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Abstract	 	
Structure determination of materials is key to understanding their physical properties. While single-crystal X-ray diffraction is the 
gold standard for structures displaying long-range order, many materials of interest are polycrystalline and/or disordered, which is 
a challenge for diffraction methods. On the other hand, nuclear magnetic resonance (NMR) spectroscopy probes the local environ-
ment around nuclei, and does not require long-range order. It is thus the method of choice for investigating the structure of disor-
dered solids. In particular, NMR crystallography based on chemical shifts has proven able to determine the atomic-level structure of 
various materials through the combination of solid-state NMR experiments, crystal structure prediction (CSP) protocols, and densi-
ty functional theory (DFT) computation of chemical shifts. 

However, several drawbacks prevent the widespread use of NMR crystallography, especially for disordered materials. First, the 
computation of chemical shifts for candidate structures generated by CSP requires significant computational resources. In addition, 
CSP algorithms also require intensive computations to explore the space of possible crystal structures in order to construct a com-
prehensive set of candidates. Moreover, experimental measurement and assignment of chemical shifts is challenging, typically 
requiring time consuming, multi-dimensional experiments. These challenges are exacerbated in disordered solids, owing to the 
need to model these materials using large structures, typically generated using molecular dynamics (MD), which prevents the use 
of DFT to compute chemical shifts. 

In this thesis, we use machine learning to help alleviate these drawbacks. We extend the capabilities of ShiftML, a previously intro-
duced model of chemical shifts of molecular solids, and incorporate the model into CSP protocols, in order to drive the generation 
of candidate crystal structures towards the experimentally observed structure. We also predict chemical shifts using ShiftML on a 
large database of crystal structures, and leverage the resulting database of chemical shifts to help assign measured chemical shifts 
to atomic sites without prior knowledge about the three-dimensional structure of the molecule under study. The database is also 
used to construct chemical shift-dependent interaction maps in molecular solids. The maps generated can in turn be used to score 
candidate crystal structures without performing any additional DFT-level chemical shift computation, and to construct structural 
constraints to drive CSP protocols. 

Another challenge tackled in this thesis is the resolution of 1H NMR spectra of solids. Dipolar coupling between spins lead to broad-
ened lineshapes, which can (partially) be removed by spinning the sample at the magic angle. However, at finite spinning rates, 
these interactions are not completely removed. We develop a convolutional recurrent neural network to obtain the spectra that 
would be obtained at infinite spinning rates from a set of spectra measures at variable spinning speeds. The model is applied both 
to one-dimensional 1H spectra and two-dimensional 1H–1H correlation experiments. 

Finally, we investigate the structure of amorphous molecular solids by NMR crystallography, by replacing DFT chemical shift com-
putations by ShiftML. This allows the computation of chemical shifts for ensembles of large structures generated by MD, that we 
compare to experimental values in order to extract preferred conformations and noncovalent interactions in amorphous com-
pounds. A general method to determine the structure of amorphous molecular solids is introduced, which involves the simultane-
ous comparison of experimental and computed shifts of multiple atomic sites in the molecule studied. 

Keywords 

solid-state NMR, NMR crystallography, machine learning, structure determination, pharmaceutical compounds, amorphous com-
pounds, crystal structure prediction, intermolecular interactions, chemical shift assignment 
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Résumé	 	
Déterminer la structure de matériaux est crucial pour comprendre leurs propriétés physiques. Alors que la diffraction à rayons X est 
la méthode de référence pour les structures présentant un ordre à longue portée, plusieurs matériaux d’importance sont polycris-
tallins et/ou désordonnés, ce qui est problématique pour les méthodes par diffraction. D’autre part, la spectroscopie par résonance 
magnétique nucléaire (RMN) sonde l’environnement local autour des noyaux, et ne nécessite pas d’ordre à longue portée. Elle est 
donc la méthode de choix pour étudier la structure de solides désordonnés. En particulier, la cristallographie par RMN basée sur les 
déplacements chimiques s’est montrée capable de déterminer la structure au niveau atomique de matériaux variés, au travers de 
la combinaison d’expériences RMN à l’état solide, de protocoles de prédiction de structure crystalline (PSC), et de calcul de dépla-
cements chimiques par la théorie de la fonctionnelle de la densité (TFD). 

Cependant, plusieurs inconvénients empêchent l’utilisation généralisée de la cristallographie par RMN, en particulier pour les ma-
tériaux désordonnés. En premier lieu, le calcul de déplacements chimiques pour des structures candidates générées par PSC néces-
site d’importantes ressources de calcul. De plus, les algorithmes de PSC ont également besoin de calculs intensifs pour explorer 
l’espace des structures cristallines possibles afin de constituer un ensemble complet de candidats. En outre, la mesure expérimen-
tale et l’assignement des déplacements chimiques est complexe, et requièrent généralement de longues expériences multidimen-
sionnelles. Ces problèmes sont exacerbés pour les solides désordonnés, en raison du besoin de modéliser ces matériaux à l’aide de 
grandes structures, généralement générées par la dynamique moléculaire (DM), ce qui empêche l’utilisation de la TFD pour calculer 
les déplacements chimiques. 

Dans cette thèse, nous utilisons l’apprentissage automatique afin de pallier ces inconvénients. Nous étendons les capacités de 
ShiftML, un modèle de déplacements chimiques pour solides moléculaires précédemment introduit, et intégrons le modèle dans 
des protocoles de PSC, afin d’orienter la génération de structures cristallines candidates vers la structure observée expérimentale-
ment. Nous prédisons également les déplacements chimiques à l’aide de ShiftML pour une grande base de données de structures 
cristallines, et nous tirons parti de la base de données de déplacements chimiques résultante afin d’assister l’assignement des 
déplacements chimiques mesurés expérimentalement à des sites atomiques sans connaissance préalable de la structure tridimen-
sionnelle de la molécule étudiée. La base de données est aussi utilisée pour construire des cartes d’interactions dépendantes du 
déplacement chimique dans les solides moléculaires. Les cartes générées peuvent à leur tour être utilisées pour classer des struc-
tures cristallines candidates sans effectuer aucun calcul supplémentaire de déplacement chimique par TFD, et pour établir des 
contraintes structurelles afin d’orienter les protocoles PSC. 

Un autre problème traité dans cette thèse est la résolution des spectres RMN 1H de solides. Les couplages dipolaires entre les spins 
conduisent à des lignes élargies, qui peuvent (partiellement) être éliminées par rotation de l’échantillon autour de l’angle magique. 
Cependant, avec des vitesses de rotations finies, ces interactions ne sont pas complètement supprimées. Nous développons un 
réseau neuronal récurrent convolutif afin d’obtenir les spectres qui seraient mesurés à des vitesses de rotation infinies à partir d’un 
ensemble de spectres mesurés à différentes vitesses de rotation. Le modèle est appliqué à la fois à des spectres 1H unidimension-
nels et à des expériences de corrélation 1H–1H bidimensionnelles. 

Finalement, nous étudions la structure des solides moléculaires amorphes par cristallographie RMN, en remplaçant le calcul de 
déplacements chimiques TFD par ShiftML. Cela permet le calcul de déplacements chimiques pour des ensembles de grandes struc-
tures générées par DM, que nous comparons aux valeurs expérimentales afin d’extraire les conformations et interactions non-
covalentes préférentielles dans les composés amorphes. Une méthode générale pour déterminer la structure des solides molécu-
laires amorphes est introduite, qui implique la comparaison simultanée des déplacements chimiques expérimentaux et calculés de 
plusieurs sites atomiques dans la molécule étudiée. 

Mots-clés 

RMN de solides, cristallographie RMN, apprentissage automatique, détermination de structure, composés pharmaceutiques, com-
posés amorphes, prédiction de structure cristalline, interactions intermoléculaires, assignement de déplacement chimique 
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 Introduction	
1.1 Structure	determination	methods	for	solids	
Structure governs the physical properties of matter. Determining the structure of molecules and materials at the atomic level is 
thus paramount to understanding and optimising macroscopic properties such as the efficacy of pharmaceutical compounds,1-3 the 
photovoltaic performances of perovskite materials,4-6 or the efficiency of enzymes7, 8 and inorganic catalysts.9, 10 Single-crystal X-ray 
diffraction (XRD) is the gold standard method to determine the atomic-level structure of crystalline materials.11-15 However, this 
method requires a single crystal of the material under study with a size at least in the order of a hundred microns, which can be 
difficult to obtain.14, 15 Powder diffraction (either X-ray or neutron) can be used for microcrystalline samples, but determining the 
structure is challenging in all but the simplest cases.16-21 In addition, amorphous samples can be studied using X-ray and neutron 
total scattering experiments and pair-distribution analysis, however again interpretation is extremely challenging.22-25 Electron 
microscopy (EM) can be applied to determine the nanostructure and atomic-level structure of some inorganic materials.26-30 In 
particular, the development of cryo-EM in recent years has expanded the range of applicable materials to organic molecules and 
proteins.31-33 Nevertheless, the atomic-level structure determination of microcrystalline and amorphous materials by diffraction 
methods remains challenging due to the difficulty to interpret data from samples lacking long-range order. 

1.2 NMR	crystallography	using	chemical	shifts	
Nuclear magnetic resonance (NMR) spectroscopy is an experimental technique that probes the magnetic properties of nuclear 
spins. One key advantage with respect to diffraction techniques is that it does not rely on long-range order in the material under 
study. NMR has been widely used to determine the structure of molecules in solution,34-36 as well as a variety of solids including 
organic compounds,37-56 proteins,57-60 zeolites,61-65 cementitious materials,66, 67 battery materials,68 perovskites,69 and other inor-
ganic materials. 70-76 

1.2.1 Chemical	shifts	as	a	probe	of	local	structure	
NMR spectroscopy measures the precession of magnetic moments 𝝁𝝁 in a static magnetic field 𝑩𝑩𝟎𝟎. Nuclei that have a non-zero spin 
𝑰𝑰 have a magnetic moment given by 

𝝁𝝁 = 𝛾𝛾ℏ𝑰𝑰, (1.1) 

where 𝛾𝛾 is the gyromagnetic ratio of the nucleus and ℏ is the reduced Planck constant.77-80 Magnetic moments can thus be detect-
ed by NMR for such so-called NMR active nuclei, including 1H, 13C and 15N, among others. The frequency of precession of a magnet-
ic moment, which is measured by NMR, results from its atomic environment. It is determined by the energy of the interactions 
involving the corresponding nucleus 𝑖𝑖, described by the NMR Hamiltonian, 

𝐻𝐻"#$ = −ℏ𝛾𝛾%𝑩𝑩&/𝟏𝟏1 − 𝝈𝝈13𝑰𝑰% +
1
2ℏ

'6𝛾𝛾%𝛾𝛾(𝑰𝑰%
()%

/𝑫𝑫1%( + 𝑱̿𝑱%(3𝑰𝑰( + 𝑰𝑰%𝑸𝑸1%𝑰𝑰%. (1.2) 

This Hamiltonian represents the main interactions that affect the energy of nucleus 𝑖𝑖 in diamagnetic solids. The first term describes 
the interaction between the spin 𝑰𝑰% and the applied magnetic field 𝑩𝑩&, called the Zeeman effect. This interaction is modulated by 
the magnetic shielding tensor 𝝈𝝈1, which arises from the presence of electrons around nucleus 𝑖𝑖. The magnetic field generates elec-
tric currents in the electron cloud by electromagnetic induction, which in turn generate an induced magnetic field 𝑩𝑩%*+ that oppos-
es 𝑩𝑩&. The shielding tensor relates 𝑩𝑩& to 𝑩𝑩%*+ as 

𝑩𝑩%*+ = −𝝈𝝈1𝑩𝑩&. (1.3) 
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The second term in Equation 1.2 represents interactions between two spins. Dipolar spin–spin interactions can occur directly be-
tween nuclei and are represented by the dipolar coupling 𝑫𝑫1%(, or indirectly using electrons as intermediates, which is represented 
by the scalar coupling 𝑱̿𝑱%(, also called J-coupling. 

The last term in Equation 1.2 is only present for nuclei with spins greater than ½ and describes the interaction between the quad-
rupolar moment of the nucleus and the surrounding electric field gradient. This interaction is described by the quadrupolar cou-
pling tensor 𝑸𝑸1%. 

While all interactions in Equation 1.2 can provide information about the local environment around nuclei, I will mainly focus on the 
first term of the NMR Hamiltonian in this work. In NMR experiments, the absolute shielding tensor is not directly measured. In-
stead, the shielding tensor 𝝈𝝈1 is measured relative to that of a reference compound 𝝈𝝈1,-. to give the chemical shift tensor, 

𝜹𝜹1 = 𝝈𝝈1,-. − 𝝈𝝈1. (1.4) 

In practice, NMR crystallography of molecular solids is mainly based on the isotropic value of the chemical shift tensor for 1H and/or 
13C nuclei. The isotropic chemical shift 𝛿𝛿 is obtained as one third of the trace of the chemical shift tensor. Equation 1.4 can be 
adapted for isotropic values as 

𝛿𝛿 =	𝜎𝜎,-. − 𝜎𝜎, (1.5) 

where 𝜎𝜎 and 𝜎𝜎,-. are the isotropic shieldings of the nucleus in the sample of interest and in the reference compound, respectively, 
obtained as one third of the trace of the shielding tensors. Since the isotropic shielding strongly depends on the local electronic 
density around the nucleus, which is determined by the positions of the neighbouring atoms, the chemical shift is a direct probe of 
the local atomic environment around the nucleus. This provides a powerful method to determine the structure of materials by 
NMR.77-80 

In practice, obtaining isotropic chemical shifts for solid compounds presents numerous challenges. In particular, the chemical shifts 
and dipolar couplings depend on the relative orientation of the sample with respect to the main magnetic field, which leads to 
severe broadening of the NMR spectra of powdered samples. In liquid samples, the dipolar interactions are averaged out by molec-
ular tumbling, but solid samples require coherent averaging schemes to remove these interactions. Rotating the sample at the 
“magic angle” (54.74°) with respect to the main magnetic field, a method called magic angle spinning (MAS), leads to the removal 
of 2nd-rank anisotropic interactions in solids, including dipolar interactions.81-85 However, often these interactions are not yet fully 
removed even at the highest rotating speeds currently available.84, 85 

1.2.2 Chemical	shifts	from	electronic	structure	methods	
Chemical shifts encode the local atomic environments around nuclei. They are thus direct probes of the structure of materials. 
However, decoding chemical shifts into atomic-level structure is not (currently) directly possible. Instead, model structures of the 
materials studied are typically constructed, and their associated expected chemical shifts are compared to the experimental values. 
This requires accurate methods to obtain chemical shifts for these model structures. 

Many quantum-mechanical properties of materials can be obtained from their ground-state wavefunction. The development of 
first principles (ab initio) methods to determine the wavefunction Ψ and its related properties by solving the Schrödinger 
equation86 (Equation 1.6) has thus been a highly active field of research since the establishment of the Hartree-Fock (HF) method 
that provides an approximate solution to the Schrödinger equation.87-89 The Schrödinger equation expresses the energy 𝐸𝐸 of a 

system described by a wavefunction Ψ as the application of the Hamiltonian operator formed by the kinetic (−/
'
∇') and potential 

(𝑉𝑉(𝒓𝒓)) energy operators to the wavefunction. The resulting eigenvalues and eigenvectors give the energy levels and associated 
wavefunctions of the system, respectively. 

G−
1
2∇

' + 𝑉𝑉(𝒓𝒓)HΨ = 𝐸𝐸Ψ (1.6) 

  



NMR Crystallography in the Big Data Era: New Methods and Applications Powered by Machine Learning, PhD Thesis, M. Cordova 

13 

The high computational cost of post-HF methods90-92 has driven the need for accurate methods with computational requirements 
similar to the HF method. Hohenberg and Kohn have shown the equivalence of obtaining observables from the wavefunction or the 
electron density of atomic systems.93 Based on this, density functional theory (DFT) has been the leading first-principles framework 
to compute physical properties of atomic systems with reasonable accuracy and at relatively low computational cost.94 In DFT, the 
electronic wavefunction Ψ is replaced by a set of non-interacting pseudoelectrons, each with a wavefunction 𝜙𝜙% and energy 𝜖𝜖% 
experiencing a potential 𝑉𝑉011, 

L−
1
2∇

' + 𝑉𝑉011(𝒓𝒓)M𝜙𝜙%(𝒓𝒓) = 𝜖𝜖%𝜙𝜙%(𝒓𝒓) (1.7) 

with 𝑉𝑉011 defined such that the electronic density of the system reproduces the electronic density from the true wavefunction, 

𝜌𝜌(𝒓𝒓) = |Ψ|' =6|𝜙𝜙%(𝒓𝒓)|'
%

. (1.8) 

𝑉𝑉011 contains the classical electrostatic interaction between each nucleus 𝐼𝐼 with charge 𝑍𝑍2 and position 𝑹𝑹2 and the electron density 
𝜌𝜌(𝒓𝒓), as well as the classical electron–electron electrostatic interaction. A correction term for quantum mechanical exchange, the 
removal of self-interaction and the correlation of the motion of electrons is introduced as the exchange–correlation functional, 𝐸𝐸34. 

𝑉𝑉011 = −6U
𝑍𝑍2 ⋅ 𝜌𝜌(𝒓𝒓)
|𝑹𝑹2 − 𝒓𝒓|

2

𝑑𝑑𝒓𝒓 +X
𝜌𝜌(𝒓𝒓)𝜌𝜌(𝒓𝒓5)
|𝒓𝒓 − 𝒓𝒓5| 𝑑𝑑𝒓𝒓𝑑𝑑𝒓𝒓5 + 𝐸𝐸34 (1.9) 

Different levels of approximation for 𝐸𝐸34 make up the different so-called levels of theory which can be categorised into local density 
approximation (LDA) functionals that depends on 𝜌𝜌(𝒓𝒓) such as the VWN and PW92 functionals,95, 96 general gradient approximation 
(GGA) functionals that also include the gradient of 𝜌𝜌(𝒓𝒓) such as the PBE and PB86 functionals,97-99 meta-GGA functionals that in-
corporate higher-order derivatives of 𝜌𝜌(𝒓𝒓) such as the M06-L and TPSS functionals,100-103 and hybrid functionals that include Har-
tree-Fock exchange in addition to 𝜌𝜌(𝒓𝒓) and its gradient in the description of 𝐸𝐸34, such as the B3LYP and PBE0 functionals.95, 99, 104-106 
While DFT is exact in its principle (with an exact 𝐸𝐸67), the choice of the functional determines the accuracy of the property comput-
ed. 

Cost-effective DFT computations rely on the use of an efficient basis to describe the electron density. While Slater functions107 and 
spherical harmonics form an effective basis set to describe atomic systems, the periodicity of crystals makes plane waves a natural 
choice to describe 𝜌𝜌(𝒓𝒓) for crystalline solids. A major drawback of plane wave basis sets is the need for high frequency waves to 
describe the core electrons, significantly increasing the computational cost compared to atomic orbital-like basis sets. To circum-
vent this issue, core electrons can be replaced by pseudopotentials108-110 and the all-electron wavefunction (or density) can be 
reconstructed using the projector augmented-wave (PAW) method.111 

The magnetic shielding tensor 𝝈𝝈1 for a nucleus 𝐼𝐼 in an atomic system can be obtained from the ground-state electron density by 
computing the second derivative of the energy 𝐸𝐸 with respect to the magnetic moment of the nucleus 𝝁𝝁2 and the applied magnetic 
field 𝑩𝑩&. In a given frame, the components of the shielding tensor are given by 

𝜎𝜎%(2 =
𝜕𝜕'𝐸𝐸

𝜕𝜕𝐵𝐵(𝜕𝜕𝜇𝜇%2
, (1.10) 

where 𝐵𝐵( is the 𝑗𝑗-th component of the magnetic field and 𝜇𝜇%2 is the 𝑖𝑖-th component of the magnetic moment of nucleus 𝐼𝐼. Perturba-
tion theory is typically used to obtain 𝝈𝝈1 from first principles. However, with finite basis sets the results depend on the absolute 
position of the atomic system in space. Solving this so-called gauge problem has led to the rise of the gauge-including atomic orbital 
(GIAO)112-116 and gauge-including projector-augmented wave (GIPAW)117, 118 formalisms as popular methods to compute chemical 
shifts for atomic systems using atomic orbital and plane wave basis sets, respectively. While the inherent periodicity of the GIPAW 
method renders it directly suitable to obtain chemical shifts of periodic systems, GIAO chemical shifts can be obtained in crystalline 
solids by constructing clusters to incorporate interactions with neighbouring molecules in the crystal packing,119-122 using charge 
embedding to model long-range electrostatic interactions,123, 124 or decomposing crystals into fragments and summing the many-
body contributions to the chemical shift to model the global effect of packing interactions.124-128 
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1.2.3 NMR	crystallography	
NMR parameters are sensitive probes of the local electronic density, which encodes the local atomic environment. Thus, NMR has 
allowed the structure determination of various compounds by comparison of experimental parameters with values computed for 
model systems, in a process called NMR crystallography. In this thesis, I will focus on (isotropic) chemical shift-based NMR crystal-
lography, although several examples of structure determination have been reported using other NMR parameters such as dipolar 
couplings,61 full chemical shift tensors,63, 65 quadrupolar couplings,129, 130 and spin diffusion rates.42, 44, 47, 50 

In 1993, De Dios, Pearson and Oldfield established the importance of torsion angles, hydrogen bonding and electrostatic environ-
ment to describe 13C, 15N and 19F chemical shifts in proteins.131 The same year, Facelli and Grant demonstrated the high sensitivity 
of 13C chemical shifts to molecular structure.132 Subsequently, 1H chemical shifts have been established as sensitive probes of in-
termolecular interactions in solids.38, 39, 133 This provides useful handles to determine the structure of molecular solids by NMR. The 
accuracy of DFT chemical shift computations was found to be sufficient to assign chemical shifts measured experimentally by com-
parison with computations performed on structures obtained using single-crystal X-ray diffraction.134-140 In addition, combining 
solid-state NMR and DFT chemical shift computations has allowed the validation of X-ray structures as well as accurate determina-
tion of hydrogen positions,141-144 which have historically been difficult to obtain from X-ray diffraction patterns.145 In particular, 
NMR crystallography is a powerful method to determine the tautomeric form146-151 and (zwitter)ionic character152-155 of molecular 
solids and co-crystals, in addition to being able to determine the number of molecules in the asymmetric unit (Z’).156, 157 

Performing structure determination by chemical shift-based NMR crystallography involves measuring experimental chemical shifts 
for the material under study, generating a set of candidate crystal structures through chemical modelling methods such as crystal 
structure prediction (CSP) protocols158, 159 or molecular dynamics (MD) simulations,160-163 and comparing the chemical shifts com-
puted for these model structures to the corresponding experimental values. If a model structure yields an error between experi-
mental and computed shifts, (e.g., the root-mean-square error (RMSE)) below the expected error for the DFT method used, then it 
is considered to be correct. This process thus relies on the generation of a comprehensive set of candidate crystal structures, as 
well as on the accuracy of the DFT method used to compute chemical shifts. PBE97 is a popular level of theory for GIPAW computa-
tions, while hybrid exchange-correlation functionals such as B3LYP95, 99, 104 or PBE0105, 106 are typically used within the GIAO ap-
proach. While the computed isotropic shieldings can in principle be converted to isotropic chemical shifts using the shielding value 
computed for a reference compound as described in Equation 1.5, a direct linear regression between computed shieldings and 
experimental chemical shifts is generally performed, either directly between the shieldings computed for the candidate crystal 
under consideration and the experimental shifts, or using an external set of chemically and/or structurally similar compounds with 
known crystal structures and chemical shifts, 

𝛿𝛿 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏. (1.11) 

Allowing the slope 𝑎𝑎 in the regression to deviate from the theoretical value of -1 allows the removal of systematic error incurred by 
the DFT method. The offset 𝑏𝑏 is equal to 𝜎𝜎,-. in Equation 1.5 if the slope is -1. 

NMR crystallography has been combined with diffraction experiments to perform structure determination of powdered molecular 
solids.164-169 In addition, in recent years numerous successful structure determination based solely on NMR data have been per-
formed. In 2010, Salager et al. introduced a method purely based on the combination of CSP protocols and 1H chemical shifts to 
determine the structure of powdered molecular solids.49 The method was validated by obtaining the correct crystal structure of 
thymol. Baias et al. further demonstrated the generality of the method by demonstrating its ability to determine the crystal struc-
ture of cocaine, flutamide, flufenamic acid and theophylline.52 The method was validated by comparison of the structures deter-
mined by NMR with those obtained using single-crystal X-ray diffraction. Baias et al. then used this method to perform de novo 
structure determination of form 4 of a large polymorphic drug molecule named AZD8329, for which no X-ray structure was previ-
ously available.53 Following these important milestones in the development of NMR crystallography, the structures of several mo-
lecular and macromolecular crystals were determined using similar methods.170-174 
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Although NMR crystallography is a powerful method to determine the structure of molecular solids, several bottlenecks hinder its 
widespread use. In particular, the DFT computation of chemical shifts for candidate structures is computationally expensive, typi-
cally requiring the use of high-performance computing facilities and restricting the number of CSP candidates that can be evaluat-
ed. Acceleration of this process is discussed in Section 1.3. Another bottleneck results from the high-dimensional energy landscape 
to explore during the CSP procedure in order to include the correct crystal structure in the CSP set of candidates. In practice, a 
comprehensive sampling of the energy landscape would be prohibitively expensive computationally. Thus, CSP procedures typically 
incorporate restrictions of the conformational space explored based on the conformational energy of the molecule in the gas 
phase. However, intermolecular interactions in the crystal structure can stabilise unfavourable gas-phase conformations, which 
may not be selected by the CSP procedure. To address this issue, Hofstetter et al. introduced a method to obtain experimental 
constraints for the generation of conformations, based on two-dimensional 1H-13C heteronuclear correlation (HETCOR) NMR exper-
iments.55 They showed that this method was successful in determining the structure of ampicillin through NMR crystallography, 
which would have failed using fully energy-based CSP procedures due to the high energy of the gas-phase conformation of the 
molecule. Another advantage of this method is that it reduces the number of generated CSP candidates compatible with experi-
ments, ultimately reducing the overall cost of subsequent DFT computations of chemical shifts to determine the crystal structure. 

In recent years, several improvements to chemical shift-based NMR crystallography have been introduced. In 2017, Hofstetter et al. 
proposed a method to obtain the positional uncertainty of structures determined by NMR crystallography.175 Based on the ex-
pected error of DFT-based chemical shift computations and experimental errors, the method correlates perturbations in the atomic 
positions within the crystal structure to the error between computed and experimental shifts, and provides the uncertainty of 
atomic positions by selecting structures within the expected error and analysing the corresponding displacements for each atomic 
site. 

Identifying the correct structure among a CSP set of candidates is not always straightforward and heavily depends on the accuracy 
of the method used to compute chemical shifts. In addition, the simultaneous evaluation of errors between experimental and 
computed shifts for different nuclei may be challenging to unambiguously identify the best matching candidate structure. A Bayesi-
an probabilistic framework was introduced in 2019 by Engel et al. that allows the critical evaluation of shifts from multiple ele-
ments, incorporates the expected error of the DFT method in the analysis, and provides a quantified probability for each candidate 
structure to match experiments.176 This method provides a quantified confidence in the identification of the experimental crystal 
structure, as well as an indication of whether the experimental structure is present in the CSP set or not. 

In this context, I have been involved in structure determination of different materials by combined solid-state NMR and DFT calcu-
lations of chemical shifts of model structures during my PhD. Rather than go into further details here to review current NMR crys-
tallography protocols, in the following I exemplify the approaches through three application examples that I carried out during my 
PhD. 

1.2.4 Example	applications	of	NMR	crystallography	
The following three examples have been adapted with permission from: 

- Cordova, M.; Balodis, M.; Hofstetter, A.; Paruzzo, F.; Nilsson Lill, S. O.; Eriksson, E. S. E.; Berruyer, P.; Simões de Almeida, 
B.; Quayle, M. J.; Norberg, S. T.; Svensk Ankarberg, A.; Schantz, S.; Emsley, L., Structure determination of an amorphous 
drug through large-scale NMR predictions. Nature Communications 2021, 12 (1), 2964. (post-print) 

- Morales-Melgares, A.; Casar, Z.; Moutzouri, P.; Venkatesh, A.; Cordova, M.; Kunhi Mohamed, A.; Scrivener, K. L.; Bowen, 
P.; Emsley, L., Atomic-Level Structure of Zinc-Modified Cementitious Calcium Silicate Hydrate. Journal of the American 
Chemical Society 2022, 144 (50), 22915-22924. (post-print) 

- Hope, M. A.; Nakamura, T.; Ahlawat, P.; Mishra, A.; Cordova, M.; Jahanbakhshi, F.; Mladenovic, M.; Runjhun, R.; Merten, 
L.; Hinderhofer, A.; Carlsen, B. I.; Kubicki, D. J.; Gershoni-Poranne, R.; Schneeberger, T.; Carbone, L. C.; Liu, Y.; Zakeerud-
din, S. M.; Lewinski, J.; Hagfeldt, A.; Schreiber, F.; Rothlisberger, U.; Gratzel, M.; Milic, J. V.; Emsley, L., Nanoscale Phase 
Segregation in Supramolecular pi-Templating for Hybrid Perovskite Photovoltaics from NMR Crystallography. Journal of 
the American Chemical Society 2021, 143 (3), 1529-1538. (post-print) 

The first example is the determination of the crystal structure of the crystalline form of the drug AZD5718 from a powder sample 
using the most state of the art approaches at the time,177 for which my contribution was to compute the chemical shifts of the 
candidate crystal structures and compare them to experimental values to determine the structure of the drug, as well as to deter-
mine the positional uncertainty of the atoms in the structure. This example is part of the work presented in Section 4.2, and is 
briefly described below. A more detailed description is given in Section 4.2.3. 
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Figure 1.1. (A) Molecular structure of AZD5718. (B) 1H and (C) 13C NMR spectra of crystalline AZD5718. 

Figure 1.1 shows the molecular structure of the drug along with the 1H and 13C magic angle spinning (MAS) NMR spectra of the 
powdered sample of AZD5718. Multidimensional 1H-13C and 13C-13C correlation spectra (see Section 4.2.2 and Appendix VII) al-
lowed the measurement and assignment of individual chemical shifts for all proton and carbon sites in the molecule. We generated 
a set of candidate crystal structures using a rapid CSP protocol, and computed chemical shifts for the candidates with the ten low-
est predicted energy generated using a fragment- and cluster-based approach, the PBE0 density functional and the GIAO 
method.106, 115, 126-128 Figure 1.2A shows the RMSE between 1H and 13C chemical shifts for the candidates considered, as well as for 
the structure obtained using single-crystal X-ray diffraction. We note that while the candidate #1 and X-ray structures are similar, 
with a RMSD15 (root-mean-square deviation of the atomic positions in 15 molecules, ignoring hydrogen positions) of 0.42Å, the 
bicyclo ring displays a different conformation in the two structures (see Appendix VII). The RMSEs obtained for the 1H shifts sug-
gested that candidate #1, the lowest energy candidate, best matches the experiment, while 13C chemical shifts results identified the 
X-ray structure as the best match. 

In order to quantitatively determine whether the candidate #1 or XRD structure best matches the NMR experiments, we applied 
the Bayesian analysis introduced by Engel et al.176 to the CSP set and the XRD structure and obtained a 99.7% confidence that can-
didate #1 best matches experiment (Figure 1.2B). Although the computed shifts for the XRD structure appear closer to the experi-
mental result (red cross) in the first two chemical shift principal components in Figure 1.2B, including the complete chemical shift 
space identifies candidate #1 as the structure that best matches experiment, as indicated by its associated probability. 

The unit cell of the crystal structure of AZD5718 determined by NMR powder crystallography is shown in Figure 1.3A. By perturbing 
the structure through MD simulations and evaluating the associated extent of increase in 1H chemical shift RMSE with respect to 
experiment, we obtained the positional uncertainty of the atoms in the molecule, as introduced by Hofstetter et al.175 Figure 1.3B 
shows the ORTEP178 plot of the atomic displacement parameter179 (ADP) tensors corresponding to a 1H chemical shift RMSE of 0.34 
ppm. This value corresponds to the estimated error of 1H chemical shifts computed with the fragment- and cluster-based ap-
proach.127 The average value of the ADPs is 0.00025 Å2. 

 

 

Figure 1.2. (A) 1H (top) and 13C (bottom) chemical shift RMSEs of the ten lowest energy candidate crystal structures and the single-crystal X-ray 
structure of AZD5718. (B) Two-dimensional projection of the similarity of the computed 1H and 13C chemical shifts of the candidate structures to the 
experimental data (red cross). The probability of each candidate matching experiment is represented by the area of the blue disk. 𝑝𝑝(𝑀𝑀) represents 
the probability that a virtual candidate, which represents structures potentially missing from the CSP candidate pool, matches experiment. A large 
value of 𝑝𝑝(𝑀𝑀) would indicate that the correct structure may not be present in the set of candidates considered, which is not the case here. 
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Figure 1.3. (A) Three-dimensional crystal structure of AZD5718 determined by NMR powder crystallography. (B) ORTEP plot of the ADP tensors for 
the NMR structure of AZD5819 drawn at the 90% probability level. 

This example highlights the ability of NMR crystallography to determine the structure of microcrystalline molecular solids from 
powder samples. The obtained crystal structure displays very low positional uncertainty. A more detailed description of this system 
is described in Section 4.2.2. 

AZD5718 provides an illustrative example of how NMR can be used to solve structures in crystalline powders. The second and third 
examples of the approach show how NMR can also solve complete atomic-level structures which are not crystalline in the usual 
sense. Indeed, due to the high sensitivity of chemical shifts to local structure, NMR crystallography can also readily be used to 
determine the structure of disordered materials through the comparison of experimental shifts with values computed from model 
structures representing local environments. An example is the determination of the structure of zinc-modified calcium silicate 
hydrate (CSH),180 where my contribution was to compute chemical shifts for model structures and compare the results obtained 
with the experimental spectra. 

Concrete is one of the most used substances on earth, and accounts for around 8% of anthropogenic CO2 emissions.181 Lowering its 
carbon footprint is therefore paramount, and a promising approach involves substituting the clinker (the main ingredient used in 
the manufacture of Portland cement) by supplementary cementitious materials (SCMs) that have much lower associated CO2 emis-
sions, but have a tendency to lower the early-age strength of the resulting concrete.182, 183 In contrast, the addition of zinc to the 
main phase in clinker was found to enhance the early-age mechanical strength of the hydrated paste.184-186 This observation was 
associated with the growth of longer CSH particles.187 Determining the incorporation of zinc into the CSH structure at the atomic 
level is thus important to understand the role of zinc in C-S-H growth and kinetics and would open pathways to synthetic tunability 
of the rate of reaction of lower-CO2 materials. 

Figure 1.4A shows the so-called dreierketten chains making up the main structure of CSH. Silicates (SiO4-xHy(4-2x+y), 0≤x<2, 0≤y≤4) are 
found in three sites, Q(1), Q(2b) and Q(2p). The incorporation of zinc in the structure leads to different possible new silicate sites, 
Q(1,Zn), Q(2p,Zn), Q(2p,2Zn), Q(2b,Zn) and Q(1,Zn_int), resulting from the substitution of Q(1), Q(2b), or Q(2p) sites by zinc polyhedra (Figure 1.4B). 
In addition, zinc can also be present on top of the silicate chains, facing into the interlayer, where it could coordinate to one or both 
Q(1) species of a silicate dimer. 

The experimental dynamic nuclear polarisation (DNP)-enhanced 29Si spectra of samples with different target zinc to silica ratios 
(Zn:Si)i are shown in Figure 1.4C. Increasing the amount of zinc in the sample leads to an enhanced signal around -72 ppm and to a 
decrease of the signal at -78.9 ppm. To understand the atomic-level structures making up these signals, we constructed 98 different 
zinc-modified CSH structural units via “brick” models.188 For each structure, we computed DFT chemical shifts using the GIPAW 
formalism. The calculated shieldings were converted to chemical shifts using an external reference set composed of the structures 
of 𝛼𝛼-quartz, foshagite, hemimorphite and willemite, for which the experimental 29Si shifts and crystal structures are known.189-194 
The shielding-to-shift regression from DFT-computed shifts was found to have a slope of -1.05 and an offset of 345.32 ppm, with a 
RMSE of 0.52 ppm. 

A B
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Figure 1.4. (A) Schematic of the dreierketten chains in conventional CSH showing all of the silicate species present: Q(1), Q(2b) and Q(2p). (B) Schematic 
of zinc-modified CSH showing all of the new silicate sites that could potentially be present: Q(1,Zn), Q(2p,Zn), Q(2p,2Zn), Q(2b,Zn) and Q(1,Zn_int). (C) DNP-
enhanced experimental 29Si spectra of samples with (Zn:Si)i of 0.00, 0.15 and 0.40. (D) DFT-computed 29Si shifts from the silicate species obtained 
from brick models for zinc-modified CSH and their respective schematic structures. 

 

 

 

 

 

Figure 1.5. (A) 1D multi-CPMAS spectrum of the sample with (Zn:Si)i of 0.40 (top) showing deconvolution into the different Q sites (bottom). (B) 2D 
29Si-29Si INADEQUATE spectrum of a zinc-modified C-S-H sample with a (Zn:Si)i ratio of 0.40. (C) Results of the quantitative population analysis in the 
three samples with (Zn:Si)i of 0.00, 0.15, and 0.40. 
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Figure 1.4D shows the chemical shifts obtained for the different silicate species in the 98 model structures. By combining the ob-
tained shifts with DFT energies of the different model structures and experimental spectra, we could conclude that two new silicate 
species are formed upon incorporation of zinc in the CSH structure: Q(1,Zn) and Q(2p,Zn), the former being consistent with the signal 
observed around -72 ppm, and the latter being the overall most energetically favourable structure and consistent with the signal at 
-78.9 ppm (Figure 1.5A). Other possible structures were ruled out on the basis of their high energies, or from the absence of ex-
pected correlations in the 2D 29Si-29Si INADEQUATE195, 196 spectrum that correlates shifts from linked silicates (Figure 1.5B). Finally, 
A quantitative Q species analysis of the three samples with different (Zn:Si)i ratios (Figure 1.5C) clearly indicates a decrease in the 
Q(1) species upon zinc incorporation, as well as an increase in Q(2) species, which indicates the formation of longer silicate chains 
with higher zinc contents, providing a rationale for the observed enhanced early-age strength of concrete formed from zinc-
containing CSH. 

This example shows how the structure of disordered solids can be determined by NMR. Another example of structure determina-
tion in solids disordered at the nanoscale by NMR is highlighted in the following example, where we determined the structure of a 
hybrid layered perovskite.197 My contribution in this project was to compute chemical shifts for model structures and compare 
them to experimental values. 

Hybrid perovskite materials display high photovoltaic performances. These systems are based on the AMX3 composition that de-
fines a corner-sharing crystal structure consisting of A cations (e.g., Cs+, methylammonium or formamidinium), as well as their 
mixtures, along with divalent M cations (e.g., Pb2+, Sn2+) and halide anions X (e.g., I-, Br-, Cl-).198-200 The major challenge preventing 
the widespread application of these materials in photovoltaic systems is their limited stability due to reactivity with oxygen and 
water, or ion migration under operating conditions of voltage bias and light irradiation.198, 201, 202 Incorporating layers of hydropho-
bic organic cations between the hybrid perovskite slabs to form layered two-dimensional perovskites was found to improve the 
stability of these materials. 2-phenylethylammonium (PEA+, Figure 1.6A) is a popular organic spacer cation for layered perovskites. 
Mixing this ligand with 2-(perfluorophenyl)ethylammonium (FEA+, Figure 1.6A) increases the stabilisation of the layered 
structure,202 however an atomic-level understanding of the interactions leading to higher stability is required to establish rational 
structure–activity-based design strategies. 

The simplest model systems of layered 2D perovskites, considered here, have a S2PbI4 composition (S+ = PEA+ and/or FEA+). The 
samples of (PEA)2PbI4, (FEA)2PbI4 and (PF)2PbI4 (where PF denotes a 1:1 PEA+:FEA+ mixture) were analysed by measuring the 
1H→13C, 19F→13C, and 19F NMR spectra of the aromatic regions of the spacer cations, as shown in Figure 1.6. In the mixed halide 
perovskite structure, a weak signal intensity corresponding to the PEA+ carbons labelled a, b, and c observed in the 19F→13C cross-
polarisation (CP)MAS NMR spectrum indicates atomic-scale mixing of the spacer cations, since CP transfer relies on through-space 
dipole-dipole interactions at the sub-nanometer length scale. However, the layered perovskites containing only a single type of 
spacer cation, namely (PEA)2PbI4 and (FEA)2PbI4, exhibit very similar spectra to the samples with mixed spacers. These observations 
can be explained by nanoscale segregation due to self-recognition or “narcissistic” self-sorting, which would result in the local 
environments remaining similar to the individual spacer structures, while still affording the atomic-level contact observed 
by 19F→13C CP. 

 

Figure 1.6. (A) Structure of PEA+ and FEA+ cations with the corresponding 13C and 19F sites labelled. (B) 1H→13C CP, (C) 19F→13C CP, and (D) direct 19F 
MAS NMR spectra of the layered hybrid perovskites. PF = 1:1 PEA+:FEA+. 
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Figure 1.7. (A, B) Twisted and parallel relative orientations of the aromatic rings in adjacent layers and (C) top view of the spacer layer. (D) Schemat-
ic of different possible arrangements of PEA+ (P) and FEA+ (F) moieties ion the two opposite lattices representing the spacer bilayer within the 
layered perovskite. 

To investigate the atomic-level structure of the layered hybrid perovskite, we performed GIPAW DFT chemical shift computations 
of different trial structures. The shieldings obtained were converted to chemical shifts using an external set of structures with 
known chemical shifts and structure,203-206 for which we computed DFT shifts to obtain the regression parameters. The trial struc-
tures were generated by selecting low-energy structures from MD simulations, followed by structure optimisation by DFT. For this 
analysis, only the aromatic carbons in the spacer cations were considered because the aliphatic carbons are close to the heavy Pb 
and I atoms and may require full relativistic treatment to obtain accurate shieldings.207-209 

Structures with two different relative orientations of the spacer cation aromatic rings were considered: the “twisted” structure 
(Figure 1.7A), with a twist between the aromatic rings in the two opposing layers, and the “parallel” structure (Figure 1.7B), with 
aromatic rings from opposite layers aligned in parallel planes at 180° between the layers. For (PEA)2PbI4, the experimental 13C shifts 
agree with the calculated shifts for the twisted structure better than for the parallel structure, in agreement with the previously 
reported single crystal structure. In contrast, for (FEA)2PbI4, the calculated 13C and 19F shifts for the parallel structure are in better 
agreement with experiment, in accordance with the fact that the DFT energy is lower for the parallel structure. 

Five possible arrangements of PEA+ and FEA+ spacers were investigated, as shown in Figure 1.7D. In addition to these five model 
structures, we also considered the possibility of phase segregation, where the shifts are computed for the separate pure twisted 
(PEA)2PbI4 and parallel (FEA)2PbI4 structures. Such structures would form as a result of predominantly narcissistic self-sorting. Fig-
ure 1.8 shows the comparison between experimental and computed 13C and 19F chemical shifts for the five mixed (PF)2PbI4 struc-
tures (1-5) and the phase segregated model. Considering both 13C and 19F chemical shifts, only the phase segregated model is in 
agreement with the experimental data. We therefore conclude that the layered hybrid perovskite structure formed by mixed PEA+ 
and FEA+ spacers comprises segregated domains of the two spacer moieties; however, since the PEA+ 13C signals are observed in the 
19F→13C CP spectrum (Figure 1.6C), the domains must be limited to the nanoscale. 
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Figure 1.8. Comparison of experimental and computed (A) 13C and (B) 19F chemical shifts for structures 1-5 and the phase segregated model (P.S.). 
The dashed diagonal lines indicate perfect agreement. The insets show the RMSE between the computed and experimental chemical shifts for each 
structure and the horizontal lines show the expected error in DFT calculated shifts given by the RMSE in the reference set of structures. 

Taken together, these three examples illustrate how chemical shifts can be used to determine de novo atomic-level structures, and 
highlight the ability of NMR crystallography to determine the structure of a wide range of crystalline and disordered materials. 

1.3 Machine	learning	in	NMR	
Over the last decades, machine learning (ML) has tremendously improved many areas of science and technology. In particular, 
many ML models have been developed to replace resource-intensive quantum chemical computations,210-216 or improve their 
accuracy at a negligible additional cost,217-220 in addition to other applications in chemistry and material sciences.221-225 ML encom-
passes several different types of models and methods, including kernel ridge regression,226 support vector machines,227 decision 
trees,228, 229 gradient boosting,230, 231 and artificial neural networks.232, 233 

ML models statistically learn the relationship between inputs and outputs. For atomic properties, outputs are set to the desired 
property to predict, and the inputs should be simple to compute and capture the desired property. Thus, to calculate atomic prop-
erties, the inputs are typically atom-centered representations of local atomic environments such as the smooth overlap of atomic 
position (SOAP)234 or spectrum of London and Axilrod-Teller-Muto (SLATM)235 representations of local atomic environments. In 
particular, the SOAP descriptor expresses local atomic densities (3D Gaussian functions centered on the atomic positions) around 
an atom on a basis formed by spherical harmonics and radial functions. This description is invariant to translations, rotations and 
symmetry operations, and is particularly useful to predict properties that depend on local atomic environments and display similar 
invariance to such transformations, such as the (isotropic) chemical shift. 

In order to train machine learning models of atomic properties, a large dataset of input structures with associated target properties 
must be available. While experimental databases of sufficient size are sometimes available, consistency is paramount in order to 
reduce the noise in the training data. Thus, ML models have also been trained on DFT-computed properties, which are generally 
more consistent than experimental data, and can be obtained for a large number of systems using high performance computing 
facilities. 

1.3.1 Machine	learning	chemical	shifts	
Computing chemical shifts using DFT requires significant memory and CPU time. This prevents the use of NMR crystallography for 
both large systems and for large-scale screening of candidate structures. To overcome this challenge, numerous ML models of 
chemical shifts have been developed for small molecules in solution, 236-245 proteins,246-253 and solids.254-262 
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Early examples of chemical shift prediction of solvated molecules without explicit quantum mechanical computation were per-
formed by separating chemical shifts into additive contributions from atoms in their covalent environment. Dailey and Shoolery263 
established a relationship between C-H proton chemical shifts of methylene groups and substituent electronegativity. Similarly, 
Paul and Grant264 expressed 13C chemical shifts of linear alkanes as a sum of contributions from substituents. Such relationships 
were then extended to construct tables of chemical shifts for various chemical groups depending on their substituents.265 Chemical 
shifts have also been obtained from “hierarchically ordered spherical description of environment” (HOSE) codes,266 which encode 
the bonding structure around atoms in a molecule. The desired shift is obtained by averaging experimental shifts of atoms from a 
database that have the same HOSE code. Further development of chemical shift prediction systems led to the implementation of 
machine learning methods such as decision trees, support vector machines, and neural networks.236-243 In addition, more accurate 
chemical shifts can be obtained by combining DFT chemical shifts with a ML correction to reproduce the shifts obtained at higher 
levels of theory while reducing the computational cost.244, 245 

The chemical shifts in proteins heavily depend on their primary, and secondary structure.267 This has fuelled several methods to 
obtain shifts directly from the structure of proteins, either through machine learning or by constructing empirical relationships 
between chemical shifts and backbone torsional angles.246-253 These methods have relied on large experimental databases of as-
signed solution-state chemical shifts in proteins with known structures.268-270 

In contrast, predicting chemical shifts directly from the structure of solid compounds is hindered by the lack of large databases of 
experimental chemical shifts. To circumvent this issue, databases of DFT-computed chemical shifts were constructed to train ma-
chine learning models of shifts for a variety of solids including silicates,254, 255 clay minerals,256 zeolites,257 aluminophosphates,258 
and molecular solids.259-262 

In 2019, Paruzzo et al.176, 261 introduced ShiftML, a kernel ridge regression model of chemical shifts for molecular solids containing 
C, H, N, O and S atoms. The model is trained on GIPAW DFT shifts computed for 3,546 diverse crystal structures. Predictions of 
isotropic shifts are performed based on the atom-centered SOAP representation,234 and yields an RMSE of 0.48 ppm for 1H, 4.13 
ppm for 13C, 13.70 ppm for 15N and 17.05 ppm for 17O shifts against DFT on a test set of 500 crystal structures. Importantly, the 
accuracy of the model was found to be sufficient to correctly identify the crystal structure of molecular solids among sets of candi-
dates for multiple molecular solids by comparison with experimental shifts. Overall, ShiftML reduces the computational cost of 
obtaining chemical shifts from hours/days to seconds for small and medium-size crystals, and allows predictions on large systems 
for which shift computations would be unfeasible using DFT with the currently available resources. 

1.3.2 Machine	learning	for	the	analysis	of	NMR	data	
Several deep learning models have also been implemented to process NMR spectra. For example, convolutional neural network 
(CNN) architectures, originally developed for computer vision,271-275 are particularly well suited to process spectral data. This has 
fuelled several applications of deep learning for denoising low signal-to-noise spectra,276-278 performing deconvolution and pick 
peaking,279-282 applying virtual decoupling,283, 284 and reconstructing two-dimensional spectra from undersampled data.283, 285, 286 
CNNs process inputs by sequentially applying non-linear convolutional filters, allowing the recognition of local features in the input 
data, while incorporating location invariance. This architecture was designed to approximate the inner workings of the visual cortex 
in mammals.275, 287-289 

Another class of neural networks that has been used to process NMR data is recurrent neural networks (RNNs),275 which are de-
signed to process sequential data. Among particular RNN architectures, the long short-term memory (LSTM) neural network archi-
tecture290 has been shown to be able to reconstruct two-dimensional spectra from undersampled data by processing time-domain 
NMR data,291 and to accelerate shimming algorithms that aim at correcting magnetic field inhomogeneities that impair spectral 
resolution.292 Recurrent neural networks process input sequences one element at a time, and contain a “state vector” that encodes 
a memory of the past elements. In particular, RNNs have been widely used for language processing tasks.275, 293, 294 

Due to the large amounts of data necessary to train deep learning models, most applications presented above have required the 
generation of synthetic spectra for training. This relies on theoretical descriptions of the observed signals, and particular care 
should be taken to generate synthetic data that encompass the expected breadth of experimental variations, arising both from the 
expected diversity of systems studied and from experimental noise and errors, while producing realistic inputs. Coupling accurate 
theoretical models and realistic sources of noise and artifacts allows the generation of virtually infinite synthetic databases for 
training deep learning models that can then be used to process experimental data.295, 296 
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1.4 Outline	of	the	present	thesis	
In this chapter, I have presented how chemical shifts are probes of local atomic environments and how they can be obtained for 
model systems using ab initio methods, enabling the combined use of solid-state NMR and density functional theory computations 
to determine the atomic-level structure of materials. This provides an alternative to diffraction-based methods. In addition, I have 
presented selected examples of structure determination of molecular and disordered solids through NMR crystallography, and I 
have briefly discussed machine learning approaches to computing chemical shifts, enabling large-scale screening and investigations 
of large systems, as well as recent uses of deep learning for NMR data processing. During my PhD, I have focused on the further 
development and applications of machine learning models of chemical shifts to accelerate the structure determination of micro-
crystalline molecular solids, as well as amorphous materials, through NMR crystallography. 

Chapter 2 focuses on the development and applications of machine learning to accelerate chemical shift-based NMR crystallog-
raphy of crystalline molecular solids. We present an updated version of ShiftML that improves the accuracy and extends the capa-
bilities of the model to predict chemical shifts. In addition, we show how experimental and machine learned chemical shifts can be 
incorporated in CSP procedures to drive the generation of candidate crystal structures towards the experimentally observed struc-
tures. Finally, we introduce a method to identify intermolecular interactions in crystal structures directly from experimental shifts 
and without any prior knowledge of the three-dimensional structure of the molecule, using a database of crystal structures with 
ShiftML-computed chemical shifts. 

Chapter 3 discusses computational methods to accurately obtain and assign chemical shifts of molecular solids. We introduce a 
Bayesian framework to automatically assign chemical shifts to atomic sites of solid compounds without any prior knowledge of the 
three-dimensional structure of the molecule, and in a probabilistic manner. We also introduce a deep learning model to obtain 
pure isotropic proton solid-state NMR spectra, i.e., the spectra that would be obtained at infinite MAS rates, from datasets of ex-
perimental spectra acquired at different MAS rates. We apply the model to one-dimensional 1H NMR spectra of various molecular 
solids, as well as two-dimensional 1H-1H correlation spectra. 

Chapter 4 presents the application of NMR crystallography to determine the structure of amorphous molecular solids. By combin-
ing solid-state NMR experiments with molecular dynamics simulations for which we predict chemical shifts using ShiftML, we de-
termine the hydrogen bonding structure of the amorphous form of a drug molecule. We then introduce a general method to de-
termine the structure of amorphous molecular solids through the combination of solid-state NMR, molecular dynamics and ma-
chine-learned chemical shifts. 

Chapter 5 summarises the results achieved and provides an outlook of future development and applications of machine learning in 
NMR crystallography. 
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 Accelerating	NMR	crystallography	
of	microcrystalline	solids	
2.1 Introduction	
Atomic-level structure determination of molecular solids is a critical step in the rationalisation of their physical properties.297, 298 
This is for example particularly important for pharmaceutical compounds, where the three-dimensional structure determines key 
properties of drugs delivered in either crystalline or amorphous form, such as solubility and bioavailability. 298-300 While X-ray dif-
fraction (XRD) is the most well-established method for determining the structure of crystalline compounds, many materials lack the 
long-range order required to perform single-crystal XRD. Solid-state nuclear magnetic resonance (NMR) directly probes local atomic 
environments, and so does not require long-range order, making it a popular method for studying the structure of microcrystalline 
and disordered solids from powder samples. 

However, crystal structure determination by NMR is still a challenging process, in part due to the large space of candidate crystal 
structures to explore and the cost of computing chemical shifts for these structures using DFT. Accelerating the computation of DFT 
chemical shifts and incorporating experimental constraints to generate more accurate candidate structures would thus significantly 
accelerate NMR crystallography. 

A key step in NMR crystallography is the computation of chemical shifts for candidate structures. Here, high accuracy is required in 
order to capture the effect of the particular conformation and packing of the molecular building blocks on the chemical shifts, and 
to allow the identification of the correct structure among a set of potential candidates based on a comparison between computed 
and measured chemical shifts.127, 176, 301-303 With the current best calculations, the root-mean-square error (RMSE) between exper-
iment and calculation can be as low as 1.5 ppm for 13C and 0.2 ppm for 1H.127, 151, 304-306 

Plane-wave density functional theory (DFT) methods using the gauge including projected augmented wave (GIPAW) formalism117, 

118, 307 generally offer a good trade-off between accuracy and computational cost for computing chemical shifts in small periodic 
structures. Consequently, DFT has been widely used in NMR crystallography to determine the structure of powdered solids.52, 53, 151, 

308 However, the computational cost of DFT methods severely limits the size of systems accessible, preventing the study of large or 
disordered systems. 

In recent years machine learning models have proven a powerful tool for supplementing and bypassing intensive quantum-
mechanical calculations of molecular and atomic properties. In particular, NMR chemical shifts have been modelled using kernel 
methods259, 309, 310 and neural networks.237, 245, 247, 253, 260, 262, 311 Such approaches have proven able to yield chemical shifts to within 
DFT accuracy at a fraction of the computational cost, allowing applications to large ensembles of large systems. 

In this context, ShiftML176, 261 is a machine learning model of chemical shifts of molecular solids trained on GIPAW DFT data for 
3,546 structures from the Cambridge structural database (CSD),312 allowing fast and accurate predictions of chemical shifts for any 
molecular solid containing C, H, N, O, S atoms. However, two important limitations prevent its more widespread use. First, the 
model is limited to compounds containing only the five elements present in its training set. Second, ShiftML is trained only on struc-
tures that were geometry optimised using DFT, resulting in lower accuracy for predictions on finite temperature or distorted struc-
tures. 

In Section 2.2, we extend the capabilities of ShiftML to predict chemical shifts for both finite temperature structures and more 
chemically diverse compounds, while retaining the same speed and accuracy. For a benchmark set of 13 molecular solids, we find a 
root-mean-squared error of 0.47 ppm with respect to experiment for 1H shift predictions (compared to 0.35 ppm for explicit GIPAW 
DFT calculations using the PBE density functional), while reducing the computational cost by over four orders of magnitude. 
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Established approaches to de novo structure determination, for example by single-crystal X-ray diffraction of large molecules or by 
solution NMR, usually involve an iterative process where a (often random) starting structure is optimised under the combined 
effect of an (usually empirical) energetic potential and a penalty term that compares the computed observables with the measured 
values at every step of the optimisation.57 This is a very powerful approach to finding the correct structure, and is enabled by the 
fact that the calculation of observables from any trial structure is very rapid. So far, this has not been possible in chemical shift-
based NMR crystallography, with a few notable exceptions where chemical shifts were incorporated and derived from para-
metrised force-fields.313, 314 To make this approach general the calculation of chemical shifts so far would have required the highly 
accurate but very time consuming electronic structure calculations described above.117, 315-318 This results in de novo structure de-
termination currently requiring first the generation of a large ensemble of credible candidate structures, usually done with some 
form of computational crystal structure prediction (CSP) protocol,159, 319-323 followed by DFT chemical shift calculations for the set of 
candidates, and only at the end of this process is there a comparison with the experimental shifts to determine which is the correct 
structure. This is the approach used in the example cases discussed in Chapter 1. While powerful, this is a time consuming and 
laborious approach whose efficiency could be greatly improved by making use of chemical shift data at an earlier stage of the pro-
cess. Additionally, if the set of candidates does not contain the correct structure, then the whole process fails. 

In Section 2.3, we successfully determine the crystal structures of ampicillin, piroxicam, cocaine, and two polymorphs of the drug 
molecule AZD8329 using on-the-fly generated machine-learned isotropic chemical shifts to directly guide a Monte Carlo-based 
structure determination process starting from a random gas-phase conformation. 

In crystalline molecular solids, preferential interactions have previously been identified using full interaction maps (FIMs),324 where 
the propensity for interactions between pairs of functional groups are probed based on statistics extracted from the Cambridge 
structural database (CSD).312 This allows the identification of potential intermolecular interactions in crystalline materials, which 
can qualitatively inform on the intermolecular packing and be used to evaluate the relative stability of different polymorphic forms. 
While FIMs are useful to predict preferred non-covalent interactions in molecular solids, their usefulness in the validation of poten-
tial crystal structures based on experimental data is limited. The construction of such maps driven by experimental properties could 
thus help validate potential candidates in crystal structure determination and establish experimental constraints to drive candidate 
structure generation schemes. 

In Section 2.4, we use a database of crystal structures with associated chemical shifts to construct three-dimensional interaction 
maps in molecular crystals directly derived from a molecular structure and the associated set of experimentally measured chemical 
shifts. We show how the maps obtained can be used to identify structural constraints for accelerating CSP protocols, and to evalu-
ate the likelihood of candidate crystal structures without requiring any chemical shift computation. 

Combining the approaches presented in this chapter could in the longer term greatly accelerate the structure determination of 
molecular solids, streamlining NMR crystallography and allowing a more widespread use of this method to confidently and rapidly 
obtain crystal structures from NMR data. 
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2.2 ShiftML2:	A	machine	learning	model	of	chemical	shifts	for	chemically	and	
structurally	diverse	molecular	solids	

This section has been adapted with permission from: Cordova, M.; Engel, E. A.; Stefaniuk, A.; Paruzzo, F.; Hofstetter, A.; Ceriotti, M.; 
Emsley, L., A Machine Learning Model of Chemical Shifts for Chemically and Structurally Diverse Molecular Solids. Journal of Physi-
cal Chemistry C 2022, 126 (39), 16710-16720. (post-print) 

My contribution was to select the data used to train the model from the complete dataset and to identify outliers, as well as to 
optimise and train the model, and test it against DFT-computed and experimental chemical shifts. I also wrote the manuscript, with 
the contribution of all other authors. 

2.2.1 Introduction	
As mentioned above, ShiftML176, 261 is a machine learning model of chemical shifts trained on GIPAW DFT data for 3,546 structures 
from the Cambridge structural database (CSD),312 allowing fast and accurate predictions of chemical shifts for any molecular solid 
containing C, H, N, O, S atoms. Although it constitutes a powerful method for computing chemical shifts with high accuracy and at a 
low computational cost, two important limitations prevent its more widespread use. First, the model is currently limited to com-
pounds containing only C, H, N, O, S atoms. While these elements are among the most prevalent in the CSD, numerous organic 
crystals contain elements outside of this set, leaving them beyond the scope of ShiftML. Second, the training set of ShiftML only 
contains structures that were geometry optimised using DFT, resulting in lower accuracy for predictions on finite temperature or 
distorted structures, or for structures that are geometry optimised using other methods (such as semi-empirical electronic struc-
ture calculations325, 326). 

Here, we present ShiftML2, an updated version of ShiftML, trained on GIPAW DFT chemical shifts for an extended set of over 
14,000 structures containing any of 12 common elements (H, C, N, O, S, F, P, Cl, Na, Ca, Mg and K), and composed of roughly equal 
amounts of relaxed and thermally perturbed structures of crystals extracted from the CSD. ShiftML2 shows slight improvements 
over the previous versions of ShiftML on DFT-relaxed structures (1H RMSE of 0.47 ppm against 0.51 ppm for the ShiftML model 
described in Ref. 176, which we refer to as ShiftML1 here). More importantly, it effectively retains this accuracy for distorted 
(thermalised) structures, for which the performance of ShiftML1 degrades dramatically, while additionally allowing chemical shift 
computations for more chemically diverse structures. 

2.2.2 Methods	
Configurational sampling. In order to construct suitable reference data for an accurate and robust ShiftML2 model, we first ex-
tracted all crystal structures from the CSD with unit cells containing no more than 200 atoms (for which high-throughput first-
principles calculations are comparatively affordable) and including H and C, but no additional elements other than N, O, S, F, P, Cl, 
Na, Ca, Mg and K. We note that we initially allowed the presence of Br and I atoms, but later discarded the structures containing 
these atoms due to the need for relativistic corrections to obtain accurate shieldings for atoms in their vicinity. After extracting a 
random selection of 1,000 molecular crystals as a test set, the selection of the training set was performed by farthest point sam-
pling (FPS)327 of the remaining 140,373 structures based on the kernel-induced pairwise distances 

𝐷𝐷/𝑋𝑋%, 𝑋𝑋(3 = 𝑘𝑘(𝑋𝑋%, 𝑋𝑋%) + 𝑘𝑘/𝑋𝑋(, 𝑋𝑋(3 − 2𝑘𝑘/𝑋𝑋%, 𝑋𝑋(3. (2.1) 

Here, the kernel function 𝑘𝑘(⋅,⋅) = /𝑋𝑋% ⋅ 𝑋𝑋(3
'

 measures the similarity of the average smooth overlap of atomic positions (SOAP) 
power spectra234 of the constituent atoms within a crystal structure, 𝑋𝑋%, computed using the hyperparameters specified in Table 
2.3. The first 10,000 FPS-sorted (most structurally diverse) structures were selected as the training set. 

All training and test structures were relaxed using DFT fixed cell geometry optimisations using the Quantum ESPRESSO (QE) elec-
tronic structure package328, 329 with the PBE density functional,97 a Grimme D2 dispersion correction,330, 331 wavefunction and 
charge density energy cut-offs of 60 Ry and 240 Ry, respectively, and ultrasoft pseudopotentials with GIPAW reconstruction.332, 333 
To render this computation efficient, only the Gamma-point was accounted for. Further details may be found in Appendix I. 

Subsequently, short constant-volume molecular dynamics (MD) simulations of 500 fs were performed using i-PI334, 335 to drive the 
dynamics, and the above QE setup to evaluate energies and forces. We used a timestep of 1 fs and a Generalised Langevin Equation 
thermostat336, 337 to equilibrate the system at 300 K.  
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Finally, we collected two structures for each molecular crystal in the training and test sets, the relaxed structure and a thermalised 
MD structure (the last in the trajectory), and proceeded to compute the associated GIPAW-DFT chemical shieldings for all 22,000 
resulting structures. 

GIPAW-DFT chemical shieldings. The GIPAW NMR calculations were performed using the QE code with the same DFT parameters 
as for the structure relaxation above, but using refined plane wave and charge density energy cut-offs of 100 Ry and 400 Ry, re-
spectively, a Monkhorst-Pack k-point grid338 with a maximum spacing of 0.06 Å−1, and the ultrasoft pseudopotentials with GIPAW 
reconstruction from the USSP pseudopotential database v1.0.0. 

Finally, all structures were discarded which displayed at least one outlier shift (defined as being outside the range of chemical shifts 
between the 1st and 99th percentile of all shifts of that element by at least 1.5 times that range), or where the calculation failed. 
Overall, 2,650 structures were discarded because the self-consistent loop did not reach the high level of convergence needed for 
reliable GIPAW calculations, we removed 3,313 additional structures containing Br or I atoms, and we discarded 24 structures that 
displayed outlier shieldings. This led to final training and test sets containing 14,254 and 1,759 structures respectively. 

Machine learning model. We use kernel ridge regression (KRR)226 to predict the isotropic chemical shielding of an atom based on 
its local atomic environment as 

𝜎𝜎(𝑋𝑋) =6𝑤𝑤%𝑘𝑘(𝑋𝑋, 𝑋𝑋%)
8

%

=6𝑤𝑤%(𝑋𝑋9 ⋅ 𝑋𝑋%):
8

%

, (2.2) 

 

where 𝑋𝑋 and 𝑋𝑋% are symmetry-adapted descriptors, which encode the local atomic environment around the atom of interest and 
those in the training set, respectively, and 𝑤𝑤% denotes the regression weight associated with training sample 𝑖𝑖. 𝑘𝑘(⋅,⋅) is the kernel 
function that defines the similarity between two atomic environments. Here, we measure the similarity between two environments 
as the scalar product between the vectors corresponding to their descriptor, raised to a power 𝜁𝜁. Training a KRR model involves 
determining the weights 𝑤𝑤% such that Equation 2.2 is best satisfied for the training data, with an additional regularisation term that 
reduces the magnitude of regression weights. Further information is available in Appendix I. 

Uncertainty estimation. Uncertainty estimation is performed using a resampling approach to generate a committee of 𝑀𝑀 = 32 KRR 
models,339 trained on random two-fold splits of the training data. The final prediction for a sample 𝑖𝑖 in the test set, 𝜎𝜎i%, is given by 
the mean of the prediction for each model, and the estimated uncertainty is defined as the standard deviation 𝑠𝑠% of the prediction 
of each model, rescaled by a factor 𝛼𝛼 given by339 

𝛼𝛼 =	−
1
𝑀𝑀 +

𝑀𝑀 − 3
𝑀𝑀 − 1k

1
𝑁𝑁;0<;

6
(𝜎𝜎% − 𝜎𝜎i%)'

𝑠𝑠%'%∈;0<;

, (2.3) 

where 𝑁𝑁;0<; is the size of the test set, and the sum runs over all test samples. 

Local atomic environment descriptor. We describe local atomic environments using smooth overlap of atomic positions (SOAP) 
power-spectra234 as implemented in librascal.340 We use a sparse implementation of the SOAP descriptors, making use of the spar-
sity of elements in local environments around individual atoms. 

The relevant hyperparameters were optimised by five-fold cross validation performed on the 1H environments of a subset of 1,000 
training structures, selected at random other than including all training structures containing Na, Ca, Mg or K. The latter ensures 
that these elements are represented during hyperparameter optimisation, despite their low abundance in the training data. The 
structures selected for hyperparameter optimisation contain a total of 27,802 1H environments. In each cross-validation fold, the 
training data was partitioned into three equal parts, and a KRR model was trained on each part. This was done in order to reduce 
the computational resources required to train the models for each split. The selection of descriptor parameter values was based on 
the RMSE obtained on the validation data. The explored and selected hyperparameter values can be found in Appendix I. We note 
that Ref. 176 found almost identical hyperparameters to be optimal for H, C, N, O, and S through independent optimisations for the 
different elements. We therefore apply the hyperparameters optimised for 1H to the other elements without further optimisation, 
except for the optimal radial basis,341 which was constructed individually with the complete final training data for each element. 
We note that the cutoff radius chosen here is well above the Van der Waals radius of all atoms considered (< 2.8 Å). 
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Farthest point sampling of training environments. The training data was sorted using FPS327 based on distances between pairs of 
environments 𝑋𝑋% and 𝑋𝑋( defined as in Equation 2.1. This serves two purposes: first, it permits the removal of duplicate environ-
ments arising from, e.g., equivalent atomic sites related by the crystal symmetries in relaxed structures. Second, it identifies the 
most structurally diverse set of training environments. 

To eliminate redundant environments and distil a computationally manageable number of informative environments, we split the 
training data into randomly selected batches of 50,000 samples (atomic environments) (because FPS is not computationally feasible 
on the whole set). FPS was then used on each batch and stopped once the minimum distance between FPS-selected samples 
reached 10-2 for 1H and 10-3 for all other elements. The FPS selection was then repeated after shuffling the environments, recom-
bining them into different batches of 50,000 samples and increasing the distance threshold in each batch by steps of 10-3, until a 
total of fewer than 100,000 environments remained. 

Outlier detection and model training. When required, the FPS-selected training environments were randomly selected to a maxi-
mum of 216 samples in order to limit the size of the kernel required to predict chemical shifts. Then, five-fold cross-validation was 
performed. For each fold, a committee of eight KRR models was trained. To this end the training split was further subsampled, 
training each KRR model on a random selection of half of the training split for a given fold. For each fold, the predictions and asso-
ciated uncertainty estimates for the validation split were used to identify and discard outlier environments. In practice, environ-
ments were discarded if the residual error exceeded both the standard deviation of the shifts in the training data and twice the 
associated uncertainty estimate. After removing these outliers, 32 KRR models were trained on randomly selected environments 
making up half of the remaining curated data to construct the final model of shifts. The rescaling factor 𝛼𝛼 for uncertainty estima-
tion was obtained from the predictions on the test set. A summary of the number of structures and environments during the data 
selection and cleanup (FPS selection of environments, outlier removal) is given in Figure 2.14.  

Atom type identification. The different atom types, defined here as hybridisation and formal charge, in the training and test struc-
tures were identified using the RDKit342 Python package on the asymmetric unit of the crystals extracted using the CSD Python 
API.312 The structures were RDKit failed to identify bonds and/or formal charges were discarded from the atom type analysis. Car-
bon atoms identified as charged were set to a neutral charge, as well as nitrogen atoms identified with a negative charge and oxy-
gen atoms identified as positively charged. This was done upon visual inspection of a subset of crystal structures displaying such 
unusual atom types, confirming that such atom types were incorrectly determined by the package. In total, atomic types of 6,960 
out of the 10,593 final training structures and 1,443 out of the 1,759 test structures were identified. We note that this is a post hoc 
analysis of the atom types in the training and test sets, and that ShiftML2 does not require identification of the atom types to per-
form chemical shift predictions. 

Comparison with experimental chemical shifts. To further test the resulting models, we performed plane-wave DFT calculations 
for 13 structures with assigned experimental chemical shifts with the same level of theory as for the computation of DFT shieldings 
of the training and test sets. Comparison between computed (or predicted) shieldings and experimental chemical shifts was per-
formed by linear regression of the shieldings computed with the corresponding experimental shifts, using average values of chemi-
cally equivalent shifts and resolving any assignment ambiguity by selecting the assignment resulting in the minimum RMSE. 

 

Figure 2.1. (A) First (blue) and last (red) FPS selection step for a batch of up to 50,000 1H environments. The blue and red dashed lines show the 
threshold for the minimum distance between FPS-selected samples set to select environments in the first and last FPS selection steps, respectively. 
(B) Comparison of DFT-computed 1H shieldings and predictions for the training environments obtained through 5-fold cross-validation. (C) Compari-
son of the absolute error of the prediction and predicted uncertainty for the training environments selected by FPS. The red lines indicate the 
criteria used to discard outliers (red points in (B) and (C)). 
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2.2.3 Results	and	Discussion	
Training set selection and model training. Due to the lack of large databases of experimental chemical shifts in molecular solids, 
we trained the model on shielding values computed by DFT, as was done previously for ShiftML1.176, 261 This ensures both con-
sistency in the training data as well as the ability to perform high throughput computations to obtain a substantial amount of train-
ing data in reasonable time. The training structures were chosen to be as diverse as possible through FPS. Since computed shield-
ings are related to chemical shifts by a simple linear relationship, we use the two terms interchangeably. 

High quality of the training data is key to producing an accurate machine learning model. In addition, the kernel model framework 
used here has a linear time and memory complexity with respect to the training set size for inference. It is thus important to reduce 
the amount of training data while retaining diverse atomic environments and removing outliers to obtain both fast and accurate 
predictions of chemical shifts. To this end, we performed an iterative, batched FPS of the chemical environments as described in 
Section 2.2.2. Figure 2.1A shows the first and last FPS iterations on typical batches. The significant drop in minimum distance be-
tween FPS-selected samples after selecting 30,000 of the 50,000 environments in an initial batch corresponds to symmetrically 
equivalent atomic sites in relaxed crystal structures. After gathering the FPS-selected environments from all batches after the final 
iteration, we obtained 67,535 1H environments. 

 

Figure 2.2. (A) Comparison of DFT-computed 1H shieldings and ShiftML2 predictions on the test set. (B) Histogram of the of prediction error be-
tween ShiftML2 predictions and DFT-computed shieldings for 1H environments. Comparison of 1H (C) chemical shift RMSE and (D) average predic-
tion uncertainties on test structures containing (blue) or lacking (red) a given element. Comparison of DFT-computed 1H shieldings and ShiftML2 
predictions on (E) relaxed and (F) MD structures in the test set. Black lines in (A), (E) and (F) show perfect correlations. 
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Figure 2.1B-C highlights the outliers among the selected 1H training environments identified following the scheme described in 
Section 2.2.2. In total, 145 1H environments were considered as outliers because they exhibit both relatively large prediction error 
and comparatively small prediction uncertainty (red points and lines in Figure 2.1C). Among the final 1H training environments, 86% 
were from distorted structures and 14% from relaxed structures. This highlights the importance of the presence of distorted struc-
tures in the training data in order to obtain a uniform sampling of the space of possible atomic environments. 

The final model was constructed by training 32 models on random half splits of the remaining training environments. Prediction 
uncertainties were estimated as the rescaled standard deviation of the 32 predictions to fit the error distribution, as described in 
Ref. 343. 

Model evaluation and comparison to ShiftML1. Figure 2.2 shows correlation plots between predicted and DFT-computed 1H 
shieldings in the test set as well as the associated distribution of prediction errors. We obtain an RMSE of 0.52 ppm and an R2 coef-
ficient of 0.97, with 95% of the predictions having an error below 1 ppm. The RMSE was found to be slightly lower in relaxed struc-
tures (0.48 ppm) compared to MD structures (0.53 ppm). The presence of sodium or magnesium in crystal structures was found to 
raise both the prediction error (Figure 2.2C) and, to a lesser extent, uncertainty (Figure 2.2D). We attribute that to the relatively 
low number of structures containing these elements in the training set (226 structures containing Na, 65 containing Mg), coupled 
to the high charge density of these ions which induces a large change in the shielding on neighbouring atomic sites. Although calci-
um and potassium are not significantly better represented in the training set (145 structures containing Ca, 176 containing K), their 
reduced charge densities compared to Mg and Na induce lower perturbations of the shielding of neighbouring atomic sites, which 
are better captured by the kernel. 

We observe a reduced prediction uncertainty and error for shieldings above 20 ppm (see Figure 2.14). This behaviour is expected 
considering that 90% of the training data have DFT shieldings computed above 20 ppm, which corresponds to typical chemical 
shifts of aliphatic and aromatic CH protons (< 10 ppm). The reduced density of training data at lower shieldings (corresponding to 
higher chemical shifts) results in increased error and uncertainty of the predictions. 

To compare ShiftML1 and ShiftML2 we apply both models to the ShiftML1 test set, as well as all structures from the current test set 
which contain exclusively H, C, N, O and S atoms (i.e., those for which ShiftML1 is applicable). Figure 2.3 shows the 1H shift predic-
tions of the two models for the ShiftML1 test set (Figure 2.3A-B), and for the relaxed (Figure 2.3C-D) and finite temperature (Figure 
2.3E-F) structures from the ShiftML2 test set, which only contain H, C, N, O and S atoms. Table 2.1 summarises the results obtained 
by both models. There are two striking conclusions that are illustrated by the figure and table. First, overall, ShiftML2 displays slight 
improvements over ShiftML1 for relaxed structures (0.47 ppm RMSE compared to 0.49 ppm on the ShiftML1 test set, and 0.47 ppm 
RMSE compared to 0.51 ppm on relaxed structures from the ShiftML2 test set), indicating that the increase in the number of train-
ing environments was sufficient to avoid deterioration of the accuracy despite the greater chemical diversity. Second, ShiftML2 is 
substantially more accurate for finite temperature structures (0.53 ppm RMSE for ShiftML2 compared to 0.98 ppm for ShiftML1), 
highlighting the greater robustness of a model trained on finite temperature structures when predicting atomic properties for 
distorted structures. To confirm the robustness of ShiftML2 towards distorted structures, we evaluated the error against DFT-
computed 1H shieldings for up to 50 snapshots taken every 100 fs from MD simulations of the crystal structures of cocaine, 
AZD5718 and form 4 of AZD8329. We found that the average RMSEs along the MD trajectories were only slightly above the RMSEs 
obtained for the relaxed structures (0.58 ppm against 0.55 ppm RMSE for AZD5718, 0.50 ppm against 0.45 ppm RMSE for form 4 of 
AZD8329, and 0.49 ppm against 0.42 ppm RMSE for cocaine, see Figure 2.15). This is a key improvement compared to the previous 
ShiftML version, since it allows accurate predictions of chemical shifts beyond relaxed structures, and yields a better description of 
shifts in (PI)MD snapshots, and for intermediate structures during structural optimisation. 
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Figure 2.3. Comparison of DFT-computed 1H shieldings and predictions using ShiftML1.1 (A, C, E) or ShiftML2 (B, D, F) on: (A, B) the 
ShiftML1 test set, (C, D) relaxed structures containing only H, C, N, O and S in the ShiftML2 test set, and (E, F) MD structures con-
taining only H, C, N, O and S in the ShiftML2 test set. Black lines show perfect correlations. 

 

Table 2.1. Chemical shift root-mean-square error (RMSE), mean absolute error (MAE) and R2 coefficient of ShiftML1 and ShiftML2 compared to DFT-
computed shieldings. The values are given for ShiftML1 and ShiftML2, separated by a slash. 

Test set RMSE [ppm] MAE [ppm] R2 

ShiftML1 0.48/0.46 0.37/0.35 0.98/.0.98 

ShiftML2, relaxed only 0.51/0.47 0.38/0.35 0.98/0.98 

ShiftML2, MD only 0.98/0.53 0.71/0.40 0.91/0.97 

ShiftML2, all 0.78/0.50 0.54/0.38 0.94/0.98 
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Figure 2.4. Chemical shift RMSE for different types of (A) 1H, (B) 13C, (C) 31P, (D) 15N, (E) 17O, (F) 33S and (G) 35Cl in the test set. The number of envi-
ronments (or structures) in the test set contributing to each bar is indicated next to it. 

The ability of the model to generalise to distorted structures is key in many applications of NMR crystallography. In particular, it 
allows accurate computation of chemical shifts on structures that are geometry optimised with different levels of theories (e.g., 
force fields or DFTB), which is important for the accurate description of shifts in molecular dynamics simulations of materials.177 It 
also enables more confident on-the-fly computations of chemical shifts of intermediate structures during the optimisation of crys-
tal structures in chemical-shift driven structure determination protocols, resulting in a potentially more powerful driving force 
towards the experimental structure.344 

Figure 2.4 shows the prediction error for different types of protons in the test set. The two most common proton types H-C(sp3) 
and H-C(aromatic), making up 90% of the test set, yielded chemical shift RMSEs below 0.5 ppm. All other proton types displayed 
chemical shift RMSEs below 0.9 ppm, with the exception of alkyne protons, for which the RMSE was found to be 5.3 ppm. Such high 
error is explained by the presence of only two alkyne protons identified in the final training data. Interestingly, we find that protons 
attached to nitrogens in charged groups display a lower error compared to their neutral counterparts. Molecular salts were found 
to display comparable shift RMSEs to neutral compounds. H-bonded protons yielded a chemical shift RMSE of 0.79 ppm. 

Experimental benchmark set and polymorphs. We evaluate the accuracy of the model with respect to experimental 1H chemical 
shifts using a benchmark set of 13 molecular crystals made up of cocaine, form 4 of AZD8329, theophylline, uracil, naproxen, the 
co-crystal of 3,5-dimethylimidazole and 4,5-dimethylimidazole, AZD5718, furosemide, flutamide, the co-crystal of indomethacin 
and nicotinamide, flufenamic acid, the potassium salt of penicillin G, and phenylphosphonic acid.52, 139, 144, 177, 261, 345, 346 Figure 2.5A 
compares the predicted and experimentally measured shifts for this set. We obtain a RMSE of 0.47 ppm, compared to 0.35 ppm 
using DFT. For reference, the RMSE obtained on the experimental benchmark set for ShiftML1 (containing the six first molecular 
solids mentioned previously) is 0.41 ppm for ShiftML2, compared to 0.39 ppm for ShiftML1 and 0.36 for DFT. This further highlights 
that the accuracy of ShiftML1 for relaxed structures has been retained by ShiftML2, while extending the capabilities of the model to 
predict shifts for more chemically and structurally diverse structures. Notably, within the limits of the small experimental set used 
here, the accuracy against experimental shifts is found to decrease when including structures containing F, Cl, P or K atoms, while 
DFT remained at the same level of accuracy. Since no such deterioration is observed for the structures in the test set (see Figure 
2.2C), we attribute this to the chemical environments in the experimental set, which are not well represented in the training data. 
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Figure 2.5. (A) Comparison between predicted and experimental 1H shifts for 13 molecular solids. The black line shows perfect correlation. Chemical 
shift RMSE obtained by ShiftML2 (blue) and DFT (red) against experimental shifts for candidate structures of (B) Cocaine, (C) AZD8329 form 4, and 
(D) AZD5718. The correct crystal structure is indicated by the grey zone. The black horizontal lines indicate the expected RMSE between ShiftML2 
predictions and experimental shifts (0.47 ppm). 

Computing DFT chemical shifts for the 13 structures required over 56 CPU days, while ShiftML2 required less than 20 CPU minutes 
to predict the shifts of all atoms in the structures considered. If only 1H chemical shifts are required, this time is reduced to less 
than four CPU minutes, which corresponds to a more than 24,000-fold speedup compared to DFT shift computation.  

The ability to determine the correct structure from among a set of candidates based on comparison between experimental and 
computed shifts is key to NMR crystallography. Figure 2.5B-D shows the RMSE between experimental and predicted 1H shifts for 
different sets of candidate structures for cocaine, form 4 of AZD8329, and AZD5718. The correct candidates systematically yielded a 
chemical shift RMSE below 0.6 ppm, and corresponded to the lowest RMSE among the sets of candidates for form 4 of AZD8329 
and AZD5718, and to the second lowest RMSE for cocaine.  

Models for other nuclei. In addition to 1H, we constructed models for all the other nuclei present in the training data. Figure 2.6, 
Figure 2.13 and Table 2.2 compare the resulting predictions for the nuclei beyond 1H to GIPAW DFT shieldings. We note that alt-
hough we refer to a particular nucleus (e.g., 15N), the isotropic chemical shift of all NMR-active isotopes of a particular element can 
be predicted with the same accuracy, by adapting the offset (and slope) used to convert computed shieldings into chemical shifts. 
We obtain strong correlations (R2 > 0.95) for 13C, 15N, 17O, 19F and 35Cl. This indicates that ShiftML2 can accurately predict chemical 
shifts for these elements, although the absolute error is higher than for 1H due to the larger chemical shift ranges for these nuclei 
(see Table 2.2). The lower number of training environments for 31P, 23Na, 43Ca, 25Mg and 39K was found to lead to lower correlation 
with DFT-computed shifts. While we still provide models for these nuclei, we acknowledge that more accurate models based on 
more extensive training data would be required to obtain more accurate predictions for these elements. We reiterate that the main 
purpose of including these elements in the training data was to allow prediction of 1H, 13C or 15N chemical shifts for structures 
containing such elements. Detailed ShiftML2 prediction accuracies for different types of 13C, 15N, 17O, 31P, 33S and 35Cl nuclei are 
shown in Figure 2.4B-G. As for 1H, we observe a loss of accuracy for sp-hybridised 13C and 15N. The other nuclei (19F, 23Na, 43Ca, 25Mg 
and 39K) each displayed a unique atomic type across the test set. 
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Table 2.2. Training and test size, chemical shift root-mean-square error (RMSE), mean absolute error (MAE) and R2 coefficient for ShiftML2 models 
trained on nuclei beyond 1H. 

Nucleus Training set size Test set size RMSE [ppm] MAE [ppm] R2 
13C 65,498 60,406 4,53 3.12 0.99 
15N 65,506 6,514 15.02 9.99 0.98 
17O 65,488 11,330 23.18 16.21 0.98 
19F 23,958 865 9.70 6.85 0.97 
33S 18,509 1,470 57.53 35.12 0.87 
31P 5,337 235 32.61 17.64 0.70 
35Cl 15,780 757 23.58 17.02 0.97 
23Na 728 14 5.77 4.58 0.57 
43Ca 386 8 13.01 10.77 0.99 
25Mg 186 10 12.27 8.21 0.94 
39K 632 9 9.33 7.07 0.39 

 

 

 

Figure 2.6. Comparison of DFT-computed and predicted (A) 13C, (B) 15N, (C) 19F and (D) 35Cl chemical shifts in the test set. The black lines show per-
fect correlation. 
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2.2.4 Conclusion	
We have presented a machine learning model of chemical shifts that improves on the previously published model176, 261 in two key 
ways. First, the chemical diversity covered by the model has been extended from 5 to 12 elements, meaning that shifts for a much 
larger space of compounds can now be accessed. Second, finite temperature structures have been included in the training data, 
allowing reliable chemical shift predictions for distorted structures.  

Compared to GIPAW DFT, we obtain R2 correlation coefficients above 0.95 for 1H, 13C, 15N, 17O, 19F and 35Cl shifts, and a chemical 
shift RMSE below 0.5 ppm for 1H. The model is able to massively accelerate the computation of shifts in molecular solids while 
retaining DFT level accuracy with respect to experimental shifts for 1H (0.47 ppm RMSE). Importantly, the cases of cocaine, form 4 
of AZD8329 and AZD5718 demonstrate that ShiftML2 permits fast and reliable NMR crystal structure determination for complex 
organic molecular crystals.  

The capacity to calculate shifts for distorted structures is important for two reasons. First it allows reliable shifts to be calculated for 
structures that are not geometry optimised using DFT, such as structures optimised using (semi-)empirical approaches such as 
DFTB, and for structures from molecular dynamics simulations. Second, it means that shifts calculated for structures generated in a 
simulated annealing structure determination protocol344 will be accurate even when the trial structure is not in an energy mini-
mum, potentially providing a much more efficient driving force towards the correct structures, and this will the subject of future 
studies. The model presented here scales linearly with respect to the number of local atomic environments in a structure of inter-
est, making shifts for large ensembles of large structures accessible. The new model will thus accelerate NMR crystallography by 
allowing large-scale computations for candidate structures, either from MD trajectories or in direct optimisation methods. 

The models are freely available on https://dx.doi.org/10.5281/zenodo.7097427. 

2.2.5 Appendix	I	
Raw data. The complete sets of training and test structures, along with the Python scripts used in this study are available from 
https://dx.doi.org/10.5281/zenodo.7097427. The model is also available via the same link. All data are made available under the 
CC-BY-4.0 license (Creative Commons Attribution-ShareAlike 4.0 International). 

SOAP hyperparameters. We describe atomic environments using smooth overlap of atomic positions (SOAP) power spectra, which 
expand translational-rotational invariants of a decorated atom density using a basis of orthonormal radial basis functions (Gaussi-
an-type orbitals) and the spherical harmonics. The resulting description depends on several hyperparameters. The cutoff radius 𝑟𝑟7 
defines the distance from the central atom, beyond which any further atom density is disregarded. The cutoff smoothing width 𝜎𝜎7 
represents the distance over which the atom density is smoothed to zero. The number of radial basis functions before (𝑛𝑛,&) and 
after (𝑛𝑛,) dimensionality reduction by principal component analysis (PCA), and the maximal angular momentum number 𝑛𝑛> define 
the basis for the expansion. The atomic Gaussian width 𝜎𝜎 defines the width of three-dimensional Gaussian density associated with 
each atomic position. To reflect the greater importance of atoms close to the central atom compared to more distant ones, the 
decorated atom density is radially scaled,347 where the rate 𝑐𝑐, the scale 𝑟𝑟& and the exponent 𝑚𝑚 are parameters to optimise. All 
these hyperparameters were optimised through five-fold cross-validation. Figure 2.7 and Table 2.3 show the parameter values 
explored and the optimised hyperparameters, respectively. 
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Figure 2.7. Optimisation of SOAP hyperparameters. (A) Interaction cutoff 𝑟𝑟!, (B) cutoff smoothing width 𝜎𝜎!, (C) maximum angular momentum 
number 𝑛𝑛", (D) atomic Gaussian width 𝜎𝜎, (E) radial scaling scale𝑟𝑟#, (F) radial scaling rate 𝑐𝑐, (G) radial scaling exponent 𝑚𝑚. Error bars indicate the 
standard deviation of the chemical shift RMSE between the five cross-validation folds. 

Table 2.3. SOAP parameters used for configurational sampling and training of the model. 

 𝑟𝑟! [Å] 𝜎𝜎! [Å] 𝑛𝑛$#  𝑛𝑛$  𝑛𝑛"  𝜎𝜎 [Å] 𝑟𝑟# [Å] 𝑐𝑐  𝑚𝑚  

Configurational 
sampling 

4.0 0.5 9 - 4 0.4 0.0 0.0 0.0 

Training 7.0 0.5 20 8 8 0.3 3.0 0.3 4.0 
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Pseudopotentials used for DFT computations of the training set. 

Table 2.4. Pseudopotentials used for DFT computations of the training set. 

Element Atomic mass Pseudopotential (relaxation) Pseudopotential (GIPAW) 

H 1.0079 H.pbe-tm-new-gipaw-dc.UPFa H.pbe-kjpaw_psl.1.0.0.UPFb 

C 12.0107 C.pbe-tm-new-gipaw-dc.UPFa C.pbe-n-kjpaw_psl.1.0.0.UPFb 

N 14.0067 N.pbe-n-kjpaw_psl.1.0.0.UPFb N.pbe-n-kjpaw_psl.1.0.0.UPFb 

O 15.9994 O.pbe-n-kjpaw_psl.1.0.0.UPFb O.pbe-n-kjpaw_psl.1.0.0.UPFb 

S 32.065 S.pbe-n-kjpaw_psl.1.0.0.UPFb S.pbe-n-kjpaw_psl.1.0.0.UPFb 

F 18.998 F.pbe-n-kjpaw_psl.1.0.0.UPFb F.pbe-n-kjpaw_psl.1.0.0.UPFb 

P 30.974 P.pbe-n-kjpaw_psl.1.0.0.UPFb P.pbe-n-kjpaw_psl.1.0.0.UPFb 

Cl 35.453 Cl.pbe-n-kjpaw_psl.1.0.0.UPFb Cl.pbe-n-kjpaw_psl.1.0.0.UPFb 

Na 22.989 Na.pbe-spn-kjpaw_psl.1.0.0.UPFb Na.pbe-spn-kjpaw_psl.1.0.0.UPFb 

Ca 40.078 Ca.pbe-spn-kjpaw_psl.1.0.0.UPFb Ca.pbe-spn-kjpaw_psl.1.0.0.UPFb 

Mg 24.305 Mg.pbe-spn-kjpaw_psl.1.0.0.UPFb Mg.pbe-spn-kjpaw_psl.1.0.0.UPFb 

K 39.098 K.pbe-spn-kjpaw_psl.1.0.0.UPFb K.pbe-spn-kjpaw_psl.1.0.0.UPFb 

aFrom https://sites.google.com/site/dceresoli/pseudopotentials. bFrom PSLibrary.332 

Model training. Predictions are performed using the following equation: 

𝜎𝜎(𝑋𝑋) = 	6𝑤𝑤%

8

%

𝑘𝑘(𝑋𝑋, 𝑋𝑋%) =6𝑤𝑤%(𝑋𝑋9 ⋅ 𝑋𝑋%):
8

%

, (2.4) 

where 𝑋𝑋 is the SOAP vector describing the atomic environment to compute the shift for, 𝑋𝑋% and 𝑤𝑤% denote the atomic environment 
and regression weight associated with training sample 𝑖𝑖, respectively, and 𝑘𝑘(⋅,⋅) is the kernel function that defines the similarity 
between two atomic environments. In practice, training the model involves solving the equation 

𝜎⃗𝜎 = (𝐾𝐾 + 𝜆𝜆𝜆𝜆) ⋅ 𝑊𝑊 (2.5) 

for the weight matrix 𝑊𝑊 given the kernel matrix between all training environments 𝐾𝐾 and associated vector chemical shieldings 𝜎⃗𝜎, 
and regularisation parameter 𝜆𝜆. The weights were determined using least-squares regression as implemented in the Numpy Python 
library.348 Optimisation of the kernel power 𝜁𝜁 and regularisation parameter 𝜆𝜆 are shown in Figure 2.8. The optimal values were 
found to be 𝜆𝜆 = 10?@ and 𝜁𝜁 = 2. 

 

Figure 2.8. Optimisation of the (A) regularisation factor and (B) kernel exponent. 
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ShiftML models of other nuclei. 

 

Figure 2.9. Comparison of DFT shieldings and predictions for the training environments obtained through 5-fold cross-validation for (A) 13C, (C) 15N, 
and (E) 17O. Comparison of the absolute error of the prediction and predicted uncertainty for the FPS-selected training environments for (B) 13C, (D) 
15N, and (F) 17O. The red lines indicate the criteria used to discard outliers (red points). 
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Figure 2.10. Comparison of DFT shieldings and predictions for the training environments obtained through 5-fold cross-validation for (A) 33S, (C) 19F, 
and (E) 31P. Comparison of the absolute error of the prediction and predicted uncertainty for the FPS-selected training environments for (B) 33S, (D) 
19F, and (F) 31P. The red lines indicate the criteria used to discard outliers (red points). 
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Figure 2.11. Comparison of DFT shieldings and predictions for the training environments obtained through 5-fold cross-validation for (A) 35Cl, (C) 
43Ca, and (E) 39K. Comparison of the absolute error of the prediction and predicted uncertainty for the FPS-selected training environments for (B) 
35Cl, (D) 43Ca, and (F) 39K. The red lines indicate the criteria used to discard outliers (red points). 



NMR Crystallography in the Big Data Era: New Methods and Applications Powered by Machine Learning, PhD Thesis, M. Cordova 

42 

 

Figure 2.12. Comparison of DFT shieldings and predictions for the training environments obtained through 5-fold cross-validation for (A) 25Mg, and 
(C) 23Na. Comparison of the absolute error of the prediction and predicted uncertainty for the FPS-selected training environments for (B) 25Mg, and 
(D) 23Na. The red lines indicate the criteria used to discard outliers (red points). 
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Figure 2.13. Comparison of DFT and ShiftML2 (A)17O, (B) 33S, (C) 31P, (D) 43Ca, (E) 39K, (F) 25Mg and (G) 23Na chemical shifts for the test set. The black 
lines show perfect correlation. 
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Figure 2.14. (A) Summary of the number of training and test structures and environments during the data selection and cleanup process. (B) 1H 
chemical shift RMSE (blue), average prediction uncertainty (red) and number of training samples (beige) for different shielding ranges. 

 

Figure 2.15. 1H chemical shift RMSE against DFT computed shieldings along MD trajectories of the crystal structures of (A) AZD5718, (B) form 4 of 
AZD8329 and (C) cocaine. Frame 0 corresponds to relaxed structures. 
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2.3 De	novo	crystal	structure	determination	from	machine	 learned	chemical	
shifts	

This section has been adapted with permission from: Balodis, M.; Cordova, M.; Hofstetter, A.; Day, G. M.; Emsley, L., De Novo Crys-
tal Structure Determination from Machine Learned Chemical Shifts. Journal of the American Chemical Society 2022, 144 (16), 7215-
7223. (post-print) 

My contribution was to develop the method presented in this project and to analyse the results. I also contributed to the writing of 
the manuscript. 

2.3.1 Introduction	
In this section we show how by using a recently introduced machine learning model to predict chemical shifts, the structure of 
powdered organic solids can be determined in a manner fully analogous to the methods used in solution NMR or X-ray diffraction, 
by integrating on-the-fly solid-state NMR shift calculations into a Monte Carlo simulated annealing optimisation protocol. The 
approach does not require any structural hypothesis or knowledge of candidate structures (such as those from CSP). The approach 
is demonstrated to successfully determine five crystal structures, for two different polymorphs of the drug molecule AZD8329 (1), 
ampicillin (2), piroxicam (3) and cocaine (4) (Figure 2.16). 

Among these molecules the structures of AZD8329 forms I and IV,53 ampicillin55 and cocaine52 have been previously found by NMR 
crystallography. AZD8329 form IV is notable because the structure was not found by X-ray diffraction methods prior to the original 
NMR crystallography study.53 Having a rich polymorphic landscape, it is also an interesting example to test the ability to distinguish 
between different polymorphs. Ampicillin is notable because CSP methods failed to predict the correct structure until NMR con-
straints were included to bias the starting conformers.55 Cocaine is one of the first examples on which it was shown that NMR 
chemical shifts can reliably determine the correct structure amongst a set of candidate structures.52 The structure of piroxicam so 
far has not been determined by NMR crystallography, although comparison of calculated and measured chemical shifts was used to 
validate a structure proposed from powder X-ray diffraction.143 

 

Figure 2.16. Molecular structures of AZD8329 (1), ampicillin (2) piroxicam (3) and cocaine (4). 

2.3.2 Methods	
Crystal structure determination. Crystal structure generation and optimisation were performed using a home-written Python 
script. The structure determination process follows the scheme shown in Figure 2.17, and is a version of constrained geometry 
optimisation that is completely analogous to the methods currently used to determine, for example, protein structures from liquid 
or solid-state NMR data, adapted to the case of molecular crystals. First, an initial conformation is generated with random torsional 
angles. The generated conformer is then placed in a randomly generated unit cell with randomly chosen position and orientation. 
Details of the structure generation are given in Appendix II. After the initial generation of a random crystal structure, 4,000 Monte 
Carlo steps are performed with a linear temperature profile between 2,500 and 50 K.  The structures are generated in a given space 
group, and the space group symmetry is conserved during the optimisation. In each step one of the parameters defining the crystal 
structure (cell length or angle, conformer position or orientation, or conformer dihedral angle) is randomly selected and updated 
within a given maximum step size. If the change leads to better agreement (as determined by the pseudo-energies discussed be-

low) it is accepted. Otherwise, the step is accepted with a probability 𝑃𝑃A77 = 𝑒𝑒?
!"
#$, where Δ𝐸𝐸 is the change of pseudo-energy in-

duced by the step, 𝑅𝑅 is the gas constant, and 𝑇𝑇 is the temperature. The step size of the updated parameter is doubled if the step is 
accepted, and halved otherwise (see Appendix II for detailed parameters including the step sizes). Every 500 steps hydrogen posi-
tions were optimised using tight binding DFT (DFTB3-D3H5). 
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Figure 2.17. The scheme for crystal structure determination used in this study where 𝑃𝑃%!! = exp(−Δ𝐸𝐸/𝑅𝑅𝑅𝑅). 

Energy calculations were performed at the semiempirical DFTB3-D3H5 level of theory using the 3ob-3-1 parameter set and the 
DFTB+ software version 20.1.325, 326, 349-352 

The chemical shieldings were predicted using ShiftML version 1.2 (publicly available at https://shiftml.epfl.ch).176, 261 Shieldings 
were converted to chemical shifts via the relation: 

𝛿𝛿 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏, (2.6) 

where 𝛿𝛿 is the chemical shift, 𝑎𝑎 and 𝑏𝑏 are the experimentally determined calibration constants (see Appendix II for details) and 𝜎𝜎 is 
the calculated chemical shielding. Here we set 𝑎𝑎 to 30.36 and 𝑏𝑏 to -1. To account for ambiguity when comparing chemical shifts of 
protons for CH2 groups, shifts were compared using the best matching criteria. Shifts which are hard or impossible to distinguish 
experimentally such as aromatic protons or CH3 groups were averaged when making the comparison. 

Crystal structure comparison. The optimised crystal structures were compared using the COMPACK algorithm,353 included in the 
commercial CSD package,312 which compares interatomic distances and angles within a cluster of molecules taken from the refer-
ence and comparison crystal structures. A cluster of 20 molecules was used for the comparison in this work. Before the compari-
son, physically unrealistic structures were removed, e.g., structures where neighbouring molecules are too close in space or where 
the density is unrealistically low. Most of the physically unrealistic structures are easily spotted due to their high energy or shift 
RMSD compared to the bulk of the structures generated. 
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2.3.3 Results	and	Discussion	
The optimisation scheme introduced here is summarised in in Figure 2.17. In the first step, a viable conformation of the single 
molecule is generated, and bond-angles and lengths are optimised using, here, DFTB3-D3H5 which provides a good compromise 
between accuracy and computational cost (on the same timescale as ShiftML chemical shift calculations) (see Appendix II for de-
tails). Then, for each run, a random conformation is generated by randomising the flexible torsion angles, and a starting crystal 
structure is generated by randomly selecting cell parameters in a given space group (cell lengths, cell angles, position and orienta-
tion of the molecule). Between 1,000 and 10,000 trial structures were generated for each system. Each structure was then opti-
mised by a Monte Carlo simulated annealing process described in Section 2.3.2, where in each step one of the parameters defining 
the crystal structure (i.e., a single torsion angle or cell parameter) was randomly changed and chemical shifts and the DFTB system 
energy were calculated following the change.  

Here, to enable the possibility to calculate shifts at each step, the ShiftML prediction algorithm was used.176, 261 ShiftML is a fast and 
accurate method to compute chemical shifts in a matter of seconds even for the largest of molecular crystals. It was recently de-
veloped using DFT optimised structures derived from the Cambridge Structural Database (CSD) as a training set for a machine learn-
ing framework. The current version (at the time of this study) can predict chemical shifts for molecules containing H, C, N, O or S 
atoms. 

The cost function used in the Monte Carlo process is: 

𝐸𝐸BCB = 𝐸𝐸DE9F + 𝑐𝑐𝐸𝐸7G, (2.7) 

where 

𝐸𝐸7G = k∑ /𝛿𝛿%,B,I − 𝛿𝛿%,JK%.BLM3
'*

%N/
𝑛𝑛 , (2.8) 

where 𝛿𝛿%,B,I is the target chemical shift of the 𝑖𝑖th nucleus in the molecule containing 𝑛𝑛 nuclei and 𝛿𝛿%,JK%.BLM is the corresponding 
shift computed using the ShiftML model. 𝑐𝑐 is an empirically adjusted constant (in kJ/mol) that weights the relative contribution of 
the internal energy and the agreement with experiment in the cost function. (Note that the values of 𝐸𝐸7G are independent of the 
size of the molecule, but will change from one type of nucleus to another, and that 𝐸𝐸DE9F will depend on the size of the molecule. 
In the examples here, satisfactory results were found with vales of c such that Δ𝐸𝐸DE9F ∼ Δ𝐸𝐸7G, where Δ𝐸𝐸 is the difference observed 
between two Monte Carlo steps at the end of the optimisation process.) In the following, for the proof of principle demonstration 
here, we use shifts calculated with ShiftML from the known structure as the 𝛿𝛿%,B,I target set in 𝐸𝐸7G. This reduces any bias due to 
experimental variability between compounds in the comparisons below, and makes the process fully self-consistent. We note that 
the estimated errors on ShiftML shifts are in any case similar to or larger than the error ranges in the experimental shifts. The other 
parameters in the simulated annealing process are given in Section 2.3.2 and Appendix II. 

Figure 2.18 shows the results for AZD8329 Form I, AZD8329 Form IV, ampicillin, piroxicam and cocaine. In order to demonstrate 
that the chemical shifts are indeed the driving force for the structure determination, for each case, the optimisation was performed 
with the penalty function that includes both the DFTB energy and chemical shift differences and, for comparison, using only the 
DFTB energy. Figure 2.19 shows expansions of the regions below 100 kJ/mol and 0.5 ppm. 

We expect correct structures to occur in the region of low chemical shift RMSD and low calculated energy. For 1H shift root-mean-
square deviation (RMSD) we use a cutoff of 0.5 ppm, taken from Engel et al. where they determined the expected error of the 
ShiftML model for 1H to be 0.48 ppm.176 Nyman and Day showed that with accurate calculations most polymorphs are separated by 
less than 7.2 kJ/mol,354 which can be treated as the most relevant energy range on CSP landscapes. In this study we use DFTB, 
whose energies are less accurate and have been shown to place observed crystal structures over a much wider energy range in CSP 
studies.355 To account for this larger spread, we use a cutoff for the accepted structures of up to 20 kJ/mol from the lowest energy 
structure. In-deed, the spread of predicted energies decreases significantly when the structures that are within 20 kJ/mol and 0.5 
ppm RMSD are further optimised using DFT, as illustrated in Figure 2.26 (and Table 2.8). Typically, after optimisation the predicted 
DFT energy difference between the structures is less than ∼2 kJ/mol. 
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Figure 2.18. Plots of DFTB energy vs 1H chemical shift RMSD for the results of 10,000 simulated annealing runs on AZD8329 form IV, 10,000 runs on 
AZD8329 form I, 2,500 runs for ampicillin, 1,000 runs for piroxicam and 2,500 runs on cocaine. The left column shows the optimisations done using 
both chemical shift and energy while the right column shows the optimisations done using only energy. For ampicillin results are shown for both 
where 1H shifts calculated from the known reference structure were used, and where the experimental 1H shifts were used as targets for the opti-
misation. Each point represents a structure optimised as described in Section 2.3.2. The vertical axis shows DFTB energies and the horizontal axis 1H 
shift RMSD values with respect to the shifts calculated for the known experimental structure which is set to 0 and is coloured black. The colour of 
each point reflects the similarity between each of the calculated structures and the reference structure, according to the scale on the right and as 
described in Section 2.3.2. The red vertical dashed line shows the cutoff value of 0.5 ppm for the 1H RMSD. For piroxicam, unconstrained optimisa-
tion of the experimental structure leads to a large deviation in the structure, so the reference energy is the energy of the experimental structure 
with only hydrogen atom positions optimised. 
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For all the compounds we note that the majority of Monte Carlo runs do not yield any results with either low DFTB energy or with a 
low chemical shift RMSD to experiment. Indeed, if we define a region of acceptable structures to have simultaneously a DFTB ener-
gy within 20 kJ/mol of the lowest energy structure in the Monte Carlo set and a chemical shift RMSD to experiment below 0.5 ppm, 
then the pure Monte Carlo approach using only DFTB energy as the driving force does not find any structures that match the 
RMSD20 (RMSD of atomic positions of 20 molecules matched by the COMPACK algorithm) criteria for either form of AZD8329. This 
is completely in line with expectations since this simple semi-empirical type approach is not expected to easily find crystalline pol-
ymorphs. 

 

Figure 2.19. Plots of DFTB energy vs 1H chemical shift RMSD as shown in Figure 2.18, expanded to include a range of 100 kJ/mol and up to 0.5 ppm 
1H RMSD. The grey areas represent the area within 20 kJ/mol of the lowest energy structure found in the optimisation. Labels refer to the structures 
as defined in Table 2.6. For piroxicam, unconstrained optimisation of the experimental structure leads to a large deviation in the structure, so the 
reference energy is the energy of the experimental structure with only hydrogen atom positions optimised. 
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Figure 2.20. Overlay of the unit cell for the structures determined here for AZD8329 form IV, AZD8329 form I, piroxicam, and cocaine. For AZD8329 
form IV, there are three structures (Figure 2.19), one for form I, 2 for piroxicam, and 4 for cocaine. The red structures are the known structures, and 
the green structures are the structures determined here that are less than 20 kJ/mol from the lowest energy determined structure and 0.5 ppm 1H 
RMSD compared to the target shifts. 

Including chemical shifts in the penalty function yields three structures for Form IV (001-003) within the acceptable ranges, and one 
structure for Form I (005). These structures for both forms are shown in Figure 2.20, superimposed on the known structures, and 
we see that they are in excellent agreement with the correct structures as previously determined by X-ray diffraction or NMR.  

Ampicillin is another interesting example as noted in the introduction, since it is a case where current crystal structure prediction 
methods fail since the conformer present in the crystal structure has a relatively high energy in the gas phase.55 As a result, chemi-
cal shift driven structure determination based on prior generation of candidates fails. In contrast, Monte Carlo runs for ampicillin 
including DFTB energy and chemical shifts produced two structures that perfectly match with the known crystal structure, with one 
of them (016) being selected by our criteria. The structure determined by our criteria is superimposed on the known crystal struc-
ture in Figure 2.21. Runs using only DFTB energy did not produce any matching structure, either in the acceptable region or outside 
it. 

Similarly to ampicillin, runs for piroxicam produced two structures (014 and 015) matching with the known crystal structure, both 
of which are in the acceptable region. Again, no matching structures were found for the runs using only energy in the penalty func-
tion. Overlay of the structures determined here with the known crystal structure are shown in Figure 2.20. From Figure 2.19 it is 
seen that both of the structures found are significantly lower in DFTB energy than the known structure. We note that to compare 
our determined structures and the known reference structures we systematically relaxed the atom positions and the cell parame-
ters for the experimental reference structures using DFTB. While the results of the relaxation were fairly similar to the starting 
structures for most of the reference structures this was not the case for the structure of piroxicam. Full DFTB relaxation of piroxi-
cam changed the structure to a point where its space group changed. To avoid this, we relaxed only 1H positions with DFTB, and we 
suspect that this is why the energy of the reference structure appears higher than expected. When both the determined structures 
and the known structure were optimised with DFT the (DFT) energy difference between them was reduced to 0.4 kJ/mol for the 
best matching structure. 

 

Figure 2.21. Overlay of the unit cell for the structures determined here for ampicillin with calculated (top, structure 016) or with experimental 
(bottom, structure 017) chemical shifts. The red structures are the known structures, and the green structures are the structures determined here. 
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Cocaine is an interesting example, since it is significantly less flexible than AZD8329. In this case, the Monte Carlo approach with 
energy alone does already produce four structures in the acceptable region (010-013). Adding chemical shifts did not improve the 
result, and the same number of structures were found in the acceptable region (006-009). The four structures optimised using 
shifts are shown in Figure 2.20 superimposed on the known structure for cocaine, and we again see that they are in good agree-
ment with the correct structure. We explain this as cocaine having a relatively simple energy landscape with few competing struc-
tures: the results of the Monte Carlo search using only energy directs the search efficiently towards the known crystal structure of 
the only known polymorph, suggesting that there are few competing, ‘false’ structures. It is in cases where there are many energet-
ically competing structures, which is the norm, where adding the chemical shift to the fitness function is expected to increase the 
effectiveness of the search at locating the correct structure. The other compounds studied here, on the other hand, have much 
richer energy landscapes, with at least 4 anhydrous polymorphs known for AZD8329 for example,53 and by using the chemical shifts 
of two different forms as targets, we were able to successfully determine both structures here. Figure 2.20 and Figure 2.21 show 
the overlay of the asymmetric unit of the crystal structures determined here for each compound (green) with the known reference 
structures (red).  

All atom RMSD20 values between determined structures and the known reference crystal structures are given in Table 2.5. The 
highest RMSD20 value is 0.51 Å for ampicillin, meaning that all of the optimised structures correspond very well to the experimental 
reference crystal structure. In comparison, in the current latest crystal structure prediction blind test (6th) the highest RMSD20 
value was 0.81 Å which while considered high, was still considered acceptable.356 In the examples here, after the DFT optimisation 
the highest value decreased to 0.49 Å and lowest to 0.05 Å. Table 2.5 also gives the distribution of the unit cell dimensions for the 
optimised structures which are very close to the experimental values. Individual RMSD20 values and the cell parameters for all best 
matching structures are given in Table 2.7. 

Table 2.5. The reduced unit cell parameters and atom RMSD20 values for the determined structures using chemical shifts, without subsequent DFT 
relaxation. The number in the brackets after the name of the compound is the number of the structures found. Standard deviation is given where 
more than one structure is found. The number in parentheses after the mean value of the cell parameters is the value for the known experimental 
structure. 

Name a [Å] b [Å] c [Å] 𝛼𝛼 [°] 𝛽𝛽 [°] 𝛾𝛾 [°] RMSD20 [Å] 

AZ8329, form IV (3) 9.5±0.1 (9.9) 11.0±0.1 (10.8) 11.8±0.3 (11.6) 65.3±1.7 (65.7) 75.9±2.2 
(75.0) 

75.5±3.4 
(74.0) 

0.44±0.15 

AZ8329, form I (1) 11.3 (11.4) 13.2 (13.1) 15.1 (15.0) 114.2 (113.0) 90 (90) 90 (90) 0.14 

Piroxicam (2) 6.9±0.1 (6.8) 13.3±0.2 (13.9) 15.12±0.1 (15.1) 90 (90) 90 (90) 93.2±1.0 
(97.3) 

0.40±0.13 

Cocaine (4) 8.1±0.1 (8.1) 9.2±0.1 (9.0) 10.1±0.2 (10.0) 90 (90) 105.8±1.0 
(106.0) 

90 (90) 0.28±0.02 

Ampicillin 
calculated (1) 

5.8 (5.8) 12.3 (11.4) 12.5 (12.3) 116.4 (113.6) 90 (90) 90 (90) 0.51 

Ampicillin 
experimental (1) 

5.8 (5.8) 11.3 (11.4) 12.3 (12.3) 117.2 (113.6) 90 (90) 90 (90) 0.43 

 

Optimisation using experimental target shifts. As noted above, we use 1H chemical shifts calculated for the known crystal struc-
tures as the target for optimisation here. This allows us to explore the method without any biases introduced by any possible errors 
in chemical assignments, and to make the analysis self-consistent. Of course, it is most important that the method also works using 
experimental shifts. This is demonstrated in Figure 2.18 and Figure 2.19 where we also show the results of optimisation against 
experiment 1H shifts for ampicillin. The experimental shifts were taken from Hofstetter et al.55 In this case two structures (017 and 
018) matched the selection criteria. One structure (017) yielded a very good RMSD20 of 0.41 Å with respect to the known structure, 
as illustrated in Figure 2.21. It is interesting to note that the other structure (018) at first glance matches less well, but on further 
examination we see that the cell parameters match very well (see Table 2.7), and the main difference is a slight change in the ori-
entation of the aromatic ring position. An overlay of the unit cell of the known structure and structure 018 is shown in Figure 2.25. 
After optimisation with DFT the relative (DFT) energy for the structures converged to -0.4 and 9.4 kJ/mol for (017) and (018) re-
spectively with respect to the known structure (see Table 2.8), and the 1H RMSD to DFT calculated shifts was 0.13 and 0.41 ppm, 
suggesting that the optimised structure 017 is in better agreement with the experiment. 

This is the first example of a molecular crystal structure determined directly from experimentally measured chemical shifts in con-
trast to earlier approaches where chemical shifts were used to select from a predetermined set of predicted crystal structures. 
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2.3.4 Conclusion	
In this section we have shown that crystal structures can be directly determined from chemical shifts, without any prior structural 
hypothesis and without any knowledge from candidate structures (such as from CSP), through the use of machine learned chemical 
shifts which enable on-the-fly calculation of shifts at each step of a simulated annealing structure determination protocol. We have 
illustrated this for the structures of ampicillin, piroxicam and cocaine, as well as for AZD8329 where the inclusion of machine 
learned chemical shifts allows the determination of the correct structures for two different polymorphic forms. We note that the 
AZD8329 case is a particularly important illustration, since it clearly shows how the chemical shifts can drive the optimisation to-
wards two very different structures for the same molecule. 

Here we chose to use a Monte Carlo simulated annealing algorithm due to its relatively straightforward nature, but in principle 
machine learned chemical shifts can be incorporated into other optimisation methods as they are easy to add as an additional 
pseudo energy term, and we believe there is significant room for further development and increased efficiency of this approach to 
chemical shift-based structure determination in molecular solids. Finally, we note that the method presented here no longer relies 
on a purely energy driven computational candidate crystal structure generation step. By driving the structure determination direct-
ly from chemical shifts, integrated through the entire optimisation procedure, the method is applicable even in cases where crystal 
structure prediction is extremely challenging, such as the example of ampicillin here. 

2.3.5 Appendix	II	
Code availability. All code used in this study is freely available on https://github.com/manucordova/NMRX. 

Trial crystal structure generation. A gas phase conformation was first generated by randomising the non-trivial dihedral angles in 
the molecule (shown in Figure 2.16). No energetic criterion was set to select the generated conformations. In the case of AZD8329 
the OCNH angle that corresponds to the amide bond was fixed to the experimentally known value knowing that it can take only cis 
or trans position, and if needed the other configuration can also be explored. In the case of ampicillin, the zwitterionic form was 
chosen as this is easily seen from the NMR spectrum. In the case of piroxicam it was assumed that an intramolecular 6-atom aro-
matic system is formed via hydrogen bond, which reduces the number of non-trivial dihedral angles from 4 to 2. 

The conformer was then introduced into a randomly generated crystal in the selected space group (here we take the known space 
group, but in principle the process can be repeated for all possible space groups). Cell lengths, cell angles, and the position and 
orientation of the molecule in the asymmetric unit where randomly initialised. The maximum volume of the crystal was set to be no 
larger than twice the sum of the van der Waals sphere volume of each atom in the unit cell. Cell lengths and angles were sampled 
from uniform distributions in the ranges [1 Å, 50 Å] and [45°, 135°], respectively. The position of the asymmetric unit was sampled 
from a uniform 3D distribution in the range [0, 1] in each dimension, corresponding to the fractional coordinates of the centre of 
mass of the conformer.  

During both the conformation and crystal generation steps interatomic clashes were avoided by generating new conformers and 
crystals until no clash was detected. A clash was defined as two atoms being closer than a set factor times the sum of their covalent 
radii. The factor was set to 0.85 to detect clashes within a single molecule, and 1.2 to detect clashes between different molecules in 
the unit cell. 

Figure 2.22 shows the energies and chemical shift RMSDs of the generated starting structures. 

Monte Carlo run parameters. After the generation of the trial crystal structure, it was subjected to a Monte Carlo Simulated An-
nealing (MCSA) optimisation protocol.357 4,000 Monte Carlo steps were performed with a linear temperature profile from 2,500 to 
50 K. In each step one of the structure defining parameters was randomly selected (cell lengths, cell angles, position of the asym-
metric unit, orientation of the asymmetric unit and torsional angles) and was randomly modified. Parameter updates were uni-
formly sampled in ranges initially set to [-2 Å, 2 Å], [-20°, 20°], [-0.05, 0.05] and [-40°, 40°] for cell lengths, cell angles, asymmetric 
unit position (in fractional coordinates), and dihedral angles, respectively. Updates to the asymmetric unit orientation were per-
formed by first randomly selecting a direction and rotating the conformer about its centre of mass and along the selected direction 
with an angle uniformly sampled in a range set initially to [-30°, 30°]. 

After each random change a new, updated crystal was generated and the cost function was calculated (see Section 2.3.3). If the 
step was found to lead to a lower cost function, it was accepted. Otherwise, it was accepted with a probability given by: 
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𝑃𝑃A77 = 𝑒𝑒
O%&%,&()?O%&%,*+,

P9 , (2.9) 

where 𝐸𝐸BCB,C>+ is the old cost, 𝐸𝐸BCB,*-Q is the new cost, 𝑅𝑅 is the gas constant and 𝑇𝑇 is the temperature. When a step was accepted, 
the range of parameter update corresponding to the crystal parameter change was doubled, otherwise it was halfed. Maximum 
parameter update ranges were set to ±20 Å, ±360°, ±1, ±360° and ±360° for cell lengths, cell angles, asymmetric unit position, 
asymmetric unit orientation and dihedral angles respectively. Parameter update ranges were modified individually for each cell 
length, cell angle and dihedral angle. Every 500 steps proton positions were optimised with DFTB. 

Chemical shift referencing. To convert from chemical shieldings calculated by ShiftML to chemical shifts a set of 7 small organic 
molecules with known experimental chemical shifts were chosen.127 Their shieldings were calculated and the calibration constants 
𝑎𝑎 and 𝑏𝑏 in Equation 2.6 were obtained by least squares regression against experimental values. The calibration constants were 
30.36 and -1.0 for 𝑎𝑎 and 𝑏𝑏, respectively. 

Table 2.6. Target chemical shifts used. 

Structure 1H chemical shifts Labelling 

AZD8329, form IV 1: 6.63, 2: 8.29, 3: 9.12, 4: 8.27, 5: 17.13, 6: 7.65, 
7: 10.43, 8: 2.72, 9: 1.59, 10: 1.61, 2.46, 11: 1.57, 
12: 0.84, 0.55, 13: 1.61, 14: 2.23, 1.8, 15: 0.83, -0.09, 
16: 1.41, 17: 1.63, 0.94, 18: 0.42, 0.42, 0.42, 19: 0.73, 
0.73, 0.73, 20: -0.46, -0.46, -0.46 

 

AZD8329, form I 1: 9.2, 2: 7.62, 3: 4.69, 4: 7.89, 5: 1.41, 6: 8.05, 7: 4.13, 
8: 1.8, 9: 0.91, 10: 1.59, 0.19, 11: 6.54, 12: 2.59, -0.01, 
13: 1.24, 14: 1.58, 0.96, 15: 0.08, -0.11, 16: 9.04, 17: 0.53, 
2.06, 18: -0.23, -0.23, -0.23, 19: 1.64, 1.64, 1.64, 
20: -0.61, -0.61, -0.61 

Cocaine 1: 3.98, 2: 3.64, 3: 5.5, 4: 1.7, 2.97, 5: 3.63, 6: 3.48, 1.77, 
7: 2.05, 1.69, 8: 7.87, 9: 7.46, 10: 7.58, 11: 7.57, 12: 7.35, 
13: 3.76, 3.76, 3.76, 14: 1.46, 1.46, 1.46 

 
Piroxicam 1: 5.87, 2: 7.43, 3: 6.19, 4: 7.02, 5: 1.9, 1.9, 1.9, 6: 9.45, 

7: 10.49, 8: 6.15, 9: 6.16, 10: 6.08, 11: 7.98 

 
Ampicillin 1: 1.05, 1.05, 1.05, 2: 7.76, 3: 5.89, NH3: 8.37, 8.37, 8.37, 

4: 7.92, 5: 3.74, 6: 6.38, 7: 7.29, 8: 6.35, 9: 3.68, 10: 6.16, 
11: 7.61, 12: 0.14, 0.14, 0.14 

 

Ampicillin, experimental55 1: 1.6, 1.6, 1.6, 2: 7.5, 3: 4.8, NH3: 10.0, 10.0, 10.0, 4: 7.3, 
5: 7.3, 6: 7.3, 7: 7.3, 8: 7.3, 9: 4.0, 10: 5.2, 11: 6.6,  
12: 0.6, 0.6, 0.6 

 

DFT calculations. All DFT computations performed on the structures determined were carried out using the plane-wave density 
functional theory (DFT) software Quantum ESPRESSO, version 6.5.328, 329 The PBE level of theory,97 Grimme D2 dispersion correc-
tion330 and projector augmented wave scalar relativistic pseudopotentials obtained from PSlibrary version 1.0.0332 were used for all 
computations. Wavefunction and charge density energy cutoffs were set to 160 Ry and 1280 Ry, respectively. A Monkhorst-Pack 
grid of k-points338 corresponding to a maximum spacing of 0.05 Å-1 in reciprocal space was used. After relaxation of atomic posi-
tions and lattice parameters, a single-point computation was performed using the same parameters, and chemical shieldings were 
computed using the GIPAW method.117, 118 
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Data on the structures determined. 

Table 2.7. RMSD20, relative energy, 1H shift RMSD and the reduced cell parameters for the structures that are in the region of 20 kJ/mol from the 
lowest energy structure and less than 0.5 ppm RMSD after the Monte Carlo optimisation and prior to DFT relaxation. 

Structure Label RMSD20 
[Å] 

Relative energy 
[kJ/mol] 

1H shift RMSD 
[ppm] 

a [Å] b [Å] c [Å] a [°] b [°] g [°] 

AZD8329, form IV, E+s 001 0.42 -4.3  0.28 9.5 10.8 11.8 65.2 75.8 73.8 

AZD8329, form IV, E+ s 002 0.64 15.0 0.28 9.4 11.1 12.0 63.4 75.1 73.2 

AZD8329, form IV, E+ s 003 0.28 -8.0 0.22 9.6 11.0 11.3 67.6 78.9 80.4 

AZD8329, form IV, E 004 - 18.2 0.42 9.3 11.7 12.2 63.0 74.7 73.9 

Known structure  - - - 9.9 10.8 11.6 65.7 75.0 74.0 

           

AZD8329, form I, E+s 005 0.14 13.7 0.37 11.3 13.2 15.1 114.2 90 90 

Known structure  - - - 11.4 13.1 15.0 113.0 90 90 

           

Cocaine, E+s 006 0.30 11.5 0.24 8.1 9.3 9.9 90 106.4 90 

Cocaine, E+s 007 0.25 11.5 0.26 8.1 9.2 9.9 90 104.0 90 

Cocaine, E+s 008 0.29 14.8 0.26 8.0 9.2 10.2 90 106.4 90 

Cocaine, E+s 009 0.31 24.2 0.32 8.0 9.2 10.2 90 106.4 90 

Cocaine, E 010 0.17 0.38 0.22 8.2 9.4 10 90 106.3 90 

Cocaine, E 011 0.60 9.10 0.26 8.3 9.1 10.0 90 106.5 90 

Cocaine, E 012 0.21 14.8 0.39 8.2 9.8 9.7 90 108.6 90 

Cocaine, E 013 0.35 20.7 0.47 8.3 9.3 9.8 90 105.1 90 

Known structure  - - - 8.1 9.0 10.0 90 105.0 90 

           

Piroxicam, E+s 014 0.28 -54.0 0.17 6.9 13.1 15.2 90 90 92.3 

Piroxicam, E+s 015 0.53 -64.1 0.18 6.8 13.4 15.1 90 90 94 

Known structure  - - - 6.8 13.9 15.1 90 90 97.3 

           

Ampicillin, 
calculated, E+s 

016 0.51 40.6 0.14 5.8 12.3 12.5 116.4 90 90 

Ampicillin, 
experimental, E+s 

017 0.41 74.1 0.45 5.8 12.1 12.4 116.4 90 90 

Ampicillin, 
experimental, E+s 

018 - 67.8 0.37 5.8 11.3 12.3 117.2 90 90 

Known structure  - - - 5.8 11.4 12.3 113.6 90 90 
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Figure 2.22. Plots of DFTB energy vs 1H chemical shift RMSD for the initially generated structures. The vertical axis shows DFTB energies and the 
horizontal axis 1H shift RMSD values with respect to the shifts calculated for the known experimental structure which is set to 0 and is coloured 
black. The structures coloured red are the ones that lead to the structures matching the structure previously determined by XRD or NMR, following 
optimisation with chemical shifts. 
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Energy-density plots. Figure 2.23 shows results of plotting the density vs DFTB energy. As expected, the structures found to corre-
spond to the experimental crystal structure lie in the high density-low energy region. 

 

Figure 2.23. Energy-density plots for the optimised structures. The vertical axis shows DFTB energies and the horizontal axis the density of the 
determined structures. The black dot corresponds to the previously determined known structures. 
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Total energy during optimisation. To illustrate how relative energy contributions change over the course of the optimisation, Fig-
ure 2.24 shows how total energy, DFTB energy and the energy coming from chemical shift contribution changes over time for the 
four AZD8329 form IV structures that were found to match the known crystal structure. 

 

Figure 2.24. Plots of total energy, DFTB energy, and chemical shift pseudo-energy during optimisation, shown for the four AZD8329 form IV struc-
tures that were found to match the known crystal structure. 

 

Figure 2.25. Overlay of the unit cell for structure 018 determined here for ampicillin using experimental shifts. The red structure is the known 
structure and 018 is in green. 
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Figure 2.26. Plots of DFT energy vs 1H chemical shift RMSD for the optimised structure fulfilling the initial selection criteria after full 
geometry optimisation with DFT. The black dot is the (DFT-relaxed) known structure used as a reference. Labels refer to the initial 
structures in Table 2.7. 
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Table 2.8. RMSD20, relative energy and 1H shift RMSD before and after the optimisation with DFT on the optimised structures matching the selection 
criteria. 

Structure Label RMSD20 

before [Å] 
RMSD20 

after[Å] 
Relative energy 
before [kJ/mol] 

Relative energy 
after [kJ/mol] 

1H shift RMSD 
before [ppm] 

1H shift RMSD 
after[ppm] 

AZD8329, form 
IV, E+s 

001 0.64 0.39 15.0 0.2 0.28 0.28 

AZD8329, form 
IV, E+s 

002 0.42 0.19 -4.3  -1.6  0.28 0.15 

AZD8329, form 
IV, E+s 

003 0.28 0.23 -8.0 0.04 0.22 0.11 

AZD8329, form 
IV, E 

004 - 0.31 18.2 -0.6 0.42 0.15 

        

AZD8329, form 
I, E+s 

005 0.14 0.06 13.7 1.4 0.37 0.04 

        

Cocaine, E+s 006 0.30 0.20 11.5 1.1 0.24 0.37 

Cocaine, E+s 007 0.25 0.19 11.5 -1.4 0.26 0.29 

Cocaine, E+s 008 0.29 0.21 14.8 -1.8 0.26 0.36 

Cocaine, E+s 009 0.31 0.20 24.2 0.4 0.32 0.41 

        

Cocaine, E 010 0.17 0.25 0.40 1.9 0.22 0.37 

Cocaine, E 011 0.60 0.26 9.10 -1.9 0.26 0.35 

Cocaine, E 012 0.21 0.26 14.8 1.0 0.39 0.37 

Cocaine, E 013 0.35 0.20 20.7 0.5 0.47 0.37 

        

Piroxicam, E+s 014 0.28 0.28 -54.0 -0.3 0.17 0.09 

Piroxicam, E+s 015 0.53 0.49 -64.1 -4.7 0.18 0.27 

        

Ampicillin,  
calculated, 
E+s 

016 0.51 0.08 40.6 -0.6 0.14 0.05 

Ampicillin, 
experimental, 
E+s 

017 0.41 0.05 74.1 -0.4 0.45 0.13 

Ampicillin, 
experimental, 
E+s 

018 - - 67.8 9.4 0.37 0.41 
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2.4 Chemical	shift-dependent	interaction	maps	in	molecular	solids	
This section has been adapted with permission from: Cordova, M.; Emsley, L., Chemical Shift-Dependent Interaction Maps in Mo-
lecular Solids. Journal of the American Chemical Society 2023, 145 (29), 16109-16117. (post-print) 

My contribution was to develop and apply the method and to analyse the results obtained. I also wrote the manuscript, with con-
tribution of the other author. 

2.4.1 Introduction	
In this section we construct three-dimensional atomic density maps similar to the previously reported full interaction maps (FIMs), 
constructed from local atomic environments from the CSD database and associated predicted chemical shifts.358 The atomic density 
maps can be considered as three-dimensional probability functions to find an atom of a given element at a given point in space in 
the selected environments. By selecting only environments with predicted shifts matching the experimental value, we show how 
the resulting chemical shift-dependent interaction maps (SIMs) predict key interactions present in the crystal structures of the 
samples of AZD8329 (form 1 and form 4), decitabine and lisinopril dihydrate studied here. The SIMs obtained are compared to 
chemical shift-independent interaction maps (IIMs), constructed analogously from local atomic environments selected without 
targeting a particular chemical shift. The differences between these maps enables the identification of noncovalent interactions 
either promoted or reduced by applying the chemical shift constraint in the construction of the atomic density maps. 

The SIMs presented here are particularly sensitive to hydrogen bonding and to the proximity of aromatic rings in the crystal pack-
ing, the latter being related to aromatic ring currents. While nucleus-independent chemical shift (NICS) maps can explain the shifts 
observed for nuclei in the vicinity of aromatic rings,359-363 the SIMs do not require the three-dimensional structure of the material to 
predict the presence of neighbouring aromatic rings directly from experimental shifts. 

2.4.2 Methods	
The method presented here was applied to AZD8329 (form 1 and form 4), decitabine, lisinopril dihydrate and AZD5718. All experi-
mental chemical shifts and crystal structures of the organic crystals studied here have been previously reported.53, 172, 177, 364 The 
database of crystal structures and associated chemical shifts is a subset of the Cambridge Structural Database (CSD)312 for which 
chemical shifts predictions were previously performed using ShiftML,176, 261 in order to assign chemical shifts in a probabilistic man-
ner (see Section 3.2).358 Here, we recomputed the chemical shifts using the updated model ShiftML2365 and extended the database 
to all structures available for chemical shift prediction using ShiftML2 as described in Ref. 358. The database now comprises over 
338,000 crystal structures. 

The construction of the SIM and IIM for a given covalent environment and associated shift involves identifying local atomic envi-
ronments in the database that match the covalent environment, selecting 1,000 environments either randomly or using the chemi-
cal shift as a constraint in the selection process to construct the IIM and SIM, respectively, aligning the selected environments on 
defined atoms in the covalent environment and extracting the three-dimensional atomic density maps by summing 3D Gaussians 
placed at each atomic position for each element found in the local atomic environments. The complete procedure is described 
step-by-step in more detail below. With the current database, the method can in principle be applied to compounds containing any 
subset of the 12 elements present in the database (H, C, N, O, S, F, P, Cl, Na, Ca, Mg, K). 

For each 1H and 13C site, as well as bonded 13C-1H sites in each molecule, corresponding local atomic environments in the database 
were obtained by identifying covalent environment descriptors matching that of the atomic site. The descriptor is a graph repre-
senting atomic species as nodes and covalent bonds as edges for all atoms within 𝑤𝑤 bonds away from the central atomic site (de-
tailed in Section 3.2.2), as illustrated in Figure 2.27. A match is identified by isomorphism between the compared graphs. Im-
portantly, this descriptor does not contain any information about the three-dimensional structure of the molecule nor intermolecu-
lar interactions, allowing for searches directly from the molecular (two-dimensional) structure, without requiring knowledge of the 
geometry of the molecule nor packing in the crystal structure. For each atomic site, we initially set 𝑤𝑤 to a value of six, and reduced 
it until the number of matches was found to be higher than 3,000. 
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Figure 2.27. (A) molecular structure of 4-methylbenzoic acid and (B) its associated graph representation around the carboxylic acid proton (red) up 
to 𝑤𝑤 = 6 bonds away. Blue numbers indicate the number of bonds away from the red proton for each node (atom) in the graph representation. 
Atoms further than 6 bonds away are greyed out in (B). 

Each database instance contains the crystal structure and atomic site corresponding to the covalent environment descriptor 
searched for, as well as its associated ShiftML2-predicted chemical shift and predicted uncertainty. The local atomic environment 
corresponding to each database instance was defined as all atoms within a sphere with a radius of 7 Å centered at the atomic site. 
When required, the unit cell of crystal structures from the database were repeatedin order to completely fill the defined sphere 
with atoms from the selected structures. 

The local atomic environments corresponding to each atomic site were then aligned to a chosen conformation of the molecule 
under study by minimising the root-mean-square displacement (RMSD) between the positions of selected atoms in the environ-
ments through rotation and translation of the whole environments. Although we aligned all environments to the molecular con-
formation found in the experimental crystal structure of each compound, we note that this alignment can be performed on any 
conformation without loss of generality, provided that the geometry of the atoms selected for the alignment does not change upon 
conformational changes. To ensure that, we aligned between three and four atoms, all within at most two bonds of each other, 
except for rigid molecular motifs such as phenyl rings and carboxylic acids, where we allowed more distant atoms to be aligned. 
The set of atoms selected for alignment around each atomic site is described in Tables 2.9-2.20. 

For each atomic site, we randomly selected 1,000 environments to obtain the average environment around the selected atomic site 
regardless of its chemical shift, and then another 1,000 environments were selected by drawing numbers from a Gaussian distribu-
tion centered at the experimental chemical shift and with a width given by the expected uncertainty of the ShiftML2 prediction,365 
which corresponds to 0.5 ppm for 1H and 5 ppm for 13C. For each number drawn, the environment with the closest chemical shift 
was selected. The environments for bonded 13C-1H sites were selected similarly by drawing numbers from a two-dimensional 
Gaussian distribution centered at the experimental 13C (𝛿𝛿/RS

03T) and 1H (𝛿𝛿/U
03T) shifts and with a width of 𝜎𝜎/RS = 5 ppm and 

𝜎𝜎/U = 0.5 ppm in the first (13C) and second (1H) dimensions, respectively. The environment with the closest correlated chemical shift 
was identified by defining the distance 𝑑𝑑 from the experimental chemical shift as 

𝑑𝑑 =
/𝛿𝛿/RS

03T −	𝛿𝛿/RS0VW3'

𝜎𝜎/RS' +
/𝛿𝛿/U

03T −	𝛿𝛿/U0VW3
'

𝜎𝜎/U'
, (2.10) 

where 𝛿𝛿/RS0VW and 𝛿𝛿/U0VW are the 13C and 1H chemical shifts of the bonded pair of atoms in the environment, respectively. 

Three-dimensional atomic density maps were generated by summing three-dimensional Gaussian functions with a width 𝜎𝜎 = 0.5 Å 
placed at the atomic positions 𝑟⃗𝑟A-  of the aligned local environments, 

𝐺𝐺(𝑟𝑟) =
1

𝑁𝑁0VW
6 6expÄ−

Å𝑟𝑟 − 𝑟⃗𝑟A-Å
'

2𝜎𝜎' Ç
A-∈%

8./0

%

. (2.11) 

Individual atomic density maps were constructed for each element present in the set of selected environments. The Gaussian func-
tions where not normalised, and this leads to a value of 1 at a given position if an atom of a given element is found at that position 
in all selected environments. Each atomic density map was evaluated on a 31x31x31 cubic grid centered at the atomic site and with 
12 Å sides. This corresponds to a spatial sampling of 0.4 Å. The size of the grid was chosen to be close to the 7 Å radius sphere used 
to construct the descriptor to perform chemical shift predictions using ShiftML2.365 The atomic density maps obtained using ran-
domly selected environment represent chemical shift-independent interaction maps (IIMs), and those obtained from environments 
selected around the measured chemical shifts represent chemical shift-dependent interaction maps (SIMs). All IIMs and SIMs con-
structed here are shown in Figures 2.35-2.49. 
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The score 𝑠𝑠% of a local atomic environment 𝑖𝑖 in a candidate crystal representing its compatibility with the measured chemical shift 
was evaluated as the overlap between the atomic density map of that local environment 𝐺𝐺%

4XVY(𝑟𝑟) and the difference between the 
corresponding SIM (𝐺𝐺%

Z[#(𝑟𝑟)) and IIM (𝐺𝐺%
[[#(𝑟𝑟)), 

𝑠𝑠% = U𝐺𝐺%
4XVY(𝑟𝑟) ⋅ É𝐺𝐺%

Z[#(𝑟𝑟) − 𝐺𝐺%
[[#(𝑟𝑟)Ñ𝑑𝑑𝑟⃗𝑟 . (2.12) 

This score thus represents how much the local atomic environment is promoted by the SIM compared to the IIM. In practice, we 
set values in the difference between SIM and IIM at a given point with a magnitude below 0.01 to zero in order to mitigate noise in 
the difference maps. Here, a positive value of 𝑠𝑠% indicates that the corresponding atomic environment is more compatible with the 
SIM than with the IIM. A value of zero indicates that the candidate is equally promoted by the SIM and the IIM. If the atomic envi-
ron-ment is more compatible with the IIM than with the SIM, then a negative value will be obtained. The global score for a candi-
date crystal was computed as the mean of all considered local atomic environment scores. Here, we discarded the maps that corre-
spond to ambiguous assignments (e.g., aromatic rings and CH2 groups) from the computation of global scores in order to avoid 
ambiguities in the scores. Ambiguity arises in such groups due to the mapping of the 2D descriptors to atomic sites in the chosen 
3D conformation. It is not possible to determine a priori the assignment of, e.g., the two different protons in a CH2 group yielding 
two different chemical shifts without knowledge of the crystal structure. 

When comparing sets of candidate structures, we normalised the scores obtained by subtracting the mean score across all candi-
dates from the global score obtained for each candidate. This removes any systematic tendency observed within the set of candi-
dates, leaving only variations between candidates. The final normalised scores obtained thus indicate, within the set of candidate 
structures considered, which candidates are better matching the SIMs than the IIMs, corresponding to a positive score. While these 
scores may not be able to definitively identify the correct candidate crystal, they can allow the pre-selection of potential crystal 
structures by discarding structures displaying strongly negative scores. 

2.4.3 Results	and	Discussion	
The method presented here was applied to AZD8329 (forms 1 and 4), decitabine, lisinopril dihydrate, and AZD5718, using the pre-
viously reported experimental 1H and 13C chemical shifts of these compounds.53, 172, 177, 364 

For each atomic site considered in each compound, the database was first queried to obtain the local atomic environments match-
ing the covalent environment queried, as well as their associated chemical shift. The IIMs and SIMs were subsequently constructed 
by selecting 1,000 environments either randomly or with associated shifts close to the experimental value, respectively, as de-
scribed in Section 2.4.2. The whole process can be performed directly from the chemical structure of the molecule studied and the 
set of assigned chemical shifts, and can thus be performed, e.g., in parallel to the construction of CSP candidates. In general, ob-
taining each interaction map takes under an hour on a single CPU core and can be straightforwardly parallelised. Once the interac-
tion maps are constructed, computing scores for candidate crystal structures typically takes up to a few seconds per structure, 
against hours to days of CPU time to obtain chemical shifts using DFT, and scales linearly with the number of atoms in the structure 
(against a cubic dependence for GIPAW DFT). The method presented here thus provides great potential to facilitate structure de-
termination by NMR. 

Figure 2.28 shows the atomic density maps obtained for the carboxylic acid proton of AZD8329 form 1. By aligning 1,000 environ-
ments randomly selected regardless of the chemical shifts (Figure 2.28B) or such that their predicted chemical shift is the same as 
the experimental value, to within the prediction error (Figure 2.28C), we obtain the atomic density maps shown in Figure 2.28D-E. 
Both maps were found to be similar and to predict a carboxylic acid dimer in at least 20% of the environments aligned. By display-
ing the difference between the maps obtained with and without the experimental chemical shift of the carboxylic acid proton 
(Figure 2.28F), the dimer was found to be promoted in the ensemble of local atomic environments that match the experimental 
chemical shift, by at least 5% of the total number of environments aligned. As shown in Figure 2.28G, the dimer is indeed present in 
the crystal structure of AZD8329 form 1, which is consistent with the higher atomic densities found at the positions of the atoms in 
the dimer in the environments selected around the experimental chemical shift compared to the environments selected regardless 
of the shift. 

As mentioned in Section 2.4.2, the maps were aligned to the conformer found in the crystal structure, but can be generated around 
any conformation, allowing the visualisation of preferred interactions without any prior knowledge of the crystal structure of the 
compound studied. 
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Figure 2.28. (A) Labelling scheme of AZD8329. (B), (C) Histogram of chemical shifts associated with structures from the database matching the 
covalent environment of proton labelled 1 (blue) and of the 1,000 structures (red) selected either randomly to construct the IIM (B) or sampled 
around the experimental chemical shift (vertical black line) measured in AZD8329 form 1 to construct the SIM (C). (D), (E) Three-dimensional con-
tour levels of the IIM and SIM of proton 1 in AZD8329 obtained using Equation 2.11 from the structures selected in (B) and (C), respectively. Con-
tour levels are drawn at values of 0.2, 0.4, 0.6 and 0.8. (F) Three-dimensional contour levels of the difference of atomic density between the SIM 
and IIM. Contour levels are drawn at values of 0.05, 0.1, 0.15 and 0.2. (G) Intermolecular hydrogen bonding motif of the proton labelled 1 in the 
crystal structure of AZD8329 form 1. 

 

 

Figure 2.29. (A), (B) Three-dimensional contour levels of the IIM and SIM of the NH proton of AZD8329 form 1, respectively. Contour levels are 
drawn at values of 0.2, 0.4, 0.6 and 0.8. (C) Three-dimensional contour levels of the difference of atomic density between the IIM and SIM. Contour 
levels are drawn at values of 0.05, 0.1, 0.15 and 0.2. (D) Local atomic environment of the NH proton in the crystal structure of AZD8329 form 1. 
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Figure 2.29 and Figure 2.30 show the atomic density maps obtained around the NH proton in AZD8329 forms 1 and 4, respectively. 
In form 1 (Figure 2.29A-B), the selection of local environments with associated chemical shifts around the experimental value (see 
Figure 2.50) was found to reduce the atomic density of oxygen in contact with the NH proton. The reduction in atomic density 
corresponds to a difference of at least 20% of the local atomic environments aligned, as seen in the difference map shown in Figure 
2.29C. We note that Figure 2.29C shows the difference between atomic densities obtained from randomly selected environments 
and those selected around the experimental chemical shift (IIM - SIM), unlike those shown in Figure 2.28F and below. This allows us 
to identify interactions that are less likely than on average when considering the experimental chemical shift. Indeed, the NH pro-
ton is not hydrogen bonded in the crystal structure of AZD8329 form 1 (Figure 2.29D). 

In AZD8329 form 4, the atomic density maps obtained for local atomic environments around the same NH proton with associated 
chemical shifts close to the experimental value (see Figure 2.50) were found to promote hydrogen bonding to oxygen atoms (Fig-
ure 2.30A-C). This is in agreement with the hydrogen bond found in the crystal structure of form 4 (Figure 2.30D). 

For Form 4 we also note that in this case, the maps in Figure 2.30A-B do not capture the cis conformation of the amide group found 
in the crystal structure. This suggests that the overwhelming majority of amides in the database display a trans conformation, 
and/or that the conformation is not captured in the chemical shift of the NH proton. We note that none of the 1H or 13C shifts con-
sidered was able to capture the cis conformation 

The atomic density maps obtained around the carboxylic acid proton in AZD8329 form 4, shown in Figure 2.35, were found to 
promote hydrogen bonding of the proton, which is consistent with the crystal structure of the material. However, the difference 
map was found to promote the carboxylic acid dimer found in the structure of form 1, and which is not present in form 4. This can 
be explained by bias in the database, where most hydrogen bonded carboxylic acid groups are dimers. Experimental validation of 
the presence of a carboxylic acid dimer can be obtained using complementary methods such as, e.g., a BABA-xy16 experiment.366, 

367 The CH protons, as well as carbon environments obtained were not found to promote any significant interaction or confor-
mation in the material. The superposition of interaction maps generated around all 1H, 13C and 1H-13C sites are provided for 
AZD8329 form 1 and 4 in Figures 2.35-2.40. 

 

 

Figure 2.30. (A), (B) Three-dimensional contour levels of the IIM and SIM of the NH proton of AZD8329 form 4, respectively. Contour levels are 
drawn at values of 0.2, 0.4, 0.6 and 0.8. (C) Three-dimensional contour levels of the difference of atomic density between the SIM and IIM. Contour 
levels are drawn at values of 0.05, 0.1, 0.15 and 0.2. (D) Local atomic environment of the NH proton in the crystal structure of AZD8329 form 4. 
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Figure 2.31. (A) labelling scheme of decitabine. (B), (C) Superposition of three-dimensional contour levels of the IIMs and SIMs of all protons in 
decitabine, respectively. Contour levels are drawn at values of 0.2, 0.4, 0.6 and 0.8. (D) Three-dimensional contour levels of the difference of atomic 
density between the SIMs and IIMs of each proton in the molecule. Contour levels are drawn at values of 0.05, 0.1, 0.15 and 0.2. (E) Local environ-
ment around a decitabine molecule in the crystal structure. 

Figure 2.31 shows the atomic density maps generated around all protons in decitabine. Both density maps constructed from ran-
domly selected environments and environments with associated shifts close to experimental values display hydrogen bonding of 
both protons in the amine, both OH protons, as well as of nitrogens labelled a and c in Figure 2.31A, and of the oxygen labelled 1 in 
at least 20% of the environments used to construct the atomic density maps (Figure 2.31B-C). The difference map shown in Figure 
2.31D shows that the experimental 1H chemical shifts are associated with a higher degree of all hydrogen bonding identified above 
than on average by at least 5% of all environments aligned. This is confirmed in the crystal structure, where all the aforementioned 
atomic sites are hydrogen bonded. We note that one of the NH2 protons is expected to be H-bonded to a carboxylic acid moiety in 
the atomic density map, while it is H-bonded to a nitrogen in the crystal structure. 

Figure 2.31D illustrates the limitations of the method presented here. First, the atomic density maps generated do not explicitly 
identify functional groups. For example, the hydrogen bonding partners of the OH groups in decitabine are not identified in Figure 
2.31D, which only provides the information that the OH groups are likely to be H-bonded. Nonetheless, the shape of the atomic 
density maps can be used to infer the bonding partner. In addition, the method presented here is not able to disambiguate intra- or 
intermolecular interactions. A careful analysis of the flexibility of the molecule can however often establish the possibility of intra-
molecular interactions. Another limitation of the method is the identification of the hydrogen bonding acceptors around H-bonded 
protons. In the case of decitabine here, one of the NH2 protons is expected to be bonded to a carboxylic acid, although no such 
functional group is present in the crystal structure. This artifact is due to bias in the database used to construct the atomic density 
maps, where in this case most environments that match the observed chemical shift display hydrogen bonding interactions with 
carboxylic acid groups. However, in the absence of such a chemical group in the crystal structure, the most similar group is the 
aminopyrimidine-like moiety in the molecule, which is the hydrogen bonding partner observed in the crystal structure (Figure 
2.31E). This interaction could be probed with complementary experiments such as, e.g., a 14N-1H d-HMQC experiment.368 

In Figure 2.31B-D, the proton density found around the C=O group is an artifact in the maps constructed for the NH2 protons, which 
predict an NH2 group instead of the oxygen next to the carbon labelled 1. This is due to bias in the database. The superposition of 
interaction maps generated around all 13C and 1H-13C sites are provided for decitabine in Figures 2.42-2.43. 
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Figure 2.32. (A) labelling scheme of lisinopril dihydrate. (B), (C) Superposition of three-dimensional contour levels of the IIMs and SIMs of all protons 
in lisinopril, respectively. Contour levels are drawn at values of 0.2, 0.4, 0.6 and 0.8. (D) Three-dimensional contour levels of the difference of atom-
ic density between the SIMs and IIMs of each proton in the molecule. Contour levels are drawn at values of 0.05, 0.1, 0.15 and 0.2. (E) Local envi-
ronment around a lisinopril molecule in the crystal structure. 

Figure 2.32 shows the atomic density maps generated around all protons in lisinopril dihydrate (excluding water protons, since 
their chemical shift was not reported). The map generated around the CH2 protons labelled 15 using environments selected to have 
chemical shifts close to experiment (Figure 2.32C) displays a clear presence of carbon atomic density close to the protons, which is 
absent in the map generated using random local atomic environments (Figure 2.32B). This is confirmed in the difference map (Fig-
ure 2.32D), and corresponds to the presence of the phenyl ring of a neighbouring lisinopril molecule. The unusually low shift of one 
of the CH2 protons (see Table 2.15 and Figure 2.51) is associated with the presence of an aromatic ring in its vicinity, whose ring 
currents induce an increased shielding of the proton. This effect has previously been extensively studied in the context of nucleus 
independent chemical shift (NICS).151, 359-363 The superposition of interaction maps generated around all 13C and 1H-13C sites are 
provided for lisinopril dihydrate in Figures 2.45-2.46. 

The atomic density maps presented here can be used to qualitatively evaluate the likelihood of candidate structures in chemical 
shift-based structure determination, or can serve as the basis for the derivation of structural constraints in CSP protocols. In addi-
tion, we introduce a quantitative measure of the likelihood of candidate crystal structures based on the atomic density maps gen-
erated (see Section 2.4.2). Figure 2.33A-B shows the scores obtained for the X-ray structures of forms 1 and 4 of AZD8329 when 
evaluated using the maps generated from the experimental 1H chemical shifts of all unambiguously assigned protons (see Figure 
2.52). In addition, the evaluation of a set of ten candidate structures is shown for AZD8329 form 4. The SIMs constructed from the 
experimental shifts of form 1 correctly lead to a higher score for the X-ray structure of form 1 compared to form 4 (Figure 2.33A). In 
addition, using SIMs derived from the experimental shifts of AZD8329 form 4 led to the correct identification of the X-ray structure 
of form 4 and candidate #1 in the CSP set to have the highest scores compared to the X-ray structure of form 1 and the other CSP 
candidates (Figure 2.33B). This indicates that the method is able to identify the correct polymorphic form of AZD8329 based on 
experimental chemical shifts only, and highlights the ability of SIMs to identify the correct crystal structure among a set of candi-
dates directly from the experimentally measured chemical shifts, and without the need to perform any chemical shift computation 
for any candidate among the set. Using 13C or both 1H and 13C chemical shifts from AZD8329 form 1 similarly leads to a higher score 
for the X-ray structure form 1 compared to form 4, however using 13C or both 1H and 13C chemical shifts from AZD8329 form 4 did 
not attribute the highest score to candidate #1 (see Figure 2.52). 
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Figure 2.33. Scores obtained as described in Equation 2.12 and averaged over all atomic environments considered for the X-ray 
structures of AZD8329 forms 1 and 4 using SIMs constructed using the experimentally obtained chemical shifts of (A) AZD8329 form 
1 and (B) form 4. In (B), the scores obtained for a CSP set of ten candidate structures of AZD8329 form 4 are also shown. Chemical 
structure of AZD5718 (C) and scores obtained for candidate structures of AZD5718 using SIMs constructed using the experimentally 
obtained (D) 1H, and (E) 1H and 13C chemical shifts. 

 

Figure 2.33C-E shows the scores obtained for a CSP set of candidate structures of AZD5718 using unambiguously assigned experi-
mental 1H (Figure 2.33D) and 1H and 13C (Figure 2.33E) chemical shifts. In this case, using protons only did not identify candidate #1 
(i.e., the correct candidate) as having the highest score. However, adding 13C chemical shifts led to the correct identification of 
candidate #1 as best matching (see Figure 2.52). The superposition of interaction maps generated around all 1H, 13C and 1H-13C sites 
are provided for AZD5718 in Figures 2.47-2.49. Not unexpectedly, the scores display a weaker discriminating power as compared to 
DFT chemical shift computation of the candidate structures and comparison to experiments,53, 177 so far, and further work will focus 
on improving the robustness of candidate scoring. 

We note that here all CSP candidate structures of AZD8329 form 4 were originally selected by Baias et al.53 within 30 kJ/mol in total 
energy from the most stable predicted crystal structure with the cis conformation of the amide group, and ordered by increasing 
energy. While the lowest energy candidate corresponds to the X-ray structure of AZD8329 form 4, it lies well above the lowest 
energy candidate generated with a trans conformation of the amide group. For AZD5718, the ten candidate crystal structures were 
previously selected within 6 kJ/mol from the lowest energy candidate generated,177 and are ordered by increasing energy. In gen-
eral, there is no guarantee that the lowest energy candidate corresponds to the observed structure, and this is evident for poly-
morphic compounds that display several observed structures with different energies. The IIMs and the SIMs generated here do not 
incorporate any information or bias related to predicted energies. 
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2.4.4 Conclusion	
In this section we have developed a method to obtain three-dimensional atomic density maps of local atomic environments based 
on the experimental chemical shift associated to the covalent environment queried. The maps constructed can be used to visualise 
preferred noncovalent interactions in molecular solids directly from any random conformation of the compound studied, without 
requiring any prior knowledge about the conformation of molecular packing in the solid state. This can be used to qualitatively 
evaluate the likelihood of candidate crystal structures in chemical shift-based structure determination, or to derive experimentally 
derived structural constraints in CSP protocols. It can also be used to generate structural hypotheses that can guide further experi-
mental validations. We have also introduced a scoring system able to quantitatively evaluate candidate crystal structures based on 
experimental chemical shifts, which was found able to identify the correct candidate. 

While we believe that the method presented here presents great potential to facilitate the structure determination of molecular 
solids by NMR, we expect it to become more powerful in the future, using larger and more diverse databases of structures with 
more accurate chemical shifts associated. Using larger and more diverse databases would also allow the use of the method for a 
broader range of compounds. Finally, we expect that managing bias in the database (e.g., the over-representation of particular 
functional groups) would allow the construction of more accurate SIMs. 

The approach presented here is not limited to crystalline compounds, and can be used straightforwardly to identify preferred non-
covalent interactions in disordered materials, by using experimental chemical shifts from such disordered samples and adapting the 
width of the shift distributions to match the observed lineshapes, potentially made more accurate by using a database comprising 
distorted structures. 

 

 

2.4.5 Appendix	III	
Data availability 

All data and code used are available from https://doi.org/10.24435/materialscloud:98-sx under the license CC-BY-4.0 (Creative 
Commons Attribution-ShareAlike 4.0 International) 

Experimental Details 

 

Figure 2.34. Labelling scheme of (A) AZD8329, (B) decitabine, (C) lisinopril dihydrate and (D) AZD5718. 
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Table 2.9. Experimental 1H chemical shifts and atoms aligned for AZD8329. 

Label Experimental shift, Form 1 / Form 4 [ppm] Atoms aligned 

H1 14.37 / 15.37 Ha, Oa, Ob, C1 

H3 8.46 / 9.01 H3, C3, Oa, Ob 

H4 7.08 / 8.47 H4, C4, Nd, C1 

H6 8.46 / 6.92 H6, C6, Nd, C1 

H7 8.46 / 8.69 H7, C7, Oa, Ob 

H10 1.01 / 0.73 C10, C9, C8 

H11 1.01 / 0.73 C11, C9, C8 

H12 1.01 / 0.73 C12, C9, C8 

H14 8.28 / 7.73 H14, C14, C13, Ne 

NH 6.96 / 9.64 Hf, Nf, C15, C16 

H16 4.39 / 2.90 H16, C16, Nf 

H17 1.64 / 1.54 H17, C17, C16 

H18 1.64 / 1.60 C18, C17, C19 

H18’ 0.89 / 0.44 C18, C17, C19 

H19 0.82 / 1.00 H19, C19, C18 

H20 1.64 / 0.80 C20, C21, C19 

H20’ 0.89 / 0.80 C20, C21, C19 

H21 2.12 / 1.78 H21, C21, C16 

H22 0.82 / 1.88 C22, C21, C23 

H22’ 1.58 / 1.88 C22, C21, C23 

H23 1.49 / 1.80 H23, C23, C22 

H24 2.12 / 1.88 C24, C23, C17 

H24’ 1.83 / 1.88 C24, C23, C17 

H25 0.82 / 1.74 C25, C23, C19 

H25’ -0.03 / 1.74 C25, C23, C19 
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Table 2.10. Experimental 13C chemical shifts and atoms aligned for AZD8329. 

Label Experimental shift, Form 1 / Form 4 [ppm] Atoms aligned 

C1 173.60 / 171.04 C1, Oa, Ob, Ha 

C2 133.27 / 131.10 C2, C3, H3, Ob 

C3 131.50 / 133.01 C3, H3, Oa, Ob 

C4 127.00 / 128.05 C4, H4, Nd, C1 

C5 148.27 / 147.31 C5, Nd, C4, C6 

C6 128.32 / 128.05 C6, H6, Nd, C1 

C7 131.50 / 130.48 C7, H7, Oa, Ob 

C8 151.97 / 148.71 C8, Nd, C9, C13 

C9 34.20 / 33.42 C9, C8, C10 

C10 30.13 / 29.53 C10, C9, C8 

C11 30.13 / 29.53 C11, C9, C8 

C12 30.13 / 29.53 C12, C9, C8 

C13 119.17 / 114.10 C13, C8, C14, C15 

C14 139.16 / 138.43 C14, Ne, C13, H14 

C15 165.41 / 172.98 C15, Nf, Oc 

C16 55.24 / 60.16 C16, Nf, H16 

C17 32.13 / 32.45 C17, C16, C18, C24 

C18 32.13 / 30.80 C18, C17, C19 

C19 27.26 / 27.81 C19, C18, C20, C25 

C20 32.13 / 30.80 C20, C21, C19 

C21 32.79 / 34.14 C21, C16, C20, C22 

C22 37.32 / 37.41 C22, C21, C23 

C23 26.93 / 27.81 C23, C22, C24, C25 

C24 38.83 / 36.42 C24, C23, C17 

C25 37.13 / 37.41 C25, C23, C19 
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Table 2.11. Experimental 13C-1H chemical shifts and atoms aligned for AZD8329. 

Label Experimental shift, Form 1 / Form 4 
[ppm] 

Atoms aligned 

C3-H3 131.50, 8.46 / 133.01, 9.01 C3, H3, Oa, Ob 

C4-H4 127.00, 7.08 / 128.05, 8.47 C4, H4, Nd, C1 

C6-H6 128.32, 8.46 / 128.05, 6.92 C6, H6, Nd, C1 

C7-H7 131.50, 8.46 / 130.48, 8.69 C7, H7, Oa, Ob 

C10-H10 30.13, 1.01 / 29.53, 0.73 C10, C9, C8 

C11-H11 30.13, 1.01 / 29.53, 0.73 C11, C9, C8 

C12-H12 30.13, 1.01 / 29.53, 0.73 C12, C9, C8 

C14-H14 139.16, 8.28 / 138.43, 7.73 C14, Ne, C13, H14 

C16-H16 55.24, 4.39 / 60.16, 2.90 C16, Nf, H16 

C17-H17 32.13, 1.64 / 32.45, 1.54 C17, C16, C18, C24 

C18-H18 32.13, 1.64 / 30.80, 1.60 C18, C17, C19 

C18-H18’ 32.13, 0.89 / 30.80, 0.44 C18, C17, C19 

C19-H19 27.26, 0.82 / 27.81, 1.00 C19, C18, C20, C25 

C20-H20 32.13, 1.64 / 30.80, 0.80 C20, C21, C19 

C20-H20’ 32.13, 0.89 / 30.80, 0.80 C20, C21, C19 

C21-H21 32.79, 2.12 / 34.14, 1.78 C21, C16, C20, C22 

C22-H22 37.32, 0.82 / 37.41, 1.88 C22, C21, C23 

C22-H22’ 37.32, 1.58 / 37.41, 1.88 C22, C21, C23 

C23-H23 26.93, 1.49 / 27.81, 1.80 C23, C22, C24, C25 

C24-H24 38.83, 2.12 / 36.42, 1.88 C24, C23, C17 

C24-H24’ 38.83, 1.83 / 36.42, 1.88 C24, C23, C17 

C25-H25 37.13, 0.82 / 37.41, 1.74 C25, C23, C19 

C25-H25’ 37.13, -0.03 / 37.41, 1.74 C25, C23, C19 
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Table 2.12. Experimental 1H chemical shifts and atoms aligned for decitabine. 

Label Experimental shift [ppm] Atoms aligned 

NbH 9.38 Nb, C2, Na, Nc 

NbH’ 10.81 Nb, C2, Na, Nc 

H3 8.30 H3, Na, Nd 

H4 5.66 H4, C4, Of, Nd 

H5 1.83 C5, C4, C6 

H5’ 1.96 C5, C4, C6 

H6 4.08 H6, C6, Og 

OgH 5.90 OgH, Og, C6 

H7 3.33 H7, C7, Of 

H8 3.91 C8, Oh, C7 

H8’ 3.36 C8, Oh, C7 

OhH 5.90 OhH, Oh, C8 

 

Table 2.13. Experimental 13C chemical shifts and atoms aligned for decitabine. 

Label Experimental shift [ppm] Atoms aligned 

C1 153.75 C1, Oe, Nc, Nd 

C2 165.97 C2, Na, Nb, Nc 

C3 153.75 C3, Na, Nd 

C4 88.61 C4, Of, Nd, C5 

C5 44.97 C5, C4, C6 

C6 72.23 C6, Og, H6 

C7 98.73 C7, Of, H7 

C8 62.12 C8, Oh, C7 

 

Table 2.14. Experimental 13C-1H chemical shifts and atoms aligned for decitabine. 

Label Experimental shift [ppm] Atoms aligned 

C3-H3 153.75, 8.30 C3, Na, Nd 

C4-H4 88.61, 5.66 C4, Of, Nd, C5 

C5-H5 44.97, 1.83 C5, C4, C6 

C5-H5’ 44.97, 1.96 C5, C4, C6 

C6-H6 72.23, 4.08 C6, Og, H6 

C7-H7 98.73, 3.33 C7, Of, H7 

C8-H8 62.12, 3.91 C8, Oh, C7 

C8-H8’ 62.12, 3.36 C8, Oh, C7 
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Table 2.15. Experimental 1H chemical shifts and atoms aligned for lisinopril dihydrate. 

Label Experimental shift [ppm] Atoms aligned 

H1 7.8 H1, C2, C7 

H2 6.3 H2, C2, C7 

H3 7.6 H3, C3, C7 

H5 7.9 H5, C5, C7 

H6 7.6 H6, C6, C7 

H7 3.8 C7, C4, C8 

H8 2.1 C8, C7, C9 

H9 4.6 H9, C9, Nf 

NfH 11.3 Nf, C9, C11 

H11 4.5 H11, C11, Nf 

H12 1.7 C12, C11, C13 

H13 0.7 C13, C12, C14 

H14 0.2 C14, C13, C15 

H14’ 1.5 C14, C13, C15 

H15 0.2 C15, C14, Ng 

H15’ 2.6 C15, C14, Ng 

H17 5.2 C17, Nh, C18 

H18 1.6 C18, C17, C19 

H19 1.6 C19, C18, C20 

H20 4.4 H20, C20, Nh 

 

Table 2.16. Experimental 13C chemical shifts and atoms aligned for lisinopril dihydrate. 

Label Experimental shift [ppm] Atoms aligned 

C1 127.4 C1, C2, C7 

C2 128.7 C2, H2, C7 

C3 130.1 C3, H3, C7 

C4 142.3 C4, C3, H3 

C5 128.2 C5, H5, C7 

C6 130.1 C6, H6, C7 

C7 30.9 C7, C4, C8 

C8 35.2 C8, C7, C9 

C9 56.4 C9, Nf, H9 

C10 173.9 C10, Oa, Ob 

C11 54.6 C11, Nf, H11 

C12 28.3 C12, C11, C13 

C13 18.9 C13, C12, C14 

C14 27.2 C14, C13, C15 

C15 35.9 C15, C14, Ng 

C16 164.4 C16, Oc, Nh 

C17 47.6 C17, Nh, C18 

C18 25.3 C18, C17, C19 

C19 30.9 C19, C18, C20 

C20 61.2 C20, Nh, H20 

C21 175.7 C21, Od, Oe 
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Table 2.17. Experimental 13C-1H chemical shifts and atoms aligned for lisinopril dihydrate. 

Label Experimental shift [ppm] Atoms aligned 

C1-H1 127.4, 7.8 C1, C2, C7 

C2-H2 128.7, 6.3 C2, H2, C7 

C3-H3 130.1, 7.6 C3, H3, C7 

C5-H5 128.2, 7.9 C5, H5, C7 

C6-H6 130.1, 7.6 C6, H6, C7 

C7-H7 30.9, 3.8 C7, C4, C8 

C8-H8 35.2, 2.1 C8, C7, C9 

C9-H9 56.4, 4.6 C9, Nf, H9 

C11-H11 54.6, 4.5 C11, Nf, H11 

C12-H12 28.3, 1.7 C12, C11, C13 

C13-H13 18.9, 0.7 C13, C12, C14 

C14-H14 27.2, 0.2 C14, C13, C15 

C14-H14’ 27.2, 1.5 C14, C13, C15 

C15-H15 35.9, 0.2 C15, C14, Ng 

C15-H15’ 35.9, 2.6 C15, C14, Ng 

C17-H17 47.6, 5.2 C17, Nh, C18 

C18-H18 25.3, 1.6 C18, C17, C19 

C19-H19 30.9, 1.6 C19, C18, C20 

C20-H20 61.2, 4.4 C20, Nh, H20 

 

  



NMR Crystallography in the Big Data Era: New Methods and Applications Powered by Machine Learning, PhD Thesis, M. Cordova 

76 

Table 2.18. Experimental 1H chemical shifts and atoms aligned for AZD5718. 

Label Experimental shift [ppm] Atoms aligned 

H1 1.2 C1, C2, C3, Nd 

H3 5.8 H3, C3, C2, C4 

NdH 10.6 NdH, Nd, Ne, C2 

H6 6.9 H6, C6, C4 

H7 6.7 H7, C7, C11 

H9 7.0 H9, C9, C11 

H10 7.3 H10, C10, C4 

H12 3.9 H12, C12, C11 

H13 0.0 C13, C12, C14 

H13’ 1.7 C13, C12, C14 

H14 -0.5 C14, C13, C15 

H14’ 0.8 C14, C13, C15 

H15 -0.5 C15, C14, C16 

H15’ 0.8 C15, C14, C16 

H16 1.6 C16, C15, C17 

H16’ 1.6 C16, C15, C17 

H17 1.6 H17, C17, C18 

NfH 7.7 NfH, Nf, C18, C19 

H20 7.6 H20, C20, Ng, C19 

H22 1.7 C22, Nh, C23 

H22’ 2.7 C22, Nh, C23 

H23 1.9 C23, Ni, C22 

H23’ 2.7 C23, Ni, C22 

NiH 6.9 NiH, Ni, C23, C24 
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Table 2.19. Experimental 13C chemical shifts and atoms aligned for AZD5718. 

Label Experimental shift [ppm] Atoms aligned 

C1 11.1 C1, C2, C3, Nd 

C2 141.5 C2, C1, C3, Nd 

C3 102.3 C3, C2, C4 

C4 149.8 C4, C3, C5, Ne 

C5 139.5 C5, C4, C6, Ne 

C6 123.9 C6, H6, C4 

C7 130.1 C7, H7, C11 

C8 133.3 C8, Oa, C7 

C9 130.8 C9, H9, C11 

C10 125.3 C10, H10, C4 

C11 201.1 C11, Oa, C12, C8 

C12 46.3 C12, H12, C11 

C13 31.2 C13, C12, C14 

C14 26.6 C14, C13, C15 

C15 26.0 C15, C14, C16 

C16 29.2 C16, C15, C17 

C17 49.8 C17, H17, C16 

C18 174.0 C18, Ob, Nf 

C19 125.8 C19, Nf, C20, C21 

C20 130.8 C20, H20, Ng, C19 

C21 119.7 C21, Nh, C19, C24 

C22 43.5 C22, Nh, C23 

C23 40.1 C23, Ni, C22 

C24 161.8 C24, C21, Oc, Ni 
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Table 2.20. Experimental 13C-1H chemical shifts and atoms aligned for AZD5718. 

Label Experimental shift [ppm] Atoms aligned 

C1-H1 11.1, 1.2 C1, C2, C3, Nd 

C3-H3 102.3, 5.8 C3, C2, C4 

C6-H6 123.9, 6.9 C6, H6, C4 

C7-H7 130.1, 6.7 C7, H7, C11 

C9-H9 130.8, 7.0 C9, H9, C11 

C10-H10 125.3, 7.3 C10, H10, C4 

C12-H12 46.3, 3.9 C12, H12, C13 

C13-H13 31.2, 0.0 C13, C12, C14 

C13-H13’ 31.2, 1.7 C13, C12, C14 

C14-H14 26.6, -0.5 C14, C13, C15 

C14-H14’ 26.6, 0.8 C14, C13, C15 

C15-H15 26.0, -0.5 C15, C14, C16 

C15-H15’ 26.0, 0.8 C15, C14, C16 

C16-H16 29.2, 1.6 C16, C15, C17 

C16-H16’ 29.2, 1.6 C16, C15, C17 

C17-H17 49.8, 1.6 C17, H17, C16 

C20-H20 130.8, 7.6 C20, H20, Ng, C19 

C22-H22 43.5, 1.7 C22, Nh, C23 

C22-H22’ 43.5, 2.7 C22, Nh, C23 

C23-H23 40.1, 1.9 C23, Ni, C22 

C23-H23’ 40.1, 2.7 C23, Ni, C22 
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Figure 2.35. Interaction maps of AZD8329 Form 1 based on 1H chemical shifts. 

 

Figure 2.36. Interaction maps of AZD8329 Form 1 based on 13C chemical shifts. 

 

Figure 2.37. Interaction maps of AZD8329 Form 1 based on 1H and 13C chemical shifts. 



NMR Crystallography in the Big Data Era: New Methods and Applications Powered by Machine Learning, PhD Thesis, M. Cordova 

80 

 

Figure 2.38. Interaction maps of AZD8329 Form 4 based on 1H chemical shifts. 

 

Figure 2.39. Interaction maps of AZD8329 Form 4 based on 13C chemical shifts. 

 

Figure 2.40. Interaction maps of AZD8329 Form 4 based on 1H and 13C chemical shifts. 
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Figure 2.41. Interaction maps of decitabine based on 1H chemical shifts. 

 

Figure 2.42. Interaction maps of decitabine based on 13C chemical shifts. 

 

Figure 2.43. Interaction maps of decitabine based on 1H and 13C chemical shifts. 
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Figure 2.44. Interaction maps of lisinopril dihydrate based on 1H chemical shifts. 

 

Figure 2.45. Interaction maps of lisinopril dihydrate based on 13C chemical shifts. 

 

Figure 2.46. Interaction maps of lisinopril dihydrate based on 1H and 13C chemical shifts. 
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Figure 2.47. Interaction maps of AZD5718 based on 1H chemical shifts. 

 

Figure 2.48. Interaction maps of AZD5718 based on 13C chemical shifts. 

 

Figure 2.49. Interaction maps of AZD5718 based on 1H and 13C chemical shifts. 
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Figure 2.50. Histogram of 1H chemical shifts from the database matching the local covalent environment of the NH proton (blue) and selected 
environments (red) used to construct the IIM (left) and SIM (right) for AZD8329 form 1 (top) and form 4 (bottom). The experimental shifts are 
indicated by the vertical black lines. 

 

Figure 2.51. Histogram of 1H chemical shifts from the database matching the local covalent environment of proton labelled 15 (blue) and selected 
environments (orange) used to construct the IIM (left) and SIM (right). The experimental shift is indicated by the vertical black line. 

Form 1, IIM Form 1, SIM

Form 4, IIM Form 4, SIM

H15, IIM H15, SIM

H15’, IIM H15’, SIM
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Figure 2.52. (A), (B) Scores of individual atoms of the X-ray structures of AZD8329 forms 1 and 4, respectively, using SIMs constructed using the 
experimentally obtained chemical shifts of AZD8329 form 1. (C), (D) Scores of the X-ray structures of AZD8329 forms 1 (candidate 1) and 4 (candi-
date 2) using experimental 13C and 1H-13C chemical shifts of AZD8329 form 1, respectively. (E), (F) Scores of the X-ray structures of AZD8329 forms 1 
and 4 and of the CSP set for AZD8329 form 4 using experimental 13C and 1H-13C chemical shifts of AZD8329 form 4, respectively. (G) Scores of the 
CSP set of AZD5718 using experimental 13C chemical shifts. 
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 The	assignment	problem	
3.1 Introduction	
The approaches presented in Chapter 2 heavily rely on the use of assigned chemical shifts. Chemical shift assignment is the process 
of assigning each peak in a spectrum to its corresponding atomic site(s) in the molecule. In general, this procedure is the starting 
point of any detailed NMR study.308 In organic solids at natural isotopic abundance, this is still a laborious and often challenging 
process. In particular, 13C resonance assignment typically requires the use of the through-bond 13C-13C INADEQUATE experiment.196, 

369 For materials for which the crystal structure is already known, the assignment can be determined at least partially by comparing 
the experimental chemical shifts with shifts computed using DFT in the gauge invariant projector augmented wave (GIPAW) meth-
od,117, 118, 307 or fragment-based methods.126, 128 However, in most applications the full structure is not known, and in particular de 
novo chemical shift-based NMR crystallography relies on chemical shift assignment in order to identify the crystal structure.49, 52, 176, 

177 

Chemical shift assignment of biomolecules such as proteins and RNA can be obtained directly from their sequence through statisti-
cal analysis of chemical shifts.370-372 In addition, simultaneous chemical shift assignment and structure determination can be ob-
tained from matching atomic contacts to Nuclear Overhauser Effect (NOE) experiments.370 These approaches rely on the existence 
of a large database of experimental chemical shifts and molecular structures, such as the Biological Magnetic Resonance Data Bank 
(BMRB)270 and Protein Data Bank (PDB),268 respectively. For example, the BMRB contains over 9.4 million instances of experimental 
chemical shifts for 279 types of proton, carbon and nitrogen sites in the 20 amino acids that make up proteins, with, e.g., over 
89,000 instances of the NH shift in alanine alone. Such large and diverse chemical shift databases however do not exist, to my 
knowledge, for organic crystals. 

In Section 3.2, by combining the Cambridge Structural Database with ShiftML, we construct a statistical basis for probabilistic 
chemical shift assignment of organic crystals by calculating shifts for more than 200,000 compounds, enabling the probabilistic 
assignment of organic crystals directly from their two-dimensional chemical structure. The approach is demonstrated with the 13C 
and 1H assignment of 11 molecular solids with experimental shifts and benchmarked on 100 crystals using predicted shifts. The 
correct assignment is found among the two most probable assignments in more than 80% of cases. 

The main issue preventing 1H-based assignment and atomic-level characterisation of molecular solids is that the resolution of 1H 
solid-state NMR spectra is limited by broadening due to the homonuclear dipolar interactions between the abundant 1H spins.308 
Magic angle spinning (MAS)81, 82 helps reduce dipolar broadening by spinning the sample around an axis tilted at 54.74° from the 
direction of the main magnetic field. This process induces coherent averaging of second-rank tensor interactions such as the homo-
nuclear dipolar interaction while having no effect on isotropic interactions such as the chemical shift. However, the second-rank 
interactions cannot be completely removed even at the highest spinning rates currently available.85, 373-378 This results in residual 
broadening typically on the order of hundreds of hertz,84, 85, 373, 378-381 which obscures the information contained in 1H solid-state 
NMR spectra. 

Obtaining isotropic proton spectra in molecular solids is a key objective in order to leverage the advantage provided by 1H NMR in 
solids compared to other nuclei.39, 151, 308, 382-385 This has fueled the advent of faster magic angle spinning (MAS), as well as the de-
velopment of pulse sequences designed to remove homonuclear dipolar couplings.386-398 However, no such method has yet been 
able to completely remove dipolar interactions in proton spectra of molecular solids. 

Based on the description of the dependence of residual splittings and shifts on the MAS rate 𝜔𝜔#\Z,85, 373, 378-381, 399 Moutzouri et al. 
introduced a two-dimensional approach to obtain the pure isotropic (infinite MAS rate) spectrum of molecular solids from a set of 
spectra measured at different MAS rates.400 While the method introduced provides a powerful method to obtain isotropic spectra, 
several assumptions and restrictions inherent to this fitting approach may limit its performance. 
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In Section 3.3, we introduce a deep learning approach to determine pure isotropic proton (PIP) spectra from a two-dimensional set 
of magic-angle spinning spectra acquired at different spinning rates. Applying the model to 8 organic solids yields high-resolution 1H 
solid-state NMR spectra with isotropic linewidths in the 50-400 Hz range. 

While high-resolution one-dimensional spectra are useful, most applications of NMR spectroscopy today require two-dimensional 
correlation experiments. In this respect, the possibility of measuring ultrahigh-resolution 1H-1H correlations is especially attractive, 
as it enables both structure determination and assignment. 

In Section 3.4, we extend the PIP approach to a second dimension, and for samples of L-tyrosine hydrochloride and ampicillin we 
obtain high resolution 1H-1H double-quantum/single-quantum dipolar correlation and spin-diffusion spectra with significantly high-
er resolution than the corresponding spectra at 100 kHz MAS, allowing the identification of previously overlapped isotropic correla-
tion peaks. 

Overall, this chapter presents methods that aim at improving the assignment of NMR spectra of molecular solids, from a probabilis-
tic approach to determining the assignment based on the chemical structure and a list of chemical shifts to machine learning mod-
els providing better resolved 1H spectra. These methods have the potential to bypass the need for long multi-dimensional experi-
ments typically required to obtain a confident measurement and assignment of chemical shifts, and to significantly accelerate the 
atomic-level characterisation of molecular solids by NMR. 
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3.2 Bayesian	probabilistic	assignment	of	chemical	shifts	in	organic	solids	
This section has been adapted with permission from: Cordova, M.; Balodis, M.; Simões de Almeida, B.; Ceriotti, M.; Emsley, L., 
Bayesian probabilistic assignment of chemical shifts in organic solids. Science Advances 2021, 7 (48), eabk2341. (post-print) 

My contribution was to construct the database, to develop and apply the method and to analyse results. I also wrote the manu-
script, with contributions of all other authors. 

3.2.1 Introduction	
An illustrative example of the assignment problem for 13C nuclei is shown in Figure 3.1, with the 13C cross-polarisation magic angle 
spinning (CPMAS) spectrum of ritonavir. The spectrum contains 32 peaks, corresponding to the 37 magnetically inequivalent carbon 
atoms in the molecule, and assigning the peaks to the atoms is not at all obvious. Several straightforward experimental methods 
can be used to simplify the assignment process in organic solids. Heteronuclear correlation (HETCOR) experiments401, 402 provide 
pairwise 1H-X (where X = 13C, 15N, etc...) correlations and allow the separation of NMR signals along two dimensions, which simpli-
fies the identification of the bonding environment associated with the observed peaks. In addition, spectral editing403-407 can be 
used to identify the carbon multiplicity (i.e., the number of bonded protons) associated to each observed peak, allowing the reduc-
tion of the assignment problem to subsets of peaks and corresponding atomic sites. 

 

Figure 3.1. Molecular structure of ritonavir and the 13C CPMAS spectrum recorded for a powder sample of ritonavir form II. 

ShiftML allows chemical shifts to be obtained directly from the structure of a molecular solid, bypassing the need for an optimised 
wavefunction and making the shifts of large ensembles of large structures accessible with DFT accuracy.176, 261 Here, we show how 
combining this model with a database of three-dimensional structures such as the Cambridge Structural Database (CSD)312 enables 
the probabilistic assignment of organic crystals using chemical shift statistics without any knowledge of the 3D structure. We gen-
erate a large database of chemical shifts for organic crystals by predicting shifts using ShiftML on structures extracted from the CSD. 
By relating the shifts obtained to molecular fragment descriptors, we obtain probabilistic assignments of organic crystals directly 
from their molecular structure. 

3.2.2 Methods	
NMR spectroscopy. The sample of strychnine and ritonavir form II were purchased from Sigma-Aldrich and Tokyo Chemical Indus-
try, respectively. Experiments were performed on Bruker Ascend 400 and Ascend 500 wide-bore Avance III, and 900 US2 wide-bore 
Avance Neo NMR spectrometers. The spectrometers operate at 1H Larmor frequencies of 400, 500 and 900 MHz respectively, and 
are equipped with H/X/Y 3.2 mm, H/X/Y 4.0 mm, H/C/N/D 1.3 mm and H/C/N 0.7 mm CPMAS probes. 

1D 1H MAS NMR spectra were recorded at a temperature of 298 K using rotor spinning rates (𝜈𝜈,) up to 111 kHz. 1D 13C cross-
polarization (CP)408 MAS NMR spectra were acquired at 298 K with 𝜈𝜈, of 12.5 and 22 kHz for ritonavir and strychnine respectively. 
During the signal acquisition SPINAL-64 decoupling409 was applied with a 1H rf field amplitude of 100 kHz. For ritonavir spectral 
editing experiments were used to distinguish carbons with different numbers of protons attached to them. To selectively remove 
quaternary carbons a 1D version of MAS-J-HSQC406 was used, to remove quaternary and primary carbons a double quantum filter 
was added to the MAS-J-HSQC406 sequence and to remove primary and secondary carbons a simple CP experiment with an inserted 
delay of 0.5 ms before acquisition and after the CP pulse was applied.403 2D 1H-13C HETCOR experiments were carried out at 298 K 
using 𝜈𝜈, = 22 kHz. During 𝑡𝑡/ 100 kHz eDUMBO-122 was applied to decouple the 1H-1H dipolar coupling,410 and during 𝑡𝑡' 100 kHz 
SPINAL-64 decoupling was applied. 
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The natural abundance 2D 13C-13C refocused INADEQUATE369, 411 spectra required for the direct experimental assignment for ri-
tonavir and strychnine were acquired using a Bruker 400 MHz Ascend NMR spectrometer. The probe was configured into 1H/13C 
double resonance mode. Variable amplitude cross-polarisation412 was used to transfer polarisation from 1H to 13C. SPINAL-64409 
heteronuclear 1H decoupling with RF fields of 100 kHz was applied in all cases. The temperature of the sample for ritonavir was 
250 K and a 4 mm rotor was used with a spinning frequency of 12.5 kHz. 2 x 120h experiments were acquired and combined in post 
processing to obtain the final spectrum (total time: 10 days). For strychnine DNP was used.413 The sample was impregnated with 10 
mM AMUPOL dissolved in 60:30:10 glycerol-d8:D2O:H2O. The spectrometer is equipped with a low temperature magic angle spin-
ning (LTMAS) 3.2 mm probe and connected through a corrugated waveguide to a 263 GHz gyrotron capable of outputting ca. 5-
10 W of continuous wave microwaves.414 The sweep coil of the main magnetic field was optimised so that the microwave irradia-
tion gave the maximum positive proton DNP enhancement with binitroxide cross effect-based polarising agents (e.g., AMUPOL, 
TEKPOL). The temperature of the sample for ritonavir was 92 K and a 3.2 mm rotor was used with a spinning frequency of 12.5 kHz. 
A DNP enhancement of 36 was determined based on the ratio of the area of the spectra acquired with and without microwave 
irradiation. The DNP-enhanced natural abundance 2D 13C-13C refocused INADEQUATE experiment413 was run for 45 hours. 

All chemical shifts were referenced via alanine. The full set of acquisition parameters is given in Tables 3.1-3.4. 

Selection of crystal structures. The structures used to construct the chemical shift database were obtained from the CSD.312 Only 
the organic crystal structures suitable for chemical shift predictions were selected. The corresponding selection criteria were that 
every structure must only contain C, H, N, O and S atoms, and that the disorder (if any) is resolvable (i.e., all atomic sites in the 
structure can be assigned to their major occupancy sites and the corresponding structure matches the reported chemical formula). 
Missing protons were added automatically using the tool built into the CSD Python API. In total, 205,069 valid structures were 
selected. 

Relaxation and chemical shift prediction. Because proton positions in published single-crystal X-ray diffraction structures may not 
correspond to the actual hydrogen positions in the crystals, they have to be optimised. Due to the large number of structures se-
lected, DFT relaxation would be prohibitively costly. The semiempirical DFTB method325 was thus chosen to relax proton positions 
in all structures. The structures were optimised at the DFTB3-D3H5 level of theory326, 351 using the 3ob-3-1 parameter set.350, 415 
Further computational details are given in Appendix IV. Instances where the structure relaxation failed were discarded. 203,303 
structures were successfully relaxed and considered for chemical shift prediction. 

All chemical shift predictions were performed using ShiftML version 1.2 (publicly available at https://shiftml.epfl.ch).176, 261 Conver-
sions of predicted shieldings to chemical shifts were performed by least squares fitting of the shieldings obtained for benchmark 
sets of DFTB-relaxed structures to their experimental chemical shifts, fixing the slope to a value of -1. The offsets obtained were 
found to be 30.96 ppm for 1H, 168.64 ppm for 13C, 185.99 ppm for 15N and 205.08 ppm for 17O. This corresponds to 1H and 13C shifts 
relative to TMS, 15N shifts relative to NH4Cl, and 17O shifts relative to liquid H2O. The sets of structures and isotropic chemical shifts 
used to determine shielding-to-shift conversions are described in Tables 3.5-3.8. We note that chemical shieldings are stored in the 
database, and converted to chemical shifts on-the-fly during the construction of chemical shift distributions. In total, the database 
contains 5,243,129 unique 1H, 4,847,864 unique 13C, 466,370 unique 15N and 867,446 unique 17O chemical shifts, respectively. 

Molecular fragment descriptors. For assignment of the spectrum of a molecule of unknown structure, classification of the predict-
ed shifts should be done such that a statistical distribution of chemical shifts can be obtained for any nucleus from the two-
dimensional representation of a molecule. The molecular fragment descriptor should thus not contain any information about con-
formation or molecular packing in the crystal structures. Among the topological atom-centered descriptors that fit these require-
ments,416-418 we chose to represent topological atomic environments by graphs where vertices represent atoms and edges repre-
sent covalent connectivities. The vertices were labelled by element, and the edges were kept unlabelled. Graphs were cut to a 
maximum depth 𝑤𝑤 of 6, defined as the maximum shortest path between the central vertex (for which the chemical shift is predict-
ed) and any other vertex in the path. 

Conversion of the three-dimensional crystal structures to their corresponding graphs was performed by identifying atom pairs as 
covalently bonded when the distance between the atoms in the pair is less than 1.1 times the sum of the covalent radii of the at-
oms involved. 
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Database construction and search. A given topological atomic environment can be searched by identifying which graphs in the 
database match the graph of the selected atomic environment. However, there is no known algorithm able to solve the graph 
isomorphism problem required for each database entry in polynomial time.419, 420 Thus, the search was simplified by using the 
Weisfeiler-Lehman hash421 as a unique graph identifier. If the number of instances of a given atomic environment identified in the 
database was deemed too small to produce statistically significant chemical shift distributions, the atomic environment was 
searched again after reducing the graph depth. For this work, we chose a minimum number of instances of 10. Further details 
concerning the database architecture and search can be found in Appendix IV. 

Construction of probability distributions. We use a notation and a conceptual framework extending the Bayesian selection of 
crystal-structure prediction candidate structures compatible with measured shifts.176 From the set of chemical shifts and uncertain-
ties {𝑦𝑦], 𝜎𝜎]} predicted by ShiftML for the CSD structures that share the same graph 𝐺𝐺% as the atom 𝑖𝑖 in the molecule of interest, we 
define the probability of observing a chemical shift 𝑦𝑦 for that atom as proportional to the sum of Gaussian functions centered on 
each predicted shift 𝑦𝑦] and with a width 𝜎𝜎] given by its prediction uncertainty. 

𝑝𝑝%(𝑦𝑦) ∝ 6
1

√2𝜋𝜋𝜎𝜎]
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(3.1) 

Similarly, we define the probability of observing a cross-peak /𝑦𝑦(/), 𝑦𝑦(')3 for a pair of bonded atoms (𝑖𝑖, 𝑗𝑗) in a molecule as propor-
tional to the sum of uncorrelated two-dimensional Gaussian functions, 
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Where ñ𝑦𝑦]
(/), 𝜎𝜎]

(/)ó and ñ𝑦𝑦]
('), 𝜎𝜎]

(')ó are the sets of chemical shifts and predicted uncertainties computed for all the bonded atoms in 

the reference dataset that share the same graph 𝐺𝐺%( as the pair being considered. 

Probabilistic assignment. Considering the vector of observed shifts 𝒚𝒚, the probability that one of its elements 𝑦𝑦( originates from 
atom 𝑖𝑖 is obtained by evaluating Equation 3.1 (or Equation 3.2) for all elements in 𝒚𝒚, 

𝑝𝑝/𝑦𝑦(ô𝑖𝑖3 =
𝑝𝑝%/𝑦𝑦(3

∑ 𝑝𝑝%(𝑦𝑦])]
. (3.3) 

For a given assignment 𝐚𝐚 (defined as the vector mapping atoms in the molecule to experimental shifts such that 𝑎𝑎% = 𝑗𝑗 if atom 𝑖𝑖 is 
assigned to shift 𝑗𝑗), the probability of observing a vector of chemical shifts 𝐲𝐲 is given by 

𝑝𝑝(𝐲𝐲|𝐚𝐚) =ú𝑝𝑝/𝑦𝑦A-|𝑗𝑗3
%

. (3.4) 

Applying Bayes theorem on Equation 3.4 yields the probability of an assignment 𝐚𝐚 given the observed vector of shifts 𝐲𝐲, 

𝑝𝑝(𝐚𝐚|𝐲𝐲) = 	
𝑝𝑝(𝐲𝐲|𝐚𝐚)𝑝𝑝(𝐚𝐚)

𝑝𝑝(𝐲𝐲) =
𝑝𝑝(𝐲𝐲|𝐚𝐚)𝑝𝑝(𝐚𝐚)

∑ 𝑝𝑝(𝐲𝐲|𝐚𝐚5)𝒂𝒂2 𝑝𝑝(𝐚𝐚5) .
(3.5) 

In Equation 3.5, we assume that 𝑝𝑝(𝐚𝐚) is a non-zero constant if the assignment is valid (i.e., if all nuclei are assigned to only one 
chemical shift, and if all observed shifts are assigned at least one nucleus), and zero otherwise. Whenever some of the assignments 
can be made according to experimental data or heuristic arguments, such prior information can be incorporated in the definition 
through 𝑝𝑝(𝐚𝐚). By combining individual assignments, the complete set of possible global assignments can be generated. Because of 
the combinatorial complexity of generating all possible global assignments, several procedures were implemented to reduce the 
global assignment generation cost while ensuring that the most probable assignments are generated, and these are described in 
Appendix IV. Note that if the probability of any shift originating from a given nucleus is lower by a set threshold (typically a factor 
of 100) than the maximum probability for that nucleus then it is discarded. This results in some nuclei being assigned unambiguous-
ly independently of the rest of the global assignment (e.g., shift “e” in Figure 3.3). 
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Equation 3.5 assigns a distinct probability to each possible assignment of the entries of the measured shifts vector 𝐲𝐲 to all the 
environments. It is the correct probabilistic metric to compare two assignments but is hard to interpret. A more compact indicator 
is given by the marginal probability that atom 𝑖𝑖 is assigned to shift 𝑗𝑗, which can be extracted from the set of generated assignments 
by considering only the vectors 𝐚𝐚 containing that particular individual assignment. This is shown in Equation 3.6 by the Kronecker 
delta 𝛿𝛿A-( which selects the assignments for which 𝑎𝑎% = 𝑗𝑗, 

𝑝𝑝(𝑎𝑎% = 𝑗𝑗|𝐲𝐲) =
∑ 𝛿𝛿A-(𝑝𝑝(𝐚𝐚|𝐲𝐲)𝐚𝐚

∑ 𝑝𝑝(𝐚𝐚|𝐲𝐲)𝐚𝐚
. (3.6) 

For topologically equivalent nuclei, which have identical graphs and probability distributions, tuples of nuclei were assigned to 
tuples of experimental shifts (which can be partly or entirely identical). 

Synthetic benchmark set. A set of 100 randomly selected crystal structures from the database were selected to benchmark the 
probabilistic assignment. The selection was restricted to crystals having between 10 and 20 unique carbon atoms. The selected 
structures are listed in Appendix IV. The ShiftML predicted shifts associated to each nucleus were used as ground-truth assignment. 
The structure to assign was systematically excluded from the database search performed to construct statistical distributions of 
chemical shifts. The synthetic benchmark set was separated into five sets containing 20 crystals each and 241, 260, 212, 259 and 
242 unique carbon atoms, respectively. 

3.2.3 Results	and	Discussion	
The framework presented here was applied to a set of various organic molecules for which the carbon chemical shift assignment 
was already (at least partially) determined experimentally. The selected set is composed of theophylline,52 thymol,50 cocaine,52 
strychnine, AZD5718,177 lisinopril,364 ritonavir, the K salt of penicillin G,139 β-piroxicam,143 decitabine172 and simvastatin.422 The 
experimental spectra used for the assignment of strychnine and ritonavir are shown in Figures 3.9-3.10. Experimental shifts of 
lisinopril were obtained from a dihydrate form.364 Experimental shifts of ritonavir were obtained from the polymorphic form II. 

Graph generation is the starting point of statistical assignment and can be performed directly from the two-dimensional represen-
tation of the molecule. Figure 3.2A-B shows the graphs generated for illustrative carbon atoms in theophylline with a depth 𝑤𝑤 = 3. 
The chemical shift distributions of the carbon labelled 4 in theophylline corresponding to different graph depths are shown in Fig-
ure 3.2C, together with the corresponding graphs. As expected, the distribution changes significantly as 𝑤𝑤 is increased, until at 
𝑤𝑤 = 3 and above where they are found to be highly similar, with a width dominated by the uncertainty in the ShiftML prediction. 
We thus selected a minimum number of ten instances to construct each probability distribution, and used the maximum graph 
depth that fulfils this requirement for each nucleus. 

 

Figure 3.2. (A) Two-dimensional structure and carbon labelling scheme of theophylline. (B) Graphs of carbons 1, 2, 3 and 4 of theophylline con-
structed at a depth 𝑤𝑤 = 3. In each graph, the red vertex corresponds to the central atom (for which the chemical shift distribution is extracted), and 
blue vertices indicate the atoms at the maximum shortest path from the central vertex. (C) Chemical shift distributions obtained corresponding to 
the carbon labelled 4, with different graph depths 𝑤𝑤. The number of instances from the database used to construct each distribution is indicated in 
parentheses. 
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Figure 3.3. (A) Statistical 13C chemical shift distributions for theophylline (coloured lines). The carbon labels follow Figure 3.2A. Experimental shifts 
are indicated by black vertical lines below the distributions and are labelled “a” through “f” in order of decreasing chemical shift (see Table 3.9). (B) 
Probabilities of observing each chemical shift of theophylline for a given carbon nucleus. (C) Marginal individual assignment probabilities of the 13C 
chemical shifts of theophylline after Bayesian inference of the possible global assignments. The dots indicate the experimentally determined correct 
assignment. 

The prior statistical distribution of chemical shifts for each atom in a molecule can be constructed from the shifts predicted for all 
atoms in the database that share the same graph. Evaluating the obtained statistical distributions at the observed shifts yields the 
probability of observing each shift originating from each nucleus in the molecule (Figure 3.3A-B). The possible combinations of 
individual assignments, based on a Bayesian construction, makes it possible to associate a probability to each global assignment of 
all shifts. After obtaining the probability for each global assignment in the set, marginalisation yields individual assignment proba-
bilities (Figure 3.3C). In this case, the most probable individual assignment for each carbon, as well as the most probable global 
assignment, were found to correspond to the experimental assignment of theophylline (black dots in Figure 3.3C). 

Overlap of the chemical shift distributions can lead to highly ambiguous assignments. A common method to separate overlapping 
NMR signals consists in spreading them along multiple dimensions. The HETCOR experiment yields high-sensitivity correlated 1H 
and 13C chemical shifts of dipolar coupled nuclei, and can be tuned to obtain a spectrum dominated by one-bond correlations.401, 402 
The correlated statistical distributions of chemical shifts corresponding to a simulated HETCOR can be obtained by considering 
bonded CH pairs in the molecule. This additional dimension often helps separate overlapping one-dimensional statistical distribu-
tions and chemical shifts by incorporating the additional information given by the 1H chemical shift. In addition, this can also be 
used to simultaneously assign 13C and 1H chemical shifts. 

Figure 3.4 depicts the probabilistic assignment of bonded 13C-1H chemical shifts of thymol using two-dimensional correlated statis-
tical shift distributions. The pair of topologically equivalent bonded C-H groups (labelled 9 and 10) was assigned to a pair of experi-
mental shifts in Figure 3.4D as the disambiguation of topologically equivalent nuclei cannot be performed from the two-
dimensional representation of a molecule. As seen in Figure 3.4B, the assignment of the carbon labelled 8 would have been much 
more ambiguous using only 13C chemical shifts. Indeed, the probability of assigning carbon 8 to chemical shift “e” is 34% using only 
statistical distributions of 13C chemical shifts (Figure 3.4E), and 100% using correlated statistical distributions of 1H and 13C chemical 
shifts (Figure 3.4D). We note that the most probable assignments of carbons 6 and 7 and of the methyl groups 1, 9 and 10 do not 
match the experimentally determined ones. We attribute these discrepancies to substantial overlap between the corresponding 
statistical distributions of chemical shifts, that arise because of similar local bonding environments of carbons 6 and 7, and of me-
thyl groups. 

In addition to HETCOR, spectral editing methods are also straightforward high-sensitivity experiments that can be performed rou-
tinely to aid assignment. Such experiments are able to separate 13C chemical shifts according to the number of bonded protons 
(multiplicity).403-405, 407 The method can thus be directly applied to the statistical assignment framework presented here in order to 
break down the statistical assignment problem into smaller sub-problems of reduced complexity. This is especially useful when 
considering molecules yielding substantial overlap of statistical distributions. Knowledge of the multiplicity of 13C chemical shifts 
can also be used to select a subset of HETCOR peaks to assign. 
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Figure 3.4. (A) Carbon labelling scheme of thymol. (B) Contour plot of the correlated statistical chemical shift distributions of bonded 13C-1H in 
thymol. The carbon labels follow (A). Experimental shifts are indicated by black dots and are labelled alphabetically in order of decreasing 13C chem-
ical shift (see Table 3.10). The statistical distributions, normalised such that their maximum is one, are drawn as contour plots at levels 0.1, 0.5 and 
0.9. (C) Probabilities of observing each 13C-1H shift pair in thymol for a given carbon nucleus. (D) Marginal individual assignment probabilities of 
unique directly bonded CH pairs and of pairs of topologically equivalent CH pairs (inset) in thymol. (E) Marginal individual assignment probabilities 
of unique carbons and of pairs of topologically equivalent carbons (inset) in thymol using only 13C chemical shift distributions. In (D) and (E), the dots 
indicate the experimentally determined correct assignment. 

Figure 3.5 shows the assignment of 13C and 1H-13C chemical shifts of strychnine using the combination of spectral editing and corre-
lated statistical distributions of chemical shifts. In Figure 3.5D, the chemical shifts of carbons without any proton attached were 
assigned using the one-dimensional 13C chemical shift distributions of the associated nuclei. Carbons with a single bonded proton 
were assigned using the correlated 1H-13C statistical chemical shift distributions. The carbons with two attached protons were as-
signed to pairs of correlated 1H-13C chemical shifts, restricting the 13C shift to be unique in each pair. 

Figure 3.5E summarises the three most probable global assignments of strychnine. For each assignment, the global assignment is 
broken down into blocks by multiplicity, and then potentially into sub-blocks where there is no significant probability of overlap 
according to a threshold (here a factor 100 with respect to the highest probability for each nucleus). For each sub-assignment there 
is an associated probability. The most probable assignment of each block was found to match the experimentally determined one, 
except for the assignment of CH2 groups, where the assignments of carbons 21 and 19 are swapped compared to the experimental-
ly determined assignment. This is due to the large difference between the distribution of chemical shifts and experimental shift of 
carbon 19 (see Figure 3.17), which could come from an unusual intermolecular environment of that atomic site in the crystal struc-
ture. 

We consider that a reliable assignment is difficult to extract from the set of global assignments and associated probabilities, espe-
cially in cases with a large number of overlapping distributions and shifts, which yield many possible global assignments. Marginali-
sation helps simplify the analysis of global assignments and identify ambiguities more easily. This can be seen in Figure 3.5D, where 
the assignment of carbon 7 to shift “d” is favoured compared to shifts “b” and “c”, which suggests only a pairwise uncertainty 
between carbon 2 and 14. 
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Figure 3.5. (A) Carbon labelling scheme of strychnine. (B) 125 MHz 13C CPMAS NMR spectrum of strychnine. (C) 1H-13C HETCOR spectrum of strych-
nine. (D) Marginal individual assignment probabilities of the carbon nuclei of strychnine. The carbon multiplicity is indicated above each probability 
map. The HETCOR shifts were used to assign CH and CH2 carbons. The shifts are labelled alphabetically in order of decreasing chemical shift (see 
Table 3.11) (E) The three most probable global assignments for the different blocks assigned individually along with their probability. The individual 
assignments making up the global assignments are indicated in blue if they correspond to the experimentally determined assignment, and in red 
otherwise. Carbons 1, 8 and 12 were assigned without ambiguity (P = 100%) directly from the evaluation of their statistical distributions of chemical 
shifts on the observed shifts. 

In addition to strychnine, shown in Figure 3.5, the marginal individual assignment probabilities obtained for a set of 10 selected 
molecules with complete experimental assignments (except for the two phenyl rings of ritonavir) using spectral editing and corre-
lated 1H-13C statistical chemical shift distributions are shown in Figure 3.6 and Figures 3.24-3.26. The assignment of carbon nuclei 
without any attached proton were obtained from the one-dimensional statistical distributions of 13C chemical shifts. The statistical 
distributions of chemical shifts for each example are shown in Figures 3.11-3.18. Notably, the assignment of lisinopril was found to 
be possible even when omitting the water molecules present in the crystal structure. This highlights the ability of the method to 
obtain probabilistic assignments without prior knowledge about the presence of solvent in the crystal lattice (we note that organic 
solvents in the crystal structure can be identified by the presence of additional peaks observed in, e.g., the 13C spectrum of the 
sample). 
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Figure 3.6. Marginal individual assignment probabilities of 13C chemical shifts of (A) Theophylline, (B) thymol, (C) cocaine, (D) ritonavir, (E) lisinopril 
and (F) AZD5718 using correlated 1H-13C chemical shift distributions and spectral editing. For each probability map, labels along the vertical axis 
indicate nuclei, and labels along the horizontal axis denote experimental shifts labelled alphabetically in order of decreasing 13C shift (see Tables 
3.9-3.14). The carbon multiplicity is indicated above each marginal assignment probability map. In (D), the assignment of carbons 9-13 and 19-23 is 
not shown as their experimental assignment is ambiguous. Nevertheless, the associated peaks were considered during the assignment process. The 
assignment probabilities of the aromatic CH groups of ritonavir are shown in Figure 3.19. 
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Figure 3.7. Carbon labelling scheme and marginal individual assignment probabilities of the K salt of penicillin G. The shifts are labelled “a” through 
“m” in order of decreasing chemical shift (see Table 3.16). 

Figure 3.7 shows the assignment of the K salt of penicillin G. Only the organic ion was considered to construct the graph descriptors 
used to extract statistical distributions of chemical shifts. As for the presence of the water molecule in the case of lisinopril above, 
here the presence of the potassium ion, which is absent from the database, did not lead to a significant decrease in the ability of 
the model to predict the assignment, highlighting its generality beyond molecules for which chemical shifts can be computed by 
ShiftML. While ShiftML would not be able to compute shifts for crystals where even only one atom is different from C, H, N, O and 
S, this model only requires the molecule to be assigned to only contain these elements in order to obtain the probabilistic assign-
ment. Of course, if the additional component in a salt or a co-crystal were to lead to a very different crystalline environment from 
those included in the database, this might lead to poor performance of the probabilistic assignment. 

The marginal individual assignment probabilities obtained directly from the two-dimensional representation of the molecules were 
found to match the experimentally determined assignment in most cases. We observe that assignment ambiguities generally in-
volve pairs or triplets of nuclei and shifts, leaving only a few possibilities for the NMR spectroscopist to further investigate in order 
to obtain the complete chemical shift assignment. Out of the 178 experimental individual assignments considered in Figures 3.5-3.7 
and Figures 3.24-3.26, only eight were associated with a probability below 10%, and two below 1%. These low probabilities were 
generally associated with crowded regions in experimental spectra, or with statistical outlier shifts compared to the distributions, 
which could have originated from unusual intermolecular environments. 

In order to validate these results in a statistically significant manner, we evaluated the performance of the framework presented 
here on a benchmark set of a hundred crystal structures having between 10 and 20 different carbon atoms, randomly selected 
from the CSD database. In total, this corresponds to 1214 inequivalent carbon atoms. We used the ShiftML predicted shifts for each 
atom as the correct assignment, and excluded those shifts from the statistical distributions used to assign the molecules. The 
benchmark set was separated into five subsets containing 20 structures each that were evaluated independently in order to obtain 
standard deviations. Although using shifts predicted by ShiftML may introduce a bias, as the same method was used to construct 
the database of shifts, we assumed that the Gaussian width used to construct the statistical distributions of chemical shifts as well 
as the exclusion of the shifts assigned from the sets of shifts used to construct those distributions mitigate this issue.  

Figure 3.8 summarises the performance of the probabilistic assignment model on the experimental (Figure 3.8A) and synthetic 
(Figure 3.8B) sets of molecules selected. The use of spectral editing and correlated 1H-13C chemical shift distributions was found to 
improve the ability of the model to correctly assign carbon chemical shifts. Using either two-dimensional statistical distributions of 
chemical shifts, spectral editing, or combining both led to the experimental assignment being among the two most probable mar-
ginal assignments in over 80% of cases. Overall, the performances on the experimental benchmark set were consistent with the 
synthetic benchmark set, except when using spectral editing where a slight improvement in the experimental set compared to the 
synthetic set was observed. 
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Figure 3.8. Comparison of probabilistic assignment performances using one-dimensional (13C) or two-dimensional (1H-13C) statistical distributions, 
and including spectral editing (SE). Proportion of the experimental assignments being within the 𝑛𝑛 (𝑛𝑛 = 1, 2, 3) most probable marginal individual 
assignments in the (A) experimental and (B) synthetic benchmark sets of molecules. Error bars indicate the standard deviation over the five subsets 
making up the synthetic benchmark set. 

3.2.4 Conclusion	
The framework presented in this section allows chemical shift assignment of organic crystals directly from their two-dimensional 
structure. This was achieved through the chemical shift prediction for over 200,000 organic crystal structures, which yields statisti-
cal distributions of chemical shifts for given covalent environments. A Bayesian framework was then used to obtain probabilistic 
marginal assignments of individual nuclei from the probabilities of the set of global assignments generated. Overall, using correlat-
ed 1H-13C chemical shift distributions in tandem with spectral editing, the method was found to include the experimental assign-
ment among the two most probable marginal assignments in more than 80% of cases. 

Furthermore, in most cases any ambiguity is found in small subgroups of shifts. This is highlighted in lisinopril in, for example, the 
CH2 carbons because of significant overlap between the corresponding statistical distributions of chemical shifts and due to similar 
experimental shifts (see Figure 3.15). 

In summary, the approach presented here can provide marginal assignments based only on the two-dimensional molecular struc-
ture, where typically most of the resonances will be assigned with high probabilities, and only a few resonances will show ambigui-
ties among doubles or triples that can then be the subject of targeted experiments for disambiguation if needed, or left unresolved 
and assigned such that the error is minimised when compared with computed shifts for model structures (e.g., when performing 
NMR-driven crystal structure determination). This can greatly accelerate the assignment process. In particular the method is shown 
to provide assignments for molecules such as strychnine, lisinopril, AZD5718 and ritonavir, which have crowded 13C spectra with 
between 20 and 40 distinct carbons, and which would have been previously completely unaddressable without resorting to natural 
abundance 13C-13C correlations. For example, in strychnine, of the 21 carbons, 14 are correctly assigned with more than 75% confi-
dence. The model was also successfully applied to the assignment of a hydrate and an organic salt, with no significant performance 
loss compared to the benchmark set. We expect that a more accurate model of chemical shifts could lead to improved probabilistic 
assignment through the framework presented here. 

The method shown here is not restricted to 1H and 13C, and can be used to assign the isotropic shifts of any NMR-active isotope of 
hydrogen, carbon, nitrogen and oxygen in principle. To illustrate that, Figure 3.27 and Appendix IV describe the probabilistic as-
signment of the 15N shifts of AZD5718. 

The code is publicly available at https://github.com/manucordova/ProbAsn and a user guide is available in Appendix IV as well as 
on the Github webpage. A suggested workflow to assign an organic solid is also described in Appendix IV. 

Further improvements to the method presented here can be achieved from more accurate chemical shift predictions and larger 
databases of structures and associated chemical shifts. Since the original publication of this project, we have recomputed the shifts 
of the structures in the database using ShiftML2 to improve the prediction accuracy and expanded it to all structures accessible by 
the updated model, yielding 338,341 structures in total, and allowing the application of the method to compounds containing C, H, 
N, O, S, F, P, Cl, Na, Ca, Mg and K atoms. 
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3.2.5 Appendix	IV	
DFTB relaxation of proton positions. The hydrogen positions of the crystal structures selected were optimised using the semiem-
pirical DFTB3-D3H5325, 326, 351 method and the 3ob-3-1350, 415 parameter set. The maximum angular momenta were set to s for hy-
drogen, p for carbon, oxygen and nitrogen, and d for sulphur. We used a Monkhorst-Pack grid of k-points338 corresponding to a 
maximum spacing of 0.05 Å-1 in reciprocal space for all computations. Hubbard derivatives were set following Ref. 326. 

Conversion of isotropic shielding to chemical shift. The conversion from isotropic shielding to chemical shift was performed by 
linear regression between ShiftML predicted shieldings on DFTB3-D3H5 proton relaxed structures from the database and their 
corresponding experimental shifts, keeping the slope fixed to -1. The lists of crystal structures and chemical shifts considered for 
each NMR nucleus were taken from Ref. 127 and 128, and are shown in Tables 3.5-3.8. Ambiguous assignments of chemical shifts 
were solved by selecting the assignment yielding the lowest shift RMSE. 

Database construction and architecture. Because graphs of small molecules centered on different atoms may be identified as 
isomorphic, the central vertex was assigned the label “Y” prior to hashing. Similarly, the graphs used to construct statistical distri-
butions of correlated chemical shifts of neighbouring atoms were constructed by assigning the labels “Y” to the central vertex and 
“Z” to the neighbouring vertex where the correlated chemical shift is considered. 

The database is made of several directories named according to the type of nucleus considered for chemical shift prediction (H, C, 
N and O). For correlated shifts, the directories are named “X-Y”, where X and Y are the two nuclei containing chemical shift predic-
tions, X being the central nucleus and Y being its neighbour. Inside each directory, comma-separated files contain the predicted 
shifts of nuclei of a given graph of depth 𝑤𝑤 = 1, indicated by all first neighbours of the central nucleus, sorted alphabetically and 
separated by a dash in the filename. Each entry in 1D database files contains comma-separated fields corresponding to the CSD 
REFCODE of the crystal, the index of the nucleus, the associated predicted chemical shift and error, and hashes corresponding to 
graphs of depth 𝑤𝑤 = 2 through 𝑤𝑤 = 6 for the nucleus considered. Each entry in 2D database files contains comma-separated fields 
corresponding to the CSD REFCODE of the crystal, the index of the central nucleus and associated predicted chemical shift and 
error, the index of the neighbouring nucleus and associated predicted chemical shift and error, and hashes corresponding to graphs 
of depth 𝑤𝑤 = 2 through 𝑤𝑤 = 6 for the nucleus considered. 

Database search was performed by generating graphs of depth 𝑤𝑤 = 1 through 𝑤𝑤 = 6 corresponding to the nucleus of interest, iden-
tifying the file to search using the graph of depth 𝑤𝑤 = 1, then searching for the pattern given by comma-separated Weisfeiler-
Lehman hashes of the graphs of depth 𝑤𝑤 = 2 through 𝑤𝑤 = 6 in the file. If the number of database entries was found to be less than 
10, the search was reiterated after removing the last hash in the pattern to search, until this condition was met. 

Generation of global assignments. In total, there are 𝑁𝑁L?8 ⋅ 𝑁𝑁! possible ways to assign 𝑀𝑀 nuclei to 𝑁𝑁 chemical shifts. For instance, 
this represents a total of over 1.7 ⋅ 10/@ possible global assignments of the 17 carbon nuclei of cocaine to the 13 13C NMR shifts 
present in its spectrum. Several procedures were implemented to reduce the complexity of generating possible global assignments 
while ensuring that the most probable assignments are generated. 

Reducing the complexity of generating plausible global assignments can be done by considering only the most probable individual 
assignments as possible. This was done by setting a threshold 𝑝𝑝;cd0<c such that only the shifts for which the probability of being 
observed originating from a given nucleus is higher than the maximum probability for this nucleus divided by 𝑝𝑝;cd0<c are consid-
ered. In most cases shown in this work, the threshold was set to a value of 100. 

Reducing the number of possible individual assignments in this way may generate independent sets of nuclei and experimental 
shifts to generate possible global assignments for. Each such set can be considered individually, which breaks down the global 
assignment generation problem into smaller sub-problems, reducing the overall complexity of the process. 

Global assignments were generated recursively by considering all possible assignments for a given set of nuclei and experimental 
shifts. Where needed, after generating a partial global assignment of the first 𝑟𝑟 nuclei considered to 𝑟𝑟 experimental shifts, only the 
𝑁𝑁, possible assignments yielding the highest partial scores were selected for the subsequent individual assignments. This was done 
to reduce the complexity of generating global assignments. 
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List of structures in the synthetic benchmark set. The CSD Refcodes of the structures selected in the synthetic benchmark set are: 

Subset 1: HECFIE01, BXPROL01, FIQDOA, QATKAY, WARYIX, WURJEA, BINHIS, CAJBOG, FAGFUP, LERGUM, PEYSIV01, TBMYOS, 
VUJWEC, AKUGUK, COYDOJ, RUFZEY, PCYPOL19, TEVYEY, FELDIM, FUHNUR. 

Subset 2: AXAZUW, SLFNMB08, YIDHEA, QAJSUP, WEXWOL01, PALDUB, YOXDIY, TIGPEF, HEMCEK, VOXNIF, CABWEH10, HATQAX, 
SABNOA, CIKDAD, KEFCIH, DINLIV10, HIVBOE, DEMZON, PESQOW, OJIGET. 

Subset 3: YAVFIL, SACRET, XIXQED, KEDJAE, HURBUR, QUPNIZ, OPUBAE01, NUHNUB, TMCMUR, HYFURA, WOCFUP, ASPLOL, 
XANCAQ, MAZBEV, YIXQAY01, OVIJOU, LIKNAW, SADRAS, ACNTBP, YEYTEC. 

Subset 4: UTOHUH, YAKGEW, IKONON, YURKIH, ZEJVES, FINWAD, YETPAR, PONSES, NAJBAB, XAVGAF, MIQKOM01, MUGLIJ, NUT-
SOK, ZINLUF, LUTHUE, KAYXUD, CEVKUM, ZIKKEJ, MEYVAP, GAMNEO. 

Subset 5: XEDWUY, EDARIN, ROTSOK, CAYPEY, QIQPEO, OPOJEJ, NIWNUC, RIMPUA, JOWMAL01, MIHROK, EBUYIK, HABXEP, 
WIGYOC, WIZZEL, VERSOL10, HAVMIA, XATWUK, BINAPH18, WOBGOK, OPUSOI. 

Assignment of other nuclei. In principle, assignment of isotropic shifts of any NMR-active isotope of hydrogen, carbon, nitrogen or 
oxygen is implemented. As an example, Figure 3.27 shows the probabilistic assignment of 15N shifts of AZD5718. We note that the 
number of nitrogen environments used to train ShiftML is lower than the number of 1H or 13C environments which makes ShiftML 
slightly less reliable for the prediction of nitrogen shifts, which translates into slightly less reliable chemical shift distributions for 
our probabilistic model. In order to circumvent these issues, we would advise users to require at least 100 instances from the data-
base to construct smooth statistical distributions of 15N chemical shifts. The direct assignment of all 15N shifts yields pairwise ambi-
guities (see Figure 3.27B), which can be partially resolved by separating the assignment of the NH groups from the non-protonated 
nitrogens (which can be determined from simple CP experiments) (Figure 3.27D-E). 

User guide for the code. The code is freely available at https://github.com/manucordova/ProbAsn. Installation instructions can be 
found on the Github webpage. The software is written in Python and uses a database in CSV format, which is available at 
https://doi.org/10.24435/materialscloud:vp-ft. The assignment can be performed by running the “run.py” script (python run.py 
input_file.in). Input file construction and examples are found in the Github repository. The minimal input to provide is the chemical 
structure of the molecule to assign (we strongly recommend the SMILES format, which explicitly contains connectivities between 
atoms and can easily be extracted from molecular drawing softwares such as Chemdraw and MarvinSketch), as well as the list of 
shifts or cross peaks to which the atoms of the molecule should be assigned. 

The software can output the distribution of shifts of each nucleus in the molecule, as well as prior and marginal individual assign-
ment probabilities, and the list of all global assignments generated and associated probabilities. 

The first step is to generate the graph corresponding to each nucleus to assign in the molecule. This is done using the three func-
tions “make_mol()”, “get_bonds()” and “generate_graphs()” from the “graph” module. This will also save the structure to a file for 
visualisation of the labels. 

Once the graphs are constructed, the database is searched for corresponding matches. This is done using the “fetch_entries()” 
function from the “db” module. This function extracts the predicted shifts and errors to use for the construction of the statistical 
distributions, and generates the labels for the assignment. The labels start from “1” and increase following the order of the atoms 
in the input structure. Only the element to assign is considered for the labelling. This corresponds to the labels displayed by the 
software VESTA when opening the structure output in the previous step.  

The distributions are then cleaned up by removing duplicate protons in, e.g., methyl/NH3 groups and gathering topologically equiv-
alent nuclei. This is done by the functions “cleanup_methyl_protons()”, “cleanup_methyls()” and “cleanup_equivalent()” in the 
“sim” module. 

By evaluating the statistical distributions at the observed shifts, the software extracts prior individual assignment probabilities. This 
is done using the “compute_scores_1D()” or “compute_scores_2D()” function in the “sim” module for 1D and 2D shifts, respective-
ly. 
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Then, the possible individual assignments for each nucleus are extracted using the “get_possible_assignments()” function in the 
“assign” module. This uses the threshold 𝑝𝑝;cd0<c described above to evaluate which assignments are possible. 

From the possible individual assignment for each nucleus, the function “get_probabilistic_assignment()” in the “assign” module 
generates the possible global assignments and evaluates their probabilities. This is done in several pools, which correspond to sets 
of distributions and shifts without any significant overlap, that can thus be assigned independently. This is typically the limiting step 
of the assignment process, as generating all possible global assignments has a factorial complexity in principle. 

From the set of global assignments generated, the marginal individual assignment probabilities are extracted using the “up-
date_split_scores()” function in the “assign” module.  

Suggested assignment workflow. We propose a workflow aimed at optimising the time required to obtain the 13C assignment of an 
organic solid as follows: 

- (Optional) Generate the statistical distributions of shifts for all nuclei in the molecule using the software in order to iden-
tify the regions where each experimental shift is expected. This can also be used to evaluate whether spectral editing ex-
periments are required. 

- Record the 13C CPMAS and 1H-13C HETCOR spectra. If the molecule contains more than 15 distinct carbon atoms or statis-
tical distributions of shifts overlap substantially, record 13C spectral editing experiments by default. 

- Use the software to assign the molecule with the extracted shifts. 
- If too many ambiguities remain, record 13C spectral editing experiments if not already done. 
- Use the software to assign the molecule including the spectral editing data. 
- If needed, perform targeted experiments to resolve any remaining ambiguity. 

 

Figure 3.9. DNP-enhanced 13C-13C refocused INADEQUATE spectrum of strychnine. The peaks indicated with a “*” are assigned to impurities intro-
duced during sample preparation for DNP NMR. 
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Figure 3.10. (A) Spectral editing of the 13C CPMAS spectrum of ritonavir. (B) 1H-13C HETCOR spectrum of ritonavir. (C) 13C-13C refocused INADEQUATE 
spectrum of ritonavir. 

 

Figure 3.11. Chemical shift distributions of (A) C, (B) CH and (C) CH3 carbons of theophylline. Experimental shifts are indicated by black vertical lines 
under 13C chemical shift distributions, and as black dots in correlated 1H-13C chemical shift distributions. 
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Figure 3.12. Chemical shift distributions of (A) C, (B) CH and (C) CH3 carbons of thymol. Experimental shifts are indicated by black vertical lines under 
13C chemical shift distributions, and as black dots in correlated 1H-13C chemical shift distributions. 

 

Figure 3.13. Chemical shift distributions of (A) C, (B) CH, (C) CH2 and (D) CH3 carbons of cocaine. Experimental shifts are indicated by black vertical 
lines under 13C chemical shift distributions, and as black dots in correlated 1H-13C chemical shift distributions. 
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Figure 3.14. Chemical shift distributions of (A) C, (B) CH, (C) CH2 and (D) CH3 carbons of ritonavir. Experimental shifts are indicated by black vertical 
lines under 13C chemical shift distributions, and as black dots in correlated 1H-13C chemical shift distributions. 

 

Figure 3.15. Chemical shift distributions of (A) C, (B) CH and (C) CH2 carbons of lisinopril. Experimental shifts are indicated by black vertical lines 
under 13C chemical shift distributions, and as black dots in correlated 1H-13C chemical shift distributions. 
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Figure 3.16. Chemical shift distributions of (A) C, (B) CH, (C) CH2 and (D) CH3 carbons of AZD5718. Experimental shifts are indicated by black vertical 
lines under 13C chemical shift distributions, and as black dots in correlated 1H-13C chemical shift distributions. 

 

Figure 3.17. Chemical shift distributions of (A) C, (B) CH and (C) CH2 carbons of strychnine. Experimental shifts are indicated by black vertical lines 
under 13C chemical shift distributions, and as black dots in correlated 1H-13C chemical shift distributions. 
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Figure 3.18. Chemical shift distributions of (A) C, (B) CH, (C) CH2 and (D) CH3 carbons of the K salt of penicillin G. Experimental shifts are indicated by 
black vertical lines under 13C chemical shift distributions, and as black dots in correlated 1H-13C chemical shift distributions. 

 

Figure 3.19. Marginal individual assignment probabilities of pairs of aromatic CH groups in ritonavir to their corresponding shifts. 
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Figure 3.20. Linear regression between predicted 1H shielding and experimental shifts (A) with a slope fixed to -1, and (B) allowing the slope to vary. 

 

Figure 3.21. Linear regression between predicted 13C shielding and experimental shifts (A) with a slope fixed to -1, and (B) allowing the slope to 
vary. 

 

Figure 3.22. Linear regression between predicted 15N shielding and experimental shifts (A) with a slope fixed to -1, and (B) allowing the slope to 
vary. 

 

Figure 3.23. Linear regression between predicted 17O shielding and experimental shifts (A) with a slope fixed to -1, and (B) allowing the slope to 
vary. 
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Figure 3.24. (A) Carbon labelling scheme and chemical shift distributions of the (B) C, (C), CH and (D) CH3 carbons of β-piroxicam. (E) Marginal 
individual assignment probabilities of 13C chemical shifts using correlated 1H-13C chemical shift distributions and spectral editing. 
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Figure 3.25. (A) Carbon labelling scheme and chemical shift distributions of the (B) C, (C), CH and (D) CH2 carbons of decitabine. (E) Marginal indi-
vidual assignment probabilities of 13C chemical shifts using correlated 1H-13C chemical shift distributions and spectral editing. 
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Figure 3.26. (A) Carbon labelling scheme and chemical shift distributions of the (B) C, (C), CH, (D) CH2 and (E) CH3 carbons of simvastatin. (F) Margin-
al individual assignment probabilities of 13C chemical shifts using correlated 1H-13C chemical shift distributions and spectral editing. 
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Figure 3.27. (A) Statistical chemical shift distributions of nitrogen atoms of AZD5718. The black vertical lines indicate the experimental shifts. (B) 
Marginal individual assignment probabilities of the 15N shifts of AZD5718. The black dots indicate the experimentally determined assignment. 

 

Table 3.1. Experimental parameters for 1D experiments on ritonavir. 

 1H 13C 13C w/o primary and 
secondary 

13C w/o quater-
nary 

13C w/o quater-
nary and primary 

MAS rate 22 kHz 12.5 kHz 12.5 kHz 12.5 kHz 12.5 kHz 

Recycle delay (d1) 5 s 2 s 2 s 3s 3s 
1H to X CP      

Spin lock duration - 3 ms 3 ms 3 ms 3 ms 

Delay after acquisition 
for primary and second-
ary carbon filtering 

- - 0.5 ms - - 

Total acquisition time 4 ms 30 ms 30 ms 30 ms 30 ms 

Dwell time 1 μs 5 μs 5 μs 5 μs 5 μs 

Number of points 4096 6144 6144 6144 6144 

Number of scans 4 512 64 512 12288 

Acquisition mode qsim qsim qsim qsim qsim 
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Table 3.2. Experimental parameters for 2D experiments on ritonavir. 

 1H-13C HETCOR 13C-13C INADEQUATE 

MAS rate 22 kHz 12.5 kHz 

Recycle delay (d1) 2.7 s 2.15 s 
1H to X CP   

Spin lock duration 0.1 and 1.0 ms 3.5 ms 

Acquisition in the indirect dimension (t1)   

Total acquisition time  4.6 ms 2.6 ms 

Dwell time 96 μs 20 μs 

Number of points 96 256 

Acquisition in the direct dimension (t2)   

Total acquisition time  40.5 ms 25 ms 

Dwell time 13.2 μs 5 μs 

Number of points 256 2494 

Number of scans per increment 16 1'536 

Acquisition mode  States-TPPI States-TPPI 

Delay t - 3.6 ms 

 

Table 3.3. Experimental parameters for 1D experiments on strychnine. 

 1H 13C 

MAS rate 111 kHz 22 kHz 

Recycle delay (d1) 26 s 120 s 
1H to X CP   

Spin lock duration - 1 ms 

Total acquisition time 8.4 ms 30 ms 

Dwell time 2.8 μs 13.2 μs 

Number of points 2998 2268 

Number of scans 4 32 

Acquisition mode DQD qsim 
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Table 3.4. Experimental parameters for 2D experiments on strychnine. 

 1H-13C HETCOR 13C-13C INADEQUATE 

MAS rate 22 kHz 12.5 kHz 

Recycle delay (d1) 120 s 5 s 
1H to X CP   

Spin lock duration 0.1 ms 3 ms 

Acquisition in the indirect dimension (t1)   

Total acquisition time  2.8 ms 2.6 ms 

Dwell time 88 μs 20 μs 

Number of points 64 256 

Acquisition in the direct dimension (t2)   

Total acquisition time  30 ms 15 ms 

Dwell time 13.2 μs 5 μs 

Number of points 2268 2988 

Number of scans per increment 34 128 

Acquisition mode  States-TPPI States-TPPI 

Delay t - 4 ms 

 

Table 3.5. List of experimental and predicted 1H chemical shifts of reference compounds used for shielding to shift conversion. All shifts are report-
ed relative to TMS. 

CSD REFCODE Experimental shift (ppm) ShiftML predicted shielding (ppm) 

CIMETD423 11.8 
7.6 
8.4 
9.9 
2.2 
4.2 
4.7 
2.2 
4.2 
2.7 
3.6 
2.2 

17.92 
24.12 
20.94 
21.19 
29.03 
27.46 
26.98 
29.78 
27.89 
27.37 
27.26 
28.28 

URACIL424 7.5 
10.8 
11.2 
6.0 

22.44 
18.47 
18.63 
24.24 

AMBACO05425 6.5 
7.7 
6.5 
6.5 
5.4 
12.3 

24.44 
22.61 
25.93 
23.64 
24.21 
19.83 

IPMEPL49 5.4 
6.2 
7.1 
3.4 
1.1 
1.5 
0.4 
10.0 

25.44 
24.17 
23.89 
27.61 
30.56 
30.26 
30.65 
22.29 
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COYRUD11426 7.0 
6.1 
3.8 
4.5 
4.1 
5.9 
3.2 
1.8 
2.3 
11.5 

23.03 
24.35 
26.92 
25.51 
25.80 
24.69 
27.48 
29.83 
28.04 
19.60 

BAPLOT0152 14.6 
7.7 
3.4 

17.78 
23.82 
27.40 

ZIVKAQ136 6.9 
6.6 
7.0 
7.5 
10.0 
4.9 
8.2 
3.4 
3.4 
7.7 
7.7 
1.3 
7.3 
7.2 
6.3 
7.4 
11.5 
4.9 
7.0 
3.9 
4.6 
7.1 
7.1 
1.3 

23.87 
24.32 
23.48 
24.18 
20.86 
25.71 
23.21 
27.80 
27.11 
22.87 
22.76 
29.89 
23.15 
24.18 
24.69 
24.56 
20.48 
25.54 
24.87 
26.84 
26.51 
22.68 
23.77 
29.84 

 

Table 3.6. List of experimental and predicted 13C chemical shifts of reference compounds used for shielding to shift conversion. All shifts are report-
ed relative to TMS. 

CSD REFCODE Experimental shift (ppm) ShiftML predicted shielding (ppm) 

MBDGAL02427 105.7 
71.2 
72.1 
69.3 
75.6 
62.8 
57.6 

59.01 
99.75 
95.81 
94.88 
87.97 
106.64 
115.11 

MEMANP11427 99.6 
71.3 
71.7 
64.8 
71.9 
58.9 
54.9 

66.58 
95.60 
96.80 
103.15 
97.42 
108.13 
112.92 
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MGALPY01427 100.4 
67.6 
72.6 
70.0 
72.9 
61.4 
55.2 

66.05 
95.9 
93.58 
98.14 
92.53 
103.82 
114.02 

MGLUCP11427 101.0 
72.3 
74.6 
72.5 
75.3 
63.8 
56.5 

65.38 
97.18 
93.78 
96.72 
94.66 
704.6 
113.92 

XYLOBM01427 104.2 
72.2 
78.2 
69.5 
66.9 
57.3 

61.71 
95.58 
88.84 
101.54 
100.3 
114.37 

SUCROS04428 93.3 
66.0 
73.7 
102.4 
72.8 
82.9 
67.9 
71.8 
73.6 
81.8 
60.0 
61.0 

77.82 
108.12 
93.05 
56.45 
97.73 
93.47 
99.72 
100.19 
100.03 
86.79 
108.17 
104.85 

RHAMAH12429 94.5 
72.2 
71.0 
72.5 
69.8 
17.8 

72.77 
95.70 
98.68 
97.46 
102.3 
158.37 

FRUCTO02430 65.4 
99.7 
67.2 
69.0 
71.4 
64.9 

107.97 
69.48 
101.24 
95.61 
96.39 
104.19 

GLYCIN29431 176.2 
43.5 

-6.4 
128.64 

LALNIN12432 176.8 
50.9 
19.8 

-9.28 
120.77 
155.03 

LSERIN01433 175.1 
55.6 
62.9 

-5.91 
116.98 
106.71 

LSERMH10434 175.6 
58.3 
61.8 

-9.75 
114.31 
105.28 
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ASPARM03435 176.4 
51.8 
36.1 
177.1 

-10.96 
123.14 
139.21 
-8.41 

LTHREO01436 170.0 
60.2 
65.4 
18.9 

-2.92 
111.74 
97.42 
153.0 

GLUTAM01433 177.0 
54.0 
26.0 
29.0 
174.0 

-7.57 
116.17 
144.02 
142.14 
-9.61 

LTYROS11433 176.0 
123.0 
130.3 
54.7 
131.0 
155.7 
117.2 
35.8 
117.2 

-10.55 
34.71 
34.70 
115.46 
29.63 
10.69 
57.68 
133.26 
52.11 

LCYSTN21433 35.4 
53.7 
175.1 

138.16 
111.97 
-10.71 

NAPHTA36437 125.4 
129.3 
134.9 
129.9 
126.0 

41.47 
38.74 
35.93 
38.03 
40.65 

ACENAP03438 148.1 
120.3 
129.4 
122.3 
131.9 
139.9 
29.5 
148.1 
120.3 
129.4 
122.3 
131.9 
139.9 
29.5 

20.73 
46.63 
39.37 
43.15 
40.00 
23.15 
141.21 
23.62 
45.32 
38.76 
42.96 
40.25 
24.95 
142.99 

HXACAN0954 152.3 
116.4 
120.6 
133.1 
123.4 
115.7 
169.8 
23.8 

20.27 
56.49 
48.57 
37.79 
47.95 
59.10 
1.87 
148.90 

SULAMD06439 127.1 
129.5 
117.1 
153.4 

36.99 
39.69 
48.69 
17.83 
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112.3 
129.5 

48.69 
39.69 

ADENOS12440 154.8 
148.5 
119.7 
155.2 
137.8 
92.3 
71.2 
75.0 
84.9 
62.7 

13.04 
16.84 
50.14 
10.42 
29.55 
77.71 
95.02 
95.05 
83.73 
105.42 

 

Table 3.7. List of experimental and predicted 15N chemical shifts of reference compounds used for shielding to shift conversion. All shifts are report-
ed relative to NH4Cl with NH3(l) at 39.3 ppm. 

CSD REFCODE Experimental shift (ppm) ShiftML predicted shielding (ppm) 

BITZAF441 249.5 -77.29 

GEHHAD441 253.6 
261.8 

-57.14 
-80.44 

GEHHEH441 187.4 
261.0 

2.07 
-88.63 

GEHHIL441 268.5 
261.2 

-73.58 
-60.02 

LHISTD02442 210.8 
132.6 

-31.58 
67.9 

LHISTD13442 210.6 
132.4 

-30.49 
51.11 

TEJWAG442 143.9 36.91 

GLYCIN03443 -6.5 198.12 

FUSVAQ01444 183.2 
174.2 
192.2 
120.2 
50.2 

3.43 
12.59 
-10.56 
70.85 
142.74 

THYMIN01444 119.5 
90.2 

65.88 
96.07 

URACIL444 96.2 
120.2 

78.72 
66.48 

BAPLOT01445 114.7 
72.7 
122.7 
178.7 

57.65 
110.92 
67.18 
-20.29 

LSERIN01127 -4.1 197.50 

GLUTAM01127 -1.3 193.91 

ASPARM03127 0.7 
74.9 

195.8 
112.38 

LCYSTN21127 -0.4 196.16 

ALUCAL04127 3.0 193.4 

LGLUAC11127 -0.4 185.11 
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Table 3.8. List of experimental and predicted 17O chemical shifts of reference compounds used for shielding to shift conversion. All shifts are report-
ed relative to liquid H2O. 

CSD REFCODE Experimental shift (ppm) ShiftML predicted shielding (ppm) 

LALNIN12443 285.0 
268.0 

-75.08 
-40.91 

ACANIL03446 330.0 -147.73 

BZAMID07447 300.0 -101.97 

MBNZAM10446 287.0 -78.91 

 

Table 3.9. Experimental chemical shift assignment of theophylline. The carbon labels follow Figure 3.2. 

Carbon label 13C shift (ppm) 1H shift (ppm) Multiplicity Shift label 

1 150.8 - 0 b 

2 29.9 3.4 3 f 

3 146.1 - 0 c 

4 140.8 7.7 1 d 

5 105.8 - 0 e 

6 155.0 - 0 a 

7 29.9 3.4 3 f 

 

Table 3.10. Experimental chemical shift assignment of thymol. The carbon labels follow Figure 3.4. Superscript “a” indicates topologically equivalent 
carbon nuclei, for which the assignment cannot be resolved by the probabilistic assignment model. 

Carbon label 13C shift (ppm) 1H shift (ppm) Multiplicity Shift label 

1 18.7 0.42 3 j 

2 138.4 - 0 b 

3 116.9 5.40 1 f 

4 150.2 - 0 a 

5 131.7 - 0 c 

6 126.3 7.08 1 d 

7 123.6 6.19 1 e 

8 25.5 3.38 1 h 

9a 26.1 1.05 3 g 

10a 23.6 1.45 3 i 
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Table 3.11. Experimental chemical shift assignment of strychnine. The carbon labels follow Figure 3.5. 

Carbon label 13C shift (ppm) 1H shift (ppm) Multiplicity Shift label 

1 171.70 - 0 a 

2 142.95 - 0 b 

3 116.14 8.09 1 i 

4 129.60 7.25 1 e 

5 125.97 7.16 1 g 

6 122.91 7.10 1 h 

7 134.90 - 0 d 

8 52.63 - 0 o 

9 60.67 3.85 1 l 

10 47.39 1.27 1 q 

11 78.53 4.28 1 j 

12 63.80 4.14, 4.07 2 k 

13 127.38 5.90 1 f 

14 142.4 - 0 c 

15 31.67 3.15 1 t 

16 25.89 2.35, 1.45 2 u 

17 60.20 3.93 1 m 

18 50.72 3.11, 2.67 2 p 

19 44.26 3.70, 2.72 2 r 

20 53.61 3.19, 2.87 2 n 

21 40.83 1.88 2 s 

 

Table 3.12. Experimental chemical shift assignment of cocaine. The carbon labels follow Figure 3.6. Superscript “a” and “b” indicate pairs of topo-
logically equivalent carbon nuclei, for which the assignment cannot be resolved by the probabilistic assignment model. 

Carbon label 13C shift (ppm) 1H shift (ppm) Multiplicity Shift label 

1 41.52 1.04 3 k 

2 62.63 3.49 1 i 

3 25.62 3.38, 2.91 2 m (m1, m2) 

4 25.62 2.56, 2.12 2 n (n1, n2) 

5 65.95 3.76 1 h 

6 50.16 3.78 1 j 

7 172.18 - 0 a 

8 50.16 3.78 3 j 

9 66.70 5.63 1 g 

10 165.94 - 0 b 

11 129.37 - 0 f 

12a 131.50 8.01 1 e 

13b 133.50 8.01 1 d 

14 134.53 8.01 1 c 

15b 133.50 8.01 1 d 

16a 131.50 8.01 1 e 

17 36.66 3.32, 3.06 2 l 
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Table 3.13. Experimental chemical shift assignment of lisinopril dihydrate. The carbon labels follow Figure 3.6. Superscript “a” and “b” indicate pairs 
of topologically equivalent carbon nuclei, for which the assignment cannot be resolved by the probabilistic assignment model. 

Carbon label 13C shift (ppm) 1H shift (ppm) Multiplicity Shift label 

1 127.4 7.8 1 h 

2a 128.6 6.3 1 f 

3b 130.1 7.6 1 e 

4 142.3 - 0 d 

5b 128.2 7.9 1 g 

6a 130.1 7.6 1 e 

7 30.9 3.8 2 o 

8 35.2 2.0 2 n 

9 56.4 4.6 1 j 

10 173.9 - 0 b 

11 54.6 4.5 1 k 

12 28.3 1.8 2 q 

13 18.9 0.9 2 t 

14 27.2 1.6, 0.2 2 r 

15 35.9 2.6, 0.2 2 m 

16 164.4 - 0 c 

17 61.2 4.4 1 i 

18 30.9 1.5 2 p 

19 25.3 1.6 2 s 

20 47.5 5.2 2 l 

21 175.7 - 0 a 

 

Table 3.14. Experimental chemical shift assignment of AZD5718. The carbon labels follow Figure 3.6. Superscript “a” and “b” indicate pairs of topo-
logically equivalent carbon nuclei, for which the assignment cannot be resolved by the probabilistic assignment model. 

Carbon label 13C shift (ppm) 1H shift (ppm) Multiplicity Shift label 

1 11.1 1.2 3 x 

2 141.5 - 0 e 

3 102.3 5.8 1 o 

4 149.8 - 0 d 

5 139.5 - 0 f 

6a 123.9 6.9 1 m 

7b 130.8 7.0 1 i 

8 133.3 - 0 g 

9b 130.1 6.7 1 j 

10a 125.3 7.3 1 l 

11 201.1 - 0 a 

12 46.3 3.9 1 q 

13 31.2 1.7, 0.0 2 t 

14 26.6 0.8, -0.5 2 v 

15 26.0 0.8, -0.5 2 w 

16 29.2 1.6 2 u 

17 49.8 1.6 1 p 

18 174.0 - 0 b 

19 125.8 - 0 k 
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20 130.8 7.6 1 h 

21 43.5 2.7, 1.7 2 r 

22 40.1 2.7, 1.9 2 s 

23 161.8 - 0 c 

24 119.7 - 0 n 

 

Table 3.15. Experimental chemical shift assignment of ritonavir. The carbon labels follow Figure 3.6. Superscript “a” and “b” indicate pairs of topo-
logically equivalent carbon nuclei, for which the assignment cannot be resolved by the probabilistic assignment model. 

Carbon label 13C shift (ppm) 1H shift (ppm) Multiplicity Shift label 

1 151.7 8.36 1 f 

2 132.9 - 0 j 

3 142.1 7.43 1 g 

4 62.8 4.19 2 n 

5 157.5 - 0 d 

6 58.8 4.51 1 o 

7 34.7 3.10, 1.24 2 t 

8 141.3 - 0 h 

9-13 126.5, 126.8, 128.4, 129.0, 
131.6 

7.02, 5.84, 7.54, 6.81, 7.20 1 - 

14 72.7 4.03 1 l 

15 37.9 2.67, 1.30 2 s 

16 49.0 4.47 1 p 

17 41.3 2.68 2 r 

18 139.1 - 0 i 

19-23 126.5, 126.8, 128.4, 129.0, 
131.6 

7.02, 5.84, 7.54, 6.81, 7.20 1 - 

24 173.4 - 0 b 

25 63.7 3.72 1 m 

26 29.6 1.87 1 w 

27a 16.4 -0.63 3 # 

28a 22.2 0.73 3 y 

29 159.5 - 0 c 

30 31.1 2.46 3 v 

31 47.6 5.67, 3.47 2 q 

32 154.2 - 0 e 

33 114.7 5.11 1 k 

34 178.3 - 0 a 

35 33.9 3.33 1 u 

36b 26.7 1.24 3 x 

37b 21.0 0.78 3 z 
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Table 3.16. Experimental chemical shift assignment of the K salt of penicillin G. The carbon labels follow Figure 3.7. Superscript “a”, “b” and “c” 
indicate pairs of topologically equivalent carbon nuclei, for which the assignment cannot be resolved by the probabilistic assignment model. 

Carbon label 13C shift (ppm) 1H shift (ppm) Multiplicity Shift label 

1 172.9 - 0 b 

2 74.9 4.1 1 g 

3 65.2 - 0 i 

4 37.6 0.9 3 l 

5 27.1 1.7 3 m 

6 68.2 6.4 1 h 

7 60.5 5.7 1 j 

8 176.1 - 0 a 

9 172.3 - 0 c 

10 43.3 4.7, 3.9 2 k 

11 136.4 - 0 d 

12 128.7 7.1 1 f 

13 128.7 7.1 1 f 

14 130.6 7.1 1 e 

15 128.7 7.1 1 f 

16 130.6 7.1 1 e 
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3.3 Pure	isotropic	proton	NMR	spectra	in	solids	using	deep	learning	
This section has been adapted with permission from: Cordova, M.; Moutzouri, P.; Simões de Almeida, B.; Torodii, D.; Emsley, L., 
Pure Isotropic Proton NMR Spectra in Solids using Deep Learning. Angewandte Chemie-International Edition 2023, 62 (8), 
e202216607. (post-print) 

My contribution was to develop and apply the method and to analyse results. I also wrote the manuscript, with contributions of all 
other authors. 

3.3.1 Introduction	
In cases where the resolution in the proton spectrum is sufficient, the advantage provided by 1H NMR in solids compared to other 
nuclei is clearly established.39, 151, 308, 382-385 The advent of faster magic angle spinning (MAS), which usually leads to better resolved 
1H spectra, has been a key factor in enabling 1H detection in a broader range of systems. Nevertheless, poor 1H resolution is still the 
main bottleneck for widespread application of 1H based schemes in rigid organic materials at natural isotopic abundance. 

In the CRAMPS approach,386 pulse sequences designed to remove homonuclear dipolar couplings can be combined with low or fast 
MAS to produce extra narrowing.387-394 At 100 kHz the linewidths obtained with MAS alone are about the same as the best results 
from state-of-the-art CRAMPS at slower MAS rates, and so far CRAMPS schemes have yielded no significant improvement for MAS 
rates above 65 kHz. 

The anti-z-COSY experiment395-398 is an alternative approach to homonuclear decoupling which exploits a simple 2D scheme that 
yields correlations between remote transitions of the coupling partners, and which removes the non-refocusable part of the resid-
ual dipolar broadening.395, 396 This approach does not rely on complex multiple-pulse averaging sequences and typically provides a 
factor two reduction in linewidth compared to MAS alone, but contributions due to refocusable interactions will remain. 

The dependence of residual splittings and shifts on the MAS rate 𝜔𝜔#\Z has previously been described as polynomial with respect to 
the inverse of the MAS rate, typically dominated by first- and, to a lesser extent, second-order terms.85, 373, 378-381, 399 In this light, 
Moutzouri et al. recently introduced a two-dimensional approach to obtain the pure isotropic (infinite MAS rate) spectrum of a 
solid from a set of spectra measured at different MAS rates.400 

To process these two-dimensional datasets, they used a method of fitting an amplitude vector (i.e., the isotropic spectrum), to-
gether with parametric broadenings and shifts, to reproduce the set of 1H spectra acquired at varying MAS rates by convoluting the 
MAS-independent amplitude vector with the MAS-dependent shift and broadening function. While this provides a powerful meth-
od to obtain isotropic spectra, several assumptions and restrictions inherent to this fitting approach may limit its performance. 

Deep learning (DL) has tremendously improved many areas of science and technology over the last decade, thanks to the ability of 
deep neural networks (NNs) to learn complex functions in an automated manner.275, 295 In particular, convolutional neural networks 
(CNNs) are popular models to extract information from images or spectral data272, 448, 449 and have been used in the context of NMR 
to denoise or deconvolute spectra, to reconstruct under-sampled spectra, to virtually decouple spectra, and to perform automated 
peak picking.281-286, 450 

Recurrent neural networks (RNNs) are a class of neural network developed to process time series data. The “long short-term 
memory” (LSTM) architecture has been shown to outperform other types of RNNs in many applications, including language model-
ling.290, 293, 294, 451 In NMR, models based on the LSTM architecture have been used to reconstruct under-sampled free induction 
decays (FIDs).291 

In this section, by encoding two-dimensional dataset of MAS spectra recorded at different spinning rates as a series, we infer the 
isotropic 1H NMR spectrum (i.e., the spectrum that would be obtained at infinite rate) using a modified convolutional LSTM neural 
network trained on millions of synthetic datasets. The model, dubbed PIPNet, yields isotropic spectra that display linewidths in the 
50-400 Hz range, in line with expectations, from experimental sets of MAS spectra for eight molecular solids, β-aspartylalanine (β-
AspAla), flutamide, thymol, L-tyrosine hydrochloride, ampicillin, L-histidine hydrochloride monohydrate, ±-N,α,-Dimethyl-3,4-
methylenedioxyphenethylamine hydrochloride (MDMA) hydrochloride and molnupiravir. The model bypasses assumptions about 
the MAS-dependent broadening and shift parameters of neighbouring peaks, suppresses artifacts arising from inconsistencies 
between spectra acquired at different MAS rates, and inferences of full spectra can be performed in seconds. 
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3.3.2 Methods	
Previous approach. Moutzouri et al.400 proposed a method to obtain the isotropic spectrum from a two-dimensional dataset of 
MAS spectra measured at different rates. To transform these data they assumed, based on predictions from average Hamiltonian 
theory,83-85, 373, 399 that the lineshape of a peak in a 1H MAS spectrum can be described as a convolution of the intrinsic (isotropic) 
lineshape of the peak, subject to a MAS-dependent frequency shift, with a MAS-dependent broadening function. Assuming an 
inverse linear MAS dependence of the shift and broadening, they optimised a vector of amplitudes (the isotropic spectrum), as well 
as the MAS-dependent shift and widths of Lorentzian and Gaussian broadening functions, such that the difference between the 
resulting simulated MAS spectra and experiment was minimised. 

This approach to transforming the data involves assumptions and restrictions that limit its performance. Notably, there is an as-
sumption that the MAS dependent part of the lineshape is the same across the whole spectrum. Because of this, the spectrum is 
broken down into a series of resolved regions, in order to minimise its impact. Further, the number of variables to fit (the ampli-
tude vector and the MAS-dependent broadening and shift), usually ranges between 50 and 300 for each separate region, resulting 
in intensive computations to obtain the isotropic spectrum, typically taking several CPU hours. Separating the spectra into regions 
can introduce artifacts in the isotropic spectra arising from inconsistent integrals between the spectra recorded at different MAS 
speeds due to truncation of the spectra within the selected regions at low MAS rates. Finally, with the large number of points used, 
convergence can be an issue, which thus requires to perform several fits with different starting guesses, which increases the ro-
bustness of the method but at the cost of performing the fitting several times. 

Data generation. Due to the substantial amount of data required to train deep neural networks and the impossibility to record 
isotropic spectra of solids experimentally to use as targets for the predictions, synthetic isotropic and variable MAS rate spectra 
were generated according to a theoretical description of the dependence of the spectra on the MAS rate. Here, to maintain the 
highest level of generality, a MAS spectrum is composed of a sum of peaks (intensity 𝐼𝐼 against frequency 𝜈𝜈), where each peak 
𝐼𝐼e3(𝜈𝜈) is described as a convolution between the corresponding (Gaussian) peak in the isotropic spectrum 𝐼𝐼f(𝜈𝜈) and a Gaussian-
Lorentzian sum (GLS) function452 

𝐺𝐺𝐺𝐺𝐺𝐺(𝜈𝜈;𝑤𝑤, 𝑝𝑝,𝑚𝑚) = (1 −𝑚𝑚) exp ê−
4 ln(2) (𝜈𝜈 − 𝑝𝑝)'

𝑤𝑤' ë +
𝑚𝑚

1 + 4 (𝜈𝜈 − 𝑝𝑝)'
𝑤𝑤'

, (3.7) 

where 𝑤𝑤 is the width of the GLS function, 𝑝𝑝 is the peak position of the GLS, here always set to the middle of the spectrum, such 
that convoluting the GLS with the isotropic spectrum does not affect the position of the peak, and 𝑚𝑚 is the mixing factor describing 
the lineshape of the function. A mixing of 0 corresponds to a pure Gaussian function, while a mixing of 1 corresponds to a pure 
Lorentzian function. The ranges of possible mixing and width of the GLS were set based on observed MAS dependence of the line-
shape. This function is particularly well suited to describe 1H MAS broadening, where the expectation is that the lineshape is a 
mixture of Gaussian and Lorentzian components, and where the mixture for each spin is a function of both the MAS rate and the 
local dipolar coupling network.453, 454 

In addition, a MAS-dependent shift of the frequency of the peak 𝑠𝑠e3  was added to capture the residual shift observed in MAS spec-
tra.85, 373, 380, 381, 395 The generation of a peak in an MAS spectrum is thus described as: 

𝐼𝐼e3
(𝜈𝜈) = FTÉ𝐼𝐼f(𝑡𝑡) ⋅ 𝑒𝑒%'gG43Ñ ∗ 𝐺𝐺𝐺𝐺𝐺𝐺/𝜈𝜈;𝑤𝑤e3, 𝑝𝑝,𝑚𝑚e33, (3.8) 

where FT[⋅] is the Fourier transform and ∗ denotes the convolution operation. The multiplication of the isotropic FID 𝐼𝐼f(𝑡𝑡) with a 
complex exponential shifts the frequency of the corresponding peak after the Fourier transform, which is then convoluted with the 
MAS-dependent GLS function. Spectra made up of 512 points with a time-domain sampling frequency of 12.8 kHz were generated, 
corresponding to a frequency domain resolution of 25 Hz. 

  



NMR Crystallography in the Big Data Era: New Methods and Applications Powered by Machine Learning, PhD Thesis, M. Cordova 

125 

Isotropic spectra were generated as the sum of between 1 and 15 peaks made up of one Gaussian function each, with a linewidth 
sampled from a uniform distribution between 50 and 200 Hz (70% probability), between 100 and 500 Hz (20% probability), or be-
tween 100 and 1000 Hz (10% probability). This was done to ensure the representation of both sharp and broad isotropic peaks in 
the training spectra. The sharpest linewidth (50 Hz) was selected to be twice the frequency domain resolution (25 Hz), as we ob-
served that sharper linewidths led to artifacts seen as negative points in the isotropic spectra. To ensure all isotropic spectra are 
positive, we set any points of negative intensity to zero. In order to allow different intrinsic intensities to be represented, we re-
scaled each isotropic peak by a random factor sampled from a uniform distribution in the range [0.5, 1]. The intensity of the ob-
tained isotropic spectra was then divided by 256 in order to obtain peak intensities roughly between 0.1 and 1. Generating spectra 
in this way by summing a series of Gaussian peaks with different isotropic widths and frequencies, we can include both well re-
solved spectra and more complex isotropic lineshapes that result from superpositions. 

Twenty-four MAS rates were then selected randomly between 30 and 100 kHz, and the corresponding MAS spectra were con-
structed by shifting and convoluting each peak with a GLS function with parameters 𝑠𝑠e3, 𝑤𝑤e3  and 𝑚𝑚e3  following a second-order 
inverse MAS dependence subject to noise, 

𝑤𝑤e3 =
𝑤𝑤/

𝜔𝜔,
+
𝑤𝑤'

𝜔𝜔,
' + ∆𝑤𝑤, (3.9) 

𝑠𝑠e3 =
𝑠𝑠/
𝜔𝜔,

+
𝑠𝑠'
𝜔𝜔,

' + ∆𝑠𝑠, (3.10) 

𝑚𝑚e3 =
𝑚𝑚/
𝜔𝜔,

+
𝑚𝑚'

𝜔𝜔,
' . (3.11) 

For each peak, the value of 𝑤𝑤/ in Equation 3.9 was drawn from a uniform distribution in the range [107, 5⋅107] Hz2 with 80% proba-
bility, and in the range [5⋅107, 108] Hz2 otherwise (corresponding to a contribution of 100 to 1,000 Hz to the width of the GLS at an 
MAS rate of 100 kHz), 𝑤𝑤' was set to be either 0 with a 50% probability, or a random value between 1011 and 5⋅1011 Hz3 (contrib-
uting to the width of the GLS by 10 to 50 Hz at an MAS rate of 100 kHz). In addition, for each MAS rate the GLS width 𝑤𝑤e3  was 
randomly perturbed by a value drawn from a normal distribution Δ𝑤𝑤 ∼ 𝒩𝒩(0, 𝜎𝜎Q) Hz where 𝜎𝜎Q was set to be 5% of the range of 
widths generated between the lowest and highest MAS rates with the selected values of 𝑤𝑤/ and 𝑤𝑤'. The value of 𝑠𝑠/ in Equa-
tion 3.10 was randomly sampled between -107 and 107 Hz2 (introducing a shift contribution between -100 and 100 Hz at 100 kHz 
MAS), and 𝑠𝑠' was set to zero with an 80% probability, or to a random value between -2⋅1010 and 2⋅1010 Hz3 (corresponding to a 
shift between -2 and 2 Hz at 100 kHz MAS). Δ𝑠𝑠 was randomly drawn from a normal distribution Δ𝑠𝑠 ∼ 𝒩𝒩(0, 25) Hz for each peak 
and each MAS rate. The GLS width and frequency shift applied to a peak in an MAS rate is described in Equations 3.9-3.10. The 
mixing 𝑚𝑚e3  was set to follow the inverse MAS dependence described in Equation 3.11 with a probability of 50% and with the value 
of 𝑚𝑚/ set to zero with a 10% probability or randomly sampled from a uniform distribution in the range [0, 104] Hz with 10% proba-
bility, or in the range [104, 5⋅104] Hz, and with 𝑚𝑚' set to zero with an 80% probability or randomly sampled between 108 and 
5⋅108 Hz2. Resulting values of 𝑚𝑚e3  above one were capped to one. Otherwise, the mixing 𝑚𝑚e3  was set to be either constant, mo-
notonously increasing with random values between 0 and 1, or monotonously decreasing with random values between 0 and 1 
with increasing MAS rate. These three dependences were considered with equal probabilities. 

For each peak and each MAS rate, a random phase is drawn from a normal distribution 𝒩𝒩(0, 0.05) and used to distort that peak in 
the corresponding MAS spectrum with a probability of 50%. Additionally, each isotropic peak was assigned a 10% chance to have a 
decreasing intensity in MAS spectra with increasing rate by multiplying the intensity of the corresponding peak in each MAS spec-
trum by a value linearly decreasing between 1 and a final value sampled uniformly in the range [0.3, 0.7]. 

After generating the MAS spectra as described in Equation 3.8, the intensity of the spectra was divided by 64 in order to obtain 
peak intensities roughly between 0.1 and 1. The ten leftmost and rightmost points of the obtained spectra were linearly smoothed 
to a value of zero. 
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Deep convolutional LSTM model. The model used to encode isotropic spectra from the set of variable rate MAS spectra is a recur-
rent neural network with six convolutional LSTM layers adapted from a model used for precipitation nowcasting.455 In particular, 
the output gate was found to be unnecessary and was removed from the LSTM cells (see Figure 3.36). The vectors 𝐶𝐶& and 𝐻𝐻& de-
scribing the initial state of the cell are initialised as zero-filled vectors of the length of the spectra and with 64 channels. In each 
layer and for each step in the recurrent process, the previous hidden state 𝐻𝐻B?/ of the LSTM cell is combined with the input 𝑋𝑋B, 
which is the next MAS spectrum in the series, and fed into two one-dimensional CNN layers with a sigmoidal (𝜎𝜎) activation function 
to yield the forget and input gates 𝑓𝑓B and 𝑖𝑖B, respectively, as well as into a CNN layer with a hyperbolic tangent (tanh) activation 
function to yield the vector of new candidate values 𝐺𝐺_𝑡𝑡 to add to the state. The previous state vector 𝐶𝐶B?/ is first weighted ele-
ment-wise by 𝑓𝑓B before the vector of candidate values 𝐺𝐺_𝑡𝑡, weighted element-wise by 𝑖𝑖B, is added to form the updated cell state 
𝐶𝐶_𝑡𝑡. Taking the hyperbolic tangent of 𝐶𝐶B then yields 𝐻𝐻B, which is used as the input for the next LSTM layer. The process is summa-
rised in Equation 3.12 where ∗ and ∘ indicate convolutions and element-wise multiplication, respectively. 

𝑖𝑖B = 𝜎𝜎(𝑊𝑊6% ∗ 𝑋𝑋B +𝑊𝑊K% ∗ 𝐻𝐻B?/ + 𝑏𝑏%), 

𝑓𝑓B = 𝜎𝜎/𝑊𝑊6. ∗ 𝑋𝑋B +𝑊𝑊K. ∗ 𝐻𝐻B?/ + 𝑏𝑏.3, 

𝐺𝐺B = tanh/𝑊𝑊6I ∗ 𝑋𝑋B +𝑊𝑊KI ∗ 𝐻𝐻B?/ + 𝑏𝑏I3, (3.12) 

𝐶𝐶B = 𝑓𝑓B ∘ 𝐶𝐶B?/ + 𝑖𝑖B ∘ 𝐺𝐺B, 

𝐻𝐻B = tanh(𝐶𝐶B). 

Each CNN layer corresponds to convoluting a matrix of weights 𝑊𝑊 with the input and the previous hidden state, adding a bias 𝑏𝑏, 
and applying the activation function. We used a kernel size of 5 for all convolutional layers. After the final layer, the resulting hid-
den cell state 𝐻𝐻B after each step is fed into a CNN layer with a kernel size of 5 and a sigmoidal activation function to yield the pre-
diction of the isotropic spectrum. Detailed model and training parameters are given in Table 3.25. 

MAS spectra are encoded as vectors with two channels, the first being the real part of the spectrum and the second being a con-
stant pseudo-spectrum containing the MAS rate divided by 100 kHz in each element. At each step, a new spectrum 𝑋𝑋B is fed into 
the network, in order of increasing MAS rate. 

Model training. We trained a committee of 16 models with the same architecture on different generated data in order to evaluate 
the confidence of predictions. Each model was trained for a total of 250,000 batches of 16 different samples, each comprising one 
isotropic spectrum and 24 corresponding MAS spectra at different simulated MAS rates. After every 1,000 batches (16,000 training 
samples), the model was evaluated on 200 batches of 16 isotropic spectra. The model was trained by minimising the mean absolute 
error (MAE) between the output of the model 𝐼𝐼≤f(𝜈𝜈) and the ground-truth isotropic spectrum 𝐼𝐼f(𝜈𝜈). 

Due to the sparsity of isotropic spectra, we initially convoluted the whole of each target isotropic spectrum with a Gaussian func-
tion (𝐺𝐺ℒ) in order to increase the proportion of spectra containing signal and prevent the network from initially predicting spectra 
containing no signal. In addition, we introduced a weight to the loss function for each frequency 𝜈𝜈% in the isotropic spectrum to be 
the maximum between 1 and 𝑘𝑘 times the value at frequency 𝜈𝜈% in the isotropic spectrum (after convolution with the Gaussian 
function) in order to bias the training towards correctly predicting regions that contain signal. The resulting loss function is: 

ℒ =
1
𝑁𝑁6ô𝐼𝐼≤f(𝜈𝜈%) − (𝐼𝐼f ∗ 𝐺𝐺ℒ)(𝜈𝜈%)ô ⋅ max/1, 𝑘𝑘 ⋅ (𝐼𝐼f ∗ 𝐺𝐺ℒ)(𝜈𝜈%)3

%

(3.13) 

We set the width of 𝐺𝐺ℒ to 75 Hz and 𝑘𝑘 to 100 during the first 320,000 training samples, then reduced the width of 𝐺𝐺ℒ to 25 Hz and 𝑘𝑘 
to 10 for 480,000 additional training samples, before removing the convolution with 𝐺𝐺ℒ completely and setting 𝑘𝑘 to zero for the 
rest of the training.  

Random noise was introduced in the generated MAS spectra such as to match the typical signal to noise ratio observed in experi-
mental 1H MAS spectra (between 100 and 1,000 for the most intense peak at 100 kHz). The predictions were compared to the 
generated isotropic spectra after each step. The final predictions were obtained as the mean over the 16 models, and the uncer-
tainties were estimated as the standard deviation of the prediction of each model. 
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Model evaluation. The model was evaluated by computing the MAE between synthetic ground-truth and predicted isotropic spec-
tra for batches of 1,024 samples generated with different parameters. We investigated the effect of the number of peaks in the 
isotropic spectra, different MAS dependences (first-order only, first- and second-order, second-order only, or independent) of the 
linewidth and MAS-dependent shift, the range of MAS rates generated, the number of MAS spectra used, as well as the amount of 
noise introduced in the spectra themselves and in the linewidth and shift dependences. 

The propensity of PIPNet to produce false positive signals was evaluated for the spectra generated with different noise levels by 
computing the false positive rate, defined here as the percentage of points containing signal in the inferred isotropic spectra but 
not containing signal in the corresponding ground-truth spectra, among all the points in the predicted isotropic spectra identified as 
containing signal (Figure 3.37). A point is considered to contain signal if its value is at least 1% of the maximum intensity in the 
whole spectrum. False positives are thus the points containing signal in the predicted isotropic spectrum but not in the ground-
truth. In practice, to prevent considering lineshapes that are predicted to be broader or at a slightly different frequency with re-
spect to the ground-truth as false positives, we only consider points containing signal in the predicted isotropic spectra as false 
positives if they are further than 250 Hz away from any point containing signal in the ground-truth. 

Application to experimental spectra. The digital resolution of all experimental spectra (acquired as described below) was set to 
about 25 Hz by zero-padding the end of the FID to match the spectral resolution of the training spectra. After phasing and correct-
ing the baseline of the recorded spectra, the spectral range between 20 and -5 ppm was extracted. All spectra were normalised by 
integral and scaled to a maximum amplitude of the most intense spectrum set to 0.5 in order to reproduce intensities present in 
the generated training spectra. Spectra with MAS rates of 30 kHz and above were used. Predictions were subsequently performed 
in the same manner as for synthetic spectra.  

NMR experiments. The method was applied to eight different microcrystalline organic solids: β-AspAla, flutamide, thymol, L-
tyrosine hydrochloride, ampicillin, L-histidine hydrochloride monohydrate, MDMA hydrochloride and molnupiravir. The assignment 
and MAS datasets of β-AspAla, flutamide, thymol, L-tyrosine hydrochloride and ampicillin have already been reported previously.49, 

55, 400, 406, 410, 456 The samples of MDMA hydrochloride and molnupiravir were purchased from Lipomed AG and MedChemExpress, 
respectively. 

Assignment. Here we report the 1H and 13C assignment of MDMA hydrochloride and molnupiravir based on the acquisition of 
100 kHz 0.7 mm 1D 13C CPMAS and 1H MAS spectra, 2D 1H-13C hCH383 and 1H-13C INADEQUATE spectra,196, 369 DFT chemical shift 
calculations for MDMA and the probabilistic assignment approach of Cordova et al.358 (see Figure 3.34). The assignments of β-
AspAla, flutamide, thymol, L-tyrosine hydrochloride, ampicillin and L-histidine hydrochloride monohydrate have been previously 
reported.49, 55, 406, 410, 456 A DNP-enhanced INADEQUATE spectrum196, 369 was recoded for MDMA (Figure 3.34) at 9.4 T in a 3.2 mm 
DNP probe at 100 K. The spectra of MDMA hydrochloride were referenced by setting the 1H chemical shift of proton 17 of ampicil-
lin to 0.6 ppm and the 13C chemical shifts of MDMA hydrochloride according to Ref. 457. The spectra of molnupiravir were refer-
enced by setting the 1H chemical shift of proton 1 of L-tyrosine hydrochloride to 12.4 ppm and the 13C chemical shift of carbon 6 of 
ampicillin to 175 ppm. 

For MDMA, quaternary carbons were first identified by their absence in the short range hCH spectrum, and then further assigned 
by comparison to predictions of DFT shifts (Table 3.23). This led to no significant ambiguity, except for carbons labelled 8 and 9 in 
MDMA hydrochloride. The INADEQUATE spectrum shown in Figure 3.34E was used to fully assign the aromatic carbons of MDMA 
hydrochloride without ambiguity. The aliphatic carbon-proton pairs in MDMA hydrochloride were then assigned by comparison of 
the observed joint 1H and 13C shifts to DFT shifts (Table 3.23). The remaining protons were assigned using the 1H-13C hCH spectrum 
(Figure 3.34C). 

For molnupiravir, quaternary carbons were first identified by their absence in the short range hCH spectrum, and then further 
assigned by comparison to probabilistic distributions (Figure 3.34F-G)358 without ambiguity. Carbon 13 was assigned based on its 
correlation with two distinct protons (Figure 3.34D). The remaining carbon-proton pairs were assigned based on the most probable 
assignment given by Figure 3.34G. Protons 9 and 10 were assigned based on long-range correlations to carbons 8 and 11, respec-
tively, observed in the hCH spectrum (Figure 3.34D, inset). The assignment of protons 1 and 2 was not resolved. 
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Variable rate MAS spectra. For each sample, spectra were acquired with a Bruker 0.7 mm room temperature HCN CP-MAS probe 
on an 18.81 T Bruker Avance Neo spectrometer corresponding to a 1H frequency of 800 MHz, except for L-histidine hydrochloride 
monohydrate and molnupiravir which were acquired on a 21.14 T Bruker Avance Neo spectrometer (900 MHz 1H frequency). The 
spectra of ampicillin, flutamide, L-histidine hydrochloride monohydrate, β-AspAla, L-tyrosine hydrochloride and thymol were rec-
orded at MAS rates between 30 and 100 kHz. The spectra of MDMA hydrochloride and molnupiravir were measured from 40 to 
100 kHz MAS rates. All spectra were measured in steps of 2 kHz. The magic angle was set for each sample by maximising the T2’ of 
the proton signal at 100 kHz, the 90° pulse width was optimised, and the data was recorded with active temperature regulation to 
keep the sample temperature at about 295 K across the range of MAS rates. The thymol and molnupiravir data were acquired at a 
constant VT temperature of 275 K. The pulse sequence used was a rotor synchronised spin echo for background suppression. The 
echo delay was equal to one rotor period for all samples except for molnupiravir, for which two rotor periods were used. For L-
histidine hydrochloride monohydrate, an additional dataset of 1H MAS spectra was recorded using a Bruker 1.3 mm room tempera-
ture HDCN CP-MAS probe on a 21.14 T Bruker Avance Neo spectrometer (900 MHz 1H frequency). All the acquisition parameters 
and raw NMR data are available in Tables 3.17-3.20. The spectra of ampicillin, flutamide, β-AspAla, L-tyrosine hydrochloride and 
thymol used are those already reported in Ref. 400. The two-dimensional datasets of MAS spectra recorded at different MAS rates 
for all compounds are shown in Figure 3.35. 

 

Figure 3.28. Data generation and signal processing. (A) Example of generated isotropic (black) and variable-rate MAS (blue) spectra. Here the top 
and bottom-most MAS spectra correspond to MAS rates of 30 and 100 kHz, respectively. (B) Convolutional LSTM cell used to process a spectrum, 
according to the overall scheme shown in (C) which describes the complete processing of the 𝑀𝑀 = 8 MAS spectra each containing 𝑛𝑛 points in (A) 
with 𝑁𝑁 LSTM layers to obtain predicted isotropic spectra. The initial cell state vectors 𝐻𝐻# and 𝐶𝐶# are described in the text. MAS spectra are encoded 
as vectors with two channels, the first one being the real part of the spectrum and the second one containing the MAS rate at each point. After the 
last layer, the hidden state 𝐻𝐻& is processed with a CNN with sigmoidal activation function (blue square) to produce the prediction at each step (red 
spectra). When training, the predictions at each step are compared with the target isotropic spectrum (black spectrum), as indicated by the double 
arrow lines. 
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GIPAW DFT computation of chemical shifts of MDMA hydrochloride. All DFT computations were performed using the plane-wave 
DFT software Quantum ESPRESSO version 6.5.328, 329 Atomic positions of the crystal structure of MDMA (Refcode: NEDMIS)458 were 
first optimised at the PBE97 level of theory using Grimme D2 dispersion correction330 and ultrasoft pseudopotentials obtained from 
the PSLibrary version 1.0.0.332 Wavefunction and charge density energy cutoffs were set to 160 and 1,280 Rydberg, respectively. A 
2x2x1 Monkhorst-pack grid of k-points was used.338 Shielding computation was subsequently performed using the GIPAW 
method.117, 118 The computed shieldings were converted to chemical shift by linear regression against experimentally measured 
shifts. 

3.3.3 Results	and	Discussion	
Training deep neural networks requires substantial amounts of data. Given the relatively low number of available experimental 
datasets of 1H MAS spectra recorded at different spinning rates, and the lack of any method to independently acquire the target 
isotropic spectra, synthetic data were used to train the model. Figure 3.28A shows an example set of eight synthetic MAS spectra 
and the associated isotropic spectrum. Such sets of spectra are generated in a few tens of milliseconds, allowing the training of the 
model on millions of sets of synthetic variable MAS spectra that include all the possible parameter variations in peaks positions, 
peak shapes, MAS dependences, phase and intensity errors, and noise described in Section 3.3.2. 

The architecture of the LSTM cell used here is described in Figure 3.28B (and is described in detail in Section 3.3.2). The two main 
differences compared to the original description of LSTM290 are the use of CNN layers to process the inputs and the removal of the 
output gate. The former allows the processing of spectral data without the need for fixed input size and independently of the par-
ticular frequencies of peaks observed, while presence of the latter was found to be unnecessary since the isotropic spectrum is 
directly encoded into the memory of the LSTM network 𝐶𝐶B and 𝐻𝐻B, and does not require decoding that depends on the last MAS 
spectrum fed to the network (see Figure 3.36). 

Figure 3.28C shows the complete processing pipeline performed by PIPNet in order to obtain the predicted isotropic spectrum from 
the set of MAS spectra shown in Figure 3.28A. At each step, another MAS spectrum from the set with a different rate is used as 
input to the network to update the state vectors of the LSTM cells. The spectra are fed into the process in order of increasing MAS 
rate, until all the spectra in the set (8 in Figure 3.28A, but 24 in the actual model training process) have been input. After each step, 
the state vector 𝐻𝐻B of the final layer is processed by a final CNN layer to yield the predicted isotropic spectrum. 

In order to obtain the uncertainty of the predicted isotropic spectra, PIPNet is a committee model made up of 16 neural networks 
with identical architectures, but each trained on completely independent synthetic data. At inference, the mean over the 16 predic-
tions yields the predicted isotropic spectrum, and the standard deviation gives an indication of the uncertainty associated to the 
prediction at each point in the spectrum. Notably, uncertainty on the order of the predicted intensity highlights regions where the 
predicted spectrum is unreliable. 

 

Figure 3.29. Model training. (A) Evolution of the loss function during model training. The large changes after 320,000 and 800,000 training samples 
per model correspond to the changes in loss function applied as described in Section 3.3.2. (B) Synthetic 100 kHz MAS spectrum (blue) and its 
associated ground-truth (GT) isotropic spectrum (black) compared to predictions of the model trained on 16,000, 800,000, 1,600,000, 2,400,000, 
3,200,000 and 4,000,000 samples (red). The shaded areas in the predicted spectra indicates the standard deviation between the 16 neural networks 
making up the committee model. 
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Figure 3.30. Model evaluation. (A), (B), (C) MAE between predictions and ground-truth isotropic spectra for 1,024 samples and (D), (E), (F), illustra-
tive comparisons of predicted (red) and ground-truth (black) isotropic spectra with various (A), (D) number of peaks, (B), (E) MAS dependences (w1: 
first-order, w2: second-order), and (C), (F) noise levels. The MAE in (A) is normalised by the number of peaks. The typical range of signal-to-noise 
ratio (SNR) in 100 kHz MAS spectra corresponding to each level of noise is indicated in (F). 

Figure 3.29A shows the evolution of the loss function, corresponding to the mean absolute error (MAE) between the predicted and 
ground-truth isotropic spectra, during the model training. The significant changes of scale in the loss after 320,000 and 800,000 
training samples per model reflects the change in the weighting of the loss function (see Section 3.3.2). This was performed in 
order to promote the detection of peaks at the beginning of the training by decreasing the importance of the prediction in empty 
regions of the isotropic spectra. Figure 3.29B shows the comparison of the predictions obtained after training each model on 
16,000, 800,000, 1,600,000, 2,400,000, 3,200,000 and 4,000,000 sets of MAS spectra. Significant improvement of the predictions 
can be seen until 1,600,000 training samples, after which the model was considered to have converged. This is reflected both by 
the plateau in the loss function in Figure 3.29A and by the obtained predictions for the example shown in Figure 3.29B, where the 
five peaks between 3,500 and 5,000 Hz were found to be captured by the model only after 1,600,000 training samples (although 
with different intensities). After that point, the isotropic spectra obtained did not display any significant change with increased 
amounts of training data. Nonetheless, we selected the final model at the end of the full training process, i.e., after 4,000,000 
training samples per model. 

Figure 3.30 displays the behaviour of the model with different numbers of isotropic peaks, MAS dependences and levels of noise. 
The model was found to be robust to the number of peaks, with each peak resulting in a similar increase of the MAE between 
predicted and ground-truth isotropic spectra (see Figure 3.30A). As seen in Figure 3.30D, the number of peaks is generally correctly 
captured both for sparse and more crowded spectra. In instances where different peaks are not captured, they are typically found 
to coalesce into a single, broader peak. 

Figures 3.30B and 3.30E highlight the ability of the model to capture both first- and second-order MAS dependence of linewidths 
and shifts in MAS spectra, as well as combined first- and second-order dependence. A purely second-order MAS dependence was 
found to slightly raise the error between inferred and ground-truth isotropic spectra. In addition, using a set of identical spectra 
with different MAS rates (no MAS dependence) was found to result in only very marginal amounts of unexpected sharpening of 
peaks arising from overfitting of the model, seen in the region around 8,000 Hz in Figure 3.30E. This indicates that PIPNet is robust 
to different MAS dependences. 
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Figures 3.30C and 3.30F show the robustness with respect to the level of noise in the MAS spectra. The MAE between inferred and 
ground-truth isotropic spectra was found to increase with noise levels of 10-3 and above, corresponding to a signal-to-noise ratio 
(SNR) of 1,000 and below in 100 kHz MAS spectra. We find that the predicted spectra visually display no significant perturbations 
down to a SNR of 100, below which some noise and uncertainties start to appear in the inferred spectra. Importantly, the model is 
still able to correctly identify the regions containing signals from pure noise down to a SNR of 10. Experimental fast MAS spectra of 
pure organic solids typically have SNR ∼1000. Artifacts are thus expected to appear only with low signal-to-noise ratio spectra, and 
would typically be associated with a high uncertainty (see Figure 3.30F). We found that the false positive rate in predicted spectra 
was under 1% up to a noise level of 10-3 (SNR down to 100), and was found to be 22% with a noise level of 10-2 (SNR of 10) (see 
Figure 3.37). 

The model was also found to be robust to perturbations in the MAS-dependent linewidth, shift, number of MAS spectra and range 
of MAS rates selected (see Figures 3.37-3.38). 

 

 

 

Figure 3.31. Predictions on experimental data. Experimental 100 kHz MAS spectra (blue) and isotropic spectra (red) of (A) β-AspAla, (B) flutamide, 
(C) thymol, (D) L-tyrosine hydrochloride, (E) ampicillin, (F) L-histidine hydrochloride monohydrate, (G) MDMA hydrochloride and (H) molnupiravir. 
The isotropic spectra were obtained for each compound from a set of between 31 and 41 MAS spectra recorded at rates between 20 and 100 kHz 
(as detailed in Section 3.3.2) using the model presented here. The assignment of the 100 kHz spectra, based on two-dimensional experiments (see 
Section 3.3.2), is indicated with vertical dashed black lines and blue numbers. In (H), the assignment of protons 1 and 2 is ambiguous. 
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Figure 3.31 shows the isotropic spectra obtained from eight experimental sets of variable rate MAS spectra recorded on different 
compounds (detailed in Section 3.3.2) in comparison to the corresponding 100 kHz MAS spectra. We note that the spectra ob-
tained using PIPNet from these two-dimensional datasets were found to be similar to the parametrically fitted isotropic spectra, 
while notably displaying fewer artifacts (see Figure 3.39). 

The samples are microcrystalline forms of β-AspAla, flutamide, thymol, L-tyrosine hydrochloride, ampicillin, L-histidine hydrochlo-
ride monohydrate, MDMA hydrochloride and molnupiravir. The assignment and MAS datasets of β-AspAla, flutamide, thymol, L-
tyrosine hydrochloride and ampicillin have already been reported previously.49, 55, 400, 406, 410, 456 The 1H and 13C assignment of MDMA 
hydrochloride and molnupiravir are done here as described in Section 3.3.2, based on the acquisition of 100 kHz 0.7 mm 1D 13C 
CPMAS and 1H MAS spectra, 2D 1H-13C hCH383 and 1H-13C INADEQUATE spectra,196, 369 DFT chemical shift calculations for MDMA and 
the probabilistic assignment approach of Cordova et al.358 (see Figure 3.34). A DNP-enhanced INADEQUATE spectrum196, 369 was 
recoded for MDMA (Figure 3.34) at 9.4 T in a 3.2 mm DNP probe at 100 K. 

If we look at the case of L-tyrosine hydrochloride (Figure 3.31D) as a representative example, the expected number of peaks is 
retrieved and the peak positions match expectations from assignments carried out using 2D methods (see Appendix V). The ob-
served linewidths in the isotropic spectrum are very significantly narrower than the 100 kHz MAS spectrum, with full widths at half 
maximum (FWHM) between 62 and 250 Hz (0.08 and 0.32 ppm).  

We note that while the obtained isotropic spectra generally display sharper lineshapes than those measured at the highest MAS 
rates, finite linewidths are still anticipated, as we expect distributions of the isotropic shifts due to the presence of more or less 
structural disorder in the sample. Isotropic shift distributions will also be caused by anisotropic bulk magnetic susceptibility (ABMS) 
effects,459, 460 or as a result of imperfect 𝐵𝐵& homogeneity. Importantly, no significant artifacts are seen in the isotropic spectra ob-
tained. This behaviour is seen in general across all eight samples in Figure 3.31. The linewidths observed in the isotopic spectrum 
are in line with expectations from a previous analysis of the MAS dependence of the measured linewidths of the resolved peaks (1 
and 3’) given in Figure 14 of Ref. 85. It is especially notable that the isotropic spectrum predicted from the variable MAS dataset 
correctly identifies the 7 peaks present in the crowded spectral between 3 and 9 ppm, that are not resolved in the 100 kHz MAS 
spectrum. 

It is important to note that PIPNet is not just identifying potential peaks and replacing them with uniformly narrow lines. We nota-
bly see in the cases of flutamide (Figure 3.31B) that there is only minor narrowing in the isotropic spectrum as compared to the 
100 kHz MAS spectrum (see Table 3.21 for a list of resolved linewidths measured in both the 100 kHz MAS spectra and the isotropic 
spectra, for all eight compounds). Similar behaviour was also observed using the parametric fitting approach (Figure 3.39), and we 
thus conclude that these peaks are dominated by chemical shift broadening and not MAS dependent dipolar broadening. We note 
that for ampicillin we also see only limited narrowing in the isotropic spectrum from PIPNet. In this case this is in contrast with the 
parametric fitting approach, which produced narrower lines (Figure 3.39, Table 3.21). Here we suspect that the parametric fitting 
approach might be overfitting, and this is a good example of the more general and robust nature of the PIPNet model. 

In addition to the six compounds previously reported,400 here we have obtained isotropic spectra for two additional molecular 
solids, MDMA hydrochloride and molnupiravir (Figures 3.31F and 3.31G, respectively). For MDMA hydrochloride, the expected 
peaks were clearly identified, except potentially for one in the aromatic (protons 7-12) regions of the spectrum. However, as seen 
in the HETCOR spectrum of the compound (Figure 3.34 and dashed vertical lines in Figure 3.31G), protons 10 and 11 display very 
similar chemical shifts, suggesting that the peaks might overlap in the isotropic spectrum. The isotropic spectrum of molnupiravir 
displayed all expected peaks. In particular, the two peaks in the region between 2 and 3 ppm are clearly identified from the PIPNet 
spectrum, while the fitted isotropic spectrum predicts only one broader peak (Figure 3.39). This highlights one limitation of the 
fitted model, as the presence of two isotropic peaks can be seen from the increasing asymmetry of the corresponding peak in the 
set of MAS spectra with increasing rate (Figure 3.35H), which corresponds to the two underlying isotropic peaks having different 
MAS-dependent shifts and/or broadenings. Considering multiple different MAS-dependent shifts in a single spectral region is thus 
critical here in order to correctly describe the experimental spectra as a function of MAS rate. While this is not captured by the 
fitted model due to the assumption that only one MAS-dependent shift is assigned to each fitted region, PIPNet makes no such 
assumption and thus is able to identify the two distinct resonances. 
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Figure 3.32. Predicted peak positions. (A) Comparison of the position of selected isolated peaks in the 100 kHz MAS and those in the isotropic 
spectra. (B) Difference in position of the peaks shown in (A). The black lines indicate perfect correlation. 

 

In summary, the isotropic spectra inferred by PIPNet from the experimental variable rate MAS datasets were found to display the 
expected number of peaks, without any prior information given about the sample measured. No significant artifacts were identified 
in the inferred spectra, highlighting the increased generality and robustness of the deep learning model compared to the previous 
fitted approach. 

Figure 3.32 shows the comparison between the chemical shifts of 32 selected peaks from the compounds studied here, and Figure 
3.40 compares the linewidths obtained, using the deep learning approach presented here with the positions observed at 100 kHz 
MAS, and with the fitted approach. We find strong correlations between the observed peak positions with the three methods, with 
a root-mean-square error of 0.060 ppm (~50 Hz) and a R2 coefficient above 0.999. We note that this is not a direct metric of the 
accuracy of our model, as the 100 kHz MAS peak positions are not at exactly the isotropic shifts,85, 373, 380, 381, 395 and the fitting ap-
proach also suffers from shortcomings as mentioned above. The consistency between the three results does however strongly 
suggest that the method allows measurement of resolved isotropic shifts to within an error of 0.060 ppm. In Figure 3.32B, differ-
ences appear at discrete values in steps of ~0.03 ppm, corresponding to the spectral resolution. If needed, more accurate peak 
maxima could be obtained by increasing the spectral resolution through zero-padding before running the prediction, or by applying 
more advanced peak picking approaches to the isotropic spectrum.281 

Figure 3.40 and Table 3.21 suggests that linewidths are generally predicted to be broader using PIPNet than with the fitting ap-
proach. Because the model was found able to predict linewidths as low as 57 Hz (0.07 ppm, see Table 3.22), we expect these dif-
ferences to arise from approximations present in the fitted approach leading to a degree of overfitting, and not from incomplete 
removal of MAS-dependent broadening by the machine learning model. 

As seen in Figure 3.41, the relative integrals of different spectral regions are retained in the predicted isotropic spectra compared 
to the experimental 100 kHz MAS spectra, with a deviation of less than ~5% of the total integral for all compounds. 

Figure 3.44 suggests that using a lower number of experimental spectra while retaining the range of MAS rates used (40 to 100 kHz 
in Figure 3.44) leads to only marginal changes in the isotropic spectra obtained, up to increments of 10 kHz between measured 
MAS spectra. In light of this result and those shown in Figure 3.33 and Figure 3.42, we consider that converged isotropic spectra 
can typically be obtained using spectra from 30 to at least 80 kHz MAS rate, in increments of up to 10 kHz. We note that, in general, 
a minimum of 5 spectra are typically required to obtain meaningful isotropic spectra (see Figure 3.36). The quality of the isotropic 
spectra obtained is nonetheless expected to be higher using a larger range of MAS rates and a higher number of MAS spectra. 
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Figure 3.33. Isotropic spectra from different ranges of experimental MAS rates collected in 2 kHz increments. 100 kHz MAS spectra (blue) and 
isotropic spectra (red) obtained from different ranges of MAS rates for (A) L-tyrosine hydrochloride and (B) β-AspAla. The range of MAS rates used 
is indicated next to each isotropic spectrum. 

 

 

3.3.4 Conclusion	
In this section we have developed PIPNet, a deep learning approach to predict isotropic 1H NMR spectra of solids from a two-
dimensional dataset of variable rate MAS spectra, using a convolutional recurrent deep neural network with modified convolutional 
LSTM layers. The model is able to reliably predict linewidths on par with a previously introduced fitting approach, while bypassing 
several limitations of the latter approach and at a fraction of the computational cost, leading to faster and improved predictions.  

The model was applied to sets of MAS spectra for eight molecular solids and showed marked resolution improvements compared 
to the highest MAS rates available, with linewidths down to 57 Hz. In addition, even using only relatively low MAS rates (30-50 kHz) 
as input for the model led to predictions with linewidths comparable to fast MAS (>100 kHz), which opens up the possibility to 
obtain well-resolved 1H spectra for molecular solids from experimental data recorded at spinning rates accessible on less special-
ised hardware, such as, e.g., 1.3 mm MAS probes. 

The spectra obtained using the PIPNet model from complete sets of variable rate MAS data up to 100 kHz MAS yield the best re-
solved 1H spectra of molecular solids recorded to date, and we anticipate that access to even faster spinning rates in the future will 
further improve the robustness of this method. The model is freely available at https://github.com/manucordova/PIPNet. 
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3.3.5 Appendix	V	
Raw data statement. The NMR raw data are available from https://doi.org/10.24435/materialscloud:a7-59 in JCAMP-DX version 
6.0 standard format and original TopSpin format, as well as an archived version of the code and the pre-trained model used to 
obtained the results presented in this work. The code and pre-trained model are also available in the GitHub repository 
https://github.com/manucordova/PIPNet. All data and code are available under the license CC-BY-4.0 (Creative Commons Attribu-
tion-ShareAlike 4.0 International). 

Table 3.17. Experimental details of all spectra datasets used in this study. Raw data is available at the link given above. The data for �-AspAla, 
flutamide, thymol, L-tyrosine hydrochloride and ampicillin are the same as previously reported.400 

Sample MAS range (kHz) Step Size 
(kHz) 

VT (K) 90° RF amplitude 
(kHz) 

d1(s) Number of 
FID points 

SW (kHz) 

β-AspAla 100 -30 2 275-295 277 6 2048 100 

Flutamide 100 -30 2 275-295 286 18 2048 100 

Thymol 100 -30 2 275 277 6 1024 100 

L-tyrosine 
hydrochloride 

100 -30 2 275-295 294 5 2048 100 

Ampicillin 100 -30 2 275-295 286 3 4096 100 

L-histidine hydrochloride 
monohydrate 

100 -30 2 285-295 305 16 4096 227 

MDMA hydrochloride 100 -40 2 275-295 277 7 2048 100 

Molnupiravir 100 -40 2 275 333 30 4096 227 

L-histidine hydrochloride 
Monohydrate (1.3mm probe) 

60 -30 2 265-290 114 13.5 2048 100 

 

Table 3.18. Experimental details of 13C CP spectra of MDMA hydrochloride and molnupiravir. Exponential line broadening of 100 Hz was applied 
prior to Fourier transform of MDMA hydrochloride 13C CP spectrum. 

Sample B0 field 
(MHz) 

MAS rate 
(kHz) 

VT (K) d1(s) Number of 
FID points 

1H-13C CP contact 
time (ms) 

Acquisition 
time (ms) 

1H decoupling 
during acquisition 

Size of 
real spec-
trum 

MDMA 
hydrochloride 

900 100 295 8 2776 3 10 Waltz16 (10 kHz) 16384 

Molnupiravir 900 100 275 15 2776 3 10 Waltz16 (10 kHz) 16384 

 

Table 3.19. Experimental details of hCH spectra of MDMA hydrochloride and molnupiravir. Exponential line broadening of 50 Hz was applied in the 
direct dimension prior to Fourier transform of MDMA hydrochloride hCH. Exponential line broadening of 50 and 500 Hz was applied in the direct 
and indirect dimension, respectively, prior to Fourier transform of molnupiravir hCH. 
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Table 3.20. Experimental details of 13C INADEQUATE spectrum of MDMA hydrochloride impregnated with AMUPOL in DNP juice. Exponential line 
broadening of 300 Hz was applied both in the direct and indirect dimension prior to Fourier transform. 

Sample B0 field 
(MHz) 

MAS rate 
(kHz) 

VT (K) d1(s) Number of 
FID points 

1H-13C CP contact 
time (ms) 

1H decoupling 
during t1 and t2 

Acquisition 
time (ms) 

Size of 
real spec-
trum 

MDMA 
hydrochloride 

400 10 100 2.2 1024 in F2 
50 in F1 

2 Spinal64 
(100 kHz) 

5 in F2 
0.75 in F1 

8192 in F2 
1024 in F1 

 

Table 3.21. Measured frequencies and linewidths of selected isolated peaks. Comparison of the position and linewidth (FWHM) of selected isolated 
peaks in experimentally measured 100 kHz MAS spectra, PIPNet predicted isotropic spectra, and spectra predicted using the previous fitting ap-
proach (PIP). The 100 kHz spectra for β-AspAla, flutamide, thymol, L-tyrosine hydrochloride and ampicillin are the same as previously reported.400 

Compound Label Peak position [ppm] Linewidth (FWHM) [ppm / Hz] 

100 kHz MAS PIPNet PIP 100 kHz MAS PIPNet PIP 

Ampicillin 18 0.57 0.54 0.46 0.66 / 529 0.38 / 307 0.16 / 128 

17 1.57 1.51 1.47 0.60 / 480 0.34 / 275 0.11 / 92 

15 10.03 9.90 9.98 0.72 / 579 0.44 / 355 0.11 / 90 

b-AspAla 7 0.86 0.86 0.79 0.34 / 268 0.16 / 129 0.07 / 52 

5’ 2.14 2.14 2.01 0.39 / 308 0.11 / 90 0.06 / 48 

5 2.72 2.66 2.68 0.39 / 309 0.09 / 73 0.03 / 27 

6 3.97 3.91 3.87 0.34 / 270 0.14 / 110 0.08 / 66 

2 4.86 4.83 4.75 0.28 / 224 0.15 / 122 0.04 / 31 

8 7.39 7.27 7.26 0.44 / 355 0.17 / 135 0.07 / 59 

1 12.64 12.61 12.54 0.29 / 229 0.15 / 123 0.11 / 89 

Flutamide 11’/11” 1.21 1.12 1.11 0.70 / 559 0.38 / 301 0.11 / 90 

6 7.13 7.10 7.17 0.51 / 407 0.41 / 326 0.08 / 67 

3/8 7.99 7.93 7.84 0.58 / 461 0.46 / 368 0.08 / 62 

5 9.91 9.85 9.91 0.49 / 393 0.37 / 295 0.40 / 319 

L-histidine 
hydrochloride  
monohydrate 

1 5.13 5.10 5.10 0.52 / 472 0.29 / 256 0.07 / 65 

9 8.21 8.21 8.21 0.65 / 588 0.30 / 270 0.23 / 210 

7 12.44 12.40 12.40 0.46 / 412 0.34 / 308 0.35 / 316 

5 17.00 16.97 16.97 0.49 / 444 0.31 / 278 0.32 / 287 

Thymol 4 3.39 3.36 3.31 0.42 / 333 0.20 / 161 0.15 / 122 

1 5.41 5.37 5.23 0.43 / 340 0.27 / 216 0.27 / 215 

2 6.20 6.20 6.11 0.39 / 315 0.27 / 212 0.23 / 183 

3 7.05 7.02 6.91 0.41 / 330 0.20 / 159 0.26 / 211 

7 9.34 9.31 9.29 0.94 / 749 0.14 / 112 0.08 / 62 

L-tyrosine 
hydrochloride 

3’ 2.51 2.54 2.47 0.50 / 396 0.08 / 62 0.08 / 68 

6 6.66 6.57 6.49 0.44 / 353 0.18 / 147 0.03 / 25 

9 10.05 9.93 9.88 0.35 / 282 0.17 / 139 0.07 / 58 

1 12.52 12.40 12.32 0.33 / 264 0.17 / 132 0.07 / 53 

MDMA hydrochlo-
ride 

4 1.14 1.08 1.04 0.43 / 341 0.19 / 151 0.07 / 59 

Molnupiravir 13/14 1.20 1.23 1.18 0.31 / 277 0.20 / 180 0.04 / 36 

4 6.75 6.69 6.64 0.43 / 387 0.10 / 89 0.07 / 63 

1/2 9.52 9.52 9.51 0.35 / 318 0.19 / 173 0.20 / 179 

2/1 10.72 10.69 10.65 0.42 / 380 0.33 / 295 0.46 / 414 
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Table 3.22. Additional frequencies and linewidths of selected isolated peaks in isotropic spectra. Position and linewidth (FWHM) of selected isolated 
peaks in PIPNet predicted isotropic spectra, excluding peaks already present in Table 3.21. 

Compound Label Peak position [ppm] Linewidth (FWHM) [ppm / Hz] 

Ampicillin 2 3.89 0.36 / 290 

b-AspAla 3 7.97 0.30 / 238 

Flutamide 10 2.04 0.28 / 226 

L-histidine hydrochloride monohydrate 6 7.50 0.25 / 203 

8 8.92 0.25 / 201 

Thymol 6 0.46 0.28 / 225 

L-tyrosine hydrochloride 8 5.05 0.09 / 71 

5 5.35 0.12 / 98 

10 7.61 0.32 / 252 

MDMA hydrochloride 3 1.94 0.12 / 98 

5’ 2.21 0.10 / 76 

1 2.82 0.22 / 173 

5 3.49 0.07 / 58 

12 6.02 0.07 / 57 

10/11 6.21 0.08 / 61 

7 6.64 0.14 / 112 

2’ 9.23 0.08 / 65 

2 9.75 0.08 / 62 

Molnupiravir 13’ 3.73 0.09 / 71 

7 5.48 0.14 / 109 

 

 

 

Table 3.23. Chemical shift assignment of MDMA hydrochloride. Assignment of 1H and 13C chemical shifts of MDMA hydrochloride. 

Label 1H exp. [ppm] 13C exp. [ppm] 1H DFT [ppm] 13C DFT [ppm] 

1 2.8 34 3.1 28 

2 9.5, 10.0 - 9.9, 10.6 - 

3 2.2 60 2.2 59 

4 1.1 21 1.2 14 

5 2.4, 3.8 38 2.5, 3.8 32 

6 - 132 - 129 

7 6.8 112 7.2 109 

8 - 149 - 151 

9 - 148 - 149 

10 6.3 110 7.4 106 

11 6.2 125 6.5 122 

12 6.0 105 7.3, 7.9 110 
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Table 3.24. Chemical shift assignment of MDMA hydrochloride. Assignment of 1H and 13C chemical shifts of molnupiravir. A slash “/” indicates 
ambiguous assignments. 

Label 1H chemical shift [ppm] 13C chemical shift [ppm] 

1 9.5 / 10.7 - 

2 10.7 / 9.5 - 

3 - 140 

4 5.5 104 

5 6.8 128 

6 - 154 

7 5.4 86 

8 4.5 70 

9 2.7 - 

10 5.4 - 

11 4.2 68 

12 10.0 80 

13 3.7, 4.7 63 

14 - 176 

15 2.6 34 

16 1.2 19 / 20 

17 1.2 20 / 19 

 

Table 3.25. Model and training parameters for PIPNet. 

Parameter Value 

Number of models trained 16 

Number of Conv-LSTM layers 6 

Number of CNN filters (channels) per Conv-LSTM layer 64 

Kernel size of Conv-LSTM layers 5 

Number of filters (channels) of the output CNN 1 

Kernel size of output CNN layer 5 

Batch size 16 

Number of training batches per epoch 1,000 

Number of evaluation batches per epoch 200 

Number of epochs 250 

Optimiser Adam 

Initial learning rate 10-3 

Learning rate scheduler Reduction on plateau of the evaluation loss by a factor 0.5, with 
patience of 10 epochs 
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Figure 3.34. NMR experiments used for assignment. 100 kHz MAS (A), (B) 13C CPMAS and (C), (D) 1H-13C hCH spectra of (A), (C) MDMA hydrochloride 
(18.8 T) and (B), (D) molnupiravir (21.1 T). (E) 13C-13C INADEQUATE spectrum of the aromatic region of MDMA hydrochloride. (F) Statistical distribu-
tions of 13C chemical shifts obtained from the bonding environment of each carbon in molnupiravir and compared to the experimentally measured 
shifts (black vertical lines). (G) Probabilistic assignment of 13C chemical shifts of quaternary and CH carbons of molnupiravir. Complete parameter 
sets and pulse sequences used to obtain the spectra are available with the raw data at the link given above. Blue numbers and red lines indicate the 
assignments obtained. 
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Figure 3.35. Experimental sets of variable-rate MAS spectra recorded for (A) β -AspAla, (B) flutamide, (C) thymol, (D) L-tyrosine hydrochloride, (E) 
ampicillin, (F) L-histidine hydrochloride monohydrate, (G) MDMA hydrochloride and (H) molnupiravir. The inset in (H) shows the 2-4 ppm region of 
every other spectrum recorded for molnupiravir, displaying the increasing asymmetry of the peak observed with increasing MAS rate. The data for 
(A-E) are the same as previously reported.400 
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Figure 3.36. Model optimisation. MAE between predictions and ground-truth isotropic spectra for 1,024 samples with various numbers of peaks 
obtained with models trained with different (A) encoding of MAS spectra and with LSTM cells containing the output gate (green line), (B) number of 
layers, (C) number of hidden channels, (D) kernel sizes in the LSTM cells, (E) kernel sizes to convert the state vector of the last layer to the inferred 
isotropic spectra, and (F) numbers of spectra fed to the network at each step. In (A), “baseline” (blue line) corresponds to the encoding described in 
Section 3.3.2. “Imaginary” (orange line) corresponds to the addition of the imaginary part of the MAS spectra as an additional channel to the input 
vector. “Output gate” (green line) corresponds to the original convolutional LSTM cell with an output gate. “Inverse wr” (red line) corresponds to 
encoding the inverse of the MAS rate instead of the (normalised) MAS rate as described in Section 3.3.2. 

 

Figure 3.37. Model evaluation: MAS dependencies, number of spectra and false positive rate. (A), (B), (C), (D) MAE between predictions and 
ground-truth isotropic spectra for 1,024 samples and (E), (F), (G), (H) illustrative comparisons of predicted (red) and ground-truth (black) isotropic 
spectra with various (A), (E) levels of noise in the MAS-dependent width (see Equation 3.9), (B), (F) levels of noise in the MAS-dependent shift 
parameter (see Equation 3.10), (C), (G) shift dependences and (D), (H) numbers of MAS spectra fed to the network. (I) False positive signal rate (as 
defined in Section 3.3.2) observed in the isotropic spectra predicted from synthetic MAS spectra as a function of the noise level. 
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Figure 3.38. Model evaluation: MAS rate ranges. (A), (B), (C), (D) MAE between predictions and ground-truth isotropic spectra for 1,024 samples 
and (E), (F), (G), (H) illustrative comparisons of predicted (red) and ground-truth (black) isotropic spectra obtained from MAS datasets containing 
various (A), (B), (E), (F) lower bounds for the MAS rate while keeping the higher bound to 100 kHz and (C), (D), (G), (H) higher bounds for the MAS 
rate while keeping the lower bound to 30 kHz. In (A), (C), (E) and (G) the number of MAS spectra generated was set such that there are on average 
between 3 and 4 spectra per 10 kHz MAS rate range. In (B), (D), (F) and (H), the number of MAS spectra generated was set to 24 regardless of the 
range of MAS rates considered. 

 

Figure 3.39. Comparison with the previous approach. 100 kHz MAS spectra (blue) and isotropic spectra of (A) β-AspAla, (B) flutamide, (C) thymol, 
(D) L-tyrosine hydrochloride, (E) ampicillin, (F) L-histidine hydrochloride monohydrate, (G) MDMA hydrochloride and (H) molnupiravir obtained 
using PIPNet (red) and the previous approach (black). 
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Figure 3.40. Linewidth comparison. Comparison of the linewidth of selected isolated peaks in 100 kHz MAS spectra (blue) and isotropic spectra 
obtained using PIPNet (red) and the previous fitting approach (orange). Black lines indicate the linewidths obtained from extrapolation of the lin-
ewidths in MAS spectra, assuming a first-order inverse MAS dependence (Figure 14 of Ref. 85). 

 

Figure 3.41. Relative integrals. Comparison of the integral of separate regions from the 100 kHz MAS spectra (blue) and predicted isotropic spectra 
(red). The mean absolute error on the percentage of total integral of regions for each compound is indicated at the top of each panel. 
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Figure 3.42. Isotropic spectra from different ranges of experimental MAS rates collected in 2 kHz increments. 100 kHz MAS spectra (blue) and 
isotropic spectra (red) obtained from different ranges of MAS rates for (A) ampicillin, (B) flutamide, (C) thymol, (D) L-histidine hydrochloride mono-
hydrate, (E) MDMA hydrochloride and (F) molnupiravir. The range of MAS rates used is indicated next to each isotropic spectrum. 

 

Figure 3.43. 60 kHz MAS spectrum (blue) and isotropic spectrum (red) obtained from a dataset of 16 MAS spectra of L-histidine hydrochloride 
obtained using a 1.3 mm rotor. 
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Figure 3.44. Isotropic spectra from different increments of experimental MAS rates measured between 40 and 100 kHz. 100 kHz MAS spectra (blue) 
and isotropic spectra (red) obtained from different MAS rate increments for (A) β-AspAla, (B) flutamide, (C) thymol, (D) L-tyrosine hydrochloride, 
(E) ampicillin, (F) L-histidine hydrochloride monohydrate, (G) MDMA hydrochloride and (H) molnupiravir. The MAS rate increment used is indicated 
next to each isotropic spectrum. 
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3.4 Two-dimensional	pure	isotropic	proton	solid	state	NMR	
This section has been adapted with permission from: Moutzouri, P.; Cordova, M.; Simões de Almeida, B.; Torodii, D.; Emsley, L., 
Two-dimensional Pure Isotropic Proton Solid State NMR. Angewandte Chemie International Edition 2023, 62 (21), e202301963. 
(post-print) 

My contribution was to develop and apply the method and to analyse results. I also contributed to the writing of the manuscript. 

3.4.1 Introduction	
In this section we extend the PIP approach to a second dimension in order to obtain ultra-high resolution 1H-1H double-quantum / 
single-quantum366 (DQ/SQ) dipolar correlation spectra and 1H-1H spin-diffusion461, 462 (PSD) spectra. We illustrate the method on L-
tyrosine hydrochloride and ampicillin, where we obtain two-dimensional spectra with significantly higher resolution as compared to 
corresponding spectra acquired at 100 kHz MAS. The spectral resolution is very significantly increased in both dimensions, allowing 
the identification of resolved isotropic correlation peaks that were overlapped in the 100 kHz MAS spectra. 

The PIP approach works by obtaining a one-dimensional pure isotropic spectrum from a two-dimensional set of MAS spectra rec-
orded at variable spinning rates (VMAS).400, 463 In this 2D dataset, the isotropic part of the interactions remains constant as a func-
tion of spinning rate, while the anisotropic parts that lead to broadening and shifts are scaled by the spinning. The isotropic part 
can be separated out by a suitable transform, so far shown either by parametric fitting,400 or more recently by a deep learning 
method.463 In the latter approach a modified convolutional LSTM neural network, dubbed PIPNet, was trained on millions of syn-
thetic VMAS datasets to infer isotropic 1H NMR spectra. Both approaches, yield isotropic spectra that display linewidths in the 50-
400 Hz range for crystalline molecular solids. 

Here, we use three-dimensional datasets made up of two-dimensional DQ/SQ or spin-diffusion spectra acquired at different MAS 
rates to obtain two-dimensional 1H-1H DQ/SQ or 1H-1H PSD correlation spectra with pure isotropic lineshapes in both dimensions by 
transforming the data with a suitable deep learning prediction network, dubbed PIPNet2D. 

3.4.2 Methods	
NMR experiments. The pure isotropic 2D approach is applied here to experimental datasets from two microcrystalline organic 
solids: L-tyrosine hydrochloride and ampicillin. For each sample a set of 2D BABA366 (Figure 3.52 and 3.53) or spin-diffusion461, 462 
spectra (Figure 3.54) was acquired at MAS rates ranging from 50 to 100 kHz, using a Bruker 0.7 mm room temperature HCN CP-
MAS probe at a magnetic field of 21.1 T corresponding to a 1H frequency of 900 MHz. For each sample, prior to acquisition the 
magic angle was set by maximising the T2’ of the proton signals at the fastest MAS rate, and the 90° pulse width was optimised. All 
the data were acquired with active temperature regulation to maintain the sample temperature at about 295 K across the range of 
spinning rates. For each MAS rate, the BABA 2D experiments were rotor-synchronised in the indirect dimension and the number or 
increments was adjusted to achieve a 𝑡𝑡/iX3 of 2.5 and 2.4 ms for L-tyrosine hydrochloride and ampicillin, respectively. For L-tyrosine 
hydrochloride the spin-diffusion 2D experiments were acquired with a 𝑡𝑡/iX3 of 14.6 ms and with a mixing time chosen to produce 
cross peaks with similar intensities throughout the series. More specifically, as the spinning rate was increased, the proton spin 
diffusion (PSD) mixing time was varied was also increased in order to compensate for slower spin diffusion at faster MAS rates. A 
States-TPPI acquisition scheme was used to obtain phase-sensitive two-dimensional spectra. 16-step phase cycling was used for 
BABA and EXSY (PSD) experiments. All experimental parameters are given in Tables 3.26-3.28. 

All spectra were phased, baseline corrected, their full integrals were normalised (either with respect to the total integral, for the 
DQ/SQ spectra, or with respect to a selected cross peak intensity, for the PSD spectra), and the spectra were scaled to the maxi-
mum amplitude of the 100 kHz spectrum of 1 in order to match the typical amplitudes of the generated training spectra. The exper-
imental DQ/SQ MAS spectra were sheared to an SQ/SQ representation prior to processing. The SQ/SQ representation is exactly 
equivalent to the DQ/SQ but gives an easier to visualise rendition of the two-dimensional lineshapes. No weighting function was 
applied prior to Fourier transformation. 

The samples of ampicillin, and L-tyrosine hydrochloride were purchased from Sigma Aldrich. Both samples were used without fur-
ther recrystallisation, after mild crushing with a mortar and a pestle. 
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Data generation. As described previously,463 we generate synthetic isotropic and variable MAS rate 1D spectra according to a theo-
retical description of the dependence of the spectra on the MAS rate. A MAS spectrum is composed of a sum of peaks 𝐼𝐼e3(𝜈𝜈), each 
resulting from the convolution between the corresponding Gaussian peak in the isotropic spectrum 𝐼𝐼f(𝜈𝜈) and a Gaussian-
Lorentzian sum (GLS) function: 

𝐺𝐺𝐺𝐺𝐺𝐺(𝜈𝜈;𝑤𝑤, 𝑝𝑝,𝑚𝑚) = (1 −𝑚𝑚)𝑒𝑒𝑒𝑒𝑒𝑒 ê−
4 𝑙𝑙𝑙𝑙(2) (𝜈𝜈 − 𝑝𝑝)'

𝑤𝑤' ë +
𝑚𝑚

1 + 4(𝜈𝜈 − 𝑝𝑝)'
𝑤𝑤'

, (3.14) 

where 𝑤𝑤 and 𝑝𝑝 are the width and position of the GLS function, respectively, and 𝑚𝑚 is the mixing factor describing the lineshape of 
the function (purely Gaussian with 𝑚𝑚 = 0, and purely Lorentzian with 𝑚𝑚 = 1). We set 𝑝𝑝 to be in the middle of the generated spec-
trum, such that convoluting the GLS with the isotropic peak does not affect the position after convolution. After the convolution, a 
MAS-dependent shift of the frequency of the peak 𝑠𝑠e3  was added to capture the residual shift observed in MAS spectra. The gener-
ation of a peak in an MAS spectrum is thus described as: 

𝐼𝐼e3
(𝜈𝜈) = FTÉ𝐼𝐼f(𝑡𝑡) ⋅ 𝑒𝑒%'gG43Ñ ∗ 𝐺𝐺𝐺𝐺𝐺𝐺/𝜈𝜈;𝑤𝑤e3, 𝑝𝑝,𝑚𝑚e33, (3.15) 

where FT[⋅] is the Fourier transform and ∗ denotes the convolution operation.  

Here, we generated spectra made up of 128 points with a time-domain sampling frequency of 3.2 kHz, corresponding to a frequen-
cy domain resolution of 25 Hz. 

1D isotropic spectra were generated as the sum of between 1 and 5 Gaussian peaks, with a linewidth sampled from a uniform 
distribution between 50 and 200 Hz (60% probability), between 100 and 500 Hz (20% probability), or between 100 and 1000 Hz 
(20% probability). Potential negative points in the isotropic spectra generated were set to zero. In order to randomise peak intensi-
ties, we rescaled the height of each isotropic peak to a random value between 0.1 and 1. 

For each pair of 1D isotropic spectra, 12 MAS rates were selected randomly between 50 and 100 kHz, and the corresponding MAS 
spectra were constructed as described in Equation 3.15, using a GLS function with parameters 𝑠𝑠e3, 𝑤𝑤e3  and 𝑚𝑚e3  following a sec-
ond-order MAS dependence subject to noise, 

𝑤𝑤e3 =
𝑤𝑤/

𝜔𝜔,
+
𝑤𝑤'

𝜔𝜔,
' + 𝛥𝛥𝛥𝛥, (3.16) 

𝑠𝑠e3 =
𝑠𝑠/
𝜔𝜔,

+
𝑤𝑤'

𝜔𝜔,
' + 𝛥𝛥𝛥𝛥, (3.17) 

𝑚𝑚e3 =
𝑚𝑚/
𝜔𝜔,

+
𝑚𝑚'

𝜔𝜔,
' . (3.18) 

For each peak, the value of 𝑤𝑤/ in Equation 3.16 was drawn from a uniform distribution in the range [107, 2⋅107] Hz2 with 60% prob-
ability, in the range [107, 5⋅107] Hz2 with 20% probability, and in the range [5⋅107, 108] Hz2 otherwise. 𝑤𝑤' was set to be 0 with 50% 
probability, or a random value between 1011 and 5⋅1011 Hz3. In addition, for each MAS rate the GLS width 𝑤𝑤e3  was randomly per-
turbed by a value drawn from a normal distribution Δ𝑤𝑤 ∼ 𝒩𝒩(0, 𝜎𝜎Q) Hz where 𝜎𝜎Q was set to be 5% of the range of width generated 
between the lowest and highest MAS rates with the selected values of 𝑤𝑤/ and 𝑤𝑤'. The value of 𝑠𝑠/ in Equation 3.17 was randomly 
sampled between -107 and 107 Hz2, and 𝑠𝑠' was set to zero with a 50% probability, or randomly sampled between -2⋅1010 and 
2⋅1010 Hz3. Δ𝑠𝑠 was randomly drawn from a normal distribution Δ𝑠𝑠 ∼ 𝒩𝒩(0, 25) Hz for each peak and each MAS rate. The GLS mixing 
was set to follow the inverse MAS dependence described in Equation 3.18 with a probability of 50% and with the value of 𝑚𝑚/ set to 
zero with a 20% probability, drawn from a uniform distribution in the range [0, 104] Hz with 20% probability, or drawn from a uni-
form distribution in the range [104, 5⋅104] Hz, and with 𝑚𝑚' set to zero with a 50% probability, or drawn from a uniform distribution 
in the range [108, 5⋅108] Hz2. Resulting values of 𝑚𝑚e3  above one were capped to one. Otherwise, the mixing 𝑚𝑚e3  was set to be 
either constant, monotonously increasing with random values between 0 and 1, or monotonously decreasing with random values 
between 0 and 1 with increasing MAS rate. These three dependences were considered with equal probability. 

  



NMR Crystallography in the Big Data Era: New Methods and Applications Powered by Machine Learning, PhD Thesis, M. Cordova 

149 

In addition, each peak in each 1D MAS spectrum was subject to phase distortion drawn from a normal distribution 𝑁𝑁(0, 0.05) with 
a 50% probability, and each isotropic peak was assigned a 30% chance to have a decreasing intensity in MAS spectra with increasing 
rate by multiplying the intensity of the corresponding peak in each MAS spectrum by a value linearly decreasing between 1 and a 
final value sampled uniformly in the range [0.3, 0.7]. 

After generating the pairs of isotropic and MAS spectra for each rate, convolution and rotation yields the final 2D isotropic and sets 
of MAS spectra. 

3.4.3 Results	and	Discussion	
In the absence of any extensive experimental databases of NMR spectra, training machine learning models on synthetic datasets 
(of shifts or spectra) has been to shown to be an efficient way forward.251, 252, 255, 259, 261, 262, 276, 279, 281-286, 291, 311, 365, 464 Here, the 
generation of synthetic three-dimensional datasets used to train a LSTM neural network was based on a protocol analogous to that 
used previously for two-dimensional VMAS datasets.400, 463 The overall approach is illustrated schematically in Figure 3.45. Specifi-
cally, synthetic two-dimensional pure isotropic spectra (ground truth) were generated as the outer product of two randomly gener-
ated one-dimensional isotropic spectra. The component one-dimensional isotropic spectra and associated VMAS spectra were 
generated assuming that the dipolar couplings lead to a MAS rate-dependent broadening, with a shape that is a sum of Gaussian 
and Lorentzian components, and that they also lead to a MAS rate-dependent shift in the peak positions.85, 400 We also include 
random parameter variations in peak positions, peak shapes, MAS dependences, phase and intensity errors, and noise, as de-
scribed previously in Ref. 463 but with an increased probability to generate broad isotropic peaks in order to promote diversity in 
the two-dimensional isotropic lineshapes.  

 

Figure 3.45. Representative example of a synthetic isotropic (red) two-dimensional spectrum (A) before and (B) after rotation and (C) a three-
dimensional dataset (blue) that consists of two-dimensional spectra at different MAS rates. In (A), the one-dimensional isotropic spectra whose 
outer product leads to this two-dimensional isotropic spectrum and their corresponding variable MAS rate spectra are also shown. Here the full 
dataset contains 12 spectra at different MAS rates but only six selected spectra are shown. The rotation angle applied here during the data genera-
tion process was 61.5°. 
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The corresponding synthetic three-dimensional datasets of two-dimensional spectra at variable MAS rates were generated by the 
outer product of the 2D VMAS datasets. To mimic varying degrees of correlation in the 2D lineshapes, the sets of isotropic and 
associated MAS spectra were then rotated with a probability of 50% by a random angle uniformly sampled between 0 and 90°, in 
order to produce lineshapes with elongated shapes along different orientations in the 2D spectra. (Examples are shown in Figure 
3.50). Each three-dimensional dataset generated contained 12 MAS spectra, each of which generated with a random MAS rate 
sampled from a uniform distribution between 50 and 100 kHz. Complete details about the data generation are given in Section 
3.4.2. An example of a synthetic MAS dataset and its isotropic counterpart typically used for the training of the model is shown in 
Figure 3.45. 

Note that the synthetic spectra generated here do not actually make any assumptions or follow any particular rules associated with 
a type of experimental 2D correlation spectrum. That is, they do not correspond to, e.g., COSY, or DQ/SQ spectra, with diagonal 
and/or cross peaks in well-defined positions. The synthetic spectra only consist of a set of two-dimensional peaks in randomised 
positions in the spectra, and with lineshapes that obey the rules described above. As such, the model could be applied to any 2D 
correlation spectrum. 

In the problem at hand, the LSTM type of network appears suitable since it has been shown to outperform other recurrent neural 
networks in processing time series,290, 293, 294, 451 and since it was shown to work well to predict 1D isotropic spectra.463 The only 
changes used here with respect to the model to predict 1D spectra is the use of two-dimensional convolutional layers, using 4 
layers instead of 6, and the use of only one model instead of a committee of 16 models. The latter being done in order to reduce 
the computational requirement at inference. (A link to the code used is given in Appendix VI). The model was trained on a total of 
1,000,000 datasets, corresponding to 12,000,000 spectra. To process each three-dimensional dataset of MAS spectra in order to 
obtain the isotropic 2D spectrum, the network is incrementally given the next MAS spectrum in the series in order of increasing 
MAS rate, and produces an output after each step, as described previously.463 The model was trained by minimising the mean 
absolute error (MAE) between the prediction after each step and the ground-truth two-dimensional isotropic spectrum. Detailed 
model and training parameters are given in Table 3.29. 

 

Figure 3.46. (A) Evolution of the loss function during model training. (B)-(D) MAE be-tween predictions and ground-truth isotropic spectra for 
1,024 samples of isotropic spectra with various (B) numbers of peaks, (C) MAS dependence (w1: first-order, w2: second-order), and (D) noise levels. 
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As before, due to the sparsity of signal in the two-dimensional isotropic spectra, we initially convoluted the entire target isotropic 
spectrum with a 2D Gaussian function with a width of 25 Hz and weighted the loss function by the maximum between 1 and 10 
times the value of the target isotropic spectrum (after convolution with the Gaussian) in order to promote the identification of 
signal in the spectra. After 200,000 sets of spectra, this convolution and weighting were removed for the rest of the training.  

Random noise was also introduced into the generated MAS two-dimensional spectra following the typical signal-to-noise ratios 
observed in experimental 1H-1H correlation spectra (between 10 and 100 for the most intense peak at 100 kHz). Figure 3.46A shows 
the evolution of the loss function during the model training. 

The model was evaluated by computing the MAE between the synthetic ground truth and the predicted isotropic spectra for sam-
ples generated with different parameters. We investigated the effect of (i) the number of peaks in the two-dimensional isotropic 
spectra, (ii) different MAS dependencies of the linewidths and MAS-dependent shift (first-order, second-order, mixed first- and 
second-order, or MAS independent), the range of MAS rates generated, the number of MAS spectra used, as well as the amount of 
noise introduced into the spectra themselves and into the linewidth and shift dependences. Mean absolute errors between predic-
tions and ground-truth isotropic spectra for 1,024 samples of isotropic spectra with various numbers of peaks, MAS dependences 
(first-order, second-order, combined, or constant), and noise levels are shown in Figure 3.46B-D, and some selected examples are 
shown in Figure 3.47 (with more examples given in Figure 3.51) in order to provide a more visual appreciation of the expected 
changes in the spectra corresponding to the changes in MAE shown in Figure 3.46. 

 

Figure 3.47. (A)-(C) Illustrative comparisons of synthetic highest MAS rate spectra (blue), predicted isotropic (red), and ground-truth isotropic 
(black) spectra with (A) the example of the synthetic dataset shown in Figure 3.45, (B) a MAS independent synthetic dataset, and (C) a synthetic 
dataset with a high noise level. In this example the spectra are made up of 128 x 128 points, that would correspond to a frequency range of 3 kHz 
with about 24 Hz/point digital resolution. 
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Figure 3.48. Spectra obtained from microcrystalline powdered samples of L-tyrosine hydrochloride (left) and ampicillin (right). (A) and (E) 100 kHz 
MAS spectra (blue) and isotropic spectra (red) inferred with the PIPNet model463 from a VMAS dataset of 1D spectra recorded at 36 rates between 
30 and 100 kHz (reproduced from Ref. 463). (C) and (G) corresponding 100 kHz MAS 2D 1H-1H DQ/SQ BABA spectra (blue) and pure isotropic 2D 1H-
1H DQ/SQ BABA spectra (red) inferred with the PIPNet2D model from a VMAS dataset of 11 and 9 2D spectra recorded at MAS rates between 50 
and 100 kHz, both after shearing to an SQ/SQ representation, for samples of L-tyrosine hydrochloride and ampicillin, respectively, and acquired with 
one rotor period of DQ recoupling. (D) and (H) expansions of the pure isotropic 2D spectra, and (C) and (F) expansions of the 100 kHz 2D spectra. In 
(B), (D), (F) and (H), the vertical dotted lines indicate the previously assigned proton shifts at 100 kHz MAS,400, 463 the blue dotted line the diagonal of 
the spectrum, and the green solid lines the observed double quantum correlations. 

Figure 3.48 shows the 1D and 2D isotropic spectra obtained from two experimental sets of variable MAS 1D and 2D spectra record-
ed on two small organic micro-crystalline samples of L-tyrosine hydrochloride (Figure 3.52) and ampicillin (Figure 3.53). Figures 
3.48C and 3.48G show the performance of the PIPNet2D model on sheared three-dimensional VMAS datasets for both compounds, 
consisting of two-dimensional BABA spectra recorded at 9 (ampicillin) and 11 (L-tyrosine hydrochloride) rates between 50 and 
100 kHz MAS. The sheared SQ/SQ representation is exactly equivalent to the DQ/SQ but gives an easier to visualise rendition of the 
two-dimensional lineshapes. Full details are given in Appendix VI. 

In Figures 3.48C and 3.48G, the marked increase in resolution achieved in both dimensions of the pure isotropic 2D spectra, as 
compared to that obtained in the corresponding spectra at 100 kHz MAS, is clearly visible. This increase is most prominent in the 
crowded spectral regions between 4 and 8 ppm both for L-tyrosine hydrochloride and ampicillin (expansions of these regions in 
both the pure isotropic and corresponding 100 kHz MAS 2D spectra are shown in Figures 3.48B, 3.48D, 3.48F, and 3.48H).  

We note in particular that, as discussed above, the model was not specifically trained to recognise sheared DQ/SQ spectra, so that, 
for example, the inferred spectra are not constrained to have any particular symmetry. Furthermore, the model can be equally well 
applied to the unsheared DQ/SQ spectra, and very similar results are obtained as shown in Figures 3.55 and 3.56. Rows from the 
pure isotropic and 100 kHz MAS spectra are also shown in Figure 3.55 for comparison. 

The two-dimensional pure isotropic spectra were found to retain the expected number of peaks from the known assignments, 
without displaying any significant artifacts or any additional peaks in unexpected regions of the spectra. This is impressive, especial-
ly if we consider the reduced quality of the datasets used here as compared to typical 1D MAS spectra. Compared with the one-
dimensional data used before, here the 2D spectra have lower signal-to-noise ratios and display t1 noise, and baseline and cross-
peak intensity distortions across the range of MAS rates. (Note for example that since the BABA mixing time is rotor synchronised, 
the mixing time systematically decreases as the MAS rate increases, which will lead to variations in cross-peak intensities.)  
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Figure 3.49. Spectra obtained from microcrystalline powdered samples of L-tyrosine hydrochloride. (A) and (B) 100 kHz MAS 2D 1H-1H spin-diffusion 
spectra (blue) and pure isotropic 2D 1H-1H spin-diffusion spectra (red) inferred with the PIPNet2D model from a VMAS dataset of 6 2D spectra 
recorded at the MAS rates between 50 and 100 kHz. In the VMAS experiments, the PSD mixing time was varied from 5 to 10 ms as the spinning rate 
was increased to maintain similar cross-peak intensities across the dataset (as described in Section 3.4.2). (C) and (D) expansions of the 100 kHz and 
pure isotropic 2D spectra. (E) to (H) horizontal cross sections extracted for F1 SQ frequencies of 4.5, 5.5, 6.7, and 7.7 ppm. In (C) and (D) the vertical 
dotted lines indicate the previously assigned proton shifts at 100 kHz MAS,400, 463 the blue dotted line the diagonal of the spectrum, and the green 
squares the observed spin-diffusion correlations. 

Another important point is that the isotropic two-dimensional peaks in the inferred spectra seem to retain the lineshape character-
istics present in the 100 kHz MAS spectra, arising possibly from inhomogeneous contributions, correlated two-dimensional line-
shapes,465-471 or magnetic susceptibility effects.206, 459, 460, 472, 473 PIPNet2D is therefore not simply identifying potential peaks and 
replacing them with uniformly narrow shapes. This can be clearly seen for protons H2 and H17/H18 of ampicillin as well as the 
labile protons of L-tyrosine hydrochloride. Overall, the spectra obtained using the 1D PIPNet model and PIPNet2D were found to be 
coherent, with good agreement between the 1D isotropic spectra obtained from a set of 1D MAS spectra using PIPNet and the 
projection of the 2D isotropic spectra obtained here for L-tyrosine hydrochloride and ampicillin, respectively. We do note that the 
2D model does not yield the same degree of line narrowing in the projections of Figures 3.57 and 3.58 as compared to the 1D mod-
el. While the increased sources of errors discussed above could contribute to the lower level of narrowing achieved here compared 
to the 1D model, we do not expect them to be the limiting factor since they were explicitly taken into account in the model train-
ing. This suggests that the synthetic datasets used here do not yet fully capture the whole complexity of the experimental 2D spec-
tra, and clearly indicates that further progress can be made in the future. 

Figure 3.49 shows the performance of the PIPNet2D model on a three-dimensional PSD VMAS dataset for L-tyrosine hydrochloride 
(Figure 3.54), consisting of two-dimensional 1H-1H spin-diffusion spectra recorded at 6 MAS rates between 50 and 100 kHz MAS. In 
Figure 3.49D the resolution achieved in both dimensions of the pure isotropic 2D spectrum is evident and allows the clear identifi-
cation of correlations between, for example, H6 and H10 or H2 and H5, that were difficult to clearly observe in the corresponding 
PSD spectrum at 100 kHz MAS, shown in Figure 3.49C.  
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The horizontal cross sections shown in Figure 3.49E-H are an additional direct illustration of the enhanced resolution of the pure 
isotropic 2D spectrum over the corresponding 100 kHz MAS 2D spectrum. PIPNet2D is expected to perform best for the cross-
peaks, as compared to the diagonal peaks, since the integral normalisation of the 3D dataset was done with respect to a selected 
cross peak intensity. 

In the VMAS experiments, the PSD mixing time was varied from 5 to 10 ms as the spinning rate was increased in order to compen-
sate for slower spin diffusion at faster MAS rates and to maintain similar cross-peak intensities across the dataset (as described in 
Section 3.4.2). Since the spin diffusion rates between different spin pairs will have slightly different MAS rate dependencies,474 this 
procedure can-not be perfect and will introduce a source of error. 

That the model can be successfully directly applied to DQ/SQ (whether sheared or not) or to PSD datasets illustrates that the PIP-
Net2D model is quite robust and can be used quite generally to obtain two-dimensional 1H-1H correlation spectra with higher reso-
lution in both dimensions from 3D VMAS datasets, and that it is not restricted to inferences for a specific type of two-dimensional 
spectra.  

Across the three sets of 2D spectra shown here, PIPNet2D reduced observed linewidths by a factor of 3.33 ± 0.10 in both dimen-
sions compared to 100 kHz MAS spectra (see Table 3.30). 

3.4.4 Conclusion	
In this section we have introduced PIPNet2D, a deep learning model to increase resolution in two-dimensional NMR spectroscopy 
by predicting pure isotopic two-dimensional correlation spectra of solids from three-dimensional datasets of 2D spectra acquired at 
variable MAS rates. We have illustrated the method by obtaining isotropic spectra from experimental datasets on two different 
microcrystalline organic solids. The resolution obtained is very significantly improved compared with the 100 kHz MAS spectra. The 
residual linewidths or the quantitative character of the inferred spectra (Figure 3.56) can in principle be limited by several factors. 
Some are intrinsic to the samples, such as structural disorder or magnetic susceptibility broadening, and others might be due to 
experimental imperfections such as systematic noise or cross-peak intensity variations, MAS instabilities or poor shimming, or 
limitations in the model, such as incomplete descriptions of the lineshape and MAS-dependence. All these factors will be the sub-
ject of future study.  

For example, we expect that the use of more robust pulse sequences for the DQ/SQ type experiments, that might better remove 
some of the experimental imperfections, should potentially improve the robustness of the model.475, 476 Further improved results 
might also be obtained by training models specifically on a given type of correlation experiment. 

In conclusion, the model presented here provides significant improvement in the resolution of 2D 1H-1H DQ/SQ and spin-diffusion 
spectra, and we expect that the approach can be used to develop models for other two-dimensional correlation experiments in the 
future. 
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3.4.5 Appendix	VI	
The NMR raw data are available from https://doi.org/10.24435/materialscloud:xj-5f in JCAMP-DX version 6.0 standard format and 
original TopSpin format, as well as an archived version of the code and the pre-trained model, used to obtain the results presented 
in this work. The code and pre-trained model are also available in the GitHub repository https://github.com/manucordova/PIPNet. 
All data and code are available under the license CC-BY-4.0 (Creative Commons Attribution-ShareAlike 4.0 International). The exact 
pulse sequences and full parameter sets used are available with the raw data. 

Table 3.26. Experimental details of the BABA VMAS 3D dataset acquired for L-tyrosine hydrochloride. 

L-tyrosine 
hydrochloride 

VT (K) 90° RF 
amplitude 
(kHz) 

d1 
(s) 

Number of 
co-added 
transients 

Number of 
FID points: 
F2/F1 

SW (kHz): 
F2/F1 

Size of real 
spectrum: 
F2/F1 

DQ recoupling 
time (μs) 

Experimental 
time  

100 kHz 285 294 2 16 4096/100 90.9/20 4096/1024 10 57 min 

96 kHz 285 294 2 16 4096/96 90.9/19.2 4096/1024 10.42 54 min 

94 kHz 285 294 2 16 4096/94 90.9/18.8 4096/1024 10.64 54 min 

90 kHz 285 294 2 16 4096/90 90.9/18 4096/1024 11.11 51 min 

88 kHz 285 294 2 16 4096/110 90.9/22 4096/1024 11.36 1h2min 

80 kHz 290 294 2 16 4096/100 90.9/20 4096/1024 12.5 57 min 

78 kHz 290 294 2 16 4096/130 90.9/26 4096/1024 12.82 1h14min 

72 kHz 290 294 2 16 4096/120 90.9/24 4096/1024 13.89 1h8min 

66 kHz 290 294 2 16 4096/110 90.9/22 4096/1024 15.15 1h2min 

60 kHz 295 294 2 16 4096/100 90.9/20 4096/1024 16.67 57 min 

52 kHz 295 294 2 16 4096/130 90.9/26 4096/1024 19.23 1h14min 

 

Table 3.27. Experimental details of the BABA VMAS 3D dataset acquired for ampicillin. 

Ampicillin VT (K) 90° RF 
amplitude 
(kHz) 

d1(s) Number of 
co-added 
transients 

Number of 
FID points: 
F2/F1 

SW (kHz): 
F2/F1 

Size of real 
spectrum: 
F2/F1 

DQ recoupling 
time (μs) 

Experimental time  

100 kHz 285 294 2 16 4096/160 90.9/33.3 4096/1024 10 1h31min 

90 kHz 285 294 2 16 4096/144 90.9/30 4096/1024 11.1 1h22min 

85 kHz 290 294 2 16 4096/136 90.9/28.3 4096/1024 11.76 1h17min 

80 kHz 290 294 2 16 4096/128 90.9/26.6 4096/1024 12.5 1h13min 

75 kHz 290 294 2 16 4096/120 90.9/25 4096/1024 13.3 1h2min 

70 kHz 290 294 2 16 4096/168 90.9/35 4096/1024 14.28 1h35 min 

60 kHz 290 294 2 16 4096/144 90.9/30 4096/1024 16.67 1h22min 

55 kHz 290 294 2 16 4096/132 90.9/27.5 4096/1024 18.18 1h15min 

50 kHz 290 294 2 16 4096/120 90.9/25 4096/1024 20 1h8min 
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Table 3.28. Experimental details of the PSD VMAS 3D dataset acquired for L-tyrosine hydrochloride. 

L-tyrosine 
hydrochloride 

VT (K) 90° RF 
amplitude 
(kHz) 

d1(s) Number of 
co-added 
transients 

Number of 
FID points: 
F2/F1 

SW (kHz): 
F2/F1 

Size of real 
spectrum: 
F2/F1 

DQ recoupling 
time (ms) 

Experimental 
time  

100 kHz 285 294 3 8 8192/366 227.3/12.5 16384/1024 10 2h31 min 

90 kHz 290 294 3 8 8192/366 227.3/12.5 16384/1024 9 2h31 min 

80 kHz 290 294 3 8 8192/366 227.3/12.5 16384/1024 6 2h31 min 

70 kHz 290 294 3 8 8192/366 227.3/12.5 16384/1024 6 2h31 min 

60 kHz 290 294 3 8 8192/366 227.3/12.5 16384/1024 6 2h31min 

50 kHz 290 294 3 8 8192/366 227.3/12.5 16384/1024 5 2h31 min 
 

Table 3.29. Model and training parameters for PIPNet2D. 

Parameter Value 

Number of Conv-LSTM layers 4 

Number of CNN filters (channels) per Conv-LSTM layer 64 

Kernel size of Conv-LSTM layers 5 

Number of filters (channels) for the output CNN 1 

Kernel size of output CNN layer 5 

Batch size 8 

Number of training batches per epoch 500 

Number of evaluation batches per epoch 100 

Number of epochs 250 

Optimiser Adam 

Initial learning rate 10-3 

Learning rate scheduler Reduction on plateau of the evaluation loss by a factor 0.5, with 
patience of 10 epochs 
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Table 3.30. Full width at half maximum (FWHM) values of selected peaks in 100 kHz MAS and isotropic (PIP) spectra. The values were obtained by 
fitting Gaussian functions to selected rows or columns in the spectra . 

L-tyrosine hydrochloride BABA Ampicillin BABA L-tyrosine hydrochloride PSD 

F1 
(ppm) 

F2 
(ppm) 

FWHM F1 
100kHz / 
PIP (ppm) 

FWHM F2 
100kHz / 
PIP (ppm) 

F1 
(ppm) 

F2 
(ppm) 

FWHM F1 
100kHz / PIP 
(ppm) 

FWHM F2 
100kHz / PIP 
(ppm) 

F1 
(ppm) 

F2 
(ppm) 

FWHM F1 
100kHz / PIP 
(ppm) 

FWHM F2 
100kHz / PIP 
(ppm) 

2.5 12.5 0.56/0.09 0.36/0.14 1.8 10.2 0.52/0.11 0.48/0.09 10.0 12.5 0.19/0.09 0.18/0.10 

6.6 12.5 0.34/0.08 0.27/0.10 10.1 10.1 0.79/0.43 0.58/0.30 12.4 9.9 0.17/0.09 0.18/0.07 

10.0 12.4 0.35/0.19 0.28/0.18 4.8 10.1 0.61/0.27 0.52/0.24 7.6 9.9 0.35/0.17 0.28/0.14 

5.1 12.4 0.47/0.20 0.28/0.24 7.5 10.0 0.57/0.29 0.44/0.21 7.3 9.9 0.33/0.10 0.26/0.08 

4.4 12.3 0.43/0.16 0.29/0.09 10.1 7.5 0.67/0.16 0.48/0.14 6.5 9.9 0.25/0.06 0.23/0.07 

2.4 12.3 0.36/0.08 0.31/0.12 4.6 7.4 0.54/0.24 0.50/0.31 10.0 7.7 0.26/0.12 0.37/0.14 

6.6 9.9 0.49/0.11 0.29/0.19 6.9 7.1 0.76/0.23 1.22/0.35 5.4 7.6 0.31/0.12 0.37/0.14 

5.1 9.9 0.39/0.11 0.30/0.19 0.6 7.1 0.86/0.17 0.72/0.17 6.6 7.6 0.38/0.14 0.53/0.17 

4.4 9.9 0.44/0.13 0.31/0.17 5.2 7.0 0.74/0.31 0.64/0.26 5.0 7.6 0.50/0.11 0.48/0.15 

7.5 9.9 0.80/0.10 0.32/0.29 4.0 6.5 0.47/0.14 0.44/0.13 4.6 7.6 0.39/0.06 0.47/0.12 

2.4 9.9 0.76/0.30 0.18/0.06 5.2 6.5 0.50/0.23 0.61/0.25 5.1 7.3 0.31/0.11 0.35/0.10 

12.3 9.9 0.40/0.07 0.28/0.17 1.7 6.5 0.42/0.12 0.39/0.13 6.6 7.3 0.29/0.12 0.34/0.12 

9.9 9.9 0.36/0.15 0.26/0.05 7.0 5.2 0.75/0.29 0.51/0.26 4.3 7.3 0.35/0.08 0.33/0.07 

12.3 7.6 0.25/0.06 0.45/0.10 0.6 5.2 0.49/0.17 0.41/0.21 9.9 7.3 0.23/0.07 0.40/0.07 

7.6 7.6 0.51/0.17 0.46/0.33 1.5 5.0 0.40/0.15 0.38/0.12 7.6 6.6 0.56/0.12 0.39/0.14 

4.4 7.6 0.73/0.41 0.51/0.36 10.1 4.7 0.54/0.19 0.43/0.16 4.4 6.6 0.58/0.17 0.34/0.12 

2.4 7.6 0.59/0.11 0.47/0.17 7.4 4.6 0.61/0.38 0.45/0.17 7.3 6.6 0.29/0.12 0.28/0.13 

10.0 7.5 0.52/0.12 0.60/0.24 1.8 4.2 0.34/0.19 0.30/0.14 9.9 6.5 0.20/0.05 0.23/0.05 

6.5 7.2 0.53/0.11 0.46/0.17 10.1 4.1 0.45/0.18 0.54/0.12 2.6 5.5 0.34/0.08 0.32/0.05 

4.9 7.2 1.23/0.22 0.55/0.19 6.4 4.1 0.38/0.14 0.42/0.14 7.6 5.4 0.35/0.15 0.29/0.10 

4.4 7.2 0.70/0.19 0.64/0.34 0.6 4.0 0.32/0.11 0.25/0.10 4.6 5.4 0.48/0.12 0.45/0.12 

10.0 6.7 0.45/0.12 0.35/0.10 1.4 3.8 0.33/0.22 0.29/0.21 2.5 5.1 0.42/0.10 0.77/0.11 

12.3 6.6 0.39/0.09 0.29/0.07 7.1 1.7 0.49/0.18 0.51/0.08 7.3 5.1 0.29/0.09 0.36/0.09 

7.2 6.6 0.48/0.12 0.38/0.11 10.0 1.7 0.53/0.15 0.38/0.11 4.5 5.1 0.83/0.35 0.61/0.20 

4.3 6.6 0.54/0.09 0.39/0.15 5.2 1.7 0.41/0.22 0.34/0.17 7.6 4.6 0.39/0.06 0.29/0.05 

2.4 6.6 0.59/0.07 0.34/0.08 4.0 1.7 0.34/0.22 0.31/0.14 5.3 4.6 0.41/0.18 0.43/0.16 

5.2 6.6 0.59/0.16 0.35/0.18 1.6 1.7 0.46/0.28 0.40/0.25 2.5 4.5 0.45/0.13 0.53/0.14 

5.1 5.4 0.50/0.13 0.35/0.12 0.6 1.7 0.52/0.25 0.39/0.22 5.1 4.4 0.40/0.16 0.58/0.22 

2.5 5.4 0.50/0.15 0.36/0.14 3.8 1.4 0.33/0.19 0.31/0.18 6.6 4.3 0.30/0.12 0.44/0.17 

10.0 5.3 0.57/0.11 0.52/0.13 1.6 0.7 0.60/0.25 0.49/0.27 7.3 4.3 0.28/0.06 0.30/0.07 

4.3 5.3 0.60/0.07 0.49/0.16 0.6 0.7 0.61/0.35 0.48/0.29 5.4 2.5 0.29/0.07 0.32/0.09 

6.5 5.2 0.53/0.13 0.47/0.23 2.7 0.6 0.77/0.16 0.45/0.14 5.1 2.5 0.38/0.08 0.35/0.10 

12.4 5.2 0.50/0.13 0.76/0.14 7.0 0.6 0.66/0.14 0.44/0.17 4.5 2.5 0.52/0.12 0.42/0.14 

5.3 5.1 0.70/0.15 0.62/0.15 5.1 0.6 0.52/0.27 0.41/0.21     

7.3 5.1 0.53/0.13 0.55/0.19         

4.3 4.5 0.67/0.11 0.56/0.29         

7.5 4.5 0.90/0.30 0.56/0.31         

12.2 4.4 0.53/0.08 0.84/0.08         

2.4 4.4 0.68/0.22 0.60/0.33         

6.5 4.4 0.71/0.13 0.55/0.22         

12.4 2.5 0.45/0.10 0.51/0.07         

4.4 2.5 0.67/0.22 0.45/0.23         

7.5 2.4 0.72/0.12 0.40/0.17         

5.3 2.4 0.57/0.14 0.38/0.17         
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Figure 3.50. Representative examples of synthetic isotropic two-dimensional spectra (A) before (black) and (B) after (red) rotation. The rotation 
angles applied here during the data generation process were 47°, 80.7°, 12.8°, 0°, 21.3°, 17.9°, and 0°. 
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Figure 3.51. Representative sets of examples of synthetic isotropic two-dimensional spectra where the fastest 2D spectrum used in the series is 
indicated in blue, the PIPNet2D inferred spectrum is shown in red, and the ground truth is shown in black. (A) Example of synthetic data without 
(top) and with (bottom) MAS-dependent broadening. (B). Example of synthetic data in which the highest MAS 2D spectrum used in the series is 
99 kHz (top) and 75 kHz (bottom). (C) Example of synthetic data with a high level of noise. (D) Example of synthetic data in which 16 (top), 12 (mid-
dle), and 6 (bottom) 2D spectra are used in the series. (E) Example of synthetic data with a first order MAS-dependence (top) and a second order 
MAS-dependence (bottom). 
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Figure 3. 52. 3D dataset of L-tyrosine hydrochloride consisting of 11 unsheared 2D 1H-1H DQ/SQ BABA spectra acquired at MAS rates of 50, 62, 66, 
72, 78, 80, 88, 90, 94, 96, and 100 kHz (top left to bottom right). 
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Figure 3.53. 3D dataset of ampicillin consisting of 9 unsheared 2D 1H-1H DQ/SQ BABA spectra acquired at MAS rates of 50, 55, 60, 70, 75, 80, 85, 90, 
and 100 kHz (top left to bottom right). 

 

Figure 3.54. 3D dataset of L-tyrosine hydrochloride consisting of 6 unsheared 2D 1H-1H spin-diffusion spectra acquired at MAS rates of 50, 60, 70, 
80, 90, and 100 kHz (top left to bottom right). 
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Figure 3.55. (A) and (B) 100 kHz MAS 2D 1H-1H DQ/SQ BABA spectra (blue) and pure isotropic 2D 1H-1H DQ/SQ BABA spectra (red) inferred with the 
PINet2D model from a VMAS dataset of 11 and 9 2D spectra recorded at the MAS rates between 50 and 100 kHz, both before shearing to an SQ/SQ 
representation, for samples of L-tyrosine hydrochloride and ampicillin, respectively. (C) and (D) expansions of the pure isotropic 2D spectra and 
100 kHz 2D spectra. In (C) and (D) the vertical dotted lines indicate the previously assigned proton shifts at 100 kHz MAS and the blue dotted line 
the diagonal of the spectrum. In (A) and (B) the horizontal lines indicate the cross sections plotted in (E) and (F). 
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Figure 3.56. Pure isotropic 2D 1H-1H DQ/SQ BABA spectra inferred with the PINet2D model from a VMAS dataset of 11 and 9 2D spectra recorded at 
the MAS rates between 50 and 100 kHz, (A) and (C) after shearing to an SQ/SQ representation and (B) and (D) before shearing to an SQ/SQ repre-
sentation, for samples of L-tyrosine hydrochloride and ampicillin, respectively. (B) and (D) are sheared to an SQ/SQ representation after inference. 

 

Figure 3.57. Spectra obtained from microcrystalline powdered samples of L-tyrosine hydrochloride. (A) and (B) 100 kHz MAS spectra (blue) and 
isotropic spectra (red) inferred with the PIPNet model463 from a VMAS dataset of 1D spectra recorded at 36 rates between 30 and 100 kHz. (C) Sum 
projection along F1 of the unsheared 100 kHz MAS 2D 1H-1H DQ/SQ BABA spectrum (blue), and sum projections along F1 of the pure isotropic 2D 1H-
1H DQ/SQ BABA spectra inferred with the PIPNet2D model from a VMAS dataset of 11 2D spectra recorded at the MAS rates between 50 and 
100 kHz, (D) before and (E) after shearing to an SQ/SQ representation. 
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Figure 3.58. Spectra obtained from microcrystalline powdered samples of ampicillin. (A) and (B) 100 kHz MAS spectra (blue) and isotropic spectra 
(red) inferred with the PIPNet model463 from a VMAS dataset of 1D spectra recorded at 36 rates between 30 and 100 kHz. (C) Sum projection along 
F1 of the unsheared 100 kHz MAS 2D 1H-1H DQ/SQ BABA spectrum (blue), and sum projections along F1 of the pure isotropic 2D 1H-1H DQ/SQ BABA 
spectra inferred with the PIPNet2D model from a VMAS dataset of 11 2D spectra recorded at the MAS rates between 50 and 100 kHz, (D) before 
and (E) after shearing to an SQ/SQ representation. 

 

Figure 3.59. (A) and (B) 50 kHz MAS 2D 1H-1H DQ/SQ BABA spectra after shearing to an SQ/SQ representation, for samples of L-tyrosine hydrochlo-
ride and ampicillin. (C) and (D) 2D peak volumes measured from the 2D 1H-1H DQ/SQ BABA spectra as a function of the MAS rate (blue) and for the 
inferred pure isotropic 2D spectra (red). In (A) and (B) the 2D peaks chosen for volume measurements are indicated with purple dotted boxes. 
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 NMR	 crystallography	 of	 amor-
phous	solids	
4.1 Introduction	
As mentioned in Chapter 1, structure-activity relations drive most areas of modern chemistry. For example, the design of efficient 
and safe pharmaceutical drugs can be rationalised through the understanding of their atomic-level structure. This can greatly ac-
celerate the search for new compounds with specific properties.477-479 Tools to determine atomic-level structures have thus be-
come a vital part of modern chemistry research. Whereas X-Ray diffraction (XRD) is the established gold standard when single 
crystals are available, atomic-level structure determination is much more challenging in powder samples, and even more so if the 
structures are disordered. Indeed, while there has been much progress towards complete structure determination in crystalline 
powders, by powder XRD480, 481 or particularly from solid-state nuclear magnetic resonance (NMR) approaches,53, 73, 308 the disorder 
inherent to amorphous solids makes structure determination elusive. 

For example, the structure, accessible surface area, and stability of amorphous drug formulations are of high current interest,482-487 
particularly because the bioavailability and/or dissolution rate of poorly soluble compounds in crystalline forms is often a severe 
limitation on the chemical space available for development of active pharmaceutical ingredients (APIs), and because the uptake of 
poorly soluble drugs can be significantly enhanced in amorphous formulations. In particular hydrated amorphous phases, wherein 
water molecules closely interact with the drug through hydrogen bonds, have been investigated for several systems of pharmaceu-
tical interest.488-490 However, in the absence of methods for atomic-level structure determination, it is not possible to rationalise 
the factors that lead to the stabilisation of amorphous forms, which is a crucial step in developing stable formulations. 

Solid-state NMR is among the most popular methods to study the structure of amorphous materials. While two-dimensional corre-
lation experiments are able to identify intermolecular contacts between atom pairs,56, 382, 491 obtaining complete atomic-level struc-
tures is a challenge due to the disordered molecular environments present in amorphous solids. In particular, disorder leads to 
broadening of NMR signals, which results in significant overlap between the peaks associated to different atomic sites. Consequent-
ly, this increases the need for multidimensional experiments, which are more difficult to obtain than for crystalline materials due to 
the lower sensitivity associated with broader lineshapes. The assignment of chemical shifts for amorphous compounds is thus often 
challenging. Recent advances in dynamic nuclear polarisation (DNP)413, 491, 492 have resulted in remarkable gains of sensitivity in 
crystalline and amorphous molecular solids, leading to a significant reduction in experimental time required to obtain multi-
dimensional NMR spectra of solids. 

In addition to these experimental considerations, modelling amorphous structures of materials generally requires the use of mo-
lecular dynamics (MD) simulations of large cells typically containing hundreds of molecules. This results in a prohibitive cost for 
computing chemical shifts using DFT for such large systems. Several approaches have been introduced in order to circumvent this 
drawback, some of which consist in using small (hundreds of atoms) amorphous system sizes,66, 67, 74, 180, 493 isolating local environ-
ments for chemical shift computation,60, 165, 494, 495 or including the effect of long-range interactions by approximate methods.127, 128, 

496-498 While these methods do enable the computation of chemical shifts at the DFT level of theory for amorphous solids, the com-
putational cost remains significant, and prevents large-scale chemical shift computations. 
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Structural disorder has been investigated in proteins by a combination of solid-state NMR, structure generation algorithms and 
chemical shift predictions.499-501 However, such studies have relied on models of chemical shifts in proteins based in part on the 
primary and/or secondary structure.248, 251, 252, 502 Such models are thus not directly applicable to other molecular solids. However, 
ShiftML provides a method to perform large-scale chemical shift computations,176, 261, 365 allowing the direct comparison between 
large ensembles of MD structures and NMR experiments measured for amorphous samples. 

In Section 4.2, we determine the atomic-level structure of the hydrated amorphous drug AZD5718 (Atuliflapon) by combining 
dynamic nuclear polarisation-enhanced solid-state NMR experiments with predicted chemical shifts for MD simulations of large 
systems. From these amorphous structures we then identify H-bonding motifs and relate them to local intermolecular complex 
formation energies. 

As a proof of concept, the approach presented in Section 4.2 uses a single chemical shift to focus on the determination of the hy-
drogen bonding motifs in the structure. In Section 4.3, we extend the generality of this method, and we determine the atomic-level 
ensemble structure of the amorphous form of the drug AZD4625 by combining solid-state NMR experiments with molecular dy-
namics (MD) simulations and machine-learned chemical shifts. By considering the combined shifts of all 1H and 13C atomic sites in 
the molecule, we determine the structure of the amorphous form by identifying an ensemble of local molecular environments that 
are in agreement with the experimental observations. We then extract preferred conformations and intermolecular interactions in 
the amorphous sample, and examine the structure in terms of the hydrogen bonding and conformational factors that stabilise the 
amorphous form of the drug. 
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4.2 Structure	determination	of	an	amorphous	drug	through	large-scale	NMR	
predictions	

This section has been adapted with permission from: Cordova, M.; Balodis, M.; Hofstetter, A.; Paruzzo, F.; Lill, S. O. N.; Eriksson, E. 
S. E.; Berruyer, P.; Simões de Almeida, B.; Quayle, M. J.; Norberg, S. T.; Svensk Ankarberg, A.; Schantz, S.; Emsley, L., Structure de-
termination of an amorphous drug through large-scale NMR predictions. Nature Communications 2021, 12 (1), 2964. (post-print) 

My contribution was to develop and apply the method and to analyse the results obtained. I also wrote the manuscript, with con-
tributions of all other authors. 

4.2.1 Introduction	
AZD5718 (Atuliflapon) is a 5-lipooxygenase activating protein (FLAP) inhibitor that was found promising for the treatment of dis-
eases involving chronic inflammation, such as asthma.503, 504 In this section, we investigate the structure of anhydrous crystalline 
AZD5718503, 504 form A, by combining measured 1H, 13C and 15N chemical shifts obtained using DNP-enhanced NMR experiments 
from a powder sample, CSP, and DFT chemical shift computations. The structure is validated with that obtained from single-crystal 
XRD. We then model the hydrated amorphous drug with different water contents using MD simulations and obtain predicted NMR 
spectra for large structural ensembles using machine learned chemical shifts. We then analyse the ensembles to identify the differ-
ent hydrogen bonding motifs present in the amorphous structures, by comparing the experimental and predicted chemical shift 
distributions associated with each structural motif. From the amorphous structures we also compute the interaction energy be-
tween AZD5718 molecules and their environment, and we relate the energies to the local hydrogen bonding motifs. 

4.2.2 Methods	
NMR experiments. Both crystalline and amorphous forms of AZD5718 were provided by AstraZeneca. The samples were stored at 
equilibrium with the environment at approximately 22°C and 20% relative humidity prior to NMR analysis. The room temperature 
NMR experiments were performed on Bruker Ascend 500 wide-bore Avance III, Bruker 800 Ultrashield plus narrow-bore and 900 
US2 wide-bore Avance Neo NMR spectrometers. DNP-enhanced solid-state NMR experiments were performed on a 400 MHz 
Avance III HD Bruker spectrometer. The spectrometer is equipped with a low temperature magic angle spinning (LTMAS) 3.2 mm 
probe and is connected through a corrugated waveguide to a 263 GHz gyrotron capable of outputting ca. 5-10 W of continuous 
wave microwaves. All chemical shifts were referenced to alanine. For more details including experimental setup and the sample 
preparation see Appendix VII. 

NMR crystallography. The candidate crystal structures were generated using a Monte-Carlo parallel tempering method505 followed 
by lattice energy minimisation using an internally developed force-field. The 190 most stable candidates were selected for full DFT-
D optimisation at the PBE level of theory. Chemical shifts for the ten lowest energy candidates were computed at the PBE0 level of 
theory using the fragment- and cluster-based approach developed by Hartman et al.126-128 The conversion from isotropic shielding 
to chemical shift was performed by linear regression between the obtained shieldings and experimental isotropic chemical shifts 
for each candidate. The analysis of the positional uncertainty of the crystal structure was performed as described by Hofstetter et 
al.175 by computing shifts of perturbed crystal structures obtained through low-temperature MD simulations of candidate #1 and 
relating chemical shift deviations to positional deviations. Chemical shift computations were also performed on an extended set of 
the 81 following lowest energy candidates, but did not lead to lower shift RMSEs than candidate #1. Further computational details 
are given in Appendix VII. 

Molecular dynamics simulation of amorphous structures. The amorphous structure of AZD5718 was modelled by carrying out MD 
simulations on periodic amorphous cells containing 128 AZD5718 molecules and a variable number of water molecules. Five cells of 
each water content; 0, 0.5, 1.0 and 2.0% (w/w, 0, 16, 32 and 65 water molecules in each cell, respectively), and two cells of 4% 
water (w/w, 132 water molecules in each cell) were generated. After equilibration for 1 ns using the canonical NVT ensemble at 
298 K followed by 10 ns using the isothermal-isobaric ensemble (NPT) at 298 K and 1 bar, production simulations were carried out 
for 600 ns using the NPT ensemble at 298 K and 1 bar. Models of the amorphous structure were obtained by extracting 1,001 even-
ly spaced snapshots from the last 100 ns of each MD simulation, corresponding to 100 ps time steps between the extracted snap-
shots. Further computational details are given in Appendix VII. 
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Chemical shift predictions and hydrogen bonding motifs. The predicted chemical shieldings of all snapshots extracted from the 
MD simulations (168,799,631 total shifts) were obtained using ShiftML version 1.2.176, 261 The conversion from predicted shieldings 
to isotropic shifts is described in Appendix VII. 

H-bonded N-H groups were identified in 11 snapshots from each MD simulation, spaced by 10 ns each. The corresponding bonding 
motifs were extracted by defining hydrogen bonds as N-H···X (X = O, N) patterns with an N-H-X angle above 130° and H-X bond 
length shorter than 2.5 Å, typically corresponding to moderate to strong hydrogen bonds in organic solids.506 If the first H-bonded 
neighbour was found to be a water molecule, then secondary water-bound neighbours were searched using the same criteria to 
define hydrogen bonds. 

In addition, the N-H groups yielding predicted 1H chemical shifts above 11 ppm were identified within each snapshot of the 4% 
water MD simulations (2,002 total snapshots), and the corresponding hydrogen bonding patterns were extracted as described 
above. 

Formation energies in the amorphous simulations. The formation energy of the intermolecular complex comprising one molecule 
of AZD5718 and its local environment was computed for each molecule in the same snapshots used to identify all the hydrogen 
bonding motifs (11 snapshots per simulation). The environment of a molecule was defined as all molecules having at least one 
atom within 5 Å from any atom in the probe molecule. The formation energy was computed as the difference between the energy 
of the total intermolecular complex and the energy of the isolated environment. The obtained formation energy thus contains both 
the ground-state energy of the isolated probe molecule, which includes its conformational energy, and the interaction energy 
between the probe molecule and its environment. The single-point energy computations were performed at the DFTB3-D3H5 level 
of theory using the 3ob-3-1 parameter set and the DFTB+ software version 20.1.325, 326, 349-351 

 

Figure 4.1. Solid-state NMR experiments. (A) 1H, (B) 13C and (C) 15N MAS NMR spectra of crystalline (blue) and amorphous (red) AZD5718. (D) 13C-13C 
DNP-enhanced solvent suppressed INADEQUATE and (E), 1H-13C HETCOR spectra of crystalline AZD5718. The dashed black line in (A) indicates the 
chemical shift assigned to the proton bound to N6 in the amorphous sample. In (D), the 13C peaks denoted by a star at 60 and 170 ppm are attribut-
ed to impurities introduced during the NMR sample preparation. The chemical structure and labelling scheme of AZD5718 is shown in (E). 
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4.2.3 Results	and	Discussion	
NMR crystallography. No polymorphism was observed for anhydrous crystalline AZD5718, nor were crystalline hydrates identified. 
The crystal structure of anhydrous crystalline AZD5718 Form A was determined using a chemical shift-based NMR crystallographic 
approach. This involves the combination of the assigned experimental chemical shifts with CSP and computed chemical shifts. The 
1H, 13C and 15N resonances of AZD5718 (Figure 4.1E) were assigned using one-dimensional proton, carbon and nitrogen MAS NMR 
experiments (Figure 4.1A-C), as well as two-dimensional refocused 13C-13C INADEQUATE and 1H-13C HETCOR experiments (Figure 
4.1D-E) as detailed in Appendix VII. A set of DFT-D optimised candidate structures was generated using an internally developed 
rapid CSP approach, then the assigned experimental chemical shifts were compared to the shifts computed using the cluster- and 
fragment-based DFT approach introduced by Hartman et al.126-128 for each structure in order to determine the experimental struc-
ture from the set of candidates. The structure determined using single-crystal X-ray diffraction was included and compared to the 
CSP set. The lowest energy CSP candidate (structure #1) was found to be structurally similar to the X-ray structure (as discussed in 
Appendix VII). The determination of the crystal structure of anhydrous crystalline AZD5718 Form A is briefly described in Section 
1.2.4, and a more detailed description is presented here. 

The comparisons of the experimental and computed 1H and 13C chemical shifts are shown in Figure 1.2A. The root-mean-square 
errors (RMSEs) obtained for 1H suggest that structure #1 best matches the experiment, while 13C chemical shift results identify the 
X-ray structure as the best match. Additionally, the DFT-D energy per molecule of structure #1 was found to be the lowest among 
the CSP set (x-axis in Figure 1.2A). This also indicates that the force field used for the CSP procedure accurately describes the crys-
talline system, and supports the identification of candidate #1 as being the crystal structure. In order to elucidate the ambiguity 
between candidate #1 and the XRD structure, and to obtain a quantitative comparison of all candidates, a Bayesian probabilistic 
analysis was carried out using the approach introduced by Engel et al.176 The two main advantages of using this method to deter-
mine the structure that best matches experiment are the quantitative determination of the confidence in the identification of the 
experimental structure on a continuous scale from 0 to 100%, and the combined use of NMR results for several elements, which 
ultimately increases the accuracy of the identification. 

Figure 1.2B shows the results obtained with the Bayesian approach, represented as a principal component analysis (PCA) plot. This 
plot is a two-dimensional representation of the similarity of the different candidate structures according to their computed chemi-
cal shifts and of the experimental chemical shifts. The computed Bayesian probability of each structure to be the experimental 
crystal structure is represented by the area of the blue disk around each point (here, only one disk is visible as only its probability is 
significant). Using both 1H and 13C chemical shifts, candidate #1 is found to be the most probable crystal structure, with 99.7% 
confidence. Although the structure determined by X-ray diffraction (labelled XRD) appears closer to the experimental results (red 
cross) in the first two chemical shift principal components in Figure 1.2B, the inclusion of the complete chemical shift space identi-
fies candidate #1 as the structure that best matches experiment, as indicated by its associated confidence. Figure 1.2B highlights 
the similarity of the selected structures in terms of their chemical shifts, in the two dimensions that display the largest variance. 

Comparison of the structures determined via XRD and NMR crystallography yielded a RMSD15 (root mean square deviation of the 
atomic positions in 15 molecules, ignoring hydrogen positions) of 0.42 Å. The main difference between the two structures lies in 
the conformation of the bicyclo ring (see Figure 4.8). Single-molecule heavy atom RMSD was found to be 0.22 Å, and decreased to 
0.15 Å after omitting the two carbons of the bicyclo ring (labelled 26 and 27 in Figure 4.1E). 

Unlike X-ray diffraction, NMR is highly sensitive to hydrogen nuclei, making it the method of choice for validating the tautomeric 
form of AZD5718. Indeed, either of the two nitrogen atoms of the pyrazole ring (labelled 5 and 6 in Figure 4.1E) can be protonated 
in the crystalline sample. After computing 1H, 13C and 15N shifts for the two possible tautomers displayed in Figure 4.2A and com-
paring them with the experimental shifts (Figure 4.2B), the resulting chemical shift RMSE was found to be consistently lower for 
tautomer A, by a factor of 1.3 for 1H, 2.6 for 13C and 8.1 for 15N. This unambiguously identifies tautomer A as the crystal structure. 
The position of the N-H proton in the pyrazole ring is crucial in setting up amorphous structures able to describe the properties of 
the amorphous phase of AZD5718. 

The atomic displacement parameter (ADP) tensors of all atoms in the structure determined by NMR crystallography were obtained 
as described in Ref. 175. Simulation details are given in Appendix VII. Figure 1.3B shows the ORTEP plot of the ADP tensors corre-
sponding to a 1H chemical shift RMSE of 0.34 ppm. This value corresponds to the estimated error of 1H chemical shifts computed 
with the fragment- and cluster-based approach.127 The average value of the ADPs is 0.00025 Å2. 



NMR Crystallography in the Big Data Era: New Methods and Applications Powered by Machine Learning, PhD Thesis, M. Cordova 

170 

 

Figure 4.2. Tautomer determination of AZD5718. (A) Chemical structures of the two tautomers of AZD5718 considered, labelled as A and B. (B) 
Agreement between 1H, 13C and 15N experimental and DFT computed chemical shifts for the two tautomers. 

Hydrogen bonding motifs in the amorphous phase. Knowledge of the structure of AZD5718 in the amorphous phase is key to 
understanding its physicochemical properties. Investigation of the amorphous structure of AZD5718 was performed using NMR 
experiments combined with ShiftML-predicted chemical shifts for MD ensembles.176, 261 

Comparison of the proton, carbon and nitrogen NMR spectra in crystalline and amorphous AZD5718 shown in Figure 4.1A-C dis-
plays the overall broadening of the NMR signal typical of amorphous compounds. Apart from this observation, the chemical shifts 
do not display a significant change between the two phases of the compound. This suggests that AZD5718 does not undergo large 
amplitude structural rearrangements upon transition from the crystalline to the amorphous state. The main difference between 
the NMR spectra of the two phases of AZD5718 lies in the displacement of the 1H resonance corresponding to the proton attached 
to the nitrogen labelled 6 (see Figure 4.1E) from 10.6 ppm in the crystalline sample to 11.8 ppm in the amorphous form. This sug-
gests a change in the hydrogen bonding network in the structure.39 

 

Figure 4.3. Predicted and experimental 1H NMR spectra of (A) crystalline and (B) amorphous AZD5718. The predicted spectrum of 
amorphous AZD5718 was obtained by considering only the 4% w/w water MD simulations. 
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Figure 4.4. H-bonding motifs in amorphous AZD5718. (A) Predicted spectra obtained using the predicted 1H chemical shifts of the most often occur-
ring N-H bonding motifs involving N6 for 11 evenly spaced snapshots of all amorphous simulations of each water content. The percentages next to 
the spectra denote the fraction of bonding motifs their corresponding pattern represents, including the instances where no H-bonded neighbour 
was identified. The dashed vertical line indicates the experimental shift observed in amorphous AZD5718 and assigned to the proton bound to N6. 
(B) Hydrogen bonding motifs associated with the spectra in (A). (C) Number of occurrences of extended H-bonding motifs yielding a predicted 
chemical shift above 11 ppm for every snapshot of the 4% water simulations. Only the patterns corresponding to the top 75% of all shifts above 11 
ppm were selected. The red bars represent the bonding motifs involving water, and the blue ones correspond to the motifs that do not involve 
water. Two secondary neighbours from the same molecule are indicated by an asterisk. In (B) and (C), O𝑛𝑛 indicates the oxygen atom bonded to 
carbon labelled 𝑛𝑛. 

To better understand the structural differences between the amorphous and crystalline phases of AZD5718, we generated MD 
models of the amorphous structure at different hydration levels ranging from 0% to 4% (w/w) water content. This range of water 
content is representative of the experimental water content under real conditions, as confirmed by dynamic vapor sorption. Con-
sidering the large size of the simulation cells (128 molecules of AZD5718 and up to 132 water molecules) and the large number of 
structures generated by MD, DFT computation of chemical shifts in these model systems would not be feasible. The machine learn-
ing model ShiftML was thus used to predict chemical shifts in these structures.176, 261 The predicted spectra obtained for the crystal-
line structure and obtained by summing the spectra from 202 full cell snapshots of the 4% water MD simulations (i.e., 25,856 mole-
cules of AZD5718 and 26,664 water molecules) are displayed in Figure 4.3. The 1H chemical shift RMSE obtained by comparing 
shifts predicted by ShiftML from the crystal structure with the experiment was found to be 0.61 ppm. 

Although no clear peak is observed at 11.8 ppm for the amorphous structure, the population of predicted shifts above 11 ppm was 
found to increase slightly with increasing water content (see Figure 4.9). This behaviour suggests that interaction of AZD5718 with 
water molecules does promote deshielding of the proton attached to the nitrogen labelled 6. 

A B
A (N6-H···O20)

B (N6-H···O29)

D (N6-H···OH2)

C (N6-H···O13)

E (N6-H···N5)

F (N6-H···N24)

N
N

H O
H

H

N
N

H N
N

NH

O

H
N

N
N

H N

H
NN

N
H O

HN N N

N
N

H O

HN

N
N

H O

O
cc

ur
re

nc
e

1H chemical shift [ppm]

non-bonded
(26.0%)

A (18.1%)

B (16.4%)

C (10.6%)

D (10.4%)

E (9.6%)

F (8.0%)

15 10 5 0

0

2000

4000

6000

8000

10000

N
um

be
r o

f o
cc

ur
re

nc
es

C

N6
–H

···
O

29
N6

–H
···

N5

N6
–H

···
O

H 2
···

O
H 2

N6
–H

···
O

H 2
···

O
H 2

/O
20

N6
–H

···
O

H 2
···

O
20

N6
–H

···
O

13
N6

–H
···

O
H 2

···
O

13
/O

20

N6
–H

···
O

H 2
···

O
13

/O
29

*

N6
–H

···
N2

4
N6

–H
···

O
H 2

···
O

H 2
/O

H 2

N6
–H

···
O

H 2
···

O
H 2

/O
29

N6
–H

···
O

H 2
···

O
20

/O
29

N6
–H

···
O

H 2
···

O
H 2

/O
13

N6
–H

···
O

20



NMR Crystallography in the Big Data Era: New Methods and Applications Powered by Machine Learning, PhD Thesis, M. Cordova 

172 

The predicted chemical shifts obtained were related to structural motifs in the model amorphous structures by identifying the 
different hydrogen bonding patterns that are present in the structures (with the criteria given in Section 4.2.2) and the associated 
predicted 1H shifts of the hydrogen bond donor groups in the hydrogen bonds. Figure 4.4A displays the chemical shift distributions 
of the most often occurring hydrogen bonding motifs. The atom most commonly bound to the N6-H group was found to be O20 
(where O20 is the oxygen bound to C20), which corresponds to the hydrogen bond found in crystalline AZD5718. This is an indica-
tion that the structure of the amorphous compound is broadly similar to that of its crystalline counterpart. Over all analysed simu-
lation snapshots (corresponding to an average water content of 1.16% (w/w), or about 3.4 times more molecules of AZD5718 than 
water), water was found to be the fourth most occurring hydrogen bonding partner to the N6-H group. It was also found to lead to 
the most pronounced deshielding of the hydrogen bond donor proton (motif D in Figure 4.4B). 

 

Figure 4.5. Complete structures and H-bonding motifs. (A) Superposition of 10 instances of the N6-H···O20 bonding motif. (B) close-up view of the 
hydrogen bonding region in (A). (C) Superposition of 10 instances of the N6-H···OH2···OH2/O20 bonding motif. (D) close-up view of the hydrogen 
bonding region in (C). The red molecule represents AZD5718 bearing the hydrogen bond donor (N6-H), the dark blue molecule represents AZD5718 
bearing the hydrogen bond acceptor, water molecules are coloured in cyan and the atoms of AZD5718 involved in the hydrogen bonding motif are 
coloured in green. 
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Because a single water molecule can form two hydrogen bonds involving its hydrogen atoms and two additional ones involving its 
oxygen atom, more extended hydrogen bonding motifs are likely to be observed for AZD5718 molecules bound to water. In order 
to investigate these extended patterns, we extracted N6-H···OH2 motifs yielding a chemical shift above 11 ppm in all snapshots of 
the amorphous 4% water MD simulations, and obtained the secondary neighbours, bonded to the water protons. We restricted this 
analysis to the simulations with the highest water content, as bonding of water was found to lead to the largest deshielding of the 
proton attached to N6 (see Figure 4.4A). Moreover, a larger number of water molecules in the simulation promotes extended 
hydrogen bonding motifs. Figure 4.4C shows the occurrences of extended hydrogen bonding patterns involving water, as well as 
the motifs made of pairs of H-bonded molecules of AZD5718, yielding a predicted shift above 11 ppm. The most often occurring 
pattern is the hydrogen bond present in the crystalline phase of the compound (N6-H···O20). When the H-bonded molecule is 
water, secondary neighbours are often found to be other water molecules, suggesting the formation of small clusters of water 
between AZD5718 molecules. Superpositions of ten instances of two hydrogen bonding motifs, N6-H···O20 and N6-
H···OH2···OH2/O20, are shown in Figure 4.5. It was observed that molecules of AZD5718 being secondary H-bonded neighbours of 
N6-H generally lie away from the molecule bearing the hydrogen bond donor, indicating that steric clashes may constrain the pos-
sible geometries of hydrogen bonding in the amorphous form. 

Formation energies of intermolecular complexes. Obtaining the formation energies of the supramolecular complexes of AZD5718 
molecules and their surroundings can help determine which hydrogen bonding pairs lead to overall more favourable intra- and 
intermolecular interactions. After computing the formation energies (including the conformational energy of the probe molecule) 
using the semiempirical DFTB3-D3H5 method, the results were gathered as a function of the hydrogen bonding motifs in which the 
probe molecule was involved as the hydrogen bond donor. The relative formation energy was defined as the difference between 
the formation energy of each instance and the mean formation energy of all instances where no hydrogen bond acceptor was 
found for the selected hydrogen bond donor. 

Figure 4.6 shows the relative formation energy for each hydrogen bond donor and acceptor identified. Bonding of any N-H group to 
water was found to yield the most favourable interactions. Over all the simulation snapshots analysed for hydrogen bonding motifs, 
6.1% of N21-H chemical groups were found to form an intramolecular hydrogen bond with the carbonyl labelled 29. This number 
may however be underestimated, as the same intramolecular hydrogen bond is found in the crystal structure with a bond angle of 
128.8°. This hydrogen bond would thus not be identified using the cutoff values selected here. 

 

Figure 4.6. Relative formation energy of the hydrogen bonding motifs. Mean computed formation energies of intermolecular complexes for the H-
bond acceptor connected to (A) N6-H, (B) N21-H or (C) N28-H of the probe molecule. The percentage under each bar indicates the fraction of the N-
H group bonded to the corresponding H-bond acceptor. Only the H-bond acceptors making up at least 1% of all instances analysed are displayed. 
The error bars indicate the standard error of the mean of the relative formation energies. 
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4.2.4 Conclusion	
The atomic-level structure and hydrogen bonding patterns of the hydrated amorphous phase of AZD5718 were determined 
through solid-state NMR chemical shifts, MD simulations with various water contents, and machine learned chemical shifts. The 
chemical shifts associated with possible hydrogen bonding motifs generated from MD simulations were compared to experimental 
NMR spectra in order to identify the most commonly occurring intermolecular interactions in the amorphous material. Bonding of 
N6-H to water was found to yield the largest deshielding of the proton involved in the hydrogen bond, and best described the 
experimental shift observed in the amorphous sample. This intermolecular bond to water was also associated with more favourable 
intermolecular complex formation energies as compared to direct H-bonding between two AZD5718 molecules. These favourable 
water-AZD5718 interactions highlight the potential ability of water in preventing physical aging of the amorphous drug. 

The combination of the three techniques presented here was crucial in elucidating the structure of this amorphous material 
through a large-scale direct comparison of experimental chemical shifts with predicted shifts from MD structures. While solid-state 
NMR has already been used in tandem with MD simulations of amorphous materials, previous works have generally used molecular 
dynamics either to relate relative NMR peak areas to statistical ratios of different types of interactions,507, 508 or to generate con-
formational ensembles from which small supramolecular clusters are extracted for DFT shift computation.494 Overall, the method 
presented here can be applied to a wide range of disordered organic systems to determine their complete atomic-level structures 
from their NMR spectra. 

The structure of the crystalline form was also determined using NMR crystallography to within a positional error of 0.1 Å and was 
confirmed to be almost identical to the structure obtained with single crystal X-Ray diffraction. 

4.2.5 Appendix	VII	
Data availability. All data used in this study is freely available from https://doi.org/10.24435/materialscloud:gg-mx. The NMR raw 
data are provided in JCAMP-DX version 6.0 standard format and original TopSpin format. Data are made available under the license 
CC-BY-4.0 (Creative Commons Attribution-ShareAlike 4.0 International). The Python scripts used to analyse NMR crystallography 
and MD simulation data are available from the same link and made available under the license CC-BY-4.0 (Creative Commons At-
tribution-ShareAlike 4.0 International). 

SUPPLEMENTARY METHODS 

Sample preparation for DNP NMR. In DNP MAS experiments, the high thermal polarisation is transferred from unpaired electrons 
to nuclei (typically 1H) which results in enhanced NMR signals. For organic powders, this is achieved by impregnating the powdered 
solid with an otherwise inert polarising solution.509, 510 AZD5718 dissolves both in water and in most organic solvents, so most typi-
cal polarising solutions, such as 16 mM TEKPOL511 in 1,1,2,2-tetrachloroethane (TCE), were found to be incompatible. Ortho-
terphenyl was found to be a suitable non-solvent for AZD5718, and 16 mM TEKPOL in ortho-terphenyl 99.5%-d14 (OTP-d14) was 
used as a polarisation source. The sample was prepared according to the procedure described in Refs. 512 and 513 by mixing a solid 
solution of 16 mM TEKPOL in OTP-d14 with powdered AZD5718, then transferring it to a sapphire rotor sealed with a PTFE insert 
and capped with a zirconia drive cap. The rotor was then heated at ca. 65°C in a hot water bath in order to melt the OTP and allow 
the liquid to impregnate the API. It was then quickly inserted into the pre-cooled LT-MAS DNP probe to rapidly freeze the sample in 
order for the OTP to form a glass.513 DNP enhancements of about 5 as measured on crystalline AZD5718 signals through (1H)13C 
DNP CPMAS were obtained, which was sufficient to allow the natural abundance INADEQUATE spectra to be recorded. 

NMR spectroscopy. Experiments were performed on Bruker Ascend 400 and Ascend 500 wide-bore Avance III, and Bruker 800 
Ultrashield plus narrow-bore, and 900 US2 wide-bore Avance Neo NMR spectrometers. The spectrometers operate at 1H Larmor 
frequencies of 400.13, 500.43, 800.13, and 900.13 MHz respectively, and are equipped with H/X/Y 3.2 mm, H/C/N/D 1.3 mm and 
H/C/N 0.7 mm CPMAS probes. When the 3.2 mm probe was used, the samples were restricted to the central third of a rotor with 
an inner diameter of 2.2 mm, in order to maximise radiofrequency (rf) homogeneity. 

DNP solid-state NMR spectroscopy experiments were performed on a 400 MHz Avance III HD Bruker spectrometer. The spectrome-
ter is equipped with a low temperature magic angle spinning (LTMAS) 3.2 mm probe and connected through a corrugated wave-
guide to a 263 GHz gyrotron capable of outputting ca. 5-10 W of continuous wave microwaves.414 The sweep coil of the main mag-
netic field was optimised so that the microwave irradiation gives the maximum positive proton DNP enhancement with binitroxide 
cross effect-based polarising agents (e.g. AMUPOL514, TEKPOL511). DNP enhancements were determined based on the ratio of the 
area of the spectra acquired with and without microwave irradiation.  
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1D 1H MAS NMR spectra were recorded at a temperature of 298 K using rotor spinning rates (𝜈𝜈,) up to 111 kHz. 1D 13C cross-
polarisation408 (CP) MAS NMR spectra were acquired at 298 K with 𝜈𝜈, of 22 kHz. The CP contact time was 2 ms and during the signal 
acquisition SPINAL-64 decoupling409 was applied with a 1H rf field amplitude of 100 kHz. 1D 15N CP NMR spectra were acquired at 
100 K under DNP MAS conditions with 𝜈𝜈, = 12.5 kHz for crystalline AZD5718, and similar measurements were made on amorphous 
AZD5718 using LT-MAS conditions (without DNP) in the same instrument. Variable amplitude cross-polarisation412 was used to 
transfer polarisation from 1H (60% to 100% ramp) to 15N (constant amplitude). For the 15N CPMAS spectra of crystalline AZD5718, 
360 scans were acquired with DNP spaced by a recycling delay of 20 s leading to a total acquisition time of 2 h. For amorphous 
AZD5718, 14,720 scans were acquired without DNP, spaced by a recycling delay of 5 s leading to a total acquisition time of 21 h.  

2D 1H-13C HETCOR experiments were carried out at 298 K using 𝜈𝜈, = 22 kHz. 96 points were acquired in the indirect dimension with 
the States acquisition method,515 and with indirect sampling intervals (Δ𝑡𝑡/) of 96 µs. For the crystalline sample the recycle delay 
was 32 s (𝑇𝑇/ ~ 22 s) and 64 scans were collected for each 𝑡𝑡/ point. For the amorphous sample the recycle delay was 4 s (𝑇𝑇/ ~ 3 s) 
and 769 scans were collected for each 𝑡𝑡/ point. During 𝑡𝑡/ 100 kHz eDUMBO-122 was applied to decouple the 1H-1H dipolar cou-
pling,410 and during 𝑡𝑡' 100 kHz SPINAL-64 decoupling was applied.409 

The 2D 13C-13C refocused INADEQUATE369, 411 spectrum of crystalline AZD5718 was acquired using DNP MAS NMR.516 For the 13C-13C 
refocused INADEQUATE experiment, the probe was configured into 1H/13C double resonance mode. Variable amplitude cross-
polarisation412 was used to transfer polarisation from 1H to 13C. SPINAL-64 heteronuclear 1H decoupling409 with rf fields of 100 kHz 
was applied in all cases.  

The DNP enhancement allowed to record a 13C-13C refocused INADEQUATE spectrum at natural abundance for crystalline AZD5718 
in about 2 days of signal averaging. Moreover, using a 1H spin-lock of 30 ms between the 1H excitation pulse and the CP, the other-
wise dominant OTP solvent signal was efficiently removed,517 allowing to record a 2D spectrum 13C-13C refocused DNP INADEQUATE 
clean from the solvent signal. The spectrum was acquired in about 45 h with 128 points recorded in the indirect dimension with 256 
scans each separated by recycling time of 5 s. The increment in the indirect dimension was 40 µs, allowing a total indirect acquisi-
tion time of 5.12 ms using the States-TPPI method.518 The tau period for J evolution was optimised and set to 4 ms. SPINAL-64 was 
used for heteronuclear decoupling.409 

All chemical shifts were referenced via alanine. The full set of acquisition parameters is given in Tables 4.1-4.4. 

Table 4.1. Experimental parameters for 1D experiments on AZD5718 form A anhydrous. 

 1H 13C 15N 

MAS rate 111 kHz 22 kHz 12 kHz 

Recycle delay (d1) 10 s 32 s 20 s 
1H to X CP    

Spin lock duration - 2 ms 10 ms 

Total acquisition time  5.5 ms 30 ms 25 ms 

Dwell time 2.8 μs 13.2 μs 12.3 

Number of points 1964 2268 2032 

Number of scans 4 128 360 

Acquisition mode  DQD qsim qsim 
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Table 4.2. Experimental parameters for 2D experiments on AZD5718 form A anhydrous. 

 1H-13C HETCOR 13C-13C INADEQUATE 

MAS rate 22 kHz 12.5 kHz 

Recycle delay (d1) 32 s 5 s 
1H to X CP   

Spin lock duration 0.1 ms 3 ms 

Acquisition in the indirect dimension (t1)   

Total acquisition time  4.6 ms 2.6 ms 

Dwell time 96 μs 20 μs 

Number of points 96 256 

Acquisition in the direct dimension (t2)   

Total acquisition time  33 ms 15 ms 

Dwell time 9.9 μs 5 μs 

Number of points 3328 128 

Number of scans per increment 64 128 

Acquisition mode  States States-TPPI 

Delay t - 5 ms 

 

Table 4.3. Experimental parameters for 1D experiments on AZD5718 amorphous. 

 1H 13C 15N 

MAS rate 62.5 kHz 22 kHz 8 kHz 

Recycle delay (d1) 6.5 s 4 s 5 s 
1H to X CP    

Spin lock duration - 2 ms 10 ms 

Total acquisition time  8.2 ms 30 ms 25 ms 

Dwell time 1.0 μs 9.9 μs 12.3 

Number of points 8192 3024 2032 

Number of scans 4 128 30720 

Acquisition mode  DQD qsim qsim 
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Table 4.4. Experimental parameters for 2D experiments on AZD5718 amorphous. 

 1H-13C HETCOR 

MAS rate 22 kHz 

Recycle delay (d1) 4 s 
1H to X CP  

Spin lock duration 0.1 ms 

Acquisition in the indirect dimension (t1)  

Total acquisition time  4.6 ms 

Dwell time 96 μs 

Number of points 96 

Acquisition in the direct dimension (t2)  

Total acquisition time  33 ms 

Dwell time 9.9 μs 

Number of points 3328 

Number of scans per increment 769 

Acquisition mode  States 

 

CSP protocol. To generate a predicted polymorph landscape for AZD5718, the molecular conformation determined via single-
crystal XRD was optimised at the B3LYP-D3/6-31G(d,p)95, 99, 104, 519-522 level of theory in an implicit water environment using the 
Gaussian 09 Rev. D.01 program.523 The media surrounding the molecule was described using the Self Consistent Reaction Field 
(SCRF) PCM method524 with a dielectric constant ε set to 78.35530, as implemented in the Gaussian software. Atomic charges were 
obtained using the charges from electrostatic potentials using a grid-based method (CHELPG).525 This is a slightly modified proce-
dure compared to the previously published in-house CSP method using an internally developed force-field (AZ-FF).526 The optimised 
geometry was then used in a single-point energy computation using the MacroModel program,527 where a unique force-field for 
AZD5718 was constructed. Conformational analysis was then performed within the GRACE program528, 529 in order to determine 
what parameters were allowed to be flexible in the molecule. For AZD5718, all single bonds were allowed to be rotated, and the 
two saturated rings were allowed to adopt different ring conformations. Tautomer A was assumed. 

Candidate crystal structures were generated in the seven most stable chiral space groups (P21, P212121, P1, C2, P21212, P43, C2221) 
employing the GRACE machinery for a flexible conformation under Z’=1 condition. The crystal structure space was searched using a 
Monte-Carlo (MC) parallel tempering method505 followed by lattice energy minimisation for each polymorph using the AZ-FF force 
field.526 The search was continued until the convergence criterion for statistically finding all polymorphs in the search, set to 0.7, 
was met.526 Typically, 3,000 structures are kept at this stage. A structure duplicate check allowed to reduce this number to 1,000 
unique structures. From these, the top 190 candidates, named #1 through #190 by increasing force field energy, were selected for 
full DFT-D optimisation using the PBE functional97 and Neumann-Perrin dispersion correction528 in the VASP software.530-533 The 
default PAW pseudopotentials and a 520 eV plane-wave energy cutoff were used. The ten most stable polymorphs (within 6 
kJ/mol) were then selected for NMR computation. An extended set of the following 81 most stable structures (within 23.3 kJ/mol) 
was also selected for NMR computation, but did not lead to a better match of the experimental chemical shifts than structure #1. 
These 81 structures were thus not included in the set of structures used for the Bayesian analysis displayed in Figure 1.2B. 

Chemical shift computation of candidate crystal structures. The proton positions of the candidates selected for NMR computa-
tions were optimised using the plane-wave DFT software Quantum ESPRESSO version 6.5.328, 329 The constrained optimisations 
were performed at the PBE level of theory97 using Grimme D2 dispersion correction330 and projector augmented wave scalar rela-
tivistic pseudopotentials with GIPAW reconstruction, H.pbe-tm-new-gipaw-dc.UPF and C.pbe-tm-new-gipaw-dc.UPF,37 and N.pbe-
n-kjpaw_psl.1.0.0.UPF and O.pbe-n-kjpaw_psl.1.0.0.UPF.332 The wavefunction and charge density energy cutoffs were set to 60 and 
240 Ry, respectively, and the relaxations were carried out without k-point. 
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Chemical shifts were computed for the candidate crystal structures obtained through the CSP procedure at the PBE0 level of theo-
ry106 using the cluster- and fragment-based approach introduced by Hartman et al.126-128 (computational details are provided in 
Table 4.5). Direct linear regression between the chemical shieldings computed for each candidate and the experimental chemical 
shifts was performed in order to obtain computed chemical shifts. The computations were run using the hybrid-many-body-
interaction (HMBI) code534, 535 with Gaussian 16 Revision A.03 as the DFT engine.536 The computed chemical shieldings 𝜎𝜎4Xj4 were 
converted to isotropic chemical shifts 𝛿𝛿4Xj4 through the relationship 

𝛿𝛿4Xj4 = 𝜎𝜎d01 − 𝑏𝑏𝜎𝜎4Xj4 (4.1) 

For each candidate crystal structure, the value of 𝜎𝜎d01 and 𝑏𝑏 were determined by linear regression between computed and experi-
mental shifts, permuting the ambiguously assigned shifts to obtain the lowest root-mean-square error (RMSE). 

Table 4.5. Cutoffs and basis sets used in the cluster/fragment DFT computations. 

Cutoff description Cutoff [Å] Basis set 

Cluster cutoff 0  

Pair-wise interaction cutoff 6  

Electrostatic embedding cutoff 30  

Basis set 1 2 6-311+G(2d, p) 

Basis set 2 4 6-311G** 

Basis set 3 12 6-31G 

 

Positional uncertainty of the crystal structure. Perturbed crystal structures were obtained by performing molecular dynamics 
simulations of the crystal structure at 1, 5, 10, 15, 20 and 25 K. 300 ps simulations were carried out with a time step of 0.5 fs and 
using the canonical (NVT) ensemble, and 21 snapshots were extracted from the last 150 ps of each simulation. The force-field and 
parameters used are the same as the ones used to model the amorphous structure, except for the electrostatic and Van der Waals 
interaction cutoffs, which were set to 2.8 Å to avoid self-interaction. No constraint on the bond lengths to hydrogen was set. The 
correlation between chemical shift RMSD ⟨𝛿𝛿⟩ and the average positional RMSD of atom 𝑖𝑖 along the 𝑙𝑙th principal axis of its ensemble 
of positional deviations ∫𝑟𝑟%,>ª was obtained by maximising the log-likelihood between the computed correlation points and the 
Gaussian distribution described by Equation 4.2 as a function of the Gaussian parameters 𝜇𝜇%,> and Σ%,>,	

𝐺𝐺/〈𝑟𝑟%,>ª, ⟨𝛿𝛿⟩3 =
1

æ2𝜋𝜋𝛴𝛴%,>
' ⟨𝛿𝛿⟩'

𝑒𝑒𝑒𝑒𝑒𝑒Ä−
/∫𝑟𝑟%,>ª − 𝜇𝜇%,>⟨𝛿𝛿⟩3

'

2𝛴𝛴%,>
' ⟨𝛿𝛿⟩' Ç (4.2)	

The corresponding principal value of the atomic displacement parameters along the 𝑙𝑙th principal axis 𝑈𝑈%%,> is obtained from the 
variance of the Gaussian distribution, 

𝑈𝑈%%,> = Σ%,>' 〈𝛿𝛿⟩' (4.3) 

Generation of amorphous structures. To model the amorphous structure of AZD5718, we carried out MD simulations on periodic 
amorphous cells with a variable number of water molecules. The atomic positions of a single AZD5718 molecule extracted from the 
crystal structure determined via single-crystal XRD were first optimised at the B3LYP-D3/6-31G(d,p)95, 99, 104, 519-522 level of theory in 
gas phase using the Gaussian 09 revision D.01 program.523 Optimised coordinates and CHELPG charges were extracted from the 
optimisation and used as input to generate amorphous cells. Materials Studio537 together with the COMPASS-II538 force field were 
used to create cubic amorphous cells of 128 molecules of AZD5718. Five cells of each water content; 0, 0.5, 1.0 and 2.0% (w/w, 0, 
16, 32 and 65 water molecules in each cell, respectively), and two cells of 4% water (w/w, 132 water molecules in each cell) were 
generated. Geometries were optimised during the construction. The mean initial cell volumes were 73,004, 73,372, 73,740, 74,500, 
and 76,042 Å3 for the 0, 0.5, 1, 2 and 4% water simulations, respectively. 

The optimised coordinates and CHELPG charges of AZD5718 were used as input to generate OPLS_2005539, 540 force field parame-
ters using the Schrödinger ffld_server.541 The “ffconv.py” tool was used to convert the topology into GROMACS format.542 Water 
was treated using the TIP3P model in the MD simulations.543 
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Molecular dynamics simulation of amorphous structures. The GROMACS program (version 2016.4)544, 545 was used for all MD 
simulations throughout the study. The systems were initially equilibrated for 1 ns using the canonical (NVT) ensemble at 298 K. The 
temperature was held constant using a modified Berendsen thermostat with velocity-rescaling with a coupling constant of 0.1 ps.546 
A second equilibration was carried out for 10 ns using the isothermal-isobaric ensemble (NPT) at 298 K and 1 bar where the tem-
perature and pressure were held constant using the velocity-rescaling thermostat with a coupling constant of 0.1 ps and a Berend-
sen barostat with a coupling constant of 1 ps.546, 547 Production simulations were carried out for 600 ns using the NPT ensemble at 
298 K and 1 bar where the temperature and pressure were held constant using the velocity-rescaling thermostat546 with a coupling 
constant of 0.1 ps and the Parrinello-Rahman barostat with a coupling constant of 4 ps.548, 549 A particle mesh Ewald scheme550, 551 
was used to compute the electrostatic interactions with a 10 Å cutoff in real space. The same cutoff was used for van der Waals 
interactions, with long-range dispersion correction applied to both energy and pressure. Bond lengths to hydrogens were con-
strained using the LINCS algorithm.552 System trajectories were collected every 10 ps. All simulations were performed using a time 
step of 2 fs. Models of the amorphous structure were obtained by extracting 1,001 evenly spaced snapshots from the last 100 ns of 
each MD simulation, corresponding to 100 ps time steps between the extracted snapshots.  

Chemical shift predictions and hydrogen bonding motifs in amorphous structures. The predicted shieldings 𝜎𝜎Td0Y obtained using 
ShiftML were converted to chemical shifts 𝛿𝛿Td0Y through the relationship given in Equation 4.1 and where 𝜎𝜎d01 and 𝑏𝑏 were deter-
mined by maximising the cosine similarity between the simulated spectra, obtained by summing Lorentzian functions with a 
0.3 ppm linewidth centred on the predicted shifts, and the experimental spectra. For the crystalline compound, the regression 
parameters were found to be 𝑏𝑏 = -0.91 and 𝜎𝜎d01 = 27.9 ppm. For the amorphous form, the regression was only performed on the 
4% water simulations, and applied to all other water contents. The obtained parameters are 𝑏𝑏 = -0.99 and 𝜎𝜎d01 = 30.9 ppm. 

SUPPLEMENTARY DISCUSSION 

Chemical shift assignment. The 1H, 13C and 15N resonances of AZD5718 (Figure 4.1E) were assigned using one-dimensional proton, 
carbon and nitrogen MAS NMR experiments (Figure 4.1A-C), as well as two-dimensional refocused 13C-13C INADEQUATE and 1H-13C 
HETCOR experiments (Figure 4.1D-E). The INADEQUATE spectrum (recorded only for the crystalline form) provides the covalent 
connectivities between carbon atoms, indicated by red lines in Figure 4.1D. The HETCOR spectrum (Figure 4.1E) correlates chemical 
shifts of bonded carbon and hydrogen nuclei. 

Chemical shift assignments of 1H, 13C and 15N nuclei are given in Table 4.6. The two protons attached to each carbon in aliphatic 
rings (labelled 15-18, 26 and 27 in Figure 4.1E) are not equivalent, thus two values of 1H chemical shifts are reported for those 
nuclei. 
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Table 4.6. Chemical shift assignment of AZD5718. The values for inequivalent protons attached to the same carbon are indicated by a comma, and 
ambiguous assignments are denoted by a slash. Ambiguous assignments of carbons that were resolved using the computed shifts of structure #1 
are indicated by a star. 

Label 1H chemical shift [ppm] 13C chemical shift [ppm] 15N chemical shift [ppm] 

1 1.2 11.1 - 

2 - 141.5 - 

3 5.8 102.3 - 

4 - 149.8 - 

5 - - 295.4 

6 10.6 - 205.6 

7 - 139.5 - 

8 6.9/7.3 123.9/125.3 - 

9 6.7 / 7 / 7.6 130.1/130.8 - 

10 - 133.3 - 

11 6.7 / 7 / 7.6 130.1/130.8 - 

12 6.9/7.3 123.9/125.3 - 

13 - 201.1 - 

14 3.9 46.3 - 

15 0.0, 1.7 31.2 - 

16 -0.5, 0.8 26.6 - 

17 -0.5, 0.8 26.0 - 

18 1.6, 1.6 29.2 - 

19 1.6 49.8 - 

20 - 174 - 

21 7.7 - 118.6 

22 - 125.8 - 

23 6.7 / 7 / 7.6 130.8 - 

24 - - 307.2 

25 - - 194.9 

26 1.7, 2.7 43.5* - 

27 1.9, 2.7 40.1* - 

28 6.9 - 105.4 

29 - 161.8 - 

30 - 119.7 - 
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Comparison of the structures determined via X-ray diffraction and NMR crystallography. The crystal structure determined using 
single-crystal X-ray diffraction (Figure 4.7) was compared to the structure obtained through NMR crystallography. The superposi-
tion of the two structures is shown in Figure 4.8. The two structures were found to be highly similar except for the conformation of 
the bicyclo ring (on the left of Figure 4.8). 

 

Figure 4.7. Positional uncertainty of the X-ray determined structure of AZD5718. ORTEP plot of the heavy atom ADP tensors for the crystal structure 
of AZD5718 determined using single crystal X-ray diffraction, drawn at the 90% probability level. 

 

Figure 4.8. Similarity between the XRD and NMR crystallography structures. Comparison between the structure of AZD5718 determined using X-ray 
diffraction (red) and NMR crystallography (blue). 
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Simulated spectra of AZD5718 amorphous MD simulations with different water contents. The simulated spectrum for each water 
content was computed by summing Lorentzian functions centred at the predicted shifts, and with a width of 0.3 ppm. The parame-
ters for the conversion from shielding to shift were extracted by comparing the 4.0% water simulated spectrum with the experi-
mental spectrum, and were applied to all simulations of different water contents. The spectra were normalised such that their 
maximum is one. Although the experimental peak observed at 11.8 ppm was not observed in the simulated spectra, a larger popu-
lation of the shifts above 11 ppm was observed with increasing water content (Figure 4.9). 

 

Figure 4.9. Effect of the water content on simulated 1H NMR spectrum. (A) Simulated 1H NMR spectra of crystalline and amorphous 
AZD5718. (B) Close-up view of the spectra in the region between 10 and 14 ppm. 
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4.3 Atomic-level	 structure	determination	of	amorphous	molecular	 solids	by	
NMR	

This section has been adapted with permission from: Cordova, M.; Moutzouri, P.; Nilsson Lill, S. O.; Cousen, A.; Kearns, M.; Norberg, 
S. T.; Svensk Ankarberg, A.; McCabe, J.; Pinon, A. C.; Schantz, S.; Emsley, L., Atomic-Level Structure Determination of Amorphous 
Molecular Solids by NMR. In press 2023. 

My contribution was to develop and apply the method and to analyse the results obtained. I also wrote the manuscript, with con-
tributions of all other authors. 

4.3.1 Introduction	
AZD4625 is a covalent allosteric inhibitor of the mutant GTPase KRASG12C, and is a clinical development candidate for the treatment 
of KRASG12C positive tumors.553, 554 In this section we determine the complete ensemble atomic-level structure of the amorphous 
drug AZD4625 through the combination of DNP-enhanced solid-state NMR, molecular dynamics and machine learned chemical 
shifts. To do this we introduce a general approach that integrates multiple chemical shifts and includes the experimental spread of 
chemical shift distributions in NMR spectra of molecular solids, that we use to select an ensemble of local molecular environments 
that best match the chemical shift distributions in the measured spectra. This process is applied to over one million molecules from 
MD simulations, for which we predict chemical shifts. From an analysis of the extracted ensemble of local molecular environments 
in best agreement with the experiments, we identify key intermolecular interactions and conformations present in the amorphous 
sample. The local atomic environments determined by NMR were found to accurately reproduce the radial distribution function 
measured for the sample by powder X-Ray diffraction, and to correspond to energetically favourable local structures. 

4.3.2 Methods	
Synthesis. The synthesis of AZD4625 is described in Ref. 554. The amorphous AZD4625 solid was precipitated from 2-
methyltetrahydrofuran (2-MeTHF) and n-heptane. Crude API was initially dissolved in 2-MeTHF, the solution of which was charged 
directly to n-heptane at 18°C. The precipitate was isolated under vacuum and dried from 25-70°C. 

X-ray diffraction experiments. Synchrotron X-ray PDF data were collected on the I15-1 beamline at Diamond Light Source, UK. 
Powdered samples were contained within a 1 mm inner diameter polyimide capillary with a 0.025 mm wall thickness and spun 
perpendicular to the beam during data collection. An empty capillary was also collected for background subtraction. Scattering data 
were collected at an incident X-ray energy of 76.69 keV with one Perkin Elmer XRD4343CT area detector placed close to the sample 
(~200 mm) for PDF data and a second Perkin Elmer XRD1611CP3 area detector was placed further from the sample (~850 mm) for 
higher resolution Bragg data. The precise detector geometries were calculated using DAWN555 from data collected on a crystalline 
standard (NIST SRM640c). Total data collection times were 30 minutes for the PDF data and 2 minutes for Bragg data. 2D scattering 
data were corrected for polarisation, solid angle and detector thickness prior to integration to 1D using DAWN.555 The GudrunX 
program was then used to perform container background, multiple scattering, Compton scattering and absorption corrections on 
data in the range 0.3 ≤ Q ≤ 26 Å−1, prior to Fourier transform to produce the PDF.556 

NMR experiments. Experiments were carried out using either room temperature ultra-fast MAS techniques that enhance 1H spec-
tral resolution or Dynamic Nuclear Polarisation (DNP) approaches that enhance the sensitivity of NMR signals. DNP is performed at 
temperatures of ~100 K and relies on the transfer of high electron spin polarisation, typically from exogenously added solutions of 
organic radicals, to nuclei of interest upon microwave irradiation.413, 491, 509, 516 

The DNP-enhanced NMR experiments were carried out on commercial Bruker Avance Neo NMR spectrometers at a nominal field 
strength of 9.40 T equipped with either a 264 GHz klystron or a 263 GHz gyrotron microwave source and a 3.2 mm LTMAS DNP 
probe in a 1H/13C/15N configuration which was cooled to about 100 K before sample insertion. The DNP sample was packed into a 
3.2 mm sapphire rotor, plugged with a Teflon insert, and topped with a zirconia drive cap. Prior to packing, the powder sample of 
the amorphous form of AZD4625 was ground by hand in a pestle and mortar and then impregnated413, 491, 509, 516 with a 20 mM 
solution of the AMUPol biradical514 dissolved in a mixture of H2O:D2O:12C-glycerol (10:30:60 v/v). A DNP enhancement of the drug 
of a factor 6-8 was achieved, measured as the ratio of the (1H)13C cross-polarisation (CP) signal intensity between spectra acquired 
with and without microwaves. While this is a modest enhancement, it was sufficient to enable the acquisition of the natural abun-
dance 13C-13C INADEQUATE experiments described below. DNP spectra were acquired at MAS rates of 8 or 10 kHz.  
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The room temperature NMR experiments were performed on a dry sample of the powder at a MAS rate of 100 kHz, using a Bruker 
0.7 mm room temperature HCN CP-MAS probe at a magnetic field of 21.1 T. A States-TPPI acquisition scheme was used to obtain 
phase-sensitive two-dimensional spectra. The 1H and 13C chemical shifts were referenced to literature values. More experimental 
details and a link to the raw NMR data can be found in Appendix VIII. 

Chemical shift assignment. The 1H and 13C resonances of the amorphous form of AZD4625 (Figure 4.10A) were assigned using one-
dimensional 1H and 13C MAS NMR experiments, 13C CPPI spectral editing,404 (Figure 4.10B-D, F), in combination with two-
dimensional 1H-1H, 13C-13C, and 1H-13C correlation spectra. The 1H-1H DQ/SQ (Figure 4.10E) spectrum provides through-space dipo-
lar correlations between protons, the natural abundance DNP-enhanced refocused 13C-13C INADEQUATE413 (Figure 4.10H) provides 
the covalent connectivities between carbon atoms, and the short- and long-range 1H-13C DNP-enhanced DUMBO-HETCOR experi-
ments (Figure 4.10G, I), provide 1H-13C heteronuclear shift correlations. A DNP-enhanced natural abundance 13C-13C INADEQUATE 
spectrum recorded for a crystalline form was also used to guide the assignment (Figure 4.16). The chemical shift assignments ob-
tained from an analysis of these spectra for the 1H and 13C nuclei are given in Table 4.12. The chemical shift of C1 was not taken 
into consideration in the subsequent analysis due to a high uncertainty in the assignment. 

Molecular dynamics simulation of AZD4625. The amorphous structure of AZD4625 was modelled by carrying out MD simulations 
with the OPLS4 force-field557 in Desmond558, 559 on periodic amorphous cells containing 128 molecules. Eight different amorphous 
cell simulations were generated and evaluated using Materials Studio.560 After equilibration for 1 ns using the canonical NVT en-
semble first at 100 K and then at 298 K followed by 22 ns using the isothermal-isobaric ensemble (NPT) at 298 K and 1 bar, produc-
tion simulations were carried out for 500 ns using the NPT ensemble at 298 K and 1 bar. Snapshots of each MD simulation were 
extracted every 100 ps and input directly to ShiftML2365 for 1H and 13C chemical shift predictions. The chemical shielding values 
were converted to chemical shifts using offsets of 30.78 and 170.04 for 1H and 13C, respectively. Further information about the MD 
simulations is given in Appendix VIII. 

Selection of local molecular environments. Local molecular environments, comprising a central molecule and all other molecules 
having at least one atom within 7 Å from any atomic site in the central molecule, were extracted from the MD snapshots (1,025,280 
environments in total) and selected based on the probability of the molecule at the centre of each environment to match the ex-
perimental distributions of chemical shifts. Considering one atomic site 𝑎𝑎% in AZD4625, we describe the associated distribution of 
experimental chemical shifts as a Gaussian function centered on the chemical shift experimentally measured, 𝛿𝛿03T,A-, and with a 
width given by the linewidth of the peaks observed in the spectra, 𝜎𝜎03T,A-. Based on the measurement of the linewidths in the 
resolved peaks in the spectra of Figure 4.10, here we obtained widths between 2 and 6 ppm for the 13C resonances, and 0.6 and 
1 ppm for the 1H resonances, except for the OH proton for which we obtained a width of 1.8 ppm. The centres and widths of the 
experimental chemical shift distributions are given in Table 4.12 and Figures 4.17-4.20. 

The chemical shift 𝛿𝛿Td0Y,A-(1)
 and uncertainty 𝜎𝜎Td0Y,A-

(1) predicted using ShiftML2 for that atomic site 𝑎𝑎%
(() in a molecule 𝑗𝑗 within a 

given MD snapshot can similarly be described as a Gaussian function centered on the shift prediction and with a width given by the 
prediction uncertainty. We then define the probability that the computed shift is within the experimental distribution of chemical 
shift with the two-tailed p-value resulting from the Z-score computed between the two Gaussians, 

𝑍𝑍A-
(1) =

¡𝛿𝛿-6k,A- − 𝛿𝛿k,-+,A-(1) ¡

æ𝜎𝜎-6k,A-
' + 𝜎𝜎

k,-+,A-
(1)

'
. (4.4) 

The p-value 𝑝𝑝WXj ì𝑍𝑍A-
(1)î thus corresponds to the probability that the computed shift is drawn from the experimental distribution of 

chemical shift for that atomic site, 

𝑝𝑝lA> ì𝑍𝑍A-
(1)î = k2

𝜋𝜋 ⋅ U 𝑒𝑒𝑒𝑒𝑒𝑒L−
𝑥𝑥'

2 M
f

m7-
(1)

𝑑𝑑𝑑𝑑. (4.5) 
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We note that the p-value corresponds to the null hypothesis, which is here that the shift is drawn from the experimental distribu-
tion. A large p-value thus indicates a better correspondence between the predicted shift and experimental distribution. To obtain 
the probability that the computed shift corresponds to the experimental distribution of shifts, we divide the p-value obtained by 
the prediction uncertainty divided by the first quartile of all predicted uncertainties obtained for that atomic site in all molecules of 
all MD snapshots, 𝜎𝜎Td0Y,A-

& , capped to a minimum value of 1. This step was done in order to prevent chemical shifts predicted with 
very high uncertainty, thus where the shift prediction is unreliable, from being artificially associated with a high probability of cor-
responding to the experimental distribution. 

𝑝𝑝A-(1)
=

𝑝𝑝WXj ì𝑍𝑍A-
(1)î

maxL1,
𝜎𝜎Td0Y,A-

(1)

𝜎𝜎Td0Y,A-
& M

. (4.6) 

The probability 𝑝𝑝( that a given molecular environment 𝑗𝑗 within an MD snapshot corresponds to the experimental spectrum was 
then evaluated as the geometric mean of the probabilities obtained using Equation 4.6 for all protons and carbons in the molecule, 
(except here for the protons and carbon labelled 1 in Figure 4.10A, due to the high uncertainty in the assignment of that carbon). 
This probability was computed for all local environments in all MD snapshots. 

𝑝𝑝( = Äú𝑝𝑝A-(1)
*

%

Ç

/
*

. (4.7) 

The selection of the ensemble of local molecular environments most compatible with the experimental spectra, that we refer to as 
the NMR ensemble, was then performed by selecting all the environments having an overall probability 𝑝𝑝( above 0.33, correspond-
ing to about 1% of all local molecular environments present in the MD snapshots (10,107 environments). We note that the cutoff 
value of 0.33 was chosen as a balance between the maximisation of the overlap and minimisation of the Jensen-Shannon diver-
gence561 with the experimental shift distributions, and the selection of a large enough ensemble to describe the amorphous com-
pound (see Figure 4.21).  

In addition, 1,000 local molecular environments were randomly selected from each MD simulation to construct a random ensemble 
for comparison with the experimentally determined ensemble.  

Computation of formation energies of local molecular environments. The formation energy of local molecular environments was 
computed as the energy difference between the environments (all molecules with at least one atom within 7 Å from any atom of 
the central molecule) with and without the central molecule. This energy thus includes both the intermolecular interactions and 
conformational energy of the central molecule. The energies were computed using the DFTB-D3H5 semiempirical level of theory 
using the 3ob-3-1 parameter set and the DFTB+ software version 22.2.325, 326, 349-352, 562 

Identification of hydrogen bonds in local molecular environments. Hydrogen bonds involving the OH proton of the central molecule 
in each local molecular environment were identified by defining hydrogen bonds as O-H⋯X motifs (X = O, N) with an O-H-X angle 
above 130° and H-X distance shorter than 2.5 Å. 

Three-dimensional atomic density maps. The three-dimensional atomic density maps were constructed by aligning the NMR en-
semble of local molecular environments and a second randomly selected ensemble on given atoms in the central molecule. This 
was done by minimising the root-mean-square displacement (RMSD) between the positions of the atoms used for the alignment in 
the central molecule of the different molecular environments. Three-dimensional atomic density maps were then generated by 
summing three-dimensional Gaussian functions with a width 𝜎𝜎 = 0.5 Å placed at the atomic positions 𝑟𝑟A-  of the aligned local envi-
ronments, divided by the number of environments aligned, 

𝐺𝐺(𝑟𝑟) =
1

𝑁𝑁-*l
6 6𝑒𝑒𝑒𝑒𝑒𝑒Ä−

Å𝑟𝑟 − 𝑟⃗𝑟A-Å
'

2𝜎𝜎' Ç
A-∈%

8+*8

%

. (4.8) 

Individual atomic density maps were constructed for each element present in the set of aligned environments. The Gaussian func-
tions were not normalised, and this leads to a value of 1 at a given position if an atom of a given element is found at that position in 
all environments. Each atomic density map was evaluated on a 31x31x31 cubic grid centered at the aligned atomic sites and with 
12 Å sides. This corresponds to a spatial sampling of 0.4 Å. 
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4.3.3 Results	and	Discussion	
Figure 4.10 shows the chemical structure of AZD4625 and the labelling scheme used here, as well as the experimental 1D and 2D 
NMR spectra obtained for the amorphous form of AZD4625. The spectra display broad linewidths, typical of disordered systems. 
This highlights the need for multi-dimensional experiments in order to obtain a confident assignment, by spreading the signals over 
multiple dimensions. With this set of spectra, the 1H and 13C chemical shifts obtained were assigned as described in Section 4.3.2, 
leading to the assignments given in Table 4.12. By fitting Gaussian functions to resolved peaks in the 1D 1H and 13C MAS spectra, 
and 2D 1H-1H DQ/SQ spectrum, we obtained linewidths between 2 and 6 ppm for 13C, 0.6 and 1 ppm for C-H protons, and 1.8 ppm 
for the OH proton (see Table 4.12 and Figures 4.17-4.20). Here, we assume Gaussian shapes for all experimental distributions of 
chemical shifts. The extracted experimental chemical shift distributions will then serve as the basis to score molecular environ-
ments as described in Section 4.3.2. No crystalline form of pure AZD4625 has previously been reported. 

 

Figure 4.10. NMR spectra of the amorphous form of AZD462 used for chemical shift assignment. (A) Chemical structure of AZD4625 
and carbon (blue numbers) and nitrogen (red letters) labelling schemes used here. 1D (B-D) DNP-enhanced 13C CPMAS spectra 
without (B, C) and with (D) CPPI spectral editing. (F) 1D 1H 100 kHz MAS spectrum. 2D (E) 1H-1H DQ/SQ, (G, I) DNP-enhanced 1H-13C 
DUMBO-HETCOR and (H) DNP-enhanced 13C-13C INADEQUATE spectra of amorphous AZD4625. In (D), -CH2 groups appear negative, 
-CH groups disappear and -C and -CH3 groups retain a positive intensity. The grey lines indicate correlated peaks or 13C chemical 
shifts of protonated carbon species. The stars in (F) indicate artifacts due to mobile impurities in the rotor. 
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To generate a broad ensemble of possible structures, eight MD simulations were carried out with cells containing 128 molecules of 
AZD4625, randomly initialised in order to model the amorphous system, as described in Section 4.3.2. Chemical shift predictions 
performed using ShiftML2 were then compared with the experimental values obtained for 1H and 13C (excluding the protons and 
carbon labelled 1 in Figure 4.10A due to the ambiguity in their assignment). A total of 1,025,280 molecular environments, each 
comprising a central molecule and all molecules that have at least one atom within 7 Å from any atom of the central molecule (see 
Section 4.3.2), were extracted from the MD snapshots. For each atomic site in the central molecule of a molecular environment, 
we compute the probability that the predicted shift is drawn from the corresponding experimental chemical shift distribution. The 
probabilities across all atomic sites are then combined into a global probability that the local molecular environment matches the 
NMR experiments. More details are given in Section 4.3.2. Figure 4.11A shows the root-mean-square error (RMSE) between 1H and 
13C chemical shifts computed for all AZD4625 molecules in each of the 8,010 snapshots taken from the MD trajectories, as well as 
the calculated probability that the local molecular environment of each molecule is consistent with the NMR experiments. This 
includes the computation of chemical shifts for over a million molecules. As expected, higher probability is correlated with lower 1H 
and 13C shift RMSE, but it is very important to note that the RMSEs only considers the difference between the centre of the experi-
mental distributions of shifts, and the corresponding chemical shift prediction for each atomic site, while the probability calculated 
using Equations 4.4-4.7 also takes into account the width of the experimental distributions as well as the prediction uncertainty, 
providing an improved picture of the compatibility of a given local molecular environment with the experiments. The histogram of 
all probabilities of local molecular environments (𝑝𝑝() to match the experiments is shown in Figure 4.11B. Here, we selected the 1% 
of local molecular environments in best agreement with experiment to construct the NMR ensemble, which corresponds to proba-
bilities above 33%, as indicated by the dashed vertical line in Figure 4.11B. 

Here, we independently select molecular environments compatible with the NMR experiments. The generation of environments 
through the MD simulations is inherently biased by the force field used and the starting configurations. The selection of the subset 
that best matches the experimental data does not aim here to reproduce the exact experimental ensemble of molecular environ-
ments in the sample (as is done, e.g., in NMR studies of intrinsically disordered proteins563-565), but here it provides an additional 
bias in order to identify systematic structural differences from the ensemble generated by MD, as seen below. 

 

Figure 4.11. Ensemble structure determination. (A) A comparison of 1H and 13C chemical shift RMSEs for each molecule in the MD snapshots, col-
oured according to its probability to be simultaneously compatible with the experimental shift distributions for all assigned atoms (as described by 
Equations 4.4-4.7). (B) Histogram of the probabilities of all molecules in the MD snapshots to be compatible with the experimental shift distribu-
tions. The dashed line indicates the probability threshold used to select local molecular environments. The ranges of probabilities included in the 
whole and NMR ensembles are indicated above the histogram. Examples of the predicted chemical shift distributions for the (C) carbon labelled 3, 
(D) proton labelled 13 and (E) OH proton in all molecular environments (blue) in the MD snapshots and in the NMR ensemble (red), compared to 
the corresponding experimentally measured distributions (black). Equivalent figures for all the other assigned atoms are given in Figures 4.22-4.26. 
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Figure 4.11C-E shows the histograms of chemical shifts computed for carbon labelled 3, proton labelled 13 and of the OH proton 
for all AZD4625 molecules in the MD trajectories as compared to those from the NMR ensemble. These examples are taken to 
illustrate the typical changes of chemical shift distributions seen upon selection of local atomic environments. The distributions for 
all other protons and carbons considered are given in Figures 4.22-4.26. The distribution of predicted shifts for carbon labelled 3 
(Figure 4.11C) was found to be significantly closer to the experimental distribution of shifts upon selection of local molecular envi-
ronments, suggesting that this chemical shift does discriminate between the structures. In contrast, for example, the distribution of 
predicted shifts for the proton labelled 13 (Figure 4.11D), which already displays a large overlap with the corresponding experi-
mental distribution of shifts, does not display a significant change upon selection of local molecular environments. Then we note 
that the distribution of predicted chemical shifts for the OH proton (Figure 4.11E) displays a large difference after the selection of 
local molecular environments, again suggesting that this shift is a powerful discriminator. However, even after selection of the best 
match structures, the overlap with the predicted distribution is not perfect. We attribute this to the significant proportion of OH 
protons weakly bonded to hydrogen bond acceptors in the MD trajectories (see Figure 4.27). This effect may also be due to bias in 
the shift predictions. Importantly, we also note that the best match selection does not critically depend on any single shift, but is 
the result of the joint match to all the shifts in the molecule. 

Figure 4.12 shows the analysis of structural properties in the set of best match molecular environments, compared to all molecular 
environments present in all MD snapshots. As seen in Figure 4.12A, the selection of local molecular environments compatible with 
the NMR experiments promotes hydrogen bonds, in particular with the oxygen labelled 3 and the nitrogen labelled c. Accordingly, 
the proportion of OH protons not forming hydrogen bonds is significantly reduced in the set of selected local molecular environ-
ments. Hydrogen bonding to nitrogen was found to generally lead to further deshielding of the OH proton compared to hydrogen 
bond to an oxygen, as seen in Figure 4.27. 

 

Figure 4.12. Structural properties of the amorphous form of AZD4625. (A) Proportions of different hydrogen bond acceptors bonded to the OH 
group of AZD4625 in all local molecular environments (blue) and in the NMR ensemble (red). Histogram of dihedral angles for the (B) OH group, (C) 
enone, (D) aromatic planes and (E) aliphatic ring in all molecules (blue) and in the NMR ensemble (red). In (B), (C), (D) and (E), the rotatable bond 
associated with the dihedral angle is drawn in orange. Stars indicate the atoms used for the computation of the dihedral angle. 
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Figure 4.13. Radial distribution functions. The total radial distribution function 𝐺𝐺(𝑟𝑟) (A, B) and the differential correlation function 𝐷𝐷(𝑟𝑟) (C, D) 
measured from powder X-Ray diffraction (see Section 4.3.2) (blue) and simulated (red) using (A, C) all molecules and (B, D) the best match ensem-
ble by NMR. The lower panels show the residual between the experiment and simulations in each case, along with the RMSE obtained. The plots on 
the right of each panel shows the range between 3 and 10 Å and the RMSE in the corresponding range. 

Preferred conformations of AZD4625 can be extracted from the NMR ensemble. Figure 4.12B shows that the position of the OH 
proton is generally preferred to be pointing away from the body of the molecule, and that this trend is slightly reinforced in the 
NMR ensemble. Similarly, the Z conformation of the enone group is found to be preferred, and that preference is retained in the 
NMR ensemble (Figure 4.12C). The conformation yielding dihedral angles between the aromatic planes from -120 to -60° were 
found to be promoted in the NMR ensemble (Figure 4.12D). We note that for this case, five of the eight MD simulations carried out 
started with a dihedral angle around -90° and three of them started with an angle around 90°, which explains the difference in the 
height of the distributions for positive and negative values in all molecules from the MD snapshots (more details are given in Ap-
pendix VIII). The chair conformation of the aromatic 6-membered ring was also found to be promoted by the NMR selection of 
local molecular environments compared to the boat conformation that was also observed in the MD simulations (Figure 4.12E). 

It is interesting to compare the total radial distribution function 𝐺𝐺(𝑟𝑟) and differential correlation function 𝐷𝐷(𝑟𝑟) obtained from the 
ensembles before and after selection of local molecular environments with the functions obtained experimentally by powder X-Ray 
diffraction (Figure 4.13). The MD trajectories were found to accurately reproduce the experimental data, with the largest differ-
ences found in the two peaks at 1.4 and 2.4 Å. This can be attributed to differences in bond lengths between the MD simulations 
and in the sample. Importantly, the features at distances above 3 Å are correctly captured by the MD simulation. The selection of 
local molecular environments was not found to significantly change the similarity between the simulated and experimental 𝐺𝐺(𝑟𝑟) or 
𝐷𝐷(𝑟𝑟). This result highlights that the scattering data is unable to sensitively discriminate between ensembles of local molecular 
environments in the samples studied here. 

Figure 4.14 shows the predicted formation energies of molecules of AZD4625 with their local environment, including the formation 
energy of the central molecule (as described in Section 4.3.2). This is a measure of the stabilisation of the molecules by their envi-
ronment. On average, the local environments in the NMR ensemble were found to result in the stabilisation of the central molecule 
by 8.7 ± 0.7 kJ/mol as compared to random local molecular environments extracted from the MD simulations (Figure 4.14A). This 
result suggests that that the selection of molecular environments, based purely on NMR chemical shifts, also led to the selection of 
energetically favourable local molecular environments. Figure 4.14B shows that hydrogen bonding of the OH proton of a central 
molecule to either oxygen labelled 3 or nitrogen labelled d leads to enhanced stabilisation of the central molecule by its whole 
environment. This also corroborates the increase in hydrogen bonds formed with these two atoms in the NMR ensemble of molec-
ular environments discussed above (Figure 4.12A). 
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Figure 4.14. Formation energies. (A) Relative formation energies of intermolecular complexes of 8,000 randomly selected molecules (blue) and the 
molecules from the NMR ensemble (red). The zero is set to be the mean formation energy of all intermolecular complexes. (B) Relative formation 
energies of the local molecular environments in the NMR ensemble for different hydrogen bond acceptors bonded to the OH proton. The zero is set 
to be the mean formation energy of intermolecular complexes where no hydrogen bonding acceptor is bonded to the OH proton of the central 
molecule. Formation energies were computed as the difference in energy between a molecular environment (all molecules with at least one atom 
within 7 Å from any atom of the central molecule) with and without the central molecule, thus contains both intermolecular interactions and con-
formational energy of the central molecule. 

 

A set of 20 randomly selected central molecules from the NMR ensemble is shown in Figure 4.15A. This highlights the structural 
flexibility of AZD4625 in the amorphous state. Figure 4.15B shows three-dimensional atomic density maps around the OH proton in 
the NMR (left panel) and the random (middle panel) local molecular environments, as well as the difference between the two 
atomic density maps (right panel). As expected from Figure 4.12A and Figure 4.14B, hydrogen bonding towards oxygen and nitro-
gen atoms is promoted by the selection of local molecular environments. This is highlighted by the contours representing nitrogen 
and oxygen atomic densities in the rightmost panel in Figure 4.15B. This suggests that these interactions are critical to stabilise the 
structure of amorphous AZD4625. Figure 4.15C shows similar atomic density maps, aligned around the methyl group of AZD4625. 
The difference between atomic density maps highlights the preferred conformation of the 6- and 8-membered aliphatic rings. 

 

 

 

Figure 4.15. Structures representative of the molecular conformations present in the amorphous form of AZD4625. (A) Superposition of 20 mole-
cules of AZD4625 randomly selected from the NMR ensemble. Three-dimensional atomic density maps in NMR-selected and random molecular 
environments aligned around (B) the OH and (C) the methyl groups. The difference between the 3D maps for the selected and random molecular 
environments are shown on the right panels, where the atoms aligned are indicated by asterisks in the difference maps. 3D contours are drawn at 
levels of 0.2, 0.4, 0.6 and 0.8 for the atomic density maps and 0.05, 0.1, 0.15 and 0.2 for the difference maps. The conformation of the molecule 
displayed along with the atomic density map was chosen such that the various dihedral angles best correspond to the maxima of the distributions 
for selected local molecular environments in Figure 4.12B-E. The three-dimensional contours in the rightmost panels in (B) and (C) highlight the 
overall structural features promoted by the NMR-based selection. 
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4.3.4 Conclusion	
In this section we have determined the ensemble atomic-level structure of the amorphous form of AZD4625 by combining solid-
state NMR experiments with MD simulations and prediction of chemical shifts for over one million AZD4625 molecules in the MD 
trajectories. Importantly, no crystalline structure of the pure compound has previously been reported. 

Local molecular environments compatible with the measured NMR spectra measured were selected through a general approach 
that integrates multiple chemical shifts, and includes the spread of chemical shift distributions in the experimental spectra as well 
as the uncertainty of the chemical shift predictions. We expect that the method presented here can be straightforwardly applied to 
determine the structure of any molecular solid. 

The local atomic environments determined by NMR were found to accurately reproduce the radial distribution function measured 
for the sample by powder X-Ray diffraction. The NMR ensemble was also found to lead to an overall stabilisation of the selected 
molecules by their environment, observed using approximated calculations of molecular cluster energies. 

The ensemble of selected local molecular environments highlights key structural properties in the amorphous sample that play a 
critical role in the structure and stabilisation of the material in its amorphous form. 

4.3.5 Appendix	VIII	
DATA AVAILABILITY 

The NMR raw data are available from the Materialscloud repository https://doi.org/10.24435/materialscloud:gk-51 in JCAMP-DX 
version 6.0 standard format and original TopSpin format, as well as the input files for the MD simulations, the MD snapshots ex-
tracted, formation energies of intermolecular complexes, and all scripts used to perform the data analysis. All data and scripts are 
available under the license CC-BY-4.0 (Creative Commons Attribution-ShareAlike 4.0 International). 

EXPERIMENTAL DETAILS 

1D 1H MAS experiment. A one rotor period rotor-synchronised spin echo sequence, for background suppression, was used for 
acquisition. Pre-saturation was applied prior to excitation. No weighting function was applied upon processing. 

Table 4.7. Experimental details of the 1D 1H MAS experiment. 

MAS rate (kHz) VT (K) 1H 90° RF (kHz) d1(s) TD SW (kHz) SI 

100  278 312.5 5 4096 227.3 8192 

 

1D DNP-enhanced 13C CPMAS experiments. A conventional cross-polarisation (CP)408 sequence was used for the acquisition of the 
spectra presented in Figure 4.10B-C with a contact time of 2.5 and 0.1 ms respectively. The short contact time promotes the detec-
tions of protonated carbon atoms. Pre-saturation was applied prior to excitation. For Figure 4.10D an editing experiment (CPPI)404 
that relies on phase inversion was used for acquisition. In this sequence a second short (40 μs) cross-polarisation block right after 
the initial one inverts -CH2 groups whereas nulls -CH groups and retains -C and -CH3 groups with a positive intensity. For all spectra 
spinal-64 1H decoupling409 with an rf of 71.4 kHz was applied during acquisition. A Lorentzian line broadening of 150 Hz was applied 
upon processing. 
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Table 4.8. Experimental details of the 1D 13C CPMAS experiments. 

 

2D DNP-enhanced 13C-13C INADEQUATE experiment. A rotor-synchronised J-based refocused INADEQUATE369, 411 sequence was 
used for  acquisition. A States-TPPI acquisition scheme518 was used to obtain phase-sensitive two-dimensional spectra. Spinal-64 1H 
decoupling409 with an rf of 83.3 kHz was applied only during acquisition. A Lorentzian line broadening of 300 Hz was applied upon 
processing to both dimensions. 

Table 4.9. Experimental details of the 2D 13C-13C INADEQUATE experiment. 

MAS rate 
(kHz) 

VT 
(K) 

90° RF ampli-
tude (kHz) 

d1(s) Number of FID 
points, F2/F1 

SW (kHz), 
F2/F1 

Size of real spec-
trum, F2/F1 

J evolution 
time (μs) 

Contact Power 
(kHz), 1H/13C 

Contact 
time (ms) 

10  100 83.3 3 806/40 81.5/25 2048/256 8 71.5 / 59.8 4 

 

2D 1H-1H DQ/SQ experiment. An eight-rotor period rotor-synchronised BABAxy16367 sequence was used for acquisition. Pre-
saturation was also applied prior to excitation. A States-TPPI acquisition scheme518 was used to obtain phase-sensitive two-
dimensional spectra. A Lorentzian line broadening of 100 Hz was applied upon processing to both dimensions. 

Table 4.10. Experimental details of the 2D 1H-1H DQ/SQ experiment. 

MAS rate (kHz) VT (K) 90° RF amplitude 
(kHz) 

d1(s) Number of FID 
points, F2/F1 

SW (kHz), F2/F1 Size of real spectrum, 
F2/F1 

DQ recoupling 
time (μs) 

100 278 312.5 5 9090/200 227.2/33.3 16384/256 80 

 

2D DNP-enhanced 1H-13C HETCOR experiment. A DUMBO-HETCOR410 sequence was used for the acquisition. An eDUMBO-122410 
element (32 μs at 71.5 kHz), applied during 𝑡𝑡/, increases the resolution of the indirect dimension by averaging and therefore de-
coupling 1H-1H homonuclear dipolar couplings. The rescaling of the indirect dimension, caused by the application of the DUMBO 
element, was done with the aid of the 1D 100 kHz 1H MAS spectrum. A States-TPPI acquisition scheme518 was used to obtain phase-
sensitive two-dimensional spectra. Spinal-64 1H decoupling409 with an rf of 83.3 kHz was applied during acquisition. A Lorentzian 
line broadening of 200 Hz was applied upon processing to both dimensions. 

Table 4.11. Experimental details of the 2D 1H-13C HETCOR experiment. 

Experiment MAS rate 
(kHz) 

VT 
(K) 

90° RF ampli-
tude (kHz) 

d1(s) Number of FID 
points, F2/F1 

SW (kHz), 
F2/F1 

Size of real 
spectrum F2/F1 

Contact Power 
(kHz), 1H/13C 

Contact 
time (ms) 

Figure 4.10H 10  100 83.3 2 1024/128 100/52 8192/1024 83.3/59.8 0.1 

Figure 4.10I 10  100 83.3 2 1024/28 100/47 8192/1024 83.3/59.8 0.5 

 

  

Experiment MAS rate 
(kHz) 

VT (K) 1H 90° RF (kHz) d1(s) TD SW (kHz) SI Contact Power 
(kHz), 1H/13C 

Contact time (ms) 

Figure 4.10B 10 100 71.4 2 2048 100 8192 54 / 70 2.5 

Figure 4.10C 10 100 71.4 2 2048 100 8192 54/70 0.1 

Figure 4.10D 10 100 71.4 3 988 100 8192 54/83.3 2.5 
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Chemical shift assignment of amorphous AZD4625. 

Table 4.12. 1H and 13C chemical shifts and widths (Gaussian 𝜎𝜎) of amorphous AZD4625. a Indicates widths that represent several overlapping reso-
nances, thus should be considered as upper bounds to the linewidths. The 1H and 13C resonances were assigned using the experimental spectra of 
Figure 4.10. Due to the amorphous character of AZD4625, the acquired spectra have broad lineshapes which reduce spectral resolution and often 
obscure the identification of peak maxima. However, we believe that the assignment presented here is accurate enough to be used for our further 
analysis. The assignment of C1 is uncertain due to the low signal-to-noise ratio of the INADEQUATE spectrum of the amorphous AZD4625. The 
assignment of the aliphatic carbon atoms was performed using the 1D CPMAS spectra and the INADEQUATE spectrum of a crystalline form (shown 
in Figure 4.16). The carbon chemical shifts were referenced using glycerol and the proton chemical shifts using L-histidine hydrochloride monohy-
drate. 

Label 1H Chemical Shift / Width (ppm) 13C Chemical Shift / Width (ppm) 

1 7.6/- 114/- 

2 6.7/1.0a 129.7/5.5a 

3 - 166.6/5.9a 

4 4.3/1.0a 50.8/3.1 

5 5.1/1.0a 46.9/2.3 

6 3.3/0.8 45.8/2.6 

7 3.7/1.0a 54/2.7 

8 1.3/1.0a 30.3/2.0 

9 3.4/0.7 71.3/3.4 

10 - 149.3/2.0 

11 - 103.3/5.0a 

12 - 161/3.9a 

13 8.5/1.0a 154/3.7a 

14 - 142.2/2.0 

15 - 149/2.0 

16 - 125.7/2.5 

17 - 124.7/3.4a 

18 - 108.4/3.6a 

19 - 162.7/2.6 

20 7.6/0.6 114.7/6.0a 

21 7.6/0.6 132.4/5.4a 

22 7.8/0.6 108.4/3.0 

23 - 159.4/3.4a 

24 0.8/0.6 17.7/2.3 

OH 11.3/1.8 - 
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Computational details for the MD simulations. To model the amorphous structure of AZD4625, we carried out MD simulations on 
periodic amorphous cells. The atomic positions of a single molecule were first optimised at the B3LYP-D3/6-31G(d,p) level of theo-
ry95, 99, 104, 519, 566, 567 in gas phase using the Gaussian 16 revision C.01 program.536 Optimised coordinates and CHELPG charges525 
were extracted from the optimisation and used as input to generate amorphous cells. Materials Studio560 together with the COM-
PASS-III force field568 were used to create cubic amorphous cells (43*43*43 Å) of 128 molecules placed randomly and with identical 
conformations in eight replicates. These multiple replicas allow the generation of a diverse set of structures. PDB files of the amor-
phous cells were saved as input for the MD-step. The Desmond program (Schrödinger 2021-4)558 was used for all MD simulations 
throughout the study employing the OPLS4 force field.557 The systems were initially equilibrated for 1 ns using the canonical (NVT) 
ensemble first at 100 K and then at 298 K. The temperature was held constant using a Nosé-Hoover chain thermostat569, 570 with a 
relaxation time of 1.0 ps. A second equilibration was carried out for 22 ns using the isothermal-isobaric ensemble (NPT) at 298 K 
and 1 bar where the temperature and pressure were held constant using the coupled Martyna-Tobias-Klein method571 with a relax-
ation time of 1.0 ps. Production simulations were carried out for 500 ns using the NPT ensemble at 298 K and 1 bar with the same 
settings as in the second equilibration. Electrostatic interactions were included with a 9 Å cutoff. Trajectories were collected every 
100 ps. Models of the amorphous structure were obtained by extracting evenly spaced snapshots from the last 100 ns of each MD 
simulation. Since no inversion of the aromatic ring containing the OH group was observed during the MD simulations, five simula-
tions were carried out with a starting angle between the aromatic planes around -90° and three were run with a starting angle 
around 90°. This explains the 5:3 ratio of negative and positive angles in Figure 4.12D. The eight simulations (corresponding to 
1,025,280 molecular environments) were assumed to fully sample the conformational and noncovalent interaction space of the 
molecule in the amorphous phase. 

 

Figure 4.16. 13C-13C INADEQUATE spectra of a crystalline form of AZD4625. In (A) the aliphatic and in (B) the aromatic regions are plotted. 
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Figure 4.17. Fits of individual resonances of C2-C13 from the 1D 13C CPMAS NMR spectrum of amorphous AZD4625. 
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Figure 4.18. Fits of individual resonances of C14-C24 from the 1D 13C CPMAS NMR spectrum of amorphous AZD4625. 
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Figure 4.19. Fits of individual resonances of proton sites from the 1D 1H MAS NMR spectrum of amorphous AZD4625. 

 

Figure 4.20. Fits of individual proton resonances (bottom panels) from rows extracted from the 2D 1H-1H DQ/SQ MAS NMR spectrum of amorphous 
AZD4625 (top panels, indicated by dashed black lines). 
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Figure 4.21. (A) Jensen-Shannon divergence and (B) overlap between experimental chemical shift distributions and those obtained from the NMR 
ensemble. The overlap is defined as the integral under the point-wise minimum between the experimental and NMR-selected shift distribution, 
where each distribution is assumed to be Gaussian and with an integral of one. 

 

Figure 4.22. Histograms of chemical shifts for individual carbons in the MD (blue) and NMR (orange) ensembles, compared to the experimental 
distributions when determined (black lines). 
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Figure 4.23. Histograms of chemical shifts for individual carbons in the MD (blue) and NMR (orange) ensembles, compared to the experimental 
distributions when determined (black lines). 
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Figure 4.24. Histograms of chemical shifts for individual protons in the MD (blue) and NMR (orange) ensembles, compared to the experimental 
distributions when determined (black lines). 
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Figure 4.25. Histograms of chemical shifts for individual protons in the MD (blue) and NMR (orange) ensembles, compared to the experimental 
distributions when determined (black lines). 
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Figure 4.26. Histograms of chemical shifts for individual nitrogens in the MD (blue) and NMR (orange) ensembles. 

 

 

Figure 4.27. Two-dimensional histograms of hydrogen bonding (H⋯X) distances and OH proton chemical shifts for different hydrogen bond accep-
tors X. 
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 Conclusion	
5.1 Results	achieved	
In summary, this thesis presents how NMR crystallography can be accelerated using machine learning. It also shows how the atom-
ic-level structure of amorphous materials can be determined by using a combination of solid-state NMR experiments, molecular 
dynamics simulations, and machine-learned chemical shifts. 

Determining the atomic-level structure of (micro)crystalline molecular solids using NMR chemical shifts requires the combined use 
of solid-state NMR experiments, crystal structure prediction (CSP) protocols, and DFT chemical shift computations. A machine 
learning model of chemical shifts was presented as an alternative to DFT computations for solids containing up to 12 elements and 
finite-temperature or distorted structures, allowing chemical shifts to be obtained in seconds and with DFT-level accuracy for typi-
cal crystal structures, and enabling the computation of chemical shifts for large ensembles of large structures. Incorporating ma-
chine-learned chemical shifts in CSP procedures was shown to improve the generation of candidate crystal structures by targeting 
the experimentally measured chemical shifts. In addition, ShiftML enabled the prediction of chemical shifts for a large database of 
crystal structures, which in turn was found to allow the identification of preferred intermolecular interactions in crystal structures 
directly from the chemical structure of a molecule and its assigned chemical shifts. This can in turn be used to rank candidate crys-
tal structures, and could enable the construction of structural constraints to further accelerate CSP procedures. 

Improvements of the measurement and assignment of chemical shifts were also presented in order to speed up and increase the 
robustness of these important steps in NMR studies. Using the database of chemical shifts predicted by ShiftML, a probabilistic 
framework to assign experimental chemical shifts to their associated atomic sites using a database of chemical shifts predicted by 
ShiftML for a large number of crystal structures was presented. This allows the determination of the assignment without prior 
knowledge of the three-dimensional structure of the material, and is typically able to confidently assign most chemical shifts, with 
only a few ambiguities remaining. Then, a convolutional LSTM neural network able to increase the spectral resolution of 1H spectra 
by removing MAS-dependent broadenings and shifts was introduced. This allows a more confident measurement of chemical shifts 
compared to experimental MAS spectra measured at the fastest rates available. The model was also adapted to two-dimensional 
1H-1H correlation spectra. Overall, these methods are able to help provide accurate chemical shift measurements and assignments 
directly from simple and highly sensitive experiments. 

Finally, structure determination of amorphous molecular solids was also shown to be possible through a combination of solid-state 
NMR experiments, molecular dynamics simulation and machine-learned chemical shifts. Comparing chemical shifts predicted for 
MD structures to experimental values allows the determination of an ensemble of local molecular structures compatible with ex-
periments, which can be analysed to identify preferred molecular configurations and intermolecular interactions in the material 
under study. This resulted in a general method to determine the atomic-level structure of amorphous molecular solids by NMR by 
simultaneously considering experimental and computed shifts from multiple atomic sites. 
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5.2 Future	development	
Several improvements to the methods presented here could greatly contribute to the improvement and democratisation of struc-
ture determination of molecular solids by NMR crystallography. 

Developing more accurate machine learning models of chemical shifts would improve the analyses using ShiftML presented in this 
thesis. In this direction, models able to predict shifts with an accuracy beyond the PBE level of theory typically used for GIPAW 
chemical shift computations would allow both more confident and faster NMR crystallography compared to procedures using 
GIPAW. The main challenge to constructing such models is the availability of training data. While ideally experimental chemical 
shifts and structures should be used as training data to avoid any bias from the method used to compute chemical shifts, this is 
currently unrealistic due to the lack of a large, centralised database of experimental chemical shifts of molecular solids. In addition, 
experimental shifts would require thorough and accurate referencing to avoid unwanted noise in the data. An alternative approach 
to constructing more accurate models of chemical shifts is the computation of training data using higher levels of theory, however 
approximations may be required in order to enable the computation of the training data using currently available computational 
resources.302 

NMR crystallography would also benefit from the computation of time-averaged chemical shifts obtained by path-integral molecu-
lar dynamics (PIMD) trajectories of candidate crystal structures. This process includes the effect of molecular dynamics and nuclear 
quantum effects into the chemical shifts obtained, and has been shown to lead to more accurate chemical shifts in better agree-
ment with experimental values.303, 306 Coupling PIMD with general-purpose machine learning models of chemical shifts and ma-
chine learning potentials could enable routine evaluation of PIMD-averaged chemical shifts in order to improve the description of 
thermal and quantum fluctuations influencing experimental chemical shifts.303 

ShiftML directly translates atomic-level structures into chemical shifts. This allows NMR crystallography through the generation of 
candidate crystal structures, followed by chemical shift computation and comparison with experiments. A more direct process to 
determine structures from chemical shifts would greatly accelerate NMR crystallography. In particular, constructing a model able to 
predict structures directly from experimental shifts would lead to a paradigm shift in NMR crystallography, similar to the recent 
introduction of AlphaFold in the field of protein structure determination, that is able to determine protein structures directly from 
the sequence of amino acids.572, 573 However, several challenges including the determination of the space group and unit cell pa-
rameters prevent the straightforward application of models similar to AlphaFold to determine the structure of molecular solids. 

Finally, the determination of structural ensembles that quantitatively reproduce the spectra measured for amorphous materials 
would significantly improve their structure determination. In that regard, adapting methods to determine the conformational en-
sembles of intrinsically disorder proteins (IDPs)563-565 to molecular solids could be an important step forward. 
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