [0, 1]. Furthermore, even if the tangent space segment (1 − t)Logx(y) + tLogx(z) is

contained in the domain of Expx for t ∈ [0, 1], the image of this segment through the

exponential map is not necessarily a length-minimizing geodesic and therefore its image

may not belong entirely to V.
Another de�nition for the retraction-convexity for a set U ⊂ M appears in [Bou23,

�11.8]. It requires that for every x, y ∈ U there exists v ∈ TxM such that Rx(v) = y and

Rx(tv) ∈ U for every t ∈ [0, 1]. This de�nition is less restrictive than De�nition 3.7 in that

the retraction is not required to be invertible as speci�ed in Section 2.2.1: the tangent

vector v such that Rx(v) = y need not be unique. Furthermore, only endpoint retraction

curves of the form t 7→ Rx(tv) are bound to remain in the set. Hence, this de�nition is

not su�cient to grant the well-posedness of r-endpoint retraction curves. This motivates

the need for the stronger notion of retraction-convexity introduced in De�nition 3.7. By

comparing de�nitions in the other direction, it is possible to show a retraction-convex

set U according to De�nition 3.7 is retraction-convex in the sense of [Bou23, �11.8], as

we now brie�y argue. For any x, y ∈ U , by condition (i) of De�nition 3.7 we can take
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Chapter 3. Retractions as a curve generating device

v = R−1x (y) to have Rx(v) = y. Then, by condition (ii),

Rx(tv) = Rx((1− t)R−1x (x)︸ ︷︷ ︸
=0

+ tR−1x (y))

is guaranteed to belong to U for every t ∈ [0, 1].

Retraction-convexity for a set should not be confused with the more commonly encoun-

tered notion of retraction-convexity for smooth scalar �elds [HGA15, De�nition 3.1] used

in the convergence analysis of Riemannian optimization algorithms.

From now on, a retraction-convex set is to be intended exclusively in the sense of Def-

inition 3.7. The existence of retraction-convex sets is the object of the next section.

As a motivation for pursuing this goal, let us show that having a retraction-convex set

is su�cient to guarantee the well-posedness of any r-endpoint retraction curve between

any pair of points in the set. As a consequence, we also get that the curve's image is

contained in the retraction-convex set.

Proposition 3.8. Let U be retraction-convex and x, y ∈ U . Then for any r ∈ [0, 1] the

r-endpoint retraction curve t 7→ cr(t;x, y) is well-de�ned for every t ∈ [0, 1] and belongs

to U .

Proof. By De�nition 3.7 (i), R−1x (y) is well-de�ned. Now using De�nition 3.7 (ii) with

z = x and t = 1 − r, we �nd that q(r) = Rx(rR
−1
x (y)) is well-de�ned and belongs to

U . Therefore, the inverse retractions R−1q(r)(x) and R
−1
q(r)(y) are also well-de�ned. Finally,

applying once again De�nition 3.7 (ii) ensures the well-posedness of cr(t;x, y) and that

it is contained in U , for every t ∈ [0, 1].

3.3.1 Existence of retraction-convex sets

Having established that r-endpoint retraction curves exist in a retraction-convex set, let

us show that retraction-convex sets actually exist. In the following section, we prove that

for every point on the manifold any su�ciently small metric ball is retraction-convex.

Regarding the related notion of geodesic convexity, any manifold point is known to

admit a geodesically convex neighborhood, as shown for instance by do Carmo [dC92,

Proposition 4.2].1 The proof is based on the Gauss lemma [dC92, Lemma 3.5], a result

from Riemannian geometry that crucially relies on the exponential map which does not

extend to general retraction curves. Hence, a di�erent approach has to be taken to show

existence of retraction-convex sets. The following proof relies mainly on the properties

of the manifold distance function and shares common features with the proof of [dC92,

Theorem 3.3.7] that shows the existence of totally retractive neighborhoods as de�ned

in [HAG15, �3.3].

Theorem 3.9. On a Riemannian manifoldM, for every x ∈M there exists ρ̄ > 0 such

that for any ρ < ρ̄ the manifold ball B(x, ρ)= {y ∈M : d(x, y) < ρ} is a retraction-

convex set.
1Note that [dC92] uses the term strongly convex set instead of geodesically convex set.
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The proof of Theorem 3.9 makes use of the following lemma.

Lemma 3.10. For every x ∈M and any v ∈ TxM we have

d2

dt2
d(x,Rx(tv))

2
∣∣
t=0

= 2 ∥v∥2x .

Proof. Setting c(t) := Rx(tv), by Proposition 1.33 we know the distance between x and

c(t) can be expressed for su�ciently small |t| as

d(x, c(t))2 = ∥Logx(c(t))∥
2
x .

The compatibility with the metric of induced covariant di�erentiation stated in Theo-

rem 1.25 allows us to explicitly compute

d

dt
d(x, c(t))2 = 2 ⟨DLogx(c(t))[ċ(t)],Logx(c(t))⟩x ,

and
d2

dt2
d(x, c(t))2 = 2⟨D

dt
(DLogx(c(t))[ċ(t)]),Logx(c(t))⟩x

+2 ∥DLogx(c(t))[ċ(t)]∥
2
x .

(3.2)

Using that c(0) = x and Logx(c(0)) = Logx(x) = 0, the �rst term of (3.2) vanishes at

t = 0. By local rigidity of the exponential map, the inverse function theorem implies

that DLogx(x) = ITxM. The proof is completed by noting that by Proposition 3.1 we

have ċ(0) = v and therefore

d2

dt2
d(x, c(t))2

∣∣
t=0

= 2 ∥DLogx(x)[v]∥
2
x = 2 ∥v∥2x .

Proof of Theorem 3.9. Given x ∈M, consider the function f : TM→ R

f(y, v) = d(x,Ry(v))
2.

The squared Riemannian distance function is smooth [Lee18, Lemma 6.8] on a neighbor-

hood of {(x, x) : x ∈M}, the diagonal ofM×M, and by Proposition 2.12 the retraction

R is a di�eomorphism from an open neighborhood of TM containing (x, 0) to an open

neighborhood of the diagonal of M×M. Therefore, by composition the function f is

smooth on an open neighborhood of (x, 0) in TM.

We �rst establish a (local) convexity property of f . Using ∇2f(x,w) to denote the

(Euclidean) Hessian of f(x, ·) at w ∈ TxM for a �xed x ∈M, the result of Lemma 3.10

can be rephrased as 〈
∇2f(x, 0) [v] , v

〉
x
= 2 ∥v∥2x .

In particular, this shows that ∇2f(x, 0) is positive de�nite. By continuity of f in both
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Chapter 3. Retractions as a curve generating device

arguments, there exists an open neighborhood V ⊂ TM containing (x, 0) such that

∇2f(y, v) remains positive de�nite at every (y, v) ∈ V .
For an arbitrary subset S ⊆ TM, we let

πM(S) := {y ∈M : ∃ v ∈ TyM such that (y, v) ∈ S} ,
πTyM(S) := {v ∈ TyM : (y, v) ∈ S} .

(3.3)

For every y ∈ πM(V ) the function f(y, ·) is convex on any convex subset of πTyM(V ).

The set V is an open set in the atlas topology of TM, associated with the natural smooth

structure of TM [Lee13, Proposition 3.18]. This means that for any local chart (U , ϕ)
ofM, the set ψϕ

(
π−1M (U) ∩ V

)
is an open subset of R2d, with d = dim(M) and where

π−1M (U) = {(y, v) ∈ TM : y ∈ U , v ∈ TyM} =
∐
y∈U

TyM

and
ψϕ : π−1M (U) ∩ V → R2d

(y, v) 7→ (ϕ(y), λ)

with λ ∈ Rd being the coordinates of v in the basis of TyM formed by the partial

derivatives of the inverse local charts, that is v =
∑d

i=1 λiDϕ
−1(ϕ(y))[ei].

Now consider a local chart such that x ∈ U . Because ψϕ
(
π−1M (U) ∩ V

)
is an open subset

of R2d that contains (ϕ(x), 0), there exist εM > 0 and εT > 0 such that

Bd(ϕ(x), εM)×Bd(0, εT ) ⊆ ψϕ
(
π−1M (U) ∩ V

)
,

where Bd(·, ·) denotes an open ball (in the Euclidean norm) of Rd. By continuity of ψϕ,

the preimage

W :=ψ−1ϕ (Bd(ϕ(x), εM)×Bd(0, εT ))

=

{
(y, v) ∈ TM : y ∈ ϕ−1 (Bd(ϕ(x), εM)) , v =

d∑
i=1

λi∂iϕ
−1(ϕ(y)), ∥λ∥2 < εT

}

is an open subset of V that contains (x, 0). From Proposition 2.12, we know the map

E : (x, v) ∈ TM → (x,Rx(v)) ∈ M × M is a di�eomorphism on the open subset

D ⊂ TM, the disjoint union of tangent space disks centered at the origin whose radius

is determined by a continuous function ∆. Since E is also a di�eomorphism on the

intersection W ∩D, which is open, the set E(W ∩D) is an open neighborhood of (x, x).

Hence, the constant

ρ̄ := sup {ρ ≥ 0 : B(x, ρ)×B(x, ρ) ⊆ E(W ∩ D)} .

is strictly positive. The statement of the theorem is proved by showing that the set

B(x, ρ) is retraction-convex for any ρ < ρ̄.
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3.4 Retractions and Lipschitz continuity

Requirement (i) for retraction-convexity regarding the invertibility of the retraction fol-

lows from the invertibility of E on B(x, ρ)×B(x, ρ). For any y, z ∈ B(x, ρ) there exists

a unique v ∈ TyM such that E(y, v) = (y, z) and, hence, v = R−1y (z) is well-de�ned.

To establish requirement (ii), consider arbitrary w, y, z ∈ B(x, ρ). We �rst note that the

set

πTyM(W ∩ D) =

{
v ∈ TyM : v =

D∑
i=1

λi∂iϕ
−1(ϕ(y)), ∥λ∥2 < εT , ∥v∥y < ∆(y)

}

is convex (as the intersection of two convex sets) and in the domain of Ry. Both R
−1
y (w)

and R−1y (z) are contained in πTyM(W ∩D) and hence the same holds for their convex lin-
ear combination. The convexity of f(y, ·) on πTyM(W ∩D), a convex subset of πTyM(V ),

implies for every t ∈ [0, 1] that

d
(
x,Ry((1− t)R−1y (w) + tR−1y (z))

)2
= f

(
y, (1− t)R−1y (w) + tR−1y (z)

)
≤ (1− t)f

(
y,R−1y (w)

)
+ tf

(
y,R−1y (z)

)
= (1− t)d(x,w)2 + td(x, z)2 < ρ2,

which proves the retraction-convexity of B(x, ρ).

3.3.2 Retraction-convexity radius function

Given a ρ̄ > 0 satisfying Theorem 3.9, then the property is also satis�ed by ηρ̄, for any

η ∈ (0, 1). Thus, to �x a single value for each x ∈M, we denote

ρ̄(x) := sup {ρ̄ > 0 : B(x, ρ) is retraction-convex ∀ ρ < ρ̄} . (3.4)

The quantity ρ̄ can be interpreted as a function de�ned on the whole manifold which is

strictly positive at every point by Theorem 3.9. We refer to it as the retraction-convexity

radius function. Throughout the thesis we occasionally invoke the following assumption.

Assumption 3.11. For every compact set K ∈M, there exists a constant ρmin(K) > 0

such that ρ̄(x) ≥ ρmin(K) for all x ∈ K.

Since retractions are smooth, intuition suggests that the function ρ̄ should be continuous,

thereby guaranteeing the validity of this technical assumption.

3.4 Retractions and Lipschitz continuity

A map f between metric space (X, dX) and (Y, dY ) is Lipschitz continuous if there exists

a constant L > 0 such that

dY (f(a), f(b)) ≤ LdX(a, b), ∀ a, b ∈ X.
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It is only locally Lipschitz continuous if this condition is veri�ed in a neighborhood of

each point in the domain of f . One interpretation of this de�nition is that it provides an

estimate on the behavior of the map near a point. For this reason, Lipschitz continuity

is an essential tool in the error analysis of approximation algorithms such as numerical

integration and interpolation.

The smoothness of retractions implies some Lipschitz continuity properties that we fully

spell out in this section and that we use in the analyses of the upcoming chapters.

3.4.1 Upper bound on the norm of the di�erentials of the retraction

For di�erentiable maps between Riemannian manifolds, Lipschitz continuity can be re-

lated with the maximum magnitude of the derivatives. For example, for a scalar �eld f

on a Riemannian manifold, Lipschitz continuity is equivalent to having ∥gradf(x)∥x ≤
L [Bou23, Proposition 10.43]. We will establish an analogous link for the Lipschitz

continuity of retractions and inverse retractions.

Let us �rst introduce some notation for the derivatives of the retractions and its inverse

and the sets over which they are de�ned. Recall that Proposition 2.12 states the existence

of a continuous function ∆ :M→ (0,+∞] describing conveniently a domain

D = {(x, v) ∈ TM : ∥v∥x < ∆(x)}

on which the map E : (x, v) 7→ (x,Rx(v)) is a di�eomorphism. We denote I = E(D)
and let us introduce for every x ∈M the sets

Dx := πTxM (D) = {v ∈ TxM : (x, v) ∈ D} ,
Ix := Rx(Dx) = {Rx(v) : v ∈ Dx} .

On these sets, we can de�ne the di�erentials of the retraction and inverse retraction with

respect to each of their arguments separately. Given (x, u) ∈ D and (x, y) ∈ I, for all
v ∈ TxM and w ∈ TyM we

D1Rx(u)[v] =
d

dt
Rσx,v(t)(u)

∣∣
t=0
∈ TRx(u)M,

D2Rx(u)[v] =
d

dt
Rx(u+ tv)

∣∣
t=0
∈ TRx(u)M,

D1R
−1
x (y)[v] =

d

dt
R−1σx,v(t)(y)

∣∣
t=0
∈ TxM,

D2R
−1
x (y)[w] =

d

dt
R−1x (σy,w(t))

∣∣
t=0
∈ TxM, (3.5)

where σx,v is any continuously di�erentiable manifold curve de�ned in a neighborhood

of t = 0 such that σx,v(0) = x ∈ M, σ̇x,v(0) = v ∈ TxM. The so-de�ned di�erentials

are all linear maps between tangent spaces that depend continuously on their arguments.

For instance D1Rx(u) [·] is a linear map from TxM to TRx(u)M that is continuous with

respect to both x and u. For any such linear map A [·] : TxM→ TyM, the Riemannian
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Figure 3.4: The sets Dx, Ix, D1/3
x , I1/3x .

metric induces an operator norm de�ned by

∥A∥ := sup
w∈TxM,w ̸=0x

{∥A [w]∥y
∥w∥x

}
. (3.6)

As Proposition 3.12 below illustrates and as one would naturally expect, the operator

norm of the retraction's di�erentials is an upper bound to the magnitude of the retrac-

tion's derivatives. In the following, we denote for any ε ∈ (0, 1).

Dε := {(x, v) ∈ TM : ∥v∥x < ε∆(x)} ,

Similarly, we set

Dεx := πTxM(Dε), (3.7)

the restriction to the tangent space at x as de�ned by (3.3) and

Iεx = Rx(Dεx). (3.8)

Proposition 3.12. Consider an arbitrary ε ∈ (0, 1). For any compact subset K ⊂ M
there exist positive constants L1(K, ε), M1(K, ε), L2(K, ε) and M2(K, ε) such that for

every x ∈ K the retraction R satis�es

(i) ∥D1Rx(u)[v]∥Rx(u)
≤ L1(K, ε)∥v∥x for every u ∈ Dεx and v ∈ TxM

(ii) ∥D2Rx(u)[v]∥Rx(u)
≤ L2(K, ε)∥v∥x for every u ∈ Dεx and v ∈ TxM,

(iii)
∥∥D1R

−1
x (y)[v]

∥∥
x
≤M1(K, ε)∥v∥x for every y ∈ Iεx and v ∈ TxM,

(iv)
∥∥D2R

−1
x (y)[w]

∥∥
x
≤M2(K, ε)∥w∥y for every y ∈ Iεx and w ∈ TyM.

By smoothness of the retraction's di�erentials on their domain of de�nition, their op-

erator norms are continuous scalar functions on the same domains. Hence, on suitably

chosen compact subset, they attain a maximum which becomes the constant appearing

in Proposition 3.12. Then, the proof of Proposition 3.12 becomes very short once these

compact subsets of D and I have been established. This is the object of the following

Lemma 3.13, of which a more general form appears in [Bou23, Exercise 10.31].
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Lemma 3.13. For every compact set K ⊂M and every ε ∈ (0, 1), the sets

DεK := {(x, v) ∈ D : x ∈ K, ∥v∥x ≤ ε∆(x)} ⊂ TM,

IεK := E(DεK) =
{
(x,Rx(v)) : (x, v) ∈ DεK

}
are compact sets.

Proof. We have that E(DεK) = K × IεK , where E is the di�eomorphism of Proposi-

tion 2.12. Di�eomorphisms preserve compactness and the product of two sets is compact

if and only if the factor sets are compact. Therefore, since K is compact, DεK is compact

if and only if IεK is compact. Let us prove DεK is sequentially compact, equivalent to

being compact by the assumed second countability of the manifold topology.

Consider any sequence {(xn, vn)}n∈N ⊂ DεK . Then the sequence {xn}n∈N is contained

in the compact set K and so there exists a convergent subsequence {xnk
}k∈N such that

xnk
→ x ∈ K. Then, there exists N > 0 such that for every k > N , d(x, xnk

) < inj(x),

the injectivity radius of the exponential map at x. Hence, by Proposition 1.33, there

exists a unique length-minimizing geodesic σk joining x and xnk
. The length-minimizing

property tells us that L(σk) = d(x, xnk
). Consider the parallel transport map (see De�-

nition 1.34) along σk denoted Pσk0←1 : Txnk
M→ TxM and let us de�ne wk = Pγk0←1vnk

∈
TxM. Since ∥vnk

∥xnk
≤ ε∆(xnk

) and Pγk0←1 is an isometry [Bou23, Proposition 10.36],

then ∥wk∥x ≤ ε∆(xnk
). By the continuity of ∆, we know {ε∆(xnk

)}k∈N is a conver-

gent, hence bounded sequence. Therefore {wk}k∈N ⊂ TxM is a bounded sequence, and

thus admits a convergent subsequence
{
wkj
}
j∈N such that wkj → w ∈ TxM. But since∥∥wkj∥∥x ≤ ε∆(xnkj

), we have that ∥w∥x ≤ ε∆(x) and consequently that (x,w) ∈ DεK .
The standard Riemannian metric on the tangent bundle associated to any Riemannian

manifold, also known as Sasaki metric [GHL04, p. 80], allows the de�nition of a distance

function on the tangent bundle as per De�nition 1.21. As discussed in [EM06, p. 240],

the in�mum over the lengths all paths between two points in the tangent bundle can

be upper-bounded by a combination of the length of the underlying manifold curve and

the length of the resulting tangent space curve once transported to one of the endpoints.

From this we have that

d
(
(x,w),

(
xnkj

, vnkj

))
≤
√
L(σkj )

2 +
∥∥∥w − P

σkj
0←1vnkj

∥∥∥2
x

Since the right-hand side converges to zero as j → +∞, this shows that
{
(xnkj

, vnkj
)
}

converges to (x,w) ∈ DεK , concluding the proof.

Proof of Proposition 3.12. The result follows from the smoothness of the retraction and

its inverse on their domain and of the continuity of the operator norm. The Lipschitz

constants are found by taking the maxima of the operator norm for the di�erentials of

the retraction on the compact sets DεK and IεK .
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3.4.2 Lipschitz continuity of the retraction on compact sets

We now turn the result of Proposition 3.12 into a Lipschitz continuity result for the

retraction Rx restricted to Dεx and for the inverse retraction R−1x restricted to Iεx. We

recall that these subsets are de�ned in (3.7) and (3.8) using the function ∆ introduced in

Proposition 2.12 characterizing the domain over which a retraction is a di�eomorphism,

see also Figure 3.4 for a pictorial representation. For simplicity of exposition, a particular

choice ε = 1/3 is considered in Proposition 3.14. Note however that the result and the

following proof hold for any ε ∈
(
0, 12
)
. A statement very similar to Proposition 3.14, can

be found in [RW12, Lemma 6], under a local equicontinuity assumption of the retraction

derivatives. Our proof, leverages Proposition 2.12 to avoid this assumption.

Proposition 3.14. For every compact subset K ⊂M, there exist constants LR(K) > 0

and MR(K) > 0 such that for all x ∈ K it holds that

(i) d(Rx(u), Rx(v)) ≤ LR(K)∥u− v∥x, for any u, v ∈ D1/3
x ,

(ii)
∥∥R−1x (y)−R−1x (z)

∥∥
x
≤MR(K)d(y, z), for any y, z ∈ I1/3x .

Proof. (i) Consider any x ∈ K, u, v ∈ D1/3
x and de�ne a manifold curve joining Rx(u)

and Rx(v) as δ(τ) := Rx(u + τ(v − u)). It is well-de�ned by the convexity of D1/3
x . By

de�nition, the manifold distance between Rx(u) and Rx(v) is bounded by the length of

the curve δ. Thus, we have

d(Rx(u), Rx(v)) ≤ L(δ) =
∫ 1

0
∥D2Rx(u+ τ(v − u)) [v − u]∥δ(τ) dτ

≤ L2(K, 1/3)∥v − u∥x,

where the �nal inequality follows from Proposition 3.12-(ii). Hence LR(K) = L2(K, 1/3).

(ii) Consider y, z ∈ I1/3x . Since M is connected, by de�nition of the distance function

we know there exists a sequence of piecewise smooth manifold curves γk : [0, 1] → M,

k ∈ N, such that

γk(0) = y, γk(1) = z, ∀ k ∈ N

and

lim
k→∞

L(γk) = inf
k∈N
{L(γk)} = d(y, z).

If the image of the curve γk, is fully contained in I2/3x , we can de�ne the tangent space

curve q(t) := R−1x (γk(t)) for every t ∈ [0, 1] and deduce that

∥∥R−1x (y)−R−1x (z)
∥∥
x
≤
∫ 1

0

∥∥D2R
−1
x (γk(τ)) [γ̇k(τ)]

∥∥
x
dτ

≤M2(K, 2/3)

∫ 1

0
∥γ̇k(τ)∥γk(τ) dτ,

=M2(K, 2/3)L(γk)
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Figure 3.5: Case where γk is not fully contained in I2/3x .

If the image of the curve γk is not fully contained in I2/3x , then let

t1 = inf
{
t ∈ [0, 1] : γk(t) /∈ I2/3x

}
,

t2 = sup
{
t ∈ [0, 1] : γk(t) /∈ I2/3x

}
.

Therefore we can de�ne the tangent space curve q(t) = R−1x (γk(t)) only for t ∈ [0, t1) ∪ (t2, 1].

Since y, z ∈ I1/3x , it follows that∥∥R−1x (y)−R−1x (z)
∥∥
x
≤ 2∆(x)/3

Furthermore, the tangent space curve q traverses the tangent space spherical annulus of

width ∆(x)/3 back and forth, hence its length must exceed 2∆(x)/3, i.e.

2∆(x)/3 ≤
∫
[0,t1)∪(t2,1]

∥q̇(τ)∥x dτ.

Hence, combing these inequalities leads to

∥∥R−1x (y)−R−1x (z)
∥∥
x
≤
∫
[0,t1)∪(t2,1]

∥∥D2R
−1
x (γk(τ)) [γ̇k(τ)]

∥∥
x
dτ,

≤M2(K, 2/3)

∫
[0,t1)∪(t2,1]

∥γ̇k(τ)∥γk(τ) dτ,

≤M2(K, 2/3)L(γk).

We have shown that for every k ∈ N∥∥R−1x (y)−R−1x (z)
∥∥
x
≤M2(K, 2/3)L(γk).
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3.4 Retractions and Lipschitz continuity

Figure 3.6: A non-empty retraction-convex set U such that U ⊂ I1/3z for every z ∈ U as
in Proposition 3.15

Therefore the result remains true upon taking the in�mum over k ∈ N, which yields∥∥R−1x (y)−R−1x (z)
∥∥
x
≤M2(K, 2/3)d(x, y)

as desired and shows MR(K) =M2(K, 2/3).

3.4.3 Lipschitz continuity of retraction curves

As a �rst application of the Lipschitz continuity results for retractions established in

the previous section, let us develop on Lipschitz continuity properties of the r-endpoint

retraction curves. We �rst show the Lipschitz continuity of the r-endpoint retraction

curve with respect to each of its arguments and then to all its arguments jointly.

Proposition 3.15. Let U ⊂M be non-empty retraction-convex such that

U ⊂ I1/3z , ∀ z ∈ U . (3.9)

There exist positive constants Lt, Lr and Lxy depending on the retraction verifying:

(i) d (cr(t1;x, y), cr(t2;x, y)) ≤ Ltd(x, y)|t1 − t2|, ∀x, y ∈ U , ∀ r, t1, t2 ∈ [0, 1].

(ii) d (cr1(t;x, y), cr2(t;x, y)) ≤ Lrd(x, y)|r1 − r2|, ∀x, y ∈ U , ∀ r1, r2, t ∈ [0, 1].

(iii) d (cr(t;x1, y1), cr(t;x2, y2)) ≤ Lxy(d(x1, x2)+d(y1, y2)), ∀x1, x2, y1, y2 ∈ U , ∀ r, t ∈ [0, 1].

Proof. For any �xed x, y ∈ U , �rst observe that (3.9) implies that the evaluation of

cr(t;x, y) for any r, t ∈ [0, 1] requires only the evaluation of the retraction on D1/3
z

and of the inverse retraction on I1/3z for some z = Rx(rR
−1
x (y)) ∈ U , see Figure 3.6.

Furthermore, (3.9) implies the intersection

K =
⋂
z∈U
I1/3z , with I1/3z = {Rz(v) : ∥v∥z ≤ ∆(z)/3} ,

is non-empty. In fact, it contains any z ∈ U , which is assumed to be non-empty. The

set K is also compact as the intersection of sets that are compact by Lemma 3.13. We

introduce the Lipschitz constants of the retraction and inverse retraction on the set K
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given by Proposition 3.12 with the more concise notation

L1 = L1(K, 1/3), L2 = L2(K, 1/3),

M1 =M1(K, 1/3), M2 =M2(K, 2/3).

Note that we tookM2(K, 2/3) instead ofM2(K, 1/3) in order to use also Proposition 3.14

with these constants. Since M2(K, 1/3) ≤M2(K, 2/3), Proposition 3.12 remains valid.

(i) Using Proposition 3.14 with the above constants we �nd

d (cr(t1;x, y), cr(t2;x, y))

= d

(
Rq(r)

(
R−1q(r)(x) + t1

(
R−1q(r)(y)−R

−1
q(r)(x)

))
,

Rq(r)

(
R−1q(r)(x) + t2

(
R−1q(r)(y)−R

−1
q(r)(x)

)))
≤ L2∥R−1q(r)(y)−R

−1
q(r)(x)∥q(r)|t1 − t2|

≤ L2M2d(x, y)|t1 − t2|.

Therefore we can choose Lt = L2M2.

(ii) The smooth curve δ(τ) := cr(τ)(t;x, y), where r(τ) = (1− τ)r1+ τr2, τ ∈ [0, 1], joins

cr1(t;x, y) and cr2(t;x, y). Therefore we can bound

d (cr1(t;x, y), cr2(t;x, y)) ≤ L(δ) ≤ max
τ∈[0,1]

{∥∥δ̇(τ)∥∥
δ(τ)

}
. (3.10)

Denoting ξ(τ) := (1 − t)R−1q(r(τ))(x) + tR−1q(r(τ))(y) ∈ Tq(r(τ))M, we can rewrite more

concisely as
δ(τ) = Rq(r(τ))(ξ(τ)),

q(r(τ)) = Rx(r(τ)R
−1
x (y)).

Therefore by chain rule we �nd

δ̇(τ) = D1Rq(r(τ)) (ξ(τ)) [(r2 − r1)q̇(r(τ))] + D2Rq(r(τ)) (ξ(τ))

[
ξ̇(τ)

]
,

with

q̇(r(τ)) = D2Rq(r(τ))(r(τ)R
−1
x (y))

[
R−1x (y)

]
and

ξ̇(τ) = (1− t)D1R
−1
q(r(τ)) (x) [(r2 − r1)q̇(r(τ))] + tD1R

−1
q(r(τ)) (y) [(r2 − r1)q̇(r(τ))] .

Using Proposition 3.12 and Proposition 3.14 we can bound the norms of these tangent
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3.4 Retractions and Lipschitz continuity

vectors as follows:

∥q̇(r(τ))∥q(r(τ)) ≤ L2∥R−1x (y)∥x
≤ L2M2d(x, y),

∥∥ξ̇(τ)∥∥
q(r(τ))

≤ (|1− t|+ |t|)M1 ∥q̇(r(τ))∥q(r(τ)) |r1 − r2|

≤ 2M1L2M2d(x, y)|r1 − r2|,

∥∥δ̇(τ)∥∥
δ(τ)
≤ L1 ∥q̇(r(τ))∥q(r(τ)) |r1 − r2|+ L2

∥∥ξ̇(τ)∥∥
q(r(τ))

≤ (L1L2M2 + 2L2
2M1M2)d(x, y)|r1 − r2|.

Together with (3.10), this shows that Lr = (L1L2 + 2L2
2M1)M2.

(iii) We de�ne a manifold curve joining cr(t;x1, y1) and cr(t;x2, y2) as

δ(τ) = cr(t; δx(τ), δy(τ)), τ ∈ [0, 1] ,

where the curves δx(τ) := Rx1(τR
−1
x1 (x2)), δy(τ) := Ry1(τR

−1
y1 (y2)) are well-de�ned since

endpoints belong a to retraction-convex set. Then, as previously

d (cr(t;x1, y1), cr(t;x2, y2)) ≤ L(δ) ≤ max
τ∈[0,1]

{∥∥δ̇(τ)∥∥
δ(τ)

}
.

We rewrite δ in the more compact form

δ(τ) = Rp(τ) (ξ(τ)) ,

where

p(τ) := Rδx(τ)(rR
−1
δx(τ)

(δy(τ))),

ξ(τ) := (1− t)R−1p(τ)(δx(τ)) + tR−1p(τ)(δy(τ)).
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Chapter 3. Retractions as a curve generating device

Di�erentiating these quantities with respect to τ yields

δ̇(τ) = D1Rp(τ)(ξ(τ)) [ṗ(τ)] + D2Rp(τ)(ξ(τ))
[
ξ̇(τ)

]
,

ṗ(τ) = D1Rδx(τ)(rR
−1
δx(τ)

(δy(τ)))
[
δ̇x(τ)

]
+

D2Rδx(τ)(rR
−1
δx(τ)

(δy(τ)))

[
rD1R

−1
δx(τ)

(δy(τ))
[
δ̇x(τ)

]
+

rD2R
−1
δx(τ)

(δy(τ))
[
δ̇y(τ)

]]
,

ξ̇(τ) = (1− t)
(
D1R

−1
p(τ) (δx(τ)) [ṗ(τ)] + D2R

−1
p(τ) (δx(τ))

[
δ̇x(τ)

])
+ t

(
D1R

−1
p(τ) (δy(τ)) [ṗ(τ)] + D2R

−1
p(τ) (δy(τ))

[
δ̇y(τ)

])
,

δ̇x(τ) = D2Rx1
(
τR−1x1 (x2)

) [
R−1x1 (x2)

]
,

δ̇y(τ) = D2Ry1
(
τR−1y1 (y2)

) [
R−1y1 (y2)

]
.

Using Proposition 3.12 and Proposition 3.14 we establish the following bounds:∥∥δ̇x(τ)∥∥δ(τ) ≤L2

∥∥R−1x1 (x2)∥∥ ≤ L2M2d(x1, x2),∥∥δ̇y(τ)∥∥δ(τ) ≤L2

∥∥R−1y1 (y2)∥∥ ≤ L2M2d(y1, y2),

∥ṗ(τ)∥p(τ) ≤ (L1 + L2M1)
∥∥δ̇x(τ)∥∥δx(τ) + L2M2

∥∥δ̇y(τ)∥∥δy(τ),∥∥ξ̇(τ)∥∥
p(τ)
≤2M1 ∥ṗ(τ)∥p(τ) +M2

∥∥δ̇x(τ)∥∥δx(τ) +M2

∥∥δ̇y(τ)∥∥δy(τ),∥∥δ̇(τ)∥∥
δ(τ)
≤L1 ∥ṗ(τ)∥p(τ) + L2

∥∥ξ̇(τ)∥∥
p(τ)

. (3.11)

By suitably plugging the previous inequalities into the right-hand side of (3.11), we �nd∥∥δ̇(τ)∥∥
δ(τ)
≤ Lxd(x1, x2) + Lyd(y1, y2)

where Lx and Ly are polynomials of L1, L2,M1 and M2. Then, we can take Lxy =

max {Lx, Ly}.

Corollary 3.16. Let U ⊂ M be any retraction-convex set as in Lemma 3.15. For any

x1, x2, y1, y2 ∈ U and for every r1, r2, t1, t2 ∈ [0, 1], we have

d (cr1(t1;x1, y1), cr2(t2;x2, y2)) ≤ (d(x1, y1) + d(x2, y2))

(
1

2
Lt|t1 − t2|+

1

2
Lr|r1 − r2|

)
+(d(x1, x2) + d(y1, y2))Lxy.
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Proof. Using the triangular inequality and Lemma 3.15 we have

d (cr1(t1;x1, y1), cr2(t2;x2, y2))

≤d (cr1(t1;x1, y1), cr1(t2;x1, y1)) + d (cr1(t2;x1, y1), cr2(t2;x2, y2))

≤Ltd(x1, y1)|t1 − t2|+ d (cr1(t2;x1, y1), cr1(t2;x2, y2))

+ d (cr1(t2;x2, y2), cr2(t2;x2, y2))

≤Ltd(x1, y1)|t1 − t2|+ Lxy (d(x1, x2) + d(y1, y2)) + Lrd(x2, y2)|r1 − r2|. (3.12)

Exchanging (r1, t1, x1, y1) and (r2, t2, x2, y2) and repeating the same procedure leads to

d (cr2(t2;x2, y2), cr1(t1;x1, y1)) ≤Ltd(x2, y2)|t1 − t2|+ Lxy (d(x1, x2) + d(y1, y2))

+Lrd(x1, y1)|r1 − r2|.
(3.13)

Then averaging (3.12) and (3.13) proves the result.

3.5 Higher order di�erentials of inverse retractions

In the previous section, the smoothness of retractions unfolded into Lipschitz continuity

results that proved to be useful in controlling the norm of the velocity �eld of retraction

based curves. As a further tool of analysis, we here discuss high-order di�erentials of

retractions, narrowing down the discussion to the inverse retraction. In fact, we aim

at using the local inverse of a retraction R as a chart to locally linearize the manifold.

As stated in Proposition 2.12, for every x ∈ M the local inverse of R can be used to

smoothly map the neighborhood Ix = {Rx(v) : ∥v∥x < ∆(x)} to the tangent space at

x. Given a smooth manifold curve γ de�ned on the open interval J ⊂ R whose image is

entirely contained in Ix, for a given x ∈M, consider the tangent space curve

γ̂(τ) := R−1x (γ(τ)), ∀ τ ∈ J. (3.14)

From the de�nition of inverse retraction's di�erential with respect to the second argument

given by (3.5), we know that

γ̂′(t) = D2R
−1
x (γ(t)) [γ̇(t)] .

In the following, we aim at providing a suitable theoretical foundation for the relation

between high-order derivatives of γ̂ and high-order covariant derivatives of the manifold

curve γ. Then, we show how upper bounds on the covariant derivatives of the manifold

curve translate into bounds for the derivatives of the tangent space curve.

The di�erential D2R
−1
x (y) is well-de�ned on the open subset of M×M introduced in

Proposition 2.12 as

E(D) = {(x,Rx(v)) : ∥v∥x < ∆(x)} .

When de�ned, D2R
−1
x (y) is a linear map from TyM to TR−1

x (y)TxM ≃ TxM. The
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Chapter 3. Retractions as a curve generating device

smoothness of the retraction implies that D2R
−1 is smooth as a map from a subset of

M×M to a subset of the vector bundle

L(TM, TM) = {(x, y, L) : (x, y) ∈M×M, L : TyM→ TxM linear}

which admits a smooth manifold structure described in [Bou23, Proposition 10.60]2. To

de�ne the covariant derivative of D2R
−1 we �rst construct a smooth tensor �eld on

M×M. Then, we leverage the de�nition of covariant di�erentiation of tensor �elds

given by De�nition 1.26 to establish a de�nition for the covariant derivative of D2R
−1.

A tensor �eld on M×M involving the inverse retraction di�erential

First note that the tangent space ofM×M at (x, y) can be identi�ed with the product

of tangent spaces TxM× TyM [Lee13, Proposition 3.14]. Hence, every smooth vector

�eld U ∈ X (M×M) can be decomposed for every ∀ (x, y) ∈M×M as

U(x, y) ≃ (U1(x, y), U2(x, y)),

with U1(x, y) ∈ TxM and U2(x, y) ∈ TyM. We will denote the restriction to the �rst or

the second component as πi(U) := Ui, for i = 1, 2. Conversely, every smooth vector �eld

V1,W2 ∈ X(M) can be lifted to V,W ∈ X(M×M) by appending the zero vector �eld,

i.e. de�ning for every (x, y) ∈M×M

V (x, y) ≃ (V1(x), 0), W (x, y) ≃ (0,W2(y)).

To indicate the lift operation we will use the notation V = ℓ1(V1) and W = ℓ2(W2).

Finally, we indicate by zi the concatenation of πi followed by ℓi, that is z1(U) = (U1, 0)

and z2(V ) = (0, V2).

For any U, V ∈ X(M×M), consider the scalar function onM×M given by

(x, y)→ T (U(x, y), V (x, y)) :=
〈
U1(x, y),D2R

−1
x (y)[V2(x, y)]

〉
x
. (3.15)

This function is well-de�ned on the open subset E(∆) ⊂M×M and by the smoothness

of the retraction it is smooth where de�ned. Since the value of the function depends

linearly on the pointwise value of U and V , the map

(U, V ) 7→ T (U, V )

is a smooth tensor �eld in the sense of De�nition 1.10. If we endow M×M with the

product Riemannian metric [Bou23, Example 3.57] given by

⟨(vx, vy), (wx, wy)⟩(x,y) := ⟨vx, vy⟩x + ⟨wx, wy⟩y , (3.16)

2Although in this reference the linear map goes from TxM to TyM.
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for every (vx, vy), (wx, wy) ∈ T(x,y)(M×M), we may rewrite using the previously intro-

duced notations

T (U, V )
∣∣
(x,y)

=
〈
z1(U(x, y)), ℓ1

(
D2R

−1
x (y)[z2(V (x, y))]

)〉
(x,y)

,

=:
〈
z1(U), ℓ1

(
D2R

−1[z2(V )]
)〉 ∣∣

(x,y)
,

(3.17)

where the second line is to be understood as a shorthand notation for the �rst line.

3.5.1 Second-order covariant derivative of the inverse retraction

With the Riemannian metric (3.16), the product connection [Bou23, Equation (5.6)] on

M×M de�ned with the Riemannian connection onM coincides with the Riemannian

connection on M×M [Bou23, Exercise 5.13]. In turn, the Riemannian connection on

M×M determines the covariant di�erentiation of the tensor �eld T de�ned in (3.15)

as per De�nition 1.26. The covariant derivative of T is a third-order tensor �eld de�ned

for every U, V,W ∈ X(M) as

∇T (U, V,W ) =W
〈
z1(U), ℓ1

(
D2R

−1[z2(V )]
) 〉

−
〈
z1(∇WU), ℓ1

(
D2R

−1[z2(V )]
) 〉
−
〈
z1(U), ℓ1

(
D2R

−1[z2(V )]
) 〉
.

Using the compatibility of covariant di�erentiation with the Riemannian metric we evince

∇T (U, V,W ) =
〈
∇W (z1(U)), ℓ1

(
D2R

−1[z2(V )]
) 〉

+
〈
z1(U),∇W

(
ℓ1
(
D2R

−1[z2(V )]
))〉

−
〈
z1(∇WU), ℓ1

(
D2R

−1[z2(V )]
) 〉

−
〈
z1(U), ℓ1

(
D2R

−1[z2(∇WV )]
) 〉
.

(3.18)

The de�nition of the product connection, see [Bou23, Equation (5.6)], prescribes that

the �rst component of ∇WU depends only on the �rst component of U . Hence, we have

that ∇W (z1(U)) = z1(∇WU) and z2(∇WV ) = ∇W (z2(V )), analogously. This means

that the �rst and the third term of (3.18) cancel out and we �nd

∇T (U, V,W ) =
〈
z1(U),∇W

(
ℓ1
(
D2R

−1[z2(V )]
))
− ℓ1

(
D2R

−1[∇W (z2(V ))]
) 〉

=:
〈
z1(U),∇WD2R

−1[z2(V )]
〉
,

(3.19)

where for any V,W ∈ X(M×M) we have de�ned a vector �eld on E(D) ⊂ M×M
de�ned by

∇WD2R
−1[z2(V )] := ∇W

(
ℓ1
(
D2R

−1[z2(V )]
))
− ℓ1

(
D2R

−1[∇W (z2(V ))]
)
.

The value of ∇T (U, V,W ) at (x, y) ∈ M×M depends linearly on the pointwise value

of the input vector �elds. In the same way, ∇WD2R
−1[z2(V )] at (x, y) depends linearly

on the pointwise value of V and W . More speci�cally, it depends only on the pointwise
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value of V2. To stress this fact, we maintain z2 in the abbreviated notation. It may

depend on the value of W1 but we will be mostly interested in the case where W1 = 0.

Indeed, we formulate the following de�nition.

De�nition 3.17. For every (x, y) ∈M×M such that R−1x (y) is well-de�ned, the second-

order covariant di�erential with respect to the second argument of the inverse retraction

is the multilinear map

D2
2R
−1
x (y) : TyM× TyM→ TxM

de�ned for every v, w ∈ TyM as

D2
2R
−1
x (y)[v, w] := π1(∇WD2R

−1[z2(V )]
∣∣
(x,y)

) (3.20)

for any V,W ∈ X(M×M) such that π2(V (x, y)) = v and π2(W (x, y)) = w.

Note that the multilinear operator (3.20) is not necessarily symmetric in the sense that

changing the order of v and w may a�ect the result. Going back to the overarching goal

of this section, we are now in position to express the acceleration of the tangent space

curve γ̂.

Proposition 3.18. If the manifold curve γ is twice di�erentiable, the acceleration of the

tangent space curve (3.14) is given by

γ̂′′(τ) = D2R
−1
x (γ(τ)) [γ̈(τ)] + D2

2R
−1
x (γ(τ))[γ̇(τ), γ̇(τ)], ∀ τ ∈ J.

Proof. Fix τ ∈ J and consider any arbitrary u ∈ TxM. We have that

〈
u, γ̂′′(τ)

〉
x
=

d

ds

〈
u, γ̂′(s)

〉
x

∣∣
s=τ

=
d

ds

〈
u,DR−1x (γ(s))[γ′(s)]

〉
x

∣∣
s=τ

.

This can be interpreted as evaluating the directional derivative of the tensor �eld (3.17)

along the curve c(s) := (x, γ(s)) ∈M×M with input vector �elds U, V along the curve

c de�ned for every s ∈ J by U(s) = (u, 0) and V (s) = (0, γ̇(s)). Then〈
u, γ̂′(s)

〉
=
〈
z1(U(s)), ℓ1(D2R

−1[z2(V (s))])
〉
= T (U(s), V (s)).

Using the consequence of chain rule property of induced covariant di�erentiation for

tensor �eld reported in (1.3) we get

d

ds
T (U(s), V (s)) = ∇T (U(s), V (s), ċ(s)) + T

( D

ds
U(s), V (s)

)
+ T

(
U(s),

D

ds
V (s)

)
.

For every s ∈ J , the vector �eld U is constant, therefore D
dsU(s) = 0 and the second

term vanishes. From the de�nition of the product connection and the expression of the
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velocity vector �eld of c given by ċ(s) = (0, γ̇(s)), we evince D
dsV (s) = (0, γ̈(s)). Hence

d

ds
T (U(s), V (s))

∣∣
s=τ

=
〈
z1(u, 0),∇(0,γ̇(τ))D2R

−1[z2(0, γ̇(τ))]
〉
(x,y)

+ T
(
(u, 0), (0, γ̈(τ))

)
.

In the �rst term we recognize the second-order di�erential of the inverse retraction in-

troduced by De�nition 3.17 and we conclude〈
u, γ̂′′(τ)

〉
x
=
〈
u, π1(∇(0,γ̇(τ))D2R

−1[(0, γ̇(τ))])
〉
x
+
〈
u,D2R

−1[γ̈(τ)]
〉
x

=
〈
u,D2

2R
−1
x (γ(τ))[γ̇(τ), γ̇(τ)] + D2R

−1
x (γ(τ)) [γ̈(τ)]

〉
x
.

3.5.2 Third and fourth-order covariant derivative of the inverse retrac-

tion

The procedure which leads to the second-covariant derivative of the inverse retraction can

be repeated to de�ne the third and fourth-order derivatives, as we now brie�y outline.

We apply De�nition 1.26 to compute the covariant derivative of the third-order tensor

�eld ∇T given in (3.19) and de�ne the resulting fourth-order tensor �eld as

∇2T (U, V,W,Z) = Z
〈
z1(U),∇WD2R

−1[z2(V )]
〉
−
〈
z1(∇ZU),∇WD2R

−1[z2(V )]
〉

−
〈
z1(U),∇∇ZWD2R

−1[z2(V )]
〉
−
〈
z1(U),∇WD2R

−1[z2(∇ZV )]
〉
,

for every U, V,W,Z ∈ X(M). As for the case of the second-order di�erential, the second

term vanishes when developing the �rst term using the compatibility with the Rieman-

nian metric of the connection. The resulting expression is used to de�ne

∇Z∇WD2R
−1[z2(V )] := ∇Z

(
∇WD2R

−1[z2(V )]
)
−
(
∇∇ZWD2R

−1[z2(V )]
)

−
(
∇WD2R

−1[∇W (z2(V ))]
)
.

Analogously di�erentiating ∇2T leads to de�ning

∇Q∇Z∇WD2R
−1[z2(V )] := ∇Q

(
∇Z∇WD2R

−1[z2(V )]
)
−∇∇QZ∇WD2R

−1[z2(V )]

−∇Z∇∇QWD2R
−1[z2(V )]−∇Z∇WD2R

−1[∇Q(z2(V ))].

With these multilinear map, we give the analogous of De�nition 3.17 for the third and

fourth-order covariant di�erential of the retraction.

De�nition 3.19. For every (x, y) ∈M×M such that R−1x (y) is well-de�ned, the third

and fourth-order covariant di�erential with respect to the second argument of the inverse
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retraction are the multilinear maps

D3
2R
−1
x (y) : (TyM)3 → TxM

D4
2R
−1
x (y) : (TyM)4 → TxM

de�ned for every v, w, z, q ∈ TyM as

D3
2R
−1
x (y)[v, w, z] := π1(∇Z∇WD2R

−1[z2(V )]
∣∣
(x,y)

)

D4
2R
−1
x (y)[v, w, z, q] := π1(∇Q∇Z∇WD2R

−1[z2(V )]
∣∣
(x,y)

)

for any V,W,Z,Q ∈ X(M×M) such that π2(V (x, y)) = u, π2(W (x, y)) = w, π2(Z(x, y)) =

z, π2(Q(x, y)) = q.

Finally, analogously to Proposition 3.18, these multilinear operators are shown to inter-

vene in the expression of the third and fourth derivative of the curve γ̂.

Proposition 3.20. If the manifold curve γ is three times continuously di�erentiable, the

third derivative of the tangent space curve (3.14) is given by

γ̂′′′(τ) = D2R
−1
x (γ(τ)) [

...
γ (τ)] + 2D2

2R
−1
x (γ(τ))[γ̈(τ), γ̇(τ)]

+ D2
2R
−1
x (γ(τ))[γ̇(τ), γ̈(τ)] + D3

2R
−1
x (γ(τ))[γ̇(τ), γ̇(τ), γ̇(τ)], ∀ τ ∈ J.

If γ is four-times continuously di�erentiable, then ∀ τ ∈ J it holds that

γ̂(4)(τ) = D2R
−1
x (γ(τ)) [

....
γ (τ)] + 3D2

2R
−1
x (γ(τ))[γ̈(τ), γ̈(τ)]

+ 3D2
2R
−1
x (γ(τ))[

...
γ (τ), γ̇(τ)] + 3D2

2R
−1
x (γ(τ))[γ̇(τ),

...
γ (τ)]

+ 3D3
2R
−1
x (γ(τ))[γ̈(τ), γ̇(τ), γ̇(τ)] + 2D3

2R
−1
x (γ(τ))[γ̇(τ), γ̈(τ), γ̇(τ)]

+ D3
2R
−1
x (γ(τ))[γ̇(τ), γ̇(τ), γ̈(τ)] + D4

2R
−1
x (γ(τ))[γ̇(τ), γ̇(τ), γ̇(τ), γ̇(τ)].

Proof. We detail only the computations for the third derivative since the case of the

fourth derivative is analogous.

In the proof of Proposition 3.18 we have established that for an arbitrary u ∈ TxM and

τ ∈ J ,

〈
u, γ̂′′(τ)

〉
x
= ∇T (U(τ), V (τ),W (τ)) + T

( D

dτ
U(τ), V (τ)

)
+ T

(
U(τ),

D

dτ
V (τ)

)
,

where U , V and W are vector �eld along the curve c(s) = (x, γ(s)) de�ned for every

s ∈ J by U(s) = (u, 0) and V (s) =W (s) = (0, γ̇(s)) = ċ(s). We di�erentiate once again
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by using (1.3) and we �nd

〈
u, γ̂′′′(τ)

〉
x
= ∇2T (U(τ), V (τ),W (τ), ċ(τ)) +∇T

( D

dτ
U(τ), V (τ),W (τ)

)
+∇T

(
U(τ),

D

dτ
V (τ),W (τ)

)
+∇T

(
U(τ), V (τ),

D

dτ
W (τ)

)
+∇T

( D

dτ
U(τ), V (τ), ċ(τ)

)
+ T

( D2

dτ2
U(τ), V (τ)

)
+ T

( D

dτ
U(τ),

D

dτ
V (τ)

)

+∇T
(
U(τ),

D

dτ
V (τ), ċ(τ)

)
+ T

( D

dτ
U(τ),

D

dτ
V (τ)

)
+ T

(
U(τ),

D2

dτ2
V (τ)

)

From the fact U is constant along c we have that D
dτU(τ) = D2

dτ2
U(τ) = 0. Since V (s) =

W (s) = ċ(s) = (0, γ̇(s)) we evince D
dτ V (τ) = D

dτW (τ) = (0, γ̈(τ)) and D2

dτ2
V (τ) =

(0,
...
γ (τ)). By linearity of tensors, this implies all terms involving these quantities vanish.

Finally, replacing the tensor �elds with their de�nition, we recognize the expressions of

the second and third-order covariant di�erentials of the retraction given by De�nition 3.17

and 3.19〈
u, γ̂′′′(τ)

〉
x
=
〈
u,D3

2R
−1
x (γ(τ))[γ̇(τ), γ̇(τ), γ̇(τ)]

〉
x
+
〈
u,D2

2R
−1
x (γ(τ))[γ̈(τ), γ̇(τ)]

〉
x

+
〈
u,D2

2R
−1
x (γ(τ))[γ̇(τ), γ̈(τ)]

〉
x
+
〈
u,D2

2R
−1
x (γ(τ))[γ̈(τ), γ̇(τ)]

〉
x

+
〈
u,D2R

−1
x (γ(τ))[γ̈(τ), γ̇(τ)]

〉
x
.

Reordering and collecting terms proves the result.

3.5.3 Operator norms for the high-order di�erentials of the retraction

The second, third and fourth-order di�erentials of an inverse retraction introduced in

De�nition 3.17 and De�nition 3.19 are multilinear operators on a product of vector

spaces. For any linear operator A : (TyM)k → TxM we may de�ne its operator norm as

follows

∥A∥ := sup
w1,...,wk∈TyM
w1,...,wk ̸=0x

{
∥A [w1, . . . , wk]∥x
∥w1∥y . . . ∥wk∥y

}
. (3.21)

Since TyM and TxM have �nite dimension, the norm for any such A is always �-

nite [Lim21, p. 610]. Hence, the multilinear operatorsD2
2R
−1
x (y), D3

2R
−1
x (y) andD4

2R
−1
x (y)

have a �nite operator norm for every (x, y) ∈ M×M for which they are de�ned. By

the smoothness of retractions, these operator norms as a function of (x, y) are smooth.

Therefore, in analogy with Proposition 3.12 concerning the �rst-order di�erentials of the

retraction, in the following we show that the operator norms can be uniformly upper-

bounded upon varying x in a compact set and y on each Iεx.

Proposition 3.21. Consider an arbitrary ε ∈ (0, 1) and a retraction R. For any compact
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subset K ⊂M there exist positive constants M2,2(K, ε), M2,3(K, ε) and M2,4(K, ε) such

that for every x ∈ K and y ∈ Iεx and for any t, u, v, w ∈ TyM, the high-order covariant

di�erentials of the inverse retraction satisfy

(i)
∥∥D2

2R
−1
x (y) [t, u]

∥∥
x
≤M2,2(K, ε) ∥t∥y ∥u∥y,

(ii)
∥∥D3

2R
−1
x (y) [t, u, v]

∥∥
x
≤M2,3(K, ε) ∥t∥y ∥u∥y ∥v∥y,

(iii)
∥∥D4

2R
−1
x (y) [t, u, v, t]

∥∥
x
≤M2,4(K, ε) ∥t∥y ∥u∥y ∥v∥y ∥w∥y.

Proof. The result is reached analogously to the result of Proposition 3.12. Take any k ∈
{2, 3, 4} and denote ∥Dk

2R
−1
x (y)∥ the operator norm (3.21) of the multilinear operator. On

the one hand, we know the function (x, y) 7→ ∥Dk
2R
−1
x (y)∥ is smooth where it is de�ned.

On the other hand, by Lemma 3.13, the set IεK = {(x,Rx(v)) : x ∈ K, ∥v∥x ≤ ε∆(x)}
is compact inM×M. Hence the constant M2,k(K, ε) is found by taking the maximum

of ∥Dk
2R
−1
x (y)∥ for every (x, y) ∈ IεK .

3.6 Approximating power of retraction curves

In Corollary 3.2, it is shown that retractions can be used to generate manifold curves

with prescribed initial position, velocity and, provided the retraction is second-order,

also the initial acceleration. If the prescribed data is sampled from a smooth manifold

curve γ at a parameter t, the resulting retraction curve approximates the curve γ in a

neighborhood of t. Proposition 3.22 below quanti�es the local discrepancy between the

original curve and the retraction curve in terms of the Riemannian distance function.

Proposition 3.22. Suppose Assumption 3.11 holds and let R denote a retraction on a

smooth manifold M. For any manifold curve γ of class C2 de�ned on an open interval

J ⊃ [0, 1] there exists C2 > 0 and h̄ > 0 depending only on γ and R such that for all

h < h̄2
d
(
γ(t+ h), Rγ(t)(hγ̇(t))

)
≤ C2h

2, ∀ t ∈ [0, 1] .

If furthermore R is a second-order retraction and γ is of class C3, there exists C3 > 0

and h̄3 > 0 depending only on γ and R such that for all h < h̄3

d
(
γ(t+ h), Rγ(t)

(
hγ̇(t) +

h2

2
γ̈(t)

))
≤ C3h

3, ∀ t ∈ [0, 1] .

We �rst state a technical result necessary for the proof. It is meant to quantify in term

of Riemannian distance function the size of the region I1/3x where the inverse retraction

at x is a di�eomorphism and admits a Lipschitz constant that was made explicit in

Proposition 3.12. For every x ∈M, we introduce the constant

ν̄(x) = sup
{
ν > 0 : B(x, ν) ⊂ I1/3x

}
.

The set I1/3x is open in M, hence ν̄(x) > 0 at every x. Provided Assumption 3.11

holds, i.e. that the retraction-convexity radius ρ̄ is lower bounded by a strictly positive

constants on any compact set, the same can be said for the quantity ν̄.
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Lemma 3.23. For any compact set K ⊂ M such that ρmin(K) = infx∈K ρ̄(x) > 0 it

holds that νmin(K) := infx∈K ν̄(x) > 0.

Proof. Let us denote ∆min (K) := infx∈K ∆(x), where ∆ is the strictly positive and con-

tinuous function used in Proposition 2.12 to describe the domain over which a retraction

is a di�eomorphism. Since ∆ is known to be continuous and strictly positive, we know

∆min(K) > 0 for every compact subset K. We indicate by LR(K) and MR(K) the

Lipschitz constants of the retraction and its inverse on K, as given by Lemma 3.14.

We need to show that there exists ν0 > 0 such that for every x ∈ K and every y ∈ B(x, ν0)

we have y ∈ I1/3x , which by de�nition means R−1x (y) is well-de�ned and that its norm is

bounded by ∆(x)/3. If ν0 < ρmin(K) then R−1x (y) is always well-de�ned by retraction-

convexity. Hence, we proceed by contradiction assuming the second condition fails: for

every integer n large enough so that 1
n < ρmin(K), there exists xn ∈ K and yn ∈ B(xn,

1
n)

such that ∥R−1xn (yn)∥xn >
∆(xn)

3 . By retraction-convexity of B(xn,
1
n), we know that

zn = Rxn

(
∆min(K)

6

R−1xn (yn)

∥R−1xn (yn)∥xn

)

is well-de�ned and belongs to B(xn,
1
n). By construction zn ∈ I1/3xn and xn ∈ K, hence

by Lipschitz continuity of the retraction

∆min(K)

6
= ∥R−1xn (zn)∥xn ≤MR(K)d(xn, zn) <

MR(K)

n
.

Therefore n∆min(K)
6 < MR(K) for every n > 1

ρmin(K) , contradicting the �niteness of

MR(K).

Proof of Proposition 3.22. Denote ρmin(γ) the in�mum of the retraction-convexity radius

function on the image of the curve γ on the interval [0, 1]. By Assumption 3.11, ρmin(γ) is

strictly positive and by Lemma 3.23 also the in�mum of ν̄ on the curve γ, denoted νmin(γ).

For any �xed t ∈ [0, 1], we know that for any ρ < min {ρmin, νmin} =: ρ∗, the metric ball

B(γ(t), ρ) is retraction-convex and is contained in I1/3γ(t). This enables using for any choice

of t ∈ [0, 1] the same Lipschitz constants of the retraction L2(γ, 1/3) and M2(γ, 1/3) as

de�ned in Proposition 3.12 and the operator norms of the inverse retraction di�erentials

M2,2(γ, 1/3) and M2,3(γ, 1/3) as de�ned in Proposition 3.21, where the compact set in

consideration is the image of the curve γ on the interval [0, 1].

By smoothness of the curve and the Lipschitz continuity of the retraction, there exists

h̄ > 0 so that γ(t + h), σ1(h) := Rγ(t)(hγ̇(t)) and σ2(h) := Rγ(t)(hγ̇(t) +
1
2h

2γ̈(t))

all belong to B(γ(t), ρ∗) for all h ∈ (−h̄, h̄) and for all t ∈ [0, 1], see Figure 3.7. By

retraction-convexity of B(γ(t), ρ∗), we can de�ne the retraction curves

ei(τ) = Rγ(t)(êi(τ)), τ ∈ [0, 1] ,

with êi(τ) = (1 − τ)R−1γ(t)(γ(t + h)) + τR−1γ(t)(σi(h)). By construction, both curves join

γ(t+ h) and σi(h), for i = 1, 2 for every |h| < h̄. The Riemannian distance between the
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Figure 3.7: Consider h small enough so that γ(t+h), σ1(h) := Rγ(t)(hγ̇(t)) and σ2(h) :=

Rγ(t)(hγ̇(t)+
1
2h

2γ̈(t)) all belong to B(γ(t), ρ∗) for every h ∈ (−h̄, h̄) and for all t ∈ [0, 1].

endpoints is upper-bounded by the length of the curve ei, which can itself by bounded

by the maximum derivative norm:

d(γ(t+ h), σi(h)) ≤ L(ei) =
∫ 1

0
∥ėi(τ)∥ei(τ) dτ ≤ max

τ∈[0,1]
∥ėi(τ)∥ei(τ) .

But since êi(τ) ∈ D1/3
γ(t) = R−1γ(t)

(
I1/3γ(t)

)
for every τ ∈ [0, 1] and |h| < h̄, we can bound

∥ėi(τ)∥ei(τ) =
∥∥DRγ(t)(êi(τ))[R−1γ(t)(σi(h))−R−1γ(t)(γ(t+ h))]

∥∥
σi(τ)

≤ L2(γ, 1/3)
∥∥∥R−1γ(t)(σi(h))−R−1γ(t)(γ(t+ h))

∥∥∥
γ(t)

,

where L2(γ, 1/3) is the Lipschitz constant introduced in Proposition 3.12. By Corol-

lary 3.3 and smoothness of the inverse retraction, the tangent space curve γ̂(h) :=

R−1γ(t)(γ(t+h)) admits, depending on the smoothness of γ, the following Taylor expansions

around h = 0

γ̂(h) =

{
hγ̇(t) + h2

2 γ̂
′′(s1) if γ ∈ C2,

hγ̇(t) + h2

2 γ̈(t) +
h3

6 γ̂
′′′(s2) if γ ∈ C3,

for some s1, s2 between 0 and h. Note that the second expansion holds only if R is a

second-order retraction. Then, by de�nition of σ1 and σ2 we evince∥∥∥R−1γ(t)(σ1(h))−R−1γ(t)(γ(t+ h))
∥∥∥
γ(t)

=
h2

2

∥∥γ̂′′(s1)∥∥γ(t)∥∥∥R−1γ(t)(σ2(h))−R−1γ(t)(γ(t+ h))
∥∥∥
γ(t)

=
h3

6

∥∥γ̂′′′(s2)∥∥γ(t)
It remains to bound the second and third derivatives of γ̂ uniformly in both s ∈ (−h̄, h̄)
and t ∈ [0, 1]. From Proposition 3.18, we know that

γ̂′′(τ) = D2R
−1
x (γ(τ)) [γ̈(τ)] + D2

2R
−1
x (γ(τ))[γ̇(τ), γ̇(τ)]
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3.7 Conclusions

Using the triangular inequality and introducing the operator norm upper boundsM2(γ, 1/3)

and M2,2(γ, 1/3) de�ned in Proposition 3.12 and Proposition 3.21 respectively, we �nd∥∥γ′′(s)∥∥
γ(t)
≤M2(γ, 1/3) ∥γ̈∥∞ +M2,2(γ, 1/3) ∥γ̇∥2∞ , (3.22)

where γ̇(t) := maxτ∈[0,1] ∥γ̇(τ)∥γ(τ) and γ̈(t) := maxτ∈[0,1] ∥γ̈(τ)∥γ(τ). The bound (3.22)

holds uniformly in s and t and concludes the �rst part of the proof with h̄2 = h̄ and

C2 =
L2(γ, 1/3)

2

(
M2(γ, 1/3) ∥γ̈∥∞ +M2,2(γ, 1/3) ∥γ̇∥2∞

)
.

Consider now γ three times di�erentiable. From Proposition 3.18 we know that

γ̂′′′(τ) = D2R
−1
x (γ(τ)) [

...
γ (τ)] + D2

2R
−1
x (γ(τ))[γ̈(τ), γ̇(τ)]

+ 2D2
2R
−1
x (γ(τ))[γ̈(τ), γ̇(τ)] + D3

2R
−1
x (γ(τ))[γ̇(τ), γ̇(τ), γ̇(τ)].

Once again, using triangular inequality and introducing M2,3(γ, ε) de�ned in Proposi-

tion 3.21 yields∥∥γ̂′′′(s)∥∥
γ(t)
≤M2(γ, 1/3) ∥

...
γ ∥∞ + 3M2,2(γ, 1/3) ∥γ̇∥∞ ∥γ̈∥∞ +M2,3(γ, 1/3) ∥γ̇∥3∞ ,

where
...
γ (t) := maxτ∈[0,1] ∥

...
γ (τ)∥γ(τ). This concludes the proof as we have shown that

h̄3 = h̄ and

C3 =
L2(γ, 1/3)

6

(
M2(γ, 1/3) ∥

...
γ ∥∞+3M2,2(γ, 1/3) ∥γ̇∥∞ ∥γ̈∥∞+M2,3(γ, 1/3) ∥γ̇∥3∞

)
.

3.7 Conclusions

The results of this chapter support the idea that retractions can be used as a general

tool to build portions of manifold curves of which the properties can be conveniently

analyzed. In addition to previously known retraction curves with prescribed velocity and

acceleration in one point, we present the novel class of r-endpoint retraction curves for

which the endpoints can be prescribed. Their well-posedness is granted by the existence of

retraction-convex sets. This new theoretical tool together with the Lipschitz continuity

properties of the retraction and the higher-order di�erentials of the inverse retraction

already demonstrated to be e�ective in analyzing retraction-based procedures, as in the

proof of Proposition 3.22 concerning the local approximating power of retraction curves.
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4 Riemannian Continuation

Homotopy theory is the study of continuous deformations between smooth maps and

geometric structures in general. This �eld blossomed into various branches one of which

is numerical continuation, homotopy continuation, or simply continuation. It is a well-

established set of algorithmic techniques to approximate the solutions to a set of nonlinear

equations. The paradigm of numerical continuation is based on tracking a continuous

deformation between the known solution set of a given equation and the sought solution

set of the equation of interest. This leading idea diversi�ed into numerous algorithms, of

which an overview can be found in the reference textbooks [AG90, Deu11]. Numerical

continuation has also been extended to unconstrained and constrained optimization in

Euclidean spaces. This chapter introduces a generalization of numerical continuation

methods for its application to Riemannian optimization. The exposition is based on the

content of [SK22a].

4.1 Continuation and optimization

Let us �rst recall the setting of numerical continuation for nonlinear equations. Given a

nonlinear equation

F (x) = 0, (4.1)

for a smooth function F : Rd → Rd, numerical continuation [AG90, Deu11] is used to

track solutions of (4.1) when the problem is smoothly perturbed. This can be useful for,

e.g., ensuring global convergence of the Newton method by progressively transforming

a simple problem with a known solution into (4.1). More speci�cally, one considers a

parametrized family of equations,

G(x, λ) = 0, ∀λ ∈ [0, 1] , (4.2)

with G : Rd × [0, 1] → Rd such that G(x, 1) = F (x) holds and a solution x0 ∈ Rd of

G(x0, 0) = 0 can be easily determined. The function G is also known as a homotopy.

Under suitable assumptions, the solution set

G−1(0) =
{
(x, λ) ∈ Rd × [0, 1] : G(x, λ) = 0

}
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Figure 4.1: Idealized setting of Euclidean continuation: G−1(0) contains only one well-
behaved curve.

to the parametric problem (4.2) contains a smooth x(λ), λ ∈ [0, 1], connecting x1 = x(1),

the solution to the original problem, to x0 = x(0), see Figure 4.1. Homotopy methods are

also relevant in optimization. Optimization methods for a given, smooth target function

f : Rn → R often aim at retrieving critical points, that is, solutions to

F (x) = ∇f(x) = 0.

Homotopy methods can be useful for, e.g., ensuring global convergence (to a critical

point) by tracking critical points of a parametrized optimization problem, which amounts

to considering

G(x, λ) = ∇f(x, λ) = 0, ∀λ ∈ [0, 1] . (4.3)

This approach to optimization problems has been widely studied in the literature, both

for unconstrained and constrained optimization problems [KH84, GWZ84]. Among oth-

ers, this has led to almost always globally convergent methods for non convex optimiza-

tion [DO05] and nonlinear programming [GWZ84, Wat01]. Another use of homotopy

methods is to improve the convergence behavior of a method by, e.g. de�ning a homo-

topy in which a regularization term is reduced progressively [LX15].

The Riemannian optimization counterpart of the homotopy (4.3) is

gradf(x, λ) = 0, ∀λ ∈ [0, 1] , (4.4)

where f :M× [0, 1]→ R is a parameter dependent smooth vector �eld on a Riemannian

manifoldM and gradf(x, λ) denotes the Riemannian gradient of f(·, λ) at x. Continua-
tion methods for (4.4) need to ensure that x stays onM. In this work, we use tools from

Riemannian optimization to design path-following algorithms achieving this demand. A

related question has been explored in the more restricted setting of time-varying con-

vex optimization on Hadamard manifolds [MMN+20], making use of the exponential

map. In [Man12], a theoretical study of parameter-dependent Riemannian optimization

is performed; the resulting homotopy-based algorithm involves local charts in order to

utilize standard continuation algorithms on Euclidean spaces. In this work, we develop
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continuation methods within the framework of Riemannian optimization as presented

in [AMS08], which allows for the convenient design of e�cient numerical methods in a

general setting.

Contributions and outline of the chapter. After recalling in Section 4.2 the gen-

eral structure of a path-following predictor-corrector continuation algorithm for nonlinear

equations on Euclidean spaces, we introduce in Section 4.3 the setting of parametric Rie-

mannian optimization and provide su�cient conditions for the numerical continuation

problem to be well-posed. We then translate to the Riemannian setting the predictor-

corrector algorithm to address them. We analyze the prediction phase, a key step of

the algorithm and also propose a step size adaptation strategy. Finally, Sections 4.4

and 4.5 are dedicated to the application of the algorithm to two classical Riemannian

optimization problems, respectively the computation of the Karcher mean and the low-

rank matrix completion problem.

4.2 Euclidean predictor-corrector continuation

To motivate our Riemannian continuation algorithm, let us �rst recall the standard

predictor-corrector continuation approach; see, e.g. [AG90, chapter 2].

Considering the parametric nonlinear equation (4.2), let us assume that 0 is a regular

value of G, that is, the di�erential

DG(x, λ) = [Gx(x, λ)|Gλ(x, λ)] ∈ Rd×d+1,

where Gx(x, λ) ∈ Rd×d and Gλ(x, λ) ∈ Rd denote respectively the di�erentials with

respect to x and λ, has full rank for each (x, λ) ∈ G−1(0). Then the constant-rank level

set theorem [Lee13, Theorem 5.12] asserts the set G−1(0) is an embedded submanifold of

Rd+1 of dimension 1 or, in other words, the union of disjoint curves. Under the stronger

assumption that Gx(x, λ) ∈ Rd×d has full rank, the implicit function theorem [KP13,

Theorem 3.3.1] implies that it is possible to parametrize each solution curve as a function

x(λ). Moreover, its derivative is given by

x′(λ) = −Gx(x(λ), λ)−1 [Gλ(x(λ), λ)] . (4.5)

In turn, the solution curve in (4.2) can be obtained from solving the following implicit

ODE: {
Gx(x, λ) [x

′] +Gλ(x, λ) = 0, ∀λ ∈ [0, 1]

x(0) = x0.
(4.6)

This equation is sometimes called Davidenko equation [Dav53]. The path-following ap-

proach consists of numerically integrating (4.6) from time λ = 0 to λ = 1. The existence

of the solution to (4.6) is discussed in [KP13, Theorem 4.2.1]; see also Theorem 4.1 below.

Given an approximation xk ≃ x(λk) of the solution curve at point λk, a predictor-

corrector continuation algorithm �rst performs a prediction step, which obtains a possibly
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Figure 4.2: Euclidean Predictor-Corrector algorithm.

very rough estimate yk+1 of the solution curve at the next point λk+1. This is followed

by a correction phase which aims at projecting this estimate back to the solution curve,

see Figure 4.2.

The most common choices for the prediction step are:

classical prediction : yk+1 = xk (4.7)

tangential prediction : yk+1 = xk + (λk+1 − λk)t(xk, λk), (4.8)

where the tangent vector t(xk, λk) := x′(λk) is obtained from (4.5). This requires the so-

lution of a linear system, a cost that is o�set by increased prediction accuracy, see [Deu11,

p.238-239] and Section 4.3.3. Note that (4.8) coincides with one step of the Euler method

applied to (4.6).

In the correction phase, the re�nement of the estimate yk+1 is performed by applying a

nonlinear equation solver, typically a Newton-type method, on the equation G(x, λk+1) =

0 with initial guess yk+1. A su�ciently small step size λk+1−λk leads to a prediction that
is accurate enough to yield (very) fast convergence. Various step size selection strategies

have been developed in the literature, see [AG90, Deu11] and Section 4.3.4.

4.3 Continuation for Riemannian optimization

In this section, we consider a Riemannian optimization problem depending on a scalar

parameter. The parameter can be intrinsic to the problem (e.g., time) or has been arti�-

cially added to form a homotopy. Examples of homotopies for Riemannian optimization

problems are given in Sections 4.4 and 4.5.

4.3.1 Riemannian Davidenko equation

LetM denote a d-dimensional Riemannian manifold endowed with a Riemannian metric

and its associated Riemannian connection. The parameter-dependent objective function

f : M× [0, 1]→ R
(x, λ) 7→ f(x, λ)

(4.9)
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is assumed to be smooth in both arguments (at least of class C2). For �xed λ ∈ [0, 1],

the Riemannian gradient and the Riemannian Hessian at x of the scalar �eld f(·, λ) are
respectively denoted gradf(x, λ) and Hessf(x, λ) and their de�nitions are reported in

Sections 2.1.1 and 2.1.2.

Consider the numerical continuation problem (4.4) of tracking critical points of the ob-

jective function as the parameter λ varies. Theorem 4.1 below is inspired by [KP13,

Theorem 4.2.1] and gives su�cient conditions for the existence and parametrizability

with respect to λ of a di�erentiable manifold curve joining a critical point x0 ∈ M at

λ = 0 and a critical point at λ = 1. For the purpose of the analysis, we assume thatM
is complete.

Theorem 4.1. Let M be a complete Riemannian manifold, U be an open subset of

M and V an open subset of M× R such that U × [0, 1] ⊂ V . Consider a scalar �eld

f ∈ C2(V,R). Assume that there exist x0 ∈ U such that gradf(x0, 0) = 0 and a constant

L > 0 such that B(x0, L) ⊆ U . Moreover, suppose that for every (z, λ) ∈ U × [0, 1] it

holds that

(i) rank (Hessf(z, λ)) = d,

(ii) ∥Hessf(z, λ)−1
[
∂
∂λ gradf(z, λ)

]
∥z < L.

Then there exist an open interval J ⊃ [0, 1] and a curve x ∈ C1(J,M) verifying

x(0) = x0, gradf(x(λ), λ) = 0, ∀λ ∈ [0, 1] .

This curve satis�es the initial value problem{
Hessf(x(λ), λ) [ẋ(λ)] + ∂ gradf(x(λ),λ)

∂λ = 0, ∀λ ∈ [0, 1] ,

x(0) = x0.
(4.10)

As illustrated in Figure 4.3, Hypothesis (i) guarantees the parametrizability with re-

spect to λ by ensuring the implicit ODE (4.10) is well-de�ned. For �xed λ, an analo-

gous assumption is required for local quadratic convergence of the Riemannian Newton

method [AMS08, Theorem 6.3.2]. Hypothesis (ii) ensures that the manifold curve can be

parametrized up to λ = 1 as the limit point of the curve for λ→ λ∗, for any 0 < λ∗ < 1,

is guaranteed to stay in the region U where the Riemannian Hessian is still of full rank.

These hypotheses are global a priori assumptions that are di�cult to verify in practice.

Yet, for a large class of problems it is reasonable to assume the Riemannian Hessian

is of full rank at the starting point (x0, 0), and therefore the solution curve is at least

parametrizable on a possibly smaller interval [0, τ ] ⊆ [0, 1]. In the following, we call the

initial value problem (4.10) the Riemannian Davidenko equation. Note that by Hypoth-

esis (i), if x0 is a local minimum, then the solution curve to the Riemannian Davidenko

equation is a manifold curve of local minima. If we further assume the objective function

to be geodesically convex [Bou23, Chapter 11] for each λ ∈ [0, 1], this implies that the

solution curve consists of global minima.

The proof of Theorem 4.1 subsumes the proof for the Euclidean case [KP13, Theorem
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Figure 4.3: The shaded region is where the assumptions of Theorem 4.1 guarantee there
exists a curve of critical points starting at x0 which reaches λ = 1 without crossing other
curves nor folding back.

4.2.1] by considering a pullback of the objective function to Rd through a local chart.

The proof appearing in [SK22a] tacitly uses a property of the local chart representation

at a critical point, as pointed out in [ZB22, Theorem 3.2]. Therefore, we �rst recall the

de�nition and detail some technical results about the local coordinate representation of

the objective function.

Preliminary results: local chart representation of the objective function

In the setup of Theorem 4.1, consider an open subset N ⊂ M associated with a local

chart φ : N → Rd such that x0 ∈ N and N × [0, 1] ⊆ V . The inverse of the local chart
is de�ned on N̂ := φ(N ) and is denoted for convenience ψ : N̂ → N . Every x ∈ N
has local coordinates x̂ = φ(x) associated with the chart φ. The other way around, we

denote x = ψ(x̂) for every x̂ ∈ N̂ . The local coordinate representation of the parameter

dependent objective function (4.9) through the local chart φ is de�ned as

f̂(x̂, λ) := f(ψ(x̂), λ), ∀ x̂ ∈ N̂ , λ ∈ [0, 1] .

The following result speci�es the link between the (Euclidean) gradient of f̂ with respect

to x̂ and the Riemannian gradient of f with respect to x. This is a well-known result

appearing for example in [Bou23, Exercise 10.73], where the local chart is a retraction.
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Lemma 4.2. The Euclidean gradient of f̂ with respect to x̂ is given by

∇f̂(x̂, λ) = Dψ∗(x̂) [gradf(ψ(x̂), λ)] , ∀ x̂ ∈ N̂ , λ ∈ [0, 1] ,

where Dψ∗(x̂) : TxM → Tx̂Rd ≃ Rd denotes the adjoint of the inverse local chart's

di�erential. The adjoint is taken with respect to the Riemannian metric on TxM and

the Euclidean metric on Rd

Proof. First note that by chain rule we have Dx̂f̂ = Dxf ◦ Dψ. Then, applying the

de�nition of gradient �rst for f̂ and then for f we �nd that for every v̂ ∈ Tx̂Rd ≃ Rd

⟨∇f̂(x̂, λ), v̂⟩ = Dx̂f̂(x̂, λ) [v̂] = Dxf(ψ(x̂), λ) [Dψ(x̂)[v̂]]

= ⟨gradf(ψ(x̂), λ),Dψ(x̂)[v̂]⟩x
= ⟨Dψ(x̂)∗[gradf(ψ(x̂), λ)], v̂⟩,

where ⟨·, ·⟩ denotes the Euclidean inner product on Rd.

For convenience, let us denote ∇f̂(·, λ) =: F̂ (·, λ) for all λ ∈ [0, 1]. As we now show, the

di�erential with respect to x̂ of F̂ , in other words the Hessian of f̂ , has a simple relation-

ship with the Riemannian Hessian of f when F̂ (x̂, λ) = 0, that is when gradf(x, λ) = 0.

When the Riemannian gradient is not zero, this is no longer the case and the di�erential

of F̂ with respect to x̂ contains an extra term, see [Bou23, Exercise 10.73].

Lemma 4.3. For every (x̂, λ) ∈ N̂ × [0, 1] such that gradf(ψ(x̂), λ) = 0, the di�erential

of F̂ with respect to x̂ is given by

Dx̂F̂ (x̂, λ) = Dψ(x̂)∗ ◦Hessf(ψ(x̂), λ) ◦Dψ(x̂).

Proof. From the de�nition of di�erential, see De�nition 1.8, for any v̂ ∈ Rd we have that

Dx̂F̂ (x̂, λ)[v̂] =
d

dt
F̂ (γ̂x̂,v̂(t), λ)

∣∣
t=0

,

for any smooth curve γ̂x̂,v̂ in Rd such that γ̂x̂,v̂(0) = x̂ and γ̂′x̂,v̂(0) = v̂. By computing

the inner-product with any ŵ ∈ Rd, we evince

⟨Dx̂F̂ (x̂, λ)[v̂], ŵ⟩ = ⟨
d

dt
F̂ (γ̂x̂,v̂(t), λ)

∣∣
t=0

, ŵ⟩ = d

dt
⟨F̂ (γ̂x̂,v̂(t), λ), ŵ⟩

∣∣
t=0

.

In the proof of Lemma 4.2 we have established

⟨F̂ (γ̂x̂,v̂(t), λ), ŵ⟩ = ⟨gradf(ψ(γ̂x̂,v̂(t)), λ),Dψ(γ̂x̂,v̂(t))[ŵ]⟩ψ(γ̂x̂,v̂(t)) .

Hence, from the compatibility of induced covariant di�erentiation with the Riemannian
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metric, it follows that

d

dt

(
⟨gradf(ψ(γ̂x̂,v̂(t)), λ),Dψ(γ̂x̂,v̂(t))[ŵ]⟩ψ(γ̂x̂,v̂(t))

)∣∣
t=0

=

⟨D
dt

gradf(ψ(γ̂x̂,v̂(t)), λ)
∣∣
t=0

,Dψ(x̂)[ŵ]⟩x + ⟨gradf(ψ(x̂), λ),
D

dt

(
Dψ(γ̂x̂,v̂(t))[ŵ]

)∣∣
t=0
⟩x.

The vanishing Riemannian gradient assumption in (ψ(x), λ) crucially guarantees the

second term is zero. Finally, using the properties of the induced covariant di�erentiation

concludes the proof:

⟨Dx̂F̂ (x̂, λ)[v̂], ŵ⟩ = ⟨
D

dt
gradf(ψ(γ̂x̂,v̂(t)), λ)

∣∣
t=0

,Dψ(x̂)[ŵ]⟩x

=
〈
∇Dψ(x̂)[ŵ] gradf(ψ(x̂), λ),Dψ(x̂)[ŵ]

〉
x

= ⟨Hessf(ψ(x̂), λ)[Dψ(x̂)[v̂]],Dψ(x̂)[ŵ]⟩x
= ⟨Dψ(x̂)∗ ◦Hessf(ψ(x̂), λ) ◦Dψ(x̂)[v̂], ŵ⟩x .

Proof of Theorem 4.1

The following proof of Theorem 4.1 has been adapted from the one appearing in [SK22a]

to explicitly use the results of Lemmas 4.2 and 4.3, which were not included in the

published article.

Proof of Theorem 4.1. Since gradf(x0, 0) = 0, by Lemma 4.2 it holds that

∇f̂(x̂0, 0) = F̂ (x̂0, 0) = 0.

for x̂0 = φ(x0). Then, by Lemma 4.3 we have

Dx̂F̂ (x̂0, 0) = Dψ(x̂0)
∗ ◦Hessf(x0, 0) ◦Dψ(x̂0).

Since local charts are di�eomorphisms, Hypothesis (i) on the invertibility of the Rie-

mannian Hessian guarantees that Dx̂F̂ (x̂0, 0) is of full rank. By the implicit function

theorem [KP13, Theorem 3.3.1] there exists an open interval I containing 0 and a con-

tinuously di�erentiable curve λ 7→ x̂(λ) ∈ Rd such that x̂(0) = x̂0, x̂(λ) ∈ N̂ for every

λ ∈ I and

F̂ (x̂(λ), λ) = 0, ∀λ ∈ I. (4.11)

By chain rule, di�erentiating (4.11) with respect to λ yields

Dx̂F̂ (x̂(λ), λ)[x̂
′(λ)] + DλF̂ (x̂(λ), λ) = 0, ∀λ ∈ I.

By the smoothness of λ 7→ x̂(λ) and the assumed continuity of Hessf on U × [0, 1], since
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Dx̂F̂ (x̂(0), 0) is invertible, there exists I ′ ⊂ I containing 0 such that Dx̂F̂ (x(λ), λ) is

invertible for all λ ∈ I ′. Hence, it holds that

x̂′(λ) = −Dx̂F̂ (x̂(λ), λ)
−1[DλF̂ (x̂(λ), λ)

]
, ∀λ ∈ I ′. (4.12)

De�ne x(λ) := ψ(x̂(λ)) for all λ ∈ I ′. By Lemma 4.2, we know

gradf(x(λ), λ)) = 0, ∀λ ∈ I ′.

Furthermore, di�erentiation of F̂ with respect to λ transfers to the Riemannian gradient

as

DλF̂ (x̂(λ), λ) = Dψ∗(x̂(λ))

[
∂ gradf(x(λ), λ)

∂λ

]
, ∀λ ∈ I.

Therefore, using Lemma 4.3 we evince from (4.12) that the derivative of the manifold

curve for every λ ∈ I ′ is

ẋ(λ) = Dψ(x̂(λ))[x̂′(λ)]

= −Dψ(x̂(λ))
[
Dx̂F̂ (x̂(λ), λ)

−1[DλF̂ (x̂(λ), λ)
]]

= −Dψ(x̂(λ)) ◦Dψ(x̂(λ))−1 ◦Hessf(x(λ), λ)−1

◦ (Dψ(x̂(λ))∗)−1 ◦Dψ∗(x̂(λ))
[
∂ gradf(x(λ), λ)

∂λ

]
= −Hessf(x(λ), λ)−1

[
∂ gradf(x(λ), λ)

∂λ

]
. (4.13)

Summarizing the above, there exists λL < 0 and λU > 0 such that

(1) x is de�ned on J := (λL, λU),

(2) gradf(x(λ), λ) = 0 ∀λ ∈ J ,
(3) x is continuously di�erentiable on J with ẋ given by (4.13),

(4) x(λ) ∈ U , ∀λ ∈ J .
De�ne the following

λ∗ = sup {λU : there exists x such that (1), (2), (3) and (4) are veri�ed} .

By the discussion above I ′ ⊂ J , hence λ∗ > 0. If λ∗ > 1, the result is proved. Therefore

assume that 0 < λ∗ ≤ 1. Due to condition (4) and Hypothesis (ii) we obtain from (4.13)

that ∥ẋ(λ)∥x(λ) < L holds for every λ ∈ (λL, λ
∗). This implies

L̃ := lim
λ↑λ∗

d(x0, x(λ)) ≤ lim
λ↑λ∗

∫ λ

0
∥x′(τ)∥x(τ)dτ < lim

λ↑λ∗

∫ λ

0
Ldτ ≤ L.

Given a sequence {λk} ⊂ J with λk → λ∗, it follows in an analogous fashion that {x(λk)}
is a Cauchy sequence. By completeness ofM, the sequence admits a limit point x∗ such

that d(x0, x
∗) ≤ L̃ < L. By assumption B(x0, L) ⊆ U , hence x∗ ∈ U .
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Now, since by continuity gradf(x∗, λ∗) = 0, using another local chart ϕ : N ′ → Rd such
that x∗ ∈ N ′, we can repeat the above procedure and apply the implicit function theorem
to the (Euclidean) gradient of

f̃(ẑ, λ) := f(ϕ−1(ẑ), λ)

at (ϕ(x∗), λ∗) and thus extend x(λ) to a larger interval. This contradicts the de�nition

of λ∗.

4.3.2 Riemannian predictor-corrector continuation

The Riemannian predictor-corrector continuation algorithm mimics the Euclidean ver-

sion from Section 4.2 by numerically integrating the Riemannian Davidenko equation (4.10).

For the moment, we consider N steps with �xed step size hk = 1/N , for k = 1, . . . , N .

A possible adaptive step size strategy is discussed in Section 4.3.4.

Algorithm 4.1 Riemannian Newton Continuation (RNC)

Input: f(·, λ) ∈ F(M) for λ ∈ [0, 1], x0 ∈M such that gradf(x0, 0) = 0, Nsteps ∈ N,
εtol > 0, Ninner ∈ N.

1: h0 =
1

Nsteps
, λ0 = 0, k = 0;

2: while λk < 1 do
3: if tangentialPrediction then
4: Solve Hessf(xk, λk) [tk] = −∂ gradf(xk,λk)

∂λ for tk ∈ TxkM;
5: if adaptStepSize then
6: Determine the new step size hk with Algorithm 4.2.
7: end if

8: yk+1 = Rxk(hktk);
9: else

10: yk+1 = xk;
11: end if

12: λk+1 = min {λk + hk, 1};
13: xk+1 = RiemannianNewton (yk+1, f(·, λk+1), εtol, Ninner);
14: if ∥ gradf(xk+1, λk+1)∥ > tol then
15: Error("Correction failed at λ = λk+1.");
16: else

17: k = k + 1;
18: end if

19: end while

20: return xk;

Prediction The classical continuation scheme (4.7) can be trivially extended to the

Riemannian case without any adjustment. The initial guess for the subsequent correction

phase is simply

yk+1 = xk, (4.14)
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the iterate at the previous step of the algorithm.

The Riemannian extension of the tangential prediction strategy (4.8) is slightly more

involved. It consists of performing a step in the direction of the tangent vector of the

solution curve. This tangent vector can be computed from the Davidenko equation as

t(xk, λk) := −Hessf(xk, λk)−1
[
∂ gradf(xk, λk)

∂λ

]
∈ TxkM. (4.15)

Note that this entails the solution of a linear system with the Riemannian Hessian. If

its solution by a direct solver (e.g., via the Cholesky decomposition) is too expensive,

especially for manifolds of higher dimension, matrix-free Krylov type methods [vdV09,

�5] can be used instead.

In the Euclidean case, a tangent vector was simply added to the current iterate. In

the Riemannian case, in analogy the optimization methods, this can be replaced by

a retraction step. Letting R denote any retraction on M, the Riemannian tangential

prediction step is de�ned as

yk+1 = Rxk(hkt(xk, λk)), (4.16)

where we recall that hk denotes the step size. This type of update strategy which guar-

antees to remain on the manifold can be used in the context of numerically integrating

di�erential equations on manifolds [Hai01, KV19], see also Chapter 6.

Figure 4.4: The RNC algorithm.

Correction In analogy to the Euclidean case from Section 4.2, we rely on a second-

order method for re�ning the estimate yk+1 such that it becomes a (nearly) critical point

of f(·, λk+1). The tolerance on the Riemannian gradient norm is chosen small enough

to closely track the solution curve, typically 10−6. Among the Riemannian optimization

methods introduced in Section 2.3, the Riemannian Newton (RN) method can be used

for this purpose; its basic form is described in Algorithm 2.3. Note that the Riemannian

Newton method can be replaced by any locally superlinearly convergent method, e.g.,

the Riemannian Trust Region (RTR) method (Algorithm 2.4) or the Riemannian BFGS
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method (Algorithm 2.6). These methods can take full advantage of su�ciently accurate

initial guess provided by the prediction, yielding a fast correction phase. Although a

�rst-order method such as Riemannian gradient descent (Algorithm 2.1) or Riemannian

conjugate gradient (Algorithm 2.5) could in principle be used, they would not bene�t the

warm-starting fully as they do not exhibit accelerated convergence near a critical point.

Riemannian-Newton Continuation (RNC) The whole predictor-corrector scheme

for Riemannian manifolds is sketched in Algorithm 4.1 and illustrated in Figure 4.4. The

optional adaptive step size strategy in line 6 is explained in Section 4.3.4 below.

4.3.3 Prediction order analysis

An accurate prediction step leads to fast convergence in the correction step. The con-

cept of order is used in the Euclidean case [Deu11, p.238-239] to qualitatively capture

this accuracy. The following de�nition extends this concept to the Riemannian case by

considering the prediction path y(h) ∈ M, h > 0, obtained from the prediction step by

varying the step size h.

De�nition 4.4 (Prediction order). Let x(λ) be the solution curve de�ned by (4.10) for

λ ∈ [0, 1]. A prediction path y(h) such that y(0) = x(λ) is said to be of order p if there

exists a constant ηp > 0 independent of h, such that

d(x(λ+ h), y(h)) ≤ ηphp, ∀λ ∈ [0, 1),

holds for all su�ciently small h > 0.

In the following we prove that the prediction orders for the Riemannian classical and

tangential prediction schemes match the ones in the Euclidean case. More speci�cally, the

following propositions show that classical prediction (4.14) has order 1 while tangential

prediction (4.16) has order 2.

Proposition 4.5. The classical prediction path yc(h) = x(λ) has order 1.

Proof. Applying the de�nition of distance function, we obtain for su�ciently small h > 0

that

d(x(λ+ h), yc(h)) = d (x(λ+ h), x(λ)) ≤
∫ λ+h

λ
∥ẋ(τ)∥dτ ≤ h max

τ∈[λ,λ+h]
{∥ẋ(τ)∥}

≤ h max
τ∈[0,1]

{∥ẋ(τ)∥}

Proposition 4.6. If λ 7→ x(λ) is twice continuously di�erentiable on an open interval

J ⊃ [0, 1], the tangential prediction path

yt(h) = Rx(λ)(ht(x(λ), λ))
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has order 2.

Proof. By Theorem 4.1, the derivative of x at λ is equal to t(x(λ), λ). Then, the result

follows by applying Proposition 3.22 to the solution curve x.

4.3.4 Step size adaptation via asymptotic expansion

The selection of the step size hk in Algorithm 4.1 has a great impact on its e�ciency.

A good step size selection should �nd a balance between the two con�icting goals of

attaining fast convergence in each correction step and maintaining a low number of

correction steps.

An overview of existing strategies for the Euclidean case can be found in [AG90, Deu11].

In the following, we focus on the case of tangential prediction. We propose to generalize

to the Riemannian setting a step size selection scheme which is summarized in [AG90,

�6.1]. It aims at guaranteeing the three following conditions: (i) the distance between the

prediction point yk+1 and the corresponding solution point xk+1 is below a prescribed

tolerance, (ii) the RN method on f(·, λk + hk) started at the prediction point yk+1 is

su�ciently contractive and (iii) the curvature of the solution curve between xk and xk+1

is below a prescribed tolerance. For the Euclidean case, an analogous approach intended

to ful�ll condition (ii) is used in the numerical continuation software package HOM-

PACK [Wat79], while the strategy we now describe targets the three above conditions

simultaneously.

Given any (w, λ) ∈M× [0, 1] such that Hessf(w, λ) is full rank, we denote the prediction
vector and the RN update vector respectively as

t(w, λ) = −Hessf(w, λ)−1
[ ∂
∂λ

gradf(w, λ)
]
,

and

n(w, λ) = −Hessf(w, λ)−1
[
gradf(w, λ)

]
.

Given (x(λ), λ) on the solution curve, recall the tangential prediction point as a function

of step size h > 0 is

y(h) = Rx(λ)(ht(x(λ), λ)). (4.17)

An approximation of the distance between y(h) and x(λ+ h) can be obtained from the

norm of the �rst RN update vector, see Figure 4.5. We shall denote it

δ(x(λ), λ, h) := ∥n(y(h), λ+ h)∥y(h). (4.18)

Let us indicate the �rst iterate of the RN method started at y(h) as

z(h) = Ry(h) (n(y(h), λ+ h)) . (4.19)
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(a) Distance (b) Contraction rate (c) Angle

Figure 4.5: Step size adaptation performance indicators.

Then, the �rst contraction rate of the RN is de�ned as

κ(x(λ), λ, h) :=
∥n(z(h), λ+ h)∥z(h)
∥n(y(h), λ+ h)∥y(h)

. (4.20)

Upon convergence of the RN method for f(·, λ + h), this ratio is smaller than 1. Fi-

nally, the curvature of the solution curve between two points x(λ) and x(λ + h) can be

approximated with

α(x(λ), λ, h) := acos

( 〈
Tht(x(λ),λ)(t(x(λ), λ)), t(y(h), λ+ h)

〉
y(h)

∥Tht(x(λ),λ)(t(x(λ), λ))∥y(h)∥t(y(h), λ+ h)∥y(h)

)
(4.21)

the angle between the prediction vector at the solution curve point (x(λ), λ) and the

prediction vector at the prediction point (y(h), λ + h). Note that in order to measure

their relative angle we transport t(x(λ), λ) ∈ Tx(λ)M to Ty(h)M using the linear map

Tht(x(λ),λ) : Tx(λ)M→ Ty(h)M

given by a vector transport associated with the retraction R, see De�nition 2.13. Note

that (4.21) is well-de�ned only if t(x(λ), λ) ̸= 0 and t(y(h), λ + h) ̸= 0. However, the

second follows from the �rst by continuity of h → t(y(h), λ + h) provided h is small

enough.

The following lemma inspired by [AG90, Lemmas 6.1.2, 6.1.8] is the cornerstone of the

step selection strategy. It provides a Taylor expansion with respect to h around h = 0

of the indicators (4.18), (4.20), (4.21). For convenience of notation, in the following we

drop the explicit dependence of x on λ.

Lemma 4.7. Assume f is seven times continuously di�erentiable in both arguments and

that for each (x, λ) of the solution curve we have

D2

dh2
gradf(y(h), λ+ h)

∣∣∣
h=0
̸= 0, (4.22)

where D2

dh2
denote the second covariant derivative along the prediction path (4.17). Then,

there exist functions δ2(x, λ), κ2(x, λ), α1(x, λ) only depending on x and λ such that the
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following holds:

(i) The norm of the �rst Newton update vector δ(x, λ, h) = ∥n(y(h), λ+h)∥y(h) veri�es

δ(x, λ, h) = δ2(x, λ)h
2 +O

(
h3
)
.

(ii) If R is second-order retraction, then the contraction rate of the Newton method,

namely,

κ(x, h) =
∥n(z(h), λ+ h)∥z(h)
∥n(y(h), λ+ h)∥y(h)

,

veri�es

κ(x, λ, h) ≤ κ2(x, λ)h2 + o
(
h2
)
.

(iii) If t(x, λ) ̸= 0, the prediction angle

α(x, λ, h) = acos

( 〈
Tht(x,λ)(t(x, λ)), t(y(h), λ+ h)

〉
y(h)

∥Tht(x,λ)(t(x, λ))∥y(h)∥t(y(h), λ+ h)∥y(h)

)
(4.23)

is well-de�ned and, provided

D

dh
Tht(x,λ)(t(x, λ))

∣∣
h=0
− D

dh
t(y(h), λ+ h)

∣∣
h=0
̸= ct(x, λ), ∀ c ∈ R, (4.24)

it veri�es

α(x, λ, h) = α1(x, λ)h+O
(
h2
)
.

The proof of Lemma 4.7 is quite lengthy and is reported in the next section. Let us �rst

describe the step size selection strategy inspired by this result. Given positive constants

δmax, κmax and αmax, we aim at �nding the largest hk > 0 such that

δ(xk, λk, hk) ≤ δmax, κ(xk, λk, hk) ≤ κmax, α(xk, λk, hk) ≤ αmax.

Since κ is a ratio that should be smaller than 1 when the Newton method enters its

superlinear convergence regime, only values κmax ∈ (0, 1) make sense but in practice one

would choose a value that is away from 1, say 1/4. Similarly, α is an angle that should

remain small and so αmax ∈ (0, π/2). However, once again, a typical value is away from

π/2, for instance αmax = 10◦. The last indicator δ is an estimate for the distance to the

next minimizer and so the choice for δmax is application dependent.

Given a trial step size h̃k (obtained, e.g., from the previous step), Lemma 4.7 allows us
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to estimate

δ2(xk, λk) ≃ δ̃2(xk, λk) :=
δ(xk, λk, h̃k)

h̃2k
, (4.25)

κ2(xk, λk) ≃ κ̃2(xk, λk) =
κ(xk, λk, h̃k)

h̃2k
. (4.26)

α1(xk, λk) ≃ α̃1(xk, λk) =
α(xk, λk, h̃k)

h̃k
, (4.27)

Then, imposing

δ̃2(xk, λk)h
2
k ≤ δmax, κ̃2(xk, λk)h

2
k ≤ κmax, α̃1(xk, λk)hk ≤ αmax,

yields

hk ≤ h̃kmin

{√
δmax

δ̃(xk, λk)
,

√
κmax

κ̃(xk, λk)
,

αmax

α̃(xk, λk)

}
.

This is the criterion to adjust step size, but not to make too drastic changes, the relative

change of the step size is clamped to the interval the interval [1/2, 2], i.e. the step size

is at most halved or doubled. The resulting procedure is summarized in Algorithm 4.2.

Note that this comes at the non-negligible cost of (approximately) solving 3 extra linear

systems involving the Riemannian Hessian.

Algorithm 4.2 Adaptive step size for RNC Algorithm 4.1

Input: f(·, λ) ∈ F(M) for λ ∈ [0, 1], (xk, λk) ∈M× (0, 1) such that gradf(xk, λk) = 0,
t(xk, λk) as in (4.15), αmax ∈ (0, π), δmax > 0, κmax ∈ (0, 1), h̃k > 0.

1: yk = Rxk(h̃kt(xk, λk));

2: Solve Hessf(yk, λk + h̃k)[t(yk, λ+ h̃k)] = −∂ gradf(yk,λk+h̃k)
∂λ ;

3: Solve Hessf(yk, λk + h̃k)[n(yk, λ+ h̃k)] = − gradf(yk, λk + h̃k);
4: zk = Ryk(n(yk, λ+ h̃k));
5: Solve Hessf(zk, λk + h̃k)[n(zk, λ+ h̃k)] = − gradf(zk, λk + h̃k);
6: Compute δ̃2, κ̃2 and α̃1 using (4.25), (4.26) and (4.27).

7: hk = h̃kmax

{
1
2 ,min

{√
δmax

δ̃2
,

√
κmax

κ̃2
,
αmax

α̃1
, 2

}}
;

8: return hk

4.3.5 Proofs of Lemma 4.7

A slightly di�erent version of Lemma 4.7 appears in [SK22a, Lemma 3.5] and is proved

using a local representation of the problem via a local chart. In this proof, the assump-

tion [SK22a, Equation 3.12], which prescribes

D2

dh2
n(y(h), λ+ h)

∣∣∣
h=0
̸= 0, (4.28)
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is invoked to guarantee the leading coe�cient of the Taylor expansion in Lemma 4.7-

(i) is not zero. However, the link between (4.28) and the coe�cient is quite technical

and is not worked out in full detail in [SK22a]. Therefore, we here propose an alter-

native coordinate-free proof based on covariant di�erentiation for which the use of that

assumption is made more explicit. As a positive side e�ect, this new technique allows

replacing assumption (4.28) with the more interpretable requirement (4.22), to which it

is equivalent as we show in the new proof. At the same time, the new proof techniques

comes at a certain cost. On the one hand, the smoothness requirement of the objective

function is made more stringent: from four to seven times continuously di�erentiable.

On the other hand, the second result is established provided the retraction that is used

is a second-order retraction. Finally, assumption (4.24) was added to ensure the lead-

ing coe�cient of the Taylor expansion of result (iii) does not vanish. While the �rst

two modi�cations are due to the alternative proof technique and do not seem necessary

in the proof of [SK22a, Lemma 3.5], assumption (4.24) is required also in the original

proof but was not explicitly stated 1. We report a detailed version of the original proof

from [SK22a, Lemma 3.5] at the end of this section.

We also point out that the angle indicator used in [SK22a, Lemma 3.5], which is the object

of result (iii), is de�ned transporting the prediction tangent vector t(y(h), λ+ h) to the

tangent space at x using the notion of vector transport, see De�nition 2.13. However,

what we use as a vector transport in [SK22a, Lemma 3.5] is actually an instance of

a more general concept, going by the name of transporter [Bou23, �10.5]. The main

di�erence between a vector transport and a transporter is that the latter is associated

with a retraction. Given a vector transport T associated to a retraction R and a given

v ∈ TxM in the domain of the retraction, the map Tv is a linear map between TxM
and TRx(v)M. In contrast, a transporter can be used to de�ne linear maps between

arbitrary pairs of tangent spaces for which their base points are su�ciently close. Rather

than reformulating [SK22a, Lemma 3.5] to explicitly state the use of transporters, we

propose in Lemma 4.7 a modi�cation where the vector transport is used. Accordingly,

the angle indicator (4.23) is now measured in the tangent space at y(h) = Rx(ht(x, λ))

by transporting t(x, λ) with the use of vector transport along the vector ht(x, λ).

Proof based on covariant di�erentiation

For a given (x, λ) the indicators δ, κ and α are scalar functions of h of which we aim at

performing the Taylor expansion around h = 0. These functions involve the Riemannian

metric and smooth vectors �elds restricted to the manifold curves y(h) and z(h), de�ned

by (4.17) and (4.19). Hence, the derivatives of the scalar functions involve induced

covariant di�erentiation along such curves. In order to explicitly manipulate the covariant

derivative of vector �elds involving the Riemannian Hessian, e.g. the Newton update

vector, we introduce the covariant derivative of the Riemannian Hessian based on [Bou23,

Example 10.78].

1The Arxiv version of [SK22a] has been updated with assumption (4.24) stated explicitly.
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The second-order covariant derivative of a smooth scalar �eld g ∈ F (M) is a second

order tensor �eld that can be represented with the Riemannian Hessian:

∇2g(U, V ) = ⟨Hessg(x) [U ] , V ⟩ , ∀U, V ∈ X(M).

Then, applying De�nition 1.26, the third-order covariant derivative of g is given by

∇3g(U, V,W ) =W ⟨Hessg[U ], V ⟩ − ⟨Hessg[∇WU ], V ⟩ − ⟨Hessg[U ],∇WV ⟩ .

Expanding the �rst term using the compatibility of the Riemannian connection with the

metric we get, for every U, V,W ∈ X(M),

∇3g(U, V,W ) = ⟨∇W (Hessg[U ]) , V ⟩+ ⟨Hessg[U ],∇WV ⟩
− ⟨Hessg[∇WU ], V ⟩ − ⟨Hessg[U ],∇WV ⟩

= ⟨∇W (Hessg[U ]) , V ⟩ − ⟨Hessg[∇WU ], V ⟩
=: ⟨∇WHessg[U ], V ⟩ ,

where ∇WHessg is de�ned from the above expression by

∇WHessg[U ] = ∇W (Hessg[U ])−Hessg[∇WU ].

We refer to this terms as the covariant derivative of the Riemannian Hessian. It appears

whenever we compute the covariant derivative of a vector �eld through the Riemannian

Hessian:

∇W (Hessg[U ]) = ∇WHessg[U ] + Hessg[∇WU ].

In the same way as the value of ∇WU at any p ∈M depends onW only through its value

at p, the covariant derivative of the Riemannian Hessian at p along W only depends on

W (p) =: w. Hence, for every w ∈ TpM it is legitimate to de�ne ∇wHessg(p) as a linear
map from TpM to itself.

Proof of Lemma 4.7. Result (i)

Let us denote g(h) = ∥n(y(h), λ+ h)∥2y(h). Since the Riemannian metric and the retrac-

tion are assumed to be in�nitely smooth, the smoothness of the function g is determined

by the smoothness of n with respect to its arguments. The expression of n features the

Riemannian Hessian of f with respect to its �rst argument, hence if f ∈ C7, then g ∈ C5

and we can compute its Taylor expansion around zero up to a residual of order 5:

g(h) = g(0) + hg′(0) +
h2

2
g′′(0) +

h3

6
g′′′(0) +

h4

24
g(4)(0) +O

(
h5
)
.

By the de�ning property of retractions y(0) = Rx(0) = x. Then,

g(0) = ∥n(x, λ)∥2x =
∥∥∥Hessf(x, λ)−1

[
gradf(x, λ)︸ ︷︷ ︸

=0

]∥∥∥2
x
= 0.
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By compatibility of covariant di�erentiation with the Riemannian metric,

g′(0) =
d

dh
⟨n(y(h), λ+ h), n(y(h), λ+ h)⟩

∣∣
h=0

= 2
〈 D

dh
n(y(h), λ+h)

∣∣
h=0

, n(x, λ)
〉
x
= 0.

Using n(x, λ) = 0, the second derivative in zero amounts to

g′′(0) =
d2

dh
⟨n(y(h), λ+ h), n(y(h), λ+ h)⟩

∣∣
h=0

= 2
∥∥∥ D

dh
n(y(h), λ+ h)

∣∣
h=0

∥∥∥2
x

+ 2
〈D2

dh
n(y(h), λ+ h)

∣∣
h=0

, n(x, λ)
〉
x

= 2
∥∥∥ D

dh
n(y(h), λ+ h)

∣∣
h=0

∥∥∥2
x
.

The map n : M× [0, 1] 7→ TM is restricted to h → (y(h), λ + h) implying that its

covariant derivative is the sum of two terms

Dn(y(h), λ+ h)

dh
=∇y′(h)n(y(h), λ+ h) +

∂

∂λ
n(y(h), λ+ h).

We can now use to the notion of covariant derivative of tensor �elds following from

De�nition 1.26 and explicitly write the above as

Dn(y(h), λ+ h)

dh
=−∇y′(h)

(
Hessf(y(h), λ+ h)−1

)
[gradf(y(h), λ+ h)]

−Hessf(y(h), λ+ h)−1
[
∇y′(h) gradf(y(h), λ+ h)

]
− ∂

∂λ

(
Hessf(y(h), λ+ h)−1

)
[gradf(y(h), λ+ h)]

−Hessf(y(h), λ+ h)−1
[
∂

∂λ
gradf(y(h), λ+ h)

]
(4.29)

The second term simpli�es thanks to the de�nition of Riemannian Hessian:

Hessf(y(h), λ+ h)−1
[
∇y′(h) gradf(y(h), λ+ h)

]
= Hessf(y(h), λ+ h)−1

[
Hessf(y(h), λ+ h)

[
y′(h)

]]
= y′(h) = D2Rx(ht(x, λ)) [t(x, λ)]

Furthermore, evaluating (4.29) in h = 0, the �rst and third terms vanish while in the

last term we recognize the expression of t(x, λ). This reveals that the �rst covariant
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derivative of n vanishes in h = 0

D

dh
n(y(h), λ+ h)

∣∣
h=0

=−∇y′(0)
(
Hessf(x, λ)−1

) [
gradf(x, λ)

]
− y′(0)

− ∂

∂λ

(
Hessf(x, λ)−1

) [
gradf(x, λ)

]
−Hessf(x, λ)−1

[ ∂
∂λ

gradf(x, λ)
]

=−DRx(0)[t(x, λ)] + t(x, λ)

=− t(x, λ) + t(x, λ)

=0.

Therefore g′′(0) = 0. Di�erentiating once again, we get the covariant derivative of n of

order three.

g′′′(0) =
d

dh

(
2
∥∥∥ D

dh
n(y(h), λ+ h)

∥∥∥2
y(h)

+ 2
〈D2

dh
n(y(h), λ+ h), n(x, λ)

〉
y(h)

)∣∣∣∣
h=0

= 2
〈 D3

dh3
n(y(h), λ+ h)

∣∣∣
h=0

, n(x, λ)
〉
x
+ 6
〈 D2

dh2
n(y(h), λ+ h)

∣∣∣
h=0

,
D

dh
n(y(h), λ+ h)

∣∣∣
h=0

〉
x
.

But since n(x, λ) = 0, D
dhn(y(h), λ+h)

∣∣
h=0

= 0, we �nd g′′′(0) = 0. Finally, our assump-

tion indicates that the fourth-order term is the leading term of the Taylor expansion.

Indeed:

g(4)(0) =2
〈 D4

dh4
n(y(h), λ+ h)

∣∣∣
h=0

, n(x, λ)
〉
x

+8
〈 D3

dh3
n(y(h), λ+ h)

∣∣∣
h=0

,
D

dh
n(y(h), λ+ h)

∣∣
h=0

〉
x

+6
∥∥∥ D2

dh2
n(y(h), λ+ h)

∣∣∣
h=0

∥∥∥2
x

=6
∥∥∥ D2

dh2
n(y(h), λ+ h)

∣∣∣
h=0

∥∥∥2
x
.

By assumption (4.22), this is non-zero. In fact, using that n(x, λ) = 0 and D
dhn(y(h), λ+
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h)
∣∣
h=0

= 0 we get

0 ̸= D2

dh2
gradf(y(h), λ+ h)

∣∣∣
h=0

=
D2

dh2

(
−Hessf(y(h), λ+ h) [n(y(h), λ+ h)]

)∣∣∣
h=0

= − D

dh

( D

dh
Hess(y(h), λ+ h) [n(y(h), λ+ h)]

+ Hess(y(h), λ+ h)

[
D

dh
n(y(h), λ+ h)

])∣∣∣
h=0

= − D2

dh2
(Hess(y(h), λ+ h))

∣∣
h=0

[n(x, λ)]

− 2
D

dh

(
Hess(y(h), λ+ h)

)∣∣∣
h=0

[
D

dh
n(y(h), λ+ h)

∣∣∣
h=0

]
−Hessf(x, λ)

[
D2

dh2
n(y(h), λ+ h)

∣∣∣
h=0

]
= −Hessf(x, λ)

[
D2

dh2
n(y(h), λ+ h)

∣∣∣
h=0

]
.

This implies
∥∥ D2

dh2
n(y(h), λ+ h)

∣∣
h=0

∥∥2
x
̸= 0 by invertibility of the Riemannian Hessian.

Therefore we have shown

δ(x, λ, h)2 = g(h) =
1

4

∥∥∥∥ D2

dh2
n(y(h), λ+ h)

∣∣∣
h=0

∥∥∥∥2
x

h4 +O
(
h5
)
.

We now apply the square root and use its Taylor expansion in 1
4

∥∥∥ D2

dh2
n(y(h), λ+ h)

∣∣∣
h=0

∥∥∥2
x
h4 ̸= 0

on the right hand side and we recover

δ(x, λ, h) = δ2(x, λ)h
2 +O

(
h3
)

with δ2(x, λ) =
1
2

∥∥ D2

dh2
n(y(h), λ+ h)

∣∣
h=0

∥∥
x
.

Result (ii)

The main e�ort in proving this result consists in showing that there exists a constant

z4(x, λ) > 0 such that

∥n(z(h), λ+ h)∥z(h) ≤ z4(x, λ)h
4 +O(h5). (4.30)

Then using result (i) and the �rst-order Taylor expansion of 1
t around t = δ2(x, λ) leads

to the following bound

κ(x, λ, h) ≤ z4(x, λ)h
4 +O(h5)

δ2(x, λ)h2 +O(h3)
= h2

(
z4(x, λ) +O(h)

δ2(x, λ) +O(h)

)
= h2

z4(x, λ)

δ2(x, λ)
+O(h3).

This would then conclude the proof with κ2(x, λ) = z4(x,λ)
δ2(x,λ)

. In order to prove (4.30),
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�rst note that

∥n(z(h), λ+ h)∥z(h) ≤ ∥Hessf(z(h), λ+ h)∥z(h) ∥gradf(z(h), λ+ h)∥z(h) ,

where the �rst factor is the Hessian's operator norm, as de�ned by (3.6). Since the

operator norm is Lipschitz continuous and f and z are smooth, we �nd

∥Hessf(z(h), λ+ h)∥z(h) = ∥Hessf(x, λ)∥x +O(h).

For the second factor, observe that for a �xed h we can interpreted it as evaluating a

smooth scalar �eld de�ned on the tangent space at y(h). Indeed, we have

∥gradf(z(h), λ+ h)∥z(h) = q ◦Ry(h)(n(y(h), λ+ h)),

where q is the smooth scalar �eld q(p) = ∥gradf(p, λ+ h)∥p. Since the retraction is

assumed to be second-order, the Taylor expansion at the origin of q ◦Ry(h) with respect

to the tangent vector argument can be written in terms of the Riemannian gradient and

Hessian of q as stated in [Bou23, Proposition 5.44]:

∥gradf(z(h), λ+ h)∥z(h) = q(y(h)) + ⟨gradq(y(h), n(y(h), λ+ h)⟩y(h)

+
1

2
⟨Hessq(y(h))[n(y(h), λ+ h)], n(y(h), λ+ h)⟩y(h)

+O(∥n(y(h), λ+ h)∥3y(h)).

The �rst three terms of the Taylor expansion above coincide with the �rst three terms of

the Taylor expansion of l(τ) := q(Ry(h)(τn(y(h), λ))) around τ = 0 evaluated at τ = 1,

i.e.

∥gradf(z(h), λ+ h)∥z(h) = l(0) + l′(0) +
1

2
l′′(0) +O(∥n(y(h), λ+ h)∥3y(h)). (4.31)

Let us denote z̃(τ) = Ry(h)(τn(y(h), λ + h)), satisfying z̃(0) = y(h), z̃(1) = z(h), and
˙̃z(0) = n(y(h), λ+ h). Then, we get

l′(0) =
d

dτ

√
⟨gradf(z̃(τ), λ+ h), gradf(z̃(τ), λ+ h)⟩z̃(τ)

∣∣∣∣
τ=0

=
2
〈
Hessf(z̃(0), λ+ h)

[
˙̃z(0)

]
, gradf(z̃(0), λ+ h)

〉
z̃(0)

2 ∥gradf(z̃(0), λ+ h)∥z̃(0)

=
−⟨gradf(y(h), λ+ h), gradf(y(h), λ+ h)⟩y(h)

∥gradf(y(h), λ+ h)∥y(h)
= −∥gradf(y(h), λ+ h)∥y(h) .

This implies that

l(0) + l′(0) = ∥gradf(y(h), λ+ h)∥y(h) − ∥gradf(y(h), λ+ h)∥y(h) = 0.

98



4.3 Continuation for Riemannian optimization

Finally, we compute

l′′(τ) =
d

dτ

〈
Hessf(z̃(τ), λ+ h)

[
˙̃z(τ)

]
, gradf(z̃(τ), λ+ h)

〉
z̃(τ)

∥gradf(z̃(τ), λ+ h)∥z̃(τ)

=
l(τ)

l(τ)2

(〈
∇ ˙̃z(τ)Hessf(z̃(τ), λ+ h)

[
˙̃z(τ)

]
, gradf(z̃(τ), λ+ h)

〉
z̃(τ)

+
〈
Hessf(z̃(τ), λ+ h)

[
¨̃z(τ)

]
, gradf(z̃(τ), λ+ h)

〉
z̃(τ)

+
〈
Hessf(z̃(τ), λ+ h)

[
˙̃z(τ)

]
,Hessf(z̃(τ), λ+ h)

[
˙̃z(τ)

]〉
z̃(τ)

)
− l′(τ)

l(τ)2
〈
Hessf(z̃(τ), λ+ h)

[
˙̃z(τ)

]
, gradf(z̃(τ), λ+ h)

〉
z̃(τ)

.

Now we evaluate the above in τ = 0. Note that ¨̃z(0) = 0 by the second-order property of

the retraction and we have shown l(0) = −l′(0). Therefore, replacing z̃(0) by y(h) and
˙̃z(0) by n(y(h), λ+ h) we �nd

l′′(0) =
1

l(0)

(〈
∇n(y(h),λ+h)Hessf(y(h), λ+ h) [n(y(h), λ+ h)] , gradf(y(h), λ+ h)

〉
y(h)

+ ⟨Hessf(y(h), λ+ h) [n(y(h), λ+ h)] ,Hessf(y(h), λ+ h) [n(y(h), λ+ h)]⟩y(h)

+ ⟨Hessf(y(h), λ+ h) [n(y(h), λ+ h)] , gradf(y(h), λ+ h)⟩y(h)
)

and from the expression of n(y(h), λ+ h), the two last terms cancel out, showing

l′′(0) =
1

l(0)

〈
∇n(y(h),λ+h)Hessf(y(h), λ+ h) [n(y(h), λ+ h)] , gradf(y(h), λ+ h)

〉
y(h)

.

l′′(0) =

〈
∇n(y(h),λ+h)Hessf(y(h), λ+ h) [n(y(h), λ+ h)] , gradf(y(h), λ+ h)

〉
y(h)

∥gradf(y(h), λ+ h)∥
.

By smoothness of f , the tensor �eld (U, V,W ) 7→ ⟨∇UHessf [V ],W ⟩ is Lipschitz con-

tinuous in the sense of [Bou23, Proposition 10.83] with constant L3(f). This allows to

bound

l′′(0) ≤ L3(f)
∥n(y(h), λ+ h)∥2y(h) ∥gradf(y(h), λ+ h)∥

∥gradf(y(h), λ+ h)∥y(h)
= L3(f) ∥n(y(h), λ+ h)∥2y(h) .

From (4.31), we can now evince

∥gradf(z(h), λ+ h)∥z(h) ≤
L3(f)

2
∥n(y(h), λ+ h)∥2y(h) +O(∥n(y(h), λ+ h)∥3y(h)).
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Finally, using result (i) we have

∥gradf(z(h), λ+ h)∥z(h) ≤
L3(f)δ2(x, λ)

2

2
h4 +O(h5),

which shows (4.30) and concludes the proof of result (ii).

Result (iii)

Let us introduce for a �xed (x, λ) ∈M× [0, 1] the scalar function

m(h) =

〈
Tht(x,λ)(t(x, λ)), t(y(h), λ+ h)

〉
y(h)

∥Tht(x,λ)(t(x, λ))∥y(h)∥t(y(h), λ+ h)∥y(h)
,

so that α(x, λ, h) = acos(m(h)). This is well-de�ned since t(x, λ) ̸= 0 by assumption,

which by continuity also implies that t(y(h), λ+ h) ̸= 0 provided h is su�ciently small.

We will show that

m(h) = 1− m′′(0)

2
h2 +O(h3). (4.32)

Then, invoking the Puiseux series

acos(1− y) =
√
2y +

y3/2

6
√
2
+O

(
y5/2

)
,

and the Taylor expansion of the square root in m′′(0)h2 ̸= 0 we may conclude that for h

su�ciently small

α(x, λ, h) = acos
(
1− m′′(0)

2
h2 +O(h3)

)
=
√
m′′(0)h2 +O(h3) +

(m′′(0)h
2

2 +O(h3))3/2

6
√
2

+O
(
(m′′(0)

h2

2
+O(h3))5/2

)

=
√
m′′(0)h+

1

2
√
m′′(0)h

O(h3) +O(h3) +O(h5)

=
√
m′′(0)h+O(h2),

and therefore α1(x, λ) =
√
m′′(0). In order to prove (4.32), we introduce the notation

m(h) =

〈
T (h), P (h)

〉
y(h)

∥T (h)∥y(h)∥P (h)∥y(h)
=
A(h)

B(h)
,

where T (h) := Tht(x,λ)(t(x, λ)) is the transported prediction vector and P (h) := t(y(h), λ+ h)

is the new prediction vector. These are both smooth vector �elds along the curve

y(h). We indicate with dots their covariant di�erentiation along the curve, for instance
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Ṗ (h) = D
dh t(y(h), λ+ h). Note that

T (0) = P (0) = t(x, λ) =: t (4.33)

and it is non-zero by assumption. Therefore A(0) = B(0) = ∥t∥2x implying thatm(0) = 1.

The �rst derivative of m therefore simpli�es in h = 0 to

m′(0) =
A′(0)−B′(0)

∥t∥2x
.

We have

A′(0) =
〈
Ṫ (0), P (0)

〉
x
+
〈
T (0), Ṗ (0)

〉
x
,

and

B′(0) =
1

2 ∥t∥

(
2
〈
Ṫ (0), T (0)

〉
x
∥t∥x + 2

〈
Ṗ (0), P (0)

〉
x
∥t∥x

)
=
〈
Ṫ (0), P (0)

〉
x
+
〈
T (0), Ṗ (0)

〉
x
= A′(0).

Therefore we have m′(0) = 0. The second derivative of m reads as

m′′(h) =

(
A′′(h)B(h)−A(h)B′′(h)

)
B(h)− 2B(h)B′(h)

(
A′(h)B(h)−A(h)B′(h)

)
B(h)4

.

Thanks to the above, in h = 0 it simpli�es to

m′′(0) =
A′′(0)−B′′(0)

∥t∥2
. (4.34)

The second derivative of A is readily obtained in h = 0 as

A′′(0) =
〈
T̈ (0) + P̈ (0), t

〉
x
+ 2
〈
Ṫ (0), Ṗ (0)

〉
x
.

For B, we have

B′′(h) =
d

dh

(〈
Ṫ (h), T (h)

〉
∥P (h)∥2y(h) +

〈
Ṗ (h), P (h)

〉
∥T (h)∥2y(h)

B(h)

)

=
B(h)

B(h)2

((〈
T̈ (h), T (h)

〉
y(h)

+
∥∥Ṫ (h)∥∥2

y(h)

)
∥P (h)∥2y(h) + 2

〈
Ṫ (h), T (h)

〉
y(h)

〈
Ṗ (h), P (h)

〉
y(h)

(〈
P̈ (h), P (h)

〉
y(h)

+
∥∥Ṗ (h)∥∥2

y(h)

)
∥T (h)∥2y(h) + 2

〈
Ṗ (h), P (h)

〉
y(h)

〈
Ṫ (h), T (h)

〉
y(h)

)

− B′(h)

B(h)2

(〈
Ṫ (h), T (h)

〉
∥P (h)∥2y(h) +

〈
Ṗ (h), P (h)

〉
∥T (h)∥2y(h)

)
.
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Evaluating in h = 0 leads to a simpler expression using (4.33) and the expression for

B′(0):

B′′(0) =
1

∥t∥2

((〈
T̈ (0), t

〉
x
+
∥∥Ṫ (0)∥∥2

x

)
∥t∥2x + 2

〈
Ṫ (0), t

〉
x

〈
Ṗ (0), t

〉
x(〈

P̈ (0), t
〉
x
+
∥∥P ′(0)∥∥2

x

)
∥t∥2x + 2

〈
Ṗ (0), t

〉
x

〈
Ṫ (0), t

〉
x

)
− B′(0)

∥t∥4
(〈
Ṫ (0), t

〉
x
∥t∥2x +

〈
Ṗ (0), t

〉
x
∥t∥2x

)
=
〈
T̈ (0), t

〉
x
+
∥∥Ṫ (0)∥∥2

x
+
〈
P̈ (0), t

〉
x
+
∥∥Ṗ (0)∥∥2

x

1

∥t∥2x

(
4
〈
Ṫ (0), t

〉
x

〈
Ṗ (0), t

〉
x
−
(〈
Ṫ (0), t

〉
x
+
〈
Ṗ (0), t

〉
x

)2)
=
〈
T̈ (0) + P̈ (0), t

〉
x
+
∥∥Ṫ (0)∥∥2

x
+
∥∥Ṗ (0)∥∥2

x
− 1

∥t∥2x

(〈
Ṫ (0), t

〉
x
−
〈
Ṗ (0), t

〉
x

)2
.

Therefore, plugging the expression for A′′(0) and B′′(0) in (4.34) we �nd

m′′(0) =
1

∥t∥2x

(〈
T̈ (0) + P̈ (0), t

〉
x
+ 2
〈
Ṫ (0), Ṗ (0)

〉
x
−
〈
T̈ (0) + P̈ (0), t

〉
x

−
∥∥Ṫ (0)∥∥2

x
−
∥∥Ṗ (0)∥∥2

x
+

1

∥t∥2x

(〈
Ṫ (0), t

〉
x
−
〈
Ṗ (0), t

〉
x

)2)
=

1

∥t∥4x

((〈
Ṫ (0)− Ṗ (0), t

〉
x

)2
−
∥∥Ṫ (0)− Ṗ (0)∥∥2

x
∥t∥2x

)
=

1

∥t∥2x

(
cos
(
θx(Ṫ (0)− Ṗ (0), t)

)2 − 1
)∥∥Ṫ (0)− Ṗ (0)∥∥2

x
∥t∥2x

= − sin
(
θx(Ṫ (0)− Ṗ (0), t)

)2∥∥Ṫ (0)− Ṗ (0)∥∥2
x

∥t∥2x
.

where we have used the notation cos(θp(u, v)) =
⟨u,v⟩p
∥u∥p∥v∥p

, for any p ∈M and u, v ∈ TpM.

By assumption (4.24), m′′(0) is not zero as Ṫ (0) − Ṗ (0) is not zero and never colinear

with t. This shows (4.32) and concludes the proof.

Proof based on local charts representation

The following proof of Lemma 4.7 is taken from the one in [SK22a, Lemma 3.5] and

mimics the proof of the Euclidean case from [AG90, �6.1]. As anticipated,the problem

is mapped to Rd making use of a local chart. However, in contrast with the proof

technique used for Theorem 4.1, instead of de�ning the pullback of the objective function,

the involved entities such as tangent vectors and linear maps are individually given a

coordinate representation, as we now explain. A similar strategy is used in the local

convergence proof of the Riemannian Newton in [AMS08, Theorem 6.3.2].

Consider a local chart (U , φ) onM. To every point p ∈ U we associate p̂ := φ(p) ∈ Rd
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and for any tangent vector w ∈ TpRd, the di�erential of the local chart at p allows

mapping it to ŵ := Dφ(w) [w] ∈ Rd. Conversely, for every p̂ ∈ Û := φ(U), we write

p := φ−1(p̂) and any vector ŵ ∈ Tp̂Rd ≃ Rd becomes w = Dφ−1(p̂)[ŵ]. As in the

proof of Theorem 4.1, the addition or removal of a hat decoration on a symbol implicitly

indicates mapping it to local coordinates and vice-versa. The Riemannian metric can be

applied to tangent vectors in local coordinates using the Gramian matrix Ĝ(p̂) de�ned

for every p̂ ∈ Û by

(Ĝ(p̂))ij =
〈
Dφ−1(p̂) [ei] ,Dφ

−1(p̂) [ej ]
〉
p
, ∀ i, j = 1, . . . , d

where ei are the canonical vectors of Rd. Then, for every u, v ∈ TpM, it holds that

⟨u, v⟩p = û⊤Ĝ(p̂)v̂. The same holds for the norm in local coordinates: it is denoted

∥v̂∥p̂ := (v̂⊤Ĝ(p̂)v̂)1/2 and is equal to ∥v∥p. By smoothness of the Riemannian met-

ric and of the local charts, the function p̂ → Ĝ(p̂) is also smooth. Any linear map

A : TpM→ TqM between tangent spaces of some p, q ∈ U translates to local coordi-

nates as Â := Dφ(q) ◦ A ◦ Dφ−1(p̂). Finally, the retraction can also be read in local

coordinates. Given a su�ciently small v ∈ TpM for some p ∈ U , the retracted point

Rp(v) is well-de�ned and belongs to U . In this scenario, the retraction in local coordinates
becomes

R̂p̂(v̂) := φ(Rp(Dφ
−1(p̂) [v̂])).

As also mentioned in [AMS08, Theorem 6.3.2], we point out that the local rigidity prop-

erty of the retraction transfers to its local chart version, i.e.

DR̂p̂(0) [ŵ] = ŵ, ∀ p̂ ∈ Û , ŵ ∈ Rd.

Proof of Lemma 4.7 based on local coordinates. Consider a su�cient small h so that the

solution point x, the predicted point y(h) and the �rst RN iterate z(h) are contained in

the domain of the same local chart (U , φ). Their coordinates representations are denoted
x̂, ŷ(h) and ẑ(h), respectively. For the tangential prediction vector t and the RN update

vector n we stick to the convention and write their coordinate representation as t̂ and n̂

while for the Riemannian gradient and its derivatives with respect to λ the notation is

simpli�ed to

F̂ (p̂, λ) := Dφ(p) [gradf(p, λ)] , F̂λ(p̂, λ) := Dφ(p)
[ ∂
∂λ

gradf(p, λ)
]
,

for all p̂ ∈ Û and λ ∈ [0, 1]. The coordinate representation of the Riemannian Hessian of

f(·, λ) at p ∈ U is denoted Ĥ(p̂, λ) : Û × [0, 1]→ Rd×d and de�ned as

Ĥ(p̂, λ) := Dφ(p) ◦Hessf(p, λ) ◦Dφ(p̂)−1,

Note that this representation is di�erent from the one considered in Lemma 4.3. For

the transport map along the prediction vector at (p, λ) with step size h we adopt the
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notation T (p, λ, h) := Tht(p,λ) and consider its coordinates representation

T̂ (p̂, λ, h) := Dφ(Rp(ht(p, λ))) ◦ T (p, λ, h) ◦Dφ(p̂)−1.

Note that the function F̂λ de�ned above coincides with the derivative of F̂ with respect

to λ. However, the di�erential of F̂ with respect to its �rst argument, denoted F̂x̂, does

not necessarily coincide with Ĥ, the coordinate representation of the Hessian. Indeed,

for any p̂ ∈ Û and ŵ ∈ Rd and any curve γ̂p̂,ŵ such that γ̂p̂,ŵ(0) = p̂ and γ̂′p̂,ŵ(0) = ŵ one

obtains

F̂x̂(p̂, λ)[ŵ] = Ĥ(p̂, λ)[ŵ] +
d

dt
Dφ(φ−1(γ̂p̂,ŵ(t)))

∣∣
t=0

[gradf(p, λ)]

= Ĥ(p̂, λ)[ŵ] + Â(p̂)
[
F̂ (p̂, λ), ŵ

]
,

(4.35)

where Â(p̂) is the bilinear form

Â(p̂) [v̂, ŵ] =
d

dt
Dφ(φ−1(γ̂p̂,ŵ(t)))

∣∣
t=0

[
(Dφ(φ−1(p̂)))−1 [v̂]

]
.

On the solution curve, we have F̂ (x̂, λ) = 0, so the second term in (4.35) vanishes for

p̂ = x̂ and we �nd F̂x̂(x̂, λ) = Ĥ(x̂, λ). This fact echoes the link between the Hessian

of the pullback and the Riemannian Hessian of the objective function at a critical point

discussed in Lemma 4.3. By the de�nitions above, the coordinate representations of y(h),

z(h), t(w, λ) and n(w, λ) have the following convenient expressions

ŷ(h) = R̂x̂(ht̂(x̂, λ)), (4.36)

ẑ(h) = R̂ŷ(h)(n̂(ŷ(h), λ+ h)), (4.37)

t̂(ŵ, λ) = −Ĥ(ŵ, λ)−1
[
F̂λ(ŵ, λ)

]
, (4.38)

n̂(ŵ, λ) = −Ĥ(ŵ, λ)−1
[
F̂ (ŵ, λ)

]
. (4.39)

Using the previous de�nitions and omitting the explicit dependence of T̂ on x̂ and λ we

evince the following expressions:

δ(x, λ, h)=

√
n̂(ŷ(h), λ+ h)⊤Ĝ(ŷ(h))n̂(ŷ(h), λ+ h),

κ(x, λ, h)=

√
n̂(ẑ(h), λ+ h)⊤Ĝ(ẑ(h))n̂(ẑ(h), λ+ h)

δ(x, λ, h)
,

α(x, λ, h)=acos

(
(T̂ (h)t̂(x̂, λ))⊤Ĝ(ŷ(h))t̂(ŷ(h), λ+ h)

∥T̂ (h)t̂(x̂, λ)∥ŷ(h)∥t̂(ŷ(h), λ+ h)∥ŷ(h)

)

We are now in the position to perform Taylor expansion with respect to h of these

functions. The dependence on h is smooth by smoothness of the operations involved in
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their de�nition.

Result (i)

Combining the characterizations of ŷ and n̂ in (4.36) and (4.39) we have

n̂(ŷ(h), λ+ h) = −Ĥ(R̂x̂(ht̂(x̂, λ)), λ+ h)−1
[
F̂ (R̂x̂(ht̂(x̂, λ)), λ+ h)

]
.

Let us expand both terms separately.

F̂ (R̂x̂(ht̂(x̂, λ)), λ+ h)= F̂ (x̂, λ)+h
(
F̂x̂(x̂, λ)

[
t̂(x̂, λ)

]
+F̂λ(x̂, λ)

)
+h2c1(x̂, λ)+O

(
h3
)

=h2c1(x̂, λ)+O
(
h3
)
,

(4.40)

where the second equality follows from F̂ (x̂, λ) = 0, F̂x̂(x̂, λ) = Ĥ(x̂, λ) and (4.38).

Now note that

Ĥ(R̂x̂(ht̂(x̂, λ)), λ+ h) = Ĥ(x̂, λ) +O (h) .

Then by smoothness of matrix inversion

Ĥ(R̂x̂(ht̂(x̂, λ)), λ+ h)−1 = Ĥ(x̂, λ)−1 +O (h) .

Combined with (4.40) one has

n̂(ŷ(h), λ+ h) = h2c2(x̂, λ) +O
(
h3
)
. (4.41)

with c2(x̂, λ) = −Ĥ(x̂, λ)−1 [c1(x̂, λ)]. Noting that Ĝ(ŷ(h)) = Ĝ(x̂) +O (h) we obtain

δ(x, λ, h) =

√
n̂(ŷ(h), λ+ h)⊤Ĝ(ŷ(h))n̂(ŷ(h), λ+ h)

=(h4c3(x̂, λ)
2 +O

(
h5
)
)1/2

=h2c3(x̂, λ) +O
(
h3
)
,

where c3(x̂, λ) := (c2(x̂, λ)
⊤Ĝx̂c2(x̂, λ))

1/2. The last equality follows from the Taylor ex-

pansion of the square root in c3(x̂, λ)
2. This is possible provided c3(x̂, λ) does not vanish.

From the proof of Lemma 4.7 based on covariant di�erentiation, and by uniqueness of

the Taylor expansion of

∥n(y(h), λ+ h)∥2y(h) = ∥n̂(ŷ(h), λ+ h)∥2ŷ(h)

we have that c3(x, λ)
2 = 1

4

∥∥ D2

dh2
n(y(h), λ+ h)

∣∣
h=0

∥∥2. Thanks to assumption (4.22), this

was shown to be non-zero and concludes the proof of (i) with δ2(x, λ) := c3(φ(x), λ).

Result (ii)

To obtain the expansion for κ, we combine result (i) with the expansion of the Newton
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direction evaluated in ẑ(h). For this purpose, note that by combining (4.37) and (4.39)

n̂(ẑ(h), λ+ h) = −Ĥ(R̂ŷ(h)(n̂(ŷ(h), λ+ h), λ+ h)−1
[
F̂ (R̂ŷ(h)(n̂(ŷ(h), λ+ h), λ+ h)

]
.

(4.42)

The Taylor expansion with respect to n̂(ŷ(h), λ+ h) of the right-hand side term gives

F̂
(
R̂ŷ(h)(n̂(ŷ(h), λ+ h)), λ+ h

)
= F̂ (ŷ(h), λ+ h) + Ĥ(ŷ(h), λ+ h) [n̂(ŷ(h), λ+ h)]

+Â(ŷ(h))
[
F̂ (ŷ(h), λ+ h), n̂(ŷ(h), λ+ h)

]
+
1

2
F̂x̂x̂(ŷ(h), λ+ h) [n̂(ŷ(h), λ+ h), n̂(ŷ(h), λ+ h)]

+
1

2
F̂x̂(ŷ(h), λ+ h)

[
D2R̂x̂(0) [n̂(ŷ(h), λ+ h), n̂(ŷ(h), λ+ h)]

]
+O

(
∥n̂(ŷ(h), λ+ h)∥3

)
.

The �rst two summands cancel out owing to (4.39). Furthermore, by smoothness of the

retraction and of the local charts, we have

Â(ŷ(h)) = Â(x̂) +O (h) ,

F̂x̂x̂(ŷ(h), λ+ h) = F̂x̂x̂(x̂, λ) +O (h) ,

F̂x̂(ŷ(h), λ+ h) ◦D2R̂ŷ(h)(0) = F̂x̂(x̂, λ) ◦D2R̂x̂(0) +O (h) .

By plugging in the Taylor expansions of n̂(ŷ(h), λ+h) and F̂ (ŷ(h), λ+h) given by (4.40)

and (4.41) respectively we obtain

F̂ (ẑ(h), λ+ h) = h4c4(x̂, λ) +O
(
h5
)
,

for some c4(x̂, λ) not depending on h.

Now, for the left-hand side term in (4.42), the Taylor expansion with respect to n̂(ŷ(h), λ+

h) gives

Ĥ(ẑ(h), λ+ h) = Ĥ(ŷ(h), λ+ h) +O (∥n̂(ŷ(h), λ+ h)∥) = Ĥ(x̂, λ) +O (h) ,

and thus

Ĥ(ẑ(h), λ+ h)−1 = Ĥ(x̂, λ)−1 +O (h) .

Therefore

n̂(ẑ(h), λ+ h) = h4c5(x̂, λ) +O
(
h5
)
,

where c5(x̂, λ) = −Ĥ(x̂, λ)−1 [c4(x̂, λ)]. Finally, noticing that Ĝ(ẑ(h)) = Ĝ(x̂) + O (h),

we can approximate the numerator of κ as

∥n̂(ẑ(h), λ+h)∥ẑ(h) =
(
h8c6(x̂, λ)

2+O
(
h9
))1/2

= h4c6(x̂, λ)+O
(
h4
)
,
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with c6(x̂, λ) = ∥c5(x̂, λ)∥x̂. This allows us to conclude that

κ(x, λ, h) =
h4c6(x̂, λ) +O

(
h4
)

h2c3(x̂, λ) +O (h3)
= h2c7(x̂, λ) +O

(
h2
)
,

with c7(x̂, λ) = c6(x̂,λ)
c3(x̂,λ)

, where we used the Taylor expansion of the inverse function in

c3(x̂, λ), which is non-zero as noted for result (i). This proves the expansion (ii) with

κ2(x, λ) = c7(φ(x), λ).

Result (iii)

The proof is essentially identical to the one based on covariant di�erentiation up to

small variations due to the presence of the matrix Ĝ(p̂) in the inner products. With the

coordinate representation of the involved quantities, for a �xed (x, λ) we can express α

as

α(x, λ, h) = acos(m̂(h))

where

m̂(h) :=
T̂ (h)⊤Ĝŷ(h)P̂ (h)√

T̂ (h)⊤Ĝŷ(h)T̂ (h)P̂ (h)⊤Ĝŷ(h)P̂ (h)
=:

Â(h)

B̂(h)

and

T̂ (h) := T̂ (h)t̂(x̂, λ), P̂ (h) := t̂(ŷ(h), λ+ h), Ĝŷ(h) = Ĝ(ŷ(h)).

The well-posedness of m̂ is guaranteed by the assumption t(x, λ) ̸= 0: in fact this implies

t̂(x̂, λ) ̸= 0 and in turn T̂ (h) ̸= 0 as well as P̂ (h) ̸= 0, by continuity provided h is small

enough. Let us show that for su�ciently small h it holds that

m̂(h) = 1− 1

2
m̂′′(0) +O(h3).

Then, the result follows using the Puiseux series for acos(1 − y) in the same way as in

the proof based in covariant di�erentiation. Retracing the steps of the coordinate-free

proof, we have that

T̂ (0) = P̂ (0) = t̂(x̂, λ) =: t̂.

Also Ĝŷ(0) = Ĝ(x̂). This implies that Â(0) = B̂(0) =
∥∥t̂∥∥

x̂
and so m̂(0) = 1. From this,

we deduce that in h = 0, the derivative of m̂ simpli�es to

m̂′(0) =
Â′(0)− B̂′(0)∥∥t̂∥∥2

x

.

Applying the product rule and the fact T̂ (0) = P̂ (0) = t̂ we get, on the one hand,

Â′(0) = T̂ ′(0)⊤Ĝŷ(x̂)t̂+ t̂⊤Ĝ′ŷ(0)t̂+ t̂⊤Ĝŷ(x̂)P̂
′(0)
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On the other hand we have

B̂′(h) =
1

2B̂(h)

((
2T̂ ′(h)⊤Ĝŷ(h)T̂ (h) + T̂ (h)⊤Ĝ′ŷ(h)T̂ (h)

)∥∥P̂ (h)∥∥2
ŷ(h)

+
(
2P̂ ′(h)⊤Ĝŷ(h)P̂ (h) + P̂ (h)⊤Ĝ′ŷ(h)P̂ (h)

)∥∥T̂ (h)∥∥2
ŷ(h)

)
, (4.43)

which in h = 0 simpli�es to

B̂′(0) = T̂ ′(0)⊤Ĝ(x̂)t̂+ t̂⊤Ĝ′ŷ(0)t̂+ t̂⊤Ĝ(x̂)P̂ ′(0) = Â′(0).

Therefore, it holds that m̂′(0) = 0. In the same way as in the coordinate free proof, since

Â(0) = B̂(0) =
∥∥t̂∥∥2

x̂
and Â′(0) = B̂′(0) we have

m̂′′(0) =
Â′′(0)− B̂′′(0)∥∥t̂∥∥2

x̂

.

Di�erentiating Â′ once again in h = 0 yields

Â′′(0) = T̂ ′′(0)⊤Ĝ(x̂)t̂+ t̂⊤Ĝ(x̂)P̂ ′′(0) + t̂⊤Ĝ′′ŷ(0)t̂

2
(
T̂ ′(0)⊤Ĝ′ŷ(0)t̂+ t̂⊤Ĝ′ŷ(0)P̂

′(0) + T̂ ′(0)⊤Ĝ(x̂)P̂ ′(0)
)
.

The derivative of (4.43) is obtained from a lengthy calculations that we therefore omit.

The expression simpli�es when evaluated in h = 0 and most terms of Â′′(0) cancel out

with terms in B̂′′(0), in particular all terms involving a second derivative. Ultimately,

we �nd

m̂′′(0) =
1∥∥t̂∥∥2
x̂

(
2T̂ ′(0)⊤Ĝ(x̂)P̂ ′(0)−

∥∥∥T̂ ′(0)∥∥∥2
x̂
−
∥∥∥P̂ ′(0)∥∥∥2

x̂

)
+

1∥∥t̂∥∥4
x

((
T̂ ′(0)− P̂ ′(0)

)⊤
Ĝ(x̂)t̂

)2

=

((
T̂ ′(0)− P̂ ′(0)

)⊤
Ĝ(x̂)t̂

)2
−
∥∥T̂ ′(0)− P̂ ′(0)∥∥2

x̂

∥∥t̂∥∥2
x̂∥∥t̂∥∥4

x

= − sin
(
θ̂x̂(T̂

′(0)− P̂ ′(0), t̂)
)2∥∥T̂ ′(0)− P̂ ′(0)∥∥2

x̂∥∥t̂∥∥2
x̂

= − sin
(
θx(Ṫ (0)− Ṗ (0), t)

)2∥∥Ṫ (0)− Ṗ (0)∥∥2
x

∥t∥2x
.

where we have introduced θ̂p̂(û, v̂) = û⊤Ĝ(p̂)v̂
∥û∥p̂∥v̂∥p̂

and the last step follows from de�nition

of the coordinates representations. Assumption (4.24) implies this is non-zero and this

concludes the proof with α1(x, λ) =
√
m̂′′(0).
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4.4 Application to the Karcher mean of symmetric positive

de�nite matrices

In this section, we apply the RNC method, Algorithm 4.1, to a classical problem of

Riemannian optimization: the computation of the Karcher mean, also referred to as

Riemannian center of mass. This concept �rst appeared in [GK73] and was studied

thoroughly in [Kar77]. The Karcher mean was introduced as a generalization of the

concept of center of mass for mass distributions de�ned on a manifold. Here we focus

on the case where the mass in concentrated in discrete points with uniform weights. In

other words, given K points p1, . . . , pK on a Riemannian manifold M, their Karcher

mean is de�ned as

argmin
q∈M

{
K∑
i=1

d(q, pi)
2

}
, (4.44)

where d(q, pi) is the Riemannian distance function on M (see De�nition 1.21). As a

consequence of a result applicable for arbitrary mass distributions [Kar77, Theorem 1.2],

if the manifold is complete , simply connected and of non-positive sectional curvature2,

a class of manifolds sometimes called Cartan-Hadamard manifolds, the Karcher mean

exists and is unique for every set of points on the manifold. On a general Riemannian

manifold, problem (4.44) admits a unique solution provided that all pi are su�ciently

close to each other. A possible justi�cation comes from the study of weighted geodesic

averages of K points [AGSW16], de�ned as the solution of

argmin
q∈M

{
K∑
i=1

wid(q, pi)
2

}
,

for some weights wi such that
∑K

i=1wi = 1. Around every point on the manifold there

exists a su�ciently small neighborhood where all weighted geodesic averages of any set

of points in that neighborhood are uniquely de�ned [AGSW16, Proposition 12]; see also

[San16, Theorem 3.1] for the case of arbitrary mass distributions. This includes the

Karcher mean of the points, which is equivalently obtained as the weighted geodesic

average with equal weights wi = 1/K.

We focus on the Karcher mean of n×n real symmetric positive de�nite matrices, viewed

as points of the S+n manifold endowed with the bi-invariant Riemannian metric presented

in Section 1.5.2. Under this geometry, S+n is a Cartan-Hadamard manifold, hence the

Karcher mean is always uniquely de�ned. The Karcher mean is one of many possibilities

for generalizing the concept of average to a collection of symmetric positive de�nite

matrices. A survey and comparison of existing methods can be found in [JVV12].

Computing the Karcher mean of K matrices of S+n can be addressed using Riemannian

optimization. The objective function can be given an explicit expression which in turn

allows computing its Riemannian gradient and Riemannian Hessian. With the chosen

2The de�nition of sectional curvature is reported in Section 6.4.1
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Riemannian metric, the Riemannian distance function admits the analytical expression

given in (1.13) and the Karcher mean problem (4.44) for A1, . . . , AK ∈ S+n becomes

argmin
X∈S+n

{
f(X) :=

K∑
i=1

∥ log(A−
1
2

i XA
− 1

2
i )∥2F

}
. (4.45)

The Riemannian gradient can be derived by rewriting the objective function. Recall-

ing that similarity transformations commute with the matrix logarithm, we have that

log(A
−1/2
i XA

−1/2
i ) = A

1/2
i log(A−1i X)A

−1/2
i , and cyclic invariance of the trace yields

∥ log(A−
1
2

i XA
− 1

2
i )∥2F = Tr

(
log
(
A−1i X

)2)
.

From the identity [Moa05, Proposition 2.1]

dTr
(
log (X(t))2

)
dt

= 2Tr
(
log(X(t))X(t)−1X ′(t)

)
and the expression of the bi-invariant metric (1.9), the Riemannian gradient of f under

this Riemannian geometry of S+n reads as [JVV12, �4.1.2]

gradf(X) =
K∑
i=1

2X log(A−1i X). (4.46)

The Riemannian connection associated with the bi-invariant metric of S+n admits an

explicit expression [JVV12, �4.1.4]. This makes it possible to express the Riemannian

Hessian of f at along any V ∈ TXS+n from its De�nition 2.5 as

Hessf(X)[V ] =

N∑
i=1

2XDlog(A−1i X)
[
A−1i V

]
+ V log(A−1i X)− log(A−1i X)V,

where Dlog(X)[·] is the Fréchet derivative of the matrix logarithm, the linear operator

de�ned by

lim
h7→0

log(X + hY )− log(X)−Dlog(X)[Y ]

h
= 0.

It can be estimated numerically as shown in [AMHR13].

4.4.1 Homotopy for the Karcher mean problem

The bi-invariant Riemannian manifold structure for S+n guarantees the Karcher mean of

positive de�nite matrices is always uniquely de�ned. The objective function (4.45) is in

fact strictly geodesically convex on S+n [Bha07, Exercise 6.1.13], the generalization of con-

vexity for manifold scalar �eld [Bou23, De�nition 11.5]. This implies that any standard

Riemannian optimization algorithm that is globally convergent can successfully solve the

problem since the objective function admits a unique critical point which coincides with
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the only global minimum [Bou23, Theorem 11.7]. Nevertheless, we use this application

as a model problem for the purpose of testing the RNC algorithm and illustrating its

behavior.

Figure 4.6: Homotopy for the Karcher mean problem. The parameter dependent Karcher
mean is denoted Ā(λ).

We propose the following homotopy for the Karcher mean of A1, . . . , AK ∈ S+n . We de�ne

K smooth curves Bi : [0, 1]→ S+n such that

Bi(1) = Ai, ∀ i = 1, . . . ,K,

and such that the Karcher mean of B1(0), . . . , BK(0) can be solved easily. In particular,

this is the case when all starting points are equal, B1(0) = · · · = BK(0) = A0, their

Karcher mean is simply A0. We report results for experiments where A0 = In×n. Other

choices for A0 are possible, e.g. the planar approximations of the Karcher mean discussed

in [JVV12]. The curves Bi are endpoint geodesic curve joining A0 with Ai. From their

analytical expression (1.11), we can write

Bi(λ) = A0 exp(λ log(A
−1
0 Ai)).

Then, the parametric Karcher mean optimization problem is given by

argmin
X∈S+n

{
f(X,λ) :=

K∑
i=1

∥ log(Bi(λ)−
1
2XBi(λ)

− 1
2 )∥2F

}
, ∀λ ∈ [0, 1] . (4.47)

The Riemannian gradient of the parameter dependent objective (4.47) is obtained from

the original Riemannian gradient (4.46) by simply replacing the matrices Ai with the

curves Bi(λ). Then, its derivative with respect to the parameter λ, needed for performing

tangential continuation, is given by

∂ gradf(X,λ)

∂λ
= −2

K∑
i=1

XDlog(X−1Bi(λ))
[
X−1B′i(λ)

]
,
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where B′i(λ) = A0 exp(λ log(A
−1
0 Ai)) log(A

−1
0 Ai).

4.4.2 Numerical results

All numerical experiments presented in this chapter have been performed in Matlab

2019b, using the Matlab Riemannian optimization library Manopt [BMAS14]. It contains

a factory class for the bi-invariant Riemannian structure of S+n presented in section 1.5.2

of which we use the retraction (2.10) and the vector transport given by parallel transport

along geodesics (1.14) for the following experiments.

All considered instances of the Karcher mean problem consist of a set of K = 75 sym-

metric positive de�nite matrices of size n = 10 that are built from their eigenvalue

decomposition

Ai = ViDiV
⊤
i , ∀ i = 1, . . . ,K,

where Vi is a random orthogonal matrix and Di a diagonal matrix. For the diagonal

entries, 9 are chosen at random in the interval [1, 2] and the last one is chosen such that

the matrices have a large but still moderate condition number (approximately 103). Fig-

ure 4.7 compares the direct optimization with the standard Riemannian Newton (RN)

method and the continuation approach on the homotopy (4.47) using Riemannian New-

ton Continuation (RNC) with a �xed number of steps Nsteps = 3 (see Algorithm 4.1).

The correction step, here the RN method, is terminated when the gradient norm is below

εtol = 10−6 or the number of Newton iterations exceeds Ninner = 5000. For this example,

it turns out that the RN method enters a superlinear convergence regime from the be-

ginning (as seen from the concavity of the black convergence curve) and thus solves the

problem in very few iterations. For such a simple instance, the continuation approach

does not o�er advantages.

In order to better highlight the advantage of the RNC algorithm, we choose a somewhat

pathological instance: the diagonal matrices Di are chosen such that their condition

number is 108. Half of the diagonal entries are exponentially distributed in [0.1, 1] and

the other half exponentially distributed in
[
106, 107

]
. In turn, the optimization problem

is highly ill-conditioned, leading to stagnation in the initial phase of the RN method; see

Figure 4.8. In contrast, the RNC algorithm with �xed number of steps Nsteps = 2 does

not su�er from such stagnation during the correction phase. In turn, the total number

of RN iterations is reduced. Tangential prediction leads to slightly better convergence

compared to classical prediction, but it also comes at the cost of solving an extra linear

system, which leads to a less favorable computational time; see Table 4.1. The number

of �xed steps in Figure 4.8 is chosen to best highlight the slight improvement of RNC

over direct RN optimization. However, for this particular application the advantage

disappears when an automatic step sizing strategy is used. Nevertheless, the step size

adaptation results for di�erent set of hyperparameters (κmax, αmax, δmax) in Table 4.1

illustrate the need for a compromise to be found between the number of corrections and

the length of each correction. This is further demonstrated by Figure 4.9 where the

computational e�ort for �xed step size RNC is reported for di�erent values of Nsteps.

112



4.4 Application to the Karcher mean of symmetric positive de�nite matrices

0 2 4 6 8 10 12 14
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Direct

Classical

Tangential

Figure 4.7: Convergence of the Riemannian gradient norm versus RN iterations for a non-pathological
instance of the Karcher mean problem. The iterations needed by the (plain) RN method is compared
to the total number of RN correction steps needed by �xed step size classical and tangential prediction
RNC (Nsteps = 3). The Riemannian gradient norm for λ = 1 is plotted with solid lines, whereas we use
dashed lines for intermediate values of λ.
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Figure 4.8: Convergence of the Riemannian gradient norm (of the original problem in solid lines and
of each intermediate problem in dashed lines) versus RN iterations for the pathological instance of the
Karcher mean problem. RN method is compared with �xed step size classical and tangential prediction
RNC algorithm (Nsteps = 2).
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Figure 4.9: RN iterations (left) and computation time (right) versus the number of continuation steps
for the �xed step size RNC on the pathological instance of the Karcher mean problem.
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Table 4.1: Summary of the number of iterations and computation times for the numerical experiments
on the Karcher mean pathological instance. The hyperparameters (κmax, αmax, δmax) for the step size
adaptive experiments (1), (2) and (3) are respectively (0.6, 3◦, 10), (0.3, 1.5◦, 5) and (0.15, 0.75◦, 2.5).

Karcher mean

Direct Optimization (RN) 1 17 20.04

Fixed step size classical RNC 2 11 6.65

Fixed step size tangential RNC 2 9 6.32

Step size adaptive RNC (1) 3 22 45.66

Step size adaptive RNC (2) 3 17 32.36

Step size adaptive RNC (3) 6 25 56.96

Corrections Correction iterations Time (s)

4.5 Application to low-rank matrix completion

The problem of matrix completion has received a lot of attention in recent years due to

its countless applications. Collaborative �ltering, system identi�cation, classi�cation and

global positioning are just a few of its success stories. The problem consists of recovering

a matrix based on a small fraction of observed entries. One of the most famous instances

of matrix completion is the so-called Net�ix problem: the observed entries are ratings

that users gave to some movies and the goal is to predict the missing ratings. In turn,

this allows proposing to each user personalized recommendations based on the predicted

ratings. Realistic predictions are possible based on the observation that preferences are

often summarized with few recurrent preference patterns, much fewer than the number of

users and movies. In other words, the matrix of ratings exhibits a low-rank structure. In

all the above mentioned applications, the data matrix is at least numerically low rank.

The consistency of this hypothesis with reality is one of the reason for the success of

matrix completion.

Let us outline the classical model for matrix completion. The goal is to recover a

matrix A ∈ Rm×n based on a set of entries with indices (i, j) in the observation set

Ω ⊂ {1, . . . ,m} × {1, . . . , n}. If we de�ne the observation operator PΩ : Rm×n 7→ Rm×n

with

PΩ(A) =

{
Aij if (i, j) ∈ Ω

0 if (i, j) /∈ Ω,

we can write the original matrix completion problem as

argmin
X∈Rm×n

{rank (X)} ,

s.t. PΩ(X) = PΩ(A).

This problem being NP hard, convex relaxations have been proposed. For instance nu-

clear norm minimization instead of rank minimization was proved under mild hypothesis

to e�ectively recover the matrix with high probability [CT10]. A recent review on existing

methods based on this idea, among others, can be found in [NKS19].
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In the following, we consider the approach based on a Riemannian optimization formu-

lation of the matrix completion problem introduced by [Van13]. Rather than minimizing

the rank of the matrix while matching exactly the observed entries, the rank of the matrix

is �xed and the discrepancy on the observed entries is minimized. This is an optimization

problem constrained to the manifold of �xed-rank matrices that can be written, for a

given choice of rank k, as

argmin
X∈Mk

{
1

2
∥PΩ(X)−AΩ∥2F

}
, (4.48)

with AΩ = PΩ(A) and where Mk is the manifold of rank k matrices, as presented in

Section 1.5.3. Using Riemannian optimization under the embedded submanifold geom-

etry of Mk ⊂ Rm×n to solve (4.48), showed to outperform state of the art techniques

in terms of accuracy, speed and scalability. The low-rank assumption, prescribes taking

k ≪ min{m,n}, but in general its value must be tuned by trial and error. Alterna-

tively, the problem of choosing the rank can be addressed with a rank-adaptive strategy

exploiting this �xed-rank formulation complemented with a greedy rank update [UV15].

Noting the gradient of the objective function seen as a scalar �eld on Rm×n is PΩ(X −A),
we readily obtain an expression for the Riemannian gradient by projecting it onto TxMk

with the orthogonal projector (1.17):

gradf(X) = Π(X)PΩ(X −A).

By the chosen Riemannian submanifold structure for Mk, the Riemannian Hessian

of (4.48) can be obtained from the Euclidean Hessian as stated in Proposition 2.8 by

using the di�erential of the tangent space projection. Alternatively, one can consider the

pullback f̂ = f ◦RX for a given retraction R and a point X ∈M. Provided the retrac-

tion is second-order, the Riemannian Hessian of f at X coincides with the (Euclidean)

Hessian of f̂ at 0 ∈ TXMk [AMS08, Proposition 5.5.5]. Therefore, the Riemannian Hes-

sian can be isolated from the second-order term in the Taylor expansion of f̂ around the

zero vector. This strategy is pursued in [Van13] and leads to

Hessf(X)[Z] =PUPΩ(Z)PV

+P⊥U

[
PΩ(Z) + PΩ(X −A)VpΣ−1V ⊤

]
PV

+PU

[
PΩ(Z) + UΣ−1U⊤p PΩ(X −A)

]
P⊥V .

For the numerical experiments, we opt for the truncated SVD metric projection retrac-

tion (2.11) and use the vector transport associated with this retraction obtained by

orthogonal projection to the destination tangent space (2.8).
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Chapter 4. Riemannian Continuation

4.5.1 Homotopy for the matrix completion

The homotopy we propose for the matrix completion problem consists of replacing AΩ

in (4.48) with a smooth curve BΩ(λ) ∈ Rm×n, λ ∈ [0, 1], such that BΩ(1) = AΩ. If we

take BΩ(0) = PΩ(A0), for some known matrix A0 of rank k, then the �rst point of the

continuation solution curve is A0 itself. Recall that ΠMk
: Rm×n → Mk denotes the

rank-k truncated singular value decomposition. We use A0 = ΠMk
(F(AΩ)) where F is

a map that does not alter the known entries of AΩ and imputes the unknown entries via

a heuristic procedure. For example, it is common to use zeros for the unknown entries

when initializing Riemannian optimization applied to (4.48) [NKS19, BA15]. In our ex-

periments, we found it more e�ective to replace missing entries by averaging neighboring

known values.

Then, the parametric matrix completion problem is given by

argmin
X∈Mk

{
f(X,λ) =

1

2
∥PΩ(X)−BΩ(λ)∥2F

}
, ∀λ ∈ [0, 1] , (4.49)

with

BΩ(λ) = (1− λ)PΩ(ΠMk
(F(AΩ))) + λAΩ. (4.50)

From the parameter dependent expression of the Riemannian gradient of (4.49), the

linearity of PΩ and of the tangent space projection Π(X) : Rm×n → TXMk, we obtain

∂ gradf(X,λ)

∂λ
= Π(X) (AΩ − PΩ(ΠMk

(F(AΩ)))) .

4.5.2 Numerical results

We apply the RNC Algorithm to an instance of the matrix completion problem where

the matrix A is obtained by sampling a bi-variate smooth function g on a regular grid of

[a, b]× [c, d] ⊂ R2,

Ai,j = g

(
a+ i

(b− a)
m− 1

, c+ j
(d− c)
n− 1

)
, ∀ i = 0, . . . ,m− 1,∀ j = 1, . . . , n− 1.

We then set AΩ = PΩ(A), with a randomly generated observation operator PΩ. We

choose the number of known entries accordingly with the rank chosen forMk using the

oversampling rate de�ned as

OS =
|Ω|

dim(Mk)
=

|Ω|
k(m+ n− k)

,

where |Ω| is the cardinality of Ω. The matrix A is known to exhibit exponentially

decaying singular values, which, as we will see, deteriorates the convergence of direct
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Figure 4.10: Convergence of the Riemannian gradient norm (of the original problem in solid lines and
of each intermediate problem in dashed lines) versus RTR iterations on the matrix completion problem.
We compare (plain) RTR optimization initialized at A0 with �xed step size classical and tangential
prediction RNC algorithm (Nsteps = 5) on the matrix completion problem.

Riemannian optimization methods for (4.48). In particular, we consider the function

g(x, y) = e−
(x−y)2

σ

with σ = 0.1. This function is sampled on [−1, 1]2 with a regular grid of m = n = 300

points in each direction. We choose the rank k = 15 and set OS = 3, implying that

29.25% of the entries are observed.

As the standard RN method tends to fail for this kind of problems, we substituted it with

the Riemannian Trust Region algorithm (RTR) (see Algorithm 2.4), both as a corrector

at line 11 of Algorithm 4.1 and as a direct optimization scheme.

The results of the direct optimization with RTR initialized at A0 compared with �xed

step size continuation Nsteps = 5 on the homotopy using the instance curve (4.50) can be

seen in Figure 4.10. For all experiments we set tol = 10−7 and Ninner = 5000. The direct

method su�ers a long stagnation before entering the superlinear convergence regime. The

same stagnation occurs in the last corrections of the continuation procedures, yet less

severely and thus the continuation scheme showed to be globally faster both in number

of RTR iterations and computation time as summarized in Table 4.2. The table also

reports experiments conducted with two other widely used methods for low-rank matrix

completion, namely the Riemannian Conjugate Gradient (see Algorithm 2.5), referred to

as LRGeomCG [Van13], and the alternating least-squares approach LMAFit [WYZ12].

To make a fair comparison, both use the same initial condition A0 and the stopping

criterion is based on the �nal relative residual on the known entries that the direct RTR

method achieves. In Figure 4.11, the best compromise in terms of computation time of

�xed step size RNC between the number of continuation steps and the number of steps

of each correction is found to be for Nsteps = 3. If we increase the number of continuation
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Figure 4.11: RTR iterations (left) and computation time (right) versus the number of continuation
steps for the �xed step size RNC on the matrix completion problem.
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Figure 4.12: Step size selection on the matrix completion problem. Indicators (4.18), (4.20), (4.21)
measured after running algorithm 4.2 for selecting the step size (bottom plot), are plotted against the
corresponding continuation parameter λ. The dashed lines are the hyperparameters κmax, αmax, δmax

used in the step size adaptation procedure for each experiment.

steps, convergence on each correction requires fewer steps so the total number of RTR

does not increase signi�cantly, however the computation time increases due to the �xed

costs of each prediction and correction. As also con�rmed by the step size adaptation

experiments3 (Figures 4.12 and 4.13), the solution curve to the homotopy generated

by the instance curve (4.50) is initially trivial to trace. Indeed, in the �rst part of the

homotopy very few RTR iterations per correction are necessary for the classical prediction

and even less for the tangential prediction. We clearly get a sense of the increasing

di�culty by observing the results of Figure 4.12. Shorter and shorter step sizes are chosen

in order to satisfy the step size selection criteria. Finally, as seen from the last plot in

Figure 4.13, completely removing the stagnation from the correction phase requires to

enforce very strict step size selection criteria causing very small step sizes to be taken and

numerous intermediate corrections to be performed. All in all, the most e�ective setting

is the step size adaptive con�guration with a permissive step size selection criteria (�rst

plot in Figure 4.13), which still exhibited transient stagnations. We therefore conclude

3These result are taken from [SK22a] and so the considered angle indicator uses the notion of trans-
porter, see the discussion in Section 4.3.5. Rerunning the experiments for the angle indicator considered
in Lemma 4.7 produces barely distinguishable results.
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Figure 4.13: Convergence of the Riemannian gradient norm of each intermediate problem versus RTR
iterations on the matrix completion problem. The step size adaptive RNC algorithm is compared for
di�erent step size adaptation hyperparameters.

that continuation is e�ective when the stagnation in the correction is mitigated, while

removing completely this behavior requires an e�ort that is not worthwhile.

4.6 Conclusions

This chapter proposes a generalization of numerical continuation to the setting of Rie-

mannian optimization and su�cient conditions for the existence of a solution curve are

given. The central contribution is the RNC Algorithm 4.1, a path-following predictor-

corrector algorithm relying on the concept of retraction for the prediction combined with

superlinearly converging Riemannian optimization routines such as Riemannian Newton

method or the Riemannian Trust Region algorithm for the correction. We have gener-

alized to the Riemannian case a step size adaptation strategy relying on the asymptotic

expansion of some performance indicators of the correction. Furthermore, we have pro-

vided the analysis of the prediction phase motivating the choice of tangential prediction

over classical prediction.

The behavior of our algorithm has been illustrated for the problem of computing the

Karcher mean of positive de�nite matrices and for low-rank matrix completion. Par-

ticular homotopies have been proposed for both problems, thereby suggesting a more

general approach for achieving this task: de�ning smooth curves of problem instances

starting from an easily solvable one and ending at the instance of interest. This proved

to be successful in particular for the matrix completion problem, where a fast decay of
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Table 4.2: Summary of the number of iterations and computation time for the numerical experiments
on the matrix completion problem. The parameters for the step size adaptive experiments (1), (2) and
(3) are the same as in Figure 4.13, from top to bottom.

Matrix completion

Direct (RTR) 1 159 10.67

Direct (LRGeomCG) 1 1117 5.78

Direct (LMAFit) 1 17309 15.65

Fixed step size classical RNC 5 68 3.39

Fixed step size tangential RNC 3 32 1.96

Step size adaptive RNC (1) 4 46 4.96

Step size adaptive RNC (2) 32 154 70.01

Step size adaptive RNC (3) 143 175 259.30

Corrections Correction iterations Time (s)

singular values leads to a challenging optimization task. The step size adaptation proved

to e�ectively control the Newton update vector norm, the Newton contraction rate and

the prediction vectors angle allowing for the correction algorithms to directly exhibit

superlinear convergence. However this came at a relatively high computational cost due

to the small step sizes required making the �xed step size continuation or permissive step

size selection more competitive.
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5 Hermite interpolation

This chapter introduces a new retraction-based method to solve the Hermite interpolation

problem on a manifold: �nd a smooth curve which interpolates sample points of a given

manifold curve while also matching the derivative of the curve at the interpolation points.

The method is based on the class of endpoint retraction curves introduced in Section 3.2

and therefore is applicable when a retraction with e�ciently computable local inverse is

available. This relieves the need of the Riemannian exponential and logarithmic maps to

solve the Hermite interpolation problem, as previously existing methods required. This

is particularly interesting for manifolds such as the �xed-rank matrix manifold for which

computing these maps is a challenging task. The content of this chapter is an excerpt of

the submitted preprint [SK22b], whose material is also presented in Chapter 3.

5.1 Overview on manifold curve interpolation

Data processing on non-Euclidean spaces has become a well-established tool in many

�elds of science and engineering. In particular, there has been a rising interest to inter-

polate data on a manifold with a curve contained in the manifold. This is motivated by

numerous applications in robotics [PR95] [BCC21], computer vision [BKSL17], medical

imaging [GSA14] [KDLS21], statistics [MMH+22] and model-order reduction [Ams10],

just to mention a few. For example, motion-planning of a robotic manipulator can be

carried out by interpolating points on the Lie group of rigid motions SE(3) [PR95]. In

statistical modeling, estimating covariance matrices between discrete samples of a ran-

dom �eld can be viewed as interpolation on the manifold of symmetric positive de�nite

matrices [MMH+22]. Reduced-order modeling in engineering typically involves project-

ing high-dimensional dynamics onto low-dimensional subspaces and interpolating such

subspaces on the Grassman manifold is an important task for parameter-dependent sys-

tems [Ams10].

Over the last two decades, several ways of performing manifold interpolation computa-

tionally have been proposed. These methods are tailored to meet di�erent requirements

of the application, concerning the regularity of the interpolating curve and the nature

of the interpolation constraints. In the following, we focus on continuously di�erentiable

interpolation curves that match prescribed data and velocities at each point; this is

121



Chapter 5. Hermite interpolation

Figure 5.1: The Hermite interpolation problem on manifolds.

commonly known as Hermite interpolation.

The mathematical formulation of the manifold Hermite interpolation problem is the

following. In this chapter,M denotes a D-dimensional smooth manifold.

Problem 5.1. Given N + 1 tangent bundle data points {(pi, vi)}Ni=0 ∈ TM and scalar

parameters t0 < t1 < · · · < tN , �nd a continuously di�erentiable curve H : [t0, tN ]→M
such that {

H(ti) = pi,

Ḣ(ti) = vi,
∀ i = 0, . . . , N.

5.2 Related work

In a Euclidean space, the classical solution of the Hermite interpolation problem utilizes

piecewise cubic polynomials [Far02]. This solution can be characterized in (at least)

three di�erent ways: (i) it minimizes the integral of the squared acceleration over the

set of admissible interpolating curves, (ii) it is the unique piecewise cubic polynomial

interpolating the points and the derivatives, (iii) it can be constructed with a geomet-

ric algorithm introduced by de Casteljau [dC59] involving iterated linear interpolation

between suitably chosen control points. As we explain in the following, each of these

characterizations can be generalized to manifolds. However, unlike for the Euclidean

case, each characterization and extension produces a di�erent curve.

(i) Extending the variational characterization is straightforward: the second deriva-

tive (acceleration) is replaced by the covariant derivative of the velocity vector and the

search space is constrained to curves on the manifold that satisfy the interpolation con-

straints [CSLC95, ZN19]. The solution to this variational problem, also known as Rie-

mannian cubic, can be computed by numerical methods for boundary value di�erential

problems, such as shooting methods [BCC21].

(ii) Exploiting the polynomial characterization of the solution requires one to recast

manifold interpolation into an Euclidean setting. Several strategies have been explored

for this purpose, e.g., a local linearization can be obtained from a (local) bijection between

the manifold and a tangent space. For Hermite interpolation, Zimmermann [Zim20]
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5.2 Related work

proposes to use the Riemannian logarithmic map and its di�erential to map points and

derivatives to the tangent space at one of the data points. Standard techniques, including

polynomial interpolation, can then be used to construct the interpolation curve on the

tangent space and map it back to the manifold with the Riemannian exponential map.

We refer to [ZB22] for a recent extension to the multivariate setting.

(iii) The geometric nature of the de Casteljau algorithm lends itself to an intrinsic def-

inition on manifolds. In fact, it is su�cient to replace the linear segments that de�ne

the algorithm with geodesic segments, based on the observation that geodesics are the

manifold generalization of straight lines. This idea was pioneered by Park and Ravani

in [PR95]; it has been adapted to solve the Hermite interpolation problem on spheres and

compact Lie groups by Crouch and Leite [CKSL99] and on general Riemannian manifolds

by Popiel and Noakes [PN07]. Rodriguez et al. [RSLJ05] proposed a similar approach,

where the classical de Casteljau algorithm is interpreted and generalized as the weighted

average of two curve branches satisfying the interpolating conditions. This blending tech-

nique is adapted to the manifold setting using geodesics branches and geodesic averaging,

which � at least in principle � allows one to perform Hermite interpolation on a large

class of manifolds even if the work [RSLJ05] itself focuses on compact Lie groups and

the sphere.

The non-exhaustive list of algorithms above aims at illustrating that most approaches

proposed so far focus on relatively simple manifolds: compact Lie groups, symmetric

spaces like the sphere or complete Riemannian manifolds. Most of these techniques

require to have closed-form expressions or at least a numerically tractable method for

computing endpoint geodesics or the Riemannian exponential and logarithmic maps. For

instance, for the case of the Stiefel manifold, the exponential map under the canonical

metric has a closed-form expression [EAS99, �2.4.2] and an algorithm to approximate

the corresponding logarithmic map has been proposed in [Zim17]. In contrast, for the

manifold of �xed-rank matrices we are not aware of a computationally e�cient way to

realize the logarithmic map; a closed-form expression for the exponential map (under a

suitable quotient geometry) is given in [AAM14, �6].

A �rst step towards relaxing computational requirements has been put forth by Polth-

ier and Nava-Yazdani [NYP13] by generalizing the de Casteljau algorithm to work with

generic endpoint curves instead of geodesics as building blocks. This enlarges the ap-

plicability of the algorithm to, e.g., polygonal surfaces. On the other hand, velocity

constraints cannot be taken into account and the concatenation of two such general-

ized de Casteljau curves may result in a non-di�erentiable junction. These drawbacks

of [NYP13] were addressed by Krakowski et al. [KMSLB17] for the case of the Stiefel

manifold with a generalized de Casteljau algorithm that uses a novel class of endpoint

curves, termed quasi-geodesics. This technique allows one to interpolate points on the

Stiefel manifold with a globally continuously di�erentiable curve but the velocity can

only be prescribed at the starting point.
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(a) (b) (c)

Figure 5.2: Simple interpolation problem on S2 for di�erent manifold interpolation tech-
niques illustrating the high accuracy of the proposed Hermite interpolation method.
The interpolation data is sampled exactly from the �gure-eight curve on the sphere
(black) given by γ(t) = (sin(t) cos(t); sin(t) sin(t); cos(t)) at seven equally spaced values
of t ∈ [−π, π]. The piecewise geodesic scheme (a) is de�ned with endpoint geodesics
between the sample points. The spline interpolant (b) is a generalization of polynomial
spline interpolation proposed in [GSA14]. The resulting curve is continuously di�er-
entiable by using the Riemannian de Casteljau algorithm with geodesics [PN07]. The
proposed retraction-based Hermite interpolant (c) described in Section 5.3 is computed
here using the projective retraction (2.9).

Contributions and outline of the chapter. Extending upon [KMSLB17, NYP13]

in being able to handle velocity constraints, the proposed approach is only based on

retractions through the usage of the novel class of endpoint curves introduced in Sec-

tion 3.2. For a large class of manifolds and retractions, the inverse retraction is available

in closed-form. Whenever this is the case, our method makes it possible to solve the Her-

mite interpolation problem in a numerically e�cient way on a larger class of manifolds

than those available until now. In Section 5.3, we develop the retraction-based Hermite

(RH) interpolation scheme on manifolds. An analysis of the method is carried out in Sec-

tion 5.4. In particular, the method is shown to be well-posed whenever consecutive data

points are in a retraction-convex set. Furthermore, a convergence analysis of the inter-

polation error of the RH scheme is proposed, extending a well-known result on the error

convergence of Hermite interpolation on Euclidean spaces for su�ciently smooth data.

Finally, in Section 5.5, we demonstrate several applications of our novel interpolation

scheme for both the manifold of �xed-rank matrices and the Stiefel manifold.

5.3 Generalized de Casteljau algorithm with retractions

The classical de Casteljau algorithm [dC59] is a geometric procedure to construct poly-

nomial curves in RD. To describe the algorithm, let σ1(t;x, y) := (1− t)x+ ty denote the
linear interpolation between two points x, y ∈ RD. Given N + 1 so called control points
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5.3 Generalized de Casteljau algorithm with retractions

Figure 5.3: The classical de Casteljau algorithm with four control points in R2. The
resulting curve in green is a polynomial curve of degree three.

b0, . . . , bN ∈ RD, the relation

σk(t; bi, . . . , bi+k) := σ1(t;σk−1(t; bi, . . . , bi+k−1), σk−1(t; bi+1, . . . , bi+k)), i = 0, . . . , N−k,

is applied recursively for k = N,N − 1, . . . , 2 to de�ne a polynomial curve σN of degree

N such that

σN (0; b0, . . . , bN ) = b0,

σN (1; b0, . . . , bN ) = bN ,

σ̇N (0; b0, . . . , bN ) = Nσ̇1(0; b0, b1) = N(b1 − b0),
σ̇N (1; b0, . . . , bN ) = Nσ̇1(1; bN−1, bN ) = N(bN − bN−1),

where σ̇N denotes the derivative of σN with respect to t. Only the �rst and last control

points are interpolated while the other points in�uence the shape of the curve. See

Figure 5.3 for an illustration of the de Casteljau algorithm with four control points in

R2. In [PR95] an extension to control points on a manifoldM was proposed that replaces

σ1 by the endpoint geodesic joining x and y. The same recursive relation then yields a

manifold curve verifying analogous properties: (a) it is smooth, (b) it interpolates the

�rst and last points, and (c) the derivatives at the �rst and last points only depend on

the �rst and last two control points, respectively. Property (c) allows one to conveniently

control the endpoint derivatives via the choice of b1, bN−1, a property that makes the de

Casteljau algorithm useful for Hermite interpolation; see, e.g., [PN07].

Along the line of work by Krakowski et al. [KMSLB17], we consider a generalization of

the de Casteljau algorithm that allows for arbitrary smooth manifold curves at each step

of the recursion (instead of constructing everything on top of geodesics). If each curves

chosen to de�ne the algorithm join the prescribed endpoints, then properties (a) and (b)

are trivially satis�ed. In [KMSLB17, Proposition 13], su�cient conditions for the chosen

curves to produce property (c) are given for N = 2. The following proposition extends

these results to N = 3.
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Figure 5.4: Generalized de Casteljau with 4 control points described in Proposition 5.2.

Proposition 5.2. For b0, b1, b2, b3 ∈M consider, as in Figure 5.4:

- smooth βi : [0, 1]→M joining bi and bi+1 for each i = 0, 1, 2,

- smooth β01 : [0, 1]
2 →M such that β01(·, t) joins β0(t) and β1(t) for every t ∈ [0, 1],

- smooth β12 : [0, 1]
2 →M such that β12(·, t) joins β1(t) and β2(t) for every t ∈ [0, 1],

- smooth β012 : [0, 1]3 → M such that β012(·, s, t) joins β01(s, t) and β12(s, t) for

every s, t ∈ [0, 1].

If, additionally,

(i) β01(s, 0) = β0(s) and β12(s, 1) = β2(s),

(ii) β012(s, 0, 0) = β0(s) and β012(s, 1, 1) = β2(s),

then the generalized de Casteljau manifold curve

β(t) = β012(t, t, t)

satis�es

β(0) = b0, β(1) = b3, (5.1)

and

β̇(0) = 3β̇0(0), β̇(1) = 3β̇2(1). (5.2)

Proof. The interpolation condition (5.1) follows directly from the de�nitions:

β(0) = β012(0, 0, 0) = β01(0, 0) = β0(0) = b0

and, analogously, β(1) = b3. To prove (5.2), we �rst note that

β̇(t) =
d

ds
β012(s, t, t)

∣∣
s=t

+
d

ds
β012(t, s, t)

∣∣
s=t

+
d

ds
β012(t, t, s)

∣∣
s=t
.

At t = 0, inserting the de�nitions of the curves as well as conditions (i) and (ii) we thus
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obtain

β̇(0) =
d

ds
β012(s, 0, 0)

∣∣
s=0

+
d

ds
β012(0, s, 0)

∣∣
s=0

+
d

ds
β012(0, 0, s)

∣∣
s=0

= β̇0(0) +
d

ds
β01(s, 0)

∣∣
s=0

+
d

ds
β01(0, s)

∣∣
s=0

= 3β̇0(0).

Analogously, one establishes β̇(1) = 3β̇2(1), which completes the proof.

When one employs the same type of endpoint curve to de�ne each β0, . . . , β012 in Proposi-

tion 5.2, such as endpoint geodesics or endpoint quasi-geodesics as proposed by [KMSLB17],

then conditions (i) and (ii) are trivially satis�ed. With this simpli�cation, a result of the

form (5.2) for a generalized de Casteljau algorithm of arbitrary order N can be found

in [NYP13, Theorem 8]. However, to be useful for Hermite interpolation, we need to

have explicit relationships between the control points and β̇0(0) as well as β̇2(1). While

both are available for geodesics, only the �rst relationship can be made explicit for

quasi-geodesics. Consequently, the interpolation problem considered in [KMSLB17] in-

corporates a velocity constraint at the �rst interpolation point only. In the next section,

we show how to choose the de�ning curves β0, . . . , β012 in order to satisfy Proposition 5.2

and have an explicit relationships between the control points and β̇0(0), β̇2(1). This is

made possible by choosing suitable members of the class of endpoint retraction curves

introduced in Section 3.2.

5.3.1 The de Casteljau algorithm with endpoint retraction curves

In Section 3.2 we introduced a class of retraction-based curves which allow connecting

pairs of manifold points. Recall from De�nition 3.4, for any x, y ∈ M and r ∈ [0, 1], we

have de�ned the retraction curve

cr(t;x, y) = Rq(r)

(
(1− t)R−1q(r)(x) + tR−1q(r)(y)

)
, ∀ t ∈ [0, 1] ,

with q(r) = Rx(rR
−1
x (y)) which joins the points x and y for every r ∈ [0, 1]. As noted

in Proposition 3.5 (ii), when r = 0 or r = 1 the derivative of the retraction curve at

t = 0 and t = 1 respectively is explicitly related to the endpoint. This is the crucial

condition allowing to use the curves cr with suitable values of r to de�ne curves that

satisfy the conditions of Proposition 5.2 and, in turn, to de�ne a suitable generalization

of the de Casteljau algorithm. From Proposition 3.5 (ii) and (5.2), it follows that β0(·) =
c0(·; b0, b1) and β2(·) = c1(·; b2, b3) are canonical choices for joining b0 with b1 and b2 with
b3, respectively. The other curves must be suitably chosen from the r-endpoint retraction

curve family in order to satisfy Proposition 5.2.

Proposition 5.3. The following choices of β0, β1, β2, β01, β12 and β012 satisfy the

conditions of Proposition 5.2:

- β0(t) = c0(t; b0, b1), β1(t) = cr1(t)(t; b1, b2), β2(t) = c1(t; b2, b3),
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Chapter 5. Hermite interpolation

- β01(s, t) = cr01(s,t)(s;β0(t), β1(t)), β12(s, t) = cr12(s,t)(s;β1(t), β2(t)),

- β012(u, s, t) = cr012(u,s,t)(u;β01(s, t), β12(s, t)),

for any smooth functions r1 : [0, 1] → [0, 1], r01, r12 : [0, 1]2 → [0, 1] and r012 : [0, 1]3 →
[0, 1] such that

r01(s, 0) = 0, r12(s, 1) = 1, r012(s, 0, 0) = 0, r012(s, 1, 1) = 1.

Moreover, the resulting manifold curve β(t) = β012(t, t, t) satis�es

β̇(0) = 3ċ0(0; b0, b1) = 3R−1b0 (b1), β̇(1) = 3ċ1(1; b2, b3) = −3R−1b3 (b2). (5.3)

Proof. Proposition 3.5 (i) implies that the curves β0, β1, β2, β01(·, t), β12(·, t) and

β012(·, s, t) have the correct endpoints for every s, t ∈ [0, 1] and any choice of r1, r01, r12
and r012. Direct computation shows the remaining requirements (i) and (ii) of Proposi-

tion 5.2:

(i) β01(s, 0) = cr01(s,0)(s;β0(0), β1(0)) = c0(s; b0, b1) = β0(s),

β12(s, 1) = cr12(s,1)(s;β1(1), β2(1)) = c1(s; b2, b3) = β2(s),

(ii) β012(s, 0, 0) = cr012(s,0,0)(s;β01(0, 0), β12(0, 0)) = c0(s; b0, b1) = β0(s),

β012(s, 1, 1) = cr012(s,1,1)(s;β01(1, 1), β12(1, 1)) = c1(s; b2, b3) = β2(s).

Finally, the relation (5.3) follows from combining (5.2) with Proposition 3.5 (ii).

Proposition 5.3 o�ers a great degree of �exibility in choosing r1, r01, r12, and r012. For

practical purposes, a simple choice that leads to a computationally less expensive evalu-

ation of the curve is preferable. We propose to choose

r1(s) = 1/2, r01(s, t) = 0, r12(s, t) = 1, r012(u, s, t) = t. (5.4)

As detailed below in Algorithm 5.2, this choice essentially requires 7 retractions and 5

inverse retractions per evaluation of the generalized de Casteljau manifold curve, ignoring

the cost for preprocessing.

At this point, the choice of r1(s) = 1/2 appears to be ad hoc, especially because Propo-

sition 5.3 imposes no constraint on r1. In Section 5.5.1, we argue that this choice of r1
is crucial for the scheme to attain favorable convergence properties. From now on, we

restrict ourselves to (5.4).

De�nition 5.4. Given control points b0, b1, b2, b3 ∈M we use β(·; b0, b1, b2, b3) to denote

the generalized de Casteljau curve constructed in Proposition 5.3 with the choice (5.4)

for r1, r01, r12, r012.

5.3.2 The retraction-based Hermite (RH) interpolation scheme

The generalized de Casteljau curve of De�nition 5.4 can now be used to solve the Hermite

interpolation problem, Problem 5.1, by choosing suitable control points.
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5.3 Generalized de Casteljau algorithm with retractions

Proposition 5.5. Given (p0, v0), (p1, v1) ∈ TM, de�ne

p+0 = Rp0

(
1

3
v0

)
, p−1 = Rp1

(
−1

3
v1

)
and let α(t) ≡ α(t; p0, v0, p1, v1) := β(t; p0, p

+
0 , p

−
1 , p1) denote the generalized de Casteljau

curve according to De�nition 5.4. Then

α(0) = p0, α(1) = p1, α̇(0) = v0, α̇(1) = v1.

Proof. The result follows from combining Propositions 5.2 and 5.3:

α(0) = β(0; p0, p
+
0 , p

−
1 , p1) = p0, α(1) = β(1; p0, p

+
0 , p

−
1 , p1) = p1,

α̇(0) = β̇(0; p0, p
+
0 , p

−
1 , p1) = 3R−1p0 (p

+
0 ) = 3R−1p0

(
Rp0

(
1

3
v0

))
= v0,

α̇(1) = β̇(1; p0, p
+
0 , p

−
1 , p1) = −3R

−1
p1 (p

−
1 ) = −3R

−1
p1

(
Rp1

(
−1

3
v1

))
= v1.

As an immediate consequence of Proposition 5.5, the following corollary shows how α is

used piecewise to de�ne the retraction-based Hermite (RH) interpolant H that addresses

Problem 5.1.

Corollary 5.6. Letting hi := ti+1−ti for i = 0, . . . , N−1, the manifold curve H : [t0, tN ]→M
de�ned piecewise by

H(t)
∣∣
[ti,ti+1]

= α

(
t− ti
hi

; pi, hivi, pi+1, hivi+1

)
, i = 0, . . . , N − 1, (5.5)

is a solution to Problem 5.1.

Algorithms 5.1 and 5.2 summarize the construction of H and its evaluation, respectively.

We separate the computations needed for evaluating the RH interpolant (online phase)

from those that can be precomputed, stored and used in every evaluation (o�ine phase).
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Chapter 5. Hermite interpolation

Algorithm 5.1 O�ine Phase (precompute quantities de�ning the RH interpolant)

Input: Tangent bundle data points {(pi, vi)}Ni=0 ∈ TM, t0 < t1 < · · · < tN .

1: for i = 0, . . . , N − 1 do
2: hi = ti+1 − ti;
3: p+i = Rpi

(
1
3hivi

)
;

4: p−i+1 = Rpi+1

(
−1

3hivi+1

)
;

5: qi = Rp+i

(
1
2R
−1
p+i

(
p−i+1

))
; ▷ Anchor for the middle segment β1.

6: w+
i = R−1qi

(
p+i
)
; ▷ Tangent vector from qi to p

+
i

7: w−i+1 = R−1qi
(
p−i+1

)
; ▷ Tangent vector from qi to p

−
i+1

8: end for

9: return :
{
qi, w

+
i , w

−
i+1

}N−1
i=0

;

Figure 5.5: Illustration of o�ine computations performed by Algorithm 5.1.

Algorithm 5.2 Online Phase (evaluation of RH interpolant at t)

Input: t ∈ [t0, tN ], {pi, vi, ti}Ni=0,
{
qi, w

+
i , w

−
i+1

}N−1
i=0

;

1: Find largest i ∈ {0, . . . , N − 1} such that ti ≤ t;
2: hi = ti+1 − ti;
3: τ = t−ti

hi
;

4: β0 = Rpi
(
τ
3hivi

)
; ▷ 1×R

5: β1 = Rqi
(
(1− τ)w+

i + τw−i+1

)
; ▷ 1×R

6: β2 = Rpi+1

(
− τ

3hivi+1

)
; ▷ 1×R

7: β01 = c0 (τ ;β0, β1); ▷ 1×R+ 1×R−1
8: β12 = c1 (τ ;β1, β2); ▷ 1×R+ 1×R−1
9: return β = cτ (τ ;β01, β12); ▷ 2×R+ 3×R−1
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5.4 Analysis of RH interpolation

5.4 Analysis of RH interpolation

For the purpose of deriving qualitative and asymptotic properties of RH interpolation,

we suppose that the interpolation data are sampled from a continuously di�erentiable

manifold curve γ : [0, 1]→M, that is

pi = γ(ti), vi = γ̇(ti), ∀ i = 0, . . . , N, (5.6)

for some 0 = t0 < t1 < · · · < tN = 1. Because of its piecewise de�nition (see Corol-

lary 5.6), it is su�cient to consider the RH interpolant on a single subinterval, i.e. the

manifold curve Hh : [t, t+ h]→M de�ned by

Hh(τ) = α

(
τ − t
h

; γ(t), hγ̇(t), γ(t+ h), hγ̇(t+ h)

)
, (5.7)

for su�ciently small h > 0 and t ∈ [0, 1− h], satisfyingHh(t) = γ(t), Hh(t+h) = γ(t+h),

Ḣh(t) = γ̇(t), and Ḣh(t + h) = γ̇(t + h). Our results for a single interval apply to the

piecewise solution of (5.6) by letting h = maxi=0,...,N−1{ti+1 − ti}.
In the following analysis we make use of Assumption 3.11 to guarantee the retraction-

convexity radius ρ̄ de�ned by (3.4) is lower-bounded on compact sets K ⊂ M. In

particular, for K = γ([0, 1]), knowing that

ρmin(γ) := min
t∈[0,1]

ρ̄(γ(t)) > 0

ensures there exists a radius below which any manifold ball centered on the curve is

retraction-convex. Hence, throughout the analysis section we suppose that Assump-

tion 3.11 holds.

5.4.1 Well-posedness of RH interpolation

As stated in Theorem 3.9, any su�ciently small neighborhood on a manifold is retraction-

convex. This ensures that whenever some points are su�ciently close, they all belong

to a common retraction-convex set. This makes it possible to grant the well-posedness

of the r-endpoint retraction curve family when the endpoint are su�ciently close, see

Proposition 3.8. In turn, this implies the well-posedness of the RH interpolation scheme

when the control points are su�ciently close.

Proposition 5.7. For a retraction-convex set U consider control points b0, b1, b2, b3 ∈ U .
Then the generalized de Casteljau curve t 7→ β(t; b0, b1, b2, b3) constructed in De�ni-

tion 5.4 is well-de�ned for every t ∈ [0, 1].

Proof. We apply recursively the result of Proposition 3.8. Since b0, b1, b2, b3 ∈ U , the
curves β0, β1, β2 are well-de�ned and their image is entirely contained in U . In turn, this

implies that for every t ∈ [0, 1] the curves β01(·, t) and β12(·, t) are well-de�ned and their

image is entirely contained in U . Finally, it follows that for every s, t ∈ [0, 1]2 the curve
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β012(·, s, t) is well-de�ned.

Note that this proof is valid for any generalized de Casteljau curve constructed as in

Proposition 5.3.

The control points de�ning the RH interpolant 5.7 are directly related with the interpo-

lation data of the equispaced Hermite interpolation problem (5.6). Hence, the su�cient

condition of well-posedness expressed in terms of control points in Proposition 5.7 is

translated into a su�cient condition on the step size of the equispaced sampling of the

interpolation curve. If h is small enough, as Proposition 5.8 below quanti�es, the control

points associated with the RH interpolant (5.7) are all contained in a retraction-convex

set. Then, the piecewise RH interpolant of the full curve γ is guaranteed to be globally

de�ned.

In the following, we make use of the function ∆ appearing in Proposition 2.12 to describe

the domain over which a retraction is a di�eomorphism. For every compact set K ⊂M
we indicate by ∆min(K) := minx∈K ∆(x). Since ∆ is known to be continuous and strictly

positive, we know ∆min(K) > 0 for every compact subset K.

Proposition 5.8. There exists a constant h1 > 0 depending on the curve γ and on

the retraction such that for any 0 < h < h1 the RH interpolant Hh de�ned in (5.7) is

well-posed for every t ∈ [0, 1− h].

Proof. By Proposition 5.5 and Corollary 5.6,

Hh(τ) = β

(
τ − t
h

; p0(t), p
+
0 (t, h), p

−
1 (t, h), p1(t, h)

)
,

with the control points

p0(t) := γ(t), p1(t, h), := γ(t+ h),

p+0 (t, h) := Rγ(t) (hγ̇(t)/3) , p−1 (t, h) := Rγ(t+h) (−hγ̇(t+ h)/3) .

Denote by Lγ a Lipschitz constant of the curve γ on [0, 1]. Since γ is assumed continuously

di�erentiable, we can take Lγ = max
t∈[0,1]

∥γ̇(t)∥γ(t). Then, it holds that

d(p0(t), p1(t, h)) = d(γ(t), γ(t+ h)) ≤ Lγh,

Let us denote ∆min(γ) > 0 the minimum of the function ∆ on the compact set γ([0, 1]).

If h < ∆min(γ)
Lγ

, then

∥hγ̇(t)/3∥γ(t) < ∆(γ(t))/3, ∥hγ̇(t+ h)/3∥γ(t+h) < ∆(γ(t+ h))/3.

This allows us to invoke the Lipschitz continuity of the retraction stated in Proposi-
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5.4 Analysis of RH interpolation

tion 3.14-(i) with the constant LR(γ) associated with the compact set γ([0, 1]) and �nd

d(p0(t), p
+
0 (t, h)) ≤ hLR(γ) ∥γ̇(t)/3∥γ(t) ≤ hLR(γ)Lγ/3,

d(p0(t), p
−
1 (t, h)) ≤ d(p0(t), p1(t, h)) + d(p1(t, h), p

−
1 (t, h))

≤ Lγh+ hLR(γ)∥γ̇(t+ h)/3∥γ(t+h) ≤ Lγ(1 + LR(γ)/3)h.

Hence, if h < ∆min(γ)
Lγ

, all control point of Hh are contained in B(γ(t), Qh) with

Q := max {Lγ , LR(γ)Lγ/3, Lγ(1 + LR(γ)/3)} = Lγ(1 + LR(γ)/3).

By Assumption 3.11, the minimum of the retraction-convexity radius function ρ̄ on the

image of the curve γ denoted ρmin(γ) is strictly positive. Therefore if we further restrict

the step size by taking h < h1 := min
{

∆min(γ)
Lγ

, ρmin(γ)
Q

}
, all the control points of Hh

are contained in the retraction-convex set B(γ(t), ρmin(γ)). This implies the curve Hh is

well-de�ned.

5.4.2 Interpolation error

In the Euclidean setting, asymptotic convergence rates of the maximum interpolation

error are classic results of numerical analysis. For the case of piecewise cubic Hermite

interpolation the error can be shown to converge as O(h4) [QSS07, �8.4], where h is the

largest sampling step size. In this section, we generalize this result to the RH interpola-

tion scheme.

Theorem 5.9. Let γ ∈ C4([0, 1]) and consider Hh, the RH interpolant of γ on a subinter-

val [t, t+h] as de�ned in (5.7). Under Assumption 3.11 and assuming that for k = 2, 3, 4

there exist constants L
(k)
RH > 0 and h2 > 0 such that for every 0 < h < h2 and any

t ∈ [0, 1− h] it holds that

sup
τ∈[t,t+h]

∥∥∥∥DkHh(τ)

dτk

∥∥∥∥
Hh(τ)

< L
(k)
RH , (5.8)

where Dk

dτk
denotes the order-k covariant derivative along a curve. Then, there exist

constants κ > 0 and h̄ > 0 depending on the curve γ, the manifold and the retraction

such that for any 0 < h < h̄ and any t ∈ [0, 1− h], we have

max
τ∈[t,t+h]

d(γ(τ), Hh(τ)) <
√
D
κ

4!
h4,

where dim(M) = D.

We stress that the above result holds for any choice of t ∈ [0, 1− h]. As a consequence,

we can bound the maximum interpolation error of the piecewise RH interpolant of the

full curve γ.

Corollary 5.10. Under the assumptions of Theorem 5.9, the piecewise RH interpolant
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H of γ de�ned by (5.5) with data (5.6) veri�es

max
τ∈[0,1]

d(γ(τ), H(τ)) <
√
D
κ

4!
h4,

where h = maxi=0,...,N−1 ti+1 − ti.

The proof of Theorem 5.9 relies on a local linearization of the manifold: both the inter-

polation curve Hh and the corresponding portion of the curve γ are pulled back to the

tangent space at γ(s), for some s ∈ [t, t+ h], with the Riemannian logarithmic map, the

local inverse of the Riemannian exponential, see De�nition 1.32. The so-obtained local

coordinate system is also known as the system of normal coordinates at γ(s) [Lee18, p.

132]. Since the Riemannian logarithm is only locally de�ned, we �rst need to ensure

the image of γ, the control points, and intermediate quantities involved in the procedure

remain con�ned to a domain of invertibility of the exponential map as h→ 0. We ensure

that these requirements are met when considering su�ciently small h, see Lemma 5.12

below. This theoretical step size restriction is appropriate given the asymptotic nature

of Theorem 5.9. In practice however, our experiments suggest that the fourth-order con-

vergence established by the theorem can be observed as soon as the interpolation curve is

well-de�ned; see the numerical experiments Section 5.5. We point out once again that for

this to be the case, we also need the scheme to verify assumption (5.8); see Section 5.5.1

for the importance of this assumption.

Lipschitz continuity of the RH interpolation curve

As the step size h between interpolation samples converges to zero, we need to ensure

the image of the Hh, the RH interpolant of γ on [t, t+ h], is con�ned to a region whose

diameter also converges to zero. One way to ensure this is to show that Hh admits a

Lipschitz constant that is independent of h.

Lemma 5.11. There exist a constant LRH > 0 and h3 > 0 depending on γ and on the

retraction such that for every 0 < h < h3 and any t ∈ [0, 1− h]

d(Hh(τ1), Hh(τ2)) ≤ LRH |τ1 − τ2|, ∀ τ1, τ2 ∈ [t, t+ h] .

With this result, it is possible to state that, for instance, Hh(τ) ∈ B(Hh(t), r) for all

τ ∈ [t, t+ h] provided h < r/LRH .

The following proof of Lemma 5.11 considers the RH interpolant given in De�nition 5.4,

that is with the particular choice (5.4) for the functions r1, r01, r12, and r012. Nevertheless,

the result remains valid for any choice of these functions, as long as they are Lipschitz

continuous.

Proof of Lemma 5.11. We aim at invoking the Lipschitz continuity results for the re-

traction and retraction curves established in Section 3.4. In particular, Corollary 3.16

states a convenient Lipschitz continuity condition for the endpoint retraction curves
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t 7→ cr(t;x, y), jointly with respect to r, t ∈ [0, 1] and x, y ∈M. The result is valid under

the assumption that the point x, y belong to a non-empty retraction-convex U such that

U ⊂ I1/3z for every z ∈ U , see Figure 3.6. Let us argue there exists a U satisfying this

property that contains all the control points of Hh, provided h is su�ciently small.

Consider the set K = I1/3γ =
{
Rγ(t)(v) : t ∈ [0, 1] , ∥v∥γ(t) ≤

∆(γ(t))
3

}
, which is compact

by Lemma 3.13. Since we assumed Assumption 3.11 to hold, we know that the retraction-

convexity radius ρ̄ is lower bounded on K by ρmin(K) > 0. Hence by Lemma 3.23, the

quantity de�ned for every x ∈M as

ν̄(x) = sup
{
ν > 0 : B(x, ν) ⊂ I1/3x

}
is also lower bounded on K by a strictly positive constant that we denote νmin(K).

Hence, if we require h < h3 := min
{
h1,

νmin(K)
2Q

}
, then for any x, y ∈ B(γ(t), Qh) we

have

d(x, y) ≤ d(x, γ(t)) + d(y, γ(t)) <
νmin(K)

2
+
νmin(K)

2
= νmin(K).

Therefore, if h < h3, all control points de�ning Hh are contained into a retraction-convex

set verifying the assumption of Corollary 3.16 and we are enabled to use the Lipschitz

constants Lt, Lr and Lxy introduced in Corollary 3.16 for all the endpoint retraction

curves appearing in the de�nition of Hh. To simplify notation, let us introduce

p0 = γ(t), v0 = γ̇(t), p1 = γ(t+ h), v1 = γ̇(t+ h).

From Corollary 5.6, we have that

Hh(τ) = α

(
τ − t
h

; p0, hv0, p1, hv1

)
.

We shall prove that there exists LRH (depending explicitly on Lt, Lr and Lt) such that

for any z1, z2 ∈ [0, 1]

d(α (z1; p0, hv0, p1, hv1) , α (z2; p0, hv0, p1, hv1)) ≤ LRHh|z1 − z2|. (5.9)

Then using (5.9), we can conclude that for any τ1, τ2 ∈ [t, t+ h]

d(Hh(τ1), Hh(τ2)) = d
(
α
(τ1 − t

h
; p0, hv0, p1, hv1

)
, α
(τ2 − t

h
; p0, hv0, p1, hv1

))
≤ LRHh

|τ1 − τ2|
h

= LRH |τ1 − τ2|.

Let us now prove (5.9) by unfolding the recursive de�nition of α.

α (z; p0, hv0, p1, hv1) = β012(z, z, z) = cz(z;β01(z, z), β12(z, z)).
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Applying several times Corollary 3.16 we �nd

d(cz1(z1;β01(z1, z1), β12(z1, z1)), cz2(z2;β01(z2, z2), β12(z2, z2)))

≤ |z1 − z2|
Lt + Lr

2
(d(β01(z1, z1), β12(z1, z1)) + d(β01(z2, z2), β12(z2, z2)))

+ Lxy (d(β01(z1, z1), β01(z2, z2)) + d(β12(z1, z1), β12(z2, z2))) ,

(5.10)

d(β01(z1, z1), β12(z1, z1)) = d(c0(z1, β0(z1), β1(z1)), c1(z1, β1(z1), β2(z1)))

≤
(
1

2
Lr + Lxy

)
(d(β0(z1), β1(z1)) + d(β1(z1), β2(z1))) ,

(5.11)

d(β01(z2, z2), β12(z2, z2)) ≤
(
1

2
Lr + Lxy

)
(d(β0(z2), β1(z2)) + d(β1(z2), β2(z2))) ,

d(β01(z1, z1), β01(z2, z2)) = d(c0(z1, β0(z1), β1(z1)), c0(z2, β0(z2), β1(z2)))

≤ Lt
2
|z1 − z2| (d(β0(z1), β1(z1) + d(β0(z2), β1(z2)))

+ Lxy (d(β0(z1), β0(z2)) + d(β1(z1), β1(z2))) ,

d(β12(z1, z1), β12(z2, z2)) ≤
Lt
2
|z1 − z2| (d(β1(z1), β2(z1) + d(β1(z2), β2(z2)))

+ Lxy (d(β1(z1), β1(z2)) + d(β2(z1), β2(z2))) .
(5.12)

Plugging (5.11)-(5.12) in (5.10) and rearranging terms yields

d(cz1(z1;β01(z1, z1), β12(z1, z1)), cz2(z2;β01(z2, z2), β12(z2, z2)))

≤ |z1 − z2|
(Lt + Lr)(Lr + 2Lxy) + 2LxyLt

4

· (d(β0(z1), β1(z1)) + d(β1(z1), β2(z1)) + d(β0(z2), β1(z2)) + d(β1(z2), β2(z2)))

+L2
xy (d(β0(z1), β0(z2)) + 2d(β1(z1), β1(z2)) + d(β2(z1), β2(z2))) .

(5.13)

We now bound the seven distance function evaluations using once again Corollary 3.16.

d(β0(z1), β1(z1)) ≤
(Lr

4
+ Lxy

) (
d(p0, p

+
0 ) + d(p+0 , p

−
1 )
)
,

d(β0(z2), β1(z2)) ≤
(Lr

4
+ Lxy

) (
d(p0, p

+
0 ) + d(p+0 , p

−
1 )
)
,

d(β1(z1), β2(z1)) ≤
(Lr

4
+ Lxy

) (
d(p+0 , p

−
1 ) + d(p−1 , p1)

)
,

d(β1(z2), β2(z2)) ≤
(Lr

4
+ Lxy

) (
d(p+0 , p

−
1 ) + d(p−1 , p1)

)
,

d(β0(z1), β0(z2)) ≤ Ltd(p0, p+0 )|z1 − z2|,
d(β1(z1), β1(z2)) ≤ Ltd(p+0 , p

−
1 )|z1 − z2|,

d(β2(z1), β2(z2)) ≤ Ltd(p−1 , p1)|z1 − z2|.

Inserting these bounds in (5.13) provides a constant L̃ > 0 depending only on Lt, Lr and
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5.4 Analysis of RH interpolation

Lxy such that

d(α (z1; p0, hv0, p1, hv1) , α (z2; p0, hv0, p1, hv1))

≤ (d(p0, p
+
0 ) + d(p+0 , p

−
1 ) + d(p−1 , p1))L̃|z1 − z2|.

(5.14)

Using Corollary 3.16-(i) and denoting Lγ the Lipschitz constant of the curve γ we �nd

d(p0, p
+
0 ) = d

(
γ (t) , Rγ(t)

(
h

3
γ̇(t)

))
≤ L2

∥∥∥∥h3 γ̇(t)
∥∥∥∥ ≤ h

3
L2Lγ ,

d(p−1 , p1) = d

(
Rγ(t+h)

(
−h
3
γ̇(t+ h)

)
, γ(t+ h)

)
≤ L2

∥∥∥∥h3 γ̇(t+ h)

∥∥∥∥ ≤ h

3
L2Lγ ,

d(p+0 , p
−
1 ) ≤ d(p

+
0 , p0) + d(p0, p1) + d(p1, p

−
1 )

≤ 2h

3
L2Lγ + hLγ .

Finally, plugging these bounds into (5.14) proves (5.9) with LRH = L̃Lγ
(
4
3L2 + 1

)
and

concludes the proof.

Representability in normal coordinates and proof of Theorem 5.9

The Lipschitz continuity of Hh and of γ provides su�cient conditions to be able to

represent the images of Hh and γ on the interval [t, t+ h] in normal coordinates around

γ(s), for any s ∈ [t, t+ h].

Lemma 5.12. Denote rmin(γ) := minτ∈[0,1] inj(γ(τ)), the minimum of the injectivity

radius of the Riemannian exponential map along the curve. There exists h4 > 0 such

that for every 0 < h < h4 and any t ∈ [0, 1− h] we have

d(γ(s), γ(τ)) < inj(γ),

d(γ(s), Hh(τ)) < inj(γ),
∀ s, τ ∈ [t, t+ h] .

Proof. The constant inj(γ) is strictly positive by the continuity of the injectivity radius

function [Bou23, Proposition 10.18] and compactness of the image of the curve. We

take any 0 < h < h4 := min
{

inj(γ)
2Lγ

, h3,
inj(γ)
2LRH

}
, where h3 is the constant introduced in

Lemma 5.11, and consider an arbitrary t ∈ [0, 1− h]. First note that for any s, τ ∈
[t, t+ h] we have

d(γ(s), γ(τ)) ≤ Lγh <
inj(γ)

2
< inj(γ),

Furthermore, the requirement h < h3 guarantees thatHh is well-de�ned and, by Lemma 5.11,
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Figure 5.6: Representability in normal coordinates as granted by Lemma 5.12.

that Hh is LRH -Lipschitz continuous. Thus

d(γ(s), Hh(τ)) ≤ d(γ(s), γ(t)) + d(γ(t), Hh(τ)) <
inj(γ)

2
+ d(Hh(t), Hh(τ))

<
inj(γ)

2
+ LRHh

<
inj(γ)

2
+

inj(γ)

2
= inj(γ).

Proof of Theorem 5.9. Take any 0 < h < h4, t ∈ [0, 1− h] and s ∈ [t, t+ h]. By

Lemma 5.12, we can express γ and Hh in normal coordinates, see Figure 5.6. De�ne

for all τ ∈ [t, t+ h]

γ̂s(τ) = Exp−1γ(s)(γ(τ)),

Ĥs(τ) = Exp−1γ(s)(Hh(τ)).

The interpolation error in normal coordinates at γ(s) is de�ned as Ês(τ) = γ̂s(τ)−Ĥs(τ)

for every τ ∈ [t, t+ h] and by construction satis�es

Ês(t) = 0, Ês(t+ h) = 0,

d

dτ
Ês(τ)

∣∣
τ=t

= 0,
d

dτ
Ês(τ)

∣∣
τ=t+h

= 0.
(5.15)

Consider any orthonormal basis {bi}Di=1 for Tγ(s)M, denote Ês,i(τ) = ⟨Ês(τ), bi⟩γ(s) the
components functions of the error. For any �xed τ ∈ [t, t+ h], let us de�ned the function

Gi(x) = Ês,i(x)− ω(x)
Ês,i(τ)

ω(τ)
, ∀x ∈ [t, t+ h] ,

where ω(x) = (x− t)2(x− (t+ h))2. From (5.15) and the de�nition of Gi we deduce

Gi(t) = Gi(t+ h) = Gi(τ) = 0. (5.16)
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5.4 Analysis of RH interpolation

By the smoothness of the curve γ, the interpolant Hh and of the inverse retraction we

have that G ∈ C4([t, t+ h]). By Rolle's theorem, (5.16) implies G′i admits at least two

zeros in (t, t+ h) di�erent from τ . Furthermore, by the interpolation condition we have

G′i(t) = G′i(t+h) = 0. Hence, we have identi�ed at least four zeros of G′i in [t, t+ h]. By

Rolle's theorem applied to G′i, G
′′
i admits at least three zeros on [t, t+ h]. Sequentially

applying Rolle's theorem to Gi
′′ and then to G′′′i , we �nd there exists ξi ∈ (t, t+ h) such

that
G

(4)
i (ξi) = 0

⇔ Ê
(4)
s,i (ξi)− ω

(4)(ξi)︸ ︷︷ ︸
=4!

Ês,i(τ)

ω(τ)
= 0

⇔ Ês,i(τ) =
Ê

(4)
s,i (ξi)

4!
ω(τ)

For any τ ∈ [t, t+ h] we have |ω(τ)| < h4, from which we evince

|Ês,i(τ)| ≤
|Ê(4)

s,i (ξi)|
4!

h4.

Therefore, for any s ∈ [t, t+ h] we can bound the norm of interpolation error at τ given

as ∥∥Ês(τ)∥∥γ(s) = ∥∥∥ D∑
i=1

Ês,i(τ)bi

∥∥∥
γ(s)
≤ h4

4!

(
D∑
i=1

|Ê(4)
s,i (ξi)|

2

)1/2

≤ h4

4!

√
D max

i=1,...,D
|Ê(4)

s,i (ξi)|

≤ h4

4!

√
D max

i=1,...,D

∥∥∥Ê(4)
s (ξi)

∥∥∥
γ(s)

≤ h4

4!

√
D max

ξ∈[t,t+h]

∥∥∥Ê(4)
s (ξ)

∥∥∥
γ(s)

.

The appearance of the
√
D factor is a consequence of the fact the ξi given by Rolle's

theorem may di�erent from one component to the other.

An important property of normal coordinates following from Proposition 1.33 is that

radial directions map to length-minimizing geodesics, thus d(γ(τ), H(τ)) =
∥∥Êτ (τ)∥∥γ(τ).

So we can say

d(γ(τ), H(τ)) ≤ h4

4!

√
D max

s,ξ∈[t,t+h]

∥∥∥Ê4
s (ξ)

∥∥∥
2

≤ h4

4!

√
D max

s,ξ∈[t,t+h]

{∥∥∥γ̂(4)s (ξ)
∥∥∥
2
+
∥∥∥Ĥ(4)

s (ξ)
∥∥∥
2

}
Since the exponential map is a particular retraction, from Proposition 3.20 we deduce
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Chapter 5. Hermite interpolation

the expressions of γ̂
(4)
s and Ĥ

(4)
s are respectively a sum of contributions of the form

DkExp−1γ(s)(γ(ξ))

[
Di1γ(ξ)

dξi1
, . . . ,

Dijγ(ξ)

dξij

]
and

DkExp−1γ(s)(Hh(ξ))

[
Di1Hh(ξ)

dξi1
, . . . ,

DikHh(ξ)

dξik

]
with k ∈ {1, 2, 3, 4} and ij ≥ 0 such that i1+ · · ·+ ik = 4 indicating the order of manifold

curve derivative and where DkExp−1γ(s)(·) is a multilinear operator: the linear operator

corresponding to the case k = 1 is de�ned in (3.5) whereas the multilinear operators

associated to the cases k = 2 and k = 3, 4 are introduced respectively in De�nition 3.17

and De�nition 3.19. In order to invoke for the particular case of the exponential map the

Lipschitz constant of the inverse retraction given Proposition 3.12 and the upper bound

for the operator norms of the inverse retraction di�erentials given in Propositions 3.18

and 3.20, we restrict h ≤ h4/3 so that the γ(ξ) and Hh(ξ) are at most inj(γ)/3 away

from γ(s), for every s ∈ [t, t+ h] and t ∈ [0, 1− h] . Then, the norm of each term can

be bounded as∥∥∥∥DkExp−1γ(s)(γ(ξ))

[
Di1γ(ξ)

dξi1
, . . . ,

Dijγ(ξ)

dξij

]∥∥∥∥
γ(s)

≤M2,k(γ, 1/3)

∥∥∥∥Di1γ

dξi1

∥∥∥∥
∞
. . .

∥∥∥∥Dikγ

dξik

∥∥∥∥
∞
,

where ∥∥∥∥Dijγ

dξij

∥∥∥∥
∞

= max
t∈[0,1]

∥∥∥∥Dijγ(t)

dξij

∥∥∥∥
γ(t)

and, provided h < h2, using the constants given by assumption (5.8),∥∥∥∥DkExp−1γ(s)(Hh(ξ))

[
Di1Hh(ξ)

dξi1
, . . . ,

DikHh(ξ)

dξik

]∥∥∥∥
γ(s)

≤M2,k(γ, 1/3)L
(i1)
RH · · · · · L

(ik)
RH

This produces a constant κ > 0 such that for any h < h̄ := min {h2, h4/3} and any

t ∈ [0, 1− h] we have
max

τ∈[t,t+h]
d(γ(τ), Hh(τ)) <

√
D
κ

4!
h4.

5.5 Numerical experiments

The following section is dedicated to numerical experiments illustrating the RH inter-

polation method, summarized in Algorithms 5.1 and 5.2. All experiments have been

carried out in Matlab 2019b leveraging the di�erential geometry tools of the Manopt

library [BMAS14] on a laptop computer with Intel i7 CPU (1.8GHz with single-thread

mode) with 8GB of RAM, 1MB of L2 cache and 8MB of L3 cache.
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5.5 Numerical experiments

5.5.1 Academic examples

Our �rst goal is to measure experimentally the accuracy of the RH interpolation method

in order to highlight the trend of convergence of the interpolation error predicted by

Theorem 5.9. For this, we apply RH interpolation on two problems arising from nu-

merical linear algebra: the computation of a smooth QR decomposition and a smooth

singular value decomposition for a given smooth matrix curve t ∈ [a, b]→ A(t) ∈ Rm×n.
Assuming for the moment that these smooth decompositions exist and can be computed,

the experimental setup is the following. We sample the decomposition and its �rst-order

derivative at uniformly spaced location and interpolate this data with di�erent manifold

interpolation schemes. We then vary the sampling step size h and measure the maximum

interpolation error with respect to the original smooth decomposition.

Comparing with other retraction-based schemes

The RH method is compared with two interpolation schemes that only use retrac-

tions. First, the analog of the piecewise linear interpolant is de�ned as L(t)
∣∣
[ti,ti+1]

=

c0
(
t−ti
h , pi, pi+1

)
, where c0 is the endpoint retraction curve de�ned in De�nition 3.4. We

then consider a naive piecewise Hermite interpolant which uses the same control points

as the RH scheme but where only the endpoint curve c0 is used as the building block for

the generalized de Casteljau procedure. The resulting curve is then not expected to be

continuously di�erentiable at the junctions.

Implementation details

To measure the error of an approximation t→ Ã(t) to a matrix manifold curve A(t), we

consider the pointwise errors

εP (t) =
∥∥∥A(t)− Ã(t)∥∥∥

F
and εD(t) =

∥∥∥Ȧ(t)− ˙̃A(t)
∥∥∥
F
.

For simplicity and the purpose of these experiments, we compute all required derivatives

via centered �nite di�erences:

Ȧ(t) ≃ ΠA(t)

(
A(t+∆t)−A(t−∆t)

2∆t

)
, ∆t = 10−5. (5.17)

We point out that for the particular case of smooth parameter dependent QR and SVD

factorizations, closed-form expressions for the derivatives of the factors are known [DE99]

and could have been used as an alternative. Note that Theorem 5.9 uses the Riemannian

distance to measure the interpolation error while we measure the error with the ambient

space distance. It can be shown that in cases like ours where the manifold is embedded

into an Euclidean space and endowed with the induced metric, the Euclidean distance

is locally equivalent to the Riemannian distance, see e.g. [AEM07, Appendix A]. In our
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context, this precisely means

lim
x→y

d(X,Y )

∥X − Y ∥F
= 1, ∀X,Y ∈M ⊆ Rm×n.

Q-factor interpolation

For convenience, the example matrix curve we consider is the same as in [Zim20, �5.2].

It consists of the matrix polynomial

Y (t) = Y0 + tY1 + t2Y2 + t3Y3, Yi ∈ Rn×k, n = 500, k = 10, t ∈ [−1.1, 1.1] , (5.18)

where the entries of the matrices Yi are pseudo-randomly generated from uniform dis-

tributions on [0, 1], [0, 0.5], [0, 0.5], [0, 0.2] respectively. The matrix Y (t) is generically

full-rank for every t ∈ [−1.1, 1.1] and is smooth, thus owing to [DE99, Proposition 2.3]

there exist unique smooth curves t → Q(t), with Q(t) belonging to the Stiefel manifold

St(n, k), and t→ R(t) ∈ Rk×k with positive diagonal entries, such that Y (t) = Q(t)R(t).

The positivity of the diagonal entries is explicitly enforced in the experiment. We fo-

cus on interpolating the curve Q(t) on St(n, k). At each sample location ti we store

pi = Q(ti) and vi = Q̇(ti) obtained with (5.17).

In Figure 5.7a, we plot the pointwise and derivative error as a function of the curve

parameter t when interpolating (5.18) with di�erent schemes. While all schemes inter-

polate correctly the data points (left panel), only the RH scheme manages to match

the derivative at sample points (right panel). Figure 5.8a illustrates the result of Theo-

rem 5.9. Plotting the maximum pointwise interpolation error against the sampling step

sizes h reveals the expected O(h4) trend for the RH scheme. Interestingly, as in the

Euclidean case, the derivative error converges one order slower than the pointwise error.

For these experiments we used the P-factor retraction, but analogous result are found

with the Q-factor retraction. The di�erence between the two retractions is also negligible

in terms of evaluation time as it can be seen from Table 5.1. These results also show

that with the o�ine/online procedure proposed in Algorithms 5.1 and 5.2, the evaluation

cost of the RH scheme is comparable with the one of other schemes. Note that, for a fair

comparison, the other schemes have also been implemented in an o�ine/online fashion

to minimize evaluation cost.

SVD interpolation

We interpolate the singular value decomposition of a matrix curve of constant and low

rank. We consider m = 104, n = 300 and rank r = 10. We take

Y (t) = Y0 + tY1 + t2Y2 + t3Y3, Yi ∈ Rm×r

Z(t) = Z0 + tZ1 + t2Z2, Zi ∈ Rr×n,
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Figure 5.7: Interpolation error vs t for di�erent retraction-based interpolants: linear
interpolant (L), naive Hermite interpolant (H) and the RH interpolant.
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Figure 5.8: Interpolation error as a function of the sampling step size h for di�erent
retraction-based interpolants: linear interpolant (L), naive Hermite interpolant (H) and
the RH interpolant.

Table 5.1: Average time per evaluation for the Q-factor and SVD interpolation exper-
iments of Figure 5.7a and Figure 5.7b. In the last two lines we distinguish the simple
and the optimized o�ine/online implementations of the RH scheme (see Algorithms 5.1
and 5.2).

Q-factor interpolation SVD interpolation

Retraction used Q-factor P -factor Orthographic

Linear (L) 1.524 · 10−4 2.049 · 10−4 1.710 · 10−3
Hermite (H) 1.540 · 10−3 1.596 · 10−3 1.147 · 10−2

Retraction Hermite (RH) 4.335 · 10−3 3.531 · 10−3 1.992 · 10−2
Retraction Hermite (RH, optimized) 2.226 · 10−3 2.188 · 10−3 1.558 · 10−2
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where the entries of Y0, Z0 and Y1, Y2, Y3, Z1, Z2 are drawn for uniform random distri-

butions on [0, 1] and [0, 0.5] respectively. Since the factors are generically full rank, the

curve

W (t) = Y (t)Z(t)⊤, t ∈ [−0.5, 0.5] (5.19)

is of rank r for every t. This example has also been taken from [Zim20, �5.3] together

with the suggestion of Remark 6 to ensure the smoothness of the computed SVD decom-

position path U(t)Σ(t)V (t)⊤ = W (t). Note that this may cause negative values in the

diagonal term.

The experimental results for the SVD path of (5.19) are reported in Figures 5.7b and 5.8b.

The comments are analogous to the one we made for the Q-factor interpolation exper-

iments: only the RH scheme manages to match the prescribed derivatives at the nodes

thereby producing the expected O(h4) error convergence trend. For these experiments,

the naive retraction-based Hermite interpolation scheme H produces a good approxima-

tion in terms of error, practically as good as the RH scheme. However, the curve H is

not globally continuously di�erentiable.

The computation time per evaluation for the di�erent schemes is reported in Table 5.1.

Interestingly, while for the Stiefel manifold, a naive implementation of the RH scheme

is approximately two times slower than the o�ine/online approach, for the low-rank

manifold, the non-optimized code is only 30% more expensive. We attribute this to

the fact that the inverse orthographic retraction is relatively cheap compared to the

retraction and so the few inverse retractions spared by the o�ine/online implementation

do not pay o� as much.

The need for bounded derivatives

The fourth-order convergence achieved by the RH interpolation scheme was proved in

Theorem 5.9 under the assumption that all derivatives up to order four of the interpo-

lation curve remain bounded as h→ 0, see (5.8). As we now illustrate, this assumption

can in fact not be removed. Recall that the RH interpolation scheme was built to satisfy

Proposition 5.3 by making the choice (5.4). However, this choice was not unique and was

motivated by the need to alleviate evaluation cost. It turns out that choice (5.4) is also

important because it satis�es the bounded derivatives assumption (5.8). In Figure 5.9a

we plot the maximum norm of the second, third and fourth-order derivatives as a func-

tion of the sampling size h for the RH scheme and for an alternative scheme denoted

RH∗ where choice (5.4) is modi�ed with r1 = 0 instead of r1 = 1/2. It appears that

unlike the RH scheme, the RH∗ scheme features a fourth derivative diverging as O(h−1).

Despite producing a continuously di�erentiable curve which interpolates the derivatives,

the alternative scheme loses one order of accuracy as can be seen from Figure 5.9b.

These experiments were conducted on the Q-factor interpolation of (5.18) on the Stiefel

manifold (see Figure 5.8a) but analogous results were found on the SVD interpolation

instance.

The choice (5.4) is not the only one satisfying assumption (5.8). For instance, for any
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Figure 5.9: Experiments with an alternative interpolation scheme still satisfying Propo-
sition 5.3 but failing to satisfy assumption (5.8).

choice of r1 ∈ [0, 1] if we take r01(s, t) = (1 − r1)t, r12(s, t) = (1 − r1) + r1t and

r012(u, s, t) = t we still achieve O(h4) error convergence. However, the evaluation cost of

such schemes is higher and among those that we could �nd, choice (5.4) was the cheapest.

The relationship between the choice of these functions and the fourth derivative of the

scheme is intricate and we could not establish an a priori criterion to discriminate between

schemes satisfying (5.8) and those violating it.

5.5.2 Applications

In this section, we illustrate two possible applications of the RH interpolation scheme.

We focus on applications involving the �xed-rank manifold as we believe they are the

most relevant.

Riemannian continuation

As a �rst application, we propose an extension of the prediction-correction numerical

continuation algorithm for parameter dependent Riemannian optimization developed in

Chapter 4. The accuracy of the prediction step of the continuation algorithm in approx-

imating the solution to the next problem can be characterized by the prediction order,

see De�nition 4.4. Assuming the well-posedness of the RH interpolant and the result of

Theorem 5.9 extend to an interval larger than the interpolation interval, using the RH

interpolation scheme in the prediction step would produce a prediction order pRH = 4

compared to pC = 1 and pT = 2 for the classical and tangential prediction schemes. In

practice, in the notation of Algorithm 4.1 with constant step size hk = h for every k ≥ 0,

we de�ne the RH prediction step as

yk+1 =

{
Rxk (htk) k = 0,

H(2h; {xk−1, tk−1, 0} {xk, tk, h}), k ≥ 1.
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Figure 5.10: RH continuation algorithm on a favorable instance of matrix completion.
Left: Riemannian gradient of the sequence of problems versus total iteration count.
Right: objective function value of the �nal optimization problem versus total iteration
count.

Table 5.2: Performance statistics of the Riemannian continuation algorithm for three
di�erent prediction schemes over 100 randomly generated instances of the matrix com-
pletion problem.

Time (s) Correction steps (RTR)
Mean Median Mean Median

Classical 3.683 3.625 59.56 60

Tangential 8.013 4.944 69.95 53

RH 3.888 2.783 48.72 45

In the �rst step, we do standard tangential prediction and from the second predic-

tion on, we evaluate in τ = 2h the RH interpolant of the point and derivative data

(xk−1, tk−1), (xk, tk) ∈ TM located at τ = 0 and τ = h respectively.

The RH prediction-correction continuation algorithm with �xed step size is applied to

the same low-rank matrix completion problem considered in [SK22a, �5]. We �x the

number of steps to Nsteps = 5, use the Riemannian Trust Regions (RTR) algorithm as

a corrector and vary the prediction scheme. We report in Table 5.2 a comparison of the

computational e�ort required to solve the problem with each scheme. There are two fac-

tors that determine the performance of the algorithm. First, the more ill-conditioned the

�nal optimization problem is, the more the last RTR correction encounters stagnation.

Second, the more the underlying solution curve to the family of optimization problem

is smooth, the more tangential and RH prediction pays o�. In fact, high prediction

order is achieved only when the underlying solution curve to the family of optimization

problems is su�ciently smooth. Partly due to the choice of the homotopy, the solution

curve often exhibited discontinuities thereby undermining the e�ciency of tangential and

RH prediction. Because of this, these two schemes are on average slower than classical

prediction. However, when the underlying solution curve happens to be smooth, e.g.

for the instance of Figure 5.10, the RH prediction bene�ts from the increased prediction

accuracy. As can be seen from the computed medians for computation time and total

RTR iteration count, the RH can signi�cantly reduce the computational e�ort compared

to classical and tangential prediction.
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Dynamical-low-rank approximation interpolation

Dynamical low-rank approximation (DLRA) techniques are used to address the time

integration of space discretized partial di�erential equations to mitigate computational

costs and memory requirements. For 2D problems, the discretization of the PDE yields

a matrix ordinary di�erential equation that DLRA techniques evolve on low-rank man-

ifolds [KL07]. See also Chapter 6 for a more detailed introduction. We consider DLRA

integrators for which the rank remains �xed so that their output consists of a sequence

{Ỹi}Nt
i=0 ⊂ Mk, where k is the chosen rank, such that Ỹi ≃ Y (ti), the solution at time

ti of the matrix di�erential equation Ẏ = F (Y, t), Y ∈ Rm×n, t ∈ [0, T ]. During the

numerical integration, for each Ỹi we can store the best approximation of the vector

F (Yi, ti) on the tangent space TỸiMk, obtained as Ṽi := ΠỸi(F (Ỹi, ti)). Then, the col-

lection of triplets {(Ỹi, Ṽi, ti)}Nt
i=0 can be fed to our RH interpolation scheme to obtain a

continuously di�erentiable curve onMk that approximates the best rank k solution for

every time t. Given the high accuracy of the interpolation scheme, one can expect that

it is su�cient to interpolate a small fraction of the time samples to obtain a satisfactory

approximation of the full solution curve.
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Figure 5.11: Relative error with reference solution of the interpolation of DLRA samples.
The error εDLRA corresponds to interpolating all samples whereas εSubDLRA only 1 out
of 20 samples.

We tested this hypothesis on the test case of [KEC23, �7.1] for which the DLRA integrator

is the so-called unconventional time integrator [CL22]. For conciseness, we refer the

reader to these two references for details on the radiation transport equation at hand.

The time stepping scheme is also known as the KLS projector splitting integrator and

is discussed in more detail in Chapter 6 (see Section 6.2). The parameters for the

experiments are the same as in [KEC23, �7.1]: the integration is done on Mk ⊂ Rm×n

with m = 800, n = 100 and k = 15. The only di�erence is that we turn o� the rank

adaptivity option of the integrator since we want the initial condition and all iterates to

remain onMk. In order to obtain a rank 15 initial condition, we run the rank-adaptive

version starting from the rank 1 initial condition used in [KEC23, �7.1] and store the
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Chapter 5. Hermite interpolation

�rst sample of rank 15. From this initial condition, we run the unconventional DLRA

integrator with a step size chosen to have a CFL constant of 1. This yields {Ỹi}Nt
i=0 ⊂Mk.

We then obtain a reference solution by performing a forward Euler integration of the ODE

in Rm×n with a step size 20 times smaller than the unconventional integrator. These

samples are then projected to Mk with the k-truncated SVD, and we denote them

{Yj}20Nt

j=0 . Finally, we assemble three RH interpolants:

Ỹ (t) = H

(
t;
{(
Ỹi, Ṽi, ti

)}Nt

i=0

)
,

Ŷ (t) = H

(
t;
{(
Ỹ20l, Ṽ20l, t20l

)}⌊Nt/20⌋

l=0

)
,

Y (t) = H
(
t; {(Yj , Vj , tj)}20Nt

j=0

)
where tangent vectors Ṽi and Vi are obtained as explained previously. The curve Ŷ

interpolates one every 20 samples of the DLRA solution, so roughly 5% of the integrator's

output. Yet, as can be seen from Figure 5.11, the relative errors

εDLRA(t) =

∥∥∥Ỹ (t)− Y (t)
∥∥∥
F

∥Y (t)∥F
, εSubDLRA(t) =

∥∥∥Ŷ (t)− Y (t)
∥∥∥
F

∥Y (t)∥F
,

are almost identical. Surprisingly, the sub-sampled interpolation curve Ŷ can be more

precise, though from a negligible amount. The real advantage comes in terms of storage

requirements: the information needed to evaluate the sub-sampled interpolation curve Ŷ

occupies 20 times less memory than the information for the curve Ỹ and approximately

4 times less storage than the full collection of samples {Ỹi}Nt
i=0. This application of

RH interpolation can be thought as a compression post-processing that enhances the

portability of DLRA solutions.

5.6 Conclusion

In this chapter we have proposed a manifold interpolation technique to address Hermite

interpolation of manifold curves. The method is general enough to be applicable to every

manifold for which a retraction/inverse retraction pair is available, thereby avoiding

the need for Riemannian exponential and logarithmic maps used by other interpolation

schemes that take into account derivative information.

The novel notion of retraction-convex sets ensures the well-posedness of the method,

provided that consecutive interpolation data points are su�ciently close. Theorem 5.9

generalizes to our scheme the classical interpolation error convergence result for polyno-

mial Hermite interpolation in Euclidean spaces. The predicted O(h4) convergence trend

has also been experimentally observed for academic interpolation problems on the Stiefel

manifold and the �xed-rank matrix manifold. The high-order accuracy of the method

allowed us to propose an improvement to the prediction-correction Riemannian continua-
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5.6 Conclusion

tion algorithm introduced in Chapter 4 and to suggest a strategy to compress the output

of dynamical low-rank matrix integrators.

Just like curve interpolation is a basic tool in many context of numerical analysis, we

believe the RH interpolation scheme could serve as a building block for other numerical

methods on manifolds. As an illustration of this, in the next chapter the interpolation

scheme is used to de�ne a numerical integration method for manifold-constrained ODEs.
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6 Manifold integration

This chapter introduces two novel numerical integration schemes for manifold-constrained

ordinary di�erential equations: the accelerated forward Euler (AFE) method and the

Ralston-Hermite (RH) method. Both the proposed methods are de�ned using retractions

and building upon the perspective developed in Chapter 3 and Chapter 5 of seeing

retractions as a tool to construct portions of manifold curves approximating an underlying

curve. By leveraging the results developed in Chapters 3 and 5, the two methods are

argued to exhibit local truncation error of order three and numerical experiments suggests

that both methods can achieve global error convergence of order two.

Despite the broad applicability of the methods, the present work focuses on the class of

di�erential equations evolving on low-rank manifolds encountered in dynamical low-rank

approximation (DLRA) [KL07]. This choice is motivated by the rising interest of these

techniques in applications. Therefore, the accuracy and performance of the methods are

demonstrated on classical problem instances from the DLRA literature and compared

with state-of-the-art DLRA techniques. As customary for this type of problems, we also

investigate the stability to small singular values of the new schemes.

This chapter takes the viewpoint of retractions on existing DLRA techniques to underline,

as already noticed by several authors, that retractions are a convenient language to

build numerical integration schemes on manifolds [KV19, CL23]. It helps also to shed

new light on some features of DLRA. In particular, in this chapter gives a geometric

interpretation of the KLS unconventional integrator [CL22] by showing that it is a second-

order retraction on the �xed-rank matrix manifold which coincides with the orthographic

retraction up to high-order terms.

Contributions and outline of the chapter. We �rst introduce and state the DLRA

problem of interest in Section 6.1 together with a discussion on the error analysis results

of existing methods. The link between retractions and existing DLRA numerical inte-

gration techniques, in particular the KLS scheme, is the object of Section 6.2. The two

main contributions are presented in Section 6.3: the AFE method in Section 6.4 and

the RH integration scheme in Section 6.5. For completeness and to complement the

derivation of the AFE scheme, we provide in Section 6.4.1 a overview on the de�nition of

the Weingarten map for embedded submanifolds of Euclidean spaces, illustrated by the
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Chapter 6. Manifold integration

(a) Accelerated forward Euler (AFE) method. (b) Ralston-Hermite (RH) method.

Figure 6.1: Numerical integration of a simple ordinary di�erential equation on S2 with
di�erent retraction-based methods illustrating the accuracy of the methods proposed in
this chapter. The di�erential equation is of the form ẏ = γ̇(t) with y0 = γ(0) for a given
curve γ ⊂ S2 (black). For N = 15 and N = 30 numerical integration steps of equal
size, the retraction-based forward Euler method (6.4) is compared with the accelerated
forward Euler (blue) presented in Section 6.4 and the Ralston-Hermite method (green)
presented in Section 6.5.

example of the �xed-rank matrix manifold. Finally, numerical experiments are reported

in Section 6.6. A preprint on the contents of this chapter is in preparation [SCK23].

6.1 Background on DLRA

The starting point of DLRA is to acknowledge that the space-discretization of a large

class of partial di�erential equations results in ordinary di�erential equations de�ned on

a high-dimensional matrix or tensor vector space E whose solutions exhibit a low-rank

structure, for an appropriate notion of rank depending on E . This includes equations

with di�usive or advective terms but also certain types of nonlinearities. In this chapter,

we consider the case where E = Rm×n, with m,n≫ 1 and so the notion of rank is simply

the matrix rank. Let us consider an initial value problem governed by a smooth vector

�eld F ∈ X(Rm×n) which, for ease of exposition, does not explicitly depend on time:{
A′ = F (A), t ∈ [0, T ] ,

A(0) = A0 ∈ Rm×n.
(6.1)

In this setting, DLRA can be summarized as trying to �nd an approximation of the so-

called ambient solution A(t) onto the manifold of rank-k matrices, with k ≪ min {m,n}.
The goal is to gain in computational e�ciency without compromising the accuracy too

much. Indeed, representing the approximation in factored form drastically reduces stor-

age complexity while the low-rank approximability of the ambient solution makes low

approximation error possible. Then, the central challenge of DLRA consists of comput-

ing e�ciently a factored low-rank approximation of the ambient solution without having

to �rst estimate the ambient solution and then to truncate it to an accurate rank-k ap-

proximation. In the following, we restrict to the case where the rank is �xed a priori

152



6.1 Background on DLRA

and does not change throughout the integration interval. Then, the DLRA problem in

consideration associated to the ambient equation (6.1) can be formalized as follows.

Problem 6.1. Given a smooth vector �eld F ∈ X (Rm×n), an initial matrix A0 ∈ Rm×n

and a target rank k such that σk(A0) > σk+1(A0), the DLRA problem consists of deter-

mining t 7→ Y (t) ∈Mk solving the following initial value problem{
Ẏ = Π(Y )F (Y ), t ∈ [0, T ] ,

Y (0) = Y0,
(6.2)

where Y0 = ΠMk
(A0) ∈Mk, the rank-k truncated singular value decomposition of A0.

The origins of the above problem are rooted in the Dirac-Frenkel variational principle,

by which the dynamics of (6.1) are optimally projected onto the tangent space of the

manifold:

∥F (Y )−Π(Y )F (Y )∥F = min
v∈TYMk

∥F (Y )− V ∥F . (6.3)

This optimality criterion together with the optimal choice of Y0 are the local �rst-order

approximation of the computationally demanding optimality Yopt(t) = ΠMk
(A(t)). The

gap (6.3) between the original dynamics and the projected dynamics of Problem 6.1 is

known as the modeling error [KV19]. Given appropriate smoothness requirements on F

and assuming the modeling error can be uniformly bounded in a neighborhood U of the

exact solution of (6.2) as

max
Y ∈U∩Mk

∥F (Y )−Π(Y )F (Y )∥F ≤ ε,

then it can be shown, see e.g. [KV19, Theorem 2], there exists a constant depending on

the �nal time T such that

∥A(T )− Y (T )∥F ≤ C(T ) (δ0 + ε) .

In recent years, several computationally e�cient numerical integration schemes to ap-

proximate the solution to Problem 6.1 have been proposed [LO14, CL22, KV19]. Their

output is a time discretization of the solution, where Yi ∈Mk approximates Y (i∆t), for

every i = 0, . . . , N , assuming a �xed step size ∆t = T/N is used. Existing error analysis

results [KLW16, KV19] state that the error at �nal time can be bound as

∥YN −A(T )∥F ≤ C̃(T ) (δ0 + ε+∆tq)

for some integer q ≥ 1 and a constant C̃(T ) > 0 associated with each integration scheme

that depends on the problem at hand. The constant q is called the convergence order of

the time stepping method.

The most direct strategy to numerically integrate Problem 6.1 in the factored represen-

tation of Y is to derive individual evolution equations for the factors [KL07]. However,

the computational gain of such approach is undermined by the high sti�ness of the re-
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Chapter 6. Manifold integration

sulting equations when the k-th singular value of the approximation becomes small. In

fact, this forces unreasonable step size restrictions to guarantee stability of the integra-

tor. Projector-splitting schemes proposed by Lubich and Oseledets [LO14] were the �rst

remedy to this issue. Since then, a collection of methods have been designed to be stable

in presence of small singular values [KLW16].

6.2 Fixed-rank retractions and DLRA numerical integrators

In this section, we introduce a selection of well-known DLRA integration techniques

placing the emphasis on their connection with a particular retraction onMk. Indeed, if

R denotes a retraction on the rank-k matrix manifold then

Yi+1 = RYi (∆tΠ(Yi)F (Yi)) (6.4)

is a natural extension of the forward-Euler method [Shu86]. Several DLRA integration

schemes are realized in this way for di�erent choices of retractions.

Metric-projection retraction. The use of metric projection to numerically inte-

grate more general manifold-constrained ODEs dates back to so-called projection meth-

ods, as presented for instance in the classic reference [HLW10]. Each integration step is

carried out in the embedding space and is followed by the closest-point projection onto

the constraint manifold.

For the �xed-rank matrix manifold embedded into Rm×n, the metric projection coincides
with the rank-k truncated SVD, see Section 2.4.4. Hence, for the DLRA di�erential

equation of Problem 6.1, one step of the projected forward Euler method (PFE) can be

written as

Y PFE
i+1 = RSVD

Yi (∆tΠ(Yi)F (Yi)) .

Under smoothness assumption for F , this method is of order q = 1 [KV19, Theorem 4].

For higher accuracy, in principle, one could replace the forward Euler update given as

argument to the retraction with the update of any high-order time-stepping technique

such as explicit Runge-Kutta methods. This strategy is pursued in [KV19] leading to the

so-called projected Runge-Kutta (PRK) methods. Note that PRK with s = 1 coincides

with the PFE method above. The general form of PRK methods with s ≥ 1 stages is

Y PRK
i+1 = RSVD

Yi

(
∆t

s∑
j=1

bjκj

)
,

for some weights bj ∈ R and tangent vectors κj , j = 1, . . . , s obtained by suitably

projecting the original intermediate updates of the Runge-Kutta method. Using the SVD

retraction is particularly important because tangent vectors κj may not belong to the

tangent space at Yi. Yet, the de�nition of the metric projection retraction (2.11) remains

well-posed for any Z ∈ Rm×n su�ciently small. For this reason, the SVD retraction is

154



6.2 Fixed-rank retractions and DLRA numerical integrators

called an extended retraction, see [AO15, �2.3]. Any such extended retraction can be

used for PRK methods with more than one stage.

Projector-splitting KSL retraction. The expression for the projection onto the

tangent space appearing in the di�erential equation of Problem 6.1 is the sum of several

terms, see (1.17). Projector-splitting techniques leverage this decomposition to build

numerical integration schemes in which each term is sequentially integrated. This leads

to the KSL projector splitting scheme introduced in [LO14]. The scheme is proved

to be �rst-order accurate independently of the presence of small singular value. As

shown in [AO15, Theorem 3.3], the evolution after one time step using the KSL scheme

actually de�nes a second-order retraction for the �xed-rank manifold that coincides with

orthographic retraction up to high-order terms. We denote RKSL and its computation

summarized in Algorithm 6.1. The KSL integration scheme can then simply be written

as

Y KSL
i+1 = RKSL

Yi (∆tΠ(Yi)F (Yi)) .

Algorithm 6.1 KSL retraction

Input: X = U0Σ0V
⊤
0 ∈Mk, Z = (M,Up, Vp) ∈ TXMk

1: (K-step) U1Σ̂1 = U0(Σ0 +M) + Up with U1 orthonormal;
2: (S-step) Σ̃0 = Σ̂1 − (U⊤1 Up + (U⊤1 U0)M);
3: (L-step) V1Σ

⊤
1 = V0Σ̃

⊤
0 + Z⊤U1 with V1 orthonormal;

4: Optional: [Ũ1, Σ̃1, Ṽ1] = SVD(Σ1);
5: Optional: U1 ← U1Ũ1, Σ1 ← Σ̃1, V1 ← V1Ṽ1;
6: return : U1Σ1V

⊤
1 := RKSL

X (V );

Modi�ed projector-splitting KLS retraction. Recently, a modi�cation to KSL

projector-splitting method was proposed [CL22] to improve its performance, while main-

taining the stability and accuracy properties of KSL. The scheme goes by the name of

KLS integrator and it is a modi�cation of the KSL scheme where the L-step is performed

before the S-step. This comes with the computational advantage of being able to per-

form the K-step and L-step in parallel without compromising �rst-order accuracy and

stability with respect to small singular values. As we prove in the next section, one step

of the KLS scheme also de�nes a retraction for the �xed-rank manifold. We denote it

RKLS and its computation is detailed in Algorithm 6.2. Then, as for other scheme so far,

the KLS integration scheme for DLRA takes the simple form

Y KLS
i+1 = RKLS

Yi (∆tΠ(Yi)F (Yi)) .

6.2.1 The KLS retraction

A careful inspection of the formulas de�ning the orthographic retraction for the �xed-

rank matrix manifold reveals a structure very similar to one step of the unconventional
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integrator of [CL22], also known as the KLS scheme which we report in Algorithm 6.2.

In order to facilitate the identi�cation, we rewrote in Algorithm 6.3 the pseudo-code to

compute the orthographic with a notation closer to the one used for the KLS scheme

and where the term Σ1 is computed without explicitly forming the factor SU and SV
(see Algorithm 2.8 for the original notation). This immediately highlights that the KLS

scheme and the orthographic retraction di�er only in the computation of Σ1 at line 5.

Denoting ΣKLS1 and ΣORTH1 the quantities computed respectively by the each algorithm,

we have

ΣORTH1 − ΣKLS1 = U⊤1 Up(Σ0 +M)−1V ⊤p V1.

Algorithm 6.2 KLS retraction

Input: X = U0Σ0V
⊤
0 ∈Mk, Z = (M,Up, Vp) ∈ TXMk

1: (K-step) U1SU = U0(Σ0 +M) + Up with U1 orthonormal;
2: (L-step) V1SV = V0(Σ0 +M⊤) + Vp with V1 orthonormal;
3: L = U⊤1 U0;
4: R = V ⊤1 V0;
5: (S-step) Σ1 = L

[
(Σ0 +M)R⊤ + V ⊤p V1

]
+ U⊤1 UpR

⊤; ▷ equivalent to U⊤1 (X + Z)V1

6: Optional: [Ũ1, Σ̃1, Ṽ1] = SVD(Σ1);
7: Optional: U1 ← U1Ũ1, Σ1 ← Σ̃1, V1 ← V1Ṽ1;
8: return : U1Σ1V

⊤
1 := RKLS

X (Z);

Algorithm 6.3 Orthographic retraction with alternative computation of Σ1

Input: X = U0Σ0V
⊤
0 ∈Mk, Z = (M,Up, Vp) ∈ TXMk

1: U1SU = U0(Σ0 +M) + Up with U1 orthonormal;
2: V1SV = V0(Σ0 +M⊤) + Vp with V1 orthonormal;
3: L = U⊤1 U0;
4: R = V ⊤1 V0;
5: Σ1 = L

[
(Σ0 +M)R⊤ + V ⊤p V1

]
+ U⊤1 UpR

⊤ + U⊤1 Up(Σ0 +M)−1V ⊤p V1,

6: Optional: [Ũ1, Σ̃1, Ṽ1] = SVD(Σ1);
7: Optional: U1 ← U1Ũ1, Σ1 ← Σ̃1, V1 ← V1Ṽ1;
8: return : U1Σ1V

⊤
1 := RORTH

X (Z);

Using this observation together with the second-order property of the orthographic re-

traction allows us to show the KLS procedure actually de�nes a second-order retraction.

This link with the orthographic retraction mirrors the same observation made for the

closely related KSL scheme [AO15, Theorem 3.3].

Proposition 6.2. The procedure of Algorithm 6.2 de�nes a second-order retraction called

the KLS retraction.

Proof. For any X ∈ Mk, if Z ∈ TXMk has su�ciently small norm, the orthonormal-

izations of the �rst two lines of Algorithm 6.2 are uniquely de�ned since the matrices to

orthonormalize then have full rank. By smoothness of the orthonormalization process,
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6.3 Curve approximation time-stepping paradigm

if Z is su�ciently small the matrices L and R have full rank, and analogously LΣ0R
⊤.

Hence, Σ1 has full rank and U1Σ1V
⊤
1 = RKLS

X (Z) is uniquely and smoothly de�ned for

any Z in a neighborhood of the origin of TXMk and belongs toMk. Consider the curves

t 7→ RORTH
X (tZ) and t 7→ RKLS

X (tZ), well-de�ned for su�ciently small t. These curves

share the left and right singular vectors U1(t) and V1(t), hence their di�erence is given

by

RORTH
X (tZ)−RKLS

X (tZ) = t2U1(t)
⊤Up(Σ0 + tM)−1V ⊤p V1(t) = t2C(t),

where C(t) := U1(t)
⊤Up(Σ0 + tM)−1V ⊤p V1(t). Let us show that C(t) = o(t), i.e.

limt→0C(t)/t = 0. Since U1(0) = U0 and V1(0) = V0, by de�nition of tangent space

ofMk, we know that U1(0)
⊤Up = 0 and V ⊤p V1(0) = 0. Hence C(0) = 0 and therefore

lim
t→0

C(t)

t
= lim

t→0

C(t)− C(0)
t

.

This coincides with C ′(0) since C is smooth for small t. But since

C ′(0) = U ′1(0)
⊤UpΣ

−1
0 V ⊤p V1(0)︸ ︷︷ ︸

=0

+ U1(0)
⊤Up︸ ︷︷ ︸

=0

d

dt
(Σ0 + tM)−1

∣∣
t=0

V ⊤p V1(0)︸ ︷︷ ︸
=0

+ U1(0)
⊤Up︸ ︷︷ ︸

=0

Σ−10 V ⊤p V
′
1(0) = 0

we can infer that C(t) = o(t) and therefore that RKLS
X (tZ) = RORTH

X (tZ) + o(t3). In-

troducing the geodesic γX,Z(t) = ExpX(tZ), by the second-order property of the or-

thographic retraction, the second statement of Proposition 2.11 yields RORTH
X (tZ) =

γX,Z(t) +O(t3). Combining the two result leads to

RKLS
X (tZ) = RORTH

X (tZ) + o(t3) = γX,Z(t) +O(t3) + o(t3) = γX,Z(t) +O(t3).

This implies RKLS
X is a second-order retraction by using in the other direction the second

statement of Proposition 2.11.

6.3 Curve approximation time-stepping paradigm

Before proceeding to the derivation of the new integration schemes, we �rst brie�y de-

scribe the rationale behind these methods. In order to achieve a time-stepping scheme on

manifolds with high-order approximation power, we seek for high-order integration meth-

ods for ordinary di�erential evolving in an Euclidean spaces where the approximation at

each step can be interpreted as the evaluation of a curve which locally approximates the

exact solution. Provided the approximating curve can be described in geometric terms,

such as interpolatory conditions, retraction curves can be used to construct the manifold

counterpart of the scheme.

The accuracy of a given numerical integration techniques can be assessed by estimating

how one step of the numerical scheme deviates from the exact solution of the di�erential
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equation. For the ambient initial value problem (6.1), the error introduced by perform-

ing one step of size ∆t starting from the exact solution A(t) with a certain numerical

integration scheme is the so-called local truncation error. For a �xed t it is de�ned as a

function of the step size by

τlocal(∆t) =
∥∥∥A(t+∆t)− Ã(t+∆t)

∥∥∥,
where Ã(t+∆t) is the approximation returned by the scheme. For general linear meth-

ods such as Runge-Kutta (RK) and linear multistep methods (LMS), if the local trun-

cation error can be bounded uniformly in t by O(∆tq+1) and the scheme is stable, then

performing N ≥ 1 steps of size T/N results in a maximum error on [0, T ] of order

O(∆tq) [HNW93, Theorem 8.13], provided su�cient smoothness of the exact solution.

Therefore, high-order numerical integration schemes can be obtained by iterating sta-

ble procedures with small local truncation error, i.e. that approximate well the curve

∆t→ A(t+∆t). While numerical integration schemes of the LMS family are generally

interpreted as approximations of the exact update

A(t+∆t)−A(t) =
∫ t+∆t

t
A′(τ)dτ

obtained by interpolating the integrandA′(τ) and computing the integral exactly [HNW93,

�III.1], the schemes proposed below are explicitly based on the interpolation of the exact

solution curve. The accelerated forward Euler scheme comes from interpolating the exact

solution curve's velocity and acceleration at each time step while the Ralston-Hermite

scheme uses a Hermite interpolant to interpolate the velocity in two points.

6.4 The accelerated forward Euler method

The classic forward-Euler numerical integration schemes achieves order q = 1 [HNW93,

Theorem 7.5]. This can be intuitively understood by observing the scheme interpolates

position and velocity of the exact solution curve at initial time. In fact, if the solution

to (6.1) is su�ciently smooth we have

A(t+∆t) = A(t) + ∆tA′(t) +O(∆t2)

= A(t) + ∆tF (A(t)) +O(∆t2).

Therefore, the forward-Euler scheme is de�ned by the local update

AFE(t+∆t) = A(t) + ∆tF (A(t)),

which by construction realizes a local truncation error of order O(∆t2). One more step

along this line of reasoning, indicates we could reach a local truncation error of order

O(∆t3) by including the next term of the Taylor expansion in the integration scheme.
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6.4 The accelerated forward Euler method

Runge-Kutta methods attain this goal by performing intermediate steps that are linearly

combined. Alternatively, we can build a curve branch which interpolates the acceleration

of the solution curve in t. We have

A(t+∆t) = A(t) + ∆tA′(t) +
∆t2

2
A′′(t) +O(∆t3)

= A(t) + ∆tF (A(t)) +
∆t2

2
DF (A(t))[F (A(t))] +O(∆t3).

This motivates the de�nition of the accelerated forward Euler scheme (AFE) update as

AAFE(t+∆t) = A(t) + ∆tF (A(t)) +
∆t2

2
DF (A(t))[F (A(t))] . (6.5)

By construction, this scheme is consistent and admits local truncation error of order

O(∆t3). The scheme is zero-stable [HNW93, De�nition3.2] as it is a one step method

and it is conditionally absolutely stable with the same absolute stability region of the 2-

stages explicit Runge-Kutta method known as Heun's method [QSS07, �11.3.3]. Indeed,

the stability polynomial of Heun's method and AFE method is in both cases given by

1 + λ + λ2

2 , for λ ∈ C. This suggest the AFE exhibits global error convergence order

q = 2.

We now generalize the AFE scheme for the DLRA di�erential equation of Problem 6.1.

As we later show in Proposition 6.6, the acceleration of the exact solution of (6.2) is

the sum of two terms: the tangent component of the ambient acceleration and the

acceleration due to the curvature of the manifold. The latter is expressed using the

Weingarten map, a classic concept of Riemannian geometry that we brie�y introduce in

the following section.

6.4.1 The Weingarten map

We focus on the Weingarten map for the case of a Riemannian submanifoldM, embedded

into a �nite dimensional Euclidean space E . A treatment for the general case whereM
is embedded into another Riemannian manifold M, can be found in [Lee18, �8] from

which de�nitions below were taken and adapted to the present situation. We point out

that the de�nition of the Weingarten map requires that both the embedding space and

the manifold are endowed with their Levi-Civita connection. Hence, we assume that E is
endowed with the Euclidean connection andM with the tangential connection induced

from it, see Sections 1.3.1 and 1.4.2.

The Weingarten map is introduced jointly with the closely related concept of second

fundamental form. It is a measure of the discrepancy between the Riemannian connection

of a Riemannian submanifold and its embedding space. Recall that for two vector �elds

X,Y ∈ X (M), the tangential connection is the orthogonal projection of the Euclidean

connection. For a given p ∈M, this means the vector

DXY (p)−Π(p)DXY (p) = DXY (p)−∇XY (p)
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Chapter 6. Manifold integration

belongs to the normal space at p. The function (I−Π)DXY is smooth onM and therefore

de�nes a smooth normal vector �eld onM, the set of which is denoted XN (M).

De�nition 6.3. The second fundamental form II : X(M) × X(M) → XN (M) is a

symmetric bilinear map de�ned by II(X,Y ) = (I −Π)DXY .

Computing the inner-product between this normal �eld and another normal �eld de�nes

an auxiliary scalar �eld from which the de�nition of the Weingarten map is extracted.

De�nition 6.4. The Weingarten map is the bilinear map

W : X(M)× XN (M)→ X(M)

(X,N) 7→ W(X,N)

de�ned by the multilinear form

⟨N, II(X,Y )⟩ = ⟨W(X,N), Y ⟩ , ∀Y ∈ X (M) .

When the manifold has codimension 1, i.e. whenM is a hypersurface, the Weingarten

map is often called the shape operator. Recall that the value of ∇XY at p depends only

on the value of the vector �eld X at p [Lee18, Proposition 4.5]. By its symmetry, the

second fundamental form also depends only on values of the vector �elds at p [Lee18,

Proposition 8.1]. As a consequence, the same holds for the Weingarten map, which can

be given a pointwise de�nition [dC92, p. 128]. Given x, y ∈ TpM and n ∈ NpM, the

Weingarten map at p is the bilinear map Wp : TpM×NpM→ TpM de�ned by

⟨Wp(x, n), y⟩p = ⟨W(X,N), Y ⟩
∣∣
p

for any X,Y ∈ X(M) and N ∈ XN (M) satisfying X(p) = x, Y (p) = y and N(p) = n.

Thanks to the explicit link between the ambient connection and the connection on M
expressed with the tangent space projection, the Weingarten map at p can be related

with the di�erential of the tangent space projection.

Proposition 6.5 ([AMT13, Theorem 1]). For any x ∈ TpM and n ∈ NpM, the Wein-

garten map satis�es

Wp(x, n) = DΠ(p)[x]n = Π(p)DΠ(p)[x] z = Π(p)DΠ(p)[x] Π(p)⊥z

for any z ∈ TpE ≃ E such that Π(p)⊥z = n.

The di�erential of the projection is to be intended asDΠ(p)[x]n := d
dt

[
Π ◦ N̄ ◦ γp,x(t)

] ∣∣
t=0

,

for any smooth extensions N̄ of any normal �eld N ∈ XN (M) satisfying N(p) = n and

for any curve such that γp,x(0) = p, γ̇p,x(0) = x.

One practical use of the Weingarten map comes is for the computation of the Riemannian

Hessian of a scalar �eld on an embedded submanifold. As stated in Proposition 2.8, the

Riemannian Hessian of a scalar �eld f at p ∈ M along x ∈ TpM can be computed as
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6.4 The accelerated forward Euler method

the sum of two terms, the second of which may be expressed using the Weingarten map.

For any smooth extension f̄ of f to E , it holds that [AMT13, Equation (10)]

Hessf(p)[x] = Π(p)∇2f̄(p)[v] +Wp(x,Π(p)
⊥∇f̄(p)).

where ∇f̄ and ∇2f̄ are respectively the Euclidean gradient and Euclidean Hessian of f̄ .

From a theoretical viewpoint, the eigenvalues of the Weingarten map at p for a given

n ∈ NpM are real and can interpreted as principal curvatures of the manifold [Lee13,

p. 238], describing the extrinsic curvature of the embedding of M in E along the

normal direction n. For the rank-k matrix manifold embedded into Rm×n, depend-
ing on the conventions used to represent points and tangent vectors, many equivalent

expressions are known for the Weingarten map of the �xed-rank manifold, see for exam-

ple [AMT13, FL18]. In our conventions, see Section 1.5.3, for any Y = UΣV ⊤ ∈ Mk,

T = (M,Up, Vp) ∈ TYMk and N ∈ NYMk the Weingarten map can be computed as

WY (T,N) =
(
M : 0k×k, Up : NVpΣ

−1, Vp : N
⊤UpΣ

−1
)
.

This expression nicely highlights two notable features that are know for the embedding

of the �xed-rank manifold into Rm×n: it is a ruled surface with unbounded curvature.

Indeed, along the subspace associated to the UMV ⊤ term,Mk is �at, while the curvature

along the other directions grows unbounded as σk(Y )→ 0.

6.4.2 The integration scheme

With the de�nition of the Weingarten map introduced in Section 6.4.1, we have the

correct vocabulary to express the acceleration of the exact DLRA solution curve to

Problem 6.1.

Proposition 6.6. If a smooth curve on Mk is de�ned by Ẏ = Π(Y )F (Y ) for some

F ∈ X (E), then its intrinsic acceleration can be computed as

Ÿ = Π(Y )DF (Y )[Π(Y )F (Y )] +WY (Π(Y )F (Y ),Π(Y )⊥F (Y )).

Proof. By de�nition of tangential connection,

Ÿ = ∇Ẏ Ẏ = Π(Y )DẎ (Π(Y )F (Y ))

Using the product rule, Π(Y )2 = Π(Y ) and Proposition 6.5, we evince

Π(Y )DẎ (Π(Y )F (Y )) = Π(Y )
(
Π(Y )DF (Y )[Ẏ ] + Π(Y )DΠ(Y )[Ẏ ]F (Y )

)
= Π(Y )DF (Y )[Π(Y )F (Y )] + Π(Y )DΠ(Y )[Π(Y )F (Y )] Π(Y )⊥F (Y )

= Π(Y )DF (Y )[Π(Y )F (Y )] +WY (Π(Y )F (Y ),Π(Y )⊥F (Y )).
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Chapter 6. Manifold integration

To mimic the Euclidean AFE update de�ned by equation (6.5), we need to construct a

smooth manifold curve Y AFE(∆t) such that

Y AFE(0) = Y0, Ẏ AFE(0) = Ẏ (0), Ÿ AFE(0) = Ÿ (0).

Proposition 3.2 shows this is possible given any second-order retractions. Let RII indicate

any second-order retraction, then the manifold analogous of the AFE update (6.5) reads

Y AFE (∆t) = RII
Y0

(
∆tẎ0 +∆t2Ÿ0/2

)
.

Then the AFE scheme for DLRA takes the form

Y AFE
i+1 = RII

Yi

(
∆tΠ(Yi)F (Yi) +

∆t2

2
Ÿi

)
(6.6)

with

Ÿi = Π(Yi)DF (Yi)[Π(Yi)F (Yi)] +WYi

(
Π(Yi)F (Yi),Π(Yi)

⊥F (Yi)
)
. (6.7)

All the retractions for the �xed-rank manifold presented in Section 2.4.4 as well as the

KSL and KLS retractions introduced in Section 6.2 have the second-order property. In

principle, all of them are suited to be used in (6.6), however, experiments reported in

Section 6.6 suggest the orthographic retraction is the most convenient in terms of speed,

accuracy and stability. In virtue of Proposition 3.22, the local truncation error associated

with the one step of the AFE integration scheme is of order O(∆t3). A discussion on

the stability and the global error convergence of the method is reported in the numerical

experiments section. A possible limitation to the applicability of the AFE integration

scheme is the need to compute at each step the di�erential of the forcing term. Unless

F contains only linear terms and pointwise nonlinearities, the di�erential may not be

readily available or be too costly to compute.

6.5 The Ralston-Hermite method

The retraction-based Hermite (RH) interpolant developed in Chapter 5 can be used to

de�ne a manifold curve with prescribed endpoints and endpoint velocities. In this section,

we develop a numerical integration scheme using this manifold curve as a building block.

6.5.1 Extrapolation of the RH interpolant

When data is sampled from a smooth manifold curve, Proposition 5.8 states that the RH

interpolant is well-de�ned between interpolation nodes provided samples are su�ciently

close. The following proposition generalizes the well-posedness result in two ways. First,

the interpolation data is not sampled from any curve but is just a pair of tangent bundle

points (p0, v0), (p1, v1) ∈ TM that we wish to interpolate at instants t0 and t1, respec-

tively. Second, we also argue that the curve can be evaluated in an interval larger than

[t0, t1]. Whenever we need to highlight the dependence on the interpolation data, we
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6.5 The Ralston-Hermite method

shall denote this RH interpolant H(t) = H(t; (t0, p0, v0) , (t1, p1, v1)).

Proposition 6.7. Consider tangent bundle data points (p0, v0), (p1, v1) ∈ TM and some

parameters t0 < t1 and let R denote a retraction on M. If p0 and p1 are close enough

and t1 − t0 is su�ciently small, there exists a RH interpolant H satisfying H(ti) = pi
and Ḣ(ti) = vi, for i = 1, 2, that is well-de�ned for any t ∈ (t0 − ε, t1 + ε), for some

ε > 0.

Proof. By Corollary 5.6, we know the curve

H(t) = α

(
t− t0
h

; p0, hv0, p1, hv1

)
, with h = t1 − t0,

satis�es the interpolation conditions provided it is well-de�ned. This curve corresponds

to the generalized de Casteljau curve given by De�nition 5.4, with control points b0 =

p0, b1 = Rp0(hv0/3), b2 = p1 and b3 = Rp1(−hv1/3). If d(p0, p1) ≤ ρ̄(p0) and h is

small enough, all control points belong to a retraction-convex set centered at p0. Hence

the curve H is well-de�ned on [t0, t1]. The building blocks of H are the r-endpoint

retraction curves given in De�nition 3.4. Although their de�nition restricts them on

[0, 1], they actually can be evaluated on an open interval containing [0, 1] by openness of

the invertibility domain of the retraction. Hence, the curve H can be evaluated on an

open interval containing [t0, t1].

6.5.2 The integration scheme

As stated in Theorem 5.9, the retraction-based Hermite interpolant of a smooth manifold

curve can achieve O(∆t4) approximation error on the interval [ti, ti +∆t] as ∆t → 0.

Assuming the interval over which the interpolant is well-de�ned and satis�es the error

bounds extends to the interval [ti, ti + 2∆t], we may conclude the following update rule

Yi+2 = H
(
ti+2;

(
ti, Yi, Ẏi

)
,
(
ti+1, Yi+1, Ẏi+1

))
, (6.8)

where H is the Hermite interpolant as introduced in Proposition 6.7, produces a small

local truncation error. Let us apply this scheme to the scalar ODE given by y′ = f(y) with

by takingH as the unique polynomial Hermite interpolant of the data (tj , yj , fj := f(yj)),

for j = i, i+ 1. Then, the recursive relation (6.8) becomes

yi+2 = yi+1 +∆t

(
2fi + 4fi+1 − 5

(
yi+1 − yi

∆t

))
.

As pointed out in [HNW93, �III.3], this scheme indeed has a local truncation error

O(∆t4). However, it is not zero-stable and thus does not produce a convergent scheme

of order 3.

Nevertheless, stability may be recovered by combing this update rule with a suitable

chosen intermediate step. Consider the family of multistep methods parametrized by

α ∈ (0, 1) obtained by concatenating a forward-Euler step of length α∆t and a Hermite
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interpolation update of the form (6.8) up to ti+1:{
yi+α = yi + α∆tfi,

yi+1 = H(ti+1; (ti, yi, fi) , (ti+α, yi+α, fi+α)).

This family of schemes are all part of the family of the 2-stages explicit Runge-Kutta

methods with Butcher table
0

α α

α2+α−1
α2

1−α
α2

Since the scheme is explicit and has two stages we can aim for a scheme of order two

by choosing α in order to satisfy the �rst two order conditions of the Runge-Kutta

methods [HNW93, Theorem 1.6]. For any α ∈ (0, 1), the scheme satis�es the �rst-order

condition. Choosing α to satisfy also the second-order conditions narrows down the

family to the scheme with α = 2/3. This scheme is an explicit second-order RK method

known as the Ralston scheme [Ral62] and is de�ned by the following Butcher table.

0
2
3

2
3

1
4

3
4

This scheme can be easily generalized to a scheme for manifold ODE that uses only

retractions thanks to Proposition 3.2 and Proposition 6.7. Let R denote any retraction

and RI denote any retraction whose local inverse can be computed e�ciently. To indicate

which retraction is used to construct the retraction-based Hermite interpolant H, we add

it to its list of arguments. The Ralston-Hermite (RH) scheme for Problem 6.1 read as{
Yi+2/3 = RYi

(
2
3Π(Yi)F (Yi)

)
,

Y RH
i+1 = H(ti+1; (ti, Yi,Π(Yi)F (Yi)) ,

(
ti +

2
3∆t, Yi+2/3,Π(Yi+2/3)F (Yi+2/3)

)
, RI)

A suitable candidate for both retractions R and RI is the orthographic retraction de�ned

in Section 2.2.2. As experiments in Section 6.6 suggest, this generalization to the manifold

setting of the Ralston scheme maintains its second-order accuracy.

6.5.3 The ARH integration scheme

Given the two-steps structure of the RH scheme, we propose to investigate a third scheme

which combines the AFE and the RH schemes. Replacing the intermediate forward-Euler

step of the RH scheme with a AFE update de�nes what we will call the accelerated
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Table 6.1: Average time in milliseconds per step for the experiments of Figure 6.2-(d).

PRK1 KSL KLS AFE RH ARH PRK2 PRK3

5.27 5.41 5.88 7.71 12.62 17.38 10.41 14.16

Ralston-Hermite scheme (ARH). It is de�ned by the recursive relationYi+2/3 = RII
Yi

(
2
3∆tΠ(Yi)F (Yi) +

4∆t2

18 Ÿi

)
,

Y RH
i+1 = H(ti+1; (ti, Yi,Π(Yi)F (Yi)) ,

(
ti +

2
3∆t, Yi+2/3,Π(Yi+2/3)F (Yi+2/3)

)
, RI),

where Ÿi is given by (6.7).

6.6 Numerical experiments

The following sections are dedicated to illustrating the performances of the accelerated

forward Euler (AFE) method, the Ralston-Hermite (RH) method and the accelerated

Ralston-Hermite (ARH) method. Experiments were executed with Matlab 2022b on

a laptop computer with Intel i7 CPU (1.8GHz with single-thread mode) with 8GB of

RAM, 1MB of L2 cache and 8MB of L3 cache. The implementation uses the di�eren-

tial geometry tools of the Manopt library [BMAS14]. The orthographic retraction is

chosen for AFE, RH and ARH. An implementation of the KSL and KLS retractions as

described by Algorithms 6.1 and 6.2 were added to the �xed-rank manifold factory. For

the implementation of the projected Runge-Kutta method of [KV19], we also added an

implementation of the truncated SVD extended retraction, accepting as inputs a list of

s tangent vectors of other tangent spaces.

6.6.1 Di�erential Lyapunov equation

The modeling error (6.3) introduced by DLRA is associated with the normal compo-

nent of the vector �eld of the original di�erential equation. The e�ect of the modeling

error magnitude on the performance of DLRA integrators can be assessed by consider-

ing a class of matrix di�erential equations, going by the name of di�erential Lyapunov

equations [UV20, �6.1], which take the form{
A′ = LA+AL⊤ +Q, t ∈ [0, T ] ,

A(0) = A0,
(6.9)

for some A0, L,Q ∈ Rn×n. If A0 has rank exactly k and the matrix Q is zero, then A(t)

is also of rank k for every t ∈ [0, T ] [HM94, Lemma 1.22]. Therefore, the norm of Q is

proportional to the modeling error.

In the following experiment, we take L as the discretization of a Laplacian operator in

two dimensions, i.e. L is the tridiagonal matrix with −2 on the main diagonal and 1 on
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Figure 6.2: Convergence of the error at �nal time for di�erent DLRA integration schemes
applied to the Lyapunov equation (6.9) with sources terms of di�erent norms. The top
plot in each panel is the �nal error ∥Y∆t(T )−A(T )∥2 versus the step size ∆t, where
Y∆t is the approximation of A obtained with a step size ∆t. The bottom plot reports
the evolution of the singular values of the reference solution over time. The red dashed
curves correspond to discarded singular values.
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the �rst o�-diagonals. For the source term, we take Q = ηQ̃/∥Q̃∥F for some η > 0, where

Q̃ is a full rank matrix generated from its singular value decomposition with randomly

chosen singular vectors and prescribed singular values, decaying as σi(Q̃) = 102−i, for

i = 1, . . . , n. The initial condition is taken to be of rank exactly k and is also assembled

from a randomly generated singular value decomposition with a prescribed geometric

decay of singular values: σi(A0) = 32−i, for all i = 1, . . . , k, and σi(A0) = 0, for all

i = k + 1, . . . , n.

In Figure 6.2, we report the results with n = 100 and k = 12 of the following experi-

ment. For di�erent values of η, we numerically integrate the rank-k DLRA di�erential

equation (6.2) applied to (6.9) with di�erent numerical schemes and di�erent times steps

up to T = 0.5. A reference solution to the ambient equation (6.9) is found using the

MATLAB routine ode45 between each time step, for a time step that is the smallest

among those considered for the numerical integrators. We then plot as a function of

the step size the 2-norm discrepancy between the reference solution at �nal time and its

approximation obtained by numerical integration. The schemes presented in this chapter

are compared with the projected Runge-Kutta method (PRK) of [KV19] of order 1,2 and

3. The numerical results for the KSL and the KLS scheme were very similar to the ones

of PRK1. Hence, they were omitted not to overcrowd the plots.

The panels of Figure 6.2 correspond to the cases (a) η = 0, (b) η = 0.01, (c) η = 0.1, (d)

η = 1.0. When the source term is zero, the reference solution is also of rank exactly k, as

can be seen from the value of the best approximation error in panel (a). In this regime, the

AFE and the RH scheme ful�ll the promise to exhibit O(∆t2) error convergence, while

the ARH scheme seem to reach an asymptotic O(∆t3) trend. The trade-o� between

accuracy and computational e�ort that can be seen in Figure 6.3-(a) shows that in this

simple setting, the RH, AFE and ARH schemes have comparable performances to PRK2.

Turning on the source term determines a non-negligible best approximation error due

to the growth of singular values that were initially zero, as can be seen in the bottom

plots of panels (b), (c) and (d). The larger the source term's norm, the faster and

the greater these singular values grow. Then, the numerical integrators converge to the

exact solution of the projected system and so the error with respect the ambient solutions

stagnates at a value slightly higher than the best 2-norm approximation. While the RH

scheme preserve the O(∆t2) trend up to some oscillations as η increases, the AFE and

ARH schemes seem to su�er instability when the normal component of the vector �eld

is too large. A satisfactory explanation for this behavior remained elusive. In this more

realistic scenario where the normal component of the vector �eld is non-negligible, only

the RH scheme remains comparable to PRK2 in terms of the trade-o� between accuracy

and e�ort, see Figure 6.3-(b) and Table 6.1

6.6.2 Robustness to small singular values

A fundamental prerequisite for competitive DLRA integrators is to be resilient to the

presence of small singular values in the solution. A detailed discussion on the topic
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Figure 6.3: Computational e�ort in terms of wall clock time against the error with
respect to the reference solution achieve by di�erent numerical integration schemes and
with di�erent step sizes. The results were collected from the same experiment of panels
(a) and (d) of Figure 6.2.

can be found in [KLW16]. In applications, very often the ambient solution admits an

exponential decay of singular values. Hence, a good low-rank approximation is possible

but the occurrence of small singular values is inevitable for DLRA to be accurate: a

rank-k approximation of the solution must match the k-th singular value of the ambient

solution, which is small if the approximation error is small.

The smaller the singular values of the solution, the greater the sti�ness of the DLRA

di�erential equation (6.2): the Lipschitz constant of the vector �eld F gets multiplied by

the Lipschitz constant of the tangent space projection, which is inversely proportional

to the smallest non-zero singular value [KL07, Lemma 4.2] of the base point. Therefore,

standard numerical integration methods fail to provide a good approximation unless the

step size is taken to be very small. Projector-splitting integrators for DLRA do not

require such step size restrictions and the results on the convergence of the error are

independent of the smallest non-zero singular value of the approximation. These scheme

are commonly quali�ed as robust to small singular values. The robustness property was

shown for the KSL scheme [KLW16, Theorem 2.1] and the KLS scheme [CL22, Theorem

4]. The PRK method also enjoy the robustness property [KV19, Theorem 6]. In the

following we experimentally study the robustness of the AFE, RH and ARH integration

schemes to the presence of small singular values.

The typical setting to assess the stability to small singular values of a given integration
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scheme, considers a matrix curve t ∈ [0, T ]→ A(t) ∈ Rn×n of the form

A(t) = U(t)Σ(t)V (t)⊤ (6.10)

with

U(t) := exp (tΩU ) , Σ(t) := exp(t)D, V (t) := exp(tΩV ),

for some n×n skew-symmetric matrices ΩU ,ΩV and a diagonal matrixD = diag(σ1, . . . , σn),

for a positive and geometrically decaying sequence σi. A rank k approximation of this

curve is reconstructed by numerically integrating with the given scheme the DLRA equa-

tion (6.2) where the scalar �eld F is replaced by the exact derivative of the ambient

curve (6.10):

A′(t) = U(t)
(
ΩUΣ(t) + Σ(t) + Σ(t)Ω⊤V

)
V (t)⊤. (6.11)

The approximation error at �nal time is constituted mainly of the integration error which

can be reduced by decreasing the step size, and the modeling error a�ected only by the

choice of k. A scheme is said to be robust to small singular values, if the integration

error is independent of the choice of k. In practice, one must observe that the trend of

the error as a function of the step size is una�ected by the choice of k for step sizes where

modeling error is negligible compared to the integration error.

Figure 6.4 presents the results for the experiment described in the previous paragraph

on a curve (6.10) with randomly generated ΩU and ΩV , initial singular values σi = 2−i

and n = 100. The panels from left to right corresponds respectively to the AFE, the RH

and the ARH schemes. Note that for the AFE and the ARH schemes, we use the exact

expression for the second derivative of (6.10) given by

A′′(t) = U(t)
(
Ω2
UΣ(t) + Σ(t) + Σ(t)(Ω2

V )
⊤

+ 2ΩUΣ(t) + 2ΩUΣ(t)Ω
⊤
V + 2Σ(t)Ω⊤V

)
V (t)⊤.

The results for AFE show the ideal outcome: the error curves for increasing values of

k are superimposed until the modeling error plateau determined by the value of k is

reached. These results empirically suggest that the AFE integration scheme is robust

to small singular values. On the other hand, the RH and ARH scheme which rely on

retraction-based Hermite interpolation su�er from small singular values. Panels (b) and

(c) of Figure 6.4 exhibit the same oscillatory convergence trend that could be observed for

both schemes in the experiments on the di�erential Lyapunov equation in Section 6.6.1.

A partial explanation for this behavior comes from studying robustness of the retraction-

based Hermite interpolant de�ned in Proposition 6.7 to the presence of small singular

values at the interpolation points. Consider the following experiment. Take Y0 ∈ Mr ∈
Rm×n with m = n = 100, r = 12 de�ned by

Y0(σr) = U0diag(1, . . . , σr)V
⊤
0
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Figure 6.4: Convergence of the error at �nal time ∥Y∆t(T )−A(T )∥2 versus the step size
∆t of DLRA integration applied to (6.11) to reconstruct the curve (6.1) for di�erent
values of rank.

for some randomly generated orthogonal matrices U0 and V0 and with σi logarithmically

spaced on the interval [σr, 1], for some σr ≤ 1. The second interpolation point is found

by �rst moving away from Y0 along the orthographic retractions along a random tangent

vector Z ∈ TYMr such that ∥Z∥F = 1 to get Ỹ1 = RY0(σr)(Z). The second interpolation

point Y1 is obtained from Ỹ1 by replacing its singular values with

σi(Y1) = σi(Y0)(1 + ξi),

for some random ξi drawn from a uniform distribution on [1/2, 2]. This way, the singular

values decay of both Y0 and Y1 mimic a situation encountered in one step of the RH and

ARH integration schemes, when the smallest singular value of the current approximation

is of the order of σr. Then, we randomly generate Z0 ∈ TY0Mr and Z1 ∈ TY1Mr with

∥Z0∥ = ∥Z1∥ = 1 and form the retraction based interpolant

H(τ) = H(τ ; (0, Y0, Z0) , (1, Y1, Z1)), τ ∈ [0, 1] . (6.12)

For di�erent values of the smallest singular value σr, we measure the discrepancies
∥∥Z0−

Ḣ(0)
∥∥
F
and

∥∥Z0− Ḣ(0)
∥∥
F
, where derivatives of H are obtained by the �nite di�erences

formula (5.17). The experiment is repeated for each σr on 100 randomly generated

instances and the error distribution is plotted against σr in Figure 6.5. These results

unequivocally indicate the fragility of retraction-based Hermite interpolant on the �xed-

rank manifold when small singular values are present in the interpolation points. As σr
decrease, the velocity error in τ = 0 increases, and even more severely in τ = 1. The fact

that the error is non-negligible even for moderately small values of σr suggests the RH

and ARH integration schemes may occasionally employ very badly behaved retraction-

based Hermite interpolants. This may contribute to the oscillatory behavior of the error

observed RH and ARH in Figures 6.2 and 6.4.
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Figure 6.5: Robustness to small singular values of the retraction based Hermite inter-
polant (6.12). The solid line is the median of the error over 100 randomly generated
instance for each value of σr while the dashed and dotted lines corresponds to the per-
centiles [0.05, 0.25, 0.75, 0.95] of the sampled error.

6.7 Conclusions

This chapter contributes in strengthening the connection between retractions and nu-

merical integration methods for manifold ODEs and in particular DLRA techniques. We

derive two numerical integration schemes expressed in terms of retractions and show-

case their performance on classic problem instances of DLRA. The derivation and the

numerical results suggest that the methods can achieve second-order error convergence

with respect to the time integration step. However, at the current stage, the two meth-

ods have shown mixed results and do not seem to o�er computational advantages for

the considered problems. While the AFE scheme exhibits instability in the presence

of large normal components of the ambient vector �eld, the RH scheme appears more

resilient to this aspect. On the other hand, the occurrence of small singular values in

the approximation had no apparent e�ect on the performance of AFE. Concerning the

RH method, small singular values may explain occasional deviations from the conjec-

tured second-order convergence behavior. Further analysis would be required to better

understand the drawbacks of both methods and may indicate a remedy or provide pre-

cise conditions under which the proposed methods can be reliable and competitive with

respect to existing methods.

Another contribution to the connection between DLRA and retractions is the inter-

pretation of the KLS integration scheme as a second-order retraction which approxi-

mates up to high-order terms the orthographic retraction. It remains an open question

whether the same observation can be made for the recently proposed parallelized version

of KLS [CKL23].

For other low-rank tensor formats, such as the Tucker or the tensor-train formats, retrac-

tions have also been proposed [KSV14, Ste16]. However, to the best of our knowledge

no retraction with an e�ciently computable inverse retraction is known and the or-

thographic retraction has remained elusive due to the complexity of the normal space

structure for these manifolds. Yet, the KLS scheme has been extended to low-rank tensor

manifolds [CL22, �5]. Hence, assuming the connection with the orthographic retraction

carries over to the tensor setting, it may be possible to retrieve the orthographic retrac-
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tion for those tensor manifolds as a small perturbation of the KLS update. Then, the

possibility to easily compute the inverse orthographic retraction would enable using the

retraction-based endpoint curves and Hermite interpolant presented in Chapters 3 and 5

for low-rank tensor manifolds.
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The present thesis supports in several ways the claim that retractions as popularized

by Riemannian optimization are a convenient tool for building and analyzing numerical

methods in the broader context of problems involving a manifold constraint. Indeed,

retractions can be e�ectively interpreted as a general purpose manifold curve generating

device. This viewpoint allowed us to propose retraction-based numerical methods for the

generalization to a manifold setting of the following problems: homotopy continuation,

Hermite interpolation and the integration of ordinary di�erential equations. Let us brie�y

summarize the main contributions of the thesis while highlighting some open questions

and possible directions of further inquiry.

Riemannian continuation, improvements and extensions

In Chapter 4, we have presented an extension of path-following numerical continuation to

track solutions to parameter dependent Riemannian optimization problems. A retraction

features in the prediction step of the proposed iterative predictor-corrector procedure,

as well as in the correction step, where a locally superlinearly convergent Riemannian

optimization method is used. The retraction is also central in the proposed adaptive step

size variant of the algorithm. With the construction of suitable homotopies, �xed-step

size continuation has demonstrated, up to manual tuning of the number of continuation

steps, to allow for the reduction of total computation time in comparison with direct

optimization.

The possibility to automatically balance the number of continuation steps and the cost

of each correction would require more investigations. In fact, the currently proposed step

size adaptation strategy, which aims at eliminating stagnation in the initial iterations

of the correction phase, produces too stringent conditions on the step size preventing to

strike the optimal balance. Also, the procedure to estimate the step size at each iteration

comes at a relatively high cost. Alternative approaches may include generalizing to a

manifold setting the other proposed step size selection strategies discussed in [AG90,

�6], of which we have considered only the �rst. More heuristic approaches such as a

backtracking line search strategy to limit the actual gradient norm at the initial condition

of the subsequent correction step may also prove competitive, given the relatively low
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operative cost of computing the gradient norm compared to computing the Hessian.

The e�ectiveness of embedding a given Riemannian optimization problem into a parame-

ter dependent family of Riemannian optimization to be solved with the proposed contin-

uation algorithm was empirically observed to greatly depend on the choice of parametric

family. A more systematic study of the properties associated with particular strategies

to build homotopies appears di�cult in a general setting, but may be possible for speci�c

Riemannian optimization problems of particular interest, for instance low-rank matrix

completion. The intuition which sometimes guides the construction of initial conditions

to be used in direct optimization routines may be applied to build homotopies that prove

very e�ective in combination with our continuation algorithm.

As a generalization of the Riemannian optimization problems with a single parameter

dependence that were considered in this chapter, one could tackle the case where the

problem depends on multiple scalar parameters. The problem has been addressed for

parametrized nonlinear equation on an Euclidean space [AG90, �15], leading to algo-

rithms such as the moving frames algorithm which can be thought as a multidimensional

generalization of the predictor-corrector approach we have considered. A local model of

the solution manifold is constructed at a collection of sample points in parameter space

and used to produce an estimate of the solution at new parameter values. Multiparamet-

ric interpolation on manifolds as recently developed in [ZB22] may be helpful in building

such local models in the generalization of multiparametric continuation methods to a

manifold setting.

Retraction-based Hermite interpolation, further theoretical investigations

In Chapter 5 we have proposed a generalization of the de Casteljau algorithm using

retractions that can be used to solve the Hermite interpolation problem for a manifold

curve. The method has a broader applicability than previously existing method in that

it does not require the Riemannian exponential and logarithmic maps, the computation

of which may be too expensive for their practical use. A retraction whose local inverse

is conveniently computable is nevertheless required, but this requirement can be met for

a large class of manifolds of practical interest, such as the �xed-rank matrix manifold.

The approximating power of the retraction-based Hermite interpolant is proved in The-

orem 5.9, under the assumption that the derivatives of order two, three and four of the

interpolant are bounded, see (5.8). While the proposed interpolant constructed with

the particular choice (5.4) was experimentally demonstrated to ful�ll this condition in

Section 5.5.1, the a priori conditions which guarantee this have remained elusive. This is

in part due to the layered complexity of the algorithm, already apparent in the proof of

Lemma 5.11 proving the Lipschitz continuity of the interpolant. Studying the algorithm

for speci�c manifolds, such as the sphere, for which the explicit expression of the retrac-

174



Conclusions

tion can be easily manipulated, may be helpful in formulating a general explanation.

The novel concept of retraction-convexity presented in Section 3.3 has proved to be a

valuable tool of analysis. For instance, the existence of retraction-convex sets granted the

well-posedness of the proposed retraction-based Hermite interpolant. That being said, a

crucial assumption required to use retraction-convexity in this case is Assumption 3.11,

which ensures that the retraction-convexity radius function introduced in Section 3.3.2

is continuous. In turn, this is used to provide a strictly positive lower bound to the

retraction-convexity radius on the image of the curve, or more generally on a compact

set of the manifold. The smoothness of the retraction seems su�cient to intuitively

con�rm the validity of this assumption, yet providing a rigorous argument would require

more e�ort.

On the speci�c use of the proposed retraction-based Hermite interpolant on the manifold

of �xed-rank matrices, we stress the concern raised in the experiments at the end of Sec-

tion 6.6.2 about the robustness to small singular values of the interpolant. The capability

of the interpolant to match a prescribed velocity at a given point seems to decline as the

smallest singular value of the interpolated point decreases. On the one hand, this is not

surprising given the numerical ill-conditioning that small singular values usually produce

when dealing with �xed-rank manifolds. Matrices whose last non-zero singular value is

small are located in regions of the �xed-rank manifold where the curvature is high. On

the other hand, as done for the case of robust DLRA integrators, it may be possible to

cure the instability by a careful reformulation of the inner steps of the algorithm.

Retraction-based time-stepping algorithms, analysis and extension to tensors

In Chapter 6, we have introduced two novel time-stepping schemes expressed in terms of

retractions for the numerical integration of manifold-constrained di�erential equations.

The construction of the methods has been guided by the practical and theoretical tools

developed in Chapter 3 and Chapter 5 and thereby argued to achieve second-order ac-

curacy. The methods have been experimentally demonstrated to attain the conjectured

error convergence rate on simple instances of dynamical low-rank approximation and to

exhibit comparable performances in terms of accuracy-e�ort ratio with existing methods

in the simpler settings. However, the performance of the methods on more realistic yet

still academic problem instances of DLRA are not entirely satisfactory. The presence

of a large normal component in the ambient scalar �eld impaired the stability of the

accelerated Forward Euler method, while the occurrence of small singular values of the

ambient solution diminished the reliability of the Ralston-Hermite method. These draw-

back are potentially embedded in the methods themselves and a more in depth analysis

could shed light on this aspect.

A close connection between the KLS unconventional integrator [CL22] and the ortho-

graphic retraction was established in Section 6.2.1. On the one hand, the geometric

nature of the orthographic retraction provides a geometric interpretation for the KLS
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scheme. On the other hand, if this connection carried over to the case of low-rank ten-

sor manifolds for which the KLS integrators has been generalized, it may give a way

to construct the orthographic retraction for these tensor manifolds. In turn, this would

further broaden the applicability of the retraction-based curves of Chapters 3 and 5 to

such tensor manifolds.
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A. Séguin, G. Ceruti, and D. Kressner, in preparation, 2023.

Hermite interpolation with retractions on manifolds
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