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We can’t just stop. We’re not rocks. 

Progress, migration, motion is… modernity. 

It’s animate, it’s what living things do. 

 

Tony Kushner, Angels in America (1992) 
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Abstract  

 

Organocatalysis has evolved significantly over the last decades, becoming a pillar of synthetic 

chemistry, but traditional theoretical approaches based on quantum mechanical computations to 

investigate reaction mechanisms and provide rationalizations of catalyst performance have failed 

to keep pace with experiment. This thesis focuses on developing tailored yet transferable data-

driven tools and concepts to accelerate organocatalyst discovery, going beyond state-of-the-art 

computational methods, by addressing three aspects: (1) reaction optimization using closed-loop 

workflows and strategies based on molecular building blocks for generating candidate species 

from fragments, (2) establishing cost-effective ways of evaluating how close a prospective 

catalyst is to achieving optimal performance (i.e., fitness functions), and (3) facilitating and 

improving the prediction of enantioselectivity and generality through accurate machine learning 

algorithms and efficient inverse design pipelines.   

The first aspect examines the under-exploited modularity of organocatalysts to enable bottom-up 

database construction, accelerated activity-based screening, and inverse catalyst design. By 

defining structural components that encapsulate a catalyst’s functionalities, we were able to 

curate a database of thousands of structures mined from the literature or generated 

combinatorially. These building blocks may be assembled on-the-fly to suggest prospective 

species with improved performance.  

The second aspect focuses on harnessing the structure–activity relationship offered by molecular 

volcanos as a way to establish a catalyst’s “fitness” in closed-loop optimizations. To this end, we 

developed a genetic algorithm package, NaviCatGA, and showed that it is an efficient tool to 
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streamline computer-aided catalyst discovery. Multi-objective problems e.g., activity–selectivity 

tradeoffs, may also be solved with evolutionary experiments by considering, and scalarizing, 

more than one target simultaneously.   

In the final section, we address current limitations of machine learning and generative models in 

predicting and optimizing challenging targets, specifically enantioselectivity and catalyst 

generality. We design reaction-inspired representations to improve the accuracy of physics-based 

models and show how evolutionary experiments may be planned to find catalysts displaying high 

performance across a broad substrate scope. 

Overall, this thesis demonstrates how tailored data-driven tools and concepts that are able to 

address the unique properties and structures of organocatalysts streamline reaction optimization 

and the discovery of prospective new species. 

Keywords: organocatalysis, inverse design, closed-loop optimization, molecular volcano plots, 

machine learning, structure–activity relationships, enantioselectivity 
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Riassunto  

 

Nel corso degli ultimi decenni, l’organocatalisi si è evoluta in modo significativo, diventando un 

pilastro della sintesi organica, ma approcci teoretici tradizionali fondati su calcoli 

quantomeccanici per studiare meccanismi di reazione e razionalizzare la prestazione dei 

catalizzatori non sono stati in grado di rimanere al passo con approcci sperimentali. Questa tesi 

si concentra sullo sviluppo di strumenti e concetti specifici, ma allo stesso tempo trasferibili, per 

accelerare la scoperta di organocatalizzatori basandosi sull’analisi di grandi quantità di dati, 

superando altri metodi computazionali all’avanguardia, considerando tre aspetti: (1) 

ottimizzazione di reazioni usando flussi di lavoro “a circuito chiuso” e strategie basate su blocchi 

molecolari per assemblare possibili candidati usando frammenti; (2) stabilire modi economici 

per valutare quanto un possibile catalizzatore sia vicino al raggiungimento di prestazioni ottimali 

(i.e., funzioni di idoneità); (3) facilitare e migliorare la previsione di enantioselettività e generalità 

tramite algoritmi di apprendimento automatico e canali di “progettazione inversa” efficienti. 

Il primo aspetto esamina la poco sfruttata modularità degli organocatalizzatori per permettere la 

costruzione di database “dal basso verso l’alto”, accelerare il loro lo screening in termini di 

attività catalitica, e la loro “progettazione inversa”. Definendo componenti strutturali che 

incapsulano le funzionalità di un catalizzatore, siamo stati in grado di curare un database di 

migliaia di strutture estratte da pubblicazioni o generate in modo combinatorio. Questi elementi 

strutturali possono essere assemblati al volo per suggerire nuove specie con miglior performance. 

Il secondo aspetto si concentra sullo sfruttamento delle relazioni fra struttura e attività offerte da 

grafici a vulcano molecolare in qualità di tramite per stabilire l’idoneità di un catalizzatore in 
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ottimizzazioni a “circuito chiuso”.  A tal fine, abbiamo sviluppato un algoritmo genetico, 

NaviCatGA, e dimostrato quanto sia efficiente per accelerare la scoperta computazionale di 

catalizzatori. Problemi con più di un obbiettivo e.g., compromessi fra attività e selettività, 

possono essere risolti con esperimenti evolutivi considerando, e scalarizzando, più di un target 

contemporaneamente. 

Nella sezione finale, abbiamo considerato i limiti attuali di modelli generativi e di apprendimento 

automatico nel predire e ottimizzare obiettivi difficili, specificatamente l’enantioselettività e la 

generalità di un catalizzatore. Abbiamo progettato rappresentazioni ispirate a reazioni chimiche 

per migliorare la precisione di modelli basati sulle leggi della fisica e mostrato come esperimenti 

evolutivi possano essere pianificati per trovare catalizzatori con prestazione elevata su un’ampia 

gamma di substrati. 

Nel complesso, questa tesi dimostra come strumenti e concetti su misura basati su grandi quantità 

di dati in grado di affrontare le proprietà e le strutture uniche degli organocatalizzatori 

semplifichino l'ottimizzazione di reazione chimiche e la scoperta di potenziali nuove specie. 

Parole chiave: organocatalisi, progettazione inversa, ottimizzazione a circuito chiuso, grafici a 

vulcano molecolare, apprendimento automatico, relazioni struttura–attività, enantioselettività 
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Introduction  

 

Over the last 20 years organocatalysis i.e., the use of small and medium-sized organic molecules 

to catalyze chemical reactions, has matured from a few mechanistically ill-defined niche 

transformations to one of the most thriving research domains in chemistry.1 Along with 

transition-metal and enzyme catalysis, it is an established pillar of organic synthesis and, 

accordingly, it was elected by IUPAC as one of the ten emerging technologies with the potential 

to make our planet more sustainable.2 Some of the features that have attracted the community’s 

interest are the catalysts’ availability from renewable sources as single enantiomers, their 

robustness, non-toxicity, and the operational simplicity of organocatalytic reactions, which are 

often air and/or water tolerant.3 In a recent perspective,4 the field was deemed ripe to become 

broadly applicable, even in industrial settings, despite current concerns regarding high catalyst 

loading and recyclability.5 Overcoming some of the existing limitations requires continuous 

advances in catalyst design and the development of new activation strategies.6,7 So far, this has 

primarily been achieved via experimental screening and rational or empirical design. High-level 

quantum chemical (QC) methods have provided valuable insight into reaction mechanisms and 

occasionally helped perform a fine tuning of catalyst structure.8,9 However, owing to the 

substantial computational cost and inherent complexity of catalytic cycles,10 the ability of 

traditional approaches based on Density Functional Theory computations of potential energy 

surfaces to unravel mechanistic details and offer quantitative reactivity predictions is failing to 

keep pace with experiment.11 Alternative, well-established strategies12–14 aimed at obtaining 

correlations between empirical data and DFT/experimentally-based molecular descriptors 

provide rapid insights into the structural features are necessary for good performance, but can be 

1 
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challenging if descriptors simulating the interactions at play are not found or if the empirical 

observations are the result of more than one fundamental process (e.g., nonlinearity due to a 

change in mechanism). 

Since both DFT computations and multivariate linear regression analysis are often limited to 

case-by-case studies and dominated by trial-and-error, there is a need to develop conceptual and 

data-driven tools that facilitate both the exploration of a wider range of organocatalyst space and 

the automated optimization of reaction properties. Applications of machine learning (ML) in 

chemistry have demonstrated its potential to propel the next leap forward in the discovery of 

functional molecules and materials,15 principally because the number of prospective species that 

can be examined greatly exceeds that amenable to more traditional theoretical or experimental 

approaches.16,17 Going beyond direct screening, coupling supervised ML algorithms that estimate 

catalytic properties with generative models18 that bias chemical space exploration towards areas 

of interest enables the inverse design of entirely new species.19 It is therefore reasonable to 

envision that, in today’s world, any strategy aiming to design new catalysts will inevitably 

involve some form of ML. In particular, data mining and analysis techniques, together with 

statistical and generative models, are ideally suited to complement quantum chemical and 

mechanistic-guided methods, which are often faced with numerous challenges,20 and transform 

the nature, scale, and complexity of the problems tackled.21 

One aspect that makes organocatalytic reactions particularly difficult to study by means of 

traditional QC methods8 is the catalysts’ flexibility and the existence of many low-energy, 

thermally accessible conformations that may potentially be reactive, which must be exhaustively 

searched for and evaluated for accurate stereoselectivity predictions.22 Furthermore, the catalyst 

often engages the substrate in multiple, subtle non-covalent interactions (NCIs) that ultimately 

determine the reaction outcome but whose extent is difficult to quantify.23 The free energy 

difference between two conformational states or the strength of NCIs like hydrogen-bonding, π-

stacking, or CH/π interactions may account to only a few kcal/mol,24,25 which poses a significant 

challenge to standard DFT. Additionally, to expand the scope of possible transformations, the 
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structure of organocatalysts is becoming increasingly complex and multifunctional yet, unlike 

organometallic compounds, well-defined building blocks26 are harder to enumerate for 

functionally diverse species across wide regions of chemical space, making the implementation 

of otherwise successful fragment-based strategies27 less routine. Given these caveats, individual 

computations on a single catalytic system or existing tools are not necessarily transferable to 

other (even related) systems. 

The overarching theme of this thesis involves addressing these limitations by developing tailored 

yet transferable data-driven tools and concepts to accelerate organocatalyst discovery, going 

beyond state-of-the-art methods.28 The material is organized following three aspects: (1) reaction 

optimization using closed-loop workflows and strategies based on molecular building blocks for 

generating candidate species from fragments, (2) establishing cost-effective ways of evaluating 

how close a prospective catalyst is to achieving optimal performance (i.e., fitness functions), and 

(3) facilitating and improving the prediction and optimization of challenging targets (e.g., 

enantioselectivity, generality).   

Chapter 2 provides the reader with a brief overview of the approaches used to study and optimize 

organocatalytic reactions, divided between mechanistic-guided or -agnostic. 

Many of these tools have focused on specific reaction classes or structurally related catalysts. 

Consequently, there is a dearth of general strategies and platforms for organocatalysts 

comparison, fragmentation into building blocks, and assembly across different regions of catalyst 

space, encompassing functionally and chemically diverse species. To address this, Chapter 3 

introduces OSCAR (Organic Structures for CAtalysis Repository), a database of 4000 

experimentally derived organocatalysts along with their corresponding building blocks, enriched 

with combinatorially generated structures (up to 1.5 million). The fragment-based approach used 

for dataset curation is outlined and the repository’s diversity, in terms of functions and molecular 

properties, is showcased with chemical space maps, which help establish structure–reactivity 

relationships for reaction optimization. This article has been published in Chemical Science.29 
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Following the creation of OSCAR, we exploit the same modular strategy and the type of 

fragments contained in the repository to improve the activity of bifunctional hydrogen-bond 

donor/amines in combination with statistical modelling14 and molecular volcano plots. The latter 

are data-driven tools useful for rationalizing trends in catalytic behavior and predicting the 

performance of untested candidates.30 Originally developed for applications in electro- and 

heterogeneous catalysis, this concept was successfully transferred to organometallic reactions by 

our group.31 In Chapter 4, we demonstrate how the automated construction of volcano plots and 

activity maps32 may be integrated into a bottom-up protocol that leverages the organocatalyst’s 

modularity and guides the choice of ideal building blocks for rate enhancement. This article has 

been published in Organic Chemistry Frontiers.33 

While the study above involves direct activity-based screening, molecular volcanos allow for an 

inexpensive mapping between structure and reactivity and thus constitute an ideal way of 

estimating how close a prospective species is to achieving maximum performance. Chapter 5 

describes how volcano plots are incorporated into a pipeline for inverse design,34,35 which relies 

on our genetic algorithm36 NaviCatGA and the previously curated molecular fragments libraries 

from OSCAR. As a validating case study, we perform multi-objective optimization of bipyridine 

N,N′-dioxides Lewis bases in the propargylation reaction of benzaldehyde.37 This article has been 

published in Chemistry—Methods.38 

Evaluating the fitness function during genetic optimization with NaviCatGA is accelerated via 

machine learning (ML) predictions. Among the many different “flavors” of ML, physics-based 

models39 accurately predict molecular and atomic properties while offering a great deal of 

generality and transferability, but can struggle with more challenging reaction-based targets, such 

as enantioselectivity.40 In Chapter 6, we outline a strategy for improving molecular 

representations within such atomistic model and accurately predict the enantiomeric excess of 

bipyridine N,N′-dioxides in the aforementioned propargylation. This article has been published 

in Chemical Science.41 
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In Chapter 7, we show how the NaviCatGA pipeline may be adapted to optimize catalyst 

generality42 i.e., exhibiting both high turnover and enantioselectivity across a broad substrate 

scope, as primary target. The workflow combines data mining to curate an experimental database 

of 820 Pictet–Spengler reactions, used to train statistical models for e.e. and TOF predictions (in 

combination with molecular volcanos), structure manipulation to define a combinatorial space of 

building blocks from OSCAR, and evolutionary experiments performed across a virtual catalyst–

substrate landscape of millions of possibilities.  

Finally, Chapter 8 concludes the thesis by summarizing the main findings of the tools and 

concepts developed herein with respect to the three overarching objectives. Future work is 

suggested regarding further developments, serving as stimuli to accelerate the discovery of 

organocatalysts for new transformations.
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Computational Tools to Study and 
Optimize Organocatalytic Reactions  

 

2.1 Historical Overview of Computational Organocatalysis 

Organocatalysis’ contribution to modern society has recently been recognized on account of the 

Royal Swedish Academy of Sciences awarding the 2021 Nobel Prize in Chemistry to Benjamin 

List and David W.C. MacMillan “for the development of asymmetric organocatalysis”. Since its 

inception, tremendous advancement in reactivity, activation modes, and stereoinduction has been 

attained.1,43,44 In 2000, two seminal, independent publications by List, Barbas III, and Lerner on 

the proline-catalyzed intermolecular aldol reaction45 and by MacMillan on iminium catalysis46 

set the stage for a new pillar of asymmetric synthesis. Despite several contributions on the use of 

small organic molecules as catalysts having appeared long before,6 these papers described 

general activation strategies that could be extended to a broad range of reaction classes, 

conceptualizing the field of “organocatalysis” (a term introduced by MacMillan) and highlighting 

its potential environmental, economic, and scientific advantages.3 

The first organocatalytic reaction to be studied computationally was the Hajos–Parrish reaction 

by Cheong et al. in 2004.47 This work showed that theoretical tools could be used to investigate 

and even predict the performance of organocatalysts48 however, since then, quantum mechanical 

(QM) methods have mostly been used to rationalize experimental observations ex post facto 

rather than to make true predictions. Few successful early examples of computationally-led 

organocatalyst optimization exist, including predictions on anti-selective Mannich-type reactions 

2 
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by Houk, Tanaka, and Barbas III (2006),49 the development of (thio)urea analogues for epoxide 

ring-opening (2007),50 and the design of a simplified yet highly enantioselective primary amine 

by Paton and Dixon (2015).51 These studies involve modifying molecules that show some 

catalytic activity using knowledge gained from experiments or computational models to attain 

second-generation catalysts with improved performance. A complementary approach consists in 

screening a virtual catalyst library curated manually with well-known compounds or generated 

combinatorially from molecular fragments. This has been made possible owing to the past 

decade’s advances in computing power and the development of software packages to automate 

routine computational tasks, such as the optimization of the hundreds of transition states (TSs) 

required to accurately predict the stereochemical outcome of a reaction.52 

In 2015, Neel and Toste investigated a phase transfer chiral anion catalysis system53 using a new 

set of data science tools being developed by Milo and Sigman, including computational 

featurization of reaction components, linear regression modelling, statistical classifications, and 

data set design.54 They showed that enantioselectivity data from organocatalytic reactions where 

selectivity arises from differential non-covalent interactions (NCIs) can be quantitatively 

connected to the attributes (molecular descriptors) of the reaction components.55–60 Since then, 

multivariate linear regression (MLR) analysis of activity/selectivity measures has gained 

enormous popularity for the optimization of (organo)catalytic systems.14 This approach differs 

from those described above in that it is mechanistically agnostic at the outset of the investigation, 

while heavily relying on an initial set of experimental data. Mechanistic hypotheses may be 

formulated a posteriori on the basis of which features are highly correlated with reaction 

performance. On the other hand, Denmark and co-workers have demonstrated a purely data-

driven method61 whereby a library of organocatalyst candidates is evaluated in order to optimize 

a reaction without simultaneously exploring its mechanism.62 Their pioneering 2019 study 

showed how support vector machine and deep feed-forward neural network models trained using 

electronic descriptors combined with a newly designed steric descriptor of conformer ensembles, 

the Average Steric Occupancy (ASO), are able to predict the selectivity of higher-performing 
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chiral phosphoric acids (CPAs).63 This work provided a large dataset (1075 reactions) that has 

become popular for subsequent machine learning (ML) studies64–68 and fueled the application of 

artificial intelligence techniques in organocatalysis. 

2.2 Mechanistic-Guided Approaches 

Broadly speaking, the tools that have been used in computational organocatalysis can be divided 

into two categories, depending on the researchers’ primary objective: (1) tools for mechanistic 

interpretation and catalyst fine-tuning, and (2) tools for performance prediction and reaction 

optimization.  

The mechanistic-guided approach mostly relies on quantum chemical modelling techniques and 

the calculation of potential energy profiles along the reaction pathways, with Density Functional 

Theory having become the de facto standard,8,69–71 although highly accurate wavefunction 

methods e.g., DLPNO-CCSD(T), are occasionally used for single point energy computations.72–

74  When reactivity is believed to be highly influenced by solvation, molecular dynamics 

simulations with explicit solvent molecules may be performed.75 This approach is mostly aimed 

at helping interpret experimental observations by verifying if a proposed mechanism is plausible 

i.e., energetically viable. Information gained from these results is sometimes used to suggest 

modifications to the catalytic system to improve its performance,76,77 however it is still more 

efficient to experimentally screen a range of potential organocatalysts than to “test” them in 

silico. That is because QM-based reactivity predictions often require computing the complete 

potential energy profile associated with a catalytic cycle, taking into account the complex 

conformational space associated with large and flexible molecules, which becomes extremely 

expensive for more than a handful of systems.20  

When the nature of the selectivity-determining step is well-known, catalyst optimization may be 

carried out using automated toolkits. They help generate the structure of new catalyst-substrate 

combinations and optimize hundreds of stereodetermining TS geometries. Among the fully QM-

based tools, AARON78 and QChASM79,80 have been successfully applied to organocatalysis.37,52 
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Despite significant advances in the speed of QM and hybrid QM/MM81 methods, DFT-based 

predictions may still be intractable for high-throughput screenings or large and flexible systems. 

Norrby and co-workers have therefore developed alternative approaches using transition state 

force fields (TSFF)82 and QM-derived molecular mechanics force fields (Q2MM),83 which 

provide accuracy rivaling DFT but at a drastically reduced computational cost. Their tools ACE84 

and CatVS85 are now integrated into the platform VIRTUAL CHEMIST.86 A similar technique 

whereby a rigid TS model of the substrate is docked into a flexible organocatalyst, modelling the 

conformational space of the non-covalently bound complex with FFs, is reverse docking.87 

Applications of this approach to peptide catalysis,87 TADDOL-catalyzed asymmetric hetero-

Diels–Alder,88,89 and Strecker hydrocyanation90 have been reported.  

A challenge inherently faced in the mechanistic-guided approach is the conformational flexibility 

of organocatalysts. Accurate stereoselectivity predictions require evaluating all the thermally 

accessible catalyst-substrate conformations.91 A number of programs (e.g., Crest,92,93 RDKit,94 

Balloon,95 wSterimol96, and Molassembler97) have been developed to perform conformational 

sampling together with QM methods;98 however, static DFT computations of isolated minima 

are sometimes insufficient to describe chemical events occurring in experimental settings,99 

especially when the entropic contribution to the stability of different molecular states must be 

taken into account. In this context, our group has proposed enhanced sampling techniques, in 

particular replica exchange molecular dynamics (REMD),100 to address organic chemistry 

problems connected to fluxional molecules, including organocatalysts.101,102 While these studies 

have demonstrated the importance of thoroughly mapping the conformational landscape of 

flexible catalysts, structure–activity relationships were only indirectly inferred, as the substrates 

were excluded from the simulations. 
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2.3 Regression Methods for Reaction Optimization 

Tools for the second approach are aimed at obtaining quantitative predictions of catalytic 

performance, typically enantioselectivity or reaction rates, even in the absence of mechanistic 

hypotheses.103 Sometimes, computed reaction profiles and stereoelectronic parameters, in 

combination with linear regression, are used to generate predictive models.104 Examples include 

the work of Goodman on CPA selection in nucleophilic additions to imines based on steric 

assessments105–107 and models developed by Wei and Lan for predicting chemoselectivity in N-

heterocyclic carbene108 and Lewis base-catalyzed109 reactions from the global nucleophilicity and 

electrophilicity indices of the species involved in the product-determining step. While those 

descriptors were obtained from DFT computations,110 Mayr and co-workers have conducted 

extensive research on establishing experimental nucleophilicity and electrophilicity scales, 

including in nucleophilic organocatalysis,111–114 and reaction rates can be calculated by the Mayr–

Patz Linear Free Energy Relationship (LFER).115 

Traditional univariate LFERs,116 such as the Hammett equation,117 are often used to gain 

mechanistic information, but their simplicity can limit the obtainable insight in more complex 

scenarios.118 Multiparameter approaches have therefore emerged to correlate chemical reactivity 

to structure using physically interpretable quantities and find better-performing catalysts.119,120 

“Holistic” MLR models to transfer chemical observations from one reaction to another and 

improve selectivity have now been proposed for CPA and hydrogen-bond donating (HBD) 

catalysis.121–123 Beyond intuitive physical organic and spectroscopic parameters, 

enantioselectivity has been modelled via molecular interaction filed (MIF), comparative 

molecular filed analysis (CoMFA),124–128 and Continuous Chirality Measure (CCM).64 While 

MLR is typically used with small to medium-sized datasets,129 nonlinear methods are leveraged 

when large databases are available.118 In such cases, topological (i.e., 2D) descriptors have been 

found to be cost-efficient alternatives to the more expensive 3D-based representations.67,68,130,131 

If predictive models cannot be developed using the entire chemically diverse dataset available, 
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“catalyst selection by committee” has been proposed to exploit multiple, data-limited models 

generated on different substrates and recommend novel organocatalysts.132 

2.4 Other State-of-the-Art Data-Driven Approaches 

Apart from supervised ML methods to regress activity/selectivity data, unsupervised learning 

techniques have recently found use in organocatalysis. These include dimensionality reduction 

(e.g., PCA, UMAP, t-SNE) and clustering (e.g., k-means) algorithms to visualize in silico catalyst 

libraries and select subsets for experimental screening or training sets to probe the accessible 

chemical space.133 Recently, Reid et al. used such unsupervised learning methods to assess and 

quantify the generality (i.e., broadness of the substrate scope) of asymmetric organocatalysts.134  

Another emerging statistical analysis tool is univariate classification. Pioneering work by Chen 

and co-workers involved support-vector machine (SVM)–based virtual screening of the 

PubChem repository to distinguish primary and secondary amine catalysts for the direct 

intermolecular aldol reaction from drug-like molecules.135 More recently, Doyle and Sigman 

have reported a classification algorithm leveraging a single-node decision tree136 to explain the 

origin of “activity cliffs” and establish which molecular descriptor could predict whether an 

organocatalyst will be enantioselective in a given reaction (“selectivity cliffs”).133,137 

Finally, alternatives to QM- or ML-assisted high-throughput screening are emerging, specifically 

the use of generative models, including generic algorithms (GA), in the spirit of “inverse 

design”.34 Using a GA, Jensen et al. discovered new azetidine catalysts for the alcohol-mediated 

Morita–Baylis–Hillman reaction by searching the chemical space of the ZINC database.138 This 

constitutes the first experimentally verified de novo design of an efficient organocatalyst with 

generative models. 
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2.5 Outlook 

The computational tools described above represented the state-of-the-art at the time this thesis 

was started. However, both the mechanistic-guided (i.e., the creation of potential energy surfaces) 

and -agnostic approach (regression of experimental outcomes) are often limited in their 

transferability to, at best, closely related systems. Clearly, tools that can combine large quantities 

of data, connect seemingly disparate reactivity profiles, and establish trends that facilitate the 

rationalization and prediction of organocatalysts’ properties are highly desirable. Furthermore, 

developing fast and accurate ML algorithms that are compatible with generative models, as well 

as robust structure generation workflows from well-defined building blocks and efficient ways 

of scoring candidates according to their activity/selectivity, would enable de novo organocatalyst 

discovery. The following chapters describe our efforts in developing such data-driven tools to 

expand the computational toolbox for organocatalysis.
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OSCAR: An Extensive Repository of 
Chemically and Functionally Diverse 
Organocatalysts 

This chapter is based on following publication: 
Gallarati S., van Gerwen P., Laplaza R., Vela S., Fabrizio A., and Corminboeuf C., OSCAR: An 
Extensive Repository of Chemically and Functionally Diverse Organocatalysts. Chem. Sci. 2022, 
13, 13782. 

3.1 Introduction 

Constructing extensive yet tailored databases is crucial for the successful development and 

application of data-driven tools in catalysis and materials science.139,140 The way datasets are 

generated largely reflects how chemists think about the structure of a catalyst. In turn, this not 

only influences the way improved molecular systems are searched, but also how their structure 

is manipulated, for example through trial-and-error,141 fine-tuning according to mechanistic 

insight,49–51,142 or generating compound libraries for activity/selectivity screening.37,76,77,85 

Transition-metal catalysts are naturally viewed in a modular fashion as a combination of active 

metal center and ligands, which are further decomposed into metal-coordinating groups, 

backbone/bridging units, and substituents.27 This simple, yet powerful fragment-based strategy 

has enabled tremendous advancements in computer-aided catalyst design,143,144 from the 

exploration of the chemical space of inorganic species curated through bottom-up or top-down 

approaches,145–150 the construction of ligand databases with associated steric and electronic 

descriptors,151–157 to the development of algorithms for the assembly of metal complexes from 

fragments and evolutionary experiments.158–160 Modularity is even more apparent in 

biocatalysts,161 which combine a limited number of building blocks, the amino acids; inspired by 

3 
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natural evolution, strategies such as combinatorial backbone assembly162 have allowed to 

generate libraries of structurally diverse enzymes with altered catalytic properties. 

 

Figure 3.1 (A) Prototypical privileged chiral frameworks for asymmetric catalysis. (B) 
Classification of organocatalysts according to their catalytic motifs (X = O, S). 

Organocatalysts are far less frequently classified according to fragment-based schemes. Instead, 

they are typically grouped into families of “privileged catalysts”,163,164 or according to the 

functional components that encapsulate their catalytic power (Figure 3.1).165 Privileged catalysts 

are those species possessing certain chiral scaffolds that have proven to be effective at inducing 

high levels of enantioselectivity across a wide range of mechanistically unrelated reactions.163,164 

Some effort has been made to summarize these catalytic motifs,166 however their comprehensive 

enumeration across all of chemical space is challenging due to the large possible variations in 

functionalities. This problem is exacerbated by the fact that organocatalysts are essentially a 

subclass of organic molecules, whose space is estimated to exceed 1060,167,168 and chemical 

expertise is required to evaluate whether an organic molecule could function as a catalyst in a 

reaction. Therefore, de novo organocatalyst design is a formidable, seldomly approached task, 
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primarily due to the lack of robust ways of defining and assembling their building blocks,169,170 

and reaction optimization is dominated by testing closely related analogues of a known privileged 

catalyst.171 

Similarly, the field of data-driven organocatalysis has been dominated by efforts, either on the 

automation side107 (e.g., AARON78 or ACE/Virtual Chemist84,86) or on the development of 

statistical models for enantioselectivity prediction,41,63,105,121,122,130,172 that have focused on 

specific reaction classes or structurally related catalysts. There is currently a dearth of general 

strategies and platforms for organocatalysts comparison, fragmentation into building blocks, and 

assembly across a wide region of catalyst space, encompassing functionally and chemically 

diverse molecules with a multitude of catalytic functions. 

In this work, we propose a solution in the form of OSCAR (Organic Structures for CAtalysis 

Repository), a database of experimentally derived or combinatorially enriched organocatalysts 

and of the corresponding molecular fragments that are extracted from them. Not only OSCAR 

constitutes a map to navigate organocatalyst space and potentially enable informed catalyst 

design, but the modular strategy behind its construction paves the way to a multitude of data-

driven and fragment-based reaction optimization methods.33,173 Herein, we show how such a 

dataset is curated and augmented with crystallographically determined structures using a 

combination of top-down and bottom-up approaches, and how the fragments are assembled in a 

combinatorial fashion to generate thousands of species. In its current forms, OSCAR contains 

4,000 catalysts, whose use has either been documented in the literature for organic synthesis or 

with chemically analogous structure reported in the Cambridge Structural Database (CSD), 

spanning various catalytic functions (Lewis/Brønsted acids and bases), and two exemplary 

enriched combinatorial supersets, OSCAR!(NHC) and OSCAR!(DHBD). The former consists of 

over 8,000 carbenes for covalent catalysis, the latter contains ca. 1.5 million non-covalent dual-

hydrogen-bond donors. The approaches used to generate these combinatorial databases (vide 

infra) are however transferable to other classes, implying the possibility of further extending 

OSCAR. A selection of stereoelectronic molecular descriptors, including reactivity indices 
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derived from conceptual DFT, are provided and may help establishing structure–reactivity 

relationships for reaction optimization. All structures and properties are publicly available on the 

Materials Cloud for interactive visualization with Chemiscope 

(https://doi.org/10.24435/materialscloud:gy-3h).174 They could serve as the starting point to 

define the combinatorial space for evolutionary experiments,38 as well as the basis for dataset 

curation to train machine learning models for applications in organic synthesis.68  

3.2 Results and Discussion 

 

Figure 3.2 Graphical summary of the steps followed for the curation of OSCAR. 

3.2.1 Database Curation 

No comprehensive repository of organocatalysts’ structures covering all of the functionalities 

summarized in Figure 3.1B currently exists. Most frequently, they are reported in the literature 

in 2D format (i.e., ChemDraw pictures) with associated experimental characterization data in the 

Supporting Information (NMR and IR spectra and, less often, crystal structure information), but 

molecular geometries are not easily accessible. To construct OSCAR, we followed a five-step 

protocol (Figure 3.2), which starts with the manual collection of catalysts (as 2D objects) from 

reviews,43,165,175–185 journal articles,186–189 books,190–194 and commercial catalogues195,196 into a 

“seed” database (step 1). Each of the 1,000 2D entries in this library is labelled according to the 

classes in Figure 3.1 and converted into a 1D (i.e., SMILES strings) and subsequently 3D (i.e., 

optimized XYZ geometry) structure (see the Computational methods). Given that more than 

~1,500 publications on organocatalysis are published each year,1 it is virtually impossible to 

curate an exhaustive library of all existing catalysts. Nonetheless, the seed database aims at 
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covering the chemical diversity observed across all of organocatalyst space in terms of chemical 

functionalities, catalytic motifs and scaffolds/substituents, with the added bonus of each structure 

either being commercially available or synthetically accessible, having being mined from the 

literature. 

This top-down approach ensures that only organic molecules that have been reported to display, 

or be tested for, catalytic activity are included in the database. However, it is a slow, human error-

prone process that cannot be automated and might either introduce in the repository erroneous or 

mislabeled structures or lead to chemically interesting ones being excluded. Existing 

crystallographic databases (e.g., CSD,197,198 COD199) offer the most comprehensive collection of 

organic (and inorganic) molecules that have been synthetized. Although it not possible to filter 

out a priori those compounds that have not been tested as organocatalysts, CSD offers the chance 

to significantly augment the seed database with more, chemically diverse structures, provided 

that the right chemical motifs, which might make a molecule catalytically active, are searched. 

To achieve this goal we enumerated, in 1D format, 64 “function-based fragments” included in 

the seed database (step 2 Figure 3.2 and Figures S1–S2). Although not exhaustive, they represent 

the most common catalytic motifs and ensure that the species that contain them are relevant to 

the task at hand. In step 3, these fragments are searched in CSD and the corresponding whole 

molecules extracted. After retrieving the 3D geometries from the cif files with the cell2mol 

software,200 3,010 compounds are added to the seed database, yielding a total of 4,000 entries 

(after filtering out identical ones, see the ESI). All 3D entries are then converted into 1D format 

for subsequent fragmentation and recombination (steps 4 and 5, vide infra). 
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Figure 3.3 (A) Distribution histograms of catalytic motifs in the seed database and in the CSD-
extracted structures. (B) Pie chart showing percentages of catalytic motifs in the seed and CSD-
extracted datasets. (C) Distribution histograms of heteroatom types (X = halogens), and (D) 
molecular weight in the seed and in the CSD-extracted sets. 

With respect to the catalytic motifs (cf Figure 3.1B), the distribution of the CSD-extracted 

structures changes significantly from the seed database (see the two histograms in Figure 3.3A). 

In OSCAR, the majority of species (40%) are classified as dual-hydrogen-bond donors; their 

large increase in number upon CSD extraction is likely due to the popularity of the (thio)urea 
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(24%) is aminocatalysts based on the pyrrolidine motif: in the early days of organocatalysis, the 

vast majority of reactions were indeed amine-based176,205 and five-membered (polycyclic) 

secondary amines are widely encountered in natural products, as well as being a preferred 

scaffold in pharmaceutical science and drug design.206 The other classes are more or less equally 

represented (~5-6%, Figure 3.3B), with a slight predominance of Lewis bases (11%), given the 

large variety of N(O)-, P(O)-, and S(O)-nucleophilic organocatalysts. If we consider the increase 

in type of heteroatoms from the seed to the CSD-extracted database (Figure 3.3C), sulfur and 

nitrogen are the most abundant due to the predominance of the thiourea and pyrrolidine catalytic 

motifs. The amount of P, Si, X, and especially B atoms increases to a significantly lesser extent. 

In the case of phosphorous, even though we seek to augment the quantity of P-containing motifs, 

only a limited number of phosphoric acids (ca. 25) are extractable from CSD. On the other hand, 

no catalytic unit that specifically contains halogens, silicon or boron is searched. An exhaustive 

description of the functional groups present in OSCAR is given in the Supporting Information 

(Table S2 and Figure S4). Finally, the catalysts in the two datasets have a similar distribution of 

molecular weights (Figure 3.3D), with the seed database containing on average slightly larger 

molecules (~ 430 u) and displaying a smoother decrease in occurrences as their size increases. 

3.2.2 Structure and Property Maps 

The chemical and structural diversity contained in OSCAR is visualized in Figure 3.4A with a 

2D t-SNE map207 based on FCHL19208 of the 4,000 organocatalysts from the seed and CSD 

databases. Alternative representations and dimensionality reduction can be found in the ESI 

(Figures S5–S7). Although the two axes (dimensions) of this structure map have no formal 

physical meaning, it is possible to establish a qualitative relationship between them and chemical 

properties. In particular, species found higher in the map are bigger (higher molecular 

weight/surface area), whereas the degree of conjugation and the presence of aromatic scaffolds 

and substituents decreases left to right. For example, diol-based catalysts,209 which act as single-

hydrogen-bond donors, and phosphoric acids210 are found along the upper edge of the map, with 

the fully aromatic BINOL derivatives on the left, the H8-BINOL core in the middle, and 
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BAMOLs on the right. Dual-HBDs, especially diaryl (thio)ureas, occupy the lower left corner of 

the map, while simple proline derivatives the bottom right, with larger and more complex 

aminocatalysts in the upper left region. Other noticeable clusters correspond to the ketone 

epoxidation catalysts developed by Shi and Shu (covalent Lewis acidic carbohydrate 

derivatives),211,212 and to iminophosphorane Brønsted bases.213 

 

Figure 3.4 2D t-SNE map of OSCAR on the basis of the FCHL19 representation.208 Each point 
represents an organocatalyst, colored by the corresponding catalytic motif. Each cluster contains 
catalysts with similar structure, with some examples being shown R = alkyl group; Ar = aromatic 
group; PTC = phase-transfer catalyst. (B) Property map: computed (ωB97X-D/Def2-
TZVP//B97-D/Def2-TZVP) nucleophilicity (Nrel) vs. electrophilicity (E-index) parameters.110 A 
zoom-in of the map is provided on the right hand side. 
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The structure map is complemented by a “property map” (Figure 3.4B) in which the 

organocatalysts are evaluated in terms of their DFT-computed global electro/nucleophilicity 

indices (see the Computational methods), which assume that, when these catalysts react, they do 

so cumulatively and simultaneously at all their atomic sites.214 The largest influence on the 

descriptors is exerted by the total molecular charge, and three regions are found (four if the green 

point corresponding to the phosphorylated sulfonimidamide215 with –1 charge is considered). E-

index increases with the charge, while Nrel decreases. Highly electrophilic and charged species 

include phase transfer catalysts216 (PTCs, non-covalent Lewis acids) and azolium ions, which are 

the conjugate acid precursors of carbene organocatalysts.217 The zoom-in on the right hand side 

of Figure 3.4B shows the spread of E-index and Nrel values for neutral organocatalysts. Among 

the most nucleophilic species, Brønsted bases, in particular iminophosphoranes, and 

phosphoramidite Lewis bases are found towards the top of the map (!!"#""""" = 3.8 eV, σ = 0.6 eV), 

while ketone epoxidation electrophiles are at the bottom (#$%&"'"""""""" = 1.0 eV, σ = 0.2 eV, !!"#""""" = 2.4 

eV, σ = 0.5 eV). Some families of catalysts, such as DHBDs containing the thiourea motif and 

aminocatalysts, cover a wide range of values (0.4 < E-index,DHBD < 2.1 eV), indicating that their 

electronic properties are highly dependent on the nature of the substituents bound to the catalytic 

motif. Although it is unlikely that these simple reactivity indices can accommodate a robust and 

universal scale for electrophilicity and nucleophilicity of such diverse molecules with a varied 

range of structural, electronic, and bonding properties, the property map in Figure 3.4B and the 

set of descriptors provided with OSCAR may supplement existing structure–reactivity scales in 

organocatalysis,218–224 such as the ones developed by Mayr et al.111–114 
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3.2.3 Combinatorial Datasets 

 

Figure 3.5 Graphical summary of the steps followed to generate the combinatorial databases 
OSCAR!(NHC) (top) and OSCAR!(DHBD) (bottom). X = O/S. 

OSCAR currently covers a significant part of organocatalyst space and a large pool of chemically 

and functionally diverse catalytic motifs. However, given the nearly infinite number of possible 

derivatives of each catalyst, only relatively few examples are included. Harnessing the fragment-

based strategy used to enrich the seed database with structures from CSD in a bottom-up fashion, 

we exponentially increase the size of OSCAR by building combinatorial databases from 

molecular fragments. The exact nature of the fragments depends on the family of organocatalysts, 

but they can be grouped into two categories: catalytic motifs (i.e., the chemical groups that 

contain the reactive components) and structural substituents (which modulate their 

stereoelectronic properties). If the catalytic motif is easily distinguishable from the rest of the 

molecule (e.g., for dual-hydrogen-bond donors, vide infra), it is extracted as a subgraph of the 

whole catalyst, and the rest handled as structural substituents. If the catalytic motif exhibits larger 

chemical diversity and substitution patterns (e.g., carbenes, vide infra), the possible functional 

units and substituents are curated manually based on chemical expertise. Herein, we show how 

to do this for two types of covalent and non-covalent organocatalysts, specifically N-heterocyclic 

carbenes [OSCAR!(NHC)] and dual-hydrogen-bond donors [OSCAR!(DHBD)]. In the first case, 

a relatively “small” database (8,622 catalysts) is curated by carefully selecting catalytic motifs 
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and substituents found in OSCAR. In the second, we adopt a graph-based approach to generate 

1,573,015 DHBDs. 

In the first example (Figure 3.5, top), 17 cores/scaffolds are extracted from the seed and CSD 

libraries (Figure 3.4A and S9, most central ring system generated with DataWarrior225); based on 

structural features reported in the literature,226–229 60 substituents grouped into three categories 

(R1–3, Figures S10–S12) and appropriate substitution patterns are defined. They are then 

translated into flexible SMILES strings (Table S4), written in such a way that different R1–3 in 

each core can easily be introduced and exchanged. Finally, 3D structures are generated from the 

SMILES and fully optimized, yielding a database of 8,622 species. In the second example (Figure 

3.5, bottom), all the organocatalysts containing one DHBD unit in the seed and CSD-extracted 

datasets (1,593) are interpreted as molecular graphs94 (i.e., undirected multigraph with RDKit) 

and fragmented into the central catalytic motif and the two substituents on either side (R1,2), 

affording a combinatorial space of 7 × 6942 groups. After duplicate removal and recombination 

with RDKit, they yield a total of 1,573,015 species (all optimized at the xTB level); 1,000 

structures per each DHBD motif are selected and optimized with DFT, and 6,994 are shown in 

Figure 3.6B. 

The two combinatorial datasets are visualized with chemical space maps (Figure 3.6),230 which 

are typically constructed from steric and electronic molecular descriptors. Based on their 

popularity and chemical meaningfulness, the percent buried volume231,232 %Vburied and 

nucleophilicity N-index (see the Computational methods) are the parameters chosen for 

OSCAR!(NHC), while the LUMO energy εLUMO and the HNNH dihedral angle of the HBD unit 

(θ) are plotted for OSCAR!(DHBD). The electronic descriptors provide an indirect estimate of 

the catalysts’ Brønsted acidity/basicity: analysis of the experimental equilibrium acidities of 23 

NHCs233 shows that the pKa values of their precursors (the azolium ions) are directly proportional 

to the N-index of the carbene (R2 = 0.80, 2σ = 0.72, Figure S8), while the LUMO energies of 74 

DHBDs186 scale linearly (R2 = 0.92, 2σ = 2.32, Figure S13) with their experimental pKa’s (as 
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previously noted by Sigman for a smaller subset).122 %Vburied and θ quantify the steric influence 

exerted by the catalysts’ core and substituents. 

 

Figure 3.6 A) Percentage buried volume vs. N-index of combinatorial NHC organocatalysts. N-
index is found to scale linearly with known experimental pKa values of azolium ions (Figure S8). 
B) HNNH dihedral angle (θ) vs. LUMO energy (ωB97X-D/Def2-TZVP//B97-D/Def2-TZVP) of 
dual-hydrogen-bond donor species. Good linear correlation between εLUMO and the pKa’s of 
DHBDs has been found (Figure S13). 

The NHCs in Figure 3.6A are colored according to common structural features. The N-substituent 

(R1 in Figure 3.5, Figure S10) has the greatest effect on nucleophilicity, with catalysts bearing 

electron-donating alkyl groups [i.e., Me, Et, iPr, Cy, and C(Me)Cy] having the highest N-index 

(blue points). These species are predicted to be the most reactive towards electrophilic attack, 

however their precursors have pKa’s over 20,233 meaning that relatively strong bases must be used 

for active catalyst generation. The steric demand of the carbene is mostly influenced by R3 

(Figure S12): L-pyroglutamic acid-derived bicyclic NHCs234 with diaryl- and 

diaryl(hydroxy)methyl substituents235,236 (red and purple points) are located towards the top of 

the map (large %Vburied). Despite their ability to enforce a rigid asymmetric environment, which 
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could be beneficial in enantioselective reactions, these catalysts are poorly nucleophilic and 

predicted to be less reactive. Green and orange species, based on the tetracyclic amino-indanol-

derived core developed by Rovis and Bode237,238 and on morpholine- and pyrrolidine-based 

triazoliums, have more balanced steric and electronic properties and indeed are among the most 

popular and versatile NHCs used in organocatalysis.217 Analysis of the descriptors provided with 

the 8,622 carbenes in OSCAR!(NHC) could eventually be used to tune the catalyst’s composition 

for performance improvement in specific reactions, as outlined in structure–activity–

stereoselectivity studies using similar physical organic parameters.239–241 For example, Rovis, 

Lee, and co-workers found correlations between the computed gas-phase acidity of a series of 

triazolium cations and their selectivity in two Umpolung reactions,242 while Wei and Lan 

developed a linear model to predict the chemoselectivity of an NHC-catalyzed ester 

functionalization based on the global nucleophilicity and electrophilicity indices of the species 

involved in the product-determining step.108   

In Figure 3.6B, each point is colored according to the nature of the central DHBD unit. Based on 

εLUMO, and in agreement with pKa measurements,243,244 croconamides and thiosquaramides 

(purple and red species) are more acidic than thioureas, ureas, and deltamides (yellow, blue, and 

light blue). Sulfamides (orange points) cover a relatively wider range of εLUMO values, implying 

that the higher electron-withdrawing ability of the sulfonyl group, which should result in stronger 

acidity of the N–H bonds compared to ureas,245 is significantly modulated by the substituents. 

The rapid estimation and comparison of the acidity of various DHBDs is useful for reaction 

optimization, as dual-hydrogen-bond donors with lower pKa’s have been found to give better 

enantioselectivities and faster reaction times.116 Sulfamides are also the most flexible species, as 

indicated by the large number of catalysts with θ > 80°. In OSCAR!(DHBD), the majority of 

structures generated and selected for DFT optimization are in the anti-anti or syn-syn 

conformation (θ < 80°, Figure 3.7D and Figure S17),246 the former being the most relevant to 

catalysis, since the hydrogens point in the same direction.247 
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Figure 3.7 Distribution plots (y-axis: normalized probability density) of molecular descriptors 
for NHCs (A and B) and DHBDs (C and D) in the seed + CSD-extracted (red curves) and 
combinatorial databases (blue). X = O/S. 

If we compare the distribution of θ values in the “original” and combinatorial datasets (Figure 

3.7D), we see that many CSD-extracted DHBDs adopt the anti-syn conformation (θ > 80°). In a 

comprehensive study of diaryl(thio)ureas from CSD, Paton et al. found that the majority (99%) 

of ureas exist as anti-anti conformers, whereas about 60% thioureas are in the anti-syn form.248 

These results agree with our own, with thioureas extracted from CSD having large θ’s (Figure 

3.7D). The “original” and combinatorial sets are more similarly distributed in terms of the other 

molecular descriptors (Figure 3.7A–C, N-index, %Vburied, and εLUMO), suggesting that the 

recombination of the same fragments does not significantly alter the property space covered; 

instead, the combinatorial strategy provides more instances/structures for each property value. 

3.3 Conclusions 

We have introduced OSCAR (Organic Structures for CAtalysis Repository), a database of 4,000 

organocatalysts mined from the literature and CSD and enriched with several thousand species 

generated from fragments in a combinatorial fashion. We have developed a transferable 

fragment-based strategy for dataset generation, which exploits the modularity of organocatalysts 

by defining function-based catalytic motifs and structural substituents. OSCAR covers a wide 

region of catalyst space with incomparable chemical diversity, and includes a selection of steric 
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and electronic molecular descriptors useful for catalytic properties estimation and performance 

prediction. All content (geometries, stereoelectronic parameters) is publicly available on the 

Materials Cloud for interactive visualization with Chemiscope174 

(https://doi.org/10.24435/materialscloud:gy-3h) and fully searchable and interoperable with 

chemoinformatics software (e.g., RDKit, SMILES-based tools); the corresponding chemical 

space maps could be used for many potential applications, including data and training set 

curation, organocatalyst inverse design through evolutionary experiments,38 and mechanistic 

understanding. We expect OSCAR, and its future extensions and refinements, to assist in the 

establishment of data-driven and fragment-based reaction optimization methods in organic 

synthesis.33 

3.4 Computational Methods 

3.4.1 Quantum Chemistry 

All DFT computations were performed with the Gaussian16 software package.249 Geometry 

optimizations were carried out at the B97-D/Def2-TZVP level250–252 in the gas-phase applying 

density fitting techniques. ωB97X-D/Def2-TZVP single-point energies253 were computed in the 

gas-phase at the B97-D geometries. The ionization potential and electron affinity of a subset 

2,060 organocatalysts from the seed and CSD datasets were also computed at the IP/EA-EOM-

DLPNO-CCSD254/cc-pVTZ level as implemented in Orca 5.0.255 All coupled cluster 

computations used the RIJCOSX approximation256 with the cc-pVTZ/C and the Def2/J auxiliary 

basis sets for correlation and resolution of identity. This high-level data is available and can be 

used for the training of ML models. The structures in the combinatorial databases were pre-

optimized with the semiempirical GFN2-xTB Hamiltonian257 in the gas-phase, followed by DFT 

optimizations and single-points, as described above. 

The initial set of Cartesian coordinates for each organocatalyst was either obtained by converting 

SMILES formats258 into three-dimensional structures with the 3D structure generator operation 

(i.e., gen3d operation) implemented in the OpenBabel software,259 or applying cell2mol200 on 
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selected CSD entries exported with ConQuest (version 5.42), included in the CCSD software, 

from the CSD database updated to May 2021. The tSNE map207 for the 4,000 catalysts in OSCAR 

was computed on the basis of the FCHL19 representation208 of each molecule. The perplexity 

used to generate the structure map was set to 20 and the maximum number of optimization 

iterations was fixed at 5,000. 

Open shell single-point computations (n–1 and n+1 electrons) were also performed at the 

optimized n-electron B97-D geometries and uωB97X-D/Def2-TZVP level for the 4,000 catalysts 

in the seed + CSD dataset and for the 8,622 carbenes in OSCAR!(NHC). These energies provide 

an alternative way of estimating the organocatalysts’ ionization potential [IP = E(n-1) – E(n)] 

and electron affinity [EA = E(n) – E(n+1)] (see the ESI for further details).260 

3.4.2 Reaction Indices 

The organocatalysts’ ionization potential (IP) and electron affinity (EA) were estimated from the 

frontier molecular orbital energies (FMOs) of the n-electron species (in the gas-phase, at the 

ωB97X-D/Def2-TZVP level) using Koopman’s theorem261 within a Hartree–Fock scheme and 

used to calculate the conceptual DFT descriptors110,262,263 chemical potential (µ), hardness (η), E-

index, N-index, and relative nucleophilicity (Nrel) as follows: 

  $ = ()!"#$	+	)%$#$)
-        (1) 

  & = ()!"#$	–	)%$#$)
-        (2) 

E-index = /&
-0        (3) 

N-index = 1
234%&"'       (4) 

!!"# =	(5676	–	(5676(89:;)      (5) 



3.5. Supporting Information 

29 

where TCNE is tetracyanoethylene. Note that, based on the different formalisms for defining 

nucleophilicity,264 a distinction has been made between N-index (the reciprocal of the E-index) 

and relative nucleophilicity (Nrel).265 

3.5 Supporting Information 

The Supporting Information for this Chapter may be found at 

https://www.rsc.org/suppdata/d2/sc/d2sc04251g/d2sc04251g1.pdf  
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Harvesting the Fragment-Based 
Nature of Bifunctional 
Organocatalysts to Enhance their 
Activity 

This chapter is based on following publication: 
Gallarati S., Laplaza R., and Corminboeuf C., Harvesting the Fragment-Based Nature of 
Bifunctional Organocatalysts to Enhance their Activity. Org. Chem. Front. 2022, 9, 4041. 

4.1 Introduction 

Organocatalysts often incorporate different motifs for divergent catalytic functionalities, 

connected by flexible (a)chiral linkers, to simultaneously activate reaction partners through 

covalent and non-covalent interactions (NCIs).166,266,267 Bifunctional hydrogen-bond donor 

(HBD)–primary/secondary amine catalysts are among the most common arrangements and have 

found widespread use in enantioselective transformations due to the large variations in 

functionalities that can be accommodated into their structure.268–270 They are assembled on a 

modular basis, which allows for easy synthetic modifications, but can complicate optimizing 

their structure.271 Multiple catalyst components must be evaluated, potentially in a combinatorial 

fashion, and the most apt combinations identified.272 This is typically accomplished by making 

small modifications on a privileged motif guided by chemical intuition or trial-and-error.141,273 

Computational approaches help in identifying structural aspects pertinent to reactivity and inform 

the design of improved catalysts.9,103,118,171,274,275 A strategy popularized by Sigman and co-

workers is to correlate physical organic descriptors to experimental activity or selectivity 

outcomes via multivariate regression analysis.12,13,28,54,55,119,121,276,277 When applied to 

4 
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organocatalysts, the descriptors are typically evaluated on the catalyst structure as a whole or, 

occasionally, from truncated versions of it.278 Despite the locality of certain parameters employed 

(e.g., NBO charges, IR stretching frequencies, NMR chemical shifts, etc., see Figure 4.1), this 

approach does not fully exploit the fragment-based nature of organocatalysts and has limited 

transferability because, even when small modifications on part of the catalyst are made, its entire 

structure must be re-optimized and the parameters collected. On the other hand, modularity is a 

well-leveraged feature of transition-metal catalysts, whose structure is easily separated into active 

metal center, metal-coordinating groups, backbone/bridging fragments, and inert substituents.27 

Therefore, catalyst design strategies that rely on ligand molecular electronic and steric descriptors 

are widely documented in the literature.150,154,155,157,279–282 

 

Figure 4.1 Fragment-based approaches for organocatalyst design. 
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outcome.8,23,71 To this end, the energy difference between stereocontrolling transition states has 

been correlated with interaction energies associated with the relevant chemical motifs or 

distances using truncated structures53,56,57,60,283,284 or decomposition schemes.25,285 Despite the 

success of these fragment-based methods, the modular nature of multifunctional organocatalysts 

is not fully taken into account and the approach is not applicable to cover properties that also rely 

on the influence of covalent bonding. 

In this work, we present a strategy to improve the performance of bifunctional organocatalysts 

using a fragment-based feedback approach. Since tools to rationalize/predict the 

enantioselectivity of organocatalysts are well-established,22,41,286 here we focus on enhancing 

activity, which is often suboptimal (vide infra) and more ambiguous to optimize computationally. 

To achieve this goal, we exploit the volcano plot concept30 and define a library of catalytic motifs 

i.e., the chemical groups that present the catalytic functional components,166 which is used to 

assemble a first class of organocatalysts. Evaluating the building blocks individually allows us 

to extract fragment-based design principles, as well as making the catalyst screening process 

faster and more transferable. In turn, the trends gathered from the generated plot and the fragment 

parameters evaluated through statistical modeling are used to enrich the library with additional 

fragments and suggest subsequent catalyst designs. Finally, an activity map provides feedback 

on the combinations of fragments chosen, and whether the maximum theoretically achievable 

turnover frequency (TOF) has been reached.16,287 We investigate the Diels–Alder cycloaddition 

of anthracene and nitrostyrene (Scheme 4.1)288,289 to verify whether the popular 

pyrrolidine/squaramide organocatalyst is actually optimal for this reaction, and find that further 

activity enhancement is still achievable. Additionally, this strategy is generalizable to any system 

composed of different organocatalytic functionalities. 
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Scheme 4.1 a) Catalytic cycle of Diels–Alder cycloaddition of 2-(anthracene-9-yl)ethanal and β-
nitrostyrene catalyzed by a bifunctional organocatalyst. b) Computed Gibbs free energy profile 
(at the ωB97X-D/Def2-TZVP//B97-D/Def2-SVP level) of the pyrrolidine/squaramide catalyst. 

4.2 Computational Details 

Based on the work by Wheeler et al.,289 structures were optimized at the B97-D/Def2-SVP level 

of theory250–252 using the PCM method290,291 to account for the impact of solvent 

(dichloromethane) and applying density fitting techniques. PCM(DCM)/ωB97X-D/Def2-TZVP 

single-point energies253 were computed at the B97-D geometries. Transition state structures of 

class 0 organocatalysts (vide infra) were located using the AARON78 toolkit starting from a TS 

library assembled using the structures from the lowest-energy pathway reported by Wheeler et 

al.289 AARON automates the generation and investigation of the conformational space of flexible 

organocatalysts, helping to locate low-energy pathways.78 Intermediates were obtained from IRC 

computations.292 Stationary points were characterized on the basis of their vibrational frequencies 

(minima with zero imaginary frequencies, TSs with one imaginary frequency). Free energy 

corrections (298 K) were determined using the quasi rigid-rotor harmonic oscillator model using 

the GoodVibes program with a frequency cut-off value of 100 wavenumbers.293 The relative 

Gibbs free energies were automatically post-processed using the toolkit volcanic32 to establish 

linear free energy scaling relationships (LFESRs), determine the choice of the descriptor variable 

[the relative energy of intermediate 3, ∆GRRS(3)], and construct the TOF-volcano plots and 
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activity maps. All DFT computations were performed with the Gaussian16 (revision A.03) 

software package.249 

Multidimensional regression analyses were performed on the TOF-volcano plot descriptor 

variable [∆GRRS(3)] using the collected fragment parameters (see Tables S3–S5) and an in-house 

Python script openly available on GitHub (https://github.com/lcmd-

epfl/mlr_organocatalyst_fragments). As ease of interpretation of the model was considered 

valuable for mechanistic understanding, cross-terms of parameters were removed during model 

search. Variance inflation factors were computed to ensure that no collinearity was present. 

Normalized parameters were employed so that the coefficients would reflect the importance of 

each descriptor. Good linear correlation (R2 close to 1.00 and intercept close to 0.00) between 

predicted and measured ∆GRRS(3) was considered to evaluate whether a model adequately 

describes the system under study. Several linear equations were tested (some are given in Figures 

S3–S4); the MAE, number of parameters, and the adjusted R2 were decisive factors in choosing 

the final form. Cross-validation analysis and external validation were used to indicate a robust 

model. Leave-One-Out (LOO) cross validation of the model in Figure 4.2d led to a MAE of 1.78 

± 1.54 kcal/mol (R2 = 0.72), while 5-fold cross-validation led to a MAE of 1.76 ± 0.32 kcal/mol 

(R2 = 0.72). External validation was performed by pseudorandom partitioning the class 0 data set 

into 50:50 training set/validation sets, leading to a MAE of 1.71 ± 0.06 kcal/mol (R2 = 0.71). 

4.3 Results and Discussion 

Compared to transition-metal catalysts, the applicability of organocatalysts, especially in 

industrial settings, remains limited by their low activity.1,5 Cycloaddition reactions catalyzed by 

pyrrolidine/squaramide catalysts generally require high loadings (16-20 mol%).294–299 

Interestingly, even in the most efficient one developed by Jørgensen and co-workers (the 

dearomatization of anthracenes, see Scheme 4.1),288 the activity can still be improved, as we show 

in this work. The reaction mechanism was studied by Wheeler et al.289 and consists of three main 

steps: HOMO-raising activation of the diene through condensation of the aminocatalyst with the 
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aldehyde to give enamine 1, stepwise [4+2] cycloaddition with nitrostyrene via zwitterionic 

intermediate 3, and hydrolysis of the post-reaction complex 4 (Scheme 4.1). The squaramide unit 

helps forming the pre-reaction complex 2 by lowering the LUMO of the dienophile and directing 

its attack through double hydrogen-bonding, ensuring high stereoselectivity. The bifunctional 

organocatalyst combines three types of fragments: an amino function for enamine catalysis 

(henceforth called the covalent binding group, or CBG), a unit capable of forming dual hydrogen-

bonds (the non-covalent binding group, or NCBG), and a structural backbone (BB). 

 

Scheme 4.2 Library of function-based fragments for “class 0” organocatalysts. NCBG = non-
covalent binding group; CBG = covalent binding group; BB = backbone. Note that, in the 
bifunctional organocatalyst, CBG is bound to NCBG via the methyl group. 

A library of molecular building blocks is curated, consisting of 10 NCBGs (red species in Scheme 

4.2), 14 CBGs (primary and secondary amines, blue species) and 11 (a)chiral BBs (in green). 

The fragments are chosen to include some of the most chemically relevant and frequently seen 

motifs in enamine and HBD organocatalysis, as well as groups with different enough electronic 

and steric properties to afford robust LFESRs. They are combined to form a “class 0” of 101 

organocatalysts (33 catalysts with one unit in Jørgensen’s original compound kept constant and 

the other two systematically varied, 68 catalysts with random NCBG–CBG–BB combinations). 

On the basis of Wheeler’s computed mechanism (Scheme 4.1),289 the relative energies of 
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intermediates 1–4 and transition states TS1–2 of these 101 organocatalysts are computed and 

used to construct the TOF-volcano plot shown in Figure 4.2 (see the Computational Details). The 

volcano plot has a twofold purpose: first, it helps rationalize the effect of each individual 

fragment on activity and establish reactivity trends. Second, it provides an estimation of the 

maximum achievable theoretical TOF and a direct link between an easy-to-determine descriptor 

variable [∆GRRS(3)] and a measure of activity. A volcano plot or activity map can be used as a 

roadmap towards optimized catalysts; computing (or predicting) the descriptor variable for new 

fragment combinations allows larger databases to be screened. Details on how the volcano plot 

is constructed, including how the cusp is determined, are given in ref. 287,300 and in the SI. 

 

 

 

 

 

 

 

 

 

 

 



4.3. Results and Discussion 

37 

 

Figure 4.2 a) Influence of CBG and BB on TOF (only CBG fragments 0, V, VII, and VIII 
displayed). b) Zoom-in of pyrrolidine organocatalysts with different NCBGs (only catalysts with 
CBG 0 and BB 0 displayed). c) Class 0 vs. 1 (all catalysts displayed). d) MLR analysis of the 
descriptor variable in terms of parameters of the individual molecular building blocks. 

The CBG (blue fragment) has the largest influence in determining where on the volcano an 

organocatalyst falls (Figure 4.2a). This is not surprising since covalent interactions are stronger 

than non-covalent ones and the substate is primarily activated through HOMO-raising via 

enamine formation. The CBG trend follows the order pyrrolidine (0, closer to the volcano peak) 

> piperidine (VII) > indoline (VIII) ~ 2,2-dimethylthiazolidine (V). Note that, even though the 

volcano plot was constructed using all 101 organocatalysts (Figure 4.2c), Figure 4.2a only shows 

trends for CBGs 0, V, VII, and VIII for ease of understanding. In the case of V and VIII (right 

slope of the volcano), enamine formation (i.e., Cat → 1, Scheme 4.1) is unfavorable: the steric 

influence exerted by substituents on the α-position and the low Lewis basicity of the N-atom 
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make enamine 1 unstable. Since forming 1 is energetically uphill, the catalytic resting state (the 

TOF-determining intermediate, or TDI)301 is Cat, while the TOF-determining transition state 

(TDTS) is forming the first C–C bond in the cycloaddition reaction (TS1), which is particularly 

high in energy for these poorly nucleophilic CBGs. For 0 and VII, enamine formation is 

favorable (i.e., 1 becomes the resting state since Cat → 1 is exergonic), and these fragments are 

limited by conjugate addition (TDTS: TS1). Pyrrolidine 0 lies higher on the volcano than VII 

due to the higher sp2–character of the N-atom, leading to better donation of the electron density 

from the non-bonding N-orbital into the π* orbital of the enamine C=C bond and to higher 

nucleophilicity.302,303 Pyrrolidine 0 could be improved by making it more nucleophilic (i.e., better 

delocalization of the N-lone pair and higher enamine reactivity); however, since stabilizing TS1 

(TDTS) also makes 1 (TDI) more stable, to achieve higher turnover the barrier for conjugate 

addition (TS1) must be reduced more significantly than the concurrent stabilization of 1. In this 

sense, the choice of BB (green) is also important because it can tune the effect of CBG (Figure 

4.2a) and of NCBG. 

Since NCBG (red fragment) non-covalently binds the substrate, it exerts a more subtle influence 

on activity than CBG. Closer inspection (Figure 4.2b) at variations of Jørgensen’s catalyst (i.e., 

CBG and BB kept constant) shows that more acidic and stronger hydrogen-bond donors display 

slightly higher TOF. The trend in catalytic activity thiosquaramide (I) > squaramide (0) ~ 

thiourea (III) > deltamide (VI) reflects that in their Brønsted acidity.243,244,246,304,305 Better HBDs 

more significantly reduce the LUMO of nitrostyrene, yielding a lower TS1. Indeed, HBD 

organocatalysts with lower pKa’s have been found to give faster reaction times (and better 

enantioselectivities).116  

Jørgensen’s pyrrolidine/squaramide catalyst, or Wheeler’s thiosquaramide derivative (Figure 

4.2c), are actually not predicted to display the maximum achievable TOF (and neither are the 

other 99 candidates examined), inciting for further improvement. To find better-performing 

organocatalysts, the remaining 1,439 combinations in class 0 are screened by computing the 
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value of the descriptor variable [∆GRRS(3)]. To accelerate the process and avoid generating and 

optimizing the structure of intermediate 3 (and of Cat) for all 1,439 catalysts, we exploit the 

organocatalysts’ modular nature by evaluating ∆GRRS(3) in terms of molecular descriptors of the 

individual fragments (Figure 4.2d). ∆GRRS(3) is thus estimated through multivariate linear 

regression (MLR) from only five steric and electronic fragments parameters with sufficient 

accuracy (R2 = 0.80, MAE = 1.7 kcal/mol): the LUMO energy of NCBG (ɛLUMO), the N–H IR 

stretching intensity (iN–H) and the Boltzmann-weighted L Sterimol parameter96 of BB (wL), the 

local nucleophilicity110 at the N-atom (Nk) and the free energy of enamine formation (∆GENF) of 

CBG (Figure S2). 

The presence of two CBG parameters and the highest coefficient value carried out by ∆GENF 

(Figure 4.2d) highlights the importance of the amino-motif. Smaller Nk and ∆GENF, corresponding 

to highly nucleophilic amines that form stable enamines, make ∆GRRS(3) closer to its optimal 

value. In agreement with the trends extracted from the volcano plot (Figure 4.2a), pyrrolidine has 

the lowest ∆GENF; electron-donating groups make the N-atom more nucleophilic and help 

stabilize both TS1 (the TDTS) and 1 (the TDI), whereas CBGs with electron-withdrawing or 

larger substituents that cause unfavorable steric clashes have larger ∆GENF and Nk, and a higher 

barrier for conjugate addition (TS1).306,307 Only one parameter describes NCBG, carrying the 

second highest coefficient; Werth and Sigman recently observed excellent correlation between 

LUMO energies and experimental pKa values of bifunctional HBD-tertiary amine 

organocatalysts.286 This suggests that ɛLUMO provides an indirect measure of the acidity of the 

non-covalent motif and that more acidic groups make ∆GRRS(3) closer to the optimum (thus 

reducing ∆GRRS(TS1), Figure 4.2b). Finally, electron-withdrawing BBs (as indicated by iN–H) that 

enhance the acidity of NCBG and are long enough to avoid clashes with the anthracene substrate 

give lower ∆GRRS(3) values (i.e., 1 and TS1 become both stabilized, Figure 4.2a). 
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Scheme 4.3 Additional CBG (blue) and BB (green) fragments investigated in the search of 
improved organocatalysts. 

Taking advantage of the fact that the parameters for all 35 building blocks were computed to fit 

the MLR expression, and that the remaining 1,439 catalysts are simply new combinations of the 

fragments in Scheme 4.2, the entire fragments combinatorial database is then screened without 

the need of further computations, simply inputting the corresponding descriptor values in the 

MLR equation. Surprisingly, no combination is found to correspond to the volcano peak 

[∆GRRS(3) ≈ –16 kcal/mol]. The 5 combinations of fragments predicted to give the lowest 

∆GRRS(3) values (i.e., NCBG VIII; CBG 0, II–III; BB 0–I, Scheme 4.2) are assembled into a 

“class 1” of organocatalysts (Figure 4.2c). Despite minor improvements, these croconamide 

(VIII) species are still predicted to be suboptimal with respect to the theoretical TOF maximum. 

Clearly, additional fragments must be introduced to push the catalyst’s activity even further. 

Since CBG (blue) exerts the greatest influence on activity, better amino-fragments than 

pyrrolidine must be identified for major TOF enhancements. Therefore, 17 additional pyrrolidine 

derivatives (Scheme 4.3) are analyzed in terms of their nucleophilicity and ability to form stable 

enamines (Figure S6). Based on ∆GENF, only the aminocatalyst ethylated at the β-position (XX) 

surpasses CBG 0. Vilarrasa et al. similarly found that none of the sec-amines they examined 

yielded more stable enamines than pyrrolidine, with steric effects generally counteracting the 

increase in nucleophilicity afforded through the introduction of electron-donating groups.307 
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Three longer BB (green) fragments with electron-withdrawing substituents are also evaluated 

(Scheme 4.3) because they are predicted to make ∆GRRS(3) closer to the optimum. Unfortunately, 

they are found to significantly stabilize intermediate 1, causing an overall decrease in TOF 

(Figure S10–11). In agreement with results by Schreiner et al.,308 the 3,5-

bis(trifluoromethyl)phenyl group (BB 0, Scheme 4.2) is found to be the privileged BB required 

for high levels of activity. 

 

Scheme 4.4 Additional non-covalent binding groups (NCBGs) introduced. Combined with the 
best-performing CBGs and BBs, these fragments constitute an enhanced “class 2” of 
organocatalysts. 

As CBG and BB are essentially optimized, further improvements can be achieved by enhancing 

the acidity of NCBG (red). To this end, less established H-bonding motifs (NCBGs X–XX, 

Scheme 4.4) are considered. These include experimentally reported preorganizing and acidifying 

linkers,309–312 and three other sulfur- and selenium-based fragments. Because thio-derivatives 

typically outperform their oxygen counterparts in terms of acidity and activity,289 we sought to 

further increase the efficiency of the catalyst by introducing a thiocroconamide NCBG (XVIII, 

Scheme 4.4), which is predicted to possess even lower ɛLUMO (hence making ∆GRRS(3) closer to 

the optimum, according to MLR analysis). Given the growing interest in the application of 

selenium-containing HBD analogues,313–315 two more NCBG designs, XIX and XX, are included. 
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Selenium has similar properties to sulfur but with a larger atomic radius: it can accommodate 

more negative charge, which could induce a stronger N–H acidity.316  NCBGs X–XX (Scheme 

4.4) are combined with the best-performing CBG and BB fragments to yield 40 additional 

candidates grouped in “class 2” (see Figures S6–7). The relative energies of their corresponding 

stationary points are computed and used to construct the maps in Figure 4.3 (see the Supporting 

Information). 

 

Figure 4.3 Activity map. b) Zoom-in on classes 1–2 showing the best-performing 
organocatalysts. 

The performance of all organocatalysts is compared based on the activity map in Figure 4.3a. 

The inset shows the progressive improvement in the median of computed TOF values from class 

0 to class 2. The purpose of the map is to evaluate whether a combination of fragments 

corresponding to the TOF maximum (most central region) has been found. The introduction of a 

second descriptor variable [∆GRRS(1)] aims at separating some of the points that would otherwise 

be clustered on a 1D volcano by highlighting the adverse effect of fragments that over-stabilize 

enamine 1. Fragments that lead to ∆GRRS(1) < –3 kcal/mol [and ∆GRRS(3) > –7 kcal/mol] result 

in reduced turnover. The best combinations of fragments are located in the central region of the 

map (i.e., highest turnover, Figure 4.3b). These include catalysts bearing benzothio- and 

benzoselenadiazine NCBGs (XVI, XIX, Scheme 4.4), as well as the highly acidic 

selenocroconamide species XX (Scheme 4.4). Clearly, increasing the Brønsted acidity of the 
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HBD moiety affords higher activity. Although selenium-containing NCBGs XIX–XX (Scheme 

4.4) might not be synthetically accessible, the presence of the benzothiadiazine XVI species in 

the same area of the map is encouraging. This scaffold was reported by Takemoto and co-workers 

to outperform other common HBD organocatalysts in the isomerization of alkynoates to 

allenoates,312 the intramolecular oxa-Michael reaction of α,β-unsaturated amides,317 and in an 

asymmetric Mannich-type reaction,318 and has the additional advantage of inducing higher 

structural rigidity, fixing the catalyst conformation in a catalytically active form.309 The 

combination of this NCBG with pyrrolidine-based fragments bearing small electron-donating 

alkyl groups (Me, Et) at the β-position and Schreiner’s 3,5-bis(trifluoromethyl)phenyl backbone 

leads to enhanced activity, balancing the opposing effects of a stabilized rate-limiting transition 

state (which increases turnover) and an over-stabilized resting state (which decreases it).  

While the map in Figure 4.3a is limited to the description of the reaction under study (Scheme 

4.1), the protocol for its construction, and the fragment-based strategy that has led to the 

identification of better-performing building blocks, is generalizable to other transformations. The 

chemical trends gathered from the analysis of the Figure 4.2 volcano plots and from statistical 

modelling are likely transferable to different reactions catalyzed by bifunctional hydrogen-

bonding catalysts. Pyrrolidine (CBG) and the 3,5-bis(trifluoromethyl)phenyl group (BB) are 

essentially optimal, and maximum activity can be reached by modulating the acidity of the HBD 

bonding unit (NCBG). Simple fragment parameters that estimate, for example, the 

nucleophilicity of the covalent group, or the Brønsted acidity of the HBD, will be useful to predict 

the performance of organocatalysts in mechanistically-related transformations. 

4.4 Conclusions 

In summary, we have shown how the modular nature of organocatalysts can be exploited through 

a fragment-based computational approach to suggest structural modifications for enhanced 

activity. This strategy relies on curating chemically diverse families of catalytic motifs and 

evaluating catalyst activity in terms of the individual fragment contributions. Trends and 
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optimum regions extracted from volcano plots and statistical modeling help choosing which 

additional fragments must be added to the library for improved turnover. An activity map shows 

whether a combination of fragments corresponding to the TOF maximum has been found. 

Specific to the cycloaddition reaction studied here, enhancing the Brønsted acidity of the HBD 

unit and enforcing some conformational rigidity is essential to push the activity limit of the 

organocatalyst, whereas further optimizing the covalent chemical motif or the side group is 

hindered by the increasing stability of the catalytic resting state, which reduces turnover. We 

have shown how in even seemingly optimal catalytic systems involving the commonplace 

pyrrolidine/squaramide bifunctional organocatalyst there is room for improvement, and that the 

development of innovative HBD scaffolds with increased acidity is a focal point in hydrogen-

bonding catalysis. We expect this approach to be broadly applicable and beneficial for the 

optimization of other organocatalytic systems. 

4.5 Supporting Information 

The Supporting Information for this Chapter may be found at 

https://www.rsc.org/suppdata/d2/qo/d2qo00550f/d2qo00550f1.pdf 
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Genetic Optimization of 
Homogeneous Catalysts 

This chapter is based on following publication: 
Laplaza R., Gallarati S., and Corminboeuf C., Genetic Optimization of Homogeneous Catalysts. 
Chem. Methods 2022, 2, e202100107. 

5.1 Introduction 

This work introduces NaviCatGA, a software package capable of optimizing catalysts by 

exploiting any suitable fitness function that describes their catalytic performance. It manipulates 

catalyst structures generated in situ from a user-defined library of molecular fragments (metal 

centers, ligands or ligand substituents, scaffolds, etc.); structures can be assembled from the 

respective components using any representation, including SMILES strings and XYZ 

coordinates, and evaluated according to any fitness function (e.g., molecular volcano plot 

descriptors,30,31 multivariate linear regression expressions13). NaviCatGA is a modular part of the 

broader NaviCat (Navigating Catalysis) platform for catalyst discovery 

(https://github.com/lcmd-epfl/NaviCat), which includes other utilities and tools (e.g., database 

constructors,29 automatic volcano plot builder,32 etc.). 

In the spirit of inverse design,34,35,86,157,319 NaviCatGA uses a Genetic Algorithm (GA)15,27,320,321 

to find optimal catalysts (Figure 5.1). This pipeline represents a complementary approach to high-

throughput screening85,136,322–324 that becomes comparatively more efficient as the dimensionality 

of the combinatorial space of catalyst components grows. Furthermore, evolutionary experiments 

with GAs lead to alternative chemical insight into catalyst performance, as demonstrated 

hereafter. They have been shown to be well-suited for molecular optimization320,325,326 because 

5 
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they are able to address discontinuities in structure-property space (e.g., activity cliffs)136,327 and, 

more importantly, do not require meaningful gradients for the optimization. Nonetheless, flexible 

and robust implementations of GA algorithms tailored for homogeneous catalysis were lacking. 

The versatility and efficiency of NaviCatGA are illustrated with two representative applications 

to transition-metal and organocatalyzed reactions. The goal is to show that closed-loop 

optimization with genetic algorithms is an efficient strategy to streamline computer-aided 

catalyst discovery. The code, documentation, and examples are openly available at https:// 

github.com/lcmd-epfl/NaviCatGA. 

 

Figure 5.1 Schematic catalyst optimization pipeline powered by NaviCatGA. 
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5.2 Computational Methods 

5.2.1 Overview of the NaviCatGA package 

NaviCatGA is a lightweight genetic algorithm package that offers a simple, versatile and scalable 

solution to catalyst optimization problems. Simplicity is given by its Python structure and small 

number of dependencies, facilitating its adaptation and modification with minimal coding skills. 

Versatility comes from its modular design, which allows the user to define the optimization 

problem with utmost flexibility. For scalability, NaviCatGA relies upon the main strengths of 

genetic algorithms: the ability to tackle a large number of dimensions that are run in parallel. The 

genetic optimization loop is shown in Figure 5.2a. 

 

Figure 5.2 (a) Optimization loop followed by NaviCatGA. (b) Schematic representation of the 
user input and the functionalities implemented. 

The three distinct levels in which the NaviCatGA package is structured are represented in Figure 

5.2b: the base solver class with all core functionalities, the child solver class (several of which 

are provided) that defines the problem type (crossover and mutation), and the user input 
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(assembler and fitness function). This structure allows for significantly increased flexibility and 

adaptability, whereas adapting existing optimization tools could be difficult.27 

5.2.2 Base Solver Class 

The core genetic loop is provided by the GenAlgSolver base class (see Figure 5.2b). By design, 

the base class is data-type agnostic, with individuals represented by flexible lists of elements, and 

contains the solve method, which performs the optimization run (fitness evaluation, crossover, 

and mutation). Five different selection strategies to decide which individuals to recombine are 

provided (i.e., two-by-two, roulette wheel, pairwise tournament, Boltzmann-weighted, and 

random). This choice regulates the greediness of the optimization by defining a number of 

individuals for cross-over. The number of selected individuals is limited to a percentage of the 

total population (i.e., the selection rate). Additional features such as pruning of duplicates in each 

successive generation, a least-recently used cache of fitness evaluations, and in situ scalarization 

of fitness, are implemented (see Figure 5.2a–b for an overview). It is also possible to lock specific 

genes, so that they remain unchanged during the optimization procedure. 

5.2.3 Implemented Solvers 

The specificities of the optimization problem are imposed by a child class (Figure 5.2b), which 

defines the way mutation and cross-over are performed. Three child solver classes are provided: 

the SmilesGenAlgSolver, based on SMILES strings,328 the SelfiesGenAlgSolver, based on 

SELFIES strings,329,330 and the XYZGenAlgSolver, which uses AaronTools.py geometry 

objects,79 representing a 3D molecular fragment. In these respective solvers, each gene has the 

corresponding data type. The SMILES and SELFIES solvers are suited for systems that can be 

readily represented as strings. On the other hand, the XYZ solver allows for detailed 3D control, 

as each gene contains a set of coordinates. As child classes define the data type of genes, they 

also contain all the possible values any given gene on an individual can take, which in 

NaviCatGA parlance is called an “alphabet” (Figure S1 in the Supporting Information). Genes 
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with the same alphabet are considered to be equivalent (i.e., they can be replaced and mixed with 

one another). 

In the implemented child solver classes, mutation is defined as substitution of a randomly chosen 

percentage of genes, or mutation rate, by random elements of the respective alphabets (Figure 

5.2a). In turn, cross-over is achieved by combining the equivalent genes over one or more 

randomly determined crossover points (single-point cross-over is exemplified in Figure 5.2a but 

additional crossover operators could be considered in the future). 

Defining new child solver classes is simple, as the core shared functionalities are kept in the base 

solver class. Different data structures, supported by other libraries (e.g., Molassembler97 or 

molSimplify331) could be used as alternative back-ends. Additionally, child classes can be 

inherited to incorporate additional definitions of mutation and crossover without substantial 

modifications. 

5.2.4 Fragmentation Scheme 

The fragmentation scheme and the corresponding alphabets define the total catalyst components 

combinatorial space to be explored. This step has two goals: avoiding the consideration of 

catalysts that are not expected to be stable and/or synthetically accessible,332 and ensuring the 

domain of applicability and transferability of the fitness function (see below). 

5.2.5 Assembler and Fitness Function 

Once an appropriate catalyst space is defined through the fragmentation scheme, the user is 

required to input the fitness function and the assembler function into the solver (Figure 5.2). The 

assembler function takes a given individual (a list of genes of the specified data-type) and 

assembles them into a potential catalyst. In the case of SMILES, assembly can be as simple as 

concatenation of characters. In the XYZGenAlgSolver child class, the fragments must be suitably 
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assembled in 3D. The user is free to define any assembler function in order to generate more 

complex graph structures from the underlying chromosomes. 

Finally, the fitness function takes as argument an individual as interpreted by the assembler 

function and returns a fitness value. By default, NaviCatGA attempts to maximize fitness, 

although internal scalarizers can be used to change the default (see Example 2 below for a 

complex demonstration of multi-objective optimization). 

5.2.6 Choosing a Fitness Function 

The choice of fitness function for catalyst optimization depends on the specific application. In a 

broad sense, NaviCatGA favors fitness functions that map a candidate catalyst’s chemical 

structure to a measure of its performance in a given reaction. 

Molecular volcano plots, which have been favored by us,30 provide a way to connect a descriptor 

variable, typically the energy change associated with a step of the reaction mechanism (x-axis), 

to the overall catalytic performance (y-axis, expressed in terms of the energy span or TOF).287 

Some of us previously trained kernel-based ML models to predict the volcano descriptor 

variables for large pool of catalysts, from an approximate intermediate structure.16,333 As 

demonstrated in Example 1, this inexpensive mapping between chemical structure and reactivity 

constitutes a natural fitness function that can be exploited for the GA optimization. An alternative 

approach to rapidly evaluate the catalytic properties and thus the fitness function consists in 

fitting Multivariate Linear Regression (MLR) expressions.13 In Example 2, we fit and use MLR 

expressions to relate both the activity (i.e., the volcano descriptor) and the selectivity, expressed 

in terms of ∆∆E‡, to an intermediate structure. However, NaviCatGA imposes no constraint on 

the form of the fitness function and any alternative defined by the user is possible. In general, 

any ML-based model tailored for the prediction of catalytic properties constitutes a powerful 

alternative.41,334 

In order to help users defining fitness functions and assemblers conveniently, a number of 

predefined wrapper functions are provided, built around RDKit94 and pySCF.335,336 Frequent 
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descriptors, such as frontier molecular orbital energies or molecular volumes, are provided 

through wrappers from multiple molecular formats, including SMILES. Coupling any of the 

solvers to production-level quantum chemical computations is equally possible. Thus, the set of 

wrappers allows users to define highly customized fitness functions with minimal coding effort. 

5.3 Results and Discussion 

Example 1: Exploration of Ligand Space for Ni-Catalyzed Aryl-Ether Cleavage 

 

Figure 5.3 Reductive Ni–catalyzed cleavage of the 2-methoxynaphthalene C(sp2)–O bond with 
trimethylsilane. The volcano plot predicts optimal catalytic activity at ∆G(4) = –33 kcal/mol. The 
blue and orange curves represent the approximate distribution of phosphine and carbene ligands, 
respectively (adapted from ref. 16).  

One of us recently explored the ligand space for Ni-catalyzed aryl-ether reductive cleavage 

(Figure 5.3) relying upon a tandem volcano plot-ML approach to screen over 105 Ni catalysts 

bearing over 140 000 different phosphine or carbene ligands.16 The volcano peak (maximum 

activity, see Figure 5.3) was found to correspond to ∆G(4) = –33 kcal/mol, where ∆G(4) is the 

free energy change associated with the formation of intermediate 4 (see Figure 5.3), used as  

descriptor variable. Interestingly, very few phosphine and carbene ligands lead to high turnover 
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frequencies, as they are spread in two gaussian distributions approximately centered on ∆G(4) = 

–20 kcal/mol (blue curve) and ∆G(4) = –5 kcal/mol (orange curve), respectively. 

Based on the aforementioned exhaustive screening, we validate the capability of NaviCatGA by 

identifying the best phosphine ligands for the Ni catalyst with minimal computational cost. 

Additionally, we demonstrate how evolutionary experiments provide additional chemical insight 

and how they can be used to purge the pool of bad candidates from the database prior to further 

exploration. We finally demonstrate the versatility of the assembler function in exploiting the 

same procedure for the carbene ligands which, unlike phosphines, are composed of a backbone 

and two side groups. 

Problem Definition 

In this example, chromosomes are composed of three genes, accounting for the three different 

substituents in the phosphine ligands, all represented by SMILES strings using the 

SmilesGenAlgSolver class. The assembler is a function that generates the complete SMILES of 

intermediate 4 (Figure 5.3) from the chromosome information. The combinatorial space, which 

was taken from16 (see it listed in the Supporting Information), comprises a set of 68 possible 

substituents for the phosphine ligands, as well as 77 ring and 30 backbone substituents for 

carbene ligands. Note that these numbers could further increase by including more exotic ligands 

or by decomposing the fragments into smaller components. Yet, this extension would potentially 

compromise both the experimental relevance of the generated intermediates 4, a typical flaw of 

generative models, and the accuracy of our fitness function (see below). 

Fitness Function 

Following our previous work,16 a kernel ridge regression model is trained to predict ∆G(4) from 

the approximate 3D structure of intermediate 4 using the same database of 1473 catalysts. The 

trained model has a cross-validated MAE of < 4 kcal/mol. Details of the ML model can be found 

in the Supporting Information. For prediction, the SMILES in the GA is embedded to 3D 
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coordinates using RDKit, then its SLATM representation337 is obtained, which leads to its 

predicted ∆G(4) through the trained regression coefficients and kernel. For a candidate i, the final 

fitness score fi is obtained by evaluating its ∆G(4)i value compared to a normalized gaussian 

distribution centered on the target value x, fi = exp -− 1
- /

∆=(>)'	3	?
@ 0

-
1 where 2 = 	 |?|- . 

Optimization 

 

Figure 5.4 Evolution of mean population fitness and best candidate fitness over the optimization 

runs. Fitness is defined as fi = exp -−/∆=(>)'	3	?|?| 0
-
1. The most fit ligands from each run are 

highlighted in the corresponding boxes (H atoms omitted for clarity). (a) Complete run over the 
whole combinatorial space with x = –33 kcal/mol. (b) Ablation experiments in which fragments 
with x = –33 kcal/mol are removed from the combinatorial space; removal of 65 is represented 
with green lines, removal of both 48 and 65 is represented in red. (c) Complete run over the whole 
combinatorial space with x = –10 kcal/mol. (d) Complete run over the carbene combinatorial 
space with x = –33 kcal/mol. 

The genetic optimization is initiated with a population of 10 randomized ligands (individuals) 

and a mutation rate of 10% for 50 generations. The maximum number of evaluations, 500, is 
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infinitesimal w.r.t. the combinatorial search space of 3 × 105 (683). The first run is set up with a 

target value of x = –33 kcal/ mol, the peak of the volcano (maximum activity). Results are shown 

in Figure 5.4a (blue curves and frame). The GA is able to identify top candidates, lying exactly 

on the volcano top, within the first 30 iterations – under 300 total evaluations. The top candidate 

contains a bis(pentachlorophenyl)phosphine ligand, in agreement with our previous screening,16 

in which the pentachlorophenyl (65) substituent was identified as one of the best options. The 

overall increase in fitness coinciding with the selection of the pentachlorophenyl substituent by 

the optimizer occurs in generation 20, as illustrated by the sharp increase in the best fitness curve 

in Figure 5.4a. It is important to stress that the GA takes three orders of magnitude less 

evaluations than our previous screening approach to identify it. 

Given the low computational cost of the run, ablation evolutionary experiments are performed to 

obtain additional insight and explore different possible local fitness maxima. First, the 

pentachlorophenyl (65) substituent is removed from the database and the optimization is run 

again. This run leads to the identification of isopropylamino (48) as a good substituent, shown in 

Figure 5.4b as the green curve and frame, again in agreement with our previous work. Removing 

the aforementioned substituent and re-running leads to an increasingly difficult start for the 

optimization run, as less good options are available, but nevertheless ultimately identifying the 

2,2,2-trichloro-1-hydroxyethyl substituent (66) as a good candidate in less than 20 iterations 

(Figure 5.4b, red curve and frame). Overall, the three best substituents that had previously been 

identified (diisopropylamino, pentachlorophenyl, and 2,2,2-trichloro-1-hydroxyethyl) are 

correctly and systematically located by NaviCatGA in less than 600 evaluations. 

A similar optimization run is performed for a target of ∆G(4) = –10 kcal/mol. This value, which 

corresponds to the right-hand-side of the volcano plot, results in negligible catalytic activity. The 

GA identify ligands with a predicted ∆G(4) close to the targeted value, which leads to the 

identification of the least optimum substituents for the phosphine ligands, in this case N-
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containing heterocycles (Figure 5.4c). Both good and poor candidates are identified with the 

same setup. 

Finally, we optimize a N-heterocyclic carbene ligand using the same parameters with a target of 

x = –33 kcal/mol. The flexibility of NaviCatGA facilitates alternative definition of the fragment 

combinatorial space (in this case, the N-atom substituents, see the Supporting Information for 

details). The results, shown in Figure 5.4d, capture a key observation in line with previous work: 

unlike phosphine ligands, N-heterocyclic carbene ligands are generally unable to reach the top 

of the volcano. The optimization problem thus becomes harder as illustrated by the significantly 

lower fitness scores. Nevertheless, the genetic algorithm finds the best possible candidates within 

the combinatorial space, achieving a remarkably close value to the top using diisopropylamino 

substituents.16 This optimization procedure provides a traceable evolution for every fit candidate 

and for the relative preference of the different substituents. 

Example 2: Achieving the Activity/Selectivity Trade-Off with Enantioselective 
Organocatalysts 

While Example 1 focuses on validation and comparison with high-throughput screening, this 

second example is chosen to illustrate the convenience of NaviCatGA to explore a large 

combinatorial space and optimize several properties simultaneously. Whenever several 

properties are to be optimized, there is often a trade-off between two or more targets preventing 

the existence of optimum solutions. In such cases, a large number of solutions to the optimization 

problem, the so-called Pareto front, can be identified depending on the criteria selected by a 

decision maker. 

In catalyst design, a classic example of multi-objective optimization is the activity versus 

selectivity conundrum, where increased activity of a catalyst generally leads to decreased 

selectivity. A good catalyst should be both as active and as selective as possible. A pragmatic 

way to decide over this particular Pareto front is to search specifically for catalysts that retain 
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noticeable activity while prioritizing selectivity, as opposed to compromising selectivity for 

increased activity, or reducing activity to a negligible level in search of perfect selectivity. 

Given the flexible structure of NaviCatGA, the user imposes selected criteria on the optimization 

problem by assigning weights to different properties (e.g., the final fitness is defined 60% by 

selectivity and 40% by activity), or using step functions to define hard boundaries (e.g., give a 

fitness of 0 whenever selectivity drops under some value). However, translating human criteria 

into mathematical functions is difficult. NaviCatGA thus supports fitness functions that return 

several values, which are then processed by a scalarizer to derive the final, singular fitness value. 

Although any internal scalarizer object can be used, we recommend the achievement scalarizing 

function Chimera338 to process multi-objective fitness functions within the optimization run. 

Chimera requires a priority ranking and a degradation threshold to be assigned for each 

optimization objective and generates a score for each candidate by assessing its relative 

performance in the population (for further details, we refer the reader to the original 

publication338). Chimera’s versatility matches NaviCatGA’s and allows for the effortless 

formalization of complex human criteria. 

To demonstrate conflicting multi-objective optimization, this example exploits a Chimera 

scalarizer to find optimal Lewis base organocatalysts for the enantioselective propargylation of 

benzaldehyde (Figure 5.5).37,41,339,340 
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Figure 5.5 (a) Catalytic cycle for the bipyridine N,N′-dioxide-catalyzed enantioselective 
propargylation of benzaldehyde (R = H or Me).37,340 (b) Enantioselectivity TOF-molecular 
volcano plot for the 78 test set organocatalysts depicted in Figure S12. Larger and darker blue 
spheres indicate catalysts with higher ee values favoring (R)-product formation, smaller and red 
spheres indicate catalysts favoring (S)-product formation. The different slopes of the volcano 
correspond to different TOF-determining intermediates (TDI) and transition states (TDTS). 

Problem Definition 

In this case, chromosomes are composed of three genes: a chiral scaffold (e. g., the parent scaffold 

S1 is a (S)-2,2-bipyridine N,N′-dioxide, S2 and S3 include additional Ph or tBu substituents at the 

6,6′-positions, S4 is a (S)-8,8′-disubstituted 2,2-biquinoline N,N′-dioxide, etc.) and two 

substituents at the 6,6′-positions (see the Supporting Information for the full list of scaffolds S1-

S14). The 3D coordinates of all substituents and scaffolds are obtained from DFT computations, 

and thus the XYZGenAlgSolver class is used. The assembler in this case is a function capable of 

building the 3D structure of intermediate 1 (Figure 5.5a) from a given chromosome by 

substituting the 3D structures of the two substituents in the 6,6′-positions of the scaffold (R1 and 

R2 in Figure 5.5a), with no re-optimization necessary. The combinatorial space is given by 14 

N,N′-dioxide scaffolds and 34 different substituents (16 184 combinations, see Supporting 

Information for details). Note that, to increase the size of the combinatorial space, catalysts with 

different 6 and 6′ substituents, in addition to the more synthetically accessible symmetrically 

substituted ones, are considered. 
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Fitness Function 

Based on previous work,37,41 reference energies of intermediates 1–3 and of TS1 are computed 

at the PCM(dichloromethane)/B97-D/TZV(2p,2d) level for 78 different organocatalysts using 

structures optimized at the same level of theory. Relative energies (i.e., electronic energies plus 

solvation free energies) at this level were found to be more robust to reproduce experimental 

results for this reaction.37,340 A volcano plot is constructed for the propargylation of benzaldehyde 

with allenyltrichlorosilane (Figure 5.5a), leading to the identification of the descriptor variable 

∆E(1) and of the region of maximum activity (∆E(1) ≈ 3 kcal/mol). Enantioselectivity is 

calculated as a function of ∆∆E‡, which is defined as the difference between the (R)- and (S)-

Boltzmann-weighted activation energies of the 2 → TS1 reaction step, relative to the lowest-

lying (R)- or (S)-ligand arrangement of 2 (see Supporting Information for further details). 

Two Multivariate Linear Regression (MLR) expressions are then parametrized to predict ∆E(1) 

and the ∆∆E‡ from the unoptimized 3D structure of intermediate 1 assembled by the genetic 

algorithm (Figure 5.5), using as parameters five dihedral angles, the Sterimol B5 and L values of 

the 6,6′-substituents, and εLUMO (see Supporting Information for details). The parametrized MLR 

expressions lead to RMSE values of 1.65 kcal/mol and 0.25 kcal/mol for ∆E(1) and ∆∆E‡, 

respectively. Details and cross-validation of the MLR models are given in the Supporting 

Information. 

Using the two MLR models, activity is gauged by the proximity of ∆E(1) ≈ 3 kcal/mol (plateau 

of maximum activity, see Figure 5.5b) and selectivity is defined as proportional to ∆∆E‡. While 

the explicit MLR equations give a rough idea of the balance between different parameters, an 

explicit criterion has to be used to narrow down the Pareto front. Several options are explored 

(see below) to showcase the importance of proper multi-objective criteria. 
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Figure 5.6 Evolution of maximum selectivity and activity over optimization runs with three 
different scalarization setups. The best catalyst candidate from each run is highlighted (H atoms 
omitted for clarity). Shaded lines indicate the optimal activity region of ∆E(1) (light hue) and a 
minimum ∆∆E‡ threshold for guaranteed enantioselectivity (dark hue). The distribution of ∆∆E‡ 
and ∆E(1) for the final populations of each run are shown right. (a) First setup with minimum 
∆∆E‡ = 1.5 kcal/mol and 25% compromise on minimizing ∆E(1). (b) Second setup with 
maximum ∆E(1) = 10 kcal/mol and 25% compromise on maximizing ∆∆E‡. (c) Third setup with 
minimum ∆∆E‡ = 2.5 kcal/mol and 50% compromise on minimizing ∆E(1). 

Optimization 

Three GA runs are started with an initial population of 25 randomized individuals, consisting of 

a bipyridine N,N′-dioxide scaffold and two R1 and R2 substituents each, a mutation rate of 5% 

and a selection rate of 25%. All optimizations are run for 15 generations leading to a maximum 

of 375 evaluations out of the > 104 combinatorial possibilities. The fitness functions are all based 

on the aforementioned MLR expressions but scalarized differently using Chimera: for the first 
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run, a minimum absolute ∆∆E‡ = 1.5 kcal/mol is imposed while ∆E(1) is minimized with a 25% 

degradation threshold, due to the flatness of the activity plateau around ∆E(1) = 0 kcal/mol. This 

exemplifies a standard situation in which enantioselectivity is to be guaranteed and only 

subsequently activity has to be optimized. After the optimization procedure (Figure 5.6a), several 

good candidates are found with predicted ∆∆E‡ of ≈ 2 kcal/mol and ∆E(1) of 1 kcal/mol, with 

the top candidate having the (S)-2,2′-bipyridine N,N′-dioxide scaffold with Ph substituents at the 

5,5′-positions, R = Me, and R1 = 3,5–Me–4–F–Ph and R2 = 2,4,6–tBu–Ph. NaviCatGA, driven 

by the scalarizer, is able to explore activity and selectivity and find a good compromise between 

both. The distribution of values in the final population shows how it is enriched with high ∆∆E‡ 

and low ∆E(1) candidates after 15 generations: a rightmost bump in the distribution of ∆∆E‡ and 

a bump in the region between 0 and 10 in the distribution of ∆E(1) (Figure 5.6a). 

For the second run, a maximum value of ∆E(1) = 10 kcal/ mol is imposed, while ∆∆E‡ is 

maximized with a 25% degradation threshold. This represents the opposite setting, in which good 

activity is guaranteed (the estimated TOF for ∆E(1) = 10 is ≈ 50 000 s–1, see Figure 5.6b) and 

selectivity comes as a second priority. By inverting the priorities, the optimization problem 

becomes noticeably more difficult. For the first 10 generations, the top candidate found with this 

setup is stuck at the ∆E(1) = 10 kcal/mol mark, having ∆∆E‡ slightly over 2 kcal/mol (scaffold = 

(S)-1,1′-disubstituted 3,3′-biisoquinoline N,N′-dioxide, R = H, R1 = I, R2 = 4–tBu–Ph). In this 

case, the scalarizer setup leads to a very steep local optimum after a few exploratory generations, 

and evolution is hindered due to the relatively tight 25% degradation margin. The final population 

thus shows a very large percentage of nearly identical candidates. However, through mutation, 

the optimizer finds an optimal candidate with high selectivity and acceptable activity in the last 

four generations, depicted in Figure 5.6b. Here, the scaffold is (S)-2,2′-bipyridine N,N′-dioxide 

with 5,5′-Ph substituents, R = H, R1 = 3,5–Cl–Ph, and R2 = 4–tBu–Ph. Some common trends are 

evident comparing the top performer of this optimization run with the results from the previous 

one, particularly the presence of a tBu-substituted phenyl group in the R2 position and of halogen-

containing groups as R1, as well as the similar (S)-2,2′-bipyridine N,N′-dioxide scaffold. The 
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small change in scaffold (R = Me in the first run, R = H in the second one), which is associated 

to reduced activity in the second evolutionary experiment, exemplifies the difficulties associated 

with activity cliffs in catalyst design. 

In the third run, we exemplify a more flexible setup requiring a minimum ∆∆E‡ value of 2.5 

kcal/mol while attempting to reach the top of the volcano as before, but accepting a 50% 

degradation of the latter to enforce the former, which provides much more flexibility than in the 

previous examples. In this case, the top candidates quickly present significant selectivity, but no 

compromise is achieved with respect to activity, and thus ∆E(1) is barely improved over the run 

and remains over 10 kcal/mol, in spite of the noticeable trade-off exploration in the early 

generations (with even a generation exploring structures that would lead to (S)-product formation 

in search of improved activity), which is afforded by the increased degradation margin. The final 

population of the run, shown in Figure 5.6c, excels in selectivity but is worse than the first two 

runs in terms of activity, with the distribution heavily centered around the 10 kcal/mol mark. The 

top candidate has a (S)-H8-[1,1′-biisoquinoline] 2,2′-dioxide backbone with R1 = CCH, R2 = 4–

tBu–Ph; this scaffold is shown to be associated with improved selectivity because of its 

dominating presence in the final population. 

The comparison between the three runs highlights how the same optimization setup, guided by 

slightly different human input, ends up exploring very different areas of the combinatorial space 

and finds diverse solutions in the Pareto front. Hence, the use of scalarization and careful problem 

definition is recommended in order to navigate multi-objective optimization. For typical 

bipyridine N,N′-dioxide-derived organocatalysts, selectivity is believed to arise from favorable 

electrostatic interactions between the formyl C–H of benzaldehyde and the nearby Cl ligand in 

the lowest-lying transition state structure leading to the (R)-alcohol.37 Activity is largely a 

function of the organocatalyst’s Lewis basicity, with better electron-donors able to more 

efficiently activate the allenyltrichlorosilane substrate (and hence being located closer to the 

volcano plateau), while catalysts bearing strongly electron-withdrawing substituents are less 

active and found lower on the right slope of the volcano. The evolutionary experiments highlight 
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how changes in the scaffold and in the nature of R1 and R2 affect this selectivity-activity interplay 

and reveal the unique role played by aromatic substituents. Ph groups at the 6 or 6′-position with 

electron-donating alkyl substituents are clearly important for enhanced activity, although 

additional tBu substituents (at the ortho-positions) cause unfavorable steric interactions with the 

formyl C–H, overwhelming the stabilizing effect from favorable C–H...Cl interactions and hence 

reducing selectivity (this is the case of the first run, Figure 5.6a). When placed at the 5,5′-

positions, the Ph groups lead to additional π-stacking interactions favoring the (R)-pathway 

(benzene trimer-like interactions involving benzaldehyde and two Ph substituents)341 and 

offsetting otherwise unfavorable π-stacking and CH/π interactions that stabilize the (S)-

pathway.37,342 Thus, in the second run (Figure 5.6b), the presence of less electron-rich substituents 

(including hydrogen atoms instead of methyl groups at the R position) results in a slight loss of 

activity, but ensures favorable noncovalent interactions that yield very high selectivity. In line 

with recent experimental results,342 the presence of aliphatic substituents (instead of aromatic 

ones) is associated with reduced activity (as in the third run, Figure 5.6c), however the ethynyl 

group as R1 helps improve selectivity, since it leads to a more favorable electrostatic environment 

for the formyl C–H in the (R)-pathway (partially positively charged C–H interacting with the π-

bonds in CCH).37 

5.4 Conclusions 

We presented NaviCatGA, a tool capable of optimizing the structure of homogeneous catalysts 

to find top candidates with tailored properties for a given reaction. Using evolutionary 

techniques, it is possible to perform the optimization task with the possibility of tracing the origin 

of favorable catalyst components (e.g., ligand substituents, catalyst scaffolds or side groups) 

during the evolutionary experiments and pinpoint their influence on different aspects of a 

catalyst’s performance (e.g., activity, selectivity). 

From a technical perspective, NaviCatGA is versatile, flexible and thus applicable to a variety of 

catalytic problems. Thanks to its hierarchical structure, it is compatible with diverse structural 
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representations (e.g., SMILES, 3D structures), genetic operations and fitness functions. 

Additional functionalities, including ML-based acceleration,150,343–348 can also be conveniently 

deployed for fitness evaluation. While NaviCatGA, as presented here, is a core component of 

inverse design efforts in catalysis, it also constitutes a powerful stand-alone program for general 

optimization problems. In order to further streamline the inverse design workflow, it is desirable 

to automate the elucidation of the fitness function as well as of other eventual quantum chemical 

tasks. Within this context, NaviCatGA is integrated into the broader NaviCat platform 

(https://github.com/lcmd-epfl/NaviCat), collecting an ensemble of tools for computational 

catalysis. This set of utility tools, which include, for instance, automated construction of volcano 

plots (https://github.com/lcmd-epfl/volcanic), can be used independently and/or in combination 

with each other. Overall, these efforts represent a complementary addition to alternative 

programs such as those addressing automated mechanistic studies79,349–352 and structure 

generation.78,97,331 
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S.G., R.L., and C.C. conceptualized the project. R.L. designed and coded NaviCatGA and 
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provided supervision throughout. 
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europe.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fcmtd.20210010

7&file=cmtd202100107-sup-0001-misc_information.pdf  
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Reaction-Based Machine Learning 
Representations for Predicting the 
Enantioselectivity of Organocatalysts 

This chapter is based on following publication: 
Gallarati S., Fabregat R., Laplaza R., Bhattacharjee S., Wodrich M. D. and Corminboeuf C., 
Reaction-Based Machine Learning Representations for Predicting the Enantioselectivity of 
Organocatalysts. Chem. Sci. 2021, 12, 6879. 

6.1 Introduction 

The bottleneck of closed-loop reaction optimization pipelines (including genetic algorithms)36,38 

is evaluating a catalyst candidate’s fitness, which is typically exemplified in terms of catalytic 

activity and/or stereo/regio/chemoselectivity. Obtaining such measures experimentally is time- 

and resource-intensive, and only tractable with robotized high-throughput experimentation 

methods and self-driving laboratories.353,354 Selectivity prediction based on high-level quantum 

chemical methods is complex, even for simple molecules. That is because e.e. (enantiomeric 

excess) values, estimated as the ratio between the competitive reaction rates leading to the two 

enantiomeric products,22 are computationally expensive and challenging to predict accurately. 

The energy difference between the transition states (TSs) leading to the major and minor 

enantiomers can be quite small (< 2 kcal mol–1) and multiple diastereomeric transition states, 

stemming from the large conformational space of flexible catalysts, can yield the same 

enantiomer.7,83 While the intrinsic error of the quantum chemical level is often addressed in 

comprehensive benchmark studies,8,22,340,355,356 automated toolkits,27,79 such as AARON78 and 

CatVS,85 have been developed to streamline the tedious and error-prone task of optimizing 

hundreds of thermodynamically accessible stereocontrolling transition states. Although such 

6 
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accelerated prediction of selectivity is enticing for the prospect of computational catalyst 

design,23 the applicability of QM-based tools such as AARON remains limited either by the cost 

of quantum mechanical computations, which quickly becomes prohibitive, or by the inherent 

difficulty of locating all transition state structures. On the other hand, tools using QM-derived 

molecular mechanics force fields (Q2MM), like CatVS, require the development of an MM force 

field for each new reaction type considered, a major limitation to their widespread application.83  

To accelerate fitness evaluation, statistical models are used to predict catalyst’s selectivity. They 

may be trained using either experimental or computational data.17,334,357–359 The first approach is 

often limited by the small size of the experimental datasets available and by their inherent 

noise,129 while the second suffers from the difficulties associated with reproducing difficult-to-

compute targets e.g., e.e. values.360 Sigman and co-workers have popularized the use of 

multivariate linear regression to fit experimental reaction outcomes to physical organic molecular 

descriptors.13,28,361 However, such models, which depend on DFT computations of relatively 

expensive properties (e.g., vibrational frequencies and intensities, polarizabilities)362 are not 

adapted to the purpose of fast (e.g., GA)36,38 optimization for which bypassing the DFT bottleneck 

is key. Similarly, nonlinear regression models (e.g., support-vector machine,68,135 random 

forest,67,280,363–366 neural networks,63,347,367–370 Gaussian process regression371–374) often use 

system-specific and expensive features (e.g., physical organic descriptors like Charton or 

Sterimol values, NBO charges, NMR chemical shifts, bond distances and angles, HOMO–

LUMO gaps, local electro/nucleophilicity) as input.375–377 
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Figure 6.1 Schematic illustration of the importance of reaction-based ML representations for 
challenging targets. (Top) Standard QML representations, built using one structure (e.g., that of 
a catalytic cycle intermediate), are successful at regressing “simple” targets, such as 
thermodynamic quantities (e.g., the volcano plot descriptor), but struggle with reaction properties 
(e.g., the enantioselectivity). (Bottom) A “reaction-based” representation, built as the difference 
between the representations of two structures (e.g., two sequential catalytic cycle intermediates), 
is a more faithful fingerprint of the TS geometry, and thus is successful at predicting 
enantioselectivity. 

The so-called quantum (or atomistic) ML models, which map a molecular representations e.g. 

CM,378 SLATM,337 SOAP379 obtained from a set of 3D atomic coordinates, to a representative 

target (typically) computed with quantum chemistry, constitute an appealing complementary 

strategy owing to its broad applicability and dependence on the laws of physics.337,380,381 Since 

accurate geometries are not necessarily needed as input,16,333 their use is compatible with fast 

closed-loop optimization.38 While these approaches provide a favorable combination of 

efficiency, scalability, accuracy, and transferability for predicting energetic and more complex 

molecular properties,380 identifying enantioselective catalysts requires precise predictions of the 

relative energy barriers for the stereocontrolling transition states, a target currently beyond their 

accuracy (Figure 6.1).  
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Here, we provide a stepwise route to improve such QML approaches to reach sufficient accuracy 

for subtle properties such as those associated with asymmetric catalysis (i.e., e.e.). This objective 

is achieved by rationally designing a reaction-based representation (Figure 6.1) that is a more 

faithful fingerprint of the enantiodetermining TS energy. The performance of the approach is 

demonstrated through accurately predicting the DFT-computed enantiomeric excess of Lewis 

base-catalyzed propargylation reactions directly from the structure of the catalytic cycle 

intermediates. Unlike other ML models trained on (absolute) experimental e.e.’s,121,122 our model 

is able to predict the absolute configuration of the excess product, because it is trained on the 

activation energy of the enantiodetermining step for each pair of enantiomers (pro-(R) and pro-

(S) intermediates) independently. 

 

Scheme 6.5 Library of axially chiral bipyridine N,N′-dioxide organocatalysts. R = H or Me. 
Adapted from ref. 37. 

6.2 Methods 

6.2.1 Reaction and Organocatalysts Database 

Asymmetric allylations382–385 and propargylations339 of aromatic aldehydes are key C–C bond 

forming transformations, providing access to optically enriched homoallylic and 

homopropargylic alcohols, respectively, which serve as valuable building blocks for the synthesis 

of complex chiral molecules.386 Catalysts that are selective for allylations are generally not highly 
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stereoselective for propargylations, which has led to a dearth of stereoselective propargylation 

catalysts.52,387–390 Tools to screen dozens of allylation catalysts to find promising candidates for 

propargylation reactions are therefore highly valuable.23 To this end, Wheeler and co-workers 

have investigated 76 Lewis base organocatalysts (Scheme 6.5)37 and used the computational 

toolkit AARON78 to build a database of 760 stereocontrolling transition states to predict their 

enantioselectivity in the propargylation of benzaldehyde (Scheme 6.6).37,340,391 Large databases 

of kinetic data for asymmetric catalysis generated in silico are scarce.17 Therefore, this library 

constitutes an ideal training and validation set for the development of an atomistic ML model 

with reaction-based representations capable of predicting the e.e. of organocatalysts readily from 

the structures of intermediates. Note that the workflow presented below would improve the ML 

performance independently of the size of the training data. The target of the ML model is the 

DFT-computed relative forward activation energy (Ea, i.e., the energy difference between the TS 

and the preceding intermediate) associated with each of the 10 (R)- or (S)-ligand arrangements 

(see Figure S1) of the enantiodetermining TS in Scheme 6.6 for the 76 catalysts in Scheme 6.5 

(11 catalysts of type 1, 16 of type 2, 15 3, 11 4, 13 5, and 10 catalysts of type 6), yielding a total 
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of 754 Ea values.392 e.e. values are computed from Ea (vide infra), thus accurate predictions of Ea 

lead to accurate e.e. predictions. 

 

 

Scheme 6.6 Catalytic cycle for the propargylation of benzaldehyde with allenyltrichlorosilane, 
showing the rate-limiting and stereocontrolling transition state. Adapted from ref. 52. 

Ph H

O •

SiCl3

+
Organocat.

DCM, – 78 ºC Ph

OH

SiCl2•
O O

N N

Cl

SiCl2
O O

N N

Cl

OSiCl2
O O

N N

Cl

‡

Bipyridine N,N′-dioxide
organocatalyst

Ph H

O

SiCl3•

Ph

OH

SiCl2O
O O

N N

Ph

Ph
•OPh

1

2
3

Enantiodetermining TS



Chapter 6. Reaction-Based Machine Learning Representations for Predicting the 
Enantioselectivity of Organocatalysts 

70 

6.2.2 General ML Workflow 

 

Scheme 6.7 Graphical overview of the workflow used to build an atomistic ML model for e.e. 
prediction. 

The general workflow exploited and improved herein relies on a physics-based ML model for 

the prediction of the e.e. of the asymmetric catalytic reactions, as illustrated in Scheme 6.7 and 

described hereafter. It comprises two parts: part (1) is a training procedure that relies on the 

following steps: 

(1) Database construction: a library of 3D geometries and energies of catalytic cycle 

intermediates is curated. Here, the structures of 754 pairs of intermediates 2 and 3 are optimized 

with DFT (see the next section) and used to train the ML model. As shown in our previous 

work,333 accurate geometries are not necessarily needed as inputs for atomistic ML models; thus, 

rough-coordinate estimates (e.g., obtained directly from SMILES strings) or low-cost xTB 

structures could potentially be used to generate suitable molecular representations. 

(2) Generation of molecular representations: information intrinsically contained within the 3D 

structure of each intermediate is transformed into a suitable molecular representation. Here we 

build different variants based on the Spectral London and Axilrod‐Teller‐Muto (SLATM)337 

representation. SLATM is composed of two- and three-body potentials, which are derived from 
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the atomic coordinates, and contain most of the relevant information to predict molecular 

properties.379,393–399  

(3) Training of the model: input representations are mapped onto the corresponding target values 

(Ea, computed at the DFT level, see the next section) using Kernel Ridge Regression (KRR)400 

with a Gaussian kernel. Note that even if target values based on DFT are used here to train the 

ML model, the strategy proposed hereafter is expected to perform equally well on experimental 

or more accurate quantum chemical data. 

(4) Hyperparameter optimization and cross-validation: the full dataset is split randomly 100 times 

into 90/10 training/test sets (678/76 datapoints) to optimize the KRR hyperparameters and obtain 

the learning curves. 

In part (2), the trained ML model is used to predict the activation energy of out-of-sample 

organocatalysts. The model requires as input the 3D structures of 2 and 3 and delivers the 

corresponding Ea value. Using the energy of 2 as reference, the relative energies of the 

enantiodetermining (R)- and (S)-TSs can be calculated, and the e.e. of the catalyst under 

investigation computed (vide infra). 

6.3 Computational Details 

6.3.1 Quantum Chemistry 

Catalytic cycle intermediates 2 and 3 were optimized at the B97-D/TZV(2p,2d) level of 

theory,250,251,401 accounting for solvent effects (dichloromethane, ε = 8.93) using the polarizable 

continuum model (PCM)291,402,403 with Gaussian16,249,404 in analogy with the study by Wheeler 

and co-workers.37 Density fitting techniques were used throughout. The structures of 1508 

intermediates were obtained via intrinsic reaction coordinate calculations (IRC)292 from the TS 

database curated by Wheeler et al.37 754 target Ea values (11 catalysts of type 1, 16 type 2, 15 3, 

11 4, 13 5, and 10 of type 6, each in 5 distinct pro-(R) and pro-(S) ligand arrangements)392 were 

computed (relative to the lowest-lying intermediate 2 ligand arrangement) at the same level, 
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which was shown to provide the best compromise between accurate predictions of low-lying TS 

energies and stereoselectivities for allylation and propargylation reactions.340 e.e. values were not 

predicted from Gibbs free energy barriers, but rather from relative energy barriers (i.e., electronic 

energies plus solvation free energies), since they have been found to be more reliable than those 

based on either relative enthalpies or free energy barriers for this reaction.340 The symbol Ea was 

therefore used to indicate the energy (electronic plus solvation) difference between the TS and 

the preceding intermediate. For each C2-symmetric catalyst (Scheme 6.5), 10 distinct ligand 

arrangements around a hexacoordinate Si center are possible (BP1–5, (R)- and (S)-, Figure 

S1).52,390,391 Since each of these can lead to thermodynamically accessible reaction pathways, and 

the stereoselectivity is largely a consequence of which ligand arrangement is low-lying for a 

particular catalyst, all diastereomeric TSs were considered viable and the e.e. calculated from a 

Boltzmann weighting of the relative energy barriers.37 In equations 1–3, ∆Ea,eff is the relative 

Boltzmann-weighted activation energy of each (R)- or (S)-species, ∆∆E‡ is the difference 

between the (R)- and (S)-Boltzmann-weighted activation energies, R is the ideal gas constant, 

and T is the propargylation reaction temperature (195 K). 

∆#B,"DD =	–RTln /∑ e–E2()*+/G8HIJK
K 0       (1) 

∆∆#‡ = ∆#B,"DD
(M) 	– ∆#B,"DD

(N)          (2) 

e.e. (%) = 100 × /1– <∆∆2‡/MO0 / /1 + <∆∆2‡/MO0      (3) 

6.3.2 Machine Learning 

The Python package QML405 was used to construct standard SLATM representations. Feature 

selection and the construction of the reaction-based representations SLATMDIFF and SLATMDIFF+ 

were done using the Python package Scikit-learn.406 To generate the learning curves and the e.e. 

predictions, a cross-validation scheme was used with 100 different 90/10 training/test sets 

(678/76). The KRR hyperparameters (the width of the Gaussian kernel σ and the ridge 
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regularization λ) were optimized for each train/test split, systematically obtaining essentially the 

same results for each split (see the SI). From the 100 train/test splits, the Ea of each intermediate 

pair (2 and 3) was predicted approximately 10 times; these test predictions were then averaged 

to obtain one final prediction. The standard deviation from the ~10 test predictions were used to 

generate the error bars. The final average prediction of the Ea value was used to calculate the 

Boltzmann-weighted ∆Ea,eff values (eq. 1) and the ∆∆E‡ of each (R)- and (S)-pair (eq. 2), and so 

the e.e. value of each organocatalyst (eq. 3). The out-of-sample predictions were done with the 

same SLATMDIFF+ models trained in the cross-validation scheme. Additionally, out-of-sample 

predictions were done re-training the model on the entire dataset (see Figure S6), although this 

did not lead to noticeable improvement. While simpler representations (e.g., CM,378 BoB407) were 

tested, SLATM performs significantly better (see Figure S2). 

6.4 Results and Discussion 

6.4.1 Molecular Representations 

 

Figure 6.2 (a) Learning curves with MAE in test sets predictions of Ea for the three approaches 
discussed. The error bars correspond to the standard deviations and are computed from the results 
of 100 different random train/test splits. (b) Dissimilarity plots i.e., difference in target values 
(Ea) vs. Euclidean distance between representations for each pair of points in the dataset (the 
Euclidean distances have been divided by the average distance between points). When the 
difference in Ea values tends to zero, the corresponding points should lie in the area delimited by 
the two dotted straight lines (ideal behavior). 

The key step of the workflow presented above is generating a molecular representation, which is 

mapped onto the target value (i.e., the activation energy Ea) and used as a fingerprint of the 

enantiodetermining TS. Representations can be constructed from single molecules and more 
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recently as “ensemble representations”: instead of associating one fixed configuration of atoms 

to a single-point geometry energetic target value, information from multiple structures can be 

combined to generate a representation for an ensemble property, such as the free energy of 

solvation (∆Gsol).408 This has recently been achieved by calculating the ensemble average of the 

FCHL19 representations208,409 of a set of configurational snapshots obtained through MD 

sampling.408 Here, we propose an alternative approach that goes beyond standard QML 

representations (i.e., KRR using one given gas-phase geometry)408 by describing the chemical 

transformation occurring during the enantiodetermining step of an asymmetric reaction through 

the comparison of the representations of the two catalytic cycle intermediates preceding and 

following the stereocontrolling TS. This allows us to generate a “reaction-based” representation, 

which can be closely mapped to the activation energy of the enantiodetermining step, as 

discussed later. We rely on “dissimilarity” plots as a diagnostic tool to determine whether a 

particular representation can adequately characterize the stereocontrolling step. By dissimilarity 

plots, we refer to histograms of the Euclidean distance between any two representations vs. the 

difference in their target property, which in this case is Ea. For a particular representation to be 

effective, small distances between structures must correspond to small differences between target 

properties, as the Euclidean distance is used to measure the similarity of two molecular 

representations. Similar plots have previously been exploited to analyze the behavior of 

molecular representations,379,410 but only parenthetically. Here we highlight their importance as 

a fundamental analytical tool to understand the performance of molecular representations in 
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kernel methods for asymmetric catalysis and demonstrate their utility for constructing reliable 

ML models. 

 

Figure 6.3 Predictions of ∆∆E‡ vs. DFT reference for the three approaches discussed. Mean 
Absolute Errors (MAE) are reported in kcal mol–1. These predictions are obtained by averaging 
the predictions obtained from the cross-validation scheme with 100 different random train/test 
splits. The error bars indicate the standard deviation of ML ∆∆E‡, derived from the standard 
deviations in the Ea prediction of the 100 different random train/test splits. 

Before discussing our proposed representation variants, we report in Figure 6.2a the performance 

of the standard SLATM representation using the structure of a single intermediate (e.g., 2). Due 

to the structural similarities between 2 and the enantiodetermining TS (in both, the Si atom has 

6 coordination sites occupied, whereas only the coordination number is only 5 or 4 in 

intermediate 3), intermediate 2 was first chosen to construct the input representation. The 

learning curve for the prediction of Ea using SLATM (blue) of intermediate 2 (denoted SLATM2) 

reaches a Mean Absolute Error (MAE) of 0.54 ± 0.06 kcal mol–1 for the prediction of Ea with 

90% of the data used for training (i.e., 680 structures). Considering the exponential relationship 

between relative activation energies and e.e. values, which implies a dramatic propagation of 

errors, the accuracy of this approach is insufficient. This is further demonstrated in Figure 6.3, 

which shows the correlation between the predicted and reference ∆∆E‡ values (MAE = 0.96 kcal 

mol–1), and in Figure 6.4, where the e.e. values obtained from SLATM2 are compared to the 

reference quantities: the large number of red-colored cells indicates large deviations between 

ML-predicted and DFT-computed e.e. values. The rather poor mapping between SLATM2 and 
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the Ea of the stereocontrolling step (associated with the key 2 ® 3 transition state) is evident 

from the visual inspection of Figure 6.4, where the large number of red-colored cells associated 

with catalysts bearing substituents a, d, e, g, f and j indicates inaccurate predictions of e.e. values, 

and from the analysis of the corresponding dissimilarity plot in Figure 6.2b (left). In the latter, 

the large scattering of points lying outside the area delimited by the dotted lines, particularly 

when the Euclidean distance tends to zero, means that two different structures might be 

considered equal by the kernel (distance ≈ 0) albeit leading to very different Ea values. Thus, the 

shape of the dissimilarity plot of SLATM2 deviates considerably from ideal one, indicated by the 

dotted straight lines.379  Note that the MAE for Ea increases up to 0.77 ± 0.05 kcal mol–1 (see 

Figure S2) if starting from the SLATM representation of 3, the intermediate following the 

enantiodetermining step in the catalytic cycle (Scheme 6.6). The higher accuracy achieved using 

the representation of 2 vs. 3 could be attributed to the reaction step being exergonic and, 

according to the Hammond Postulate,411 the enantiodetermining TS resembling 2 more closely. 
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In any case, neither the structure of 2 or 3 provide sufficiently good fingerprints of Ea on their 

own. 

 

Figure 6.4 e.e. values obtained from DFT computations (top left) and from the ML predictions 
of Ea using the three approaches discussed. These predictions are obtained by averaging the 
predictions obtained from the cross-validation scheme with 100 different random train/test splits. 
Cells are colored according to their accuracy with respect to the reference, ranging from dark 
green (best) to dark red (worst). Positive e.e. values correspond to excess (R)-alcohol formation, 
negative values to excess (S)-alcohol formation. 

Unlike other intrinsic molecular properties that depend on the structure of a single molecule,408 

enantioselectivity is determined by electronic and/or steric effects stabilizing or destabilizing one 

enantiomeric TS to a greater or lesser degree than the other. In that sense, it is to be expected that 

our target accuracy for Ea, well below 1 kcal mol–1, cannot be reached using only one structure 

that does not adequately describe the stereocontrolling transition state as an input. To improve 

the model performance, an alternative representation is constructed by comparing the 

representations of both intermediates. Knowing that neither the structure of 2 or 3 are uniquely 

related to the corresponding activation energies, we can generate such a “reaction-based” 

representation that draws information from both structures, subtracting the global SLATM of 2 
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from 3. This is reminiscent of binary reaction fingerprints (obtained by subtracting the products’ 

from reactants’ RDKit94 fingerprints), which reflect changes in molecular features over reaction 

processes.359 The resulting representation (denoted SLATMDIFF) accounts for the differences 

between the two intermediates and is thus more sensitive to the structural changes occurring 

during the enantiodetermining step. By subtracting “reactant” from “product”, the global features 

that do not change during the catalytic cycle step are eliminated from the representation, and the 

structural changes between intermediates are highlighted. In this way, we obtain a more faithful 

representation of the reaction step, which corresponds to a more unique fingerprint of Ea. 

Although the construction of SLATMDIFF requires the SLATM representations of both 

intermediates (2 and 3), the computational cost associated with its generation is negligible. 

As depicted in the dissimilarity plot (Figure 6.2b, middle), the reaction-based representation 

(SLATMDIFF) is significantly better than SLATM2: the difference in Ea values tends to zero as 

the Euclidean distance between their representations tends to zero. In line with this observation, 

the learning curve (shown by the orange line in Figure 6.2a) is significantly improved. The MAE 

of SLATMDIFF is reduced to 0.31 ± 0.2 kcal mol–1, roughly 50% better than SLATM2 and up to 

60% better than that of SLATM3 using 90% of the data for training (i.e., 680 structures) in the 

train/test splits of the cross-validation scheme. Given the rationality of the approach leading to 

the construction of SLATMDIFF, its gain in accuracy is encouraging. As shown in Figure 6.3 and 

Figure 6.4, the halved MAE leads to a very notable improvement in the prediction of e.e. values. 

Nevertheless, we note again that very small errors in Ea are amplified when e.e. values are 

calculated, and therefore even a small accuracy gain can be significant. 

The high probability density of normalized Euclidean distances between 0.5 and 0.75 seen in 

Figure 6.2b (middle, SLATMDIFF) indicates that the shape adopted by the dissimilarity histogram 

of SLATMDIFF is not yet ideal, and that further improvement is possible. To achieve higher 

accuracy, we focus on improving the shape of this dissimilarity plot. Notice that in our ML model, 

the Euclidean distance is used as a measure of similarity between representations. This means 
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that features with high variance (i.e., that change the most between molecules) dominate the 

notion of similarity, as they contribute the most to the Euclidean distance between 

representations. By feature, we mean each of the terms in the molecular representation, which, 

for SLATM, consist of two- (London dispersion) and three- (Axilrod-Teller-Muto) body 

potentials computed on groups of atoms closer than a certain cut-off (here, 4.8 Å). The results of 

these potentials are averaged over their atom-type sets (e.g., all C–C interactions for the two-

body terms, all the C–C–C for the three-body terms), which are then concatenated to generate 

the SLATM vector. The size of the SLATM representation depends on the existing atom-type 

sets in the database. Given that our dataset contains the elements C, H, O, N, F, Cl and Si, the 

total number of features of the SLATM representations is 27 827. 

 

Figure 6.5 Variance and correlation coefficient with the target value for each of the 27 827 
features of the SLATMDIFF representation in the dataset. 

In SLATMDIFF, features with high variance dominate the notion of similarity, measured through 

the Euclidean distance. However, we are using SLATM to predict a property that is very different 

from the single-molecule properties for which it was originally designed. Consequently, features 

with high variance in SLATM are not necessarily the most important fingerprints of Ea. In pursuit 

of the best possible fingerprint of the activation energy, we assign importance scores to each 

feature and attempt to focus on the most relevant ones. The linear correlation coefficient (r2) 

between each feature and the target property is used as an estimate of the importance of the 
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different terms in the representation. The results, presented in Figure 6.5, show that in 

SLATMDIFF there are only a few high-variance features, while the computed importance scores 

are spread over many other features that have relatively small variances. Simply put, the 

variances in the features of the SLATMDIFF representation are not well correlated with their real 

importance in this application.  

Based on this observation, an improved representation, labelled SLATMDIFF+, is generated by 

selecting only the Nf most important features of SLATMDIFF (specifically, Nf = 500) and 

discarding the rest. This feature selection was done using only the training data at each train/test 

split of the cross-validation step, as otherwise it could lead to severe overfitting. Nevertheless, 

the importance scores were consistent across the cross-validation splits thanks to the robustness 

of the linear regressions. An improved relationship between representation and target distances 

(Figure 6.2b, right) is obtained with the SLATMDIFF+ representation, in spite of its reduced size. 

This simple feature selection leads to a noticeable improvement in accuracy, with a cross-

validated MAE of 0.25 ± 0.4 kcal mol–1 (see the green curve in Figure 6.2a). Using the 

SLATMDIFF+ representation, the resulting cross-validated correlation coefficients for the 

difference between (R)- and (S)-activation energies (∆∆E‡, Figure 6.3) in the test set are greatly 

improved (r2 > 0.95). The quality of our fitted model far supersedes previously reported 

approaches. Good qualitative and even quantitative agreement is achieved between predicted and 

reference e.e. values computed using the test data splits from the cross-validation runs (Figure 

6.4). 

Since linear correlation constitutes a very limited notion of relevance, other methods, such as 

nonlinear mutual information criteria,412  were tested as feature importance estimators, but the 

resulting models showed similar or even worse performance (see the SI). Similarly, methods 

based on metric learning410,413 did not lead to any improvement, as the high dimensionality of the 

problem led to severe overfitting. Ceriotti et al.414 suggested the use of principal covariates 

regression (PCovR) to solve similar issues. PCovR is a supervised feature selection method that 
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interpolates between principal component analysis (PCA) and linear regression. Herein, because 

the variance of the features is completely unrelated to the importance scores, the addition of PCA 

would not offer any advantage. Nevertheless, these findings highlight the importance of adapting 

molecular representations to the application at hand, while still preserving the overall generality 

of the approach. 

6.4.2 Chemical Insight on Asymmetric Propargylation Catalysts 

 

Figure 6.6 Out-of-sample predictions on terpene-derived atropisomeric organocatalysts 7j and 
7k. 10 distinct TSs were computed for each catalyst (BP1–5, (R)- and (S)-). The error bars are 
the standard deviation of the 100 predictions from each trained model from the cross-validation 
scheme. 

The ML model is able to reproduce the main trends in e.e. observed across the different catalysts 

from the 100 different random train/test splits (Figure 6.4, top left table). For example, using 

SLATMDIFF+ (Figure 6.4, bottom right table), which gives the best predictions with respect to the 

reference data, catalysts built on scaffold 4 (Scheme 6.5) are revealed to be outliers, yielding 

e.e.’s that are significantly different to those obtained with other scaffolds, for a given substituent 

a–j. This is due to the different placement of the substituent X on the organocatalysts’ scaffold. 

Excluding 4, the effect of different substituents on the e.e. is qualitatively the same across all 

scaffolds, with the exception of f (iPr) and j (Ph). The introduction of a phenyl group on the 

organocatalysts’ scaffold leads to highly varied e.e. values, from -97 (S) to 91 (R). This variation, 
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which is due to the presence of favorable π-stacking and CH/π interactions stabilizing some (S)-

TSs and degrading the enantioselectivity,37 is nicely captured by SLATMDIFF+. Overall, the high 

enantioselectivity displayed by (most) catalysts in the library can be attributed to the favorable 

electrostatic interaction between the formyl C–H of benzaldehyde and one of the chlorines bound 

to Si, which is present in the lowest-lying (R)-ligand arrangement, and absent in the (S)-

structures.37  

In their computational screening with AARON,37 Wheeler and co-workers identified derivatives 

of 6 as promising candidates for propargylation reactions. However, these catalysts are difficult 

to synthesize stereoselectively.387,415 Recently, Malkov et al. reported the synthesis of a set of 

terpene-derived atropisomeric bipyridine N,N′-dioxides 7 (Figure 6.6) as easily-separated 

diastereoisomers.342 Aromatically-substituted catalysts 7j and 7k were shown to be highly active 

and selective (e.e. of 96 and 97, respectively); additionally, the TS structures for 7 were 

computationally shown to be nearly identical to the corresponding substituted forms of 6.342 

Prompted by these results, we decided to test the ML model with SLATMDIFF+ to predict the 

activation energy of the 10 distinct ligand arrangements afforded by 7j and 7k. The out-of-sample 

results are shown in Figure 6.6. Despite scaffold 7 and substituent k not being in the original 

training set, excellent correlation between predicted and reference Ea values is obtained (r2 = 

0.97). Thus, the enantioselectivity of these out-of-sample catalysts is qualitatively reproduced, 

despite not achieving exact quantitative agreement between DFT and ML predicted ∆∆E‡ values 

(1.2 and 1.3 for 7j and 7k, respectively, vs. 0.2 and 0.5 kcal mol–1). 

In summary, we provide a logical route to improve atomistic ML methods for enantioselectivity 

prediction of asymmetric catalytic reactions, which are limited by both the required accuracy and 

the small amount of data generally available. Firstly, the intermediates associated with the 

enantiodetermining step (2 and 3 in Scheme 6.6) must be identified, and their SLATM 

representations generated. Secondly, using the difference between the two SLATM 

representations (SLATMDIFF) as input, a set of features that map the activation energy accurately 
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can be obtained. Finally, feature engineering can be used to improve SLATMDIFF, keeping only 

the most relevant features that relate to the target property. The results show that the ML 

workflow presented herein is able to accurately predict enantioselectivity from the molecular 

structures of catalytic cycle intermediates. 

6.5 Conclusions 

In this work, we have developed an atomistic machine learning model to predict the DFT-

computed e.e. of Lewis base-catalyzed propargylation reactions (Scheme 6.6). The use of 

dissimilarity plots allowed us to rationally develop and progressively improve a reaction-based 

representation that can be adequately mapped onto the activation energy of the stereocontrolling 

step. We identified two fundamental limitations of many standard physics-based molecular 

representations for subtle catalytic properties. First, we have shown that neither the structure of 

the preceding nor that of the following catalytic cycle intermediate is a fine fingerprint of the 

energy of the stereocontrolling transition state. This issue can be circumvented by using a 

reaction-based molecular representation derived from both structures. Finally, we have 

demonstrated how feature selection can be used to fine-tune this representation. 

The resulting model can accurately predict the DFT-computed enantioselectivity of asymmetric 

propargylations from the structure of catalytic cycle intermediates. Thus, it constitutes a valuable 

tool to quickly identify potentially selective propargylation organocatalysts. By design, the model 

is well-balanced between computational cost, generality and accuracy. It is easy to implement 

for a wide region of chemical space and seamlessly compatible with experimental (e.g., X-ray 

structures of stable intermediates) and computational data alike. Our results prove that semi-

quantitative predictions of e.e. values in asymmetric catalysis can be achieved by accurately 

predicting Ea. 

We conclude that atomistic ML models with adequately tailored molecular representations can 

be a practical and accurate alternative to both traditional quantum chemical computations of 

relative rate constants and multivariate linear regression with physical organic molecular 
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descriptors. The stepwise improvement to the model described in this work opens the door to 

more complex reaction-based and catalytic cycle-based representations. Indeed, ensemble 

representations, which were recently introduced for properties very sensitive to conformational 

freedom, such as the free energy of solvation ∆Gsol,108 are a promising path to go beyond the 

single structure-to-property paradigm and allow for further generalization, once combined with 

the approach discussed herein. Such methodologies will be explored in future work for the 

accurate screening of enantioselective catalysts in asymmetric reactions. 

6.6 Author Contributions 

S.G. and R.F. contributed equally to this work. S.G. performed DFT computations and analyzed 

the results. R.F. trained and improved the ML models. S.G. and R.F. jointly wrote the manuscript 

with help from R.L. MD. W. and R.L. provided feedback on the DFT and ML components, 

respectively. S.B. and M.D.W. ran preliminary computations initiating this work. All authors 

discussed the results and commented on the manuscript. C.C. conceived the project with M.D.W., 

provided supervision and wrote the final version of the manuscript. 

6.7 Supporting Information 

The Supporting Information for this Chapter may be found at 

https://www.rsc.org/suppdata/d1/sc/d1sc00482d/d1sc00482d1.pdf  

 



85 

Optimizing Generality in Asymmetric 
Organocatalysis with Evolutionary 
Experiments 

This chapter is based on following publication: 
Gallarati S., van Gerwen P., Laplaza R., Brey L., and Corminboeuf C., Optimizing Generality in 
Asymmetric Organocatalysis with Evolutionary Experiments. 2023, in preparation. 

7.1 Introduction 

Developing catalytic methods that are tolerant to many functional groups exerting different steric 

and electronic influences on the reaction center without significant reduction in yield or product 

selectivity of is a long-standing goal of organic chemistry. Despite being a highly desired feature, 

such “generality” i.e., breadth of substrate scope,164 is rare and only few transformations become 

routinely incorporated into the synthetic chemist’s toolbox.416,417 This is due to reaction 

development usually beginning with the examination of a simple, readily available model 

substrate, with subsequent re-optimization on more complex systems guided by empirical trial-

and-error.418 Discovering more general conditions requires evaluating wider regions of chemical 

space derived from a large matrix of diverse catalysts crossed with a panel of substrates that 

effectively represent the whole target molecule class (Figure 7.1). Today, “one-pot-

multisubstrate” screening419–421 is tractable with high-throughput experimentation 

techniques,42,137,273,422 but has found limited applicability due to issues associated with chemical 

compatibility and product analysis. Perhaps worse, the most general conditions or catalysts might 

be excluded from the original screening set, biasing the results.423 

7 
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In the last decade, data-driven computational methods, in tandem with supervised and 

unsupervised machine learning algorithms, have been applied to address numerous challenges in 

organic chemistry,424–426 such as prediction of reaction outcomes,427–429 multistep synthetic 

planning,430–432 and catalyst discovery.16,132,133,150,433 In particular, Bayesian optimization371,434 has 

been combined with robotic experimentation to find general conditions for heteroaryl Suzuki-

Miyaura coupling.435 More recently, Reid et al. have proposed a workflow for assigning and 

predicting generality through clustering of reaction sets, but manually curated literature databases 

and a user-defined success value were required.134 Overall, existing data-driven tools are still 

aimed at accelerating the evaluation of a pre-defined set of catalysts/conditions,436 rather than 

suggesting entirely new species exhibiting high performance across the whole substrate scope. 

 

Figure 7.1 (Top) Reaction optimization tactics for the development of catalytic methods: 
traditional specificity-oriented approach vs. data-driven multi-substrate screening. (Bottom) 
Schematic inverse design pipeline powered by NaviCatGA.  

Generative models18 are an attractive alternative to direct screening by enabling the inverse 

design of functional molecules and materials.35,437 In this paradigm, the desired functionality is 

first defined, and chemical structures tailored to that property are suggested (Figure 7.1). 

Although applications of generative models, such as genetic algorithms,36 to homogeneous 

catalysis are increasingly being reported,19,138,160,321,438,439 only specificity-oriented catalyst design 
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has been addressed. Optimizing generality as primary target requires adapting existing tools and 

pipelines to tackle this multi-dimensional problem. 

Here, we show how evolutionary experiments performed with a genetic algorithm, NaviCatGA,38 

are designed to simultaneously probe the catalyst and substrate space and find organocatalysts 

predicted to exhibit both high turnover and enantioselectivity. We discuss the nature of fitness 

function used to estimate how close candidate species are to achieving optimal performance, the 

surrogate models that accelerate fitness evaluation, the database of molecular building blocks to 

generate millions of prospective catalysts on-the-fly, and the strategy followed to choose an 

unbiased and diverse substrate scope. We select the Pictet–Spengler cyclization as a synthetically 

relevant case study to illustrate how multi-objective genetic optimization across an expansive 

substrate space affords organocatalysts with good average activity and selectivity, while 

simultaneously providing information rich data on the areas of chemical space where even the 

best candidates are under-performing. Analysis of the challenging substrates gives insights into 

the structural features that limit generality, validating evolutionary experiments as a means to 

extract structure–activity–selectivity relationships and probe the existence of “privileged” 

catalysts. 

7.2 Methods: The NaviCatGA Components 

Below, we describe the components of the NaviCatGA pipeline for performing genetic 

optimization (Figure 7.1), and discuss the results of the evolutionary experiments, along with the 

chemical conclusions, in the Results and Discussion section. 
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7.2.1 Target property and reaction database 

 

Figure 7.2 (Left) Pictet–Spengler cyclization of tryptamine derivatives (SubA, PG = protecting 
group, H, or OH) and carbonyls (SubB) in the presence of Brønsted acid organocatalysts and 
weak acid co-catalysts. Examples of hydrogen-bond donors, acid/anion receptor catalysts, and 
chiral phosphoric acids are shown. ArF = 3,5-CF3-C6H3. (Right) 2D t-SNE map207 of the reaction 
space on the basis of the concatenated Morgan fingerprints of the substrates and catalysts with 
experimental selectivity (∆∆G‡).  

Herein, we define “generality” i.e., the property targeted in the inverse design pipeline, as high 

enantioselectivity and activity across a wide and diverse substrate scope. Inspired by recent work 

by Jacobsen et al.,42 we investigate the asymmetric Pictet–Spengler reaction440–442 of tryptamine 

derivatives and carbonyl compounds (Figure 7.2), one of the most important methods for the 

synthesis of privileged pharmacophores such as tetrahydro-β-carbolines, due to the diversity of 

catalyst chemotypes capable of inducing high enantioselectivity. Although dozens of systems 

have been reported,443 employing a variety of Brønsted acids such as chiral phosphoric acids 

(CPAs)178 or single-444 and dual-hydrogen-bond donors (S-/D-HBD)445 used cooperatively with 

weak acids or bearing an acidic functional group internally,446 no method has found widespread 

application, since each study was focused on a limited number of substrates. This reaction thus 

constitutes an ideal case study to develop an optimization strategy with generality as primary 

target. 

At the onset of our investigation, we curated a database of 820 Pictet–Spengler condensations 

from the literature.42,444,447–461 For simplicity, we constrain ourselves to protected or unprotected 
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tryptamines (as shown in Figure 7.2), excluding isotryptamines,462 aryl ethanols,463,464 

phenethylamines,465 and other substrates involved in more complex cascade reactions.466–473 The 

database contains 240 unique transformations (i.e., tetrahydro-β-carboline products) of 33 SubA 

and 164 SubB (aldehydes, ketones, α-ketoacids/esters/amides, and α-diones), catalyzed by 160 

different organocatalysts and 30 co-catalysts (carboxylic acids, acyl and benzoyl chlorides and 

bromides). It is visualized in Figure 7.2 with a 2D t-SNE map207 based on the concatenated 

Morgan FingerPrints474,475 (MFPs) of the catalyst, co-catalyst, and substrates, where each point 

representing a reaction is colored according to its selectivity (∆∆G‡ = –RTln|e.r.|, with e.r. being 

the experimentally measured enantiomeric ratio). The map is essentially divided into two regions, 

the right-hand side containing cyclizations catalyzed by CPAs, and the left-hand side those with 

single and dual-HBDs. Interestingly, despite “islands” of high enantioselectivity associated with 

catalysts being tested on a selected and limited class of carbonyl compounds (e.g., SPINOL CPAs 

with aldehydes,451 or SHBDs with ketoamides444), nearly 50% of the transformations display 

exceedingly low ∆∆G‡ values (< 0.5 kcal/mol, and 70% < 1 kcal/mol). It is clear that choosing 

the conditions for carrying out an enantioselective Pictet–Spengler reaction on a never-before-

tested substrate or estimating what the most general catalyst would be simply based on literature 

precedence is a nearly impossible task, further supporting the need for predictive and generative 

models. 
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7.2.2 Fitness function: evaluation of catalyst activity and selectivity 

 

Figure 7.3 (A) General mechanism for the Pictet–Spengler reaction via anion-binding catalysis. 
(Thio)urea catalysts (X = O/S) are shown as an example. (B) The reactions used to construct a 
molecular volcano plot (SRS) are plotted on the t-SNE map, coloured according to the nature of 
the organocatalyst. (C) Molecular volcano plots based on the C2 and C3 addition mechanism. 
The shaded areas denote the 95% confidence interval based on the linear free energy scaling 
relationships. (D) Distribution of descriptor values and their location on the volcano plot.  

The role of the fitness function in the inverse design pipeline (Figure 7.1) is evaluating how close 

a candidate organocatalyst is to achieving optimal performance. According to our definition of 

generality (vide supra), we are looking for species whose activity approaches the maximum 

theoretically achievable one. Molecular volcano plots30 are therefore ideally suited for this task 

as they provide a way of connecting a descriptor variable, typically the energy change associated 

with a step in a catalytic cycle (x-axis), to the overall catalytic performance (y-axis, expressed in 

terms of energy span or TOF),287,476 while simultaneously giving knowledge of the descriptor 
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value corresponding to the volcano peak or plateau (maximum performance i.e., the target for 

genetic optimization).38 Volcano plots are built from Linear Free Energy Scaling Relationships 

(LFESRs) that connect the value of the descriptor to the relative energies of the other cycle 

intermediates and transition states. While extensive details on the construction of these plots are 

given in ref. 32 and in the Computational Details, Figure 7.3A shows the mechanism of the 

Pictet–Spengler reaction,477 whose knowledge is fundamental for building the volcanos. 

Following condensation of the β–arylethylamine (SubA) with the carbonyl compound (SubB) 

and formation of iminium ion 1, nucleophilic attack by the aryl group and cyclization can occur 

either directly at position C2 of the indole via TS2, or at C3 via TS1 to form the five-membered 

aza-spiroindolenine 1B, which undergoes C–C migration to yield 2. Deprotonation of 2 by the 

conjugate base of the acid co-catalyst, or of the CPA catalyst, is then necessary to form the 

tetrahydro-β-carboline product. 

Constructing molecular volcanos requires computing the potential energy profiles of a medium-

sized pool of sterically and electronically diverse systems.32 44 reactions from the Pictet–

Spengler database are selected via farthest point sampling of the 2D t-SNE map. This Scaling 

Relationships Set (SRS, Figure 7.3B) comprises 39 unique transformations (i.e., products) of 11 

SubA and 31 SubB, catalyzed by 33 different Brønsted acids. Because the mechanism must be 

the same for all systems investigated, reactions catalyzed by cinchona alkaloid DHBDs 

(corresponding to upper cluster in the t-SNE map, Figure 7.2) are excluded, as these bifunctional 

organocatalysts have been shown to operate via a different mechanism.453 In analogy with 

computational studies by Jacobsen et al., who found no clear trend relating the benzoic acid 

electronic properties to the reaction rate,477 the carboxylic acid co-catalyst, which sometimes 

contains large and bulky groups like triphenylmethyl, 9-anthracentyl, or 1-adamantyl,456 is 

modelled with acetic acid to simplify the conformational complexity and reduce the 

computational cost of the system. 

Using the SRS, TOF molecular volcanos for concerted C2 and stepwise C3 addition are 

constructed using the relative energy of intermediate 2 as descriptor (Figure 7.3C). Mechanistic 
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aspects of the Pictet–Spengler reaction, including the preferred pathway and the nature of the 

rate- and enantiodetermining step, have been a topic of intensive research:478 Jacobsen et al. 

found a strong energetic preference for C2 over C3 addition in reactions catalyzed by chiral 

thioureas,477 while You and co-workers showed that the spiroindolenine 1B acts as either a 

productive or non-productive intermediate depending on the shape of the potential energy 

surface.479 Evaluating the mechanism over a broad and diverse catalyst and substrate scope, as 

afforded by the SRS, reveals that, although the concerted pathways is generally preferred, the 

difference between the barriers for spiroindolization at C3 and electrophilic aromatic substitution 

at C2 is on average quite small (the volcanos are close to each other). Additionally, analysis of 

the LFESRs (see the SI) shows that there is often not one single rate- and enantiodetermining 

step, as rearomatization via deprotonation (TS3) and C–C bond formation (TS1 or TS2) are 

almost isoenergetic: indeed, reactions are found for which TS2 and TS3 have similar degree of 

TOF-control.301 The location of the SRS on the volcano plots indicates that cyclizations of 

hydroxylamines in the presence of benzoyl bromide co-catalyst (blue points),457 as well as 

reactions of aldehydes catalyzed by squaramides (green points) display the highest TOFs. This 

observation is in line with the higher reactivity of ketonitrones480 and the stronger H-bonding 

ability of squaramides, which has been found to correlate with faster turnover.33 Conversely, the 

performance of CPAs and other DHBDs is strongly dependent on the nature of the substrates, as 

evinced by the bigger spread of TOF values. Among the poorest performing organocatalysts, 

sulfinamido urea derivatives481 and carboxylic acids equipped with anion-recognition sites452 are 

found lower on the volcano. 

Having constructed the volcano plots and established the identity of the descriptor variable, we 

compute ∆GRRS(2) for all the reactions in the Pictet–Spengler dataset (703 datapoints i.e., 

excluding reactions catalyzed by cinchona alkaloids and those where only the carboxylic acid 

co-catalyst is varied). Structures are generated and optimized according to the pipeline described 

in the Computational Details. Figure 7.3D shows the Gaussian-type distribution of ∆GRRS(2) 

superimposed on the TOF volcano for C2 addition, centered around 7 kcal/mol. Most Pictet–
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Spengler reactions are found on the right slopes of the volcano (i.e., weak-binding side), and their 

turnover is limited by iminium ion formation and deprotonation of the tetrahydro-β-carboline 

intermediate (or C–C bond formation). Overall, only few condensations have TOF close to the 

theoretical maximum. We then use this dataset to train a XGBoost machine learning model482 to 

predict ∆GRRS(2) using the concatenated Morgan fingerprints of the substrates, catalyst, and co-

catalyst (acetic acid, BzBr, or none) as reaction representation (Figure 7.4A). A similar model is 

also trained on the whole Pictet–Spengler database (Figure 7.2 i.e., 820 datapoints, using the real 

identity of the carboxylic acid co-catalysts rather than acetic acid) to predict the experimental 

∆∆G‡ values. Together, these models are used to accelerate fitness evaluation during genetic 

optimization (vide infra).36  

 

Figure 7.4 XGBoost models predicting the (A) descriptor variable [∆GRRS(2)] of the TOF 
molecular volcano plots and (B) the experimentally measured enantioselectivity (expressed as 
∆∆G‡) of the Pictet–Spengler reactions.  

 

7.2.3 Interlude: reaction-inspired molecular representations for experimental 
enantioselectivity predictions 

In the previous Chapter, we introduced physics-based or quantum machine learning (QML) 

models constructed using only atomic positions and nuclear charges as a generally applicable, 

efficient, and accurate framework for predicting molecular properties.39 We showed how 

reaction-inspired representations are constructed to better describe the transformational nature of 
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chemical reactions.41 In Chapter 6, representations were constructed as the difference between 

the SLATM337 of the intermediates preceding and following the enantiodetermining transition 

state (i.e., Int–(R) and P–(R) in Figure 7.5). This was consistent with the target of the kernel ridge 

regression model being the computed activation energy of the stereocontrolling step in the 

propargylation reaction (corresponding to ∆G‡–(R) in Figure 7.5). Each enantiomeric pathway 

could be treated independently and enantioselectivity calculated from the difference between 

∆G‡–(R) and ∆G‡–(S). However, experimental selectivity measures only provide information on 

∆∆G‡ (assuming Transition State Theory and Curtin–Hammett conditions),12,483 with ∆G‡–(R/S) 

being individually inaccessible. Therefore, our reaction-inspired representations must be 

reformulated to accommodate the different nature of the target, in this case the experimental 

∆∆G‡ values.   

 

Figure 7.5 Illustrative Gibbs energy profile for a reaction under Curtin–Hammett conditions. SM 
= starting material. 

Herein, we train kernel ridge regression (KRR) models and construct reaction-inspired 

representations as the difference between the SLATM of the enantiomers of 2 in the catalytic 

cycle of the Pictet–Spengler cyclization (Figure 7.3A, corresponding to Int–(R) and Int–(S) in 

Figure 7.5). Intermediate 2 lies between the transition states for C–C bond formation (TS2) and 

proton abstraction (TS3) on the potential energy surface, either of which could be rate- and 

enantiodetermining (vide supra), and should therefore be a good “fingerprint” of the key 

structural rearrangements occurring during the reaction; it connects the concerted and stepwise 

cyclization pathways and is identified as the best descriptor for constructing the molecular 
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volcanos. Bearing in mind that surrogate models used to accelerate fitness evaluation during 

closed-loop optimization with generative models must be fast and affordable, xTB-optimized 

structures of 2 (prior to conformational sampling, see the Computational Details) are used to 

generate the SLATM fingerprints. For comparison, a KRR model using as input the 

representation of only one enantiomer is also tested. The results are shown in Figure 7.6. 

Compared to standard molecular representations (A, SLATM2), SLATMDIFF (B) is associated 

with a lower mean absolute error (0.29 kcal/mol) and higher R2 (0.61). By subtracting the 

SLATM of 2–(R) and 2–(S), the global features that are common to the two enantiomeric 

pathways are eliminated, and the structural elements that are important for enantioselectivity are 

highlighted. In fact, while SLATM2 contains (on average) 27,678 features that are effectively 

non-zero (i.e., > 10–10), SLATMDIFF only has 17,482: a more compact representation with a better 

“signal-to-noise ratio” is thus a better fingerprint of ∆∆G‡.  

 

Figure 7.6 Kernel ridge regression models of ∆∆G‡ using as input the SLATM representation of 
one of the enantiomers of intermediate 2 in the Pictet–Spengler catalytic cycle (A) or the 
difference between the SLATM representations of 2–(R) and 2–(S) i.e., SLATMDIFF.  

Despite these promising results, and the rationality behind the design of SLATMDIFF, the KRR 

model is outperformed by XGBoost with the concatenated Morgan fingerprints (Figure 7.4B). 

We attribute this performance to the “noisy” nature of the database, which has been collected 

from over 15 publications spanning nearly two decades. In fact, reactions have been performed 

under extremely different conditions with varying degrees of reproducibility.484 The 
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conformational complexity of the system also poses a significant challenge: 2 consists of three 

non-covalently bound species, two of which are charged, and the lowest energy structures of each 

enantiomer might be significantly dissimilar. Efforts towards improving the accuracy of the KRR 

models and the design of reaction representations compatible with experimental targets are 

ongoing; however, since fingerprints derived from SMILES strings328 are easier and faster to 

implement in the genetic optimization pipeline (Figure 7.1), fitness evaluation is performed with 

the XGBoost models. 

7.2.4 Fragment database: the catalyst and substrate scope 

The total combinatorial space explored during the evolutionary experiments is determined by the 

extent of the library of catalyst components and the scheme chosen to fragment them into 

building blocks. Here, we leverage the recently reported Organic Structures for CAtalysis 

Repository (OSCAR),29 which contains 4,000 organocatalysts mined from the literature and CSD 

along with their corresponding molecular fragments. From OSCAR, we select 17 catalyst 

templates and 553 possible substituents (grouped into 7 categories R1–7 depending on which 

template they may substitute, see the SI for a full list). The templates include 12 single and dual-

HBDs (ureas, thioureas, squaramides, thiosquaramides, and prolyl-ureas) and 5 CPAs as shown 

in Figure 7.2 (and SI), which have been screened in the asymmetric Pictet–Spengler reaction. 

They are represented as flexible SMILES strings, written in such a way that that different R1–7 

can easily be introduced and exchanged, yielding valid SMILES. This results in a total 

combinatorial space of 2.85 × 108 HBDs and 1428 CPAs. Note that only CPAs with equal 

substituents at the 6 and 6′ positions of the BINOL/SPINOL scaffold are considered: although 

this significantly reduces the size of the combinatorial space, it ensures synthetic accessibility, a 

common problem of generative models.332 

Having established the catalyst scope, we turn our attention to the substrate scope. Since our 

previous experiments with NaviCatGA were specificity-oriented,38 we have to implement  a 

different workflow for selecting a representative subset of substrates for generality-driven genetic 
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optimization. Inspired by recent work by Doyle et al.485 and Sigman et al.,486,487 we use the web 

platform Reaxys® to identify a list of 743 distinct Pictet–Spengler reactions (selective and non-, 

catalytic and non-) following the scheme in Figure 7.2. Additionally, 197 unprotected β–

arylethylamines (SubA), filtered according to molecular weight (< 300 g/mol), commercial 

availability, and functional group compatibility, are included. Combined with the 240 unique 

organocatalytic reactions from the original Pictet–Spengler database, we obtain 258 distinct 

tryptamine derivatives (SubA) and 379 carbonyl compounds (SubB). Thus, the total 

combinatorial substrate space, shown in Figure 7.7A, encompasses 97,782 possible tetrahydro-

β-carboline products. 

 

Figure 7.7 2D t-SNE map of the substrate scope on the basis of the concatenated MFPs of SubA 
and SubB. Blue squares indicate organocatalytic reactions, green squares reactions reported in 
Reaxys®, red triangles the Generality Probing Set (GPS). 

Broadly speaking, examples from the literature cover the left half of the chemical space (which 

corresponds to unsubstituted tryptamines), while the right and bottom areas are sparsely covered. 

To generate a diverse and unbiased substrate scope for evolutionary experiments, we perform 

farthest point sampling and select 50 reactions aimed at covering the whole chemical space. 

Examples of this Generality Probing Set (GPS) are shown in Figure 7.7B (the full list is given in 

the SI). Carbonyls (SubB) include predominantly aromatic and aliphatic aldehydes, as reflected 

by the popularity of these substrates in the Pictet–Spengler reaction,42 but also less explored α-

diones, α-ketoamides, esters, and acids. Substituents on the tryptamine derivative are present on 
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all positions of the indole ring through mono-, di-, tri-, and even tetrasubstitution patterns, 

encompassing both electron-donating (e.g., hydroxyl, methoxy, alkyl) and electron-withdrawing 

(e.g., nitro, halide, ester) functional groups. This significantly contrasts the previously reported 

scope (i.e., organocatalytic reactions from the literature or those mined from Reaxys®), 

dominated by monosubstituted β–arylethylamines. Approximately 60% of SubA in the GPS are 

unprotected, although a variety of protecting groups (e.g., benzyl, 4-NO2-benzyl, 

methylthiomethyl ether,488 allyl489) are present.  

7.3 Results and Discussion 

7.3.1 Evolutionary experiments 

With the different components of the inverse design pipeline at hand (Figure 7.1), we perform 

evolutionary experiments looking for organocatalysts displaying high enantioselectivity and 

activity (i.e., TOF) across the whole substrate scope. The optimization targets are the median 

∆∆G‡ and ∆GRRS(2) (the molecular volcano plot descriptor) of the 50 reactions in the Generality 

Probing Set. To solve this multi-objective problem and find trade-offs between activity and 

selectivity, we use the achievement scalarizing function Chimera.338 In the first experiment, 

performed on the HBD catalyst space, a minimum ∆∆G‡
med = 2.0 kcal/mol value is imposed, the 

activity fitness score fi of candidate i is maximized with a 10% degradation threshold, and the 

standard deviations of ∆∆G‡
med and  fi are reduced with a 25% compromise. The fitness score fi 

is obtained by evaluating the corresponding ∆GRRS(2)med value compared to a normalized 

gaussian distribution centered on the target x (–9 kcal/mol, the volcano peak): fi = 

exp -− 1
- /

∆=--.(P)/01	3	?
@ 0

-
1 where 2 = 	 |?|- . This experiment exemplifies a typical optimization 

campaign, where enantioselectivity is to be guaranteed and only subsequently catalyst activity is 

to be optimized. It is initiated with 10 randomized individuals per population, a mutation rate of 

10%, a selection rate of 25%, and run for 50 generations. The results are shown in Figure 7.8. 

For simplicity, we focus on the best individual in each generation and show how ∆∆G‡
med and 
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∆GRRS(2)med of the GPS evolve. Therefore, if the composition of the population varies but the 

top-ranking candidate remains the same, the quantities plotted in Figure 7.8 do not change. For 

example, despite the experiment being run for 50 iterations, after generation 32 the identity of 

the best organocatalyst remains unchanged, and no further variation of ∆∆G‡
med and ∆GRRS(2)med 

is observed. 

 

Figure 7.8 (Left) Evolution of ∆∆G‡ and ∆GRRS(2) of the top individual in the population over 50 
generations. The solid lines indicate the median across the GPS, and the shaded areas represent 
the upper and lower values. Selected catalysts are shown, with different colored spheres 
representing different R1–3 substituents. (Right) Box and whisker chart of ∆∆G‡ and ∆GRRS(2) for 
selected generations i.e., only when the structure of the best-performing catalyst changes. Each 
datapoint corresponds to a reaction in the GPS. Outliers and far outliers are indicated with filled 
circles and squares, respectively.  

Over the first 5 generations, ∆∆G‡
med increases from 1.5 kcal/mol to 1.8 kcal/mol while the 

interquartile range (IQR) decreases, indicating that the top candidate is generally more selective 

across the GPS. At the onset of the evolutionary experiment, NaviCatGA locates DHBDs with 

the amide-based template [–C(=O)NR2] as important for selectivity. Indeed, computational 

studies477 have shown that the amide O engages the substrate through an H-bonding interaction 

with the indoline N–H. This template490 is preserved throughout the GA run and preferred over 

catalysts containing the pyrrolidino-moiety:123,164 Jacobsen et al. similarly found that aryl 

pyrrolidine substituted thioureas had lower generality metric than acyclic amides in the Pictet–
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14Multi-objective optimization of generality across the GPS

• Optimization target: median ∆∆G‡ and 
∆GRRS(2) across the GPS;

• Activity and selectivity scalarized using 
Chimera[1]: minimum ∆∆G‡ 1.5 kcal/mol, 
∆GRRS(2) minimized with 25% degradation 
margin;

• Box plots show results of best individual in 
each generation.

[1] Aspuru-Guzik, Chem. Sci., 2018, 9, 7642
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Spengler condensation of aldehydes.42 Regarding the identity of the hydrogen-bonding unit, for 

the first 20 generations ureas are selected over squaramides to increase ∆∆G‡
med, but, in 

accordance with trends extracted from the volcano plots and the lower acidity/H-bonding ability 

of ureas vs. squaramides,33,289 this results in diminished activity (∆GRRS(2)med values farther away 

from the volcano peak). This situation exemplifies a typical problem in reaction optimization, 

where improving one objective is sometimes only possible at the expense of another.230,373  The 

same amino acid substituent (R1) is also maintained until generation 20, with NaviCatGA 

favoring the diphenyl group (black spheres in Figure 7.8). At this particular iteration of the 

optimization procedure, the squaramide HBD unit is “rediscovered”, which leads to a noticeable 

improvement in activity (∆GRRS(2)med from 9.4 to 3.0 kcal/mol). Although this is associated with 

only marginal increase in ∆∆G‡
med (1.81 to 1.84 kcal/mol), the IQR significantly decreases, and 

most reactions in the GPS have ∆∆G‡ ≥ 1.7 kcal/mol. Different R1–3 substituents are also selected, 

and in the remaining generations NaviCatGA explores different substitution patterns to achieve 

further activity and selectivity enhancements. In particular, ∆GRRS(2)med is decreased to 1.5 

kcal/mol with small IQR (generation 32), while ∆∆G‡
med reaches the value of 1.9 kcal/mol. The 

most general organocatalyst found at the end of the evolutionary experiment exhibits the 2,4,6-

iPr-C6H2 substituent as R1, 3,5-CF3-C6H3 as R2, and the CH(2-tBu-C6H4)2 group in place of R3. 

Clearly, bulky substituents are privileged in inducing high enantioselectivity and activity across 

the GPS. 
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7.3.2 Chemical insight into generality 

 

Figure 7.9 Calculated ee and logTOF values from the predicted ∆∆G‡ and ∆GRRS(2). Results are 
shown for selected catalyst generations (x-axis) and reactions in the GPS (y-axis), while ee and 
logTOF median values (bottom) consider all 50 reactions. Selected SubA and SubB combinations 
are shown. 

Tabulation of the results of the evolutionary experiment on the HBD space as a heatmap, 

converted to ee and logTOF values (Figure 7.9) shows that, although a catalyst with good median 

selectivity and activity may be found (%eemed = 92, logTOFmed = 3.3), some reactions in the GPS 

are always associated with poor performance i.e., no matter how the structure of the catalyst 

evolves during the optimization, certain tetrahydro-β-carboline products may not be obtained in 

high ee or TOF. For example, the best performing HBD organocatalyst (vide supra) is predicted 

to achieve ee values of only 36% and 19% in reactions 13 and 26, respectively. Both 

condensations involve an unprotected β–arylethylamine (SubA) substituted at the 7-position of 

the indole ring; similarly, Suzuki and co-workers found that 7-methyltryptamine and ethyl 2-

oxopentanoate could only be converted in 45% ee.458 These results can be explained in terms of 

steric effects of the methyl group on the substrate disrupting key non-covalent interactions 

between the catalyst’s amide O and the indole N–H, which are evidently essential for inducing 

high enantioselectivity.477 Considering activity, throughout the NaviCatGA run reactions 3 and 

47 are underperforming: according to the volcano plot (Figure 7.C), the formation of  the 

corresponding protonated tetrahydro-β-carboline 2 is energetically unfavorable, in line with the 
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electron-deficient nature of SubA and the electron-withdrawing character of the aldehyde 

substituent, which hinders the rate-determining deprotonation step. Regardless of the specific 

substitution patterns the GA may explore during the optimization, finding organocatalysts that 

non-covalently stabilize such unstable intermediates is clearly a challenge. Reaction 47 also 

exemplifies a situation where high selectivity and activity are incompatible: while most HBD 

organocatalysts explored during the evolutionary experiment are predicted to exhibit large ∆∆G‡ 

values, the TOF always remains far from the theoretical maximum indicated by the volcano plot. 

Conversely, reaction 43, which features an electron-rich indole and an α-ketoamide (essentially 

an activated carbonyl compound),491 has predicted TOF always close to the volcano peak, while 

selectivity is more challenging to optimize,444 and ee values considerably improve during the GA 

run (from 63% to 87%).  

7.4 Conclusions 

Given the synthetic utility of catalytic methods that provide high enantioselectivities and 

activities across a wide assortment of substrates, we have developed an optimization workflow 

centered on the open-source genetic algorithm NaviCatGA38 with the aim of demonstrating how 

generative models18 are an enticing alternative to experimental42 or computational436 high-

throughput screening, provided that the various component of the pipeline for de novo catalyst 

design are adapted to optimize generality as primary target. We have adopted a hybrid approach 

for scoring candidate organocatalysts that combines a mechanistic-guided strategy (i.e., activity 

estimations through TOF molecular volcano plots30) with enantioselectivity predictions based on 

training on experimental data. Catalysts were generated from molecular building blocks extracted 

from the OSCAR database.29 We have tested our approach on the asymmetric Pictet–Spengler 

reaction443 because of the large amount of data available in the literature and the many catalyst 

chemotypes that have been tested on individual substrate classes, resulting in system-specific 

islands of high performance.42 We selected a broad and diverse substrate scope guided by 

mapping the chemical space of commercially and synthetically available tryptamine derivatives 
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and carbonyl compounds tested in the Pictet–Spengler cyclization, and performed evolutionary 

experiments on this Generality Probing Set (GPS). Through multi-objective optimization, we 

have explored activity/selectivity trade-offs and located solutions in the Pareto front with good 

average performance. However, we found that even the top organocatalysts are underperforming 

in certain areas of substrate space, while other areas are less sensitive to the identity of the HBD 

catalyst. Analysis of these outliers provided support to hypotheses on the principle of 

stereoinduction477 and activity trends extracted from molecular volcanos, demonstrating how 

genetic optimization also yields mechanistic understanding and reveals structure–property 

relationships, as long as an unbiased substrate scope is chosen.485 Given the encouraging results 

obtained here, we believe generality-oriented evolutionary experiments, coupled with 

experimental verification, will accelerate the discovery of broadly applicable catalyst systems for 

other interesting transformations. Ongoing and further investigations (currently omitted from this 

Chapter) will focus on evaluating the CPA space, performing NaviCatGA runs with different 

Chimera settings, and comparing the outcome of specificity- vs. generality-oriented experiments.  

7.5 Computational Details 

7.5.1 Quantum chemistry 

The structure of both enantiomers of intermediate 2 in the catalytic cycle of the Pictet–Spengler 

reaction (Figure 7.3A, labeled as “Big group pointing Up”, “BU”, or “Big group pointing Down”, 

“BD”, depending on the relative position of R1 and R2 in 2) were generated by substituting 3D 

fragments on 20 pre-optimized templates based on work by Jacobsen et al.477 using 

AaronTools78,79 and optimizing them with the semiempirical GFN2-xTB Hamiltonian257 in the 

gas phase. Conformational sampling of the resulting 703 complexes was carried out using the 

Conformer-Rotamer Ensemble Sampling Tool93,492,493 (CREST) at the GFN2-xTB//GFN-FF 

level of theory,257 constraining positions of the bond-forming atoms. The lowest-energy 

conformer was selected and optimized at the PCM(Toluene)/M06-2X-D3/Def2-TZVP//M06-

2X-D3/Def2-SVP level.252,290,291,494–496 The other intermediates and TSs in the SRS were located 
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using scans and IRC computations.292 The potential energy profile of only one enantiomeric 

pathway (corresponding to “BD”–labeled structures) was generated to construct volcano plots 

(vide infra). Stationary points were characterized on the basis of their vibrational frequencies 

(minima with zero imaginary frequencies, TSs with one imaginary frequency). Thermal and 

entropic corrections were calculated using Grimme’s quasi-RRHO approximation497 from 

frequencies computed at 298 K using the GoodVibes program293 with a frequency cut-off value 

of 100 wavenumbers. All DFT computations were carried out using Gaussian16 (revision 

C.01).249 The relative Gibbs free energies were automatically post-processed using the toolkit 

volcanic32 to establish LFESRs, determine the choice of the descriptor variable [the relative 

energy of intermediate 2, ∆GRRS(2)], and construct TOF-volcano plots. Extensive instructions on 

how volcano plots are constructed are given elsewhere,32 while the input for volcanic is provided 

in the SI.   

7.5.2 Machine learning 

MFPs of catalysts, co-catalysts, substrates, and solvents with a fingerprint size of 1024 were 

generated using RDKit94 from their SMILES strings.328 Chemical space maps were generated 

using Scikit-learn406 on the basis of the concatenated MFPs with dimensions reduced to 100 using 

Principal Component Analysis, followed by t-SNE embedding207 with perplexity of 30 to further 

reduce the featurization to two dimensions for visualization. The Python package QML405 was 

used to construct standard SLATM representations,337 while reaction-inspired SLATMDIFF 

representations were constructed in analogy to our previous work.40,41 Random forest models 

from the XGBoost library were used with default hyperparameters. The input of the XGBoost 

models were the concatenated MPFs of Cat, Co-cat, SubA, SubB, and Solvent for ∆∆G‡, and of 

Cat, Co-Cat (i.e., AcOH, BzBr, or none), SubA, and SubB for ∆GRRS(2). Not that, during the 

evolutionary experiments on the HBD space, toluene was fixed as solvent, while benzoic and 

acetic acid were fixed as co-catalysts and used in the input of the ML models for selectivity and 

activity, respectively. A cross-validation scheme was used with 100 different 90/10 training/test 
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splits [738/82 for ∆∆G‡, 633/70 for ∆GRRS(2)]. For the KRR models with the SLATM 

representations, hyperparameters were optimized for each train/test split. From the 100 different 

train/test splits, the target [∆∆G‡ or ∆GRRS(2)] was predicted approximately 10 times; these test 

predictions were then averaged to obtain one final prediction. The standard deviation from the 

test predictions were used to generate the error bars. 

7.6 Supporting Information 

The Supporting Information for this Chapter will be made available prior to its submission for 

publication. 
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General Conclusions and Outlook  

 

Catalyst design has played a pivotal role in optimizing organocatalytic reactions by improving 

chemical efficiency, expanding the number of amenable transformations, and diversifying the 

breath of possible substrate activation modes, leading to applications of organocatalysts in the 

asymmetric total synthesis of compounds of biological and pharmaceutical interest.6 Since the 

field’s infancy,43 the increasing implementation of automation and computational techniques, 

primarily DFT methods to create potential energy profiles, has facilitated the discovery of new 

catalytically competent motifs and the screening of reactions for next generation catalysts. As 

recognized by the community, a paradigm shift is underway,498 whereby the introduction of 

artificial intelligence-based strategies, fueled by “Big Data” availability and more sophisticated 

machine learning algorithms, is overcoming some of the previous limits in catalyst design and 

synthetic planning.426,499 This thesis emphasizes the development and use of data-driven tools 

and concepts, such as molecular volcano plots, (un)supervised ML techniques, and generative 

models going beyond the state-of-the-art,28 to predict the performance of catalyst and optimize 

reaction properties. A brief summary of the work presented herein is found below, following the 

three objectives stated in the Introduction. 

Firstly, we have introduced the OSCAR repository and a fragment-based strategy for database 

curation. With its thousands of structures mined from the literature and corresponding building 

blocks to re-assemble in a combinatorial fashion, OSCAR represents the first steps towards an 

extensive mapping of organocatalyst space with large chemical diversity, aiding in the 

implementation of generative and predictive models of catalyst performance. We then used the 

8 
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kind of molecular fragments found in OSCAR to tailor the structure of bifunctional hydrogen-

bond donor/amines for improved turnover. Our approach relies on curating functionally diverse 

libraries of catalytic motifs and evaluating activity in terms of the individual fragment 

contributions through the use of activity maps and statistical modelling. Altogether, this work 

shows how the under-exploited modularity of organocatalysts and bottom-up protocols may be 

leveraged to streamline activity-based screening and chemical space exploration. 

Secondly, we have established the use of volcano plots/activity maps as fitness function in 

closed-loop genetic optimization of homogeneous catalysts, in combination with the 

aforementioned fragment libraries. The versatile GA package, NaviCatGA, was developed for 

this purpose and we showcased its ability to efficiently explore large combinatorial spaces and 

optimize multiple targets simultaneously i.e., find solutions in the activity–selectivity Pareto 

front. 

Finally, we have addressed issues regarding accurate predictions of difficult-to-learn properties, 

such as enantioselectivity and catalyst generality. While physics-based ML models hold great 

potential to accelerate fitness evaluation during genetic optimization owing to their transferability 

and efficiency, their use for catalytic properties is less routine.40 Reaction-inspired 

representations are a chemically intuitive strategy to improve accuracy for subtle targets such as 

DFT-computed e.e. values. Going beyond specificity-oriented optimization, we have shown how 

statistical models for enantioselectivity and activity prediction (trained on experimental data 

mined from the literature and/or on the volcano plot’s descriptor), tailored fragments databases, 

and genetic optimization are combined to design evolutionary experiments that may address the 

existence of “general” catalysts. 

Data-driven tools and concepts are undoubtedly invaluable to streamline the discovery of 

prospective organocatalysts and identifying trends surrounding catalytic behavior. However, we 

believe that the capability of this toolbox has not yet been fully exhausted. There are still possible 

extensions and refinements, some of which are listed below: 
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• Alternative chemical descriptors to explore new design principles in non-covalent 

organocatalysis 

Over the years our group has developed an extensive toolbox based on molecular volcanos.30 

Broadly speaking, they have been geared towards quickly estimating catalytic cycle 

energetics with the aim of identifying prospective new catalysts or better understand why 

particular species possess certain reactivity. However, the study of organocatalytic reactions 

prompts the creation of “next generation” plots for further generalization. In particular, 

analysis of the molecular volcanos shown in this thesis (Figure 4.2, 5.5, and 7.3) reveals one 

common feature: despite representing different reactions and mechanisms, no species was 

found lying on the left slope, corresponding to the organocatalyst binding intermediates too 

strongly and turnover being limited by product release. Although product inhibition is a 

known, common problem in catalysis (e.g., Claisen rearrangement500), it is unclear at this 

stage whether this aspect is a general feature of (non-covalent) organocatalytic reactions and 

whether organocatalysts lying on the strong-binding slope can be found. Having access to 

this information would disclose new design principles and allow maximum activity (i.e., the 

volcano peak) to be reached “from the other side”: not by modulating the strength of starting 

material–catalyst interactions (right slope), but between product and catalyst (left slope). To 

achieve this, we envision that new fragment-based approaches and families of molecular 

volcanos will have to be created, for example employing non-energy-based descriptors (pKa, 

polarizability, quadrupole moment, etc.)501 to account for the strength of NCIs. 

 

• Improving fitness evaluation, multi-objective design, and catalyst fragmentation in the 

context of genetic optimization 

While implementing genetic and other generative algorithms for catalyst discovery is 

becoming routine, developing affordable models to accurately predict complex catalytic 

properties on-the-fly remains a challenge. This is partly due to the scarcity of high-quality 

HTE datasets, and to the difficulty associated with using ab initio methods to generate 
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reliable reactivity data. In this thesis, we have shown that physics-based models with 

approximate (i.e., computationally inexpensive) geometries are compatible with genetic 

optimization; however, training them on “noisy” experimental data mined from different 

publications limits the applicability of reaction-based representations. Evaluating the 

performance of different atomistic models using “clean” HTE datasets would reveal the 

requirements and compatibility of molecular representations with experimental targets (e.g., 

yields) and help in designing more accurate reaction fingerprints. 

Catalyst discovery is a multi-objective task and improvements in the decision-making 

process will make evolutionary experiments more efficient. One approach would be to 

implement more sophisticated acquisition functions, such as non-dominated sorting (i.e., 

Pareto ranking)502 to select sampled catalysts to include in subsequent populations. 

Alternatively, the definition of performance, rather than being fixed prior to the experiment, 

can be dynamic and able to respond to new knowledge generated on-the-fly, such as the 

unforeseen stability of new catalysts.27 

Finally, to overcome the bias connected with user-defined libraries of molecular building 

blocks, diversity quantification503 of the fragments database and active learning 

approaches,371 which balance the exploitation of familiar chemical spaces with the 

exploration of areas of high uncertainty, could be implemented into our pipeline. 

 

• Extending other NaviCat platform tools to organocatalytic reactions 

Over the past four years, our laboratory has been developing and collecting a number of data-

driven tools for digital chemistry and catalyst discovery under the NaviCat platform 

(https://github.com/lcmd-epfl/NaviCat). Some of NaviCat’s modules include database and 

structure generation utilities,29 ML advancements and optimization pipelines,38 and an 

automated volcano plots builder.32 While much of this thesis’ work has revolved around 

extending these modules to organocatalysis, further integration is envisioned. For example, 

one tool from the Reiher group that has become part of NaviCat for transition-metal catalyst 
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screening360,504 is the SCINE Molassembler module.97 Molassembler couples automated 

functionalization with conformer generation on-the-fly for e.e. estimation: given the 

challenges associated with enantioselectivity prediction in (non-covalent) organocatalysis, 

extending the applicability of this module to organocatalytic reactions would greatly enrich 

our pipeline for catalyst optimization, facilitating high-throughput mechanistic investigations 

and helping prioritize experimental testing of promising candidates. 

 

In closing, we believe that data-driven tools can streamline the process of reaction optimization 

by enabling the discovery of key catalyst structure–activity and structure–selectivity 

relationships. This thesis demonstrates how organocatalysis benefits from the application of 

tailored yet transferable fragment-oriented (inverse) design pipelines, powered by (un)supervised 

machine learning algorithms, serving as a powerful driving force for the development of new 

sustainable transformations. 
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• WATOC 2020 Poster Prize (12th Triennial Congress of the World Association of Theoretical and Computational 

Chemists, Vancouver, BC, Canada, July 2023) 
• The Principal’s Scholarship for Academic Excellence (2019, awarded to the fifty final year students from across 

the University whose grades are the highest in their faculties) 
• Charles Horrex Prize (2019, awarded to the best Honours Research Project in Physical Chemistry) 
• Forrester Prize (2019, awarded to the best finishing students in the Fourth and Fifth year classes) 
• Irvine Jubilee Prize and Medal (2019, awarded to the most distinguished finishing MChem student in Chemistry) 
• Gray Prize (2019, awarded to the best essay on a prescribed topic in Chemistry) 
• Elizabeth Soutar Prize Joint (2017, awarded to the “Best Students in Third Year Chemistry”) and Medal in 3rd Year 

Chemistry (2017, awarded for best performance in 3rd Level Chemistry) 
 
EMPLOYMENT HISTORY 
               
Sep. 2019 –
Present 

Laboratory for Computational Molecular Design, EPFL 
Doctoral thesis under the supervision of Prof. Clémence Corminboeuf 
 

1 June – 27 
July 2018 

Summer Program at the Centre for Computational Quantum Chemistry 
University of Georgia, Athens, GA, US 
I worked in the group of Prof Steven E. Wheeler on the prediction of catalytic activity and selectivity 
in asymmetric homogeneous catalysis using modern DFT methods. The summer program also 
involved the attendance of a series of lectures on important topics in quantum chemistry and the 
completion of programming projects in Python 
 

26 June 
2017 – 18 
May 2018 

Undergraduate Year in Industry Placement at Diamond Light Source, UK 
In the “Chirally modified Catalyst Nanoparticles” project, I was involved in the synthesis and study of 
the catalytic activity and enantioselectivity of Ni nanoparticles in the chemical laboratory facilities of 
Diamond Light Source and of the UK Catalysis Hub in the Research Complex at Harwell, along with 
their investigations at the Versatile Soft X-ray (VERSOX) beamline, where I conducted Near-Ambient 
Pressure XPS and NEXAFS experiments. I presented this work at the Faraday Discussion “Designing 
Nanoparticle Systems for Catalysis” (London, 16–18 May 2018) 
 

June –
August 2016 

Forensic Chemistry internship at Nottingham Trent University, UK 
Synthesis of dye-impregnated fingerprint lifting gels and their characterization via fluorescence 
spectroscopy 
 

Summer 
2015 

Private chemistry and physics tutor for high school students in Bergamo, Italy 

 

Summer –
Autumn 
2013 

BergamoScienza, presenter–guide to school laboratories (Bergamo, Italy) 
Presenter and guide of various school laboratories. I oversaw the school experiments, which the public 
could participate in, while planning and working on my personal project (building a microbial fuel cell), 
which was then exhibited to the public 
 

Summer 
2013 

SIAD S.p.A., Production plant of Osio Sopra (Bergamo, Italy) 
Visited and assisted in daily laboratory activities at the local chemical company of the SIAD group 
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POSITIONS OF RESPONSIBILITY 
               
July – 
December 
2023 

Supervisor of junior researchers 
Lucien Brey, Alexander Makaveev (Master students). Project: Optimizing generality in asymmetric 
organocatalysis with evolutionary experiments 
 

2018 – 2019 President of the University of St Andrews Chemical Society  
My role was to promote and provide a social forum for the propagation of Chemistry within the 
community of the University and the town of St Andrews. I was ultimately responsible for the 
organisation of all events, the delegation of duties within the Society and the administration of 
ChemSoc’s affairs and finances 
 

2016 – 2019 University of St Andrews Chemistry Class Rep and Library Rep 
This position allowed me to be a valuable connection between other students and the staff members, 
to gather and organise feedback from my peers, act on it or report it to others within the School or 
University 
 

 
TEACHING ACTIVITIES 
 
Advanced General Chemistry I, Bachelor’s course. Teaching assistant for two semesters between 2020–2021 (69 
hours overall) 
 

Organic Chemistry, Bachelor’s course. Teaching assistant for three semesters between 2020–2022 (156 hours 
overall) 
 

Physical and Computational Organic Chemistry, Master’s course. Teaching assistant for two semesters between 
2021–2022 (32 hours overall) 
 

Project of Computational Chemistry, Bachelor’s course. Supervision of the project “Accelerating the screening of 
organocatalysts through fragmentation” (56 hours overall) 
 

 
SELECTED PRESENTATIONS, CONFERENCES, OR SEMINARS 
 
24 – 30 June 
2023 

Gordon Research Seminar and Conference, Physical Organic Chemistry. Holderness School in 
New Hampshire, US. Talk: Optimizing generality in organocatalysis with evolutionary experiments 
 

3 – 8 July 
2022 

12th World Association of Theoretical and Computational Chemistry (WATOC) 2020. Vancouver, 
BC, Canada. Poster: OSCAR, an extensive repository of functionally diverse organocatalysts 
 

9 December 
2021 

Theoretical Physical Organic Chemistry (TPOC) Meeting. Talk: Data-driven tools for 
organocatalysis (online) 
 

23 August 
2021 

ACS Fall Meeting 2021, Accelerating Catalysis Research with Machine Learning. Talk: Data-driven 
advancement of computational tools for organocatalysis (ID: 3595899, online) 
 

5 – 9 June 
2021 

EPFL–ETHZ Summer School Big Data and Machine Learning for Chemistry. Hybrid live/online 
event, EPFL, Switzerland. Member of the Organising Committee. 

 
PERSONAL SKILLS 
 
Programming Languages, 
Software, Programs 

Bash, Python, MS Office, LaTeX, Gaussian, ADF, DFTB+, VMD, Molden, CYLView, 
ChemDraw, ConQuest, Reaxys, Igor Pro 
 

Languages Italian (native speaker), English (fluent), French (basic knowledge, A1/A2) 

 
SELECTED SCIENTIFIC PUBBLICATIONS 
 
1. S. Gallarati, P. van Gerwen, R. Laplaza, S. Vela, A. Fabrizio, and C. Corminboeuf, Chem. Sci., 2022, 13, 13782. 
2. S. Gallarati, R. Laplaza, and C. Corminboeuf, Org. Chem. Front., 2022, 9, 4041. 
3. S. Gallarati, R. Fabregat, V. Juraskova, T. J. Inizan, and C. Corminboeuf, J. Org. Chem., 2022, 87, 8849. 
4. R. Laplaza, S. Gallarati, and C. Corminboeuf, Chem. Methods, 2022, e202100107. 
5. M. D. Wodrich, M. Chang, S. Gallarati, Ł. Woźniak, N. Cramer, and C. Corminboeuf, Chem. Eur. J., 2022, 28, 

e202200399. 
6. S. Gallarati, R. Fabregat, R. Laplaza, S. Bhattacharjee, M. D. Wodrich, and C. Corminboeuf, Chem. Sci., 2021, 12, 

6879. 
7. S. Gallarati, P. Dingwall, J. A. Fuentes, M. Bühl, and M. L. Clarke, Organometallics, 2020, 39, 4544. 
8. R. Arrigo, S. Gallarati, M. E. Schuster, J. M. Seymour, D. Gianolio, I. da Silva, J. Callison, H. Feng, J. E. Proctor, P. 

Ferrer, F. Venturini, D. Grinter, and G. Held, ChemCatChem, 2020, 12, 1491–1503. 


