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Abstract. Modern hardware is increasingly complex, requiring increas-
ing effort to understand in order to carefully engineer systems for optimal
performance and effective utilization. Moreover, established design prin-
ciples and assumptions are not portable to modern hardware because:
1) Non-Uniform Memory Access (NUMA) architectures are becoming
increasingly complex and diverse across CPU vendors; Chiplet-based ar-
chitecture provides hierarchical NUMA instead of flat-NUMA topology,
while heterogeneous compute cores (e.g., Apple Silicon) and on-chip ac-
celerators (e.g., Intel sapphire rapids) are also normalized in materializing
the vision for workload- and requirement-specific compute scheduling. 2)
Increasing 10 bandwidth (e.g., arrays of NVMe drives approaching mem-
ory bandwidth) is a double-edged sword; having high-bandwidth IO can
interfere with the concurrent memory access bandwidth as the 10 target
is also memory; hence IO itself consumes memory bandwidth. 3) Interfer-
ence modeling is becoming more complex in modern hierarchical NUMA
and on-chip heterogeneous architectures due to topology obliviousness.
Therefore, systems designs need to be hardware topology-aware, which
requires understanding the bottlenecks and data flow characteristics, and
then adapting scheduling over the given hardware topology.

Modern hardware promises performance by providing powerful and com-
plex yet non-intuitive computing models which require tuning specifi-
cally for target hardware or risk under-utilizing the hardware. There-
fore, system designers need to understand, carefully engineer, and adapt
to the target hardware to avoid unnecessarily hitting bottlenecks in the
hardware topology. In this paper, we propose the Chaosity framework,
which enables system designers to systematically analyze, benchmark,
and understand complex system topologies, their bandwidth character-
istics, and interference of effects of data access paths, including memory
and PCle-based 10. Chaosity aims to provide critical insights into system
designs and workload schedulers for modern NUMA hierarchies.

Keywords: NUMA - Data Access - I0 - NVMe - Throughput - Inter-
ference.

* Work done entirely at EPFL.
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1 Introduction

Post Moore’s law era, hardware designs have tended to scale horizontally, scaling
compute via partitioning and packing more computational units in a single chip.
In addition to multi-core processors, NUMA (non-uniform memory access) sock-
ets add another layer of compute partitioning, creating an almost distributed
yet coherent and shared-everything system in a single scale-up server. Initially,
NUMA hardware had non-uniformity, but all CPUs were treated as homogeneous
processors, while accelerators were treated as co-processors for each NUMA node.
Essentially, NUMA nodes were arranged as siblings in the hardware stack, hav-
ing their own memory hierarchy, including PCle-attached storage and a set of
co-processors optionally.

Advancements in the hardware landscape challenge traditional system de-
signs to avail the performance and efficiency offering from the modern hardware
and maintain performance standards [I1]. The fundamental changes are:

1. Hierarchical NUMA in chiplet-based architectures, even in single-socket ma-
chines in mainstream CPUs offered by AMD [12] and Intel [I3].

2. 10-bandwidth competing with memory bandwidth. Moreover, co-processors
and other sibling PCle-attached devices may compete in bandwidth utiliza-
tion by directly consuming from the devices (e.g., GPU reading from NVMe
without involving CPUs), compared to previously strict uni-directional stor-
age hierarchy [15].

3. Heterogeneous compute-on-chip is becoming the norm rather than a niche.
For example, Apple Silicon [8] and Intel [4] consumer-grade chips have dif-
ferent types of compute units within the same chip, specialized for a range
of workloads, and Intel Sapphire Rapids offer on-chip, off-core accelerators.
This introduces additional heterogeneity in compute scheduling and data
routing [13].

Consequentially, tuning systems with traditional but usurped design princi-
ples in mind, including but not limited to NUMA-aware partitioning and caching
across memory hierarchy, may result not only in a lack of speedup but also in
performance regressions. Modern hardware promises increased performance and
scalability when tuned to the expected software design. This is because, pre-
viously, hardware across vendors and generations was mostly homogeneous in
design principles. For example, a multi-socket, multi-core machine was assumed
to have three layers of caches for each processor, the first two levels private
to each core and a shared last-level cache, and a high-speed coherent link be-
tween all NUMA nodes. In general, each newer processor generation added new
features but was mostly transparent to the user regarding software design, there-
fore, was compatible with existing NUMA-aware systems. However, with mod-
ern hardware, the hardware topology is not homogeneous across vendors: AMD
EPYC has a heterogeneous chiplet-based architecture [I1], while Intel Sapphire
Rapids [13] offers on-chip accelerators and even high-bandwidth memory in cer-
tain models. Further, depending on the specific hardware, the NUMA topology
may be hierarchical in the case of chiplets, creating a tree of NUMA nodes.
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This results in the fundamental invalidation of software design principles and
assumptions. For example, the used-to-be flat NUMA-aware partitioning would
suffer from interference in remote accesses in a hierarchical NUMA topology.
Such trends require hardware-software co-design, but it requires either software
designed especially for specific hardware only, which is hardly the case, or adap-
tive across hardware. In any case, the first step in designing a system that could
efficiently utilize the powerful features of modern hardware is understanding the
hardware. Make no mistake: understanding hardware does not mean studying it
at the silicon level, but understanding the hardware topology and capabilities,
the data-flow paths, and associated characteristics. For example, understand-
ing the bandwidth difference between memory and disk is critical in designing
caching policies [I415]. In another case, an algorithm design would differ based
on the availability of coherent versus non-coherent interconnect between a CPU
and an accelerator (e.g., GPUs).

Therefore, we propose Chaosity, a framework for systematically understand-
ing hardware topology, bandwidth characteristics for memory and PCle-based
10, and modeling interference between non-partitioned memory operations. This
is a first step towards automatic benchmarking and bootstrapping critical and
actionable insights required for a systems engineer to understand and for an
adaptive system to tune itself for specific hardware. The rest of the paper is
organized as follows:

— Section [2 highlights the increasing heterogeneity in the hardware landscape,
which motivates the importance and impact of systematic analysis,

— Section[3|focuses on the initial design of an automated non-uniformity bench-
mark,

— Sections [4] and [5] presents experimental results that demonstrate the need
for a chaos-aware heterogeneous platform on two such architecture configu-
rations,

— Section|[f]discusses the takeaways, implications and provides future directions
for this work

— Section [7] concludes the vision of Chaosity.

2 Motivation: Rising Entropy in the Hardware Landscape

The advancements in computer architecture change the system landscape and
the opportunities for hardware-software co-design. Figure |1{ shows the evolution
of recent mainstream CPU topologies. Besides the well-known transition from
single-core to multi-core architectures, the chip shrinkage has allowed integrating
components from a single Northbridge/memory controller hub (Figure into
a single chip die (Figure , alleviating the bottleneck of data transmission and
introducing NUMA with on-socket memory controllers.

2.1 Hierarchical NUMA

The continuation of chip downsizing has led to the post-Moore law era, leading
to challenges in CPU scalability where vendors are increasingly adopting chiplet
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(a) Memory controller and IO on (b) Integrated memory con-
north bridge troller style

= L]

(¢) AMD EPYC Milan style (d) Intel Sapphire Rapids style

Fig.1: Evolution of recent CPU topologies. Solid black boxes represent
chips/chiplets, and dashed blue boxes represent NUMA regions

(multi-chip module) designs (Figure [12013]. This changes the traditional
monolithic CPU design when non-uniform memory access (NUMA) resulted
from multi-socket CPU servers. Chiplets introduce additional NUMA regions
even inside a single socket in a hierarchical fashion, increasing the complexity of
main memory access paths. Though chiplet-based CPUs are not the first CPUs
to expose multiple NUMA regions within a single socket, they are more widely
adopted than previous commercial offerings, such as Intel’s Xeon Phi Knights
Landing. [T923]). AMD has been using chiplet designs since the EPYC Naples
generation [12], while Intel recently moved to chiplets for many of their server
CPUs in the Intel Sapphire Rapids [4] generation. The chiplet designs from In-
tel and AMD allow exposing the hierarchical NUMA regions to the operating
system, e.g., 8 NUMA nodes in a 2-socket server.

2.2 On-chip Heterogeneity

The complexities do not end at hierarchical NUMA. To add to memory and data
access path complexity, even the compute units may not be uniform. Specialized
accelerators and non-uniformity introduce differences in throughput and memory
access (Figure [1d).

The benefit of having specialized or heterogeneous cores on a single chip is
clear to all hardware vendors, and thereby, in the last few years, we have seen
consumer-grade CPUs like Apple M1/M2 silicon and 12** generation Intel Core
desktop processors packaging performance and efficiency cores in a multi-core
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chip, scaling the non-uniformity axis to heterogeneous compute units. Further,
besides the disparity between different cores, both consumer- and server-grade
hardware introduced specialized on-chip off-core accelerator components opti-
mized for specialized or specific workloads, such as neural processing. To list
a few, Apple Silicon has an accompanying neural engine for machine learning
(ML) workloads. Intel Sapphire Rapids CPU comes with specialized tile registers
and matrix multiplication intrinsic (AMX) for ML, data encryption and com-
pression accelerators (QAT), and data streaming accelerator (DSA). Recently,
AMD also announced MI300 APUs (accelerated processing units) composed of
modular chiplets. The AMD MI300 APU will offer a combination of CPU (Zen4)
or GPU (CDNA3) chiplets and on-chip high-bandwidth memory [22]. Further,
Nvidia Grace Hopper Superchips tightly integrate an ARM-based CPU and an
NVIDIA GPU chip with a fast inter-chip NVLINK interconnect [17].

2.3 Data Highways: Interconnect

Interconnects play a significant role in data access and movement across com-
plex topologies as careful use of the limited available bandwidth is crucial for
efficiency [21U6/T5]. PCle interconnects in complex topologies (Figure [2]) repre-
sent a shared resource between CPUs, accelerators, and IO devices.

An added complexity ensues with the addition of per-hierarchical-NUMA
PCle controllers and, for example, fast NVMe drives, which are in aggregate
on par with the available main-memory bandwidth, interfering and contending
with the even more complex memory access path. IO predominantly uses direct
memory access (DMA) to transfer data between devices and main memory. To
perform a DMA transfer to read data from an IO device, the CPU submits
a request to the device and then the device’s DMA engine is responsible for
transferring the data directly to main memoryﬂ The CPU can then read the
data from memory using load instructions. The processing for writing data to
an IO device inverts the order of operations. Still, there is no uniform design
approach for interconnects, as Apple Silicon has a unified memory architecture
for their CPU, GPU, and neural engines. Overall, the location of the IO device
and the access path complexity requires careful coordination and placement.

2.4 Systems with Complex Data Access

Traditionally, the hardware topologies were mostly homogeneous and standard
across the vendors, and therefore, the underlying hardware performance was
more predictable and understandable by the on-paper specifications. The system
designers would have to consider only a few metrics, including but not limited
to memory bandwidth, CPU interconnect bandwidth, and PClIe or device band-
width. Most scalable applications were designed with NUMA-aware partitioning
and cache-aware algorithms, catering to both CPU caches when reading/writing

3 Intel Xeon CPUs feature Data Direct IO (DDIO), which transparently allows PCle
devices to read/write directly to last-level caches initially bypassing DRAM. [I]
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Fig. 2: Interconnects contribute to complex heterogeneous topologies

from memory to CPU and buffer pools when reading/writing from disk to mem-
ory. However, with ever-increasing heterogeneous and complex hardware, mere
NUMA-partitioning and cache-aware algorithms do not fully utilize the under-
lying hardware but may result in performance regressions in some cases. For
instance, Nicholson et al.[I415] concluded that with high-bandwidth storage,
simple frequency- or recency-based caching is sub-optimal and requires propor-
tional caching to utilize the high-bandwidth storage fully. Moreover, not only
do the system designs have to cater to fully utilizing the underlying hardware
capabilities, but they also need to account for the interference domain. For in-
stance, Raza et al.[20021] partitioned latency-sensitive and bandwidth-intensive
workloads across NUMA-boundaries to alleviate interference in the memory hi-
erarchy but was limited by the interconnect; however, with chiplet architectures,
the system could have partitioned the interfering workloads across chiplet bound-
aries.

Putting everything together, increasingly high hardware complexity opens
up tuning opportunities to profit from and avoid performance regressions. Such
opportunities may be trivial and intuitive: partitioning workload across NUMA
boundaries, minimizing data movements, etc., or, non-intuitive based on the un-
derlying hardware characteristics: de-prioritizing data locality in favor of parti-
tioning workload based on interference, or staging/buffering IO in system mem-
ory for granular IO from PCle-attached devices like GPUs [I5]. Still, a given
workload will have a combination of memory, computational, and data move-
ment requirements that might have a desirable particular hardware constellation.
This motivates a systematic study of the complexity and the chaos ensuing, not
only for a given platform and workload but for any future change in platform or
workload.

3 Chaosity Framework - Understand thy Hardware

Characterizing non-uniformity and interference is highly challenging. While bench-
marks traditionally target a specific and often limited set of parameters, pre-
viously described complex hardware and data movement interactions instead
exacerbate the need for a holistic benchmark, such as memory-IO interference



Chaosity: Understanding Contemporary NUMA-architectures 7

or CPU-GPU interference with shared memory. Still, the design space of inter-
ference micro-benchmarks is vast, motivating for a framework that composes
micro-benchmarks that best represent a workload to analyze the complex effects
of the underlying system and hardware.

To this extent, as good examples of characterizing system-crucial characteris-
tics, we employ fio [3] and STREAM [I0]. fio benchmarks persistent disk perfor-
mance (I0), and STREAM measures sustained memory bandwidth. This way,
we aim to analyze and understand the interference between the two subsystems.
Our design allows easy incorporation of existing workloads or ones written from
scratch. For example, rather than measuring memory-IO interference only, CPU
cache interference would allow for finer-granularity benchmark experiments.

Benchmark categorization and selection The first step in profiling any
hardware is the categorization of benchmarks, that is, the target metric or char-
acteristics to be measured. The benchmark category defines the benchmarks that
will be executed across independent and shared configurations. Each benchmark
category measures the specific target property or metric of the hardware un-
der test. Currently, benchmarking categories include memory and PCle-based
storage bandwidth.

The second step is defining which benchmark to use, either a standard off-
the-shelf benchmark or a customized benchmark. The invariant in one or more
benchmark selections is the target metric. Chaosity provides a default standard
benchmark for each category. However, one can add or replace the benchmark
with another standard or custom benchmark. For instance, by default, Chaosity
utilizes STREAM [I0] for profiling memory bandwidth and fio [3] for profiling
storage bandwidth.

Component and topology discovery Chaosity begins profiling hardware
under test by first discovering the available components/devices and their topol-
ogy and memory model. For example, detecting the number of available cores,
the number of hyper-threads per physical core, NUMA nodes, sockets, and con-
nected devices, including but not limited to NVMe storage and GPU devices.
Chaosity leverages hwloc and Linux numactl utilities to discover the hardware
topology [5]; Further, Chaosity queries the underlying hardware properties, such
as detecting if the devices have a unified memory and if the shared memory
is coherent across devices, CPU cache-line size, etc. Chaosity also detects the
availability of pre-defined specialized accelerators, such as on-chip accelerators
in Intel Sapphire Rapids.

Discovering hardware components, their topology, and associated properties
is critical in profiling and benchmarking as it defines the interaction between
different components and the expected behaviors.

Executing independent benchmarks. After benchmark categorization,
definition, and hardware discovery, Chaosity begins the profiling defined by each
benchmark category. The benchmark utilizes the topology information and starts
by profiling the minimum unit of each type of compute and, from thereon, pro-
files the combination of components in the hierarchy. Chaosity needs to profile
hierarchy for all combinations to detect any non-uniformity, asymmetry, or some-
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times, even hardware defects or misconfigurations. In the following, we detail the
memory and storage bandwidth benchmarking.

Benchmarking memory bandwidth. Analyzing memory bandwidth starts with
the default unit of compute, that is, single-thread in CPU, and then proceeds by
analyzing bandwidth of single-NUMA, single-socket, and then all CPUs. Then,
the system profiles remote interactions, which in the case of memory, means
accessing remote memory for each unit, starting from bandwidth for accessing
the memory of different NUMA nodes within the same socket and then similarly
for remote sockets.

Benchmarking storage bandwidth. Analyzing storage bandwidth proceeds sim-
ilarly to analyzing memory bandwidths. However, it adds an additional basic
unit, the number of drives attached locally to each NUMA node, to analyze the
bandwidth scalability across combinations of the connected drives within the
same and other NUMA nodes.

Memory-storage interference modeling. A shared memory subsystem
introduces competition in data accesses and hence, causes interference. This in-
terference occurs at all levels of the memory hierarchy, including competing cache
lines, load requests, and memory bandwidth itself. For now, we target and model
memory bandwidth interference, which arises when accessing both CPU mem-
ory and storage or remote memory over PCle. The bandwidth interference arises
as memory access goes through the same memory controller in most processor
architectures. Hence, a memory controller can only process a certain amount of
data simultaneously, prioritizing one over another.

Chaosity profiles and models the interference by scheduling independent
memory and storage bandwidth benchmarks concurrently. It profiles the inter-
ference by collocating and isolating the compute unit and the read drive set using
topology information. In doing so, it models the interference when both accesses
are issued from the same controller or are routed through a different controller.
Ideally, when co-scheduled, the total bandwidth (memory + storage) should be
equal to the max of either; however, when scheduled across NUMA boundaries,
should not interfere with each other as the PCle root complex should be directly
accessible from the requesting memory controller. However, it is hardly the ideal
case due to the hidden complexities of hardware design, and therefore, it is cru-
cial to profile and understand the bandwidth degradation in all cases, guiding
system designers to account for and schedule workloads accordingly.

4 Heterogeneous Compute Units — Apple M1 Pro Silicon

In this section, we use Chaosity to test Apple M1 Pro silicon, explicitly targeting
the unified memory bandwidth across heterogeneous CPU cores and GPU and
analyzing the maximum memory bandwidth when executed in isolation and the
degradation due to interference when all compute units compete for memory
bandwidth.

Hardware. Apple Macbook Pro 2021 running macOS 12.5.1 with a M1 Pro
processor (Model identifier: MacBookPro18.3, Model number: Z15G002BDSM/A),
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having 10 CPU cores (eight performance and two efficiency cores), 16 GPU cores,
and 16 neural-engine cores, with a total of 32GB LPDDR5 memory and a 512GB
NVMe SSD.

Benchmark. On the CPU, memory bandwidth tests utilize the STREAM
Triad benchmark [I0]. We report the average bandwidth over 100 iterations for
STREAM, not including the first iteration. We compile STREAM with Clang
13.0.1 with the -02 -fopenmp -DSTREAM_ARRAY_SIZE=80000000 compiler flags.
In this configuration, each array element is an 8-byte double. While OpenMP
is used to control the number of STREAM benchmark threads, it cannot bind
threads to cores as on Linux. This is because macOS has no underlying API to
pin threads. To run STREAM on efficiency cores, we use the taskpolicy system
utility to launch STREAM with the PRIO_DARWIN_BG scheduling priority [2]. On
the GPU, memory bandwidth tests use a variation of the bw_benchmark from [9];
this benchmark performs a multiply-add on 3 input [8192 x 8192] matrices of
32 bit floats and stores the output in another matrix of the same type, using a
total of 1 GiB of memory. For NVMe bandwidth tests, we use fio [3] to perform
sequential reads. Our fio configuration for macOS uses the posixaio engine, a
1MB blocksize, 0_DIRECT, and is time based to run for 30 seconds.

4.1 Interference in Unified Memory

Apple Silicon has a unified memory across all types of compute units, including
performance and efficiency CPU cores, GPU cores, and neural-engine cores. Uni-
fied memory offers coherent access across heterogeneous consumers, that is, com-
pute units or networks and other devices in some cases. Apple silicon is different
from traditional CPU-GPU unified memory (like Nvidia’s Unified Memory) in
the sense that all types of compute cores are at the same level, and the last-level-
cache is shared across all heterogeneous cores, which in our view, simplifies the
cache coherency implementation in hardware. However, there is no free lunch. In
the general case, not all compute devices will be running data-intensive opera-
tions. Still, for high-performance or analytical data processing tasks, all devices
will execute data-intensive tasks and, thereby, require the maximum possible
bandwidth to underlying unified memory.

Table|l{shows the experimental results when running memory benchmarks on
Apple M1 silicon in different configurations. For standalone CPU baselines, a sin-
gle performance core can consume a maximum memory bandwidth of 75 GB/s,
while a single efficiency core can only achieve maximum memory bandwidth of
11.5 GB/s. Whereas, utilizing all eight performance cores only, we get 128 GB/s
while using both efficiency cores only, we get 15 GB/s, and utilizing all CPU
cores, that is, ten cores (eight performance and two efficiency), we get a maxi-
mum memory bandwidth of 138 GB/s. In the case of GPU, when benchmarking
in GPU-only mode, the benchmark achieves 176 GB/s, and to the best of our
knowledge, there is no way of scheduling and affinitizing workload on the neural
engine; hence, it is not included in the scope of this study.

From the baselines described above, which do not have any conflicting or
interfering workload, it is clear that GPU-cores have access to 27% and 37%
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Scheduling mode Compute units Memory bandwidths (GB/S)
1 Efficiency core 11.7
2 Efficiency cores 14.8
CPU-only 1 Performance core 75.2
8 Performance cores 128.7
All cores (8P + 2E) 138.3
GPU-only All 16 GPU cores 176.3
8 P-CPU (w/ 16 GPU) 59.8
CPU-GPU 16 GPU (w/ 8 P-CPU) 118.9
10 CPU (w/ 16 GPU) 60.8
16 GPU (w/ 10 CPU) 115.0

Table 1: Memory Bandwidth Analysis of Apple M1 Pro

more memory bandwidth compared to all CPU cores and all of the performance
CPU cores.

[y N
[e2] o
o o

[
N
o

MAANN

CPU (CPU-only) GPU (GPU-only) CPU (CPU+GPU) GPU (CPU+GPU)
Compute Unit (Scheduling Mode)

Fig. 3: Memory-storage bandwidth interference in Apple M1 Pro

Unified memory shares the memory access across all compute devices, hence
sharing the bandwidth accordingly. We study bandwidth interference and prior-
ity by running parallel independent benchmarks on both CPU and GPU. As the
benchmarks are executed independently the bandwidth interference arises purely
from resources competing for accessing memory, but not from accessing objects
in memory shared by the benchmarks. Figure[3|plots the bandwidth degradation
when both efficiency and performance CPU cores are used concurrently with the
GPU. Table[I]in addition shows results for just the performance CPU cores.
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We observe that GPU still gets priority over CPU in bandwidth allocation.
The GPU memory bandwidth drops 35% and 32% when running using only CPU
performance and all CPU cores, respectively. Whereas CPU memory bandwidth
degrades by 54% when using only performance cores and 56% when using all
cores. In both cases, the sum of CPU and GPU memory bandwidths are nearly
equal to the bandwidth the GPU observes when running independently. This
shows that to leverage the full memory bandwidth, the GPU must be used, but
with the trade-off that less bandwidth will be available for the CPU cores.

5 Chiplet-based Server — AMD EPYC

In this section, we use Chaosity to test and analyze the AMD EPYC (Milan)
server processors having a chiplet-based architecture. AMD EPYC is a repre-
sentative of modern hardware which has hierarchical NUMA, that is, chiplets.
Additionally, it provides enough PCle 4.0 lanes to saturate more than half of
the memory bandwidth for each chiplet.

Hardware. All experiments were conducted on a server with a 2x24-core
AMD EPYC 7413 processor, having two threads per core, totaling 96 threads
and 256 GB of DRAM. Each CPU socket has 16 Corsair MP600 Pro NVMe
drives, each using 4 PCle 4.0 lanes. The manufacturer-specified maximum read
bandwidth of each drive is 7 GB/s [7]. At measurement time, two drives failed;
therefore, NUMA nodes 0 and 4 have 3 NVMe drives each, while all other NUMA
nodes have four drives each. AMD EPYC has 128 PCle 4.0 lanes per socket,
theoretically having a total bandwidth of 256 GiB/s, whereas the main CPU
can independently achieve an aggregate bandwidth of 128 GiB/s per socket. In
a two-socket configuration, 48 lanes of PCle are used on each chip for the inter-
socket interconnect. The remaining lanes are available for other PCle devices.

Our server is running Ubuntu 20.04 with Linux Kernel 5.4.

Benchmark. Memory bandwidth tests utilize the STREAM Triad bench-
mark [10]. STREAM is compiled using GCC 9.4 with the -02 -fopenmp
-DSTREAM_ARRAY _SIZE=100000000 -mcmodel=medium compiler flags. In this con-
figuration, each array element is an 8-byte double. Numactl is used to set the
NUMA nodes STREAM will execute on as well as to bind the memory used by
STREAM to specific, possibly different, NUMA nodes. For NVMe bandwidth
tests, we use fio [3] 3.32. Our default fio benchmark is a sequential access bench-
mark that uses the io_uring engine, a IMB blocksize, 0_DIRECT, and is time-based
to run for 30 seconds.

5.1 Hierarchical NUMA

In the following analysis, we employ Chaosity to analyze memory and storage
bandwidth in AMD EPYC Milan architecture and model the interference be-
tween the two. Memory Bandwidth. Figure 4| shows experimental results of
measuring memory bandwidth grouped by the CPU cores and target memory
nodes. Using numactl, STREAM is CPU bound to the NUMA node on the x-axis
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Fig.4: Memory bandwidth in AMD EPYC — Each NUMA node accesses the
memory of target NUMA node with STREAM TRIAD benchmark

and memory bound to the NUMA node on the y-axis. Each number represents
an independent run; hence, no interference or contention in accessing local or
remote memory. The memory bandwidth within the socket is similar while ac-
cessing the memory of a remote socket is 33% slower, regardless of whichever
chiplet in the socket itself.

Figure |5 shows the results of analyzing the maximum storage bandwidth
when all cores of the NUMA node read from all drives of the target node. The
interesting thing to observe here is that the average maximum bandwidth sub-
stantially degrades when all the experiments where NUMA nodes of the first
socket access the NVMe drives on the second socket. However, this is not the
case for the opposite: NUMA nodes of the second socket accessing NVMe drives
connected to the first socket.

To further elaborate on this behavior, figure [6] shows the maximum storage
bandwidth achieved by each NUMA node for all combinations of NVMe drives.
The throughput degradation observed in figure |5|is shown when the first socket
accesses all drives from individual NUMA nodes of the second socket. However,
it is compensated when read from drives of multiple NUMA nodes of the second
socket. Secondly, for both sockets, when accessing from NVMe drives of the
first and last NUMA node of the remote socket, the throughput degrades (fio-
node 4,5,6,7 accessing data from [0,3] and fio-node 0,1,2,3 accessing data from
[4,7]). To the best of our knowledge, the reason for this behavior is unknown
and may be a fault in hardware or software configuration. However, this is one
of the main benefits of Chaosity: targeting and identifying such unexpected
and anomalous behaviors. Without Chaosity, one would have deployed a fully
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Fig. 5: Storage bandwidth (GB/s) in AMD EPYC — All cores of NUMA node
accesses all NVMe drives in target NUMA node

functional system and then spent time analyzing system performance regression
while not knowing that the actual issues are not in the system design but in the
hardware or hardware configuration.

5.2 Bandwidth Interference — Interconnect & Memory

PCle data transfers also consume memory bandwidth when reading or writing
from/to CPU memory. One such case is when reading or writing data from/to
NVMe drives. This causes interference and, counter-intuitively, consumes the
memory bandwidth, limiting the processors’ data processing performance. In
what follows, we analyze the interaction of PCle bandwidth with memory band-
width and provide insights for data-intensive processing.

Figure[7] plots the interaction between IO and memory bandwidth on a single
NUMA node. Data is read from the NVMe drives using fio, while simultaneously,
STREAM is run on the same NUMA node. As the number of NVMe drives read
from increases, more memory bandwidth is used for 10, and we observe lower
memory bandwidth consumed by STREAM. This exemplifies the point that 10
bandwidth consumes memory bandwidth. This is increasingly relevant as storage
bandwidths increase, resulting in memory bandwidth competition.

Figure [§| demonstrates competition for memory bandwidth between IO and
a simple compute kernel in a single program. The compute kernel performs a
summation over an array of integers, using one socket of the server. The black
line shows the processing throughput when the array is entirely in memory. The
blue line shows the throughput when the array is striped across an increasing
number of NVMe drives on the socket. When the array is NVMe resident, it
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is asynchronously transferred in 2 MiB chunks into memory using io_uring, as
the chunks arrive in memory they are consumed by the compute kernel so that
the compute and NVMe transfers are overlapped. This experiment differs from
simply using fio, as fio only transfers data from storage to memory and does not
also load the transferred data again from memory to the CPU.

Operating on storage resident data consumes twice the memory bandwidth
than operating on in-memory data. We observe that for the baseline memory-
resident data, the processing throughput is 120 GiB/s, near the single socket
memory bandwidth. When reading from storage, the number of drives, and
hence the storage bandwidth, is the initial bottleneck. Whereas, with eight or
more drives, the available storage bandwidth does not improve the processing
throughput; as the transfers from storage consume memory bandwidth to write
to memory and the CPU utilizes the remaining memory bandwidth to read the
data from memory. At this point, the bottleneck has shifted to memory band-
width.

6 Discussion

In sections [4] and [f] we presented experimental results which demonstrate some
of the complexities of the modern hardware landscape that data-intensive sys-
tems developers must account for. Architectures like the Apple M1 can only fully
utilize the memory bandwidth by using the GPU but at the cost of interfering
with the CPU’s memory bandwidth. The EPYC Milan architecture allows for
tremendous PCle bandwidth, which can be used for NVMe storage, but the
PCle/storage bandwidth cannot be fully utilized if the CPU also needs to trans-
fer the data between its caches and memory as memory bandwidth becomes the
bottleneck. Our results are only for two specific topologies. However, servers can
be configured in many different ways, for example, with PCle network interface
cards (NIC) and accelerators. This enables additional data transfer paths such
as storage to accelerator and storage to NIC transfers, which bypasses the main
memory but still consume 10 bandwidth [16/T8].

The complex topology of modern servers, both due to varying CPU architec-
tures and possible server configurations, severely increases the cognitive load on
designers of data-intensive systems. System designers strive to maximize hard-
ware utilization in order to minimize the cost and energy use of their systems.
We expect two common approaches to achieve good utilization in the era of di-
verse hardware. First, organizations that both develop software and deploy on
hardware they manage, such as large cloud companies, may evaluate multiple
types of servers and settle on one or a small number to deploy and optimize for.
Second, systems that need to achieve portable performance can adapt to the
topology at run-time. Still, both approaches necessitate that system designers
have a deep understanding of hardware.

Our long-term goal is to assist and enable system designers to understand
hardware better. Through topology and interference-aware benchmarking, Chaos-
ity enables the exploration of the limits of the hardware in more realistic sce-
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narios than individual system-wide single-metric benchmarks. Chaosity can be a
complimentary tool to software system-specific benchmarks, as it aims to reveal
the characteristics of the hardware rather than the performance of a, potentially
untuned, software system on new hardware. This can be especially helpful be-
cause discovering performance bottlenecks due to interference at the hardware
level is time-consuming to discover through profiling alone. Chaosity synchro-
nizes the hardware expectations and reality given the current configuration and
may also detect misconfigurations and defects early rather than wasting time in
debugging/profiling a full software system.

Future directions. We envision Chaosity to be integrated with automatic
topology discovery and adaptive components in a system as an input provider,
thereby assisting systems in adapting to increasingly complex underlying hard-
ware. We aim to include support for more types of benchmarks in Chaosity,
including but not limited to benchmarking latency profiles, on-chip, off-chip ac-
celerators and devices connected via Compute Express Link (CXL). Further, we
also plan to add a shared and private profiling database to compare different
hardware characteristics across different hardware types, vendors, and gener-
ations. We will encourage vendors and third parties to publish and compare
results against standard and non-trivial configurations.

7 Conclusion

Modern hardware requires co-optimizing hardware and software. However, mod-
ern servers are becoming more diverse and heterogeneous. This complexity is a
result of both CPUs that are scaling silicon horizontally and may also contain
heterogeneous compute, as well as the increasing use of high-bandwidth 10 de-
vices and accelerators attached via an interconnect like PCle. The diversity of
server topologies will only continue to grow as novel CPUs come to market and
new interconnects such as CXL enable new types of devices. Collectively, this
poses new challenges for efficient and high-performance system designs.

This paper proposes an initial vision for the Chaosity framework, which
assists system designers and developers in understanding the target hardware
topology and associated performance characteristics. Further, hardware or soft-
ware configurations are prone to misconfigurations, given the complex hardware
topologies and systems designs. Chaosity will assist in detecting such problems
in the early stages of hardware or software deployments by providing insights
into expected hardware performance.
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