
Dynamic Linkers Are the NarrowWaist of Operating
Systems

Charly Castes

EPFL

Switzerland

Adrien Ghosn

Azure Research, Microsoft

United Kingdom

Abstract
While software applications, programming languages, and

hardware have changed, operating systems have not. Widely-

used commodity operating systems are still modelled after

the ones designed in the seventies. The accumulated burden

of backward compatibility with the large software ecosys-

tems that run our workloads prevents systems from embrac-

ing more efficient and disruptive designs explored by the

system research community.

This paper advocates a fresh approach to operating system

research, where innovations are incrementally integrated

into operating systems, without disrupting existing soft-

ware, to gradually reshape our daily-use systems. The dy-

namic linker emerges as a pivotal element in this transfor-

mation process, redefining system behavior. The paper out-

lines specific use cases, covering performance enhancements,

strengthened security measures, streamlined software de-

ployment, and enriched programming language abstractions.

Additionally, the paper introduces Spidl, an experimental

modular dynamic linker to facilitate the exploration of this

promising new research avenue.

CCS Concepts • Software and its engineering → Ab-
straction, modeling and modularity; Runtime environ-
ments.
ACM Reference Format:
Charly Castes and Adrien Ghosn. 2023. Dynamic Linkers Are the

Narrow Waist of Operating Systems. In 12th Workshop on Pro-
gramming Languages and Operating Systems (PLOS ’23), October
23, 2023, Koblenz, Germany. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3623759.3624548

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLOS ’23, October 23, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0404-8/23/10. . . $15.00

https://doi.org/10.1145/3623759.3624548

1 Introduction
The original Unix system was developed more than 50 years

ago, initially in assembly and then rewritten in C in 1973

[42], marking the beginning of a tight co-design between

the language and the operating system [29]. Since then, C
has remained the lingua franca for system interfaces and

dictates, to this day, how programs are assembled, executed,

and isolated. For over five decades, the C and Unix cou-

ple acted as a robust foundation, fostering the growth of a

complex software ecosystem leading to novel programming

languages with improved safety guarantees, new high-level

programming models, and principled software development

methodologies, all of which led to incredible technological

innovations. Ironically, operating systems have reaped the

least benefits from the overall progress in software tech-

nologies. Only a handful of these innovations have been

integrated into their implementation. Operating systems con-

tinue to be written in unsafe languages and their APIs have

remained largely unchanged. This not only gives a sense

that our systems are falling behind but also hamper or slow

down software innovation, as demonstrated by e.g., kernel
bypass becoming a widely adopted approach for low-latency

networking.

In 2000, Rob Pike argued that “systems software research
is irrelevant”, and that it has become “a sideline to the excite-
ment in the computing industry” [38]. Indeed, despite prolific
results from the research community [9, 11, 18, 27, 35, 40, 43]

there has been very little impact on industrial operating sys-

tems.

The limiting factor in the adoption of radical new operat-

ing systems is their incompatibility with existing software

ecosystems. The implementation of a new kernel is only the

first challenge, and arguably the easiest, when compared to

the necessity to rewrite development tools, compilers, sys-

tem libraries, and rebuild, from scratch, an entire ecosystem

before porting any application. This daunting effort can, in

part, explain why disruptive new operating systems, such as

Singularity [27] or Plan 9 [40], have not been widely adopted.
BeOs [3] shows that even with a mature development ecosys-

tem, porting applications remains a deterring factor [20].

A similar problem arises in the development of new pro-

gramming languages. To facilitate adoption, programming

language developers often provide interoperability with ex-

isting languages and gradually reimplement standard libraries

in the new language. This approach trades-off guarantees

26

https://doi.org/10.1145/3623759.3624548
https://doi.org/10.1145/3623759.3624548
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623759.3624548&domain=pdf&date_stamp=2023-10-23

PLOS ’23, October 23, 2023, Koblenz, Germany C.Castes, et al.

provided by the new language (e.g., memory safety in Rust [7])

for usability and to speed up adoption, until a sufficiently

large ecosystem can be developed. Without any surprise,

the C language is often the first one to gain support for

interoperability.

New operating system designs would benefit from a sim-

ilar approach, that could gradually replace portions of an

existing software ecosystem with new implementations un-

locking better performance, stronger security guarantees, or

simply more flexible programming abstractions. The chal-

lenge in this approach is to pick the right layer to introduce

interoperability between existing and new systems.

This paper argues that dynamic linkers are the ideal sys-

tem interoperability layer to decouple system designs from

existing software ecosystems, and allow them to evolve sep-

arately. First, dynamic linkers are standard programs that

run in user-space and directly interact with the underlying

operating system. Second, they are responsible for loading

other programs and can thus be transparently adapted to

new system abstractions, unbeknownst to the program being

instantiated. Third, they already support complex dynamic

binary transformations, code patching, and contextual load-

ing of libraries.

This paper is organized as follows: § 2 provides useful

background on dynamic linking and the ELF format, high-

lighting how they can be transparently leveraged to extend

our systems. However, standard dynamic linker implemen-

tations are hard to extend and modify. § 3 addresses this

limitation with a new design for a modular dynamic linker

and introduces Spidl, a prototype implementation. § 4 show-

case a diverse range of load-time transformations that can

be implemented with Spidl. As a whole, this paper seeks to
raise awareness of dynamic linkers’ ability to transform and

progressively enhance operating systems while ensuring full

backward compatibility.

2 Background on dynamic linking
This section provides useful background on dynamic link-

ing and the ELF binary format. It emphasizes the dynamic

linker’s central role in modern systems and how it can be

adapted to facilitate seamless system evolution while main-

taining software backward compatibility. Next, the section

provides an introduction to the ELF format, emphasizing

its extensibility. We argue that the dynamic linker’s signifi-

cant control over program execution and interaction with

the system, combined with the high extensibility of the ELF
format, form a solid foundation to gradually enhance mod-

ern operating systems and unlock clean slate revolutionary

designs.

2.1 The dynamic linker rules the system
Dynamic linking dates back to the 60s and was introduced

as a core feature of the Multics system [16]. With the wide-

spread adoption of Unix and its derivatives, dynamic linking

has become a foundational element of modern operating

systems and programming languages. Its role in modern

software development is critical, as it not only facilitates

the creation of flexible, modular, reusable, and maintainable

software but also now plays an integral part in enhancing

security through measures like address space layout ran-

domisation (ASLR). Although self-relocating programs do

exist, modern operating systems predominantly rely on a dy-
namic linker/loader to link and load dynamic programs along

with their dependencies. On Ubuntu, for instance, more than

99% of binaries are dynamically linked [15].

When a program is instantiated through a system call,

such as execve, the system first checks for the presence of

an interpreter in the target program’s ELF metadata (§ 2.2).

For dynamic programs the interpreter is a dynamic linker,

also called dynamic loader or simply loader, picked at com-

pile time. Instead of transferring control directly to the target

program, the system loads and hands over control to the in-

terpreter. The dynamic linker then proceeds to configure the

environment, loading the target program and all its depen-

dencies, and ultimately transfers control to the program’s

entry point.

In practice, the dynamic linker governs the system. On Linux

platforms, most programs rely on the single loader provided

by the distribution, which runs before almost every program

on the machine, holding the complete privileges associated

with the process. It is a narrow waist, i.e., a pivotal point of
control, ideal for implementing transformative changes to
our operating systems, that can be replaced and fine-tuned

transparently with ease.

Although many systems, similar to Linux, depend on a sin-

gle dynamic linker, the ELF format offers a straightforward

way to choose between multiple linkers for each program.

This capability allows for progressive enhancement with-

out compromising backward-compatibility with the existing

ecosystem.

2.2 ELF as a database format
This paper focuses on the ELF (Executable and Linkable For-
mat) binary format [2] for storing programs and libraries.

Widely adopted across Unix systems, particularly in Linux,
the ELF format benefits from numerous tools and compiler

directives to parse, display, manipulate, or extend binaries.

An ELF file is a document that represents the same pro-

gram with two different views: one for linking, known as

sections, and another for loading, known as segments. Figure 1
depicts both views of an ELF file, along with the resulting in-

memory program. The ELF header provides essential details

about the file, such as its architecture, operating system ABI,

27

Dynamic Linkers Are the Narrow Waist of Operating Systems PLOS ’23, October 23, 2023, Koblenz, Germany

ELF Header

Program Header
Table

Executable Segment

Section Header Table

 .interp: /lib/ld.so
 .text
 .init
 .plt
 .data
 .bss
 .got
 .dynamic

ELF Header

Read/Write
Segment

Dynamic Segment

Interpreter Segment

Executable
Segment

Read/Write Segment

Section View Segment View Loaded

Figure 1. The different views of an ELF file: the sections,

segments, and the in-memory layout.

entry point, and the location of other important metadata,

including the program header table (for segments) and the

section header table.

Sections represent logical units of information that relate

to code, data, symbols (references to functions or variables),

and relocations within the binary. Sections serve a crucial

role during the linking and debugging process. The linker

uses sections to resolve symbols, perform relocations, and

combine object files to create the final executable.

Segments, on the other hand, are larger contiguous blocks

of memory with associated access rights that describe a pro-

gram’s memory layout and content. They are used by the

loader to map the binary into memory, i.e., allocate virtual
memory regions, copy the binary’s bytes into them, and

set up the program’s runtime environment. Each segment

contains one or more sections.

The ELF format is designed to be extensible. While the var-

ious header formats are fixed, their fields only have a handful

of reserved values. For example, program headers (i.e., seg-
ments) include a type field of 4-bytes for which only a dozen

default values are reserved. Consequently, new loaders can

utilize this field to define new segment types which tradi-

tional loaders would simply ignore. A similar observation

holds for section headers.

The ELF format’s flexibility and extensibility is already

commonly used to include extra information. For example,

the Debugging With Arbitrary Records Format (DWARF)

[4] data is inserted inside the binary as a debug section and

parsed by debuggers. In practice, ELF files can be extended

with arbitrary data, may it be semantic information about the

program, text, bytecode, or linker instructions. Some related

work [23, 24] even embed full binaries inside dedicated ELF
sections, which are then extracted and loaded into isolated

nested execution environments by dedicated code in the

main program’s runtime.

3 A blueprint for a modular dynamic linker
The dynamic linker plays a crucial role in today’s operat-

ing systems and, combined with the extensibility of ELF,
could be used to explore new interactions between operating

systems and programs. Unfortunately, dynamic linkers are

often considered as arcane pieces of software that are hard

to reason about and extend. They are complex, lack modu-

larity, and too-tightly integrated with system software. For

instance theGNU dynamic linker and libc are so intertwined
that neither of those can function without the other.

In this section, we introduce a novel approach to dynamic

linking, characterized by a modular and tunable framework

design to extend existing systems while preserving software

backward compatibility. We implemented a prototype of this

linker design called Spidl. Spidl is written in Rust and targets
Linux platforms. At the opposite of existing loaders, it does

not make any assumptions about the structure of ELF files

beyond the existence of the ELF header, program header, and

section tables.

Spidl’s design revolves around two core concepts: phases
(§ 3.2) andmodules (§ 3.1). As demonstrated on Figure 2, Spidl
organizes binary linking and loading as a per-file pipeline

of sequential phases. Modules define transformations called

passes, assigned to Spidl’s phases, which together perform

the actual linking and loading of the executable and its library

dependencies.

To demonstrate Spidl’s compatibility with existing linker

ecosystems, we developed a System V module. The System
V module provides all the required passes to link and load

standard executables (as described in the System V specifi-

cation) and fully replaces a standard Unix dynamic linker.

By combining modules, Spidl can augment or modify the in-

teractions between the OS and programs, or even introduce

completely different ABIs while retaining cross-compatibility

with existing software.

3.1 Modules
A module in Spidl is a Rust struct that implements the

Module trait (Rust’s version of interfaces). A module must

implement at least the register method. When loading a

file, Spidl calls register on all available modules to populate

the loading pipeline. A module participates in the loading

of an object by either registering a pass for one or several

phases, or by acting as a symbol resolver.

During registration, modules can communicate their in-

tent by returning one of three values: do not handle, handle
weak, or handle strong. Spidl provides modules with full vis-

ibility over the modules that precede them in the pipeline.

The order of module registration is thus critical and must

be carefully considered when configuring Spidl. Weak and

28

PLOS ’23, October 23, 2023, Koblenz, Germany C.Castes, et al.

Module A Module B Module C

Register
Passes

Collect
Dependencies

Load in
Memory

Apply
Relocations

Protect
Memory StartELF

ACollect:
Load:

Relocate

Protect:
Start:B

B

B
B

D

Registered Passes Dependencies

Module D

A B C

Symbol Resolvers

D

Figure 2. Loading of an ELF file with the Spidl dynamic linker. Modules first register passes for the different phases of the

loading of the file that will then be scheduled by Spidl.

strong handling mark the distinction between complemen-

tary operations and overriding a pass. For example, imple-

menting an LD_PRELOAD mechanism is straightforward and

only requires a module to register a weak pass for the collect
phase.

3.2 Phases
The Spidl loader defines a fixed set of phases that act as

synchronization points between various modules. During

each phase, registered modules execute a series of standard

transformations, as outlined in Table 1. Moreover, additional

“post-phase” phases are available to carry out module-specific

tasks. For instance, the System V instantiates the thread local

storage (TLS) in the post-relocate phase, as the TLS might

be initialized with relocated data. Below, we elaborate on

the different phases. In the remainder of this section, we use

the term object and file interchangeably to reference an ELF
binary (executable or library).

Register:When first opening a file, Spidl calls the register
method on all modules, with the file as argument, to register

passes to be applied in subsequent phases. Spidl allows mod-

ules to register passes for the main ELF program file as well

as for any other file that might need to be opened as part of

the loading (see collect). During the register phase modules

indicate for each subsequent phase whether they intend to

execute a pass, and if so whether it is the main pass for that

phase or not. As there can be only a single main pass, this

enables a module to override another.

Collect: The collect phase gathers the objects that need to

be loaded for the proper execution of the binary. Registered

modules can return a list of dependencies, either in the form

of files to be opened or as new in-memory ELF objects. Spidl
then repeats the register and collect phases for dependencies
recursively, until all files are collected.

Load: During the load phase, modules perform both mem-

ory allocation and the actual loading of the objects into

memory. The allocation and loading are done on a per-object

basis, like all operations in the different phases. Hence, global

optimisations such as those presented in iFed [41] require

pre-computing allocation locations, but can still be fitted in

the Spidl approach.

Relocate: The relocate phase performs dynamic linking.

During this phase, modules apply relocations, i.e., patch code

or data with the actual memory location of loaded objects.

Spidl differs from other dynamic linkers in how relocations

are applied, as it enables cooperation between modules. In-

deed, during relocation, a module might need to learn about

the location of an item in another object (this is called sym-
bol resolution), but the module itself might not be able to

understand that other object’s format. For instance, a C-
based object might need to call a JavaScript function, but
the System V module does not know about an hypothetical

JavaScript object ELF encoding or runtime. For this purpose,

Spidl mediates the symbol resolution by querying relevant

modules for the requested symbol, thus removing the need

for a module to know about all possible ABI used in the

system and allowing it, instead, to focus on handling a single

type of programs. The relocation process is illustrated in

Figure 2.

Protect: During this phase the different memory protections

are adjusted. After this, loaded objects can no longer be

modified.

Start: The final phase applies only to the original ELF target

and transfers control to the linked program’s entry point

after the last preparations.

3.3 Limitations
Spidl is still in early development and therefore has a few

limitations. First, Spidl does not yet offer runtime services.

29

Dynamic Linkers Are the Narrow Waist of Operating Systems PLOS ’23, October 23, 2023, Koblenz, Germany

Phase Description
register Register modules for following phases

collect Collect dependencies

post-collect

load Memory allocation and loading

post-load

relocate Apply the relocations

post-relocate

protect Apply memory protections

post-protect

start Transfer control to the program

Table 1. Phases in the Spidl dynamic linker.

Most dynamic linkers, such as GNU ld.so, tightly integrate

with the libc to provide runtime services. Those services no-

tably include the dlopen family of functions and the ability

to create new thread local storage slots, required for multi-

threading. In the future, Spidl could be extended to register

runtime services.

Second, the current implementation lacks support for

GNU extensions, heavily used throughout the GNU libc
and its ecosystem. As a result, Spidl cannot run programs

compiled on GNU systems out of the box. This is not a lim-

itation of Spidl but rather of our System V module. Two

approaches to support the execution of glibc programs are

possible: (1) creating a GNU module to replace the System V
symbol resolution, or (2) adding a module to resolve glibc to
another supported libc, such as musl-libc. Note that some of

the GNU extensions, such as IFUNC and lazy binding, might

be detrimental to the system security.

4 A new skin for the kernel
The dynamic linker can be used to disentangle operating

system APIs and application development ecosystems. Spidl
allows to progressively introduce changes to operating sys-

tems, ranging from simple optimisations to API-breaking OS

re-designs, while maintaining compatibility with existing

software.

In this section, we showcase a range of transformations

that a dynamic linker can perform, organized in approxi-

mate order of how far they stray from traditional system

interfaces. These transformations can all be realized as mod-

ules for the Spidl linker introduced in § 3, allowing for the

combination and gradual integration of individual system ex-

tensions. This section is not meant to be an exhaustive list of

transformations supported by Spidl. It rather aims at inspir-

ing the exploration of operating system and programming

language designs through a customizable linker.

4.1 Performance optimisations
iFed [41], a pass-based dynamic linker that supports global

optimizations, already demonstrated the benefits of load-

time program optimizations. iFed leverages a global view

of the program, including all shared libraries, to implement

two passes: dynamic libraries concatenation and relocation

branch eliminations. The former consists in grouping seg-

ments from different libraries with similar access rights to-

gether to enable the use of huge pages and improve the TLB

hit ratio, while the latter eliminates indirections caused by

dynamic library calls by patching binaries. Together, these

optimisations provide an 8.58% reduction of TLB miss and

3.28% branch miss-prediction reduction on x86_64, and a

13.04% and 1.85% reduction on ARM respectively. Spidl can
trivially implement similar optimizations as a module.

4.2 Executable compression
In addition to performance, program size, both in-memory

and on-disk, can be a limiting factor in environments with

limited resources. To reduce the on-disk binary footprint, a

traditional approach involves an executable-packer compres-

sion technique, wherein a program is modified to self-extract

and decompress at launch time. However, this unpacking

process could be simplified by implementing a decompres-

sion Spidl module, eliminating the need for complex self-

relocation logic in the binary and further reducing both its

in-memory and at-rest size.

Another widely deployed optimization is the Android dy-

namic relocation compression [1], which reduces RAM usage

by up to 9%. Loading compressed programs requires special

assistance from the linker and is so far only available on An-
droid. Spidl could provide a generic cross-platform module

with a relocate phase pass, similar to module D on Figure 2,

to export this functionality beyond Android.

4.3 Load-time validation
Load-time is an apt moment to validate properties of pro-

grams and libraries. In addition to verifying program and

library signatures, the dynamic linker can conduct more so-

phisticated checks, such as validating proof-carrying code

[37] or type-checking interfaces.

Consider the case of type-checking interfaces. Present-day

compilers go to great lengths to ensure that if a program

compiles, it will execute correctly (e.g., memory and type

safety, ABI/API compatibility). These guarantees are, how-

ever, limited to the scope visible to the compiler. On current

systems, the dynamic linker can link two pieces of code

with incompatible interfaces without any remorse. This may

occur following a library upgrade for example. Such bugs

could be easily detected by checking for ABI-compatibility

at load time, provided relevant type information is available.

Fortunately, compilers already emit type-level information

in the form of DWARF [4]. This information, usually used

30

PLOS ’23, October 23, 2023, Koblenz, Germany C.Castes, et al.

libc

Symbols Syscalls

printf
scanf
malloc

memcpy

write
read

brk, memap
-

.seccomp

libc

Symbols Syscalls

printf
scanf
malloc

memcpy

write
read

brk, memap
-

.seccomp

libc

Symbols Syscalls

printf
scanf
malloc

memcpy

write
read

brk, memap
-

.seccomp

libc

Symbols Syscalls

printf
scanf
malloc

memcpy

write
read

brk, mmap
-

.seccomp

seccomp
Module

seccomp
filter

 needs

App

Figure 3. Scalable seccomp sandboxing. A seccomp module

aggregates the authorized system calls based on symbol res-

olution and a per-file .seccomp section.

by debuggers, can also be leveraged by the dynamic linker

to ensure ABI-compatibility and, in the case of languages

like Rust, validate pointers’ lifetime.

4.4 Sandboxing
Sandboxing restricts the resources that a software compo-

nent or a full program can access. Effective sandboxing re-

quires application-level knowledge to define appropriate poli-

cies. Nowadays most approaches rely on expensive whole-

program analysis through compiler instrumentation [12, 22,

31]. Those approaches are usually applied to a few applica-

tions on the system and do not scale to the whole OS, espe-

cially when considering that any library upgrade requires to

re-run expensive analysis for all dependent programs.

The dynamic linker is the ideal layer tomake existing sand-

boxing approaches more scalable, by combining per-library

analysis dynamically at load-time. To illustrate the benefits

of dynamic linkers, consider how to leverage seccomp for

sandboxing. Seccomp [30] is a Linux system call that enables

a process to gradually reduce its access to the system call API.

Building an appropriate seccomp eBPF system call filter re-

quires fine-grained analysis of the entire application. A Spidl
module could remove the need for costly whole-program

analysis by leveraging pre-computed per-library analysis

(mapping from function symbols to required system calls)

and combining them into a custom made filter at load time,

as illustrated in Figure 3. This approach would allow to: (1)

only perform per-library analysis once and reuse the result

across applications, and (2) upon a library update, limit the

static analysis’ scope to the modified component. It could

further be extended to support seccomp-based sandboxing

at the scale of a Linux distribution.

Sing#
App

Linux Kernel

Singularity
Runner

Wasm
Runner

QEMU
Runner

Unix
Runner

Sing# App

Wasm App

App

Sing# App

Sing# App

Wasm App

Unix
Runner

App

Linux Processes Software Isolated Processes

System V
Module

Wasm
Module

Singularity
Module

QEMU
Module

Sing#
App

Unix
App

Unix
App

WASM
App

MIPS App

Figure 4. Building a runner abstraction on top of Linux. Each
module is capable of loading one type of file and configures

or re-uses an appropriate environment prior to program

start.

4.5 Compartmentalization
Compartmentalization is a staple of system and security

research communities. Proposed solutions include operat-

ing system extensions [10, 26, 35], compiler instrumenta-

tion [43, 45] and, more recently, support for new hardware

security extensions such as Intel MPK [28] and SGX [17]

taking various forms [8, 13, 19, 25, 32, 34, 36]. However, com-

partmentalization solutions can require various modifica-

tions to the software stack, from user program modifications

to leverage new isolation abstractions [10, 23, 24, 34, 35],

to the reimplementation of a loader inside the program it-

self [23, 24]. Integrating the specialized loading logic into

the dynamic linker would be more fitting and could facilitate

transparent compartmentalization for libraries, i.e., without
application code modification, akin to the FlexOS approach

[33].

4.6 Customized Runners
Since Unix was initially rewritten in C, Unix-based systems

have consistently exposed aC environment to user programs.

However, the C language imposes rigid rules that programs

must follow, such as adhering to the calling convention, ac-

counting for arbitrary memory accesses, unbounded stack

31

Dynamic Linkers Are the Narrow Waist of Operating Systems PLOS ’23, October 23, 2023, Koblenz, Germany

usage by C functions, dealing with threads, TLS storage, con-

tent of system registers, and following libc/Unix abstractions.
A more flexible approach pioneered by Fuchsia [6] is the

concept of runners [5]. Runners provide execution environ-

ments tailored for specific needs and might impose various

constraints and ABI. Examples from the Fuchsia documenta-

tion include an ELF runner providing a familiar C environ-

ment, and a web runner capable of running and sandboxing

web applications. The runner abstraction can provide com-

patibility across systems, for instance one can implement a

Singularity [27] or an Oberon [44] runner on top of Fuchsia.
The dynamic linker is uniquely positioned to provide

a runner abstraction on top of existing kernels, such as

Linux, by transforming the Unix environment provided by

the kernel prior to program execution. For instance, load-

ing a JavaScript orWebAssembly [43] program would con-

figure the language virtual machine transparently, while a

Sing# [21] program would be loaded into an existing Singu-
larity runner as a software isolated process [11, 27].

Figure 4 illustrates how the runner abstraction can be im-

plemented using Spidl. Each runner exposed by the operating
system is paired with a Spidl module that understands how

to load programs for this runner. Because Spidl enables co-
operation between modules during symbol resolution (§ 3.2)

such a system would benefit from transparent interoperabil-

ity across languages and runners, dethroning C as the lingua
franca of programming languages.

5 Discussion
Despite the dynamic linker’s pivotal role in the system, there

have been limited efforts to provide an extensible dynamic

loading and linking infrastructure, even though the need to

modify loading behavior arises frequently [9, 14, 23–25, 39].

To the best of our knowledge, iFed [41] stands as the first

attempt at a genuinely modular approach to dynamic linking,

offering extensibility and straightforward code reuse.

While Spidl shares similarities with iFed, it distinguishes
itself by presenting a truly clean slate approach, facilitating

the green field development of operating system extensions

and load-time instrumentation/transformation. Unlike iFed,
which relies on a fixed intermediate representation built on

top of the GNU loader and tightly integrates with libc, Spidl
makes no assumptions about the program being loaded and

its execution environment. Spidl overcomes the difficulties

of linking a wide variety of objects together by mediating

cooperation between specialized modules.

We hope that availability of modular dynamic linkers,

such as Spidl, will encourage the community to explore new

research avenues at the interface between programs and

operating systems. We believe that dynamic linkers will be

transformative for areas such as security and interoperability

across languages, runtimes, and isolation boundaries. Indeed,

we see tremendous potential for dynamic linkers to benefit

from compiler-generated ABI, types, and invariants informa-

tion, as well as user-provided isolation requirements. With

Spidl as a playground, we plan to explore new ELF extensions
and develop an ecosystem of modules that can progressively

augment and customize today’s operating systems.

6 Conclusion
While the inertia and huge software ecosystem of existing

operating systems makes it hard for academia to move in-

novative ideas from the lab to mainstream systems, we ar-

gue that dynamic linkers can ease the transition. Dynamic

linkers execute on the initialization path of any program

on the system, and can perform extensive transformations

to drastically improve performance, harden security, and

expose tailored system interfaces. Current commodity dy-

namic linkers are monolithic and deeply intertwined with

system libraries, and therefore hard to modify and extend.

We introduce Spidl, a modular dynamic linker designed for

extensibility and experimentation that can serve as a basis

for the exploration of new interactions between programs

and operating systems. Finally, we present a wide variety

of transformations that can be performed at load time, and

hope to inspire further research along that direction.

7 Acknowledgements
The authors thank the anonymous PLOS’23 reviewers for

their constructive and helpful feedback.

References
[1] Android relocation packer. https://android.googlesource.com/

platform/bionic/+/f5e0ba94d911ef2622ecfd3f7fabc4432a4806d3/
tools/relocation_packer/README.TXT.

[2] Tool interface standard (tis) executable and linking format (elf) speci-

fication. https://refspecs.linuxfoundation.org/elf/elf.pdf, 1995.
[3] Be developer’s guide - the official documentation for the BeOS. O’Reilly,

1997.

[4] Dwarf debugging information format version 5. https://dwarfstd.org/
doc/DWARF5.pdf, 2017.

[5] Fuchsia component runners. https://fuchsia.dev/fuchsia-src/concepts/
components/v2/capabilities/runners, 2023.

[6] The fuchsia operating system. https://fuchsia.dev/, 2023.
[7] The rust programming language, 2023.

[8] Baumann, A., Peinado, M., and Hunt, G. C. Shielding Applications

from an Untrusted Cloud with Haven. ACM Trans. Comput. Syst. 33, 3
(2015), 8:1–8:26.

[9] Belay, A., Bittau, A., Mashtizadeh, A. J., Terei, D., Mazières, D.,

and Kozyrakis, C. Dune: Safe User-level Access to Privileged CPU

Features. In Proceedings of the 10th Symposium on Operating System
Design and Implementation (OSDI) (2012), pp. 335–348.

[10] Bittau, A., Marchenko, P., Handley, M., and Karp, B. Wedge:

Splitting Applications into Reduced-Privilege Compartments. In Pro-
ceedings of the 5th Symposium on Networked Systems Design and Im-
plementation (NSDI) (2008), pp. 309–322.

[11] Boos, K., Liyanage, N., Ijaz, R., and Zhong, L. Theseus: an Experiment

in Operating System Structure and State Management. In Proceedings
of the 14th Symposium on Operating System Design and Implementation
(OSDI) (2020), pp. 1–19.

32

https://android.googlesource.com/platform/bionic/+/f5e0ba94d911ef2622ecfd3f7fabc4432a4806d3/tools/relocation_packer/README.TXT
https://android.googlesource.com/platform/bionic/+/f5e0ba94d911ef2622ecfd3f7fabc4432a4806d3/tools/relocation_packer/README.TXT
https://android.googlesource.com/platform/bionic/+/f5e0ba94d911ef2622ecfd3f7fabc4432a4806d3/tools/relocation_packer/README.TXT
https://refspecs.linuxfoundation.org/elf/elf.pdf
https://dwarfstd.org/doc/DWARF5.pdf
https://dwarfstd.org/doc/DWARF5.pdf
https://fuchsia.dev/fuchsia-src/concepts/components/v2/capabilities/runners
https://fuchsia.dev/fuchsia-src/concepts/components/v2/capabilities/runners
https://fuchsia.dev/

PLOS ’23, October 23, 2023, Koblenz, Germany C.Castes, et al.

[12] Canella, C., Werner, M., Gruss, D., and Schwarz, M. Automating

Seccomp Filter Generation for Linux Applications. pp. 139–151.

[13] Castes, C., Ghosn, A., Kalani, N. S., Qian, Y., Kogias, M., Payer,

M., and Bugnion, E. Creating Trust by Abolishing Hierarchies. In

Proceedings of The 19th Workshop on Hot Topics in Operating Systems
(HotOS-XIX) (2023), pp. 231–238.

[14] che Tsai, C., Arora, K. S., Bandi, N., Jain, B., Jannen, W., John,

J., Kalodner, H. A., Kulkarni, V., Oliveira, D., and Porter, D. E.

Cooperation and security isolation of library OSes for multi-process

applications. In Proceedings of the 2014 EuroSys Conference (2014),

pp. 9:1–9:14.

[15] che Tsai, C., Jain, B., Abdul, N. A., and Porter, D. E. A study of

modern Linux API usage and compatibility: what to support when

you’re supporting. In Proceedings of the 2016 EuroSys Conference (2016),
pp. 16:1–16:16.

[16] Corbató, F. J., and Vyssotsky, V. A. Introduction and overview of the

multics system. In AFIPS Fall Joint Computing Conference (1) (1965),
pp. 185–196.

[17] Costan, V., and Devadas, S. Intel SGX Explained. IACR Cryptol.
ePrint Arch. 2016 (2016), 86.

[18] Dorward, S. M., Pike, R., Presotto, D. L., Ritchie, D. M., Trickey,

H. W., and Winterbottom, P. The Inferno™ operating system. Bell
Labs Tech. J. 2, 1 (1997), 5–18.

[19] Ferraiuolo, A., Baumann, A., Hawblitzel, C., and Parno, B. Ko-

modo: Using verification to disentangle secure-enclave hardware from

software. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP) (2017), pp. 287–305.

[20] Finley, K. This os almost made apple an entirely different company,

2015.

[21] Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G. C.,

Larus, J. R., and Levi, S. Language support for fast and reliable

message-based communication in singularity OS. In Proceedings of the
2006 EuroSys Conference (2006), pp. 177–190.

[22] Ghavamnia, S., Palit, T., Mishra, S., and Polychronakis, M. Tempo-

ral System Call Specialization for Attack Surface Reduction. pp. 1749–

1766.

[23] Ghosn, A., Kogias, M., Payer, M., Larus, J. R., and Bugnion, E. Enclo-

sure: language-based restriction of untrusted libraries. In Proceedings
of the 26th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-XXVI) (2021),
pp. 255–267.

[24] Ghosn, A., Larus, J. R., and Bugnion, E. Secured Routines: Language-

based Construction of Trusted Execution Environments. In Proceedings
of the 2019 USENIX Annual Technical Conference (ATC) (2019), pp. 571–
586.

[25] Hedayati, M., Gravani, S., Johnson, E., Criswell, J., Scott, M. L.,

Shen, K., and Marty, M. Hodor: Intra-Process Isolation for High-

Throughput Data Plane Libraries. In Proceedings of the 2019 USENIX
Annual Technical Conference (ATC) (2019), pp. 489–504.

[26] Hsu, T. C.-H., Hoffman, K. J., Eugster, P., and Payer, M. Enforcing

Least Privilege Memory Views for Multithreaded Applications. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS) (2016), pp. 393–405.

[27] Hunt, G. C., and Larus, J. R. Singularity: rethinking the software

stack. ACM SIGOPS Oper. Syst. Rev. 41, 2 (2007), 37–49.
[28] Intel. Intel 64 and ia-32 architectures software developer’s manual.,

2022.

[29] Kernighan, B. W., and Ritchie, D. The C Programming Language.
Prentice-Hall, 1978.

[30] Kim, T., and Zeldovich, N. Practical and Effective Sandboxing for

Non-root Users. In Proceedings of the 2013 USENIX Annual Technical
Conference (ATC) (2013), pp. 139–144.

[31] Kirth, P., Dickerson, M., Crane, S., Larsen, P., Dabrowski, A., Gens,

D., Na, Y., Volckaert, S., and Franz, M. PKRU-safe: automatically

locking down the heap between safe and unsafe languages. pp. 132–

148.

[32] Lee, D., Kohlbrenner, D., Shinde, S., Asanovic, K., and Song, D.

Keystone: an open framework for architecting trusted execution en-

vironments. In Proceedings of the 2020 EuroSys Conference (2020),

pp. 38:1–38:16.

[33] Lefeuvre, H., Badoiu, V.-A., Jung, A., Teodorescu, S. L., Rauch, S.,

Huici, F., Raiciu, C., and Olivier, P. FlexOS: towards flexible OS

isolation. pp. 467–482.

[34] Lind, J., Priebe, C., Muthukumaran, D., O’Keeffe, D., Aublin, P.-L.,

Kelbert, F., Reiher, T., Goltzsche, D., Eyers, D. M., Kapitza, R.,

Fetzer, C., and Pietzuch, P. R. Glamdring: Automatic Application

Partitioning for Intel SGX. In Proceedings of the 2017 USENIX Annual
Technical Conference (ATC) (2017), pp. 285–298.

[35] Litton, J., Vahldiek-Oberwagner, A., Elnikety, E., Garg, D., Bhat-

tacharjee, B., and Druschel, P. Light-Weight Contexts: An OS

Abstraction for Safety and Performance. In Proceedings of the 12th
Symposium on Operating System Design and Implementation (OSDI)
(2016), pp. 49–64.

[36] McCune, J. M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V. D., and

Perrig, A. TrustVisor: Efficient TCB Reduction and Attestation. In

IEEE Symposium on Security and Privacy (2010), pp. 143–158.

[37] Necula, G. C. Proof-Carrying Code. In Proceedings of the 24th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL)
(1997), pp. 106–119.

[38] Pike, R. Systems software research is irrelevant. Invited talk (2000).

[39] Porter, D. E., Boyd-Wickizer, S., Howell, J., Olinsky, R., and Hunt,

G. C. Rethinking the library OS from the top down. In Proceedings of the
16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XVI) (2011), pp. 291–304.

[40] Presotto, D., Pike, R., Thompson, K., and Trickey, H. Plan 9, a

distributed system. Proc. of the Spring (1991), 43–50.

[41] Ren, Y., Zhou, K., Luan, J., Ye, Y., Hu, S., Wu, X., Zheng, W., Zhang,

W., and Hu, X. From Dynamic Loading to Extensible Transformation:

An Infrastructure for Dynamic Library Transformation. In Proceedings
of the 16th Symposium on Operating System Design and Implementation
(OSDI) (2022), pp. 649–666.

[42] Ritchie, D., and Thompson, K. The UNIX Time-Sharing System.

Commun. ACM 17, 7 (1974), 365–375.
[43] Rossberg, A., Titzer, B. L., Haas, A., Schuff, D. L., Gohman, D.,

Wagner, L., Zakai, A., Bastien, J. F., and Holman, M. Bringing the

web up to speed with WebAssembly. Commun. ACM 61, 12 (2018),

107–115.

[44] Wirth, N., and Gutknecht, J. Project Oberon - the design of an
operating system and compiler. Addison-Wesley, 1992.

[45] Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy, T.,

Okasaka, S., Narula, N., and Fullagar, N. Native Client: A Sandbox

for Portable, Untrusted x86Native Code. In IEEE Symposium on Security
and Privacy (2009), pp. 79–93.

33

	Abstract
	1 Introduction
	2 Background on dynamic linking
	2.1 The dynamic linker rules the system
	2.2 ELF as a database format

	3 A blueprint for a modular dynamic linker
	3.1 Modules
	3.2 Phases
	3.3 Limitations

	4 A new skin for the kernel
	4.1 Performance optimisations
	4.2 Executable compression
	4.3 Load-time validation
	4.4 Sandboxing
	4.5 Compartmentalization
	4.6 Customized Runners

	5 Discussion
	6 Conclusion
	7 Acknowledgements
	References

