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Abstract

We examine the moments of the number of lattice points in a fixed ball of volume V for lattices in
Euclidean space which are modules over the ring of integers of a number field K. In particular, denoting
by wi the number of roots of unity in K, we show that for lattices of large enough dimension the moments
of the number of wx-tuples of lattice points converge to those of a Poisson distribution of mean V/wk.
This extends work of Rogers for Z-lattices. What is more, we show that this convergence can also be
achieved by increasing the degree of the number field K as long as K varies within a set of number fields
with uniform lower bounds on the absolute Weil height of non-torsion elements.
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1 Introduction

A classical result in the geometry of numbers due to C.L. Siegel [1] establishes a mean value theorem for
lattice sum functions Fy(A) = >, avgor S (\), where f : R — C is integrable and decays sufficiently fast.
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More precisely, the space SL;(R)/SL¢(Z) of unimodular lattices in R? carries a canonical Haar measure of
total mass one. Viewing Fy(A) as a random variable on that space, Siegel [1] proved the mean value theorem

EIF (V) = | flada.

In particular, when f is the indicator function of a bounded convex body Ff(A) counts non-trivial lattice
points and the famous Minkowski-Hlawka theorem [2] can be deduced in this way. Various refinements of
this approach imposing extra structure have since appeared, in particular for lattices coming from maximal
orders in number fields or Q-division rings [3, 4, 5]. The additional structure can often be leveraged for
suitable applications; for instance A. Venkatesh in [4] deduces the currently best asymptotic lower bounds
on the sphere packing density in high dimensions by working with cyclotomic integers.

In a series of papers [6, 7, 8], C.A. Rogers established roughly a decade after Siegel formulas for the higher
moments of Z-lattices and explicitly evaluated those formulas when the lattice sum function is counting non-
trivial lattice points in a bounded convex set. More precisely, Rogers obtains in [8, Theorem 3]:

Theorem. (Rogers, 1956) Let A C R be a random unit covolume lattice and let S be a centrally
symmetric Borel set of volume V. Consider the random variable

p(A) = F1 (M) =#(SN (A\{0})).

Then, provided the Z-rank t of the lattices satisfies t > [inQ + 3], it follows that the n-th moment of the
number of non-zero lattice points in S satisfies

2" - mn (%) <E[p(A)"] < 2" - mp (%) + Ene - (V+1)"71,
where

— - AT n n
mn(A) = e /\ZFT =Expoy(X™) (1)
r=0

is the nth moment of a Poisson distribution with parameter A and where E,; is an error term decaying
exponentially as t increases:
77/2 77/2
Enp <2300 (4 4215001 (),
In other words, Rogers showed that the number of pairs of non-trivial lattice points in S has a distribution
which approaches a Poisson distribution with mean %V for large values of t. In particular, we obtain for
large rank t essentially 2v/¢ point count estimates

E (3p(A)) = g vol(S),
E ((2p(A))?) = (§vol($))” + (& vol(S)) + o(1),
E ((3p(A)?) = (2vol(8))® +3 (£ vol(5))” + (& vol(S)) + o(1),

which are valid independently of vol(S). Note that the polynomials appearing on the right hand side are
Touchard polynomials! in % vol(S) and that the appearance of the fraction % on either side of the estimates
results from the symmetries of £1 acting on all lattice vectors.

It seems natural to ask whether similar higher moment results hold for lattices with additional structure,
or whether the behaviour is qualitatively different. For a number field K the ring of integers O can be
seen via the Minkowski embedding as a lattice in K ®g R = RUQ . Thus, any Ox-module of finite rank ¢
produces (after possible scaling) a unimodular lattice in the space SL;(K ®qR)/ SL;(Ok ), which also comes
equipped with a canonical probability measure. We study higher moments of the number of points in a
bounded convex set for such Og-lattices.

A first observation is that, assuming that S is symmetric about the origin, the finite order units in O
act freely on the lattice points in S and thus lattice points should come in wg-tuples instead of pairs, where
wx denotes the root number of K. As a consequence of our main theorems, we are indeed able to show that
for balls S the number of wx-tuples of Of-lattice points in S have a distribution asymptotic to a Poisson
distribution with mean ﬁV:

IFor the first moment, Siegel’s theorem tells us that the error term is exactly zero.



Theorem 1. Let K be any number field and let n be fized. Then there is an explicit constant to(K,n) =
Ok (n®loglogn) such that the n-th moment E[p(A)"] of the number of nonzero lattice points lying in an
origin-centered ball of volume V and a random unit covolume Ok -lattice of rank t satisfies

Wk - mn(wK) <E[ (A) ]<wK mn( )+EntK (V+1)n_1

with the error term
E,:.x <Cxk L 4(n=2)/2 | —ex-(t—to)

provided that t > to(K,n). Here m,, is as defined in Equation (1) and the ball of volume V is with respect
to the Euclidean norm given in Equation (3). The constants Cx,ex > 0 are uniform in the rank t of the
Ok -lattices and can also be explicitly described.

An expression for the explicit constants to(K,n) and ek in terms of n and the geometry of the unit
lattice of K can be found in Corollary 58.

Rogers’ results rely on his integral formula for the n-th moments. Such a result is also available in the
context of Ok-lattices and implicit in the literature. For instance, S. Kim [9] establishes an integral formula
in the adelic language and deduces convergence of the second moment. See also, e.g., [10] and [11, Theorem
1]. However, one of the main challenges arising for general number fields is dealing with infinite unit groups
in Ok and bounding their contributions (see 4 for the integral formula). We remedy this by employing lower
bounds on the Weil height of units Oj. In fact, height considerations allow us to prove stronger asymptotic
results by increasing not just the Og-rank of the lattices, but also the degree of the number field.

More precisely, we show:

Theorem 2. Let S denote any set of number fields K such that the absolute Weil height of elements in
K>\ px has a strictly positive uniform lower bound on S. There are then for a given n explicit constants
to(n,S) = Os(n3loglogn) as well as explicit constants C,e > 0, all uniform in S, such that for any t > to
and for any K € S of degree d the n-th moment E[p(A)"] of the number of nonzero O -lattice points in an
origin-centered ball of volume V' and A in the space of unit covolume Ok -lattices of rank t satisfies:

wic - mn(z) < Elp(A)"] < Wi - ma() + Bner - (V41"

where the error term satisfies
Entx <C- (td)(n_Q)/2 '&J?M : Z(K, t, n) . e~ Ed(t—to)

Here wi are the number of roots of unity in K, Z(K,t,n) denotes a finite product of Dedekind zeta values
Ck at certain real values > 1 and my, is as in Equation (1).

See the more detailed Theorem 57 for explicit values of the constant to(n,S), of the zeta factor Z (K, t,n)

and of the constants C,e. Note that the terms (td)("~2)/2 ~w§/4 grow polynomially in ¢, d since wx =
O(dloglogd) and the error term indeed decays exponentially in the dimension of the lattices.

The height bound assumption on | ;g K in Theorem 2 is in the literature referred to as the Bogomolov
property. A prototypical example of an infinite tower satisfying the Bogomolov property are the cyclotomic
numbers Q¢ = |J,~, Q({i), so that the limiting results of Theorem 2 in particular apply to lattices over
cyclotomic integers of increasing degree for fixed large enough rank. In this case we can also bound the zeta
factor uniformly-see Corollary 60. For the reader’s convenience and as an illustration, we record here an
entirely explicit ensuing second moment result over cyclotomic fields:

Corollary 3. Consider a sequence of cyclotomic number fields given by K; = Q(Cx,) of degree d; = p(k;)
and let tg = 21—607. There then exist uniformly bounded constants C,e > 0 such that for any t > 27 and for
any degree d; the second moment E[p(A)?] of the number of nonzero O -lattice points in an origin-centered
ball of volume V' over the space of Ok -lattices of rank t and unit covolume satisfies:

V24V wg, <EpA)] < V24V . wg, - (1+C e dilt=to)),

Moreover, the inequality holds for e = Wlo and C = (3 W) (K, (37t) (K, ( =) for any given
t > 27 and d; > 2. In particular, C' < 5625 - max;((k, (37t) Kr(2t_5)) holds for all such t,d;.



We refer the reader unfamiliar with heights and the Bogomolov property to the discussion in Section 5 for
details and other examples of infinite extensions with this property. We also partially prove in Proposition
62 the necessity of the height bound assumption in Theorem 2, showing that for any fixed rank ¢ there
exist number fields K; of arbitrarily large degree with moments strictly larger than Poisson of mean V/wg, .
Finally, we remark that similar results apply to more general convex sets S beyond balls (see 64), however
in pinning down the asymptotic distribution one needs to take into account the symmetry properties of the
body S.

In conclusion, we observe not just a limiting Poisson behaviour for the finer moduli space of Ok-lattices of
fixed covolume, but also uncover additional flexibility in choosing the parameters of the Poisson distribution
by varying the number of roots of unity in K. We therefore expect applications to the geometry of numbers
and in particular hope to address the lattice packing and covering problems in the vein of [4],[6],[12],[13].
Beyond that, integral formulas and higher moments have been employed among others in dynamics in the
context of logarithm laws for flows on homogeneous spaces and Diophantine approximation (see e.g., [14, 15],
[16, Section 5] and [17]).

Furthermore, Ok-lattices have emerged as interesting candidates for lattice-based cryptography (see e.g.,
[18, 19, 20]). The setup in these works often resembles our line of investigation, even considering lattices
of fixed Ok-rank and varying cyclotomic number field K. In analysing the hardness of problems such as
the shortest vector problem (SVP) on these restricted lattices, our results indicate a Poisson-like behaviour
similar to the full probability space of random lattices, albeit with a different Poisson parameter.

1.1 Outline of paper and proof

The paper is organized as follows: Section 2 establishes an effective version of the Rogers integral formula for
Ok -lattices, showing in particular that the expected moments can be attained up to arbitrarily high precision
from lattices lifted from suitable finite sets of linear codes. This is of independent interest, expanding on
the literature showing lattices attaining the expected mean values can be achieved in this way (see, e.g.,
[21, 22, 23, 24, 25, 26]). We also cover some preliminaries in this section.

Section 3 then establishes convergence of the higher moments and includes some preparatory lemmas.
Convergence can be deduced by relating moments to values of height zeta functions on suitable Grassman-
nians. These converge by work of W. Schmidt [27] on asymptotic counts for points of bounded height in
such varieties. Section 4 then deals with the main Poisson terms and some first estimates.

Section 5 tackles the general term and contains the main results. In order to go beyond just convergence
of the moments, asymptotic estimates for points of bounded height are not sufficient, and one needs to have
good control of the error terms for small heights as well. In order to illustrate how the results were achieved,
we sketch our proof for the simple case of the second moment. In this case, via the integral formula the
second moment computation for a fixed ball S in ¢ copies of Euclidean space K ®g R amounts to:

vol(S9)? + Z Ok : (@) PN Ok]-vol(S N as).

acK*
To arrive at a result as in Corollary 3 it suffices to prove exponential decay of the sum

—¢ vol(SNasS)

Z [Ok : ()7 NOK] Tol(S)

a€(KX\pr)/nK

(2)

where px denotes the roots of unity in K. In order to do so, we first bound for a fixed 5 € K* the shifted

sum over units: Sg =) %@‘)ﬁs) The full result for (2) is then deduced by summing over

a€(Op\pk)/pK
principal ideals (3) the quantity [O : (8)71 N Ok]™! - S5 and relating its decay to the decay of Sz up to
some Dedekind zeta values of K (see e.g., Proposition 47). In order to bound Sg, we use a geometric convex
combination Lemma to show that the volume ratio %(g)&s) decays exponentially with the Weil height of
af, see Lemma 39 as well as Lemmas 53, 54, and 55 for the more general case. The final ingredient is then
a count of the number of units o € O such that o8 has bounded Weil height. This is achieved in Lemma
41 using properties of heights and the unit lattice. Note that here it is really the points of small height
which have the weightiest contributions to Sg and therefore we need genuine upper bounds on such counts
as opposed to the classical asymptotic formulae for increasing height. We hope this also illustrates for the
reader why height lower bounds for algebraic integers play an important role in our work.



For the n-th moment when n > 2, there are additional complications. We must evaluate the sum

n—1
> > (D) / 1gm (zD)dz,
m—1 rEKQRtXm

DEMyp5n (K)
rank(D)=m
D is row reduced echelon
where D(D) is a measure of the denominators in D extending [Of : (o)™ N O] for (n,m) = (2,1). The
main Poisson terms come from matrices D with a single non-zero entry in ux per column (we denote this
set by A,,). While our overarching approach in estimating the error terms generalizing (2) is similar to the
second moment, we now needed to distinguish several cases depending on the shape of D - see Section 5.4 for
details. The trickiest case are matrices D close to A,,, in that D having entries of Weil height larger than
some threshold hy ~ % log n or having many non-vanishing m x m minors makes estimates easier. However,
the remaining cases then constitute a finite set of matrices D with entries of height bounded by hg and
having at least one column which differs from columns in the main terms A,,. This is just enough to push
through our results (see Proposition 56) and obtain suitable exponential decay of each error term.
Finally, Section 6.2 adds some concluding remarks on height assumptions and more general bodies.
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2 Lattices from number fields and integral formula for lifts

Let K be a number field and let O denote its ring of integers. Let Kg = K ®g R denote the [K : QJ-
dimensional Euclidean space associated to K and let () : Kg — Kg be a positive-definite involution 2 on
KR such that the following is a positive-definite real quadratic form on Ky:

2

(@,y) = AT tr(a). 3)
Here Ak is the absolute value of the discriminant of the number field K. Note that the quadratic form
makes Ok into a lattice in Kg and the normalization in Equation (3) ensures it has unit covolume. When
multiple copies Kk are considered, we will assume that the quadratic form is the sum of the quadratic forms
from Equation (3) on each copy. This quadratic form therefore defines a Lebesgue measure on any number
of copies of Kg.

As pointed out in the introduction, integral formulas for higher moments over number fields can be found
in the literature. A. Weil vastly generalized Siegel’s mean value theorem [10]. One may recover a nth moment
formula from Weil’s work by considering the algebraic group G = SL;(K) acting on the left on the affine
variety M, (K) in Weil’s setup as described in §5-12 of [10]. We record the higher moment formulas which
form the starting point for our work here:

Theorem 4. [9, 10, 11]

For any number t of copies of Kgr let g : K]tRX" — R be a compactly supported Riemann-integrable function
and equip Kt with the measure as discussed around Equation (3). Then, putting the Haar probability measure
on SL(Kr)/ SL:(Ok), we have that

n

/ SR CIEEDS ) o) [ gDdn,
SL:(Kr)/SL:(Ok) vEqOLX™ m=0 DEMypxn(K) zGKl;Xm
K rank(D)=m

D is row reduced echelon

2The standard choice is to consider the involution U given by identifying Kg ~ R"t x C"2 and defining (_) to be the identity
on the real places and complex conjugation otherwise.



where D (D) is the index of the sublattice {C € M1xm(Ok) | C - D € Miyn(Ok)} in Mixm(Oxk). Here the
right hand side could diverge (however, see Corollary 21), and the term at m = 0 is understood to be g(0).

Remark 5. In the same setting as Theorem 4, we have

n

/ I EDS 3 o)t [ gaDyis
SL:(Kr)/SLt(Ok) ’UE’YO}(XTL\{O} m=1 DEM pxn (K) zeKy m
rank(D)=m

D is row reduced echelon
has no zero columns

2.1 Effective higher moment results from lifts of codes

The existential results for the continuous and non-compact space of lattices SL;(Kr)/ SL:(Ok) discussed
in the introduction do not yield a way to arrive at explicit constructions for applications to coding theory,
cryptography or the geometry of numbers. To that end, in this section we will produce a growing family of
explicit lattices that equidistribute with respect to Siegel transforms. That is, we find a collection of unit
covolume lattices {A; ;}; such that as j — oo, we get #{A; ;}; — oo and

n n

> f)| dr.

veyOl,

1
()
#{Ai )i ; 2 SLi(Kz)/ SLt(Ox)

vEN; 5

This can be thought of as an analogue of the following result, which could be attributed to Rogers [28],
seemingly the first to consider an effective version of Siegel’s mean value theorem.

Theorem 6. (Rogers, 1947)
Let p be an arbitrary prime, ), be the field with p elements and let mp, : 7¢ — Fg be the natural coordinate-

wise projection map. Let L, be the set of sub-lattices of 7% that are pre-images of one-dimensional subspaces
in this projection map scaled to become unit covolume, i.e.

Ly = {Cym; (Fyv) | v € FA\ {0}},Cp = p~ (173).

Consider a compactly supported continuous function f : R® — R. Then the following holds:

S #15 Yoo f :/Rdf(z)dz.

P AeL, veA\{0}

Theorem 6 can for instance be used to effectively generate lattices that attain the Minkowski lower bound
on the sphere packing density. Results along the line of Theorem 6 have appeared [25, 26] for mean values
of lattices with additional structure and with applications in mind.

Remark 7. The set of lattices in Theorem 6 are Hecke points for the homogeneous space SL:(R)/ SL+(7Z).
These Hecke points are a growing collection of points parametrized by a primes p as p — oo. Rogers’ Theorem
6 can be thought of as saying that these Hecke points equidistribute with respect to Siegel transforms. But
more is true, in fact they equidistribute with respect to all test functions C.(SL¢(R)/ SLi(Z)).

Equidistribution of Hecke points is a very well-studied topic [29, 30]. Using the general methods of [29],
it should follow that the set of lattices L(P,s) defined in (4) equidistribute as N(P) — oo. In this paper
we only focus on showing equidistribution with respect to Siegel transforms for the Hecke points considered
below. Using that L(P, s) equidistribute on the moduli space of Ok -modules, one can arrive at another proof
of Theorem 4. We skip these details.

2.2 Lattices from reductions

Let f: K — R be a compactly supported Riemann-integrable function on the real Euclidean space formed
by taking ¢ copies of Kg. This space contains O% as a unit-covolume lattice. We consider unramified prime
ideals P C Ok and fix a number s € {1,...,d — 1}. If 7p : O — kp is the projection map to the residue
field kp, we want to consider the following set of unit covolume lattices:



L(P,s) ={Bnp"(S)| S C kb is a s-dimensional kp-subspace} (4)
3

where

B=B(P,s)=N(P) ",
Indeed, this scaling factor 8 ensures that the lattice 6#731(5 ) has the same covolume as O% C Kf.
What we are interested in is the following average:

1 n
m Z <Zf(“)>- (5)

AEL(P,s) \vEA

We will in fact consider the slightly more general setup: let g : Kﬂg{x” — R be a compactly supported
Riemann-integrable function on [K : Q] - ¢ - n real variables. We evaluate the average

1
e X (Z)

AEL(P,s) \veEAr

This sum reduces to Equation (5) under the substitution of g(v1,...,v,) = f(v1)f(v2)...f(vn). We
perform some manipulations on this sum. Leting 1(P) denote the indicator function of a proposition P, we
have that

1
m Z (Z 9(”))

AEL(P,s) \weA™

= m Z Z 9(Bx)

sskg Vel

= ¥L(P.s) Z Z 9(Bz) 1 (mp(x) € S™)

SCkY \zcoix™

= X 00 | gy X L) € 8

SCkL
Sk,

1
= Z 9(Bz) ¥L(P.5) S%;P 1 (span(np(z1),...,mp(xn)) € S)

S~k

The inner sum is just the probability of a random subspace S C kb of fixed dimension s containing
some given set of points 1,2, ..., &, € kb. This probability, other than depending on P, s, depends only
on the kp-dimension of the subspace generated by 7p(z1),...,7p(2y,). This dimension equals the rank of
7p(2) € Mixn(kp) which is certainly less than the rank of @ € My, (Okx) C Mixn(K). So we can split our
sum into

min(n,t)
B 9(Bz)
=Y Y ima| X tepmmm).me(m) € 5) | (6)
m=0 z€M;xn(OK) SCklL
rank(z)=m S~kp

3There is an abuse of notation in Equation (4) as 7p denotes a map on (9}( — k%, Henceforth, this map is to be understood
as “applying the mod P operation at each coordinate”.



Given & € Mixn(Ok), we might for some P encounter a “rank-drop” phenomenon, that is rank (7p (z)) <
rank(x). However, the good news is that the matrices « where this rank-drop happens can be “pushed away”
from the support of g by taking N(P) to be large enough. The following lemma captures this idea.

Lemma 8. Suppose that © € My, (Ok) is a matriz with rank(z) = m > 0 and P is a prime ideal in Ok
such that rank(mp (z)) < m. Then, for any Fuclidean norm || e || : Myxn(Kr) = R>o, we can find a constant
C > 0 depending on K, || e||,t,n and independent of m, P such that

lzl| > CN(P)wiica

Proof. By choosing a Z-basis of Ok, we can embed ¢ : Ox — M[k.q|(Z) as a subring of the square integer
matrices of size [K : Q]. Without loss of generality, we assume that the norm || e | is the Euclidean norm
via the embedding
. 2

L Mtxn(OK) — Mt[K:Q]Xn[K:Q] (Z) - Rtn[K'Q] .
Since rank(z) = m, we know that there exists a non-singular m X m minor a € M,,(Ok) appearing as a
submatrix in x. It is clear that 0 # det a € P otherwise there is no rank-drop modulo P. Therefore, we get
that

N(P) | N(det a).

Observe also that via the map ¢ : M,,(Ox) — M, [k.q)(Z) we have the determinant relation det(c(a)) =
N(det(a)). Since we know that 0 # |det(c(a))] > N(P), at least one non-zero integer appearing in the

matrix entries of ¢(a) would have absolute value bigger than m N(P)Mll( . This produces the same
lower bound on the Euclidean norm of ¢(a) up to a constant, and similarly also for ¢(x).

This finishes our proof. [l
Lemma 9. Suppose y1,Y2,...,ym € kb are linearly independent vectors (over kp). Then the following
holds:

0 ifs<m
1 .
T2 | 2 TPy, um) €5) | = {N(P)~H ifs=m
’ ﬁg’,ﬁ’ N(P)=™E=9) . (1 4+ o(1)) if s >m.
=kp

Here the error term o(1) is with respect to growing norm N(P).

Proof. The case with s < m is clear. In general for a finite field of size ¢, the number of s-dimensional
subspaces in a t-dimensional vector space is the cardinality of the Grassmannian Gr(s, Ffz) given by

(@ -1 —a) (¢ —¢")
(-1 —aq)(¢°—¢*71)
In our case, # kp = N(P). Up to some change of variables, the numerator is actually counting the number of

(s—m)-dimensional subspaces in a (t —m)-dimensional space and therefore has cardinality # Gr(s—m, F,~™).
This is sufficient to get our result. [l

= ¢*=%) (14 0(1)).

Theorem 10. Taket > 2, n € {1,...,t—1} and choose s as either t—1, or any number in {n,n+1,...,t—1}

that satisfies
s 1
1-° <~
t n
Let g : KD%X" — R be a compactly supported Riemann integrable function. With L(P,s) defined as in

Equation (4), we have that as N(P) — oo

1 n B
AT (Z g(v)) S 3 (D) t/ __glaD)da, (7)
77 AEL(P,s) \veEA™ m=0 DEM 5 n (K) zeKy
rank(D)=m
D is row re(du)ced echelon

where (D) is the index of the sublattice {C' € My1xm(Ok) | C D € M1xn(Ok)} in M1xm(Ok). Here the
right hand side could diverge (however, see Corollary 21), and the term at m = 0 is understood to be g(0).



Proof. From the discussion above, we arrive at Equation (6), and it remains to consider

= 9(Bx)
Z > #L(P,s) Y L(span(rp(1),...,mp(2n)) C 5)
m=02EM;xn(Ok) SCkL,

rank(z)=m S~k

Note that here 8 = 8(P,s) = N(’P)_(l_%)[%@]. The rank m ranges within {0,1,...,n} since min(n,t) = n.
Also, since s > n, we expect the quantity in parentheses to be nonzero.

We recall that M;x, (Kgr) has the Euclidean measure given by ¢ - n copies of the quadratic form coming
from Equation (3). When m > 1, we know from Lemma 8 that we will encounter a rank-drop mod P only
if for some predetermined constant C' > 0

] > ¢ N(P)wa

3

=8z > NPy (w=(1-%)),

1 s 1 S
— 17_)>_7(17_) 0,
m ( t/) T n t >

for a large enough value of N(P) we have that all the matrices of x € My, (Ok) where rank-drop could
happen are outside the support of g. Let us assume that N(P) is large enough for this to hold. Hence
whenever g(Sx) is non-zero, the span of wp (1), 7p(x2), ..., mp(zy) is of the same kp-dimension as the rank
of z. Using Lemma 9, we can rewrite our sum as

DY %'(”O(U)Z S g(B)BmIE (14 o(1)).

m=0zEM;xn(Ok) m=0z€M;xn(Ok)
rank(z)=m rank(z)=m

Since

In order to arrive at the row reduced echelon matrix formulation, observe that the following K-subspaces
of K*

W=20

Vi=Kzx

Vo =Kz + Ko

Vo = Kz1 + Kxo + Kag

satisfy that
dimg V; — dimg Vi1 € {0,1} for i € {1,2,...,n}.

Define I C {1,...,n} as those indices such that dimg V; — dimg V;—1 = 1. Then the vectors {x;};cs are a
basis of the K-span of {z;}7 ; and we conclude that # I = m. Furthermore for ¢ ¢ I we can uniquely find
coefficients {a;;}7_; C K such that

€T; = Z Qi Ty, aij:0f0rj¢lﬁ{1,2,...,jfl}.

JeIN{1,2,...,j—1}

For i € I, we may simply define a;; = d;; using the Kronecker-delta symbol.
This setup leads us to the rank factorization of € My, (K): the columns {z;};c; form a matrix
C € Mixm(K) and the coefficients {a;;}icq1,... n},jer form the transpose of D € M, (K) such that

.....

x=CD.

Observe that D is in row reduced echelon form. The matrices C' and D are uniquely determined among all
such decompositions. So we really obtain a bijection

DEJ\/Ian(K)7

TEMixn(OKk), : CEMixm(Ok),
D is duced echelon, § X .
{ rank(z)=m [ <7 P (D) = C-DEMixn(Ox)



With this in hand, we can rewrite our sum as

i > Y. 9(B-CD) g (14 o(1))

m=0 DEMypxn(K) CEMixm(Ok)
rank(D)=m C-DEMxn(OK)
D is row reduced echelon

We now observe that the condition C'- D € My, (Ok) defines a sublattice of Myx., (Ok) of index D(D)?.
Therefore, as N(P) increases, the inner sum converges to the Riemann integral of x +— g(xD) scaled by a
factor of ®(D)~* and we arrive at our result.

([l

The following reformulation of Theorem 10 will also be quite useful for us.

Corollary 11. In the same setting as Theorem 10, we have that as N(P) — oo,

% ) S o) ~>mZ:1 ) @(D)t/IEKWg(zD)dx.

A€L(P,s) \ve(A\{0})" DeMmxn(K)
rank(D)=m
D is row reduced echelon
D has no zero columns

3 Convergence of the higher moment formula

In this section, we explain how to establish convergence of the expression in the integral formula of Theorem
4 and thus convergence of the moments.

For this purpose, it is sufficient to consider the case when ¢ is the indicator function of a unit ball in
Kﬂt{”, since if the integral is bounded in this case then it should be bounded for all g € C.(K}%). The formula
can then be related to height zeta functions of Grassmannians and convergence follows from estimates of
W. Schmidt on points of bounded height in Grassmannians [27]. Of course, the more crucial case for us is
when g(z1,x2,...,2,) = 1p(z1) 15(x2) ..., where each 15 is the indicator function of some ball B C Kf,
however we postpone this discussion for now.

Lemma 12. Let g be the indicator function as described in the preceding paragraph and let V(d) denote the
volume of a d-dimensional unit ball. If D € My, xn(K) is a full-rank matriz, then we have that
/ g(xD)dzx = det(D; Myxm (Ok)) ™V (mt[K : Q)).
KfRXm
Here, we define det(D; Myym (Ok)) as the volume of the fundamental domain of the mt[K : Q]-dimensional
Z-lattice Myxn(Ok) - D.

Remark 13. Equivalently, det(D; Mixm(Ok)) is the (mt[K : Q])-dimensional volume of the image of a
unit cube in Kﬂtgm via x — xD. This image is a parellelepiped in KH%X” ~ RENIE:Q]

Proof. (of Lemma 12)
Observe that by the definition of the Riemann integral

/ g(zD)dzx = hH(l) gmtli:Q) Z g(e-zD)
Kpxm = 2EMiym (OK)
The sum is now counting the number of lattice points of e Miym(Ok) in the ball. O

Lemma 14. Suppose D € M, xn(K). Then
det(D; Mysm(Ox)) = det(D; Myym(OK))".

Here the left-hand side is the quantity described above and the right hand side is the analogous quantity
computing the volume of the fundamental domain of M1xm(Ok) - D C Mixn(Kgr) ~ K§.

10



3.1 Heights of subspaces

Let us recreate the height functions on K-subspaces of K as given in [27]. Consider the standard Pliicker
embedding

t:Gr(m,K") — P (ATK")
span (W1, Wa, ..., W) > [W1 Awa A -+ A wyy].
Here P(A™K™) = Gr(1, A" K™) is the mth exterior product (over K) of the vector space K™ and wy, . .., wpn,
are some K-linearly independent vectors inside K™. A constructive way to see this map is that if S €
Gr(m, K™) is generated by w1, ..., w,, then ¢(S) is the one-dimensional subspace generated by the m x m

minors of the n X m matrix whose columns are wi,...,w,,. We shall denote the norm of the fractional
Ok-ideal generated by z1,...,xy € K by:

N((ml,xg,...,xN» = N(0K$1+"'+0K$N)- (8)

Let 01,09,...,0(k.q) : K — C be all the complex embeddings of K. We can apply them coordinate-wise
and lift them as o1,...,0n5 : KV — C¥ for any N > 1. Now, for any projective space P(K"), we can define
the [2-height function as

H:P(KY) = Rs

1
9
[1'17 7$N]HN(<.’I]1,J]2,... ( )
We similarly define the [*°-height function:
Hy : P(KY) = Rsg
1 (K:Q]
T1,...,TN]| —> max |o;(z; 10
[ ! N] N((.’El,.’L'Q,...,,CEN)) - j:l...N| ( j)| ( )

Observe that both the heights defined above are well-defined functions on P(KY).

Enumerating the size-m subsets of {1,2,...,n}, we get an obvious identification P(A™K™) + P(K(m))
Using this, we can define the height of a subspace in Gr(m, K™) to be

H : GI‘(TI’L,K”) — Rzo
S s H(u(S))

and similarly,

Hyy - Gr(m,K") — RZO
S — Hw (u(S5))

Now, we are ready to state an important lemma, which is essentially Theorem 1 from [27].

Lemma 15. Suppose m < n. Let D € M,,xn(K) be a full-rank row reduced matriz and let S = DTK™ €
Gr(m, K™) be the m-dimensional subspace spanned by its rows. The height function H from Equation (11)
satisfies

H(S) = det(D; M1xm(0k)) - D(D).

Here det(D; M1xm(Ok)) is as defined in Lemma 14 and D (D) is as defined in Theorem 10.

Proof. A proof is given for the reader’s convenience in Appendix A. O

11



3.2 Relating the two types of heights

The following gives a relationship between the two types of heights defined in this section. This will be
useful for proving Poisson estimates later on in the paper.

Lemma 16. Let © = |11, 2,...,2x5] € P(KY). Then the following relation erists between heights defined
in Equation (9) and (10):

M (z) TR0 >[K:Q]

H(z)? > | Hy(2)®T + (N - 1) _
Hyy (z) O=1

where

N({x1,22,..., 2§V’

Here N(z;) denotes the norm of the ideal generated by x; and N is any strictly positive integer.

M(x) = (12)

Proof. Observe that the following is a convex function on R¥:

(zla---7$N) %1Og(ez1 + e*2 jL...JrezN)7

and hence we get that for z;; > 0
T

r N N r %
I (z) S
Jj=1 1

i=1 i=1 \j=

For maximum efficacy, before applying the above inequality, one should rearrange the inner sums in
the decreasing order. So we add the assumption that for each j, x1j > x2; > --- > x,;. Now, using the
arithmetic-mean-geometric-mean inequality on the last N — 1 terms on each of the » multiplicands, we get:

1 r
T(N—1)

<l

Y]

r N N r ” ' r N r
1(3) = | (1T [Tew] +o-0(IIIT+
Jj=1 1 j=1

i=1 i=1 \j= i=2j=1

3l

1
N NS
(Hi:l H;:l xij)
1
(H;:1 $1j) T(N—1)

= H :L'lj + (N — 1)
j=1

Now set r = [K : Q] and for each r let {z;1,%i2,...} be the numbers {|o(z1)|?, |o(z2)|?, ...} written
down in the decreasing order, with o : K — C being the ¢th embedding with respect to some enumeration.
This way, we have that

o:K—C

[[z= I max lo(@)l® = Hw(@)’N((z1,22,... 2n))%
e

So we reach the conclusion that

M (z) "0 >[K:Q]

H(z)? > | Hy(2)® + (N - 1) _
Hyy (z) ®O@®-D

Concerning the quantity M (z) we have:

12



Lemma 17. Let x = [v1,...,2n5] € P(KY). The quantity M (z) defined in Equation (12) is an integer at
least 1 if and only if z1---xN # 0 and zero otherwise. Moreover, M(x) = 1 implies that x; € OF for all i
(up to scaling, i.e. as an element of P(K™)) and if M(z) > 1 it equals the norm of a non-trivial ideal in

Ok.

Proof. For a prime ideal P C Ok, let vp(z) € Z be the P-adic valuation of € K. Then, we observe that

N(or,.oan)) = [ N(pyminmresvr e,

PCOk
P is prime

Note that the product is supported on finitely many primes. On the other hand

N(SCl - :L'N) = H N(P)Z7.:1N VP(Ii)'
PCOK
P is prime

So we get that
M(:L') = H N(’P)Zi:lmN vp(x;)—Nmin;=1... N Vp(zi).

PCOK
P is prime

All the exponents are positive integers. They are zero only when all the vp(z;) are equal to each other and
this is only possible if they differ at most by units. [l

3.3 Rational points of bounded height in Grassmannian varieties over number
fields

Lemma 12, Lemma 14, Lemma 15 and Theorem 10 yield the following.
Lemma 18. Let g be the indicator function 1p,, where Br is a ball in Kﬂtgx" of radius R. Then, we have

that

n

Z Z @(D)_t/EKtxmg(zD)d:c

m=1 DEJWan(K)
rank(D)=m
D is row reduced echelon
D has no zero columns

=1+ i Z(t;Gr(m,K™),H) - V(mt[K : Q])R™.

m=1

Here Z(t; Gr(m, K™), H) 1is the height zeta function defined as

1
Z(t;Gr(m,K™),H) = Z Sy
SeGr(m,K™)

To show the convergence of the right hand side in Theorem 10, it is sufficient to show that all the height
zeta functions in Lemma 18 converge. The asymptotic growth of points of bounded height on these varieties
has been established by Schmidt and we have from [27, Theorem 3]:

Theorem 19. (Schmidt, 1967) There exist constants Cq,Co > 0 depending only on n,m, K such that

CiT" <#{S e Gr(m,K") | H(S) < T} < CT"

Corollary 20. The height zeta functions Z(t; Gr(m, K™), H) converge when t > n + 1.

Proof. Define for n > 1

a = #{S € Gr(m, K™) | H(S) € [ —1,1)}.

13



Then Theorem 19 and Abel’s summation formula gives us that
ay T . T [ =] ;
Zl—t:<2al>T +/1 ;al Fdx
; —
< CoT t02/1 2"y
Here, the first term converges as T — oo since n — ¢t < —1 and the second term also converges since

n—t—1< -2 O

Corollary 21. The higher moment formula as given in Theorem 4 converges for t > n + 1. In particular,
as N(P) — oo in Theorem 10, the right side of (7) is a finite quantity.

4 Towards Poisson distribution

Going beyond convergence, we now turn towards establishing the limiting Poisson distribution. Let V(n)
henceforth denote the volume of the unit ball in dimension n > 1. The following identifies the main Poisson
term and is an adaptation of [8, Lemma 4]:

Lemma 22. Let ux denote the cyclic group of roots of unity in Ok . Let wix = # ux. Consider the set A,
form e {1,...,n} given by

Dijepx {0},
Am = {D S Man(K) ’D is in row-reduced echelon form of rank(D)_m} .

D has exactly one non-zero entry in each column

Let B C K}, denote a ball with respect to the norm given in Equation 3. Let g=1p®---®@1p : KH%X" —-R
be the n-fold indicator function of the ball in each coordinate. Restricting the higher moment formula as in
Theorems 4 or 10 to matrices in A,,, we obtain that

> 3 o)

tX
m=1DEA, TR ™

steDyis = wfeexp (~—— - Viilr - Q) ) i o (o v @1>)T .

Proof. Observe that for D € A,,, we have ©(D) = 1. Next, observe that B is invariant under the diagonal
action of pux on K} due to the choice of the quadratic form defining the ball. Therefore, for any units
a1,Q9,...,0, € px we have that

glonzy, oz, ..., anxy) = g1, 22, ..., Ty),

where px acts diagonally on K viewed as t copies of Kg. This implies that for any D € A,,, we must have
/ g(zD)dx = vol(B)™.
meK@X m

The combinatorial problem of counting # A,, is, up to multiplication by a power of wg, the same as that
of partitioning n columns into m sets. Therefore, we have that

n
#A, =wr ™ ,

} is the Stirling number of the second kind. Hence, setting V' = V(¢[K : Q]) gives

- " n " (n) V™
g(xD)dx = Vmw”m{ } = Wk { }—m

m=1D€eA,,

n
where
m

Now we invoke the following identity about Touchard polynomials and we are done:

S M
m r!

m=1

14



We now turn to studying and bounding the contributions of the rest of the terms. To that end, we
introduce the following notations for the remainder of the paper:

D;;eK,
A71n =<De Man(K> ’D is in row-reduced echelon form with rank(D)=m \ Am-
All the matrix entries are in pux U {0}

A2 = {D € Mypxn(K) \ Dis €K, } \ (AL U A4,,).

D is in row-reduced echelon form of rank(D)=m

Note that for m = 1 we have that A,, = A}n. For m > 2 we record here a standard estimate on volume
ratios:

Lemma 23. We have the estimates on volume ratios:

t[KQ " m-1
V(mt[K :Q]) _ F( 2 +1) _ UK QT gy
VK Q)™ (w + 1) mimtK:Ql+1 :
Proof. Straightforward by using honest upper and lower bounds in Stirling approximation. O

4.1 Matrices of type Al

In this subsection we obtain the following bound on the contribution of Al -type terms. These are the
terms for which the geometrical methods utilized by Rogers [8] generalize without much difficulty. The more
delicate terms, involving contributions from unit entries of infinite order, will be dealt with in Section 5.

Theorem 24. Consider the setup of Lemma 22. Let K be a number field and let n < t. We then have that
VEK Q)™ Y S D) [ glaD)ds < ()1,
m=1DeAL, K™

where the constant does not depend on n,m, K. If the number field K is also changing with n,m fized, the
constant C' grows at most polynomially in [K : Q.

We record a trivial count which reduces the proof to bounding the contribution of each individual matrix:

Lemma 25. We have that

i #AL < i {;}(1 + wg) (™™,
m=1 m=1

The following result, an adaptation of [8, Lemma 5], suffices for our purposes:

Lemma 26. Let f : K}, — R be the indicator function of a ball B of radius R > 0. Then, for any
ay, a2 € pi and a € K, we have that

1
VK : Q) PR

[, H@) ) + azy)dady < 2419,
KWXt
Proof. Since f is invariant under px, we can assume that the integral is
/ ) f(@)f(y) flay — z)dxdy, for some « € .
KRX‘Z

We can rewrite the above as

/Kt f)

R

([ st )
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The inner term is the intersectional volume of two translates of B, one centered at the origin and the other
at ay. By doing some elementary geometry (see Figure 1), one can see that

f(‘r)f(ay_l')dl‘:2V(N_1)RN/1 1) ap,
Ky

1 lleyll
2 R

where N = t[K : Q] and p is an integration parameter (see Figure 1). We understand the right hand side to
be 0 if ||ay|| > 2R.

Substituting this in our expression gives

<2V(N71)Rt[KCQ]) /K f) ( / .

Performing explicit computations as in [8, Lemma 5|, we find that this expression is bounded by

< 2V(N)2RN (BN,

Figure 1: Intersection of two balls. The base of the dotted line is at a distance of Rp from the origin.
Cutting the intersection along the dotted line gives a ball in one dimension less and has radius R+/1 — p2.
We integrate on the parameter p.

O
Lemma 27. For any z € K} and with the same setting as Lemma 26, we have
| @)+ aay + 2)dedy < [ | 7)) 1z + azy)dady.
KLRXZ KJEXAZ
Proof. Let z = (21, 22,...,2t) € K} and let 2/ = (2], 22,..., 2t), where 2] € Kg ~ R®™ & C%®" is equal to

z1 at all embeddings except one embedding ¢ : K — R or ¢ : K — C where it is equal to 0.

Thus we can write z = 7(z)e1 » + 2/ where 7 : K — R is the R-coordinate of z1 along o and e, is an
appropriate vector.

For the statement, we will prove the following inequality and the rest will follow suit:

L F@F@ o+ oy )dody < [ 1)) flons +any + )dady, (13)

tX2
KLR
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For z,y we analogously define ' = x — n(z)e1,, and ¢y’ =y — m(y)e1,o. Then the claim above will follow
from the claim that for any x,y € K}

F(@ +se10)f(Y +tero)f (a1 (2’ + se1 o) + ao(y + ter o) + 2) dsdt
RZ

< f@ +se10)f(y +tero)f (ar1(z' + se1 o) + as(y' + ter o) + 2') dsdt. (14)
RZ

Indeed, we can obtain (13) from (14) by integrating along z’, /.
To prove the last inequality, observe that if B C K} is the ball whose indicator function is f and if
PC K]tRX2 is 2-dimensional plane spanned by (e1,,,0) and (0, e ) then

(Bx B)N((@',y)) + P) C KL
is the area within a square centered at the point 2/, 9’ since
2" + serol|* = [[2'[|* + s* and [ly’ + tero]|* = [ly']|* + 2.
Furthermore, if E, C KH%XQ is the set whose indicator function is (x,y) — f(a1z + asy + 2), then
E.N((z',y")+ P) and E,. N ((«',y') + P)

are both 2-dimensional areas between two parallel lines and one is a translate of the other. Since the latter
area is symmetrical around (2’,y’) and the former may not be, we can conclude geometrically

vol((Bx BYNE,N((z',y')+ P)) <vol((Bx B)NE, N ((z',y) + P))

This shows that (14) must hold.
O

Proof of Theorem 24. Set N = ¢[K : Q] as before. By Lemma 25 it is enough to consider the contribution
of any D € AL .
For such matrices D, we claim that
1
V(N)_m—/ g(zD)dx < 2(¥3)N.
Q(D)t TEMyxm (Kr) ?

Indeed, recall that D is an m x n matrix with entries in px U {0} such that it has at least one column with
more than one entry. Hence, without loss of generality we can assume that D looks like

1 M1 .. *
1 125 *

1 * *

1 *

So if f is the indicator function of the ball as in the statement of Lemma 26, then we can write that for
z e K"

f(@D) = f(x1)f(x2) ... f(@m)f (121 + powa + ) -
< fl@r) . fem) f(r + pee +---)

Then, we can invoke Lemma 27 to get that

/ f(:cD)S/ F(z1) ... f(zn) f(przy + pows + - - )da
meKé’\X m
< [ Fen) e f e (i + )
The claim is therefore a consequence of Lemma 26. The contribution from these terms decays exponentially

as a result. The statement of the theorem then follows, given that # AL grows at most polynomially in the

degree d = [K : Q], whereas the term (@)N decays exponentially with d.
O
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5 Upper bounds on moments using Weil heights

We now turn to bounding the remaining terms in order to establish explicit formulas for moments of O-
lattices. Our aim is to establish such formulas while allowing the degree d = [K : Q] to vary as well.
Our results will involve lower bounds on the Weil height for algebraic numbers. Such bounds are closely
related to Lehmer’s problem-which is still open-however suitable bounds for our purposes are known in many
interesting and important cases.

5.1 Mahler measures and the Bogomolov property

For an algebraic number o € K *, recall that the Mahler measure (or unnormalised exponential Weil height)
is given by the product over the set of places My of K:

Hy (a) := H max{1, |a|,}.

vEMg

We also define, keeping only the infinite places, the closely related

Hy(a) = [] max{1,|o(e)]}

o:K—C

which will be more directly relevant for estimates in the Euclidean space associated to K. The two coincide
for algebraic integers and in general differ by a denominator. We also recall that the absolute Mahler
measure (or exponential Weil height) of an algebraic number « is given by Hyy(a)'/ 9¢8(®) and we shall
denote by

h(a) = log(Hyy ()1 45

the Weil height of an algebraic number. For non-integers, we shall also write oo () for log(Ha (ar)t/ de8(@)),

Remark 28. Note that the absolute Mahler measure and Weil heights are independent of the subfield over
which one is considering an algebraic integer. That is, if B € K we have deg f = #{o : Q(8) — C} and

tog (I e max(L, [o(@)}) _ 108 (Toiagsyc max{ 1, lo(9)1})

(K : Q] [Q(8) : Q '

Lehmer’s famous problem asks for a uniform lower bound for h(a) deg(a). We shall consider algebraic
numbers related to the stronger property:

Definition 29. A subset S C Q is said to satisfy the Bogomolov property if there exists a constant C > 0
such that
h(a) > C

provided o € S has infinite multiplicative order.

_Throughout this section, we will therefore consider O g-lattices for towers of number fields inside a subset
of Q satisfying the Bogomolov property. In other words, we formulate the assumption:

Hypothesis 30. As K varies among the number fields considered, there exist uniform constants co > ¢1 > 0
such that the absolute (logarithmic) Weil heights satisfy

h(a) > ¢y fora € KX\ ux

and

hoo() = h(a) > ¢ for a € O \ {ux,0},

where g denotes the group of roots of unity contained in K.

We now recall some important examples from the literature when the Bogomolov property is satisfied.
The first result is a bound due to Schinzel [31]:

18



Theorem 31. Assume that an algebraic number a of infinite multiplicative order is contained in a totally

real field. Then, denoting by ¢ = # the golden ratio, we have

1
h(a) > 3 log v ~= 0.2406. ...

Moreover, the same is true for a in a CM field provided one (and equivalently, all) of its Archimedean
embeddings satisfy |a| # 1.

We therefore get that Theorem 31 also applies to algebraic integers in CM fields, however there exist
algebraic numbers which are not roots of unity but all of whose conjugates lie on the unit circle-in fact
the bound is violated for such numbers. We do, however, have for abelian extensions the bound due to
Amoroso-Dvornicich [32]:

Theorem 32. Assume that an algebraic number a of infinite multiplicative order is contained in an abelian
extension of Q. Then we have
log b

~0.1341....
12

h(e) =
We may therefore record as a special case:
Corollary 33. Any tower of cyclotomic fields satisfies Hypothesis 30 with constants cy = %1ogtp ~ 0.2406

and ¢; = %5 ~ 0.1341.

Even in the special case of cyclotomic fields these bounds are reasonably sharp, for instance in the field
Q(¢21) there is an algebraic number of height log(7)/12. Concerning Schinzel’s result, we already have
exceptions in the following range (see [33, Theorem 5.39]):

Theorem 34. Suppose that 8 is a cyclotomic integer. Then the only values for hoo(B) inside the interval
(0,0.27132] occur for = 2cos(2m/5), 2 cos(2w/7), 2 cos(27/60).

__ Beyond these results, the Bogomolov property is itself well-studied and we list a number of subsets of
Q satisfying it and leading to towers of number fields verifying Hypothesis 30. We refer the reader to [33,
Chapter 11] and [34] for more details.

e Generalizing the totally real case, Langevin [35] showed that the property holds for closed subsets of
C which do not contain the unit circle.

e Totally p-adic numbers or (infinite) Galois extensions with bounded local degree at some rational prime
p satisfy Bogomolov’s property (see [36] and [37, Theorem 2|).

e Generalizing the abelian case, Habegger [38] shows that fields obtained adjoining torsion points of
elliptic curves over Q have the Bogomolov property. Amoroso-David—Zannier show [34, Theorem 1.5.]
among others that infinite Galois extensions of a fixed number field with Galois group G have the
Bogomolov property provided that G has finite exponent modulo center.

We end our discussion with some height bounds that work for every number field, in particular we state E.
Dobrowolski’s asymptotic result [39, Theorem 1]:

Theorem 35. Let a be an algebraic integer of degree d, not zero or a root of unity, and let € > 0. Then for
d > d(e) we have that
1—¢ [loglogd 3
h(a) > . .
(@) 2 =3 ( log d >
Moreover, P.Voutier [40] showed that for any d > 2 we may take

1 loglogd 3
ha) > — - | ——— ) .
(@) = 4d < logd >

We therefore record the obvious but important remark:
Remark 36. Any fixed number field K satisfies Hypothesis 30 for suitable constants.

In particular, this will imply our limiting moment formulas established in this section are valid for any
fixed number field and large enough rank.
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5.2 Bounds for contributions from projective space

Throughout this section, M > 1 is a fixed integer and we write o = (a1, ...,an) € KM\ {0} as well as the
height:

Hoola) = H 1£nja<>§wmax(1,|a(aj)|)
o K—-C —° 7

which specializes to the (exponential) Weil height when M =1 and o € O¥. We also write
hoo(ar) = élogHoo(a)
and denote the norm # of the denominator ideal generated by a by
D(a) :=N(Og + 10 + -+ apyOx) . (15)

Observe that the inequalities: )
D(a)™' < N(ag---apy)™ < Hoo()

follow from the definitions when the «; # 0 and that we have the relation
D(a)-N({1,a1,...,ap)) =1

with the norm defined under (8).
Our main goal in this subsection is to examine for ¢ > M > 1 the sum

Sy = Z D(a) 'vol(BNnay;*BN---Nay B).

ac(Kx)M

This will yield upper bounds on the A2 -terms when m = 1 or can be viewed as bounding height zeta
functions for projective spaces instead of the full Grassmannian variety Gr(m, K™).

Lemma 37. The quantity N({(ag,...,an)) vol(ag'BNaj'BN---Nay}B) only depends on the class
[co @ -+ = apg] in projective space PM(K) modulo permutation of coordinates.

Proof. Multiplying by a scalar A € K scales the volume by N(\)~t whereas the index is scaled by N(A\). O

In particular, scaling by «; of maximal norm this implies that we may restrict our computations for Sy s
to the case where N (oai_l) > 1Vi. We shall use the following convex combination lemma to bound volumes
of intersections of scaled balls:

Lemma 38. Let M > 1 and suppose ag,a,...,ap € K*. Let B be an origin-centered ball of radius R in
the space K} with respect to the norm in Equation (3). Given that K* acts on K} diagonally, we have

M -3
vollagBNayBN---NayB) <vol(B)- min H (Z CZ'|O'(OAZ')|2> ,
Ei_iiozl o:K—C \i=0

where the minimum is over any real convexr combination of the a;.
Proof. We are calculating the volume of the intersections of the following ellipsoids (see Equation (3):

t
_ 2
x € K | A" th (vzjagm;) < R*}, asi€{0,1,...,M}
=1

Observe that for any {co,...,ca} € R>g such that ), ¢; = 1, we have that

M o, o, M
ﬂ x € Kh | A" Ztr (vzjaim;) < R* ) C o€ K| ALY Ztr <<Z ciaia_i> xjac_j> < R?
=0 j=1 j=1 i=0

4We slightly abuse notations by decreeing our norms of algebraic numbers are positive, ergo the norms of the ideal they
generate.
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The ellipsoid defined on the right side has volume given by

—t/2
vol(B) ] <Zci|a(o¢i)|2> .

o: K—C i

We are now in a position to connect the intersection volumes to Weil heights:

Lemma 39. Let ay,...,ap € K*. We have the bound:

R ) 5 N\ —dt/2
vol(BNayBN---NayB) - Hy(a)a + M - Hoo(a)" @ - N(avg « - - aipg) @7 /
vol(B) - M+1 '

Moreover, under the assumption that N(aq ---apr) > 1 we have for any k > 2:

2(k—1) _2(k—1) \ —dt/2
VOl(BﬂalBﬂ---ﬂOzMB) < —t Hoo(a) kd +MHoo(a) EMd
vol(B) - M+1

Proof. Lemma 38 together with Lemma 16 comparing heights yields the inequality

—1adt
vol(BNayBN---NayB) < Hoo(a)d + M - Hoo(a)~ @t - N(ay - - - apg)an
vol(B) - M+1 ’
where we also applied the bound in Lemma 17. To obtain the second formulation we now factor out
N(ag - - OzM)ﬁ and writing
_ 1
g () =

we have the bound

2 2 2 —dt/2
N oy [(Fosle)} 4 M Hecla s Non a7
1 M M+ 1

2 —dt/2
< Heo(a)a
S9m N(Oglu-aM)ﬁ )

using that N(ay - - - apr) > 1. Now observe that gy (z) is increasing for 2, M > 1 so that using the inequality
N(ag ---ay)™ < Hy(a) we can bound

oar (N(QHC"’(“)E ) > gur(Hoola) 5.

p)
1 "'CYM)’WLM

The claim follows.
O

Remark 40. The role of k in Lemma 39 and ensuing results is slightly artificial, but it allows us in later
results to take k large enough so that we can control the sum of volume ratios over units for small t while the
additional factor N(a)k;f\ti allows us to relate the sum Sy to a Dedekind zeta value. This leads to slightly
better results for small moments.

The following lemmas provide upper bounds for point counts in the unit lattice:

Lemma 41. Assume Hypothesis 30 and its notations. Consider the canonical log embedding: L : K* —
R™*72 defined by mapping
a > (logloy(a)l, ..., 210g o, 4r, ()]),
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as well as the function

h: RT1+T2 — Rzo
r1+7r2

x [K—@ : Z max(0, ;).
j=1

Then for any n € R™¥"2 with Z;g” nj =Y and any B > 0 we have that

ri+reo—1
B+ ¢o/2 + max(0, =-) o
00/2 ’

#{p € Ok | h(U+L(ﬂ))SB}SwK~<

Proof. Note that the factor of 2 at complex places in the definition of L ensures that L(OJ) is contained in
the hyperplane H := {x € R" "2 : Z;i” z; = 0}. Observe that h satisfies the triangle inequality and in
fact satisfies the properties of a semi-norm on H. Now by Hypothesis 30 we obtain for any 8 € Ok \ px
that

h(L(B)) = hoo(B) > co.

Let now P = {¢ € H : h(§) < ¢o/2}. We claim that for n € R™*"2 and f4, 82 € Of:

L(B) +n+P if B1Bs" € ux

(L(B1) +n+P)N(L(B2) +n+ P) = {Q) else.

To prove the claim, let y be in the intersection. Then by the triangle inequality we have that

h(L(By " B2)) < h(y — L(B1) —n) + h(L(B2) + 1 —y) < co

and therefore 516, e . Since L is a homomorphism to the additive group whose kernel is g the claim
follows.
Moreover, if for 8 € O we have that h(n + L(3)) < B, then L(8) + n + P is contained in the set

T1+72

Q={ecR": )" & =Y,h¢) < B+c/2}.

j=1

For any fixed 7, we thus obtain by the claim that

#{B € OkIh(n+ L(B)) < B} < wi -

where the volumes are computed with respect to the natural measure identifying the hyperspaces P and @
are in with R71+72—1,

For 7 such that Y = Z;;Tz n; > 0, it is easy to see that the volume of @ is bounded by the volume of
Pg={£€ H:h(&) <co/2+ B}. Thus we bound the desired unit count by

vol(Pg) LM vol{§ € H : h(§) < co/2+ B})
vol(P) K vol({€ € H : h(€) < ¢o/2})

WK -

Since H is an R-vector space of dimension r1 + 7o — 1 and h a semi-norm on that vector space, the result
follows for Y > 0.

When Y < 0, observe that 7} defined by 7; =n; — satisfies

_Y
r1+72

14712

> iy =0and h(#j) < h(n) + h(-725)-
j=1

Therefore, given that h(n + L(8)) < B implies h((7) + L(B)) < B + h(——=—), we may obtain an upper

14712
bound by running the same argument as in the first part of the proof with 7 instead of  and B + h(— Tlim)
instead of B. This settles the case of Y < 0 since h(fﬁ) =-Y/d. O
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Note that we also have the following inequality by definition:

Lemma 42. Let o € (K )M be an M-tuple of algebraic numbers. Then hoo(a) > maxi<i<M Poo(0t;).

Lemma 43. Assume Hypothesis 30 and its notations. Let o € (K*)M and B > 0. Then

—lo - (ri+ra2—1)
<B+co/2+max(o,%<l>)> e

#B € (O™ | halap) < By <wid - ]

1<i<M co/2

Proof. By Lemma 42, we have that
#{8 € (O | hoo(aB) < B} < #{0 € Ok | hoo(@if) < B}
1<i<M
We conclude by Lemma 41. O

Proposition 44. Assume Hypothesis 30 and its notations and fix k > 2. There exist positive constants
C,e1 > 0 uniformly bounded in d,t such that for all « € (K*)M \ 2! with N(a;) > 1 fori € [1,...,M] the
following holds: write

2y - M log(2 + 5)

0 — . )
d log(far(co(1— %))
where fy(x) = —ar and T s the rank of the unit group. en we have for any t > tg an
here f SR DA) g he rank of th Th have f d
any d > 1 that
(B -1Bn... -1B —t ¢
Z VO ( N (Oélﬂl> VOlr;B) N (OZI\/[/BM) ) <C- w}]\é{ . 1\1(04)W . D(O{)Z . efgl.d.(tfto).
Be(0)M
aBeuy!

Moreover, the constants can be made explicit. We may for instance take

g1 = %min{%,log(fM(%cl)),aM . #))}

and C =1+ N L where apr > 0 is small enough so that far(x) > e*M'® for x > ¢o/2.

_e—an-co-d(t—tg)(k—1)/(4k2)

Proof. We consider the function fy(x) := exP(zH%ff(*z/M) satisfying f1(z) = cosh(z), far(0) = 1 and
increasing exponentially for z > 0. We also abbreviate N(a) = [, N(c;). Then by Lemma 39 our task is

reduced to bounding for suitably chosen k£ > 2:

3 N(@ - far (heolaB) (2(1 - 1)) 7",
Be(O)M
aBg(pr)™

where hoo(af) = % - log(Hoo(a3)) reduces to the log Weil height for M = 1. Recall the ¢y defined in
Hypothesis 30. Since fj; is increasing it suffices to bound, for any S € Z~(, the sum

—dt/2

3 . neg(l — 1
e = D #{8 € (O | hoolap) € [, D[ 1. g, (%)

n=.S
together with the term with the contribution of the remaining units satisfying heo () < co/2:
¢ —dt/2
2= Y fur(heolaB) 21— 1))

pe(0 )™M
heo (aB)< G

So our goal is to show for appropriate constants C,e; that

Sk tEne<C- D(a)% ceerd(t=to)
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Let us examine the term Z‘I:V"[ . first. We have the bound on the number of units

#3 € (05) M |hoo(aB) < co/2} < wi.

Indeed, let 81 = (Bi1,...,B1m) and B2 = (B21,...,B2m) be in (Ox)M. Then, for we know that for each
j=1,2and each i =1,...,M we have hoo(;3;;) < 5. Then by the triangle inequality (c.f. Lemma 41),
we can show that hoo(ﬂfjlﬂgj) < ¢ so that 185" € (ur)™.

By assumption, since a8 ¢ ()™ there exists a constant ¢; such that

h(aB) = heo(afB) + é -log D(a) > ¢1 > 0.
Let us first assume that D(a) < exp(dc1/4). Then X3, is bounded by

WM (20— 1) (e — L log D)) TP < Wl far (2(1— 1) Be) TP < Wl - far (Ben) T

d
In the case when D(«) > exp(deci/4), we simply bound the contribution X9}, by observing that
dtc
D(a)_% < 671_61, so that these terms satisfy the bound claimed in the proposition.

We may now therefore turn to the remaining terms X5 ke Since, we asummed that N(«;) > 0, we know
that max(0, —3 log N(e;)) = 0. Lemma 43 therefore yields:

n (ri+re—1)M n _
(25H) u(% - eo(l= )"

M8

fe'e] M
EM,k <wg -
S

n

(ri4+re—1)M )

I

£
IS
NgE

(% + 2) fM(n+§71 -Co(l _ %))—dt/Q

n=1

o
< wi - Zfzw(% co(1—4))
n=1

§w%~;exp (n.OéM'CO(kal‘S)’-d(tto)) (16)

where ajs > 0 is a constant small enough so that fas(x) > e*™'® if 2 > ¢y/2 and where

2(7"1 + ro — 1)M 10g(% + 2)
0= Sup Stn-1 1
d neNs, log (fM(T co-(1—14))

for suitable k. The logarithm ratio decays as n increases and therefore it suffices to take

2(7"1 —+ T9 — 1)M 10g(% + 2)
to > : —.
d log(far(co(l = %))

Summing up the geometric series in (16) gives us

exp (7 G‘M'Cﬂ(kgi)'d(t*to))
0~ M
M =YK " anr-co(k—1)-d(t—to) |’
—&Xp\— 2kS

We chose to present the results for the choice of S = 2k.

5.3 Summing over ideals
It remains to sum the contributions in Proposition 44 over principal ideals. To that end, we have:

Lemma 45. Let J C Ok be an integral ideal. Then for any real t > 1 we have:

Y. NOT=NI) k()
Icg
Iintegral ideal
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Proof. The proof follows from the definitions since we are in a Dedekind domain: for instance writing the
prime decomposition J = [, P;, the left hand side becomes

Z N(T- HPi)it = N(H P Z N(I).

ICOxk ICOK
Tintegral ideal 7T integral ideal
O
We can now reformulate the m = 1 term for the n-th moment:
Proposition 46. Let ay,...,ap € K*. Then the m = 1 term in Theorem 10 is given for indicator

functions of balls by
Z D(a) " -vol(BNaiBN---NayB),

041,...041\4EKX

where D(a) is as defined in (15). Moreover, for any function fyr : K™ — R and any T € Rs1, the sum

Z D(a)fT~V01(BﬁalBﬁ~~~ﬂaMB)~fM(041,...,on)
aq,...ap €KX

equals:

(M > N > vol(BNaiBN---NayB) - fulas,...,an).
Iintlégr(gfideal oo €170}

Proof. For the first expression, it suffices to see that the index of {¢ € Ok : c-a; € Ok Vi} in Ok is equivalent
to the index of (a1,...,ap )"t N Ok in Ok, where (a1, ...,ay) denotes the fractional ideal generated by
the ;. Let now J denote the integral ideal (a1, ..., « M)’1 NOgk. To establish the equivalence of the second
expression, observe that for an integral ideal Z C Ok we have

A1,y...,00 eI leIc (al,...,aM)flﬂoK:j.
Thus in the second expression every tuple aq, ..., aps contributes

()™ > N@)Tvol(BnanBN--NanB) - far(on, ..., an).
Icg
7 integral ideal

In the first expression the contribution is N(J)~7 -vol(BNa;BN---NayB) - far(ai, ..., an). We conclude
by Lemma 45 that the two expressions are equal. [l

We can now put everything together:

Proposition 47. Assume Hypothesis 30 and its notations and fir k > 2. There exist positive constants
Chur,enr > 0 uniformly bounded in d,t such that the following holds: write

1
{/{M—i—l,QTK.M log(2 + 55) }’

2
2 d  log(farlco(1— 1))

to = sup
KeS

where far(x) = EXP(I)+I$[JFETP(7%) and rx is the rank of the unit group. For anyt >ty we then have:

3 _1yy. _t \M
Z D(a)~tvol(BNa;*BN---Nay B) < Ca-wi Cre (t(y Ck)()gth(kM)
K\1

() M\t

.e—em d(t—to) -vol(B).

We may moreover take
EM = %min{%,log(fM(%a)),OéM ‘ —60(1271)))}

and Cpyy = 2M +1)(1 + - ﬂM‘Co‘d(t{to)(kfl)/(%%), where apr > 0 is small enough so that fy(x) > e*M'®
—e
for x > co/2.
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Proof. After multiplying by a constant 2M, we may in addition assume that N(a;) > 1. Indeed we may cover
(K)M\ 4y by M sets on which N(«;) is smallest for some fixed 1 < i < M. By Lemma 37 and the ensuing
remark, for each such set the contribution is bounded by twice the contribution of {a € (K*)M \ pf :
N(o;) > 1Vi}. Using Proposition 44, we immediately obtain (constants C,e; as in 44):

Z D(a) 'vol(BNnay'BN---NayB)-vol(B) ' < C-wi - ecrd-(t—to)
ae(O)M\(nj )™
It remains to bound:

Z D(a) 'vol(BNnay;*BN---Nay B)-vol(B)™h.

ag(K)M\(0)M
N(ai)21

We apply Proposition 44 and deal with bounding (constants C,e; as in 44) the sum

Z C- D(oz)*lt N(a)k;sz ~D(a)i . e—er-d-(t—to).
ae(K*)M\(0)M

N(a.;)Zl
Using the Proposition 46 with 7' = %t, it therefore suffices to bound

Cr(3H)~- Z N(I)% Z N(a)k;fvtf eErd(t—to)

ICOk (7t X
7 integral ideal ai€( \{0})/0K
N(a.;)Zl

Now observe that the map o; — (;)-Z gives a bijection between (Z~1\{0})/O} and integral ideals J C O
in the ideal class of Z. We may therefore bound this expression by:

W@ Y N@F I Y NIZThTER ettty

ICOk 1<i<M JCOk
T integral ideal N(Z)<N(J)
and therefore as claimed by
CK(t(% - %)) CK(ﬁ)M . e—c1-d-(t—to)
k(%) '

We see that in particular taking k > 2 and ¢ > kM + 1/2 suffices for convergence of the zeta factors for any
given d and we obtain the explicit constants by setting Cpy = (2M + 1) - C and e = €7.
O

We therefore find:

Theorem 48. Let S denote any set of number fields satisfying Hypothesis 30 and let cy,cy denote the
resulting uniform constants. For any choice of k > 2 there exist positive constants Cyr,epr > 0 uniformly
bounded in d,t such that the following holds: write

( 1 2rg-M log(2 + 57) )

kM + =

to = sup 5 d  log(fa(co(l - )

Kes

where
xp(x)+M exp(—x/M
fI\/[(:I") =< p( ) I\/[e+1p( / )

and ry is the rank of the unit group. We then have for any t > tg and for any K € S of degree d:

> D(a)'vol(Bnay'BN---Nay B) = vol(B) - wy (1 +Cu - Z(K,t, M, k) - e*sM'd'“*tU)) ,
ag(K*x)M

where
0 Z(R.0,M.1) < Gt — ) - Gl - e

We may moreover take epr and Chyr as in Proposition 47.
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Proof. This follows from the previous proposition and the fact that vol(BNa~!'B) =vol(B) if a« € ugx. O

Remark 49. If we consider cyclotomic fields of increasing degree, we may take ¢y = 0.24 and for M =1
the condition on t is satisfied for to < 27,k = 26. For M = 2,3,4,5 we get ty < 97,213,372,576 and
k =48,70,92,115. As a function of M, a calculation shows that we have to < CM? for C ~22.18... as M
grows.

Note that wi = o(dM*1) so that we indeed obtain exponential decay of the error term and in particular
deduce a result for the second moment:

Corollary 50. Let S denote any set of number fields satisfying Hypothesis 30 and let co,c1 denote the
resulting uniform constant. Then for any choice of k > 2 there exist positive uniformly bounded constants
C,e > 0 such that the following holds: write

{ 1 2rg log(2+ gp) }

k+ o, =

to =
0 = sup 2" d log(cosh(co(1l — %))

Kes

where T s the rank of the unit group. We then have for any t > tg and for any K € S of degree d that the
second moment E[p(A)?] of the number of nonzero O -lattice points in a fived origin-centered ball of volume
V in K} satisfies:
V2 +wg -V <E[p(A)?]
<V%24wg V4+wk -C-Z(K t k) e =ttty

where 0 < Z(K,t, k) < QK(t(

We may moreover take €

— 1)) S (F) - Cx ()7
1 min(%, log(cosh(3c1 /4))), 22%=1)) and C =3 + - 3

_e—co-d(t—tg)(k—1)/(10k2) *

Proof. This follows from Theorem 48 for M = 1. The explicit constants can be obtained by bounding
2 .
cosh(z) > eb min(z,2%) O

See Corollary 3 for the ensuing second moment result for cyclotomic fields. To go beyond the second and
third moments we shall extend this approach in the next section.

5.4 General error estimates for A2 -type terms

In this section, we estimate the contributions of more general subspaces of dimension m to the integral
formula by reducing to our previous considerations for projective space. Recall from Section 4 the set of
matrices

D;;eK,
A72n =<De Man(K) D is in row-reduced echelon form of rank(D)=m p .
D has at least one entry €uxU{0}

The main result of this section is the following:
Theorem 51. Let S denote any set of number fields satisfying Hypothesis 30 and let cy,cy denote the

resulting uniform constants. Fixn and 2 < m < n. There exist explicit positive uniform constants Cs,es > 0
such that the following holds: write ty for

re(m?2+m) log(2+12cc! +2log(n —m) -c3b) r _
2n—m)- sup §m? 1, KT M) Jog@F 126+ 2Mog(n Zm) -y ) T g aip e

Kes d log (min{%, eser, cosh?’(cl)}) d

x ——=
e“+(n—m)e n—-m

where T is the rank of the unit group and fp_m(x) = We then have for any t > to and

14+n—m
for any K € S:
: . / f(zD)dz < Cs -w}?("_m)(td)mTil - Z(K,t,n,m) - e~es d(t=to)
m RPmtd . = ,t,n, ,
V(td)™Rmt D(D)t K

DeA2,
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with the zeta factor

e laganyt — e~ m) - k(=)

Cr(t—1)

m(n—m)

Z(K7 t’ n? m) =

Moreover, we may take
e
es = 4 log(min{%,e50%7 7, f,, . (3c1/4)}).
The constant Cs may also be chased down as a function depending only m,n,co,ci.

Remark 52. Note that despite the relatively ugly expression for the minimal rank to, we have that to(n) =
O(n®loglogn) as the moment n increases with a constant only depending on the choice of number fields S.

In order to prove the theorem, we will actually subdivide the A2 -terms as follows: write

D has exactly one non-zero entry per column

D;;eK,
2,0 _ D is in row-reduced echelon form of rank(D)=m
AZD =8 D € Myn(K) (D)=m 1
D has at least one entry ¢uxU{0}.

D has all entries of Weil height less than hg

Di]‘ eK,
2,h D is in row-reduced echelon form of rank(D)=m 2,0
A%mo =D € My sn(K) (D) \ A%0,
D has at least one entry ¢uxU{0}.

D;j;eK,
A%LOO = {D c Man(K) D is in row-reduced echelon form of rank(D)=m } \ A?T’LO

D has at least one entry of Weil height larger than hg

for a suitable choice of threshold height hg > 0. These sets clearly cover A2, and we show that the contribution
of each term decays exponentially.

Consider first the A2°-type terms. In this case, the contributions can via a separation of variables be
reduced to products of intersections of shifted balls as in subsection 5.2. We have thus already done all the
work and the results follow from Theorem 48. This in turn allows us to assume that D in A% has at
least one column with multiple entries. We prove the contributions of such terms decay similarly to Lemma
26 even for relatively small height by cherry-picking a particular column of D to which to apply estimates
(see Lemma 54). Finally, hq is chosen large enough so that the terms in A% have exponentially decaying
contributions purely for height reasons.

The following convex combination lemmas will allows us to handle the A2 and A%>-type terms.

Lemma 53. Let f : Kt — R be the indicator function of a ball of radius R > 0 and assume n > m > 2.
Then, for any (ci ;) € Mn—m)yxm(K), we have that

ng'“ f@r) o flom) [T FO2 cigmi)da - dap,
V(mt[K : Q])RmtK:Q

1 m
< (m41)™42 . min min H 1+ % Z Z |o(ai )]

1<k<n— [n—m]
sksn=m je("™) 5. x5e jeJ i=1

Proof. We will again use the idea of convex combinations, see Lemma 68 of the appendix for a slightly more
general result and an alternative derivation. Let ¢; € [0,1] for 1 < k < n be any coefficients satisfying
S, ¢k = 1. Then for (z1,...,7,) € K™ the conditions ||z1]| < R, , ||zm| < R and || Y70 a; 2 <
R for 1 < j <n —m imply that

n—m m
culedl® 4+ emllzn? + D crm - 1Y aigal® < B2 (17)
j=1 i=1

Equation (17) then defines an ellipsoid in Kﬁxm. The relevant quadratic form is scaled by a symmetric
matrix that in each copy of R™ looks like (after fixing one of the ¢ copies and an embedding o : K — C):
e+ 300" Crmo (e j)o(ar;) - S cirmo(an j)o(am, ;)

Ay = :

S im0 (@i m)o (i) em + 2] Cirmo(am )0 (am, ;)
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It therefore suffices to give a lower bound on det(A, ), since the volume ratio equals

[ vdeta) ™

o: K—C
We now make the choice of ¢; = -+ = ¢, = #ﬂ and may for j € J set ¢4 = m and take the

remaining convex coefficients to be zero. A bound on det(A,) may now be deduced from combinatorics. For
instance, it is known that the coefficient of 2™~ in det(z - Id +X) is the sum of the k x k principal minors
of a square matrix X. Writing A, = z-Id+X for z = 1/(m + 1) we see that X is a positive semidefinite
Hermitian matrix and therefore its principal minors are nonnegative. We thus obtain a lower bound by
keeping the terms in 2™ and 2™ ! resulting in the bound

det(Ag) > (m+1)"™(1+ = ZZwa”

]EJz 1

The result follows since this is valid for any choice of k non-pivot columns J.

Recall now that we write for nonzero o € (K*)M and for some integer M > 0 the height:

Halo)= [ sy, max(1,ofo,)]).
o:K—C

Lemma 54. Let D € My, xn(K) be a row-echelon matriz of rank m written as D = (Id,, | «) for entries
a;j € K. Let f: K}, = R be the indicator function of a ball of unit radius and assume n > m > 1. For any

fized column of (a)i; with ax,...,anm € K* denoting its non-zero entries we have the bound:
lefRnXt f(zl)f(xm)ny {nf(z 1az]zz)dz1 ~dxp,
V(K Q)™

< (4 T % (Hoo(@)? + MN(@)> D H ()7 ) 7,

where we abbreviate N(«) for N(ay -+ anr).

Proof. We induct on m. For any column j of («);;, first observe that we have the trivial bound

/K{{lm f(.%'1)f(l'm) ]];[1 f(izzlai,j$i)d$1-..d$m < /K{{lm f(.%'l Zalsz d$1 ~dx,;,

We shall prove by induction that the right hand side is bounded. When m = M = 1, the claimed bound is
a special case of Lemma 39. Let now m > 2 arbitrary. If M = m we apply Lemma 53 and reduce to a term
that looks like the height of the class (1: a7 : -+ : ) in projective space. Comparing heights as in Lemma
16 we then obtain the claimed bound. Finally, if M < m, writing x1, ...,z for the variables corresponding
to rows with non-zero entries in the j-th column we have:

Sicmwa f@a) - fom) (T2 cijai)day - dam [rems flaa) - Flea) f(OL, ciwi)day -+ daas
V(@K - Q)™ a V(t[K : Q)M
by separating variables. But the latter is bounded by exactly the desired term by induction. O

We also record the result taking into account all of the columns:

Lemma 55. Let D € My, xn(K) be a row-echelon matriz of rank m written as D = (Id,, | ) for entries
a;; € K, exactly M entries aq,...,an of them non-zero. Let f : K — R be the indicator function of a
ball of unit radius and assume n >m > 1. Then

fK{;Xff(xl)"'f(xm) H;l 1mf(21 1aw$1)d$1 ~dxp,
V(K : Q)™

< (m+1)mtd/2. V(t[K : QJm) ( 2-heo(\/ 75 M N( / 1 )2/(dM M hos (

_dt
2

—a)
VK Q)" )

where we abbreviate N(«) for N(aq « - - apg).
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Note that we use absolute heights in the statement to obtain the right result independently of whether

vn—me K.

Proof. We apply Lemma 53 for the full number of columns. This yields a term that looks like the height of

the class (1 : ,/ n_lmozl D n_lmaM) in projective space. Comparing heights as in Lemma 16 we then
obtain the claimed bound. |

We may now sum up these contributions over units to obtain similarly to Proposition 44:

Proposition 56. Assume Hypothesis 30 and its notations. Assume n > m > 2. There exist explicit positive
constants C,e1 > 0 uniform in d,t such that for all D = (Id,, | a;j) in A%, \ A2 the following holds: write

~ 2rg -m(m+1)(n—m) - log(2 4+ 12¢5 " + 2log(n —m) - g ")

to = )
0 dlog(s)
C
where T is the rank of the unit group and s = min(%, egl,cosh3(c1)) > 1 is a constant depending only on
the choice of number fields. Let f denote the indicator function of a ball of radius R and let ay,...,ap for

n—m+1<M <m(n—m) denote the nonzero entries of (a);j. Write Dg = (Id,, | Ba) for B € (O )M,
where we scale the nonzero entries o; — Pia; and D(«) is as defined in 15. Then for any t > to we have
the bound:

1
L Dp)dzy - - da,
V (td)ymRmd 2 o S @D)d e de
Be(O )M " TF
e _tm t +TkM
< C-w¥ . (tdr)™? - max(N(a) 7, N(a) 08 ) . D(q)2m+1) " ed . g=er-d-(t=to),

€1
Moreover, we may e.g. choose €1 = %log(mm{%, e3m+D cosh (¢1)}) and C = m.

Proof. The proof proceeds similar to Proposition 44 and uses Lemmas 54 and 55. We first record a count of
unit M-tuples 8 with bounded height after scaling by «. Note that D(«) € Z>1 by definition and moreover
for any 1 < i < M we have that

max(1,N(a;)™!) < D(e;) < D().

We may therefore apply Lemma 43 and bound

#{B € (O™ | §logHe(ap) < B}

IN

Wi [y

M —1 co \ TK
M (B-i—max(O,log(N(ozi) a ))+7)
i=1 2

IN

K - <o

. rx M
M <B+log(D(a>é>>+%) *
w
2

Note also that we will systematically use the bounds on the volume ratios involving unit balls in Lemma
“ﬁgf;;i,z ~ k~Ft4/2 will be factored into our estimates for

(k=1)/2
1 < k < m whereas the error term bound in the Stirling approximation pg(t,d) := % . ek/(6td)

23 when applying Lemma 54. The approximation

ultimately yields the factor (tdﬂ')m/ 2 in the statement of the proposition.
Type AZPo terms. We first estimate the sum for terms D € A20. We claim that since D € A2, \ A2°,
there exists a column of D with k non-zero entries a; = (a1, ..., ;i) satistying

N(a;) > N(a)¥ and (o ¢ (O%)" or k > 2.)

Indeed, consider the nonempty set J C {1,...,n} of columns with multiple non-zero entries. If all non-zero
entries of D outside of J are units, then we are done since Oj-entries have unit norm and thus the norm
condition is also satisfied for one of the columns of J. It remains to deal with the case when all the columns in
J fail the norm condition. But then the set J' C {1,--- ...,n}\ J of columns of D with exactly one non-unit

30



entry must be non-empty. Since at least one column in all of {1,--- ,n} must have the norm condition, in
this case it will be a column in J’. Hence we get a column with the desired property.

Let oj = (aj1,. .., ;) henceforth denote such a column with its & non-zero entries. Among the M
nonzero entries of D, the indices {j1,...,} pick out a k-element subset of {1,..., M}. Given 3 € (O5)M,
we shall therefore in what follows write «;3 for the k-tuple of algebraic numbers a; = (a1 851, - - -, @k Bik)-
We apply Lemma 54 to the column o in order to establish the proposition for terms in AZho,

This yields, incorporating the unit counts and Stirling approximation terms above:

nglm f(xDg)dzy - - - dxy,
Z V(td)mRmtd

pe(O)M
-
<+ M2t d) Y (HeolagB)F + kN(ay) - Hoo(as8) 7t )
pe(O )M
DBGAET'L}LO

dt

< (L4 )M2 - pi(t,d) - #{8 € (O)M | §log Hoo(ejB) < ho} - filey) ™

ho +log(D (@) )) + %’)TKM o)™
J

o ’
2

< (1 M2 pr(td) - wif - (

(k=1)/
writing pg(t,d) = % - ek/(6td) and setting

&
[V

k .

frla;) = min  Huo(a;B)d + kN(a;) @ - Hoo (o 8)

We wish to give a lower bound on fi(«;). To that end, recall that by Hypothesis 30 there is a lower bound
Hoo(jB) - D(aj) = Hoo(j B) - D(cjB) > e (18)

for some ¢; > 0 as long as o; 3 ¢ uk-. Moreover we remark that by definition D(a;) < D(«). We distinguish
two cases:

Case 1: The denominators are large so that D(«;) > e3de1 or we have at least k > 2 non-zero entries
(a1, .., k). We then simply bound fi(c;) by taking its minimum as a function of the Weil height.
It occurs when the equality

Heoo(a;)F = N(ay) 750

is satisfied and we obtain that

fk(aj)f% < N(aj)_k‘%l (14 k)~2% together with (D(aj) > 59 or k> 2) .

We therefore have in the case where D(a;) > ezl that

td
2

_a i e St _a (k+1)*=1)
(14 )" fi(ay)™% - D(a) 207D < N(ay) 71 -e 2 () <T)

If £ =1, this gives us
1\ktd/2 A ) mt+1 N . _%‘(3 ncml+1 )
(1+k) fk(aj) D(O‘) ( ) SN(aJ) € ( )

otherwise we know that

1
> e3%1 or k > 2, we can conclude

C1

L)kd/2 | p (o)~ % - D(a)” TTD Vit s min(10s(3) 350my)
(1+%) fe(ag)™2 - D(a) 20m+D < N(ay) =T -e (m+1) ),
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Thus, taking into account that N(«;) > N(a) 77, we get that for any k > 1
N(a;) ™ > N(a) 77 > min(N(a) 777, N(a) 7).
where we upper or lower bound the exponent depending on whether N(«) < 1 or not. So we have

dt

1y\ktd/2 N4 —2(mt+1) o T . ‘%‘mi“(log(g)’s(éﬁrl))
(1+3) fr(ay) D(a) < max(N(a)27, N(a) D) - e :

Case 2: The denominators satisfy D(«;) < e3dc and k = 1. Then note that by our assumptions aj; ¢ O
and therefore for any 8 € O} we have that a;3 ¢ ux. Hence we deduce via (18) that He(a;3) >
e2dc1/3  Moreover, we may rewrite

. % Hoo(aﬂ)
o) = min <N<aj>2 g <7N(aj ﬁ;1/4>) for g(x)
DgeA2ho

I
8

v
+
8

LY\

and given that g is increasing in the range [1, co[ and Hoo(a;3) > N(o;5) we get
Hoo(ajﬂ) ( 3
- 3 Z oo (O 4)
g(N(ajﬁ)i 9 (Hoo(a;8)
so that we can bound

_dt _t Ldeyy—
(1+%)ktd/2'fk(04j) 2 < (aj) " .(1+%)ktd/2.g(62d ) dt/2

()™ 1 - cosh(ey)~%/2,
Taking into account that N(a;) > N(a)™ and k = 1, we can write
(14 )42 fi(a;)~% < N(a)~ 5 - cosh(cr) /2,
Putting all of these cases and bounds together, we obtain the upper bound on the volume ratio

Z ng,xt f(zDg)dzy - - dzp,
ﬁe(OX)M V(td)mRmtd
K

2,h
Dg EAm 0

_ —tm __t o P Co M
<3 pun(t,d) - max(N (@) T, N(@) 757) - D(a) T -} (““"g“)é_o S ) g,
2

) and S > 1 is given by

where pp, (t,d) = W . em/(6td

S = min{3, 3o ,cosh (¢1)}.

Note that the various values of S correspond to the cases when k& > 2, D(aj) > e3dct or the remaining case.
It now suffices to find ¢y large enough so that

ed
’

é co ’I“KM
ho +1og(D () ")) + 5 L§d/2 < gmerd(t=t) | D) e
Z <
?U
with €1 as in the statement of the proposition. By Jensen’s inequality we may bound

1 reM
ho + log(D () 7)) + < e rM rxM
( = 2 < oreM=l (H—i’?) +(—2 IOgD(a))
2

dCU
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and we examine how each individual term behaves with growing d,t. Viewed as a function in d > 1, we may
log D(a;)

estimate (%) <e e and therefore obtain
) r M -
<410gD(%‘>) < ()M Diay) (19)
dcg co
Jugoct 1 (@Dp)dor-dar, . g .
The upper bound on > Be(O)M < V) therefore holds as claimed in the proposition provided
Dg GAi'LhO
that 5 M
'K " 4 h
to > m - max {1og (E) ,log (2 + 46—2)} .

Note that for t > to we also have 3 - p,,(t,d) < (tdw)™'?. This concludes our dealings with the A%/ o-type
terms.
Type A2 terms. By Lemma 55, the sum

N = Z (mT)mtd/2<2h°°( mab) M N(a)?/@M) 3 oo(\/ )

Be(O)M
DBEA?);DO
- Z fKD;nxt f(zDg)dzy - - - dxp,
= el V(td)mRmtd
DBGAKZ"'LOO

provides an upper bound and it suffices to estimate ¥7° . For Dg € A2 we have by assumption that the
heights are bounded below by

(Oéﬂ) > 122})}(\4}1 (Oézﬂz) 2 ho.

2
N( )dZ\/I e 2n , We may rewrite

Abbreviating f,(z) = e?® +

(n—m)?
Sn = 2 (B2 (heo(yf72m08))
pe(O)M
DﬂEAi;'oo

Now observe that

log(v/n = m)-+hoo (77508) = Grrvrsrar ( > el Vi —m.log(|o(a;,)))) = hoo(aB).
o:K(v/n—m)—C

Hence, we know that for any B > 1

hoo(\/;—ma

and therefore we have the inclusion of sets

1
{ﬁ € (O)M | Dg € A%, hoo <\/ﬁaﬂ> < B}
C {ﬁ € (OIX()M | ho < élog(HOO (aB)) < B+ %log(n — m)} )

)SBéhm(aﬂ)§B+%log(n*m)

We may therefore bound the sum X7° by

oo

(L + 2™ 23" #{B € (0™ | ho < $log Hoo(aB) < ho + i} - frm(ho +1i— 1 — §log(n — m))~ %
=1
wp hotitlos(D() 1)+ 3 re . . w
<e Z “ fm(ho +i—1— 5log(n —m))™ 2,
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where for the second inequality we count units via Lemma 43 as before. The inequality
1
1 1 M
HOO(\/ nfmaﬂ) Z1\1( nfma)

fm(x)ZN(oa)ﬁ-ez for z =ho+i—1— $log(n —m) and i € N.

allows us to simply estimate

Using Jensen’s inequality and bounding the contribution of D(«) to unit counts as in Equation (19), we
therefore obtain

S0 < Wil N(@)#7 Y exp (— 2510 (hg +i— 2 — Llog(n —m)))
=1

where we have chosen

W M max{log (2—|— %(ho—i—i)) ,1og(c4—0)}
02— sup . i
d €231 ho 41— 2 — 5log(n —m)
Observe that the term in 7 = 1 attains the maximum. We may now make a choice of threshold height
ho =2+ 1log(n — m).
This yields the condition

2rg - M
to = TKT ‘log (24 12¢5 ! + 2log(n —m) - ¢ ).
The result follows by bookkeeping of all the bounds obtained, noting that we may bound log(S)~! <

(m + 1) log(s)~! for any m > 2. Similarly the explicit constants can be chased through the arguments. [
With this in hand, we are ready to tackle:

Proof of Theorem 51. First, note that it suffices to prove the statement fixing pivot columns and some
number M of nonzero entries in the last n —m columns of D. We have M > n —m and the contributions for
matrices in A%Y when M = n —m are dealt with in Proposition 47 (we apply it with M = n—m and k = 4).
All of these contributions must be taken into account when expliciting the constants in the asymptotic.
Second, we claim that
D(D) > D(a) =N ((1L,aq,...,an)) ",

where (a1,...,ap) are the non-zero entries of D in the non-pivot columns. Note that a sharper result can
be obtained by taking all of the Pliicker coordinates of D into account, see Part 2. of Proposition 66, but the
claim suffices for our purposes. To prove the claim, observe that ©(D) is by definition the index as a sub-

lattice of O of the set of (c1, ..., ¢m) € O such that for each column 1 < 4 < n we have Z;":l ¢;jDi; € Ok.
This amounts to a linear condition modulo the integral ideal I; = (1, ..., q;s) "' where il,...,is are the
indices of the subset of (a1,...,ap) in the i-th column of D. Considering multiple columns, (¢, ..., ¢p)

n—m

must lie in an intersection of hyperplanes modulo J =5 """ 41
that by construction the ¢; satisfy at least one linear equation

I; C Ok. For every prime p | J, we then get

m
Z ¢;D; =0 mod porde (/)
j=1
with at least one ¢; # 0 mod p°* 4 (/) In other words, this forces (c1,...,¢m) into the pre-image of a

hyperplane under the reduction map OF — (O /p°"d»(/))™ which then has index p°™d» (/). By the Chinese
remainder theorem, we therefore get that ®(D) > N(J). But we have that D(a) = N(J) and the claim
follows.

By the claim and Proposition 56, the proof of the theorem thus reduces to establishing convergence of

the sum
t re M

S max(N(a) @, N(a) 7). D(a)ZmD e . pa) .
ae(KX)M\ (0 )M
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Summing over ideals as in Proposition 47, it therefore suffices to bound

i RD MU A | D DR U ks

ICOk 1<i<M JCOk
I integral ideal

We see that this is bounded by Z(K,t,n,m) as claimed, and we record the additional condition on ¢ to
ensure convergence of the zeta values. The rest is keeping track of bounds on ¢ and explicit exponents for
the various cases.

O

5.5 General moments using the Bogomolov property
Summarizing the results of this section, we obtain the following main theorem:

Theorem 57. Let S denote any set of number fields satisfying Hypothesis 30 and let cg,c1 denote the
resulting uniform constants. Fix a moment n > 2. There exist constants 0 < Cs,es < oo uniform in d,t
such that the following holds: let ty denote

rgn(n+1)2 log(2+12¢; " 4 2log(n — 1) - ¢y ') 2rg(n —1) log(17/8)

sup ) : )
Kes d log (mm{ 575 eécl,coshg(cl)}) d log (fn-1(3¢0))
where fm(x) := M and rx is the rank of the unit group. We then have for any t > to and

for any K € S of degree d that the n-th moment E[p(A)"] of the number of nonzero O -lattice points in an
origin-centered ball of volume V in K}, satisfies:

—V/wk - r" r n
wie v/ Zg(%) < Elp(A)"]

r=0
2
n_ -2
< eVl S Dy O T ()T eSO (V4 1) Z( ),
r=0
1l L)) Cre ()T
where 0 < Z(K,t,n) = i (ot EQK((t—l))) Gzt Moreover, it suffices to take

£s =% log(mm{é eTiie fne1(Bar)}).
The constant Cs may as well be chased down explicitly in terms of n,es.

Proof. This follows from our previous results, namely the terms with m = 1 are dealt with in Theorem 48
(we simply put k = 4). The error terms in A2, for m > 2 are bounded via Theorem 51, keeping the values of
2 < m < n that give the worst bound on ty. The zeta factors from A2, are the larger ones. The contributions
of terms in AL for m > 2 decay exponentially by Theorem 24 and they are thus easily handled error terms.
Finally, the main term contributions for 2 < m < n — 1 are computed in Lemma 22. The explicit exponent
es is found by taking the smallest over all the different terms and the constant Cs can be chased down
similarly as an enumeration of cases as well as geometric sums bounded in terms of s and several counts,
such as Stirling numbers, which depend only on the moment. [l

A few comments on Theorem 57 are in order. First, the bound on ¢ is to = O(n? loglogn) as n increases
with an implicit constant only depending on the number fields. For specific setups, especially for small
moments where the contributions are covered in Theorem 48, the bound as well as the zeta factor can be
sharpened slightly. Similarly, the explicit exponent may be optimised; Theorem 57 emphasizes a general
result for reasonable and explicit bounds, and we make no claim as to optimality of these. Recall also that
wr = O(dloglogd) so that the theorem indeed exhibits exponential decay in d, ¢ of the non-Poisson terms
provided the zeta factors do not grow exponentially in d.

Second, one may trivially take S to be a constant number field K. Hypothesis 30 is then satisfied and
we obtain convergence of the moments of the number of wg-tuples of lattice points inside a ball of volume
V towards the moments of a Poisson distribution of mean V/wyg for any number field K and large enough
number of copies t. We record a version of this statement:
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Corollary 58. Let K be any number field of fixed degree d. Let cg,c1 denote the constants bounding the
Weil height on O and K as in 30 and fix a moment n > 2. Let ty be as in Theorem 57. We then have for
any t > to that the n-th moment E[p(A)"] of the number of nonzero O -lattice points in an origin-centered
ball of volume V in K}, satisfies:

wie V1o S DV wre) < Blp(A)]
r=0

< w?(er/wK Z T_'(V/CUK)T + O - t(n72)/2 . e*EK(t*to) . (V + 1)n71,
T
r=0

for constants Cx,ex > 0 uniform in t. Moreover, we may take

ex = 3 log(min{3, ez, f_1(3er)}).

The constant C'x may as well be chased down explicitly in terms of n,ex,wk and Dedekind zeta values of
K.

Third, it is not entirely trivial that for appropriately large fixed ¢, k the error term in Theorem 57 decays
exponentially in d due to the dependence on K of the zeta factor error terms Z (K, t,n, k) in Theorem 57,
which a priori could grow exponentially in d. Proving bounds in d for the growth does not appear trivial for
general number fields. For instance, using lattice-point estimate based methods such as the Dedekind-Weber
theorem to count ideals of bounded norm does not appear like a promising approach due to the fact that
the best known bounds on the error term for counts of ideals of bounded norm grows exponentially in d
(see, e.g., [41, Corollaire 1.3.]). Nevertheless, for specific towers of number fields one should be able to prove
the desired boundedness (or at least subexponential growth in d) for Dedekind zeta values. For instance we
have:

Lemma 59. Let K = Q((,) be a cyclotomic field of degree d = p(n). Let s > 1 be a real number. Then we
have that

(k(s) <C(s)

for some constants C(s) > 0 uniform in d.

Proof. We first claim that the Dedekind zeta function of cyclotomic fields Q({,) may be written as

(k(s) = ]___[ 1 eCip)

PCP (1 o ) iy 7
-ord
ps ordn,, p

where n, =n -p~¥»(") denotes the prime-to-p part of n.

The claim follows from examining for each Euler factor the splitting behaviour of primes above p based
on the factorization of the cyclotomic polynomial ®,,(z) modulo p. For instance, if p t n, the number of roots
of a factor of @, (z) modulo p coincides with the size of the orbit of Frobenius acting via multiplication-by-p
on (Z/nZ)*, and hence the result follows in this case. When p | n, the same applies to the subextension
Q(Cn,) unramified at p, and then the remaining extension K/Q((y,,) is totally ramified at p, and the claim
follows.

Using the claim, we have the following argument due to Danylo Radchenko: write (x(s) = T1T> where

1
T = ]___[ onp)

pln (1 _ 1 ordny, p

o oTdnp P

and

1
T2 = H p(n)

1 ordy, p
i (1 o)
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For Ts, we have that
p(n)

logTh, <« ZW

We write p(n) < n,ord, p > 1 and observe that the set {p°™dP} cp lies in {n +1,2n +1,...}. Since they
are simply different prime powers, there are no repetitions.

So we have

logTh < L + L + < !

O n e

612 ntr1)p ' @ntl)y =1
Now for T7,
(”p)
logT) <«
g1l Z (OI‘dnp )psordnpp

we again write p(n,) < np,ord,, p > 1 and use that pOrdnp P > n, so this gives us

1
log Ty < Z = Zpu;,(n).(sfl)
pln

pln v

Let k£ be the number of primes in n. Then the largest prime factor of n can be at most

k n st
logTh <« F <m) .

This tends to 0 as k — oo so it must be bounded. O

n < n
pip2--pr—1 — (k—1)!"
So we write

Finally, we make Theorem 57 more explicit for towers of cyclotomic fields:

Corollary 60. Consider a sequence of cyclotomic number fields given by K; = Q((k,) of degree d; = o(k;)
and let n > 2. Moreover let

tp = max {19n(n +1)?log(52 + 2 log(n — 1)), ("Llog(gﬁ‘)))}

log(fn 1(_0

where frn_1(x) := EXP(I)+(n71)exP(7ﬁ). There exists constants Cp,e, > 0 uniform in d;,t such that for
any t >ty and any degree d the n-th moment E[p(A)"] of the number of nonzero Ok -lattice points in an
origin-centered ball of volume V in K}, satisfies

n —V/wk, - r r n
wiee V3 D () < Bfp(A)"]
r=0

—2
wie eV Z () Gt (1) T ) (7 1y

ergo the moments of the number of wi,-tuples of nonzero lattice points approach the moments of a Poisson
distribution of mean V/wg, as dit — oo. Moreover, we may take

€n =3 10g(m1n{536n+247fn 1(12%5)})_

The constant C,, may as well be chased down explicitly in terms of n,ex and Dedekind zeta values of K.

Proof. The result follows from Theorem 57 using Corollary 33 and the resulting constants. With these
choices, some of the conditions on ty in Theorem 57 simplify. We bound the zeta factors in Theorem 57
uniformly in ¢(k;) by Lemma 59. O

Again we note that for low moments such as n = 2, 3 better bounds can be achieved, in particular because
we can reduce to contributions from projective space heights and Theorem 48. Moreover, as n becomes large,

% < 45n?* and it suffices to take to > 19n(n + 1)?log(52 + 22 log(n — 1)) in Corollary 60.
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6 Odds and ends

This section is devoted to a couple results and remarks complementing the results established in Section 5.

6.1 No limiting Poisson moments

Section 5 establishes that under some assumptions on height lower bounds, the n-th moments approach the
moments of a Poisson distribution even when varying the number fields for a fixed large enough number of
copies. We now show that in order to obtain such a behaviour, some assumption on the heights is necessary
by exhibiting sequences of number fields K for which moments do not converge to Poisson moments of the
expected parameters V/wg.

Lemma 61. Let B denote the unit ball in K}, and for « € K* denote by Hy (c) its Mahler measure. Then
_ vol(BNa~!B) _
D(a)"t - § J = — > E H £,
() vol(B) - w()

a€0) a€K X

Proof. We may without loss of generality assume o € O. In each of the ¢ copies of Kr and for each nonzero
a € Ok, the origin-centered ellipsoid of lengths

min(1,|oq(a)]), ..., min(1,|oq(a)]),

where o1, ...,04 are the embeddings K — C, is contained inside of BN a~'B. ([l

Note that this provides a lower bound for the second moment in termst of the height zeta function of
P}(K). We deduce:

Proposition 62. Let f, be a sequence of irreducible polynomials of degree n such that their Mahler measures
are uniformly bounded Vn. Let K,, := Q(f,) be the resulting sequence of number fields. Then for any fized
number of copies t > 2 there exists Cy > 0 such that over any number field K, the second moment satisfies

© 2
E[p(A)] > G+ wie, e S TV, )
" r!
r=0
Proof. From the integral formula, it suffices to show that Zaeoﬁ VOl(iT(Oé;lB) > (Ot + wg,, for some C; > 0
not depending on n. But this is clear from Lemma 61 and our assumptions on heights in K. O

Needless to say that similar results hold for higher moments as well. We also note that there are many
sequences satisfying the assumptions of Proposition 62. For example, one has limiting results for Mahler
measures such as (see [42]):

lim Heo(ay,) =1.3815..., where aj, — a,, +1 =0,

n—00

so where «, is a root of f,(z) =2™ —x + 1.

6.2 More general bodies

Although the bounds are more easily derived for indicator functions of balls, we can use spherical sym-
metrization to obtain results for more general bodies. The quantities appearing in the integral formula will
be largest in the spherical case, so that the upper bounds on moments are valid more generally. The same
methods as in Rogers’ work [8, Theorem 1,2] carry through, so we simply restate:

Theorem 63. Let g be a non-negative compactly supported Riemann integrable function on KD%X” and let
g* denote the function obtained by spherical symmetrization. Let g(A) and g*(A) denote the corresponding
lattice sum functions over mon-trivial lattice points. Then the moments over the space of unimodular Ok -
lattices or over the smaller sets satisfying mean value formulas as in Theorem 10 satisfy:

E[g(A)] = Elg™(A)]



and moreover if for each constant ¢ > 0 the set of points with g(x) > ¢ is convex we have that
E[g(A)*] < E[g*(A)*]
for all k > 4 as well.

Proof. Given the integral formula as in Theorems 4 and 10, this reduces to integral inequalities in Euclidean
space, and thus follows from the inequalities in [43] in the same way as [8, Theorems 1,2]. O

This yields the following version of the main theorem.

Theorem 64. Let S denote any set of number fields satisfying Hypothesis 30 and let cy,cy denote the
resulting uniform constants. Fix a moment n > 2. Let g be the characteristic function of a bounded, convex
set S in Kk of volume V', with the origin as centre and assume that S is fived by the coordinate-wise action
of a cyclic group un, C pr of order Ni. There exist explicit constants Cs,es > 0 uniform in d,t such that
the following holds: for to(S,n) as defined in Theorem 57 and for all t > to(S,n), we have

2
n

L. n—2
N -ma (V) S E[g(A)"] < Wit - mn(G=V) + Cs -wid (td) 2 -e7d070) (V4 1)1 Z(K 8, n).
Here my, is as defined in (1) and Z(K,t,n),Cs,es are as in Theorem 57.

Proof. The upper bound follows from Theorem 63 and from our results for the spherical case in Theorem
57. The lower bound follows by symmetry under py, in the same way as Lemma 22 establishes the lower
bound when S is a ball and invariant under the whole pg-action. |

Remark 65. The lower bound in Theorem 64 can be tightened for general bounded convex bodies. For
instance, for any chain of subgroups {£1} = G1 < --- < Gy = px and bounded convexr set S, we may
stratify S = LUF_|S; by setting

Se= ()9S and Siii= () gS\S;
9g€G 9€Gi1
for 1 <i <k. The lower bound can then be improved (in the notations of Theorem 64) to

k
S #GH™  ma ((92L) < E[g(A)")

i=1

by applying Theorem 64 to the G;-symmetrized and measurable sets S U ---U.S; and inclusion-exclusion.

39



A Proof of Lemma 15

It is clear what det(D)®D(D) on the right-hand side is measuring. Indeed, first note that

o DToOm
D) =# 2 =# K
D) {ve O | DTve O} DTO®RNO%
So we have that
DTon
D (D) det(D) det(D; M1xm(Ok))

S S | S—
DTOmR N O

is simply the volume of a parallelepiped spanning a Z-basis of the lattice A = DTOR N O% = DTK" N O}
(this equality holds since D” is column reduced and m < n). The following tells us that the height H(S) is
also calculating this volume.

Proposition 66. Suppose that wy,...,w, € K" are a set of K-linearly independent vectors spanning
a subspace S. Let A = O% N K. If we consider the lattice A' = Ogwi + Ogwa + -+ + Ogwyy,, then
[A:ANA)<ooand [N : ANA] <oco. So we have that

[A:A'NAJdet A =[A": AN AJdet A
We claim:

1. Set N = (") and [z1,...,zn] = 1(S) (as defined in §3.1). Then

[K:Q]
det A’ = H Z|az-(xj)|2.
. [A: AN NA]
WAAA S N((z1,...,zx)). (20)

Here the right hand side denotes the norm of the fractional ideal Ogx1 + -+ OgxN.

Proof of Claim 1:

Let us evaluate det A’. Fix a Z-basis a1, as,...,a, of Ok, where r = [K : Q]. A Z-basis of A’ is given
by ai1wi,a0w1, ..., GrW1, A1 W2, G2W2, - - ., ApW, ..., AW, G2Wy, - - -, G Wy, We will calculate the volume of
the parallelepiped spanned by these vectors with respect to the quadratic form in Equation 3. Observe that
for z,y € Ky

tr(2y) = Zoi(x)oi(y).

Let w; = (w1, Wiz, - .., win) € K™ If we define the rn X rm matrix
_al(alwu) al(arwn) al(alwml) al(arwml)_
or(arwir) ... op(awin) ... or(l@iwmr) ... or(@rwmr)
A=
o1(aiwin) ... oi(awin) ... o1(@Wmn) ... 01(ArWmn)
lor(a1wiy) ... op(arwin) .. Or(@Wmn) .. op(@rwmn) |

then it follows that
det A')? = AZ2mdet A* A.
K

We can expand the right hand side using the Cauchy-Binet theorem, obtaining that
det A*A= > |det(4))],

IC{1...rn}
#I=rm
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where A is the rm x rm minor of A with rows in I.
Each row of A is a complex embedding of the vector

(a;wjk) 1<i<r for some k € {1,...,n}.
1<j<m

We claim that the only I for which det(A)? could be non-zero are the ones where each embedding o; appears
exactly m times applied to various m-subsets of these n possible rows. That is, I C {1...rn} should be of
the form

I:|_| U{kr—r—i—i}, for some Jy, Ja, ..., Jr C{l,...,n}, # 1 =#Jo=---=#J, =m. (21)
i€l keld;

To observe this, note that if m’ > m then the following row-vectors are K-linearly dependent.

(w1k17 W2kyy * 5 Wmk, )7
(wlkza W2kyy * " Wmksy )’
(wlkm/ ) kam/ [ wmkm/ )

This implies that the following rows are Q-linearly dependent

(alwlkl gee ey a/’l‘wlk‘1a e )alwmlﬁa ... )a’r‘wmkl)a
(A1W1ky e vy QrWikyy 5 G1Winkys - - - s GrWinks, ),
(alwlkm/ PR aTwlkm/ y ;alwmkm/ ce ;arwmkm/ )7

and therefore if we apply invertible Q-linear maps in each coordinate of these rows then they remain Q-
linearly dependent. Hence, each o; will appear in no more than m rows associated to each and as a result 1
can only be of the form in Equation (21).

Suppose therefore that I is of the form in Equation (21) where the J; = {ki1, kia, ..., kim} C {1,...,n}.
Then up to permutation of rows, the matrix A; is given by

[o1(a1)o1(wiky,) .. oi(ar)or(wiky,) ... o1(a1)or(Wmky,) .- o1(ar)o1(Wmky, )]
o1(a1)o1(Wiky,) .. o1(ar)or(Wiky,) .- o1(a1)o1(Wmky,) oo 01(ar)01 (Winky,)
o1(ar)or(wik,,,) --. o1(ap)or(wik,,,) ... o1(a1)or(Wmky,,) - o1(ar)o1(Wmk,,, )

A=
or(ar)or(wik,,) ... orla)or(wik,) ... or(a)or(Wmk,) ... or(ar)or(Wnk,.,)
or(a)or(Wik,y) .. or(ar)or(Wik,) oo 0p(ar)or(Wmk,) - Or(ar)or (Wimk,y)
lor(a1)or(wik,,,) .. or(a)or(wig,,,) ... or(ap)or(Wmk,, ) ... or(ar)or(Wnk,.,, )]

Upon inspection, one can conclude that actually A; = W B where W and B are rm X rm matrices given
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—Ul(wlku) N 01 (wmku) ]
al(wlklm) Ul(wmklm)
W == )
or(Wik,,) .o  Or(Wmk.,)
I or(wig,,,) - or(Wmk,., )|
(01(a1) ... oi(a,) 1
o1(ar) ... oi(ay)
o1(a1) ... o1(ay)
o2(ar) ... o2(ay)
o2(ar) ... o2(ay)
B =
oa(ar) ... o2(ay)
or(ar) ... or(ay)
or(ar) ... or(ay)
I or(ar) ... or(a,)]

It then follows that | det B| = A% and thus as Jy, Ja, . .., J, go through all the possible m-subsets of {1,...,n}

> |detAI|2:A§<’"ﬁ >
=1

2

1§(z%§t§m [on(wir, )]

This settles the claim.
Proof of Claim 2:
We are given {(w;1, wsa, ..., win) ", € K™ Define W € My, xm(Ok) as

w11 w21 . Wm1

W21 w2 . Wm2
W =

Wm1 Wm2 e Wmn

Then A’ = WOP and A = WK™ N O
To prove this claim, it is sufficient to prove it for the case when {w;;} C Ok. Indeed, let us multiply W
by an integer x € Ok that can cancel all the denominators (i.e. k-w;; € Ok). Then note that kA’ C A'NA
and
[A": kA =N(x)™,
o we have A:ANA A:ANANAN NA: &N A kA
[A:ANA] _ [A:ANAA NA: &N _ [A: kA ~ A s kA N(R)
[AM:ANA] [AMNANAN A NA:RA] [N RN
This establishing the identity [A : kA'] = N((k™x1,...,k™zy)) would finish the proof.
Therefore, let us now assume without loss of generality that we have {w;;} C Ok and hence A’ C A. We
want to show that

N({(z1,...,zn)) = [A: N] = [WLO% - OF,

where W™1O% = {a = (a1,...,am) € K™ | Wa € O%}, which is an Og-module in K™. Let W be the
m x m minor of W by selecting a subset of rows J C {1,...,m} with #J = m. Then by multiplying by
adjoint matrices, it is clear that for a € K™

W-acOr =Wy -ac O =det(Wy) ac OF%.
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Define Z = (p) C Ok to be the ideal generated by

I detw,.
Je(["])
We see that if « € (%> = Z~1, then we have
Op W0k < (T,
since Z~! is the fractional ideal “inverse” of Z defined as T~ = {k € Ok | kI C Ok }. Note that Z~! is an
Ox-module and so is Z~! /Oxk. We are thus interested in simply calculating the number of solutions of
W-a=0 (modOk), a€ (I71/Or)™

In particular, we want to show that the number of solutions to this is equal, as in Equation (20), to

N((det W) scqa,...;m})-

#J=m

This calculation can be done locally, with respect to each prime ideal P dividing Z. Since Z is a principal
ideal, multiplication by the generator p gives us an isomorphism of Ox-modules as

7! OK
Ox I
Factoring Z = P{*PJ> ... P/> and writing the sum of ideals generated by the det W as PSPS2 ... P, we
have that 0 < e; < f; for each i € {1,...,s} and
7! OK
= N(P1)? N(P2)2 ... N(Ps)“.
0x =17 = NP N(P) (Ps)

Hence, the problem is reduced to showing that the number of solutions of the following is N(P)% for each
ie{l,...,s}.
W-a=0 (modP/), ae(Ox/P/Hm
This can be proved via induction as explained in [27, Lemma 4.5].

Remark 67. Observe that for any x1,...,xn € K, we get that the norm of the principal ideal generated by
Ti1,...,TN 1S
N ({21, .. . 1=
(1, 2N)) max [wily

vEME
vfoo

B Convex combinations lemma

We record here a general lemma that was used in some special instances in the paper. We hope that future
literature around this topic could benefit from this idea.

Lemma 68. Let D € M,,xn(K) (not necessarily reduced) be a matriz given as

@11 (12 A1n
a1 29 N Aon

D= _ . (22)
1 Am2 N Amn

Let f: Kk — R be the indicator function of a unit ball. Then, we have that for any ci,...,c, € [0,1] such
that > ¢; =1

Ml«*

i) /WHf Z%%)dw < II (X @ elo@eunn)?)

i=1 o:K—C JE n])

Here the product on the right is over d = r1 + 2ry embeddings of K into C.
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Proof. Let x = (z1,...,2m) € (K£)™. The integral is computing the volume of the set in (K})™ satisfying

lani@i+ -+ armen|? < 1,

lorozr+ -+ a2mﬂﬁm||2 <1,

||041n.’L'1+ R CY’mn$7n||2 S 1.

Adding all of these together with a weight of ¢; assigned to each respective condition, we get

n

Y cillayz + -+ amgan|® < 1. (23)
j=1

This means that the set whose volume we are estimating is contained in the set of points satisfying inequality
(23). The latter defines an ellipsoid whose volume is given by

V(mtd)

Kt><7n ’
vol L
Orveciwi+...0g\/Crnwn

where wy,...,w, € K} are the columns of D.

Note that writing K5*™ ~ K" the quadratic form defined by (23) is actually ¢ copies of the quadratic
form in Kg* defined by the same equation but with zy,...,z,, € Ky’ instead. The result now follows from
Lemma 69. |

Lemma 69. Let D € My, xn(K) be a full-rank matriz, for example, the one given in Equation (22). Let
A C Ky be the O -module generated by the columns of D. Then, the covolume of this lattice is

[T (X lo@et(n)?)

oK —C e (ln)

m

N[

Here the product is d = r1 + 2ry embeddings of K — C and the inner sum is over all m x m minors of D.

Proof. Follows from Proposition 66, Part 1. [l
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