
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Distributed Optimization with Byzantine Robustness
Guarantees

Lie HE

Thèse n° 10 545

2023

Présentée le 7 décembre 2023

Prof. N. H. B. Flammarion, président du jury
Prof. M. Jaggi, directeur de thèse
Prof. D. Alistarh, rapporteur
Prof. P. Richtárik, rapporteur
Prof. R. Guerraoui, rapporteur

Faculté informatique et communications
Laboratoire d’apprentissage automatique et d’optimisation
Programme doctoral en informatique et communications

I would like to dedicate this thesis to my loving parents and wife. . .

Acknowledgements

I am profoundly indebted to my parents, whose bravery and relentless hard work have not only
provided me with opportunities but also instilled in me the drive and persistence needed to
pursue academic research. I am also immensely grateful to my beloved wife, whose unwavering
support, patience, and love has been my cornerstone. I extend my deepest gratitude to Martin
for his enduring patience, encouragement, and invaluable supervision over the years. Without
his understanding and flexibility, I couldn’t have balanced my academic responsibilities with
family commitments.

I wish to express my heartfelt appreciation to my extraordinary collaborators: Praneeth,
Yatao, Thijs, Anastasia, Tao, and Sebastian. Their diverse expertise and constructive feedback
have not only enriched the quality and scope of my research but also made the process thoroughly
enjoyable. Additionally, my sincere thanks go to Shiva, Ashish, and Zheng, with whom I had
the honor of collaborating during my internships and external engagements.

Lastly, I would like to extend my thanks to my office mates, Aditya and El Mahdi, as well
as other labmates and friends whom I have been fortune enough to encounter. The memories
we shared in this incredibly beautiful country are deeply cherished, and I will carry them with
me along my path forward.

Abstract

As modern machine learning continues to achieve unprecedented benchmarks, the resource
demands to train these advanced models grow drastically. This has led to a paradigm shift
towards distributed training. However, the presence of adversaries—whether malicious or
unintentional—complicates the training process. These attacks present notable security and
performance challenges. This thesis primarily focuses on enhancing the Byzantine robustness in
distributed machine learning. More precisely, we seek to enhance Byzantine robustness across
varying conditions, including heterogeneous data, decentralized communication, and preserving
input privacy. In this thesis, we formalize these problems and provide solutions backed by
theoretical guarantees.

Apart from Byzantine robustness, we investigate alternative communication schemes in
decentralized learning and methods for improving sample complexities in conditional stochastic
optimization (CSO). In decentralized learning, gossip is predominantly the communication
technique employed. However, it is susceptible to data heterogeneity and is slow to converge. We
introduce a novel relay mechanism implemented over the spanning tree of the communication
graph, offering independence of data heterogeneity. Lastly, in addressing the CSO problem, we
observe that its stochastic gradient possesses inherent bias stemming from the nested structure
of its objective. This bias contributes to an overhead in sample complexity. In this thesis, we
enhance the sample complexity by deploying variance reduction and bias correction methods.

Keywords Distributed optimization, Byzantine robustness, decentralized learning, input
privacy, bilevel optimization.

Résumé

Alors que l’apprentissage automatique moderne atteint constamment de nouveaux sommets, les
ressources nécessaires pour entraîner ces modèles avancés s’accroissent considérablement. Cela
a entraîné un changement vers l’entraînement distribué. Toutefois, la présence d’adversaires,
intentionnels ou non, complexifie ce processus d’entraînement. Ces menaces posent d’importants
défis en matière de sécurité et de performance. Cette thèse se focalise principalement sur
l’amélioration de la robustesse face aux attaques byzantines dans le cadre de l’apprentissage
automatique distribué. Plus spécifiquement, nous visons à renforcer cette robustesse dans divers
contextes, tels que la présence de données hétérogènes, la communication décentralisée, et la
protection de la confidentialité des données entrantes. Dans ce travail, nous formalisons ces
problématiques et proposons des solutions soutenues par des garanties théoriques.

Par ailleurs, au-delà de la robustesse byzantine, nous explorons des schémas de communication
alternatifs pour l’apprentissage décentralisé ainsi que des méthodes visant à optimiser la
complexité de l’échantillonnage dans le cadre de l’optimisation stochastique conditionnelle
(CSO). En matière d’apprentissage décentralisé, le "gossip" est généralement la méthode de
communication privilégiée. Or, elle est sujette à des problématiques d’hétérogénéité des données
et présente une convergence lente. Nous proposons donc un mécanisme de relais innovant,
basé sur l’arbre couvrant du graphique de communication, qui pallie ces limitations. Enfin,
concernant le problème du CSO, nous notons que son gradient stochastique est intrinsèquement
biaisé à cause de la structure imbriquée de son objectif. Ce biais entraîne une augmentation de
la complexité de l’échantillonnage. Ainsi, nous avons travaillé à améliorer cette complexité en
employant des méthodes de réduction de la variance et de correction du biais.

Mots clés Optimisation distribuée, robustesse byzantine, apprentissage décentralisé, confi-
dentialité des entrées, optimisation à deux niveaux.

Table of contents

1 Introduction 1

2 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing 5
2.1 Preface . 5
2.2 Introduction . 6
2.3 Related work . 8
2.4 Attacks against existing aggregation schemes 10

2.4.1 Failure on imbalanced data without Byzantine workers 10
2.4.2 Mimic attack on balanced data . 11

2.5 Constructing an agnostic robust aggregator using bucketing 11
2.5.1 Bucketing algorithm . 12
2.5.2 Agnostic robust aggregation . 13

2.6 Robust non-iid optimization using a robust aggregator 14
2.6.1 Algorithm description . 15
2.6.2 Convergence rates . 15
2.6.3 Lower bounds and the challenge of heterogeneity 16
2.6.4 Circumventing lower bounds using overparameterization 17

2.7 Experiments . 17
2.8 Conclusion . 20

3 Byzantine-robust decentralized learning via ClippedGossip 21
3.1 Preface . 21
3.2 Introduction . 22
3.3 Related work . 23
3.4 Setup . 24

3.4.1 Decentralized threat model . 24
3.4.2 Optimization assumptions . 26

3.5 Robust Decentralized Consensus . 26
3.5.1 The Clipped Gossip algorithm . 26
3.5.2 Lower bounds due to communication constraints 28

xii Table of contents

3.6 Robust Decentralized Optimization . 29
3.7 Experiments . 32

3.7.1 Decentralized defenses without attackers 32
3.7.2 Decentralized learning under more attacks and topologies. 34
3.7.3 Lower bound of optimization . 35

3.8 Discussion . 35

4 Secure Byzantine-Robust Machine Learning 37
4.1 Preface . 37
4.2 Introduction . 38
4.3 Problem setup, privacy, and robustness . 39
4.4 Secure aggregation protocol: two-server model 40

4.4.1 Non-robust secure aggregation . 41
4.4.2 Robust secure aggregation . 42
4.4.3 Salient features . 43

4.5 Theoretical guarantees . 44
4.5.1 Exactness . 44
4.5.2 Privacy . 45
4.5.3 Combining with differential privacy . 46

4.6 Empirical analysis of overhead . 47
4.7 Literature review . 48
4.8 Conclusion . 49

5 RelaySum for Decentralized Deep Learning on Heterogeneous Data 51
5.1 Preface . 51
5.2 Introduction . 52
5.3 Related work . 54
5.4 Method . 55
5.5 Theoretical analysis . 57
5.6 Experimental analysis and practical properties 60

5.6.1 Effect of network topology . 60
5.6.2 Spanning trees compared to other topologies 61
5.6.3 Effect of data heterogeneity in decentralized deep learning 61
5.6.4 Robustness to unreliable communication 62

5.7 Conclusion . 65

6 Debiasing Conditional Stochastic Optimization 67
6.1 Preface . 67
6.2 Introduction . 67
6.3 Stochastic Extrapolation as a Tool for Bias Correction 71

Table of contents xiii

6.4 Applying Stochastic Extrapolation in the CSO Problem 74
6.5 Applying Stochastic Extrapolation in the FCCO Problem 77
6.6 Applications . 79
6.7 Concluding Remarks . 80

7 Conclusion and Future Work 83

Appendix A Byzantine-robust Learning on Heterogeneous Dataset via Bucket-
ing 85
A.1 Experiment setup and additional experiments 85

A.1.1 Experiment setup . 85
A.1.2 Additional experiments . 87

A.2 Implementing the mimic attack . 91
A.3 Constructing a robust aggregator using bucketing 92

A.3.1 Supporting lemmas . 92
A.3.2 Proofs of robustness . 94

A.4 Lower bounds on non-iid data (Proof of Theorem 2.3) 98
A.5 Convergence of robust optimization on non-iid data (Theorems 2.2 and 2.4) . . 99

Appendix B Byzantine-robust decentralized learning via ClippedGossip 107
B.1 Existing robust aggregators . 107
B.2 Byzantine attacks in the decentralized environment 108

B.2.1 Existing attacks in federated learning . 108
B.2.2 Dissensus attack and other attacks in the decentralized environment . . 108

B.3 Topologies and mixing matrices . 110
B.3.1 Constrained topologies . 110
B.3.2 Constructing mixing matrices . 111

B.4 Experiments . 112
B.4.1 Byzantine-robust consensus . 112
B.4.2 Byzantine-robust decentralized optimization 113
B.4.3 Experiment: CIFAR-10 task . 117
B.4.4 Experiment for “Weaker topology assumption” 117
B.4.5 Experiment: choosing clipping radius . 118

B.5 Analysis . 120
B.5.1 Definitions, and inequalities . 120
B.5.2 Lemmas . 122
B.5.3 Proof of the main theorem . 132

B.6 Other related works and discussions . 137

xiv Table of contents

Appendix C Secure Byzantine-Robust Machine Learning 141
C.1 Proofs . 141
C.2 Notes on security . 144

C.2.1 Beaver’s MPC Protocol . 144
C.2.2 Notes on obtaining a secret share . 145
C.2.3 Computational indistinguishability . 145
C.2.4 Notes on the security of S2 . 146

C.3 Data ownership diagram . 147
C.4 Example: Two-server protocol with ByzantineSGD oracle 148
C.5 Additional experiments . 150

Appendix D RelaySum for Decentralized Deep Learning on Heterogeneous
Data 153
D.1 Convergence Analysis of RelaySGD . 153

D.1.1 Notation . 153
D.1.2 Technical Preliminaries . 154
D.1.3 Results of Theorem 5.1 . 161
D.1.4 Proof of Theorem 5.1 in the convex case 161
D.1.5 Proof of Theorem 5.1 in the strongly convex case 170
D.1.6 Proof of Theorem 5.1 in the non-convex case 171

D.2 Detailed experimental setup . 178
D.2.1 Cifar-10 . 178
D.2.2 ImageNet . 178
D.2.3 BERT finetuning . 178
D.2.4 Random quadratics . 178

D.3 Hyper-parameters and tuning details . 180
D.3.1 Cifar-10 . 180
D.3.2 ImageNet . 180
D.3.3 BERT finetuning . 181
D.3.4 Random quadratics . 181

D.4 Algorithmic details . 182
D.4.1 Learning-rate correction for RelaySGD 182
D.4.2 RelaySGD with momentum . 183
D.4.3 RelaySGD with Adam . 183
D.4.4 D2 with momentum . 183
D.4.5 Gradient Tracking . 184
D.4.6 Stochastic Gradient Push with the time-varying exponential topology . 184

D.5 Additional experiments on RelaySGD . 184
D.5.1 Rings vs double binary trees on Cifar-10 184

Table of contents xv

D.5.2 Scaling the number of workers on Cifar-10 185
D.5.3 Independence of heterogeneity . 186
D.5.4 Star topology . 186

D.6 RelaySum for distributed mean estimation . 187
D.7 Alternative optimizer based on RelaySum . 188

D.7.1 Theoretical analysis of RelaySGD/Grad 189
D.7.2 Empirical analysis of RelaySGD/Grad 194

Appendix E Debiasing Conditional Stochastic Optimization 197
E.1 Missing Pseudocodes . 197
E.2 Missing Details from § 6.2 . 197

E.2.1 Other Related Work . 197
E.3 Missing Details from § 6.3 . 199
E.4 Stationary Point Convergence Proofs from § 6.4 (CSO) 205

E.4.1 Helpful Lemmas . 205
E.4.2 Convergence of BSGD . 208
E.4.3 Convergence of E-BSGD . 211
E.4.4 Convergence of BSpiderBoost . 213
E.4.5 Convergence of E-BSpiderBoost . 218

E.5 Stationary Point Convergence Proofs from § 6.5 (FCCO) 220
E.5.1 E-BSpiderBoost for FCCO problem . 220
E.5.2 Convergence of NestedVR . 222
E.5.3 Convergence of E-NestedVR . 235

E.6 Missing Details from Section 2.7 . 241
E.6.1 Application of First-order MAML . 241
E.6.2 Application of Deep Average Precision Maximization 242
E.6.3 Necessity of Additional Smoothness Conditions 243

References 245

Curriculum Vitae 273

Chapter 1

Introduction

With the growing size of data and complexity of model, modern machine learning has gradually
reached and surpassed human-level performance across many applications [He et al., 2015].
Training such models requires an enormous amount of time and computational resources. For
example, the training of GPT-3, a language model with 175 billion parameters, costs 355 years of
GPU time [Brown et al., 2020]. This computational burden calls for distributed training, where
workers collaboratively compute and share updates. Crowdsourced datasets, being naturally
distributed across many clients, bring their own set of challenges, especially when they contain
sensitive information that needs to be kept private. Federated learning [Bonawitz et al., 2019;
Kairouz et al., 2019; McMahan et al., 2017a] provides a solution by promoting collaboration
while ensuring data remains localized. Nonetheless, in many scenarios, it is not feasible to
assume all participants will act honestly or adhere to protocols.

In distributed training, participants can inadvertently or maliciously harm performance.
For instance, a malicious worker in federated learning might send a very large gradient to the
server, causing the averaged vector to deviate significantly from the optimal and potentially
making the model diverge. Beyond malicious intent, hardware failures present challenges too;
bits in memory might randomly flip, leading to gradients changing signs. In crowdsourced
datasets, even human experts can mislabel data, impacting the quality of the gradients. These
adversaries are inherent in the distributed training process, and complicating the issue, one
cannot simply exclude these adversaries since their identities remain unknown. A systematic
approach is essential to address these challenges.

More precisely, these attacks can be characterized as Byzantine, marked by two defining
characteristics: the ability to deviate arbitrarily from established protocols and send arbitrary
messages [Pease et al., 1980a]. An ideal defense mechanism should be robust enough to counteract
any attack fitting this definition. Moreover, it should still1 benefit from collaborative training.
However, defending against Byzantine attacks is intricate and becomes even more so under
certain conditions. For example, when regular workers have heterogeneous data, the server
finds it challenging to differentiate between a Byzantine worker and a regular worker outlier. In

2 Introduction

decentralized training, where a central server is absent and regular workers communicate via a
defined communication topology, a Byzantine worker’s influence can markedly affect convergence,
with the degree of disruption often being contingent on the chosen topology. Ensuring Byzantine
robustness, particularly with theoretical guarantees, presents a substantial challenge.

Another potential risk in federated learning is that participants might access the privacy-
sensitive data of regular clients. While clients would like to benefit from collaborative learning,
they may not entirely trust the server. This mistrust is not unfounded; servers have the
capability to infer data from plaintext gradients [Zhu et al., 2019]. Given this backdrop, the
ideal approach would have servers aggregate gradients without directly interfacing with them,
a notion in line with the tenets of secure multiparty computation (SMPC). While Bonawitz
et al. [2017] have implemented a secure aggregation protocol that bolsters input privacy within
federated learning, the protocol’s functionality is primarily confined to computing the gradient’s
mean which doesn’t offer robustness. As a result, finding a defense compatible with SMPC
protocols continues to be a complex endeavor.

In this thesis, our primary focus is on the Byzantine robustness of distributed machine
learning. We endeavor to enhance robustness across various scenarios—ranging from heteroge-
neous data and decentralized environments to considerations of privacy—all while furnishing
theoretical guarantees. In addition to Byzantine robustness, our research extends to two distinct
optimization challenges, which we aim to address:

1. Data Heterogeneity in Decentralized Learning: In decentralized learning settings,
workers exchange model updates solely with neighboring workers, typically using a method
called gossip averaging. If the workers do not share same local stationary points, they do
not converge even when the starting point is a stationary point of the global objective.
This divergence, induced by data heterogeneity, compromises the convergence of gossip
averaging. Our focus, therefore, lies in developing alternative communication mechanisms
that are robust to the heterogeneity in data distribution across workers.

2. Bias in Conditional Stochastic Optimization Problems: In stochastic optimization,
the objective may involve two nested layers of randomness. One layer depends conditionally
on the other; for instance, in first-order model agnostic meta learning (MAML) [Finn
et al., 2017] a random task set is first selected, followed by random samples conditional on
the chosen tasks. Identifying stationary points in such landscapes is challenging due to
the biased nature of the stochastic gradients. To mitigate this, additional iterations or
samples are commonly required to achieve a desired level of precision. Our research aims
to identify methods that can effectively reduce this bias and improve sample complexity.

3

Outline of the thesis

Chapter 2 studies Byzantine robustness of federated learning in the presence of heterogeneous
data distribution. To address this setting, we introduce a bucketing scheme that seamlessly
adapts existing robust algorithms to heterogeneous datasets with negligible computational
overhead. Both theoretical and experimental results demonstrate the effectiveness of coupling
our bucketing strategy with established robust algorithms, particularly against challenging
attacks. Moreover, our research underscores the advantages of leveraging over-parameterized
models in tandem with robust aggregation rules for enhanced heterogeneous Byzantine robust
optimization.

Chapter 3 delves into the Byzantine robustness within decentralized learning environments. A
primary observation from our studies indicates that poorly connected communication topologies
can significantly amplify the detrimental effects of malicious actors. In response to this challenge,
we introduce ClippedGossip, an innovative algorithm designed to withstand Byzantine attacks
when the communication network maintains a reasonable level of connectivity. Notably, our
research establishes that in certain extreme scenarios, it’s impossible for any algorithm to
guarantee robustness. Additionally, we offer a strategic approach to enhance the robustness of
decentralized learning.

Chapter 4 explores defenses against both Byzantine and privacy adversaries. To address this
dual challenge, we present a multi-server based secure aggregation framework. This multi-server
system can leverage secret-sharing based SMPC protocols to implement robust aggregation
functions. It is thus capable of withstanding Byzantine attacks and honest-but-curious privacy
attacks. The performance of model remain same as non-private counterpart.

In Chapter 5 and Chapter 6, we pivot away from Byzantine robustness. Chapter 5 addresses
the issue of enhancing communication efficiency for decentralized learning, particularly when
faced with heterogeneous data. We propose RelaySGD, a novel algorithm that relays models
through spanning trees of a network without decaying their magnitude. This algorithm is not
only theoretically independent of data heterogeneity, but also high performing in deep learning
tasks.

In Chapter 6, we tackle the challenge of improving the sample complexity associated with
the conditional stochastic optimization (CSO) problem. The CSO problem is a generalized
bilevel optimization problem where the inner random variables conditioned on the outer random
variables. The CSO problem covers a wide range of applications, including instrumental variable
regression, first order MAML, etc. A unique challenge arises from its nested structure, which
results in a biased stochastic gradient, thereby increasing the sample complexities. In this
chapter, we first identify the source of the bias and then use variance reduction and bias-
correction methods to improve the sample complexity. We also extend our results to address
the finite-sum variant of CSO problem.

Chapter 2

Byzantine-robust Learning on
Heterogeneous Dataset via Bucketing

2.1 Preface

Contribution and sources. This chapter reproduces [Karimireddy et al., 2020a]. The author
conducted most of the experiments and came up with the initial idea for using bucketing.
Detailed individual contributions:

• Lie He (author): Conceptualization (50%), Software, Writing (original draft preparation 30
%)

• Sai Praneeth Karimireddy (co-first author): Conceptualization (50%), Methodology, Formal
analysis, Writing (original draft preparation 70 %)

• Martin Jaggi: Supervision, Administration, Writing (review and editing).

Summary. Algorithms for Byzantine robust distributed or federated learning typically
assume that the workers are identical. In such a case, using worker momentum is sufficient to
reduce the variance, and hence the inter-worker heterogeneity. However, in most real world
settings the workers data is heterogeneous (non-iid).

In this chapter, we will see how to design new attacks in such settings which circumvent
current defenses and lead to significant loss of performance. We then propose a simple buck-
eting scheme that adapts existing robust algorithms to heterogeneous datasets at a negligible
computational cost. We demonstrate (theoretically and experimentally) that combining buck-
eting with existing robust algorithms is effective against challenging attacks. Our work also
shows that having over-parameterized models, when combined with robust aggregation rules,
is very beneficial for heterogeneous Byzantine robust optimization. The code is available at
https://github.com/epfml/byzantine-robust-noniid-optimizer.

https://github.com/epfml/byzantine-robust-noniid-optimizer

6 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

2.2 Introduction

Distributed or federated machine learning, where the data is distributed across multiple workers,
has become an increasingly important learning paradigm both due to growing sizes of datasets,
as well as data privacy concerns. In such a setting, the workers collaborate to train a single
model without directly transmitting their training data [Bonawitz et al., 2019; Kairouz et al.,
2019; McMahan et al., 2017a]. However, by decentralizing the training across a vast number of
workers we potentially open ourselves to new security threats. Due to the presence of agents in
the network which are actively malicious, or simply due to system and network failures, some
workers may disobey the protocols and send arbitrary messages; such workers are also known as
Byzantine workers [Lamport et al., 2019]. Byzantine robust optimization algorithms attempt to
combine the updates received from the workers using robust aggregation rules and ensure that
the training is not impacted by the presence of a small number of malicious workers.

While this problem has received significant recent attention due to its importance, [Alistarh
et al., 2018; Blanchard et al., 2017; Karimireddy et al., 2021b; Yin et al., 2018b], most of
the current approaches assume that the data present on each different worker has identical
distribution. This assumption is very unrealistic in practice and heterogeneity is inherent in
distributed and federated learning [Kairouz et al., 2019]. In this work, we show that existing
Byzantine aggregation rules catastrophically fail with very simple attacks (or sometimes even
with no attacks) in realistic settings. We carefully examine the causes of these failures, and
propose a simple solution which provably solves the Byzantine resilient optimization problem
under heterogeneous workers.

Concretely, our contributions in this work are summarized below

• We show that when the data across workers is heterogeneous, existing aggregation rules
fail to converge, even when no Byzantine adversaries are present. We also propose a simple
new attack, mimic, which explicitly takes advantage of data heterogeneity and circumvents
median-based defenses. Together, these highlight the fragility of existing methods in real
world settings.

• We then propose a simple fix — a new bucketing step which can be used before any existing
aggregation rule. We introduce a formal notion of a robust aggregator (ARAgg) and prove
that existing methods like Krum, coordinate-wise median (CM), and geometric median
aka robust federated averaging (RFA)—though insufficient on their own—become provably
robust aggregators when augmented with our bucketing.

• We combine our notion of robust aggregator (ARAgg) with worker momentum to obtain
optimal rates for Byzantine robust optimization with matching lower bounds. Unfortunately,
our lower bounds imply that convergence to an exact optimum may not be possible due to
heterogeneity. We then circumvent this lower bound and show that when heterogeneity is

2.2 Introduction 7

mild (or when the model is overparameterized), we can in fact converge to an exact optimum.
This is the first result establishing convergence to the optimum for heterogeneous Byzantine
robust optimization.

• Finally, we evaluate the effect of the proposed techniques (bucketing and worker momentum)
against known and new attacks showcasing drastic improvement on realistic heterogeneously
distributed datasets.

Setup and notations. Consider a system comprising a single server and n workers. In each
iteration, every worker retrieves the latest model from the server, computes its local gradients,
and sends them back to the server synchronously. Subsequently, the server aggregates these
gradients and updates the model.

Threat model. We assume the presence of Byzantine workers within our system, who may
deviate from the designated protocol arbitrarily and transmit arbitrary messages [Allen-Zhu
et al., 2021b; Chen et al., 2018, 2017a; Guerraoui et al., 2018; Rajput et al., 2019; Xie et al.,
2019b; Yin et al., 2018a], aiming to undermine its performance. Although Byzantine workers
have the capability to transmit vectors with different shapes or in an asynchronous manner,
such vectors can be promptly detected and excluded. Consequently, our focus is directed
towards Byzantine workers transmitting vectors identical in shape to regular ones and do so
synchronously.

Remark 1. Byzantine workers, equipped with system knowledge, can access defense strategies,
data samples, communications between workers and servers, and observations of current and
past random variables on regular workers. However, they cannot directly alter the states on
regular workers, nor can they directly access the random seeds or future randomness on the
regular workers. The gradients on regular workers are still unbiased.

The set of good workers is denoted by VR ⊆ {1, . . . , n}. Our objective is to minimize

f(x) := 1
|VR|

∑
i∈VR

{
fi(x) := Eξi [Fi(x; ξi)]

}
(2.1)

where fi is the loss function on worker i defined over its own (heterogeneous) data distribution ξi.
The (stochastic) gradient computed by a good worker i ∈ VR over minibatch ξi is given as

gi(x, ξi) := ∇Fi(x; ξi). The noise in every stochastic gradient is independent, unbiased with
Eξi [gi(x, ξi)] = ∇fi(x), and has bounded variance Eξi∥gi(x, ξi)−∇fi(x)∥2 ≤ σ2. Further, we
assume that the data heterogeneity across the workers can be bounded as

Ej∼VR
∥∇fj(x)−∇f(x)∥2 ≤ ζ2 , ∀x .

We write gt
i or simply gi instead of gi(xt, ξti) when there is no ambiguity.

The set of Byzantine workers VB ⊂ [n] is fixed over time, with the remaining workers VR
being good, i.e. [n] = VB ⊎VR. We write δ for the fraction of Byzantine workers, |VB| =: q ≤ δn.

8 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

Our modeling assumes that the practitioner picks a value of δ ∈ [0, 0.5). This δ reflects the
level of robustness required. A choice of a large δ (say near 0.5) would mean that the system
is very robust and can tolerate a large fraction of attackers, but the algorithm becomes much
more conservative and slow. On the flip side, if the practitioner knows that the the number
of Byzantine agents are going to be few, they can pick a small δ (say 0.05–0.1) ensuring some
robustness with almost no impact on convergence. The choice of δ can also be formulated as how
expensive do we want to make an attack? To carry out a successful attack the attacker would
need to control δ fraction of all workers. We recommend implementations claiming robustness
be transparent about their choice of δ.

2.3 Related work

IID defenses. There has been a significant amount of recent work on the case when all workers
have identical data distributions. Blanchard et al. [2017] initiated the study of Byzantine
robust learning and proposed a distance-based aggregation approach Krum and extended to
[Damaskinos et al., 2019; Mhamdi et al., 2018]. Yin et al. [2018b] propose to use and analyze
the coordinate-wise median (CM), and Pillutla et al. [2019] use approximate geometric median.
Bernstein et al. [2019a] propose to use the signs of gradients and then aggregate them by
majority vote, however, Karimireddy et al. [2019] show that it may fail to converge. Most
recently, Alistarh et al. [2018]; Allen-Zhu et al. [2021a]; Karimireddy et al. [2021b]; Mhamdi
et al. [2021b] showcase how to use past gradients to more accurately filter iid Byzantine workers
and specifically time-coupled attacks. In particular, our work builds on top of [Karimireddy
et al., 2021b] and non-trivially extends to the non-iid setting.

IID vs. Non-IID attacks. For the iid setting, the state-of-the-art attacks are time-coupled
attacks [Baruch et al., 2019; Xie et al., 2019a]. These attacks introduce a small but consistent
bias at every step which is hard to detect in any particular round, but accumulates over time
and eventually leads to divergence, breaking most prior robust methods. Our work focuses on
developing attacks (and defenses) which specifically take advantages of the non-iid setting. The
non-iid setting also enables targeted backdoor attacks which are designed to take advantage of
heavy-tailed data [Bagdasaryan et al., 2020a; Bhagoji et al., 2019]. However, this is a challenging
and open problem [Sun et al., 2019; Wang et al., 2020]. Our focus is on the overall accuracy of
the trained model, not on any subproblem.

Non-IID defenses. The non-iid defenses are relatively under-examined. Ghosh et al.
[2019]; Sattler et al. [2020] use an outlier-robust clustering method. When the server has the
entire training dataset, the non-iid-ness is automatically addressed [Chen et al., 2018; Rajput
et al., 2019; Xie et al., 2019c]. Typical examples are parallel training of neural networks on
public cloud, or volunteer computing [Meeds et al., 2015; Miura and Harada, 2015]. Note
that Rajput et al. [2019] use hierarchical aggregation over “vote group” which is similar to the
bucketing techniques but their results are limited to the iid setting. However, none of these

2.3 Related work 9

methods are applicable to the standard federated learning. This is partially tackled in [Data and
Diggavi, 2020, 2021b] who analyze spectral methods for robust optimization. However, these
methods require Ω(d2) time, making them infeasible for large scale optimization. Li et al. [2019]
proposes an SGD variant (Rsa) with additional ℓp penalty which only works for strongly convex
objectives. In an independent recent work, Acharya et al. [2021] analyze geometric median (GM)
on non-iid data using sparsified gradients. However, they do not defend against time coupled
attacks, and their analysis neither proves convergence to the optimum nor recovers the standard
rate of SGD when δ→0. In contrast, our analysis of GM addresses both issues and is more
general. For decentralized training with non-iid data, a parallel work [El-Mhamdi et al., 2021]
considers asynchronous communication and unconstrained topologies and tolerates a maximum
number of Byzantine workers in their setting. However, no convergence rate is given. He et al.
[2022] consider decentralized training on constrained topologies and establish the consensus
and convergence theory for a clipping based algorithm which tolerates a δ-fraction of Byzantine
workers, limited by the spectral gap of the topology. Finally, Yang and Li [2021a] propose to
use bucketing for asynchronous Byzantine learning which is very similar to the bucketing trick
proposed in this paper for non-iid setup. 1

Strong growth condition. The assumption that

Ej∼VR
∥∇fj(x)−∇f(x)∥2 ≤ B2∥∇f(x)∥2

for some B ≥ 0 is also referred to as the strong growth condition [Schmidt and Roux, 2013]. This
has been extensively used to analyze and derive optimization algorithms for deep learning [Ma
et al., 2018; Meng et al., 2020; Schmidt and Roux, 2013; Vaswani et al., 2019a,b]. This line of
work shows that the strong growth assumption is both realistic and (perhaps more importantly)
useful in understanding optimization algorithms in deep learning. However, this is stronger
than the weak growth condition which states that Ej∼VR

∥∇fj(x)−∇f(x)∥2 ≤ B2(f(x)− f⋆)

for some B ≥ 0. For a smooth function f , the strong growth condition always implies the weak
growth condition. Further, for smooth convex functions this is equivalent to assuming that all
the workers functions {fi} share a common optimum, commonly known as interpolation. Our
work uses the stronger version of the growth condition and it remains open to extend our results
to the weaker version. This latter condition is strictly necessary for heterogeneous Byzantine
optimization [Gupta and Vaidya, 2020].

1The previous version of this work uses resampling which has identical performance as bucketing. The detailed
comparison is listed in § A.1.2.

10 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

2.4 Attacks against existing aggregation schemes

In this section we show that when the data across the workers is heterogeneous (non-iid), then
we can design simple new attacks which take advantage of the heterogeneity, leading to the
failure of existing aggregation schemes. We study three representative and widely used defenses:

Krum. For i ̸= j, let i→ j denote that xj belongs to the n− q − 2 closest vectors to xi.
Then,

Krum(x1, . . . ,xn) := argmin
i

∑
i→j ∥xi − xj∥2 .

Krum is computationally expensive, requiring O(n2) work by the server [Blanchard et al., 2017].
CM. Coordinate-wise median computes for the kth coordinate:

[CM(x1, . . . ,xn)]k := median([x1]k, . . . , [xn]k) = argmin
i

∑n
j=1 |[xi]k − [xj]k| .

Coordinate-wise median is fast to implement requiring only O(n) time [Chen et al., 2017b].
RFA. Robust federated averaging (RFA) computes the geometric median

RFA(x1, . . . ,xn) := argmin
v

∑n
i=1 ∥v − xi∥2 .

While the geometric median has no closed form solution, [Pillutla et al., 2019] approximate
it using multiple iterations of smoothed Weiszfeld algorithm, each of which requires O(n)
computation.

2.4.1 Failure on imbalanced data without Byzantine workers

We show that when the data amongst the workers is imbalanced, existing aggregation rules fail
even in the absence of any Byzantine workers. Algorithms like Krum select workers who are
representative of a majority of the workers by relying on statistics such as pairwise differences
between the various worker updates. Our key insight is that when the data across the workers
is heterogeneous, there is no single worker who is representative of the whole dataset. This is
because each worker computes their local gradient over vastly different local data.

Example. Suppose that there are 2n+1 workers with worker i holding (−1)i ∈ {±1}. This
means that the true mean is ≈ 0, but Krum, CM, and RFA will output ±1. This motivates
our next attack.

Hence, for convergence it is important to not only select a good (non-Byzantine) worker, but
also ensure that each of the good workers is selected with roughly equal frequency. In Table 2.1,
we demonstrate failures of such aggregators by training on MNIST with n=20 and no attackers
(δ=0). We construct an imbalanced dataset where each successive class has only a fraction
of samples of the previous class. We defer details of the experiments to § A.1. As we can see,
Krum, CM and RFA match the ideal performance of SGD in the iid case, but only attain less

2.5 Constructing an agnostic robust aggregator using bucketing 11

Table 2.1 Test accuracy (%) with no Byzantine
workers (δ=0) on imbalanced data.

Aggr iid non-iid

Avg 98.79±0.10 98.75±0.02
Krum 97.95±0.25 89.90±4.75
CM 97.72±0.22 80.36±0.05
RFA 98.62±0.08 82.60±0.84
CClip 98.78±0.10 98.78±0.06

Table 2.2 Test accuracy (%) under mimic attack
with δ = 0.2 fraction of Byzantine workers.

Aggr iid non-iid

Avg 93.20±0.21 92.73±0.32
Krum 90.36±0.25 37.33±6.78
CM 90.80±0.12 64.27±3.70
RFA 92.92±0.25 78.93±9.27
CClip 93.16±0.22 91.53±0.06

than 90% accuracy in the non-iid case. This corresponds to learning only the top 2–3 classes
and ignoring the rest.

A similar phenomenon was observed when using batch-size 1 in the iid case by [Karimireddy
et al., 2021b]. However, in the iid case this can be easily overcome by increasing the batch-size.
In contrast, when the data across the works is non-iid (e.g. split by class), increasing the
batch-size does not make the worker gradients any more similar and there remains a big drop in
performance. Finally, note that in Table 2.1 a hitherto new algorithm (CClip) maintains its
performance both in the iid and the non-iid setting. We will explore this in more detail in § 2.5.

2.4.2 Mimic attack on balanced data

Motivated by how data imbalance could lead to consistent errors in the aggregation rules and
significant loss in accuracy, in this section, we will propose a new attack mimic which specifically
tries to maximize the perceived data imbalance even if the original data is balanced.

Mimic attack. All Byzantine workers pick a good worker (say i⋆) to mimic and copy its
output (xt

i⋆
). This inserts a consistent bias towards over-emphasizing worker i⋆ and thus under-

representing other workers. Since the attacker simply mimics a good worker, it is impossible
to distinguish it from a real worker and hence it cannot be filtered out. Indeed, the target i⋆

can be any fixed good worker. In § A.2, we present an empirical rule to choose i⋆ and include
a simple example demonstrating how median based aggregators suffer from the heterogeneity
under mimic attack.

Table 2.2 shows the effectiveness of mimic attack even when the fraction of Byzantine nodes
is small (i.e. n = 25, |VB| = 5). Note that this attack specifically targets the non-iid nature of
the data—all robust aggregators maintain their performance in the iid setting and only suffer in
the non-iid setting. Their performance is in fact worse than even simply averaging. As predicted
by our example, Krum and CM have the worst performance and RFA performs slightly better.
We will discuss the remarkable performance of CClip in the next section.

2.5 Constructing an agnostic robust aggregator using bucketing

In § 2.4 we demonstrated how existing aggregation rules fail in realistic non-iid scenarios, with
and without attackers. In this section, we show how using bucketing can provably fix such

12 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

Algorithm 1 Robust Aggregation (ARAgg) using bucketing

1: input {x1, . . . ,xn}, s ∈ N, aggregation rule Aggr
2: pick random permutation π of [n]
3: compute yi ← 1

s

∑min(n , i·s)
k=(i−1)·s+1 xπ(k) for i = {1, . . . , ⌈n/s⌉}

4: output x̂← Aggr(y1, . . . ,y⌈n/s⌉) // aggregate after bucketing

aggregation rules. The underlying reason for this failure, as we saw previously, is that the
existing methods fixate on the contribution of only the most likely worker, and ignore the
contributions from the rest. To overcome this issue, we propose to use bucketing which ‘mixes’
the data from all the workers thereby reducing the chance of any subset of the data being
consistently ignored.

2.5.1 Bucketing algorithm

Given n inputs x1, . . . ,xn, we perform s-bucketing which randomly partitions them into ⌈n/s⌉
buckets with each bucket having no more than s elements. Then, the contents of each bucket are
averaged to construct {y1, . . . ,y⌈n/s⌉} which are then input to an aggregator Aggr. The details
are summarized in Algorithm 1. The key property of our approach is that after bucketing, the
resulting set of averaged {y1, . . . ,y⌈n/s⌉} are much more homogeneous (lower variance) than
the original inputs. Thus, when fed into existing aggregation schemes, the chance of success
increases. We formalize this in the following simple lemma.

Lemma 2.2 (Bucketing reduces variance). Suppose we are given n independent (but not
identical) random vectors {x1, . . . ,xn} such that a good subset VR ⊆ [n] of size at least |VR| ≥
n(1− δ) satisfies:

E∥xi − xj∥2 ≤ ρ2 , for any fixed i, j ∈ VR .

Define x̄ := 1
|VR|

∑
j∈VR

xj. Let the outputs after s-bucketing be {y1, . . . ,y⌈n/s⌉} and denote
ṼR ⊆ {1, . . . , ⌈n/s⌉} as a good bucket set where a good bucket contains only elements belonging
to VR. Then |ṼR| ≥ ⌈n/s⌉(1− δs) satisfies

E[yi] = E[x̄] and E∥yi − yj∥ ≤ ρ2/s for any fixed i, j ∈ ṼR .

The expectation in the above lemma is taken both over the random vectors as well as over
the randomness of the bucketing procedure.

Remark 3. Lemma 2.2 proves that after our bucketing procedure, we are left with outputs
yi which have i) pairwise variance reduced by s, and ii) potentially s times more fraction of
Byzantine vectors. Hence, bucketing trades off increasing influence of Byzantine inputs against
having more homogeneous vectors. Using s = 1 simply shuffles the inputs and leaves them
otherwise unchanged.

2.5 Constructing an agnostic robust aggregator using bucketing 13

2.5.2 Agnostic robust aggregation

We now define what it means for an agnostic robust aggregator to succeed.

Definition 2.1 ((δmax, c)-ARAgg). Suppose we are given input {x1, . . . ,xn} of which a subset
VR of size at least |VR| > (1− δ)n for δ ≤ δmax < 0.5 and satisfies E∥xi −xj∥2 ≤ ρ2 . Then, the
output x̂ of a Byzantine robust aggregator satisfies:

E∥x̂− x̄∥2 ≤ cδρ2 where x̂ = ARAggδ(x1, . . . ,xn) .

Further, ARAgg does not need to know ρ2 (only δ), and automatically adapts to any value ρ2.

Our robust aggregator is parameterized by δmax, denoting the maximum fraction of Byzan-
tine inputs it can tolerate. This threshold is bounded by the optimal breakdown point of
0.5 [Rousseeuw and Leroy, 2005]. The constant c governs the performance of the aggregator.
Systems equipped with such robust aggregator satisfy the Byzantine agreement property [Fischer
et al., 1986]: 1) agreement : all good workers agree on the aggregated x̂ dictated by the server;
2) validity : if all good workers have the same input (ρ = 0), then the output x̂ = x̄ is the same
as input. Moreover, if δ = 0, i.e. when there are no Byzantine inputs, we are guaranteed to
exactly recover the true average x̄. When both ρ > 0 and δ > 0, we recover the average up
to an additive error term. We also require that the robust aggregator is agnostic to the value
of ρ2 and automatically adjusts its output to the current ρ during training. The aggregator
can take δ as an input though. This property is very useful in the context of Byzantine robust
optimization since the variance ρ2 keeps changing over the training period, whereas the fraction
of Byzantine workers δ remains constant. This is a major difference from the definition used
in [Karimireddy et al., 2021b]. Note that Definition 2.1 is defined for both homogeneous and
heterogeneous data.

We next show that aggregators which we saw were not robust in § 2.4, can be made to
satisfy Definition 2.1 by combining with bucketing.

Theorem 2.1. Suppose we are given n inputs {x1, . . . ,xn} satisfying properties in Lemma 2.2
for some δ ≤ δmax, with δmax to be defined. Then, running Algorithm 1 with s = ⌊δmax/δ⌋ yields
the following:

• Krum: E∥Krum ◦Bucketing(x1, . . . ,xn)− x̄∥2 ≤ O(δρ2) with δmax < 1/4.
• Geometric median: E∥RFA ◦Bucketing(x1, . . . ,xn)− x̄∥2 ≤ O(δρ2) with δmax < 1/2.
• Coordinate-wise median: E∥CM ◦Bucketing(x1, . . . ,xn)− x̄∥2 ≤ O(dδρ2) with δmax <

1/2 .

Note that all these methods satisfy our notion of an agnostic Byzantine robust aggregator
(Definition 2.1). This is because both our bucketing procedures as well as the underlying
aggregators are independent of ρ2. Further, our error is O(δρ2) and is information theoretically
optimal, unlike previous analyses (e.g. Acharya et al. [2021]) who had an error of O(ρ2).

14 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

The error of CM depends on the dimension d which is problematic when d≫ n. However,
we suspect this is because we measure stochasticity using Euclidean norms instead of coordinate-
wise. In practice, we found that CM often outperforms Krum, with RFA outperforming them
both. Note that we select s = ⌊δmax/δ⌋ to ensure that after bucketing, we have the maximum
amount of Byzantine inputs tolerated by the method with (sδ) = δmax.

Remark 4 (1-step Centered clipping). The 1-step centered clipping aggregator (CClip) given
a clipping radius τ and an initial guess v of the average x̄ performs

CClip(x1, . . . ,xn) = v + 1
n

∑
i∈[n](xn − v)min(1 , τ/∥xn − v∥2) .

Karimireddy et al. [2021b] prove that CClip even without bucketing satisfies Definition 2.1
with δmax = 0.1, and c = O(1). This explains its good performance on non-iid data in § 2.4.
However, CClip is not agnostic since it requires clipping radius τ as an input which in turn
depends on ρ2. Devising a version of CClip which automatically adapts its clipping radius is
an important open question. Empirically however, we observe that simple rules for setting τ

work quite well—we always use τ = 10
1−β in our limited experiments where β is the coefficient of

momentum.

While we have shown how to construct a robust aggregator which satisfies some notion of a
robustness, we haven’t yet seen how this affects the Byzantine robust optimization problem.
We investigate this question theoretically in the next section and empirically in § 2.7.

2.6 Robust non-iid optimization using a robust aggregator

In this section, we study the problem of optimization in the presence of Byzantine workers and
heterogeneity, given access to any robust aggregator satisfying Definition 2.1. We then show that
data heterogeneity makes Byzantine robust optimization especially challenging and prove lower
bounds for the same. Finally, we see how mild heterogeneity, or sufficient overparameterization
can circumvent these lower bounds, obtaining convergence to the optimum.

Algorithm 2 Robust Optimization using any Agnostic Robust Aggregator
Require: ARAgg, η, β
1: for t = 1, . . . do
2: for worker i ∈ [n] in parallel
3: gi ← ∇Fi(x, ξi) and mi ← (1− β)gi + βmi ◃ worker momentum
4: send mi if i ∈ VR, else send ∗ if Byzantine
5: m̂ = ARAgg (m1, . . . ,mn) and x← x− ηm̂. ◃ update params using robust aggregate

2.6 Robust non-iid optimization using a robust aggregator 15

2.6.1 Algorithm description

In § 2.5 we saw that bucketing could tackle heterogeneity across the workers by reducing ζ2.
However, there still remains variance σ2 in the gradients within each worker since each worker
uses stochastic gradients. To reduce the effect of this variance, we rely on worker momentum.
Each worker sends their local worker momentum vector mi to be aggregated by ARAgg instead
of gi:

mt
i = βmt−1

i + (1− β)gi(x
t−1) for every i ∈ VR ,

xt = xt−1 − ηARAgg(mt
1, . . . ,m

t
n) .

This is equivalent to the usual momentum description up to a rescaling of step-size η. Intuitively,
using worker momentum mi averages over 1/(1−β) independent stochastic gradients gi and thus
reduces the effect of the within-worker-variance σ2 [Karimireddy et al., 2021b]. Note that the
resulting {mi} are still heterogeneous across the workers. This heterogeneity is the key challenge
we face.

2.6.2 Convergence rates

We now turn towards proving convergence rates for our bucketing aggregation method Algorithm 1
based on any existing aggregator Aggr. We will assume that for any fixed i ∈ VR

Eξi∥gi(x)−∇fi(x)∥
2 ≤ σ2 and Ej∼VR

∥∇fj(x)−∇f(x)∥2 ≤ ζ2 , ∀x . (2.2)

This first condition bounds the variance of the stochastic gradient within a worker whereas the
latter is a standard measure of inter-client heterogeneity in federated learning [Karimireddy
et al., 2020b; Khaled et al., 2020; Yu et al., 2019]. Under these conditions, we can prove the
following.

Theorem 2.2. Suppose we are given a (δmax, c)-ARAgg satisfying Definition 2.1, and n

workers of which a subset VR of size at least |VR| ≥ n(1− δ) faithfully follow the algorithm for
δ ≤ δmax. Further, for any good worker i ∈ VR let fi be a possibly non-convex function with
L-Lipschitz gradients, and the stochastic gradients on each worker be independent, unbiased and
satisfy (2.2). Then, for F 0 := f(x0)− f⋆, the output of Algorithm 2 satisfies

1
T

∑T
t=1 E∥∇f(xt−1)∥2 ≤ O

(
cδζ2 + σ

√
LF 0

T (cδ + 1/n) + LF 0

T

)
.

Remark 5 (Unified proofs). Remark 4 shows that CClip is a robust aggregator, and Theorem 2.1
shows Krum, RFA, and CM on combining with sufficient bucketing are all robust aggregators
satisfying Definition 2.1. Most of these methods had no end-to-end convergence guarantees prior

16 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

to our results. Thus, Theorem 2.2 gives the first unified analysis in both the iid and non-iid
settings.

When δ → 0 i.e. as we reduce the number of Byzantine workers, the above rate recovers
the optimal O(σ√

Tn
) rate for non-convex SGD and even has linear speed-up with respect to

the n workers. In contrast, all previous algorithms for non-iid data (e.g. [Acharya et al., 2021;
Data and Diggavi, 2021b]) do not improve their rates for decreasing values of δ. This is also
empirically reflected in § 2.4.1, where these algorithms are shown to fail even in the absence of
Byzantine workers (δ = 0).

Further, when ζ = 0 the rate above simplifies to O(σ√
T
·
√

cδ + 1/n) which matches the iid
Byzantine robust rates of [Karimireddy et al., 2021b]. In both cases we converge to the optimum
and can make the gradient arbitrarily small. However, when δ > 0 and ζ > 0, Theorem 2.2 only
shows convergence to a radius of O(

√
δζ) and not to the actual optimum. We will next explore

this limitation.

2.6.3 Lower bounds and the challenge of heterogeneity

Suppose worker j sends us an update which looks ‘weird’ and is very different from the updates
from the rest of the workers. This may be because worker j might be malicious and their update
represents an attempted attack. It may also be because worker j has highly non-representative
data. In the former case the update should be ignored, whereas in the latter the update represents
a valuable source of specialized data. However, it is impossible for the server to distinguish
between the two situations. The above argument can in fact be formalized to prove the following
lower bound.

Theorem 2.3. Given any optimization algorithm Alg, we can find n functions {f1(x),. . . ,
fn(x)} of which at least (1− δ)n are good (belong to VR), 1-smooth, µ-strongly convex functions,
and satisfy Ei∼VR

∥∇fi(x)−∇f(x)∥2 ≤ ζ2 such that the output of Alg has an error at least

E[f(Alg(f1, . . . , fn))− f⋆] ≥ Ω
(
δζ2

µ

)
and E∥∇f(Alg(f1, . . . , fn))∥2 ≥ Ω

(
δζ2
)
.

The expectation above is over the potential randomness of the algorithm. This theorem
unfortunately implies that it is impossible to converge to the true optimum in the presence of
Byzantine workers. Note that the above lower bound is information theoretic in nature and is
independent of how many gradients are computed or how long the algorithm is run.

Remark 6 (Matches lower bound). Suppose that we satisfy the heterogeneity condition (2.2)
with ζ2 > 0 and σ = 0. Then, the rate in Theorem 2.2 can be simplified to O

(
δζ2 + 1/T

)
.

While the second term in this decays to 0 with T , the first term remains, implying that we only
converge to a radius of

√
δζ around the optimum. However, this matches our lower bound result

from Theorem 2.3 and hence is in general unimprovable.

2.7 Experiments 17

This is a very strong negative result and seems to indicate that Byzantine robustness might
be impossible to achieve in real world federated learning. This would be major stumbling
block for deployment since the system would provably be vulnerable to attackers. We will next
carefully examine the lower bound and will attempt to circumvent it.

2.6.4 Circumventing lower bounds using overparameterization

We previously saw some strong impossibility results posed by heterogeneity. In this section, we
show that while indeed in the worst case being robust under heterogeneity is impossible, we may
still converge to the true optimum under more realistic settings. We consider an alternative
bound of (2.2):

Ej∼VR
∥∇fj(x)−∇f(x)∥2 ≤ B2∥∇f(x)∥2 , ∀x . (2.3)

Note that at the optimum x⋆ we have ∇f(x⋆) = 0, and hence this assumption implies that
∇fj(x⋆) = 0 for all j ∈ VR. This is satisfied if the model is sufficiently over-parameterized and
typically holds in most realistic settings [Vaswani et al., 2019a].

Theorem 2.4. Suppose we are given a (δmax, c)-ARAgg and n workers with loss functions
{f1, . . . , fn} satisfying the conditions in Theorem 2.2 with δ ≤ δmax and (2.3) for some B2 < 1

60cδ .
Then, for F 0 := f(x0)− f⋆, the output of Algorithm 2 satisfies

1
T

∑T
t=1 E∥∇f(xt−1)∥2 ≤ O

(
1

1−60cδB2 ·
(
σ

√
LF 0

T (cδ + 1/n) + LF 0

T

))
.

Remark 7 (Overparameterization fixes convergence). The rate in Theorem 2.4 not only goes
to 0 with T , but also matches that of the optimal iid rate of O(σ√

T
·
√

cδ + 1/n) [Karimireddy
et al., 2021b]. Thus, using a stronger heterogeneity assumption allows us to circumvent lower
bounds for the non-iid case and converge to a good solution even in the presence of Byzantine
workers. This is the first result of its kind, and takes a major step towards realistic and practical
robust algorithms.

In the overparameterized setting, we can be sure that we will able to simultaneously optimize
all worker’s losses. Hence, over time the agreement between all worker’s gradients increases.
This in turn makes any attempts by the attackers to derail training stand out easily, especially
towards the end of the training. To take advantage of this increasing closeness, we need an
aggregator which automatically adapts the quality of its output as the good workers get closer.
Thus, the agnostic robust aggregator is crucial to our overparameterized convergence result. We
empirically demonstrate the effects of overparameterization in § A.1.2.

2.7 Experiments

In this section, we demonstrate the effects of bucketing on datasets distributed in a non-iid fashion.
Throughout the section, we illustrate the tasks, attacks, and defenses by an example of training

18 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

Table 2.3 Table 2.1 + Bucketing (s=2).

Aggr iid non-iid

Avg 98.80±0.10 98.74±0.02
Krum 98.35±0.20 93.27±0.10
CM 98.26±0.22 95.59±0.89
RFA 98.75±0.14 97.34±0.58
CClip 98.79±0.10 98.75±0.02

Table 2.4 Table 2.2 + Bucketing (s=2).

Aggr iid non-iid

Avg 93.17±0.23 92.67±0.27
Krum 91.64±0.30 53.15±3.96
CM 91.91±0.24 78.60±3.15
RFA 93.00±0.23 91.17±0.51
CClip 93.17±0.23 92.56±0.21

an MLP on a heterogeneous version of the MNIST dataset [LeCun et al., 1998]. The dataset
is sorted by labels and sequentially divided into equal parts among good workers; Byzantine
workers have access to the entire dataset. Implementations are based on PyTorch [Paszke et al.,
2019] and will be made publicly available.2 We defer details of setup, implementation, and
runtime to § A.1.

Bucketing against the attacks on non-iid data. In § 2.4 we have presented how
heterogeneous data can lead to failure of existing robust aggregation rules. Here we apply our
proposed bucketing with s=2 to the same aggregation rules, showing that bucketing overcomes
the described failures. Results are presented in Table 2.3. Comparing Table 2.3 with Table 2.1,
bucketing improves the aggregators’ top-1 test accuracy on long-tail and non-iid dataset by
4% to 14% and allows them to learn classes at the tail distribution. For non-iid balanced
dataset, bucketing also greatly improves the performance of Krum and CM and makes RFA

and CClip close to ideal performance. Similarly, combining aggregators with bucketing also
performs much better on non-iid dataset under mimic attack. In Table 2.4, RFA and CClip

recover iid accuracy, and Krum, and CM are improved by around 15%.
Bucketing against general Byzantine attacks. In Figure 2.1, we present thorough

experiments on non-iid data over 25 workers with 5 Byzantine workers, under different attacks.
In each subfigure, we compare an aggregation rule with its variant with bucketing. The
aggregation rules compared are Krum, CM, RFA, CClip. 5 different kinds of attacks are
applied (one per column in the figure): bit flipping (BF), label flipping (LF), mimic attack, as
well as inner product manipulation (IPM) attack [Xie et al., 2019a] and the “a little is enough”
(ALIE) attack [Baruch et al., 2019].
• Bit flipping: A Byzantine worker sends −∇f(x) instead of ∇f(x) due to hardware failures

etc.
• Label flipping: Corrupt MNIST dataset by transforming labels by T (y) := 9− y.
• Mimic: Explained in § 2.4.2.
• IPM: The attackers send − ϵ

|VR|
∑

i∈VR
∇f(xi) where ϵ controls the strength of the attack.

• ALIE: The attackers estimate the mean µVR
and standard deviation σVR

of the good
gradients, and send µVR

− zσVR
to the server where z is a small constant controlling the

strength of the attack.
2The code is available at this url.

https://github.com/epfml/byzantine-robust-noniid-optimizer

2.7 Experiments 19

0

50

100

Ac
cu

ra
cy

 (%
) KRUM | BF KRUM | LF KRUM | MIMIC KRUM | IPM KRUM | ALIE

0

50

100

Ac
cu

ra
cy

 (%
) CM | BF CM | LF CM | MIMIC CM | IPM CM | ALIE

0

50

100

Ac
cu

ra
cy

 (%
) RFA | BF RFA | LF RFA | MIMIC RFA | IPM RFA | ALIE

0 200 400 600
Iterations

0

50

100

Ac
cu

ra
cy

 (%
) CCLip | BF

0 200 400 600
Iterations

CCLip | LF

0 200 400 600
Iterations

CCLip | MIMIC

0 200 400 600
Iterations

CCLip | IPM

0 200 400 600
Iterations

CCLip | ALIE

s
0
2

0.0
0.9

Fig. 2.1 Top-1 test accuracies of Krum, CM, CClip, RFA, under 5 attacks on non-iid datasets.

0 100 200 300 400 500 600
Iterations

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Bucketing s
0
2
5

Momentum
0.0
0.9

(a) Fixed q=5 IPM attackers, varying s

0 100 200 300 400 500 600
Iterations

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

#Byz. q
1
6
12

Momentum
0.0
0.9

(b) Fixed s=2, varying number q

Fig. 2.2 Top-1 accuracies of CClip with varying q and s when training on a cluster of n=53
nodes.

Both IPM and ALIE are the state-of-the-art attacks in the iid distributed learning setups which
takes advantage of the variances among workers. These attacks are much stronger in the non-iid
setup. In the last two columns of Figure 2.1 we show that worker momentum and bucketing
reduce such variance while momentum alone is not enough. Overall, Figure 2.1 shows that
bucketing improves the performances of almost all aggregators under all kinds of attacks. Note
that τ of CClip is not finetuned for each attack but rather fixed to 10

1−β for all attacks. This
scaling is required because CClip is not agnostic. We defer the discussion to § A.1.2.

Bucketing hyperparameter. Finally we study the influence of s and q on the hetero-
geneous MNIST dataset. We use CClip as the base aggregator and apply IPM attack. The
Figure 2.2a confirms that larger s gives faster convergence but s=2 is sufficient. Figure 2.2b
shows that s=2 still behaves well when increasing q close to 25%. The complete evaluation of
the results are deferred to § A.1.

20 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

Discussion. In all our experiments, we consistently observe: i) mild bucketing (s = 2)
improves performance, ii) worker momentum further stabilizes training, and finally iii) CClip

recovers the ideal performance. Given its ease of implementation, this leads us to strongly
recommend using CClip in practical federated learning to safeguard against actively malicious
agents or passive failures. RFA combined with bucketing and worker momentum also nearly
recovers ideal performance and can instead be used when a proper radius τ is hard to find.
Designing an automatic and adaptively clipping radius as well as its large scale empirical study
is left for future work.

2.8 Conclusion

Heterogeneity poses unique challenges for Byzantine robust optimization. The first challenge
is that existing defenses attempt to pick a “representative” update, which may not exist in
the non-iid setting. This, we showed, can be overcome by using bucketing. A second more
fundamental challenge is that it is difficult to distinguish between a “weird” but good worker
from an actually Byzantine attacker. In fact, we proved strong impossibility results in such a
setting. For this we showed how overparameterization (which is prevalent in real world deep
learning) provides a solution, ensuring convergence to the optimum even in the presence of
attackers. Together, our results yield a practical provably Byzantine robust algorithms for the
non-iid setting.

Chapter 3

Byzantine-robust decentralized
learning via ClippedGossip

3.1 Preface

Contribution and sources. This chapter reproduces the work presented in [He et al., 2022],
which delves into the complexities of Byzantine attacks in communication-constrained graphs
in decentralized scenarios. The authors collectively conceptualized the study, conducted the
formal analysis, and drafted the manuscript. The individual contributions are as follows:

• Lie He: Conceptualization, Writing, Formal Analysis, Software.
• Sai Praneeth Karimireddy: Conceptualization, Writing, Formal Analysis.
• Martin Jaggi: Supervision, Administration, Writing (review and editing).

Summary. In decentralized environments where direct communication among workers is not
feasible, Byzantine attacks present significant challenges in communication-constrained graphs.
The convergence rate of decentralized algorithms can be notably influenced by the position
and quantity of Byzantine workers in the communication graph. Prior studies have utilized the
number of Byzantine workers as a robustness measure, which, however, inadequately characterizes
such robustness. In this chapter, we introduce a novel network robustness criterion based on
the spectral gap of the topology of regular workers, offering a more accurate characterization.
To defend against these attacks, we propose ClippedGossip as a defensive strategy, providing
precise rates of robust convergence to a neighborhood of a stationary point for the first time
under standard assumptions. Our empirical results underline the superiority of ClippedGossip

over previous methodologies across a range of networks. The code is accessible at https:
//github.com/epfml/byzantine-robust-decentralized-optimizer.

https://github.com/epfml/byzantine-robust-decentralized-optimizer
https://github.com/epfml/byzantine-robust-decentralized-optimizer

22 Byzantine-robust decentralized learning via ClippedGossip

3.2 Introduction

“Divide et impera”.

Distributed training arises as an important topic due to privacy constraints of decentralized
data storage [Kairouz et al., 2019; McMahan et al., 2017a]. As the server-worker paradigm
suffers from a single point of failure, there is a growing amount of works on training in the
absence of server [Koloskova et al., 2020b; Lian et al., 2017a; Nedic, 2020]. We are particularly
interested in decentralized scenarios where direct communication may be unavailable due to
physical constraints. For example, devices in a sensor network can only communicate devices
within short physical distances.

Failures—from malfunctioning or even malicious participants—are ubiquitous in all kinds
of distributed computing. We use the same Byzantine attacker definition as in Chapter 2,
i.e., every Byzantine adversarial worker can deviate from the prescribed algorithm and send
arbitrary messages [Lamport et al., 2019] Note that these attackers cannot directly modify
the states on regular workers, nor compromise messages sent between two connected regular
workers.

Defending Byzantine attacks in a communication-constrained graph is challenging. As secure
broadcast protocols are no longer available [Dolev and Strong, 1983; Hirt and Raykov, 2014;
Pease et al., 1980b], regular workers can only utilize information from their own neighbors who
have heterogeneous data distribution or are malicious, making it very difficult to reach global
consensus. While there are some works attempt to solve this problem [Su and Vaidya, 2016a;
Sundaram and Gharesifard, 2018], their strategies suffer from serious drawbacks: 1) they require
regular workers to be very densely connected; 2) they only show asymptotic convergence or no
convergence proof; 3) there is no evidence if their algorithms are better than training alone.

In this work, we study the Byzantine robustness decentralized training in a constrained
topology and address the aforementioned issues. The main contributions of our paper are
summarized as follows:
• We identify a novel network robustness criterion, characterized in terms of the spectral gap of

the topology (γ) and the number of attackers (δ), for consensus and decentralized training,
applying to a much broader spectrum of graphs than [Su and Vaidya, 2016a; Sundaram and
Gharesifard, 2018].

• We propose ClippedGossip as the defense strategy and provide, for the first time, precise
rates of robust convergence to aO(δmaxζ

2/γ2) neighborhood of a stationary point for stochastic
objectives under standard assumptions.1 We also empirically demonstrate the advantages of
ClippedGossip over previous works.

• Along the way, we also obtain the fastest convergence rates for standard non-robust (Byzantine-
free) decentralized stochastic non-convex optimization by using local worker momentum.
1In a previous version, we referred to ClippedGossip as self-centered clipping.

3.3 Related work 23

3.3 Related work

Recently there have been extensive works on Byzantine-resilient distributed learning with a
trustworthy server. The statistics-based robust aggregation methods cover a wide spectrum of
works including median [Blanchard et al., 2017; Chen et al., 2017c; Mhamdi et al., 2018; Xie
et al., 2018a; Yin et al., 2018b, 2019], geometric median [Pillutla et al., 2019], signSGD [Bernstein
et al., 2019b; Li et al., 2019; Sohn et al., 2020], clipping [Karimireddy et al., 2021a,c], and
concentration filtering [Alistarh et al., 2018; Allen-Zhu et al., 2021a; Data and Diggavi, 2021a].
Other works explore special settings where the server owns the entire training dataset [Chen
et al., 2018; Gupta et al., 2021; Rajput et al., 2019; Regatti et al., 2020; Su and Vaidya, 2016b;
Xie et al., 2020a]. The state-of-the-art attacks take advantage of the variance of good gradients
and accumulate bias over time [Baruch et al., 2019; Xie et al., 2019a]. A few strategies have
been proposed to provably defend against such attacks, including momentum [Karimireddy
et al., 2021a; Mhamdi et al., 2021a] and concentration filtering [Allen-Zhu et al., 2021b].

Decentralized machine learning has been extensively studied in the past few years [Koloskova
et al., 2020b; Kong et al., 2021; Kovalev et al., 2021; Li et al., 2021; Lian et al., 2017a; Lin
et al., 2021a; Ying et al., 2021b; Yuan et al., 2021]. The state-of-the-art convergence rate is
established in [Koloskova et al., 2020b] is O(σ2

nϵ2
+ σ√

γϵ3/2
) where the leading σ2

nϵ2
is optimal. In

this paper we improve this rate to O(σ2

nϵ2
+ σ2/3

γ2/3ϵ4/3
) using local momentum.

Decentralized machine learning with certified Byzantine robustness is less studied. When
the communication is unconstrained, there exist secure broadcast protocols that guarantee all
regular workers have identical copies of each other’s update [El-Mhamdi et al., 2021; Gorbunov
et al., 2021]. We are interested in a more challenging scenario where not all workers have direct
communication links. In this case, regular workers may behave very differently depending on
their neighbors in the topology. One line of work constructs a Public-Key Infrastructure (PKI)
so that the message from each worker can be authenticated using digital signatures. However,
this is very inefficient requiring quadratic communication [Abraham et al., 2020]. Further, it
also requires every worker to have a globally unique identifier which is known to every other
worker. This assumption is rendered impossible on general communication graphs, motivating
our work to explicitly address the graph topology in decentralized training. Sybil attacks are an
important orthogonal issue where a single Byzantine node can create innumerable “fake nodes”
overwhelming the network (cf. recent overview by Ford [2021]). Truly decentralized solutions to
this are challenging and sometimes rely on heavy machinery, e.g. blockchains [Poupko et al.,
2021] or Proof-of-Personhood [Borge et al., 2017].

More related to the approaches we study, Su and Vaidya [2016a]; Sundaram and Gharesifard
[2018]; Yang and Bajwa [2019a,b] use trimmed mean at each worker to aggregate models of its
neighbors. This approach only works when all regular workers have an honest majority among
their neighbors and are densely connected. Guo et al. [2021] evaluate the incoming models
of a good worker with its local samples and only keep those well-perform models for its local

24 Byzantine-robust decentralized learning via ClippedGossip

update step. However, this method only works for IID data. Peng and Ling [2020] reformulate
the original problem by adding TV-regularization and propose a GossipSGD type algorithm
which works for strongly convex and non-IID objectives. However, its convergence guarantees
are inferior to non-parallel SGD. In this work, we address all of the above issues and are able to
provably relate the communication graph (spectral gap) with the fraction of Byzantine workers.
Besides, most works do not consider attacks that exploit communication topology, except [Peng
and Ling, 2020] who propose zero-sum attack. We defer detailed comparisons and more related
works to § B.6.

3.4 Setup

3.4.1 Decentralized threat model

Consider an undirected graph G = (V, E) where V = {1, . . . , n} denotes the set of workers and
E denotes the set of edges. Let Ni ⊂ V be the neighbors of node i and N i := Ni ∪ {i}. In
addition, we assume there are no self-loops and the system is synchronous. We consider the
same notion of Byzantine workers as outlined in Chapter 2, i.e. they can deviate from the
designated protocol arbitrarily and transmit arbitrary messages [Allen-Zhu et al., 2021b; Yin
et al., 2018a]. Let VB ⊂ V be the set of Byzantine workers with b = |VB| and the set of regular
(non-Byzantine) workers is VR := V\VB. Let GR be the subgraph of G induced by the regular
nodes VR which means removing all Byzantine nodes and their associated edges. If the reduced
graph GR is disconnected, then there exist two regular workers who cannot reliably exchange
information. In this setting, training on the combined data of all the good workers is impossible.
Hence, we make the following necessary assumption.

Assumption A (Connectivity). GR is connected.

Remark 1. In contrast, Su and Vaidya [2016a]; Sundaram and Gharesifard [2018] impose a
much stronger assumption that the subgraph of GR of the regular workers remain connected even
after additionally removing any |VB| number of edges. For example, the graph in Fig. 3.1 with 1
Byzantine worker V1 satisfies Assumption A but does not satisfy their assumption as removing
an additional edge at A1 or B1 may discard the graph cut.

In decentralized learning, each regular worker i ∈ VR locally stores a vector {Wij}nj=1 of
mixing weights, for how to aggregate model updates received from neighbors. We make the
following assumption on the weight vectors.

Assumption B (Mixing weights). The weight vectors on regular workers satisfy the following
properties:

• Each regular worker i ∈ VR stores non-negative {Wij}nj=1 with Wij > 0 iff j ∈ N i;
• The adjacent weights to each regular worker i ∈ VR sum up to 1, i.e.

∑n
j=1Wij = 1;

3.4 Setup 25

• For i, j ∈ VR, Wij = Wji.

We can construct such weights even in the presence of Byzantine workers, using algorithms
that only rely on communication with local neighbors, e.g. Metropolis-Hastings [Hastings, 1970].
We defer details of the construction to § B.3.2. Note that the Byzantine workers VB might also
obtain such weights, however, they can use arbitrary different weights in reality during the
training.

We define δi :=
∑

j∈VB
Wij to be the total weight of adjacent Byzantine edges around a

regular worker i, and define the maximum Byzantine weight as δmax := maxi∈VR
δi.

Remark 2. In the decentralized setting, the total fraction of Byzantine nodes |VB|/n is irrelevant.
Instead, what matters is the fraction of the edge weights they control which are adjacent to
regular nodes (as defined by δi and δmax). This is because a Byzantine worker can send different
messages along each edge. Thus, a single Byzantine worker connected to all other workers with
large edge weights can have a large influence on all the other workers. Similarly, a potentially
very large number of Byzantine workers may overall have very little effect—if the edges they
control towards good nodes have little weight. When we have a uniform fully connected graph
(such as in the centralized setting), the two notions of bad nodes & edges become equivalent.

To facilitate our analysis of convergence rate, we define a hypothetical mixing matrix
W̃ ∈ R(n−b)×(n−b) for the subgraph GR of regular workers with entry i, j ∈ VR defined as

W̃ij =

Wij if i ̸= j

Wii + δi if i = j.
(3.1)

By the construction of this hypothetical matrix W̃ , the following property directly follows.

Lemma 3.3. Given Assumption B, then W̃ is symmetric and doubly stochastic, i.e.

W̃ij = W̃ji,
∑n

i=1 W̃ij = 1,
∑n

j=1 W̃ij = 1. ∀i, j ∈ [n− b]

Further, the spectral gap of the matrix W̃ is positive.

Lemma 3.4. By Assumption A and Assumption B, there exists γ ∈ (0, 1] such that ∀ x ∈ Rn−b

and x̄ = 1⊤x
n−b1 ∈ Rn−b

∥W̃x− x̄∥2 ≤ (1− γ)∥x− x̄∥2. (3.2)

The γ(W̃) is the spectral gap of the subgraph of regular workers GR. We have γ = 0 if and
only if GR is disconnected, and γ = 1 if and only if GR is fully connected.

In summary, γ measures the connectivity of the regular subgraph GR formed after removing
the Byzantine nodes, whereas δi and δmax are a measure of the influence of the Byzantine nodes.

26 Byzantine-robust decentralized learning via ClippedGossip

3.4.2 Optimization assumptions

We study the general distributed optimization problem

minx∈Rd f(x) := 1
|VR|

∑
i∈VR

{
fi(x) :=Eξi∼Di

Fi(x; ξi)
}

(3.3)

on heterogeneous (non-IID) data, where fi is the local objective on worker i with data distri-
bution Di and independent noise ξi. We assume that the gradients computed over these data
distributions satisfy the following standard properties.

Assumption C (Bounded noise and heterogeneity). Assume that for all i ∈ VR and x ∈ Rd,
we have

Eξ∼Di
∥∇Fi(x; ξ)−∇fi(x)∥2 ≤ σ2, Ej∼VR

∥∇fj(x)−∇f(x)∥2 ≤ ζ2. (3.4)

Assumption D (L-smoothness). For i ∈ VR, fi(x) : Rd → R is differentiable and there exists a
constant L ≥ 0 such that for each x,y ∈ Rd:

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥. (3.5)

We denote xt
i ∈ Rd as the state of worker i ∈ VR at time t.

3.5 Robust Decentralized Consensus

Agreeing on one value (consensus) among regular workers is one of the fundamental questions in
distributed computing. Gossip averaging is a common consensus algorithm in the Byzantine-free
case (δ = 0). Applying gossip averaging steps iteratively to all nodes formally writes as

xt+1
i :=

∑n
j=1Wijx

t
j , t = 0, 1, . . . (Gossip)

Suppose each worker i ∈ [n] initially owns a different x0
i and Assumption A and Assumption B

hold true, then each worker’s iterate xt
i asymptotically converges to x∞

i = x̄ = 1
n

∑n
j=1 x

0
j , for

all i ∈ [n], which is also known as average consensus [Boyd et al., 2006]. Reaching consensus in
the presence of Byzantine workers is more challenging, with a long history of study [LeBlanc
et al., 2013; Su and Vaidya, 2016a].

3.5.1 The Clipped Gossip algorithm

We introduce a novel decentralized gossip-based aggregator, termed ClippedGossip, for
Byzantine-robust consensus. ClippedGossip uses its local reference model as center and clips
all received neighbor model weights. Formally, for Clip(z, τ) := min(1, τ/∥z∥) · z, we define for

3.5 Robust Decentralized Consensus 27

node i

xt+1
i :=

∑n
j=1Wij(x

t
i+Clip(xt

j−xt
i, τi)), t = 0, 1, . . . (ClippedGossip)

Theorem 3.1. Let x̄t := 1
|VR|

∑
i∈VR

xt
i be the average iterate over the unknown set of regular

nodes. If the initial consensus distance is bounded as 1
|VR|

∑
i∈VR

E∥xt
i − x̄t∥2 ≤ ρ2, then for

all i ∈ VR, the output xt+1
i of ClippedGossip with an appropriate choice of clipping radius

satisfies

1
|VR|

∑
i∈VR

E∥xt+1
i − x̄t+1∥2 ≤

(
1− γ + c

√
δmax

)2
ρ2 and E∥x̄t+1 − x̄t∥2 ≤ c2δmaxρ

2

where the expectation is over the random variable {xt
i}i∈VR

and c > 0 is a constant.

If the information propagation among regular workers is faster than among Byzantine workers
(γ > c

√
δmax), then our algorithm can achieve approximate Byzantine consensus [Dolev et al.,

1986]. The agreement property is upheld as the upper bound of consensus distance diminishes
exponentially over time, eventually bringing all regular workers within ϵ of each other. The
validity condition is met because when regular workers attain consensus prior to aggregation
(ρ = 0), our algorithm ensures that consensus is maintained.

We inspect Theorem 3.1 on corner cases. In this case, we can use a simple majority, which
corresponds to setting clipping threshold τi = 0. Further, if there is no Byzantine worker
(δmax = 0), then the robust aggregator must improve the consensus distance by a factor of
(1− γ)2 which matches standard gossiping analysis [Boyd et al., 2006]. Finally, for the complete
graph (γ=1) ClippedGossip satisfies the centralized notion of (δmax, c2)-robust aggregator
in [Karimireddy et al., 2021a, Definition C]. Thus, ClippedGossip recovers all past optimal
aggregation methods as special cases.

Note that if the topology is poorly connected and there are Byzantine attackers with
(γ < c

√
δmax), then Theorem 3.1 gives no guarantee that the consensus distance will reduce after

aggregation. This is unfortunately not possible to improve upon, as we will show in the following
§ 3.5.2—if the connectivity is poor then the effect of Byzantine workers can be significantly
amplified.

The conclusion above does not contradict the established impossibility result regarding the
attainment of Byzantine consensus with fewer than 3b+1 nodes or less than 2b+1 connectivity
[Fischer et al., 1986]. A distinctive element in our consideration is the inclusion of the mixing
matrix among workers, rendering the mere count of nodes and edges insufficient for measuring
the influence of Byzantine workers accurately. In scenarios where there are fewer than 3b+ 1

nodes, yet the edge weights linked to Byzantine workers are exceptionally low, the overall
Byzantine influence becomes negligible, thereby enabling the achievement of approximate
consensus. Conversely, with a connectivity less than 2b+ 1, if the edge weights between regular

28 Byzantine-robust decentralized learning via ClippedGossip

Clique A Clique B

Cut

Dumbbell

𝑉2𝑉1

𝐴1 𝐵1

Fig. 3.1 A dumbbell topology of two cliques A
and B of regular workers connected by an edge
(graph cut). Byzantine workers (red) may attack
the graph at different places.

GM MOZI TM ClippedGos.
Aggregator

0

20

40

60

80

A
cc

ur
ac

y
(%

)

IID

GM MOZI TM ClippedGos.
Aggregator

NonIID
Group

Global
Clique A
Clique B

Fig. 3.2 Accuracies of models trained with ro-
bust aggregators over dumbbell topology and
CIFAR-10 dataset (δ = 0). The models are av-
eraged within clique A, B, or all regular workers
separately.

workers are relatively high, approximate consensus is still attainable. We encapsulate these
dynamics using the spectral gap δ and the maximum weight of Byzantine workers δmax, which
offer more precise measures of the influence exerted by Byzantine workers on the path to
achieving approximate consensus.

3.5.2 Lower bounds due to communication constraints

Not all pairs of workers have direct communication links due to constraints such as physical
distances in a sensor network. It is common that a subset of sensors are clustered within a small
physical space while only few of them have communication links to the rest of the sensors. Such
links form a cut-set of the communication topology and are crucial for information diffusion.
On the other hand, attackers can increase consensus errors in the presence of these critical links.

Theorem 3.2. Consider networks satisfying Assumption A of n nodes, each holding a number
in {0, 1}, and only O(1/n2) of the edges are adjacent to attackers. For any robust consensus
algorithm A, there exists a network such that the output of A has an average consensus error of
at least Ω(1).

Proof. Consider two cliques A and B with n nodes each connected by an edge to each other
and to a Byzantine node V2, c.f. Fig. 3.1. Suppose that we know all nodes have values in {0, 1}.
Let all nodes in A have value 0. Now consider two settings:

World 1. All B nodes have value 0. However, Byzantine node V2 pretends to be part of a
clique identical to B which it simulates, except that all nodes have value 1. The true consensus
average is 0.
World 2. All B nodes have value 1. This time the Byzantine node V2 simulates clique B with
value 0. The true consensus average here is 0.5.

3.6 Robust Decentralized Optimization 29

1/ 2

0
Er

ro
r

ClippedGossip Median TM

/ 2

Fig. 3.3 Performance of ClippedGossip and baselines (TM and Median) under Byzantine
attacks with varying γ and δmax. Each point represents the squared average consensus error of the
last iterate of an algorithm. Median and TM have identical performance and ClippedGossip
is consistently better. Further, the performance of ClippedGossip is best explained by the
magnitude of (δ/γ2) – it is excellent when the ratio is less than a threshold and degrades as it
increases.

From the perspective of clique A, the two worlds are identical–it seems to be connected to
one clique with value 0 and another with value 1. Thus, it must make Ω(1) error at least in one
of the worlds. This proves that consensus is impossible in this setting.

While arguments above are similar to classical lower bounds in decentralized consensus
which show we need δ ≤ 1/3 [Fischer et al., 1986], in our case there is only 1 Byzantine node
(out of 2n+ 1 regular nodes) which controls only 2 edges i.e. δ = O(1/n2). This impossibility
result thus drives home the additional impact through the restricted communication topology.
Further, past impossibility results about robust decentralized consensus such as [Su and Vaidya,
2016a; Sundaram and Gharesifard, 2018] use combinatorial concepts such as the number of
node-disjoint paths between the good nodes. However, such notions cannot account for the edge
weights easily and cannot give finite-time convergence guarantees. Instead, our theory shows
that the ratio of δmax/γ

2 accurately captures the difficulty of the problem. We next verify this
empirically.

In Fig. 3.3, we show the final consensus error of three defenses under Byzantine attacks.
TM and Median have a large error even for small δmax and large γ. The consensus error
of ClippedGossip increases almost linearly with δmax/γ

2. However, this phenomenon is not
observed by looking at γ−2 or δmax alone, validating our theoretical analysis in Theorem 3.1.
Details are deferred to § B.4.1.

3.6 Robust Decentralized Optimization

The general decentralized training algorithm can be formulated as

x
t+1/2
i :=

xt
i − ηgi(x

t
i) i ∈ VR

∗ i ∈ VB
, xt+1

i := Aggi({xt+1/2
k : k ∈ N i})

30 Byzantine-robust decentralized learning via ClippedGossip

Algorithm 3 Byzantine-Resilient Decentralized Optimization with ClippedGossip

Input: x0 ∈ Rd, α, η, {τ ti }, m0
i = gi(x

0)
1: for t = 0, 1, . . . do
2: for i = 1, . . . , n in parallel
3: mt+1

i = (1− α)mt
i + αgi(x

t
i)

4: x
t+1/2
i = xt

i − ηmt+1
i if i ∈ VR else ∗

5: Exchange x
t+1/2
i with Ni

6: xt+1
i = ClippedGossipi(x

t+1/2
1 , . . . ,x

t+1/2
n ; τ t+1

i)
7: end for

Table 3.1 Comparison with prior work of convergence rates for non-convex objectives to a
O(δζ2)-neighborhood of stationary points. We recover comparable or improved rates as special
cases.

Reference Setting Convergence to ϵ-accuracy

Regular (δ = 0)
Decentralized

Koloskova et al. [2020b] - O(σ2

nϵ2 +
ζ

γϵ3/2
+ σ√

γϵ3/2
+ 1

γϵ)

This work δ=0 O(σ2

nϵ2 +
ζ

γϵ3/2
+ σ2/3

γ2/3ϵ4/3
+ 1

γϵ)

Byzantine-robust
Fully-connected (γ = 1)

IID (ζ = 0)

Guo et al. [2021] - ✗

Gorbunov et al. [2021] δ known O(σ2

nϵ2 +
nδσ2

mϵ + 1
ϵ)

†

Gorbunov et al. [2021] δ unknown O(σ2

nϵ2 +
n2δσ2

mϵ + 1
ϵ)

†

This work γ=1, ζ=0 O(σ2

nϵ2 +
δσ2

ϵ2 + 1
ϵ)

Byzantine-robust
Federated Learning

Karimireddy et al. [2021c] - O(σ
2

ϵ2 (δ+
1
n)+

1
ϵ)

This work γ = 1 O(σ
2

ϵ2 (δ+
1
n)+

ζ
ϵ3/2

+ σ2/3

ϵ4/3
+ 1

ϵ)

† This method does not generalize to constrained communication topologies.

where η is the learning rate, gi(x) := ∇F (x, ξi) is a stochastic gradient, and ξti ∼Di is the
random batch at time t on worker i. The received message x

t+1/2
k can be arbitrary for Byzantine

nodes k ∈ VB. Replacing Agg with plain gossip averaging (Gossip) recovers standard gossip
SGD [Koloskova et al., 2019]. Under the presence of Byzantine workers, which is the main
interest of our work, we will show that we can replace Agg with ClippedGossip and use
local worker momentum to achieve Byzantine robustness [Karimireddy et al., 2021a]. The full
procedure is described in Algorithm 3.

Theorem 3.3. Suppose Assumptions A–3.4 hold and δmax = O(γ2). Then for α := 3ηL,
Algorithm 3 reaches 1

T+1

∑T
t=0∥∇f(x̄t)∥22 ≤

δmaxζ2

γ2 + ϵ in iteration complexity

O
(

σ2

nϵ2

(1
n
+δmax

)
+

ζ

γϵ3/2
+

σ2/3

γ2/3ϵ4/3
+

1

γϵ

)
.

Furthermore, the consensus distance satisfies the upper bound

1
|VR|

∑
i∈VR
∥x⊤

i − x̄⊤∥22 ≤ O(
ζ2

γ2(T+1)
).

3.6 Robust Decentralized Optimization 31

We compare our analysis with existing works for non-convex objectives in Table 3.1.
Regular decentralized training. Even if there are no Byzantine workers (δmax=0), our

convergence rate is slightly faster than that of standard gossip SGD [Koloskova et al., 2020b].
The difference is that our third term O(σ2/3

γ2/3ϵ4/3
) is faster than their O(σ√

γϵ3/2
) for large σ

and small ϵ. This is because we use local momentum which reduces the effect of variance σ.
Thus momentum has a double use in this paper in achieving robustness as well as accelerating
optimization.

Byzantine-robust federated learning. Federated learning uses a fully connected graph
(γ = 1). We compare state of the art federated learning method [Karimireddy et al., 2021c] with
our rate when γ = 1. Both algorithms converge to a Θ(δζ2)-neighborhood of a stationary point
and share the same leading term. This neighborhood can be circumvented with strong growth
condition and over-parameterized models [Karimireddy et al., 2021c, Theorem III]. We incur
additional higher-order terms O(ζ

γϵ3/2
+ σ2/3

γ2/3ϵ4/3
) as a penalty for the generality of our analysis.

This shows that the trusted server in federated learning can be removed without significant
slowdowns.

Byzantine-robust decentralized SGD with fully connected topology. If we limit
our analysis to a special case of a fully connected graph (γ=1) and IID data (ζ=0), then our
rate has the same leading term as [Gorbunov et al., 2021], which enjoys the scaling of the total
number of regular nodes. The second term O(n

m
δσ2

ϵ) of [Gorbunov et al., 2021] is better than
our O(1ϵ

δσ2

ϵ) for small ϵ because they additionally validate m random updates in each step.
However, [Gorbunov et al., 2021] relies on secure protocols which do not easily generalize to
constrained communication.

Byzantine-robust decentralized SGD with constrained communication. Mozi

[Guo et al., 2021] does not provide a theoretical analysis on convergence and TM [Su and Vaidya,
2016a; Sundaram and Gharesifard, 2018; Yang and Bajwa, 2019a] only prove the asymptotic
convergence of full gradient under a very strong assumption on connectivity and local honest
majority.2 Peng and Ling [2020] don’t prove a rate for non-convex objective; but Gorbunov
et al. [2021] which shows convergence of [Peng and Ling, 2020] on strongly convex objectives
at a rate inferior to parallel SGD. In contrast, our convergence rate matches the standard
stochastic analysis under much weaker assumptions than Su and Vaidya [2016a]; Sundaram and
Gharesifard [2018]; Yang and Bajwa [2019a]. Unlike these prior works, our guarantees hold even
if some subsets of nodes are surrounded by a majority of Byzantine attackers. This can also be
observed in practice, as we show in § B.4.2.

Consensus for Byzantine-robust decentralized optimization. Theorem 3.3 gives a
non-trivial result that regular workers reach consensus under the ClippedGossip aggregator.
In Fig. 3.2 we demonstrate the consensus behavior of robust aggregators on the CIFAR-10
dataset on a dumbbell topology, without attackers (δ=0). We compare the accuracies of models

2Mozi is renamed to Ubar in the latest version.

32 Byzantine-robust decentralized learning via ClippedGossip

averaged within cliques A and B with model averaged over all workers. In the IID setting, the
clique-averaged models of GM and TM are over 80% accuracy but the globally-averaged models
are less than 30% accuracy. It means clique A and clique B are converging to two different
critical points and GM and TM fail to reach consensus within the entire network! In contrast,
the globally-averaged model of ClippedGossip is as good as or better than the clique-averaged
models, both in the IID and non-IID setting.

Finally, we point out some avenues for further improvement: our results depend on the
worst-case δmax. We believe it is possible to replace it with a (weighted) average of the {δi}
instead. Also, extending our protocols to time-varying topologies would greatly increase their
practicality.

Remark 5 (Adaptive choice of clipping radius τ ti). In § B.4.5, we give an adaptive rule to
choose the clipping radius τ ti for all i ∈ VR and times t, based on the top percentile of close
neighbors. This adaptive rule results in a value τ ti slightly smaller than the required theoretical
value to preserve Byzantine robustness. In experiments, we found that the performance of
optimization is robust to small perturbations of the clipping radius and that the adaptive rule
performs well in all cases.

3.7 Experiments

In this section, we empirically demonstrate successes and failures of decentralized training in the
presence of Byzantine workers, and compare the performance of ClippedGossip with existing
robust aggregators: 1) geometric median GM [Pillutla et al., 2019]; 2) coordinate-wise trimmed
mean TM [Yang and Bajwa, 2019a]; 3) Mozi [Guo et al., 2020]. Coordinate-wise median [Yin
et al., 2018b] and Krum [Blanchard et al., 2017] usually perform worse than GM so we exclude
them in the experiments. All implementations are based on PyTorch [Paszke et al., 2019] and
evaluated on different graph topologies, with a distributed MNIST dataset [LeCun et al., 1998].
We defer the experiments on CIFAR10 [Krizhevsky, 2012] to § B.4.3. 3

We defer details of robust aggregators to § B.1, attacks to § B.2, topologies and mixing
matrix to § B.3 and experiment setups and additional experiments to § B.4.

3.7.1 Decentralized defenses without attackers

Challenging topologies and data distribution may prevent existing robust aggregators from
reaching consensus even when there is no Byzantine worker (δ = 0). In this part, we consider
the “dumbbell” topology c.f. Fig. 3.1. As non-IID data distribution, we split the training dataset
by labels such that workers in clique A are training on digits 0 to 4 while workers in clique B
are training on digits 5 to 9. This entanglement of topology and data distribution is motivated
by realistic geographic constraints such as continents with dense intra-connectivity but sparse

3The code is available at here.

https://github.com/epfml/byzantine-robust-decentralized-optimizer

3.7 Experiments 33

0 250 500 750
Iterations

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

IID

ClippedGossip
GM
MOZI
TM
Ideal Comm.

0 250 500 750
Iterations

NonIID

0 250 500 750
Iterations

NonIID + B.

0 250 500 750
Iterations

NonIID + R.

0 250 500 750
Iterations

NonIID + B. + R.

Fig. 3.4 Accuracy of the averaged model in clique A for the dumbbell topology. In the plot
title “B.” stands for the bucketing (aggregating means of bucketed values) and “R.” stands
for adding 1 additional random edge between two cliques. We see that i) ClippedGossip is
consistently the best matching ideal averaging performance, ii) performance mildly improves
by using bucketing, and iii) significantly improves when adding a single random edge (thereby
improving connectivity).

inter-connection links e.g. through an undersea cable. In Fig. 3.4 we compare ClippedGossip

with existing robust aggregators GM, TM, Mozi in terms of their accuracies of averaged model
in clique A. The ideal communication refers to aggregation with gossip averaging.

Existing robust aggregators impede information diffusion. When cliques A and B
have distinct data distribution (non-IID), workers in clique A rely on the graph cut to access
the full spectrum of data and attain good performance. However, existing robust aggregators in
clique A completely discard information from clique B because: 1) clique B model updates are
outliers to clique A due to data heterogeneity; 2) clique B updates are outnumbered by clique A
updates — clique A can only observe 1 update from B due to constrained communication. The
2nd plot in Fig. 3.4 shows that GM, TM, and Mozi only reach 50% accuracy in the non-IID
setting, supporting that they impede information diffusion. This is in contrast to the 1st plot
where cliques A and B have identical data distribution (IID) and information on clique A alone
is enough to attain good performance. However, reaching local models does not imply reaching
consensus, c.f. Fig. 3.2. On the other hand, ClippedGossip is the only robust aggregator that
preserves the information diffusion rate as the ideal gossip averaging.

Techniques that improve information diffusion. To address these issues, we locally
employ the bucketing technique of [Karimireddy et al., 2021c] for the non-IID case in the 3rd
subplot. Plots 4 and 5 demonstrate the impact of one additional edge between the cliques to
improve the spectral gap.
• The bucketing technique randomly inputs received vectors into buckets of equal size, averages

the vectors in each bucket, and finally feeds the averaged vectors to the aggregator. While
bucketing helps TM to overcome 50% accuracy, TM is still behind ClippedGossip. GM

only improves by 1% while Mozi remains at almost the same accuracy.

34 Byzantine-robust decentralized learning via ClippedGossip

50
60
70
80
90

100

A
cc

ur
ac

y
(%

)
Small-world | BF Small-world | LF Small-world | ALIE Small-world | IPM

0 200 400 600
Iterations

50
60
70
80
90

100
Torus | BF

0 200 400 600
Iterations

Torus | LF

0 200 400 600
Iterations

Torus | ALIE

ClippedGossip
GM
MOZI
TM

0 200 400 600
Iterations

Torus | IPM

Fig. 3.5 Robust aggregators on randomized small-world (10 regular nodes) and torus topology
(9 regular nodes) under Byzantine attacks (2 attackers). We observe that across all attacks and
networks, clipped gossip has excellent performance, with the geometric median (GM) coming
second.

• Adding one more random edge between two cliques improves the spectral gap γ from 0.0154 to
0.0286. ClippedGossip and gossip averaging converge faster as the theory predicts. However,
TM, GM, and Mozi are still stuck at 50% for the same heterogeneity reason.

• Bucketing and adding a random edge help all aggregators exceed 50% accuracy.

3.7.2 Decentralized learning under more attacks and topologies.

In this section, we compare robust aggregators over more topologies and Byzantine attacks
in the non-IID setting. We consider two topologies: randomized small world (γ=0.084) and
torus (γ=0.131). They are much less restrictive than the dumbbell topology (γ=0.043) where
all existing aggregators fail to reach consensus even δ=0. For attacks, we implement state of
the art federated attacks Inner product manipulation (IPM) [Xie et al., 2019a] and A little
is enough (ALIE) [Baruch et al., 2019] and label-flipping (LF) and bit-flipping (BF). Details
about topologies and the adaptation of FL attacks to the decentralized setup are provided in
§ B.3.1 and § B.2.

The results in Fig. 3.5 show that ClippedGossip has consistently superior performance
under all topologies and attacks. All robust aggregators are generally performing better on
easier topology (large γ). The GM has a very good performance on these two topologies but,
as we have demonstrated in the dumbbell topology, GM does not work in more challenging
topologies. Therefore, ClippedGossip is recommended for a general constrained topology.

3.8 Discussion 35

0 500 1000
Iterations

20

40

60

80

Ac
cu

ra
cy

 (%
)

max 0.0 0.0625 0.125 0.1875 0.25

0.0 0.1 0.2
max

Group
All
Clique A
Clique B

Fig. 3.6 Effect of the number of attackers on the accuracy of ClippedGossip under dissensus
attack with varying δmax and fixed γ, ζ2. The solid (resp. dashed) lines denote models averaged
over all (resp. clique A or B) regular workers. The right figure shows the performance of the
last iterates of curves in the left figure.

3.7.3 Lower bound of optimization

We empirically investigate the lower bound of optimization O(δmaxζ
2γ−2) in Theorem 3.3. In

this experiment, we fix spectral gap γ, heterogeneity ζ2 and use different δmax fractions of
Byzantine edges in the dumbbell topology. The Byzantine workers are added to V1 in clique
A and its mirror node in clique B. We define the following dissensus attack for decentralized
optimization

Definition 3.5 (Dissensus attack). For i ∈ VR and ϵi > 0, a dissensus attacker j ∈ Ni ∩ VB
sends

xj := xi − ϵi

∑
k∈Ni∩VR

Wik(xk−xi)∑
j∈Ni∩VB

Wij
. (3.6)

The resulting Figure 3.6 shows that with increasing δmax the model quality drops significantly.
This is in line with our proven robust convergence rate in terms of δmax. Notice that for large
δmax, the model averaged over all workers performs even worse than those averaged within
cliques. It means the models in two cliques are essentially disconnected and are converging to
different local minima or stationary points of a non-convex landscape. See § B.4.2 for details.

3.8 Discussion

The main takeaway from our work is that ill-connected communication topologies can vastly
magnify the effect of bad actors. As long as the communication topology is reasonably well
connected (say γ = 0.35) and the fraction of attackers is mild (say δ = 10%), clipped gossip
provably ensures robustness. Under more extreme conditions, however, no algorithm can
guarantee robust convergence. Given that decentralized consensus has been proposed as a
backbone for digital democracy [Bulteau et al., 2021], and that decentralized learning is touted
to be an alternative to current centralized training paradigms, our findings are significant. A
simple strategy we recommend (along with using ClippedGossip) is adding random edges to
improve the connectivity and robustify the network.

36 Byzantine-robust decentralized learning via ClippedGossip

Acknowledgements. This project was supported by SNSF grant 200020_200342. SPK is
supported by an SNSF postdoc mobility fellowship. This project was initiated in the master
thesis of Cappelletti [20c] who analyzed the Byzantine-free setting. We also thank Anastasiia
Koloskova and Lê Nguyên Hoang for fruitful discussions on optimization and authentication.

Chapter 4

Secure Byzantine-Robust Machine
Learning

4.1 Preface

Contribution and sources. This chapter reproduces [He et al., 2020b], proposing a novel
distributed training framework to tackle data privacy and robustness in machine learning
applications. The authors had shared responsibility in conceptualizing the ideas and the writing
process. In detail, the individual contributions are:

• Lie He: Conceptualization, Writing, Formal Analysis.
• Sai Praneeth Karimireddy: Conceptualization, Writing.
• Martin Jaggi: Supervision, Administration, Writing (review and editing), Conceptualization.

Summary. Privacy and robustness are two important factors in distributed machine
learning applications. Regular participants would like to benefit from collaborative training and
at the same time want to keep their data private during the multiparty computation (MPC).
The service provider would like to protect the training from malicious participants. However,
these two goals are often conflicting as typical robust aggregators (e.g. median) are not MPC
friendly.

This chapter introduces a multi-server based secure aggregation framework capable of
withstanding Byzantine attacks and server-worker collusion, offering a solution to a challenge
previously thought to be intractable. Our focus is to integrate current and future distance-based
robust aggregation rules with secure aggregation, thus improving privacy without compromising
the accuracy of machine learning models.

38 Secure Byzantine-Robust Machine Learning

4.2 Introduction

Recent years have witnessed fast growth of successful machine learning applications based
on data collected from decentralized user devices. Unfortunately, however, currently most of
the important machine learning models on a societal level do not have their utility, control,
and privacy aligned with the data ownership of the participants. This issue can be partially
attributed to a fundamental conflict between the two leading paradigms of traditional centralized
training of models on one hand, and decentralized/collaborative training schemes on the other
hand. While centralized training violates the privacy rights of participating users, existing
alternative training schemes are typically not robust. Malicious participants can sabotage the
training system by feeding it wrong data intentionally, known as data poisoning. In this paper,
we tackle this problem and propose a novel distributed training framework which offers both
privacy and robustness.

When applied to datasets containing personal data, the use of privacy-preserving techniques
is currently required under regulations such as the General Data Protection Regulation (GDPR)
or Health Insurance Portability and Accountability Act (HIPAA). The idea of training models
on decentralized datasets and incrementally aggregating model updates via a central server
motivates the federated learning paradigm [McMahan et al., 2017a]. However, the averaging
in federated learning, when viewed as a multi-party computation (MPC), does not preserve
the input privacy because the server observes the models directly. The input privacy requires
each party learns nothing more than the output of computation which in this paradigm means
the aggregated model updates. To solve this problem, secure aggregation rules as proposed in
[Bonawitz et al., 2017] achieve guaranteed input privacy. Such secure aggregation rules have
found wider industry adoption recently e.g. by Google on Android phones [Bonawitz et al.,
2019; Ramage and Mazzocchi, 2020] where input privacy guarantees can offer e.g. efficiency and
exactness benefits compared to differential privacy (both can also be combined).

The concept of Byzantine robustness has received considerable attention in the past few
years for practical applications, as a way to make the training process robust to malicious actors.
A Byzantine participant or worker can behave arbitrarily malicious, e.g. sending arbitrary
updates to the server. This poses great challenge to the most widely used aggregation rules,
e.g. simple average, since a single Byzantine worker can compromise the results of aggregation.
A number of Byzantine-robust aggregation rules have been proposed recently [Alistarh et al.,
2018; Blanchard et al., 2017; Mhamdi et al., 2018; Muñoz-González et al., 2017, 2019; Yin et al.,
2018b] and can be used as a building block for our proposed technique.

Achieving both input privacy and Byzantine robustness however remained elusive so far, with
Bagdasaryan et al. [2020b] stating that robust rules “...are incompatible with secure aggregation”.
We here prove that this is not the case. Closest to our approach is [Pillutla et al., 2019] which
tolerates data poisoning but does not offer Byzantine robustness. Prio [Corrigan-Gibbs and
Boneh, 2017] is a private and robust aggregation system relying on secret-shared non-interactive

4.3 Problem setup, privacy, and robustness 39

proofs (SNIP). While their setting is similar to ours, the robustness they offer is limited to
check the range of the input. Besides, the encoding for SNIP has to be affine-aggregable and is
expensive for clients to compute.

In this paper, we propose a secure aggregation framework with the help of two non-colluding
honest-but-curious servers. This framework also tolerates server-worker collusion. In addition,
we combine robustness and privacy at the cost of leaking only worker similarity information
which is marginal for high-dimensional neural networks. Note that our focus is not to develop
new defenses against state-of-the-art attacks, e.g. [Baruch et al., 2019; Xie et al., 2019a]. Instead,
we focus on making arbitrary current and future distance-based robust aggregation rules (e.g.
Krum by Mhamdi et al. [2018], RFA by Pillutla et al. [2019]) compatible with secure aggregation.

Main contributions. We propose a novel distributed training framework which is
• Privacy-preserving: our method keeps the input data of each user secure against any

other user, and against our honest-but-curious servers.
• Byzantine robust: our method offers Byzantine robustness and allows to incorporate

existing robust aggregation rules, e.g. [Alistarh et al., 2018; Blanchard et al., 2017]. The
results are exact, i.e. identical to the non-private robust methods.

• Fault tolerant and easy to use: our method natively supports workers dropping out
or newly joining the training process. It is also easy to implement and to understand for
users.

• Efficient and scalable: the computation and communication overhead of our method is
negligible (less than a factor of 2) compared to non-private methods. Scalability in terms
of cost including setup and communication is linear in the number of workers.

4.3 Problem setup, privacy, and robustness

We consider the distributed setup of n user devices, which we call workers, with the help of
two additional servers. Each worker i has its own private part of the training dataset. The
workers want to collaboratively train a public model benefitting from the joint training data of
all participants.

In every training step, each worker computes its own private model update (e.g. a gradient
based on its own data) denoted by the vector xi. Then workers synchronously send their
gradients to the servers. The aggregation protocol aims to compute the sum z =

∑n
i=1 xi (or a

robust version of this aggregation), which is then used to update a public model. While the
result z is public in all cases, the protocol must keep each xi private from any adversary or
other workers.

We posit the simultaneous existence of two distinct types of adversaries: Byzantine attackers
and privacy attackers. A worker can embody at most one type of attacker and these two forms
of attackers do not collude. Byzantine attackers are defined the same as those in Chapter 2,

40 Secure Byzantine-Robust Machine Learning

capable of deviating from the prescribed protocols to transmit arbitrary adversarial messages
aimed at undermining the training. Both servers and workers can potentially assume a role of a
privacy attacker. We assume honest-but-curious servers, which, while not colluding amongst
themselves, may potentially collude with malicious workers. Such a server follows the protocol
but may inspect all transmitted messages. Additionally, we presume all communication channels
are secure. Our framework ensures input privacy, implying that servers and workers ascertain
nothing beyond what can be deduced from the public output of the aggregation z.

Additive secret sharing. Secret sharing is a way to split any secret into multiple parts such
that no part leaks the secret. Formally, suppose a scalar a is a secret and the secret holder
shares it with k parties through secret-shared values ⟨a⟩. In this paper, we only consider additive
secret-sharing where ⟨a⟩ is a notation for the set {ai}ki=1 which satisfy a =

∑k
p=1 ap, with ap

held by party p. Crucially, it must not be possible to reconstruct a from any ap. For vectors
like x, their secret-shared values ⟨x⟩ are simply component-wise scalar secret-shared values.

Two-server setting. We assume there are two non-colluding servers: model server (S1)
and worker server (S2). S1 holds the output of each aggregation and thus also the machine
learning model which is public to all workers. S2 holds intermediate values to perform Byzantine
aggregation. Another key assumption is that the servers have no incentive to collude with
workers, perhaps enforced via a potential huge penalty if exposed. It is realistic to assume
that the communication link between the two servers S1 and S2 is faster than the individual
links to the workers. To perform robust aggregation, the servers will need access to a sufficient
number of Beaver’s triples. These are data-independent values required to implement secure
multiplication in MPC on both servers, and can be precomputed beforehand. For completeness,
the classic algorithm for multiplication is given in in Appendix C.2.1.

Byzantine-robust aggregation oracles. Most of existing robust aggregation algorithms
rely on distance measures to identify potential adversarial behaviors [Blanchard et al., 2017;
Ghosh et al., 2019; Li et al., 2019; Mhamdi et al., 2018; Yin et al., 2018b]. All such distance-based
aggregation rules can be directly incorporated into our proposed scheme, making them secure.
While many aforementioned papers assume that the workers have i.i.d datasets, our protocol
is oblivious to the distribution of the data across the workers. In particular, our protocol also
works with schemes such as [Ghosh et al., 2019; He et al., 2020a; Li et al., 2019] designed for
non-iid data.

4.4 Secure aggregation protocol: two-server model

Each worker first splits its private vector xi into two additive secret shares, and transmits those
to each corresponding server, ensuring that neither server can reconstruct the original vector

4.4 Secure aggregation protocol: two-server model 41

S1 S2

(a) WorkerSecret-
Sharing: each worker i
secret-shares its update
xi locally and uploads
them to S1 and S2
separately.

S1 S2

(b) RobustWeightSe-
lection: Compute and
reveal {∥xi − xj∥2}i<j

on S2 and select a ro-
bust set of indices rep-
resented by p = {pi}i
by calling the Byzantine-
robust oracle.

S1 S2

(c) Aggregatio-
nAndUpdate: Com-
pute and reveal aggre-
gation z =

∑n
i=1 pixi

on S1. S1 updates the
public model.

S1 S2

(d) Worker-
PullModel: Each
worker i pulls model
from S1.

Fig. 4.1 Illustration of Algorithm 5. The orange components on servers represent the computation-
intensive operations at low communication cost between servers.

on its own. The two servers then execute our secure aggregation protocol. On the level of
servers, the protocol is a two-party computation (2PC). In the case of non-robust aggregation,
servers simply add all shares (we present this case in detail in Algorithm 4). In the robust case
which is of our main interest here, the two servers exactly emulate an existing Byzantine robust
aggregation rule, at the cost of revealing only distances of worker gradients on the server (the
robust algorithm is presented in Algorithm 5). Finally, the resulting aggregated output vector z
is sent back to all workers and applied as the update to the public machine learning model.

4.4.1 Non-robust secure aggregation

In each round, Algorithm 4 consists of two stages:
• WorkerSecretSharing (Figure 4.1a): each worker i randomly splits its private input xi

into two additive secret shares xi = x
(1)
i +x

(2)
i . This can be done e.g. by sampling a large

noise value ξi and then using (xi± ξi)/2 as the shares. Worker i sends x(1)
i to S1 and x

(2)
i

to S2. We write ⟨xi⟩ for the two secret-shared values distributed over the two servers.
• AggregationAndUpdate (Figure 4.1c): Given binary weights {pi}ni=1, each server

locally computes ⟨
∑n

i=1 pixi⟩. Then S2 sends its share ⟨
∑n

i=1 pixi⟩(2) to S1 so that S1
can then compute z =

∑n
i=1 pixi. S1 updates the public model with z.

Our secure aggregation protocol is extremely simple, and as we will discuss later, has very low
communication overhead, does not require heavy cryptographic primitives, gives strong input
privacy and is compatible with differential privacy, and is robust to worker dropouts and failures.
We believe this makes our protocol especially attractive for federated learning applications.

We now argue about correctness and privacy. It is clear that the output z of the above
protocol satisfies z =

∑n
i=1 pixi, ensuring that all workers compute the right update. Now we

42 Secure Byzantine-Robust Machine Learning

argue about the privacy guarantees. We track the values stored by each of the servers and
workers:

• S1: Its own secret shares {x(1)
i }ni=1 and the sum of the other shares ⟨

∑n
i=1 pixi⟩(2).

• S2: Its own secret shares {x(2)
i }ni=1.

• Worker i: xi and z =
∑n

i=1 pixi.
Clearly, the workers have no information other than the aggregate z and their own data. S2 only
has the secret share which on their own leak no information about any data. Hence surprisingly,
S2 does not learn anything in this process. S1 has its own secret share and also the sum of the
other shares. If n = 1, then z = xi and hence S1 is allowed to learn everything. If n > 1, then
S1 cannot recover information about any individual secret share x

(2)
i from the sum. Thus, S1

learns z and nothing else.

4.4.2 Robust secure aggregation

We now describe how Algorithm 5 replaces the simple aggregation with any distance-based
robust aggregation rule Aggr, e.g. Multi-Krum [Blanchard et al., 2017]. The key idea is to use
two-party MPC to securely compute multiplication.

• WorkerSecretSharing (Figure 4.1a): As before, each worker i secret shares ⟨xi⟩ dis-
tributed over the two servers S1 and S2.

• RobustWeightSelection (Figure 4.1b): After collecting all secret-shared values {⟨xi⟩}i,
the servers compute pairwise difference {⟨xi − xj⟩}i<j locally. S2 then reveals—to
itself exclusively—in plain text all of the pairwise Euclidean distances between workers
{∥xi − xj∥2}i<j with the help of precomputed Beaver’s triples and Algorithm 8. The
distances are kept private from S1 and workers. S2 then feeds these distances to the
distance-based robust aggregation rule Aggr, returning (on S2) a binary weight vector
p = {pi}ni=1 ∈ {0,1}n, representing the indices of the robust subset selected by Aggr.

• AggregationAndUpdate (Figure 4.1c): Given weight vector p from previous step, we
would like S1 to compute

∑n
i=1 pixi. To do so, S2 secret shares with S1 the values of

{⟨pi⟩} instead of sending in plain-text since they may be private. Then, S1 reveals to itself,
but not to S2, in plain text the value of z =

∑n
i=1 pixi using secret-shared multiplication

and updates the public model.
• WorkerPullModel (Figure 4.1d): Workers pull the latest public model on S1 and update

it locally.
The key difference between the robust and the non-robust aggregation scheme is the weight

selection phase where S2 computes all pairwise distances and uses this to run a robust-aggregation
rule in a black-box manner. S2 computes these distances i) without leaking any information to
S1, and ii) without itself learning anything other than the pair-wise distances (and in particular
none of the actual values of xi). To perform such a computation, S1 and S2 use precomputed

4.4 Secure aggregation protocol: two-server model 43

Beaver’s triplets (Algorithm 8 in the Appendix), which can be made available in a scalable
way [Smart and Tanguy, 2019].

4.4.3 Salient features

Overall, our protocols are very resource-light and straightforward from the perspective of the
workers. Further, since we use Byzantine-robust aggregation, our protocols are provably fault-
tolerant even if a large fraction of workers misbehave. This further lowers the requirements of a
worker. We elaborate the features as follows.

Communication overhead. In applications, individual uplink speed from worker and
servers is typically the main bottleneck, as it is typically much slower than downlink, and the
bandwidth between servers can be very large. For our protocols, the time spent on the uplink is
within a factor of 2 of the non-secure variants. Besides, our protocol only requires one round of
communication, which is an advantage over interactive proofs.

Fault tolerance. The workers in Algorithm 4 and Algorithm 5 are completely stateless across
multiple rounds and there is no offline phase required. This means that workers can start
participating in the protocols simply by pulling the latest public model. Further, our protocols
are unaffected if some workers drop out in the middle of a round. Unlike in [Bonawitz et al.,
2017], there is no entanglement between workers and we don’t have unbounded recovery issues.

Compatibility with local differential privacy. One byproduct of our protocol can be used
to convert differentially private mechanisms, such as [Abadi et al., 2016] which only guarantees
the privacy of the aggregated model, into the stronger locally differentially private mechanisms
which guarantee user-level privacy.

Other Byzantine-robust oracles. We can also use some robust-aggregation rules which
are not based on pair-wise distances such as Byzantine SGD [Alistarh et al., 2018]. Since the
basic structures are very similar to Algorithm 5, we put Algorithm 10 in the appendix.

Security. The security of Algorithm 4 is straightforward as we previously discussed. The
security of Algorithm 5 again relies on the separation of information between S1 and S2 with
neither the workers nor S1 learning anything other than the aggregate z. We will next formally
prove that this is true even in the presence of malicious workers.

Remark 1. Our proposed scheme leverages classic 2-party secret-sharing for addition and
multiplication. These building blocks however are originally proposed for integers and quantized
values, not real values. For floating point operations as used in machine learning, one can use
the secure counterparts [Aliasgari et al., 2013] of the two operations. This is facilitated by deep
learning training being robust to limited precision training [Gupta et al., 2015] and additional

44 Secure Byzantine-Robust Machine Learning

Algorithm 4 Two-Server Secure Aggregation (Non-robust variant)

Setup: n workers (non-Byzantine) with private vectors xi. Two non-colluding servers S1
and S2.
Workers: (WorkerSecretSharing)

1. split private xi into additive secret shares ⟨xi⟩ = {x(1)
i ,x

(2)
i } (such that xi = x

(1)
i +x

(2)
i)

2. send x
(1)
i to S1 and x

(2)
i to S2

Servers:
1. ∀ i, S1 collects x

(1)
i and S2 collects x

(2)
i

2. (AggregationAndUpdate):
(a) On S1 and S2, compute ⟨

∑n
i=1 xi⟩ locally

(b) S2 sends its share of ⟨
∑n

i=1 xi⟩ to S1
(c) S1 reveals z =

∑n
i=1 xi to everyone

noise [Neelakantan et al., 2016], with current models routinely trained in 16 bit precision. In
contrast to [Bonawitz et al., 2017] which relies on advanced cryptographic primitives such as
Diffie-Hellman’s key agreement which must remain exact and discrete, our protocols only use
much simpler secure arithmetic operations—only addition and multiplication—which are tolerant
to rounding errors. For the privacy implications of secret sharing when using floating point,
which go beyond the scope of our work, we refer the reader to the information theoretic analysis
of Aliasgari et al. [2013].

4.5 Theoretical guarantees

4.5.1 Exactness

In the following lemma we show that Algorithm 5 gives the exact same result as non-privacy-
preserving version.

Lemma 4.2 (Exactness of Algorithm 5). The resulting z in Algorithm 5 is identical to the
output of the non-privacy-preserving version of the used robust aggregation rule.

Proof. After secret-sharing xi to ⟨xi⟩ to two servers, Algorithm 5 performs local differences
{⟨xi−xj⟩}i<j . Using shared-values multiplication via Beaver’s triple, S2 obtains the list of true
Euclidean distances {∥xi − xj∥2}i<j . The result is fed to a distance-based robust aggregation
rule oracle, all solely on S2. Therefore, the resulting indices {pi}i as used in z := Σn

i=1pixi are
identical to the aggregation of non-privacy-preserving robust aggregation.

With the exactness of the protocol established, we next focus on the privacy guarantee.

4.5 Theoretical guarantees 45

Algorithm 5 Two-Server Secure Robust Aggregation (Distance-Based)
Setup: n workers, αn of which are Byzantine. Two non-colluding servers S1 and S2.
Workers: (WorkerSecretSharing)

1. split private xi into additive secret shares ⟨xi⟩ = {x(1)
i ,x

(2)
i } (such that xi = x

(1)
i +x

(2)
i)

2. send x
(1)
i to S1 and x

(2)
i to S2

Servers:
1. ∀ i, S1 collects gradient x

(1)
i and S2 collects x

(2)
i

2. (RobustWeightSelection):
(a) For each pair (xi, xj) compute their Euclidean distance (i < j):

• On S1 and S2, compute ⟨xi − xj⟩ = ⟨xi⟩ − ⟨xj⟩ locally
• Use precomputed Beaver’s triples (see Algorithm 8) to compute the distance
∥xi − xj∥2

(b) S2 perform robust aggregation rule p =Aggr({∥xi − xj∥2}i<j)
(c) S2 secret-shares ⟨p⟩ with S1

3. (AggregationAndUpdate):
(a) On S1 and S2, use MPC multiplication to compute ⟨

∑n
i=1 pixi⟩ locally

(b) S2 sends its share of ⟨
∑n

i=1 pixi⟩(2) to S1
(c) S1 reveals z =

∑n
i=1 pixi to all workers.

Workers:
1. (WorkerPullModel): Collect z and update model locally

4.5.2 Privacy

We prove probabilistic (information-theoretic) notion of privacy which gives the strongest
guarantee possible. Formally, we will show that the distribution of the secret does not change
even after being conditioned on all observations made by all participants, i.e. each worker i, S1
and S2. This implies that the observations carry absolutely no information about the secret.
Our results rely on the existence of simple additive secret-sharing protocols as discussed in the
Appendix.

Each worker i only receives the final aggregated z at the end of the protocol and is not
involved in any other manner. Hence no information can be leaked to them. We will now
examine S1. The proofs below rely on Beaver’s triples which we summarize in the following
lemma.

Lemma 4.3 (Beaver’s triples). Suppose we secret share ⟨x⟩ and ⟨y⟩ between S1 and S2 and
want to compute xy on S2. There exists a protocol which enables such computation which
uses precomputed shares BV = (⟨a⟩, ⟨b⟩, ⟨c⟩) such that S1 does not learn anything and S2 only
learns xy.

Due to the page limit, we put the details about Beaver’s triples, multiplying secret shares,
as well as the proofs for the next two theorems to the Appendix.

Theorem 4.1 (Privacy for S1). Let z =
∑n

i=1 pixi where {pi}ni=1 is the output of byzantine
oracle or a vector of 1s (non-private). Let BVij = ⟨aij , bij , cij⟩ and BV pi = ⟨ap

i , b
p
i , c

p
i ⟩ be the

46 Secure Byzantine-Robust Machine Learning

Beaver’s triple used in the multiplications. Let ⟨·⟩(1) be the share of the secret-shared values ⟨·⟩
on S1. Then for all workers i

P(xi = xi | {⟨xi⟩(1), ⟨pi⟩(1)}ni=1, {BV
(1)
i,j ,xi − xj − aij ,xi − xj − bij}i<j ,

{⟨∥xi − xj∥2⟩(1)}i<j , {BV p
(1)
i , pi − ap

i , pi − bpi }
n
i=1, z) = P(xi = xi|z)

Note that the conditioned values are what S1 observes throughout the algorithm. {BV
(1)
ij ,xi

− xj − aij ,xi − xj − bij}i<j and {BV p
(1)
i , pi − ap

i , pi − bpi }ni=1 are intermediate values during
shared values multiplication.

For S2, the theorem to prove is a bit different because in this case S2 doesn’t know the
output of aggregation z. In fact, this is more similar to an independent system which knows
little about the underlying tasks, model weights, etc. We show that while S2 has observed many
intermediate values, it can only learn no more than what can be inferred from model distances.

Theorem 4.2 (Privacy for S2). Let {pi}ni=1 is the output of byzantine oracle or a vector of 1s
(non-private). Let BVij = ⟨aij , bij , cij⟩ and BV pi = ⟨ap

i , b
p
i , c

p
i ⟩ be the Beaver’s triple used in

the multiplications. Let ⟨·⟩(2) be the share of the secret-shared values ⟨·⟩ on S2. Then for all
workers i

P(xi = xi | {⟨xi⟩(2), ⟨pi⟩(2), pi}ni=1, {BV
(2)
i,j ,xi − xj − aij ,xi − xj − bij}i<j ,

{⟨∥xi − xj∥2⟩(2), ∥xi − xj∥2}i<j , {BV p
(2)
i , pi − ap

i , pi − bpi }
n
i=1)

= P(xi = xi | {∥xi − xj∥2}i<j)

(4.1)

Note that the conditioned values are what S2 observed throughout the algorithm. {BV
(2)
ij ,xi −

xj − aij ,xi − xj − bij}i<j and {BV p
(2)
i , pi − ap

i , pi − bpi }ni=1 are intermediate values during
shared values multiplication.

The model distances indeed only leaks similarity among the workers. Such similarity,
however, does not tell S2 information about the parameters; in [Mhamdi et al., 2018] the leeway
attack attacks distance based-rules because they don’t distinguish two gradients with evenly
distributed noise and two different gradients very different in one parameter. This means the
leaked information has low impact to the privacy.

It is also worth noting that curious workers can only inspect others’ values by learning from
the public model/update. This is because in our scheme, workers don’t interact directly and
there is only one round of communication between servers and workers. So the only message a
worker receives is the public model update.

4.5.3 Combining with differential privacy

While input privacy is our main goal, our approach is naturally compatible with other orthogonal
notions of privacy. Global differential privacy (DP) [Abadi et al., 2016; Chase et al., 2017;

4.6 Empirical analysis of overhead 47

Shokri and Shmatikov, 2015] is mainly concerned about the privacy of the aggregated model,
and whether it leaks information about the training data. On the other hand, local differential
privacy (LDP) [Evfimievski et al., 2003; Kasiviswanathan et al., 2011] is stronger notions which is
also concerned with the training process itself. It requires that every communication transmitted
by the worker does not leak information about their data. In general, it is hard to learn deep
learning models satisfying LDP using iterate perturbation (which is the standard mechanism
for DP) [Bonawitz et al., 2017].

Our non-robust protocol is naturally compatible with local differential privacy. Consider the
usual iterative optimization algorithm which in each round t performs

wt ← wt−1 − η(xt + νt) , where xt =
1
n

∑n
i=1 xt,i . (4.2)

Here xt is the aggregate update, wt is the model parameters, and νt is the noise added for DP
[Abadi et al., 2016].

Theorem 4.3 (from DP to LDP). Suppose that the noise νt in (4.2) is sufficient to ensure
that the set of model parameters {wt}t∈[T] satisfy (ϵ, δ)-DP for ϵ ≥ 1. Then, running (4.2) with
using Alg. 4 to compute (xt + ηt) by securely aggregating {x1,t + nηt,x2,t, . . . ,xn,t} satisfies
(ϵ, δ)-LDP.

Unlike existing approaches, we do not face a tension between differential privacy which
relies on real-valued vectors and cryptographic tools which operate solely on discrete/quantized
objects. This is because our protocols do not rely on cryptographic primitives like Diffie-Hellman
key agreement, in contrast to e.g. [Bonawitz et al., 2017]. In particular, the vectors xi can
be full-precision (real-valued) at the cost of adding marginal rounding error which can be
tolerated by robust aggregation rule and stochastic gradient descent algorithms. Thus, our
secure aggregation protocol can be integrated with a mechanism which has global DP properties
e.g. [Abadi et al., 2016], and prove local DP guarantees for the resulting mechanism.

4.6 Empirical analysis of overhead

We present an illustrative simulation on a local machine (i7-8565U) to demonstrate the overhead
of our scheme. We use PyTorch with MPI to train a neural network of 1.2 million parameters
on the MNIST dataset. We compare the following three settings: simple aggregation with
1 server, secure aggregation with 2 servers, robust secure aggregation with 2 servers (with
Krum [Blanchard et al., 2017]). The number of workers is always 5.

Figure 4.2 shows the time spent on all parts of training for one aggregation step. Tgrad

is the time spent on batch gradient computation; Tw2s refers to the time spend on uploading
and downloading gradients; Ts2s is the time spend on communication between servers. Note
that the server-to-server communication could be further reduced by employing more efficient

48 Secure Byzantine-Robust Machine Learning

S1 Avg S2 Avg S2 Krum
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ti
m

e
Pe

r A
gg

re
ga

tio
n

(s
)

Simulation time
Tgrad

Tw2s

Ts2s

S1 Avg S2 Avg S2 Krum
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Adjusted simulation time

Tgrad

Tw2s

Ts2s

Fig. 4.2 Left: Actual time spent; Right: Time adjusted for network bandwidth.

aggregation rules. Since the simulation is run on a local machine, time spent on communication is
underestimated. In the right hand side figure, we adjusts time by assuming the worker-to-server
link has 100Mbps bandwidth and 1Gbps respectively for the server-to-server link. Even in this
scenario, we can see that the overhead from private aggregation is small. Furthermore, the
additional overhead by the robustness module is moderate comparing to the standard training,
even for realistic deep-learning settings. For comparison, a zero-knowledge-proof-based approach
need to spend 0.03 seconds to encode a submission of 100 integers [Corrigan-Gibbs and Boneh,
2017].

4.7 Literature review

Secure Aggregation. In the standard distributed setting with 1 server, Bonawitz et al. [2017]
proposes a secure aggregation rule which is also fault tolerant. They generate a shared secret
key for each pair of users. The secret keys are used to construct masks to the input gradients
so that masks cancel each other after aggregation. To achieve fault tolerance, they employ
Shamir’s secret sharing. To deal with active adversaries, they use a public key infrastructure
(PKI) as well as a second mask applied to the input. A followup work [Mandal et al., 2018]
minimizes the pairwise communication by outsourcing the key generation to two non-colluding
cryptographic secret providers. However, both protocols are still not scalable because each
worker needs to compute a shared-secret key and a noise mask for every other client. When
recovering from failures, all live clients are notified and send their masks to the server, which
introduces significant communication overhead. In contrast, workers in our scheme are freed
from coordinating with other workers, which leads to a more scalable system.

Byzantine-Robust Aggregation/SGD. Blanchard et al. [2017] first proposes Krum and
Multi-Krum for training machine learning models in the presence of Byzantine workers. Mhamdi
et al. [2018] proposes a general enhancement recipe termed Bulyan. Alistarh et al. [2018]

4.8 Conclusion 49

proves a robust SGD training scheme with optimal sample complexity and the number of SGD
computations. Muñoz-González et al. [2019] uses HMM to detect and exclude Byzantine workers
for federated learning. Yin et al. [2018b] proposes median and trimmed-mean based robust
algorithms which achieve optimal statistical performance. For robust learning on non-i.i.d
dataset only appear recently [Ghosh et al., 2019; He et al., 2020a; Li et al., 2019]. Further, Xie
et al. [2018b] generalizes the Byzantine attacks to manipulate data transfer between workers and
server and Xie et al. [2019c] extends it to tolerate an arbitrary number of Byzantine workers.

Pillutla et al. [2019] proposes a robust aggregation rule RFA which is also privacy preserving.
However, it is only robust to data poisoning attack as it requires workers to compute aggregation
weights according to the protocol. Corrigan-Gibbs and Boneh [2017] proposes a private and
robust aggregation system based on secret-shared non-interactive proof (SNIP). Despite the
similarities between our setups, the generation of a SNIP proof on client is expansive and grows
with the dimensions. Besides, this paper offers limited robustness as it only validates the range
of the data.

Inference As A Service. An orthogonal line of work is inference as a service or oblivious
inference. A user encrypts its own data and uploads it to the server for inference. [Chou et al.,
2018; Gilad-Bachrach et al., 2016; Hesamifard et al., 2017; Juvekar et al., 2018; Liu et al., 2017;
Mohassel and Zhang, 2017; Riazi et al., 2019; Rouhani et al., 2017] falls into a general category
of 2-party computation (2PC). A number of issues have to be taken into account: the non-linear
activations should be replaced with MPC-friendly activations, represent the floating number as
integers. Ryffel et al. [2019] uses functional encryption on polynomial networks. Gilad-Bachrach
et al. [2016] also have to adapt activations to polynomial activations and max pooling to scaled
mean pooling.

Server-Aided MPC. One common setting for training machine learning model with MPC
is the server-aided case [Chen et al., 2019; Mohassel and Zhang, 2017]. In previous works, both
the model weights and the data are stored in shared values, which in turn makes the inference
process computationally very costly. Another issue is that only a limited number of operations
(function evaluations) are supported by shared values. Therefore, approximating non-linear
activation functions again introduces significant overhead. In our paper, the computation of
gradients are local to the workers, only output gradients are sent to the servers. Thus no
adaptations of the worker’s neural network architectures for MPC are required.

4.8 Conclusion

In this paper, we propose a novel secure and Byzantine-robust aggregation framework. To our
knowledge, this is the first work to address these two key properties jointly. Our algorithm is
simple and fault tolerant and scales well with the number of workers. In addition, our framework

50 Secure Byzantine-Robust Machine Learning

holds for any existing distance-based robust rule. Besides, the communication overhead of our
algorithm is roughly bounded by a factor of 2 and the computation overhead, as shown in
Algorithm 8, is marginal and can even be computed prior to training.

Chapter 5

RelaySum for Decentralized Deep
Learning on Heterogeneous Data

5.1 Preface

Contribution and sources. This chapter reproduces [Vogels et al., 2021] with minor edits.
Most of the methodology and writing were done by the author and Thijs Vogels. The author
carried out most of formal analysis. The experiments and visualization were conducted mostly
by Thijs Vogels. Detailed individual contributions:

• Lie He (author): Formal analysis (70%), Methodology (40%), Writing (50%).
• Thijs Vogels (co-first author): Methodology (60%), Software (80%), Visualization, Writing

(50%).
• Anastasia Koloskova: Formal analysis.
• Tao Lin: Software.
• Sai Praneeth Karimireddy: Formal analysis
• Sebastian U. Stich: Formal analysis, Writing–review and editing.
• Martin Jaggi: Writing, Review and editing, Project administration, Supervision.

Summary. Decentralized machine learning involves individual workers interleaving model
updates on their local data and communicating with neighboring nodes. The gossip averaging
mechanism is commonly used to exchange information through weighted average. However,
gossip averaging is slow to distribute information across the network and is sensitive to data
heterogeneity. In this paper, we propose RelaySum, a novel mechanism for information propaga-
tion in decentralized learning. RelaySum utilizes spanning trees to ensure precise and uniform
distribution of information to all workers, with finite delays based on inter-node distances. We
show that RelaySum can be implemented on trees with the same communication volume per
step as gossip averaging, using additional memory linear in the number of neighbors. We use

52 RelaySum for Decentralized Deep Learning on Heterogeneous Data

RelaySum in the RelaySGD learning algorithm, which is independent of data heterogeneity and
scalable for scenarios with numerous workers. We demonstrate the effectiveness of RelaySGD on
image- and text classification tasks, where it outperforms state-of-the-art decentralized learning
algorithms. The code for RelaySum can be found at http://github.com/epfml/relaysgd.

5.2 Introduction

Ever-growing datasets lay at the foundation of the recent breakthroughs in machine learning.
Learning algorithms therefore must be able to leverage data distributed over multiple devices, in
particular for reasons of efficiency and data privacy. There are various paradigms for distributed
learning, and they differ mainly in how the devices collaborate in communicating model updates
with each other. In the all-reduce paradigm, workers average model updates with all other
workers at every training step. In federated learning [McMahan et al., 2017b], workers perform
local updates before sending them to a central server that returns their global average to the
workers. Finally, decentralized learning significantly generalizes the two previous scenarios. Here,
workers communicate their updates with only few directly-connected neighbors in a network,
without the help of a server.

Decentralized learning offers strong promise for new applications, allowing any group of
agents to collaboratively train a model while respecting the data locality and privacy of each
contributor [Nedic, 2020]. At the same time, it removes the single point of failure in centralized
systems such as in federated learning [Kairouz et al., 2019], improving robustness, security, and
privacy. Even from a pure efficiency standpoint, decentralized communication patterns can
speed up training in data centers [Assran et al., 2019a].

In decentralized learning, workers share their local stochastic gradient updates with the
others through gossip communication [Xiao and Boyd, 2004]. They send their updates to their
neighbors, which iteratively propagate the updates further into the network. The workers
typically use iterative gossip averaging of their models with their neighbors, using averaging
weights chosen to ensure asymptotic uniform distribution of each update across the network. It
will take τ rounds of communication for an update from worker i to reach a worker j that is τ

hops away, and when it first arrives, the update is exponentially weakened by repeated averaging
with weights < 1. In general networks, worker j will never exactly, but only asymptotically
receive its uniform share of the update. The slow distribution of updates not only slows down
training, but also makes decentralized learning sensitive to heterogeneity in workers’ data
distributions.

We study an alternative mechanism to gossip averaging, which we call RelaySum. RelaySum
operates on spanning trees of the network, and distributes information exactly uniformly within
a finite number of gossip steps equal to the diameter of the network. Rather than iteratively
averaging models, each node acts as a ‘router’ that relays messages through the whole network
without decaying their weight at every hop. While naive all-to-all routing requires n2 messages

http://github.com/epfml/relaysgd

5.2 Introduction 53

Fig. 5.1 To spread information across a decentralized network, classical gossip averaging diffuses
information slowly through the network. The left figure illustrates the spread of information
originating from the fourth worker in a chain network. In RelaySum, the messages are relayed
without reweighting, resulting in uniform delivery of the information to every worker. When
multiple workers broadcast simultaneously (not pictured), RelaySum can sum their messages
and use the same bandwidth as gossip averaging.

to be transmitted at each step, we show that on trees, only n messages (one per edge) are
sufficient. This is enabled by the key observation that the routers can merge messages by
summation to avoid any extra communication compared to gossip averaging. RelaySum achieves
this using additional memory linear in the number of edges, and by tailoring the messages
sent to different neighbors. At each time step, RelaySum workers receive a uniform average
of exactly one message from each worker. Those messages just originate from different time
delays depending on how many hops they travelled. The difference between gossip averaging
and RelaySum is illustrated in Figure 5.1.

The RelaySum mechanism is structurally similar to Belief Propagation algorithms for
inference in graphical models. This link was made by Zhang et al. [2019], who used the same
mechanism for decentralized weighted average consensus in control.

We use RelaySum in the RelaySGD learning algorithm. We theoretically show that this
algorithm is not affected by differences in workers’ data distributions. Compared to other
algorithms that have this property [Pu and Nedic, 2018; Tang et al., 2018], RelaySGD does not
require the selection of averaging weights, and its convergence does not depend on the spectral
gap of the averaging matrix, but instead on the network diameter.

While RelaySum is formulated for trees, it can be used in any decentralized network. We
use the Spanning Tree Protocol [Perlman, 1985] to construct spanning trees of any network
in a decentralized fashion. RelaySGD often performs better on any such spanning tree than
gossip-based methods on the original graph. When the communication network can be chosen
freely, the algorithm can use double binary trees [Sanders et al., 2009]. While these trees have
logarithmic diameter and scale to many workers, RelaySGD in this setup uses only constant
memory equivalent to two extra copies of the model parameters and sends and receives only
two models per iteration.

Surprisingly, in deep learning with highly heterogeneous data, prior methods that are
theoretically independent of data heterogeneity [Pu and Nedic, 2018; Tang et al., 2018], perform
worse than heuristic methods that do not have this property, but use cleverly designed time-

54 RelaySum for Decentralized Deep Learning on Heterogeneous Data

varying communication topologies [Assran et al., 2019a]. In extensive tests on image- and text
classification, RelaySGD performs better than both kinds of baselines at equal communication
budget.

5.3 Related work

Out of the multitude of decentralized optimization methods, first-order algorithms that interleave
local gradient updates with a form of gossip averaging Johansson et al. [2009]; Nedic et al. [2017]
show most promise for deep learning. Such algorithms are theoretically analyzed for convex and
non-convex objectives in Johansson et al. [2009]; Nedic and Ozdaglar [2009]; Nedic et al. [2017],
and [Assran et al., 2019a; Lian et al., 2017b; Lin et al., 2021b; Tang et al., 2018] demonstrate
that gossip-based methods can perform well in deep learning.

In a gossip averaging step, workers average their local models with the models of their direct
neighbors. The corresponding ‘mixing matrix’ is a central object of study. The matrix can
be doubly-stochastic Koloskova et al. [2020b]; Lian et al. [2017b]; Nedic et al. [2017], column-
stochastic Assran et al. [2019a]; Nedic and Olshevsky [2016]; Tsianos et al. [2012]; Xi and Khan
[2017], row-stochastic Xi et al. [2018]; Xin et al. [2019], or a combination Pu et al. [2021]; Xin
and Khan [2018, 2020]. Column-stochastic methods use the push-sum consensus mechanism
[Kempe et al., 2003] and can be used on directed graphs. Our analysis borrows from the theory
developed for those methods.

While gossip averages in general requires an infinite number of steps to reach exact consensus,
another line of work identifies mixing schemes that yield exact consensus in finite steps. For
some graphs, this is possible with time-independent averaging weights Georgopoulos [2011];
Ko [2010]. One can also achieve finite-time consensus with time-varying mixing matrices. On
trees, for instance, exact consensus can be achieved by routing updates to a root node and
back, in exactly diameter number of steps Georgopoulos [2011]; Ko [2010]. On some graphs,
tighter bounds can be established Hendrickx et al. [2014]. For fully-connected networks with n

workers, Assran et al. [2019a] design a sparse time-varying communication scheme that yields
exact consensus in a cycle of log n averaging steps and performs well in deep learning.

The ‘relay’ mechanism of RelaySGD was previously used by Zhang et al. [2019] in the control
community for the decentralized weighted average consensus problem, but they do not use it in
the context of optimization. Zhang et al. also introduce a modified algorithm for loopy graphs,
but this modification makes the achieved consensus inexact. The ‘relay’ mechanism effectively
turns a sparse graph into a fully-connected graph with communication delays. Work on delayed
consensus Nedić and Ozdaglar [2010] and optimization Agarwal and Duchi [2011]; Tsianos and
Rabbat [2011] analyzes such schemes for centralized distributed algorithms. Those consensus
schemes are, however, not directly applicable to decentralized optimization.

A fundamental challenge in decentralized learning is dealing with data that is not identically
distributed among workers. Because, in this case, workers pursue different optima, workers

5.4 Method 55

may drift Nedic et al. [2017] and this can harm convergence. There is a large family of
algorithms that introduce update corrections that provably mitigate such data heterogeneity.
Examples applicable to non-convex problems are exact diffusion [Yuan et al., 2019], Gradient
Tracking [Lorenzo and Scutari, 2016; Pu and Nedic, 2018; Zhang and You, 2020], D2 [Tang et al.,
2018], PushPull [Pu et al., 2021]. To tackle the same challenge, Lin et al. [2021b]; Yuan et al.
[2021] propose modifications to local momentum to empirically improve performance in deep
learning, but without provable guarantees. Lu and Sa [2021] propose DeTAG which overlaps
multiple consecutive gossip steps and gradient computations to accelerate information diffusion.
This technique could be applied to the RelaySum mechanism, too.

5.4 Method

Setup We consider standard decentralized optimization with data distributed over n ≥ 1

nodes:
f⋆ := minx∈Rd

[
f(x) = 1

n

∑n
i=1 [fi(x) := Eξ∼Di

Fi(x, ξi)]
]
.

Here Di denotes the distribution of the data on node i and fi : Rd → R the local optimization
objectives. Workers are connected by a network respecting a graph topology G = (V, E), where
V = {1, . . . , n} denotes the set of workers, and E the set of undirected communication links
between them (without self loops). Each worker i can only directly communicate with its
neighbors Ni ⊂ V.

Decentralized learning with gossip We consider synchronous first-order algorithms that
interleave local gradient-based updates

x
(t+1/2)
i = x

(t)
i + u

(t)
i

with message exchange between connected workers. For SGD with typical gossip averaging
(DP-SGD [Lian et al., 2017b]), the local updates can be written as u(t)

i = −γ∇fi(x(t)
i , ξ

(t)
i), and

the messages exchanged between pairs of connected workers (i, j) are m
(t)
i→j = x

(t+1/2)
i ∈ Rd.

Each timestep, the workers average their model with received messages,

x
(t+1)
i = Wiix

(t+1/2)
i +

∑
j∈Ni

Wijm
(t)
j→i, (DP-SGD)

using averaging weights defined by a gossip matrix W ∈ Rn×n.
In this scheme, an update u

(t1)
i from any worker i will be linearly incorporated into the

model x(t2)
j at a later timestep t2 with weight (W t2−t1)ij . The gossip matrix must be chosen

such that these weights asymptotically converge to 1
n , distributing all updates uniformly over

the workers. This setup appears in, for example, [Koloskova et al., 2020b; Lian et al., 2017b].

56 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Uniform model averaging If the graph topology is fully-connected, any worker can com-
municate with any other worker, and it is ideal to use ‘all-reduce averaging’,

x
(t+1)
i = 1

n

∑n
j=1 x

(t+1/2)
j .

Contrary to the decentralized scheme (DP-SGD), this algorithm does not degrade in performance
if data is distributed heterogeneously across workers. In sparsely connected networks, however,
all-reduce averaging requires routing messages through the network. On arbitrary networks,
such a routing protocol requires at least a number of communication steps equal to the network
diameter τmax—the minimum number of hops some messages have to travel.

RelaySGD In this paper, we approximate the all-reduce averaging update as

x
(t+1)
i = 1

n

∑n
j=1 x

(t−τij+1/2)
j , (RelaySGD)

where τij is minimum number of network hops between workers i and j (and τii = 0). Since it
takes τij steps to route a message from worker i to j, this scheme could be implemented using a
peer-to-peer routing protocol like Ethernet. Of course, this naive implementation drastically
increases the bandwidth used compared to gossip averaging. The key insight of this paper is
that, on tree networks, the RelaySGD update rule can be implemented while using the same
communication volume per step as gossip averaging, using additional memory linear in the
number of a worker’s direct neighbors.

RelaySum To implement RelaySGD, we require a communication mechanism that delivers
sums of delayed ‘parcels’ s(t)w =

∑n
j=1 p

(t−τwj)
j to each worker w in a tree network, where the

parcel p(t)j is created by worker j at time t. To simplify the exposition, let us first consider the
simplest type of tree network: a chain. In a chain, a worker w is connected to workers w − 1

and w + 1, if those exist, and the delays are τij = |i− j|. We can then decompose

s(t)w =
n∑

j=1

p
(t−τwj)
j = p(t)w +

w−1∑
j=1

p
(t−τwj)
j︸ ︷︷ ︸

parcels from the ‘left’

+
n∑

j=w+1

p
(t−τwj)
j︸ ︷︷ ︸

parcels from the ‘right’

.

The sum of parcels from the ‘left’ will be sent as one message m(w−1)→w from worker w − 1

to w, and the sum of data from the ‘right’ will be sent as one message m(w+1)→w from w + 1

to w. Neighboring workers can compute these messages from the messages they received from
their neighbors in the previous timestep. Compared to typical gossip averaging, RelaySum
requires additional memory linear in the number of neighbors, but it uses the same volume of
communication.

5.5 Theoretical analysis 57

Algorithm 6 RelaySGD

Input: ∀ i, x
(0)
i = x(0); ∀ i, j,m

(−1)
i→j = 0, counts c

(−1)
i→j = 0, learning rate γ, tree network

1: for t = 0, 1, . . . do
2: for node i in parallel
3: x

(t+1/2)
i = x

(t)
i −γ∇fi(x

(t)
i) (or Adam/momentum)

4: for each neighbor j ∈ Ni do
5: Send m

(t)
i→j = x

(t+1/2)
i +

∑
k∈Ni\j m

(t−1)
k→i (relay messages from other neighbors)

6: Send corresponding counters c
(t)
i→j = 1 +

∑
k∈Ni\j c

(t−1)
k→i

7: Receive (m(t)
j→i, c

(t)
j→i) from node j

8: n̄
(t+1)
i = 1 +

∑
j∈Ni

c
(t)
j→i (n̄ converges to the total number of workers)

9: xt+1
i = 1

n̄
(t+1)
i

(
x
(t+1/2)
i +

∑
j∈Ni

m
(t)
j→i

) (
= 1

n

∑n
j=1 x

(t−τij+1/2)
j

)
10: end for

Algorithm 6 shows how this scheme is generalized to general tree networks and incorporated
into RelaySGD. Along with the model parameters, we send scalar counters that are used in the
first few iterations of the algorithm t ≤ τmax to correct for messages that have not yet arrived.

Spanning trees RelaySGD is formulated on tree networks, but it can be used on any
communication graph by constructing a spanning tree. In a truly decentralized setting, we
can use the Spanning Tree Protocol [Perlman, 1985] used in Ethernet to find such trees in a
decentralized fashion. The protocol elects a leader as the root of the tree, after which every
other node finds the fastest path to this leader.

On the other hand, when the decentralized paradigm is used in a data center to reduce
communication, RelaySGD can run on double binary trees [Sanders et al., 2009] used in MPI and
NCCL [Jeaugey, 2019]. The key idea of double binary trees is to use two different communication
topologies for different parts of the model. We communicate odd coordinates using a balanced
binary tree A, and communicate the even coordinates with a complimentary tree B. The trees
A and B are chosen such that internal nodes (with 3 edges) in one tree are leaves (with only 1
edge) in the other. Using the combination of two trees, RelaySGD requires only constant extra
memory equivalent to at most 2 model copies (just like the Adam optimizer [Kingma and Ba,
2015]), and it sends and receives the equivalent of 2 models (just like on a ring).

5.5 Theoretical analysis

Since RelaySGD updates worker’s models at time step t+ 1 using models from (at most) the
past τmax steps, we conveniently reformulate RelaySGD in the following way: Let Y (t),G(t) ∈
Rn(τmax+1)×d denote stacked worker models and gradients whose row vectors at index n·τ + i

58 RelaySum for Decentralized Deep Learning on Heterogeneous Data

represent

[
Y (t)

]⊤
nτ+i

=

x
(t−τ)
i t ≥ τ

x(0) otherwise
,

[
G(t)

]⊤
nτ+i

=

∇Fi(x
(t−τ)
i ; ξ

(t−τ)
i) t ≥ τ

x(0) otherwise

for all times t ≥ 0, delay τ ∈ [0, τmax] and worker i ∈ [n]. Then (RelaySGD) can be written as

Y (t+1) = WY (t) − γW̃G(t)

where W , W̃ ∈ Rn(τmax+1)×n(τmax+1) are non-negative matrices whose elements are

[W]nτ+i,nτ ′+j =


1
n τ = 0 and τ ′ = τij

1 i = j and τ = τ ′ + 1

0 otherwise

,
[
W̃
]
nτ+i,nτ ′+j

=

 1
n τ = 0 and τ ′ = τij

0 otherwise

for all τ, τ ′ ∈ [0, τmax] and i, j ∈ [n]. The matrix W can be interpreted as the mixing matrix of
an ‘augmented graph’ [Nedić and Ozdaglar, 2010] with additional virtual ‘forwarding nodes’. W
is row stochastic and its largest eigenvalue is 1. The vector of all ones 1n(τmax+1) ∈ Rn(τmax+1) is a
right eigenvector of W and let π ∈ Rn(τmax+1) be the left eigenvector such that π⊤1n(τmax+1) = 1.

We characterize the convergence rate of the consensus distance in the following key lemma:

Lemma 5.1 (Key lemma). There exists an integer m = m(W) > 0 such that for any X ∈
Rn(τmax+1)×d we have

∥WmX − 1π⊤X∥2 ≤ (1− p)2m∥X − 1π⊤X∥2,

where p = 1
2(1− |λ2(W)|) is a constant.

All the following optimization convergence results will only depend on the effective spectral
gap ρ := p

m of W . We empirically observe that ρ = Θ(1/n) for a variety of network topologies
(see Figure D.1 in Appendix D.1).

Remark 2. The above key lemma is similar to [Koloskova et al., 2020b, Assumption 4] for
gossip-type averaging with symmetric matrices. However, in our case W is just a row stochastic
matrix, and its spectral norm ∥W ∥2 > 1. In general, the consensus distance can increase after
just one single communication step (multiplication by W). That is why we need m > 1. The
proof of the Lemma relies on a Perron-Frobenius type theorem, and holds over several steps
m instead of a single iteration. It means RelaySum defines a consensus algorithm with linear
convergence rate which pulls models closer.

Our main convergence results hold under the following common assumptions, as e.g. Koloskova
et al. [2020b].

5.5 Theoretical analysis 59

Assumption A (L-smoothness). For each i ∈ [n], Fi(x, ξ) : RD × Ωi → R is differentiable for
each ξ ∈ supp(Di) and there exists a constant L ≥ 0 such that for each x,y ∈ Rd, ξ ∈ supp(Di):

∥∇Fi(x, ξ)−∇Fi(y, ξ)∥ ≤ L∥x− y∥ .

Assumption B (Uniform bounded noise). There exists constant σ̄, such that for all x ∈ Rd,
i ∈ [n],

Eξ ∥∇Fi(x, ξ)−∇fi(x)∥2 ≤ σ̄2.

Assumption C (µ-convexity). For i ∈ [n], each function fi : Rd → R is µ-(strongly) convex
for constant µ ≥ 0. That is, ∀ x,y ∈ Rd

fi(x)− fj(y) +
µ
2∥x− y∥22 ≤ ∇fi(x)⊤(x− y) .

Theorem 5.1 (RelaySGD). For any target accuracy ϵ > 0 and an optimal solution x⋆, (Con-
vex:) under Assumptions A, B and C with µ ≥ 0, it holds that

1
T+1

∑T
t=0

(
f(x(t))−f(x⋆)

)
≤ ϵ after O

(
σ̄2

nϵ2
+ C

√
Lσ̄

ϵ3/2
+ CL

ϵ

)
R2

0 iterations.

Here x(t) :=π⊤Y (t) averages past models, R2
0=∥x0 − x⋆∥2, and C=O(1ρτ

3/2
max).

(Non-convex:) under Assumptions A and B, it holds that

1
T+1

∑T
t=0 ∥∇f(x(t))∥2 ≤ ϵ after O

(
σ̄2

nϵ2
+ Cσ̄

ϵ3/2
+ C

ϵ

)
LF0 iterations,

where F0 := f(x(0))− f(x⋆).

The dominant term in our convergence result, O
(
σ̄2

nϵ2

)
matches with the dominant term in

the convergence rate of centralized (‘all-reduce’) mini-batch SGD, and thus can not be improved.
In contrast to other methods, the presented convergence result of RelaySGD is independent

of the data heterogeneity ζ2 in [Koloskova et al., 2020b, Assumption 3b].

Definition 5.4 (Data heterogeneity). There exists a constant ζ2 such that ∀ i ∈ [n],x ∈ Rd

∥∇fi(x)−∇f(x)∥22 ≤ ζ2 .

Remark 3. For convex objectives, Assumptions B and 5.4 can be relaxed to only hold at the
optimum x⋆. A weaker variant of Assumption A only uses L-smoothness of fi [Koloskova et al.,
2020b, Assumption 1b].

Comparing to gossip averaging for convex fi which has complexityO(σ̄2

nϵ2
+(ζρ+

σ̄√
ρ)

√
L

ϵ3/2
+ L

ρϵ)R
2
0,

our rate for RelaySGD does not depend on ζ2 and has same leading term O(σ̄2

nϵ2
) as D2.

60 RelaySum for Decentralized Deep Learning on Heterogeneous Data

5.6 Experimental analysis and practical properties

5.6.1 Effect of network topology

Random quadratics To efficiently investigate the scalability of RelaySGD with respect to
the number of workers, and to study the benefits of binary tree topologies over chains, we
introduce a family of synthetic functions. We study random quadratics with local cost functions
fi(x) = ∥Aix− b⊤i x∥2 to precisely control all constants that appear in our theoretical analysis.
The Hessians Ai are initialized randomly, and their spectrum is scaled to achieve a desired
smoothness L and strong convexity µ. The offsets bi ensure a desired level of heterogeneity ζ2

and distance between optimum and initialization r0. Appendix D.2.4 describes the generation
of these quadratics in detail.

Scalability on rings and trees Using these quadratics, Figure 5.2 studies the number
of steps required to reach a suboptimality f(x̄) − f(x⋆) ≤ ϵ with tuned constant learning
rates. On ring topologies with uniform (1/3) gossip weights (and chains for RelaySum), all
compared methods require steps at least linear in the number of workers to reach the target
quality. RelaySGD and D2 empirically scale significantly better than Gradient Tracking, these
methods are all independent of data heterogeneity. On a balanced binary tree network with
Metropolis-Hastings weights [Xiao and Boyd, 2004], both D2 and Gradient Tracking notably do
not scale better than on a ring, while RelaySGD on these trees requires only a number of steps
logarithmic in the number of workers. SGP with their time-varying exponential topology scales
well, too, but it requires more steps on more heterogeneously distributed data.

0 20 40 60 80 100
Number of workers (n)

0

100

200

300

400

500

#
st

ep
s

to
f(x̄
)−

f(x
?
)≤

10
−6

ζ2 = 0.01 (a little heterogeneous)

0 20 40 60 80 100
Number of workers (n)

ζ2 = 1.0 (very heterogeneous)

Algorithm
Gradient tracking
SGP
RelaySGD
D2

Topology
Balanced binary tree
Ring / chain
Time-varying exponential

Fig. 5.2 Time required to optimize random quadratics (σ2 = 0, r0 = 10, L = 1, µ = 0.5) to
suboptimality ≤ 10−6 with varying numbers of workers with tuned constant learning rates. On
a ring (), D2 and RelaySGD require steps linear in the number of workers, and this
number is independent of the data heterogeneity. RelaySGD reduces this to log n on a balanced
tree topology (), but trees do not improve D2 or Gradient Tracking. For SGP with
time-varying exponential topology (), the number of steps does not consistently grow with
more workers, but this number becomes higher with more heterogeneity (left v.s. right plot).

5.6 Experimental analysis and practical properties 61

0 100 200 300 400 500
Steps

10−6

10−5

10−4

10−3

10−2

10−1

100

Su
bo

pt
im

al
ity

f(x̄
)−

f(x
?
)

0 20000 40000 60000 80000
parameter vectors sent and received

Fig. 5.3 Performance of RelaySGD on spanning trees of the Social Network graph (32 nodes)
found using Spanning Tree Protocol, compared to DP-SGD and D2 on the full network. Solid
lines () indicate spanning trees while dashed lines () indicate the full graph. The figure on
the right shows one spanning tree on top of the original network. Learning rates are tuned to
reach suboptimality ≤ 10−5 on random quadratics (ζ2 = 0.1, σ2 = 0.1, r0 = 1, L = 1, µ = 0.5).

RelaySGD on spanning trees converges as fast as D2 on the full network, while the total
communication on spanning trees is smaller than on the full graph.

5.6.2 Spanning trees compared to other topologies

RelaySGD cannot utilize all available edges in arbitrary networks to communicate, but is
restricted to a spanning tree of the graph. We empirically find that this restriction is not
limiting. In Figure 5.3, we take an organic social network topology based on the Davis Southern
Women graph [Davis et al., 1930] from NetworkX [Hagberg et al., 2008b], and construct random
spanning trees found by the Spanning Tree Protocol [Perlman, 1985]. On any such spanning
tree, RelaySGD optimizes random heterogeneous quadratics as fast as D2 on the full graph with
Metropolis-Hastings weights [Xiao and Boyd, 2004], significantly faster than DP-SGD.

For decentralized learning used in a fully-connected data center for communication efficiency,
the deep learning experiments below show that RelaySGD on double binary trees outperforms the
most popular non-tree-based communication scheme used in decentralized deep learning [Assran
et al., 2019a].

5.6.3 Effect of data heterogeneity in decentralized deep learning

We study the performance of RelaySGD in deep-learning based image- and text classification.
While the algorithm is theoretically independent of dissimilarities in training data, other methods
(D2, RelaySGD/Grad) that have the same property often lose accuracy in the presence of high
data heterogeneity Lin et al. [2021b]. To study the dependence of RelaySGD in practical deep
learning, we partition training data strictly across 16 workers and distribute the classes using a
Dirichlet process [Lin et al., 2021b; Yurochkin et al., 2019]. The Dirichlet parameter α controls
the heterogeneity of the data across workers.

62 RelaySum for Decentralized Deep Learning on Heterogeneous Data

We compare RelaySGD against a variety of other algorithms. DP-SGD [Lian et al., 2017b]
is the most natural combination of SGD with gossip averaging, and we chose D2 [Tang et al.,
2018] to represent the class of previous work that is theoretically robust to heterogeneity. We
extend D2 to allow varying step sizes and local momentum, according to Appendix D.4.4, and
make it suitable for practical deep learning. Although Stochastic Gradient Push [Assran et al.,
2019a] is not theoretically independent of data heterogeneity, it is a popular choice in the data
center setting, where they use a time-varying exponential scheme on 2d workers that mixes
exactly uniformly in d rounds (Appendix D.4.6). We also compare to DP-SGD with quasi-global
momentum [Lin et al., 2021b], a practical method recently introduced to increase robustness to
heterogeneous data.

Table 5.1 evaluates RelaySGD in the fully-connected data center setting where we limit the
communication budget per iteration to two models. We use 16-workers on Cifar-10, following
the experimental details outlined in Appendix D.2 and hyper-parameter tuning procedure from
Appendix D.3. For this experiment, we consider three topologies: (1) double binary trees as
described in § 5.4, (2) rings, and (3) the time-varying exponential scheme of Stochastic Gradient
Push (SGP) [Assran et al., 2019a]. Because SGP normally sends/receives only one model per
communication round, we execute two synchronous communication steps per gradient update,
increasing its latency. The various algorithms compared have different optimal topology choices.
In Table 5.1 we only include the optimal choice for each algorithm. Table 5.2 qualitatively
compares the possible combinations. We opt for the VGG-11 architecture because it does not
feature BatchNorm Ioffe and Szegedy [2015]. BatchNorm poses particular challenges to data
heterogeneity, and the search for alternatives is an active, and orthogonal, area of research [Liu
et al., 2020].

Even though RelaySGD does not use a time-varying topology, it performs as well as or better
than SGP, and RelaySGD with momentum suffers minimal accuracy loss up to heterogeneity
α = 0.01, a level higher than considered in previous work [Lin et al., 2021b]. While D2 is
theoretically independent of data heterogeneity, and while some of its random repetitions yield
good results, it is unstable in the very heterogeneous setting. Moreover, Figure 5.4 shows that
workers with RelaySGD achieve high test accuracies quicker during training than with other
algorithms.

These findings are confirmed on ImageNet Deng et al. [2009] with the ResNet-20-EvoNorm
architecture [Liu et al., 2020] in Table 5.3. On the BERT fine-tuning task from [Lin et al.,
2021b], Table 5.4 demonstrates that RelaySGD with the Adam optimizer, customary for such
NLP tasks, outperforms all compared algorithms.

5.6.4 Robustness to unreliable communication

Peer-to-peer applications are a central use case for decentralized learning. Decentralized
learning algorithms must therefore be robust to workers joining and leaving, and to unreliable

5.6 Experimental analysis and practical properties 63

Table 5.1 Cifar-10 Krizhevsky [2012] test accuracy with the VGG-11 architecture. We vary the
data heterogeneity α [Lin et al., 2021b] between 16 workers. Each method sends/receives 2
models per iteration. We use a ring topology for DP-SGD and D2 because they perform better
on rings than on trees. RelaySum with momentum achieves the best results across all levels of
data heterogeneity.

Algorithm Topology α = 1.00 α = 0.1 α = .01
(optimal c.f. Ta-
ble 5.2)

(most homogeneous) (most heterogeneous)

All-reduce (baseline) fully connected 87.0% 87.0% 87.0%
+momentum 90.2% 90.2% 90.2%

RelaySGD binary trees 87.4% 86.9% 84.6%
+local momentum 90.2% 89.5% 89.1%

DP-SGD ∗ ring 87.4% 79.9% 53.9%
+quasi-global mom.† 89.5% 84.8% 63.3%

D2 ‡ ring 87.2% 84.0% 38.2%
+local momentum 88.2% 88.5% 61.0%

Stochastic gradient push¶ time-varying
exponential¶

87.4% 86.7% 86.7%

+local momentum 89.5% 89.2% 87.5%

* DP-SGD [Lian et al., 2017b]
† DP-SGD +quasi-global mom. [Lin et al., 2021b]
‡ D2 [Tang et al., 2018]
¶ Stochastic gradient push [Assran et al., 2019a]

Table 5.2 Motivation of topology choices. For each algorithm, we compare 4 topologies
configured to send/receive 2 models at each SGD iteration. The algorithms have different
optimal topologies.

Algorithm Ring Chain (= spanning tree of ring) Double binary trees Time-varying exponential¶

RelaySGD Unsupported inferior (D.5.1) Best result Unsupported
DP-SGD Best result inferior inferior (D.5.1) Unsupported
D2 Best result inferior inferior (D.5.1) Unsupported
SGP ≈DP-SGD ≈DP-SGD ≈DP-SGD Best result

¶ Stochastic gradient push [Assran et al., 2019a]

0 150 175 200
Epochs

50%

90%

C
if

ar
-1

0
Te

st
A

cc
ur

ac
y Fig. 5.4 Test accuracy during training of 16 work-

ers with heterogeneous data (α = 0.01) on Cifar-
10. Like, with the all-reduce baseline, all work-
ers in RelaySGD on double binary trees quickly
reach good accuracy, while this takes longer for

SGP with time-varying exponential topology and
D2 on a ring. DP-SGD does not reach good

accuracy with such heterogeneous data.

64 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Table 5.3 Test accuracies on ImageNet, using 16 workers with heterogeneous data (α = 0.1).
Even when communicating over a simple chain network, RelaySGD performs similarly to SGP
with their time-varying exponential communicating scheme. Methods use default learning rates
(Appendix D.3.2).

Algorithm Topology Top-1 Accuracy

Centralized (baseline) fully-connected 69.7%
RelaySGD w/ momentum double binary trees 60.0%
DP-SGD ∗ w/ quasi-global momentum† ring 55.8%
D2 ‡ w/ momentum ring diverged at epoch 65, at 49.5%
SGP¶ w/ momentum time-varying exponential¶ 58.5%

* DP-SGD [Lian et al., 2017b]
† DP-SGD +quasi-global mom. [Lin et al., 2021b]
‡ D2 [Tang et al., 2018]
¶ Stochastic gradient push [Assran et al., 2019a]

Algorithm Topology Top-1 Accuracy

Centralized Adam fully-connected 94.2% ± 0.1%
Relay-Adam double b. trees 93.2% ± 0.6%
DP-SGD Adam ring 87.3% ± 0.6%
Quasi-global Adam† ring 88.3% ± 0.7%
SGP¶ Adam time-varying exp. 88.3% ± 0.3%

† DP-SGD +quasi-global mom. [Lin et al., 2021b]
¶ Stochastic gradient push [Assran et al., 2019a]

Table 5.4 DistilBERT [Sanh et al., 2019]
fine-tuning on AG news data [Zhang et al.,
2015] using 16 nodes with heterogeneous
data (α = 0.1). Transformers are usu-
ally trained with Adam, and RelaySGD
naturally supports Adam updates. (Ap-
pendix D.2.3).

Table 5.5 Robustness to unreliable networks. On Cifar-10/VGG-11 with 16 workers and hetero-
geneous data (α = 0.01), we compare momentum versions of the best-performing algorithms
from Table 5.1. RelaySGD with the robust update rule 5.1 can tolerate up to 10% dropped
messages and converge to full test accuracy. Only SGP with the time-varying exponential
scheme shares this property.

Algorithm Topology Reliable network 1% dropped msgs 10% dropped msgs

RelaySGD w/ momentum trees 89.2% 89.3% 89.3%
DP-SGD ∗ w/ quasi-global m.† ring 69.3% diverges diverges
D2 ‡ w/ momentum ring 87.4% diverges diverges
SGP¶ w/ momentum time-varying 88.5% 88.6% 88.1%

* DP-SGD [Lian et al., 2017b]
† DP-SGD +quasi-global mom. [Lin et al., 2021b]
‡ D2 [Tang et al., 2018]
¶ Stochastic gradient push [Assran et al., 2019a]

5.7 Conclusion 65

communication between workers. Gossip averaging naturally features such robustness, but for
methods like D2, that correct for local data biases, achieving such robustness is non-trivial.
As a proxy for these challenges, in Table 5.5, we verify that RelaySGD can tolerate randomly
dropped messages. The algorithm achieves this by reliably counting the number of models
summed up in each message. For this experiment, we use an extended version of Algorithm 6,
where line 10 is replaced by

x
(t+1)
i = 1

n

(
x
(t+1/2)
i +

∑
j∈Ni

m
(t)
j→i + (n− n̄

(t+1)
i)x

(t)
i

)
. (5.1)

We count the number of models received as n̄, and substitute any missing models (< n) by the
previous state x

(t)
i . RelaySGD trains reliably to good test accuracy with up to 10% deleted

messages. This behavior is on par with a similarly modified SGP [Assran et al., 2019a] that
corrects for missing energy. In contrast, D2 and DP-SGD with quasi-global momentum are
unstable with undelivered messages.

5.7 Conclusion

Decentralized learning has great promise as a building block in the democratization of deep
learning. Deep learning relies on large datasets, and while large companies can afford those,
many individuals together can, too. Of course, their data does not follow the exact same
distribution, calling for robustness of decentralized learning algorithms to data heterogeneity.
Algorithms with this property have been proposed and analyzed theoretically, but they do not
always perform well in deep learning.

In this paper, we propose RelaySGD for distributed optimization over decentralized networks
with heterogeneous data. Unlike algorithms based on gossip averaging, RelaySGD relays models
through spanning trees of a network without decaying their magnitude. This yields an algorithm
that is both theoretically independent of data heterogeneity, but also high performing in actual
deep learning tasks. With its demonstrated robustness to unreliable communication, RelaySGD
makes an attractive choice for peer-to-peer deep learning and applications in large-scale data
centers.

Chapter 6

Debiasing Conditional Stochastic
Optimization

6.1 Preface

Contribution and sources. This chapter reproduces He and Kasiviswanathan [2023]. In this
work, the central ideas and experimental frameworks were developed primarily by the author,
with input and guidance from Shiva Prasad Kasiviswanathan. Detailed individual contributions:

• Lie He (author): Conceptualization, Writing (original draft preparation), Formal Analysis,
Software.

• Shiva Prasad Kasiviswanathan: Conceptualization, Writing (original draft preparation),
Formal Analysis, Supervision, Administration.

Summary. Conditional Stochastic Optimization (CSO) problem covers a wide range of
bilevel optimization problems, including first order MAML, instrumental variable regression,
etc. However, stochastic gradients of CSO problems are typically biased, which leads to much
larger sample complexity than standard stochastic optimization to reach stationary point.

In this paper, we propose a novel extrapolation-based scheme to mitigate the bias in gradient
estimations and propose new algorithms that incorporate this scheme, offering improved sample
complexity for CSO problems. The theoretical foundation and practical applications of these
methods are demonstrated with comprehensive data and experimental results.

6.2 Introduction

In this paper, we investigate the conditional stochastic optimization (CSO) problem as presented
by Hu et al. [2020b], which is formulated as follows:

min
x∈Rd

F (x) = Eξ[fξ(Eη|ξ[gη(x; ξ)])], (CSO)

68 Debiasing Conditional Stochastic Optimization

where ξ and η represent two random variables, with η conditioned on ξ. The fξ : Rp → R and
gη : Rd → Rp denote a stochastic function and a mapping respectively. The inner expectation is
calculated with respect to the conditional distribution of η|ξ. In line with the established CSO
framework [Hu et al., 2020a,b], throughout this paper, we assume access to samples from the
distribution P(ξ) and the conditional distribution P(η|ξ).

Many machine learning tasks can be formulated as a CSO problem, such as policy evaluation
and control in reinforcement learning [Dai et al., 2018; Nachum and Dai, 2020], and linearly-
solvable Markov decision process [Dai et al., 2017]. Other examples of the CSO problem include
instrumental variable regression [Muandet et al., 2020] and invariant learning [Hu et al., 2020b].
Moreover, the widely-used Model-Agnostic Meta-Learning (MAML) framework, which seeks
to determine a meta-initialization parameter using metadata for related learning tasks that
are trained through gradient-based algorithms, is another example of a CSO problem. In this
context, tasks ξ are drawn randomly, followed by the drawing of samples η|ξ from the specified
task [Finn et al., 2017]. It is noteworthy that the standard stochastic optimization problem
minx Eξ[fξ(x)] represents a degenerate case of the CSO problem, achieved by setting gη as an
identity function.

In numerous prevalent CSO problems, such as first-order MAML (FO-MAML) [Finn et al.,
2017], the outer random variable ξ only takes value in a finite set (say in {1, . . . , n}). These
problems can be reformulated to have a finite-sum structure in the outer loop and referred to as
Finite-sum Coupled Compositional Optimization (FCCO) problem in [Jiang et al., 2022; Wang
and Yang, 2022]. In this paper, we also study this problem, formulated as:

min
x∈Rd

Fn(x) =
1
n

∑n
i=1 fi(Eη|i[gη(x; i)]). (FCCO)

The FCCO problem also has broad applications in machine learning for optimizing average
precision, listwise ranking losses, neighborhood component analysis, deep survival analysis, deep
latent variable models [Jiang et al., 2022; Wang and Yang, 2022].

Although the CSO and FCCO problems are widespread, they present challenges for op-
timization algorithms. Based on the special composition structure of CSO, using chain rule,
under mild conditions, the full gradient of CSO is given by

∇F (x) = Eξ

[(
Eη|ξ[∇gη(x; ξ)]

)⊤∇fξ(Eη|ξ[gη(x; ξ)])
]
.

Constructing an unbiased stochastic estimator for the gradient is generally computationally
expensive (and even impossible). A straightforward estimation of ∇F (x) is to estimate Eξ with
1 sample of ξ, estimate Eη|ξ[gη(·)] with a set Hξ of m independent and identically distributed
(i.i.d.) samples drawn from the conditional distribution P(η|ξ), and Eη|ξ[∇gη(·)] with a different

6.2 Introduction 69

set H̃ξ of m i.i.d. samples drawn from the same conditional distribution, i.e.,

∇F̂m(x) :=
(
1
m

∑
η̃∈H̃ξ

∇gη̃(x; ξ)
)⊤∇fξ(1

m

∑
η∈Hξ

gη(x; ξ)). (6.1)

Note that ∇F̂m(x) consists of two terms. The first term, (1/m)
∑

η̃∈H̃ξ
∇gη̃(x; ξ), is an unbiased

estimate of Eη|ξ[∇gη(x; ξ)]. However, the second term is generally biased, i.e.,

Eη|ξ[∇fξ(1
m

∑
η∈Hξ

gη(x; ξ))] ̸= ∇fξ(Eη|ξ[gη(x; ξ)]).

Consequently, ∇F̂m(x) is a biased estimator of ∇F (x). To reach the ϵ-stationary point of F (x)

(Definition 6.1), the bias has to be sufficiently small.
Optimization with biased gradients converges only to a neighborhood of the stationary

point. While the bias diminishes with increasing batch size, it also introduces additional sample
complexity. For nonconvex objectives, Biased Stochastic Gradient Descent (BSGD) requires a
total sample complexity ofO(ϵ−6) to reach an ϵ-stationary point [Hu et al., 2020b]. This contrasts
with standard stochastic optimization, where sample-averaged gradients are unbiased with a
sample complexity of O(ϵ−4) [Arjevani et al., 2022; Ghadimi and Lan, 2013]. This discrepancy
has spurred a multitude of proposals aimed at reducing the sample complexities of both CSO
and FCCO problems. Hu et al. [2020b] introduced Biased SpiderBoost (BSpiderBoost), which,
based on the variance reduction technique SpiderBoost from Wang et al. [2019], reduces the
variance of ξ to achieve a sample complexity of O(ϵ−5) for the CSO problem. Hu et al. [2021]
proposed multi-level Monte Carlo (MLMC) gradient methods V-MLMC and RT-MLMC to
further enhance the sample complexity to O(ϵ−4). The SOX [Wang and Yang, 2022] and
MSVR-V2 [Jiang et al., 2022] algorithms concentrated on the FCCO problem and improved the
sample complexity to O(nϵ−4) and O(nϵ−3), respectively.
Our Contributions. In this paper, we improve the sample complexities for both the CSO
and FCCO problems (see Table 6.1). To facilitate a clear and concise presentation, we will
suppress the dependence on specific problem parameters throughout the ensuing discussion.

(a) Our main technical tool in this paper is an extrapolation-based scheme that mitigates. bias
in gradient estimations. Considering a suitably differentiable function q(·) and a random
variable δ ∼ D, we show that we can approximate the value of q(E[δ]) via extrapolation from
a limited number of evaluations of q(δ), while maintaining a minimal bias. In the context of
CSO and FCCO problems, this scheme is used in gradient estimation, where the function q

corresponds to ∇fξ and the random variable δ corresponds to gη.

(b) For the CSO problem, we present novel algorithms that integrate the above extrapolation-
based scheme with BSGD and BSpiderBoost algorithms of Hu et al. [2020b]. Our algorithms,
referred to as E-BSGD and E-BSpiderBoost, achieve a sample complexity of O(ϵ−4.5) and
O(ϵ−3.5) respectively, in order to attain an ϵ-stationary point for nonconvex smooth objec-

70 Debiasing Conditional Stochastic Optimization

Problem Old Bounds Our Bounds

Algorithm Bound Algorithm Bound

CSO BSGD [Hu et al., 2020b] O(ϵ−6) E-BSGD O(ϵ−4.5)
CSO BSpiderBoost [Hu et al., 2020b] O(ϵ−5) E-BSpiderBoost O(ϵ−3.5)
CSO RT-MLMC [Hu et al., 2021] O(ϵ−4)

FCCO MSVR-V2 [Jiang et al., 2022] O(nϵ−3) E-NestedVR

{
O(nϵ−3) if n ≤ ϵ−2/3

O(max{
√
n

ϵ2.5
, 1√

nϵ4
}), if n > ϵ−2/3

Table 6.1 Sample complexities needed to reach ϵ-stationary point for FCCO and CSO problems with nonconvex
smooth objectives. Assumptions are comparable, but our results require an additional mild regularity on fξ and
gη. For FCCO also see Footnote 1. Note that Ω(ϵ−3) is a sample complexity lower bound for standard stochastic
nonconvex optimization [Arjevani et al., 2022], and hence, also for the problems considered in this paper.

tives. Notably, the sample complexity of E-BSpiderBoost improves the best-known sample
complexity of O(nϵ−4) for the CSO problem from Hu et al. [2021].

(c) For the FCCO problem1 we propose a new algorithm that again combines the extrapolation-
based scheme with a multi-level variance reduction applied to both inner and outer parts
of the problem. Our algorithm, referred to as E-NestedVR, achieves a sample complexity
of O(nϵ−3) if n ≤ ϵ−2/3 and O(max{

√
nϵ−2.5, ϵ−4/

√
n}) if n > ϵ−2/3 for nonconvex smooth

objectives and second-order extrapolation scheme. Our bound is never worse than the O(nϵ−3)

bound of MSVR-V2 algorithm of Jiang et al. [2022] and is in fact better if n = Ω(ϵ−2/3). As
an illustration, when n = Θ(ϵ−1.5), our bound of O(ϵ−3.25) is significantly better than the
MSVR-V2 bound of O(ϵ−4.5).

In terms of proof techniques, our approach diverges from conventional analyses for the CSO
and FCCO problems in that we focus on explicitly bounding the bias and variance terms
of the gradient estimator to establish the convergence guarantee. Compared to previous
results, our improvements do require an additional mild regularity assumption on fξ and gη

mainly that ∇fξ is 4th order differentiable. Firstly, as we discuss in Remark 2 most common
instantiations of CSO/FCCO framework such as: 1) invariant logistic regression Hu et al. [2020b],
2) instrumental variable regression [Muandet et al., 2020], 3) first-order MAML for sine-wave few
shot regression [Finn et al., 2017] and other problems, 4) deep average precision maximization [Qi
et al., 2021a; Wang et al., 2022a], tend to satisfy this assumption. Secondly, we highlight that
the bounds derived from previous studies do not improve when incorporating this additional
regularity assumption. Thirdly, Ω(ϵ−3) remains the lower bound for stochastic optimization
even under the arbitrary smoothness constraint [Arjevani et al., 2020], demonstrating that our
improvement is non-trivial. Our results show that, this regularity assumption, which seems to

1 For the FCCO problem we focus on n = O(ϵ−2) case, for n = Ω(ϵ−2) we can just treat the FCCO problem
as a CSO problem and get an O(ϵ−3.5) sample complexity bound via our E-BSpiderBoost algorithm.

6.3 Stochastic Extrapolation as a Tool for Bias Correction 71

practically valid, can be exploited through a novel extrapolation-based bias reduction technique
to provide substantial improvements in sample complexity.2

We defer some additional related work to Appendix E.2 and conclude with some preliminaries.
Notation. Vectors are denoted by boldface letters. For a vector x, ∥x∥2 denotes its ℓ2-norm.
A function with k continuous derivatives is called a Ck function. We use a . b to denote that
a ≤ Cb for some constant C > 0. We consider expectation over various randomness: Eξ[·]
denotes expectation over the random variable ξ, Eη|ξ[·] denotes expectation over the conditional
distribution of η|ξ. Unless otherwise specified, for a random variable X, E[X] denotes expectation
over the randomness in X. We focus on nonconvex objectives in this paper and use the following
standard convergence criterion for nonconvex optimization [Jain et al., 2017].

Definition 6.1 (ϵ-stationary point). For a differentiable function F (·), we say that x is a
first-order ϵ-stationary point if ∥∇F (x)∥2 ≤ ϵ2.

For notational convenience, in the rest of this paper, we omit the dependence on ξ (or i in
the FCCO context) in the function g and use gη(x) to represent gη(x; ξ).

6.3 Stochastic Extrapolation as a Tool for Bias Correction

In this section, we present an approach for tackling the bias problem as appears in optimization
procedures such as BSGD, BSpiderBoost, etc. Importantly, our approach addresses a general
problem appearing in optimization settings and could be of independent interest. All missing
details from this section are presented in § E.3.

For ease of presentation, we start by considering the 1-dimensional case and assume a
function q : R → R, a constant s ∈ R. Let δ be a random variable drawn from an arbitrary
distribution D over R. In Sections 6.4 and 6.5, we apply these ideas to the CSO and FCCO
problems where the random variable δ is played by gη(·) and function q is played by ∇fξ.
Informally stated, our goal in this section will be to

Efficiently approximate q(s+ E[δ]) with few evaluations of {q(s+ δ)}δ∼D.

An interesting case is when s = 0, where we are approximating q(E[δ]) with evaluations of
{q(δ)}δ∼D. Now, if q is an affine function, then q(s+ E[δ]) = E[q(s+ δ)]. However, the equality
does not hold true for general q, and there exists a bias, i.e., |q(s + E[δ]) − E[q(s + δ)]| > 0.
In this section, we introduce a stochastic extrapolation-based method, where we use an affine
combination of biased stochastic estimates, to achieve better approximation.

Suppose q ∈ C2k is a continuous differentiable up to 2k-th derivative and let h = E[δ]. We
expand q(s+ δ), the most straightforward approximation of q(s+ E[δ]), using Taylor series at

2Higher-order smoothness conditions have also been exploited in standard stochastic optimization for perfor-
mance gains [Bubeck et al., 2019].

72 Debiasing Conditional Stochastic Optimization

s+ h, and take expectation,

E[q(s+ δ)] =q(s+ h) + q′(s+ h)E[δ − h] + q′′(s+h)
2 E[(δ − h)2] + q(3)(s+h)

6 E[(δ − h)3]

+ . . .+ q(2k−1)(s+h)
(2k−1)! E[(δ − h)(2k−1)] + 1

(2k)! E[q(2k)(φδ)(δ − h)2k],
(6.2)

where φδ between s+ δ and s+ h. While E[q(s+ δ)] matches q(s+ h) in the first 2 terms, the
third term is no longer zero. The approximation error (bias) is

|E[q(s+ δ)]− q(s+ h)| = | q
′′(s+h)

2 E[(δ − h)2] + . . .+ 1
(2k)! E[q(2k)(φδ)(δ − h)2k]|.

In order to analyze the upper bound, we make the following assumption on D and q.

Assumption B (Bounded moments). For all δ ∼ D has bounded higher-order moments:
σl := |E[(δ − E[δ])l]| <∞ for l = 2, 3, . . . 2k.

Assumption C (Bounded derivatives). The q ∈ C2k and has bounded derivatives, i.e., al :=
sups∈dom(q) |q(l)(s)| <∞ for l = 1, 2, . . . , 2k.

In addition, we consider a sample averaged distribution Dm derived from D as follows.

Definition 6.4. Given a distribution D satisfying Assumption B and m ∈ N+, we define the
distribution Dm that outputs δ where δ = 1

m

∑m
i=1 δi with δi

i.i.d.∼ D.

The moments of such distribution Dm decrease with batch size m as k ≥ 2, |E[(δ−E[δ])k]| =
O(m−⌈k/2⌉) (see Lemma E.1). Our desiderata would be to construct a scheme that uses some
samples from the distribution Dm to construct an approximation of q(s+ E[δ]) that satisfies the
following requirement.

Definition 6.5 (kth-order Extrapolation Operator). Given a function q : R → R satisfying
Assumption C and distribution Dm satisfying Assumption B, we define a kth-order extrapolation
operator T (k)

Dm
as an operator from C2k → C2k that given N = N(k) i.i.d. samples δ1, . . . , δN

from Dm satisfies ∀s ∈ R: |E[T (k)
m q(s)]− q(s+ E[δ])| = O(m−k).

We now propose a sequence of operators L(1)Dm
,L(2)Dm

,L(3)Dm
, . . . that satisfy the above definition.

The L(k)Dm
q(s) is designed to ensure its Taylor expansion at s+h has a form of q(s+h)+O(E[(δ−

h)2k]). The remainder O(E[(δ − h)2k]) is bounded by O(m−k) due to Lemma E.1.
A First-order Extrapolation Operator. We define the simplest operator

L(1)Dm
q : s 7→ [q(s+ δ)] where δ

i.i.d.∼ Dm.

In Proposition E.1 (Appendix E.3), we show that L(1)Dm
is a first-order extrapolation operator.3

3Note that if the function q is only Lq-Lipschitz continuous, then |E [q(s+ δ)]− q(s+ E[δ])| ≤√
L2

q E[|δ − E[δ]|]2 ≤ Lq
√

σ2

m1/2 . Therefore, in this case, q(s+ δ) does not satisfy the first-order guarantee.

6.3 Stochastic Extrapolation as a Tool for Bias Correction 73

10
0

10
1

10
2

10
3

10
4

10
5

Number of estimates

10
0

10
1

10
2

10
3

|q
(s

+
[

])
Av

g(
()

q(
s)

)|

|q(s + []) [(1)
12m

q(s)]|

(1)
12m

q(s)
(2)

6m
q(s)

(3)
m
q(s)

(a) q(s) = s2/2, δ ∼ N (10, 100), m = 1.

10
0

10
1

10
2

m
10

7

10
5

10
3

10
1

10
1

|q
(s

+
[

])
[

() m
q(

s)
|

Burn-in

[(1)
12m

q(s)]
[(2)

6m
q(s)]

[(3)
m
q(s)]

(b) q(s) = s4, p(δ) = δ/2 where δ ∈ [0, 2].

Fig. 6.1 The Fig. 6.1a investigates the estimation errors of L(·)q(s) with their number of
observations. The Fig. 6.1b compares the biases of E[L(·)q(s)] with increasing inner batch size
m.

A Second-order Extrapolation Operator. We define the following linear operator L(2)Dm

which transforms q ∈ C4 into L(2)Dm
q which has lesser bias (but similar variance, as shown later).

Definition 6.6 (L(2)Dm
Operator). Given Dm and q, define the following operator,

L(2)Dm
q : s 7→

[
2 · q(s+ δ1+δ2

2)− q(s+δ1)+q(s+δ2)
2

]
where δ1, δ2

i.i.d.∼ Dm.

Note that δ1+δ2
2 is same as sampling from D2m. The absolute difference in the Taylor

expansion of L(2)Dm
q at s+ h differs from q(s+ h) as,

O
(∣∣∣E [2(δ1+δ2

2 − h)3 − 1
2((δ1 − h)3 + (δ2 − h)3)

]∣∣∣) = O(|(E[(δ − h)3]|) for δ
i.i.d.∼ Dm. (6.3)

The bias error of this scheme can be bounded through the following proposition.

Proposition 6.1 (Second-order Guarantee). Assume that distribution Dm and q(·) satisfies
Assumption B and C respectively with k = 2. Then, for all s ∈ R,

∣∣∣E [L(2)Dm
q(s)

]
− q(s+ E[δ])

∣∣∣ ≤
4a3σ3+9a4σ2

2
48m2 + 5a4

96
σ4−3σ2

2
m3 .

Remark 1. While extrapolation is motivated by Taylor expansion which requires smoothness,
higher order derivatives are not explicitly computed. Appendix E.6.3 empirically shows that
applying extrapolation to non-smooth functions achieves similar bias correction. Relaxing the
smoothness conditions is a direction for future work.

The above proposition shows that L(2)Dm
is in fact a second-order extrapolation operator with

k = 2 under Definition 6.5. We will use this operator when we consider the CSO and FCCO
problems later. Now, focusing on variance, we can relate the variance of L(2)Dm

q(s) in terms of
the variance of q(s+ δ). In particular, a consequence of Lemma E.2 is that

E
[(
L(2)Dm

q(s)− E[L(2)Dm
q(s)]

)2]
= O(E[(q(s+ δ)− E[q(s+ δ)])2]).

74 Debiasing Conditional Stochastic Optimization

Extension of L(2)Dm
to Higher-dimensional Case. If q : Rp → Rℓ is a vector-valued function,

then there is a straightforward extension of Definition 6.6. Now, for distribution D over Rp and
corresponding sampled averaged distribution Dm, and s ∈ Rp

L(2)Dm
q : s 7→

[
2 · q(s+ δ1+δ2

2)− q(s+δ1)+q(s+δ2)
2

]
where δ1, δ2

i.i.d.∼ Dm. (6.4)

Higher-order Extrapolation Operators. The idea behind the construction of L(2)Dm
can

be generalized to higher k’s. For example, in Proposition E.2, we construct a third-order
extrapolation operator L(3)Dm

through higher degree Taylor series approximation

L(3)Dm
q : s 7→ (− 1

36L
(2)
Dm

+ 5
9L

(2)
D2m
− 3

4L
(2)
D3m
− 16

9 L
(2)
D4m

+ 3L(2)D6m
)q(s).

While this idea of expressing the k-th order operator as an affine combination of lower-order
operators works for every k, explicit constructions soon become tedious.

In Fig. 6.1, we empirically demonstrate the effectiveness of extrapolation in stochastic
estimation. 4 In Fig. 6.1a, we choose q(s) = s2/2, δ ∼ N (10, 100). For both L(2)D6m

q(s) and

L(3)Dm
q(s), their estimation errors converge to 0 with increasing number of estimates. This

coincides with Proposition 6.1 as a3 = 0 and a4 = 0 for quadratic q. In contrast, biased first
order method only converges to a neighborhood. In Fig. 6.1b, we consider q(s) = s4 and
p(δ) = δ/2 where δ ∈ [0, 2]. All three methods are biased and their biases decrease with m,
i.e. O(m−k) for kth order method. Depending on the constants (e.g. ai, σi), a higher-order
extrapolation method may need decently large m (burn-in phase) to outperform lower-order
methods.

6.4 Applying Stochastic Extrapolation in the CSO Problem

In this section, we apply the extrapolation-based scheme from the previous section to reduce
the bias in the CSO problem. We focus on variants of BSGD and their accelerated version
BSpiderBoost based on our second-order approximation operator (Definition 6.6). Let Hξ, H̃ξ,
and H ′

ξ indicate different sets, each of which contains m i.i.d. random variables/samples drawn
from the conditional distribution P(η|ξ). Remember that, as mentioned earlier, we use gη(x) to
represent gη(x; ξ).
Extrapolated BSGD. At time t, BSGD constructs a biased estimator of ∇F (xt) using one
sample ξ and 2m i.i.d. samples from the conditional distribution as in (6.1)

Gt+1
BSGD =

(
1
m

∑
η̃∈H̃ξ

∇gη̃(xt)
)⊤∇fξ(1

m

∑
η∈Hξ

gη(x
t)
)
. (6.5)

4We use L(1)
D12m

, L(2)
D6m

, L(3)
Dm

to ensure that each estimate uses same amount of samples (12m).

6.4 Applying Stochastic Extrapolation in the CSO Problem 75

To reduce this bias, we apply the second-order extrapolation operator from (6.4). At time t,
we define Dt+1

g,ξ to be the distribution of the random variable 1
m

∑
η∈Hξ

gη(x
t). Then we apply

L(2)Dt+1
g,ξ

by setting q to ∇fξ and s = 0, i.e.

L(2)Dt+1
g,ξ

∇fξ(0) := 2∇fξ
(

1
2m

∑
η∈Hξ

gη(x
t) + 1

2m

∑
η′∈H′

ξ
gη′(x

t))
)

− 1
2

(
∇fξ(1

m

∑
η∈Hξ

gη(x
t)) +∇fξ(1

m

∑
η′∈H′

ξ
gη′(x

t))
)
, (6.6)

where 1
m

∑
η∈Hξ

gη(x
t) and 1

m

∑
η′∈H′

ξ
gη′(x

t) are i.i.d. drawn from Dt+1
g,ξ . In Algorithm 16

(Appendix E.1), we present our extrapolated BSGD (E-BSGD) scheme, where we replace
∇fξ(1

m

∑
η∈Hξ

gη(x
t)) in (6.5) by L(2)Dt+1

g,ξ

∇fξ(0) resulting in this following gradient estimate:

Gt+1
E-BSGD =

(
1
m

∑
η̃∈H̃ξ

∇gη̃(xt)
)⊤
L(2)Dt+1

g,ξ

∇fξ(0). (6.7)

Extrapolated BSpiderBoost. BSpiderBoost, proposed by Hu et al. [2020b], uses the variance
reduction methods for nonconvex smooth stochastic optimization developed by Fang et al. [2018];
Wang et al. [2019]. BSpiderBoost builds upon BSGD and has two kinds of updates: a large
batch and a small batch update. In each step, it decides which update to apply based on a
random coin. With probability pout, it selects a large batch update with B1 outer samples of
ξ. With remaining probability 1 − pout, it selects a small batch update where the gradient
estimator will be updated with gradient information in the current iteration generated with
B2 outer samples of ξ and the information from the last iteration. Formally, it constructs a
gradient estimate as follows,

Gt+1
BSB =

Gt
BSB + 1

B2

∑
ξ∈B2,|B2|=B2

(Gt+1
BSGD −Gt

BSGD) with prob. 1− pout

1
B1

∑
ξ∈B1,|B1|=B1

Gt+1
BSGD with prob. pout.

(6.8)

We propose our extrapolated BSpiderBoost scheme (formally defined in Algorithm 17,
Appendix E.1) by replacing the BSGD gradient estimates in (6.8) with E-BSGD.

Gt+1
E-BSB =

Gt
E-BSB + 1

B2

∑
ξ∈B2,|B2|=B2

(Gt+1
E-BSGD −Gt

E-BSGD) with prob. 1− pout

1
B1

∑
ξ∈B1,|B1|=B1

Gt+1
E-BSGD with prob. pout.

(6.9)

Sample Complexity Analyses of E-BSGD and E-BSpiderBoost. We adopt the stan-
dard assumptions used in the literature [Qi et al., 2021b; Wang and Yang, 2022; Wang et al.,
2022b; Zhang and Xiao, 2021]. All proofs are deferred to § E.4.

Assumption G (Lower bound). F is lower bounded by F ⋆.

76 Debiasing Conditional Stochastic Optimization

Assumption H (Bounded variance). Assume that gη and ∇gη have bounded variances, i.e.,
for all ξ in the support of P(ξ) and x ∈ Rp, σ2

g := Eη|ξ[∥gη(x; ξ) − Eη|ξ[gη(x; ξ)]∥22] < ∞ and
ζ2g := Eη|ξ[∥∇gη(x; ξ)− Eη|ξ[∇gη(x; ξ)]∥22] <∞.

Assumption I (Lipschitz continuity/smoothness of fξ and gη). For all ξ in the support of
P(ξ), fξ(·) is Cf -Lipschitz continuous (i.e., ∥fξ(x) − fξ(x

′)∥2 ≤ Cf∥x − x′∥2 ∀x,x′ ∈ Rp)
and Lf -Lipschitz smooth (i.e., ∥∇fξ(x) − ∇fξ(x′)∥2 ≤ Lf∥x − x′∥2, ∀x,x′ ∈ Rp) for any ξ.
Similarly, for all ξ in the support of P(ξ) and η in the support of P(η|ξ), gη(·; ξ) is Cg-Lipschitz
continuous and Lg-Lipschitz smooth.

The smoothness of fξ and gη naturally implies the smoothness of F . Zhang and Xiao [2021,
Lemma 4.2] show that Assumption I ensures F is: 1) CF -Lipschitz continuous with CF = CfCg;
and 2) LF -Lipschitz smooth with LF = LgCf + C2

gLf . We denote L̃F = ζgCf + σgCgLf .
Moreover, Assumption I also guarantees that fξ and gη have bounded gradients. In addition,
fξ and gη are assumed to satisfy the following regularity condition in order to apply our
extrapolation-based scheme from § 6.3.

Assumption J (Regularity). For all ξ in the support of P(ξ), ∇fξ is 4th-order differentiable with
bounded derivatives (i.e., al := supg∈Rp∥∇(l)fξ(g)∥2 <∞ for l = 1, 2, 3, 4, ∀x ∈ Rp) and gη has

bounded moments upto 4th-order (i.e., σk = supx∈Rd supξ Eη|ξ

[∑p
i=1

[
gη(x)− Eη|ξ[gη(x)]

]k
i

]
<

∞, k = 1, 2, 3, 4).

Remark 2. The core piece of Assumption J is the 4th order differentiability of ∇fξ as other parts
can be easily satisfied through appropriate boundedness assumptions. This condition though is
satisfied by common instantiations of CSO/FCCO. We discuss some examples including invariant
logistic regression, instrumental variable regression, first-order MAML for sine-wave few-shot
regression task, deep average precision maximization in § 2.7. Therefore, our improvements in
sample complexity apply to all these problems.

Consider some time t > 0. Let Gt+1 be a stochastic estimate of ∇F (xt) where xt is the
current iterate. The next iterate xt+1 := xt − γGt. Let E[·] denote the conditional expectation,
where we condition on all the randomness until time t. We consider the bias and variance terms
coming from our gradient estimate. Formally, we define the following two quantities

E t+1
bias = ∥∇F (xt)− E[Gt+1]∥22, E t+1

var = E[∥Gt+1 − E[Gt+1]∥22].

Our idea of getting to an ϵ-stationary point (Definition 6.1) will be to ensure that E t+1
bias and

E t+1
var are bounded. The main technical component of our analyses is in fact analyzing these bias

and variance terms for the various gradient estimates considered. For this purpose, we first
analyze the bias and variance terms for the (original) BSGD (Lemma E.5) and BSpiderBoost
(Lemma E.7) algorithms, which are then used to get the corresponding bounds for our E-BSGD
(Lemma E.6) and E-BSpiderBoost (Lemma E.8) algorithms. Through these bias and variance
bounds, we establish the following main results of this section.

6.5 Applying Stochastic Extrapolation in the FCCO Problem 77

Theorem 6.2. [E-BSGD Convergence] Consider the (CSO) problem. Suppose Assumptions
G, H, I, J hold true and LF , CF , L̃F , Cg, F

⋆ are constants and Ce(f ; g) :=
8a3σ3+18a4σ2

2+5a4σ4

96

defined in § E.4.1 are associated with second order extrapolation in the CSO problem. Let step
size γ ≤ 1/(2LF). Then the output xs of E-BSGD (Algorithm 16) satisfies: E[∥∇F (xs)∥22] ≤ ϵ2,
for nonconvex F , if the inner batch size m = Ω(CeCgϵ

−1/2), and the number of iterations

T = Ω(LF (F (x0)− F ⋆)(L̃2
F/m + C2

F)ϵ
−4).

The E-BSGD takes O(ϵ−4) iterations to converge and compute O(ϵ−0.5) gradients per
iteration. Therefore, its resulting sample complexity is O(ϵ−4.5) which is more efficient than
O(ϵ−6) of BSGD. Similar improvements can be observed for E-BSpiderBoost in Theorem 6.3.

Theorem 6.3. [E-BSpiderBoost Convergence] Consider the (CSO) problem under the same
assumptions as Theorem 6.2. Let step size γ ≤ 1/(13LF). Then the output xs of E-BSpiderBoost
(Algorithm 17) satisfies: E[∥∇F (xs)∥22] ≤ ϵ2, for nonconvex F , if the inner batch size m =

O(CeCgϵ
−0.5), the hyperparameters of the outer loop of E-BSpiderBoost B1 = (L̃2

F /m+C2
F)ϵ

−2, B2 =
√
B1, pout = 1/B2, and the number of iterations

T = Ω(LF (F (x0)− F ⋆)ϵ−2).

The resulting sample complexity of E-BSpiderBoost is O(ϵ−3.5), which improves O(ϵ−5)

bound of BSpiderBoost [Hu et al., 2020b] and O(ϵ−4) bound of V-MLMC/RT-MLMC [Hu et al.,
2021].

6.5 Applying Stochastic Extrapolation in the FCCO Problem

In this section, we apply the extrapolation-based scheme from § 6.3 to the FCCO problem.
We focus on case where n = O(ϵ−2). For larger n, we can treat the FCCO problem as a CSO
problem and get an O(ϵ−3.5) bound from Theorem 6.3. All missing details are presented in
Appendix E.5.

Now, a straightforward algorithm for FCCO is to use the finite-sum variant of SpiderBoost
(or SPIDER) [Fang et al., 2018; Wang et al., 2019] in Algorithm 17. In this case, if we choose the
outer batch sizes to be B1 = n, B2 =

√
n and the inner batch size to be m = max{ϵ−2/n, ϵ−1/2}.

The resulting sample complexity of E-BSpiderBoost now becomes, O(max{
√
n/ϵ2.5, 1/

√
nϵ4}),

which recovers O(ϵ−3.5) bound as in Theorem 6.3 for n = Θ(ϵ−2). However, when n is small, such
as n = O(1), the sample complexity degenerates to O(ϵ−4) which is worse than the Ω(ϵ−3) lower
bound of stochastic optimization [Arjevani et al., 2022]. We leave the details to Theorem E.5.
We still use Assumptions G, H, I, J for the analysis of FCCO problem, replacing the role of ξ
with i.

78 Debiasing Conditional Stochastic Optimization

Algorithm 7 E-NestedVR

1: Input: x0 ∈ Rd, step-size γ, batch sizes S1, S2, B1, B2, Probability pin, pout
2: for t = 0, 1, . . . , T − 1 do
3: if (t = 0) or (with prob. pout) then ◃ Large outer batch
4: for i ∈ B1 ∼ [n] with |B1| = B1 do
5: draw yt+1

i from distribution Dt+1
y,i defined in (6.10)

6: compute zt+1
i using (6.11) and define φt

i = xt

7: Gt+1
E-NVR = 1

B1

∑
i∈B1

(zt+1
i)⊤L(2)Dt+1

y,i

∇fi(0)
8: else ◃ Small outer batch
9: for i ∈ B2 with |B2| = B2 do

10: draw yt+1
i and yt

i from distribution Dt+1
y,i and Dt

y,i defined in (6.10)
11: compute zt+1

i using (6.11) and define φt
i = xt

12: Gt+1
E-NVR = Gt

E-NVR + 1
B2

∑
i∈B2

(zt+1
i)⊤(L(2)Dt+1

y,i

∇fi(0)− L(2)Dt
y,i
∇fi(0))

13: xt+1 = xt − γGt+1
E-NVR

14: Output: xs picked uniformly at random from {xt}T−1
t=0

Extrapolated NestedVR. We now introduce a nested variance reduction algorithm E-NestedVR
which reaches low sample complexity for all choices of n. Missing proofs from this section are
presented in § E.5. For the stochasticities in the FCCO problem, our idea is to use two nested
SpiderBoost variance reduction components: one for the outer random variable i and the other
for the inner random variable η|i. In each outer (resp. inner) SpiderBoost step, we choose large
batch B1 (resp. S1) with probability pout (resp. pin); otherwise we choose small batch. Let Hi

denote a set of m i.i.d. samples drawn from the conditional distribution P(η|i). Similarly, let H̃i

denote another set of m i.i.d. samples drawn from the same conditional distribution. For each
given i, we approximate Eη|i[gη(x

t)] with yt+1
i from distribution Dt+1

y,i where,

yt+1
i =

 1
S1

∑
η∈Hi

gη(x
t) with prob. pin or t = 0

yt
i +

1
S2

∑
η∈Hi

(gη(x
t)− gη(φ

t
i)) with prob. 1− pin.

(6.10)

Similarly, we approximate Eη̃|i[∇gη̃(xt)] with zt+1
i defined as follows

zt+1
i =

 1
S1

∑
η̃∈H̃i

∇gη̃(xt) with prob. pin or t = 0

zt
i +

1
S2

∑
η̃∈H̃i

(∇gη̃(xt)−∇gη̃(φt
i)) with prob. 1− pin,

(6.11)

where φt
i is the last time i is visited before time t. If i is not selected at time t, then yt+1

i = yt
i

and zt+1
i = zt

i . Note that we use independent samples for yt+1
i and zt+1

i .
Finally, we present E-NestedVR in Algorithm 7 where second-order extrapolation operator

L(2)· is applied to each occurrence of ∇fi. We now analyze its convergence guarantee. Our
analysis works by first looking at the effect of multi-level variance reduction without the

6.6 Applications 79

extrapolation (that we refer to as NestedVR, Theorem E.6, Appendix E.5.2), and then showing
how extrapolation could further help to drive down the sample complexity.

Theorem 6.4. [E-NestedVR Convergence] Consider the (FCCO) problem. Under the same
assumptions as Theorem 6.2.

• If n = O(ϵ−2/3), then we choose the hyperaparameters of E-NestedVR (Algorithm 7) as
B1 = B2 = n, pout = 1, S1 = L̃2

F ϵ
−2, S2 = L̃F ϵ

−1, pin = L̃−1
F ϵ, γ = O(1

LF
).

• If n = Ω(ϵ−2/3), then we choose the hyperaparameters of E-NestedVR as B1 = n,B2 =√
n, pout = 1/

√
n, S1 = S2 = max

{
CeCgϵ

−1/2, L̃2
F /(nϵ

2)
}
, pin = 1, γ = O(1

LF
).

Then the output xs of E-NestedVR satisfies: E[∥∇F (xs)∥22] ≤ ϵ2, for nonconvex F with iterations

T = Ω
(
LF (F (x0)− F ⋆)ϵ−2

)
.

From Theorem 6.4, E-NestedVR has a sample complexity of O(nϵ−3) in the small n regime
(n = O(ϵ−2/3)) and O(max{

√
n/ϵ2.5, 1/

√
nϵ4}) in the large n regime (n = Ω(ϵ−2/3)). Therefore,

in the large n regime, this improves the O(nϵ−3) sample complexity of MSVR-V2 [Jiang et al.,
2022].

6.6 Applications

In this section, we demonstrate the numerical performance of our proposed algorithms. We focus
on the application of invariant logistic regression here. In Appendix E.6, we discuss performance
of our proposed algorithms on other common CSO/FCCO applications, including instrumental
variable regression and first-order model-agnostic meta-learning.
Invariant Risk Minimization. Invariant learning has wide applications in machine learning
and related areas [Anselmi et al., 2016; Mroueh et al., 2015]. Invariant logistic regression [Hu
et al., 2020b] is formulated as follows:

min
x

Eξ=(a,b)[log(1 + exp(−bEη|ξ[η]
⊤x)],

where a and b represent a sample and its corresponding label, and η is a noisy observation of the
sample a. This first part can be considered as a CSO objective, with fξ(y) := log(1+ exp(−by))
and gη(x; ξ) := η⊤x. As the loss fξ ∈ C∞ is smooth, our results from Sections 6.4 and 6.5 are
applicable.

An ℓ2-regularizer is added to ensure the existence of an unique minimizer. Since the gradient
of the penalization term is unbiased, we only have to consider the biasness of the data-dependent
term. We generate a synthetic dataset with d = 10 dimensions. The minimizer is drawn
from Gaussian distribution x⋆ ∼ N (0, 1) ∈ Rd. We draw invariant samples {(ai, bi)}i where
ai ∼ N (0, 1) ∈ Rd and compute bi = sgn(a⊤

i x
⋆). Given each ξ = (ai, bi), we draw perturbed

observations η ∼ N (ai, 100) ∈ Rd.

80 Debiasing Conditional Stochastic Optimization

0 2e5 4e510
4

10
2

10
0

Su
b-

op
tim

al
ity

BSGD
E-BSGD

0 2e5 4e5
Samples

BSpiderBoost
E-BSpiderBoost

0 2e5 4e5

NestedVR
E-NestedVR

(a) CSO: Large n = 50000

0 1e6 2e6
Samples

10
2

10
0

Su
b-

op
tim

al
ity E-BSGD

E-BSpiderBoost
E-NestedVR
V-MLMC

(b) FCCO: small n = 50

Fig. 6.2 Performances of algorithms and their extrapolated versions on the invariant logistic
regression task. Algorithms in each subplot use the same amount of inner batch size in each
iteration. The shaded region represents the 95%-confidence interval computed over 10 runs.

We consider drawing ξ from a large set (n = 50000) and a small set (n = 50) as CSO
and FCCO problems respectively. As baselines, we implemented the BSGD and BSpiderBoost
methods from [Hu et al., 2020b], V-MLMC approach from [Hu et al., 2021], and NestedVR
approach from Appendix E.5.2 which achieves the same complexity as MSVR-V2 [Jiang et al.,
2022] for the FCCO problem. The results are shown in Fig. 6.2. In the CSO setting, we compare
biased gradient methods with their extrapolated variants (BSGD vs. E-BSGD, BSpiderBoost
vs. E-BSpiderBoost, and NestedVR vs. E-NestedVR). The extrapolated versions of BSGD,
BSpiderBoost, and NestedVR consistently reach lower error than their non-extrapolated coun-
terparts, as is evident in Figure 6.2a. In this case, the performance of BSpiderBoost is similar
to BSGD as also noted by the authors of these techniques [Hu et al., 2020b], and a drawback
of BSpiderBoost seems to be that it is much harder to tune in practice. However, it is clear
that E-BSGD outperforms BSGD, and E-BSpiderBoost outperforms BSpiderBoost, respectively.
In the FCCO setting, we compare extrapolation based methods and MLMC based methods.
Figure 6.2a, shows that E-NestedVR outperforms all other extrapolated algorithms, including
the V-MLMC approach of [Hu et al., 2021], matching our theoretical findings.

6.7 Concluding Remarks

In this paper, we consider the conditional stochastic optimization CSO problem and its finite-sum
variant FCCO. Due to the interplay between nested structure and stochasticity, most of the
existing gradient estimates suffer from large biases and have large sample complexity of O(ϵ−5).
We propose stochastic extrapolation-based algorithms that tackle this bias problem and improve
the sample complexities for both these problems. While we focus on nonconvex objectives, our
proposed algorithms can also be beneficial when used with strongly convex, convex objectives.
We also believe that similar ideas could also prove helpful for multi-level stochastic optimization
problems [Zhang and Xiao, 2021] with nested dependency.

6.7 Concluding Remarks 81

Acknowledgements

We would like to thank Caner Turkmen, Sai Praneeth Karimireddy, and Martin Jaggi for helpful
initial discussions surrounding this project.

Chapter 7

Conclusion and Future Work

Summary of Contributions

Machine learning, particularly deep learning, has become an indispensable tool for addressing
a broad spectrum of challenges. The growing need for distributed training allows models to
leverage collaborative data and computational resources, yielding better outcomes compared to
isolated training. However, the distributed paradigm introduces unique hurdles, primarily con-
cerning participant honesty and protocol compliance. Without adequate safeguards, Byzantine
adversaries can degrade model quality, while privacy adversaries might infer sensitive data from
inter-participant message exchanges. Such actors severely compromise the utility of collaborative
learning. In addition to utility, the expanding sizes of machine learning models and datasets
place a substantial burden on computational resources, making optimization a highly debated
subject. This thesis aims to enhance both the utility and efficiency of distributed training.

For utility, we develop Byzantine-robust optimizers and extend them to be compatible with
secure multiparty computation (MPC) protocols. Our dual strategy for Byzantine robustness
involves clipping-based aggregation at the receiver’s end and variance reduction at the sender’s
end. Employing these techniques, we achieve Byzantine tolerance while preserving scalability.
Further, we amalgamate Byzantine robustness and input privacy by using secure MPC protocols
on multiple non-colluding servers.

On the efficiency front, we introduce a relay mechanism to decentralize communication,
mitigating slowdowns caused by data heterogeneity. We also address bias in conditional stochastic
optimization problems by applying extrapolation and variance reduction techniques, thereby
reducing sample complexity.

Despite our contributions, significant work remains. Certain limitations and assumptions
warrant further investigation:

• Improved Privacy: Our model assumes non-colluding servers to combine input privacy
and robustness but this assumption is not satisfied in typical federated learning setups.

84 Conclusion and Future Work

Other single-server solutions are computationally intensive [Burkhalter et al., 2021]. An
efficient single-server solution remains a challenge.

• Output Privacy: We focus on input privacy through secure MPC protocols; however,
output privacy, as a separate concern, has not been considered. Future work could
incorporate differential privacy primitives to preserve output privacy.

• Efficiency: Our current solutions for conditional stochastic optimization rely on higher-
order regularity conditions for the objective function. Although these assumptions serve
to derive our extrapolation scheme, they are not explicitly required by the algorithm. We
aim to relax these assumptions in future work.

In summary, this thesis contributes to the advancement of the utility and efficiency of
distributed machine learning. Nonetheless, it uncovers myriad avenues for future research,
inviting further study to fully harness the potential of this emerging field.

Appendix A

Byzantine-robust Learning on
Heterogeneous Dataset via Bucketing

A.1 Experiment setup and additional experiments

A.1.1 Experiment setup

General setup

The default experiment setup is listed in Table A.1. We use number of iterations T = 8 for

Table A.1 Default experimental settings for MNIST

Dataset MNIST
Architecture CONV-CONV-DROPOUT-FC-DROPOUT-FC
Training objective Negative log likelihood loss
Evaluation objective Top-1 accuracy

Batch size 32× number of workers
Momentum 0 or 0.9
Learning rate 0.01
LR decay No
LR warmup No
Iterations 600 or 4500
Weight decay No

Repetitions 3, with varying seeds
Reported metric Mean test accuracy over the last 150 iterations

RFA, b = q for TM, and τ = 10
1−β for CClip.

86 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

Constructing datasets

The MNIST dataset has 10 classes each with similar amount of samples. In this part, we discuss
how to process and distribute MNIST to each workers in order to achieve long-tailness and
heterogeneity.

Long-tailness. The long-tailness (*-LT) is achieved by sampling class with exponentially
decreasing portions γ ∈ (0, 1]. That is, for class i ∈ [10], we only randomly sample γi portion of
all samples in class i. We define α as the ratio of the largest class over the smallest class, which
can be written as α = 1

γ9 . For example, if γ = 1, then all classes have same amount of samples
and thus α = 1; if γ = 0.5 then α = 29 = 512. Note that the same procedure has to be applied
to the test dataset.

Heterogeneity. Steps to construct IID/non-iid dataset from MNIST dataset
1. Sort the training dataset by its labels.
2. Evenly divide the sorted training dataset into chunks of same size. The number of chunks

equals the number of good workers. If the last chunk has fewer samples, we augment it
with samples from itself.

3. Shuffle the samples within the same worker.

Heterogeneity + Long-tailness. First transform the training dataset into long-tail dataset,
then feed it to the previous procedure to introduce heterogeneity.

About dataset on Byzantine workers. The training set is divided by the number of good
workers. So the good workers has to full information of training dataset. The Byzantine worker
has access to the whole training dataset.

Setup for each experiment

In Table A.2, we list the hyperparameters for the experiments. In Figure 2.1 and Figure 2.2,
we use IPM Attack with ϵ = 0.1. In Figure 2.1, we use ALIE attack with hyperparameter z

computed according to [Baruch et al., 2019]

z = max
z

(
φ(z) <

n− q − s

n− q

)
where s = ⌊n2 + 1⌋ − q and φ is the cumulative standard normal function. In our setup, the
z ≈ 0.25.

Running environment

We summarize the running environment of this paper as in Table A.3.

A.1 Experiment setup and additional experiments 87

Table A.2 Setups for each experiment.

n q momentum Iters LT NonIID

Table 2.1 24 0 0 4500 α = 1, α = 500 iid/ non-iid
Table 2.2 25 5 0 600 α = 1 (balanced) iid/ non-iid
Table 2.3 24 0 0 4500 α = 1, α = 500 iid/ non-iid
Table 2.4 25 5 0 600 α = 1 (balanced) iid/ non-iid
Figure 2.1 25 5 0 / 0.9 600 α = 1 (balanced) non-iid
Figure 2.2 53 5 0 / 0.9 600 α = 1 (balanced) non-iid
Figure A.1 25 5 0 / 0.5 / 0.9 / 0.99 600 α = 1 (balanced) non-iid
Figure A.2 25 5 0 / 0.5 / 0.9 / 0.99 1200 α = 1 (balanced) non-iid
Figure A.3 20 3 0 1200 α = 1 (balanced) non-iid
Figure A.4 20 3 0 3000 α = 1 (balanced) non-iid
Figure A.6 24 3 0 1200 α = 1 (balanced) non-iid

Table A.3 Runtime hardwares and softwares.

CPU
Model name Intel (R) Xeon (R) Gold 6132 CPU @ 2.60 GHz
CPU(s) 56
NUMA node(s) 2

GPU
Product Name Tesla V100-SXM2-32GB
CUDA Version 11.0

PyTorch
Version 1.7.1

A.1.2 Additional experiments

Clipping radius scaling

The radius τ of CClip depends on the norm of good gradients. However, PyTorch implements
SGD with momentum using the following formula

mt
i = βmt−1

i + gi(x
t−1) for every i ∈ VR

which may leads to the increase in the gradient norm.

Gradient norms. In Figure A.1 we present the averaged gradient norm from all good workers.
Here we use CClip as the aggregator and τ = 10

1−β . The norm of gradients are computed before
aggregation. Even though the dataset on workers are non-iid, the gradient norms are roughly of
same order. The gradient dissimilarity ζ2 also increases accordingly.

88 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

0 5 10 15
Worker ID

10
0

10
1

10
2

N
or

m
 ra

tio

ATK = BF

0 5 10 15
Worker ID

ATK = LF

0 5 10 15
Worker ID

ATK = mimic

0 5 10 15
Worker ID

ATK = IPM

0 5 10 15
Worker ID

ATK = ALIE

0.0
0.5
0.9
0.99

Fig. A.1 The ratio of norm of good gradients with momentum β over no momentum under
different attacks.

Scaled clipping radius. As the gradient norm increases with momentum β, the clipping
radius should increase accordingly. In Figure A.2 we compare 3 schemes: 1) no scaling (τ = 10,
β = 0); 2) linear scaling 10

1−β ; 3) sqrt scaling 10√
1−β

. The no scaling scheme convergences but
slower while with momentum. The linear scaling is usually better than sqrt scaling and with
bucketing it becomes more stable. However, The scaled clipping radius fails for β = 0.99 under
label flipping attack. This is because the gradient can be very large and ζ2 dominates. So in
general, a linear scaling of clipping radius with momentum β = 0.9 would be a good choice.

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Scaling = NA | ATK = BF Scaling = NA | ATK = LF Scaling = NA | ATK = mimic Scaling = NA | ATK = IPM Scaling = NA | ATK = ALIE

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Scaling = linear | ATK = BF Scaling = linear | ATK = LF Scaling = linear | ATK = mimic Scaling = linear | ATK = IPM Scaling = linear | ATK = ALIE

0 200 400 600 800 1000 1200
Iterations

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Scaling = sqrt | ATK = BF

0 200 400 600 800 1000 1200
Iterations

Scaling = sqrt | ATK = LF

0 200 400 600 800 1000 1200
Iterations

Scaling = sqrt | ATK = mimic

0 200 400 600 800 1000 1200
Iterations

Scaling = sqrt | ATK = IPM

0 200 400 600 800 1000 1200
Iterations

Scaling = sqrt | ATK = ALIE

0.0
0.5
0.9
0.99

Bucketing
0
2

Fig. A.2 Convergence of CClip with τ = 10, 10
1−β ,

10√
1−β

for β = 0, 0.5, 0.9, 0.99. The s is the
bucketing hyperparameter.

Demonstration of effects of bucketing through the selections of Krum

In the main text we have theoretically show that bucketing helps aggregators alleviate the
impact of non-iid. In this section we empirically show that after bucketing aggregators can
incorporate updates more evenly from good workers and therefore the problem of non-iid among
good workers is less significant. Since Krum outputs the id of the selected device, it is very
convenient to record the frequency of each worker being selected. Since bucketing replicates
each worker for s times, we divide their frequencies by s for normalization. From Figure A.3, we

A.1 Experiment setup and additional experiments 89

can see that without bucketing Krum basically almost always selects updates from Byzantine
workers while with larger s, the selection becomes more evenly distributed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Worker ID

0

100

200

300

400

500

600

700

#S
el

ec
tio

ns

Benign Byzantine
s=0
s=2
s=3

Fig. A.3 The selected workers of Krum for bucketing coefficient s = 0, 2, 3. There are 20 workers
and the last 2 workers (worker id=18,19) are Byzantine with label-flipping attack.

Overparameterization

The architecture of the neural net used in the experiments can be scaled to make it overparame-
terized. We add more parameters to the model by multiplying the channels of 2D Conv layer
and fully connected layer by a factor of ‘scale’. So the original model has a scale of 1. We show
the training losses decrease faster for overparameterized models in Figure A.4. As we can see,
the convergence behaviors are similar for different model scales with overparameterized models
having smaller training loss despite the existence of Byzantine workers.

90 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Lo

ss

s = 0 | ATK = BF s = 0 | ATK = LF s = 0 | ATK = mimic s = 0 | ATK = IPM s = 0 | ATK = ALIE

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Lo

ss

s = 2 | ATK = BF s = 2 | ATK = LF s = 2 | ATK = mimic s = 2 | ATK = IPM s = 2 | ATK = ALIE

0 500 1000 1500 2000 2500 3000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Lo

ss

s = 3 | ATK = BF

0 500 1000 1500 2000 2500 3000
Iterations

s = 3 | ATK = LF

0 500 1000 1500 2000 2500 3000
Iterations

s = 3 | ATK = mimic

0 500 1000 1500 2000 2500 3000
Iterations

s = 3 | ATK = IPM

0 500 1000 1500 2000 2500 3000
Iterations

s = 3 | ATK = ALIE

Model Scale
1
2
4
8

Fig. A.4 The training loss of models of different levels of overparameterization.

In Figure A.5, we explicitly investigate the influence of overparameterization on B2 defined
in (2.3). As we can see, heterogeneity bound B2 decreases with increasing level of overparame-
terization, showcasing how overparameterization minimizes the local objectives in the presence
of Byzantine workers. It supports our theory in § 2.6.4 that overparameterization can fix the
convergence, making it possible to achieve practical Byzantine-robust learning. The underlying
base aggregator is RFA.

0

10

20

30

40

50

B
2

s = 0 | ATK = BF s = 0 | ATK = LF s = 0 | ATK = mimic s = 0 | ATK = IPM s = 0 | ATK = ALIE

0

10

20

30

40

50

B
2

s = 2 | ATK = BF s = 2 | ATK = LF s = 2 | ATK = mimic s = 2 | ATK = IPM s = 2 | ATK = ALIE

0 500 1000 1500 2000 2500 3000
Iterations

0

10

20

30

40

50

B
2

s = 3 | ATK = BF

0 500 1000 1500 2000 2500 3000
Iterations

s = 3 | ATK = LF

0 500 1000 1500 2000 2500 3000
Iterations

s = 3 | ATK = mimic

0 500 1000 1500 2000 2500 3000
Iterations

s = 3 | ATK = IPM

0 500 1000 1500 2000 2500 3000
Iterations

s = 3 | ATK = ALIE

Model Scale
1
2
4
8

Fig. A.5 The B2 in (2.3) for different levels of overparameterization.

Resampling - variant of bucketing

In the previous version of this work we repeat the gradients for s times and then put sn gradients
into n buckets. The results in Figure A.6 suggest that the convergence rate of bucketing and

A.2 Implementing the mimic attack 91

resampling is almost the same. So aggregators can benefit more from bucketing as it reduces
the number of input gradients and therefore reduce the complexity.

0 250 500 750 1000
Iterations

25

50

75

100

Ac
cu

ra
cy

 (%
)

ATK = BF

0 250 500 750 1000
Iterations

ATK = LF

0 250 500 750 1000
Iterations

ATK = Mimic

0 250 500 750 1000
Iterations

ATK = IPM

0 250 500 750 1000
Iterations

ATK = ALIE
Resampling

0
2
3

Bucketing
False
True

Fig. A.6 The convergence SGD with bucketing and resampling under different attacks. The
underlying aggregator is RFA.

A.2 Implementing the mimic attack

The § 2.4.2 describes the idea and formulation of the mimic attack. In this section, we discuss
how to pick i⋆ and implement the mimic attack efficiently. To pick i⋆, we use an initial phase
(I0 ≈ 1 epoch) to compute a direction z of maximum variance of the outputs of the good
workers:

z = argmax
∥z∥=1

z⊤
(∑

t∈I0

∑
i∈VR

(xt
i − µ)(xt

i − µ)⊤
)
z where µ =

1

|VR||I0|
∑

i∈VR,t∈I0

xt
i .

Then we pick a worker i⋆ to mimic by computing

i⋆ = argmax
i∈VR

∣∣∣∑
t∈I0

z⊤xt
i

∣∣∣ .
In the following steps, we show how to solve the optimization problem.

First, rewrite the mimic attack in its online version at time t ∈ I0

zt = argmax
∥z∥=1

ht(z)

where µt = 1
|VR|t

∑
τ≤t

∑
i∈VR

xτ
i and

ht(z) = z⊤

∑
τ≤t

∑
i∈VR

(xτ
i − µt)(xτ

i − µt)⊤

z.

Thus we can iteratively update µt by

µt+1 =
t

1 + t
µt +

1

1 + t

1

|VR|
∑
i∈VR

xt+1
i ,

92 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

Fig. A.7 Error with random vectors with variance ρ2 = d and δ fraction of Byzantine workers imitating
a fixed good worker (say worker 1 ∈ VR). RFA performs slightly better than CM and Krum, but all
have higher error than simply averaging across various settings of δ and ρ.

and then

argmax
∥z∥=1

ht+1(z) ≈ t

1 + t
zt +

1

1 + t
argmax
∥z∥=1

z⊤

∑
i∈VR

(xt+1
i − µt+1)(xt+1

i − µt+1)⊤

z

≈ t

1 + t
zt +

1

1 + t

∑
i∈VR

(xt+1
i − µt+1)(xt+1

i − µt+1)⊤

zt.

The above algorithm corresponds to Oja’s method for computing the top eigenvector in a
streaming fashion [Oja, 1982]. Then, in each subsequent iteration t, we pick

it⋆ = argmax
i∈VR

z⊤xt
i .

Example. Each of the good workers i ∈ VR ⊆ [n] has an input a xi ∈ {±1}d where each
coordinate is an independent Rademacher random variable. The inputs then have mean 0 and
variance E∥xi∥2 = ρ2 = d. Now, the Byzantine attackers j ∈ VB have dual goals: i) escape
detection, and ii) increase data imbalance. For this, we propose the following simple passive
attack: pick some fixed worker i⋆ ∈ VR (say 1) and every Byzantine worker j ∈ VB outputs
xj = x1. The attackers cannot be filtered as they imitate an existing good worker, but still can
cause imbalance in the data distribution. This serves as the intuition for our attack.

A.3 Constructing a robust aggregator using bucketing

A.3.1 Supporting lemmas

We first start with proving the main bucketing Lemma 2.2 restated below.

Lemma’ 2.2. Suppose we are given n independent (but not identical) random vectors {x1, . . . ,xn}
such that a good subset VR ⊆ [n] of size at least |VR| ≥ n(1− δ) satisfies:

E∥xi − xj∥2 ≤ ρ2 , for any fixed i, j ∈ VR .

A.3 Constructing a robust aggregator using bucketing 93

Define x̄ := 1
|VR|

∑
j∈VR

xj and m = ⌈n/s⌉. Let the outputs after s-bucketing be {y1,. . . ,ym}.
Then, a subset of the outputs ṼR ⊆ {1, . . . ,m} of size at least |ṼR| ≥ m(1− δs) satisfies

E[yi] = E[x̄] and E∥yi − yj∥ ≤ ρ2/s for any fixed i, j ∈ ṼR .

Proof. Let us define the buckets used to compute yi as

Bi := {π(s(i− 1) + 1), . . . , π(min{s · i, n})} .

Recall that for some permutation π over [n] and for every i = {1, . . . ,m}, we defined
m = ⌈n/s⌉ and

yi ←
1

|Bi|

min(n , i·s)∑
k=(i−1)·s+1

xπ(k) .

Then, define the new good set

ṼR = {i ∈ [m] | Bi ⊆ VR}

ṼR contains the set of all the resampled vectors which are made up of only good vectors i.e. are
uninfluenced by any Byzantine vector. Since |VB| ≤ δn and each can belong to only 1 bucket, we
have that |ṼR| ≥ (1− δs)m. Now, for any fixed i ∈ ṼR, let us look at the conditional expectation
over the random permutation π we have

Eπ[yi|i ∈ ṼR] =
1

|Bi|

min(n , i·s)∑
k=(i−1)·s+1

Eπ[xπ(k)|π(k) ∈ VR] =
1

|VR|
∑
j∈VR

xj = x̄ .

This yields the first part of the lemma. Now we analyze the variance. Thus, we can write
yi =

1
s

∑
k∈Bi

xk. Further, |Bi| = s for any i, and Bi ⊆ VR if i ∈ ṼR. With this, for any fixed
i, j ∈ ṼR the variance can be written as

E∥yi − yj∥2 = E

∥∥∥∥∥∥1s
∑
k∈Bi

xk −
1

s

∑
l∈Bj

xl

∥∥∥∥∥∥
2

=
ρ2

s
.

This additional lemma about the maximum expected distance between good workers will
also be useful later.

Lemma A.1 (maximum good distance). Suppose we are given the output of bucketing y1, . . . ,ym

which for m = ⌈n/s⌉ satisfy for any fixed i ∈ ṼR, E[yi] = µ and E∥yi − µ∥2 ≤ ρ2/s. Then, we

94 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

have
E

[
max
i∈ṼR

∥yi − µ∥2
]
≤ nρ2/s2 .

Further, there exist instances where

E

[
max
i∈ṼR

∥yi − µ∥2
]
≥ Ω(nρ2/s2) .

Proof. For the upper bound, we simply use

E

[
max
i∈ṼR

∥yi − µ∥2
]
≤
∑
i∈ṼR

E∥yi − µ∥2 ≤ mρ2/s .

For the lower bound, let ṼR = [m] and consider yi ∼ ρ̃
√
mBern(p = 1

m). This means yi is
either 0 or ρ̃

√
m. Further, its variance is clearly bounded by ρ̃2. Upon drawing m samples, the

probability of seeing at least 1 yj = ρ̃
√
m is

1− Pr(yi = 0 ∀i ∈ [m]) = 1− (1− 1
m)m ≥ 1− 1/e ≥ 0.5 .

Thus, with probability at least 0.5 we have

max
i∈[n]
∥yi − µ∥2 ≥ mρ̃2/2 .

This directly proves our lower bound by defining ρ̃2 := ρ2/s and recalling that m = ⌈n/s⌉.
Note that this lemma can be tightened if we make stronger assumptions on the noise such as
E∥yi − µ∥r ≤ (ρ/

√
s)r for some large r ≥ 2. However, we focus on using standard stochastic

assumptions (r = 2) in this work.

A.3.2 Proofs of robustness

Let {y1 . . . ,ym} be the resampled vectors with bucketing using s = δmax
δ . By Lemma 2.2, we

have that there is a ṼR ⊆ [m] of size |ṼR| > m(1− δmax) which satisfies for any fixed i, j ∈ ṼR

E∥yi − yj∥2 ≤
δρ2

δmax
=: ρ̃2 .

This observation will be combined with each of the algorithms to obtain robustness guarantees.

Robustness of Krum. We now prove that Krum when combined with bucketing is a robust
aggregator. We can rewrite the output of Krum as the following for δmax = 1/4− ν for some

A.3 Constructing a robust aggregator using bucketing 95

arbitrarily small positive number ν ∈ (0, 1/4):

Krum(y1, . . . ,ym) = argmin
yi

min
|S|=3m/4

∑
j∈S
∥yi − yj∥2 .

Let S⋆ and k⋆ be the quantities which minimize the optimization problem solved by Krum.
The main difficulty of analyzing Krum is that even if we succeed in selecting a k⋆ ∈ ṼR, k⋆

depends on the sampling. Hence, we cannot claim that the error is bounded by ρ̃2 i.e1

E∥yk⋆ − yj∥2 � ρ̃2 for some fixed j ∈ ṼR .

This is because the variance is bounded by ρ̃2 only for a fixed i, and not a data dependent k⋆.
Instead, we will have to rely on Lemma A.1 that

E∥yk⋆ − yj∥2 ≤ Emax
i∈ṼR

∥yi − yj∥2 ≤ mρ̃2 .

Lemma A.1 shows that this inequality is essentially tight and hence relying on it necessarily
incurs an extra factor of m which can be very large. Instead, we show an alternate analysis
which works for a smaller breakdown point of δmax = 1/4, but does not incur the extra m factor.

For any good input i ∈ ṼR, we have

∥yk⋆ − x̄∥2 ≤ 2∥yk⋆ − yi∥2 + 2∥yi − x̄∥2

⇒ 2∥yk⋆ − yi∥2 ≥ ∥yk⋆ − x̄∥2 − 2∥yi − x̄∥2 .

Further, for a bad worker j ∈ ṼB we can write

2∥yk⋆ − yj∥2 ≥ ∥yj − x̄∥2 − 2∥yk⋆ − x̄∥2 .

Combining both and summing over S⋆,∑
i∈S⋆

2∥yk⋆ − yi∥2 =
∑

i∈ṼR∩S⋆

2∥yk⋆ − yi∥2 +
∑

j∈ṼB∩S⋆

2∥yk⋆ − yj∥2

≥
∑

j∈ṼB∩S⋆

∥yj − x̄∥2 − 2
∑

i∈ṼR∩S⋆

∥yi − x̄∥2

+ (|ṼR ∩ S⋆| − 2|ṼB ∩ S⋆|)∥yk⋆ − x̄∥2 .

1This issue was incorrectly overlooked in the original analysis of Krum [Blanchard et al., 2017]

96 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

We can rearrange the above equation as

∥yk⋆ − x̄∥2 ≤ 1

(|ṼR ∩ S⋆| − 2|ṼB ∩ S⋆|)
(
∑
i∈S⋆

2∥yk⋆ − yi∥2 +
∑

i∈ṼR∩S⋆

2∥yi − x̄∥2)

≤ 1

(|S⋆| − 3|ṼB|)
(
∑
i∈S⋆

2∥yk⋆ − yi∥2 +
∑

i∈ṼR∩S⋆

2∥yi − x̄∥2)

≤ 1

(|S⋆| − 3|ṼB|)
(2 min

k,|S|=3m/4

∑
i∈S
∥yk − yi∥2 +

∑
i∈ṼR

2∥yi − x̄∥2).

Taking expectation now on both sides yields

E∥yk⋆ − x̄∥2 ≤ 4mρ̃2

|S⋆| − 3|ṼB|
.

Now, recall that we used a bucketing value of s = δmax/δ where for Krum we have δmax = 1/4− ν.
Then, the number of Byzantine workers can be bounded as |ṼB| ≤ m(1/4− ν). This gives the
final result that

E∥yk⋆ − x̄∥2 ≤ 4mρ̃2

3m/4− 3(m/4− νm)
=

4ρ̃2

3ν
≤ 4

3ν(1/4− ν)
δρ2 .

Thus, Krum with bucketing indeed satisfies Definition 2.1 with δmax = (1/4 − ν) and c =

4/(3ν(1/4− ν)).

Robustness of Geometric median. Geometric median computes the minimum of the
following optimization problem

y⋆ = argmin
y

∑
i∈[m]

∥y − yi∥2 .

We will adapt Lemma 24 of Cohen et al. [2016], which itself is based on [Minsker et al., 2015].
For a good bucket i ∈ ṼR and bad bucket j ∈ ṼB:

∥y⋆ − yi∥2 ≥ ∥y⋆ − x̄∥2 − ∥yi − x̄∥2 for i ∈ ṼR, and

∥y⋆ − yj∥2 ≥ ∥yj − x̄∥2 − ∥y⋆ − x̄∥2 for j ∈ ṼB .

A.3 Constructing a robust aggregator using bucketing 97

Summing this over all buckets we have∑
i∈[n]

∥y⋆ − yi∥ ≥ (|ṼR| − |ṼB|)∥y⋆ − x̄∥+
∑
j∈ṼB

∥yj − x̄∥ −
∑
i∈ṼR

∥yi − x̄∥

⇒ ∥y⋆ − x̄∥ ≤ 1

(|ṼR| − |ṼB|)

∑
i∈[n]

∥y⋆ − yi∥ −
∑
j∈ṼB

∥yj − x̄∥+
∑
i∈ṼR

∥yi − x̄∥


=

1

(|ṼR| − |ṼB|)

min
y

∑
i∈[n]

∥y − yi∥ −
∑
j∈ṼB

∥yj − x̄∥+
∑
i∈ṼR

∥yi − x̄∥


≤ 2

(|ṼR| − |ṼB|)

∑
i∈ṼR

∥yi − x̄∥

 .

The last step we substituted y = x̄. Squaring both sides, expanding, and then taking expectation
gives

E∥y⋆ − x̄∥2 ≤ 4

(|ṼR| − |ṼB|)2
E

∑
i∈ṼR

∥yi − x̄∥

2

≤ 4

(|ṼR| − |ṼB|)2

|ṼR|∑
i∈ṼR

E∥yi − x̄∥2


≤ 4|ṼR|2

(n− 2|ṼB|)2
ρ̃2 .

Now, recall that we used a bucketing value of s = δmax/δ where for Krum we have δmax = 1/2− ν.
Then, the number of Byzantine workers can be bounded as |ṼB| ≤ n(1/2− ν). This gives the
final result that

E∥y⋆ − x̄∥2 ≤ 4n2

4n2ν2
ρ̃2 ≤ ρ̃2

ν2
≤ 1

ν(1/2− ν)
δρ2 .

Thus, geometric median with bucketing indeed satisfies Definition 2.1 with δmax = (1/2− ν) and
c = 1/(ν(1/2− ν)). Note that geometric median has better theoretical performance than Krum.

Robustness of Coordinate-wise median. The proof of coordinate-wise median largely
follows that of the geometric median. First, we note that we can separate out the objective by
coordinates

E∥CM(y1, . . . ,ym)− x̄∥2 =
d∑

l=1

E(CM([y1]l, . . . , [ym]l)− [x̄]l)
2 .

Then note that, for any fixed coordinate l ∈ [d] and fixed good worker i ∈ VR, we have
E([yi]l − [x̄]l)

2 ≤ E∥yi − x̄∥2 ≤ ρ̃2. Thus, we can simply analyze coordinate-wise median as d

98 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

separate (geometric) median problems on scalars. Thus for any fixed coordinate l ∈ [d], we have

E(CM([y1]l, . . . , [ym]l)− [x̄]l)
2 ≤ ρ̃2

ν2

⇒ E∥CM(y1, . . . ,ym)− x̄∥2 ≤ dρ̃2

ν2
≤ d

ν(1/2− ν)
δρ2 .

Thus, coordinate-wise median with bucketing indeed satisfies Definition 2.1 with δmax = (1/2−ν)

and c = d/(ν(1/2− ν)).

A.4 Lower bounds on non-iid data (Proof of Theorem 2.3)

Our proof builds two sets of functions {f1
i (x) | i ∈ V1R} and {f2

i (x) | i ∈ V2R} and will show that
in the presence of δ-fraction of Byzantine workers, no algorithm can distinguish between them.
Since the problems have different optima, this means that the algorithm necessarily has an error
on at least one of them.

For the first set of functions, let there be no bad workers and hence V1R = [n]. Then, we
define the following functions for any i ∈ [n]:

f1
i (x) =


µ
2x

2 − ζδ−1/2x for i ∈ {1, . . . , δn}
µ
2x

2 for i ∈ {δn+ 1, . . . , n} .

Defining G := ζδ1/2, the average function which is our objective is

f1(x) =
1

n

n∑
i=1

f1
i (x) =

µ

2
x2 −Gx .

The optimum of our f1(x) is at x = G
µ . Note that the gradient heterogeneity amongst these

workers is bounded as

Ei∼[n]∥∇f1
i (x)−∇f1(x)∥2 =δ(ζδ−1/2 − ζδ1/2)2 + (1− δ)(ζδ1/2)2

=ζ2(1− δ)2 + ζ2(1− δ)δ = ζ2(1− δ) ≤ ζ2.

Now, we define the second set of functions. Here, suppose that we have δn Byzantine
attackers with V2B = {1, . . . , δn}. Then, the functions of the good workers are defined as

f2
i (x) =

µ

2
x2 for i ∈ V2R = {δn+ 1, . . . , n} .

A.5 Convergence of robust optimization on non-iid data (Theorems 2.2 and 2.4) 99

We then have that the second average objective is

f2(x) =
1

|V2R|
∑
i∈V2

R

f2
i (x) =

µ

2
x2 .

Here, we have gradient heterogeneity of 0 and hence is smaller than ζ2. The optimum of f2(x)

is at x = 0. The Byzantine attackers simply imitate as if they have the functions:

f2
j (x) =

µ

2
x2 − ζδ−1/2x for j ∈ V2B = {1, . . . , δn} .

Note that the set of functions, {f1
1 (x), . . . , f

1
n(x)} is exactly identical to the set {f2

1 (x), . . . , f
2
n(x)}.

Only the identity of the good workers V1R and V2R are different, leading to different objective
functions f1(x) and f2(x). However, since the algorithm does not have access to VR, its output
on each of them is identical i.e.

xout = Alg(f1
1 (x), . . . , f

1
n(x)) = Alg(f2

1 (x), . . . , f
2
n(x)) .

However, the leads to making a large error in least one of f1 and f2 since they have different
optimum. This proves a lower bound error of

max
k∈{1,2}

fk(xout)− fk(x⋆) ≥ µ

(
G

2µ

)2

=
δζ2

4µ
.

Similarly, we can also bound the gradient norm error bound as

max
k∈{1,2}

∥∇fk(xout)∥2 ≥ µ2

(
G

2µ

)2

=
δζ2

4
.

A.5 Convergence of robust optimization on non-iid data (Theo-
rems 2.2 and 2.4)

We will prove a more general convergence theorem which generalizes Theorems 2.2 and 2.4.

Theorem A.1. Suppose we are given a (δmax, c)-ARAgg satisfying Definition 2.1, and n

workers of which a subset VR of size at least |VR| ≥ n(1− δ) faithfully follow the algorithm for
δ ≤ δmax. Further, for any good worker i ∈ VR let fi be a possibly non-convex function with
L-Lipschitz gradients, and the stochastic gradients on each worker be independent, unbiased and
satisfy

Eξi∥gi(x)−∇fi(x)∥
2 ≤ σ2 and Ej∼VR

∥∇fj(x)−∇f(x)∥2 ≤ ζ2 +B2∥∇f(x)∥2 , ∀x ,

100 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

where δ ≤ 1/(60cB2). Then, for F 0 := f(x0) − f⋆, the output of Algorithm 2 with step-size

η = min

(
O
(√

LF 0+cδ(ζ2+σ2)
TL2σ2(n−1+cδ)

)
, 1
8L

)
and momentum parameter β = (1− 8Lη) satisfies

1

T

T∑
t=1

E∥∇f(xt−1)∥2 ≤ O
(1

1−60cδB2
·
(
cδζ2 + σ

√
LF 0

T
(cδ + 1/n) +

LF 0

T

))
.

Notes on δ ≤ 1/(60cB2). In practice the upper bound δ ≤ 1/(60cB2) does not put an extra
strict constraint on δ. This is because one can always decrease B2 and increase ζ2 such that
Ej∼VR

∥∇fj(x)−∇f(x)∥2 ≤ ζ2 +B2∥∇f(x)∥2 holds for a sufficiently large domain of x.

Definitions. Recall our algorithm which performs for t ≥ 2 the following update with
(1− β) = α:

mt
i = (1− α)mt−1

i + αgi(x
t−1) for every i ∈ VR ,

xt = xt−1 − ηARAgg(mt
1, . . . ,m

t
n) .

For t = 1, we use α = 0 i.e. m1
i = gi(x

0). Let us also define the actual and ideal momentum
aggregates as

mt := ARAgg(mt
1, . . . ,m

t
n) and m̄t :=

1

|VR|
∑
i∈VR

mt
i .

We state several supporting lemmas before proving our main Theorem A.1. We will loosely
follow the proof of Byzantine robustness in the iid case by Karimireddy et al. [2021b], with the
key difference of Lemma A.2 which accounts for the non-iid error.

A.5 Convergence of robust optimization on non-iid data (Theorems 2.2 and 2.4) 101

Lemma A.2 (Aggregation error). Given that ARAgg satisfies Definition 2.1 holds, the error
between the ideal average momentum m̄t and the output of the robust aggregation rule mt for
any t ≥ 2 can be bounded as

E∥mt − m̄t∥2 ≤ cδρ2t ,

where we define for t ≥ 2

ρ2t := 4(6ασ2 + 3ζ2) + 4(6σ2 − 3ζ2)(1− α)t + 12
t∑

k=1

(1− α)t−kαB2 E∥∇f(xk−1)∥2 .

For t = 1 we can simplify the bound as ρ21 := 24cδσ2 + 12cδζ2 + 12cδB2∥∇f(x0)∥2.

Proof. Let Eξt := E{ξτi }i∈VR,τ=0,1,...,t
be the expectation with respect to all of the randomness of

good workers until time t and let Ei := Ei∈VR
and E = Eξt Ei. Expanding the definition of the

worker momentum for a fixed good worker i ∈ VR,

Eξti

[
∥mt

i − Eξt [m
t
i]∥2|xt−1

]
= Eξt

[
∥α(gi(xt−1)−∇fi(xt−1)) + (1− α)(mt−1

i − Eξt [m
t−1
i])∥2|xt−1

]
≤ Eξt−1∥(1− α)(mt−1

i − E[mt−1
i])∥2 + α2σ2

≤ (1− α)Eξt−1∥mt−1
i − E[mt−1

i]∥2 + α2σ2 .

Unrolling the recursion above yields

Eξt∥mt
i − Eξt [m

t
i]∥2 ≤

(
t∑

ℓ=2

(1− α)t−ℓ

)
α2σ2 + (1− α)t−1σ2 ≤ σ2(α+ (1− α)t−1) .

Similar computation also shows

Eξt∥m̄t − Eξt [m̄
t]∥2 ≤ σ2

n
(α+ (1− α)t−1) .

So far, the expectation was only over the stochasticity of the gradients of worker i. Note that
we have Eξt [m

t
i] = Eξt−1 [α∇fi(xt−1) + (1− α)mt−1

i]. Now, suppose we sample i uniformly at
random from VR. Then,

Ei

∥∥Eξt [m
t
i]− Eξt [m̄

t]
∥∥2

=Ei∥αEξt−1 [∇fi(xt−1)−∇f(xt−1)] + (1− α)(Eξt−1 [mt−1
i]− Eξt−1 [m̄t−1])∥2

≤(1− α)Ei∥Eξt−1 [mt−1
i]−Eξt−1 [m̄t−1]∥2+αEi∥Eξt−1 [∇fi(xt−1)−∇f(xt−1)]∥2

≤(1− α)Ei∥Eξt−1 [mt−1
i]−Eξt−1 [m̄t−1]∥2+αEi Eξt−1∥∇fi(xt−1)−∇f(xt−1)∥2

≤(1− α)Ei∥Eξt−1 [mt−1
i]− Eξt−1 [m̄t−1]∥2 + αζ2 + αB2 E∥∇f(xt−1)∥2

where the second inequality uses the probabilistic Jensen’s inequality. Note that here we only
get α instead of α2 as before. This is because the randomness in the sampling i of ∇fi(xt−1) is

102 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

not independent of the second term Eξt−1 [mt−1
i]− Eξt−1 [m̄t−1]. Expanding this we get,

Ei

∥∥Eξt [m
t
i]− Eξt [m̄

t]
∥∥2 ≤ ζ2(1− (1− α)t) +

t∑
k=1

(1− α)t−kαB2 E∥∇f(xk−1)∥2 .

We can combine all three bounds above as

E∥mt
i − m̄t∥2

≤3E∥mt
i − Eξt [m

t
i]∥2 + 3E∥m̄t − Eξt [m̄

t]∥2 + 3Ei∥Eξt [m
t
i]− Eξt [m̄

t]∥2

=3Ei Eξt∥mt
i − Eξt [m

t
i]∥2 + 3Eξt∥m̄t − Eξt [m̄

t]∥2 + 3Ei∥Eξt [m
t
i]− Eξt [m̄

t]∥2

≤(6ασ2 + 3ζ2) + (6σ2 − 3ζ2)(1− α)t + 3

t∑
k=1

(1− α)t−kαB2 E∥∇f(xk−1)∥2 .

Therefore for i, j ∈ VR

E∥mt
i −mt

j∥2 ≤2E∥mt
i − m̄t∥2 + 2E∥mt

j − m̄t∥2

≤4(6ασ2 + 3ζ2) + 4(6σ2 − 3ζ2)(1− α)t

+ 12

t∑
k=1

(1− α)t−kαB2 E∥∇f(xk−1)∥2 .

Recall that the right hand side was defined to be ρ2t . Using Definition 2.1, we can show that the
output of the aggregation rule ARAgg satisfies the condition in the lemma.

One major caveat in the above lemma is that here ρ2 cannot be known to the robust
aggregation since it involves E∥∇f(xk−1)∥2 whose value we do not have access to. However,
this does not present a hurdle to agnostic aggregation rules which are automatically adaptive
to the value of ρ2. Deriving a similarly provable adaptive clipping method is a very important
open problem.

Lemma A.3 (Descent bound). For any α ∈ [0, 1] for t ≥ 2, η ≤ 1
L , and an L-smooth function

f we have for any t ≥ 1

E[f(xt)] ≤ f(xt−1)− η

2
∥∇f(xt−1)∥2 + η E∥ēt∥2 + η E∥mt − m̄t∥2 .

where ēt := m̄t −∇f(xt−1).

A.5 Convergence of robust optimization on non-iid data (Theorems 2.2 and 2.4) 103

Proof. By the smoothness of the function f and the server update,

f(xt) ≤ f(xt−1)− η⟨∇f(xt−1),mt⟩+ Lη2

2
∥mt∥2

≤ f(xt−1)− η⟨∇f(xt−1),mt⟩+ η

2
∥mt∥2

= f(xt−1) +
η

2
∥mt −∇f(xt−1)∥2 − η

2
∥∇f(xt−1)∥2

= f(xt−1) +
η

2
∥mt ± m̄t −∇f(xt−1)∥2 − η

2
∥∇f(xt−1)∥2

≤ f(xt−1) + η∥ēt∥2 + η∥mt − m̄t∥2 − η

2
∥∇f(xt−1)∥2 .

Here we used the identities that −2ab = (a − b)2 − a2 − b2, and Young’s inequality that
(a+ b)2 ≤ (1 + γ)a2 + (1 + 1

γ)b
2 for any positive constant γ ≥ 0 (here we used γ = 1). Taking

conditional expectation on both sides yields the lemma.

Lemma A.4 (Error bound). Using any constant momentum and step-sizes such that 1 ≥ α ≥
8Lη for t ≥ 2, we have for an L-smooth function f that E∥ē1∥2 ≤ 2σ2

n and for t ≥ 2

E∥ēt∥2 ≤ (1− 2α
5)E∥ēt−1∥2 + α

10 E∥∇f(xt−2)∥2 + α
10 E∥mt−1 − m̄t−1∥2 + α2 2σ2

n .

Proof. Let us define ḡ(x) := 1
|VR|

∑
i∈VR

gi(x). This implies that

E∥ḡ(x)−∇f(x)∥2 ≤ σ2

|VR|
≤ 2σ2

n
.

Then by definition of m̄, we can expand the error as:

E∥ēt∥2 = E∥m̄t −∇f(xt−1)∥2

= E∥αḡ(xt−1) + (1− α)m̄t−1 −∇f(xt−1)∥2

≤ E∥α∇f(xt−1) + (1− α)m̄t−1 −∇f(xt−1)∥2 + 2α2σ2

n

= (1− α)2 E∥(m̄t−1 −∇f(xt−2)) + (∇f(xt−2)−∇f(xt−1))∥2 + 2α2σ2

n

≤ (1− α)(1 + α
2)E∥(m̄t−1 −∇f(xt−2))∥2

+ (1− α)(1 + 2
α)E∥∇f(xt−2)−∇f(xt−1)∥2 + 2α2σ2

n

≤ (1− α
2)E∥ēt−1∥2 + 2L2

α E∥xt−2 − xt−1∥2 + 2α2σ2

n

= (1− α
2)E∥ēt−1∥2 + 2L2η2

α E∥mt−1∥2 + 2α2σ2

n

≤ (1− α
2)E∥ēt−1∥2 + 6L2η2

α ∥ēt−1∥2

+ 6L2η2

α E∥mt−1 − m̄t−1∥2 + 6L2η2

α E∥∇f(xt−2)∥2 + 2α2σ2

n
.

104 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

Our choice of the momentum parameter α implies 64L2η2 ≤ α2 and yields the lemma statement.

Proof of Theorem A.1. Scale the error bound Lemma A.4 by 5η
2α and add it to the descent

bound Lemma A.3 taking expectations on both sides to get for t ≥ 2

E[f(xt)] + 5η
2α E∥ēt∥2 ≤ E[f(xt−1)]− η

2 E∥∇f(xt−1)∥2 + η E∥ēt∥2 + η E∥mt − m̄t∥2+
5η
2α E∥ēt−1∥2 − η E∥ēt−1∥2 + η

4 E∥∇f(xt−2)∥2

+ η
4 E∥mt−1 − m̄t−1∥2 + 5ηα

σ2

n
.

Now, let use the aggregation error Lemma A.2 to bound E∥mt−1 − m̄t−1∥2 and E∥mt − m̄t∥2

in the above expression to get

E[f(xt)] + 5η
2α E∥ēt∥2 ≤ E[f(xt−1)]− η

2 E∥∇f(xt−1)∥2 + η E∥ēt∥2

+ 5η
2α E∥ēt−1∥2 − η E∥ēt−1∥2 + η

4 E∥∇f(xt−2)∥2 + 5ηασ2

n

+ 5ηcδ((6ασ2 + 3ζ2) + 6σ2(1− α)t−2)

+ ηcδ

(
3

t−1∑
k=1

(1− α)t−1−kαB2 E∥∇f(xk−1)∥2
)

+ 4ηcδ

(
3

t∑
k=1

(1− α)t−kαB2 E∥∇f(xk−1)∥2
)
.

Let us define St :=
∑t

k=1(1− α)t−kαB2 E∥∇f(xk−1)∥2. Then, St satisfies the recursion:

1
αSt = (1α − 1)St−1 +B2 E∥∇f(xt−1)∥2 .

Adding 3ηcδ(5
α
−4)

α St on both sides to the bound above and rearranging gives the following for
t ≥ 2

A.5 Convergence of robust optimization on non-iid data (Theorems 2.2 and 2.4) 105

E f(xt)− f⋆ + (5η2α − η)E∥ēt∥2 + η

4
E∥∇f(xt−1)∥2 +

3ηcδ(5α − 4)

α
St︸ ︷︷ ︸

=:Et

≤ E f(xt−1)− f⋆ + (5η2α − η)E∥ēt−1∥2 + η

4
E∥∇f(xt−2)∥2 +

3ηcδ(5α − 4)

α
St−1︸ ︷︷ ︸

=:Et−1

(−η
4 + 15ηcδB2)E∥∇f(xt−1)∥2

+
5ηα

n
σ2 + 5ηcδ

(
(6ασ2 + 3ζ2) + 6σ2(1− α)t−2

)
≤ Et−1 −

η

4
(1− 60cδB2)E∥∇f(xt−1)∥2

+ 5ηασ2
(
1
n + 6cδ(1 + 1

α(1− α)t−2)
)
+ 15ηcδζ2︸ ︷︷ ︸

=:ηξ2t−1

.

Further, specializing the descent bound Lemma A.3 and error bound Lemma A.4 for t = 1 we
have

E1 = E f(x1)− f⋆ +
3η

2
E∥ē1∥2 + η

4
E∥∇f(x0)∥2 + 3ηcδB2(

5

α
− 4)∥∇f(x0)∥2

≤ f(x0)− f⋆ +
5η

2
E∥ē1∥2 − η

4
(1− 60cδB2)E∥∇f(x0)∥2 + η E∥m1 − m̄1∥2

≤ f(x0)− f⋆ − η

4
(1− 60cδB2)E∥∇f(x0)∥2 + 5ησ2

n
+ 12cδη(2σ2 + ζ2 +B2∥∇f(x0)∥2)

= f(x0)− f⋆ − η

4
(1− 60cδB2)E∥∇f(x0)∥2 + ηξ20 .

106 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing

Above, we defined ξ20 := 5σ2

n + 12cδ(2σ2 + ζ2 +B2∥∇f(x0)∥2). Summing over t from 2 until T ,
again rearranging our recursion for Et, and adding (1− 3cδB2)E∥∇f(x0)∥2 on both sides gives

(1− 60cδB2)
1

T

T∑
t=1

E∥∇f(xt−1)∥2 ≤ 4(f(x0)− f⋆)

ηT
+

1

T

T∑
t=1

4ξ2t−1

=
4(f(x0)− f⋆)

ηT
+

4ξ20
T

+
1

T

T∑
t=2

20ασ2
(
1
n + 6cδ(1 + 1

α(1− α)t−2)
)

+
1

T

T∑
t=2

60cδζ2

≤ 4(f(x0)− f⋆)

ηT
+

4ξ20
T

+ 60cδζ2

+ 20ασ2
(
1
n + 6cδ

)
+

120cδσ2

αT

=
4(f(x0)− f⋆)

ηT
+

120cδσ2

η8LT
+ η160Lσ2

(
1
n + 6cδ

)
+

4ξ20
T

+ 60cδζ2.

The last equality substituted the value of α = 8Lη. Next, let us use the appropriate step-size of

η = min

(√
4(f(x0)− f⋆) + 15cδ

L (ζ2 + 2σ2)

T (160Lσ2)
(
1
n + 6cδ

) ,
1

8L

)
.

This gives the following final rate of convergence:

1

T

T∑
t=1

E∥∇f(xt−1)∥2

≤ 1

1− 60cδB2
·
(
60cδζ2 +

√
160Lσ2

(
1
n + 6cδ

)
T

·
√
4(f(x0)− f⋆) + 15cδ

L (ζ2 + 2σ2)

+
32L(f(x0)− f⋆)

T
+

15cδσ2

T

+
20σ2

n + 12cδ(2σ2 + ζ2 +B2∥∇f(x0)∥2)
T

)
.

Appendix B

Byzantine-robust decentralized
learning via ClippedGossip

B.1 Existing robust aggregators

In this section, we describe existing robust aggregators mentioned in this paper. Regular nodes
can replace gossip averaging (Gossip) with robust aggregators in the federated learning. Let’s
take geometric median and trimmed mean for example.
• Geometric median (GM). Pillutla et al. [2019] implements the geometric median

GM(x1, . . . ,xn) := argmin
v

∑n
i=1∥v − xi∥2.

• Coordinate-wise trimmed mean (TM). Yang and Bajwa [2019a]; Yin et al. [2018b]
computes the k-th coordinate of TM as

[TM(x1, . . . ,xn)]k := 1
(1−2β)n

∑
i∈Uk

[xi]k

where Uk is a subset of [n] obtained by removing the largest and smallest β-fraction of its
elements.

These aggregators don’t take advantage of the trusted local information and treat all models
equally.

The Mozi algorithm [Guo et al., 2021] leverages local information to filter outliers.
• Mozi. Guo et al. [2021] applies two screening steps on worker i ∈ VR

N s
i := argmin

N ∗⊂Ni
|N ∗|=δi|Ni|

∑
j∈N ∗

∥xi − xj∥,

N r
i :=N s

i ∩ {j ∈ [n] : ℓ(xj , ξi) ≤ ℓ(xi, ξi)}

108 Byzantine-robust decentralized learning via ClippedGossip

where ξi ∼ Di is a random sample. If N r
i = ∅, then redefine N r

i := {argminj ℓ(xj , ξi)}. Then
they update the model with

xt+1
i := αxt

i +
1−α
|N r

i |
∑

j∈N r
i
xt
j − η∇Fi(x

t
i; ξ

t
i)

where α ∈ [0, 1] is an hyperparameter.

B.2 Byzantine attacks in the decentralized environment

In this section, we first describe how to transform attacks from the federated learning to
the decentralized environment. Then we introduce the dissensus attack for decentralized
environment.

B.2.1 Existing attacks in federated learning

A little is enough (ALIE). The attackers estimate the mean µNi and standard deviation
σNi of the regular models, and send µNi − zσNi to regular worker i where z is a small constant
controlling the strength of the attack [Baruch et al., 2019]. The hyperparameter z for ALIE is
computed according to [Baruch et al., 2019]

z = max
z

(
φ(z) <

n− b− s

n− b

)
(B.1)

where s = ⌊n2 + 1⌋ − b and φ is the cumulative standard normal function.

Inner product manipulation attack (IPM). The inner product manipulation attack is
proposed in [Xie et al., 2019a] which lets all attackers send same corrupted gradient u based on
the good gradients

uj = −ϵAvg({vi : i ∈ VR}) ∀ j ∈ VB.

If ϵ is small enough, then uj can be detected as good by the defense, circumventing the defense.
There are 3 main differences where IPM need to adapt to the decentralized environment:

1. Byzantine workers may not connected to the same good worker.

2. The model vectors are transmitted instead of gradients.

3. The Avg should be replaced by its equivalent gossip form.

This motivates our dissensus attack in the next section.

B.2.2 Dissensus attack and other attacks in the decentralized environment

B.2 Byzantine attacks in the decentralized environment 109

𝑥1

𝑥2

𝑥1
𝑥3 𝑥2

Fig. B.1 Example of the dis-
sensus attack. The gray
(resp. red) denotes regu-
lar (resp. Byzantine) nodes.
The blue dots represents the
parameters of regular nodes
after gossip steps.

In this section, we introduce a novel dissensus attack inspired by
our impossibility construction in Theorem 3.2 and the IPM attack
described above. The dissensus attack aims to prevent regular
worker models from reaching consensus. Roughly speaking, dis-
sensus attackers around worker i send its model weights that are
symmetric to the weighted average of regular neighbors around
i. Then after gossip averaging step, the consensus distance drops
slower or even grows which motivates the name “dissensus”.

We can parameterize the attack through hyperparameter ϵi

and summarize the attack in Definition 3.5

xj := xi − ϵi

∑
k∈Ni∩VR

Wik(xk−xi)∑
j∈Ni∩VB

Wij
. (B.2)

The ϵi determines the behavior of the attack. By taking
smaller ϵi, Byzantine model weights are closer to the target updates i and difficult to be detected.
On the other hand, a larger ϵi pulls the model away from the consensus.

Note that this attack requires omniscience since it exploits model information from across
the network. If the attackers in addition can choose which node to attack, then they can choose
either to spread about the attack across the network or focus on the targeting graph cut, that is
min-cut of the graph.

Effect of the dissensus attack. The dissensus attack enjoy the following properties.

Proposition B.1. (i) For all i ∈ VR, under the dissensus attack with ϵi = 1, the gossip averaging
step (Gossip) is equivalent to no communication on i, xt+1

i = xt
i. Secondly, (ii) If the graph is

fully connected, gossip averaging recovers the correct consensus even in the presence of dissensus
attack.

The above proposition illustrates two interesting aspects of the attack. Firstly, dissensus
works by negating the progress that would be made by gossip. The attack in [Peng and Ling,
2020] also satisfies this property (see Appendix for additional discussion). Secondly, it is a
uniquely decentralized attack and has no effect in the centralized setting. Hence, its effect can
be used to measure the additional difficulty posed due to the restricted communication topology.

Proof. For the first part, by definition (Gossip) we know that

xt+1
i =

∑n
j=1Wijx

t
j = xt

i +
∑

j∈Ni
Wij(x

t
j − xt

i)

By setting ϵi = 1 in the attack (3.6), the second term 0 and therefore xt+1
i = xt

i. For part
(ii), note that in a fully connected graph the gossip average is the same as standard average.

110 Byzantine-robust decentralized learning via ClippedGossip

Clique A Clique B

Cut𝐴1 𝐵1

Fig. B.2 Example topology that does not satisfy the robust network assumptions in [Su and
Vaidya, 2016a; Sundaram and Gharesifard, 2018].

Averaging all the perturbations introduced by the dissensus attack gives

−ϵ
∑

i,j∈VR
Wi,j(x

t
j − xt

i) = 0 .

All terms cancel and sum to 0 by symmetry. Thus, in a fully connected graph the dissensus
perturbations cancel out and the gossip average returns the correct consensus.

Relation with zero-sum attack and dissensus. Peng and Ling [2020] propose the
“zero-sum” attack which achieves similar effects as Proposition B.1 part (i). This attack is
defined for j ∈ VB

xj := −
∑

k∈Ni∩VR
xk

|Ni∩VB| .

The key difference between zero-sum attack and our proposed attack is three-fold. First, zero-
sum attack ensures

∑
j∈Ni

xj = 0 which means the Byzantine models have to be far away from
xt
i and therefore easy to detect. This attack pull the aggregated model to 0. On the other hand,

our attack ensures
1∑

j∈Ni
Wij

∑
j∈Ni

Wijx
t
j = xt

i

and the Byzantine updates can be very close to xt
i and it is more difficult to be detected. Second,

our proposed attack considers the gossip averaging which is prevalent in decentralized training
[Koloskova et al., 2020b] while the zero-sum attack only targets simple average. Third, our
attack has an additional parameter ϵ controlling the strength of the attack with ϵ > 1 further
compromise the model quality while zero-sum attack is fixed to training alone.

B.3 Topologies and mixing matrices

B.3.1 Constrained topologies

Topologies that do not satisfy the robust network assumption in [LeBlanc et al.,
2013; Su and Vaidya, 2016a; Sundaram and Gharesifard, 2018]. The robust network

B.3 Topologies and mixing matrices 111

assumption requires there to be at least b + 1 paths between any two regular workers when
there are b Byzantine workers in the network [LeBlanc et al., 2013; Su and Vaidya, 2016a;
Sundaram and Gharesifard, 2018]. The topology in Figure B.2 only has 1 path between regular
workers in two cliques while having 2 Byzantine workers in the network. Therefore this topology
does not satisfy the robust network assumption. But the graph cut is not adjacent to the
Byzantine workers and, intuitively, it would be possible for an ideal robust aggregator to help
reach consensus. The experimental results are given in § B.4.4.

(Randomized) Small-world topology. The small-world topology is a random graph
generated with Watts-Strogatz model [Watts and Strogatz, 1998]. The topology is created using
NetworkX package [Hagberg et al., 2008a] with 10 regular workers each connected to 2 nearest
neighbors and probability of rewiring each edge as 0.15. Two additional Byzantine workers are
linked to 2 random regular workers. There are 12 workers in total.

Torus topology. The regular workers form a torus grid T3,3 and two additional Byzantine
workers are linked to 2 random regular workers. There are 11 workers in total.

The mixing matrix for these topologies are constructed with Metropolis-Hastings algorithm
introduced in the previous section. The spectral gap for small-world topology and torus topology
are 0.084 and 0.131 respectively. In contrast, the dumbbell topology in Figure B.10 is more
challenging with a spectral gap of 0.043. The data distribution is non-IID.

B.3.2 Constructing mixing matrices

In this section, we introduce a few possible ways to construct the mixing weight vectors in the
presence of Byzantine workers. The constructed weight vectors satisfy Assumption B in § 3.4.
• Metropolis-Hastings weight [Hastings, 1970]. The Metropolis-Hastings algorithm lo-

cally constructs the mixing weights by exchanging degree information (di and dj) between
two nodes i and j. The mixing weight vector on regular worker i ∈ VR is computed as follows

Wij =


1

max{di,dj}+1 j ∈ Ni,

1−
∑

l∈Ni
Wil j = i,

0 Otherwise.

If worker j ∈ VB is Byzantine, then the only way for j to maximize its weight Wij to regular
worker i is to report a smaller degree dj . However, such Byzantine behavior of node j has
limited influence on worker i’s weight Wij because it can not be greater than 1

di+1 .
• Equal-weight. Let dmax be the maximum degree of nodes in a graph. Such upper bound
dmax can be a public information, for example, a bluetooth device can at most connect to
dmax other devices due to physical constraints. The Byzantine worker cannot change the

112 Byzantine-robust decentralized learning via ClippedGossip

value of dmax. Then we use the following naive construction

Wij =


1

dmax+1 j ∈ Ni,

1− |Ni|
dmax+1 j = i,

0 Otherwise.

(B.3)

Note that these construction schemes are not proved to be the optimal. In this work, we focus
on the Byzantine attacks given a topology and associated mixing weights. We leave it as future
work to explore the best strategy to construct mixing weights.

B.4 Experiments

We summarize the hardware and software for experiments in Table B.1. We list the setups and

Table B.1 Runtime hardwares and softwares.

CPU
Model name Intel (R) Xeon (R) Gold 6132 CPU @ 2.60 GHz
CPU(s) 56
NUMA node(s) 2

GPU
Product Name Tesla V100-SXM2-32GB
CUDA Version 11.0

PyTorch
Version 1.7.1

results of experiments for consensus in § B.4.1 and optimization in § B.4.2.

B.4.1 Byzantine-robust consensus

0 0 200 200

Fig. B.3 The topology for the
attacks on consensus. The
grey and red nodes denote
regular and Byzantine work-
ers respectively.

In this section, we provide detailed setups for Figure 3.3. The
Figure B.3 demonstrates the topology for the experiment. The
4 regular workers are connected with two of them holding value
0 and the others holding 200. Then the average consensus is
100 with initial mean square error equals 10000. Two Byzantine
workers are connected to two regular workers in the middle. We
can tune the weights of each edge to change the mixing matrix
and γ. Then we can decide the weight δ on the Byzantine edge.
The γ and δ used in the experiments are
• p := 1−(1−γ)2 ∈[0.06,0.05,0.04,0.03,0.02,0.01,0.005,0.0014,3.7e-

4,1e-4,1e-5]
• δ ∈ [0.05, 0.1, 0.2, 0.3, 0.4, 0.5]

B.4 Experiments 113

Table B.2 Default experimental settings for MNIST

Dataset MNIST
Architecture CONV-CONV-DROPOUT-FC-DROPOUT-FC
Training objective Negative log likelihood loss
Evaluation objective Top-1 accuracy

Batch size per worker 32
Momentum 0.9
Learning rate 0.01
LR decay No
LR warmup No
Weight decay No

Repetitions 1
Reported metric Mean test accuracy over the last 150 iterations

where non-compatible combination of γ and δ are ignored in the Figure 3.3. The dissensus attack
is applied with ϵ = 0.05. The hyperparameter β of trimmed mean (TM) is set to the actual
number of Byzantine workers around the regular worker. The clipping radius of ClippedGossip

is chosen according to (B.21).
In Figure B.4, we show the iteration-to-error curves for all possible combinations of γ and

δ. In addition, we provide a version of TM and Median which takes the mixing weight into
account. As we can see, the naive TM, Median, and Median* cannot bring workers closer
because of the data distribution we constructed. The TM* is performing better than the
other baselines but worse than ClippedGossip especially on the challenging cases where γ

is small and δ is large. For ClippedGossip, it matches with our intuition that for a fixed γ

the convergences is worse with increasing δ while for a fixed δ the convergence is worse with
decreasing γ.

B.4.2 Byzantine-robust decentralized optimization

In this section, we provide detailed hyperparameters and setups for experiments in the main text
and then provide additional experiments. For all MNIST tasks, we use the default setup listed
in Table B.2 unless specifically stated. The default hyperparameters of the robust aggregators:
1) For GM, we choose number of iterations T = 8; 2) The TM drops top and bottom β = δmaxn

percent of values in each coordinate; 3) The clipping radius of ClippedGossip is τ = 1; 4) The
model averaging hyperparameter of Mozi is α = 1.

Setup for “Decentralized defenses without attackers”

The Fig. 3.4 uses the dumbbell topology in Fig. 3.1 with 10 regular workers in each clique.
There is no Byzantine workers. The experiments run for 900 iterations. Mozi uses α = 0.5 and
ρi = 0.99 in this setting. For bucketing experiment, we choose bucket size of s = 2. It means we

114 Byzantine-robust decentralized learning via ClippedGossip

0

5000

10000

Er
ro

r

p = 0.060 | max = 0.050 p = 0.060 | max = 0.100 p = 0.060 | max = 0.200 p = 0.060 | max = 0.300 p = 0.060 | max = 0.400 p = 0.060 | max = 0.500

0

5000

10000

Er
ro

r

p = 0.050 | max = 0.050 p = 0.050 | max = 0.100 p = 0.050 | max = 0.200 p = 0.050 | max = 0.300 p = 0.050 | max = 0.400 p = 0.050 | max = 0.500

0

5000

10000

Er
ro

r

p = 0.040 | max = 0.050 p = 0.040 | max = 0.100 p = 0.040 | max = 0.200 p = 0.040 | max = 0.300 p = 0.040 | max = 0.400 p = 0.040 | max = 0.500

0

5000

10000

Er
ro

r

p = 0.030 | max = 0.050 p = 0.030 | max = 0.100 p = 0.030 | max = 0.200 p = 0.030 | max = 0.300 p = 0.030 | max = 0.400 p = 0.030 | max = 0.500

0

5000

10000

Er
ro

r

p = 0.020 | max = 0.050 p = 0.020 | max = 0.100 p = 0.020 | max = 0.200 p = 0.020 | max = 0.300 p = 0.020 | max = 0.400 p = 0.020 | max = 0.500

0

5000

10000

Er
ro

r

p = 0.010 | max = 0.050 p = 0.010 | max = 0.100 p = 0.010 | max = 0.200 p = 0.010 | max = 0.300 p = 0.010 | max = 0.400 p = 0.010 | max = 0.500

0

5000

10000

Er
ro

r

p = 0.005 | max = 0.050 p = 0.005 | max = 0.100 p = 0.005 | max = 0.200 p = 0.005 | max = 0.300 p = 0.005 | max = 0.400 p = 0.005 | max = 0.500

0

5000

10000

Er
ro

r

p = 0.001 | max = 0.050 p = 0.001 | max = 0.100 p = 0.001 | max = 0.200 p = 0.001 | max = 0.300 p = 0.001 | max = 0.400 p = 0.001 | max = 0.500

0 50 100
T

0

5000

10000

Er
ro

r

p = 0.000 | max = 0.050

0 50 100
T

p = 0.000 | max = 0.100

0 50 100
T

p = 0.000 | max = 0.200

0 50 100
T

p = 0.000 | max = 0.300

0 50 100
T

p = 0.000 | max = 0.400

0 50 100
T

p = 0.000 | max = 0.500

Agg
ClippedGossip
Median
TM
Median*
TM*

Fig. B.4 The iteration-to-error curves for defenses under dissensus attack. The TM* and
Median* refer to the version of TM and Median which considers mixing weight.

B.4 Experiments 115

Clique A Clique B

Fig. B.5 Dumbbell variant where Byzantine
workers maybe added to the central worker.

0 500
Iterations

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ATK = ALIE
Agg ClippedGossip GM TM

0 500
Iterations

ATK = Dissensus

H.M.E.
False
True

Fig. B.6 Accuracy of aggregators with or
without the honest majority everywhere
(H.M.E.) assumption. Regular workers are
connected through a ring and have IID
data.

randomly put at most two updates into one bucket and average within each bucket and then
apply robust aggregators to the averaged updates.

Setup for “Effects of the number of Byzantine workers”

The Fig. 3.6 uses a dumbbell topology variant in Fig. B.5. The experiments run for 1500
iterations. In this experiment we choose n− b = 11 and b = 0, 1, 2, 3. We choose the edge weight
of Byzantine workers such that the W̃ and p remain the same for all these b. Then we can
easily investigate the relation between δmax ∈ [0, b

b+3] and p by varying b. The hyperparameter
of dissensus attack is set to ϵi = 1.5 for all workers and all experiments.

Setup for “Defense without honest majority”

The Fig. B.6 uses the ring topology of 5 regular workers in Fig. B.7. 11 Byzantine workers are
added to the ring so that 1 regular worker do no have honest majority. The experiments run
for 900 iterations. We use ϵi = 1.5 for dissensus attacks. We use clipping radius τ = 0.1 for
ClippedGossip.

In the decentralized environment, the common honest majority assumption in the federated
learning setup can be strengthen to honest majority everywhere, meaning all regular workers have
an honest majority of neighbors [Su and Vaidya, 2016b; Yang and Bajwa, 2019a,b]. Considering
a ring of 5 regular workers with IID data, and adding 2 Byzantine workers to each node will still
satisfy the honest majority assumption everywhere. Now adding one more Byzantine worker to
a node will break the assumption.

116 Byzantine-robust decentralized learning via ClippedGossip

Fig. B.7 Ring topology without honest majority.

Figure B.6 shows that while TM and GM can sometimes counter the attack under the honest
majority assumption, adding one more Byzantine worker always corrupts the entire training.
The ClippedGossip defend attacks successfully even beyond the assumption, because they
leverage the fact that local updates are trustworthy. This suggest that existing statistics-based
aggregators which take no advantage of local information are vulnerable under this realistic
decentralized threat model.

Setup for “More topologies and attacks.”

In Figure 3.5, we use the small-world and torus topologies described in § B.3.1. More specifically,
we created a randomized small-world topology using NetworkX package [Hagberg et al., 2008a]
with 10 regular workers each connected to 2 nearest neighbors and probability of rewiring each
edge as 0.15. Two additional Byzantine workers are linked to 2 random regular workers. There
are 12 workers in total. For the torus topology, we let regular workers form a torus grid T3,3

where all 9 regular workers are connected to 3 other workers. Two additional Byzantine workers
are linked to 2 random regular workers. There are 11 workers in total.

The mixing matrix for these topologies are constructed with Metropolis-Hastings algorithm
in § B.3.2. The spectral gap for small-world topology and torus topology are 0.084 and 0.131
respectively. In contrast, the dumbbell topology in Figure B.10 is more challenging with a
spectral gap of 0.043. The data distribution is non-IID.

B.4 Experiments 117

Table B.3 Default experimental settings for CIFAR-10

Dataset CIFAR-10
Architecture VGG-11[Simonyan and Zisserman, 2015]
Training objective Cross entropy loss
Evaluation objective Top-1 accuracy

Batch size per worker 64
Momentum 0.9
Learning rate 0.1
LR decay 0.1 at epoch 80 and 120
LR warmup No
Weight decay No

Repetitions 11

Reported metric Mean test accuracy over the last 150 iterations

B.4.3 Experiment: CIFAR-10 task

In this section, we conduct experiments on CIFAR-10 dataset Krizhevsky [2012]. The running
environment of this experiment is the same as MNIST experiment Table B.1. The default setup
for CIFAR-10 experiment is summarized in Table B.3.

We compare performances of 5 aggregators on dumbbell topology with 10 nodes in each
clique (no attackers). The results of experiments are shown in Figure B.8. In order to investigate
if consensus has reached among the workers, we average the worker nodes in 3 different categories
(“Global”, Clique A, and Clique B) and compare their performances on IID and NonIID datasets.
The “IID-Global” result show that GM and TM is much worse than ClippedGossip and
Gossip, in contrast to the MNIST experiment Figure 3.4 where they have matching result.
This is because the workers with in each clique are converging to different stationary point —
“IID-Clique A” and “IID-Clique B” show GM and TM in each clique can reach over 80% accuracy
which is close to Gossip. It demonstrates that GM and TM fail to reach consensus even in this
Byzantine-free case and therefore vulnerable to attacks.

The NonIID experiment also support that ClippedGossip perform much better than all
other robust aggregators. Notice that ClippedGossip’s “NonIID-Global” performance is better
than “NonIID-Clique A” and “NonIID-Clique B” while GM and TM’s result are opposite. This
is because ClippedGossip allows effective communication in this topology and therefore clique
models are close to each other in the same local minima basin such that their average (global
model) is better than both of them. The GM’s and TM’s clique models converge to different
local minima, making their averaged model underperform.

B.4.4 Experiment for “Weaker topology assumption”

As is mentioned in Remark 1 and § B.3.1, the topology assumption in this work is weaker than
the robust network assumption in Su and Vaidya [2016a]; Sundaram and Gharesifard [2018].

118 Byzantine-robust decentralized learning via ClippedGossip

20

40

60

80

A
cc

ur
ac

y
(%

)

IID-Global

ClippedGos.
GM
MOZI
TM
Gossip

IID-Clique A IID-Clique B

0.00 0.25 0.50 0.75 1.00 1.25
Iterations 1e6

20

40

60

80

A
cc

ur
ac

y
(%

)

NonIID-Global

0.00 0.25 0.50 0.75 1.00 1.25
Iterations 1e6

NonIID-Clique A

0.00 0.25 0.50 0.75 1.00 1.25
Iterations 1e6

NonIID-Clique B

Fig. B.8 Train models on dumbbell topology with IID and NonIID datasets. The three figures in
each row correspond to the same experiment with “Global”, “Clique A”, “Clique B” denoting the
performances of globally averaged model, within-Clique A averaged model, and within-Clique B
averaged model.

We use the topology in Figure B.2 which consists of 10 regular workers and 2 dissensus attack
workers. While this topology does not satisfy the robust network assumption, it intuitively
should allow communication between two cliques as no Byzantine workers are attached to the
cut. However, both GM and TM will discard the graph cut due to data heterogeneity. This
shows that GM and TM impede information diffusion. On the other hand, ClippedGossip is
the only robust aggregator which help two cliques reaching consensus in the NonIID case. The
ClippedGossip theoretically applies to more topologies and empirically perform better.

B.4.5 Experiment: choosing clipping radius

In Figure B.10 we show the sensitive of tuning clipping radius. We use dumbbell topology
with 5 regular workers in each clique and add 1 more Byzantine worker to each clique. The
clipping radius is searched over a grid of [0.1, 0.5, 1, 2, 10]. The Byzantine workers are chosen to
be Bit-Flipping, Label-Flipping, and ALIE.

We also give an adaptive clipping strategy for different i ∈ VR and time t. After commu-
nication step at time t, the value of xt+1/2

i is available. Therefore we can sort the values of∥∥∥xt+1/2
i − x

t+1/2
j

∥∥∥2
2

for all j ∈ Ni. We denote the set of indices set Sti as the indices of workers

B.4 Experiments 119

0 250 500 750
Iterations

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

IID

ClippedGossip
GM
MOZI
TM
Ideal Comm.

0 250 500 750
Iterations

NonIID

0 250 500 750
Iterations

NonIID + B.

0 250 500 750
Iterations

NonIID + R.

0 250 500 750
Iterations

NonIID + B. + R.

Fig. B.9 Compare robust aggregators under dissensus attacks over dumbbell topology Figure 3.5.

0 200 400 600
Iterations

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Bit-Flipping

0 200 400 600
Iterations

Label-Flipping

0 200 400 600
Iterations

ALIE

= 0.1
= 0.5
= 1
= 2
= 10

Adaptive

Fig. B.10 Tuning clipping radius on the dumbbell topology against Byzantine attacks. The
y-axis is the averaged test accuracy over all of the regular workers.

that have the smallest distances to worker i

Sti = argmin
S:

∑
j∈S Wij≤1−δmax

∑
j∈S

∥∥∥xt+1/2
i − x

t+1/2
j

∥∥∥2
2
.

Then the adaptive strategy picks clipping radius as follows

τ t+1
i =

√∑
j∈St

i
Wij

∥∥∥xt+1/2
i − x

t+1/2
j

∥∥∥2
2
. (B.4)

Note that this adaptive choice of clipping radius is generally a bit smaller than the theoretical
value (B.21). It guarantees that the Byzantine workers have limited influences at cost of small
slow down on the convergence.

As we can see from Figure B.10, the performances of ClippedGossip are similar with
different constant choices of τ which shows that the choice of τ is not very sensitive. The
adaptive algorithms perform well in all cases. Therefore, the adaptive choice of τ will be
recommended in general.

120 Byzantine-robust decentralized learning via ClippedGossip

B.5 Analysis

We restate the core equations in Algorithm 3 at time t on worker i as follows

mt+1
i = (1− α)mt

i + αgi(x
t
i) (B.5)

x
t+1/2
i = xt

i − ηmt+1
i (B.6)

zt+1
j→i = x

t+1/2
i + Clip(xt+1/2

j − x
t+1/2
i , τ ti) (B.7)

xt+1
i =

n∑
j=1

Wijz
t+1
j→i (B.8)

In addition, we define the following virtual iterates on the set of good nodes VR

• xt = 1
|VR|

∑
i∈VR

xt
i the average (over time) of good iterates.

• mt = 1
|VR|

∑
i∈VR

mt
i the average (over time) of momentum iterates.

In this proof, we define p := 1− (1− γ)2 ∈ (0, 1] for convenience.
In this section, we show that the convergence behavior of the virtual iterates xt. The

structure of this section is as follows:

• In § B.5.1, we give common quantities, simplified notations and list common equali-
ties/inequalities used in the proof.

• In § B.5.2, we provide all auxiliary lemmas necessary for the proof. Among these lemmas,
Lemma B.3 is the key sufficient descent lemma.

• In § B.5.3, we provide the proof of the main theorem.

B.5.1 Definitions, and inequalities

Notations for the proof. We use the following variables to simplify the notation

• Optimization sub-optimality:
rt := f(x̄t)− f⋆

• Consensus distance:
Ξt :=

1

|VR|
∑
i∈VR

∥xt
i − x̄t∥22

• The distance between the ideal gradient and actual averaged momentum

et+1
1 := E∥∇f(x̄t)− m̄t+1∥22

B.5 Analysis 121

• Similarly, the distance between the ideal gradient and individual momentums

ẽt+1
1 :=

1

|VR|
∑
i∈VR

E∥∇f(x̄t)−mt+1
i ∥

2
2

• Similar, distance between individual ideal gradients and individual momentums which is
weighted by the mixing matrix

ēt+1
1 :=

1

|VR|
∑
i∈VR

E∥
∑
j∈VR

W̃ij(∇fj(x̄t)−mt+1
j)∥22

• Similar we have distance between individual ideal gradients and individual momentums

et+1
I :=

1

|VR|
∑
i∈VR

E∥mt+1
i −∇fi(x̄t)∥22,

• Let et+1
2 be the averaged squared error introduced by clipping and Byzantine workers

et+1
2 :=

1

|VR|
∑
i∈VR

E

∥∥∥∥∥∥
∑
j∈VR

Wij(z
t+1
j→i − x

t+1/2
j) +

∑
j∈VB

Wij(z
t+1
j→i − x

t+1/2
i)

∥∥∥∥∥∥
2

2

.

Lemma B.1 (Common equalities and inequalities). We use the following equalities and in-
equalities

• The cosine theorem: ∀ x,y ∈ Rd

⟨x,y⟩ = −1

2
∥x− y∥22 +

1

2
∥x∥22 +

1

2
∥y∥22 (B.9)

• Young’s inequality: For ϵ > 0 and x,y ∈ Rd

∥x+ y∥22 ≤ (1 + ϵ)∥x∥22 + (1 + ϵ−1)∥y∥22 (B.10)

• If f is convex, then for α ∈ [0, 1] and x,y ∈ Rd

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (B.11)

• Cauchy-Schwarz inequality
⟨x,y⟩ ≤ ∥x∥2∥y∥2 (B.12)

• Let {xi : i ∈ [m]} be independent random variables and Exi = 0 and E∥xi∥2 = σ2 then

E∥ 1
m

∑m
i=1 xi∥22 = σ2

m (B.13)

122 Byzantine-robust decentralized learning via ClippedGossip

B.5.2 Lemmas

The following lemma establish the update rule for x̄t.

Lemma B.2. Assume Lemma 3.3. Let ∆t+1 be the error incurred by clipping and VB

∆t+1 :=
1

|VR|
∑
i∈VR

∑
j∈VR

Wij(z
t+1
j→i − x

t+1/2
j) +

∑
j∈VB

Wij(z
t+1
j→i − x

t+1/2
i)

 . (B.14)

Then the virtual iterate updates

x̄t+1 = x̄t − ηm̄t+1 +∆t+1. (B.15)

Proof. Expand x̄t+1 with the definition of xt+1
i in (B.8) yields

x̄t+1 =
1

|VR|
∑
i∈VR

xt+1
i =

1

|VR|
∑
i∈VR

∑
j∈VR

Wijz
t+1
j→i +

∑
j∈VB

Wijz
t+1
j→i


=

1

|VR|
∑
i∈VR

∑
j∈VR

Wij(z
t+1
j→i − x

t+1/2
j) +

∑
j∈VR

Wijx
t+1/2
j


+

1

|VR|
∑
i∈VR

∑
j∈VB

Wij(z
t+1
j→i − x

t+1/2
i) +

∑
j∈VB

Wijx
t+1/2
i

 .

Reorganize the terms to form ∆t+1

x̄t+1 =
1

|VR|
∑
i∈VR

∑
j∈VR

Wijx
t+1/2
j +

∑
j∈VB

Wijx
t+1/2
i

+∆t+1

=
1

|VR|
∑
j∈VR

(1− δj)x
t+1/2
j +

1

|VR|
∑
i∈VR

δix
t+1/2
i +∆t+1

=
1

|VR|
∑
i∈VR

x
t+1/2
i +∆t+1 =

1

|VR|
∑
i∈VR

(xt
i − ηmt+1

i) + ∆t+1

=x̄t
i − ηm̄t+1 +∆t+1.

Note that the ∆t+1 can be written as the follows

∆t+1 =
1

|VR|
∑
i∈VR

xt+1
i −

∑
j∈VR

W̃ijx
t+1/2
j

 = x̄t+1 − 1

|VR|
∑
i∈VR

x
t+1/2
i .

B.5 Analysis 123

where measures the error introduced to x̄t+1 considering the impact of Byzantine workers and
clipping. Therefore when VB = ∅ and τ is sufficiently large, ∆t+1 = 0 and x̄t+1 converge at the
same rate as the centralized SGD with momentum.

Recall that et+1
1 := E∥∇f(x̄t)− m̄t+1∥22. The key descent lemma is stated as follow

Lemma B.3 (Sufficient decrease). Assume Assumption D and η ≤ 1
2L , then

E f(x̄t+1) ≤f(x̄t)− η

2
∥∇f(x̄t)∥22 −

η

4
E∥m̄t+1 − 1

η
∆t+1∥22 + ηet+1

1 +
1

η
et+1
2 .

Proof. Use smoothness Assumption D and expand it with (B.15)

f(x̄t+1) ≤f(x̄t)− ⟨∇f(x̄t), ηm̄t+1 −∆t+1⟩+ L

2
∥ηm̄t+1 −∆t+1∥22

Apply cosine theorem (B.9) to the inner product η⟨∇f(x̄t), m̄t+1 − 1
η∆

t+1⟩ yields

E f(x̄t+1) ≤f(x̄t)− η

2
∥∇f(x̄t)∥22 −

(
η − Lη2

2

)
E∥m̄t+1 − 1

η
∆t+1∥22

+
η

2
E∥∇f(x̄t)− m̄t+1 +

1

η
∆t+1∥22.

If step size η ≤ 1
2L , then −η−Lη2

2 ≤ −η
4 . Applying inequality (B.10) to the last term

η

2
E∥∇f(x̄t)− m̄t+1 +

1

η
∆t+1∥22 ≤ η E∥∇f(x̄t)− m̄t+1∥22 +

1

η
E∥∆t+1∥22.

Since et+1
1 := E∥∇f(x̄t)− m̄t+1∥22 and E∥∆t+1∥22 ≤ et+1

2 , then we have

E f(x̄t+1) ≤f(x̄t)− η

2
∥∇f(x̄t)∥22 −

η

4
E∥m̄t+1 − 1

η
∆t+1∥22 + ηet+1

1 +
1

η
et+1
2 .

In the next lemma, we establish the recursion for the distance between momentums and
gradients

Lemma B.4. Assume Assumptions C and D and lemma 3.3, For any doubly stochastic mixing
matrix A ∈ Rn×n

et+1
A =

1

|VR|
∑
i∈VR

E∥
∑
j∈VR

Aij(m
t+1
j −∇fj(x̄t))∥22,

then we have the following recursion

et+1
A ≤ (1− α)etA +

α2σ2

|VR|
∥A∥2F,VR

+ 2αL2Ξt +
2L2η2

α
∥m̄t − 1

η
∆t∥22. (B.16)

where we define ∥A∥2F,VR
:=
∑

i∈VR

∑
j∈VR

A2
ij Therefore,

• If Aij =
1

|VR| for all i, j ∈ VR, then et+1
A = et+1

1 and ∥A∥2F,VR
= 1.

124 Byzantine-robust decentralized learning via ClippedGossip

• If A = W̃ , then et+1
A = ēt+1

1 and ∥A∥2F,VR
=
∑

i∈VR

∑
j∈VR

W̃ 2
ij ≤ |VR|.

• If A = I, then ∥A∥2F,VR
= |VR|. In addition,

ẽt+1
1 ≤ 2et+1

I + 2ζ2

where A = I.

Proof. We can expand et+1
A by expanding mt+1

j

et+1
A

(B.5)
=

1

|VR|
∑
i∈VR

E∥
∑
j∈VR

Aij((1− α)mt
j + αgj(x

t
j)−∇fj(x̄t))∥22

=
1

|VR|
∑
i∈VR

E∥
∑
j∈VR

Aij((1−α)mt
j+α(gj(x

t
j)±∇fj(xt

j))−∇fj(x̄t))∥22

Extract the stochastic term gj(x
t
j)−∇fj(xt

j) inside the norm and use that E gj(x
t
j) = ∇fj(xt

j),

et+1
A =

1

|VR|
∑
i∈VR

∥
∑
j∈VR

Aij((1−α)mt
j+α∇fj(xt

j)−∇fj(x̄t))∥22

+
1

|VR|
∑
i∈VR

E∥
∑
j∈VR

Aijα(gj(x
t
j)−∇fj(xt

j))∥22

≤ 1

|VR|
∑
i∈VR

∥
∑
j∈VR

Aij((1−α)mt
j+α∇fj(xt

j)−∇fj(x̄t))∥22

+
α2

|VR|
∑
i∈VR

∑
j∈VR

A2
ij E∥gj(xt

j)−∇fj(xt
j)∥22.

Then we can use Assumption C for the last term to get

et+1
A =

1

|VR|
∑
i∈VR

∥
∑
j∈VR

Aij((1−α)mt
j+α∇fj(xt

j)−∇fj(x̄t))∥22 +
α2σ2

|VR|
∥A∥2F,VR

.

Then we insert ±(1− α)∇fj(x̄t−1) inside the first norm and expand using (B.11)

et+1
A ≤1− α

|VR|
∑
i∈VR

∥
∑
j∈VR

Aij(m
t
j −∇fj(x̄t−1))∥22 +

α2σ2

|VR|
∥A∥2F,VR

+
α

|VR|
∑
i∈VR

∥
∑
j∈VR

Aij(∇fj(xt
j)−∇fj(x̄t) +

1− α

α
(∇fj(x̄t−1)−∇fj(x̄t))∥22.

B.5 Analysis 125

Note that the first term is etA and by the convexity of ∥·∥ for the last term we have

et+1
A ≤(1− α)etA +

α2σ2

|VR|
∥A∥2F,VR

+
α

|VR|
∑
j∈VR

∥∇fj(xt
j)−∇fj(x̄t) +

1− α

α
(∇fj(x̄t−1)−∇fj(x̄t))∥22.

Then we can further expand the last term

et+1
A ≤(1− α)etA +

α2σ2

|VR|
∥A∥2F,VR

+
2α

|VR|
∑
j∈VR

∥∇fj(xt
j)−∇fj(x̄t)∥22 +

2(1− α)2

α|VR|
∑
j∈VR

∥∇fj(x̄t−1)−∇fj(x̄t)∥22.

Then we can apply smoothness Assumption D and use (1− α)2 ≤ 1

et+1
A ≤(1− α)etA +

α2σ2

|VR|
∥A∥2F,VR

+ 2αL2Ξt +
2L2η2

α
∥m̄t − 1

η
∆t∥22.

Besides, consider ẽt+1
1

ẽt+1
1 =

1

|VR|
∑
i∈VR

E∥mt+1
i −∇f(x̄t)∥22 =

1

|VR|
∑
i∈VR

E∥mt+1
i ±∇fi(x̄t)−∇f(x̄t)∥22

≤2 1

|VR|
∑
i∈VR

E∥mt+1
i −∇fi(x̄t)∥22 + 2

1

|VR|
∑
i∈VR

∥∇fi(x̄t)−∇f(x̄t)∥22

=2et+1
I + 2ζ2.

As we know that ∥∆t+1∥22 ≤ et+1
2 , then we need to finally bound et+1

2

Lemma B.5 (Bound on et+1
2). For δmax := maxi∈VR

δi, if

τ t+1
i =

√
1

δi

∑
j∈VR

Wij E
∥∥∥xt+1/2

i − x
t+1/2
j

∥∥∥2
2
,

then we have

et+1
2 ≤ c1δmax(2η

2(et+1
I + ζ2) + Ξt).

where constant c1 = 32.

126 Byzantine-robust decentralized learning via ClippedGossip

Proof. Use Young’s inequality (B.10) to bound et+1
2 by two parts

et+1
2 =

1

|VR|
∑
i∈VR

E

∥∥∥∥∥∥
∑
j∈VR

Wij(z
t+1
j→i − x

t+1/2
j) +

∑
j∈VB

Wij(z
t+1
j→i − x

t+1/2
i)

∥∥∥∥∥∥
2

2

≤ 2

|VR|
∑
i∈VR

E

∥∥∥∥∥∥
∑
j∈VR

Wij(z
t+1
j→i − x

t+1/2
j)

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
=:A1

+
2

|VR|
∑
i∈VR

E

∥∥∥∥∥∥
∑
j∈VB

Wij(z
t+1
j→i − x

t+1/2
i)

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
=:A2

.

Look at the first term use triangular inequality of ∥·∥ and the definition of τ t+1
i

A1 ≤
2

|VR|
∑
i∈VR

E

∑
j∈VR

Wij

∥∥∥zt+1
j→i − x

t+1/2
j

∥∥∥
2

2

≤ 2

|VR|
∑
i∈VR

E

 1

τ t+1
i

∑
j∈VR

Wij

∥∥∥xt+1/2
i − x

t+1/2
j

∥∥∥2
2

2

.

The second inequality holds true because we can consider two cases of zt+1
j→i for all j ∈ VR

• If ∥xt+1/2
i − x

t+1/2
j ∥22 ≤ τ t+1

i , then Clip has no effect and therefore zt+1
j→i = x

t+1/2
j

0 = ∥zt+1
j→i − x

t+1/2
j ∥2 ≤

1

τ t+1
i

∥xt+1/2
i − x

t+1/2
j ∥22.

• If ∥xt+1/2
i − x

t+1/2
j ∥22 > τ t+1

i , then zt+1
j→i sits between x

t+1/2
j and x

t+1/2
i with

∥zt+1
j→i − x

t+1/2
j ∥2 + τ t+1

i = ∥xt+1/2
i − x

t+1/2
j ∥2.

Therefore, using the inequality a− τ ≤ a2

τ for a > 0 we have that

∥zt+1
j→i − x

t+1/2
j ∥2 = ∥xt+1/2

i − x
t+1/2
j ∥2 − τ t+1

i ≤ 1

τ t+1
i

∥xt+1/2
i − x

t+1/2
j ∥22.

Therefore we justify the second inequality.
On the other hand,

A2 ≤
2

|VR|
∑
i∈VR

E

∑
j∈VB

Wij

∥∥∥zt+1
j→i − x

t+1/2
i

∥∥∥
2

2

≤ 2

|VR|
∑
i∈VR

∑
j∈VB

Wij(τ
t+1
i)

2

=
2

|VR|
∑
i∈VR

δ2i (τ
t+1
i)2.

B.5 Analysis 127

Then minimizing the RHS of et+1
2 by tuning radius for clipping

τ t+1
i =

√√√√√E

 1

δi

∑
j∈VR

Wij

∥∥∥xt+1/2
i − x

t+1/2
j

∥∥∥2
2

2

Then we come to the following bound

et+1
2 ≤ 4

|VR|
∑
i∈VR

δi
∑
j∈VR

Wij

∥∥∥xt+1/2
i − x

t+1/2
j

∥∥∥2
2
.

Then we expand the norm as follows

E
∥∥∥xt+1/2

i − x
t+1/2
j

∥∥∥2
2
=E

∥∥∥xt
i − ηmt+1

i − xt
j + ηmt+1

j

∥∥∥2
2

=E
∥∥∥xt

i ± x̄t − xt
j + ηmt+1

j ± η∇f(x̄t)− ηmt+1
i

∥∥∥2
2

≤4η2 E∥mt+1
i −∇f(x̄t)∥22 + 4η2 E∥mt+1

j −∇f(x̄t)∥22
+ 4∥xt

i − x̄t∥22 + 4∥xt
j − x̄t∥22

(B.17)

Use the fact that
∑

j∈VR
Wij = 1− δi we have

et+1
2 ≤16η2

|VR|
∑
i∈VR

δi(1−δi)E∥mt+1
i −∇f(x̄t)∥22 +

16η2

|VR|
∑
j∈VR

∑
i∈VR

δiWij E∥mt+1
j −∇f(x̄t)∥22

+
16

|VR|
∑
i∈VR

δi(1−δi)∥xt
i − x̄t∥22 +

16

|VR|
∑
j∈VR

∑
i∈VR

δiWij∥xt
j − x̄t∥22

Use the fact that δi ≤ δmax and 1− δi ≤ 1 for all i ∈ VR,

et+1
2 ≤ 32δmax(2η

2(et+1
I + ζ2) + Ξt).

Theorem 3.1′. Let x̄ := 1
|VR|

∑
i∈VR

xi be the average iterate over the unknown set of regular
nodes with

τi =
√

1
δi

∑
j∈VR

Wij E ∥xi − xj∥22. (B.18)

If the initial consensus distance is bounded as 1
|VR|

∑
i∈VR

E∥xi − x̄∥2 ≤ ρ2, then for all i ∈ VR,
the output x̂i of ClippedGossip satisfies

1
|VR|

∑
i∈VR

E∥x̂i − x̄∥2 ≤
(
1− γ + c

√
δmax

)2
ρ2

where the expectation is over the random variable {xi}i∈VR
and c > 0 is a constant.

128 Byzantine-robust decentralized learning via ClippedGossip

Proof. We can consider the 1-step consensus problem as 1-step of optimization problem with
ρ2 = Ξt and η = 0. Then we look for the upper bound of 1

|VR|
∑

i∈VR
E∥xt+1

i − x̄t∥22 in terms of
ρ2, p, and δmax.

1

|VR|
∑
i∈VR

E∥xt+1
i − x̄t∥22 =

1

|VR|
∑
i∈VR

E∥
n∑

j=1

Wijz
t+1
j→i − x̄t∥22

=
1

|VR|
∑
i∈VR

E∥(
∑
j∈VR

W̃ijx
t
j − x̄t) + (

n∑
j=1

Wijz
t+1
j→i −

∑
j∈VR

W̃ijx
t
j)∥22.

Apply (B.10) with ϵ > 0 and use the expected improvement Lemma 3.4

1

|VR|
∑
i∈VR

E∥xt+1
i − x̄t∥22

≤1 + ϵ

|VR|
∑
i∈VR

∥
∑
j∈VR

W̃ijx
t
j − x̄t∥22 +

1 + 1
ϵ

|VR|
∑
i∈VR

E∥
n∑

j=1

Wijz
t+1
j→i −

∑
j∈VR

W̃ijx
t
j∥22

≤(1 + ϵ)(1− p)

|VR|
∑
i∈VR

∥xt
i − x̄t∥22 +

1 + 1
ϵ

|VR|
∑
i∈VR

E∥
n∑

j=1

Wijz
t+1
j→i −

∑
j∈VR

W̃ijx
t
j∥22

≤(1 + ϵ)(1− p)Ξt +
1 + 1

ϵ

|VR|
∑
i∈VR

E∥
n∑

j=1

Wijz
t+1
j→i −

∑
j∈VR

W̃ijx
t
j∥22

Replace xt
j = x

t+1/2
j + ηmt+1

j using (B.6), then apply (B.12) and η = 0

1

|VR|
∑
i∈VR

E∥xt+1
i − x̄t∥22 ≤ (1+ϵ)(1−p)Ξt +

1 + 1
ϵ

|VR|
∑
i∈VR

E

∥∥∥∥∥∥
n∑

j=1

Wijz
t+1
j→i−

∑
j∈VR

W̃ijx
t+1/2
j

∥∥∥∥∥∥
2

2

.

Recall the definition of et+1
2

et+1
2 :=

1

|VR|
∑
i∈VR

E

∥∥∥∥∥∥
n∑

j=1

Wijz
t+1
j→i −

∑
j∈VR

W̃ijx
t+1/2
j

∥∥∥∥∥∥
2

2

.

Then use Lemma B.4 with the case A = W̃ and apply Lemma B.5 with η = 0

1

|VR|
∑
i∈VR

E∥xt+1
i − x̄t∥22 ≤(1 + ϵ)(1− p)Ξt + (1 +

1

ϵ
)et+1

2

≤(1 + ϵ)(1− p)Ξt + (1 +
1

ϵ
)32δmaxΞ

t.

B.5 Analysis 129

Let’s minimize the right hand side of the above inequality by taking ϵ such that ϵ(1−p) = 32δmax
ϵ

which leads to ϵ =
√

32δmax
1−p , then the above inequality becomes

1

|VR|
∑
i∈VR

E∥xt+1
i − x̄t∥22 ≤(1− p+ 32δmax + 2

√
32δmax(1− p))Ξt

=(
√

1− p+
√

32δmax)
2Ξt.

The consensus distance to the average consensus is only guaranteed to reduce if
√
1− p +

√
32δmax < 1 which is

δmax <
1

32
(1−

√
1− p)2.

Finally, we complete the proof by simplifying the notation to spectral gap γ := 1−
√
1− p.

Recall that

et+1
2 :=

1

|VR|
∑
i∈VR

∥∥∥∥∥∥
∑
j∈VR

Wij(z
t+1
j→i − x

t+1/2
j) +

∑
j∈VB

Wij(z
t+1
j→i − x

t+1/2
i)

∥∥∥∥∥∥
2

2

. (B.19)

Next we consider the bound on consensus distance Ξt.

Lemma B.6 (Bound consensus distance Ξt). Assume Lemma 3.4, then Ξt has the following
iteration

Ξt+1 ≤(1 + ϵ)(1− p)Ξt

+ c2(1 +
1

ϵ
)

(
et+1
2 + η2ēt+1

1 + η2ζ2 + η2∥∇f(x̄t)∥22 + η2 E∥m̄t+1 − 1

η
∆t+1∥22

)
.

where ϵ > 0 is determined later such that (1 + ϵ)(1− p) < 1 and c2 = 5.

Proof. Expand the consensus distance at time t+ 1

Ξt+1 =
1

|VR|
∑
i∈VR

E∥xt+1
i − x̄t+1∥22 =

1

|VR|
∑
i∈VR

E∥
n∑

j=1

Wijz
t+1
j→i − x̄t+1∥22

=
1

|VR|
∑
i∈VR

E∥
n∑

j=1

Wijz
t+1
j→i − x̄t + x̄t − x̄t+1∥22

=
1

|VR|
∑
i∈VR

E∥(
∑
j∈VR

W̃ijx
t
j − x̄t) + (

n∑
j=1

Wijz
t+1
j→i −

∑
j∈VR

W̃ijx
t
j) + x̄t − x̄t+1∥22.

130 Byzantine-robust decentralized learning via ClippedGossip

Apply Young’s inequality (B.10) with coefficient ϵ, like the proof of Theorem 3.1, and use the
expected improvement Lemma 3.4

Ξt+1 ≤1 + ϵ

|VR|
∑
i∈VR

∥
∑
j∈VR

W̃ijx
t
j − x̄t∥22

+
1 + ϵ

ϵ|VR|
∑
i∈VR

E∥
n∑

j=1

Wijz
t+1
j→i −

∑
j∈VR

W̃ijx
t
j + x̄t − x̄t+1∥22

≤(1 + ϵ)(1− p)

|VR|
∑
i∈VR

∥xt
i − x̄t∥22

+
1 + ϵ

ϵ|VR|
∑
i∈VR

E∥
n∑

j=1

Wijz
t+1
j→i −

∑
j∈VR

W̃ijx
t
j + x̄t − x̄t+1∥22

≤(1 + ϵ)(1− p)Ξt +
1 + ϵ

ϵ|VR|
∑
i∈VR

E∥(
n∑

j=1

Wijz
t+1
j→i −

∑
j∈VR

W̃ijx
t
j) + x̄t − x̄t+1∥22︸ ︷︷ ︸

=:T1

Replace xt
j = x

t+1/2
j + ηmt+1

j using (B.6), then apply (B.12)

T1 =
1 + ϵ

ϵ|VR|
∑
i∈VR

E∥
n∑

j=1

Wijz
t+1
j→i−

∑
j∈VR

W̃ijx
t+1/2
j −η

∑
j∈VR

W̃ijm
t+1
j + x̄t − x̄t+1∥22

≤51 + ϵ

ϵ

 1
|VR|

∑
i∈VR

E∥
n∑

j=1

Wijz
t+1
j→i−

∑
j∈VR

W̃ijx
t+1/2
j ∥22

+ η2

|VR|

∑
i∈VR

E∥
∑
j∈VR

W̃ij(m
t+1
j −∇fj(x̄t))∥22

+ η2

|VR|

∑
i∈VR

∥
∑
j∈VR

W̃ij∇fj(x̄t)−∇f(x̄t)∥22 + η2∥∇f(x̄t)∥22 + E∥x̄t − x̄t+1∥22

 .

(B.20)

Recall the definition of et+1
2

et+1
2 :=

1

|VR|
∑
i∈VR

E

∥∥∥∥∥∥
∑
j∈VR

Wij(z
t+1
j→i − x

t+1/2
j) +

∑
j∈VB

Wij(z
t+1
j→i − x

t+1/2
i)

∥∥∥∥∥∥
2

2

=
1

|VR|
∑
i∈VR

E∥
n∑

j=1

Wijz
t+1
j→i −

∑
j∈VR

W̃ijx
t+1/2
j ∥22

B.5 Analysis 131

Then use Lemma B.4 with the case A = W̃ ,

T1 ≤5(1 +
1

ϵ
)

et+1
2 + η2ēt+1

1 + η2

|VR|

∑
i∈VR

∥
∑
j∈VR

W̃ij∇fj(x̄t)−∇f(x̄t)∥22 + η2∥∇f(x̄t)∥22 + E∥x̄t − x̄t+1∥22

 .

Use convexity of ∥·∥22 and Assumption C we have

T1 ≤5(1 +
1

ϵ
)
(
et+1
2 + η2ēt+1

1 + η2ζ2 + η2∥∇f(x̄t)∥22 + E∥x̄t − x̄t+1∥22
)
.

Use (B.15) for the last term

T1 ≤5(1 +
1

ϵ
)

(
et+1
2 + η2ēt+1

1 + η2ζ2 + η2∥∇f(x̄t)∥22 + η2 E∥m̄t+1 − 1

η
∆t+1∥22

)
.

Finally, by the definition of ẽt+1
1 , we have

Ξt+1 ≤ (1 + ϵ)(1− p)Ξt + 5(1 +
1

ϵ
)

(
et+1
2 + η2ēt+1

1 + η2ζ2 + η2∥∇f(x̄t)∥22 + η2 E∥m̄t+1 − 1

η
∆t+1∥22

)
.

Lemma B.7 (Tuning stepsize.). Suppose the following holds for any step size η ≤ d:

ΨT ≤
r0

η(T + 1)
+ bη + eη2 + fη3 .

Then, there exists a step-size η ≤ d such that

ΨT ≤ 2(
br0

T + 1
)
1
2 + 2e

1
3 (

r0
T + 1

)
2
3 + 2f

1
4 (

r0
T + 1

)
3
4 +

dr0
T + 1

.

Proof. Choosing η = min

{(
r0

b(T+1)

) 1
2
,
(

r0
e(T+1)

) 1
3
,
(

r0
f(T+1)

) 1
4
, 1d

}
≤ 1

d we have four cases

• η = 1
d and is smaller than

(
r0

b(T+1)

) 1
2 ,
(

r0
e(T+1)

) 1
3 ,
(

r0
f(T+1)

) 1
4 , then

ΨT ≤
dr0

T + 1
+

b

d
+

e

d2
+

f

d3
≤ dr0

T + 1
+

(
br0

T + 1

) 1
2

+ e1/3
(

r0
T + 1

) 2
3

+ f1/4

(
r0

T + 1

) 3
4

.

• η =
(

r0
b(T+1)

) 1
2
< min{

(
r0

e(T+1)

) 1
3
,
(

r0
f(T+1)

) 1
4 }, then

ΨT ≤ 2

(
br0

T + 1

) 1
2

+
er0

b(T + 1)
+f

(
r0

b(T + 1)

) 3
2

≤ 2

(
br0

bT + 1

) 1
2

+e1/3
(

r0
T + 1

) 2
3

+f1/4

(
r0

T + 1

) 3
4

.

132 Byzantine-robust decentralized learning via ClippedGossip

• η =
(

r0
e(T+1)

) 1
3
< min{

(
r0

b(T+1)

) 1
2
,
(

r0
f(T+1)

) 1
4 }, then

ΨT ≤ 2e1/3
(

r0
T + 1

) 2
3

+b

(
r0

e(T + 1)

) 1
3

+
fr0

e(T + 1)
≤
(

br0
T + 1

) 1
2

+2e1/3
(

r0
T + 1

) 2
3

+f1/4

(
r0

T + 1

) 3
4

.

• η =
(

r0
f(T+1)

) 1
4
< min{

(
r0

b(T+1)

) 1
2
,
(

r0
e(T+1)

) 1
3 }, then

ΨT ≤ 2f1/4

(
r0

T + 1

) 3
4

+b

(
r0

f(T + 1)

) 1
4

+e

(
r0

f(T + 1)

) 1
2

≤
(

br0
T + 1

) 1
2

+e1/3
(

r0
T + 1

) 2
3

+2f1/4

(
r0

T + 1

) 3
4

.

Then, take the uniform upper bound of the upper bound gives the result.

B.5.3 Proof of the main theorem

Theorem 3.3′. Suppose Assumptions A–3.4 hold and δmax = O(γ2). Define the clipping radius
as

τ t+1
i =

√
1
δi

∑
j∈VR

Wij E
∥∥∥xt+1/2

i − x
t+1/2
j

∥∥∥2
2
. (B.21)

Then for α := 3ηL, the iterates of Algorithm 3 satisfy

1
T+1

∑T
t=0∥∇f(x̄t)∥22 ≤200c1c2

γ2 δmaxζ
2 + 2(32

|VR| +
320c1c2

γ2 δmax)
1/2
(
3Lσ2r0
T+1

)1/2

+ 2
(
48c2
γ2 ζ2

)1/3 (
r0L
T+1

)2/3
+ 2

(
144c2
γ2 σ2

)1/4 (
r0L
T+1

)3/4
+ d0r0

T+1 .

where r0 := f(x0)− f⋆ and c1 = 32 and c2 = 5. Furthermore, the consensus distance has an
upper bound

1
|VR|

∑
i∈VR
∥xt

i − x̄t∥22 = O(
ζ2

γ2(T+1)
).

Remark 8. The requirement δmax = O(γ2) suggest that δmax and γ2 are of same order. The
exact constant are determined in the proof and can be tighten simply through better constants in
equalities like (B.17), (B.20). In practice ClippedGossip allow high number of attackers. For
example in Figure B.9, 1/6 of workers are Byzantine and ClippedGossip still perform well in
the non-IID setting.

Proof. Denote the terms of average t from 0 to T as follows

C1 :=
1

1 + T

T∑
t=0

∥∇f(x̄t)∥22, C2 :=
1

1 + T

T∑
t=0

∥m̄t+1 − 1

η
∆t+1∥22, D1 :=

1

1 + T

T∑
t=0

Ξt+1

E1 :=
1

1 + T

T∑
t=0

et+1
1 , Ē1 :=

1

1 + T

T∑
t=0

ēt+1
1 , EI :=

1

1 + T

T∑
t=0

et+1
I , E2 :=

1

1 + T

T∑
t=0

et+1
2

B.5 Analysis 133

First we apply average to Lemma B.5

E2 ≤ c2δmax(2η
2(EI + ζ2) +D1). (B.22)

Then we rewrite key Lemma B.3 as

∥∇f(x̄t)∥22 +
1

2
E∥m̄t+1 − 1

η
∆t+1∥22 ≤

2

η
(rt − rt+1) + 2et+1

1 +
2

η2
et+1
2 ,

and further average over time t

C1 +
1

2
C2 ≤

2r0
η(T + 1)

+ 2E1 +
2

η2
E2

where we use −f(xT+1) ≤ −f⋆. Combined with (B.22) gives

C1 +
1

2
C2 ≤

2r0
η(T + 1)

+ 2E1 + 4c2δmaxEI + 4c2δmaxζ
2 +

2c2δmax

η2
D1 (B.23)

Now we also average Lemma B.4 for et+1
1 over t gives

1

1 + T

T∑
t=0

et+1
1 ≤1− α

1 + T

T∑
t=0

et1 + 2αL2D1 +
α2σ2

|VR|
+

2L2η2

α

1

1 + T

T∑
t=0

∥m̄t − 1

η
∆t∥22

≤1− α

1 + T

T∑
t=0

et+1
1 + 2αL2D1 +

α2σ2

|VR|
+

2L2η2

α
C2

where we use Ξ0 = e01 = 0 and m̄0 = ∆0 = 0. Then let β1 :=
2L2η2

α2

E1 ≤ 2L2D1 +
ασ2

|VR|
+ β1C2. (B.24)

Similarly, Lemma B.4 for et+1
I the only difference is that we don’t have 1

n for σ2

EI ≤ 2L2D1 + ασ2 + β1C2. (B.25)

Similarly, let’s call β2 := 1
|VR|

∑
i∈VR

∑
j∈VR

W̃ 2
ij ≤ 1

Ē1 ≤ 2L2D1 + β2ασ
2 + β1C2. (B.26)

134 Byzantine-robust decentralized learning via ClippedGossip

The consensus distance Lemma B.6 has

D1 ≤
(1 + ϵ)(1− p)

1 + T

T∑
t=0

Ξt + c2(1 +
1
ϵ)E2 + c2(1 +

1
ϵ)η

2(Ēt+1
1 + ζ2 + C1 + C2)

≤(1 + ϵ)(1− p)D1 + c2(1 +
1
ϵ)E2 + c2(1 +

1
ϵ)η

2(Ēt+1
1 + ζ2 + C1 + C2).

Replace E2 using (B.22) gives

D1 ≤(1 + ϵ)(1− p)D1 + c2(1 +
1
ϵ)(c1δmax(2η

2(Et+1
I + ζ2) +D1)) + c2(1 +

1
ϵ)η

2(Ēt+1
1 + ζ2 + C1 + C2)

≤((1 + ϵ)(1− p) + c1c2(1 +
1
ϵ)δmax)D1 + c2(1 +

1
ϵ)η

2(2c1δmaxE
t+1
I + Ēt+1

1 + (1 + 2c1δmax)ζ
2 + C1 + C2).

Now replace Ē1, EI with (B.26), (B.25), then

D1 ≤((1 + ϵ)(1− p) + c2(1 +
1
ϵ)(c1δmax(1 + 4L2η2) + 2L2η2))D1

+ c2(1 +
1
ϵ)η

2((2c1δmax + β2)ασ
2 + (2c1δmax + 1)ζ2 + ((2c1δmax + 1)β1 + 1)C2 + C1).

By enforcing η ≤ γ
9L and δmax ≤ γ2

10c1c2
we have

2c2L
2η2 ≤γ2/8

c1c2δmax(1 + 4L2η2) ≤γ2/8

we can achieve √
c1c2δmax(1 + 4L2η2) + 2c2L2η2 ≤ γ

2
.

Then

D1 ≤ ((1 + ϵ)(1− p) + (1 + 1
ϵ)

γ2

4)︸ ︷︷ ︸
=:T2

D1

+ c2(1 +
1
ϵ)η

2((2c1δmax + β2)ασ
2 + (2c1δmax + 1)ζ2 + ((2c1δmax + 1)β1 + 1)C2 + C1).

Let us minimize the the coefficients of D1 on the right hand side of inequality by having

ϵ(1− p) =
1

ϵ

γ2

4
,

B.5 Analysis 135

that is ϵ =
√

γ2

4(1−p) . Then the coefficient becomes

T2 =(1 + ϵ)(1− p) + (1 + 1
ϵ)
γ2

4

=(
√

1− p+
γ

2
)2

=(1− γ

2
)2.

Then we use 1
ϵ =

√
4(1−p)

γ2 ≤ 2
γ and 1 + 1

ϵ ≤
3
γ

D1 ≤4c2η2

γ2 ((2c1δmax + β2)ασ
2 + (2c1δmax + 1)ζ2 + ((2c1δmax + 1)β1 + 1)C2 + C1).

This leads to 2c1δmax ≤ γ2

5c2
≤ 1 and β2 ≤ 1, then we know

D1 ≤
4c2η

2

γ2
(2ασ2 + 2ζ2 + C1 + (1 + 2β1)C2) (B.27)

Finally, we combine (B.23), (B.24), (B.26)

C1 +
1

2
C2 ≤

2r0
η(T + 1)

+ 2E1 + 4c1δmaxEI + 4c1δmaxζ
2 +

2c1δmax

η2
D1

≤ 2r0
η(T + 1)

+(4L2D1+
2ασ2

|VR| + 2β1C2)+2c1δmax(4L
2D1 + 2β2ασ

2 + 2β1C2)

+ 4c1δmaxζ
2 +

2c1δmax

η2
D1

≤ 2r0
η(T + 1)

+ (4L2 + 8c1δmaxL
2 +

2c1δmax

η2
)D1 + (1

|VR| + 2c1δmax)2ασ
2

+4β1C2 + 4c1δmaxζ
2

Then we replace D1 with (B.27)

C1 +
1

2
C2 ≤ 2r0

η(T+1) + (1
|VR| + 2c1δmax)2ασ

2+4β1C2 + 4c1δmaxζ
2

+ (4L2η2 + 8c1δmaxL
2η2 + 2c1δmax)

4c2
γ2 (2ασ

2 + 2ζ2 + C1 + (1 + 2β1)C2)
(B.28)

To have a valid bound on C1, there are two constraints on the coefficient of the RHS C1 and C2.

(4L2η2 + 8c1δmaxL
2η2 + 2c1δmax)

4c2
γ2 <1

(4L2η2 + 8c1δmaxL
2η2 + 2c1δmax)

4c2
γ2 (1 + 2β1) + 4β1 ≤

1

2
.

136 Byzantine-robust decentralized learning via ClippedGossip

We can strength the first requirement to

(4L2η2 + 8c1δmaxL
2η2 + 2c1δmax)

4c2
γ2 ≤

1

4
. (B.29)

Then, apply this inequality to the second inequality gives

1

4
+

1

2
β1 + 4β1 ≤

1

2

which requires η ≤ α
3L . Next (B.29) can be achieved by requiring δmax ≤ γ2

64c1c2

(4 + 8c1δmax)L
2η2 + 2c1δmax ≤ 8L2η2 + 2c1δmax ≤

γ2

16c2

which requires 8η2L2 ≤ γ2

32c2
, and we can simplify it to η ≤ γ

40L . Now we can simplify (B.28)
with (B.29)

3
4C1 ≤ 2r0

η(T+1) + (1
|VR| + 2c1δmax)2ασ

2 + 4c1δmaxζ
2

+ (4L2η2 + 8c1δmaxL
2η2 + 2c1δmax)

4c2
γ2 (2ασ

2 + 2ζ2)

Multiply both sides with 4
3 and relax constant 4

3 · 2 ≤ 3. Then by taking η ≤ 1
2L we have that

C1 ≤ 3r0
η(T+1) + (1

|VR| +
151
γ2 2c1δmax)3ασ

2 + 200c1c2
γ2 δmaxζ

2 + 48c2
γ2 (ασ2 + ζ2)L2η2

By taking α := 3ηL and relax the constants we have

C1 ≤ 3r0
η(T+1) + (32

|VR| +
320c1
γ2 δmax)Lσ

2η + 48c2
γ2 (ασ2 + ζ2)L2η2 + 200c1c2

γ2 δmaxζ
2.

Minimize the the right hand side by tuning step size Lemma B.7 we have

1

T + 1

T∑
t=0

∥∇f(x̄t)∥22 ≤200c1c2
γ2 δmaxζ

2 + 2

(32

|VR| +
320c1
γ2 δmax)3Lσ

2r0

T + 1

 1
2

+ 2
(
48c2
γ2 ζ2

) 1
3
(

r0L
T+1

) 2
3
+ 2

(
144c2
γ2 σ2

) 1
4
(

r0L
T+1

) 3
4
+

d0r0
T + 1

where 1
d0

:= min{ 1
2L ,

γ
9L ,

γ
40L} =

γ
40L and

η = min


(

2r0

(9
|VR| +

320c1
γ2 δmax)Lσ2(T + 1)

)1/2

,

(
2r0γ

2

48c2ζ2L2(T + 1)

)1/3

,

(
2r0γ

2

L3σ2(T + 1)

)1/4

, 1
d0

 .

B.6 Other related works and discussions 137

Bound on the consensus distance D1. Since β1 =
2L2η2

α2 = 2
9 , we can relax (B.27) to

D1 ≤4c2η2

γ2 (2ασ2 + 2ζ2 + 2(1 + 2β1)(C1 +
1
2C2))

≤4c2η2

γ2 (2ασ2 + 2ζ2 + 3(C1 +
1
2C2)).

For significantly large T , we know that η = α = O(1√
T+1

) and find the upper bound of
2ασ2 + 2ζ2 + C1 +

1
2C2 with O(ζ2) where higher order terms of 1/T are dropped. Therefore,

the upper bound on the consensus distance D1 is O
(

ζ2

γ2(T+1)

)
.

B.6 Other related works and discussions

In this section, we add more related works and discussions.

Byzantine resilient learning with constraints Byzantine robustness is challenging when
the training is combined with other constraints, such as asynchrony [Damaskinos et al., 2018; Xie
et al., 2020b; Yang and Li, 2021b], data heterogeneity [Data and Diggavi, 2021a; Karimireddy
et al., 2021c; Li et al., 2019; Peng and Ling, 2020], privacy [Burkhalter et al., 2021; He et al.,
2020b]. These works all assume the existence of a central server which can communicate with all
regular workers. In this paper, we consider the decentralized setting and focus on the constraint
that not all regular workers can communicate with each other.

More works on decentralized learning. Many works focus on compression techniques
[Koloskova et al., 2019, 2020a; Vogels et al., 2020], data heterogeneity [Koloskova et al., 2021;
Tang et al., 2018; Vogels et al., 2021], and communication topology [Assran et al., 2019b; Ying
et al., 2021a].

Detailed comparison with one line of work. Among all the works on robust decentralized
training, Sundaram et al. Sundaram and Gharesifard [2018] and Su et al. Su and Vaidya [2016a]
and their followup works Yang and Bajwa [2019a,b] have the most similar setup with ours.
They are all using the trimmed mean as the aggregator assumptions on the graph. We illustrate
our advantages over these methods as follows

1. Their methods (TM) make unrealistic assumptions about the graph while our method is
much more relaxed. Their main assumption on the graph has 2 parts: 1) each good node
should have at least 2b+ 1 neighbors where b is the maximum number of Byzantine workers
in the whole network; 2) by removing any b edges the good nodes should be connected.
This assumption essentially requires the good workers have honest majority everywhere and
additionally they have to be well connected. This can be hardly enforced in the decentralized
environment. In contrast, our method has a weaker condition relating the spectral gap and

138 Byzantine-robust decentralized learning via ClippedGossip

δ. Our method also works without a honest majority Figure B.6. The second part of their
assumption exclude common topologies like Dumbbell.

2. TM fails to reach consensus even in some Byzantine-free graphs (e.g. Dumbbell) while
SSClip converges as fast as gossip. For example, TM fails to reach consensus in NonIID
setting for MNIST dataset (Figure 3.4) and even fails in IID setting for CIFAR-10 dataset
(Figure B.8).

3. We have a clear convergence rate for SGD while they only show asymptotic convergence for
GD. In fact, we even improve the state-of-art decentralized SGD analysis [Koloskova et al.,
2020b].

4. Our work reveals how the quantitative relation between percentage of Byzantine workers (δ)
and information bottleneck (γ) influence the consensus (see Figure 3.3 and Theorem 3.1).

5. We propose a novel dissensus attacks that utilize topology information.

6. Impossibility results. Sundaram et al. Sundaram and Gharesifard [2018] and Su et al. Su
and Vaidya [2016a] give impossibility results in terms of number of nodes while we give a
novel results in terms of spectral gap (γ).

Other related works and discussions. Zhao et al. Zhao et al. [2019] make assumption that
some users are trusted and then adopt trimmed mean as robust aggregator. But this assumption
is incompatible with our setting where every node only trusts itself. Peng et al. Peng and
Ling [2020] propose a “zero-sum” attack which exploits the topology where Byzantine worker j

construct
xj := −

∑
k∈Ni∩VR

xk

|Ni∩VB| .

They aim to manipulate the good worker i’s model to 0, but it also makes the constructed
Byzantine model very far away from the good worker models, making it easy to detect. In
contrast, our dissensus attack (3.6) simply amplifies the existing disagreement amongst the good
workers, which keeps the attack much less undetectable. In addition, we take mixing matrix
into consideration and use ϵi to parameterize the attack which makes it more flexible.

Clarifications about our method. We make the following clarifications regarding our
method:

• Ideally we would like to replace the δmax = maxj δj with an average δ̄ = 1
n

∑
j δj . However,

the requirement that δmax be small may be achieved by the good workers increasing its weight
on itself. Note that Byzantine workers cannot alter good workers local behavior.

• Theorem 3.3 does not tell us what happens if the percentage of Byzantine workers δ is
relatively larger than spectral gap (γ), but it does not necessarily mean that ClippedGossip

B.6 Other related works and discussions 139

𝑥𝑖
𝑡+ ൗ1 2

𝑥𝑗
𝑡+ ൗ1 2

𝜏𝑖
𝑡+1

𝑥
𝑗′
𝑡+ ൗ1 2

(a) Before aggregation.

𝑧𝑗→𝑖
𝑡+1 = + Clip − , 𝜏𝑖

𝑡+1

𝑧𝑗→𝑖
𝑡+1𝑧𝑗′→𝑖

𝑡+1

(b) Clipping updates.

𝑥𝑖
𝑡+1 = Σ𝑖=1

𝑛 𝑊𝑖𝑗𝑧𝑗→𝑖
𝑡+1

𝑧𝑗→𝑖
𝑡+1𝑧𝑗′→𝑖

𝑡+1
𝑊𝑖𝑗

𝑊𝑖𝑗′ 𝑥𝑖
𝑡+1

(c) Gossip averaging.

Fig. B.11 Diagram of ClippedGossip at time t on worker i. Let purple node be the model of
worker i and green nodes be models of worker i’s regular neighbors and red nodes be models
of worker i’s Byzantine neighbors. The figure (a), (b), and (c) demonstrate the 3 stages of
ClippedGossip. First, in the left figure (a) worker i collects models {xt+1/2

j : j ∈ Ni} from its
neighbors. Then in the middle figure (b) worker i clips neighbor models to ensure the clipped
models are no farther than τ t+1

i from node i. Nodes outside the circle (e.g. x
t+1/2
j) clipped to

the circle (e.g. zt+1
j→i) while nodes inside the circle (e.g. xt+1

j′) remain the same after clipping
(e.g. zt+1

j′→i). In the right figure (c) worker i update its model to xt+1
i using gossip averaging

over clipped models.

diverges. Instead, it means reaching global consensus is not possible as Byzantine workers
effectively block the information bottleneck. We conjecture that within each connected good
component not blocked by the byzantine workers, the good workers still reach component-level
consensus by applying the analysis of Theorem 3.3 to only this component. We leave such a
component-wise analysis for future work.

Appendix C

Secure Byzantine-Robust Machine
Learning

C.1 Proofs

Theorem 4.1 (Privacy for S1). Let z =
∑n

i=1 pixi where {pi}ni=1 is the output of byzantine
oracle or a vector of 1s (non-private). Let BVij = ⟨aij , bij , cij⟩ and BV pi = ⟨ap

i , b
p
i , c

p
i ⟩ be the

Beaver’s triple used in the multiplications. Let ⟨·⟩(1) be the share of the secret-shared values ⟨·⟩
on S1. Then for all workers i

P(xi = xi | {⟨xi⟩(1), ⟨pi⟩(1)}ni=1, {BV
(1)
i,j ,xi − xj − aij ,xi − xj − bij}i<j ,

{⟨∥xi − xj∥2⟩(1)}i<j , {BV p
(1)
i , pi − ap

i , pi − bpi }
n
i=1, z) = P(xi = xi|z)

Note that the conditioned values are what S1 observes throughout the algorithm. {BV
(1)
ij ,xi

− xj − aij ,xi − xj − bij}i<j and {BV p
(1)
i , pi − ap

i , pi − bpi }ni=1 are intermediate values during
shared values multiplication.

Proof. First, we use the independence of Beaver’s triple to simplify the conditioned term.
• The Beaver’s triples are data-independent. Since ⟨ap

i ⟩(2) and ⟨bpi ⟩(2) only exist in {pi −
ap
i , pi−b

p
i }i and they are independent of all other variables, we can remove {pi−ap

i , pi−b
p
i }i

from conditioned terms.
• For the same reason {BV p

(1)
i }ni=1 are independent of all other variables and can be

removed.
• The secret shares of aggregation weights ⟨pi⟩(1) := (pi + ηi)/2 and ⟨pi⟩(2) := (pi − ηi)/2

where ηi is random noise. Then {⟨pi⟩(1)}i are independent of all other variables. Thus it
can be removed.

142 Secure Byzantine-Robust Machine Learning

Now the left hand side (LHS) can be simplified as

LHS =P(xi = xi|{⟨xi⟩(1)}ni=1,

{BV
(1)
i,j ,xi − xj − aij ,xi − xj − bij ,

⟨∥xi − xj∥2⟩(1)}i<j , z)

(C.1)

There are other independence properties:
• The secret shares of the input ⟨xi⟩ can be seen as generated by random noise ξi. Thus
⟨xi⟩(1) := (ξi+xi)/2 and ⟨xi⟩(2) := (−ξi+xi)/2 are independent of others like xi. Besides,
for all j ̸= i, ⟨xi⟩(·) and ⟨xj⟩(·) are independent.

• Beaver’s triple {BV
(1)
i,j }i<j and {BV

(2)
i,j }i<j are clearly independent. Since they are

generated before the existence of data, they are always independent of {x(·)
j }j .

Next, according to Beaver’s multiplication Algorithm 8,

⟨∥xi − xj∥2⟩(1) = c
(1)
ij + (xi − xj − aij)b

(1)
ij + (xi − xj − bij)a

(1)
ij

we can remove this term from condition:

LHS = P(xi = xi|{⟨xi⟩(1)}ni=1, z,

{BV
(1)
i,j ,xi − xj − aij ,xi − xj − bij}i<j)

(C.2)

By the independence between ⟨xi⟩(·) and BV
(·)
ij , we can further simplify the conditioned term

LHS = P(xi = xi|{⟨xi⟩(1)}ni=1, z,

{BV
(1)
i,j , ⟨xi − xj − aij⟩(2), ⟨xi − xj − bij⟩(2)}i<j)

(C.3)

Since BV
(1)
ij and BV

(2)
ij are always independent of all other variables, we know that

LHS = P(xi = xi|{⟨xi⟩(1)}ni=1, z) (C.4)

For worker i, ∀j ̸= i, ⟨xi⟩(·) and ⟨xj⟩(1) are independent

LHS = P(xi = xi|z).

Theorem 4.2 (Privacy for S2). Let {pi}ni=1 is the output of byzantine oracle or a vector of 1s
(non-private). Let BVij = ⟨aij , bij , cij⟩ and BV pi = ⟨ap

i , b
p
i , c

p
i ⟩ be the Beaver’s triple used in

the multiplications. Let ⟨·⟩(2) be the share of the secret-shared values ⟨·⟩ on S2. Then for all

C.1 Proofs 143

workers i

P(xi = xi | {⟨xi⟩(2), ⟨pi⟩(2), pi}ni=1, {BV
(2)
i,j ,xi − xj − aij ,xi − xj − bij}i<j ,

{⟨∥xi − xj∥2⟩(2), ∥xi − xj∥2}i<j , {BV p
(2)
i , pi − ap

i , pi − bpi }
n
i=1)

= P(xi = xi | {∥xi − xj∥2}i<j)

(4.1)

Note that the conditioned values are what S2 observed throughout the algorithm. {BV
(2)
ij ,xi −

xj − aij ,xi − xj − bij}i<j and {BV p
(2)
i , pi − ap

i , pi − bpi }ni=1 are intermediate values during
shared values multiplication.

Proof. Similar to the proof of Theorem 4.1, we can first conclude
• {pi − ap

i , pi − bpi }i and {BV p
(2)
i }ni=1 could be dropped because these they are data inde-

pendent and no other terms depend on them.
• {⟨pi⟩(2)}ni=1 is independent of the others so it can be dropped.
• {pi}ni=1 can be inferred from {∥xi − xj∥2}ij so it can also be dropped.
• By the definition of {⟨∥xi−xj∥2⟩(2)}ij , it can be represented by {xi}(2) and {BV

(2)
ij ,xi−

xj − aij ,xi − xj − bij}i<j .
Now the left hand side (LHS) can be simplified as

LHS =P(xi = xi|{⟨xi⟩(2)}ni=1,

{BV
(2)
ij ,xi − xj − aij ,xi − xj − bij ,

∥xi − xj∥2}i<j)

(C.5)

Because xi is independent of {⟨xi⟩(2)}ni=1 as well as data independent terms like {BV
(2)
ij ,a

(1)
ij , b

(1)
ij }i<j ,

we have
LHS = P(xi = xi

∣∣ ∥xi − xj∥2}i<j)

Theorem 4.3 (from DP to LDP). Suppose that the noise νt in (4.2) is sufficient to ensure
that the set of model parameters {wt}t∈[T] satisfy (ϵ, δ)-DP for ϵ ≥ 1. Then, running (4.2) with
using Alg. 4 to compute (xt + ηt) by securely aggregating {x1,t + nηt,x2,t, . . . ,xn,t} satisfies
(ϵ, δ)-LDP.

Proof. Suppose that worker i ∈ [n] computes it gradient xi based on data di ∈ D. For the sake
of simplicity, let us assume that the aggregate model satisfies ϵ-DP. The proof is identical for
the more relaxed notion of (ϵ, δ)-DP fo rϵ ≥ 1. This implies that for any j ∈ [n] and dj , d̃j ∈ D,

Pr
[
1
n(
∑n

i=1 xi(di)) + ν = y
]

Pr
[
1
n(
∑

i ̸=j xi(di)) +
1
nxj(d̃j) + ν = y

] ≤ ϵ ,∀y . (C.6)

144 Secure Byzantine-Robust Machine Learning

Now, we examine the communication received by each server and measure how much information
is revealed about any given worker j ∈ [n]. The values stored and seen are:

• S1: The secret share (x1+nν)(1), {xi(di)
(1)}ni=2 and the sum of other shares (x1+nν)(2)+∑n

i=2 xi(di)
(2) = ((

∑n
i=1 xi(di)) + nν)(2).

• S2: The secret share (x1 + nν)(2), {xi(di)
(2)}ni=2.

• Worker i: z = (
∑n

i=1 xi(di)) + nν.
The equality above is because our secret shares are linear. Now, the values seen by any worker
satisfy ϵ-LDP directly by (C.6). For the server, note that by the definition of our secret shares,
we have for any worker j,

xj(dj)
(1) is independent of xj(dj)

⇒Pr[xj(dj)
(1) = y] = Pr[xj(dj)

(1) = ỹ] ,∀y, ỹ

⇒Pr[xj(dj)
(1) = y] = Pr[xj(d̃j)

(1) = y] ,∀dj , d̃j ∈ D .

A similar statement holds for the second share. This proves that the values computed/seen by
the workers or servers satisfy ϵ-LDP.

C.2 Notes on security

C.2.1 Beaver’s MPC Protocol

Algorithm 8 Beaver [1991]’s MPC Protocol

input: ⟨x⟩; ⟨y⟩; Beaver’s triple (⟨a⟩, ⟨b⟩, ⟨c⟩) s.t. c = ab
output: ⟨z⟩ s.t. z = xy
for party i do

locally compute xi − ai and yi − bi and then broadcast them to all parties
collect all shares and reveal x− a = Σi(xi − ai), y − b = Σi(yi − bi)
compute zi := ci + (x− a)bi + (y − b)ai

The first party 1 updates z1 := z1 + (x− a)(y − b)

In this section, we briefly introduce Beaver [1991]’s classic implementations of addition
⟨x+ y⟩ and multiplication ⟨xy⟩ given additive secret-shared values ⟨x⟩ and ⟨y⟩ where each party
i holding xi and yi. The algorithm for multiplication is given in Algorithm 8.

Addition. The secret-shared values form of sum, ⟨x+ y⟩, is obtained by simply each party i

locally compute xi + yi.
Multiplication. Assume we already have three secret-shared values called a triple, ⟨a⟩, ⟨b⟩,

and ⟨c⟩ such that c = ab.

C.2 Notes on security 145

Then note that if each party broadcasts xi − ai and yi − bi, then each party i can compute
x− a and y − b (so these values are publicly known), and hence compute

zi := ci + (x− a)bi + (y − b)ai

Additionally, one party (chosen arbitrarily) adds on the public value (x− a)(y − b) to their
share so that summing all the shares up, the parties get

Σizi = c+ (x− a)b+ (y − b)a+ (x− a)(y − b) = xy

and so they have a secret sharing ⟨z⟩ of xy.

The generation of Beaver’s triples. There are many different implementations of the
offline phase of the MPC multiplication. For example, semi-homomorphic encryption based
implementations [Keller et al., 2018] or oblivious transfer-based implementations [Keller et al.,
2016]. Since their security and performance have been demonstrated, we may assume the
Beaver’s triples are ready for use at the initial step of our protocol.

C.2.2 Notes on obtaining a secret share

Suppose that we want to secret share a bounded real vector x ∈ (−B,B]d for some B ≥ 0.
Then, we sample a random vector ξ uniformly from (−B,B]d. This is easily done by sampling
each coordinate independently from (−B,B]. Then the secret shares become (ξ,x− ξ). Since ξ

is drawn from a uniform distribution from [−B,B]d, the distribution of x− ξ conditioned on x

is still uniform over (−B,B]d and (importantly) independent of x. All arithmetic operations
are then carried out modulo [−B,B] i.e. B + 1 ≡ −B + 1 and −B − 1 ≡ B − 1. This simple
scheme ensures information theoretic input-privacy for continuous vectors.

The scheme described above requires access to true randomness i.e. the ability to sample
uniformly from (−B,B]. We make this assumption to simplify the proofs and the presentation.
We note that differential privacy techniques such as [Abadi et al., 2016] also assume access
to a similar source of true randomness. In practice, however, this would be replaced with a
pseudo-random-generator (PRG) [Blum and Micali, 1984; Yao, 1982].

C.2.3 Computational indistinguishability

Let {Xn}, {Yn} be sequences of distributions indexed by a security parameter n (like the length
of the input). {Xn} and {Yn} are computationally indistinguishable if for every polynomial-time
A and polynomially-bounded ε, and sufficiently large n∣∣Pr[A(Xn) = 1]− Pr[A(Yn) = 1]

∣∣ ≤ ε(n) (C.7)

146 Secure Byzantine-Robust Machine Learning

If a pseudorandom generator, instead of true randomness, is used in § C.2.2, then the shares are
indistinguishable from a uniform distribution over a field of same length. Thus in Theorem 4.1
and Theorem 4.2, the secret shares can be replaced by an independent random variable of
uniform distribution with negligible change in probability.

C.2.4 Notes on the security of S2

Theorem 4.2 proves that S2 does not learn anything besides the pairwise distances between
the various models. While this does leak some information about the models, S2 cannot use
this information to reconstruct any xi. This is because the pair-wise distances are invariant to
translations, rotations, and shuffling of the coordinates of {xi}.

This remains true even if S2 additionally learns the global model too.

C.3 Data ownership diagram 147

C.3 Data ownership diagram

Worker i S1 S2

W
or

ke
rS

S
R

ob
us

tW
ei

gh
tS

el
ec

ti
on

A
gg

A
nd

U
pd

at
e

P
ul

l

xi = x
(1)
i + x

(2)
i

x
(1)
i Collect {⟨xi⟩(1)}i

x
(2)
i Collect {⟨xi⟩(2)}i

Get Beaver’s triples: {⟨aij , bij , cij⟩(1)}i<j

{⟨xi − xj − aij⟩(1), ⟨xi − xj − bij⟩(1)}i<j

{⟨xi − xj − aij⟩(2), ⟨xi − xj − bij⟩(2)}i<j

Get Beaver’s triples: {⟨aij , bij , cij⟩(2)}i<j

Compute {⟨∥xi − xj∥22⟩(1)}i<j Compute {⟨∥xi − xj∥22⟩(2)}i<j

{⟨∥xi − xj∥22⟩(1)}i<j

Compute {∥xi − xj∥22}i<j

Call p =Multi-KRUM({∥xi − xj∥22}i<j)

pi = p
(1)
i + p

(2)
i{⟨pi⟩(1)}ni=1

Get Beaver’s triples: {⟨ap
i , b

p
i , c

p
i ⟩(1)}ni=1 Get Beaver’s triples: {⟨ap

i , b
p
i , c

p
i ⟩(2)}ni=1

{⟨pi − ap
i ⟩(1), ⟨xi − bpi ⟩(1)}ni=1

{⟨pi − ap
i ⟩(2), ⟨xi − bpi ⟩(2)}ni=1

Compute ⟨Σn
i=1pixi⟩(1) Compute ⟨Σn

i=1pixi⟩(2)
⟨Σn

i=1pixi⟩(2)
Compute z = Σn

i=1pixi

z

Fig. C.1 Overview of data ownership and Algorithm 4. The underlying Byzantine-robust oracle
is Multi-Krum.

In Figure C.1, we show a diagram of data ownership to demonstrate of the data transmitted
among workers and servers. Note that the Beaver’s triples are already local to each server so
that no extra communication is needed.

148 Secure Byzantine-Robust Machine Learning

C.4 Example: Two-server protocol with ByzantineSGD oracle

We can replace MultiKrum with ByzantineSGD in [Alistarh et al., 2018]. To fit into our protocol,
we make some minor modifications but still guarantee that output is same. The core part of
[Alistarh et al., 2018] is listed in Algorithm 9.

Algorithm 9 ByzantineSGD [Alistarh et al., 2018]

input: I is the set of good workers, {Ai}i∈[m], {∥Bi−Bj∥}i<j {∥∇k,i−∇k,j∥}i<j (i, j ∈ [m]),
thresholds TA,TB > 0
output: Subset good workers S
Amed := median{A1, . . . , Am};
Bmed ← Bi where i ∈ [m] is any machine s.t. |{j ∈ [m] : ∥Bj −Bi∥ ≤ TB}| > m/2;
∇med ← ∇k,i where i ∈ [m] is any machine s.t. |{j ∈ [m] : ∥∇k,j −∇k,i∥ ≤ 2ν}| > m/2;
S ← {i ∈ I : |Ai −Amed| ≤ TA ∧ ∥Bi −Bmed∥ ≤ TB ∧ ∥∇k,j −∇k,i∥ ≤ 4ν};

The main algorithm can be summarized in Algorithm 10, the red lines highlights the changes.
Different from Multi-Krum [Blanchard et al., 2017], Alistarh et al. [2018] uses states in their
algorithm. As a result, the servers need to keep track of such states.

C.4 Example: Two-server protocol with ByzantineSGD oracle 149

Algorithm 10 Two-Server Secure ByzantineSGD
Setup:

• n workers, at most α percent of which are Byzantine.
• Two non-colluding servers S1 and S2
• ByzantineSGD Oracle: returns an indices set S.

– With thresholds TA and TB

– Oracle state Aold
i , ⟨Bold

i ⟩ for each worker i
Workers:

1. (WorkerSecretSharing):
(a) randomly split private xi into additive secret shares ⟨xi⟩ = {x(1)

i ,x
(2)
i } (such that

xi = x
(1)
i + x

(2)
i)

(b) sends x
(1)
i to S1 and x

(2)
i to S2

Servers:
1. ∀ i, S1 collects gradient x

(1)
i and S2 collects x

(2)
i .

(a) Use Beaver’s triple to compute Ai := ⟨⟨xi⟩, ⟨w −w0⟩⟩inner +Aold
i

(b) ⟨Bi⟩ := ⟨xi⟩+ ⟨Bold
i ⟩

2. (RobustSubsetSelection):
(a) For each pair (i, j) of gradients computes their distance (i < j):

• On S1 and S2, compute ⟨Bi −Bj⟩ = ⟨Bi⟩ − ⟨Bj⟩ locally
• Use precomputed Beaver’s triple and Algorithm 8 to compute the distance
∥Bi −Bj∥2

• On S1 and S2, compute ⟨xi − xj⟩ = ⟨xi⟩ − ⟨xj⟩ locally
• Use precomputed Beaver’s triple and Algorithm 8 to compute the distance
∥xi − xj∥22

(b) S2 perform Byzantine SGD S=ByzantineSGD({Ai}i, {∥Bi − Bj∥}i<j , {∥xi −
xj∥}i<j ,TA,TB); if |S| < 2, exit; Convert S to a weight vector p of length n

(c) S2 secret-shares ⟨p⟩ with S1
3. (AggregationAndUpdate):

(a) On S1 and S2, use MPC multiplication to compute ⟨
∑n

i=1 pixi⟩ locally
(b) S2 sends its share of ⟨

∑n
i=1 pixi⟩(2) to S1

(c) S1 reveals z =
∑n

i=1 pixi to all workers.
(d) S2 updates Aold

i ← Ai, ⟨Bold
i ⟩ ← ⟨Bi⟩

Workers:
1. (WorkerPullModel): Collect z and update model w ← w + z locally

150 Secure Byzantine-Robust Machine Learning

C.5 Additional experiments

We benchmark the performance of our two-server protocol with one-server protocol on the
google kubernetes engine. We create a cluster of 8 nodes (machine-type=e2-standard-2) where
2 servers are deployed on different nodes and the workers are deployed evenly onto the rest 6
nodes. We run the experiments with 5, 10, 20, 50 workers and a large model of 25.6 million
parameters (similar to ResNet-56) and a small model of 1.2 million parameters. We only record
the time spent on communication and aggregation (krum). We benchmark each experiment for
three times and take their average. The results are shown in Figure C.2.

Scaling with dimensions. In Figure C.2a, we compute the ratio of time spent on large
model and small model. We can see that the ratio of two-server model is very close to the
ideal ratio which suggests it scales linearly with dimensions. This is expected because krum
scales linearly with dimension. For aggregation rules based on high-dimensional robust mean
estimation, we can remove the dependence on d. We leave it as a future work to incorporate
more efficient robust aggregation functions.

Scaling with number of workers. In Figure C.2b, we can see that the time spent on both
one-server and two-server model grow with O(n2). However, we notated that this complexity
comes from the aggregation rule we use, which is krum, not from our core protocol. For other
aggregation rules like ByzantineSGD Alistarh et al. [2018], the complexity of aggregation rule is
O(n) and we can observe better scaling effects. We leave it as a future work to incorporate and
benchmark more efficient robust aggregation rules.

Setups. Note that in our experiments, the worker-to-server communication and server-
to-server communication has same bandwidth of 1Gb/s. In the realistic application, the link
between servers can be infiniband and the bandwidth between worker and server are typically
smaller. Thus, this protocol will be more efficient than we have observed here.

C.5 Additional experiments 151

5 10 20 50
#Nodes

0

10

20

30

40

50

Ti
m

e
Ra

tio
 (2

5.
6M

 /
1.

2M
) Ideal ratio

#Server
1
2

(a) Scaling with dimension

5 10 20 50
#Nodes

2

5

50

250

1500
Ti

m
e

(s
)

#Server
1
2

(b) Scaling with #workers (large model)

Fig. C.2 Scaling two-server model and one-server model to 5, 10, 20, 50 nodes.

Appendix D

RelaySum for Decentralized Deep
Learning on Heterogeneous Data

D.1 Convergence Analysis of RelaySGD

The structure of this section is as follows: § D.1.1 describes the notations used in the proof;
§ D.1.2 introduces the properties of mixing matrix W and useful inequalities and lemmas;
§ D.1.3 elaborates the results of Theorem 5.1 for non-convex, convex, and strongly convex
objectives, all of the technical details are deferred to § D.1.4, § D.1.5 and § D.1.6.

D.1.1 Notation

We use upper case, bold letters for matrices and lower case, bold letters for vectors. By default,let
∥ · ∥ and ∥ · ∥F be the spectral norm and Frobenius norm for matrices and 2-norm ∥ · ∥2 be the
Euclidean norm for vectors.

Let τij be the delay between node i and node j and let τmax = maxij τij . Let

Z(t) = [x
(t)
1 , . . . ,x(t)

n]⊤ ∈ Rn×d

be the state at time t and let

∇F (t) = [∇F1(x
(t)
1 ; ξ

(t)
1), . . . ,∇Fn(x

(t)
n ; ξ(t)n)]⊤ ∈ Rn×d

154 RelaySum for Decentralized Deep Learning on Heterogeneous Data

be the worker gradients at time t. Denote Y (t) and G(t) as the state (models) and gradients
respectively, of all nodes, from time t− τmax to t.

Y (t) =


Z(t)

Zt−1

...
Zt−τmax

 ∈ Rn(τmax+1)×d, G(t) =


∇F (t)

∇F t−1

...
∇F t−τmax

 ∈ Rn(τmax+1)×d.

The mixing matrix W can be alternatively defined as follows

Definition D.1 (Mixing matrix W). Define W , W̃ ∈ Rn(τmax+1)×n(τmax+1) such that RelaySGD
can be reformulated as

Y (t+1) =


W0 W1 . . . Wτmax−1 Wτmax

I 0 . . . 0 0
...

.
...

0 I 0


︸ ︷︷ ︸

W

Y (t) − γ


W0 W1 . . . Wτmax−1 Wτmax

0 0 . . . 0 0
...

.
...

0 0 0


︸ ︷︷ ︸

W̃

G(t)

where
∑n

i=1Wi =
1
n1n1

⊤
n .

D.1.2 Technical Preliminaries

Properties of W .

In this part, we show that W enjoys similar properties as Perron-Frobenius Theorem in
Theorem D.1 and its left dominant eigenvector π has specific structure in Lemma D.1. Then
we use the established tools to prove the key Lemma 5.1. Finally, we define constants C and C1

in Definition D.3 which are used to simplify the convergence results in § D.1.3.

Definition D.2 (Spectral radius.). Let λ1, . . . , λn be the eigenvalues of a matrix A ∈ Cn×n.
Then its spectral radius ρ(A) is defined as:

ρ(A) = max{|λ1|, . . . , |λn|}.

Lemma D.1. The W in Definition D.1 satisfies
1. The spectral radius ρ(W) = 1 and 1 is an eigenvalue of W and 1n(τmax+1) ∈ Rn(τmax+1) is

its right eigenvector.
2. The left eigenvector π ∈ Rn(τmax+1) of eigenvalue 1 is nonnegative and [π]i = π0 > 0,∀ i ∈

[n] and π⊤1n(τmax+1) = 1.

D.1 Convergence Analysis of RelaySGD 155

Proof. Since W is a row stochastic matrix, the Gershgorin Circle Theorem asserts the spectral
radius

ρ(W) = |λ1(W)| ≤ 1.

It is clear that 1 is an eigenvalue of W and 1n(τmax+1) is its right eigenvector, we have ρ(W) = 1.
Let π ∈ Rn(τmax+1) be the left eigenvector corresponding to 1 and denote it as

π =


π0

π1

...
πτmax

 ∈ Rn(τmax+1)

where πi ∈ Rn, ∀ i = 0, 1, . . . , τmax. Since π = W⊤π, we have


π0

π1
...

πτmax

 = π = W⊤π =



W⊤
0 π0 + π1

W⊤
1 π0 + π2

...
W⊤

τmax−1π0 + πτmax

W⊤
τmax

π0


which holds true in each block. Then summing up all blocks yields

τmax∑
i=0

πi =

(
τmax∑
i=0

W⊤
i

)
π0 +

τmax∑
i=1

πi =
1

n
1n1

⊤
nπ0 +

τmax∑
i=1

πi

which means π0 =
1
n1n1

⊤
nπ0 and therefore π0 = π01n is a vector of same value.

Other coordinate blocks of π can be derived as

πi =

(
τmax∑
k=i

W⊤
k

)
π0 ∀ i = 1, . . . , τmax.

Since Wi are nonnegative matrices, we can scale π such that π0 > 0 and 1⊤π = 1. Therefore π

is a nonnegative vector.

Lemma D.2. If λ ∈ C is an eigenvalue of W and |λ| = ρ(W) = 1, then λ = 1 and its
geometric multiplicity is 1.

Proof. Let v ∈ Cn(τmax+1) be a right eigenvector corresponding to eigenvalue λ ∈ C which
|λ| = 1.

156 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Denote v as

v =


v0

v1
...

vτmax

 ∈ Cn(τmax+1).

where vi ∈ Cn, ∀ i = 0, . . . , τmax. Then Wv = λv implies

Wv =



∑τmax
i=0 Wivi

v0
...

vτmax−2

vτmax−1


= λv =


λv0

λv1
...

λvτmax

 .

The last τ equations ensures vi = λ−iv0 and thus the first equality becomes(
τmax∑
i=0

Wiλ
−i

)
v0 = λv0

Denote v0 = [x1, x2, . . . , xn]
⊤ ∈ Cn, then ∀ i = 1, . . . , n

∑n
j=1

1
nλ

−τijxj = λxi. (D.1)

Pick i such that |λxi| = maxj |λxj |, then

|λxi| = |
∑n

j=1
1
nλ

−τijxj | ≤ 1
n

∑n
j=1 |λ−τijxj | = 1

n

∑n
j=1 |λ−τij ||xj | = 1

n

∑n
j=1 |xj | ≤ |xi|

where we use the triangular inequality |a+ b| ≤ |a|+ |b| and |ab| = |a||b| for all a, b ∈ C.
Note that as |λxi| = |λ||xi| = |xi|, the triangular inequality is in fact an equality which

means λ−τijxj could be written as

λ−τijxj = aijξ ∀ j ∈ [n].

where aij ≥ 0 and ξ ∈ C. Here ξ ̸= 0, otherwise v = 0 which contradicts to v is an eigenvector.
Then (D.1) becomes

1
n

∑n
j=1 aijξ = λaiiξ.

D.1 Convergence Analysis of RelaySGD 157

which implies | 1n
∑n

j=1 aij | = |aii|. As |λxi| = maxj |λxj |, we know aii ≥ aij for all j, thus

ai1 = . . . = ain = a ≥ 0,

moreover, a > 0 as a = 0 again leads to v = 0. Then (D.1) becomes

λaξ = λxi =
1
n

∑n
j=1 λ

−τijxj =
1
n

∑n
j=1 aξ = aξ

which shows λ = 1 as a > 0 and ξ ̸= 0.
Therefore, v0 = a1n ∈ Rn and v = a1n(τmax+1) ∈ Rn(τmax+1). It mean the eigenspace of 1 is

one-dimensional and thus its geometric multiplicity is 1.

Lemma D.3. The algebraic multiplicity of eigenvalue 1 of W is 1.

Proof. Proof by contradiction. Let P ∈ Rn(τmax+1)×n(τmax+1) be the invertible matrix which
transform W to its Jordan normal form J by

P−1WP = J =


J1

. . .

Jp


where J1 is the block for eigenvalue 1. If we assume the algebraic multiplicity of 1 greater equal
than 2, and use the Lemma D.2 that its geometric multiplicity is 1, then J1 should look like

J1 =


1 1

1
. . .
. . . 1

1


which is a square matrix of at least 2 columns. Denote the first two columns of P as p1 and p2.
We can see that p1 = 1n(τmax+1). Then inspecting P−1WP = J for p2 yields

Wp2 = p1 + p2 = 1n(τmax+1) + p2.

Multiply both sides by π⊤ gives

π⊤Wp2 =π⊤1n(τmax+1) + π⊤p2

π⊤p2 =π⊤1n(τmax+1) + π⊤p2

0 =π⊤1n(τmax+1)

which contradicts Lemma D.1 that π⊤1n(τmax+1) = 1. Thus the algebraic multiplicity of 1 is
1.

158 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Theorem D.1 (Perron-Frobenius Theorem for W). The mixing W of RelaySGD satisfies
1. (Positivity) ρ(W) = 1 is an eigenvalue of W .
2. (Simplicity) The algebraic multiplicity of 1 is 1.
3. (Dominance) ρ(W) = |λ1(W)| > |λ2(W)| ≥ . . . ≥ |λn(τmax+1)(W)|.
4. (Nonnegativity) The W has a nonnegative left eigenvector π and right eigenvector

1n(τmax+1).

Proof. Statements 1 and 4 follow from Lemma D.1. Statement 2 follows from Lemma D.3.
Statement 3 follows from Lemma D.2 and Lemma D.3.

Lemma D.4 (Gelfand’s formula). For any matrix norm ∥ · ∥, we have

ρ(A) = lim
k→∞

∥Ak∥
1
k .

We characterize the convergence rate of the consensus distance in the following key lemma:

Lemma’ 5.1 (Key lemma). Given W and π as before. There exists an integer m = m(W) > 0

such that for any X ∈ Rn(τmax+1)×d we have

∥WmX − 1π⊤X∥2 ≤ (1− p)2m∥X − 1π⊤X∥2,

where p = 1
2(1− |λ2(W)|) is a constant.

All the following optimization convergence results will only depend on the effective spectral
gap ρ := p

m of W . We empirically observe that ρ = Θ(1/n) for a variety of network topologies,
as shown in Figure D.1.

Proof of key lemma 5.1. First, let {λi} and {vi} be the eigenvalues and right eigenvectors of
W where λ1 = 1 and v1 = 1n(τmax+1), then

(W − 1π⊤)v1 =(W − 1π⊤)1 = 0

(W − 1π⊤)vi =Wvi − 1π⊤vi = Wvi = λivi ∀ i > 1

where π⊤vi = 0 because

(1− λi)π
⊤vi = π⊤vi − λiπ

⊤vi = (π⊤W)vi − π⊤(Wvi) = 0.

The spectrum of W − 1π⊤ are
{0, λ2, . . . , λn(τmax+1)},

and thus the spectral radius of W − 1π⊤ is |λ2| < 1. Since

Wm − 1π⊤ = (W − 1π⊤)m,

D.1 Convergence Analysis of RelaySGD 159

5 10 15 20 25 30
Number of workers

0

50

100

150

200

250

300

Sm
al

le
st

1 ρ
=

m p
th

at
sa

tis
fie

s
th

e
L

em
m

a tree
chain
star

Fig. D.1 Optimal ratios for ρ = p/m for Lemma Lemma 5.1 computed empirically for three
common types of graph topologies.

then Wm − 1π⊤ has a spectral radius of |λ2|m < 1.
Then, we apply Gelfand’s formula (Lemma D.4) with A = W − 1π⊤ and can conclude that

for a given ϵ ∈ (0, 1− |λ2|), there exists a large enough integer m > 0 such that

∥Wm − 1π⊤∥ = ∥(W − 1π⊤)m∥ ≤ (ρ(W − 1π⊤) + ϵ)m = (|λ2|+ ϵ)m < 1.

Thus

∥WmX − 1π⊤X∥2 ≤ ∥Wm − 1π⊤∥2∥X − 1π⊤X∥2 ≤ (1− p)2m∥X − 1π⊤X∥2

where p ∈ (0, 1− |λ2|).

Definition D.3. Given W and m, and Ĩ ∈ Rn(τmax+1)×n(τmax+1) is a matrix which satisfies

[Ĩ]ij =

1 i = j ≤ n

0 Otherwise.

We define constants C2
1 := maxi=0,...,m−1 ∥W iĨ∥2 and C = C(W) such that

C2 :=
C2
1

∥W∞Ĩ∥2
.

where W∞ := 1π⊤.

In addition, the ∥1π⊤Ĩ∥2 can be computed as follows.

160 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Lemma D.5. Given Ĩ in Definition D.3, we have the following estimate

∥1π⊤Ĩ∥2 = n2(τmax + 1)π2
0 ≤ n3π2

0.

Proof. For rank r matrix ∥A∥2 ≤ ∥A∥2F ≤ r∥A∥2. Since 1π⊤Ĩ is a rank 1 matrix, we know that

∥1π⊤Ĩ∥2 = ∥1π⊤Ĩ∥2F .

As the first n entries of π are π0, we can compute that

∥1π⊤Ĩ∥2F = n2(τmax + 1)π2
0.

Useful inequalities and lemmas

For convex objective, the noise in Assumption B can be defined only at the minimizer x⋆ which
leads to Assumption D. This assumption is used in the proof of Proposition D.2.

Assumption D (Bounded noise at the optimum). Let x⋆ = argmin f(x) and define

ζ2i := ∥∇fi(x⋆)∥2, ζ̄2 := 1
n

∑n
i=1 ζ

2
i . (D.2)

Further, define

σ2
i := Eξi ∥∇Fi(x

⋆, ξi)−∇fi(x⋆)∥2

and similarly as above, σ̄2 := 1
n

∑n
i=1 σ

2
i . We assume that σ̄2 and ζ̄2 are bounded.

Lemma D.6 (Cauchy-Schwartz inequality). For arbitrary set of n vectors {ai}ni=1, ai ∈ Rd

∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n
n∑

i=1

∥ai∥2. (D.3)

Lemma D.7. If function g(x) is L-smooth, then

∥∇g(x)−∇g(y)∥2 ≤ 2L(g(x)− g(y)− ⟨x− y,∇g(y)⟩), ∀ x,y ∈ Rd. (D.4)

Lemma D.8. Let A be a matrix with {ai}ni=1 as its columns and ā = 1
n

∑n
i=1 ai, Ā = ā1⊤

then

∥A− Ā∥2F =
n∑

i=1

∥ai − ā∥2 ≤
n∑

i=1

∥ai∥2 = ∥A∥2F . (D.5)

D.1 Convergence Analysis of RelaySGD 161

Lemma D.9. Let A,B be two matrices

∥AB∥2F ≤ ∥A∥2F ∥B∥2. (D.6)

D.1.3 Results of Theorem 5.1

In this subsection, we summarize the precise results of Theorem 5.1 for convex, strongly convex
and non-convex cases. The complete proofs for each case are then given in the following § D.1.4,
§ D.1.5 and § D.1.6.

Theorem’ 5.1. Given mixing matrix W and W̃ , constant m, p defined in Lemma 5.1, C, C1

defined in Definition D.3. Under Assumption A and B, then for any target accuracy ϵ > 0,
Non-convex: if the objective is non-convex, then 1

T+1

∑T
t=0 ∥∇f(x̄(t))∥2 ≤ ϵ after

O
(

σ̄2

nϵ2
+

Cmσ̄
√
pϵ3/2

+
C1m

pϵ

)
Lr0

iterations, where r0 = f(x(0))− f⋆.
Convex: if the objective is convex and x⋆ is the minimizer, then 1

T+1

∑T
t=0

(
f(x̄(t))− f(x⋆)

)
≤

ϵ after

O

(
σ̄2

nϵ2
+

Cm
√
Lσ̄

√
pϵ3/2

+
Lm
√
nC

pϵ

)
r0

iterations, where r0 = ∥x0 − x⋆∥2.
Strongly-convex: if the objective is µ strongly convex and x⋆ is the minimizer, then

1
WT

∑T
t=0wt(E f(x̄(t))− f⋆) + µE ∥x̄(T+1) − x⋆∥2 ≤ ϵ after

Õ
(

σ̄2

µnϵ2
+

Lm2C2σ̄2

µnp2ϵ
+

s

a
log

bsr0
ϵ

)
iterations, where r0 = ∥x0 − x⋆∥2, wt = (1 − µγnπ0

2)−(t+1) and WT =
∑T

t=0wt and a = µnπ0

2 ,
b = 2

nπ0
, s = aT

lnmax{ ba2T2r0
π0σ̄

2 ,2}
.

In all three cases, the convergence rate is independent of the heterogeneity ζ2.

D.1.4 Proof of Theorem 5.1 in the convex case

Let x̄(t) :=
(
π⊤Y (t)

)⊤ and Ȳ (t) := 1π⊤Y (t). Let x⋆ be the minimizer of f and define the
following iterates

• rt := ∥x̄(t) − x⋆∥2,
• et := f(x̄(t))− f(x⋆),
• Ξt :=

1
n∥Ȳ

(t) − Y (t)∥2F .

162 RelaySum for Decentralized Deep Learning on Heterogeneous Data

The consensus distance Ξt can be written as follows

Ξt =
1

n

n∑
i=1

τmax∑
τ=0

∥x̄(t) − x
(t−τ)
i ∥2. (D.7)

There is a related term
∑n

i=1

∑n
j=1 ∥x̄(t) − x

(t−τij)
i ∥2 which will be used frequently in the

proof. The next lemma explains their relations.

Lemma D.10. For all t ≥ 0

n∑
i=1

n∑
j=1

∥x̄(t) − x
(t−τij)
i ∥2 ≤ n2Ξt.

where x(0) = x(−1) = . . . = x(−τmax).

Proof. Rewrite the τij as an indicator function

n∑
i=1

n∑
j=1

∥x̄(t) − x
(t−τij)
i ∥2 =

n∑
i=1

n∑
j=1

τmax∑
τ=0

1{τ=τij}∥x̄
(t) − x

(t−τ)
i ∥2.

This term can be relaxed by removing the indicator function

n∑
i=1

n∑
j=1

∥x̄(t) − x
(t−τij)
i ∥2 ≤n

n∑
i=1

τmax∑
τ=0

∥x̄(t) − x
(t−τ)
i ∥2.

Then applying (D.7) for the consensus distance in vector form completes the proof.

The next two propositions upper bound the difference between stochastic gradients and full
gradients.

Proposition D.2. Under Assumption A and B. Then for t ≥ 0,

E
∥∥∥π⊤W̃ (EG(t) −G(t))

∥∥∥2 ≤ 3nπ2
0(L

2Ξt + 2Let + σ̄2).

Proof. Use T0 to denote the left hand side quantity

T0 := E
∥∥∥π⊤W̃ (EG(t) −G(t))

∥∥∥2
= E

∥∥∥∥∥∥π0n
n∑

i=1

n∑
j=1

(∇fj(x
(t−τij)
j)−∇Fj(x

(t−τij)
j ; ξ

(t−τij)
j))

∥∥∥∥∥∥
2

Cauchy-Schwartz (D.3)
≤ π2

0

n

n∑
i=1

E

∥∥∥∥∥∥
n∑

j=1

(∇fj(x
(t−τij)
j)−∇Fj(x

(t−τij)
j ; ξ

(t−τij)
j))

∥∥∥∥∥∥
2

.

D.1 Convergence Analysis of RelaySGD 163

Since the randomness inside the norm are independent, we have

T0 ≤
π2
0

n

n∑
i=1

n∑
j=1

E
∥∥∥∇fj(x(t−τij)

j)−∇Fj(x
(t−τij)
j ; ξ

(t−τij)
j)

∥∥∥2 .
Inside the vector norm, we can add and subtract terms the same terms and apply Cauchy-

Schwartz (D.3)

T0 ≤
3π2

0

n

n∑
i=1

n∑
j=1

E
∥∥∇Fj(x

(t−τij)
j ; ξ

(t−τij)
j)−∇Fj(x̄

(t); ξ
(t−τij)
j) +∇fj(x

(t−τij)
j)−∇fj(x̄(t))

∥∥2
+

3π2
0

n

n∑
i=1

n∑
j=1

E
∥∥∥∇Fj(x̄

(t); ξ
(t−τij)
j)−∇Fj(x

⋆; ξ
(t−τij)
j) +∇fj(x̄(t))−∇fj(x⋆)

∥∥∥2
+

3π2
0

n

n∑
i=1

n∑
j=1

E
∥∥∥∇Fj(x

⋆; ξ
(t−τij)
j))−∇fj(x⋆)

∥∥∥2 .
Use the inequality that for a = EY , E∥Y − a∥2 = E∥Y ∥2 − ∥a∥2 ≤ E∥Y ∥2, then we have

T0 ≤
3π2

0

n

n∑
i=1

n∑
j=1

E
∥∥∇Fj(x

(t−τij)
j ; ξ

(t−τij)
j)−∇Fj(x̄

(t); ξ
(t−τij)
j)

∥∥2
+

3π2
0

n

n∑
i=1

n∑
j=1

E
∥∥∥∇Fj(x̄

(t); ξ
(t−τij)
j)−∇Fj(x

⋆; ξ
(t−τij)
j)

∥∥∥2
+

3π2
0

n

n∑
i=1

n∑
j=1

E
∥∥∥∇Fj(x

⋆; ξ
(t−τij)
j)−∇fj(x⋆)

∥∥∥2
Applying Assumption A, Smoothness (D.4), and Assumption B (or Assumption D) to the three
terms gives

T0 ≤
3L2π2

0

n

n∑
i=1

n∑
j=1

∥∥x(t−τij)
j − x̄(t)

∥∥2 + 6Lnπ2
0(f(x̄

(t))− f(x⋆)) + 3π2
0nσ̄

2

Lemma D.10
≤ 3nπ2

0(L
2Ξt + 2Let + σ̄2).

where in the last line we have used our previous Lemma D.10.

The next proposition is very similar to the Proposition D.2 except that it considers the
matrix form instead of the projection onto π.

Proposition D.3. Under Assumption A and B. Then for t ≥ 0,

E
∥∥∥W̃ (EG(t) −G(t))

∥∥∥2
F
≤ 3(L2Ξt + 2Let + σ̄2).

164 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Proof.

E
∥∥∥W̃ (EG(t) −G(t))

∥∥∥2
F

=
n∑

i=1

E

∥∥∥∥∥∥ 1n
n∑

j=1

(∇F (x
(t−τij)
j ; ξ

(t−τij)
j)−∇fj(x

(t−τij)
j))

∥∥∥∥∥∥
2

≤ 1

n2

n∑
i=1

n∑
j=1

E
∥∥∥∇F (x

(t−τij)
j ; ξ

(t−τij)
j)−∇fj(x

(t−τij)
j)

∥∥∥2
The rest of the proof is identical to the one of Proposition D.2.

Lemma D.11. (Descent lemma for convex objective.) If γ ≤ 1
10Lnπ0

, then

rt+1 ≤ (1− γµnπ0

2)rt − γnπ0et + 4γLnπ0Ξt + 3γ2nπ2
0σ̄

2.

Proof. Expand rt+1 = E ∥x̄(t+1) − x⋆∥2 as follows

E ∥x̄(t+1) − x⋆∥2 =E ∥x̄(t) − γπ⊤W̃G(t) − x⋆∥2

=E ∥x̄(t) − γπ⊤W̃ EG(t) − x⋆ + γπ⊤W̃ (EG(t) −G(t))∥2

Directly expand it into three terms

E ∥x̄(t+1) − x⋆∥2 =E
(
∥x̄(t) − γπ⊤W̃ EG(t) − x⋆∥2 + γ2∥π⊤W̃ (EG(t) −G(t)))∥2

+
〈
x̄(t) − γπ⊤W̃ EG(t) − x⋆, γπ⊤W̃ (EG(t) −G(t)))

〉)
where the 3rd term is 0 and the second term is bounded in Proposition D.2. The first term is
independent of the randomness

∥x̄(t) − γπ⊤W̃ EG(t) − x⋆∥2

=∥x̄(t) − x⋆∥2 + γ2 ∥π⊤W̃ EG(t)∥2︸ ︷︷ ︸
=:T1

−2γ ⟨π⊤W̃ EG(t), x̄(t) − x⋆⟩︸ ︷︷ ︸
=:T2

.

D.1 Convergence Analysis of RelaySGD 165

Since π⊤W̃ EG(t) = π0
n

∑n
i=1

∑n
j=1∇fi(x

(t−τij)
i), first bound T1

T1 = π2
0

∥∥∥∥∥∥ 1n
n∑

i=1

n∑
j=1

∇fi(x
(t−τij)
i)

∥∥∥∥∥∥
2

= π2
0

∥∥∥∥∥∥ 1n
n∑

i=1

n∑
j=1

(∇fi(x
(t−τij)
i)−∇fi(x̄(t)) +∇fi(x̄(t))−∇fi(x⋆))

∥∥∥∥∥∥
2

≤ 2π2
0

∥∥∥∥∥∥ 1n
n∑

i=1

n∑
j=1

(∇fi(x
(t−τij)
i)−∇fi(x̄(t)))

∥∥∥∥∥∥
2

+

∥∥∥∥∥
n∑

i=1

(∇fi(x̄(t))−∇fi(x⋆))

∥∥∥∥∥
2


≤ 2π2
0L

2
n∑

i=1

n∑
j=1

∥∥∥x(t−τij)
i − x̄(t)

∥∥∥2 + 2nπ2
0

n∑
i=1

∥∥∥∇fi(x̄(t))−∇fi(x⋆)
∥∥∥2

Smoothness (D.4)
≤ 2π2

0L
2

n∑
i=1

n∑
j=1

∥∥∥x(t−τij)
i − x̄(t)

∥∥∥2 + 4Ln2π2
0(f(x̄

(t))− f(x⋆)),

Using again Lemma D.10 we have

T1 ≤ 2L2n2π2
0Ξt + 4Ln2π2

0et.

Then bound T2

T2 =
π0
n

n∑
i=1

n∑
j=1

⟨∇fi(x
(t−τij)
i), x̄(t) − x⋆⟩

=
π0
n

n∑
i=1

n∑
j=1

(⟨∇fi(x
(t−τij)
i), x̄(t) − x

(t−τij)
i ⟩+ ⟨∇fi(x

(t−τij)
i),x

(t−τij)
i − x⋆⟩)

≥ π0
n

n∑
i=1

n∑
j=1

(fi(x̄
(t))− fi(x

(t−τij)
i)− L

2 ∥x̄
(t) − x

(t−τij)
i ∥2

+ fi(x
(t−τij)
i)− fi(x

⋆) + µ
2∥x

(t−τij)
i − x⋆∥2)

= nπ0(f(x̄
(t))− f(x⋆)) +

π0
n

n∑
i=1

n∑
j=1

(µ2∥x
(t−τij)
i − x⋆∥2 − L

2 ∥x̄
(t) − x

(t−τij)
i ∥2)

≥ nπ0(f(x̄
(t))− f(x⋆)) +

π0
n

n∑
i=1

n∑
j=1

(µ4∥x̄
(t) − x⋆∥2 − µ+L

2 ∥x̄
(t) − x

(t−τij)
i ∥2)

Lemma D.10
≥ nπ0et +

nµπ0

4 rt − nLπ0Ξt

where the first inequality and the second inequality uses the L-smoothness and µ-convexity of
fi.

166 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Combine both T1, T2 and Proposition D.2 we have

rt+1 ≤rt + γ2n2π2
0(2L

2Ξt + 4Let)− 2γnπ0(et +
µ
4 rt − LΞt)

+ γ2n(3L2π2
0Ξt + 6Lπ2

0et + 3π2
0σ̄

2)

=(1− γµnπ0

2)rt − (2γnπ0 − 4Lγ2n2π2
0 − 6Lγ2nπ2

0)et

+ (2γ2L2n2π2
0 + 2γLnπ0 + 3L2γ2nπ2

0)Ξt + 3γ2nπ2
0σ̄

2

In addition if γ ≤ 1
10Lnπ0

, then we can simplify the coefficient of et and Ξt

4Lγ2n2π2
0 + 6Lγ2nπ2

0 ≤γnπ0
2γ2L2n2π2

0 + 2γLnπ0 + 3L2γ2nπ2
0 ≤4γLnπ0

Then

rt+1 ≤ (1− γµnπ0

2)rt − γnπ0et + 4γLnπ0Ξt + 3γ2nπ2
0σ̄

2.

Lemma D.12. For γ ≤ p
10LmC1

we have

1

T + 1

T∑
t=0

Ξt ≤C2
1γ

2m2 24

p

σ̄2

n
+

80Lm2

p2
C2
1γ

2 1

T + 1

T∑
t=0

et

where C1 is defined in Definition D.3.

Proof. First bound the consensus distance as follows:

nΞt =E ∥Y (t) − Ȳ (t)∥2F ≤ E ∥(Y (t) − Ȳ (t−m))− (Ȳ (t) − Ȳ (t−m))∥2F
≤E ∥Y (t) − Ȳ (t−m)∥2F

where the last inequality we use the simple matrix inequality (D.5). For t ≥ m unroll to t−m.

nΞt ≤E

∥∥∥∥∥WmY (t−m) − γ
t−1∑

k=t−m

W t−1−kW̃G(k) − Ȳ (t−m)

∥∥∥∥∥
2

F

D.1 Convergence Analysis of RelaySGD 167

Separate the stochastic part and deterministic part.

nΞt ≤

∥∥∥∥∥WmY (t−m) − γ

t−1∑
k=t−m

W t−1−kW̃ EG(k) − Ȳ (t−m)

∥∥∥∥∥
2

F

+ E

∥∥∥∥∥γ
t−1∑

k=t−m

W t−1−kW̃ (EG(k) −G(k))

∥∥∥∥∥
2

F

≤

∥∥∥∥∥WmY (t−m) − γ

t−1∑
k=t−m

W t−1−kW̃ EG(k) − Ȳ (t−m)

∥∥∥∥∥
2

F

+ γ2m

t−1∑
k=t−m

E
∥∥∥W t−1−kW̃ (EG(k) −G(k))

∥∥∥2
F

Given Ĩ and C1 in defined in Definition D.3, we know that W̃ = ĨW̃ . Then use (D.6) and
Proposition D.3

nΞt ≤

∥∥∥∥∥WmY (t−m) − γ
t−1∑

k=t−m

W t−1−kW̃ EG(k) − Ȳ (t−m)

∥∥∥∥∥
2

F

+ C2
1γ

2m
t−1∑

k=t−m

E
∥∥∥W̃ (EG(k) −G(k))

∥∥∥2
F

≤

∥∥∥∥∥WmY (t−m) − γ
t−1∑

k=t−m

W t−1−kW̃ EG(k) − Ȳ (t−m)

∥∥∥∥∥
2

F

+ C2
1γ

2m
t−1∑

k=t−m

3(L2Ξk + 2Lek + σ̄2)

Separate the first term as

nΞt ≤(1 + α)
∥∥∥WmY (t−m) − Ȳ (t−m)

∥∥∥2
F
+ (1 +

1

α
)

∥∥∥∥∥γ
t−1∑

k=t−m

W t−1−kW̃ EG(k)

∥∥∥∥∥
2

F

+ C2
1γ

2m

t−1∑
k=t−m

3(L2Ξk + 2Lek + σ̄2)

≤(1 + α)(1− p)2m
∥∥∥Y (t−m) − Ȳ (t−m)

∥∥∥2
F
+ (1 +

1

α
)

∥∥∥∥∥γ
t−1∑

k=t−m

W t−1−kW̃ EG(k)

∥∥∥∥∥
2

F

+ C2
1γ

2m
t−1∑

k=t−m

3(L2Ξk + 2Lek + σ̄2)

168 RelaySum for Decentralized Deep Learning on Heterogeneous Data

where the first inequality uses (a+ b)2 ≤ (1 + ϵ)a2 + (1 + 1
ϵ)b

2 and take ϵ = (2−p
2−2p)

2m − 1.

1 + 1
ϵ ≤ 1 + 1−p

mp ≤ 1 + 1
mp ≤

2
p .

Then by applying our key lemma (Lemma 5.1) we have

nΞt ≤
(
1− p

2

)2m ∥∥∥Y (t−m) − Ȳ (t−m)
∥∥∥2
F
+

2m

p
C2
1γ

2
t−1∑

k=t−m

∥∥∥W̃ EG(k)
∥∥∥2
F

+ C2
1γ

2m

t−1∑
k=t−m

3(L2Ξk + 2Lek + σ̄2)

Next we bound E ∥W̃G(t′)∥2F ,

E ∥W̃ EG(k)∥2F =
∑n

i=1 E ∥ 1n
∑n

j=1∇fj(x
(k−τij)
j)∥2

=
∑n

i=1 E ∥ 1n
∑n

j=1(∇fj(x
(k−τij)
j)−∇fj(x̄(k)) +∇fj(x̄(k))−∇fj(x⋆))∥2

≤ 2
n

∑n
i=1

∑n
j=1(∥∇fj(x

(k−τij)
j)−∇fj(x̄(k))∥2 + ∥∇fj(x̄(k))−∇fj(x⋆))∥2)

≤ 2
n

∑n
i=1

∑n
j=1(L

2∥x(k−τij)
j − x̄(k)∥2 + ∥∇fj(x̄(k))−∇fj(x⋆))∥2)

Lemma D.10
≤ 2L2nΞk + 2

∑n
j=1 ∥∇fj(x̄(k))−∇fj(x⋆))∥2

Smoothness (D.4)
≤ 2L2nΞk + 4nLek.

Then

nΞt ≤(1−
p

2
)2mnΞt−m +

2m

p
C2
1γ

2
t−1∑

k=t−m

(2L2nΞk + 4nLek) + C2
1γ

2m
t−1∑

k=t−m

3(L2Ξk + 2Lek + σ̄2)

Then

Ξt ≤(1−
p

2
)2mΞt−m +

2m

p
C2
1γ

2
t−1∑

k=t−m

(5L2Ξk + 10Lek) + 3C2
1γ

2m2 σ̄
2

n
.

Unroll for t < m. We can apply similar steps

nΞt ≤E

∥∥∥∥∥W (t)Y (0) − γ
t−1∑
k=0

W t−1−kW̃G(k) − Ȳ (0)

∥∥∥∥∥
2

F

= E

∥∥∥∥∥γ
t−1∑
k=0

W t−1−kW̃G(k)

∥∥∥∥∥
2

F

≤C2
1γ

2m
t−1∑
k=0

E
∥∥∥W̃G(k)

∥∥∥2
F
≤ 2C2

1γ
2m

t−1∑
k=0

(5L2nΞk + 10nLek + 3σ̄2)

D.1 Convergence Analysis of RelaySGD 169

Merge two parts together and sum over t.

1

T + 1

T∑
t=0

Ξt ≤
(
1− p

2

)2m 1

T + 1

T∑
t=m

Ξt−m + 6C2
1γ

2m2 σ̄
2

n

+
2m

p
C2
1γ

2 1

T + 1

(
T∑

t=m

t−1∑
k=t−m

(5L2Ξk + 10Lek) +
m−1∑
t=0

t−1∑
k=t−m

(5L2Ξk + 10Lek)

)

≤
(
1− p

2

)2m 1

T + 1

T∑
t=0

Ξt + 6C2
1γ

2m2 σ̄
2

n
+

2m2

p
C2
1γ

2 1

T + 1

T∑
t=0

(
5L2Ξt + 10Let

)
By taking γ ≤ p

10CLm , then 10L2m2

p C2
1γ

2 ≤ p
4 .

1

T + 1

T∑
t=0

Ξt ≤C2
1γ

2m2 24

p

σ̄2

n
+

80Lm2

p2
C2
1γ

2 1

T + 1

T∑
t=0

et.

Lemma D.13 (Identical to [Koloskova et al., 2020b, Lemma 15]). For any parameters r0 ≥
0, a ≥ 0, b ≥ 0, c ≥ 0 there exists constant stepsizes γ ≤ 1

c such that

ΨT :=
r0

γ(T + 1)
+ aγ + bγ2 ≤ 2

(
ar0

T + 1

)1
2
+ 2b

1
3

(
r0

T + 1

)2
3
+

cr0
T + 1

.

Theorem D.4. If γ ≤ p
30LmC1

, then

1
T+1

∑T
t=0

(
f(x̄(t))− f(x⋆)

)
≤ 8

(
σ̄2r0

n(T+1)

)1
2
+ 2

(
16Cm

√
Lσ̄r0√

p(T+1)

)2
3
+ 30Lm

√
nCr0

p(T+1) .

where r0 = ∥x0 − x⋆∥2 and C = C(W) is defined in Definition D.3.

Proof. Reorganize Lemma D.11 and average over time

1
T+1

∑T
t=0 et ≤

1
T+1

∑T
t=0

(
rt

γnπ0
− rt+1

γnπ0

)
+ 4L

T+1

∑T
t=0 Ξt + 3γπ0σ̄

2.

Combining with Lemma D.12 gives

1
T+1

∑T
t=0 et ≤

1
T+1

r0
γnπ0

+ 4L
(
C2
1γ

2m2 24
p

σ̄2

n + 80Lm2

p2
C2
1γ

2 1
T+1

∑T
t=0 ek

)
+ 3γπ0σ̄

2

Select γ ≤ p
30LmC1

such that 320L2

p2
γ2m2C2

1 ≤ 1
2

1
T+1

∑T
t=0 et ≤

2
T+1

r0
γnπ0

+ 6γπ0σ̄
2 + 96L

p γ2m2C2
1
σ̄2

n .

170 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Applying Lemma D.13 gives

1

T + 1

T∑
t=0

et ≤ 40

(
σ̄2r0

n(T + 1)

)1
2
+ 2

(√
mLσ̄r0√
p(T + 1)

16C1
√
m

nπ0
√
n

)2
3

+
dr0

nπ0(T + 1)

where d = max{30LmC1
p , 10Lnπ0} = 30LmC1

p . As in Lemma D.5,

C1 = C∥1π⊤Ĩ∥ = Cn
√
τmax + 1π0 ≤ Cn

√
nπ0.

We can further simplify it as

1

T + 1

T∑
t=0

et ≤ 40

(
σ̄2r0

n(T + 1)

)1
2
+ 2

(
16Cm

√
Lσ̄r0√

p(T + 1)

)2
3

+
30Lm

√
nCr0

p(T + 1)
.

D.1.5 Proof of Theorem 5.1 in the strongly convex case

The proof for strongly convex objective follows similar lines as Stich [2019]:

Theorem D.5. Let a = µnπ0

2 , b = 2
nπ0

, c = 6π0σ̄
2, A = 400L

p2
m2C2

1 σ̄
2, and let γ = 1

s ≤
1
aT lnmax{ ba2T 2r0

c , 2}, then

1

WT

T∑
t=0

wtet + µrT+1 ≤Õ
(
bsr0 exp

[
−a(T + 1)

s

]
+

c

a(T + 1)
+

A

a2(T + 1)2

)

where wt = (1− µγnπ0

2)−(t+1).

Proof. From Lemma D.11 we know that if γ ≤ 1
10Lnπ0

, then

rt+1 ≤ (1− γµnπ0

2)rt − γnπ0et + 4γLnπ0Ξt + 3γ2nπ2
0σ̄

2.

Then

et ≤
1

γnπ0
(1− µγnπ0

2
)rt −

1

γnπ0
rt+1 + 4LΞt + 3γπ0σ̄

2.

Multiply wt and sum over t = 0 to T and divided by WT

1

WT

T∑
t=0

wtet ≤
1

WT

T∑
t=0

(
1− µγnπ0

2

γnπ0
wtrt −

wt

γnπ0
rt+1

)
+

4L

WT

T∑
t=0

wtΞt + 3γπ0σ̄
2.

D.1 Convergence Analysis of RelaySGD 171

Set (1− µγnπ0

2)wt+1 = wt, then

1

WT

T∑
t=0

wtet ≤
1

WT

(
1− µγnπ0

2

γnπ0
w0r0 −

1− µγnπ0

2

γnπ0
wT+1rT+1

)
+

4L

WT

T∑
t=0

wtΞt + 3γπ0σ̄
2.

Then using Lemma D.12 we have

1

WT

T∑
t=0

wtet +
1− µγnπ0

2

γnπ0WT
wT+1rT+1

≤ 1

WT

1− µγnπ0

2

γnπ0
w0r0 + 4L

(
80C2

1Lm
2

p2
γ2 1

WT

∑T
t′=0wtet′ +

24
p γ

2m2C2
1
σ̄2

n

)
+ 3γπ0σ̄

2

By taking γ ≤ p
30LmC1

we have 320L2m2C2
1γ

2

p2
≤ 1

2 , then

1

WT

T∑
t=0

wtet +
1− µγnπ0

2

γnπ0WT
2wT+1rT+1 ≤

1

WT

1− µγnπ0

2

γnπ0
2w0r0 + 6γπ0σ̄

2 + 400L
p2

γ2m2C2
1 σ̄

2

Since WT ≥ wT = (1− µγnπ0

2)−(T+1) and WT ≤ 2wT
µγnπ0

1

WT

T∑
t=0

wtet + µrT+1 ≤
(1− µγnπ0

2)T+1

γnπ0
2w0r0 + 6γπ0σ̄

2 + 400L
p2

γ2m2C2
1 σ̄

2

≤e−
µγnπ0

2
(T+1)

γnπ0
2w0r0 + 6γπ0σ̄

2 + 400L
p2

γ2m2C2
1 σ̄

2

Let a = µnπ0

2 , b = 2
nπ0

, c = 6π0σ̄
2, A = 400L

p2
m2C2

1 σ̄
2, then

1

WT

T∑
t=0

wtet + µrT+1 ≤
br0
γ

exp[−aγ(T + 1)] + cγ +Aγ2

Tuning stepsize. Let γ = 1
d ≤

1
aT lnmax{ ba2T 2r0

c , 2}, then

1

WT

T∑
t=0

wtet + µrT+1 ≤Õ
(
bsr0 exp[−

a(T + 1)

s
] +

c

a(T + 1)
+

A

a2(T + 1)2

)
.

D.1.6 Proof of Theorem 5.1 in the non-convex case

Let x̄(t) :=
(
π⊤Y (t)

)⊤ and Ȳ (t) := 1π⊤Y (t). Let f⋆ be the optimal objective value at critical
points. We can define the following iterates

1. rt := E f(x̄(t))− f⋆ is the expected function suboptimality.
2. et := ∥∇f(x̄(t))∥2

3. Ξt :=
1
n∥Ȳ

(t) − Y (t)∥2F is the consensus distance.

172 RelaySum for Decentralized Deep Learning on Heterogeneous Data

where the expectation is taken with respect to ξ(t) ∈ Rn the randomness across all workers at
time t. Note that Lemma D.10 still holds.

Proposition D.6 and Proposition D.7 bound the stochastic noise of the gradient.

Proposition D.6. Under Assumption B, we have

E∥π⊤W̃ (G(t) − EG(t))∥2 ≤ nπ2
0σ̄

2. (D.8)

Proof. Denote E = Eξ. Use Cauchy-Schwartz inequality Equation (D.3)

E∥π⊤W̃ (G(t) − EG(t))∥2 =E

∥∥∥∥∥∥π0n
n∑

i=1

n∑
j=1

(∇Fj(x
(t−τij)
j ; ξ

(t−τij)
j)−∇fj(x

(t−τij)
j))

∥∥∥∥∥∥
2

≤π2
0

n

n∑
i=1

E

∥∥∥∥∥∥
n∑

j=1

∇Fj(x
(t−τij)
j ; ξ

(t−τij)
j)−∇fj(x

(t−τij)
j)

∥∥∥∥∥∥
2

Now the randomness inside the norm are independent

E∥π⊤W̃ (G(t) − EG(t))∥2 E∥π⊤W̃ (G(t) − EG(t))∥2 ≤ nπ2
0σ̄

2.

Proposition D.7. Under Assumption B, we have

E∥W̃ (G(t) − EG(t))∥2F ≤ σ̄2. (D.9)

Next we establish the recursion of rt

Lemma D.14 (Descent lemma for non-convex case). Under Assumption A and B. Let γ ≤ 1
8Lnπ0

,
then

rt+1 ≤rt −
γnπ0
4

et + 2γL2nπ0Ξt + 2γ2Lnπ2
0σ̄

2.

Proof. Since f is L-smooth,

E f(x̄(t+1)) =E f(x̄(t) − γπ⊤W̃G(t))

≤f(x̄(t))− γ ⟨∇f(x̄(t)),π⊤W̃ EG(t)⟩︸ ︷︷ ︸
:=T1

+γ2L
2 E∥π⊤W̃G(t)∥2︸ ︷︷ ︸

:=T2

D.1 Convergence Analysis of RelaySGD 173

The first-order term T1 has a lower bound

T1 =nπ0⟨∇f(x̄(t)), 1
nπ0

π⊤W̃ EG(t)⟩

=nπ0

(
∥∇f(x̄(t))∥2 + ⟨∇f(x̄(t)), 1

nπ0
π⊤W̃ EG(t) −∇f(x̄(t))⟩

)
≥nπ0

(
1
2∥∇f(x̄

(t))∥2 − 1
2∥

1
nπ0

π⊤W̃ EG(t) −∇f(x̄(t))∥2
)

=nπ0

(
1
2et −

1
2n4 ∥

∑n
i=1

∑n
j=1(∇fj(x

(t−τij)
j)−∇fj(x̄(t)))∥2

)
≥nπ0

(
1
2et −

L2

2n2

∑n
i=1

∑n
j=1∥x

(t−τij)
j − x̄(t)∥2

)
≥nπ0

(
1
2et −

L2

2 Ξt

)
as a2 − ⟨a, b⟩ ≥ a2

2 −
b2

2 for a, b ≥ 0.
On the other hand, separate the stochastic part and deterministic part of T2 we have

T2 ≤2E∥π⊤W̃ (G(t) − EG(t))∥2 + 2∥π⊤W̃ EG(t)∥2.

Under Assumption B and Proposition D.6, we know the first term

E∥π⊤W̃ (G(t) − EG(t))∥2 ≤ nπ2
0σ̄

2.

Consider the second term

∥π⊤W̃ EG(t)∥2 =

∥∥∥∥∥∥π0n
n∑

i=1

n∑
j=1

∇fj(x
(t−τij)
j)

∥∥∥∥∥∥
2

=n2π2
0

∥∥∥∥∥∥ 1

n2

n∑
i=1

n∑
j=1

∇fj(x
(t−τij)
j)−∇f(x̄(t)) +∇f(x̄(t))

∥∥∥∥∥∥
2

≤2n2π2
0

∥∥∥∥∥∥ 1

n2

n∑
i=1

n∑
j=1

(∇fj(x
(t−τij)
j)−∇fj(x̄(t)))

∥∥∥∥∥∥
2

+ 2n2π2
0

∥∥∥∇f(x̄(t))
∥∥∥2

≤2π2
0

n∑
i=1

n∑
j=1

∥∥∥∇fj(x(t−τij)
j)−∇fj(x̄(t))

∥∥∥2 + 2n2π2
0

∥∥∥∇f(x̄(t))
∥∥∥2

Combine Assumption B we have

∥π⊤W̃ EG(t)∥2 ≤ 2n2π2
0(L

2Ξt + et).

Therefore, the T2 can be bounded as follows

T2 ≤ 4n2π2
0(

σ̄2

n + L2Ξt + et). (D.10)

174 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Gathering everything together

rt+1 ≤rt − γnπ0

2 (et − L2Ξt) + 2γ2Ln2π2
0(

σ̄2

n + L2Ξt + et)

≤rt − γnπ0

2 (1− 4γLnπ0)et + γL2nπ0(1 + 2γLnπ0)Ξt + 2γ2Lnπ2
0σ̄

2

Let γ ≤ 1
8Lnπ0

, then

rt+1 ≤rt −
γnπ0
4

et + 2γL2nπ0Ξt + 2γ2Lnπ2
0σ̄

2.

Next we bound the consensus distance

Lemma D.15 (Bounded consensus distance). Under Assumption B,

1

T + 1

T∑
t=0

Ξt ≤
16C2m2

p2
γ2σ̄2 +

16C2m2

p2
γ2

1

T + 1

T∑
t=0

ek .

Proof. First bound the consensus distance by inserting Ȳ (t−m)

nΞt =E ∥Ȳ (t) − Y (t)∥2F ≤ E ∥(Ȳ (t) − Ȳ (t−m))− (Y (t) − Ȳ (t−m))∥2F
≤E ∥Y (t) − Ȳ (t−m)∥2F

where we used ∥A− Ā∥2F =
∑n

i=1 ∥ai − ā∥2 ≤
∑n

i=1 ∥ai∥2 = ∥A∥2F .
For t ≥ m unroll Y (t) until t−m.

nΞt ≤E

∥∥∥∥∥WmY (t−m) − γ
t−1∑

k=t−m

W t−1−kW̃G(k) − Ȳ (t−m)

∥∥∥∥∥
2

F

Separate stochastic part and deterministic part

nΞt ≤

∥∥∥∥∥WmY (t−m) − γ
t−1∑

k=t−m

W t−1−kW̃ EG(k) − Ȳ (t−m)

∥∥∥∥∥
2

F

+ E

∥∥∥∥∥γ
t−1∑

k=t−m

W t−1−kW̃ (EG(k) −G(k))

∥∥∥∥∥
2

F

D.1 Convergence Analysis of RelaySGD 175

then let C2
1 defined in Definition D.3 and use ∥AB∥2F ≤ ∥A∥2F ∥B∥2 and (D.9)

nΞt ≤

∥∥∥∥∥WmY (t−m) − γ

t−1∑
k=t−m

W t−1−kW̃ EG(k) − Ȳ (t−m)

∥∥∥∥∥
2

F

+ C2
1γ

2m
t−1∑

k=t−m

E
∥∥∥W̃ (EG(k) −G(k))

∥∥∥2
F

≤

∥∥∥∥∥WmY (t−m) − γ
t−1∑

k=t−m

W t−1−kW̃ EG(k) − Ȳ (t−m)

∥∥∥∥∥
2

F

+ C2
1γ

2m2σ̄2

Apply Cauchy-Schwartz inequality with α > 0

nΞt ≤(1 + α)
∥∥∥WmY (t−m) − Ȳ (t−m)

∥∥∥2
F
+ (1 + 1

α)

∥∥∥∥∥γ
t−1∑

k=t−m

W t−1−kW̃ EG(k)

∥∥∥∥∥
2

F

+ C2
1γ

2m2σ̄2

Applying Lemma 5.1 to the first term

nΞt ≤(1 + α)(1− p)2m∥Y (t−m) − Ȳ (t−m)∥2F + (1 + 1
α)

∥∥∥∥∥γ
t−1∑

k=t−m

W t−1−kW̃ EG(k)

∥∥∥∥∥
2

F

+ C2
1γ

2m2σ̄2

Take α = (2−p
2−2p)

2m − 1 = (1 + p
2−2p)

2m − 1 ≥ mp
1−p and use

1 + 1
α ≤ 1 + 1−p

mp ≤ 1 + 1
mp ≤

2
p ,

then use ∥AB∥2F ≤ ∥A∥2F ∥B∥2

nΞt ≤
(
1− p

2

)2m
∥Y (t−m) − Ȳ (t−m)∥2F +

2

p

∥∥∥∥∥γ
t−1∑

k=t−m

W t−1−kW̃ EG(k)

∥∥∥∥∥
2

F

+ C2
1γ

2m2σ̄2

≤
(
1− p

2

)2m
∥Y (t−m) − Ȳ (t−m)∥2F +

2C2
1m

p
γ2

t−1∑
k=t−m

∥∥∥W̃ EG(k)
∥∥∥2
F
+ C2

1γ
2m2σ̄2.

176 RelaySum for Decentralized Deep Learning on Heterogeneous Data

where the second term can be expanded by

∥W̃ EG(k)∥2F =
n∑

i=1

∥∥∥∥∥∥ 1n
n∑

j=1

∇fj(x
(k−τij)
j)

∥∥∥∥∥∥
2

=
n∑

i=1

∥∥∥∥∥∥ 1n
n∑

j=1

∇fj(x
(k−τij)
j)−∇f(x̄(k)) +∇f(x̄(k))

∥∥∥∥∥∥
2

≤2
n∑

i=1

∥∥∥∥∥∥ 1n
n∑

j=1

(∇fj(x
(k−τij)
j)−∇fj(x̄(k)))

∥∥∥∥∥∥
2

+ 2n
∥∥∥∇f(x̄(k))

∥∥∥2
≤ 2

n

n∑
i=1

n∑
j=1

∥∥∥∇fj(x(k−τij)
j)−∇fj(x̄(k))

∥∥∥2 + 2n
∥∥∥∇f(x̄(k))

∥∥∥2
≤2nL2Ξk + 2nek

Combine and reduce the n on both sides

Ξt ≤
(
1− p

2

)2m
Ξt−m + 2C2

1m
2γ2

σ̄2

n
+

4C2
1m

p
γ2

t−1∑
k=t−m

(L2Ξk + ek).

Unroll for t < m. For t < m, we can apply similar steps

nΞt ≤E

∥∥∥∥∥W (t)Y (0) − γ
t−1∑
k=0

W t−1−kW̃G(k) − Ȳ (0)

∥∥∥∥∥
2

F

= E

∥∥∥∥∥γ
t−1∑
k=0

W t−1−kW̃G(k)

∥∥∥∥∥
2

F

≤C2
1γ

2m
t−1∑
k=0

E
∥∥∥W̃G(k)

∥∥∥2
F
≤ 2C2

1mγ2
t−1∑
k=0

(σ̄2 + nL2Ξk + nek).

Finally, sum over t

1

T + 1

T∑
t=0

Ξt ≤
(
1− p

2

)2m 1

T + 1

T∑
t=m

Ξt−m + 2C2
1m

2γ2
σ̄2

n

+
4C2

1m

p
γ2

1

T + 1

(
T∑

t=m

t−1∑
k=t−m

(L2Ξk + ek) +

m−1∑
t=0

t−1∑
k=0

(L2Ξk + ek)

)

≤
(
1− p

2

)2m 1

T + 1

T∑
t=0

Ξt + 2C2
1m

2γ2
σ̄2

n
+

4C2
1m

2

p

γ2

T + 1

T∑
t=0

(L2Ξk + ek).

D.1 Convergence Analysis of RelaySGD 177

by taking γ ≤ p
4CLm we have 4C2

1m
2

p γ2L2 ≤ p
4 , then rearrange the all of the Ξ terms

1

T + 1

T∑
t=0

Ξt ≤
16C2

1m
2

p

σ̄2

n
γ2 +

16C2
1m

2

p2
γ2

1

T + 1

T∑
t=0

ek

We can use the lemmas for recursion and the descent in the consensus distance to conclude
the following theorem.

Theorem D.8. Under Assumption A and Assumption B. For γ ≤ p
16C1Lm

1

T + 1

T∑
t=0

∥∇f(x̄(t))∥2 ≤16
(

2Lσ̄2r0
n(T + 1)

) 1
2

+ 2

(
16CLmσ̄
√
p

8r0
T + 1

) 2
3

+
16C1Lm

p

r0
T + 1

where C = C(W) is defined in Definition D.3 and r0 = f(x(0)) − f⋆. Alternatively, for any
target accuracy ϵ, 1

T+1

∑T
t=0 ∥∇f(x̄(t))∥2 ≤ ϵ after

O
(

σ̄2

nϵ2
+

Cmσ̄
√
pϵ3/2

+
C1m

pϵ

)
Lr0

iterations.

Remark 16. For gossip averaging Koloskova et al. [2020b], the rate with ζ2 = 0 is

O
(

σ̄2

nϵ2
+

√
mσ̄

√
pϵ3/2

+
m

pϵ

)
Lr0.

Proof. From Lemma D.14 we know that for γ ≤ 1
8Lnπ0

rt+1 ≤rt −
γnπ0
4

et + 2γL2nπ0Ξt + 2γ2Lnπ2
0σ̄

2.

Rearrange the terms and average over t

1

T + 1

T∑
t=0

et ≤
1

T + 1

T∑
t=0

(
4rt
γnπ0

− 4rt+1

γnπ0
) +

8L2

T + 1

T∑
t=0

Ξt + 8Lπ0γσ̄
2

≤ 1

T + 1

4r0
γnπ0

+
8L2

T + 1

T∑
t=0

Ξt + 8Lπ0γσ̄
2

On the other hand, from Lemma D.15 for γ ≤ p
4C1Lm

we have

1

T + 1

T∑
t=0

Ξt ≤
16C2

1m
2

p

σ̄2

n
γ2 +

16C2
1m

2

p2
γ2

1

T + 1

T∑
t=0

ek.

178 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Then

1

T + 1

T∑
t=0

et ≤
1

T + 1

4r0
γnπ0

+ 8L2 16C
2
1m

2

p2
γ2

(
pσ̄2

n
+

1

T + 1

T∑
t=0

ek

)
+ 8Lπ0γσ̄

2

By taking γ ≤ p
16C1Lm

such that 8L2 16C
2
1m

2

p2
γ2 ≤ 1

2 , then

1

T + 1

T∑
t=0

et ≤
1

T + 1

8r0
γnπ0

+ 16Lπ0γσ̄
2 +

162L2C2
1m

2

np
γ2σ̄2

Then applying Lemma D.13 we have

1

T + 1

T∑
t=0

et ≤32
(

Lσ̄2r0
n(T + 1)

) 1
2

+ 2

(
16C1Lmσ̄
√
np

8r0
nπ0(T + 1)

) 2
3

+
dr0

T + 1

where d = max{16C1Lm
p , 8Lnπ0} = 16C1Lm

p . As in Lemma D.5,

C1 = C∥1π⊤Ĩ∥ = Cn
√
τmax + 1π0 ≤ Cn

√
nπ0.

We can further simplify it as

1

T + 1

T∑
t=0

et ≤32
(

Lσ̄2r0
n(T + 1)

) 1
2

+ 2

(
16CLmσ̄
√
p

8r0
T + 1

) 2
3

+
dr0

T + 1
.

D.2 Detailed experimental setup

D.2.1 Cifar-10

Table D.1

D.2.2 ImageNet

Table D.2

D.2.3 BERT finetuning

Table D.3

D.2.4 Random quadratics

We generate quadratics 1
n

∑n
i=1 fi(x) of x ∈ Rd where

fi(x) = ∥Aix+ bi∥22.

D.2 Detailed experimental setup 179

Table D.1 Default experimental settings for Cifar-10/VGG-11

Dataset Cifar-10 [Krizhevsky et al.]
Data augmentation random horizontal flip and random 32× 32 cropping
Architecture VGG-11 [Krizhevsky, 2012]
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 16
Topology SGP: time-varying exponential, RelaySGD: double binary trees, baselines: best of ring or

double binary trees
Gossip weights Metropolis-Hastings (1/3 for ring)
Data distribution Heterogeneous, not shuffled, according to Dirichlet sampling procedure from Lin et al. [2021b]

Batch size 32 patches per worker
Momentum 0.9 (Nesterov)
Learning rate Tuned c.f. § D.3.1
LR decay /10 at epoch 150 and 180
LR warmup Step-wise linearly within 5 epochs, starting from 0
Epochs 200
Weight decay 10−4

Normalization scheme no normalization layer

Repetitions 3, with varying seeds
Reported metric Worst result of any worker of the worker’s mean test accuracy over the last 5 epochs

Here the local Hessian Ai ∈ Rd×d control the shape of worker i’s local objective functions and
the offset bi ∈ Rd allows for shifting the worker’s optimum. The generation procedure is as
follows:

1. Sample Ai ∈ Rd×d from an i.i.d. element-wise standard normal distribution, independently
for each worker.

2. Control the smoothness L and strong-convexity constant µ. Decompose Ai = UiSiV
⊤
i

using Singular Value Decomposition, and replace Ai with Ai ← UiS̃iV
⊤
i , where S̃i ∈ Rd×d

is a diagonal matrix with diagonal entries [µ, d−2
d−1µ+ 1

d−1L, . . . , L].

3. Control the heterogeneity ζ2 by shifting worker’s optima into random directions.

(a) Sample random directions di ∈ Rd from an i.i.d. element-wise standard normal
distributions, independently for each worker.

(b) Instantiate a scalar s← 1 and optimize it using binary search:

(c) Move local optima by sdi by setting bi ← Aisdi.

(d) Move all optima bi ← bi −Aix
⋆ such that the global optimum x⋆ remains at zero.

(e) Evaluate ζ2 = 1
n

∑n
i=1∥∇fi(x⋆)∥22 and adjust the scale factor s until ζ2 is as desired.

Repeat from step (c).

4. Control the initial distance to the optimum r0. Sample a random vector for the optimum
x⋆ from an i.i.d. element-wise normal distribution and scale it to have norm r0. Shift all
worker’s optima in this direction by updating bi ← bi +Aix

⋆.

180 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Table D.2 Default experimental settings for ImageNet

Dataset ImageNet [Deng et al., 2009]
Data augmentation random resized crop (224× 224), random horizontal flip
Architecture ResNet-20-EvoNorm [Lin et al., 2021b; Liu et al., 2020]
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 16
Topology SGP: time-varying exponential, RelaySGD: double binary trees, baselines: best of ring or

double binary trees
Gossip weights Metropolis-Hastings (1/3 for ring)
Data distribution Heterogeneous, not shuffled, according to Dirichlet sampling procedure from Lin et al. [2021b]

Batch size 32 patches per worker
Momentum 0.9 (Nesterov)
Learning rate based on centralized training (scaled to 0.1× 32∗16

256
)

LR decay /10 at epoch 30, 60, 80
LR warmup Step-wise linearly within 5 epochs, starting from 0.1
Epochs 90
Weight decay 10−4

Normalization layer EvoNorm [Liu et al., 2020]

Repetitions Just one
Reported metric Mean of all worker’s test accuracies over the last 5 epochs

D.3 Hyper-parameters and tuning details

D.3.1 Cifar-10

For our image classification experiments on Cifar-10, we have independently tuned learning
rates for each algorithm, at each data heterogeneity level α, and separately for SGD with and
without momentum. We followed the following procedure:

1. We found an appropriate learning rate for centralized (all-reduce) training (by using the
procedure below)

2. Start the search from this learning rate. For RelaySGD, we apply a correction computed
as in § D.4.1.

3. Grid-search the learning rate by multiplying and dividing by powers of two. Try larger
and smaller learning rates, until the best result found so far is sandwiched between two
learning rates that gave worse results.

4. Repeat the experiment with 3 random seeds.

5. If any of those replicas diverged, reduce the learning rate by a factor two until it does.

For the experiments in Table 5.1, we used the learning rates listed in Table D.4.

D.3.2 ImageNet

Due to the high resource requirements, we did not tune the learning rate for our ImageNet
experiments. We identified a suitable learning rate based on prior work, and used this for all

D.3 Hyper-parameters and tuning details 181

Table D.3 Default experimental settings for BERT finetuning

Dataset AG News [Zhang et al., 2015]
Data augmentation none
Architecture DistilBERT [Sanh et al., 2019]
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 16
Topology restricted to a ring (chain for RelaySGD)
Gossip weights Metropolis-Hastings (1/3 for ring)
Data distribution Heterogeneous, not shuffled, according to Dirichlet sampling procedure from Lin et al. [2021b]

Batch size 32 patches per worker
Adam β1 0.9
Adam β2 0.999
Adam ϵ 10−8

Learning rate Tuned c.f. § D.3.3
LR decay constant learning rate
LR warmup no warmup
Epochs 5
Weight decay 0
Normalization layer LayerNorm [Ba et al., 2016]

Repetitions 3, with varying seeds
Reported metric Mean of all worker’s test accuracies over the last 5 epochs

experiments. For RelaySGD, we used the analytically computed learning rate correction from
§ D.4.1.

D.3.3 BERT finetuning

For DistilBERT fine-tuning experiments on AG News, we have independently tuned learning rate
for each algorithm. We search the learning rate in the grid of {1e−5, 3e−5, 5e−5, 7e−5, 9e−5}
and we extend the grid to ensure that the best hyper-parameter lies in the middle of our search
grids, otherwise we extend our search grid.

For the experiments in Table 5.4, we used the learning rates listed in Table D.5.

D.3.4 Random quadratics

For Figures 5.2 and 5.3, we tuned the learning rate for each compared method to reach a
desired quality level as quickly as possible, using binary search. We made a distinction between
methods that are expected to converge linearly, and methods that are expected to reach a
plateau. For experiments with stochastic noise, we tuned a learning rate without noise first, and
then lowered the learning rate if needed to reach a desirable plateau. Please see the supplied
code for implementation details.

182 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Table D.4 Learning rates used for Cifar-10/ VGG-11. Numbers between parentheses indicate
the number of converged replications with this learning rate.

Algorithm Topology α = 1.00 α = 0.1 α = .01
(most homogeneous) (most heterogeneous)

All-reduce fully connected 0.100 (3) 0.100 (3) 0.100 (3)
+momentum 0.100 (3) 0.100 (3) 0.100 (3)

RelaySGD binary trees 1.200 (3) 0.600 (3) 0.300 (3)
+local momentum 0.600 (3) 0.300 (3) 0.150 (3)

DP-SGD ring 0.400 (3) 0.100 (3) 0.200 (3)
+quasi-global mom. 0.100 (3) 0.025 (3) 0.050 (3)

D2 ring 0.200 (3) 0.200 (3) 0.100 (3)
+local momentum 0.050 (3) 0.050 (3) 0.013 (3)

Stochastic gradient push time-varying exponential 0.400 (3) 0.200 (3) 0.200 (3)
+local momentum 0.100 (3) 0.100 (3) 0.025 (3)

Table D.5 Tuned learning rates used for AG News / DistilBERT (Table 5.4)

Algorithm Topology Learning rate

Centralized Adam fully-connected 3e-5
Relay-Adam chain 9e-4
DP-SGD Adam ring 1e-6
Quasi-global Adam [Lin et al., 2021b] ring 1e-6

D.4 Algorithmic details

D.4.1 Learning-rate correction for RelaySGD

In DP-SGD as well as all other algorithms we compared to, a gradient-based update u
(t)
i from

worker i at time t will eventually, as t→∞ distribute uniformly with weights 1
n over all workers.

In RelaySGD, the update also distributes uniformly (typically much quicker), but it will converge
to a weight α ≤ 1

n . The constant α is fixed throughout training and depends only on the network
topology used. To correct for this loss in energy, you can scale the learning rate by a factor 1

αn .
Experimentally, we pre-compute α for each architecture by initialing a scalar model for each

worker to zero, updating the models to 1, and running RelaySGD until convergence with no
further model updates. The worker will converge to the value α. The correction factors that
result from this procedure are illustrated in Figure D.2.

In our deep learning experiments, we find that for each learning rate were centralized SGD
converges, RelaySGD with the corrected learning rate converges too. Note that this learning rate
correction is only useful if you already have a tuned learning rate from centralized experiments,
or experiments with algorithms such as DP-SGD. If you start from scratch, tuning the learning
rate for RelaySGD is no different form tuning the learning rate for any of the other algorithms.

D.4 Algorithmic details 183

0 10 20 30 40 50 60 70 80
n

0

5

10

15

20

25

30

35

40

C
or

re
ct

io
n

fa
ct

or

RelaySum/Model learning rate correction for common topologies

Binary trees
Chain topology
approximation
approximation

Fig. D.2 This network-topology-dependent correction factor is computed as follows: Each
worker initializes a scalar model to 0 and sends a single fixed value 1 as gradient update through
the RelaySGD algorithm. For DP-SGD and all-reduce, workers would converge to 1, but for
RelaySGD, we lose some of this energy. If the workers converge to a value α, we will scale the
learning rate with 1/α for RelaySGD compared to all-reduce.

D.4.2 RelaySGD with momentum

RelaySGD follows Algorithm 6, but replaces the local update in line 3 with a local momentum.
For Nesterov momentum with momentum-parameter α, this is:

m
(t)
i = αm

(t−1)
i +∇fi(x(t)

i) (initialize m0
i = 0)

x
(t+1/2)
i = x

(t)
i − γ

(
∇fi(x(t)

i) + αm
(t)
i

)
.

D.4.3 RelaySGD with Adam

Modifying RelaySGD (Algorithm 6) to use Adam is analogous to RelaySGD with momentum
(§ D.4.2). All Adam state is updated locally. We use the standard Adam implementation of
PyTorch 1.18.

D.4.4 D2 with momentum

We made slight modifications to the D2 algorithm from Tang et al. [2018] to allow time-varying
learning rates and local momentum. The version we use is listed as Algorithm 11. Note that D2

requires the smallest eigenvalue of the gossip matrix W to be ≥ −1/3. This property is satisfied
for Metropolis-Hasting matrices used on rings and double binary trees, but it was not in our
Social Network Graph experiment (Figure 5.3). For this reason, we used the gossip matrix
(W + I)/2, from the otherwise-equivalent Exact Diffusion algorithm [Yuan et al., 2019] on the
social network graph.

184 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Algorithm 11 D2 [Tang et al., 2018] with momentum

Input: ∀ i, x(0)
i = x(0), learning rate γ, momentum α, gossip matrix W ∈ Rn×n, c(0)i = 0 ∈ Rd.

1: for t = 0, 1, . . . do
2: for node i in parallel
3: Update the local momentum buffer m

(t)
i = αm

(t−1)
i +∇fi(x(t)

i).
4: Compute a local update u

(t)
i = −γ(∇fi(x(t)

i) + αm
(t)
i).

5: Update the local model x(t+1/2)
i = x

(t)
i + u

(t)
i + c

(t)
i .

6: Average with neighbors: x
(t+1)
i =

∑
j∈Ni

Wijx
(t+1/2)
j .

7: Update the local correction c
(t+1)
i = x

(t+1)
i − x

(t)
i − u

(t)
i .

8: end for

D.4.5 Gradient Tracking

Algorithm 12 lists our implementation of Gradient Tracking from Lorenzo and Scutari [2016].

Algorithm 12 Gradient Tracking [Lorenzo and Scutari, 2016]

Input: ∀ i, x
(0)
i = x(0), learning rate γ, gossip matrix W ∈ Rn×n, c(0)i = 0 ∈ Rd.

1: for t = 0, 1, . . . do
2: for node i in parallel
3: Compute a local update u

(t)
i = −γ∇fi(x(t)

i).
4: Update the local model x(t+1/2)

i = x
(t)
i + u

(t)
i + c

(t)
i .

5: Average with neighbors: x
(t+1)
i =

∑
j∈Ni

Wijx
(t+1/2)
j .

6: Update the correction and average: c
(t+1)
i =

∑
j∈Ni

Wij

(
c
(t)
i − u

(t)
i

)
.

7: end for

D.4.6 Stochastic Gradient Push with the time-varying exponential topology

Stochastic Gradient Push with the time-varying exponential topology from Assran et al. [2019a]
demonstrates that decentralized learning algorithms can reduce communication in a data center
setting where each node could talk to each other node. Algorithm 13 lists our implementation
of this algorithm.

D.5 Additional experiments on RelaySGD

D.5.1 Rings vs double binary trees on Cifar-10

In our experiments that target data-center inspired scenarios where the network topology is
arbitrarily selected by the user to save bandwidth, RelaySGD uses double binary trees to
communicate. They use the same memory and bandwidth as rings (2 models sent/received per
iteration) but they delays only scale with log n, enabling RelaySGD, in theory, to run with very

D.5 Additional experiments on RelaySGD 185

Algorithm 13 Stochastic Gradient Push with time-varying exponential topology [Assran et al.,
2019a]

Input: ∀ i, x
(0)
i = x(0), learning rate γ, n = 2k workers, t′ = 0.

1: for t = 0, 1, . . . do
2: for node i in parallel
3: x

(t+1/2)
i = x

(t)
i + u

(t)
i −γ∇fi(x

(t)
i). (or momentum/Adam, like RelaySGD)

4: for 2 communication steps to equalize bandwidth with RelaySGD do
5: Compute an offset o = 2t

′ mod k.
6: Send x

(t+1/2)
i to worker i− o.

7: Receive and overwrite x
(t+1/2)
i ← 1

2

(
x
(t+1/2)
i + x

(t+1/2)
i+o

)
.

8: t′ ← t′ + 1.
9: Set x

(t+1)
i = x

(t+1/2)
i .

10: end for

large numbers of workers n. Table D.6 shows that in our Cifar-10 experiments with 16 there are
minor improvements from using double binary trees over rings. Our baselines DP-SGD and D2,
however, perform significantly better on rings than on trees, so we use those results in the main
paper.

Table D.6 Comparing the performance of the algorithms in Table 5.1 on rings and double binary
trees in the high-heterogeneity setting α = 0.01. In both topologies, workers send and receive
two full models per update step. With 16 workers, RelaySGD with momentum seems to benefit
from double binary trees, RelaySGD has more consistently good results on a chain. We still opt
for double binary trees based on their promise to scale to many workers. Other methods do not
benefit from double binary trees over rings.

Algorithm Ring (Chain for RelaySGD) Double binary trees

RelaySGD 86.5% 84.6%
+local momentum 88.4% 89.1%

DP-SGD 53.9% 36.0%
+quasi-global mom. 63.3% 57.5%

D2 38.2% did not converge
+local momentum 61.0% did not converge

D.5.2 Scaling the number of workers on Cifar-10

In this experiment (Table D.7), use momentum-SGD on 16, 32 and 64 workers compare the
scaling of RelaySGD to SGP [Assran et al., 2019a]. We fix the parameter α that determines the
level of data heterogeneity to α = 0.01. Note that this level of α could lead to more challenging
heterogeneity when there are many workers (and hence many smaller local subsets of the data),
compared to when there are few workers.

186 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Table D.7 Scaling the number of workers in heterogeneous Cifar-10. The heterogeneity level
α = 0.01 is kept constant, although it does change its meaning when the number of workers
changes. RelaySGD scales at least well as Stochastic Gradient Push [Assran et al., 2019a]
(with equal communication budget). It is surprising that RelaySGD with 64 workers performs
significantly better on a chain topology than on the double binary trees. This behavior does not
match what our observations on quadratic toy-problems.

Algorithm Topology 16 workers 32 workers 64 workers

All-reduce (baseline) fully connected 89.5% 88.9% 87.2%
RelaySGD binary trees 89.3% 86.1% 63.7%

chain 88.4% 86.6% 83.1%
Stochastic gradient push time-varying exponential 87.0% 68.9% 62.4%

Table D.8 Tuned learning rates for Table D.7. We tuned the learning rate for each setting on
a multiplicative grid with spacing

√
2, and then repeated each experiment 3 times. If both

repetitions diverged, we would change to a smaller learning rate in the grid. Numbers in
parentheses are the ‘effective’ learning rates corrected according to § D.4.1.

Algorithm Topology 16 workers 32 workers 64 workers

All-reduce (baseline) fully connected 0.1 (0.100) 0.05 (0.050) 0.05 (0.050)
RelaySGD binary trees 0.282 (0.066) 0.2 (0.035) 0.2 (0.027)

chain 0.2 (0.047) 0.4 (0.070) 0.8 (0.108)
Stochastic gradient push time-varying exp. 0.025 (0.025) 0.025 (0.025) 0.0125 (0.013)

D.5.3 Independence of heterogeneity

The benefits of RelaySGD over some other methods shows most when workers have heteroge-
neous training objectives. Figure D.3 compares several algorithms with varying levels of data
heterogeneity on synthetic quadratics on a ring topology with 32 workers. Like D2, RelaySGD
converges linearly, and does not require more steps when the data becomes more heterogeneous.
Note that, even though RelaySGD operates on a chain network instead of a ring, it is as fast
as D2. On other topologies, such as a star topology, or on trees, RelaySGD can even be faster
than D2 (see Appendix D.5.4), while maintaining the same independence of heterogeneity.

D.5.4 Star topology

On star-topologies, the set of neighbors of worker 0 is {1, 2, . . . , n} and the set of neighbors
for every other worker is just {0}. While D2 and RelaySGD are equally fast in the synthetic
experiments on ring topologies in § D.5.3, RelaySGD is significantly faster on star topologies as
illustrates by Figure D.4.

D.6 RelaySum for distributed mean estimation 187

0 1000 2000
Steps

10−7

10−5

10−3

10−1

Su
bo

pt
im

al
ity

f(x̄
)−

f(x
?
)

ζ2 = 0 (equal optimum)

0 1000 2000
Steps

ζ2 = 0.1 (heterogeneous)

0 1000 2000
Steps

ζ2 = 10 (very heterogeneous)

Gossip
Gradient tracking
D2

RelaySGD

Fig. D.3 Random quadratics on ring networks of size 32 with varying data heterogeneity ζ2 and
all other theoretical quantities fixed. To simulate stochastic noise, we add random normal noise
to each gradient update. For each method, the learning rate is tuned to reach suboptimality
≤ 10−6 the fastest. RelaySGD operates on a chain network instead of a ring. Like D2, it does
not require more steps when the worker’s objectives are more heterogeneous.

0 50 100
Steps

10−9

10−7

10−5

10−3

10−1

Su
bo

pt
im

al
ity

f(x̄
)−

f(x
?
)

ζ2 = 0 (equal optimum)

0 200 400
Steps

ζ2 = 0.01 (heterogeneous)

0 500 1000
Steps

ζ2 = 0.1 (very heterogeneous)

Gossip
D2

RelaySGD
Gradient tracking

Fig. D.4 Random quadratics on star networks of size 32 with varying data heterogeneity ζ2

and all other theoretical quantities fixed. For each method, the learning rate is tuned to reach
suboptimality ≤ 10−6 the fastest. Like D2, RelaySGD does not require more steps when the
worker’s objectives are more heterogeneous. Note that for ζ2 = 0 (left figure), our tuning
procedure found a learning rate where Gradient Tracking does converge to <≤ 10−6, but does
not converge linearly. It would with a lower learning rate.

D.6 RelaySum for distributed mean estimation

We conceptually separate the optimization algorithm RelaySGD from the communication
mechanism RelaySum that uniformly distributes updates across a peer-to-peer network. We
made this choice because we envision other applications of the RelaySum mechanism outside of
optimization for machine learning. To illustrate this point, this section introduces RelaySum for
Distributed Mean Estimation (Algorithm 14).

In distributed mean estimation, workers are connected in a network just as in our optimization
setup, but instead of models gradients, they receive samples d̂(t) ∼ D of the distribution D at
timestep t. The workers estimate the mean d̄ the mean of D, and we measure their average
squared error to the true mean.

188 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Algorithm 14 RelaySum for Distributed Mean Estimation

Input: ∀ i, x
(0)
i = 0,y

(0)
i = 0, s

(0)
i = 0; ∀ i, j,m

(−1)
i→j = 0, tree network

1: for t = 0, 1, . . . do
2: for node i in parallel
3: for each neighbor j ∈ Ni do
4: Get a sample d̂

(t)
i ∼ D.

5: Send m
(t)
i→j = d̂

(t)
i +

∑
k∈Ni\j m

(t−1)
k→i .

6: Send c
(t)
i→j = 1 +

∑
k∈Ni\j c

(t−1)
k→i .

7: Receive m
(t)
j→i and c

(t)
j→i from node j.

8: Update the sum of samples y
(t+1)
i = y

(t)
i + d̂

(t)
i +

∑
j∈Ni

m
(t)
j→i.

9: Update the sum of counts s
(t+1)
i = s

(t)
i + 1 +

∑
j∈Ni

c
(t)
j→i.

10: Output average estimate x
(t)
i = y

(t)
i /s

(t)
i

11: end for

0 100 200 300 400
Steps

10−5

10−4

10−3

10−2

10−1

100

M
ea

n
sq

ua
re

d
er

ro
r

method = 1 / nT

0 100 200 300 400
Steps

method = RelaySum

0 100 200 300 400
Steps

method = Gossip

n
8
16
32
64
128

Fig. D.5 RelaySum for Distributed Mean Estimation compured to a gossip-based baseline, on a
ring topology (chain for RelaySGD). Workers receive samples from a normal distribution N (1, 1)
with mean 1. RelaySum, using Algorithm 14 achieves a variance reduction of O

(
1
nT

)
.

In algorithm 14, the output estimates x
(t)
i of a worker i is a uniform average of all samples

that can reach a worker i at that timestep. This algorithm enjoys variance reduction of O
(

1
nT

)
,

a desirable property that is in general not shared by gossip-averaging-based algorithms on
arbitrary graphs.

In Figure D.5, we compare this algorithm to a simple gossip-based baseline.

D.7 Alternative optimizer based on RelaySum

Apart from RelaySGD presented in the main paper, there are other ways to build optimization
algorithms based on the RelaySum communication mechanism. In this section, we describe
RelaySGD/Grad (Algorithm 15), an alternative to RelaySGD that does uses the RelaySum
mechanism on gradient updates rather than on models.

D.7 Alternative optimizer based on RelaySum 189

RelaySGD/Grad distributes each update uniformly over all workers in a finite number of
steps. This means that worker’s models differ by only a finite number of O(τmaxmaxn) that are
scaled as 1

n . With this property, it achieves tighter consensus than typical gossip averaging, and
it also works well in deep learning. Contrary to RelaySGD, however, this algorithm is not fully
independent of data heterogeneity, due to the delay in the updates. When the data heterogeneity
ζ2 > 0, RelaySGD/Grad does not converge linearly, but its suboptimality saturates at a level
that depends on ζ2.

The sections below study this alternative algorithm in detail, both theoretically and experi-
mentally. The key differences between RelaySGD and RelaySGD/Grad are:

RelaySGD RelaySGD/Grad

Provably independent of data heterogeneity ζ2 yes no
Distributes updates exactly uniform in finite steps no yes
Loses energy of gradient updates (§ D.4.1) yes no

Works experimentally with momentum / Adam yes no
Robust to lost messages + can support workers joining/leaving yes no

Algorithm 15 RelaySGD/Grad

Input: ∀ i, x
(0)
i = x(0); ∀ i, j,m

(−1)
i→j = 0, learning rate γ, tree network

1: for t = 0, 1, . . . do
2: for node i in parallel
3: u

(t)
i = −γ∇fi(x(t)

i , ξ
(t)
i)

4: for each neighbor j ∈ Ni do
5: Send m

(t)
i→j = u

(t)
i +

∑
k∈Ni\j m

(t−1)
k→i .

6: Receive m
(t)
j→i from node j.

7: x
(t+1)
i = x

(t)
i + 1

n

(
u
(t)
i +

∑
j∈Ni

m
(t)
j→i

)
8: end for

D.7.1 Theoretical analysis of RelaySGD/Grad

In this section we provide the theoretical analysis for RelaySGD/Grad. As the proof and analysis
is very similar to Koloskova et al. [2020b], we only provide the case for the convex objective.

Proof of RelaySGD/Grad for the convex case

Let x⋆ be the minimizer of f and define the following iterates

• rt := E ∥x̄(t) − x⋆∥2,

• et := f(x̄(t))− f(x⋆),

• Ξt :=
1
n

∑n
i=1 ∥x

(t)
i − x̄(t)∥2.

190 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Proposition D.9. Let function Fi(x, ξ), i ∈ [n] be L-smooth (Assumption A) with bounded
noise at the optimum (Assumption D). Then for any xi ∈ Rd,

Eξt1,...,ξ
t
n

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(x(t)
i)−∇Fi(x

(t)
i , ξ

(t)
i))

∥∥∥∥∥
2

≤ 3
n(L

2Ξt + 2Let + σ̄2)

Proof. In this proof we ignore the superscript t as it does not raise embiguity.

Eξ1,...,ξn

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(xi)−∇Fi(xi, ξi))

∥∥∥∥∥
2

≤ 1

n2

n∑
i=1

Eξi ∥∇fi(xi)−∇Fi(xi, ξi)∥2

=
1

n2

n∑
i=1

Eξi ∥∇fi(xi)−∇Fi(xi, ξi)±∇Fi(x̄, ξi)±∇fi(x̄)±∇Fi(x
⋆, ξi)±∇fi(x⋆)∥2

≤ 3

n2

n∑
i=1

Eξi

(
∥∇fi(xi)−∇fi(x̄) +∇Fi(x̄, ξi)−∇Fi(xi, ξi)∥2

+ ∥∇fi(x̄)−∇fi(x⋆) +∇Fi(x
⋆, ξi)−∇Fi(x̄, ξi)∥2 + ∥∇fi(x⋆)−∇Fi(x

⋆,xi)∥2)

≤ 3

n2

n∑
i=1

Eξi(∥∇Fi(xi, ξi)−∇Fi(x̄, ξi)∥2 + ∥∇Fi(x̄, ξi)−∇Fi(x
⋆, ξi)∥2 + ∥∇Fi(x

⋆,xi)−∇fi(x⋆)∥2)

≤ 3

n2

n∑
i=1

(L2∥xi − x̄∥2 + 2L(fi(x̄)− fi(x
⋆)) + σ2

i)

Lemma D.17. (Descent lemma for convex objective.) If γ ≤ 1
10L , then

rt+1 ≤ (1− γµ
2)rt − γet + 3γLΞt +

3
nγ

2σ̄2.

Proof. Throughout this proof we use E = Eξt1,...,ξ
t
n
. Expand iterate rt+1 = E ∥x̄(t+1) − x⋆∥2

E ∥x̄(t+1) − x⋆∥2

=E ∥x̄(t) − γ
n

∑n
i=1∇Fi(x

(t)
i , ξ

(t)
i)± γ

n

∑n
i=1∇fi(x

(t)
i)− x⋆∥2

=∥x̄(t) − x⋆ − γ
n

∑n
i=1∇fi(x

(t)
i)∥2 + E ∥ γn

∑n
i=1∇Fi(x

(t)
i , ξ

(t)
i)− γ

n

∑n
i=1∇fi(x

(t)
i)∥2

+ 2E⟨x̄(t) − x⋆ − γ
n

∑n
i=1∇fi(x

(t)
i), γn

∑n
i=1∇Fi(x

(t)
i , ξ

(t)
i)− γ

n

∑n
i=1∇fi(x

(t)
i)⟩

=∥x̄(t) − x⋆ − γ
n

∑n
i=1∇fi(x

(t)
i)∥2 + E ∥ γn

∑n
i=1∇Fi(x

(t)
i , ξ

(t)
i)− γ

n

∑n
i=1∇fi(x

(t)
i)∥2

D.7 Alternative optimizer based on RelaySum 191

The second term is bounded by Proposition D.9. Consider the first term

∥x̄(t) − x⋆ − γ
n

∑n
i=1∇fi(x

(t)
i)∥2

≤∥x̄(t) − x⋆∥2 + γ2 ∥ 1n
∑n

i=1∇fi(x
(t)
i)∥2︸ ︷︷ ︸

=:T1

−2γ ⟨x̄t − x⋆, 1
n

∑n
i=1∇fi(x

(t)
i)⟩︸ ︷︷ ︸

=:T2

.

First consider T1,

T1 = ∥ 1n
∑n

i=1(∇fi(x
(t)
i)−∇fi(x̄(t)) +∇fi(x̄(t))−∇fi(x⋆))∥2

≤ 2L2

n

∑n
i=1 ∥x

(t)
i − x̄(t)∥2 + 2

n

∑n
i=1 ∥∇fi(x̄(t))−∇fi(x⋆)∥2

(D.4)
≤ 2L2

n

∑n
i=1 ∥x

(t)
i − x̄(t)∥2 + 4L

n

∑n
i=1(fi(x̄

(t))− fi(x
⋆)− ⟨x̄(t) − x⋆,∇fi(x⋆)⟩)

= 2L2

n

∑n
i=1 ∥x

(t)
i − x̄(t)∥2 + 4L(f(x̄(t))− f(x⋆))

= 2L2Ξt + 4Let.

Consider T2,

T2 =
1
n

∑n
i=1(⟨x̄(t) − x

(t)
i ,∇fi(x(t)

i)⟩+ ⟨x(t)
i − x⋆,∇fi(x(t)

i)⟩)

≥ 1
n

∑n
i=1

(
fi(x̄

(t))− fi(x
(t)
i)− L

2 ∥x̄
(t) − x

(t)
i ∥2 + ⟨x

(t)
i − x⋆,∇fi(x(t)

i)⟩
)

≥ 1
n

∑n
i=1

(
fi(x̄

(t))− fi(x
(t)
i)− L

2 ∥x̄
(t) − x

(t)
i ∥2 + fi(x

(t)
i)− fi(x

⋆) + µ
2∥x

(t)
i − x⋆∥2

)
= f(x̄(t))− f(x⋆) + 1

n

∑n
i=1

(
µ
2∥x

(t)
i − x⋆∥2 − L

2 ∥x̄
(t) − x

(t)
i ∥2

)
≥ f(x̄(t))− f(x⋆) + 1

n

∑n
i=1

(
µ
4∥x̄

(t) − x⋆∥2 − µ+L
2 ∥x̄

(t) − x
(t)
i ∥2

)
≥ et +

µ
4 rt − LΞt

where the first inequality and the second inequality uses the L-smoothness and µ-convexity of
fi.

Combine both T1, T2 and Proposition D.9 we have

rt+1 ≤ rt + γ2(2L2Ξt + 4Let)− 2γ(et +
µ
4 rt − LΞt) +

3
nγ

2(L2Ξt + 2Let + σ̄2)

= (1− γµ
2)rt − 2γ(1− 5Lγ)et + γL(5γL+ 2)Ξt +

3
nγ

2σ̄2.

In addition if γ ≤ 1
10L , then

rt+1 ≤ (1− γµ
2)rt − γet + 3γLΞt +

3
nγ

2σ̄2.

192 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Lemma D.18. Bound the consensus distance as follows

Ξt ≤ 3γ2τmax
∑t−1

t′=[t−τmax]+

(
2L2Ξt′ + 4Let′ + (σ̄2 + ζ̄2)

)
.

Furthermore, multiply with a non-negative sequence {wt}t≥0 and average over time gives

1
WT

∑T
t=0wtΞt ≤ 1

6LWT

∑T
t=0wtet + 6γ2τmax

2(σ̄2 + ζ̄2)

where WT :=
∑T

t=0wt and γ ≤ 1
10Lτmax

.

Proof. Throughout this proof we use E = Eξt1,...,ξ
t
n
. Denote [x]+ := max{x, 0}. For all i ∈ [n],

E∥eti∥2 =E∥ γn
∑n

j=1

∑t−1
t′=[t−τmaxij]+

∇Fj(x
(t′)
j , ξ

(t′)
j)±∇fj(x(t′)

j)∥2

≤γ2

n

∑n
j=1 E∥

∑t−1
t′=[t−τmaxij]+

∇Fj(x
(t′)
j , ξ

(t′)
j)±∇fj(x(t′)

j)∥2

≤γ2τmax

n

∑n
j=1

∑t−1
t′=[t−τmax]+

E∥∇Fj(x
(t′)
j , ξ

(t′)
j)±∇fj(x(t′)

j)∥2

=γ2τmax

n

∑n
j=1

∑t−1
t′=[t−τmax]+

E∥∇Fj(x
(t′)
j , ξ

(t′)
j)−∇fj(x(t′)

j)∥2

+ γ2τmax

n

∑n
j=1

∑t−1
t′=[t−τmax]+

∥∇fj(x(t′)
j)∥2︸ ︷︷ ︸

=:T3

We can apply Proposition D.9 to the first term

γ2τmax

n

∑n
j=1

∑t−1
t′=[t−τmax]+

E∥∇Fj(x
(t′)
j , ξ

(t′)
j)−∇fj(x(t′)

j)∥2 ≤ 3γ2τmax
∑t−1

t′=[t−τmax]+
(L2Ξt′ + 2Let′ + σ̄2).

The second term T3 can be bounded by adding 0 = ±∇fj(x̄(t′))±∇fj(x⋆) inside the norm

T3 ≤ γ2τmax

n

∑n
j=1

∑t−1
t′=[t−τmax]+

∥∇fj(x(t′)
j)±∇fj(x̄(t′))±∇fj(x⋆)∥2

≤ 3γ2τmax

n

∑n
j=1

∑t−1
t′=[t−τmax]+

(
L2∥x(t′)

j − x̄(t′)∥2 + ∥∇fj(x̄(t′))−∇fj(x⋆)∥2 + ∥∇fj(x⋆)∥2
)

= 3γ2τmax
∑t−1

t′=[t−τmax]+

(
L2Ξt′ +

1
n

∑n
j=1∥∇fj(x̄(t′))−∇fj(x⋆)∥2 + ζ̄2

)
(D.4)
≤ 3γ2τmax

∑t−1
t′=[t−τmax]+

(
L2Ξt′ + 2L(f(x̄(t′))− f(x⋆)) + ζ̄2

)
Therefore

E∥eti∥2 ≤3γ2τmax
∑t−1

t′=[t−τmax]+
(2L2Ξt′ + 4Let′ + (σ̄2 + ζ̄2)).

Average over i on both sides and note the right hand side does not depend on index i,

Ξt =
1
n

∑n
i=1 ∥eti∥2 ≤ 3γ2τmax

∑t−1
t′=[t−τmax]+

(
2L2Ξt′ + 4Let′ + σ̄2

)
.

D.7 Alternative optimizer based on RelaySum 193

Multiply both sides by wt and sum over t gives

1
WT

∑T
t=0wtΞt ≤ 3γ2τmax

2

WT

∑T
t=0wt

(
2L2Ξt + 4Let + σ̄2

)
= 6γ2L2τmax

2

WT

∑T
t=0wtΞt +

12γ2Lτmax
2

WT

∑T
t=0wtet + 3γ2τmax(σ̄

2 + ζ̄2)

where WT :=
∑T

t=0wt. Rearrage the terms and let γ ≤ 1
10Lτmax

give

1
WT

∑T
t=0wtΞt ≤

1

1− 6γ2L2τmax
2

(
12γ2Lτmax

2

WT

∑T
t=0wtet +

3γ2τmax
2

n (σ̄2 + ζ̄2)
)

≤ 1
6LWT

∑T
t=0wtet + 6γ2τmax

2(σ̄2 + ζ̄2)

Theorem D.10. For convex objective, we have

1

T + 1

T∑
t=0

(
f(x̄(t))− f(x⋆)

)
≤ 4

(
3σ̄2r0

n(T + 1)

) 1
2

+ 4

(
6τmax

√
L(σ̄2 + ζ̄2)r0
T + 1

) 2
3

+
10L(τmax + 1)r0

T + 1
.

where r0 = ∥x0 − x⋆∥2.

Remark 19. For target accuracy ϵ > 0, then 1
T+1

∑T
t=0

(
f(x̄(t))− f(x⋆)

)
< ϵ after

O

(
σ̄2r0
nϵ2

+
τmax

√
L(σ̄2 + ζ̄2)r0

ϵ3/2
+

10L(τmax + 1)r0
ϵ

)

iterations. This result is similar to [Koloskova et al., 2020b, Theorem 2] except that here we
replace spectral gap p with the inverse of maximum delay 1

τmax
.

Proof. Consider Lemma D.17 and multiply both sides with wt
γ and average over time

1
WT

∑T
t=0wtet ≤ 1

WT

∑T
t=0(

wt
γ rt − wt

γ rt+1) +
3L
WT

∑T
t=0wtΞt +

3γ
nWT

∑T
t=0wtσ̄

2

≤ 1
WT

∑T
t=0(

wt
γ rt − wt

γ rt+1) +
1

2WT

∑T
t=0wtet + 18γ2τmax

2L(σ̄2 + ζ̄2) + 3γσ̄2

n

where the second inequality comes from Lemma D.18. Then

1
2WT

∑T
t=0wtet ≤ 1

WT

∑T
t=0(

wt
γ rt − wt

γ rt+1 +
3σ̄2

n γ + 18τmax
2L(σ̄2 + ζ̄2)γ2).

We can further consider

3L
WT

∑T
t=0wtΞt =

1
2WT

∑T
t=0wtet + 18τmax

2L(σ̄2 + ζ̄2)γ2

≤ 1
WT

∑T
t=0(

wt
γ rt − wt

γ rt+1 +
3σ̄2

n γ + 36τmax
2L(σ̄2 + ζ̄2)γ2) =: ΨT .

194 RelaySum for Decentralized Deep Learning on Heterogeneous Data

Taking {wt = 1}t≥0, then

ΨT ≤ r0
γ(T+1) +

3σ̄2

n γ + 36τmax
2L(σ̄2 + ζ̄2)γ2.

Apply Lemma D.13 we have

ΨT ≤ 2

(
3σ̄2r0

n(T + 1)

) 1
2

+ 2

(
6τmax

√
L(σ̄2 + ζ̄2)r0
T + 1

) 2
3

+
dr0

T + 1
.

where d = max{10L, 10Lτmax} ≤ 10L(τmax + 1) and at the same time

1

2(T + 1)

T∑
t=0

et ≤2
(

3σ̄2r0
n(T + 1)

) 1
2

+ 2

(
6τmax

√
L(σ̄2 + ζ̄2)r0
T + 1

) 2
3

+
dr0

T + 1

3L

T + 1

T∑
t=0

Ξt ≤2
(

3σ̄2r0
n(T + 1)

) 1
2

+ 2

(
6τmax

√
L(σ̄2 + ζ̄2)r0
T + 1

) 2
3

+
dr0

T + 1

D.7.2 Empirical analysis of RelaySGD/Grad

In Table D.9, we compare RelaySGD/Grad to RelaySGD on deep-learning based image classifi-
cation on Cifar-10 with VGG-11. Without momentum, and with low levels of heterogeneity,
RelaySGD/Grad sometimes outperforms RelaySGD.

Figure D.6 illustrates a key difference between RelaySGD/Grad and RelaySGD. While
RelaySGD behaves independently of heterogeneity, and converges linearly with a fixed step size,
RelaySGD/Grad reaches a plateau based on the learning rate and level of heterogeneity.

Table D.9 Comparing RelaySGD/Grad with RelaySGD on Cifar-10 Krizhevsky [2012] with the
VGG-11 architecture. We vary the data heterogeneity α [Lin et al., 2021b] between 16 workers.
For low-heterogeneity cases and without momentum, RelaySGD/Grad sometimes performs
better than RelaySGD.

Algorithm Topology α = 1.00 α = 0.1 α = .01
(most homogeneous) (most heterogeneous)

All-reduce (baseline) fully connected 87.0% 87.0% 87.0%
+momentum 90.2% 90.2% 90.2%

RelaySGD chain 87.3% 87.2% 86.5%
+local momentum 89.5% 89.2% 88.4%

RelaySGD/Grad chain 88.8% 88.5% 83.5%
+local momentum 86.9% 87.8% 68.6%

D.7 Alternative optimizer based on RelaySum 195

0 100 200
Steps

10−9

10−7

10−5

10−3

10−1

Su
bo

pt
im

al
ity

f(x̄
)−

f(x
?
)

ζ2 = 0 (equal optimum)

0 200 400
Steps

ζ2 = 0.01 (heterogeneous)

0 1000 2000
Steps

ζ2 = 1 (very heterogeneous)

Gossip
RelaySGD/Grad
RelaySGD

Fig. D.6 Comparing RelaySGD/Grad against RelaySGD on random quadratics with varying
levels of heterogeneity ζ2, without stochastic noise, on a ring/chain of 32 nodes. Learning rates
are tuned to reach suboptimality ≤ 10−6 as quickly as possible. In contrast to RelaySGD,
RelaySGD/Grad with a fixed learning rate does not converge linearly. Compared to DP-SGD
(Gossip), RelaySGD/Grad is still less sensitive to data heterogeneity.

Appendix E

Debiasing Conditional Stochastic
Optimization

E.1 Missing Pseudocodes

We present pseudocodes of E-BSGD and E-BSpiderBoost scheme in Algorithms 16 and 17
respectively.

Algorithm 16 E-BSGD

1: Input: x0 ∈ Rd, step-size γ, batch sizes m
2: for t = 0, 1, . . . , T − 1 do
3: Draw one sample ξ and compute extrapolated gradient Gt+1

E-BSGD from (6.7)
4: xt+1 ← xt − γGt+1

E-BSGD

5: Output: xs picked uniformly at random from {xt}T−1
t=0

E.2 Missing Details from § 6.2

E.2.1 Other Related Work

CSO. Dai et al. [2017] proposed a primal-dual stochastic approximation algorithm to solve a
min-max reformulation of CSO, employing the kernel embedding techniques. However, this
method requires convexity of fξ and linearity of gη, which are not satisfied by general applications
when neural networks are involved. Goda and Kitade [2022] showed that a special class of CSO
problems can be unbiased, e.g., when fξ measures the squared error between some u(ξ) and
Eη|ξ[gη(x; ξ], giving rise to this objective function Eξ[(u(ξ)− Eη|ξ[gη(x; ξ])

2]. However, they did
not show any improvement over the sample complexity of BSGD (i.e., O(ϵ−6)). Hu et al. [2020b]
also analyzed lower bounds on the minimax error for the CSO problem and showed that for a
specific class of biased gradients with O(ϵ) bias (same bias as BSGD) and variance O(1) the

198 Debiasing Conditional Stochastic Optimization

Algorithm 17 E-BSpiderBoost

1: Input: x0 ∈ Rd, step-size γ, batch sizes B1, B2, Probability pout
2: for t = 0, 1, . . . , T − 1 do
3: Draw χout from Bernoulli(pout)
4: if (t = 0) or (χout = 1) then ◃ Large batch
5: Draw B1 outer samples {ξ1, . . . , ξB1}
6: Compute extrapolated gradient Gt+1

E-BSGD with (6.7)

Gt+1
E-BSB = 1

B1

∑
ξ∈B1

Gt+1
E-BSGD

7: else ◃ Small batch
8: Draw B2 outer samples {ξ1, . . . , ξB2}
9: Compute extrapolated gradient Gt+1

E-BSGD with (6.7)

Gt+1
E-BSB = Gt

E-BSB + 1
B2

∑
ξ∈B2

(Gt+1
E-BSGD −Gt

E-BSGD)

10: xt+1 = xt − γGt+1
E-BSB

11: Output: xs picked uniformly at random from {xt}T−1
t=0

bound achieved by BSpiderBoost is tight. However, these lower bounds are not applicable in
settings such as ours (and also to [Hu et al., 2021]) where the bias is smaller than the BSGD
bias.

Variance Reduction. The reduction of variance in stochastic optimization is a crucial approach
to decrease sample complexity, particularly when dealing with finite-sum formulations of the form
minx

1
n

∑n
i=1 fi(x). Pioneering works such as Stochastic Average Gradient (SAG) [Schmidt et al.,

2017], Stochastic Variance Reduced Gradient (SVRG) [Johnson and Zhang, 2013; Reddi et al.,
2016a], and SAGA [Defazio et al., 2014; Reddi et al., 2016b] improved the iteration complexity
from O(ϵ−4) in Stochastic Gradient Descent (SGD) to O(ϵ−2). Subsequent research, including
Stochastic Path-Integrated Differential Estimator (SPIDER) [Fang et al., 2018] and Stochastic
Recursive Gradient Algorithm (SARAH) [Nguyen et al., 2017], expanded the application of
these techniques to both finite-sum and online scenarios, where n is large or possibly infinite.
These methods boast an improved sample complexity of min(

√
nϵ−2, ϵ−3). SpiderBoost [Wang

et al., 2019], achieves the same near-optimal complexity performance as SPIDER, but allows a
much larger step size and hence runs faster in practice than SPIDER. In this paper, we use
a probabilistic variant of SpiderBoost as the variance reduction module for CSO and FCCO
problems. We highlight that alternative techniques, such as SARAH, can also be applied and
offer similar guarantees.

Bias Correction. One of the classic problems in statistics is to design procedures to reduce
the bias of estimators. Well-established general bias correction techniques, such as the jackknife
[Tukey, 1958], bootstrap [Efron, 1992], Taylor series [Han et al., 2020; Withers, 1987], have
been extensively studied and applied in various contexts [Jiao and Han, 2020]. However, these

E.3 Missing Details from § 6.3 199

methods are predominantly examined in relation to standard statistical distributions, with
limited emphasis on their adaptability to optimization problems. Our proposed extrapolation-
based approach is derived from sample-splitting methods [Han et al., 2020], specifically tailored
and analyzed for optimization problems involving unknown distributions.

Stochastic Composition Optimization. Finally, a closely related class of problems, called
stochastic composition optimization, has been extensively studied (e.g., [Ermoliev and Norkin,
2013; Wang et al., 2016, 2017; Yermol’yev, 1971]) in the literature where the goal is:

min
x∈Rd

Eξ[fξ(Eη[gη(x)])]. (E.1)

Despite having nested expectations in their formulations (CSO) and (E.1) are fundamentally
different: a) in stochastic composite optimization the inner randomness η is conditionally
dependent on the outer randomness ξ and b) in CSO the inner random function gη(x, ξ) depends
on both ξ and η. These differences lead to quite different sample complexity bounds for these
problems, as explored in Hu et al. [2020a]. In fact, Zhang and Xiao [2021] presented a near
optimal complexity of O(min(ϵ−3,

√
nϵ−2)) for stochastic composite optimization problems using

nested variance reduction. While Wang et al. [2016] also use the "extrapolation" technique,
their motivation and formula are significantly different from ours and cannot reduce the bias in
the CSO problem.

E.3 Missing Details from § 6.3

Lemma E.1 (Moments of Dm). The moments of δ ∈ Dm are bounded as follows

E[(δ − E[δ])2] = σ2
m , |E[(δ − E[δ])3]| = σ3

m2 , E[(δ − E[δ])4] = σ4
m3 +

3(m−1)σ2
2

m3 .

More generally, for k ≥ 2, |E[(δ − E[δ])k]| = O(m−⌈k/2⌉).

Proof. Define δ̂ = δ − E[δ] as the centered random variable. Now

E[(δ − E[δ])k] = E[δ̂k].

So we focus on E[δ̂k] in the remainder of the proof. For k = 2,

|E[δ̂2]| = 1
m2 |E[

∑m
i=1 δ̂i]

2| = 1
m2

∣∣∣E [∑i δ̂
2
i + 2

∑
i<j δ̂iδ̂j

]∣∣∣ = σ2
m .

200 Debiasing Conditional Stochastic Optimization

For k = 3,

|E[δ̂3]| = 1
m3 |E[

∑m
i=1 δ̂i]

3|

= 1
m3

∣∣∣E [∑i δ̂
3
i + 3

∑
i ̸=j δ̂

2
i δ̂j + 6

∑
i<j<k δ̂iδ̂j δ̂k

]∣∣∣
= σ3

m2 .

For k = 4,

|E[δ̂4]| = 1
m4 |E[

∑m
i=1 δ̂i]

4|

= 1
m4

∣∣∣E [∑i δ̂
4
i + 4

∑
i ̸=j δ̂

3
i δ̂j + 6

∑
i<j δ̂

2
i δ̂

2
j + 24

∑
i<j<k<l δ̂iδ̂j δ̂kδ̂l

]∣∣∣
= 1

m4

∣∣∣mE[δ̂4i] + 6m(m−1)
2 E[δ̂2i]E[δ̂

2
j]
∣∣∣

= σ4
m3 +

3(m−1)σ2
2

m3 .

For k = 5,

|E[δ̂5]| = 1
m5 |E[

∑m
i=1 δ̂i]

5|

= 1
m5

∣∣∣E [∑i δ̂
5
i + 10

∑
i ̸=j δ̂

3
i δ̂

2
j

]∣∣∣
= 1

m5

∣∣∣mE[δ̂5i] + 10m(m− 1)E[δ̂3i]E[δ̂
2
j]
∣∣∣

= σ5
m4 + 10(m−1)σ3σ2

m4 .

For general k > 0, we expand the following term as a function of m

|E[δ̂k]| = 1
mk |E[

∑m
i=1 δ̂i]

k|.

As E[δ̂i] = 0 and δ̂i and δ̂j are independent for different i and j, the outcome has the following
form

|E[δ̂k]| = 1

mk
O

 ∑
2a2+3a3+···+kak=k

ai≥0 ∀i

m
∑k

i=2 aiσa2
2 σa3

3 · · ·σ
ak
k

 (E.2)

where
∑k

i=2 ai is the count of independent {δ̂i} used in σa2
2 σa3

3 · · ·σ
a4
4 . Among the terms in

(E.2), the dominating one in terms of m is one with largest
∑k

i=2 ai, i.e.

|E[δ̂k]| =

 1
mkO(mk/2)σ

k/2
2 if k even,

1
mkO(m⌊k/2⌋)σ

⌊k/2⌋−1
2 σ3 if k odd.

E.3 Missing Details from § 6.3 201

Then, we can simplify the upper right-hand side with

|E[δ̂k]| = O(m−k+⌊k/2⌋),

which gives all the desired results.

Proposition E.1 (First-order Guarantee). Assume that Dm and q(·) satisfy Assumption B
and C respectively with k = 1. Then, ∀s ∈ R,

∣∣∣E [L(1)Dm
q(s)

]
− q(s+ E[δ])

∣∣∣ ≤ a2σ2/(2m).

Proof. Let h = E[δ]. If the function q ∈ C2, then the Taylor expansion at s+ h with remainders
leads to

E[q(s+ δ)] = q(s+ h) + q′(s+ h)E[δ − h] + 1
2 E[q′′(φ1)(δ − h)2]

where φ1 between s+ h and s+ δ. Then the error of extrapolation becomes

|E[q(s+ δ)]− q(s+ h)| =
∣∣1
2 E[q′′(φ1)(δ − h)2]

∣∣ ≤ a2
2 E[(δ − h)2].

By Assumption C and Lemma E.1, we have that

|E[q(s+ δ)]− q(s+ h)| ≤ a2
2 E[(δ − h)2] = a2

2 E[(δ − h)2] = a2σ2
2m .

This completes the proof.

Proposition 6.1 (Second-order Guarantee). Assume that distribution Dm and q(·) satisfies
Assumption B and C respectively with k = 2. Then, for all s ∈ R,

∣∣∣E [L(2)Dm
q(s)

]
− q(s+ E[δ])

∣∣∣ ≤
4a3σ3+9a4σ2

2
48m2 + 5a4

96
σ4−3σ2

2
m3 .

Proof. Let h = E[δ]. If the function q ∈ C4, then the Taylor expansion at s+ h with remainders
leads to

E[q(s+ δ1)] =q(s+ h) + q′(s+ h)E[δ1 − h] + q′′(s+h)
2 E[(δ1 − h)2] + q(3)(s+h)

6 E[(δ1 − h)3]

+ 1
24 E[q(4)(φ1)(δ1 − h)4]

E[q(s+ δ2)] =q(s+ h) + q′(s+ h)E[δ2 − h] + q′′(s+h)
2 E[(δ2 − h)2] + q(3)(s+h)

6 E[(δ2 − h)3]

+ 1
24 E[q(4)(φ2)(δ2 − h)4]

E[q(s+ δ1+δ2
2)] =q(s+ h) + q′(s+ h)E[δ1+δ2

2 − h] + q′′(s+h)
2 E[(δ1+δ2

2 − h)2]

+ q(3)(s+h)
6 E[

(
δ1+δ2

2 − h
)3

] + 1
24 E[q(4)(φ3)

(
δ1+δ2

2 − h
)4

]

where φ1, φ2, φ3 between s+ h and s+ δ1, s+ δ2, s+ δ3 respectively.

202 Debiasing Conditional Stochastic Optimization

As E[δ − h] = 0, the error of extrapolation becomes

|E[L2Dm
q(s)]− q(s+ h)|

≤
∣∣∣∣2E

[
q(3)(s+h)

6

(
δ1+δ2

2 − h
)3]
− 1

2

(
E[q

(3)(s+h)
6 (δ1 − h)3] + E[q

(3)(s+h)
6 (δ2 − h)3]

)∣∣∣∣
+

∣∣∣∣2E

[
q(4)(φ3)

24

(
δ1+δ2

2 − h
)4]
− 1

2

(
E[q

(4)(φ1)
24 (δ1 − h)4] + E[q

(4)(φ2)
24 (δ2 − h)4]

)∣∣∣∣
≤a3

6

∣∣∣∣2E

[(
δ1+δ2

2 − h
)3]
− 1

2

(
E[(δ1 − h)3] + E[(δ2 − h)3]

)∣∣∣∣
+

∣∣∣∣2E

[
q(4)(φ3)

24

(
δ1+δ2

2 − h
)4]
− 1

2

(
E[q

(4)(φ1)
24 (δ1 − h)4] + E[q

(4)(φ2)
24 (δ2 − h)4]

)∣∣∣∣
≤a3

6

∣∣∣∣2E

[(
δ1+δ2

2 − h
)3]
− 1

2

(
E[(δ1 − h)3] + E[(δ2 − h)3]

)∣∣∣∣
+

∣∣∣∣2E

[
|q(4)(φ3)|

24

(
δ1+δ2

2 − h
)4]

+ 1
2

(
E[|q

(4)(φ1)|
24 (δ1 − h)4] + E[|q

(4)(φ2)|
24 (δ2 − h)4]

)∣∣∣∣
≤a3

6

∣∣∣∣2E

[(
δ1+δ2

2 − h
)3]
− 1

2

(
E[(δ1 − h)3] + E[(δ2 − h)3]

)∣∣∣∣
+ a4

24

∣∣∣∣2E

[(
δ1+δ2

2 − h
)4]

+ 1
2

(
E[(δ1 − h)4] + E[(δ2 − h)4]

)∣∣∣∣ .
where the second inequality uses the upper bound on q(3)(·) (Assumption C) and the third
inequality uses (δ− h)4 is non-negative and the last inequality uses the uniform bound on q(4)(·)
(Assumption C). Then

|E[L2Dm
q(s)]− q(s+ h)|

≤a3
12 |E(δ1 − h)3|+ a4

24

(
2E
(
δ1+δ2

2 − h
)4

+ E(δ1 − h)4
)

≤ a3σ3
12m2 + a4

24

(
σ4
4m3 +

3(2m−1)σ2
2

4m3 + σ4
m3 +

3(m−1)σ2
2

m3

)
≤ a3σ3

12m2 + a4
24

(
9σ2

2
2m2 +

5(σ4−3σ2
2)

4m3

)
≤4a3σ3+9a4σ2

2
48m2 + 5a4

96
σ4−3σ2

2
m3 .

we first use that E[(δ1 − h)3] = E[(δ2 − h)3] = 4E[(δ1+δ2
2 − h)3] and the uses the bound on

moments in Lemma E.1. Note that E
(
δ1+δ2

2 − h
)4

can be seen as the 4th order moments of a
batch size of 2m.

Proposition E.2. Assume q ∈ C6. Then L(3)Dm
as defined below is a third-order extrapolation

operator.

L(3)Dm
q : s 7→ (− 1

36L
(2)
Dm

+ 5
9L

(2)
D2m
− 3

4L
(2)
D3m
− 16

9 L
(2)
D4m

+ 3L(2)D6m
)q(s).

E.3 Missing Details from § 6.3 203

Proof. Let h = E[δ]. If q ∈ C2k, then q has the following Taylor expansion

E[q(s+ δ)] = q(s+ h)︸ ︷︷ ︸
zero order term

+q′(s+ h)E[δ − h] + q′′(s+h)
2 E[(δ − h)2]︸ ︷︷ ︸

second order term

+ . . .

+ q(2k−1)(s+h)
(2k−1)! E[(δ − h)2k−1] + 1

2k! E[q(2k)(φ)(δ − h)2k].

Eliminate the third order term in the Taylor expansion. Consider the following affine
combination which

F (3)
Dm

q : s 7→ α1L(2)Dm
q(s) + α2L(2)D2m

q (s) .

We determine α1 and α2 by expanding L(2)Dm
q(s) and L(2)D2m

q(s) and analyze the coefficients of
terms:

• (Affine). Taylor expansion of F (3)
Dm

q(s) at s+ h should have zero order term q(s+ h), i.e.

α1q(s+ h) + α2q(s+ h) = q(s+ h).

• (Eliminate third term). Taylor expansion of F (3)
Dm

q(s) at s+ h should have third order
term E[(δ − h)3]. That is,

α1 E[(δ1 − h)3] + α2 E

[(
δ1+δ2

2 − h
)3]

= 0.

This is equivalent to

α1 E[(δ1 − h)3] + α2
4 E

[
(δ1 − h)3

]
= 0.

Therefore, α1 and α2 can be determined through the following linear system

α1 + α2 = 1

α1 +
1
4α2 = 0.

The solution is α1 = −1
3 and α2 =

4
3 .

For k = 3 order extrapolation, consider the following

L(3)Dm
q : s 7→ α′

1F
(3)
Dm

q(s) + α′
2F

(3)
D2m

q (s) + α′
3F

(3)
D3m

q (s) .

We determine α′
1, α′

2 and α′
3 by satisfying the following two conditions

204 Debiasing Conditional Stochastic Optimization

• (Affine). Taylor expansion of L(3)Dm
q(s) at s+ h should have zero order term q(x+ h), i.e.

(α′
1 + α′

2 + α′
3)q(x+ h) = q(x+ h).

• Taylor expansion of L(3)Dm
q(s) at s+ h should have 4th order term E[(δ − h)4]. That is

α′
1 E[(δ1 − h)4] + α′

2 E

[(
δ1+δ2

2 − h
)4]

+ α′
3 E

[(
δ1+δ2+δ3

3 − h
)4]

= 0.

This is equivalent to (
α′
1 +

α′
2
8 +

α′
3

27

)
E[(δ1 − h)4] = 0(

3
8α

′
2 +

2
9α

′
2

) (
E[(δ1 − h)2]

)2
= 0.

Therefore, α′
1, α′

2 and α′
3 can be determined through the following linear system

α′
1 + α′

2 + α′
3 = 1

α′
1 +

1
8α

′
2 +

1
27α

′
3 = 0

α′
1 +

3
8α

′
2 +

2
9α

′
3 = 0.

The solution is α′
1 = 1

12 , α
′
2 = −4

3 and α′
3 = 9

4 . Then consider the Taylor expansion of L(3)Dm
q(s)

at s+ h with (6.2), we can

|E[L(3)Dm
q(s)]− q(s+ h)| .

∣∣∣q(5)(s+ h)E[(δ − h)5]
∣∣∣+ ∣∣∣E[q(6)(φδ)(δ − h)6]

∣∣∣ . O((a5 + a6)m
−3)

where the first inequality uses the fact that L(3)Dm
is an affine mapping and the last inequality

uses Lemma E.1. Therefore, L(3)Dm
is a 3rd-order extrapolation operator. We can expand it into

L(3)Dm
q : s 7→ 1

12

(
−1

3L
(2)
Dm

q(s) + 4
3L

(2)
D2m

q (s)
)
− 4

3

(
−1

3L
(2)
D2m

q(s) + 4
3L

(2)
D4m

q (s)
)

+ 9
4

(
−1

3L
(2)
D3m

q(s) + 4
3L

(2)
D6m

q (s)
)

= (− 1
36L

(2)
Dm

+ 5
9L

(2)
D2m
− 3

4L
(2)
D3m
− 16

9 L
(2)
D4m

+ 3L(2)D6m
)q(s).

Lemma E.2 (Variance Bound). Assume that q : Rp → Rℓ is in C4 and Dm is the distribution
in Assumption B. Suppose that the variance of q(s+ δ) is bounded as

E[∥q(s+ δ)− E[q(s+ δ)]∥22] ≤ V 2

m + C.

E.4 Stationary Point Convergence Proofs from § 6.4 (CSO) 205

Then the variance of extrapolation L(2)Dm
q(s) is upper bounded by

E
[
∥L(2)Dm

q(s)− E[L(2)Dm
q(s)]∥22

]
≤ 14(V

2

m + C).

Proof. Let us use the definition of L(2)Dm
q(s):

E
[
∥L(2)Dm

q(s)− E[L(2)Dm
q(s)]∥22

]
≤ E

[
∥2q(s+ δ1+δ2

2)− q(s+δ1)+q(s+δ2)
2 − E

[
2q(s+ δ1+δ2

2)− q(s+δ1)+q(s+δ2)
2

]
∥22
]

≤ 3E
[
∥2q(s+ δ1+δ2

2)− E
[
2q(s+ δ1+δ2

2)
]
∥22
]
+ 3E

[
∥ q(s+δ1)

2 − E
[
q(s+δ1)

2

]
∥22
]

+ 3E[∥ q(s+δ2)
2 − E

[
q(s+δ2)

2

]
∥22]

≤ 12(V
2

2m + C) + 3
4(

V 2

m + C) + 3
4(

V 2

m + C)

= 15V 2

2m + 27C
2 .

This completes the proof.

E.4 Stationary Point Convergence Proofs from § 6.4 (CSO)

In this section, we provide the convergence proofs for the CSO problem. We start by establishing
some helpful lemmas in § E.4.1. In § E.4.2, we reanalyze the BSGD algorithm to obtain explicit
bias and variance bounds, which are then useful when we analyze E-BSGD in § E.4.3. Similarly,
we reanalyze BSpiderBoost in § E.4.4 and use the resulting bias and variance bounds for the
analysis of E-BSpiderBoost in § E.4.5.

Note that throughout our analyses, we define Et+1[·|t] as the expectation of randomness at
time t+ 1 conditioning on the randomness until time t. When there is no ambiguity, we use E[·]
instead of Et+1[·|t].

E.4.1 Helpful Lemmas

Lemma E.3 (Sufficient Decrease). Suppose Assumption I holds true and γ ≤ 1
2LF

then

∥∇F (xt)∥22 ≤
2(E[F (xt+1)]−F (xt))

γ + LFγE t+1
var + E t+1

bias ,

where E[·] denote conditional expectation over the randomness at time t conditioned on all of
the past randomness until time t.

Proof. In this proof, we use E[·] to denote conditional expectation over the randomness at time
t conditioned on all the past randomness until time t.

206 Debiasing Conditional Stochastic Optimization

Let us expand F (xt+1) and apply the LF -smoothness of F

E[F (xt+1)] ≤ F (xt)− γ E[⟨∇F (xt), Gt+1⟩] + LF γ2

2 E[∥Gt+1∥22].

Since E[∥Gt+1∥22] = E[∥Gt+1 − E[Gt+1]∥22] + ∥E[Gt+1]∥22 = E t+1
var + ∥E[Gt+1]∥22, then

E[F (xt+1)] ≤ F (xt)− γ E[⟨∇F (xt), Gt+1⟩] + LF γ2

2 (E t+1
var + ∥E[Gt+1]∥22).

Expand the middle term with

−γ E[⟨∇F (xt), Gt+1⟩] = −γ
2∥∇F (xt)∥22 −

γ
2∥E[G

t+1]∥22 +
γ
2∥∇F (xt)− E[Gt+1]∥22

= −γ
2∥∇F (xt)∥22 −

γ
2∥E[G

t+1]∥22 +
γ
2E

t+1
bias.

Combine with the inequality

E[F (xt+1)] ≤ F (xt)− γ
2∥∇F (xt)∥22 −

γ
2 (1− LFγ)∥E[Gt+1]∥22 +

γ
2E

t+1
bias +

LF γ2

2 E
t+1
var .

By taking γ ≤ 1
2LF

, we have that

E[F (xt+1)] ≤ F (xt)− γ
2∥∇F (xt)∥22 −

γ
4∥E[G

t+1]∥22 +
γ
2E

t+1
bias +

LF γ2

2 E
t+1
var .

Re-arranging the terms we get the desired inequality.

A consequence of Lemma E.3 is the following result.

Lemma E.4 (Descent Lemma). Suppose Assumption I holds true. By taking γ ≤ 1
2LF

, we have,

1
T

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
+ 1

2
1
T

∑T−1
t=0 E

[
∥Et[Gt+1|t]∥22

]
≤ 2(F (x0)−F ⋆)

γT + 1
T

∑T−1
t=0 E[E t+1

bias] +
LF γ
T

∑T−1
t=0 E[E t+1

var]

where the expectation is taken over all randomness from t = 0 to T .

Proof. We denote the conditional expectation at time t in the descent lemma (Lemma E.3) as
Et+1[·|t] which conditions on all past randomness until time t. Then the descent lemma can be
written as

Et+1[F (xt+1)|t] ≤ F (xt)− γ
2∥∇F (xt)∥22 −

γ
4∥E

t+1[Gt+1|t]∥22 +
γ
2 Et+1[E t+1

bias|t] +
LF γ2

2 Et+1[E t+1
var |t].

E.4 Stationary Point Convergence Proofs from § 6.4 (CSO) 207

If we additionally consider the randomness at time t− 1, and apply Et[·|t− 1] to both sides

Et
[
Et+1[F (xt+1)|t]|t− 1

]
≤Et[F (xt)|t− 1]− γ

2 E[∥∇F (xt)∥22|t− 1]

− Et
[γ
4∥E

t+1[Gt+1|t]∥22|t− 1
]
+ γ

2 Et
[
Et+1[E t+1

bias|t]|t− 1
]

+ LF γ2

2 Et−1]
[
Et+1[E t+1

var |t]|t− 1
]
.

By the law of iterative expectations, we have Et
[
Et+1[·|t]|t− 1

]
= Et Et+1 [·|t− 1]

Et[Et+1
[
F (xt+1)|t− 1

]
] ≤Et[F (xt)|t− 1]− γ

2 E[∥∇F (xt)∥22|t− 1]

− Et
[γ
4∥E

t+1[Gt+1|t]∥22|t− 1
]
+ γ

2 Et
[
Et+1

[
E t+1

bias|t− 1
]]

+ LF γ2

2 Et[Et
[
E t+1

var |t− 1
]
].

Similarly, we can apply Et−1[·|t− 2], Et−2[·|t− 3], . . ., E2[·|1] and finally E1[·]

E1 . . . [Et+1
[
F (xt+1)

]
] ≤E1 . . . [Et[F (xt)]]− γ

2 E1 . . . [Et[∥∇F (xt)∥22]]

−E1 . . . [Et[γ4∥E
t+1[Gt+1|t]∥22]] +

γ
2 E1 . . . [Et+1

[
E t+1

bias
]
]

+ LF γ2

2 E1 . . . [Et
[
E t+1

var
]
].

Now that both sides of the inequality have no randomness, we can simplify the notation by
applying Et+1 . . . [Et[·]] to both sides and by denoting

E[·] = E1 . . . [E+1[·]].

Then the descent lemma becomes

E[F (xt+1)] ≤ E[F (xt)]− γ
2 E[∥∇F (xt)∥22]−

γ
4 E[∥Et+1[Gt+1|t]∥22] +

γ
2 E[E t+1

bias] +
LF γ2

2 E[E t+1
var].

Now we can sum the descent lemmas from t = 0 to T − 1

∑T−1
t=0 E[F (xt+1)] ≤

∑T−1
t=0 E[F (xt)]− γ

2

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
− γ

4

∑T−1
t=0 E

[
∥Et+1[Gt+1|t]∥22

]
+ γ

2

∑T−1
t=0 E[E t+1

bias] +
LF γ2

2

∑T−1
t=0 E[E t+1

var].

After simplification and division by T , we get

1
T

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
+ 1

2
1
T

∑T−1
t=0 E

[
∥Et+1[Gt+1|t]∥22

]
≤ 2(E[F (xT)]−E[F (x0)])

γT + γ
2
1
T

∑T−1
t=0 E[E t+1

bias] +
LF γ2

2
1
T

∑T−1
t=0 E[E t+1

var]

≤ 2(E[F (xT)]−F ⋆)
γT + 1

T

∑T−1
t=0 E[E t+1

bias] +
LF γ
T

∑T−1
t=0 E[E t+1

var].

208 Debiasing Conditional Stochastic Optimization

The following corollary is a consequence of Proposition 6.1. Assume ∇fξ in CSO satisfies

al := sup
x

sup
ξ
∥∇l+1fξ(x)∥2 <∞, l = 1, 2, 3, 4.

Let’s further assume that the higher order moments of gη(·) are bounded,

σk = sup
x

sup
ξ

Eη|ξ

[∑p
i=1

[
gη(x)− Eη|ξ[gη(x)]

]k
i

]
<∞, k = 1, 2, 3, 4

where [·]i refers to the i-th coordinate of a vector. Consider the L(2)Dt+1
g,ξ

∇fξ(0) defined in (6.6),

then
∥E
[
L(2)Dt+1

g,ξ

∇fξ(0)
]
−∇fξ(Eη|ξ[gη(x

t)])∥22 ≤
C2

e
m4 ∀ξ,

where C2
e (f ; g) :=

(
8a3σ3+18a4σ2

2+5a4σ4

96

)2
.

Proof. The Proposition 6.1 gives the following upper bound

∥E
[
L(2)Dt+1

g,ξ

∇fξ(0)
]
−∇fξ(Eη|ξ[gη(x

t)])∥22 ≤
(
4a3σ3+9a4σ2

2
48m2 + 5a4

96
σ4−3σ2

2
m3

)2
.

For simplicity, we can relax the upper bound to

∥E
[
L(2)Dt+1

g,ξ

∇fξ(0)
]
−∇fξ(Eη|ξ[gη(x

t)])∥22 ≤ 1
m4

(
8a3σ3+18a4σ2

2+5a4σ4

96

)2
.

E.4.2 Convergence of BSGD

In this section, we reanalyze the BSGD algorithm of [Hu et al., 2020b] to obtain bounds on
bias and variance of its gradient estimates. Theorem E.3 shows that BSGD achieves an O(ϵ−6)

sample complexity.

Lemma E.5 (Bias and Variance of BSGD). The bias and variance of BSGD are

E t+1
bias ≤

σ2
bias
m , E t+1

var ≤
σ2
in
m + σ2

out

where σ2
in = ζ2gC

2
f + σ2

gC
2
gL

2
f , σ

2
out = C2

F , and σ2
bias = σ2

gC
2
gL

2
f .

Proof. Denote Gt+1 = Gt+1
BSGD (6.5) and denote E[·] as the conditional expectation Et+1[·|t]

which conditions on all past randomness until time t. Note that the ∇gη̃ can be estimated
without bias, i.e.

Eη̃|ξ

[
1
m

∑
η̃∈H̃ξ

∇gη̃(x)
]
= Eη̃|ξ [∇gη̃(x)] ,

E.4 Stationary Point Convergence Proofs from § 6.4 (CSO) 209

Then let’s first look at the bias of BSGD

E t+1
bias = ∥∇F (xt+1)− E[Gt+1]∥22

= ∥Eξ

[
(Eη̃|ξ[∇gη̃(xt)])⊤

(
∇fξ(Eη|ξ[gη(x

t)])− Eη|ξ[∇fξ(1
m

∑
η∈Hξ

gη(x
t))]
)]
∥22

≤ C2
g Eξ

[
∥∇fξ(Eη|ξ[gη(x

t)])− Eη|ξ[∇fξ(1
m

∑
η∈Hξ

gη(x
t))]∥22

]
≤ C2

gL
2
f Eξ

[
Eη|ξ

[
∥Eη|ξ[gη(x

t)]− 1
m

∑
η∈Hξ

gη(x
t)∥22

]]
≤ C2

gL
2
f

m Eξ

[
Eη|ξ

[
∥Eη|ξ[gη(x

t)]− gη(x
t)∥22

]]
=

σ2
gC

2
gL

2
f

m =
σ2
bias
m .

For the first inequality, we take the expectation outside the norm and bound ∇gη̃ with Cg.
On the other hand, the variance of BSGD can be decomposed into inner variance and outer

variance

E t+1
var = Eξ[Eη|ξ,η̃|ξ[∥Gt+1 − Eξ[Eη|ξ,η̃|ξ[G

t+1]]∥22]]

= Eξ[Eη|ξ,η̃|ξ[∥(Gt+1 − Eη|ξ,η̃|ξ[G
t+1]) + (Eη|ξ,η̃|ξ[G

t+1]− Eξ[Eη|ξ,η̃|ξ[G
t+1]])∥22]]

= Eξ[Eη|ξ,η̃|ξ[∥Gt+1 − Eη|ξ,η̃|ξ[G
t+1]∥22]]︸ ︷︷ ︸

Inner variance

+Eξ[∥Eη|ξ,η̃|ξ[G
t+1]− Eξ[Eη|ξ,η̃|ξ[G

t+1]]∥22]︸ ︷︷ ︸
Outer variance

.

The inner variance is bounded as follows

Eξ[Eη|ξ,η̃|ξ[∥Gt+1 − Eξ[Eη|ξ,η̃|ξ[G
t+1]∥22]]

= Eξ

[
Eη|ξ,η̃|ξ

[
∥(1

m

∑
η̃∈H̃ξ

∇gη̃(xt)− Eη̃|ξ[∇gη̃(xt)])⊤∇fξ(1
m

∑
η∈Hξ

gη(x
t))∥22

]]
+ Eξ

[
Eη|ξ

[
∥(Eη̃|ξ[∇gη̃(xt)])⊤(∇fξ(1

m

∑
η∈Hξ

gη(x
t))− Eη|ξ[∇fξ(1

m

∑
η∈Hξ

gη(x
t))])∥22

]]
≤ C2

f Eξ

[
Eη̃|ξ

[
∥ 1
m

∑
η̃∈H̃ξ

∇gη̃(xt)− Eη̃|ξ[∇gη̃(xt)]∥22
]]

+ C2
g Eξ

[
Eη|ξ

[
∥∇fξ(1

m

∑
η∈Hξ

gη(x
t))− Eη|ξ[∇fξ(1

m

∑
η∈Hξ

gη(x
t))]∥22

]]
= C2

f Eξ

[
Eη̃|ξ

[
∥ 1
m

∑
η̃∈H̃ξ

∇gη̃(xt)− Eη̃|ξ[∇gη̃(xt)]∥22
]]

+ C2
g Eξ

[
Eη|ξ

[
∥∇fξ(1

m

∑
η∈Hξ

gη(x
t))−∇fξ(Eη[gη(x

t)])∥22
]]

− C2
g Eξ

[
∥∇fξ(Eη[gη(x

t)])− Eη|ξ[∇fξ(1
m

∑
η∈Hξ

gη(x
t))]∥22

]
≤ ζ2gC

2
f

m + C2
gLf Eξ

[
Eη|ξ

[
∥ 1
m

∑
η∈Hξ

gη(x
t)− Eη|ξ[gη(x

t)]∥22
]]

≤ C2
f ζ

2
g

m +
C2

gLf

m Eξ

[
Eη|ξ

[
∥gη(xt)− Eη|ξ[gη(x

t)]∥22
]]

≤ ζ2gC
2
f+σ2

gC
2
gL

2
f

m =
σ2
in
m .

210 Debiasing Conditional Stochastic Optimization

The outer variance is independent of the inner batch size and can be bounded by

Eξ[∥Eη|ξ,η̃|ξ[G
t+1]− Eξ[Eη|ξ,η̃|ξ[G

t+1]]∥22] ≤ Eξ[∥Eη|ξ,η̃|ξ[G
t+1]∥22] ≤ C2

fC
2
g = C2

F = σ2
out

Therefore, the variance is bounded as follows

E t+1
var ≤

σ2
in
m + σ2

out.

This completes the proof.

Theorem E.3 (BSGD Convergence). Consider the (CSO) problem. Suppose Assumptions G, H, I
holds true. Let step size γ ≤ 1/(2LF). Then for BSGD, xs picked uniformly at random
among {xt}T−1

t=0 satisfies: E[∥∇F (xs)∥22] ≤ ϵ2, for nonconvex F , if the inner batch size m =

Ω
(
σ2

biasϵ
−2
)

and the number of iterations T = Ω
(
(F (x0)− F ⋆)LF (σ

2
in/m + σ2

out)ϵ
−4
)
, where

σ2
in = ζ2gC

2
f + σ2

gC
2
gL

2
f , σ

2
out = C2

F , and σ2
bias = σ2

gC
2
gL

2
f .

Proof. Denote Gt+1 = Gt+1
BSGD (6.1). Using descent lemma (Lemma E.4) and bias-variance

bounds of BSGD (Lemma E.5)

1
T

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
+ 1

2
1
T

∑T−1
t=0 E

[
∥Et+1[Gt+1|t]∥22

]
≤ 2(E[F (xT)]−F ⋆)

γT + LFγ(
σ2
in
m + σ2

out) +
σ2
bias
m

Then we can minimize the right-hand size by optimizing γ to

γ =

√
2(F (x0)−F ⋆)

LF (σ2
in/m+σ2

out)T

which is smaller than the bound of step size γ ≤ 1
2LF

if T is greater than the following constant
which does not rely on the target precision ϵ

T ≥ 8LF (F (x0)−F ⋆)
σ2
in/m+σ2

out
.

Then the upper bound of gradient becomes

1
T

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
≤
√

2(F (x0)−F ⋆)LF (σ2
in/m+σ2

out)
T +

σ2
bias
m .

By taking inner batch size of at least

m ≥ σ2
bias
ϵ2

,

E.4 Stationary Point Convergence Proofs from § 6.4 (CSO) 211

and iteration T greater than

T ≥ 2(F (x0)−F ⋆)LF (σ2
in/m+σ2

out)
ϵ4

,

we have that

1
T

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
≤ 2ϵ2.

By picking xs uniformly at random among {xt}T−1
t=0 , we get the desired guarantee.

The resulting sample complexity of BSGD to get to an ϵ-stationary point is O(ϵ−6).

E.4.3 Convergence of E-BSGD

In this section, we analyze the sample complexity of Algorithm 16 (E-BSGD) for the CSO
problem.

Lemma E.6 (Bias and Variance of E-BSGD). The bias and variance of E-BSGD are

E t+1
bias ≤

σ̃2
bias
m4 , E t+1

var ≤ 14(
σ2
in
m + σ2

out)

where σ2
in = ζ2gC

2
f + σ2

gC
2
gL

2
f , σ

2
out = C2

F , and σ̃2
bias = C2

gC
2
e with C2

e defined in § E.4.1.

Proof. Denote Gt+1 = Gt+1
E-BSGD (6.7). Like previously (Lemma E.5), let E[·] denote the

conditional expectation Et+1[·|t] which conditions on all past randomness until time t. In
E-BSGD, we apply extrapolation to ∇fξ(·). The bias can be estimated with the help of § E.4.1
as

E t+1
bias = ∥∇F (xt+1)− E[Gt+1]∥22

≤ C2
g Eξ

[
∥∇fξ(Eη|ξ[gη(x

t)])− E

[
L(2)Dt+1

g,ξ

∇fξ(0)
]
∥22
]

≤ C2
gC

2
e

m4 .

Since the variance of BSGD in Lemma E.5 is upper bounded by σ2
in
m + σ2

out, then Lemma E.2
gives

E t+1
var ≤ 14(σ2

in/m + σ2
out).

This proves the claimed bounds.

Theorem 6.2. [E-BSGD Convergence] Consider the (CSO) problem. Suppose Assumptions
G, H, I, J hold true and LF , CF , L̃F , Cg, F

⋆ are constants and Ce(f ; g) :=
8a3σ3+18a4σ2

2+5a4σ4

96

defined in § E.4.1 are associated with second order extrapolation in the CSO problem. Let step

212 Debiasing Conditional Stochastic Optimization

size γ ≤ 1/(2LF). Then the output xs of E-BSGD (Algorithm 16) satisfies: E[∥∇F (xs)∥22] ≤ ϵ2,
for nonconvex F , if the inner batch size m = Ω(CeCgϵ

−1/2), and the number of iterations

T = Ω(LF (F (x0)− F ⋆)(L̃2
F/m + C2

F)ϵ
−4).

Proof. The proof is very similar to Theorem E.3. Denote Gt+1 = Gt+1
E-BSGD (6.7). Using descent

lemma (Lemma E.4) and bias-variance bounds of E-BSGD (Lemma E.6)

1
T

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
+ 1

2
1
T

∑T−1
t=0 E

[
∥Et+1[Gt+1|t]∥22

]
≤ 2(E[F (xT)]−F ⋆)

γT + 14LFγ(
σ2
in
m + σ2

out) +
C2

gC
2
e

m4 .

Then we optimize γ to

γ =

√
(F (x0)−F ⋆)

7LF (σ2
in/m+σ2

out)T

which is smaller than the bound of step size γ ≤ 1
2LF

if T is greater than the following constant
which does not rely on the target precision ϵ

T ≥ 4LF (F (x0)−F ⋆)

7(σ2
in/m+σ2

out)
.

Then the gradient norm has the following upper bound.

1
T

∑T−1
t=0 ∥∇F (xt)∥22 ≤ 4

√
7(F (x0)−F ⋆)LF (σ2

in+σ2
out)

T +
σ̃2
bias
m4 .

In order to reach ϵ-stationary point, i.e.

1
T

∑T−1
t=0 ∥∇F (xt)∥22 ≤ ϵ2,

we can enforce

4

√
7(F (x0)−F ⋆)LF (σ2

in/m+σ2
out)

T ≤ ϵ2,
C2

gC
2
e

m4 ≤ ϵ2.

By taking inner batch size of at least

m = Ω(σ̃
1/2
biasϵ

−1/2),

and iteration T greater than

T ≥ 112(F (x0)−F ⋆)LF (
σ2
in
m

+σ2
out)

ϵ4
,

E.4 Stationary Point Convergence Proofs from § 6.4 (CSO) 213

we have that

1
T

∑T−1
t=0 ∥∇F (xt)∥22 ≤ 3ϵ2.

By picking xs uniformly at random among {xt}T−1
t=0 , we get the desired guarantee.

E.4.4 Convergence of BSpiderBoost

In this section, we reanalyze the BSpiderBoost algorithm of [Hu et al., 2020b] to obtain bounds
on bias and variance of its gradient estimates. Theorem E.3 shows that BSpiderBoost achieves
an O(ϵ−5) sample complexity.

Let Gt+1
BSB as the BSpiderBoost gradient estimate

Gt+1
BSB =

Gt
BSB + 1

B2

∑
ξ∈B2

(Gt+1
BSGD −Gt

BSGD) with prob. 1− pout

1
B1

∑
ξ∈B1

Gt+1
BSGD with prob. pout.

Lemma E.7 (Bias and Variance of BSpiderBoost). If γ ≤ min{ 1
2LF

,
√
B2

6LF
}, then the bias and

variance of BSpiderBoost are

1
T

∑T−1
t=0 E[E t+1

bias] ≤
2σ2

bias
m + (1−pout)3

poutB2

56L2
F γ2

T

∑T−1
t=0 E[∥Et+1[Gt+1|t]∥22] + (1

Tpout
+ 1)4(1−pout)2

B1
(
σ2
in
m + σ2

out)

1
T

∑T−1
t=0 E[E t+1

var] ≤
28(1−pout)L2

F γ2

B2

1
T

∑T−1
t=0 E[∥Et+1[Gt+1|t]∥22] + (1

T + pout)
2
B1

(
σ2
in
m + σ2

out),

where σ2
in = ζ2gC

2
f + σ2

gC
2
gL

2
f , σout = C2

F , and σ2
bias = σ2

gC
2
gL

2
f .

Proof. Denote Gt+1 = Gt+1
BSB (6.8). Like previously (Lemma E.5), let E[·] denote the conditional

expectation Et+1[·|t] which conditions on all past randomness until time t. Denote Gt+1
L and

Gt+1
S as the large batch and small batch in BSpiderBoost separately, i.e.,Gt+1

L = 1
B1

∑
ξ∈B1

Gt+1
BSGD with prob. pout

Gt+1
S = Gt + 1

B2

∑
ξ∈B2

(Gt+1
BSGD −Gt

BSGD) with prob. 1− pout.

The bias of BSpiderBoost can be decomposed to its distance to BSGD and the distance from
BSGD to the full gradient, i.e.,

E t+1
bias = ∥∇F (xt+1)− E[Gt+1]∥22
≤ 2∥∇F (xt+1)− E[Gt+1

BSGD]∥
2
2 + 2∥E[Gt+1

BSGD]− E[Gt+1]∥22

≤ 2σ2
bias
m + 2∥E[Gt+1

BSGD]− E[Gt+1]∥22.

(E.3)

214 Debiasing Conditional Stochastic Optimization

where the last inequality uses the bias of BSGD from Lemma E.5. Then the second term can
be bounded as follows

∥E[Gt+1
BSGD]− E[Gt+1]∥22 = (1− pout)

2∥E[Gt+1
BSGD]− E[Gt+1

S]∥22
= (1− pout)

2∥E[Gt
BSGD]−Gt∥22.

By taking the expectation of randomness of Gt

∥E[Gt+1
BSGD]− E[Gt+1]∥22 = (1− pout)

2
(
∥E[Gt

BSGD]− E[Gt]∥22 + E∥Gt − E[Gt]∥22
)

= (1− pout)
2
(
∥E[Gt

BSGD]− E[Gt]∥22 + E tvar
)

Note that ∥E[G1
BSGD]− E[G1]∥22 = 0 as the first iteration always chooses the large batch. Then

as we always use large batch at t = 0 we know that

1
T

∑T−1
t=0 ∥E[G

t+1
BSGD]− E[Gt+1]∥22 ≤

(1−pout)2

pout
1
T

∑T−1
t=0 E t+1

var . (E.4)

Therefore combine (E.3) and (E.4) we can upper bound the bias

1
T

∑T−1
t=0 E

t+1
bias ≤

2σ2
bias
m + 2(1−pout)2

pout
1
T

∑T−1
t=0 E t+1

var . (E.5)

Variance. Now we consider the variance,

E t+1
var = E

[
∥Gt+1 − E[Gt+1]∥22

]
≤ (1− pout)E

[
∥Gt+1

S − E[Gt+1
S]∥22

]
+ pout E

[
∥Gt+1

L − E[Gt+1
L]∥22

]
= (1−pout)

B2
E
[
∥Gt+1

BSGD −Gt
BSGD − E[Gt+1

BSGD −Gt
BSGD]∥22

]
+ pout

B1
E
[
∥Gt+1

BSGD − E[Gt+1
BSGD]∥

2
2

]
≤ 1−pout

B2
E
[
∥Gt+1

BSGD −Gt
BSGD − E[Gt+1

BSGD −Gt
BSGD]∥22

]
+ pout

B1
(
σ2
in
m + σ2

out)

(E.6)

where the last equality is because the large batch in BSpiderBoost is similar to BSGD.

E1var = E
[
∥G1 − E[G1]∥22

]
= E

[
∥G1

L − E[G1
L]∥22

]
= 1

B1
E
[
∥G1

BSGD − E[G1
BSGD]∥22

]
≤ 1

B1
(
σ2
in
m +σ2

out).

(E.7)
Finally, we expand the variance at small batch size epoch

E
[
∥Gt+1

BSGD −Gt
BSGD − E[Gt+1

BSGD −Gt
BSGD]∥22

]
= E

[
∥Gt+1

BSGD −Gt
BSGD − Eη|ξ,η̃|ξ[G

t+1
BSGD −Gt

BSGD]∥22
]︸ ︷︷ ︸

Inner variance Tin

+ Eξ

[
∥Eη|ξ,η̃|ξ[G

t+1
BSGD −Gt

BSGD]− E[Gt+1
BSGD −Gt

BSGD]∥22
]︸ ︷︷ ︸

Outer variance Tout

.

E.4 Stationary Point Convergence Proofs from § 6.4 (CSO) 215

The outer variance Tout can be upper bounded as

Tout ≤ Eξ

[
∥Eη|ξ,η̃|ξ[G

t+1
BSGD −Gt

BSGD]∥22
]

= Eξ

[
∥(Eη̃|ξ[∇gη̃(xt)])⊤ Eη|ξ[∇fξ(1

m

∑
η∈Hξ

gη(x
t))]− (Eη̃|ξ[∇gη̃(xt−1)])⊤ Eη|ξ[∇fξ(1

m

∑
η∈Hξ

gη(x
t−1))]∥22

]
≤ 2Eξ

[
∥(Eη̃|ξ[∇gη̃(xt)]− Eη̃|ξ[∇gη̃(xt−1)])⊤ Eη|ξ[∇fξ(1

m

∑
η∈Hξ

gη(x
t))]∥22

]
+ 2Eξ

[
∥(Eη̃|ξ[∇gη̃(xt−1)])⊤ Eη|ξ[∇fξ(1

m

∑
η∈Hξ

gη(x
t))−∇fξ(1

m

∑
η∈Hξ

gη(x
t−1))]∥22

]
≤ 2L2

gC
2
f∥xt − xt−1∥22 + 2C4

gL
2
f∥xt − xt−1∥22

= 2L2
F ∥xt − xt−1∥22

= 2L2
Fγ

2∥Gt∥22.

The inner variance can be bounded by

Tin ≤ 4E
[
∥(1

m

∑
η̃∈H̃ξ

(∇gη̃(xt)−∇gη̃(xt−1))− Eη̃|ξ[∇gη̃(xt)−∇gη̃(xt−1)])⊤∇fξ(1
m

∑
η∈Hξ

gη(x
t))∥22

]
+ 4E

[
∥(Eη̃|ξ[∇gη̃(xt)−∇gη̃(xt−1)])⊤(∇fξ(1

m

∑
η∈Hξ

gη(x
t))− Eη|ξ[∇fξ(1

m

∑
η∈Hξ

gη(x
t))])∥22

]
+ 4E

[∥∥∥∥(1
m

∑
η̃∈H̃ξ

∇gη̃(xt−1))⊤
(
∇fξ(1

m

∑
η∈Hξ

gη(x
t))−∇fξ(1

m

∑
η∈Hξ

gη(x
t−1))

− Eη|ξ

[
∇fξ(1

m

∑
η∈Hξ

gη(x
t))−∇fξ(1

m

∑
η∈Hξ

gη(x
t−1))

])∥∥∥∥2
2

]
+ 4E

[
∥(1

m

∑
η̃∈H̃ξ

∇gη̃(xt−1)− Eη̃|ξ[∇gη̃(xt−1)])⊤(∇fξ(1
m

∑
η∈Hξ

gη(x
t))−∇fξ(1

m

∑
η∈Hξ

gη(x
t−1)))∥22

]
≤ 4C2

f

m E
[
∥∇gη̃(xt)−∇gη̃(xt−1)− Eη̃|ξ[∇gη̃(xt)−∇gη̃(xt−1)]∥22

]
+

4L2
gC

2
f

m ∥xt − xt−1∥22

+ 4C2
g E

[∥∥∥∥∇fξ(1
m

∑
η∈Hξ

gη(x
t))−∇fξ(1

m

∑
η∈Hξ

gη(x
t−1))

− Eη|ξ[∇fξ(1
m

∑
η∈Hξ

gη(x
t))−∇fξ(1

m

∑
η∈Hξ

gη(x
t−1))]

∥∥∥∥2
2

]
+

4C4
gL

2
f

m ∥xt − xt−1∥22.

216 Debiasing Conditional Stochastic Optimization

Then we have that

Tin ≤
4L2

gC
2
f

m ∥xt − xt−1∥22 +
4L2

gC
2
f

m ∥xt − xt−1∥22

+ 4C2
g E
[
∥∇fξ(1

m

∑
η∈Hξ

gη(x
t))−∇fξ(1

m

∑
η∈Hξ

gη(x
t−1))− (∇fξ(Eη|ξ[gη(x

t)])−∇fξ(Eη|ξ[gη(x
t−1)]))∥22

]
+ 4C2

g E

[∥∥∥∥(∇fξ(Eη|ξ[gη(x
t)])−∇fξ(Eη|ξ[gη(x

t−1)]))

− Eη|ξ[∇fξ(1
m

∑
η∈Hξ

gη(x
t))−∇fξ(1

m

∑
η∈Hξ

gη(x
t−1))]

∥∥∥∥2
2

]
+

4C4
gL

2
f

m ∥xt − xt−1∥22

≤ 8L2
gC

2
f

m ∥xt − xt−1∥22 +
8C4

gL
2
f

m ∥xt − xt−1∥22 +
4C4

gL
2
f

m ∥xt − xt−1∥22

≤ 12L2
F

m ∥xt − xt−1∥22

=
12L2

F γ2

m ∥Gt∥22.

To sum up, the variance is bounded by

E t+1
var ≤

2(1−pout)L2
F γ2

B2
(1 + 6

m)∥Gt∥22 +
pout
B1

(
σ2
in
m + σ2

out)

≤ 14(1−pout)L2
F γ2

B2
∥Gt∥22 +

pout
B1

(
σ2
in
m + σ2

out)

=
14(1−pout)L2

F γ2

B2
Et[∥Gt∥22|t− 1] + pout

B1
(
σ2
in
m + σ2

out).

Then averaging over time and now we redefine E[·] = ET . . . [E0[·]]

1
T

∑T−1
t=0 E[E t+1

var] ≤
14(1−pout)L2

F γ2

B2

1
T

∑T−1
t=0 E[∥Gt+1∥22] +

E1
var
T + pout

B1
(
σ2
in
m + σ2

out)

=
14(1−pout)L2

F γ2

B2

1
T

∑T−1
t=0 (E[E t+1

var] + E[∥Et[Gt+1|t]∥22]) +
E1
var
T + pout

B1
(
σ2
in
m + σ2

out).

If we take γ ≤
√
B2

6LF
, then 14(1−pout)L2

F γ2

B2
≤ 1

2 , therefore

1
T

∑T−1
t=0 E[E t+1

var] ≤
28(1−pout)L2

F γ2

B2

1
T

∑T−1
t=0 E[∥Et[Gt+1|t]∥22] +

E1
var
T + 2pout

B1
(
σ2
in
m + σ2

out)

(E.7)
≤ 28(1−pout)L2

F γ2

B2

1
T

∑T−1
t=0 E[∥Et[Gt+1|t]∥22] + (1

T + pout)
2
B1

(
σ2
in
m + σ2

out)

Then with (E.5), we can bound the bias by

1
T

∑T−1
t=0 E[E t+1

bias] ≤
2σ2

bias
m + (1−pout)3

poutB2

56L2
F γ2

T

∑T−1
t=0 E[∥Et[Gt+1|t]∥22] + (1

Tpout
+ 1)4(1−pout)2

B1
(
σ2
in
m + σ2

out)

Theorem E.4 (BSpiderBoost Convergence). Consider the (CSO) problem. Suppose Assump-
tions G, H, I holds true. Let step size γ ≤ 1/(13LF). Then for BSpiderBoost, xs picked

E.4 Stationary Point Convergence Proofs from § 6.4 (CSO) 217

uniformly at random among {xt}T−1
t=0 satisfies: E[∥∇F (xs)∥22] ≤ ϵ2, for nonconvex F , if the

inner batch size m = Ω(σ2
biasϵ

−2), the hyperparameters of the outer loop of BSpiderBoost
are B1 = (σ2

in/m + σ2
out)ϵ

−2, B2 = O(ϵ−1), pout = 1/B2, and the number of iterations
T = Ω

(
LF (F (x0)− F ⋆)ϵ−2

)
, where σ2

in = ζ2gC
2
f + σ2

gC
2
gL

2
f , σ

2
out = C2

F , and σ2
bias = σ2

gC
2
gL

2
f .

Proof. Denote Gt+1 = Gt+1
BSB (6.8). Using descent lemma (Lemma E.4) and bias-variance bounds

of BSpiderBoost (Lemma E.7)

1
T

∑T−1
t=0 E[∥∇F (xt)∥22] + 1

2T

∑T−1
t=0 E[∥Et[Gt+1|t]∥22]

≤ 2(F (x0)−F ⋆)
γT + LFγ

1
T

∑T−1
t=0 E[E t+1

var] +
1
T

∑T−1
t=0 E[E t+1

bias]

≤ 2(F (x0)−F ⋆)
γT + LFγ

1
T

∑T−1
t=0 E[E t+1

var] +
2σ2

bias
m + 2

pout
1
T

∑T−1
t=0 E[E t+1

var]

≤ 2(F (x0)−F ⋆)
γT +

2σ2
bias
m + 3

pout
1
T

∑T−1
t=0 E[E t+1

var]

where the last inequality use γ ≤ 1
2LF

. Use the variance estimation of Gt+1 and choose
B2pout = 1

1
T

∑T−1
t=0 E[∥∇F (xt)∥22] + 1

2T

∑T−1
t=0 E[∥Et[Gt+1|t]∥22]

≤ 2(F (x0)−F ⋆)
γT +

2σ2
bias
m + 84L2

Fγ
2 1
T

∑T−1
t=0 E[∥Et[Gt+1|t]∥22] + (1

Tpout
+ 1) 6

B1
(
σ2
in
m + σ2

out).

Now we can let γ ≤ 1
13LF

such that 84L2
Fγ

2 ≤ 1
2

1
T

∑T−1
t=0 E[∥∇F (xt)∥22] ≤

2(F (x0)−F ⋆)
γT +

2σ2
bias
m + (1

Tpout
+ 1) 6

B1
(
σ2
in
m + σ2

out).

In order for the right-hand side to be ϵ2, the inner batch size

m ≥ 2σ2
bias
ϵ2

,

and the outer batch size

B1 =
σ2
in/m+σ2

out
ϵ2

, B2 =
√
B1, pout =

1
B2

.

The step size γ is upper bounded by min{ 1
2LF

,
√
B2

6LF
, 1
13LF
}. As B2 ≥ 1, we can take γ = 1

13LF
.

So we need iteration T greater than

T ≥ 26LF (F (x0)−F ⋆)
ϵ2

.

By picking xs uniformly at random among {xt}T−1
t=0 , we get the desired guarantee.

The resulting sample complexity of BSpiderBoost to get to an ϵ-stationary point is O(ϵ−5).

218 Debiasing Conditional Stochastic Optimization

E.4.5 Convergence of E-BSpiderBoost

In this section, we analyze the sample complexity of Algorithm 17 (E-BSpiderBoost) for the CSO
problem.

Lemma E.8 (Bias and Variance of E-BSpiderBoost). The bias and variance of E-BSpiderBoost
are

1
T

∑T−1
t=0 E[E t+1

var] ≤
28(1−pout)L2

F γ2

B2

1
T

∑T−1
t=0 E[∥Et[Gt+1|t]∥22] + (1

Tpout
+ 1)28poutB1

(
σ2
in
m + σ2

out)

1
T

∑T−1
t=0 E[E t+1

bias] ≤
2σ̃2

bias
m4 + 2

pout

(1−pout)2

T

∑T−1
t=0 E[E t+1

var],

where σ2
in := ζ2gC

2
f + σ2

gC
2
gL

2
f , σout = C2

F , and σ̃2
bias = C2

gC
2
e with C2

e defined in § E.4.1.

Proof. Denote Gt+1 = Gt+1
E-BSB (6.9). Like previously (Lemma E.5), let E[·] denote the conditional

expectation Et[·|t] which conditions on all past randomness until time t. Let Gt+1 = Gt+1
E-BSB be

the E-BSpiderBoost update. We expand the bias as follows

E t+1
bias = ∥∇F (xt+1)− E[Gt+1]∥22
≤ 2∥∇F (xt+1)− E[Gt+1

E-BSGD∥
2
2] + 2∥E[Gt+1

E-BSGD]− E[Gt+1]∥22.

From Lemma E.6, we know that

∥∇F (xt+1)− E[Gt+1
E-BSGD]∥

2
2 ≤

σ̃2
bias
m4 .

The distance between E[Gt+1
E-BSGD] and E[Gt+1] can be bounded as follows.

∥E[Gt+1
E-BSGD]− E[Gt+1]∥22 = (1− pout)

2∥E[Gt+1
E-BSGD]− (Gt + E[Gt+1

E-BSGD −Gt
E-BSGD])∥22

= (1− pout)
2∥E[Gt

E-BSGD]−Gt∥22

Taking expectation with respect to Gt

∥E[Gt+1
E-BSGD]− E[Gt+1]∥22 ≤ (1− pout)

2(∥E[Gt
E-BSGD]− E[Gt]∥22 + ∥Gt − E[Gt]∥22).

where ∥E[G1
E-BSGD]− E[G1]∥22 = 0. By averaging over time we have

1
T

∑T−1
t=0 ∥E[G

t+1
E-BSGD]− E[Gt+1]∥22 ≤ 1

pout

(1−pout)2

T

∑T−1
t=0 E[E t+1

var].

Then the bias is bounded by

1
T

∑T−1
t=0 E[E t+1

bias] ≤
2σ̃2

bias
m4 + 2

pout

(1−pout)2

T

∑T−1
t=0 E[E t+1

var].

E.4 Stationary Point Convergence Proofs from § 6.4 (CSO) 219

Variance. Since the extrapolation only gives a constant overhead given Lemma E.2

1
T

∑T−1
t=0 E

[
∥Gt+1

BSB − Et[Gt+1
BSB|t]∥22

]
≤ 28(1−pout)L2

F γ2

B2

1
T

∑T−1
t=0 E[∥Et[Gt+1

BSB|t]∥22] + (1
T + pout)

28
B1

(
σ2
in
m + σ2

out).

Then the variance is bounded by

1
T

∑T−1
t=0 E[E t+1

var] ≤
28(1−pout)L2

F γ2

B2

1
T

∑T−1
t=0 E[∥Et[Gt+1|t]∥22] + (1

Tpout
+ 1)28pout

B1
(
σ2
in
m + σ2

out).

Theorem 6.3. [E-BSpiderBoost Convergence] Consider the (CSO) problem under the same
assumptions as Theorem 6.2. Let step size γ ≤ 1/(13LF). Then the output xs of E-BSpiderBoost
(Algorithm 17) satisfies: E[∥∇F (xs)∥22] ≤ ϵ2, for nonconvex F , if the inner batch size m =

O(CeCgϵ
−0.5), the hyperparameters of the outer loop of E-BSpiderBoost B1 = (L̃2

F /m+C2
F)ϵ

−2, B2 =
√
B1, pout = 1/B2, and the number of iterations

T = Ω(LF (F (x0)− F ⋆)ϵ−2).

Proof. Denote Gt+1 = Gt+1
E-BSB (6.9). Using descent lemma (Lemma E.4) and bias-variance

bounds of E-BSpiderBoost (Lemma E.8)

1
T

∑T−1
t=0 E[∥∇F (xt)∥22] + 1

2T

∑T−1
t=0 E[∥Et[Gt+1|t]∥22]

≤ 2(F (x0)−F ⋆)
γT + LFγ

1
T

∑T−1
t=0 E[E t+1

var] +
1
T

∑T−1
t=0 E[E t+1

bias]

≤ 2(F (x0)−F ⋆)
γT + LFγ

1
T

∑T−1
t=0 E[E t+1

var] +
2σ̃2

bias
m4 + 2

pout
1
T

∑T−1
t=0 E[E t+1

var]

≤ 2(F (x0)−F ⋆)
γT +

2σ̃2
bias
m4 + 3

pout
1
T

∑T−1
t=0 E[E t+1

var]

where the last inequality use γ ≤ 1
2LF

. Use the variance estimation of Gt+1 and choose
B2pout = 1

1
T

∑T−1
t=0 E[∥∇F (xt)∥22] + 1

2T

∑T−1
t=0 E[∥Et[Gt+1|t]∥22]

≤ 2(F (x0)−F ⋆)
γT +

2σ̃2
bias
m4 + 84L2

Fγ
2 1
T

∑T−1
t=0 E[∥Et[Gt+1|t]∥22] + (1

Tpout
+ 1) 84

B1
(
σ2
in
m + σ2

out).

Now we can let γ ≤ 1
13LF

such that 84L2
Fγ

2 ≤ 1
2

1
T

∑T−1
t=0 E[∥∇F (xt)∥22] ≤

2(F (x0)−F ⋆)
γT +

2σ̃2
bias
m4 + (1

Tpout
+ 1) 84

B1
(
σ2
in
m + σ2

out). (E.8)

In order to make the right-hand side ϵ2, the inner batch size

m = Ω(σ̃2
biasϵ

−0.5),

220 Debiasing Conditional Stochastic Optimization

and the outer batch size

B1 =
(σ2

in/m+σ2
out)

ϵ2
, B2 =

√
B1, pout =

1
B2

.

The step size γ is upper bounded by min{ 1
2LF

,
√
B2

6LF
, 1
13LF
}. As B2 ≥ 1, we can take γ = 1

13LF
.

So we need iteration T greater than

T ≥ 26LF (F (x0)−F ⋆)
ϵ2

.

By picking xs uniformly at random among {xt}T−1
t=0 , we get the desired guarantee.

E.5 Stationary Point Convergence Proofs from § 6.5 (FCCO)

In this section, we provide the convergence proofs for the FCCO problem. We start by analyzing
a variant of BSpiderBoost (Algorithm 17) for this case in § E.5.1. In § E.5.2, we present a
multi-level variance reduction approach (called NestedVR) that applies variance reduction in
both outer (over the random variable i) and inner (over the random variable η|i) loops. In § E.5.3,
we analyze E-NestedVR. As in the case of CSO analyses, our proofs go via bounds on bias and
variance terms of these algorithms.

E.5.1 E-BSpiderBoost for FCCO problem

Theorem E.5. Consider the (FCCO) problem. Suppose Assumptions G, H, I, J holds true.
Let step size γ = O(1/LF). Then the output of E-BSpiderBoost (Algorithm 17) satisfies:
E[∥∇F (xs)∥22] ≤ ϵ2, for nonconvex F , if the inner batch size m = Ω(max{CeCgϵ

−1/2, σ2
inn

−1ϵ−2}),
the hyperparameters of the outer loop of E-BSpiderBoost B1 = n,B2 =

√
n, pout = 1/B2, and

the number of iterations T = Ω
(
LF (F (x0)− F ⋆)ϵ−2

)
. The resulting sample complexity is

O
(
LF (F (x0)− F ⋆)max

{√
nCeCg

ϵ2.5
,

σ2
in√
nϵ4

})
.

Remark 9. The sample complexity depends on the relation between n and ϵ

• When n = O(1), we have a complexity of O(ϵ−4). This happens because we did not apply
variance reduction for the inner loop.

• When n = Θ(ϵ−2/3), E-BSpiderBoost has same performance as MSVR-V2 [Jiang et al.,
2022] of O(nϵ−3) = O(ϵ−11/3).

• When n = Θ(ϵ−1.5), E-BSpiderBoost achieves a better sample complexity of O(ϵ−3.25)

than O(ϵ−4.5) from MSVR-V2 [Jiang et al., 2022].

• When n = Θ(ϵ−2), we recover O(ϵ−3.5) sample complexity as in Theorem 6.3.

E.5 Stationary Point Convergence Proofs from § 6.5 (FCCO) 221

Proof. Denote Gt+1 = Gt+1
E-BSB (6.9). As we are using the finite-sum variant of SpiderBoost for

the outer loop of the CSO problem, we only need to change the (E.6) and (E.7) to reflect that
the outer variance is 0 now instead of σ2

out
B1

in the general CSO case. More concretely, we update
(E.6) to

E t+1
var = E[∥Gt+1 − E[Gt+1]∥22]

≤ (1− pout)E[∥Gt+1
S − E[Gt+1

S]∥22] + pout E[∥Gt+1
L − E[Gt+1

L]∥22]

= (1−pout)
B2

E[∥Gt+1
E-BSGD −Gt

E-BSGD − E[Gt+1
E-BSGD −Gt

E-BSGD]∥22] +
pout
B1

E[∥Gt+1
E-BSGD − E[Gt+1

E-BSGD]∥
2
2]

≤ 1−pout
B2

E[∥Gt+1
E-BSGD −Gt

E-BSGD − E[Gt+1
E-BSGD −Gt

E-BSGD]∥22] +
pout
B1

σ2
in
m .

(E.9)

and change (E.7) to

E1var = E[∥G1 − E[G1]∥22] = E[∥G1
L − E[G1

L]∥22] = 1
B1

E[∥G1
E-BSGD − E[G1

E-BSGD]∥22] ≤ 1
B1

σ2
in
m .

(E.10)
Then our analysis only has to start from the updated version of (E.8)

1
T

∑T−1
t=0 E[∥∇F (xt)∥22] ≤

2(F (x0)−F ⋆)
γT +

2σ̃2
bias
m4 + (1

Tpout
+ 1) 84

B1

σ2
in
m .

We would like all terms on the right-hand side to be bounded by ϵ2. From 2σ̃2
bias
m4 ≤ ϵ2 we know

that

m = Ω(
σ̃
1/2
bias
ϵ1/2

).

From (1
Tpout

+ 1) 84
B1

σ2
in
m ≤ ϵ2, we know that

m = Ω(
σ2
in

nϵ2
).

From 2(F (x0)−F ⋆)
γT ≤ ϵ2, we can choose that

γ = O(1
LF

), T = Ω
(
LF (F (x0)−F ⋆)

ϵ2

)
.

Now the total sample complexity for E-BSpiderBoost for the FCCO problem becomes

B2mT = O
(
L2
F (F (x0)− F ⋆)max

{√
nσ̃

1/2
bias

ϵ2.5
,

σ2
in√
nϵ4

})
.

By picking xs uniformly at random among {xt}T−1
t=0 , we get the desired guarantee.

222 Debiasing Conditional Stochastic Optimization

E.5.2 Convergence of NestedVR

NestedVR Algorithm. We start by describing the NestedVR construction. We maintain
states yt+1

i and zt+1
i to approximate

yt+1
i ≈ Eη|i[gη(x

t)], zt+1
i ≈ Eη̃|i[∇gη̃(xt)].

In iteration t+ 1, if i is selected, then the state yt+1
i is updated as follows

yt+1
i =

 1
S1

∑
η∈Hi

gη(x
t) with prob. pin

yt
i +

1
S2

∑
η∈Hi

(gη(x
t)− gη(φ

t
i)) with prob. 1− pin,

where φt
i is the last time node i is visited. If i is not selected, then

yt+1
i = yt

i .

In this case, yt+1
i was never used to compute ∇fi(yt+1

i) because i is not selected at the time
t+ 1. We use the following quantities

ẑt+1
i = Eη̃|i[∇gη̃(xt)], zt+1

i = 1
m

∑
η̃∈H̃i

∇gη̃(xt). (E.11)

We use Gt+1
NVR as the actual updates,

Gt+1
NVR =

 1
B1

∑
i∈B1

(zt+1
i)⊤∇fi(yt+1

i) with prob. pout

Gt
NVR + 1

B2

∑
i∈B2

((zt+1
i)⊤∇fi(yt+1

i)− (zt
i)

⊤∇fi(ỹt
i)) with prob. 1− pout.

We can also use the following quantity Ĝt+1
NVR as an auxiliary

Ĝt+1
NVR =

 1
B1

∑
i∈B1

(ẑt+1
i)⊤∇fi(yt+1

i) with prob. pout

Ĝt
NVR + 1

B2

∑
i∈B2

((ẑt+1
i)⊤∇fi(yt+1

i)− (ẑt
i)

⊤∇fi(ỹt
i)) with prob. 1− pout.

Here we use ỹt
i to represent an i.i.d. copy of yt

i where i is selected at time t.
The iterate xt+1 is therefore updated

xt+1 = xt − γGt+1
NVR.

Lemma E.10. The error between Gt+1
NVR and Ĝt+1

NVR can be upper bounded as follows

1
T

∑T−1
t=0 E

[
∥Gt+1

NVR − Ĝt+1
NVR∥22

]
≤ 1

B1

C2
fσ

2
g

m + 4(1−pout)
B2mpout

1
T

∑T−1
t=0

(
E[∥Gt+1

i −Gt
i∥22]
)
.

E.5 Stationary Point Convergence Proofs from § 6.5 (FCCO) 223

Proof. In this proof, we ignore the subscript in Gt+1
NVR and Ĝt+1

NVR, we bound the error between
Gt+1 and associated Ĝt+1 where

Gt+1
i = (1

m

∑
η̃∈H̃i

∇gη̃(x))⊤∇fi(yt+1
i),

Ĝt+1
i = (Eη̃|i[∇gη̃(x)])⊤∇fi(yt+1

i).

Let’s only consider the expectation over the randomness of ∇gη̃,

EHi

[
∥Gt+1

i − Ĝt+1
i ∥

2
2

]
≤ Eη̃|i

[
∥(1

m

∑
η̃∈H̃i

∇gη̃(x)− Eη̃|i[∇gη̃(x))]∥22
]

E[∥∇fi(yt+1
i)∥22]

≤ C2
f

m Eη̃|i
[
∥∇gη̃(x)− Eη̃|i[∇gη̃(x))]∥22

]
≤ C2

fσ
2
g

m .

Then we can bound the error as follows

E
[
EHi

[
∥Gt+1 − Ĝt+1∥22

]]
= pout

B1
E
[
EHi

[
∥Gt+1

i − Ĝt+1
i ∥

2
2

]]
+ (1− pout)

(
∥Gt − Ĝt∥22 + 1

B2
E
[
EHi

[
∥Gt+1

i −Gt
i − Ĝt+1

i − Ĝt
i∥22
]])

≤ pout
B1

C2
fσ

2
g

m + (1− pout)∥Gt − Ĝt∥22
+ (1−pout)

B2m

(
E
[
∥Gt+1

i −Gt
i∥22
])

≤ pout
B1

C2
fσ

2
g

m + (1− pout)∥Gt − Ĝt∥22 +
(1−pout)
B2m

(
E[∥Gt+1

i −Gt
i∥22]
)
.

Unroll the recursion gives

1
T

∑T−1
t=0 E

[
∥Gt+1 − Ĝt+1∥22

]
≤ 1

B1

C2
fσ

2
g

m + 4(1−pout)
B2mpout

1
T

∑T−1
t=0 E[∥Gt+1

i −Gt
i∥22].

Lemma E.11 (Staleness). Define the staleness of iterates at time t as Ξt := 1
n

∑n
j=1∥xt−φt

j∥22
and let Gt+1 be the gradient estimate, then

1
T

∑T−1
t=0 E[Ξt] ≤ 6n2

B2
2
γ2 1

T

∑T−1
t=0 E[∥Gt+1∥22]. (E.12)

Proof. Like previously (Lemma E.5), let E[·] denote the expectation conditioned on all previous
randomness until t − 1. It is clear that Ξ0 = 0, so we only consider t > 0. We upper bound
E[Ξt] as follows,

E[Ξt] = (1− pout)
1

n

n∑
j=1

E[∥xt − φt
j∥22]︸ ︷︷ ︸

if time t takes B2

+pout
1

n

n∑
j=1

E[∥xt − φt
j∥22]︸ ︷︷ ︸

if time t takes B1(φt
j=xt−1)

.

224 Debiasing Conditional Stochastic Optimization

Then we can expand E[Ξt] as follows

E[Ξt] =
1− pout

n

n∑
j=1

E[∥xt − φt
j∥22] +

pout

n

n∑
j=1

E[∥xt − xt−1∥22]

≤ 1− pout

n

n∑
j=1

(
(1 + 1

β)Ei[∥xt−1 − φt
j∥22] + (1 + β)∥xt−1 − xt∥22

)
+ poutγ

2 E[∥Gt∥22]

≤ 1

n

n∑
j=1

(1 + 1
β)Ei[∥xt−1 − φt

j∥22]+(1+β)γ2 E[∥Gt∥22]

where we use Cauchy-Schwarz inequality with coefficient β > 0. By the definition of φt
j ,

E[Ξt] ≤ 1

n

n∑
j=1

(1+ 1
β)

(
n−B2

n
∥xt−1−φt−1

j ∥
2
2 +

B2

n
∥xt−1 − xt−1∥22

)
+(1+β)γ2 E[∥Gt∥22]

= (1 + 1
β)(1−

B2
n)Ξt−1 + (1 + β)γ2 E[∥Gt∥22].

By taking β = 2n/B2, we have that (1 + 1
β)(1−

B2
n) ≤ 1− B2

2n and thus

E[Ξt] ≤ (1− B2
2n)Ξ

t−1 + (1 + 2n
B2

)γ2 E[∥Gt∥22].

Note that E[Ξ0] = 0.

1
T

∑T−1
t=0 E[Ξt] ≤ 2n

B2
(1 + 2n

B2
)γ2 1

T

∑T−1
t=0 E[∥Gt+1∥22]

≤ 6n2

B2
2
γ2 1

T

∑T−1
t=0 E[∥Gt+1∥22].

The following lemma describes how the inner variable changes inside the variance.

Lemma E.12. Denote E t+1
y := E

[
∥yt+1

i − Eη|i[gη(x
t)]∥22

]
to be the error from inner variance

and poutT ≤ 1. Then

1
T

∑T−1
t=0 E t+1

y ≤ (1−pin)C
2
g

pinS2

1
T

∑T−1
t=0 Ξt +

2σ2
g

S1
.

Meanwhile, E1y = E[∥y1
i − Eη|i[gη(x

0)]∥22] =
σ2
g

S1
.

Proof.

E t+1
y ≤ pin

σ2
g

S1
+ (1− pin)Ei[Eη|i[∥yt

i − Eη|i[gη(φ
t
i)]∥22]]

+ 1−pin
S2

Ei[Eη|i[∥gη(xt)− gη(φ
t
i)∥22]]

≤ (1− pin)E ty +
(1−pin)C

2
g

S2
Ei[Eη|i[∥xt − φt

i∥22]] + pin
σ2
g

S1
.

E.5 Stationary Point Convergence Proofs from § 6.5 (FCCO) 225

As t = 0 always uses the large batch, E1y = E[∥y1
i − Eη|i[gη(x

0)]∥22] =
σ2
g

S1
. Then

1
T

∑T−1
t=0 E t+1

y ≤ (1−pin)C
2
g

pinS2

1
T

∑T−1
t=0 Ei[Eη|i[∥xt − φt

i∥22]] +
σ2
g

S1
+

E1
y

pinT

≤ (1−pin)C
2
g

pinS2

1
T

∑T−1
t=0 Ξt +

2σ2
g

S1
.

Lemma E.13. The error Ei[Epin [Eη|i[∥yt+1
i − ỹt

i∥22]]] satisfies

1
T

∑T−1
t=1 Ei[Epin [Eη|i[∥yt+1

i − ỹt
i∥22]]] ≤

4C2
gγ

2

T

∑T−1
t=0 E[∥Gt+1∥22] +

4(1−pin)C
2
g

S2

1
T

∑T−1
t=0 Ξt+1

+ 6(1−pin)
T

∑T−1
t=0 E t+1

y .

Note that when pin = 1 and S1 = S2 = m, we recover the following

1
T

∑T−1
t=1 Ei[Epin [Eη|i[∥yt+1

i − ỹt
i∥22]]] = 1

T

∑T−1
t=1 Ei[Epin [Eη|i[∥ 1

m

∑
η∈Hξ

gη(x
t)− gη(x

t−1)∥22]]]

≤ 4C2
gγ

2

T

∑T−1
t=0 E[∥Gt+1∥22].

Proof. For t ≥ 2, Ei[Epin [Eη|i[∥yt+1
i − ỹt

i∥22]]] can be upper bounded as follows

Ei[Epin [Eη|i[∥yt+1
i − ỹt

i∥22]]] = pin Ei

[
Eη|i

[
∥ 1
S1

∑
η∈Hi

(gη(x
t)− gη(x

t−1))∥22
]]

+ (1− pin)Ei

[
Eη|i

[
∥yt

i − yt−1
i + 1

S2

∑
η∈Hi

(gη(x
t)− gη(φ

t
i))− (gη(x

t−1)− gη(φ
t−1
i))∥22

]]
≤ pinC

2
g∥xt − xt−1∥22 +

1−pin
S2

Ei

[
Eη|i

[
∥(gη(xt)− gη(φ

t
i))− (gη(x

t−1)− gη(φ
t−1
i))∥22

]]
+ 3(1− pin)

(
Ei

[
∥yt

i − Eη|i[gη(φ
t
i)]∥22

]
+ Ei

[
∥yt−1

i − Eη|i[gη(φ
t−1
i)]∥22

]
+ C2

g∥xt − xt−1∥22
)

≤ pinC
2
g∥xt − xt−1∥22 +

2(1−pin)C
2
g

S2

(
Ξt + Ξt−1

)
+ 3(1− pin)

(
E ty + E t−1

y + C2
g∥xt − xt−1∥22

)
≤ (pin + 3(1− pin))C

2
g∥xt − xt−1∥22 +

2(1−pin)C
2
g

S2

(
Ξt + Ξt−1

)
+ 3(1− pin)

(
E ty + E t−1

y

)
.

For t = 1, we choose ỹ1
i = y1

i

Ei[Epin [Eη|i[∥y2
i − ỹ1

i ∥22]]] = pin Ei

[
Eη|i

[
∥ 1
S1

∑
η∈Hi

(gη(x
1)− gη(x

0))∥22
]]

+ (1− pin)Ei

[
Eη|i

[
∥y1

i − 1
S2

∑
η∈Hi

(gη(x
1)− gη(x

0))− ỹ1
i ∥22
]]

≤ C2
g∥x1 − x0∥22.

226 Debiasing Conditional Stochastic Optimization

Then for summing up t = 1 to T − 1

∑T−1
t=2 Ei[Epin [Eη|i[∥yt+1

i − ỹt
i∥22]]] + Ei[Epin [Eη|i[∥y2

i − ỹ1
i ∥22]]]

≤ (pin + 3(1− pin))C
2
g

∑T−1
t=2 ∥xt − xt−1∥22 +

2(1−pin)C
2
g

S2

(∑T−1
t=2 Ξt +

∑T−1
t=2 Ξt−1

)
+ 3(1− pin)

(∑T−1
t=2 E ty +

∑T−1
t=2 E t−1

y

)
+ C2

g∥x1 − x0∥22

≤ 4C2
g

∑T−1
t=1 ∥xt − xt−1∥22 +

4(1−pin)C
2
g

S2

∑T−1
t=0 Ξt+1 + 6(1− pin)

∑T−1
t=0 E t+1

y .

Finally, the error has the following upper bound

1
T

∑T−1
t=1 Ei[Epin [Eη|i[∥yt+1

i − ỹt
i∥22]]]

≤ 4C2
gγ

2

T

∑T−1
t=0 E[∥Gt+1∥22] +

4(1−pin)C
2
g

S2

1
T

∑T−1
t=0 Ξt+1 + 6(1−pin)

T

∑T−1
t=0 E t+1

y .

Lemma E.14 (Bias and Variance of NestedVR). If the step size γ satisfies,

γ2L2
F max

{
(1−pin)
pinS2

18
B2

, 1−pout
B2

(1−pin)
pinS2

18n2

B2
2
, (1−pout)

B2

}
≤ 1

16 ·
1
6

then the variance and bias of NestedVR are

1
T

∑T−1
t=0 E t+1

var ≤ 32
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F
T

∑T−1
t=0 ∥E[Gt+1]∥22

+ 96
(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2
F

S1
+ (1−pout)

T
8L̃2

F
B1S1

1
T

∑T−1
t=0 E

t+1
bias ≤

12(1−pin)
pinS2

n2

B2
2

L2
F γ2

T

∑T−1
t=0 ∥E[Gt+1]∥22 +

4L̃2
F

S1

+
(
12(1−pin)

pinS2

n2

B2
2
L2
Fγ

2 + 2(1−pout)2

pout

)
1
T

∑T−1
t=0 E t+1

var .

Proof. Notations. Let us define the following terms,

Gt+1
i := (zt+1

i)⊤∇fi(yt+1
i), G̃t

i := (zt
i)

⊤∇fi(ỹt
i).

Note that the G̃t computed at time t+ 1 has same expectation as Gt

Et+1[G̃t|t] = Et[Gt|t− 1]. (E.13)

Computing the bias. First consider the two cases in the outer loop

E t+1
bias = ∥∇F (xt)− Et+1[Gt+1|t]∥22
≤ 2 ∥∇F (xt)− Et+1[Gt+1

i |t]∥
2
2︸ ︷︷ ︸

At+1
1

+2 ∥Et+1[Gt+1
i |t]− Et+1[Gt+1|t]∥22︸ ︷︷ ︸

At+1
2

.

E.5 Stationary Point Convergence Proofs from § 6.5 (FCCO) 227

We expand At+1
2 as follows

At+1
2 = ∥Et+1[Gt+1

i |t]− Et+1[Gt+1|t]∥22
= ∥Et+1[Gt+1

i |t]− pout Et+1[Gt+1
i |t]− (1− pout)(G

t + Et+1[Gt+1
i − G̃t

i|t])∥22
= (1− pout)

2∥Gt − Et+1[G̃t
i|t]∥22

= (1− pout)
2∥Gt − Et[Gt

i|t− 1]∥22

where we use (E.13) in the last equality. Now we take expectation with respect to randomness
at t such that Gt is a random variable, then

At+1
2 = (1− pout)

2 Et
[
∥Gt − Et[Gt

i|t− 1]∥22|t− 1
]

= (1− pout)
2
(
∥Et[Gt|t− 1]− Et[Gt

i|t− 1]∥22 + E tvar
)

= (1− pout)
2
(
At

2 + E tvar
)

while at initialization we always use large batch

A1
2 = ∥E1[G1

i]− E1[G1]∥22 = ∥E1[G1
i]− E1[G1

i]∥22 = 0.

Therefore, when we average over time t

1
T

∑T−1
t=0 At+1

2 ≤ (1−pout)2

pout
1
T

∑T−1
t=0 E t+1

var . (E.14)

On the other hand, let us consider the upper bound on At+1
1

At+1
1 ≤ C2

gL
2
f E[∥yt+1

i − Eη|i[gη(x
t)]∥22] = C2

gL
2
fE t+1

y .

From Lemma E.12 we know that

1
T

∑T−1
t=0 At+1

1 ≤ C2
gL

2
f

(
(1−pin)C

2
g

pinS2

1
T

∑T−1
t=0 Ξt +

2σ2
g

S1

)
≤ (1−pin)L

2
F

pinS2

1
T

∑T−1
t=0 Ξt +

2L̃2
F

S1
.

From Lemma E.11 we know that

1
T

∑T−1
t=0 At+1

1 ≤ (1−pin)L
2
F

pinS2

(
6n2

B2
2
γ2 1

T

∑T−1
t=0 E[∥Gt+1∥22]

)
+

2L̃2
F

S1

= 6(1−pin)
pinS2

n2

B2
2

L2
F γ2

T

∑T−1
t=0 ∥E[Gt+1]∥22 +

2L̃2
F

S1
+ 6(1−pin)

pinS2

n2

B2
2

L2
F γ2

T

∑T−1
t=0 E t+1

var .

228 Debiasing Conditional Stochastic Optimization

Therefore, the bias has the following bound

1
T

∑T−1
t=0 E

t+1
bias ≤

12(1−pin)
pinS2

n2

B2
2

L2
F γ2

T

∑T−1
t=0 ∥E[Gt+1]∥22 +

4L̃2
F

S1

+
(
12(1−pin)

pinS2

n2

B2
2
L2
Fγ

2 + 2(1−pout)2

pout

)
1
T

∑T−1
t=0 E t+1

var .
(E.15)

Note that when pin = 1 and S1 = S2 = m, then this bias recovers BSpiderBoost in (E.5)

1
T

∑T−1
t=0 E

t+1
bias ≤

4L̃2
F

m + 2(1−pout)2

pout
1
T

∑T−1
t=0 E t+1

var .

Computing the variance. Let us decompose the variance into 3 parts:

E t+1
var = E

[
∥Gt+1 − E[Gt+1]∥22

]
= E

[
∥Gt+1 ± Ĝt+1 ± Eη|i[Ĝ

t+1]− Ei[Eη|i[Ĝ
t+1]]∥22

]
= E

[
∥Gt+1 − Ĝt+1∥22

]
︸ ︷︷ ︸

Et+1
∇g

+Ei[∥Eη|i[G
t+1]− Ei[Eη|i[G

t+1]]∥22]︸ ︷︷ ︸
Et+1
var,out

+E[∥Gt+1 − Eη|i[G
t+1]∥22]︸ ︷︷ ︸

Et+1
var,in

where E t+1
var,out and E t+1

var,in are the variance of outer loop and inner loop.
Inner Variance. For t ≥ 1, we expand the inner variance

E t+1
var,in = pout E

[
∥ 1
B1

∑
i(Eη̃|i[∇gη̃(xt)])⊤(∇fi(yt+1

i)− Eη|i[∇fi(yt+1
i)])∥22

]
+ (1− pout)E

[
∥ 1
B2

∑
i(G

t+1
i − G̃t

i)− Eη|i[G
t+1
i − G̃t

i]∥22
]

≤ pout
B1

C2
g E
[
∥∇fi(yt+1

i)− Eη|i[∇fi(yt+1
i)]∥22

]
+ 1−pout

B2
Ei

[
Eη|i

[
∥Gt+1

i − G̃t
i∥22
]]

≤ pout
B1

4C2
gL

2
fE t+1

y + 1−pout
B2

Ei

[
Epin

[
Eη|i

[
∥Gt+1

i − G̃t
i∥22
]]]

.

(E.16)

We bound the outer variance as

Ei

[
Epin

[
Eη|i

[
∥Gt+1

i − G̃t
i∥22
]]]

= Ei

[
Epin

[
Eη|i

[
∥Gt+1

i ± (Eη̃|i[∇gη̃(xt−1)])⊤∇fi(yt+1
i)− G̃t

i∥22
]]]

≤ 2Ei

[
Epin

[
Eη|i

[
∥Gt+1

i − (Eη̃|i[∇gη̃(xt−1)])⊤∇fi(yt+1
i)∥22

]]]
+ 2Ei

[
Epin

[
Eη|i

[
∥(Eη̃|i[∇gη̃(xt−1)])⊤∇fi(yt+1

i)− G̃t
i∥22
]]]

≤ 2C2
fL

2
g∥xt − xt−1∥22 + 2C2

gL
2
f Ei[Epin [Eη|i[∥yt+1

i − ỹt
i∥22]]].

(E.17)

E.5 Stationary Point Convergence Proofs from § 6.5 (FCCO) 229

For t = 0, as we only use large and small batch in the

E1var,in = E
[
∥ 1
B1

∑
i(Eη̃|i[∇gη̃(x0)])⊤(∇fi(y1

i)− Eη|i[∇fi(y1
i)])∥22

]
≤ 1

B1
C2
g E[∥∇fi(y1

i)− Eη|i[∇fi(y1
i)]∥22]

≤ 1
B1

4C2
gL

2
fE1y

≤ 1
B1

4C2
gL

2
f
σ2
g

S1

≤ 4L̃2
F

B1S1
.

(E.18)

Therefore, average over time t = 0, . . . T − 1 gives

1
T

∑T−1
t=0 E

t+1
var,in ≤

pout
B1

4C2
gL

2
f
1
T

∑T−1
t=1 E t+1

y + 1−pout
B2

1
T

∑T−1
t=1 Ei[Epin [Eη|i[∥Gt+1

i − G̃t
i∥22]]] +

E1
var,in
T

= pout
B1

4C2
gL

2
f
1
T

∑T−1
t=0 E t+1

y + 1−pout
B2

1
T

∑T−1
t=1 Ei

[
Epin

[
Eη|i

[
∥Gt+1

i − G̃t
i∥22
]]]

+
(1−pout)E1

var,in
T

≤ pout
B1

4C2
gL

2
f
1
T

∑T−1
t=0 E t+1

y +
(1−pout)E1

var,in
T

+ 2(1−pout)
B2

(
C2

fL
2
g

T

∑T−1
t=1 ∥xt − xt−1∥22 + C2

gL
2
f
1
T

∑T−1
t=1 Ei[Epin [Eη|i[∥yt+1

i − ỹt
i∥22]]]

)
≤ pout

B1
4C2

gL
2
f
1
T

∑T−1
t=0 E t+1

y +
(1−pout)E1

var,in
T

+ 2(1−pout)
B2

C2
fL

2
gγ

2

T

∑T−1
t=0 E[∥Gt+1∥22]

+ 2(1−pout)
B2

C2
gL

2
f
1
T

∑T−1
t=1 Ei[Epin [Eη|i[∥yt+1

i − ỹt
i∥22]]].

Let us first apply Lemma E.13

1
T

∑T−1
t=0 E

t+1
var,in ≤

pout
B1

4C2
gL

2
f
1
T

∑T−1
t=0 E t+1

y +
(1−pout)E1

var,in
T + 2(1−pout)

B2

C2
fL

2
gγ

2

T

∑T−1
t=0 E[∥Gt+1∥22]

+
2(1−pout)C2

gL
2
f

B2

(
4C2

gγ
2

T

∑T−1
t=0 E[∥Gt+1∥22] +

4(1−pin)C
2
g

S2

1
T

∑T−1
t=0 Ξt + 6(1−pin)

T

∑T−1
t=0 E t+1

y

)
≤
(
pout
B1

+ (1−pin)(1−pout)
B2

)
12C2

gL
2
f

T

∑T−1
t=0 E t+1

y +
8(1−pout)L2

F γ2

B2

1
T

∑T−1
t=0 E[∥Gt+1∥22]

+
8(1−pout)(1−pin)C

4
gL

2
f

B2S2

1
T

∑T−1
t=0 Ξt +

(1−pout)E1
var,in

T

230 Debiasing Conditional Stochastic Optimization

Then we apply Lemma E.12 on the bound of 1
T

∑T−1
t=0 E t+1

y

1
T

∑T−1
t=0 E

t+1
var,in ≤ 24

(
pout
B1

+ (1−pin)(1−pout)
B2

)(
(1−pin)L

2
F

pinS2

1
T

∑T−1
t=0 Ξt +

L̃2
F

S1

)
+

8(1−pout)L2
F γ2

B2

1
T

∑T−1
t=0 E[∥Gt+1∥22]

+
8(1−pout)(1−pin)C

4
gL

2
f

B2S2

1
T

∑T−1
t=0 Ξt +

(1−pout)E1
var,in

T

≤ 24
(
pout
B1

+ (1−pin)(1−pout)
B2

+ pin(1−pout)
B2

)
(1−pin)L

2
F

pinS2

1
T

∑T−1
t=0 Ξt

+
8(1−pout)L2

F γ2

B2

1
T

∑T−1
t=0 E[∥Gt+1∥22]

+ 24
(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2
F

S1
+

(1−pout)E1
var,in

T

≤ 24
(
pout
B1

+ 1−pout
B2

)
(1−pin)L

2
F

pinS2

1
T

∑T−1
t=0 Ξt

+
8(1−pout)L2

F γ2

B2

1
T

∑T−1
t=0 E[∥Gt+1∥22]

+ 24
(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2
F

S1
+ (1−pout)

T E1var,in.

From Lemma E.11, we plug in the upper bound of 1
T

∑T−1
t=0 Ξt

1
T

∑T−1
t=0 E

t+1
var,in ≤ 24

(
pout
B1

+ 1−pout
B2

)
(1−pin)L

2
F

pinS2

(
6n2

B2
2
γ2 1

T

∑T−1
t=0 E[∥Gt+1∥22]

)
+

8(1−pout)L2
F γ2

B2

1
T

∑T−1
t=0 E[∥Gt+1∥22]

+ 24
(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2
F

S1
+ (1−pout)

T E1var,in

≤ 8
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F
T

∑T−1
t=0 E[∥Gt+1∥22]

+ 24
(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2
F

S1
+ (1−pout)

T E1var,in.

Finally, we add the upper bound on with E1var,in with (E.18)

1
T

∑T−1
t=0 E

t+1
var,in ≤ 8

((
pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F
T

∑T−1
t=0 E[∥Gt+1∥22]

+ 24
(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2
F

S1
+ (1−pout)

T
4L̃2

F
B1S1

.
(E.19)

Outer Variance. Now we consider the outer variance for t ≥ 1

E t+1
var,out ≤

(1−pout)2

B2
Ei

[
∥Eη|i[G

t+1
i]− Eη|i[G̃

t
i]∥22
]

≤ (1−pout)2

B2
Ei

[
Eη|i

[
∥Gt+1

i − G̃t
i∥22
]]

.

Compared to (E.16) we know that the upper bound of is smaller than that of E t+1
var,in. Besides,

whereas E1var,out = 0 as we use large batch at t = 0. Therefore, the upper bound of E t+1
var is upper

bounded by 2*(E.19).

E.5 Stationary Point Convergence Proofs from § 6.5 (FCCO) 231

Variance of ∇gη̃. From Lemma E.10, we know that

1
T

∑T−1
t=0 E[E t+1

∇g] ≤ 1
B1

C2
fσ

2
g

m + 4(1−pout)
B2mpout

1
T

∑T−1
t=0

(
E
[
∥Gt+1

i − G̃t
i∥22
])

≤ 1
B1

C2
fσ

2
g

m + 1
mE

t+1
var

Finally, we use E[∥Gt+1∥22] = ∥E[Gt+1]∥22 + E t+1
var .

1
T

∑T−1
t=0 E t+1

var ≤ 16
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F
T

∑T−1
t=0 ∥E[Gt+1]∥22

+ 16
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F
T

∑T−1
t=0 E t+1

var

+ 48
(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2
F

S1
+ (1−pout)

T
8L̃2

F
B1S1

.

By taking step size γ to satisfy

γ2L2
F max

{
pout
B1

(1−pin)
pinS2

18n2

B2
2
, 1−pout

B2

(1−pin)
pinS2

18n2

B2
2
, (1−pout)

B2

}
≤ 1

16 ·
1
6

which can be simplified to

γ2L2
F max

{
(1−pin)
pinS2

18
B2

, 1−pout
B2

(1−pin)
pinS2

18n2

B2
2
, (1−pout)

B2

}
≤ 1

16 ·
1
6 .

Then the coefficient of 1
T

∑T−1
t=0 E t+1

var is bounded by 1
2

16
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F ≤ 1
2 .

The the variance has the following bound

1
T

∑T−1
t=0 E t+1

var ≤ 32
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F
T

∑T−1
t=0 ∥E[Gt+1]∥22

+ 96
(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2
F

S1
+ (1−pout)

T
8L̃2

F
B1S1

.

Theorem E.6. Consider the (FCCO) problem. Suppose Assumptions G, H, I holds true.
Let step size γ = O(1√

nLF
). Then for NestedVR, xs picked uniformly at random among

{xt}T−1
t=0 satisfies: E[∥∇F (xs)∥22] ≤ ϵ2, for nonconvex F , if the hyperparameters of the inner

loop S1 = O(L̃2
F ϵ

−2), S2 = O(L̃F ϵ
−1), pin = O(1/S2), the hyperparameters of the outer loop

B1 = n,B2 =
√
n, pout = 1/B2, and the number of iterations

T = Ω
(√

nLF (F (x0)−F ⋆)
ϵ2

)
.

232 Debiasing Conditional Stochastic Optimization

The resulting sample complexity is

O
(
nLF L̃F (F (x0)−F ⋆)

ϵ3

)
.

In fact, it reaches this sample complexity for all pinpout√
1−pin

. ϵ.

Proof. Using descent lemma (Lemma E.4) and bias-variance bounds of NestedVR (Lemma E.14)

1
T

∑T−1
t=0 ∥∇F (xt)∥22 + 1

2T

∑T−1
t=0 ∥E[Gt+1]∥22

≤ 2(F (x0)−F ⋆)
γT + LF γ

T

∑T−1
t=0 E t+1

var + 1
T

∑T−1
t=0 E

t+1
bias

≤ 2(F (x0)−F ⋆)
γT︸ ︷︷ ︸
T0

+
4L̃2

F
S1︸︷︷︸
T1

+ 12(1−pin)
pinS2

n2

B2
2

L2
F γ2

T

∑T−1
t=0 ∥E[Gt+1]∥22︸ ︷︷ ︸

T2

+
(
12(1−pin)

pinS2

n2

B2
2
L2
Fγ

2 + 2(1−pout)2

pout
+ γLF

)
1
T

∑T−1
t=0 E t+1

var︸ ︷︷ ︸
T3

.

Compute T0. In order to let T0 ≤ ϵ2, we require that

γT ≥ ϵ−2. (E.20)

Compute T1. In order to let T1 to be smaller than ϵ2, we need

S1 =
4L̃2

F
ϵ2

.

Compute T2. In order to let the coefficient of 1
T

∑T−1
t=0 ∥E[Gt+1]∥22 in T2 to be less than 1

4 , i.e.

12(1−pin)
pinS2

n2

B2
2
L2
Fγ

2 ≤ 1
4 , (E.21)

which requires γ

γ ≤ B2
√
pinS2

7LFn
√
1−pin

= poutpinL̃F

7ϵLF
√
1−pin

. (E.22)

Compute T3. Let us now focus on T3 and notice that the middle term 2(1−pout)2

pout

2(1−pout)2

pout
1
T

∑T−1
t=0 E t+1

var .

E.5 Stationary Point Convergence Proofs from § 6.5 (FCCO) 233

Using Lemma E.14 we have that

2(1−pout)2

pout
1
T

∑T−1
t=0 E t+1

var

≤ 322(1−pout)2

pout

((
pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F
1
T

∑T−1
t=0 ∥E[Gt+1]∥22︸ ︷︷ ︸

T3,1

+ 962(1−pout)2

pout

(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2
F

S1︸ ︷︷ ︸
T3,2

+ 2(1−pout)2

pout

(1−pout)
T

8L̃2
F

B1S1︸ ︷︷ ︸
T3,3

.

• Compute T3,3: As we already know that S1 = O(ϵ−2) and T ≥ 1 and B1pout ≥ 1. This
imposes no more constraints, i.e.

S1 = O

(
L̃2
F

ϵ2

)
.

• Compute T3,2: As S1 = O(ϵ−2) and B1 = n and B2 = B1pout, then it requires

(1−pin)(1−pout)3

p2out
≤ n.

• Compute T3,1: In order to satisfy the following

322(1−pout)2

pout

((
pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F ≤ 1
12

we need to enforce

γ ≤ pinpoutL̃F

ϵLF (1− pin)1/2(1− pout)3/2
. (E.23)

Now we go back to T3 and compare the other two coefficients

12(1−pin)
pinS2

n2

B2
2
L2
Fγ

2 + 2(1−pout)2

pout
+ γLF .

As γLF ≤ 1
2 . 2(1−pout)2

pout
we can safely ignore γLF . On the other hand, from (E.21) we know

that the first term is also have

12(1−pin)
pinS2

n2

B2
2
L2
Fγ

2 ≤ 1
4 . 2(1−pout)2

pout
.

Constraints from the Bias-Variance Lemma (Lemma E.14). By setting B1 = n and
S1 = O(

L̃2
F
ϵ2

), this constraint translates to

γ2L2
F max

{
(1−pin)

p2in

ϵ2

B2
, 1−pout

B2

(1−pin)ϵ
2

p2in

1
p2out

, (1−pout)
B2

}
. 1

which is weaker than (E.22).

234 Debiasing Conditional Stochastic Optimization

Summary on the Limit on γ. Combine (E.22) and (E.23) and γ ≤ 1
2LF

, we have a final
limit on step size γ

γ . min
{

poutpinL̃F

ϵLF
√
1−pin

, 1
LF

}
(E.24)

Then the total sample complexity of NestedVR can be computed as

(# of iters T)× (Avg. outer batch size B2 = B1pout)× (Avg. inner batch size S2 = S1pin).

This sample complexity has the following requirement

B2S2T =
B2S2(Tγ)

γ

(E.20)
≥ B2S2

ϵ2γ
=

nϵ−2

ϵ2
pinpout

γ

(E.24)
& nϵ−3.

The lower bound nϵ−3 is reached when in (E.24) we have

poutpinL̃F

ϵLF
√
1−pin

. 1
LF

.

That is, poutpin√
1−pin

. ϵ.
In particular, we can choose the following hyperparameters to reach O(nϵ−3) sample com-

plexity

B1 = n, B2 =
√
n, pout =

1√
n
, S1 = O(L̃2

F ϵ
−2), S2 = O(L̃F ϵ

−1), pin = O(L̃−1
F ϵ)

The step size γ can be chosen as

γ . 1√
nLF

.

and the iteration complexity

T = Ω
(√

nLF (F (x0)−F ⋆)
ϵ2

)
.

Putting these together gives the claimed sample complexity bound. By picking xs uniformly at
random among {xt}T−1

t=0 , we get the desired guarantee.

E.5 Stationary Point Convergence Proofs from § 6.5 (FCCO) 235

E.5.3 Convergence of E-NestedVR

In this section, we analyze the sample complexity of Algorithm 7 (E-NestedVR) for the FCCO
problem with

Gt+1
E-NVR =


1
B1

∑
i(z

t+1
i)⊤L(2)Dt+1

y,i

∇fi(0) with prob. pout

Gt
E-NVR + 1

B2

∑
i

(
(zt+1

i)⊤L(2)Dt+1
y,i

∇fi(0)− (zt
i)

⊤L(2)Dt
y,i
∇fi(0)

)
with prob. 1− pout.

(E.25)

Lemma E.15 (Bias and Variance of E-NestedVR). If the step size γ satisfies

γ2L2
F max

{
(1−pin)
pinS2

18
B2

, 1−pout
B2

(1−pin)
pinS2

18n2

B2
2
, (1−pout)

B2

}
≤ 1

16 ·
1
6

then the variance and bias of E-NestedVR are

1
T

∑T−1
t=0 E t+1

var ≤ 14 · 32
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F
T

∑T−1
t=0 ∥E[Gt+1]∥22

+ 14 · 96
(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2
F

S1
+ (1−pout)

T
8L̃2

F
B1S1

.

1
T

∑T−1
t=0 E

t+1
bias ≤

(1−pin)
3L̃2

F
pinS2

6n2

B2
2
γ2 1

T

∑T−1
t=0 ∥E[Gt+1]∥22 +

2(1−pin)
2L̃2

F
S1

+ C2
e

S4
2

+
(
(1−pin)

3L̃2
F

pinS2

6n2

B2
2
γ2 + (1−pout)2

pout

)
1
T

∑T−1
t=0 E t+1

var .

Proof. Note that this proof is very similar to NestedVR so we highlight the differences. Let
Gt+1 = Gt+1

E-NVR (E.25) be the E-NestedVR update and define

Gt+1
i := (zt+1

i)⊤L(2)Dt+1
y,i

∇fi(0)

We expand the bias by inserting Ei,pin,η|i[G
t+1
i]

E t+1
bias = ∥∇F (xt+1)− E[Gt+1]∥22
≤ 2 ∥∇F (xt+1)− Ei,pin,η,η̃|i[G

t+1
i]∥22︸ ︷︷ ︸

At+1
1

+2 ∥Ei,pin,η,η̃|i[G
t+1
i]− E[Gt+1]∥22︸ ︷︷ ︸
At+1

2

.

236 Debiasing Conditional Stochastic Optimization

Consider At+1
1 . The term At+1

1 captures the difference between full gradient and extrapolated
gradient

At+1
1 = ∥Ei

[
(Eη̃|i[∇gη̃(xt)])⊤∇fi(E[gη(xt)])− Epin,η|i

[
(Eη̃|i[∇gη̃(xt)])⊤L(2)Dt+1

y,i

∇fi(0)
]]
∥22

≤ C2
g Ei

[
∥∇fi(Eη|i[gη(x

t)])− Epin,η|i

[
L(2)Dt+1

y,i

∇fi(0)
]
∥22
]

≤ 2C2
g Ei

[
∥∇fi(Eη|i[gη(x

t)])− Epin [∇fi(Eη|i[y
t+1
i])]∥22

]︸ ︷︷ ︸
=:At+1

1,1

+ 2C2
g Ei

[
∥Epin [∇fi(Eη|i[y

t+1
i])]− Epin,η|i

[
L(2)Dt+1

y,i

∇fi(0)
]
∥22
]

︸ ︷︷ ︸
=:At+1

1,2

.

The first term At+1
1,1 can be upper bounded through smoothness of fξ, for t ≥ 1

At+1
1,1 = Ei

[
∥∇fi(Eη|i[gη(x

t)])− pin∇fi(Eη|i[gη(x
t)])− (1− pin)∇fi(yt

i + Eη|i[gη(x
t)− gη(φ

t
i)])∥22

]
= (1− pin)

2 Ei

[
∥∇fi(E[gη(xt)])−∇fi(yt

i + Eη|i[gη(x
t)− gη(φ

t
i)])∥22

]
≤ (1− pin)

2L2
f Ei

[
∥Eη|i[gη(x

t)]− (yt
i + Eη|i[gη(x

t)− gη(φ
t
i)])∥22

]
= (1− pin)

2L2
f Ei[∥yt

i − Eη|i[gη(φ
t
i)]∥22]

= (1− pin)
2L2

fE ty.

For t = 0, A1
1,1 = 0, then

1
T

∑T−1
t=0 At+1

1,1 ≤ (1− pin)
2L2

fC
2
g
1
T

∑T−1
t=0 E t+1

y . (E.26)

On the other hand, with Lemma E.6

At+1
1,2 ≤ pin Ei

[
∥∇fi(Eη|i[gη(x

t)])− Eη|i

[
L(2)Dt+1

y,S1,i

∇fi(0)
]
∥22
]

+ (1− pin)Ei

[
∥∇fi(yt

i + Eη|i[gη(x
t)− gη(φ

t
i)])− Eη|i

[
L(2)Dy,S2,i

∇fi(0)
]
∥22
]

≤ pinC
2
e

S4
1

+ (1−pin)C
2
e

S4
2

≤ C2
e

S4
2

where Dt+1
y,S1,i

is the distribution of 1
S1

∑
η∈S1

gη(x
t) and Dt+1

y,S2,i
is the distribution of

yt
i +

1
S2

∑
η∈S2

(gη(x
t)− E[gη(φt

i)]).

E.5 Stationary Point Convergence Proofs from § 6.5 (FCCO) 237

Thus the At+1
1 has the following upper bound

1
T

∑T−1
t=0 At+1

1 ≤ (1− pin)
2L2

fC
2
g
1
T

∑T−1
t=0 E t+1

y + C2
e

S4
2
. (E.27)

Consider At+1
2 . Let us expand At+1

2 through recursion

At+1
2 = ∥Ei,pin,η,η̃|i[G

t+1
i]− E[Gt+1]∥22

= (1− pout)
2∥Gt − Ei[Eη,η̃|i[G̃

t
i]]∥22

= (1− pout)
2
(
∥E[Gt]− Ei[Eη,η̃|i[G̃

t
i]]∥22 + E tvar

)
= (1− pout)

2
(
At

2 + E tvar
)
.

For t = 0, we have that A1
2 = 0, then average over time gives

1
T

∑T−1
t=0 At+1

2 ≤ (1−pout)2

pout
1
T

∑T−1
t=0 E t+1

var .

Therefore, the bias has the following bound

1
T

∑T−1
t=0 E

t+1
bias ≤ (1− pin)

2L2
fC

2
g
1
T

∑T−1
t=0 E t+1

y + C2
e

S4
2
+ (1−pout)2

pout
1
T

∑T−1
t=0 E t+1

var .

Using Lemma E.12

1
T

∑T−1
t=0 E

t+1
bias ≤ (1− pin)

2L2
fC

2
g

(
(1−pin)C

2
g

pinS2

1
T

∑T−1
t=0 Ξt +

2σ2
g

S1

)
+ C2

e

S4
2
+ (1−pout)2

pout
1
T

∑T−1
t=0 E t+1

var

≤ (1−pin)
3L̃2

F
pinS2

1
T

∑T−1
t=0 Ξt +

2(1−pin)
2L̃2

F
S1

+ C2
e

S4
2
+ (1−pout)2

pout
1
T

∑T−1
t=0 E t+1

var .

Using Lemma E.11 we have that

1
T

∑T−1
t=0 E

t+1
bias ≤

(1−pin)
3L̃2

F
pinS2

(
6n2

B2
2
γ2 1

T

∑T−1
t=0 E[∥Gt+1]∥22

)
+

2(1−pin)
2L̃2

F
S1

+ C2
e

S4
2
+ (1−pout)2

pout
1
T

∑T−1
t=0 E t+1

var

≤ (1−pin)
3L̃2

F
pinS2

6n2

B2
2
γ2 1

T

∑T−1
t=0 ∥E[Gt+1]∥22 +

2(1−pin)
2L̃2

F
S1

+ C2
e

S4
2

+
(
(1−pin)

3L̃2
F

pinS2

6n2

B2
2
γ2 + (1−pout)2

pout

)
1
T

∑T−1
t=0 E t+1

var .

Variance. Combine the variance of NestedVR in Lemma E.14 and Lemma E.2 gives

1
T

∑T−1
t=0 E t+1

var ≤ 14 · 32
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F
T

∑T−1
t=0 ∥E[Gt+1]∥22

+ 14 · 96
(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2
F

S1
+ (1−pout)

T
8L̃2

F
B1S1

.

238 Debiasing Conditional Stochastic Optimization

Theorem 6.4. [E-NestedVR Convergence] Consider the (FCCO) problem. Under the same
assumptions as Theorem 6.2.

• If n = O(ϵ−2/3), then we choose the hyperaparameters of E-NestedVR (Algorithm 7) as
B1 = B2 = n, pout = 1, S1 = L̃2

F ϵ
−2, S2 = L̃F ϵ

−1, pin = L̃−1
F ϵ, γ = O(1

LF
).

• If n = Ω(ϵ−2/3), then we choose the hyperaparameters of E-NestedVR as B1 = n,B2 =√
n, pout = 1/

√
n, S1 = S2 = max

{
CeCgϵ

−1/2, L̃2
F /(nϵ

2)
}
, pin = 1, γ = O(1

LF
).

Then the output xs of E-NestedVR satisfies: E[∥∇F (xs)∥22] ≤ ϵ2, for nonconvex F with iterations

T = Ω
(
LF (F (x0)− F ⋆)ϵ−2

)
.

Proof. Denote. Gt+1 = Gt+1
E-NVR (E.25). Using descent lemma (Lemma E.3) and bias-variance

of E-NestedVR (Lemma E.15)

1
T

∑T−1
t=0 ∥∇F (xt)∥22 + 1

2T

∑T−1
t=0 ∥E[Gt+1]∥22

≤ 2(F (x0)−F ⋆)
γT + LF γ

T

∑T−1
t=0 E t+1

var + 1
T

∑T−1
t=0 E

t+1
bias

≤ 2(F (x0)−F ⋆)
γT +

(1−pin)
3L̃2

F
pinS2

6n2

B2
2
γ2 1

T

∑T−1
t=0 ∥E[Gt+1]∥22 +

2(1−pin)
2L̃2

F
S1

+ C2
e

S4
2

+
(
(1−pin)

3L̃2
F

pinS2

6n2

B2
2
γ2 + (1−pout)2

pout
+ LFγ

)
1
T

∑T−1
t=0 E t+1

var .

As we would like the right-hand side to be bounded by either 1
T

∑T−1
t=0 ∥E[Gt+1]]∥22 or ϵ2.

• Bound on 2(F (x0)−F ⋆)
γT with ϵ2 , i.e.

γT & (F (x0)− F ⋆)ϵ−2 (E.28)

• Coefficient of 1
T

∑T−1
t=0 ∥E[Gt+1]∥22 is bounded by 1

4 , i.e.

(1−pin)
3L̃2

F
pinS2

6n2

B2
2
γ2 ≤ 1

4

which can be achieved by choosing the following step size

γ ≤ poutpin
√
S1

5L̃F (1−pin)3/2
. (E.29)

• Bound on 2(1−pin)
2L̃2

F
S1

with ϵ2

2(1−pin)
2L̃2

F
S1

≤ ϵ2. (E.30)

• Bound C2
e

S4
2

with ϵ2. This leads to

S2 ≥
√

Ce
ϵ . (E.31)

E.5 Stationary Point Convergence Proofs from § 6.5 (FCCO) 239

• Bound on the variance. First notice from (E.29) and γ ≤ 1
2LF

,

(1−pin)
3L̃2

F
pinS2

6n2

B2
2
γ2 ≤ 1

4 . (1−pout)2

pout

LFγ ≤ 1
2 . (1−pout)2

pout
.

Therefore, we only need to consider the upper bound on

(1−pout)2

pout
1
T

∑T−1
t=0 E t+1

var

≤ 14 · 32 (1−pout)2

pout

((
pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F
T

∑T−1
t=0 ∥E[Gt+1]∥22

+ 14 · 96 (1−pout)2

pout

(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2
F

S1
+ (1−pout)3

poutT
8L̃2

F
B1S1

.

We impose the constraints for each term

(1−pout)2

pout

pout
B1

(1−pin)
pinS2

18n2

B2
2
L2
Fγ

2 . 1

(1−pout)2

pout

1−pout
B2

(1−pin)
pinS2

18n2

B2
2
L2
Fγ

2 . 1

(1−pout)2

pout

1−pout
B2

L2
Fγ

2 . 1

(1−pout)2

pout

pout
B1

L̃2
F

S1
. ϵ2

(1−pout)2

pout

(1−pin)(1−pout)
B2

L̃2
F

S1
. ϵ2

(1−pout)3

poutT
8L̃2

F
B1S1

. ϵ2.

These can be simplified as

γ . pinpout
√
B1

√
S1

(1−pout)
√
1−pin

1
LF

(E.32)

γ . pinp
2
out

√
B1

√
S1

(1−pout)3/2
√
1−pin

1
LF

(E.33)

γ .
√
B1

(1−pout)3/2
1
LF

(E.34)

B1S1 &
(1−pout)2L̃2

F
ϵ2

(E.35)

B1S1 &
(1−pout)3(1−pin)L̃

2
F

ϵ2p2out
(E.36)

B1S1 &
(1−pout)3L̃2

F
Tϵ2pout

. (E.37)

• Constraints from Lemma E.15

γ2L2
F max

{
(1−pin)
pinS2

18
B2

, 1−pout
B2

(1−pin)
pinS2

18n2

B2
2
, (1−pout)

B2

}
≤ 1

16 ·
1
6

240 Debiasing Conditional Stochastic Optimization

which can be translated to

γ . pin
√
S1

√
B2

LF
√
1−pin

(E.38)

γ . pinpout
√
S1

√
B2

LF
√
1−pin

√
1−pout

(E.39)

γ .
√
B2

LF
√
1−pout

(E.40)

• Constraint from sufficient decrease lemma:

γ ≤ 1
2LF

. (E.41)

We simplify the conditions noticing that 1) (E.37) is weaker than (E.35); 2) (E.34) and (E.40)
are weaker than (E.41). Combine all the constraints on γ, i.e. (E.32), (E.33), (E.38), (E.39),
(E.41)

γ . 1
LF

min
{
min

{
1, pout√

1−pout

}
pinpout

√
B1

√
S1

(1−pout)
√
1−pin

1
LF

,min
{
1, pout√

1−pout

}
pin

√
S1

√
B2√

1−pin
, 1, poutpin

√
S1

5L̃F (1−pin)3/2

}
.

This can be simplified as an upper bound

γ . 1
LF

min
{

pinpout
√
S1√

1−pin
, pinpout

√
S1

√
B1√

1−pout
,
pinp

2
out

√
S1

√
B1√

1−pin
√
1−pout

, 1
}
.

Now we consider two sets of hyperparameters depending on the size of n Case 1: For n =

O(ϵ−2/3), we choose the following set of hyperparameters

B1 = B2 = n, pout = 1, S1 = L̃2
F ϵ

−2, S2 = L̃F ϵ
−1, pin = L̃−1

F ϵ.

Then we have γ . 1
LF

min{ pin
√
S1√

1−pin
, 1} = 1

LF
, we have the total sample complexity of

B2S2T = B2S2Tγ
γ

(E.28)
= F (x0)−F ⋆

ϵ2
B2S2
γ = (F (x0)−F ⋆)nL̃FLF

ϵ3

Case 2: For n = Ω(ϵ−2/3), we choose the following set of hyperparameters

B1 = n, B2 =
√
n, pout =

1√
n
.

In this case, (E.35) is stronger than (E.36) which requires S1 &
L̃2
F

nϵ2

S1 = S2 = max
{
σ̃
1/2
biasϵ

−1/2,
σ2
in

nϵ2

}
, pin = 1

E.6 Missing Details from Section 2.7 241

Then we have γ . 1
LF

min{pout
√
n
√
S1√

1−pout
, 1} = 1

LF
, we have the total sample complexity of

B2S2T = B2S2Tγ
γ

(E.28)
= F (x0)−F ⋆

ϵ2
B2S2
γ = (F (x0)− F ⋆)max

{√
nσ̃

1/2
bias

ϵ2.5
,

σ2
in√
nϵ4

}
.

By picking xs uniformly at random among {xt}T−1
t=0 , we get the desired guarantee.

E.6 Missing Details from Section 2.7

E.6.1 Application of First-order MAML

Over the past few years, the MAML framework [Finn et al., 2017] has become quite popular
for few-shot supervised learning and meta reinforcement learning tasks. The first-order Model-
Agnostic Meta-Learning (MAML) can be formulated mathematically as follows:

min
x

Ei∼p,Di
query

ℓi

(
EDi

supp
(x− α∇ℓi(x,Di

supp)),Di
query

)
where α is the step size, Di

supp and Di
query are meta-training and meta-testing data respectively

and ℓi being the loss function of task i. Stated in the CSO framework, fξ(x) := ℓi(x,Di
query)

and gη(x, ξ) := x− α∇ℓi(x,Di
supp) where ξ = (i,Di

query) and η = Di
supp.

In this context, lots of popular choices for fξ are smooth. For illustration purposes, we
now discuss a widely used sine-wave few-shot regression task as appearing from the work of
Finn et al. [2017], where the goal is to do a few-shot learning of a sine wave, A sin(t − φ),
using a neural network Φx(t) with smooth activations, where A and φ represent the unknown
amplitude and phase, and x denotes the model weight. Each task i is characterized by
(Ai, φi,Di

query). In the first-order MAML training process, we randomly select a task i, and
draw training data η = Di

supp. Define the loss function for a given dataset D as ℓi(Φx;D) =
1
2 Et∼D∥Ai sin(t − φi) − Φx(t)∥22. We then establish the outer function fi(x) = ℓi(Φx;Di

query)

and inner function gη(x) = x− α∇xℓi(Φx;Di
supp). As fi is smooth, our results are applicable.

In Figure E.1, we show the results of BSGD and E-BSGD applied to this problem. In this
experiment, the amplitude A is drawn from a uniform distribution U(0.1, 5) and the phase φ

is drawn from U(0, π). Both Dsupp and Dquery are independently drawn from U(−5, 5). The
step size is set to α = 0.01. The batch size is fixed to 10. The performances of BSGD and
E-BSGD are very close. This is not surprising because finetuning step size α is chosen to be
small which significantly reduces the variance of gη, making the bias of meta gradient to be
very small (O(α2)). Therefore, we observe similar performance of BSGD and E-BSGD. Similar
trend also holds for BSpiderBoost and NestedVR compared to their extrapolated variants.

242 Debiasing Conditional Stochastic Optimization

0 25000 50000 75000
Samples

1.05

1.10

1.15

1.20

1.25

Su
bo

pt
im

al
ity

BSGD
m=1
m=10
m=100

0 25000 50000 75000
Samples

E-BSGD
m=1
m=10
m=100

Fig. E.1 Performance of BSGD vs. E-BSGD on the few-shot sinsuoid regression task.

E.6.2 Application of Deep Average Precision Maximization

The areas under precision-recall curve (AUPRC) has an unbiased point estimator that maximizes
average precision (AP) [Qi et al., 2021a; Wang et al., 2022a]. Let S+ and S− be the set of
positive and negative samples and S = S− ∪ S+. Let hw(·) be a classifier parameterized with w

and ℓ be a surrogate function, such as logistic or sigmoid. A smooth surrogate objective for
maximizing average precision can be formulated as [Wang and Yang, 2022]:

F (w) = − 1

|S+|
∑

xi∈S+

∑
x∈S+

ℓ(hw(x)− hw(xi))∑
x∈S ℓ(hw(x)− hw(xi))

This problem can be seen as a conditional stochastic optimization problem with gi(w) =

[
∑

x∈S+
ℓ(hw(x) − hw(xi)),

∑
x∈S ℓ(hw(x) − hw(xi))] and fi : R × R\{0} → R is defined as

fi(y) = − [y]1
[y]2

where [y]k denotes the kth coordinate of a vector y ∈ R × R\{0}. During the
stochastic optimization of this objective, we draw uniformly at random ξ := xi (drawn from the
set S+) as a positive sample and η|ξ = [Fx1 ,Fx2] where set x1 is drawn uniformly at random from
S+ and x2 is drawn uniformly at random from S and functional Fx(w) := ℓ(hw(x)− hw(xi)).
Note that fi ∈ C∞ is smooth with gradient

∇fi(y) =

[
− 1

[y]2
[y]1

([y]2)2

]
.

Therefore, our results from Sections 6.4 and 6.5 again apply.

E.6 Missing Details from Section 2.7 243

E.6.3 Necessity of Additional Smoothness Conditions

Throughout the paper, we assume bounded moments (Assumption B) and a smoothness
condition (Assumption C) to derive our extrapolation technique. However, it is worth noting
that the technique itself does not explicitly depend on higher-order derivatives. Our theoretical
framework does not address the behavior of extrapolation in the absence of these smoothness
constraints. In this section, we investigate the application of extrapolation to two non-smooth
functions:

• ReLU function given by q(x) = max{x, 0};

• Perturbed quadratics represented as q(x) = x2/2 + TriangleWave(x) + 1. The function
TriangleWave(x) has a period of 2 and spans the range [-1,1], defined as:

TriangleWave(x) = 2

∣∣∣∣2(x

2
−
⌊
x

2
+

1

2

⌋)∣∣∣∣− 1

Visual representations of these functions can be found in Figure E.2c. We set s = 0 and
consider a random variable δ ∼ N (10, 100) with m = 1. We then apply first-, second-, and
third-order extrapolation. The outcomes are depicted in Figure E.2. Remarkably, both the
ReLU and the perturbed quadratic functions do not conform to the differentiability assumptions
inherent to our stochastic extrapolation schemes. Nonetheless, as indicated by Figure E.2a and
Figure E.2b, our proposed second- and third-order extrapolation techniques yield a superior
approximation of q(E[δ]).

10
0

10
1

10
2

10
3

10
4

Number of estimates

10
0

10
1

10
2

10
3

|q
(s

+
[

])
Av

g(
()

q(
s)

)| ReLU
(1)

12m
q(s)

(2)
6m

q(s)
(3)

m
q(s)

Fig. E.2a

10
0

10
1

10
2

10
3

10
4

Number of estimates

10
0

10
1

10
2

10
3

|q
(s

+
[

])
Av

g(
()

q(
s)

)| Perturbed quadratics
(1)

12m
q(s)

(2)
6m

q(s)
(3)

m
q(s)

Fig. E.2b

5.0 2.5 0.0 2.5 5.0
x

0

5

10

15

q(
x)

q

Perturbed quad.
Quadratic
ReLU

Fig. E.2c

Fig. E.2 (a) Fig. E.2a: Error in estimating q(s+E[δ]) for our proposed first-, second-, and third-
order extrapolation schemes applied to ReLU q(x) = max{x, 0}, s = 0, δ ∼ N (10, 100), m = 1.
(b) Fig E.2b: Error in estimating q(s+ E[δ]) for our proposed first-, second-, and third-order
extrapolation schemes applied to a perturbed quadratic q(x) = x2/2 + TriangleWave(x) + 1,
s = 0, δ ∼ N (10, 100), m = 1. The TriangleWave(x) has a period of 2 and spans the range
[-1,1], i.e. 2|2

(
x
2 − ⌊

x
2 + 1

2⌋
)
| − 1. (c) Fig E.2c: The ReLU and perturbed quadratic used in the

Fig. 5a and 5b along with quadratic curves.

References

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 308–318. ACM, 2016.

Ittai Abraham, T-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and
Elaine Shi. Communication complexity of byzantine agreement, revisited, 2020.

Anish Acharya, Abolfazl Hashemi, Prateek Jain, Sujay Sanghavi, Inderjit S Dhillon, and Ufuk
Topcu. Robust training in high dimensions via block coordinate geometric median descent.
ArXiv preprint, abs/2106.08882, 2021. URL https://arxiv.org/abs/2106.08882.

Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. In John
Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Systems 24: 25th Annual
Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held
12-14 December 2011, Granada, Spain, pages 873–881, 2011. URL https://proceedings.neurips.
cc/paper/2011/hash/f0e52b27a7a5d6a1a87373dffa53dbe5-Abstract.html.

Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure computation on
floating point numbers. In NDSS, 2013.

Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 4618–4628, 2018. URL https://proceedings.neurips.cc/paper/
2018/hash/a07c2f3b3b907aaf8436a26c6d77f0a2-Abstract.html.

Zeyuan Allen-Zhu, Faeze Ebrahimianghazani, Jerry Li, and Dan Alistarh. Byzantine-resilient
non-convex stochastic gradient descent. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021a. URL
https://openreview.net/forum?id=PbEHqvFtcS.

https://arxiv.org/abs/2106.08882
https://proceedings.neurips.cc/paper/2011/hash/f0e52b27a7a5d6a1a87373dffa53dbe5-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/f0e52b27a7a5d6a1a87373dffa53dbe5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a07c2f3b3b907aaf8436a26c6d77f0a2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a07c2f3b3b907aaf8436a26c6d77f0a2-Abstract.html
https://openreview.net/forum?id=PbEHqvFtcS

246 References

Zeyuan Allen-Zhu, Faeze Ebrahimianghazani, Jerry Li, and Dan Alistarh. Byzantine-resilient
non-convex stochastic gradient descent. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021b.
URL https://openreview.net/forum?id=PbEHqvFtcS.

Fabio Anselmi, Joel Z Leibo, Lorenzo Rosasco, Jim Mutch, Andrea Tacchetti, and Tomaso
Poggio. Unsupervised learning of invariant representations. Theoretical Computer Science,
633:112–121, 2016.

Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Ayush Sekhari, and Karthik
Sridharan. Second-order information in non-convex stochastic optimization: Power and
limitations. In Jacob D. Abernethy and Shivani Agarwal, editors, Conference on Learning
Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz, Austria], volume 125 of Proceedings
of Machine Learning Research, pages 242–299. PMLR, 2020. URL http://proceedings.mlr.
press/v125/arjevani20a.html.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake
Woodworth. Lower bounds for non-convex stochastic optimization. Mathematical Programming,
pages 1–50, 2022.

Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Michael G. Rabbat. Stochastic gradient
push for distributed deep learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 344–353. PMLR, 2019a. URL http://proceedings.mlr.press/v97/assran19a.html.

Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Michael G. Rabbat. Stochastic gradient
push for distributed deep learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 344–353. PMLR, 2019b. URL http://proceedings.mlr.press/v97/assran19a.html.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2016.

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How
to backdoor federated learning. In Silvia Chiappa and Roberto Calandra, editors, The 23rd
International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August
2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning Research,
pages 2938–2948. PMLR, 2020a. URL http://proceedings.mlr.press/v108/bagdasaryan20a.
html.

https://openreview.net/forum?id=PbEHqvFtcS
http://proceedings.mlr.press/v125/arjevani20a.html
http://proceedings.mlr.press/v125/arjevani20a.html
http://proceedings.mlr.press/v97/assran19a.html
http://proceedings.mlr.press/v97/assran19a.html
http://proceedings.mlr.press/v108/bagdasaryan20a.html
http://proceedings.mlr.press/v108/bagdasaryan20a.html

References 247

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How
to backdoor federated learning. In Silvia Chiappa and Roberto Calandra, editors, The 23rd
International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August
2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning Research,
pages 2938–2948. PMLR, 2020b. URL http://proceedings.mlr.press/v108/bagdasaryan20a.
html.

Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumvent-
ing defenses for distributed learning. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 8632–8642, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
ec1c59141046cd1866bbbcdfb6ae31d4-Abstract.html.

Donald Beaver. Efficient multiparty protocols using circuit randomization. In Annual Interna-
tional Cryptology Conference, pages 420–432. Springer, 1991.

Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd
with majority vote is communication efficient and fault tolerant. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019a. URL https://openreview.net/forum?id=BJxhijAcY7.

Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd
with majority vote is communication efficient and fault tolerant. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019b. URL https://openreview.net/forum?id=BJxhijAcY7.

Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin B. Calo. Analyzing fed-
erated learning through an adversarial lens. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Re-
search, pages 634–643. PMLR, 2019. URL http://proceedings.mlr.press/v97/bhagoji19a.html.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine
learning with adversaries: Byzantine tolerant gradient descent. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 119–129, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html.

http://proceedings.mlr.press/v108/bagdasaryan20a.html
http://proceedings.mlr.press/v108/bagdasaryan20a.html
https://proceedings.neurips.cc/paper/2019/hash/ec1c59141046cd1866bbbcdfb6ae31d4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ec1c59141046cd1866bbbcdfb6ae31d4-Abstract.html
https://openreview.net/forum?id=BJxhijAcY7
https://openreview.net/forum?id=BJxhijAcY7
http://proceedings.mlr.press/v97/bhagoji19a.html
https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html

248 References

Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM journal on Computing, 13(4):850–864, 1984.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation
for privacy preserving machine learning. IACR Cryptol. ePrint Arch., 2017:281, 2017. URL
http://eprint.iacr.org/2017/281.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi, Brendan McMahan, Timon Van
Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. Towards federated learning
at scale: System design. In Ameet Talwalkar, Virginia Smith, and Matei Zaharia, editors,
Proceedings of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA, March
31 - April 2, 2019. mlsys.org, 2019. URL https://proceedings.mlsys.org/book/271.pdf.

Maria Borge, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, and
Bryan Ford. Proof-of-personhood: Redemocratizing permissionless cryptocurrencies. In 2017
IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), pages 23–26.
IEEE, 2017.

Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
algorithms. IEEE transactions on information theory, 52(6):2508–2530, 2006.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. Near-optimal
method for highly smooth convex optimization. In Alina Beygelzimer and Daniel Hsu,
editors, Conference on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA,
volume 99 of Proceedings of Machine Learning Research, pages 492–507. PMLR, 2019. URL
http://proceedings.mlr.press/v99/bubeck19a.html.

Laurent Bulteau, Gal Shahaf, Ehud Shapiro, and Nimrod Talmon. Aggregation over metric
spaces: Proposing and voting in elections, budgeting, and legislation. Journal of Artificial
Intelligence Research, 70:1413–1439, 2021.

Lukas Burkhalter, Hidde Lycklama, Alexander Viand, Nicolas Küchler, and Anwar Hithnawi.
Rofl: Attestable robustness for secure federated learning, 2021.

William Cappelletti. Byzantine-robust decentralized optimization for Machine Learning, 20c.
URL https://arxiv.org/abs/c.

http://eprint.iacr.org/2017/281
https://proceedings.mlsys.org/book/271.pdf
http://proceedings.mlr.press/v99/bubeck19a.html
https://arxiv.org/abs/c

References 249

Melissa Chase, Ran Gilad-Bachrach, Kim Laine, Kristin E Lauter, and Peter Rindal. Private
collaborative neural network learning. IACR Cryptology ePrint Archive, 2017:762, 2017.

Lingjiao Chen, Hongyi Wang, Zachary B. Charles, and Dimitris S. Papailiopoulos. DRACO:
byzantine-resilient distributed training via redundant gradients. In Jennifer G. Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages 902–911. PMLR, 2018. URL http:
//proceedings.mlr.press/v80/chen18l.html.

Valerie Chen, Valerio Pastro, and Mariana Raykova. Secure computation for machine learning
with spdz. ArXiv preprint, abs/1901.00329, 2019. URL https://arxiv.org/abs/1901.00329.

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. In PERV, 2017a. URL https://api.semanticscholar.org/
CorpusID:58534983.

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 1(2):
1–25, 2017b. ISSN 2476-1249. doi: 10.1145/3154503. URL http://dx.doi.org/10.1145/3154503.

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 1(2):1–25, 2017c.

Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei. Faster cryp-
tonets: Leveraging sparsity for real-world encrypted inference. ArXiv preprint, abs/1811.09953,
2018. URL https://arxiv.org/abs/1811.09953.

Michael B. Cohen, Yin Tat Lee, Gary L. Miller, Jakub Pachocki, and Aaron Sidford. Geometric
median in nearly linear time. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 9–21. ACM, 2016. doi: 10.1145/2897518.2897647. URL
https://doi.org/10.1145/2897518.2897647.

Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation
of aggregate statistics. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 259–282, 2017.

Bo Dai, Niao He, Yunpeng Pan, Byron Boots, and Le Song. Learning from conditional
distributions via dual embeddings. In Aarti Singh and Xiaojin (Jerry) Zhu, editors, Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017,
20-22 April 2017, Fort Lauderdale, FL, USA, volume 54 of Proceedings of Machine Learning
Research, pages 1458–1467. PMLR, 2017. URL http://proceedings.mlr.press/v54/dai17a.html.

http://proceedings.mlr.press/v80/chen18l.html
http://proceedings.mlr.press/v80/chen18l.html
https://arxiv.org/abs/1901.00329
https://api.semanticscholar.org/CorpusID:58534983
https://api.semanticscholar.org/CorpusID:58534983
http://dx.doi.org/10.1145/3154503
https://arxiv.org/abs/1811.09953
https://doi.org/10.1145/2897518.2897647
http://proceedings.mlr.press/v54/dai17a.html

250 References

Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, and Le Song.
SBEED: convergent reinforcement learning with nonlinear function approximation. In Jen-
nifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 1133–1142. PMLR, 2018. URL
http://proceedings.mlr.press/v80/dai18c.html.

Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui, Rhicheek Patra, and Mahsa
Taziki. Asynchronous byzantine machine learning (the case of SGD). In Jennifer G. Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages 1153–1162. PMLR, 2018. URL http:
//proceedings.mlr.press/v80/damaskinos18a.html.

Georgios Damaskinos, El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, and Sébastien
Rouault. AGGREGATHOR: byzantine machine learning via robust gradient aggregation.
In Ameet Talwalkar, Virginia Smith, and Matei Zaharia, editors, Proceedings of Machine
Learning and Systems 2019, MLSys 2019, Stanford, CA, USA, March 31 - April 2, 2019.
mlsys.org, 2019. URL https://proceedings.mlsys.org/book/280.pdf.

Deepesh Data and Suhas Diggavi. Byzantine-resilient sgd in high dimensions on heterogeneous
data. arXiv 2005.07866, 2020.

Deepesh Data and Suhas Diggavi. Byzantine-resilient sgd in high dimensions on heterogeneous
data. In 2021 IEEE International Symposium on Information Theory (ISIT), pages 2310–2315.
IEEE, 2021a.

Deepesh Data and Suhas N. Diggavi. Byzantine-resilient high-dimensional SGD with local
iterations on heterogeneous data. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 2478–2488.
PMLR, 2021b. URL http://proceedings.mlr.press/v139/data21a.html.

Allison Davis, Burleigh Bradford Gardner, and Mary R Gardner. Deep South: A social
anthropological study of caste and class. Univ of South Carolina Press, 1930.

Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien. SAGA: A fast incremental
gradient method with support for non-strongly convex composite objectives. In Zoubin
Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 1646–1654, 2014. URL https://proceedings.neurips.cc/paper/2014/hash/
ede7e2b6d13a41ddf9f4bdef84fdc737-Abstract.html.

http://proceedings.mlr.press/v80/dai18c.html
http://proceedings.mlr.press/v80/damaskinos18a.html
http://proceedings.mlr.press/v80/damaskinos18a.html
https://proceedings.mlsys.org/book/280.pdf
http://proceedings.mlr.press/v139/data21a.html
https://proceedings.neurips.cc/paper/2014/hash/ede7e2b6d13a41ddf9f4bdef84fdc737-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/ede7e2b6d13a41ddf9f4bdef84fdc737-Abstract.html

References 251

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA,
pages 248–255. IEEE Computer Society, 2009. doi: 10.1109/CVPR.2009.5206848. URL
https://doi.org/10.1109/CVPR.2009.5206848.

Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM J. Comput., 12:656–666, 1983.

Danny Dolev, Nancy A Lynch, Shlomit S Pinter, Eugene W Stark, and William E Weihl.
Reaching approximate agreement in the presence of faults. Journal of the ACM (JACM), 33
(3):499–516, 1986.

Bradley Efron. Bootstrap methods: another look at the jackknife. Springer, 1992.

El Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis, Lê-Nguyên
Hoang, and Sébastien Rouault. Collaborative learning in the jungle (decentralized, byzantine,
heterogeneous, asynchronous and nonconvex learning). Advances in Neural Information
Processing Systems, 34, 2021.

Yuri M Ermoliev and Vladimir I Norkin. Sample average approximation method for compound
stochastic optimization problems. SIAM Journal on Optimization, 23(4):2231–2263, 2013.

Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy breaches
in privacy preserving data mining. In Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 211–222, 2003.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: near-optimal non-
convex optimization via stochastic path-integrated differential estimator. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Mon-
tréal, Canada, pages 687–697, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
1543843a4723ed2ab08e18053ae6dc5b-Abstract.html.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pages 1126–1135.
PMLR, 2017. URL http://proceedings.mlr.press/v70/finn17a.html.

Michael J Fischer, Nancy A Lynch, and Michael Merritt. Easy impossibility proofs for distributed
consensus problems. Distributed Computing, 1(1):26–39, 1986.

https://doi.org/10.1109/CVPR.2009.5206848
https://proceedings.neurips.cc/paper/2018/hash/1543843a4723ed2ab08e18053ae6dc5b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/1543843a4723ed2ab08e18053ae6dc5b-Abstract.html
http://proceedings.mlr.press/v70/finn17a.html

252 References

Bryan Ford. 10. technologizing democracy or democratizing technology? a layered-architecture
perspective on potentials and challenges. In Digital Technology and Democratic Theory, pages
274–321. University of Chicago Press, 2021.

Leonidas Georgopoulos. Definitive Consensus for Distributed Data Inference. PhD thesis, EPFL,
2011.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran. Robust federated learning
in a heterogeneous environment. ArXiv preprint, abs/1906.06629, 2019. URL https://arxiv.
org/abs/1906.06629.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of the
33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages 201–210.
JMLR.org, 2016. URL http://proceedings.mlr.press/v48/gilad-bachrach16.html.

Takashi Goda and Wataru Kitade. Constructing unbiased gradient estimators with finite
variance for conditional stochastic optimization. ArXiv preprint, abs/2206.01991, 2022. URL
https://arxiv.org/abs/2206.01991.

Eduard Gorbunov, Alexander Borzunov, Michael Diskin, and Max Ryabinin. Secure distributed
training at scale, 2021.

Rachid Guerraoui, Sébastien Rouault, et al. The hidden vulnerability of distributed learning
in byzantium. In International Conference on Machine Learning, pages 3521–3530. PMLR,
2018.

Shangwei Guo, Tianwei Zhang, Xiaofei Xie, Lei Ma, Tao Xiang, and Yang Liu. Towards
byzantine-resilient learning in decentralized systems. arXiv 2002.08569, 2020.

Shangwei Guo, Tianwei Zhang, Han Yu, Xiaofei Xie, Lei Ma, Tao Xiang, and Yang Liu.
Byzantine-resilient decentralized stochastic gradient descent, 2021.

Nirupam Gupta and Nitin H Vaidya. Resilience in collaborative optimization: redundant and
independent cost functions. ArXiv preprint, abs/2003.09675, 2020. URL https://arxiv.org/
abs/2003.09675.

Nirupam Gupta, Thinh T Doan, and Nitin Vaidya. Byzantine fault-tolerance in federated local
sgd under 2f-redundancy. ArXiv preprint, abs/2108.11769, 2021. URL https://arxiv.org/abs/
2108.11769.

https://arxiv.org/abs/1906.06629
https://arxiv.org/abs/1906.06629
http://proceedings.mlr.press/v48/gilad-bachrach16.html
https://arxiv.org/abs/2206.01991
https://arxiv.org/abs/2003.09675
https://arxiv.org/abs/2003.09675
https://arxiv.org/abs/2108.11769
https://arxiv.org/abs/2108.11769

References 253

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. In Francis R. Bach and David M. Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 1737–1746.
JMLR.org, 2015. URL http://proceedings.mlr.press/v37/gupta15.html.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008a.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and
function using NetworkX. Technical report, Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008b.

Yanjun Han, Jiantao Jiao, and Tsachy Weissman. Minimax estimation of divergences between
discrete distributions. IEEE Journal on Selected Areas in Information Theory, 1(3):814–823,
2020.

W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57:97–109, 1970.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

Lie He and Shiva Prasad Kasiviswanathan. Debiasing conditional stochastic optimization. CoRR,
abs/2304.10613, 2023. doi: 10.48550/arXiv.2304.10613. URL https://doi.org/10.48550/arXiv.
2304.10613.

Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Byzantine-robust learning on heterogeneous
datasets via resampling, 2020a.

Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Secure byzantine-robust machine learning.
ArXiv preprint, abs/2006.04747, 2020b. URL https://arxiv.org/abs/2006.04747.

Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Byzantine-robust decentralized learning via
clippedgossip. ArXiv preprint, abs/2202.01545, 2022. URL https://arxiv.org/abs/2202.01545.

Julien M. Hendrickx, Raphaël M. Jungers, Alexander Olshevsky, and Guillaume Vankeerberghen.
Graph diameter, eigenvalues, and minimum-time consensus. Automatica, 50(2):635–640, 2014.
doi: https://doi.org/10.1016/j.automatica.2013.11.034. URL https://www.sciencedirect.com/
science/article/pii/S0005109813005517.

http://proceedings.mlr.press/v37/gupta15.html
https://doi.org/10.48550/arXiv.2304.10613
https://doi.org/10.48550/arXiv.2304.10613
https://arxiv.org/abs/2006.04747
https://arxiv.org/abs/2202.01545
https://www.sciencedirect.com/science/article/pii/S0005109813005517
https://www.sciencedirect.com/science/article/pii/S0005109813005517

254 References

Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural networks over
encrypted data. ArXiv preprint, abs/1711.05189, 2017. URL https://arxiv.org/abs/1711.
05189.

Martin Hirt and Pavel Raykov. Multi-valued byzantine broadcast: The t < n case. In
ASIACRYPT, 2014.

Yifan Hu, Xin Chen, and Niao He. Sample complexity of sample average approximation for
conditional stochastic optimization. SIAM Journal on Optimization, 30(3):2103–2133, 2020a.

Yifan Hu, Siqi Zhang, Xin Chen, and Niao He. Biased stochastic first-order methods
for conditional stochastic optimization and applications in meta learning. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual, 2020b. URL https://proceedings.neurips.cc/paper/2020/hash/
1cdf14d1e3699d61d237cf76ce1c2dca-Abstract.html.

Yifan Hu, Xin Chen, and Niao He. On the bias-variance-cost tradeoff of stochastic optimization.
Advances in Neural Information Processing Systems, 34:22119–22131, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis R. Bach and David M. Blei, editors, Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 448–456. JMLR.org,
2015. URL http://proceedings.mlr.press/v37/ioffe15.html.

Prateek Jain, Purushottam Kar, et al. Non-convex optimization for machine learning. Founda-
tions and Trends® in Machine Learning, 10(3-4):142–363, 2017.

Sylvain Jeaugey. Massively scale your deep learning training with NCCL 2.4. https://devblogs.
nvidia.com/massively-scale-deep-learning-training-nccl-2-4/, 2019. [Online; accessed 21-May-
2019].

Wei Jiang, Gang Li, Yibo Wang, Lijun Zhang, and Tianbao Yang. Multi-block-single-
probe variance reduced estimator for coupled compositional optimization. ArXiv preprint,
abs/2207.08540, 2022. URL https://arxiv.org/abs/2207.08540.

Jiantao Jiao and Yanjun Han. Bias correction with jackknife, bootstrap, and taylor series. IEEE
Transactions on Information Theory, 66(7):4392–4418, 2020.

Björn Johansson, Maben Rabi, and Mikael Johansson. A randomized incremental subgradient
method for distributed optimization in networked systems. SIAM J. Optim., 20(3):1157–1170,
2009. doi: 10.1137/08073038X. URL https://doi.org/10.1137/08073038X.

https://arxiv.org/abs/1711.05189
https://arxiv.org/abs/1711.05189
https://proceedings.neurips.cc/paper/2020/hash/1cdf14d1e3699d61d237cf76ce1c2dca-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1cdf14d1e3699d61d237cf76ce1c2dca-Abstract.html
http://proceedings.mlr.press/v37/ioffe15.html
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
https://arxiv.org/abs/2207.08540
https://doi.org/10.1137/08073038X

References 255

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 26: 27th Annual Confer-
ence on Neural Information Processing Systems 2013. Proceedings of a meeting held December
5-8, 2013, Lake Tahoe, Nevada, United States, pages 315–323, 2013. URL https://proceedings.
neurips.cc/paper/2013/hash/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Abstract.html.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low
latency framework for secure neural network inference. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1651–1669, 2018.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
Rafael G. L. D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri
Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi
Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer
Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian
Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu,
Han Yu, and Sen Zhao. Advances and open problems in federated learning. ArXiv preprint,
abs/1912.04977, 2019. URL https://arxiv.org/abs/1912.04977.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U. Stich, and Martin Jaggi. Error
feedback fixes signsgd and other gradient compression schemes. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 3252–3261. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/karimireddy19a.html.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on heterogeneous
datasets via bucketing. ArXiv preprint, abs/2006.09365, 2020a. URL https://arxiv.org/abs/
2006.09365.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich,
and Ananda Theertha Suresh. SCAFFOLD: stochastic controlled averaging for federated
learning. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
5132–5143. PMLR, 2020b. URL http://proceedings.mlr.press/v119/karimireddy20a.html.

https://proceedings.neurips.cc/paper/2013/hash/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Abstract.html
https://arxiv.org/abs/1912.04977
http://proceedings.mlr.press/v97/karimireddy19a.html
http://proceedings.mlr.press/v97/karimireddy19a.html
https://arxiv.org/abs/2006.09365
https://arxiv.org/abs/2006.09365
http://proceedings.mlr.press/v119/karimireddy20a.html

256 References

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine
robust optimization. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 5311–5319. PMLR, 2021a.
URL http://proceedings.mlr.press/v139/karimireddy21a.html.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine
robust optimization. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 5311–5319. PMLR, 2021b.
URL http://proceedings.mlr.press/v139/karimireddy21a.html.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on heterogeneous
datasets via bucketing, 2021c.

Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam
Smith. What can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: faster malicious arithmetic secure
computation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 830–842, 2016.

Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: making SPDZ great again. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 158–189. Springer, 2018.

David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14
October 2003, Cambridge, MA, USA, Proceedings, pages 482–491. IEEE Computer Society,
2003. doi: 10.1109/SFCS.2003.1238221. URL https://doi.org/10.1109/SFCS.2003.1238221.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local SGD on
identical and heterogeneous data. In Silvia Chiappa and Roberto Calandra, editors, The 23rd
International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August
2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning Research,
pages 4519–4529. PMLR, 2020. URL http://proceedings.mlr.press/v108/bayoumi20a.html.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Chih-Kai Ko. On Matrix Factorization and Scheduling forFinite-time Average-consensus. PhD
thesis, California Institute of Technology, 2010.

http://proceedings.mlr.press/v139/karimireddy21a.html
http://proceedings.mlr.press/v139/karimireddy21a.html
https://doi.org/10.1109/SFCS.2003.1238221
http://proceedings.mlr.press/v108/bayoumi20a.html
http://arxiv.org/abs/1412.6980

References 257

Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. Decentralized stochastic optimization
and gossip algorithms with compressed communication. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pages 3478–3487. PMLR, 2019. URL http://proceedings.mlr.
press/v97/koloskova19a.html.

Anastasia Koloskova, Tao Lin, Sebastian U. Stich, and Martin Jaggi. Decentralized deep learning
with arbitrary communication compression. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020a. URL https://openreview.net/forum?id=SkgGCkrKvH.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U. Stich. A
unified theory of decentralized SGD with changing topology and local updates. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 5381–5393.
PMLR, 2020b. URL http://proceedings.mlr.press/v119/koloskova20a.html.

Anastasiia Koloskova, Tao Lin, and Sebastian U Stich. An improved analysis of gradient tracking
for decentralized machine learning. Advances in Neural Information Processing Systems, 34,
2021.

Lingjing Kong, Tao Lin, Anastasia Koloskova, Martin Jaggi, and Sebastian U. Stich. Consensus
control for decentralized deep learning. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 5686–5696.
PMLR, 2021. URL http://proceedings.mlr.press/v139/kong21a.html.

Dmitry Kovalev, Anastasia Koloskova, Martin Jaggi, Peter Richtárik, and Sebastian U. Stich.
A linearly convergent algorithm for decentralized optimization: Sending less bits for free!
In Arindam Banerjee and Kenji Fukumizu, editors, The 24th International Conference on
Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event, volume
130 of Proceedings of Machine Learning Research, pages 4087–4095. PMLR, 2021. URL
http://proceedings.mlr.press/v130/kovalev21a.html.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto,
2012.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (Canadian Institute for Advanced
Research). URL http://www.cs.toronto.edu/~kriz/cifar.html.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. In
Concurrency: the Works of Leslie Lamport, pages 203–226. 2019.

http://proceedings.mlr.press/v97/koloskova19a.html
http://proceedings.mlr.press/v97/koloskova19a.html
https://openreview.net/forum?id=SkgGCkrKvH
http://proceedings.mlr.press/v119/koloskova20a.html
http://proceedings.mlr.press/v139/kong21a.html
http://proceedings.mlr.press/v130/kovalev21a.html
http://www.cs.toronto.edu/~kriz/cifar.html

258 References

Heath J LeBlanc, Haotian Zhang, Xenofon Koutsoukos, and Shreyas Sundaram. Resilient
asymptotic consensus in robust networks. IEEE Journal on Selected Areas in Communications,
31(4):766–781, 2013.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Liping Li, Wei Xu, Tianyi Chen, Georgios B. Giannakis, and Qing Ling. RSA: byzantine-
robust stochastic aggregation methods for distributed learning from heterogeneous datasets.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, pages 1544–1551. AAAI Press, 2019. doi:
10.1609/aaai.v33i01.33011544. URL https://doi.org/10.1609/aaai.v33i01.33011544.

Xiang Li, Wenhao Yang, Shusen Wang, and Zhihua Zhang. Communication-efficient local
decentralized sgd methods, 2021.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can de-
centralized algorithms outperform centralized algorithms? A case study for decentral-
ized parallel stochastic gradient descent. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 5330–5340, 2017a. URL https://proceedings.neurips.cc/paper/2017/hash/
f75526659f31040afeb61cb7133e4e6d-Abstract.html.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can de-
centralized algorithms outperform centralized algorithms? A case study for decentral-
ized parallel stochastic gradient descent. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 5330–5340, 2017b. URL https://proceedings.neurips.cc/paper/2017/hash/
f75526659f31040afeb61cb7133e4e6d-Abstract.html.

Tao Lin, Sai Praneeth Karimireddy, Sebastian U. Stich, and Martin Jaggi. Quasi-global
momentum: Accelerating decentralized deep learning on heterogeneous data. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 6654–6665. PMLR, 2021a. URL http://proceedings.mlr.press/v139/
lin21c.html.

https://doi.org/10.1609/aaai.v33i01.33011544
https://proceedings.neurips.cc/paper/2017/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html
http://proceedings.mlr.press/v139/lin21c.html
http://proceedings.mlr.press/v139/lin21c.html

References 259

Tao Lin, Sai Praneeth Karimireddy, Sebastian U. Stich, and Martin Jaggi. Quasi-global
momentum: Accelerating decentralized deep learning on heterogeneous data. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 6654–6665. PMLR, 2021b. URL http://proceedings.mlr.press/v139/
lin21c.html.

Hanxiao Liu, Andy Brock, Karen Simonyan, and Quoc Le. Evolving normalization-activation
layers. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
9d4c03631b8b0c85ae08bf05eda37d0f-Abstract.html.

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 619–631. ACM, 2017.

Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization. IEEE
Transactions on Signal and Information Processing over Networks, 2(2):120–136, 2016. doi:
10.1109/TSIPN.2016.2524588.

Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 7111–7123. PMLR, 2021. URL http://proceedings.mlr.press/v139/
lu21a.html.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding
the effectiveness of SGD in modern over-parametrized learning. In Jennifer G. Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages 3331–3340. PMLR, 2018. URL http:
//proceedings.mlr.press/v80/ma18a.html.

Kalikinkar Mandal, Guang Gong, and Chuyi Liu. Nike-based fast privacy-preserving highdimen-
sional data aggregation for mobile devices. Technical report, CACR Technical Report, CACR
2018-10, University of Waterloo, Canada, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Aarti Singh
and Xiaojin (Jerry) Zhu, editors, Proceedings of the 20th International Conference on Artificial

http://proceedings.mlr.press/v139/lin21c.html
http://proceedings.mlr.press/v139/lin21c.html
https://proceedings.neurips.cc/paper/2020/hash/9d4c03631b8b0c85ae08bf05eda37d0f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9d4c03631b8b0c85ae08bf05eda37d0f-Abstract.html
http://proceedings.mlr.press/v139/lu21a.html
http://proceedings.mlr.press/v139/lu21a.html
http://proceedings.mlr.press/v80/ma18a.html
http://proceedings.mlr.press/v80/ma18a.html

260 References

Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA,
volume 54 of Proceedings of Machine Learning Research, pages 1273–1282. PMLR, 2017a.
URL http://proceedings.mlr.press/v54/mcmahan17a.html.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Aarti Singh
and Xiaojin (Jerry) Zhu, editors, Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA,
volume 54 of Proceedings of Machine Learning Research, pages 1273–1282. PMLR, 2017b.
URL http://proceedings.mlr.press/v54/mcmahan17a.html.

Edward Meeds, Remco Hendriks, Said Al Faraby, Magiel Bruntink, and Max Welling. Mlitb:
machine learning in the browser. PeerJ Computer Science, 1:e11, 2015. ISSN 2376-5992. doi:
10.7717/peerj-cs.11. URL http://dx.doi.org/10.7717/peerj-cs.11.

Si Yi Meng, Sharan Vaswani, Issam Hadj Laradji, Mark Schmidt, and Simon Lacoste-Julien.
Fast and furious convergence: Stochastic second order methods under interpolation. In Silvia
Chiappa and Roberto Calandra, editors, The 23rd International Conference on Artificial
Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy],
volume 108 of Proceedings of Machine Learning Research, pages 1375–1386. PMLR, 2020.
URL http://proceedings.mlr.press/v108/meng20a.html.

El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnerability of
distributed learning in byzantium. In Jennifer G. Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pages 3518–3527. PMLR, 2018. URL http://proceedings.mlr.press/v80/mhamdi18a.html.

El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. Distributed momentum for
byzantine-resilient stochastic gradient descent. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021a.
URL https://openreview.net/forum?id=H8UHdhWG6A3.

El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. Distributed momentum for
byzantine-resilient stochastic gradient descent. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021b.
URL https://openreview.net/forum?id=H8UHdhWG6A3.

Stanislav Minsker et al. Geometric median and robust estimation in banach spaces. Bernoulli,
21(4):2308–2335, 2015.

http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
http://dx.doi.org/10.7717/peerj-cs.11
http://proceedings.mlr.press/v108/meng20a.html
http://proceedings.mlr.press/v80/mhamdi18a.html
https://openreview.net/forum?id=H8UHdhWG6A3
https://openreview.net/forum?id=H8UHdhWG6A3

References 261

Ken Miura and Tatsuya Harada. Implementation of a practical distributed calculation system
with browsers and javascript, and application to distributed deep learning. arXiv 1503.05743,
2015.

Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy (SP), pages 19–38.
IEEE, 2017.

Youssef Mroueh, Stephen Voinea, and Tomaso A. Poggio. Learning with group invariant features:
A kernel perspective. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 1558–1566, 2015. URL https://proceedings.neurips.cc/paper/2015/
hash/6602294be910b1e3c4571bd98c4d5484-Abstract.html.

Krikamol Muandet, Arash Mehrjou, Si Kai Lee, and Anant Raj. Dual instrumental vari-
able regression. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1c383cd30b7c298ab50293adfecb7b18-Abstract.html.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
Emil C. Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-
gradient optimization. ArXiv preprint, abs/1708.08689, 2017. URL https://arxiv.org/abs/
1708.08689.

Luis Muñoz-González, Kenneth T. Co, and Emil C. Lupu. Byzantine-robust federated machine
learning through adaptive model averaging. ArXiv preprint, abs/1909.05125, 2019. URL
https://arxiv.org/abs/1909.05125.

Ofir Nachum and Bo Dai. Reinforcement learning via fenchel-rockafellar duality. ArXiv preprint,
abs/2001.01866, 2020. URL https://arxiv.org/abs/2001.01866.

Angelia Nedic. Distributed gradient methods for convex machine learning problems in networks:
Distributed optimization. IEEE Signal Processing Magazine, 37(3):92–101, 2020.

Angelia Nedic and Alex Olshevsky. Stochastic gradient-push for strongly convex functions on
time-varying directed graphs. IEEE Trans. Autom. Control., 61(12):3936–3947, 2016. doi:
10.1109/TAC.2016.2529285. URL https://doi.org/10.1109/TAC.2016.2529285.

Angelia Nedić and Asuman Ozdaglar. Convergence rate for consensus with delays. Journal of
Global Optimization, 47(3):437–456, 2010.

https://proceedings.neurips.cc/paper/2015/hash/6602294be910b1e3c4571bd98c4d5484-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/6602294be910b1e3c4571bd98c4d5484-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1c383cd30b7c298ab50293adfecb7b18-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1c383cd30b7c298ab50293adfecb7b18-Abstract.html
https://arxiv.org/abs/1708.08689
https://arxiv.org/abs/1708.08689
https://arxiv.org/abs/1909.05125
https://arxiv.org/abs/2001.01866
https://doi.org/10.1109/TAC.2016.2529285

262 References

Angelia Nedic and Asuman E. Ozdaglar. Distributed subgradient methods for multi-agent
optimization. IEEE Trans. Autom. Control., 54(1):48–61, 2009. doi: 10.1109/TAC.2008.
2009515. URL https://doi.org/10.1109/TAC.2008.2009515.

Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM J. Optim., 27(4):2597–2633, 2017. doi: 10.
1137/16M1084316. URL https://doi.org/10.1137/16M1084316.

Arvind Neelakantan, Luke Vilnis, Quoc V Le, Lukasz Kaiser, Karol Kurach, Ilya Sutskever, and
James Martens. Adding gradient noise improves learning for very deep networks. In ICLR,
2016.

Lam M. Nguyen, Jie Liu, Katya Scheinberg, and Martin Takác. SARAH: A novel method
for machine learning problems using stochastic recursive gradient. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine
Learning Research, pages 2613–2621. PMLR, 2017. URL http://proceedings.mlr.press/v70/
nguyen17b.html.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathematical
biology, 15(3):267–273, 1982.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 8024–8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of
faults. Journal of the ACM (JACM), 27(2):228–234, 1980a.

Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. J. ACM, 27:228–234, 1980b.

Jie Peng and Qing Ling. Byzantine-robust decentralized stochastic optimization. In 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP 2020, Barcelona,
Spain, May 4-8, 2020, pages 5935–5939. IEEE, 2020. doi: 10.1109/ICASSP40776.2020.9054377.
URL https://doi.org/10.1109/ICASSP40776.2020.9054377.

https://doi.org/10.1109/TAC.2008.2009515
https://doi.org/10.1137/16M1084316
http://proceedings.mlr.press/v70/nguyen17b.html
http://proceedings.mlr.press/v70/nguyen17b.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1109/ICASSP40776.2020.9054377

References 263

Radia J. Perlman. An algorithm for distributed computation of a spanningtree in an extended
LAN. In William Lidinsky and Bart W. Stuck, editors, SIGCOMM ’85, Proceedings of the
Ninth Symposium on Data Communications, British Columbia, Canada, September 10-12,
1985, pages 44–53. ACM, 1985. doi: 10.1145/319056.319004. URL https://doi.org/10.1145/
319056.319004.

Krishna Pillutla, Sham M. Kakade, and Zaid Harchaoui. Robust Aggregation for Federated
Learning. ArXiv preprint, abs/1912.13445, 2019. URL https://arxiv.org/abs/1912.13445.

Ouri Poupko, Gal Shahaf, Ehud Shapiro, and Nimrod Talmon. Building a sybil-resilient digital
community utilizing trust-graph connectivity. IEEE/ACM Transactions on Networking, 2021.

Shi Pu and Angelia Nedic. Distributed stochastic gradient tracking methods. ArXiv preprint,
abs/1805.11454, 2018. URL https://arxiv.org/abs/1805.11454.

Shi Pu, Wei Shi, Jinming Xu, and Angelia Nedic. Push-pull gradient methods for distributed
optimization in networks. IEEE Trans. Autom. Control., 66(1):1–16, 2021. doi: 10.1109/TAC.
2020.2972824. URL https://doi.org/10.1109/TAC.2020.2972824.

Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, and Tianbao Yang. Stochastic optimiza-
tion of areas under precision-recall curves with provable convergence. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Con-
ference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pages 1752–1765, 2021a. URL https://proceedings.neurips.cc/paper/2021/hash/
0dd1bc593a91620daecf7723d2235624-Abstract.html.

Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, and Tianbao Yang. Stochastic optimization of areas
under precision-recall curves with provable convergence. Advances in Neural Information
Processing Systems, 34:1752–1765, 2021b.

Shashank Rajput, Hongyi Wang, Zachary B. Charles, and Dimitris S. Papailiopoulos. DETOX:
A redundancy-based framework for faster and more robust gradient aggregation. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 10320–10330, 2019. URL https://proceedings.neurips.
cc/paper/2019/hash/415185ea244ea2b2bedeb0449b926802-Abstract.html.

Daniel Ramage and Stefano Mazzocchi. Federated analytics: Collaborative data science without
data collection. https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.
html, 2020.

https://doi.org/10.1145/319056.319004
https://doi.org/10.1145/319056.319004
https://arxiv.org/abs/1912.13445
https://arxiv.org/abs/1805.11454
https://doi.org/10.1109/TAC.2020.2972824
https://proceedings.neurips.cc/paper/2021/hash/0dd1bc593a91620daecf7723d2235624-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0dd1bc593a91620daecf7723d2235624-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/415185ea244ea2b2bedeb0449b926802-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/415185ea244ea2b2bedeb0449b926802-Abstract.html
https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html
https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html

264 References

Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alexander J. Smola.
Stochastic variance reduction for nonconvex optimization. In Maria-Florina Balcan and
Kilian Q. Weinberger, editors, Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 314–323. JMLR.org, 2016a. URL http://
proceedings.mlr.press/v48/reddi16.html.

Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Fast incremental method for
nonconvex optimization. ArXiv preprint, abs/1603.06159, 2016b. URL https://arxiv.org/abs/
1603.06159.

Jayanth Regatti, Hao Chen, and Abhishek Gupta. Bygars: Byzantine sgd with arbitrary number
of attackers, 2020.

M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and Farinaz
Koushanfar. Xonn: Xnor-based oblivious deep neural network inference. ArXiv preprint,
abs/1902.07342, 2019. URL https://arxiv.org/abs/1902.07342.

Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: Scalable provably-
secure deep learning. ArXiv preprint, abs/1705.08963, 2017. URL https://arxiv.org/abs/1705.
08963.

Peter J Rousseeuw and Annick M Leroy. Robust regression and outlier detection. John wiley &
sons, 2005.

Theo Ryffel, Edouard Dufour-Sans, Romain Gay, Francis Bach, and David Pointcheval. Partially
encrypted machine learning using functional encryption. ArXiv preprint, abs/1905.10214,
2019. URL https://arxiv.org/abs/1905.10214.

Peter Sanders, Jochen Speck, and Jesper Larsson Träff. Two-tree algorithms for full bandwidth
broadcast, reduction and scan. Parallel Comput., 35(12):581–594, 2009. doi: 10.1016/j.parco.
2009.09.001. URL https://doi.org/10.1016/j.parco.2009.09.001.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of BERT: smaller, faster, cheaper and lighter. ArXiv preprint, abs/1910.01108, 2019.
URL https://arxiv.org/abs/1910.01108.

Felix Sattler, Klaus-Robert Müller, Thomas Wiegand, and Wojciech Samek. On the byzantine
robustness of clustered federated learning. In 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2020, Barcelona, Spain, May 4-8, 2020,
pages 8861–8865. IEEE, 2020. doi: 10.1109/ICASSP40776.2020.9054676. URL https://doi.
org/10.1109/ICASSP40776.2020.9054676.

http://proceedings.mlr.press/v48/reddi16.html
http://proceedings.mlr.press/v48/reddi16.html
https://arxiv.org/abs/1603.06159
https://arxiv.org/abs/1603.06159
https://arxiv.org/abs/1902.07342
https://arxiv.org/abs/1705.08963
https://arxiv.org/abs/1705.08963
https://arxiv.org/abs/1905.10214
https://doi.org/10.1016/j.parco.2009.09.001
https://arxiv.org/abs/1910.01108
https://doi.org/10.1109/ICASSP40776.2020.9054676
https://doi.org/10.1109/ICASSP40776.2020.9054676

References 265

Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent under a
strong growth condition. ArXiv preprint, abs/1308.6370, 2013. URL https://arxiv.org/abs/
1308.6370.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1):83–112, 2017.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the
22nd ACM SIGSAC conference on computer and communications security, pages 1310–1321.
ACM, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. URL http://arxiv.org/abs/1409.1556.

Nigel P. Smart and Titouan Tanguy. TaaS: Commodity MPC via Triples-as-a-Service. In
CCSW’19 - Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop, CCSW’19, page 105–116, 2019. doi: 10.1145/3338466.3358918. URL https:
//doi.org/10.1145/3338466.3358918.

Jy-yong Sohn, Dong-Jun Han, Beongjun Choi, and Jaekyun Moon. Election coding for distributed
learning: Protecting signsgd against byzantine attacks. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/a7f0d2b95c60161b3f3c82f764b1d1c9-Abstract.html.

Sebastian U. Stich. Unified optimal analysis of the (stochastic) gradient method. ArXiv preprint,
abs/1907.04232, 2019. URL https://arxiv.org/abs/1907.04232.

Lili Su and Nitin Vaidya. Multi-agent optimization in the presence of byzantine adversaries:
Fundamental limits. In 2016 American Control Conference (ACC), pages 7183–7188. IEEE,
2016a.

Lili Su and Nitin H Vaidya. Robust multi-agent optimization: coping with byzantine agents
with input redundancy. In International Symposium on Stabilization, Safety, and Security of
Distributed Systems, pages 368–382. Springer, 2016b.

Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. Can you really
backdoor federated learning? arXiv 1911.07963, 2019.

Shreyas Sundaram and Bahman Gharesifard. Distributed optimization under adversarial nodes.
IEEE Transactions on Automatic Control, 64(3):1063–1076, 2018.

https://arxiv.org/abs/1308.6370
https://arxiv.org/abs/1308.6370
http://arxiv.org/abs/1409.1556
https://doi.org/10.1145/3338466.3358918
https://doi.org/10.1145/3338466.3358918
https://proceedings.neurips.cc/paper/2020/hash/a7f0d2b95c60161b3f3c82f764b1d1c9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a7f0d2b95c60161b3f3c82f764b1d1c9-Abstract.html
https://arxiv.org/abs/1907.04232

266 References

Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. D2: Decentralized training over
decentralized data. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
4855–4863. PMLR, 2018. URL http://proceedings.mlr.press/v80/tang18a.html.

Konstantinos I. Tsianos and Michael G. Rabbat. Distributed consensus and optimization under
communication delays. In 49th Annual Allerton Conference on Communication, Control,
and Computing, Allerton 2011, Allerton Park & Retreat Center, Monticello, IL, USA, 28-30
September, 2011, pages 974–982. IEEE, 2011. doi: 10.1109/Allerton.2011.6120272. URL
https://doi.org/10.1109/Allerton.2011.6120272.

Konstantinos I. Tsianos, Sean F. Lawlor, and Michael G. Rabbat. Push-sum distributed dual
averaging for convex optimization. In Proceedings of the 51th IEEE Conference on Decision
and Control, CDC 2012, December 10-13, 2012, Maui, HI, USA, pages 5453–5458. IEEE,
2012. doi: 10.1109/CDC.2012.6426375. URL https://doi.org/10.1109/CDC.2012.6426375.

John Tukey. Bias and confidence in not quite large samples. Ann. Math. Statist., 29:614, 1958.

Sharan Vaswani, Francis R. Bach, and Mark Schmidt. Fast and faster convergence of SGD
for over-parameterized models and an accelerated perceptron. In Kamalika Chaudhuri and
Masashi Sugiyama, editors, The 22nd International Conference on Artificial Intelligence
and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, volume 89 of
Proceedings of Machine Learning Research, pages 1195–1204. PMLR, 2019a. URL http:
//proceedings.mlr.press/v89/vaswani19a.html.

Sharan Vaswani, Aaron Mishkin, Issam H. Laradji, Mark Schmidt, Gauthier Gidel, and Simon
Lacoste-Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 3727–3740, 2019b. URL https://proceedings.
neurips.cc/paper/2019/hash/2557911c1bf75c2b643afb4ecbfc8ec2-Abstract.html.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Practical low-rank communication
compression in decentralized deep learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/a376802c0811f1b9088828288eb0d3f0-Abstract.html.

http://proceedings.mlr.press/v80/tang18a.html
https://doi.org/10.1109/Allerton.2011.6120272
https://doi.org/10.1109/CDC.2012.6426375
http://proceedings.mlr.press/v89/vaswani19a.html
http://proceedings.mlr.press/v89/vaswani19a.html
https://proceedings.neurips.cc/paper/2019/hash/2557911c1bf75c2b643afb4ecbfc8ec2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2557911c1bf75c2b643afb4ecbfc8ec2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a376802c0811f1b9088828288eb0d3f0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a376802c0811f1b9088828288eb0d3f0-Abstract.html

References 267

Thijs Vogels, Lie He, Anastasia Koloskova, Tao Lin, Sai Praneeth Karimireddy, Sebastian U.
Stich, and Martin Jaggi. Relaysum for decentralized deep learning on heterogeneous data,
2021.

Bokun Wang and Tianbao Yang. Finite-sum coupled compositional stochastic optimization:
Theory and applications. In International Conference on Machine Learning, pages 23292–
23317. PMLR, 2022.

Guanghui Wang, Ming Yang, Lijun Zhang, and Tianbao Yang. Momentum accelerates the
convergence of stochastic AUPRC maximization. In Gustau Camps-Valls, Francisco J. R. Ruiz,
and Isabel Valera, editors, International Conference on Artificial Intelligence and Statistics,
AISTATS 2022, 28-30 March 2022, Virtual Event, volume 151 of Proceedings of Machine
Learning Research, pages 3753–3771. PMLR, 2022a. URL https://proceedings.mlr.press/
v151/wang22b.html.

Guanghui Wang, Ming Yang, Lijun Zhang, and Tianbao Yang. Momentum accelerates the
convergence of stochastic auprc maximization. In International Conference on Artificial
Intelligence and Statistics, pages 3753–3771. PMLR, 2022b.

Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal,
Jy-yong Sohn, Kangwook Lee, and Dimitris S. Papailiopoulos. Attack of the tails: Yes, you
really can backdoor federated learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/b8ffa41d4e492f0fad2f13e29e1762eb-Abstract.html.

Mengdi Wang, Ji Liu, and Ethan X. Fang. Accelerating stochastic composition optimiza-
tion. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 29: An-
nual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 1714–1722, 2016. URL https://proceedings.neurips.cc/paper/2016/
hash/92262bf907af914b95a0fc33c3f33bf6-Abstract.html.

Mengdi Wang, Ethan X Fang, and Han Liu. Stochastic compositional gradient descent: algo-
rithms for minimizing compositions of expected-value functions. Mathematical Programming,
161:419–449, 2017.

Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost and mo-
mentum: Faster variance reduction algorithms. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,

https://proceedings.mlr.press/v151/wang22b.html
https://proceedings.mlr.press/v151/wang22b.html
https://proceedings.neurips.cc/paper/2020/hash/b8ffa41d4e492f0fad2f13e29e1762eb-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b8ffa41d4e492f0fad2f13e29e1762eb-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/92262bf907af914b95a0fc33c3f33bf6-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/92262bf907af914b95a0fc33c3f33bf6-Abstract.html

268 References

Canada, pages 2403–2413, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
512c5cad6c37edb98ae91c8a76c3a291-Abstract.html.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440–442, 1998.

Christopher Stroude Withers. Bias reduction by taylor series. Communications in Statistics-
Theory and Methods, 16(8):2369–2383, 1987.

Chenguang Xi and Usman A. Khan. DEXTRA: A fast algorithm for optimization over directed
graphs. IEEE Trans. Automat. Contr., 62(10):4980–4993, 2017. doi: 10.1109/TAC.2017.
2672698. URL https://doi.org/10.1109/TAC.2017.2672698.

Chenguang Xi, Van Sy Mai, Ran Xin, Eyad H. Abed, and Usman A. Khan. Linear convergence
in optimization over directed graphs with row-stochastic matrices. IEEE Trans. Autom.
Control., 63(10):3558–3565, 2018. doi: 10.1109/TAC.2018.2797164. URL https://doi.org/10.
1109/TAC.2018.2797164.

Lin Xiao and Stephen P. Boyd. Fast linear iterations for distributed averaging. Syst. Control.
Lett., 53(1):65–78, 2004. doi: 10.1016/j.sysconle.2004.02.022. URL https://doi.org/10.1016/j.
sysconle.2004.02.022.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant sgd. ArXiv
preprint, abs/1802.10116, 2018a. URL https://arxiv.org/abs/1802.10116.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Phocas: dimensional byzantine-resilient
stochastic gradient descent. ArXiv preprint, abs/1805.09682, 2018b. URL https://arxiv.org/
abs/1805.09682.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-
tolerant SGD by inner product manipulation. In Amir Globerson and Ricardo Silva, editors,
Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2019,
Tel Aviv, Israel, July 22-25, 2019, volume 115 of Proceedings of Machine Learning Research,
pages 261–270. AUAI Press, 2019a. URL http://proceedings.mlr.press/v115/xie20a.html.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-
tolerant SGD by inner product manipulation. In Amir Globerson and Ricardo Silva, editors,
Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2019,
Tel Aviv, Israel, July 22-25, 2019, volume 115 of Proceedings of Machine Learning Research,
pages 261–270. AUAI Press, 2019b. URL http://proceedings.mlr.press/v115/xie20a.html.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent with
suspicion-based fault-tolerance. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June

https://proceedings.neurips.cc/paper/2019/hash/512c5cad6c37edb98ae91c8a76c3a291-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/512c5cad6c37edb98ae91c8a76c3a291-Abstract.html
https://doi.org/10.1109/TAC.2017.2672698
https://doi.org/10.1109/TAC.2018.2797164
https://doi.org/10.1109/TAC.2018.2797164
https://doi.org/10.1016/j.sysconle.2004.02.022
https://doi.org/10.1016/j.sysconle.2004.02.022
https://arxiv.org/abs/1802.10116
https://arxiv.org/abs/1805.09682
https://arxiv.org/abs/1805.09682
http://proceedings.mlr.press/v115/xie20a.html
http://proceedings.mlr.press/v115/xie20a.html

References 269

2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 6893–6901. PMLR, 2019c. URL http://proceedings.mlr.press/v97/xie19b.html.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno++: Robust fully asynchronous SGD. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
10495–10503. PMLR, 2020a. URL http://proceedings.mlr.press/v119/xie20c.html.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno++: Robust fully asynchronous SGD. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
10495–10503. PMLR, 2020b. URL http://proceedings.mlr.press/v119/xie20c.html.

Ran Xin and Usman A. Khan. A linear algorithm for optimization over directed graphs with
geometric convergence. IEEE Control. Syst. Lett., 2(3):315–320, 2018. doi: 10.1109/LCSYS.
2018.2834316. URL https://doi.org/10.1109/LCSYS.2018.2834316.

Ran Xin and Usman A. Khan. Distributed heavy-ball: A generalization and acceleration of
first-order methods with gradient tracking. IEEE Trans. Autom. Control., 65(6):2627–2633,
2020. doi: 10.1109/TAC.2019.2942513. URL https://doi.org/10.1109/TAC.2019.2942513.

Ran Xin, Chenguang Xi, and Usman A. Khan. FROST - fast row-stochastic optimization with
uncoordinated step-sizes. EURASIP J. Adv. Signal Process., 2019:1, 2019. doi: 10.1186/
s13634-018-0596-y. URL https://doi.org/10.1186/s13634-018-0596-y.

Yi-Rui Yang and Wu-Jun Li. BASGD: buffered asynchronous SGD for byzantine learning. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 11751–11761. PMLR, 2021a. URL http://proceedings.mlr.
press/v139/yang21e.html.

Yi-Rui Yang and Wu-Jun Li. BASGD: buffered asynchronous SGD for byzantine learning. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 11751–11761. PMLR, 2021b. URL http://proceedings.mlr.
press/v139/yang21e.html.

Zhixiong Yang and Waheed U Bajwa. Bridge: Byzantine-resilient decentralized gradient descent.
arXiv 1908.08098, 2019a.

Zhixiong Yang and Waheed U Bajwa. Byrdie: Byzantine-resilient distributed coordinate descent
for decentralized learning. IEEE Transactions on Signal and Information Processing over
Networks, 2019b.

http://proceedings.mlr.press/v97/xie19b.html
http://proceedings.mlr.press/v119/xie20c.html
http://proceedings.mlr.press/v119/xie20c.html
https://doi.org/10.1109/LCSYS.2018.2834316
https://doi.org/10.1109/TAC.2019.2942513
https://doi.org/10.1186/s13634-018-0596-y
http://proceedings.mlr.press/v139/yang21e.html
http://proceedings.mlr.press/v139/yang21e.html
http://proceedings.mlr.press/v139/yang21e.html
http://proceedings.mlr.press/v139/yang21e.html

270 References

Andrew C Yao. Theory and application of trapdoor functions. In 23rd Annual Symposium on
Foundations of Computer Science (SFCS 1982), pages 80–91. IEEE, 1982.

Yu M Yermol’yev. A general stochastic programming problem. 1971.

Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter L. Bartlett. Byzantine-robust
distributed learning: Towards optimal statistical rates. In Jennifer G. Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 5636–5645. PMLR, 2018a. URL http://proceedings.mlr.press/v80/
yin18a.html.

Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter L. Bartlett. Byzantine-robust
distributed learning: Towards optimal statistical rates. In Jennifer G. Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 5636–5645. PMLR, 2018b. URL http://proceedings.mlr.press/v80/
yin18a.html.

Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter L. Bartlett. Defending against
saddle point attack in byzantine-robust distributed learning. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 7074–7084. PMLR, 2019. URL http://proceedings.mlr.
press/v97/yin19a.html.

Bicheng Ying, Kun Yuan, Yiming Chen, Hanbin Hu, Pan Pan, and Wotao Yin. Exponential
graph is provably efficient for decentralized deep training. Advances in Neural Information
Processing Systems, 34, 2021a.

Bicheng Ying, Kun Yuan, Hanbin Hu, Yiming Chen, and Wotao Yin. Bluefog: Make decentralized
algorithms practical for optimization and deep learning. ArXiv preprint, abs/2111.04287,
2021b. URL https://arxiv.org/abs/2111.04287.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted SGD with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019, pages 5693–5700. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33015693.
URL https://doi.org/10.1609/aaai.v33i01.33015693.

http://proceedings.mlr.press/v80/yin18a.html
http://proceedings.mlr.press/v80/yin18a.html
http://proceedings.mlr.press/v80/yin18a.html
http://proceedings.mlr.press/v80/yin18a.html
http://proceedings.mlr.press/v97/yin19a.html
http://proceedings.mlr.press/v97/yin19a.html
https://arxiv.org/abs/2111.04287
https://doi.org/10.1609/aaai.v33i01.33015693

References 271

Kun Yuan, Bicheng Ying, Xiaochuan Zhao, and Ali H. Sayed. Exact diffusion for distributed
optimization and learning - part I: algorithm development. IEEE Trans. Signal Process., 67
(3):708–723, 2019. doi: 10.1109/TSP.2018.2875898. URL https://doi.org/10.1109/TSP.2018.
2875898.

Kun Yuan, Yiming Chen, Xinmeng Huang, Yingya Zhang, Pan Pan, Yinghui Xu, and Wotao
Yin. Decentlam: Decentralized momentum SGD for large-batch deep training. ArXiv preprint,
abs/2104.11981, 2021. URL https://arxiv.org/abs/2104.11981.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan H. Greenewald, Trong Nghia
Hoang, and Yasaman Khazaeni. Bayesian nonparametric federated learning of neural net-
works. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 7252–7261.
PMLR, 2019. URL http://proceedings.mlr.press/v97/yurochkin19a.html.

Jiaqi Zhang and Keyou You. Decentralized stochastic gradient tracking for non-convex empirical
risk minimization, 2020.

Junyu Zhang and Lin Xiao. Multilevel composite stochastic optimization via nested variance
reduction. SIAM Journal on Optimization, 31(2):1131–1157, 2021.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for
text classification. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 649–657, 2015. URL https://proceedings.neurips.cc/paper/2015/hash/
250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html.

Zhaorong Zhang, Kan Xie, Qianqian Cai, and Minyue Fu. A bp-like distributed algorithm for
weighted average consensus. In 12th Asian Control Conference, ASCC 2019, Kitakyushu-
shi, Japan, June 9-12, 2019, pages 728–733. IEEE, 2019. URL https://ieeexplore.ieee.org/
document/8765066.

Chengcheng Zhao, Jianping He, and Qing-Guo Wang. Resilient distributed optimization
algorithm against adversarial attacks. IEEE Transactions on Automatic Control, 65(10):
4308–4315, 2019.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,

https://doi.org/10.1109/TSP.2018.2875898
https://doi.org/10.1109/TSP.2018.2875898
https://arxiv.org/abs/2104.11981
http://proceedings.mlr.press/v97/yurochkin19a.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://ieeexplore.ieee.org/document/8765066
https://ieeexplore.ieee.org/document/8765066

272 References

Canada, pages 14747–14756, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
60a6c4002cc7b29142def8871531281a-Abstract.html.

https://proceedings.neurips.cc/paper/2019/hash/60a6c4002cc7b29142def8871531281a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/60a6c4002cc7b29142def8871531281a-Abstract.html

Lie He | Curriculum Vitae
INJ 335, EPFL – Ecublens 1024, Switzerland

Q lie.he@epfl.ch • � GitHub • � Google Scholar

Education
École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
Ph.D. in Computer Science 2019–2023
Thesis: Distributed Optimization with Byzantine Robustness Guarantees. Advisor: Prof. Martin Jaggi.
École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
MSc in Computational Science and Engineering 2015–2018
Thesis: COLA: Decentralized Linear Learning. Advisor: Prof. Martin Jaggi.
University of Science and Technology of China (USTC) Hefei, China
BSc in Mathematics 2011–2015
Thesis: Numerical Fluxes of Finite Volumes Method for Euler Equations. Advisor: Prof. Yinhua Xia.

Work Experience
Amazon Inc. Tübingen, Germany
Applied Scientist Intern June–October 2022
+ Developed a novel technique to identify and mitigate biases in optimization algorithms commonly used in machine learning,

achieving orders-of-magnitude improvement in sample complexity.
+ Paper accepted for presentation at NeurIPS 2023.

Google Inc. New York, USA
Research Intern April–July 2019
+ Engineered multi-organizational federated learning algorithms for iNaturalist datasets with hierarchical structure.
+ Partnered with cross-disciplinary teams to incorporate research findings into broader organizational research agendas.

Machine Learning and Optimization Lab at EPFL Lausanne, Switzerland
Software Engineer Intern Jul–Dec 2018
+ Developed an open-source project MLBench from scratch which offers a benchmark suite for distributed machine learning

algorithms.
+ Implemented and benchmarked popular distributed training algorithms for deep learning.

Honors, Awards and Fundings
2022: Google Research Collab Program awarded by Google to fund research student
2019: EDIC Fellowship awarded by EPFL to selected PhD students
2015: Outstanding Undergraduate Scholarships awarded by USTC
2014: Exchange Student Scholarship awarded by HKUST for summer exchange program

Academic Services
Conference reviewer:
+ International Conference on Machine Learning (ICML): ’23, ’22, ’21
+ Conference on Neural Information Processing Systems (NeurIPS): ’22, ’21
+ International Conference on Learning Representations (ICLR): ’22, ’21
Journal reviewer:
+ Journal of Machine Learning Research (JMLR)
+ Transactions on Machine Learning Research (TMLR)
+ IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)

+ IEEE Transactions on Signal Processing (IEEE TSP)

Open Source Projects
MLBench: A framework for benchmarking distributed machine learning algorithms
DecentralizedAI: A cross-platform framework for collaborative and privacy-preserving training of machine learning
models

Selected Publications
Note: ★ indicates that the authors with equal contributions.

Peer-reviewed conference and journal publications. .

1. Towards Provably Personalized Federated Learning via Threshold-Clustering of Similar Clients.
Mariel Werner, Lie He, Sai Praneeth Karimireddy, Michael Jordan, Martin Jaggi
TMLR 2023 and a shorter version accepted at NeurIPS 2022 FL Workshop.

2. Debiasing Conditional Stochastic Optimization.
Lie He, Shiva Kasiviswanathan
NeurIPS 2023.

3. Byzantine-Robust Learning on Heterogeneous Datasets via Bucketing.
Sai Praneeth Karimireddy★, Lie He★, and Martin Jaggi.
ICLR 2022 Spotlight and a shorter version accepted at NeurIPS 2020 SpicyFL workshop.

4. Relaysum for Decentralized Deep Learning on Heterogeneous Data.
Thijs Vogels★, Lie He★, Koloskova Anastasia, Sai Praneeth Karimireddy, Tao Lin, Sebastian Stich, and Martin
Jaggi.
NeurIPS 2021.

5. Learning from History for Byzantine Robust Optimization.
Sai Praneeth Karimireddy, Lie He, and Martin Jaggi.
ICML 2021.

6. COLA: Decentralized Linear Learning.
Lie He★, An Bian★, and Martin Jaggi.
NeurIPS 2018.

Peer-reviewed workshop papers. .

1. Secure Byzantine-Robust Machine Learning.
Lie He, Sai Praneeth Karimireddy, and Martin Jaggi.
NeurIPS 2020 SpicyFL Workshop.

Preprints. .

1. Byzantine-Robust Decentralized Learning via ClippedGossip.
Lie He★, Sai Praneeth Karimireddy★, Martin Jaggi
Arxiv.

	Table of contents
	1 Introduction
	2 Byzantine-robust Learning on Heterogeneous Dataset via Bucketing
	2.1 Preface
	2.2 Introduction
	2.3 Related work
	2.4 Attacks against existing aggregation schemes
	2.4.1 Failure on imbalanced data without Byzantine workers
	2.4.2 Mimic attack on balanced data

	2.5 Constructing an agnostic robust aggregator using bucketing
	2.5.1 Bucketing algorithm
	2.5.2 Agnostic robust aggregation

	2.6 Robust non-iid optimization using a robust aggregator
	2.6.1 Algorithm description
	2.6.2 Convergence rates
	2.6.3 Lower bounds and the challenge of heterogeneity
	2.6.4 Circumventing lower bounds using overparameterization

	2.7 Experiments
	2.8 Conclusion

	3 Byzantine-robust decentralized learning via ClippedGossip
	3.1 Preface
	3.2 Introduction
	3.3 Related work
	3.4 Setup
	3.4.1 Decentralized threat model
	3.4.2 Optimization assumptions

	3.5 Robust Decentralized Consensus
	3.5.1 The Clipped Gossip algorithm
	3.5.2 Lower bounds due to communication constraints

	3.6 Robust Decentralized Optimization
	3.7 Experiments
	3.7.1 Decentralized defenses without attackers
	3.7.2 Decentralized learning under more attacks and topologies.
	3.7.3 Lower bound of optimization

	3.8 Discussion

	4 Secure Byzantine-Robust Machine Learning
	4.1 Preface
	4.2 Introduction
	4.3 Problem setup, privacy, and robustness
	4.4 Secure aggregation protocol: two-server model
	4.4.1 Non-robust secure aggregation
	4.4.2 Robust secure aggregation
	4.4.3 Salient features

	4.5 Theoretical guarantees
	4.5.1 Exactness
	4.5.2 Privacy
	4.5.3 Combining with differential privacy

	4.6 Empirical analysis of overhead
	4.7 Literature review
	4.8 Conclusion

	5 RelaySum for Decentralized Deep Learning on Heterogeneous Data
	5.1 Preface
	5.2 Introduction
	5.3 Related work
	5.4 Method
	5.5 Theoretical analysis
	5.6 Experimental analysis and practical properties
	5.6.1 Effect of network topology
	5.6.2 Spanning trees compared to other topologies
	5.6.3 Effect of data heterogeneity in decentralized deep learning
	5.6.4 Robustness to unreliable communication

	5.7 Conclusion

	6 Debiasing Conditional Stochastic Optimization
	6.1 Preface
	6.2 Introduction
	6.3 Stochastic Extrapolation as a Tool for Bias Correction
	6.4 Applying Stochastic Extrapolation in the CSO Problem
	6.5 Applying Stochastic Extrapolation in the FCCO Problem
	6.6 Applications
	6.7 Concluding Remarks

	7 Conclusion and Future Work
	Appendix A Byzantine-robust Learning on Heterogeneous Dataset via Bucketing
	A.1 Experiment setup and additional experiments
	A.1.1 Experiment setup
	A.1.2 Additional experiments

	A.2 Implementing the mimic attack
	A.3 Constructing a robust aggregator using bucketing
	A.3.1 Supporting lemmas
	A.3.2 Proofs of robustness

	A.4 Lower bounds on non-iid data (Proof of thm:lower-bound)
	A.5 Convergence of robust optimization on non-iid data (Theorems 2.2 and 2.4)

	Appendix B Byzantine-robust decentralized learning via ClippedGossip
	B.1 Existing robust aggregators
	B.2 Byzantine attacks in the decentralized environment
	B.2.1 Existing attacks in federated learning
	B.2.2 Dissensus attack and other attacks in the decentralized environment

	B.3 Topologies and mixing matrices
	B.3.1 Constrained topologies
	B.3.2 Constructing mixing matrices

	B.4 Experiments
	B.4.1 Byzantine-robust consensus
	B.4.2 Byzantine-robust decentralized optimization
	B.4.3 Experiment: CIFAR-10 task
	B.4.4 Experiment for ``Weaker topology assumption''
	B.4.5 Experiment: choosing clipping radius

	B.5 Analysis
	B.5.1 Definitions, and inequalities
	B.5.2 Lemmas
	B.5.3 Proof of the main theorem

	B.6 Other related works and discussions

	Appendix C Secure Byzantine-Robust Machine Learning
	C.1 Proofs
	C.2 Notes on security
	C.2.1 Beaver's MPC Protocol
	C.2.2 Notes on obtaining a secret share
	C.2.3 Computational indistinguishability
	C.2.4 Notes on the security of S2

	C.3 Data ownership diagram
	C.4 Example: Two-server protocol with ByzantineSGD oracle
	C.5 Additional experiments

	Appendix D RelaySum for Decentralized Deep Learning on Heterogeneous Data
	D.1 Convergence Analysis of RelaySGD
	D.1.1 Notation
	D.1.2 Technical Preliminaries
	D.1.3 Results of Theorem 5.1
	D.1.4 Proof of Theorem 5.1 in the convex case
	D.1.5 Proof of Theorem 5.1 in the strongly convex case
	D.1.6 Proof of Theorem 5.1 in the non-convex case

	D.2 Detailed experimental setup
	D.2.1 Cifar-10
	D.2.2 ImageNet
	D.2.3 BERT finetuning
	D.2.4 Random quadratics

	D.3 Hyper-parameters and tuning details
	D.3.1 Cifar-10
	D.3.2 ImageNet
	D.3.3 BERT finetuning
	D.3.4 Random quadratics

	D.4 Algorithmic details
	D.4.1 Learning-rate correction for RelaySGD
	D.4.2 RelaySGD with momentum
	D.4.3 RelaySGD with Adam
	D.4.4 D2 with momentum
	D.4.5 Gradient Tracking
	D.4.6 Stochastic Gradient Push with the time-varying exponential topology

	D.5 Additional experiments on RelaySGD
	D.5.1 Rings vs double binary trees on Cifar-10
	D.5.2 Scaling the number of workers on Cifar-10
	D.5.3 Independence of heterogeneity
	D.5.4 Star topology

	D.6 RelaySum for distributed mean estimation
	D.7 Alternative optimizer based on RelaySum
	D.7.1 Theoretical analysis of RelaySGD/Grad
	D.7.2 Empirical analysis of RelaySGD/Grad

	Appendix E Debiasing Conditional Stochastic Optimization
	E.1 Missing Pseudocodes
	E.2 Missing Details from sec: intro
	E.2.1 Other Related Work

	E.3 Missing Details from sec:bias
	E.4 Stationary Point Convergence Proofs from sec:CSO (CSO)
	E.4.1 Helpful Lemmas
	E.4.2 Convergence of BSGD
	E.4.3 Convergence of E-BSGD
	E.4.4 Convergence of BSpiderBoost
	E.4.5 Convergence of E-BSpiderBoost

	E.5 Stationary Point Convergence Proofs from sec:FCCO (FCCO)
	E.5.1 E-BSpiderBoost for FCCO problem
	E.5.2 Convergence of NestedVR
	E.5.3 Convergence of E-NestedVR

	E.6 Missing Details from Section 2.7
	E.6.1 Application of First-order MAML
	E.6.2 Application of Deep Average Precision Maximization
	E.6.3 Necessity of Additional Smoothness Conditions

	References
	Curriculum Vitae

