Files

Abstract

The bacterial type VI secretion system (T6SS) is a widespread, kin-discriminatory weapon capable of shaping microbial communities. Due to the system's dependency on contact, cellular interactions can lead to either competition or kin protection. Cell-to-cell contact is often accomplished via surface-exposed type IV pili (T4P). In Vibrio cholerae, these T4P facilitate specific interactions when the bacteria colonize natural chitinous surfaces. However, it has remained unclear whether and, if so, how these interactions affect the bacterium's T6SS-mediated killing. In this study, we demonstrate that pilus-mediated interactions can be harnessed to reduce the population of V. cholerae under liquid growth conditions in a T6SS-dependent manner. We also show that the naturally occurring diversity of pili determines the likelihood of cell-to-cell contact and, consequently, the extent of T6SS-mediated competition. To determine the factors that enable or hinder the T6SS's targeted reduction of competitors carrying pili, we developed a physics-grounded computational model for autoaggregation. Collectively, our research demonstrates that T4P involved in cell-to-cell contact can impose a selective burden when V. cholerae encounters non-kin cells that possess an active T6SS. Additionally, our study underscores the significance of T4P diversity in protecting closely related individuals from T6SS attacks through autoaggregation and spatial segregation.

Details

PDF