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A Provably Stable Iterative Learning Controller

for Continuum Soft Robots

Michele Pierallini, Francesco Stella, Franco Angelini, Bastian Deutschmann,

Josie Hughes, Antonio Bicchi, Manolo Garabini, and Cosimo Della Santina

Abstract—Fully exploiting soft robots’ capabilities requires
devising strategies that can accurately control their movements
with the limited amount of control sources available. This task
is challenging for reasons including the hard-to-model dynamics,
the system’s underactuation, and the need of using a prominent
feedforward control action to preserve the soft and safe robot
behavior. To tackle this challenge, this letter proposes a purely
feedforward iterative learning control algorithm that refines the
torque action by leveraging both the knowledge of the model and
data obtained from past experience. After presenting a 3D poly-
nomial description of soft robots, we study their intrinsic prop-
erties, e.g., input-to-state stability, and we prove the convergence
of the controller coping with locally Lipschitz nonlinearities.
Finally, we validate the proposed approach through simulations
and experiments involving multiple systems, trajectories, and in
the case of external disturbances and model mismatches.

Index Terms—Modeling, Control, and Learning for Soft
Robots; Underactuated Robots; Motion Control

I. INTRODUCTION

DESPITE considerable work being put into the design and

modeling aspect of soft continuum structures [1], [2], the

control problem is still open [3]. Existing approaches attack

the challenge by means of mostly feedforward learning-based

methods [4]–[8] or with feedback model-based approaches

[9]–[12]. The former preserves the robot’s elasticity with-

out requiring a precise description of the model. Still, it is

time-expensive and does not allow drawing any theoretical

conclusion on the system’s physical properties or behavior.
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Fig. 1. Proposed iterative learning control scheme for soft continuum robots.

Conversely, the latter leads to high performance while compen-

sating for disturbances at the cost of stiffening up the robot’s

behavior [13] and relying on a precise system description.

Thus, there is no controller available that can preserve the

robot’s elasticity while achieving good performance [3]. To

solve this challenge, we propose a controller that relies upon

the intersection of learning-based and model-based methods.

The main contribution of the paper is a pure feedforward

torque-based control strategy for soft robots. The algorithm

belongs to the class of iterative learning controller (ILC) [14]

Fig. 1. The algorithm can cope with model uncertainties and

external disturbances while preserving the robot’s intrinsic

elasticity [13]. It relies on both the Lagrangian robot model

[15] and data obtained from previous iterations. ILC algo-

rithms have been applied to soft continuum robots in [16] to

reach the optimal planned trajectories and in [17] where a

pure feedback controller is implemented without experimental

validation. Therefore, a pure feedforward stand-alone ILC

framework for soft continuum robots is not at our disposal.

Exploiting the model knowledge speeds up the learning

process while coping with the underactuation of the system,

disturbances, and model uncertainties. Leveraging the Lya-

punov stability of the soft structure, the control action tackles

locally Lipschitz nonlinearities in the dynamics. We rigorously

prove the controller convergence.

A secondary contribution of this letter is a 3D polynomial

curvature description of the robot including the compression

variables generalizing [15] and [18].

We validate the learning algorithm by performing sim-

ulations and experiments with varying systems, trajectory

features, e.g., velocity, and disturbances.

To summarize, this letter’s contributions are:

• A polynomial model of continuum robots generalizing

[15] into a 3D model and [19] considering a general

number of curvature models Sec. II.

• Input-to-state stability proof for soft robots Sec. III.

• A pure torqued-based feedforward iterative learning con-

troller that uses both model-based and data-driven terms,
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whose convergence is theoretically proved even in the

case of disturbances Sec. IV.

• The validation of the proposed approach in both simula-

tions and real hardware Sec. V.

II. CONTINUUM ARM MODEL

We introduce a dynamic model for a continuum soft arm.

A. Forward and Differential Kinematics

For the i−th soft segment i= 0, · · · ,∞ Fig. 2, we generalized

the approach in [15] and [18] deriving a 3D model adding also

the compression along the central axis, namely δLi ∈Xq ⊂R.

We model the i−th curvature as a polynomial function, i.e.,

ci(s, t) =
+∞

∑
k=0

θki
(t)sk , ∀s ∈ [0,1], ∀t ∈ [0, tf] , (1)

where θki
are the modal weights, t is the time variable and tf is

the terminal time. From (1), the local orientation is computed

as αi(s, t) =
∫ s

0 ci(s
′, t)ds′. Recalling [15], let us assume that

θ0i
(·) : [0, tf]→Xq, is such that θ0i

(t)≫ ∑
+∞
k=1 θki

(t), ∀i, ∀t ∈
[0, tf]. Furthermore, we introduce the truncation operator [(·)]o
at the o−order with o ∈ N, which, applied to (1), leads to

[ci(s, t)]o = ∑
o
k=0 θki

(t)sk ,∀i, ∀s ∈ [0,1],∀t ∈ [0, tf].
Let qi be the configuration of the i−th segment, i.e., qi =

[φi, θ0i
, · · · , θoi

, δLi]
⊤
≜
[
φi, Θ⊤i , δLi

]⊤
∈X o+3

q ∀i. Based on

geometric consideration and recalling Fig. 2, we derive the

forward kinematics T s
i (qi,s) ∈ X 4×4

q , which describes each

frame pose along the main axis, i.e.,

T s
i (qi,s) =

[
Rz(φi)Ry(αi(s))Rz(−φi) Rz(φi)Ry(αi(s))p1i

(qi)
01×3 1

]

,

(2)

where p1i
(qi) = [0, 0, Li +δLi]

⊤ ∈X 3
q and R(·)(s) ∈ SO(3).

It is worth noting that limΘi→0o
T s

i (qi) =

[
Rz(φi) p1i

(qi)
01×3 1

]

which is well-defined even in the origin.

We highlight that, in the case of o = 0, (2) yields into

the Piecewise Constant Curvature (PCC) model [20]. The

polynomial description represents a finer representation of the

curvature with a higher computational cost and a greater num-

ber of state variables that can lead to system underactuation.

Following the standard approach (see e.g., [20]), one can

compute the differential kinematics, i.e., ξ̇i = Ji(q)q̇i, ∀i where

ξ̇i ∈ X 6
q includes the linear and angular velocities of the

robot’s tip, q̇i ∈X o+3
q includes the velocities, and the Jacobian

Ji(q) ∈X 6×n
q is Ji(q) =

[
Jpi

(q)⊤, Joi
(q)⊤

]⊤
= ∂q fKi

(qi,s)
⊤1,

where fKi
(·, ·) : X o+3

q × [0,1]→X 6
q is the forward kinematics

map, i.e., (2), and Jpi
(q), Joi

(q) ∈X 3×n
q are the position and

orientation Jacobian, respectively. For the sake of space, we

will remove the time dependence.

B. Dynamics and Output Function

Using the classical Lagrangian approach, one can derive the

continuum robot dynamics (refer to [15] for more details), i.e.,

M(q)q̈+n(q, q̇) = A(q)u+ J⊤(q)τext +ξ , (3)

1The symbol ∂q(·) stands for ∂q(·)≜ ∂ (·)/∂q throughout the paper.

where q̈ ∈X n
q includes the joints acceleration. M(q) ∈X n×n

q

is inertia matrix. n(q, q̇) ≜ C(q, q̇)q̇+G(q)+Dq̇+Kq where

C(q, q̇) ∈X n×n
q is the Coriolis matrix, which is computed us-

ing the Christoffer coefficients, thus q⊤
(
Ṁ(q)−2C(q, q̇)

)
q =

0, ∀q ∈X n
q . K, D ∈X n×n

q such as K, D≻ 0 are the stiffness

and damping matrices, i.e., [K]11 = κφ , [D]11 = dφ , [K]i j =
κ

i+ j+1
, [D]i j =

d
i+ j+1

, ∀i, j = 2, · · · ,n− 1, [K]nn = κδL, and

[D]nn = dδL, respectively [15]. τext ∈X 6
q collects the exter-

nal forces (if present), i.e., supt∈[0,tf]
{∥τext∥} ≤ bτext < ∞,and

ξ (·) : [0, tf]→ X n
q such as supt{||ξ (t)||} ≤ bξ < ∞ embeds

the model artifacts, and it will described in Sec. VI, [14],

[21]. u(·) : [0, tf]→X m
q is the control input (Sec. VI), and

A(q) ∈X n×m
q is the actuation matrix, which depends on both

the geometry and the actuators; hence it will be described in

Sec. V. Also, A(q) is such that max{rank{A(q)}} ≤ p with

p ≤ m ≤ n. Without loss of generality, let us assume that

rank{A(q)}= p, ∀q ∈X n
q .

Finally, depending on the curvature truncation order o∈N+

and the number of actuators, the system (3) may be underac-

tuated [22]. Thus, we can assign only a subset or an (even

nonlinear) combination of the state. To this end, we define the

output of the system, i.e., y(·) ∈X
p

q , and a smooth output

function h(·) : [0, tf]×X n
q →X

p
q , i.e.,

y = h(q(t)) , (4)

such as
∣
∣
∣
∣∂qh(q)

∣
∣
∣
∣≤ h0. Note that, depending on the value of

p, the system (3)-(4) may also be non-square.

C. Dynamic Model Properties

Recalling (3), the following property holds for any soft

continuum robot [11].

Property 1. For the system (3) ∀q, q̇ ∈ X n
q , the following

positive constants exist (see, e.g., [3], [15]):

• bm ≤ ||M(q)|| ≤ bM , and M(q) = M⊤(q)⪰ 0, ∀q ∈X n
q ,

• ||C(q, q̇)|| ≤ bC(∥q̇∥+∥q∥) and also that
∣
∣
∣
∣∂qC(q, q̇)

∣
∣
∣
∣=

∣
∣
∣
∣∂q̇C(q, q̇)

∣
∣
∣
∣≤ b∂C,

• ||G(q)|| ≤ bG∥q∥+bg0
,bg0
∈ (0,∞] and

∣
∣
∣
∣∂qG(q)

∣
∣
∣
∣≤ b∂G,

• ∥J(q)∥≤ bJ =⇒ 0< ∥A(q)∥≤ bA for almost all q∈X n
q .

Recalling Property 1, we remark two features of soft robots.

Remark 1. The dynamics of any soft continuum robot (3) is

locally Lipschitz ∀q, q̇ ∈X n
q .

To solve the control problem, let us assume what follow.

Assumption 1. The system (3)-(4) has relative degree r = 2

for almost all q, q̇ ∈X n
q , (see, e.g., [14]).

Assumption 1 guarantees an inertial coupling between all

the variables, which is very common for any Lagrangian

system [14], [22]. In practice, it means that the controller in-

ertially acts on the output function (4) and its time derivatives.

Assumption 2. Let yd(·) : [0, tf]→X
p

q be the desired output

function. We assume the unique existence of the desired state

and bounded control input, i.e., ∀yd, ∃!qd, q̇d ∈ X n
q , ud(·) :

[0, tf]→X m
q with supt∈[0,tf]

∥ud(t)∥ ≤ bud
such as M(qd)q̈d +

n(qd, q̇d) = h(qd)ud and yd = h(qd).
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Assumption 2 ensures the trajectory feasibility to provide

the existence of the control problem solution [14]. In prac-

tice, one can check if the trajectory belongs to the robot’s

workspace. Recalling Property 1, Remark 1, and Assumption

2, one can state what follows.

Lemma 1. Let us consider the system (3)-(4) with Property 1

and Remark 1. Assumption 2 implies that the distance between

the real and desired dynamics is locally Lipschitz, i.e.,

∥M(q)−M(qd)∥ ≤ bM

∥n(q, q̇)−n(qd, q̇d)∥ ≤ bn(∥q∥,∥q̇∥)∥q−qd∥
(5)

∀q, qd, q̇, q̇d ∈X n
q , with bn(·) ∈K∞ unknown function.

Proof. The proof follows by Assumption 2 and (3).

III. STABILITY ANALYSIS

We here study the stability of the soft robot in (3). First, we

derive a classical result leveraging Lyapunov indirect theorem

in Proposition 1. Second, we prove the input-to-state stability

for (3). This analysis allows us to derive strong claims while

exploring the peculiarities of soft robots. For instance, the

majority of ILCs rely on the global Lipschitz assumption [14],

and we, leveraging Lemma 2, propose results on the local one.

Proposition 1. Let us consider one segment of soft continuum

robot described in (3) with Property 1. Let [q⊤, 0n×1]
⊤, u(t)≡

0 be a system equilibrium. If the following inequality holds

o

∑
h=0

κ

h+3
> mg

o

∑
h=0

∂qh
∂θ0

pOtipz
(q)

∣
∣
∣
q=q

(6)

with pOtipz
is the ẑ component of the robot tip and o ∈ N

+ is

the truncation order; the equilibrium is asymptotically stable.

Proof. Inequality (6) implies ∂qK(q)+∂qG(q)
∣
∣
q=q
≻ 0,

which, leveraging the Lyapunov indirect Theorem, guarantees

the asymptotic stability of the equilibrium [3].

We study the input-to-state stability of the soft robots.

Proposition 2. Any soft continuum robot in (3) with Property

1 is Input-to-State Stable ∀q, q̇ ∈X n
q ,∀t ∈ [0, tf].

Proof. Recalling (3) assuming ξ (t) ≡ 0, let V (·) : X n
q ×

X n
q → R

+ be a Lyapunov function, i.e., V (q, q̇) = b1
2

q⊤Kq+
b2
2

q̇⊤M(q)q̇ where b1, b2 ∈ X +
q \{0,+∞} with b2 > b1.

Computing the time derivative of V (q, q̇) and noting that

q⊤
(
Ṁ(q, q̇)−2C(q, q̇)

)
q = 0, ∀q, q̇ ∈X n

q , lead to V̇ (q, q̇) =

(b2− b1)q
⊤Kq̇− b2

2
q̇⊤Dq̇− b2

2
q̇⊤

(
G(q)−A(q)u− J⊤(q)τext

)
.

Since K ≻ 0, one can write the following inequality

V̇ (q, q̇)≤
b2−b1

2

(

q⊤Kq+ q̇⊤Kq̇
)

−
b2

2
q̇⊤Dq̇

−
b2

2
q̇⊤

(

G(q)−A(q)u− J⊤(q)τext

)

.

(7)

From (7), computing the square of the gravity and control term

and defining Q ≜ (D+(b2−b1)K)≻ 0 lead to

V̇ (q, q̇)≤−(b2−b1)q
⊤Kq−

b2

2
q̇⊤Qq̇

−
(

q̇+b2Q−1 (G(q)+A(q)u)
)⊤

Q−1
(

q̇+b2Q−1 (G(q)A(q)u)
)

−
(

q̇−b2Q−1J⊤(q)τext

)⊤
Q−1

(

q̇−b2Q−1J⊤(q)τext

)

+b2
2u⊤A⊤(q)QA(q)u+b2

2G⊤(q)Q−1G(q)

≤−(b2−b1)q
⊤Kq−

b2

2
q̇⊤Qq̇+b2

2u⊤A⊤(q)QA(q)u

+b2
2G⊤(q)QG(q)+b2

2τ⊤extJ(q)QJ⊤(q)τext .
(8)

Recalling Property 1, one has that b2
2u⊤A⊤(q)QA(q)u ≤

b2
2b2

A∥Q∥∥u∥ ≜ η(∥u∥), with η(·) ∈K , b2
2G⊤(q)Q−1G(q) ≤

b2
2b2

Gq⊤∥Q∥q, and b2
2τ⊤ext(q)J(q)Q

−1J⊤(q)τext ≤
b2

2bτextq
⊤∥Q∥q, Thus, (8) becomes

V̇ (q, q̇)≤−(b2−b1)q
⊤Kq−

b2

2
q̇⊤Qq̇+η(||u||)

−
b2

2
q⊤

(

(1−b2(b
2
G +bτext

)(b2−b1)K−b2(b
2
G +bτext

)D
)

q .

(9)

Note that ∀bG, bτext , ∃b2 > b1 such that (1 − b2(b
2
G +

bτext)(b2−b1)K−b2(b
2
G+bτext)D≻ 0. Thus (9) can be rewrit-

ten as V̇ (q, q̇) ≤ −χ(||q|| , ||q̇||)+η (||u||) with χ(·) ∈K L .

This achieves the proof.

Proposition 2 analyzes the stability in a local and nonlinear

fashion considering a control action. Conversely, Proposition 1

claims linear results, which hold only in an equilibrium point

neighborhood, and it is a special case of Proposition 2. Both

Propositions 1 and 2 claim that if the robot stiffness overcomes

the gravity term, then the system is Lyapunov stable. Finally,

the scope of Proposition 2 is twofold. First, it describes

an intrinsic property derived from the soft continuum body.

Second, it is instrumental in the derivation of the controller.

IV. ITERATIVE LEARNING CONTROL DESIGN

In this section, relying on Sec. II-III, we introduce the

iterative learning controller proving its convergence even in the

case of locally Lipschitz nonlinearities, external disturbances,

and model artifacts. Then, we propose a learning gain choice,

which ensures convergence.

Managing locally Lipschitz nonlinearities is still an open

problem in the ILC framework. Hence, most of the algorithms

assume the system to be globally Lipschitz [13], [14]. How-

ever, invoking Property 1, this assumption is too strict. To

solve this challenge, in [23], a saturated action is employed.

Conversely, we draw on the input-to-state property of the

continuous robots to deal with these nonlinearities.

Lemma 2. Let us consider (3) with Assumptions 1-2, and

let us recall Proposition 2. Let f (·) : X 2n
q → X 2n

q be one

of the entities in (3)-(4), then the next inequality holds true

∀ f (·): ∥ f (x1)− f (x2)∥≤ f0(∥x∥)∥x1−x2∥≤ b f ∥x1−x2∥ , with

f0(∥x∥) ∈K∞ and b f ∈X + finite.

Proof. Recalling Proposition 2 and (9), one has that

∥x(t)∥ ≤ β (∥x0∥, t)+ γ(supt {∥u(t)∥}) , (10)

∀t ∈ [0, tf] with β (·) ∈ K L and γ(·) ∈ K . Furthermore,

Assumption 2 guarantees the existence of a bounded control
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input. Hence, (10) implies a bounded state and thus, that

∃b f ∈X +
q such that supt∈[0, tf]

f0(∥x(t)∥)≤ b f <+∞.

Lemma 2 holds for all soft robots such as (3) [2], [3] and

it implies ∥n(q, q̇)∥ ≤ bn (∥q∥+∥q̇∥), with bn ∈X +
q finite.

Leveraging Lemma 2, the following Lemma provides

Gronwall-like inequalities for the soft robot dynamics in (3).

Lemma 3. Let us consider the soft robot dynamics (3), with
Property 1 under Assumption 1. Let the thesis of Lemma 2
be true. Let q0, q̇0 ∈ X n

q be the initial condition such as

||qd(0)−q0|| ≤ b0 finite, and q̇0 = q̇d(0). Then, there exist
some positive constants bδq < 1, bδ q̇ < 1, and λ > 0 such that

||δq(t)||λ ≤ bδq ||δu(t)||λ +b0 (11)

||δ q̇(t)||λ ≤ bδ q̇ ||δu(t)||λ +bξ (12)

where δu j ≜ ud−u j, δq j ≜ qd−q j, δ q̇ j ≜ q̇d− q̇ j, and ∥(·)∥λ

is the λ−norm of (·), i.e., ∥(·)∥λ ≜ supt{∥(·)∥e
−λ t}, λ > 0.

Proof. Evaluating (3) in the desired and generic state leads to

M(qd)q̈d−M(q)q̈+n(qd, q̇d)−n(q, q̇) =

A(qd)ud−A(q)u+ξ (t)+ J⊤(q)τext .
(13)

Recalling Property 1 and Lemma 2, one can write

||δ q̈|| ≤
bn +bAbud

+bτext

bM

||δq||+
bn

bM

||δ q̇||+
bA

bM

||δu|| (14)

where δ q̈ ≜ q̈d− q̈. Defining the state z ≜ [||δq|| , ||δ q̇||]⊤ ∈
X 2

q , (14) can be rewritten as ż = Fz+B∥δu∥, i.e.,

ż≤

[
0 1

bn+bAbud
+bτext

bM

bn

bM

]

z+

[
0
bA

bM

]

||δu||+

[
0
bξ

bM

]

, (15)

which is a linear time invariant system where F ∈X 2×2
q , B ∈

X 2
q . Applying the Gronwall lemma to (15) leads to

z≤

[
b0
bξ tf
bM

]

+
∫ tf

0
e

F(t−τ)FBdτ +B

∫ tf

0
||δu(τ)||dτ . (16)

Defining p ≜ 2

√

bn
2 +4bMbn +4bAbMbud

+4bMbτext , one has

eF(t−τ) ≜ eF , whose elements are [eF ]i j for i, j = 1,2, i.e.,

[eF ]11 =

(
p+bM

2p
e

bn+p

2bM +
p−bM

2p
e

bn−p

2bM

)

et−τ , (17)

[eF ]12 =
bM

p

(

e
bn+p

2bM − e
bn−p

2bM

)

et−τ , (18)

[eF ]21 =−
(bn +bτext

+bAbud
)

p

(

e
bn−p

2bM − e
bn+p

2bM

)

et−τ , (19)

[eF ]22 =
bn− p

2p

(

e
bn+p

2bM − e
bn−p

2bM

)

et−τ . (20)

Leveraging (16), one has

z≤

[
b0
bξ tf
bM

]

+
∫ tf

0

bAbn

bM

[
[eF ]11 +[eF ]12bn

[eF ]21 +[eF ]22bn +
1
bn

]

||δu(τ)||dτ .

(21)
Computing the λ−norm and the integral yield to

||δq||λ ≤
bAbn

b2
M

(
bn (bn +bAbud

+bτext
)

p(λ −1)

(

e
bn−p

bM − e
bn
bM

)

−

(

p−bn +bne
bn
/ bM + pe

bn
bM

)/

(2bM (λ −1))

)

× e
− bn−p

2bM

(

etf(1−λ )−1
)

||δu||λ +b0 ≤ bδq ||δu||λ +b0 , (22)

||δ q̇||λ ≤
bAbn

(
2bM

2 +bn
2 p−bn p2

)

b2
M2bM p(λ −1)

(

e
bn−p

2bM − e
bn+p

2bM

)

×
(

e(1−λ )tf −1
)

||δu||λ +bξ ≤ bδ q̇ ||δu||λ +bξ , (23)

in which for any bA, bξ , bM, bn, bud
, bτext > 0 finite ∃λ > 0

such that bδq < 1 and bδ q̇ < 1, i.e., (11)-(12) hold true.

Remark 2. The initial shift b0 enables the framework to deal

also with regulation tasks. However, to prove the stability of

the final equilibrium one must rely on the stiffness-gravity

relation, e.g., (6), or use a feedback term in the controller.

A. Proposed Algorithm

Running into time and iteration domains, the ILC algorithm

reshapes the pure feedforward control law using model infor-

mation and data until it is able to track the desired trajectory.
Let us define the following pure feedforward learning rule,

which combines model-based and data-driven terms, i.e.,

u j+1(t) =
(

Im−ϒ j(t)∂qh(q j)M
−1(q j)A(q j)

)

u j(t)
︸ ︷︷ ︸

Model-based term

+∂qh(q j)M
−1(q j)n(q j, q̇ j)

︸ ︷︷ ︸

Model-based term

+KP

(
yd− y j

)
+KV

(
ẏd− ẏ j

)
+ ÿd

︸ ︷︷ ︸

Data-driven term

,

(24)

where j = 0,1, · · · is the iteration index, KP, KV ≻ 0 are the

control gains, and ϒ j(t) ∈X
m×p

q is the learning gain, which

plays a fundamental role in the convergence analysis. Since

(24) uses data from previous iterations is feedforward, and it

preserves the robot stiffness [13] leading to safe behavior.

Eq. (24) needs an initial guess, which can be chosen as

u0(t) = A+(qd)M(qd)ÿd +A+(qd)n(qd, q̇d) , (25)

or an equilibrium torque, e.g., u0(t)≡ 0, ∀t ∈ [0, tf]. Note that

(24) is feedforward, it preserves the robot’s stiffness [13]

leading to safe behavior. The method is described in Alg. 1.

Algorithm 1 Proposed algorithm.

Input: max iter, toll, yd, ẏd, ÿd

Output: u(·) : [0, tf]→U m

1: procedure COMPUTE CONTROL ACTION

2: u0(t)← initialGuess(yd, ẏd, ÿd) ▷ Eq. (25) or 0m×1

3: j← 0, e0(t)← 0m×1

4: while
{∣
∣
∣
∣e j(t)

∣
∣
∣
∣> toll or j ≤max iter

}
do

5: while t ≤ tf do ▷ On-Line
6: u j+1(t)← sendingControl()

7: data← recodingIMU()

8: end while
9: q j(t), y j(t)← getState(data) ▷ Off-Line

10: u j+1(t)← getControl(q j(t), y j(t)) ▷ Eq. (24)

11: 2e j(t)←
2e j+1(t), u j(t)← u j+1(t), j← j+1

12: end while
13: return u j+1(t) ▷ Control action
14: end procedure

We define the tracking error e j(t) ∈X
p

q as follows

e j(t) = yd(t)− y j(t) . (26)

In Theorem 1, we prove the controller (24) convergence

even in the case of external disturbances and artifacts, i.e.,
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state and time non-repetitive disturbances w.r.t. the iteration

domain, respectively.

Theorem 1. Let us consider the system (3)-(4) with Property

1 under Assumptions 1-2. Let q0 j
, q̇0 j

∈ X n
q be the initial

condition such as ||q0 j
− qd(0)|| ≤ bq0

, ∀ j with bq0
∈ [0,∞)

and q̇0 j
= q̇d(0), ∀ j. Let ξ j(·) : N× [0, tf]→X n

q be such as

supt{max j{||ξ j(t)}} ≤ bξ , ∀ j. Let (24) be the control law and

(26) the error. If the learning gain ϒ j(t) ∈X
m×p

q satisfies

∣
∣
∣
∣Im−ϒ j(t)∂qh(q j)M

−1(q j)A(q j)
∣
∣
∣
∣≤ σ < 1 , (27)

∀t ∈ [0, tf], ∀ j = 0,1, . . . , then

lim
j→+∞

∥
∥e j(t)

∥
∥

λ
= be ∈ [0,∞) . (28)

Proof. Recalling (24) and expanding ÿd, one has

u j+1 =
(

Im−ϒ j∂qh(q j)M
−1(q j)A(q j)

)

u j +KVė j +KPe j

+∂qh(q j)M
−1(q j)n(q j, q̇ j)−∂qh(qd)M

−1(qd)n(qd, q̇d)

+∂qh(qd)M
−1(qd)A(qd)ud + J⊤(q)τext +ξ j .

(29)

From (29), one can write the following inequality

∣
∣
∣
∣δu j+1

∣
∣
∣
∣≤

∣
∣
∣

∣
∣
∣Im−ϒ j∂qh(q j)M

−1(q j)A(q j)
∣
∣
∣

∣
∣
∣

∣
∣
∣
∣δu j

∣
∣
∣
∣

+bK

(∣
∣
∣
∣δq j

∣
∣
∣
∣+

∣
∣
∣
∣δ q̇ j

∣
∣
∣
∣
)
+∥J⊤(q)∥∥τext∥+bξ

+
∣
∣
∣

∣
∣
∣∂qh(qd)M

−1(qd)A(qd)−ϒ j∂qh(q j)M
−1(q j)A(q j)

∣
∣
∣

∣
∣
∣ ||ud||

+
∣
∣
∣

∣
∣
∣∂qh(q j)M

−1(q j)n(q j, q̇ j)−∂qh(qd)M
−1(qd)n(qd, q̇d)

∣
∣
∣

∣
∣
∣ ,

(30)

where δu j+1 ≜ u j−ud and bK =max{∥KV∥, ∥KP∥}. Recalling

(27), Lemma 3, Property 1, and Assumption 2, (30) becomes
∣
∣
∣
∣δu j+1

∣
∣
∣
∣≤σ

∣
∣
∣
∣δu j

∣
∣
∣
∣+(bϒbud

+bτext
)
∣
∣
∣
∣q j

∣
∣
∣
∣+bξ

+

(
bhbn

bM
+bK

)
(∣
∣
∣
∣δq j

∣
∣
∣
∣+

∣
∣
∣
∣δ q̇ j

∣
∣
∣
∣
)
,

(31)

where bϒ > 0 finite is the Lipschitz-like constant of∣
∣
∣
∣∂qh(qd)M

−1(qd)A(qd)−ϒ j∂qh(q j)M
−1(q j)A(q j)

∣
∣
∣
∣, whose

existence is guaranteed since it is a linear combination of
Lipschitz functions. Leveraging Lemma 3 leads to

∣
∣
∣
∣δu j+1

∣
∣
∣
∣
λ
≤

(

σ +bϒbud
bδq +

(
bhbn

bM
+bK

)

×
(
bδq +bδ q̇

)

)

∣
∣
∣
∣δu j

∣
∣
∣
∣
λ
+

b0 +bξ tf

λ
≜ σ

∣
∣
∣
∣δu j

∣
∣
∣
∣
λ
+ξ . (32)

For hypotheses σ < 1, as Lemma 3 states ∃λ large enough

such that σ < 1 and
b0+bξ tf

λ ≜ ξ < 1. Hence, considering the

previous j executions when j approaches infinity yields

lim
j→∞

∣
∣
∣
∣δu j+1

∣
∣
∣
∣
λ
≤ lim

j→∞
σ j ||δu0||λ +σ

1−ξ
j

1−ξ
=

σ

1−ξ
≜ be . (33)

This achieves the proof.

Remark 3. External disturbances J⊤(q)τext (state non-

repetitive disturbances) and unmodeled model mismatches

(state repetitive disturbances) can be learned by the iterative

law (24) leading to be = 0 in (28), [21]. Conversely, noise

or actuator artifacts ξ j(·) (time non-repetitive disturbances)

imply a bounded convergence (28) [21]. If ξ j(·) ≡ 0, ∀t ∈
[0, tf], ∀ j, Theorem 1 guarantees be = 0, i.e., perfect tracking.

Recalling the soft robot dynamics (3), let us propose a

choice to select the learning gain ϒ j(t) ensuring (27).

Proposition 3. Under the same Assumptions of Theorem 1, if

one chooses the learning gain ϒ j(t) ∈X m×m
q such as

ϒ j(t) = ζ

(
∂qh(q j)A(q j)

bM

)+

, ζ ∈ (0, 1) , (34)

∀t ∈ [0, tf], ∀ j; then (27) is fulfilled and Theorem 1 holds true.

Proof. The proof is achieved by substituting (34) in (27).

Note that (34) does not need a precise model of the inertia

matrix but only a scalar estimation of M(q). However, the

control law (24) exploits the knowledge of the model and it

does not require output high-order derivatives [14]. Finally,

the well-definiteness of (34) is assured from Assumption 1.

V. VALIDATION

In this section, we vastly test the efficacy of the controller

(24) executing regulation and trajectory tracking tasks in

simulations and experiments. We compare our method with

state-of-the-art ones. All unities are expressed in the MSK.

We perform three sets of tests. (i) We simulate a soft con-

tinuum inverted pendulum modeled with two PCC segments

where only the second is actuated, namely 2PCC. (ii) We

simulate a soft segment whose curvature is polynomial with

o = 2 (1), namely Poly. (iii) We perform experiments using

[24], which is modeled via PCC and ∆PCC [25].

We use the controller (24), ϒ j(t) is (34), and the control

gains are listed in Tab. I. We compare the results with a PD

output feedback control, i.e., u = PDKPe(t)+ PDKV ė(t) (Tab.

I). The error is (26) and its RMS evaluates the performance.

Since for all cases it holds that rank{A(q)}= 3, ∀q ∈X n
q ,

i.e., p = 3, tests are performed using as output (4) y =Coq =
∑

N
j=0 [φ j, ∑

o
i=0 θ ji , δL j], where N is the number of segments.

a) Actuation Matrix: Recalling (3), we describe A(q) ∈
X n×m

q , which maps the control action to the continuum

structure [20]. Let us consider non-extensible and friction-

less pulley tendons Fig. 2. The matrix A(q) can be writ-

ten as A(q) = [A1(q), · · · , Am(q)] where A j(q) ∈ X n
q for

j = 1, · · · ,m. Recalling Fig. 2, the j−th tendon applies in

pTj
∈ X 3

q a pure force, which can be written in the local

frame as f j = [0, 0,−u j]
⊤ ∈ X 3

q . Thus, for each j, one

has A j(q) = ∂u j
J⊤pTj

(q) f j, J⊤pTj
(q) = J⊤p (q) +

(
∂qR1(q)pTj

)⊤
,

with J⊤pTj
(q) ∈X n×3

q . Referring to Fig. 2, the four tendons

Fig. 2. (a) Experimental Platform, (b) soft robot model and tendon applied to
the robot tip. The four tendons apply f j for j = 1, · · · ,4 to the robot structure.

They can be reorganized in 3 actions: [τx, τy, fz]
⊤ ∈X 3

q .

(m = 4) lead to three control actions, i.e., v = [τx, τy, fz]
⊤ ∈
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X 3
q , thus only three outputs can be assigned, i.e., p = 3.

Recalling that rank{A(q)} = p leads to two considerations.

First, depending on the polynomial order, the system (3)-

(4) may be underactuated. Second, it would be useful to

write (3) considering v ∈X
p

q as input. This can be done via

geometric consideration [20], i.e., u = v+Pv, with v, v ∈X
p

q

and P ∈X
m×p

q ; where v is a pre-compression action which is

often present in these systems, and P maps the actions v into

the forces u. For instance, recalling Fig. 2, P is selected as

P =−
[
−1, 1, 1; 1,−1, 1; 11×3; 11×3

]
.

TABLE I
CONTROL GAINS

2PCC (HG) Poly Reg. Track Dist. In. G. B.&F.

KP 50(200) 80 10 25 40 40 80

KV 1(20) 1 1 1 1 3 5
PDKP 1e4 1e4 − − − 10 −
PDKV 10 10 − − − 1 −

A. Simulation Results: 2PCC

We here simulate two PCC segments, i.e., o = 0, n = 6, N =
2, and m= p= 3. The dynamic parameters are: Li = 0.3, Ixxi

=
Iyyi

= 5e− 3, Izzi
= 0, mi = 0.25, κ = 10, and d = 5 for i =

1,2. The selected output function is y=∑
2
i=1 [φi, θi, δLi], while

A = [I3, I3]
⊤ ∈ R

6×3. Note that the system is underactuated

and we aim to track a minimum (min.) jerk trajectory with

initial point y0 = [0, 0.02, 0] and final yf = [π/3, π,−0.05] in

tf = 5sec. We compare the results between (24) with u0(t)≡ 0,

PD controller, (24) with (25) and low and high gains (HG

case) Tab. I. Fig.3 shows the results. Fig. 3(a) reports the final

output, while Fig.3(b) depicts the RMS evolution. Finally, Fig.

3(c) shows a photo sequence at the final iteration.

B. Simulation Results: Poly

We simulate the system (3) with o= 2, i.e., Θ= [θ0, θ1, θ2]
⊤

thus n = 5 and N = 1. The dynamic parameters are: L =
0.3, Ixx = Iyy = 3e − 4, Izz = 0, m = 1, κ = 10, d = 5, and

A(q) is such as in Sec. V-0a Fig. 2, i.e., m = 4 and p = 3.

The output function is y =
[
φ , ∑

2
i=0 θi, δL

]⊤
. The task is the

trajectory tracking of a min. jerk with y0 = [0, 0.01, 0] and

yf = [π/4, π/2,−3e−3] in tf = 10sec. We compare the results

between (24) with u0(t)≡ 0, PD controller, and (24) with (25).

Fig.4 shows the results. Fig. 4(a) reports the final output, while

Fig.4(b) depicts the RMS evolution. Finally, Fig. 4(c) shows

a photo sequence at the final iteration.

C. Experiment Results

The experimental platform Fig. 2 is composed of a silicon

soft continuum robot [24], four Dynamixel XD430-T350-R

motors, and the IMU BNO055. The motors act on the structure

by means of four stainless steel tendons AISI 316, which reach

the robot tip via pulleys [24].

Data acquired from the IMU sensor are converted in the

PCC model via (2) [26], and used to compute the next torque

control action via (24). The output function is y = q, and

the parameters are: L = 0.098, Ixx = Iyy = 3e−4, Izz = 0, m =
1, κ = 10, and d = 5 [24] and A(q) is such as in Sec. V-0a.

The control effectiveness is tested via nine experiments with

varying trajectories, external disturbances, unmodeled loads,

and initial guesses. We also perform one test using a PD

controller for comparison.

We present a regulation task, namely Regulation, then four

trajectory tracking tasks. We perform trajectory tracking tasks

with and without an unmodeled load (200g) on the robot

tip, i.e., Track. We run tests in the presence of external

disturbances, namely Disturbance. To exploit the benefit of

using a model-based term, we compare two learnings via (25)

and a null one, i.e., Initial Guess. Additionally, in the Initial

Guess tasks, we implement a PD control. Finally, we execute

a complex trajectory, i.e., Back&ForthX2, which is the most

challenging task with and without an unmodeled load (200g).

External disturbances are state nonrepetitive while loads are

state repetitive. Noise or artifacts are time nonrepetitive [21].

To describe the segment, we use a PCC model, i.e., o =
0 in (3). However, to avoid numeric instability, we use its

improved parametrization (see e.g., [25]), which leads to well-

defined dynamics ∀q, q̇ ∈X n
q . For the i−th segment, one has

αi = [∆xi
, ∆yi

, δLi]
⊤ defined as ∆xi

= θid∆i
cos(φi) and ∆yi

=
θid∆i

sin(φi) , where d∆i
= 1 [25]. The learning stops if RMS<

0.1, Alg.1, and the control gains are listed in Tab. I

Regulation: Using a PCC model, the arm starts from

y0 = [−0.7, 0.05 ,0] up to yf =− [π/2,−0.7, 3e−3] following

a constant reference and u0(t) ≡ 0. The learning stops if

∥e j(tf)∥< 0.03. Fig.5 shows the results. Fig. 5(a) reports the

final output, and Fig. 5(b) depicts the RMS error. Finally, Fig.

6(a) depicts a photo sequence of the last iteration.

Track: The robot’s model is ∆PCC, and it starts from

y0 = − [0.05, 0.01 ,0] reaching yf = [0.15, 0.2,−5e−3] via a

min. jerk trajectory with tf = 5sec and u0(t) ≡ 0. We tested

the controller with and without an unmodeled load of 200g

attached to the robot tip, i.e., the M test. The load represents

a state-repetitive disturbance in the ILC framework [21]. Fig.5

shows the results. Fig. 5(c) reports the final output tracking,

and Fig. 5(d) depicts the RMS error. Finally, Fig. 6(b) depicts

a photo sequence in the M test case.

Disturbance: The robot’s model is ∆PCC, and it starts

from y0 = − [0.06, 0.04 ,0] up to yf = [0.25, 0.05,−5e−3]
via a min. jerk trajectory with tf = 3sec. The initial guess is

model-based, i.e., (25). The operator hits/stops the robot during

iterations j = 2 and j = 4 creating an external disturbance. This

experiment validates the learning capabilities in the case of

state non-repetitive disturbances [21]. Fig. 7 shows the results.

Fig. 7(a) reports the final output tracking, Fig. 7(b) depicts the

RMS error, and Fig. 7(c) depicts a photo sequence highlighting

the disturbances at j = 4 and the final iteration.

Initial Guess: The robot’s model is ∆PCC, and it starts

from y0 = [0.1,−0.05 ,0] reaching yf =− [0.25,−0.25, 5e−3]
via a min. jerk trajectory with tf = 5sec. These tests are meant

to highlight the advantages of using the model-based initial

guess (25), i.e., the MB test, w.r.t. a null one, i.e., u0(t) ≡
0. Additionally, we implement a PD controller to compare

its performance with the ILC one, Tab. I. Fig.8 shows the

results. Fig. 8(a) reports the final output tracking, and Fig.s

8(b) depicts the RMS error. In Fig.s 8(a)-8(b), we report the

results with (25), u0(t)≡ 0, and the PD controller.

Back&ForthX2: The robot’s model is ∆PCC, and it

starts from y0 = [0.01,−0.01 ,0] swinging between the

following points y1 = − [0.25,−0.15, 3e−3], y0, y3 =
− [0.25, 0.2, 5e−3], and again y0, via a composition min. jerk

trajectories with tf = 30sec. We also perform this test with a

200g unmodeled load attached to the robot tip, namely the
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(a) Error evolution over iteration.
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(b) Output tracking performance. (c) Photo sequence of the last iteration.

Fig. 3. Simulation results for the soft inverted pendulum modeled with two PCC segments (purple and green) performing a trajectory tracking task.

(a) Error evolution over iteration. (b) Output tracking performance. (c) Photo sequence of the last iteration.

Fig. 4. Simulation results for the polynomial curvature, i.e., o = 2, performing a trajectory tracking task.

(a) Final output tracking. (b) RMS over iteration. (c) Final output tracking. (d) RMS over iteration.

Fig. 5. Experimental results for the Regulation Fig.s 5(a)-5(b) and Track tasks Fig.s 5(c)-5(d). In the Reg. case, the model is PCC, while in Track is ∆PCC.

(a) Photo sequence at the final iteration Regulation task. (b) Photo sequence at the final iteration Track task.

Fig. 6. Last iteration photo sequence of the Regulation Fig. 6(a) and Track Fig. 6(b) task. The latter displays the loads (200 g) case.

(a) Final output tracking. (b) RMS over iteration. (c) Photo-sequence at iteration j = 4 and final Dist. task.

Fig. 7. Experimental results for the Disturbance task. The operator hits the robot at iterations j = 2 and j = 4. The model is ∆PCC.

(a) Final output tracking. (b) RMS over iteration. (c) Final output tracking. (d) RMS over iteration.

Fig. 8. Experimental results for the Initial Guess Fig.s 8(a)-8(b) and Back&ForthX2 Fig.s 8(a)-8(b) task. The model is ∆PCC.
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M test. The initial guess is (25). Fig.8 shows the results. Fig.

8(c) reports the final output tracking, and Fig. 8(d) depicts the

RMS error. Finally, Fig. 9 depicts two photo sequences of the

M and regular tests Fig. 9(b) and Fig. 9(a), respectively.

Please refer to the Video attachment for further details.

(a) Photo sequence of the Back&ForthX2 task.

(b) Photo sequence of the Back&ForthX2 task with the load.

Fig. 9. Photo sequence of the Back&ForthX2 task at the final iteration in the
case of load (Fig. 9(b)) and without (Fig. 9(a)).

D. Discussion

Results show that the controller can reach the desired

position Fig.5(a), and track the trajectory Fig.s 3(b), 4(b), 5(c),

7(a), 8(a), and 8(c) with good performances and interesting

deformations Fig.s 3(a), 4(a), 5(d), 7(b), 8(b), and 8(d).

The controller (24) deals with different continuum robots

even in the underactuated case Fig.s 3(a) and 4(a). Addition-

ally, the algorithm copes with various task velocities, model

mismatches, and disturbances Fig.s 5, 7, and 8.

Non-monotonic error convergence, e.g., Fig.s 7(b), is due to

artifacts in the actuators, noise, and initial shift as Theorem 1

and Remark 3 claim. Thus, we define a convergence threshold,

i.e., toll, which is always reached. For instance, in the load

test, the convergence is less smooth Fig.s 5(d) and 8(d).

In the case of a null initial guess, the system does not move

at the first iteration Fig.s 5(b) and 8(b). Conversely, exploiting

the model-based one, i.e., (25), the RMS for j = 0 is reduced

Fig.s 3(a), 4(a), 5(d) 7(b), 8(b), and 8(d). The ILC convergence

velocity depends on the control gains Fig. 3(b) Tab. I, [14].

Finally, the feedforward nature of the controller (24) does

not alter the intrinsic system elasticity preserving its safe

behavior. ILC outperforms the PD’s tracking performance,

especially when the task velocity increases Fig.s 3, 4, and 8(b).

Further, the PD controller is a feedback method, which stiffens

up the robot’s behavior [13] jeopardizing the task execution.

VI. CONCLUSION

In this work, we presented a control algorithm for soft

continuum robots. We formulated a 3D polynomial curvature

model. We also prove the input-to-state stability property man-

aging locally Lipschitz nonlinearities. The main contribution

of the letter is a pure feedforward torque iterative learning

controller, whose convergence is established via a theoretical

analysis. The effectiveness of the approach is verified via

simulations and experiments. Future research will focus on

enhancing the iterative learning controller by incorporating

machine learning techniques further to improve the generaliz-

ability of the controller and the robot model estimation.
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